ML17229A094: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
| Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:St.LucieUnit1DocketNo.50-335-96- | {{#Wiki_filter:St.LucieUnit1DocketNo.50-335-96-273Enclosure 3SAIC05-5049-05-6734-500 STEAMGENERATOR DEGRADATION SPECIFICMANAGEMENT (SGDSM)LEAKAGELIMITCALCULATION FORSTLUCIEUNITa'lef'nEmployee-Owned CompanySAIC05-5049-05-6734-500 AptechAgreement Sept.,1996RevisionAPREPAREDBY:oem:KBAHNEDSY:APPROYEDBY:qe~oa8008+ | ||
9iXoaePDR'DOCK05000335PPDR10260CampusPointOrive,SanDiego,California 92121(61915466000Othe'AiOOirceeiArououeioue. | |||
Bosion.ColoieooSonnyg.Oevion,Hunt~le.LievizuieAnoeieaAfcleen.Oe>>Ridge.OiienoapsioAliaSeenie.enoruoeon LeakaeLimitCaculationforStLucieUnit1TableofContentsPageINTR0DUCTI0No~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~eeloo1ETHODOLOGY | |||
.....................................................................................1 MRadiation ReleaseModelLeakageLimitModel.QualityAssurance,. | |||
~~ooooo3EAKAGELlMIT...................................................................~......~........... | |||
3LScreening Assessment. | |||
BasicAssumptions | |||
~~~o3~o~o4DetailedCalculation.. | |||
~~~~~oooooo~~oooo4PlantSpecificData.~o~o~ooooo5ESULTSo~~~~~~~~~~~~~~~~~~~~~e~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~oo~eooo6RScreening Assessment. | |||
~oo~oooooooooo6 DetailedCalculation. | |||
~~~~~~~~~~o0~~~o~~~~0~~oooo~o70NCLUSi0NSo~~oooooooooo~~~oo~oo~~oo~eo~~oo~~~~~oo~oo~oo~~oo~ee~~~~~~~~~oooeo~~~~~oe~oooooooeeeoo 9CEfERENCES.........................................................................................1 0RAppendixAMeteorological AndSiteDatafromSt.Lucle....................11 AppendixBCumulative Probability Distributions forX/Q&LeakRate..23AppendixCScreening Methodology | |||
........................... | |||
~~--------.2 8Pageii LeakaeLimitCalculation forStLucieUnit1ListofTablesandFiguresPageTable1Screening resultsfordoselimitedleakageat95%confidence level...,...,.7 Table2.LeakagetoMeetDoseLimitsattheEABforaPre-Accident Spike............9 Table3,LeakagetoMeetDoseLimitsatControlRoomforaPre-Accident Spike..9Table4.LeakagetoMeetDoseLimitsattheEABforanAccident-Initiated Spike..9Table5.LeakagetoMeetDoseLimitsattheCRforanAccident-Initiated Spike....10 TableC1.Screening resultsfordoselimitedleakageat95%confidence level.....292527Figure8-1Cumulative Frequency ofc/QattheEABFigure8-2Confidence vsleakagelimitattheEABforaisandpas95%meteorological conditions | |||
~~~~~~~~~~~~~~~~~~~t~~ttrt~~ettotooo~oottott24 Figure8-3Confidence vsleakagelimitattheEABforaisandpas99%meteorological conditions Figure8-4Confidence vsleakagelimitattheEABforaisandpas99%meteorological conditions | |||
................25 Figure8-5Cumulative Frequency ofc/Qatthecontrolroomintake,.~~..........26 Figure8-6Confidence vsleakagelimitforcontrolroomforaisandpas95%meteorological conditions Figure8-7Confidence vsleakagelimitforcontrolroomforaisandpas99%meteorological conditions........................................ | |||
~.~..~...~.......~............................27 Figure8-8Confidence vsleakagelimitforcontrolroomforaisandpasworstobservedmeteorological condition Pageiii | |||
LeakaeLimitCalculation forStLucieUnit1INTRODUCTION Thepurposeofthiscalculation istodetermine thedoselimitingsteamgenerator tubeleakageforapostulated mainsteamlinebreakaccidentconsidering St.Lucie'ssitespecificconditions. | |||
