ML21179A048: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:Dresden Nuclear Power Station Technical Requirements Manual (TRM)
{{#Wiki_filter:}}
June 2013 Dresden Nuclear Power Station, Unit 2 and 3 Facility Operating License Nos. DPR-19 (Unit 2) and DPR-25 (Unit 3)
NRC Docket Nos. STN 50-237 (Unit 2) and 50-249 (Unit 3)
 
AFFECTED PAGE LIST - TECHNICAL REQUIREMENTS MANUAL TABLE OF CONTENTS i-v                                                                                                      Revision 79 1.0  USE AND APPLICATION 1.1-1 through -2 ............................................................................. ... Revision 0 1.1-3 . Revision 17 1.2-1 through -3 ............................................................................. ... Revision 0 1.3-1 through -3 ............................................................................. ... Revision 85 1.3-4 through -13 ........................................................................... ... Revision 0 1.4-1 through -5 ............................................................................. ... Revision 0 1.5-1 .... Revision 0 1.6-1 . Revision 0 2.1.a MISCELLANEOUS TEST REQUIREMENTS 2.1.a-1 ............................................................................................ ... Revision 71 2.1.a-2 ............................................................................................ ... Revision 0 3.0  TECHNICAL REQUIREMENTS MANUAL LIMITING CONDITION FOR OPERATION (TLCO)
APPLICABILITY 3.0-1  ..................................................................... ... Revision 33 3.0-2 ...................................................................... ... Revision 65 3.0-3. Revision 85 3.0-4. Revision 33 3.1  REACTIVITY CONTROL SYSTEMS .................................................... N/A (No pages at this time) 3.2  POWER DISTRIBUTION LIMITS ......................................................... N/A (No pages at this time) 3.3  INSTRUMENTATION 3.3.a-1.. Revision 2 3.3.a-2.. Revision 0 3.3.a-3.... ................ Revision 95 3.3.a-4.... ................ Revision 80 3.3.a-5.... ................ Revision 80 3.3.a-6.... ................ Revision 80 3.3.b-1. ............................................................................ Revision 36 3.3.b-2. ............................................................................ Revision 0 3.3.b-3 through -4 .......................................................................... Revision 36 3.3.c-1 through -4 ........................................................................... Revision 0 3.3.d-1. ............................................................................ Revision 0 3.3.d-2. ............................................................................ Revision 88 3.3.d-3. ............................................................................ Revision 89 3.3.e-1 . ........................................................................... Revision 0 3.3.e-2. ............................................................................ Revision 77 3.3.e-3 through -5 .......................................................................... Revision 0 3.3.f-1 through -2 ........................................................................... Revision 2 3.3.g-1. ............................................................................ Revision 0 3.3.h-1. ............................................................................ Revision 0 3.3.i-1 through -5 ............................................................................ Revision 0 3.4  REACTOR COOLANT SYSTEM (RCS) 3.4.a-1. ............................................................................ Revision 85 3.4.a-2. ............................................................................ Revision 0 3.4.b-1 through -5 .......................................................................... Revision 5 3.4.c-1. ............................................................................. Revision 0 3.4.d-1 . ........................................................................... Revision 1 3.4.d-2. ............................................................................ Revision 29 3.5  EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.a-1 through -2 .......................................................................... Revision 0 3.6  CONTAINMENT SYSTEMS Dresden 2 and 3                                            Page 1 of 5                                                    Revision 101
 
AFFECTED PAGE LIST - TECHNICAL REQUIREMENTS MANUAL 3.6.a-1 ............................................................................................ Revision 100 3.6.b-1 ............................................................................................ Revision 0 3.6.b-2 ............................................................................................ Revision 67 3.7  PLANT SYSTEMS 3.7.a-1. ............................................................................ Revision 87 3.7.b-1 through -2 .......................................................................... Revision 0 3.7.c-1. ............................................................................. Revision 87 3.7.c-2 ............................................................................. Revision 0 3.7.d-1. ............................................................................ Revision 67 3.7.d-2.. ........................................... Revision 0 3.7.e-1 . ........................................................................... Revision 0 3.7.f-1 through -2 ........................................................................... Revision 84 3.7.g-1 through -4 .......................................................................... Revision 14 3.7.h-1  ............................................................................ Revision 90 3.7.i-1 . ............................................................................. Revision 0 3.7.i-2........................................... Revision 46 3.7.i-3 . ......................................................................... Revision 0 3.7.i-4........................................... Revision 97 3.7.i-5........................................... Revision 92 3.7.j-1 through -6. ............................................................ Revision 95 3.7.j-7 ........................................................................... Revision 96 3.7.j-8 through -9. ............................................................ Revision 95 3.7.k-1.......................................... Revision 65 3.7.k-2.......................................... Revision 65 3.7.k-3.......................................... Revision 65 3.7.k-4.......................................... Revision 77 3.7.k-5.......................................... Revision 54 3.7.l-1 through -10 .......................................................................... Revision 101 3.7.m-1 . .......................................................................... Revision 0 3.7.m-2 . .......................................................................... Revision 95 3.7.m-3. ........................................................................... Revision 58 3.7.m-4. ........................................................................... Revision 68 3.7.m-5 . ......................................................................... Revision 26 3.7.m-6. ........................................................................... Revision 76 3.7.m-7 . .......................................................................... Revision 0 3.7.m-8. ........................................................................... Revision 97 3.7.m-9. ........................................................................... Revision 97 3.7.m-10. ......................................................................... Revision 97 3.7.n-1 ......................................... Revision 0 3.7.n-2 ......................................... Revision 65 3.7.n-3 ......................................... Revision 93 3.7.n-4 ......................................... Revision 0 3.7.n-5 through -6 .......................................................................... Revision 93 3.7.o-1.. .................................................................... Revision 0 3.7.o-2............................... Revision 85 3.7.o-3... ................................................................... Revision 85 3.7.p-1 through 2 ........................................................................... Revision 81 3.8  ELECTRICAL POWER SYSTEMS 3.8.a-1 through -6 .......................................................................... Revision 0 3.8.a-7. ............................................................................ Revision 66 3.8.b-1 through -2 .......................................................................... Revision 27 3.8.b-3 through -4 .......................................................................... Revision 45 3.8.b-5 ...................................................................... Revision 66 3.9  REFUELING OPERATIONS 3.9.a-1 .......................................................................... Revision 0 4.0  Not Used Dresden 2 and 3                                            Page 2 of 5                                                  Revision 101
 
AFFECTED PAGE LIST - TECHNICAL REQUIREMENTS MANUAL 5.0    ADMINISTRATIVE CONTROLS 5.0.a-1 ............................................................................. Revision 0 5.0.b-1 ...................................................................... Revision 23 5.0.b-2. ............................................................................ Revision 70 5.0.b-3 ......................................... Revision 68 5.0.b-4 ......................................... Revision 90 Appendices Appendix A  Primary Containment Isolation Valves A-1 through 9.. Revision 86 A-10 . Revision 94 A-11 through 22 .. Revision 86 A-23 . Revision 94 A-24 . Revision 86 A-25 . Revision 91 A-26 through 28 .. Revision 86 Appendix B  Secondary Containment Isolation Valves B- 1 through 3  ..... Revision 86 Appendix C  Safety Function Determination Program Entire Program (C-1 through 36) .. . Revision 0 Appendix D  Technical Specifications Bases Control Program 1 - 2.. .............. Revision 63 3.. .................... Revision 63 4.. .................... Revision 63 5.. .................... Revision 63 6.. .................... Revision 63 7 - 10.. ............ Revision 63 11 - 12.. .......... Revision 63 13.. .................. Revision 63 Appendix E  Dresden Unit 2 Core Operating Limits Report Unit 2 Cycle 27 (Entire Report)..COLR Dresden 2 Revision 18 Appendix F  Dresden Unit 3 Core Operating Limits Report Unit 3 Cycle 27 (Entire Report).....COLR Dresden 3 Revision 17 Appendix G  Technical Requirements Manual Change Process 1 through 4.. Revision 0 5 Revision 41 6 Revision 0 7 through 10 Revision 32 11 through 12.. Revision 21 13.. Revision 32 14.. Revision 42 15.. Revision 32 16.. Revision 32 Appendix H  Response Times H- 1.. ............... Revision 29 Appendix I  Surveillance Frequency Control Program.. Revision 37 Dresden 2 and 3                                  Page 3 of 5                                                  Revision 101
 
AFFECTED PAGE LIST - TECHNICAL REQUIREMENTS MANUAL Bases 1.0  USE AND APPLICATION None 2.1.a MISCELLANEOUS TEST REQUIREMENTS None 3.0  TECHNICAL REQUIREMENTS MANUAL LIMITING CONDITION FOR OPERATION (TLCO)
APPLICABILITY B 3.0-1.. .......... Revision 85 B 3.0-2.. .......... Revision 92 B 3.0-3 through -4...... Revision 85 B 3.0-5 through -6. Revision 33 B 3.0-7.. Revision 85 B 3.0-8 through -9. Revision 65 B 3.0-10 through -11. Revision 44 B 3.0-12 Revision 92 B 3.0-13 Revision 85 B 3.0-14 through -15. Revision 33 3.1  REACTIVITY CONTROL SYSTEMS N/A (No pages at this time) 3.2  POWER DISTRIBUTION LIMITS N/A (No pages at this time) 3.3  INSTRUMENTATION B 3.3.a-1.. ....... Revision 12 B 3.3.a-2.. ....... Revision 0 B 3.3.b-1.. ....... Revision 36 B 3.3.c-1.. ....... Revision 0 B 3.3.d-1.. ....... Revision 0 B 3.3.e-1.. ....... Revision 0 B 3.3.f-1 through -2 Revision 2 B 3.3.g-1.. ....... Revision 0 B 3.3.h-1 through -2... Revision 0 B 3.3.i-1.. ........ Revision 0 3.4  REACTOR COOLANT SYSTEM (RCS)
B 3.4.a-1.. ....... Revision 37 B 3.4.b-1.. ....... Revision 5 B 3.4.c-1.. ....... Revision 0 B 3.4.d-1.. ....... Revision 0 3.5  EMERGENCY CORE COOLING SYSTEMS (ECCS)
B 3.5.a-1.. ....... Revision 0 3.6  CONTAINMENT SYSTEMS B 3.6.a-1.. ....... Revision 100 B 3.6.b-1 through 4 ........................................................................ Revision 67 Dresden 2 and 3                                    Page 4 of 5                                                  Revision 101
 
AFFECTED PAGE LIST - TECHNICAL REQUIREMENTS MANUAL 3.7  PLANT SYSTEMS B 3.7.a-1.. ....... Revision 87 B 3.7.b-1.. ....... Revision 0 B 3.7.c-1.. ....... Revision 0 B 3.7.d-1.. ....... Revision 0 B 3.7.e-1.. ....... Revision 0 B 3.7.f-1.. ........ Revision 0 B 3.7.g-1.. ....... Revision 42 B 3.7.h-1.. ....... Revision 90 B 3.7.i-1.. ........ Revision 52 B 3.7.j-1.. ........ Revision 65 B 3.7.j-2.. ........ Revision 57 B 3.7.k-1.. ....... Revision 65 B 3.7.l-1.. ........ Revision 101 B 3.7.m-1.. ...... Revision 95 B 3.7.n-1.. ....... Revision 65 B 3.7.o-1.. ....... Revision 16 B 3.7.o-2.. ....... Revision 16 B 3.7.o-3.. ....... Revision 78 B 3.7.p-1 through 4.. .. Revision 81 3.8  ELECTRICAL POWER SYSTEMS B 3.8.a-1.. ....... Revision 0 B 3.8.b-1 through -4... Revision 27 B 3.8.b-5 through -6... Revision 45 B 3.8.b-7 through -8... Revision 27 B 3.8.b-9.. ....... Revision 45 3.9  REFUELING OPERATIONS B 3.9.a-1.. ....... Revision 0 4.0  Not Used 5.0  Not Used Dresden 2 and 3                      Page 5 of 5                Revision 101
 
TRM Definitions 1.1 1.0  USE AND APPLICATION 1.1  Definitions
------------------------------------------NOTE-------------------------------------
The defined terms of this section appear in capitalized type and are applicable throughout these Technical Requirements Manual and Bases.
Term                        Definition ACTIONS                    ACTIONS shall be that part of a Requirement that prescribes Required Actions to be taken under designated Conditions within specified Completion Times.
CHANNEL CALIBRATION        A CHANNEL CALIBRATION shall be the adjustment, as necessary, of the channel output such that it responds within the necessary range and accuracy to known values of the parameter that the channel monitors. The CHANNEL CALIBRATION shall encompass all devices in the channel required for channel OPERABILITY and the CHANNEL FUNCTIONAL TEST. Calibration of instrument channels with resistance temperature detector (RTD) or thermocouple sensors may consist of an inplace qualitative assessment of sensor behavior and normal calibration of the remaining adjustable devices in the channel. The CHANNEL CALIBRATION may be performed by means of any series of sequential, overlapping, or total channel steps.
CHANNEL CHECK              A CHANNEL CHECK shall be the qualitative assessment, by observation, of channel behavior during operation. This determination shall include, where possible, comparison of the channel indication and status to other indications or status derived from independent instrument channels measuring the same parameter.
_____________________________________________(continued)
Dresden 2 and 3                  1.1-1                      Revision 0
 
TRM Definitions 1.1 1.1  Definitions  (continued)
CHANNEL FUNCTIONAL TEST    A CHANNEL FUNCTIONAL TEST shall be the injection of a simulated or actual signal into the channel as close to the sensor as practicable to verify OPERABILITY of all devices in the channel required for channel OPERABILITY. The CHANNEL FUNCTIONAL TEST may be performed by means of any series of sequential, overlapping, or total channel steps.
CORE ALTERATION            CORE ALTERATION shall be the movement of any fuel, sources, or reactivity control components, within the reactor vessel with the vessel head removed and fuel in the vessel. The following exceptions are not considered to be CORE ALTERATIONS:
: a. Movement of source range monitors, local power range monitors, intermediate range monitors, traversing incore probes, or special movable detectors (including undervessel replacement); and
: b. Control rod movement, provided there are no fuel assemblies in the associated core cell.
Suspension of CORE ALTERATIONS shall not preclude completion of movement of a component to a safe position.
CORE OPERATING LIMITS      The COLR is the unit specific document that REPORT (COLR)              provides cycle specific parameter limits for the current reload cycle. These cycle specific limits shall be determined for each reload cycle in accordance with Specification 5.6.5. Plant operation within these limits is addressed in individual Requirements.
LOGIC SYSTEM FUNCTIONAL    A LOGIC SYSTEM FUNCTIONAL TEST shall be a test of TEST                        all logic components required for OPERABILITY of a logic circuit, from as close to the sensor as practicable up to, but not including, the actuated device, to verify
_____________________________________________(continued)
Dresden 2 and 3                  1.1-2                        Revision 0
 
TRM Definitions 1.1 1.1  Definitions LOGIC SYSTEM FUNCTIONAL  OPERABILITY. The LOGIC SYSTEM FUNCTIONAL TEST may TEST                      be performed by means of any series of sequential, (continued)          overlapping, or total system steps so that the entire logic system is tested.
MODE                      A MODE shall correspond to any one inclusive combination of MODE switch position, average reactor coolant temperature, and reactor vessel head closure bolt tensioning specified in Technical Specifications Table 1.1-1 with fuel in the reactor vessel.
OFFSITE DOSE CALCULATION  The ODCM shall contain the methodology and MANUAL (ODCM)            parameters used in the calculation of offsite doses resulting from radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring Alarm/Trip Setpoints, and in the conduct of the Environmental Radiological Monitoring Program. The ODCM shall also contain (1) the Radioactive Effluent Controls and Radiological Environmental Monitoring Programs and (2) descriptions of the information that should be included in the Annual Radiological Environmental Operating and Radioactive Effluent Release Reports.
OPERABLE - OPERABILITY    A system, subsystem, division, component, or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified safety function(s) and when all necessary attendant instrumentation, controls, normal or emergency electrical power, cooling and seal water, lubrication, and other auxiliary equipment that are required for the system, subsystem, division, component, or device to perform its specified safety function(s) are also capable of performing their related support function(s).
RATED THERMAL POWER (RTP) RTP shall be a total reactor core heat transfer rate to the reactor coolant of 2957 MWt.
THERMAL POWER            THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.
Dresden 2 and 3                1.1-3                      Revision 17
 
TRM Logical Connectors 1.2 1.0  USE AND APPLICATION 1.2  Logical Connectors PURPOSE          The purpose of this section is to explain the meaning of logical connectors.
Logical connectors are used in Technical Requirements Manual (TRM) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TRM are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings.
BACKGROUND        Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentions of the logical connectors.
When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.
EXAMPLES          The following examples illustrate the use of logical connectors.
____________________________________________________________________________(continued)
Dresden 2 and 3                      1.2-1                          Revision 0
 
TRM Logical Connectors 1.2 1.2 Logical Connectors EXAMPLES          EXAMPLE 1.2-1 (continued)
ACTIONS CONDITION          REQUIRED ACTION    COMPLETION TIME A. TLCO not met    A.1 Verify . . .
AND A.2 Restore . . .
In this example, the logical connector AND is used to indicate that, when in Condition A, both Required Actions A.1 and A.2 must be completed.
______________________________________________________________________(continued)
Dresden 2 and 3                      1.2-2                          Revision 0
 
TRM Logical Connectors 1.2 1.2 Logical Connectors EXAMPLES          EXAMPLE 1.2-2 (continued)
ACTIONS CONDITION          REQUIRED ACTION      COMPLETION TIME A. TLCO not met. A.1      Trip . . .
OR A.2.1    Verify . . .
AND A.2.2.1 Reduce . . .
OR A.2.2.2 Perform . . .
OR A.3      Align . . .
This example represents a more complicated use of logical connectors.
Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector OR and the left justified placement. Any one of these three Actions may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector AND. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.
Dresden 2 and 3                      1.2-3                          Revision 0
 
TRM Completion Times 1.3 1.0  USE AND APPLICATION 1.3  Completion Times PURPOSE          The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.
BACKGROUND        Technical Requirements Manual Limiting Conditions for Operation (TLCOs) specify minimum requirements for ensuring safe operation of the unit. The ACTIONS associated with a TLCO state Conditions that typically describe the ways in which the requirements of the TLCO can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Time(s).
DESCRIPTION      The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the discovery of a situation (e.g., inoperable equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the unit is in a MODE or specified condition stated in the Applicability of the TLCO. Unless otherwise specified, the Completion Time begins when a senior licensed operator on the operating shift crew with responsibility for plant operations makes the determination that an LCO is not met and an ACTIONS Condition is entered. The "otherwise specified" exceptions are varied, such as a Required Action Note or Surveillance Requirement Note that provides an alternative time to perform specific tasks, such as testing, without starting the Completion Time. While utilizing the Note, should a Condition be applicable for any reason not addressed by the Note, the Completion Time begins. Should the time allowance in the Note be exceeded, the Completion Time begins at that point. The exceptions may also be incorporated into the Completion Time. Required Actions must be completed prior to the expiration of the specified Completion Time.
An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the unit is not within the TLCO Applicability.
(continued)
Dresden 2 and 3                      1.3-1                        Revision 85
 
TRM Completion Times 1.3 1.3  Completion Times DESCRIPTION      If situations are discovered that required entry into more than one (continued)    Condition at a time within a single TLCO (multiple Conditions), the Required Actions for each Condition must be performed within the associated Completion Time. When in multiple Conditions, separate Completion Times are tracked for each Condition starting from the discovery of the situation that required entry into the Condition unless otherwise specified.
Once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition unless specifically stated.
The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition, unless otherwise specified.
However, when a subsequent division, subsystem, component, or variable expressed in the Condition is discovered to be inoperable or not within limits, the Completion Time(s) may be extended. To apply      this Completion Time extension, two criteria must first be met. The subsequent inoperability:
: a. Must exist concurrent with the first inoperability; and
: b. Must remain inoperable or not within limits after the first inoperability is resolved.
The total Completion Time allowed for completing a Required Action to address the subsequent inoperability shall be limited to the more restrictive of either:
: a. The stated Completion Time, as measured from the initial entry into the Condition, plus an additional 24 hours; or
: b. The stated Completion Time as measured from discovery of the subsequent inoperability.
The above Completion Time extension does not apply to those TLCOs that have exceptions that allow completely separate re-entry into the Condition (for each division, subsystem, component, or variable expressed in the Condition) and separate tracking of Completion Times based on this re-entry. These exceptions are stated in individual TLCOs.
(continued)
Dresden 2 and 3                      1.3-2                          Revision 85
 
TRM Completion Times 1.3 1.3  Completion Times DESCRIPTION      The above Completion Time extension does not apply to a Completion (continued)    Time with a modified "time zero." This modified "time zero" may be expressed as a repetitive time (i.e., "once per 8 hours," where the Completion Time is referenced from a previous completion of the Required Action versus the time of Condition entry) or as a time modified by the phrase "from discovery . . ." Example 1.3-3 illustrates one use of this type of Completion Time. The 10 day Completion Time specified for Conditions A and B in Example 1.3-3 may not be extended.
EXAMPLES          The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.
EXAMPLE 1.3-1 ACTIONS CONDITION      REQUIRED ACTION    COMPLETION TIME B. Required      B.1  Be in MODE 3. 12 hours Action and associated      AND Completion Time not met. B.2  Be in MODE 4  36 hours Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.
The Required Actions of Condition B are to be in MODE 3 within 12 hours AND in MODE 4 within 36 hours. A total of 12 hours is allowed for reaching MODE 3 and a total of 36 hours (not 48 hours) is allowed for reaching MODE 4 from the time that Condition B was entered. If MODE 3 is reached within 6 hours, the time allowed for reaching MODE 4 is the next 30 hours because the total time allowed for reaching MODE 4 is 36 hours.
If Condition B is entered while in MODE 3, the time allowed for reaching MODE 4 is the next 36 hours.
(continued)
Dresden 2 and 3                      1.3-3                        Revision 85
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-2 (continued)
ACTIONS CONDITION          REQUIRED ACTION      COMPLETION TIME A. One pump        A.1  Restore pump to  7 days inoperable.          OPERABLE status.
B. Required        B.1  Be in MODE 3. 12 hours Action and associated      AND Completion Time not        B.2  Be in MODE 4. 36 hours met.
When a pump is declared inoperable, Condition A is entered.
If the pump is not restored to OPERABLE status within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the inoperable pump is restored to OPERABLE status after Condition B is entered, Condition A and B are exited, and therefore, the Required Actions of Condition B may be terminated.
When a second pump is declared inoperable while the first pump is still inoperable, Condition A is not re-entered for the second pump. TLCO 3.0.c is entered, since the ACTIONS do not include a Condition for more than one inoperable pump. The Completion Time clock for Condition A does not stop after TLCO 3.0.c is entered, but continues to be tracked from the time Condition A was initially entered.
While in TLCO 3.0.c, if one of the inoperable pumps is restored to OPERABLE status and the Completion Time for Condition A has not expired, TLCO 3.0.c may be exited and operation continued in accordance with Condition A.
__________________________________________________________________(continued)
Dresden 2 and 3                      1.3-4                          Revision 0
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-2  (continued)
While in TLCO 3.0.c, if one of the inoperable pumps is restored to OPERABLE status and the Completion Time for Condition A has expired, TLCO 3.0.c may be exited and operation continued in accordance with Condition B. The Completion Time for Condition B is tracked from the time the Condition A Completion Time expired.
On restoring one of the pumps to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first pump was declared inoperable. This Completion Time may be extended if the pump restored to OPERABLE status was the first inoperable pump. A 24 hour extension to the stated 7 days is allowed, provided this does not result in the second pump being inoperable for > 7 days.
(continued)
Dresden 2 and 3                      1.3-5                          Revision 0
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-3 (continued)
ACTIONS CONDITION        REQUIRED ACTION      COMPLETION TIME A. One            A.1  Restore          7 days Function X          Function X Subsystem            Subsystem to    AND Inoperable          OPERABLE status.
10 days from discovery of failure to meet the TLCO B. One            B.1  Restore          72 hours Function Y          Function Y Subsystem            Subsystem to    AND Inoperable          OPERABLE status.
10 days from discovery of failure to meet the TLCO C. One            C.1  Restore          72 hours Function X          Function X Subsystem            Subsystem to Inoperable.          OPERABLE status.
AND            OR One            C.2  Restore          72 hours Function Y          Function Y Subsystem            Subsystem to Inoperable          OPERABLE status.
(continued)
Dresden 2 and 3                    1.3-6                          Revision 0
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-3  (continued)
When one Function X subsystem and one Function Y subsystem are inoperable, Condition A and Condition B are concurrently applicable. The Completion Times for Condition A and Condition B are tracked separately for each subsystem, starting from the time each subsystem was declared inoperable and the Condition was entered. A separate Completion Time is established for Condition C and tracked from the time the second subsystem was declared inoperable (i.e., the time the situation described in Condition C was discovered).
If Required Action C.2 is completed within the specified Completion Time, Conditions B and C are exited. If the Completion Time for Required Action A.1 has not expired, operation may continue in accordance with Condition A. The remaining Completion Time in Condition A is measured from the time the affected subsystem was declared inoperable (i.e., initial entry into Condition A).
The Completion Times of Conditions A and B are modified by a logical connector, with a separate 10 day Completion Time measured from the time it was discovered the TLCO was not met. In this example, without the separate Completion Time, it would be possible to alternate between Conditions A, B, and C in such a manner that operation could continue indefinitely without ever restoring systems to meet the TLCO. The separate Completion Time modified by the phrase "from discovery of failure to meet the TLCO" is designed to prevent indefinite continued operation while not meeting the TLCO. This Completion Time allows for an exception to the normal "time zero" for beginning the Completion Time "clock". In this instance, the Completion Time "time zero" is specified as commencing at the time the TLCO was initially not met, instead of at the time the associated Condition was entered.
(continued)
Dresden 2 and 3                      1.3-7                          Revision 0
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-4 (continued)
ACTIONS CONDITION          REQUIRED ACTION        COMPLETION TIME A. One of more    A.1  Restore valve(s)  4 hours Valves              To OPERABLE Inoperable.          Status.
B. Required        B.1  Be in MODE 3. 12 hours Action and Associated      AND Completion Time not        B.2  Be in MODE 4. 36 hours Met A single Completion Time is used for any number of valves inoperable at the same time. The Completion Time associated with Condition A is based on the initial entry into Condition A and is not tracked on a per valve basis. Declaring subsequent valves inoperable, while Condition A is still in effect, does not trigger the tracking of separate Completion Times.
Once one of the valves has been restored to OPERABLE status, the Condition A Completion Time is not reset, but continues from the time the first valve was declared inoperable. The Completion Time may be extended if the valve restored to OPERABLE status was the first inoperable valve. The Condition A Completion Time may be extended for up to 4 hours provided this does not result in any subsequent valve being inoperable for > 4 hours.
If the Completion Time of 4 hours (plus the extension) expires while one or more valves are still inoperable, Condition B is entered.
(continued)
Dresden 2 and 3                      1.3-8                          Revision 0
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-5 (continued)
ACTIONS
                  --------------------------------NOTE-------------------------------
Separate Condition entry is allowed for each inoperable valve.
CONDITION          REQUIRED ACTION      COMPLETION TIME A. One or more      A.1  Restore valve to 4 hours Valves                OPERABLE status.
Inoperable.
B. Required        B.1  Be in MODE 3. 12 hours Action and Associated      AND Completion Time not        B.2  Be in MODE 4. 36 hours Met.
The Note above the ACTIONS Table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.
The Note allows Condition A to be entered separately for each inoperable valve, and Completion Times tracked on a per valve basis. When a valve is declared inoperable, Condition A is entered and its Completion Time starts. If subsequent valves are declared inoperable, Condition A is entered for each valve and separate Completion Times start and are tracked for each valve.
(continued)
Dresden 2 and 3                      1.3-9                          Revision 0
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-5  (continued)
If the Completion Time associated with a valve in Condition A expires, Condition B is entered for that valve. If the Completion Times associated with subsequent valves in Condition A expire, Condition B is entered separately for each valve and separate Completion Times start and are tracked for each valve. If a valve that caused entry into Condition B is restored to OPERABLE status, Condition B is exited for that valve.
Since the Note in this example allows multiple Condition entry and tracking of separate Completion Times, Completion Time extensions do not apply.
EXAMPLE 1.3-6 ACTIONS CONDITION          REQUIRED ACTION    COMPLETION TIME A. One channel        A.1  Perform        Once per Inoperable.              TRS 3.x.x.x. 8 hours OR A.2  Reduce THERMAL 8 hours POWER TO
                                                < 50% RTP.
B. Required          B.1  Be in MODE 3. 12 hours Action and Associated Completion Time not met.
(continued)
Dresden 2 and 3                      1.3-10                          Revision 0
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-6  (continued)
Entry into Condition A offers a choice between Required Action A.1 or A.2. Required Action A.1 has a "once per" Completion Time, which qualifies for the 25% extension, per TSR 3.0.b, to each performance after the initial performance. The initial 8 hour interval of Required Action A.1 begins when Condition A is entered and the initial performance of Required Action A.1 must be completed within the first 8 hour interval. If Required Action A.1 is followed and the Required Action is not met within the Completion Time (plus the extension allowed by TSR 3.0.b),
Condition B is entered. If Required Action A.2 is followed and the Completion Time of 8 hours is not met, Condition B is entered.
If after entry into Condition B, Required Action A.1 or A.2 is met, Condition B is exited and operation may then continue in Condition A.
(continued)
Dresden 2 and 3                    1.3-11                          Revision 0
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-7 (continued)
ACTIONS CONDITION        REQUIRED ACTION        COMPLETION TIME A. One          A.1  Verify affected    1 hour Subsystem          Subsystem Inoperable.        Isolated.          AND Once per 8 hours thereafter AND A.2  Restore subsystem  72 hours To OPERABLE Status.
B. Required      B.1  Be in MODE 3.      12 hours Action and Associated    AND Completion Time not      B.2  Be in MODE 4.      36 hours Met.
Required Action A.1 has two Completion Times. The 1 hour Completion Time begins at the time the Condition is entered and each "Once per 8 hours thereafter" interval begins upon performance of Required Action A.1.
If after Condition A is entered, Required Action A.1 is not met within either the initial 1 hour or any subsequent 8 hour interval from the previous performance (plus the extension allowed by TSR 3.0.b), Condition B is entered. The Completion Time clock for Condition A does not stop after Condition B is entered, but continues from the time Condition A was initially entered. If Required Action A.1 (continued)
Dresden 2 and 3                    1.3-12                          Revision 0
 
TRM Completion Times 1.3 1.3  Completion Times EXAMPLES          EXAMPLE 1.3-7  (continued) is met after Condition B is entered, Condition B is exited and operation may continue in accordance with Condition A, provided the Completion Time for Required Action A.2 has not expired.
IMMEDIATE        When "Immediately" is used as a Completion Time, the COMPLETION TIME  Required Action should be pursued without delay and in a controlled manner.
Dresden 2 and 3                      1.3-13                        Revision 0
 
TRM Frequency 1.4 1.0  USE AND APPLICATION 1.4  Frequency PURPOSE          The purpose of this section is to define the proper use and application of Frequency requirements.
DESCRIPTION      Each Technical Requirements Manual Surveillance Requirement (TSR) has a specified Frequency in which the Surveillance must be met in order to meet the associated Technical Requirements Manual Limiting Condition for Operation (TLCO). An understanding of the correct application of the specified Frequency is necessary for compliance with the TSR.
The "specified Frequency" is referred to throughout this section and each of the Requirements of Section 3.0, Technical Requirements Manual Surveillance Requirement (TSR) Applicability.
The "specified Frequency" consists of the requirements of the Frequency column of each TSR, as well as certain Notes in the Surveillance column that modify performance requirements.
Sometimes special situations dictate when the requirements of a Surveillance are to be met. They are "otherwise stated" conditions allowed by TSR 3.0.a. They may be stated as clarifying Notes in the Surveillance, as part of the Surveillance, or both. Example 1.4-4 discusses these special situations.
Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential TSR 3.0.d conflicts. To avoid these conflicts, the TSR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With a TSR satisfied, TSR 3.0.d imposes no restriction.
The use of "met" or "performed" in these instances conveys specified meanings. A Surveillance is "met" only when the acceptance criteria are satisfied. Known failure of the requirements of a Surveillance, even without a Surveillance specifically being "performed," constitutes a Surveillance not "met." "Performance" refers only to the requirement to (continued)
Dresden 2 and 3                      1.4-1                          Revision 0
 
TRM Frequency 1.4 1.4  Frequency DESCRIPTION    specifically determine the ability to meet the acceptance (continued)  criteria. TSR 3.0.d restrictions would not apply if both the following conditions are satisfied:
: a. The Surveillance is not required to be performed; and
: b. The Surveillance is not required to be met or, even if required to be met, is not known to be failed.
EXAMPLES        The following examples illustrate the various ways that Frequencies are specified. In these examples, the Applicability of the TLCO (TLCO not shown) is MODES 1, 2, and 3.
EXAMPLE 1.4-1 SURVEILLANCE REQUIREMENTS SURVEILLANCE                    FREQUENCY Perform CHANNEL CHECK.                    12 hours Example 1.4-1 contains the type of TSR most often encountered in the Technical Requirements Manual (TRM). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by TSR 3.0.b for operational flexibility. The measurement of this interval continues at all times, even when the TSR is not required to be met per TSR 3.0.a (such as when the equipment is inoperable, a variable is outside specified limits, or the unit is outside the Applicability of the TLCO). If the interval specified by TSR 3.0.b is exceeded while the unit is in a MODE or other specified condition in the (continued)
Dresden 2 and 3                    1.4-2                          Revision 0
 
TRM Frequency 1.4 1.4  Frequency EXAMPLES          EXAMPLE 1.4-1  (continued)
Applicability of the TLCO, and the performance of the Surveillance is not otherwise modified (refer to Examples 1.4-3 and 1.4-4), then TSR 3.0.c becomes applicable.
If the interval as specified by TSR 3.0.b is exceeded while the unit is not in a MODE or other specified condition in the Applicability of the TLCO for which performance of the TSR is required, the Surveillance must be performed within the Frequency requirements of TSR 3.0.b prior to entry into the MODE or other specified condition. Failure to do so would result in a violation of TSR 3.0.d.
EXAMPLE 1.4-2 SURVEILLANCE REQUIREMENTS SURVEILLANCE                    FREQUENCY Verify flow is within limits.          Once within 12 hours after > 25% RTP AND 24 hours thereafter Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time reactor power is increased from a power level < 25% RTP to > 25% RTP, the Surveillance must be performed within 12 hours.
________________________________________________________________________(continued)
Dresden 2 and 3                      1.4-3                          Revision 0
 
TRM Frequency 1.4 1.4  Frequency EXAMPLES          EXAMPLE 1.4-2  (continued)
The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the extension allowed by TSR 3.0.b.
                  "Thereafter" indicates future performances must be established per TSR 3.0.b, but only after a specified condition is first met (i.e., the "once" performance in this example). If reactor power decreases to < 25% RTP, the measurement of both intervals stops.
New intervals start upon reactor power reaching 25% RTP.
EXAMPLE 1.4-3 SURVEILLANCE REQUIREMENTS SURVEILLANCE                    FREQUENCY
                  ------------------NOTE----------------------
Not required to be performed until 12 hours after > 25% RTP.
Perform channel adjustment.                    7 days The interval continues whether or not the unit operation is
                  < 25% RTP between performances.
As the Note modifies the required performance of the Surveillance, it is construed to be part of the "specified Frequency." Should the 7 day interval be exceeded while operation is < 25% RTP, this Note allows 12 hours after power reaches > 25% RTP to perform the Surveillance. The Surveillance is still considered to be within the "specified Frequency."
Therefore, if the Surveillance were not performed within the 7 day interval (plus the extension
________________________________________________________________________(continued)
Dresden 2 and 3                      1.4-4                          Revision 0
 
TRM Frequency 1.4 1.4  Frequency EXAMPLES        EXAMPLE 1.4-3  (continued) allowed by TSR 3.0.b), but operation was < 25% RTP, it would not constitute a failure of the TSR or failure to meet the TLCO.
Also, no violation of TSR 3.0.d occurs when changing MODES, even with the 7 day Frequency not met, provided operation does not exceed 12 hours with power > 25% RTP.
Once the unit reaches 25% RTP, 12 hours would be allowed for completing the Surveillance. If the Surveillance were not performed within this 12 hour interval, there would then be a failure to perform a Surveillance within the specified Frequency, and the provisions of TSR 3.0.c would apply.
EXAMPLE 1.4-4 SURVEILLANCE REQUIREMENTS SURVEILLANCE                    FREQUENCY
                ---------------------NOTE-----------------
Only required to be met in MODE 1.
Verify leakage rates are within limits.      24 hours Example 1.4-4 specifies that the requirements of this Surveillance do not have to be met until the unit is in MODE 1.
The interval measurement for the Frequency of this Surveillance continues at all times, as described in Example 1.4-1. However, the Note constitutes an "otherwise stated" exception to the Applicability of this Surveillance. Therefore, if the Surveillance were not performed within the 24 hour interval (plus the extension allowed by TSR 3.0.b), but the unit was not in MODE 1, there would be no failure of the TSR nor failure to meet the TLCO. Therefore, no violation of TSR 3.0.d occurs when changing MODES, even with the 24 hour Frequency exceeded, provided the MODE change was not made into MODE 1. Prior to entering MODE 1 (assuming again that the 24 hour Frequency were not met), TSR 3.0.d would require satisfying the TSR.
Dresden 2 and 3                    1.4-5                          Revision 0
 
TRM TLCO and TSR Implementation 1.5 1.0  USE AND APPLICATION 1.5  TLCO and TSR Implementation The Technical Requirements Manual (TRM) provides those limitations upon plant operations which are part of the licensing basis for the station but do not meet the criteria for continued inclusion in the Technical Specifications.
It also provides information which supplements the Technical Specifications such as specific plant setpoints for Technical Specification equipment.
Nothing in the TRM shall supersede any Technical Specification requirement.
TLCOs and TSRs are implemented the same as Technical Specifications (see TRM 3.0). However, TLCOs and TSRs are treated as plant procedures and are not part of the Technical Specifications. Therefore the following exceptions apply:
: a. Violations of the Action or Surveillance requirements in a TLCO are not reportable as conditions prohibited by, or deviations from, the Technical Specifications per 10 CFR 50.72 or 10 CFR 50.73, unless specifically required by the TRM.
: b. Power reduction or plant shutdowns required to comply with the Actions of a TLCO or as a result of the application of TLCO 3.0.c are not reportable per 10 CFR 50.72 or 10 CFR 50.73.
: c. Violations of TLCO or TSR requirements, except as provided for in TLCO 3.0 of this manual, shall be treated the same as plant procedure violations.
Dresden 2 and 3                      1.5-1                          Revision 0
 
TRM Technical Requirements Manual Revisions 1.6 1.0  USE AND APPLICATION 1.6  Technical Requirements Manual Revisions Changes to this manual shall be made under the following provisions:
: a. Changes to the TRM shall be made under appropriate administrative controls and reviews.
: b. Licensees may make changes to TRM without prior NRC approval provided the change does not require NRC approval pursuant to 10 CFR 50.59.
: c. The TRM revision process shall contain provisions to ensure that the TRM is maintained consistent with the UFSAR.
: d. Proposed changes that require NRC approval prior to shall be reviewed and approved by the NRC prior to implementation. Changes to the TRM implemented without prior NRC approval shall be provided to the NRC on a frequency consistent with 10 CFR 50.71(e) as modified by approved exemptions.
Dresden 2 and 3                      1.6-1                          Revision 0
 
TRM Miscellaneous Test Requirements 2.1.a 2.1.a  MISCELLANEOUS TEST REQUIREMENTS
-------------------------------------NOTE------------------------------------------
Failure to meet the surveillance requirement requires immediate actions to determine OPERABILITY of the associated equipment.
APPLICABILITY:      As defined in the TSR.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR  2.1.a.1  ----------------------NOTE----------------------
Only applicable in MODES 1 and 2.
Verify recirculation pump ASD Overspeed limit          24 months setpoints and over frequency relays are within the limits specified in the COLR.
(continued)
Dresden 2 and 3                    2.1.a-1                        Revision 71
 
TRM Miscellaneous Test Requirements 2.1.a SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                FREQUENCY TSR  2.1.a.2  ----------------NOTE---------------------------
TSR 2.1.a.2 provides the scram time limits for
                <800 psig steam dome pressure to satisfy Technical Specification SR 3.1.4.3 and is only applicable in MODES 1 and 2.
Verify each affected control rod scram time is  Prior to within limits of Technical Specification Table  declaring control 3.1.4-1 with any reactor pressure. The control  rod OPERABLE rod scram time acceptance criteria shall be <    after 2.04 seconds from fully withdrawn position to    work on the 90 % insertion at 0 psig reactor steam dome      control rod or pressure.                                        CRD System that could affect scram time TSR 2.1.a.3    -----------------NOTE--------------------------
Only applicable when associated diesel generator is required to be OPERABLE.
Drain each diesel generator fuel oil storage    10 years tank, remove the accumulated sediment, and clean the tank.
Dresden 2 and 3                    2.1.a-2                        Revision 0
 
TRM TLCO Applicability 3.0 3.0  TECHNICAL REQUIREMENTS MANUAL LIMITING CONDITION FOR OPERATION (TLCO)
APPLICABILITY TLCO  3.0.a        TLCOs shall be met during the MODES or other specified conditions in the Applicability, except as provided in TLCO 3.0.b.
TLCO  3.0.b        Upon discovery of a failure to meet a TLCO, the Required Actions of the associated Conditions shall be met, except as provided in TLCO 3.0.e.
If the TLCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.
TLCO  3.0.c        When a TLCO is not met and the associated ACTIONS are not met, an associated ACTION is not provided, or if directed by the associated ACTIONS, action shall be initiated within 1 hour to:
: a. Implement appropriate compensatory actions as needed;
: b. Verify that the plant is not in an unanalyzed condition or that a required safety function is not compromised by the inoperabilities; and
: c. Within 12 hours, obtain Station Duty Officer approval of the compensatory actions and the plan for exiting TLCO 3.0.c.
Exceptions to this TLCO are stated in the individual TLCOs.
Where corrective measures are completed that permit operation in accordance with the TLCO or ACTIONS, completion of the actions required by TLCO 3.0.c is not required.
TLCO 3.0.c is only applicable in MODES 1, 2, and 3.
TLCO  3.0.d      When a TLCO is not met, entry into a MODE or other specified condition in the Applicability shall only be made:
: 1. When the associated ACTIONS to be entered permit continued operation in the MODE or other specified condition in the Applicability for an unlimited period of time; (continued)
Dresden 2 and 3                        3.0-1                        Revision 33
 
TRM TLCO Applicability 3.0 3.0  TLCO APPLICABILITY TLCO 3.0.d      2. After performance of a risk assessment addressing inoperable (continued)        systems and components, consideration of the results, determination of the acceptability of entering the MODE or other specified condition in the Applicability, and establishment of risk management actions, if appropriate; exceptions to this TLCO are stated in the individual TLCOs, or
: 3. When an allowance is stated in the individual value, parameter, or other TLCO.
This TLCO shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.
TLCO  3.0.e      Equipment removed from service or declared inoperable to comply with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate its OPERABILITY or the OPERABILITY of other equipment. This is an exception to TLCO 3.0.b for the system returned to service under administrative control to perform the testing required to demonstrate OPERABILITY.
TLCO  3.0.f      TLCOs, including associated ACTIONS, shall apply to each unit individually, unless otherwise indicated. Whenever the TLCO refers to a system or component that is shared by both units, the ACTIONS will apply to both units simultaneously.
TLCO  3.0.g      If directed to enter this action from the respective TRM REQUIRED ACTION, then:
Implement Alternate Measure(s) as determined by an approved technical evaluation.
: 1. The evaluation must demonstrate that the alternate compensatory measure would not adversely affect the ability to achieve and maintain safe shutdown in the event of a fire,
: 2. The use of an alternate compensatory measure(s) shall be entered into the Corrective Action Program, and
: 3. The evaluation must be maintained as a plant record subject to subsequent inspection.
The applicable TRM REQUIRED ACTION must be met until such time as an Alternative Compensatory Measures are approved.
Dresden 2 and 3                      3.0-2                          Revision 65
 
TRM TSR Applicability 3.0 3.0  TECHNICAL REQUIREMENTS MANUAL SURVEILLANCE REQUIREMENT (TSR)
APPLICABILITY TSR  3.0.a        TSRs shall be met during the MODES or other specified conditions in the Applicability for individual TLCOs, unless otherwise stated in the TSR. Failure to meet a TSR, whether such failure is experienced during the performance of the TSR or between performances of the TSR, shall be failure to meet the TLCO.
Failure to perform a TSR within the specified Frequency shall be failure to meet the TLCO except as provided in TSR 3.0.c. TSRs do not have to be performed on inoperable equipment or variables outside specified limits.
TSR  3.0.b        The specified Frequency for each TSR is met if the TSR is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.
For Frequencies specified as "once," the above interval extension does not apply.
If a Completion Time requires periodic performance on a "once per
                  . . ." basis, the above Frequency extension applies to each performance after the initial performance.
Exceptions to this TSR are stated in the individual TSRs.
TSR  3.0.c        If it is discovered that a TSR was not performed within its specified Frequency, then compliance with the requirement to declare the TLCO not met may be delayed, from the time of discovery, up to 24 hours or up to the limit of the specified Frequency, whichever is greater. This delay period is permitted to allow performance of the TSR. The delay period is only applicable when there is a reasonable expectation the TSR will be met when performed. A risk evaluation shall be performed for any Surveillance delayed greater than 24 hours and the risk impact shall be managed.
If the TSR is not performed within the delay period, the TLCO must immediately be declared not met, and the applicable Condition(s) must be entered.
When the TSR is performed within the delay period and the TSR is not met, the TLCO must immediately be declared not met, and the applicable Condition(s) must be entered.
(continued)
Dresden 2 and 3                      3.0-3                        Revision 85
 
TRM TSR Applicability 3.0 3.0  TSR APPLICABILITY  (continued)
TSR  3.0.d        Entry into a MODE or other specified condition in the Applicability of a TLCO shall only be made when the TLCO's TSRs have been met within their specified Frequency, except as provided by TSR 3.0.c. When a TLCO is not met due to TSRs not having been met, entry into a MODE or other specified condition in the Applicability shall only be made in accordance with TLCO 3.0.d.
This provision shall not prevent entry into MODES or other specified conditions in the Applicability that are required to comply with ACTIONS or that are part of a shutdown of the unit.
TSR  3.0.e        TSRs shall apply to each unit individually, unless otherwise indicated.
Dresden 2 and 3                      3.0-4                        Revision 33
 
THIS SECTION IS NOT CURRENTLY BEING USED.
TRM Control Rod Block Instrumentation 3.3.a 3.3  INSTRUMENTATION 3.3.a  Control Rod Block Instrumentation TLCO  3.3.a      The control rod block instrumentation for each Function in Table T3.3.a-1 shall be OPERABLE.
APPLICABILITY:    According to Table T3.3.a-1.
ACTIONS
-------------------------------NOTE-------------------------------------------
Separate Condition entry is allowed for each channel.
CONDITION                  REQUIRED ACTION          COMPLETION TIME A. For Functions 1.a,      A.1      Restore inoperable      7 days 1.b, 1.c, 1.d, 2.a,              channel to OPERABLE 2.b, 2.c, 3.a, 3.b,              status.
3.c, and 3.d, one required channel inoperable.
B. For Functions 4.a and    B.1      Place inoperable        12 hours 4.b one or more                  channel(s) in trip.
required channels inoperable.
(continued)
Dresden 2 and 3                      3.3.a-1                          Revision 2
 
TRM Control Rod Block Instrumentation 3.3.a ACTIONS COMPLETION CONDITION                REQUIRED ACTION                TIME C. For Functions 1.a, 1.b, C.1    Place inoperable          1 hour 1.c, 1.d, 2.a, 2.b,            channel(s) in trip.
2.c, 3.a, 3.b, 3.c, and 3.d, two or more required channels inoperable.
OR Required Action and associated Completion Time of Condition A not met.
Dresden 2 and 3                  3.3.a-2                          Revision 0
 
TRM Control Rod Block Instrumentation 3.3.a SURVEILLANCE REQUIREMENTS
----------------------------------NOTES---------------------------------------
: 1. Refer to Table T3.3.a-1 to determine which TSRs apply to each Control Rod Block Function.
: 2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains Control Rod Block capability.
SURVEILLANCE                              FREQUENCY TSR  3.3.a.1    -----------------NOTE--------------------
Not required to be performed when entering MODE 2 from MODE 1 until 12 hours after entering MODE 2.
Perform CHANNEL FUNCTIONAL TEST.            7 days TSR  3.3.a.2    Perform CHANNEL FUNCTIONAL TEST.            92 days
                  -----------------NOTE--------------------
Function 4.a Only Perform CHANNEL FUNCTIONAL TEST.            12 months TSR  3.3.a.3    Calibrate the trip units.                    92 days
                  -----------------NOTE--------------------
Function 4.a Only Calibrate the trip units.                    12 months (continued)
Dresden 2 and 3                    3.3.a-3                        Revision 95
 
TRM Control Rod Block Instrumentation 3.3.a SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR  3.3.a.4    -----------NOTES-------------------------
: 1. For Function 1.d, not required to be performed when entering MODE 2 from MODE 1 until 12 hours after entering MODE 2.
: 2. Neutron detectors are excluded.
Perform CHANNEL CALIBRATION.                184 days TSR  3.3.a.5    Perform CHANNEL FUNCTIONAL TEST.            24 months TSR 3.3.a.6      -----------NOTE--------------------------
: 1. Not required to be performed when entering MODE 2 from MODE 1 until 12 hours after entering MODE 2.
: 2. Neutron detectors are excluded.
Perform CHANNEL CALIBRATION.                24 months TSR  3.3.a.7    -----------------NOTE--------------------
Not required to be performed when entering MODE 2 from MODE 1 until 12 hours after entering MODE 2.
31 days Perform CHANNEL FUNCTIONAL TEST.
Dresden 2 and 3                    3.3.a-4                        Revision 80
 
TRM Control Rod Block Instrumentation 3.3.a Table T3.3.a-1 (page 1 of 2)
Control Rod Block Instrumentation APPLICABLE    REQUIRED MODES OR      CHANNELS    SURVEILLANCE      ALLOWABLE FUNCTION                OTHER          PER        REQUIREMENTS        VALUE SPECIFIED      FUNCTION CONDITIONS
: 1. Average Power Range Monitors
: a. Flow Biased Neutron Flux        1            4      TSR  3.3.a.2    < 0.56W +
High                                              TSR  3.3.a.4    55.4%(a) RTP and < 109.9%
RTP
: b. Inoperative                1, 2, 5(b)        4      TSR  3.3.a.2    N.A.
: c. Downscale                      1              4      TSR  3.3.a.2    > 3.4 % of TSR  3.3.a.4    RTP
: d. Startup Neutron Flux        2,5(b)          4      TSR  3.3.a.2    < 14.1 % of High                                                  TSR  3.3.a.4    RTP
: 2. Source Range Monitors
: a. Detector not full in        2(c)(e)          3      TSR  3.3.a.7    N.A.
TSR  3.3.a.6 5(e)            2      TSR  3.3.a.7    N.A.
: b. Upscale                        2(d)            3      TSR  3.3.a.7    < 3.0 x 105 TSR  3.3.a.6    cps 5              2      TSR  3.3.a.7    < 3.0 x 105 TSR  3.3.a.6    cps
: c. Inoperative                    2(d)            3      TSR  3.3.a.7    N.A.
5              2      TSR  3.3.a.7    N.A.
(continued)
(a) Allowable Value is < 0.56W + 51.2% RTP and < 109.9% RTP when reset for single loop operation per Technical Specification LCO 3.4.1, "Recirculation Loops Operating."
(b) Required to be OPERABLE only during SHUTDOWN MARGIN demonstrations performed per Technical Specification LCO 3.10.7.
(c) With the Intermediate Range Monitor (IRM) channels are on range 2 or below.
(d) With IRM channels on range 7 or below.
(e) With detector count rate < 100 cps.
Dresden 2 and 3                        3.3.a-5                              Revision 80
 
TRM Control Rod Block Instrumentation 3.3.a Table T3.3.a-1 (page 2 of 2)
Control Rod Block Instrumentation APPLICABLE MODES OR        REQUIRED SURVEILLANCE    ALLOWABLE FUNCTION                  OTHER          CHANNELS REQUIREMENTS      VALUE SPECIFIED      PER FUNCTION CONDITIONS
: 3. Intermediate Range Monitors
: a. Detector not full in        2, 5(h)            6      TSR  3.3.a.1  N.A.
TSR  3.3.a.6
: b. Upscale                      2, 5(h)            6      TSR  3.3.a.1  < 112/125 of TSR  3.3.a.6  full scale
: c. Inoperative                  2, 5(h)            6      TSR  3.3.a.1  N.A.
: d. Downscale                  2 (f)
                                        , 5(h)          6      TSR  3.3.a.1  > 5/125 of TSR  3.3.a.6  full scale
: 4. Scram Discharge Volume
: a. Water Level  High        1, 2, 5 (g)  1 per bank  TSR  3.3.a.2  < 28.1 gal (Unit 2)                                                TSR  3.3.a.6 Water Level  High        1, 2, 5 (g)  1 per bank  TSR  3.3.a.2  < 23.4 gal (Unit 3)                                                TSR  3.3.a.3 TSR  3.3.a.6
: b. Scram Discharge Volume        5 (g)            1      TSR 3.3.a.5    N.A.
Switch in Bypass (f) With IRM channels on range 2 or higher.
(g) With two or more control rods withdrawn. Not applicable to control rods removed per Technical Specification LCO 3.10.4, "Single Control Rod Drive Removed Refueling," or LCO 3.10.5, "Multiple Control Rod Withdrawal  Refueling."
(h) With any control rod withdrawn from a core cell containing one or more fuel assemblies.
Dresden 2 and 3                              3.3.a-6                          Revision 80
 
TRM PAM Instrumentation 3.3.b 3.3  INSTRUMENTATION 3.3.b  Post Accident Monitoring (PAM) Instrumentation TLCO  3.3.b      The PAM instrumentation for each Function in Table T3.3.b-1 shall be OPERABLE.
APPLICABILITY:  MODES 1 and 2.
ACTIONS
------------------------------------NOTE-------------------------------------
Separate Condition entry is allowed for each Function.
CONDITION                    REQUIRED ACTION            COMPLETION TIME
                                --------NOTE-----------
A. One or more Functions      Not applicable to Functions with one required          4 and 5 channel inoperable.
A.1      Restore required        30 day channel to OPERABLE status.
                                --------NOTE-----------
Only applicable to Functions 4 and 5 A.2      Restore required        7 days channel to OPERABLE status.
B. One or more Functions with two required          B.1      Restore one required    7 days channels inoperable.                channel to OPERABLE status.
Dresden 2 and 3                  3.3.b-1                      Revision 36
 
TRM PAM Instrumentation 3.3.b C. Required Action and      C.1      Initiate alternate      Immediately associated Completion            method of monitoring Time of Condition A or B          the appropriate not met.                          parameters.
AND C.2      Prepare a corrective    Immediately action program report.
Dresden 2 and 3                3.3.b-2                      Revision 0
 
TRM PAM Instrumentation 3.3.b SURVEILLANCE REQUIREMENTS
------------------------------------NOTE-------------------------------------
: 1. These TSRs apply to each Function in Table T3.3.b-1, except where identified in the TSR.
: 2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the other required channel in the associated Function is OPERABLE.
SURVEILLANCE                            FREQUENCY TSR  3.3.b.1    Perform CHANNEL CHECK.                      31 days TSR  3.3.b.2    -------------------NOTE------------------
Neutron detectors are excluded.
Perform CHANNEL CALIBRATION for              92 days Functions 3, 4, and 5.
TSR  3.3.b.3    Perform CHANNEL CALIBRATION for              24 months Functions other than Functions 3, 4, and 5.
Dresden 2 and 3                  3.3.b-3                      Revision 36
 
TRM PAM Instrumentation 3.3.b Table T3.3.b-1 (page 1 of 1)
Post Accident Monitoring Instrumentation REQUIRED FUNCTION CHANNELS
: 1. Drywell Air Temperature                                              2
: 2. Safety/Relief Valve Position Indicators                    2/valve (1 each)
Acoustic and Temperature
: 3. Source Range Neutron Monitors                                        2
: 4. Drywell O2 Concentration Analyzer                                    1
: 5. Drywell H2 Concentration Analyzer                                    1 Dresden 2 and 3                    3.3.b-4                      Revision 36
 
TRM Explosive Gas Monitoring Instrumentation 3.3.c 3.3  INSTRUMENTATION 3.3.c  Explosive Gas Monitoring Instrumentation TLCO  3.3.c      The explosive gas monitoring instrumentation channels in Table T3.3.c-1 shall be OPERABLE with their Alarm/Trip Setpoints set to ensure that the limits of the Explosive Gas and Storage Tank Radioactivity Monitoring Program are not exceeded.
APPLICABILITY:  During operation of the Offgas Holdup System.
ACTIONS
-----------------------------------------NOTE-------------------------------------
Separate Condition entry is allowed for each channel.
CONDITION                  REQUIRED ACTION              COMPLETION TIME A. One or more required    A.1.1    -----------NOTE---------
channels inoperable.            Not applicable if recombiner(s) temperature remains constant and THERMAL POWER has not changed.
Take grab samples.          Once per 4 hours AND (continued)
Dresden 2 and 3                    3.3.c-1                          Revision 0
 
TRM Explosive Gas Monitoring Instrumentation 3.3.c ACTIONS CONDITION        REQUIRED ACTION            COMPLETION TIME A.  (continued)    A.1.2    -------NOTE------------
Only applicable if recombiner(s) temperature remains constant and THERMAL POWER has not changed.
Take grab samples.        Once per 8 hours AND A.2      Analyze grab samples.
Within 4 hours AND                                following each grab sample A.3.1    Restore channel to OPERABLE status.          30 days OR A.3.2    Prepare a corrective action program report. Immediately Dresden 2 and 3            3.3.c-2                          Revision 0
 
TRM Explosive Gas Monitoring Instrumentation 3.3.c SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.3.c.1  Perform CHANNEL CHECK.                            24 hours TSR  3.3.c.2  Perform CHANNEL FUNCTIONAL TEST.                  31 days TSR  3.3.c.3  Perform CHANNEL CALIBRATION.                      92 days Dresden 2 and 3                    3.3.c-3                          Revision 0
 
TRM Explosive Gas Monitoring Instrumentation 3.3.c Table T3.3.c-1 (page 1 of 1)
Explosive Gas Monitoring Instrumentation REQUIRED CHANNELS INSTRUMENT Main Condenser Off Gas Treatment System Explosive                      1 Gas Monitoring System  Hydrogen Monitor Dresden 2 and 3                        3.3.c-4                            Revision 0
 
TRM Suppression Chamber and Drywell Spray Actuation Instrumentation 3.3.d 3.3  INSTRUMENTATION 3.3.d  Suppression Chamber and Drywell Spray Actuation Instrumentation TLCO  3.3.d      The suppression chamber and drywell spray actuation instrumentation shown in Table T3.3.d-1 shall be OPERABLE.
APPLICABILITY:    MODES 1, 2, and 3.
ACTIONS
-----------------------------------NOTE-------------------------------------------
Separate Condition entry is allowed for each channel.
CONDITION                    REQUIRED ACTION            COMPLETION TIME A. One or more channels        A.1      Place one inoperable    24 hours inoperable in one trip              channel in trip such system.                              that it will not prevent containment spray.
B. One or more channels        B.1      Declare suppression      Immediately inoperable in both trip              chamber and drywell systems.                            spray subsystems inoperable.
OR Required Action and Associated Completion time of Condition A not met.
Dresden 2 and 3                      3.3.d-1                          Revision 0
 
TRM Suppression Chamber and Drywell Spray Actuation Instrumentation 3.3.d SURVEILLANCE REQUIREMENTS
--------------------------------NOTES---------------------------------------------
: 1. Refer to Table T3.3.d-1 to determine which TSRs apply to each Function.
: 2. When a channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains suppression chamber and drywell spray actuation capability.
SURVEILLANCE                            FREQUENCY TSR  3.3.d.1  Perform CHANNEL CHECK.                        24 hours TSR  3.3.d.2  Perform CHANNEL FUNCTIONAL TEST.              92 days TSR  3.3.d.3  Calibrate the trip units.                    92 days TSR  3.3.d.4  Perform CHANNEL CALIBRATION.                  92 days TSR  3.3.d.5  Perform CHANNEL CALIBRATION.                  24 months TSR  3.3.d.6  Perform LOGIC SYSTEM FUNCTIONAL TEST.        48 months Dresden 2 and 3                    3.3.d-2                        Revision 88
 
TRM Suppression Chamber and Drywell Spray Actuation Instrumentation 3.3.d Table T3.3.d-1 (page 1 of 1)
Suppression Chamber and Drywell Spray Actuation Instrumentation REQUIRED NUMBER OF SURVEILLANCE    ALLOWABLE FUNCTION                      CHANNELS REQUIREMENTS      VALVE PER TRIP SYSTEM
: 1. Drywell Pressure  High (permissive)          2      TSR  3.3.d.2    > 0.5 psig TSR  3.3.d.4      and TSR  3.3.d.6    < 1.5 psig
: 2. Reactor Vessel Water Level  Low              1      TSR  3.3.d.1    > -184.1 (permissive)                                          TSR  3.3.d.2      inches TSR  3.3.d.3 TSR  3.3.d.5 TSR  3.3.d.6 Dresden 2 and 3                          3.3.d-3                          Revision 89
 
TRM Fire Detection Instrumentation 3.3.e 3.3  INSTRUMENTATION 3.3.e  Fire Detection Instrumentation TLCO  3.3.e      The fire detection instrumentation shown in Table T3.3.e-1 (Unit 2), T3.3.e-2 (Unit 3) and T3.3.e-3 (Unit 2/3) shall be OPERABLE.
APPLICABILITY:    Whenever equipment protected by the fire detection instrumentation is required to be OPERABLE.
ACTIONS
-----------------------------------NOTE-------------------------------------------
Separate Condition entry is allowed for each fire detection instrument.
CONDITION                  REQUIRED ACTION          COMPLETION TIME A. One or more required    A.1      Establish a fire        1 hour detection instruments            watch patrol.
inoperable.
AND A.2      Perform a fire watch    Once per hour inspection of the      for accessible affected area(s).      areas AND Once per 8 hours for inaccessible areas AND (continued)
Dresden 2 and 3                      3.3.e-1                          Revision 0
 
TRM Fire Detection Instrumentation 3.3.e ACTIONS CONDITION                      REQUIRED ACTION          COMPLETION TIME A.  (continued)              A.3.1    Restore the fire          14 days detection instrumentation to OPERABLE status.
OR Immediately A.3.2    Prepare a corrective action program report.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR 3.3.e.1    Demonstrate supervised circuits associated        184 days with detector alarms for each of the required detection instruments are OPERABLE.
TSR  3.3.e.2    Perform a CHANNEL FUNCTIONAL TEST of each        24 months required detection instrument Dresden 2 and 3                      3.3.e-2                        Revision 77
 
TRM Fire Detection Instrumentation 3.3.e Table T3.3.e-1 (page 1 of 1)
Fire Detection Instrumentation (Unit 2)
XL3                                      TOTAL    REQUIRED XL3 DEVICE                                    ACTUATES LOCATION                        DETECTION                                  NUMBER OF  NUMBER OF NUMBERS                                      SUPPRESSION ZONE                                  INSTRUMENTS INSTRUMENTS HPCI Pump Room                                        34          01, 02, 03                    3          2            X LPCI Rooms/Torus (Protectowire)                      34          27                            1        1 Reactor Building El. 517                              12          01-08, 11-20, 23-29          25        17 Shutdown Cooling Pump Room                        12          09, 10                      2(*)        1 TIP Room                                          12          21, 22                                    1 2(*)
Reactor Building El. 545                              14          01-07, 10-13, 16-23          19        14 Shutdown Cooling Hx Room                          14          08, 09                      2(*)        1 RWCU Pump Room                                    14          14, 15                                    1 2(*)
Reactor Building El. 570                              32          01-09                          9          7 33          02-13, 28                    13        10 Isolation Condenser Floor El. 589                    32          10-21                        12        9 Standby Liquid Control El. 589                        33          01                            1        1 Hatchway and Stairs Heat Detection                    32          29                            1        1            X El. 570/589 (Protectowire)
Turbine Building Ground Floor El. 517                21          02-05                          4          3 22          04-11, 18(***), 19(***)      10          7 23          01-09                          9          7 Instrument Air Compressor                            22          01-03, 12-17                  9        7            X Unit 2 Diesel Generator, Room (**)                    23          23                            3        2            X Turbine Building Mezzanine El. 534                    44          01-10                        10        7 Cable Concentration Area El. 583                      43          01-16                        16        12            X 54          01-15                        15        11            X Hydrogen Seal Oil Deluge (**)                    54          30                            2        1            X Turbine Building El. 549                              42          01-18                        18        13 Battery Room                                      42          19-26                          8          6 HVAC Fan Area                                    44          11-23                        13        10
(*)    Inaccessible Area.
(**)    Multiple detectors provide single alarm on XL3 Fire Computer.
(***)  Cable Risers outside AEER.
Dresden 2 and 3                                                      3.3.e-3                                          Revision 0
 
TRM Fire Detection Instrumentation 3.3.e Table T3.3.e-2 (page 1 of 1)
Fire Detection Instrumentation (Unit 3)
XL3                                      TOTAL    REQUIRED XL3 DEVICE                                    ACTUATES LOCATION                        DETECTION                                  NUMBER OF  NUMBER OF NUMBERS                                      SUPPRESSION ZONE                                  INSTRUMENTS INSTRUMENTS HPCI Pump Room                                        34          04, 05, 06                    3          2            X LPCI Rooms/Torus (Protectowire)                      34          29                            1          1 Reactor Building El. 517                              11          01-10, 13-19, 22-28          24        17 Shutdown Cooling Pump Room                        11          11-12                        2(*)        1 TIP Room                                          11          20-21                                    1 2(*)
Reactor Building El. 545                              13          01-08, 11-16, 19-23          19        14 Shutdown Cooling Hx Room                          13          09-10                        2(*)        1 RWCU Pump Room                                    13          17-18                                    1 2(*)
Reactor Building El. 570                              31          01-09                          9          7 33          15-27                        13        10 Isolation Condenser Floor El. 589                    31          10-22                        13        10 Standby Liquid Control El. 589                        33          14                            1          1 Hatchway and Stairs Heat Detection                    31          29                            1          1            X El. 570/589 (Protectowire)
Turbine Building Ground Floor El. 517                23          11, 12                        2          1 71          01-11                        11          8 72          01-22                        22        16 Unit 3 Diesel Generator, Room (**)                    23          24                            3          2            X Turbine Building Mezzanine El. 538                    61          01-21                        21        15 62          01-16                        16        12 63          01-14                        14        10 Hydrogen Seal Oil Deluge (**)                    63          29                            2          1            X Battery Room                                      62          17-20                          4          3 Cable Tunnel                                          73          01-22                        22        16 74          01-17                        17        12
(*)    Inaccessible Area.
(**)  Multiple detectors provide single alarm on XL3 Fire Computer.
Dresden 2 and 3                                                    3.3.e-4                                          Revision 0
 
TRM Fire Detection Instrumentation 3.3.e Table T3.3.e-3 (page 1 of 1)
Fire Detection Instrumentation (Unit 2/3)
XL3                                        TOTAL        REQUIRED XL3 DEVICE                                        ACTUATES LOCATION                      DETECTION                                  NUMBER OF      NUMBER OF NUMBERS                                          SUPPRESSION ZONE                                  INSTRUMENTS    INSTRUMENTS Unit 2/3 Diesel Generator Room                        23          25                              5            4          X Turbine Building Ground Floor El. 517                21          01                              1            1 23          10, 13-22                      11            8 24          01-26                          26            19 41          01-06, 10                        7            5 Turbine Building Mezzanine El. 534                    41          07-09, 11                      4            3 Turbine Oil Reservoir(**)                        21          19                              6            4          X 41          27                              6            4          X Auxiliary Electric Equipment Room                    81          01-26                          26            18          X Control Room Above Ceiling                                    52          01-16                          16            12 53          01-18                          18            13 Below Ceiling                                    52          17-24                            8            6 53          19-25                            7            4 Unit 2/3 Cribhouse                                    51          01-12                          12            9 Cable Tray Deluge (Protectowire)                  51          22                              1            1          X Fire Pump Deluge(**)                              51          25                              9            9          X 2/3 Diesel Generator                              51          18                              1            1          X Cooling Water Pump Deluge
(**)    Multiple detectors provide single alarm on XL3 Fire Computer.
Dresden 2 and 3                                                      3.3.e-5                                            Revision 0
 
