ML073230007: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 18: Line 18:
May 1, 1977
May 1, 1977


            - i -
DRAFT 1
LIST OF FIGURES     DRAFT No.       Figures           Page Decision Train Flow Chart 12 1
- i -
LIST OF FIGURES N o.
Figures Page Decision Train Flow Chart 1 2


TABLE OF CONTENTS Page 1.0 Acknowledgements                                      1 2.0 Introduction                                           3 2.1 Background Information                             3 2.2 Suggested Uses of this Technical Manual           8 3.0 Productive Demonstration                             11 3.1 Introduction                                     11 3 . 2 Decision Train                                 11 3.3 Biotic Category Determinations and Recommended Early Screening Procedures by Industry       18 3.4 How to Select the Most Appropriate Demonstration Type                                         33 3.5 Type II Demonstrations (Representative Important Species)                                     34 3.6 Type III Low Potential Impact Determinations     63 3 . 7 Other Type III Demonstrations (Biological, Engineering, and Other Data)                 64 3.8 Decision Criteria                                65 3 . 9 Non-Predictive Demonstrations (Type I, Absence of Prior Appreciable harm)                   72 4.0 Definitions and Concepts                             73
1.0 2.0 3.0 Introduction TABLE OF CONTENTS Acknowledgements 2.1 Background Information 2.2 Suggested Uses of this Technical Manual Productive Demonstration 3.1 Introduction 3. 2 Decision Train 3.3 Biotic Category Determinations and Recommended Early Screening Procedures by Industry 3.4 How to Select the Most Appropriate Demonstration Type 3.5 Type II Demonstrations (Representative Important Species) 3.6 Type III Low Potential Impact Determinations 3. 7 Other Type III Demonstrations (Biological, Engineering, and Other Data) 3.9 Non-Predictive Demonstrations (Type I, Absence of Prior Appreciable harm) 4.0 Definitions and Concepts 3.8 Decision Criteria Page 1
3 3
8 11 11 11 18 33 34 63 64 65 72 73


                -ii-LIST OF TABLES No.           Tables               Page Sample Table to Summarize       41 Data for Each Representative Important Species (RIS) 2   Thermal Effects Parameters       42 Applicable to Aquatic Organisms Potentially Selected as RIS 3 Cooling Water Characteristics   53
- i i -
 
LIST OF TABLES 3
1.0   Acknowledgements   DRAFT This manual represents the efforts of many who unselfishly con-tributed their time and expertise. Originally, specific assignments were delegated to working groups but, as time went by, individuals in these working groups were asked to provide assistance in other areas.
No.
Tables Sample Table to Summarize Data for Each Representative Important Species (RIS)
Page 41 2
Thermal Effects Parameters Applicable to Aquatic Organisms Potentially Selected as RIS Cooling Water Characteristics 5 3 42 DRAFT 1.0 Acknowledgements This manual represents the efforts of many who unselfishly con-tributed their time and expertise. Originally, specific assignments were delegated to working groups but, as time went by, individuals in these working groups were asked to provide assistance in other areas.
Therefore, to simplify the acknowledgements, the following is a list of those who at one time or another contributed to the development of this manual:
Therefore, to simplify the acknowledgements, the following is a list of those who at one time or another contributed to the development of this manual:
U.S. Environmental Protection Agency Allan Beck, Narragansett, Rhode Island William Brungs, Duluth, Minnesota Stephen Bugbee, Washington, D.C.
U.S. Environmental Protection Agency Allan Beck, Narragansett, Rhode Island William Brungs, Duluth, Minnesota Stephen Bugbee, Washington, D.C.
Line 34: Line 41:
Mark Pisano, Washington, D.C.
Mark Pisano, Washington, D.C.
Jan Prager, Narragansett, Rhode Island Ronald Preston, Wheeling, West Virginia Ronald Raschke, Athens, Georgia Robert Schaffer, Washington, D.C.
Jan Prager, Narragansett, Rhode Island Ronald Preston, Wheeling, West Virginia Ronald Raschke, Athens, Georgia Robert Schaffer, Washington, D.C.
Eric Schneider, Narragansett, Rhode Island Lee Tabo, Jr., Athens, Georgia Bruce Tichenor, Corvallis, Oregon Howard Zar, Chicago, Illinois Nuclear Regulatory Commission Harold Berkson, Bethesda, Maryland Thomas Cain, Bethesda, Maryland Phillip Cota, Bethesda, Maryland Robert Geckler, Rockville, Maryland Bennett Harless, Rockville, Maryland Robert Jaske, Bethesda, Maryland Michael Masnik, Bethesda, Maryland Robert Samworth, Bethesda, Maryland
Eric Schneider, Narragansett, Rhode Island Lee Tabo, Jr., Athens, Georgia Bruce Tichenor, Corvallis, Oregon Howard Zar, Chicago, Illinois Nuclear Regulatory Commission Harold Berkson, Bethesda, Maryland Thomas Cain, Bethesda, Maryland Phillip Cota, Bethesda, Maryland Robert Geckler, Rockville, Maryland Bennett Harless, Rockville, Maryland Robert Jaske, Bethesda, Maryland Michael Masnik, Bethesda, Maryland Robert Samworth, Bethesda, Maryland U.S. Fish and Wildlife Service DRAFT John Boreman, Ann Arbor, Michigan Thomas Edsall, Ann Arbor, Michigan Phillip Goodyear, Ann Arbor, Michigan Roy Irwin, Ann Arbor, Michigan Glen Kinser, Washington, D.C.
 
U.S. Fish and Wildlife Service                     DRAFT John Boreman, Ann Arbor, Michigan Thomas Edsall, Ann Arbor, Michigan Phillip Goodyear, Ann Arbor, Michigan Roy Irwin, Ann Arbor, Michigan Glen Kinser, Washington, D.C.
Mark Maher, Ann Arbor, Michigan Oak Ridge National Laboratories Charles Coutant, Oak Ridge, Tennessee Jack Mattice, Oak Ridge, Tennessee U.S. Energy Research and Development Administration Heyward Hamilton, Washington, D.C.
Mark Maher, Ann Arbor, Michigan Oak Ridge National Laboratories Charles Coutant, Oak Ridge, Tennessee Jack Mattice, Oak Ridge, Tennessee U.S. Energy Research and Development Administration Heyward Hamilton, Washington, D.C.
W.R. Taylor, Germantown, Maryland Argonne National Laboratory Rajendra Sharma, Argonne, Illinois Great Lakes Fishery Commission Carlos Fetterolf, Jr., Ann Arbor, Michigan
W.R. Taylor, Germantown, Maryland Argonne National Laboratory Rajendra Sharma, Argonne, Illinois Great Lakes Fishery Commission Carlos Fetterolf, Jr., Ann Arbor, Michigan


==2.0 INTRODUCTION==
==2.0 INTRODUCTION==
DRAFT 2.1 Background Information 2.1.1 Brief History of the Evolution of this Document Prior to the enactment of Public Law 92-500 [the Federal Water Pollution Control Act Amendments of 1972 (FWPCA)], the Atomic Energy Commission (AEC) had regulatory authority pursuant to the National Environmental Policy Act of 1969 (NEPA) to impose effluent limitations on facilities requiring an AEC license or permit.
DRAFT 2.1 Background Information 2.1.1 Brief History of the Evolution of this Document Prior to the enactment of Public Law 92-500 [the Federal Water Pollution Control Act Amendments of 1972 (FWPCA)], the Atomic Energy Commission (AEC) had regulatory authority pursuant to the National Environmental Policy Act of 1969 (NEPA) to impose effluent limitations on facilities requiring an AEC license or permit.
The FWPCA now requires the Environmental Protection Agency (EPA) to establish (for use in permits for the discharge of pollutants to waters of the United States from point sources as defined in the FWPCA such as nuclear power plants, etc.) effluent limitations for all pollutants.
The FWPCA now requires the Environmental Protection Agency (EPA) to establish (for use in permits for the discharge of pollutants to waters of the United States from point sources as defined in the FWPCA such as nuclear power plants, etc.) effluent limitations for all pollutants.
The FWPCA provides that nothing under NEPA shall be deemed to authorize any Federal agency to review any effluent limitation or other requirement established pursuant to the FWPCA, or to impose, as a condition of any license or permit, an effluent limitation other than any such limitation established pursuant to FWPCA.
The FWPCA provides that nothing under NEPA shall be deemed to authorize any Federal agency to review any effluent limitation or other requirement established pursuant to the FWPCA, or to impose, as a condition of any license or permit, an effluent limitation other than any such limitation established pursuant to FWPCA.
Line 47: Line 52:
NEPA requires that all Federal agencies prepare detailed environ-mental statements on proposed major Federal actions which can significantly affect the quality of the human environment. A principal objective of NEPA is to require the agency to consider, in its decision-making process, the environmental impacts of each proposed major action and the available alternative actions. Both EPA and NRC have responsibilities pursuant to NEPA regarding the issuance of licenses or permits for nuclear power plants and certain other facilities.
NEPA requires that all Federal agencies prepare detailed environ-mental statements on proposed major Federal actions which can significantly affect the quality of the human environment. A principal objective of NEPA is to require the agency to consider, in its decision-making process, the environmental impacts of each proposed major action and the available alternative actions. Both EPA and NRC have responsibilities pursuant to NEPA regarding the issuance of licenses or permits for nuclear power plants and certain other facilities.
In late 1973, the Chairman of the Council on Environmental Quality (CEQ) wrote to the Chairman of the then AEC and the Administrator of EPA Suggesting steps that might be taken "to make the analysis of the water quality impact of nuclear power plants more effective and more meaningful and, at the same time, reduce demands for data being placed upon applicants for licenses."
In late 1973, the Chairman of the Council on Environmental Quality (CEQ) wrote to the Chairman of the then AEC and the Administrator of EPA Suggesting steps that might be taken "to make the analysis of the water quality impact of nuclear power plants more effective and more meaningful and, at the same time, reduce demands for data being placed upon applicants for licenses."
DRAFT In summary, CEQ suggested that AEC and EPA:
DRAFT In summary, CEQ suggested that AEC and EPA:
(1)   explore mechanisms available to assure that applicants' environmental reports to AEC contain sufficient data to satisfy EPA requirements on water quality matters; (2)   consider the possibility of preparing a single impact statement to meet AEC's requirements under NEPA and EPA's requirements under FWPCA; and (3)   consider the possibility of unified hearings.
(1) explore mechanisms available to assure that applicants' environmental reports to AEC contain sufficient data to satisfy EPA requirements on water quality matters; (2) consider the possibility of preparing a single impact statement to meet AEC's requirements under NEPA and EPA's requirements under FWPCA; and (3) consider the possibility of unified hearings.
In response to CEQ's suggestions, AEC (subsequently NRC) and EPA developed the Proposed Second Memorandum of Understanding regarding their perspective responsibilities under NEPA FWPCA, which was published in the Federal Register for public comment on November 7, 1974 (39 FR 39490), and in final on December 17, 1975 (40 FR 60115).
In response to CEQ's suggestions, AEC (subsequently NRC) and EPA developed the Proposed Second Memorandum of Understanding regarding their perspective responsibilities under NEPA FWPCA, which was published in the Federal Register for public comment on November 7, 1974 (39 FR 39490), and in final on December 17, 1975 (40 FR 60115).
In summary, the Memorandum:
In summary, the Memorandum:
: 1. specified the statutory authority of both agencies for entering into the Memorandum.
1.
: 2. Defined those licensing and regulatory activities to which the Memorandum shall be applicable.
specified the statutory authority of both agencies for entering into the Memorandum.
: 3. specified that NRC and EPA will work together to identify needed environmental information for early evaluations related to impact from the identified activities on water quality and biota.
2.
: 4. Provided for EPA to exercise its best efforts to evaluate impacts on water quality and biota as far as possible in advance of the issuance of NRC's final environmental impact statement for any covered activity, and specified that EPA and NRC will maintain close working relationships during the entire environmental review process.
Defined those licensing and regulatory activities to which the Memorandum shall be applicable.
: 5. Specified that EPA will issue to the applicant, where appro-priate, in light of substantive requirements, a complete section 402 permit as far as possible in advance of authoriza-tion by the NRC of any commencement of construction or issuance by NRC of a license or early site approval, whichever is applicable.*
3.
specified that NRC and EPA will work together to identify needed environmental information for early evaluations related to impact from the identified activities on water quality and biota.
4.
Provided for EPA to exercise its best efforts to evaluate impacts on water quality and biota as far as possible in advance of the issuance of NRC's final environmental impact statement for any covered activity, and specified that EPA and NRC will maintain close working relationships during the entire environmental review process.
5.
Specified that EPA will issue to the applicant, where appro-priate, in light of substantive requirements, a complete section 402 permit as far as possible in advance of authoriza-tion by the NRC of any commencement of construction or issuance by NRC of a license or early site approval, whichever is applicable.*
* See 10 CRF Part 2, Appendix A, Paragraph I(c).
* See 10 CRF Part 2, Appendix A, Paragraph I(c).


                                                          -,j-
-,j-
: 6. Speclfled         that EPA and ?JRC till                 coasider     the LusibiLicy of holding         combtied       or coacurrent             heerings on EPAs proposed       sectfoa /rO2 p8mlCS                 end !GkCs prOQO88d Frsuence of co~tmctlon               permits       or ocher activicles             uhue l QQrOQriAtL
: 6.
: 7. Eaecinded         the     Huorendm           of Understanding           RegerdFog Implmentetloa             of Certain         Complemental         ILaponsibilftles under chr W                 end dated         January 13, L9, aod 22, 1973 (38 FE 2fl3).
: 7.
As l f Frse step             tovarda     LppLemenring the objecttves                   of the
Speclfled that EPA and  
!4eaorendm,         P sarime       of   meeclngs       beewean EPA rnd !iRC took place Ln Irte November       19 76. At these aeectngs it uu decided thee one of the aost dFfficu.Lc       cssks CO be doua, end oue which should be started                                     first,     was to standerdim             aquatic biological                 dstr   requiremeutr         co satisfy         FUPCa requfraents           for EPA and NPA requirements                         for .YRC. Technical             experts representing           the ma egenclee Fn the field of equatfc biology                                     held l rulu       of meetings Fn December 1974, formLaced                                 arny   centrtfve       agree mencs,     aad eppOint8d           a eerie8       of l lghc wrklag               groups.       Each wrking group was co-chaired               by oue repruencrtlve                     troa uch agency.
?JRC till coasider the LusibiLicy of holding combtied or coacurrent heerings on EPAs proposed sectfoa  
00 Jenuaq 28-30, 1975, the eight                             wrkbg       groups     met b! Fells Church,       Vlrglnla,       to complete         spoctiic         urltlag       assignments       couctibuttig to the d~elopeac                 of   8 sew guideme             aanuel.       Tech wrLFng group submitted draft     r-rfu           of   chair work ou cha Lut dsy of the aeetfng                               end final rtmmries         by urly       March 1975.
/rO2 p8mlCS end  
The Long process               of plecLng         the products         of the eight         wtkiag groups     togethu       tico 001 cohesive technical                         arnuel ues 910-d           by key personnel       changes vlthia             the e#eaciee end heavy schedules of ocher ladlvlduals         00 the     working groups.                 In rplce of the nmuou                   setbecks~
!GkCs prOQO88d Frsuence of co~tmctlon permits or ocher activicles uhue l QQrOQriAtL Eaecinded the Huorendm of Understanding RegerdFog Implmentetloa of Certain Complemental ILaponsibilftles under chr W end dated January 13, L9, aod 22, 1973 (38 FE 2fl3).
e Decrber         U. L97S. dreft           us   carplaced         end reviend         by ksy wrkirrg group oabers           during Jenm               1976 Frr Athens, Georgia.                   At chlr amacing Fe YS indiuted               that smerrl           sections         still     oeeded rwiriou           end others should be deleted rltogethu.                         &us         of responslblllcy           ware sssigned co til4           wrk4         group oabars             and this editloo             of the srnud           is rhe rutdt       of chum efforts,
As l
f Frse step tovarda LppLemenring the objecttves of the  
!4eaorendm, P sarime of meeclngs beewean EPA rnd  
!iRC took place Ln Irte November 19 76.
At these aeectngs it uu decided thee one of the aost dFfficu.Lc cssks CO be doua, end oue which should be started
: first, was to standerdim aquatic biological dstr requiremeutr co satisfy FUPCa requfraents for EPA and NPA requirements for  
.YRC.
Technical experts representing the ma egenclee Fn the field of equatfc biology held l
rulu of meetings Fn December 1974, formLaced arny centrtfve agree
: mencs, aad eppOint8d a eerie8 of l lghc wrklag groups.
Each wrking group was co-chaired by oue repruencrtlve troa uch agency.
00 Jenuaq 28-30, 1975, the eight wrkbg groups met b! Fells
: Church, Vlrglnla, to complete spoctiic urltlag assignments couctibuttig to the d~elopeac of 8 sew guideme aanuel.
Tech wrLFng group submitted draft r-rfu of chair work ou cha Lut dsy of the aeetfng end final rtmmries by urly March 1975.
The Long process of plecLng the products of the eight wtkiag groups togethu tico 001 cohesive technical arnuel ues 910-d by key personnel changes vlthia the e#eaciee end heavy schedules of ocher ladlvlduals 00 the working groups.
In rplce of the nmuou setbecks~
e Decrber U.
L97S.
dreft us carplaced end reviend by ksy wrkirrg group oabers during Jenm 1976 Frr Athens, Georgia.
At chlr amacing Fe YS indiuted that smerrl sections still oeeded rwiriou end others should be deleted rltogethu.  
&us of responslblllcy ware sssigned co til4 wrk4 group oabars and this editloo of the srnud is rhe rutdt of chum efforts,  


2.1.2         A   shift         of mhasls Ia the course of the demlopmat                                 of this       draft,       Fe becsm appuaat         to aeny uorklatg               group members cl38t urly                     scramairy procduru by induat~             or thafr consultaats                 could       sometimes         reve8L       those       cypu of Fnformtioo                 ubich would WC             be aecus~               to gather la gruc                 det8FL at   ¶r     rltu*             If   bitlal       pilot     field     sumeys         cad literrture             surveys r8VUhd           that       tha     Sit@ uu       one Of bU pOt8ath.L                   l.UQeCt     for     phflOpkUktOU for aamph,               it vould         ba unnecus8q               to couducc         deetied         studies       to give the temaomlc ideattilcetloa                                 of   every     species of phytopleaktoa fn tha piciafcy~
2.1.2 A shift of mhasls Ia the course of the demlopmat of this
2.1-3         FubLfc           AvsUahFLitzy           of   316(r)     3emousrracl.oua It     ir     the     Fnteatloa       of &PA to make ch* techalcal                         fnfomatloa submitted         by Fadustrlu               fa eccordurce with 316(r) meileble                               for use by ochu ~ustriu.                         scieatlrts         c sad -us               of the pub&z.               This VFll be door fnitis.Uy                       by placing copies of the dmoastrstiuu                                 and supportiag           documents Lato the coUoctioo                           of the respoaeib~e                 EPA Regfo&
: draft, Fe becsm appuaat to aeny uorklatg group members cl38t urly scramairy procduru by induat~
Off ice Ubrsry-                   A rFnFl8r         appro8&       Ls -0         suggested         for State yeociu-Ia cssu where d-d                         for     the dmoastrstioa               materials         exceeds thm ca~a-bUcy       of an EPA or State agency Librsm,                                   the EPA Eeglo&                 AdmhUuacor may also submit thm tmtsffill                             to the Y~c1oaa.l Tecbicrl                     Lnfonaation Semlc~ (lITIS> 80 that the reports                                 are maihbl~               to the pubUc             fn mlctoflche         or bud cop7 fors                   l c the price           of duplication-               The EPA Rqluad           llbrerha             VOLT be sble to provide                     deu.lhd         Qaformcloa           regarding hpuc     and     accus           co the     ErrIs   systae It     is     llro     aoted     thr~     the Atomic         IadustrirL         Porn,       Eavfroameatrl Studlu       Project,             hu   d-eloped           IHFOB[M, a dstr systa                   alch       vtll     axtract laforprcloa             from reports             submited by utU.itlu                     Fn accotdanc~ VFth sactfoum 316(a) and (b)-                           Quutluaa         should br referral                 to the Project it 1747 PeanayLvaaia Aveaae, Uuhingtou,                                   D.C. 20006, telqvhoae                   202-835923L The Sqeabu                   30, 1974, drsft             of the EPA 316(e) Technical                         Cuidrace Manud       rtqguu               cw     posslbUtlu               for predlctlve             demoastrscioas:                 Type If dmastxstluas                   (vlth qmcUlc               &tr     requiremats           for Rsprueatstlve kporrrne           Spoclu           (US) sad biotic               c~tles)               sad Type LXX dsmoastre-clana (an altamuive                       plan foLlowtag             wrlttaa       coacurreacu             frum EPA).           The YEC Ugulacory                 Guide 4.2*, ou the other bad, givea geaual                                       pAdance sad lacllrdu         maarlua of studyiag l uide spect~~~ of trophlc                                         level,       which ml&+ be dnnrly                       affactod       by thr pour plants                   operrtioue.             The net result     of tU8 cabFnrtluu                       of 8itaafioas           ls that pour cump8nfu                       have often rbuksd,                   vtthout       the bmmfltof               spprupriatr           sereealag or pilot s tadfes,       ou larg8-ecaL8,               upm8lv8,           lnappropr~te               studfar vblch supply uuslve       mounts             of rau data but ue me aecusertiy                                 helpful       to regulrtoq ageaciu         ia d&ion-me&q.
or thafr consultaats could sometimes reve8L those cypu of Fnformtioo ubich would WC be aecus~
* NtC BeguLatory Guide 0.2, Preoererfoa                                     of tnvlroamatrl               Reports         for Yuclur         Powt Stecloas.                 July 1976, Ravisiaa                 I2: 102 p.
to gather la gruc det8FL at  
¶r rltu*
If bitlal pilot field sumeys cad literrture surveys r8VUhd that tha Sit@ uu one Of bU pOt8ath.L l.UQeCt for phflOpkUktOU for
: aamph, it vould ba unnecus8q to couducc deetied studies to give the temaomlc ideattilcetloa of every species of phytopleaktoa fn tha piciafcy~
2.1-3 FubLfc AvsUahFLitzy of 316(r) 3emousrracl.oua It ir the Fnteatloa of &PA to make ch* techalcal fnfomatloa submitted by Fadustrlu fa eccordurce with 316(r) meileble for use by ochu  
~ustriu.
scieatlrts c sad -us of the pub&z.
This VFll be door fnitis.Uy by placing copies of the dmoastrstiuu and supportiag documents Lato the coUoctioo of the respoaeib~e EPA Regfo&
Off ice Ubrsry-A rFnFl8r appro8&
Ls -0 suggested for State yeociu-Ia cssu where d-d for the dmoastrstioa materials exceeds thm ca~a-bUcy of an EPA or State agency Librsm, the EPA Eeglo&
AdmhUuacor may also submit thm tmtsffill to the Y~c1oaa.l Tecbicrl Lnfonaation Semlc~
(lITIS>
80 that the reports are maihbl~
to the pubUc fn mlctoflche or bud cop7 fors l c the price of duplication-The EPA Rqluad llbrerha VOLT be sble to provide deu.lhd Qaformcloa regarding hpuc and accus co the ErrIs systae It is llro aoted thr~
the Atomic IadustrirL
: Porn, Eavfroameatrl Studlu
: Project, hu d-eloped IHFOB[M, a dstr systa alch vtll axtract laforprcloa from reports submited by utU.itlu Fn accotdanc~ VFth sactfoum 316(a) and (b)-
Quutluaa should br referral to the Project it 1747 PeanayLvaaia
: Aveaae, Uuhingtou, D.C. 20006, telqvhoae 202-835923L The Sqeabu 30, 1974, drsft of the EPA 316(e)
Technical Cuidrace Manud rtqguu cw posslbUtlu for predlctlve demoastrscioas:
Type If dmastxstluas (vlth qmcUlc  
&tr requiremats for Rsprueatstlve kporrrne Spoclu (US) sad biotic c~tles) sad Type LXX dsmoastre-clana (an altamuive plan foLlowtag wrlttaa coacurreacu frum EPA).
The YEC Ugulacory Guide 4.2*,
ou the other
: bad, givea geaual pAdance sad lacllrdu maarlua of studyiag l uide spect~~~
of trophlc
: level, which ml&+
be dnnrly affactod by thr pour plants operrtioue.
The net result of tU8 cabFnrtluu of 8itaafioas ls that pour cump8nfu have often
: rbuksd, vtthout the bmmfltof spprupriatr sereealag or pilot s tadfes, ou larg8-ecaL8,
: upm8lv8, lnappropr~te studfar vblch supply uuslve mounts of rau data but ue me aecusertiy helpful to regulrtoq ageaciu ia d&ion-me&q.
* NtC BeguLatory Guide 0.2, Preoererfoa of tnvlroamatrl Reports for Yuclur Powt Stecloas.
July
: 1976, Ravisiaa I2:
102 p.  


                                                      -7.
-7.
          &    tU   regard, Fe L, intuucing                 co aof* cha balance               of ganual wusyrtu       (bua.Une,       field     work)   dacr vwsus       the EIS (Laboratory             and Lftuuurr       surch)     &tr       propored by thir vusioo               of   eha amud.           Put aperiuca       ruqgutr       chat ndchu           bum&m     fitid     sumap         nor EIS laboratory studlu     alone van     rufficiuat         for pradictivr       duowtr8tioor;             soma 3kture     of cha TV,   ls   daairabla.         Guual     l orysta           filld   work b wcuury       Co chuactarita           cho mtvirounnc         lmprcted.         co hsva a buis           of compui.soo     for post     uparatioual       studies,   and   co couatu         poaribh       uguunacs char the maeire l co~ptu               ha8 MC bun ammined.                   Laboratoq       studlu     ou BfS u(t helpful       bazarur       they offrr       bcreued       pradictiva         capabilicias, such u hou macb of tha thamal                   plum uu       til     preclude       reproduction         or dgruioa.
tU
: regard, Fe L, intuucing co aof*
cha balance of ganual wusyrtu (bua.Une, field work) dacr vwsus the EIS (Laboratory and Lftuuurr surch)  
&tr propored by thir vusioo of eha amud.
Put aperiuca ruqgutr chat ndchu bum&m fitid sumap nor EIS laboratory studlu alone van rufficiuat for pradictivr duowtr8tioor; soma 3kture of cha TV, ls daairabla.
Guual l orysta filld work b wcuury Co chuactarita cho mtvirounnc lmprcted.
co hsva a buis of compui.soo for post uparatioual
: studies, and co couatu poaribh uguunacs char the maeire l co~ptu ha8 MC bun ammined.
Laboratoq studlu ou BfS u(t helpful bazarur they offrr bcreued pradictiva capabilicias, such u hou macb of tha thamal plum uu til preclude reproduction or dgruioa.  


2.2       Suggested         Uses       of this Tecknicsl         !4antui by:
2.2 Suggested Uses of this Tecknicsl  
2.2.1       The U.S. &mlrouaeat~                   Prot8ctloa           Agency Zhfs oersloa of the guidsace msnusl , after                                     ln-hour*       zwteu tithln     EPA. will       rapJ.sce     eke Septmbar             30, L976, draft                   of the EPA 316 (4 Technical           Guidsace       !4snusl.         The wrrrl             describes           eke Lnformscioa vhich shouLd be developed                 and evslusced             ln coaoecrlon               wttk     msk+ng trcknlcsl     detemirmtloas             under     section       316(s)         of the Federal             dater P01htl~       COUCZOLkt,             a~ mended,           33 C.S.C.           L251, 326(a).               sad LO CFR Ptrz l.22,
!4antui by:
            ?fost of the first             rouad of !GQES (Xettonrl                             Pollutant       Dlschuga
2.2.1 The U.S. &mlrouaeat~
&limlnsclou       Systar)       pamltr       for     cheraul dlschmgu                       vill     hsve already beeo Fseued (or at Lust study plans ulll                                 hm+ been agreed upon by the spplicsat     end the E~glonsl             Adainlstrator)             , by th           timm chir         edltloa       of the ceckxt1cs.L msnurl           ls issued.             The decrrminrclous                   or study       plans flasLited     to dste hrrre been ssde oa the bulr                                 of cue-by-cru                 tecknicsl drclsloas     m8do by thr Reg1oas.l Admlnlrtrator.                                 Ihese l srlier           cechaicrl decislous     sad study plane which umre ffnrlfted                                 tith       the rpprmrl           of the Regional     Adahisfrscor           or Stat8 Director                 ulll       not be aegstrd             or ockervFse adversely     affeccad by the iseunct                     of   this       aetmr       version         of the 316(a)
Prot8ctloa Agency Zhfs oersloa of the guidsace msnusl, after ln-hour*
CrnChniCJ     anual     e The prim-           use seat       for chh         verslou           of the tecbfd                   amnul vi11     be for neu sourcu             sad for the secoad                     round       of 316(s)       detar-ml~tloaa       uklck     VFll     cams uken the fFrrt                   round of pumlcr                   uplre.
zwteu tithln EPA.
The aaaual         b   Lateuded       to be used u genersl                         guldsnce     snd u a scrrtlag     point     for   dircusslous           betusea indust-                   sad eke Re~lousl AdahlsUstOtsr             ?or lndirldurl             rltustlons             the Rsgloasl Administrator
will rapJ.sce eke Septmbar 30,
=y requsst         ch8t ths l pplicmt               follou       the stqgucloas                   Frr the crchnlc~l aand       cloudy,       or or7 specify             8n 8lcomatlvo                 plsn.
: L976, draft of the EPA 316 (4 Technical Guidsace  
The spell-t             #houLd be aura               thsc Fn general oae or sore Ra~load       EPA perait       program       staff       hma been deewced                           ss 316 coor-dinstom,         It is ny~wted             tit     epplfcmtr               coueiderlng             316(e) dmunstrsriuns         coacsct these fndlvlduslr                       se sa early dsce co dhcuss potenthl       problaa         and msilsble             dsts.
!4snusl.
2.2.2       SUCU Tkoea Ststea         uhlch hrre been delessted                         the sdmlnlrtrsrloa               of thr NPDES pumft           progra       by EPA have cha lud                       role for -king               316 (8) declsloas     VFchia the Stste,               Th8 EPA reuins                   vhac amounts co a veto
The wrrrl describes eke Lnformscioa vhich shouLd be developed and evslusced ln coaoecrlon wttk msk+ng trcknlcsl detemirmtloas under section 316(s) of the Federal dater P01htl~
COUCZOL kt, a~ mended, 33 C.S.C.
: L251, 326(a).
sad LO CFR Ptrz l.22,  
?fost of the first rouad of !GQES (Xettonrl Pollutant Dlschuga  
&limlnsclou Systar) pamltr for cheraul dlschmgu vill hsve already beeo Fseued (or at Lust study plans ulll hm+ been agreed upon by the spplicsat end the E~glonsl Adainlstrator)  
, by th timm chir edltloa of the ceckxt1cs.L msnurl ls issued.
The decrrminrclous or study plans flasLited to dste hrrre been ssde oa the bulr of cue-by-cru tecknicsl drclsloas m8do by thr Reg1oas.l Admlnlrtrator.
Ihese l srlier cechaicrl decislous sad study plane which umre ffnrlfted tith the rpprmrl of the Regional Adahisfrscor or Stat8 Director ulll not be aegstrd or ockervFse adversely affeccad by the iseunct of this aetmr version of the 316(a)
CrnChniCJ anual e
The prim-use seat for chh verslou of the tecbfd amnul vi11 be for neu sourcu sad for the secoad round of 316(s) detar-ml~tloaa uklck VFll cams uken the fFrrt round of pumlcr uplre.
The aaaual b
Lateuded to be used u
genersl guldsnce snd u
a scrrtlag point for dircusslous betusea indust-sad eke Re~lousl AdahlsUstOtsr  
?or lndirldurl rltustlons the Rsgloasl Administrator  
=y requsst ch8t ths l pplicmt follou the stqgucloas Frr the crchnlc~l aand
: cloudy, or or7 specify 8n 8lcomatlvo plsn.
The spell-t  
#houLd be aura thsc Fn general oae or sore Ra~load EPA perait program staff hma been deewced ss 316 coor-
: dinstom, It is ny~wted tit epplfcmtr coueiderlng 316(e) dmunstrsriuns coacsct these fndlvlduslr se sa early dsce co dhcuss potenthl problaa and msilsble dsts.
2.2.2 SUCU Tkoea Ststea uhlch hrre been delessted the sdmlnlrtrsrloa of thr NPDES pumft progra by EPA have cha lud role for  
-king 316 (8) declsloas VFchia the Stste, Th8 EPA reuins vhac amounts co a veto cspsbFTlty through the requiremmt thst they contFnu8 to reviev a11 p8raiC8 before they are Fsrued.
Since chose State8 which hsve the permit progrm have l ruat~y the sac rupoaslbFllclu u
EPA, it foLluum chit chur St8tas may find this Cechnicll mm&l useful ia the s-8 rmnnar that the Ragioad Ad8l~t~tOrl of EPA t fkd it
: us8fuL, Oa the ocher
: hsnd, just ss Cha Begloud Adainlrcrscors are sot rigidly bound by cha toutants of this
: docmeut, aelther urn th8 Strte Directors.
ft Fs suggestad rhst tho88 Scstu which desire co admialsfer their 316(r) program Fa a wry dlffer8nt fro8 thsc which Fs propoeed here.
first discuss chua dlffereacu vlth chr Rsgi0as.l Adaialstr8tort 10 that c-011
~reemncr csa be ruched sad sppllcsatt CM be ueured chat their 316(r) study desigas VLlL be sccepcsb~8 co both the State sad
: EPA, The applicant should tie be aura chat fn general one or sore Stat8 pamit progrsn staff hsve be8a deslgasted u
316 coordinators.
It ls sugguted thsc applicants coasldetig 316(s) d~oastrrtloas
~~nts~t chue Fndivldusls at an urlp dsta co discuss pote~cid.
problas aud svsLLsble
: dsts, 2.2.3 Zlh8 ?hClUr h~~C0~
CUUiUiOU The Nuclear Regulatory Camiraloa (NRC) tencatlvely phna co incorporsce this 316(s) asnusl rad th8 sepsrste 316(b) aunurL vLth future drafts of HILC EagtAstory Guide k.2.
Ttia
~oate~fs of these manuals would forP the buis for 8quatlc l colov dstr raqulraeoer.
:urt hou the asn&
vtll be lacorporsced hu uot yme beaa decided, bur oue possibility dticussed wuld be co iaclrrde the 316(a) sad 316(b) amnab in cheFr antiracy u
appendices co future l dlclons of.YEC Ragulscory Guide 4.2, mar8 hu tiso baea som8 discussion of uslag puts of these 8mnd.s fa future editloM of.YRc R8@drto~
Cuida 6.7*
sad dom8UcS co be g8aersted by the 3RC coordfasced Stsce/FedersL Slciag Uorkiag
: Croup, 2.2.4 The 0.S.
?irh and Wldlfte S81~lc8~
D8pUPn8nt of Lnterior zh*
?isk sad UildlFfe Samlea (IUS) is msadsted by the Plrh and UildfFIa Coordinatiou Act (48 Stat.
COL, as mended; 16 U.S.C.
: 663, l = req.),
the cdm#at@d Spaclu Act of
: 1973, sad Other us*
cirted
: Acfs, co coardimts rwvi8w ulth the appropriate Pedersl reguLstoq 8g8aclu oa projects chat till Howe impact oa fi8h snd tildllfe c-itiu.
These guldeUaes vlfl provide 8 barb for coordiascioa aoag
: FR3,
&PA, !flC, sad other 8geacler iavolved Fn
+ !IRC Regalsto~
Guide b.7, Csnersl Sits Sult8bllltr Criteria for luclrsr Power Scatloar.
NOVab8t 1975, I(IPl8loa
#2: 32 p.


cspsbFTlty          through        the    requiremmt        thst    they contFnu8            to reviev      a11 p8raiC8        before      they      are Fsrued.
-100 the 316(e) rsvlev procsS8 by reprr88ncing 1 c-00 uaderstsnding of the decbioa criteria 8gr8ed upon which the 316(a) varl~nce ti1L be based md.
Since chose State8 which hsve the permit                                progrm have l ruat~y              the sac rupoaslbFllclu                      u EPA, it foLluum chit chur St8tas may find this Cechnicll                          mm&l useful            ia the      s-8    rmnnar      that the Ragioad            Ad8l~t~tOrl                of EPA t fkd it us8fuL,                  Oa the ocher hsnd, just ss Cha Begloud                        Adainlrcrscors            are sot rigidly            bound by cha toutants        of this docmeut,                aelther      urn th8 Strte Directors.                    ft Fs suggestad rhst tho88 Scstu                  which desire co admialsfer                    their 316(r) program Fa a wry dlffer8nt              fro8 thsc which Fs propoeed                      here. first          discuss chua dlffereacu            vlth chr Rsgi0as.l Adaialstr8tort                          10 that c-011            ~reemncr csa be ruched              sad sppllcsatt              CM be ueured              chat their 316(r) study desigas VLlL be sccepcsb~8 co both the State sad EPA, The applicant            should      tie    be aura          chat fn general          one or sore Stat8      pamit        progrsn        staff hsve be8a deslgasted                    u 316 coordinators.
therefore.
It ls      sugguted          thsc applicants              coasldetig          316(s) d~oastrrtloas
upon vkich th8 8ppropr4ace reguL8cory agency should be advirad, 2.2.5 Other  
~~nts~t        chue      Fndivldusls          at an urlp          dsta co discuss pote~cid.
?ederrL Agencies Uthuagh ia no usp bound by this
problas          aud svsLLsble            dsts, 2.2.3          Zlh8 ?hClUr            h~~C0~              CUUiUiOU The Nuclear            Regulatory          Camiraloa          (NRC) tencatlvely            phna co incorporsce              this      316(s) asnusl rad th8 sepsrste                        316(b)      aunurL      vLth future        drafts      of HILC EagtAstory              Guide k.2. Ttia ~oate~fs                  of these manuals would      forP the        buis        for 8quatlc        l colov      dstr      raqulraeoer.            :urt hou the asn&                  vtll      be lacorporsced            hu      uot yme beaa decided,                bur oue possibility              dticussed          wuld      be co iaclrrde the 316(a) sad 316(b) amnab          in cheFr antiracy                u appendices          co future l dlclons              of .YEC Ragulscory          Guide 4.2,            mar8 hu tiso baea som8 discussion                            of uslag puts        of these 8mnd.s                fa future      editloM          of .YRc R8@drto~              Cuida 6.7*      sad dom8UcS              co be g8aersted            by the 3RC coordfasced                  Stsce/FedersL Slciag      Uorkiag        Croup, 2.2.4          The 0.S.        ?irh    and Wldlfte            S81~lc8~        D8pUPn8nt          of  Lnterior zh*    ?isk    sad    UildlFfe        Samlea      (IUS)      is msadsted        by the Plrh and UildfFIa            Coordinatiou            Act    (48 Stat. COL, as mended;                      16 U.S.C.
: document, other F8der81 sgeoclu asy find it wefuL u
663, l = req.),            the cdm#at@d                Spaclu      Act of 1973,            sad Other us*
a source of lafomstloo.
cirted      Acfs,      co coardimts              rwvi8w    ulth the appropriate                Pedersl reguLstoq            8g8aclu          oa projects          chat till        Howe impact oa fi8h snd tildllfe        c-itiu.                  These guldeUaes              vlfl      provide      8 barb      for coordiascioa            aoag      FR3, &PA, !flC,          sad other 8geacler                iavolved      Fn
For
+ !IRC Regalsto~                Guide b.7, Csnersl              Sits    Sult8bllltr          Criteria      for luclrsr        Power Scatloar.              NOVab8t        1975, I(IPl8loa          #2: 32 p.
: Uatnp18, the Sscioasl  
 
?farln8  
                                                        -100 the 316(e) rsvlev procsS8 by reprr88ncing                           1 c-00       uaderstsnding       of the decbioa           criteria         8gr8ed upon which the 316(a) varl~nce ti1L be based md. therefore.                   upon vkich th8 8ppropr4ace               reguL8cory agency should be advirad, 2.2.5       Other     ?ederrL       Agencies Uthuagh           ia no usp bound by this document, other F8der81 sgeoclu       asy find it wefuL               u a source of lafomstloo.                   For Uatnp18, the Sscioasl ?farln8 ?lrheries                     Service (!4K?S> of the Depsrcmeot of Com8rce has rlmllsr                   ~0u~ern8 cad rupon8Fb~itles                 u Ch8 FWS ?a the Pederrl regulatory                 revlsv process.           I%8 WS vu OrlgfnaUp                 :he Suresu of Comerciti                   Fl8herfes     vhlch, together         vFth the Suruu of Sport Flsherles             md UlldlLfe           (sow FUS), coa8tlcuted             the old Fish urd Uildlifa       Sar~lca tn the Depucaenr                   of hteriOr         (8s referrrd       co fa Ch8 Fi8h 8ad UlldlLfe               Coordiasrloa         Act).     Eaorgauiutlon         Plau Yo. 0, which transferred         cha Buruu of Comariclsl                   Fi8herf88       co chs Dap8rPPeat of C-rce,           also trUiSf@rr8d             aLI 88sOCiUed responslbFlltlu.                     Pr4inclple coucema of Sf?S are marine sad sasdroaow                               fi8h. a8 -11 as inlsad c-rcid             fish.       The FUS, by coacruc,               hu   a puallel       rerpoa8FbFLicy in the fIsharIa               upact,       but h88 sa sddltloarl             respoarlbLllty       for 8qrtlric     uterfovl           (both fruh       ueter sad marina) la th8 316(a) revlev procur.
?lrheries Service
2.2.6       ihe     Electric       Pour     Laduse-       sad Coasultlag       Orgsaiuclon8 FOr uch ladiv1due.l               site. 8ppliunts           for 316(g) or 316(b) daeer!&mtioas             should dircusr           the contents       of this arnusl tith           th8 had N'PDESPermit Frogra                     Agency (either         eke EPA R8glon.81 Adalnistr8tor or the St&t8 Dir8CtOr)                   co derermia8 th8 8pplfCSbtiity               Of the UUUAL'S ret-adstloas               co thst rite,           Ihir   doctnanc     tiu     Sama U 8 Scrtthlq pOFnC for dfr~~~d.0~8                 ludiag       co 8 vrlttu       CoaCurrence       barmen th8 8ppliC8nt end the Ugioael               IdPialstrstor/Dlreccor               on LadlvFdusl       study pleas which d.l     sacirfy     Cha requiruaat8             of both PL 92-300 sad th8 8quetic ecology s~ctioaa of rImA.
(!4K?S> of the Depsrcmeot of Com8rce has rlmllsr  
 
~0u~ern8 cad rupon8Fb~itles u
3.0 PREDICTIVE DEMONSTRATIONS 3.1   Introduction           DRAFT Predictive studies and associated demonstrations representing the best estimate of "what will happen" are appropriate for 316(a) demonstrations for:
Ch8 FWS ?a the Pederrl regulatory revlsv process.
: 1. New sources not yet discharging;
I%8 WS vu OrlgfnaUp
: 2. Facilities discharging into waters which, during effluent for a sufficient period of time to allow evaluation of the effects of the effluent;
:he Suresu of Comerciti Fl8herfes
: 3. Facilities discharging into waters which, during the period of the applicant's prior thermal discharge, were so despoiled as to preclude evaluation of the effects of the thermal discharge on species of shell-fish, fish and wildlife; and 4 . Major changes in the facilities operational mode.
: vhlch, together vFth the Suruu of Sport Flsherles md UlldlLfe (sow FUS), coa8tlcuted the old Fish urd Uildlifa Sar~lca tn the Depucaenr of hteriOr (8s referrrd co fa Ch8 Fi8h 8ad UlldlLfe Coordiasrloa Act).
Eaorgauiutlon Plau Yo. 0, which transferred cha Buruu of Comariclsl Fi8herf88 co chs Dap8rPPeat of C-rce, also trUiSf@rr8d aLI 88sOCiUed responslbFlltlu.
Pr4inclple coucema of Sf?S are marine sad sasdroaow fi8h.
a8 -11 as inlsad c-rcid fish.
The FUS, by coacruc, hu a puallel rerpoa8FbFLicy in the fIsharIa
: upact, but h88 sa sddltloarl respoarlbLllty for 8qrtlric uterfovl (both fruh ueter sad marina) la th8 316(a) revlev procur.
2.2.6 ihe Electric Pour Laduse-sad Coasultlag Orgsaiuclon8 FOr uch ladiv1due.l site.
8ppliunts for 316(g) or 316(b) daeer!&mtioas should dircusr the contents of this arnusl tith th8 had N'PDES Permit Frogra Agency (either eke EPA R8glon.81 Adalnistr8tor or the St&t8 Dir8CtOr) co derermia8 th8 8pplfCSbtiity Of the UUUAL'S ret-adstloas co thst
: rite, Ihir doctnanc tiu Sama U
8 Scrtthlq pOFnC for dfr~~~d.0~8 ludiag co 8 vrlttu CoaCurrence barmen th8 8ppliC8nt end the Ugioael IdPialstrstor/Dlreccor on LadlvFdusl study pleas which d.l sacirfy Cha requiruaat8 of both PL 92-300 sad th8 8quetic ecology s~ctioaa of rImA.
3.0 PREDICTIVE DEMONSTRATIONS 3.1 Introduction DRAFT Predictive studies and associated demonstrations representing the best estimate of "what will happen" are appropriate for 316(a) demonstrations for:
1.
New sources not yet discharging; 2.
Facilities discharging into waters which, during effluent for a sufficient period of time to allow evaluation of the effects of the effluent; 3.
Facilities discharging into waters which, during the period of the applicant's prior thermal discharge, were so despoiled as to preclude evaluation of the effects of the thermal discharge on species of shell-fish, fish and wildlife; and 4.
Major changes in the facilities operational mode.
The two most detailed baseline aquatic ecology studies done for NRC under NEPA are done two years before a nuclear plant becomes opera-tional. All studies done for 316(a) demonstrations during this time frame are therefore predictive in nature. The regulations (see 40 CFR Part 122) published by EPA provided for two possible types of predictive 216(a) demonstrations: Protection of Representative Important Species (Type II) and Alternative Demonstrations, with the written concurrence of the Regional Administrator or State Director (Type III). This section provides explanations of these demonstration types, details the decision train and decision flow chart, and recommends early screening procedures helpful in choosing the most appropriate demonstration type.
The two most detailed baseline aquatic ecology studies done for NRC under NEPA are done two years before a nuclear plant becomes opera-tional. All studies done for 316(a) demonstrations during this time frame are therefore predictive in nature. The regulations (see 40 CFR Part 122) published by EPA provided for two possible types of predictive 216(a) demonstrations: Protection of Representative Important Species (Type II) and Alternative Demonstrations, with the written concurrence of the Regional Administrator or State Director (Type III). This section provides explanations of these demonstration types, details the decision train and decision flow chart, and recommends early screening procedures helpful in choosing the most appropriate demonstration type.
3.2   Decision Train This section provides a flow chart and narrative summary of the recommended decision train.
3.2 Decision Train This section provides a flow chart and narrative summary of the recommended decision train.
3.2.1   Flow Chart The flow chart identified as Figure 1. is a summary of the recommended sequence of events leading to the decision. The following is an explanation of abbreviations and terms used in the flow chart:
3.2.1 Flow Chart The flow chart identified as Figure 1. is a summary of the recommended sequence of events leading to the decision. The following is an explanation of abbreviations and terms used in the flow chart:
 
FIGURE 1. DECISION TRAIN FLOW CHART
FIGURE 1. DECISION TRAIN FLOW CHART


AQpUCMt                                           IndustrFrl         Eaprasantzive 4plpZng         for EPA and ;yBC Paroitr       and Licm8u DFruto*                                           Director       of the       Stata   HPDLS Pormic       ProgrM Pu     litid     Study Aru 3.2-2 D~cisiau       TrliP         !hrratlva
AQpUCMt IndustrFrl Eaprasantzive 4plpZng for EPA and ;yBC Paroitr and Licm8u DFruto*
: 1.     &fore         duignlng           aquatic     ecology scudlu,                 chm applicant consultr         ulch chak&ouaL                 Mmiaistr8for/Dtr~ctor*                   co vmrify the rpplicrbFLl~of                         this cochnlcrl             manual for Sati8fJiq             thd           QlrrV   dfWtS         (316(a)       ti     dfhWlt guidalinrr)             raquirarrocs         uudar PL 920SOO. If tha BqiouaL         AdUtrator/Dlractot                       sprcifiu           aa rltasmcivm or raodlfiad           varrlm       of char manual, the applicant                     should utu.hr         it.       If alo hgiuuAl           AdminisItratorlDFr~ctor spuifiu           uablg this cuhpicrl                 armlt       u a gtddo, chm rppucaat           gou tu thr naxt Imp.
Director of the Stata HPDLS Pormic ProgrM Pu litid Study Aru 3.2-2 D~cisiau TrliP  
* uonr nm lI8gbMl               Administrator           m&am 316(a)           brewmlnacloar             for &PA timad     -tits,             vhila     cha State DFractor             maker such d~termiaa-cioua for         paides         ismad     by Statu       with     EPA approved prrrnic progrmh             hCh       Stata     PatitS,       homvar,         l a     sub jut     co EPA r-au.           It   ia     chumform         sqsutd           that   in   the   cue   of     316(a) dac~tio~                     uda     by a Stata       Director,         l ithu       the Dlractor     or tha 8ppl.icMt             lump.     tha~#iulul         Addnistr8tor               lnfomed       at criticsl         sap8         in   thm procur       to mold         t!m poo~ibilicy             of ultfaua         dlupprovti             by EPA of     a Strtr       ~8rrit       or &co~tion vhicb     could       ham bmn avoidad               by battar         c~~~~~icatiou           throughout tha procua.
!hrratlva
: 1.  
&fore duignlng aquatic ecology
: scudlu, chm applicant consultr ulch chak&ouaL Mmiaistr8for/Dtr~ctor*
co vmrify the rpplicrbFLl~of this cochnlcrl manual for Sati8fJiq thd QlrrV dfWtS (316(a) ti dfhWlt guidalinrr) raquirarrocs uudar PL 920SOO.
If tha BqiouaL AdUtrator/Dlractot sprcifiu aa rltasmcivm or raodlfiad varrlm of char
: manual, the applicant should utu.hr it.
If alo hgiuuAl AdminisItratorlDFr~ctor spuifiu uablg this cuhpicrl armlt u
a gtddo, chm rppucaat gou tu thr naxt Imp.
* uonr nm lI8gbMl Administrator m&am 316(a) brewmlnacloar for  
&PA timad  
-tits, vhila cha State DFractor maker such d~termiaa-cioua for paides ismad by Statu with EPA approved prrrnic progrmh hCh Stata
: PatitS, homvar, l a sub jut co EPA r-au.
It ia chumform sqsutd that in the cue of 316(a) dac~tio~
uda by a Stata
: Director, l ithu the Dlractor or tha 8ppl.icMt lump.
tha~#iulul Addnistr8tor lnfomed at criticsl sap8 in thm procur to mold t!m poo~ibilicy of ultfaua dlupprovti by EPA of a Strtr  
~8rrit or  
&co~tion vhicb could ham bmn avoidad by battar c~~~~~icatiou throughout tha procua.  


                                                    -14.
-14.
: 3. The l pplicmt               contects           the 8pproprlet8                     Ra#lond               Xr8ctor         of tie     U.S. Fish and UFLdUfe                         Semfca,             r8presencacives                     of ch N8tid             ki8d.M       FiSheri8S           S8mC8+             8od Of the Stst8S,                         CO decumlm             if them ara any thrutrord                                   or and8agered specirs th8C may be rff8Ct8d                     by the proposed f8dlitys                                     dischuge.
: 3.
4, m8       8QpuCMt           g@th@m           UiSu               litU8ttu8                 rpd     fidd         d8t8 fra       prtiou8           studlu         by     elm company,                 r8sourea             ag8xxci88, 8c8daic           lnStitutionr,               ad ocher researchers.
The l pplicmt contects the 8pproprlet8 Ra#lond Xr8ctor of tie U.S.
: 5. The epp~cant               d8e8miaeS             vhether           or     not     aroush           f.dor~tion is ev8flable             co sumerFt8               Fa writing:
Fish and UFLdUfe
: 8.       For each biotic               utrgory,             *ether             or MC the site Ia 008 of Lou Qot8lltti                               Fmpect.
: Semfca, r8presencacives of ch N8tid ki8d.M FiSheri8S S8mC8+
: b.       Aplrn       for     w       8dditioarL             studiu             or wrk aecue~             co comp18ce             the     d~ustretioa.
8od Of the
Lf wr8         information             is     U8C8sS8r7,             the laformaciou                       should be g8ther8d             through         relrtivaly             brimf '*pilot"                   fiald
: Stst8S, CO decumlm if them ara any thrutrord or and8agered specirs th8C may be rff8Ct8d by the proposed f8dlitys dischuge.
  -*ys         -
4, m8 8QpuCMt g@th@m UiSu litU8ttu8 rpd fidd d8t8 fra prtiou8 studlu by elm
6, Appllcmt           submits         thr     smriu                 to     the       Eqionel             Adddscza-tOr/DFt8CtOt-
: company, r8sourea ag8xxci88, 8c8daic lnStitutionr, ad ocher researchers.
: 7. K the beunel                   himialstrator/bir8ctor                             d8t8rmi388               that the slte         la one       of Lou ~~centid                     lnpect           for all           biotic Clt8$0ti88,             the     applicant           may chooaa                 the aau rhorc fom       dmustratfou                 type,       the tow           ht8Utid                 hpect           Tm@
: 5.
fI1     dmuStr8ciou               drtrF1ad           ln   sSctioa             3.6;     it     wt.         the 8pplicMt           ChOO8U         bemea             Type If           end rppe             III       dmustre-CiOU8.
The epp~cant d8e8miaeS vhether or not aroush f.dor~tion is ev8flable co sumerFt8 Fa writing:
: 8. Tboee appUcant8                   eligible           for     the lw potential                           impact d-tr8tim                     gecher uay edditfuaal                           lafomtioo                   nac~ss8~,
: 8.
caplece           ralativ~l~           brlaf       biotic           category             ~ecloaalu~                 end s-8                 chr       lato     oue master:               rcos7stm               r8tiode.
For each biotic
If     the proposed             dfschu~e           til         ame Scrta uecer q&icy scaadarda,           tha additlond                 fiald         scudiu             nacuaary               will WC ba =taualra.                       The priaq                 lnfomatiuu                   ch8t aada               co be ~euereted             is simply that uhich is enough co satisfy the biotic           Utagory,             resource           toue, 8od ustar                         r8tioU8l8 CXit8rir         b SSCtiOU 3.8.                     h8       7aU.S           qtbdit8tiVa                 '*QtiOt" fiald       studiu         should         be roough             co ganarara               mouth iafomeciou             co compleci the bioclc csc8goq,                                         ruource 2008. end ustar                   retioorle.                 The appuc8at                   c8n than CO@@t@           QhySiCd           StUdiU           CORperrbl8               t0     those       ti Sectiou         3.5.3       end     proceed         dit8ctiy             to     St8p     19 brlou.
: utrgory,  
*ether or MC the site Ia 008 of Lou Qot8lltti Fmpect.
: b.
Aplrn for w
8dditioarL studiu or wrk aecue~
co comp18ce the d~ustretioa.
Lf wr8 information is U8C8sS8r7, the laformaciou should be g8ther8d through relrtivaly brimf  
'*pilot" fiald  
-*ys 6,
Appllcmt submits thr smriu to the Eqionel Adddscza-tOr/DFt8CtOt-
: 7.
K the beunel himialstrator/bir8ctor d8t8rmi388 that the slte la one of Lou  
~~centid lnpect for all biotic Clt8$0ti88, the applicant may chooaa the aau rhorc fom dmustratfou
: type, the tow ht8Utid hpect Tm@
fI1 dmuStr8ciou drtrF1ad ln sSctioa 3.6; it wt.
the 8pplicMt ChOO8U bemea Type If end rppe III dmustre-CiOU8.
: 8.
Tboee appUcant8 eligible for the lw potential impact d-tr8tim gecher uay edditfuaal lafomtioo nac~ss8~,
caplece ralativ~l~
brlaf biotic category  
~ecloaalu~
end s-8 chr lato oue master:
rcos7stm r8tiode.
If the proposed dfschu~e til ame Scrta uecer q&icy scaadarda, tha additlond fiald scudiu nacuaary will WC ba =taualra.
The priaq lnfomatiuu ch8t aada co be ~euereted is simply that uhich is enough co satisfy the biotic
: Utagory, resource
: toue, 8od ustar r8tioU8l8 CXit8rir b
SSCtiOU 3.8.
h8 7aU.S qtbdit8tiVa  
'*QtiOt" fiald studiu should be roough co ganarara mouth iafomeciou co compleci the bioclc
: csc8goq, ruource 2008. end ustar retioorle.
The appuc8at c8n than CO@@t@
QhySiCd StUdiU CORperrbl8 t0 those ti Sectiou 3.5.3 end proceed dit8ctiy to St8p 19 brlou.  


                                    -1%
-1%
: 10. Ap~lica.ncs vhose sfrss do not qwltip                               for   th8 above considerations           VFLl ordbarily               select         the   Type 11 d~oostracioa           or s Type     III     dmoastr8cioa               of SfmFlrr corpr8hensiv8ness.               @pliCMtS             S818Ctblf           a fm8         IfI d~oastratioa           should cerrfully             t8ad sectloo 3.7 fn Ord8r co grin     a geaerel       uadetstsnding             of the decal1 n8c8ssrry for   scudirs       co be consider8d             scc8pcsble~
: 10.
: 11. Those applicencs             selscci~g         s Type IL daoastracioa                         first meet tich the Regfouel MaFniStr8tOr/Dir8Ct0r                                         co dticuss selectioa       of RIS and drfiae               the far fi8Ld             Study       aru.
Ap~lica.ncs vhose sfrss do not qwltip for th8 above considerations VFLl ordbarily select the Type 11 d~oostracioa or s Type III dmoastr8cioa of SfmFlrr corpr8hensiv8ness.  
If the regulatory             agency     has r8ach8d any t8ntatFve decisfons       rrgerding       a~ tilovable             miring zoa8 ($88 sectloo 3.8.31,           these decisions               should be discussed                     cad uaderStood         by both pertks.                 These decfsious               asp be t8vi8u\d       follotig         CoUQ318CiOUOf th8 demoostracioa.
@pliCMtS S818Ctblf a
Lf   the   reguletory       agency       sad the applicant                 teach an urly     l greaeac       about the sel8ctioa                   of RIS and the duigaacioa           of the far fisld             study     aru,       the op~lFcmc may move ou co the next 9~8~. If doer the reguLrtorp ag8ncy say request thee the applfc8at                               assirt       ln the rel8ction       of RIS by dolag             studies         sad givhg           vricr8a fust~icecioa           for the praposed               far     firld     study       l ru.
fm8 IfI d~oastratioa should cerrfully t8ad sectloo 3.7 fn Ord8r co grin a geaerel uadetstsnding of the decal1 n8c8ssrry for scudirs co be consider8d scc8pcsble~
L2, T?.m R8glrmel AdmixAstratot/DFrector                             checks tith           the Eegioual Director             of the FUS and r8presentstivu                                 of   ~58 X¶?S and       Stat88     co mah       sum       the     study       plan     inchd8s apptOpat8           coustderatiw           Of thrUt8ned               or 8ndMg8r8d speciu       as umll as ocher             fish sad tidltie                   t8sourc88.
: 11.
: u. am Regio~el ~nirtrUOr/b~r8CtOr                                   provldu         the spp1fc8nt tich urFtten           r8cogaitioo         of the specific               plan for completing         the daonstratioa,                 Lncludlng           dell.nucioas               of the PIS far field study aru , and chrutened                                       or   8ndurg8r8d specie8.
Those applicencs selscci~g s Type IL daoastracioa first meet tich the Regfouel MaFniStr8tOr/Dir8Ct0r co dticuss selectioa of RIS and drfiae the far fi8Ld Study aru.
L4, Appltcaac       coeplecu         field     and lftsracurr               wrk       mquirrd to finish       biotic     category       ratioaalu             sad   wricss         the reciondu           In eccordaaco           vith     sectlofi       3.5.1.
If the regulatory agency has r8ach8d any t8ntatFve decisfons rrgerding a~ tilovable miring zoa8 ($88 sectloo 3.8.31, these decisions should be discussed cad uaderStood by both pertks.
U. Irpp~lcant ca$letu               ~iter8turr           sad L8bOr8tOq                 Studi@S nec8888~         co geaer8te lnformetiou                     for the RIS ratfous18, aad develops           the retioaele           ss suggut8d               Fo sectioa 3.5.2.
These decfsious asp be t8vi8u\\d follotig CoUQ318CiOU Of th8 demoostracioa.
Lf the reguletory agency sad the applicant teach an urly l greaeac about the sel8ctioa of RIS and the duigaacioa of the far fisld study
: aru, the op~lFcmc may move ou co the next 9~8~. If doer the reguLrtorp ag8ncy say request thee the applfc8at assirt ln the rel8ction of RIS by dolag studies sad givhg vricr8a fust~icecioa for the praposed far firld study l ru.
L2, T?.m R8glrmel AdmixAstratot/DFrector checks tith the Eegioual Director of the FUS and r8presentstivu of ~58 X¶?S and Stat88 co mah sum the study plan inchd8s apptOpat8 coustderatiw Of thrUt8ned or 8ndMg8r8d speciu as umll as ocher fish sad tidltie t8sourc88.
: u.
am Regio~el  
~nirtrUOr/b~r8CtOr provldu the spp1fc8nt tich urFtten r8cogaitioo of the specific plan for completing the daonstratioa, Lncludlng dell.nucioas of the PIS far field study aru  
, and chrutened or 8ndurg8r8d specie8.
L4, Appltcaac coeplecu field and lftsracurr wrk mquirrd to finish biotic category ratioaalu sad wricss the reciondu In eccordaaco vith sectlofi 3.5.1.
U.
Irpp~lcant ca$letu  
~iter8turr sad L8bOr8tOq Studi@S nec8888~
co geaer8te lnformetiou for the RIS ratfous18, aad develops the retioaele ss suggut8d Fo sectioa 3.5.2.  


                                            -160
-160
: 16. Applicent       d8V8lOQS           8nglneering           and hydrological                 data outltied       In sectioa           3.5.3.
: 16.
17, 4plicsnc         comblnu           the Fnfocmecion oa l ngiaeering                           and hydrologicel             deer vfth the RIS and biotic                         uc8goq ratimalu           Fnco on8 Xesc8r                 Ecosystr         Rat10ne18,           as ducribed           la sectioa 3.5.4.
Applicent d8V8lOQS 8nglneering and hydrological data outltied In sectioa 3.5.3.
: 18. lgpllunt         arreag88           the     ratioarl88         and oeh8r         Fnforautiou la the fonmt             suggestsd           tn section         3 -5.5.
17, 4plicsnc comblnu the Fnfocmecion oa l ngiaeering and hydrologicel deer vfth the RIS and biotic uc8goq ratimalu Fnco on8 Xesc8r Ecosystr Rat10ne18, as ducribed la sectioa 3.5.4.
L9. 4pllcsnt         submits         deaoastrstioa             co the Zegioarl Admi~str8tOr/Dlr8CtOt.
: 18.
: 20. Ih8   R8giOUd           AdminiStr8tOr/Dir8CtO~:
lgpllunt arreag88 the ratioarl88 and oeh8r Fnforautiou la the fonmt suggestsd tn section 3 -5.5.
Eevt8w8       :he d~onatratioa                   co see ttt8c key mrid8nc8                     is properly       S-rtted               In the ratfon~e*                 sectioua,         t&at
L9.
    &Ll of       the rrqufrrd             data hu been submitt8d,                       and tht the forme ln gueral                       follow       that given La section 3 .J.S or an a~t8rnetlve                       for!aac     QrwlouSlp           l pprm8d         of by the Regionel               AchhiStr8tOr/Dlt8CtOr.
4pllcsnt submits deaoastrstioa co the Zegioarl Admi~str8tOr/Dlr8CtOt.
: a.     Lf the r8port             l% uuecc8ptab~e due co LPproper format or airsions,                     the Reglow             Mminfstrator/
: 20.
Dlr8ccor           will retam the daonstratlon                             co the applimnt           tith an 8xpluutlou                   of vhy It vu dared       mUC8ptabh,
Ih8 R8giOUd AdminiStr8tOr/Dir8CtO~:
: b. rt   the r8pOrt           i8 la an bCC8Qubh                   formet       and     is complete,           the Ugioael             MafnniJtracor/Director VLU proe8ed               co the amt scsp.
Eevt8w8
: 21. 'Ih8 gegiouel ~iJtr8t0r/Dlr8CtOr                                     seudl8s the deer prhated           in the submitcti                 to see ti lt justifl8s                     the conclueiow ruched Fn the biotic                                 cecegor7 ratioties.
:he d~onatratioa co see ttt8c key mrid8nc8 is properly S-rtted In the ratfon~e*
Xf so, mad If there 18 03 coaflfctfag                                   wfd8eC8           from otbec sources,               the Regiouel Adminhtrator/Dfr8ccor will     proceed to eke               next     st8p.
: sectioua, t&at  
: 22. The U#ioael               Addnistreeor/Dir8ctor                     StudiU       uch       of the   biotic       cet8gory           r8cioaelu           co   see lf they support the 316(r)         cut       of protectiou             aad     propegetioa           of the be&aced         ladigeaous             ~opulaciou.             Lf my of the f iv8 retiOuehs           f8il       co meet the cuts                 (as detailed             f.a the decirioa             criteria       sectioas),           the daonstretlon 18 aoc successful.                     If a.LL five meet the casts and charm ls sot strong                   coatrsq         8VidtlrC8       from ocher sources, the E.eglonel Uministrator/Dlrector                                         till Qroc8ed       co the u8xt rt8p.
&Ll of the rrqufrrd data hu been submitt8d, and tht the forme ln gueral follow that given La section 3.J.S or an a~t8rnetlve for!aac QrwlouSlp l pprm8d of by the Regionel AchhiStr8tOr/Dlt8CtOr.
: 23. The ~gioarl             MministratOr/Dir8ctor                       scud188       th8 RU     lnforU8tiOn             CO see tf It supports                     th8 conclustoas ha the bpr888nCbCiV8                     bpOrtanC             Sp8~18~ &1tiO~U18.
: a.
It it dou.           the racionde                 Fs ScUdi8d Fn r8latiOMhiQ co the decision               critsria           givea       In sectioo       3.8.2.
Lf the r8port l% uuecc8ptab~e due co LPproper format or airsions, the Reglow Mminfstrator/
K the decision                 crtteria           are   met, the 2eglomal Admfabtrator/DFt8ccor                       till       proceed       co the uac St8p.
Dlr8ccor will retam the daonstratlon co the applimnt tith an 8xpluutlou of vhy It vu dared mUC8ptabh,
: 26. The Regionel             AdUbidtr8tOr/bLt8CtOr                       stud188       u a cosposiee         the biotic           ucrgorp           ratlOue~8s~         c!18 Repr8sencacive               ~bpottrac           Sp8cler       R~tlooa.L8,         the r8suurc8         zones fmpecc8d,                 and the 8ngFneetig                   and hydrological             dece co see ti they prwlde                           jurtifica-tioa     for     the conclusloas                 rrech8d Fp the aastsr ratioa8le.             ff thry do and th8re                     1s aot strong coatrarf         8videnc8         from ocher sourC8s, the RegionA Adzsbdstrator/Dlr8ctor                       vill       proceed       co the       nut St8pt 2s. The   Eeg1om.L           ~istr8tOr/Dfr8CtOr                           studi8s       c!!e mest8r       tStiOUAl8           Fn t8latiOUShiQ                 CO au oth8r avelLable         data,     coasiders             the marall           decirlou crtcsrir         Fn section           3.8.3,         and dec8rmiaes ti the 316(a)     daonstratiou                 bee been succsssfdly                     -de.
: b.
FoUmdng           discwsions             vfch crchnicr1               upercs         00 his staff as WU as chose from the Fish and Uildlu8         Service       and ocher agenci88                   t8qUfIId         By lau co be COUstIlc8d. the Regionel                               AdmiaistrsCor/
rt the r8pOrt i8 la an bCC8Qubh formet and is
DFr8CtOr maha c&r ffnd                           decision.
: complete, the Ugioael MafnniJtracor/Director VLU proe8ed co the amt scsp.
Lf the       Regiooll         Mainlstrator/D1reccor                       coaclud8s that     the s-q                 retioueLe           is coorincing.           tc ls supported         sufficiently             by the ocher sections                     of the d~unstrecion,                   and h wt             couvincingly nef8ted       by outside           rrldence,           the sppllcurtr 316(a)     d~oustretiou                 1s successful,                 The applicant hu   dunscrefsd                 ch8c c!xe proposed                 cheraul       dirchrrge to aevigable             vacsrs       viJ..l be accepc8ble               under PL 92-500 (for               seccioa 316(a) and 8fflueat guideliaes).
: 21.  
'Ih8 gegiouel  
~iJtr8t0r/Dlr8CtOr seudl8s the deer prhated in the submitcti to see ti lt justifl8s the conclueiow ruched Fn the biotic cecegor7 ratioties.
Xf so, mad If there 18 03 coaflfctfag wfd8eC8 from otbec
: sources, the Regiouel Adminhtrator/Dfr8ccor will proceed to eke next st8p.
: 22.
The U#ioael Addnistreeor/Dir8ctor StudiU uch of the biotic cet8gory r8cioaelu co see lf they support the 316(r) cut of protectiou aad propegetioa of the be&aced ladigeaous  
~opulaciou.
Lf my of the f iv8 retiOuehs f8il co meet the cuts (as detailed f.a the decirioa criteria sectioas),
the daonstretlon 18 aoc successful.
If a.LL five meet the casts and charm ls sot strong coatrsq 8VidtlrC8 from ocher
: sources, the E.eglonel Uministrator/Dlrector till Qroc8ed co the u8xt rt8p.
: 23.
The ~gioarl MministratOr/Dir8ctor scud188 th8 RU lnforU8tiOn CO see tf It supports th8 conclustoas ha the bpr888nCbCiV8 bpOrtanC Sp8~18~ &1tiO~U18.
It it dou.
the racionde Fs ScUdi8d Fn r8latiOMhiQ co the decision critsria givea In sectioo 3.8.2.
K the decision crtteria are
: met, the 2eglomal Admfabtrator/DFt8ccor till proceed co the uac St8p.
: 26.
The Regionel AdUbidtr8tOr/bLt8CtOr stud188 u
a cosposiee the biotic ucrgorp ratlOue~8s~
c!18 Repr8sencacive  
~bpottrac Sp8cler R~tlooa.L8, the r8suurc8 zones
: fmpecc8d, and the 8ngFneetig and hydrological dece co see ti they prwlde jurtifica-tioa for the conclusloas rrech8d Fp the aastsr ratioa8le.
ff thry do and th8re 1s aot strong coatrarf 8videnc8 from ocher sourC8s, the RegionA Adzsbdstrator/Dlr8ctor vill proceed co the nut St8pt 2s.
The Eeg1om.L  
~istr8tOr/Dfr8CtOr studi8s c!!e mest8r tStiOUAl8 Fn t8latiOUShiQ CO au oth8r avelLable
: data, coasiders the marall decirlou crtcsrir Fn section 3.8.3, and dec8rmiaes ti the 316(a) daonstratiou bee been succsssfdly  
-de.
FoUmdng discwsions vfch crchnicr1 upercs 00 his staff as WU as chose from the Fish and Uildlu8 Service and ocher agenci88 t8qUfIId By lau co be COUstIlc8d.
the Regionel AdmiaistrsCor/
DFr8CtOr maha c&r ffnd decision.
Lf the Regiooll Mainlstrator/D1reccor coaclud8s that the s-q retioueLe is coorincing.
tc ls supported sufficiently by the ocher sections of the d~unstrecion, and h
wt couvincingly nef8ted by outside
: rrldence, the sppllcurtr 316(a) d~oustretiou 1s successful, The applicant hu dunscrefsd ch8c c!xe proposed cheraul dirchrrge to aevigable vacsrs viJ..l be accepc8ble under PL 92-500 (for seccioa 316(a) and 8fflueat guideliaes).  


3.3       Biotic     Category         Deterain8tions           end Recmeoded
3.3 Biotic Category Deterain8tions end Recmeoded  
                          !Zarlf     Scrunlag         Procedures by Industry It :r recorundad                 that appLic8nts           conduct pFlor             field surveys md licetecure             surchee       bef ora embarking             upaa uasiv~.             comprehensive, bueline.         field     ssmpl-.           Thur fuitid             studiu       will oftrn be sufficient to determine           whether or aof the site fs one of Lou potential                                       hpact       for indivfdurl         biotic       utagoriae         aud co deternine             vhrc additional               studies will be raqufred               to develop         bloeic crtsgory           tatiouales           responsive         co th decision           critarfr       Listed fu this sectiou.
!Zarlf Scrunlag Procedures by Industry It
Tha spplic8nc           should first           rud thfs section.               then uecuce             the initial       pilot     field     sumeys and Lituuure                     surches         Fn such a zmuuer ch8t they identify                 chose biotic         c8cegories         for which cha site sry be considered         a Lov potmtid.               dnp8ct     are8, It should be noted here th8t rectfou                             3.5.6.1     provides 8 discussion         of why the d8tr             requiranents         proposed         In this         sectioo are useful to rrgulatory                 agmciu         fn the 516(a) decision-mking                         procus.
:r recorundad that appLic8nts conduct pFlor field surveys md licetecure surchee bef ora embarking upaa uasiv~.
Ideutific8tiou           of tll~a i,u the vartous                 bloti       c8tegories           should be to     the species Level for the RIS org8nfsw                                 and   ao less         th8n   fmlly Lavd       for all other             chrt ue Iheed.
comprehensive, bueline.
3.3.1         Phftoprauktou 3.3.1.1         Decisioa       Critrria.
field ssmpl-.
The phytoplsaktou               sectiou of the 316(a) daonstrstlou                               vill be judged       succusful           if the l pplfcsnt           c8a show that the site Fs a Lou pocurtirl           kp8ct       l ru     for phytopl8uktou.                 For other slfes,               the phytoplauktoa           rectiou       of the 316(e) dmoUStr8tfOn                     til         be judged successful         tiy     ti the sppllcsnt             cull droascrace             th8t:
Thur fuitid studiu will oftrn be sufficient to determine whether or aof the site fs one of Lou potential hpact for indivfdurl biotic utagoriae aud co deternine vhrc additional studies will be raqufred to develop bloeic crtsgory tatiouales responsive co th decision critarfr Listed fu this sectiou.
: 1. A ahfit       tmmrda       auirurce       rpecler       of phytoplauktou is we UkaLy to occur;
Tha spplic8nc should first rud thfs section.
: 2. Iharm     is little         likelihood         the tha dtich8rge                 till, altar     the Indigenous             coratnity         from a deerite               co 8 phytopl8nktoo             hued     s78tm;         and
then uecuce the initial pilot field sumeys and Lituuure surches Fn such a zmuuer ch8t they identify chose biotic c8cegories for which cha site sry be considered a Lov potmtid.
: 3. Appreci8ble           h8m     co the brluxed             indFgaaous popula-thou is not ltily               to occur as s result                   of phyto-phakton         cmmanit~         chmtes         C8U88d by the he8Ced disclm~e         .
dnp8ct
3.3 .I.2         Lou Potencill             fmmct Arus           for   Phrtool8nktoo               (Open Ocean and Yost Riverine             Ecosystems) .
: are8, It should be noted here th8t rectfou 3.5.6.1 provides 8
Are8s       of Lou pocmtiti               tnp8cc     for phytoplanktou               ara defFned as open oceen srus               or sfscems Fn which phytoplankton                             is LIOC the food chain bese.           Ecoeystas           fn vhich the food mb 1s hued ou detrltal
discussion of why the d8tr requiranents proposed In this sectioo are useful to rrgulatory agmciu fn the 516(a) decision-mking procus.
Ideutific8tiou of tll~a i,u the vartous bloti c8tegories should be to the species Level for the RIS org8nfsw and ao less th8n fmlly Lavd for all other chrt ue Iheed.
3.3.1 Phftoprauktou 3.3.1.1 Decisioa Critrria.
The phytoplsaktou sectiou of the 316(a) daonstrstlou vill be judged succusful if the l pplfcsnt c8a show that the site Fs a Lou pocurtirl kp8ct l ru for phytopl8uktou.
For other
: slfes, the phytoplauktoa rectiou of the 316(e) dmoUStr8tfOn til be judged successful tiy ti the sppllcsnt cull droascrace th8t:
: 1.
A ahfit tmmrda auirurce rpecler of phytoplauktou is we UkaLy to occur;
: 2.
Iharm is little likelihood the tha dtich8rge
: till, altar the Indigenous coratnity from a deerite co 8 phytopl8nktoo hued s78tm; and
: 3.
Appreci8ble h8m co the brluxed indFgaaous popula-thou is not ltily to occur as s result of phyto-phakton cmmanit~
chmtes C8U88d by the he8Ced disclm~e 3.3.I.2 Lou Potencill fmmct Arus for Phrtool8nktoo (Open Ocean and Yost Riverine Ecosystems)
Are8s of Lou pocmtiti tnp8cc for phytoplanktou ara defFned as open oceen srus or sfscems Fn which phytoplankton is LIOC the food chain bese.
Ecoeystas fn vhich the food mb 1s hued ou detrltal
: ucrrlsl, e.g.,
rmb8yments bordered by mangrove
: rusaps, salt
: msrshes, fresh wear
: stmmps, and most rivers and strums, are In this cacrgory.
The ares will not be conafdered one of low potrnctal
!mpacc Lf pte1Fninrry literature review and/or abbreviated ptlot field studies rwul Ch8t:
L.
The phytoplsnkcoa contribute a subscantlrl amuac of the pria8q phocosynehecic actlvicy supporting the co6uaity;
: 2.
A shift cowards nuls8nce species my be l ucouraged; or
: 3.
Opetscion of the discharge mey alter the community Eroat a decticsl co a phytopLankron hoed
: ryscem, 3.3.1.3 Scudv Reouiremencs for Aress Yet Clrssiffed a8 Lov Poceaci8~
Iap8cc (SOID@ La~~scrfne,
&stusrine, and Possible Ocher Uater Body Types).
The applicmt La not requutsd speclffc8lly co conduce dec8iled cuonomic studies of the phytoplaakton, but tnfoczmclon pro-vided ln the deonstrscton should be adeqlucs co Ch8rSCt@rit@
the presence and sbundsnct of polluclou tolerant and nulsrnce forms as Ural as co provide buellne lnforascloa l bour the phytoplaaktoa e-alcy as 8 whole, The psrticular pouar plane site and rquacic sysc~
plur hirtoric8l lnformstlon till dictate the extent of caxonomic work required.
In soma rftu8tfons only a frv species or major csxonomic group8 (e.g.,
species coaprislng
>5f of cocsl) till hsve co be 1dencFfled and counted.
uhereu tn ocher sFcwcloas the fd@nCifiC8riOKI aad Cou#¶CLng Of Sm@rS~ Sp@Ci@S or mjOr groups my be required.
The exp~rlment81 design should be spproprlace EO detemine the general cherscteristics of the phytoplsnkcon coemmnlty vichin the l nclra prlmr) study sre8.
krpbq oucslde the pti8q rcudy ares should be done et Loutlow most l pproprl8te to generate d8ca ryplcrl of the far field rcudy l ru.
Ssmple repllc8clon should be sdequsce co decomine precision of c&e dies collected and co COoducC 8ppmtite St8tiSCiCd C@SCS.
Smplee should be ukea tirh sppropriace gut as described ln the EPA Eiolo~ical achods M8nu8l.*
PL8okcon necr are of Limlced veluo alma meoy orgseias pus through chum.
In cert8ln c8ees uherr
+
BiologicA Field and hborscocy Methods (EPAd70/6-73401).


ucrrlsl,       e.g.,      rmb8yments bordered                by mangrove        rusaps,      salt    msrshes, fresh  wear    stmmps,      and most rivers              and strums,           are In this        cacrgory.
-2o-utensive sapling 1s deemed necessary, lt uy ba possible co use an lndlrect chmlcnl mchod to assess sessoasl or spacAl, phytw plaaktoa fluctutlm8.
The ares will          not be conafdered one of low potrnctal                              !mpacc Lf pte1Fninrry        literature          review and/or abbreviated                    ptlot      field studies    rwul      Ch8t:
ID most CMU the study should decermiae the stsnding crop of phytoplsakmnx at periods rauglag from seesoati to bll~ouchly depending 00 the avrF1able faformstlou~
L. The phytoplsnkcoa              contribute          a subscantlrl          amuac of the pria8q          phocosynehecic              actlvicy      supporting        the co6uaity;
At a oiaima, the d8t8 collected ahodd include:
: 2. A shift      cowards nuls8nce                species    my be l ucouraged; or
: 1.
: 3. Opetscion        of the discharge              mey alter      the community Eroat a decticsl            co a phytopLankron              hoed      ryscem, 3.3.1.3       Scudv Reouiremencs              for Aress Yet Clrssiffed                  a8 Lov Poceaci8~ Iap8cc (SOID@La~~scrfne,                          &stusrine,        and Possible Ocher Uater Body Types).
The stsndlng crops of organisms get volunte of fat&r;
The applicmt            La not requutsd                speclffc8lly        co conduce dec8iled      cuonomic        studies      of   the   phytoplaakton,            but tnfoczmclon            pro-vided    ln the deonstrscton                should be adeqlucs co Ch8rSCt@rit@                          the presence and sbundsnct              of polluclou              tolerant      and nulsrnce          forms as Ural as co provide buellne                    lnforascloa          l bour the phytoplaaktoa e-alcy        as 8 whole,          The psrticular              pouar plane site and rquacic sysc~ plur hirtoric8l                lnformstlon          till    dictate      the extent of caxonomic work required.                 In soma rftu8tfons                only a frv species              or major    csxonomic      group8      (e.g.,      species        coaprislng        >5f of cocsl) till hsve co be 1dencFfled and counted. uhereu                                tn ocher sFcwcloas                the fd@nCifiC8riOKI      aad Cou#¶CLng Of Sm@rS~ Sp@Ci@Sor mjOr groups my be required.
: 2.
The exp~rlment81            design should be spproprlace                      EO detemine the general cherscteristics                  of the phytoplsnkcon                  coemmnlty vichin the l nclra prlmr)            study sre8.           krpbq            oucslde the pti8q                rcudy ares should be done et Loutlow                        most l pproprl8te            to generate d8ca ryplcrl    of the far field rcudy l ru.                         Ssmple repllc8clon            should be sdequsce    co decomine          precision        of c&e dies collected                and co COoducC 8ppmtite                St8tiSCiCd          C@SCS.
~d@nti.fiC8tfO~
Smplee      should      be ukea        tirh      sppropriace        gut      as described ln the EPA Eiolo~ical              achods M8nu8l.*                  PL8okcon necr are of Limlced veluo alma meoy orgseias                    pus through            chum.      In cert8ln        c8ees uherr
of nmeric8lly damlrmnt
+ BiologicA      Field    and hborscocy            Methods (EPAd70/6-73401).
:axa CF.*.,
5X or more by number) and nuisance organism
; and
: 3.
Delioution of the l uphoclc
: zone, preferably VLCh 8 submersible phocmecer.
3.3.2 tooplankton and.Yeroplutktoa 3.3.2.1 Decisiou Criteris~
The tooplanktoa and meropl8alrton sectioa of the 3lS(a) dmOUStr8Clort till be judged successful lf the applicant tin shov char the rite 1s e lov potential imp8ct are8 for them org8niws.
or that:
L.
Chmgu i.~ the zooplankton and ~eroplaakton cmtf Lo the prims-study l ru ch8c 1~87 bt c8ueed by the hue&d dlschsrge will aoc ruult Ln appreciable h8rm to the b8lurced
~euous ffsh aad shellfish popuLatioa.
: 2.
The hutad dfsch8rge fs ooc lfkelf co alter the stand*
: crop, rolacle abuad8nce, wfth respect to orturrl populatiou f~uctu8tion.s ln the far fitid study sru fra thou vrluer cypicsl of the recalviag water body sagmeat prior co plant opar8tloo.
: 3.
The thuad plum dou not constitute a lethal barrier to the frra movumt (drif cl of zoo-phnktm and meroplsnktou.
3.3.2.2 Lov Potentisl fmmct Areu for ZooplaUkton and ?¶eroolenk:on.
Are88 of Ior pOC8nd.d imp8Ct for tooQhnktoa and aeroplnnkcoa are deflned as chose characterized by lov concentrations of commercially important species
, rare and l ad8ngerad specles~
and/or chore Lome that are


                                                              -2o-utensive        sapling          1s deemed necessary,                lt uy      ba possible          co use an lndlrect        chmlcnl          mchod to assess sessoasl                    or spacAl,         phytw plaaktoa      fluctutlm8.
important components of the food veb or where the checml discharge till affect e rebtively smll proportion of the recelviag veter body.
ID most CMU the study should                            decermiae the stsnding crop    of phytoplsakmnx            at periods          rauglag      from seesoati            to bll~ouchly depending 00 the avrF1able faformstlou~                                At a oiaima,             the d8t8 collected      ahodd        include:
!+~rr ucuarlm l rue will not !m coaridermd arua of Lou pocencirL impact for tooplaakton and eeroplaakton.
: 1. The      stsndlng        crops    of organisms          get    volunte of fat&r;
: Houwer, where a logarlchllic gradient of rooplankcoa and wroplanktou ebundmxe axiscs.
: 2.   ~d@nti.fiC8tfO~             of nmeric8lly            damlrmnt :axa CF.*., 5X or more by number)                         and nuisance organism ; and
choee l reu et the lowest lrrrel of rbuadence mep be recog-aiud as lw pocanclrl Fmpect ereab at the dticrecion of the Regfod Admin~crrcor.
: 3. Delioution              of the l uphoclc zone,                 preferably VLCh 8 submersible                  phocmecer.
If prmliminarp 316(r) studies indicate thee the area is oae of Lou poceacid
3.3.2        tooplankton        and .Yeroplutktoa 3.3.2.1        Decisiou        Criteris~
: impact, no further 316(a) studies are aecersa?.
The tooplanktoa              and meropl8alrton            sectioa of the 3lS(a) dmOUStr8Clort till               be judged successful                lf the applicant              tin shov char the rite 1s e lov potential                          imp8ct    are8 for them org8niws.
In this case cha epplfcant need prwLde only e arrrac:ve dilcussioa fuscifflng chr coaclusioa chat the eree FS one of Low gocencirl inpecc.
or  that:
3.3.2.3 Scud?
L. Chmgu            i.~ the zooplankton              and ~eroplaakton cmtf                Lo the prims-            study l ru ch8c 1~87 bt c8ueed by the hue&d dlschsrge                              will      aoc ruult          Ln appreciable            h8rm to the b8lurced
Requirements for Ocher Areas.
                            ~euous                ffsh aad shellfish              popuLatioa.
For chose facilicler 3oc sited Fn Lou poteoth.l impact
: 2. The hutad            dfsch8rge        fs ooc lfkelf              co alter      the stand*            crop, rolacle            abuad8nce,           wfth respect to orturrl            populatiou        f~uctu8tion.s            ln the far fitid      study      sru    fra      thou vrluer              cypicsl    of the recalviag              water    body sagmeat prior                co plant opar8tloo.
: atus, the applicant should describe the qurllcecfve and qtYacicacive charrccaiacicr of the zooplankton end merophnkcon popuLrcions.
: 3. The thuad              plum      dou not constitute                  a lethal barrier        to the frra          movumt          (drif    cl    of zoo-phnktm            and meroplsnktou.
The
3.3.2.2        Lov Potentisl            fmmct      Areu      for    ZooplaUkton          and  ?¶eroolenk:on.
&cr should include:
Are88      of Ior pOC8nd.d                imp8Ct for tooQhnktoa                    and aeroplnnkcoa are deflned        as chose characterized                    by lov concentrations                  of commercially important      species      , rare      and l ad8ngerad          specles~        and/or      chore Lome that  are
: 1.
Standfag crop l rciaucu;
: 2.
Dative abunducu of the cma present;.
: 3.
Susoti vati~ciow fn the abundance and discribuctons of cha VUWUS taxa encountered; and
: 0.
Zbr dieL cad cldrl chsn~es Fn cho depth discrlbucioo.
The experlmenteL dealgn should be epproprhce co determine chr general chr~ccerircics of zooplankton and aeroplrnkcon vfthin cho l tira prima-study au.
Sampling in the far field study area should bm doom in 1ocrciou.s most approprtice co generate daer typical of chr ruaindar of the fer L leld study aru.
The U
Sourcebook*
provides info~tioa rrlrcrd co cha choice of sapling aechods.
Smple rapllcation should be adequte to decemine precirfoo of the hu colhcted l ud to cooduct approptice scrtircical teat*.
If the epplicmc belimes ou cho buls of the dece collected that tha zmplanktoa and maruplankcm cricerla can be aec, the coacepcurl framework upon uhfch the conclusioo 1s besed cad corresponding date uulprti muat ba iacludd la tha tooplrnlrcon rod aeroplmkcou racioade of the 316(e) daooscrrciou.
For e further discurrion of infomclon requirrencr for
~ropl8nkcw.
se8 secciou 3.3.4.3.  
+
Acoaic fnduscrti
: FON, Sourcebook:
IEmFroumencal kqmcc Yoairori3g of Xuchar Poumr Phncr
, August L974.
3.3.3 88bicst Fomorr 3.3.3.1 Decision Criteria.
The hsbitat forzerr section of a 315(a) demoarcracloa till be judged ruccersfuL If the l pplfcanc cm show chsc the rice is a lou pocenc181 imp8cc area for habicac fomerr.
For ocher
: sites, the seccioa tilL be judged successful if the applicant can dronrcrece chat:
: 1.
The huced discharge will not result in any decerlonciowt of the h8bicat foraers cmunity or ch8t no apprectable h8rm CO the b8l8nced ladlgeaous popul8cloa till result from such deceriorrclons.
: 2.
The heated dbcharga till ROC hsve an adverse fmp8cc on chrucened or l odaagered specie8 as a result of impace upon hrbftrt foreerr.
Any prob8ble charm81 l l~fnscioo of h8bicac formats from the l scusrfm or aarine l avironaencs of chair contiguous ueclmds conscltuces a buts for
: deni81, Sfmllarlp, a basis for denial exists U
iapotc8nc
: fish, shellfish, oc ulldlffe are charmUp excluded from the use of the hsblcac, 3.3.34 Lou Potential fap8cc Arear.
Ib soQe - sf cu~cions, the l qu8cic l nviroaaeac et the pro-posed site ulll be devoid of h8blc8c fonners.
This condicioa m8y be caused by Lou luels of aucrlencs.
tnadequece light penecraclon, sedlaeaucfoa.
scouring scream velocfcies, rubscr8te char*ccer.
or coxlc luterl8ls.
Under such cond~cioas the sic8 eey be considered 8 lou poceaci81 fmp8cc 8ru, Houver
, Lf theta 1s some poutb~licp the linicing feccors (erpectilly au+c8used Liait~g faceore) aey be relimed md hsbit8t former8 asy be l sc8bllshed within the area, the appliunc will be required CO daonscrace ch8c the huced dischsrge rauld not restrict re-*st8blishenc.
Those l ices where there is 8 possfbtlicy chsc the powr plant vi11 imp8cc a cbruceaad or l admgered species through 8dverre lmpeccr ou habitat Lomars will not ba coasidered Low pocencfrl lmpecr l reu.
J.3.3.3 S~d;o::~;;:y~c~or Other Area8
!ioc Classif ied as L
mQ For 8rua chat do not qualify u
lov pocentirl LPp8cc
: arus, chs l pplicset should provide the follovfag inforaurlon:
I..
Ragloud site locrcioa eep and 8 waled aerial map shoving the distribution of h8bic8c fomrr ln the regioa near the propoeed rice.
The


important          components        of the food veb or where the checml                                discharge till      affect      e rebtively              smll        proportion        of the recelviag              veter body.
aetirl mp should include the pdmarp and far field study arus.
                      !+~rr ucuarlm                l rue      will    not !m coaridermd              arua      of Lou pocencirL          impact      for    tooplaakton            and eeroplaakton.                Houwer,         where a logarlchllic            gradient          of rooplankcoa            and wroplanktou              ebundmxe axiscs.        choee      l reu      et    the lowest lrrrel of rbuadence                      mep be recog-aiud        as lw        pocanclrl          Fmpect ereab at the dticrecion                        of    the Regfod          Admin~crrcor.
Ihen mr8ilab~8, aerial mepe shovtng hiSCOriC8l ChAag88 tn the discrlbuclou of h8bicac fonmrs should be provided.
If prmliminarp              316(r)        studies      indicate        thee the area is oae of Lou poceacid                    impact,         no further        316(a)        studies      are aecersa?.
: 2.
In    this    case      cha epplfcant              need    prwLde      only      e arrrac:ve        dilcussioa fuscifflng            chr coaclusioa              chat      the eree      FS one of Low gocencirl inpecc.
List of domiarot species of hsblcrt formlng macro-p&f**,
3.3.2.3            Scud?      Requirements              for    Ocher Areas.
macrodg8e.
For chose facilicler                    3oc sited Fn Lou poteoth.l                     impact atus,        the applicant            should describe                the qurllcecfve            and qtYacicacive charrccaiacicr                of the zooplankton                  end merophnkcon              popuLrcions.             The
: shelUish, corLL8, and sponger.
  &cr should include:
: 3.
: 1. Standfag crop l rciaucu;
Standing crop utdm8ce8 of the domlnrnc rpecies In cams of dry night of org8aic metcar per unit area.
: 2. Dative            abunducu            of the cma present;.
Them l scim8cea should be arde at a minfnum frequency of qturcerly for one ye&r.
: 3. Susoti            vati~ciow            fn the abundance            and    discribuctons of    cha VUWUS              taxa    encountered;          and
: 4.
: 0. Zbr dieL          cad    cldrl      chsn~es      Fn cho depth          discrlbucioo.
~deotific8cloa of those species of fish which are dominsnr species or chre8cened or l a&ngered species aad 8r8 depeadenr upoa the uircence of the h8blt8t formers for protection or foe use as feeding areas.
The   experlmenteL              dealgn      should     be epproprhce              co determine chr general            chr~ccerircics                of zooplankton            and aeroplrnkcon              vfthin cho l tira          prima-        study       au.         Sampling        in the far field              study     area should       bm doom in          1ocrciou.s most approprtice                        co generate        daer typical of chr ruaindar                  of the fer Lleld study aru.                             The U        Sourcebook*
For such species (which are not considered l lrevhere ti the 316(a) d~~cr&CiOU),
provides          info~tioa            rrlrcrd          co cha choice of sapling                    aechods.
the applicurc should provide queacitrcive abuadmce l scticer.
Smple        rapllcation            should        be adequte            to decemine          precirfoo        of the hu        colhcted          l ud    to  cooduct          approptice          scrtircical        teat*.
The aperlmeaerl dulga should be rppropriace co decualne ths gea8rs.l ChArACC8~stiCS of the h8blC8c format c -icy vichla the l nclre prtmsq study aru.
If the epplicmc                  belimes        ou cho buls            of the dece collected that      tha zmplanktoa              and maruplankcm                cricerla        can be aec, the coacepcurl framework          upon uhfch          the conclusioo              1s besed cad corresponding                      date uulprti          muat ba iacludd                  la tha tooplrnlrcon                rod aeroplmkcou              racioade of the 316(e) daooscrrciou.                               For e further          discurrion        of infomclon requirrencr            for ~ropl8nkcw.                     se8 secciou        3.3.4.3.
Supllag outside the pm-study aru should be done Fo 10C8tiOW moat ApptOprlrC8 co gener8ce d8CA cypicsl of the rwiader of the far field rcudy are&.
+ Acoaic fnduscrti                  FON,          Sourcebook:            IEmFroumencal            kqmcc        Yoairori3g of Xuchar            Poumr Phncr            , August L974.
Ssmple replic8tioa should be 8deqtuce co deermine the preclsioa of the
&CA gener8ced 8ad co couducc spproprbce sc8cistlc8l cuts.
3.3.k SheU.fi.shlXscroiavertebrsces 3.3.1.1 Decirlou Cricerla.
me shellfish/ucroFnrertebr8cu section of I
316(a) d-on-scr8tba roll be fudged successful Ff the l ppllc8ac c8a d~oascr8ce tit no 8ppreci8ble hsm co the belanced Frrdigenous populaclon will occur 81 8 result of mscrolavertebr8c8 c -icy ch8oger caused by the huted discharge.
For areaa chssFfled ss oaea of lou poceacirl kp8ct for rh~lsh/mecrofmrertebr8ces~
relscfvely little nev field wrk uy be raqulred.
Decision crlceri8 related co iadividual p8ra-maters sre discussed u
foUuua:
: 1.
S tandins Crow.
Raduccioas Fcl cha scaadlag crop of shellfish sad
~croFmercebrecer asy be c&use for denl8l of a 316(a) ulver ualeas the 8pplicmc c8a shw chsc such reduccioas caused ao ApprUiAbh h8m co b&lanced Fndigeaous popul8cion8 within the water body sagmat.  