Thepurposeoftheleakagelimitcalculation istoprovideasitespecificleakagevaluethatwouldnotexceed10CFR100(>l andGeneralDesignCriteria19accidentdoselimitswithahighdegreeofconfidence. | |||
Theconfidence levelrecommended intheindustryproposedmethodology forthiscalculation isa95%confidence levelonradiation doseforatmospheric dispersion conditions forthe95percentile ofobservedconditions. | |||
This95/95valuecanbeusedtoquantifymarginsthatexistbetweentheestimated leakageforamainsteamlinebreakduetothesteamgenerator condition andthedoselimitingleakage.Thiscalculation usestheprobabilistic option@Iforquantifying theleakagelimitforbothcontrolroom(CR)operators andindividuals atexclusion areaboundary(EAB).Thecalculations usesitespecificdatacollected atStLucieformeteorological andplantsystems.METHODOLOGY Thebasisofthemethods,assumptions andtoolsforthesecalculations areoutlinedincurrentdocuments providedbyEPRIPIandNRC(41insupportofsteamgenerator integrity rulemakingPl. | |||
Thecalculation isdividedintotwoparts:ascreening assessment andadetailedcalculation. | |||
Themethodology forcalculating theprimarycoolantaccidentleakagelimitisusedsolelytodetermine theconditions thatwouldresultinI>3>releaseslargeenoughtoexceedradiation doselimitsataspecified confidence level.Theydonotconstrain leakagebasedontheaccidentassumptions ortheinternalcharacteristics ofanoperating plant.Therefore, theseanalysescanyieldleakagelimitvalueslargerthanallowedbytheaccidentassumptions orthephysicalcapabilities oftheplant.Theleakagevalueresultsshouldnotbetakentomean"real"plantcapabilities, orthatmarginsareavailable uptotheseleakagevalues.Rathersuchresultsmeanonlythatradiation doselimitsarenotexceededforI>3>releasescorresponding totheseleakagevalues,aslongastheplantiscapableofoperating withinthestatedengineering assumptions. | |||
Iftheplantoperatesoutsidetheseassumptions, thelimitsonleakagemustbebased,onconsiderations otherthancompliance withdoselimitsforthepostulated mainsteamlinebreak(MSLB)accidentwithassociated steamgenerator tubeleakage(SGTL).Project6783Page1ot'98/29/96 LeakaeLimitCalculation forStLucieUnit1Radiation ReleaseModelThephenomena ofinterestthatleadstopotential radiation exposureistheincrease. | |||
iniodinereleaseratefromthefueltotheprimarycoolantwhichstemsfrompowerandpressuretransients. | |||
Themagnitude ofthistemporary increaseintheiodinereleaserate(calledaspike)represents asourcetermforthepostulated MSLB/SGTL accidentpressureandpowertransient. | |||
Twotypesofiodinespikingeventsareidentified inthestandardreviewplanmethodologyl6l. | |||
Thefirstisatransient-induced spikethatisassumedtooccurpriortoaMSLB/SGTL eventorapre-accident spike(PAS).Inthiscasethepostulated accidentisassumedtooccuratatimewhentheiodineconcentration intheprimarycoolantismaximum.ThesecondeventinvolvesaspikeinducedbytheMSLB/SGTL eventitself.Forthiseventtheprimarycoolantiodineconcentration ispredicted onthebasisofaprescribed releaseratefromthefueloranaccidentinitiated spike(AIS).Bothofthesesourcetermsareconsidered inthescreening assessment andthedetailedcalculation asrecommended intheSGintegrity rulemaking documentation. | |||