TRM ATWS  ARI System 3.3.f 3.3  INSTRUMENTATION 3.3.f  Anticipated Transient Without Scram (ATWS)  Alternate Rod Insertion (ARI) System TLCO  3.3.f        Two ATWS  ARI Subsystems shall be OPERABLE.
APPLICABILITY:    MODE 1.
ACTIONS CONDITION                    REQUIRED ACTION          COMPLETION TIME A. One ATWS  ARI              A.1    Restore ATWS - ARI      7 days Subsystem inoperable.              subsystem to OPERABLE status.
B. Both ATWS  ARI            B.1    Restore one ATWS -      8 hours Subsystems inoperable.              ARI subsystem to OPERABLE status.
C. Required Action and        C.1    Enter 3.0.c.            Immediately associated Completion Time of Condition A or B not met.
Dresden 2 and 3                        3.3.f-1                        Revision  2
 
TRM ATWS  ARI System 3.3.f SURVEILLANCE REQUIREMENTS SURVEILLANCE                          FREQUENCY TSR 3.3.f.1    Manually actuate the ATWS  ARI System from 24 months the control room.
TSR  3.3.f.2  Perform a logic test of ATWS  ARI System. 24 months The ATWS  ARI solenoid valves shall remain energized after the actuation signal for
                > 44.2 seconds and < 54.2 seconds.
Dresden 2 and 3                      3.3.f-2                      Revision  2
 
TRM 3.3.g 3.3  INSTRUMENTATION 3.3.g  Not used Dresden 2 and 3      3.3.g-1 Revision 0
 
TRM RVWLIS Backfill System 3.3.h 3.3  INSTRUMENTATION 3.3.h  Reactor Vessel Water Level Instrumentation System (RVWLIS)
Backfill System TLCO  3.3.h      The RVWLIS Backfill System shall be OPERABLE with 4 instrument reference legs continuously backfilled.
APPLICABILITY:    MODES 1, 2, and 3.
ACTIONS CONDITION                    REQUIRED ACTION          COMPLETION TIME A. One or more RVWLIS          A.1    Restore inoperable      7 days Backfill System lines                RVWLIS Backfill inoperable.                          System lines to OPERABLE status.
B. Required Action and          B.1    Establish              Prior to RPV associated Completion                compensatory measures  reaching Time of Condition A not              in accordance with      450 psig met.                                the bases and required procedures for the associated instrument reference leg(s).
SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR  3.3.h.1    Verify flow to the reference legs.              24 hours Dresden 2 and 3                      3.3.h-1                          Revision 0
 
TRM RWCU Area Temperature Monitoring 3.3.i 3.3  INSTRUMENTATION 3.3.i Reactor Water Cleanup (RWCU) Area Temperature Monitoring TLCO  3.3.i      Temperature monitors listed in Columns A and B of Table T3.3.i-1 (Unit 2) and T3.3.i-2 (Unit 3) shall be OPERABLE.
APPLICABILITY:    MODES 1, 2, and 3 with the RWCU system unisolated.
ACTIONS
-----------------------------------NOTE-------------------------------------------
Separate Conditions entry is allowed for each temperature monitor.
CONDITION                  REQUIRED ACTION          COMPLETION TIME A. With one temperature  A.1  Restore inoperable      30 days monitor inoperable.          temperature monitor to OPERABLE status.
OR A.2.1 Isolate the RWCU        30 days system.
(continued)
Dresden 2 and 3                    3.3.i-1                          Revision 0
 
TRM RWCU Area Temperature Monitoring 3.3.i ACTIONS      CONDITION                  REQUIRED ACTION          COMPLETION TIME B. With two temperature      B.1  Verify no visible signs    1 hour monitors inoperable for          of a leak in the a given area.                    affected area.            AND Once per 24 hours thereafter AND B.2.1 Restore one inoperable temperature monitor to    7 days OPERABLE status.
OR B.2.2 Isolate the RWCU system.
7 days SURVEILLANCE REQUIREMENTS
----------------------------------NOTE--------------------------------------------
TSRs apply to each monitor in Column A and B of Table T3.3.i-1 and T3.3.i-2.
SURVEILLANCE                                FREQUENCY TSR  3.3.i.1    ---------------------NOTE---------------------    24 months X-area temperature monitors are excluded.
Perform a resistance check of the temperature monitor.
(continued)
Dresden 2 and 3                      3.3.i-2                          Revision 0
 
TRM RWCU Area Temperature Monitoring 3.3.i SURVEILLANCE REQUIREMENTS SURVEILLANCE                            FREQUENCY TSR 3.3.i.2    Perform a functional test of the temperature  24 months monitor.
TSR 3.3.i.3    Perform a logic test of the temperature        24 months monitor.
Dresden 2 and 3                    3.3.i-3                        Revision 0
 
TRM RWCU Area Temperature Monitoring 3.3.i Table T3.3.i-1 (page 1 of 1)
RWCU Temperature Monitoring (Unit 2)
Area                              Column A            Column B A RWCU HX Room                                        2-1291-60K          2-1291-60R B RWCU HX Room                                        2-1291-60J          2-1291-60P PCV Room                                              2-1291-60L          2-1291-60S RWCU Pipeway                                          2-1291-60M          2-1291-60T RWCU Pump Room                                        2-1291-60N          2-1291-60U Unit 2 Main Steam Line (X-Area)                        2-0261-15A          2-0261-15B 2-0261-16A          2-0261-16B 2-0261-17A          2-0261-17B 2-0261-18A          2-0261-18B Dresden 2 and 3                              3.3.i-4                            Revision 0
 
TRM RWCU Area Temperature Monitoring 3.3.i Table T3.3.i-2 (page 1 of 1)
RWCU Temperature Monitoring (Unit 3)
Area                              Column A            Column B A RWCU HX Room                                        3-1291-60J          3-1291-60P B RWCU HX Room                                        3-1291-60K          3-1291-60R PCV Room                                              3-1291-60L          3-1291-60S RWCU Pipeway                                          3-1291-60M          3-1291-60T RWCU Pump Room                                        3-1291-60N          3-1291-60U Unit 3 Main Steam Line (X-Area)                        3-0261-15A          3-0261-15B 3-0261-16A          3-0261-16B 3-0261-17A          3-0261-17B 3-0261-18A          3-0261-18B Dresden 2 and 3                              3.3.i-5                            Revision 0
 
TRM Structural Integrity 3.4.a 3.4  REACTOR COOLANT SYSTEM (RCS) 3.4.a  Structural Integrity TLCO  3.4.a      The structural integrity of ASME Code Class 1, 2, and 3 components shall be maintained in accordance with the Inservice Inspection and Testing Programs.
APPLICABILITY:    MODES 1, 2, 3, 4, and 5.
ACTIONS
-----------------------------NOTE--------------------------------------------
Separate Condition entry is allowed for each component.
CONDITION                  REQUIRED ACTION        COMPLETION TIME A.  --------NOTE-----------      A.1    Restore the          Immediately Only applicable to ASME            structural Code Class 1 components.            integrity of the
      -----------------------            affected component to within its Structural integrity of            limits.
one or more ASME component(s) not in        OR conformance.                                              Immediately A.2    Isolate the affected component.
(continued)
Dresden 2 and 3                      3.4.a-1                        Revision 85
 
TRM Structural Integrity 3.4.a ACTIONS CONDITION                    REQUIRED ACTION        COMPLETION TIME B.  --------NOTE-----------    B.1    Restore the            Immediately Only applicable to ASME            structural integrity Code Class 2 components.            of the affected
    -----------------------            components to within its limits.
Structural integrity of one or more ASME            OR component(s) not in                                        Immediately conformance.                B.2    Isolate the affected component.
C.  --------NOTE-----------    C.1    Restore the            Immediately Only applicable to ASME            structural integrity Code Class 3 components.            of the affected
    -----------------------            components to within its limits.
Structural integrity of one or more ASME component(s) not in        OR conformance.                                              Immediately C.2    Isolate the affected component.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                            FREQUENCY TSR  3.4.a.1  Verify the structural integrity of ASME      In accordance Code Class 1, 2, and 3 components.            with the Inservice Inspection and Testing Programs Dresden 2 and 3                    3.4.a-2                          Revision 0
 
TRM RCS Chemistry 3.4.b 3.4  REACTOR COOLANT SYSTEM 3.4.b  Reactor Coolant System (RCS) Chemistry TLCO  3.4.b      The chemistry of the RCS shall be maintained within the limits specified in Table T3.4.b-1.
APPLICABILITY:  MODES 1, 2, and 3.
ACTIONS
------------------------------------NOTE-------------------------------------
TLCO 3.0.d is not applicable.
CONDITION                  REQUIRED ACTION          COMPLETION TIME A. RCS chemistry not        A.1    Determine chlorides    Once per 8 within limits in                and pH.                hours when MODE 1.                                                conductivity is not within AND                            limit A.2    Perform TSR 3.4.b.3.
Once per 24 hours when AND                            conductivity is not within A.3    Restore RCS chemistry  limit to within limits.
72 hours AND 336 hours cumulative in the past 365 days (continued)
ACTIONS Dresden 2 and 3                    3.4.b-1                          Revision 5
 
TRM RCS Chemistry 3.4.b CONDITION              REQUIRED ACTION        COMPLETION TIME B. Required Action and    B.1  Be in MODE 2.        8 hours associated Completion Time of Condition A not met.
C. Conductivity          C.1  Be in MODE 2.        12 hours
    > 10 mho/cm at 25&deg; C in MODE 1.
OR Chloride concentration
    > 0.5 ppm in MODE 1.
D.  -------NOTE----------- D.1  Determine chlorides  Once per 8 Not applicable during        and pH.              hours when Noble Metal Chemical                              conductivity is Applications                                      not within (injection and cleanup AND                        limit periods).
    ---------------------- D.2  Perform TSR 3.4.b.3. Once per 24 hours when RCS chemistry not                                  conductivity is within required limits                            not within in MODE 2 or 3.        AND                        limit D.3  Restore RCS chemistry 48 hours to within limits.
E. Required Action and    E.1  Be in MODE 3.        12 hours associated Completion Time of Condition D    AND not met.
E.2  Be in MODE 4.        36 hours (continued)
Dresden 2 and 3                3.4.b-2                        Revision 5
 
TRM RCS Chemistry 3.4.b CONDITION              REQUIRED ACTION        COMPLETION TIME F. RCS chemistry not      F.1  Initiate action to be Immediately within required limits      in MODE 4.
in MODE 3 during Noble Metal Chemical Application (injection and cleanup).
Dresden 2 and 3                3.4.b-3                        Revision 5
 
TRM RCS Chemistry 3.4.b SURVEILLANCE REQUIREMENTS SURVEILLANCE                          FREQUENCY TSR 3.4.b.1    ---------------NOTE------------------------
Only applicable when the continuous recording conductivity monitor is inoperable.
4 hours Obtain an in-line conductivity measurement of the reactor coolant.
TSR  3.4.b.2  Analyze a sample of the reactor coolant for 72 hours chlorides and conductivity.
TSR  3.4.b.3  Perform a CHANNEL CHECK of the continuous  7 days conductivity monitor with an in-line flow cell.
Dresden 2 and 3                    3.4.b-4                        Revision 5
 
TRM RCS Chemistry 3.4.b Table T3.4.b-1 (page 1 of 1)
Reactor Coolant System Chemistry Limits CHLORIDES              CONDUCTIVITY MODE                                                              pH (ppm)            (mhos/cm at 25&deg;C) 1                    < 0.2                    < 1.0      5.6 < pH < 8.6 2, 3(a)                  < 0.1                    < 2.0      5.6 < pH < 8.6 3(b)                    < 0.1                  < 20.0      4.3 < pH < 9.9 (a) Except during Noble Metal Chemical Applications.
(b) During Noble Metal Chemical Applications.
Dresden 2 and 3                              3.4.b-5                          Revision 5
 
TRM Primary Containment Atmosphere Particulate Radioactivity Sampling System 3.4.c 3.4  REACTOR COOLANT SYSTEM 3.4.c  Not Used Dresden 2 and 3                    3.4.c-1                        Revision 0
 
TRM Drywell Continuous Air Monitor (CAM) 3.4.d 3.4  REACTOR COOLANT SYSTEM 3.4.d  Drywell Continuous Air Monitor (CAM)
TLCO  3.4.d      The Drywell CAM shall be OPERABLE.
APPLICABILITY:    MODES 1, 2, and 3.
ACTIONS CONDITION                  REQUIRED ACTION          COMPLETION TIME A . Drywell CAM is        A .1    Restore the Drywell    30 days inoperable.                    CAM to OPERABLE status.
B . Required Action and    B .1    Enter TLCO 3.0.c.      Immediately associate Completion Time of Condition A not met.
Dresden 2 and 3                      3.4.d-1                          Revision 1
 
TRM Drywell Continuous Air Monitor (CAM) 3.4.d SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR 3.4.d.1    Perform a visual inspection of the            8 hours stripchart and flow indicator.
TSR 3.4.d.2    Perform a response check of the radiation      24 hours detector.
TSR 3.4.d.3    Perform a calibration of the radiation        184 days detector.
TSR 3.4.d.4    Perform a calibration of the electronics.      184 days Dresden 2 and 3                    3.4.d-2                        Revision 29
 
TRM Core Spray/LPCI Corner Room Submarine Doors 3.5.a 3.5  EMERGENCY CORE COOLING SYSTEM (ECCS) 3.5.a  Core Spray/Low Pressure Coolant Injection (LPCI) Corner Room Submarine Doors TLCO  3.5.a      The submarine doors of the Core Spray/LPCI pump corner rooms shall be closed and dogged, except during passage.
APPLICABILITY:  Whenever LPCI, Core Spray, or High Pressure Coolant Injection (HPCI) is required to be OPERABLE.
ACTIONS
------------------------------------NOTES----------------------------------------
Separate Condition entry is allowed for each door.
CONDITION                    REQUIRED ACTION            COMPLETION TIME A. One or more Core        A.1      Close and dog the affected  1 hour Spray/LPCI pump corner          door.
room doors open or undogged.
(continued)
Dresden 2 and 3                    3.5.a-1                          Revision 0
 
TRM Core Spray/LPCI Corner Room Submarine Doors 3.5.a ACTIONS CONDITION                      REQUIRED ACTION            COMPLETION TIME B. Required Action and        B.1      ----------NOTE---------  Immediately associated Completion                If either the Unit 2 Time not met.                        West Core Spray/LPCI pump corner room door or the Unit 3 East Core Spray/LPCI pump corner room door is open or undogged, then the components in both corner rooms and both Units HPCI pumps must be considered inoperable.
Declare affected LPCI, Core Spray, or HPCI pumps inoperable.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.5.a.1  Verify the submarine doors of each Core            7 days Spray/LPCI corner room are closed and dogged.
Dresden 2 and 3                      3.5.a-2                          Revision 0
 
TRM Drywell Spray 3.6.a 3.6  CONTAINMENT SYSTEMS 3.6.a  Drywell Spray
--------------------------------------NOTE-----------------------------------
Superseded by Technical Specification 3.6.2.6 Drywell Spray.
Dresden 2 and 3                    3.6.a-1                      Revision 100
 
TRM NCAD System 3.6.b 3.6  CONTAINMENT SYSTEMS 3.6.b  Nitrogen Containment Atmospheric Dilution (NCAD) System TLCO  3.6.b      The NCAD System shall be OPERABLE.
APPLICABILITY:    MODES 1 during the time period:
: a. From 24 hours after THERMAL POWER is > 15% RTP following startup, to
: b. 24 hours prior to reducing THERMAL POWER to < 15% RTP prior to the next scheduled reactor shutdown.
ACTIONS CONDITION                    REQUIRED ACTION        COMPLETION TIME A. NCAD System inoperable. A.1      Restore NCAD System    7 days to OPERABLE status.
B. Required Action and        B.1      Enter TLCO 3.0.c      Immediately associated Completion Time not met.
Dresden 2 and 3                      3.6.b-1                        Revision 0
 
TRM NCAD System 3.6.b SURVEILLANCE REQUIREMENTS SURVEILLANCE                          FREQUENCY TSR 3.6.b.1    Verify level in liquid nitrogen storage tank 7 days is greater than or equal to 68 inches of water column:                                AND
: a. for nitrogen primary tank at Level        After reinerting Indicator LI 2/3-8541-16; or              primary containment
: b. for nitrogen auxiliary tank at Level Indicator LI 2/3-8541-8001.
TSR  3.6.b.2  Verify the rated nitrogen flow to primary    24 months containment.
Dresden 2 and 3                    3.6.b-2                      Revision 67
 
TRM CCSW System  Shutdown 3.7.a 3.7  PLANT SYSTEMS 3.7.a  Containment Cooling Service Water (CCSW) System  Shutdown TLCO  3.7.a      One Unit 2 CCSW pump and flow path shall be OPERABLE.
APPLICABILITY:    During movement of recently irradiated fuel assemblies in secondary containment, During CORE ALTERATIONS.
ACTIONS CONDITION                    REQUIRED ACTION            COMPLETION TIME A. Required CCSW pump or    A.1      Declare supported safety-    Immediately flow path inoperable.            related equipment inoperable.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.a.1  Verify each CCSW manual, power operated, and      31 days automatic valve in the flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position or can be aligned to the correct position.
Dresden 2 and 3                      3.7.a-1                          Revision 87
 
TRM DGCW System  Shutdown 3.7.b 3.7  PLANT SYSTEMS 3.7.b  Diesel Generator Cooling Water (DGCW) System  Shutdown TLCO  3.7.b      The DGCW System shall be OPERABLE with:
: 1. One OPERABLE DGCW pump per required subsystem, and
: 2. An OPERABLE flow path capable of taking suction from the Ultimate heat Sink and transferring water to the associated required diesel generator.
APPLICABILITY:  MODES 4 and 5 when the associated diesel generator is required to be OPERABLE.
ACTIONS
--------------------------------------NOTE-----------------------------------------
Separate Condition entry is allowed for each DGCW subsystem.
CONDITION                  REQUIRED ACTION          COMPLETION TIME A. One or more required    A.1      Declare associated      Immediately DGCW subsystems                  required diesel inoperable.                      generators inoperable.
Dresden 2 and 3                    3.7.b-1                          Revision 0
 
TRM DGCW System  Shutdown 3.7.b SURVEILLANCE REQUIREMENTS SURVEILLANCE                            FREQUENCY TSR 3.7.b.1    Verify each required DGCW subsystem valve in    31 days the flow path, that is not locked, sealed, or otherwise secured in position, is in the correct position.
TSR  3.7.b.2  Verify each required DGCW pump starts          24 months automatically on an actual or simulated initiation signal.
Dresden 2 and 3                    3.7.b-2                        Revision 0
 
TRM UHS  Shutdown 3.7.c 3.7  PLANT SYSTEMS 3.7.c  Ultimate Heat Sink (UHS)  Shutdown TLCO  3.7.c      The UHS shall be OPERABLE.
APPLICABILITY:    MODES 4 and 5, During movement of recently irradiated fuel in secondary containment, During CORE ALTERATIONS.
ACTIONS CONDITION                    REQUIRED ACTION          COMPLETION TIME A. UHS inoperable in MODES  A.1      Declare the required    Immediately 4 and 5.                            Diesel Generator Cooling Water subsystems inoperable.
B. UHS inoperable during    B.1      Declare the required    Immediately movement of recently                Containment Cooling irradiated fuel                    Service Water assemblies in the                  subsystems and Diesel secondary containment              Generator Cooling Water or during CORE                      subsystems inoperable.
ALTERATIONS.
Dresden 2 and 3                      3.7.c-1                        Revision 87
 
TRM UHS  Shutdown 3.7.c SURVEILLANCE REQUIREMENTS SURVEILLANCE                          FREQUENCY TSR 3.7.c.1    Verify average water temperature is < 95!F. 24 hours TSR  3.7.c.2  Verify water level in the CCSW and DGCW pump 24 hours suction bays is > 501.5 ft mean sea level.
Dresden 2 and 3                    3.7.c-2                    Revision 0
 
TRM Liquid Holdup Tanks 3.7.d 3.7  PLANT SYSTEMS 3.7.d  Liquid Holdup Tanks TLCO  3.7.d      The quantity of radioactive material contained in each of the following tanks shall be < 0.7 curies and the total quantity of radioactive material shall be < 3.0 curies.
: a. Waste Sample Tanks;
: b. Floor Drain Sample Tanks;
: c. Waste Surge Tank; and
: d. Any outside temporary tank used for storage of radioactive liquids.
APPLICABILITY:    At all times.
ACTIONS
-------------------------------------NOTE-----------------------------------------
Separate Conditions entry is allowed for each tank.
CONDITION                    REQUIRED ACTION          COMPLETION TIME A. Quantity of radioactive    A.1      Suspend all additions    Immediately material in one or more              of radioactive material of the tank(s) not                  to the affected tank(s) within limits.
AND A.2      Reduce affected tank    48 hours contents to within limits.
Dresden 2 and 3                      3.7.d-1                        Revision 67
 
TRM Liquid Holdup Tanks 3.7.d SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR 3.7.d.1    -----------------------------NOTE---------------
Not required to be performed for 7 days when tank(s) is empty at the start of addition.
Determine the quantity of radioactive material    7 days when of each tank is within limits by analyzing a      radioactive representative sample of the tanks contents. materials are being added to the tank(s)
AND Once within 7 days after each completion of addition of radioactive material Dresden 2 and 3                    3.7.d-2                        Revision 0
 
TRM Explosive Gas Mixture 3.7.e 3.7  PLANT SYSTEMS 3.7.e  Explosive Gas Mixture TLCO  3.7.e      The concentration of hydrogen in the Offgas Holdup System shall be < 4% by volume.
APPLICABILITY:    During Offgas Holdup System operation.
ACTIONS CONDITION                    REQUIRED ACTION          COMPLETION TIME A. Hydrogen concentration    A.1      Restore concentration    48 hours in the Offgas Holdup                to within limit.
System > 4% by volume.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR 3.7.e.1    Verify hydrogen concentration in the Offgas      24 hours Holdup System is < 4% by volume.
Dresden 2 and 3                      3.7.e-1                          Revision 0
 
TRM Flood Protection 3.7.f 3.7  PLANT SYSTEMS 3.7.f  Flood Protection TLCO  3.7.f        Flood protection shall be available for all        required  safe shutdown systems, components, and structures.
APPLICABILITY:      At all times.
ACTIONS CONDITION                  REQUIRED ACTION      COMPLETION TIME A. Water level > 506.5    A.1  Initiate applicable  Immediately ft mean sea level            flood protection USGS datum.                  measures.
Dresden 2 and 3                      3.7.f-1                        Revision 84
 
TRM Flood Protection 3.7.f SURVEILLANCE REQUIREMENTS SURVEILLANCE                            FREQUENCY TSR  3.7.f.1  --------------------NOTE---------------------
Not required to be performed if water level is < 506.0 ft mean sea level USGS datum.
Determine water level at the Unit 2/3 crib    2 hours house.
TSR  3.7.f.2  Determine water level at the Unit 2/3 crib    24 hours house.
Dresden 2 and 3                    3.7.f-2                      Revision 84
 
TRM Sealed Source Contamination 3.7.g 3.7  PLANT SYSTEMS 3.7.g  Sealed Source Contamination TLCO  3.7.g      Each sealed source containing radioactive material either in excess of 100 Ci of beta and/or gamma emitting material or 5 Ci of alpha emitting material shall be free of > 0.005 Ci of removable contamination.
APPLICABILITY:    At all times.
ACTIONS
------------------------------------NOTE------------------------------------------
Separate Condition entry is allowed for each source.
CONDITION                  REQUIRED ACTION            COMPLETION TIME A.  --------NOTE----------  A.1      Withdraw the sealed      Immediately Required Actions A.2            source from use.
and A.3 shall be completed whenever      AND Condition A is entered.                A.2.1    Initiate action to      Immediately
      ----------------------          decontaminate and repair the sealed One or more sealed              source.
sources with removable contamination not          OR within limits.
(continued)
Dresden 1, 2 and 3                  3.7.g-1                          Revision 14
 
TRM Sealed Source Contamination 3.7.g ACTIONS CONDITION        REQUIRED ACTION              COMPLETION TIME A.  (continued)    A.2.2  Initiate action to          Immediately dispose of the sealed source in accordance with NRC Regulations.
AND A.3    Initiate a Corrective      Immediately Action Program report.
Dresden 1, 2 and 3        3.7.g-2                          Revision 14
 
TRM Sealed Source Contamination 3.7.g SURVEILLANCE REQUIREMENTS
--------------------------------------NOTES----------------------------------------
: 1. Each sealed source shall be tested for leakage and/or contamination by the licensee, or other persons specifically authorized by the Commission or Agreement State.
: 2. The test method shall have a detection sensitivity of at least 0.005 Ci per test sample.
: 3. Startup sources and fission detectors previously subjected to core flux are exempted from the TSRs.
: 4. Sealed sources which are continuously enclosed within a shielded mechanism (i.e., sealed sources within radiation monitoring or boron measuring devices) are considered to be stored and need not be tested unless they are removed from the shielded mechanism.
SURVEILLANCE                                FREQUENCY TSR  3.7.g.1    -------------------NOTE----------------------
Only required to be performed on sources in use.
184 days Perform leakage testing for all sealed sources containing radioactive materials with a half-life > 30 days (excluding Hydrogen 3) and in any form other than gas.
TSR  3.7.g.2    -------------------NOTES---------------------
: 1. Only required to be performed on stored sources not in use.
: 2. Only required to be performed if not tested within the previous 6 months.
Prior to use or Perform leakage testing for each sealed          transfer to source and fission detector.                    another licensee (continued)
Dresden 1, 2 and 3                  3.7.g-3                        Revision 14
 
TRM Sealed Source Contamination 3.7.g SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR 3.7.g.3    --------------------NOTE---------------------
Only required to be performed on stored sources not in use.
Perform leakage testing on sealed sources and    Prior to use fission detectors transferred without a certificate indicating the last test date.
TSR  3.7.g.4  ----------------NOTE-------------------------
Only required to be performed on sealed startup sources and fission detectors not previously subjected to core flux.
Perform leakage testing for each sealed          Once within 31 startup source and fission detector.            days prior to being subjected to core flux or installed in the core or following repair or maintenance to sources Dresden 1, 2 and 3                  3.7.g-4                        Revision 14
 
TRM Snubbers 3.7.h 3.7  PLANT SYSTEMS 3.7.h  Snubbers
-------------------------------------------NOTE-----------------------------------
Superseded by Technical Specification Limiting Condition for Operation (LCO) 3.0.8 and Technical Requirement Program 5.5.13, Augmented Inservice Inspection Program.
Dresden 2 and 3                    3.7.h-1                        Revision 90
 
TRM Fire Water Supply System 3.7.i 3.7  PLANT SYSTEMS 3.7.i  Fire Water Supply System TLCO  3.7.i      The Fire Water Supply System shall be OPERABLE with:
: 1. A flow path for the Unit 2/3 fire pump capable of taking suction from the Unit 2/3 intake canal and aligned to discharge to the fire water supply header;
: 2. A flow path to the Unit 1 fire pump capable of taking suction from the Unit 1 intake canal and aligned to discharge to the fire water supply header;
: 3. Automatic initiation logic for each fire pump;
: 4. Fire water supply header piping with sectional control valves to the yard loop, the front valve ahead of the water flow alarm device on each sprinkler or water spray system, and the standpipe system.
APPLICABILITY:    At all times.
ACTIONS
------------------------------------NOTE------------------------------------------
Separate Condition entry is allowed for each fire pump.
CONDITION                  REQUIRED ACTION          COMPLETION TIME A. One fire pump or water  A.1      Restore equipment to    7 days supply inoperable.                OPERABLE status.
OR A.2      Prepare a corrective    7 days action program report.
Dresden 2 and 3                      3.7.i-1                          Revision 0
 
TRM Fire Water Supply System 3.7.i ACTIONS CONDITION                    REQUIRED ACTION            COMPLETION TIME B. Two fire pumps or water  B.1      Establish a backup      24 hours supplies inoperable.              water supply.
C. Required Action B.1 and  C.1      Be in MODE 3.            12 hours associated Completion Time not met.            AND C.2      Be in MODE 4.            36 hours SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR  3.7.i.1  Verify the electrolyte level of each battery    31 days for each diesel driven fire pump is above the plates.
TSR  3.7.i.2  Verify the overall battery voltage for each      31 days diesel driven fire pump is > 24 volts.
TSR  3.7.i.3  Verify the unit 1 diesel driven fire pump        31 days fuel storage day tank contains > 150 gallons of fuel and the unit 2/3 diesel driven fire pump fuel storage day tank contains > 208 gallons of fuel.
(continued)
Dresden 2 and 3                    3.7.i-2                        Revision 46
 
TRM Fire Water Supply System 3.7.i SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.i.4  Start each fire pump from ambient conditions and  31 days operate each fire pump on recirculation flow for
                > 30 minutes.
TSR  3.7.i.5  Verify a sample of fuel from the diesel driven    92 days fire pump fuel storage tank, obtained in accordance with ASTM-D4057-95, is within the acceptable limits specified in Table 1 of ASTM-D975-98b with respect to viscosity, water content, and sediment.
TSR  3.7.i.6  --------------------NOTE------------------------
Not applicable for nickel cadmium batteries.
Verify the specific gravity of each battery for    92 days the diesel driven fire pump is appropriate for continued service of the battery.
TSR  3.7.i.7  Verify that each valve in the flow path that is    184 days not locked, sealed, or otherwise secured in position is in the correct position.
TSR  3.7.i.8  Perform a system flush.                            12 months TSR  3.7.i.9  Verify the battery and battery racks for each      18 months diesel driven fire pump show no visual indication of physical damage or abnormal deterioration.
(continued)
Dresden 2 and 3                    3.7.i-3                          Revision 0
 
TRM Fire Water Supply System 3.7.i SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.i.10  Verify the battery-to-battery and terminal        18 months connections for each diesel driven fire pump are clean, tight, free of corrosion and coated with anti-corrosion material.
TSR  3.7.i.11  Perform a system functional test, which includes  18 months simulated automatic actuation of the system throughout its operating sequence and:
: a. Verify that each automatic valve in the flow path actuates to its correct position;
: b. Verify that the Unit 2/3 fire pump develops
                    > 3000 gpm at a system pressure > 126 psig; and
: c. Verify that the Unit 1 fire pump develops
                    > 2500 gpm at a system pressure > 136 psig.
TSR  3.7.i.12  Perform a system functional test in accordance    18 months with NFPA 20-1976.
TSR  3.7.i.13  Deleted (continued)
Dresden 2 and 3                    3.7.i-4                        Revision 97
 
TRM Fire Water Supply System 3.7.i SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.i.14  Perform a flow test of the system in accordance    60 months with the "Tests of Water Supplies" chapter of the Fire Protection Handbook published by the National Fire Protection Association.
TSR  3.7.i.15  Inspect the diesel of each diesel driven fire      72 months pump in accordance with procedures prepared in conjunction with the manufacturer recommendations for the class of service.
Dresden 2 and 3                    3.7.i-5                        Revision 92
 
TRM Water Suppression Systems 3.7.j 3.7  PLANT SYSTEMS 3.7.j  Water Suppression Systems TLCO  3.7.j      The Water Suppression Systems shown in Table T3.7.j-1 shall be OPERABLE.
APPLICABILITY:    Whenever equipment protected by the suppression systems is required to be OPERABLE.
ACTIONS
--------------------------------NOTE------------------------------------------
Separate Condition entry is allowed for each Water Suppression System.
CONDITION                  REQUIRED ACTION            COMPLETION TIME A. One or more Water        A.1      -------NOTE---------
Suppression Systems              1. Not applicable for inoperable.                          Turbine Oil Reservoir and hydrogen seal oil areas.
: 2. Not applicable for inaccessible areas.
: 3. Not applicable for areas with OPERABLE detection.
Establish an hourly      1 hour fire watch patrol with backup fire suppression equipment.
AND (continued)
Dresden 2 and 3                      3.7.j-1                          Revision 95
 
TRM Water Suppression Systems 3.7.j ACTIONS CONDITION          REQUIRED ACTION            COMPLETION TIME A.  (continued) A.2      -------NOTE----------
: 1. Not applicable for Turbine Oil Reservoir and hydrogen seal oil areas.
: 2. Not applicable for inaccessible areas.
: 3. Applicable for areas with OPERABLE detection.
A.2.1    Establish an hourly      1 hour fire watch patrol and backup fire suppression equipment for suppression systems listed with Required Action A.2.1 in Table T3.7.j-1.
OR A.2.2    Establish a once per 8  1 hour hour fire watch patrol and backup fire suppression equipment for suppression systems listed with Required Action A.2.2 in Table T3.7.j-1.
AND (continued)
Dresden 2 and 3            3.7.j-2                        Revision 95
 
TRM Water Suppression Systems 3.7.j A.  (continued) A.3      -------NOTE----------
: 1. Not applicable for Turbine Oil Reservoir and hydrogen seal oil areas.
: 2. Not applicable for accessible areas.
Establish a once per 8  1 hour hour fire watch patrol with backup fire suppression equipment.
AND A.4      -------NOTE----------
Applicable for Turbine Oil Reservoir and hydrogen seal oil areas.
Establish a continuous fire watch with backup  1 hour fire suppression equipment.
AND A.5.1    Restore the system to OPERABLE status.        14 days OR A.5.2    Prepare a corrective action program report. 14 days OR (continued)
Dresden 2 and 3        3.7.j-3                        Revision 95
 
TRM Water Suppression Systems 3.7.j A.  (continued) A.6  -------NOTE-------
Only Applicable following completion and implementation of approved technical evaluation.
Enter 3.0.g              Immediately Dresden 2 and 3      3.7.j-4                        Revision 95
 
TRM Water Suppression Systems 3.7.j SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.j.1  Verify each manual, power operated, or automatic  184 days valve in the flow path is in the correct position.
TSR  3.7.j.2  Cycle each testable valve in the flow path        12 months through one complete cycle of full travel.
TSR  3.7.j.3  Perform a system functional test, which includes  18 months simulated automatic actuation of the system, and verify that automatic valves in the flow path actuate to their correct positions.
(continued)
Dresden 2 and 3                    3.7.j-5                        Revision 95
 
TRM Water Suppression Systems 3.7.j SURVEILLANCE                                  FREQUENCY TSR  3.7.j.4  ----------------NOTES-----------------------        36 months Not required to be performed for sprinkler piping inaccessible during plant operations.
Perform visual inspection of the sprinkler piping to verify its integrity.
TSR  3.7.j.5  ----------------NOTES-----------------------        36 months Not required to be performed for nozzles inaccessible during plant operations.
Perform visual inspection of each nozzles spray area to verify that the spray pattern is not obstructed.
TSR  3.7.j.6  ----------------NOTES-----------------------
Only required to be performed for sprinkler piping inaccessible during plant operations.
Perform visual inspection of the sprinkler          24 months piping to verify its integrity.
TSR  3.7.j.7  ----------------NOTES-----------------------
Only required to be performed for nozzles inaccessible during plant operations.
Perform visual inspection of each nozzles spray    24 months area to verify that the spray pattern is not obstructed.
(continued)
Dresden 2 and 3                    3.7.j-6                        Revision 95
 
TRM Water Suppression Systems 3.7.j SURVEILLANCE                              FREQUENCY TSR  3.7.j.8  Perform a flow test through each open head      48 months spray nozzle to verify the discharge pattern of the nozzles and that each open head spray nozzle is properly aimed.
Dresden 2 and 3                    3.7.j-7                        Revision 96
 
TRM Water Suppression Systems 3.7.j Table T3.7.j-1 (page 1 of 2)
Water Suppression Systems Required Action I. Preaction sprinkler system
: 1. Unit 2 HPCI Room Preaction System.                                        A.2.1
: 2. Unit 3 HPCI Room Preaction System.                                        A.2.1
: 3. Instrument Air Compressor 2-4706 Preaction System                                A.2.1
: 4. Unit 2 Hatchways and Stairways El. 570' - 0" and 589' - 0" Cols 43, 44 42 N to M Preaction System... A.2.1
: 5. Unit 3 Around Hatchways el. 570' - 0" and 589' - 0" Cols 45, 46 - N M Preaction System...      A.2.1
: 6. Mezz. Floor Cable Concentration Area Col. Row 33 to 38 G to H Preaction In-Tray Sprinkler System.. A.2.1 II. Wet pipe sprinkler systems
: 1. Unit 2/3 Diesel Generator Day Tank Wet Pipe Sprinkler System.. A.2.1
: 2. Unit 2 ACAD Air Compressor Wet Pipe Sprinkler System.. A.2.2
: 3. Unit 3 ACAD Air Compressor Wet Pipe Sprinkler System.. A.2.2
: 4. Unit 2 Condensate Pump Room Wet Pipe Sprinkler System. A.1
: 5. Unit 3 Condensate Pump Room Wet Pipe Sprinkler System. A.1
: 6. Unit 2 CRD and CCSW Pumps Wet Pipe Sprinkler System... A.1
: 7. Unit 3 CRD and CCSW Pumps Wet Pipe Sprinkler System... A.1
: 8. Clean and Dirty Oil Tank Room Wet Pipe Sprinkler System.. A.1
: 9. Unit 2 Below Turbine South Side Wet Pipe Sprinkler System A.3
: 10. Unit 3 Below Turbine South Side Wet Pipe Sprinkler System A.3
: 11. Unit 2 Reactor Feed Pump and Speed Increaser Wet Pipe Sprinkler System A.1
: 12. Unit 3 Reactor Feed Pump and Speed Increaser Wet Pipe Sprinkler System A.1
: 13. Unit 2 Below Turbine North Side Wet Pipe Sprinkler System A.3
: 14. Unit 3 Below Turbine North Side Wet Pipe Sprinkler System A.3
: 15. Unit 2 Trackway and area between Column 33 and 35 F and G Wet Pipe Sprinkler System.. A.1
: 16. Unit 3 Trackway Wet Pipe Sprinkler System. A.1
: 17. Unit 2 Diesel Generator Day Tank Wet Pipe Sprinkler System. A.1
: 18. Unit 3 Diesel Generator Day Tank Wet Pipe Sprinkler System. A.1
: 19. Unit 2 and 3 Cable Tunnel Wet Pipe Sprinkler System... A.2.1
: 20. Unit 2 and 3 Turbine Building Common Mezzanine Area Wet Pipe Sprinkler System.. A.1
: 21. Unit 2 Wet Pipe Sprinkler System at Ceiling above Stator Cooling and H2 Seal Oil. A.1
: 22. Unit 3 Wet Pipe Sprinkler System at Ceiling above Stator Cooling and H2 Seal Oil. A.1
: 23. DELETED
: 24. DELETED
: 25. Unit 2 Turbine Bearing Lift Pump (Col-36) Wet Pipe Sprinkler System.... A.1
: 26. Unit 2 Turbine Bearing Lift Pump (Col-41) Wet Pipe Sprinkler System.... A.1
: 27. Unit 3 Turbine Bearing Lift Pump (Col-47) Wet Pipe Sprinkler System.... A.1
: 28. Unit 3 Turbine Bearing Lift Pump (Col-53) Wet Pipe Sprinkler System.... A.1
: 29. Unit 2 and 3 Turbine Building Common Area Corridor Elev. 517-6 Wet Pipe Sprinkler System.... A.2.1
: 30. Unit 2/3 Cribhouse Lower Level Wet Pipe Sprinkler System.. A.2.1
: 31. Unit 2/3 Cribhouse Upper East Wet Pipe Sprinkler System A.1
: 32. Unit 2/3 Cribhouse Upper West Wet Pipe Sprinkler System... A.1
: 33. Unit 2 Mechanical Opening Outside of Safe Shutdown Heat Exchanger Room Wet Pipe Sprinkler System.. A.2.1
: 34. Unit 3 Mechanical Opening Outside of Safe Shutdown Heat Exchanger Room Wet Pipe Sprinkler System.. A.2.1
: 35. Unit 2 Ladderway 587-0, Col. 38 M, Wet Pipe Sprinkler System. A.2.1
: 36. Unit 3 Ladderway 587-0, Col. 50 M, Wet Pipe Sprinkler System. A.2.1
: 37. Unit 1 Diesel Fire Pump Wet Pipe Sprinkler System A.1
: 38. Unit 2 Oil Storage Area Wet Pipe Sprinkler System. A.1
: 39. Unit 1 West Aux Bay South Wet Pipe Sprinkler System.. A.1
: 40. Unit 1 West Aux Bay North Wet Pipe Sprinkler System... A.1
: 41. E.H.C. Units 2-5614 and 3-5614 Wet Pipe Sprinkler System.. A.2.1 (continued)
* These Wet Pipe Sprinkler Systems do not have fire detection systems in the same area.
Dresden 2 and 3                                            3.7.j-8                                            Revision 95
 
TRM Water Suppression Systems 3.7.j Table T3.7.j-1 (page 2 of 2)
Water Suppression Systems Required Action III. Water spray (open head) systems
: 1. Unit 2 Turbine Oil Reservoir Deluge System.. A.4
: 2. Unit 3 Turbine Oil Reservoir Deluge System.. A.4
: 3. Unit 2 Hydrogen Seal Unit Deluge System. A.4
: 4. Unit 3 Hydrogen Seal Unit Deluge System. A.4
: 5. Diesel Fire Pump and Day Tank Deluge System.. A.2.1
: 6. Main Power Transformer #2 Deluge System.. A.2.2
: 7. Main Power Transformer #3 Deluge System.. A.2.2
: 8. Auxiliary Transformer #21 Deluge System. A.2.2
: 9. Auxiliary Transformer #31 Deluge System. A.2.2
: 10. Reserve Auxiliary Transformer #22 Deluge System... A.2.2
: 11. Reserve Auxiliary Transformer #32 Deluge System.. A.2.2
: 12. Unit 2 Bus Duct Penetration Deluge System.. A.2.2
: 13. Unit 3 Bus Duct Penetration Deluge System.. A.2.2
: 14. Cribhouse Cable Tray Open Head Water Spray System.. A.2.1
: 15. 2/3 D.G. Cooling Water Pump Deluge System... A.2.1 Dresden 2 and 3                                          3.7.j-9                            Revision 95
 
TRM Gaseous Suppression System 3.7.k 3.7  PLANT SYSTEMS 3.7.k  Gaseous Suppression System TLCO  3.7.k      The Gaseous Suppression System shown in Table T3.7.k-1 shall be OPERABLE with:
: 1. CO2 subsystems;
: 2. Auxiliary Electric Equipment Room (AEER) Halon subsystem with 8 OPERABLE initial discharge cylinders and 5 OPERABLE extended discharge cylinders; and
: 3. OPERABLE Main Computer room Halon subsystem with each Halon cylinder OPERABLE.
APPLICABILITY:    Whenever the equipment protected by the Gaseous Suppression System is required to be OPERABLE.
ACTIONS
------------------------------------------NOTE------------------------------------
Separate Condition entry is allowed for each subsystem.
CONDITION                  REQUIRED ACTION            COMPLETION TIME A. One or more CO2          A.1      Establish an hourly      1 hour subsystem inoperable.              fire watch patrol with backup fire suppression equipment in the unprotected area(s).
AND (continued)
Dresden 2 and 3                      3.7.k-1                          Revision 65
 
TRM Gaseous Suppression System 3.7.k ACTIONS CONDITION                REQUIRED ACTION              COMPLETION TIME A.  (continued)            A.2.1    Restore inoperable CO2    14 days subsystem(s) to OPERABLE status OR A.2.2    Prepare a corrective      14 days action program report.
OR A.3      -------NOTE-------
Only Applicable following completion and implementation of approved technical evaluation.
Enter 3.0.g                Immediately B. One or more halon      B.1      -------NOTE--------
subsystems inoperable.          Only applicable for inoperable AEER halon subsystem.
Establish a dedicated      1 hour continuous fire watch with backup fire suppression equipment for the unprotected area(s).
AND (continued)
Dresden 2 and 3                    3.7.k-2                          Revision 65
 
TRM Gaseous Suppression System 3.7.k ACTIONS CONDITION        REQUIRED ACTION            COMPLETION TIME B.2      ---------NOTE------
B.  (continued)            Only applicable for inoperable main computer room halon subsystem.
Establish a dedicated    1 hour roving fire watch.
AND B.3.1    Restore inoperable        14 days halon subsystem(s) to OPERABLE status.
OR B.3.2    Prepare a corrective      14 days action program report.
OR B.4      -------NOTE-------
Only Applicable following completion and implementation of approved technical evaluation.
Enter 3.0.g              Immediately Dresden 2 and 3            3.7.k-3                          Revision 65
 
TRM Gaseous Suppression System 3.7.k SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR  3.7.k.1  Verify CO2 storage tank level is > 50% full.      7 days TSR  3.7.k.2  Verify CO2 storage tank pressure is > 250 psig. 7 days TSR  3.7.k.3  Verify each manual, power-operated, and          184 days automatic valve in the flow path is in its correct position.
TSR  3.7.k.4  Verify each halon cylinder (initial and extended  12 months discharge) weight is > 95% of full charge weight.
TSR  3.7.k.5  Verify each halon cylinder (initial and extended  12 months discharge) pressure is > 90% of full charge pressure.
TSR  3.7.k.6  Verify the required system valves and associated  36 months motor operated ventilation dampers actuate, manually and automatically, upon receipt of a simulated actuation signal.
TSR  3.7.k.7  Verify flow from each nozzle during a "Puff      36 months Test."
Dresden 2 and 3                    3.7.k-4                        Revision 77
 
TRM Gaseous Suppression System 3.7.k Table T3.7.k-1 (page 1 of 1)
Gaseous Suppression Systems I. Carbon dioxide total flooding subsystems
: 1. Unit 2/3 Diesel Generator and day tank rooms.
: 2. Unit 2 Diesel Generator and day tank rooms.
: 3. Unit 3 Diesel Generator and day tank rooms.
: 4. Auxiliary Electrical Equipment Room (manual backup).
II. Halon suppression subsystems
: 1. Auxiliary Electrical Equipment Room
: 2. Main Computer room.
Dresden 2 and 3                                3.7.k-5                            Revision 54
 
TRM Fire Hose Stations 3.7.l 3.7  PLANT SYSTEMS 3.7.l  Fire Hose Stations TLCO  3.7.l      The fire hose stations shown in Table T3.7.l-1 (Unit 2), Table T3.7.l-2 (Unit 3), Table T3.7.l-3 (Unit 2/3 and Unit 1) and High-Rise Packs shown in Table T3.7.l-4 shall be OPERABLE.
APPLICABILITY:    Whenever equipment in the areas protected by the fire hose stations is required to be OPERABLE.
ACTIONS
---------------------------------NOTES----------------------------------------
: 1. Separate Condition entry is allowed for each fire hose station.
: 2. Where it can be demonstrated that the physical routing of the fire hose would result in a recognizable hazard to operating personnel, plant equipment, or the hose itself, the fire hose shall be marked and stored near the gated wye(s) to identify hose use.
CONDITION                  REQUIRED ACTION            COMPLETION TIME A. One or more required      A.1      -------NOTE----------
fire hose stations                Only applicable if inoperable.                        inoperable fire hose is the primary means of fire suppression.
Ensure that additional  1 hour fire hose of equal or greater diameter is staged with the High-Rise Packs to protect the unprotected area(s)/zone(s).
AND (continued)
Dresden 2 and 3                      3.7.l-1                      Revision 101
 
TRM Fire Hose Stations 3.7.l ACTIONS CONDITION        REQUIRED ACTION          COMPLETION TIME A.  (continued)    A.2      --------NOTE---------
Not applicable if inoperable fire hose is a primary means of fire suppression.
Ensure that additional  24 hours fire hose of equal or greater diameter is staged with the High-Rise Packs to protect the unprotected area(s)/zone(s).
AND A.3.1    Restore the inoperable  14 days fire hose station(s) to OPERABLE status.
OR A.3.2    Prepare a corrective    14 days action program report.
OR A.4      -------NOTE-------
Only Applicable following completion and implementation of approved technical evaluation.
Immediately Enter 3.0.g (continued)
Dresden 2 and 3            3.7.l-2                      Revision 101
 
TRM Fire Hose Stations 3.7.l ACTIONS B. High-Rise Pack B.1  Restore the inoperable 1 hour Inoperable          pack to operable status.
OR B.2  Prepare a corrective  8 hours action program report.
OR B.3  -------NOTE-------
Only Applicable following completion and implementation of approved technical evaluation.
Enter 3.0.g            Immediately Dresden 2 and 3        3.7.l-3                    Revision 101
 
TRM Fire Hose Stations 3.7.l SURVEILLANCE REQUIREMENTS SURVEILLANCE                            FREQUENCY TSR  3.7.l.1  Perform visual inspection of the required    12 months fire hose stations and High-Rise Packs to assure all required equipment is at the station.
TSR  3.7.l.2  Remove each required fire hose for            18 months inspection and repacked.
TSR  3.7.l.3  Perform a gasket inspection and replace any  18 months degraded gaskets in the couplings.
TSR  3.7.l.4  Partially open each required hose station    5 years valve to verify OPERABILITY and no flow blockage.
TSR  3.7.l.5  Perform a hydrostatic test of fire hose for  5 years after use with hoses stations at a pressure        installation
                > 50 psig above the maximum static pressure in the fire system.                          AND Once per 3 years thereafter Dresden 2 and 3                    3.7.l-4                        Revision 101
 
TRM Fire Hose Stations 3.7.l Table T3.7.l-1 (page 1 of 2)
Fire Hose Stations (Unit 2)
HOSE STATION ELEVATION                                LOCATION              FIRE ZONE NUMBER Reactor Building F50          613'      N.E. Wall at elevator                              1.1.2.6 F51          613'      N. Wall Center                                    1.1.2.6 F52          613'      S.E. Corner                                        1.1.2.6 F53          613'      S. Wall at Stairs                                  1.1.2.6 F54          589'      N.E. Wall at elevator                              1.1.2.5.D F55          589'      S. of Standby Liquid Tank                          1.1.2.5.D F56          589'      S.E. of Isolation Condenser                        1.1.2.5.A F57          589'      S.W. Stairs                                        1.1.2.5.A F58          570'      N. Wall at elevator                                1.1.2.4 F59          570'      Across from Clean-Up Demin.                        1.1.2.4 F60          570'      CRD Repair Room                                    1.1.2.4 F61          570'      W. Wall by RBCCW Tank                              1.1.2.4 F61A        570'      By S. Stairs                                      1.1.2.4 F62          545'      N. Wall near elevator                              1.1.2.3 F63          545'      S. Wall near RBCCW Heat Exchanger                  1.1.2.3 F64          545'      S.W. Stairs                                        1.1.2.3 F65          545'      N. of Bus 23-1                                    1.1.2.3 F66          517'      Near elevator                                      1.1.2.2 F67          517'      S.E. Wall                                          1.1.2.2 F68          517'      S.W. Stairs                                        1.1.2.2 F71          476'      Torus Basement E. Side                            1.1.2.1 F72          476'      Torus Basement W. Side                            1.1.2.1 F73          476'      S.E. Corner Room                                  11.2.2 F74          476'      S.W. Corner Room                                  11.2.1 (continued)
Dresden 2 and 3                                3.7.l-5                    Revision 101
 
TRM Fire Hose Stations 3.7.l Table T3.7.l-1 (page 2 of 2)
Fire Hose Stations (Unit 2)
HOSE STATION ELEVATION                              LOCATION              FIRE ZONE NUMBER Turbine Building F75              561'      N.E. Corner                                      8.2.8.A F76              561'      N. Inside Shield Wall                            8.2.8.A F77              561'      N. Center by Bearing Lift Pump                    8.2.8.A F78              561'      SE Corner at elevator Entrance                    8.2.8.A F79              561'      S. by Turbine                                    8.2.8.A F80              561'      S. Center by M-G Sets                            8.2.8.A F80A              549'      N. Wall U-2 Battery Room                          7.0.A.1 F80B              549'      Outside U-2 Passenger elevator                    8.2.7 F81              571'      Outside Offgas Recombiner Room                    8.2.8.D F81B              590'      Outside Offgas Condenser Room                    8.2.8.D F82              538'      S. of Stator Cooling Pumps                        8.2.6.A F82A              534'      E. of Trackway Equipment Hatch                    8.2.6.A F82B              534'      Across from Switchgear 23 and 24                  8.2.6.A F85              517'      Near TR2 Valve                                    8.2.5.A F85A              517      Behind MCC 29-2                                  8.2.5.A F86              517'      By Door to U-2 Emergency Diesel                  8.2.5.A F86A              517'      U-2 Trackway by A.E.E.R.                          8.2.5.A F87              517'      Across from 2C RFP (W.)                          8.2.5.A F88**            495'      At CRD Pumps                                      8.2.2.A F89**            469'      Across from 2D Condensate Pump                    8.2.1.A
** Secondary Hose Station Dresden 2 and 3                                      3.7.l-6                    Revision 101
 
TRM Fire Hose Stations 3.7.l Table T3.7.l-2 (page 1 of 2)
Fire Hose Stations (Unit 3)
HOSE STATION ELEVATION                              LOCATION              FIRE ZONE NUMBER Reactor Building F100        613'      South West Corner                                1.1.1.6 F101        613'      NW by elevator                                    1.1.1.6 F102        613'      N. Central                                        1.1.1.6 F103        613'      S. by Stairs                                      1.1.1.6 F104        589'      S.E. Wall                                        1.1.1.5.A F105        589'      S.W. near Isolation Condenser                    1.1.1.5.A F106        589'      N.W. near elevator                                1.1.1.5.D F107        589'      N. by Standby Liquid Tank                        1.1.1.5.D F108        570'      Across from Clean-up Demin.                      1.1.1.4 F109        570'      NW by elevator                                    1.1.1.4 F110        570'      S.W. near RBCCW Tank                              1.1.1.4 F111        570'      S.E. Wall at Equipment Hatch                      1.1.1.4 F112        545'      S.W. Wall at Equipment Hatch                      1.1.1.3 F113        545'      S.W. Wall near Bus 34-1                          1.1.1.3 F114        545'      N.W. Wall at elevator                            1.1.1.3 F115        545'      NE by Filter Sludge Tank                          1.1.1.3 F116        517'      S.E. Wall at Stairs                              1.1.1.2 F117        517'      S.W. Wall at Stairs                              1.1.1.2 F118        517'      W. Accumulator Area                              1.1.1.2 F119        476'      S.E. Corner Room                                  11.1.2 F120        476'      Torus Basement - East                            1.1.1.1 F121        476'      Torus Basement - West                            1.1.1.1 F122        476'      S.W. Corner Room                                  11.1.1 (continued)
Dresden 2 and 3                              3.7.l-7                    Revision 101
 
TRM Fire Hose Stations 3.7.l Table T3.7.l-2 (page 2 of 2)
Fire Hose Stations (Unit 3)
HOSE STATION ELEVATION                                LOCATION              FIRE ZONE NUMBER Turbine Building F123              561'      N. Central - East of Brg. Lift Pump                8.2.8.A F124              561'      North Center inside Shield Wall                    8.2.8.A F125              561'      N.W. Corner                                        8.2.8.A F126              561'      S. Center - By MG Sets                              8.2.8.A F127              561'      S. of Turbine                                      8.2.8.A F128              561'      S.W. by Hatchway                                    8.2.8.A F129              538'      Feedwater Regulating Valves                        8.2.6.E F130              538'      S.W. Wall near DC Switch Room                      8.2.6.E F130A            538'      W. Wall of U-3 Trackway Equip Hatch                8.2.6.E F131              517'      U-3 Trackway                                        8.2.5.E F132              517'      Near 3C RFP                                        8.2.5.E F133              517'      Near 3A RFP                                        8.2.5.E F139**            495'      Near 3A CRD Pump                                    8.2.2.B F140**            469'      Near 3A Condensate Booster Pump                    8.2.1.B F141              590'      Outside Offgas Condenser Room                      8.2.8.D F142              571'      Outside Offgas Recombiner Room                      8.2.8.D
** Secondary Hose Station Dresden 2 and 3                                      3.7.l-8                      Revision 101
 
TRM Fire Hose Stations 3.7.l Table T3.7.l-3 (page 1 of 1)
Fire Hose Stations (Unit 2/3 and Unit 1)
HOSE STATION ELEVATION                              LOCATION                    FIRE ZONE NUMBER 2/3 Cribhouse F2/3-21**        517'      By Bus 20                                              11.3 F2/3-22**        517'      By Bus 30                                              11.3 2/3 Diesel Generator F67A              517'      Interlock Hallway                                      9.0.C Turbine Building F83              534'      N. Wall at TBCCW Pump                                  8.2.6.C F84**            534'      E. of Standby Gas Treatment                            8.2.6.C F134**            517'      Near CO2 Storage Tank                                  8.2.5.C F135              517'      Near Freight elevator                                  8.2.5.C F136**            534'      Near Freight elevator                                  8.2.6.C F137**            534'      Behind MCC 39-2                                        8.2.6.C F138              534'      At TBCCW Pumps                                          8.2.6.C Unit 1 Structure F29              529'      Turbine Building - South Stairway to Control Room F47              534'      Outside Control Room (North East)
Unit 1 West Aux. Bay F23              517'      PRI Feed Pump Room F22              517'      Outside Main Computer Room F27              517'      North Corridor F21              517'      Emergency Diesel Area
** Secondary Hose Station Dresden 2 and 3                                    3.7.l-9                          Revision 101
 
TRM Fire Hose Stations 3.7.l Table T3.7.l-4 (page 1 of 1)
High-Rise Packs High-Rise Pack LOCATION Number 1              Fire Cart A - Unit 3 Turbine Building Elevation 517' near Cardox Tank 2              Fire Cart A - Unit 3 Turbine Building Elevation 517' near Cardox Tank 3              Fire Cart A - Unit 3 Reactor Building Elevation 545', West Side, South of RBCCW Heat Exchangers 4              Fire Cart A - Unit 3 Reactor Building Elevation 545', West Side, South of RBCCW Heat Exchangers 5              Refuel @ Hose Station F50 U2 Reactor Building Elevation 613', northeast wall at elevator 6              Refuel @ Hose Station F101 U3 Reactor Building Elevation 613', northeast wall at elevator 7              Fire Bridge Trailer 8              Fire Bridge Trailer 9              Fire Gear Storage - RUPS 10            Fire Gear Storage - RUPS Dresden 2 and 3                                      3.7.l-10                                          Revision 101
 
TRM Safe Shutdown Lighting 3.7.m 3.7  PLANT SYSTEMS 3.7.m  Safe Shutdown Lighting TLCO  3.7.m      The emergency lights shown in Table T3.7.m-1 and Table T3.7.m-2 shall be OPERABLE.
APPLICABILITY:    MODES 1, 2, and 3.
ACTIONS
---------------------------------------NOTE---------------------------------------
Separate Condition entry is allowed for each emergency light.
CONDITION                  REQUIRED ACTION              COMPLETION TIME A. One or more required      A.1    ---------NOTE----------
emergency lights                  Backup lighting may be inoperable.                      provided by placing a backup OPERABLE emergency lighting unit in the field or by crediting the existence of portable lighting.
The backup lighting must have a > 8 hour battery supply.
7 days Establish backup lighting for the affected area.
OR (continued)
Dresden 2 and 3                      3.7.m-1                          Revision 0
 
TRM Safe Shutdown Lighting 3.7.m ACTIONS CONDITION                    REQUIRED ACTION            COMPLETION TIME A.  (continued)                A.2.1    Restore inoperable      7 days emergency lights to OPERABLE status.
OR A.2.2    Prepare a corrective    7 Days action program report.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.m.1    Verify each required emergency light              92 days illuminates.
TSR  3.7.m.2    Demonstrate DC emergency light unit              18 months operability through conductance testing (6V batteries) or battery replacement (12V batteries).
Dresden 2 and 3                      3.7.m-2                        Revision 95
 
TRM Safe Shutdown Lighting 3.7.m Table T3.7.m-1 (page 1 of 4)
Safe Shutdown Emergency Lighting CORRESPONDING UNIT        BUILDING      ELEVATION            COL/ROW            E-I DWG. 12E  BATT. #  ACCESS ROUTE DWG.
2/3        Radwaste      EL. 517'-6"            C-48                  -2244        48      F-213-6 2/3    Air Conditioning  EL. 529'-6"            H-29                -127B        100      F-205-6 Room                                                      127F 2/3    Air Conditioning  EL 529'-6"            H-29                -127B        101      F-205-6 Room                                                    -127F 2/3      Control Room    EL. 529'-6"            H-29                  -127      102      F-205-6 2/3      Stairwell #1    EL. 529'-6"            L-29                  -127      103      F-205-6 2/3      Control Room    EL. 517"-6"            D-28                  -127      104      F-205-6 2/3      Ground Floor    EL. 517'-6"            L1-30                  -128      105      F-205-6 2/3      Shift Mgr Off    EL. 531'-6"            A-2                  -127      106      F-205-6 2/3        CR Egress      EL. 517'-6"            D-29                  -128      109      F-205-6 2/3      Control Room    EL. 534'-0"            F-30                -127B        110      F-205-6 2/3        Pedway        EL. 534'-0"          H.1-0.5            -6868-E13      111      F-205-6 2/3    Stairway No. 4    EL. 525'-3"          A.5-0.5            -6868-E13      112      F-205-6 2          Reactor      EL. 517'-6"            M-44                  -2236      200      F-201-6 2          Reactor      EL. 517'-6"            L-38                  -2236      201      F-201-6 2          Reactor      EL. 545'-6"            M-44                  -2234      203      F-202-6 2          Reactor      EL. 570'-0"            H-40                  -2231      204      F-203-6 2          Reactor      EL. 570'-0"            M-42                  -2232      205      F-203-6 2          Turbine      EL. 517'-6"            G-35                  -2212      208      F-207-6 2          Turbine      EL. 517'-6"            H-34                  -2212      208B      F-207-6 2          Turbine      EL. 517'-6"            H-35                  -2212      209      F-207-6 2          Turbine      EL. 517'-6"            G-44                  -2213      212      F-207-6 3          Turbine      EL. 517-6"            D-44                  -3210      213      F-208-6 2          Turbine      EL. 534'-0"            D-44                  -3206      214      F-210-6
                                                                            -2207 2          Turbine      EL. 534'-0"            G-31                  -2217      216      F-205-6 2/3      Control Room    EL. 534'-0"            G-31                  -2217      216A      F-205-6 2/3          Diesel      EL. 504'-6"            N-44                  -2220      217      F-206-6 2          Turbine      EL. 517'-6"            E-31                  -2219      220      F-205-6 2        Crib House      EL 517'-6"              A-2                  -2241      221      F-214-6 (continued)
Dresden 2 and 3                                  3.7.m-3                                      Revision 58
 
TRM Safe Shutdown Lighting 3.7.m Table T3.7.m-1 (page 2 of 4)
Safe Shutdown Emergency Lighting CORRESPONDING UNIT      BUILDING ELEVATION            COL/ROW            E-I DWG. 12E  BATT. #  ACCESS ROUTE DWG.
2        Reactor  EL. 517'-6"            M-41                  -2236      232      F-201-6 2        Reactor  EL. 589'-0"            M-39                  -2230      237      F-204-6 2        Turbine  EL. 517'-6"            D-40                  -2211      241      F-207-6 2        Turbine  EL. 517'-6"            D-42                  -2211      242      F-207-6 2        Turbine  EL. 517'-6"            D-43                  -2211      242A      F-207-6 2        Turbine  EL. 517'-6"            F-33                  -2210      243      F-207-6 2        Turbine  EL. 517'-6"            F-36                  -2212      244      F-207-6 2        Turbine  EL. 517'-6"            H-32                  -2219      246      F-205-6 2        Turbine  EL. 517'-6"            G-33                  -2219      246A      F-205-6 2        Turbine  EL. 534'-0"            D-31                  -2226      247      F-205-6 2        Turbine  EL. 534'-0"            G-33                  -2208      251      F-205-6
                                                                    -2217 2/3      Turbine  El. 534'-0"            G-33                  -2217      251A      F-205-6 2        Turbine  EL. 534'-0"            G-43                  -2209      252      F-209-6 2        Turbine  EL. 534'-0"            G-43                  -2209      253      F211-6 2        Turbine  EL. 561'-0"            D-44                  -2204      254      F-211-6 2        Turbine  EL. 561'-0"            G-36                  -2203      256      F-211-6 2        Turbine  EL. 561'-0"            G-41                  -2204      257      F-211-6 2        Reactor  EL. 517'-6"            H-38                  -2235      258      F-201-6 2        Reactor  EL. 517'-6"            H-38                  -2235      259      F-201-6 2        Reactor  EL. 517'-6"            M-43                  -2236      260      F-201-6 2        Reactor  EL. 517'-6"            N-39                  -2236      261      F-201-6 2        Reactor  EL. 517'-6"            N-43                  -2236      262      F-201-6 2        Reactor  EL. 545'-6"            H-38                  -2235      263      F-202-6 2        Reactor  EL. 545'-6"            N-44                  -2236      264      F-201-6 2        Reactor  EL. 545'-6"            N-44                  -2234      265      F-202-6 2        Reactor  EL. 570'-0"            H-38                  -2233      266      F-203-6 (continued)
Dresden 2 and 3                            3.7.m-4                                      Revision 68
 
TRM Safe Shutdown Lighting 3.7.m Table T3.7.m-1 (page 3 of 4)
Safe Shutdown Emergency Lighting CORRESPONDING UNIT      BUILDING    ELEVATION            COL/ROW            E-I DWG. 12E  BATT. #  ACCESS ROUTE DWG.
2        Turbine    EL. 561'-0"            H-40                  -2205      267      F-211-6 2        Reactor    EL. 570'-0"            J-42                  -2231      268      F-203-6 2        Reactor    EL. 570'-0"            N-44                  -2232      270      F-203-6 2      Crib House    EL. 490'-8"            B-1                  -2243      271      F-214-6 2      Crib House    EL. 517'-6"            B-1                  -2241      273      F-214-6 2/3      Crib House    EL. 490'-8"            B-3                  -2243      274      F-214-6 2/3      Crib House    EL. 490'-8'            B-5                  -2243      275      F-214-6 2/3      T.S.C. Rm. EL. 518'-0"            H1-32                7834B        282      F-205-6 2/3      T.S.C. Rm. EL. 518'-0"            H1-32                7834B        283      F-205-6 2/3      T.S.C. Rm. EL. 518'-0"            H1-32                7834B        284      F-205-6 2/3      T.S.C. Rm. EL. 518'-0"            H1-32                7834B        285      F-205-6 2/3      T.S.C. Rm. EL. 518'-0"            H1-32                7834B        286      F-205-6 2/3    HPCI Pump &    EL. 504'-6"            N-45                  -2220      288      F-201-6 Diesel Bldg.
3        Reactor    EL. 475'-0"            N-44                  -3238      289      F-201-6 3        Reactor    EL. 589'-0"            M-46                  -3230      303      F-204-6 3        Reactor    EL. 570'-0"            H-48                  -3231      304      F-203-6 3        Reactor    EL. 570'-0"            M-46                  -3232      305      F-203-6 3        Reactor    EL. 545'-6"            M-44                  -3234      307      F-202-6 3        Reactor    EL. 517'-6"            K-50                  -3236      308      F-201-6 2/3      Radwaste    EL. 517'-6"            C-46                  -2244      310      F-213-6 2        Turbine    EL. 534'-0"            F-32                  -2217      311      F-205-6 2/3    Control Room  EL. 534'-0"            E-31                  -2217      311A      F-205-6 3        Turbine    EL. 517'-6"            G-55                  -3213      314      F-208-6 2        Turbine    EL. 517'-6"            G-31                  -2219      321      F-205-6 3      Crib House    EL. 517'-6"            A-6                  -3241      322      F-214-6 3        Reactor    EL. 517'-6"            M-47                  -3236      330      F-201-6 3      Crib House    EL. 490'-8"            B-7                  -2243      336      F-214-6 3      Crib House    EL. 517'-6"            B-7                  -3241      338      F-214-6 (continued)
Dresden 2 and 3                                3.7.m-5                                      Revision 26
 