3.3.3          88bicst    Fomorr 3.3.3.1        Decision          Criteria.
-24.
The hsbitat            forzerr        section        of a 315(a)        demoarcracloa till    be judged ruccersfuL                    If the l pplfcanc            cm show chsc the rice is a lou pocenc181 imp8cc area for habicac fomerr.                                                 For ocher sites,         the seccioa            tilL      be judged          successful        if the applicant can dronrcrece              chat:
: 2.
: 1.      The huced            discharge          will not result              in any decerlonciowt              of the h8bicat              foraers        cmunity or ch8t no apprectable                        h8rm CO the b8l8nced ladlgeaous          popul8cloa          till     result      from such deceriorrclons.
Coaununlcv Structure.
: 2.     The heated dbcharga                      till      ROC hsve an adverse fmp8cc on chrucened                      or l odaagered          specie8 as a result          of impace upon hrbftrt                    foreerr.
Reductions in the compoaencs of divrrrlcp may be cause for the dsnfsl of a 316(r) vlrivet unlers the applicant can shov thrc the crirfcrl functious (defined lxx sectioa 3.8.3.)
Any prob8ble charm81 l l~fnscioo                              of h8bicac formats              from the l scusrfm          or aarine          l avironaencs            of chair contiguous              ueclmds conscltuces          a buts          for deni81,              Sfmllarlp,          a basis for denial exists        U iapotc8nc            fish,       shellfish,           oc ulldlffe        are charmUp excluded from the use of the hsblcac, 3.3.34          Lou Potential              fap8cc        Arear.
of the aacraln-oertabrata fauaa are baing atitained ln the vater body segmsat as they axistad prior co the Fntroduccioa of hut.
Ib soQe - sf cu~cions , the l qu8cic l nviroaaeac                                et the pro-posed site ulll              be devoid          of h8blc8c          fonners.        This condicioa            m8y be caused by Lou luels                      of aucrlencs.              tnadequece        light    penecraclon, sedlaeaucfoa.              scouring scream velocfcies,                        rubscr8te        char*ccer.        or coxlc luterl8ls.                  Under such cond~cioas the sic8 eey be considered 8 lou poceaci81 fmp8cc 8ru,                            Houver , Lf theta 1s some poutb~licp the linicing          feccors (erpectilly                    au+c8used          Liait~g        faceore) aey be relimed          md hsbit8t              former8        asy be l sc8bllshed                within    the area, the appliunc            will      be required            CO daonscrace              ch8c the huced dischsrge        rauld        not    restrict        re-*st8blishenc.                  Those l ices        where there      is  8 possfbtlicy              chsc the powr                plant vi11 imp8cc a cbruceaad          or l admgered              species        through 8dverre              lmpeccr ou habitat        Lomars        will    not ba coasidered                  Low pocencfrl          lmpecr    l reu.
Canerrlly, vlch the prumt sfsce of kaovledge Lt 9 inpossible co stata what affect 8 cettsla percentage of changa Fo the compoaurcs of diverslty till hsve on fuactioud tntegrlCy of cha system.
J.3.3.3          S~d;o::~;;:y~c~or                            Other      Area8    !ioc    Classif    ied    as L                            mQ        .
SQ@CifiCdly Cha iaai.nrenaoce of a bslsnced indigenoru pOQd&CiOU.
For    8rua        chat      do not      qualify        u lov pocentirl            LPp8cc arus,        chs l pplicset            should      provide        the follovfag            inforaurlon:
Prom a geuaric rtmdpolnt, a aejor difficulty rehems co the fact char tha species rtcha~ss of cha macro-Fnrrercebtrce fauna vsr,es considerably ln differrae systw and char the rffrccr of a given Level or percrouge of change tight be a functfoa of cha Level of diverslty excaac prior co the IxroductFoo of hut stress.
I.. Ragloud            site locrcioa              eep and 8 waled            aerial map shoving the distribution                            of h8bic8c fomrr ln the regioa              near the propoeed                rice.        The
From a dsclsion standpoint,
: rctuA, or gredictrd reductiooe Fn diversity could seme prlmartly as an indication chat the syscsm is or till be stressed.
Beuuse of the dUficulcy ia predicting chsnges
*Rich any dqrre of accuracy, chir perameter could seme as I
declsioa tool oalp Fn cases wheta the actual changes ruulting from plsnc operscion can ba ratnnerr:ed and rwoaably applied co the proposed site.
: 3.
: Drift, The dfrcherge of coolLag v8tmr equal
:o 302 or more of the 74~.
LO-yur Lov flov of a river 01:
strum tmuld be cause for coucsra md posslblr r8jectiou of a 316(e) trrlvar unlasr the spplicmc csa shw char:
: 1)
Imermbratrs do uoc se-e as s major forage for cha flsherlu
: 2)
?ood ti uoc s faccor linlcia#
fish productlou Fn the -far body segmonc, or
: 3)
Drlftirrg Lmertebrsce fsuas 1s sot hsraed by pusa#a thtot@
the therms1 plume.
: 4.
Critical
?unctlons (Escuarlrs~.  
&eu which seme as epevrrlng sad nursery rices for important shellfish and/or mecrobxvertebrete fauna ere coasidered ss zero aUo#ble inpsct arw urd till be ucluded from


aetirl      mp should include the pdmarp                        and far field study arus.            Ihen mr8ilab~8,           aerial      mepe shovtng hiSCOriC8l ChAag88 tn the discrlbuclou                              of h8bicac fonmrs        should be provided.
conslderatloa for the discharge of waste best.
: 2. List of domiarot species of hsblcrt                          formlng macro-p&f**,        macrodg8e.         shelUish,          corLL8, and sponger.
P Lanes riced fn locatioas which muLd Impact chase critical funcclons vfll not be rliatble for a 316(a) usiver.
: 3. Standing        crop utdm8ce8          of the domlnrnc rpecies                    In cams of dry night                of org8aic        metcar per unit area.
!4ost l stuarlne rites VFll fall into chls category.
Them l scim8cea should be arde at a minfnum frequency of qturcerly          for one ye&r.
3.3.4.2 Lov Poteatlal Irmect Ares8 for Shellf lsh/?Iscro~ertebraces A Low potential inpecr aru for she.UfLsh/~crolmertebra~e fauna 1s deflaed as au aru
: 4.    ~deotific8cloa            of those species of fish which are dominsnr        species      or chre8cened or l a&ngered                      species aad 8r8 depeadenr upoa the uircence                            of the h8blt8t formers      for protection          or foe use as feeding                  areas.
: which, vtchFn the primary and far field study
For such species              (which are not considered                    l lrevhere ti the 316(a) d~~cr&CiOU),                         the applicurc            should provide      queacitrcive          abuadmce          l scticer.
: 8ru8,
The aperlmeaerl              dulga      should       be rppropriace            co decualne          ths  gea8rs.l ChArACC8~stiCS                  of the h8blC8c format c -icy                vichla the l nclre prtmsq                    study aru.
: 1.
Supllag        outside the pm-                  study aru should be done Fo 10C8tiOW              moat ApptOprlrC8              co gener8ce d8CA cypicsl      of the rwiader              of the far field rcudy are&.
: 2.
Ssmple replic8tioa              should     be 8deqtuce co deermine the preclsioa          of the &CA gener8ced 8ad co couducc spproprbce          sc8cistlc8l        cuts.
: 3.
3.3.k      SheU.fi.shlXscroiavertebrsces 3.3.1.1      Decirlou        Cricerla.
: 4.
me    shellfish/ucroFnrertebr8cu                        section      of    I  316(a)      d-on-scr8tba    roll be fudged successful                    Ff the l ppllc8ac            c8a d~oascr8ce tit    no 8ppreci8ble          hsm co the belanced Frrdigenous populaclon                                will occur  81 8 result          of mscrolavertebr8c8              c -icy            ch8oger caused by the huted      discharge.          For areaa chssFfled                ss oaea of lou poceacirl kp8ct    for rh~lsh/mecrofmrertebr8ces~                            relscfvely        little        nev field wrk uy be raqulred.                  Decision crlceri8              related      co iadividual            p8ra-maters  sre discussed u foUuua:
3.3.4.3 Study Requirements for Other Areas.
: 1. S tandins      Crow.      Raduccioas          Fcl cha scaadlag            crop of shellfish        sad ~croFmercebrecer                  asy be c&use for denl8l of a 316(a)              ulver      ualeas the 8pplicmc                    c8a shw chsc such reduccioas                    caused ao ApprUiAbh h8m co b&lanced Fndigeaous popul8cion8                                within      the water body sagmat.
can meet the following rsqulrrmenis:
ShelUlsh/~crolmertebra~e spectes of ulrckq or
: potentL4, comwrctil value do aoc occur at the site.
This requfronent can br net Ff the rpplicaot can show that the occurrence of such specfes is rn8rgfne.L.
ShrlLflsh/macrokwertebr8tes do not same as fmportaat compouenes of the aquaclc community ac the rice.
Thruteaed or endangered species of rhelZfih/mrcro-Frnrertebraces do not occur at the site, The standing crop of shellflsh/necroluvertebraces at the time of orxkum abundance Fs Less than oue gram u&-free dv might per square meter.
The site does not same as a speunF3g OF nurse-area for the speclu in 1, 2, or 3 abme.
L.
Ssmlfnr Deslan.
The erperimenral dulgn should be eppropri~te to determine the general ch8x8cterlstlcs of the shellfish/mscro~ertebr8ce c omunlty vtchln the entire prlwv study area.
Ssmpllng outside
:he plum study aru should be done fn locations most appruprhte to generace data typlcll of the remainder of the far field study mu.
Ssmple repllutlon and coUectlou frequency should be adequece to decsraine tha preclsiou of the data geuereced urd co coaduct 8pproprl8ee sc8tlstfal cues.
AC 8 mlnimm, smples should be tan quarterly for
-Y-r*
: Ebmver, the actual periods selectsd should ba keyed co knouu informcloo ou the susoud occurrence of hportanc for868 speclesr rue and l dur~ered species
, and species of comercial importurce Sampling for these rpeclrs must occur


                                                -24.
-260 when vulnerrbls life stages are ln the srea.
: 2. Coaununlcv Structure.                    Reductions        in the compoaencs of divrrrlcp        may be cause for the dsnfsl                      of a 316(r) vlrivet unlers the applicant                        can shov thrc the crirfcrl functious          (defined      lxx sectioa 3.8.3.)              of the aacraln-oertabrata          fauaa    are baing        atitained          ln the vater body segmsat as they axistad prior co the Fntroduccioa of hut.
If, becawe of the tr&nsFcory nature of such speclss and chair verlous LFfe stages, Ft 1s not possfble co include them in a quartsrly progrsm or, Ff there is s complu of species whose tfming IJI the aru 1s uakaovm, then the frrquency of smpllng til bme to be incrused.
Canerrlly,           vlch the prumt                sfsce of kaovledge Lt 9 inpossible          co stata what affect                8 cettsla        percentage of changa Fo the compoaurcs of diverslty                                till      hsve on fuactioud            tntegrlCy        of cha system. SQ@CifiCdly                        Cha iaai.nrenaoce of a bslsnced indigenoru                            pOQd&CiOU.
For the beothlc component of the sheUfirh/m8croFnvertebr8ces
Prom a geuaric rtmdpolnt,                       a aejor difficulty                rehems co the fact char tha species                          rtcha~ss of cha macro-Fnrrercebtrce            fauna vsr,es considerably                  ln differrae systw          and char the rffrccr                  of a given Level or percrouge            of change tight be a functfoa                      of cha Level of diverslty            excaac prior co the IxroductFoo                          of hut stress.
, community sempllng stations should be selected for uch major substrate type within the prlaarp study area.
From a dsclsion              standpoint,            rctuA, or gredictrd reductiooe          Fn diversity          could      seme    prlmartly        as an indication          chat the syscsm is or till                    be stressed.
Slmllu sucloas should be selected ti the far field study aru so that the relative Fmportance of the tvo ragloos may be compared.
Beuuse of the dUficulcy                        ia predicting          chsnges *Rich any dqrre            of accuracy,          chir perameter            could      seme    as I declsioa          tool    oalp    Fn cases wheta the actual                      changes ruulting          from plsnc operscion                  can ba ratnnerr:ed            and rwoaably            applied co the proposed site.
Uhere appropriate, chase st~tious should
: 3. Drift,         The dfrcherge            of  coolLag      v8tmr equal :o 302 or more      of  the    74~.       LO-yur          Lov flov      of a river          01:
&so be used for srmpltig the aoclle portion of the shellflsh/mscroinvertebrace c-fty.
strum tmuld be cause for coucsra md posslblr r8jectiou          of a 316(e) trrlvar unlasr the spplicmc                              csa shw char:
: 2.
: 1)      Imermbratrs            do uoc se-e              as s major          forage for cha flsherlu              ,
Samolfnn Ysehods.
: 2)      ?ood ti uoc s faccor linlcia#                        fish    productlou Fn the -far            body segmonc, or
The applicant should use trrvls,  
: 3)      Drlftirrg        Lmertebrsce            fsuas      1s sot hsraed          by pusa#a        thtot@      the therms1            plume.
-eQPbfI, or aectlng tec.hnlques vhlch are standard for the types and Lffe st8ges of shel.UishlPrcro-invertebrates found Fo the study area.
: 4. Critical        ?unctlons        (Escuarlrs~.             &eu      which seme as epevrrlng        sad nursery          rices      for    important        shellfish and/or      mecrobxvertebrete                fauna ere coasidered                ss zero aUo#ble            inpsct arw              urd till        be ucluded          from
: 3.
Knfomstloo 8esulremeats.
The appllcane should qua.Llcrtlvely l nwerace as choroughlp as ?osslble the species of shd~ffsh/mecrolmertebraces Fn-habiting tie tipsct aru end ad jaunt l nvFrorrPents.
For cmrclal specles~
LPportaat for8ge
: species, end chreeteued or endangered rpecles fnformatloo should be prwfded oa cbelr status i.n th arma (parrmane or crwteut)
, seuonal tlmFng of presence (lf 8ppllc8ble)  
, end the Itie serges present FncludFng aaroplaakron.
TJI addition, the eppllcant should ducrlbe the *ortame of the aru for the critical functlous of reproduction and urly developmenr.
In cases tiara the dlr-charge vIK potentially impact a highly productive shelU~h/mecroluver~ebrese
: fauaa, the applicant should prwlde quaatitatlve estimates of the shellfish/mecro~ertebr8ce stsndlng crop.
Such situ include l stuules
* shd.lov noufluctuating resemolrs, saimoold rtvert.
snd open coastal situ Uch hme chrecteristics eimil~r co l *tu8rine rite8.
: Eomver, the applicant should recognize chrt the 1sveL of effort is hued ou the uu lmpected and that ramplInt of the benthic ccmpoaurt of the sheUf~h/mecrolmertebr8ce


conslderatloa            for    the   discharge        of waste best.            PLanes riced      fn locatioas            which muLd Impact chase critical funcclons vfll            not be rliatble              for a 316(a) usiver.
fauna um.Ld be mlnfmal in the cam of a rice havLng sufficient depth th8t the plume does not reach the bottom.
                    !4ost  l stuarlne        rites VFll fall into chls category.
tiny d88p fluccruclng cesemolrs, as typtiFsd by some ti the F?A systm, hrve depeupersce benchic f8uM and VFLl require 8 almum smount of description bformaeloa to document those charrcteristlcr.  
3.3.4.2      Lov  Poteatlal        Irmect        Ares8      for    Shellf    lsh/?Iscro~ertebraces            .
'Ln the cue of shallow aon-fluctustiag reservoirs cgtilsd by L&u
A Low potential            inpecr        aru for she.UfLsh/~crolmertebra~e fauna   1s deflaed        as au aru          which,       vtchFn the primary and far field study   8ru8,    can meet the following rsqulrrmenis:                                   -
?krlon cad Xoulcrle Fn South Csr~lti, which hrre sa rbuadeat s.ad diverse benchlc
: 1. ShelUlsh/~crolmertebra~e                          spectes      of ulrckq          or potentL4,      comwrctil            value      do aoc occur at the site.
: fauna, the rppll-ant should cooduct det&lled studies.
This    requfronent            can br net Ff the rpplicaot                    can show that      the occurrence                of such specfes is rn8rgfne.L.
Other psrsaecert vhlch should be evaluated Ln :he study ticlude:
: 2. ShrlLflsh/macrokwertebr8tes                        do not same as fmportaat compouenes        of     the aquaclc          community ac the rice.
A.
: 3. Thruteaed          or endangered              species     of rhelZfih/mrcro-Frnrertebraces          do not occur            at the site,
S t8ndfng crop.
: 4. The standing            crop of shellflsh/necroluvertebraces                            at the time of orxkum abundance Fs Less than oue gram u&-free        dv might            per square meter.
The standing crop of the vartous species should be l stticed Fn term of mnberr ad biomass per square wear for both the prima-sad f&r field study arus.  
The site does not same as a speunF3g                                OF nurse-          area for the speclu                in 1, 2, or 3 abme.
%a biomass l stlm8te should be expressed u
3.3.4.3      Study    Requirements            for Other          Areas.
grass ash-free dry wighe per sqtmre meter.
L. Ssmlfnr        Deslan.            The erperimenral            dulgn        should be eppropri~te          to determine the general                      ch8x8cterlstlcs of the shellfish/mscro~ertebr8ce                              c omunlty        vtchln the entire        prlwv          study area.           Ssmpllng outside            :he plum          study aru            should be done fn locations                    most appruprhte          to generace            data typlcll          of the remainder of the far        field        study    mu.         Ssmple repllutlon              and coUectlou          frequency          should     be adequece          to decsraine tha   preclsiou        of     the data geuereced              urd co coaduct 8pproprl8ee          sc8tlstfal              cues.
B, Comunlt~
AC 8 mlnimm,             smples        should      be tan        quarterly        for
rt,ucture.
                    -Y-r*              Ebmver,           the actual periods                selectsd should      ba keyed co knouu informcloo                          ou the susoud occurrence        of hportanc              for868 speclesr            rue and l dur~ered        species        , and species          of comercial importurce      . Sampling        for these rpeclrs              must occur
The camnunlty structure should be evtitmcsd in cartes of:
: 1) the amber of species per sample.
21 the amber of tidlviduels for each species Fn l sch rsmple,
: 3) the total amber of species In the study
&ram,
: and, vheu sppropriste,
: 4) the age structure of the species in uch
-18.
Alxhoqh it MJ be impossible to collect aU species in the study
: stem, the rppllcmc should make a conscious effort co l gmant the qusat~trcive sample dat8 tith q~ltrtlve smliag sdequsce to obcrin s rusouably copplace list of taxa.
: c.
Drift.
If 8 tiverine site Is being
-tied, the qpllcant must l stlm.ece the q-city sad cotsposl-Cl00 of the she~~h/mscrolavertebr8te blotr vhfch drift put md till be l ncr8ined lnco the therm1 plme.
T!m sppllc8at shotid l seimsce the umber sad biomass of drift organlas per linear atar of river cross section.
Staple repLlc8tioa sad collecriou frrqumcy should be sdeqruce to detsrmlne the precisloa of the data generated sad to conduct spproprirte st8tlstlca.l tests.
In sddlcloa, the spplfceac should l nwerate those species which represeat five
?erceat or aore of cha cotd amber or biomass of organisms comprirbg the drift.
Where rppropriace, chm applicaoc my conduct Fn ricu drift scudlm at an existing facFTltp to datermlna whather chm cn Lndigenous tuacrobxvertebrrces can sumive pumge chrougtx the plmm.
These dau my br useful For projecting the offrcts of the plum l c thm proposed
: rim, 4,
D8U Pr8smnt~tiou.
The applicant should prwida 1
sclld subsute map which Focludas tha pv and far ffald study
: UUS, At Lust one aap should be pruvided vhich shows cha l ~cicipated outer LLmics of thm thamul plme co the 2 C Lrothmr%,
In
: addition, the appLicmc shotid propida maps shovlag thm Frothems u
chay uIl.l uisc l loag the Soctcm for the coaditFons of mulmnm and ainhnn mblrat meet tanperrcurrs, In cha cue of l scamries, the 8pplicmt should provide maps show-kg the tmlatitmship of the predicmd plum to spaulling
: 8rUa, nurse-
: areaa, and aigrrciou routes for tie various LKe rugas of cmrcid
: species, thrumned or endangered
: species, forage
: species, and spaciu chat are othetire fmportant co tha functioning of tha syscmm, Th 8ppUcaac should thoroughly stzmmarlra the data  
~iag s-q tables and graphics rod trporr the raw data in a separate bound appendix.
The applicurc should thm prwide a aamtive wrluaciou and lncerpreucioa of cha data uhich apl&ns why, in cha judgment of chr l pplicatt, the imp8cts are mfficieotlp lncoasequeotial thrc the protectloo and prop~g~tioa of a balanced indigoaoue populatiou of shel.Uish,
: fish, and ti:dlife Fer and oa thr body of uatar till be assured."
3.3.5 Fish The fish section of a 316(&I dmoustraciw vfll be fudged mccu8ful U tha applicant GUI daomtrmm chat the sic*
qtrrlifim as a lou poeeacid bpact l ru tot fish.
For achar situ, the f bh sactiuo of a 316(a) dmonacratioa till be judged ruccasrful tf tha applfcmt caa prwe that fish cities til aof ruffmr apprmCfAbl8 harm from:


                                                    -260 when vulnerrbls              life stages are ln the srea.                           If, becawe of the tr&nsFcory nature of such speclss and chair verlous LFfe stages, Ft 1s not possfble co include        them in a quartsrly                  progrsm or, Ff there is s complu of species                    whose tfming IJI the aru                    1s uakaovm, then the frrquency                        of smpllng            til      bme to be incrused.                  For the beothlc component of the sheUfirh/m8croFnvertebr8ces                        , community sempllng stations        should      be selected            for uch major substrate type within          the prlaarp          study area.            Slmllu        sucloas should be selected                ti the far field               study aru          so that the relative                Fmportance of the tvo ragloos may be compared.             Uhere appropriate,                chase st~tious should &so be used for srmpltig                            the aoclle          portion of the shellflsh/mscroinvertebrace                            c-fty.
-290
: 2. Samolfnn Ysehods.                 The applicant            should use trrvls,
: 1.
  -eQPbfI,          or aectlng          tec.hnlques        vhlch are standard for the types and Lffe st8ges of                            shel.UishlPrcro-invertebrates            found Fo the study                area.
Direct or indFrect morrrlitp from cold rhocb;
: 3. Knfomstloo            8esulremeats.               The appllcane            should qua.Llcrtlvely          l nwerace          as choroughlp as ?osslble the species of shd~ffsh/mecrolmertebraces                                      Fn-habiting        tie tipsct          aru      end ad jaunt          l nvFrorrPents .
: 2.
For cmrclal                specles~          LPportaat        for8ge        species, end chreeteued or endangered rpecles fnformatloo should be prwfded                  oa cbelr status i.n th arma (parrmane          or crwteut)               , seuonal        tlmFng of presence        (lf    8ppllc8ble)          , end the Itie            serges present FncludFng aaroplaakron.                             TJI addition,           the eppllcant        should ducrlbe                the *ortame                of the aru      for the critical                functlous        of reproduction and urly          developmenr.              In cases tiara            the dlr-charge vIK potentially                      impact      a highly productive shelU~h/mecroluver~ebrese                          fauaa, the applicant should prwlde              quaatitatlve            estimates        of the shellfish/mecro~ertebr8ce                          stsndlng        crop.       Such situ      include      l stuules
Direct or indirect aortalitp frum ucesa hut; 3e Reduced reproductive succese or growth es a ruulc of plurt discharges;
* shd.lov noufluctuating resemolrs,           saimoold        rtvert.        snd  open      coastal situ      Uch        hme chrecteristics                    eimil~r          co l *tu8rine        rite8.        Eomver,         the applicant            should recognize          chrt the 1sveL of effort                    is hued        ou the uu          lmpected and that ramplInt                        of the benthic ccmpoaurt of the sheUf~h/mecrolmertebr8ce
: b.
&c.lueion from unrccepcebl7 hrga uue; or S.
Blockge of mlgr8rion.
3.3.5.2 Lou Potentiel Imo8CC Arag.
A disctut&.
my be determined to be Ln o lov potent+rl 3~8~:
aru for fishes
-thin ch8 primary and far field study areas Lf the following couditioue are satfsf iod:
L.
Iha occurrence of sport and comereial species of fish la marginal;
: 2.
The dlactmrge sire Fe ooc a spewning or aurrery area; 3-The therm81 plume (bounded by the 2C trocherm) d.l.l not occupy e large portion of the zme of pess8ge which would block or hindat fish olgr8cioa under thm most coworpative l mironmaoc8l conditicm (based on 74&y, LO-par low flov or vator 1-d end teeximum uatsr caapenture)
: 4.
The plum.
coufigurrtion will not ceuee fish co become tiereble co cold shock or have an adverse ispect on threatened or l udaagared species.
3.3.s.3 Scud) Requlrueotr for Arue Yet Clrssified as Lou Potential ImD8CC.
L*
I4ethotiolorn and Presuencr Appropriate seqling aechoda end gut VLll be ued to prorrida e buis for identFfpFng the Raprueat8cive Importaac Sp8cias (BIS) of fish and Chair rrspectfre LFfa sugu in vartow hableats and strua withb tha study 8ru.
tichod of firh sampling such u
: cnvlfq,  
&iU nacti.n&,
uinFn&,
horizoatal and  
+ertlc81 ichch~pl8nkton
: tmr8, etc.,
8re 8ccepc8ble.  
-or, mliag muhod till very from oaa cypa of ufer body co uwthar; therefore, 8 r8tioorle for the choice of g88.r mu8t be developed for uch rrrpliag progrn.
Palear stringent requirrancs for specialized gut is apQU8OC.
the l dupcion of standardized gur Fe ret-uded co pemlt coapuiaoua wlth other scudire.
At


fauna      um.Ld be mlnfmal in the cam of a rice havLng sufficient            depth th8t the plume does not reach the bottom.           tiny    d88p fluccruclng            cesemolrs,        as    typtiFsd by some ti the F?A systm,                        hrve depeupersce            benchic f8uM and VFLl require                      8 almum          smount of      description bformaeloa              to document          those charrcteristlcr.                  'Ln the cue of shallow aon-fluctustiag                            reservoirs          cgtilsd by L&u            ?krlon cad Xoulcrle              Fn South Csr~lti,              which hrre sa rbuadeat s.ad diverse benchlc fauna,                                  the rppll-ant should cooduct det&lled                          studies.
-3o-
Other      psrsaecert          vhlch    should     be evaluated        Ln :he study        ticlude:
: 2.
A.      St8ndfng crop.                The standing crop of the vartous species should be l stticed                      Fn term of mnberr ad biomass per square wear for both the prima-          sad f&r field study arus.                     %a biomass l stlm8te        should be expressed              u grass ash-free dry wighe            per sqtmre meter.
no tima during the study should aev gur or smnplFng aechodr be introduced trnlese It ten be demonrtraced thae the compuacive efficiencies of the old end aev gur end methods 8re similar.
B,     Comunlt~           rt,ucture.           The camnunlty        structure should be evtitmcsd                  in  cartes    of:
A chug@
: 1)      the amber          of species        per sample.
Ln s8mplLng procedure8 ten oulp be iSplemenred titer written AQQtWd by the k&Lo&
21      the amber          of tidlviduels          for each      species Fn l sch rsmple,
&h.blatr8tor/Director.
: 3)      the total        amber of species              In the study
For fidd studlesr experImenta design should be ApprOQ~t8 to detezmia8 the gen@rti chr&Cte~StiCS of all life stages of fishes inh8biting the priMry and far field rcudy areas.
                &ram,       and,     vheu sppropriste,
The d&t&
: 4)      the   age    structure        of the species          in uch
colLected should allou for 8 comp&r+ron of chm rel8tive FmpOrtlnC8 of ChU8 RID arus with respect to species COt8pOSiCiOU, amb8rS of uch
                -18.
: type, grovch, and reproduction.
Alxhoqh          it MJ be impossible                  to collect        aU species in the study stem,                        the rppllcmc            should make a conscious effort                    co l gmant the qusat~trcive sample dat8 tith q~ltrtlve                          smliag        sdequsce        to obcrin s rusouably                  copplace      list    of taxa.
Sampler shall ba cakea ac roarhly titemals co ;rrovfde dAt8 Cepr@SeUtiU& S888oUe1 and life St&&@ h&bit&
: c.      Drift.          If 8 tiverine site Is being -tied,                              the qpllcant            must l stlm.ece the q-city                  sad cotsposl-Cl00 of the she~~h/mscrolavertebr8te                                  blotr      vhfch drift        put md till            be l ncr8ined        lnco the therm1 plme.          T!m sppllc8at            shotid l seimsce the umber                  sad biomass of drift                organlas        per linear        atar        of river cross section.                Staple    repLlc8tioa        sad collecriou frrqumcy            should be sdeqruce to detsrmlne                        the precisloa of the data generated sad to conduct spproprirte st8tlstlca.l            tests. In sddlcloa,          the spplfceac          should l nwerate          those species which represeat                      five ?erceat
uC@pC during Iod immedhcely folloving periods of spavafng Vh@U 8 more Fnt@uiVe rumpling effort should b8 prwided.
fn northern latituder
, the monthly Sampling requirment is subject to veather coudicions and It
~87 be necessary to prwidm the ducribed d&t&
reqtiremmcs from the literature end relata such laformtion co expected dirckurgm arua ia 8 dafeadable r8cion8le.
: Also, r8ciandes could b8 droeloped from CmbtiACiOUS of field d8ta end Literacurm sources.
fc rhould be recopired chat dfscributiou of the vrrioua 1if8 sU&u of firh fs dependent upon aany factors ladudlag sueou.
vat&r
: awamt, light tncearity, density gr8dients.
and food sources.
U aa ur~ple, during
:hm rppropriate
: sumn, night sampling VIlL yield 8 more accurate l stimecioa of the ichchyoplankron population because of their aigration pattern during the dial cycle.
Ill moat C&88*,
remple replicatiou and frequeocy must be d8tem.bed for bdividual sites and be b88ed on field studies co provide v8lld po~ul.8tloa l rrim8tos U&X$ l QQtOQtiAt@ StACiStiC81 tr@AmeUCe Infom8tioo Befzu~remeatr.
Tha studies conducted should prwide the requlxed fafornution vhich vi11 be wed for purpoems ducribmd 8bW8.
Some of the fish isforxeciou mey be required reparacely for 316(b) studies.
The 8~~~ic8nt should meet vfth the Regional Admlulstrrcor to d8t@miUe vhlch of the folloving information requlrc
~uCA should b8 d#elopmd to s&Cisfy 316(A) r@qUftmtentS ac the site:


or    aore    of    cha    cotd      amber        or biomass          of organisms comprirbg            the drift.             Where rppropriace,                 chm applicaoc          my conduct              Fn
-310 Species Level:
                                                                          --    ricu    drift      scudlm        at an existing            facFTltp        to datermlna            whather chm cn            Lndigenous tuacrobxvertebrrces                          can sumive pumge          chrougtx the plmm.                   These dau my br useful        For projecting              the offrcts          of the plum l c thm proposed              rim, 4,  D8U Pr8smnt~tiou.                     The applicant            should      prwida        1 sclld        subsute          map which Focludas tha pv                                and far    ffald      study      UUS,          At Lust          one aap should be pruvided        vhich shows cha l ~cicipatedouter LLmics of thm thamul            plme co the 2 C Lrothmr%,                           In addition, the appLicmc              shotid propida                maps shovlag thm Frothems u chay uIl.l uisc                    l loag the Soctcm for the coaditFons of   mulmnm        and     ainhnn          mblrat        meet      tanperrcurrs, In cha cue of l scamries,                        the 8pplicmt            should       provide maps show-kg            the tmlatitmship                of the predicmd                plum to spaulling          8rUa,        nurse-        areaa,      and aigrrciou              routes for    tie various            LKe rugas            of cmrcid                species, thrumned            or endangered              species,        forage        species,        and spaciu          chat are othetire                  fmportant        co tha functioning of tha syscmm, Th    8ppUcaac          should        thoroughly          stzmmarlra        the data
For the RIS, the follovf3g Fnfomcfoa my be required:
                          ~iag        s-q            tables        and graphics          rod trporr          the raw data     in a separate              bound appendix.               The applicurc              should thm      prwide          a aamtive              wrluaciou          and lncerpreucioa of cha data uhich apl&ns                            why, in cha judgment of chr l pplicatt,          the imp8cts            are mfficieotlp                lncoasequeotial thrc the protectloo                    and prop~g~tioa              of a balanced indigoaoue          populatiou            of shel.Uish,          fish, and ti:dlife Fer and oa thr body of uatar                        till      be assured."
A.
3.3.5      Fish The fish section            of a 316(&I dmoustraciw                          vfll    be    fudged mccu8ful          U tha applicant            GUI daomtrmm                    chat the sic*            qtrrlifim      as a lou    poeeacid      bpact        l ru    tot      fish.       For achar situ,                 the f bh sactiuo    of a 316(a)        dmonacratioa              till    be judged ruccasrful                  tf tha applfcmt      caa prwe        that fish          cities                til      aof ruffmr          apprmCfAbl8 harm from:
B, C,
0, E,
Reuroduction.
A dircussiou on spauuing habits and fecuadfty Ch&r8Ct@risCiCS of the priacip8.L species.
Life se&em habitat uttlit8tioa.
A dlrcurrioo ou habitat uci.lFted aLt the various life stages and su8ou.l timing of prisence in the habitrc tppes.
?Ugr8tlOU
: activity, Ff applicable to the d~~ignacrd sp8cies.
should be addteased, Condition factors.
Comp8r8cive condicioa Lnfom8c',on for the priocipti species occurrUg ti ehe ?r'kmrp and far field study arus.
Dise8se and ?8r8eitism.
Occurrence of disetre and paruitim Fn the Lxxdigenous popul8ctone and species swceptibility tichfa the framework of expected the-1 regtmer should be discussed.
An8 and orowth.
Trends ia age and grovth aorm8lly expected k
the specier should be diScuSSed.
Ctnmunitv Level:
A.
RIS and their eeneral
&bund&nc@.
Special end tupor8L dirtribuciou Fnfonution ou the BIS in tha primary md far field study arus vill prwlde La.foraation ou vhich specler will be aost vulnerzbh to intab and/or dircttrrge effects.
: 1.
R8iAtiV8 abundance of v8riou8 sD@cies.
This Lnfor-scion c8n be caktirtad frop the saplfzI&
data.
The relative 8bund8ace of & species Ls the value daeenUaed by dividfng total ambar of Ali fishes collected lztto the oubmr of that species
: caugnt, ft ir often r&port&d 8s percent8ge of the toed catch.
hhtive abundmce c8n ffuctuece susoaelly and dfunmlly;
: howvet, Ft should cot be significantly different from year to year.
Slgnificanc shifts in t@iAtiV@ l buadaate war 8 period of tine are FPdlcative of changu uithirr the fish comunfty.
: c.
Prirrclpcl ASSOCiAtiOXl.
By &QQropri&t@
d&t& a!u.lyses Ft is poeaible to Fdentify prFncipll
~raociatioas.
The princlpti 88Soci8tioo, arm the group@ of spec~rs which are repruenced in soples in 8 consistent manner.
Pruence or 8beence of 8 species directly


                                                  -290
3.3.6 Othsr Vartsbracs UfldlCs D,
: 1. Direct      or indFrect            morrrlitp          from cold          rhocb;
or Fndirsctly dspendr on the prsssnce or absence of othsr spsclss fa chs rampls.
: 2. Direct      or   indirect        aortalitp          frum      ucesa        hut; 3e    Reduced reproductive                  succese          or growth          es a ruulc      of plurt          discharges;
Sfgnif icant fmpscc 00 ona lpscissr thsref ore, can tssuLc la churgs8 in pracipti a8soci~ctoa8.
: b.     &c.lueion        from unrccepcebl7                  hrga      uue;        or S. Blockge        of mlgr8rion.
Heu rsquiramant The rpplicurt should prwids a8ps dsplctlns portioaa of ths rscelv~g vatsr body ussd b7 cha lnd~saous LIA c-ftiu for ruch l ccivFtiss u
3.3.5.2        Lou Potentiel            Imo8CC        Arag.
: rpmmlng, musmy, frsding
A disctut&.         my be determined                  to be Ln o lov              potent+rl        3~8~:
, mlgrstion,
aru      for fishes -thin            ch8 primary          and far field              study      areas      Lf the following      couditioue        are satfsf iod:
: testing,
L. Iha  occurrence          of    sport      and    comereial            species        of fish la marginal;
@CC, The 8pplicmt shotid discuss aad S&IOU on chs asp the ptoportiou of the cotti ares ussd Chat
: 2. The    dlactmrge          sire    Fe ooc      a spewning            or aurrery          area; 3-     The therm81 plume (bounded by the 2C trocherm)                                          d.l.l not occupy e large portion                        of the zme of pess8ge                      which would block or hindat                  fish      olgr8cioa          under      thm most coworpative            l mironmaoc8l              conditicm            (based      on 74&y, LO-par        low flov          or vator        1-d        end teeximum uatsr caapenture)          ;
?I1 ba laflusncsd by ths thsrnul dfsc.hxgs to the 2 C irothsrm.
: 4. The plum.         coufigurrtion              will not ceuee fish                  co become tiereble            co cold shock or have an adverse                              ispect      on threatened          or    l udaagared          species.
3.3.6.1 Decision Crttsris.
3.3 .s .3      Scud) Requlrueotr                  for Arue          Yet Clrssified                as Lou Potential ImD8CC.
Ihe ssctloa of ths dmonscracion dulirrg tich other valts-bratss vtll bs judged succsrrfti lf chs ~pplfcmt cm rhov ths sits FS ens of lou pocaocid Lnrpsct for ocher vsrcsbracsa.
L*     I4ethotiolorn        and Presuencr . Appropriate                            seqling        aechoda end    gut      VLll      be ued to prorrida                  e buis        for identFfpFng the  Raprueat8cive              Importaac          Sp8cias        (BIS) of fish and Chair rrspectfre              LFfa sugu              in vartow            hableats        and strua      withb        tha study          8ru.        tichod          of firh        sampling such u cnvlfq,                   &iU      nacti.n&,        uinFn&,          horizoatal        and
For othsr
                      +ertlc81        ichch~pl8nkton                tmr8,      etc.,      8re 8ccepc8ble.
: sitss, the ssctiou of the daoarurcion dasllag tith otbsr ulldllfs
                      -or,            mliag            muhod          till      very from oaa cypa of ufer      body co uwthar;                therefore,            8 r8tioorle          for the choice      of g88.r mu8t be developed                        for uch rrrpliag progrn.          Palear stringent                requirrancs              for specialized gut is apQU8OC. the l dupcion                            of standardized                gur      Fe ret-uded              co pemlt          coapuiaoua              wlth    other scudire.             At
*will be judged succo8fu.L U
chr applicant can daouatrau thae ocher viidll2r cmmunft~
caponsocr vill not suffer apprrcirbls ham or vill acttuLlp bmmfic firm the hutsd discharge.
Thr term other osrtsbracs vtld-LKd Fncludsr wildlife which ars vertabracas (i.e.,
: ducka, gssrs.
: Mnsfsss, etc.)
but not fir&,
3.3.6.2 Lov Potsntlrl Imusct Ares8 for Other Vsrtsbrats Vfldllfs.
Pose situ ia the Uaicsd Stacsr vFL1 ba crraridsrsd ons~ of 10~ porsncLJ impact for ocher rartabrata vFldlUa sinply bscaum chs projsccsd chamcl plm8 til not
*act hrgs or &qus populrcionr of w%ld.lKs.
Lb.
asin acspciow v%U be ricss ti cold arua (such u
North Central United Stats81 which uould ba prsdictsd co actrace gsur sad
: ducks, and aacoursge tha to stay chrou@h the vtncsr.
Thsss muld aoe br coasidsrad 1-r potsacLrl msct usas ualssa chmy could dmowtracs chat tha uUdllf@
wuLd ba protsccsd through a tildlifs mnumane plaa or ochar mathoda from the potsncial sources of ham mnciousd ln chr usa rsctiou.
Othsr acspcioarr to aims clurifisd u
lov potsocld impact wuld be thora fau situ vharm ths dfrchargm alght affect Important (or ehrucumd and sudaagsrsd) vtldUfs such u
~n~tses.
For moat other
: aleas, brfaf rFtr fmpactiour uld lit~racurr rwieua muld supply enough Fniomscion to smbls chs l pplfcsac to vrits a brief rrciouds about
&%y the rite cauld be consldsrsd one of low potsntid fmpsct for ocher vutsbr~css.  


                                                    -3o-no tima during the study should                            aev gur          or smnplFng aechodr be introduced                  trnlese      It    ten be demonrtraced thae the compuacive                  efficiencies            of the old end aev gur      end methods          8re similar.             A chug@ Ln s8mplLng procedure8 ten oulp be iSplemenred titer                                    written AQQtWd by the k&Lo&                          &h.blatr8tor/Director.
-339 J.3.6.3 Study Rsqul:rments for Ocher Are-.
For fidd          studlesr        experImenta            design should be ApprOQ~t8            to  detezmia8          the gen@rti chr&Cte~StiCS of all life stages of fishes inh8biting                                  the priMry and far field rcudy areas.                         The d&t& colLected                  should allou      for 8 comp&r+ron              of    chm rel8tive            FmpOrtlnC8          of ChU8 RID arus                with respect            to species          COt8pOSiCiOU, amb8rS        of uch        type,    grovch, and reproduction.
The qplicant should uadsrtah whstsvar bvsrcigstion and plaxniq steps ara oscssssry co be able to wrFcs a ratloarls aplsinfng uh8c factors (or wlldlifs men8gaanc plans) dll 8nsu.r~
Sampler shall ba cakea ac roarhly                              titemals          co ;rrovfde dAt8      Cepr@SeUtiU& S888oUe1 and life                          St&&@ h&bit&          uC@pC during Iod immedhcely                    folloving          periods        of spavafng Vh@U 8 more Fnt@uiVe                    rumpling          effort      should b8 prwided.
that ocher vUdlifs wUl not m&far approciabls m
fn northern          latituder        , the monthly              Sampling        requirment is subject          to veather coudicions                    and It ~87 be necessary to prwidm the ducribed                        d&t& reqtiremmcs                  from the literature          end relata          such laformtion                  co expected dirckurgm        arua        ia 8 dafeadable              r8cion8le.            Also, r8ciandes          could      b8 droeloped            from CmbtiACiOUS of field      d8ta end Literacurm                sources.
frum:
fc rhould be recopired                      chat dfscributiou                of the vrrioua 1if8      sU&u        of firh        fs dependent            upon aany factors ladudlag          sueou.         vat&r      awamt,              light    tncearity, density        gr8dients.         and food sources.                  U aa ur~ple, during :hm rppropriate                    sumn,          night sampling VIlL yield 8 more accurate                  l stimecioa          of the ichchyoplankron population          because of their aigration                        pattern        during the    dial    cycle.
: 1.
Ill  moat    C&88*,      remple replicatiou                and frequeocy must be d8tem.bed              for bdividual              sites and be b88ed on field      studies      co provide v8lld                po~ul.8tloa        l rrim8tos U&X$ l QQtOQtiAt@ StACiStiC81                          tr@AmeUCe          .
Excus hut or cold shock;
: 2. Infom8tioo            Befzu~remeatr.              Tha studies conducted should prwide        the requlxed fafornution                      vhich vi11 be wed for purpoems ducribmd                  8bW8.         Some of the fish isforxeciou mey be required              reparacely          for 316(b) studies.                   The 8~~~ic8nt should meet vfth the Regional Admlulstrrcor to d8t@miUe vhlch of the folloving                                  information          requlrc
: 2.
  ~uCA        should b8 d#elopmd                  to s&Cisfy            316(A)       r@qUftmtentS ac the site:
Incrused diruu and prrasitiar; 3-hducsd grwth or rsproductivr succsss;
: 6.
Excltuiou from unique or krga babitrc arau; or
: 5.
Incsrfsrmnce vich mfgruo~
psttsras.
Ia the
: ratfunds, the appllunc should dircnsr the rtitioo of the sftluaat co the hrblta and habitats of uzy thrucsnd or rnduqsrsd spaciu or orgsniaas of commsrcirl or rmcrutional lmportancs.
3A Bou CO Select the Yost Igproprircs Dsmoortracion Pppa The buic recmndsd steps for the applkanrr usa h
choosiPg the most l pprupriacs dmnarreion cypa us sumsritsd tn section 3.2.2.
the dsclriou main tmrr8t+va.
After completing tha izdtfrl scrsauag procduru and ma&q a pr8llaMry Usss~t of the mtmc of dditioaAL wrk medad f.n l ch block catsgo-,
tha spplicmt salsctr the dmouscracion ms most appropriate for th*
8its.
If cha sits ti ona of lou potsntirl fmp8cc for all block
: ufsgoriu, chs spplicat may chooar chs rmlarivmlp scrualinsd Lou potentid impact Type 111 d-truiou oucUnod ln section 3.6.
Xf uot.
the applicant should propose study pluu bud ua the Type 11 gUdaace Ln sectlou 3.3 or chs Typm IIL gaducs ln ssctioo 3.7.
It ia recarrodd chat the Typa ff dmnstr8cloo ba umd u
a
&de for tha awuat of dsrril raqulred in wse 316 (a) dmnatracious.
The actual amat of da&
rsqulrod for an ladlvldual locatlou till vary fra rite to sltm, bat raction 3.5 aheuld as-a u
a us&d starting potit for discuariaaa batnm the applicme and Bagloud Administrator/
Director on whet r-7 plana srm wet appropriate for a particular sirs.
Applicants uot rtQib1a for a low potsntlal impact Type XII dmMtr8tion aad not duiring co do a Type II d-trstioo may slsct to do aa Jtsraats (Type III) dammmtr~tlon.


                                            -310 Species      Level:        For the RIS, the follovf3g                      Fnfomcfoa my be required:
ff th8 sit8 is 008 Of LOU pOt@~Cid bp8Ct for msc biotic CAC~OFhS but not til.
A. Reuroduction.             A dircussiou          on spauuing habits and fecuadfty      Ch&r8Ct@risCiCS of the priacip8.L                           species.
r~udlss less dsca.Usd than chose recmndsd Fzx section 3.S au7 be Ipproprfrts.
B,   Life se&em habitat              uttlit8tioa.           A dlrcurrioo            ou habitat      uci.lFted      aLt the various          life stages and su8ou.l      timing of prisence                in the habitrc              tppes.
For
      ?Ugr8tlOU        activity,        Ff applicable            to the d~~ignacrd sp8cies.      should be addteased, C,  Condition        factors.        Comp8r8cive condicioa                  Lnfom8c',on for the priocipti            species occurrUg                  ti ehe ?r'kmrp and far field study arus.
: mpls, Ff the sits L
0,    Dise8se      and ?8r8eitism.               Occurrence of disetre                  and paruitim          Fn the Lxxdigenous popul8ctone                      and species swceptibility            tichfa      the framework            of expected the-1       regtmer should be discussed.
008 of lov pocsntirt Fnpact for til blotfc categories acopc shsLLflrh, the RSgioarl Uminlstracor/Dlrucor might conclude tbt frv addfcioarl flsLd scudlsr (acspc for rhslUlrh1 wuld ba rsquirad aad that t&e ouly 81s that should bo stlsccsd rhould br shs.lUish.
E,  An8 and orowth.             Trends        ia age and grovth aorm8lly expected      k the       specier        should be diScuSSed.
This dmMtr8cloo vould be lssr dstr+lsd than ocher TypS II dmMtration8 and could be refund co 88 S m.
Ctnmunitv      Level:
III dmMtr8CloU.
A. RIS and their eeneral &bund&nc@.                           Special end tupor8L      dirtribuciou            Fnfonution          ou the BIS in tha primary      md far field            study arus          vill      prwlde La.foraation        ou vhich specler will                  be aost vulnerzbh to intab        and/or      dircttrrge        effects.
3-s Type 11 hmOMCtStioM
: 1. R8iAtiV8 abundance              of v8riou8        sD@cies.           This Lnfor-scion      c8n be caktirtad                frop the saplfzI&               data.
(~ptuentativs Imporunt Spsciss)
The relative          8bund8ace        of & species            Ls the value daeenUaed by dividfng                  total ambar of Ali                  fishes collected        lztto the oubmr              of that species            caugnt, ft ir often r&port&d 8s percent8ge                            of the toed          catch.
The me EI dmnscrtciuu should bS dulgmd Fn such a manner to fully dsvslop
hhtive        abundmce c8n ffuctuece                    susoaelly            and dfunmlly;          howvet,       Ft should cot be significantly different        from year        to year.        Slgnificanc            shifts      in t@iAtiV@ l buadaate            war 8 period            of tine are FPdlcative        of changu uithirr              the fish comunfty.
:hS thrsr ksy bIologicaL components complstiou of the Biotic Catwory Rationalu (baw duting ssrly scrssdng procedures),
: c. Prirrclpcl      ASSOCiAtiOXl. By &QQropri&t@                        d&t& a!u.lyses Ft is poeaible          to Fdentify          prFncipll          ~raociatioas.
dsvslopolmc of EIS racfoudss
The princlpti          88Soci8tioo,           arm the group@ of spec~rs which are repruenced                  in soples          in 8 consistent manner.       Pruence        or 8beence of 8 species                    directly
, and s~chssIJ of a.U fPCormtion lnco a
maasr r8cionds.
This sactioo prwidss a dlscuasion of the rsc-ndsd crmponsocr Of ChS dmMCrAtiOn, a proposed format.
and a discusslou of why the d8u rsquirsuutr us ascrss~
for mking 316(a) dmcisioM-3.3.1 Dwalopmmt of Bfoclc Category 8.eiom.ls.s During urly scruafq procedures of litsrsturs sumsp and ?fLoc fitid fnvascfgstions the applfurrc tiL dsvslop S-of the fnformatioo oaodsd to devalog chr Biotic
&csgo~
%cio~ss.
Lf the dscirloa 1s made to do 8 Type 11 dmMtr8CiOU foL.bvirq thsss urly screening procsdurss, the qpUcmt should rwieu r~ctio~
3.3 and 3.8.1.
chls seetiua.
sod chr d8tA svlflrhls, to dscsrmins V&SC addlclonsl flald
: studlu, If rg, VLLl ba aecumry co complete the Biotic ticsgory R8tioa8Lu.
In son
: cues, ralatlv~l~
Uttls additional wrk vF11 bs ClSCUSAr7 0 IO cuu where dditlund vork la rsquirsd, the Sppliaac should corplst8 the seudiu sa ru(gssted i.a section 3.3 and then vrits tha srorv biotic Catyory Racioorlsr.
Each Uotic Cation
~tiouals should pruvids a complete dir-cussfoa u
to
: why, fa tb fudmt of th@ applicuit, cha inrpACt8 us suffici88tLy lnmnaaquantbL thrc chs protsctioo aud propsgsclon of tha bud fndQawta8 populatlou of she.lJfish.
f lsh, end ulldl.if a In sad 00 the body of wear uUL ba uoursd.
La cha ratlouder the appliesat should sddr~8 uch decisiun criteria for the biotic c8cSgory in quUtioa.
ma discusrion should lacluds sa ~duatloo of the i3pACCS of the dischqu into thr rscaH-lng wear body.


or   Fndirsctly          dspendr        on the         prsssnce        or    absence of othsr          spsclss      fa chs rampls.                  Sfgnif      icant fmpscc        00 ona lpscissr              thsref ore, can tssuLc                    la churgs8        in  pracipti          a8soci~ctoa8.
-33.
D,      Heu rsquiramant            . The rpplicurt                  should       prwids          a8ps dsplctlns          portioaa of ths rscelv~g                          vatsr      body ussd b7 cha lnd~saous                LIA        c-          ftiu        for ruch l ccivFtiss u rpmmlng,             musmy,           frsding        , mlgrstion,           testing,
IIW COUC~US~~M drmtn shodd bS supportsd with
                                      @CC, The 8pplicmt                    shotid discuss aad S&IOU on chs asp the ptoportiou                of the cotti              ares ussd Chat ?I1 ba laflusncsd            by ths thsrnul                dfsc.hxgs          to the 2 C irothsrm.
~1 uulysls of the
3.3 .6      Othsr    Vartsbracs          UfldlCs 3.3.6.1          Decision          Crttsris.
&ta collsccsd durFng the 316(S) studlu and/or by the  
Ihe ssctloa            of ths dmonscracion                    dulirrg        tich      other valts-bratss      vtll    bs judged          succsrrfti          lf    chs ~pplfcmt                cm      rhov ths sits FS ens of     lou    pocaocid            Lnrpsct for        ocher vsrcsbracsa.                      For othsr sitss, the ssctiou          of the daoarurcion                      dasllag        tith      otbsr ulldllfs              *will be judged succo8fu.L                U chr applicant                can daouatrau                    thae ocher viidll2r cmmunft~ caponsocr                    vill      not suffer apprrcirbls                      ham or vill            acttuLlp bmmfic firm the hutsd discharge.                                 Thr term other osrtsbracs                            vtld-LKd      Fncludsr        wildlife        which ars vertabracas                      (i.e.,        ducka,      gssrs.
~clusiou of supportivs
Mnsfsss,        etc.)      but    not    fir&,
: reports, documsots and cicaclo~
3.3.6.2         Lov Potsntlrl              Imusct      Ares8      for    Other      Vsrtsbrats            Vfldllfs.
co the scisntFflc litsrr-curs*
Pose situ            ia the Uaicsd              Stacsr vFL1 ba crraridsrsd                        ons~ of 10~ porsncLJ            impact      for ocher rartabrata                    vFldlUa            sinply      bscaum chs projsccsd        chamcl          plm8      til      not *act              hrgs        or &qus            populrcionr of w%ld.lKs.           Lb. asin          acspciow            v%U be ricss                ti cold        arua      (such u North Central                United      Stats81        which uould ba prsdictsd                          co actrace gsur      sad ducks,           and aacoursge            tha      to stay        chrou@h the vtncsr.                       Thsss muld      aoe br coasidsrad                1-r potsacLrl              msct          usas        ualssa      chmy could dmowtracs            chat tha uUdllf@                 wuLd        ba protsccsd                through a tildlifs mnumane            plaa or ochar mathoda from the potsncial                                        sources      of ham mnciousd        ln    chr usa rsctiou.
Ths conclwlo~
Othsr      acspcioarr            to aims        clurifisd            u      lov potsocld impact    wuld      be thora fau situ                  vharm ths dfrchargm alght                          affect Important      (or ehrucumd                  and sudaagsrsd)              vtldUfs            such u        ~n~tses.
should rsprssant 8 logical atension of the infornutlou avsibbls Sad be sclsntiflcrll~
For    moat other aleas,                 brfaf      rFtr      fmpactiour            uld lit~racurr rwieua        muld      supply        enough Fniomscion                    to    smbls          chs l pplfcsac            to vrits    a brief        rrciouds          about      &%y the rite              cauld        be consldsrsd              one of low potsntid                fmpsct for ocher vutsbr~css.
dsfrnd&ls, Uhsrs citations 8tS USSd th8C US Wt rrrd(ry NSihbZlhlS ti SCiSntifiC jOti (i.Ar, LateriP rsportsr vubus types of ymncy
: documnu, anaal
: reports, thuos, etc.),
the documsncs thsuslvu should be provided.
Lf thS
~sct of chS dischugo is projsctsd ruFng S mathematical
: nodal, the Sppllcrot should prtids 8 ccmplses documsntScion of ths sods.L Chat is used.
The docummtStloa should lncluds S dircussloo of the osrtcs aad disadvantages of the model.
T%s applicaac shotid tiso provlds rwaltlvity m~Lysss of the wdsl md S vsrific8cloo study.
In additlou.
the statistical rUabUity of the model's grediccloua should be Fncludsd along vith l ~usciflc8tioa of the osthodr u~sd ln the suciscic8L svrLu8tfou.
3.5.2 Dsvslupmsuc of Rspressncativr Kmportant Spsclsa ILtloarls Th8 RIS Rationale should s~rirs why the
~asa~Lcs of the Laboratory Ad
~CSrStUrS Studio sp@CU?i~d la s~cclou 3.5.2.2 suggs8t that chs RIS WILL not suffer Spprsci8bls harm as a rssuLt of the heated dischug*.
mr osumptioM in the coucspt of IUS arm:
L.
: 2.
: 3.
4,
: 5.
fc is not possibls to study In grsac dstrLL svsry spsciss U
8 Sit@;
there lo wt snough
: cim, soamy or apsrtise.
Since rll spsclu mot be scudled ln dsclF1, soms asllsr number til h8-m co br chossn.
The spociu of coucsm era those c-7 rslatsd to p0-mr plant impacts.
Some spufu rcL1 bS scuuomic8U~
importurt Fn their ouu wt.
@-0-v corwrcid and sports fishu or mrisurcr
: spuiu, end thtaa lnportaut.
sm8 spuiu, tamad rsprsasntativa 0 vlll be psrticu-larly vulnsrabls or ss~iciv~
co pouu pllrrt inpaces or have ssaaltiviciu of wet other spscfss aad, If protsctsd, will ruaonably usurm proesctlon of oehsr rprciu at the rfta.  


                                                                    -339 J.3.6.3            Study      Rsqul:rments              for    Ocher Are-.
-360
The    qplicant          should        uadsrtah        whstsvar        bvsrcigstion and plaxniq              steps      ara    oscssssry          co be able to wrFcs a ratloarls aplsinfng            uh8c factors            (or wlldlifs            men8gaanc        plans)        dll      8nsu.r~
: 6.
that      ocher vUdlifs                wUl      not    m&far        approciabls        m        frum:
Uldtrsnglng species at the utrams of their ranges  
: 1.      Excus        hut      or cold shock;
*atid generally not be considered acceptrble a8 p~rticulorlp vulnerable or seti tlve" representative species but they could be considered a8 important.
: 2. Incrused          diruu          and    prrasitiar; 3-      hducsd        grwth        or  rsproductivr          succsss;
: 7.
: 6.      Excltuiou          from unique            or krga        babitrc        arau;        or
: Often, 811 orgurllu that might be coosldered important 0t repre8entatlve cannot be studied Fn detall.
: 5.      Incsrfsrmnce            vich    mfgruo~            psttsras.
and a
Ia the ratfunds,                  the appllunc              should    dircnsr        the    rtitioo of the sftluaat                co the hrblta              and habitats          of uzy thrucsnd                  or rnduqsrsd            spaciu          or orgsniaas            of commsrcirl            or rmcrutional                lmportancs.
mallet list (e.g.,
3A          Bou CO Select              the Yost Igproprircs Dsmoortracion            Pppa The buic            recmndsd              steps      for    the applkanrr              usa h choosiPg              the most l pprupriacs              dmnarreion                  cypa us          sumsritsd          tn section 3.2.2.                the dsclriou          main      tmrr8t+va.
grucar than 1 but less than U) auy have to be selected as the "rapresentstlve and important')
After        completing          tha izdtfrl            scrsauag          procduru            and ma&q a pr8llaMry                Usss~t              of the mtmc                of dditioaAL            wrk      medad        f.n l ch block              catsgo-,          tha spplicmt              salsctr        the dmouscracion                ms        most appropriate            for th* 8its.              If cha sits ti ona of lou potsntirl                                fmp8cc for all block            ufsgoriu,              chs spplicat              may chooar chs rmlarivmlp                      scrualinsd Lou potentid              impact      Type 111 d-                  truiou        oucUnod        ln section          3.6.        Xf uot. the applicant              should      propose        study      pluu bud            ua the Type 11 gUdaace          Ln sectlou          3.3 or chs Typm IIL gaducs                            ln ssctioo          3.7.
It    ia recarrodd                chat      the Typa ff dmnstr8cloo                        ba umd          u a
&de        for      tha awuat          of dsrril          raqulred        in wse        316 (a) dmnatracious.
The actual            amat        of da&              rsqulrod        for an ladlvldual                locatlou        till      vary fra      rite to sltm, bat raction                          3.5 aheuld          as-a      u a us&d              starting potit      for discuariaaa                batnm          the applicme              and Bagloud            Administrator/
Director          on whet r-7                plana      srm wet          appropriate for a particular                          sirs.
Applicants            uot rtQib1a              for a low potsntlal                impact      Type XII dmMtr8tion                aad    not    duiring          co do a Type II d-                    trstioo        may slsct        to do aa Jtsraats                (Type      III)      dammmtr~tlon.
 
ff    th8 sit8          is 008 Of LOU pOt@~Cid                      bp8Ct        for msc        biotic CAC~OFhS            but not til.            r~udlss        less dsca.Usd              than      chose    recmndsd                Fzx section      3.S au7 be Ipproprfrts.                        For mpls,                Ff    the sits        L 008        of lov pocsntirt        Fnpact        for til      blotfc      categories            acopc          shsLLflrh,        the RSgioarl Uminlstracor/Dlrucor                      might      conclude        tbt      frv addfcioarl              flsLd      scudlsr (acspc        for rhslUlrh1                wuld      ba rsquirad aad that t&e ouly 81s that should      bo stlsccsd            rhould      br shs.lUish.                This      dmMtr8cloo                vould      be lssr dstr+lsd            than ocher TypS II dmMtration8                                  and could          be refund              co 88 S m.          III    dmMtr8CloU.
3-s        Type 11 hmOMCtStioM                        (~ptuentativs Imporunt        Spsciss)
The me EI dmnscrtciuu                            should bS dulgmd                      Fn such a manner                to fully    dsvslop :hS thrsr ksy bIologicaL                              components          :    complstiou          of the Biotic      Catwory          Rationalu          (baw        duting        ssrly      scrssdng          procedures),
dsvslopolmc          of    EIS racfoudss            , and s~chssIJ                of a.U fPCormtion                    lnco    a maasr      r8cionds.              This    sactioo        prwidss          a dlscuasion            of the rsc-ndsd crmponsocr Of ChS dmMCrAtiOn,                                a proposed            format. and a discusslou                        of why the d8u rsquirsuutr                        us ascrss~                for mking            316(a)      dmcisioM-3.3.1        Dwalopmmt              of  Bfoclc      Category        8.eiom.ls.s During        urly        scruafq          procedures          of litsrsturs            sumsp          and ?fLoc fitid    fnvascfgstions                the applfurrc          tiL        dsvslop S-                of the fnformatioo oaodsd      to devalog            chr Biotic          &csgo~          %cio~ss.                  Lf the dscirloa                1s made to do 8 Type 11 dmMtr8CiOU                                  foL.bvirq          thsss      urly      screening procsdurss,          the qpUcmt                should      rwieu        r~ctio~          3.3 and 3.8.1.              chls seetiua.        sod chr d8tA svlflrhls,                      to dscsrmins              V&SC addlclonsl              flald studlu,        If rg,          VLLl ba aecumry                  co complete            the Biotic          ticsgory R8tioa8Lu.              In son          cues,      ralatlv~l~          Uttls        additional          wrk      vF11 bs ClSCUSAr7 0 IO cuu                      where dditlund                vork la rsquirsd,                  the Sppliaac should      corplst8          the seudiu            sa ru(gssted            i.a section          3.3 and then vrits tha srorv            biotic        Catyory        Racioorlsr.
Each Uotic              Cation          ~tiouals          should        pruvids        a complete            dir-cussfoa      u to why,            fa tb      fudmt            of    th@ applicuit,                cha inrpACt8          us suffici88tLy            lnmnaaquantbL                thrc    chs protsctioo                aud propsgsclon                of tha    bud              fndQawta8            populatlou          of she.lJfish.              f lsh,    end ulldl.if          a In sad 00 the body of wear                      uUL      ba uoursd.              La cha ratlouder                  the appliesat        should        sddr~8        uch      decisiun        criteria          for the      biotic        c8cSgory in quUtioa.              ma discusrion              should      lacluds        sa ~duatloo                of the i3pACCS of the      dischqu              into thr rscaH-lng wear body.
 
                                                                    -33.
IIW COUC~US~~M drmtn shodd                            bS supportsd            with      ~1 uulysls              of the    &ta      collsccsd          durFng      the 316(S) studlu                  and/or        by the ~clusiou of supportivs            reports,        documsots and cicaclo~                        co the scisntFflc                  litsrr-curs*      Ths conclwlo~                should        rsprssant        8 logical          atension            of the infornutlou          avsibbls        Sad be sclsntiflcrll~                    dsfrnd&ls,                Uhsrs      citations 8tS USSd th8C US                Wt rrrd(ry              NSihbZlhlS ti SCiSntifiC                      jOti              (i.Ar, LateriP        rsportsr      vubus          types        of ymncy        documnu,            anaal          reports, thuos, etc.), the documsncs thsuslvu                                      should be provided.
Lf thS ~sct              of chS dischugo                  is projsctsd            ruFng S mathematical nodal,      the Sppllcrot            should      prtids        8 ccmplses            documsntScion              of ths sods.L Chat is used.                  The docummtStloa                  should        lncluds        S dircussloo              of the osrtcs aad disadvantages                          of the model.              T%s applicaac                shotid tiso provlds        rwaltlvity            m~Lysss          of the wdsl            md S vsrific8cloo                      study.          In additlou.        the statistical                rUabUity            of the model's grediccloua                            should be Fncludsd along vith l ~usciflc8tioa                                  of the osthodr              u~sd ln the suciscic8L            svrLu8tfou.
3.5.2        Dsvslupmsuc            of Rspressncativr                Kmportant          Spsclsa        ILtloarls Th8 RIS Rationale                should        s~rirs          why      the ~asa~Lcs of              the Laboratory          Ad    ~CSrStUrS            Studio        sp@CU?i~d        la      s~cclou        3.5.2.2        suggs8t that      chs RIS WILL not              suffer        Spprsci8bls          harm as a rssuLt                  of    the heated dischug*.
mr osumptioM                  in the coucspt              of  IUS      arm:
L. fc  is  not possibls              to study In grsac                dstrLL        svsry      spsciss U    8  Sit@;      there      lo    wt    snough      cim,        soamy      or apsrtise.
: 2. Since    rll    spsclu          mot          be scudled ln dsclF1,                      soms asllsr        number til            h8-m co br chossn.
: 3. The spociu            of coucsm            era    those      c-7              rslatsd        to p0-mr plant          impacts.
4,      Some spufu            rcL1 bS scuuomic8U~                      importurt          Fn their          ouu wt.          @-0-v      corwrcid            and sports            fishu        or mrisurcr spuiu,          end thtaa lnportaut.
: 5.      sm8 spuiu,                tamad rsprsasntativa                      0 vlll        be psrticu-larly vulnsrabls                or ss~iciv~            co pouu          pllrrt      inpaces        or have ssaaltiviciu                  of wet        other spscfss aad, If protsctsd,        will      ruaonably            usurm        proesctlon            of oehsr rprciu        at the rfta.
 
                                                          -360
: 6. Uldtrsnglng                 species at the utrams                         of their ranges *atid generally             not be considered                   acceptrble         a8 p~rticulorlp vulnerable               or seti           tlve" representative                 species but they could be considered                       a8 important.
: 7. Often,         811 orgurllu                   that might be coosldered                   important 0t repre8entatlve                       cannot be studied Fn detall.                       and a mallet           list     (e.g.,       grucar than 1 but less than U) auy have to be selected                       as the "rapresentstlve                   and important')
list.
list.
: 8. Of teu,       but aoc almp,                     the most useful list wuld                     ticlurie mostly         ,ensiclve           fish,       shellfish,         or ocher rpecler             of direct         use to sun or for structure                             or functioning           of     :ke l co8ystam .
: 8.
: 9. Officially               LFsted       "thrutrned             or   endangered       species         are aucomacic8Uy                   importanr           .
Of teu, but aoc almp, the most useful list wuld ticlurie mostly  
3.5.2.1           Selectlou             of the Reorrseacacive                     Imortant       Soecies         and Pu       Field       Studr Arm.
,ensiclve
As previously                 discussed           fn the declriou             main (rectioo 3.2.2.       Scap     ll) , rppllcsnts                 first       ame     vlth the RegionsA *is-tracor/Dlreccor                 co discuss           rolectfoa           of the RIS and define                 the far     field     study area, The     ambar         of BIS relrcted                 for a particular             rice may be high (S-U)           ti     the plsns for biotic                       category field           studies are not maprehensive,               or low (2-S) lf plaus for addltiotul                                   field     studfes are utewive.
: fish, shellfish, or ocher rpecler of direct use to sun or for structure or functioning of
Sum of             cho crfteria             for selection           of   RIS   are found Fn the defFnition               of     the term (see sectLou 6.0, Definitions                                 and Coacepes)       . Keeping               ia aiad         these crlceria             and the urtmpclons given above,             the Rag1otu.l Administracor/Dlractor                                 solacts RIS from any ccmblweiou                 of th FoUowinq block                           catrgorlrs:           fish,     shellfish, or habitat fomorr.
:ke l co8ystam.
: 1.     Soacles           Selectiou           Uhrrr     Informatloa         1s Adequate.
: 9.
Uhero         laformaclou               pertinent       co specie8         selection la adequater the Rqiorul                             Adminl8er8tor/Dlrector should promptly                   sdact       BXS. The appllcurt               msy suggest species for hi8 couslderaclou                                   md zuy,         as l put         of   its daomcratlun,                     cMlenge         any selection.
Officially LFsted "thrutrned or endangered species are aucomacic8Uy importanr 3.5.2.1 Selectlou of the Reorrseacacive Imortant Soecies and Pu Field Studr Arm.
Other cowldaraeluw                           ue a8 follovr:
As previously discussed fn the declriou main (rectioo 3.2.2.
Scap ll)  
, rppllcsnts first ame vlth the RegionsA  
*is-tracor/Dlreccor co discuss rolectfoa of the RIS and define the far field study
: area, The ambar of BIS relrcted for a particular rice may be high (S-U) ti the plsns for biotic category field studies are not maprehensive, or low (2-S) lf plaus for addltiotul field studfes are utewive.
Sum of cho crfteria for selection of RIS are found Fn the defFnition of the term (see sectLou 6.0, Definitions and Coacepes)
Keeping ia aiad these crlceria and the urtmpclons given
: above, the Rag1otu.l Administracor/Dlractor solacts RIS from any ccmblweiou of th FoUowinq block catrgorlrs:
: fish, shellfish, or habitat fomorr.
: 1.
Soacles Selectiou Uhrrr Informatloa 1s Adequate.
Uhero laformaclou pertinent co specie8 selection la adequater the Rqiorul Adminl8er8tor/Dlrector should promptly sdact BXS. The appllcurt msy suggest species for hi8 couslderaclou md
: zuy, as l
put of its daomcratlun, cMlenge any selection.
Other cowldaraeluw ue a8 follovr:  


A. houlicsble           State Uatrr Quality                   Stmdsrds.             If the Statss       approved aster qrulitp                       standards deslgmce particular           species as requirfng                   protection,             chase species       should       be designaced,               but alone zay ooc be sufflcleur             for     purposes         of     a Type     If   dmouscra-tiou,
A.
: 8. Conrultstiou           vith     Director         and tith         Secratarlu             of Comuce         and     Inrerlor.           In   the     cases     of   species re.Lectlou by the Eeglousl                       Admlalstrator,             he msf seek the advice and rectxmnendaclon of the Dlreccor as to which           species       should       be selected.             The Rsg1ous.L Admiulstrscor                   must consider any timely advice aud rec~endatlons                           supplied         by the Director and should           include such recummeadaclons unless he bcllaves         chat ~ubstaatial               reasons uirc               for departure.
houlicsble State Uatrr Quality Stmdsrds.
The     Secrrcrry         of C-rce               (Xac1ona.l Marine Flsherier Serrrlcr)       and the Smxecsry                   of the Interior                 (Fish and Ulldfife           Samice),           or chair deslgaoes,                     and ochu       rppropr%am             petrous       (e.g.,         university blologiacs           vith relevant             axpartisa),           shotid Also be consulted           and their         ciprtly       ret-ndatious should       be consIdered.               The Director             should also consult with the                 ageucy uerclsiag                 adminfstrarioa of the Udllfe                 resources of the State                     (see secrion 3.2.2,       Declsiou Train,               Step LZ).
If the Statss approved aster qrulitp standards deslgmce particular species as requirfng protection, chase species should be designaced, but alone zay ooc be sufflcleur for purposes of a Type If dmouscra-
C. Theatoned           or Eodanaered             Species.           Species selectiou should       speciffully             corulder           any present         :hreurned or andaqered               species,       at whatever             biotic       category or crophic lmel,                 ucept       chrt       no tifomacioa                 should be requasted             c!mt trould         require         field     sampling prohibited           by the Eudaugered                   Species     Act,     16 U.S.C.
: tiou,
U31       et seq.       (see section           3.2.2,         Declslou       Traiu.
: 8.
step     U).
Conrultstiou vith Director and tith Secratarlu of Comuce and Inrerlor.
D, Therull~           Seusitive         Soecles.           The most chersllly suuftiva           spuiu         (and species group) in chr local uu       should       bo ldeatiflrd             and their           lmporranca should       bo gireu         special       cousidorstloo,               since         such spmclu         (or species           groups)         tight       ba mosf rudlly eliminated           from the c -fey                     Ff effluent           ltiita-tlous     &Llouad         ulstu           uafer         capersturrr           co be altered.           Cousideratloa             of the aost sensitive spaciu       vill       base involvo           s total         aquatic comruxlty         olevpolnt       .
In the cases of species re.Lectlou by the Eeglousl Admlalstrator, he msf seek the advice and rectxmnendaclon of the Dlreccor as to which species should be selected.
The Rsg1ous.L Admiulstrscor must consider any timely advice aud rec~endatlons supplied by the Director and should include such recummeadaclons unless he bcllaves chat  
~ubstaatial reasons uirc for departure.
The Secrrcrry of C-rce (Xac1ona.l Marine Flsherier Serrrlcr) and the Smxecsry of the Interior (Fish and Ulldfife Samice),
or chair deslgaoes, and ochu rppropr%am petrous (e.g.,
university blologiacs vith relevant axpartisa),
shotid Also be consulted and their ciprtly ret-ndatious should be consIdered.
The Director should also consult with the ageucy uerclsiag adminfstrarioa of the Udllfe resources of the State (see secrion 3.2.2, Declsiou
: Train, Step LZ).
C.
Theatoned or Eodanaered Species.
Species selectiou should speciffully corulder any present
:hreurned or andaqered
: species, at whatever biotic category or crophic
: lmel, ucept chrt no tifomacioa should be requasted c!mt trould require field sampling prohibited by the Eudaugered Species
: Act, 16 U.S.C.
U31 et seq.
(see section 3.2.2, Declslou Traiu.
step U).
D, Therull~
Seusitive Soecles.
The most chersllly suuftiva spuiu (and species group) in chr local uu should bo ldeatiflrd and their lmporranca should bo gireu special cousidorstloo, since such spmclu (or species groups) tight ba mosf rudlly eliminated from the c -fey Ff effluent ltiita-tlous  
&Llouad ulstu uafer capersturrr co be altered.
Cousideratloa of the aost sensitive spaciu vill base involvo s total aquatic comruxlty olevpolnt  


bducmd       tolersnce         co l l8vsced           tomparature           zmy also be pr8dlcted.               for umpl8               tn species vtrlch experience         osturrl       population           rrduccloa         durlztg the smmer.           Species trrp4ing the grrsc8sc oorthen rsuge     aad lust         routhmrd           discributlou             may also possess       reduced       therm81       tolerance.
E.
E. Ccnmercially         or Recresclonslly                   Vllusble         Species.
P.
Selection       of c-rcirlly                   or recrest:ondly valuable       species       should be b&sad on a coaelders-thou of the benefits                 of assuring             their protection.
C.
P. Far-Field       and   Indirect         Effects.           Conslderaticru should     include       the entire           uatar body segpenc.                   For u=Ple.         au upscream         cold uacer source                   should 3oc be vertned       co an extent           t!ut     vouLd adversely affect     dowustmsm bfou,                     Th8 impscr of additive or syuerglstlc           affects       of hut combined with ocher     ulsting         therm1 or other pollutants                           Fn :he r8celo*tn~       waters       rhouid also be cousldered.
bducmd tolersnce co l l8vsced tomparature zmy also be pr8dlcted.
C. Species       ?lecrsssrv       (a.~.,       in cSe Food Chain or Habitat       Forsets)       for   the Uell-3eFns               of Species DetemFn8d Above.                 Ln addicloo             co the sbuvr coaelderatlons,             lc Fs rugguted                 thet thm ReglooJ         A&infrtrsror/D~rector                     ask himU               the following       qurstloos         before         selecting         the RX:
for umpl8 tn species vtrlch experience osturrl population rrduccloa durlztg the smmer.
: 1)     Is tha potautial             probla           with     chls species credible       (documeaced,             l   probla         elsewhere, a good prediction)?
Species trrp4ing the grrsc8sc oorthen rsuge aad lust routhmrd discributlou may also possess reduced therm81 tolerance.
: 2)     La tha problr             Likely       co be rigulflcanc?
Ccnmercially or Recresclonslly Vllusble Species.
: 3)    Uhlch species           occur     at     th8 locatlou?
Selection of c-rcirlly or recrest:ondly valuable species should be b&sad on a coaelders-thou of the benefits of assuring their protection.
: 4)    Which species           la Llhly           to   be closely Fmolvd         vlch     cha source           or d-68?
Far-Field and Indirect Effects.
: 5)     Does the probla               species         rank     as fsportaac*?
Conslderaticru should include the entire uatar body segpenc.
: 6)     Doe8 the Use           of   probla           species       fail     Fn the ranga     S-U or         2-5   (sea       cut     abuva) ?
For u=Ple.
: 7)     tie   the Fdeaclfled             problem     species     "repre-santatlve"?
au upscream cold uacer source should 3oc be vertned co an extent t!ut vouLd adversely affect dowustmsm
: 8)    Should other species not clearly                         a problem     be facluded a8 represencstlve                     or importrot?
: bfou, Th8 impscr of additive or syuerglstlc affects of hut combined with ocher ulsting therm1 or other pollutants Fn :he r8celo*tn~
: 2. Species       Selection         Where Informetion               ia fnadequace.
waters rhouid also be cousldered.
Uher+     the svsilrble           luformetloa         Fs aoc sdequste to amble the bglotml                   MmlnlstrstorlDlrector                 co select spproprlste               RIS, he mey request the appllcsat attaptlng         co ads a Typa IX demonstrscFoa                         co coaduct such studies and furbish                         such evidence as my be necesssry co enable such selectiou.                                   Uhere species selection               is hued         oa lnfo~clou           supplied by the applfcmc,               the appropr~ateaess                 of the species as represencstive               and fmportant           1s au aspect         of tae applicant's         burden of proof.
Species  
3.5.2.2       LaborstorP         and Llterscurr           Studies.
?lecrsssrv (a.~.,
Tkta labomcoq             and ~lcerscur~             studies       to be dooe for l ech EfS should be restricted                   to chose vhlch arm necessary to fllL out smmery Tables A aod 0 and to develop (oa the basis of cha data smnarter           Ln thou tables)             the RIS &cloPrle.                   Not all of the date   Listed     fn Tsbles A and B MJ ba appropriate                             for     a particular site or cua.             If the spplicent             feds       chat some are fnrppropriate and should be delecrd,               it should be dticwsed                   ufch       thr Reqioaal hdminircrstorl           Director       at the seme cise other dlscussloas                           about the RfS are taking place.
in cSe Food Chain or Habitat Forsets) for the Uell-3eFns of Species DetemFn8d Above.
Assu~~tlons         for   Tables       A and B L,   The cebles are marely l lds to orgsnitlag                               btologicrl data be.Liroed co be useful and fmporuuc                                 for aaking declaims         regardfug       the-1         discharge       l f facts.
Ln addicloo co the sbuvr coaelderatlons, lc Fs rugguted thet thm ReglooJ A&infrtrsror/D~rector ask himU the following qurstloos before selecting the RX:
: 2. The epeciss teble             should       be wrkrble         for any important or representerie               species       selectti,       whether it is
: 1)
              #elected       u   a species         for   protection         or avoldence (e-g-,       mia8nce       species)       .
Is tha potautial probla with chls species credible (documeaced, l
: 3. Ul     therms1     chuscteristics               do not     apply       in e rlmihr       coutuc       to all       tsxoucmic         groups       (tsxa).
probla elsewhere, a good prediction)?
requiring         soae   spacirl       deflnicions         or   oaisrlon       of a cherscteristic             for   a psrticulrr           cuou.
: 2)
: 4. There til           be noachemaal             Fnflueocrs         ( l .g . , chemicals, SCOuh4         , often occurrhg                 slmultaneouely             tich charm&l influences,                 thee are aoe fscluded ln chir cable but which shouLd be coosldered                               ln their own
: 3)
    -ht.
: 4)
: s. There uy         uot br diff l rences beMen                       adults       and juYulFlu         of dl         taxa,     or char8 may be more than m     distinct         se~lcl~ity             categories.           DFscinctly differeut         life     rcege       requirements           should br listed.
La tha problr Likely co be rigulflcanc?
: 6. Dets can be collected                     by   the appllc~t             for chore theme1 chuscterlstlcs                       of the 31s thee heve zot yet been daterained               but     for   which standardized                 sechods are rudely         available.
Uhlch species occur at th8 locatlou?
: 7. For certain           peraecers           zhrt   are srlU         Fn the resurc!a or developoeut             stage.       as opposed co sceududfred test*         (e.g.,     gsmecogenesls             requirements           or ?redscloa ou charmally           stressed         aeroplsaktoo)         , all roeilahle ptillehed         dsu       wuld       be uaaful       but it wuLd             sot be necesuq           to develop           new drca       for     this category.
Which species la Llhly to be closely Fmolvd vlch cha source or d-68?
: 8. If more than one ut                     of data- are aveUable                   for any cstegofJ,         the several             sets should bo preseoted (and referenced)               aud the rstionale               prueuted           co aid Fn srlectlq             oue set for declslon-meking                         se the site fa questiOn.
: 5)
: 9. Dates far guetogeuesls                       urd spatming           fmply       appro-priae       suso~l           t3mes which till             vary from aru co uu         and yur to year avan vlthouc                           the Fnflueuce of the pmmr plant,                     Tha fsporcant           point       is *ether thue     woacs wuld be susonrlry                           precluded.
Does the probla species rank as fsportaac*?
: 10. In fishu,           opclaam       tryeretures             for gromh cud sgu     perfomance             f8ctors       (e.g.,     maximum s-g spmd,       grueut           aetebolic         scope,     final       taperscure praferendtn,           etc.)     hrre     been shovu to ba coticldent for   aaough fishu               UC       chtr colacideuce               is acceptable u rgmerrli~tloIa.                         Exceptloue       cotid     be hportsnt.
: 6)
h-es,           and should           be ideatifled           .
Doe8 the Use of probla species fail Fn the ranga S-U or 2-5 (sea cut abuva)  
?
: 7)
: 8) tie the Fdeaclfled problem species "repre-santatlve"?
Should other species not clearly a problem be facluded a8 represencstlve or importrot?
: 2.
Species Selection Where Informetion ia fnadequace.
Uher+
the svsilrble luformetloa Fs aoc sdequste to amble the bglotml MmlnlstrstorlDlrector co select spproprlste RIS, he mey request the appllcsat attaptlng co ads a Typa IX demonstrscFoa co coaduct such studies and furbish such evidence as my be necesssry co enable such selectiou.
Uhere species selection is hued oa lnfo~clou supplied by the applfcmc, the appropr~ateaess of the species as represencstive and fmportant 1s au aspect of tae applicant's burden of proof.
3.5.2.2 LaborstorP and Llterscurr Studies.
Tkta labomcoq and  
~lcerscur~
studies to be dooe for l ech EfS should be restricted to chose vhlch arm necessary to fllL out smmery Tables A aod 0 and to develop (oa the basis of cha data smnarter Ln thou tables) the RIS &cloPrle.
Not all of the date Listed fn Tsbles A and B MJ ba appropriate for a particular site or cua.
If the spplicent feds chat some are fnrppropriate and should be delecrd, it should be dticwsed ufch thr Reqioaal hdminircrstorl Director at the seme cise other dlscussloas about the RfS are taking place.
Assu~~tlons for Tables A and B L,
The cebles are marely l lds to orgsnitlag btologicrl data be.Liroed co be useful and fmporuuc for aaking declaims regardfug the-1 discharge l f facts.
: 2.
The epeciss teble should be wrkrble for any important or representerie species
: selectti, whether it is  
#elected u
a species for protection or avoldence (e-g-,
mia8nce species)
: 3.
Ul therms1 chuscteristics do not apply in e
rlmihr coutuc to all tsxoucmic groups (tsxa).
requiring soae spacirl deflnicions or oaisrlon of a cherscteristic for a psrticulrr cuou.
: 4.
There til be noachemaal Fnflueocrs
( l.g., chemicals, SCOuh4  
, often occurrhg slmultaneouely tich charm&l influences, thee are aoe fscluded ln chir cable but which shouLd be coosldered ln their own  
-ht.
: s.
There uy uot br diff l rences beMen adults and juYulFlu of dl
: taxa, or char8 may be more than m
distinct se~lcl~ity categories.
DFscinctly differeut life rcege requirements should br listed.
: 6.
Dets can be collected by the appllc~t for chore theme1 chuscterlstlcs of the 31s thee heve zot yet been daterained but for which standardized sechods are rudely available.
: 7.
For certain peraecers zhrt are srlU Fn the resurc!a or developoeut stage.
as opposed co sceududfred test*
(e.g.,
gsmecogenesls requirements or ?redscloa ou charmally stressed aeroplsaktoo)  
, all roeilahle ptillehed dsu wuld be uaaful but it wuLd sot be necesuq to develop new drca for this category.
: 8.
If more than one ut of data-are aveUable for any
: cstegofJ, the several sets should bo preseoted (and referenced) aud the rstionale prueuted co aid Fn srlectlq oue set for declslon-meking se the site fa questiOn.
: 9.
Dates far guetogeuesls urd spatming fmply appro-priae suso~l t3mes which till vary from aru co uu and yur to year avan vlthouc the Fnflueuce of the pmmr
: plant, Tha fsporcant point is *ether thue woacs wuld be susonrlry precluded.
: 10.
In fishu, opclaam tryeretures for gromh cud sgu perfomance f8ctors (e.g.,
maximum s-g
: spmd, grueut aetebolic
: scope, final taperscure praferendtn, etc.)
hrre been shovu to ba coticldent for aaough fishu UC chtr colacideuce is acceptable u
rgmerrli~tloIa.
Exceptloue cotid be hportsnt.
h-es, and should be ideatifled  


SAMIW! 1ARl.E TO SUH(ARIZR DATA FOR EACII RRtRt?SENlAT~VE ItlPORTAttT SPECIES (RIS)
SAMIW! 1ARl.E TO SUH(ARIZR DATA FOR EACII RRtRt?SENlAT~VE ItlPORTAttT SPECIES (RIS)
SCIENTIFIC         NAMR       ---  _--  .--                                    fX+MMJ       NAME THERMAL           TEWEMTURd             souRcu                MFAN AND MAXIMUM            HPAN AND HAXItlUM                  IS tWl!CT,      I? AHlt, EXPRCTRD RFFIXTS            LIMIT OR             REFERENCE (i F        ARPA UNAVAILABL              TIME UMAVAILABLC                  TO AFFECT THE POPUlATlON        OF PARAMETER          RA?KiR (C)           APPROPRIATE)           FOR FwNmm       (R f I*     FOR PU?tCTfON (DATS),             mu RlS?       (TES OR NO) 0 That area or tin           under arctaRe     and uotst   caee conditiona   thnt wilt     not   permit     the specific   bFoloRica1     Cmction   to occur   satisfactorily.
SCIENTIFIC NAMR fX+MMJ NAME THERMAL RFFIXTS PARAMETER TEWEMTURd LIMIT OR RA?KiR (C) souRcu REFERENCE (i F APPROPRIATE)
SIRHART   COWXUSION         OF t??RCT   OF ItRAT ON THR RRPRRSENTATIVU         IMFORTAMT     SPl?CIBS   (RtS):
MFAN AND MAXIMUM ARPA UNAVAILABL FOR FwNmm f
 
(R I*
4;-
HPAN AND HAXItlUM TIME UMAVAILABLC FOR PU?tCTfON (DATS),
TABLHB mEmALEFFEcrSP-APPLIcAaLE ro4uIlIcoRcaNISHsPOnwr~TsELemASRIs THERMAL EFFECTS                                              POSSIBLE        YETRODS POE PMAMEERS                                                        D-ON
IS tWl!CT, I? AHlt, EXPRCTRD TO AFFECT THE POPUlATlON OF mu RlS?
: 1. High Tempuature                SurrrFvll AquAtic      Adult                                      X$0,      24 bours JmealLe          (Imature)                              TL50,      24 hours
(TES OR NO) 0 That area or tin under arctaRe and uotst caee conditiona thnt wilt not permit the specific bFoloRica1 Cmction to occur satisfactorily.
: 2. Thermal      Shock      Tolrrancr                      thersrl      gradient        including (Hut    and Cold)                                        wrst      cua            r Aqwtic        MtLLt                                      single      shock      to    *mate plant    shutdown Juvanile        (mare) doubh      shock      (up and      do&
SIRHART COWXUSION OF t??RCT OF ItRAT ON THR RRPRRSENTATIVU IMFORTAMT SPl?CIBS (RtS):  
Euly      Dav~lopmeataL            Sc8gu                  in trmmrsing            plum (Foci.      l88roplaakton)                                              3
: 3. Omimua        Tmmeratura            for Puformanca          and Crouch Yen-breeding          Adult                            langth,      veight      &auger; productlvfty;          DNA/WA        ILatlo2 Juvenih                                                  ~ength,ueight              changes; DNA/RNA Rat102
: 4. Xaxima        femver8tuf8                                long-tom          tsqurtur~
Resims Allovins            Early                          uporure        throu#mutd8velopnnt Development          Corplrtion                            to jtnmnih3
: 5. Normalsp8mins Dau                                        mmths;        r8nge      for    rpunlng and Temaanru
: 6. Spurn        TsmPu8turr                                                1 88qufremantr          for R~oroduction 1 As 8vti8bh            in    the    llrer8turr      only.
2 hdic8tad          by  find      prafarmdtrP        for    fish.
3 Only    for    specior        rudely        reared  or    held    in    the    laboratory.
 
N8n8tlve              for Table        B  -    Thermal          Eff    l cta    Paramtrrs              AmUcablo              to Thunal        affactr        stdiu          applicabh                to ujot            taxa      or broad          bfotlc c8tqortrr              UI    -ad                  in  Table      1.        AQpllcabla              thanal          rlfutr          d8t8 should        ba obtainad for uch BIS adacted.                                        mrks            00 study          ULd uotu            of 8pplfuti~                of the ruults              to orlu 316(a)                  aad (b)          dacirloum          arm badicued hue.
Uthod:            Dat8rPina        a                        48-b.            -  tit-t8            lacipF8at            hthl tmper8turr)            for juva &(8+ es andl              aon-bramii~                    adults.          ACWfiOU tarpar8tur8            shotid      8ppturi.mta            thm hi#hut                  tmr8tU8                  at which          the fish      can    ba bald.          bpO8a        lnimrl          t0 dW8trd                tvr8tUZ8S                  h    8S    8CUte (inst8at8naou8)              mmaar.
      &U1iC8tiOU              Of ihStitS:              Zh8=                v8h.a        can    ba rued        for      utimatioo Of tha Umr              !Wl348t$ll            UC        f%?        th8    ~fdiiSt0~                  St888        f!i    qU8tiO.U (24-b.                  dXZU82C).                m8R.                  valua        alro can ba wad to l tat8            t      UPPU tqr8tU8                      la          t for        8Ppr8Chbh              grouth (21-ttr.-TZ50 sinw          optistm      gruuth      tima).
: 2. Th8&            Shock tOl8tae                  of sti8ct8d                Ufrhirto~                  Stq8S:
: 8)        For    jUV*tiU          md 8dult8,            Sipnrl8t8              tiat8r        phnt        shutdouu str888      of plcm          Utt8inad          fiahu            and mtil8            m8cfo-cmxst8cu.
Method :          -8a          Oa-                to    8CUt8          trprr8tUTa              drupr      aqti          Co the r8nga        of  up8ctd          dirch8rfa                  t's,        u8ing        -              wlnt8r        pluma tqr8tllta              88    th8    8CtitutiOU              tWpU8tlXa.                    hdiC8ta          tmt8tUa                  CUt rqimas          which      produce        equilibrium              lorr      of      SOf of      cha    sample        uichin        4 hours        8ad oprt8uty            aft8r      24 hOlU8.
Idantifiad                vlntu          plum      VS.      8mbi8nt tmpar8fura            coaditiou8            uhich      could          rut&          in thati              shack l.n tha -ant          of phnt        rhutdm,            8d        aa auuiq                high      108s      of oqaaUma              dm    to    mrkedly          Lacrauad                rwcrptibUty                    to prodatfoo.
b)        For    mOrOp&iktOO.              aImslat          frprr8tura                  shock      upon      trn8rrbq 8thdphN.
 
pLue        rrrldeat        tines        md tlapuuuru,                        Accttioa                  tuparuura should        lw          a8CurLt          SU8OQ.d            obi8ot          coaditton8.                Maximm        test trpuature              should        range up to the TLjO level                              for      l dulte.
Indicate          tinwCUpU8tura                      r8gin*          luding        to duch              of    50X of the supl8.
Apulic8tion              of Results:                hthd          tiPttQPU8tUW                      Stf8S8        r@gina pint&8 2°C CU b8 uSrd to 88th8te                                        taprr8ture              LiPits of OOtmd prey troldeeco                bduvior.                fnCrU8.d              cmpu8ture              rudcs          Fn high8r pred8tiUU            prermrr.
: 3. Estimcion            of optimum            tmparaturm                for  growth:
A>      Fish and macroimrttobr8t8r                                -      d8tarmlnm          rate of growth (18ngth        or uelghc            fnCrU8a)            Wtl8r! mafnC8inad                at a rarl8S            of l hv8ted          tmU8turU                  and 8t Othnria8                    n@8r-optimm l miroummtal                condftiour,              with      food    provided          s      libitum.
b)    PFsh -            d8tWI8iMtiOTU                  of final          behavioral            temperrcurr pr8f8rutdtm            vill        closely        corr8spond            to tha tmpeaturr which        is optirrl            for ramy phyrlologlcal                          procueee, Fnclud iag grovth .
cl    Hecrophyter              -      d8C8rPFne            teEper8turm            produclag maxiem aat      photosyuthe8is                for 8t        hut        8 24401~            puiod,            u8bg 8e 8pptOjDtit8                  photoperiod.
  &3D1iC8tiOU            Of R88d.U:                  Optimum tmp8r8cura                        for grovch tea b8 cambFnad          with      ultim8t8            incipfenc            18thd      tmaper8tur8                limft      for 8Ccrpt8bl8            grouth        (Ice      #1 8bme).
: 4. kfinimn          optimum        md      mxlmm            taperatures              lllowlng            coephtfm            of urly        developlent.                f4OC8:          Studlu          co be conducted                  only    for    EXS uhfch      8ta ap8ble              of    bebg        rudLLf          tUt8d        in the hbOr8COq.
Method:          tbinUin            fartiliud              ama undu              8 Urf8a            of l hV8t8d crp8r8tura              r8giPU          to detrralne              ainima,          opt-              mid aexlmm condltiona            permitthq              8rutrr          chea 80X rumiv~                      to coep18tion              of dwaloplmnt              Of jUVmF18                (i.8.,        POrt-hrPti              metrrorphorir;                i.n fiSh,      to tha point              of SUCCU8fd                    ~ftiatiOU            of feeding).                t'bt8 thee dfornrlly                cyclic          tmper8turr                rrgiau        tith      8 S°C total            range U8 be 1K)re 8deptive                        for mhrnc8d                thermal        tol8r8ac~            thmx i8 8 COU8f88t. OvliC                            CqU8tlX8                  U/tie.
: 5. No&          sp8wning        d8t8s      and temper8tures:
mehod:          Cite    rug@    of    d8t8e      (by    muth)    8ed    thr88hold      ump8uturer reported        to hlti8U          urd lahibit            gmerogenui~          and  rparaing,      AI r8ported        Fn the ~it8r8cure              for    uU8      clo8tiy      r8hUd      to the u8cu body rogmnt            ia guestion.
Aoollc8tiue          of brultr:            To provide b8ckground                infom8tion        to ev8h8te          8e88oUll~        the reluiv8              lmp8ct of th8reel          dir&erg8        OP cintng      of rrproduetiv8            8ctiviti88.
: 6. Sp8cirl        temper8ture        rrquirmeot            for  t8prOduCtfOn:
Yethod:          Lafonutioa          should      be ptoVld8d        8e ev8F18bl8        in  previouelp publfshed        StUdi8S.        h-188            of rehvaat          lIspe~ia.l    r8quiree8ats" include:
: 8)      Snimm        of 10°C etut          be experienced          before gmecogene8ti can    be iaitirted          ln  tw    bore8.L b8raacles;            8nd b)      Yint8r      cU1      requirrd        for    rucceerful        developsme        LB yeLlov perch,
 
3.5.3          En@ne8riag            and Eydrologlcal                  Data    for    Typr      IL Demustratiau Ttt~    r~ctfon        ducribu            tha engf~~tiag                  and hTdrolo@c                Foformation which      should      aorprrs1y be Fnclud~d ln 316(r)                              daoortrstlotm-                  It ~I.80 rugguts          formatr for pruutatlou                          of such fnformatiuu.                    Th8 RBf1mu.L A&lnlstr~tor/Df.r~etor                    nay raquut                additional          lnfomtiou              or acuu          the rppllcam          from pr8puatio-u              of portiona              of this        lafom~cloa            u    th8 rlcuacicm ull8nta.            The erqlaeuing              aud hydrologic                fafor~tion            to ba submitted rhould      combat        of til      iaformrtiorr              rruoarblf            aecu88~          for th8 &pmfs.
Vh8t8 FnfO~tioP                LiStd        ia thir          ChbJ¶t8r fb ru3t rd8VbUt                        CO th8 ?ArtiCtiX C188,      Ft should be ucwed-The 8xqln8era                and hydrologic                inforautl~u            and data suppli8d                  ln support        of I 316(r)          deaoartrrtfan                rhou.Ld br l xt~~~roied                  by bd8qUbC8 d88CtiptiV8            Mt(rlL1.        CmC8tPFna it8 Sourc8.                          Datr fraS SCi8ntiiiC                    utbtr-tUf8,      fi8ld      work. laboratory              (LICP8tlMUt8,              8tiyticti          wd8w,                tafrarad suvreys        md hydrmalfc            modelint          will      ti      be acc8pt8bl8,            brrumia~          rd8qUAt8 SCiWtifiC            fUUtiic8tiOU            for    their        U88 ti pr8e8nted.
fn bdditiaa          ca th8 rudtr                  obtU8d          fro8 atiyticrl                  hydraulic wd8ls        th8 applierat            should pr8sent.                  und8r S8p8t8t8              cov8t.        th8 wd8l vbich      us wed.            Th8 mod81 should                    contain        8 rationah            eqhhiq                why this puticaL8r            model -8          used mul uplrnrtioar                        of rll      ~~~dlficrtiopr              to th8 orlglul          uork-3.5.34            Plrnt    Ooerating            D8t&-
: 1.    ~O~Zi@ Ut8f                  fhV.          kmp18t8          Tab18 c (indicrt8                milts) and provide              l  ducriptive              flow diagram.
: 2. subtit        1 time-cmperatur8                      profil8        gap&        fndic8tizq tmp8t8ture              an the        vertical        uad horizontal                scrl8.      3br gr8ph      rhould        Fndicat8          status      Of u8t8r        tmperaturr            from amblat          couditions              through        the woUq                8)8tm,        and flatly          t&8 discbar8r                plum      Out to th8            1oC laoth8rm.
br8t        C-8,        8uticipU.d              AVet-          ConditfooI,            md fd8ti (8*&-r      ainlmrr            tlme/tupu*ture                  lmpwt)          couditlaa8 should be lllwtrated                          (prefrrably          on ch8 same graph) comi.steat            tith        reprueatative                pluma        illurtrrted.
: 3. Th8    8muat        of    chlorine          uud      daily,      warhly          and    annually, the freqmncy                and duratlou              of chlorination                aad    th8 m              COtd        ehlOtin8          r8midUd          At th8        point      Of  di8ChAtp8 obtained          durizq          my clorinatioo                ~7~18.        The      &Latin8 d-d          of    the      receioin#            uat8f      body.        For exirtiq plants,        l  time-concantration                      graph    of total          chlorine r8sidual          8t the point                of df8chug8            durw          a chlortitloa W8Ut.
: 4. A llrt      of &uy oth8r cb8mlcal8,                          additives          or Oth8r di8ChUg88            (with SchUUic                    diasr8U)            vhich dischug late th8 coo&q                      uter      ryata        iacludiry            g8a8ric          am8, mat          (inchdiq                fr8qumcy          bad duration              of bppliC&tiOn 8nd th8 m,mimua coac8atraciua                                obtriad            prior        to dFlutioa),          chamic~              C04BOSitiO~            Sad th8 r-0                    for df8Chu~8.
A Wp      Of oi8tw                  dfSW~V8d          mt8n          18V8h        i.IlChdiXl~
              -rtiCd            PrOfihS              ia tb8 phE8 uid diSChArt                            'dCinirf la 0.5 q/l            iacrem8au                far both av8r808                  ad      Writ case eoaditioas*                      Uh8r8 StrUifiCbtiOU                      Ot th8 pt8SSllCb of Biochdcd,                    0X788Zb 0-d                (800) diSChU~88                    till pODSib            188d CO d8pr888iOU                    Of OmSn              hV8b          U 1 r881dt      of th8 th8&                      dirdlu~e,            the ateat              Of tie df8Ct        should b8 utimbted.
: 6. A IMP Of ath8r Corpt&nULtS                              within        th8 plum            CbW8d by otbrr          disch8r~88              aad aacura              sourcu          far      both
              -8tSa8        aud worst cue coadftiowc 3.5.3.2 Hydrolonic        Iofomatlon le    now:        Provide            iaformatlan            crlld          for balov            a8 applicable            to the locatiua                  of    the    intake        md di8c!18rg8.
A. BiV8rS :          fl-atbly                    m&a8 mid mlJalma (rolllag m8a.        ?-i&y,          1078&r          10~ fhvm)            far uch wath.
: 1. Estaaarlu:                fr88b      Ut8t      input,        tidd        flW VO1W8, net    tidal        flux -thly                  mua          sad &sum8              for UCh--C:rC~btiUU                        patt8nU          frm      rpPiCd          Cidd cyclu.
: c. ba~~oir8              :    flow      through        time,      r8haa8          schedul8r-Wllthl~armlULd=t.UUb.
D. ocuu        : tidrl              h8i.#kta      aad      iuformtloa                on fluhiag CbUUt8ri8tiCS.
: 2. Curr8ntr        :    Rorfd8            the lr&arm8tioa                crlld          for    below, a8    4Jp11Cd18              to the l it8:
A. BiV8rS:            ux.S.mm, midmm,                      and wan current                      speed giolag        WY,              wathly        or 88UOUti              flucttMtloor mid vui8tlaw                    acrou      crorr-sectioor                u appropriate to d88Crib8              hydro-dyn8micr                Of th0 ptiS8r7 Studf      bf88.          Include        rpmdr        l t man        mnu8l            flow ta  747,            107ru          low    flow.