Thedataoniodinespikinghasbeengreatlyexpandedoverthedecadesincethereviewplanwaswritten.AstudyoftheiodinespikingdatabyPostmat7l wascarriedouttoquantifythepeakiodineconcentration (p,Ci/g)fornearlytwohundredeventsandreleaserates(Ci/hr)fromnearlyonehundredeventsatavarietyofPWRs.Bynotingthatthedistributions ofspikeeventsarerepresentative ofthepopulation spikesthatcouldexistpriortoandresultfromMSLB/SGTL events,Postma'siodineconcentration datawereconverted intodistributions forreleasefromthePWRsecondary systemtotheenvironment asafunctionoftheprimarytosecondary leakrate(Ci/gpm). | |||
AgenericMSLB/SGTL PWRthermalhydraulics modelwasusedtoevaluateareference 100gpmleakfromtheprimarytosecondary system.Thecombination ofspikedataandtheleakratewasusedtoproduceI>3>releasedistributions asafunctionofleakrateforthepostulated accidentasdescribed inRef.3.Thismodelprovidesgeneric"bestestimatewithuncertainty distributions" forI>>>releasefromthesecondary sideofaPWRasafunctionofthePASandAISsourcetermsandtheprimarytosecondary leakage.LeakageLimitModelForthisleakagelimitassessment thegenericaccidentreleasedistributions werecombinedwiththeotherdosemodelelementssuchassitespecificSt.Luciedispersion factorsdetermined bythelocalmeteorology measuresusingMonteCarloSimulation. | |||
Theresulting distributions areusedtoassesstheleakagelimitthatwouldassurewithahighconfidence thatpostulated accidentdoseattheexclusion areaboundaryandthecontrolroomdonotexceedthedoselimitsintheregulations. | |||
Sitespecificmeteorology andfeaturessuchasEABdistance, andcontrolroomfeatureshavethelargestimpactonthelimitingleakrate.Project6783Page2of298/29/96 LeakaeLimitCalculation forStLucieUnit1Useofthegenericsourcetermsrequiresseveralengineering assumptions. | |||
Thesearethattheprimarycoolantactivityismaintained withinthetechnical specification limits,andthattheprimarymakeupsystemsarecapableofmaintaining primarycoolantinventory attheselectedleakratelimit.Noiodineplate-out isassumedinthesteamgenerator, thusthegenericreleasetermhassomeelementsofconservatism whichcanbere-examined ifnecessary. | |||
QualityAssurance Allcalculations forthisanalysishavebeenconducted according totherequirements ofSAICqualityassurance procedures. | |||
Theseinclude:documentation ofallengineering assumptions, independent reviewofengineering assumptions, reference citations forallparameter values,independent reviewofthecontentsofallcomputerized spreadsheets, confirmatory calculations (eitherbyhandorusingaseparatecomputercode)forallspreadsheet calculations, andindependent reviewofallfinalreports.Archivedcopiesofallcomputerized spreadsheets andassociated qualityassurance filesaremaintained bytheSAICprojectmanager.LEAKAGELIMITScreening Assessment Thescreening assessment isbasedontheresultsofgenericanalysesofuncertainty inradiation dosemodelsasafunctionofstability class,distancetotheEABandtypeofcontrolrooml3l.MonteCarlosimulations wereusedtodevelopgenerictablestodescribetheleakagevaluethat,with95%confidence, wouldnotexceedthedoselimitsin10CFR100andGDC19forthepostulated MSLB/SGTL. | |||
Theleakagelimitisafunctionofthesitecharacteristics andtheI131accidentsourceterm.Thisleakagelimitisindependent ofthecalculation fortheprojected accidentleakagewhichusesnondestructive examination measuresoftheSGtubessuchasvoltsprojected totheendofcycletoestimateantheaccidentinducedleakagevalue.Modelsforthedosecalculations weretakenfromUSNRCRegulatory Guide1.78~81fortheEABandcontrolroom.Atmospheric dispersion modelsweretakenfromUSNRCRegulatory Guide1.145Ãl.Genericdataforcoveringtherangeofwindspeedsanddispersion parameters weretakenfromstability classdefinitions. | |||