TRM Safe Shutdown Lighting 3.7.m Table T3.7.m-1 (page 4 of 4)
Safe Shutdown Emergency Lighting CORRESPONDING UNIT      BUILDING ELEVATION            COL/ROW            E-I DWG. 12E  BATT. #  ACCESS ROUTE DWG.
3        Turbine  EL. 517'-6"            C-45                  -3210      339      F-208-6
                                                                    -2244 3        Turbine  EL. 517'-6"            D-48                  -3210      340      F-208-6 3        Turbine  EL. 538'-0"            G-56                  -3209      343      F-210-6 3        Turbine  EL. 561'-0"            G-47                  -3202      344      F-212-6 3        Turbine  EL. 561'-0"            G-53                  -3204      345      F-212-6 3        Reactor  EL. 517'-6"            H-50                  -3235      346      F-201-6 3        Reactor  EL. 517'-6"            H-50                  -3235      347      F-201-6 3        Reactor  EL. 545'-6"            H-50                  -3235      349      F-202-6 3        Reactor  EL. 570'-0"            H-50                  -3233      351      F-203-6 3        Reactor  EL. 570'-0"            J-46                  -3231      352      F-203-6 3        Reactor  EL. 545'-6"            M-47                  -3234      354      F-202-6 3        Turbine  EL. 517'-6"            D-56                  -3211      364      F-208-6 3        Turbine  EL. 517'-6"            D-53                  -3211      365      F-208-6 2        Turbine  EL. 517'-6"            G-32                  -2219      462      F-205-6 Dresden 2 and 3                            3.7.m-6                                      Revision 76
 
TRM Safe Shutdown Lighting 3.7.m Table T3.7.m-2 (page 1 of 4)
Safe Shutdown Emergency Lighting CORRESPONDING UNIT      BUILDING    ELEVATION            COL/ROW            E-I DWG. 12E  BATT. #  ACCESS ROUTE DWG.
2        Reactor    EL. 545'-6'            K-38                  -2234      202      F-202-6 2        Turbine    EL. 495'-0"            H-34                  -2212      208A      F-207-6 2        Turbine    EL. 517'-6"            G-35                  -2212      208C      F-207-6 2        Reactor    EL. 589'-0"            M-42                  -2230      210      F-204-6 3        Turbine    EL. 549'-0"            D-44                  -3217      214A      F-210-6 3        Turbine    EL. 538'-0"            G-44                  -3208      215      F-210-6 2        Turbine    EL. 517'-6"            E-32                  -2219      220A      F-205-6 2        Reactor    EL. 570'-0"            M-40                  -2232      229      F-203-6 2        Reactor    EL. 545'-6"            M-41                  -2234      230      F-202-6 2        Turbine    EL. 549'-0"            F-31                  -2236      231      F-205-6 2        Turbine    EL. 549'-0"            E-32                  -2226      231A      F-205-6 2        Turbine    EL. 495'-0"            D-39                  -2216      233      F-206-6 2        Turbine    EL. 495'-0"            D-40                  -2216      233A      F-206-6 2        Turbine    EL. 495'-0'            D-37                  -2215      234      F-206-6 2        Reactor    EL. 476'-6"            N-44                  -2236      235      F-201-6 2        Reactor    EL. 476'-6"            N-43                  -2238      235A      F-201-6 2        Reactor    EL. 589'-0"            N-40                  -2230      237A      F-204-6 2        Turbine    EL. 517'-6"            F-39                  -2212      238      F-205-6
                                                                        -2213 2        Turbine    EL. 517'-6"            D-33                  -2219      239      F-205-6 2        Turbine    EL. 538'-0"            G-35                  -2208      240      F-209-6 2        Turbine    EL. 517'-6"            G-41                  -2213      245      F-205-6 2        Turbine    EL. 495'-0"            G-39                  -2213      245A      F-207-6 2        Turbine    EL. 534'-0"            D-32                  -2217      248      F-205-6 2        Turbine    El. 534'-0"            D-33                  -2217      249      F-205-6 2        Reactor    EL. 570'-0"            N-42                  -2232      269      F-203-6 2      Crib House    EL. 509'-6"            C-3                  -2241      272      F-214-6 2/3    HPCI Pump &    EL. 504'-6"            N-45                  -2220      276      F-201-6 Diesel Bldg.
2/3        Diesel    EL. 504'-6"            N-46                  -2220      277      F-201-6 2        Reactor    EL. 517'-0"            J-39                  -2235      278      F-201-6 (continued)
Dresden 2 and 3                                3.7.m-7                                        Revision 0
 
TRM Safe Shutdown Lighting 3.7.m Table T3.7.m-2 (page 2 of 4)
Safe Shutdown Emergency Lighting CORRESPONDING UNIT      BUILDING    ELEVATION            COL/ROW            E-I DWG. 12E  BATT. #  ACCESS ROUTE DWG.
2        Reactor    EL. 517'-6"            J-39                  -2235      278A      F-201-6 2        Reactor    EL. 545'-6"            M-41                  -2234      279      F-202-6 2        Reactor    EL. 570'-0"            M-41                  -2232      280      F-203-6 2/3    HPCI Pump &    EL. 517'-6"            N-44                  -2220      287      F-201-6 Diesel Bldg.
2      HPCI Pump &    EL. 476'-6"            N-44                  -2220      290      F-201-6 Diesel Bldg.
3      HPCI Pump &    EL. 476'-6"            N-45                  -2220      291      F-201-6 Diesel Bldg.
2        Reactor    EL. 517'-6"            L-44                  -2236      292      F-201-6 2        Reactor    EL. 517'-6"            K-43                  -2236      293      F-201-6 2        Reactor    EL. 476'-0"            N-44                  -2236      294      F-201-6
                                                                        -2238 2        Reactor    EL. 517'-6"            M-39                  -2236      295      F-201-6 2/3    HPCI Pump &    EL. 518'-6"            N-46                  -2220      296      F-201-6 Diesel Bldg.
2        Reactor    EL. 545'-0"            M-42                  -2234      297      F202-6 2        Reactor    EL. 545'-0"            M-40                  -2234      298      F-202-6 2        Reactor    EL. 570'-0"            J-43                  -2231      299      F-203-6 3        Reactor    EL. 545'-6"            K-50                  -3234      306      F-202-6 3        Reactor    EL. 517'-6"            M-44                  -3236      309      F-201-6 3        Turbine    EL. 517'-6"            H-54                  -3213      313      F-208-6 3        Turbine    EL. 538'-0"            E-55                  -3207      315      F-210-6 3        Turbine    EL. 538'-0"            G-53                  -3209      316      F-210-6 3        Reactor    EL. 570'-0"            M-47                  -3232      327      F-203-6 3        Reactor    EL. 545'-6"            M-47                  -3234      328      F-202-6 3        Turbine    El. 538'-0"            H-55                  -3209      329      F-210-6 3        Turbine    EL. 495'-0"            D-51                  -3216      331      F-206-6 3        Turbine    EL. 495'-0"            D-49                  -3215      332A      F-206-6 3        Turbine    EL. 495'-0"            D-49                  -3215      332      F-206-6 3        Reactor    EL. 476'-6"            N-49                  -3233      333      F-201-6 3        Reactor    EL. 503'-0"            N-50                  -3238      333A      F-201-6 3        Reactor    EL. 476'-6"            N-45                  -3076      334      F-201-6 (continued)
Dresden 2 and 3                                3.7.m-8                                      Revision 97
 
TRM Safe Shutdown Lighting 3.7.m Table T3.7.m-2 (page 3 of 4)
Safe Shutdown Emergency Lighting CORRESPONDING UNIT      BUILDING  ELEVATION            COL/ROW            E-I DWG. 12E  BATT. #  ACCESS ROUTE DWG.
3        Turbine    EL. 517'-6"            F-49                  -3212      335      F-208-6 3        Crib House  EL. 509'-6"            C-5                  -3241      337      F-214-6 3        Turbine    EL. 517'-6"            G-46                  -3212      341      F-208-6 3        Turbine    EL. 538'-0"            D-55                  -3207      342      F-210-6 3        Reactor    EL. 517'-6'            M-49                  -3236      348      F-201-6 3        Reactor    EL. 545'-6"            M-48                  -3234      350      F-202-6 3        Reactor    EL. 517'-6"            H-45                  -3235      353      F-201-6 3        Reactor    EL. 570'-0"            M-47                  -3232      355      F-203-6 3        Reactor    EL. 517'-6"            K-49                  -3236      356      F-201-6 3        Reactor    EL. 545'-0"            J-49                  -3233      357      F-202-6 3234 3        Reactor    EL. 545'-0"            M-46                  -3234      358      F-202-6 3        Reactor    EL. 570'-0"            J-46                  -3231      359      F-203-6
                                                                        -3232 3        Reactor    EL. 570'-0"            M-48                  -3232      360      F-203-6 3        Reactor    EL. 589'-0"            M-48                  -3230      361      F-204-6 3        Reactor    EL. 589'-0"            N-48                  -3230      362      F-204-6 3        Turbine    EL. 517'-6"            G-54                  -3213      363      F-208-6 3        Turbine    EL. 517'-6"            G-48                  -3212      368      F-208-6 3        Reactor    EL. 517'-6"            L-45                  -3286      369      F-201-6
                                                                        -3236 3        Turbine    EL. 538'-0"            H-55                  -3209      370      F-210-6 2/3    ISCO Makeup  EL. 517'-6"            L-38                  -6021      400A      F-205-6 Pump A Room 2/3    ISCO Makeup  EL. 517'-6"            M-38                  -6021      400B      F-205-6 Pump B Room 2/3    ISCO Makeup  EL. 509'-0"            M-38                  -6021      400C      F-205-6 Pump A Room 2/3        Turbine    EL. 517'-6"            C-43                  -2211      450      F-207-6 2        Turbine    EL. 549'-0"            F-32                  -2226      451      F-205-6 2        Reactor    EL. 589'-0"            N-40                  -2230      452      F-204-6 2        Turbine    EL. 534'-0"            F-43                  -2209      453      F-209-6 3        Turbine    EL. 534'-0"            F-45                  -3208      454      F-210-6 3        Turbine    EL. 517'-6"            F-45                  -3212      455      F-208-6 (continued)
Dresden 2 and 3                              3.7.m-9                                      Revision 97
 
TRM Safe Shutdown Lighting 3.7.m Table T3.7.m-2 (page 4 of 4)
Safe Shutdown Emergency Lighting CORRESPONDING UNIT      BUILDING ELEVATION            COL/ROW            E-I DWG. 12E  BATT. #  ACCESS ROUTE DWG.
2        Turbine  EL. 517'-6"            F-43                  -2213      456      F-207-6 2        Reactor  EL. 545'-6"            K-40                  -2234      457      F-202-6 2        Turbine  EL. 517'-6"            D-34                  -2210      458      F-207-6 2        Turbine  EL. 534'-0"            D-43                  -2223      459      F-210-6 3        Reactor  EL. 517'-6"            M-45                  -3236      460      F-201-6 3        Reactor  EL. 497'-0"            M-50                  -3238      461      F-201-6 Dresden 2 and 3                          3.7.m-10                                      Revision 97
 
TRM Fire Rated Assemblies 3.7.n 3.7  PLANT SYSTEMS 3.7.n  Fire Rated Assemblies TLCO  3.7.n      All fire rated assemblies, including walls, floor/ceilings, fire breaks, electrical raceway fire wraps, structural steel fire resistive coating and other fire barriers separating safety-related fire areas or separating portions of redundant/alternate systems important to safe shutdown within a fire area, and all sealing devices in fire rated assembly penetrations (fire doors, fire dampers, cable and piping penetration seals and ventilation duct penetration seals) shall be OPERABLE.
APPLICABILITY:    At all times when equipment on either side of the barrier is required to be OPERABLE.
ACTIONS
--------------------------------------NOTE----------------------------------------
Separate Condition entry is allowed for each fire rated assembly.
CONDITION                  REQUIRED ACTION            COMPLETION TIME A. One or more fire rated    A.1.1    Establish a continuous  1 hour assemblies or sealing              fire watch on at least devices inoperable.                one side of the affected fire rated assembly(s) or device(s).
OR (continued)
Dresden 2 and 3                      3.7.n-1                          Revision 0
 
TRM Fire Rated Assemblies 3.7.n ACTIONS CONDITION        REQUIRED ACTION            COMPLETION TIME A.  (continued)    A.1.2.1 Verify the OPERABILITY    1 hour of fire detectors on at least one side of the affected fire rated assembly(s) or device(s).
AND 1 hour A.1.2.2 Establish a dedicated roving fire watch patrol.
AND 7 days A.2.1    Restore inoperable fire rated assembly(s) or device(s) to OPERABLE status.
OR A.2.2.1 Establish a dedicated      Immediately continuous fire watch on at least one side of the affected fire rated assembly.
AND A.2.2.2 Prepare a corrective      Immediately action program report.
OR A.3      -------NOTE-------
Only Applicable following completion and implementation of approved technical evaluation.
Enter 3.0.g Immediately Dresden 2 and 3            3.7.n-2                          Revision 65
 
TRM Fire Rated Assemblies 3.7.n SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.n.1  ------------------------NOTE--------------------
Only required to be performed for fire doors accessible during power operation.
Perform a functional test of each fire door.      18 months TSR  3.7.n.2  ---------------------NOTE-----------------------
Only required to be performed for fire doors accessible during power operation.
Inspect the fire door releases, closing          18 months mechanism and latches.
TSR  3.7.n.3  ------------------------NOTE--------------------
Only required to be performed for fire rated assemblies and their sealed penetrations accessible during power operation.
Perform a visual inspection of:                  18 months
: 1. Exposed surfaces of each fire rated assembly; and
: 2. 10% of each type of sealed penetration.
Samples shall be selected such that each penetration seal will be inspected every 15 years.
(continued)
Dresden 2 and 3                    3.7.n-3                        Revision 93
 
TRM Fire Rated Assemblies 3.7.n SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.n.4  ---------------------NOTE-----------------------
: 1. Only required to be performed if apparent changes in appearance or abnormal degradations are found.
: 2. Only required to be performed for sealed penetration accessible during power operation.
: 3. Sample shall be selected such that each penetration seal will be inspected every 15 years.
18 months Perform visual inspections of an additional 10%
of each type of sealed penetration until a 10%
sample with no apparent changes in appearance or abnormal degradation is found.
TSR  3.7.n.5  ----------------------NOTE----------------------
Only required to be performed for fire doors inaccessible during power operation.
Perform a functional test of each fire door.      24 months TSR  3.7.n.6  ----------------------NOTE----------------------
Only required to be performed for fire doors inaccessible during power operation.
Inspect the fire door releases, closing          24 months mechanism and latches.
(continued)
Dresden 2 and 3                    3.7.n-4                        Revision 0
 
TRM Fire Rated Assemblies 3.7.n SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.n.7  ----------------------NOTE----------------------
Only required to be performed for fire rated assemblies, fire damper, and sealed penetration inaccessible during power operation.
Perform a visual inspection of:                  24 months
: 1. Exposed surfaces of each fire rated assembly;
: 2. Each fire damper and associated hardware; and
: 3. 10% of each type of sealed penetration.
Samples shall be selected such that each penetration seal will be inspected every 15 years.
TSR  3.7.n.8  ----------------------NOTE----------------------
: 1. Only required to be performed if apparent changes in appearance or abnormal degradations are found.
: 2. Only required to be performed for fire rated assemblies, fire damper, and sealed penetration inaccessible during power operation.
: 3. Sample shall be selected such that each penetration seal will be inspected every 15 years.
24 months Perform visual inspections of an additional 10%
of each type of sealed penetration until a 10%
sample with no apparent changes in appearance or abnormal degradation is found.
(continued)
Dresden 2 and 3                    3.7.n-5                        Revision 93
 
TRM Fire Rated Assemblies 3.7.n SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.n.9  ----------------------NOTE----------------------
Only required to be performed for fire rated assemblies and fire dampers accessible during power operation.
Perform a visual inspection of:                  36 months
: 1. Exposed surfaces of each fire rated assembly; and
: 2. Each fire damper and associated hardware.
Dresden 2 and 3                    3.7.n-6                        Revision 93
 
TRM Condensate Pump Room Flood Protection 3.7.o 3.7  PLANT SYSTEMS 3.7.o  Condensate Pump Room Flood Protection TLCO  3.7.o      Condensate pump room flood protection shall be OPERABLE with:
: 1. Condenser pit level that trips the condenser circulating water pumps and alarms in the control room on condenser pit 5 foot water level; and
: 2. OPERABLE Containment Cooling Service Water (CCSW) System vault and vault door.
APPLICABILITY:    Whenever the CCSW System is required to be OPERABLE and the Circulating Water System is in operation.
ACTIONS
------------------------------------NOTE------------------------------------------
Separate Condition entry is allowed for each condenser pit high water level switch.
CONDITION                  REQUIRED ACTION          COMPLETION TIME A. One condenser pit        A.1      Place the inoperable  1 hour 5 foot water level                switch in trip.
switch inoperable.
(continued)
Dresden 2 and 3                      3.7.o-1                        Revision 0
 
TRM Condensate Pump Room Flood Protection 3.7.o ACTIONS CONDITION                  REQUIRED ACTION              COMPLETION TIME B. Two condenser pit        B.1      Restore one inoperable    7 days 5 foot water level                switch to OPERABLE switches inoperable.              status.
OR 7 days B.2      Declare CCSW System pumps A and D inoperable.
C. CCSW System vault        C.1      Restore the CCSW vault    7 days inoperable.                      to operable status.
OR 7 days C.2      Declare CCSW System pumps B and C inoperable.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                  FREQUENCY TSR  3.7.o.1    Perform CHANNEL CALIBRATION of the condenser pit    24 months 5 foot water level switches. The Trip Settings shall be < 5'0" above the condenser pit floor.
(continued)
Dresden 2 and 3                      3.7.o-2                          Revision 85
 
TRM Condensate Pump Room Flood Protection 3.7.o SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.o.2  Verify the combined leakage for all CCSW Pump      18 months Vault flood protection barriers is < 1.5 gpm when tested as follows:
: a. Hydrostatically test the bulkhead door at 15 + 2 psig;
: b. Hydrostatically test the floor drain check valve at 10 + 2 psig; and
: c. Pneumatically test the testable penetrations at 15 + 2 psig.
TSR  3.7.o.3  Perform a LOGIC SYSTEM FUNCTIONAL TEST of the      24 months condenser pit water level trip and alarm instruments.
TSR  3.7.o.4  Check the CCSW System vault floor drain by        24 months functionally testing the air operated valves on loss of air and on high level (5'-0") in the condensate pump room.
Dresden 2 and 3                      3.7.o-3                        Revision 85
 
3.7 PLANT SYSTEMS 3.7.p  Natural Gas Line Supply System:
TLCO    3.7.p    The following Natural Gas Line Supply Systems shall be OPERABLE:
: 1. One Boiler House Ventilation Fan
: 2. 16 Methane Detectors APPLICABILITY:    When Natural Gas header is pressurized past 2/3 Heating boilers isolation valves.
ACTIONS
---------------------------------------NOTE---------------------------------------
Separate Condition entry is allowed for each Methane Detector CONDITION                  REQUIRED ACTION            COMPLETION TIME A. Zero Boiler House        A.1      Restore one ventilation  48 hours Ventilation Fans in              fan to operation operation                OR A.2      Isolate natural gas      Immediately supply to the 2/3 Heating Boilers B. One or More Methane      B.1      Verify the methane      Immediately Detector(s) inoperable            detector(s) are not in the same or in adjacent zones.
AND B.2      Restore a methane        24 Hours detector to OPERABLE OR B.3.1    Evaluate condition for  24 Hours acceptability AND B.3.2    Establish timeline for  24 Hours repair (Continued)
Dresden 2 and 3                      3.7.p-1                        Revision 81
 
CONDITION                  REQUIRED ACTION            COMPLETION TIME C. Two Methane Detectors  C.1      Isolate Natural Gas      Immediately inoperable in same or adjacent zones OR Timeline for repair of methane detector(s) established in B.3.2 exceeded.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.7.p.1  Verify boiler house ventilation fans are in      8 hours operation
---------------------------------NOTE---------------------
Required to be performed prior to each heating season TSR  3.7.p.2  Perform Methane Detector LOGIC SYSTEM FUNCTIONAL  12 months TEST TSR  3.7.p.2  Perform Low and Low-low pressure switch          24 Months CALIBRATION Dresden 2 and 3                    3.7.p-2                        Revision 81
 
TRM 24/48 Volt DC System 3.8.a 3.8  ELECTRICAL POWER SYSTEMS 3.8.a  24/48 Volt DC System TLCO  3.8.a      Each Unit 2(3) 24/48 volt DC electrical power source shall be OPERABLE with battery cell parameters within limits specified in Table T3.8.a-1.
APPLICABILITY:    Whenever equipment powered by the batteries is required to be OPERABLE.
ACTIONS
--------------------------------------NOTE-----------------------------------------
Separate Condition entry is allowed for each battery.
CONDITION                    REQUIRED ACTION          COMPLETION TIME A. One or more batteries      A.1    Verify pilot cell(s)      1 hour with one or more                  electrolyte level and battery cell parameters            float voltage meet not within Table                  Table T3.8.a-1 T3.8.a-1 Category A or            Category C limits.
B limits.
AND A.2    Verify battery cell        24 hours parameters meet Table T3.8.a-1            AND Category C limits.
Once per 7 days thereafter AND (continued)
Dresden 2 and 3                    3.8.a-1                          Revision 0
 
TRM 24/48 Volt DC System 3.8.a ACTIONS CONDITION                REQUIRED ACTION          COMPLETION TIME A.  (continued)            A.3    Restore battery cell    31 days parameters to Table T3.8.a-1 Category A and B limits.
B. Required Action and    B.1    Declare associated      Immediately associated Completion          battery inoperable.
Time of Condition A not met.
OR One or more batteries with average electrolyte temperature of the representative cells not within limits.
OR One or more batteries with one or more battery cell parameters not within Table 3.8.a-1 Category C limits.
C. One or more 24/48 volt  C.1    Declare all associated  Immediately DC electrical power            loads supplied by the sources inoperable.            inoperable 24/48 volt DC electrical power source inoperable.
Dresden 2 and 3                  3.8.a-2                          Revision 0
 
TRM 24/48 Volt DC System 3.8.a SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.8.a.1  Verify battery cell parameters meet              7 days Table 3.8.a-1 Category A limits.
TSR  3.8.a.2  Verify correct breaker alignment to battery      7 days chargers and total battery terminal voltage is
                > 24.2 volts, as applicable on float charge.
TSR  3.8.a.3  Verify battery cell parameters meet              92 days Table 3.8.a-1 Category B limits.
AND Once within 7 days after battery discharge
                                                                < 20.9 V AND Once within 7 days after battery overcharge
                                                                > 30 V (continued)
Dresden 2 and 3                    3.8.a-3                        Revision 0
 
TRM 24/48 Volt DC System 3.8.a SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.8.a.4  Verify average electrolyte temperature of all    92 days connected cells is > 65qF.
AND Once within 7 days after battery discharge
                                                                  < 20.9 V AND Once within 7 days after battery overcharge
                                                                  > 30 V TSR  3.8.a.5  ----------------------NOTE---------------------  92 days Connection resistance limits are related to the resistance of individual bolted connections,      AND and do not include the resistance of conductive components (e.g., cables or conductors located    Once within between cells, racks, or tiers).                  7 days after
                -----------------------------------------------  battery discharge Verify no visible corrosion at battery            < 20.9 V terminals and connectors.
OR                                                AND Verify battery connection resistance is < 1.5E-  Once within 4 ohm for inter-cell connections and < 1.5E-4    7 days after ohm for terminal connections.                    battery overcharge
                                                                  > 30 V (continued)
Dresden 2 and 3                    3.8.a-4                          Revision 0
 
TRM 24/48 Volt DC System 3.8.a SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY TSR  3.8.a.6  Verify battery cells, cell plates, and racks      24 months show no visual indication of physical damage or abnormal deterioration that would degrade battery performance.
TSR  3.8.a.7  Verify battery cell to cell and terminal          24 months connections are clean, tight, free of corrosion and coated with anti-corrosion material.
TSR  3.8.a.8  -------------------NOTE------------------------  24 months Connection resistance limits are related to the resistance of individual bolted connections, and do not include the resistance of conductive components (e.g., cables or conductors located between cells, racks, or tiers).
Verify battery connection resistance is
                < 1.5E-4 ohm for inter-cell connections and
                < 1.5E-4 ohm for terminal connections.
(continued)
Dresden 2 and 3                    3.8.a-5                          Revision 0
 
TRM 24/48 Volt DC System 3.8.a SURVEILLANCE REQUIREMENTS SURVEILLANCE                          FREQUENCY TSR  3.8.a.9  Verify battery capacity is > 80% of the    60 months manufacturers rating when subjected to a performance discharge test or a modified    AND performance discharge test.
12 months when battery shows degradation or has reached 85%
of expected life with capacity
                                                            < 100% of manufacturers rating AND 24 months when battery has reached 85% of the expected life with capacity > 100%
of manufacturers rating Dresden 2 and 3                    3.8.a-6                    Revision 0
 
TRM 24/48 Volt DC System 3.8.a Table T3.8.a-1 (page 1 of 1)
Battery Cell Parameter Requirements CATEGORY A:              CATEGORY B:        CATEGORY C:
LIMITS FOR EACH          LIMITS FOR EACH    LIMITS FOR EACH PARAMETER DESIGNATED PILOT          CONNECTED CELL      CONNECTED CELL CELL Electrolyte        > Minimum level          > Minimum level        Above top of Level              indication mark, and    indication mark, and    plates, and not
                    < 1/4 inch above          < 1/4 inch above          overflowing maximum level            maximum level indication mark(a)      indication mark(a)
Float Voltage      > 2.13 V                > 2.13 V                > 2.07 V Specific          > 1.200(d)              > 1.195                Not more than Gravity(b)(c)                                                      0.020 below AND                    average of all connected cells Average of all connected cells        AND
                                            > 1.205 Average of all connected cells
                                                                    > 1.195 (a)  It is acceptable for the electrolyte level to temporarily increase above the specified maximum level during and following equalizing charges provided it is not overflowing.
(b)  Corrected for electrolyte temperature and level.
(c)  A battery charging current of < 2 amps when on float charge is acceptable for meeting specific gravity limits following a battery recharge, for a maximum of 7 days. When charging current is used to satisfy specific gravity requirements, specific gravity of each connected cell shall be measured prior to expiration of the 7 day allowance.
(d)  A battery charging current of  2 amps when on float charge is acceptable for meeting specific gravity limits (TSR 3.8.a.1).
Dresden 2 and 3                      3.8.a-7                          Revision 66
 
TRM Battery Monitoring and Maintenance 3.8.b 3.8  ELECTRICAL POWER SYSTEMS 3.8.b  Battery Monitoring and Maintenance TLCO  3.8.b      Battery cell parameters for the 125 V and 250 V station batteries shall be within limits.
APPLICABILITY:    When associated DC electrical power subsystems are required to be OPERABLE.
ACTIONS
---------------------------------------NOTE-----------------------------------
Separate Condition entry is allowed for each battery.
CONDITION                    REQUIRED ACTION                    COMPLETION TIME A. One or more batteries    A.1  Verify pilot cell(s)          1 hour with one or more              electrolyte level and battery cell                  float voltage meet parameters not within        Table T3.8.b-1 Table T3.8.b-1                Category C limits.
Category A or B limits.                  AND A.2  Verify battery cell          24 hours parameters meet Table T3.8.b-1                AND Category C limits.
Once per 7 days thereafter AND A.3  Restore battery cell          31 days parameters to Table T3.8.b-1 Category A and B limits.
(continued)
Dresden 2 and 3                      3.8.b-1                              Revision 27
 
TRM Battery Monitoring and Maintenance 3.8.b ACTIONS (continued)
CONDITION                  REQUIRED ACTION                  COMPLETION TIME B.    ---------NOTE------- B.1  Conduct an equalizing        31 days Required Actions B.1 and        charge of the affected B.2 must be completed            battery cell(s).
after LCO 3.8.6 Battery Parameters, Required      AND Action D.3 is completed.
----------------------      B.2  Verify successful            31 days completion of One Battery with one or          appropriate testing for more cells with                  the affected cell(s).
electrolyte level less than minimum established design limit.
Dresden 2 and 3                    3.8.b-2                            Revision 27
 
TRM Battery Monitoring and Maintenance 3.8.b SURVEILLANCE REQUIREMENTS SURVEILLANCE                          FREQUENCY TSR  3.8.b.1    Verify battery cell parameters meet          7 days Table T3.8.b-1 Category A limits.
TSR  3.8.b.2    Verify battery cell parameters meet          92 days Table T3.8.b-1 Category B limits.
AND Once within 7 days after battery discharge
                                                                < 105 V for 125 V batteries and < 210 V for 250 V batteries AND Once within 7 days after battery overcharge
                                                                > 150 V for 125 V batteries and > 300 V for 250 V batteries TSR  3.8.b.3    Verify average electrolyte temperature of    92 days representative cells is > 65&deg;F.
(continued)
Dresden 2 and 3                    3.8.b-3                              Revision 45
 
TRM Battery Monitoring and Maintenance 3.8.b SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                            FREQUENCY TSR  3.8.b.4    Verify no visible corrosion at battery        92 days terminals and connectors.
OR Verify total battery string connection resistance is less than or equal to the following values:
Unit 2 125 Vdc Main Battery                3660 Micro- ohm Unit 2 125 Vdc Alternate Battery          3890 Micro-ohm Unit 2 250 Vdc Main Battery                4765 Micro-ohm Unit 3 125 Vdc Main Battery                2915 Micro-ohm Unit 3 125 Vdc Alternate Battery          3300 Micro-ohm Unit 3 250 Vdc Main Battery                4499 Micro-ohm TSR 3.8.b.5      Verify battery cells, cell plates, and        12 months racks show no visual indication of physical damage or abnormal deterioration that could degrade battery performance.
TSR 3.8.b.6      Remove visible corrosion and verify            12 months battery cell to cell and terminal connections are coated with anti-corrosion material.
TSR  3.8.b.7    Verify battery connection total                12 months resistance is less than or equal to the following values:
Unit 2 125 Vdc Main Battery                3660 Micro- ohm Unit 2 125 Vdc Alternate Battery          3890 Micro-ohm Unit 2 250 Vdc Main Battery                4765 Micro-ohm Unit 3 125 Vdc Main Battery                2915 Micro-ohm Unit 3 125 Vdc Alternate Battery          3300 Micro-ohm Unit 3 250 Vdc Main Battery                4499 Micro-ohm Dresden 2 and 3                    3.8.b-4                              Revision 45
 
TRM Battery Monitoring and Maintenance 3.8.b Table T3.8.b-1 (page 1 of 1)
Battery Cell Parameter Requirements CATEGORY A:            CATEGORY B:            CATEGORY C:
LIMITS FOR EACH        LIMITS FOR EACH        LIMITS FOR EACH DESIGNATED PILOT        CONNECTED CELL        CONNECTED CELL PARAMETER        CELL Electrolyte      > Minimum level        > Minimum level        Above top of Level            indication mark, and    indication mark,      plates, and not 1/4 inch above          and  1/4 inch above    overflowing maximum level          maximum level indication mark(a)      indication mark(a)
Float Voltage    2.13 V                2.13 V              > 2.07 V Specific          1.200(d)              1.195                Not more than Gravity(b)(c)                                                  0.020 below AND                    average of all connected cells Average of all connected cells        AND
                                          > 1.205 Average of all connected cells 1.195 (a) It is acceptable for the electrolyte level to increase above the specified maximum level provided it is not overflowing.
(b)  Corrected for electrolyte temperature and level.
(c) A battery charging current of < 2 amps when on float charge is acceptable for meeting specific gravity limits following a battery recharge or the addition of water, for a maximum of 7 days. When charging current is used to satisfy specific gravity requirements, specific gravity of each connected cell shall be measured prior to expiration of the 7 day allowance.
(d) A battery charging current of < 2 amps when on float charge is acceptable for meeting specific gravity limits (TS 3.8.6, TSR 3.8.b.1).
Dresden 2 and 3                      3.8.b-5                              Revision 66
 
TRM Communications 3.9.a 3.9  REFUELING OPERATIONS 3.9.a  Communications TLCO  3.9.a      Direct communications shall be maintained between the control room and refueling platform personnel.
APPLICABILITY:    During CORE ALTERATIONS, except movement of control rods with their normal drive system.
ACTIONS CONDITION                    REQUIRED ACTION          COMPLETION TIME A. Direct communications      A.1 Suspend CORE ALTERATIONS. Immediately not maintained.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY TSR 3.9.a.1    Demonstrate direct communications between      Once within the control room and refueling platform        1 hour prior to personnel.                                    the start of CORE ALTERATIONS AND Once per 12 hours thereafter Dresden 2 and 3                      3.9.a-1                          Revision 0
 
TRM Station fire Brigade 5.0.a 5.0  ADMINISTRATIVE CONTROLS 5.0.a  Station Fire Brigade The shift manning for the station Fire Brigade shall be as follows:
A site Fire Brigade of at least 5 members shall be maintained onsite at all times.
However, the Fire Brigade composition may be less than the minimum requirements for a period of time not to exceed two hours in order to accommodate unexpected absence provided immediate action is taken to fill the required positions. The Fire Brigade shall not include the shift crew necessary for safe shutdown of the unit and any personnel required for other essential functions during a fire emergency.
Dresden 2 and 3                    5.0.a-1                        Revision 0
 
TRM Programs and Manuals 5.0.b 5.0  ADMINISTRATIVE CONTROLS 5.0.b  Programs and Manuals 5.5.1        Offsite Dose Calculation Manual Technical Specification 5.5.1, Offsite Dose Calculation Manual, is implemented by the Dresden Offsite Dose Calculation Manual.
5.5.2        Primary Coolant Sources Outside Containment Technical Specification 5.5.2, Primary Coolant Sources Outside Containment, requires controls be provided to minimize leakage from those portions of systems outside containment that could contain highly radioactive fluids during a serious transient or accident to levels as low as practicable. The program is implemented by the following procedures:
OP-AA-102-102, DOP 1000-01, DOS 1400-05, DOS 1500-10, DOS 2300-03, and DTP 09 5.5.3        Post Accident Sampling Dresden license Amendment Number 197 for License No. DPR-19 and Amendment No. 190 for License No. DPR-25 approves the elimination of the requirement to have and maintain the Post Accident Sampling System (or HRSS). The following items were committed to as part of license amendment:
: 1. Dresden has developed contingency plans for obtaining and analyzing highly radioactive samples of reactor coolant, suppression pool, and containment atmosphere. The contingency plans will be contained in the Dresden chemistry procedures and implemented with the implementation of the license amendment. Establishment of contingency plans has been developed for the following samples and is a regulatory commitment:
: a. Reactor Water - Recirc. Undiluted and Shutdown Cooling (Undiluted)
: b. Suppression Pool or Torus - LPCI "A" and "B" Loops (Undiluted)
: c. Containment Atmosphere - Drywell and Torus Atmosphere
: 2. The capability for classifying fuel damage events at the Alert level threshold will be established at a level of core damage associated with radioactivity levels of 300 micro-curies/gm dose equivalent iodine. This capability will be described in emergency Dresden 2 and 3                      5.0.b-1                        Revision 23
 
TRM Programs and Manuals 5.0.b plans and emergency plan implementing procedures and implemented with the implementation of the license amendment. The capability for classifying fuel damage events is considered a regulatory commitment.
: 3. Dresden has established the capability to monitor radioactive iodines that have been released offsite to the environs. This capability is described in emergency plans and emergency plan implementing procedures. The capability to monitor radioactive iodines is considered a regulatory commitment.
5.5.4      Radioactive Effluent Controls Program Technical Specification 5.5.4, Radioactive Effluent Controls Program, requires controls be established to conform with 10 CFR 50.36a for control of radioactive effluents and for maintaining doses to members of the public from radioactive effluents as low as reasonably achievable. This program is implemented through Sections 12.2, 12.3, and 12.4 of the Dresden Offsite Dose Calculation Manual.
5.5.5      Component Cyclic or Transient Limit Program Technical Specification 5.5.5, Component Cyclic or Transient Limit Program, requires controls be provided to track the UFSAR, Table 3.9-1, cyclic and transient occurrences to ensure that components are maintained within design limits. The program is implemented by ER-AA-470.
5.5.6      Inservice Testing Program Technical Specification 5.5.6, Inservice Testing Program, requires controls be established for inservice testing of ASME Code Class 1, 2, and 3 pumps and valves. This program is implemented by the following:
ER-AA-321 and the applicable procedures that implement ASME Section XI requirements.
Dresden 2 and 3                    5.0.b-2                        Revision 70
 
TRM Programs and Manuals 5.0.b 5.5.7      Ventilation Filter Testing Program (VFTP)
Technical Specification 5.5.7, Ventilation Filter Testing Program (VFTP), requires testing of the Engineered Safety Feature filter ventilation systems for the following Technical Specification systems:
Control Room Emergency Ventilation System and Standby Gas Treatment System.
The program is implemented by the following procedures:
DOS 5750-04, DOS 5750-13, DOS 7500-02, DTS 5750-04, DTS 5750-05, DTS 7500-07, and DTS 7500-11.
In addition, laboratory analysis required by Technical Specification 5.5.7.c must be completed within 31 days after removal of a representative sample.
5.5.8      Explosive Gas and Storage Tank Radioactivity Monitoring Program Technical Specification 5.5.8, Explosive Gas and Storage Tank Radioactivity Monitoring Program, requires controls be provided for potentially explosive gas mixtures contained in the Offgas System and the quantity of radioactivity contained in the unprotected outdoor storage tanks. The program is implemented by TRM Specification 3.7.d, Liquid Holdup Tanks, TRM Specification 3.7.e, Explosive Gas Mixtures, and the following procedures:
Explosive Gas Monitoring Procedures DAN 902(3)-54 C-2, DAN 902(3)-54 D-2, DAN 902(3)-54 C-3, CY-DR-120-1200, CY-DR-120-345, DCS 6210-06, DIS 5400-01, DIS 5400-04, DOP 5400-01, DOP 5400-14, DOP 5400-18, DOP 5400-19, DOP 5400-23, DOP 5400-24, DOP 5400-25, DOP 5400-26, Appendix A, DOS 1300-01, and DOS 5400-05.
Storage Tank Radioactivity Monitoring Procedures CY-DR-120-201, CY-AB-120-200, DCS 6210-06, DOP 2000 series, DOS 2000-01, and DOS 2000-03 Unit 2/3.
5.5.9      Diesel Fuel Oil Testing Program Technical Specification 5.5.9, Diesel Fuel Oil Testing Program, requires testing requirements be provided for new fuel oil and stored fuel oil and includes sampling requirements and acceptance criteria.
The actual physical analysis of the fuel oil to determine its properties is performed by a contract laboratory, and the program is owned by the Diesel Fuel Oil System Manager.
Dresden 2 and 3                    5.0.b-3                        Revision 68
 
TRM Programs and Manuals 5.0.b The program is implemented by the following procedures:
CY-DR-120-900, Diesel Fuel Oil Testing; DOS 0040-02, Operator Oil Sampling for Offsite Laboratory Analysis; DOS 6600-01, Diesel Generator Surveillance Tests; and DWP 15, Receiving Diesel Fuel Oil.
5.5.10      Technical Specification Bases Control Program Technical Specification 5.5.10, Technical Specification Bases Control Program, requires means be provided for processing changes to the Bases of the Technical Specifications. The program is implemented by Appendix D of the Technical Requirements Manual.
5.5.11      Safety Function Determination Program Technical Specification 5.5.11, Safety Function Determination Program, requires means be provided to ensure a loss of function is detected and appropriate actions taken. The program is implemented by Appendix C of the Technical Requirements Manual.
5.5.12      Primary Containment Leakage Rate Testing Program Technical Specification 5.5.12, Primary Containment Leakage Rate Testing Program, requires implementation of leakage rate testing of the primary containment as required by 10 CFR 50.54(o) and 10 CFR 50, Appendix J, Option B as modified by approved exemptions. The program is implemented by the following:
DTP 47, DTS 1600-07, and ER-AA-330-007.
5.5.13      Augmented Inservice Inspection Program Examination and testing of all safety related snubbers shall be performed in accordance with the 10 CFR 50.55a approved edition of the ASME OMa code, subsection ISTD.
Dresden 2 and 3                    5.0.b-4                        Revision 90
 