B.      h tUti            :    tidal        end m88oaal              ch8agu          Fn curr8at spe8d      md      directian.              PJ8rtlcal          profiler          of current a8    o8edrd        Uh8r8 d8USiCy Currents                          OCCUt.)
THERMAL EFFECTS PMAMEERS 4;-
C.      Large laker            and oceans:                  offs&or8        prmbiling            currents.
TABLHB mEmALEFFEcrSP-APPLIcAaLE ro4uIlIcoRcaNISHsPOnwr~TsELemASRIs
our      IhO?        CUrt8Ut8/8ddi88;                  lOCti tidal            md      S888Od ChurgU        la curr8at            Sp88d md dlr8CtiOn.
: 1. High Tempuature SurrrFvll AquAtic Adult JmealLe (Imature)
: 3.     Tabti8CS or ~urtrste                          monthly          urd seuti                grrdl8ncr for both th8nu.l                  and 88llalt7                Foducrd str~clffcatluu At rOptUeUCbtiV@                    locatf~ns            ti    th8 attidy          eru        (co~sFSC~UC with the comp~alty                      of ch8 study            aru        eoad~tfans)           . If lntaka      and diSChrg8                  coadftiopr            ar8 Fdeaticrl                then so stat8      urd    provide          only      on8      t~b~atloa              or  Flh8tr8tlon.
: 2.
: 6.      TbbtiAt8        Or    tiklStrat8            mbF8nt            CapUbtur8              Of Ch8 r@CSiVblg u8tu8,        glvLn#        monthly          m8ns          md    moathly          Utrem8s            for Ch8 pt8C8ding          u y88t8            U    d&t& mbtibbtiity                    p8titS.            If C-&r&b18            81t8 Uf8rS              bt8      u88d,      indfat8          th8 b&818            and lirritr      Of C~brbblity.                        fa l ddltiuu,              for    blologierllp CritiCAl        p8riOd8,          Uddy          mUU8 and UtrUU,                          frrqU8nCy discributloae                and    dally      verletlon            should        be    provld8d.
Thermal Shock Tolrrancr (Hut and Cold)
Tq8tUut8                d&t& upon which the88                        v81u88        8r8      b888d        should, if pOSSlb~8, be obwla8d                            bt LUSt          0~x8      hourly.
Aqwtic MtLLt Juvanile (mare)
: 5.      Indicate        iUtbk8        urd      r8CSiViU#          Ut8fS        d8pth COUtOutS                bt 1 98tlt Fntrrvab          and any ch8agu                    vhlch      MJ      occur du8 co radlm8at mmaents,              COUStNCtioU,                  l tC.      Indiuts            bottam t9p8.
Euly Dav~lopmeataL Sc8gu (Foci.
Prmid8          Oth8r        significant              futures          (8.f.,        chrnaal          bar) rnd Cher8Ct8riStiCS                ne8d8d          to 8v8h8te              the hydrodysAalcs of the primary                and far          field        study l ru.              Infom8tion 00 water          body 8128,              surface        area,      ~01~~8, mua d8pth md maxFan d8pth.
l88roplaakton)
3.5.3.3        tf8t8OrOlO~iCd                hta ff eaergy          budg8t cooputatlon8                      are    included          88 part          of th8 316(a)    d~~tUtratluu,              proPld8          the fO~OWin~                dally        #8r888          m8t8orw logicd      d&t8 for        the phat            l lt8,      giving        both aoathlp              8uae        And SUSUUd        Utf-08.              Indicate          ~!1lt8:
: 3.
: 1. Wet bulb        air      troperatura.
Omimua Tmmeratura for Puformanca and Crouch Yen-breeding Adult Juvenih
: 2. Dq      bulb    Air      taper8tuIe                (v8rlfF8d          to Sit8        coadltloa8).
: 4.
: 3. Wind      rpeod      md      dirrctioa.
Xaxima femver8tuf8 long-tom tsqurtur~
: 1. Long ~8            (emoeph8ric)                  r8dl8tlOa          (UT        be  CsktibCed)              .
Resims Allovins Early uporure throu#mutd8velopnnt Development Corplrtion to jtnmnih3
: 5.       Short      ~8        (Solar)      radiation        (mey b8 cllcuL&ted).
: 5. Normal sp8mins Dau and Temaanru
: 6.      Cloud      Cw8r.
: 6.
: 7.      &8pott8lUpitbtiOU                  (-7    be &C~&tbd).
Spurn TsmPu8turr 88qufremantr for R~oroduction POSSIBLE YETRODS POE D-ON X$0, 24 bours
3.5.3.a      Outfa        coafi~r8tiw                end OU8tbtfOe.
: TL50, 24 hours thersrl gradient including wrst cua r
Pravlde      the    foUowlag          ldorautioa          cm outfall. cuaflgur~tlaa end opu~tim,         fadluting          uaitr:
single shock to
: 1.      Length      of    dfrcbrge          pip8    or  cm81
*mate plant shutdown doubh shock (up and do&
: 2.      Area      aad    dlp8USiOnS          of  dischug        port(S)
in trmmrsing plum 3
: 3.      Number of disch8rg8                  port(s)
: langth, veight
: 4.      Sp8Ciag        (on C8tkt8rS)          of  discharge      portr
&auger; productlvfty; DNA/WA ILatlo2
: 5.      Depth      (mua      8nd axeraPes) 6,     bngl8      Of d-charge            u    8 fUUCtLOU Of:
~ength,ueight changes; DNA/RNA Rat102 mmths; r8nge for rpunlng 1
C.        curreat        dlrectiom 3.5.3.5      P1=8      D&CA It8WitmMtS.
1 As 8vti8bh in the llrer8turr only.
Zhe eppllC8at            u          futni8h      8sttiC88        bu8d upon model pr8dlctlOae      and/or      flmld      d&t& at abating              planer    of th8 follovFng plume data:
2 hdic8tad by find prafarmdtrP for fish.
L.      UttiiZiUg          the lord iafarm8tloa                19 Table C, vind to88 dau md cidll/currus                        date, 8 ~1-8          ro88 or LOCW of p1ma8        8tAd.l b8 prmld8d                fOt 88Cb CA&lad&r aoath.
3 Only for specior rudely reared or held in the laboratory.  
Zh8 plme8            rkll        b8 bounded by the 2 C ebov8 obleat        isotherm.            ml8 S&u          be don8 for both Surf&c8 iSOth8m            rod bottom iroth8rBe                uhea contact        tich burthlc        au8          18 ti8.
: 2.     bpr88eXItetiV8                p1Ue8 Of the mUintlr              size end OOlt fr8qu8atly          occurring        plwu        l h8ll  be deullrd          shoving
                    ~8t8atUleOuS                i8oth8rm8      At th8 2c hlt8r9tiS              CO within      l°C of emblent              for coadltlm8          of varlrtloar fn tid8,        uind 8nd curroat.


A.     BiVU8:             PlUe8          fat      N8tbg8              d        T-day,      LO-ye&r hv      flow          should          b8    prwld8d.
N8n8tlve for Table B -
B.     Lake8        bad Re8errrolr8:                       ?hm88            for     smmer          coadlt:on8, virrt8r        coaditioar                aad    lttrt            8ptig        cad    f&U w8ftura~             rhould          rlro      b8 prwided.                     For flood control          ruervoirs,                ~1-88              for vatlow              ut8r lem&          8hoPld          b8 prwld8d.
Thermal Eff l cta Paramtrrs AmUcablo to Thunal affactr stdiu applicabh to ujot taxa or broad bfotlc c8tqortrr UI
: 3.       For i8och8rrr              plots        required            in utmbu              2 ebwe, V8triC81          t~8rbtUr8                  ptOfti88              dOUg th8 pkl88 CWltSrline utaading            to th8 bottom of :h8 VeClr body et zc iUt8md.8            CO ViChiU              Lot    Of      smbi8nC.
-ad in Table
3.5.6.2       EaSFn88riDE            bad      Rvdrolosical                D&t&.
: 1.
The FnfOrPutiOU                  t8rJUir.d           iU tbi8 88CtiOU,                      fOt    ch8 mO8t p&n,     COU8iStS Of pUm8t8rS                        vhlch 8f8 MC8888~                              blpUt      CO l blytiCbl or phfricel        pr8dictlve          h~r&UllC                or energy budg8t models.                                   xor8
AQpllcabla thanal rlfutr d8t8 should ba obtainad for uch BIS adacted.
~fOt3bbCfOa my b8 prwid8d                          by th8 l ppllC&nt                        for hi8 pbrtlculu danOa8tr8tiuu,           but Chi8 -18                          repr888otr              the d8gt88              Of d8tti tiich    vtu    be a8C8888~               in mO8t CUU.
mrks 00 study ULd uotu of 8pplfuti~
The fo~ouing                COrT8SpOUdS                  directly              tith        the    r8sp8ctive pu8grapbS        in  S8CtiOU        3.6:
of the ruults to orlu 316(a) aad (b) dacirloum arm badicued hue.
: 1.       Phlt        oV8r8ti.UE            D&t&.         Table          C -      Th8    d8tb      t8quir8d          in T&b18 C 8f8              llW8888r7            b8CbU8              th8y      8r8    required          for pt8diCtiV8            fIIod8hlg.              Th888 nm8riCd                        d&t8      -0        tioV tb8    revieur            co ob88m8              uaC8r            ~868, Tl8cTemeraturr                        Profile          - m8 pt8dict8d                      tia848mp8rbture ptOfti8        should          be lacluded                  beCbu88 Ft FllWttbt88 Uhbt 8        typiCd            mXkmOtil8                pArtiC                muld        b8 subject to when l atrapp8d                    end/or          8ntrelLWd                in the cooling ut8f        Sptu.               tirteln          blaloglcrl                  8ff8ctr        couLd b8 utimted            tith        tbir      type      of kaput but the revlenr                                  is curtiuned            not to ee8-e                  this          ta b8 tottilt                reprereacacive Of Stt888U                8nCOuater8d              On 8atrbpp8d                    end/or        8ntr8ln8d orgula8.                 Thi8 path LS ea idullr8d                                    Stt&lae whlcb,       Fa til        prababfllty,                    wuld          not occur due ta tUZbUhUC8              Of CO0li.n~             U8t8t          flOV.
Uthod:
Cbl0hl*          - ChlOtie                fS a tOXiC 81-8nt                          cad ff        it    :S to    be U8d          by th8          di8Ckrg8r                  to     control        the     grovth        of flora      cad f8uaa              la th8 cooling                      ulcer        systa,          Ftr usage      l bould        b8 proj8ct8d.                     kl      tO8t      PO-r        phlt8 ChlOrti          18 inj8Ctrd                tO    th8        COOhIg            Wt8f        SpSte6        fOt
Dat8rPina a
&(8+
l 48-b.
tit-t8 lacipF8at hthl tmper8turr) for juva es and aon-bramii~
adults.
ACWfiOU tarpar8tur8 shotid 8ppturi.mta thm hi#hut tmr8tU8 at which the fish can ba bald.
bpO8a lnimrl t0 dW8trd tvr8tUZ8S h
8S 8CUte (inst8at8naou8) mmaar.  
&U1iC8tiOU Of ihStitS:
Zh8=
v8h.a can ba rued for utimatioo Of tha Umr
!Wl348t$ll UC f%?
th8
~fdiiSt0~
St888 f!i qU8tiO.U (24-b.
dXZU82C).
m8R.
valua alro can ba wad to l tat8 t
UPPU tqr8tU8 la t
sinw optistm gruuth tima).
for 8Ppr8Chbh grouth (21-ttr.-TZ50
: 2.
Th8&
Shock tOl8tae of sti8ct8d Ufrhirto~
Stq8S:
: 8)
For jUV*tiU md
: 8dult8, Sipnrl8t8 tiat8r phnt shutdouu str888 of plcm Utt8inad fiahu and mtil8 m8cfo-cmxst8cu.
Method
-8a Oa-to 8CUt8 trprr8tUTa drupr aqti Co the r8nga of up8ctd dirch8rfa t's, u8ing wlnt8r pluma tqr8tllta 88 th8 8CtitutiOU tWpU8tlXa.
hdiC8ta tmt8tUa CUt rqimas which produce equilibrium lorr of SOf of cha sample uichin 4
hours 8ad oprt8uty aft8r 24 hOlU8.
Idantifiad vlntu plum VS.
8mbi8nt tmpar8fura coaditiou8 uhich could rut&
in thati shack l.n tha -ant of phnt
: rhutdm, 8d aa auuiq high 108s of oqaaUma dm to mrkedly Lacrauad rwcrptibUty to prodatfoo.
b)
For mOrOp&iktOO.
aImslat frprr8tura shock upon trn8rrbq 8thdphN.
: 3.
pLue rrrldeat tines md tlapuuuru, Accttioa tuparuura should l w a8CurLt SU8OQ.d obi8ot coaditton8.
Maximm test trpuature should range up to the TLjO level for l dulte.
Indicate tinwCUpU8tura r8gin*
luding to duch of 50X of the supl8.
Apulic8tion of Results:
hthd tiPttQPU8tUW Stf8S8 r@gina pint&8 2°C CU b8 uSrd to 88th8te taprr8ture LiPits of OOtmd prey troldeeco bduvior.
fnCrU8.d cmpu8ture rudcs Fn high8r pred8tiUU prermrr.
Estimcion of optimum tmparaturm for growth:
A>
b) cl Fish and macroimrttobr8t8r d8tarmlnm rate of growth (18ngth or uelghc fnCrU8a)
Wtl8r! mafnC8inad at a rarl8S of l hv8ted tmU8turU and 8t Othnria8 n@8r-optimm l miroummtal condftiour, with food provided s
libitum.
PFsh d8tWI8iMtiOTU of final behavioral temperrcurr pr8f8rutdtm vill closely corr8spond to tha tmpeaturr which is optirrl for ramy phyrlologlcal
: procueee, Fnclud iag grovth Hecrophyter d8C8rPFne teEper8turm produclag maxiem aat photosyuthe8is for 8t hut 8 24401~
: puiod, u8bg 8e 8pptOjDtit8 photoperiod.  
&3D1iC8tiOU Of R88d.U:
Optimum tmp8r8cura for grovch tea b8 cambFnad with ultim8t8 incipfenc 18thd tmaper8tur8 limft for 8Ccrpt8bl8 grouth (Ice
#1 8bme).
: 4.
kfinimn optimum md mxlmm taperatures lllowlng coephtfm of urly developlent.
f4OC8:
Studlu co be conducted only for EXS uhfch 8ta ap8ble of bebg rudLLf tUt8d in the hbOr8COq.
Method:
tbinUin fartiliud ama undu 8 Urf8a of l hV8t8d crp8r8tura r8giPU to detrralne
: ainima, opt-mid aexlmm condltiona permitthq 8rutrr chea 80X rumiv~
to coep18tion of dwaloplmnt Of jUVmF18 (i.8.,
POrt-hrPti metrrorphorir; i.n
: fiSh, to tha point of SUCCU8fd
~ftiatiOU of feeding).
t'bt8 thee dfornrlly cyclic tmper8turr rrgiau tith 8 S°C total range U8 be 1K)re 8deptive for mhrnc8d thermal tol8r8ac~
thmx i8 8 COU8f88t.
OvliC CqU8tlX8 U/tie.
: 5.
No&
sp8wning d8t8s and temper8tures:
mehod:
Cite rug@
of d8t8e (by muth) 8ed thr88hold ump8uturer reported to hlti8U urd lahibit gmerogenui~
and
: rparaing, AI r8ported Fn the ~it8r8cure for uU8 clo8tiy r8hUd to the u8cu body rogmnt ia guestion.
Aoollc8tiue of brultr:
To provide b8ckground infom8tion to ev8h8te 8e88oUll~
the reluiv8 lmp8ct of th8reel dir&erg8 OP cintng of rrproduetiv8 8ctiviti88.
: 6.
Sp8cirl temper8ture rrquirmeot for t8prOduCtfOn:
Yethod:
Lafonutioa should be ptoVld8d 8e ev8F18bl8 in previouelp publfshed StUdi8S.
h-188 of rehvaat lIspe~ia.l r8quiree8ats" include:
: 8)
Snimm of 10°C etut be experienced before gmecogene8ti can be iaitirted ln tw bore8.L b8raacles; 8nd b)
Yint8r cU1 requirrd for rucceerful developsme LB yeLlov
: perch,