Modelinguncertainties forrelevantplantfeaturesarebasedonindustryaveragesratherthansitespecificcalculations | |||
'and,therefore, represent greatervariancethanwouldbeobservedataspecificsite.Forinitialscreening thedoselimitingleakagevaluesweretakenfromtabulated resultsinRef.3.Valueswerechosenthatcorrespond tothesiteboundarydistanceforSt.Lucieandtheatmospheric stability classrepresenting dispersion conditions lessfavorable than95%ofthoseobservedatSt.Lucieduringcalendaryear1995~>ol. | |||
Ofthetwosourcetermsconsidered, thePASisalwaysmorerestrictive thantheAISProject6783Page3of298/29/96 LeakaeLimitCali;ulation forStLucieUnit1atthehigherconfidence levelsabove90%.TheAISismorerestrictive atconfidence levelsbelow70%.BasicAssumptions Thefollowing assumptions donotappearexplicitly inthemethodology usedforthisanalysisbutarekeytointerpreting theresults:1)St.LuciewilloperatewiththeprimaryactivitywithinthelimitsstatedintheFSAR.TheI>3>releasedatabaseincludesmeasuresofI>3>releasedduringplanttransients fromplantsthatmaintained primarycoolantactivitywithintheFSARlirrutsonprimarycoolantactivity. | |||
2)TheMSLB-SGTL transient causesnonewcladdingorfueldamage.3).Theprimarycoolantinjection rateisassumedequaltotheleakagethroughout thetransient. | |||
4)Themakeupinventory islargeenoughtomaintainprimarycoolantinventory duringthecontrolled shutdownwhichisontheorderoftwohours.5)Thereisnoreduction inthesourcetermduetoplateoutinthesecondary system.6)The95%confidence levelisdominated bythepre-accident I>3>spike.Ingeneral,leakageratesgreaterthanabout400gpmareoutsidetheregimepostulated fortheMSLB-SGTR accidents considered here.Severalassumptions keytotheMSLB-SGTR accidentscenariodonotapplyabovethisleakagerate.Forexample,theassumption thattheinjection rateisequaltotheleakrateisbasedontheautomatic responseofthecontrolsandsafetysystemstotheMSLB-SGTR accidentwithoutoperatorintervention. | |||
Aboveabout400gpmoperatoractionswillbeneededtocontrolsafetyinjection. | |||
Inaddition, the03>releasemodelcouldchangeaccording totheaccidentscenariobeingexamined, Forexample,inlowerprobability accidents treatedinprobabilistic riskassessment studiesadditional systemssuchastheinjection systemcouldbeassumedunavailable, andwithoutcompensating operatoractionstorestoreinjection, releasesat400gpmcouldresultinhigherdosesduetocladdingorcoredamage.Theseissuesarediscussed inindustryreportspreparedbySGDSMcommittees l~.Thecladdingandcoredamagescenarios areoutsidetheboundsofthisassessment. | |||
Therefore, thevaluesintheallowedleakagegraphsabove400gpmareconsidered notrepresentative ofthepostulated MSLB-SGTR accidenttransient. | |||
DetailedCalculation Thedetailedcalculation usesplantspecificdatatodevelopa95/95doselimitingleakratefortheSt.Luciesite.Theobjective ofthedetailedcalculation istoensurethatnouniquesitecharacteristics causeamorelimitingcondition thanidentified bytheProject6783Page4of298/29/96 LeakaeLimitCalculation forStLucieUnit1genericscreening process.Thesesitespecificcalculations usemeasuredStLuciemeteorological data,site-specific distances tothesiteboundaryandthecontrolroom,andplant-specific controlroomcharacteristics. | |||