APPENDIX A PRIMARY CONTAINMENT ISOLATION VALVES
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 1 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 203-1A      X-105A      M-12-1          20" AO GLOBE          AC/DC      O          3-5 203-1B      X-105B      M-12-1          20"AO GLOBE          AC/DC      O          3-5 203-1C      X-105C      M-12-1          20" AO GLOBE          AC/DC      O          3-5 203-1D      X-105D      M-12-1          20" AO GLOBE          AC/DC      O          3-5 203-2A      X-105A      M-12-2          20" AO GLOBE          AC/DC      O          3-5 203-2B      X-105B      M-12-2          20" AO GLOBE          AC/DC      O          3-5 203-2C      X-105C      M-12-2          20" AO GLOBE          AC/DC      O          3-5 203-2D      X-105D      M-12-2          20" AO GLOBE          AC/DC      O          3-5 205-24      X-147        M-26-1          2.5" MO GATE            AC        C          60 205-25      X-147        M-26-1          0.75" GLOBE            HAND      LC          N/A 205-27      X-147        M-26-1          2.5" CHECK            SELF      C          N/A 220-1      X-106        M-12-1          2" MO GLOBE            AC        C          45 220-2      X-106        M-12-2          2" MO GLOBE            DC        C          45 220-5      X-106        M-12-1          0.75" GLOBE            HAND      LC          N/A 220-10A    X-105A      M-12-2          0.75" GLOBE            HAND      LC          N/A 220-10B    X-105B      M-12-2          0.75" GLOBE            HAND      LC          N/A 220-10C    X-105C      M-12-2          0.75" GLOBE            HAND      LC          N/A 220-10D    X-105D      M-12-2          0.75" GLOBE            HAND      LC          N/A 220-42      X-122        M-26-2          0.75" GLOBE            HAND      LC          N/A 220-44      X-122        M-26-2          0.75" AO GLOBE      AC SOL      O          5 220-45      X-122        M-26-2          0.75" AO GLOBE      AC SOL      O          5 220-58A    X-107A      M-14            18" CHECK              SELF      O          N/A 220-58B    X-107B      M-14            18" CHECK              SELF      O          N/A 220-62A    X-107A      M-14            18" CHECK              SELF      O          N/A 220-62B    X-107B      M-14            18" CHECK              SELF      O          N/A 220-103A    X-107A      M-14            0.75" GLOBE            HAND      LC          N/A 220-103B    X-107B      M-14            0.75" GLOBE            HAND      LC          N/A 0299-57    X-147        M-26-1          0.75" GLOBE            HAND      LC          N/A 0299-97A    X-209        M-26-3          0.375" CHECK          SELF      O          N/A 0299-97B    X-108B      M-26-3          0.375" CHECK          SELF      O          N/A (continued)
Dresden 2 and 3                              A-2                                Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 2 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 0299-98A    X-209        M-26-3          0.375" CHECK          SELF      O          N/A 0299-98B    X-108B      M-26-3          0.375" CHECK          SELF      O          N/A 0299-99A    X-209        M-26-3          0.375" CHECK          SELF      O          N/A 0299-99B    X-108B      M-26-3          0.375" CHECK          SELF      O          N/A 0299-100A  X-209        M-26-3          0.375" CHECK          SELF      O          N/A 0299-100B  X-108B      M-26-3          0.375" CHECK          SELF      O          N/A 0299-108A  X-209        M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-108B  X-108B      M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-110A  X-209        M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-110B  X-108B      M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-112A  X-209        M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-112B  X-108B      M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-113A  X-209        M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-113B  X-108B      M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-114A  X-209        M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-114B  X-108B      M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-115A  X-209        M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-115B  X-108B      M-26-3          0.375" NEEDLE          HAND      LC          N/A 0299-116A  X-209        M-26-3          0.5" GLOBE            HAND      O          N/A 0299-116B  X-108B      M-26-3          0.5" GLOBE            HAND      O          N/A 0299-117A  X-209        M-26-3          0.5" GLOBE            HAND      O          N/A 0299-117B  X-108B      M-26-3          0.5" GLOBE            HAND      O          N/A 0399-506    X-139B      M-34-1          1" GATE                HAND      LC          N/A 0399-585    X-139B      M-34-1          0.75" GLOBE            HAND      LC          N/A 0399-586    X-139B      M-34-1          0.75" GLOBE            HAND      LC          N/A 0399-587    X-139B      M-34-1          1" GATE                HAND      LC          N/A 733A        X-136J      M-37-2          0.5" SOL BALL          AC        C          N/A 733B        X-136F      M-37-2          0.5" SOL BALL          AC        C          N/A 733C        X-136E      M-37-2          0.5" SOL BALL          AC        C          N/A 733D        X-136H      M-37-2          0.5" SOL BALL          AC        C          N/A 733E        X-136G      M-37-2          0.5" SOL BALL          AC        C          N/A 736-1      X-136J      M-37-2          0.5" SHEAR              DC        O          N/A (continued)
Dresden 2 and 3                              A-3                                Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 3 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 736-2      X-136F      M-37-2          0.5" SHEAR              DC        O          N/A 736-3      X-136E      M-37-2          0.5" SHEAR              DC        O          N/A 736-4      X-136H      M-37-2          0.5" SHEAR              DC        O          N/A 736-5      X-136G      M-37-2          0.5" SHEAR              DC        O          N/A 1001-1A    X-111A      M-32            16" MO GATE            AC        C          40 1001-1B    X-111B      M-32            16" MO GATE            AC        C          40 1001-2A    X-111A, B    M-32            14" MO GATE            DC        C          40 1001-2B    X-111A, B    M-32            14" MO GATE            DC        C          40 1001-2C    X-111A, B    M-32            14" MO GATE            DC        C          40 1001-5A    X-116A      M-32            14" MO GATE            AC        C          50 1001-5B    X-116B      M-32            14"MO GATE              AC        C          50 1001-14A    X-116A      M-32            0.75" GLOBE            HAND      LC          N/A 1001-14B    X-116B      M-32            0.75" GLOBE            HAND      LC          N/A 1001-45A    X-111A      M-32            0.75" GLOBE            HAND      LC          N/A 1001-45B    X-111B      M-32            0.75" GLOBE            HAND      LC          N/A 1001-47A    X-111A      M-32            0.75" GLOBE            HAND      LC          N/A 1001-47B    X-111B      M-32            0.75" GLOBE            HAND      LC          N/A 1001-90A    X-111A, B    M-32            0.75" GLOBE            HAND      LC          N/A 1001-90B    X-111A, B    M-32            0.75" GLOBE            HAND      LC          N/A 1001-90C    X-111A, B    M-32            0.75" GLOBE            HAND      LC          N/A 1001-91A    X-111A, B    M-32            0.75" GLOBE            HAND      LC          N/A 1001-91B    X-111A, B    M-32            0.75" GLOBE            HAND      LC          N/A 1001-91C    X-111A, B    M-32            0.75" GLOBE            HAND      LC          N/A 1001-200    X-111A, B    M-32            0.75" GLOBE            HAND      LC          N/A 1101-15    X-130        M-33            1.5" CHECK            SELF      C          N/A 1101-16    X-130        M-33            1.5" CHECK            SELF      C          N/A 1199-107    X-130        M-33            0.5" GLOBE            HAND      LC          N/A 1201-1      X-113        M-30            8" MO GATE              AC        O          40 1201-1A    X-113        M-30            2" MO GLOBE            AC        C          40 1201-2      X-113        M-30            8" MO GATE              DC        O          40 (continued)
Dresden 2 and 3                              A-4                                Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 4 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1201-3      X-113        M-30            8" MO GATE              DC        C          40 1201-31    X-113        M-30            1" GLOBE              HAND      LC          N/A 1299-004    X-113        M-30            0.5" GLOBE            HAND      LC          N/A 1299-11    X-113        M-30            1" GLOBE              HAND      LC          N/A 1301-1      X-108A      M-28            14" MO GATE            AC        O          40 1301-2      X-108A      M-28            14" MO GATE            DC        O          45 1301-3      X-109B      M-28            12" MO GATE            DC        C          45 1301-4      X-109B      M-28            12" MO GATE            AC        O          40 1301-17    X-108A      M-28            0.75" AO GLOBE      AC SOL      O          10 1301-20    X-108A      M-28            0.75" AO GLOBE      AC SOL      O          10 1301-32    X-109B      M-28            0.75" GLOBE            HAND      LC          N/A 1301-34    X-108A      M-28            0.75" GLOBE            HAND      LC          N/A 1301-505    X-108A      M-28            0.75" GLOBE            HAND      LC          N/A 1301-601    X-109B      M-28            0.75" GLOBE            HAND      LC          N/A 1301-604    X-109B      M-28            0.75" GLOBE            HAND      LC          N/A 1301-606    X-108A      M-28            0.5" GLOBE            HAND      LC          N/A 1402-3A    X-303A-D    M-27            16" MO GATE            AC        O          N/A 1402-3B    X-303A-D    M-27            16" MO GATE            AC        O          N/A 1402-4A    X-310A      M-27            8" MO GLOBE            AC        C          N/A 1402-4B    X-310B      M-27            8" MO GLOBE            AC        C          N/A 1402-5A    X-149A      M-27            0.75" GLOBE            HAND      LC          N/A 1402-5B    X-149B      M-27            0.75" GLOBE            HAND      LC          N/A 1402-10A    X-303A-D    M-27            4" GATE                HAND      LC          N/A 1402-10B    X-303A-D    M-27            4" GATE                HAND      LC          N/A 1402-24A    X-149A      M-27            10" MO GATE            AC        O          N/A 1402-24B    X-149B      M-27            10" MO GATE            AC        O          N/A 1402-25A    X-149A      M-27            10" MO GATE            AC        C          N/A 1402-25B    X-149B      M-27            10" MO GATE            AC        C          N/A 1402-29A    X-303A-D    M-27            16" GATE              HAND      LO          N/A 1402-29B    X-303A-D    M-27            16" GATE              HAND      LO          N/A (continued)
Dresden 2 and 3                              A-5                                Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 5 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1402-32A    X-149A      M-27            0.75" GLOBE            HAND      LC          N/A 1402-32B    X-149B      M-27            0.75" GLOBE            HAND      LC          N/A 1402-33A    X-149A      M-27            0.75" GLOBE            HAND      LC          N/A 1402-33B    X-149B      M-27            0.75" GLOBE            HAND      LC          N/A 1402-38A    X-310A      M-27            1.5" MO GATE            AC        O          N/A 1402-38B    X-310B      M-27            1.5" MO GATE            AC        O          N/A 1403-A-500  X-149A      M-27            0.75" GLOBE            HAND      LC          N/A 1403-B-500  X-149B      M-27            0.75" GLOBE            HAND      LC          N/A 1404-A-500  X-149A      M-27            0.75" GLOBE            HAND      LC          N/A 1404-B-500  X-149B      M-27            0.75" GLOBE            HAND      LC          N/A 1499-37A    X-303A-D    M-27            4" GATE                HAND      LC          N/A 1499-37B    X-303A-D    M-27            4" GATE                HAND      LC          N/A 1501-5A    X-303A-D    M-29-1          14" MO GATE            AC        O          N/A 1501-5B    X-303A-D    M-29-1          14" MO GATE            AC        O          N/A 1501-5C    X-303A-D    M-29-1          14" MO GATE            AC        O          N/A 1501-5D    X-303A-D    M-29-1          14" MO GATE            AC        O          N/A 1501-13A    X-310A      M-29-1          3" MO GATE              AC        O          N/A 1501-13B    X-310B      M-29-1          3" MO GATE              AC        O          N/A 1501-18A    X-311A      M-29-1          6" MO GLOBE            AC        C          N/A 1501-18B    X-311B      M-29-1          6" MO GLOBE            AC        C          N/A 1501-19A    X-311A      M-29-1          6" MO GATE              AC        C          N/A 1501-19B    X-311B      M-29-1          6" MO GATE              AC        C          N/A 1501-20A    X-310A      M-29-1          14" MO GATE            AC        C          N/A 1501-20B    X-310B      M-29-1          14" MO GATE            AC        C          N/A 1501-22A    X-116A      M-29-1          16" MO GATE            AC        C          N/A 1501-22B    X-116B      M-29-1          16" MO GATE            AC        C          N/A 1501-23A    X-116A      M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-23B    X-116B      M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-25A    X-116A      M-29-1          16" AO CHECK        AC, SELF      C          N/A 1501-25B    X-116B      M-29-1          16" AO CHECK        AC, SELF      C          N/A 1501-27A    X-150A      M-29-1          10" MO GATE            AC        C          N/A (continued)
Dresden 2 and 3                              A-6                                Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 6 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1501-27B    X-145        M-29-1          10" MO GATE            AC        C          N/A 1501-28A    X-150A      M-29-1          10" MO GATE            AC        C          N/A 1501-28B    X-145        M-29-1          10" MO GATE            AC        C          N/A 1501-30A    X-150A      M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-30B    X-145        M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-33A    X-303A-D    M-29-1          24" GATE              HAND      LO          N/A 1501-33B    X-303A-D    M-29-1          24" GATE              HAND      LO          N/A 1501-38A    X-310A      M-29-1          14" MO GLOBE            AC        C          N/A 1501-38B    X-310B      M-29-1          14" MO GLOBE            AC        C          N/A 1501-40A    X-311A      M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-40B    X-311B      M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-57A    X-303A-D    M-29-1          1.5" GLOBE            HAND      LC          N/A 1501-57B    X-303A-D    M-29-1          1.5" GLOBE            HAND      LC          N/A 1501-70A    X-303A-D    M-29-1          1.5" GLOBE            HAND      LC          N/A 1501-70B    X-303A-D    M-29-1          1.5" GLOBE            HAND      LC          N/A 1501-72A    X-303A-D    M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-72B    X-303A-D    M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-73A    X-303A-D    M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-73B    X-303A-D    M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-87A    X-310A      M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-87B    X-310B      M-29-1          0.75" GLOBE            HAND      LC          N/A 1501-92A    X-116A      M 1&2      0.75" GLOBE            HAND      LC          N/A 1501-92B    X-116B      M 1&2      0.75" GLOBE            HAND      LC          N/A 1599-2A    X-116A      M-29-1          0.75" GLOBE            HAND      LC          N/A 1599-2B    X-116B      M-29-1          0.75" GLOBE            HAND      LC          N/A 1599-13A    X-303A-D    M-29-1          2" RELIEF              SELF      C          N/A 1599-13B    X-303A-D    M-29-1          2" RELIEF              SELF      C          N/A 1599-13C    X-303A-D    M-29-1          2" RELIEF              SELF      C          N/A 1599-13D    X-303A-D    M-29-1          2" RELIEF              SELF      C          N/A 1599-27A    X-303A-D    M-29-1          0.75" GLOBE            HAND      LC          N/A 1599-27B    X-303A-D    M-29-1          0.75" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-7                                Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 7 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1599-31A    X-311A      M-29-1          0.75" GLOBE            HAND      LC          N/A 1599-31B    X-311B      M-29-1          0.75" GLOBE            HAND      LC          N/A 1599-61    X-303A-D    M-29-1          3" AO GATE          AC SOL      C          10 1599-62    X-303A-D    M-29-1          3" AO GATE          AC SOL      C          10 1599-68    X-303A-D    M-29-1          0.75" GLOBE            HAND      LC          N/A 1599-75A    X-303A-D    M-29-1          0.75" GLOBE            HAND      LC          N/A 1599-75B    X-303A-D    M-29-1          0.75" GLOBE            HAND      LC          N/A 1599-124A  X-150A      M-29-1          0.5" GLOBE            HAND      LC          N/A 1599-124B  X-145        M-29-1          0.5" GLOBE            HAND      LC          N/A 1599-125A  X-150A      M-29-1          0.5"GLOBE              HAND      LC          N/A 1599-125B  X-145        M-29-1          0.5" GLOBE            HAND      LC          N/A 1599-126A  X-311A      M-29-1          0.5" GLOBE            HAND      LC          N/A 1599-127A  X-311A      M-29-1          0.5" GLOBE            HAND      LC          N/A 1599-126B  X-311B      M-29-1          0.5" GLOBE            HAND      LC          N/A 1599-127B  X-311B      M-29-1          0.5" GLOBE            HAND      LC          N/A 1601-20A    X-304        M-25            20" AO BTTRFL        AC SOL      C          N/A 1601-20B    X-304        M-25            20" AO BTTRFL        AC SOL      C          N/A 1601-21    X-126        M-25            18" AO BTTRFL        AC SOL      C          10 1601-22    X-126, 304  M-25            18" AO BTTRFL        AC SOL      C          10 1601-23    X-125        M-25            18" AO BTTRFL        AC SOL      C          10 1601-24    X-125, 318A  M-25            18" AO BTTRFL        AC SOL      C          10 1601-31A    X-304        M-25            20" CHECK              SELF      C          N/A 1601-31B    X-304        M-25            20" CHECK              SELF      C          N/A 1601-48    X-121        M-37-2          1" GATE                HAND      O          N/A 1601-55    X-126, 304  M-25            4" AO BTTRFL        AC SOL      O          15 1601-56    X-304        M-25            18" AO BTTRFL        AC SOL      O          10 1601-57    X-304, 126  M-25            1" MO GLOBE            AC        O          15 1601-58    X-304        M-25            1" AO GLOBE          AC SOL      O/C          15 1601-59    X-126        M-25            1" AO GLOBE          AC SOL      O          15 1601-60    X-318A      M-25            18" AO BTTRFL        AC SOL      C          10 1601-61    X-318A      M-25            2" AO GLOBE          AC SOL      C          15 (continued)
Dresden 2 and 3                              A-8                                Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 8 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1601-62    X-125        M-25            2" AO GLOBE          AC SOL      C          15 1601-63    X-125, 318A  M-25            6" AO BTTRFL        AC SOL      C          10 1601-93    X-318A      M-25            10" AO BTTRFL        DC SOL      C          N/A 1605-500    X-125        M-25            0.75" GLOBE            HAND      LC          N/A 1623-DV    X-304        M-25            0.75" GLOBE            HAND      LC          N/A 1699-002A  X-318A      M-25            0.75" GLOBE            HAND      LC          N/A 1699-58A    X-313A      M-25            2" GLOBE              HAND      LC          N/A 1699-58B    X-313B      M-25            2" GLOBE              HAND      LC          N/A 1699-61A    X-313A      M-25            0.5" GLOBE            HAND      LC          N/A 1699-61B    X-313B      M-25            0.5" GLOBE            HAND      LC          N/A 1699-63A    X-316B      M-25            0.5" GLOBE            HAND      LC          N/A 1699-63B    X-304        M-25            0.5" GLOBE            HAND      LC          N/A 1699-65    X-305D      M-51            0.75" GLOBE            HAND      LC          N/A 1699-66    X-305D      M-51            0.75" GLOBE            HAND      LC          N/A 1699-72    X-126        M-25            0.75" GLOBE            HAND      LC          N/A 1699-75    X-305D      M-25            0.75" GLOBE            HAND      LC          N/A 1699-77    X-305D      M-25            0.75" GLOBE            HAND      LC          N/A 1699-81    X-125        M-25            0.75" GLOBE            HAND      LC          N/A 1699-83    X-313A      M-25            0.75" GLOBE            HAND      LC          N/A 1699-99    X-305A      M-25            1" GLOBE              HAND      LC          N/A 1699-100    X-305B      M-25            1" GLOBE              HAND      LC          N/A 1699-103    X-313A      M-25            0.25" GATE            HAND      LC          N/A 1699-500A  X-304        M-25            0.75" GLOBE            HAND      LC          N/A 1699-500B  X-304        M-25            0.75" GLOBE            HAND      LC          N/A 1916-500    X-119        M-31            2" GLOBE              HAND      LC          N/A 2001-5      X-118        M-39            3" AO DIAPHRAGM      AC SOL      C          20 2001-6      X-118        M-39            3" AO DIAPHRAGM      AC SOL      C          20 2001-105    X-117        M-39            3" AO DIAPHRAGM      AC SOL      C          20 2001-106    X-117        M-39            3" AO DIAPHRAGM      AC SOL      C          20 2099-552    X-118        M-39            0.75" GLOBE            HAND      LC          N/A 2099-871    X-117        M-39            0.75" GLOBE            HAND      LC          N/A 2301-4      X-115A      M-51            10" MO GATE            AC        O          50 (continued)
Dresden 2 and 3                              A-9                                Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 9 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 2301-5      X-115A      M-51            10" MO GATE            DC        O          63 2301-14    X-310B      M-51            4" MO GLOBE            DC        C          N/A 2301-16    X-115A      M-51            0.75" GLOBE            HAND      LC          N/A 2301-34    X-312        M-51            2" CHECK              SELF      C          N/A 2301-35    X-303A-D    M-51            16" MO GATE            DC        C          97 2301-36    X-303A-D    M-51            16" MO GATE            DC        C          97 2301-37    X-303A-D    M-51            0.75" GLOBE            HAND      LC          N/A 2301-40    X-310B      M-51            4" CHECK              SELF      C          N/A 2301-41A    X-317A      M-51            0.75" GLOBE            HAND      LC          N/A 2301-41B    X-312        M-51            0.75" GLOBE            HAND      LC          N/A 2301-45    X-317A      M-51            24" CHECK              SELF      C          N/A 2301-53    X-310B      M-51            4" RELIEF              SELF      C          N/A 2301-56    X-303A-D    M-51            16" GATE              HAND      LO          N/A 2301-71    X-312        M-51            2" STOP CHECK          SELF      C          N/A 2301-74    X-317A      M-51            12" STOP CHECK        SELF      C          N/A 2301-93    X-303A-D    M-51            0.75" GATE            HAND      LC          N/A 2301-94    X-303A-D    M-51            0.75" GATE            HAND      LC          N/A 2306-500    X-317A      M-51            0.75" GLOBE            HAND      LC          N/A 2399-15    X-303A-D    M-51            0.75" GLOBE            HAND      LC          N/A 2499-1A    X-202V      M-706-1        0.5" SOL GLOBE          AC        C          N/A 2499-1B    X-204B      M-706-1        0.5" SOL GLOBE          AC        C          N/A 2499-2A    X-202V      M-706-1        0.5" SOL GLOBE          AC        C          N/A 2499-2B    X-204B      M-706-1        0.5" SOL GLOBE          AC        C          N/A 2499-3A    X-316A      M-706-1        0.5" SOL GLOBE          AC        C          N/A 2499-3B    X-316B      M-706-1        0.5" SOL GLOBE          AC        C          N/A 2499-4A    X-316A      M-706-1        0.5" SOL GLOBE          AC        C          N/A 2499-4B    X-316B      M-706-1        0.5" SOL GLOBE          AC        C          N/A 2499-7A    X-202V      M-706-1        0.5" GLOBE            HAND      LC          N/A 2499-7B    X-204B      M-706-1        0.5" GLOBE            HAND      LC          N/A 2499-9A    X-316A      M-706-1        0.5" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-10                              Revision 94
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 10 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 2499-9B    X-316B      M-706-1        0.5" GLOBE            HAND      LC          N/A 2499-27A    X-202V      M-706-1        0.5" GLOBE            HAND      O          N/A 2499-27B    X-204B      M-706-1        0.5" GLOBE            HAND      O          N/A 2499-28A    X-202V      M-706-1        0.5" CHECK            SELF      C          N/A 2499-28B    X-204B      M-706-1        0.5" CHECK            SELF      C          N/A 2499-29A    X-202V      M-706-1        0.5" GLOBE            HAND      O          N/A 2499-29B    X-204B      M-706-1        0.5" GLOBE            HAND      O          N/A 2499-31A    X-202V      M-706-1        0.5" GLOBE            HAND      LC          N/A 2499-31B    X-204B      M-706-1        0.5" GLOBE            HAND      LC          N/A 2499-32A    X-202V      M-706-1        0.5" GLOBE            HAND      LC          N/A 2499-32B    X-204B      M-706-1        0.5" GLOBE            HAND      LC          N/A 3099-87    X-105D      M-12-2          0.75" GLOBE            HAND      LC          N/A 3099-88    X-105C      M-12-2          0.75" GLOBE            HAND      LC          N/A 3099-89    X-105B      M-12-2          0.75" GLOBE            HAND      LC          N/A 3099-90    X-105A      M-12-2          0.75" GLOBE            HAND      LC          N/A 3204-A-504  X-107A      M-14            1" GLOBE              HAND      LC          N/A 3204-B-504  X-107B      M-14            1" GLOBE              HAND      LC          N/A 3299-50    X-107B      M-14            0.75" GLOBE            HAND      LC          N/A 3299-52    X-107A      M-14            0.75" GLOBE            HAND      LC          N/A 3702        X-123        M-20            6" MO GATE              AC        O          N/A 3703        X-124        M-20            6" MO GATE              AC        O          N/A 3706        X-124        M-20            6" MO GATE              AC        O          N/A 3769-500    X-123        M-20            6" CHECK              SELF      O          N/A 3799-29    X-124        M-20            0.75" GLOBE            HAND      LC          N/A 3799-30    X-123        M-20            0.75" GLOBE            HAND      LC          N/A 3788-127    X-124        M-20            6" GATE                HAND      O          N/A 3799-128    X-123        M-20            6" GATE                HAND      O          N/A 3799-132    X-123        M-20            0.75" GLOBE            HAND      LC          N/A 3799-277    X-124        M-20            1" RELIEF              SELF      C          N/A 4327-500    X-119        M-35-1          3" GATE                HAND      LC          N/A 4327-501    X-119        M-35-1          3" GLOBE              HAND      C          N/A 4327-502    X-119        M-35-1          3" GLOBE              HAND      LC          N/A (continued)
Dresden 2 and 3                              A-11                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 11 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 4399-915    X-119        M-35-1          1" RELIEF              SELF      C          N/A 4640-500    X-120        M-38            1" GLOBE              HAND      LC          N/A 4722        X-121        M-37-2          2" AO GLOBE          AC SOL      O          N/A 4724        X-121        M-37-2          2" AO GLOBE          AC SOL      O          N/A 4799-100    X-121        M-37-2          0.25" GLOBE            HAND      LC          N/A 4799-101    X-121        M-37-2          0.25" GLOBE            HAND      LC          N/A 4799-514    X-136E      M-37-2          0.5" PRG CHECK        SELF      C          N/A (TIP) 4799-530    X-121        M-37-2          2" CHECK              SELF      C          N/A 4799-531    X-121        M-37-2          2" CHECK              SELF      C          N/A 4799-532    X-121        M-37-2          0.25" GLOBE            HAND      LC          N/A 4799-533    X-121        M-37-2          0.25" GLOBE            HAND      LC          N/A 4799-565    X-139D      M-37-2          0.5" GATE              HAND      LC          N/A 4799-577    X-121        M-37-2          1" GATE                HAND      O          N/A 4799-699    X-121        M-37-2          1 GATE                HAND      O          N/A 4799-1775  X-121        M-37-2          0.5 GLOBE            HAND      LC          N/A 4799-1776  X-121        M-37-2          0.5 GLOBE            HAND      LC          N/A 8501-1A    X-309A      M-25            0.5 AO GLOBE        AC SOL      O          5 8501-1B    X-309A      M-25            0.5 AO GLOBE        AC SOL      O          5 8501-3A    X-204A      M-25            1 AO GLOBE          AC SOL      O          5 8501-3B    X-204A      M-25            1 AO GLOBE          AC SOL      O          5 8501-5A    X-143        M-25            0.5 AO GLOBE        AC SOL      O          5 8501-5B    X-143        M-25            0.5 AO GLOBE        AC SOL      O          5 8501-500    X-309A      M-25            0.5 GLOBE            HAND      O          N/A 8505A-501  X-143        M-25            0.5 GLOBE            HAND      O          N/A 8507-501    X-143        M-178          0.5 GLOBE            HAND      LC          N/A 8507-502    X-143        M-178          0.5 GLOBE            HAND      LC          N/A 8507-503    X-143        M-178          0.5 GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-12                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 12 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 8507-504    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-505    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-506    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-507    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-508    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-509    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-510    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-511    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-512    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-513    X-143        M-178          0.5" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-13                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 13 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 8507-514    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-515    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-516    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-517    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-518    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-519    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-520    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8507-521    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-526    X-126        M-25            0.25" GLOBE            HAND      LC          N/A 8526        X-126, 304  M-24            0.75" RELIEF          SELF      C          N/A 8599-617    X-204A      M-25            1" GLOBE              HAND      LC          N/A 8599-630    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-631    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-632    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-633    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-634    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-635    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-636    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-637    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-638    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-639    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-640    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-641    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-642    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-643    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-644    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-645    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-646    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-647    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-648    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-649    X-143        M-178          0.5" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-14                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-1 (page 14 of 14)
Primary Containment Isolation Valves (Unit 2)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 8599-650    X-143        M-178          0.5" GLOBE            HAND      LC          N/A 8599-669    X-143        M-25            0.5" GLOBE            HAND      O          N/A 9201-500    X-204A      M-25            1" GLOBE              HAND      O          N/A 9205A      X-143        M-25            0.5" AO GLOBE        AC SOL      O          5 9205B      X-143        M-25            0.5" AO GLOBE        AC SOL      O          5 9206A      X-143        M-25            0.5" AO GLOBE        AC SOL      O          5 9206B      X-143        M-25            0.5" AO GLOBE        AC SOL      O          5 9207A      X-101        M-25            1" AO GLOBE          AC SOL      O          5 9207B      X-101        M-25            1" AO GLOBE          AC SOL      O          5 9208A      X-101        M-25            1" AO GLOBE          AC SOL      O          5 9208B      X-101        M-25            1" AO GLOBE          AC SOL      O          5 9299-50    X-101        M-25            1" GLOBE              HAND      O          N/A 9299-51    X-101        M-25            1" GLOBE              HAND      O          N/A Dresden 2 and 3                              A-15                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 1 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 203-1A      X-105A      M-345-1        20" AO GLOBE          AC/DC      O          3-5 203-1B      X-105B      M-345-1        20" AO GLOBE          AC/DC      O          3-5 203-1C      X-105C      M-345-1        20" AO GLOBE          AC/DC      O          3-5 203-1D      X-105D      M-345-1        20" AO GLOBE          AC/DC      O          3-5 203-2A      X-105A      M-345-2        20" AO GLOBE          AC/DC      O          3-5 203-2B      X-105B      M-345-2        20" AO GLOBE          AC/DC      O          3-5 203-2C      X-105C      M-345-2        20" AO GLOBE          AC/DC      O          3-5 203-2D      X-105D      M-345-2        20" AO GLOBE          AC/DC      O          3-5 205-24      X-147        M-357-1        2.5" MO GATE            AC        C          60 205-25      X-147        M-357-1        0.75" GLOBE            HAND      LC          N/A 205-27      X-147        M-357-1        2.5" CHECK            SELF      C          N/A 220-1      X-106        M-345-1        2" MO GLOBE            AC        C          45 220-2      X-106        M-345-2        2" MO GLOBE            DC        C          45 220-5      X-106        M-345-1        0.75" GLOBE            HAND      LC          N/A 220-10A    X-105A      M-345-2        0.75" GLOBE            HAND      LC          N/A 220-10B    X-105B      M-345-2        0.75" GLOBE            HAND      LC          N/A 220-10C    X-105C      M-345-2        0.75" GLOBE            HAND      LC          N/A 220-10D    X-105D      M-345-2        0.75" GLOBE            HAND      LC          N/A 220-42      X-122        M-357-2        0.75" GLOBE            HAND      LC          N/A 220-44      X-122        M-357-2        0.75" AO GLOBE      AC SOL      O          5 220-45      X-122        M-357-2        0.75" AO GLOBE      AC SOL      O          5 220-58A    X-107B      M-347          18" CHECK              SELF      O          N/A 220-58B    X-107A      M-347          18" CHECK              SELF      O          N/A 220-62A    X-107B      M-347          18" CHECK              SELF      O          N/A 220-62B    X-107A      M-347          18" CHECK              SELF      O          N/A 220-103A    X-107B      M-347          0.75" GLOBE            HAND      LC          N/A 220-103B    X-107A      M-347          0.75" GLOBE            HAND      LC          N/A 0299-97A    X-209        M-357-3        0.375" CHECK          SELF      O          N/A 0299-97B    X-108B      M-357-3        0.375" CHECK          SELF      O          N/A 0299-98A    X-209        M-357-3        0.375" CHECK          SELF      O          N/A (continued)
Dresden 2 and 3                              A-16                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 2 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 0299-98B    X-108B      M-357-3        0.375" CHECK          SELF      O          N/A 0299-99A    X-209        M-357-3        0.375" CHECK          SELF      O          N/A 0299-99B    X-108B      M-357-3        0.375" CHECK          SELF      O          N/A 0299-100A  X-209        M-357-3        0.375" CHECK          SELF      O          N/A 0299-100B  X-108B      M-357-3        0.375" CHECK          SELF      O          N/A 0299-108A  X-209        M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-108B  X-108B      M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-110A  X-209        M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-110B  X-108B      M-357-3        0.375' NEEDLE          HAND      LC          N/A 0299-112A  X-209        M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-112B  X-108B      M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-113A  X-209        M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-113B  X-108B      M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-114A  X-209        M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-114B  X-108B      M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-115A  X-209        M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-115B  X-108B      M-357-3        0.375" NEEDLE          HAND      LC          N/A 0299-116A  X-209        M-357-3        0.5" GLOBE            HAND      O          N/A 0299-116B  X-108B      M-357-3        0.5" GLOBE            HAND      O          N/A 0299-117A  X-209        M-357-3        0.5" GLOBE            HAND      O          N/A 0299-117B  X-108B      M-357-3        0.5" GLOBE            HAND      O          N/A 0399-506    X-139C      M-365          1.0" GATE              HAND      LC          N/A 0399-585    X-139C      M-365          0.75" GLOBE            HAND      LC          N/A 0399-586    X-139C      M-365          0.75" GLOBE            HAND      LC          N/A 0399-587    X-139C      M-365          1.0" GATE              HAND      LC          N/A 733A        X-136C      M-367-2        0.5" SOL BALL          AC        C          N/A 733B        X-136B      M-367-2        0.5" SOL BALL          AC        C          N/A 733C        X-136D      M-367-2        0.5" SOL BALL          AC        C          N/A 733D        X-136F      M-367-2        0.5" SOL BALL          AC        C          N/A 733E        X-136E      M-367-2        O.5" SOL BALL          AC        C          N/A 736-1      X-136C      M-367-2        0.5" SHEAR              DC        O          N/A (continued)
Dresden 2 and 3                              A-17                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 3 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 736-2      X-136B      M-367-2        0.5" SHEAR              DC        O          N/A 736-3      X-136D      M-367-2        0.5" SHEAR              DC        O          N/A 736-4      X-136E      M-367-2        0.5" SHEAR              DC        O          N/A 736-5      X-136F      M-367-2        0.5" SHEAR              DC        O          N/A 1001-1A    X-111A      M-363          16" MO GATE            AC        C          40 1001-1B    X-111B      M-363          16" MO GATE            AC        C          40 1001-2A    X-111A, B    M-363          14" MO GATE            DC        C          40 1001-2B    X-111A, B    M-363          14" MO GATE            DC        C          40 1001-2C    X-111A, B    M-363          14" MO GATE            DC        C          40 1001-4      X-111A, B    M-363          0.5" GLOBE            HAND      LC          N/A 1001-5A    X-116A      M-363          14" MO GATE            AC        C          50 1001-5B    X-116B      M-363          14" MO GATE            AC        C          50 1001-14A    X-116A      M-363          0.75" GLOBE            HAND      LC          N/A 1001-14B    X-116B      M-363          0.75" GLOBE            HAND      LC          N/A 1001-45A    X-111A      M-363          0.75" GLOBE            HAND      LC          N/A 1001-45B    X-111B      M-363          O.75" GLOBE            HAND      LC          N/A 1001-47A    X-111A      M-363          0.75" GLOBE            HAND      LC          N/A 1001-47B    X-111B      M-363          0.75" GLOBE            HAND      LC          N/A 1001-90A    X-111A, B    M-363          0.75" GLOBE            HAND      LC          N/A 1001-90B    X-111A, B    M-363          0.75" GLOBE            HAND      LC          N/A 1001-90C    X-111A, B    M-363          0.75" GLOBE            HAND      LC          N/A 1001-91A    X-111A, B    M-363          0.75" GLOBE            HAND      LC          N/A 1001-91B    X-111A, B    M-363          0.75" GLOBE            HAND      LC          N/A 1001-91C    X-111A, B    M-363          0.75" GLOBE            HAND      LC          N/A 1101-15    X-138        M-364          1.5" CHECK            SELF      C          N/A 1101-16    X-138        M-364          1.5" CHECK            SELF      C          N/A 1199-003    X-138        M-364          0.75" GLOBE            HAND      LC          N/A 1201-1      X-113        M-361          8" MO GATE              AC        O          40 1201-1A    X-113        M-361          2" MO GATE              AC        C          40 1201-2      X-113        M-361          8" MO GATE              DC        O          40 (continued)
Dresden 2 and 3                              A-18                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 4 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1201-3      X-113        M-361          8" MO GATE              DC        C          40 1201-32    X-113        M-361          1" GATE                HAND      LC          N/A 1299-7      X-113        M-361          0.5" GATE              HAND      LC          N/A 1301-1      X-108A      M-359          14" MO GATE            AC        O          40 1301-2      X-108A      M-359          14" MO GATE            DC        O          45 1301-3      X-109A      M-359          12" MO GATE            DC        C          45 1301-4      X-109A      M-359          12" MO GATE            AC        O          40 1301-17    X-108A      M-359          0.75" AO GLOBE      AC SOL      O          10 1301-20    X-108A      M-359          0.75" AO GLOBE      AC SOL      O          10 1301-32    X-109A      M-359          0.75" GLOBE            HAND      LC          N/A 1301-34    X-108A      M-359          0.75" GLOBE            HAND      LC          N/A 1302-500    X-108A      M-359          0.75" GLOBE            HAND      LC          N/A 1301-601    X-109A      M-359          0.75" GLOBE            HAND      LC          N/A 1301-602    X-108A      M-359          0.5" GATE              HAND      LC          N/A 1304-500    X-109A      M-359          0.75" GLOBE            HAND      LC          N/A 1402-3A    X-303A-D    M-358          16" MO GATE            AC        O          N/A 1402-3B    X-303A-D    M-358          16" MO GATE            AC        O          N/A 1402-4A    X-310A      M-358          8" MO GLOBE            AC        C          N/A 1402-4B    X-310B      M-358          8" MO GLOBE            AC        C          N/A 1402-5A    X-149B      M-358          0.75" GLOBE            HAND      LC          N/A 1402-5B    X-149A      M-358          0.75" GLOBE            HAND      LC          N/A 1402-10A    X-303A-D    M-358          4" GATE                HAND      LC          N/A 1402-10B    X-303A-D    M-358          4" GATE                HAND      LC          N/A 1402-24A    X-149B      M-358          10" MO GATE            AC        O          N/A 1402-24B    X-149A      M-358          10" MO GATE            AC        O          N/A 1402-25A    X-149B      M-358          10" MO GATE            AC        C          N/A 1402-25B    X-149A      M-358          10" MO GATE            AC        C          N/A 1402-29A    X-303A-D    M-358          16" BUTTERFLY          HAND      LO          N/A 1402-29B    X-303A-D    M-358          16" GATE              HAND      LO          N/A 1402-32A    X-149B      M-358          0.75" GLOBE            HAND      LC          N/A 1402-32B    X-149A      M-358          0.75" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-19                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 5 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1402-33A    X-149B      M-358          0.75" GLOBE            HAND      LC          N/A 1402-33B    X-149A      M-358          0.75" GLOBE            HAND      LC          N/A 1402-38A    X-310A      M-358          1.5" MO GATE            AC        O          N/A 1402-38B    X-310B      M-358          1.5" MO GATE            AC        O          N/A 1402-504    X-149B      M-358          0.75" GLOBE            HAND      LC          N/A 1402-507    X-149B      M-358          0.75" GLOBE            HAND      LC          N/A 1402-508    X-149A      M-358          0.75" GLOBE            HAND      LC          N/A 1402-510    X-149A      M-358          0.75" GLOBE            HAND      LC          N/A 1418B-500  X-303A-D    M-358          2" GLOBE              HAND      LC          N/A 1499-38    X-303A-D    M-358          4" GATE                HAND      LC          N/A 1499-39    X-303A-D    M-358          4" GATE                HAND      LC          N/A 1501-5A    X-303A-D    M-360-1        14" MO GATE            AC        O          N/A 1501-5B    X-303A-D    M-360-1        14" MO GATE            AC        O          N/A 1501-5C    X-303A-D    M-360-1        14" MO GATE            AC        O          N/A 1501-5D    X-303A-D    M-360-1        14" MO GATE            AC        O          N/A 1501-13A    X-310A      M-360-1        3" MO GATE              AC        O          N/A 1501-13A    X-303A-D    M-360-1        2" RELIEF              SELF      C          N/A 1501-13B    X-310B      M-360-1        3" MO GATE              AC        O          N/A 1501-13B    X-303A-D    M-360-1        2" RELIEF              SELF      C          N/A 1501-13C    X-303A-D    M-360-1        2" RELIEF              SELF      C          N/A 1501-13D    X-303A-D    M-360-1        2" RELIEF              SELF      C          N/A 1501-18B    X-311A      M-360-1        6" MO GLOBE            AC        C          N/A 1501-18B    X-311B      M-360-1        6" MO GLOBE            AC        C          N/A 1501-19A    X-311A      M-360-1        6" MO GATE              AC        C          N/A 1501-19B    X-311B      M-360-1        6" MO GATE              AC        C          N/A 1501-20A    X-310A      M-360-1        14" MO GATE            AC        C          N/A 1501-20B    X-310B      M-360-1        14" MO GATE            AC        C          N/A 1501-22A    X-116A      M-360-1        16" MO GATE            AC        C          N/A 1501-22B    X-116B      M-360-1        16" MO GATE            AC        C          N/A 1501-23A    X-116A      M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-23B    X-116B      M-360-1        0.75" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-20                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 6 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1501-25A    X-116A      M-360-1        16" AO CHECK        AC, SELF      C          N/A 1501-25B    X-116B      M-360-1        16" AO CHECK        AC, SELF      C          N/A 1501-27A    X-145        M-360-1        10" MO GATE            AC        C          N/A 1501-27B    X-150A      M-360-1        10" MO GATE            AC        C          N/A 1501-28A    X-145        M-360-1        10" MO GATE            AC        C          N/A 1501-28B    X-150A      M-360-1        10" MO GATE            AC        C          N/A 1501-30A    X-145        M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-30B    X-150A      M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-33A    X-303A-D    M-360-1        24" BUTTERFLY          HAND      LO          N/A 1501-33B    X-303A-D    M-360-1        24" BUTTERFLY          HAND      LO          N/A 1501-38A    X-310A      M-360-1        14" MO GLOBE            AC        C          N/A 1501-38B    X-310B      M-360-1        14" MO GLOBE            AC        C          N/A 1501-40A    X-311A      M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-40B    X-311B      M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-70A    X-303A-D    M-360-1        1.5" GLOBE            HAND      LC          N/A 1501-70B    X-303A-D    M-360-1        1.5" GLOBE            HAND      LC          N/A 1501-72A    X-303A-D    M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-72B    X-303A-D    M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-73A    X-303A-D    M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-73B    X-303A-D    M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-87A    X-310A      M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-87B    X-310B      M-360-1        0.75" GLOBE            HAND      LC          N/A 1501-92A    X-116A      M-360-1 & 2    0.75" GLOBE            HAND      LC          N/A 1501-92B    X-116B      M-360-1 & 2    0.75" GLOBE            HAND      LC          N/A 1599-61    X-303A-D    M-360-1        3" AO GATE          AC SOL      C          10 1599-62    X-303A-D    M-360-1        3" AO GATE          AC SOL      C          10 1599-68    X-303A-D    M-360-1        0.75" GLOBE            HAND      LC          N/A 1599-76    X-303A-D    M-360-1        1.5" GATE              HAND      LC          N/A 1599-77    X-303A-D    M-360-1        1.5" GATE              HAND      LC          N/A 1599-124A  X-145        M-360-1        0.5" GLOBE            HAND      LC          N/A 1599-124B  X-150A      M-360-1        0.5" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-21                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 7 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1599-125A  X-145        M-360-1        0.5" GLOBE            HAND      LC          N/A 1599-125B  X-150A      M-360-1        0.5" GLOBE            HAND      LC          N/A 1599-126A  X-311A      M-360-1        0.5" GLOBE            HAND      LC          N/A 1599-126B  X-311B      M-360-1        0.5" GLOBE            HAND      LC          N/A 1599-127A  X-311A      M-360-1        0.5" GLOBE            HAND      LC          N/A 1599-127B  X-311B      M-360-1        0.5" GLOBE            HAND      LC          N/A 1601-20A    X-304        M-356          20" AO BTTRFL        AC SOL      C          N/A 1601-20B    X-304        M-356          20" AO BTTRFL        AC SOL      C          N/A 1601-21    X-126        M-356          18" AO BTTRFL        AC SOL      C          10 1601-22    X-126, 304  M-356          18" AO BTTRFL        AC SOL      C          10 1601-23    X-125        M-356          18" AO BTTRFL        AC SOL      C          10 1601-24    X-125, 318A  M-356          18" AO BTTRFL        AC SOL      C          10 1601-31A    X-304        M-356          20" CHECK              SELF      C          N/A 1601-31B    X-304        M-356          20" CHECK              SELF      C          N/A 1601-48    X-121        M-367-2        1" GATE                HAND      O          N/A 1601-55    X-126, 304  M-356          4" AO BTTRFL        AC SOL      O          15 1601-56    X-304        M-356          18" AO BTTRFL        AC SOL      O          10 1601-57    X-126, 304  M-356          1" MO GLOBE            AC        O          15 1601-58    X-304        M-356          1" AO GLOBE          AC SOL      O/C          15 1601-59    X-126        M-356          1" AO GLOBE          AC SOL      O          15 1601-60    X-318A      M-356          18" AO BTTRFL        AC SOL      C          10 1601-61    X-318A      M-356          2" AO GLOBE          AC SOL      C          15 1601-62    X-125        M-356          2" AO GLOBE          AC SOL      C          15 1601-63    X-125, 318A  M-356          6" AO BTTRFL        AC SOL      C          10 1601-93    X-318A      M-356          10" AO BTTRFL        DC SOL      C          N/A 1601-A-500  X-304        M-356          0.75" GLOBE            HAND      LC          N/A 1601-B-500  X-304        M-356          0.75" GLOBE            HAND      LC          N/A 1604-500    X-126        M-356          0.75" GLOBE            HAND      LC          N/A 1605-500    X-125        M-356          0.75" GLOBE            HAND      LC          N/A 1623-DV    X-304        M-356          0.75" GLOBE            HAND      LC          N/A 1679-52    X-318A      M-356          0.75" GLOBE            HAND      LC          N/A 1699-59A    X-313A      M-356          0.5" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-22                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 8 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 1699-59B    X-313B      M-356          0.5" GLOBE            HAND      LC          N/A 1699-61A    X-304        M-356          0.5" GLOBE            HAND      LC          N/A 1699-61B    X-316B      M-356          0.5" GLOBE            HAND      LC          N/A 1699-71A    X-313A      M-356          2" GATE                HAND      LC          N/A 1699-71B    X-313B      M-356          2" GATE                HAND      LC          N/A 1699-72    X-126        M-356          0.75" GLOBE            HAND      LC          N/A 1699-75    X-305D      M-356          0.75" GLOBE            HAND      LC          N/A 1699-77    X-305D      M-356          0.75" GLOBE            HAND      LC          N/A 1699-81    X-125        M-356          0.75" GLOBE            HAND      LC          N/A 1699-83    X-313A      M-356          0.75" GLOBE            HAND      LC          N/A 1699-99    X-305A      M-356          1" GLOBE              HAND      LC          N/A 1699-100    X-305B      M-356          1" GLOBE              HAND      LC          N/A 1916-500    X-119        M-362          2" GLOBE              HAND      LC          N/A 2001-5      X-118        M-369          3" AO DIAPHRAGM      AC SOL      C          20 2001-6      X-118        M-369          3" AO DIAPHRAGM      AC SOL      C          20 2001-105    X-117        M-369          3" AO DIAPHRAGM      AC SOL      C          20 2001-106    X-117        M-369          3" AO DIAPHRAGM      AC SOL      C          20 2099-552    X-118        M-369          0.75" GATE            HAND      LC          N/A 2099-871    X-117        M-369          0.75" GATE            HAND      LC          N/A 2301-4      X-128        M-374          10" MO GATE            AC        O          50 2301-5      X-128        M-374          10" MO GATE            DC        O          63 2301-14    X-310A      M-374          4" MO GLOBE            DC        C          N/A 2301-16    X-128        M-374          0.75" GLOBE            HAND      LC          N/A 2301-34    X-312        M-374          2" CHECK              SELF      C          N/A 2301-35    X-303A-D    M-374          16" MO GATE            DC        C          97 2301-36    X-303A-D    M-374          16" MO GATE            DC        C          97 2301-37    X-303A-D    M-374          0.75" GLOBE            HAND      LC          N/A 2301-40    X-310A      M-374          4" CHECK              SELF      C          N/A 2301-41A    X-317A      M-374          0.75" GLOBE            HAND      LC          N/A 2301-41B    X-312        M-374          0.75" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-23                              Revision 94
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 9 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 2301-45    X-317A      M-374          24" CHECK              SELF      C          N/A 2301-53    X-310A      M-374          4" RELIEF              SELF      C          N/A 2301-56    X-303A-D    M-374          16" BUTTERFLY          HAND      LO          N/A 2301-71    X-312        M-374          2" STOP CHECK          SELF      C          N/A 2301-74    X-317A      M-374          12" STOP CHECK        SELF      C          N/A 2301-93    X-303A-D    M-374          0.75" GLOBE            HAND      LC          N/A 2301-94    X-303A-D    M-374          0.75" GLOBE            HAND      LC          N/A 2351A-DV    X-305D                      0.75" GLOBE            HAND      LC          N/A 2351B-DV    X-305D                      0.75" GLOBE            HAND      LC          N/A 2399-15    X-303A-D    M-374          0.75" GLOBE            HAND      LC          N/A 2499-1A    X-146        M-706-2        0.5" SOL GLOBE          AC        C          N/A 2499-1B    X-127        M-706-2        0.5" SOL GLOBE          AC        C          N/A 2499-2A    X-146        M-706-2        0.5" SOL GLOBE          AC        C          N/A 2499-2B    X-127        M-706-2        0.5" SOL GLOBE          AC        C          N/A 2499-3A    X-316A      M-706-2        0.5" SOL GLOBE          AC        C          N/A 2499-3B    X-316B      M-706-2        0.5" SOL GLOBE          AC        C          N/A 2499-4A    X-316A      M-706-2        0.5" SOL GLOBE          AC        C          N/A 2499-4B    X-316B      M-706-2        0.5" SOL GLOBE          AC        C          N/A 2499-7A    X-146        M-706-2        0.5" GLOBE            HAND      LC          N/A 2499-7B    X-127        M-706-2        0.5" GLOBE            HAND      LC          N/A 2499-9A    X-316A      M-706-2        0.5" GLOBE            HAND      LC          N/A 2499-9B    X-316B      M-706-2        0.5" GLOBE            HAND      LC          N/A 2499-27A    X-139B      M-706-2        0.5" GLOBE            HAND      O          N/A 2499-27B    X-127        M-706-2        0.5" GLOBE            HAND      O          N/A 2499-28A    X-139B      M-706-2        O.5" CHECK            SELF      C          N/A 2499-28B    X-127        M-706-2        0.5" CHECK            SELF      C          N/A 2499-29A    X-139B      M-706-2        0.5" GLOBE            HAND      O          N/A 2499-29B    X-127        M-706-2        0.5" GLOBE            HAND      O          N/A 2499-31A    X-139B      M-706-2        0.5" GLOBE            HAND      LC          N/A 2499-31B    X-127        M-706-2        0.5" GLOBE            HAND      LC          N/A 2499-32A    X-139B      M-706-2        0.5" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-24                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 10 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 2499-32B    X-127        M-706-2        0.5" GLOBE            HAND      LC          N/A 3099-91    X-105D      M-345-2        0.75" GLOBE            HAND      LC          N/A 3099-92    X-105C      M-345-2        0.75" GLOBE            HAND      LC          N/A 3099-93    X-105B      M-345-2        0.75" GLOBE            HAND      LC          N/A 3099-94    X-105A      M-345-2        0.75" GLOBE            HAND      LC          N/A 3204-A-504  X-107B      M-347          1" GLOBE              HAND      LC          N/A 3204-B-504  X-107A      M-347          1 GLOBE              HAND      LC          N/A 3299-53    X-107A      M-347          0.75" GLOBE            HAND      LC          N/A 3299-55    X-107B      M-347          0.75" GLOBE            HAND      LC          N/A 3702        X-123        M-353          6' MO GATE              AC        O          N/A 3703        X-124        M-353          6' MO GATE              AC        O          N/A 3706        X-124        M-353          6" MO GATE              AC        O          N/A 3769-500    X-123        M-353          6" CHECK              SELF      O          N/A 3799-125    X-124        M-353          6" GATE                HAND      O          N/A 3799-126    X-123        M-353          6" GATE                HAND      O          N/A (continued)
Dresden 2 and 3                              A-25                              Revision 91
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 11 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 3799-137    X-123        M-353          0.75" GLOBE            HAND      LC          N/A 3799-139    X-123        M-353          0.75" GLOBE            HAND      LC          N/A 3799-181    X-124        M-353          0.75" GLOBE            HAND      LC          N/A 3799-277    X-124        M-353          1" RELIEF              SELF      C          N/A 4327-500    X-119        M-366          3" GATE                HAND      LC          N/A 4327-501    X-119        M-366          3" GLOBE              HAND      C          N/A 4327-502    X-119        M-366          3" GLOBE              HAND      LC          N/A 4399-915    X-119        M-366          1" RELIEF              SELF      C          N/A 4640-500    X-120        M-360          1" GLOBE              HAND      LC          N/A 4722        X-121        M-367-2        2" AO GLOBE          AC SOL      O          N/A 4724        X-121        M-367-2        2" AO GLOBE          AC SOL      0          N/A 4799-514    X-136F      M-367-2        0.5" PRG CHECK        SELF      C          N/A (TIP) 4799-530    X-121        M-367-2        2" CHECK              SELF      C          N/A 4799-533    X-121        M-367-2        0.25" GLOBE            HAND      LC          N/A 4799-531    X-121        M-367-2        2" CHECK              SELF      C          N/A 4799-532    X-121        M-367-2        0.25" GLOBE            HAND      LC          N/A 4799-1775  X-121        M-367-2        0.5" GLOBE            HAND      LC          N/A 4799-1776  X-121        M-367-2        0.5" GLOBE            HAND      LC          N/A 8501-1A    X-309A      M-356          0.5" AO GLOBE        AC SOL      O          5 8501-1B    X-309A      M-356          0.5" AO GLOBE        AC SOL      O          5 8501-3A    X-115        M-356          1" AO GLOBE          AC SOL      O          5 8501-3B    X-115        M-356          1" AO GLOBE          AC SOL      O          5 8501-5A    X-144        M-356          0.5" AO GLOBE        AC SOL      O          5 8501-5B    X-144        M-356          0.5" AO GLOBE        AC SOL      O          5 8501-500    X-309A      M-356          0.5" GLOBE            HAND      O          N/A 8502-500    X-126, 304  M-356          3" GATE                HAND      LC          N/A 8507-501    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-502    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-503    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-504    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-505    X-144        M-421          0.5" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-26                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 12 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 8507-506    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-507    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-508    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-509    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-510    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-511    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-512    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-513    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-514    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-515    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-516    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-517    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-518    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-519    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-520    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8507-521    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8526        X-126, 304  M-356          0.75" RELIEF          SELF      C          N/A 8599-527    X-126, 304  M-356          0.375" GLOBE          HAND      LC          N/A 8599-617    X-115        M-356          1" GLOBE              HAND      LC          N/A 8599-624    X-115        M-356          1" GLOBE              HAND      O          N/A 8599-630    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-631    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-632    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-633    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-634    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-635    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-636    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-637    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-638    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-639    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-640    X-144        M-421          0.5" GLOBE            HAND      LC          N/A (continued)
Dresden 2 and 3                              A-27                              Revision 86
 
TRM Appendix A Primary Containment Isolation Valves Table A-2 (page 13 of 13)
Primary Containment Isolation Valves (Unit 3)
ISOLATION  PENETRATION                                                NORMAL    MAX CLOSING P&ID          VALVE TYPE        POWER VALVE NO. NUMBER                                                POSITION    TIME, SEC 8599-641    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-642    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-643    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-644    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-645    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-646    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-647    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-648    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-649    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 8599-650    X-144        M-421          0.5" GLOBE            HAND      LC          N/A 3A-9202-500 X-144        M-356          0.5" GLOBE            HAND      O          N/A 9205A      X-144        M-356          0.5" AO GLOBE        AC SOL      O          5 9205B      X-144        M-356          0.5" AO GLOBE        AC SOL      O          5 9206A      X-144        M-356          0.5" AO GLOBE        AC SOL      O          5 9206B      X-144        M-356          0.5" AO GLOBE        AC SOL      O          5 3A-9206-500 X-144        M-356          0.5" GLOBE            HAND      O          N/A 9207A      X-101        M-356          1" AO GLOBE          AC SOL      O          5 9207B      X-101        M-356          1" AO GLOBE          AC SOL      O          5 9208A      X-101        M-356          1" AO GLOBE          AC SOL      O          5 9208B      X-101        M-356          1" AO GLOBE          AC SOL      O          5 3A-9225-500 X-144        M-356          0.5" GLOBE            HAND      O          N/A 9299-50    X-101        M-356          1" GLOBE              HAND      O          N/A 9299-51    X-101        M-356          1" GLOBE              HAND      O          N/A Dresden 2 and 3                              A-28                              Revision 86
 
APPENDIX B SECONDARY CONTAINMENT ISOLATION VALVES
 
TRM Appendix B Secondary Containment Isolation Valves Table B-1 (page 1 of 2)
Secondary Containment Isolation Valves ISOLATION TIME VALVE (seconds)
: 1. Unit 2 Reactor Building Secondary Containment                                  N/A Penetration Valve 2-1699-125
: 2. Unit 2 Reactor Building Secondary Containment                                  N/A Penetration Valve 2-1699-126
: 3. Unit 2 Reactor Building Secondary Containment                                  N/A Penetration Valve 2-1699-116
: 4. Unit 2/3 Reactor Building Secondary Containment                                N/A Penetration Valve 2/3-1699-115
: 5. Decontamination Header Drain to Reactor Building                                N/A Equipment Drain Tank 2-2099-978
: 6. Unit 2 Isolation Condenser Loop Seal Drain                                      N/A Valve 2-4899-167
: 7. Unit 2 Reactor Building Secondary Containment                                  N/A Penetration Valve 2-1699-129
: 8. Unit 2 Roof Drain Hydrolazer Connection                                        N/A Isolation Valve 2-4199-253
: 9. Unit 3 Roof Drain Hydrolazer Connection                                        N/A Isolation Valve 3-4199-253
: 10. Unit 3 Reactor Building Secondary Containment                                  N/A Penetration Valve 3-1699-130
: 11. Decontamination Header Drain to Reactor Building                                N/A Equipment Drain Tank 3-2099-978
: 12. Unit 3 Reactor Building Secondary Containment                                  N/A South Isolation Valve 3-1699-131
: 13. Unit 3 Reactor Building Secondary Containment                                  N/A South Isolation Valve 3-1699-132
: 14. Unit 3 Reactor Building Secondary Containment                                  N/A Penetration Valve Elevation 517 Southwest - Valve #1 3-1699-127
: 15. Unit 3 Reactor Building Secondary Containment                                  N/A Penetration Valve Elevation 517 Southwest - Valve #2 3-1699-128
: 16. 2A Inlet Damper 2-5741A                                                        300
: 17. 2B Inlet Damper 2-5741B                                                        300
: 18. 2A Outlet Damper 2-5742A                                                        300
: 19. 2B Outlet Damper 2-5742B                                                        300
: 20. 3A Inlet Damper 3-5741A                                                        300
: 21. 3B Inlet Damper 3-5741B                                                        300
: 22. 3A Outlet Damper 3-5742A                                                        300
: 23. 3B Outlet Damper 3-5742B                                                        300
: 24. Unit 2 Reactor Building Secondary Containment SAWA                              N/A Missile/Secondary Containment Barrier Blind Flange (Ref. Drawing B-442B)
Dresden 2 and 3                                          B-2                                Revision 86
 
TRM Appendix B Secondary Containment Isolation Valves (continued)
Table B-1 (page 2 of 2)
Secondary Containment Isolation Valves ISOLATION TIME VALVE (seconds)
N/A
: 25. Unit 3 Reactor Building Secondary Containment SAWA Missile/Secondary Containment Barrier Blind Flange (Ref. Drawing B-442B)
: 26. Unit 2 SAWA Connection LPCI Riser Isolation Valve 2-1599-156                    N/A
: 27. Unit 3 SAWA Connection LPCI Riser Isolation Valve 3-1599-156                    N/A
: 28. Unit 2 SAWA Connection LPCI Riser Bypass Valve 2-1599-158                      N/A
: 29. Unit 3 SAWA Connection LPCI Riser Bypass Valve 3-1599-158                      N/A
: 30. Unit 2 SAWA Connection Drain Valve 2-1599-159                                  N/A
: 31. Unit 3 SAWA Connection Drain Valve 3-1599-159                                  N/A
: 32. Unit 2 HCVS Vent Line Rupture Disc 2-1601-01                                    N/A
: 33. Unit 3 HCVS Vent Line Rupture Disc 3-1601-01                                    N/A
: 34. Unit 2 HCVS Vent Line Drain Valve 2-1603-30                                    N/A
: 35. Unit 3 HCVS Vent Line Drain Valve 3-1603-30                                    N/A
: 36. Unit 2 HCVS Torus Vent Valve Nitrogen Isolation Valve 2-1604-14                N/A
: 37. Unit 3 HCVS Torus Vent Valve Nitrogen Isolation Valve 3-1604-14                N/A
: 38. Unit 2 HCVS PCI Valve Nitrogen Isolation Valve 2-1604-24                        N/A
: 39. Unit 3 HCVS PCI Valve Nitrogen Isolation Valve 3-1604-24                        N/A
: 40. Unit 2 HCVS Argon Supply 3-Way Valve 2-1605-14                                  N/A
: 41. Unit 3 HCVS Argon Supply 3-Way Valve 3-1605-14                                  N/A Dresden 2 and 3                                          B-3                                  Revision 86
 
TRM Appendix C SFDP APPENDIX C SAFETY FUNCTION DETERMINATION PROGRAM Dresden 2 & 3                                        Revision 0
 
TRM Appendix C SFDP TABLE OF CONTENTS A.      PURPOSE.....                                            2 B.      REFERENCES.                                              2 C.      DEFINITIONS....                                          2 D.      LIMITATIONS.                                            3 E.      PROCEDURE...                                            4 E.1  LCO 3.0.6 REQUIREMENTS.                                    4 E.2  T.S. 5.5.11, Safety Function Determination Program (SFDP) Requirements.      6 E.3  Program Implementation..                                  8 FIGURES 1    LOSF Evaluation Flow Chart                                11 ATTACHMENTS 1      Loss Of Safety Function Evaluation.....                        12 2    Supported System (s) Completion Time Extensions.                    18 3    SFDP Tracking Worksheet                                  23 TABLE 1    Cross Train Check Guidance.                                27 Dresden 2 & 3                            C-1                                    Revision 0
 
TRM Appendix C SFDP A.      PURPOSE A.1        Objective The purpose of the SFDP is to enusre that when Technical Specification LCO 3.0.6 is used to preclude performing the Conditions and Actions for inoperable SUPPORTED SYSTEMS:
* A Loss of Safety Function does not go undetected,
* The plant will be placed in a safe condition if a Loss of Safety Function is determined to exist, and
* A SUPPORTED SYSTEM(S) Completion Time will not be inappropriately extended.
B.      REFERENCES B.1        Technical Specification (TS) 3.0.6.
B.2        TS 5.5.11, "Safety Function Determination Program (SFDP)"
C.      DEFINITIONS C.1        SAFETY FUNCTION -
An accident mitigation feature required by NRC regulation, plant design or Technical Specifications normally composed of two trains of SUPPORT and SUPPORTED equipment.
C.2        LOSS OF SAFETY FUNCTION (LOSF) -
A LOSF exists when, assuming no concurrent single failure and assuming no concurrent loss of offsite power or loss of onsite diesel generator(s), a safety function assumed in the accident analysis cannot be performed.
(SEE ATTACHMENT 1)
C.3        SUPPORT SYSTEM -
A SYSTEM(S) that is needed by another TS LCO required SYSTEM(S) to perform a safety function.
Dresden 2 & 3                            C-2                                              Revision 0
 
TRM Appendix C SFDP C.4          SUPPORTED SYSTEM -
A SYSTEM, required by the TS, which requires a SUPPORT SYSTEM to ensure its safety function can be performed. Process parameters or operating limits do not comprise SUPPORTED SYSTEM(S) for the purposes of implementing TS LCO 3.0.6.
C.5        MAXIMUM OUT OF SERVICE TIME -
A SUPPORTED SYSTEM(S) made inoperable by the SUPPORT SYSTEM(S) inoperability shall be restored to OPERABLE status within the Maximum Out Of Service Time (MOST). The MOST is the Completion Time specified in the Technical Specifications for restoring the first inoperable SUPPORT SYSTEM(S) to OPERABLE status plus the time specified in the TS for restoring the SUPPORTED SYSTEM(S) to OPERABLE status. (SEE ATTACHMENT 2 - Completion Time Extensions )
The inoperability of the SUPPORTED SYSTEM(S) must only be directly attributed to its associated SUPPORT SYSTEM(S) being inoperable and the SUPPORT SYSTEM(S) Required Actions not specifically requiring entry into the SUPPORTED SYSTEM(S) Conditions and Required Actions.
D.      LIMITATIONS D.1        Reporting Requirements will be done in accordance with the Reportability Manual.
D.2        Changes to this Program shall be performed in accordance with the TRM Change Control Program.
D.3        The Shift Manager is responsible for implementing the Safety Function Determination Program.
Dresden 2 & 3                            C-3                                        Revision 0
 
TRM Appendix C SFDP E.      PROCEDURE E.1          LCO 3.0.6 REQUIREMENTS E.1.1        TS LCO 3.0.2 states that upon discovery of a failure to meet an TS LCO, the Required Actions of the associated Conditions shall be met, except as provided in TS LCO 3.0.5 and TS LCO 3.0.6.
E.1.2        TS LCO 3.0.6 provides an exception to TS LCO 3.0.2 for SUPPORT SYSTEM(S) by not requiring the Conditions and Required Actions for the SUPPORTED SYSTEM(S) to be performed when the failure to meet an TS LCO is solely due to a SUPPORT SYSTEM(S) LCO not being met. In this situation, although the SUPPORTED SYSTEM(S) is determined to be inoperable as defined in the Technical Specifications, LCO 3.0.6 requires only the ACTIONS of the SUPPORT SYSTEM(S) to be performed. The Conditions and Required Actions for the SUPPORTED SYSTEM(S) are not required to be performed (i.e., cascading to the SUPPORTED SYSTEM(S)) per TS LCO 3.0.6.
E.1.3        There are two types of SUPPORT SYSTEM(S) that must be considered when implementing TS LCO 3.0.6:
SUPPORT SYSTEM(S) specifically addressed in Technical Specifications, and SUPPORT SYSTEM(S) that are not specifically addressed in Technical Specifications NOTE It may be necessary to perform OPERABILITY Determinations in accordance with Procedure RS-AA-105 in order to determine SUPPORTED SYSTEMS made Inoperable by Inoperable SUPPORT SYSTEMS.
If required SUPPORT SYSTEM(S) is addressed in the Technical Specifications, then only the SUPPORT SYSTEM(S) Conditions and Actions must be entered per TS LCO 3.0.6 (i.e., "cascading" to the SUPPORTED SYSTEM(S) is not required).
Dresden 2 & 3                              C-4                                          Revision 0
 
TRM Appendix C SFDP If required SUPPORT SYSTEM(S) is NOT addressed in the Technical Specifications, then impact of the SUPPORT SYSTEM(S) inoperability must be evaluated with respect to any SUPPORTED SYSTEM(S) that is addressed in Technical Specifications.
E.1.4 A single component inoperability may result in multiple inoperabilities within a single train and affect multiple TS LCOs. TS LCO 3.0.6 limits the amount of "cascading" Actions that are required when an inoperable SYSTEM(S) renders a SUPPORTED SYSTEM(S) inoperable.
E.1.5 Any SUPPORT SYSTEM(S) inoperability must be evaluated with respect to the existing plant conditions to ensure that a Loss of Safety Function (LOSF) does not exist.
Example: The loss of Containment Cooling Service Water (CCSW) Pump to one CCSW heat exchanger. If the heat exchanger bypass valve was found stuck open in the opposite subsystem, a LOSF will exist following a loss-of-coolant-accident and this plant configuration must be evaluated.
E.1.6 When exception of TS LCO 3.0.6 is utilized, evaluations are required in accordance with TS 5.5.11, "Safety Function Determination Program (SFDP)".
E.1.7 If LOSF is determined to exist by this Program, the appropriate Conditions and Required Actions of the TS LCO in which the LOSF exists are required to be entered.
E.1.8 When SUPPORT SYSTEM(S) Required Action directs a SUPPORTED SYSTEM(S) to be declared inoperable or directs entry into Conditions and Required Actions for a SUPPORTED SYSTEM(S), the applicable Conditions and Required Actions shall be entered in accordance with TS LCO 3.0.2.
E.1.9 It should be noted that for cases in which the inoperable SUPPORT SYSTEM(S) is addressed in Technical Specifications, "cascading" Conditions and Required Actions may still be performed in lieu of invoking TS LCO 3.0.6.
Dresden 2 & 3                      C-5                                          Revision 0
 
TRM Appendix C SFDP E.2            T.S. 5.5.11, SAFETY FUNCTION DETERMINATION PROGRAM (SFDP) REQUIREMENTS NOTE If failure of a TS required SUPPORT SYSTEM(S) results in the inoperability of a SYSTEM(S) outside of the TS, and that SYSTEM(S) is subsequently relied upon by a SUPPORTED SYSTEM(S) to remain OPERABLE, then TS LCO 3.0.6 could apply and only the SUPPORT SYSTEM(S) Required Actions would be entered.
E.2.1          When TS LCO 3.0.6 is used as an exception to TS LCO 3.0.2, an evaluation is required to ensure a LOSF is detected and appropriate actions are taken.
E.2.2          Therefore, the SFDP requires:
E.2.2.1        Cross train checks to ensure a LOSF does not go undetected; Since "cascading" the Conditions and Required Actions of a Specification are not required when applying TS LCO 3.0.6, a possibility exists that unrelated concurrent failures of more than one SYSTEM(S) could result in the complete loss of both trains of a SUPPORTED SYSTEM(S). Therefore, upon a failure to meet two or more LCOs during the same time period, an evaluation shall be conducted to determine if a LOSF exists. Generally, this is done by confirming that the remaining required redundant SYSTEM(S) are OPERABLE ( Per ATTACHMENT 1 and TABLE 1). If a LOSF does exist, the SFDP directs that the appropriate actions be taken.
E.2.2.2        Placing the plant in a safe condition if a LOSF is detected; If LOSF is determined to exist by this Program, the appropriate Conditions and Required Actions of the LCO in which the LOSF exists are required to be entered per step E.3.4.
Dresden 2 & 3                                C-6                                              Revision 0
 
TRM Appendix C SFDP E.2.2.3 Controls on extending completion times on inoperable SUPPORTED SYSTEM(S);
MOST is determined per Attachment 2.
E.2.2.4 Appropriate limitations and remedial or compensatory actions to be taken as a result of the SUPPORT SYSTEM(S) inoperability.
Dresden 2 & 3                        C-7                                        Revision 0
 
TRM Appendix C SFDP E.3      PROGRAM IMPLEMENTATION Note Performing steps E.3.1 thru E.3.7 and / or use of the Flowchart (Figure 1) will implement the requirements of the SFDP.
E.3.1    Does the degraded SYSTEM(S) render a TS required SYSTEM(S) inoperable?
E.3.1.1  If NO, then no further evaluation is necessary.
E.3.1.2  If YES, then evaluate this inoperabilities impact on any current SFDs and document on worksheet.
E.3.2    Is the inoperable SYSTEM(S) also a SUPPORT SYSTEM(S)?
E.3.2.1  If NO, then perform Conditions and Required Actions for the inoperable SYSTEM(S).
E.3.2.2  If YES, then identify all TS required SUPPORTED SYSTEM(S) that are rendered inoperable as a result of this TS SUPPORT SYSTEM Inoperability (Use Table 1 as an aid in evaluating potential Support Supported Relationships).
E.3.3    Does the Inoperable SUPPORT SYSTEM(S) Specification Conditions and Required Actions direct either the Immediate Declaration of Inoperability of SUPPORTED SYSTEM(S) or performance of any SUPPORTED SYSTEM(S) Required Action(s)?
E.3.3.1  If YES, then enter the TS Condition for the SUPPORTED SYSTEM(S) as directed and perform the Required Actions.
E.3.3.2  If NO, then:
EITHER Perform both the SUPPORT and the SUPPORTED SYSTEM(S)
Required Actions.
Dresden 2 & 3                        C-8                                            Revision 0
 
TRM Appendix C SFDP OR Perform SUPPORT SYSTEM(S) Required Actions, And Perform a LOSF Evaluation for ALL inoperable SUPPORT and SUPPORTED SYSTEM(S) , per ATTACHMENT 1 and Table 1.
E.3.4    If LOSF is determined to exist, then perform the appropriate Conditions and Required Actions as determined from using the following guidance:
E.3.4.1  SINGLE SUPPORT SYSTEM INOPERABILITY-When LOSF is solely due to a single T.S. SUPPORT SYSTEM ( e.g., loss of a pump suction source due to low tank level ) the appropriate LCO is the LCO for the SUPPORT SYSTEM. The Actions for the SUPPORT SYSTEM LCO adequately address the inoperabilities of that system without reliance upon the Actions of the SUPPORTED SYSTEM.
E.3.4.2  MULTIPLE SUPPORT SYSTEM INOPERABILITY-When LOSF is due to multiple T.S. SUPPORT SYSTEM inoperabilities, the appropriate LCO is the LCO for the SUPPORTED SYSTEMS.
E.3.5    If NO LOSF exists or LOSF is solely due to a single T.S. support system, then for all SUPPORTED SYSTEM(S) which are rendered inoperable:
E.3.5.1  Invoke TS LCO 3.0.6 to defer entry into the Conditions and Required Actions associated with the inoperable SUPPORTED SYSTEM(S):
E.3.5.1.1 Calculate the MOST for the inoperable SUPPORTED SYSTEM(S) using ATTACHMENT 2.
Dresden 2 & 3                        C-9                                            Revision 0
 
TRM Appendix C SFDP E.3.5.1.2 Complete the SFDP Worksheet per Attachment 3.
When filling out the SFDP Worksheet it is only necessary to enter names of those SUPPORTED SYSTEMS that are made Inoperable by the Inoperable SUPPORT SYSTEM. It is not necessary to identify either OPERABLE SUPPORTED SYSTEMS or SUPPORTED SYSTEMS that are not in the MODE OF APPLICABILITY.
E.3.6    If SUPPORTED SYSTEM(S) is NOT restored to OPERABLE status (by restoring the SUPPORT SYSTEM(S) and all associated SUPPORTED SYSTEM(S) to Operable status) within the MOST, the associated Condition for the INOPERABLE SUPPORTED SYSTEM(S) Completion Time not being met shall be entered and the Required Actions shall be performed.
E.3.7    The SFD may be closed when the INOPERABLE SUPPORT SYSTEM and SUPPORTED SYSTEM(S) on the SFDP TRACKING SHEET are restored to Operable Status. Enter the time/date when the SUPPORT SYSTEM as well as all SUPPORTED SYSTEM(S) are restored to Operable status, and sign the SFD Worksheet.
Dresden 2 & 3                          C-10                                        Revision 0
 
TRM Appendix C SFDP Figure 1 LOSF Evaluation Flow Chart (Step E.3. 2)
(Step E.3.1)
Is the Inoperable                  No          Perform Conditions and TS Required System                            System a                                    Required Actions of Inoperable                          Support System?                                    Inoperable System Yes Identify Inoperable Supported System(s)
Perform both Support
                  & Supported System Required Actions Does the Inoperable Support System Conditions and Required Actions direct No                  either: (1) Immediate                      Yes                  Perform Directly Declaration of Inoperability                                            Addressed EITHER                              of Supported System(s) OR                                          Supported System(s)
(2) Performance of any                                        Conditions and Required Supported System Required                                                Actions Actions?
(Step E.3.3)
(Step E 3.4)
(1) Perform Support System Conditions and Required                                LOSF                    YES Enter LCO, Conditions and Actions                                                  Exists                              Required Actions of the System(s)
AND
                                                                          ?                                    in which the LOSF exists.
(2) Perform LOSF Evaluation No OR LOSF solely due to loss of single TS Support System    (Step E.3.5)
: 1. Calculate SUPPORTED SYSTEM(S) MOST
: 2. Complete the SFDP Worksheet per Attachment 3.0 Dresden 2 & 3                                                C-11                                                                            Revision 0
 
TRM Appendix C SFDP ATTACHMENT 1 LOSS OF SAFETY FUNCTION EVALUATION A.      Guidance for Safety Function Evaluation TS 5.5.11 states that a LOSF exists when, assuming no concurrent single failure, and assuming no concurrent loss of offsite power or loss of onsite diesel generator(s), a safety function assumed in the accident analysis cannot be performed.
For the purpose of this program, a graduated approach may be taken for determining the safety function of the SUPPORTED SYSTEM(S). This approach, detailed below, is graduated from most to least conservative. Even if the least conservative method is used, the requirements of TS 5.5.11 will be met. In determining whether a LOSF has occurred, at least one of these methods must be used.
The three methods are:
* Redundant SUBSYSTEM(S)/Division/Train
* TS LCO Function
* Safety Analysis Method 1: Redundant SUBSYSTEM(S)/Division/Train
: a.      For this method, the safety function is assumed to be the SYSTEM(S) function as described in the TS BASES. Confirm the OPERABILITY of the corresponding redundant SUPPORTED SYSTEM(S).
: b.      If one or more of the redundant SYSTEM(S) are found to be INOPERABLE, a LOSF may exist. The appropriate ACTIONS for a LOSF may be taken or alternatively, one of the following methods below may be used.
A redundant train evaluation used to identify a LOSF can be seen in the following three examples.
Dresden 2 & 3                                        C-12                                    Revision 0
 
TRM Appendix C SFDP ATTACHMENT 1 (Continued)
LOSS OF SAFETY FUNCTION EVALUATION SUPPORT/SUPPORTED SYSTEM(S) DIAGRAM EXAMPLE 1 A LOSF may exist when a SUPPORT SYSTEM is INOPERABLE, and:
A required SYSTEM redundant to the SYSTEM(S) supported by the INOPERABLE SUPPORT SYSTEM is also INOPERABLE.
If SYSTEM 2 of Train A is INOPERABLE, and SYSTEM 5 of Train B is INOPERABLE, a LOSF may exist in SUPPORTED SYSTEM(S) 5, 10, 11.
EXAMPLES TRAIN A                                                      TRAIN B System 8                                          System 8 System 4                                            System 4 System 9                                          System 9 System 2                                            System 2 System 10                                          System 10 System 5                                            System 5 System 11                                          System 11 System 1                                              System 1 System 12                                          System 12 System 6                                            System 6 System 13                                          System 13 System 3                                            System 3 System 14                                          System 14 System 7                                            System 7 System 15                                          System 15 Note: Chart reads from left to right, i.e., SYSTEM 1 is a SUPPORT SYSTEM for SYSTEM(S) 2 through 15.
Dresden 2 & 3                                      C-13                                Revision 0
 
TRM Appendix C SFDP ATTACHMENT 1 (Continued)
LOSS OF SAFETY FUNCTION EVALUATION SUPPORT/SUPPORTED SYSTEM(S) DIAGRAM EXAMPLE 2 A LOSF may exist when a SUPPORT SYSTEM is INOPERABLE, and:
A required SYSTEM redundant to the SYSTEM(S) in turn supported by the INOPERABLE SUPPORTED SYSTEM(S) is also INOPERABLE.
If SYSTEM 2 of Train A is INOPERABLE, and SYSTEM 11 of Train B is INOPERABLE, a LOSF may exist in SYSTEM 11 which is in turn supported by SYSTEM 5.
EXAMPLES TRAIN A                                                  TRAIN B System 8                                              System 8 System 4                                              System 4 System 9                                              System 9 System 2                                            System 2 System 10                                            System 10 System 5                                              System 5 System 11                                            System 11 System 1                                              System 1 System 12                                            System 12 System 6                                              System 6 System 13                                            System 13 System 3                                            System 3 System 14                                            System 14 System 7                                              System 7 System 15                                            System 15 Note: Chart reads from left to right, i.e., SYSTEM 1 is a SUPPORT SYSTEM for SYSTEM(S) 2 through 15.
Dresden 2 & 3                                      C-14                                  Revision 0
 
TRM Appendix C SFDP ATTACHMENT 1 (Continued)
LOSS OF SAFETY FUNCTION EVALUATION SUPPORT/SUPPORTED SYSTEM(S) DIAGRAM EXAMPLE 3 A LOSF may exist when a SUPPORT SYSTEM is INOPERABLE, and:
A required SYSTEM redundant to the SUPPORT SYSTEM(S) for the SUPPORTED SYSTEM(S) (a) and (b) above is also INOPERABLE.
If SYSTEM 2 of Train A is INOPERABLE, and SYSTEM 1 of Train B is INOPERABLE, a LOSF may exist in SYSTEM(S) 2, 4, 5, 8, 9, 10 and 11.
EXAMPLES TRAIN A                                                      TRAIN B System 8                                            System 8 System 4                                            System 4 System 9                                            System 9 System 2                                              System 2 System 10                                          System 10 System 5                                            System 5 System 11                                          System 11 System 1                                              System 1 System 12                                          System 12 System 6                                            System 6 System 13                                          System 13 System 3                                              System 3 System 14                                          System 14 System 7                                            System 7 System 15                                          System 15 Note: Chart reads from left to right, i.e., SYSTEM 1 is a SUPPORT SYSTEM for SYSTEM(S) 2 through 15.
Dresden 2 & 3                                    C-15                                Revision 0
 
TRM Appendix C SFDP ATTACHMENT 1 (Continued)
LOSS OF SAFETY FUNCTION EVALUATION Method 2: TS LCO Function Method 2: TS LCO Function
: a.      In certain cases, multiple SYSTEM(S) with diverse individual functions are specified under one TS LCO statement; i.e., in one Technical Specification. For these cases, the safety function may be considered to be broader than the individual SYSTEM(S) function - the safety function is the Technical Specification LCO function, not the SYSTEM(S) function (as described in Method 1 above).
: b.      An example of this is TS 3.5.1, ECCSOperating, in which four different SYSTEM(S) are included. In this case, the function as stated in the Bases, to cool the core during a LOCA, may be the safety function to be considered in the SFDP.
: c.      If a loss of TS LCO function is determined to exist, the appropriate Conditions and Required Actions for a LOSF may be taken or alternatively, the following method below may be used.
Method 3: Safety Analysis In this approach, the function of the SYSTEM(S) described in the UFSAR accident analyses is considered to be the safety function. If the SYSTEM(S) in question is not credited in the accident analyses, or if the accident function it performs is intact, then no LOSF exists. However, if the SYSTEM(S) function is credited and is lost (i.e., the accident function it performs cannot be met),
then the appropriate ACTIONS for a LOSF must be taken.
Dresden 2 & 3                                          C-16                                  Revision 0
 
TRM Appendix C SFDP ATTACHMENT 1 (Continued)
LOSS OF SAFETY FUNCTION EVALUATION B.      Loss of Safety Function (LOSF) Evaluation Is there any INOPERABLE or degraded SUPPORT SYSTEM(S) or SUPPORTED SYSTEM(S) equipment on the opposite/redundant train that, when coupled with this INOPERABLE equipment, might result in a complete loss of a Tech Spec required safety function.
: 1.      NO - No LOSF exists. No further evaluation is necessary.
: 2.      YES - A LOSF may exist. Evaluate which of the following conditions apply:
: a. The SYSTEM(S) is part of an TS LCO with multiple SUBSYSTEM(S) and the TS LCO specified function is intact. No LOSF exists.
: b. The SYSTEM(S) will still perform its required safety function as defined in the UFSAR. No LOSF exists.
: c. A LOSF exists. Perform the Required Actions in which the LOSF exists for the specific Condition(s) that apply.
C.      SUPPORTED SYSTEM LOSF When a LOSF is determined to exist, and the SFDP requires entry into the appropriate Conditions and Required Actions of the LCO in which the LOSF exists, consideration must be given to the specific type of function affected.
: 1.      SINGLE SUPPORT SYSTEM INOPERABILITY-When a LOSF is solely due to a single T.S. SUPPORT SYSTEM ( e.g., loss of a pump suction source due to low tank level ) the appropriate LCO is the LCO for the SUPPORT SYSTEM. The Actions for the SUPPORT SYSTEM LCO adequately address the inoperabilities of that system without reliance upon the Actions of the SUPPORTED SYSTEM.
: 2.      MULTIPLE SUPPORT SYSTEM INOPERABILITY-When a LOSF is due to multiple T.S. SUPPORT SYSTEM inoperabilities, the appropriate LCO is the LCO for the SUPPORTED SYSTEMS.
Dresden 2 & 3                                      C-17                                  Revision 0
 
TRM Appendix C SFDP ATTACHMENT 2 SUPPORTED SYSTEM (S) COMPLETION TIME EXTENSIONS BACKROUND The T.S. require declaring SUPPORTED SYSTEM(S) INOPERABLE if a SUPPORT SYSTEM(S) inoperability renders the SUPPORTED SYSTEM(S) incapable of performing its required function. However, the Conditions and Required Actions of the SUPPORTED SYSTEM(S) do not have to be entered (i.e., the Conditions and Required Actions are not entered) except as directed by the SUPPORT SYSTEM(S) Required Actions.
Consequently, it is possible to have SUPPORTED SYSTEM(S) INOPERABLE for longer periods of time than their respective Completion Time would allow on their own. Per Technical Specifications 5.5.11, the SFDP must include measures to ensure that the SUPPORTED SYSTEM(S) Completion Times are not inappropriately extended.
The following two methods are provided for ensuring Completion Times are not inappropriately extended. METHOD 1 applies to SUPPORTED SYSTEM inoperabilities associated with a single SUPPORT SYSTEM inoperability. METHOD 2 is applicable to those SUPPORTED SYSTEM inoperabilities due to multiple SUPPORT SYSTEM inoperabilities.
METHOD 1 Single SUPPORT SYSTEM(S) INOPERABLE affecting SUPPORTED SYSTEM(S)
: 1.      With a single SUPPORT SYSTEM(S) INOPERABLE, the affected SUPPORTED SYSTEM(S)
Conditions and Required Actions are not required to be entered unless directed by the SUPPORT SYSTEM(S) Required Actions.
: 2.      The method to accomplish this will be in the form of a calculated Maximum Out Of Service Time (MOST). The MOST will ensure that a time limit is placed on the INOPERABLE SUPPORTED SYSTEM(S) such that when an additional SUPPORT SYSTEM(S) becomes INOPERABLE no extension of time is added to the original MOST. MOST is only used when implementing the SFDP.
: 3.      The MOST is calculated in the following manner:
Support LCO Required Action                    + Supported LCO Required Action = MOST Completion Time                                                        Completion Time Support Train A, LCO AAA (72hrs)                +  Supported Train A, LCO BBB (72 hrs)=144 hrs
                                                      +  Supported Train A, LCO UUU (72 hrs)=144 hrs
                                                      +  Supported Train A, LCO ZZZ(72 hrs)=240 hrs
                                                      +  Supported Train A, LCO RRR (168 hrs)=240 hrs Dresden 2 & 3                                            C-18                                    Revision 0
 
TRM Appendix C SFDP ATTACHMENT 2 (Continued)
SUPPORTED SYSTEM (S) COMPLETION TIME EXTENSIONS EXAMPLE 1- Single SUPPORT SYSTEM(S) 2A CCSW Pump is declared INOPERABLE @ 0800 on 8/13/01. TS LCO 3.7.1 Conditions and Required Actions are entered. A LOSF is performed and all B train components are verified to be operable. Therefore, the TS LCO 3.0.6 and the SFDP can be implemented. All SUPPORTED SYSTEM(S) have been identified and the calculated MOST are as follows:
LCO        COMPLETIO CONDITION              N              MOST SUPPORT / SUPPORTED SYSTEM(S)
TIME CCSW SYSTEM (A Pump) Support                        3.7.1 A.1              30 days Suppression Pool Spray Supported                    3.6.2.4 A.1            7 days          37 days Suppression Pool Cooling Supported                  3.6.2.3 A.1            7 days          37 days EXAMPLE 2 With the 2A CCSW pump still inoperable, the 2B CCSW is determined to be inoperable @ 0800 on 8/15/01. TS LCO 3.7.1 Conditions and Required Actions are entered. A LOSF is performed and all B train components are verified to be operable. Therefore, the TS LCO 3.0.6 and the SFDP can be implemented. All SUPPORTED SYSTEM(S) have been identified and the calculated MOST are as follows:
LCO              COMPLETION CONDITION                  TIME                  MOST SUPPORT / SUPPORTED SYSTEM(S)
CCSW SYSTEM (B Pump) Support                        3.7.1 A.1              30 days (+ 24 HRS)
CCSW SYSTEM (A & B Pump)            Supported      3.7.1 C.1                    7 days Suppression Pool Spray      Supported              3.6.2.4 A.1                  7 days              37 days Suppression Pool Cooling    Supported              3.6.2.3 A.1                  7 days              37 days 3.7.1 Condition A applies to both inoperable pumps. Additionally you now have a subsystem inoperable for reasons other than Condition A and therefore Condition C is applicable. The MOST is calculated based on the times associated with Condition A entry. The Condition A time is based on the entry time for the A pump. However, the 24 HR extension (T.S. 1.3) is now applicable.
Dresden 2 & 3                                      C-19                                Revision 0
 
TRM Appendix C SFDP ATTACHMENT 2 (Continued)
SUPPORTED SYSTEM (S) COMPLETION TIME EXTENSIONS EXAMPLE 3 The 2A CCSW pump is declared operable @ 0800 on 8/20/01 while the 2B CCSW remains inoperable. TS LCO 3.7.1 Conditions and Required Actions are evaluated. It has been determined that both Condition 3.7.1.C and 3.7.1.A for the A CCSW Pump are now no longer applicable.
LCO                COMPLETION CONDITION                    TIME                  MOST SUPPORT / SUPPORTED SYSTEM(S)
CCSW SYSTEM (B Pump) Support                        3.7.1 A.1                30 days (+ 24 HRS)
Suppression Pool Spray        Supported            3.6.2.4 A.1                    7 days                37 days Suppression Pool Cooling      Supported            3.6.2.3 A.1                    7 days                37 days 3.7.1 Condition A now only applies to the B pump. The Condition A time is based on the entry time for the A pump. However, the 24 HR extension (T.S. 1.3) is still applicable.
EXAMPLE 4 With the 2B CCSW pump still inoperable, the 2C CCSW is determined to be inoperable @ 0800 on 8/20/01. TS LCO 3.7.1 Conditions and Required Actions are entered. A LOSF is performed and both trains of Supported equipment are evaluated for operability.
LCO                COMPLETION CONDITION                    TIME                  MOST SUPPORT / SUPPORTED SYSTEM(S)
CCSW SYSTEM (B Pump) Support                        3.7.1 A.1                30 days (+ 24 HRS)
Suppression Pool Spray        Supported            3.6.2.4 A.1                    7 days                37 days Suppression Pool Cooling      Supported            3.6.2.3 A.1                    7 days                37 days In addition to the existing inoperability above, it has been determined that both Condition 3.7.1.B and 3.7.1.A for the 2C CCSW Pump are now applicable, resulting in both Subsystems of CCSW being declared inoperable. LCO 3.0.6 / 5.5.11 can be used to evaluate the impact of the SUPPORTED SYSTEMS INOPERABILITY on a LOSF.
Using the BASES for 3.7.1 to evaluate the existing failures, it can be determined that the remaining equipment is sufficient to support the assumption in the accident analysis, thus the function is maintained.
Dresden 2 & 3                                        C-20                                  Revision 0
 
TRM Appendix C SFDP ATTACHMENT 2 (Continued)
SUPPORTED SYSTEM (S) COMPLETION TIME EXTENSIONS This results in tracking the following inoperabilities and associated MOST:
LCO                COMPLETION CONDITION                    TIME                MOST SUPPORT / SUPPORTED SYSTEM(S)
CCSW SYSTEM (B Pump) Support                      3.7.1 A.1                30 days (+ 24 HRS)
CCSW SYSTEM (C Pump) Support                      3.7.1. A.1                30 days (+ 24 HRS)
CCSW SYSTEM (B & C Pump)              Support    3.7.1 B.1                      7 days Suppression Pool Cooling      Supported          3.6.2.3 A.1                    7 days              37 days Suppression Pool Spray        Supported          3.6.2.4. A.1                    7 days              37 days Suppression Pool Cooling      Supported          3.6.2.3 B.1                    8 HRS              176 HRS Suppression Pool Spray        Supported          3.6.2.4 B.1                    8 HRS              176 HRS Dresden 2 & 3                                        C-21                                Revision 0
 
TRM Appendix C SFDP ATTACHMENT 2 (Continued)
SUPPORTED SYSTEM (S) COMPLETION TIME EXTENSIONS METHOD 2 Multiple SUPPORT SYSTEM(S) become INOPERABLE affecting the same SUPPORTED SYSTEM(S)
There may be some cases where two SUPPORT SYSTEMS for a common SUPPORTED SYSTEM become INOPERABLE simultaneously. In this case, the following method should be used to calculate the MOST.
: a. The first SUPPORT / SUPPORTED MOST plus an additional 24 hours; or
: b. The subsequent SUPPORT / SUPPORTED MOST as measured from discovery of the first SUPPORT inoperability.
EXAMPLE 1- Multiple SUPPORT SYSTEM(S)
Two SUPPORT SYSTEM(S) become INOPERABLE at different times.
: 1.      SYSTEMS B and C support SYSTEM A.
SYSTEM B (SUPPORT SYSTEM) becomes INOPERABLE at T = 0 days.
SYSTEM A (SUPPORTED SYSTEM) Completion Time - 3 days SYSTEM B (SUPPORT SYSTEM) Completion Time - 3 days SYSTEM C (SUPPORT SYSTEM) Completion Time - 7 days
: 2.      SYSTEM B (SUPPORT SYSTEM) with a Completion Time of 3 days, renders SYSTEM A (SUPPORTED SYSTEM) INOPERABLE. Method 1 is applied, which allows an overall MOST of 6 days for the SYSTEM A (SUPPORTED SYSTEM).
: 3.      At T = 1 day, SYSTEM C (SUPPORT SYSTEM) becomes INOPERABLE and has a Completion Time of 7 days. SYSTEM C (SUPPORT SYSTEM) also supports SYSTEM A (SUPPORTED SYSTEM). SYSTEM B (SUPPORT SYSTEM) continues to remain INOPERABLE through its Completion Time T = 3 days.
: 4.      Once SYSTEM C (SUPPORT SYSTEM) becomes INOPERABLE concurrent with SYSTEM B, Method 2 is applied at T=1, the Most is as follows:
Method 2a: Original MOST ( SYSTEM A +B) + 24 hours = 7days, OR Method 2b: New MOST ( SYSTEM A + C ) = 10 days measured from T = 0.
Dresden 2 & 3                                    C-22                          Revision 0
 