petiods            naglag            from I3 mlzmter                      to TV) hours per appllutlou.                       Ilrm nmbat                of 8pplicatloue                ti    rite specific              but urrullp                    tocalr        lur      thaa CWJ hours total per day.               Idully,                  only    exact        mounts        of    chlorFne            8re introduced              so th8c                ft    ructs        oatlrdy,          Iuvixq            uo rctiva            residual            8t        the discharge.                 In puceice                chti Fs dffflcuLt              to achiava,                    and some chlorine                  compouade              ue dlschsrgmd.                     Chlorina              ructs        vith dissolved                orgulc utter            in the coolfn~                      water co fore ouiow                          chlorluced organics              which may ba h~nnful                              co the balanced                    Fndigeaous C-icy.                      It is charmfore                        necuuv            co project              chm uuga            of chlotim                    urd      cou8ldet          the results            of tts interrctlon                tith          the therael                component of tha dbcharga.
3.5.3 En@ne8riag and Eydrologlcal Data for Typr IL Demustratiau Ttt~
Thenad              Incuscclon                      - Sactlou          316(a)       rpaclflrr              chat the      chennel          component of the                          dlscherge          ause      be evaluced
r~ctfon ducribu tha engf~~tiag and hTdrolo@c Foformation which should aorprrs1y be Fnclud~d ln 316(r) daoortrstlotm-It
  #,  l . . ukb~            lato          account            the     Fncersctiou            of    such therm81 components tith                                    other pollumnts...".                            mlllr data on such syaergirtlc                                      effects        ua limited,                 ceruln infomaclotx                VLU          uslrt              chr &gioarJ.             Admlnistr8corl Director              Ln usessFng                      potentirl          heraful        Fnter8ctlons.
~I.80 rugguts formatr for pruutatlou of such fnformatiuu.
Other          Chemimls              - The rddlcloa                    Of he8t MT FnCree8e cha l      ff l ct        of other                  chemlcllr          in the ucer                body.
Th8 RBf1mu.L A&lnlstr~tor/Df.r~etor nay raquut additional lnfomtiou or acuu the rppllcam from pr8puatio-u of portiona of this lafom~cloa u
Chmicd                hformaciou                      Fs needed          to avrluata              poulbh effects            of this            kind          8ad to properly                interpret              blologicel d&t8      for        thermel            affects            &hue.
th8 rlcuacicm ull8nta.
: 2. B?dtOlOgiC8l                    InfOmtlOU.                      This      entire        sectloa            duls tith      coudltlons                  of cho recaivlng                      water.          This laforastlou should ba required                                b8c8we          it is butt              sitlag          Lnformecioa, modeling              iapuc          data 8nd aocese8r7                        for   proper            Fnterprec8cioa of blolol;lceL                    d&=8.
The erqlaeuing aud hydrologic fafor~tion to ba submitted rhould combat of til iaformrtiorr rruoarblf aecu88~
: 3. Meteorolonlcel                        Detr.             This Lnformetion                  should be in&&id                tier@ l ergy                      budget COmput8tlOus                      8re zude          88 part of the X6(8)                                 drpOUStr8tiOU.                 I:   1s sot            fatended that      rlf        dmOu8tr8CiOnS                        Fn&xda          this d8t8.             vhan in doubt the 8ppllcaat                                  should dlscws                this tith              the Regioael              Adminirtr8tor/Dlrector.
for th8
: 4. Outfall            Conflmretloa                        md Ooeratlon.                 mere nmerlcrl dru        ducrlbirq                  the aeorecq                    and orlrotatloo                    of the oucf8U              8re oeces8~                        fnput      for    111 predictive                  plume models.
&pmfs.
Vh8t8 FnfO~tioP LiStd ia thir ChbJ¶t8r fb ru3t rd8VbUt CO th8
?ArtiCtiX
: C188, Ft should be ucwed-The 8xqln8era and hydrologic inforautl~u and data suppli8d ln support of I 316(r) deaoartrrtfan rhou.Ld br l xt~~~roied by bd8qUbC8 d88CtiptiV8 Mt(rlL1.
CmC8tPFna it8 Sourc8.
Datr fraS SCi8ntiiiC utbtr-
: tUf8, fi8ld work.
laboratory (LICP8tlMUt8, 8tiyticti
: wd8w, tafrarad suvreys md hydrmalfc modelint will ti be acc8pt8bl8, brrumia~
rd8qUAt8 SCiWtifiC fUUtiic8tiOU for their U88 ti pr8e8nted.
fn bdditiaa ca th8 rudtr obtU8d fro8 atiyticrl hydraulic wd8ls th8 applierat should pr8sent.
und8r S8p8t8t8 cov8t.
th8 wd8l vbich us wed.
Th8 mod81 should contain 8 rationah eqhhiq why this puticaL8r model -8 used mul uplrnrtioar of rll
~~~dlficrtiopr to th8 orlglul uork-3.5.34 Plrnt Ooerating D8t&-
: 1.
~O~Zi@
Ut8f fhV.
kmp18t8 Tab18 c (indicrt8 milts) and provide l ducriptive flow diagram.
: 2.
: 3.
subtit 1 time-cmperatur8 profil8 gap&
fndic8tizq tmp8t8ture an the vertical uad horizontal scrl8.
3br gr8ph rhould Fndicat8 status Of u8t8r tmperaturr from amblat couditions through the woUq 8)8tm, and flatly t&8 discbar8r plum Out to th8 1oC laoth8rm.
br8t C-8, 8uticipU.d AVet-ConditfooI, md fd8ti (8*&-r ainlmrr tlme/tupu*ture lmpwt) couditlaa8 should be lllwtrated (prefrrably on ch8 same graph) comi.steat tith reprueatative pluma illurtrrted.
Th8 8muat of chlorine uud
: daily, warhly and
: annually, the freqmncy and duratlou of chlorination aad th8 m
COtd ehlOtin8 r8midUd At th8 point Of di8ChAtp8 obtained durizq my clorinatioo
~7~18.
The
&Latin8 d-d of the receioin#
uat8f body.
For exirtiq
: plants, l
time-concantration graph of total chlorine r8sidual 8t the point of df8chug8 durw a chlortitloa W8Ut.
: 4.
A llrt of &uy oth8r cb8mlcal8, additives or Oth8r di8ChUg88 (with SchUUic diasr8U) vhich dischug late th8 coo&q uter ryata iacludiry g8a8ric
: am8, mat (inchdiq fr8qumcy bad duration of bppliC&tiOn 8nd th8 m,mimua coac8atraciua obtriad prior to dFlutioa),
chamic~
C04BOSitiO~
Sad th8 r-0 for df8Chu~8.
A Wp Of oi8tw dfSW~V8d mt8n 18V8h i.IlChdiXl~
-rtiCd PrOfihS ia tb8 phE8 uid diSChArt
'dCinirf la 0.5 q/l iacrem8au far both av8r808 ad Writ case eoaditioas*
Uh8r8 StrUifiCbtiOU Ot th8 pt8SSllCb of Biochdcd, 0X788Zb 0-d (800) diSChU~88 till pODSib 188d CO d8pr888iOU Of OmSn hV8b U
1 r881dt of th8 th8&
dirdlu~e, the ateat Of tie df8Ct should b8 utimbted.
: 6.
A IMP Of ath8r Corpt&nULtS within th8 plum CbW8d by otbrr disch8r~88 aad aacura sourcu far both
-8tSa8 aud worst cue coadftiowc 3.5.3.2 Hydrolonic Iofomatlon le now:
Provide iaformatlan crlld for balov a8 applicable to the locatiua of the intake md di8c!18rg8.
A.
BiV8rS :
fl-atbly m&a8 mid mlJalma (rolllag m8a.
?-i&y, 1078&r 10~ fhvm) far uch wath.
: 1.
Estaaarlu:
fr88b Ut8t
: input, tidd flW
: VO1W8, net tidal flux
-thly mua sad
&sum8 for UCh--C:rC~btiUU patt8nU frm rpPiCd Cidd cyclu.
: c.
ba~~oir8 flow through
: time, r8haa8 schedul8r-Wllthl~armlULd=t.UUb.
D.
ocuu tidrl h8i.#kta aad iuformtloa on fluhiag CbUUt8ri8tiCS.
: 2.
Curr8ntr Rorfd8 the lr&arm8tioa crlld for
: below, a8 4Jp11Cd18 to the l it8:
A.
BiV8rS:
ux.S.mm,
: midmm, and wan current speed giolag WY, wathly or 88UOUti flucttMtloor mid vui8tlaw acrou crorr-sectioor u
appropriate to d88Crib8 hydro-dyn8micr Of th0 ptiS8r7 Studf bf88.
Include rpmdr l t man mnu8l flow ta
: 747, 107ru low flow.  


                                                                        -52.
B.
: 5.       Plume Dacr Retmlremencs.                             This    d8t8    is    the    result        of the modeling              effort.           UhLLa the results                  MJ be prasantrd in many fomacs,                    chum        mggested            plume      conf lguretlons yle.Ld      a gr8phfC          portr8y8l            of uhua        the      hut        i8    going.
h tUti tidal end m88oaal ch8agu Fn curr8at spe8d md directian.
Thue        map8      are    mcessq              for     makhg        qualft8tfve              end quantitative              8asueaants              of     biologid            chuqes.
PJ8rtlcal profiler of current a8 o8edrd Uh8r8 d8USiCy Currents OCCUt.)
3.5.4          Synthuti            of    dl    fnformufoa                Into    %ut8r          Ecosystr            Ilrcloorle ZIm titer            Ilrtiolulu            of the dmOUStt8tlOn                      should s-rite                    the kay findings            Fo  8    coucfse manner                and should form 8 coop~ciag                                argument the        the  b8hnced.             lndfgenoue            comunlty            vi11      be protected.               The r8cloeule should ticlude              8 sumery              of m "over8l.l                 picture"          of the ecosystem                  es projactod        by the sLr Biotic                      Cacegoq          Rationelms,            the ruource                zones f0p8Ct8dV end 8 8-7                            Of Uhy the FPfomfiOa                            ia the r8tiOMhS,                     81OUg with the predlctl~r                        la cho IUS RetiOuele,                      the urglneerlog                  and hydrologic81 deer, 8nd other.kty                      facts,       suggur          th8t      the      balanced        bdigeaour              co~~icy will      be protected.
C.
3.5.5          Suggested          FOrmU          for     Type    II    DaOMtr8tlO!X
Large laker and oceans:
                                            ~EUUFLE)           TABLE OF alrmmTs r,  Introducelou                (Brief    1 II.     ?bster        Rationale            for      Dmonstretlw                  (see    Section        3.5.4        for CoIltut      >
offs&or8 prmbiling currents.
III.       Represent8cfve                  bportaut            Spoclu          Utlousle            (Sectioo          3.5.2)
our IhO?
Iv. Biotic        Category          Ratiou8les              (Sacion          3.5.1)
CUrt8Ut8/8ddi88; lOCti tidal md S888Od ChurgU la curr8at Sp88d md dlr8CtiOn.
A*      Phytoplanktaa 1,     Duirfon            Critrrti
: 3.
: 2.     Ilrtiorule
Tabti8CS or
: 1.     Decision          Criteria 2,     Batlonal~
~urtrste monthly urd seuti grrdl8ncr for both th8nu.l and 88llalt7 Foducrd str~clffcatluu At rOptUeUCbtiV@
C.     Ehblut            ?orur8
locatf~ns ti th8 attidy eru (co~sFSC~UC with the comp~alty of ch8 study aru eoad~tfans)
: 1.     Dufrlon            Critrria 9r.     BAtioMle
If lntaka and diSChrg8 coadftiopr ar8 Fdeaticrl then so stat8 urd provide only on8 t~b~atloa or Flh8tr8tlon.
: 6.
TbbtiAt8 Or tiklStrat8 mbF8nt CapUbtur8 Of Ch8 r@CSiVblg
: u8tu8, glvLn#
monthly m8ns md moathly Utrem8s for Ch8 pt8C8ding u
y88t8 U
d&t&
mbtibbtiity p8titS.
If C-&r&b18 81t8 Uf8rS bt8
: u88d, indfat8 th8 b&818 and lirritr Of C~brbblity.
fa l ddltiuu, for blologierllp CritiCAl
: p8riOd8, Uddy mUU8 and UtrUU, frrqU8nCy discributloae and dally verletlon should be provld8d.
Tq8tUut8 d&t&
upon which the88 v81u88 8r8 b888d
: should, if pOSSlb~8, be obwla8d bt LUSt 0~x8 hourly.
: 5.
Indicate iUtbk8 urd r8CSiViU#
Ut8fS d8pth COUtOutS bt 1 98tlt Fntrrvab and any ch8agu vhlch MJ occur du8 co radlm8at
: mmaents, COUStNCtioU, l tC.
Indiuts bottam t9p8.
Prmid8 Oth8r significant futures (8.f.,
chrnaal bar) rnd Cher8Ct8riStiCS ne8d8d to 8v8h8te the hydrodysAalcs of the primary and far field study l ru.
Infom8tion 00 water body
: 8128, surface
: area,  
~01~~8, mua d8pth md maxFan d8pth.
3.5.3.3 tf8t8OrOlO~iCd hta ff eaergy budg8t cooputatlon8 are included 88 part of th8 316(a) d~~tUtratluu, proPld8 the fO~OWin~
dally
#8r888 m8t8orw logicd d&t8 for the phat l lt8, giving both aoathlp 8uae And SUSUUd Utf-08.
Indicate
~!1lt8:
: 1.
Wet bulb air troperatura.
: 2.
Dq bulb Air taper8tuIe (v8rlfF8d to Sit8 coadltloa8).
: 3.
Wind rpeod md dirrctioa.
: 1.
Long
~8 (emoeph8ric) r8dl8tlOa (UT be CsktibCed)
: 5.
Short
~8 (Solar) radiation (mey b8 cllcuL&ted).
: 6.
Cloud Cw8r.
: 7.  
&8pott8lUpitbtiOU
(-7 be &C~&tbd).
3.5.3.a Outfa coafi~r8tiw end OU8tbtfOe.
Pravlde the foUowlag ldorautioa cm outfall.
cuaflgur~tlaa end opu~tim, fadluting uaitr:
: 1.
Length of dfrcbrge pip8 or cm81
: 2.
Area aad dlp8USiOnS of dischug port(S)
: 3.
Number of disch8rg8 port(s)
: 4.
Sp8Ciag (on C8tkt8rS) of discharge portr
: 5.
Depth (mua 8nd axeraPes) 6, bngl8 Of d-charge u
8 fUUCtLOU Of:
C.
curreat dlrectiom 3.5.3.5 P1=8 D&CA It8WitmMtS.
Zhe eppllC8at u
futni8h 8sttiC88 bu8d upon model pr8dlctlOae and/or flmld d&t& at abating planer of th8 follovFng plume data:
L.
UttiiZiUg the lord iafarm8tloa 19 Table C, vind to88 dau md cidll/currus
: date, 8 ~1-8 ro88 or LOCW of p1ma8 8tAd.l b8 prmld8d fOt 88Cb CA&lad&r aoath.
Zh8 plme8 rkll b8 bounded by the 2 C ebov8 obleat isotherm.
ml8 S&u be don8 for both Surf&c8 iSOth8m rod bottom iroth8rBe uhea contact tich burthlc au8 18 ti8.
: 2.
bpr88eXItetiV8 p1Ue8 Of the mUintlr size end OOlt fr8qu8atly occurring plwu l h8ll be deullrd shoving
~8t8atUleOuS i8oth8rm8 At th8 2c hlt8r9tiS CO within l°C of emblent for coadltlm8 of varlrtloar fn
: tid8, uind 8nd curroat.  


CWLt MC WATER CIURACT~R ISTICS                        9 I                                                              I                                    I                      I                  I                                I I                                                              I                                    I                      t                    Rntc of      Discharge        I Intnkc      Velortty            ,                                                                               I 1                        I                                                                                                  I
A.
                , x Tim          st    ,                                                                                                 ,                                    1 lkm-         I I                I                                                                              1 I kactionsl              , Channel                              Rate of     Circufntin                                                          CoolinR      l CoollnR      , DlsrhsrRf X Capacity      , Ln,ad                                      1 Srtecna        J                                                            D*echa;uc        , Water                          , Velocity
BiVU8:
                                        , tntrsnce        1                  , Cooling      Mater      Flow                                                                    I Water lAT 40% 6 Lean                                                                                                                                                    I I
PlUe8 fat N8tbg8 d
1 I
T-day, LO-ye&r hv flow should b8 prwld8d.
40-50                                                                                                                                                          I                                I I
B.
50-60                                                                                                                                                          I                                I 1                                I 60- 70                                                                                                                                                        t                                I I                                I 70-80                                                                                                                                                          I                                I I                                I 80-90                                                                                                                                                          I                                I I
Lake8 bad Re8errrolr8:
90-100                                                                                                                                                        I                                I I                                I A eeparstc      table        should      be prepared          for    each    ~enctating        unit    snd    for   all    untts        combined.
?hm88 for smmer coadlt:on8, virrt8r coaditioar aad lttrt 8ptig cad f&U w8ftura~
If  seasonal      variations            occur,     this    should       be indicated.
rhould rlro b8 prwided.
3 Variations      of   intake        velocity        with    changes        in  ambient      conditions          (e.~.,       river        flow,   tidal    height,      water    Level)      should be noted.
For flood control ruervoirs,  
4 Dischnr8e      A T-         Dischsqe          teclperature          - intake      temperattire      (in    aany cdsCb,            condenser        A  T io      equivalent      to   diecharRe A T)    however,        this    is not      the came for plants              ulth    supplemental            cooling).
~1-88 for vatlow ut8r lem&
5 Discharge      velocity        should      be provided          at the point        where cooling            wster      leaves        the disciwt8@        rttucture.          Variations        ln dtschsrRe      velocity,         with    changes      In embient          cnndltions        (e,B.,      river      flow,        tidal      hefRht,    vatcr      level)    should      be noted.
8hoPld b8 prwld8d.
: 3.
For i8och8rrr plots required in utmbu 2 ebwe, V8triC81 t~8rbtUr8 ptOfti88 dOUg th8 pkl88 CWltSrline utaading to th8 bottom of :h8 VeClr body et zc iUt8md.8 CO ViChiU Lot Of smbi8nC.
3.5.6.2 EaSFn88riDE bad Rvdrolosical D&t&.
The FnfOrPutiOU t8rJUir.d iU tbi8
: 88CtiOU, fOt ch8 mO8t p&n, COU8iStS Of pUm8t8rS vhlch 8f8 MC8888~
blpUt CO l blytiCbl or phfricel pr8dictlve h~r&UllC or energy budg8t models.
xor8
~fOt3bbCfOa my b8 prwid8d by th8 l ppllC&nt for hi8 pbrtlculu danOa8tr8tiuu, but Chi8 -18 repr888otr the d8gt88 Of d8tti tiich vtu be a8C8888~
in mO8t CUU.
The fo~ouing COrT8SpOUdS directly tith the r8sp8ctive pu8grapbS in S8CtiOU 3.6:
: 1.
Phlt oV8r8ti.UE D&t&.
Table C -
Th8 d8tb t8quir8d in T&b18 C 8f8 llW8888r7 b8CbU8 th8y 8r8 required for pt8diCtiV8 fIIod8hlg.
Th888 nm8riCd d&t8
-0 tioV tb8 revieur co ob88m8 uaC8r
~868, Tl8cTemeraturr Profile
- m8 pt8dict8d tia848mp8rbture ptOfti8 should be lacluded beCbu88 Ft FllWttbt88 Uhbt 8 typiCd mXkmOtil8 pArtiC muld b8 subject to when l atrapp8d end/or 8ntrelLWd in the cooling ut8f Sptu.
tirteln blaloglcrl 8ff8ctr couLd b8 utimted tith tbir type of kaput but the revlenr is curtiuned not to ee8-e this ta b8 tottilt reprereacacive Of Stt888U 8nCOuater8d On 8atrbpp8d end/or 8ntr8ln8d orgula8.
Thi8 path LS ea idullr8d Stt&lae
: whlcb, Fa til prababfllty, wuld not occur due ta tUZbUhUC8 Of CO0li.n~
U8t8t flOV.
Cbl0hl*
- ChlOtie fS a tOXiC 81-8nt cad ff it
:S to be U8d by th8 di8Ckrg8r to control the grovth of flora cad f8uaa la th8 cooling ulcer
: systa, Ftr usage l bould b8 proj8ct8d.
kl tO8t PO-r phlt8 ChlOrti 18 inj8Ctrd tO th8 COOhIg Wt8f SpSte6 fOt


D. Shel~ish/~cro~rrtrbr~tes
petiods naglag from I3 mlzmter to TV) hours per appllutlou.
: 1. Declslon      Criteria
Ilrm nmbat of 8pplicatloue ti rite specific but urrullp tocalr lur thaa CWJ hours total per day.
: 2. ution81e
: Idully, only exact mounts of chlorFne 8re introduced so th8c ft ructs
: 1. Decision      Criterir
: oatlrdy, Iuvixq uo rctiva residual 8t the discharge.
: 2. matiolmlr P. Other    Vortebrstr        Wildlife
In puceice chti Fs dffflcuLt to achiava, and some chlorine compouade ue dlschsrgmd.
: 1. Decision      Criteria
Chlorina ructs vith dissolved orgulc utter in the coolfn~
: 2.   %atiollale
water co fore ouiow chlorluced organics which may ba h~nnful co the balanced Fndigeaous C-icy.
: 0. Brfef    Sunmary    of   Engfaeertrrg          and Hydrological      Data and Uhp cfie Data    sre    Supportive          of   the Predictioar      fs the Above
It is charmfore necuuv co project chm uuga of chlotim urd cou8ldet the results of tts interrctlon tith the therael component of tha dbcharga.
    ~Cioacl88 VI. D6onstr8riun          Appendices A*    Information        Supporting          *atar      lbtionale B. Informtfon        Supporting          Representative        Lmportmt    Specfea Rat Ionale C. Information        Supportiq            Biotic      ate#orf    Rationales
Thenad Incuscclon
: 0. Engineering        and    BydrOlOgiC8l          fnformatfun
- Sactlou 316(a) rpaclflrr chat the chennel component of the dlscherge ause be evaluced l
: 1. hsellne        Data    (see      Section      4.1)
ukb~
: 2. Dfscussiw          of   Relationship            of the Physical    Data to the      SIOU~J        B.ationales        aad Choice of .Yadels or    Other    Predictive          .?fathods E. Supportiva        Reports,        Doctlents.         and Rau Data Not From the Open Scfentlfic                Literature
lato account the Fncersctiou of such therm81 components tith other pollumnts...".
mlllr data on such syaergirtlc effects ua
: limited, ceruln infomaclotx VLU uslrt chr
&gioarJ.
Admlnistr8corl Director Ln usessFng potentirl heraful Fnter8ctlons.
Other Chemimls The rddlcloa Of he8t MT FnCree8e cha l ff l ct of other chemlcllr in the ucer body.
Chmicd hformaciou Fs needed to avrluata poulbh effects of this kind 8ad to properly interpret blologicel d&t8 for thermel affects
&hue.
: 2.
B?dtOlOgiC8l InfOmtlOU.
This entire sectloa duls tith coudltlons of cho recaivlng water.
This laforastlou should ba required b8c8we it is butt sitlag Lnformecioa, modeling iapuc data 8nd aocese8r7 for proper Fnterprec8cioa of blolol;lceL d&=8.
: 3.
Meteorolonlcel Detr.
This Lnformetion should be in&&id tier@
l ergy budget COmput8tlOus 8re zude 88 part of the X6(8) drpOUStr8tiOU.
I:
1s sot fatended that rlf dmOu8tr8CiOnS Fn&xda this d8t8.
vhan in doubt the 8ppllcaat should dlscws this tith the Regioael Adminirtr8tor/Dlrector.
: 4.
Outfall Conflmretloa md Ooeratlon.
mere nmerlcrl dru ducrlbirq the aeorecq and orlrotatloo of the oucf8U 8re oeces8~
fnput for 111 predictive plume models.


3.5.6      Dlscusslon      of Uhy the Raqulred                    Data      are    ?kcessary          for    ?Lking 316(a)    Determfnations 3.5.6.1        Biologic81        Data.
-52.
: 1. Phrtoplanktoa.                The organisms              of the ph9toplaakton comunity          are a principal                  food    source      for    most zooplankton          and for rome fish species,                            aa9 -9 tiso become important                      Fn relatlou            to Fodustrirl or cecrutid                  water        use if blooms of certain species        occur,        vhf&        can hsve a vuisty                  of dele-terious        effects        (a.g.,        clog filters              and Fncrka pipes,      lmp8rt        tastes        and odors to water:).
: 5.
Men9 water          bodies,          such 88 the majority                    of rivers and    strum,            cut be clrssiffed                  8s "lov potent181
Plume Dacr Retmlremencs.
                          ?pp8Ct l .88              for ph@opl8nktoo,                     rnd relrtivdp Little      infonmtioa              Is aecess8.r9 for 8 3L6(8) daonstraciou.                  Neverthelur,                more dat8fhd              d&t8 ma9 be necess8~                  in some instances                  if phyto-plankcoa        is 8 subscuti8l                    cospoaenc          of food ch~inr      rupportfng              the balanced            indigenous          popu-lation      or if the the&                        discharge          F, Libly          to cause a shift              tovarda          nuisance        specfas.           Ev en if fftm predictlous                    mot          be zude        on the basis of the Increased                data,        these data may be aecusuy            u a base for comparison                          with post-operational            ooultorin~            SUFTIJS        to    detect      long-cetm    c-          icy    shifts.
This d8t8 is the result of the modeling effort.
A. Standing          Crop Estimates.                   Estimates          of standiag          crop are useful                In determining the tiportancr                of ph9toplsnktoo                fn the productivity              of the impacted                body    of water.
UhLLa the results MJ be prasantrd in many fomacs, chum mggested plume conf lguretlons yle.Ld a gr8phfC portr8y8l of uhua the hut i8 going.
Productlvit9              is 8 prlnciprl                factor      Fn definlag          high and lov intp8cc                    areas.
Thue map8 are mcessq for makhg qualft8tfve end quantitative 8asueaants of biologid chuqes.
8,    Species        Comosftion              and Abundance.                Tuonomic fnforaatiou            will      char&ccrrire            the    ph9toplanktou ssroclated            with      the    dlschrge          area    8ud    will provide        buellae            data for        detecting          an9 shifts        Fn species            coapositioo            ~CCCYRp8Il9%Ilg thermal        discharte.              A change        in carpositiw ts oftea          an fadicatiou                that    a ouismce condition          ~9      occur        and that        the food usb of the spsta                is beFng altered.
3.5.4 Synthuti of dl fnformufoa Into
: c. Dellneatioa              of Euohotic              Zone.            The euphoric zone of 8 utter                column          is the upper layer into      which sufficient                  Light        penetrates              to penit          photosynthesis.                   The coaparisou                  of tttU      foam      to  the     conflgur8ticm                  of    the discharge            pluu      til        ladlcrte            hov mrch the thermal          discharge          will      affect            the produc-cfvlt9        of the lapacted                  body of meet.
%ut8r Ecosystr Ilrcloorle ZIm titer Ilrtiolulu of the dmOUStt8tlOn should s-rite the kay findings Fo 8 coucfse manner and should form 8 coop~ciag argument the the b8hnced.
: 2. Zooulankton              and    !4eroolankton.                  The tooplanktoo-maropknkcou                comuaity            Fs a ke9            supportive component            of    the 8quaclc            syst6,               It U a prinurp food source for La7781 fish                              urd      shellfbh            md also wkes up 8 portion                    of the diets                  of son            adult species.            MUIT bnportaut                species            of firh          urd wild-l..Ue have plm.kconlc                      life      sc8gos (termed                    mare-plalktou.            co dlffrrenciate                  cha        from org8nlws which      are      phaktonic            throughout              their        l otFr8    Life cycle).          If    8 huted          discharge            'tills        or prevents davelopment of the meroplanktoa,                                       fewer        adult    f-h      md shellffsh            vI.ll    be produced each yew. Estuarine anvir-nts                  arm upecirlly                  cricic81              because of their high productivity                    md uclliutloa                      u spawning and nursery        8ru8        for speclu              tith      merophnktwic                    lamse.
lndfgenoue comunlty vi11 be protected.
Speclflc          typa        of    data      8r8      osencl81              for    the f 0 Uovlag          rusoas        :
The r8cloeule should ticlude 8 sumery of m "over8l.l picture" of the ecosystem es projactod by the sLr Biotic Cacegoq Rationelms, the ruource zones f0p8Ct8dV end 8
A.      Standing          Crop      Estlaatu.                Inf omaatioa              on stmdbg            crop      helps Ln defitig                        the ioportmce of    zooplankton            8ndmeroplaakton                        Fn relation          to th8 productivity                  of the 8ff8Ct8d                      r~scm.          Aaf s:gPFf:c~t              change        in staodlag                crop becodag evident          during      posc-oper8cioual                        moltoring          ma9 fndlcate          an adverse FPpact                      resulting            from the huted          discharge.
8-7 Of Uhy the FPfomfiOa ia the
: 1.     Species          Comosition              8nd Abundurcr.                     These data will      ldeatify          dalornt            ~8x8 la the syscea                    and prwide            boo&e            lnfotmstlon                for observing changes accompmyfng                        th.~ldLscharge.                          Any l pprUfAtiVe tit8r8tiOll                          in    thr      Colrpoeition          8nd relative          abundance            of the tooplankton                        and wrcw p&a&m              coostlcucu              aa imbalance                  la the c-t7                and lndlcrter                posslbh              adverse lmp8ct.
: r8tiOMhS, 81OUg with the predlctl~r la cho IUS RetiOuele, the urglneerlog and hydrologic81
Spociu            data uad related                    cheml              colerancr fuforaation            8re 8ho            useful          Ln daveloping              therm1 llmlts        for the effluent.
: deer, 8nd other.kty
: c.     SS8SOUS1 v8ri8tiOnS.                        Zhi.8    bfO=CiOU                18 SSSSnCid            for 8888SBing inp8Ct                      because different speciSs,          vtch different                therm81 tolerances.
: facts, suggur th8t the balanced bdigeaour co~~icy will be protected.
becme          dcainant          l e v8rying          times of the put.
3.5.5 Suggested FOrmU for Type II DaOMtr8tlO!X
It till          also      show vhen the bportant                          mere plan&err            are present            fn the diSch8rge                  uea.
~EUUFLE)
D.      Die1      and    Tidal      Dfstributioa.                  knpling          co shuu die1      and    tidal        fluctuations              Lo depth          dlstribu-tioa      8re    n8cessrry          bec8uSe        zooplmakton              and aeroplanktoa                orgmimrs          dmonstr8te              distinct vertical          mwaneots            which ma9 be 8 function                          of both light              Lntenrfty          Snd tidal            Sc8ge.          The organias            8re      chur oulner8ble                to 8 dtsch8rge plume        Fn v8qing              degrees        at    different          tlmes of    the    day.
TABLE OF alrmmTs r,
: 3. H8bitst          Formera.             The role        of h8bit8t            former,           ln 8n rquatic          apta          remains unquestion8bl9                      unique          8ad l ssenrial          to the propag8tioa                    8nd well-being                  of fish.
Introducelou (Brief 1
sheUfish,              8nd vildlife.                PUrthemore,              h8bit8c formera,          prrticulrrLp              In the nurine              and uterine l nviromeocs            , 8re 8 Uaited                  resource,          slow to re-establish,            end non-renewable                    in some cues.                    These organims            ue      subject          to d8mege by I discharge plme        Fn 8 umber              of toys.          Boocad 8qwcic                  pl8ncs.
II.  
including            kelp,       aey      be dm8ged            or    destroyed            by ac8ssive            taaper8tures.              velocities,              turbidicy,            or sFlc8tion.              Organlms            aay be damaged or destroyed by chlorine              or other biocides                    contatied          in sinking plmes          chat flcm rloug                  the bottm            in vinter.
?bster Rationale for Dmonstretlw (see Section 3.5.4 for CoIltut III.
The-            discharges            map Affect            the natural            brlmce of the b8Ctati                    8nd tig8e          populSclons,              fmoriag the bacteria.                  This sfcuaffon,                in cunx, could mduce oxptmn Iroels                        by lncrusing                the 4~0unt of decorposing              mscerials            8nd could          adversely          affect habitat          f ormers.
Represent8cfve bportaut Spoclu Utlousle (Sectioo 3.5.2)
The    proposed          studies          represent          l  minimal          data be8e      for the evrluetlon                    of    the    8pplicmts l l~ibfllt~              for modification                  of    thermal          frument technology            requirrrents.                 The      d8t8      urn    ll8C8888r7 for    the folloving                reasons:
Iv.
A.      XaPPinl,.            Aaria          mapping        is    required          for a detailed          drpiceion            of    the    sprtilr        distri-butlou        of habitat            formats        Ln relation              to tha    projected            and    actu&l        plume      configuration.
Biotic Category Ratiou8les (Sacion 3.5.1)
A*
Phytoplanktaa 1,
Duirfon Critrrti
: 2.
Ilrtiorule
: 1.
Decision Criteria 2,
Batlonal~
C.
Ehblut
?orur8
: 1.
Dufrlon Critrria 9 r.
BAtioMle


B. SoeCies        Compositloa.              Species          composition lnforastlou          -1       Ldentify          the      types of hsbltst        toners        assoclsrrd            tich      tha dischsrge viclnitt        and provlda          a buis          for derormining chati          colersuce          levels      for selected              speciu.
CWLt MC WATER CIURACT~R ISTICS 9
Also, baseline            lafomaciou              on diversIcy                is l sentlsl          to dotermine          aa7 couporlrionrL shifts      In speciea tith              the sddition              of hut.
I I
Speciu        rsplacments            urn often            the first signa ot 8n ippeadlng                    ouls8ace          condition that ulclmstslp              luds        to costly            coocrol        and l rsdicstion          programs.
I I
C. Stsudlun        Crop Esti.matrs.                Studlsr          to dster-tine suronsl              Fncruses            In saudlag              crop blomsss senve tw purposes.                              First,       a oessursd        iatreue          Fn blomsss (dq weight) of prima-           producsrs        uver the grovfng suson        rsprssentr          8 couserpstlve                l stim8te of mt        productioa,           *lch        bs turn          repr*sant8          a gmsrsl        musurs        of tie functions1                    well-befng of the hsbltat              fotmers        and hews ref lscts cbe poceutisl            uell-bslxq            of the orgsnims dspeadsnt          ou tha        for    their        l accssa.            Verl-flcatlcm        of thir      relstloushlp                requires coucomlcant            ssapllng        of the bablcsc                  for cbs pressace          or sbsencs of the principal sssociacsd          spsclss.          A seconds-                purpose for sesndin~           crop l stlaetea              1s to ldentifp say sccslsrstsd              pnah        of mscrophytss                  vlth lncrurln~            tapersrurss,               which could lud to oulsancs          conditions.
I I
D. IdentLiicstfon            of Threstened                or Eodsnaerrd Species        or Dominant Soecles                    of    Fish Depend-em Upou          Habitat      Formus.             This      fnf o~rlon ls useful        in usosla~               inpsct        fa the csse of rdvusa            affscts        from hutad              d%schrge.
I I
Poceutirl          indirect        adverse lspsct                might ochsmise          be orsrlooksd.
I t
: 4. SheUfish/Ifscrolnvertebrstss.                            Functfoudly                the mscrb fmertsbrsts            fauna      serves      aan      in    atnerous          usys.       They are an import&at             capooax            of    aquatic          food webs aad aany lmartabratu                  us      directly          hportaac            co aaa aa a source of hf+qusllt~                        proesin          snci u bsit              for sport snd crrcial                    f lshesmen.             They modify and candltlon        squaclc        rubstratss            and also rid ln the
1 I
, x Tim st Intnkc Velortty I
Rntc of Discharge I
I I kactionsl
, Channel I
I 1 Srtecna Rate of Circufntin X Capacity
, Ln,ad
, tntrsnce 1
J, Cooling Mater Flow D*echa;uc 1
1 lkm-I lAT CoolinR l CoollnR
, DlsrhsrRf
, Water I Water
, Velocity 40% 6 Lean 40-50 50-60 60- 70 70-80 80-90 90-100 I
I I
I 1
t I
I I
I I
I 1 I I I I
I I
I I
I I
I I
I A eeparstc table should be prepared for each
~enctating unit snd for all untts combined.
If seasonal variations
: occur, this should be indicated.
3 Variations of intake velocity with changes in ambient conditions (e.~.,
river
: flow, tidal
: height, water Level) should be noted.
4 Dischnr8e A T A T) however,
- Dischsqe teclperature
- intake temperattire (in aany
: cdsCb, condenser A
T io equivalent to diecharRe this is not the came for plants ulth supplemental cooling).
5 Discharge velocity should be provided at the point where cooling wster leaves the disciwt8@
rttucture.
Variations ln dtschsrRe
: velocity, with changes In embient cnndltions (e,B.,
river
: flow, tidal
: hefRht, vatcr level) should be noted.


breskdovo          and    dscompositlon                of detritus,            thus contrlbucfng            to dstrttal              food      chsias,        dscrital transport,          snd nutrient              cycling.           Estusrlae systms        us psrtlcularlp                    importsat          because of their      high productivity                    and their          role as ourseq ueu        for benthic            species.
D.
A therms1 dischrge                      my      hme s variety                of effects on ascroirrpertsbrstes.                         4wtic          Fnsects having an asrgent            stage my rater the atmosphere                                  rsrlp as I ruulc            of arttilcial                hesttig        of the use&r.
Shel~ish/~cro~rrtrbr~tes
The rdultr          msy emerge              into      cold    air snd die becsure of exposure,                      becauee food i:sw                    are      not Ln phme, or because                      normal        egg lsyfng          condirlons do not ~1st.                 L~rp81        fonts      of astins          Fnverte-brat&s msy dsvelop                    at such high mseabolic                        races chat the sumlval                  of individuala                asp be reduced during        SStClfng          or MCUraciOU.                  The-1          dfrchsrgu may stress            rcosysrsma            sad csuse          shifts        Ln comunitp l cnxccure        such char although                    the coral bictmsss msy not chsnge significantly,                                desirable          rpeclss my      be rsplrced            by less          desirable          species        not irrvolved        directly          in the food chain.                       The dls-charge of hut                may cause stratification,                          vhlch IMY dialnlsh              dissolved            oxygen        fn the bottom layer      and possibly              l liainsts          bsnchlc        fauns.
: 1.
Specific        types      of    dsts      ars    useful        for    chs folloving          reuow:
Declslon Criteria
A.     Stsndlne          Crop Esti.msrss.                   These l stlmsres are    useful        f.n dstsmining                the fpportaace of   sscrolmsrtsbrstss                      to    the productivity of   the     river        or strou            being      iapscted          by the dirchsrgs.                 k      previously            discussed, the productivity                  of the affected                portion of the systsm Ls a kay factor                                ln defining lw sad high Impact arus.
: 2.
B.     Canlty              Structure.               The total          umber of spsclss        and      the relative              sbuudancs of fadivldusl            species          (both capoasars                of divenlty)            fa sa squsclc                systa        sre    s ftmctfoa          of the physical,                  chaicrl,           snd blologicsl            characteristlcs                  of the system.
ution81e
Escsuss dlverslty                    ls sensitive              CO signlf-lcsnt      chsnges ia the chsrsctsriscics                                of the syatsm (such as lntroducsd                                hut),        it
: 1.
Decision Criterir
: 2.
matiolmlr P.
Other Vortebrstr Wildlife
: 1.
Decision Criteria
: 2.  
%atiollale
: 0.
Brfef Sunmary of Engfaeertrrg and Hydrological Data and Uhp cfie Data sre Supportive of the Predictioar fs the Above
~Cioacl88 VI.
D6onstr8riun Appendices A*
Information Supporting
*atar lbtionale B.
Informtfon Supporting Representative Lmportmt Specfea Rat Ionale C.
Information Supportiq Biotic ate#orf Rationales
: 0.
Engineering and BydrOlOgiC8l fnformatfun
: 1.
hsellne Data (see Section 4.1)
: 2.
Dfscussiw of Relationship of the Physical Data to the SIOU~J B.ationales aad Choice of.Yadels or Other Predictive
.?fathods E.
Supportiva
: Reports, Doctlents.
and Rau Data Not From the Open Scfentlfic Literature


csn be sn fndicator                    of l mlrumsntal                    stress.
3.5.6 Dlscusslon of Uhy the Raqulred Data are
Addltloprlly',             a reduction            ia the diversity                  of s systa          frequently            rsrults        La a diversion of    production          into      non-weful              forms.
?kcessary for
C. Drift.         In floving            waters,         drift        1s en important surpiv~          mschsnln            for many species                   of macroin-vertsbrstss.               Since it ts a purlve                        fuacciorr, the drifting            orguias            are subject              to lethal tupersturu              occurring          Frr e therms1 plme.
?Lking 316(a)
DrUt      is a stepvise              downstream phenomenon. end many l quecic            lnreccs        hsve a concomicsat                      upetresm movment          of reproducing                edults.             The plume asy thus affect           populatious            both upetresa                end dotrastrem          from the aru                where mortdfty actually        occurs.
Determfnations 3.5.6.1 Biologic81 Data.
D.   !hOP in&.           ?!spplng        is nscesssr]r              for   l detsilrd repressntsrion              of the distribution                      of rubsttstes.
: 1.
This grsphic            Infomclou              is fmportsnt                Ln the design of sampling                  studies,          evelustiag              the sui~bllity            of the systm                for various              benthic form8
Phrtoplanktoa.
* PLsh.       The dlschsrge              of wste          heat can affect                  fish populsclous          in many wys.                 The various              dscs required us ascssssry              in order          to provide              characterluticm of the Indigenous                fish comnnmity for the dsvolopment of the EIS concept,                   to identify            hsbltat          utlliutlon by the vsrlous              populstlous,             end to provide                  baseline lnformstioa          for compsrlson                vith      post-operstional studlu.
The organisms of the ph9toplaakton comunity are a principal food source for most zooplankton and for rome fish
Speclflc        dsts    psr~sters            sre    releted          to   poeeible adverse        Impacts        fra      the-1          dlschsrge:
: species, aa9
A,,   Speclss Lsvsl.                 fnformstian            01~ the spsvning habits      of ladlvldusl              species          srs necessary for uruslng              Impact        bscsuss spsmrlng                    times ssy      bs shifted          by cheraal            sdditioas            or hsblucs          msy be slrsrsd                by scour or by changes in the hsbitse                      forma          comunity.
-9 tiso become important Fn relatlou to Fodustrirl or cecrutid water use if blooms of certain species
Rsbltst        use by uy life                  stsge wy slmllsrly be sffscted.               Migration          Is an Important factor      to    coaslder          becsuse cherasl                  dlschsrges can block upstram                    migrstloa            routes      of spuming          adults        snd downstrrar                  movaasnes of a~11 fish.                 Coadltlon          factors          are
: occur, vhf&
can hsve a vuisty of dele-terious effects (a.g.,
clog filters and Fncrka
: pipes, lmp8rt tastes and odors to water:).
Men9 water
: bodies, such 88 the majority of rivers and
: strum, cut be clrssiffed 8s "lov potent181
?pp8Ct l.88 for ph@opl8nktoo, rnd relrtivdp Little infonmtioa Is aecess8.r9 for 8 3L6(8) daonstraciou.
Neverthelur, more dat8fhd d&t8 ma9 be necess8~
in some instances if phyto-plankcoa is 8 subscuti8l cospoaenc of food ch~inr rupportfng the balanced indigenous popu-lation or if the the&
discharge F, Libly to cause a shift tovarda nuisance specfas.
Ev en if fftm predictlous mot be zude on the basis of the Increased
: data, these data may be aecusuy u
a base for comparison with post-operational ooultorin~
SUFTIJS to detect long-cetm c-icy shifts.
A.
Standing Crop Estimates.
Estimates of standiag crop are useful In determining the tiportancr of ph9toplsnktoo fn the productivity of the impacted body of water.
Productlvit9 is 8 prlnciprl factor Fn definlag high and lov intp8cc areas.
8, Species Comosftion and Abundance.
Tuonomic fnforaatiou will char&ccrrire the ph9toplanktou ssroclated with the dlschrge area 8ud will provide buellae data for detecting an9 shifts Fn species coapositioo
~CCCYRp8Il9%Ilg thermal discharte.
A change in carpositiw ts oftea an fadicatiou that a ouismce condition
~9 occur and that the food usb of the spsta is beFng altered.
: c.
Dellneatioa of Euohotic Zone.
The euphoric zone of 8 utter column is the upper layer into which sufficient Light penetrates to penit photosynthesis.
The coaparisou of tttU foam to the conflgur8ticm of the discharge pluu til ladlcrte hov mrch the thermal discharge will affect the produc-cfvlt9 of the lapacted body of meet.
: 2.
Zooulankton and
!4eroolankton.
The tooplanktoo-maropknkcou comuaity Fs a ke9 supportive component of the 8quaclc
: syst6, It U a prinurp food source for La7781 fish urd shellfbh md also wkes up 8 portion of the diets of son adult species.
MUIT bnportaut species of firh urd wild-l..Ue have plm.kconlc life sc8gos (termed mare-plalktou.
co dlffrrenciate cha from org8nlws which are phaktonic throughout their l otFr8 Life cycle).
If 8 huted discharge
'tills or prevents davelopment of the meroplanktoa, fewer adult f-h md shellffsh vI.ll be produced each yew.
Estuarine anvir-nts arm upecirlly cricic81 because of their high productivity md uclliutloa u
spawning and nursery 8ru8 for speclu tith merophnktwic lamse.
Speclflc typa of data 8r8 osencl81 for the f 0 Uovlag rusoas A.
Standing Crop Estlaatu.
Inf omaatioa on stmdbg crop helps Ln defitig the ioportmce of zooplankton 8ndmeroplaakton Fn relation to th8 productivity of the 8ff8Ct8d r~scm.
Aaf s:gPFf:c~t change in staodlag crop becodag evident during posc-oper8cioual moltoring ma9 fndlcate an adverse FPpact resulting from the huted discharge.
: 1.
Species Comosition 8nd Abundurcr.
These data will ldeatify dalornt
~8x8 la the syscea and prwide boo&e lnfotmstlon for observing changes accompmyfng th.~ldLscharge.
Any l pprUfAtiVe tit8r8tiOll in thr Colrpoeition 8nd relative abundance of the tooplankton and wrcw p&a&m coostlcucu aa imbalance la the c-t7 and lndlcrter posslbh adverse lmp8ct.
Spociu data uad related cheml colerancr fuforaation 8re 8ho useful Ln daveloping therm1 llmlts for the effluent.
: c.
SS8SOUS1 v8ri8tiOnS.
Zhi.8 bfO=CiOU 18 SSSSnCid for 8888SBing inp8Ct because different
: speciSs, vtch different therm81 tolerances.
becme dcainant l e v8rying times of the put.
It till also show vhen the bportant mere plan&err are present fn the diSch8rge uea.
D.
Die1 and Tidal Dfstributioa.
knpling co shuu die1 and tidal fluctuations Lo depth dlstribu-tioa 8re n8cessrry bec8uSe zooplmakton and aeroplanktoa orgmimrs dmonstr8te distinct vertical mwaneots which ma9 be 8 function of both light Lntenrfty Snd tidal Sc8ge.
The organias 8re chur oulner8ble to 8 dtsch8rge plume Fn v8qing degrees at different tlmes of the day.
: 3.
H8bitst Formera.
The role of h8bit8t
: former, ln 8n rquatic apta remains unquestion8bl9 unique 8ad l ssenrial to the propag8tioa 8nd well-being of fish.
: sheUfish, 8nd vildlife.
PUrthemore, h8bit8c
: formera, prrticulrrLp In the nurine and uterine l nviromeocs
, 8re 8 Uaited
: resource, slow to re-establish, end non-renewable in some cues.
These organims ue subject to d8mege by I discharge plme Fn 8 umber of toys.
Boocad 8qwcic pl8ncs.
including
: kelp, aey be dm8ged or destroyed by ac8ssive taaper8tures.
velocities, turbidicy, or sFlc8tion.
Organlms aay be damaged or destroyed by chlorine or other biocides contatied in sinking plmes chat flcm rloug the bottm in vinter.
The-discharges map Affect the natural brlmce of the b8Ctati 8nd tig8e populSclons, fmoriag the bacteria.
This sfcuaffon, in
: cunx, could mduce oxptmn Iroels by lncrusing the 4~0unt of decorposing mscerials 8nd could adversely affect habitat f ormers.
The proposed studies represent l minimal data be8e for the evrluetlon of the 8pplicmts l l~ibfllt~
for modification of thermal frument technology requirrrents.
The d8t8 urn ll8C8888r7 for the folloving reasons:
A.
XaPPinl,.
Aaria mapping is required for a
detailed drpiceion of the sprtilr distri-butlou of habitat formats Ln relation to tha projected and actu&l plume configuration.  


dl-useful        In eval~ution            bscsuss        hut      additiona esy cau8e s loss of condition                              in certain speciss , l spscirlly                  in ulntsr          vhea their metabolic            race is still            high      but food supply fs love The      lacldeace          of  dlsuse        and      psrssltlr            my Factuse            with    s rise      In vster          tmperature.
B.
Age snd grovth                data    are helpful            la coeparlng affected            and    ooo-affected            areas,        prt      and port-operstimsl                  conditions.
SoeCies Compositloa.
: 8. Comnrtlnicv          Lsvel.      Dscs on species                cowpositioo, relrtivs            sbundsnce,        and    prlncipsl          usoci~tions vi11      define        the domlnrnc            fish species              l f chs sits.        ~rry epprecirbls              &sage          la there permeters slgnds          an imbslsacs            la the c cmmunlty sad mmey indicate            sn adverse          impact resulting                from the thenul          discharge.           Species Fofomstion                    1s slso nscs8ssry            for dsveloplag            therms1 lfmlts              for the effluent.
Species composition lnforastlou
C.     !4soulng.             3sps are required                in order          to repressat habitat          l  reu      (used for rpsuaiag,                  migracloa,          etc.)
-1 Ldentify the types of hsbltst toners assoclsrrd tich tha dischsrge viclnitt and provlda a buis for derormining chati colersuce levels for selected speciu.
IIZ relatiou            to chs coafigurstloa                  of the dirchuge plme,
: Also, baseline lafomaciou on diversIcy is l sentlsl to dotermine aa7 couporlrionrL shifts In speciea tith the sddition of hut.
: 6. Other Vertebrate                  WUdlife.            Dsts vi11 be required                      fa relstlvely            few      cuss      for     this    blotlc        utsgoq.               In those      cases where data fs requlrsd,                              the type of d8rr needed is decided                  by the rpplicsat.                   The dsts sslectsd          should be the least smouat of dsts oecssssry to cmplscs              this ssctioa          of the dmoascrscioa.
Speciu rsplacments urn often the first signa ot 8n ippeadlng ouls8ace condition that ulclmstslp luds to costly coocrol and l rsdicstion programs.
7, Reorssentstlve                Imuortant        Soecles.             HekLry      predlctions sbout "uhst            till      hsppea      are difficult              tithout        detailed laformstlou            ou the l mriromaotal                    rsquirrentr              of cmltlu                  or at lust            msay populstloas                  and    species.
C.
  & oentloned                in section        3.5.2,        it is not l conomiully fssslble          to study          uch      spscles        ln srut            d&t&F1 8~ uch sits. Therefore 8 feu spsclss are sshctsd for daretied          hborsto~            and literature                surrrey.       The dstr requlraents                of Tables A and 8 (sectlou                          3.5.2.2)        us rscomsndsd              se beiag helpful                co those making 316(s) dsclrloms          for the follting                  rsssoas:
Stsudlun Crop Esti.matrs.
Studlsr to dster-tine suronsl Fncruses In saudlag crop blomsss senve tw purposes.
: First, a
oessursd iatreue Fn blomsss (dq weight) of prima-producsrs uver the grovfng suson rsprssentr 8 couserpstlve l stim8te of mt productioa,  
*lch bs turn repr*sant8 a
gmsrsl musurs of tie functions1 well-befng of the hsbltat fotmers and hews ref lscts cbe poceutisl uell-bslxq of the orgsnims dspeadsnt ou tha for their l accssa.
Verl-flcatlcm of thir relstloushlp requires coucomlcant ssapllng of the bablcsc for cbs pressace or sbsencs of the principal sssociacsd spsclss.
A seconds-purpose for sesndin~
crop l stlaetea 1s to ldentifp say sccslsrstsd pnah of mscrophytss vlth lncrurln~
tapersrurss, which could lud to oulsancs conditions.
D.
IdentLiicstfon of Threstened or Eodsnaerrd Species or Dominant Soecles of Fish Depend-em Upou Habitat Formus.
This fnf o~rlon ls useful in usosla~
inpsct fa the csse of rdvusa affscts from hutad d%schrge.
Poceutirl indirect adverse lspsct might ochsmise be orsrlooksd.
: 4.
SheUfish/Ifscrolnvertebrstss.
Functfoudly the mscrb fmertsbrsts fauna serves aan in atnerous usys.
They are an import&at capooax of aquatic food webs aad aany lmartabratu us directly hportaac co aaa aa a source of hf+qusllt~
proesin snci u bsit for sport snd crrcial f lshesmen.
They modify and candltlon squaclc rubstratss and also rid ln the  


A. They allov      an l etlmstiuu    of the rlts    of the uus      which till    be ucluded      for ksy blologicsl fuz~ctions    and the durstlon      of the uclusioa.
breskdovo and dscompositlon of detritus, thus contrlbucfng to dstrttal food
B. They provide      the basis    for l c least    rough predlctlons      of high temperature        sumival,   heat and cold    shock,   rad affects    on reproductloo and growth.
: chsias, dscrital transport, snd nutrient cycling.
Estusrlae systms us psrtlcularlp importsat because of their high productivity and their role as ourseq ueu for benthic species.
A therms1 dischrge my hme s variety of effects on ascroirrpertsbrstes.
4wtic Fnsects having an asrgent stage my rater the atmosphere rsrlp as I ruulc of arttilcial hesttig of the use&r.
The rdultr msy emerge into cold air snd die becsure of exposure, becauee food i:sw are not Ln phme, or because normal egg lsyfng condirlons do not
~1st.
L~rp81 fonts of astins Fnverte-brat&s msy dsvelop at such high mseabolic races chat the sumlval of individuala asp be reduced during SStClfng or MCUraciOU.
The-1 dfrchsrgu may stress rcosysrsma sad csuse shifts Ln comunitp l cnxccure such char although the coral bictmsss msy not chsnge significantly, desirable rpeclss my be rsplrced by less desirable species not irrvolved directly in the food chain.
The dls-charge of hut may cause stratification, vhlch IMY dialnlsh dissolved oxygen fn the bottom layer and possibly l liainsts bsnchlc fauns.
Specific types of dsts ars useful for chs folloving reuow:
A.
Stsndlne Crop Esti.msrss.
These l stlmsres are useful f.n dstsmining the fpportaace of sscrolmsrtsbrstss to the productivity of the river or strou being iapscted by the dirchsrgs.
k previously discussed, the productivity of the affected portion of the systsm Ls a kay factor ln defining lw sad high Impact arus.
B.
Canlty Structure.
The total umber of spsclss and the relative sbuudancs of fadivldusl species (both capoasars of divenlty) fa sa squsclc systa sre s
ftmctfoa of the
: physical, chaicrl, snd blologicsl characteristlcs of the system.
Escsuss dlverslty ls sensitive CO signlf-lcsnt chsnges ia the chsrsctsriscics of the syatsm (such as lntroducsd hut),
it


3.6      Type    III    Lov Potsntl8l              Impact      Detsrminst1ous If    the    Rsgloasl      Administrstor/Director                    decermiae8,           after      urly sCrunin#          St~diS8,      chat      the   site    is    one    of   lov    potsntisl        impact      for    til bioclc    c8tegorles.          the    applicant        my      elect      to  do  a "short        tom      daon-strstiou,         the "Lov Potsatisl              Impact        Type    III    Dmonstrscicm."                The basic coacepc      1s chat chose 8ppllcsnts                    vhlch hsve rites                snd proposed            f8cllities vhlch obviously              pose little          poteatisl          chrut        to the bslsacsd            fadigeaous populatioa            should be required              to do 1s~ utsnsive                    (and upsasiva) 8qustic      studies        than other (more poorly                    sftsd      or ochervlse          having more poteati8.L        for adverse tipact)                8pplicsacs.
C.
Type      XII demoastratioas              la general            are essentially              say sIteraw tlve danoastr8tiou              type      agreed      upon      by the spplicsat              snd the Eegioasl Mmfnistrrtor/Dfrector.                       The Lou Potsnclal                  Lmpact    Type    III    dmoastrseioo proposed          here    Fs simply a recommended "short                          fotm" daonstratioo                  vhich coaslders          lnfomstioa          from uch          SFotLc        category.           This ensures thst no major biotic            catsgo~        ls ignored          Ilcogether            8ad thus ensures              thse both the rsgulrcory              ageuciss      sad    the rpplicsat              hsve ewmtied              Sad -de judgaasocs        for esch biotic              cstego~,          but discourages              collection          of
csn be sn fndicator of l mlrumsntal stress.
~~sss      or    uaaeeded      data, After        the prsldminaq              screening          scucilss sad detsmiastloas                        thee 811 biotic            categories        are of lou pocsncisl                    impact,     rhe spplicsac suanurites            this Fnfomstlua              (rloug      tith      eaginsoriag          8ad hydrological dst8 sad say ocher psrtinenc                        lnfomstlon)              fn one m8stsr r8cionsle                    rnd submits      the daPowtrstlon                  co the Esgloasl              Administr8tor/Dlrsctor.
Addltloprlly',
The fonut          of the rubmitts1                should be siPll8r              to that sugguted ta section          3.5.5 ucspt            that the RIS sectious                    should    br deleted.
a reduction ia the diversity of s systa frequently rsrults La a diversion of production into non-weful forms.
Drift.
In floving
: waters, drift 1s en important surpiv~
mschsnln for many species of macroin-vertsbrstss.
Since it ts a purlve fuacciorr, the drifting orguias are subject to lethal tupersturu occurring Frr e therms1 plme.
DrUt is a stepvise downstream phenomenon.
end many l quecic lnreccs hsve a concomicsat upetresm movment of reproducing edults.
The plume asy thus affect populatious both upetresa end dotrastrem from the aru where mortdfty actually occurs.
D.
!hOP in&.
?!spplng is nscesssr]r for l
detsilrd repressntsrion of the distribution of rubsttstes.
This grsphic Infomclou is fmportsnt Ln the design of sampling
: studies, evelustiag the sui~bllity of the systm for various benthic form8
* PLsh.
The dlschsrge of wste heat can affect fish populsclous in many wys.
The various dscs required us ascssssry in order to provide characterluticm of the Indigenous fish comnnmity for the dsvolopment of the EIS concept, to identify hsbltat utlliutlon by the vsrlous populstlous, end to provide baseline lnformstioa for compsrlson vith post-operstional studlu.
Speclflc dsts psr~sters sre releted to poeeible adverse Impacts fra the-1 dlschsrge:
A,,
Speclss Lsvsl.
fnformstian 01~ the spsvning habits of ladlvldusl species srs necessary for uruslng Impact bscsuss spsmrlng times ssy bs shifted by cheraal sdditioas or hsblucs msy be slrsrsd by scour or by changes in the hsbitse forma comunity.
Rsbltst use by uy life stsge wy slmllsrly be sffscted.
Migration Is an Important factor to coaslder becsuse cherasl dlschsrges can block upstram migrstloa routes of spuming adults snd downstrrar movaasnes of a~11 fish.
Coadltlon factors are


3.7        Ocher Type III            DMOnStr8tiOw          (Biological, Eaginesrlng,          and Other Dsu)
dl-
Those        applicmts          not qrulifying            for a Low Potential              Impact d-on-stration        snd sot          duirlng        to do a Type II dmon8trstiou.                       may (vlth        the urittsn      cuactarrsnce              of the Rsglonsl            Administrstor/Dlrector)                do 8 repdrr Type IIf d~ouscrstlou.                        & Type III          daoartratiou          prwldes        for the suhmittsl          of auy Fnfor~~ion                which chs Rsglousl            Adainistrstor/Dfrsctor belisvss        msy be necessary                or appropriste            to fsc~ltats          svalustlon        of 8 psrticulrr            dtichsrge.            This dsmonstration              also propides          for subaittal          of any additlonsl                iafonsscion          which the applic8at              msy wish to hsve considered.
: 8.
Esch Type XXI d~on8tration                          should conrist          of lufofustion          and data appropriate            co the case.
useful In eval~ution bscsuss hut additiona esy cau8e s loss of condition in certain speciss
Docalled            defialtion        of 8 generally          8pplicable        Type III      demoa-rtration        fr    sot    possible      because        of the range        of potsncirlly          rslsvant fnformatlon;              the     develophag        sophistlcstlon          of Fnformstlao          coUsctlon 8ud svslustlon                tschaique8        and kawtsdge          , and the cue-specific                  ascure of the dsmonstrstiou.                       Prior    to undertaking            any Type 111 demoustrstfua, the. applicmt              should consult            tith      and obtain        chs sdvics        of the Ragloud UmiaistrstorfDlrector                      regudlag          a proposed speclflc              plan    of study md daouscr8rlon.                   Dectilon      guidance        my also be sqgutsd.
, l spscirlly in ulntsr vhea their metabolic race is still high but food supply fs love The lacldeace of dlsuse and psrssltlr my Factuse with s rise In vster tmperature.
If      the    site      ls one of        low potentid          Wpscc      for    most biotic categories            and/or        thsrs    are other factors              (mall    size or volms              of wter      impsc ted, lov percsacrgs                      of crou      section    of rscsivFng          vstsr l ffscrsd,         etc.1      suggesting        low pocsutirl          for aquatic        tipact,      the dsmon-strscion        usy not need to be completed                        la much more decal1 thsa the Lov Potentirl          -act          daonstrstlon            outlined      Fn section      3.6.       For most other sftes.     the drronstrstion                  should reflect            a degree of detail            and degree of proof coapsrsbls                    to chs Type II dem8trscion                    (section        3.5).      WhF1e Type 111 information                      msy be different          la thrust      sad focusI proofs              should be generaLly            u coqrehsu8ive                  u in Type If daoustrations                    and should rurrlt      in sirilsr            lmels      of usursncs          of biotic      protection.
Age snd grovth data are helpful la coeparlng affected and ooo-affected
kch        Ftr      of laforaation            or data submitted            8s a part of a Type 111 d~oaatrstion                  should be sccompsaled                by ratloualss          coaparable        co thosa mtUaod                  la sottiow          3.5.1 sad 3.5.0.              The forast        of the dmautr8tioo                should ba simllsr              co thse outliaed          la section        3.5.5 except that the US ssctluus                          should be deleted.
: areas, prt and port-operstimsl conditions.
Comnrtlnicv Lsvel.
Dscs on species cowpositioo, relrtivs sbundsnce, and prlncipsl usoci~tions vi11 define the domlnrnc fish species l f chs sits.  
~rry epprecirbls
&sage la there permeters slgnds an imbslsacs la the c cmmunlty sad mmey indicate sn adverse impact resulting from the thenul discharge.
Species Fofomstion 1s slso nscs8ssry for dsveloplag therms1 lfmlts for the effluent.
C.  
!4soulng.
3sps are required in order to repressat habitat l reu (used for
: rpsuaiag, migracloa, etc.)
IIZ relatiou to chs coafigurstloa of the dirchuge
: plme,
: 6.
Other Vertebrate WUdlife.
Dsts vi11 be required fa relstlvely few cuss for this blotlc utsgoq.
In those cases where data fs
: requlrsd, the type of d8rr needed is decided by the rpplicsat.
The dsts sslectsd should be the least smouat of dsts oecssssry to cmplscs this ssctioa of the dmoascrscioa.
7, Reorssentstlve Imuortant Soecles.
HekLry predlctions sbout "uhst till hsppea are difficult tithout detailed laformstlou ou the l mriromaotal rsquirrentr of cmltlu or at lust msay populstloas and species.
oentloned in section 3.5.2, it is not l conomiully fssslble to study uch spscles ln srut d&t&F1 8~ uch sits.
Therefore 8 feu spsclss are sshctsd for daretied hborsto~
and literature surrrey.
The dstr requlraents of Tables A and 8 (sectlou 3.5.2.2) us rscomsndsd se beiag helpful co those making 316(s) dsclrloms for the follting rsssoas:


3.8        Decialon      Crlterfa 3.8.1      Siotlc      Catogoriu Decirh~         critetla        for each biotic            category        are    given      in section 3.3. Tha  R8gtoml          hdainirtr8torfDitrctor                  vi11    compare        the rationales (and other      data) for uch                bfoeic      utrgory        tith      the decision          critarir      Fn rectfoa    3.3 and determine                if tha      decfsiou      criteria        h-r      been set.
A.
3.8.2      Representative              ~brportant        Species The Ration81            Admfnistrator/DFrector                  will      find    the Representative Important      Species Rationale                  and other        RIS Fofomatioa              co be unacceptable if tha information              presented:
They allov an l etlmstiuu of the rlts of the uus which till be ucluded for ksy blologicsl fuz~ctions and the durstlon of the uclusioa.
: 1. 1s too        Incomplete          to  allow      a clear        assesment;          of 2.. sugguts          (or does not provide                   s couvFncing          argument to the       contrary)          chat the balanced              indigenous          popu-lation        msp suffer          8pprrcl&blr          ham because of:
B.
A.      high     taperature            sumfval          factors;
They provide the basis for l c least rough predlctlons of high temperature
: 8.      hut      or cold         shock;
: sumival, heat and cold
: c.      improper        temperature          for    grovth,        dmelopmeot, and reproduction;                or D.      the    aclusioa          of arus        and volmnes          of  water fror    the above functions                In critical          ccmbtnr-tlous      of time &ad spea.
: shock, rad affects on reproductloo and growth.  
3.8.3      Resource          Zones      ln    Aquatic      Systema Ibe    stratagles          for    reproduction,          growth,        sad surplval          of the Fodigaxour      bfou        of frrrhmtrr            , l stuariae.          and marine        ecosystems          are keyed to    spatial        and taporal            variatfons        ln the structure                (physical        and chmical)      of thm l uvironunt                . rtris structural              variation          fa the euvfron-ment, l      it rolaeu            to tha biota            end to uses by ma, has led to the coocrpt    of ruource            or @value zuaes            for    usa la maltaacing                or predictfng the L-e1      of dauge            to quatic          systems from human rctivitles.                            Since such zouea rev            Fo location,            aim,      semen      of utilization,              and criticality of fuactlon
* thefr        identFflcatlon            is tiso urefti              ln QlanoAng purposes such u tha ritlng                of olxing          roaee for huted              dirchargu.            Appliut      loo of this    concept        involves        the ldentlflcatlon                and mapping of resource


toaas      lrrd    criclcil        fuactlous
3.6 Type III Lov Potsntl8l Impact Detsrminst1ous If the Rsgloasl Administrstor/Director decermiae8, after urly sCrunin#
* so that            mixing          zones      can be sited              in at-        having          mIniSum        adverse          impact          00 8qtutlc              resources.             hslc      precepts necessary            to spplfcrtion                of    the     resource            malag          concept        Include:
St~diS8, chat the site is one of lov potsntisl impact for til bioclc c8tegorles.
I.      111    dirchrgu                Fn tha          vater        body segment must                  be cooridered.
the applicant my elect to do a "short tom daon-
: 2.      T&o acceptable                uu          of &uge                is rehtad            to   the ruource          vrluo      of tha impacted aru.
: strstiou, the "Lov Potsatisl Impact Type III Dmonstrscicm."
: 3.        In  casw        where        tha    l ffrctr          of      the    dfrchrrged            ussts are tr8nsl tory,               the     timing        of    oixiag          zone    use    is related        to suso~l                utilization                of    the    Impacted UU.
The basic coacepc 1s chat chose 8ppllcsnts vhlch hsve rites snd proposed f8cllities vhlch obviously pose little poteatisl chrut to the bslsacsd fadigeaous populatioa should be required to do 1s~
: 4.      The accepuble                aru of damage Fs related                                to the coul      mount          of l qulvclent                  l ru      avaflable          fn    cha uacsr body segment.
utsnsive (and upsasiva) 8qustic studies than other (more poorly sftsd or ochervlse having more poteati8.L for adverse tipact) 8pplicsacs.
brus      supporting              critical              functions              should       be moldad          (note      if-        3 above).
Type XII demoastratioas la general are essentially say sIteraw tlve danoastr8tiou type agreed upon by the spplicsat snd the Eegioasl Mmfnistrrtor/Dfrector.
: 6.      Acceptable            damage lr            related            to    species        geaerrtioa time and/or            frctmdlty.
The Lou Potsnclal Lmpact Type III dmoastrseioo proposed here Fs simply a recommended "short fotm" daonstratioo vhich coaslders lnfomstioa from uch SFotLc category.
: 7.       For 8 given            loatiou.                the   auller              the     dauged        l ru the  bettsr.
This ensures thst no major biotic catsgo~
3.8.3.1              Tv~ic8.l        R8rourco          Vrluo        Zones.
ls ignored Ilcogether 8ad thus ensures thse both the rsgulrcory ageuciss sad the rpplicsat hsve ewmtied Sad
The foll&g                  mnotrted              list        Frrcludes        resource          vtiue      zones uhfch        should be considered                      in the         deslgaetion                of mixlag          tonaa for huted          disckrgu:
-de judgaasocs for esch biotic cstego~,
: 1. SPmnlnn            Sites      l      Reproduction                Is otwlously              a critIca            function            in    the sUrpiv4l              of l sprcies.
but discourages collection of
Im factors              of fsportaace                  Frr duQwtLng                  mixing zome are the oftm                          LimIted          area of habitat ruitable            for tha spmuiag                      of a speciea              and tha limited          tka        d-g            which rpwulng                    occura.
~~sss or uaaeeded
* A  zone      hrping      l  critical            fmctiod              is me that prwlder                          8 -jot        tm-tributfon            to prinrq            productivity                or ti oue that Is limited                              In utent rad necersaq                for      tha propagstlon                    urd      sumiv8l            of  A species.
: data, After the prsldminaq screening scucilss sad detsmiastloas thee 811 biotic categories are of lou pocsncisl
: impact, rhe spplicsac suanurites this Fnfomstlua (rloug tith eaginsoriag 8ad hydrological dst8 sad say ocher psrtinenc lnfomstlon) fn one m8stsr r8cionsle rnd submits the daPowtrstlon co the Esgloasl Administr8tor/Dlrsctor.
The fonut of the rubmitts1 should be siPll8r to that sugguted ta section 3.5.5 ucspt that the RIS sectious should br deleted.  


ff    the availability                of spmntig            rices    for an Fnpor-tant      species      Is Limited            ln extent,          then such arus can gmmra.Up              be avoided            and should          aot bo dulgnrted for the dispoul                  of uate          hat.          If it is totlllp iapouible            to mold such alms,                       then the use for mixing        should be timed to avoid                        cho period          of speming.            Seuooll          avoidance          is only fusible              ti the effects            of tha disckrga                  are transitory.
3.7 Ocher Type III DMOnStr8tiOw (Biological, Eaginesrlng, and Other Dsu)
: 2. Food-Producing              Are88.          The productivity                of aquatic systaa        is directly            related        to tha inputs of organic        Meter        from green plants.                    Tha frecfloatFng, relatively          motile            microscopic            plants      (phytoplaakton) are short-llvad              tith      r8pld      tumwer          r8tes      and thw May not be critical                    in term          of mixing        zones for heated discharges.                     me rooted vucular                    plants      and macroalgae          (m8crophytes)              which, tith          suitable substrate,          grow from the shoreline                        to the depth of the photic          zone (depth to which 1 percent                            of incident        llaht      penetrates)             are relatively            long-lived      and perform            a nmabar of "crittcal                    functions Fncluding:
Those applicmts not qrulifying for a Low Potential Impact d-on-stration snd sot duirlng to do a Type II dmon8trstiou.
A.      The production              l d aport            of vast      qmntltles of orgmic          fuel la the foln of detrlcua-IOU ue among the most productive                                  plant cmttiu                knows.
may (vlth the urittsn cuactarrsnce of the Rsglonsl Administrstor/Dlrector) do 8 repdrr Type IIf d~ouscrstlou.  
B.      As a result          of an abundance                of food      and cwu.        thay    aeva        u nursery            arua      for the Immature        stagu          of many finfish              and shell-fish.
& Type III daoartratiou prwldes for the suhmittsl of auy Fnfor~~ion which chs Rsglousl Adainistrstor/Dfrsctor belisvss msy be necessary or appropriste to fsc~ltats svalustlon of 8 psrticulrr dtichsrge.
: c.      The    trapping          aad    recycling          of nutrients.
This dsmonstration also propides for subaittal of any additlonsl iafonsscion which the applic8at msy wish to hsve considered.
D.      The stahlllrrtiou                  8ad btidFng            of substrate.
Esch Type XXI d~on8tration should conrist of lufofustion and data appropriate co the case.
Included        Fn the      c8tegoq            of food-producing                area      are the ~tbade--the                   interf8ce          between terrutrial                  and 8vtiC          eaviromeuta-vhlch,                       fa addition          to the ebuve muereted                  functionsI            serve as freshnter rrchugo          arau      that motet            freshmter          Fnputr to labs, tivus,        and utuariu.
Docalled defialtion of 8 generally 8pplicable Type III demoa-rtration fr sot possible because of the range of potsncirlly rslsvant fnformatlon; the develophag sophistlcstlon of Fnformstlao coUsctlon 8ud svslustlon tschaique8 and kawtsdge
Bauueo        of the man7 Important                      and criticd.           functions perfomed,           the umtlanda              urd other 8rus              of macrophytr production          in aquatic            sptsms          should be avoided when planniag        and designating                mixing zones for heated dischr~u.
, and the cue-specific ascure of the dsmonstrstiou.
: 3. NursorT          be&S.            These ue            arua        having an sbuadmce of     food md          cwer          for    the     growth snd development of     tha urly            life        stages of may finfish                          sad shellfish.
Prior to undertaking any Type 111 demoustrstfua, the. applicmt should consult tith and obtain chs sdvics of the Ragloud UmiaistrstorfDlrector regudlag a proposed speclflc plan of study md daouscr8rlon.
Since th8 l rly                    life      stages        ue tha puiods                    of win-gsouth          rates      8ad muima                  Vuherbbtilty                  to predrtloa, the avallahifit7                      of sulcrble            uursery          mus        aey be the baltlag            factor          dotermialag              the 8buadurce              of 8 species.
Dectilon guidance my also be sqgutsd.
Thou, the zones of freshater,                                     l stu8rino.          8ad MrFoe scosystems            identified              u    nursery          l eas        h-e      high resource          value        sad should              genrrllly            be molded            when duignrtlag              mixing          zoaes.
If the site ls one of low potentid Wpscc for most biotic categories and/or thsrs are other factors (mall size or volms of wter impsc ted, lov percsacrgs of crou section of rscsivFng vstsr l ffscrsd, etc.1 suggesting low pocsutirl for aquatic
: 0.    !iinr8torv          P8thvms.                krcluded          La this          utegory          are routes          utFLised          for      IQPmeUt            to    md      frm      SpAMing grounds,          f l ediag          grounds,          sad      aursaq          areu;        thus, the     Itie      stage        lmofved            may be adult,                  egg,      18svd,      or juvaaa.                In soma cuu*                    thus        pbthV8y8 are very cfrcmrcribed;                  end total              bloekrge          could result              Ln atumla8tioa                  of 8 popuhtioa                    la the uter                body se-at.               Since these pbthW8p                          seme l "critlcrl fuaction,w            they hroe high resource                            value aad should be molded            ubea plmalng                  the discharge                of usts          hut.
: tipact, the dsmon-strscion usy not need to be completed la much more decal1 thsa the Lov Potentirl
In situations                where the umga of ~athuys                                  is s~soad and the effects                    of tha discharge                    us      transitory, drleteriow              effects            aa be rooided                  by proper          timing of dispoul.                  ti terms of povmr QhUtS,                                this sebsod us&g@ ir inpOtt&at                        Ln wbhbting                  the furlbtiity                Of sumud              mode operation                  of coolfng            devices.
-act daonstrstlon outlined Fn section 3.6.
A coarid~t8tiaa                  of     zoam          crlt1c.d           to    endurgarad            species, wage      by nterfwl              sad    vLldlKe,              aad    shellfish            beds ue          sddlcioasl rosourc*      +elues        that      must    bo    considered              tiea      selectLag            mIxLag      zones for    hutrd      dischrgu.
For most other sftes.
3 .a .3.2      Methodolon.
the drronstrstion should reflect a degree of detail and degree of proof coapsrsbls to chs Type II dem8trscion (section 3.5).
Am dlmxmsed                8bme. discharge                      sites        should be selected which      vLU    have      the      lust      impact cm Fnportaat                        resource          zmes sad criticti        functioas          .n The 8~lfCbti~                          Of this          COUcept        t0 tha s~rcti.oo        of mlxiag            tones Is 8 stepvisa                      procedure            lmolviag:
WhF1e Type 111 information msy be different la thrust sad focusI proofs should be generaLly u
            - A dtiinitioa                of thr        tlltSr        body l gmeat.
coqrehsu8ive u
            - Solectfoa            sad listLag              of    01s    lrr tha        water      body segmaat sad    sa l aaor8tioa                  of      their      strat8giu              for    propag8tloa urd    sumivti.
in Type If daoustrations and should rurrlt in sirilsr lmels of usursncs of biotic protection.
kch Ftr of laforaation or data submitted 8s a part of a Type 111 d~oaatrstion should be sccompsaled by ratloualss coaparable co thosa mtUaod la sottiow 3.5.1 sad 3.5.0.
The forast of the dmautr8tioo should ba simllsr co thse outliaed la section 3.5.5 except that the US ssctluus should be deleted.  


                                                - Preparation        of 8 188~ of tha water bod7 segment shoving zones of resourcs              use, including                arus      supporting            "critical fuxlctlon8."
3.8 Decialon Crlterfa 3.8.1 Siotlc Catogoriu Decirh~
- Amignmeat        of 8 noericll              v3ue.         per    unit    au,          to uch resource      1288.
critetla for each biotic category are given in section 3.3.
- Superiupose        predicted        plmes        on resource            mps        Snd select Sits8 hmFng lust                a&verse Impact                oa resource            values.
Tha R8gtoml hdainirtr8torfDitrctor vi11 compare the rationales (and other data) for uch bfoeic utrgory tith the decision critarir Fn rectfoa 3.3 and determine if tha decfsiou criteria h-r been set.
: 1. Uater    Body Se-eat.               In l&es            and l stuarles            Wing discrete        rad usFly          defimble            QhySiC8L bouadrries~
3.8.2 Representative
the duignrtioa              of the uter                body segment VFLL be 8 straightfomrd                  process.           In Large utu                bodies such 8s the Crut                LA8s,       open coastrl              sites,        aad
~brportant Species The Ration81 Admfnistrator/DFrector will find the Representative Important Species Rationale and other RIS Fofomatioa co be unacceptable if tha information presented:
          -jot      river      systema hrPLng no dSf laable                          and rruonablp sized phySica            bouad8rle8,             the seleccloa              of the uter body segment may pose 8 dtificult                              QrOblm,             Where they h8ve beea defined,                the water body segments decerpined by the State          Continuing          Pl8aaiag          Process uader section 303(e)     of ths Act till              8ppLy.
: 1.
Tho susoa81            movments          of important              species        of    rqtlrtlc life    muat be considered                  when deflnl.q              a water body segment.          The spaualag            sites,       nursev          situ,        aad rdult h8bitat      sites      of many freshrrrter                  8nd marine species (exmples        laclude        sa~oald~~            shrinps,        Cr8b8,        spot, croaker.        flounder,          white bus,            nlleye,          etc.)      SS~
1s too Incomplete to allow a clear assesment; of 2..
bS tidely        Sap&r&ted sad iaclude                    phy~lc8lly            dlffereat ater      bodiu.          SeSmlngly slight                  pacts          In the different uua      urSd by such species                  may result            ia effects which,     if considered            cuulatlvely,                uould      be iatoler8blr.
sugguts (or does not provide s couvFncing argument to the contrary) chat the balanced indigenous popu-lation msp suffer 8pprrcl&blr ham because of:
To svoid the potenttiLLy                      dlS&StrOUS            consequences of QiSCnS8.L CoWider8tlon                        of adverse impacts,                    the mter      body defialtioo              should be sufflcleut                      to coaslder potentid          *acts          throughout            the contiguous              r8age of poprrl8tiuns        of imporuat              speclu.
A.
: 2. Remasentative            Important          SQecles.            In geaenl,             this should      lacludo      811 specler            8ad cm            ities        of speclu        that    arm critlc8l            to the functioning                    and the productivlt7          of the Squetic                systa        defined        by the nter      body repent.                Sp8cific81l7              Fncluded        ar8 speciea      or cm          ities      which are:
high taperature sumfval factors;
          - Curcid.ly              8ad/or        recrutioarlly                vrlruble.
: 8.
          - Thruteaed            or  l udurgored.
hut or cold shock;
: c.
improper temperature for
: grovth, dmelopmeot, and reproduction; or D.
the aclusioa of arus and volmnes of water fror the above functions In critical ccmbtnr-tlous of time
&ad spea.
3.8.3 Resource Zones ln Aquatic Systema Ibe stratagles for reproduction,
: growth, sad surplval of the Fodigaxour bfou of frrrhmtrr
, l stuariae.
and marine ecosystems are keyed to spatial and taporal variatfons ln the structure (physical and chmical) of thm l uvironunt rtris structural variation fa the euvfron-
: ment, l
it rolaeu to tha biota end to uses by ma, has led to the coocrpt of ruource or
@value zuaes for usa la maltaacing or predictfng the L-e1 of dauge to quatic systems from human rctivitles.
Since such zouea rev Fo location,
: aim, semen of utilization, and criticality of fuactlon
* thefr identFflcatlon is tiso urefti ln QlanoAng purposes such u tha ritlng of olxing roaee for huted dirchargu.
Appliut loo of this concept involves the ldentlflcatlon and mapping of resource


                                                      -7o-
toaas lrrd criclcil fuactlous
                          - Primary          producer+-particularly                          thosa comunitias supporting            rrlat~valp          long-lived,              flxed-location species        thee      perform      aulriple            serrrlces          (fom        end stabFTise          habitat,          produce organic                  utter,          prwlde cwu)        .
* so that mixing zones can be sited in at-having mIniSum adverse impact 00 8qtutlc resources.
                          - Necuury              (e.g.,        in the food chain)                    for the well-beiag      of species            determlnad            in 1 and 2 above.
hslc precepts necessary to spplfcrtion of the resource malag concept Include:
Included        here are the ruvengara                          end decoqioeerr criticd          to the breakdoue                  aud utiliutlod                  of organic        aattar.
I.
: 3.   !dau Preoaration.                 tips    of    the    water        body     segment should,        as a miain~um, lncluda                      depth coucours , adjacent m elands,          eributariu              and, ln          l stuarlae          sltuati~us, the average            stiinitp          gradient          and srlinlty              straclflcatlcm should be visually                    expruaed          fn crosa secrlon.                      Rasource zmu          and areaa          perforahg            crltlcal            functiow*            should be superimposed                on the same or on a siailarly                                scaled aaP-        To avoid overlapping                    detail,          it may sometImea                be duireblr          to    prepare        separate          nmps      for    selected sp8c ies .
: 2.
: 0. AssimlmMt            of     Values.        Once the           resource          moues and moues support            Frrg crlciul              funcrioas            have been identified          and mpped.             thea ollues              per    unit      8ru can be assigned.                    If the effects                of the dlscharpe are traasitoq                and the use of the resource                            zone is seasonal,          the valuu            may change throughout                        the yaat.
: 3.
If the ame mpporting                        8 critical              funcfion          ir limfted        ia utant          and fs a function                    vhich limits tha abundance and/or                    ru.mlval          of a species,              then chat mm should be given a value of fnfinlty                                                  and thus excluded              ftoa mixing            zone use.             Other      zones      aup bo aas%gned valuu                    accordlxq          to chair          8ru      and chelr la~ortaace          in    ~fntaiaing            differeat            species.
: 4.
3.8.6    %stsr"        Eatl&e,            Daonstratioo                Irr  8  Vholr nm EagioIa            mtrator/Director                            VFll      find      the dmouatratioo succustul      K:
: 6.
: 1. It ia fouad to be acceptable                          la all of            the     cousfderattons outlfnsd        Frr stepe 20-25 of the decision                              crafn        (section 3.3.2).
: 7.
: 2. There    is    no cunvlnc~                 evidence        that there till                  ba daage to tha bjanced,              indigenous            c-          Icy, or c-lty                        tom-poueats,      tesultia~          in ruch phenomena aa thosa identified ln the definition              of l ppreciable              ham.
111 dirchrgu Fn tha vater body segment must be cooridered.
: 3. Receiving          water temp~raturss              outside        any (State          weal+
T&o acceptable uu of &uge is rehtad to the ruource vrluo of tha impacted aru.
llshed)        mlxfng zone will              not be in excess of the upper clapuacure              limits      for rumivti,          growth,        and reproduction, as appLtcab Le. of an9 RIS oceurriag                            Lxx tha tecelvfag          nter.
In casw where tha l ffrctr of the dfrchrrged ussts are tr8nsl
: 4. The    receiving          vatan        are not of such qualit                  that    Fn the absence            of the proposed thermal                discharge          ucesslva gronhs        of    aulsance        orgaaisms      wuld      uka      place.
: tory, the timing of oixiag zone use is related to suso~l utilization of the Impacted UU.
: 5. A zone of paeeage till                    not be Impaired            to  the atant that    it vill          not provide        for the uoraal            am-me          of populatioas            of RIS, d m+nrnt            rpeciea        of fish,        aad l coaomlcally            (ccmsrctil          or recrucloaal)              species      of fish.      shellfish,          and uildlffe.
The accepuble aru of damage Fs related to the coul mount of l qulvclent l ru avaflable fn cha uacsr body segment.
: 6. There till            be no sdvuse            Impact    on thrutened              or l udangered          species.
brus supporting critical functions should be moldad (note if-3 above).
: 7. Thue till            be no dutructluu              of ualque or rare habitat tithout        a detailed          and comfacirrg          juatlflcatloa              of uh9 the dutnxtlou                  should not consclcute                a buls        for denial.
Acceptable damage lr related to species geaerrtioa time and/or frctmdlty.
: a. The l ppllcsnt*s              ratiouales        present      convincing          smuries explaining            rrhp the planned use of biocfdu                        such as chlorine        till      not result        ti appreciable            bara to the btianced          bdigeuous          popuLatlou.
For 8 given loatiou.
the auller the dauged l ru the bettsr.
3.8.3.1 Tv~ic8.l R8rourco Vrluo Zones.
The foll&g mnotrted list Frrcludes resource vtiue zones uhfch should be considered in the deslgaetion of mixlag tonaa for huted disckrgu:
: 1.
SPmnlnn Sites l
Reproduction Is otwlously a
critIca function in the sUrpiv4l of l
sprcies.
Im factors of fsportaace Frr duQwtLng mixing zome are the oftm LimIted area of habitat ruitable for tha spmuiag of a speciea and tha limited tka d-g which rpwulng occura.
A zone hrping l
critical fmctiod is me that prwlder 8 -jot tm-tributfon to prinrq productivity or ti oue that Is limited In utent rad necersaq for tha propagstlon urd sumiv8l of A species.  


3.9  Non-Predfctfve          lhmonstratloos            (Type    I, Absence      of Prior      Appreciable        Earm) u   of the   d~onstraelcma          done for !IRC under the PirPorendm                    of U~dersteadiag      are predictive.           Therefore,     the     predictive        sections      of this   document mre conplated            first.      The EPA and other l geacles may decide    co mount a separate        effort      Co rsvire      thlr    section      at a later date. In the meansCIPe, moat of the tequlrmeots                      of swtim          3.2 (Decision    Trald , 3.3 (Early Screening              Procedures)        , 3.5 fTme II) ,
ff the availability of spmntig rices for an Fnpor-tant species Is Limited ln
and 3.6-3.8,     are applicable        for deterainiag          Lck of appreciable              ham (Tme I drosstrations).             The prtiv          Lmguege which is inapproprtice and should be deleted        is the language          on predictive          factors,      predictive models, and Representative            Important       Species (rectloas            3.5.2,   pafts of ocher sectloar,        and section      3.8.2).
: extent, then such arus can gmmra.Up be avoided and should aot bo dulgnrted for the dispoul of uate hat.
If it is totlllp iapouible to mold such alms, then the use for mixing should be timed to avoid cho period of speming.
Seuooll avoidance is only fusible ti the effects of tha disckrga are transitory.
: 2.
Food-Producing Are88.
The productivity of aquatic systaa is directly related to tha inputs of organic Meter from green plants.
Tha frecfloatFng, relatively motile microscopic plants (phytoplaakton) are short-llvad tith r8pld tumwer r8tes and thw May not be critical in term of mixing zones for heated discharges.
me rooted vucular plants and macroalgae (m8crophytes)
: which, tith suitable substrate, grow from the shoreline to the depth of the photic zone (depth to which 1 percent of incident llaht penetrates) are relatively long-lived and perform a nmabar of "crittcal functions Fncluding:
A.
The production l d aport of vast qmntltles of orgmic fuel la the foln of detrlcua-IOU ue among the most productive plant cmttiu knows.
B.
As a result of an abundance of food and cwu.
thay aeva u
nursery arua for the Immature stagu of many finfish and shell-fish.
: c.
The trapping aad recycling of nutrients.
D.
The stahlllrrtiou 8ad btidFng of substrate.
Included Fn the c8tegoq of food-producing area are the ~tbade--the interf8ce between terrutrial and 8vtiC eaviromeuta-vhlch, fa addition to the ebuve muereted functionsI serve as freshnter rrchugo arau that motet freshmter Fnputr to labs,
: tivus, and utuariu.
Bauueo of the man7 Important and criticd.
functions
: perfomed, the umtlanda urd other 8rus of macrophytr production in aquatic sptsms should be avoided when planniag and designating mixing zones for heated dischr~u.
: 3.
NursorT be&S.
These ue arua having an sbuadmce of food md cwer for the growth snd development of tha urly life stages of may finfish sad shellfish.
Since th8 l rly life stages ue tha puiods of win-gsouth rates 8ad muima Vuherbbtilty to predrtloa, the avallahifit7 of sulcrble uursery mus aey be the baltlag factor dotermialag the 8buadurce of 8 species.
: Thou, the zones of freshater, l stu8rino.
8ad MrFoe scosystems identified u
nursery l eas h-e high resource value sad should genrrllly be molded when duignrtlag mixing zoaes.
: 0.
!iinr8torv P8thvms.
krcluded La this utegory are routes utFLised for IQPmeUt to md frm SpAMing
: grounds, f l ediag
: grounds, sad aursaq areu;
: thus, the Itie stage lmofved may be adult,
: egg, 18svd, or juvaaa.
In soma cuu*
thus pbthV8y8 are very cfrcmrcribed; end total bloekrge could result Ln atumla8tioa of 8 popuhtioa la the uter body se-at.
Since these pbthW8p seme l
"critlcrl fuaction,w they hroe high resource value aad should be molded ubea plmalng the discharge of usts hut.
In situations where the umga of
~athuys is s~soad and the effects of tha discharge us transitory, drleteriow effects aa be rooided by proper timing of dispoul.
ti terms of povmr
: QhUtS, this sebsod us&g@ ir inpOtt&at Ln wbhbting the furlbtiity Of sumud mode operation of coolfng devices.
A coarid~t8tiaa of zoam crlt1c.d to endurgarad
: species, wage by nterfwl sad
: vLldlKe, aad shellfish beds ue sddlcioasl rosourc*
+elues that must bo considered tiea selectLag mIxLag zones for hutrd dischrgu.
3.a.3.2 Methodolon.
Am dlmxmsed 8bme.
discharge sites should be selected which vLU have the lust impact cm Fnportaat resource zmes sad criticti functioas
.n The 8~lfCbti~
Of this COUcept t0 tha s~rcti.oo of mlxiag tones Is 8 stepvisa procedure lmolviag:
- A dtiinitioa of thr tlltSr body l gmeat.
- Solectfoa sad listLag of 01s lrr tha water body segmaat sad sa l aaor8tioa of their strat8giu for propag8tloa urd sumivti.
- Preparation of 8 188~ of tha water bod7 segment shoving zones of resourcs
: use, including arus supporting "critical fuxlctlon8."
- Amignmeat of 8 noericll v3ue.
per unit au, to uch resource 1288.
- Superiupose predicted plmes on resource mps Snd select Sits8 hmFng lust a&verse Impact oa resource values.
: 1.
Uater Body Se-eat.
In l&es and l stuarles Wing discrete rad usFly defimble QhySiC8L bouadrries~
the duignrtioa of the uter body segment VFLL be 8 straightfomrd process.
In Large utu bodies such 8s the Crut
: LA8s, open coastrl
: sites, aad
-jot river systema hrPLng no dSf laable and rruonablp sized phySica bouad8rle8, the seleccloa of the uter body segment may pose 8 dtificult
: QrOblm, Where they h8ve beea defined, the water body segments decerpined by the State Continuing Pl8aaiag Process uader section 303(e) of ths Act till 8ppLy.
Tho susoa81 movments of important species of rqtlrtlc life muat be considered when deflnl.q a water body segment.
The spaualag
: sites, nursev
: situ, aad rdult h8bitat sites of many freshrrrter 8nd marine species (exmples laclude sa~oald~~
: shrinps, Cr8b8,
: spot, croaker.
: flounder, white
: bus, nlleye, etc.)
SS~
bS tidely Sap&r&ted sad iaclude phy~lc8lly dlffereat ater bodiu.
SeSmlngly slight pacts In the different uua urSd by such species may result ia effects
: which, if considered cuulatlvely, uould be iatoler8blr.
To svoid the potenttiLLy dlS&StrOUS consequences of QiSCnS8.L CoWider8tlon of adverse
: impacts, the mter body defialtioo should be sufflcleut to coaslder potentid
*acts throughout the contiguous r8age of poprrl8tiuns of imporuat speclu.
: 2.
Remasentative Important SQecles.
In
: geaenl, this should lacludo 811 specler 8ad cm ities of speclu that arm critlc8l to the functioning and the productivlt7 of the Squetic systa defined by the nter body repent.
Sp8cific81l7 Fncluded ar8 speciea or cm ities which are:
- Curcid.ly 8ad/or recrutioarlly vrlruble.  
- Thruteaed or l udurgored.  


4.0   Definitions and Concepts The definitions and descriptions in this section pertain to a number of terms and concepts which are pivotal to the development and evaluation of 316(a) studies. These are developed for a general case to aid the Regional Administrator/Director in delineating a set of working definitions and concise endpoints requisite to a satisfactory demonstration for a given discharge.
-7o-
: 3.
- Primary producer+-particularly thosa comunitias supporting rrlat~valp long-lived, flxed-location species thee perform aulriple serrrlces (fom end stabFTise
: habitat, produce organic
: utter, prwlde cwu)
- Necuury (e.g.,
in the food chain) for the well-beiag of species determlnad in 1 and 2 above.
Included here are the ruvengara end decoqioeerr criticd to the breakdoue aud utiliutlod of organic aattar.
!dau Preoaration.
tips of the water body segment
: should, as a miain~um, lncluda depth coucours
, adjacent m elands, eributariu
: and, ln l stuarlae sltuati~us, the average stiinitp gradient and srlinlty straclflcatlcm should be visually expruaed fn crosa secrlon.
Rasource zmu and areaa perforahg crltlcal functiow*
should be superimposed on the same or on a siailarly scaled aaP-To avoid overlapping
: detail, it may sometImea be duireblr to prepare separate nmps for selected sp8c ies.
: 0.
AssimlmMt of Values.
Once the resource moues and moues support Frrg crlciul funcrioas have been identified and mpped.
thea ollues per unit 8ru can be assigned.
If the effects of the dlscharpe are traasitoq and the use of the resource zone is
: seasonal, the valuu may change throughout the yaat.
If the ame mpporting 8 critical funcfion ir limfted ia utant and fs a function vhich limits tha abundance and/or ru.mlval of a species, then chat mm should be given a value of fnfinlty and thus excluded ftoa mixing zone use.
Other zones aup bo aas%gned valuu accordlxq to chair 8ru and chelr la~ortaace in
~fntaiaing differeat species.
3.8.6
%stsr" Eatl&e, Daonstratioo Irr 8 Vholr nm EagioIa mtrator/Director VFll find the dmouatratioo succustul K:
: 1.
It ia fouad to be acceptable la all of the cousfderattons outlfnsd Frr stepe 20-25 of the decision crafn (section 3.3.2).
: 2.
There is no cunvlnc~
evidence that there till ba daage to tha bjanced, indigenous c-
: Icy, or c-lty tom-
: poueats, tesultia~
in ruch phenomena aa thosa identified ln the definition of l ppreciable ham.
: 3.
Receiving water temp~raturss outside any (State weal+
llshed) mlxfng zone will not be in excess of the upper clapuacure limits for
: rumivti, growth, and reproduction, as appLtcab Le. of an9 RIS oceurriag Lxx tha tecelvfag nter.
: 4.
The receiving vatan are not of such qualit that Fn the absence of the proposed thermal discharge ucesslva gronhs of aulsance orgaaisms wuld uka place.
: 5.
A zone of paeeage till not be Impaired to the atant that it vill not provide for the uoraal am-me of populatioas of RIS, d m+nrnt rpeciea of fish, aad l coaomlcally (ccmsrctil or recrucloaal) species of fish.
shellfish, and uildlffe.
: 6.
There till be no sdvuse Impact on thrutened or l udangered species.
: 7.
Thue till be no dutructluu of ualque or rare habitat tithout a detailed and comfacirrg juatlflcatloa of uh9 the dutnxtlou should not consclcute a buls for denial.
: a.
The l ppllcsnt*s ratiouales present convincing smuries explaining rrhp the planned use of biocfdu such as chlorine till not result ti appreciable bara to the btianced bdigeuous popuLatlou.
3.9 Non-Predfctfve lhmonstratloos (Type I,
Absence of Prior Appreciable Earm) u of the d~onstraelcma done for
!IRC under the PirPorendm of U~dersteadiag are predictive.
Therefore, the predictive sections of this document mre conplated first.
The EPA and other l geacles may decide co mount a separate effort Co rsvire thlr section at a later date.
In the meansCIPe, moat of the tequlrmeots of swtim 3.2 (Decision Trald
, 3.3 (Early Screening Procedures)
, 3.5 fTme II) and 3.6-3.8, are applicable for deterainiag Lck of appreciable ham (Tme I drosstrations).
The prtiv Lmguege which is inapproprtice and should be deleted is the language on predictive
: factors, predictive
: models, and Representative Important Species (rectloas 3.5.2, pafts of ocher
: sectloar, and section 3.8.2).
4.0 Definitions and Concepts The definitions and descriptions in this section pertain to a number of terms and concepts which are pivotal to the development and evaluation of 316(a) studies. These are developed for a general case to aid the Regional Administrator/Director in delineating a set of working definitions and concise endpoints requisite to a satisfactory demonstration for a given discharge.
Adverse Environmental Impact Adverse aquatic environmental impacts occur whenever there will be damage as a result of thermal discharges. The critical question is the magnitude of any adverse impact.
Adverse Environmental Impact Adverse aquatic environmental impacts occur whenever there will be damage as a result of thermal discharges. The critical question is the magnitude of any adverse impact.
The magnitude of an adverse impact should be estimated both in terms of short term and long term impact with reference to the following factors:
The magnitude of an adverse impact should be estimated both in terms of short term and long term impact with reference to the following factors:
(1) Absolute damage (# of fish or percentage of larvae thermally impacted on a monthly or yearly basis);
(1)
(2)   Percentage damage (% of fish or larvae in existing populations which will be thermally impacted, respectively);
Absolute damage (# of fish or percentage of larvae thermally impacted on a monthly or yearly basis);
(3)   Absolute and percentage damage to any endangered species:
(2)
(4) Absolute and percentage damage to any critical aquatic organism (5) Absolute and percentage damage to commercially valuable and/or sport fisheries yield; or (6)   Whether the impact would endanger (jeopardize) the protection and propagation of a balanced population of shellfish and fish in and on the body of water to which the cooling water is discharged (long term impact).
Percentage damage (% of fish or larvae in existing populations which will be thermally impacted, respectively);
(3)
Absolute and percentage damage to any endangered species:
(4)
Absolute and percentage damage to any critical aquatic organism (5)
Absolute and percentage damage to commercially valuable and/or sport fisheries yield; or (6)
Whether the impact would endanger (jeopardize) the protection and propagation of a balanced population of shellfish and fish in and on the body of water to which the cooling water is discharged (long term impact).
Aquatic Macroinvertabrates Aquatic macroinvertabrates are those invertabrates that are large enough to be retained by a U.S. Standard No. 30 sieve (0.595-mm openings) and generally can be seen by the unaided eye.
Aquatic Macroinvertabrates Aquatic macroinvertabrates are those invertabrates that are large enough to be retained by a U.S. Standard No. 30 sieve (0.595-mm openings) and generally can be seen by the unaided eye.
Area of Potential Damage The area of potential damage for RIS is defined as that area of the thermal plume enclosed by the isotherm which coincides with the appropriate (designated by the Regional Administrator/Director) water quality criteria for that particular RIS. This area can be determined from the plume rose data specified in section 3.5.3.
Area of Potential Damage The area of potential damage for RIS is defined as that area of the thermal plume enclosed by the isotherm which coincides with the appropriate (designated by the Regional Administrator/Director) water quality criteria for that particular RIS. This area can be determined from the plume rose data specified in section 3.5.3.
Balanced, Indigenous Community The term "balanced, indigenous community" as defined here is consistent with the term "balanced, indigenous population" in section 316(a) of the Federal Water Pollution Control Act and 40 CFR section 122.9.
Balanced, Indigenous Community The term "balanced, indigenous community" as defined here is consistent with the term "balanced, indigenous population" in section 316(a) of the Federal Water Pollution Control Act and 40 CFR section 122.9.
A balanced, indigenous community consists of desirable species of fish, shellfish, and wildlife, including the biota at other trophic levels which are necessary as a part of the food chain or otherwise ecologically important to the maintenance of the community. In keeping with the objective of the Act, the community should be consistent with the restora-tion and maintenance of the biological integrity of the water. (See section 101(a).) However, it may also include species not historically native to the area which:
A balanced, indigenous community consists of desirable species of fish, shellfish, and wildlife, including the biota at other trophic levels which are necessary as a part of the food chain or otherwise ecologically important to the maintenance of the community. In keeping with the objective of the Act, the community should be consistent with the restora-tion and maintenance of the biological integrity of the water. (See section 101(a).) However, it may also include species not historically native to the area which:
: 1. Result from major modifications to the water body (impoundments) or to the contiguous land area (deforestation attributable to urban or agricultural development) which cannot reasonably be prevented, removed, or altered.
1.
: 2. Result from management intent, such as deliberate intro-duction in connection with a wildlife management program.
Result from major modifications to the water body (impoundments) or to the contiguous land area (deforestation attributable to urban or agricultural development) which cannot reasonably be prevented, removed, or altered.
: 3. Are species or communities whose value is primarily scientific or aesthetic.
2.
Result from management intent, such as deliberate intro-duction in connection with a wildlife management program.
3.
Are species or communities whose value is primarily scientific or aesthetic.
For purposes of a 316(a) demonstration, distribution and composition of the indigenous population should be defined in terms of the population which would be impacted by the thermal discharge caused by the alternative effluent limitation proposed under 316(a). A determination of the indigenous population should take into account all impacts on the population except the thermal discharge. then, the discrete impact of the thermal discharge on the indigenous population may be estimated in the course of a 316(a) demonstration. In order to determine the indigenous population which will be subject to a thermal discharge under an alternative 316(a) effluent limitation, it is necessary to account for all non-thermal impacts on the population such as industrial pollution, commercial fishing, and the entrapment and entrainment effects of any withdrawal of cooling water through intake structures under the alternative 316(a) effluent limitation. The above considerations will then make it possible to estimate the true impact of the thermal discharge on the population.
For purposes of a 316(a) demonstration, distribution and composition of the indigenous population should be defined in terms of the population which would be impacted by the thermal discharge caused by the alternative effluent limitation proposed under 316(a). A determination of the indigenous population should take into account all impacts on the population except the thermal discharge. then, the discrete impact of the thermal discharge on the indigenous population may be estimated in the course of a 316(a) demonstration. In order to determine the indigenous population which will be subject to a thermal discharge under an alternative 316(a) effluent limitation, it is necessary to account for all non-thermal impacts on the population such as industrial pollution, commercial fishing, and the entrapment and entrainment effects of any withdrawal of cooling water through intake structures under the alternative 316(a) effluent limitation. The above considerations will then make it possible to estimate the true impact of the thermal discharge on the population.


                                                          -7s B&~&UC&d, fndlmnous               Poouhtlon           (3IP)
-7s B&~&UC&d, fndlmnous Poouhtlon (3IP)  
            ?or     the purposes of 316(a)               dsmoascr8cioar~               the term balanced, lndi~snous       pOpId&CiOn"       is   synoaymow           tith       the tam       b81urc#d*         tndigsaou8 cmitj'           as def lnsd sbcme.
?or the purposes of 316(a) dsmoascr8cioar~
Cowuni     C?
the term
A czarnity         Fn general         is ury sssrrblsge               of populstioas           lfvtig Fn s prsscrlbad           us8 or physlcti             babltat;         Ft is an orgsolzsd             untc to the utsnc     that it has ch8rscrsrFsrics                     rddftioorl         to its Fndfvidu81             and populaclon       components,       and f~nctforrs           ss s unit         through       couplsd sstabolic cransf ormations.
: balanced, lndi~snous pOpId&CiOn" is synoaymow tith the tam b81urc#d*
Criclc81       Function     tons A zone Chat prwldss                 8 major coacrlbucion                 to prinun           productivity or fa one chat is lfmitsd                 in utsnt         8nd aecsrs8ry             for the propagation               and SuPivsl       of s speciss*
tndigsaou8 cmitj' as def lnsd sbcme.
Director The Director         of chs Strcs NPDES permit                       program       in   chose   Strrss vhich     have been delsg8tsd             th8 progrsm           by EPA.
Cowuni C?
Dlschame       ?~clnlCv Thr discharge         vlcinitj         ir chrc aru             described         by 8 r8diUS chat 1s l.S tines             the maxm             distance         from point         of disc)urgs           to wIthin     l°C of ablent.             Tim ares of the dischargs                     vicinity         Fa bssed on 8 30-50X v8ri8cion               La cha prediccivr                 therm81 plume modeling.
A czarnity Fn general is ury sssrrblsge of populstioas lfvtig Fn s prsscrlbad us8 or physlcti babltat; Ft is an orgsolzsd untc to the utsnc that it has ch8rscrsrFsrics rddftioorl to its Fndfvidu81 and populaclon components, and f~nctforrs ss s unit through couplsd sstabolic cransf ormations.
bominsnt       Sueciu Dominmnt       sp8cies     are dsflned           8s any       species       rsprssa~clng           f iv8 percart     of   the   tocsl   n-bar       of orgmisu               fa   the maple         colleccsd       according to roe---nded           sup1 ing p rocsdures .
Criclc81 Function tons A zone Chat prwldss 8 major coacrlbucion to prinun productivity or fa one chat is lfmitsd in utsnt 8nd aecsrs8ry for the propagation and SuPivsl of s speciss*
Estusrv An l scuat)       Fe dsff.ned u a semi-enclosed                       coucal         body of water which hu 8 frea connection                     vlth     chs open rea;           :t   is thus strongly affected       by cldrl     8ction,     end tithin           it 8ea utsr           Ls mlxsd (and usu~llp Qe8sur8bly       diluted)       Rich fresh #tar               from land drainage.                   It may be difficult       co pr8clsal~       d81iU88tA           the botandaq of l scwrine                     rad river
Director The Director of chs Strcs NPDES permit program in chose Strrss vhich have been delsg8tsd th8 progrsm by EPA.
Dlschame  
?~clnlCv Thr discharge vlcinitj ir chrc aru described by 8 r8diUS chat 1s l.S tines the maxm distance from point of disc)urgs to wIthin l°C of ablent.
Tim ares of the dischargs vicinity Fa bssed on 8 30-50X v8ri8cion La cha prediccivr therm81 plume modeling.
bominsnt Sueciu Dominmnt sp8cies are dsflned 8s any species rsprssa~clng f iv8 percart of the tocsl n-bar of orgmisu fa the maple colleccsd according to roe---nded sup1 ing p rocsdures Estusrv An l scuat)
Fe dsff.ned u
a semi-enclosed coucal body of water which hu 8 frea connection vlth chs open rea;
:t is thus strongly affected by cldrl
: 8ction, end tithin it 8ea utsr Ls mlxsd (and usu~llp Qe8sur8bly diluted)
Rich fresh  
#tar from land drainage.
It may be difficult co pr8clsal~
d81iU88tA the botandaq of l scwrine rad river  


h&ftatJ             b     the     uppar       ruchrJ           Of     J ftJJtl       -tJr       river     diJc&rging           into urine           rrPtJrJ.           Zhe     fatarfrC8             tJ   @rtSrJlly           J   d-c           entity     98-g dlily         end rusoarlly                 In geOgr8phical                     lac~clan.           IO such CJJSS,             determiru-clan of hJbiCJt                   boundaries             should       be l sc~bllrhed               by autu~l       Jgrrmeat           ou a cam-by-cm8                     b-18.           Vhere boundary                   determinscion             FJ not     clurly established,               bath artuev               Jnd river tmbitJt                       bialoglcrl         survey requirrears should be SltfJfisd                       ia J combimd                 d~ceralmtion                 far   emiranmmtrl effects           urd best available                       crchnolag7             far ~lmirtng               adverse       impact.
h&ftatJ b
Par     Field       Effect A far       fisld       affect         is any       perturb~tiao               of chr     aqrutfc       l caryrtm outside           of the       prims-           study Jru             that 1~ attributable                     co, or could ba upacted,             from     tha     the-1           dlschmgo             (taking         fnta     ~ccaunc chr fntersctfan at chm therm1                   campanent           tich       ocher       palhtm~cr).
the uppar ruchrJ Of J ftJJtl  
Par       Firld       Study       Area       (mSA)
-tJr river diJc&rging into urine rrPtJrJ.
The far field                 study         area ir         that portion               of the receiving
Zhe fatarfrC8 tJ  
#car         body, uclu8ive                   of   the prima-                 study area,             In which impmts               of chs the-1                 discharge             ad     ftr       fateractian             vtth other pallut~nts                   are Ifhly           to     occur.         The     aru       sLl1         include:
@rtSrJlly J d-c entity 98-g dlily end rusoarlly In geOgr8phical lac~clan.
L,     The zones             uherr         th8 habitat8               are     campersblr           to thou       aistin~             ia     the prImarT             rcudy       Jru,     and
IO such
: 2.     The wnes lnhabltrd                           by popul~tlans               of orgasms that may encounter                         the the-1               rffluanc       during their       life       hlstoq.
: CJJSS, determiru-clan of hJbiCJt boundaries should be l sc~bllrhed by autu~l Jgrrmeat ou a cam-by-cm8 b-18.
Tim actual             boun&ry           of the far flrld                     study       aru       should     be agreed upon by the Region&l                         Admlnistr~cor/Directar.
Vhere boundary determinscion FJ not clurly established, bath artuev Jnd river tmbitJt bialoglcrl survey requirrears should be SltfJfisd ia J
FhbitJt           Formerr Ilabitat         forwrs           are my ~8abl~ga                         of   plants     and/or mills chuactwized                   by     J rehtivrl~                 ru8ilJ           Life     stage     ulth aggra8aeed distrikrtioa                 ad     functioning               U:
combimd d~ceralmtion far emiranmmtrl effects urd best available crchnolag7 far  
: 1.     A lhiry           sad/or         fomerly           lfvin~         substrate         for the ettuhmt                     of rpibiacr; 2,     Uthar         a direct           or indirect               food source           far     the productlou             of shellfish,                 fish,       and uildlifr;
~lmirtng adverse impact.
Par Field Effect A far fisld affect is any perturb~tiao of chr aqrutfc l caryrtm outside of the prims-study Jru that 1~ attributable co, or could ba
: upacted, from tha the-1 dlschmgo (taking fnta  
~ccaunc chr fntersctfan at chm therm1 campanent tich ocher palhtm~cr).
Par Firld Study Area (mSA)
The far field study area ir that portion of the receiving  
#car
: body, uclu8ive of the prima-study
: area, In which impmts of chs the-1 discharge ad ftr fateractian vtth other pallut~nts are Ifhly to occur.
The aru sLl1 include:
L, The zones uherr th8 habitat8 are campersblr to thou aistin~
ia the prImarT rcudy
: Jru, and
: 2.
The wnes lnhabltrd by popul~tlans of orgasms that may encounter the the-1 rffluanc during their life hlstoq.
Tim actual boun&ry of the far flrld study aru should be agreed upon by the Region&l Admlnistr~cor/Directar.
FhbitJt Formerr Ilabitat forwrs are my  
~8abl~ga of plants and/or mills chuactwized by J rehtivrl~
ru8ilJ Life stage ulth aggra8aeed distrikrtioa ad functioning U:
: 1.
A lhiry sad/or fomerly lfvin~
substrate for the ettuhmt of rpibiacr; 2,
Uthar a direct or indirect food source far the productlou of shellfish,
: fish, and uildlifr;  


                                                                -77.
-77.
: 3.       A blalogfc81           mrchanlsau       far     the   st&lliutloa               snd aodificJCioa           Of   S8din8ntJ         uid   cancrlbuclng           to the devela~ene               of   roll; L.       A nutrient         cycling       path     or trap;         or
: 3.
: 5.       SpecFflc       rites     for   sp8mlrxg         8nd providing           nurses, feading,       and cover         arus       for flrh uzd 8hellfirh.
A blalogfc81 mrchanlsau far the st&lliutloa snd aodificJCioa Of S8din8ntJ uid cancrlbuclng to the devela~ene of roll; L.
HJcralmertrbtJtrr Far     this document,           the term "~crainverrebrstes"                             my be considered           syuonymous vich             aquscfc         zecralmertrbrates                   ss def Fnod Jbave.
A nutrient cycling path or trap; or
For       the putpasos           of thlJ document , rerophnkton                           ara defined         u pl8nktonic           life     stages       (often       eggs or 18LP88) at firh                   or iavenebrstes.
: 5.
              .igmnts           8re nano~anktonlc             arg8nlas           chat 8.m not pemment ruldJntJ           of the l ru but p8ss through                           the dlsch8rge           zone md vater contiguow             co it.         Ewmples         include       the     upstrem       m.lgrJtlon         of spwnlng srlmon Jnd subsequent                     doun8tre8m         migrstioa           of tha juvenile               fonts,     or arg8nlma           th8t inh8blt             sn aru       only it c8rtd.n               tIma     far feeding           or reproduction             purposes.
SpecFflc rites for sp8mlrxg 8nd providing
Yulsance         S~eclu Any aicrobisl,                 plot       or en-1           species       which lndlutes               J hJJJrd co l calo@zal               balaace or hu8n hulth                       lad   wmlfara       chat ir not naturally a dnriruat           fucura         of the iodigenow                 c -icy             887 be considered               s ltuiu8ce         spuiss         .
: nurses, feading, and cover arus for flrh uzd 8hellfirh.
Bdsaacm           speciu       of   phycoplrnlrtou             fnclude       those     rlg8e t8x~
HJcralmertrbtJtrr Far this
which     la   high       concentr8tbn             Jr0 kaotm         co produce         toxic,       foul tasfing, or odorlfsrous               cmpouads         to 8 degree           th8t     the   quality       of     #far       is impaired.
: document, the term  
Ocher     Vertebrate             Wildlife The term othar                 oortsbrscs         tildllfe           includes       tildlife         which are vrrtebrstes                 (t .e.,     duclu,       gusa,       unacees~           etc.)     but not f-h.
"~crainverrebrstes" my be considered syuonymous vich aquscfc zecralmertrbrates ss def Fnod Jbave.
For the putpasos of thlJ document, rerophnkton ara defined u
pl8nktonic life stages (often eggs or 18LP88) at firh or iavenebrstes.  
.igmnts 8re nano~anktonlc arg8nlas chat 8.m not pemment ruldJntJ of the l ru but p8ss through the dlsch8rge zone md vater contiguow co it.
Ewmples include the upstrem m.lgrJtlon of spwnlng srlmon Jnd subsequent doun8tre8m migrstioa of tha juvenile
: fonts, or arg8nlma th8t inh8blt sn aru only it c8rtd.n tIma far feeding or reproduction purposes.
Yulsance S~eclu Any aicrobisl, plot or en-1 species which lndlutes J hJJJrd co l calo@zal balaace or hu8n hulth lad wmlfara chat ir not naturally a dnriruat fucura of the iodigenow c -icy 887 be considered s
ltuiu8ce spuiss Bdsaacm speciu of phycoplrnlrtou fnclude those rlg8e t8x~
which la high concentr8tbn Jr0 kaotm co produce
: toxic, foul
: tasfing, or odorlfsrous cmpouads to 8 degree th8t the quality of  
#far is impaired.
Ocher Vertebrate Wildlife The term othar oortsbrscs tildllfe includes tildlife which are vrrtebrstes (t.e.,
: duclu, gusa, unacees~
etc.)
but not f-h.  


                                                            -78.
-78.
Phrtoplmktaa Plrnc     micraorg8nfru               such aa certain           slgse,       living       unrccachrd Fn the uscer.
Phrtoplmktaa Plrnc micraorg8nfru such aa certain
Plankton Org8nlms           of rol8c1vol~             au11 ~1~8. aostly                 microscopic,             ch8c either     hsve rel8clvelp                 ~11       powrs       of locomotion             or drift         in   tha waters     subfact         co the action           of uwu           8ad curreacs.
: slgse, living unrccachrd Fn the uscer.
Prdmsm       Scudv Area The prhsry             study aru           FJ the l acire           geogr8phic           aru       bounded l nrully       by the LOCUJ of the ZaC Jb<roe mblsnc                                 rurfrcs       irocherw (decermlnrd         ln sectlou           3.3.3.5)       se chase tsocherw                 ato dircributed throughout       sn snnusl           period.         The ref8r8ncs           obienc         Caper8cur8           shall be recorded         8c 8 location             agreed upan by ehe Rsgloud                         klminircr8cot/
Plankton Org8nlms of rol8c1vol~
au11  
~1~8.
aostly microscopic, ch8c either hsve rel8clvelp  
~11 powrs of locomotion or drift in tha waters subfact co the action of uwu 8ad curreacs.
Prdmsm Scudv Area The prhsry study aru FJ the l acire geogr8phic aru bounded l nrully by the LOCUJ of the ZaC Jb<roe mblsnc rurfrcs irocherw (decermlnrd ln sectlou 3.3.3.5) se chase tsocherw ato dircributed throughout sn snnusl period.
The ref8r8ncs obienc Caper8cur8 shall be recorded 8c 8 location agreed upan by ehe Rsgloud klminircr8cot/
Director.
Director.
Princiosl       ?48crobsnchle             S~e~iss Princlpll         mscrobenthic           species       sre chase damhsnc                 aacrofn-V8rtObr8C8S         Jnd pl8ncr           ~ccached or resting               on the bottom             or livtig In bottom redimontr.                     tipples         fnclude,       but me not llmlted                   to, crusfacuna,           oollurka,           polych~8cu.           crrtain       m8crodgao,             rootad muruphycw,             end     cord.
Princiosl  
Ragl0~81       AdainlSCr8COr               (Director)
?48crobsnchle S~e~iss Princlpll mscrobenthic species sre chase damhsnc aacrofn-V8rtObr8C8S Jnd pl8ncr  
Thir     term     r8fsrs       co chs Ilegio~l           Ad.miaiscracar             of the U.S.
~ccached or resting on the bottom or livtig In bottom redimontr.
EPA uc8pc         th8t     ia chess         Sc8ces uhich h-e               bo8n delotrc8d               the NPDES parrit     pro#rm,           tha cam           nfsrs       co tb8 Dlroctor             of the State NPDES pamit     prqrr.
tipples
IWranatstire,               Lrportsnt         Ssacles       (IUS)
: fnclude, but me not llmlted to, crusfacuna,
Raprrsaacative,                 isportanc       species       are chose spec1ss which 8re : represenc8tive,                   fn terns       of tbelr       biologicsl           requir~eafs,             of l brlurced,         ladigenous           corunity         of shellflrh,             fish,       sad tildllfr Fn the body of #tar                   into vhlch the dirchar~e                     la udo.           Speclflcrll+
: oollurka, polych~8cu.
included       are those species which are:
crrtain m8crodgao, rootad muruphycw, end cord.
Ragl0~81 AdainlSCr8COr (Director)
Thir term r8fsrs co chs Ilegio~l Ad.miaiscracar of the U.S.
EPA uc8pc th8t ia chess Sc8ces uhich h-e bo8n delotrc8d the NPDES parrit pro#rm, tha cam nfsrs co tb8 Dlroctor of the State NPDES pamit prqrr.
IWranatstire, Lrportsnt Ssacles (IUS)
Raprrsaacative, isportanc species are chose spec1ss which 8re :
represenc8tive, fn terns of tbelr biologicsl requir~eafs, of l
: brlurced, ladigenous corunity of shellflrh,
: fish, sad tildllfr Fn the body of #tar into vhlch the dirchar~e la udo.
Speclflcrll+
included are those species which are:  


                                                            -79.
-79.
: 1.     ComerclJlly           or recraJtlanJllp               o8luabls         (I.e.,
: 1.
vichin       the   Cop   cm     species       18ndad-by           dollar vdu*);
ComerclJlly or recraJtlanJllp o8luabls (I.e.,
: 2.       Thruceaed         or   l ad88gered;
vichin the Cop cm species 18ndad-by dollar vdu*);
: 3.     Crlcful         CO the     stnzcuro           lad     fuactlon       of     chs ecological         system       (e.g.,     hsblcac         tonuts);
: 2.
: 4.     Potratirlly           c8pable       of becuming             ~acslizad IlUiJAtlCS       Sp@CiSS;
Thruceaed or l ad88gered;
: 5.     NeC8JSAq         la the food           chain       for     the   veil-being of JpscieJ         determined         In l-1;         or
: 3.
: 6.       Represencsclve             of the the-1                 raqufreaencs             of important         species       but which           themselves         nuy aat be hapartaac.
Crlcful CO the stnzcuro lad fuactlon of chs ecological system (e.g.,
Shellf     irh nil     mollusks         8nd cmst8cuns                 (such       Js apscers,             elms,       shripp, CrJfliSh,           And CrJbs)         which,     in the cuurss at chair Ufr                             cycle,     con-scicucr         fmporcanc components of the beachfc,                                 plmkcanic,             or   nakcaaic frun8 fn fresh and salt                     ucor.
hsblcac tonuts);
ThreJCaned           or   Endannered         Specles A thrucaaad             or l ad8ngered           specias         ir 8ny pllnc             or Jnla8l that hu           besn decrrafaed             by the Smretwy                   of Commerce or th8 Secretary           of the Interior             co be a thrucened                   or l admgered             species pursrrrac         to the Eadsagerad               Specfss Act of 1973, aa mended.
: 4.
Water     Bode       Sement A Icer           body segnnt           in s porclon             of 8 basin the surfrcr
Potratirlly c8pable of becuming  
~c8rs       of which Me               cocoa       hydrologic           chsrscc8riscics                 (or flow regtdatfua           pattams);           comon meural               physlcsl,           chcsl,             Jad blolo@csl           procssses , sad which hsv8 cocoa                               ruccloas           co acrmsl 8crUs.         e.g.,       discharge       of pollucurcs.                 Where they hsve bun dafinrd, the uter           body segmsacs determined                     by the Scat4 ContIming                       Planning Process under l Sction                   303(e) of the Federal                     Water Pollucloa               Control Act   8pply.
~acslizad IlUiJAtlCS Sp@CiSS;
Aaims1 micraorgsalsas                   l1.h~       unsccsched           in wecar.             me7 fnclude       rsull       ~rusc8~~         such JS d8phnlJ               and cyclops,             8nd Jiagh-celled       JniPulr         such 8s protozoa,               etc.
: 5.
NeC8JSAq la the food chain for the veil-being of JpscieJ determined In l-1; or
: 6.
Represencsclve of the the-1 raqufreaencs of important species but which themselves nuy aat be hapartaac.
Shellf irh nil mollusks 8nd cmst8cuns (such Js apscers,
: elms, shripp,
: CrJfliSh, And CrJbs)
: which, in the cuurss at chair Ufr
: cycle, con-scicucr fmporcanc components of the
: beachfc, plmkcanic, or nakcaaic frun8 fn fresh and salt ucor.
ThreJCaned or Endannered Specles A thrucaaad or l ad8ngered specias ir 8ny pllnc or Jnla8l that hu besn decrrafaed by the Smretwy of Commerce or th8 Secretary of the Interior co be a thrucened or l admgered species pursrrrac to the Eadsagerad Specfss Act of
: 1973, aa mended.
Water Bode Sement A Icer body segnnt in s porclon of 8 basin the surfrcr  
~c8rs of which Me cocoa hydrologic chsrscc8riscics (or flow regtdatfua pattams);
comon meural
: physlcsl, chcsl, Jad blolo@csl procssses  
, sad which hsv8 cocoa ruccloas co acrmsl 8crUs.
e.g.,
discharge of pollucurcs.
Where they hsve bun
: dafinrd, the uter body segmsacs determined by the Scat4 ContIming Planning Process under l Sction 303(e) of the Federal Water Pollucloa Control Act 8pply.
Aaims1 micraorgsalsas l1.h~
unsccsched in wecar.
me7 fnclude rsull  
~rusc8~~
such JS d8phnlJ and
: cyclops, 8nd Jiagh-celled JniPulr such 8s protozoa, etc.  


GUIDANCE FOR EVALUATING THE ADVERSE IMPACT OF COOLING WATER INTAKE STRUCTURES ON THE AQUATIC ENVIRONMENT:
GUIDANCE FOR EVALUATING THE ADVERSE IMPACT OF COOLING WATER INTAKE STRUCTURES ON THE AQUATIC ENVIRONMENT:
Line 806: Line 2,286:
May 1, 1977
May 1, 1977


TABLE OF CONTENTS Page I. Statement of Problem                               1 II. Introduction                                       4 III. Information Flow Chart                             6 IV. Decision Criteria                               11 V. Definitions and Concepts                         15 VI. Study Format                                     23 VII. Detailed Study References                       25 VIII. Site Description                                 26
TABLE OF CONTENTS I.
: 1. Site location and layout
II.
: 2. Meteorology
I I I.
: 3. Additional stresses on water body segment
IV.
: 4. Cooling water intake structure IX. Source Water Involvement                         29
V.
: 1. Hydraulic features
VI.
: 2. Probability of entrainment X. Biological Survey Requirements - NEW INTAKES     33
VII.
: 1. Sampling design
VIII.
: 2. Sampling methodology
IX.
: 3. Follow-up studies XI. Monitoring Program - EXISTING INTAKES             39
X.
: 1. Sampling program -- Entrapment-Impingement
XI.
: 2. Sampling program -- Entrainment
XII.
: 3. Follow-up studies XII. Impact Assessment                                 45
Statement of Problem Introduction Information Flow Chart Decision Criteria Definitions and Concepts Study Format Detailed Study References Site Description 1.
: 1. Biostatistical analyses
Site location and layout 2.
: 2. Predictive biological models
Meteorology 3.
: 3. Community response parameters
Additional stresses on water body segment 4.
: 4. Biological value concept
Cooling water intake structure Source Water Involvement 29 1.
 
Hydraulic features 2.
TABLE OF CONTENTS continued Page XIII. Acknowledgements      55 XIV. Literature Cited      56
Probability of entrainment Biological Survey Requirements - NEW INTAKES 1.
Sampling design 2.
Sampling methodology 3.
Follow-up studies Monitoring Program - EXISTING INTAKES 1.
Sampling program --Entrapment-Impingement 2.
Sampling program -- Entrainment 3.
Follow-up studies Impact Assessment Page 1
4 6
11 15 23 25 26 33 39 45 1.
Biostatistical analyses 2.
Predictive biological models 3.
Community response parameters 4.
Biological value concept


LIST OF FIGURES No.       Figure                Page 1  316(b) Flow Chart              7 Existing Intakes 2  316(b) Flow Chart              8 New Source Intakes 3  316(b) Flow Chart              9 New Intakes (Not New Source)
TABLE OF CONTENTS continued XIII.
Acknowledgements XIV.
Literature Cited Page 55 56


            -ii-LIST OF TABLES No.      Table                Page 1  Example Data Matrix        54 (Species I) Data Sheet (Spatial Compartment [A])
No.
1 2
3 LIST OF FIGURES Figure Page 316(b) Flow Chart 7
Existing Intakes 316(b) Flow Chart 8
New Source Intakes 316(b) Flow Chart 9
New Intakes (Not New Source)


I. STATEMENT OF WORK The Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500) require cooling water intake structures to reflect the best technology available for minimizing adverse environmental impact.
-ii-No.
Cooling water intakes can adversely impact aquatic organisms basically in two ways. The first is entrainment, which is the taking in of organisms with the cooling water. The organisms involved are generally of small size, dependent on the screen mesh size, and include phyto- and zooplankton, fish eggs and larvae, shellfish larvae, and many other forms of aquatic life. As these entrained organisms pass through the plant they are subjected to numerous sources of damage. These include mechanical damage due to physically contacting internal surfaces of pumps, pipes and condensers; pressure damage due to passage through pumps; shear damage due to complex water flows; thermal damage due to elevated temperatures in condenser passage, and toxicity damage caused by the addition of biocides to prevent condenser fouling and other corrosives. Those organisms which survive plant passage potentially could experience delayed mortality when returned to the receiving water.
1 LIST OF TABLES Table Example Data Matrix (Species I) Data Sheet (Spatial Compartment [A])
Page 54 I.
STATEMENT OF WORK The Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500) require cooling water intake structures to reflect the best technology available for minimizing adverse environmental impact.
Cooling water intakes can adversely impact aquatic organisms basically in two ways. The first is entrainment, which is the taking in of organisms with the cooling water. The organisms involved are generally of small size, dependent on the screen mesh size, and include phyto-and zooplankton, fish eggs and larvae, shellfish larvae, and many other forms of aquatic life. As these entrained organisms pass through the plant they are subjected to numerous sources of damage. These include mechanical damage due to physically contacting internal surfaces of pumps, pipes and condensers; pressure damage due to passage through pumps; shear damage due to complex water flows; thermal damage due to elevated temperatures in condenser passage, and toxicity damage caused by the addition of biocides to prevent condenser fouling and other corrosives. Those organisms which survive plant passage potentially could experience delayed mortality when returned to the receiving water.
The second way in which intakes adversely impact aquatic life is through entrapment-impingement. This is the blocking of larger entrained organisms that enter the cooling water intake by some type of physical barrier. Most electric generating plants have screening equipment (usually 3/8" mesh) installed in the cooling water flow to protect downstream equipment such as pumps and condensers from damage or clogging. Larger organisms, such as fish which enter the system and cannot pas through the screens, are trapped ahead of them. Eventually, if a fish cannot escape or is not removed, it will tire and become impinged on the screens.
The second way in which intakes adversely impact aquatic life is through entrapment-impingement. This is the blocking of larger entrained organisms that enter the cooling water intake by some type of physical barrier. Most electric generating plants have screening equipment (usually 3/8" mesh) installed in the cooling water flow to protect downstream equipment such as pumps and condensers from damage or clogging. Larger organisms, such as fish which enter the system and cannot pas through the screens, are trapped ahead of them. Eventually, if a fish cannot escape or is not removed, it will tire and become impinged on the screens.
If impingement continues for a long time period the fish may suffocate because the water current prevents gill covers from opening. If the fish is impinged for a short period and removed, it may survive; however, it may lose its protective slime and/or scales through contact with screen surfaces or from the high pressure water jets designed to remove debris from the screens.
If impingement continues for a long time period the fish may suffocate because the water current prevents gill covers from opening. If the fish is impinged for a short period and removed, it may survive; however, it may lose its protective slime and/or scales through contact with screen surfaces or from the high pressure water jets designed to remove debris from the screens.
Delayed mortality to many species of fish following impingement may approach 100 percent. For some species of fish, the intake represents a double jeopardy situation where the same population will be subject to increased mortality through entrainment of eggs and larvae and additional mortality to juveniles and adults through impingement.
Delayed mortality to many species of fish following impingement may approach 100 percent. For some species of fish, the intake represents a double jeopardy situation where the same population will be subject to increased mortality through entrainment of eggs and larvae and additional mortality to juveniles and adults through impingement.
 
The data presently available on the magnitude of entrainment losses at existing electric generating stations, although just beginning to accumulate, reveals very large numbers of fish passing through some facilities. Results of one of these studies, conducted at the Detroit Edison plant on Lake Erie near Monroe, Michigan, indicate that 400-800 million fish larvae may have passed through that plant during April-August 1974. 37 The fate of these larvae has not yet been determined but the data from previous years indicate that some may have disinte-grated during passage through the plant.
The data presently available on the magnitude of entrainment losses at existing electric generating stations, although just beginning to accumulate, reveals very large numbers of fish passing through some facilities. Results of one of these studies, conducted at the Detroit Edison plant on Lake Erie near Monroe, Michigan, indicate that 400-800 million fish larvae 37 may have passed through that plant during April-August 1974.         The fate of these larvae has not yet been determined but the data from previous years indicate that some may have disinte-grated during passage through the plant.
Other studies have shown that mortality may be high among fish larvae that pass through plant cooling systems 4, 38 due mainly to mechanical damage or shearing forces. 2, 5 The circulating pump has been identified as the most likely site for mechanical damage. 4, 5 Coutant and Kedl 39 in a simulation study have demonstrated that the condenser tubes are an unlikely site for mechanical damage to occur.
Other studies have shown that mortality may 4, 38 be high among fish larvae that pass through plant cooling systems 2, 5 due mainly to mechanical damage or shearing forces.           The circulating pump   has 4, 5 been identified as the most likely site for mechanical   damage.
A large amount of data are available on the magnitude of entrapment-impingement losses at cooling water intakes. The data available on fish losses at Great lakes cooling water intakes have been summarized by Edsall. 40 He reported the following losses:
Coutant and Kedl 39 in a simulation study have demonstrated that the condenser tubes are an unlikely site for mechanical damage to occur.
A large amount of data are available on the magnitude of entrapment-impingement losses at cooling water intakes. The data available on fish losses at Great     lakes cooling water intakes have been summarized by Edsall. 40 He reported the following losses:
About 92,000 pounds of gizzard shad at the Ontario Hydro Lambton plant on the St. Clair River in 6 weeks during December 1971 -
About 92,000 pounds of gizzard shad at the Ontario Hydro Lambton plant on the St. Clair River in 6 weeks during December 1971 -
January 1972; 82,187 pounds (nearly 1.1 million individuals) at the Detroit Edison Company's plant on Lake Erie near Monroe, Michigan between April 1972 and march 1973, when the plant was operating at less than maximum capacity; 36,631 pounds (584,687 fish) at the Consumers Power Company's Palisades plant on Lake Michigan between July 1972 and June 1973, when the plant was operating at about 68 percent of its total capacity (the plant is now closed cycle); an estimated 1.2 million fish (no weight data given) at Commonwealth Edison's Waukegan (Illinois) plant on Lake Michigan between June 1972 and June 1973; 150,000 pounds of fish at the Ontario Hydro Pickering plant on Lake Ontario in April-June 1973; 659,000 fish (weight unavailable) at the Nine Mile Point plant generating unit number one on Lake Ontario during intermittent sampling from January-December 1973, representing an estimated total of about 5 million fish at unit one for that period; and about 67,950 pounds (929,000 fish) at Commonwealth Edison's Zion plant near Zion, Illinois, on Lake Michigan
January 1972; 82,187 pounds (nearly 1.1 million individuals) at the Detroit Edison Company's plant on Lake Erie near Monroe, Michigan between April 1972 and march 1973, when the plant was operating at less than maximum capacity; 36,631 pounds (584,687 fish) at the Consumers Power Company's Palisades plant on Lake Michigan between July 1972 and June 1973, when the plant was operating at about 68 percent of its total capacity (the plant is now closed cycle); an estimated 1.2 million fish (no weight data given) at Commonwealth Edison's Waukegan (Illinois) plant on Lake Michigan between June 1972 and June 1973; 150,000 pounds of fish at the Ontario Hydro Pickering plant on Lake Ontario in April-June 1973; 659,000 fish (weight unavailable) at the Nine Mile Point plant generating unit number one on Lake Ontario during intermittent sampling from January-December 1973, representing an estimated total of about 5 million fish at unit one for that period; and about 67,950 pounds (929,000 fish) at Commonwealth Edison's Zion plant near Zion, Illinois, on Lake Michigan during September-December 1973 and Yarch-June 19?&,
 
vhen the monthly conlinq water flov averaged I?nly about i5 percent of the rnaximllm c;lp;lclty.
during             September-December                   1973       and     Yarch-June           19?&,
Approxindtely 1:.B?fln f isil of LG species vcrc imp tnyrd LC lqTd  
vhen         the     monthly         conlinq         water       flov       averaged       I?nly about           i5   percent         of   the     rnaximllm       c;lp;lclty.
.qt the Northern States Pover Prairie Island Plant rrn t!lto liSsiSS:;F:  
Approxindtely                   1: .B?fln f isil of LG species                       vcrc imp tnyrd             LC lqTd
?fver.
.qt the Northern                     States       Pover Prairie               Island         Plant     rrn t!lto liSsiSS:;F:
Al The Conmonvealth Edison Companys Quad CLtlrs  
?fver. Al           The       Conmonvealth               Edison       Companys             Quad     CLtlrs       !.lnt,
!.lnt,  
;iz;     ;,nr:E;       ;;;;ttjip~t               River,         impinged           an estimated               l.H qLllin?
;iz;  
The     extent           of fish       losses         of any given               quantity         needs to he considered             OIT a plant-by-plant                       basis,         in that           the Langu,+qe of ser-t: ..
;,nr:E;  
314(b)       of P.I..           92-500       requires           cooling           vater       intakes       CO -inir?lze adverse           environmental                 impact.           Regulatory             agencies         should         c lc.lrl,:
;;;;ttjip~t
recopnlze           that         some       level     of intake           damage can be acceptable                             if c.J:
: River, impinged an estimated l.H qLllin?
damage represents                       a minimization               of environmental                   impact.
The extent of fish losses of any given quantity needs to he considered OIT a plant-by-plant
 
: basis, in that the Langu,+qe of ser-t:
II. INTRODUCTION This guidance manual describes the studies needed to evaluate the impact of Cooling water intake structures on the aquatic environment and allow for determination of the best technology available for minimizing adverse environmental impact. The 1972 amendments to the Federal Water Pollution Control Act (P.I,. 92-500) require in section 316(b) that:
314(b) of P.I..
92-500 requires cooling vater intakes CO -inir?lze adverse environmental impact.
Regulatory agencies should c lc.lrl,:
recopnlze that some level of intake damage can be acceptable if c.J:
damage represents a minimization of environmental impact.
II.
INTRODUCTION This guidance manual describes the studies needed to evaluate the impact of Cooling water intake structures on the aquatic environment and allow for determination of the best technology available for minimizing adverse environmental impact.
The 1972 amendments to the Federal Water Pollution Control Act (P.I,. 92-500) require in section 316(b) that:
Any standard established pursuant to section 301 or sect ion 306 of this Act and applicable to a point source shall require that the location, design, construction and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.
Any standard established pursuant to section 301 or sect ion 306 of this Act and applicable to a point source shall require that the location, design, construction and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.
Sections 301 and 306 of the Act refer to the development of effluent limitations and dates for achievement of various standards of performance for existing and new sources of waste discharges. The steam-electric generating point source category is the largest user of cooling water in the United States and this guidance manual is directed primarily at this category. Other categories of point source dischargers such as iron and steel and petrochemicals for which intakes withdraw a major portion for cooling water would also require such a determination. This document is intended for use by the U.S. Environmental Protection Agency (EPA), State water pollution control agencies, industry, and members of the public who may wish to participate in such determinations.
Sections 301 and 306 of the Act refer to the development of effluent limitations and dates for achievement of various standards of performance for existing and new sources of waste discharges.
The overall goal of conducting intake studies should be to obtain sufficient information on environmental impact to aid in determining whether the technology selected by the company is the best available to minimize adverse environmental impact. In the case of existing plants, this goal will be accomplished by providing reliable quantitative estimates of the damage that is or may be occurring and projecting the long-range effect of such damage to the extent reasonably possible. In the case of proposed intakes, reliable estimates of any future damage are to be obtained through the use of historical data, pre-operational models, and the operating experience of other plants.
The steam-electric generating point source category is the largest user of cooling water in the United States and this guidance manual is directed primarily at this category.
General guidance is provided for the development, conduct, and review of surveys designed to determine and evaluate that portion of aquatic biota potentially involved with and subject to adverse environmental impact from cooling water intake structures. Guidance is also supplied for the analytical methodology needed to determine the extent and importance of aquatic environmental impacts. The environment-intake interactions in question are highly site specific and the decision as to best technology available for intake design, location, construction, and capacity must be made on a case-by-case basis.
Other categories of point source dischargers such as iron and steel and petrochemicals for which intakes withdraw a major portion for cooling water would also require such a determination.
 
This document is intended for use by the U.S. Environmental Protection Agency (EPA), State water pollution control agencies, industry, and members of the public who may wish to participate in such determinations.
Information is not provided on available intake technology. Such information is contained in the Development Document for Best Technology Available for the Location, Design, Construction and Capacity of Cooling47 water Intake Structures for Minimizing Adverse Environmental Impact, which also contains additional references on intake impacts. Information is also not provided on non-aquatic impacts of cooling water intake structures.
The overall goal of conducting intake studies should be to obtain sufficient information on environmental impact to aid in determining whether the technology selected by the company is the best available to minimize adverse environmental impact.
In the case of existing plants, this goal will be accomplished by providing reliable quantitative estimates of the damage that is or may be occurring and projecting the long-range effect of such damage to the extent reasonably possible.
In the case of proposed intakes, reliable estimates of any future damage are to be obtained through the use of historical data, pre-operational models, and the operating experience of other plants.
General guidance is provided for the development, conduct, and review of surveys designed to determine and evaluate that portion of aquatic biota potentially involved with and subject to adverse environmental impact from cooling water intake structures.
Guidance is also supplied for the analytical methodology needed to determine the extent and importance of aquatic environmental impacts.
The environment-intake interactions in question are highly site specific and the decision as to best technology available for intake design, location, construction, and capacity must be made on a case-by-case basis.
Information is not provided on available intake technology.
Such information is contained in the Development Document for Best Technology Available for the Location, Design, Construction and Capacity of Cooling water Intake Structures for Minimizing Adverse Environmental Impact, 47 which also contains additional references on intake impacts.
Information is also not provided on non-aquatic impacts of cooling water intake structures.
This document will be most useful in situations where siting and intake design have not been finalized; however, procedures to determine and evaluate the environmental impact of existing cooling water intakes are included.
This document will be most useful in situations where siting and intake design have not been finalized; however, procedures to determine and evaluate the environmental impact of existing cooling water intakes are included.
Readers are cautioned not to depend too heavily on this manual.
Readers are cautioned not to depend too heavily on this manual.
More specific advice as regards procedures and individual site evaluations will be available from the agency staff responsible for decision making and the biologists who best understand the area in question.
More specific advice as regards procedures and individual site evaluations will be available from the agency staff responsible for decision making and the biologists who best understand the area in question.


III. INFORMATION FLOW CHART The development of 316(b) programs is a new procedure for many regu-latory agencies and user groups. To assist in an orderly processing of data requirements for both existing and new cooling water intakes, flow charts have been developed (Figures 1, 2, and 3).
III.
The process for evaluating existing intakes (Figure 1) is intended to be flexible so that the data requirements can be revised based on an agency determination of the potential for adverse impact and the availa-bility of data on the plants intake. It is expected that for some existing plants, sufficient data may already exist to make further studies unnecessary for a decision regarding best technology available. The process for new intakes (Figures 2 and 3) is more extensive because of requirements for data acquisition and models prior to site review and approval by the appropriate regulatory agency. Proper intake siting, in many cases, is the only way of minimizing adverse environmental impact.
INFORMATION FLOW CHART The development of 316(b) programs is a new procedure for many regu-latory agencies and user groups.
To obtain the necessary pre-siting perspective, the utilization of valid historical data and local knowledge is essential. A one- to three-year biological survey is required to obtain, in a preliminary fashion, the necessary data for assessment of environmental impact. A one-year survey is generally of limited value. However, in circumstances where substan-tial valid historical data can be presented and the intake can be represented as having low potential impact, a one-year survey may be acceptable. A decision as to the appropriate number of years of pre-operational data that are necessary will be made by the agency upon the submission of proposed study plans and their justification (see flow charts, Figures 2 and 3).
To assist in an orderly processing of data requirements for both existing and new cooling water intakes, flow charts have been developed (Figures 1, 2, and 3).
The type and extent of biological data appropriate in each case will be determined by the actual or anticipated severity or adverse environmental impact. Since the expected impact will vary, it is not expected that each case will require the same level of study.
The process for evaluating existing intakes (Figure 1) is intended to be flexible so that the data requirements can be revised based on an agency determination of the potential for adverse impact and the availa-bility of data on the plants intake.
A decision will be made at the outset by the agency as to whether the intake has high or low potential impact. Low potential impact intakes are generally those in which the volume of water withdrawn comprises a small percentage of the source water body segment and are located in biologically unproductive areas, or that have historical data shoving no effect, or which have other considerations indicating reduced impact. High potential impact intakes will generally require extensive field surveys or models to elucidate potential total water body effects. New intakes will provisionally be considered high impact until data is presented in support of an alternate finding.
It is expected that for some existing plants, sufficient data may already exist to make further studies unnecessary for a decision regarding best technology available. The process for new intakes (Figures 2 and 3) is more extensive because of requirements for data acquisition and models prior to site review and approval by the appropriate regulatory agency.
Proper intake siting, in many cases, is the only way of minimizing adverse environmental impact.
To obtain the necessary pre-siting perspective, the utilization of valid historical data and local knowledge is essential.
A one-to three-year biological survey is required to obtain, in a preliminary fashion, the necessary data for assessment of environmental impact.
A one-year survey is generally of limited value.
: However, in circumstances where substan-tial valid historical data can be presented and the intake can be represented as having low potential impact, a one-year survey may be acceptable.
A decision as to the appropriate number of years of pre-operational data that are necessary will be made by the agency upon the submission of proposed study plans and their justification (see flow charts, Figures 2 and 3).
The type and extent of biological data appropriate in each case will be determined by the actual or anticipated severity or adverse environmental impact.
Since the expected impact will vary, it is not expected that each case will require the same level of study.
A decision will be made at the outset by the agency as to whether the intake has high or low potential impact.
Low potential impact intakes are generally those in which the volume of water withdrawn comprises a small percentage of the source water body segment and are located in biologically unproductive areas, or that have historical data shoving no effect, or which have other considerations indicating reduced impact.
High potential impact intakes will generally require extensive field surveys or models to elucidate potential total water body effects.
New intakes will provisionally be considered high impact until data is presented in support of an alternate finding.
Figure 1.
316(b) FLOW CHART EXISTING INTAKES


Figure 1. 316(b) FLOW CHART EXISTING INTAKES
-a-Figure
: 2.
316(b)
FLOW CHART NEW SOURCE INTAKES New Source Intake Prior to Construction 1
Y iSubmit pre-construction study plans and justiffcation for agency review and recognition Decision made or appropriate number of years of pre-construction baseline data (l-3) and whether intake is high or low potential imnac t (High Impact!
or alternate Pre-construction data collection1 and status reports site and plans Begin construction Problem solution Report pre-opcrat ion 1 Y
l~rogram modlf icatlon Figure
: 3.
316(b)
FLOW CHART NEW tNTAKES (Not New Source)
New Intake Prior to Operation I
r Submit pre-operational study plans and justification
+
for agency review and recognition
(
; Decision made on appropriate number of years of pre-construction i
baseline data (l-3) and whether intake is high or low potential impact J-7 rl High Impact
&I Low Impact I
1 Submit model study 1
k Pre-operation data collection plan or and status reports alternate 1
strategy r
Pre-operation report<
1 Xodel I
activity 1
Agency renders Beet Technology 1 Decision, approving site and plans (including study plans)
V r
Best Technology
: Approval, begin 2-l Not Approved optrat ion under NPDES permit and follow-up studies including i
Minor change verification of Problem solution model used J
change in plane


                                                            -a-Figure    2. 316(b)    FLOW CHART NEW SOURCE INTAKES New Source      Intake      Prior    to Construction 1
-lO-The inclusion of several points ln the flow chart for I):cnt-y rruit>v and approval vi11 ensure that all part les  
___ __..      .-.--_-                      Y iSubmit pre-construction                study plans and justiffcation          for agency    review and recognition Decision    made or appropriate              number of years of pre-construction baseline    data (l-3)        and whether        intake    is high or low potential imnac t (High    Impact!
.lre ln  
Pre-construction          data collection1 and status        reports or alternate site    and plans Begin    construction Problem  solution Report    pre-opcrat      ion 1 Y
;rp,recment  
l~rogram      modlf icatlon
.ls tl) tI\\c scnpe and speclflc details of  
 
*work planned  
Figure      3. 316(b)    FLOW CHART NEW tNTAKES (Not New Source)
<lnd vlll provide each I)arcb vith a set of specific goals and schedules for cnmpletton.
New Intake          Prior    to Operation          I rSubmit    pre-operational for agency study plans and justification review and recognition
These rev I ev points should also ensure that studies address the important envlrlw-mental and plant operational concerns of all
                                                                                                                        +            (
: parties, thereby resulttn1:
                ; Decision      made on appropriate              number of years of pre-construction baseline      data (l-3)        and whether          intake      is high or low potential          impact i ____-          - _--      -. -_.      -_--__ -                                                  ---
in timely and orderly completion.
Low Impact        I rl                                                              &I J-7 1 Submit                  High  Impact model study                              Pre-operation          data collection plan or                                            and status        reports 1              k                                                            1 alternate strategy        ,
A further benefit from such revlev 1s that studies conducted throughout a vater body segment can Se caordlnated so that methods utilized vill resillt in a comparable data base.
r          &                                        Pre-operation          report<                              1 Xodel activity I              1 Agency renders            Beet    Technology 1 Decision,          approving        site and plans (including        study plans) r              V Best Technology                                          Not Approved 2-l Approval,        begin optrat ion under NPDES permit          and                                                          Minor  change follow-up        studies                              _            i            ,
This uniform data base vill allow for easier evatuatlon I-,E any subsequent cumulative effect from all intakes optrattng on a vater body.
including verification          of                                Problem        solution model used J
IV.
change in plane    ,
DECISION CRITERIA Adverse aquatic environmental impacts occur whenever there will be entrainment or impingement damage as a result of the operation of a specific cooling water intake structure.
 
The critical question is the magnitude of any adverse impact.
                                                          -lO-The   inclusion       of   several         points       ln   the     flow     chart     for   I):cnt-y   rruit>v and approval           vi11   ensure     that all part les .lre ln ;rp,recment                           .ls tl) tI\c scnpe     and speclflc         details       of *work planned               <lnd vlll       provide       each I)arcb vith     a set     of specific         goals and schedules                   for   cnmpletton.           These       rev I ev points     should       also ensure         that       studies         address the important                   envlrlw-mental     and plant         operational         concerns         of all       parties,       thereby       resulttn1:
The exact point at which adverse aquatic impact occurs at any given plant site or water body segment is highly speculative and can only be estimated on a case-by-case basis by considering the species involved, magnitude of the losses, years of intake operation remaining, ability to reduce losses, etc.
in timely         and orderly         completion.             A further           benefit       from such revlev 1s that       studies       conducted       throughout           a vater         body segment           can Se caordlnated         so that     methods       utilized         vill     resillt       in a comparable             data base.       This uniform data base vill                       allow for easier               evatuatlon           I-,E any subsequent         cumulative         effect       from all           intakes       optrattng         on a vater           body.
The best guidance that can be provided to agencies in this regard would be to involve professional resource people in the decision-making process and to obtain the best possible quantitative data base and assessment tools for evaluation of such impacts.
 
The Development document for 316(b) 47 is an essential reference for guidance in these evaluations.
IV. DECISION CRITERIA Adverse aquatic environmental impacts occur whenever there will be entrainment or impingement damage as a result of the operation of a specific cooling water intake structure. The critical question is the magnitude of any adverse impact. The exact point at which adverse aquatic impact occurs at any given plant site or water body segment is highly speculative and can only be estimated on a case-by-case basis by considering the species involved, magnitude of the losses, years of intake operation remaining, ability to reduce losses, etc. The best guidance that can be provided to agencies in this regard would be to involve professional resource people in the decision-making process and to obtain the best possible quantitative data base and assessment tools 47 for evaluation of such impacts. The Development document for 316(b)         is an essential reference for guidance in these evaluations.
Some general guidance concerning the extent of adverse impacts can be obtained by assessing the relative biological value of the source water body zone of influence for selected species and determining the potential for damage by the intake structure.
Some general guidance concerning the extent of adverse impacts can be obtained by assessing the relative biological value of the source water body zone of influence for selected species and determining the potential for damage by the intake structure. For a given species, the value of an area is based on the following considerations:
For a given species, the value of an area is based on the following considerations:
: 1. principal spawning (breeding) ground;
1.
: 2. migratory pathways;
principal spawning (breeding) ground; 2.
: 3. nursery or feeding areas;
migratory pathways; 3.
: 4. numbers of individuals present; and
nursery or feeding areas; 4.
: 5. other functions critical during the life history.
numbers of individuals present; and 5.
other functions critical during the life history.
A once-through system for a power plant utilizes substantially more water from the source water body than a closed recirculating system for a similar plant and thus would tend to have a higher potential impact.
A once-through system for a power plant utilizes substantially more water from the source water body than a closed recirculating system for a similar plant and thus would tend to have a higher potential impact.
A biological value-potential impact decision matrix for best intake technology available could be:
A biological value-potential impact decision matrix for best intake technology available could be:
 
(1)
(1)   An open system large volume intake in an area of high biological value does not represent best technology available to minimize adverse environmental impact and will generally result in disapproval.
(2)
(3)
An open system large volume intake in an area of high biological value does not represent best technology available to minimize adverse environmental impact and will generally result in disapproval.
Exceptions to this may be demonstrated on a case-by-case basis where, despite high biological value and high cooling water flow, involvement of the biota is low or survival of those involved is high, and subsequent reduction of populations is minimal.
Exceptions to this may be demonstrated on a case-by-case basis where, despite high biological value and high cooling water flow, involvement of the biota is low or survival of those involved is high, and subsequent reduction of populations is minimal.
(2)    Generally, the combination of low value and low flow most likely is a reflection of best technology available in location, design, and operation of the intake structure. Exceptions to this could involve significantly affected rare and endangered species.
Generally, the combination of low value and low flow most likely is a reflection of best technology available in location, design, and operation of the intake structure.
(3)    Other combinations of relative value-impact present the most difficult problems. In such circumstances, the biological survey and data analysis requires the greatest care and insight in accomplishing the impact evaluation upon which the judgment of best technology available is based. A case-by-case study is required and local knowledge and informed judgment are essential.
Exceptions to this could involve significantly affected rare and endangered species.
It is accepted that closed cycle cooling is not necessarily the best technology available, despite the dramatic reduction in races of water used. The appropriate technology is best determined after a careful evaluation of the specific aspects at each site. A detailed discussion of available    intake technology is contained in the 316(b) Development Document. 47
Other combinations of relative value-impact present the most difficult problems.
In such circumstances, the biological survey and data analysis requires the greatest care and insight in accomplishing the impact evaluation upon which the judgment of best technology available is based. A case-by-case study is required and local knowledge and informed judgment are essential.
It is accepted that closed cycle cooling is not necessarily the best technology available, despite the dramatic reduction in races of water used.
The appropriate technology is best determined after a careful evaluation of the specific aspects at each site.
A detailed discussion of available47 intake technology is contained in the 316(b) Development Document.


                                                                    -L3-Biological           survey       requirements             suggested             in this         manuaL shnul~
-L3-Biological survey requirements suggested in this manuaL shnul~
provlde       a sufficient           data     base     to provide             insight         as to the best loazation,       design,         construction,             and capaclty               characteristics                 ~pprr-prlate       for achieving             minimal         total       impact.
provlde a sufficient data base to provide insight as to the best loazation,
A stepwise           thought       process             is recommended               for cases           vherc adverse       envlronmrntal             Impact       from     entrapmentiinplngemrnt                           is c,c:currl::y and must be minimized                     by application               of best technology                     aval1ablt*:
: design, construction, and capaclty characteristics  
The flrst         step should           be to       consider           vhetnrr         tnr .fcvrrse impact     vi11       btl minimized           by   the nodlf         ication         <?f tnc ex,st           inr:
~pprr-prlate for achieving minimal total impact.
screening         systems.
A stepwise thought process is recommended for cases vherc adverse envlronmrntal Impact from entrapmentiinplngemrnt is c,c:currl::y and must be minimized by application of best technology aval1ablt*:
The   second step should                   be co consider                 vhether         the .Idverscr Impact     viL1       be minlmlzed             by increasing                 the size           of the int%lkr               tal decrease       high       approach         velocltles.
The flrst step should be to consider vhetnrr tnr  
The third         step should           be to consider                 whether         to abandon           the exlstlng       intake       and to replace                 it vlth         a rwv intake             at a different locatfon       and to incorporate                   an approprlatr                 design         In order         to minimize       adverse         environmental               impact.
.fcvrrse impact vi11 btl minimized by the nodlf ication  
Finally,       If the above technologies                             vould       not minimize             adverse environmental             impact,       conslderatlon                 should         be given         to :hr reduction         of Lntake         capacity           which may necessitate                         insta!-
<?f tnc ex,st inr:
latlon       of a closed           cycle       cooling         system with             appropriate             2csL<n modlf lcat lons as necessary.
screening systems.
Where environmental                   impact       from entrainment                   must       be minimized, reliance       must be placed               primarily           on llov         reduction           and intake relocat     lon as remedial               measures:
The second step should be co consider vhether the  
Rrduclng       cooling         vater     flov       is generally               an effectlvr             means for minimizing               potential         rntralnment               impact.           In fact,         this       VJ~ 5~
.Idverscr Impact viL1 be minlmlzed by increasing the size of the int%lkr tal decrease high approach velocltles.
the only       feasible         means to reduce                 impact         of entrainment               where po-tunclally         involved         organisms           are In relatively                     large       concentrat           iCJn and uniformly             distrlbutrd           In the veter                 column.           Entrapment           and fmplngement           may also         be lessened             vith       lover     flov       as proport           idIn.? 1 IL fever     animals         vi11 be subject                 to contact             ulth       the Intake           structure; water     velocltles           associated           vlth       the structure                 can be reducvd, enhancing         probablllty           of survival               if lmplnged             or of escape               if trapped.           Reduction         of flov         is accomplished                 prlmarlly           by an lncroase       ln condenser             temperature             rise       or through           recirculating cooling       systems.           When cooling             vater         flov     is reduced,             hovever, elevated       temperature             or the effects                 of an auxiliary                 cooling           system can Increase             the mortailty             rate       of the organisms                   that     are entrained.
The third step should be to consider whether to abandon the exlstlng intake and to replace it vlth a rwv intake at a different locatfon and to incorporate an approprlatr design In order to minimize adverse environmental impact.
 
: Finally, If the above technologies vould not minimize adverse environmental
Site       location           measures       may prove ef fecttve                   in areas         of discontinuous,                 temporal         or spatial         occurrence           (patchiness) of chore           species         subject         to entrainment             (or   entrapment/
: impact, conslderatlon should be given to
:hr reduction of Lntake capacity which may necessitate insta!-
latlon of a closed cycle cooling system with appropriate 2csL<n modlf lcat lons as necessary.
Where environmental impact from entrainment must be minimized, reliance must be placed primarily on llov reduction and intake relocat lon as remedial measures:
Rrduclng cooling vater flov is generally an effectlvr means for minimizing potential rntralnment impact.
In
: fact, this VJ~ 5~
the only feasible means to reduce impact of entrainment where po-tunclally involved organisms are In relatively large concentrat iCJn and uniformly distrlbutrd In the veter column.
Entrapment and fmplngement may also be lessened vith lover flov as proport idIn.? 1 IL fever animals vi11 be subject to contact ulth the Intake structure; water velocltles associated vlth the structure can be reducvd, enhancing probablllty of survival if lmplnged or of escape if trapped.
Reduction of flov is accomplished prlmarlly by an lncroase ln condenser temperature rise or through recirculating cooling systems.
When cooling vater flov is
: reduced, hovever, elevated temperature or the effects of an auxiliary cooling system can Increase the mortailty rate of the organisms that are entrained.
Site location measures may prove ef fecttve in areas of discontinuous, temporal or spatial occurrence (patchiness) of chore species subject to entrainment (or entrapment/
impingement).
impingement).
Enhsncing           survival         of organisms           once entrained               in the coolfng vater       system generally                   appeers       to be the least               effective           means       fnr avoiding           adverse         inpac t ; however,             operational             regimes         have       been dorcloped           to decrease             mortality       of entrained             species       vhere heat, chlorine           or both         exert       the predominant             impact.           Realistic           laboratory studies         can     lead     to optlmal           time-temperature               regimes         for survival.
Enhsncing survival of organisms once entrained in the coolfng vater system generally appeers to be the least effective means fnr avoiding adverse inpac t ; however, operational regimes have been dorcloped to decrease mortality of entrained species vhere
The effects             of biocides             can be reduced             by intermittent                 and spllt-stream         chlorination               procedures.           Hechenical           methods         fnr cleaning cooling         system         components           where feasible             can eliminate               or reduce the need           for biocides.                 The mechanical             stress       of entrainment                 Is,     In many cases ( the                 critical         factor     in organism           survival         vlth       the pump the     site       of mejor damage.                   At present,           little         can be done             to minimize           mechanical             impact     although         potentially             harmful         effects may possibly               be reduced           by pump redesign               which       incorporates             lov RIVI,     lnv pressure               and vtde         clearance         characteristics.                   Reducing velocity           changes,         pressure,         and turbulence             in the piping               system shauld       prove       helpful.           Entrainment           screening           techniques           such as leeky       dam8 msy have application                         in some CirCumStanCeS.                         Regardless of beneficial               measures         taken,       many fragile           forms vi11 not survive entrainment.
: heat, chlorine or both exert the predominant impact.
In summary,             the     location       nf a pover           plant,       nr other         cooling         uater use,     coupled         vith       the associated             intake       structure         design,         constructton.
Realistic laboratory studies can lead to optlmal time-temperature regimes for survival.
and     capacity           results         in a unique         situation.             Uhile       generalities               may be useful       , the aptimel               combination         of measures           effectively             minimizing adverse         impact         on the biata             ie site       and plant           specific.             The best technology             avallable           should     be established             on a case-by-case                   basts making       full     use of the             kinds       of information             suRgested           for acquisitton in   this     manusl.
The effects of biocides can be reduced by intermittent and spllt-stream chlorination procedures.
 
Hechenical methods fnr cleaning cooling system components where feasible can eliminate or reduce the need for biocides.
V. DEFINITIONS AND CONCEPTS Adverse Environmental Impact Adverse aquatic environmental impacts occur whenever there will he entrainment or impingement damage as a result of the operation of a specific cooling water intake structure. The critical question is the magnitude of any adverse impact.
The mechanical stress of entrainment Is, In many cases
( the critical factor in organism survival vlth the pump the site of mejor damage.
At
: present, little can be done to minimize mechanical impact although potentially harmful effects may possibly be reduced by pump redesign which incorporates lov
: RIVI, lnv pressure and vtde clearance characteristics.
Reducing velocity
: changes, pressure, and turbulence in the piping system shauld prove helpful.
Entrainment screening techniques such as leeky dam8 msy have application in some CirCumStanCeS.
Regardless of beneficial measures
: taken, many fragile forms vi11 not survive entrainment.
In
: summary, the location nf a pover
: plant, nr other cooling uater
: use, coupled vith the associated intake structure
: design, constructton.
and capacity results in a unique situation.
Uhile generalities may be useful  
, the aptimel combination of measures effectively minimizing adverse impact on the biata ie site and plant specific.
The best technology avallable should be established on a case-by-case basts making full use of the kinds of information suRgested for acquisitton in this manusl.
V.
DEFINITIONS AND CONCEPTS Adverse Environmental Impact Adverse aquatic environmental impacts occur whenever there will he entrainment or impingement damage as a result of the operation of a specific cooling water intake structure.
The critical question is the magnitude of any adverse impact.
The magnitude of an adverse impact should be estimated both in terms of short term and long term impact with reference to the following factors:
The magnitude of an adverse impact should be estimated both in terms of short term and long term impact with reference to the following factors:
(1) Absolute damage (# of fish impinged or percentage of larvae entrained on a monthly or yearly basis);
(1) Absolute damage (# of fish impinged or percentage of larvae entrained on a monthly or yearly basis);
Line 934: Line 2,532:
Environmental Protection Agency or the Directors of those State agencies authorized to issue NPDES permits.
Environmental Protection Agency or the Directors of those State agencies authorized to issue NPDES permits.
Community A community in general is any aseemblage of populations living in a prescribed area or physical habitat; it is an organized unit to the extent that it has characteristics in addition to its individual and population components and functions as a unit through interacting metabolic trans-formations.
Community A community in general is any aseemblage of populations living in a prescribed area or physical habitat; it is an organized unit to the extent that it has characteristics in addition to its individual and population components and functions as a unit through interacting metabolic trans-formations.
Critical Aquatic Organisms Adverse environmental impact may be felt by many species in all trophic levels. A species need not be directly affected but nevertheless harmed due to loss of food organisms or other associated organisms in some way necessary for the well-being and continued survival of the population.
Critical Aquatic Organisms Adverse environmental impact may be felt by many species in all trophic levels.
A species need not be directly affected but nevertheless harmed due to loss of food organisms or other associated organisms in some way necessary for the well-being and continued survival of the population.
It is not practicable to study all species that may be directly or indirectly harmed by Intake structure operations.
It is not practicable to study all species that may be directly or indirectly harmed by Intake structure operations.
The critical aquatic organisms concept is defined in the 316(b)
The critical aquatic organisms concept is defined in the 316(b)
Development Document.       Generally, 5 to 15 critical aquatic organisms will be selected for consideration on a case-by-case basis. Relative to environmental impact associated with intake structures, effects on meroplankton organisms, macroinvertebrates, and juvenile and adult fishes appear to be the first order problem. Accordingly. the selections of species should include a relatively large proportion of organisms in these categories that are directly impacted. Generally, because of short life span and population regeneration capacity, the adverse impact on phytoplankton and zooplankton species is less severe. It is suggested that, in addition to study of the selected species, the total phytoplankton and zooplankton communities be assessed to determine if the area under study is unique and important qualitatively or quantitatively. If preliminary sampling or prior data does not support special or unique value of these organisms at the site, phytoplankton and zooplankton species will generally not be selected.
Development Document.
Generally, 5 to 15 critical aquatic organisms will be selected for consideration on a case-by-case basis.
Relative to environmental impact associated with intake structures, effects on meroplankton organisms, macroinvertebrates, and juvenile and adult fishes appear to be the first order problem.
Accordingly. the selections of species should include a relatively large proportion of organisms in these categories that are directly impacted.
Generally, because of short life span and population regeneration capacity, the adverse impact on phytoplankton and zooplankton species is less severe.
It is suggested that, in addition to study of the selected species, the total phytoplankton and zooplankton communities be assessed to determine if the area under study is unique and important qualitatively or quantitatively.
If preliminary sampling or prior data does not support special or unique value of these organisms at the site, phytoplankton and zooplankton species will generally not be selected.
The following guidelines are presented for selection of critical aquatic organisms for consideration in intake studies:
The following guidelines are presented for selection of critical aquatic organisms for consideration in intake studies:
A. Critical aquatic organisms to be selected are those species which would be involved with the intake structure and are:
A.
: 1. representative, in terms of their biological requirements, of a balanced, indigenous community of fish, shellfish, and wildlife;
Critical aquatic organisms to be selected are those species which would be involved with the intake structure and are:
: 2. commercially or recreationally valuable (e.g.,
1.
representative, in terms of their biological requirements, of a balanced, indigenous community of fish, shellfish, and wildlife; 2.
commercially or recreationally valuable (e.g.,
among the top ten species landed -- by dollar value);
among the top ten species landed -- by dollar value);
: 3. threatened or endangered;
3.
: 4. critical to the structure and function of the ecological system (e.g., habitat formers);
threatened or endangered; 4.
: 5. potentially capable of becoming localized nuisance species;
critical to the structure and function of the ecological system (e.g., habitat formers);
: 6. necessary, in the food chain, for the well-being of species determined in 1-4;
5.
: 7. one of 1-6 and have high potential susceptibility to entrapment-impingement and/or entrainment; and
potentially capable of becoming localized nuisance species; 6.
: 8. critical aquatic organisms based on 1-7, are suggested by the applicant, and are approved by the appropriate regulatory agencies.
necessary, in the food chain, for the well-being of species determined in 1-4; 7.
: 8. Assumptions in the selection of critical aquatic organisms:
one of 1-6 and have high potential susceptibility to entrapment-impingement and/or entrainment; and 8.
: 1. Since all species which are critical, representa-tive, etc., cannot be stud led in detail, some smaller number (e.g., 5 to 15) may have to be selected.
critical aquatic organisms based on 1-7, are suggested by the applicant, and are approved by the appropriate regulatory agencies.
: 2. The species of concern are those most likely to be affected by intake structure, design, con-struction, and operation.
8.
: 3. Some species will be economically important in their own right, e.g., commercial and sports fishes.
Assumptions in the selection of critical aquatic organisms:
: 4. Some of the species selected will be particularly vulnerable or sensitive to intake structure impacts or have sensitivities of most other species and, if protected, will reasonably assure protection of other species at the site.
1.
: 5. Often, but not always, the most useful list would include mostly sensitive fish, shellfish, or other species of direct use to man, or to the structure or functioning of the ecosystem.
Since all species which are critical, representa-tive, etc., cannot be stud led in detail, some smaller number (e.g., 5 to 15) may have to be selected.
: 6. Officially listed threatened or endangered species are automatically considered critical.
2.
: 7. The species chosen may or may not be the same as those appropriate for a 316(a) determination dependent on the relative effects of the thermal discharge or the intake in question.
The species of concern are those most likely to be affected by intake structure, design, con-struction, and operation.
3.
Some species will be economically important in their own right, e.g., commercial and sports fishes.
4.
Some of the species selected will be particularly vulnerable or sensitive to intake structure impacts or have sensitivities of most other species and, if protected, will reasonably assure protection of other species at the site.
5.
Often, but not always, the most useful list would include mostly sensitive fish, shellfish, or other species of direct use to man, or to the structure or functioning of the ecosystem.
6.
Officially listed threatened or endangered species are automatically considered critical.
7.
The species chosen may or may not be the same as those appropriate for a 316(a) determination dependent on the relative effects of the thermal discharge or the intake in question.
Cooling Water Intake Structure The coaling water intake structure is the total structure used to direct water into the components of the cooling systems wherein the cooling function is designated to take place, provided that the intended use of the major portion of the water so directed is to absorb waste heat rejected from the process or processes employed or from auxiliary operations the premises, including air conditioning.
Cooling Water Intake Structure The coaling water intake structure is the total structure used to direct water into the components of the cooling systems wherein the cooling function is designated to take place, provided that the intended use of the major portion of the water so directed is to absorb waste heat rejected from the process or processes employed or from auxiliary operations the premises, including air conditioning.


                                                                  -1 H-Entrainment The incorporation                   nf i7rganisns               into     the con1 In): water                 f lnu ts ent rainnent         . There are two generally                               recognized           cypcs c-rf cntr,lLnmc~nt:
-1 H-Entrainment The incorporation nf i7rganisns into the con1 In):
pumped entrainment                 -- referring                 to those nrgantsmu                     that     enter       tllc I?[ ~ha*
water f lnu ts ent rainnent There are two generally recognized cypcs c-rf cntr,lLnmc~nt:
and are pumped through                       tile condenser,                 and plume entrainment                       -- rrl(*rrtn,:
pumped entrainment referring to those nrgantsmu that enter tllc I?[ ~ha*
to organisms             that     are     Lncorporated               into       the disch,?rKe             plume hy ~IIC dilution         water.         Plume       entrainment               is nnt covered               by section             3lb(b)       ~IIC Is part       of the thermal               discharge             effect         to be considered                 ln conjunct:tln with     thermal       effects         demonstrations                   under       section       31b(a).
and are pumped through tile condenser, and plume entrainment rrl(*rrtn,:
Entrapment-Impingement The physical             blocking           nf larger             nrganlsms           by J harrier,               ncncr.ll1.v snme type of screen                   system         In the cooling                   vater     Intake.         Entrapment emphasfres           the prevention               nf escape of organisms                           and lmpingemcnt emphasizes           the collision               of an organism                 vith     a portion           of the se rut turt .
to organisms that are Lncorporated into the disch,?rKe plume hy ~IIC dilution water.
Estuary An estuary           is defined             as a semi-enclosed                     cnastal         body of water               ut~fcll has     a free       connection           with       the open sea;                 lt 1s thus strongly                   Jffcctcbt!         t:;i tidal       action       and within             it sea vatcr               is mixed         (and     usually         awasur.lbly diluted)         ufsh fresh           water       from land drainsge.                         It may be diff tcult                   tc) precisely         delineate           the boundary               of estuarinc               and river           habitats           in chit>
Plume entrainment is nnt covered by section 3lb(b)  
upper       reaches       of a fresh             vater       river         discharging             into     marine         waters.
~IIC Is part of the thermal discharge effect to be considered ln conjunct:tln with thermal effects demonstrations under section 31b(a).
The Lnterface             is generally               a dynamic             entity       varying         daily       and seasonall) ln geographical             lncat ion.             In such cases,                   determination             nf habitat boundaries           should     be established                   by mutual             agreement         on a case-by-cdsc basis.         Where     boundary         determination                   is not clearly               established,             bot!l estuary         and river         habitat           bfologlcal             survey       requirements             should       be satisfied           In a combined               determlnatlon                 for envtronmencal                 effects         and best availablt           technology           for minimizing                   adverse         Lmpact.
Entrapment-Impingement The physical blocking nf larger nrganlsms by J harrier, ncncr.ll1.v snme type of screen system In the cooling vater Intake.
Habitat         Fornerr hbltat         farmers         are     plants       and/or           animals       characterized               by a relatively           ae8rlle       life       state       with       aggregated             distribution             and funct           ionin):
Entrapment emphasfres the prevention nf escape of organisms and lmpingemcnt emphasizes the collision of an organism vith a portion of the se rut turt Estuary An estuary is defined as a semi-enclosed cnastal body of water ut~fcll has a free connection with the open sea; lt 1s thus strongly Jffcctcbt!
t:;i tidal action and within it sea vatcr is mixed (and usually awasur.lbly diluted) ufsh fresh water from land drainsge.
It may be diff tcult tc) precisely delineate the boundary of estuarinc and river habitats in chit>
upper reaches of a fresh vater river discharging into marine waters.
The Lnterface is generally a dynamic entity varying daily and seasonall) ln geographical lncat ion.
In such
: cases, determination nf habitat boundaries should be established by mutual agreement on a case-by-cdsc basis.
Where boundary determination is not clearly established, bot!l estuary and river habitat bfologlcal survey requirements should be satisfied In a combined determlnatlon for envtronmencal effects and best availablt technology for minimizing adverse Lmpact.
Habitat Fornerr hbltat farmers are plants and/or animals characterized by a relatively ae8rlle life state with aggregated distribution and funct ionin):
as:
as:
: 1.     a live       and/or         formerly           lfving         substrate         for     chc     attach-ment     of   epibinta;
: 1.
: 2.     either       a direct           or   indirect           food       source       for     the     product       Ion of shellfish.             fish,       and     vildlife;
a live and/or formerly lfving substrate for chc attach-ment of epibinta;
: 3. a blologlcal             mechanism           fnr the stabilization                         and modifi-catton       of sediments             and contributfng                   to   processes         of sol!     brlildingss;
: 2.
: 4. a rutrient           cycling         path     or     trap;       or
either a direct or indirect food source for the product Ion of shellfish.
: 5. specific         sites       for     spawning,         and     providing           nursery, feeding,         and cnver           areas     for     fish     and shellf           tsh.
: fish, and vildlife;
Hfgh     Potential       Impact         Intakes High potential             inpact       intakes       are those             located         in biol:yqiclI:.
: 3.
productive         areas       or where the volume                     of vater           vithdravn         comprises         A large     proportfon         of the source             vater       body segment             or for vhich             histnr-lcal     data or other             ConsideratFons               indicate           a broad         impact.
a blologlcal mechanism fnr the stabilization and modifi-catton of sediments and contributfng to processes of sol!
brlildingss;
: 4.
a rutrient cycling path or trap; or
: 5.
specific sites for
: spawning, and providing
: nursery, feeding, and cnver areas for fish and shellf tsh.
Hfgh Potential Impact Intakes High potential inpact intakes are those located in biol:yqiclI:.
productive areas or where the volume of vater vithdravn comprises A
large proportfon of the source vater body segment or for vhich histnr-lcal data or other ConsideratFons indicate a broad impact.
Impiqement See Entrapment-Impingement.
Impiqement See Entrapment-Impingement.
Lake Any naturally             occurrIng           Large volume               of standing             water     IJCCII~~:~P       3 distinct       basin     and, fnr purposes                   of this           document,           reservoirs         .Inci impoundments.
Lake Any naturally occurrIng Large volume of standing water IJCCII~~:~P 3
Lou Potential           Impact         Intakes 1.0~ potential           impact       intakes       are those             located         in biologically unproductive         areas       and having           low flow or having                     historical           data     shnvinp.
distinct basin
no effect       or for vhich             other       considerations                 indicate           low impact.           Plants with     low capacity           factors         or with         fev remaining               years       of lifetime         might be considered           low       impact       despite         their       historical           impact.
: and, fnr purposes of this
For the purposes               of this         document,           the term macrotnvertebrates may be considered               synonymous           wf th aquatic               macroinvertebrates                   and are those       invertebrates               that     are large           enough to be seen by the unatded       eye and can be retained                       by a U.S.             Standard         No. 30 sieve (0.595     mm. mesh opening).
: document, reservoirs  
.Inci impoundments.
Lou Potential Impact Intakes 1.0~ potential impact intakes are those located in biologically unproductive areas and having low flow or having historical data shnvinp.
no effect or for vhich other considerations indicate low impact.
Plants with low capacity factors or with fev remaining years of lifetime might be considered low impact despite their historical impact.
For the purposes of this
: document, the term macrotnvertebrates may be considered synonymous wf th aquatic macroinvertebrates and are those invertebrates that are large enough to be seen by the unatded eye and can be retained by a U.S.
Standard No.
30 sieve (0.595 mm. mesh opening).  


                                                                -2o-Yernplankton For     the     purposes         of this       document,         mcroplanktnn               are     defined       as planktonlc           life     scap,ee (often             eggs or larvae)               of f tsh or           invertebrates.
-2o-Yernplankton For the purposes of this
Oceans The ocean habitat,                     for the purposes               of this         manual,         is cnnstdered marine       waters         other       than those uater               bndies       classified           as estuaries.             This fncludes         open coastal               areas,     embayments,             fjords,       and other           semi-enclosed bodies       of water           open to the sea and nnt aeasurably                                   diluted         with     fresil water     from land drainage.
: document, mcroplanktnn are defined as planktonlc life scap,ee (often eggs or larvae) of f tsh or invertebrates.
Two prfncipal               zones within             the oceanic             hnbtcat         potentially           impacted are:       (1) littoral               zone -- from high                   t Lde level         to   Inv t lde         level,       and (2) meritic             zone     (near       shore)     -- low ttde             level       to   the edge         of the continental             shelf.
Oceans The ocean
Phytoplankton Phytoplanktnn               are the free-floating                     plants,         usually         nicroscopic algae,       that       photosynthetically                 fix     tnorganic         carbon         and     are,     therefore, primary       producers           in some aquatic               environments.
: habitat, for the purposes of this
Plankton Plankton           are eeaentlally               microscopic             organisms,           plant       or animal, suspended           ln uatcr         which       exhibit         mar neutral             burtyancy.             Because of their     physical           characteristics               or size,         most       plankton           organisms         are fncapable           of sustained               mobility       In directions               ag.lLnsc         u.lcer     flow.         Con-sequently,           plankton           drift     more or less passively                       In prcvaillng             currents.
: manual, is cnnstdered marine waters other than those uater bndies classified as estuaries.
Population A population               is     generally       considered             to be conprlsed               of individuals of the       arc         specico         In a geographic               area,         Popul,ltlons           exhibit       parameters such     88 mortality,               natalicy,           fecundity,           intrinsic           rate of increase, density,         l tc .
This fncludes open coastal
Primary       Study       Area This       lncludea           the segment           af the vater               body Jeternlned               to be the area nf   potential           damage.           This     concept         fa mart         perclnc*nt         t~l arganigms           suhfect to   inner-plane             passage,           normally         weakly     motile         or planhcnnic,               and spattally
: areas, embayments,
: fjords, and other semi-enclosed bodies of water open to the sea and nnt aeasurably diluted with fresil water from land drainage.
Two prfncipal zones within the oceanic hnbtcat potentially impacted are:
(1) littoral zone from high t Lde level to Inv t lde
: level, and (2) meritic zone (near shore) low ttde level to the edge of the continental shelf.
Phytoplankton Phytoplanktnn are the free-floating
: plants, usually nicroscopic
: algae, that photosynthetically fix tnorganic carbon and
: are, therefore, primary producers in some aquatic environments.
Plankton Plankton are eeaentlally microscopic organisms, plant or
: animal, suspended ln uatcr which exhibit mar neutral burtyancy.
Because of their physical characteristics or
: size, most plankton organisms are fncapable of sustained mobility In directions ag.lLnsc u.lcer flow.
Con-sequently, plankton drift more or less passively In prcvaillng currents.
Population A population is generally considered to be conprlsed of individuals of the arc specico In a geographic
: area, Popul,ltlons exhibit parameters such 88 mortality,
: natalicy, fecundity, intrinsic rate of
: increase, density, l tc Primary Study Area This lncludea the segment af the vater body Jeternlned to be the area nf potential damage.
This concept fa mart perclnc*nt t~l arganigms suhfect to inner-plane
: passage, normally weakly motile or planhcnnic, and spattally  


                                                                    -.!I-su9ject       co water           boa:/ c~rrrnts           ratErr       than poSSesSing                   the abi:it;:           :.
-.!I-su9ject co water boa:/
change       locatlcn           ;ndrpeodent           of uatur       mass movements.                       Animals         cdpJSlc           .f large     scale       movements,           i.e.,       Tigrant       fishes,           wit1 TOV~ into                 tnls     .zrc,i oeriodfially.
c~rrrnts ratErr than poSSesSing the abi:it;:
Rivers       and     Streams A river         or stream         is a naturally               occurrrng           body of runnir,:i?               : +~~ri: 5.1 water,       with       an unbroken.             unidirrct       lonal         flow,     contained             wltnln       .I !.:s.. r, .
change locatlcn  
channel.           Rest!Noirs           andjor       Impoundments,               for     the our-poses             of cn:+           :. :-I .*.
;ndrpeodent of uatur mass movements.
vi11     generally           be vlevtid         as lakes.
Animals cdpJSlc  
Secondary           Study       Area The area uithin                 the water         body segment outside                       the primary             study area.         Blota       in thls       area directly             affrctrd           by the intake               structure             3.i..
.f large scale movements, i.e.,
or may not be a significant                           component           of the total               population             of Lnd.ee.::,.=
Tigrant
species.           For many species.                 particularly               pelagic       fishes,         tne     tot2:       pop~~i.l-tlon     may bt! spread               over a vide geographical                         area.         This arra           could       be considered           the secondary               study     area.         Houevtir,         other       intake         structures associated           vlth       cooling       water       uses,     e.g.,         power plants,               may also           S+Y Lmpactlng           tht! populatlon               In these       other         areas.         This may be considrre.!
: fishes, wit1 TOV~ into tnls  
.zrc,i oeriodfially.
Rivers and Streams A river or stream is a naturally occurrrng body of runnir,:i?
: +~~ri:
5.1
: water, with an unbroken.
unidirrct lonal
: flow, contained wltnln  
.I !.:s.. r,.
channel.
Rest!Noirs andjor Impoundments, for the our-poses of cn:+
:-I vi11 generally be vlevtid as lakes.
Secondary Study Area The area uithin the water body segment outside the primary study area.
Blota in thls area directly affrctrd by the intake structure 3.i..
or may not be a significant component of the total population of Lnd.ee.::,.=
species.
For many species.
particularly pelagic
: fishes, tne tot2:
pop~~i.l-tlon may bt! spread over a vide geographical area.
This arra could be considered the secondary study area.
: Houevtir, other intake structures associated vlth cooling water
: uses, e.g.,
power
: plants, may also S+Y Lmpactlng tht!
populatlon In these other areas.
This may be considrre.!
in tvo ways:
in tvo ways:
: 1.     consider           tht! total       population             throughout             the Reographic*2:
: 1.
range,       rstlmatr         existing         Impacts,           and determine                 to what extent         the speclflc             intake     structure             adversely           impacts that       port ion of tht? population                       not already             adversely stressed           by sources         outside         the primary             study       area;       or
consider tht!
: 2.     consider           only     the populatlon               in the area             of potential involvement             and adjacent           areas         of occurrence                 not already         impacted         by an rxistlng                 source       of stress.
total population throughout the Reographic*2:
For     example,           when a number of Intake                         structurrs           arc located             u1tP11:
: range, rstlmatr existing
a water         body such as the Hudson River.                               Ohio River,               Long Island             <g)ur.d.
: Impacts, and determine to what extent the speclflc intake structure adversely impacts that port ion of tht? population not already adversely stressed by sources outside the primary study area; or
Western         Basin       of Lake Erie,             Narragansett               Bay, San Francisco                     Bay. tit<..
: 2.
either       of the tvo approaches                     may be taken               to assess           the impact             of t:t*
consider only the populatlon in the area of potential involvement and adjacent areas of occurrence not already impacted by an rxistlng source of stress.
structure           under conslderat               ion.       The total             impact       of all         existing         stresses may be weighed                 agafnst       the total         populatlon             of biota         studies         and the adverse         effects         of the nev stress                 added to exlstlng                     stresses           and assessed agalnst         impact         to the total             system.         The altrrnat             lvr     is to assign             a sr~. t i 1 of the water               body not already                 impacted         by other           fntake         structures             dnd compare         the segment             of the community                 in the assfgned                 area to the rffcc.t of the slnglt!               structure         concerned.
For
 
: example, when a number of Intake structurrs arc located u1tP11:
Threatened         or   Endrngered           Species A threatened           or endangered             spectes       1s any plant           or animal         chat has been determined             by the Secretary               of Commerce or the Secretary                         of the Interior         to be a threatened               or endangered             species       pursuant         Ca the Endangered           Species     Act of 1973, as amended.
a water body such as the Hudson River.
Water     Body     Stmntnt A water       body segment           fs a porttnn           of a hasin,           the surface           waters     IJf which     have common hydraulic                   characreristtcs             (or flaw regulation                 patterns!
Ohio
common natural             physical,         chemical,         and biological             processes,           and vhIch have common reactions                   to external           stress,       e.g.,     discharge         of pollutants.
: River, Long Island  
Where they have been defined,                           the water         body segments             determined         by tile State     Continuing           Planning         Process       under section             303(e)       of P.L.       92-500 apply.
<g)ur.d.
Zone     of   Potential         Involvement The zone of potential                   involvement           is considered             the vater         mass surrounding           the intake           structure         and likely           to be dravn           into     the structure iceelf     or incn the associated                     cooling       vater       systtm.         This varies           with     Cime and fs dependent               on ambient           water     movements         in the affected               body of source vater     an modified           by the influx             of cooling         water     at the intake             structure.
Western Basin of Lake
It will       be dffficult           to precisely             define       the limits           of this       zone of influence         because       of temporal           and spatial           variables.             The zone of potential involvtmtnt           alvayr       includes         the primary           study     area and may Include                   the secondary         study     area.
: Erie, Narragansett
Zooplankton True zooplankton               art     fret-floating             animals       which       have   little       or nn ability       for horizontal               movtmtnt.           They     art     thus     carried       passively         along vith     nrturrl       currtnte         in the vactr           body,
: Bay, San Francisco Bay.
 
tit<..
VI. STUDY FORMAT The studies submitted as support for a finding that the cooling water intake represents best technology available for a minimization of adverse environmental impact should be in the following format to facilitate agency review. At least two copies should be submitted.
either of the tvo approaches may be taken to assess the impact of t:t*
: 1. Title page (plant name, water body, company, permit information.
structure under conslderat ion.
The total impact of all existing stresses may be weighed agafnst the total populatlon of biota studies and the adverse effects of the nev stress added to exlstlng stresses and assessed agalnst impact to the total system.
The altrrnat lvr is to assign a sr~. t i 1 of the water body not already impacted by other fntake structures dnd compare the segment of the community in the assfgned area to the rffcc.t of the slnglt!
structure concerned.
Threatened or Endrngered Species A threatened or endangered spectes 1s any plant or animal chat has been determined by the Secretary of Commerce or the Secretary of the Interior to be a threatened or endangered species pursuant Ca the Endangered Species Act of
: 1973, as amended.
Water Body Stmntnt A water body segment fs a porttnn of a hasin, the surface waters IJf which have common hydraulic characreristtcs (or flaw regulation patterns!
common natural
: physical, chemical, and biological processes, and vhIch have common reactions to external
: stress, e.g.,
discharge of pollutants.
Where they have been
: defined, the water body segments determined by tile State Continuing Planning Process under section 303(e) of P.L.
92-500 apply.
Zone of Potential Involvement The zone of potential involvement is considered the vater mass surrounding the intake structure and likely to be dravn into the structure iceelf or incn the associated cooling vater systtm.
This varies with Cime and fs dependent on ambient water movements in the affected body of source vater an modified by the influx of cooling water at the intake structure.
It will be dffficult to precisely define the limits of this zone of influence because of temporal and spatial variables.
The zone of potential involvtmtnt alvayr includes the primary study area and may Include the secondary study area.
Zooplankton True zooplankton art fret-floating animals which have little or nn ability for horizontal movtmtnt.
They art thus carried passively along vith nrturrl currtnte in the vactr
: body, VI. STUDY FORMAT The studies submitted as support for a finding that the cooling water intake represents best technology available for a minimization of adverse environmental impact should be in the following format to facilitate agency review.
At least two copies should be submitted.
1.
2.
3.
4.
5.
6.
7.
8.
9.
Title page (plant name, water body, company, permit information.
rate).
rate).
: 2. Table of contents.
Table of contents.
: 3. An executive summary of 2-3 paragraphs (essence of material and conclusions).
An executive summary of 2-3 paragraphs (essence of material and conclusions).
: 4. Detailed presentation of methods used in data collection, analysis and/or interpretation when different from standard references.
Detailed presentation of methods used in data collection, analysis and/or interpretation when different from standard references.
: 5. Supportive reports, documents, and raw data. Data from the open literature need not be included so long as it is readily available.
Supportive reports, documents, and raw data.
: 6. Bilbiographic citations to page number of cited text,
Data from the open literature need not be included so long as it is readily available.
: 7. An interpretive, comprehensive narrative summary of the studies which will serve, in part, as the basis for the agencys decision. The summary should include a table of contents and may include table figures. Sources of data used in the summary should be cited to page number. The summary should include a clear discussion stating why the report shows (or does not show) that the water intake structure in question minimizes impact on the water resources and aquatic biota in the vicinity of the intake and throughout the water body segment.
Bilbiographic citations to page number of cited text, An interpretive, comprehensive narrative summary of the studies which will serve, in part, as the basis for the agencys decision.
: 8. An appendix listing the agencies and consultants conducting this or related work on the water body.
The summary should include a table of contents and may include table figures.
: 9. Reports generated in response to section 316(b) should be recorded and forwarded to the National Technical Information Service (NTIS) for recording and announcement. The folder, NTIS-PR-184, available from NTIS, U.S. Department of Commerce, Springfield, Virginia 22161, explains the procedure in detail.
Sources of data used in the summary should be cited to page number.
 
The summary should include a clear discussion stating why the report shows (or does not show) that the water intake structure in question minimizes impact on the water resources and aquatic biota in the vicinity of the intake and throughout the water body segment.
It is the intention of the EPA to make the technical information submitted by industries in accordance with 315(b) available for use by other industries, scientists, and members of the public. This will be done initially by placing copies in the responsible EPA Regional Off Ice library. A similar approach is also suggested for State agencies.
An appendix listing the agencies and consultants conducting this or related work on the water body.
In cases where demand for the demonstration materials exceeds the capa-bility of an EPA or State agency library, the EPA Regional Administrator may also submit the materials to the NTIS so that the reports are available co the public in microfiche or hard copy form at the price of duplication. In the meantime, EPA is developing lists of plants with completed 316(b) demonstrations and will submit the plant name and an abstract of each study to NTIS.
Reports generated in response to section 316(b) should be recorded and forwarded to the National Technical Information Service (NTIS) for recording and announcement. The folder, NTIS-PR-184, available from NTIS, U.S. Department of Commerce, Springfield, Virginia 22161, explains the procedure in detail.
It is also noted chat the Atomic Industrial Forum has developed INFORUM, a data system which will extract and index information from reports submitted by utilities in accordance with sections 316(a) and (b). Questions should be referred to INFORUM at 1747 Pennsylvania Avenue, Washington, D.C. 20006, telephone 202-833-9234.
It is the intention of the EPA to make the technical information submitted by industries in accordance with 315(b) available for use by other industries, scientists, and members of the public.
 
This will be done initially by placing copies in the responsible EPA Regional Off Ice library.
VII. DETAILED STUDY REFERENCES This document, of necessity, is generalized to provide an overall framework of guidance and conceptual approach. Six references are recommended which treat various aspects of the study requirements in more specific detail:
A similar approach is also suggested for State agencies.
: 1. U.S. Environmental Protection Agency, Office of Water
In cases where demand for the demonstration materials exceeds the capa-bility of an EPA or State agency library, the EPA Regional Administrator may also submit the materials to the NTIS so that the reports are available co the public in microfiche or hard copy form at the price of duplication.
            & Hazardous Materials. Water Planning Division, September 30, 1974, Draft, 316(a) Technical Guidance on Thermal Discharges. (Revised draft to be published in 1976.)
In the meantime, EPA is developing lists of plants with completed 316(b) demonstrations and will submit the plant name and an abstract of each study to NTIS.
It is also noted chat the Atomic Industrial Forum has developed INFORUM, a data system which will extract and index information from reports submitted by utilities in accordance with sections 316(a) and (b).
Questions should be referred to INFORUM at 1747 Pennsylvania Avenue, Washington, D.C.
20006, telephone 202-833-9234.
VII.
DETAILED STUDY REFERENCES This document, of necessity, is generalized to provide an overall framework of guidance and conceptual approach.
Six references are recommended which treat various aspects of the study requirements in more specific detail:
1.
U.S. Environmental Protection Agency, Office of Water
& Hazardous Materials. Water Planning Division, September 30, 1974, Draft, 316(a) Technical Guidance on Thermal Discharges. (Revised draft to be published in 1976.)
: 2. U.S. Environmental Protection Agency, Office of Water 6 Hazardous Materials, Effluent Guidelines Division, April 1976, Development Document for Best Technology available for the Location, Design, Construction and Capacity of Cooling Water Intake Structures for Minimizing Adverse Environmental Impact.
: 2. U.S. Environmental Protection Agency, Office of Water 6 Hazardous Materials, Effluent Guidelines Division, April 1976, Development Document for Best Technology available for the Location, Design, Construction and Capacity of Cooling Water Intake Structures for Minimizing Adverse Environmental Impact.
: 3. Battelle Laboratories, Inc., Environmental Impact Monitoring of Nuclear Power Plants - Source Book. Atomic Industrial Forum, Inc. August 1974. 810 p.
3.
: 4. Aquatic Ecological Surveys. American Nuclear Society, F.W. Hinsdale, Illinois, Draft, October 1974.
Battelle Laboratories, Inc., Environmental Impact Monitoring of Nuclear Power Plants - Source Book.
: 5. Entrainment: Guide to steam electric power plant cooling system siting, design and operation for controlling damage to aquatic organisms. Amer. Nuc. Std. Publ. N18. - 1974.
Atomic Industrial Forum, Inc.
August 1974.
810 p.
4.
Aquatic Ecological Surveys.
American Nuclear Society, F.W. Hinsdale, Illinois, Draft, October 1974.
5.
Entrainment:
Guide to steam electric power plant cooling system siting, design and operation for controlling damage to aquatic organisms.
Amer. Nuc. Std. Publ. N18. - 1974.
Draft, July 1, 1974, 44 p. and appendices.
Draft, July 1, 1974, 44 p. and appendices.
: 6. Entrapment/Impingement: Guide to steam electric power plant cooling system siting, design and operation for controlling damage to aquatic organisms at water intake structures. Amer. Nuc. Std. Publ. N18 - 1974. Draft, September, 1974, 24 p. and appendix.
6.
 
Entrapment/Impingement:
VIII. SITE DESCRIPTION The following information is generally needed to fully describe the potential experiences of organisms which may be entrapped within intake structures, impinged on parts of the structure and/or entrained in the water mass taken in and circulated through the associated cooling water system. It is necessary to describe the full range of resultant physical, chemical, and biological parameters of these experiences which could be encountered throughout the annual operation cycle. lnformation on daily and seasonal fluctuations is of special importance in those waters subject to wide variation in water quality at the specific site. Other data pertinent to the evaluation of environmental impact of the location or intake structure in question should be included even though not specifically listed.
Guide to steam electric power plant cooling system siting, design and operation for controlling damage to aquatic organisms at water intake structures.
Amer. Nuc. Std. Publ. N18 - 1974.
: Draft, September, 1974, 24 p. and appendix.
VIII.
SITE DESCRIPTION The following information is generally needed to fully describe the potential experiences of organisms which may be entrapped within intake structures, impinged on parts of the structure and/or entrained in the water mass taken in and circulated through the associated cooling water system.
It is necessary to describe the full range of resultant physical, chemical, and biological parameters of these experiences which could be encountered throughout the annual operation cycle.
lnformation on daily and seasonal fluctuations is of special importance in those waters subject to wide variation in water quality at the specific site.
Other data pertinent to the evaluation of environmental impact of the location or intake structure in question should be included even though not specifically listed.
The following data are required for adequate description of sites located on either fresh or marine water bodies:
The following data are required for adequate description of sites located on either fresh or marine water bodies:
: 1. Site location and layout A. Location of additional Intake structures - Smaller scale, map showing locations of intake structures, associated cooling water systems, and other pertinent discharges related to surrounding shore and water features in a 50-mile radius.
1.
: 8. Site Plan - Larger scale map with topographic and hydrographic data depicting specific location of structure in the water body. Data required includes:
Site location and layout A.
                        - Topographic details
Location of additional Intake structures - Smaller scale, map showing locations of intake structures, associated cooling water systems, and other pertinent discharges related to surrounding shore and water features in a 50-mile radius.
                        - Hydrological features (see U.S. Department of Commerce, National Ocean Survey Charts, where available), including depth contours
8.
                        - Water body boundaries
Site Plan - Larger scale map with topographic and hydrographic data depicting specific location of structure in the water body.
                        - Affected water body segment
Data required includes:
                        - Location and description of other cooling water intakes in water body segment
- Topographic details
                        - Existing site with topographic and hydrological features as changed by proposed intake structure construction and operation (where applicable)
- Hydrological features (see U.S. Department of Commerce, National Ocean Survey Charts, where available), including depth contours
: 2. Meteorology (when hydrodynamic modeling is performed)
- Water body boundaries
            - Air temperature, maximum, minimum, mean-monthly
- Affected water body segment
            - Rainfall, monthly
- Location and description of other cooling water intakes in water body segment
              - Solar radiation kcal/m&#xb2;/day (average/month for the annual cycle)
- Existing site with topographic and hydrological features as changed by proposed intake structure construction and operation (where applicable) 2.
              - Wind speed and direction. prevailing winds identi-fied as to seasonal patterns
Meteorology (when hydrodynamic modeling is performed)
              - Other relevant site specific data
- Air temperature, maximum, minimum, mean-monthly Rainfall, monthly
: 3. Additional stresses on water body segment
- Solar radiation kcal/m&#xb2;/day (average/month for the annual cycle)
              - Location of existing or planned point sources of potential adverse environmental impact
- Wind speed and direction. prevailing winds identi-fied as to seasonal patterns
              - Summary of impacts associated with existing or future stresses (and citations to more extensive analyses, such as 316(a) demonstrations, impact statements, NPDES permits, etc.)
- Other relevant site specific data 3.
: 4. Cooling water intake structure A. Structure
Additional stresses on water body segment
              - Location with respect to cooling water system
- Location of existing or planned point sources of potential adverse environmental impact
              - Location in water body, horizontal and vertical (including skimmer walls)
- Summary of impacts associated with existing or future stresses (and citations to more extensive analyses, such as 316(a) demonstrations, impact statements, NPDES permits, etc.)
              - Configuration, including canals and channels; detailed drawings
4.
              - Capacity
Cooling water intake structure A.
              - Screening devices (behavioral and physical)
Structure
              - Fish by-pass and handling facilities
- Location with respect to cooling water system
              - Average and maximum approach and thru-screen water velocities, by depth
- Location in water body, horizontal and vertical (including skimmer walls)
              - Flow rates and frequency of occurrence correlated with load characteristics
- Configuration, including canals and channels; detailed drawings
              - Location, amount, and duration of recirculation water for deicing or tempering
- Capacity
              - Other relevant system-specific data
- Screening devices (behavioral and physical)
: 8. Pumps
- Fish by-pass and handling facilities
                -    Design       details         (location             in     structure,             cnnftgurat       inn of blades,           and     housing)
- Average and maximum approach and thru-screen water velocities, by depth
                -      Revolut     Lens       per   minute
- Flow rates and frequency of occurrence correlated with load characteristics
                -      Number,       capoc it ies,             and     planned           operating           schedule
- Location, amount, and duration of recirculation water for deicing or tempering
                -      Pressure         regimes         in     vater       subjected           to   pumping
- Other relevant system-specific data
                -      Velocity         shear       stresses             in     pumping
: 8.
                -      Sites     of     potential             turbulence             and     physical         impacts cI. Btocides
Pumps Design details (location in structure, cnnftgurat inn of
                -      Locat   ton     of     lntroductton                 in   system
: blades, and housing)
                -      nescrtptton             and     toxicity           of     biocide         used
Revolut Lens per minute
                -    Timing       and duration                 of   use
: Number, capoc it ies, and planned operating schedule Pressure regimes in vater subjected to pumping Velocity shear stresses in pumping Sites of potential turbulence and physical impacts c I.
                -      Concentrations               of biocide                 in various             parts       of cooling         vatet       system         and     recetving             vaters
Btocides Locat ton of lntroductton in system nescrtptton and toxicity of biocide used Timing and duration of use Concentrations of biocide in various parts of cooling vatet system and recetving vaters
: n. Thenna     1 experience
: n.
                -    Tabulatfnn             of annual             ambient           temperatures, thermal       additfon           to cooling               vater       of various operating           capac L t tea,             and resultant                 t tme-temperature             experience             of organisms                 subjected to entrainment               in cooling               vater         system F*. Other     relevant         data       on cooling             vater         circulation             system
Thenna 1 experience Tabulatfnn of annual ambient temperatures, thermal additfon to cooling vater of various operating capac L t tea, and resultant t tme-temperature experience of organisms subjected to entrainment in cooling vater system F *.
                -      Dissolved           gases
Other relevant data on cooling vater circulation system Dissolved gases Suspended solids and turb td tty Other vaatea and chemicals added Sire of condenser
                -      Suspended           solids         and       turb     td tty
: tubes, heat exchanger cow
                -    Other       vaatea         and     chemicals             added
: poncnta, vater
                -      Sire     of   condenser               tubes,         heat       exchanger           cow poncnta,         vater       piping,           siphon         pita,       etc.
: piping, siphon
                  -    Malntcnance             procedures,               USC of         heat       treatment or deicing           procedures
: pita, etc.
: 5. Plant   Data
Malntcnance procedures, USC of heat treatment or deicing procedures
                -      Age and         expected           Iifetlme
: 5.
                  -    Capactty         factor         and       percent           of     tfme     at     fractional         io.lds
Plant Data Age and expected Iifetlme Capactty factor and percent of tfme at fractional io.lds History of intake model IX.
                  -    History       of     intake         model
SOURCE WATER INVOLVEMENT The physical interaction of the intake and the adjacent water body forms a base for assessment of biological impact by relating the behavior and motion of local organisms with the flow of water around the site and into the intake structure.
 
To determine this involvement with the intake, it is desirable to identify the type or types of circulation which will be dominant in the water body, and to establish a program of monitoring currents and other relevant hydrological and physical parameters of the system.
IX. SOURCE WATER INVOLVEMENT The physical interaction of the intake and the adjacent water body forms a base for assessment of biological impact by relating the behavior and motion of local organisms with the flow of water around the site and into the intake structure. To determine this involvement with the intake, it is desirable to identify the type or types of circulation which will be dominant in the water body, and to establish a program of monitoring currents and other relevant hydrological and physical parameters of the system. Predictive tools, such as computer models, are useful in assessment of impact, and for delineation of the area of potential damage.
Predictive tools, such as computer models, are useful in assessment of impact, and for delineation of the area of potential damage.
The approach outlined here is suggested for new plants having high poten-tial impact when sufficient model accuracy is obtainable. The approach may be useful for other plants as well, as discussed in the impact assess-ment section below. The modeling program should be discussed with the agency in advance of application and should include sensitivity analyses.
The approach outlined here is suggested for new plants having high poten-tial impact when sufficient model accuracy is obtainable.
: 1. Hydraulic Features The dominant modes of circulation in the water body are frequently identified in the literature and include channel flow, tidal and wind-driven currents, estuary or gravitational circulation, littoral drift, and others. The local currents (or velocity structure) can be modified by bathymetry and transient atmospheric conditions, and contain local features such as eddies; their importance can he modified by their effect on biological processes. It is also useful to identify interface zones if several current regimes or physical pro-cesses are evident. Large water withdrawals and discharges can be sufficient to modify existing hydraulic patterns enough to create new biological habitats.
The approach may be useful for other plants as well, as discussed in the impact assess-ment section below.
The modeling program should be discussed with the agency in advance of application and should include sensitivity analyses.
1.
Hydraulic Features The dominant modes of circulation in the water body are frequently identified in the literature and include channel flow, tidal and wind-driven currents, estuary or gravitational circulation, littoral drift, and others. The local currents (or velocity structure) can be modified by bathymetry and transient atmospheric conditions, and contain local features such as eddies; their importance can he modified by their effect on biological processes.
It is also useful to identify interface zones if several current regimes or physical pro-cesses are evident.
Large water withdrawals and discharges can be sufficient to modify existing hydraulic patterns enough to create new biological habitats.
A program of monitoring the currents and other relevant physical parameters is desirable for the study of source water involvement, Whenever possible, historical data should be used to identify the expected circulations and guide in the selection of instrument stations, although as data comes in, a re-evaluation of the monitoring program is useful.
A program of monitoring the currents and other relevant physical parameters is desirable for the study of source water involvement, Whenever possible, historical data should be used to identify the expected circulations and guide in the selection of instrument stations, although as data comes in, a re-evaluation of the monitoring program is useful.
the relevant parameters are water current, speed and direction, wind speed and direction, tides or local water levels, tem-perature, and water density, Salinity data are important in an estuarine environment.
the relevant parameters are water current, speed and direction, wind speed and direction, tides or local water levels, tem-perature, and water density, Salinity data are important in an estuarine environment.
The spatial distribution of instrument stations is usually indicated by the circulation regime and local bathymetry, but is best organized to provide input to and verification data suitable for a predictive hydraulic model of the currents. Vertical spacing of instruments should be sufficient to identify any important depth variation in the circulation.
The spatial distribution of instrument stations is usually indicated by the circulation regime and local bathymetry, but is best organized to provide input to and verification data suitable for a predictive hydraulic model of the currents.
 
Vertical spacing of instruments should be sufficient to identify any important depth variation in the circulation.
The use of a hydraulic model requires several other specific inputs to provide realistic prediction of currents in the area. typical parameters include:
The use of a hydraulic model requires several other specific inputs to provide realistic prediction of currents in the area.
: 1. boundary geometry;
typical parameters include:
: 2. bottom topography;
1.
: 3. bottom friction coefficients;
boundary geometry; 2.
: 4. latitude of the area;
bottom topography; 3.
: 5. tides or water levels at open boundaries;
bottom friction coefficients; 4.
: 6. river flows;
latitude of the area; 5.
: 7. temperature and salinity;
tides or water levels at open boundaries; 6.
: 8. wind stress;
river flows; 7.
: 9. power plant cooling water flow races; and
temperature and salinity; 8.
: 10. other point source flow rates.
wind stress; 9.
A significant period of time (two weeks) night be chosen for a continuous (burst sampling) monitoring sequence to sense periodic variations in the circulation, and another program to sample changes on an annual (or longer) cycle. Careful recording of placement and start times is recommended.
power plant cooling water flow races; and 10.
The instruments chosen should be durable and resistant to fouling. The accuracy may be influenced by the scale of the parameters but for water level should generally be at least
other point source flow rates.
+/- 0.01 ft. and, for current speed and direction, + .15 knots and +/- 5.0&deg; respectively. For temperature and salinity
A significant period of time (two weeks) night be chosen for a continuous (burst sampling) monitoring sequence to sense periodic variations in the circulation, and another program to sample changes on an annual (or longer) cycle.
+/- 0.1&deg;C and +/- 0.1&deg;/&deg;&deg; respectively can be expected.
Careful recording of placement and start times is recommended.
The instruments chosen should be durable and resistant to fouling.
The accuracy may be influenced by the scale of the parameters but for water level should generally be at least
+/- 0.01 ft. and, for current speed and direction, +.15 knots and +/- 5.0&deg; respectively.
For temperature and salinity
+/-
0.1&deg;C and  
+/-
0.1&deg;/&deg;&deg; respectively can be expected.
Special instrumentation for water current sensing may be necessary at threshold speeds.
Special instrumentation for water current sensing may be necessary at threshold speeds.
An instrument calibration program is necessary to insure accuracy. Redundant marking of station locations and provision for recovery of unmarked instruments should be made.
An instrument calibration program is necessary to insure accuracy.
Computer models as predictive tools represent the best available predictive tools and are useful in assessing water use and biological impact. Mathematical models solve the equations of water flow and are used to predict currents in the water body. Another model (of water quality) can he developed in tandem to solve the equation of mass flow and used co predict mass or concen-trations of organisms under influence of the currents.
Redundant marking of station locations and provision for recovery of unmarked instruments should be made.
 
Computer models as predictive tools represent the best available predictive tools and are useful in assessing water use and biological impact.
The selection             of the appropriate                   model is guided             by the circulaticn regime       and the geonorphology                     of the vater         body.       A number of mathematical           nodels       of tidal           flov     are available,           and these           can be extended         to include         channel         flov.       For example,         the Leendertse               5, 9 type square-grid                 models         for tidal         cuf- ents and larvae                 transport have been used.                 Finite-element               models       are being         developed         for tidal     cfrculatfon,           and may have advantages                     In certai           areas.
Mathematical models solve the equations of water flow and are used to predict currents in the water body.
fl For river-bay             situations,             the channel-function               model           nay have special       advantages.             Three-dimensional               models     such as those described         in references             12. 13, and 14 may be appropriate.                               A comprehensive             summary of13vaflable                     models has been cornpiLed by Gordon and Spauldlng.                             The rationale           for selection             of the particular           set of models             should         be justified         by either           enphas:z:nu their     suitability           or by demonstrating                   a lack of other               sufficient models.
Another model (of water quality) can he developed in tandem to solve the equation of mass flow and used co predict mass or concen-trations of organisms under influence of the currents.
Verffication           of model output                 should     be made for both               current and organism           concentrations.                   Data from the monitoring                     survey are useful           for verifying             the current           model vhlle           the     biological sampling         program       nay be used to verify                   the notion           of   organisos.
The selection of the appropriate model is guided by the circulaticn regime and the geonorphology of the vater body.
Dye studies           nay also         be useful           In model verification.
A number of mathematical nodels of tidal flov are available, and these can be extended to include channel flov.
Hearts for delineating                   study       area and source             vater       involvement           may vary     from intuitive               judgments           to highly       sophisticated             predictive models.         The most logical                 measures,         consistent         vith       the local conditions           should     be determined.
For
: 2. Probability           of   Entrainment The zone of potential                     involvement           of the cooling             vater       intake varies       vith     species       of organisms               and time but the core concept is   the determination                 of probability             of entrainment.                 The predictive           models       are useful             for mapping       probability             fsopleths.
: example, the Leendertse 5,
This     could       be done by the simulation                       of drlfters           with     the hydraulrc model,       or the spread             of mass from point                 sources       into     the intakes vith     the concentration                 model.           Drogue or dye studies                 could     be used for verification.                       Drifters,           drogues,       or dye may, however, be poor analogs               for the organisms                   In question.           A9 a consequence, any study         of thte       nature       must be accompanied                 by justification chat adequate             adjustment           is being         made for differences                   in behavior         between       the organisms               and their     mechanical           analogs.
9 type square-grid models for tidal cuf-ents and larvae transport have been used.
 
Finite-element models are being developed for tidal cfrculatfon, and may have advantages In certai fl areas.
A map     of probability                 of     entrainnent           unuld     be useful         in dclincat       In,:
For river-bay situations, the channel-function model nay have special advantages.
the     outline         of the       area       of   potenttal         involvement         by a ratlondl, analytical             mthod.           For exanple,             the cnmputer           hydraul     lc model for currents         could       be Itsed to simulate                     the flaw nf drogues                 in the regfon.           A simulated             release         of drogues           (several         per hour)       uoul~
Three-dimensional models such as those described in references
be carried             out llnttl         all     drogues         have either           been entrnlned             or have crossed               the node1 boundarfes                     and left       the area.           The rat ton of entrained             drogues         to the total             gives     the probability             of enttalnrncnt.               A repetition               of this       procedure         for other         release points       gives       J Eleld         distribution             of probability.
: 12. 13, and 14 may be appropriate.
An alternate             method         Is     tn   simulate         mass transport             fron   J field       &%f points,         wherein         the     ratio       of mass entralned               to the total           release<!
A comprehensive summary of13vaflable models has been cornpiLed by Gordon and Spauldlng.
gives       the probability.                     This method could               be verifted           by the USC of dye studies.
The rationale for selection of the particular set of models should be justified by either enphas:z:nu their suitability or by demonstrating a lack of other sufficient models.
In   environments               likely         to exhibit           density       stratification,               or In vhich     the organisms                 stratify,           it   may be necessary                 to use multi-level     sampling           for all         parameters,             and consider           strat tficat       ion ~9 the models             chosen.           Wind effects             are more likely               to be important In shallov             vater.         The spatial             changes       in parameters             in stratified systems         are     1 tkely       to be larger,               so this       must also         be incorporated in a sampling               program.
Verffication of model output should be made for both current and organism concentrations.
Obviously,             models       are highly           desirable         and the probability                 isnpleth concept         is a poverful               analyt       Lcal taol.           However,         the time       and costs involved         vlll       not be justifiable                   in many situations.
Data from the monitoring survey are useful for verifying the current model vhlle the biological sampling program nay be used to verify the notion of organisos.
 
Dye studies nay also be useful In model verification.
Hearts for delineating study area and source vater involvement may vary from intuitive judgments to highly sophisticated predictive models.
The most logical
: measures, consistent vith the local conditions should be determined.
: 2.
Probability of Entrainment The zone of potential involvement of the cooling vater intake varies vith species of organisms and time but the core concept is the determination of probability of entrainment.
The predictive models are useful for mapping probability fsopleths.
This could be done by the simulation of drlfters with the hydraulrc
: model, or the spread of mass from point sources into the intakes vith the concentration model.
Drogue or dye studies could be used for verification.
: Drifters, drogues, or dye may,
: however, be poor analogs for the organisms In question.
A9 a consequence, any study of thte nature must be accompanied by justification chat adequate adjustment is being made for differences in behavior between the organisms and their mechanical analogs.
A map of probability of entrainnent unuld be useful in dclincat In,:
the outline of the area of potenttal involvement by a ratlondl, analytical mthod.
For
: exanple, the cnmputer hydraul lc model for currents could be Itsed to simulate the flaw nf drogues in the regfon.
A simulated release of drogues (several per hour) uoul~
be carried out llnttl all drogues have either been entrnlned or have crossed the node1 boundarfes and left the area.
The rat ton of entrained drogues to the total gives the probability of enttalnrncnt.
A repetition of this procedure for other release points gives J Eleld distribution of probability.
An alternate method Is tn simulate mass transport fron J field  
&%f
: points, wherein the ratio of mass entralned to the total release<!
gives the probability.
This method could be verifted by the USC of dye studies.
In environments likely to exhibit density stratification, or In vhich the organisms
: stratify, it may be necessary to use multi-level sampling for all parameters, and consider strat tficat ion  
~9 the models chosen.
Wind effects are more likely to be important In shallov vater.
The spatial changes in parameters in stratified systems are 1 tkely to be larger, so this must also be incorporated in a sampling program.
Obviously, models are highly desirable and the probability isnpleth concept is a poverful analyt Lcal taol.
: However, the time and costs involved vlll not be justifiable in many situations.
X. BIOLOGICAL SURVEY REQUIREMENTS (NEW INTAKES)
X. BIOLOGICAL SURVEY REQUIREMENTS (NEW INTAKES)
The purpose of the biological survey is to provide a sufficient and valid data base for rational assessment of environmental impact related to the location, design, construction, and capacity of a cooling water intake structure, prior to a final siting decision.
The purpose of the biological survey is to provide a sufficient and valid data base for rational assessment of environmental impact related to the location, design, construction, and capacity of a cooling water intake structure, prior to a final siting decision.
Line 1,145: Line 2,933:
Biological surveys should be designed and implemented to deter-mine the spatial and temporal variability of each of the important components of the biota that may be damaged by the intake. These surveys could include studies of meroplankton, benthic fish, pelagic fish, benthic macroinvertabrates, phytoplankton, zooplankton, benthic infauna and boring and fouling communities where appropriate.
Biological surveys should be designed and implemented to deter-mine the spatial and temporal variability of each of the important components of the biota that may be damaged by the intake. These surveys could include studies of meroplankton, benthic fish, pelagic fish, benthic macroinvertabrates, phytoplankton, zooplankton, benthic infauna and boring and fouling communities where appropriate.
Generally, the majority of critical aquatic organisms will be fish or macroinvertabrates.
Generally, the majority of critical aquatic organisms will be fish or macroinvertabrates.
Once the occurrence and relative abundance of critical aquatic organisms at various life stages has been estimated, it is necessary to determine the potential for actual involvement with the intake structure.
An organism may spend only a portion of its life in the pelagic phase and he susceptible to entrainment.
Migratory species may be in the vicinity of the intake for a short segment of the annual cycle.
Some species are subjected to intake structure effects during life history stages.
For example, winter flounder larvae are found in the ichthyoplankton during their pelagic larval
: phase, and are susceptible to being entrained.
During later life stages, as juveniles and adults, they are vulnerable to impingement.
Both entrainment and impingement must be considered in subsequent impact assessment.
Know-ledge of the organisms life cycle and determination of local water circula-tion patterns related to the structure are essential to estimating an individual species potential for involvement.
Once involvement is determined, actual effects on those organisms must be estimated.
As a first order approximation, 100 percent loss of individuals impinged, entrapped, or entrained could be assumed unless valid field or laboratory data are available to support a lower loss estimate.
The final step is to relate loss of individuals to effects on the local population as impacted by intake structure
: location, design, construction, and capacity.
It is important to consider the means for data reduction and analysis in the early stages of survey design.
Data must be amenable to biostatistical analyses, as utilized in arriving at the judgment for best available technology to minimize adverse environmental impact.
: 1.
Sampling Design It is necessary at the outset to clearly define the objectives of the sampling program and the area to be sampled.
Quantitative sampling studies are designed to estimate numbers per unit and/or volume.
The major considerations in these studies are:
The dimension of the sampling unit.
In general the smallest practical sampling unit should be used.
The number of sampling units in each sample.
The size of samples for a specified degree of pre-cision can often be calculated if there is some preliminary sampling information.
If not, preli-minary sampling should be executed before exten-sive programs are developed.
The location of sampling units in the sampling areas.
Stratified random sampling is often preferable to simple random sampling.
Strata can be unequal in area or volume, with sampling units allocated in proportion to the area or volume.
: 2.
The survey effort should be intensive for at least tile first year after
: which, based on first year results and historical
: data, lover effort progams could be justffied.
Survey data are usually of a time-series nature
: and, therefore, averaRes over time intervals wlthtn the series cannnc be assumed inde-pendent.
This situarlon llmlts tks statistical procedures, Bartlett
~~~l;~-~~~,~~~
flinc Reference 19 is d
recent example of the difficulties encoun-tered when attempting to determine differences in portions of a time-series.
The develnpment of more powerful statist ical methods for appllcatton to this type of data is necessary.
It appears that only catastrophic impacts vi11 be revealed to temporal comparlsnns oE mnnltoring program data.
Plant impact may be better revealed by spatial comparisons.
The discriminating power nf surveys should be estimated prior to implementation.
This can be done by design based on previously collected data at the
: site, or by assuming the variability of the system based on previous studies at similar sites.
The expected dlscrlmina-ting power of the survey should be adequate for the purposes for vhich the data are intended.
SampllnR
?Iethodolou Recommendations on specific sampling protncol and methodology are beyond the scope of this document.
The optimal nethodo!nRy is highly dependent on the individual specfes studied coupled with site and structure characteristics.
Some general guidelines are provided here.
?fnre specific details are provided in reference
: 20.
Ichthyoplankcon-Heroplankton Sampling Sampling gear used should have known performance charactcristtcs under the conditions tn vhich it is to be used, or Lc vi11 bc tested In comparison 4th a standard gear (such as the 60 cm. boqn net developed for purposes of ichthyoplankton sampling by ttlc National Marine Fisheries Service flAWlAP program).
When a new Kear is intrl)duced, data should be included nn frs efficiency relative to a standard gear.
Gear shnuld not be changed in the course of long-term lnvesttgattnns unless the camparac lve cff lciencies of the old gear end the nev can be satisfactorily demonstrated.
It Is recognized that na sampling gear is, in
: practice, strictly qnancltative and equally efficient in retalninl:
dtf ferent sizes nf organisms.
A rAtinnale for the choice of
: gear, mesil
: size, etc.,
shnuld bc develnped fnr each sampl tny= program.
In nlosc
: cases, LackinK 9tr0ng reasons tn the
: contrary, a(io\\jtion of a standard
#car LO permit comparisons vlth nttlcr investigations Is recnnmcnded.
In
: general, teplfcace tows indicate that horizontal dtscribucicln of fish eggs and larvae and other planktonlc organisms is uneven or patchy in character, and that vertical distribution not nnly of actively
: swlmminp, forms but of eggs commonly shows SOIW atratification.
This typically varies over 24 hours due to the influence of water movement and changes fn light intensity.
Depth distribution of individual specLes of fish eggs
?ay char.Ce during the course of development, and buoyancy may differ Jt different periods of the spavning season.
Night tows frequently produce larger catches and may shou less varlabillty than day tous for fish larvae Ln the sane
*Ired.
Both phenomena are related in part tn differences in net avoidance under conditions of light and darkness.
: qouever, certain larvae may be altogether unavailable to the usual plankton sampling gear at some time of a die1 cycle; for exdnp they may lie on or near the bottom by
: day, and migrate upvar~!s at night.
Night sampl lng must be considered in survey design as essential for an accurate picture of the numbers of ichchyoplankton actually present at a station, especially with regard to post-larvae and young juveniles.
Sampling over the entire die1 cycle should be conducted.
Characterization nf the ichthyoplankton in a study area made exclusively from single tows at a series of stations is inadequate.
Replication sufficient to show the typical vari-ation between tows will be necessary, and it must be borne in mind that this may differ widely for different
: species, and may change over the course of a season.
In reasonably homageneous study
: areas, replicates can be taken at a subset of scacions and the results applied tn the rest.
In certain clrcun8tancc8, c lose to shore.
nr in the vicfnicy of the prnpoaed
: intake, more rigorous error analysis is advisable, and this may require replfcation at each station.
Determina-tion of a suitable number of replicates will depend on characteristics at each efte, and must be based on field studier.
The most variable (patchy) of the critical species of ichthyoplankton under study at a given season will dctecuine the number of replicates that are desirable.
.e.
Confidence llmlts for estimates of abundance must be based not only upon variation between tovs at a given
: station, but must incorporate other sources of
: error, which include subsampling error (when aliquots of large samples are token for lab analysis) and counting errors.