Usingthesesite-specific data,valuesofX/Qwerecalculated forthecontrolroomandtheEABforeachofabout15,000individual meteorological observations takenatSt.Lucieduringcalendaryear1995.Atmospheric dispersion calculations usedtheequations specified inNRCRegulatory Guide1.145.Thesevalueswererankedtopermitselection ofthe95%,99%andworstobservedmeteorological conditions, Cumulative probability distribution ofX/QfortheEABandcontrolroomappearsinAppendixB.Dosemodelinguncertainties weredetermined fortheselected95%,99%andworstobserveddispersion conditions usingtheMonteCarlosimulation methodsdescribed inRef.3.Thepurposeofthisstepinthecalculation istoensurethatsufficient conservatism isincludedintheleakratevaluestoaccountforuncertainties indosemodelingwhileavoidingtheover-conservatism associated witha"worst-case" analysis. | |||
TheMonteCarlosimulation incorporates uncertainties inthepostulated I>3>release,individual dosemodelparameters, andcontrolroom.Inthisdetailedanalysisthe95thpercentile of1000MonteCarlosimulations, basedonthe95thpercentile leastfavorable atmospheric dispersion conditions, wasusedtodetermine the95/95leakrate.Inaddition, 1000simulations wereconducted forboththe99%leastfavorable andtheworstdispersion condition observedintheStLuciedatasetto).Thesecalculations wereusedtoevaluatewhethersitespecificoutliermeteorological conditions couldresultinasituation wereradiation dosewouldbethelimitingconsideration insettingoperating marginsforleakrate.Cumulative frequency distributions forallMonteCarloanalysesarepresented inAppendixB.PiantSpecificDataMostofthedatarequiredforthisanalysiswereobtainedfromtheFinalSafetyAnalysisReport(FSAR)fortheSt.Lucieplantl<<l. | |||
Additional data,including morerecentmeteorological datawereobtaineddirectlyfromstaffatFloridaPowerandLights>ol. | |||
Thesedataarepresented inAppendixA.Theyinclude:1)Distancetositeboundaryinsixteendirections corresponding tothewindrosesectors.ForSt.Lucietheplantboundaryiscircularwitharadiusof1561m.2)Joint-frequency tablesofwindspeedanddirection forstability classesAthroughGbasedonhourlydatacollected atSt.Lucieduringcalendaryear1995.3)Datadescribing keyfeaturesofthecontrolroomventsystem,airexchangeratesandisolation features. | |||
Project6783Page5of298/29/96 LeakaeLimitCalculation forStLucieUnit1RESULTSScreening Assessment Thescreening assessment providesonlyasimpleassessment toindicatethepotential forlargemarginsintheleakratelimit.Becauseindustry-wide, genericassumptions areusedinthescreening assessment andsite-specific assumptions areusedinthedetailedcalculation, itisunlikelythatthesameconditions willgeneratethesamelimitingconditions atagivenconfidence level.Screening resultsshowthatthepotential foralargemarginofsafetyontheleakagelimitexistsatStLuciebasedonsitespecificdoselimitingfeatures. | |||
Italsoindicates thereisapotential forthecontrolroomdoselimittobereachedbeforetheEABlimitisreached.AsshowninTable1theleakagevaluesdetermined fromthescreening assessment for95%confidence ofnotexceeding thedoselimitsforapre-accident spikeare545gpmforthecontrolroomand3,310gpmfortheEABdistance. | |||
Ifanaccidentinducedspikeisassumedthecontrolroomlimitis1700gpmandtheEABlimitis12,900gpm.Table1Screening resultsfordoselimitedleakageat95%confidence level(usingTablesfromRef.3)EAB,ClassFEAB,ClassEControlRoom,TypeBLeakageLimitPre-accidentSpike(gpm)331012,100545LeakageLimitAccident-Initiated Spike(gpm)12,90044,0001,700ForeachcaseshowninTable1thevaluesaremuchgreaterthantherecommended limitof200gpmcurrently proposedbyNEIduringthesteamgenerator integrity rulemakingprocess.Thisindicates thattheleakagelimitisnotlikelytobeboundedbydoseforeithertheEABortheCRforthisaccident. | |||