TRM Appendix C SFDP ATTACHMENT 3 SFDP TRACKING WORKSHEET INSTRUCTIONS The Safety Function Determination (SFD) Worksheet is used to document the SUPPORTED SYSTEMS of an INOPERABLE SUPPORT SYSTEM, track their Maximum Out Of Service Time (MOST), and document whether or not a loss of safety function exists. It is also the mechanism for documenting the reevaluation of safety function determinations that are necessary when subsequent LCOs are entered.
: 1.      Enter the noun name of the INOPERABLE SUPPORT SYSTEM / component.
: 2.      SUPPORT SYSTEM Tech Spec Condition / Required Action.
: 3.      Date and time of entry into LCO Conditions and Required Actions for the SUPPORT SYSTEM.
: 4.      Completion time allowed for the Required Action of the SUPPORT SYSTEM Tech Spec.
: 5.      The SFD# will be a sequential number (year/unit/ # e.g. 01/02/001).
: 6.      Enter the noun name of each Tech Spec system supported by the INOPERABLE SUPPORT SYSTEM.
: 7.      For each SUPPORTED SYSTEM, list the Tech Spec Condition / Required Action.
: 8.      Record the allowed completion time for the SUPPORTED SYSTEM Required Action.
: 9.      Perform a cross train check (ATTACHMENT 1/ Method 1 and TABLE 1) to verify operability of the INOPERABLE SUPPORTED SYSTEM(S) redundant equipment, as well as the support features for the redundant equipment. Block 9 is filled in with yes or no.
Dresden 2 & 3                                                              C-23                                                      Revision 0
 
TRM Appendix C SFDP ATTACHMENT 3 (Continued)
SFDP TRACKING WORKSHEET
: 10. Based on the results of the cross train check performed in step 9 of the worksheet, determine whether or not the safety function of the SUPPORTED SYSTEM has been lost. If the cross train check, ATTACHMENT 1/ Method 1 has failed or can not be performed, Methods 2 or 3 may be used to assess the status of the safety function in question. If the safety function has been lost, then enter the appropriate Conditions and Required Actions for that system or component using the following guidance: 1. SINGLE SUPPORT SYSTEM INOPERABILITY- When a LOSF is solely due to a single T.S. SUPPORT SYSTEM ( e.g., loss of a pump suction source due to low tank level ) the appropriate LCO is the LCO for the SUPPORT SYSTEM. The Actions for the SUPPORT SYSTEM LCO adequately address the inoperabilities of that system without reliance upon the Actions of the SUPPORTED SYSTEM. 2. MULTIPLE SUPPORT SYSTEM INOPERABILITY- When a LOSF is due to multiple T.S. SUPPORT SYSTEM inoperabilities, the appropriate LCO is the LCO for the SUPPORTED SYSTEMS.
: 11. If the safety function has not been lost or LOSF is solely due to a single T.S. SUPPORT SYSTEM, calculate the Maximum Out of Service Time for the SUPPORTED SYSTEM. If ATTACHMENT 2 Method 1 is used, this will be the sum of block 4 and block 8. If Method 2 is used, see ATTACHMENT 2.
: 12. Expiration time: Time determined in either Method 1 or 2 ATTACHMENT 2 measured from the time in step 3 (Date/Time Entered) in HR: MIN on the MM/DD/YR.
: 13. The comment block can be used to record any notes or other references.
: 14. Preparer sign and date.
: 15. Sign and date for Verification of the SFD, indicating that you concur with the listed results.
: 16. As subsequent inoperabilities occur, all existing SFDs must be reviewed to determine their validity. Record the new LCO Condition and Required Actions and initial and date indicating either yes, the SFD is still valid, or no the SFD is no longer valid. If the SFD is no longer valid based on the new LCO Conditions and Required Actions, a new SFD must be performed.
Record the number of the new SFD and attach to the now invalid SFD. Subsequent SFDs done for the same LCO Conditions and Required Actions will be numbered 01-01-001A, 01-01-001B, etc.
: 17. The SFD may be closed out when the INOPERABLE SUPPORT SYSTEM and SUPPORTED SYSTEM(S) listed on the SFDP Tracking Sheet are returned to OPERABLE STATUS. Enter the Time and Date when the SUPPORT SYSTEM and SUPPORTED SYSTEM(S) are returned to OPERABLE STATUS and sign the Worksheet.
Dresden 2 & 3                                                                  C-24                                                        Revision 0
 
TRM Appendix C SFDP ATTACHMENT 3 (Continued)
SFDP TRACKING WORKSHEET SUPPORT SYSTEM INOPERABLE
: 1. System Name / Component                                                2. Tech Spec Condition / Required Action
: 3. Date / Time Entered                            4. Completion Time                              5. SFD #
SUPPORTED SYSTEMS / COMPONENTS
: 6. Supported System  7. T.S. Condition /    8. Completion    9. Redundant          10. Loss of Safety        11. M.O.S.T. 12. Expiration Time    13. Comments Name                  Required Action        Time            Inoperability?          Function?
: 14. Prepared by:                                                  15. Verified by:
sign and date                                                      sign and date
: 16. REVIEW FOR SUBSEQUENT INOPERABILITIES (See Attached Worksheet)
: 17. SFD CLOSE OUT: The SUPPORT SYSTEM(S) and SUPPORTED SYSTEM(S) listed above have been returned to OPERABLE status Time / Date / Signature Dresden 2 & 3                                                                  C-25                                                    Revision 0
 
TRM Appendix C SFDP ATTACHMENT 3 (Continued)
SFDP TRACKING WORKSHEET SFDP REVIEW FOR SUBSEQUENT INOPERABILITIES ALL OPEN SFDPs VALID    VERIFIED BY NEW LCO CONDITION #            (Y / N)        (INITIAL / DATE)
Dresden 2 & 3                C-26                            Revision 0
 
TRM Appendix C SFDP TABLE 1 CROSS TRAIN CHECK GUIDANCE Guidelines for Performing Cross Train Checks The following matrix is meant to list possible SUPPORT to SUPPORTED LCO relationships for the purpose of implementing the cross train checks as required by LCO 3.0.6. and 5.5.11.
This matrix does NOT:
Cover all possible combinations or permutations of SUPPORT / SUPPORTED LCO relationships.
Cover SUPPORT / SUPPORTED relationships for items outside of Tech Spec (i.e., room coolers or snubbers).
Cover SUPPORT / SUPPORTED relationships for LCOs that are NOT applicable in a given mode Cover Technical Requirement Manual LCOs or features.
Include Support Features and SUPPORTED SYSTEMS if the Required Actions for the INOPERABLE Support Feature direct the entry into the TS ACTIONS for the SUPPORTED SYSTEM.
The purpose behind this matrix is to provide guidance when assessing a LOSF on based on SUPPORTED SYSTEM LCOs, due to inoperability of a SUPPORT SYSTEM LCO.
The following minimum items should be considered when evaluating the redundant train:
Panel Walkdown DEL Review Schedule Review Timeclock board / LCOs in effect Physical walkdown as needed by the US Any procedural requirements in effect OOS Review Configuration Control Log TMOD / partial MODs Operability Evaluations Each situation should be assessed on its own merit, to determine LCO impact.
Dresden 2 & 3                              C-27                                          Revision 0
 
TRM Appendix C SFDP TABLE 1 (Continued)
CROSS TRAIN CHECK GUIDANCE Support                                        Supported Feature TS                                    System TS Number        Support Feature                Number    Supported System 3.3.5.1        Emergency Core Cooling          3.5.1    ECCS - Operating System (ECCS) Instrumentation 3.5.2    ECCS - Shutdown 3.8.1    AC Sources - Operating 3.8.2    AC Sources - Shutdown 3.3.5.2        Isolation Condenser (IC)        3.5.3    IC System System Instrumentation 3.3.6.1        Primary Containment Isolation  3.1.7    Standby Liquid Control (SLC) System Instrumentation 3.6.1.3  Primary Containment Isolation Valves (PCIVs) 3.3.6.2        Secondary Containment          3.6.4.2  Secondary Containment Isolation Valves Isolation Instrumentation                (SCIVs) 3.6.4.3  Standby Gas Treatment (SGT) System 3.3.6.3        Relief Valve Instrumentation    3.4.3    Safety and Relief Valves 3.6.1.6  Low Set Relief Valves 3.3.7.1        Control Room Emergency          3.7.4    Control Room Emergency Ventilation Ventilation (CREV) System                (CREV) System Instrumentation 3.3.8.1        Loss of Power (LOP) System      3.3.5.1  Emergency Core Cooling System Instrumentation                          (ECCS) Instrumentation 3.8.1    AC Sources - Operating 3.8.2    AC Sources - Shutdown 3.3.8.2        Reactor Protection System      3.3.1.1  RPS Instrumentation (RPS)
Electric Power Monitoring      3.3.7.1  Control Room Emergency Ventilation (CREV) System Instrumentation Dresden 2 & 3                            C-28                                    Revision 0
 
TRM Appendix C SFDP TABLE 1 (Continued)
CROSS TRAIN CHECK GUIDANCE Support                                      Supported Feature TS                                  System TS Number        Support Feature              Number    Supported System 3.6.1.7        Reactor Building-to-          3.6.1.1    Primary Containment Suppression Chamber Vacuum Breakers 3.6.1.8        Suppression Chamber-to-      3.6.1.1    Primary Containment Drywell Vacuum Breakers 3.6.4.2        Secondary Containment        3.6.4.1    Secondary Containment Isolation Valves (SCIVs) 3.6.4.3        Standby Gas Treatment (SGT)  3.6.4.1    Suppression Pool Cooling System 3.7.1          Containment Cooling Service  3.6.2.3    Suppression Pool Cooling Water (CCSW) System 3.6.2.4    Suppression Pool Spray 3.7.5      Control Room Emergency Ventilation Air Conditioning (AC) System 3.7.3          Ultimate Heat Sink (UHS)      3.4.7      Shutdown Cooling (SDC)
System - Hot Shutdown 3.4.8      Shutdown Cooling (SDC)
System - Cold Shutdown 3.7.1      Containment Cooling Service Water (CCSW) System 3.7.2      Diesel Generator Cooling Water (DGCW) System 3.9.8      Shutdown Cooling (SDC) - High Water Level 3.9.9      Shutdown Cooling (SDC) Low Water Level 3.8.1          AC Sources - Operating        3.8.7      Distribution System - Operating (AC Portion Only) 3.8.2          AC Sources - Shutdown        3.8.8      Distribution System - Shutdown (AC Portion Only) 3.8.4          DC Sources - Operating        3.8.7      Distribution System - Shutdown (DC Portion Only) 3.8.5          DC Sources - Shutdown        3.8.8      Distribution System - Shutdown (DC Portion Only)
Dresden 2 & 3                          C-29                                      Revision 0
 
TRM Appendix C SFDP TABLE 1 (Continued)
CROSS TRAIN CHECK GUIDANCE Support                                    Supported Feature TS                                  System TS Number        Support Feature              Number    Supported System 3.8.7        Distribution System -        3.1.7    Standby Liquid Control (SLC)
(AC Only)    Operating (AC portion Only)            System 3.3.1.1  RPS Instrumentation 3.3.2.2  Feedwater System and Main Turbine High Water Level Trip Instrumentation 3.3.3.1  Post Accident Monitoring (PAM)
Instrumentation 3.3.4.1  Anticipated Transient Without SCRAM Recirculation Pump Trip (ATWS-RPT) Instrumentation 3.3.5.1  Emergency Core Cooling System (ECCS) Instrumentation 3.3.5.2  Isolation Condenser (IC) System Instrumentation (17 & 20 valves) 3.3.6.1  Primary Containment Isolation Instrumentation 3.3.6.2  Secondary Containment Isolation Instrumentation 3.3.7.1  Control Room Emergency Ventilation (CREV) System Instrumentation 3.3.8.2  Reactor Protection System (RPS)
Electric Power Monitoring 3.4.5    RCS Leakage Detection Instrumentation Dresden 2 & 3                          C-30                                  Revision 0
 
TRM Appendix C SFDP TABLE 1 (Continued)
CROSS TRAIN CHECK GUIDANCE Support                                    Supported Feature TS                                  System TS Number        Support Feature              Number    Supported System 3.8.7        Distribution System -        3.4.7    Shutdown Cooling (SDC)
(continued)  Operating (AC portion Only)            System - Hot Shutdown (AC Only) 3.5.1    Emergency Core Cooling System (ECCS) - Operating 3.5.3    IC System 3.6.1.3  Primary Containment Isolation Valves (PCIVs) 3.6.2.3  Suppression Pool Cooling 3.6.2.4  Suppression Pool Spray 3.6.4.3  Standby Gas Treatment (SGT)
System 3.7.1    Containment Cooling Service Water (CCSW) System 3.7.2    Diesel Generator Cooling Water (DGCW) System 3.7.4    Control Room Emergency Ventilation (CREV) System 3.7.5    Control Room Emergency Ventilation Air Conditioning (AC) System 3.8.1    AC Sources - Operating 3.8.3    Diesel Fuel Oil and Starting Air 3.8.4    DC Sources - Operating Dresden 2 & 3                          C-31                                  Revision 0
 
TRM Appendix C SFDP TABLE 1 (Continued)
CROSS TRAIN CHECK GUIDANCE Support                                  Supported Feature TS                                System TS Number        Support Feature            Number    Supported System 3.8.7        Distribution Systems -      3.3.3.1    Post Accident Monitoring (DC Only)    Operating                              (Pam) Instrumentation (DC Only) 3.3.1.1    Rps Instrumentation 3.3.2.2    Feedwater System And Main Turbine High Water Level Trip Instrumentation 3.3.4.1    Anticipated Transient Without Scram Recirculation Pump Trip (Atws-Rpt) Instrumentation Emergency Core Cooling 3.3.5.1    System (Eccs) Instrumentation Isolation Condenser (Ic) System 3.3.5.2    Instrumentation Primary Containment Isolation 3.3.6.1    Instrumentation (Group Iv)
Secondary Containment 3.3.6.2    Isolation Instrumentation 3.3.8.1    Loss Of Power (LOP) System Instrumentation 3.4.3      Safety and Relief Valves 3.4.7      Shutdown Cooling (SDC)
System - Hot Shutdown 3.5.1      Emergency Core Cooling System (ECCS) - Opeating Dresden 2 & 3                        C-32                                    Revision 0
 
TRM Appendix C SFDP TABLE 1 (Continued)
CROSS TRAIN CHECK GUIDANCE Support                                  Supported Feature TS                                System TS Number        Support Feature            Number    Supported System 3.8.7        Distribution Systems -      3.5.3      Isolation Condenser (IC)
(continued)  Operating                              System (DC Only)    (DC Portion Only) 3.6.1.3    Primary Containment Isolation Valves (PCIVs) 3.6.2.3    Suppression Pool Cooling 3.6.2.4    Suppression Pool Spray 3.6.4.2    Secondary Containment Isolation Valves 3.7.1      Containment Cooling Service Water (CCSW) System 3.8.1      AC Sources - Operating Dresden 2 & 3                        C-33                                  Revision 0
 
TRM Appendix C SFDP TABLE 1 (Continued)
CROSS TRAIN CHECK GUIDANCE Support                                  Supported Feature TS                                System TS Number        Support Feature            Number    Supported System 3.8.8        Distribution Systems -      3.3.5.1    Emergency Core Cooling (AC Only)    Shutdown                              System (ECCS) Instrumentation (AC Portion Only) 3.3.6.1    Primary Containment Isolation Instrumentation 3.3.6.2    Secondary Containment Isolation Instrumentation 3.3.7.1    Control Room Air Filtration (CRAF) System Instrumentation 3.3.8.2    Reactor Protection System (RPS) Electric Power Monitoring 3.4.8      Shutdown Cooling (SDC)
System - Cold Shutdown 3.5.2      Emergency Core Cooling System (ECCS) - Shutdown 3.6.1.3    Primary Containment Isolation Valves (PCIVs)
Dresden 2 & 3                        C-34                                    Revision 0
 
TRM Appendix C SFDP TABLE 1 (Continued)
CROSS TRAIN CHECK GUIDANCE Support                                    Supported Feature TS                                System TS Number        Support Feature            Number    Supported System 3.8.8          Distribution Systems -      3.6.4.3    Standby Gas Treatment (SGT) System (continued)    Shutdown (AC Only)      (AC Portion Only)          3.7.1      Containment Cooling Service Water (CCSW) System 3.7.2      Diesel Generator Cooling Water (DGCW) System 3.7.4      Control Room Emergency Ventilation (CREV) System 3.7.5      Control Room Emergency Ventilation Air Conditioning (AC) System 3.8.2      AC Sources - Shutdown 3.8.3      Diesel Fuel Oil and Starting Air 3.8.5      DC Sources - Shutdown 3.9.8      Shutdown Cooling (SDC) - High Water Level 3.9.9      Shutdown Cooling (SDC) - Low Water Level Dresden 2 & 3                          C-35                                    Revision 0
 
TRM Appendix C SFDP TABLE 1 (Continued)
CROSS TRAIN CHECK GUIDANCE Support                                  Supported Feature TS                                System TS Number        Support Feature            Number    Supported System 3.8.8        Distribution Systems -      3.3.5.1    Emergency Core Cooling (DC Only)    Shutdown                              System (ECCS) Instrumentation (DC Portion Only) 3.3.6.1    Primary Containment Isolation Instrumentation 3.3.8.1    Loss of Power (LOP) System Instrumentation 3.4.8      Shutdown Cooling (SDC)
System - Cold Shutdown 3.5.2      ECCS - Shutdown 3.6.1.3    Primary Containment Isolation Valves (PCIVs) 3.6.4.2    Secondary Containment Isolation Valves 3.8.2      AC Sources - Shutdown 3.9.8      Shutdown Cooling (SDC) -
High Water Level 3.9.9      Shutdown Cooling (SDC) -
Low Water Level Dresden 2 & 3                        C-36                                  Revision 0
 
TRM TS Bases Control Program Appendix D TECHNICAL SPECIFICATIONS BASES CONTROL PROGRAM TABLE OF CONTENTS SECTION                TITLE 1.1                    PURPOSE
 
==1.2                    REFERENCES==
 
1.3                    DEFINITIONS AND/OR ACRONYMS 1.4                    PROGRAM DESCRIPTION 1.5                    PROGRAM IMPLEMENTATION 1.6                    ACCEPTANCE CRITERIA 1.7                    LCOARS/COMPENSATORY MEASURES 1.8                    REPORTING REQUIREMENTS 1.9                    CHANGE CONTROL DRESDEN UNITS 2 and 3                      1 of 13                      Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D 1.1            PURPOSE The purpose of this Program is to provide guidance for identifying, processing, and implementing changes to the Technical Specifications (TS) Bases. This Program implements and satisfies the requirements of TS 5.5.10, "Technical Specifications (TS)
Bases Control Program."
This Program is applicable to the preparation, review, implementation, and distribution of changes to the TS Bases. This Program also provides guidance for preparing TS Bases Change Packages for distribution.
 
==1.2            REFERENCES==
: 1.      TS 5.5.10, "Technical Specifications (TS) Bases Control Program"
: 2.      10 CFR 50.4, "Written Communications"
: 3.      10 CFR 50.59, "Changes, Tests and Experiments"
: 4.      10 CFR 50.71, "Maintenance of Records, Making of Reports"
: 5.      10 CFR 50.90, "Application for Amendment of License or Construction Permit" 1.3            DEFINITIONS AND/OR ACRONYMS
: 1.      10 CFR 50.59 REVIEW - A written regulatory evaluation which provides the basis for the determination that a change does, or does not, require NRC approval pursuant to 10 CFR 50.59. The scope of the evaluation should be commensurate with the potential safety significance of the change, but must address the relevant safety concerns included in the Safety Analysis Report and other owner controlled documents. The depth of the evaluation must be sufficient to determine whether or not NRC approval is required prior to implementation. Depending upon the significance of the change, the evaluation may be brief; however, a simple statement of conclusion is not sufficient.
DRESDEN UNITS 2 and 3                            2 of 13                                      Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D
: 2.      EDITORIAL CHANGE - Editorial changes include correction of punctuation, insignificant word or title changes, style or format changes, typographical errors, or correction of reference errors that do not change the intent, outcome, results, functions, processes, responsibilities, or performance requirements of the item being changed. Changes in numerical values shall not be considered as editorial changes. Editorial changes do not constitute a change to the TS Bases and therefore do not require further 10 CFR 50.59 Reviews. If the full scope of this proposed change is encompassed by one or more of the below, then the change is considered editorial.
                      -        Rewording or format changes that do not result in changing actions to be accomplished.
                      -        Deletion of cycle-specific information that is no longer applicable.
                      -        Addition of clarifying information, such as:
                                -      Spelling, grammar, or punctuation changes
                                -      Changes to references
                                -      Name or title references 1.4            PROGRAM DESCRIPTION
: 1.      A Licensee may make changes to the TS Bases without prior NRC approval provided the changes do not require either of the following:
: a.        A change in the TS as currently incorporated in the license; or
: b.        A change to the Updated Final Safety Analysis Report (UFSAR) or TS Bases that requires NRC approval pursuant to 10 CFR 50.59.
: 2.      Changes that meet the above criteria (i.e., 1.4.1.a or 1.4.1.b) shall be submitted to the NRC pursuant to 10 CFR 50.90 and reviewed and approved by the NRC prior to implementation.
: 3.      The TS Bases shall be maintained consistent with the UFSAR.
: 4.      If a change to the TS Bases is not consistent with the UFSAR, then the cognizant Engineer shall prepare and submit a UFSAR Change Package when the TS Bases Change Request is submitted to Regulatory Assurance (RA) for processing.
DRESDEN UNITS 2 and 3                              3 of 13                                      Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D
: 5.      Changes to the TS Bases that do not require prior NRC approval shall be provided to the NRC on a frequency consistent with 10 CFR 50.71(e), as modified by approved exemptions.
: 6.      TS Bases changes associated with a TS Amendment shall be implemented consistent with the implementation requirements of the TS Amendment.
: 7.      RS is responsible for the control and distribution of the TS Bases. In order to prevent distribution errors (i.e., omissions or duplications), RS shall maintain the master TS Bases distribution list.
1.5            PROGRAM IMPLEMENTATION
: 1.      TS Bases Change Requestor identifies the need for a revision to the TS Bases and notifies the RA Licensing Engineer (i.e., hereafter referred to as RA LE). A TS Bases change can be initiated through any Stations' RA. TS Bases Change Requestor notifies their counterparts on the need for a change.
: 2.      RA LE notifies their counterparts of identified need for revision to the TS Bases.
: 3.      RA LE obtains concurrence from RS on the need for a change.
: 4.      RS NLA reviews the agreed upon TS Bases wording changes for consistency with format, rules of usage, and technical adequacy and provides final concurrence.
: 5.      After concurrence of the TS Bases wording changes is obtained, RS NLA makes an electronic version available in a working directory for use in the preparation of the 10 CFR 50.59 REVIEW and Station Qualified Review (SQR) process. The RS NLA shall ensure that the master electronic TS Bases files are revised per step 15 below upon receiving SQR approval. The Revision number in the footer should be a sequential number (i.e., 1, 2, etc.).
DRESDEN UNITS 2 and 3                            4 of 13                                        Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D NOTE If the TS Bases changes are applicable to more than one Station, the following steps should be performed concurrently for each Station.
: 6.      TS Bases Change Requestor provides a 10 CFR 50.59 REVIEW for the TS Bases changes in accordance with appropriate plant procedures. An exception to this requirement applies when the changes are being requested in order to reflect an approved NRC Safety Evaluation (SE) associated with a site specific operating license or TS change. The NRC SE is sufficient to support the changes provided it has been determined that the changes are consistent with and entirely bounded by the NRC SE. A 50.59 REVIEW shall be performed for TS Bases changes that reflect generic industry approval by an NRC SE to determine site specific applicability. A 10 CFR 50.59 REVIEW is not required for an EDITORIAL CHANGE.
: 7.      TS Bases Change Requestor completes Attachment A, "Technical Specifications Bases Change Request Form," as follows:
: a.        Identifies the affected sections, and includes a copy of the proposed TS Bases changes;
: b.        Briefly summarizes the changes including the LCO, Action, or Surveillance Requirement to which the changes apply;
: c.        Briefly summarizes the reason for the changes and attaches all supporting documentation;
: d.        Identifies any schedule requirements and proposed implementation date that apply (i.e., describe any time limitations that might apply which would require expedited processing). If the changes are outage related, then checks "yes" and lists the applicable outage identifier;
: e.        Identifies any known implementation requirements such as procedure changes, UFSAR changes, Electronic Work Control System (EWCS) changes, Reportability Manual revisions, pre-implementation training requirements, etc.;
DRESDEN UNITS 2 and 3                              5 of 13                                        Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D
: f.        If a 10 CFR 50.59 REVIEW was prepared to support the TS Bases changes, the Requestor then checks the appropriate box, lists the associated 10 CFR 50.59 REVIEW Number, and attaches the original;
: g.        If the changes to the TS Bases are the result of an NRC SE and the scope of the changes determined to be consistent with and entirely bounded by the NRC SE, then the Requestor checks the appropriate box and attaches a copy;
: h.        If the changes to the TS Bases are EDITORIAL CHANGES, the Requestor checks the appropriate box and no 10 CFR 50.59 REVIEW is required;
: i.        Signs and dates as Requestor and identifies the originating department;
: j.        Obtains approval to proceed from Department Supervisor (or designee);
and
: k.        Returns Attachment A to the RA LE.
: 8.      RA LE reviews the TS Bases Change Request Form, including supporting documentation, and documents the review by signing Attachment A. The review verifies that the following information or documentation is included:
: a.        Completed 10 CFR 50.59 REVIEW. If the changes are related to an NRC SE and determined to be entirely bounded by the NRC SE, then only a copy of the SE is required to be attached and no 10 CFR 50.59 REVIEW is required. A 10 CFR 50.59 REVIEW is not required for an EDITORIAL CHANGE;
: b.        Identification of known documents requiring revisions; and
: c.        Completed UFSAR Change Request with supporting documentation, in accordance with appropriate plant procedures, if applicable.
: 9.      If the TS Bases change is not an EDITORIAL CHANGE, the RA LE/TS Bases Change Requestor obtains SQR approval of the TS Bases changes by performing the following:
DRESDEN UNITS 2 and 3                              6 of 13                                    Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D
: a.      RA LE prepares the TS Bases Change SQR package. The SQR package shall include Attachment A (including completed 10 CFR 50.59 REVIEW or NRC SE) and the revised TS Bases pages. Attachment A is provided for the purpose of reviewing and finalizing the implementation requirements and ensuring the necessary actions have been initiated. RA LE shall assign Action Tracking (AT) items, as necessary, to track implementation requirements;
: b.      TS Bases Change Requestor submits the TS Bases Change SQR package to the SQR Committee members for a preliminary review. The SQR composition shall include RA and Operating Departments in all cases; and
: c.      TS Bases Change Requestor resolves preliminary review comments and finalizes the TS Bases Change SQR package.
: 10. The RAM shall determine the need for Plant Operations Review Committee (PORC) approval. The need for PORC approval shall be documented on Attachment A.
: 11. RA LE/TS Bases Change Requestor obtains PORC approval, if necessary.
: 12. RA LE notifies RS NLA of approval of the TS Bases changes by forwarding a copy of the approved SQR/PORC Change package to RS NLA.
: 13. After approval of the TS Bases changes by SQR/PORC, RS NLA ensures that the controlled master electronic files are updated.
: 14. RS/RA completes Attachment B, "Technical Specifications Bases Change Instruction Form," as follows:
: a.      RS NLA indicates the effective date of the TS Bases changes consistent with the SQR/PORC approval or TS amendment required implementation date. If the TS Bases change is a result of a TS Amendment, the update shall be implemented coincident with implementation requirements of the TS Amendment. Otherwise, the update must be implemented by the date indicated on Attachment B; DRESDEN UNITS 2 and 3                            7 of 13                                      Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D
: b.        RS NLA lists each page to be removed and inserted, including the Affected Page List; and
: c.        RA LE provides the updated master file directory for updating Electronic Central Files (ECF), if applicable.
: 15. RS NLA creates a TS Bases Change Package. The TS Bases Change Package shall consist of:
: a.        TS Bases Change Instruction Form (Attachment B);
: b.        Revised Affected Page List; and
: c.        Revised TS Bases pages.
One RS NLA shall assemble and approve the TS Bases Change Package for distribution and a second RS NLA shall perform a peer check to verify completeness of the TS Bases Change Package.
: 16. After the RA LE notifies the RS NLA that SQR/PORC approval of the TS Bases changes has been obtained and that all AT items assigned to track implementation requirements have been completed, RS NLA forwards the TS Bases Change Package to the RA LE as notification of the need to update the onsite TS Bases controlled copies and ECF, if applicable. RS NLA also forwards the TS Bases Change Package to RS Administration Department as notification of the need to update the offsite (RS) TS Bases controlled copies and to transmit updates to the offsite (non-RS) TS Bases controlled copies.
: 17. RA LE forwards the TS Bases Change Package to Station Administration Department as notification of the need to update the onsite TS Bases controlled copies and ECF, if applicable.
: 18. Upon completion of updating the onsite TS Bases controlled copies and ECF (if applicable), Station Administration Department Supervisor signs and dates Attachment B and returns Attachment B to the appropriate RS NLA.
DRESDEN UNITS 2 and 3                            8 of 13                                      Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D
: 19. Upon completion of updating the offsite (RS) TS Bases controlled copies and transmitting updates to the offsite (non-RS) TS Bases controlled copies, RS Administration Department signs and dates Attachment B and returns Attachment B to the appropriate RS NLA.
: 20. RA LE ensures that the documentation required to be maintained as a quality record is provided to Station Administration Department for the purpose of record retention.
1.6            ACCEPTANCE CRITERIA Not applicable.
1.7            LCOARS/COMPENSATORY MEASURES A Condition Report may need to be generated to provide proper tracking and resolution of noted problems associated with the implementation of this Program.
The RAM will be responsible for ensuring that Program failures have been resolved.
1.8            REPORTING REQUIREMENTS NOTE TS Bases changes requiring prior NRC approval shall be submitted in accordance with Reference 5.
TS Bases changes not requiring prior NRC approval, as described in Section 1.4 of this Program, shall be submitted to the NRC in accordance with 10 CFR 50.71(e).
1.9            CHANGE CONTROL Changes to this Program, other than EDITORIAL CHANGES, shall include a 10 CFR 50.59 REVIEW and an SQR. The SQR composition shall include RA Department in all cases. For a change to this Program, PORC approval from all Stations is required. The concurrence shall be that the other Stations are implementing the same changes or that the changes have been reviewed and determined not to be applicable to the other Stations.
DRESDEN UNITS 2 and 3                            9 of 13                                    Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D ATTACHMENT A TECHNICAL SPECIFICATIONS BASES CHANGE REQUEST FORM
: 1. Change Request #:                                Affecting Bases Section(s):
: 2. Description of changes:
: 3. Reason for changes (attach all supporting documentation):
: 4. Schedule Requirements:
Outage Related (check one)                          No                  Yes, Outage #:
Other (explain)
: 5. Implementation Requirements (attach additional pages, as necessary):
Identify the impact of the changes on the following:
Affected          N/A UFSAR TS Technical Requirements Manual NRC Safety Evaluation Fire Protection Report NRC Commitments Vendor Documentation Special Permits/Licenses Procedures Environmental Qualifications Design Basis Documentation Engineering Calculations Drawings/Prints PRA Information Programs Reportability Manual QA Topical Report Passport (Surveillances, Predefines, ECs, etc.)
Pre-Implementation Training Required Maintenance Rule Offsite Dose Calculation Manual Other DRESDEN UNITS 2 and 3                                  10 of 13                                      Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D ATTACHMENT A TECHNICAL SPECIFICATIONS BASES CHANGE REQUEST FORM
: 6. Check one:
10 CFR 50.59 REVIEW Attached, 10 CFR 50.59 REVIEW #:
NRC SE Attached, Changes consistent with and entirely bound by NRC SE EDITORIAL CHANGE, No 10 CFR 50.59 REVIEW required
: 7. Requestor:                                    /                      /
(Signature)                    (Date)                (Department)
: 8. Requesting Supervisor Approval:                                      /
(Signature)                  (Date)
: 9. PORC Approval Required:                            Yes            No
: 10. Licensing Engineer Review:                                            /
(Signature)                  (Date)
DRESDEN UNITS 2 and 3                        11 of 13                                  Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D ATTACHMENT B TECHNICAL SPECIFICATIONS BASES CHANGE INSTRUCTION FORM FOR ONSITE/OFFSITE DISTRIBUTION AND FOR UPDATING ECF Braidwood/Byron/Dresden/LaSalle/QC (circle one) TS Bases Revision #:
NOTE: This change is effective as of                                                      and shall be (SQR/PORC/Amendment Implementation Date) implemented by (Date)
Approved for distribution:                                                        /
(RS NLA Signature)                      (Date)
Verified:                                                                        /
(RS NLA Signature)                      (Date)
Shift Manager is made aware of affected sections of the Tech Spec Bases for this impending revision package:
                                                                                  /
(Shift Manager)                          (Date)
REMOVE            REMOVE          INSERT            INSERT          UPDATE ECF          UPDATE ECF Section            Page            Section          Page            Section            Page Affected Page      All              Affected Page    All            N/A                N/A List                                List DRESDEN UNITS 2 and 3                          12 of 13                                      Revision 63 Technical Requirements Manual
 
TRM TS Bases Control Program Appendix D ATTACHMENT B TECHNICAL SPECIFICATIONS BASES CHANGE INSTRUCTION FORM FOR ONSITE/OFFSITE DISTRIBUTION AND FOR UPDATING ECF Braidwood/Byron/Dresden/LaSalle/QC (circle one) TS Bases Revision #:
Station Administration Department:
Onsite Distribution Completed:                                                  /
(Station Admin. Dept. Supr.)          (Date)
ECF Update Completed :                                                          /
(Station Admin. Dept. Supr.)          (Date)
** Return this sheet to: Regulatory Services Braidwood/Byron/Dresden/LaSalle/QC (circle one)
RS Administration Department:
Offsite (RS) Distribution Completed:                                            /
(RS Admin. Dept.)            (Date)
Offsite (non-RS) Distribution Transmitted:                                      /
(RS Admin. Dept.)            (Date)
** Return this sheet to Braidwood/Byron/Dresden/LaSalle/QC (circle one) NLA Offsite (non-RS) Controlled Copy Holders:
Offsite (non-RS) Distribution Completed:                                        /
(Signature)          (Date)
Return this sheet to:    EXELON GENERATION COMPANY, LLC ATTN: REGULATORY SERVICES ADMINISTRATION DEPARTMENT 4300 Winfield Road Warrenville, Il 60555 DRESDEN UNITS 2 and 3                            13 of 13                                  Revision 63 Technical Requirements Manual
 
COLR Dresden 2 Revision 18 Core Operating Limits Report For Dresden Unit 2 Cycle 27 Prepared By:  ~ }Y..u,./\                              Date: 11 /8/19 Corie Glenn - Nuclear Fuels
              ~.a_~~
Reviewed By: _ _ _ _ _ _ _ _
AO
                                  ~-----------        Date: 11 /8/19 Brandon de Graaf - Reactor Engineering JrV Si111n1ons Reviewed By: _ _ _ _ _ _ _ _ _ _ _ _ _ __              Date:  11 /8/19 John Simmons - Engineering Safety Analysis Independent                                                    11/8/19 Review By:                                              Date: ----
Date: ([}~ Nb~  19 SQR By:
Page 1 of 71
 
COLR Dresden 2 Revision 18 Table of Contents Page Record of Dresden 2 COLR Revisions.. ........................... 3
: 1. Terms and Definitions ............................................................................................................................... 6
: 2. General Information .................................................................................................................................. 7
: 3. Average Planar Linear Heat Generation Rate .......................................................................................... 8
: 4. Operating Limit Minimum Critical Power Ratio ....................................................................................... 29 4.1. Manual Flow Control MCPR Limits ................................................................................................. 29 4.1.1. Power-Dependent MCPR ......................................................................................................... 29 4.1.2. Flow-Dependent MCPR............................................................................................................ 29 4.2. Scram Time ...................................................................................................................................... 30 4.3. Exposure Dependent MCPR Limits.................................................................................................. 31 4.4. Recirculation Pump ASD Settings.................................................................................................... 31
: 5. Linear Heat Generation Rate .................................................................................................................. 55
: 6. Control Rod Block Setpoints ................................................................................................................... 62
: 7. Stability Protection Setpoints .................................................................................................................. 63
: 8. Modes of Operation................................................................................................................................. 64
: 9. Methodology............................................................................................................................................ 69
: 10. References ............................................................................................................................................ 71 Page 2 of 71
 
COLR Dresden 2 Revision 18 Record of Dresden 2 COLR Revisions Revision Description 18      Initial issuance for D2C27 17      Initial issuance for D2C26 16      Update to Section 5, Section 8 Note 1, and associated references for transition to POWERPLEX-XD on-line core monitoring system and revise the Table 5-13 LHGRFAC(P) values at 80% for PLUOOS and TCV Slow Closure to be no greater than the Base Case limits.
15      Initial issuance for D2C25 14      Revised to support implementation of TBV #8 and any one additional TBV OOS.
13      Initial issuance for D2C24 12      Updated to include the proper wording to allow for operational entry into the Increased Core Flow (ICF) region on the power to flow map.
11      Initial issuance for D3C23 10      Updated Table 4-7 with corrected values for TBVOOS and TBVOOS SLO for cases with flow >60% at 0 and 25% RTP. Also updated Tables 4-7, 4-8, and 5-3 to correct Westinghouse simulation time error for TTNBP calculations. Also updated References Section with revised Westinghouse D2C22 Reload Licensing Report.
9        Updated Section 4 OLMCPR to add text concerning the treatment of GE bundles under Westinghouse methodology. The associated references are included as References 12, 14, 18, 22, and 23.
8        Initial issuance for D2C22 7        Updates to Section 8, MAPLHGR limit table for Optima natural uranium lattices, adding WCMS labels for GNF fuel types, table reformatting, and addition of references for transition to Westinghouse Core Monitoring System (WCMS).
6        Removed ADSOOS penalty from LHGR and APLHGR sections. Revised MAPLHGR limits for Optima2 fuel, modified Modes of Operation section to match the new standard template for DR and QC, and updated and revised the References to include information regarding where to find documents in EDMS.
5        Initial issuance for D2C21 4        Included Note 10 in Modes of Operation, Section 8, to allow operation with a pressure regulator out of service (PROOS) and TCF Stuck Closed consistent with EOOS report (TODI NFM0100091 Sequence 03).
3        Initial issuance for D2C20 2        Updated Table 2-3 MCPR(p) for TCF Slow Closure and PLUOOS cases; updated Table 3-7 LHGRFAC(p) for TCV Slow Closure and PLUOOS cases; added Reference 29.
1        Edited footnote in COLR Section 5 and added EC #356168 as reference to support this change; removed indications of GNF proprietary information; editorial changes in various sections.
0        Initial issuance for D2C19 Page 3 of 71
 
COLR Dresden 2 Revision 18 List of Tables Page Table 3-1: MAPLHGR SLO Multipliers.......................................................................................................... 8 Table 3-2: MAPLHGR for OPTIMA2 Lattices 81 and 89 .............................................................................. 8 Table 3-3: MAPLHGR for OPTIMA2 Lattice 149 .......................................................................................... 9 Table 3-4: MAPLHGR for OPTIMA2 Lattice 150 ........................................................................................ 10 Table 3-5: MAPLHGR for OPTIMA2 Lattice 151 ........................................................................................ 11 Table 3-6: MAPLHGR for OPTIMA2 Lattice 152 ........................................................................................ 12 Table 3-7: MAPLHGR for OPTIMA2 Lattice 153 ........................................................................................ 13 Table 3-8: MAPLHGR for OPTIMA2 Lattice 154 ........................................................................................ 14 Table 3-9: MAPLHGR for OPTIMA2 Lattice 155 ........................................................................................ 15 Table 3-10: MAPLHGR for OPTIMA2 Lattice 156 ...................................................................................... 16 Table 3-11: MAPLHGR for OPTIMA2 Lattice 157 ...................................................................................... 17 Table 3-12: MAPLHGR for OPTIMA2 Lattice 158 ...................................................................................... 18 Table 3-13: MAPLHGR for OPTIMA2 Lattice 159 ...................................................................................... 19 Table 3-14: MAPLHGR for OPTIMA2 Lattice 160 ...................................................................................... 20 Table 3-15: MAPLHGR for OPTIMA2 Lattice 161 ...................................................................................... 21 Table 3-16: MAPLHGR for OPTIMA2 Lattice 162 ...................................................................................... 22 Table 3-17: MAPLHGR for OPTIMA2 Lattice 163 ...................................................................................... 23 Table 3-18: MAPLHGR for OPTIMA2 Lattice 164 ...................................................................................... 24 Table 3-19: MAPLHGR for OPTIMA2 Lattice 165 ...................................................................................... 25 Table 3-20: MAPLHGR for OPTIMA2 Lattice 166 ...................................................................................... 26 Table 3-21: MAPLHGR for OPTIMA2 Lattice 167 ...................................................................................... 27 Table 3-22: MAPLHGR for ATRIUM 10XM ................................................................................................ 28 Table 4-1: Scram Times.............................................................................................................................. 30 Table 4-2: Exposure Basis for Transient Analysis ...................................................................................... 31 Table 4-3: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, NSS Insertion Times, Nominal FWT, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ....................................................................................... 32 Table 4-4: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, TSSS Insertion Times, Nominal FWT, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ....................................................................................... 32 Table 4-5: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, TSSS Insertion Times, FHOOS, BOC to EOCLB (38,198 MWd/MTU CAVEX) ............................................................................................. 32 Table 4-6: TLO MCPRp Limits (SLMCPR = 1.12), PLUOOS/TCV Slow Closure, NSS Insertion Times, FHOOS, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ............................................................... 33 Table 4-7: TLO MCPRp Limits (SLMCPR = 1.12), TBVOOS, NSS Insertion Times, FHOOS, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ........................................................................................... 33 Table 4-8: TLO MCPRp Limits (SLMCPR = 1.12), MSIVOOS, ISS Insertion Times, FHOOS, BOC to EOCLB (38,198 MWd/MTU CAVEX) ............................................................................................. 33 Table 4-9: SLO MCPRp Limits (SLMCPR = 1.14), Base Case, NSS Insertion Times, Nominal FWT, All Exposures ...................................................................................................................................... 34 Table 4-10: SLO MCPRp Limits (SLMCPR = 1.14), MSIVOOS, ISS Insertion Times, FHOOS, All Exposures ...................................................................................................................................... 34 Table 4-11: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ........................................................................................... 35 Table 4-12: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ........................................................................................... 36 Table 4-13: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) ........................................................................................... 37 Table 4-14: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX) ............................................................................................. 38 Table 4-15: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX) ............................................................................................. 39 Table 4-16: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX) ............................................................................................. 40 Page 4 of 71
 
COLR Dresden 2 Revision 18 Page Table 4-17: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) .......................................................................................................... 41 Table 4-18: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) .......................................................................................................... 42 Table 4-19: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX) .......................................................................................................... 43 Table 4-20: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX) .......................................................................................................... 44 Table 4-21: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX) .......................................................................................................... 45 Table 4-22: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX) ............................................................................................. 46 Table 4-23: ATRIUM 10XM SLO MCPRp Limits (SLMCPR = 1.10) for NSS Insertion Times, All Exposures
        ....................................................................................................................................................... 47 Table 4-24: ATRIUM 10XM SLO MCPRp Limits (SLMCPR = 1.10) for ISS Insertion Times, All Exposures
        ....................................................................................................................................................... 48 Table 4-25: ATRIUM 10XM SLO MCPRp Limits (SLMCPR = 1.10) for TSSS Insertion Times, All Exposures ...................................................................................................................................... 49 Table 4-26: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1.10) for NSS Insertion Times, All Exposures .... 50 Table 4-27: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1.10) for ISS Insertion Times, All Exposures...... 51 Table 4-28: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1.10) for TSSS Insertion Times, All Exposures .. 52 Table 4-29: ATRIUM 10XM and OPTIMA2 MCPRf Limits (TLO SLMCPR = 1.12 and SLO SLMCPR =
1.14) ............................................................................................................................................... 53 Table 4-30: ATRIUM 10XM and OPTIMA2 MCPRf Limits (TLO SLMCPR = 1.08 and SLO SLMCPR =
1.10) ............................................................................................................................................... 54 Table 5-1: LHGR Limits for OPTIMA2 Lattices 156, 157, 158, 159, 163, 164, 165, 166, 167 ................... 56 Table 5-2: LHGR Limits for OPTIMA2 Lattices 154, 161............................................................................ 56 Table 5-3: LHGR Limits for OPTIMA2 Lattices 150, 151, 152, 155, 160, 162............................................ 57 Table 5-4: LHGR Limits for OPTIMA2 Lattices 149, 153............................................................................ 57 Table 5-5: LHGR Limits for OPTIMA2 Lattices 81, 89 ................................................................................ 58 Table 5-6: LHGR Limits for ATRIUM 10XM ................................................................................................ 58 Table 5-7: ATRIUM 10XM LHGRFACp Multipliers for All Scram Insertion Times, All Exposures .............. 59 Table 5-8: OPTIMA2 LHGRFACp Multipliers for All Scram Insertion Times, All Exposures....................... 60 Table 5-9: ATRIUM 10XM LHGRFACf Multipliers for All Cycle 27 Exposures, All EOOS ......................... 61 Table 5-10: OPTIMA2 LHGRFACf Multipliers for All Cycle 27 Exposures, All EOOS ................................ 61 Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints ............................................................. 62 Table 7-1: OPRM PBDA Trip Settings ........................................................................................................ 63 Table 8-1: Modes of Operation (TLO SLMCPR = 1.12 and SLO SLMCPR = 1.14) .................................. 65 Table 8-2: Modes of Operation (TLO SLMCPR = 1.08 and SLO SLMCPR = 1.10) ................................... 66 Table 8-3: Core Thermal Power Restriction for OOS Conditions ............................................................... 68 Page 5 of 71
 
COLR Dresden 2 Revision 18
: 1. Terms and Definitions AOO        Anticipated operational occurrence ASD        Adjustable speed drive BOC        Beginning of cycle CAVEX      Core average exposure CPR        Critical power ratio CRWE        Control rod withdrawal error CTP        Core thermal power EFPD        Effective full power day EFPH        Effective full power hour EOC        End of cycle EOCLB      End of cycle licensing basis EOFPL      End of full power life EOFPLB      End of full power licensing basis EOOS        Equipment out of service FHOOS      Feedwater heater out of service FWT        Feedwater temperature ICF        Increased core flow ISS        Intermediate scram speed LHGR        Linear heat generation rate LHGRFACf    Flow dependent linear heat generation rate multiplier LHGRFACp    Power dependent linear heat generation rate multiplier LPRM        Local power range monitor MAPLHGR    Maximum average planar linear heat generation rate MCPR        Minimum critical power ratio MCPRf      Flow dependent minimum critical power ratio MCPRp      Power dependent minimum critical power ratio MELLLA      Maximum extended load line limit analysis MFLCPR      Maximum fraction of limiting critical power ratio MSIVOOS    Main steam isolation valve out of service MWd/MTU    Megawatt days per metric ton Uranium NRC        Nuclear Regulatory Commission NSS        Nominal scram speed OLMCPR      Operating limit minimum critical power ratio OOS        Out of service OPRM        Oscillation power range monitor PBDA        Period based detection algorithm PCOOS      Pressure controller out of service PLUOOS      Power load unbalance out of service SLMCPR      Safety limit minimum critical power ratio SLO        Single loop operation TBV        Turbine bypass valve TBVOOS      Turbine bypass valves out of service TCV        Turbine control valve TCV SLOW C  TCF slow closure TIP        Traversing in-core probe TLO        Two loop operation TMOL        Thermal mechanical operating limit TRM        Technical Requirements Manual TSSS        Technical Specification scram speed TSV        Turbine stop valve Page 6 of 71
 
COLR Dresden 2 Revision 18
: 2. General Information This report is prepared in accordance with Technical Specification 5.6.5. The D2C27 reload is licensed by Framatome. However, some legacy analyses by Westinghouse are still applicable for OPTIMA2 fuel as described in Reference 9.
Licensed rated thermal power is 2957 MWth. Rated core flow is 98 Mlb/hr. Operation up to 108% rated core flow is licensed for this cycle; however, core flow cannot exceed 103.4% rated core flow due to unit specific limitations. For allowed operating regions, see applicable power/flow map.
The licensing analysis supports full power operation to EOCLB (38,198 MWd/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected. The transient analysis limits are provided for operation up to specific CAVEX exposures as defined in Section 4.3.
Coastdown is defined as operation beyond EOFPL (37,411 MWd/MTU CAVEX) with the plant power gradually reducing as available core reactivity diminishes. The D2C27 reload analyses do not credit this reduced power during coastdown and the EOCLB limits remain valid for operation up to rated power. The minimum allowed coastdown power level is 40% rated CTP per Reference 1.
Power and flow dependent limits are listed for various power and flow levels. Linear interpolation on power and flow (as applicable) is to be used to find intermediate values. Linear interpolation is also to be used for table items intentionally left blank, as indicated by boxes which are grayed out.
Only MCPRp varies with scram speed. All other thermal limits are analyzed to remain valid with NSS, ISS, and TSSS.
LHGRFACf is independent of feedwater temperature and EOOS conditions.
For thermal limit monitoring above 100% rated power or 108% rated core flow, the 100% rated power or the 108% core flow thermal limit values, respectively, shall be used. Steady state operation is not allowed in this region. Limits are provided for transient conditions only.
OLMCPR values contained herein support operation with a TLO SLMCPR of 1.12 and a SLO SLMCPR of 1.14 through EOFPL. These safety limits are consistent with those contained in Technical Specification 2.1.1.2. Additionally, OLMCPR values contained herein support operation with a TLO SLCMPR of 1.08 and a SLO SLMCPR of 1.10 through EOCLB. These safety limits are consistent with those requested in Reference 13. The OLMCPR values corresponding to the safety limits requested in Reference 13 cannot be used for core monitoring until the amendment authorizing the use of these safety limits has been implemented by Dresden Station.
Page 7 of 71
 
COLR Dresden 2 Revision 18
: 3. Average Planar Linear Heat Generation Rate Technical Specifications Sections 3.2.1 and 3.4.1 Table 3-1 provides the MAPLHGR SLO multipliers for ATRIUM 10XM and OPTIMA2 fuel. For OPTIMA2 natural uranium lattices, TLO and SLO MAPLHGR values are provided in Table 3-2. For all other OPTIMA2 lattices, lattice-specific MAPLHGR values for TLO are provided in Tables 3-3 through 3-21.
For ATRIUM 10XM fuel, the MAPLHGR values applicable for all lattices can be found in Table 3-22.
During SLO, the limits in Tables 3-3 through 3-22 are multiplied by the fuel-specific SLO multiplier listed in Table 3-1. The ATRIUM 10XM multiplier may be applied to OPTIMA2 for SLO conditions, as the ATRIUM 10XM multiplier is more limiting.
Table 3-1: MAPLHGR SLO Multipliers (References 7 and 9)
Fuel Type          Multiplier ATRIUM 10XM              0.80 OPTIMA2                0.86 Table 3-2: MAPLHGR for OPTIMA2 Lattices 81 and 89 (Reference 6 and 7)
All OPTIMA2 Bundles Lattices 81: Opt2-B0.71 89: Opt2-T0.71 Average Planar Exposure          TLO and SLO MAPLHGR (MWd/MTU)                            (kW/ft) 0                                7.65 75,000                              7.65 Page 8 of 71
 
COLR Dresden 2 Revision 18 Table 3-3: MAPLHGR for OPTIMA2 Lattice 149 (References 6 and 7)
Bundle Opt2-4.02-18GZ7.50-14GZ5.50 Lattice 149: Opt2-B4.31-18G7.50 Average Planar                    TLO Exposure                    MAPLHGR (MWd/MTU)                      (kW/ft) 0                          9.51 2,500                        9.85 5,000                        9.92 7,500                        9.84 10,000                        10.09 12,000                        10.18 15,000                        10.32 17,000                        10.37 20,000                        10.43 22,000                        10.39 24,000                        10.41 30,000                        10.24 36,000                        10.12 42,000                        9.99 50,000                        9.89 75,000                        9.89 Page 9 of 71
 
COLR Dresden 2 Revision 18 Table 3-4: MAPLHGR for OPTIMA2 Lattice 150 (References 6 and 7)
Bundle Opt2-4.02-18GZ7.50-14GZ5.50 Lattice 150: Opt2-B4.44-18G7.50 Average Planar                    TLO Exposure                    MAPLHGR (MWd/MTU)                      (kW/ft) 0                          9.42 2,500                        9.75 5,000                        9.65 7,500                        9.57 10,000                        9.69 12,000                        9.72 15,000                        9.77 17,000                        9.84 20,000                        10.04 22,000                        10.14 24,000                        10.08 30,000                        10.02 36,000                        9.97 42,000                        9.93 50,000                        9.97 75,000                        9.97 Page 10 of 71
 
COLR Dresden 2 Revision 18 Table 3-5: MAPLHGR for OPTIMA2 Lattice 151 (References 6 and 7)
Bundle Opt2-4.02-18GZ7.50-14GZ5.50 Lattice 151: Opt2-BE4.54-18G7.50 Average Planar                    TLO Exposure                    MAPLHGR (MWd/MTU)                      (kW/ft) 0                          9.55 2,500                        9.83 5,000                        9.72 7,500                        9.62 10,000                        9.75 12,000                        9.78 15,000                        9.87 17,000                        9.96 20,000                        10.12 22,000                        10.26 24,000                        10.19 30,000                        10.11 36,000                        10.07 42,000                        10.01 50,000                        10.04 75,000                        10.04 Page 11 of 71
 
COLR Dresden 2 Revision 18 Table 3-6: MAPLHGR for OPTIMA2 Lattice 152 (References 6 and 7)
Bundle Opt2-4.02-18GZ7.50-14GZ5.50 Lattice 152: Opt2-M4.54-18G7.50 Average Planar                      TLO Exposure                      MAPLHGR (MWd/MTU)                        (kW/ft) 0                          9.54 2,500                          9.84 5,000                          9.79 7,500                          9.62 10,000                          9.75 12,000                          9.82 15,000                          9.90 17,000                          9.98 20,000                        10.20 22,000                        10.24 24,000                        10.17 30,000                        10.10 36,000                        10.06 42,000                        10.00 50,000                        10.02 75,000                        10.02 Page 12 of 71
 
COLR Dresden 2 Revision 18 Table 3-7: MAPLHGR for OPTIMA2 Lattice 153 (References 6 and 7)
Bundle Opt2-4.02-18GZ7.50-14GZ5.50 Lattice 153: Opt2-ME4.50-18G7.50 Average Planar                    TLO Exposure                    MAPLHGR (MWd/MTU)                      (kW/ft) 0                          9.67 2,500                        10.00 5,000                          9.83 7,500                          9.72 10,000                        9.92 12,000                        9.94 15,000                        10.05 17,000                        10.16 20,000                        10.45 22,000                        10.43 24,000                        10.36 30,000                        10.30 36,000                        10.23 42,000                        10.19 50,000                        10.13 75,000                        10.13 Page 13 of 71
 
COLR Dresden 2 Revision 18 Table 3-8: MAPLHGR for OPTIMA2 Lattice 154 (References 6 and 7)
Bundle Opt2-4.02-18GZ7.50-14GZ5.50 Lattice 154: Opt2-T4.50-18G7.50 Average Planar                      TLO Exposure                      MAPLHGR (MWd/MTU)                        (kW/ft) 0                          9.70 2,500                          9.98 5,000                          9.77 7,500                          9.64 10,000                          9.75 12,000                          9.93 15,000                        10.00 17,000                        10.16 20,000                        10.43 22,000                        10.40 24,000                        10.35 30,000                        10.30 36,000                        10.23 42,000                        10.19 50,000                        10.09 75,000                        10.09 Page 14 of 71
 
COLR Dresden 2 Revision 18 Table 3-9: MAPLHGR for OPTIMA2 Lattice 155 (References 6 and 7)
Bundle Opt2-4.02-18GZ7.50-14GZ5.50 Lattice 155: Opt2-T4.52-14G5.50 Average Planar                      TLO Exposure                      MAPLHGR (MWd/MTU)                        (kW/ft) 0                          10.40 2,500                          10.71 5,000                          10.55 7,500                          10.25 10,000                        10.30 12,000                        10.32 15,000                        10.45 17,000                        10.52 20,000                        10.51 22,000                        10.52 24,000                        10.47 30,000                        10.41 36,000                        10.35 42,000                        10.27 50,000                        10.16 75,000                        10.16 Page 15 of 71
 
COLR Dresden 2 Revision 18 Table 3-10: MAPLHGR for OPTIMA2 Lattice 156 (References 6 and 7)
Bundle Opt2-3.98-16GZ7.50-14GZ5.50 Lattice 156: Opt2-B4.27-16G7.50 Average Planar                    TLO Exposure                    MAPLHGR (MWd/MTU)                      (kW/ft) 0                          9.78 2,500                        10.09 5,000                        10.14 7,500                        10.04 10,000                        10.20 12,000                        10.25 15,000                        10.34 17,000                        10.38 20,000                        10.41 22,000                        10.44 24,000                        10.45 30,000                        10.19 36,000                        10.07 42,000                        9.94 50,000                        9.84 75,000                        9.84 Page 16 of 71
 
COLR Dresden 2 Revision 18 Table 3-11: MAPLHGR for OPTIMA2 Lattice 157 (References 6 and 7)
Bundle Opt2-3.98-16GZ7.50-14GZ5.50 Lattice 157: Opt2-B4.41-16G7.50 Average Planar                    TLO Exposure                    MAPLHGR (MWd/MTU)                      (kW/ft) 0                          9.69 2,500                        9.99 5,000                        9.88 7,500                        9.76 10,000                        9.83 12,000                        9.76 15,000                        9.79 17,000                        9.83 20,000                        10.00 22,000                        10.13 24,000                        10.09 30,000                        10.04 36,000                        10.00 42,000                        9.95 50,000                        9.95 75,000                        9.95 Page 17 of 71
 
COLR Dresden 2 Revision 18 Table 3-12: MAPLHGR for OPTIMA2 Lattice 158 (References 6 and 7)
Bundle Opt2-3.98-16GZ7.50-14GZ5.50 Lattice 158: Opt2-BE4.51-16G7.50 Average Planar                      TLO Exposure                    MAPLHGR (MWd/MTU)                        (kW/ft) 0                            9.84 2,500                        10.08 5,000                        10.02 7,500                          9.82 10,000                          9.90 12,000                          9.92 15,000                          9.92 17,000                          9.98 20,000                        10.13 22,000                        10.24 24,000                        10.20 30,000                        10.14 36,000                        10.10 42,000                        10.04 50,000                          9.71 75,000                          9.71 Page 18 of 71
 
COLR Dresden 2 Revision 18 Table 3-13: MAPLHGR for OPTIMA2 Lattice 159 (References 6 and 7)
Bundle Opt2-3.98-16GZ7.50-14GZ5.50 Lattice 159: Opt2-M4.51-16G7.50 Average Planar                      TLO Exposure                    MAPLHGR (MWd/MTU)                        (kW/ft) 0                            9.84 2,500                        10.09 5,000                        10.12 7,500                          9.83 10,000                          9.91 12,000                          9.96 15,000                          9.95 17,000                        10.00 20,000                        10.14 22,000                        10.24 24,000                        10.19 30,000                        10.13 36,000                        10.10 42,000                        10.03 50,000                          9.93 75,000                          9.93 Page 19 of 71
 
COLR Dresden 2 Revision 18 Table 3-14: MAPLHGR for OPTIMA2 Lattice 160 (References 6 and 7)
Bundle Opt2-3.98-16GZ7.50-14GZ5.50 Lattice 160: Opt2-ME4.46-16G7.50 Average Planar                    TLO Exposure                    MAPLHGR (MWd/MTU)                      (kW/ft) 0                          10.01 2,500                        10.27 5,000                        10.19 7,500                        10.00 10,000                        10.10 12,000                        10.11 15,000                        10.11 17,000                        10.17 20,000                        10.42 22,000                        10.42 24,000                        10.39 30,000                        10.33 36,000                        10.27 42,000                        10.19 50,000                        10.08 75,000                        10.08 Page 20 of 71
 
COLR Dresden 2 Revision 18 Table 3-15: MAPLHGR for OPTIMA2 Lattice 161 (References 6 and 7)
Bundle Opt2-3.98-16GZ7.50-14GZ5.50 Lattice 161: Opt2-T4.46-16G7.50 Average Planar                      TLO Exposure                    MAPLHGR (MWd/MTU)                        (kW/ft) 0                          10.03 2,500                        10.26 5,000                        10.09 7,500                          9.97 10,000                        10.04 12,000                        10.05 15,000                        10.06 17,000                        10.18 20,000                        10.40 22,000                        10.40 24,000                        10.37 30,000                        10.33 36,000                        10.26 42,000                        10.15 50,000                        10.00 75,000                        10.00 Page 21 of 71
 
COLR Dresden 2 Revision 18 Table 3-16: MAPLHGR for OPTIMA2 Lattice 162 (References 6 and 7)
Bundle Opt2-3.98-16GZ7.50-14GZ5.50 Lattice 162: Opt2-T4.47-14G5.50 Average Planar                      TLO Exposure                    MAPLHGR (MWd/MTU)                        (kW/ft) 0                          10.41 2,500                        10.69 5,000                        10.54 7,500                        10.28 10,000                        10.20 12,000                        10.32 15,000                        10.46 17,000                        10.49 20,000                        10.48 22,000                        10.47 24,000                        10.44 30,000                        10.39 36,000                        10.33 42,000                        10.22 50,000                        10.12 75,000                        10.12 Page 22 of 71
 
COLR Dresden 2 Revision 18 Table 3-17: MAPLHGR for OPTIMA2 Lattice 163 (References 6 and 7)
Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 163: Opt2-B4.50-16G5.50 Average Planar                    TLO Exposure                    MAPLHGR (MWd/MTU)                      (kW/ft) 0                          9.47 2,500                        9.81 5,000                        9.71 7,500                        9.58 10,000                        9.68 12,000                        9.73 15,000                        9.89 17,000                        10.00 20,000                        10.18 22,000                        10.21 24,000                        10.18 30,000                        10.12 36,000                        10.07 42,000                        10.00 50,000                        10.02 75,000                        10.02 Page 23 of 71
 
COLR Dresden 2 Revision 18 Table 3-18: MAPLHGR for OPTIMA2 Lattice 164 (References 6 and 7)
Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 164: Opt2-BE4.60-16G5.50 Average Planar                      TLO Exposure                    MAPLHGR (MWd/MTU)                        (kW/ft) 0                          9.53 2,500                        9.89 5,000                        9.85 7,500                        9.83 10,000                          9.76 12,000                          9.82 15,000                        10.01 17,000                        10.16 20,000                        10.33 22,000                        10.34 24,000                        10.31 30,000                        10.23 36,000                        10.18 42,000                        10.14 50,000                        10.09 75,000                        10.09 Page 24 of 71
 
COLR Dresden 2 Revision 18 Table 3-19: MAPLHGR for OPTIMA2 Lattice 165 (References 6 and 7)
Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 165: Opt2-M4.60-16G5.50 Average Planar                      TLO Exposure                    MAPLHGR (MWd/MTU)                        (kW/ft) 0                          9.51 2,500                        9.91 5,000                        9.89 7,500                        9.85 10,000                          9.78 12,000                          9.85 15,000                        10.02 17,000                        10.18 20,000                        10.36 22,000                        10.36 24,000                        10.31 30,000                        10.23 36,000                        10.18 42,000                        10.14 50,000                        10.09 75,000                        10.09 Page 25 of 71
 
COLR Dresden 2 Revision 18 Table 3-20: MAPLHGR for OPTIMA2 Lattice 166 (References 6 and 7)
Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 166: Opt2-ME4.57-16G5.50 Average Planar                    TLO Exposure                    MAPLHGR (MWd/MTU)                      (kW/ft) 0                          9.68 2,500                        10.09 5,000                        10.04 7,500                        9.93 10,000                        9.95 12,000                        10.03 15,000                        10.31 17,000                        10.47 20,000                        10.62 22,000                        10.56 24,000                        10.51 30,000                        10.44 36,000                        10.37 42,000                        10.28 50,000                        10.22 75,000                        10.22 Page 26 of 71
 
COLR Dresden 2 Revision 18 Table 3-21: MAPLHGR for OPTIMA2 Lattice 167 (References 6 and 7)
Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 167: Opt2-T4.58-14G5.50 Average Planar                      TLO Exposure                    MAPLHGR (MWd/MTU)                        (kW/ft) 0                          10.13 2,500                        10.45 5,000                        10.44 7,500                        10.17 10,000                        10.08 12,000                        10.10 15,000                        10.29 17,000                        10.44 20,000                        10.56 22,000                        10.56 24,000                        10.52 30,000                        10.46 36,000                        10.39 42,000                        10.31 50,000                        10.17 75,000                        10.17 Page 27 of 71
 
COLR Dresden 2 Revision 18 Table 3-22: MAPLHGR for ATRIUM 10XM (Reference 9)
All ATRIUM 10XM Lattices Average Planar Exposure            TLO MAPLHGR (MWd/MTU)                        (kW/ft) 0                          12.20 20,000                          12.20 67,000                          7.73 Page 28 of 71
 
COLR Dresden 2 Revision 18
: 4. Operating Limit Minimum Critical Power Ratio Technical Specification Sections 3.2.2, 3.4.1, and 3.7.7 The OLMCPRs for D2C27 were established so that less than 0.1% of the fuel rods in the core are expected to experience boiling transition during an AOO initiated from rated or off-rated conditions and are based on the Technical Specifications SLMCPR values (References 9 and 12).
Exelon submitted a license amendment request (Reference 13) to the NRC in December 2018 requesting that the TLO SLMCPR be reduced from 1.12 to 1.08 and that the SLO SLMCPR be reduced from 1.14 to 1.10. Therefore, OLMCPRs are included in this section to support both sets of SLMCPR values. In addition, Table 8-1 includes penalties that will allow the use of certain OLMCPRs corresponding to the new SLMCPR values as long as the MFLCPR limit is reduced from 1.0 by the amount indicated in Table 8-1.
Tables 4-3 through 4-30 include MCPR limits for various specified SLMCPR values and EOOS conditions.
The EOOS conditions separated by / in these tables represent single EOOS conditions and not any combination of conditions. Refer to Section 8 for a detailed explanation of allowable combined EOOS conditions.
4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.
4.1.1. Power-Dependent MCPR The OLMCPR as a function of core thermal power (MCPRp) is shown in Tables 4-3 through
: 28. MCPRp limits are dependent on supported SLMCPR values, scram times as described in Section 4.2, exposure as described in Section 4.3, fuel type, FWT, and whether the plant is in TLO or SLO. TLO limits for ATRIUM 10XM fuel and OPTIMA2 fuel associated with a SLMCPR of 1.12 are given in Tables 4-3 through 4-8. SLO limits for ATRIUM 10XM fuel and OPTIMA2 fuel associated with a SLMCPR of 1.14 are given in Tables 4-9 and 4-10.
TLO limits for ATRIUM 10XM fuel associated with a SLMCPR of 1.08 are given in Tables 4-11 through 4-16. SLO limits for ATRIUM 10XM fuel associated with a SLMCPR of 1.10 are given in Tables 4-23 through 4-25. TLO limits for OPTIMA2 fuel associated with a SLMCPR of 1.08 are given in Tables 4-17 through 4-22. SLO limits for OPTIMA2 fuel associated with a SLMCPR of 1.10 are given in Tables 4-26 through 4-28.
4.1.2. Flow-Dependent MCPR Tables 4-29 and 4-30 give the OLMCPR limit as a function of the flow (MCPRf) based on the supported SLMCPR values and applicable plant condition. Limits for a TLO SLMCPR of 1.12 and a SLO SLMCPR of 1.14 are given in Table 4-29. Limits for a TLO SLMCPR of 1.08 and a SLO SLMCPR of 1.10 are given in Table 4-30. These values are applicable to both ATRIUM 10XM and OPTIMA2 fuel.
Page 29 of 71
 