Once the occurrence and relative abundance of critical        aquatic organisms at various life stages has been estimated, it is necessary to determine the potential for actual involvement with the intake structure.          An organism may spend only a portion of its life in the pelagic phase and he susceptible to entrainment. Migratory species may be in the vicinity      of the intake for a short segment of the annual cycle. Some species are subjected to intake structure effects during life history stages. For example, winter flounder larvae are found in the ichthyoplankton during their pelagic larval phase, and are susceptible to being entrained.        During later life stages, as juveniles and adults, they are vulnerable to impingement. Both entrainment and impingement must be considered in subsequent impact assessment. Know-ledge of the organisms life cycle and determination of local water circula-tion patterns related to the structure are essential to estimating an individual species potential for involvement.
V The lchthyoplankton-meroplankton sampling will generallv 5t.
Once involvement is determined, actual effects on those organisms must be estimated. As a first order approximation, 100 percent loss of individuals impinged, entrapped, or entrained could be assumed unless valid field or laboratory data are available to support a lower loss estimate.
related to the impact of passing the organisms through the fntake structure and associated cooling water
The final step is to relate loss of individuals to effects on the local population as impacted by intake structure location, design, construction,  and capacity.      It is important to consider the means for data reduction and analysis in the early stages of survey design. Data must be amenable to biostatistical      analyses, as utilized    in arriving at the judgment for best available technology to minimize adverse environmental impact.
: system, i.e.,
: 1. Sampling Design It is necessary at the outset to clearly define the objectives of the sampling program and the area to be sampled. Quantitative sampling studies are designed to estimate numbers per unit and/or volume. The major considerations in these studies are:
                      -  The dimension of the sampling unit.      In general the smallest practical sampling unit should be used.
                      -  The number of sampling units in each sample.
The size of samples for a specified degree of pre-cision can often be calculated if there is some preliminary sampling information.      If not, preli-minary sampling should be executed before exten-sive programs are developed.
                      -  The location of sampling units in the sampling areas. Stratified    random sampling is often preferable to simple random sampling. Strata can be unequal in area or volume, with sampling units allocated in proportion to the area or volume.
 
The survey              effort        should      be intensive              for at least              tile first year after              which,      based on first                year results              and historical data,        lover        effort      progams could              be justffied.                  Survey data are usually              of a time-series                nature        and, therefore,                averaRes over time intervals                      wlthtn        the series            cannnc      be assumed inde-pendent.              This situarlon              llmlts        tks ~~~l;~-~~~,~~~                    flinc statistical              procedures,            Bartlett Reference            19 is d recent              example        of the difficulties                      encoun-tered      when attempting                  to determine            differences              in portions            of a time-series.                    The develnpment                of more powerful                  statist        ical methods          for appllcatton                to this        type of data              is necessary.
It appears            that      only catastrophic                  impacts      vi11 be revealed                    to temporal          comparlsnns            oE mnnltoring              program      data.            Plant impact        may be better                revealed        by spatial          comparisons.
The discriminating                    power      nf    surveys          should    be estimated                prior to implementation.
This can be done by design                            based on previously                    collected            data at the site,                or by assuming              the variability              of the system based on previous              studies        at similar            sites.          The expected              dlscrlmina-ting      power of the survey                      should        be adequate            for the purposes for vhich            the data are intended.
: 2. SampllnR            ?Iethodolou Recommendations                  on specific            sampling          protncol          and methodology are beyond              the scope          of this        document.            The optimal              nethodo!nRy is highly            dependent          on the individual                  specfes          studied          coupled with      site        and structure              characteristics.                  Some general                guidelines are provided                here.        ?fnre specific              details        are provided                in reference            20.
Ichthyoplankcon-Heroplankton                          Sampling Sampling            gear used          should      have known performance                        charactcristtcs under        the conditions                tn vhich        it is to be used, or Lc vi11 bc tested In    comparison            4th      a standard          gear (such as the 60 cm. boqn                                  net developed            for purposes              of ichthyoplankton                  sampling            by ttlc National            Marine        Fisheries          Service        flAWlAP program).
When a new Kear is intrl)duced,                                data should            be included                nn frs efficiency              relative          to a standard              gear.        Gear shnuld                not be changed          in the course              of long-term              lnvesttgattnns                unless        the camparac lve cff lciencies                        of the old gear end the nev can be satisfactorily                  demonstrated.
It Is recognized                    that      na sampling            gear is,        in practice, strictly            qnancltative              and equally            efficient          in retalninl:
dtf ferent            sizes      nf organisms.
A rAtinnale              for the choice              of gear,          mesil size,          etc.,        shnuld        bc develnped            fnr each sampl tny= program.                            In nlosc cases,                LackinK 9tr0ng        reasons          tn the contrary,                a(io\jtion      of a standard                  #car      LO permit        comparisons            vlth      nttlcr      investigations                Is recnnmcnded.
 
In    general,            teplfcace            tows indicate              that    horizontal              dtscribucicln of    fish      eggs        and    larvae        and other        planktonlc            organisms            is uneven or    patchy          in      character,            and that        vertical          distribution                not nnly of actively                swlmminp, forms but of eggs commonly                                    shows SOIW atratification.                      This      typically        varies        over 24 hours                due to the influence                  of water movement and changes                              fn light          intensity.
Depth distribution                        of individual            specLes        of fish          eggs ?ay char.Ce during        the course              of development,              and buoyancy              may differ            Jt different            periods          of the spavning              season.
Night        tows frequently                    produce        larger        catches        and may shou less varlabillty                than day tous for fish                      larvae        Ln the sane *Ired.
Both phenomena                    are related            in part        tn differences                in net avoidance            under        conditions            of light        and darkness.                qouever, certain          larvae          may be altogether                unavailable              to the usual plankton            sampling            gear at some time of a die1 cycle;                                    for exdnp      .e.
they      may lie            on or near            the bottom          by day,        and migrate              upvar~!s at night.
Night      sampl lng must be considered                              in survey            design      as essential for an accurate                    picture        of the numbers of ichchyoplankton actually            present          at a station,              especially            with      regard        to post-larvae        and young              juveniles.              Sampling        over the entire                  die1 cycle      should            be    conducted.
Characterization                      nf the ichthyoplankton                      in a study            area      made exclusively                from single            tows at a series                of stations              is inadequate.                  Replication            sufficient            to show the typical                    vari-ation      between            tows      will      be necessary,              and it must be borne                      in mind that            this        may differ            widely      for different                species,          and may change              over the course                  of a season.              In reasonably homageneous                study      areas,        replicates            can be taken at a subset of scacions                and the results                applied        tn the rest.                In certain clrcun8tancc8,                    c lose to shore.              nr in the vicfnicy                    of the prnpoaed            intake,          more rigorous              error        analysis          is advisable, and this            may require                replfcation          at each station.                    Determina-tion      of a suitable                  number of replicates                    will      depend        on characteristics                    at each efte, and must be based on field studier.              The most variable                    (patchy)          of the critical                  species of ichthyoplankton                        under study            at a given            season will dctecuine              the number              of replicates              that    are desirable.
Confidence              llmlts        for estimates              of abundance                must    be based not      only      upon variation                  between      tovs at a given                  station, but      must      incorporate                other      sources        of error,            which      include subsampling                error      (when aliquots              of large          samples        are token for lab analysis)                      and counting            errors.
 
V The lchthyoplankton-meroplankton                               sampling         will     generallv           5t.
related         to the impact             of passing           the organisms             through         the fntake       structure         and associated             cooling         water     system,         i.e.,
entrainment.
entrainment.
Fishes       and ?!acrolnvertebrates Sampling         of fish       and macrolnvertebrates                     vi11     be generallv conducted           In reilatlon         to the potenclal                 impact       of entrapment and lmplngement.                   An exception           would be         juvenile         and small fLsh of a size               that   uould     pass through               tntake     screenir.g rather       than be caught             upon such screens.
Fishes and ?!acrolnvertebrates Sampling of fish and macrolnvertebrates vi11 be generallv conducted In reilatlon to the potenclal impact of entrapment and lmplngement.
As prevlouqdy               noted,     spc?clf     Lc samplLng           methodology             is   drcai     Ied eLsevhere.-
An exception would be juvenile and small fLsh of a size that uould pass through tntake screenir.g rather than be caught upon such screens.
Some specimens               taken     from the screens                 may appear           healthy; hoveve r, species-speclf                   lc experiments               vi&h controls               co assess the delayed             mortality         to these         flsh       are required           if less         than 100 percent             mortality         Is to be assumed.
As prevlouqdy
Potential           effects       at proposed           intake         structures         should         make maximum use of existing                       data at operating                 structures             to extrapolate             Involvement           and mortality               estlmates         to a nev Intake.           Attentlon         should     be given           to experlments               vhlch       have statistically               evaluated         the effect           of Intake         modifications on Lmp lngement-ent               rapment       losses.
: noted, spc?clf Lc samplLng methodology is drcai Ied eLsevhere.-
In cases         vhere       preliminary           surveys         Lndlcate       that     the entrain-ment and entrapment-Lmplngement                               losses       may be high,               It wi 11 bt!
Some specimens taken from the screens may appear healthy; hoveve r, species-speclf lc experiments vi&h controls co assess the delayed mortality to these flsh are required if less than 100 percent mortality Is to be assumed.
necessary           co rsclmate           the Lmpact of these                   losses       on the populat       Lons that         ~111 be Lnvolved.                   For each 1Lfe stage susceptible             to entrainment             and/or       entrapment-Lmplngement, parameters           necessary         to adequately               predict       losses       caused by power plant             ulthdraual         include       life       stage     duratfon,           fecundity, growth       and mortality             rates,       dlstrlbutlon.               dispersal           patterns, and intake           vulnerablllty.               These parameters                 can be elther measured         In the field           or obtalned             from available               literature.
Potential effects at proposed intake structures should make maximum use of existing data at operating structures to extrapolate Involvement and mortality estlmates to a nev Intake.
Eetlmates           of equivalent             adult     stock       loss on the basis                   of entrainment             losses       of Immature           forms requires               a measure             of natural         mortality         from immature             to adult.           For many if not most crltlcal               specLe9,       the natural             mortality         may be impossl-ble to determine                 and the Lmpact may have to be based on a reasonable           judgment.           Ocher data are required                       to project             the long-term           impact       of the intake             on the populatlon                 and to lncludr the population               size,     its     age structure,               and fecundity               and mortal-lty     rates.         These data         can best         be synthesized               using mathematical             models       as discussed             in section           XII of this             manual.
Attentlon should be given to experlments vhlch have statistically evaluated the effect of Intake modifications on Lmp lngement-ent rapment losses.
In cases vhere preliminary surveys Lndlcate that the entrain-ment and entrapment-Lmplngement losses may be high, It wi 11 bt!
necessary co rsclmate the Lmpact of these losses on the populat Lons that  
~111 be Lnvolved.
For each 1Lfe stage susceptible to entrainment and/or entrapment-Lmplngement, parameters necessary to adequately predict losses caused by power plant ulthdraual include life stage
: duratfon, fecundity, growth and mortality
: rates, dlstrlbutlon.
dispersal
: patterns, and intake vulnerablllty.
These parameters can be elther measured In the field or obtalned from available literature.
Eetlmates of equivalent adult stock loss on the basis of entrainment losses of Immature forms requires a measure of natural mortality from immature to adult.
For many if not most crltlcal
: specLe9, the natural mortality may be impossl-ble to determine and the Lmpact may have to be based on a reasonable judgment.
Ocher data are required to project the long-term impact of the intake on the populatlon and to lncludr the population
: size, its age structure, and fecundity and mortal-lty rates.
These data can best be synthesized using mathematical models as discussed in section XII of this manual.  


                                                        -3R-Zooplankton Zooplankton             sampling         utll     generally         be directed               tovatds drterminatlon               of rntralrunrnt               Impact.           I.oop Lankton           are rssentlally             microscopic             animals         suspended             In water       vith near neutral             buoyancy.             Because of their                 physical characterlstlcs,                   most are incapable                 of sustained moblllty         In dlrectlons               against       vater       flov       and drift passively           In the currents.
-3R-Zooplankton
In most cases,               intake       ef facts       are of rtilatlvely                   short duraclon         and conf lnrd             to a relatively                 small         port ion of the vater       body segment             because         of short       life       span and regenera-tlve     capaclcy.             Zooplankton,           hovrvrr.           should         not be disrr.issr<
: 3.
from conslderatlon                   without         a prellmlnary             assessment             of the fmportance           or uniqueness               of the species                 assemblage             dt   the site.
Zooplankton sampling utll generally be directed tovatds drterminatlon of rntralrunrnt Impact.
Phytoplankton Phytoplankton               are free-floating                 green plants,               usually mlcroscoplc             tn size,         and are generally                   the main primary producers           In the aquat tc food web.                         Again,           the potential cooling         vater       Intake       structure           impact       on phytoplankton muld         be through           entrainment.               The short           life-cycle           and high       reproductive             capabllfty           of phytoplankters                     generally provldes         a high         degree       of regenerative                 capacity.             In most cases,       intake         structure           effects         are of short               duratlon and confined               to a relatively               small     portIon           of the vater body segment.                 Phytoplankton,               however,           should         not be dlsmlssrd           from conslderatlon                   vithout         a prellmlnary               assess-ment of unfqueness                   or special             Importance           of the species assemblage             at any particular                 site.
I.oop Lankton are rssentlally microscopic animals suspended In water vith near neutral buoyancy.
: 3. Follov-up           Studies Poet-operatLona1                   studies         at nev intakes               vlll       also     be necessary           In order         to determine             If the design,                 location, and operation,                 In fact,         mlnlmlze         adverse         environmental impact       and vhether             the model predlctlons                       utilized         vere reallstlc.             Some suggestions                 for follov-up                 studles       are available           In section           XI.       Hovever,         the appropriate                 program at a new plant                 site     should       be detenlned                 In large         part     by the need for consfstency                         vlth     pre-operatlonal                 study       results.
Because of their physical characterlstlcs, most are incapable of sustained moblllty In dlrectlons against vater flov and drift passively In the currents.
In most
: cases, intake ef facts are of rtilatlvely short duraclon and conf lnrd to a relatively small port ion of the vater body segment because of short life span and regenera-tlve capaclcy.
Zooplankton, hovrvrr.
should not be disrr.issr<
from conslderatlon without a prellmlnary assessment of the fmportance or uniqueness of the species assemblage dt the site.
Phytoplankton Phytoplankton are free-floating green
: plants, usually mlcroscoplc tn
: size, and are generally the main primary producers In the aquat tc food web.
: Again, the potential cooling vater Intake structure impact on phytoplankton muld be through entrainment.
The short life-cycle and high reproductive capabllfty of phytoplankters generally provldes a high degree of regenerative capacity.
In most
: cases, intake structure effects are of short duratlon and confined to a relatively small portIon of the vater body segment.
Phytoplankton,
: however, should not be dlsmlssrd from conslderatlon vithout a prellmlnary assess-ment of unfqueness or special Importance of the species assemblage at any particular site.
Follov-up Studies Poet-operatLona1 studies at nev intakes vlll also be necessary In order to determine If the
: design, location, and operation, In
: fact, mlnlmlze adverse environmental impact and vhether the model predlctlons utilized vere reallstlc.
Some suggestions for follov-up studles are available In section XI.
: Hovever, the appropriate program at a new plant site should be detenlned In large part by the need for consfstency vlth pre-operatlonal study results.
XI.
MONITORING PROGRAM (EXISTING INTAKES)
The study requirements necessary to evaluate losses of aquatic life at existing cooling water intakes can be considered in two separate steps.
The first is assessment of the magnitude of the problem at each site through direct determination of the diel and seasonal variation in
: numbers, sizes and weights of organisms involved with operation of the intake.
When losses appear to be serious, as a second step it may be necessary to conduct studies in the source water body if there is a need to evaluate such losses on a water-body-wide or local population basis.
However, before requiring such studies it should be realized that the natural variability of biological systems, the difficulty of separating other stresses on population size, and difficulties in obtaining accurate and precise samples of the biota may mask the environmental impact from cooling water system operation.
high and may range from 20 to The magnitude of sampling variation is 300 percent of the probable numbers. 36 Thus, effects of the Intake structure often cannot be identified above this background noise unless they are considerably greater, For many species, adverse environmental impact may be occurring at levels below that which can be seen with the standard survey and analytical techniques.
Such field studies therefore will be extensive and difficult to conduct, and will generally require several years of data collection, all without certainty of results.
Such studies should not be required unless absolutely necessary for the best technology available decision and then only to address specific questions.
Because of the above difficulties, it may be necessary to base a determination of adverse impact on professional judgment by experienced aquatic scientists.
In evaluating data from the following studies, it is often desirable to assume worst case conditions where all organisms which pass through the intake suffer 100 percent mortality.
If the magnitude of the numbers precludes such an analysis, specific mortality estimates may be necessary.
The following study requirements are based in part on the recommendations contained in the reports of the Lake Michigan Cooling Water Studies Panel 44 and Lake Michigan Cooling Water Intake Committee: 45


XI. MONITORING PROGRAM (EXISTING INTAKES)
- 4 0 -
The study requirements necessary to evaluate losses of aquatic life at existing cooling water intakes can be considered in two separate steps. The first is assessment of the magnitude of the problem at each site through direct determination of the diel and seasonal variation in numbers, sizes and weights of organisms involved with operation of the intake. When losses appear to be serious, as a second step it may be necessary to conduct studies in the source water body if there is a need to evaluate such losses on a water-body-wide or local population basis.
1.
However, before requiring such studies it should be realized that the natural variability of biological systems, the difficulty of separating other stresses on population size, and difficulties in obtaining accurate and precise samples of the biota may mask the environmental impact from cooling water system operation. The magnitude of sampling variation 36is high and may range from 20 to 300 percent of the probable numbers.
E n t r a p m e n t - I m p i n g e m e n t The objective of this sampling program is to document the magnitude of losses of fish life at operating cooling water intakes.
Thus, effects of the Intake structure often cannot be identified above this background noise unless they are considerably greater, For many species, adverse environmental impact may be occurring at levels below that which can be seen with the standard survey and analytical techniques. Such field studies therefore will be extensive and difficult to conduct, and will generally require several years of data collection, all without certainty of results. Such studies should not be required unless absolutely necessary for the best technology available decision and then only to address specific questions. Because of the above difficulties, it may be necessary to base a determination of adverse impact on professional judgment by experienced aquatic scientists.
Since it is possible to obtain a complete daily count of fish which are impinged by collecting the intake screen backwash material, this intensity of collection should be considered for application through one calendar year.
In evaluating data from the following studies, it is often desirable to assume worst case conditions where all organisms which pass through the intake suffer 100 percent mortality. If the magnitude of the numbers precludes such an analysis, specific mortality estimates may be necessary.
The data which result will most accurately reflect the total annual loss by species.
The following study requirements are based in part on the recommendations contained    in the reports of the Lake Michigan Cooling Water Studies Panel 44 and Lake Michigan Cooling Water Intake Committee: 45
This approach does ignore possible delayed mortality to organisms involved with the intake structure but not impinged on the screens long enough to be killed.
: 1. Entrapment-Impingement The objective of this sampling program is to document the magnitude of losses of fish life at operating cooling water intakes. Since it is possible to obtain a complete daily count of fish which are impinged by collecting the intake screen backwash material, this intensity of collection should be considered for application through one calendar year. The data which result will most accurately reflect the total annual loss by species. This approach does ignore possible delayed mortality to organisms involved with the intake structure but not impinged on the screens long enough to be killed. If total entrapment-impingement mortality is estimated by sampling from the screens, the sampling scheme must consider day-night and seasonal differences.
If total entrapment-impingement mortality is estimated by sampling from the screens, the sampling scheme must consider day-night and seasonal differences.
If a less than complete dally count over a year is utilized, dally sampling once every four days for one year is suggested as the lowest effort which will be acceptable from the stand-point of allowing for reliable loss project tons reflective of the plants operation. Both more and less intensive sampling approaches may also be justifiable based on apparent impact, intake data, spawning periods, and other site specific and seasonal considerations. The 4-day interval for sampling is based on observed variability in daily impingement losses.
If a less than complete dally count over a year is utilized, dally sampling once every four days for one year is suggested as the lowest effort which will be acceptable from the stand-point of allowing for reliable loss project tons reflective of the plants operation.
For example, in a study of the Central Illinois Light Companys E.D. Edwards Plant on the Illinois River, numbers of fish impinged varied from 7,000 on July 18 to 500 on July 19. On August 23, 1,500 fish were impinged versus 30,000 fish on August
Both more and less intensive sampling approaches may also be justifiable based on apparent impact, intake data, spawning periods, and other site specific and seasonal considerations.
The 4-day interval for sampling is based on observed variability in daily impingement losses.
For example, in a study of the Central Illinois Light Companys E.D. Edwards Plant on the Illinois River, numbers of fish impinged varied from 7,000 on July 18 to 500 on July 19. On August 23, 1,500 fish were impinged versus 30,000 fish on August
: 26. 43 Not all plants exhibit such wide variations in numbers of fish impinged; however, until intensive sampling is completed at a site, total loss figures will be subject to question.
: 26. 43 Not all plants exhibit such wide variations in numbers of fish impinged; however, until intensive sampling is completed at a site, total loss figures will be subject to question.
Collection of the samples can usually be accomplished by inserting collection baskets in the screen backwash sluiceway.
Collection of the samples can usually be accomplished by inserting collection baskets in the screen backwash sluiceway.
These baskets should have a mesh size equal to or smaller than the intake screen mesh.
These baskets should have a mesh size equal to or smaller than the intake screen mesh.
The following data should be collected during the sampling period:
The following data should be collected during the sampling period:
A. Plant operating data required:
A.
: 1. Flow rate;
Plant operating data required:
: 2. Temperature (Intake and discharge);
1.
: 3. Time     started,         duration,           and   amount         of     warm water             r~~:r;:-
Flow rate; 2.
lated     for     intakv       deicing         and thenal               defoullng;
Temperature (Intake and discharge);
          $. Total       residual         chlorInr         contained           In     recirculated               v,ltrr during       condenser           chlorination;
: 2.
: 5. Current         velocity         at intake(s)           over the range of                     vater volumes         used in plant               operat Lon (representat                     ivt,   neasurt-ments or calculated                     values       may suffice);
: 3.
: 5. Yumbrr of           ttmrs     screens         are   operated           betvren         sacpi:.:<
Time
: started, duration, and amount of warm water r~~:r;:-
lated for intakv deicing and thenal defoullng; Total residual chlorInr contained In recirculated v,ltrr during condenser chlorination;
: 5.
Current velocity at intake(s) over the range of vater volumes used in plant operat Lon (representat
: ivt, neasurt-ments or calculated values may suffice);
: 5.
Yumbrr of ttmrs screens are operated betvren sacpi:.:<
Intervals;
Intervals;
: 7. Tidal     stage       (where       appropriate)           and       flov;
: 7.
: 8. Sallnlty         (where       appropriate);             and
Tidal stage (where appropriate) and flov;
: 9. Dissolved         oxygen         if   intake     vithdravs             water       from an area (or         strata)         of   potentfally             lov     oxygen         content;
: 8.
: 8. Data     required         from     blologlcal           collections:
Sallnlty (where appropriate);
: 1. Species,         number,         length,       weight,         and age group               (young           of the year,           yearlings,           or adults)           collected           from the screens       or reprrsentatlve                   subsamples             vhen numbers               c3f lndivldual           species         collected         are very           large.           Subsasp. . :I.:
and
approaches           should         be approved           In advance             by the Agec~:;;
: 9.
: 2. Representative               samples         of each       species         for     determination of sex and breedlng                     condltlon;
Dissolved oxygen if intake vithdravs water from an area (or strata) of potentfally lov oxygen content;
: 3. Numbers       of naturally               occurring         dead fish           In the area ahead     of     the lntake           screening         system should                 be estimated; and
: 8.
: 4. Perlodlcally             conduct         a test       to determine               the recovery rate     of flsh         impinged         on the screen.                 This     can be done by splklng           the screen           vLth     tagged       dead flsh             and deter-mlnlng       the proportlon                 that   are recovered                 Ln the screen backvash         slulcevay.
Data required from blologlcal collections:
: 2. Sampling       Program       -    Entrainment The follovlng           soctlon         describes           invest     lgatlons         necessary             to drtermlne         effects         of entralnmant               of phytoplankton,                   zooplankton.
: 1.
benthos,       fish     , and shellfish                 at exfstlng             cooling         vater         intakes.
: Species, number,
Such studles           should         generally           concentrate             on f lsh and shellf                     lsh unless     the phytoplankton,                     zooplankton,           or benthos             are uniqllcll/
: length, weight, and age group (young of the
important         at the site             in question.
: year, yearlings, or adults) collected from the screens or reprrsentatlve subsamples vhen numbers c3f lndivldual species collected are very large.
 
Subsasp.  
Flsh      and !leroplankton The potent la1 for damage to f lsh or sht?llflsh                                          populat        Lens bv entrainment            depends          on the number of organisms                        that        pass through the condenser                system and on condltlons                        experienced            during        passage.
. :I.:
Overall          objectives            of the study          are to determine                  the spe~lt?s and numbers            of flsh          and shellf      lsh eggs and larvae                      dravn      intc and discharged                from the cooling              systems          and, if necessary, determlne            the lmmedlate              and delayed          effects        of cooling          system passage          on these organisms.
approaches should be approved In advance by the Agec~:;;
A pump system                Is acceptable              as the primary              sampling          method, provided          It does not damage fragfle                          organisms,          and pumps are easier        to automate            and quantify            than systems              In vhlch          sampling IS done vlth            nets suspended                In the cooling              vater        flov.
: 2.
Dlel    sampling            1s recommended              because        the numbers of organisms.
Representative samples of each species for determination of sex and breedlng condltlon;
ttvrn in areas              known to be good spavnlng                        and nursery              areas, typically            have lov concentrations,                        and    thelr      dlstrlbutlon              in t lme and space            1s usually            either      changing          rapidly        or patchy          as a result of natural            condltlons.              Therefore,          adequate          representat          ion of these organisms            can usually              only    be obtalned            vlth      continuous            sampling throughout            a dlel        cycle.
: 3.
The actual            volume        of vater        to be pumped to provide                        an adequate sample        1s dependent              on the densities                of flsh        eggs and larvae                in the vater            surroundlng              the cooling          system        lntake      structure.            The sample volume                should        therefore        be detennlned              based on the least dense species                of concern.              If no a prlorl                source        water      drnslty data    exists,          then as large              a sample          volume        as can be handled                vLl1 be necessary.                  Once lnformation                1s developed            on the least detectlble            denslty          for species          of concern,              sample volumes              may be adjusted          accordingly.                  Thls point          fs extremely            crltlcal          to acceptance            of the resulting                data,        If the sample volume                      1s too small      the      study      vlll      be blased        and show fever                organlsms            involved vlth      the structure                than actually            exfst.
Numbers of naturally occurring dead fish In the area ahead of the lntake screening system should be estimated; and
Sample        locations            In the Intake            system        should      be located            immediatelv ahead      of    the    lntake        screens      and.      when less than 100 percent                          mortality lr aesuaed,            at a suitable                polnt      ln the discharge                  system.          When leer      than 100 percent                    is assumed,          samples          at lntake          and dlschargr should        be from the same water                      mass.          At each locat Ion ant! sampling point      should        be located              near the surface,                one near the bottom,                    and one at mid-depth.                      If unlfom          organlsm          dlstrlbution              can be demonstra-ted,    one sampling                depth may suffice.
: 4.
Sampling          should        normally          be conducted            continuously              at a frequency (e.g.,        every        fourth        day of plant            operation)          allowing          the estlmatlon of annual            numbers          of organisms          vlth      a 95 percent              confidence          interval which        1s + 50X.            ?lore frequent            sampling          may be desirable                  dur lng
Perlodlcally conduct a test to determine the recovery rate of flsh impinged on the screen.
This can be done by splklng the screen vLth tagged dead flsh and deter-mlnlng the proportlon that are recovered Ln the screen backvash slulcevay.
Sampling Program Entrainment The follovlng soctlon describes invest lgatlons necessary to drtermlne effects of entralnmant of phytoplankton, zooplankton.
: benthos, fish  
, and shellfish at exfstlng cooling vater intakes.
Such studles should generally concentrate on f lsh and shellf lsh unless the phytoplankton, zooplankton, or benthos are uniqllcll/
important at the site in question.  


                                                            -4 3-peak spawning          seasons.          Sampling        should        1 ontfnue        over at least one year.        Sampling        In subsequent              years      may be deemed              necessary based    on the results              of the first            year    of    study.
Flsh and !leroplankton The potent la1 for damage to f lsh or sht?llflsh populat Lens bv entrainment depends on the number of organisms that pass through the condenser system and on condltlons experienced during passage.
Macrolnvertebrates The primary          concern        regarding        the effect5            of entrainment                on macro-lnvertebrates          As-does        entrainment            affect      the rates          of mortality, growth    or reproduct          Lon?      Specific          objectives          are to detenlne                    the kinds    and numbers of organlsms                      entrained,            ta assess          the effect            of entrainment          on their        survival        and reproduction,                 and to describe                  the seasonal      and diurnal            patterns        of entrainment,                 Pumped samples                are acceptable        provided         the pump does not damage                       fragile          organlsms.             X pump which oil1              transfer        small      fish      without        harm 1s often              satis-factory      for rooplankton              and benthos.               Non-toxic        material          should        be used throughout             the sampling            system.
Overall objectives of the study are to determine the spe~lt?s and numbers of flsh and shellf lsh eggs and larvae dravn intc and discharged from the cooling systems
Nets    used to concentrate                  zooplankton            and benthos            from the pumped sample      should      be metered.            or the pumping                rate should            be tlmed          to provide     an accurate            determlnatlon              of the volume             flltered.              Samples should     be taken          fn duplicate.               Xf no vertical              stratlflcatlon                of organisms        le documented,             duplicate          mid-depth          or duplicate              lntegrated samples      may be taken.
: and, if necessary, determlne the lmmedlate and delayed effects of cooling system passage on these organisms.
Sampling      sites      should      be establlshed              in    the   forebay,           lamedlately ahead    of  the traveling              screens,        and     aa    close      as posslble              to the point    of  discharge.
A pump system Is acceptable as the primary sampling
Samples      should       be carefully            concentrated              in  non-toxic            containers and inspected          microscopically                for mortallty              and damage as soon                    as possible      after      collection, Samples      should        be collected            in the forebay                and at the discharge during      a 24-hour          period      at  least      monthly.           Duplicate          samples         should be taken      every      3 to 4 hours            during        the 24 hour survey.
: method, provided It does not damage fragfle organisms, and pumps are easier to automate and quantify than systems In vhlch sampling IS done vlth nets suspended In the cooling vater flov.
Phytoplankton Phytoplankton            are    susceptible          co entrainment                and possible              damage in cooling        water      systems        such that          rates      of mortality,             growth, reproduction,          and primary            production          are    affected.             Studies        to dete-he          those      effects        should       lnvolve        microscopic            examination, Yssuruent            of chlorophyll              concentrations,                measurement            of r&tee    of primary          production,          and observations                of cell          growth and division.             In most cases,             effects        are of short              duration and confined          to a relatlveiy              small        portion        of the water              body segment.        Phytoplankton,              however,          should      not be dismlssed from consideration              wlthouc        a prelfmlnary              assessment            of uniqueness        or special            importance          of the species                assemblage            at any particular            site.         Special      sampling         methodology            can be found    in reference            20.
Dlel sampling 1s recommended because the numbers of organisms.
ttvrn in areas known to be good spavnlng and nursery
: areas, typically have lov concentrations, and thelr dlstrlbutlon in t lme and space 1s usually either changing rapidly or patchy as a result of natural condltlons.
Therefore, adequate representat ion of these organisms can usually only be obtalned vlth continuous sampling throughout a dlel cycle.
The actual volume of vater to be pumped to provide an adequate sample 1s dependent on the densities of flsh eggs and larvae in the vater surroundlng the cooling system lntake structure.
The sample volume should therefore be detennlned based on the least dense species of concern.
If no a prlorl source water drnslty data
: exists, then as large a sample volume as can be handled vLl1 be necessary.
Once lnformation 1s developed on the least detectlble denslty for species of
: concern, sample volumes may be adjusted accordingly.
Thls point fs extremely crltlcal to acceptance of the resulting
: data, If the sample volume 1s too small the study vlll be blased and show fever organlsms involved vlth the structure than actually exfst.
Sample locations In the Intake system should be located immediatelv ahead of the lntake screens and.
when less than 100 percent mortality lr
: aesuaed, at a suitable polnt ln the discharge system.
When leer than 100 percent is
: assumed, samples at lntake and dlschargr should be from the same water mass.
At each locat Ion ant! sampling point should be located near the
: surface, one near the
: bottom, and one at mid-depth.
If unlfom organlsm dlstrlbution can be demonstra-
: ted, one sampling depth may suffice.
Sampling should normally be conducted continuously at a frequency (e.g.,
every fourth day of plant operation) allowing the estlmatlon of annual numbers of organisms vlth a 95 percent confidence interval which 1s + 50X.  
?lore frequent sampling may be desirable dur lng


Looplankton Zooplankton            sampllnc        vi11      generally          be directed          towards        detcr-llnatl:,n        of     entrainment           impact        by an lnt,lke        structure.             ;: (1r-l-planictrrn      .lre essent i;llly            #nlcroscoplc            animals      suspcndcd          in \J:tt(*r vith      near-neutral              huoyjncy.            Hcca~~sc nf thrlr            l)t1~3icnl      ct!,~r IC-terlst    its,     most arc 1ncap;lble                  of sust.llned          mobilttv        tn Jir((t      L~II+
-4 3-peak spawning seasons.
agdtnsr        water        flow and drift              passively        in cl112 rurrclics.
Sampling should 1 ontfnue over at least one year.
tn mnst cases,               intake      effects         Jrti of relatively              stlort    C!IIC.IC ic)n and confined             tn a relat tvely                smilll    port ion of the water               beady segment         because          of short        lift      span and regcnerat              Lve cap,?citv.
Sampling In subsequent years may be deemed necessary based on the results of the first year of study.
Znoplaniton,             tlouever,       should         nnt he dismissed              fron    cnnsijcr.Lt        ~~9 without        a preliminary            assessment             of the importance               or unlqcr<~ncs~
Macrolnvertebrates The primary concern regarding the effect5 of entrainment on macro-lnvertebrates As-does entrainment affect the rates of mortality, growth or reproduct Lon?
of the species                 assemblage           at the site.
Specific objectives are to detenlne the kinds and numbers of organlsms entrained, ta assess the effect of entrainment on their survival and reproduction, and to describe the seasonal and diurnal patterns of entrainment, Pumped samples are acceptable provided the pump does not damage fragile organlsms.
I. Follorup            5tudies A follow-up            monitoring          program          Is also necessary                at existing plants        to determine            whether          the approved          intake      in fact minimltes          environmental              impact.          In cases uhere an exlsttng intake      has been approved,                    lt wuld          bc expected          that    the monicor-ing proWram could                  be on A reduced                level    fron    that      noted above.
X pump which oil1 transfer small fish without harm 1s often satis-factory for rooplankton and benthos.
Hoveve r , where signlf                  tcant        changes        in tntakc        locatton,        design.
Non-toxic material should be used throughout the sampling system.
cnnstructlon,              capacity,        or operatton              have taken          ptace,      .-I pr~~gram comparable            to the pre-operational                      nne shauld        be fnlloved.
Nets used to concentrate zooplankton and benthos from the pumped sample should be metered.
or the pumping rate should be tlmed to provide an accurate determlnatlon of the volume flltered.
Samples should be taken fn duplicate.
Xf no vertical stratlflcatlon of organisms le documented, duplicate mid-depth or duplicate lntegrated samples may be taken.
Sampling sites should be establlshed in the
: forebay, lamedlately ahead of the traveling
: screens, and aa close as posslble to the point of discharge.
Samples should be carefully concentrated in non-toxic containers and inspected microscopically for mortallty and damage as soon as possible after collection, Samples should be collected in the forebay and at the discharge during a 24-hour period at least monthly.
Duplicate samples should be taken every 3 to 4 hours during the 24 hour survey.
Phytoplankton Phytoplankton are susceptible co entrainment and possible damage in cooling water systems such that rates of mortality,
: growth, reproduction, and primary production are affected.
Studies to dete-he those effects should lnvolve microscopic examination, Yssuruent of chlorophyll concentrations, measurement of r&tee of primary production, and observations of cell growth and division.
In most
: cases, effects are of short duration and confined to a relatlveiy small portion of the water body segment.
Phytoplankton,
: however, should not be dismlssed from consideration wlthouc a prelfmlnary assessment of uniqueness or special importance of the species assemblage at any particular site.
Special sampling methodology can be found in reference
: 20.  


Looplankton Zooplankton sampllnc vi11 generally be directed towards detcr-llnatl:,n of entrainment impact by an lnt,lke structure.
;: (1 r-l-planictrrn
.lre essent i;llly
#nlcroscoplc animals suspcndcd in
\\J:tt(*r vith near-neutral huoyjncy.
Hcca~~sc nf thrlr l)t1~3icnl ct!,~r IC-terlst
: its, most arc 1ncap;lble of sust.llned mobilttv tn Jir((t L~II+
agdtnsr water flow and drift passively in cl112 rurrclics.
tn mnst
: cases, intake effects Jrti of relatively stlort C!IIC.IC ic)n and confined tn a relat tvely smilll port ion of the water beady segment because of short lift span and regcnerat Lve cap,?citv.
Znoplaniton,
: tlouever, should nnt he dismissed fron cnnsijcr.Lt
~~9 without a preliminary assessment of the importance or unlqcr<~ncs~
of the species assemblage at the site.
I.
Follorup 5tudies A follow-up monitoring program Is also necessary at existing plants to determine whether the approved intake in fact minimltes environmental impact.
In cases uhere an exlsttng intake has been
: approved, lt wuld bc expected that the monicor-ing proWram could be on A reduced level fron that noted above.
Hoveve r, where signlf tcant changes in tntakc
: locatton, design.
cnnstructlon,
: capacity, or operatton have taken
: ptace,
.-I pr~~gram comparable to the pre-operational nne shauld be fnlloved.
XII. IMPACT ASSESSMENT The goal of impact assessment is to analyze and reduce biological survey data to a form easily conceptualized and understood in the con-text of best available technology to minimize adverse environmental impact of intake structure location, design, construction, and capacity.
XII. IMPACT ASSESSMENT The goal of impact assessment is to analyze and reduce biological survey data to a form easily conceptualized and understood in the con-text of best available technology to minimize adverse environmental impact of intake structure location, design, construction, and capacity.
The following approaches are suggested for use, although their applica-tion will not be appropriate in each case:
The following approaches are suggested for use, although their applica-tion will not be appropriate in each case:
: 1. Biostatistical Analyses In general, the minimum reduced raw sample data should include the arithmetic mean, the standard error (or the standard deviation), and the sample size from which these calculations were made.
1.
If a large number of measurements or counts of a variable (e.g., species) are made, the data may be summarized as a frequency distribution. The form or pattern of a frequency distribution is given by the distribution in numerical form (as in a frequency table). However, the data is more clearly evident in a diagram such as a histogram (i.e., a graph in which the frequency in each class is represented by a vertical bar). The shape of a histogram describes the underlying sampling distribution. Known mathematical fre-quency distributions may be used as models for the populations sampled in the study, and the frequency distributions from samples may be compared with expected frequencies from known models.
Biostatistical Analyses In general, the minimum reduced raw sample data should include the arithmetic mean, the standard error (or the standard deviation), and the sample size from which these calculations were made.
The spatial distribution of individuals in a population can be described in quantitative terms. In general, three basic types of spatial distribution have been described.
If a large number of measurements or counts of a variable (e.g., species) are made, the data may be summarized as a frequency distribution.
They are: a random distribution, a regular or uniform distribution, and a contiguous or aggregated distribution.
The form or pattern of a frequency distribution is given by the distribution in numerical form (as in a frequency table). However, the data is more clearly evident in a diagram such as a histogram (i.e., a graph in which the frequency in each class is represented by a vertical bar).
The spatial dispersion of a population may be determined by the relationship between the variance and the mean, as well as by other methods. In a random distribution, the variance is equal to the mean. The variance is less than the mean in a uniform distribution, and it is greater than the mean in a contiguous distribution. In general, a Poisson distribution is a suitable model for a random distribution, a positive binomial is an approximate model for a uniform distribution, and a negative binomial is probably the most often used, among possible models, for a contiguous distribution.
The shape of a histogram describes the underlying sampling distribution.
Temporal and spatial changes in density can be compared s t a t i s t i c a l l y . Significance tests for comparisons of groups of data may be parametric when the distributions of the parent populations are known to be normal, or nearly normal, from previous experience or by deduction from the samples. Often, non-normal data may be transformed into data suitable for such testing. Otherwise, non-parametric tests for significance should be applied.
Known mathematical fre-quency distributions may be used as models for the populations sampled in the study, and the frequency distributions from samples may be compared with expected frequencies from known models.
: 2. Predictive Biological Models Models used to simulate currents (circulation models) and the dispersion of constituents (concentration models) are becoming more available for use in assessing impact. These models, when soundly-based conceptually, can usually be verified against hydrographic data and, therefore, represent an important tool for considering the influence of a power plant on its surroundings.
The spatial distribution of individuals in a population can be described in quantitative terms.
Diverse population and community models can be developed, but the assumptions on which they are based are difficult to test and the parameters difficult to estimate. Some important parameters depend on long time series of data (tens of years) and no level of effort can offset the requirement of time.
In general, three basic types of spatial distribution have been described.
These problems with biological models can sometimes be overcome by making worse case assumptions and estimates, but this course may tend to produce a plethora of models indicating potential disaster. Nevertheless, models are a means of integrating the available information and the subjective underlying assumptions about a problem in order to produce the most rational answer based on the inputs. In this regard, some models way serve an important rule in assessing impact.
They are:
As previously noted, hydrodynamic models in theory can he used to predict the source of water drawn through a power plant intake structure. This is done by simulating the movement of drifters or the dispersion of a constituent originating at a particular point in the area modeled. The simulation is carried nut for sufficient time for most of the material to be transported to the point of the assumed intake structure where it is con-sidered entrained, or for the material to be transported suffi-ciently far away from the intake structure so that it has little chance of future entrainment. This procedure must be repeated (or performed simultaneously) for numerous constituent origins and for numerous initial flow or tidal conditions. These results will provide isopleths of entrainment probabilities surrounding a proposed intake structure. The isopleths can be compared with the biological value zone to assure that the plant will not draw a high percentage of entrainable organisms from highly productive areas. Various intake locations may be considered to minimize impact. In practice, it might be very expensive to calculate the probability of entrainment isopleths (source area) of an intake structure because a large area may have to be modeled and considerable computer time expended.
a random distribution, a regular or uniform distribution, and a contiguous or aggregated distribution.
The spatial dispersion of a population may be determined by the relationship between the variance and the mean, as well as by other methods.
In a random distribution, the variance is equal to the mean.
The variance is less than the mean in a uniform distribution, and it is greater than the mean in a contiguous distribution.
In general, a Poisson distribution is a suitable model for a random distribution, a positive binomial is an approximate model for a uniform distribution, and a negative binomial is probably the most often used, among possible models, for a contiguous distribution.
Temporal and spatial changes in density can be compared statistically.
Significance tests for comparisons of groups of data may be parametric when the distributions of the parent populations are known to be normal, or nearly normal, from previous experience or by deduction from the samples.
Often, non-normal data may be transformed into data suitable for such testing.
Otherwise, non-parametric tests for significance should be applied.
2.
Predictive Biological Models Models used to simulate currents (circulation models) and the dispersion of constituents (concentration models) are becoming more available for use in assessing impact.
These models, when soundly-based conceptually, can usually be verified against hydrographic data and, therefore, represent an important tool for considering the influence of a power plant on its surroundings.
Diverse population and community models can be developed, but the assumptions on which they are based are difficult to test and the parameters difficult to estimate.
Some important parameters depend on long time series of data (tens of years) and no level of effort can offset the requirement of time.
These problems with biological models can sometimes be overcome by making worse case assumptions and estimates, but this course may tend to produce a plethora of models indicating potential disaster.
Nevertheless, models are a means of integrating the available information and the subjective underlying assumptions about a problem in order to produce the most rational answer based on the inputs.
In this regard, some models way serve an important rule in assessing impact.
As previously noted, hydrodynamic models in theory can he used to predict the source of water drawn through a power plant intake structure.
This is done by simulating the movement of drifters or the dispersion of a constituent originating at a particular point in the area modeled.
The simulation is carried nut for sufficient time for most of the material to be transported to the point of the assumed intake structure where it is con-sidered entrained, or for the material to be transported suffi-ciently far away from the intake structure so that it has little chance of future entrainment.
This procedure must be repeated (or performed simultaneously) for numerous constituent origins and for numerous initial flow or tidal conditions.
These results will provide isopleths of entrainment probabilities surrounding a proposed intake structure.
The isopleths can be compared with the biological value zone to assure that the plant will not draw a high percentage of entrainable organisms from highly productive areas.
Various intake locations may be considered to minimize impact.
In practice, it might be very expensive to calculate the probability of entrainment isopleths (source area) of an intake structure because a large area may have to be modeled and considerable computer time expended.


                                                      -4 i-For   a glvrn         (:t ltL~:al       aguat     lc     organism,         1 I may be poeslblr                     to use hydrodynamic             modeLa to ttstlmatt!                   the percc nt reduction                     tn annual recruitment           resulting           from entraLnment                 ot pelagic           early       Life stages,         Uhen the source                 of pelagic             eggs and/or             larvae       fs knovn, the dleperslon               of thls         blologlcal           naterial         around         the study           area and the consumption                   by a plant             Intake       may be simulated,                   Lndlcatlng the reduction             In recruttment                 that     ~111 result.               Xn this         procedure, entralrunent           mortality           Is separated               from natural             mortality.               If natural       mortality           Is drnslty             dependent,           the impact             of power         plant entrainment           vi11 be overestimated                         or underestimated                   vhen entraln-ment mortality               1s estlmated               separately           from natural               nortallty.
-4 i-For a glvrn
The method described                     above for estimating                     the reduction               Ln recruitment             resulting           from entrainment                 can only           be applied,             as stated,       for closed             systems.             For the more common sttuat                         ion vhrrc!
(:t ltL~:al aguat lc
some larvae           are dlspersed               out of the modeled                   study       area (area for vhlch         clrculatlon             and dlsperslon                 is simulated)               addltlonal aseumptlons           are requlred.                   If It Is reasonable                     to assume that once organleme               have been transported                       out of the modeled                   study area they have a Lov probability                                   of contributing                 to support           of the adult         populatlon             of the study               area.       Then the dispersion of organisma             around       the study           area for a period                   of time equal to the length               of the species                 vulnerable           pelagic         phase can be simulated         vlth       and vlthout             the entrainment                 lmpacr         of a simulated pover     plant.           By comparing             the number of organisms                           remalnlng In the 8re8,             the reduction               In recruitment               to later           stages       of the life         cycle       may be estimated.                     This approach               vas used           in reference         21.       The approach               lgnorrs         tht! posslb Le Lmpact of a reduction         in the number of organlsms                             dlspcrsed           outslde         the modeled       study       area     and other           supporting           pllpul:ltions.
: organism, 1 I may be poeslblr to use hydrodynamic modeLa to ttstlmatt!
For open systems                 vhere       peleglc         entrainable           orEanlsms           are dlspersed out of a modeled                 study       area,       it 1s often           necessary             to consfder           the effect       of a plant             on biological               material         transported             across         the model     boundarier           8nd lnco the system.                         If sufi iclent               lnformatlon 18 available,               the     concentration               of organisms             .lt the boundaries                 may be lnput         to the model             aa boundary               conditions.               Again,       the sltua-tlon     vlth     and vithout             a plant           intake       could     be simulated               and the number or organisms                   remalnlng             tn the modeled               study       area could           be compared         in order           to derive           an estimate           of thr reduction                   In re-crultment.             The reduction               in recruitment               ~111 clhange 89 the population           of the modeled                 study       area     1s reduced           and becomes             more dependent         on the input               of biological               material           3crosa       the boundaries.
the percc nt reduction tn annual recruitment resulting from entraLnment ot pelagic early Life
Hydrodynamic             models       8re of little                 value     for predicting                 the entrapment-impingement                       mortality           rate     suf feretl       by populet           ions.
: stages, Uhen the source of pelagic eggs and/or larvae fs
In the case of separate                         but eimilar             Lntakes,         ~hts rate           can be estlcaated         after       one Is operational.                       Results       m,ly then be extrapolated             to e8cimate             the lmpact             of additional               Intakes.
: knovn, the dleperslon of thls blologlcal naterial around the study area and the consumption by a plant Intake may be simulated, Lndlcatlng the reduction In recruttment that  
Predictive           model8         for entrapment-impingement                             *trt! under develop-ment but have not yet been validated.
~111 result.
Xn this procedure, entralrunent mortality Is separated from natural mortality.
If natural mortality Is drnslty dependent, the impact of power plant entrainment vi11 be overestimated or underestimated vhen entraln-ment mortality 1s estlmated separately from natural nortallty.
The method described above for estimating the reduction Ln recruitment resulting from entrainment can only be applied, as
: stated, for closed systems.
For the more common sttuat ion vhrrc!
some larvae are dlspersed out of the modeled study area (area for vhlch clrculatlon and dlsperslon is simulated) addltlonal aseumptlons are requlred.
If It Is reasonable to assume that once organleme have been transported out of the modeled study area they have a Lov probability of contributing to support of the adult populatlon of the study area.
Then the dispersion of organisma around the study area for a period of time equal to the length of the species vulnerable pelagic phase can be simulated vlth and vlthout the entrainment lmpacr of a simulated pover plant.
By comparing the number of organisms remalnlng In the
: 8re8, the reduction In recruitment to later stages of the life cycle may be estimated.
This approach vas used in reference
: 21.
The approach lgnorrs tht!
posslb Le Lmpact of a
reduction in the number of organlsms dlspcrsed outslde the modeled study area and other supporting pllpul:ltions.
For open systems vhere peleglc entrainable orEanlsms are dlspersed out of a modeled study
: area, it 1s often necessary to consfder the effect of a plant on biological material transported across the model boundarier 8nd lnco the system.
If sufi iclent lnformatlon 18 available, the concentration of organisms  
.lt the boundaries may be lnput to the model aa boundary conditions.
: Again, the sltua-tlon vlth and vithout a plant intake could be simulated and the number or organisms remalnlng tn the modeled study area could be compared in order to derive an estimate of thr reduction In re-crultment.
The reduction in recruitment  
~111 clhange 89 the population of the modeled study area 1s reduced and becomes more dependent on the input of biological material 3crosa the boundaries.
Hydrodynamic models 8re of little value for predicting the entrapment-impingement mortality rate suf feretl by populet ions.
In the case of separate but eimilar
: Lntakes,  
~hts rate can be estlcaated after one Is operational.
Results m,ly then be extrapolated to e8cimate the lmpact of additional Intakes.
Predictive model8 for entrapment-impingement  
*trt!
under develop-ment but have not yet been validated.  


                                                        -i,H-SUC+     simulations           reqllire       knowledge               111 t\le life           tahlc       i(lr tllc species       being       considered.             I.ifc         table       infor-nat       ion for some species       may be based             on the       literature.                   It my St2 pnss ible to supplement             thls     information                 vlth       kncwledac           Kained         from f ielzi     stud fes.         The age-(or             length-)             fecundity           functinn and the egg production-recruitment                                       relationship             nllst     also be knovn.           The latter           may hc of three                     foras:       (1) recrultmcnc as a line;lr           function         nf egg prodtlctlon,                       (2)     rrcry;t!fn,tra;jj a density         dcpcndent           function           of egR product               ion, recrul     tment       independent           of egg product                   inn.       The clloice           of CIIL*
-i,H-SUC+
appropriate             egg production-recruitment                               relatlnnship               and estimation           of parameters             must be based on ttlc available hlstorlcal           information           on the spcc tes.                     At ledst           twenty       yedrs of data         Is probably           required             to make such a dcclsion.                             In trlv absence       of enough data,               the assumption                     of a linear             egg pro-duction-recruitment                   relatlnnshlp                 1s appropriate.                   Yote that         for a linear         egg productlon-recruitment                             model,       there         1s only         J single       equllibrilrm         condition,                 and any plant               related           <Tortal-lty     is Likely         to disturb           this           equilibrium.
simulations reqllire knowledge 111 t\\le life tahlc i(lr tllc species being considered.
If the populatton                 1s not       isolated,               cxcllange         with     clthcr pnpulatlons             may   be   modeled.               The       results         of mark dnd recapture experiments           may     be useful         for         estlmatlng           exchanp,e         rates.
I.ifc table infor-nat ion for some species may be based on the literature.
It my St2 pnss ible to supplement thls information vlth kncwledac Kained from f ielzi stud fes.
The age-(or length-)
fecundity functinn and the egg production-recruitment relationship nllst also be knovn.
The latter may hc of three foras:
(1) recrultmcnc as a line;lr function nf egg prodtlctlon, (2) rrcry;t!fn,tra;jj a density dcpcndent function of egR product
: ion, recrul tment independent of egg product inn.
The clloice of CIIL*
appropriate egg production-recruitment relatlnnship and estimation of parameters must be based on ttlc available hlstorlcal information on the spcc tes.
At ledst twenty yedrs of data Is probably required to make such a dcclsion.
In trlv absence of enough
: data, the assumption of a linear egg pro-duction-recruitment relatlnnshlp 1s appropriate.
Yote that for a linear egg productlon-recruitment
: model, there 1s only J
single equllibrilrm condition, and any plant related  
<Tortal-lty is Likely to disturb this equilibrium.
If the populatton 1s not
: isolated, cxcllange with clthcr pnpulatlons may be modeled.
The results of mark dnd recapture experiments may be useful for estlmatlng exchanp,e rates.
: 3.
Ihc aratlltrds for a~sscsslnx impact described in this sect:on are uscflll but of unkuoun validity.
lost
,~sscssmcnts hasc!.
on biolS3K;fcal nodcls hnve
:iet to be f ictd verif icd.
;)cv t 1.3,1-ment n!
predictive nodels for
.Isscssing impact sllrwld bc encouraF;ed but only Jftcr full cnnstderatinn of the diff i-cult tes
: involved, the cxpcnsic compared to the reltabllity of
: results, and tile dangers of
.I worst case analysis.
Community


Ihc aratlltrds            for        a~sscsslnx            impact          described              in    this        sect:on are uscflll              but      of      unkuoun          validity.                  lost      ,~sscssmcnts              hasc!.
===Response===
on biolS3K;fcal                  nodcls          hnve :iet            to    be f ictd            verif      icd.        ;)cv t 1.3,1-ment n! predictive                          nodels          for      .Isscssing              impact        sllrwld        bc encouraF;ed                but only            Jftcr        full        cnnstderatinn                    of the diff i-cult tes involved,                        the cxpcnsic                compared              to the reltabllity                        of results,            and      tile      dangers          of    .I worst            case analysis.
Para3cters The populations of all spec Les tn a given area or voltlne are defined as  
: 3. Community              Response              Para3cters The     populations                   of all         spec     Les       tn a given               area       or voltlne are     defined           as     ;1 cnm~unlty.                   Although             the term             c(~nmIInIty is considered                   ;1 useful           concept             tn dellncat               lng tllc group               of interactlnc               spccics             In nn area,                 it     is believed                 to be a subjcctlvc               entity.               Thus,       for speclf               lc stlrdles               3nc tests 0f hypothesis,                     the composltlon                       of the comlunity                       rnilst   bc strictly             dcftncd.
;1 cnm~unlty.
(ommuntt~               rtlsponsc           p~ra~ncters,                 such as changes                       ln structure, llave snnet imes                   been       studied           and cst imated                     by certain             mt11t i-variate           clnssif           icatton           techniques.                   Va r ioIls         measures           of spccles           diversity               trr assnclatlnn                     cncfflcicnts                 have also been employed                     LO ne.isure             connunity               response             to perturbat             Inns.
Although the term c(~nmIInIty is considered  
In estim;rting                   ccwiunlty               dlversity,               tile 3nc)st widely                   used indices           .ire ttlose             based nn information                             tlleory.             l&en     tlrc sample         of species                   ahuntianccs               may IJC cnnsidercd                         randnnly         t.iAen f ran an eccll(Tgical                       cnnnu~~ity             or subcnrlnllnity,                     tllc Slbannr>ll index       (also         referr4               tn as tile Shannon-Wiener                                 or Shannon Ueaver         Index)           mdy bc cased.                     If the sample may not be considered               a randiw             set of species                       abundances               taken       frcln ,I LarKer       spec its               aF:r,rcj:.it ion I3f interest,                             ttlen     tllc     Rri 1 Irwin Etther           index may be cnnputed                             vith Index conputat    shul ional beease      ~~         .Ind,       in either               case
;1 useful concept tn dellncat lng tllc group of interactlnc spccics In nn area, it is believed to be a subjcctlvc entity.
* the logarithmic base       clscd       must         bc     stilted.
: Thus, for speclf lc stlrdles 3nc tests 0f hypothesis, the composltlon of the comlunity rnilst bc strictly dcftncd.
Tllc     sl\ortccrmin,:s                 of a11 exist Lng                       indices           of sprcies             divrr-stty       and the           biolnglcal                 phcnnncna               which nay influcance thcsc       vcl111es         sttould           be recognized.                       References               2H, 29, nnd 30 should             he     cnnsulted               for further                 exolanation                 of diver-sity       indices           and thctr               utility.
(ommuntt~
For the purposes                         at Il;lnd,         the phrase                 classiflcatinn                     nf commun i t ies               is util           tzed for prwesses                           chat snrt               species into       groups,           and it incllrdes                       both discriminat                     Lnn -2nd clustering.                   In gcnerdl,                 discriminatinn                       tcchnlqws begin       uittl       a priori             cnnceptuaL               disttncttnns                   nr with           data
rtlsponsc p~ra~ncters, such as changes ln structure, llave snnet imes been studied and cst imated by certain mt11t i-variate clnssif icatton techniques.
Va r ioIls measures of spccles diversity trr assnclatlnn cncfflcicnts have also been employed LO ne.isure connunity response to perturbat Inns.
In estim;rting ccwiunlty dlversity, tile 3nc)st widely used indices  
.ire ttlose based nn information tlleory.
l&en tlrc sample of species ahuntianccs may IJC cnnsidercd randnnly t.iAen f ran an eccll(Tgical cnnnu~~ity or subcnrlnllnity, tllc Slbannr>ll index (also referr4 tn as tile Shannon-Wiener or Shannon Ueaver Index) mdy bc cased.
If the sample may not be considered a randiw set of species abundances taken frcln  
,I LarKer spec its aF:r,rcj:.it ion I3f interest, ttlen tllc Rri 1 Irwin Etther index may be cnnputed vith Index shul be ~~  
.Ind, in either case the logarithmic conputat ional ease base clscd must bc stilted.
Tllc sl\\ortccrmin,:s of a11 exist Lng indices of sprcies divrr-stty and the biolnglcal phcnnncna which nay influcance thcsc vcl111es sttould be recognized.
References 2H, 29, nnd 30 should he cnnsulted for further exolanation of diver-sity indices and thctr utility.
For the purposes at Il;lnd, the phrase classiflcatinn nf commun i t ies is util tzed for prwesses chat snrt species into
: groups, and it incllrdes both discriminat Lnn  
-2nd clustering.
In
: gcnerdl, discriminatinn tcchnlqws begin uittl a priori cnnceptuaL disttncttnns nr with data  


                                                      -5o-dlvlded         fnto     a priori         groups.           Then one should                 proceed         to develop         rules       uhlch       separate         data Lnto these a prior1                         categories.
-5o-dlvlded fnto a priori groups.
Clustering           techniques,           on the other             hand,     use a priori               selection of a measure             of sLmllar!ty,             a criterion,             and a class             description to flnd       Inherent         emplrfcal         structure           In data,         i.e.,       clusters.
Then one should proceed to develop rules uhlch separate data Lnto these a prior1 categories.
Clustering           does not use an externally                           supplied           label     and lnvolv~s ffnding       derived       data       groups     vhlch       are Internally                 slmflar.           h good rcvlev             and summary of various                     dlscrlmlnatlon                 and clustering procedures             is provlded           in reference               31.
Clustering techniques, on the other
The aquatic             environment           can often           be stratified               In some vay, such as by depth,                 substrate           composltlon,             etc.         It is suggested that     such stratification                   be done and that                   tables         shoving         the frequency,           or dens lty,           of each species                 at each environmental stratum         be compiled.               These tables             are anaji)gous             to the distri-bution       cumes         made In a gradtent                   analysis,         L and are consi-dered a natural               and useful           description             for species             assoclatlon data.         It 1s suggested               that     these       tables       be the basis             for certain         multlvarlate             methods         of data       analysis         for spatial and temporal             varlabtlLty,           such as cononlcal                   variate         analysis described           in reference             33.       In addition,             for these data which now contain             a prior1         groupings,           the linear           dlscrlminant               funct lon may also         be successfully               utlllzed           for testfng           the differences among environmental                     strata       uslng       multiple       measurement             or counting data.
: hand, use a priori selection of a measure of sLmllar!ty, a criterion, and a class description to flnd Inherent emplrfcal structure In
: 4. BLologlcal           Value     Concept The concept             of establishing               relatlve         biological             value     zones In the water             body segment           lmpactrd           by a cooling             water       Intake structure           could     be a useful             approach           in determfning               best technology           available           for intake           design,       location,           and operation to minimize             adverse       environmental               impact.         The principal               use of thls         concept         Is In delfneating                   the optimal             location         ulthln the vater         body for mlnlmum Lmpact                         on the biota             potentially involved         with     the speclflc             intake         structure.
: data, i.e.,
The     ersence         of thls       concept         is ln establishing                   blologlcal           value of   various         zones for the water                     body segment             (or other           deflned area)     uithln         vhlch       the intake           structure         is to be located.                     A judgment         of value         1s made for the representative                               important species         considering             type of involvement                   with     the tntake             (entrap-ment,       impingement,             entrainment)             and the numbers of each vhfch are adversely               Impacted.           Results         are summed up by species, seaeonally           or annually,             and represented                 by graphical             means to depict       areas       of the vater           body highly               important           to the species and, conversely,                 areas       of low relatLve                 value,       thus potentially favorable           lntake       structures.
clusters.
Clustering does not use an externally supplied label and lnvolv~s ffnding derived data groups vhlch are Internally slmflar.
h good rcvlev and summary of various dlscrlmlnatlon and clustering procedures is provlded in reference
: 31.
The aquatic environment can often be stratified In some vay, such as by depth, substrate composltlon, etc.
It is suggested that such stratification be done and that tables shoving the frequency, or dens lty, of each species at each environmental stratum be compiled.
These tables are anaji)gous to the distri-bution cumes made In a gradtent
: analysis, L and are consi-dered a natural and useful description for species assoclatlon data.
It 1s suggested that these tables be the basis for certain multlvarlate methods of data analysis for spatial and temporal varlabtlLty, such as cononlcal variate analysis described in reference
: 33.
In
: addition, for these data which now contain a prior1 groupings, the linear dlscrlminant funct lon may also be successfully utlllzed for testfng the differences among environmental strata uslng multiple measurement or counting data.
: 4.
BLologlcal Value Concept The concept of establishing relatlve biological value zones In the water body segment lmpactrd by a cooling water Intake structure could be a useful approach in determfning best technology available for intake
: design, location, and operation to minimize adverse environmental impact.
The principal use of thls concept Is In delfneating the optimal location ulthln the vater body for mlnlmum Lmpact on the biota potentially involved with the speclflc intake structure.
The ersence of thls concept is ln establishing blologlcal value of various zones for the water body segment (or other deflned area) uithln vhlch the intake structure is to be located.
A judgment of value 1s made for the representative important species considering type of involvement with the tntake (entrap-
: ment, impingement, entrainment) and the numbers of each vhfch are adversely Impacted.
Results are summed up by species, seaeonally or
: annually, and represented by graphical means to depict areas of the vater body highly important to the species
: and, conversely, areas of low relatLve
: value, thus potentially favorable lntake structures.  