Thatis,thereisapotential forlargemarginsondose,andtheleakagelimitdependsonplantfeaturesotherthandose.Thus,adetailedcalculation usingsitespecificdatafromSt.Lucieisjustified inorderto:1)verifythelimitingdosecriteriaforSGtubeintegrity intermsofleakagebytakingintoaccountthesitespecificmeteorology dataatStLucie,2)refineestimates ofavailable marginbyestimating theleakagethatcouldresultinadoselimitingsituation, and3)verifytheengineering modelassumptions thatapplyforbothscreening anddetailedmodels.Project6783Page6of298/29/96 LeakaeLimitCalculation forStLucieUnit1Thekeyengineering assumptions usedforthescreening leveliodinedosemodelsare:1)Duringnormaloperation theiodineconcentration intheprimarycoolantislimitedbytechnical specifications. | |||
2)Theprimarycoolantinjection rateisequaltotheleakageduringthepostulated MSLB-SGTR accident. | |||
3)AsinglegenericdoseanalysisequationwasusedtomodeltheEABleakagelimitinthescreening analysis(Le.,thedetailedanalysisselectsfrom3equations inRG1.145).4)Site-specific parameter valuesvarylessthanthegenericscreening (e.g.,theplantcrosssectionarea,A,hasnouncertainty foraspecificplant)5)Sitespecificwindspeedhasavariancedrivenbythedatabinsizeratherthanthewholerangeallowedbythedefinitions ofstability class.6)Thetabulated valuesrepresent anallowedleakagefortheMSLB-SGTR accidentassumingnoaccidentcausedcladdingorfueldamage.7)Sufficient defense-in-depth featuresareinplacetokeepaMSLBaccidentfromalsocausingcoredamage.DetailedCalculation Tables2through5summarize theresultsofthedetailedsite-specific calculation. | |||
Table2presentsthedose-limiting leakratesattheEABforthepre-accident spikescenario. | |||
Thisisthemostlimitingscenarioforestablishing marginsonleakageatStLucie.Thetableincludesthe95/95condition aswellasmorerestrictive combinations ofhigherconfidence levelsforbothdispersion conditions anddosemodeluncertainties, Compliance withthedoselimitattheEABdoesnotrestrictleakratestolessthan200gpmforthe95/95condition. | |||
A200gpmlimitmaybeappropriate, ifhigherconfidence ofcompliance withdoselimitsattheEABisrequired. | |||
Forexample,atthe95thpercentile onmeteorological conditions anda99%confidence levelforcompliance withdoselimits(e.g.,the95/99condition) requiresanaccidentleakageof211gpmorless.Thetablealsopresentsthe99/95andthe99/99conditions. | |||
Theworstobservedmeteorological conditions requireleakagetobelimitedto403gpmfora95%confidence ofdosecompliance and110gpmata99%confidence level.Theright-hand columnofTable2indicates theconfidence levelondosecompliance thatwouldbeachievedbylimitingtheleakageto200gpmforeachmeteorological condition evaluated. | |||
Table3presentsthedose-limiting leakratesatthecontrolroomforapre-accident spikescenario. | |||
Nocondition limitsleakageto200gpmorless.Restricting leakageto200gpmachievesconfidence levelsforcompliance withdoselimitsofgreaterthan99%foreventheworstobservedmeteorological conditions. | |||
Project6783Page7of298/29/96 LeakaeLimitCalculation forStLucieUnit1Tables4and5'present thedose-limiting leakratesattheEABandthecontrolroomfortheaccident-initiated spikescenario. | |||