COLR Dresden 2 Revision 18 4.2. Scram Time TSSS, ISS, and NSS refer to scram speeds. The scram time values associated with these speeds are shown in Table 4-1. The TSSS scram times shown in Table 4-1 are the same as those specified in the Technical Specifications (Reference 2).
To utilize the OLMCPR limits for NSS in Tables 4-3, 4-6, 4-7, 4-9, 4-11, 4-14, 4-17, 4-20, 4-23, and 4-26, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the NSS time shown in Table 4-1 below.
To utilize the OLMCPR limits for ISS in Tables 4-8, 4-10, 4-12, 4-15, 4-18, 4-21, 4-24, and 4-27, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the ISS time shown in Table 4-1 below.
The Average Control Rod Insertion Time is defined as the sum of the control rod insertion times of all operable control rods divided by the number of operable control rods. Conservative adjustments to the NSS and ISS scram speeds were made to the analysis inputs to appropriately account for the effects of 1 stuck control rod and one additional control rod that is assumed to fail to scram (Reference 9).
To utilize the OLMCPR limits for TSSS in Tables 4-4, 4-5, 4-13, 4-16, 4-19, 4-22, 4-25, and 4-28, the control rod insertion time of each operable control rod at each control rod insertion fraction must be less than or equal to the TSSS time shown in Table 4-1 below. The Technical Specifications allow operation with up to 12 slow and 1 stuck control rod. One additional control rod is assumed to fail to scram for the system transient analyses performed to establish MCPRp limits (Reference 9). Conservative adjustments to the TSSS scram speeds were made to the analysis inputs to appropriately account for the effects of the slow and stuck rods on scram reactivity (Reference 9).
For cases below 38.5% power (Pbypass), the results are relatively insensitive to scram speed, and only TSSS analyses were performed (Reference 9).
Table 4-1: Scram Times (References 2 and 9)
Control Rod Insertion        NSS (seconds)          ISS (seconds)      TSSS (seconds)
Fraction (%)
5                  0.324                  0.36                0.48 20                  0.700                  0.72                0.89 50                  1.510                  1.58                1.98 90                  2.635                  2.74                3.44 Page 30 of 71
 
COLR Dresden 2 Revision 18 4.3. Exposure Dependent MCPR Limits Exposure-dependent MCPRp limits were established to support operation from BOC to EOFPLB (CAVEX of 37,411 MWd/MTU) and EOFPLB to EOCLB (CAVEX of 38,198 MWd/MTU) as defined by the CAVEX values listed in Table 4-2. Note that the thermal limits are based on CAVEX. The limits at a later exposure range can be used earlier in the cycle as they are the same or more conservative.
Table 4-2: Exposure Basis for Transient Analysis (Reference 9)
Core Average Exposure (CAVEX)                        Description (MWd/MTU)
Design basis rod patterns to EOFPL 37,411
                                                    + 25 EFPD (EOFPLB)
EOCLB - Maximum licensing core 38,198 exposure, including coastdown 4.4. Recirculation Pump ASD Settings Technical Requirement Manual 2.1.a.1 Dresden 2 Cycle 27 was analyzed with a slow flow excursion event assuming a failure of the recirculation flow control system such that the core flow increases slowly to the maximum flow physically permitted by the equipment, assumed to be 110% of rated core flow (Reference 9);
therefore, the recirculation pump ASD must be set to maintain core flow less than 110%
(107.8 Mlb/hr) for all runout events.
Page 31 of 71
 
COLR Dresden 2 Revision 18 Table 4-3: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, NSS Insertion Times, Nominal FWT, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 12)
Nominal FWT Core Flow                      Core Power (% rated)
Fuel Type
(% rated)      0          25      38.5 > 38.5    75  100 60      2.62        2.62    2.23 ATRIUM 10XM                                                    1.97          1.46
                            > 60      2.67        2.67    2.33 60      2.55        2.55    2.13 OPTIMA2                                                      2.01          1.45
                            > 60      2.68        2.68    2.37 Table 4-4: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, TSSS Insertion Times, Nominal FWT, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 12)
Nominal FWT Core Flow                      Core Power (% rated)
Fuel Type
(% rated)      0          25      38.5 > 38.5    75  100 60      2.62        2.62    2.23 ATRIUM 10XM                                                    2.05          1.46
                            > 60      2.67        2.67    2.33 60      2.55        2.55    2.13 OPTIMA2                                                      2.06          1.47
                            > 60      2.68        2.68    2.37 Table 4-5: TLO MCPRp Limits (SLMCPR = 1.12), Base Case, TSSS Insertion Times, FHOOS, BOC to EOCLB (38,198 MWd/MTU CAVEX)
(Reference 12)
FHOOS Core Flow                      Core Power (% rated)
Fuel Type
(% rated)      0          25      38.5 > 38.5    75  100 60      2.83        2.83    2.34 ATRIUM 10XM                                                    2.19          1.46
                            > 60      2.86        2.86    2.34 60      2.71        2.71    2.27 OPTIMA2                                                      2.24          1.48
                            > 60      2.89        2.89    2.37 Page 32 of 71
 
COLR Dresden 2 Revision 18 Table 4-6: TLO MCPRp Limits (SLMCPR = 1.12), PLUOOS/TCV Slow Closure, NSS Insertion Times, FHOOS, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 12)
FHOOS Fuel Type TCV Slow Closure/PLUOOS/PCOOS and FHOOS limits from Table 4-11 ATRIUM 10XM          shall be used, with the applicable MFLCPR Penalty from Table 8-1 applied.
TCV Slow Closure/PLUOOS/PCOOS and FHOOS limits from Table 4-17 OPTIMA2          shall be used, with the applicable MFLCPR Penalty from Table 8-1 applied.
Table 4-7: TLO MCPRp Limits (SLMCPR = 1.12), TBVOOS, NSS Insertion Times, FHOOS, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 12)
FHOOS Fuel Type TBVOOS and FHOOS limits from Table 4-11 shall be used, with the ATRIUM 10XM applicable MFLCPR Penalty from Table 8-1 applied.
TBVOOS and FHOOS limits from Table 4-17 shall be used, with the OPTIMA2 applicable MFLCPR Penalty from Table 8-1 applied.
Table 4-8: TLO MCPRp Limits (SLMCPR = 1.12), MSIVOOS, ISS Insertion Times, FHOOS, BOC to EOCLB (38,198 MWd/MTU CAVEX)
(Reference 12)
FHOOS Fuel Type MSIVOOS and FHOOS limits from Table 4-15 shall be used, with the ATRIUM 10XM applicable MFLCPR Penalty from Table 8-1 applied.
MSIVOOS and FHOOS limits from Table 4-21 shall be used, with the OPTIMA2 applicable MFLCPR Penalty from Table 8-1 applied.
Page 33 of 71
 
COLR Dresden 2 Revision 18 Table 4-9: SLO MCPRp Limits (SLMCPR = 1.14), Base Case, NSS Insertion Times, Nominal FWT, All Exposures (Reference 12)
Nominal FWT Fuel Type Base limits from Table 4-23 shall be used, with ATRIUM 10XM      the applicable MFLCPR Penalty from Table 8-1 applied.
Base limits from Table 4-26 shall be used, with OPTIMA2        the applicable MFLCPR Penalty from Table 8-1 applied.
Table 4-10: SLO MCPRp Limits (SLMCPR = 1.14), MSIVOOS, ISS Insertion Times, FHOOS, All Exposures (Reference 12)
FHOOS Fuel Type Base and FHOOS limits from Table 4-24 shall ATRIUM 10XM        be used, with the applicable MFLCPR Penalty from Table 8-1 applied.
Base and FHOOS limits from Table 4-27 shall OPTIMA2          be used, with the applicable MFLCPR Penalty from Table 8-1 applied.
Page 34 of 71
 
COLR Dresden 2 Revision 18 Table 4-11: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.58        2.58    2.19 1.93          1.41 Closed/MSIVOOS          > 60      2.63      2.63    2.29 60      3.49        3.49    2.62 TBVOOS                                                    1.98          1.44
                        > 60      3.54      3.54    2.78 TCV Slow Closure/        60      2.58        2.58    2.27 2.27    1.88  1.41 PLUOOS/PCOOS          > 60      2.64      2.64    2.29 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.79        2.79    2.30 2.08          1.41 Closed/MSIVOOS          > 60      2.82        2.82    2.30 60      3.64        3.64    2.73 TBVOOS                                                    2.08          1.44
                        > 60      3.65      3.65    2.86 TCV Slow Closure/        60      2.79        2.79    2.30 2.27    1.88  1.41 PLUOOS/PCOOS          > 60      2.82        2.82    2.30 Page 35 of 71
 
COLR Dresden 2 Revision 18 Table 4-12: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck          60      2.58        2.58    2.19 1.93          1.41 Closed/MSIVOOS          > 60      2.63      2.63    2.29 60      3.49        3.49    2.62 TBVOOS                                                    1.98          1.44
                        > 60      3.54      3.54    2.78 TCV Slow Closure/        60      2.58        2.58    2.27 2.27    1.89  1.41 PLUOOS/PCOOS          > 60      2.64      2.64    2.29 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck          60      2.79        2.79    2.30 2.08          1.41 Closed/MSIVOOS          > 60      2.82        2.82    2.30 60      3.64        3.64    2.73 TBVOOS                                                    2.08          1.44
                        > 60      3.65      3.65    2.86 TCV Slow Closure/        60      2.79        2.79    2.30 2.27    1.89  1.41 PLUOOS/PCOOS          > 60      2.82        2.82    2.30 Page 36 of 71
 
COLR Dresden 2 Revision 18 Table 4-13: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck        60      2.58        2.58    2.19 2.01          1.41 Closed/MSIVOOS        > 60      2.63      2.63    2.29 60      3.49        3.49    2.62 TBVOOS                                                    2.01          1.44
                      > 60      3.54      3.54    2.78 TCV Slow Closure/      60      2.58        2.58    2.29 2.29    1.91  1.42 PLUOOS/PCOOS          > 60      2.64      2.64    2.29 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck        60      2.79        2.79    2.30 2.15          1.42 Closed/MSIVOOS        > 60      2.82        2.82    2.30 60      3.64        3.64    2.73 TBVOOS                                                    2.15          1.45
                      > 60      3.65      3.65    2.86 TCV Slow Closure/      60      2.79        2.79    2.30 2.29    1.91  1.42 PLUOOS/PCOOS          > 60      2.82        2.82    2.30 Page 37 of 71
 
COLR Dresden 2 Revision 18 Table 4-14: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.58        2.58    2.19 1.93          1.41 Closed/MSIVOOS          > 60      2.63      2.63    2.29 60      3.49        3.49    2.62 TBVOOS                                                    1.98          1.44
                        > 60      3.54      3.54    2.78 TCV Slow Closure/        60      2.58        2.58    2.27 2.27    1.88  1.41 PLUOOS/PCOOS          > 60      2.64      2.64    2.29 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.79        2.79    2.30 2.08          1.41 Closed/MSIVOOS          > 60      2.82        2.82    2.30 60      3.64        3.64    2.73 TBVOOS                                                    2.08          1.44
                        > 60      3.65      3.65    2.86 TCV Slow Closure/        60      2.79        2.79    2.30 2.27    1.88  1.41 PLUOOS/PCOOS          > 60      2.82        2.82    2.30 Page 38 of 71
 
COLR Dresden 2 Revision 18 Table 4-15: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck          60      2.58        2.58    2.19 1.93          1.41 Closed/MSIVOOS          > 60      2.63      2.63    2.29 60      3.49        3.49    2.62 TBVOOS                                                    1.98          1.44
                        > 60      3.54      3.54    2.78 TCV Slow Closure/        60      2.58        2.58    2.27 2.27    1.89  1.41 PLUOOS/PCOOS          > 60      2.64      2.64    2.29 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck          60      2.79        2.79    2.30 2.08          1.41 Closed/MSIVOOS          > 60      2.82        2.82    2.30 60      3.64        3.64    2.73 TBVOOS                                                    2.08          1.44
                        > 60      3.65      3.65    2.86 TCV Slow Closure/        60      2.79        2.79    2.30 2.27    1.89  1.41 PLUOOS/PCOOS          > 60      2.82        2.82    2.30 Page 39 of 71
 
COLR Dresden 2 Revision 18 Table 4-16: ATRIUM 10XM TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck        60      2.58        2.58    2.19 2.01            1.41 Closed/MSIVOOS        > 60      2.63      2.63    2.29 60      3.49        3.49    2.62 TBVOOS                                                    2.01            1.44
                      > 60      3.54      3.54    2.78 TCV Slow Closure/      60      2.58        2.58    2.29 2.29    1.91  1.42 PLUOOS/PCOOS          > 60      2.64      2.64    2.29 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck        60      2.79        2.79    2.30 2.15            1.42 Closed/MSIVOOS        > 60      2.82        2.82    2.30 60      3.64        3.64    2.73 TBVOOS                                                    2.15            1.45
                      > 60      3.65      3.65    2.86 TCV Slow Closure/      60      2.79        2.79    2.30 2.29    1.91  1.42 PLUOOS/PCOOS          > 60      2.82        2.82    2.30 Page 40 of 71
 
COLR Dresden 2 Revision 18 Table 4-17: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.51        2.51    2.09 1.97          1.41 Closed/MSIVOOS          > 60      2.64      2.64    2.33 60      3.27        3.27    2.48 TBVOOS                                                    1.99          1.45
                        > 60      3.52        3.52    2.81 TCV Slow Closure/        60      2.51        2.51    2.31 2.31    1.92  1.43 PLUOOS/PCOOS          > 60      2.64      2.64    2.33 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.67        2.67    2.23 2.15          1.42 Closed/MSIVOOS          > 60      2.85        2.85    2.33 60      3.40        3.40    2.56 TBVOOS                                                    2.15          1.46
                        > 60      3.66        3.66    2.90 TCV Slow Closure/        60      2.67        2.67    2.31 2.31    1.92  1.43 PLUOOS/PCOOS          > 60      2.85        2.85    2.33 Page 41 of 71
 
COLR Dresden 2 Revision 18 Table 4-18: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.51        2.51    2.09 1.98          1.41 Closed/MSIVOOS          > 60      2.64      2.64    2.33 60      3.27        3.27    2.48 TBVOOS                                                    1.99          1.45
                        > 60      3.52        3.52    2.81 TCV Slow Closure/        60      2.51        2.51    2.31 2.31    1.92  1.44 PLUOOS/PCOOS          > 60      2.64      2.64    2.33 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.67        2.67    2.23 2.16          1.42 Closed/MSIVOOS          > 60      2.85        2.85    2.33 60      3.40        3.40    2.56 TBVOOS                                                    2.16          1.46
                        > 60      3.66        3.66    2.90 TCV Slow Closure/        60      2.67        2.67    2.31 2.31    1.92  1.44 PLUOOS/PCOOS          > 60      2.85        2.85    2.33 Page 42 of 71
 
COLR Dresden 2 Revision 18 Table 4-19: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, BOC to EOFPLB (37,411 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck        60      2.51      2.51    2.09 2.02          1.43 Closed/MSIVOOS        > 60      2.64      2.64    2.33 60      3.27      3.27    2.48 TBVOOS                                                    2.03          1.47
                      > 60      3.52      3.52    2.81 TCV Slow Closure/      60      2.51      2.51    2.33 2.33    1.95  1.49 PLUOOS/PCOOS          > 60      2.64      2.64    2.33 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck        60      2.67      2.67    2.23 2.20          1.44 Closed/MSIVOOS        > 60      2.85      2.85    2.33 60      3.40      3.40    2.56 TBVOOS                                                    2.20          1.48
                      > 60      3.66      3.66    2.90 TCV Slow Closure/      60      2.67      2.67    2.33 2.33    1.95  1.49 PLUOOS/PCOOS          > 60      2.85      2.85    2.33 Page 43 of 71
 
COLR Dresden 2 Revision 18 Table 4-20: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for NSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.51        2.51    2.09 1.97          1.41 Closed/MSIVOOS          > 60      2.64      2.64    2.33 60      3.27        3.27    2.48 TBVOOS                                                    1.99          1.45
                        > 60      3.52        3.52    2.81 TCV Slow Closure/        60      2.51        2.51    2.31 2.31    1.92  1.44 PLUOOS/PCOOS          > 60      2.64      2.64    2.33 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.67        2.67    2.23 2.15          1.42 Closed/MSIVOOS          > 60      2.85        2.85    2.33 60      3.40        3.40    2.56 TBVOOS                                                    2.15          1.46
                        > 60      3.66        3.66    2.90 TCV Slow Closure/        60      2.67        2.67    2.31 2.31    1.92  1.44 PLUOOS/PCOOS          > 60      2.85        2.85    2.33 Page 44 of 71
 
COLR Dresden 2 Revision 18 Table 4-21: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for ISS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.51        2.51    2.09 1.98          1.41 Closed/MSIVOOS          > 60      2.64      2.64    2.33 60      3.27        3.27    2.48 TBVOOS                                                    1.99          1.45
                        > 60      3.52        3.52    2.81 TCV Slow Closure/        60      2.51        2.51    2.31 2.31    1.92  1.44 PLUOOS/PCOOS          > 60      2.64      2.64    2.33 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75  100 Base/TCV Stuck          60      2.67        2.67    2.23 2.16          1.42 Closed/MSIVOOS          > 60      2.85        2.85    2.33 60      3.40        3.40    2.56 TBVOOS                                                    2.16          1.46
                        > 60      3.66        3.66    2.90 TCV Slow Closure/        60      2.67        2.67    2.31 2.31    1.92  1.44 PLUOOS/PCOOS          > 60      2.85        2.85    2.33 Page 45 of 71
 
COLR Dresden 2 Revision 18 Table 4-22: OPTIMA2 TLO MCPRp Limits (SLMCPR = 1.08) for TSSS Insertion Times, EOFPLB to EOCLB (38,198 MWd/MTU CAVEX)
(Reference 9)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck        60      2.51      2.51    2.09 2.02          1.44 Closed/MSIVOOS        > 60      2.64      2.64    2.33 60      3.27      3.27    2.48 TBVOOS                                                    2.03          1.47
                      > 60      3.52      3.52    2.81 TCV Slow Closure/      60      2.51      2.51    2.33 2.33    1.95  1.50 PLUOOS/PCOOS          > 60      2.64      2.64    2.33 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5      75    100 Base/TCV Stuck        60      2.67      2.67    2.23 2.20          1.44 Closed/MSIVOOS        > 60      2.85      2.85    2.33 60      3.40      3.40    2.56 TBVOOS                                                    2.20          1.48
                      > 60      3.66      3.66    2.90 TCV Slow Closure/      60      2.67      2.67    2.33 2.33    1.95  1.50 PLUOOS/PCOOS          > 60      2.85      2.85    2.33 Page 46 of 71
 
COLR Dresden 2 Revision 18 Table 4-23: ATRIUM 10XM SLO MCPRp Limits (SLMCPR = 1.10) for NSS Insertion Times, All Exposures (Reference 9)
Nominal FWT EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.60      2.60      2.21    2.09  2.07 Closed/MSIVOOS TBVOOS          3.51      3.51      2.64    2.09  2.07 TCV Slow Closure/
2.60      2.60      2.29    2.29  2.17 PLUOOS/PCOOS FHOOS EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.81      2.81      2.32    2.10  2.07 Closed/MSIVOOS TBVOOS          3.66      3.66      2.75    2.10  2.07 TCV Slow Closure/
2.81      2.81      2.32    2.29  2.17 PLUOOS/PCOOS Page 47 of 71
 
COLR Dresden 2 Revision 18 Table 4-24: ATRIUM 10XM SLO MCPRp Limits (SLMCPR = 1.10) for ISS Insertion Times, All Exposures (Reference 9)
Nominal FWT EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.60      2.60      2.21    2.09  2.07 Closed/MSIVOOS TBVOOS          3.51      3.51      2.64    2.09  2.07 TCV Slow Closure/
2.60      2.60      2.29    2.29  2.17 PLUOOS/PCOOS FHOOS EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.81      2.81      2.32    2.10  2.07 Closed/MSIVOOS TBVOOS          3.66      3.66      2.75    2.10  2.07 TCV Slow Closure/
2.81      2.81      2.32    2.29  2.17 PLUOOS/PCOOS Page 48 of 71
 
COLR Dresden 2 Revision 18 Table 4-25: ATRIUM 10XM SLO MCPRp Limits (SLMCPR = 1.10) for TSSS Insertion Times, All Exposures (Reference 9)
Nominal FWT EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.60      2.60      2.21    2.09  2.07 Closed/MSIVOOS TBVOOS          3.51      3.51      2.64    2.09  2.07 TCV Slow Closure/
2.60      2.60      2.31    2.31  2.20 PLUOOS/PCOOS FHOOS EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.81      2.81      2.32    2.17  2.07 Closed/MSIVOOS TBVOOS          3.66      3.66      2.75    2.17  2.07 TCV Slow Closure/
2.81      2.81      2.32    2.31  2.20 PLUOOS/PCOOS Page 49 of 71
 
COLR Dresden 2 Revision 18 Table 4-26: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1.10) for NSS Insertion Times, All Exposures (Reference 9)
Nominal FWT EOOS Condition                    Core Power (% rated)
(all include SLO)      0          25      > 38.5  50 Base/TCV Stuck 2.53        2.53    2.11    2.09  2.07 Closed/MSIVOOS TBVOOS          3.29        3.29    2.50    2.09  2.07 TCV Slow Closure/
2.53        2.53    2.33    2.33  2.21 PLUOOS/PCOOS FHOOS EOOS Condition                    Core Power (% rated)
(all include SLO)      0          25      > 38.5  50 Base/TCV Stuck 2.69        2.69    2.25    2.17  2.07 Closed/MSIVOOS TBVOOS          3.42        3.42    2.58    2.17  2.07 TCV Slow Closure/
2.69        2.69    2.33    2.33  2.21 PLUOOS/PCOOS Page 50 of 71
 
COLR Dresden 2 Revision 18 Table 4-27: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1.10) for ISS Insertion Times, All Exposures (Reference 9)
Nominal FWT EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.53      2.53      2.11    2.09  2.07 Closed/MSIVOOS TBVOOS          3.29      3.29      2.50    2.09  2.07 TCV Slow Closure/
2.53      2.53      2.33    2.33  2.21 PLUOOS/PCOOS FHOOS EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.69      2.69      2.25    2.18  2.07 Closed/MSIVOOS TBVOOS          3.42      3.42      2.58    2.18  2.07 TCV Slow Closure/
2.69      2.69      2.33    2.33  2.21 PLUOOS/PCOOS Page 51 of 71
 
COLR Dresden 2 Revision 18 Table 4-28: OPTIMA2 SLO MCPRp Limits (SLMCPR = 1.10) for TSSS Insertion Times, All Exposures (Reference 9)
Nominal FWT EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.53      2.53      2.11    2.09  2.07 Closed/MSIVOOS TBVOOS          3.29      3.29      2.50    2.09  2.07 TCV Slow Closure/
2.53      2.53      2.35    2.35  2.24 PLUOOS/PCOOS FHOOS EOOS Condition                  Core Power (% rated)
(all include SLO)      0        25        > 38.5  50 Base/TCV Stuck 2.69      2.69      2.25    2.22  2.07 Closed/MSIVOOS TBVOOS          3.42      3.42      2.58    2.22  2.07 TCV Slow Closure/
2.69      2.69      2.35    2.35  2.24 PLUOOS/PCOOS Page 52 of 71
 
COLR Dresden 2 Revision 18 Table 4-29: ATRIUM 10XM and OPTIMA2 MCPRf Limits (TLO SLMCPR = 1.12 and SLO SLMCPR = 1.14)
(Reference 12)
EOOS Condition*                      Core Flow (% rated)            MCPRf Limit 0                      1.70 Base Case / FHOOS / 1 TCV Stuck Closed 35                      1.70 in TLO 108                      1.23 Base Case limits from Table 4-30 shall be Base Case in used, with the applicable MFLCPR Penalty SLO from Table 8-1 applied.
PCOOS / PLUOOS / TCV Slow Closure /                  Base Case limits from Table 4-30 shall be PLUOOS + PCOOS in                          used, with the applicable MFLCPR Penalty TLO                                          from Table 8-1 applied.
MSIVOOS limits from Table 4-30 shall be used, One MSIVOOS in with the applicable MFLCPR Penalty from TLO and SLO Table 8-1 applied.
TBVOOS limits from Table 4-30 shall be used, TBVOOS in with the applicable MFLCPR Penalty from TLO Table 8-1 applied.
PLUOOS + 1 TCV/TSV Stuck Closed /                    Base Case limits from Table 4-30 shall be PCOOS + 1 TCV/TSV Stuck Closed in                  used, with the applicable MFLCPR Penalty TLO                                          from Table 8-1 applied.
* See Section 8 for further operating restrictions.
Page 53 of 71
 
COLR Dresden 2 Revision 18 Table 4-30: ATRIUM 10XM and OPTIMA2 MCPRf Limits (TLO SLMCPR = 1.08 and SLO SLMCPR = 1.10)
(Reference 9)
EOOS Condition*                      Core Flow (% rated)      MCPRf Limit 0                  1.66 Base Case / FHOOS / PCOOS / PLUOOS /
TCV Slow Closure / PLUOOS + PCOOS in                        35                  1.66 TLO and SLO 108                  1.19 0                  1.84 Any Scenario** with One MSIVOOS                        35                  1.84 108                  1.19 0                  1.86 Any Scenario** with TBVOOS                          35                  1.86 108                  1.35 0                    1.66 Any Scenario** with 1 Stuck Closed 35                  1.66 TCV/TSV 108                  1.19
* See Section 8 for further operating restrictions.
** Any Scenario implies any other combination of allowable EOOS conditions that is not otherwise covered by this table.
Note that the MCPRf limits for any scenario with 1 stuck closed TCV/TSV are identical to base case MCPRf limits. This is reflected in the thermal limit sets presented in Tables 8-1 and 8-2.
Page 54 of 71
 
COLR Dresden 2 Revision 18
: 5. Linear Heat Generation Rate Technical Specification Sections 3.2.3, 3.4.1, and 3.7.7 The TMOL at rated conditions for the OPTIMA2 and ATRIUM 10XM fuel is established in terms of the maximum LHGR as a function of peak pellet (rod nodal) exposure. The LHGR limits for OPTIMA2 fuel are presented in Tables 5-1 through 5-5. The limits in Tables 5-1 and 5-5 apply to OPTIMA2 lattices that do not require Gadolinia set down penalties. The limits in Tables 5-2 through 5-4 apply to OPTIMA2 lattices that do require Gadolinia set down penalties. The limits in Table 5-5 apply to the OPTIMA2 natural U blankets in lattices 81 and 89. The LHGR limits for ATRIUM 10XM fuel are presented in Table 5-6.
The power- and flow-dependent LHGR multipliers (LHGRFACp and LHGRFACf) are applied directly to the LHGR limits to protect against fuel melting and overstraining of the cladding during an AOO (Reference 9).
In all conditions, the margin to the LHGR limits is determined by applying the lowest multiplier from the applicable LHGRFACp and LHGRFACf multipliers for the power/flow statepoint of interest to the steady state LHGR limit (Reference 9).
LHGRFACp and LHGRFACf multipliers were established to support base case and all EOOS conditions for all Cycle 27 exposures and scram speeds. The LHGRFACp multipliers for ATRIUM 10XM and OPTIMA2 are presented in Table 5-7 and Table 5-8, respectively. The LHGRFACf multipliers for ATRIUM 10XM and OPTIMA2 are presented in Table 5-9 and Table 5-10, respectively.
Page 55 of 71
 
COLR Dresden 2 Revision 18 Table 5-1: LHGR Limits for OPTIMA2 Lattices 156, 157, 158, 159, 163, 164, 165, 166, 167 (References 6 and 8)
Peak Pellet Exposure              LHGR Limit (MWd/MTU)                      (kW/ft) 0                        13.72 14,000                      13.11 23,000                      12.22 57,000                        8.87 62,000                        8.38 75,000                        3.43 Table 5-2: LHGR Limits for OPTIMA2 Lattices 154, 161 (References 6 and 8)
Peak Pellet Exposure              LHGR Limit (MWd/MTU)                      (kW/ft) 0                        13.72 14,000                      13.11 23,000                      12.22 23,001                      12.10 33,000                      11.12 33,001                      11.23 57,000                        8.87 62,000                        8.38 75,000                        3.43 Page 56 of 71
 
COLR Dresden 2 Revision 18 Table 5-3: LHGR Limits for OPTIMA2 Lattices 150, 151, 152, 155, 160, 162 (References 6 and 8)
Peak Pellet Exposure              LHGR Limit (MWd/MTU)                      (kW/ft) 0                          13.72 14,000                        13.11 14,001                        12.85 23,000                        11.98 46,000                        9.75 46,001                        9.95 57,000                        8.87 62,000                        8.38 75,000                        3.43 Table 5-4: LHGR Limits for OPTIMA2 Lattices 149, 153 (References 6 and 8)
Peak Pellet Exposure              LHGR Limit (MWd/MTU)                      (kW/ft) 0                          13.72 14,000                        13.11 15,000                        13.01 15,001                        12.62 23,000                        11.85 33,000                        10.90 33,001                        11.23 57,000                        8.87 62,000                        8.38 75,000                        3.43 Page 57 of 71
 
COLR Dresden 2 Revision 18 Table 5-5: LHGR Limits for OPTIMA2 Lattices 81, 89 (References 6 and 8)
Peak Pellet Exposure              LHGR Limit (MWd/MTU)                      (kW/ft) 0                          11.96 14,000                        11.43 23,000                        10.66 57,000                        8.87 62,000                        8.38 75,000                        3.43 Table 5-6: LHGR Limits for ATRIUM 10XM (Reference 9)
Peak Pellet Exposure              LHGR Limit (MWd/MTU)                      (kW/ft) 0                        14.1 18,900                      14.1 74,400                        7.4 Page 58 of 71
 
COLR Dresden 2 Revision 18 Table 5-7: ATRIUM 10XM LHGRFACp Multipliers for All Scram Insertion Times, All Exposures (Reference 9)
Nominal FWT Core Flow                    Core Power (%rated)
EOOS Condition
(% rated)    0        25    < 38.5  > 38.5    60      90    100 Base/TCV Stuck          0.52      0.52      0.60 0.60    0.71    0.90  1.00 Closed/MSIVOOS        > 60    0.52      0.52      0.58
                          0.40      0.40      0.54 TBVOOS                                                0.60    0.71    0.90  1.00
                      > 60    0.36      0.36      0.50 TCV Slow Closure/        0.50      0.50      0.60 0.60    0.71    0.90  1.00 PLUOOS/PCOOS        > 60    0.50      0.50      0.58 FHOOS Core Flow                    Core Power (%rated)
EOOS Condition
(% rated)    0        25    < 38.5  > 38.5    60      90    100 Base/TCV Stuck          0.48      0.48      0.56 0.60    0.71    0.90  1.00 Closed/MSIVOOS      > 60    0.44      0.44      0.56
                          0.36      0.36      0.52 TBVOOS                                                0.60    0.71    0.90  1.00
                      > 60    0.34      0.34      0.46 TCV Slow Closure/        0.48      0.48      0.56 0.60    0.71    0.90  1.00 PLUOOS/PCOOS        > 60    0.44      0.44      0.56 Page 59 of 71
 
COLR Dresden 2 Revision 18 Table 5-8: OPTIMA2 LHGRFACp Multipliers for All Scram Insertion Times, All Exposures (Reference 9)
Nominal FWT Core Flow                        Core Power (%rated)
EOOS Condition
(% rated)    0    25      < 38.5  > 38.5  50      60    75    80    100 Base/TCV Stuck        0.58  0.58      0.65 0.68  0.73    0.80          0.88  1.00 Closed/MSIVOOS      > 60    0.57  0.57      0.64
                        0.42  0.42      0.53 TBVOOS                                            0.68  0.73    0.78          0.84  0.98
                    > 60    0.41  0.41      0.50 TCV Slow Closure/      0.58  0.58      0.64 0.64  0.67          0.70  0.88  1.00 PLUOOS/PCOOS      > 60    0.57  0.57      0.64 FHOOS Core Flow                        Core Power (%rated)
EOOS Condition
(% rated)    0    25      < 38.5  > 38.5  50      60    75    80    100 Base/TCV Stuck        0.53  0.53      0.61 0.63  0.70    0.77          0.85  0.99 Closed/MSIVOOS      > 60    0.52  0.52      0.61
                        0.40  0.40      0.52 TBVOOS                                            0.63  0.70    0.75          0.84  0.97
                    > 60    0.40  0.40      0.49 TCV Slow Closure/      0.53  0.53      0.61 0.63  0.67          0.70  0.85  0.99 PLUOOS/PCOOS      > 60    0.52  0.52      0.61 Page 60 of 71
 
COLR Dresden 2 Revision 18 Table 5-9: ATRIUM 10XM LHGRFACf Multipliers for All Cycle 27 Exposures, All EOOS (Reference 9)
Core Flow (% rated)          LHGRFACf 0.0                    0.57 35.0                    0.57 80.0                    1.00 108.0                    1.00 Table 5-10: OPTIMA2 LHGRFACf Multipliers for All Cycle 27 Exposures, All EOOS (Reference 9)
Core Flow (% rated)          LHGRFACf 0.0                    0.27 20.0                    0.43 40.0                    0.60 60.0                    0.80 80.0                    1.00 100.0                    1.00 108.0                    1.00 Page 61 of 71
 
COLR Dresden 2 Revision 18
: 6. Control Rod Block Setpoints Technical Specification Sections 3.3.2.1 and 3.4.1 The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown in Table 6-1:
Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints (Reference 3)
ROD BLOCK MONITOR UPSCALE TRIP FUNCTION                ALLOWABLE VALUE Two Recirculation Loop 0.65 W d + 55%
Operation Single Recirculation Loop 0.65 W d + 51%
Operation W d - percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mlb/hr.
The setpoint may be lower/higher and will still comply with the CRWE analysis because CRWE is analyzed unblocked (Reference 9).
Page 62 of 71
 
COLR Dresden 2 Revision 18
: 7. Stability Protection Setpoints Technical Specification Section 3.3.1.3 The OPRM PBDA Trip Settings are provided in Table 7-1.
Table 7-1: OPRM PBDA Trip Settings (References 9 and 12)
Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp)                Confirmation Count Setpoint (Np) 1.10                                            13 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system (Methodology 2).
The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power/flow dependent MCPR limits. Any change to the OLMCPR values and/or the power/flow dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.
The OPRM PBDA trip settings are applicable when the OPRM system is declared operable and the associated Technical Specifications are implemented.
Page 63 of 71
 
COLR Dresden 2 Revision 18
: 8. Modes of Operation The allowed modes of operation with combinations of EOOS are as described in Tables 8-1 and 8-2. The EOOS conditions separated by / in these tables represent single EOOS conditions and not combinations of conditions.
Table 8-1 provides the EOOS options which have been analyzed for a TLO SLMCPR of 1.12 and a SLO SLMCPR of 1.14 and for which MCPR operating limits were calculated or evaluated. For some EOOS options, MCPR operating limits have not been explicitly calculated for these SLMCPR values; instead, the MCPR operating limits that were calculated to correspond to a TLO SLMCPR of 1.08 and a SLO SLMCPR of 1.10 can be used if the MFCLPR limit of 1.0 is reduced by the corresponding MFLCPR penalty shown in Table 8-1, creating an administrative MFLCPR limit of less than 1.0. Operation with the EOOS options which do not appear in Table 8-1 have not been analyzed for Cycle 27 for a TLO SLMCPR of 1.12 and a SLO MFLCPR of 1.14, so operation with these EOOS options is not allowed as long as these are the SLMCPR values reflected in the Technical Specifications.
Table 8-2 provides the EOOS options which have been analyzed for a TLO SLMPCR of 1.08 and a SLO SLMCPR of 1.10 and for which MCPR operating limits were calculated. Operation with the EOOS options shown in Table 8-2 is allowed and there are no MFLCPR penalties required if the Technical Specifications reflect a TLO SLCMPR of 1.08 and a SLO SLMCPR of 1.10.
Note that the following EOOS options have operational restrictions: all SLO, all EOOS options with 1 TCV/TSV stuck closed, and MSIVOOS. See Table 8-3 for specific restrictions.
Page 64 of 71
 
COLR Dresden 2 Revision 18 Table 8-1: Modes of Operation (TLO SLMCPR = 1.12 and SLO SLMCPR = 1.14)
(References 12 and 14)
Corresponding EOOS Option                          Thermal Limit Set MFLCPR Penalty BASE CASE 3/4 SET24 TLO-BASE CASE-NSS-NOM FWT                  3/4  None Base Case                  3/4 SET25 TLO-BASE CASE-TSSS-NOM FWT                3/4  None 3/4 SET26 TLO-BASE CASE-TSSS-FWTR                    3/4  None 3/4 SET11 SLO-BASE CASE-NSS-NOM FWT                  3/4  0.02 TBVOOS TBVOOS 3/4 SET19 TLO-TBVOOS-NSS-FWTR                        3/4  0.04 BASE CASE 3/4 SET24 TLO-BASE CASE-NSS-NOM FWT                  3/4  None 1 TCV/TSV Stuck 3/4 SET25 TLO-BASE CASE-TSSS-NOM FWT                3/4  None Closed 3/4 SET26 TLO-BASE CASE-TSSS-FWTR                    3/4  None 3/4 SET11 SLO-BASE CASE-NSS-NOM FWT                  3/4  0.02 MSIVOOS One MSIVOOS                3/4 SET21 TLO-MSIVOOS-ISS-FWTR                      3/4  0.04 3/4 SET22 SLO-MISVOOS-ISS-FWTR                      3/4  0.02 PLUOOS/TCV SLOW C TCV Slow Closure 3/4 SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR            3/4  0.04 PLUOOS/TCV SLOW C PLUOOS 3/4 SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR            3/4  0.04 PLUOOS/TCV SLOW C PCOOS 3/4 SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR            3/4  0.04 PLUOOS and 1          PLUOOS/TCV SLOW C TCV/TSV Stuck Closed      3/4 SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR            3/4  0.04 PLUOOS/TCV SLOW C PCOOS and PLUOOS 3/4 SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR            3/4  0.04 PCOOS and 1            PLUOOS/TCV SLOW C TCV/TSV Stuck Closed      3/4 SET15 TLO-PLUOOS/TCV SLOW C-NSS-FWTR            3/4  0.04 Page 65 of 71
 
COLR Dresden 2 Revision 18 Table 8-2: Modes of Operation (TLO SLMCPR = 1.08 and SLO SLMCPR = 1.10)
(Reference 9)
EOOS Option                                Thermal Limit Set BASE CASE Base Case                                        3/4 TLO or SLO 3/4 Nominal FWT or FHOOS TBVOOS TBVOOS                                            3/4 TLO or SLO 3/4 Nominal FWT or FHOOS BASE CASE 1 TCV/TSV Stuck Closed                            3/4 TLO or SLO 3/4 Nominal FWT or FHOOS MSIVOOS One MSIVOOS                                      3/4 TLO or SLO 3/4 Nominal FWT or FHOOS PLUOOS/TCV SLOW C TCV Slow Closure                                  3/4 TLO or SLO 3/4 Nominal FWT or FHOOS PLUOOS/TCV SLOW C PLUOOS                                            3/4 TLO or SLO 3/4 Nominal FWT or FHOOS PLUOOS/TCV SLOW C PCOOS                                            3/4 TLO or SLO 3/4 Nominal FWT or FHOOS PLUOOS/TCV SLOW C PLUOOS and 1 TCV/TSV Stuck Closed                3/4 TLO for Nominal FWT or FHOOS 3/4 SLO for Nominal FWT*
PLUOOS/TCV SLOW C PCOOS and PLUOOS                                  3/4 TLO for Nominal FWT or FHOOS 3/4 SLO for Nominal FWT*
PLUOOS/TCV SLOW C PCOOS and 1 TCV/TSV Stuck Closed                  3/4 TLO for Nominal FWT or FHOOS 3/4 SLO for Nominal FWT*
* FHOOS cannot be applied to SLO for the cases of PLUOOS and 1 TCV/TSV Stuck Closed, for the case of PCOOS and PLUOOS, and for the case of PCOOS and 1 TCV/TSV Stuck Closed.
Page 66 of 71
 
COLR Dresden 2 Revision 18 Common Notes:
: 1. All modes are allowed for operation at MELLLA, ICF (up to 108% rated core flow but subject to the restrictions in Section 2), and coastdown subject to the power restrictions in Table 8-3 (Reference 9).
The licensing analysis supports full power operation to EOCLB (38,198 MWd/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected. The minimum allowed coastdown power level is 40% rated CTP per Reference 1. Each OOS Option may be combined with each of the following conditions (Reference 9):
: a. Up to 40% of the TIP channels OOS or the equivalent number of TIP channels, using the guidance in Reference 4 for startup with TIP machines OOS
: b. Up to 50% of the LPRMs OOS
: c. An LPRM calibration frequency of up to 2500 EFPH
: 2. Nominal FWT results are valid for application within a +10&deg;F/-30&deg;F temperature band around the nominal FWT curve (Reference 9). For operation outside of nominal FWT, a FWT reduction of between 30&#xba;F and 120&#xba;F is supported for all FHOOS conditions listed in Tables 8-1 and 8-2 for cycle operation through EOCLB (Reference 9). At lower power levels, the feedwater temperature reduction is less (Reference 9). Per Reference 5, there is a restriction which requires that for a FWT reduction greater than 100&#xba;F, operation needs to be restricted to less than the 100% rod line. For a feedwater temperature reduction of between 30&#xba;F and 120&#xba;F, the FHOOS limits should be applied.
: 3. The base case and EOOS limits and multipliers support operation with 8 of 9 turbine bypass valves operational (i.e., one bypass valve out of service) with the exception of the TBVOOS condition in which all bypass valves are inoperable (Reference 9). Use of the response curve in TRM Appendix H supports operation with any single TBV OOS. TRM Appendix H facilitates analysis with one valve OOS in that the capacity at 0.5 seconds from start of TSV closure is equivalent to the total capacity with eight out of the nine valves in service (Reference 10). The analyses also support Turbine Bypass flow of 29.8% of vessel rated steam flow (Reference 10), equivalent to one TBV OOS (or partially closed TBVs equivalent to one closed TBV), if the assumed opening profile for the remaining TBVs is met. If the opening profile is NOT met, or if the TBV system CANNOT pass an equivalent of 29.8% of vessel rated steam flow, utilize the TBVOOS condition.
: 4. TBVOOS assumes that ALL the TBVs do not trip open on TCV fast closure or TSV closure and that ALL the TBVs are not capable of opening via the pressure control system (Reference 11). Steam relief capacity is defined in Reference 10.
: 5. Between 25% and 50% of rated thermal power, the PLUOOS/TCV Slow Closure thermal limit set ensures that the AOO acceptance criteria are met for a load rejection event if the 86 Device is OOS (Reference 9). Therefore, use the PLUOOS/TCV Slow Closure thermal limit set between 25% and 50% of rated thermal power if the 86 Device is OOS.
Page 67 of 71
 
COLR Dresden 2 Revision 18 Table 8-3: Core Thermal Power Restriction for OOS Conditions (References 9 and 12)
Core Flow (% of          Core Thermal Power (%
EOOS Condition                                                            Rod Line (%)
Rated)                  of Rated Power) 1 TCV/TSV Stuck Closed PCOOS and 1 TCV/TSV N/A                        < 75          < 80 Stuck Closed PLUOOS and 1 TCV/TSV Stuck Closed One MSIVOOS                      N/A                        < 75            N/A SLO                        < 51                        < 50            N/A All requirements for all applicable conditions listed in Table 8-3 MUST be met.
Page 68 of 71
 
COLR Dresden 2 Revision 18
: 9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
: 1. GE Topical Report NEDE-24011-P-A, Revision 15, General Electric Standard Application for Reactor Fuel (GESTAR), September 2005.
: 2. GE Topical Report NEDO-32465-A, Revision 0, Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications, August 1996.
: 3. Westinghouse Topical Report CENPD-300-P-A, Revision 0, Reference Safety Report for Boiling Water Reactor Reload Fuel, July 1996.
: 4. Westinghouse Report WCAP-15682-P-A, Revision 0, Westinghouse BWR ECCS Evaluation Model:
Supplement 2 to Code Description, Qualification and Application, April 2003.
: 5. Westinghouse Report WCAP-16078-P-A, Revision 0, Westinghouse BWR ECCS Evaluation Model:
Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel, November 2004.
: 6. Westinghouse Report WCAP-16865-P-A, Revision 1, Westinghouse BWR ECCS Evaluation Model Updates: Supplement 4 to Code Description, Qualification and Application, October 2011.
: 7. Westinghouse Report WCAP-16081-P-A, Revision 0, 10x10 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2, March 2005.
: 8. Westinghouse Topical Report WCAP-15836-P-A, Revision 0, Fuel Rod Design Methods for Boiling Water Reactors - Supplement 1, April 2006.
: 9. Westinghouse Topical Report WCAP-15942-P-A, Revision 0, Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENPD-287, March 2006.
: 10. Westinghouse Topical Report CENPD-390-P-A, Revision 0, The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors, December 2000.
: 11. Exxon Nuclear Company Report XN-NF-81-58(P)(A), Revision 2 and Supplements 1 and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, March 1984.
: 12. Advanced Nuclear Fuels Corporation Report ANF-89-98(P)(A), Revision 1 and Supplement 1, Generic Mechanical Design Criteria for BWR Fuel Designs, May 1995.
: 13. Siemens Power Corporation Report EMF-85-74(P), Revision 0 Supplement 1 (P)(A) and Supplement 2 (P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, February 1998.
: 14. AREVA NP Topical Report BAW-10247PA, Revision 0, Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors, February 2008.
: 15. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 1 Revision 0 and Supplements 1 and 2, Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis, March 1983.
Page 69 of 71
 
COLR Dresden 2 Revision 18
: 16. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology for BWR Reloads, June 1986.
: 17. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, January 1987.
: 18. Siemens Power Corporation Topical Report EMF-2158(P)(A), Revision 0, Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2, October 1999.
: 19. Siemens Power Corporation Report EMF-2245(P)(A), Revision 0, Application of Siemens Power Corporations Critical Power Correlations to Co-Resident Fuel, August 2000.
: 20. AREVA NP Report EMF-2209(P)(A), Revision 3, SPCB Critical Power Correlation, September 2009.
: 21. AREVA Topical Report ANP-10298P-A, Revision 1, ACE/ATRIUM 10XM Critical Power Correlation, March 2014.
: 22. AREVA NP Topical Report ANP-10307PA, Revision 0, AREVA MCPR Safety Limit Methodology for Boiling Water Reactors, June 2011.
: 23. Exxon Nuclear Company Report XN-NF-84-105(P)(A), Volume 1 Revision 0 and Volume 1 Supplements 1 and 2, XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis, February 1987.
: 24. Advanced Nuclear Fuels Corporation Report ANF-913(P)(A), Volume 1 Revision 1 and Volume 1 Supplements 2, 3, and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, August 1990.
: 25. Framatome ANP Report EMF-2361(P)(A), Revision 0, EXEM BWR-2000 ECCS Evaluation Model, May 2001.
: 26. Siemens Power Corporation Report EMF-2292(P)(A), Revision 0, ATRIUMTM-10: Appendix K Spray Heat Transfer Coefficients, September 2000.
: 27. Framatome ANP Topical Report ANF-1358(P)(A), Revision 3, The Loss of Feedwater Heating Transient in Boiling Water Reactors, September 2005.
: 28. Siemens Power Corporation Topical Report EMF-CC-074(P)(A), Volume 4 Revision 0, BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2, August 2000.
Page 70 of 71
 
COLR Dresden 2 Revision 18
: 10. References
: 1. Exelon Generation Company, LLC, Docket No. 50-237, Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License, License No. DPR-19.
: 2. Exelon Technical Specifications for Dresden 2 and 3, Table 3.1.4-1, Control Rod Scram Times.
: 3. Exelon Design Analysis GE DRF C51-00217-01, Instrument Setpoint Calculation Nuclear Instrumentation Rod Block Monitor, July 30, 2012.
: 4. FANP Letter, NJC:04:031/FAB04-496, Startup with TIP Equipment Out of Service, April 20, 2004.
(Exelon EC 348897-000)
: 5. Exelon Letter, NF-MW:02-0081, Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction, Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.
(The GE Evaluation can be found in EDMS as GE-NE-A13-00487-00-01P.)
: 6. Westinghouse Document NF-BEX-15-72, Revision 0, Bundle Design Report for Dresden 2 Cycle 25, April 17, 2015.
: 7. Westinghouse Document NF-BEX-15-101-NP, Revision 0, Dresden Nuclear Power Station Unit 2 Cycle 25 MAPLHGR Report, September 2015.
: 8. Westinghouse Document NF-BEX-15-157, Revision 0, Linear Heat Generation Rate Limits for Fresh Fuel Loaded in Dresden Unit 2 Cycle 25, October 28, 2015.
: 9. Framatome Report ANP-3797P, Revision 0, Dresden Unit 2 Cycle 27 Reload Safety Analysis, August 2019.
: 10. Exelon TODI ES1900001, Revision 0, Dresden Unit 2 Cycle 27 Plant Parameters Document, January 24, 2019.
: 11. Exelon TODI ES1500011, Revision 0, Equipment Out of Service Description for Transition to AREVA Fuel - Dresden, May 20, 2015.
: 12. Framatome Document FS1-0046356, Revision 1.0, Supplemental Information for DRE2-27 Reload Safety Analysis Report, October 11, 2019.
: 13. Exelon Letter, RS-18-134, Request to Revise Technical Specifications 2.1.1 for Minimum Critical Power Ratio Safety Limits - Dresden Nuclear Power Station, Units 2 and 3, and Quad Cities Nuclear Power Station, Units 1 and 2, December 5, 2018.
: 14. Exelon TODI NF194836, Revision 2, Dresden Unit 2 Cycle 27 (D2C27) Core Monitoring Software Input Specification, September 5, 2019.
Page 71 of 71
 
COLR Dresden 3 Revision 17 Core Operating Limits Report For Dresden Unit 3 Cycle 27 Prepared By: _____________________________________        Date: __________
Maggie Rzepecka/Ann Hopkins - Nuclear Fuels Reviewed By: _____________________________________        Date: __________
Sarika Malani - Reactor Engineering Reviewed By: _____________________________________        Date: __________
John Simmons - Engineering Safety Analysis Independent Review By: _____________________________________          Date: __________
Ryan Pullara - Nuclear Fuels Approved By: _____________________________________        Date: __________
Ashley Kovacs - NF Senior Manager SQR By:      _____________________________________        Date: __________
Brandon de Graaf - Station Qualified Reviewer Page 1 of 31
 
COLR Dresden 3 Revision 17 Table of Contents Page Record of Dresden 3 COLR Revisions.. ........................... 3 List of Tables.. ................................................................... 4
: 1. Terms and Definitions ............................................................................................................................... 5
: 2. General Information .................................................................................................................................. 6
: 3. Average Planar Linear Heat Generation Rate .......................................................................................... 7
: 4. Operating Limit Minimum Critical Power Ratio ......................................................................................... 8 4.1. Manual Flow Control MCPR Limits ................................................................................................... 8 4.1.1. Power-Dependent MCPR ........................................................................................................... 8 4.1.2. Flow-Dependent MCPR .............................................................................................................. 8 4.2. Scram Time ........................................................................................................................................ 9 4.3. Exposure Dependent MCPR Limits.................................................................................................. 10 4.4. Recirculation Pump ASD Settings .................................................................................................... 10
: 5. Linear Heat Generation Rate .................................................................................................................. 21
: 6. Control Rod Block Setpoints ................................................................................................................... 24
: 7. Stability Protection Setpoints .................................................................................................................. 25
: 8. Modes of Operation................................................................................................................................. 26
: 9. Methodology ............................................................................................................................................ 29
: 10. References ............................................................................................................................................ 31 Page 2 of 31
 
COLR Dresden 3 Revision 17 Record of Dresden 3 COLR Revisions Revision Description 17      Initial issuance for D3C27 Page 3 of 31
 
COLR Dresden 3 Revision 17 List of Tables Page Table 3-1: MAPLHGR SLO Multiplier ........................................................................................................... 7 Table 3-2: MAPLHGR for ATRIUM 10XM .................................................................................................... 7 Table 4-1: Scram Times ................................................................................................................................ 9 Table 4-2: Exposure Basis for Transient Analysis ...................................................................................... 10 Table 4-3: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times BOC to EOFPLB (37,536 MWd/MTU Core Average Exposure) ............................................................................................. 11 Table 4-4: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times BOC to EOFPLB (37,536 MWd/MTU Core Average Exposure) ............................................................................................. 12 Table 4-5: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times BOC to EOFPLB (37,536 MWd/MTU Core Average Exposure) ............................................................................................. 13 Table 4-6: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times EOFPLB to EOCLB (38,332 MWd/MTU Core Average Exposure) ............................................................................................. 14 Table 4-7: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times EOFPLB to EOCLB (38,332 MWd/MTU Core Average Exposure) ............................................................................................. 15 Table 4-8: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times EOFPLB to EOCLB (38,332 MWd/MTU Core Average Exposure) ............................................................................................. 16 Table 4-9: ATRIUM 10XM SLO MCPRp Limits for NSS Insertion Times, All Exposures ........................... 17 Table 4-10: ATRIUM 10XM SLO MCPRp Limits for ISS Insertion Times, All Exposures .......................... 18 Table 4-11: ATRIUM 10XM SLO MCPRp Limits for TSSS Insertion Times, All Exposures ....................... 19 Table 4-12: ATRIUM 10XM MCPRf Limits .................................................................................................. 20 Table 5-1: LHGR Limits for ATRIUM 10XM ................................................................................................ 21 Table 5-2: ATRIUM 10XM LHGRFACp Multipliers for All Scram Insertion Times, All Exposures ............. 22 Table 5-3: ATRIUM 10XM LHGRFACf Multipliers for All Cycle 27 Exposures, All EOOS ......................... 23 Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints ............................................................. 24 Table 7-1: OPRM PBDA Trip Settings ........................................................................................................ 25 Table 8-1: Modes of Operation .................................................................................................................. 26 Table 8-2: Core Thermal Power Restriction for EOOS Conditions ............................................................. 27 Page 4 of 31
 
COLR Dresden 3 Revision 17
: 1. Terms and Definitions AOO        Anticipated operational occurrence ASD        Adjustable speed drive BOC        Beginning of cycle CAVEX      Core average exposure CRWE        Control rod withdrawal error CTP        Core thermal power EFPD        Effective full power day EFPH        Effective full power hour EOCLB      End of cycle licensing basis EOFPL      End of full power life EOFPLB      End of full power licensing basis EOOS        Equipment out of service FHOOS      Feedwater heater out of service FRV        Feedwater regulating valve FWT        Feedwater temperature ICF        Increased core flow ISS        Intermediate scram speed LHGR        Linear heat generation rate LHGRFACf    Flow dependent linear heat generation rate multiplier LHGRFACp    Power dependent linear heat generation rate multiplier LPRM        Local power range monitor MAPLHGR    Maximum average planar linear heat generation rate MCPR        Minimum critical power ratio MCPRf      Flow dependent minimum critical power ratio MCPRp      Power dependent minimum critical power ratio MELLLA      Maximum extended load line limit analysis MSIVOOS    Main steam isolation valve out of service MWd/MTU    Megawatt days per metric ton Uranium NRC        Nuclear Regulatory Commission NSS        Nominal scram speed OLMCPR      Operating limit minimum critical power ratio OOS        Out of service OPRM        Oscillation power range monitor PBDA        Period based detection algorithm PCOOS      Pressure controller out of service PLU        Power load unbalance PLUOOS      Power load unbalance out of service SLMCPR      Safety limit minimum critical power ratio SLO        Single loop operation SRV        Safety/relief valve SRVOOS      Safety/relief valve out of service TBV        Turbine bypass valve TBVOOS      Turbine bypass valves out of service TCV        Turbine control valve TCV SLOW C  TCV slow closure TIP        Traversing in-core probe TLO        Two loop operation TMOL        Thermal mechanical operating limit TRM        Technical Requirements Manual TSSS        Technical Specification scram speed TSV        Turbine stop valve Page 5 of 31
 
COLR Dresden 3 Revision 17
: 2. General Information This report is prepared in accordance with Technical Specification 5.6.5. The D3C27 reload is licensed by Framatome.
Licensed rated thermal power is 2957 MWth. Rated core flow is 98 Mlb/hr. Operation up to 108% rated core flow is licensed for this cycle. For allowed operating regions, see applicable power/flow map.
The licensing analysis supports full power operation to EOCLB (38,332 MWd/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected. The transient analysis limits are provided for operation up to specific CAVEX exposures as defined in Section 4.3.
Coastdown is defined as operation beyond EOFPL (37,536 MWd/MTU CAVEX) with the plant power gradually reducing as available core reactivity diminishes. The D3C27 reload analyses do not credit this reduced power during coastdown and the EOCLB limits remain valid for operation up to rated power. The minimum allowed coastdown power level is 40% rated CTP per Reference 1.
Power and flow dependent limits are listed for various power and flow levels. Linear interpolation on power and flow (as applicable) is to be used to find intermediate values. Linear interpolation is also to be used for table items intentionally left blank, as indicated by boxes which are grayed out.
Only MCPRp varies with scram speed. All other thermal limits are analyzed to remain valid with NSS, ISS, and TSSS.
LHGRFACf is independent of feedwater temperature and EOOS conditions.
For thermal limit monitoring above 100% rated power or 108% rated core flow, the 100% rated power or the 108% core flow thermal limit values, respectively, shall be used. Steady state operation is not allowed in this region. Limits are provided for transient conditions only.
Page 6 of 31
 
COLR Dresden 3 Revision 17
: 3. Average Planar Linear Heat Generation Rate Technical Specifications Sections 3.2.1 and 3.4.1 Table 3-1 provides the MAPLHGR SLO multiplier for ATRIUM 10XM.
For ATRIUM 10XM fuel, the MAPLHGR values applicable for all lattices can be found in Table 3-2.
During SLO, the limits in Table 3-2 are multiplied by the fuel-specific SLO multiplier listed in Table 3-1.
Table 3-1: MAPLHGR SLO Multiplier (Reference 6)
Fuel Type          Multiplier ATRIUM 10XM            0.80 Table 3-2: MAPLHGR for ATRIUM 10XM (Reference 6)
All ATRIUM 10XM Lattices Average Planar Exposure              TLO MAPLHGR (MWd/MTU)                            (kW/ft) 0                              12.20 20,000                            12.20 67,000                              7.73 Page 7 of 31
 
COLR Dresden 3 Revision 17
: 4. Operating Limit Minimum Critical Power Ratio Technical Specification Sections 3.2.2, 3.4.1, and 3.7.7 The OLMCPRs for D3C27 were established so that less than 0.1% of the fuel rods in the core are expected to experience boiling transition during an AOO initiated from rated or off-rated conditions and are based on the Technical Specifications SLMCPR values (Reference 6).
Tables 4-3 through 4-12 include MCPR limits for various specified EOOS conditions. The EOOS conditions separated by / in these tables represent single EOOS conditions and not any combination of conditions.
Refer to Section 8 for a detailed explanation of allowable combined EOOS conditions.
4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.
4.1.1. Power-Dependent MCPR The OLMCPR as a function of core thermal power (MCPRp) is shown in Tables 4-3 through 4-11. MCPRp limits are dependent on scram times as described in Section 4.2, exposure as described in Section 4.3, FWT, and whether the plant is in TLO or SLO. TLO limits for ATRIUM 10XM fuel are given in Tables 4-3 through 4-8 and SLO limits for ATRIUM 10XM fuel are given in Tables 4-9 through 4-11.
4.1.2. Flow-Dependent MCPR Table 4-12 gives the OLMCPR limit as a function of the flow (MCPRf) based on the applicable plant condition. These values are applicable to ATRIUM 10XM.
Page 8 of 31
 
                                      &2/5'UHVGHQ5HYLVLRQ
  6FUDP7LPH
    
7666,66DQG166UHIHUWRVFUDPVSHHGV7KHVFUDPWLPHYDOXHVDVVRFLDWHGZLWKWKHVHVSHHGV
DUHVKRZQLQ7DEOH7KH7666VFUDPWLPHVVKRZQLQ7DEOHDUHWKHVDPHDVWKRVHVSHFLILHG
LQWKH7HFKQLFDO6SHFLILFDWLRQV 5HIHUHQFH 
    
7RXWLOL]HWKH2/0&35OLPLWVIRU166LQ7DEOHVDQGWKHDYHUDJHFRQWUROURGLQVHUWLRQ
WLPHDWHDFKFRQWUROURGLQVHUWLRQIUDFWLRQPXVWEHHTXDOWRRUOHVVWKDQWKH166WLPHVKRZQLQ
7DEOHEHORZ
    
7RXWLOL]HWKH2/0&35OLPLWVIRU,66LQ7DEOHVDQGWKHDYHUDJHFRQWUROURGLQVHUWLRQ
WLPHDWHDFKFRQWUROURGLQVHUWLRQIUDFWLRQPXVWEHHTXDOWRRUOHVVWKDQWKH,66WLPHVKRZQLQ7DEOH
    EHORZ
    
7KH&#xb3;$YHUDJH&RQWURO5RG,QVHUWLRQ7LPH'LVGHILQHGDVWKHVXPRIWKHFRQWUROURGLQVHUWLRQWLPHV
RI DOO RSHUDEOH FRQWURO URGV GLYLGHG E\ WKH QXPEHU RI RSHUDEOH FRQWURO URGV &RQVHUYDWLYH
DGMXVWPHQWVWRWKH166DQG,66VFUDPVSHHGVZHUHPDGHWRWKHDQDO\VLVLQSXWVWRDSSURSULDWHO\
DFFRXQWIRUWKHHIIHFWVRIVWXFNFRQWUROURGDQGRQHDGGLWLRQDOFRQWUROURGWKDWLVDVVXPHGWRIDLO
WRVFUDP 5HIHUHQFH 
    
7RXWLOL]HWKH2/0&35OLPLWVIRU7666LQ7DEOHVDQGWKHFRQWUROURGLQVHUWLRQWLPH
RIHDFKRSHUDEOHFRQWUROURGDWHDFKFRQWUROURGLQVHUWLRQIUDFWLRQPXVWEHHTXDOWRRUOHVVWKDQWKH
7666WLPHVKRZQLQ7DEOHEHORZ7KH7HFKQLFDO6SHFLILFDWLRQVDOORZRSHUDWLRQZLWKXSWR
    &#xb3;VORZ'DQGVWXFNFRQWUROURG2QHDGGLWLRQDOFRQWUROURGLVDVVXPHGWRIDLOWRVFUDPIRUWKHV\VWHP
WUDQVLHQWDQDO\VHVSHUIRUPHGWRHVWDEOLVK0&35SOLPLWV 5HIHUHQFH &RQVHUYDWLYHDGMXVWPHQWV
WRWKH7666VFUDPVSHHGVZHUHPDGHWRWKHDQDO\VLVLQSXWVWRDSSURSULDWHO\DFFRXQWIRUWKHHIIHFWV
RIWKHVORZDQGVWXFNURGVRQVFUDPUHDFWLYLW\ 5HIHUHQFH 
    
    )RUFDVHVEHORZSRZHU 3E\SDVV WKHUHVXOWVDUHUHODWLYHO\LQVHQVLWLYHWRVFUDPVSHHGDQG
RQO\7666DQDO\VHVZHUHSHUIRUPHG 5HIHUHQFH 


7DEOH6FUDP7LPHV
5HIHUHQFHVDQG 
    
              &RQWURO5RG                                                        
                ,QVHUWLRQ        166 VHFRQGV         ,66 VHFRQGV       7666 VHFRQGV 
I    )UDFWLRQ      I                  I                    I                      I
                                                                      
                                                                    
                                                                    
I                  I              I              I                I
    
    
                                
3DJHRI
 
COLR Dresden 3 Revision 17 4.3. Exposure Dependent MCPR Limits Exposure-dependent MCPRp limits were established to support operation from BOC to EOFPLB (CAVEX of 37,536 MWd/MTU) and EOFPLB to EOCLB (CAVEX of 38,332 MWd/MTU) as defined by the CAVEX values listed in Table 4-2. The limits at a later exposure range can be used earlier in the cycle as they are the same or more conservative.
Table 4-2: Exposure Basis for Transient Analysis (Reference 6)
Core Average Exposure (CAVEX)                          Description (MWd/MTU)
Design basis rod patterns to EOFPL 37,536
                                                    + 25 EFPD (EOFPLB)
EOCLB - Maximum licensing core 38,332 exposure, including coastdown 4.4. Recirculation Pump ASD Settings Technical Requirement Manual 2.1.a.1 Dresden 3 Cycle 27 was analyzed with a slow flow excursion event assuming a failure of the recirculation flow control system such that the core flow increases slowly to the maximum flow physically permitted by the equipment, assumed to be 112% of rated core flow (Reference 6);
therefore, the recirculation pump ASD must be set to maintain core flow less than 112%
(109.76 Mlb/hr) for all runout events.
Page 10 of 31
 
COLR Dresden 3 Revision 17 Table 4-3: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times BOC to EOFPLB (37,536 MWd/MTU Core Average Exposure)
(Reference 6)
Nominal FWT Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.44      2.44      2.14 1.89              1.41 Closed/MSIVOOS          > 60        2.61      2.61      2.26 60        3.36      3.36      2.56 TBVOOS                                                        1.97              1.45
                          > 60        3.52      3.52      2.73 TCV Slow Closure/        60        2.44      2.44      2.25 2.25    1.71      1.41 PLUOOS/PCOOS            > 60        2.61      2.61      2.26 1 FRV in            60        2.44      2.44      2.14 1.93              1.41 Manual Mode*          > 60        2.61      2.61      2.26 FHOOS Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.61      2.61      2.24 2.03              1.41 Closed/MSIVOOS          > 60        2.67      2.67      2.26 60        3.48      3.48      2.66 TBVOOS                                                        2.03              1.45
                          > 60        3.63      3.63      2.81 TCV Slow Closure/        60        2.61      2.61      2.25 2.25    1.71      1.41 PLUOOS/PCOOS            > 60        2.67      2.67      2.26
*EOOS condition 1 FRV in Manual Mode is not applicable at power levels below Pbypass (<38.5%).
Page 11 of 31
 
COLR Dresden 3 Revision 17 Table 4-4: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times BOC to EOFPLB (37,536 MWd/MTU Core Average Exposure)
(Reference 6)
Nominal FWT Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0          25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.44      2.44      2.14 1.90              1.41 Closed/MSIVOOS          > 60        2.61      2.61      2.26 60        3.36      3.36      2.56 TBVOOS                                                        1.97              1.45
                          > 60        3.52      3.52      2.73 TCV Slow Closure/        60        2.44      2.44      2.25 2.25    1.72      1.41 PLUOOS/PCOOS            > 60        2.61      2.61      2.26 1 FRV in            60        2.44      2.44      2.14 1.93              1.41 Manual Mode*          > 60        2.61      2.61      2.26 FHOOS Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0          25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.61      2.61      2.24 2.04              1.41 Closed/MSIVOOS          > 60        2.67      2.67      2.26 60        3.48      3.48      2.66 TBVOOS                                                        2.04              1.45
                          > 60        3.63      3.63      2.81 TCV Slow Closure/        60        2.61      2.61      2.25 2.25    1.72      1.41 PLUOOS/PCOOS            > 60        2.67      2.67      2.26
*EOOS condition 1 FRV in Manual Mode is not applicable at power levels below Pbypass (<38.5%).
Page 12 of 31
 
COLR Dresden 3 Revision 17 Table 4-5: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times BOC to EOFPLB (37,536 MWd/MTU Core Average Exposure)
(Reference 6)
Nominal FWT Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck            60      2.44      2.44      2.14 1.97              1.41 Closed/MSIVOOS          > 60      2.61      2.61      2.26 60      3.36      3.36      2.56 TBVOOS                                                        1.98              1.45
                            > 60      3.52      3.52      2.73 TCV Slow Closure/          60      2.44      2.44      2.26 2.26    1.74      1.41 PLUOOS/PCOOS            > 60      2.61      2.61      2.26 1 FRV in              60      2.44      2.44      2.14 1.97              1.43 Manual Mode*            > 60      2.61      2.61      2.26 FHOOS Core Flow                    Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck            60      2.61      2.61      2.24 2.11              1.41 Closed/MSIVOOS          > 60      2.67      2.67      2.26 60      3.48      3.48      2.66 TBVOOS                                                        2.11              1.45
                            > 60      3.63      3.63      2.81 TCV Slow Closure/          60      2.61      2.61      2.26 2.26    1.74      1.41 PLUOOS/PCOOS            > 60      2.67      2.67      2.26
*EOOS condition 1 FRV in Manual Mode is not applicable at power levels below Pbypass (<38.5%).
Page 13 of 31
 