                                                                -5l-Yettlodology.               The frill louinK                 ?letilodoln<y               for asinK           the !IA,?! . .;:.li value       cnncept           1s based on :let!lods                         devel.>Ic*,!         and ut ilizcc                 ;q connt~n~ty           plannin,:         studies               JS descrlbcd                 in rrfercnrc               I&.
-5l-Yettlodology.
Ise   of ttlc       SInlogical               VJIJC cnncept                 vould         reqirt?         .~ccept~r~~:c           a\t the     rc.l~on;Ibleness               of       sever.11           basic     premises:
The frill louinK  
: 1. T11cr~* are           areas of Jlf ferent                         cnnccnt r It ions of                   rcpreschnt.1:             LV,:
?letilodoln<y for asinK the  
1npt)rtant           species             vithin         tllc   vatcr       body scgmcnt                 conprt+tn):
!IA,?!..;:.li value cnncept 1s based on :let!lods devel.>Ic*,!
potent       i,ll     sites         for an intake                 structure.
and ut ilizcc  
: 2.     .\rcas of hlnlogicnl                           concentrations                   c-an hc cxprc1sscc                   :Y tt:r,\
;q connt~n~ty plannin,:
of rclat         ive value               to perpetuiit             ton 0i rcprcscrltac                     ivy-     in;:~lrL.:*:l species           PopulJt tnns in ttle vatrr                               body scp,,ment.
studies JS descrlbcd in rrfercnrc I&.
I. The     arca ni zone of least                               bioloRica1             valrle,         expressed             in rc!;lt     ive terns           of pnpulatlnn                     densities,               would bc t!lc I~~~LTII It,cat ion fnr 3n fntake                             structllre           In order             to redlIce           .I(Ivcrsc env i ronnen tJ 1 impact .
Ise of ttlc SInlogical VJIJC cnncept vould reqirt?  
This       Ls not a preclsc                       method         bec.:.lse       cjf inexactness                 of differen-t lat tng rclnt             lve value               between           spcc Lcs Jnd diff                   lcul ties         in comparing           importance               of loss betveen                     eggs,         larvae,         ,lnd Jdults.
.~ccept~r~~:c a\\t the rc.l~on;Ibleness of sever.11 basic premises:
4ls0,       Lt Is lssumed                 that       tile     adverse         impact           on the       populatL;lns of critical               squat tc organisms                         1s significant                   to some drL;ree                 .~nd tticreforc,             tt Ls cJesirahle                     to minimize               tllis       impact,         thus ,:lvini:
: 1.
importance,               to best available                         intake       locations.
T11cr~* are areas of Jlf ferent cnnccnt r It ions of rcpreschnt.1:
If one CJII determine                           that       one spccles               is more important                       than annti\er,         one can vcigh                     it in some way.                       tf not,         least       cclnccnt r.t-tions       of crft lcal               squat         Lc nrganisms               in any one location                           lnqic,ltc its     intrinsic             sultabtlity                   for     lntake       structure               location.             3-A step-by-step                 procedure               could         include:
LV,:
: 1. Select         crit       tcol       aquatic         organisms;               and
1npt)rtant species vithin tllc vatcr body scgmcnt conprt+tn):
: 2.     Divide         water           body       segment         into       spatial           cclnpartments               (USC hydrological                   model).
potent i,ll sites for an intake structure.
For   each       species           and         spatlal           compartment:
: 2.  
: 1.     netermine               life         stages         potentially               involved           with         intake and type             of       involvement               (entrapment,                 imptngement,                 entrain-merit);
.\\rcas of hlnlogicnl concentrations c-an hc cxprc1sscc
: 2.     Estimate             numbers             of   organisms             involved           at   reprrscntat               tvc times         during           the       annual       nperat         fan     cycle;
:Y tt:r,\\
: 3.     Estlmatc           numbers nf             those         involved             CIIJ~ are             L&,sc     (deter-;:c percent         survival           or   .lortallty             of     those         entrained               or     ~nplll't-~)
of rclat ive value to perpetuiit ton 0i rcprcscrltac ivy-in;:~lrL.:*:l species PopulJt tnns in ttle vatrr body scp,,ment.
on .lrl annual               basts;
I.
: 4.     h:sC imate         conversion             rat ins to express                         t*zf,:s .IIIL~ I.lrv.lk*                 IS)51 tn   terms       nf ntlmber           of adults             (tl~is         Is a VJ~IIC Jtddj;ment                             ,inll assumes         the       109s of clne cgt;                 is nnt a5 fTnportanc                             co sibrvlv.ii nf     the     species         as tile loss nf an .idllI c) .;
The arca ni zone of least bioloRica1
: 5.     Develop         CIIC data         matrix           fnr cnnstructinn                           nI     t11c biol~~lIc.~l value       level       nverlay         charts           (Table           I);
: valrle, expressed in rc!;lt ive terns of pnpulatlnn densities, would bc t!lc I~~~LTII It,cat ion fnr 3n fntake structllre In order to redlIce  
: 6.     CofIStrUCt           cran.Spdrent             IWCr1JyS             for       ea-Icfl       SpCCicS         IJn   Ctl;lrc           Vf vater       body       segment.             Areas         nf different                       impact         An trrns             \lf nrganisms             lost     due tn involvement                           witli       tllc intake               scrtlCt44rc*
.I(Ivcrsc env i ronnen tJ 1 impact This Ls not a preclsc method bec.:.lse cjf inexactness of differen-t lat tng rclnt lve value between spcc Lcs Jnd diff lcul ties in comparing importance of loss betveen
could       be color-coded;                   e.c.,         areas           nf -747st val11f2 could                           bc J,lrr gray;       areas       of lc;lst         value,         clear.             r,cnrrA 1 Iy, tlirre                       lrve lD nf v3lue           vfll       sufflcc;
: eggs, larvae,  
: 7.     Superimpose               overlays           for (111 reprcscntat                             ive important                     spcc 1~s on     chart       to     obtain         cnmpositive               value,             indicated               by relative color,         fnr     all     spatial           compartments                   in the vacer                   body segment;           and
,lnd Jdults.
: 3.     Analyze         graphic         display           of relatlvc                 value           snd     identify light-toned               areas as most favorable                                 tntake           sites,         heavy areas       as least           favorable.
: 4ls0, Lt Is lssumed that tile adverse impact on the populatL;lns of critical squat tc organisms 1s significant to some drL;ree  
The     methodology               is intended             to be flexible.                             Var inus         sriarlcs of different               colors         could         indicate           cnmparative                   value         bctueen selected           species           or variations                 Ln density                 vitll       depth.           ThC value       grades         could       bc expressed                 in terms of their                           rel.xtinn to pnpulat           tons nf critical                     aquactc           organisms                   ln tile overall                     vntcr body to provide                   insight         on importance                     of the spccif                   ic scy,mcnt studies         to the vhole               system.
.~nd tticreforc, tt Ls cJesirahle to minimize tllis
The biological                 value       concept           for analyzing                     survey         data         in tVlc determlnat           ion     of best technology                         avai Lahlc                 tn 3inirniae               advcrsc environmental                 impact       appears           to liave             ttic principal                     appt Ication                 ii sclcctlnn           nf the minimal                   imact       zones for lncatlng                             tllc intal;c stfuc     Cure.         The usability                 nf tile cnnccpt                       is, of course,                     dSlt.j-dependent.               As noted,             it 1s not preclsc,                           but at least                   incc~raccs multiple           factors           and presents               a defined                 inllic;ltion               of suirahilit:d fOt     locatton           of an intake                 structure               Ln the affected                       vater           body segment.
: impact, thus  
Three-dimensinnal                     computer           graphic           cectlniques                 can also             be portray         spatial           and temporal                   distrlbue             ion nf hinln~ic.11
,:lvini:
 
importance, to best available intake locations.
Time-series         graphs     can be useful         in depictfng     the dynamic nature     of occurrence         and abundance         of a designated       species during     the annual       operating       cycle   of the intake       structure.
If one CJII determine that one spccles is more important than annti\\er, one can vcigh it in some way.
The principal         application         would appear       to be ln the deter-mination       of the optimal           location     of the intake       structure.
tf
Also,     graphic     representations           of the biologically         predicted mathematical         model     output     could     aseist   fn more clearly depicting       intake     structure       impact     on populatfona       of Repre-sentative       Important       Species     (RIS).
: not, least cclnccnt r.t-tions of crft lcal squat Lc nrganisms in any one location lnqic,ltc its intrinsic sultabtlity for lntake structure location.
 
3-A step-by-step procedure could include:
TAB1.E   I FiXAWLE     nATA   HATRIX (SPECIES     1)
: 1.
DATA   SHEET (SPATIAL     CWWARTHFXT       [A] )
Select crit tcol aquatic organisms; and
f Lost                                                           I           I TYPE      I    Organism    Involved      I    (If    assumed    other    1   Numbers       i Calculated     F.quiva- I Value OF       I                               I     than   100   2)         I     l.ost       I   lent   Adult   Loss   1 Gr.4de INVOLVEMENT       1 I ERRS   1 Larvae     1 Adult   ! Eggs   I Larvae     I Adult IL.1     L.1   A i E. IL. IA. 1 Total iI. II, III i t       I             I         I         I             1       I I           I   1       I   I   I       I             I II            1    I Entrapment        f       I             I         I         I             1                                   I   I   I       I             I I                                         I                     I   1        1    I                                       I Implnjiemcnt      I       I             I         I                       I                                   I     I   I       I             I I                                         I             I       1   I       I   I Entrainment       I       I             I         I         I             I       1   I       I   I       I   1   I       I             I 1       I             I         1         I             I       I   1       I   I       I   I   I       I             1 I                                                                               I   I       I   I   I       I Total    Effect/          !            1        I        I             1        1;           /I           I1       I       I             I I       I             1         I         I             I       I   I       I   I       I   I   I       I             I
: 2.
 
Divide water body segment into spatial cclnpartments (USC hydrological model).
XIII. ACKNOWLEDGEMENTS The concept of a 316(b) Technical Guidance Manual was initiated by an interagency working group comprised of James Truchan, Michigan Department of Natural Resources; Howard McCormick and Alan Beck, U.S.
For each species and spatlal compartment:
Environmental Protection Agency; and Phillip Cota, U.S. Nuclear Regulatory Commission. The first draft of the Manual was completed in December 1975, followed by a revised version in April 1976.
: 1.
The Manual in its present form is the product of the following individuals who provided comments and assistance: James Truchan and Robert Courchalne. Michigan Department of Natural Resources; W. Lawrence Ramsey, Maryland Department of Natural Resources; Allan Reck, Alan Seers, William Brungs, Stephen Bugbee, William Jordan, Tom Larsen, Harvey Lunenfeld, Howard McCormick, Gary Milburn, Eric Schneider, and Lee Tebo, U.S. Environmental Protectinn Agency; Thomas Cain, Phillip Coca, Bennett Harless, and Michael Masnik, U.S. Nuclear Regulatory Agency; Philllp Goodyear, Mark Maher, and Roy Irwin, U.S. Fish and Wildlife Service; William Anderson II, Hunton, Williams, Gay & Gibson; J. Roy Spradley, Jr., National Association of Electric Companies, Charles Coutant; Oak Ridge National Laboratories; Rajendra Sharma, Argonne Laboratories, Saul Saila, University of Rhode Island, George Mathiessen, Marine Research Inc.;
netermine life stages potentially involved with intake and type of involvement (entrapment, imptngement, entrain-merit);
: 2.
Estimate numbers of organisms involved at reprrscntat tvc times during the annual nperat fan cycle;
: 3.
Estlmatc numbers nf those involved CIIJ~
are L&,sc (deter-;:c percent survival or  
.lortallty of those entrained or  
~nplll't-~)
on.lrl annual basts;
: 4.
h:sC imate conversion rat ins to express t*zf,:s.IIIL~ I.lrv.lk*
IS)51 tn terms nf ntlmber of adults (tl~is Is a VJ~IIC Jtddj;ment  
,inll assumes the 109s of clne cgt; is nnt a5 fTnportanc co sibrvlv.ii nf the species as tile loss nf an.idllI c).;
: 5.
Develop CIIC data matrix fnr cnnstructinn nI t11c biol~~lIc.~l value level nverlay charts (Table I);
: 6.
CofIStrUCt cran.Spdrent IWCr1JyS for ea-Icfl SpCCicS IJn Ctl;lrc Vf vater body segment.
Areas nf different impact An trrns  
\\lf nrganisms lost due tn involvement witli tllc intake scrtlCt44rc*
could be color-coded; e.c.,
areas nf  
-747st val11f2 could bc J,lrr gray; areas of lc;lst
: value, clear.
r,cnrrA 1 Iy, tlirre lrve lD nf v3lue vfll sufflcc;
: 7.
Superimpose overlays for (111 reprcscntat ive important spcc 1~s on chart to obtain cnmpositive
: value, indicated by relative
: color, fnr all spatial compartments in the vacer body segment; and
: 3.
Analyze graphic display of relatlvc value snd identify light-toned areas as most favorable tntake
: sites, heavy areas as least favorable.
The methodology is intended to be flexible.
Var inus sriarlcs of different colors could indicate cnmparative value bctueen selected species or variations Ln density vitll depth.
ThC value grades could bc expressed in terms of their rel.xtinn to pnpulat tons nf critical aquactc organisms ln tile overall vntcr body to provide insight on importance of the spccif ic scy,mcnt studies to the vhole system.
The biological value concept for analyzing survey data in tVlc determlnat ion of best technology avai Lahlc tn 3inirniae advcrsc environmental impact appears to liave ttic principal appt Ication ii sclcctlnn nf the minimal imact zones for lncatlng tllc intal;c stfuc Cure.
The usability nf tile cnnccpt is, of
: course, dSlt.j-dependent.
As
: noted, it 1s not
: preclsc, but at least incc~raccs multiple factors and presents a defined inllic;ltion of suirahilit:d fOt locatton of an intake structure Ln the affected vater body segment.
Three-dimensinnal computer graphic cectlniques can also be portray spatial and temporal distrlbue ion nf hinln~ic.11 Time-series graphs can be useful in depictfng the dynamic nature of occurrence and abundance of a designated species during the annual operating cycle of the intake structure.
The principal application would appear to be ln the deter-mination of the optimal location of the intake structure.
: Also, graphic representations of the biologically predicted mathematical model output could aseist fn more clearly depicting intake structure impact on populatfona of Repre-sentative Important Species (RIS).
TAB1.E I
FiXAWLE nATA HATRIX (SPECIES
: 1)
DATA SHEET (SPATIAL CWWARTHFXT
[A] )
I I
f Lost I
1 Numbers i Calculated F.quiva-I Value I
TYPE Organism Involved (If assumed other OF I
I than 100
: 2)
I l.ost I
lent Adult Loss 1 Gr.4de INVOLVEMENT 1
I ERRS 1 Larvae 1 Adult  
! Eggs I Larvae I Adult IL.1 L.1 A i E.
IL.
IA.
1 Total iI.
II, III i
t I
I I
I 1
I I
I 1
I I
I I
I f
I I
I I
1 II 1
I Entrapment I
1 1
I I
I I
I I
I Implnjiemcnt I
I I
I I
I I
I I
I I
I I
I I
1 I
I I
Entrainment I
I I
I I
I 1
I I
I I
1 I
I I
1 I
I 1
I I
I 1
I I
I I
I I
1 I
Total Effect/
1 I
I 1
I I
I I
I 1;  
/I I1 I
I I
I I
I 1
I I
I I
I I
I I
I I
I I
XIII.
ACKNOWLEDGEMENTS The concept of a 316(b) Technical Guidance Manual was initiated by an interagency working group comprised of James Truchan, Michigan Department of Natural Resources; Howard McCormick and Alan Beck, U.S.
Environmental Protection Agency; and Phillip Cota, U.S. Nuclear Regulatory Commission.
The first draft of the Manual was completed in December 1975, followed by a revised version in April 1976.
The Manual in its present form is the product of the following individuals who provided comments and assistance:
James Truchan and Robert Courchalne. Michigan Department of Natural Resources; W. Lawrence Ramsey, Maryland Department of Natural Resources; Allan Reck, Alan Seers, William Brungs, Stephen Bugbee, William Jordan, Tom Larsen, Harvey Lunenfeld, Howard McCormick, Gary Milburn, Eric Schneider, and Lee Tebo, U.S. Environmental Protectinn Agency; Thomas Cain, Phillip Coca, Bennett Harless, and Michael Masnik, U.S. Nuclear Regulatory Agency; Philllp Goodyear, Mark Maher, and Roy Irwin, U.S. Fish and Wildlife Service; William Anderson II, Hunton, Williams, Gay & Gibson; J. Roy Spradley, Jr., National Association of Electric Companies, Charles Coutant; Oak Ridge National Laboratories; Rajendra Sharma, Argonne Laboratories, Saul Saila, University of Rhode Island, George Mathiessen, Marine Research Inc.;
and Gerald Zar, Northern Illinois University.
and Gerald Zar, Northern Illinois University.
Special acknowledgment goes to Howard Zar, U.S. Environmental Protection Agency, who was responsible for reviewing and incorporating comments received into this Manual.
Special acknowledgment goes to Howard Zar, U.S. Environmental Protection Agency, who was responsible for reviewing and incorporating comments received into this Manual.
Overall coordination and preparation of this Manual was done by the Industrial Permits Branch, Permits Division, Office of Enforcement, U.S. EPA, Washington, D.C.
Overall coordination and preparation of this Manual was done by the Industrial Permits Branch, Permits Division, Office of Enforcement, U.S. EPA, Washington, D.C.
 
XIV.
XIV. LITERATURE CITED
LITERATURE CITED 1.
: 1. Schubel, J..R. 1975. Some comments on the thermal effects of power plants on fish eggs and larvae. In: Proceedings, Fisheries and Energy Production, A Symposium. Saul B. Saila, Ed. D.C.
Schubel, J..R.
Health & Co. Lexington, Massachusetts. 300 p.
1975.
: 2. Marcy, B.C., Jr. 1973. Vulnerability and survival of young Connecticut River fish entrained at a nuclear power plant.
Some comments on the thermal effects of power plants on fish eggs and larvae. In:
J. Fish. Res. Board Can. 30 (8) : 1195-1203.
Proceedings, Fisheries and Energy Production, A Symposium.
: 3. Carpenter, E.J., B.S. Peck, and S.J. Anderson. 1974. Survival of copepods passing through a nuclear power station on north-eastern Long Island Sound, U.S.A. Mar. Biol. (NY). 24: 49-55
Saul B. Saila, Ed. D.C.
: 4. Beck, A.D. and D.C. Miller. 1974. Analysis of inner plant passage of estuarine biota. Proc. ASCE Power Div. Specialty Conf., Boulder, Colorado. August 12-14, 1974. 199-226.
Health & Co. Lexington, Massachusetts.
: 5. Beck, A.D. and N.F. Lackey. 1974. Effects of passing marine animals through power plant cooling water systems. (Presented at Symposium on Effects of Nuclear Power Plants on the Marine Ecosystem. American Fisheries Society annual meeting Honolulu, Hawaii, September 7-11, 1974.) U.S.E.P.A. Environmental Research Laboratory, Narragansett, Rhode Island.
300 p.
: 6. Odem, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co.,
2.
Philadelphia. 574 p.
Marcy, B.C., Jr.
: 7. Anon. 1971. A Symposium on the Biological Significance of Estuaries. P.A. Douglas, R.H. Stroud, Eds. Sport Fishing Institute. March 1971. 111 p.
1973.
: 8. Leendertse, J.J. 1967. Aspects of a computational model for long-period water-wave propagation. Rand Corp., Santa Monica, California, Memorandum RM-5294-PR. 165 p.
Vulnerability and survival of young Connecticut River fish entrained at a nuclear power plant.
: 9. A water-quality simulation model for well-mixed estuaries and coastal seas: Volume 1, Principles of computation. 1970.
J. Fish. Res. Board Can.
Rand Corp., Memorandum RM-6230-RC. 71 p.
30 (8) :
: 10. Conner, J.J. and Wang, J.D. 1975. Mathematical modeling of Near-shore Circulation. MIT Sea Grant Report No. 75-13. 272 p.
1195-1203.
: 11. Callaway, R.J., K.V. Byram and G.F. Ditsworth. 1969. Mathematical model of the Columbia River from the Pacific Ocean to Bonneville Dam: Part 1. Pacific Northwest Water Laboratory, Corvallis, Oregon.
3.
: 12. Leendertse, J.J., R.C. Alexander, and S.K. Liu. 1973. A three-dimensional model for estuaries and coastal seas: Volume 1, Principles of computation. Rand Corp. Memorandum R-1417-OWRR.
Carpenter, E.J., B.S. Peck, and S.J. Anderson.
1974.
Survival of copepods passing through a nuclear power station on north-eastern Long Island Sound, U.S.A.
Mar. Biol. (NY). 24:
49-55 4.
Beck, A.D. and D.C. Miller.
1974.
Analysis of inner plant passage of estuarine biota.
Proc. ASCE Power Div. Specialty Conf., Boulder, Colorado.
August 12-14, 1974.
199-226.
5.
Beck, A.D. and N.F. Lackey.
1974.
Effects of passing marine animals through power plant cooling water systems.
(Presented at Symposium on Effects of Nuclear Power Plants on the Marine Ecosystem.
American Fisheries Society annual meeting Honolulu, Hawaii, September 7-11, 1974.) U.S.E.P.A. Environmental Research Laboratory, Narragansett, Rhode Island.
6.
Odem, E.P.
1971.
Fundamentals of Ecology.
W.B. Saunders Co.,
Philadelphia.
574 p.
7.
Anon.
1971.
A Symposium on the Biological Significance of Estuaries.
P.A. Douglas, R.H. Stroud, Eds.
Sport Fishing Institute.
March 1971.
111 p.
8.
Leendertse, J.J.
1967.
Aspects of a computational model for long-period water-wave propagation. Rand Corp., Santa Monica, California, Memorandum RM-5294-PR.
165 p.
9.
A water-quality simulation model for well-mixed estuaries and coastal seas:
Volume 1, Principles of computation.
1970.
Rand Corp., Memorandum RM-6230-RC.
71 p.
10.
Conner, J.J. and Wang, J.D.
1975.
Mathematical modeling of Near-shore Circulation.
MIT Sea Grant Report No. 75-13.
272 p.
11.
Callaway, R.J., K.V. Byram and G.F. Ditsworth.
1969.
Mathematical model of the Columbia River from the Pacific Ocean to Bonneville Dam:
Part 1.
Pacific Northwest Water Laboratory, Corvallis, Oregon.
12.
Leendertse, J.J., R.C. Alexander, and S.K. Liu.
1973.
A three-dimensional model for estuaries and coastal seas:
Volume 1, Principles of computation.
Rand Corp.
Memorandum R-1417-OWRR.
57 p.
57 p.
: 13. Hess, K.W. 1976, A three-dimensional numerical model of steady gravitation, circulation and salinity distribution in Narragansett Bay. Estuarine Coastal Mar. Sci. 4: 325-338.
13.
: 14. Laevastu, T. 1974. A multi-layer hydrodynamical-numerical model (W. Hansen type). Environmental Prediction Research Facility, U.S. Naval Post Graduate School, Monterey, California.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
Hess, K.W.
: 1976, A three-dimensional numerical model of steady gravitation, circulation and salinity distribution in Narragansett Bay.
Estuarine Coastal Mar. Sci. 4:
325-338.
Laevastu, T.
1974.
A multi-layer hydrodynamical-numerical model (W. Hansen type).
Environmental Prediction Research Facility, U.S. Naval Post Graduate School, Monterey, California.
Technical Note No. 2-74.
Technical Note No. 2-74.
: 15. Gordon, R. and M. Spaulding. 1974. A bibliography of numerical models for tidal rivers, estuaries and coastal waters. University of Rhode Island, Department of Ocean Engineering. Publ. P-376.
Gordon, R. and M. Spaulding.
1974.
A bibliography of numerical models for tidal rivers, estuaries and coastal waters.
University of Rhode Island, Department of Ocean Engineering.
Publ. P-376.
55 PP.
55 PP.
: 16. Cochren, W.G. 1963. Sampling Techniques.       (2nd Ed.) J. Wiley &
Cochren, W.G.
Sons, New York. 413 p.
1963.
: 17. Bartlett, M.S. 1935. Some aspects of the time correlation problem. Royal Stat. Soc. J. (Ser. A). 98 (3): 536-543.
Sampling Techniques.
: 18. Quenoville, Y.H. 1952, Associated Measurements.         Butterworth Scientific, London. 242 p.
(2nd Ed.) J. Wiley &
: 19. Sissenwine, M.P. and S.B. Saila. 1974. Rhode Island Sound dredge spoil disposal and trends in the floating trap Industry.
Sons, New York.
Trans. Am. Fish Soc. 103 (3): 498-506.
413 p.
: 20. Environmental Impact monitoring of nuclear power plants --
Bartlett, M.S.
Source book. 1974. Prepared by Battelle Laboratories.
1935.
Atomic Industrial Forum Inc., Columbus, Ohio. August 1974.
Some aspects of the time correlation problem.
Royal Stat. Soc. J. (Ser. A). 98 (3):
536-543.
Quenoville, Y.H.
: 1952, Associated Measurements.
Butterworth Scientific, London.
242 p.
Sissenwine, M.P. and S.B. Saila.
1974.
Rhode Island Sound dredge spoil disposal and trends in the floating trap Industry.
Trans. Am. Fish Soc.
103 (3):
498-506.
Environmental Impact monitoring of nuclear power plants --
Source book.
1974.
Prepared by Battelle Laboratories.
Atomic Industrial Forum Inc., Columbus, Ohio.
August 1974.
810 p.
810 p.
: 21. Edwards, R.L. 1968. Fishery resources of the North Atlantic a r e a . I n : Gilbert, D.W. The Future of the Fishing Industry in the United States. University of Washington Publ. in Fisheries.
Edwards, R.L.
: 22. Holmes, R.W. and T.H. Widrig. 1956. The enumeration and collection of marine phytoplankton. J. Cons., Cons. Int.
1968.
Explor. Mer. 22: 21-32.
Fishery resources of the North Atlantic area. In:
: 23. Conuver, W.J. 1971.       Practical Non-parametric Statistics. Wiley &
Gilbert, D.W.
The Future of the Fishing Industry in the United States.
University of Washington Publ. in Fisheries.
Holmes, R.W. and T.H. Widrig.
1956.
The enumeration and collection of marine phytoplankton.
J. Cons., Cons. Int.
Explor. Mer. 22:
21-32.
Conuver, W.J.
1971.
Practical Non-parametric Statistics.
Wiley &
Sons, New York.
Sons, New York.
: 24. Hess, K.W., H.P. Sissenwine and S.B. Saila. 1975. Simulating the impact of the entrainment of winter flounder larvae. In:
Hess, K.W., H.P. Sissenwine and S.B. Saila.
Fisheries and Energy Production - A Symposium. Saul B. Saila, Ed. Heath & Co., Lexington, Massachusetts. 300 p.
1975.
: 25. Ricker, W.E. 1958. Handbook of Computations for Biological Statistics of Fish Populations. J. Fish. Res. Board Can.
Simulating the impact of the entrainment of winter flounder larvae. In:
Bulletin 119: 1-300.
Fisheries and Energy Production - A Symposium.
: 26. Shannon,       C.E. and W. Weaver.                   19k9.       The ?fathematical               Theory of Communication.               Ilniversfty           of Illinois           Press,     lrbana, Illinois.           117 p.
Saul B. Saila, Ed.
: 27. Hutcheson,         K. 1970.       A Test for Comparing                   Diversities             Sased on the Shannon             Formula.         J. Theor.         Biol.       2:       151-15L.
Heath & Co., Lexington, Massachusetts.
: 28. Hurlbert,         S.H.     1971.       The nonconcept             of   species       diversity:
300 p.
A critique           and alternative             parameters.             Fcnlngy     .    -52(S):
Ricker, W.E.
1958.
Handbook of Computations for Biological Statistics of Fish Populations.
J. Fish. Res. Board Can.
Bulletin 119:
1-300.
: 26.
: 27.
: 28.
: 29.
: 30.
: 31.
: 32.
: 33.
: 34.
: 35.
: 36.
: 37.
: 38.
: Shannon, C.E.
and W. Weaver.
19k9.
The ?fathematical Theory of Communication.
Ilniversfty of Illinois
: Press, lrbana, Illinois.
117 p.
Hutcheson, K.
1970.
A Test for Comparing Diversities Sased on the Shannon Formula.
J.
Theor.
Biol.
2:
151-15L.
: Hurlbert, S.H.
1971.
The nonconcept of species diversity:
A critique and alternative parameters.
Fcnlngy 52(S):
577-586.
577-586.
: 29. Fager,       E.U.       1972.     Diversity:           A Sampling           Study.         An. Vat.
: Fager, E.U.
106(6j:         293-310.
1972.
: 30. Degenedictis,             P.A.     1973.       On the Correlations                 Between Certain       Diversity         Indices.           Am. Nat.         107(4):         295-302.
Diversity:
: 31. Nagy, C.           1968.       State     of the Art           in Pattern         Recognition.
A Sampling Study.
Proceedings           of the IEEE.             56(5):       836-863.
An.
: 32. Uhittaker,           R.H.     1967.       Gradient         Analysis         Fn Vegetation.
Vat.
Biol.     Rev.     Cambridge       Philos.       Sot.     s:       07-264.
106(6j:
: 33. Pielou,       E.C.       1969.       An Introduction             to Yathematfcal                 Ecology.
293-310.
Wiley-Interscience,                 New York.           286 p.
Degenedictis, P.A.
: 34. HcHarg,       I .L.     1969.       Design       with   Nature.         The     Falcon       Press, Philadelphia.               197 p.
1973.
: 35. Brown,       D.J. and L.L.       Low.       1974.       Three-Dimensional                 Computer Graphics         in Fisheries         Science.           J. Fish.         Res. Board     Can.
On the Correlations Between Certain Diversity Indices.
3-l(12):         1927-1935.
Am. Nat.
: 36. !4cErlean,         A.J.,     C. Kcrby and R.C. Suartz.                         1972.         Discussion of the Status             of Knowledge           Concerning         Sampling         Variation, Physiological             Tolerances         and Possible           Change Criteria                 for Bay Organisms.               Chesapeake         SC i.     ~(Supplement/l2):                     S&2-S54.
107(4):
: 37. Nelson,       D.D. and R.A. Cole.                   1975.       The Distribution                 and Abundance         of Larval       Fishes       Along     the Western           Shore       of   Lake Erie     at Monroe,         Michigan.           Thermal       Discharge         Series.           Michigan State       University.           Technical           Report     32.4.       Institute           of Water Rercme.           66 p.
295-302.
: 38. Clark,       J. and W. Brovnell.                   1973.       Electric         Power       Plants       In the Coastal         Zone:       Environmental             Issues.         American         Littoral Soclcty       Special       Publication           No. 7.       a0 pe
: Nagy, C.
: 39. Coutant,         C.C. and R.J.           Kedl.       1975.       Survfval         of Larval Striped         Bass Exposed             to Fluid-Induced               and Thermal             Stresses       in a Simulated           Condenser           Tube.       Environmental           Sciences           Dtvision Publication           No. 637.           Oak Ridge         National       Laboratory,             Oak Ridge,       Tennessee.             37 p.
1968.
: 40. Edsall,       T.A.       Electric           Power Generation             and Its         Influence         cn Great       Lakes Fish.             (Presented         at Second         ICMSE Conference                 on the Great           Lakes.         Argonne         National       Laboratory,           Argonne.
State of the Art in Pattern Recognition.
Illinois.           March 25, 1975.)
Proceedings of the IEEE.
: 41. Andersen.           R.A.     1974.           Fish Study,         Lmpingement           of Fishes         and Other       Organisms         on the Prairie               Island     Plant     Intake         Traveling Screens.           Environmental             Monitoring         and Ecological               Studies Program,         1974 Annual           Report,       Volume 2 for the Prairie                       Island Nuclear       Generating             Plant     near Red Wing, !linnesota.                         Northern States       Power Company,               Minneapolis,           Minnesota.             755-82&b.
56(5):
: 42. Latviatis,           B., H.F.           Bernhard,         D.B. !fcDonald.             1976.         Impingement Studies       at   Quad-Cities             Station,       Mississippi         River.           (Presented at     the   Thfrd     National         Workshop       on Entrainment             and Impingement.
836-863.
New York. 1
Uhittaker, R.H.
: 43. FFsh Impingement                 Studies         at the E. D.           Edwards       Power         Plant, July       1974 - June           1975.         (Submitted         to   Central         Illinois         Light Company.           Peoria,       Illinois.)             Wapora,       Inc.
1967.
: 44. Meyers,         C.D. and K.E.           Bremer.         1975.       Statement           of Concerns and     Suggested         Ecological           Research,         Report       No. 1 of the Lake Michigan         Cooling         Water Studies             Panel.         EPA 905/3-751001.
Gradient Analysis Fn Vegetation.
United       States       Environmental               Protection         Agency.           November         19 7 5.
Biol.
Rev.
Cambridge Philos.
Sot.
s:
07-264.
: Pielou, E.C.
1969.
An Introduction to Yathematfcal Ecology.
Wiley-Interscience, New York.
286 p.
: HcHarg, I.L.
1969.
Design with Nature.
The Falcon
: Press, Philadelphia.
197 p.
: Brown, D.J.
and L.L.
Low.
1974.
Three-Dimensional Computer Graphics in Fisheries Science.
J.
Fish.
Res.
Board Can.
3-l(12):
1927-1935.  
!4cErlean, A.J.,
C. Kcrby and R.C.
Suartz.
1972.
Discussion of the Status of Knowledge Concerning Sampling Variation, Physiological Tolerances and Possible Change Criteria for Bay Organisms.
Chesapeake SC i.  
~(Supplement/l2):
S&2-S54.
: Nelson, D.D.
and R.A.
Cole.
1975.
The Distribution and Abundance of Larval Fishes Along the Western Shore of Lake Erie at
: Monroe, Michigan.
Thermal Discharge Series.
Michigan State University.
Technical Report 32.4.
Institute of Water Rercme.
66 p.
: Clark, J.
and W. Brovnell.
1973.
Electric Power Plants In the Coastal Zone:
Environmental Issues.
American Littoral Soclcty Special Publication No.
: 7.
a0 pe
: 39.
: 40.
: 41.
: 42.
: 43.
: 44.
: 45.
: 46.
: 47.
: Coutant, C.C.
and R.J.
Kedl.
1975.
Survfval of Larval Striped Bass Exposed to Fluid-Induced and Thermal Stresses in a Simulated Condenser Tube.
Environmental Sciences Dtvision Publication No.
637.
Oak Ridge National Laboratory, Oak
: Ridge, Tennessee.
37 p.
: Edsall, T.A.
Electric Power Generation and Its Influence cn Great Lakes Fish.
(Presented at Second ICMSE Conference on the Great Lakes.
Argonne National Laboratory, Argonne.
Illinois.
March 25, 1975.)
Andersen.
R.A.
1974.
Fish
: Study, Lmpingement of Fishes and Other Organisms on the Prairie Island Plant Intake Traveling Screens.
Environmental Monitoring and Ecological Studies
: Program, 1974 Annual
: Report, Volume 2 for the Prairie Island Nuclear Generating Plant near Red Wing,  
!linnesota.
Northern States Power
: Company, Minneapolis, Minnesota.
755-82&b.
Latviatis, B.,
H.F.
: Bernhard, D.B.  
!fcDonald.
1976.
Impingement Studies at Quad-Cities
: Station, Mississippi River.
(Presented at the Thfrd National Workshop on Entrainment and Impingement.
New York. 1 FFsh Impingement Studies at the E.
D.
Edwards Power
: Plant, July 1974  
- June 1975.
(Submitted to Central Illinois Light Company.
: Peoria, Illinois.)
: Wapora, Inc.
: Meyers, C.D.
and K.E.
Bremer.
1975.
Statement of Concerns and Suggested Ecological
: Research, Report No.
1 of the Lake Michigan Cooling Water Studies Panel.
EPA 905/3-751001.
United States Environmental Protection Agency.
November 19 7 5.
387 p.
387 p.
: 45. Lake Michigan             Cooling           Water Intake           Technfcal         Committee.             Lake
Lake Michigan Cooling Water Intake Technfcal Committee.
    !!ichigan         Intakes:           Report       on the Best Technology                     Available.
Lake  
1973.         Chicago,       Illinois.             United     States       Environmental Protection           Agency.           August       19, 1973.         148 p.
!!ichigan Intakes:
: 46. Lloyd,       M., J.H.       Zar and J.R.             Yarr.       1968.       On the         Calculation of Information               - Theoretical             Measures       of Diversity.                 Am. Yidl.
Report on the Best Technology Available.
Nat.       -79(2):       257-272.
1973.
: 47. Development           Document           for Best Technology                 Available           for the Location,           Design,       Construction             and Capacity           of Cooling             Water Intake       Structures           for Minimizing               Adverse       Environmental Impact .        United       States         Environmental           Protection             Agency.
: Chicago, Illinois.
Washington,           D.C.       EPA 440/1-76/015-a.                     Apr 11 19 76.             263 p.}}
United States Environmental Protection Agency.
August 19, 1973.
148 p.
: Lloyd, M.,
J.H.
Zar and J.R.
Yarr.
1968.
On the Calculation of Information  
- Theoretical Measures of Diversity.
Am. Yidl.
Nat.
79(2):
257-272.
Development Document for Best Technology Available for the
: Location, Design, Construction and Capacity of Cooling Water Intake Structures for Minimizing Adverse Environmental Impact United States Environmental Protection Agency.
Washington, D.C.
EPA 440/1-76/015-a.
Apr 11 19 76.
263 p.}}

Latest revision as of 19:56, 14 January 2025

Interagency 316(a) Technical Guidance Manual and Guide for Thermal Effects Sections of Nuclear Facilities Environmental Impact Statements
ML073230007
Person / Time
Site: FitzPatrick Constellation icon.png
Issue date: 05/01/1977
From:
Environmental Protection Agency
To:
Office of Nuclear Reactor Regulation
References
Download: ML073230007 (147)


Text

DRAFT INTERAGENCY 316(a) TECHNICAL GUIDANCE MANUAL AND GUIDE FOR THERMAL EFFECTS SECTIONS OF NUCLEAR FACILITIES ENVIRONMENTAL IMPACT STATEMENTS U. S. Environmental Protection Agency Office of Water Enforcement Permits Division Industrial Permits Branch Washington, D. C.

May 1, 1977

DRAFT 1

- i -

LIST OF FIGURES N o.

Figures Page Decision Train Flow Chart 1 2

1.0 2.0 3.0 Introduction TABLE OF CONTENTS Acknowledgements 2.1 Background Information 2.2 Suggested Uses of this Technical Manual Productive Demonstration 3.1 Introduction 3. 2 Decision Train 3.3 Biotic Category Determinations and Recommended Early Screening Procedures by Industry 3.4 How to Select the Most Appropriate Demonstration Type 3.5 Type II Demonstrations (Representative Important Species) 3.6 Type III Low Potential Impact Determinations 3. 7 Other Type III Demonstrations (Biological, Engineering, and Other Data) 3.9 Non-Predictive Demonstrations (Type I, Absence of Prior Appreciable harm) 4.0 Definitions and Concepts 3.8 Decision Criteria Page 1

3 3

8 11 11 11 18 33 34 63 64 65 72 73

- i i -

LIST OF TABLES 3

No.

Tables Sample Table to Summarize Data for Each Representative Important Species (RIS)

Page 41 2

Thermal Effects Parameters Applicable to Aquatic Organisms Potentially Selected as RIS Cooling Water Characteristics 5 3 42 DRAFT 1.0 Acknowledgements This manual represents the efforts of many who unselfishly con-tributed their time and expertise. Originally, specific assignments were delegated to working groups but, as time went by, individuals in these working groups were asked to provide assistance in other areas.

Therefore, to simplify the acknowledgements, the following is a list of those who at one time or another contributed to the development of this manual:

U.S. Environmental Protection Agency Allan Beck, Narragansett, Rhode Island William Brungs, Duluth, Minnesota Stephen Bugbee, Washington, D.C.

John Christian, Washington, D.C.

Jeffrey Goodman, Washington, D.C.

Delbert Hicks, Athens, Georgia J. William Jordan, Washington, D.C.

J. H. McCormick, Duluth, Minnesota Donald Miller, Narragansett, Rhode Island Donald Mount, Duluth, Minnesota Diane Olsson, Washington, D.C.

Mark Pisano, Washington, D.C.

Jan Prager, Narragansett, Rhode Island Ronald Preston, Wheeling, West Virginia Ronald Raschke, Athens, Georgia Robert Schaffer, Washington, D.C.

Eric Schneider, Narragansett, Rhode Island Lee Tabo, Jr., Athens, Georgia Bruce Tichenor, Corvallis, Oregon Howard Zar, Chicago, Illinois Nuclear Regulatory Commission Harold Berkson, Bethesda, Maryland Thomas Cain, Bethesda, Maryland Phillip Cota, Bethesda, Maryland Robert Geckler, Rockville, Maryland Bennett Harless, Rockville, Maryland Robert Jaske, Bethesda, Maryland Michael Masnik, Bethesda, Maryland Robert Samworth, Bethesda, Maryland U.S. Fish and Wildlife Service DRAFT John Boreman, Ann Arbor, Michigan Thomas Edsall, Ann Arbor, Michigan Phillip Goodyear, Ann Arbor, Michigan Roy Irwin, Ann Arbor, Michigan Glen Kinser, Washington, D.C.

Mark Maher, Ann Arbor, Michigan Oak Ridge National Laboratories Charles Coutant, Oak Ridge, Tennessee Jack Mattice, Oak Ridge, Tennessee U.S. Energy Research and Development Administration Heyward Hamilton, Washington, D.C.

W.R. Taylor, Germantown, Maryland Argonne National Laboratory Rajendra Sharma, Argonne, Illinois Great Lakes Fishery Commission Carlos Fetterolf, Jr., Ann Arbor, Michigan

2.0 INTRODUCTION

DRAFT 2.1 Background Information 2.1.1 Brief History of the Evolution of this Document Prior to the enactment of Public Law 92-500 [the Federal Water Pollution Control Act Amendments of 1972 (FWPCA)], the Atomic Energy Commission (AEC) had regulatory authority pursuant to the National Environmental Policy Act of 1969 (NEPA) to impose effluent limitations on facilities requiring an AEC license or permit.

The FWPCA now requires the Environmental Protection Agency (EPA) to establish (for use in permits for the discharge of pollutants to waters of the United States from point sources as defined in the FWPCA such as nuclear power plants, etc.) effluent limitations for all pollutants.

The FWPCA provides that nothing under NEPA shall be deemed to authorize any Federal agency to review any effluent limitation or other requirement established pursuant to the FWPCA, or to impose, as a condition of any license or permit, an effluent limitation other than any such limitation established pursuant to FWPCA.

Pursuant to the authority of the FWPCA, EPA required applicants for discharge permits to submit information required by EPA in order to establish effluent limitations in permits. Pursuant to the authority of NEPA, the Nuclear Regulatory Commission (NRC) may require applicants for licenses or permits to submit information required by NRC in order to evaluate and consider the environmental impacts of any actions it may take. Consequently, the informational needs imposed by the two agencies may be similar in the area of impacts on water quality or biota.

NEPA requires that all Federal agencies prepare detailed environ-mental statements on proposed major Federal actions which can significantly affect the quality of the human environment. A principal objective of NEPA is to require the agency to consider, in its decision-making process, the environmental impacts of each proposed major action and the available alternative actions. Both EPA and NRC have responsibilities pursuant to NEPA regarding the issuance of licenses or permits for nuclear power plants and certain other facilities.

In late 1973, the Chairman of the Council on Environmental Quality (CEQ) wrote to the Chairman of the then AEC and the Administrator of EPA Suggesting steps that might be taken "to make the analysis of the water quality impact of nuclear power plants more effective and more meaningful and, at the same time, reduce demands for data being placed upon applicants for licenses."

DRAFT In summary, CEQ suggested that AEC and EPA:

(1) explore mechanisms available to assure that applicants' environmental reports to AEC contain sufficient data to satisfy EPA requirements on water quality matters; (2) consider the possibility of preparing a single impact statement to meet AEC's requirements under NEPA and EPA's requirements under FWPCA; and (3) consider the possibility of unified hearings.

In response to CEQ's suggestions, AEC (subsequently NRC) and EPA developed the Proposed Second Memorandum of Understanding regarding their perspective responsibilities under NEPA FWPCA, which was published in the Federal Register for public comment on November 7, 1974 (39 FR 39490), and in final on December 17, 1975 (40 FR 60115).

In summary, the Memorandum:

1.

specified the statutory authority of both agencies for entering into the Memorandum.

2.

Defined those licensing and regulatory activities to which the Memorandum shall be applicable.

3.

specified that NRC and EPA will work together to identify needed environmental information for early evaluations related to impact from the identified activities on water quality and biota.

4.

Provided for EPA to exercise its best efforts to evaluate impacts on water quality and biota as far as possible in advance of the issuance of NRC's final environmental impact statement for any covered activity, and specified that EPA and NRC will maintain close working relationships during the entire environmental review process.

5.

Specified that EPA will issue to the applicant, where appro-priate, in light of substantive requirements, a complete section 402 permit as far as possible in advance of authoriza-tion by the NRC of any commencement of construction or issuance by NRC of a license or early site approval, whichever is applicable.*

  • See 10 CRF Part 2, Appendix A, Paragraph I(c).

-,j-

6.
7.

Speclfled that EPA and

?JRC till coasider the LusibiLicy of holding combtied or coacurrent heerings on EPAs proposed sectfoa

/rO2 p8mlCS end

!GkCs prOQO88d Frsuence of co~tmctlon permits or ocher activicles uhue l QQrOQriAtL Eaecinded the Huorendm of Understanding RegerdFog Implmentetloa of Certain Complemental ILaponsibilftles under chr W end dated January 13, L9, aod 22, 1973 (38 FE 2fl3).

As l

f Frse step tovarda LppLemenring the objecttves of the

!4eaorendm, P sarime of meeclngs beewean EPA rnd

!iRC took place Ln Irte November 19 76.

At these aeectngs it uu decided thee one of the aost dFfficu.Lc cssks CO be doua, end oue which should be started

first, was to standerdim aquatic biological dstr requiremeutr co satisfy FUPCa requfraents for EPA and NPA requirements for

.YRC.

Technical experts representing the ma egenclee Fn the field of equatfc biology held l

rulu of meetings Fn December 1974, formLaced arny centrtfve agree

mencs, aad eppOint8d a eerie8 of l lghc wrklag groups.

Each wrking group was co-chaired by oue repruencrtlve troa uch agency.

00 Jenuaq 28-30, 1975, the eight wrkbg groups met b! Fells

Church, Vlrglnla, to complete spoctiic urltlag assignments couctibuttig to the d~elopeac of 8 sew guideme aanuel.

Tech wrLFng group submitted draft r-rfu of chair work ou cha Lut dsy of the aeetfng end final rtmmries by urly March 1975.

The Long process of plecLng the products of the eight wtkiag groups togethu tico 001 cohesive technical arnuel ues 910-d by key personnel changes vlthia the e#eaciee end heavy schedules of ocher ladlvlduals 00 the working groups.

In rplce of the nmuou setbecks~

e Decrber U.

L97S.

dreft us carplaced end reviend by ksy wrkirrg group oabers during Jenm 1976 Frr Athens, Georgia.

At chlr amacing Fe YS indiuted that smerrl sections still oeeded rwiriou end others should be deleted rltogethu.

&us of responslblllcy ware sssigned co til4 wrk4 group oabars and this editloo of the srnud is rhe rutdt of chum efforts,

2.1.2 A shift of mhasls Ia the course of the demlopmat of this

draft, Fe becsm appuaat to aeny uorklatg group members cl38t urly scramairy procduru by induat~

or thafr consultaats could sometimes reve8L those cypu of Fnformtioo ubich would WC be aecus~

to gather la gruc det8FL at

¶r rltu*

If bitlal pilot field sumeys cad literrture surveys r8VUhd that tha Sit@ uu one Of bU pOt8ath.L l.UQeCt for phflOpkUktOU for

aamph, it vould ba unnecus8q to couducc deetied studies to give the temaomlc ideattilcetloa of every species of phytopleaktoa fn tha piciafcy~

2.1-3 FubLfc AvsUahFLitzy of 316(r) 3emousrracl.oua It ir the Fnteatloa of &PA to make ch* techalcal fnfomatloa submitted by Fadustrlu fa eccordurce with 316(r) meileble for use by ochu

~ustriu.

scieatlrts c sad -us of the pub&z.

This VFll be door fnitis.Uy by placing copies of the dmoastrstiuu and supportiag documents Lato the coUoctioo of the respoaeib~e EPA Regfo&

Off ice Ubrsry-A rFnFl8r appro8&

Ls -0 suggested for State yeociu-Ia cssu where d-d for the dmoastrstioa materials exceeds thm ca~a-bUcy of an EPA or State agency Librsm, the EPA Eeglo&

AdmhUuacor may also submit thm tmtsffill to the Y~c1oaa.l Tecbicrl Lnfonaation Semlc~

(lITIS>

80 that the reports are maihbl~

to the pubUc fn mlctoflche or bud cop7 fors l c the price of duplication-The EPA Rqluad llbrerha VOLT be sble to provide deu.lhd Qaformcloa regarding hpuc and accus co the ErrIs systae It is llro aoted thr~

the Atomic IadustrirL

Porn, Eavfroameatrl Studlu
Project, hu d-eloped IHFOB[M, a dstr systa alch vtll axtract laforprcloa from reports submited by utU.itlu Fn accotdanc~ VFth sactfoum 316(a) and (b)-

Quutluaa should br referral to the Project it 1747 PeanayLvaaia

Aveaae, Uuhingtou, D.C. 20006, telqvhoae 202-835923L The Sqeabu 30, 1974, drsft of the EPA 316(e)

Technical Cuidrace Manud rtqguu cw posslbUtlu for predlctlve demoastrscioas:

Type If dmastxstluas (vlth qmcUlc

&tr requiremats for Rsprueatstlve kporrrne Spoclu (US) sad biotic c~tles) sad Type LXX dsmoastre-clana (an altamuive plan foLlowtag wrlttaa coacurreacu frum EPA).

The YEC Ugulacory Guide 4.2*,

ou the other

bad, givea geaual pAdance sad lacllrdu maarlua of studyiag l uide spect~~~

of trophlc

level, which ml&+

be dnnrly affactod by thr pour plants operrtioue.

The net result of tU8 cabFnrtluu of 8itaafioas ls that pour cump8nfu have often

rbuksd, vtthout the bmmfltof spprupriatr sereealag or pilot s tadfes, ou larg8-ecaL8,
upm8lv8, lnappropr~te studfar vblch supply uuslve mounts of rau data but ue me aecusertiy helpful to regulrtoq ageaciu ia d&ion-me&q.
  • NtC BeguLatory Guide 0.2, Preoererfoa of tnvlroamatrl Reports for Yuclur Powt Stecloas.

July

1976, Ravisiaa I2:

102 p.

-7.

tU

regard, Fe L, intuucing co aof*

cha balance of ganual wusyrtu (bua.Une, field work) dacr vwsus the EIS (Laboratory and Lftuuurr surch)

&tr propored by thir vusioo of eha amud.

Put aperiuca ruqgutr chat ndchu bum&m fitid sumap nor EIS laboratory studlu alone van rufficiuat for pradictivr duowtr8tioor; soma 3kture of cha TV, ls daairabla.

Guual l orysta filld work b wcuury Co chuactarita cho mtvirounnc lmprcted.

co hsva a buis of compui.soo for post uparatioual

studies, and co couatu poaribh uguunacs char the maeire l co~ptu ha8 MC bun ammined.

Laboratoq studlu ou BfS u(t helpful bazarur they offrr bcreued pradictiva capabilicias, such u hou macb of tha thamal plum uu til preclude reproduction or dgruioa.

2.2 Suggested Uses of this Tecknicsl

!4antui by:

2.2.1 The U.S. &mlrouaeat~

Prot8ctloa Agency Zhfs oersloa of the guidsace msnusl, after ln-hour*

zwteu tithln EPA.

will rapJ.sce eke Septmbar 30,

L976, draft of the EPA 316 (4 Technical Guidsace

!4snusl.

The wrrrl describes eke Lnformscioa vhich shouLd be developed and evslusced ln coaoecrlon wttk msk+ng trcknlcsl detemirmtloas under section 316(s) of the Federal dater P01htl~

COUCZOL kt, a~ mended, 33 C.S.C.

L251, 326(a).

sad LO CFR Ptrz l.22,

?fost of the first rouad of !GQES (Xettonrl Pollutant Dlschuga

&limlnsclou Systar) pamltr for cheraul dlschmgu vill hsve already beeo Fseued (or at Lust study plans ulll hm+ been agreed upon by the spplicsat end the E~glonsl Adainlstrator)

, by th timm chir edltloa of the ceckxt1cs.L msnurl ls issued.

The decrrminrclous or study plans flasLited to dste hrrre been ssde oa the bulr of cue-by-cru tecknicsl drclsloas m8do by thr Reg1oas.l Admlnlrtrator.

Ihese l srlier cechaicrl decislous sad study plane which umre ffnrlfted tith the rpprmrl of the Regional Adahisfrscor or Stat8 Director ulll not be aegstrd or ockervFse adversely affeccad by the iseunct of this aetmr version of the 316(a)

CrnChniCJ anual e

The prim-use seat for chh verslou of the tecbfd amnul vi11 be for neu sourcu sad for the secoad round of 316(s) detar-ml~tloaa uklck VFll cams uken the fFrrt round of pumlcr uplre.

The aaaual b

Lateuded to be used u

genersl guldsnce snd u

a scrrtlag point for dircusslous betusea indust-sad eke Re~lousl AdahlsUstOtsr

?or lndirldurl rltustlons the Rsgloasl Administrator

=y requsst ch8t ths l pplicmt follou the stqgucloas Frr the crchnlc~l aand

cloudy, or or7 specify 8n 8lcomatlvo plsn.

The spell-t

  1. houLd be aura thsc Fn general oae or sore Ra~load EPA perait program staff hma been deewced ss 316 coor-
dinstom, It is ny~wted tit epplfcmtr coueiderlng 316(e) dmunstrsriuns coacsct these fndlvlduslr se sa early dsce co dhcuss potenthl problaa and msilsble dsts.

2.2.2 SUCU Tkoea Ststea uhlch hrre been delessted the sdmlnlrtrsrloa of thr NPDES pumft progra by EPA have cha lud role for

-king 316 (8) declsloas VFchia the Stste, Th8 EPA reuins vhac amounts co a veto cspsbFTlty through the requiremmt thst they contFnu8 to reviev a11 p8raiC8 before they are Fsrued.

Since chose State8 which hsve the permit progrm have l ruat~y the sac rupoaslbFllclu u

EPA, it foLluum chit chur St8tas may find this Cechnicll mm&l useful ia the s-8 rmnnar that the Ragioad Ad8l~t~tOrl of EPA t fkd it

us8fuL, Oa the ocher
hsnd, just ss Cha Begloud Adainlrcrscors are sot rigidly bound by cha toutants of this
docmeut, aelther urn th8 Strte Directors.

ft Fs suggestad rhst tho88 Scstu which desire co admialsfer their 316(r) program Fa a wry dlffer8nt fro8 thsc which Fs propoeed here.

first discuss chua dlffereacu vlth chr Rsgi0as.l Adaialstr8tort 10 that c-011

~reemncr csa be ruched sad sppllcsatt CM be ueured chat their 316(r) study desigas VLlL be sccepcsb~8 co both the State sad

EPA, The applicant should tie be aura chat fn general one or sore Stat8 pamit progrsn staff hsve be8a deslgasted u

316 coordinators.

It ls sugguted thsc applicants coasldetig 316(s) d~oastrrtloas

~~nts~t chue Fndivldusls at an urlp dsta co discuss pote~cid.

problas aud svsLLsble

dsts, 2.2.3 Zlh8 ?hClUr h~~C0~

CUUiUiOU The Nuclear Regulatory Camiraloa (NRC) tencatlvely phna co incorporsce this 316(s) asnusl rad th8 sepsrste 316(b) aunurL vLth future drafts of HILC EagtAstory Guide k.2.

Ttia

~oate~fs of these manuals would forP the buis for 8quatlc l colov dstr raqulraeoer.

urt hou the asn&

vtll be lacorporsced hu uot yme beaa decided, bur oue possibility dticussed wuld be co iaclrrde the 316(a) sad 316(b) amnab in cheFr antiracy u

appendices co future l dlclons of.YEC Ragulscory Guide 4.2, mar8 hu tiso baea som8 discussion of uslag puts of these 8mnd.s fa future editloM of.YRc R8@drto~

Cuida 6.7*

sad dom8UcS co be g8aersted by the 3RC coordfasced Stsce/FedersL Slciag Uorkiag

Croup, 2.2.4 The 0.S.

?irh and Wldlfte S81~lc8~

D8pUPn8nt of Lnterior zh*

?isk sad UildlFfe Samlea (IUS) is msadsted by the Plrh and UildfFIa Coordinatiou Act (48 Stat.

COL, as mended; 16 U.S.C.

663, l = req.),

the cdm#at@d Spaclu Act of

1973, sad Other us*

cirted

Acfs, co coardimts rwvi8w ulth the appropriate Pedersl reguLstoq 8g8aclu oa projects chat till Howe impact oa fi8h snd tildllfe c-itiu.

These guldeUaes vlfl provide 8 barb for coordiascioa aoag

FR3,

&PA, !flC, sad other 8geacler iavolved Fn

+ !IRC Regalsto~

Guide b.7, Csnersl Sits Sult8bllltr Criteria for luclrsr Power Scatloar.

NOVab8t 1975, I(IPl8loa

  1. 2: 32 p.

-100 the 316(e) rsvlev procsS8 by reprr88ncing 1 c-00 uaderstsnding of the decbioa criteria 8gr8ed upon which the 316(a) varl~nce ti1L be based md.

therefore.

upon vkich th8 8ppropr4ace reguL8cory agency should be advirad, 2.2.5 Other

?ederrL Agencies Uthuagh ia no usp bound by this

document, other F8der81 sgeoclu asy find it wefuL u

a source of lafomstloo.

For

Uatnp18, the Sscioasl

?farln8

?lrheries Service

(!4K?S> of the Depsrcmeot of Com8rce has rlmllsr

~0u~ern8 cad rupon8Fb~itles u

Ch8 FWS ?a the Pederrl regulatory revlsv process.

I%8 WS vu OrlgfnaUp

he Suresu of Comerciti Fl8herfes
vhlch, together vFth the Suruu of Sport Flsherles md UlldlLfe (sow FUS), coa8tlcuted the old Fish urd Uildlifa Sar~lca tn the Depucaenr of hteriOr (8s referrrd co fa Ch8 Fi8h 8ad UlldlLfe Coordiasrloa Act).

Eaorgauiutlon Plau Yo. 0, which transferred cha Buruu of Comariclsl Fi8herf88 co chs Dap8rPPeat of C-rce, also trUiSf@rr8d aLI 88sOCiUed responslbFlltlu.

Pr4inclple coucema of Sf?S are marine sad sasdroaow fi8h.

a8 -11 as inlsad c-rcid fish.

The FUS, by coacruc, hu a puallel rerpoa8FbFLicy in the fIsharIa

upact, but h88 sa sddltloarl respoarlbLllty for 8qrtlric uterfovl (both fruh ueter sad marina) la th8 316(a) revlev procur.

2.2.6 ihe Electric Pour Laduse-sad Coasultlag Orgsaiuclon8 FOr uch ladiv1due.l site.

8ppliunts for 316(g) or 316(b) daeer!&mtioas should dircusr the contents of this arnusl tith th8 had N'PDES Permit Frogra Agency (either eke EPA R8glon.81 Adalnistr8tor or the St&t8 Dir8CtOr) co derermia8 th8 8pplfCSbtiity Of the UUUAL'S ret-adstloas co thst

rite, Ihir doctnanc tiu Sama U

8 Scrtthlq pOFnC for dfr~~~d.0~8 ludiag co 8 vrlttu CoaCurrence barmen th8 8ppliC8nt end the Ugioael IdPialstrstor/Dlreccor on LadlvFdusl study pleas which d.l sacirfy Cha requiruaat8 of both PL 92-300 sad th8 8quetic ecology s~ctioaa of rImA.

3.0 PREDICTIVE DEMONSTRATIONS 3.1 Introduction DRAFT Predictive studies and associated demonstrations representing the best estimate of "what will happen" are appropriate for 316(a) demonstrations for:

1.

New sources not yet discharging; 2.

Facilities discharging into waters which, during effluent for a sufficient period of time to allow evaluation of the effects of the effluent; 3.

Facilities discharging into waters which, during the period of the applicant's prior thermal discharge, were so despoiled as to preclude evaluation of the effects of the thermal discharge on species of shell-fish, fish and wildlife; and 4.

Major changes in the facilities operational mode.

The two most detailed baseline aquatic ecology studies done for NRC under NEPA are done two years before a nuclear plant becomes opera-tional. All studies done for 316(a) demonstrations during this time frame are therefore predictive in nature. The regulations (see 40 CFR Part 122) published by EPA provided for two possible types of predictive 216(a) demonstrations: Protection of Representative Important Species (Type II) and Alternative Demonstrations, with the written concurrence of the Regional Administrator or State Director (Type III). This section provides explanations of these demonstration types, details the decision train and decision flow chart, and recommends early screening procedures helpful in choosing the most appropriate demonstration type.

3.2 Decision Train This section provides a flow chart and narrative summary of the recommended decision train.

3.2.1 Flow Chart The flow chart identified as Figure 1. is a summary of the recommended sequence of events leading to the decision. The following is an explanation of abbreviations and terms used in the flow chart:

FIGURE 1. DECISION TRAIN FLOW CHART

AQpUCMt IndustrFrl Eaprasantzive 4plpZng for EPA and ;yBC Paroitr and Licm8u DFruto*

Director of the Stata HPDLS Pormic ProgrM Pu litid Study Aru 3.2-2 D~cisiau TrliP

!hrratlva

1.

&fore duignlng aquatic ecology

scudlu, chm applicant consultr ulch chak&ouaL Mmiaistr8for/Dtr~ctor*

co vmrify the rpplicrbFLl~of this cochnlcrl manual for Sati8fJiq thd QlrrV dfWtS (316(a) ti dfhWlt guidalinrr) raquirarrocs uudar PL 920SOO.

If tha BqiouaL AdUtrator/Dlractot sprcifiu aa rltasmcivm or raodlfiad varrlm of char

manual, the applicant should utu.hr it.

If alo hgiuuAl AdminisItratorlDFr~ctor spuifiu uablg this cuhpicrl armlt u

a gtddo, chm rppucaat gou tu thr naxt Imp.

  • uonr nm lI8gbMl Administrator m&am 316(a) brewmlnacloar for

&PA timad

-tits, vhila cha State DFractor maker such d~termiaa-cioua for paides ismad by Statu with EPA approved prrrnic progrmh hCh Stata

PatitS, homvar, l a sub jut co EPA r-au.

It ia chumform sqsutd that in the cue of 316(a) dac~tio~

uda by a Stata

Director, l ithu the Dlractor or tha 8ppl.icMt lump.

tha~#iulul Addnistr8tor lnfomed at criticsl sap8 in thm procur to mold t!m poo~ibilicy of ultfaua dlupprovti by EPA of a Strtr

~8rrit or

&co~tion vhicb could ham bmn avoidad by battar c~~~~~icatiou throughout tha procua.

-14.

3.

The l pplicmt contects the 8pproprlet8 Ra#lond Xr8ctor of tie U.S.

Fish and UFLdUfe

Semfca, r8presencacives of ch N8tid ki8d.M FiSheri8S S8mC8+

8od Of the

Stst8S, CO decumlm if them ara any thrutrord or and8agered specirs th8C may be rff8Ct8d by the proposed f8dlitys dischuge.

4, m8 8QpuCMt g@th@m UiSu litU8ttu8 rpd fidd d8t8 fra prtiou8 studlu by elm

company, r8sourea ag8xxci88, 8c8daic lnStitutionr, ad ocher researchers.
5.

The epp~cant d8e8miaeS vhether or not aroush f.dor~tion is ev8flable co sumerFt8 Fa writing:

8.

For each biotic

utrgory,
  • ether or MC the site Ia 008 of Lou Qot8lltti Fmpect.
b.

Aplrn for w

8dditioarL studiu or wrk aecue~

co comp18ce the d~ustretioa.

Lf wr8 information is U8C8sS8r7, the laformaciou should be g8ther8d through relrtivaly brimf

'*pilot" fiald

-*ys 6,

Appllcmt submits thr smriu to the Eqionel Adddscza-tOr/DFt8CtOt-

7.

K the beunel himialstrator/bir8ctor d8t8rmi388 that the slte la one of Lou

~~centid lnpect for all biotic Clt8$0ti88, the applicant may chooaa the aau rhorc fom dmustratfou

type, the tow ht8Utid hpect Tm@

fI1 dmuStr8ciou drtrF1ad ln sSctioa 3.6; it wt.

the 8pplicMt ChOO8U bemea Type If end rppe III dmustre-CiOU8.

8.

Tboee appUcant8 eligible for the lw potential impact d-tr8tim gecher uay edditfuaal lafomtioo nac~ss8~,

caplece ralativ~l~

brlaf biotic category

~ecloaalu~

end s-8 chr lato oue master:

rcos7stm r8tiode.

If the proposed dfschu~e til ame Scrta uecer q&icy scaadarda, tha additlond fiald scudiu nacuaary will WC ba =taualra.

The priaq lnfomatiuu ch8t aada co be ~euereted is simply that uhich is enough co satisfy the biotic

Utagory, resource
toue, 8od ustar r8tioU8l8 CXit8rir b

SSCtiOU 3.8.

h8 7aU.S qtbdit8tiVa

'*QtiOt" fiald studiu should be roough co ganarara mouth iafomeciou co compleci the bioclc

csc8goq, ruource 2008. end ustar retioorle.

The appuc8at c8n than CO@@t@

QhySiCd StUdiU CORperrbl8 t0 those ti Sectiou 3.5.3 end proceed dit8ctiy to St8p 19 brlou.

-1%

10.

Ap~lica.ncs vhose sfrss do not qwltip for th8 above considerations VFLl ordbarily select the Type 11 d~oostracioa or s Type III dmoastr8cioa of SfmFlrr corpr8hensiv8ness.

@pliCMtS S818Ctblf a

fm8 IfI d~oastratioa should cerrfully t8ad sectloo 3.7 fn Ord8r co grin a geaerel uadetstsnding of the decal1 n8c8ssrry for scudirs co be consider8d scc8pcsble~

11.

Those applicencs selscci~g s Type IL daoastracioa first meet tich the Regfouel MaFniStr8tOr/Dir8Ct0r co dticuss selectioa of RIS and drfiae the far fi8Ld Study aru.

If the regulatory agency has r8ach8d any t8ntatFve decisfons rrgerding a~ tilovable miring zoa8 ($88 sectloo 3.8.31, these decisions should be discussed cad uaderStood by both pertks.

These decfsious asp be t8vi8u\\d follotig CoUQ318CiOU Of th8 demoostracioa.

Lf the reguletory agency sad the applicant teach an urly l greaeac about the sel8ctioa of RIS and the duigaacioa of the far fisld study

aru, the op~lFcmc may move ou co the next 9~8~. If doer the reguLrtorp ag8ncy say request thee the applfc8at assirt ln the rel8ction of RIS by dolag studies sad givhg vricr8a fust~icecioa for the praposed far firld study l ru.

L2, T?.m R8glrmel AdmixAstratot/DFrector checks tith the Eegioual Director of the FUS and r8presentstivu of ~58 X¶?S and Stat88 co mah sum the study plan inchd8s apptOpat8 coustderatiw Of thrUt8ned or 8ndMg8r8d speciu as umll as ocher fish sad tidltie t8sourc88.

u.

am Regio~el

~nirtrUOr/b~r8CtOr provldu the spp1fc8nt tich urFtten r8cogaitioo of the specific plan for completing the daonstratioa, Lncludlng dell.nucioas of the PIS far field study aru

, and chrutened or 8ndurg8r8d specie8.

L4, Appltcaac coeplecu field and lftsracurr wrk mquirrd to finish biotic category ratioaalu sad wricss the reciondu In eccordaaco vith sectlofi 3.5.1.

U.

Irpp~lcant ca$letu

~iter8turr sad L8bOr8tOq Studi@S nec8888~

co geaer8te lnformetiou for the RIS ratfous18, aad develops the retioaele ss suggut8d Fo sectioa 3.5.2.

-160

16.

Applicent d8V8lOQS 8nglneering and hydrological data outltied In sectioa 3.5.3.

17, 4plicsnc comblnu the Fnfocmecion oa l ngiaeering and hydrologicel deer vfth the RIS and biotic uc8goq ratimalu Fnco on8 Xesc8r Ecosystr Rat10ne18, as ducribed la sectioa 3.5.4.

18.

lgpllunt arreag88 the ratioarl88 and oeh8r Fnforautiou la the fonmt suggestsd tn section 3 -5.5.

L9.

4pllcsnt submits deaoastrstioa co the Zegioarl Admi~str8tOr/Dlr8CtOt.

20.

Ih8 R8giOUd AdminiStr8tOr/Dir8CtO~:

Eevt8w8

he d~onatratioa co see ttt8c key mrid8nc8 is properly S-rtted In the ratfon~e*
sectioua, t&at

&Ll of the rrqufrrd data hu been submitt8d, and tht the forme ln gueral follow that given La section 3.J.S or an a~t8rnetlve for!aac QrwlouSlp l pprm8d of by the Regionel AchhiStr8tOr/Dlt8CtOr.

a.

Lf the r8port l% uuecc8ptab~e due co LPproper format or airsions, the Reglow Mminfstrator/

Dlr8ccor will retam the daonstratlon co the applimnt tith an 8xpluutlou of vhy It vu dared mUC8ptabh,

b.

rt the r8pOrt i8 la an bCC8Qubh formet and is

complete, the Ugioael MafnniJtracor/Director VLU proe8ed co the amt scsp.
21.

'Ih8 gegiouel

~iJtr8t0r/Dlr8CtOr seudl8s the deer prhated in the submitcti to see ti lt justifl8s the conclueiow ruched Fn the biotic cecegor7 ratioties.

Xf so, mad If there 18 03 coaflfctfag wfd8eC8 from otbec

sources, the Regiouel Adminhtrator/Dfr8ccor will proceed to eke next st8p.
22.

The U#ioael Addnistreeor/Dir8ctor StudiU uch of the biotic cet8gory r8cioaelu co see lf they support the 316(r) cut of protectiou aad propegetioa of the be&aced ladigeaous

~opulaciou.

Lf my of the f iv8 retiOuehs f8il co meet the cuts (as detailed f.a the decirioa criteria sectioas),

the daonstretlon 18 aoc successful.

If a.LL five meet the casts and charm ls sot strong coatrsq 8VidtlrC8 from ocher

sources, the E.eglonel Uministrator/Dlrector till Qroc8ed co the u8xt rt8p.
23.

The ~gioarl MministratOr/Dir8ctor scud188 th8 RU lnforU8tiOn CO see tf It supports th8 conclustoas ha the bpr888nCbCiV8 bpOrtanC Sp8~18~ &1tiO~U18.

It it dou.

the racionde Fs ScUdi8d Fn r8latiOMhiQ co the decision critsria givea In sectioo 3.8.2.

K the decision crtteria are

met, the 2eglomal Admfabtrator/DFt8ccor till proceed co the uac St8p.
26.

The Regionel AdUbidtr8tOr/bLt8CtOr stud188 u

a cosposiee the biotic ucrgorp ratlOue~8s~

c!18 Repr8sencacive

~bpottrac Sp8cler R~tlooa.L8, the r8suurc8 zones

fmpecc8d, and the 8ngFneetig and hydrological dece co see ti they prwlde jurtifica-tioa for the conclusloas rrech8d Fp the aastsr ratioa8le.

ff thry do and th8re 1s aot strong coatrarf 8videnc8 from ocher sourC8s, the RegionA Adzsbdstrator/Dlr8ctor vill proceed co the nut St8pt 2s.

The Eeg1om.L

~istr8tOr/Dfr8CtOr studi8s c!!e mest8r tStiOUAl8 Fn t8latiOUShiQ CO au oth8r avelLable

data, coasiders the marall decirlou crtcsrir Fn section 3.8.3, and dec8rmiaes ti the 316(a) daonstratiou bee been succsssfdly

-de.

FoUmdng discwsions vfch crchnicr1 upercs 00 his staff as WU as chose from the Fish and Uildlu8 Service and ocher agenci88 t8qUfIId By lau co be COUstIlc8d.

the Regionel AdmiaistrsCor/

DFr8CtOr maha c&r ffnd decision.

Lf the Regiooll Mainlstrator/D1reccor coaclud8s that the s-q retioueLe is coorincing.

tc ls supported sufficiently by the ocher sections of the d~unstrecion, and h

wt couvincingly nef8ted by outside

rrldence, the sppllcurtr 316(a) d~oustretiou 1s successful, The applicant hu dunscrefsd ch8c c!xe proposed cheraul dirchrrge to aevigable vacsrs viJ..l be accepc8ble under PL 92-500 (for seccioa 316(a) and 8fflueat guideliaes).

3.3 Biotic Category Deterain8tions end Recmeoded

!Zarlf Scrunlag Procedures by Industry It

r recorundad that appLic8nts conduct pFlor field surveys md licetecure surchee bef ora embarking upaa uasiv~.

comprehensive, bueline.

field ssmpl-.

Thur fuitid studiu will oftrn be sufficient to determine whether or aof the site fs one of Lou potential hpact for indivfdurl biotic utagoriae aud co deternine vhrc additional studies will be raqufred to develop bloeic crtsgory tatiouales responsive co th decision critarfr Listed fu this sectiou.

Tha spplic8nc should first rud thfs section.

then uecuce the initial pilot field sumeys and Lituuure surches Fn such a zmuuer ch8t they identify chose biotic c8cegories for which cha site sry be considered a Lov potmtid.

dnp8ct

are8, It should be noted here th8t rectfou 3.5.6.1 provides 8

discussion of why the d8tr requiranents proposed In this sectioo are useful to rrgulatory agmciu fn the 516(a) decision-mking procus.

Ideutific8tiou of tll~a i,u the vartous bloti c8tegories should be to the species Level for the RIS org8nfsw and ao less th8n fmlly Lavd for all other chrt ue Iheed.

3.3.1 Phftoprauktou 3.3.1.1 Decisioa Critrria.

The phytoplsaktou sectiou of the 316(a) daonstrstlou vill be judged succusful if the l pplfcsnt c8a show that the site Fs a Lou pocurtirl kp8ct l ru for phytopl8uktou.

For other

slfes, the phytoplauktoa rectiou of the 316(e) dmoUStr8tfOn til be judged successful tiy ti the sppllcsnt cull droascrace th8t:
1.

A ahfit tmmrda auirurce rpecler of phytoplauktou is we UkaLy to occur;

2.

Iharm is little likelihood the tha dtich8rge

till, altar the Indigenous coratnity from a deerite co 8 phytopl8nktoo hued s78tm; and
3.

Appreci8ble h8m co the brluxed indFgaaous popula-thou is not ltily to occur as s result of phyto-phakton cmmanit~

chmtes C8U88d by the he8Ced disclm~e 3.3.I.2 Lou Potencill fmmct Arus for Phrtool8nktoo (Open Ocean and Yost Riverine Ecosystems)

Are8s of Lou pocmtiti tnp8cc for phytoplanktou ara defFned as open oceen srus or sfscems Fn which phytoplankton is LIOC the food chain bese.

Ecoeystas fn vhich the food mb 1s hued ou detrltal

ucrrlsl, e.g.,

rmb8yments bordered by mangrove

rusaps, salt
msrshes, fresh wear
stmmps, and most rivers and strums, are In this cacrgory.

The ares will not be conafdered one of low potrnctal

!mpacc Lf pte1Fninrry literature review and/or abbreviated ptlot field studies rwul Ch8t:

L.

The phytoplsnkcoa contribute a subscantlrl amuac of the pria8q phocosynehecic actlvicy supporting the co6uaity;

2.

A shift cowards nuls8nce species my be l ucouraged; or

3.

Opetscion of the discharge mey alter the community Eroat a decticsl co a phytopLankron hoed

ryscem, 3.3.1.3 Scudv Reouiremencs for Aress Yet Clrssiffed a8 Lov Poceaci8~

Iap8cc (SOID@ La~~scrfne,

&stusrine, and Possible Ocher Uater Body Types).

The applicmt La not requutsd speclffc8lly co conduce dec8iled cuonomic studies of the phytoplaakton, but tnfoczmclon pro-vided ln the deonstrscton should be adeqlucs co Ch8rSCt@rit@

the presence and sbundsnct of polluclou tolerant and nulsrnce forms as Ural as co provide buellne lnforascloa l bour the phytoplaaktoa e-alcy as 8 whole, The psrticular pouar plane site and rquacic sysc~

plur hirtoric8l lnformstlon till dictate the extent of caxonomic work required.

In soma rftu8tfons only a frv species or major csxonomic group8 (e.g.,

species coaprislng

>5f of cocsl) till hsve co be 1dencFfled and counted.

uhereu tn ocher sFcwcloas the fd@nCifiC8riOKI aad Cou#¶CLng Of Sm@rS~ Sp@Ci@S or mjOr groups my be required.

The exp~rlment81 design should be spproprlace EO detemine the general cherscteristics of the phytoplsnkcon coemmnlty vichin the l nclra prlmr) study sre8.

krpbq oucslde the pti8q rcudy ares should be done et Loutlow most l pproprl8te to generate d8ca ryplcrl of the far field rcudy l ru.

Ssmple repllc8clon should be sdequsce co decomine precision of c&e dies collected and co COoducC 8ppmtite St8tiSCiCd C@SCS.

Smplee should be ukea tirh sppropriace gut as described ln the EPA Eiolo~ical achods M8nu8l.*

PL8okcon necr are of Limlced veluo alma meoy orgseias pus through chum.

In cert8ln c8ees uherr

+

BiologicA Field and hborscocy Methods (EPAd70/6-73401).

-2o-utensive sapling 1s deemed necessary, lt uy ba possible co use an lndlrect chmlcnl mchod to assess sessoasl or spacAl, phytw plaaktoa fluctutlm8.

ID most CMU the study should decermiae the stsnding crop of phytoplsakmnx at periods rauglag from seesoati to bll~ouchly depending 00 the avrF1able faformstlou~

At a oiaima, the d8t8 collected ahodd include:

1.

The stsndlng crops of organisms get volunte of fat&r;

2.

~d@nti.fiC8tfO~

of nmeric8lly damlrmnt

axa CF.*.,

5X or more by number) and nuisance organism

and
3.

Delioution of the l uphoclc

zone, preferably VLCh 8 submersible phocmecer.

3.3.2 tooplankton and.Yeroplutktoa 3.3.2.1 Decisiou Criteris~

The tooplanktoa and meropl8alrton sectioa of the 3lS(a) dmOUStr8Clort till be judged successful lf the applicant tin shov char the rite 1s e lov potential imp8ct are8 for them org8niws.

or that:

L.

Chmgu i.~ the zooplankton and ~eroplaakton cmtf Lo the prims-study l ru ch8c 1~87 bt c8ueed by the hue&d dlschsrge will aoc ruult Ln appreciable h8rm to the b8lurced

~euous ffsh aad shellfish popuLatioa.

2.

The hutad dfsch8rge fs ooc lfkelf co alter the stand*

crop, rolacle abuad8nce, wfth respect to orturrl populatiou f~uctu8tion.s ln the far fitid study sru fra thou vrluer cypicsl of the recalviag water body sagmeat prior co plant opar8tloo.
3.

The thuad plum dou not constitute a lethal barrier to the frra movumt (drif cl of zoo-phnktm and meroplsnktou.

3.3.2.2 Lov Potentisl fmmct Areu for ZooplaUkton and ?¶eroolenk:on.

Are88 of Ior pOC8nd.d imp8Ct for tooQhnktoa and aeroplnnkcoa are deflned as chose characterized by lov concentrations of commercially important species

, rare and l ad8ngerad specles~

and/or chore Lome that are

important components of the food veb or where the checml discharge till affect e rebtively smll proportion of the recelviag veter body.

!+~rr ucuarlm l rue will not !m coaridermd arua of Lou pocencirL impact for tooplaakton and eeroplaakton.

Houwer, where a logarlchllic gradient of rooplankcoa and wroplanktou ebundmxe axiscs.

choee l reu et the lowest lrrrel of rbuadence mep be recog-aiud as lw pocanclrl Fmpect ereab at the dticrecion of the Regfod Admin~crrcor.

If prmliminarp 316(r) studies indicate thee the area is oae of Lou poceacid

impact, no further 316(a) studies are aecersa?.

In this case cha epplfcant need prwLde only e arrrac:ve dilcussioa fuscifflng chr coaclusioa chat the eree FS one of Low gocencirl inpecc.

3.3.2.3 Scud?

Requirements for Ocher Areas.

For chose facilicler 3oc sited Fn Lou poteoth.l impact

atus, the applicant should describe the qurllcecfve and qtYacicacive charrccaiacicr of the zooplankton end merophnkcon popuLrcions.

The

&cr should include:

1.

Standfag crop l rciaucu;

2.

Dative abunducu of the cma present;.

3.

Susoti vati~ciow fn the abundance and discribuctons of cha VUWUS taxa encountered; and

0.

Zbr dieL cad cldrl chsn~es Fn cho depth discrlbucioo.

The experlmenteL dealgn should be epproprhce co determine chr general chr~ccerircics of zooplankton and aeroplrnkcon vfthin cho l tira prima-study au.

Sampling in the far field study area should bm doom in 1ocrciou.s most approprtice co generate daer typical of chr ruaindar of the fer L leld study aru.

The U

Sourcebook*

provides info~tioa rrlrcrd co cha choice of sapling aechods.

Smple rapllcation should be adequte to decemine precirfoo of the hu colhcted l ud to cooduct approptice scrtircical teat*.

If the epplicmc belimes ou cho buls of the dece collected that tha zmplanktoa and maruplankcm cricerla can be aec, the coacepcurl framework upon uhfch the conclusioo 1s besed cad corresponding date uulprti muat ba iacludd la tha tooplrnlrcon rod aeroplmkcou racioade of the 316(e) daooscrrciou.

For e further discurrion of infomclon requirrencr for

~ropl8nkcw.

se8 secciou 3.3.4.3.

+

Acoaic fnduscrti

FON, Sourcebook:

IEmFroumencal kqmcc Yoairori3g of Xuchar Poumr Phncr

, August L974.

3.3.3 88bicst Fomorr 3.3.3.1 Decision Criteria.

The hsbitat forzerr section of a 315(a) demoarcracloa till be judged ruccersfuL If the l pplfcanc cm show chsc the rice is a lou pocenc181 imp8cc area for habicac fomerr.

For ocher

sites, the seccioa tilL be judged successful if the applicant can dronrcrece chat:
1.

The huced discharge will not result in any decerlonciowt of the h8bicat foraers cmunity or ch8t no apprectable h8rm CO the b8l8nced ladlgeaous popul8cloa till result from such deceriorrclons.

2.

The heated dbcharga till ROC hsve an adverse fmp8cc on chrucened or l odaagered specie8 as a result of impace upon hrbftrt foreerr.

Any prob8ble charm81 l l~fnscioo of h8bicac formats from the l scusrfm or aarine l avironaencs of chair contiguous ueclmds conscltuces a buts for

deni81, Sfmllarlp, a basis for denial exists U

iapotc8nc

fish, shellfish, oc ulldlffe are charmUp excluded from the use of the hsblcac, 3.3.34 Lou Potential fap8cc Arear.

Ib soQe - sf cu~cions, the l qu8cic l nviroaaeac et the pro-posed site ulll be devoid of h8blc8c fonners.

This condicioa m8y be caused by Lou luels of aucrlencs.

tnadequece light penecraclon, sedlaeaucfoa.

scouring scream velocfcies, rubscr8te char*ccer.

or coxlc luterl8ls.

Under such cond~cioas the sic8 eey be considered 8 lou poceaci81 fmp8cc 8ru, Houver

, Lf theta 1s some poutb~licp the linicing feccors (erpectilly au+c8used Liait~g faceore) aey be relimed md hsbit8t former8 asy be l sc8bllshed within the area, the appliunc will be required CO daonscrace ch8c the huced dischsrge rauld not restrict re-*st8blishenc.

Those l ices where there is 8 possfbtlicy chsc the powr plant vi11 imp8cc a cbruceaad or l admgered species through 8dverre lmpeccr ou habitat Lomars will not ba coasidered Low pocencfrl lmpecr l reu.

J.3.3.3 S~d;o::~;;:y~c~or Other Area8

!ioc Classif ied as L

mQ For 8rua chat do not qualify u

lov pocentirl LPp8cc

arus, chs l pplicset should provide the follovfag inforaurlon:

I..

Ragloud site locrcioa eep and 8 waled aerial map shoving the distribution of h8bic8c fomrr ln the regioa near the propoeed rice.

The

aetirl mp should include the pdmarp and far field study arus.

Ihen mr8ilab~8, aerial mepe shovtng hiSCOriC8l ChAag88 tn the discrlbuclou of h8bicac fonmrs should be provided.

2.

List of domiarot species of hsblcrt formlng macro-p&f**,

macrodg8e.

shelUish, corLL8, and sponger.
3.

Standing crop utdm8ce8 of the domlnrnc rpecies In cams of dry night of org8aic metcar per unit area.

Them l scim8cea should be arde at a minfnum frequency of qturcerly for one ye&r.

4.

~deotific8cloa of those species of fish which are dominsnr species or chre8cened or l a&ngered species aad 8r8 depeadenr upoa the uircence of the h8blt8t formers for protection or foe use as feeding areas.

For such species (which are not considered l lrevhere ti the 316(a) d~~cr&CiOU),

the applicurc should provide queacitrcive abuadmce l scticer.

The aperlmeaerl dulga should be rppropriace co decualne ths gea8rs.l ChArACC8~stiCS of the h8blC8c format c -icy vichla the l nclre prtmsq study aru.

Supllag outside the pm-study aru should be done Fo 10C8tiOW moat ApptOprlrC8 co gener8ce d8CA cypicsl of the rwiader of the far field rcudy are&.

Ssmple replic8tioa should be 8deqtuce co deermine the preclsioa of the

&CA gener8ced 8ad co couducc spproprbce sc8cistlc8l cuts.

3.3.k SheU.fi.shlXscroiavertebrsces 3.3.1.1 Decirlou Cricerla.

me shellfish/ucroFnrertebr8cu section of I

316(a) d-on-scr8tba roll be fudged successful Ff the l ppllc8ac c8a d~oascr8ce tit no 8ppreci8ble hsm co the belanced Frrdigenous populaclon will occur 81 8 result of mscrolavertebr8c8 c -icy ch8oger caused by the huted discharge.

For areaa chssFfled ss oaea of lou poceacirl kp8ct for rh~lsh/mecrofmrertebr8ces~

relscfvely little nev field wrk uy be raqulred.

Decision crlceri8 related co iadividual p8ra-maters sre discussed u

foUuua:

1.

S tandins Crow.

Raduccioas Fcl cha scaadlag crop of shellfish sad

~croFmercebrecer asy be c&use for denl8l of a 316(a) ulver ualeas the 8pplicmc c8a shw chsc such reduccioas caused ao ApprUiAbh h8m co b&lanced Fndigeaous popul8cion8 within the water body sagmat.

-24.

2.

Coaununlcv Structure.

Reductions in the compoaencs of divrrrlcp may be cause for the dsnfsl of a 316(r) vlrivet unlers the applicant can shov thrc the crirfcrl functious (defined lxx sectioa 3.8.3.)

of the aacraln-oertabrata fauaa are baing atitained ln the vater body segmsat as they axistad prior co the Fntroduccioa of hut.

Canerrlly, vlch the prumt sfsce of kaovledge Lt 9 inpossible co stata what affect 8 cettsla percentage of changa Fo the compoaurcs of diverslty till hsve on fuactioud tntegrlCy of cha system.

SQ@CifiCdly Cha iaai.nrenaoce of a bslsnced indigenoru pOQd&CiOU.

Prom a geuaric rtmdpolnt, a aejor difficulty rehems co the fact char tha species rtcha~ss of cha macro-Fnrrercebtrce fauna vsr,es considerably ln differrae systw and char the rffrccr of a given Level or percrouge of change tight be a functfoa of cha Level of diverslty excaac prior co the IxroductFoo of hut stress.

From a dsclsion standpoint,

rctuA, or gredictrd reductiooe Fn diversity could seme prlmartly as an indication chat the syscsm is or till be stressed.

Beuuse of the dUficulcy ia predicting chsnges

  • Rich any dqrre of accuracy, chir perameter could seme as I

declsioa tool oalp Fn cases wheta the actual changes ruulting from plsnc operscion can ba ratnnerr:ed and rwoaably applied co the proposed site.

3.
Drift, The dfrcherge of coolLag v8tmr equal
o 302 or more of the 74~.

LO-yur Lov flov of a river 01:

strum tmuld be cause for coucsra md posslblr r8jectiou of a 316(e) trrlvar unlasr the spplicmc csa shw char:

1)

Imermbratrs do uoc se-e as s major forage for cha flsherlu

2)

?ood ti uoc s faccor linlcia#

fish productlou Fn the -far body segmonc, or

3)

Drlftirrg Lmertebrsce fsuas 1s sot hsraed by pusa#a thtot@

the therms1 plume.

4.

Critical

?unctlons (Escuarlrs~.

&eu which seme as epevrrlng sad nursery rices for important shellfish and/or mecrobxvertebrete fauna ere coasidered ss zero aUo#ble inpsct arw urd till be ucluded from

conslderatloa for the discharge of waste best.

P Lanes riced fn locatioas which muLd Impact chase critical funcclons vfll not be rliatble for a 316(a) usiver.

!4ost l stuarlne rites VFll fall into chls category.

3.3.4.2 Lov Poteatlal Irmect Ares8 for Shellf lsh/?Iscro~ertebraces A Low potential inpecr aru for she.UfLsh/~crolmertebra~e fauna 1s deflaed as au aru

which, vtchFn the primary and far field study
8ru8,
1.
2.
3.
4.

3.3.4.3 Study Requirements for Other Areas.

can meet the following rsqulrrmenis:

ShelUlsh/~crolmertebra~e spectes of ulrckq or

potentL4, comwrctil value do aoc occur at the site.

This requfronent can br net Ff the rpplicaot can show that the occurrence of such specfes is rn8rgfne.L.

ShrlLflsh/macrokwertebr8tes do not same as fmportaat compouenes of the aquaclc community ac the rice.

Thruteaed or endangered species of rhelZfih/mrcro-Frnrertebraces do not occur at the site, The standing crop of shellflsh/necroluvertebraces at the time of orxkum abundance Fs Less than oue gram u&-free dv might per square meter.

The site does not same as a speunF3g OF nurse-area for the speclu in 1, 2, or 3 abme.

L.

Ssmlfnr Deslan.

The erperimenral dulgn should be eppropri~te to determine the general ch8x8cterlstlcs of the shellfish/mscro~ertebr8ce c omunlty vtchln the entire prlwv study area.

Ssmpllng outside

he plum study aru should be done fn locations most appruprhte to generace data typlcll of the remainder of the far field study mu.

Ssmple repllutlon and coUectlou frequency should be adequece to decsraine tha preclsiou of the data geuereced urd co coaduct 8pproprl8ee sc8tlstfal cues.

AC 8 mlnimm, smples should be tan quarterly for

-Y-r*

Ebmver, the actual periods selectsd should ba keyed co knouu informcloo ou the susoud occurrence of hportanc for868 speclesr rue and l dur~ered species

, and species of comercial importurce Sampling for these rpeclrs must occur

-260 when vulnerrbls life stages are ln the srea.

If, becawe of the tr&nsFcory nature of such speclss and chair verlous LFfe stages, Ft 1s not possfble co include them in a quartsrly progrsm or, Ff there is s complu of species whose tfming IJI the aru 1s uakaovm, then the frrquency of smpllng til bme to be incrused.

For the beothlc component of the sheUfirh/m8croFnvertebr8ces

, community sempllng stations should be selected for uch major substrate type within the prlaarp study area.

Slmllu sucloas should be selected ti the far field study aru so that the relative Fmportance of the tvo ragloos may be compared.

Uhere appropriate, chase st~tious should

&so be used for srmpltig the aoclle portion of the shellflsh/mscroinvertebrace c-fty.

2.

Samolfnn Ysehods.

The applicant should use trrvls,

-eQPbfI, or aectlng tec.hnlques vhlch are standard for the types and Lffe st8ges of shel.UishlPrcro-invertebrates found Fo the study area.

3.

Knfomstloo 8esulremeats.

The appllcane should qua.Llcrtlvely l nwerace as choroughlp as ?osslble the species of shd~ffsh/mecrolmertebraces Fn-habiting tie tipsct aru end ad jaunt l nvFrorrPents.

For cmrclal specles~

LPportaat for8ge

species, end chreeteued or endangered rpecles fnformatloo should be prwfded oa cbelr status i.n th arma (parrmane or crwteut)

, seuonal tlmFng of presence (lf 8ppllc8ble)

, end the Itie serges present FncludFng aaroplaakron.

TJI addition, the eppllcant should ducrlbe the *ortame of the aru for the critical functlous of reproduction and urly developmenr.

In cases tiara the dlr-charge vIK potentially impact a highly productive shelU~h/mecroluver~ebrese

fauaa, the applicant should prwlde quaatitatlve estimates of the shellfish/mecro~ertebr8ce stsndlng crop.

Such situ include l stuules

  • shd.lov noufluctuating resemolrs, saimoold rtvert.

snd open coastal situ Uch hme chrecteristics eimil~r co l *tu8rine rite8.

Eomver, the applicant should recognize chrt the 1sveL of effort is hued ou the uu lmpected and that ramplInt of the benthic ccmpoaurt of the sheUf~h/mecrolmertebr8ce

fauna um.Ld be mlnfmal in the cam of a rice havLng sufficient depth th8t the plume does not reach the bottom.

tiny d88p fluccruclng cesemolrs, as typtiFsd by some ti the F?A systm, hrve depeupersce benchic f8uM and VFLl require 8 almum smount of description bformaeloa to document those charrcteristlcr.

'Ln the cue of shallow aon-fluctustiag reservoirs cgtilsd by L&u

?krlon cad Xoulcrle Fn South Csr~lti, which hrre sa rbuadeat s.ad diverse benchlc

fauna, the rppll-ant should cooduct det&lled studies.