COLR Dresden 3 Revision 17 Table 4-6: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times EOFPLB to EOCLB (38,332 MWd/MTU Core Average Exposure)
(Reference 6)
Nominal FWT Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.44      2.44      2.14 1.89              1.41 Closed/MSIVOOS          > 60        2.61      2.61      2.26 60        3.36      3.36      2.56 TBVOOS                                                        1.97              1.45
                          > 60        3.52      3.52      2.73 TCV Slow Closure/        60        2.44      2.44      2.25 2.25    1.71      1.41 PLUOOS/PCOOS            > 60        2.61      2.61      2.26 1 FRV in            60        2.44      2.44      2.14 1.93              1.41 Manual Mode*          > 60        2.61      2.61      2.26 FHOOS Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.61      2.61      2.24 2.03              1.41 Closed/MSIVOOS          > 60        2.67      2.67      2.26 60        3.48      3.48      2.66 TBVOOS                                                        2.03              1.45
                          > 60        3.63      3.63      2.81 TCV Slow Closure/        60        2.61      2.61      2.25 2.25    1.71      1.41 PLUOOS/PCOOS            > 60        2.67      2.67      2.26
*EOOS condition 1 FRV in Manual Mode is not applicable at power levels below Pbypass (<38.5%).
Page 14 of 31
 
COLR Dresden 3 Revision 17 Table 4-7: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times EOFPLB to EOCLB (38,332 MWd/MTU Core Average Exposure)
(Reference 6)
Nominal FWT Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.44      2.44      2.14 1.90              1.41 Closed/MSIVOOS          > 60        2.61      2.61      2.26 60        3.36      3.36      2.56 TBVOOS                                                        1.97              1.45
                          > 60        3.52      3.52      2.73 TCV Slow Closure/        60        2.44      2.44      2.25 2.25    1.72      1.41 PLUOOS/PCOOS            > 60        2.61      2.61      2.26 1 FRV in            60        2.44      2.44      2.14 1.93              1.41 Manual Mode*          > 60        2.61      2.61      2.26 FHOOS Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.61      2.61      2.24 2.04              1.41 Closed/MSIVOOS          > 60        2.67      2.67      2.26 60        3.48      3.48      2.66 TBVOOS                                                        2.04              1.45
                          > 60        3.63      3.63      2.81 TCV Slow Closure/        60        2.61      2.61      2.25 2.25    1.72      1.41 PLUOOS/PCOOS            > 60        2.67      2.67      2.26
*EOOS condition 1 FRV in Manual Mode is not applicable at power levels below Pbypass (<38.5%).
Page 15 of 31
 
COLR Dresden 3 Revision 17 Table 4-8: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times EOFPLB to EOCLB (38,332 MWd/MTU Core Average Exposure)
(Reference 6)
Nominal FWT Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.44      2.44      2.14 1.97              1.41 Closed/MSIVOOS          > 60        2.61      2.61      2.26 60        3.36      3.36      2.56 TBVOOS                                                        1.98              1.45
                          > 60        3.52      3.52      2.73 TCV Slow Closure/        60        2.44      2.44      2.26 2.26    1.74      1.41 PLUOOS/PCOOS            > 60        2.61      2.61      2.26 1 FRV in            60        2.44      2.44      2.14 1.97              1.43 Manual Mode*          > 60        2.61      2.61      2.26 FHOOS Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        75        100 Base/TCV Stuck          60        2.61      2.61      2.24 2.11              1.41 Closed/MSIVOOS          > 60        2.67      2.67      2.26 60        3.48      3.48      2.66 TBVOOS                                                        2.11              1.45
                          > 60        3.63      3.63      2.81 TCV Slow Closure/        60        2.61      2.61      2.26 2.26    1.74      1.41 PLUOOS/PCOOS            > 60        2.67      2.67      2.26
*EOOS condition 1 FRV in Manual Mode is not applicable at power levels below Pbypass (<38.5%).
Page 16 of 31
 
COLR Dresden 3 Revision 17 Table 4-9: ATRIUM 10XM SLO MCPRp Limits for NSS Insertion Times, All Exposures (Reference 6)
Nominal FWT EOOS Condition                  Core Power (% rated)
(all include SLO)    0        25      38.5  > 38.5  50 Base/TCV Stuck 2.46      2.46      2.16    2.06  2.06 Closed/MSIVOOS TBVOOS        3.38      3.38      2.58    2.06  2.06 TCV Slow Closure/
2.46      2.46      2.27    2.27  2.10 PLUOOS/PCOOS FHOOS EOOS Condition                  Core Power (% rated)
(all include SLO)    0        25      38.5  > 38.5  50 Base/TCV Stuck 2.63      2.63      2.26    2.06  2.06 Closed/MSIVOOS TBVOOS        3.50      3.50      2.68    2.06  2.06 TCV Slow Closure/
2.63      2.63      2.27    2.27  2.10 PLUOOS/PCOOS Page 17 of 31
 
COLR Dresden 3 Revision 17 Table 4-10: ATRIUM 10XM SLO MCPRp Limits for ISS Insertion Times, All Exposures (Reference 6)
Nominal FWT EOOS Condition                  Core Power (% rated)
(all include SLO)    0        25      38.5  > 38.5    50 Base/TCV Stuck 2.46      2.46      2.16    2.06    2.06 Closed/MSIVOOS TBVOOS        3.38      3.38      2.58    2.06    2.06 TCV Slow Closure/
2.46      2.46      2.27    2.27    2.11 PLUOOS/PCOOS FHOOS EOOS Condition                  Core Power (% rated)
(all include SLO)    0        25      38.5  > 38.5    50 Base/TCV Stuck 2.63      2.63      2.26    2.06    2.06 Closed/MSIVOOS TBVOOS        3.50      3.50      2.68    2.06    2.06 TCV Slow Closure/
2.63      2.63      2.27    2.27    2.11 PLUOOS/PCOOS Page 18 of 31
 
COLR Dresden 3 Revision 17 Table 4-11: ATRIUM 10XM SLO MCPRp Limits for TSSS Insertion Times, All Exposures (Reference 6)
Nominal FWT EOOS Condition                  Core Power (% rated)
(all include SLO)    0        25      38.5  > 38.5  50 Base/TCV Stuck 2.46      2.46      2.16    2.06  2.06 Closed/MSIVOOS TBVOOS        3.38      3.38      2.58    2.06  2.06 TCV Slow Closure/
2.46      2.46      2.28    2.28  2.12 PLUOOS/PCOOS FHOOS EOOS Condition                  Core Power (% rated)
(all include SLO)    0        25      38.5  > 38.5  50 Base/TCV Stuck 2.63      2.63      2.26    2.13  2.06 Closed/MSIVOOS TBVOOS        3.50      3.50      2.68    2.13  2.06 TCV Slow Closure/
2.63      2.63      2.28    2.28  2.12 PLUOOS/PCOOS Page 19 of 31
 
COLR Dresden 3 Revision 17 Table 4-12: ATRIUM 10XM MCPRf Limits (Reference 6)
EOOS Condition*                      Core Flow (% rated)    MCPRf Limit Base Case / FHOOS / PCOOS / PLUOOS /                        0                  1.64 TCV Slow Closure / PLUOOS + PCOOS in 35                  1.64 TLO and SLO / 1 FRV in Manual Mode in TLO                                    108                  1.20 0                  1.82 Any Scenario** with One MSIVOOS                          35                  1.82 108                  1.20 0                  1.88 Any Scenario** with TBVOOS                            35                  1.88 108                  1.35 0                  1.64 Any Scenario** with 1 Stuck Closed 35                  1.64 TCV/TSV 108                  1.20
* See Section 8 for further operating restrictions.
** Any Scenario implies any other combination of allowable EOOS conditions that is not otherwise covered by this table.
Note that the MCPRf limits for any scenario with 1 stuck closed TCV/TSV are identical to base case MCPRf limits. This is reflected in the thermal limit sets presented in Table 8-1.
Page 20 of 31
 
COLR Dresden 3 Revision 17
: 5. Linear Heat Generation Rate Technical Specification Sections 3.2.3, 3.4.1, and 3.7.7 The TMOL at rated conditions for the ATRIUM 10XM fuel is established in terms of the maximum LHGR as a function of peak pellet (rod nodal) exposure. The LHGR limits for ATRIUM 10XM fuel are presented in Table 5-1.
The power- and flow-dependent LHGR multipliers (LHGRFACp and LHGRFACf) are applied directly to the LHGR limits to protect against fuel melting and overstraining of the cladding during an AOO (Reference 6).
In all conditions, the margin to the LHGR limits is determined by applying the lowest multiplier from the applicable LHGRFACp and LHGRFACf multipliers for the power/flow statepoint of interest to the steady state LHGR limit (Reference 6).
LHGRFACp and LHGRFACf multipliers were established to support base case and all EOOS conditions for all Cycle 27 exposures and scram speeds. The LHGRFACp multipliers for ATRIUM 10XM are presented in Table 5-2. The LHGRFACf multipliers for ATRIUM 10XM are presented in Table 5-3.
Table 5-1: LHGR Limits for ATRIUM 10XM (Reference 6)
Peak Pellet Exposure            LHGR Limit (MWd/MTU)                    (kW/ft) 0                          14.1 18,900                        14.1 74,400                        7.4 Page 21 of 31
 
COLR Dresden 3 Revision 17 Table 5-2: ATRIUM 10XM LHGRFACp Multipliers for All Scram Insertion Times, All Exposures (Reference 6)
Nominal FWT Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        60      90    100 Base/TCV Stuck          60      0.54      0.54    0.58 0.61    0.68    0.89    1.00 Closed/MSIVOOS        > 60      0.54      0.54    0.58 60      0.40      0.40    0.54 TBVOOS                                                    0.61    0.68    0.89    1.00
                          > 60      0.36      0.36    0.48 TCV Slow Closure/        60      0.54      0.54    0.58 0.61    0.68    0.89    1.00 PLUOOS/PCOOS          > 60      0.54      0.54    0.58 1 FRV in            60      0.54      0.54    0.58 0.59    0.63    0.87    0.98 Manual Mode*          > 60      0.54      0.54    0.58 FHOOS Core Flow                      Core Power (% rated)
EOOS Condition
(% rated)      0        25      38.5 > 38.5        60      90    100 Base/TCV Stuck          60      0.50      0.50    0.54 0.61    0.68    0.89    1.00 Closed/MSIVOOS        > 60      0.48      0.48    0.54 60      0.36      0.36    0.48 TBVOOS                                                    0.61    0.68    0.89    1.00
                          > 60      0.34      0.34    0.46 TCV Slow Closure/        60      0.50      0.50    0.54 0.61    0.68    0.89    1.00 PLUOOS/PCOOS          > 60      0.48      0.48    0.54
*EOOS condition 1 FRV in Manual Mode is not applicable at power levels below Pbypass (<38.5%).
Page 22 of 31
 
COLR Dresden 3 Revision 17 Table 5-3: ATRIUM 10XM LHGRFACf Multipliers for All Cycle 27 Exposures, All EOOS (Reference 6)
Core Flow (% rated)          LHGRFACf 0.0                    0.57 35.0                    0.57 80.0                    1.00 108.0                    1.00 Page 23 of 31
 
COLR Dresden 3 Revision 17
: 6. Control Rod Block Setpoints Technical Specification Sections 3.3.2.1 and 3.4.1 The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown in Table 6-1.
Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints (Reference 3)
ROD BLOCK MONITOR UPSCALE TRIP FUNCTION                ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 55%
Operation Single Recirculation Loop 0.65 Wd + 51%
Operation Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mlb/hr.
The setpoint may be lower/higher and will still comply with the CRWE analysis because CRWE is analyzed unblocked (Reference 6).
Page 24 of 31
 
COLR Dresden 3 Revision 17
: 7. Stability Protection Setpoints Technical Specification Section 3.3.1.3 The OPRM PBDA Trip Settings are provided in Table 7-1.
Table 7-1: OPRM PBDA Trip Settings (Reference 6)
Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp)                  Confirmation Count Setpoint (Np) 1.11                                            14 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system (Methodology 2).
The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power/flow dependent MCPR limits. Any change to the OLMCPR values and/or the power/flow dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.
The OPRM PBDA trip settings are applicable when the OPRM system is declared operable and the associated Technical Specifications are implemented.
Page 25 of 31
 
COLR Dresden 3 Revision 17
: 8. Modes of Operation The allowed modes of operation with combinations of EOOS are as described in Table 8-1. The EOOS conditions separated by / in these tables represent single EOOS conditions and not combinations of conditions.
Note that the following EOOS options have operational restrictions: all SLO, all EOOS options with 1 TCV/TSV stuck closed, 1 MSIVOOS, and 1 FRV in Manual Mode. See Table 8-2 for specific restrictions.
Table 8-1: Modes of Operation (Reference 6)
EOOS Option                                Thermal Limit Set BASE CASE Base Case                                            TLO or SLO Nominal FWT or FHOOS TBVOOS TBVOOS                                              TLO or SLO Nominal FWT or FHOOS BASE CASE 1 TCV/TSV Stuck Closed                              TLO or SLO Nominal FWT or FHOOS MSIVOOS One MSIVOOS                                          TLO or SLO Nominal FWT or FHOOS PLUOOS/TCV SLOW C TCV Slow Closure                                    TLO or SLO Nominal FWT or FHOOS PLUOOS/TCV SLOW C PLUOOS                                              TLO or SLO Nominal FWT or FHOOS PLUOOS/TCV SLOW C PCOOS                                                TLO or SLO Nominal FWT or FHOOS PLUOOS/TCV SLOW C PLUOOS and 1 TCV/TSV Stuck Closed                    TLO for Nominal FWT or FHOOS SLO for Nominal FWT*
PLUOOS/TCV SLOW C PCOOS and PLUOOS                                    TLO for Nominal FWT or FHOOS SLO for Nominal FWT*
PLUOOS/TCV SLOW C PCOOS and 1 TCV/TSV Stuck Closed                    TLO for Nominal FWT or FHOOS SLO for Nominal FWT*
1 MANUAL FRV ALL POSITIONS 1 FRV in Manual Mode TLO for Nominal FWT**
* FHOOS cannot be applied to SLO for the cases of PLUOOS and 1 TCV/TSV Stuck Closed, PCOOS and PLUOOS, and PCOOS and 1 TCV/TSV Stuck Closed.
** SLO and FHOOS cannot be applied for the case of 1 FRV in Manual Mode.
Page 26 of 31
 
COLR Dresden 3 Revision 17 Table 8-2: Core Thermal Power Restriction for EOOS Conditions (Reference 6)
Core Flow (% of          Core Thermal Power (%
EOOS Condition                                                            Rod Line (%)
Rated)                  of Rated Power) 1 TCV/TSV Stuck Closed PCOOS and 1 TCV/TSV N/A                        < 75          < 80 Stuck Closed PLUOOS and 1 TCV/TSV Stuck Closed One MSIVOOS                      N/A                        < 75            N/A SLO                        < 51                        < 50            N/A 1 FRV in Manual Mode                N/A                    > 38.5 (Pbypass)    N/A All requirements for all applicable conditions listed in Table 8-2 MUST be met.
Page 27 of 31
 
COLR Dresden 3 Revision 17 Common Notes
: 1. Base case operation assumes:
: a. 1 TBV OOS (only 8 of the 9 bypass valves are available) per Reference 6.
: b. Between 25% and 50% rated power, the PLU will not actuate per Reference 8.
: c. The limiting relief, safety, or SRV is out-of-service per Reference 6.
: d. Both dome pressure and throttle pressure control are supported per Reference 6.
: e. Operation with a feedwater temperature band of +10/-30&#xba;F relative to the nominal feedwater temperature presented in Reference 7, Item 2.4.2.
: f. Operation for dome pressures between the minimum and maximum bands per Reference 7, Item 2.4.5.
: 2. All modes are allowed for operation at MELLLA, ICF (up to 108% rated core flow), and coastdown subject to the power restrictions in Table 8-2 (Reference 6). The licensing analysis supports full power operation to EOCLB (38,332 MWd/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected. The minimum allowed coastdown power level is 40% rated CTP per Reference 1. Each OOS Option may be combined with each of the following conditions (Reference 6):
: a. Up to 40% of the TIP channels OOS or the equivalent number of TIP channels, using the guidance in Reference 4 for startup with TIP machines OOS
: b. Up to 50% of the LPRMs OOS
: c. An LPRM calibration frequency of up to 2500 EFPH
: 3. Nominal FWT results are valid for application within a +10&deg;F/-30&deg;F temperature band around the nominal FWT curve (Reference 6). For operation outside of nominal FWT, a FWT reduction of between 30&#xba;F and 120&#xba;F is supported for all FHOOS conditions listed in Table 8-1 for cycle operation through EOCLB (Reference 6). At lower power levels, the feedwater temperature reduction is less (Reference 6). Per Reference 5, there is a restriction which requires that for a FWT reduction greater than 100&#xba;F, operation needs to be restricted to less than the 100% rod line. For a feedwater temperature reduction of between 30&#xba;F and 120&#xba;F, the FHOOS limits should be applied.
: 4. The base case and EOOS limits and multipliers support operation with 8 of 9 turbine bypass valves operational (i.e., one bypass valve out of service) with the exception of the TBVOOS condition in which all bypass valves are inoperable (Reference 6). Use of the response curve in TRM Appendix H supports operation with any single TBV OOS. TRM Appendix H facilitates analysis with one valve OOS in that the capacity at 0.5 seconds from start of TSV closure is equivalent to the total capacity with eight out of the nine valves in service (Reference 7). The analyses also support Turbine Bypass flow of 29.8% of vessel rated steam flow (Reference 7), equivalent to one TBV OOS (or partially closed TBVs equivalent to one closed TBV), if the assumed opening profile for the remaining TBVs is met. If the opening profile is NOT met, or if the TBV system CANNOT pass an equivalent of 29.8% of vessel rated steam flow, utilize the TBVOOS condition.
: 5. TBVOOS assumes that ALL the TBVs do not trip open on TCV fast closure or TSV closure and that ALL the TBVs are not capable of opening via the pressure control system (Reference 8). Steam relief capacity is defined in Reference 7.
: 6. Between 25% and 50% of rated thermal power, the PLUOOS/TCV Slow Closure thermal limit set ensures that the AOO acceptance criteria are met for a load rejection event if the 86 Device is OOS (Reference 6). Therefore, use the PLUOOS/TCV Slow Closure thermal limit set between 25% and 50% of rated thermal power if the 86 Device is OOS.
: 7. Operating restrictions apply when one Feedwater Regulating Valve is placed in manual mode, per Reference 6. Additional EOOS conditions that are supported with 1 FRV in Manual Mode consist of 40% of TIP channels OOS and 50% of the LPRMs out-of-service. Other conditions associated with base case conditions, such as the feedwater temperature band, the pressure band, single and three-element level control, dome and turbine pressure control, operation with 1 SRVOOS, and operation with 1 TBV OOS, are supported as discussed in Section 5.1 of Reference 6.
Page 28 of 31
 
COLR Dresden 3 Revision 17
: 9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
: 1. GE Topical Report NEDE-24011-P-A, Revision 15, General Electric Standard Application for Reactor Fuel (GESTAR), September 2005.
: 2. GE Topical Report NEDO-32465-A, Revision 0, Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications, August 1996.
: 3. Exxon Nuclear Company Report XN-NF-81-58(P)(A), Revision 2 and Supplements 1 and 2, RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model, March 1984.
: 4. Advanced Nuclear Fuels Corporation Report ANF-89-98(P)(A), Revision 1 and Supplement 1, Generic Mechanical Design Criteria for BWR Fuel Designs, May 1995.
: 5. Siemens Power Corporation Report EMF-85-74(P), Revision 0 Supplement 1 (P)(A) and Supplement 2 (P)(A), RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model, February 1998.
: 6. AREVA NP Topical Report BAW-10247PA, Revision 0, Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors, February 2008.
: 7. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 1 Revision 0 and Supplements 1 and 2, Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis, March 1983.
: 8. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 4 Revision 1, Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology for BWR Reloads, June 1986.
: 9. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 3 Revision 2, Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description, January 1987.
: 10. Siemens Power Corporation Topical Report EMF-2158(P)(A), Revision 0, Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2, October 1999.
: 11. AREVA Topical Report ANP-10298P-A, Revision 1, ACE/ATRIUM 10XM Critical Power Correlation, March 2014.
: 12. AREVA NP Topical Report ANP-10307PA, Revision 0, AREVA MCPR Safety Limit Methodology for Boiling Water Reactors, June 2011.
: 13. Exxon Nuclear Company Report XN-NF-84-105(P)(A), Volume 1 Revision 0 and Volume 1 Supplements 1 and 2, XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis, February 1987.
: 14. Advanced Nuclear Fuels Corporation Report ANF-913(P)(A), Volume 1 Revision 1 and Volume 1 Supplements 2, 3, and 4, COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses, August 1990.
Page 29 of 31
 
COLR Dresden 3 Revision 17
: 15. Framatome ANP Report EMF-2361(P)(A), Revision 0, EXEM BWR-2000 ECCS Evaluation Model, May 2001.
: 16. Siemens Power Corporation Report EMF-2292(P)(A), Revision 0, ATRIUMTM-10: Appendix K Spray Heat Transfer Coefficients, September 2000.
: 17. Framatome ANP Topical Report ANF-1358(P)(A), Revision 3, The Loss of Feedwater Heating Transient in Boiling Water Reactors, September 2005.
: 18. Siemens Power Corporation Topical Report EMF-CC-074(P)(A), Volume 4 Revision 0, BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2, August 2000.
Page 30 of 31
 
COLR Dresden 3 Revision 17
: 10. References
: 1. Exelon Generation Company, LLC, Docket No. 50-249, Dresden Nuclear Power Station, Unit 3, Renewed Facility Operating License No. DPR-25.
: 2. Exelon Technical Specifications for Dresden 2 and 3, Table 3.1.4-1, Control Rod Scram Times.
: 3. Exelon Design Analysis GE DRF C51-00217-01, Instrument Setpoint Calculation Nuclear Instrumentation Rod Block Monitor, July 30, 2012.
: 4. FANP Letter, NJC:04:031/FAB04-496, Startup with TIP Equipment Out of Service, April 20, 2004.
(Exelon EC 348897-000)
: 5. Exelon Letter, NF-MW:02-0081, Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction, Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.
(The GE Evaluation can be found in EDMS as GE-NE-A13-00487-00-01P.)
: 6. Framatome Report ANP-3863P, Revision 0, Dresden Unit 3 Cycle 27 Reload Safety Analysis, August 2020.
: 7. Exelon TODI ES2000003, Revision 0, Dresden Unit 3 Cycle 27 Plant Parameters Document (PPD),
February 12, 2020.
: 8. Exelon TODI ES1500011, Revision 0, Equipment Out of Service Description for Transition to AREVA Fuel - Dresden, May 20, 2015.
Page 31 of 31
 
TRM TRM Control Program Appendix G TECHNICAL REQUIREMENTS MANUAL CONTROL PROGRAM TABLE OF CONTENTS SECTION                TITLE 1.1                    PURPOSE
 
==1.2                    REFERENCES==
 
1.3                    DEFINITIONS AND/OR ACRONYMS 1.4                    PROGRAM DESCRIPTION 1.5                    PROGRAM IMPLEMENTATION 1.6                    ACCEPTANCE CRITERIA 1.7                    LCOARS/COMPENSATORY MEASURES 1.8                    REPORTING REQUIREMENTS 1.9                    CHANGE CONTROL DRESDEN UNITS 2 AND 3                      1 of 16                  Revision 0 Technical Requirements Manual
 
TRM TRM Control Program Appendix G 1.1            PURPOSE The purpose of this Program is to provide guidance for identifying, processing, and implementing changes to the Technical Requirements Manual (TRM). This Program implements and satisfies the requirements of TRM Section 1.6, "Technical Requirements Manual Revisions."
This Program is applicable to the preparation, review, implementation, and distribution of changes to the TRM. This Program also provides guidance for preparing TRM Change Packages for distribution.
 
==1.2            REFERENCES==
: 1.      TRM Section 1.6, "Technical Requirements Manual Revisions"
: 2.      10 CFR 50.4, "Written Communications"
: 3.      10 CFR 50.59, "Changes, Tests and Experiments"
: 4.      10 CFR 50.71, "Maintenance of Records, Making of Reports"
: 5.      10 CFR 50.90, "Application for Amendment of License or Construction Permit" 1.3            DEFINITIONS AND/OR ACRONYMS 10 CFR 50.59 REVIEW - A written regulatory evaluation which provides the basis for the determination that a change does, or does not, require NRC approval pursuant to 10 CFR 50.59. The scope of the evaluation should be commensurate with the potential safety significance of the change, but must address the relevant safety concerns included in the Safety Analysis Report and other owner controlled documents. The depth of the evaluation must be sufficient to determine whether or not NRC approval is required prior to implementation. Depending upon the significance of the change, the evaluation may be brief; however, a simple statement of conclusion is not sufficient.
DRESDEN UNITS 2 AND 3                            2 of 16                                        Revision 0 Technical Requirements Manual
 
TRM TRM Control Program Appendix G EDITORIAL CHANGE - Editorial changes include correction of punctuation, insignificant word or title changes, style or format changes, typographical errors, or correction of reference errors that do not change the intent, outcome, results, functions, processes, responsibilities, or performance requirements of the item being changed. Changes in numerical values shall not be considered as editorial changes. Editorial changes do not constitute a change to the TRM and therefore do not require further 10 CFR 50.59 Reviews. If the full scope of this proposed change is encompassed by one or more of the below, then the change is considered editorial.
              -        Rewording or format changes that do not result in changing actions to be accomplished.
              -        Deletion of cycle-specific information that is no longer applicable.
              -        Addition of clarifying information, such as:
                        -        Spelling, grammar, or punctuation changes
                        -        Changes to references
                        -        Name or title references 1.4            PROGRAM DESCRIPTION
: 1.      A Licensee may make changes to the TRM without prior NRC approval provided the changes do not require NRC approval pursuant to 10 CFR 50.59.
: 2.      Changes that require NRC approval pursuant to 10 CFR 50.59 shall be submitted to the NRC pursuant to 10 CFR 50.90 and reviewed and approved by the NRC prior to implementation.
: 3.      The TRM is part of the Updated Final Safety Analysis Report (UFSAR) by reference and shall be maintained consistent with the remainder of the UFSAR.
: 4.      If a change to the TRM is not consistent with the remainder of the UFSAR, then the cognizant Engineer shall prepare and submit a UFSAR Change Package when the TRM Change Request is submitted to Regulatory Assurance (RA) for processing.
: 5.      Changes to the TRM that do not require prior NRC approval shall be provided to the NRC on a frequency consistent with 10 CFR 50.71(e), as modified by approved exemptions.
DRESDEN UNITS 2 AND 3                              3 of 16                                      Revision 0 Technical Requirements Manual
 
TRM TRM Control Program Appendix G
: 6.      Any change to a Station's TRM shall be transmitted, via Attachment D, "Technical Requirements Manual Change Applicability Review Form," to the Regulatory Assurance Managers (RAMs) at each of the other Stations. The RAM will review the TRM change for applicability at their respective Station and document their review on Attachment D.
: 7.      TRM changes associated with a Technical Specifications (TS) Amendment shall be implemented consistent with the implementation requirements of the TS Amendment.
: 8.      RA is responsible for the control and distribution of the TRM. In order to prevent distribution errors (i.e., omissions or duplications), RA shall maintain the master TRM distribution list.
1.5            PROGRAM IMPLEMENTATION
: 1.      TRM Change Requestor identifies the need for a revision to the TRM and notifies the RA Licensing Engineer (i.e., hereafter referred to as RA LE). A TRM change can be initiated through any Stations' RA. TRM Change Requestor notifies their counterparts on the need for a change.
: 2.      RA LE notifies their counterparts of identified need for revision to the TRM.
: 3.      RA LE assigns a TRM Change Request Number (CR #) and records on Attachment B, "Technical Requirements Manual Change Request Log." The CR #
should be a sequential number beginning with the last two digits of the year (e.g.,
00-00#).
: 4.      RA LE drafts TRM changes considering format, rules of usage, and technical adequacy, and notifies RAMs at each of the other Stations by transmitting Attachment D, "Technical Requirements Manual Change Applicability Review Form."
DRESDEN UNITS 2 AND 3                              4 of 16                                        Revision 0 Technical Requirements Manual
 
TRM TRM Control Program Appendix G
: 5.      RA LE makes an electronic version of the proposed TRM changes available in a working directory for use in the preparation of the 10 CFR 50.59 REVIEW and Station Qualified Review (SQR) process. The RA LE shall ensure that the master electronic TRM files are revised per step 12 below upon receiving SQR approval.
The Revision number in the footer should be a sequential number (i.e., 1, 2, etc.).
NOTE If the TRM changes are applicable to more than one Station, the following steps should be performed concurrently for each Station.
: 6.      TRM Change Requestor provides a 10 CFR 50.59 REVIEW for the TRM changes in accordance with appropriate plant procedures. An exception to this requirement applies when the changes are being requested in order to reflect an approved NRC Safety Evaluation (SE) associated with a site specific operating license or TS change. The NRC SE is sufficient to support the changes provided it has been determined that the changes are consistent with and entirely bounded by the NRC SE. A 50.59 REVIEW shall be performed for TRM changes that reflect generic industry approval by an NRC SE to determine site specific applicability. A 10 CFR 50.59 REVIEW is not required for an EDITORIAL CHANGE.
: 7.      TRM Change Requestor completes Attachment A, "Technical Requirements Manual Change Request Form," as follows:
: a.      Identifies the affected sections, and includes a copy of the proposed TRM changes;
: b.      Briefly summarizes the changes including the TLCO, Action, Surveillance Requirement, or Bases (if applicable) to which the changes apply;
: c.      Briefly summarizes the reason for the changes and attaches all supporting documentation;
: d.      Identifies any schedule requirements and proposed implementation date that apply (i.e., describe any time limitations that might apply which would require expedited processing). If the changes are outage related, then checks "yes" and lists the applicable outage identifier; DRESDEN UNITS 2 AND 3                              5 of 16                                        Revision 41 Technical Requirements Manual
 
TRM TRM Control Program Appendix G
: e.        Identifies any known implementation requirements such as procedure changes, UFSAR changes, Electronic Work Control System (EWCS) changes, Reportability Manual revisions, pre-implementation training requirements, etc.;
: f.        If a 10 CFR 50.59 REVIEW was prepared to support the TRM changes, the Requestor then checks the appropriate box, lists the associated 10 CFR 50.59 REVIEW Number, and attaches the original;
: g.        If the changes to the TRM are the result of an NRC SE and the scope of the changes determined to be consistent with and entirely bounded by the NRC SE, then the Requestor checks the appropriate box and attaches a copy;
: h.        If the changes to the TRM are EDITORIAL CHANGES, then the Requestor checks the appropriate box and no 10 CFR 50.59 REVIEW is required;
: i.        Signs and dates as Requestor and identifies the originating department;
: j.        Obtains approval to proceed from Department Supervisor (or designee);
and
: k.        Returns Attachment A to the RA LE.
: 8.      RA LE reviews the TRM Change Request Form, including supporting documentation, and documents the review by signing Attachment A. The review verifies that the following information or documentation is included:
: a. Completed 10 CFR 50.59 REVIEW. If the changes are related to an NRC SE and determined to be entirely bounded by the NRC SE, then only a copy of the SE is required to be attached and no 10 CFR 50.59 REVIEW is required. A 10 CFR 50.59 REVIEW is not required for an EDITORIAL CHANGE;
: b. Identification of known documents requiring revisions; and DRESDEN UNITS 2 AND 3                              6 of 16                                      Revision 0 Technical Requirements Manual
 
TRM TRM Control Program Appendix G
: c. Completed UFSAR Change Request with supporting documentation, in accordance with appropriate plant procedures, if applicable.
: 9.      If the TRM change is not an EDITORIAL CHANGE, the RA LE/TRM Change Requestor obtains SQR approval of the TRM change by performing the following:
: a. RA LE prepares the TRM Change SQR package. The SQR package shall include Attachment A (including completed 10 CFR 50.59 REVIEW or NRC SE) and the revised TRM pages. Attachment A is provided for the purpose of reviewing and finalizing the implementation requirements and ensuring the necessary actions have been initiated. RA LE shall assign Action Tracking (AT) items, as necessary, to track implementation requirements;
: b. TRM Change Requestor submits the TRM Change SQR package to the SQR Committee members for a preliminary review. The SQR composition shall include RA and Operating Departments in all cases; and
: c. TRM Change Requestor resolves preliminary review comments and finalizes the TRM Change SQR package.
: 10. The RAM shall determine the need for Plant Operations Review Committee (PORC) approval. The need for PORC approval shall be documented on Attachment A.
: 11.      RA LE/TRM Change Requestor obtains PORC approval, if necessary.
: 12. After approval of the TRM changes by SQR/PORC, RA LE ensures that the controlled master electronic files are updated.
DRESDEN UNITS 2 AND 3                            7 of 16                                      Revision 32 Technical Requirements Manual
 
TRM TRM Control Program Appendix G
: 13. RA LE completes Attachment C, "Technical Requirements Manual Change Instruction Form," as follows:
: a. Indicates the effective date of the TRM changes consistent with the SQR/PORC approval or TS amendment required implementation date. If the TRM change is a result of a TS Amendment, the update shall be implemented consistent with the implementation requirements of the TS Amendment. Otherwise, the update must be implemented by the date indicated on Attachment C;
: b. Lists each page to be removed and inserted, including the Affected Page List; and
: c. Provides the updated master file directory for updating Electronic Central Files (ECF), if applicable.
: 14. RA LE creates a TRM Change Package. The TRM Change Package shall consist of:
: 1.      TRM Change Instruction Form (Attachment C);
: 2.      Revised Affected Page List; and
: 3.      Revised TRM pages.
One RA LE shall assemble and approve the TRM Change Package for distribution and a second RA LE shall perform a peer check to verify completeness of the TRM Change Package.
: 15. After verifying that SQR/PORC approval of the TRM changes has been obtained and that all AT items assigned to track implementation requirements have been completed, RA LE forwards the TRM Change Package to Station Administration Department as notification of the need to update the onsite TRM controlled copies and ECF, if applicable.
: 16. RA LE also forwards the TRM Change Package to RS Administration Department as notification of the need to update the offsite (RS) TRM controlled copies and to transmit updates to the offsite (non-RS) TRM controlled copies.
: 17. Upon completion of updating the onsite TRM controlled copies and ECF (if applicable), Station Administration Department Supervisor signs and dates Attachment C and returns Attachment C to the RA LE.
DRESDEN UNITS 2 AND 3                            8 of 16                                      Revision 32 Technical Requirements Manual
 
TRM TRM Control Program Appendix G
: 18. Upon completion of updating the offsite (RS) TRM controlled copies and transmitting updates to the offsite (non-RS) TRM controlled copies, RS Administration Department signs and dates Attachment C and returns Attachment C to the RA LE.
: 19. RA LE updates the TRM Change Request Log (Attachment B) with the following information:
: a.      10 CFR 50.59 REVIEW Number;
: b.      SQR Number, if applicable;
: c.      SQR Approval Date; and
: d.      TRM change implementation date.
: 20. RA LE ensures that the documentation required to be maintained as a quality record is provided to Station Administration Department for the purpose of record retention.
1.6            ACCEPTANCE CRITERIA Not applicable.
1.7            LCOARS/COMPENSATORY MEASURES A Condition Report may need to be generated to provide proper tracking and resolution of noted problems associated with the implementation of this Program.
The RAM will be responsible for ensuring that Program failures have been resolved.
1.8            REPORTING REQUIREMENTS NOTE TRM changes not requiring prior NRC approval, as described in Section 1.4 of this Program, shall be submitted to the NRC in accordance with 10 CFR 50.71(e).
DRESDEN UNITS 2 AND 3                            9 of 16                                    Revision 32 Technical Requirements Manual
 
TRM TRM Control Program Appendix G 1.9            CHANGE CONTROL Changes to this Program, other than EDITORIAL CHANGES, shall include a 10 CFR 50.59 REVIEW and an SQR. The SQR composition shall include RA Department in all cases. For a change to this Program, PORC approval from all Stations is required. The concurrence shall be that the other Stations are implementing the same changes or that the changes have been reviewed and determined not to be applicable to the other Stations.
DRESDEN UNITS 2 AND 3                          10 of 16                                    Revision 32 Technical Requirements Manual
 
TRM TRM Control Program Appendix G ATTACHMENT A TECHNICAL REQUIREMENTS MANUAL CHANGE REQUEST FORM
: 1. Change Request #:                                Affecting TRM Section(s):
: 2. Description of changes:
: 3. Reason for changes (attach all supporting documentation):
: 4. Schedule Requirements:
Outage Related (check one)                          No                  Yes, Outage #:
Other (explain)
: 5. Implementation Requirements (attach additional pages, as necessary):
Identify the impact of the changes on the following:
Affected          N/A UFSAR TS Technical Requirements Manual NRC Safety Evaluation Fire Protection Report NRC Commitments Vendor Documentation Special Permits/Licenses Procedures Environmental Qualifications Design Basis Documentation Engineering Calculations Drawings/Prints PRA Information Programs Reportability Manual QA Topical Report Passport (Surveillances, Predefines, ECs, etc.)
Pre-Implementation Training Required Maintenance Rule Offsite Dose Calculation Manual Other DRESDEN UNITS 2 AND 3                                  11 of 16                                      Revision 21 Technical Requirements Manual
 
TRM TRM Control Program Appendix G ATTACHMENT A TECHNICAL REQUIREMENTS MANUAL CHANGE REQUEST FORM
: 6. Check one:
10 CFR 50.59 REVIEW Attached, 10 CFR 50.59 REVIEW #:
NRC SE Attached, Changes consistent with and entirely bound by NRC SE EDITORIAL CHANGE, No 10 CFR 50.59 REVIEW required
: 7. Requestor:                                    /                      /
(Signature)                    (Date)              (Department)
: 8. Requesting Supervisor Approval:                                      /
(Signature)                  (Date)
: 9. PORC Approval Required:                            Yes            No
: 10. Licensing Engineer Review:                                            /
(Signature)                  (Date)
DRESDEN UNITS 2 AND 3                        12 of 16                                  Revision 21 Technical Requirements Manual
 
TRM TRM Control Program Appendix G ATTACHMENT B TECHNICAL REQUIREMENTS MANUAL CHANGE REQUEST LOG CR #            Brief Description of Changes      Affected        10 CFR 50.59 SQR # SQR Approval  Implemented Section(s)          Review #            Date          Date DRESDEN UNITS 2 AND 3                                          13 of 16                                  Revision 32 Technical Requirements Manual
 
TRM TRM Control Program Appendix G ATTACHMENT C TECHNICAL REQUIREMENTS MANUAL CHANGE INSTRUCTION FORM FOR ONSITE/OFFSITE DISTRIBUTION AND FOR UPDATING ECF Braidwood/Byron/Dresden/LaSalle/QC (circle one) TRM Revision #:
NOTE: This change is effective as of                                                    and shall be (SQR/PORC/Amendment Implementation Date) implemented by (Date)
Approved for distribution:                                                      /
(RA LE Signature)                      (Date)
Verified:                                                                      /
(RA LE Signature)                      (Date)
Shift Manager is made aware of affected sections of the Technical Requirements Manual for this impending revision package:
                                                                                /
(Shift Manager)                        (Date)
REMOVE            REMOVE          INSERT            INSERT            UPDATE ECF      UPDATE ECF Section            Page            Section          Page              Section          Page Affected Page      All              Affected Page    All              N/A              N/A List                                List DRESDEN UNITS 2 AND 3                          14 of 16                                    Revision 42 Technical Requirements Manual
 
TRM TRM Control Program Appendix G ATTACHMENT C TECHNICAL REQUIREMENTS MANUAL CHANGE INSTRUCTION FORM FOR ONSITE/OFFSITE DISTRIBUTION AND FOR UPDATING ECF Braidwood/Byron/Dresden/LaSalle/QC (circle one) TRM Revision #:
Station Administration Department:
Onsite Distribution Completed:                                                  /
(Station Admin. Dept. Supr.)        (Date)
ECF Update Completed :                                                          /
(Station Admin. Dept. Supr.)        (Date)
** Return this sheet to:          Regulatory Assurance Braidwood/Byron/Dresden/LaSalle/QC (circle one)
RS Administration Department:
Offsite (RS) Distribution Completed:                                            /
(RS Admin. Dept.)          (Date)
Offsite (non-RS) Distribution Transmitted:                                      /
(RS Admin. Dept.)          (Date)
** Return this sheet to:          Regulatory Assurance Braidwood/Byron/Dresden/LaSalle/QC (circle one)
Offsite (non-RS) Controlled Copy Holders:
Offsite (non-RS) Distribution Completed:                                        /
(Signature)                (Date)
Return this sheet to:    EXELON GENERATION COMPANY, LLC ATTN: REGULATORY SERVICES ADMINISTRATION DEPARTMENT 4300 Winfield Road Warrenville, Il 60555 DRESDEN UNITS 2 AND 3                            15 of 16                                Revision 32 Technical Requirements Manual
 
TRM TRM Control Program Appendix G ATTACHMENT D TECHNICAL REQUIREMENTS MANUAL CHANGE APPLICABILITY REVIEW FORM Any change to a Station's Technical Requirements Manual (TRM) shall be transmitted to the Regulatory Assurance Managers (RAMs) at each of the other Stations. The RAM will review the TRM change for applicability at their respective Station. Review of applicability shall be documented on this Attachment and forwarded to the Regulatory Assurance Licensing Engineer(s) at the Station(s) making the change.
Braidwood/Byron/Dresden/LaSalle/QC (circle one)
TRM Section(s)/Title(s):
Description of the change:
Braidwood RAM Review:                                                /
(Signature)                        (Date)
Change Applicable:          Yes              No Byron RAM Review:                                                    /
(Signature)                        (Date)
Change Applicable:          Yes              No Dresden RAM Review:                                                  /
(Signature)                        (Date)
Change Applicable:          Yes              No LaSalle RAM Review:                                                  /
(Signature)                        (Date)
Change Applicable:          Yes              No QC RAM Review:                                                        /
(Signature)                        (Date)
Change Applicable:          Yes              No Return this sheet to:              Regulatory Assurance Braidwood/Byron/Dresden/LaSalle/QC (circle one)
DRESDEN UNITS 2 AND 3                              16 of 16                                      Revision 32 Technical Requirements Manual
 
TRM Appendix H Response Times APPENDIX H RESPONSE TIMES
 
TRM Appendix H Response Times Table H-1 (page 1 of 1)
Response Times FUNCTION                                    RESPONSE TIME
: 1. Turbine Bypass Valve - Unit 2 Delay to first opening(a)                                140 msec 0% to 20% capacity (linear)                              40 msec 20% to 71% capacity (linear)                              95 msec 71% to 88% Capacity (linear)                              125 msec
: 2. Turbine Bypass Valve - Unit 3 Delay to first opening(a)                                140 msec 0% to 20% capacity (linear)                              40 msec 20% to 71% capacity (linear)                              95 msec 71% to 88% capacity (linear)                              125 msec
: 3. Reactor Protection System Response                      50 msec(b)
Times (a)  From turbine stop valve full closure to start of turbine bypass valve opening (fastest valve ignored)
(b)  Neutron detectors are exempt from response time testing. Response time testing shall be measured from the detector output or from the input of the first electronic component in the channel.
Dresden 2 and 3                                    H-1                              Revision 29
 
TRM TLCO Applicability B 3.0 B 3.0  TECHNICAL REQUIREMENTS MANUAL LIMITING CONDITION FOR OPERATION (TLCO)
APPLICABILITY BASES TLCOs            TLCO 3.0.a through TLCO 3.0.f establish the general requirements applicable to all TLCOs in Sections 2.1. and 3.1 through 3.9 and apply at all times, unless otherwise stated.
TLCO  3.0.a      TLCO 3.0.a establishes the Applicability statement within each individual TLCO as the requirement for when the TLCO is required to be met (i.e., when the unit is in the MODES or other specified conditions of the Applicability statement of each Specification).
TLCO  3.0.b      TLCO 3.0.b establishes that upon discovery of a failure to meet a TLCO, the associated ACTIONS shall be met. The Completion Time of each Required Action for an ACTIONS Condition is applicable from the point in time that an ACTIONS Condition is entered, unless otherwise specified. The Required Actions establish those remedial measures that must be taken within specified Completion Times when the requirements of a TLCO are not met. This Specification establishes that:
: a. Completion of the Required Actions within the specified Completion Times constitutes compliance with a TLCO; and
: b. Completion of the Required Actions is not required when a TLCO is met within the specified Completion Time, unless otherwise specified.
There are two basic types of Required Actions. The first type of Required Action specifies a time limit in which the TLCO must be met. This time limit is the Completion Time to restore an inoperable system or component to OPERABLE status or to restore variables to within specified limits. If this type of Required Action is not completed within the specified Completion Time, a shutdown may be required to place the unit in a MODE or condition in which the TLCO is not applicable. (Whether stated as a Required Action or not, correction of the entered Condition is an action that may always be considered upon entering ACTIONS.) The (continued)
Dresden 2 and 3                    B 3.0-1                            Revision 85
 
TRM TLCO Applicability B 3.0 BASES TLCO 3.0.b      second type of Required Action specifies the remedial (continued)  measures that permit continued operation of the unit that is not further restricted by the Completion Time. In this case, compliance with the Required Actions provides an acceptable level of safety for continued operation.
Completing the Required Actions is not required when a TLCO is met or is no longer applicable, unless otherwise stated in the individual TLCOs.
The nature of some Required Actions of some Conditions necessitates that, once the Condition is entered, the Required Actions must be completed even though the associated Condition no longer exists. The individual TLCO's ACTIONS specify the Required Actions where this is the case. An example of this is in TLCO 3.7.h, "Snubbers."
The Completion Times of the Required Actions are also applicable when a system or component is removed from service intentionally.
The Actions for not meeting a single TLCO adequately manage any increase in plant risk, provided any unusual external conditions (e.g., severe weather, offsite power instability) are considered.
In addition, the increased risk associated with simultaneous removal of multiple structures, systems, trains or components from service is assessed and managed in accordance with 10 CFR 50.65(a)(4). Individual TLCOs may specify a time limit for performing a TSR when equipment is removed from service or bypassed for testing. In this case, the Completion Times of the Required Actions are applicable when this time limit expires, if the equipment remains removed from service or bypassed.
When a change in MODE or other specified condition is required to comply with Required Actions, the unit may enter a MODE or other specified condition in which another TLCO becomes applicable. In this case, the Completion Times of the associated Required Actions would apply from the point in time that the new TLCO becomes applicable and the ACTIONS Condition(s) are entered.
(continued)
Dresden 2 and 3                  B 3.0-2                          Revision 92
 
TRM TLCO Applicability B 3.0 BASES  (continued)
TLCO  3.0.c        TLCO 3.0.c establishes the actions that must be implemented when a TLCO is not met and:
: a. An associated Required Action and Completion Time is not met and no other Condition applies; or
: b. The condition of the unit is not specifically addressed by the associated ACTIONS. This means that no combination of Conditions stated in the ACTIONS can be made that exactly corresponds to the actual condition of the unit.
Sometimes, possible combinations of Conditions are such that entering TLCO 3.0.c is warranted; in such cases, the ACTIONS specifically state a Condition corresponding to such combinations and also that TLCO 3.0.c be entered immediately.
Upon entering TLCO 3.0.c, 1 hour is allowed to initiate actions to implement appropriate compensatory actions and verify the plant is not in an unanalyzed condition or that a required safety function is not compromised. Within 12 hours, Station Duty Officer approval of the compensatory actions and the plan for exiting TLCO 3.0.c must be obtained. The use and interpretation of specified times to complete the actions of TLCO 3.0.c are consistent with the discussion of Section 1.3, Completion Times.
The actions required in accordance with TLCO 3.0.c may be terminated and TLCO 3.0.c exited if any of the following occurs:
: a. The TLCO is now met.
: b. The TLCO is no longer applicable.
: c. A Condition exists for which the Required Actions have now been performed.
: d. ACTIONS exist that do not have expired Completion Times.
These Completion Times are applicable from the point in time that the Condition is initially entered and not from the time TLCO 3.0.c is exited.
(continued)
Dresden 2 and 3                      B 3.0-3                          Revision 85
 
TRM TLCO Applicability B 3.0 BASES TLCO  3.0.c    In MODES 1,2, and 3, TLCO 3.0.c provides actions for Conditions not (continued)    covered in other Specifications. The requirements of TLCO 3.0.c do not apply in MODES 4 and 5 because the unit is already in the most restrictive Condition. The requirements of TLCO 3.0.c do not apply in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual TLCOs sufficiently define the remedial measures to be taken.
TLCO  3.0.d    TLCO 3.0.d establishes limitations on changes in MODES or other specified conditions in the Applicability when an TLCO is not met. It allows placing the unit in a MODE or other specified condition stated in that Applicability (e.g., the Applicability desired to be entered) when unit conditions are such that the requirements of the TLCO would not be met, in accordance with either TLCO 3.0.d.1, TLCO 3.0.d.2, or TLCO 3.0.d.3.
TLCO 3.O.d.1 allows entry into a MODE or other specified condition in the Applicability with the TLCO not met when the associated ACTIONS to be entered following entry into the MODE or other specified condition in the Applicability for an unlimited period of time. Compliance with Required Actions that permit continued operation of the unit for an unlimited period of time in a MODE or other specified condition provides an acceptable level of safety for continued operation. This is without regard to the status of the unit before or after the MODE change.
Therefore, in such cases, entry into a MODE or other specified condition in the Applicability may be made and the Required Actions followed after entry into the Applicability.
TLCO 3.0.d.2 allows entry into a MODE or other specified condition in the Applicability with the TLCO not met after performance of a risk assessment addressing inoperable systems and components, consideration of the results, determination of the acceptability of entering the MODE or other specified condition in the Applicability, and establishment of risk management actions, if appropriate.
The risk assessment may use quantitative, qualitative, or blended approaches, and the risk assessment will be conducted using the plant program, procedures, and criteria in place to implement 10 CFR 50.65(a)(4), which requires that risk impacts of maintenance activities be assessed and managed.
(continued)
Dresden 2 and 3                  B 3.0-4                          Revision 85
 
TRM TLCO Applicability B 3.0 BASES (continued)
TLCO 3.0.d        The risk assessment, for the purposes of TLCO 3.0.d.2, must (Continued)      take into account all inoperable TRM equipment regardless of whether the equipment is included in the normal 10 CFR 50.65(a)(4) risk assessment scope.
The risk assessments will be conducted using the procedures and guidance endorsed by Regulatory Guide 1.182, Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants. Regulatory Guide 1.182 endorses the guidance in Section 11 of NUMARC 93-01, Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants. These documents address general guidance for conduct of the risk assessment, quantitative and qualitative guidelines for establishing risk management actions, and example risk management actions. These include actions to plan and conduct other activities in a manner that controls overall risk, increased risk awareness by shift and management personnel, actions to reduce the duration of the condition, actions to minimize the magnitude of risk increases (establishment of backup success paths or compensatory measures), and determination that the proposed MODE change is acceptable.
Consideration should also be given to the probability of completing restoration such that the requirements of the TLCO would be met prior to the expiration of ACTIONS Completion Times that would require exiting the Applicability.
TLCO 3.0.d.2 may be used with single, or multiple systems and components unavailable. NUMARC 93-01 provides guidance relative to consideration of simultaneous unavailability of multiple systems and components.
The results of the risk assessment shall be considered in determining the acceptability of entering the MODE or other specified condition in the Applicability, and any corresponding risk management actions. The TLCO 3.0.d.2 risk assessments do not have to be documented.
(continued)
Dresden 2 and 3                    B 3.0-5                          Revision 33
 
TRM TLCO Applicability B 3.0 BASES (continued)
TLCO 3.0.d        The TRM allows continued operation with equipment unavailable in (Continued)      MODE 1 for the duration of the Completion Time. Since this is allowable, and since in general the risk impact in that particular MODE bounds the risk of transitioning into and through the applicable MODES or other specified conditions in the Applicability of the TLCO, the use of the TLCO 3.0.d.2 allowance should be generally acceptable, as long as the risk is assessed and managed as stated above.
The provisions of this TLCO should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.
The provisions of TLCO 3.0.d shall not prevent changes in MODES or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of TLCO 3.0.d shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown. In this context, a unit shutdown is defined as a change in MODE or other specified condition in the Applicability associated with transitioning from MODE 1 to MODE 2, MODE 2 to MODE 3, and MODE 3 to MODE 4.
Upon entry into a MODE  or other specified condition in the Applicability with the  TLCO not met, TLCO 3.0.a and TLCO 3.0.b require entry into the  applicable Conditions and Required Actions until the Condition is  resolved, until the TLCO is met, or until the unit is not within  the Applicability of the TLCO.
TSRs do not have to be performed on the associated inoperable equipment (or on variables outside the specified limits), as permitted by TSR 3.0.a. Therefore, utilizing TLCO 3.0.d is not a violation of TSR 3.0.a or TSR 3.0.d for any TSRs that have not been performed on inoperable equipment. However, TSRs must be met to ensure OPERABILITY prior to declaring the associated equipment OPERABLE (or variable within limits) and restoring compliance with the affected TLCO.
(continued)
Dresden 2 and 3                    B 3.0-6                            Revision 33
 
TRM TLCO Applicability B 3.0 BASES TLCO  3.0.e    TLCO 3.0.e establishes the allowance for restoring equipment to service under administrative controls when it has been removed from service or declared inoperable to comply with ACTIONS. The sole purpose of this Specification is to provide an exception to TLCO 3.0.b (e.g., to not comply with the applicable Required Action(s)) to allow the performance of required testing to demonstrate:
: a. The OPERABILITY of the equipment being returned to service; or
: b. The OPERABILITY of other equipment.
The administrative controls ensure the time the equipment is returned to service in conflict with the requirements of the ACTIONS is limited to the time absolutely necessary to perform the required testing to demonstrate OPERABILITY. This Specification does not provide time to perform any other preventive or corrective maintenance.
Examples of demonstrating the OPERABILITY of other equipment are taking an inoperable channel or trip system out of the tripped condition 1) to prevent the trip function from occurring during the performance of required testing on another channel in the other trip system, or 2) to permit the logic to function and indicate the appropriate response during the performance of required testing on another channel in the same trip system.
TLCO  3.0.f    TLCO 3.0.f establishes the applicability of each TLCO to both Unit 2 and Unit 3 operation. Whenever a requirement applies to only one unit, or is different for each unit, this will be identified in the appropriate section of the TLCO (e.g.,
Applicability, TSR, etc.) with parenthetical reference, Notes, or other appropriate presentation within the body of the requirement.
Dresden 2 and 3                  B 3.0-7                            Revision 85
 
TRM TLCO Applicability B 3.0 BASES TLCO 3.0.g      NRC Regulatory Issue Summary (RIS) 2005-07, "Compensatory Measures to Satisfy the Fire Protection Program Requirements,"
informs licensees that alternate compensatory measures may be used for a degraded or inoperable fire protection feature under certain circumstances. For plants that have adopted the standard fire protection license condition given in Generic Letter 86-10 and removed fire protection from the Technical Specifications in accordance with Generic Letter 88-12, the guidance in RIS 2005-07 apply. DRE has adopted the Standard Fire Protection License Condition per G.L. 86-10 and has removed fire protection conditions from the Technical Specifications and placed them in the TRM. Such alternative compensatory measures may consist of administrative controls, operator briefings, temporary procedures, interim shutdown strategies, manual actions, temporary detection, other engineered controls or a combination of such actions. A technical evaluation must demonstrate that the alternative compensatory measures would not adversely impact the ability to achieve and maintain safe shutdown in the event of fire. The evaluation of the alternate compensatory measure should incorporate risk insights regarding the location, quantity and type of combustible material in the fire area; the presence of ignition sources and their likelihood of occurrence; the automatic fire suppression and fire detection capability in the fire area; the manual fire suppression capability in the fire area; and the human error probability where applicable.
The use of an alternate compensatory measure(s) shall be entered into the Corrective Action Program. The evaluation must be maintained as a plant record subject to subsequent inspection.
This technical evaluation should be performed consistent with Exelon standard administrative controls involving engineering technical evaluations and fire protection program reviews. The fire protection program review consists of a regulatory and technical evaluation of the change in accordance with Exelon procedures. The evaluation shall determine whether the proposed alternative compensatory measures are adequate compared to the existing required compensatory measures. The evaluation must demonstrate that the alternative compensatory measures would not adversely affect the ability to achieve and maintain safe shutdown in the event of a fire and that compliance with the General Design Criteria (10 CFR 50 Appendix A, Criterion 3) and 10CFR 50.48(a) is met. Also NRC Information Notice 97-48 and NRC Regulatory Issue Summary 2005-20 guidance should be considered when selecting alternate compensatory measures.
(continued)
Dresden 2 and 3                  B 3.0-8                            Revision 65
 
TRM TLCO Applicability B 3.0 BASES TLCO 3.0.g      Alternate compensatory measures may be used in lieu of the (continued)    prescribed compensatory measures for degraded or inoperable fire protection features addressed by specified TRM sections. Such alternative compensatory measures may consist of administrative controls, operator briefings, interim shutdown strategies, temporary procedures, manual actions temporary detection, other engineered controls or a combination of such actions. A technical engineering evaluation must demonstrate that the alternative compensatory measures would not adversely impact the ability to achieve and maintain safe shutdown in the event of fire. The use of an alternate compensatory measure(s) shall be entered into the Corrective Action Program. The evaluation must be maintained as a plant record subject to subsequent inspection.
The applicable TRM compensatory measure must be met until such time as an Alternative Compensatory Measure is approved.
Dresden 2 and 3                  B 3.0-9                            Revision 65
 
TRM TSR Applicability B 3.0 B 3.0  TECHNICAL REQUIREMENTS MANUAL SURVEILLANCE REQUIREMENT (TSR)
APPLICABILITY BASES TSRs              TSR 3.0.a through TSR 3.0.d establish the general requirements applicable to all Specifications in Sections 2.1 and 3.1 through 3.9 and apply at all times, unless otherwise stated.
TSR  3.0.a        TSR 3.0.a establishes the requirement that TSRs must be met during the MODES or other specified conditions in the Applicability for which the requirements of the TLCO apply, unless otherwise specified in the individual TSRs. This TLCO is to ensure that TSRs are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a TSR within the specified Frequency, in accordance with TSR 3.0.b, constitutes a failure to meet a TLCO.
Systems and components are assumed to be OPERABLE when the associated TSRs have been met. Nothing in this TSR, however, is to be construed as implying that systems or components are OPERABLE when:
: a. The systems or components are known to be inoperable, although still meeting the TSRs; or
: b. The requirements of the TSR(s) are known to be not met between required TSR performances.
TSR do not have to be performed when the unit is in a MODE or other specified condition for which the requirements of the associated TLCO are not applicable, unless otherwise specified.
Unplanned events may satisfy the requirements (including applicable acceptance criteria) for a given TSR. In this case, the unplanned event may be credited as fulfilling the performance of the TSR.
(continued)
Dresden 2 and 3                        B 3.0-10                        Revision 44
 
TRM TSR Applicability B 3.0 BASES TSR 3.0.a      TSRs, including TSRs invoked by Required Actions, do not (continued)    have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply. TSRs have to be met and performed in accordance with TSR 3.0.b, prior to returning equipment to OPERABLE status.
Upon completion of maintenance, appropriate post maintenance testing is required to declare equipment OPERABLE. This includes ensuring applicable TSRs are not failed and their most recent performance is in accordance with TSR 3.0.b. Post maintenance testing may not be possible in the current MODE or other specified conditions in the Applicability due to the necessary unit parameters not having been established. In these situations, the equipment may be considered OPERABLE provided testing has been satisfactorily completed to the extent possible and the equipment is not otherwise believed to be incapable of performing its function. This will allow operation to proceed to a MODE or other specified condition where other necessary post maintenance tests can be completed.
TSR  3.0.b    TSR 3.0.b establishes the requirements for meeting the specified Frequency for TSRs and any Required Action with a Completion Time that requires the periodic performance of the Required Action on a "once per..." interval.
TSR 3.0.b permits a 25% extension of the interval specified in the Frequency. This extension facilitates TSR scheduling and considers plant operating conditions that may not be suitable for conducting the TSR (e.g., transient conditions or other ongoing TSR or maintenance activities).
The 25% extension does not significantly degrade the reliability that results from performing the TSR at its specified Frequency.
This is based on the recognition that the most probable result of any particular TSR being performed is the verification of conformance with the TSRs.
As stated in TSR 3.0.b, the 25% extension also does not apply to the initial portion of a periodic Completion Time that requires performance on a "once per..." basis. The 25% extension applies to each performance after the initial performance. The initial performance of the Required (continued)
Dresden 2 and 3                    B 3.0-11                        Revision 44
 
TRM TSR Applicability B 3.0 BASES TSR 3.0.b      Action, whether it is a particular TSR or some other (continued)    remedial action, is considered a single action with a single Completion Time. One reason for not allowing the 25% extension to this Completion Time is that such an action usually verifies that no loss of function has occurred by checking the status of redundant or diverse components or accomplishes the function of the inoperable equipment in an alternative manner.
The provisions of TSR 3.0.b are not intended to be used repeatedly to extend TSR intervals (other than those consistent with refueling intervals) or periodic Completion Time intervals beyond those specified.
TSR  3.0.c    TSR 3.0.c establishes the flexibility to defer declaring affected equipment inoperable or an affected variable outside the specified limits when a TSR has not been performed within the specified Frequency. A delay period of up to 24 hours or up to the limit of the specified Frequency, whichever is greater, applies from the point in time it is discovered that the TSR has not been performed in accordance with TSR 3.0.b, and not at the time that the specified Frequency was not met. This delay period provides adequate time to perform TSRs that have been missed.
This delay period permits the performance of a TSR before complying with Required Actions or other remedial measures that might preclude performance of the TSR.
The basis for this delay period includes consideration of unit conditions, adequate planning, availability of personnel, the time required to perform the TSR, the safety significance of the delay in completing the required TSR, and the recognition that the most probable result of any particular TSR being performed is the verification of conformance with the requirements.
When a TSR with a Frequency based not on time intervals, but upon specified unit conditions, operating situations, or requirements of regulations (e.g., prior to start of movement of fuel assemblies or control rods, or in accordance with the Diesel Fuel Oil Testing Program, etc.) is discovered to not have been performed when specified, TSR 3.0.c allows for the full delay period of up to the specified Frequency to perform the TSR.
However, since there is not a time interval specified, the missed TSR should be performed at the first reasonable opportunity.
(continued)
Dresden 2 and 3                    B 3.0-12                        Revision 92
 
TRM TSR Applicability B 3.0 BASES TSR 3.0.c      TSR 3.0.c provides a time limit for, and allowances (continued)    for the performance of, TSRs that become applicable as a consequence of MODE changes imposed by Required Actions.
Failure to comply with specified Frequencies for TSRs is expected to be an infrequent occurrence. Use of the delay period established by TSR 3.0.c is a flexibility which is not intended to be used repeatedly to extend TSR intervals. While up to 24 hours or the limit of the specified Frequency is provided to perform the missed TSR, it is expected that the missed TSR will be performed at the first reasonable opportunity. The determination of the first reasonable opportunity should include consideration of the impact on plant risk (from delaying the TSR as well as any plant configuration changes required or shutting the plant down to perform the TSR) and impact on any analysis assumptions, in addition to unit conditions, planning, availability of personnel, and the time required to perform the TSR. This risk impact should be managed through the program in place to implement 10 CFR 50.65(a)(4) and its implementation guidance, NRC Regulatory Guide 1.182, "Assessing and Managing Risk Before Maintenance Activities at Nuclear Power Plants." This Regulatory Guide addresses consideration of temporary and aggregate risk impacts, determination of risk management action thresholds, and risk management up to and including plant shutdown. The missed TSR should be treated as an emergent condition as discussed in the Regulatory Guide. The risk evaluation may use quantitative, qualitative, or blended methods. The degree of depth and rigor of the evaluation should be commensurate with the importance of the component. Missed TSRs for important components should be analyzed quantitatively. If the results of the risk evaluation determine the risk increase is significant, this evaluation should be used to determine the safest course of action. All missed TSRs will be placed in the stations Corrective Action Program.
If a TSR is not completed within the allowed delay period, then the equipment is considered inoperable or the variable then is considered outside the specified limits and the Completion Times of the Required Actions for the applicable TLCO Conditions begin immediately upon expiration of the delay period. If a TSR is failed within the delay period, then the equipment is inoperable, or the variable is outside the specified limits and the Completion Times of the Required Actions for the applicable TLCO Conditions begin immediately upon the failure of the TSR.
(continued)
Dresden 2 and 3                    B 3.0-13                        Revision 85
 
TRM TSR Applicability B 3.0 BASES TSR 3.0.c      Completion of the TSR within the delay period allowed by this (continued)  TSR, or within the Completion Time of the ACTIONS, restores compliance with TSR 3.0.a.
TSR  3.0.d    TSR 3.0.d establishes the requirement that all applicable TSRs must be met before entry into a MODE or other specified condition in the Applicability.
This TSR ensures that system and component OPERABILITY requirements and variable limits are met before entry into MODES or other specified conditions in the Applicability for which these systems and components ensure safe operation of the unit.
The provisions of this TSR should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.
A provision is included to allow entry into a MODE or other specified condition in the Applicability when an TLCO is not met due to a TSR not being met in accordance with TLCO 3.O.d.
However, in certain circumstances, failing to meet an TSR will not result in TSR 3.0.d restricting a MODE change or other specified condition change. When a system, subsystem, division, component, device, or variable is inoperable or outside its specified limits, the associated TSR(s) are not required to be performed, per TSR 3.0.a, which states that TSRs do not have to be performed on inoperable equipment. When equipment is inoperable, TSR 3.0.d does not apply to the associated TSR(s) since the requirement for the TSR(s) to be performed is removed.
Therefore, failing to perform the TSR(s) within the specified Frequency does not result in an TSR 3.0.d restriction to changing MODES or other specified conditions of the Applicability.
However, since the TLCO is not met in this instance, TLCO 3.0.d will govern any restrictions that may (or may not) apply to MODE or other specified condition changes. TSR 3.0.d does not restrict changing MODES or other specified conditions of the Applicability when a TSR has not been performed within the specified Frequency, provided the requirement to declare the TLCO not met has been delayed in accordance with TSR 3.0.c.
(continued)
Dresden 2 and 3                    B 3.0-14                        Revision 33
 
TRM TSR Applicability B 3.0 BASES TSR 3.0.d      The provisions of TSR 3.0.d shall not prevent entry into MODES or (Continued)    other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of TSR 3.0.d shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown. In this context, a unit shutdown is defined as a change in MODE or other specified condition in the Applicability associated with transitioning from MODE 1 to MODE 2, MODE 2 to MODE 3, and MODE 3 to MODE 4.
The precise requirements for performance of TSRs are specified such that exceptions to TSR 3.0.d are not necessary. The specific time frames and conditions necessary for meeting the TSRs are specified in the Frequency, in the TSR, or both. This allows performance of TSRs when the prerequisite condition(s) specified in a surveillance procedure require entry into the MODE or other specified condition in the Applicability of the associated TLCO prior to the performance or completion of a TSR. A TSR that could not be performed until after entering the TLCOs Applicability, would have its Frequency specified such that it is not due until the specific conditions needed are met. Alternately, the TSR may be stated in the form of a Note, as not required (to be met or performed) until a particular event, condition, or time has been reached. Further discussion of the specific formats of TSRs annotation is found in TRM Section 1.4, Frequency.
TSR  3.0.e    TSR 3.0.e establishes the applicability of each TSR to both Unit 2 and Unit 3 operation. Whenever a requirement applies to only one unit, or is different for each unit, this will be identified with parenthetical reference, Notes, or other appropriate presentation within the TSR.
Dresden 2 and 3                    B 3.0-15                        Revision 33
 
THIS SECTION IS NOT CURRENTLY BEING USED.
TRM Control Rod Block Instrumentation B 3.3.a B 3.3  INSTRUMENTATION B 3.3.a  Control Rod Block Instrumentation BASES The trip logic for the control rod block functions is one-out-of-n; e.g., any trip of one of the six average power range monitors (APRMs), eight intermediate range monitors (IRMs), or four source range monitors (SRMs), will result in a rod block.
The minimum instrument CHANNEL requirements assure sufficient instrumentation to assure that the single failure criterion is met. The minimum instrument CHANNEL requirements for the rod block monitor may be reduced by one for a short period of time to allow for maintenance, testing, or calibration.
The APRM rod block function is flow-biased and prevents a significant reduction in minimum critical power range (MCPR), especially during operation at reduced flow.
The APRM rod block function is flow dependent until it reaches the applicable setting where it is "clamped" at its maximum allowed value. The APRM provides gross core protection, i.e., limits the gross withdrawal of control rods in the normal withdrawal sequence.
In MODE 5 and MODE 2, the APRM rod block function setpoint is significantly reduced to provide the same type of protection in MODE 5 and MODE 2 as the APRM flow-biased rod block does in MODE 1 i.e., prevents control rod withdrawal before a scram is reached.
The APRM Flow Biased Neutron FluxHigh Control Rod Block Function is varied as a function of recirculation loop flow (W) up to its clamped value. W is equal to the percentage of the drive flow required to produce a rated core flow of 98 X 106 lbs/hr.
The IRM rod block function provides local as well as gross core protection. The scaling arrangement is such that the trip setting is less than a factor of ten above the indicated level. Analysis of the worst  case accident results in rod block action before MCPR approaches the MCPR fuel cladding integrity Safety Limit.
A downscale indication on an APRM is an indication that the instrument has failed or is not sufficiently sensitive. In either case, the instrument will not respond to changes in control rod motion, and the control rod motion is thus prevented.
(continued)
Dresden 2 and 3                    B 3.3.a-1                      Revision 12
 
TRM Control Rod Block Instrumentation B 3.3.a BASES  (continued)
The SRM rod blocks of low count rate and the detector not fully inserted assure that the SRMs are not withdrawn from the core prior to commencing rod withdrawal for startup. The scram discharge volume, high water level rod block provides annunciation for operator action. The alarm setpoint has been selected to provide adequate time to allow for the determination of the cause for the level increase and corrective action prior to automatic scram initiation.
Dresden 2 and 3                    B 3.3.a-2                        Revision 0
 
TRM PAM Instrumentation B 3.3.b B 3.3  INSTRUMENTATION B 3.3.b  Post Accident Monitoring (PAM) Instrumentation BASES Instrumentation is provided to monitor sufficient accident conditions to adequately assess important variables and provide the operators with the necessary information to complete the appropriate mitigation actions. OPERABILITY of the instrumentation listed provides adequate monitoring of the containment following a loss-of-coolant accident. Information from this instrumentation will provide the operator with a detailed knowledge of the conditions resulting from the accident; based on this information, the operator can make logical decisions regarding post accident recovery. Allowable outage times are based on diverse instrumentation availability for guiding the operator should an accident occur, and on the low probability of an instrument being out-of-service concurrent with an accident.
Channel Check of the Acoustic Monitors shall consist of verifying the instrument threshold levels.
In Reference 1, Exelon submitted a License Amendment Request (LAR) removing the Drywell H2/O2 Post Accident Monitoring (PAM) instruments from the Technical Specifications. The NRC approved this request in Reference 2.
The LAR contained a regulatory commitment to maintain the capability of the drywell H2 and O2 concentration analyzers. The surveillance requirements provided in TRM section 3.3.b for Functions 4 and 5 are required to satisfy this regulatory commitment.
 
==REFERENCES:==
: 1. Letter from K.R. Jury (Exelon) to USNRC, Request for Amendment to Technical Specifications to Eliminate Requirements for Hydrogen Recombiners and Hydrogen/Oxygen Monitors Using the Consolidated Line Item Improvement Process, dated September 15, 2004
: 2. Letter from M. Banerjee (USNRC) to C.M. Crane, Dresden Nuclear Power Station, Units 2 and 3 - Issuance of Amendments, dated April 28, 2005 Dresden 2 and 3                  B 3.3.b-1                    Revision 36
 
TRM Explosive Gas Monitoring Instrumentation B 3.3.c B 3.3  INSTRUMENTATION B 3.3.c  Explosive Gas Monitoring Instrumentation BASES This instrumentation provides for monitoring (and controlling) the concentrations of potentially explosive gas mixtures in the Offgas (Waste) Holdup System.
Dresden 2 and 3                    B 3.3.c-1                        Revision 0
 
TRM Suppression Chamber and Drywell Spray Actuation Instrumentation B 3.3.d B 3.3  INSTRUMENTATION B 3.3.d  Suppression Chamber and Drywell Spray Actuation Instrumentation BASES Instrumentation is provided to monitor the parameters which are necessary to permit initiation of the suppression chamber and drywell spray mode of the low pressure coolant injection/containment cooling system to condense steam in the containment atmosphere. The spray mode does not significantly affect the rise of drywell pressure following a loss of coolant accident, but does result in quicker depressurization following completion of the blowdown.
Dresden 2 and 3                    B 3.3.d-1                        Revision 0
 
TRM Fire Detection Instrumentation B 3.3.e B 3.3  INSTRUMENTATION B 3.3.e  Fire Detection Instrumentation BASES OPERABILITY of the detection instrumentation ensures that both adequate warning capability is available for the prompt detection of fires and that Fire Suppression Systems, actuated by fire detectors, will discharge extinguishing agents in a timely manner. Prompt detection and suppression of fires will reduce the potential for damage to safety related equipment or redundant/alternate equipment important to safe shutdown and is an integral element in the overall facility fire protection program. The zone designations given in Tables T 3.3.e-1, T 3.3.e-2, and T 3.3.e-3 are XL3 fire detection system loop designations. Fire detectors that are used to actuate Fire Suppression Systems represent a more critically important component of a plants fire protection program than detectors that are installed solely for early fire warning and notification.
The establishment of dedicated roving fire watches in the affected areas is required to provide detection capability until the inoperable instrumentation is restored to service.
Dresden 2 and 3                    B 3.3.e-1                        Revision 0
 
TRM ATWSARI System B 3.3.f B 3.3  INSTRUMENTATION B 3.3.f  Anticipated Transient Without Scram (ATWS)Alternate Rod Insertion (ARI) System BASES An anticipated transient without scram (ATWS) is a postulated operational transient (such as loss of feedwater, loss of condenser vacuum, or loss of offsite power) accompanied by a failure of the reactor protection or control rod drive systems to shut down the reactor. Even though the reactor protection and control rod drive systems have been shown to be highly reliable, it is postulated that a common mode electrical or mechanical failure is possible.
If the control rods fail to insert following a transient which isolates the reactor from the normal cooling system, the resulting pressure rise could be large enough to threaten the integrity of the reactor coolant pressure boundary. Unless core power and system pressure are reduced to within the capacities of the standby cooling and makeup systems within a few minutes, the core can be uncovered and melting can occur, resulting in large releases of radioactive fission products.
Since a normal scram (RPS) is assumed to be unavailable to insert control rods for reducing reactor power, alternate rod insertion (ARI)is utilized for control rod insertion. Should both the RPS and ARI fail to insert the control rods, the SBLC would be manually initiated to control reactivity.
ARI has two independent subsystems. Each subsystem consists of two manual initiation pushbutton switches in the control room, and three valves which ensure depressurization of the scram air header.
Two ARI valves, which are normally closed, open when energized to depressurize the scram air header. Additionally, one three-way ARI valve is installed in the scram air header supply line. This valve is normally positioned to allow air to be supplied to the scram air header. When energized, this valve repositions to close off the supply air and vent the scram air header to the atmosphere. Each subsystem has sufficient capacity to accomplish rod insertion.
(continued)
Dresden 2 and 3                    B 3.3.f-1                        Revision 2
 
TRM ATWSARI System B 3.3.f BASES (continued)
Alternate rod insertion is a means of control rod insertion which is motivated mechanically by the normal hydraulic control units and control rod drives but which utilizes totally separate and diverse logic from RPS.
Alternate rod insertion energizes valves which cause the scram valve pilot air header to bleed down. Although this type of alternate rod insertion does not eliminate the short-term consequences of the assumed failure of normal scram action, it does reduce the long-term consequences. The most significant long-term consequences involve containment limits, particularly suppression pool temperature.
Once actuated, a time delay ensures that the ARI valves remain energized to ensure the scram air header is adequately depressurized. After this delay, if the initiation signal has cleared, the ARI valves are deenergized. If the initiation signal is still present after the delay, the ARI valves remain energized until the initiation signal clears.
The required logic test is adequate to ensure OPERABILITY of the ATWSARI Function.
Dresden 2 and 3                    B 3.3.f-2                        Revision 2
 
TRM B 3.3.g B 3.3  INSTRUMENTATION B 3.3.g  Not used Dresden 2 and 3        B 3.3.g-1 Revision 0
 
TRM RVWLIS Backfill System B 3.3.h B 3.3  INSTRUMENTATION B 3.3.h  Reactor Vessel Water Level Instrumentation System (RVWLIS)
Backfill System BASES The Reactor Vessel Water Level Instrumentation System (RVWLIS) Backfill System was installed as a result of industry experience in which reactor level indication errors were experienced during reactor vessel depressurizations. During these events, non-condensible gases that are produced during normal operation diffuse into the reference leg water over a period of time and are released when reactor pressure is decreased, creating a void in the reference leg. This void causes reactor level to read higher than normal. NRC Bulletin 93-03, Resolution of Issues Related to Reactor Water Level Instrumentation in BWRs, was issued as a result of the industry experience.
Both units have four (4) RVWLIS Backfill lines, one for each medium range reference leg and one for each narrow range/fuel zone reference leg. Each backfill line should be placed in service on each unit startup and isolated after each unit shutdown. With the backfill line in service for each reference leg, level indication errors caused by the build up of non-condensible gases cannot occur.
Requirements are provided so as to assure reliable reactor level indication. The RVWLIS Backfill from the Control Rod Drive System is a support system to ensure reliable reactor level indication.
Perform the following compensatory actions during any reactor vessel depressurization:
: a. Place the following computer points on high speed (1500 mm/hr):
C263 (C363) RPV Level MR Indicator from 2(3)-263-100A C264 (C364) RPV Level MR Indicator from 2(3)-263-100B C260 (C360) A RPV Narrow Range (NR) Level Indicator or C209 (C309)
B RPV NR Level Indicator, whichever NR Indicator is not selected for Feedwater Level Control.
(continued)
Dresden 2 and 3                    B 3.3.h-1                        Revision 0
 
TRM RVWLIS Backfill System B 3.3.h BASES (continued)
: b. A heightened Level of Awareness briefing with Control Room personnel with respect to the potential RPV level indication anomalies will be instituted and maintained until the Reactor is in MODE 4 or MODE 1 is achieved.
Additionally, if an indicated level notching phenomenon occurs, as observed on the reactor vessel level recorders, AND indication level shows greater than a nine (9) inch level increase for more than five (5) minutes, then:
: a. All level instruments utilized by the affected reference leg shall be declared inoperable and entered into the Degraded Equipment Log.
: b. Refer to the Technical Specifications for required actions associated with the affected instruments.
: c. The affected reference legs shall be backfilled prior to declaring the associated instruments operable.
Surveillance requirements are provided to assure proper system operation.
Dresden 2 and 3                    B 3.3.h-2                        Revision 0
 
TRM RWCU Area Temperature Monitoring B 3.3.i B 3.3  INSTRUMENTATION B 3.3.i  Reactor Water Cleanup (RWCU) Area Temperature Monitoring BASES Dresden and Com Ed engineering have recently evaluated the effects of a RWCU system break outside of the containment with a break small enough such that the feedwater system can maintain reactor water level above +8 inches. This analysis was necessary since Monticello reported that below 87 % power, more mass would be discharged to their secondary containment than in the main steam line break outside the containment; previously thought to be the most limiting break. Results of the Dresden evaluation show that more mass would be discharged to the secondary boundary containment during the postulated break and the reacotr building blowout panels will blow, however, the equipment needed for safe shutdown can perform their function and dose to the public will remain below 10 CFR 100 limits. Crucial to mitigating this scenario is that prompt action is taken when the RWCU Area Temperature annunciators are in the alarm state. This TRM section provides greater control of the RWCU Temperature Area Monitors so that a high level of operability is maintained to support the prompt action required by the operators.
A modification has been installed which results in a RWCU System Isolation when high area temperature is detected. This system monitors 5 areas around the RWCU System Piping and also receives input from the X-area Temperature monitors.
This is a two channel system with two temperature for each area. The RWCU System will isolate if one of the two monitors in any one area senses a high temperature.
Dresden 2 and 3                    B 3.3.i-1                        Revision 0
 
TRM Structural Integrity B 3.4.a B 3.4  REACTOR COOLANT SYSTEM B 3.4.a  Structural Integrity BASES The inspection programs for ASME Code Class 1, 2, and 3 components ensure that the structural integrity of these components will be maintained at an acceptable level throughout the life of the plant.
The inservice inspection program for ASME Code Class 1, 2, and 3 components will be performed in accordance with Section XI of the ASME Boiler and Pressure Vessel Code and applicable addenda as required by 10 CFR 50.55a(g) except where specific written relief has been granted by the NRC pursuant to 10 CFR 50.55a(g)(6)(i).
ASME Class 1, 2, and 3 systems (i.e., code class systems) are classified based upon the systems safety function. These systems are required to perform those safety functions in the modes specified by the Technical Specifications. Maintenance activities that involve temporary alterations to a code class system when the system safety function is not required, and that are not classified as Section XI Repair/Replacement activities do not fall under the scope of the Inservice Inspection and Testing program and TRM 3.4.a. However, the code class system design bases must be maintained and controlled by applicable processes/procedures during these maintenance activities.
Dresden 2 and 3                  B 3.4.a-1                        Revision 37
 
TRM RCS Chemistry B 3.4.b B 3.4  REACTOR COOLANT SYSTEM B 3.4.b  Reactor Coolant System (RCS) Chemistry BASES The water chemistry limits of the reactor coolant system are established to prevent damage to the reactor materials in contact with the coolant. Chloride limits are specified to prevent stress corrosion cracking of the stainless steel. The effect of chloride is not as great when the oxygen concentration in the coolant is low, thus the higher limit on chlorides is permitted during MODE 1.
Conductivity measurements are required on a continuous basis since changes in this parameter are an indication of abnormal conditions. Without significant damage to stress corrosion cracking of rector materials in contact with reactor coolant, during a Noble Metal Chemical Application (NMCA), the higher conductivity and pH limits are permitted for a maximum of 48 hours for the injection of noble metal chemicals in MODE 3 and for a maximum of 24 hours after the end of the injection with the plant being in MODE 4 as rapidly as the cooldown rate limits permit after the end of the injection.
When the conductivity is within limits, the pH, chlorides and other impurities affecting conductivity must also be within their acceptable limits. With the conductivity meter inoperable, additional samples must be analyzed to ensure that the chlorides are not exceeding the limits.
An exception to 3.0.d is added to allow a change in MODES while not meeting limits of TLCO 3.4.b. This allowance is based on the likelihood that the condition has a high probability to be rectified during plant operation.
However, in the event the limits can not be restored within the specified completion times of the required action, the required action must be taken to place the plant in required condition specified by the applicable action.
The surveillance requirements provide adequate assurance that concentrations in excess of the limits will be detected in sufficient time to take corrective action.
Dresden 2 and 3                    B 3.4.b-1                        Revision 5
 
TRM Primary Containment Atmosphere Particulate Radioactivity Sampling System B 3.4.c B 3.4  REACTOR COOLANT SYSTEM B 3.4.c  Not Used Dresden 2 and 3                    B 3.4.c-1                        Revision 0
 
TRM Drywell Continuous Air Monitor (CAM)
B 3.4.d B 3.4  REACTOR COOLANT SYSTEM B 3.4.d  Drywell Continuous Air Monitor (CAM)
BASES The Drywell CAM is installed on Reactor Building elevation 517' just outside of the drywell personnel access door. The atmosphere sample from the drywell passes through two primary containment Group II isolation valves, is pumped through the CAM radiation detector and iodine/particulate sampler, and is returned to the drywell through two additional primary containment Group II isolation valves. The requirement for continuous air monitoring is given in the following documents:
: 1. FSAR Amendment 13, Question B.14 response.
: 2. UFSAR Section 5.2.5.2
: 3. Response to SEP Topic V-5 (Reactor Coolant Pressure Boundary Leakage Detection).
: 4. Supplemental response to NUREG 0313 Rev. 1, Installed Leakage Detection.
The purpose and intent of the CAM radiation detector is to count gross beta activity (to be recorded and alarm on an increase) to provide an indication that a leak has occurred in the drywell. In addition to the radiation detector, an iodine/particulate sampler is provided. When both the Drywell CAM radiation detector and the iodine/particulate sampler are operable, then the Drywell CAM is used as a continuous sampling system for primary containment atmospheric particulate radioactivity.
The Drywell CAM is one system that monitors the primary containment particulate radioactivity by continuously sampling the drywell atmosphere. When the Drywell CAM becomes inoperable, an alternate sample pump may be used to sample the drywell atmosphere from a variety of locations including the Drywell CAM or Drywell Manifold or, if the drywell is accessible, directly from the drywell atmosphere.
Dresden 2 and 3                    B 3.4.d-1                        Revision 0
 
TRM Core Spray/LPCI Corner Room Submarine Doors B 3.5.a B 3.5  EMERGENCY CORE COOLING SYSTEM (ECCS)
B 3.5.a  Core Spray/Low Pressure Coolant Injection (LPCI)
Corner Room Submarine Doors BASES Submarine type doors have been installed between the low pressure coolant injection (LPCI) corner rooms and the torus basement to provide a leaktight barrier in the event of flooding in the torus basement. The doors that separate the Unit 2 west Core Spray/LPCI corner room from the Unit 3 east Core Spray/LPCI corner room are not watertight. Therefore, submarine doors that are open or undogged in these rooms affect OPERABILITY of equipment in the other unit.
Maintenance of the submarine doors is allowed. When such maintenance requires the submarine doors to be either open or dogged for greater than one hour, equivalent barriers must be put in place.
Dresden 2 and 3                    B 3.5.a-1                        Revision 0
 
TRM Drywell Spray B 3.6.a B 3.6  CONTAINMENT SYSTEMS B 3.6.a  Drywell Spray BASES
--------------------------------------NOTE-----------------------------------
Superseded by Technical Specification 3.6.2.6 Drywell Spray.
Dresden 2 and 3                    B 3.6.a-1                      Revision 100
 
TRM NCAD System B 3.6.b B 3.6 CONTAINMENT SYSTEMS B 3.6.b Nitrogen Containment Atmosphere Dilution (NCAD) System BASES BACKGROUND The potential generation and control of hydrogen within the containment following a LOCA has been a concern since the first nuclear power plant was constructed. However, it was not until 1971 that the AEC documented its acceptance criteria for combustible gas control in Safety Guide 7, Control of Combustible Gas Concentrations in Containment Following a Loss-of-Coolant Accident. Although the primary means for mitigating the presence of combustible gases within the containment is inerting with nitrogen, existing plants as well as plants under construction were requested to design and install original CAD systems, with independent compressors that supply nitrogen from independent storage tanks. This system is described in the pre-TSUP Technical Specification bases as the CAD system, which was never installed. Dresden developed interim combustible gas control methods using the existing nitrogen makeup and inerting system.
OPERABILITY of the systems required to assure this method was available was controlled via the pre-TSUP Technical Specification 3.7.A.6.
Containment atmosphere dilution by air injection was considered a viable method of managing the conflagration of the containment atmosphere; therefore ComEd pursued installation of the ACAD System. However, new information from the TMI accident resulted in 10 CFR 50.44 rule changes and the requirement for licensees to install primary containment hydrogen recombiners to remove hydrogen from the containment altogether. ComEd as well as other Mark I containment owners sought an alternative solution via the BWR Owners Group. The NRC recognized that the costs of recombiner installation outweighed the risk and probability of an accident that yielded hydrogen generation and issued NRC Generic Letter (GL) 84-09 to reflect this position. In the GL, licensees that did not install hydrogen recombiners were to meet the following requirement if the following were true:
: a.      Technical Specifications must require the containment atmosphere to be less than 4%
oxygen when the containment is required to be inerted;
: b.      Nitrogen or recycled containment atmosphere must be used for all pneumatic applications within containment; and
: c.      No potential sources of air and oxygen may be present other than radiolysis of reactor coolant.
_________________________________________________________________(continued)
Dresden 2 and 3                            B 3.6.b-1                                Revision 67
 
TRM NCAD System B 3.6.b BASES (continued)
Dresden met the above criteria if the ACAD System was not used. Without ACAD, Dresden did not have a low single failure vulnerability system to mitigate combustible gas control. The NRC reviewed the single failure vulnerabilities of the nitrogen makeup and inerting system and ComEds proposed modification to reduce such vulnerabilities. ComEd referred to the valves and piping added to the existing makeup and inerting system as the NCAD System.
The NCAD System will be used concurrently with purging the containment. This method is based on the Revision 4 to BWR Owners Group Emergency Procedure Guidelines.
The NCAD System has been installed on both Unit 2 and Unit 3 to replace ACAD. Unit 2 NCAD was installed in D2R14 in 1996 and the Unit 3 NCAD was installed in D3R14 in 1997. The NRC Safety Evaluation for NCAD dated 6/29/93 has a requirement that once NCAD is operational, ACAD (dilution) must be removed as a potential post accident oxygen source. Therefore, there is no basis for use of the ACAD dilution or bleed systems and the OPERABILITY provisions for such systems have not been identified in the TRM.
The basis of the liquid storage tank level is to assure a supply of 200,000 standard cubic feet of nitrogen for NCAD. This is consistent with Section 4.5.1 of the NRCs Safety Evaluation for Extended Power Uprate.
APPLICABLE SAFETY ANALYSIS NCAD is a manually operated system, as directed by plant procedures, if elevated hydrogen concentrations reach specified levels. Following a postulated LOCA, both oxygen and hydrogen may be produced by the radiolytic decomposition of primary coolant and suppression pool water.
Decomposition would occur due to the absorption of gamma and beta energy released by fission products into reactor coolant and suppression pool water. Radiolysis is the only significant reaction mechanism whereby oxygen, the limiting combustion reactant, is produced within the containment. Therefore, radiolysis is the primary focus relative to combustible gas control for containments with inerted atmospheres.
Several analyses and experiments have been conducted to quantify the post LOCA resultant hydrogen concentration in containment. Both inerted and noninerted containment atmospheres were evaluated covering both short term and long term hydrogen generation. For reference purposes a 0.1% metal-water reaction is equivalent to about three pound-moles and would result in a hydrogen volumetric concentration of approximately 0.4% in the primary containment. Metal-water reactions in excess of approximately 1% would result in a flammable mixture of hydrogen in air of 4% by volume.
____________________________________________________________________(continued)
Dresden 2 and 3                              B 3.6.b-2                              Revision 67
 
TRM NCAD System B 3.6.b BASES (continued)
The time required to reach the 5-percent oxygen limit following the LOCA, based on 1-percent per day containment leakage is 19 hours for EPU reactor power with GE-14 fuel. This reduction in time required for NCAD system initiation does not affect the ability of the operators to respond.
Therefore, the NCAD retains its capability of meeting its design basis function of controlling oxygen concentration following the postulated LOCA.
Evaluation of the nitrogen requirements to maintain the containment atmosphere below the 5 percent flammability limit for 7 days post-LOCA shows that the minimum stored volume increases to 141,000 scf for EPU reactor power. The NCAD system has a minimum stored nitrogen capacity of 200,000 scf, which is sufficient to accommodate 7 days of post-LOCA operation. Additionally, calculations indicate that the containment pressure buildup as a result of NCAD system operation shows that the operating pressure limit of 31 psig (50 percent of the design pressure) is not reached until 32 days after the LOCA. This satisfies the minimum 30-day acceptance limit for containment pressure buildup.
LCO The OPERABILITY of the NCAD system is to provide a redundant path, single failure proof means of reinerting the containment following a LOCA. The NCAD system must be capable of being initiated 19 hours after the accident, and provide a maximum required flow rate of approximately 29 scfm of nitrogen against a maximum containment backpressure of 31 psig, which is half of the containment design pressure.
In addition to the normal inerting and makeup pathways, two bypass lines are provided for each unit. These bypass lines are routed from the discharge of the makeup line atmospheric vaporizer, located outside, to the downstream side of the pressure regulating stations in the normal inerting and makeup pathways, located within the Reactor Building. These lines provide the capability of inerting the Containment post-LOCA.
The NCAD system nitrogen flow is initiated through either or both of the bypass lines by opening the manual isolation valve located outside in the vicinity of the Nitrogen Supply system equipment, and opening the Containment isolation valves from the control room.
The NCAD system consists of two storage tanks, associated piping and valves to provide nitrogen to the primary containment in order to control combustible gases. The nitrogen storage system consists of two tanks, piping and valves. Each tank is capable of supplying the required volume of nitrogen, 200,000 standard cubic feet, needed for OPERABILITY of the NCAD system.
Therefore, only one storage tank is required for the system to perform its intended safety function.
____________________________________________________________________(continued)
Dresden 2 and 3                              B 3.6.b-3                              Revision 67
 
TRM NCAD System B 3.6.b BASES (continued)
APPLICABILITY The NCAD system must be available when primary containment is inerted, except as allowed by the relaxations during startup and shutdown addressed below. The primary containment must be inert in MODE 1, since this is the condition with the highest probability of an event that could produce hydrogen and oxygen.
Inerting the primary containment is an operational problem because it prevents containment access without an appropriate breathing apparatus. Therefore, the primary containment is inerted as late as possible in the plant startup and de-inerted as soon as possible in the plant shutdown.
As long as reactor power is < 15% RTP, the potential for an event that generates significant hydrogen and oxygen is low and the primary containment need not be inert. Furthermore, the probability of an event that generates hydrogen occurring within the first 24 hours of a startup, or within the last 24 hours before a shutdown, is low enough that these "windows," when the primary containment is not inerted, are also justified. The 24 hour time period is a reasonable amount of time to allow plant personnel to perform inerting or de-inerting
 
==Reference:==
 
UFSAR 6.2.1.3.7 UFSAR 6.2.5.3.3 Dresden Amendments to Technical Specification 191/185 Dresden 2 and 3                              B 3.6.b-4                                Revision 67
 
TRM CCSW System  Shutdown B 3.7.a B 3.7  PLANT SYSTEMS B 3.7.a  Containment Cooling Service Water (CCSW) System  Shutdown BASES The Unit 2 CCSW System provides backup cooling capacity for the control room emergency ventilation system refrigeration unit (CREV RCU). The CCSW system consists of four pumps which only one is required to support the cooling requirements of the CREV RCU. The Unit 2 CCSW is considered OPERABLE when one pump is OPERABLE and an OPERABLE flow path is capable of taking suction from the Ultimate Heat Sink and transferring the water to the Control Room Ventilation Air Conditioning System at the assumed flow rate.
The Unit 2 CCSW System is required to be OPERABLE during the movement of recently irradiated fuel assemblies in the secondary containment and during CORE ALTERATIONS. At least one Unit 2 CCSW pump, the Ultimate Heat Sink, and a flow path are required during these conditions to provide backup cooling to the condensing unit of the Control Room Emergency Ventilation Air Conditioning (AC) System (LCO 3.7.5 Control Room Emergency Ventilation Air Conditioning (AC) System).
REFERENCES        1. UFSAR, Section 2.4.8.
: 2. UFSAR, Section 6.2.1.3.2.
: 3. UFSAR, Section 6.2.2.
: 4. UFSAR, Section 9.2.1.
: 5. UFSAR, Section 9.2.2.
: 6. UFSAR, Section 9.2.5.
Dresden 2 and 3                    B 3.7.a-1                        Revision 87
 
TRM DGCW System  Shutdown B 3.7.b B 3.7  PLANT SYSTEMS B 3.7.b  Diesel Generator Cooling Water (DGCW) System  Shutdown BASES The Diesel Generator Cooling Water System, with the Ultimate Heat Sink, provides sufficient cooling capacity for continued operation of the diesel generators during normal and accident conditions. The cooling capacity of the system is consistent with the assumptions used in the safety analysis to keep the accident conditions within acceptable limits.
Dresden 2 and 3                    B 3.7.b-1                          Revision 0
 
TRM UHS  Shutdown B 3.7.c B 3.7  PLANT SYSTEMS B 3.7.c  Ultimate Heat Sink (UHS)  Shutdown BASES The canals provide an Ultimate Heat Sink with sufficient cooling capacity to either provide normal cooldown of the units, or to mitigate the effects of accident conditions within acceptable limits for one unit while conducting a normal cooldown on the other unit.
The UHS consists of water sources from either the Kankakee River (normal), or the cooling lake (alternative) and can be aligned as either a closed cycle operating system utilizing the cooling lake and canals, or an open cycle operating system with the discharge returning to the Illinois River. Condenser Circulating Water System (primary user), the CCSW System, the Service Water System, the Fire Protection System, and the DGCW System) for both normal and emergency plant operations.
The OPERABILITY of the UHS is based on having a minimum water level in the CCSW andDGCW pump suction bays of 501.5 ft mean sea level and a maximum water temperature of 95&deg;F.
In MODES 4 and 5, the OPERABILITY requirements of the UHS is determined by the system it supports.
Dresden 2 and 3                    B 3.7.c-1                        Revision 0
 
TRM Liquid Holdup Tanks B 3.7.d B 3.7  PLANT SYSTEMS B 3.7.d  Liquid Holdup Tanks BASES Restricting the quantity of radioactive material contained in the specified tanks provides assurance that in the event of an uncontrolled release of the tanks contents, the resulting concentrations would be less than the limits of 10 CFR Part 20, Appendix B, Table 2, Column 2, in an unrestricted area. Recirculation of the tank contents for the purpose of reducing the radioactive content is not considered to be an addition of radioactive material to the tank.
Dresden 2 and 3                    B 3.7.d-1                        Revision 0
 
TRM Explosive Gas Mixture B 3.7.e B 3.7  PLANT SYSTEMS B 3.7.e  Explosive Gas Mixture BASES The specification is provided to ensure that the concentration of potentially explosive gas mixtures contained in the offgas holdup system is maintained below the flammability limits of hydrogen and oxygen. Maintaining the concentration of hydrogen and oxygen below their flammability limits provides assurance that the releases of radioactive materials will be controlled in conformance with the requirements of General Design Criterion 60 of Appendix A to 10 CFR Part 50.
Dresden 2 and 3                    B 3.7.e-1                        Revision 0
 
TRM Flood Protection B 3.7.f B 3.7  PLANT SYSTEMS B 3.7.f  Flood Protection BASES Flood protection measures are provided to protect the systems and equipment necessary for safe shutdown during high water conditions. The equipment necessary to implement the appropriate measures, as detailed in plant procedures, is required to be available, but not necessarily onsite, to implement the procedures in a timely manner.
The selected water levels are based on providing timely protection from the design basis flood of the river.
Dresden 2 and 3                    B 3.7.f-1                        Revision 0
 
TRM Sealed Source Contamination B 3.7.g B 3.7  PLANT SYSTEMS B 3.7.g Sealed Source Contamination BASES The limitations on removable contamination for sources requiring leak testing, including alpha emitters, is based on 10 CFR 70.39(c) limits for plutonium.
This limitation will ensure that leakage from byproduct, source, and special nuclear material sources will not exceed allowable intake values. Sealed sources, including startup sources and fission detectors, are classified into three groups according to their use, with surveillance requirements commensurate with the probability of damage to a source in that group. Those sources which are frequently handled are required to be tested more often than those which are not. Sealed sources which are continuously enclosed within a shielded mechanism, i.e., sealed sources within radiation monitoring or boron measuring devices, are considered to be stored and need not be tested unless they are removed from the shielded mechanism.
Dresden 2 and 3                    B 3.7.g-1                        Revision 42
 
TRM Snubbers B 3.7.h B 3.7  PLANT SYSTEMS B 3.7.h Snubbers BASES
-------------------------------------NOTE-----------------------------------
Superseded by Technical Specification Limiting Condition for Operation (LCO) 3.0.8 and Technical Requirement Program 5.5.13, Augmented Inservice Inspection Program.
Dresden 2 and 3                    B 3.7.h-1                        Revision 90
 
TRM Fire Water Supply Systems B 3.7.i B 3.7  PLANT SYSTEMS B 3.7.i  Fire Water Supply Systems BASES A Fire Water Supply System shall consist of a water source, pumps, distribution piping with associated valves. Such valves shall include sectionalizing, control and isolation valves for the sprinkler systems or hose standpipe risers. Water supply is taken from the canals feeding the Unit 2/3 and Unit 1 intake structures.
The minimum supply requirements for the 100% capacity fire pumps exceed the maximum supply requirements of the installed water suppression systems with an allowance for fire hose usage. The maximum supply requirements were calculated assuming a conservative condition of the underground piping with either the shortest pipe leg out of service or one pump out of service. The minimum supply requirements for each pump differs due to the location and capacity of the pump.
The operability of this system is determined by the availability of each of these components in the system as defined by TLCO 3.7.i. The distribution piping and associated valves, TLCO 3.7.i.4, are included in this system, however, the operability of the Fire Water Supply system is not dependent on all of the sectionalizing, control and isolation valves being available for the sprinkler systems or hose standpipe risers. Isolating a portion of the system via these associated valves will only INOP the system to which it is feeding (i.e. hydrant, stand pipe feed, sprinkler system feed). This would not affect the operability of the Fire Water Supply system. Only actions or events that would isolate or inhibit the output flow of both system pumps would render the fire water supply system INOP.
In the event that the fire water system becomes inoperable, immediate corrective measures must be taken since this system provides the major fire water capability for the plant. The requirement for a 24 hour limit to establish a backup fire water system is to provide adequate firewater capability for continued protection of the nuclear plant. The Surveillance Requirements provide assurance that the minimum OPERABILITY requirements are met.
Dresden 2 and 3                    B 3.7.i-1                      Revision 52
 
TRM Water Suppression Systems B 3.7.j B 3.7  PLANT SYSTEMS B 3.7.j  Water Suppression Systems BASES The OPERABILITY of the Water Suppression Systems ensures that adequate fire suppression capability is available to confine and suppress fires occurring in various portions of the facility. The Water Suppression System consists of spray, and/or sprinklers. The collective capability of the Fire Suppression Systems is adequate to minimize potential damage to equipment and is a major element in the facility Fire Protection Program.
Dresden Fixed Water Spray systems are designed to provide fire control or exposure protection. Water spray systems typically provide protection for areas containing significant amounts of combustible materials.
The water spray system is equipped with nozzles for specific water discharge and distribution in a directional spray pattern to confine and suppress a potential fire.
In the event that portions of the Water Suppression Systems are inoperable, alternate backup fire fighting equipment is required to be made available in the affected areas until the inoperable equipment is restored to service.
3.0.g allows the implementation of a different compensatory measure or combination of measures (e.g., additional administrative controls, operator briefings, temporary procedures, interim shutdown strategies, operator manual actions, temporary fire barriers, temporary detection or suppression systems).
The impact of the proposed alternate compensatory measure and its adequacy compared to the other TRM REQUIRED ACTIONS must be documented in a technical evaluation. The evaluation must demonstrate that the alternate compensatory measure would not adversely affect the ability to achieve and maintain safe shutdown in the event of a fire.
The Surveillance Requirements provide assurance that the minimum OPERABILITY requirements of the Water Suppression Systems are met.
Dresden 2 and 3                    B 3.7.j-1                      Revision 65
 
TRM Water Suppression Systems B 3.7.j BASES (Continued),
TECHNICAL SURVEILLANCE REQUIREMENTS TSR 3.7.j.5 & TSR 3.7.j.7 Visual inspections of the sprinkler system verify that the spray pattern is not obstructed. Obstructions are foreign material (ie scaffolding, structural members, ladders, tools or equipment) within the spray pattern of the sprinkler system that may impede heat flow or water distribution in a manner that will materially affect the ability for the sprinkler system to control or suppress a fire.
TSR 3.7.j.8 The transformer deluge flow surveillances are performed to verify that the open head spray nozzles layout, and discharge patterns are adequate to provide complete coverage of exposed surfaces. Nozzles are verified to be unclogged by ensuring that the spray pattern is uniform from each nozzle type and the water spray impinges the external surfaces of the transformer. In the event that nozzles are clogged, the system may be considered OPERABLE but degraded if the discharge pattern of the remaining nozzles contemplates essentially complete impingement on the exterior surface of the transformer, except underneath surfaces which in lieu there of may be protected by horizontal projection.
 
==References:==
: 1. NFPA 13 - 1976
: 2. NFPA 15 - 1973
: 3. Fire Protection Report and Fire Protection Program Documentation Package Dresden 2 and 3                    B 3.7.j-2                      Revision 57
 
TRM Gaseous Suppression System B 3.7.k B 3.7  PLANT SYSTEMS B 3.7.k  Gaseous Suppression System BASES The Carbon Dioxide Suppression Systems in the plant are the primary means of suppression in the diesel generator rooms. The minimum levels specified in the CO2 storage tank ensures that the required discharge into the affected area will be available to extinguish a postulated fire. The Carbon Dioxide System installed in the Auxiliary Electric Equipment Room is a manual backup to the installed Halon System.
The Halon Systems listed in Table T 3.7.k-1 are the primary means of fire suppression in these areas. The minimum requirements on the Halon storage cylinder(s) ensure that sufficient Halon is available to extinguish the postulated fire. Measurement of Halon volume in each cylinder is by verifying the weight of the cylinders per NFPA 12A.
3.0.g allows the implementation of a different compensatory measure or combination of measures (e.g., additional administrative controls, operator briefings, temporary procedures, interim shutdown strategies, operator manual actions, temporary fire barriers, temporary detection or suppression systems). The impact of the proposed alternate compensatory measure and its adequacy compared to the other TRM REQUIRED ACTIONS must be documented in a technical evaluation. The evaluation must demonstrate that the alternate compensatory measure would not adversely affect the ability to achieve and maintain safe shutdown in the event of a fire.
Dresden 2 and 3                    B 3.7.k-1                      Revision 65
 
TRM Fire Hose Stations B 3.7.l B 3.7  PLANT SYSTEMS B 3.7.l  Fire Hose Stations BASES Fire hose stations are the primary fire fighting equipment in numerous areas of the plant as well as backup suppression elsewhere. High-Rise Packs containing adequate length of hose to provide sufficient coverage in the vicinity is brought during fire responses by the plant fire brigade. There are two hose stations that will retain their 1" rubber hoses (F47 and F82A).
In the event that a hose station, or standpipe, is inoperable, compensatory measures imposed ensure that fire fighting capability is maintained in the area. Additional hose is to be staged on the fire brigade cart, fire brigade trailer, or other location to provide adequate hose reach into the affected area in conjunction with the High-Rise Packs. This is applicable to Hose Stations F47 and F82A as well, since High-Rise Packs can be affixed to adjacent Hose Station F82B to cover either area. If a High-Rise Pack is inoperable, it will either be restored or a corrective action program report will be generated. When the inoperable fire hose station is intended for use as a backup means of fire suppression, a longer period of time is allowed to provide an alternate means of fire fighting than if the inoperable equipment is the primary means of fire suppression.
3.0.g allows the implementation of a different compensatory measure or combination of measures (e.g., additional administrative controls, operator briefings, temporary procedures, interim shutdown strategies, operator manual actions, temporary fire barriers, temporary detection or suppression systems). The impact of the proposed alternate compensatory measure and its adequacy compared to the other TRM REQUIRED ACTIONS must be documented in a technical evaluation. The evaluation must demonstrate that the alternate compensatory measure would not adversely affect the ability to achieve and maintain safe shutdown in the event of a fire.
Dresden 2 and 3                    B 3.7.l-1                      Revision 101
 
TRM Safe Shutdown Lighting B 3.7.m B 3.7  PLANT SYSTEMS B 3.7.m  Safe Shutdown Lighting BASES The OPERABILITY of 8 hour emergency lighting units installed to satisfy Section III.J of 10 CFR 50 Appendix R ensures adequate illumination in areas needed for operation of safe shutdown equipment and access and egress routes thereto. These design features provide illumination to enable operators to reach the necessary areas, including the remote shutdown panels, and perform shutdown functions so the reactor can be safely shutdown in the event of a fire emergency. The Surveillance Requirements provide assurance that the minimum OPERABILITY requirements are met.
In the event that an Appendix R emergency light is inoperable, backup or portable lighting is required to be established to provide illumination capability.
To assure minimum operability batteries for Safe Shutdown Lighting, battery replacement for 12V is performed in leu of conductance testing. Dresden completes TSR 3.7.m.2 performance of the 6V batteries through conductance testing and the 12V batteries through replacement.
The difference in activity between 6V and 12V batteries is based on the determination that conductance testing is not recognized as an accurate assessment for the health of the 12V sealed batteries. This is based on the conclusion drawn in CCA#1444587-08, in which there was no trend that showed a connection between conductance and discharge time. The analysis showed conductance testing does not, in general, provide useful information regarding the health of the sealed, maintenance-free 12V battery and conductance cannot be used as a measure of the health of a battery pack. Operability will be demonstrated through periodic replacements for sealed 12V batteries as required by MA-AA-723-350 Section 3.2.1.
Dresden uses sealed batteries for 12V, therefore the conductance criterion is not applicable to Dresden for 12V batteries.
Dresden 2 and 3                    B 3.7.m-1                      Revision 95
 
TRM Fire Rated Assemblies B 3.7.n B 3.7  PLANT SYSTEMS B 3.7.n  Fire Rated Assemblies BASES The functional integrity of the fire rated assemblies and sealing devices in fire rated assemblies ensure that fires will be confined or adequately retarded from spreading to adjacent portions of the facility. These design features minimize the possibility of a single fire rapidly involving several areas of the facility prior to detection and extinguishing of the fire. The sealing devices in fire rated assemblies are a passive element in the facility fire protection program and are subject to periodic inspections.
Fire barriers, including cable penetration barriers, fire doors and dampers are considered functional when the observed condition is the same as the as-designed condition. For those fire barriers that are not in the as-designed condition, an evaluation shall be performed to show that the modification has not degraded the fire rating of the fire barrier. Automatic closure devices on Fire Doors are required to ensure that fire doors close and latch from the open position, as defined in the fire door inspection procedure.
Failure to automatically close and latch the door from the open position, as defined in the fire door inspection procedure, will cause the fire door to be INOPERABLE. Where applicable, a fire door that is inoperable due to failed closure device can be made OPERABLE as a fire barrier if the door is closed and locked or suitably secured.
During periods of time when a barrier is not functional, either: (1) a continuous fire watch is required to be maintained in the vicinity of the affected barrier, or (2) the fire detectors on at least one side of the affected barrier must be verified OPERABLE and an hourly fire inspection established, until the barrier is restored to functional status.
3.0.g allows the implementation of a different compensatory measure or combination of measures (e.g., additional administrative controls, operator briefings, temporary procedures, interim shutdown strategies, operator manual actions, temporary fire barriers, temporary detection or suppression systems). The impact of the proposed alternate compensatory measure and its adequacy compared to the other TRM REQUIRED ACTIONS must be documented in a technical evaluation. The evaluation must demonstrate that the alternate compensatory measure would not adversely affect the ability to achieve and maintain safe shutdown in the event of a fire.
Dresden 2 and 3                    B 3.7.n-1                      Revision 65
 
TRM Condensate Pump Room Flood Protection B 3.7.o B 3.7  PLANT SYSTEMS B 3.7.o  Condensate Pump Room Flood Protection BASES Condensate pump room flood protection will assure the availability of the Containment Cooling Service Water (CCSW) System during a postulated incident of flooding in the turbine building. The redundant level switches in the condenser pit will preclude any postulated flooding of the turbine building to an elevation above river water level. The level switches provide alarm and circulating water pump trip in the event a water level is detected in the condenser pit.
The watertight bulkhead door and the penetration seals for pipes and cables penetrating the vault walls have been designed to withstand the maximum flood conditions. To assure that their installation is adequate for maximum flood conditions, a method of testing each seal has been devised.
To test a pipe seal, another seal has been installed on the opposite side of the penetration creating a space between the two seals that can be pressurized.
Compressed air is then supplied to a fitting on one seal and the space inside the sleeve is pressurized to approximately 15 psi.
In order to test the watertight bulkhead doors, a test frame must be installed around each door. At the time of the test, a reinforced steel box with rubber gasketing is clamped to the wall around the door. The fixture is then pressurized to approximately 15 psig to test for leak tightness.
Floor drainage of each vault is accomplished through a carbon steel pipe which penetrates the vault. When open, this pipe will drain the vault floor to a floor drain sump in the condensate pump room.
Equipment drainage from the vault coolers and the CCSW pump bedplates will also be routed to the vault floor drains.
As a means of preventing backflow from outside the vault in the event of a flood, a check valve and an air operated valve are installed in the 2" vault floor drain line 6'0" above the floor of the condensate pump room.
(continued)
Dresden 2 and 3                    B 3.7.o-1                        Revision 16
 
TRM Condensate Pump Room Flooding Protection B 3.7.o BASES  (continued)
The check valve is a 2" swing check designed for 125 psig service. The air operated valve is a control valve designed for a 50 psi differential pressure.
The control valve will be in the normally open position in the energized condition and will close upon any one of the following:
: 1. Loss of air or power
: 2. High level (5'0") in the condensate pump room Closure of the air operated valve on high water level in the condensate pump room is effected by use of a level switch set at water level of 5'0". Upon actuation, the switch will close the control valve and alarm in the control room.
The vault floor drain line check valve is pressurized to approximately 10 psig to check for seat leakage tightness.
The operator will also be aware of problems in the vaults or condensate pump room if the high level alarm on the equipment drain sump is not terminated in a reasonable amount of time. It must be pointed out that these alarms provide information to the operator but that operator action upon the above alarms is not a necessity for reactor safety since the other provisions provide adequate protection.
A system of level switches has been installed in the condenser pit to indicate and control flooding of the condenser area. The following switches are installed:
Level                              Function
: 1. 1'0" (1 switch)                Alarm, Panel High-Water-Condenser Pit
: 2. 3'0" (1 switch)                Alarm, Panel High-High Water Condenser Pit
: 3. 5'0" (2 redundant            Alarm and Circ. Water Pump Trip switch pairs)
Level (a) indicates water in the condenser pit from either the hotwell or the circulating water system. Level (b) is above the hotwell capacity and indicates a probable circulating water failure.
Should the switches at level (a) and (b) fail or the operator fail to trip the circulating water pumps on alarm at level (b), the actuation of either level switch pair at level (c) shall trip the circulating water pumps automatically and alarm in the control room. These redundant level switch pairs at level (c) are designed and installed to IEEE-279, Criteria for Nuclear Power Plant (continued)
Dresden 2 and 3                    B 3.7.o-2                        Revision 16
 
TRM Condensate Pump Room Flooding Protection B 3.7.o BASES  (continued)
Protection Systems. As the circulating water pumps are tripped, either manually or automatically, at level (c) of 5'0", the maximum water level reached in the condenser pit due to pumping will be at the 491'0" elevation (10' above condenser pit floor elevation 481'0"; 5' plus an additional 5' attributed to pump coastdown).
In the event of the CCSW System vault being declared inoperable, actions should be taken to address the cause of the inoperability. If no actions can be taken to address the inoperability of the vault, entry into LCO 3.7.1 Condition B should be evaluated. An example of an action is verifying all associated surveillance requirements are met. Additional actions can be taken to address the cause of the inoperability such as plugging the floor drain and removing equipment drainage manually every 12 hours, restoring the flood protection capability of the vault door, or initiating repairs to vault penetrations seals.
In order to prevent overheating of the CCSW pump motors, a vault cooler is supplied for each pump. Each vault cooler is designed to maintain the vault at a maximum 120!F temperature during operation of its respective pump. For example, if CCSW pump 2B-1501 starts, its cooler will also start and compensate for the heat supplied to the vault by the 2B pump motor keeping the vault at less than 120!F.
Each of the coolers is supplied with cooling water from its respective pumps discharge line. After the water has been passed through the cooler, it returns to its respective pumps suction line. In this way, the vault coolers are supplied with cooling water totally inside the vault. The cooling water quantity needed for each cooler is approximately 1% to 5% of the design flow of the pumps so that the recirculation of this small amount of heated water will not affect pump or cooler operation.
Operation of the fans and coolers is required during pump OPERABILITY testing and thus additional surveillance is not required.
Verification that access doors to each vault are closed, following entrance by personnel, is covered by station operating procedures.
Dresden 2 and 3                    B 3.7.o-3                        Revision 78
 
TRM Limitations on Natural Gas Line Supply B 3.7.p B 3.7 PLANT SYSTEMS B 3.7.p    Natural Gas Line Supply System BASES BACKGROUND              Dresden Gas Line Explosion Risk Assessment, Evaluation No. 2015-02412, Revision 001 provides the basis for using natural gas as the Heating Boiler fuel. Evaluation No. 2015-02412, Revision 01, defines limitations on system operation to ensure compliance with the analysis.
The purpose of the ventilation system is to provide sufficient airflow throughout the boiler house to provide both dilution and mixing, should a natural gas leak occur. This is necessary because it increases the probability of a methane detector sensing 10% of the Lower Explosive Limit (LEL) for Natural Gas and it delays the buildup of an explosive concentration.
The Methane Detectors are arranged in two strings of eight detectors with one detector from each string located within a specified zone. In order to cause a trip, the logic of "one out of eight taken twice" must be satisfied. To be considered OPERABLE, a detector must be capable of nominally detecting 10% of the LEL and providing a signal upon detection.
APPLICABLE              The analytical methods and assumptions used in the SAFETY ANALYSIS        evaluation of the Natural Gas Line Supply System are included in Reference 1.
To meet the assumptions of Reference 2, the ventilation system must be operating by having power and providing circulating air within the boiler house. Additionally, the methane detectors must all be capable of detecting 10% LEL.
TLCO                    In order to meet the initial assumptions for Reference 2, all 16 methane detectors and one boiler house ventilation fan is required to be OPERABLE.
                                                                      &RQWLQXHG 
  
  'UHVGHQDQG                  %S                        5HYLVLRQ
 
TRM Limitations on Natural Gas Line Supply B 3.7.p Therefore, the TLCO requires all 16 methane detectors and one Ventilation fan OPERABLE.
APPLICAILITY      The Boiler House Ventilation and Detection systems are required when Natural Gas is being admitted to the 2/3 Heating Boilers by opening of isolations within the vault at the west end of the building.
The applicability is based upon the assumptions contained in Reference 2.
ACTIONS            The actions are modified by a note that allows for separate entries into the CONDITION for methane detectors. This allowance is based upon the ability of adjacent detectors to automatically isolate natural gas upon detection of the nominal 10% LEL as described in Reference 2.
A.1 and A.2 A 48 hour completion time to restore boiler house ventilation is based upon the expected repair duration assumed in Reference 2. For Boiler Ventilation, it was determined that a 48 hour repair would not significantly impact the damage frequency estimates.
B.1 and B.2 Caution should be used when simultaneously disabling multiple detectors to ensure leak detection coverage is maintained throughout the boiler house.
A 24 hour completion time to restore an inoperable detector is acceptable based upon the expected repair duration assumed in Reference 2. Additional detectors must be monitored for loss of zone coverage or more widespread degradation via loss of two detectors in adjacent zones.
B.3 A repair exceeding 24 hours may be evaluated and found acceptable provided that the increase in risk does not exceed the acceptance criteria of one detector out of service for 108 days or one additional detector for one day per detector per
                                                                  &RQWLQXHG 
  
  'UHVGHQDQG              %S                        5HYLVLRQ
 
TRM Limitations on Natural Gas Line Supply B 3.7.p year. See Reference 2 for further clarification.
C.1 If the ability to detect methane in any zone of the heating boiler house is no longer available, natural gas must be isolated at the vault outside of the boiler house. Reduction in redundancy between adjacent zones also requires isolation of natural gas at the vault outside the boiler house.
Zones are shown in Table 1. The ventilation fans are necessary to ensure appropriate mixing and dispersal of methane for detection. Isolation is completed with the valves in the vault at the west end of the 2/3 Boiler House.
SURVEILLANCE      3.7.p.1 REQUIREMENTS Reference 2 assumes that an operator verifies ventilation system operation an average of every 8 hours.
3.7.p.2 The verification of the logic system prior to operation for a heating season is an assumption of Reference 2.
3.7.p.3 Reference 2 assumes that the pressure switches provide an isolation signal to the trip valves.
REFERENCES
: 1. Calculation DRE 12-0036, Revision 02
: 2. Dresden Gas Line Explosion Risk Assessment, Evaluation No. 2015-02412, Revision 01
                                                                  &RQWLQXHG 
  
  'UHVGHQDQG              %S                        5HYLVLRQ
 
TRM Limitations on Natural Gas Line Supply B 3.7.p Table 1: Methane  Detector Zones Zone Number      Detector 1 XT        Detector 2 XE      Adjacent Zones 1        2/3-5741-0101        2/3-5741-0119              2 2        2/3-5741-0102        2/3-5741-0120          1, 3, 5 3        2/3-5741-0115        2/3-5741-0105        2, 4, 5, 6 4        2/3-5741-0116        2/3-5741-0106          3, 7, 8 5        2/3-5741-0117        2/3-5741-0107            3, 6 6        2/3-5741-0103        2/3-5741-0121            3, 5 7        2/3-5741-0118        2/3-5741-0108            4, 8 8        2/3-5741-0104        2/3-5741-0122            4, 7
'UHVGHQDQG                %S                        5HYLVLRQ
 
TRM 24/48 Volt DC System B 3.8.a B 3.8  ELECTRICAL POWER SYSTEMS B 3.8.a  24/48 Volt DC System BASES Parameter              Unit 2      Unit 3    Basis Ave. Electrolyte        65&deg;F        65&deg;F      Sizing calculations based Temperature                                    on 65&deg;F Total battery          24.2 Volts  24.2 Volts Based on 11 cells per voltage                                        battery Minimum battery        20.9 Volts  20.9 Volts Unit 2(3) sizing voltage                                        calculation Dresden 2 and 3                    B 3.8.a-1                    Revision 0
 
TRM Battery Monitoring and Maintenance B 3.8.b B 3.8  ELECTRICAL POWER SYSTEMS B 3.8.b  Battery Monitoring and Maintenance BASES BACKGROUND        This TLCO delineates the requirement of the Battery Monitoring and Maintenance Program is in accordance with Technical Specification (TS) 5.5.13. A discussion of these batteries and their OPERABILITY requirements is provided in the TS Bases for LCO 3.8.4, "DC SourcesOperating," LCO 3.8.5, "DC SourcesShutdown," and LCO 3.8.6, Battery Parameters.
APPLICABLE SAFETY ANALYSES The initial conditions of Design Basis Accident (DBA) and transient analyses in UFSAR, Chapter 6 (Ref. 1) and Chapter 15 (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The DC electrical power subsystems provide normal and emergency DC electrical power for the diesel generators (DGs),
emergency auxiliaries, and control and switching during all MODES of operation.
The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the unit as discussed in the TS Bases for LCO 3.8.4 and LCO 3.8.5.
TLCO              Battery cell parameters must remain within acceptable limits to ensure availability of the required DC power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. Electrolyte limits are conservatively established, allowing continued DC electrical system function even with Category A and B limits not met. OPERABILITY of the batteries is defined by LCO 3.8.6.
APPLICABILITY      The battery cell parameters are required solely for the support of the associated DC electrical power subsystem. Therefore, these cell parameters are only required when the associated DC electrical power subsystem is required to be OPERABLE. Refer to the Applicability discussions in TS Bases for LCO 3.8.4 and LCO 3.8.5.
(continued)
Dresden 2 and 3                    B 3.8.b-1                        Revision 27
 
TRM Battery Monitoring and Maintenance B 3.8.b BASES ACTIONS          The ACTIONS Table is modified by a Note which indicates that separate Condition entry is allowed for each battery. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable DC electrical power subsystem. Complying with the Required Actions for one inoperable DC electrical power subsystem may allow for continued operation, and subsequent battery parameters out of limits are governed by separate Condition entry and application of associated Required Actions.
A.1, A.2, and A.3 With parameters of one or more cells in one or more batteries not within Table T3.8.b-1 limits (i.e., Category A limits not met or Category B limits not met, or Category A and B limits not met) but within the Category C limits specified in Table T3.8.b-1, the battery is degraded but there is still sufficient capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of Category A or B limits not met, and continued operation is permitted for a limited period.
The pilot cell(s) electrolyte level and float voltage are required to be verified to meet the Category C limits within 1 hour (Required Action A.1).
This check provides a quick indication of the status of the remainder of the battery cells. One hour provides time to inspect the electrolyte level and to confirm the float voltage of the pilot cell(s). One hour is considered a reasonable amount of time to perform the required verification.
Verification that the Category C limits are met (Required Action A.2) provides assurance that during the time needed to restore the parameters to the Category A and B limits, the battery is still capable of performing its intended function. A period of 24 hours is allowed to complete the initial verification because specific gravity measurements must be obtained for each connected cell. Taking into consideration both the time required to perform the required verification and the assurance that the battery cell parameters are not severely degraded, this time is (continued)
Dresden 2 and 3                    B 3.8.b-2                        Revision 27
 
TRM Battery Monitoring and Maintenance B 3.8.b BASES A.1, A.2, and A.3  (continued) considered reasonable. The verification is repeated at 7 day intervals until the parameters are restored to Category A and B limits. This periodic verification is consistent with the normal Frequency of pilot cell Surveillances.
Continued operation is only permitted for 31 days before battery cell parameters must be restored to within Category A and B limits. Taking into consideration that, while battery capacity is degraded, sufficient capacity exists to perform the intended function and to allow time to fully restore the battery cell parameters to normal limits, this time is acceptable.
B.1 and B.2 When any battery parameter is outside the Table 3.8.b-1 Category C limit for any connected cell, sufficient capacity to supply the maximum expected load requirement is not ensured and the corresponding DC electrical power subsystem must be declared inoperable. Additionally, other potentially extreme conditions, such as any Required Actions of Condition A and associated Completion Time not met or average electrolyte temperature of representative cells  65&deg;F, also are cause for immediately declaring the associated DC electrical power subsystem inoperable.
SURVEILLANCE REQUIREMENTS TSR 3.8.b.1 This TSR verifies that Table T3.8.b-1 Category A battery cell parameters are consistent with IEEE-450 (Ref. 3), which recommends regular battery inspections (at least one per month) including voltage, specific gravity, and electrolyte level of pilot cells.
TSR  3.8.b.2 The quarterly inspection of specific gravity, voltage, and electrolyte level for each connected cell is consistent with IEEE-450 (Ref. 3). In addition, within 7 days of a battery (continued)
Dresden 2 and 3                    B 3.8.b-3                        Revision 27
 
TRM Battery Monitoring and Maintenance B 3.8.b BASES TSR  3.8.b.2 (continued) discharge (ie, less than 105 V for a 125 V battery and less than 210 V for a 250 V battery), or a battery overcharge (ie, greater than 150 V for a 125 V battery and greater than 300 V for a 250 V battery), the battery must be demonstrated to meet Table T3.8.b-1 Category B limits. Transients, such as motor starting transients, which may momentarily cause battery voltage to drop to less than 105 V or less than 210 V, as applicable, do not constitute a battery discharge provided the battery terminal voltage and float current return to pre-transient values. This inspection is also consistent with IEEE-450 (Ref. 3), which recommends special inspections following a severe discharge or overcharge, to ensure that no significant degradation of the battery occurs as a consequence of such discharge or overcharge. The 7 day frequency is based on engineering judgement.
TSR  3.8.b.3 This Surveillance verification that the average temperature of representative cells is within limits is consistent with a recommendation of IEEE-450 (Ref. 3) that states that the temperature of electrolytes in representative cells should be determined on a quarterly basis. For this TSR, a check of 10%
of the connected cells is considered representative.
Lower than normal temperatures act to inhibit or reduce battery capacity.
This TSR ensures that the operating temperatures remain within an acceptable operating range. This limit is based on manufacturer's recommendations and the battery sizing calculation.
TSR  3.8.b.4 Visual inspection to detect corrosion of the battery cells and connections, or measurement of the resistance of each intercell and terminal connection, provides an indication of physical damage or abnormal deterioration that could potentially degrade battery performance.
(continued)
Dresden 2 and 3                    B 3.8.b-4                        Revision 27
 
TRM Battery Monitoring and Maintenance B 3.8.b BASES TSR 3.8.b.4 (continued)
The connection resistance limits established for this TSR are within the values established by industry practice. The connection resistance limits of this TSR are related to the total connection resistance defined as the summation of all connection resistances in the battery string as follows:
* Positive cable lug to Post
* Negative cable lug to Post
* Intercell Post to Post
* Intertier Post to Post
* Interrack Post to Post The Frequency for these inspections, which can detect conditions that can cause power losses due to resistance heating, is 92 days. This Frequency is considered acceptable based on operating experience related to detecting corrosion trends.
TSR  3.8.b.5 Visual inspection of the battery cells, cell plates, and battery racks provides an indication of physical damage or abnormal deterioration that could potentially degrade battery performance. The presence of physical damage or deterioration does not necessarily represent a failure of this TSR, provided an evaluation determines that the physical damage or deterioration does not affect the OPERABILITY of the battery (its ability to perform its design function).
The one year frequency for the Surveillance is based on IEEE 450 IEEE Recommended Practices for Maintenance, Testing and Replacement of Vented Lead-Acid Batteries for Stationary Applications and aligns with other recommended battery maintenance and surveillance requirements.
TSR  3.8.b.6 and TSR  3.8.b.7 Visual inspection and resistance measurements of intercell and terminal connections provides an indication of physical damage or abnormal deterioration that could indicate degraded battery condition. The anti-corrosion material is used to help ensure good electrical connections and to reduce terminal deterioration. The visual inspection for corrosion is not intended to require removal of and inspection under each terminal connection.
(continued)
Dresden 2 and 3                    B 3.8.b-5                        Revision 45
 
TRM Battery Monitoring and Maintenance B 3.8.b BASES TSR  3.8.b.6 and TSR  3.8.b.7 (continued)
The removal of visible corrosion is a preventive maintenance TSR. The presence of visible corrosion does not necessarily represent a failure of this TSR, provided visible corrosion is removed during performance of this Surveillance.
The connection resistance limits are within the values established by industry practice. The connection resistance limits of this TSR are related to the total connection resistance derived by the connection resistance defined as the summation of all connection resistances in the battery string as follows:
* Positive cable lug to Post
* Negative cable lug to Post
* Intercell Post to Post
* Intertier Post to Post
* Interrack Post to Post The one year frequency for the Surveillance is based on IEEE 450 IEEE Recommended Practices for Maintenance, Testing and Replacement of Vented Lead-Acid Batteries for Stationary Applications and aligns with other recommended battery maintenance and surveillance requirements.
Table T3.8.b-1 This Table delineates the limits on electrolyte level, float voltage, and specific gravity for three different categories. The meaning of each category is discussed below.
Category A defines the normal parameter limit for each designed pilot cell in each battery. The cells selected as pilot cells are those whose temperature, voltage, and electrolyte specific gravity approximate the state of charge of the entire battery.
The Category A limits specified for electrolyte level are based on manufacturer's recommendations and are consistent with the guidance in IEEE-450 (Ref. 3), with the extra 1/4 inch allowance above the high water level indication for operating margin to account for temperature and charge effects.
In addition to this allowance, footnote (a) to Table T3.8.b-1 permits the electrolyte level to be temporarily above the specified maximum level during and, for a limited time, following an equalizing charge (normally up to 3 days following the completion of an equalize charge to allow electrolyte stabilization), provided it is not overflowing.
(continued)
Dresden 2 and 3                    B 3.8.b-6                        Revision 45
 
TRM Battery Monitoring and Maintenance B 3.8.b BASES Table T3.8.b-1 (continued)
These limits ensure that the plates suffer no physical damage, and that adequate electron transfer capability is maintained in the event of transient conditions. IEEE-450 (Ref. 3) recommends that electrolyte level readings should be made only after the battery has been at float charge for at least 72 hours.
The Category A limit specified for float voltage is  2.13 V per cell. This value is based on the recommendation of IEEE-450 (Ref. 3), which states that prolonged operation of cells below 2.13 V can reduce the life expectancy of cells.
The Category A limit specified for specific gravity for each pilot cell is 1.200 (0.015 below the manufacturer's fully charged nominal specific gravity or a battery charging current that had stabilized at a low value). This value is characteristic of a charged cell with adequate capacity. According to IEEE-450 (Ref. 3), the specific gravity readings are based on a temperature of 77&deg;F (25&deg;C).
The specific gravity readings are corrected for actual electrolyte temperature and level. For each 3&deg;F (1.67&deg;C) above 77&deg;F (25&deg;C), 1 point (0.001) is added to the reading; 1 point is subtracted for each 3&deg;F below 77&deg;F. The specific gravity of the electrolyte in a cell increases with a loss of water due to electrolysis or evaporation. Level correction will be in accordance with manufacturer's recommendations.
Category B defines the normal parameter limits for each connected cell. The term "connected cell" excludes any battery cell that may be jumpered out.
The Category B limits specified for electrolyte level and float voltage are the same as those specified for Category A and have been discussed above. The Category B limit specified for specific gravity for each connected cell is 1.195 (0.020 below the manufacturer's fully charged, nominal specific gravity) with the average of all connected cells 1.205 (0.010 below the manufacturer's fully charged, nominal specific gravity).
(continued)
Dresden 2 and 3                    B 3.8.b-7                        Revision 27
 
TRM Battery Monitoring and Maintenance B 3.8.b BASES Table T3.8.b-1  (continued)
These values are based on manufacturer's recommendations. The minimum specific gravity value required for each cell ensures that a cell with a marginal or unacceptable specific gravity is not masked by averaging with cells having higher specific gravities.
Category C defines the limits for each connected cell. These values, although reduced, provide assurance that sufficient capacity exists to perform the intended function and maintain a margin of safety. When any battery parameter is outside the Category C limits, the assurance of sufficient capacity described above no longer exists, and the battery must be declared inoperable.
The Category C limit specified for electrolyte level (above the top of the plates and not overflowing) ensures that the plates suffer no physical damage and maintain adequate electron transfer capability. The Category C limit for voltage is based on IEEE-450 (Ref. 3), which states that a cell voltage of 2.07 V or below, under float conditions and not caused by elevated temperature of the cell, indicates internal cell problems and may require cell replacement.
The Category C limit on average specific gravity  1.195, is based on manufacturer's recommendations (0.020 below the manufacturer's recommended fully charged, nominal specific gravity). In addition to that limit, it is required that the specific gravity for each connected cell must be no more than 0.020 below the average of all connected cells. This limit ensures that a cell with a marginal or unacceptable specific gravity is not masked by averaging with cells having higher specific gravities.
The footnotes to Table T3.8.b-1 that apply to specific gravity are applicable to Category A, B, and C specific gravity. Footnote (b) requires the above mentioned correction for electrolyte level and temperature.
(continued)
Dresden 2 and 3                    B 3.8.b-8                        Revision 27
 
TRM Battery Monitoring and Maintenance B 3.8.b BASES Table T3.8.b-1  (continued)
Because of specific gravity gradients that are produced during the recharging process, delays of several days may occur while waiting for the specific gravity to stabilize. A stabilized charging current is an acceptable alternative to specific gravity measurement for determining the state of charge of the designated pilot cell. This phenomenon is discussed in IEEE-450 (Ref. 3). Footnote (c) allows the float charge current to be used as an alternate to specific gravity for up to 7 days following a battery recharge.
Within 7 days, each connected cell's specific gravity must be measured to confirm the state of charge. Following a minor battery recharge (such as equalizing charge that does not follow a deep discharge) specific gravity gradients are not significant, and confirming measurements may be made in less than 7 days.
Footnote (d) allows the use of battery float current to replace specific gravity measurement. This also satisfies TS 3.8.6 SR 3.8.6.1 when battery float current is less than or equal to 2 amps on float charge. If the battery is on equalize the float current may be higher due to the higher voltage potential REFERENCES        1. UFSAR, Chapter 6.
: 2. UFSAR, Chapter 15.
: 3. IEEE Standard 450-1995, IEEE Recommended Practice for Maintenance, Testing, and Replacment of Vented Lead-Acid Batteries for Stationary Applications.
: 4. Calculation DRE 07-0021, Determination of Intercell connection Resistance Limits.
Dresden 2 and 3                    B 3.8.b-9                        Revision 45
 
TRM Communications B 3.9.a B 3.9  REFUELING OPERATIONS B 3.9.a  Communications BASES The requirement for communications capability ensures that refueling station personnel can be promptly informed of significant or potential changes in the facility status or core reactivity during CORE ALTERATIONS.
Dresden 2 and 3                    B 3.9.a-1                        Revision 0}}

Latest revision as of 08:20, 29 November 2024