Other psrsaecert vhlch should be evaluated Ln :he study ticlude:

A.

S t8ndfng crop.

The standing crop of the vartous species should be l stticed Fn term of mnberr ad biomass per square wear for both the prima-sad f&r field study arus.

%a biomass l stlm8te should be expressed u

grass ash-free dry wighe per sqtmre meter.

B, Comunlt~

rt,ucture.

The camnunlty structure should be evtitmcsd in cartes of:

1) the amber of species per sample.

21 the amber of tidlviduels for each species Fn l sch rsmple,

3) the total amber of species In the study

&ram,

and, vheu sppropriste,
4) the age structure of the species in uch

-18.

Alxhoqh it MJ be impossible to collect aU species in the study

stem, the rppllcmc should make a conscious effort co l gmant the qusat~trcive sample dat8 tith q~ltrtlve smliag sdequsce to obcrin s rusouably copplace list of taxa.
c.

Drift.

If 8 tiverine site Is being

-tied, the qpllcant must l stlm.ece the q-city sad cotsposl-Cl00 of the she~~h/mscrolavertebr8te blotr vhfch drift put md till be l ncr8ined lnco the therm1 plme.

T!m sppllc8at shotid l seimsce the umber sad biomass of drift organlas per linear atar of river cross section.

Staple repLlc8tioa sad collecriou frrqumcy should be sdeqruce to detsrmlne the precisloa of the data generated sad to conduct spproprirte st8tlstlca.l tests.

In sddlcloa, the spplfceac should l nwerate those species which represeat five

?erceat or aore of cha cotd amber or biomass of organisms comprirbg the drift.

Where rppropriace, chm applicaoc my conduct Fn ricu drift scudlm at an existing facFTltp to datermlna whather chm cn Lndigenous tuacrobxvertebrrces can sumive pumge chrougtx the plmm.

These dau my br useful For projecting the offrcts of the plum l c thm proposed

rim, 4,

D8U Pr8smnt~tiou.

The applicant should prwida 1

sclld subsute map which Focludas tha pv and far ffald study

UUS, At Lust one aap should be pruvided vhich shows cha l ~cicipated outer LLmics of thm thamul plme co the 2 C Lrothmr%,

In

addition, the appLicmc shotid propida maps shovlag thm Frothems u

chay uIl.l uisc l loag the Soctcm for the coaditFons of mulmnm and ainhnn mblrat meet tanperrcurrs, In cha cue of l scamries, the 8pplicmt should provide maps show-kg the tmlatitmship of the predicmd plum to spaulling

8rUa, nurse-
areaa, and aigrrciou routes for tie various LKe rugas of cmrcid
species, thrumned or endangered
species, forage
species, and spaciu chat are othetire fmportant co tha functioning of tha syscmm, Th 8ppUcaac should thoroughly stzmmarlra the data

~iag s-q tables and graphics rod trporr the raw data in a separate bound appendix.

The applicurc should thm prwide a aamtive wrluaciou and lncerpreucioa of cha data uhich apl&ns why, in cha judgment of chr l pplicatt, the imp8cts are mfficieotlp lncoasequeotial thrc the protectloo and prop~g~tioa of a balanced indigoaoue populatiou of shel.Uish,

fish, and ti:dlife Fer and oa thr body of uatar till be assured."

3.3.5 Fish The fish section of a 316(&I dmoustraciw vfll be fudged mccu8ful U tha applicant GUI daomtrmm chat the sic*

qtrrlifim as a lou poeeacid bpact l ru tot fish.

For achar situ, the f bh sactiuo of a 316(a) dmonacratioa till be judged ruccasrful tf tha applfcmt caa prwe that fish cities til aof ruffmr apprmCfAbl8 harm from:

-290

1.

Direct or indFrect morrrlitp from cold rhocb;

2.

Direct or indirect aortalitp frum ucesa hut; 3e Reduced reproductive succese or growth es a ruulc of plurt discharges;

b.

&c.lueion from unrccepcebl7 hrga uue; or S.

Blockge of mlgr8rion.

3.3.5.2 Lou Potentiel Imo8CC Arag.

A disctut&.

my be determined to be Ln o lov potent+rl 3~8~:

aru for fishes

-thin ch8 primary and far field study areas Lf the following couditioue are satfsf iod:

L.

Iha occurrence of sport and comereial species of fish la marginal;

2.

The dlactmrge sire Fe ooc a spewning or aurrery area; 3-The therm81 plume (bounded by the 2C trocherm) d.l.l not occupy e large portion of the zme of pess8ge which would block or hindat fish olgr8cioa under thm most coworpative l mironmaoc8l conditicm (based on 74&y, LO-par low flov or vator 1-d end teeximum uatsr caapenture)

4.

The plum.

coufigurrtion will not ceuee fish co become tiereble co cold shock or have an adverse ispect on threatened or l udaagared species.

3.3.s.3 Scud) Requlrueotr for Arue Yet Clrssified as Lou Potential ImD8CC.

L*

I4ethotiolorn and Presuencr Appropriate seqling aechoda end gut VLll be ued to prorrida e buis for identFfpFng the Raprueat8cive Importaac Sp8cias (BIS) of fish and Chair rrspectfre LFfa sugu in vartow hableats and strua withb tha study 8ru.

tichod of firh sampling such u

cnvlfq,

&iU nacti.n&,

uinFn&,

horizoatal and

+ertlc81 ichch~pl8nkton

tmr8, etc.,

8re 8ccepc8ble.

-or, mliag muhod till very from oaa cypa of ufer body co uwthar; therefore, 8 r8tioorle for the choice of g88.r mu8t be developed for uch rrrpliag progrn.

Palear stringent requirrancs for specialized gut is apQU8OC.

the l dupcion of standardized gur Fe ret-uded co pemlt coapuiaoua wlth other scudire.

At

-3o-

2.

no tima during the study should aev gur or smnplFng aechodr be introduced trnlese It ten be demonrtraced thae the compuacive efficiencies of the old end aev gur end methods 8re similar.

A chug@

Ln s8mplLng procedure8 ten oulp be iSplemenred titer written AQQtWd by the k&Lo&

&h.blatr8tor/Director.

For fidd studlesr experImenta design should be ApprOQ~t8 to detezmia8 the gen@rti chr&Cte~StiCS of all life stages of fishes inh8biting the priMry and far field rcudy areas.

The d&t&

colLected should allou for 8 comp&r+ron of chm rel8tive FmpOrtlnC8 of ChU8 RID arus with respect to species COt8pOSiCiOU, amb8rS of uch

type, grovch, and reproduction.

Sampler shall ba cakea ac roarhly titemals co ;rrovfde dAt8 Cepr@SeUtiU& S888oUe1 and life St&&@ h&bit&

uC@pC during Iod immedhcely folloving periods of spavafng Vh@U 8 more Fnt@uiVe rumpling effort should b8 prwided.

fn northern latituder

, the monthly Sampling requirment is subject to veather coudicions and It

~87 be necessary to prwidm the ducribed d&t&

reqtiremmcs from the literature end relata such laformtion co expected dirckurgm arua ia 8 dafeadable r8cion8le.

Also, r8ciandes could b8 droeloped from CmbtiACiOUS of field d8ta end Literacurm sources.

fc rhould be recopired chat dfscributiou of the vrrioua 1if8 sU&u of firh fs dependent upon aany factors ladudlag sueou.

vat&r

awamt, light tncearity, density gr8dients.

and food sources.

U aa ur~ple, during

hm rppropriate
sumn, night sampling VIlL yield 8 more accurate l stimecioa of the ichchyoplankron population because of their aigration pattern during the dial cycle.

Ill moat C&88*,

remple replicatiou and frequeocy must be d8tem.bed for bdividual sites and be b88ed on field studies co provide v8lld po~ul.8tloa l rrim8tos U&X$ l QQtOQtiAt@ StACiStiC81 tr@AmeUCe Infom8tioo Befzu~remeatr.

Tha studies conducted should prwide the requlxed fafornution vhich vi11 be wed for purpoems ducribmd 8bW8.

Some of the fish isforxeciou mey be required reparacely for 316(b) studies.

The 8~~~ic8nt should meet vfth the Regional Admlulstrrcor to d8t@miUe vhlch of the folloving information requlrc

~uCA should b8 d#elopmd to s&Cisfy 316(A) r@qUftmtentS ac the site:

-310 Species Level:

For the RIS, the follovf3g Fnfomcfoa my be required:

A.

B, C,

0, E,

Reuroduction.

A dircussiou on spauuing habits and fecuadfty Ch&r8Ct@risCiCS of the priacip8.L species.

Life se&em habitat uttlit8tioa.

A dlrcurrioo ou habitat uci.lFted aLt the various life stages and su8ou.l timing of prisence in the habitrc tppes.

?Ugr8tlOU

activity, Ff applicable to the d~~ignacrd sp8cies.

should be addteased, Condition factors.

Comp8r8cive condicioa Lnfom8c',on for the priocipti species occurrUg ti ehe ?r'kmrp and far field study arus.

Dise8se and ?8r8eitism.

Occurrence of disetre and paruitim Fn the Lxxdigenous popul8ctone and species swceptibility tichfa the framework of expected the-1 regtmer should be discussed.

An8 and orowth.

Trends ia age and grovth aorm8lly expected k

the specier should be diScuSSed.

Ctnmunitv Level:

A.

RIS and their eeneral

&bund&nc@.

Special end tupor8L dirtribuciou Fnfonution ou the BIS in tha primary md far field study arus vill prwlde La.foraation ou vhich specler will be aost vulnerzbh to intab and/or dircttrrge effects.

1.

R8iAtiV8 abundance of v8riou8 sD@cies.

This Lnfor-scion c8n be caktirtad frop the saplfzI&

data.

The relative 8bund8ace of & species Ls the value daeenUaed by dividfng total ambar of Ali fishes collected lztto the oubmr of that species

caugnt, ft ir often r&port&d 8s percent8ge of the toed catch.

hhtive abundmce c8n ffuctuece susoaelly and dfunmlly;

howvet, Ft should cot be significantly different from year to year.

Slgnificanc shifts in t@iAtiV@ l buadaate war 8 period of tine are FPdlcative of changu uithirr the fish comunfty.

c.

Prirrclpcl ASSOCiAtiOXl.

By &QQropri&t@

d&t& a!u.lyses Ft is poeaible to Fdentify prFncipll

~raociatioas.

The princlpti 88Soci8tioo, arm the group@ of spec~rs which are repruenced in soples in 8 consistent manner.

Pruence or 8beence of 8 species directly

3.3.6 Othsr Vartsbracs UfldlCs D,

or Fndirsctly dspendr on the prsssnce or absence of othsr spsclss fa chs rampls.

Sfgnif icant fmpscc 00 ona lpscissr thsref ore, can tssuLc la churgs8 in pracipti a8soci~ctoa8.

Heu rsquiramant The rpplicurt should prwids a8ps dsplctlns portioaa of ths rscelv~g vatsr body ussd b7 cha lnd~saous LIA c-ftiu for ruch l ccivFtiss u

rpmmlng, musmy, frsding

, mlgrstion,

testing,

@CC, The 8pplicmt shotid discuss aad S&IOU on chs asp the ptoportiou of the cotti ares ussd Chat

?I1 ba laflusncsd by ths thsrnul dfsc.hxgs to the 2 C irothsrm.

3.3.6.1 Decision Crttsris.

Ihe ssctloa of ths dmonscracion dulirrg tich other valts-bratss vtll bs judged succsrrfti lf chs ~pplfcmt cm rhov ths sits FS ens of lou pocaocid Lnrpsct for ocher vsrcsbracsa.

For othsr

sitss, the ssctiou of the daoarurcion dasllag tith otbsr ulldllfs
  • will be judged succo8fu.L U

chr applicant can daouatrau thae ocher viidll2r cmmunft~

caponsocr vill not suffer apprrcirbls ham or vill acttuLlp bmmfic firm the hutsd discharge.

Thr term other osrtsbracs vtld-LKd Fncludsr wildlife which ars vertabracas (i.e.,

ducka, gssrs.
Mnsfsss, etc.)

but not fir&,

3.3.6.2 Lov Potsntlrl Imusct Ares8 for Other Vsrtsbrats Vfldllfs.

Pose situ ia the Uaicsd Stacsr vFL1 ba crraridsrsd ons~ of 10~ porsncLJ impact for ocher rartabrata vFldlUa sinply bscaum chs projsccsd chamcl plm8 til not

  • act hrgs or &qus populrcionr of w%ld.lKs.

Lb.

asin acspciow v%U be ricss ti cold arua (such u

North Central United Stats81 which uould ba prsdictsd co actrace gsur sad

ducks, and aacoursge tha to stay chrou@h the vtncsr.

Thsss muld aoe br coasidsrad 1-r potsacLrl msct usas ualssa chmy could dmowtracs chat tha uUdllf@

wuLd ba protsccsd through a tildlifs mnumane plaa or ochar mathoda from the potsncial sources of ham mnciousd ln chr usa rsctiou.

Othsr acspcioarr to aims clurifisd u

lov potsocld impact wuld be thora fau situ vharm ths dfrchargm alght affect Important (or ehrucumd and sudaagsrsd) vtldUfs such u

~n~tses.

For moat other

aleas, brfaf rFtr fmpactiour uld lit~racurr rwieua muld supply enough Fniomscion to smbls chs l pplfcsac to vrits a brief rrciouds about

&%y the rite cauld be consldsrsd one of low potsntid fmpsct for ocher vutsbr~css.

-339 J.3.6.3 Study Rsqul:rments for Ocher Are-.

The qplicant should uadsrtah whstsvar bvsrcigstion and plaxniq steps ara oscssssry co be able to wrFcs a ratloarls aplsinfng uh8c factors (or wlldlifs men8gaanc plans) dll 8nsu.r~

that ocher vUdlifs wUl not m&far approciabls m

frum:

1.

Excus hut or cold shock;

2.

Incrused diruu and prrasitiar; 3-hducsd grwth or rsproductivr succsss;

6.

Excltuiou from unique or krga babitrc arau; or

5.

Incsrfsrmnce vich mfgruo~

psttsras.

Ia the

ratfunds, the appllunc should dircnsr the rtitioo of the sftluaat co the hrblta and habitats of uzy thrucsnd or rnduqsrsd spaciu or orgsniaas of commsrcirl or rmcrutional lmportancs.

3A Bou CO Select the Yost Igproprircs Dsmoortracion Pppa The buic recmndsd steps for the applkanrr usa h

choosiPg the most l pprupriacs dmnarreion cypa us sumsritsd tn section 3.2.2.

the dsclriou main tmrr8t+va.

After completing tha izdtfrl scrsauag procduru and ma&q a pr8llaMry Usss~t of the mtmc of dditioaAL wrk medad f.n l ch block catsgo-,

tha spplicmt salsctr the dmouscracion ms most appropriate for th*

8its.

If cha sits ti ona of lou potsntirl fmp8cc for all block

ufsgoriu, chs spplicat may chooar chs rmlarivmlp scrualinsd Lou potentid impact Type 111 d-truiou oucUnod ln section 3.6.

Xf uot.

the applicant should propose study pluu bud ua the Type 11 gUdaace Ln sectlou 3.3 or chs Typm IIL gaducs ln ssctioo 3.7.

It ia recarrodd chat the Typa ff dmnstr8cloo ba umd u

a

&de for tha awuat of dsrril raqulred in wse 316 (a) dmnatracious.

The actual amat of da&

rsqulrod for an ladlvldual locatlou till vary fra rite to sltm, bat raction 3.5 aheuld as-a u

a us&d starting potit for discuariaaa batnm the applicme and Bagloud Administrator/

Director on whet r-7 plana srm wet appropriate for a particular sirs.

Applicants uot rtQib1a for a low potsntlal impact Type XII dmMtr8tion aad not duiring co do a Type II d-trstioo may slsct to do aa Jtsraats (Type III) dammmtr~tlon.

ff th8 sit8 is 008 Of LOU pOt@~Cid bp8Ct for msc biotic CAC~OFhS but not til.

r~udlss less dsca.Usd than chose recmndsd Fzx section 3.S au7 be Ipproprfrts.

For

mpls, Ff the sits L

008 of lov pocsntirt Fnpact for til blotfc categories acopc shsLLflrh, the RSgioarl Uminlstracor/Dlrucor might conclude tbt frv addfcioarl flsLd scudlsr (acspc for rhslUlrh1 wuld ba rsquirad aad that t&e ouly 81s that should bo stlsccsd rhould br shs.lUish.

This dmMtr8cloo vould be lssr dstr+lsd than ocher TypS II dmMtration8 and could be refund co 88 S m.

III dmMtr8CloU.

3-s Type 11 hmOMCtStioM

(~ptuentativs Imporunt Spsciss)

The me EI dmnscrtciuu should bS dulgmd Fn such a manner to fully dsvslop

hS thrsr ksy bIologicaL components complstiou of the Biotic Catwory Rationalu (baw duting ssrly scrssdng procedures),

dsvslopolmc of EIS racfoudss

, and s~chssIJ of a.U fPCormtion lnco a

maasr r8cionds.

This sactioo prwidss a dlscuasion of the rsc-ndsd crmponsocr Of ChS dmMCrAtiOn, a proposed format.

and a discusslou of why the d8u rsquirsuutr us ascrss~

for mking 316(a) dmcisioM-3.3.1 Dwalopmmt of Bfoclc Category 8.eiom.ls.s During urly scruafq procedures of litsrsturs sumsp and ?fLoc fitid fnvascfgstions the applfurrc tiL dsvslop S-of the fnformatioo oaodsd to devalog chr Biotic

&csgo~

%cio~ss.

Lf the dscirloa 1s made to do 8 Type 11 dmMtr8CiOU foL.bvirq thsss urly screening procsdurss, the qpUcmt should rwieu r~ctio~

3.3 and 3.8.1.

chls seetiua.

sod chr d8tA svlflrhls, to dscsrmins V&SC addlclonsl flald

studlu, If rg, VLLl ba aecumry co complete the Biotic ticsgory R8tioa8Lu.

In son

cues, ralatlv~l~

Uttls additional wrk vF11 bs ClSCUSAr7 0 IO cuu where dditlund vork la rsquirsd, the Sppliaac should corplst8 the seudiu sa ru(gssted i.a section 3.3 and then vrits tha srorv biotic Catyory Racioorlsr.

Each Uotic Cation

~tiouals should pruvids a complete dir-cussfoa u

to

why, fa tb fudmt of th@ applicuit, cha inrpACt8 us suffici88tLy lnmnaaquantbL thrc chs protsctioo aud propsgsclon of tha bud fndQawta8 populatlou of she.lJfish.

f lsh, end ulldl.if a In sad 00 the body of wear uUL ba uoursd.

La cha ratlouder the appliesat should sddr~8 uch decisiun criteria for the biotic c8cSgory in quUtioa.

ma discusrion should lacluds sa ~duatloo of the i3pACCS of the dischqu into thr rscaH-lng wear body.

-33.

IIW COUC~US~~M drmtn shodd bS supportsd with

~1 uulysls of the

&ta collsccsd durFng the 316(S) studlu and/or by the

~clusiou of supportivs

reports, documsots and cicaclo~

co the scisntFflc litsrr-curs*

Ths conclwlo~

should rsprssant 8 logical atension of the infornutlou avsibbls Sad be sclsntiflcrll~

dsfrnd&ls, Uhsrs citations 8tS USSd th8C US Wt rrrd(ry NSihbZlhlS ti SCiSntifiC jOti (i.Ar, LateriP rsportsr vubus types of ymncy

documnu, anaal
reports, thuos, etc.),

the documsncs thsuslvu should be provided.

Lf thS

~sct of chS dischugo is projsctsd ruFng S mathematical

nodal, the Sppllcrot should prtids 8 ccmplses documsntScion of ths sods.L Chat is used.

The docummtStloa should lncluds S dircussloo of the osrtcs aad disadvantages of the model.

T%s applicaac shotid tiso provlds rwaltlvity m~Lysss of the wdsl md S vsrific8cloo study.

In additlou.

the statistical rUabUity of the model's grediccloua should be Fncludsd along vith l ~usciflc8tioa of the osthodr u~sd ln the suciscic8L svrLu8tfou.

3.5.2 Dsvslupmsuc of Rspressncativr Kmportant Spsclsa ILtloarls Th8 RIS Rationale should s~rirs why the

~asa~Lcs of the Laboratory Ad

~CSrStUrS Studio sp@CU?i~d la s~cclou 3.5.2.2 suggs8t that chs RIS WILL not suffer Spprsci8bls harm as a rssuLt of the heated dischug*.

mr osumptioM in the coucspt of IUS arm:

L.

2.
3.

4,

5.

fc is not possibls to study In grsac dstrLL svsry spsciss U

8 Sit@;

there lo wt snough

cim, soamy or apsrtise.

Since rll spsclu mot be scudled ln dsclF1, soms asllsr number til h8-m co br chossn.

The spociu of coucsm era those c-7 rslatsd to p0-mr plant impacts.

Some spufu rcL1 bS scuuomic8U~

importurt Fn their ouu wt.

@-0-v corwrcid and sports fishu or mrisurcr

spuiu, end thtaa lnportaut.

sm8 spuiu, tamad rsprsasntativa 0 vlll be psrticu-larly vulnsrabls or ss~iciv~

co pouu pllrrt inpaces or have ssaaltiviciu of wet other spscfss aad, If protsctsd, will ruaonably usurm proesctlon of oehsr rprciu at the rfta.

-360

6.

Uldtrsnglng species at the utrams of their ranges

  • atid generally not be considered acceptrble a8 p~rticulorlp vulnerable or seti tlve" representative species but they could be considered a8 important.
7.
Often, 811 orgurllu that might be coosldered important 0t repre8entatlve cannot be studied Fn detall.

and a

mallet list (e.g.,

grucar than 1 but less than U) auy have to be selected as the "rapresentstlve and important')

list.

8.

Of teu, but aoc almp, the most useful list wuld ticlurie mostly

,ensiclve

fish, shellfish, or ocher rpecler of direct use to sun or for structure or functioning of
ke l co8ystam.
9.

Officially LFsted "thrutrned or endangered species are aucomacic8Uy importanr 3.5.2.1 Selectlou of the Reorrseacacive Imortant Soecies and Pu Field Studr Arm.

As previously discussed fn the declriou main (rectioo 3.2.2.

Scap ll)

, rppllcsnts first ame vlth the RegionsA

  • is-tracor/Dlreccor co discuss rolectfoa of the RIS and define the far field study
area, The ambar of BIS relrcted for a particular rice may be high (S-U) ti the plsns for biotic category field studies are not maprehensive, or low (2-S) lf plaus for addltiotul field studfes are utewive.

Sum of cho crfteria for selection of RIS are found Fn the defFnition of the term (see sectLou 6.0, Definitions and Coacepes)

Keeping ia aiad these crlceria and the urtmpclons given

above, the Rag1otu.l Administracor/Dlractor solacts RIS from any ccmblweiou of th FoUowinq block catrgorlrs:
fish, shellfish, or habitat fomorr.
1.

Soacles Selectiou Uhrrr Informatloa 1s Adequate.

Uhero laformaclou pertinent co specie8 selection la adequater the Rqiorul Adminl8er8tor/Dlrector should promptly sdact BXS. The appllcurt msy suggest species for hi8 couslderaclou md

zuy, as l

put of its daomcratlun, cMlenge any selection.

Other cowldaraeluw ue a8 follovr:

A.

houlicsble State Uatrr Quality Stmdsrds.

If the Statss approved aster qrulitp standards deslgmce particular species as requirfng protection, chase species should be designaced, but alone zay ooc be sufflcleur for purposes of a Type If dmouscra-

tiou,
8.

Conrultstiou vith Director and tith Secratarlu of Comuce and Inrerlor.

In the cases of species re.Lectlou by the Eeglousl Admlalstrator, he msf seek the advice and rectxmnendaclon of the Dlreccor as to which species should be selected.

The Rsg1ous.L Admiulstrscor must consider any timely advice aud rec~endatlons supplied by the Director and should include such recummeadaclons unless he bcllaves chat

~ubstaatial reasons uirc for departure.

The Secrrcrry of C-rce (Xac1ona.l Marine Flsherier Serrrlcr) and the Smxecsry of the Interior (Fish and Ulldfife Samice),

or chair deslgaoes, and ochu rppropr%am petrous (e.g.,

university blologiacs vith relevant axpartisa),

shotid Also be consulted and their ciprtly ret-ndatious should be consIdered.

The Director should also consult with the ageucy uerclsiag adminfstrarioa of the Udllfe resources of the State (see secrion 3.2.2, Declsiou

Train, Step LZ).

C.

Theatoned or Eodanaered Species.

Species selectiou should speciffully corulder any present

hreurned or andaqered
species, at whatever biotic category or crophic
lmel, ucept chrt no tifomacioa should be requasted c!mt trould require field sampling prohibited by the Eudaugered Species
Act, 16 U.S.C.

U31 et seq.

(see section 3.2.2, Declslou Traiu.

step U).

D, Therull~

Seusitive Soecles.

The most chersllly suuftiva spuiu (and species group) in chr local uu should bo ldeatiflrd and their lmporranca should bo gireu special cousidorstloo, since such spmclu (or species groups) tight ba mosf rudlly eliminated from the c -fey Ff effluent ltiita-tlous

&Llouad ulstu uafer capersturrr co be altered.

Cousideratloa of the aost sensitive spaciu vill base involvo s total aquatic comruxlty olevpolnt

E.

P.

C.

bducmd tolersnce co l l8vsced tomparature zmy also be pr8dlcted.

for umpl8 tn species vtrlch experience osturrl population rrduccloa durlztg the smmer.

Species trrp4ing the grrsc8sc oorthen rsuge aad lust routhmrd discributlou may also possess reduced therm81 tolerance.

Ccnmercially or Recresclonslly Vllusble Species.

Selection of c-rcirlly or recrest:ondly valuable species should be b&sad on a coaelders-thou of the benefits of assuring their protection.

Far-Field and Indirect Effects.

Conslderaticru should include the entire uatar body segpenc.

For u=Ple.

au upscream cold uacer source should 3oc be vertned co an extent t!ut vouLd adversely affect dowustmsm

bfou, Th8 impscr of additive or syuerglstlc affects of hut combined with ocher ulsting therm1 or other pollutants Fn :he r8celo*tn~

waters rhouid also be cousldered.

Species

?lecrsssrv (a.~.,

in cSe Food Chain or Habitat Forsets) for the Uell-3eFns of Species DetemFn8d Above.

Ln addicloo co the sbuvr coaelderatlons, lc Fs rugguted thet thm ReglooJ A&infrtrsror/D~rector ask himU the following qurstloos before selecting the RX:

1)

Is tha potautial probla with chls species credible (documeaced, l

probla elsewhere, a good prediction)?

2)
3)
4)

La tha problr Likely co be rigulflcanc?

Uhlch species occur at th8 locatlou?

Which species la Llhly to be closely Fmolvd vlch cha source or d-68?

5)

Does the probla species rank as fsportaac*?

6)

Doe8 the Use of probla species fail Fn the ranga S-U or 2-5 (sea cut abuva)

?

7)
8) tie the Fdeaclfled problem species "repre-santatlve"?

Should other species not clearly a problem be facluded a8 represencstlve or importrot?

2.

Species Selection Where Informetion ia fnadequace.

Uher+

the svsilrble luformetloa Fs aoc sdequste to amble the bglotml MmlnlstrstorlDlrector co select spproprlste RIS, he mey request the appllcsat attaptlng co ads a Typa IX demonstrscFoa co coaduct such studies and furbish such evidence as my be necesssry co enable such selectiou.

Uhere species selection is hued oa lnfo~clou supplied by the applfcmc, the appropr~ateaess of the species as represencstive and fmportant 1s au aspect of tae applicant's burden of proof.

3.5.2.2 LaborstorP and Llterscurr Studies.

Tkta labomcoq and

~lcerscur~

studies to be dooe for l ech EfS should be restricted to chose vhlch arm necessary to fllL out smmery Tables A aod 0 and to develop (oa the basis of cha data smnarter Ln thou tables) the RIS &cloPrle.

Not all of the date Listed fn Tsbles A and B MJ ba appropriate for a particular site or cua.

If the spplicent feds chat some are fnrppropriate and should be delecrd, it should be dticwsed ufch thr Reqioaal hdminircrstorl Director at the seme cise other dlscussloas about the RfS are taking place.

Assu~~tlons for Tables A and B L,

The cebles are marely l lds to orgsnitlag btologicrl data be.Liroed co be useful and fmporuuc for aaking declaims regardfug the-1 discharge l f facts.

2.

The epeciss teble should be wrkrble for any important or representerie species

selectti, whether it is
  1. elected u

a species for protection or avoldence (e-g-,

mia8nce species)

3.

Ul therms1 chuscteristics do not apply in e

rlmihr coutuc to all tsxoucmic groups (tsxa).

requiring soae spacirl deflnicions or oaisrlon of a cherscteristic for a psrticulrr cuou.

4.

There til be noachemaal Fnflueocrs

( l.g., chemicals, SCOuh4

, often occurrhg slmultaneouely tich charm&l influences, thee are aoe fscluded ln chir cable but which shouLd be coosldered ln their own

-ht.

s.

There uy uot br diff l rences beMen adults and juYulFlu of dl

taxa, or char8 may be more than m

distinct se~lcl~ity categories.

DFscinctly differeut life rcege requirements should br listed.

6.

Dets can be collected by the appllc~t for chore theme1 chuscterlstlcs of the 31s thee heve zot yet been daterained but for which standardized sechods are rudely available.

7.

For certain peraecers zhrt are srlU Fn the resurc!a or developoeut stage.

as opposed co sceududfred test*

(e.g.,

gsmecogenesls requirements or ?redscloa ou charmally stressed aeroplsaktoo)

, all roeilahle ptillehed dsu wuld be uaaful but it wuLd sot be necesuq to develop new drca for this category.

8.

If more than one ut of data-are aveUable for any

cstegofJ, the several sets should bo preseoted (and referenced) aud the rstionale prueuted co aid Fn srlectlq oue set for declslon-meking se the site fa questiOn.
9.

Dates far guetogeuesls urd spatming fmply appro-priae suso~l t3mes which till vary from aru co uu and yur to year avan vlthouc the Fnflueuce of the pmmr

plant, Tha fsporcant point is *ether thue woacs wuld be susonrlry precluded.
10.

In fishu, opclaam tryeretures for gromh cud sgu perfomance f8ctors (e.g.,

maximum s-g

spmd, grueut aetebolic
scope, final taperscure praferendtn, etc.)

hrre been shovu to ba coticldent for aaough fishu UC chtr colacideuce is acceptable u

rgmerrli~tloIa.

Exceptloue cotid be hportsnt.

h-es, and should be ideatifled

SAMIW! 1ARl.E TO SUH(ARIZR DATA FOR EACII RRtRt?SENlAT~VE ItlPORTAttT SPECIES (RIS)

SCIENTIFIC NAMR fX+MMJ NAME THERMAL RFFIXTS PARAMETER TEWEMTURd LIMIT OR RA?KiR (C) souRcu REFERENCE (i F APPROPRIATE)

MFAN AND MAXIMUM ARPA UNAVAILABL FOR FwNmm f

(R I*

HPAN AND HAXItlUM TIME UMAVAILABLC FOR PU?tCTfON (DATS),

IS tWl!CT, I? AHlt, EXPRCTRD TO AFFECT THE POPUlATlON OF mu RlS?

(TES OR NO) 0 That area or tin under arctaRe and uotst caee conditiona thnt wilt not permit the specific bFoloRica1 Cmction to occur satisfactorily.

SIRHART COWXUSION OF t??RCT OF ItRAT ON THR RRPRRSENTATIVU IMFORTAMT SPl?CIBS (RtS):

THERMAL EFFECTS PMAMEERS 4;-

TABLHB mEmALEFFEcrSP-APPLIcAaLE ro4uIlIcoRcaNISHsPOnwr~TsELemASRIs

1. High Tempuature SurrrFvll AquAtic Adult JmealLe (Imature)
2.

Thermal Shock Tolrrancr (Hut and Cold)

Aqwtic MtLLt Juvanile (mare)

Euly Dav~lopmeataL Sc8gu (Foci.

l88roplaakton)

3.

Omimua Tmmeratura for Puformanca and Crouch Yen-breeding Adult Juvenih

4.

Xaxima femver8tuf8 long-tom tsqurtur~

Resims Allovins Early uporure throu#mutd8velopnnt Development Corplrtion to jtnmnih3

5. Normal sp8mins Dau and Temaanru
6.

Spurn TsmPu8turr 88qufremantr for R~oroduction POSSIBLE YETRODS POE D-ON X$0, 24 bours

TL50, 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> thersrl gradient including wrst cua r

single shock to

  • mate plant shutdown doubh shock (up and do&

in trmmrsing plum 3

langth, veight

&auger; productlvfty; DNA/WA ILatlo2

~ength,ueight changes; DNA/RNA Rat102 mmths; r8nge for rpunlng 1

1 As 8vti8bh in the llrer8turr only.

2 hdic8tad by find prafarmdtrP for fish.

3 Only for specior rudely reared or held in the laboratory.

N8n8tlve for Table B -

Thermal Eff l cta Paramtrrs AmUcablo to Thunal affactr stdiu applicabh to ujot taxa or broad bfotlc c8tqortrr UI

-ad in Table

1.

AQpllcabla thanal rlfutr d8t8 should ba obtainad for uch BIS adacted.

mrks 00 study ULd uotu of 8pplfuti~

of the ruults to orlu 316(a) aad (b) dacirloum arm badicued hue.

Uthod:

Dat8rPina a

&(8+

l 48-b.

tit-t8 lacipF8at hthl tmper8turr) for juva es and aon-bramii~

adults.

ACWfiOU tarpar8tur8 shotid 8ppturi.mta thm hi#hut tmr8tU8 at which the fish can ba bald.

bpO8a lnimrl t0 dW8trd tvr8tUZ8S h

8S 8CUte (inst8at8naou8) mmaar.

&U1iC8tiOU Of ihStitS:

Zh8=

v8h.a can ba rued for utimatioo Of tha Umr

!Wl348t$ll UC f%?

th8

~fdiiSt0~

St888 f!i qU8tiO.U (24-b.

dXZU82C).

m8R.

valua alro can ba wad to l tat8 t

UPPU tqr8tU8 la t

sinw optistm gruuth tima).

for 8Ppr8Chbh grouth (21-ttr.-TZ50

2.

Th8&

Shock tOl8tae of sti8ct8d Ufrhirto~

Stq8S:

8)

For jUV*tiU md

8dult8, Sipnrl8t8 tiat8r phnt shutdouu str888 of plcm Utt8inad fiahu and mtil8 m8cfo-cmxst8cu.

Method

-8a Oa-to 8CUt8 trprr8tUTa drupr aqti Co the r8nga of up8ctd dirch8rfa t's, u8ing wlnt8r pluma tqr8tllta 88 th8 8CtitutiOU tWpU8tlXa.

hdiC8ta tmt8tUa CUt rqimas which produce equilibrium lorr of SOf of cha sample uichin 4

hours 8ad oprt8uty aft8r 24 hOlU8.

Idantifiad vlntu plum VS.

8mbi8nt tmpar8fura coaditiou8 uhich could rut&

in thati shack l.n tha -ant of phnt

rhutdm, 8d aa auuiq high 108s of oqaaUma dm to mrkedly Lacrauad rwcrptibUty to prodatfoo.

b)

For mOrOp&iktOO.

aImslat frprr8tura shock upon trn8rrbq 8thdphN.

3.

pLue rrrldeat tines md tlapuuuru, Accttioa tuparuura should l w a8CurLt SU8OQ.d obi8ot coaditton8.

Maximm test trpuature should range up to the TLjO level for l dulte.

Indicate tinwCUpU8tura r8gin*

luding to duch of 50X of the supl8.

Apulic8tion of Results:

hthd tiPttQPU8tUW Stf8S8 r@gina pint&8 2°C CU b8 uSrd to 88th8te taprr8ture LiPits of OOtmd prey troldeeco bduvior.

fnCrU8.d cmpu8ture rudcs Fn high8r pred8tiUU prermrr.

Estimcion of optimum tmparaturm for growth:

A>

b) cl Fish and macroimrttobr8t8r d8tarmlnm rate of growth (18ngth or uelghc fnCrU8a)

Wtl8r! mafnC8inad at a rarl8S of l hv8ted tmU8turU and 8t Othnria8 n@8r-optimm l miroummtal condftiour, with food provided s

libitum.

PFsh d8tWI8iMtiOTU of final behavioral temperrcurr pr8f8rutdtm vill closely corr8spond to tha tmpeaturr which is optirrl for ramy phyrlologlcal

procueee, Fnclud iag grovth Hecrophyter d8C8rPFne teEper8turm produclag maxiem aat photosyuthe8is for 8t hut 8 24401~
puiod, u8bg 8e 8pptOjDtit8 photoperiod.

&3D1iC8tiOU Of R88d.U:

Optimum tmp8r8cura for grovch tea b8 cambFnad with ultim8t8 incipfenc 18thd tmaper8tur8 limft for 8Ccrpt8bl8 grouth (Ice

  1. 1 8bme).
4.

kfinimn optimum md mxlmm taperatures lllowlng coephtfm of urly developlent.

f4OC8:

Studlu co be conducted only for EXS uhfch 8ta ap8ble of bebg rudLLf tUt8d in the hbOr8COq.

Method:

tbinUin fartiliud ama undu 8 Urf8a of l hV8t8d crp8r8tura r8giPU to detrralne

ainima, opt-mid aexlmm condltiona permitthq 8rutrr chea 80X rumiv~

to coep18tion of dwaloplmnt Of jUVmF18 (i.8.,

POrt-hrPti metrrorphorir; i.n

fiSh, to tha point of SUCCU8fd

~ftiatiOU of feeding).

t'bt8 thee dfornrlly cyclic tmper8turr rrgiau tith 8 S°C total range U8 be 1K)re 8deptive for mhrnc8d thermal tol8r8ac~

thmx i8 8 COU8f88t.

OvliC CqU8tlX8 U/tie.

5.

No&

sp8wning d8t8s and temper8tures:

mehod:

Cite rug@

of d8t8e (by muth) 8ed thr88hold ump8uturer reported to hlti8U urd lahibit gmerogenui~

and

rparaing, AI r8ported Fn the ~it8r8cure for uU8 clo8tiy r8hUd to the u8cu body rogmnt ia guestion.

Aoollc8tiue of brultr:

To provide b8ckground infom8tion to ev8h8te 8e88oUll~

the reluiv8 lmp8ct of th8reel dir&erg8 OP cintng of rrproduetiv8 8ctiviti88.

6.

Sp8cirl temper8ture rrquirmeot for t8prOduCtfOn:

Yethod:

Lafonutioa should be ptoVld8d 8e ev8F18bl8 in previouelp publfshed StUdi8S.

h-188 of rehvaat lIspe~ia.l r8quiree8ats" include:

8)

Snimm of 10°C etut be experienced before gmecogene8ti can be iaitirted ln tw bore8.L b8raacles; 8nd b)

Yint8r cU1 requirrd for rucceerful developsme LB yeLlov

perch,

3.5.3 En@ne8riag and Eydrologlcal Data for Typr IL Demustratiau Ttt~

r~ctfon ducribu tha engf~~tiag and hTdrolo@c Foformation which should aorprrs1y be Fnclud~d ln 316(r) daoortrstlotm-It

~I.80 rugguts formatr for pruutatlou of such fnformatiuu.

Th8 RBf1mu.L A&lnlstr~tor/Df.r~etor nay raquut additional lnfomtiou or acuu the rppllcam from pr8puatio-u of portiona of this lafom~cloa u

th8 rlcuacicm ull8nta.

The erqlaeuing aud hydrologic fafor~tion to ba submitted rhould combat of til iaformrtiorr rruoarblf aecu88~

for th8

&pmfs.

Vh8t8 FnfO~tioP LiStd ia thir ChbJ¶t8r fb ru3t rd8VbUt CO th8

?ArtiCtiX

C188, Ft should be ucwed-The 8xqln8era and hydrologic inforautl~u and data suppli8d ln support of I 316(r) deaoartrrtfan rhou.Ld br l xt~~~roied by bd8qUbC8 d88CtiptiV8 Mt(rlL1.

CmC8tPFna it8 Sourc8.

Datr fraS SCi8ntiiiC utbtr-

tUf8, fi8ld work.

laboratory (LICP8tlMUt8, 8tiyticti

wd8w, tafrarad suvreys md hydrmalfc modelint will ti be acc8pt8bl8, brrumia~

rd8qUAt8 SCiWtifiC fUUtiic8tiOU for their U88 ti pr8e8nted.

fn bdditiaa ca th8 rudtr obtU8d fro8 atiyticrl hydraulic wd8ls th8 applierat should pr8sent.

und8r S8p8t8t8 cov8t.

th8 wd8l vbich us wed.

Th8 mod81 should contain 8 rationah eqhhiq why this puticaL8r model -8 used mul uplrnrtioar of rll

~~~dlficrtiopr to th8 orlglul uork-3.5.34 Plrnt Ooerating D8t&-

1.

~O~Zi@

Ut8f fhV.

kmp18t8 Tab18 c (indicrt8 milts) and provide l ducriptive flow diagram.

2.
3.

subtit 1 time-cmperatur8 profil8 gap&

fndic8tizq tmp8t8ture an the vertical uad horizontal scrl8.

3br gr8ph rhould Fndicat8 status Of u8t8r tmperaturr from amblat couditions through the woUq 8)8tm, and flatly t&8 discbar8r plum Out to th8 1oC laoth8rm.

br8t C-8, 8uticipU.d AVet-ConditfooI, md fd8ti (8*&-r ainlmrr tlme/tupu*ture lmpwt) couditlaa8 should be lllwtrated (prefrrably on ch8 same graph) comi.steat tith reprueatative pluma illurtrrted.

Th8 8muat of chlorine uud

daily, warhly and
annually, the freqmncy and duratlou of chlorination aad th8 m

COtd ehlOtin8 r8midUd At th8 point Of di8ChAtp8 obtained durizq my clorinatioo

~7~18.

The

&Latin8 d-d of the receioin#

uat8f body.

For exirtiq

plants, l

time-concantration graph of total chlorine r8sidual 8t the point of df8chug8 durw a chlortitloa W8Ut.

4.

A llrt of &uy oth8r cb8mlcal8, additives or Oth8r di8ChUg88 (with SchUUic diasr8U) vhich dischug late th8 coo&q uter ryata iacludiry g8a8ric

am8, mat (inchdiq fr8qumcy bad duration of bppliC&tiOn 8nd th8 m,mimua coac8atraciua obtriad prior to dFlutioa),

chamic~

C04BOSitiO~

Sad th8 r-0 for df8Chu~8.

A Wp Of oi8tw dfSW~V8d mt8n 18V8h i.IlChdiXl~

-rtiCd PrOfihS ia tb8 phE8 uid diSChArt

'dCinirf la 0.5 q/l iacrem8au far both av8r808 ad Writ case eoaditioas*

Uh8r8 StrUifiCbtiOU Ot th8 pt8SSllCb of Biochdcd, 0X788Zb 0-d (800) diSChU~88 till pODSib 188d CO d8pr888iOU Of OmSn hV8b U

1 r881dt of th8 th8&

dirdlu~e, the ateat Of tie df8Ct should b8 utimbted.

6.

A IMP Of ath8r Corpt&nULtS within th8 plum CbW8d by otbrr disch8r~88 aad aacura sourcu far both

-8tSa8 aud worst cue coadftiowc 3.5.3.2 Hydrolonic Iofomatlon le now:

Provide iaformatlan crlld for balov a8 applicable to the locatiua of the intake md di8c!18rg8.

A.

BiV8rS :

fl-atbly m&a8 mid mlJalma (rolllag m8a.

?-i&y, 1078&r 10~ fhvm) far uch wath.

1.

Estaaarlu:

fr88b Ut8t

input, tidd flW
VO1W8, net tidal flux

-thly mua sad

&sum8 for UCh--C:rC~btiUU patt8nU frm rpPiCd Cidd cyclu.

c.

ba~~oir8 flow through

time, r8haa8 schedul8r-Wllthl~armlULd=t.UUb.

D.

ocuu tidrl h8i.#kta aad iuformtloa on fluhiag CbUUt8ri8tiCS.

2.

Curr8ntr Rorfd8 the lr&arm8tioa crlld for

below, a8 4Jp11Cd18 to the l it8:

A.

BiV8rS:

ux.S.mm,

midmm, and wan current speed giolag WY, wathly or 88UOUti flucttMtloor mid vui8tlaw acrou crorr-sectioor u

appropriate to d88Crib8 hydro-dyn8micr Of th0 ptiS8r7 Studf bf88.

Include rpmdr l t man mnu8l flow ta

747, 107ru low flow.

B.

h tUti tidal end m88oaal ch8agu Fn curr8at spe8d md directian.

PJ8rtlcal profiler of current a8 o8edrd Uh8r8 d8USiCy Currents OCCUt.)

C.

Large laker and oceans:

offs&or8 prmbiling currents.

our IhO?

CUrt8Ut8/8ddi88; lOCti tidal md S888Od ChurgU la curr8at Sp88d md dlr8CtiOn.

3.

Tabti8CS or

~urtrste monthly urd seuti grrdl8ncr for both th8nu.l and 88llalt7 Foducrd str~clffcatluu At rOptUeUCbtiV@

locatf~ns ti th8 attidy eru (co~sFSC~UC with the comp~alty of ch8 study aru eoad~tfans)

If lntaka and diSChrg8 coadftiopr ar8 Fdeaticrl then so stat8 urd provide only on8 t~b~atloa or Flh8tr8tlon.

6.

TbbtiAt8 Or tiklStrat8 mbF8nt CapUbtur8 Of Ch8 r@CSiVblg

u8tu8, glvLn#

monthly m8ns md moathly Utrem8s for Ch8 pt8C8ding u

y88t8 U

d&t&

mbtibbtiity p8titS.

If C-&r&b18 81t8 Uf8rS bt8

u88d, indfat8 th8 b&818 and lirritr Of C~brbblity.

fa l ddltiuu, for blologierllp CritiCAl

p8riOd8, Uddy mUU8 and UtrUU, frrqU8nCy discributloae and dally verletlon should be provld8d.

Tq8tUut8 d&t&

upon which the88 v81u88 8r8 b888d

should, if pOSSlb~8, be obwla8d bt LUSt 0~x8 hourly.
5.

Indicate iUtbk8 urd r8CSiViU#

Ut8fS d8pth COUtOutS bt 1 98tlt Fntrrvab and any ch8agu vhlch MJ occur du8 co radlm8at

mmaents, COUStNCtioU, l tC.

Indiuts bottam t9p8.

Prmid8 Oth8r significant futures (8.f.,

chrnaal bar) rnd Cher8Ct8riStiCS ne8d8d to 8v8h8te the hydrodysAalcs of the primary and far field study l ru.

Infom8tion 00 water body

8128, surface
area,

~01~~8, mua d8pth md maxFan d8pth.

3.5.3.3 tf8t8OrOlO~iCd hta ff eaergy budg8t cooputatlon8 are included 88 part of th8 316(a) d~~tUtratluu, proPld8 the fO~OWin~

dally

  1. 8r888 m8t8orw logicd d&t8 for the phat l lt8, giving both aoathlp 8uae And SUSUUd Utf-08.

Indicate

~!1lt8:

1.

Wet bulb air troperatura.

2.

Dq bulb Air taper8tuIe (v8rlfF8d to Sit8 coadltloa8).

3.

Wind rpeod md dirrctioa.

1.

Long

~8 (emoeph8ric) r8dl8tlOa (UT be CsktibCed)

5.

Short

~8 (Solar) radiation (mey b8 cllcuL&ted).

6.

Cloud Cw8r.

7.

&8pott8lUpitbtiOU

(-7 be &C~&tbd).

3.5.3.a Outfa coafi~r8tiw end OU8tbtfOe.

Pravlde the foUowlag ldorautioa cm outfall.

cuaflgur~tlaa end opu~tim, fadluting uaitr:

1.

Length of dfrcbrge pip8 or cm81

2.

Area aad dlp8USiOnS of dischug port(S)

3.

Number of disch8rg8 port(s)

4.

Sp8Ciag (on C8tkt8rS) of discharge portr

5.

Depth (mua 8nd axeraPes) 6, bngl8 Of d-charge u

8 fUUCtLOU Of:

C.

curreat dlrectiom 3.5.3.5 P1=8 D&CA It8WitmMtS.

Zhe eppllC8at u

futni8h 8sttiC88 bu8d upon model pr8dlctlOae and/or flmld d&t& at abating planer of th8 follovFng plume data:

L.

UttiiZiUg the lord iafarm8tloa 19 Table C, vind to88 dau md cidll/currus

date, 8 ~1-8 ro88 or LOCW of p1ma8 8tAd.l b8 prmld8d fOt 88Cb CA&lad&r aoath.

Zh8 plme8 rkll b8 bounded by the 2 C ebov8 obleat isotherm.

ml8 S&u be don8 for both Surf&c8 iSOth8m rod bottom iroth8rBe uhea contact tich burthlc au8 18 ti8.

2.

bpr88eXItetiV8 p1Ue8 Of the mUintlr size end OOlt fr8qu8atly occurring plwu l h8ll be deullrd shoving

~8t8atUleOuS i8oth8rm8 At th8 2c hlt8r9tiS CO within l°C of emblent for coadltlm8 of varlrtloar fn

tid8, uind 8nd curroat.

A.

BiVU8:

PlUe8 fat N8tbg8 d

T-day, LO-ye&r hv flow should b8 prwld8d.

B.

Lake8 bad Re8errrolr8:

?hm88 for smmer coadlt:on8, virrt8r coaditioar aad lttrt 8ptig cad f&U w8ftura~

rhould rlro b8 prwided.

For flood control ruervoirs,

~1-88 for vatlow ut8r lem&

8hoPld b8 prwld8d.

3.

For i8och8rrr plots required in utmbu 2 ebwe, V8triC81 t~8rbtUr8 ptOfti88 dOUg th8 pkl88 CWltSrline utaading to th8 bottom of :h8 VeClr body et zc iUt8md.8 CO ViChiU Lot Of smbi8nC.

3.5.6.2 EaSFn88riDE bad Rvdrolosical D&t&.

The FnfOrPutiOU t8rJUir.d iU tbi8

88CtiOU, fOt ch8 mO8t p&n, COU8iStS Of pUm8t8rS vhlch 8f8 MC8888~

blpUt CO l blytiCbl or phfricel pr8dictlve h~r&UllC or energy budg8t models.

xor8

~fOt3bbCfOa my b8 prwid8d by th8 l ppllC&nt for hi8 pbrtlculu danOa8tr8tiuu, but Chi8 -18 repr888otr the d8gt88 Of d8tti tiich vtu be a8C8888~

in mO8t CUU.

The fo~ouing COrT8SpOUdS directly tith the r8sp8ctive pu8grapbS in S8CtiOU 3.6:

1.

Phlt oV8r8ti.UE D&t&.

Table C -

Th8 d8tb t8quir8d in T&b18 C 8f8 llW8888r7 b8CbU8 th8y 8r8 required for pt8diCtiV8 fIIod8hlg.

Th888 nm8riCd d&t8

-0 tioV tb8 revieur co ob88m8 uaC8r

~868, Tl8cTemeraturr Profile

- m8 pt8dict8d tia848mp8rbture ptOfti8 should be lacluded beCbu88 Ft FllWttbt88 Uhbt 8 typiCd mXkmOtil8 pArtiC muld b8 subject to when l atrapp8d end/or 8ntrelLWd in the cooling ut8f Sptu.

tirteln blaloglcrl 8ff8ctr couLd b8 utimted tith tbir type of kaput but the revlenr is curtiuned not to ee8-e this ta b8 tottilt reprereacacive Of Stt888U 8nCOuater8d On 8atrbpp8d end/or 8ntr8ln8d orgula8.

Thi8 path LS ea idullr8d Stt&lae

whlcb, Fa til prababfllty, wuld not occur due ta tUZbUhUC8 Of CO0li.n~

U8t8t flOV.

Cbl0hl*

- ChlOtie fS a tOXiC 81-8nt cad ff it

S to be U8d by th8 di8Ckrg8r to control the grovth of flora cad f8uaa la th8 cooling ulcer
systa, Ftr usage l bould b8 proj8ct8d.

kl tO8t PO-r phlt8 ChlOrti 18 inj8Ctrd tO th8 COOhIg Wt8f SpSte6 fOt

petiods naglag from I3 mlzmter to TV) hours per appllutlou.

Ilrm nmbat of 8pplicatloue ti rite specific but urrullp tocalr lur thaa CWJ hours total per day.

Idully, only exact mounts of chlorFne 8re introduced so th8c ft ructs
oatlrdy, Iuvixq uo rctiva residual 8t the discharge.

In puceice chti Fs dffflcuLt to achiava, and some chlorine compouade ue dlschsrgmd.

Chlorina ructs vith dissolved orgulc utter in the coolfn~

water co fore ouiow chlorluced organics which may ba h~nnful co the balanced Fndigeaous C-icy.

It is charmfore necuuv co project chm uuga of chlotim urd cou8ldet the results of tts interrctlon tith the therael component of tha dbcharga.

Thenad Incuscclon

- Sactlou 316(a) rpaclflrr chat the chennel component of the dlscherge ause be evaluced l

ukb~

lato account the Fncersctiou of such therm81 components tith other pollumnts...".

mlllr data on such syaergirtlc effects ua

limited, ceruln infomaclotx VLU uslrt chr

&gioarJ.

Admlnistr8corl Director Ln usessFng potentirl heraful Fnter8ctlons.

Other Chemimls The rddlcloa Of he8t MT FnCree8e cha l ff l ct of other chemlcllr in the ucer body.

Chmicd hformaciou Fs needed to avrluata poulbh effects of this kind 8ad to properly interpret blologicel d&t8 for thermel affects

&hue.

2.

B?dtOlOgiC8l InfOmtlOU.

This entire sectloa duls tith coudltlons of cho recaivlng water.

This laforastlou should ba required b8c8we it is butt sitlag Lnformecioa, modeling iapuc data 8nd aocese8r7 for proper Fnterprec8cioa of blolol;lceL d&=8.

3.

Meteorolonlcel Detr.

This Lnformetion should be in&&id tier@

l ergy budget COmput8tlOus 8re zude 88 part of the X6(8) drpOUStr8tiOU.

I:

1s sot fatended that rlf dmOu8tr8CiOnS Fn&xda this d8t8.

vhan in doubt the 8ppllcaat should dlscws this tith the Regioael Adminirtr8tor/Dlrector.

4.

Outfall Conflmretloa md Ooeratlon.

mere nmerlcrl dru ducrlbirq the aeorecq and orlrotatloo of the oucf8U 8re oeces8~

fnput for 111 predictive plume models.

-52.

5.

Plume Dacr Retmlremencs.

This d8t8 is the result of the modeling effort.

UhLLa the results MJ be prasantrd in many fomacs, chum mggested plume conf lguretlons yle.Ld a gr8phfC portr8y8l of uhua the hut i8 going.

Thue map8 are mcessq for makhg qualft8tfve end quantitative 8asueaants of biologid chuqes.

3.5.4 Synthuti of dl fnformufoa Into

%ut8r Ecosystr Ilrcloorle ZIm titer Ilrtiolulu of the dmOUStt8tlOn should s-rite the kay findings Fo 8 coucfse manner and should form 8 coop~ciag argument the the b8hnced.

lndfgenoue comunlty vi11 be protected.

The r8cloeule should ticlude 8 sumery of m "over8l.l picture" of the ecosystem es projactod by the sLr Biotic Cacegoq Rationelms, the ruource zones f0p8Ct8dV end 8

8-7 Of Uhy the FPfomfiOa ia the

r8tiOMhS, 81OUg with the predlctl~r la cho IUS RetiOuele, the urglneerlog and hydrologic81
deer, 8nd other.kty
facts, suggur th8t the balanced bdigeaour co~~icy will be protected.

3.5.5 Suggested FOrmU for Type II DaOMtr8tlO!X

~EUUFLE)

TABLE OF alrmmTs r,

Introducelou (Brief 1

II.

?bster Rationale for Dmonstretlw (see Section 3.5.4 for CoIltut III.

Represent8cfve bportaut Spoclu Utlousle (Sectioo 3.5.2)

Iv.

Biotic Category Ratiou8les (Sacion 3.5.1)

A*

Phytoplanktaa 1,

Duirfon Critrrti

2.

Ilrtiorule

1.

Decision Criteria 2,

Batlonal~

C.

Ehblut

?orur8

1.

Dufrlon Critrria 9 r.

BAtioMle

CWLt MC WATER CIURACT~R ISTICS 9

I I

I I

I I

I I

I t

1 I

, x Tim st Intnkc Velortty I

Rntc of Discharge I

I I kactionsl

, Channel I

I 1 Srtecna Rate of Circufntin X Capacity

, Ln,ad

, tntrsnce 1

J, Cooling Mater Flow D*echa;uc 1

1 lkm-I lAT CoolinR l CoollnR

, DlsrhsrRf

, Water I Water

, Velocity 40% 6 Lean 40-50 50-60 60- 70 70-80 80-90 90-100 I

I I

I 1

t I

I I

I I

I 1 I I I I

I I

I I

I I

I I

I A eeparstc table should be prepared for each

~enctating unit snd for all untts combined.

If seasonal variations

occur, this should be indicated.

3 Variations of intake velocity with changes in ambient conditions (e.~.,

river

flow, tidal
height, water Level) should be noted.

4 Dischnr8e A T A T) however,

- Dischsqe teclperature

- intake temperattire (in aany

cdsCb, condenser A

T io equivalent to diecharRe this is not the came for plants ulth supplemental cooling).

5 Discharge velocity should be provided at the point where cooling wster leaves the disciwt8@

rttucture.

Variations ln dtschsrRe

velocity, with changes In embient cnndltions (e,B.,

river

flow, tidal
hefRht, vatcr level) should be noted.

D.

Shel~ish/~cro~rrtrbr~tes

1.

Declslon Criteria

2.

ution81e

1.

Decision Criterir

2.

matiolmlr P.

Other Vortebrstr Wildlife

1.

Decision Criteria

2.

%atiollale

0.

Brfef Sunmary of Engfaeertrrg and Hydrological Data and Uhp cfie Data sre Supportive of the Predictioar fs the Above

~Cioacl88 VI.

D6onstr8riun Appendices A*

Information Supporting

  • atar lbtionale B.

Informtfon Supporting Representative Lmportmt Specfea Rat Ionale C.

Information Supportiq Biotic ate#orf Rationales

0.

Engineering and BydrOlOgiC8l fnformatfun

1.

hsellne Data (see Section 4.1)

2.

Dfscussiw of Relationship of the Physical Data to the SIOU~J B.ationales aad Choice of.Yadels or Other Predictive

.?fathods E.

Supportiva

Reports, Doctlents.

and Rau Data Not From the Open Scfentlfic Literature

3.5.6 Dlscusslon of Uhy the Raqulred Data are

?kcessary for

?Lking 316(a)

Determfnations 3.5.6.1 Biologic81 Data.

1.

Phrtoplanktoa.

The organisms of the ph9toplaakton comunity are a principal food source for most zooplankton and for rome fish

species, aa9

-9 tiso become important Fn relatlou to Fodustrirl or cecrutid water use if blooms of certain species

occur, vhf&

can hsve a vuisty of dele-terious effects (a.g.,

clog filters and Fncrka

pipes, lmp8rt tastes and odors to water:).

Men9 water

bodies, such 88 the majority of rivers and
strum, cut be clrssiffed 8s "lov potent181

?pp8Ct l.88 for ph@opl8nktoo, rnd relrtivdp Little infonmtioa Is aecess8.r9 for 8 3L6(8) daonstraciou.

Neverthelur, more dat8fhd d&t8 ma9 be necess8~

in some instances if phyto-plankcoa is 8 subscuti8l cospoaenc of food ch~inr rupportfng the balanced indigenous popu-lation or if the the&

discharge F, Libly to cause a shift tovarda nuisance specfas.

Ev en if fftm predictlous mot be zude on the basis of the Increased

data, these data may be aecusuy u

a base for comparison with post-operational ooultorin~

SUFTIJS to detect long-cetm c-icy shifts.

A.

Standing Crop Estimates.

Estimates of standiag crop are useful In determining the tiportancr of ph9toplsnktoo fn the productivity of the impacted body of water.

Productlvit9 is 8 prlnciprl factor Fn definlag high and lov intp8cc areas.

8, Species Comosftion and Abundance.

Tuonomic fnforaatiou will char&ccrrire the ph9toplanktou ssroclated with the dlschrge area 8ud will provide buellae data for detecting an9 shifts Fn species coapositioo

~CCCYRp8Il9%Ilg thermal discharte.

A change in carpositiw ts oftea an fadicatiou that a ouismce condition

~9 occur and that the food usb of the spsta is beFng altered.

c.

Dellneatioa of Euohotic Zone.

The euphoric zone of 8 utter column is the upper layer into which sufficient Light penetrates to penit photosynthesis.

The coaparisou of tttU foam to the conflgur8ticm of the discharge pluu til ladlcrte hov mrch the thermal discharge will affect the produc-cfvlt9 of the lapacted body of meet.

2.

Zooulankton and

!4eroolankton.

The tooplanktoo-maropknkcou comuaity Fs a ke9 supportive component of the 8quaclc

syst6, It U a prinurp food source for La7781 fish urd shellfbh md also wkes up 8 portion of the diets of son adult species.

MUIT bnportaut species of firh urd wild-l..Ue have plm.kconlc life sc8gos (termed mare-plalktou.

co dlffrrenciate cha from org8nlws which are phaktonic throughout their l otFr8 Life cycle).

If 8 huted discharge

'tills or prevents davelopment of the meroplanktoa, fewer adult f-h md shellffsh vI.ll be produced each yew.

Estuarine anvir-nts arm upecirlly cricic81 because of their high productivity md uclliutloa u

spawning and nursery 8ru8 for speclu tith merophnktwic lamse.

Speclflc typa of data 8r8 osencl81 for the f 0 Uovlag rusoas A.

Standing Crop Estlaatu.

Inf omaatioa on stmdbg crop helps Ln defitig the ioportmce of zooplankton 8ndmeroplaakton Fn relation to th8 productivity of the 8ff8Ct8d r~scm.

Aaf s:gPFf:c~t change in staodlag crop becodag evident during posc-oper8cioual moltoring ma9 fndlcate an adverse FPpact resulting from the huted discharge.

1.

Species Comosition 8nd Abundurcr.

These data will ldeatify dalornt

~8x8 la the syscea and prwide boo&e lnfotmstlon for observing changes accompmyfng th.~ldLscharge.

Any l pprUfAtiVe tit8r8tiOll in thr Colrpoeition 8nd relative abundance of the tooplankton and wrcw p&a&m coostlcucu aa imbalance la the c-t7 and lndlcrter posslbh adverse lmp8ct.

Spociu data uad related cheml colerancr fuforaation 8re 8ho useful Ln daveloping therm1 llmlts for the effluent.

c.

SS8SOUS1 v8ri8tiOnS.

Zhi.8 bfO=CiOU 18 SSSSnCid for 8888SBing inp8Ct because different

speciSs, vtch different therm81 tolerances.

becme dcainant l e v8rying times of the put.

It till also show vhen the bportant mere plan&err are present fn the diSch8rge uea.

D.

Die1 and Tidal Dfstributioa.

knpling co shuu die1 and tidal fluctuations Lo depth dlstribu-tioa 8re n8cessrry bec8uSe zooplmakton and aeroplanktoa orgmimrs dmonstr8te distinct vertical mwaneots which ma9 be 8 function of both light Lntenrfty Snd tidal Sc8ge.

The organias 8re chur oulner8ble to 8 dtsch8rge plume Fn v8qing degrees at different tlmes of the day.

3.

H8bitst Formera.

The role of h8bit8t

former, ln 8n rquatic apta remains unquestion8bl9 unique 8ad l ssenrial to the propag8tioa 8nd well-being of fish.
sheUfish, 8nd vildlife.

PUrthemore, h8bit8c

formera, prrticulrrLp In the nurine and uterine l nviromeocs

, 8re 8 Uaited

resource, slow to re-establish, end non-renewable in some cues.

These organims ue subject to d8mege by I discharge plme Fn 8 umber of toys.

Boocad 8qwcic pl8ncs.

including

kelp, aey be dm8ged or destroyed by ac8ssive taaper8tures.

velocities, turbidicy, or sFlc8tion.

Organlms aay be damaged or destroyed by chlorine or other biocides contatied in sinking plmes chat flcm rloug the bottm in vinter.

The-discharges map Affect the natural brlmce of the b8Ctati 8nd tig8e populSclons, fmoriag the bacteria.

This sfcuaffon, in

cunx, could mduce oxptmn Iroels by lncrusing the 4~0unt of decorposing mscerials 8nd could adversely affect habitat f ormers.

The proposed studies represent l minimal data be8e for the evrluetlon of the 8pplicmts l l~ibfllt~

for modification of thermal frument technology requirrrents.

The d8t8 urn ll8C8888r7 for the folloving reasons:

A.

XaPPinl,.

Aaria mapping is required for a

detailed drpiceion of the sprtilr distri-butlou of habitat formats Ln relation to tha projected and actu&l plume configuration.

B.

SoeCies Compositloa.

Species composition lnforastlou

-1 Ldentify the types of hsbltst toners assoclsrrd tich tha dischsrge viclnitt and provlda a buis for derormining chati colersuce levels for selected speciu.

Also, baseline lafomaciou on diversIcy is l sentlsl to dotermine aa7 couporlrionrL shifts In speciea tith the sddition of hut.

Speciu rsplacments urn often the first signa ot 8n ippeadlng ouls8ace condition that ulclmstslp luds to costly coocrol and l rsdicstion programs.

C.

Stsudlun Crop Esti.matrs.

Studlsr to dster-tine suronsl Fncruses In saudlag crop blomsss senve tw purposes.

First, a

oessursd iatreue Fn blomsss (dq weight) of prima-producsrs uver the grovfng suson rsprssentr 8 couserpstlve l stim8te of mt productioa,

  • lch bs turn repr*sant8 a

gmsrsl musurs of tie functions1 well-befng of the hsbltat fotmers and hews ref lscts cbe poceutisl uell-bslxq of the orgsnims dspeadsnt ou tha for their l accssa.

Verl-flcatlcm of thir relstloushlp requires coucomlcant ssapllng of the bablcsc for cbs pressace or sbsencs of the principal sssociacsd spsclss.

A seconds-purpose for sesndin~

crop l stlaetea 1s to ldentifp say sccslsrstsd pnah of mscrophytss vlth lncrurln~

tapersrurss, which could lud to oulsancs conditions.

D.

IdentLiicstfon of Threstened or Eodsnaerrd Species or Dominant Soecles of Fish Depend-em Upou Habitat Formus.

This fnf o~rlon ls useful in usosla~

inpsct fa the csse of rdvusa affscts from hutad d%schrge.

Poceutirl indirect adverse lspsct might ochsmise be orsrlooksd.

4.

SheUfish/Ifscrolnvertebrstss.

Functfoudly the mscrb fmertsbrsts fauna serves aan in atnerous usys.

They are an import&at capooax of aquatic food webs aad aany lmartabratu us directly hportaac co aaa aa a source of hf+qusllt~

proesin snci u bsit for sport snd crrcial f lshesmen.

They modify and candltlon squaclc rubstratss and also rid ln the

breskdovo and dscompositlon of detritus, thus contrlbucfng to dstrttal food

chsias, dscrital transport, snd nutrient cycling.

Estusrlae systms us psrtlcularlp importsat because of their high productivity and their role as ourseq ueu for benthic species.

A therms1 dischrge my hme s variety of effects on ascroirrpertsbrstes.

4wtic Fnsects having an asrgent stage my rater the atmosphere rsrlp as I ruulc of arttilcial hesttig of the use&r.

The rdultr msy emerge into cold air snd die becsure of exposure, becauee food i:sw are not Ln phme, or because normal egg lsyfng condirlons do not

~1st.

L~rp81 fonts of astins Fnverte-brat&s msy dsvelop at such high mseabolic races chat the sumlval of individuala asp be reduced during SStClfng or MCUraciOU.

The-1 dfrchsrgu may stress rcosysrsma sad csuse shifts Ln comunitp l cnxccure such char although the coral bictmsss msy not chsnge significantly, desirable rpeclss my be rsplrced by less desirable species not irrvolved directly in the food chain.

The dls-charge of hut may cause stratification, vhlch IMY dialnlsh dissolved oxygen fn the bottom layer and possibly l liainsts bsnchlc fauns.

Specific types of dsts ars useful for chs folloving reuow:

A.

Stsndlne Crop Esti.msrss.

These l stlmsres are useful f.n dstsmining the fpportaace of sscrolmsrtsbrstss to the productivity of the river or strou being iapscted by the dirchsrgs.

k previously discussed, the productivity of the affected portion of the systsm Ls a kay factor ln defining lw sad high Impact arus.

B.

Canlty Structure.

The total umber of spsclss and the relative sbuudancs of fadivldusl species (both capoasars of divenlty) fa sa squsclc systa sre s

ftmctfoa of the

physical, chaicrl, snd blologicsl characteristlcs of the system.

Escsuss dlverslty ls sensitive CO signlf-lcsnt chsnges ia the chsrsctsriscics of the syatsm (such as lntroducsd hut),

it

C.

csn be sn fndicator of l mlrumsntal stress.

Addltloprlly',

a reduction ia the diversity of s systa frequently rsrults La a diversion of production into non-weful forms.

Drift.

In floving

waters, drift 1s en important surpiv~

mschsnln for many species of macroin-vertsbrstss.

Since it ts a purlve fuacciorr, the drifting orguias are subject to lethal tupersturu occurring Frr e therms1 plme.

DrUt is a stepvise downstream phenomenon.

end many l quecic lnreccs hsve a concomicsat upetresm movment of reproducing edults.

The plume asy thus affect populatious both upetresa end dotrastrem from the aru where mortdfty actually occurs.

D.

!hOP in&.

?!spplng is nscesssr]r for l

detsilrd repressntsrion of the distribution of rubsttstes.

This grsphic Infomclou is fmportsnt Ln the design of sampling

studies, evelustiag the sui~bllity of the systm for various benthic form8
  • PLsh.

The dlschsrge of wste heat can affect fish populsclous in many wys.

The various dscs required us ascssssry in order to provide characterluticm of the Indigenous fish comnnmity for the dsvolopment of the EIS concept, to identify hsbltat utlliutlon by the vsrlous populstlous, end to provide baseline lnformstioa for compsrlson vith post-operstional studlu.

Speclflc dsts psr~sters sre releted to poeeible adverse Impacts fra the-1 dlschsrge:

A,,

Speclss Lsvsl.

fnformstian 01~ the spsvning habits of ladlvldusl species srs necessary for uruslng Impact bscsuss spsmrlng times ssy bs shifted by cheraal sdditioas or hsblucs msy be slrsrsd by scour or by changes in the hsbitse forma comunity.

Rsbltst use by uy life stsge wy slmllsrly be sffscted.

Migration Is an Important factor to coaslder becsuse cherasl dlschsrges can block upstram migrstloa routes of spuming adults snd downstrrar movaasnes of a~11 fish.

Coadltlon factors are

dl-

8.

useful In eval~ution bscsuss hut additiona esy cau8e s loss of condition in certain speciss

, l spscirlly in ulntsr vhea their metabolic race is still high but food supply fs love The lacldeace of dlsuse and psrssltlr my Factuse with s rise In vster tmperature.

Age snd grovth data are helpful la coeparlng affected and ooo-affected

areas, prt and port-operstimsl conditions.

Comnrtlnicv Lsvel.

Dscs on species cowpositioo, relrtivs sbundsnce, and prlncipsl usoci~tions vi11 define the domlnrnc fish species l f chs sits.

~rry epprecirbls

&sage la there permeters slgnds an imbslsacs la the c cmmunlty sad mmey indicate sn adverse impact resulting from the thenul discharge.

Species Fofomstion 1s slso nscs8ssry for dsveloplag therms1 lfmlts for the effluent.

C.

!4soulng.

3sps are required in order to repressat habitat l reu (used for

rpsuaiag, migracloa, etc.)

IIZ relatiou to chs coafigurstloa of the dirchuge

plme,
6.

Other Vertebrate WUdlife.

Dsts vi11 be required fa relstlvely few cuss for this blotlc utsgoq.

In those cases where data fs

requlrsd, the type of d8rr needed is decided by the rpplicsat.

The dsts sslectsd should be the least smouat of dsts oecssssry to cmplscs this ssctioa of the dmoascrscioa.

7, Reorssentstlve Imuortant Soecles.

HekLry predlctions sbout "uhst till hsppea are difficult tithout detailed laformstlou ou the l mriromaotal rsquirrentr of cmltlu or at lust msay populstloas and species.

oentloned in section 3.5.2, it is not l conomiully fssslble to study uch spscles ln srut d&t&F1 8~ uch sits.

Therefore 8 feu spsclss are sshctsd for daretied hborsto~

and literature surrrey.

The dstr requlraents of Tables A and 8 (sectlou 3.5.2.2) us rscomsndsd se beiag helpful co those making 316(s) dsclrloms for the follting rsssoas:

A.

They allov an l etlmstiuu of the rlts of the uus which till be ucluded for ksy blologicsl fuz~ctions and the durstlon of the uclusioa.

B.

They provide the basis for l c least rough predlctlons of high temperature

sumival, heat and cold
shock, rad affects on reproductloo and growth.

3.6 Type III Lov Potsntl8l Impact Detsrminst1ous If the Rsgloasl Administrstor/Director decermiae8, after urly sCrunin#

St~diS8, chat the site is one of lov potsntisl impact for til bioclc c8tegorles.

the applicant my elect to do a "short tom daon-

strstiou, the "Lov Potsatisl Impact Type III Dmonstrscicm."

The basic coacepc 1s chat chose 8ppllcsnts vhlch hsve rites snd proposed f8cllities vhlch obviously pose little poteatisl chrut to the bslsacsd fadigeaous populatioa should be required to do 1s~

utsnsive (and upsasiva) 8qustic studies than other (more poorly sftsd or ochervlse having more poteati8.L for adverse tipact) 8pplicsacs.

Type XII demoastratioas la general are essentially say sIteraw tlve danoastr8tiou type agreed upon by the spplicsat snd the Eegioasl Mmfnistrrtor/Dfrector.

The Lou Potsnclal Lmpact Type III dmoastrseioo proposed here Fs simply a recommended "short fotm" daonstratioo vhich coaslders lnfomstioa from uch SFotLc category.

This ensures thst no major biotic catsgo~

ls ignored Ilcogether 8ad thus ensures thse both the rsgulrcory ageuciss sad the rpplicsat hsve ewmtied Sad

-de judgaasocs for esch biotic cstego~,

but discourages collection of

~~sss or uaaeeded

data, After the prsldminaq screening scucilss sad detsmiastloas thee 811 biotic categories are of lou pocsncisl
impact, rhe spplicsac suanurites this Fnfomstlua (rloug tith eaginsoriag 8ad hydrological dst8 sad say ocher psrtinenc lnfomstlon) fn one m8stsr r8cionsle rnd submits the daPowtrstlon co the Esgloasl Administr8tor/Dlrsctor.

The fonut of the rubmitts1 should be siPll8r to that sugguted ta section 3.5.5 ucspt that the RIS sectious should br deleted.

3.7 Ocher Type III DMOnStr8tiOw (Biological, Eaginesrlng, and Other Dsu)

Those applicmts not qrulifying for a Low Potential Impact d-on-stration snd sot duirlng to do a Type II dmon8trstiou.

may (vlth the urittsn cuactarrsnce of the Rsglonsl Administrstor/Dlrector) do 8 repdrr Type IIf d~ouscrstlou.

& Type III daoartratiou prwldes for the suhmittsl of auy Fnfor~~ion which chs Rsglousl Adainistrstor/Dfrsctor belisvss msy be necessary or appropriste to fsc~ltats svalustlon of 8 psrticulrr dtichsrge.

This dsmonstration also propides for subaittal of any additlonsl iafonsscion which the applic8at msy wish to hsve considered.

Esch Type XXI d~on8tration should conrist of lufofustion and data appropriate co the case.

Docalled defialtion of 8 generally 8pplicable Type III demoa-rtration fr sot possible because of the range of potsncirlly rslsvant fnformatlon; the develophag sophistlcstlon of Fnformstlao coUsctlon 8ud svslustlon tschaique8 and kawtsdge

, and the cue-specific ascure of the dsmonstrstiou.

Prior to undertaking any Type 111 demoustrstfua, the. applicmt should consult tith and obtain chs sdvics of the Ragloud UmiaistrstorfDlrector regudlag a proposed speclflc plan of study md daouscr8rlon.

Dectilon guidance my also be sqgutsd.

If the site ls one of low potentid Wpscc for most biotic categories and/or thsrs are other factors (mall size or volms of wter impsc ted, lov percsacrgs of crou section of rscsivFng vstsr l ffscrsd, etc.1 suggesting low pocsutirl for aquatic

tipact, the dsmon-strscion usy not need to be completed la much more decal1 thsa the Lov Potentirl

-act daonstrstlon outlined Fn section 3.6.

For most other sftes.

the drronstrstion should reflect a degree of detail and degree of proof coapsrsbls to chs Type II dem8trscion (section 3.5).

WhF1e Type 111 information msy be different la thrust sad focusI proofs should be generaLly u

coqrehsu8ive u

in Type If daoustrations and should rurrlt in sirilsr lmels of usursncs of biotic protection.

kch Ftr of laforaation or data submitted 8s a part of a Type 111 d~oaatrstion should be sccompsaled by ratloualss coaparable co thosa mtUaod la sottiow 3.5.1 sad 3.5.0.

The forast of the dmautr8tioo should ba simllsr co thse outliaed la section 3.5.5 except that the US ssctluus should be deleted.

3.8 Decialon Crlterfa 3.8.1 Siotlc Catogoriu Decirh~

critetla for each biotic category are given in section 3.3.

Tha R8gtoml hdainirtr8torfDitrctor vi11 compare the rationales (and other data) for uch bfoeic utrgory tith the decision critarir Fn rectfoa 3.3 and determine if tha decfsiou criteria h-r been set.

3.8.2 Representative

~brportant Species The Ration81 Admfnistrator/DFrector will find the Representative Important Species Rationale and other RIS Fofomatioa co be unacceptable if tha information presented:

1.

1s too Incomplete to allow a clear assesment; of 2..

sugguts (or does not provide s couvFncing argument to the contrary) chat the balanced indigenous popu-lation msp suffer 8pprrcl&blr ham because of:

A.

high taperature sumfval factors;

8.

hut or cold shock;

c.

improper temperature for

grovth, dmelopmeot, and reproduction; or D.

the aclusioa of arus and volmnes of water fror the above functions In critical ccmbtnr-tlous of time

&ad spea.

3.8.3 Resource Zones ln Aquatic Systema Ibe stratagles for reproduction,

growth, sad surplval of the Fodigaxour bfou of frrrhmtrr

, l stuariae.

and marine ecosystems are keyed to spatial and taporal variatfons ln the structure (physical and chmical) of thm l uvironunt rtris structural variation fa the euvfron-

ment, l

it rolaeu to tha biota end to uses by ma, has led to the coocrpt of ruource or

@value zuaes for usa la maltaacing or predictfng the L-e1 of dauge to quatic systems from human rctivitles.

Since such zouea rev Fo location,

aim, semen of utilization, and criticality of fuactlon
  • thefr identFflcatlon is tiso urefti ln QlanoAng purposes such u tha ritlng of olxing roaee for huted dirchargu.

Appliut loo of this concept involves the ldentlflcatlon and mapping of resource

toaas lrrd criclcil fuactlous

  • so that mixing zones can be sited in at-having mIniSum adverse impact 00 8qtutlc resources.

hslc precepts necessary to spplfcrtion of the resource malag concept Include:

I.

2.
3.
4.
6.
7.

111 dirchrgu Fn tha vater body segment must be cooridered.

T&o acceptable uu of &uge is rehtad to the ruource vrluo of tha impacted aru.

In casw where tha l ffrctr of the dfrchrrged ussts are tr8nsl

tory, the timing of oixiag zone use is related to suso~l utilization of the Impacted UU.

The accepuble aru of damage Fs related to the coul mount of l qulvclent l ru avaflable fn cha uacsr body segment.

brus supporting critical functions should be moldad (note if-3 above).

Acceptable damage lr related to species geaerrtioa time and/or frctmdlty.

For 8 given loatiou.

the auller the dauged l ru the bettsr.

3.8.3.1 Tv~ic8.l R8rourco Vrluo Zones.

The foll&g mnotrted list Frrcludes resource vtiue zones uhfch should be considered in the deslgaetion of mixlag tonaa for huted disckrgu:

1.

SPmnlnn Sites l

Reproduction Is otwlously a

critIca function in the sUrpiv4l of l

sprcies.

Im factors of fsportaace Frr duQwtLng mixing zome are the oftm LimIted area of habitat ruitable for tha spmuiag of a speciea and tha limited tka d-g which rpwulng occura.

A zone hrping l

critical fmctiod is me that prwlder 8 -jot tm-tributfon to prinrq productivity or ti oue that Is limited In utent rad necersaq for tha propagstlon urd sumiv8l of A species.

ff the availability of spmntig rices for an Fnpor-tant species Is Limited ln

extent, then such arus can gmmra.Up be avoided and should aot bo dulgnrted for the dispoul of uate hat.

If it is totlllp iapouible to mold such alms, then the use for mixing should be timed to avoid cho period of speming.

Seuooll avoidance is only fusible ti the effects of tha disckrga are transitory.

2.

Food-Producing Are88.

The productivity of aquatic systaa is directly related to tha inputs of organic Meter from green plants.

Tha frecfloatFng, relatively motile microscopic plants (phytoplaakton) are short-llvad tith r8pld tumwer r8tes and thw May not be critical in term of mixing zones for heated discharges.

me rooted vucular plants and macroalgae (m8crophytes)

which, tith suitable substrate, grow from the shoreline to the depth of the photic zone (depth to which 1 percent of incident llaht penetrates) are relatively long-lived and perform a nmabar of "crittcal functions Fncluding:

A.

The production l d aport of vast qmntltles of orgmic fuel la the foln of detrlcua-IOU ue among the most productive plant cmttiu knows.

B.

As a result of an abundance of food and cwu.

thay aeva u

nursery arua for the Immature stagu of many finfish and shell-fish.

c.

The trapping aad recycling of nutrients.

D.

The stahlllrrtiou 8ad btidFng of substrate.

Included Fn the c8tegoq of food-producing area are the ~tbade--the interf8ce between terrutrial and 8vtiC eaviromeuta-vhlch, fa addition to the ebuve muereted functionsI serve as freshnter rrchugo arau that motet freshmter Fnputr to labs,

tivus, and utuariu.

Bauueo of the man7 Important and criticd.

functions

perfomed, the umtlanda urd other 8rus of macrophytr production in aquatic sptsms should be avoided when planniag and designating mixing zones for heated dischr~u.
3.

NursorT be&S.

These ue arua having an sbuadmce of food md cwer for the growth snd development of tha urly life stages of may finfish sad shellfish.

Since th8 l rly life stages ue tha puiods of win-gsouth rates 8ad muima Vuherbbtilty to predrtloa, the avallahifit7 of sulcrble uursery mus aey be the baltlag factor dotermialag the 8buadurce of 8 species.

Thou, the zones of freshater, l stu8rino.

8ad MrFoe scosystems identified u

nursery l eas h-e high resource value sad should genrrllly be molded when duignrtlag mixing zoaes.

0.

!iinr8torv P8thvms.

krcluded La this utegory are routes utFLised for IQPmeUt to md frm SpAMing

grounds, f l ediag
grounds, sad aursaq areu;
thus, the Itie stage lmofved may be adult,
egg, 18svd, or juvaaa.

In soma cuu*

thus pbthV8y8 are very cfrcmrcribed; end total bloekrge could result Ln atumla8tioa of 8 popuhtioa la the uter body se-at.

Since these pbthW8p seme l

"critlcrl fuaction,w they hroe high resource value aad should be molded ubea plmalng the discharge of usts hut.

In situations where the umga of

~athuys is s~soad and the effects of tha discharge us transitory, drleteriow effects aa be rooided by proper timing of dispoul.

ti terms of povmr

QhUtS, this sebsod us&g@ ir inpOtt&at Ln wbhbting the furlbtiity Of sumud mode operation of coolfng devices.

A coarid~t8tiaa of zoam crlt1c.d to endurgarad

species, wage by nterfwl sad
vLldlKe, aad shellfish beds ue sddlcioasl rosourc*

+elues that must bo considered tiea selectLag mIxLag zones for hutrd dischrgu.

3.a.3.2 Methodolon.

Am dlmxmsed 8bme.

discharge sites should be selected which vLU have the lust impact cm Fnportaat resource zmes sad criticti functioas

.n The 8~lfCbti~

Of this COUcept t0 tha s~rcti.oo of mlxiag tones Is 8 stepvisa procedure lmolviag:

- A dtiinitioa of thr tlltSr body l gmeat.

- Solectfoa sad listLag of 01s lrr tha water body segmaat sad sa l aaor8tioa of their strat8giu for propag8tloa urd sumivti.

- Preparation of 8 188~ of tha water bod7 segment shoving zones of resourcs

use, including arus supporting "critical fuxlctlon8."

- Amignmeat of 8 noericll v3ue.

per unit au, to uch resource 1288.

- Superiupose predicted plmes on resource mps Snd select Sits8 hmFng lust a&verse Impact oa resource values.

1.

Uater Body Se-eat.

In l&es and l stuarles Wing discrete rad usFly defimble QhySiC8L bouadrries~

the duignrtioa of the uter body segment VFLL be 8 straightfomrd process.

In Large utu bodies such 8s the Crut

LA8s, open coastrl
sites, aad

-jot river systema hrPLng no dSf laable and rruonablp sized phySica bouad8rle8, the seleccloa of the uter body segment may pose 8 dtificult

QrOblm, Where they h8ve beea defined, the water body segments decerpined by the State Continuing Pl8aaiag Process uader section 303(e) of ths Act till 8ppLy.

Tho susoa81 movments of important species of rqtlrtlc life muat be considered when deflnl.q a water body segment.

The spaualag

sites, nursev
situ, aad rdult h8bitat sites of many freshrrrter 8nd marine species (exmples laclude sa~oald~~
shrinps, Cr8b8,
spot, croaker.
flounder, white
bus, nlleye, etc.)

SS~

bS tidely Sap&r&ted sad iaclude phy~lc8lly dlffereat ater bodiu.

SeSmlngly slight pacts In the different uua urSd by such species may result ia effects

which, if considered cuulatlvely, uould be iatoler8blr.

To svoid the potenttiLLy dlS&StrOUS consequences of QiSCnS8.L CoWider8tlon of adverse

impacts, the mter body defialtioo should be sufflcleut to coaslder potentid
  • acts throughout the contiguous r8age of poprrl8tiuns of imporuat speclu.
2.

Remasentative Important SQecles.

In

geaenl, this should lacludo 811 specler 8ad cm ities of speclu that arm critlc8l to the functioning and the productivlt7 of the Squetic systa defined by the nter body repent.

Sp8cific81l7 Fncluded ar8 speciea or cm ities which are:

- Curcid.ly 8ad/or recrutioarlly vrlruble.

- Thruteaed or l udurgored.

-7o-

3.

- Primary producer+-particularly thosa comunitias supporting rrlat~valp long-lived, flxed-location species thee perform aulriple serrrlces (fom end stabFTise

habitat, produce organic
utter, prwlde cwu)

- Necuury (e.g.,

in the food chain) for the well-beiag of species determlnad in 1 and 2 above.

Included here are the ruvengara end decoqioeerr criticd to the breakdoue aud utiliutlod of organic aattar.

!dau Preoaration.

tips of the water body segment

should, as a miain~um, lncluda depth coucours

, adjacent m elands, eributariu

and, ln l stuarlae sltuati~us, the average stiinitp gradient and srlinlty straclflcatlcm should be visually expruaed fn crosa secrlon.

Rasource zmu and areaa perforahg crltlcal functiow*

should be superimposed on the same or on a siailarly scaled aaP-To avoid overlapping

detail, it may sometImea be duireblr to prepare separate nmps for selected sp8c ies.
0.

AssimlmMt of Values.

Once the resource moues and moues support Frrg crlciul funcrioas have been identified and mpped.

thea ollues per unit 8ru can be assigned.

If the effects of the dlscharpe are traasitoq and the use of the resource zone is

seasonal, the valuu may change throughout the yaat.

If the ame mpporting 8 critical funcfion ir limfted ia utant and fs a function vhich limits tha abundance and/or ru.mlval of a species, then chat mm should be given a value of fnfinlty and thus excluded ftoa mixing zone use.

Other zones aup bo aas%gned valuu accordlxq to chair 8ru and chelr la~ortaace in

~fntaiaing differeat species.

3.8.6

%stsr" Eatl&e, Daonstratioo Irr 8 Vholr nm EagioIa mtrator/Director VFll find the dmouatratioo succustul K:

1.

It ia fouad to be acceptable la all of the cousfderattons outlfnsd Frr stepe 20-25 of the decision crafn (section 3.3.2).

2.

There is no cunvlnc~

evidence that there till ba daage to tha bjanced, indigenous c-

Icy, or c-lty tom-
poueats, tesultia~

in ruch phenomena aa thosa identified ln the definition of l ppreciable ham.

3.

Receiving water temp~raturss outside any (State weal+

llshed) mlxfng zone will not be in excess of the upper clapuacure limits for

rumivti, growth, and reproduction, as appLtcab Le. of an9 RIS oceurriag Lxx tha tecelvfag nter.
4.

The receiving vatan are not of such qualit that Fn the absence of the proposed thermal discharge ucesslva gronhs of aulsance orgaaisms wuld uka place.

5.

A zone of paeeage till not be Impaired to the atant that it vill not provide for the uoraal am-me of populatioas of RIS, d m+nrnt rpeciea of fish, aad l coaomlcally (ccmsrctil or recrucloaal) species of fish.

shellfish, and uildlffe.

6.

There till be no sdvuse Impact on thrutened or l udangered species.

7.

Thue till be no dutructluu of ualque or rare habitat tithout a detailed and comfacirrg juatlflcatloa of uh9 the dutnxtlou should not consclcute a buls for denial.

a.

The l ppllcsnt*s ratiouales present convincing smuries explaining rrhp the planned use of biocfdu such as chlorine till not result ti appreciable bara to the btianced bdigeuous popuLatlou.

3.9 Non-Predfctfve lhmonstratloos (Type I,

Absence of Prior Appreciable Earm) u of the d~onstraelcma done for

!IRC under the PirPorendm of U~dersteadiag are predictive.

Therefore, the predictive sections of this document mre conplated first.

The EPA and other l geacles may decide co mount a separate effort Co rsvire thlr section at a later date.

In the meansCIPe, moat of the tequlrmeots of swtim 3.2 (Decision Trald

, 3.3 (Early Screening Procedures)

, 3.5 fTme II) and 3.6-3.8, are applicable for deterainiag Lck of appreciable ham (Tme I drosstrations).

The prtiv Lmguege which is inapproprtice and should be deleted is the language on predictive

factors, predictive
models, and Representative Important Species (rectloas 3.5.2, pafts of ocher
sectloar, and section 3.8.2).

4.0 Definitions and Concepts The definitions and descriptions in this section pertain to a number of terms and concepts which are pivotal to the development and evaluation of 316(a) studies. These are developed for a general case to aid the Regional Administrator/Director in delineating a set of working definitions and concise endpoints requisite to a satisfactory demonstration for a given discharge.

Adverse Environmental Impact Adverse aquatic environmental impacts occur whenever there will be damage as a result of thermal discharges. The critical question is the magnitude of any adverse impact.

The magnitude of an adverse impact should be estimated both in terms of short term and long term impact with reference to the following factors:

(1)

Absolute damage (# of fish or percentage of larvae thermally impacted on a monthly or yearly basis);

(2)

Percentage damage (% of fish or larvae in existing populations which will be thermally impacted, respectively);

(3)

Absolute and percentage damage to any endangered species:

(4)

Absolute and percentage damage to any critical aquatic organism (5)

Absolute and percentage damage to commercially valuable and/or sport fisheries yield; or (6)

Whether the impact would endanger (jeopardize) the protection and propagation of a balanced population of shellfish and fish in and on the body of water to which the cooling water is discharged (long term impact).

Aquatic Macroinvertabrates Aquatic macroinvertabrates are those invertabrates that are large enough to be retained by a U.S. Standard No. 30 sieve (0.595-mm openings) and generally can be seen by the unaided eye.

Area of Potential Damage The area of potential damage for RIS is defined as that area of the thermal plume enclosed by the isotherm which coincides with the appropriate (designated by the Regional Administrator/Director) water quality criteria for that particular RIS. This area can be determined from the plume rose data specified in section 3.5.3.

Balanced, Indigenous Community The term "balanced, indigenous community" as defined here is consistent with the term "balanced, indigenous population" in section 316(a) of the Federal Water Pollution Control Act and 40 CFR section 122.9.

A balanced, indigenous community consists of desirable species of fish, shellfish, and wildlife, including the biota at other trophic levels which are necessary as a part of the food chain or otherwise ecologically important to the maintenance of the community. In keeping with the objective of the Act, the community should be consistent with the restora-tion and maintenance of the biological integrity of the water. (See section 101(a).) However, it may also include species not historically native to the area which:

1.

Result from major modifications to the water body (impoundments) or to the contiguous land area (deforestation attributable to urban or agricultural development) which cannot reasonably be prevented, removed, or altered.

2.

Result from management intent, such as deliberate intro-duction in connection with a wildlife management program.

3.

Are species or communities whose value is primarily scientific or aesthetic.

For purposes of a 316(a) demonstration, distribution and composition of the indigenous population should be defined in terms of the population which would be impacted by the thermal discharge caused by the alternative effluent limitation proposed under 316(a). A determination of the indigenous population should take into account all impacts on the population except the thermal discharge. then, the discrete impact of the thermal discharge on the indigenous population may be estimated in the course of a 316(a) demonstration. In order to determine the indigenous population which will be subject to a thermal discharge under an alternative 316(a) effluent limitation, it is necessary to account for all non-thermal impacts on the population such as industrial pollution, commercial fishing, and the entrapment and entrainment effects of any withdrawal of cooling water through intake structures under the alternative 316(a) effluent limitation. The above considerations will then make it possible to estimate the true impact of the thermal discharge on the population.

-7s B&~&UC&d, fndlmnous Poouhtlon (3IP)

?or the purposes of 316(a) dsmoascr8cioar~

the term

balanced, lndi~snous pOpId&CiOn" is synoaymow tith the tam b81urc#d*

tndigsaou8 cmitj' as def lnsd sbcme.

Cowuni C?

A czarnity Fn general is ury sssrrblsge of populstioas lfvtig Fn s prsscrlbad us8 or physlcti babltat; Ft is an orgsolzsd untc to the utsnc that it has ch8rscrsrFsrics rddftioorl to its Fndfvidu81 and populaclon components, and f~nctforrs ss s unit through couplsd sstabolic cransf ormations.

Criclc81 Function tons A zone Chat prwldss 8 major coacrlbucion to prinun productivity or fa one chat is lfmitsd in utsnt 8nd aecsrs8ry for the propagation and SuPivsl of s speciss*

Director The Director of chs Strcs NPDES permit program in chose Strrss vhich have been delsg8tsd th8 progrsm by EPA.

Dlschame

?~clnlCv Thr discharge vlcinitj ir chrc aru described by 8 r8diUS chat 1s l.S tines the maxm distance from point of disc)urgs to wIthin l°C of ablent.

Tim ares of the dischargs vicinity Fa bssed on 8 30-50X v8ri8cion La cha prediccivr therm81 plume modeling.

bominsnt Sueciu Dominmnt sp8cies are dsflned 8s any species rsprssa~clng f iv8 percart of the tocsl n-bar of orgmisu fa the maple colleccsd according to roe---nded sup1 ing p rocsdures Estusrv An l scuat)

Fe dsff.ned u

a semi-enclosed coucal body of water which hu 8 frea connection vlth chs open rea;

t is thus strongly affected by cldrl
8ction, end tithin it 8ea utsr Ls mlxsd (and usu~llp Qe8sur8bly diluted)

Rich fresh

  1. tar from land drainage.

It may be difficult co pr8clsal~

d81iU88tA the botandaq of l scwrine rad river

h&ftatJ b

the uppar ruchrJ Of J ftJJtl

-tJr river diJc&rging into urine rrPtJrJ.

Zhe fatarfrC8 tJ

@rtSrJlly J d-c entity 98-g dlily end rusoarlly In geOgr8phical lac~clan.

IO such

CJJSS, determiru-clan of hJbiCJt boundaries should be l sc~bllrhed by autu~l Jgrrmeat ou a cam-by-cm8 b-18.

Vhere boundary determinscion FJ not clurly established, bath artuev Jnd river tmbitJt bialoglcrl survey requirrears should be SltfJfisd ia J

combimd d~ceralmtion far emiranmmtrl effects urd best available crchnolag7 far

~lmirtng adverse impact.

Par Field Effect A far fisld affect is any perturb~tiao of chr aqrutfc l caryrtm outside of the prims-study Jru that 1~ attributable co, or could ba

upacted, from tha the-1 dlschmgo (taking fnta

~ccaunc chr fntersctfan at chm therm1 campanent tich ocher palhtm~cr).

Par Firld Study Area (mSA)

The far field study area ir that portion of the receiving

  1. car
body, uclu8ive of the prima-study
area, In which impmts of chs the-1 discharge ad ftr fateractian vtth other pallut~nts are Ifhly to occur.

The aru sLl1 include:

L, The zones uherr th8 habitat8 are campersblr to thou aistin~

ia the prImarT rcudy

Jru, and
2.

The wnes lnhabltrd by popul~tlans of orgasms that may encounter the the-1 rffluanc during their life hlstoq.

Tim actual boun&ry of the far flrld study aru should be agreed upon by the Region&l Admlnistr~cor/Directar.

FhbitJt Formerr Ilabitat forwrs are my

~8abl~ga of plants and/or mills chuactwized by J rehtivrl~

ru8ilJ Life stage ulth aggra8aeed distrikrtioa ad functioning U:

1.

A lhiry sad/or fomerly lfvin~

substrate for the ettuhmt of rpibiacr; 2,

Uthar a direct or indirect food source far the productlou of shellfish,

fish, and uildlifr;

-77.

3.

A blalogfc81 mrchanlsau far the st&lliutloa snd aodificJCioa Of S8din8ntJ uid cancrlbuclng to the devela~ene of roll; L.

A nutrient cycling path or trap; or

5.

SpecFflc rites for sp8mlrxg 8nd providing

nurses, feading, and cover arus for flrh uzd 8hellfirh.

HJcralmertrbtJtrr Far this

document, the term

"~crainverrebrstes" my be considered syuonymous vich aquscfc zecralmertrbrates ss def Fnod Jbave.

For the putpasos of thlJ document, rerophnkton ara defined u

pl8nktonic life stages (often eggs or 18LP88) at firh or iavenebrstes.

.igmnts 8re nano~anktonlc arg8nlas chat 8.m not pemment ruldJntJ of the l ru but p8ss through the dlsch8rge zone md vater contiguow co it.

Ewmples include the upstrem m.lgrJtlon of spwnlng srlmon Jnd subsequent doun8tre8m migrstioa of tha juvenile

fonts, or arg8nlma th8t inh8blt sn aru only it c8rtd.n tIma far feeding or reproduction purposes.

Yulsance S~eclu Any aicrobisl, plot or en-1 species which lndlutes J hJJJrd co l calo@zal balaace or hu8n hulth lad wmlfara chat ir not naturally a dnriruat fucura of the iodigenow c -icy 887 be considered s

ltuiu8ce spuiss Bdsaacm speciu of phycoplrnlrtou fnclude those rlg8e t8x~

which la high concentr8tbn Jr0 kaotm co produce

toxic, foul
tasfing, or odorlfsrous cmpouads to 8 degree th8t the quality of
  1. far is impaired.

Ocher Vertebrate Wildlife The term othar oortsbrscs tildllfe includes tildlife which are vrrtebrstes (t.e.,

duclu, gusa, unacees~

etc.)

but not f-h.

-78.

Phrtoplmktaa Plrnc micraorg8nfru such aa certain

slgse, living unrccachrd Fn the uscer.

Plankton Org8nlms of rol8c1vol~

au11

~1~8.

aostly microscopic, ch8c either hsve rel8clvelp

~11 powrs of locomotion or drift in tha waters subfact co the action of uwu 8ad curreacs.

Prdmsm Scudv Area The prhsry study aru FJ the l acire geogr8phic aru bounded l nrully by the LOCUJ of the ZaC Jb<roe mblsnc rurfrcs irocherw (decermlnrd ln sectlou 3.3.3.5) se chase tsocherw ato dircributed throughout sn snnusl period.

The ref8r8ncs obienc Caper8cur8 shall be recorded 8c 8 location agreed upan by ehe Rsgloud klminircr8cot/

Director.

Princiosl

?48crobsnchle S~e~iss Princlpll mscrobenthic species sre chase damhsnc aacrofn-V8rtObr8C8S Jnd pl8ncr

~ccached or resting on the bottom or livtig In bottom redimontr.

tipples

fnclude, but me not llmlted to, crusfacuna,
oollurka, polych~8cu.

crrtain m8crodgao, rootad muruphycw, end cord.

Ragl0~81 AdainlSCr8COr (Director)

Thir term r8fsrs co chs Ilegio~l Ad.miaiscracar of the U.S.

EPA uc8pc th8t ia chess Sc8ces uhich h-e bo8n delotrc8d the NPDES parrit pro#rm, tha cam nfsrs co tb8 Dlroctor of the State NPDES pamit prqrr.

IWranatstire, Lrportsnt Ssacles (IUS)

Raprrsaacative, isportanc species are chose spec1ss which 8re :

represenc8tive, fn terns of tbelr biologicsl requir~eafs, of l

brlurced, ladigenous corunity of shellflrh,
fish, sad tildllfr Fn the body of #tar into vhlch the dirchar~e la udo.

Speclflcrll+

included are those species which are:

-79.

1.

ComerclJlly or recraJtlanJllp o8luabls (I.e.,

vichin the Cop cm species 18ndad-by dollar vdu*);

2.

Thruceaed or l ad88gered;

3.

Crlcful CO the stnzcuro lad fuactlon of chs ecological system (e.g.,

hsblcac tonuts);

4.

Potratirlly c8pable of becuming

~acslizad IlUiJAtlCS Sp@CiSS;

5.

NeC8JSAq la the food chain for the veil-being of JpscieJ determined In l-1; or

6.

Represencsclve of the the-1 raqufreaencs of important species but which themselves nuy aat be hapartaac.

Shellf irh nil mollusks 8nd cmst8cuns (such Js apscers,

elms, shripp,
CrJfliSh, And CrJbs)
which, in the cuurss at chair Ufr
cycle, con-scicucr fmporcanc components of the
beachfc, plmkcanic, or nakcaaic frun8 fn fresh and salt ucor.

ThreJCaned or Endannered Specles A thrucaaad or l ad8ngered specias ir 8ny pllnc or Jnla8l that hu besn decrrafaed by the Smretwy of Commerce or th8 Secretary of the Interior co be a thrucened or l admgered species pursrrrac to the Eadsagerad Specfss Act of

1973, aa mended.

Water Bode Sement A Icer body segnnt in s porclon of 8 basin the surfrcr

~c8rs of which Me cocoa hydrologic chsrscc8riscics (or flow regtdatfua pattams);

comon meural

physlcsl, chcsl, Jad blolo@csl procssses

, sad which hsv8 cocoa ruccloas co acrmsl 8crUs.

e.g.,

discharge of pollucurcs.

Where they hsve bun

dafinrd, the uter body segmsacs determined by the Scat4 ContIming Planning Process under l Sction 303(e) of the Federal Water Pollucloa Control Act 8pply.

Aaims1 micraorgsalsas l1.h~

unsccsched in wecar.

me7 fnclude rsull

~rusc8~~

such JS d8phnlJ and

cyclops, 8nd Jiagh-celled JniPulr such 8s protozoa, etc.

GUIDANCE FOR EVALUATING THE ADVERSE IMPACT OF COOLING WATER INTAKE STRUCTURES ON THE AQUATIC ENVIRONMENT:

SECTION 316(b) P.L.92-500 U.S. Environmental Protection Agency Office of Water Enforcement Permits Division Industrial Permits Branch Washington, D.C.

May 1, 1977

TABLE OF CONTENTS I.

II.

I I I.

IV.

V.

VI.

VII.

VIII.

IX.

X.

XI.

XII.

Statement of Problem Introduction Information Flow Chart Decision Criteria Definitions and Concepts Study Format Detailed Study References Site Description 1.

Site location and layout 2.

Meteorology 3.

Additional stresses on water body segment 4.

Cooling water intake structure Source Water Involvement 29 1.

Hydraulic features 2.

Probability of entrainment Biological Survey Requirements - NEW INTAKES 1.

Sampling design 2.

Sampling methodology 3.

Follow-up studies Monitoring Program - EXISTING INTAKES 1.

Sampling program --Entrapment-Impingement 2.

Sampling program -- Entrainment 3.

Follow-up studies Impact Assessment Page 1

4 6

11 15 23 25 26 33 39 45 1.

Biostatistical analyses 2.

Predictive biological models 3.

Community response parameters 4.

Biological value concept

TABLE OF CONTENTS continued XIII.

Acknowledgements XIV.

Literature Cited Page 55 56

No.

1 2

3 LIST OF FIGURES Figure Page 316(b) Flow Chart 7

Existing Intakes 316(b) Flow Chart 8

New Source Intakes 316(b) Flow Chart 9

New Intakes (Not New Source)

-ii-No.

1 LIST OF TABLES Table Example Data Matrix (Species I) Data Sheet (Spatial Compartment [A])

Page 54 I.

STATEMENT OF WORK The Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500) require cooling water intake structures to reflect the best technology available for minimizing adverse environmental impact.

Cooling water intakes can adversely impact aquatic organisms basically in two ways. The first is entrainment, which is the taking in of organisms with the cooling water. The organisms involved are generally of small size, dependent on the screen mesh size, and include phyto-and zooplankton, fish eggs and larvae, shellfish larvae, and many other forms of aquatic life. As these entrained organisms pass through the plant they are subjected to numerous sources of damage. These include mechanical damage due to physically contacting internal surfaces of pumps, pipes and condensers; pressure damage due to passage through pumps; shear damage due to complex water flows; thermal damage due to elevated temperatures in condenser passage, and toxicity damage caused by the addition of biocides to prevent condenser fouling and other corrosives. Those organisms which survive plant passage potentially could experience delayed mortality when returned to the receiving water.

The second way in which intakes adversely impact aquatic life is through entrapment-impingement. This is the blocking of larger entrained organisms that enter the cooling water intake by some type of physical barrier. Most electric generating plants have screening equipment (usually 3/8" mesh) installed in the cooling water flow to protect downstream equipment such as pumps and condensers from damage or clogging. Larger organisms, such as fish which enter the system and cannot pas through the screens, are trapped ahead of them. Eventually, if a fish cannot escape or is not removed, it will tire and become impinged on the screens.

If impingement continues for a long time period the fish may suffocate because the water current prevents gill covers from opening. If the fish is impinged for a short period and removed, it may survive; however, it may lose its protective slime and/or scales through contact with screen surfaces or from the high pressure water jets designed to remove debris from the screens.

Delayed mortality to many species of fish following impingement may approach 100 percent. For some species of fish, the intake represents a double jeopardy situation where the same population will be subject to increased mortality through entrainment of eggs and larvae and additional mortality to juveniles and adults through impingement.

The data presently available on the magnitude of entrainment losses at existing electric generating stations, although just beginning to accumulate, reveals very large numbers of fish passing through some facilities. Results of one of these studies, conducted at the Detroit Edison plant on Lake Erie near Monroe, Michigan, indicate that 400-800 million fish larvae may have passed through that plant during April-August 1974. 37 The fate of these larvae has not yet been determined but the data from previous years indicate that some may have disinte-grated during passage through the plant.

Other studies have shown that mortality may be high among fish larvae that pass through plant cooling systems 4, 38 due mainly to mechanical damage or shearing forces. 2, 5 The circulating pump has been identified as the most likely site for mechanical damage. 4, 5 Coutant and Kedl 39 in a simulation study have demonstrated that the condenser tubes are an unlikely site for mechanical damage to occur.

A large amount of data are available on the magnitude of entrapment-impingement losses at cooling water intakes. The data available on fish losses at Great lakes cooling water intakes have been summarized by Edsall. 40 He reported the following losses:

About 92,000 pounds of gizzard shad at the Ontario Hydro Lambton plant on the St. Clair River in 6 weeks during December 1971 -

January 1972; 82,187 pounds (nearly 1.1 million individuals) at the Detroit Edison Company's plant on Lake Erie near Monroe, Michigan between April 1972 and march 1973, when the plant was operating at less than maximum capacity; 36,631 pounds (584,687 fish) at the Consumers Power Company's Palisades plant on Lake Michigan between July 1972 and June 1973, when the plant was operating at about 68 percent of its total capacity (the plant is now closed cycle); an estimated 1.2 million fish (no weight data given) at Commonwealth Edison's Waukegan (Illinois) plant on Lake Michigan between June 1972 and June 1973; 150,000 pounds of fish at the Ontario Hydro Pickering plant on Lake Ontario in April-June 1973; 659,000 fish (weight unavailable) at the Nine Mile Point plant generating unit number one on Lake Ontario during intermittent sampling from January-December 1973, representing an estimated total of about 5 million fish at unit one for that period; and about 67,950 pounds (929,000 fish) at Commonwealth Edison's Zion plant near Zion, Illinois, on Lake Michigan during September-December 1973 and Yarch-June 19?&,

vhen the monthly conlinq water flov averaged I?nly about i5 percent of the rnaximllm c;lp;lclty.

Approxindtely 1:.B?fln f isil of LG species vcrc imp tnyrd LC lqTd

.qt the Northern States Pover Prairie Island Plant rrn t!lto liSsiSS:;F:

?fver.

Al The Conmonvealth Edison Companys Quad CLtlrs

!.lnt,

iz;
,nr
E;
ttjip~t
River, impinged an estimated l.H qLllin?

The extent of fish losses of any given quantity needs to he considered OIT a plant-by-plant

basis, in that the Langu,+qe of ser-t:

314(b) of P.I..92-500 requires cooling vater intakes CO -inir?lze adverse environmental impact.

Regulatory agencies should c lc.lrl,:

recopnlze that some level of intake damage can be acceptable if c.J:

damage represents a minimization of environmental impact.

II.

INTRODUCTION This guidance manual describes the studies needed to evaluate the impact of Cooling water intake structures on the aquatic environment and allow for determination of the best technology available for minimizing adverse environmental impact.

The 1972 amendments to the Federal Water Pollution Control Act (P.I,.92-500) require in section 316(b) that:

Any standard established pursuant to section 301 or sect ion 306 of this Act and applicable to a point source shall require that the location, design, construction and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.

Sections 301 and 306 of the Act refer to the development of effluent limitations and dates for achievement of various standards of performance for existing and new sources of waste discharges.

The steam-electric generating point source category is the largest user of cooling water in the United States and this guidance manual is directed primarily at this category.

Other categories of point source dischargers such as iron and steel and petrochemicals for which intakes withdraw a major portion for cooling water would also require such a determination.

This document is intended for use by the U.S. Environmental Protection Agency (EPA), State water pollution control agencies, industry, and members of the public who may wish to participate in such determinations.

The overall goal of conducting intake studies should be to obtain sufficient information on environmental impact to aid in determining whether the technology selected by the company is the best available to minimize adverse environmental impact.

In the case of existing plants, this goal will be accomplished by providing reliable quantitative estimates of the damage that is or may be occurring and projecting the long-range effect of such damage to the extent reasonably possible.

In the case of proposed intakes, reliable estimates of any future damage are to be obtained through the use of historical data, pre-operational models, and the operating experience of other plants.

General guidance is provided for the development, conduct, and review of surveys designed to determine and evaluate that portion of aquatic biota potentially involved with and subject to adverse environmental impact from cooling water intake structures.

Guidance is also supplied for the analytical methodology needed to determine the extent and importance of aquatic environmental impacts.

The environment-intake interactions in question are highly site specific and the decision as to best technology available for intake design, location, construction, and capacity must be made on a case-by-case basis.

Information is not provided on available intake technology.

Such information is contained in the Development Document for Best Technology Available for the Location, Design, Construction and Capacity of Cooling water Intake Structures for Minimizing Adverse Environmental Impact, 47 which also contains additional references on intake impacts.

Information is also not provided on non-aquatic impacts of cooling water intake structures.

This document will be most useful in situations where siting and intake design have not been finalized; however, procedures to determine and evaluate the environmental impact of existing cooling water intakes are included.

Readers are cautioned not to depend too heavily on this manual.

More specific advice as regards procedures and individual site evaluations will be available from the agency staff responsible for decision making and the biologists who best understand the area in question.

III.

INFORMATION FLOW CHART The development of 316(b) programs is a new procedure for many regu-latory agencies and user groups.

To assist in an orderly processing of data requirements for both existing and new cooling water intakes, flow charts have been developed (Figures 1, 2, and 3).

The process for evaluating existing intakes (Figure 1) is intended to be flexible so that the data requirements can be revised based on an agency determination of the potential for adverse impact and the availa-bility of data on the plants intake.

It is expected that for some existing plants, sufficient data may already exist to make further studies unnecessary for a decision regarding best technology available. The process for new intakes (Figures 2 and 3) is more extensive because of requirements for data acquisition and models prior to site review and approval by the appropriate regulatory agency.

Proper intake siting, in many cases, is the only way of minimizing adverse environmental impact.

To obtain the necessary pre-siting perspective, the utilization of valid historical data and local knowledge is essential.

A one-to three-year biological survey is required to obtain, in a preliminary fashion, the necessary data for assessment of environmental impact.

A one-year survey is generally of limited value.

However, in circumstances where substan-tial valid historical data can be presented and the intake can be represented as having low potential impact, a one-year survey may be acceptable.

A decision as to the appropriate number of years of pre-operational data that are necessary will be made by the agency upon the submission of proposed study plans and their justification (see flow charts, Figures 2 and 3).

The type and extent of biological data appropriate in each case will be determined by the actual or anticipated severity or adverse environmental impact.

Since the expected impact will vary, it is not expected that each case will require the same level of study.

A decision will be made at the outset by the agency as to whether the intake has high or low potential impact.

Low potential impact intakes are generally those in which the volume of water withdrawn comprises a small percentage of the source water body segment and are located in biologically unproductive areas, or that have historical data shoving no effect, or which have other considerations indicating reduced impact.

High potential impact intakes will generally require extensive field surveys or models to elucidate potential total water body effects.

New intakes will provisionally be considered high impact until data is presented in support of an alternate finding.

Figure 1.

316(b) FLOW CHART EXISTING INTAKES

-a-Figure

2.

316(b)

FLOW CHART NEW SOURCE INTAKES New Source Intake Prior to Construction 1

Y iSubmit pre-construction study plans and justiffcation for agency review and recognition Decision made or appropriate number of years of pre-construction baseline data (l-3) and whether intake is high or low potential imnac t (High Impact!

or alternate Pre-construction data collection1 and status reports site and plans Begin construction Problem solution Report pre-opcrat ion 1 Y

l~rogram modlf icatlon Figure

3.

316(b)

FLOW CHART NEW tNTAKES (Not New Source)

New Intake Prior to Operation I

r Submit pre-operational study plans and justification

+

for agency review and recognition

(

Decision made on appropriate number of years of pre-construction i

baseline data (l-3) and whether intake is high or low potential impact J-7 rl High Impact

&I Low Impact I

1 Submit model study 1

k Pre-operation data collection plan or and status reports alternate 1

strategy r

Pre-operation report<

1 Xodel I

activity 1

Agency renders Beet Technology 1 Decision, approving site and plans (including study plans)

V r

Best Technology

Approval, begin 2-l Not Approved optrat ion under NPDES permit and follow-up studies including i

Minor change verification of Problem solution model used J

change in plane

-lO-The inclusion of several points ln the flow chart for I):cnt-y rruit>v and approval vi11 ensure that all part les

.lre ln

rp,recment

.ls tl) tI\\c scnpe and speclflc details of

  • work planned

<lnd vlll provide each I)arcb vith a set of specific goals and schedules for cnmpletton.

These rev I ev points should also ensure that studies address the important envlrlw-mental and plant operational concerns of all

parties, thereby resulttn1:

in timely and orderly completion.

A further benefit from such revlev 1s that studies conducted throughout a vater body segment can Se caordlnated so that methods utilized vill resillt in a comparable data base.

This uniform data base vill allow for easier evatuatlon I-,E any subsequent cumulative effect from all intakes optrattng on a vater body.

IV.

DECISION CRITERIA Adverse aquatic environmental impacts occur whenever there will be entrainment or impingement damage as a result of the operation of a specific cooling water intake structure.

The critical question is the magnitude of any adverse impact.

The exact point at which adverse aquatic impact occurs at any given plant site or water body segment is highly speculative and can only be estimated on a case-by-case basis by considering the species involved, magnitude of the losses, years of intake operation remaining, ability to reduce losses, etc.

The best guidance that can be provided to agencies in this regard would be to involve professional resource people in the decision-making process and to obtain the best possible quantitative data base and assessment tools for evaluation of such impacts.

The Development document for 316(b) 47 is an essential reference for guidance in these evaluations.

Some general guidance concerning the extent of adverse impacts can be obtained by assessing the relative biological value of the source water body zone of influence for selected species and determining the potential for damage by the intake structure.

For a given species, the value of an area is based on the following considerations:

1.

principal spawning (breeding) ground; 2.

migratory pathways; 3.

nursery or feeding areas; 4.

numbers of individuals present; and 5.

other functions critical during the life history.

A once-through system for a power plant utilizes substantially more water from the source water body than a closed recirculating system for a similar plant and thus would tend to have a higher potential impact.

A biological value-potential impact decision matrix for best intake technology available could be:

(1)

(2)

(3)

An open system large volume intake in an area of high biological value does not represent best technology available to minimize adverse environmental impact and will generally result in disapproval.

Exceptions to this may be demonstrated on a case-by-case basis where, despite high biological value and high cooling water flow, involvement of the biota is low or survival of those involved is high, and subsequent reduction of populations is minimal.

Generally, the combination of low value and low flow most likely is a reflection of best technology available in location, design, and operation of the intake structure.

Exceptions to this could involve significantly affected rare and endangered species.

Other combinations of relative value-impact present the most difficult problems.

In such circumstances, the biological survey and data analysis requires the greatest care and insight in accomplishing the impact evaluation upon which the judgment of best technology available is based. A case-by-case study is required and local knowledge and informed judgment are essential.

It is accepted that closed cycle cooling is not necessarily the best technology available, despite the dramatic reduction in races of water used.

The appropriate technology is best determined after a careful evaluation of the specific aspects at each site.

A detailed discussion of available47 intake technology is contained in the 316(b) Development Document.

-L3-Biological survey requirements suggested in this manuaL shnul~

provlde a sufficient data base to provide insight as to the best loazation,

design, construction, and capaclty characteristics

~pprr-prlate for achieving minimal total impact.

A stepwise thought process is recommended for cases vherc adverse envlronmrntal Impact from entrapmentiinplngemrnt is c,c:currl::y and must be minimized by application of best technology aval1ablt*:

The flrst step should be to consider vhetnrr tnr

.fcvrrse impact vi11 btl minimized by the nodlf ication

<?f tnc ex,st inr:

screening systems.

The second step should be co consider vhether the

.Idverscr Impact viL1 be minlmlzed by increasing the size of the int%lkr tal decrease high approach velocltles.

The third step should be to consider whether to abandon the exlstlng intake and to replace it vlth a rwv intake at a different locatfon and to incorporate an approprlatr design In order to minimize adverse environmental impact.

Finally, If the above technologies vould not minimize adverse environmental
impact, conslderatlon should be given to
hr reduction of Lntake capacity which may necessitate insta!-

latlon of a closed cycle cooling system with appropriate 2csL<n modlf lcat lons as necessary.

Where environmental impact from entrainment must be minimized, reliance must be placed primarily on llov reduction and intake relocat lon as remedial measures:

Rrduclng cooling vater flov is generally an effectlvr means for minimizing potential rntralnment impact.

In

fact, this VJ~ 5~

the only feasible means to reduce impact of entrainment where po-tunclally involved organisms are In relatively large concentrat iCJn and uniformly distrlbutrd In the veter column.

Entrapment and fmplngement may also be lessened vith lover flov as proport idIn.? 1 IL fever animals vi11 be subject to contact ulth the Intake structure; water velocltles associated vlth the structure can be reducvd, enhancing probablllty of survival if lmplnged or of escape if trapped.

Reduction of flov is accomplished prlmarlly by an lncroase ln condenser temperature rise or through recirculating cooling systems.

When cooling vater flov is

reduced, hovever, elevated temperature or the effects of an auxiliary cooling system can Increase the mortailty rate of the organisms that are entrained.

Site location measures may prove ef fecttve in areas of discontinuous, temporal or spatial occurrence (patchiness) of chore species subject to entrainment (or entrapment/

impingement).

Enhsncing survival of organisms once entrained in the coolfng vater system generally appeers to be the least effective means fnr avoiding adverse inpac t ; however, operational regimes have been dorcloped to decrease mortality of entrained species vhere

heat, chlorine or both exert the predominant impact.

Realistic laboratory studies can lead to optlmal time-temperature regimes for survival.

The effects of biocides can be reduced by intermittent and spllt-stream chlorination procedures.

Hechenical methods fnr cleaning cooling system components where feasible can eliminate or reduce the need for biocides.

The mechanical stress of entrainment Is, In many cases

( the critical factor in organism survival vlth the pump the site of mejor damage.

At

present, little can be done to minimize mechanical impact although potentially harmful effects may possibly be reduced by pump redesign which incorporates lov
RIVI, lnv pressure and vtde clearance characteristics.

Reducing velocity

changes, pressure, and turbulence in the piping system shauld prove helpful.

Entrainment screening techniques such as leeky dam8 msy have application in some CirCumStanCeS.

Regardless of beneficial measures

taken, many fragile forms vi11 not survive entrainment.

In

summary, the location nf a pover
plant, nr other cooling uater
use, coupled vith the associated intake structure
design, constructton.

and capacity results in a unique situation.

Uhile generalities may be useful

, the aptimel combination of measures effectively minimizing adverse impact on the biata ie site and plant specific.

The best technology avallable should be established on a case-by-case basts making full use of the kinds of information suRgested for acquisitton in this manusl.

V.

DEFINITIONS AND CONCEPTS Adverse Environmental Impact Adverse aquatic environmental impacts occur whenever there will he entrainment or impingement damage as a result of the operation of a specific cooling water intake structure.

The critical question is the magnitude of any adverse impact.

The magnitude of an adverse impact should be estimated both in terms of short term and long term impact with reference to the following factors:

(1) Absolute damage (# of fish impinged or percentage of larvae entrained on a monthly or yearly basis);

(2) Percentage damage (% of fish or larvae in existing populations which will be impinged or entrained, respectively);

(3) Absolute and percentage damage to any endangered species; (4) Absolute and percentage damage to any critical aquatic organism; (5) Absolute and percentage damage to commercially valuable and/or sport fisheries yield; or (6) Whether the impact would endanger (jeopardize) the protectton and propagation of a balanced population of shellfish and fish in and on the body of water from which the cooling water is withdrawn (long term impact).

Agency This term refers to the Regional Administrator of the U.S.

Environmental Protection Agency or the Directors of those State agencies authorized to issue NPDES permits.

Community A community in general is any aseemblage of populations living in a prescribed area or physical habitat; it is an organized unit to the extent that it has characteristics in addition to its individual and population components and functions as a unit through interacting metabolic trans-formations.

Critical Aquatic Organisms Adverse environmental impact may be felt by many species in all trophic levels.

A species need not be directly affected but nevertheless harmed due to loss of food organisms or other associated organisms in some way necessary for the well-being and continued survival of the population.

It is not practicable to study all species that may be directly or indirectly harmed by Intake structure operations.

The critical aquatic organisms concept is defined in the 316(b)

Development Document.

Generally, 5 to 15 critical aquatic organisms will be selected for consideration on a case-by-case basis.

Relative to environmental impact associated with intake structures, effects on meroplankton organisms, macroinvertebrates, and juvenile and adult fishes appear to be the first order problem.

Accordingly. the selections of species should include a relatively large proportion of organisms in these categories that are directly impacted.

Generally, because of short life span and population regeneration capacity, the adverse impact on phytoplankton and zooplankton species is less severe.

It is suggested that, in addition to study of the selected species, the total phytoplankton and zooplankton communities be assessed to determine if the area under study is unique and important qualitatively or quantitatively.

If preliminary sampling or prior data does not support special or unique value of these organisms at the site, phytoplankton and zooplankton species will generally not be selected.

The following guidelines are presented for selection of critical aquatic organisms for consideration in intake studies:

A.

Critical aquatic organisms to be selected are those species which would be involved with the intake structure and are:

1.

representative, in terms of their biological requirements, of a balanced, indigenous community of fish, shellfish, and wildlife; 2.

commercially or recreationally valuable (e.g.,

among the top ten species landed -- by dollar value);

3.

threatened or endangered; 4.

critical to the structure and function of the ecological system (e.g., habitat formers);

5.

potentially capable of becoming localized nuisance species; 6.

necessary, in the food chain, for the well-being of species determined in 1-4; 7.

one of 1-6 and have high potential susceptibility to entrapment-impingement and/or entrainment; and 8.

critical aquatic organisms based on 1-7, are suggested by the applicant, and are approved by the appropriate regulatory agencies.

8.

Assumptions in the selection of critical aquatic organisms:

1.

Since all species which are critical, representa-tive, etc., cannot be stud led in detail, some smaller number (e.g., 5 to 15) may have to be selected.

2.

The species of concern are those most likely to be affected by intake structure, design, con-struction, and operation.

3.

Some species will be economically important in their own right, e.g., commercial and sports fishes.

4.

Some of the species selected will be particularly vulnerable or sensitive to intake structure impacts or have sensitivities of most other species and, if protected, will reasonably assure protection of other species at the site.

5.

Often, but not always, the most useful list would include mostly sensitive fish, shellfish, or other species of direct use to man, or to the structure or functioning of the ecosystem.

6.

Officially listed threatened or endangered species are automatically considered critical.

7.

The species chosen may or may not be the same as those appropriate for a 316(a) determination dependent on the relative effects of the thermal discharge or the intake in question.

Cooling Water Intake Structure The coaling water intake structure is the total structure used to direct water into the components of the cooling systems wherein the cooling function is designated to take place, provided that the intended use of the major portion of the water so directed is to absorb waste heat rejected from the process or processes employed or from auxiliary operations the premises, including air conditioning.

-1 H-Entrainment The incorporation nf i7rganisns into the con1 In):

water f lnu ts ent rainnent There are two generally recognized cypcs c-rf cntr,lLnmc~nt:

pumped entrainment referring to those nrgantsmu that enter tllc I?[ ~ha*

and are pumped through tile condenser, and plume entrainment rrl(*rrtn,:

to organisms that are Lncorporated into the disch,?rKe plume hy ~IIC dilution water.

Plume entrainment is nnt covered by section 3lb(b)

~IIC Is part of the thermal discharge effect to be considered ln conjunct:tln with thermal effects demonstrations under section 31b(a).

Entrapment-Impingement The physical blocking nf larger nrganlsms by J harrier, ncncr.ll1.v snme type of screen system In the cooling vater Intake.

Entrapment emphasfres the prevention nf escape of organisms and lmpingemcnt emphasizes the collision of an organism vith a portion of the se rut turt Estuary An estuary is defined as a semi-enclosed cnastal body of water ut~fcll has a free connection with the open sea; lt 1s thus strongly Jffcctcbt!

t:;i tidal action and within it sea vatcr is mixed (and usually awasur.lbly diluted) ufsh fresh water from land drainsge.

It may be diff tcult tc) precisely delineate the boundary of estuarinc and river habitats in chit>

upper reaches of a fresh vater river discharging into marine waters.

The Lnterface is generally a dynamic entity varying daily and seasonall) ln geographical lncat ion.

In such

cases, determination nf habitat boundaries should be established by mutual agreement on a case-by-cdsc basis.

Where boundary determination is not clearly established, bot!l estuary and river habitat bfologlcal survey requirements should be satisfied In a combined determlnatlon for envtronmencal effects and best availablt technology for minimizing adverse Lmpact.

Habitat Fornerr hbltat farmers are plants and/or animals characterized by a relatively ae8rlle life state with aggregated distribution and funct ionin):

as:

1.

a live and/or formerly lfving substrate for chc attach-ment of epibinta;

2.

either a direct or indirect food source for the product Ion of shellfish.

fish, and vildlife;
3.

a blologlcal mechanism fnr the stabilization and modifi-catton of sediments and contributfng to processes of sol!

brlildingss;

4.

a rutrient cycling path or trap; or

5.

specific sites for

spawning, and providing
nursery, feeding, and cnver areas for fish and shellf tsh.

Hfgh Potential Impact Intakes High potential inpact intakes are those located in biol:yqiclI:.

productive areas or where the volume of vater vithdravn comprises A

large proportfon of the source vater body segment or for vhich histnr-lcal data or other ConsideratFons indicate a broad impact.

Impiqement See Entrapment-Impingement.

Lake Any naturally occurrIng Large volume of standing water IJCCII~~:~P 3

distinct basin

and, fnr purposes of this
document, reservoirs

.Inci impoundments.

Lou Potential Impact Intakes 1.0~ potential impact intakes are those located in biologically unproductive areas and having low flow or having historical data shnvinp.

no effect or for vhich other considerations indicate low impact.

Plants with low capacity factors or with fev remaining years of lifetime might be considered low impact despite their historical impact.

For the purposes of this

document, the term macrotnvertebrates may be considered synonymous wf th aquatic macroinvertebrates and are those invertebrates that are large enough to be seen by the unatded eye and can be retained by a U.S.

Standard No.

30 sieve (0.595 mm. mesh opening).

-2o-Yernplankton For the purposes of this

document, mcroplanktnn are defined as planktonlc life scap,ee (often eggs or larvae) of f tsh or invertebrates.

Oceans The ocean

habitat, for the purposes of this
manual, is cnnstdered marine waters other than those uater bndies classified as estuaries.

This fncludes open coastal

areas, embayments,
fjords, and other semi-enclosed bodies of water open to the sea and nnt aeasurably diluted with fresil water from land drainage.

Two prfncipal zones within the oceanic hnbtcat potentially impacted are:

(1) littoral zone from high t Lde level to Inv t lde

level, and (2) meritic zone (near shore) low ttde level to the edge of the continental shelf.

Phytoplankton Phytoplanktnn are the free-floating

plants, usually nicroscopic
algae, that photosynthetically fix tnorganic carbon and
are, therefore, primary producers in some aquatic environments.

Plankton Plankton are eeaentlally microscopic organisms, plant or

animal, suspended ln uatcr which exhibit mar neutral burtyancy.

Because of their physical characteristics or

size, most plankton organisms are fncapable of sustained mobility In directions ag.lLnsc u.lcer flow.

Con-sequently, plankton drift more or less passively In prcvaillng currents.

Population A population is generally considered to be conprlsed of individuals of the arc specico In a geographic

area, Popul,ltlons exhibit parameters such 88 mortality,
natalicy, fecundity, intrinsic rate of
increase, density, l tc Primary Study Area This lncludea the segment af the vater body Jeternlned to be the area nf potential damage.

This concept fa mart perclnc*nt t~l arganigms suhfect to inner-plane

passage, normally weakly motile or planhcnnic, and spattally

-.!I-su9ject co water boa:/

c~rrrnts ratErr than poSSesSing the abi:it;:

change locatlcn

ndrpeodent of uatur mass movements.

Animals cdpJSlc

.f large scale movements, i.e.,

Tigrant

fishes, wit1 TOV~ into tnls

.zrc,i oeriodfially.

Rivers and Streams A river or stream is a naturally occurrrng body of runnir,:i?

+~~ri:

5.1

water, with an unbroken.

unidirrct lonal

flow, contained wltnln

.I !.:s.. r,.

channel.

Rest!Noirs andjor Impoundments, for the our-poses of cn:+

-I vi11 generally be vlevtid as lakes.

Secondary Study Area The area uithin the water body segment outside the primary study area.

Blota in thls area directly affrctrd by the intake structure 3.i..

or may not be a significant component of the total population of Lnd.ee.::,.=

species.

For many species.

particularly pelagic

fishes, tne tot2:

pop~~i.l-tlon may bt! spread over a vide geographical area.

This arra could be considered the secondary study area.

Houevtir, other intake structures associated vlth cooling water
uses, e.g.,

power

plants, may also S+Y Lmpactlng tht!

populatlon In these other areas.

This may be considrre.!

in tvo ways:

1.

consider tht!

total population throughout the Reographic*2:

range, rstlmatr existing
Impacts, and determine to what extent the speclflc intake structure adversely impacts that port ion of tht? population not already adversely stressed by sources outside the primary study area; or
2.

consider only the populatlon in the area of potential involvement and adjacent areas of occurrence not already impacted by an rxistlng source of stress.

For

example, when a number of Intake structurrs arc located u1tP11:

a water body such as the Hudson River.

Ohio

River, Long Island

<g)ur.d.

Western Basin of Lake

Erie, Narragansett
Bay, San Francisco Bay.

tit<..

either of the tvo approaches may be taken to assess the impact of t:t*

structure under conslderat ion.

The total impact of all existing stresses may be weighed agafnst the total populatlon of biota studies and the adverse effects of the nev stress added to exlstlng stresses and assessed agalnst impact to the total system.

The altrrnat lvr is to assign a sr~. t i 1 of the water body not already impacted by other fntake structures dnd compare the segment of the community in the assfgned area to the rffcc.t of the slnglt!

structure concerned.

Threatened or Endrngered Species A threatened or endangered spectes 1s any plant or animal chat has been determined by the Secretary of Commerce or the Secretary of the Interior to be a threatened or endangered species pursuant Ca the Endangered Species Act of

1973, as amended.

Water Body Stmntnt A water body segment fs a porttnn of a hasin, the surface waters IJf which have common hydraulic characreristtcs (or flaw regulation patterns!

common natural

physical, chemical, and biological processes, and vhIch have common reactions to external
stress, e.g.,

discharge of pollutants.

Where they have been

defined, the water body segments determined by tile State Continuing Planning Process under section 303(e) of P.L.92-500 apply.

Zone of Potential Involvement The zone of potential involvement is considered the vater mass surrounding the intake structure and likely to be dravn into the structure iceelf or incn the associated cooling vater systtm.

This varies with Cime and fs dependent on ambient water movements in the affected body of source vater an modified by the influx of cooling water at the intake structure.

It will be dffficult to precisely define the limits of this zone of influence because of temporal and spatial variables.

The zone of potential involvtmtnt alvayr includes the primary study area and may Include the secondary study area.

Zooplankton True zooplankton art fret-floating animals which have little or nn ability for horizontal movtmtnt.

They art thus carried passively along vith nrturrl currtnte in the vactr

body, VI. STUDY FORMAT The studies submitted as support for a finding that the cooling water intake represents best technology available for a minimization of adverse environmental impact should be in the following format to facilitate agency review.

At least two copies should be submitted.

1.

2.

3.

4.

5.

6.

7.

8.

9.

Title page (plant name, water body, company, permit information.

rate).

Table of contents.

An executive summary of 2-3 paragraphs (essence of material and conclusions).

Detailed presentation of methods used in data collection, analysis and/or interpretation when different from standard references.

Supportive reports, documents, and raw data.

Data from the open literature need not be included so long as it is readily available.

Bilbiographic citations to page number of cited text, An interpretive, comprehensive narrative summary of the studies which will serve, in part, as the basis for the agencys decision.

The summary should include a table of contents and may include table figures.

Sources of data used in the summary should be cited to page number.

The summary should include a clear discussion stating why the report shows (or does not show) that the water intake structure in question minimizes impact on the water resources and aquatic biota in the vicinity of the intake and throughout the water body segment.

An appendix listing the agencies and consultants conducting this or related work on the water body.

Reports generated in response to section 316(b) should be recorded and forwarded to the National Technical Information Service (NTIS) for recording and announcement. The folder, NTIS-PR-184, available from NTIS, U.S. Department of Commerce, Springfield, Virginia 22161, explains the procedure in detail.

It is the intention of the EPA to make the technical information submitted by industries in accordance with 315(b) available for use by other industries, scientists, and members of the public.

This will be done initially by placing copies in the responsible EPA Regional Off Ice library.

A similar approach is also suggested for State agencies.

In cases where demand for the demonstration materials exceeds the capa-bility of an EPA or State agency library, the EPA Regional Administrator may also submit the materials to the NTIS so that the reports are available co the public in microfiche or hard copy form at the price of duplication.

In the meantime, EPA is developing lists of plants with completed 316(b) demonstrations and will submit the plant name and an abstract of each study to NTIS.

It is also noted chat the Atomic Industrial Forum has developed INFORUM, a data system which will extract and index information from reports submitted by utilities in accordance with sections 316(a) and (b).

Questions should be referred to INFORUM at 1747 Pennsylvania Avenue, Washington, D.C.

20006, telephone 202-833-9234.

VII.

DETAILED STUDY REFERENCES This document, of necessity, is generalized to provide an overall framework of guidance and conceptual approach.

Six references are recommended which treat various aspects of the study requirements in more specific detail:

1.

U.S. Environmental Protection Agency, Office of Water

& Hazardous Materials. Water Planning Division, September 30, 1974, Draft, 316(a) Technical Guidance on Thermal Discharges. (Revised draft to be published in 1976.)

2. U.S. Environmental Protection Agency, Office of Water 6 Hazardous Materials, Effluent Guidelines Division, April 1976, Development Document for Best Technology available for the Location, Design, Construction and Capacity of Cooling Water Intake Structures for Minimizing Adverse Environmental Impact.

3.

Battelle Laboratories, Inc., Environmental Impact Monitoring of Nuclear Power Plants - Source Book.

Atomic Industrial Forum, Inc.

August 1974.

810 p.

4.

Aquatic Ecological Surveys.

American Nuclear Society, F.W. Hinsdale, Illinois, Draft, October 1974.

5.

Entrainment:

Guide to steam electric power plant cooling system siting, design and operation for controlling damage to aquatic organisms.

Amer. Nuc. Std. Publ. N18. - 1974.

Draft, July 1, 1974, 44 p. and appendices.

6.

Entrapment/Impingement:

Guide to steam electric power plant cooling system siting, design and operation for controlling damage to aquatic organisms at water intake structures.

Amer. Nuc. Std. Publ. N18 - 1974.

Draft, September, 1974, 24 p. and appendix.

VIII.

SITE DESCRIPTION The following information is generally needed to fully describe the potential experiences of organisms which may be entrapped within intake structures, impinged on parts of the structure and/or entrained in the water mass taken in and circulated through the associated cooling water system.

It is necessary to describe the full range of resultant physical, chemical, and biological parameters of these experiences which could be encountered throughout the annual operation cycle.

lnformation on daily and seasonal fluctuations is of special importance in those waters subject to wide variation in water quality at the specific site.

Other data pertinent to the evaluation of environmental impact of the location or intake structure in question should be included even though not specifically listed.

The following data are required for adequate description of sites located on either fresh or marine water bodies:

1.

Site location and layout A.

Location of additional Intake structures - Smaller scale, map showing locations of intake structures, associated cooling water systems, and other pertinent discharges related to surrounding shore and water features in a 50-mile radius.

8.

Site Plan - Larger scale map with topographic and hydrographic data depicting specific location of structure in the water body.

Data required includes:

- Topographic details

- Hydrological features (see U.S. Department of Commerce, National Ocean Survey Charts, where available), including depth contours

- Water body boundaries

- Affected water body segment

- Location and description of other cooling water intakes in water body segment

- Existing site with topographic and hydrological features as changed by proposed intake structure construction and operation (where applicable) 2.

Meteorology (when hydrodynamic modeling is performed)

- Air temperature, maximum, minimum, mean-monthly Rainfall, monthly

- Solar radiation kcal/m²/day (average/month for the annual cycle)

- Wind speed and direction. prevailing winds identi-fied as to seasonal patterns

- Other relevant site specific data 3.

Additional stresses on water body segment

- Location of existing or planned point sources of potential adverse environmental impact

- Summary of impacts associated with existing or future stresses (and citations to more extensive analyses, such as 316(a) demonstrations, impact statements, NPDES permits, etc.)

4.

Cooling water intake structure A.

Structure

- Location with respect to cooling water system

- Location in water body, horizontal and vertical (including skimmer walls)

- Configuration, including canals and channels; detailed drawings

- Capacity

- Screening devices (behavioral and physical)

- Fish by-pass and handling facilities

- Average and maximum approach and thru-screen water velocities, by depth

- Flow rates and frequency of occurrence correlated with load characteristics

- Location, amount, and duration of recirculation water for deicing or tempering

- Other relevant system-specific data

8.

Pumps Design details (location in structure, cnnftgurat inn of

blades, and housing)

Revolut Lens per minute

Number, capoc it ies, and planned operating schedule Pressure regimes in vater subjected to pumping Velocity shear stresses in pumping Sites of potential turbulence and physical impacts c I.

Btocides Locat ton of lntroductton in system nescrtptton and toxicity of biocide used Timing and duration of use Concentrations of biocide in various parts of cooling vatet system and recetving vaters

n.

Thenna 1 experience Tabulatfnn of annual ambient temperatures, thermal additfon to cooling vater of various operating capac L t tea, and resultant t tme-temperature experience of organisms subjected to entrainment in cooling vater system F *.

Other relevant data on cooling vater circulation system Dissolved gases Suspended solids and turb td tty Other vaatea and chemicals added Sire of condenser

tubes, heat exchanger cow
poncnta, vater
piping, siphon
pita, etc.

Malntcnance procedures, USC of heat treatment or deicing procedures

5.

Plant Data Age and expected Iifetlme Capactty factor and percent of tfme at fractional io.lds History of intake model IX.

SOURCE WATER INVOLVEMENT The physical interaction of the intake and the adjacent water body forms a base for assessment of biological impact by relating the behavior and motion of local organisms with the flow of water around the site and into the intake structure.

To determine this involvement with the intake, it is desirable to identify the type or types of circulation which will be dominant in the water body, and to establish a program of monitoring currents and other relevant hydrological and physical parameters of the system.

Predictive tools, such as computer models, are useful in assessment of impact, and for delineation of the area of potential damage.

The approach outlined here is suggested for new plants having high poten-tial impact when sufficient model accuracy is obtainable.

The approach may be useful for other plants as well, as discussed in the impact assess-ment section below.

The modeling program should be discussed with the agency in advance of application and should include sensitivity analyses.

1.

Hydraulic Features The dominant modes of circulation in the water body are frequently identified in the literature and include channel flow, tidal and wind-driven currents, estuary or gravitational circulation, littoral drift, and others. The local currents (or velocity structure) can be modified by bathymetry and transient atmospheric conditions, and contain local features such as eddies; their importance can he modified by their effect on biological processes.

It is also useful to identify interface zones if several current regimes or physical pro-cesses are evident.

Large water withdrawals and discharges can be sufficient to modify existing hydraulic patterns enough to create new biological habitats.

A program of monitoring the currents and other relevant physical parameters is desirable for the study of source water involvement, Whenever possible, historical data should be used to identify the expected circulations and guide in the selection of instrument stations, although as data comes in, a re-evaluation of the monitoring program is useful.

the relevant parameters are water current, speed and direction, wind speed and direction, tides or local water levels, tem-perature, and water density, Salinity data are important in an estuarine environment.

The spatial distribution of instrument stations is usually indicated by the circulation regime and local bathymetry, but is best organized to provide input to and verification data suitable for a predictive hydraulic model of the currents.

Vertical spacing of instruments should be sufficient to identify any important depth variation in the circulation.

The use of a hydraulic model requires several other specific inputs to provide realistic prediction of currents in the area.

typical parameters include:

1.

boundary geometry; 2.

bottom topography; 3.

bottom friction coefficients; 4.

latitude of the area; 5.

tides or water levels at open boundaries; 6.

river flows; 7.

temperature and salinity; 8.

wind stress; 9.

power plant cooling water flow races; and 10.

other point source flow rates.

A significant period of time (two weeks) night be chosen for a continuous (burst sampling) monitoring sequence to sense periodic variations in the circulation, and another program to sample changes on an annual (or longer) cycle.

Careful recording of placement and start times is recommended.

The instruments chosen should be durable and resistant to fouling.

The accuracy may be influenced by the scale of the parameters but for water level should generally be at least

+/- 0.01 ft. and, for current speed and direction, +.15 knots and +/- 5.0° respectively.

For temperature and salinity

+/-

0.1°C and

+/-

0.1°/°° respectively can be expected.

Special instrumentation for water current sensing may be necessary at threshold speeds.

An instrument calibration program is necessary to insure accuracy.

Redundant marking of station locations and provision for recovery of unmarked instruments should be made.

Computer models as predictive tools represent the best available predictive tools and are useful in assessing water use and biological impact.

Mathematical models solve the equations of water flow and are used to predict currents in the water body.

Another model (of water quality) can he developed in tandem to solve the equation of mass flow and used co predict mass or concen-trations of organisms under influence of the currents.

The selection of the appropriate model is guided by the circulaticn regime and the geonorphology of the vater body.

A number of mathematical nodels of tidal flov are available, and these can be extended to include channel flov.

For

example, the Leendertse 5,

9 type square-grid models for tidal cuf-ents and larvae transport have been used.

Finite-element models are being developed for tidal cfrculatfon, and may have advantages In certai fl areas.

For river-bay situations, the channel-function model nay have special advantages.

Three-dimensional models such as those described in references

12. 13, and 14 may be appropriate.

A comprehensive summary of13vaflable models has been cornpiLed by Gordon and Spauldlng.

The rationale for selection of the particular set of models should be justified by either enphas:z:nu their suitability or by demonstrating a lack of other sufficient models.

Verffication of model output should be made for both current and organism concentrations.

Data from the monitoring survey are useful for verifying the current model vhlle the biological sampling program nay be used to verify the notion of organisos.

Dye studies nay also be useful In model verification.

Hearts for delineating study area and source vater involvement may vary from intuitive judgments to highly sophisticated predictive models.

The most logical

measures, consistent vith the local conditions should be determined.
2.

Probability of Entrainment The zone of potential involvement of the cooling vater intake varies vith species of organisms and time but the core concept is the determination of probability of entrainment.

The predictive models are useful for mapping probability fsopleths.

This could be done by the simulation of drlfters with the hydraulrc

model, or the spread of mass from point sources into the intakes vith the concentration model.

Drogue or dye studies could be used for verification.

Drifters, drogues, or dye may,
however, be poor analogs for the organisms In question.

A9 a consequence, any study of thte nature must be accompanied by justification chat adequate adjustment is being made for differences in behavior between the organisms and their mechanical analogs.

A map of probability of entrainnent unuld be useful in dclincat In,:

the outline of the area of potenttal involvement by a ratlondl, analytical mthod.

For

exanple, the cnmputer hydraul lc model for currents could be Itsed to simulate the flaw nf drogues in the regfon.

A simulated release of drogues (several per hour) uoul~

be carried out llnttl all drogues have either been entrnlned or have crossed the node1 boundarfes and left the area.

The rat ton of entrained drogues to the total gives the probability of enttalnrncnt.

A repetition of this procedure for other release points gives J Eleld distribution of probability.

An alternate method Is tn simulate mass transport fron J field

&%f

points, wherein the ratio of mass entralned to the total release<!

gives the probability.

This method could be verifted by the USC of dye studies.

In environments likely to exhibit density stratification, or In vhich the organisms

stratify, it may be necessary to use multi-level sampling for all parameters, and consider strat tficat ion

~9 the models chosen.

Wind effects are more likely to be important In shallov vater.

The spatial changes in parameters in stratified systems are 1 tkely to be larger, so this must also be incorporated in a sampling program.

Obviously, models are highly desirable and the probability isnpleth concept is a poverful analyt Lcal taol.

However, the time and costs involved vlll not be justifiable in many situations.

X. BIOLOGICAL SURVEY REQUIREMENTS (NEW INTAKES)

The purpose of the biological survey is to provide a sufficient and valid data base for rational assessment of environmental impact related to the location, design, construction, and capacity of a cooling water intake structure, prior to a final siting decision.

Due to the possibility of extreme fluctuations in overall abundance of the species from year to year and shifts within a study area of its centers of abundance, several years' study may be required. A term of three years is suggested as permitting an "exceptional" year to be detected and criticized on the grounds that events in so short a span cannot be understood in the context of long term trends. A period of 15 to 25 years is one in which many cyclic biological phenomena become evident, but a preliminary study of this length will be out of the question except as it can be gleaned from historical data. A one-year pre-operational study is generally of limited value but may be acceptable for preliminary agency determinations in situations where substantial historical data can be presented and the intake can be represented as having low potential impact.

Data collected must be sufficient to permit analysis and reduction to assessment criteria which will be useful in reaching a judgment on the existence and extent of an adverse impact. Suggested measures for data reduction and analysis, which are included in this manual, should be reviewed prior to development a survey program.

Designation of species of the critical aquatic organisms to be studied is the first step in a sequence of operations for the subsequent biological survey. The species selected may or may not be the same as the Representative Important Species designated in connec-tion with demonstrations under section 316(a) of the Act. Differences would depend on the grater or lesser effect on such species of thermal discharges or intakes. Once species and source water involve-ment are known, the sampling methodology, survey study areas, and temporal characteristics of the survey can be determined to suit the organism selected, location, and characteristics of the intake structure. Each survey should be designed on a case-by-case basis recognizing the uniqueness of biota-site-structure interrelationships.

Biological surveys should be designed and implemented to deter-mine the spatial and temporal variability of each of the important components of the biota that may be damaged by the intake. These surveys could include studies of meroplankton, benthic fish, pelagic fish, benthic macroinvertabrates, phytoplankton, zooplankton, benthic infauna and boring and fouling communities where appropriate.

Generally, the majority of critical aquatic organisms will be fish or macroinvertabrates.

Once the occurrence and relative abundance of critical aquatic organisms at various life stages has been estimated, it is necessary to determine the potential for actual involvement with the intake structure.

An organism may spend only a portion of its life in the pelagic phase and he susceptible to entrainment.

Migratory species may be in the vicinity of the intake for a short segment of the annual cycle.

Some species are subjected to intake structure effects during life history stages.

For example, winter flounder larvae are found in the ichthyoplankton during their pelagic larval

phase, and are susceptible to being entrained.

During later life stages, as juveniles and adults, they are vulnerable to impingement.

Both entrainment and impingement must be considered in subsequent impact assessment.

Know-ledge of the organisms life cycle and determination of local water circula-tion patterns related to the structure are essential to estimating an individual species potential for involvement.

Once involvement is determined, actual effects on those organisms must be estimated.

As a first order approximation, 100 percent loss of individuals impinged, entrapped, or entrained could be assumed unless valid field or laboratory data are available to support a lower loss estimate.

The final step is to relate loss of individuals to effects on the local population as impacted by intake structure

location, design, construction, and capacity.

It is important to consider the means for data reduction and analysis in the early stages of survey design.

Data must be amenable to biostatistical analyses, as utilized in arriving at the judgment for best available technology to minimize adverse environmental impact.

1.

Sampling Design It is necessary at the outset to clearly define the objectives of the sampling program and the area to be sampled.

Quantitative sampling studies are designed to estimate numbers per unit and/or volume.

The major considerations in these studies are:

The dimension of the sampling unit.

In general the smallest practical sampling unit should be used.

The number of sampling units in each sample.

The size of samples for a specified degree of pre-cision can often be calculated if there is some preliminary sampling information.

If not, preli-minary sampling should be executed before exten-sive programs are developed.

The location of sampling units in the sampling areas.

Stratified random sampling is often preferable to simple random sampling.

Strata can be unequal in area or volume, with sampling units allocated in proportion to the area or volume.

2.

The survey effort should be intensive for at least tile first year after

which, based on first year results and historical
data, lover effort progams could be justffied.

Survey data are usually of a time-series nature

and, therefore, averaRes over time intervals wlthtn the series cannnc be assumed inde-pendent.

This situarlon llmlts tks statistical procedures, Bartlett

~~~l;~-~~~,~~~

flinc Reference 19 is d

recent example of the difficulties encoun-tered when attempting to determine differences in portions of a time-series.

The develnpment of more powerful statist ical methods for appllcatton to this type of data is necessary.

It appears that only catastrophic impacts vi11 be revealed to temporal comparlsnns oE mnnltoring program data.

Plant impact may be better revealed by spatial comparisons.

The discriminating power nf surveys should be estimated prior to implementation.

This can be done by design based on previously collected data at the

site, or by assuming the variability of the system based on previous studies at similar sites.

The expected dlscrlmina-ting power of the survey should be adequate for the purposes for vhich the data are intended.

SampllnR

?Iethodolou Recommendations on specific sampling protncol and methodology are beyond the scope of this document.

The optimal nethodo!nRy is highly dependent on the individual specfes studied coupled with site and structure characteristics.

Some general guidelines are provided here.

?fnre specific details are provided in reference

20.

Ichthyoplankcon-Heroplankton Sampling Sampling gear used should have known performance charactcristtcs under the conditions tn vhich it is to be used, or Lc vi11 bc tested In comparison 4th a standard gear (such as the 60 cm. boqn net developed for purposes of ichthyoplankton sampling by ttlc National Marine Fisheries Service flAWlAP program).

When a new Kear is intrl)duced, data should be included nn frs efficiency relative to a standard gear.

Gear shnuld not be changed in the course of long-term lnvesttgattnns unless the camparac lve cff lciencies of the old gear end the nev can be satisfactorily demonstrated.

It Is recognized that na sampling gear is, in

practice, strictly qnancltative and equally efficient in retalninl:

dtf ferent sizes nf organisms.

A rAtinnale for the choice of

gear, mesil
size, etc.,

shnuld bc develnped fnr each sampl tny= program.

In nlosc

cases, LackinK 9tr0ng reasons tn the
contrary, a(io\\jtion of a standard
  1. car LO permit comparisons vlth nttlcr investigations Is recnnmcnded.

In

general, teplfcace tows indicate that horizontal dtscribucicln of fish eggs and larvae and other planktonlc organisms is uneven or patchy in character, and that vertical distribution not nnly of actively
swlmminp, forms but of eggs commonly shows SOIW atratification.

This typically varies over 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> due to the influence of water movement and changes fn light intensity.

Depth distribution of individual specLes of fish eggs

?ay char.Ce during the course of development, and buoyancy may differ Jt different periods of the spavning season.

Night tows frequently produce larger catches and may shou less varlabillty than day tous for fish larvae Ln the sane

  • Ired.

Both phenomena are related in part tn differences in net avoidance under conditions of light and darkness.

qouever, certain larvae may be altogether unavailable to the usual plankton sampling gear at some time of a die1 cycle; for exdnp they may lie on or near the bottom by
day, and migrate upvar~!s at night.

Night sampl lng must be considered in survey design as essential for an accurate picture of the numbers of ichchyoplankton actually present at a station, especially with regard to post-larvae and young juveniles.

Sampling over the entire die1 cycle should be conducted.

Characterization nf the ichthyoplankton in a study area made exclusively from single tows at a series of stations is inadequate.

Replication sufficient to show the typical vari-ation between tows will be necessary, and it must be borne in mind that this may differ widely for different

species, and may change over the course of a season.

In reasonably homageneous study

areas, replicates can be taken at a subset of scacions and the results applied tn the rest.

In certain clrcun8tancc8, c lose to shore.

nr in the vicfnicy of the prnpoaed

intake, more rigorous error analysis is advisable, and this may require replfcation at each station.

Determina-tion of a suitable number of replicates will depend on characteristics at each efte, and must be based on field studier.

The most variable (patchy) of the critical species of ichthyoplankton under study at a given season will dctecuine the number of replicates that are desirable.

.e.

Confidence llmlts for estimates of abundance must be based not only upon variation between tovs at a given

station, but must incorporate other sources of
error, which include subsampling error (when aliquots of large samples are token for lab analysis) and counting errors.

V The lchthyoplankton-meroplankton sampling will generallv 5t.

related to the impact of passing the organisms through the fntake structure and associated cooling water

system, i.e.,

entrainment.

Fishes and ?!acrolnvertebrates Sampling of fish and macrolnvertebrates vi11 be generallv conducted In reilatlon to the potenclal impact of entrapment and lmplngement.

An exception would be juvenile and small fLsh of a size that uould pass through tntake screenir.g rather than be caught upon such screens.

As prevlouqdy

noted, spc?clf Lc samplLng methodology is drcai Ied eLsevhere.-

Some specimens taken from the screens may appear healthy; hoveve r, species-speclf lc experiments vi&h controls co assess the delayed mortality to these flsh are required if less than 100 percent mortality Is to be assumed.

Potential effects at proposed intake structures should make maximum use of existing data at operating structures to extrapolate Involvement and mortality estlmates to a nev Intake.

Attentlon should be given to experlments vhlch have statistically evaluated the effect of Intake modifications on Lmp lngement-ent rapment losses.

In cases vhere preliminary surveys Lndlcate that the entrain-ment and entrapment-Lmplngement losses may be high, It wi 11 bt!

necessary co rsclmate the Lmpact of these losses on the populat Lons that

~111 be Lnvolved.

For each 1Lfe stage susceptible to entrainment and/or entrapment-Lmplngement, parameters necessary to adequately predict losses caused by power plant ulthdraual include life stage

duratfon, fecundity, growth and mortality
rates, dlstrlbutlon.

dispersal

patterns, and intake vulnerablllty.

These parameters can be elther measured In the field or obtalned from available literature.

Eetlmates of equivalent adult stock loss on the basis of entrainment losses of Immature forms requires a measure of natural mortality from immature to adult.

For many if not most crltlcal

specLe9, the natural mortality may be impossl-ble to determine and the Lmpact may have to be based on a reasonable judgment.

Ocher data are required to project the long-term impact of the intake on the populatlon and to lncludr the population

size, its age structure, and fecundity and mortal-lty rates.

These data can best be synthesized using mathematical models as discussed in section XII of this manual.

-3R-Zooplankton

3.

Zooplankton sampling utll generally be directed tovatds drterminatlon of rntralrunrnt Impact.

I.oop Lankton are rssentlally microscopic animals suspended In water vith near neutral buoyancy.

Because of their physical characterlstlcs, most are incapable of sustained moblllty In dlrectlons against vater flov and drift passively In the currents.

In most

cases, intake ef facts are of rtilatlvely short duraclon and conf lnrd to a relatively small port ion of the vater body segment because of short life span and regenera-tlve capaclcy.

Zooplankton, hovrvrr.

should not be disrr.issr<

from conslderatlon without a prellmlnary assessment of the fmportance or uniqueness of the species assemblage dt the site.

Phytoplankton Phytoplankton are free-floating green

plants, usually mlcroscoplc tn
size, and are generally the main primary producers In the aquat tc food web.
Again, the potential cooling vater Intake structure impact on phytoplankton muld be through entrainment.

The short life-cycle and high reproductive capabllfty of phytoplankters generally provldes a high degree of regenerative capacity.

In most

cases, intake structure effects are of short duratlon and confined to a relatively small portIon of the vater body segment.

Phytoplankton,

however, should not be dlsmlssrd from conslderatlon vithout a prellmlnary assess-ment of unfqueness or special Importance of the species assemblage at any particular site.

Follov-up Studies Poet-operatLona1 studies at nev intakes vlll also be necessary In order to determine If the

design, location, and operation, In
fact, mlnlmlze adverse environmental impact and vhether the model predlctlons utilized vere reallstlc.

Some suggestions for follov-up studles are available In section XI.

Hovever, the appropriate program at a new plant site should be detenlned In large part by the need for consfstency vlth pre-operatlonal study results.

XI.

MONITORING PROGRAM (EXISTING INTAKES)

The study requirements necessary to evaluate losses of aquatic life at existing cooling water intakes can be considered in two separate steps.

The first is assessment of the magnitude of the problem at each site through direct determination of the diel and seasonal variation in

numbers, sizes and weights of organisms involved with operation of the intake.

When losses appear to be serious, as a second step it may be necessary to conduct studies in the source water body if there is a need to evaluate such losses on a water-body-wide or local population basis.

However, before requiring such studies it should be realized that the natural variability of biological systems, the difficulty of separating other stresses on population size, and difficulties in obtaining accurate and precise samples of the biota may mask the environmental impact from cooling water system operation.

high and may range from 20 to The magnitude of sampling variation is 300 percent of the probable numbers. 36 Thus, effects of the Intake structure often cannot be identified above this background noise unless they are considerably greater, For many species, adverse environmental impact may be occurring at levels below that which can be seen with the standard survey and analytical techniques.

Such field studies therefore will be extensive and difficult to conduct, and will generally require several years of data collection, all without certainty of results.

Such studies should not be required unless absolutely necessary for the best technology available decision and then only to address specific questions.

Because of the above difficulties, it may be necessary to base a determination of adverse impact on professional judgment by experienced aquatic scientists.

In evaluating data from the following studies, it is often desirable to assume worst case conditions where all organisms which pass through the intake suffer 100 percent mortality.

If the magnitude of the numbers precludes such an analysis, specific mortality estimates may be necessary.

The following study requirements are based in part on the recommendations contained in the reports of the Lake Michigan Cooling Water Studies Panel 44 and Lake Michigan Cooling Water Intake Committee: 45

- 4 0 -

1.

E n t r a p m e n t - I m p i n g e m e n t The objective of this sampling program is to document the magnitude of losses of fish life at operating cooling water intakes.

Since it is possible to obtain a complete daily count of fish which are impinged by collecting the intake screen backwash material, this intensity of collection should be considered for application through one calendar year.

The data which result will most accurately reflect the total annual loss by species.

This approach does ignore possible delayed mortality to organisms involved with the intake structure but not impinged on the screens long enough to be killed.

If total entrapment-impingement mortality is estimated by sampling from the screens, the sampling scheme must consider day-night and seasonal differences.

If a less than complete dally count over a year is utilized, dally sampling once every four days for one year is suggested as the lowest effort which will be acceptable from the stand-point of allowing for reliable loss project tons reflective of the plants operation.

Both more and less intensive sampling approaches may also be justifiable based on apparent impact, intake data, spawning periods, and other site specific and seasonal considerations.

The 4-day interval for sampling is based on observed variability in daily impingement losses.

For example, in a study of the Central Illinois Light Companys E.D. Edwards Plant on the Illinois River, numbers of fish impinged varied from 7,000 on July 18 to 500 on July 19. On August 23, 1,500 fish were impinged versus 30,000 fish on August

26. 43 Not all plants exhibit such wide variations in numbers of fish impinged; however, until intensive sampling is completed at a site, total loss figures will be subject to question.

Collection of the samples can usually be accomplished by inserting collection baskets in the screen backwash sluiceway.

These baskets should have a mesh size equal to or smaller than the intake screen mesh.

The following data should be collected during the sampling period:

A.

Plant operating data required:

1.

Flow rate; 2.

Temperature (Intake and discharge);

2.
3.

Time

started, duration, and amount of warm water r~~:r;:-

lated for intakv deicing and thenal defoullng; Total residual chlorInr contained In recirculated v,ltrr during condenser chlorination;

5.

Current velocity at intake(s) over the range of vater volumes used in plant operat Lon (representat

ivt, neasurt-ments or calculated values may suffice);
5.

Yumbrr of ttmrs screens are operated betvren sacpi:.:<

Intervals;

7.

Tidal stage (where appropriate) and flov;

8.

Sallnlty (where appropriate);

and

9.

Dissolved oxygen if intake vithdravs water from an area (or strata) of potentfally lov oxygen content;

8.

Data required from blologlcal collections:

1.
Species, number,
length, weight, and age group (young of the
year, yearlings, or adults) collected from the screens or reprrsentatlve subsamples vhen numbers c3f lndivldual species collected are very large.

Subsasp.

. :I.:

approaches should be approved In advance by the Agec~:;;

2.

Representative samples of each species for determination of sex and breedlng condltlon;

3.

Numbers of naturally occurring dead fish In the area ahead of the lntake screening system should be estimated; and

4.

Perlodlcally conduct a test to determine the recovery rate of flsh impinged on the screen.

This can be done by splklng the screen vLth tagged dead flsh and deter-mlnlng the proportlon that are recovered Ln the screen backvash slulcevay.

Sampling Program Entrainment The follovlng soctlon describes invest lgatlons necessary to drtermlne effects of entralnmant of phytoplankton, zooplankton.

benthos, fish

, and shellfish at exfstlng cooling vater intakes.

Such studles should generally concentrate on f lsh and shellf lsh unless the phytoplankton, zooplankton, or benthos are uniqllcll/

important at the site in question.

Flsh and !leroplankton The potent la1 for damage to f lsh or sht?llflsh populat Lens bv entrainment depends on the number of organisms that pass through the condenser system and on condltlons experienced during passage.

Overall objectives of the study are to determine the spe~lt?s and numbers of flsh and shellf lsh eggs and larvae dravn intc and discharged from the cooling systems

and, if necessary, determlne the lmmedlate and delayed effects of cooling system passage on these organisms.

A pump system Is acceptable as the primary sampling

method, provided It does not damage fragfle organisms, and pumps are easier to automate and quantify than systems In vhlch sampling IS done vlth nets suspended In the cooling vater flov.

Dlel sampling 1s recommended because the numbers of organisms.

ttvrn in areas known to be good spavnlng and nursery

areas, typically have lov concentrations, and thelr dlstrlbutlon in t lme and space 1s usually either changing rapidly or patchy as a result of natural condltlons.

Therefore, adequate representat ion of these organisms can usually only be obtalned vlth continuous sampling throughout a dlel cycle.

The actual volume of vater to be pumped to provide an adequate sample 1s dependent on the densities of flsh eggs and larvae in the vater surroundlng the cooling system lntake structure.

The sample volume should therefore be detennlned based on the least dense species of concern.

If no a prlorl source water drnslty data

exists, then as large a sample volume as can be handled vLl1 be necessary.

Once lnformation 1s developed on the least detectlble denslty for species of

concern, sample volumes may be adjusted accordingly.

Thls point fs extremely crltlcal to acceptance of the resulting

data, If the sample volume 1s too small the study vlll be blased and show fever organlsms involved vlth the structure than actually exfst.

Sample locations In the Intake system should be located immediatelv ahead of the lntake screens and.

when less than 100 percent mortality lr

aesuaed, at a suitable polnt ln the discharge system.

When leer than 100 percent is

assumed, samples at lntake and dlschargr should be from the same water mass.

At each locat Ion ant! sampling point should be located near the

surface, one near the
bottom, and one at mid-depth.

If unlfom organlsm dlstrlbution can be demonstra-

ted, one sampling depth may suffice.

Sampling should normally be conducted continuously at a frequency (e.g.,

every fourth day of plant operation) allowing the estlmatlon of annual numbers of organisms vlth a 95 percent confidence interval which 1s + 50X.

?lore frequent sampling may be desirable dur lng

-4 3-peak spawning seasons.

Sampling should 1 ontfnue over at least one year.

Sampling In subsequent years may be deemed necessary based on the results of the first year of study.

Macrolnvertebrates The primary concern regarding the effect5 of entrainment on macro-lnvertebrates As-does entrainment affect the rates of mortality, growth or reproduct Lon?

Specific objectives are to detenlne the kinds and numbers of organlsms entrained, ta assess the effect of entrainment on their survival and reproduction, and to describe the seasonal and diurnal patterns of entrainment, Pumped samples are acceptable provided the pump does not damage fragile organlsms.

X pump which oil1 transfer small fish without harm 1s often satis-factory for rooplankton and benthos.

Non-toxic material should be used throughout the sampling system.

Nets used to concentrate zooplankton and benthos from the pumped sample should be metered.

or the pumping rate should be tlmed to provide an accurate determlnatlon of the volume flltered.

Samples should be taken fn duplicate.

Xf no vertical stratlflcatlon of organisms le documented, duplicate mid-depth or duplicate lntegrated samples may be taken.

Sampling sites should be establlshed in the

forebay, lamedlately ahead of the traveling
screens, and aa close as posslble to the point of discharge.

Samples should be carefully concentrated in non-toxic containers and inspected microscopically for mortallty and damage as soon as possible after collection, Samples should be collected in the forebay and at the discharge during a 24-hour period at least monthly.

Duplicate samples should be taken every 3 to 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> during the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> survey.

Phytoplankton Phytoplankton are susceptible co entrainment and possible damage in cooling water systems such that rates of mortality,

growth, reproduction, and primary production are affected.

Studies to dete-he those effects should lnvolve microscopic examination, Yssuruent of chlorophyll concentrations, measurement of r&tee of primary production, and observations of cell growth and division.

In most

cases, effects are of short duration and confined to a relatlveiy small portion of the water body segment.

Phytoplankton,

however, should not be dismlssed from consideration wlthouc a prelfmlnary assessment of uniqueness or special importance of the species assemblage at any particular site.

Special sampling methodology can be found in reference

20.

Looplankton Zooplankton sampllnc vi11 generally be directed towards detcr-llnatl:,n of entrainment impact by an lnt,lke structure.

(1 r-l-planictrrn

.lre essent i;llly

  1. nlcroscoplc animals suspcndcd in

\\J:tt(*r vith near-neutral huoyjncy.

Hcca~~sc nf thrlr l)t1~3icnl ct!,~r IC-terlst

its, most arc 1ncap;lble of sust.llned mobilttv tn Jir((t L~II+

agdtnsr water flow and drift passively in cl112 rurrclics.

tn mnst

cases, intake effects Jrti of relatively stlort C!IIC.IC ic)n and confined tn a relat tvely smilll port ion of the water beady segment because of short lift span and regcnerat Lve cap,?citv.

Znoplaniton,

tlouever, should nnt he dismissed fron cnnsijcr.Lt

~~9 without a preliminary assessment of the importance or unlqcr<~ncs~

of the species assemblage at the site.

I.

Follorup 5tudies A follow-up monitoring program Is also necessary at existing plants to determine whether the approved intake in fact minimltes environmental impact.

In cases uhere an exlsttng intake has been

approved, lt wuld bc expected that the monicor-ing proWram could be on A reduced level fron that noted above.

Hoveve r, where signlf tcant changes in tntakc

locatton, design.

cnnstructlon,

capacity, or operatton have taken
ptace,

.-I pr~~gram comparable to the pre-operational nne shauld be fnlloved.

XII. IMPACT ASSESSMENT The goal of impact assessment is to analyze and reduce biological survey data to a form easily conceptualized and understood in the con-text of best available technology to minimize adverse environmental impact of intake structure location, design, construction, and capacity.

The following approaches are suggested for use, although their applica-tion will not be appropriate in each case:

1.

Biostatistical Analyses In general, the minimum reduced raw sample data should include the arithmetic mean, the standard error (or the standard deviation), and the sample size from which these calculations were made.

If a large number of measurements or counts of a variable (e.g., species) are made, the data may be summarized as a frequency distribution.

The form or pattern of a frequency distribution is given by the distribution in numerical form (as in a frequency table). However, the data is more clearly evident in a diagram such as a histogram (i.e., a graph in which the frequency in each class is represented by a vertical bar).

The shape of a histogram describes the underlying sampling distribution.

Known mathematical fre-quency distributions may be used as models for the populations sampled in the study, and the frequency distributions from samples may be compared with expected frequencies from known models.

The spatial distribution of individuals in a population can be described in quantitative terms.

In general, three basic types of spatial distribution have been described.

They are:

a random distribution, a regular or uniform distribution, and a contiguous or aggregated distribution.

The spatial dispersion of a population may be determined by the relationship between the variance and the mean, as well as by other methods.

In a random distribution, the variance is equal to the mean.

The variance is less than the mean in a uniform distribution, and it is greater than the mean in a contiguous distribution.

In general, a Poisson distribution is a suitable model for a random distribution, a positive binomial is an approximate model for a uniform distribution, and a negative binomial is probably the most often used, among possible models, for a contiguous distribution.

Temporal and spatial changes in density can be compared statistically.

Significance tests for comparisons of groups of data may be parametric when the distributions of the parent populations are known to be normal, or nearly normal, from previous experience or by deduction from the samples.

Often, non-normal data may be transformed into data suitable for such testing.

Otherwise, non-parametric tests for significance should be applied.

2.

Predictive Biological Models Models used to simulate currents (circulation models) and the dispersion of constituents (concentration models) are becoming more available for use in assessing impact.

These models, when soundly-based conceptually, can usually be verified against hydrographic data and, therefore, represent an important tool for considering the influence of a power plant on its surroundings.

Diverse population and community models can be developed, but the assumptions on which they are based are difficult to test and the parameters difficult to estimate.

Some important parameters depend on long time series of data (tens of years) and no level of effort can offset the requirement of time.

These problems with biological models can sometimes be overcome by making worse case assumptions and estimates, but this course may tend to produce a plethora of models indicating potential disaster.

Nevertheless, models are a means of integrating the available information and the subjective underlying assumptions about a problem in order to produce the most rational answer based on the inputs.

In this regard, some models way serve an important rule in assessing impact.

As previously noted, hydrodynamic models in theory can he used to predict the source of water drawn through a power plant intake structure.

This is done by simulating the movement of drifters or the dispersion of a constituent originating at a particular point in the area modeled.

The simulation is carried nut for sufficient time for most of the material to be transported to the point of the assumed intake structure where it is con-sidered entrained, or for the material to be transported suffi-ciently far away from the intake structure so that it has little chance of future entrainment.

This procedure must be repeated (or performed simultaneously) for numerous constituent origins and for numerous initial flow or tidal conditions.

These results will provide isopleths of entrainment probabilities surrounding a proposed intake structure.

The isopleths can be compared with the biological value zone to assure that the plant will not draw a high percentage of entrainable organisms from highly productive areas.

Various intake locations may be considered to minimize impact.

In practice, it might be very expensive to calculate the probability of entrainment isopleths (source area) of an intake structure because a large area may have to be modeled and considerable computer time expended.

-4 i-For a glvrn

(:t ltL~:al aguat lc

organism, 1 I may be poeslblr to use hydrodynamic modeLa to ttstlmatt!

the percc nt reduction tn annual recruitment resulting from entraLnment ot pelagic early Life

stages, Uhen the source of pelagic eggs and/or larvae fs
knovn, the dleperslon of thls blologlcal naterial around the study area and the consumption by a plant Intake may be simulated, Lndlcatlng the reduction In recruttment that

~111 result.

Xn this procedure, entralrunent mortality Is separated from natural mortality.

If natural mortality Is drnslty dependent, the impact of power plant entrainment vi11 be overestimated or underestimated vhen entraln-ment mortality 1s estlmated separately from natural nortallty.

The method described above for estimating the reduction Ln recruitment resulting from entrainment can only be applied, as

stated, for closed systems.

For the more common sttuat ion vhrrc!

some larvae are dlspersed out of the modeled study area (area for vhlch clrculatlon and dlsperslon is simulated) addltlonal aseumptlons are requlred.

If It Is reasonable to assume that once organleme have been transported out of the modeled study area they have a Lov probability of contributing to support of the adult populatlon of the study area.

Then the dispersion of organisma around the study area for a period of time equal to the length of the species vulnerable pelagic phase can be simulated vlth and vlthout the entrainment lmpacr of a simulated pover plant.

By comparing the number of organisms remalnlng In the

8re8, the reduction In recruitment to later stages of the life cycle may be estimated.

This approach vas used in reference

21.

The approach lgnorrs tht!

posslb Le Lmpact of a

reduction in the number of organlsms dlspcrsed outslde the modeled study area and other supporting pllpul:ltions.

For open systems vhere peleglc entrainable orEanlsms are dlspersed out of a modeled study

area, it 1s often necessary to consfder the effect of a plant on biological material transported across the model boundarier 8nd lnco the system.

If sufi iclent lnformatlon 18 available, the concentration of organisms

.lt the boundaries may be lnput to the model aa boundary conditions.

Again, the sltua-tlon vlth and vithout a plant intake could be simulated and the number or organisms remalnlng tn the modeled study area could be compared in order to derive an estimate of thr reduction In re-crultment.

The reduction in recruitment

~111 clhange 89 the population of the modeled study area 1s reduced and becomes more dependent on the input of biological material 3crosa the boundaries.

Hydrodynamic models 8re of little value for predicting the entrapment-impingement mortality rate suf feretl by populet ions.

In the case of separate but eimilar

Lntakes,

~hts rate can be estlcaated after one Is operational.

Results m,ly then be extrapolated to e8cimate the lmpact of additional Intakes.

Predictive model8 for entrapment-impingement

  • trt!

under develop-ment but have not yet been validated.

-i,H-SUC+

simulations reqllire knowledge 111 t\\le life tahlc i(lr tllc species being considered.

I.ifc table infor-nat ion for some species may be based on the literature.

It my St2 pnss ible to supplement thls information vlth kncwledac Kained from f ielzi stud fes.

The age-(or length-)

fecundity functinn and the egg production-recruitment relationship nllst also be knovn.

The latter may hc of three foras:

(1) recrultmcnc as a line;lr function nf egg prodtlctlon, (2) rrcry;t!fn,tra;jj a density dcpcndent function of egR product

ion, recrul tment independent of egg product inn.

The clloice of CIIL*

appropriate egg production-recruitment relatlnnship and estimation of parameters must be based on ttlc available hlstorlcal information on the spcc tes.

At ledst twenty yedrs of data Is probably required to make such a dcclsion.

In trlv absence of enough

data, the assumption of a linear egg pro-duction-recruitment relatlnnshlp 1s appropriate.

Yote that for a linear egg productlon-recruitment

model, there 1s only J

single equllibrilrm condition, and any plant related

<Tortal-lty is Likely to disturb this equilibrium.

If the populatton 1s not

isolated, cxcllange with clthcr pnpulatlons may be modeled.

The results of mark dnd recapture experiments may be useful for estlmatlng exchanp,e rates.

3.

Ihc aratlltrds for a~sscsslnx impact described in this sect:on are uscflll but of unkuoun validity.

lost

,~sscssmcnts hasc!.

on biolS3K;fcal nodcls hnve

iet to be f ictd verif icd.
)cv t 1.3,1-ment n!

predictive nodels for

.Isscssing impact sllrwld bc encouraF;ed but only Jftcr full cnnstderatinn of the diff i-cult tes

involved, the cxpcnsic compared to the reltabllity of
results, and tile dangers of

.I worst case analysis.

Community

Response

Para3cters The populations of all spec Les tn a given area or voltlne are defined as

1 cnm~unlty.

Although the term c(~nmIInIty is considered

1 useful concept tn dellncat lng tllc group of interactlnc spccics In nn area, it is believed to be a subjcctlvc entity.
Thus, for speclf lc stlrdles 3nc tests 0f hypothesis, the composltlon of the comlunity rnilst bc strictly dcftncd.

(ommuntt~

rtlsponsc p~ra~ncters, such as changes ln structure, llave snnet imes been studied and cst imated by certain mt11t i-variate clnssif icatton techniques.

Va r ioIls measures of spccles diversity trr assnclatlnn cncfflcicnts have also been employed LO ne.isure connunity response to perturbat Inns.

In estim;rting ccwiunlty dlversity, tile 3nc)st widely used indices

.ire ttlose based nn information tlleory.

l&en tlrc sample of species ahuntianccs may IJC cnnsidercd randnnly t.iAen f ran an eccll(Tgical cnnnu~~ity or subcnrlnllnity, tllc Slbannr>ll index (also referr4 tn as tile Shannon-Wiener or Shannon Ueaver Index) mdy bc cased.

If the sample may not be considered a randiw set of species abundances taken frcln

,I LarKer spec its aF:r,rcj:.it ion I3f interest, ttlen tllc Rri 1 Irwin Etther index may be cnnputed vith Index shul be ~~

.Ind, in either case the logarithmic conputat ional ease base clscd must bc stilted.

Tllc sl\\ortccrmin,:s of a11 exist Lng indices of sprcies divrr-stty and the biolnglcal phcnnncna which nay influcance thcsc vcl111es sttould be recognized.

References 2H, 29, nnd 30 should he cnnsulted for further exolanation of diver-sity indices and thctr utility.

For the purposes at Il;lnd, the phrase classiflcatinn nf commun i t ies is util tzed for prwesses chat snrt species into

groups, and it incllrdes both discriminat Lnn

-2nd clustering.

In

gcnerdl, discriminatinn tcchnlqws begin uittl a priori cnnceptuaL disttncttnns nr with data

-5o-dlvlded fnto a priori groups.

Then one should proceed to develop rules uhlch separate data Lnto these a prior1 categories.

Clustering techniques, on the other

hand, use a priori selection of a measure of sLmllar!ty, a criterion, and a class description to flnd Inherent emplrfcal structure In
data, i.e.,

clusters.

Clustering does not use an externally supplied label and lnvolv~s ffnding derived data groups vhlch are Internally slmflar.

h good rcvlev and summary of various dlscrlmlnatlon and clustering procedures is provlded in reference

31.

The aquatic environment can often be stratified In some vay, such as by depth, substrate composltlon, etc.

It is suggested that such stratification be done and that tables shoving the frequency, or dens lty, of each species at each environmental stratum be compiled.

These tables are anaji)gous to the distri-bution cumes made In a gradtent

analysis, L and are consi-dered a natural and useful description for species assoclatlon data.

It 1s suggested that these tables be the basis for certain multlvarlate methods of data analysis for spatial and temporal varlabtlLty, such as cononlcal variate analysis described in reference

33.

In

addition, for these data which now contain a prior1 groupings, the linear dlscrlminant funct lon may also be successfully utlllzed for testfng the differences among environmental strata uslng multiple measurement or counting data.
4.

BLologlcal Value Concept The concept of establishing relatlve biological value zones In the water body segment lmpactrd by a cooling water Intake structure could be a useful approach in determfning best technology available for intake

design, location, and operation to minimize adverse environmental impact.

The principal use of thls concept Is In delfneating the optimal location ulthln the vater body for mlnlmum Lmpact on the biota potentially involved with the speclflc intake structure.

The ersence of thls concept is ln establishing blologlcal value of various zones for the water body segment (or other deflned area) uithln vhlch the intake structure is to be located.

A judgment of value 1s made for the representative important species considering type of involvement with the tntake (entrap-

ment, impingement, entrainment) and the numbers of each vhfch are adversely Impacted.

Results are summed up by species, seaeonally or

annually, and represented by graphical means to depict areas of the vater body highly important to the species
and, conversely, areas of low relatLve
value, thus potentially favorable lntake structures.

-5l-Yettlodology.

The frill louinK

?letilodoln<y for asinK the

!IA,?!..;:.li value cnncept 1s based on :let!lods devel.>Ic*,!

and ut ilizcc

q connt~n~ty plannin,

studies JS descrlbcd in rrfercnrc I&.

Ise of ttlc SInlogical VJIJC cnncept vould reqirt?

.~ccept~r~~:c a\\t the rc.l~on;Ibleness of sever.11 basic premises:

1.

T11cr~* are areas of Jlf ferent cnnccnt r It ions of rcpreschnt.1:

LV,:

1npt)rtant species vithin tllc vatcr body scgmcnt conprt+tn):

potent i,ll sites for an intake structure.

2.

.\\rcas of hlnlogicnl concentrations c-an hc cxprc1sscc

Y tt:r,\\

of rclat ive value to perpetuiit ton 0i rcprcscrltac ivy-in;:~lrL.:*:l species PopulJt tnns in ttle vatrr body scp,,ment.

I.

The arca ni zone of least bioloRica1

valrle, expressed in rc!;lt ive terns of pnpulatlnn densities, would bc t!lc I~~~LTII It,cat ion fnr 3n fntake structllre In order to redlIce

.I(Ivcrsc env i ronnen tJ 1 impact This Ls not a preclsc method bec.:.lse cjf inexactness of differen-t lat tng rclnt lve value between spcc Lcs Jnd diff lcul ties in comparing importance of loss betveen

eggs, larvae,

,lnd Jdults.

4ls0, Lt Is lssumed that tile adverse impact on the populatL;lns of critical squat tc organisms 1s significant to some drL;ree

.~nd tticreforc, tt Ls cJesirahle to minimize tllis

impact, thus

,:lvini:

importance, to best available intake locations.

If one CJII determine that one spccles is more important than annti\\er, one can vcigh it in some way.

tf

not, least cclnccnt r.t-tions of crft lcal squat Lc nrganisms in any one location lnqic,ltc its intrinsic sultabtlity for lntake structure location.

3-A step-by-step procedure could include:

1.

Select crit tcol aquatic organisms; and

2.

Divide water body segment into spatial cclnpartments (USC hydrological model).

For each species and spatlal compartment:

1.

netermine life stages potentially involved with intake and type of involvement (entrapment, imptngement, entrain-merit);

2.

Estimate numbers of organisms involved at reprrscntat tvc times during the annual nperat fan cycle;

3.

Estlmatc numbers nf those involved CIIJ~

are L&,sc (deter-;:c percent survival or

.lortallty of those entrained or

~nplll't-~)

on.lrl annual basts;

4.

h:sC imate conversion rat ins to express t*zf,:s.IIIL~ I.lrv.lk*

IS)51 tn terms nf ntlmber of adults (tl~is Is a VJ~IIC Jtddj;ment

,inll assumes the 109s of clne cgt; is nnt a5 fTnportanc co sibrvlv.ii nf the species as tile loss nf an.idllI c).;

5.

Develop CIIC data matrix fnr cnnstructinn nI t11c biol~~lIc.~l value level nverlay charts (Table I);

6.

CofIStrUCt cran.Spdrent IWCr1JyS for ea-Icfl SpCCicS IJn Ctl;lrc Vf vater body segment.

Areas nf different impact An trrns

\\lf nrganisms lost due tn involvement witli tllc intake scrtlCt44rc*

could be color-coded; e.c.,

areas nf

-747st val11f2 could bc J,lrr gray; areas of lc;lst

value, clear.

r,cnrrA 1 Iy, tlirre lrve lD nf v3lue vfll sufflcc;

7.

Superimpose overlays for (111 reprcscntat ive important spcc 1~s on chart to obtain cnmpositive

value, indicated by relative
color, fnr all spatial compartments in the vacer body segment; and
3.

Analyze graphic display of relatlvc value snd identify light-toned areas as most favorable tntake

sites, heavy areas as least favorable.

The methodology is intended to be flexible.

Var inus sriarlcs of different colors could indicate cnmparative value bctueen selected species or variations Ln density vitll depth.

ThC value grades could bc expressed in terms of their rel.xtinn to pnpulat tons nf critical aquactc organisms ln tile overall vntcr body to provide insight on importance of the spccif ic scy,mcnt studies to the vhole system.

The biological value concept for analyzing survey data in tVlc determlnat ion of best technology avai Lahlc tn 3inirniae advcrsc environmental impact appears to liave ttic principal appt Ication ii sclcctlnn nf the minimal imact zones for lncatlng tllc intal;c stfuc Cure.

The usability nf tile cnnccpt is, of

course, dSlt.j-dependent.

As

noted, it 1s not
preclsc, but at least incc~raccs multiple factors and presents a defined inllic;ltion of suirahilit:d fOt locatton of an intake structure Ln the affected vater body segment.

Three-dimensinnal computer graphic cectlniques can also be portray spatial and temporal distrlbue ion nf hinln~ic.11 Time-series graphs can be useful in depictfng the dynamic nature of occurrence and abundance of a designated species during the annual operating cycle of the intake structure.

The principal application would appear to be ln the deter-mination of the optimal location of the intake structure.

Also, graphic representations of the biologically predicted mathematical model output could aseist fn more clearly depicting intake structure impact on populatfona of Repre-sentative Important Species (RIS).

TAB1.E I

FiXAWLE nATA HATRIX (SPECIES

1)

DATA SHEET (SPATIAL CWWARTHFXT

[A] )

I I

f Lost I

1 Numbers i Calculated F.quiva-I Value I

TYPE Organism Involved (If assumed other OF I

I than 100

2)

I l.ost I

lent Adult Loss 1 Gr.4de INVOLVEMENT 1

I ERRS 1 Larvae 1 Adult

! Eggs I Larvae I Adult IL.1 L.1 A i E.

IL.

IA.

1 Total iI.

II, III i

t I

I I

I 1

I I

I 1

I I

I I

I f

I I

I I

1 II 1

I Entrapment I

1 1

I I

I I

I I

I Implnjiemcnt I

I I

I I

I I

I I

I I

I I

I I

1 I

I I

Entrainment I

I I

I I

I 1

I I

I I

1 I

I I

1 I

I 1

I I

I 1

I I

I I

I I

1 I

Total Effect/

1 I

I 1

I I

I I

I 1;

/I I1 I

I I

I I

I 1

I I

I I

I I

I I

I I

I I

XIII.

ACKNOWLEDGEMENTS The concept of a 316(b) Technical Guidance Manual was initiated by an interagency working group comprised of James Truchan, Michigan Department of Natural Resources; Howard McCormick and Alan Beck, U.S.

Environmental Protection Agency; and Phillip Cota, U.S. Nuclear Regulatory Commission.

The first draft of the Manual was completed in December 1975, followed by a revised version in April 1976.

The Manual in its present form is the product of the following individuals who provided comments and assistance:

James Truchan and Robert Courchalne. Michigan Department of Natural Resources; W. Lawrence Ramsey, Maryland Department of Natural Resources; Allan Reck, Alan Seers, William Brungs, Stephen Bugbee, William Jordan, Tom Larsen, Harvey Lunenfeld, Howard McCormick, Gary Milburn, Eric Schneider, and Lee Tebo, U.S. Environmental Protectinn Agency; Thomas Cain, Phillip Coca, Bennett Harless, and Michael Masnik, U.S. Nuclear Regulatory Agency; Philllp Goodyear, Mark Maher, and Roy Irwin, U.S. Fish and Wildlife Service; William Anderson II, Hunton, Williams, Gay & Gibson; J. Roy Spradley, Jr., National Association of Electric Companies, Charles Coutant; Oak Ridge National Laboratories; Rajendra Sharma, Argonne Laboratories, Saul Saila, University of Rhode Island, George Mathiessen, Marine Research Inc.;

and Gerald Zar, Northern Illinois University.

Special acknowledgment goes to Howard Zar, U.S. Environmental Protection Agency, who was responsible for reviewing and incorporating comments received into this Manual.

Overall coordination and preparation of this Manual was done by the Industrial Permits Branch, Permits Division, Office of Enforcement, U.S. EPA, Washington, D.C.

XIV.

LITERATURE CITED 1.

Schubel, J..R.

1975.

Some comments on the thermal effects of power plants on fish eggs and larvae. In:

Proceedings, Fisheries and Energy Production, A Symposium.

Saul B. Saila, Ed. D.C.

Health & Co. Lexington, Massachusetts.

300 p.

2.

Marcy, B.C., Jr.

1973.

Vulnerability and survival of young Connecticut River fish entrained at a nuclear power plant.

J. Fish. Res. Board Can.

30 (8) :

1195-1203.

3.

Carpenter, E.J., B.S. Peck, and S.J. Anderson.

1974.

Survival of copepods passing through a nuclear power station on north-eastern Long Island Sound, U.S.A.

Mar. Biol. (NY). 24:

49-55 4.

Beck, A.D. and D.C. Miller.

1974.

Analysis of inner plant passage of estuarine biota.

Proc. ASCE Power Div. Specialty Conf., Boulder, Colorado.

August 12-14, 1974.

199-226.

5.

Beck, A.D. and N.F. Lackey.

1974.

Effects of passing marine animals through power plant cooling water systems.

(Presented at Symposium on Effects of Nuclear Power Plants on the Marine Ecosystem.

American Fisheries Society annual meeting Honolulu, Hawaii, September 7-11, 1974.) U.S.E.P.A. Environmental Research Laboratory, Narragansett, Rhode Island.

6.

Odem, E.P.

1971.

Fundamentals of Ecology.

W.B. Saunders Co.,

Philadelphia.

574 p.

7.

Anon.

1971.

A Symposium on the Biological Significance of Estuaries.

P.A. Douglas, R.H. Stroud, Eds.

Sport Fishing Institute.

March 1971.

111 p.

8.

Leendertse, J.J.

1967.

Aspects of a computational model for long-period water-wave propagation. Rand Corp., Santa Monica, California, Memorandum RM-5294-PR.

165 p.

9.

A water-quality simulation model for well-mixed estuaries and coastal seas:

Volume 1, Principles of computation.

1970.

Rand Corp., Memorandum RM-6230-RC.

71 p.

10.

Conner, J.J. and Wang, J.D.

1975.

Mathematical modeling of Near-shore Circulation.

MIT Sea Grant Report No. 75-13.

272 p.

11.

Callaway, R.J., K.V. Byram and G.F. Ditsworth.

1969.

Mathematical model of the Columbia River from the Pacific Ocean to Bonneville Dam:

Part 1.

Pacific Northwest Water Laboratory, Corvallis, Oregon.

12.

Leendertse, J.J., R.C. Alexander, and S.K. Liu.

1973.

A three-dimensional model for estuaries and coastal seas:

Volume 1, Principles of computation.

Rand Corp.

Memorandum R-1417-OWRR.

57 p.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Hess, K.W.

1976, A three-dimensional numerical model of steady gravitation, circulation and salinity distribution in Narragansett Bay.

Estuarine Coastal Mar. Sci. 4:

325-338.

Laevastu, T.

1974.

A multi-layer hydrodynamical-numerical model (W. Hansen type).

Environmental Prediction Research Facility, U.S. Naval Post Graduate School, Monterey, California.

Technical Note No. 2-74.

Gordon, R. and M. Spaulding.

1974.

A bibliography of numerical models for tidal rivers, estuaries and coastal waters.

University of Rhode Island, Department of Ocean Engineering.

Publ. P-376.

55 PP.

Cochren, W.G.

1963.

Sampling Techniques.

(2nd Ed.) J. Wiley &

Sons, New York.

413 p.

Bartlett, M.S.

1935.

Some aspects of the time correlation problem.

Royal Stat. Soc. J. (Ser. A). 98 (3):

536-543.

Quenoville, Y.H.

1952, Associated Measurements.

Butterworth Scientific, London.

242 p.

Sissenwine, M.P. and S.B. Saila.

1974.

Rhode Island Sound dredge spoil disposal and trends in the floating trap Industry.

Trans. Am. Fish Soc.

103 (3):

498-506.

Environmental Impact monitoring of nuclear power plants --

Source book.

1974.

Prepared by Battelle Laboratories.

Atomic Industrial Forum Inc., Columbus, Ohio.

August 1974.

810 p.

Edwards, R.L.

1968.

Fishery resources of the North Atlantic area. In:

Gilbert, D.W.

The Future of the Fishing Industry in the United States.

University of Washington Publ. in Fisheries.

Holmes, R.W. and T.H. Widrig.

1956.

The enumeration and collection of marine phytoplankton.

J. Cons., Cons. Int.

Explor. Mer. 22:

21-32.

Conuver, W.J.

1971.

Practical Non-parametric Statistics.

Wiley &

Sons, New York.

Hess, K.W., H.P. Sissenwine and S.B. Saila.

1975.

Simulating the impact of the entrainment of winter flounder larvae. In:

Fisheries and Energy Production - A Symposium.

Saul B. Saila, Ed.

Heath & Co., Lexington, Massachusetts.

300 p.

Ricker, W.E.

1958.

Handbook of Computations for Biological Statistics of Fish Populations.

J. Fish. Res. Board Can.

Bulletin 119:

1-300.

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
Shannon, C.E.

and W. Weaver.

19k9.

The ?fathematical Theory of Communication.

Ilniversfty of Illinois

Press, lrbana, Illinois.

117 p.

Hutcheson, K.

1970.

A Test for Comparing Diversities Sased on the Shannon Formula.

J.

Theor.

Biol.

2:

151-15L.

Hurlbert, S.H.

1971.

The nonconcept of species diversity:

A critique and alternative parameters.

Fcnlngy 52(S):

577-586.

Fager, E.U.

1972.

Diversity:

A Sampling Study.

An.

Vat.

106(6j:

293-310.

Degenedictis, P.A.

1973.

On the Correlations Between Certain Diversity Indices.

Am. Nat.

107(4):

295-302.

Nagy, C.

1968.

State of the Art in Pattern Recognition.

Proceedings of the IEEE. 56(5):

836-863.

Uhittaker, R.H.

1967.

Gradient Analysis Fn Vegetation.

Biol.

Rev.

Cambridge Philos.

Sot.

s:

07-264.

Pielou, E.C. 1969.

An Introduction to Yathematfcal Ecology.

Wiley-Interscience, New York.

286 p.

HcHarg, I.L.

1969.

Design with Nature.

The Falcon

Press, Philadelphia.

197 p.

Brown, D.J.

and L.L.

Low.

1974.

Three-Dimensional Computer Graphics in Fisheries Science.

J.

Fish.

Res.

Board Can.

3-l(12):

1927-1935.

!4cErlean, A.J.,

C. Kcrby and R.C.

Suartz.

1972.

Discussion of the Status of Knowledge Concerning Sampling Variation, Physiological Tolerances and Possible Change Criteria for Bay Organisms.

Chesapeake SC i.

~(Supplement/l2):

S&2-S54.

Nelson, D.D.

and R.A.

Cole.

1975.

The Distribution and Abundance of Larval Fishes Along the Western Shore of Lake Erie at

Monroe, Michigan.

Thermal Discharge Series.

Michigan State University.

Technical Report 32.4.

Institute of Water Rercme.

66 p.

Clark, J.

and W. Brovnell.

1973.

Electric Power Plants In the Coastal Zone:

Environmental Issues.

American Littoral Soclcty Special Publication No.

7.

a0 pe

39.
40.
41.
42.
43.
44.
45.
46.
47.
Coutant, C.C.

and R.J.

Kedl.

1975.

Survfval of Larval Striped Bass Exposed to Fluid-Induced and Thermal Stresses in a Simulated Condenser Tube.

Environmental Sciences Dtvision Publication No.

637.

Oak Ridge National Laboratory, Oak

Ridge, Tennessee.

37 p.

Edsall, T.A.

Electric Power Generation and Its Influence cn Great Lakes Fish.

(Presented at Second ICMSE Conference on the Great Lakes.

Argonne National Laboratory, Argonne.

Illinois.

March 25, 1975.)

Andersen.

R.A.

1974.

Fish

Study, Lmpingement of Fishes and Other Organisms on the Prairie Island Plant Intake Traveling Screens.

Environmental Monitoring and Ecological Studies

Program, 1974 Annual
Report, Volume 2 for the Prairie Island Nuclear Generating Plant near Red Wing,

!linnesota.

Northern States Power

Company, Minneapolis, Minnesota.

755-82&b.

Latviatis, B.,

H.F.

Bernhard, D.B.

!fcDonald.

1976.

Impingement Studies at Quad-Cities

Station, Mississippi River.

(Presented at the Thfrd National Workshop on Entrainment and Impingement.

New York. 1 FFsh Impingement Studies at the E.

D.

Edwards Power

Plant, July 1974

- June 1975.

(Submitted to Central Illinois Light Company.

Peoria, Illinois.)
Wapora, Inc.
Meyers, C.D.

and K.E.

Bremer.

1975.

Statement of Concerns and Suggested Ecological

Research, Report No.

1 of the Lake Michigan Cooling Water Studies Panel.

EPA 905/3-751001.

United States Environmental Protection Agency.

November 19 7 5.

387 p.

Lake Michigan Cooling Water Intake Technfcal Committee.

Lake

!!ichigan Intakes:

Report on the Best Technology Available.

1973.

Chicago, Illinois.

United States Environmental Protection Agency.

August 19, 1973.

148 p.

Lloyd, M.,

J.H.

Zar and J.R.

Yarr.

1968.

On the Calculation of Information

- Theoretical Measures of Diversity.

Am. Yidl.

Nat.

79(2):

257-272.

Development Document for Best Technology Available for the

Location, Design, Construction and Capacity of Cooling Water Intake Structures for Minimizing Adverse Environmental Impact United States Environmental Protection Agency.

Washington, D.C.

EPA 440/1-76/015-a.

Apr 11 19 76.

263 p.