Ineverycase,limitations onleakagearelessrestrictive forthisaccidentscenariothanforthepre-accident spike.Table2.LeakagetoMeetDoseLimitsattheEABforaPre-Accident SpikeMeteorological Conditions LeakageLimitatStatedConfidence LevelforDoseModel(gpm)Confidence LevelforDoseModelStability Windspeedcentile(m/s)95%99%O200gpm95%99%worstE0.22-1.56F0.22-1.56G0.22-1.561,67021121411099.299.197.8Table3.LeakagetoMeetDoseLimitsattheControlRoomforaPre-Accident SpikeMeteorological Conditions Stability Windspeedcentlle(m/s)LeakageLimitatStatedConfidence LevelforDoseModel(gpm)95%99%ConfldenceLevelforDoseModelI200gpm95%99%worstDFG0.22-1.560.22-1.560.22-1.561,6501,7501,60042040138499.499.999.6Table4.LeakagetoMeetDoseLimitsattheEABforanAccident-Initiated SpikesMeteorological Conditions LeakageLimitatStatedConfidence LevelforDoseModel(gpm)Confidence LevelforDoseMadelStablllty Windspeedcentlle(m/s)95%99%200gpm95%99'/oworstEFG0.22-1.560.22-1.560.22-1.5653803,0401,6502,7801,310696N/AN/AN/AProject6783Page8of298/29/96 LeakaeLimitCah.'f//ation forStLucieUnit1Table5.LeakagetoMeetDoseLimitsattheCRforanAccident-Initiated SpikeMeteorological Conditions LeakageLimitatStated'onfidence LevelforDoseModel(gpm)Confidence LevelforDoseModelPer-Stability Windspeedcentlle(m/s)95%99%200gpm95%99%worstDFG0.22-1.560.22-1.560.22-1.566,1105,91055002,9102,9902,440N/AN/AN/ACONCLUSIONS Theresultsshowthattheleakagelevelneededtoproducedoselimitingconditions uptothe95/95confidence levelatSt.Lucieismuchgreaterthantheindustryrecommended upperboundof200gpm.~Thescreening resultsindicated thepotential forlargemarginsontheleakagewhichwasconfirmed withadetailedsiteassessment. | |||
~Atthe95/95confidence levelthedetailedassessment indicated themostlimitingcasewasthepre-accident spikewiththecontrolroomandEABaboutequalat1600gpm,~ForaMSLB/SGTL of200gpmtheconfidence levelisapproximately 99/99thattheregulatory doselimitattheStLuciesitewouldnotbeexceeded, Sincedoseisunlikelytobethelimitingconstraint onleakage,theplantphysicalfeaturescanbeusedindetermining theleakagelimitforthepostulated MSLB.Examplesoftheplantphysicalconstraints thatcanbeconsidered aslimitsarethecombinedchargingpumpcapacityfortheSt.LucieplantFSAR,orthesumofthechargingpumpandhighpressuresafetyinjection makeupcapacity. | |||
Project6783Page9of298/29/96 LeakaeLimitCalculation forStLucieUnit1REFERENCES 1.2.3.4,5.6.7.8.9.10.11.ReactorSiteCriteriainTitle10CodeofFederalRegulations, 10CFRPart100,USNRC,Washington D.C.,June24,1975.NEI,1996."Industry GuideforImplementing SteamGenerator TubeIntegrity Rule"Draft0,NuclearEnergyInstitute, Washington D.C.January1996.EPRITR-103878, "Methodology forConsidering Uncertainties inI>3>ReleaseandDoseLimitsforaPostulated Accident." | |||
M.Otis,DBradleyandG.Hannaman, ElectricPowerResearchInstitute, PaloAlto,California Rev2March1996.ViewGraphnotesfromNRC-Commentsondoseuncertainty methodsEPRIreportEPRITR-103878 R1(1994)April1996..FederalRegister, NRCRuleRIN3150-AFO4, October,1994.NRC,NUREG-0800. | |||
"Standard ReviewPlanfortheReviewofSafetyAnalysisReportsforNuclearPowerPlants,"LWREdition,U.S.NuclearRegulatory Commission, Washington, D.C.,July1981.Postma,A.K.,1995."Empirical StudyofIodineSpikeDatainPWRPowerPlants,"EPRITR-103680, Rev.1ElectricPowerResearchInstitute, PaloAlto,CA,November1995.NRC,1974.Regulatory Guide1.78,"Assumptions forEvaluating theHabitability ofaNuclearPowerPlantControlRoomDuringaPostulated Hazardous ChemicalRelease", | |||
U.S.NuclearRegulatory Commission, Washington, D.C.,June1974.NRC,1983.Regulatory Guide1.145,"Atmospheric Dispersion ModelsforPotential AccidentConsequence Assessments atNuclearPowerPlants",U.S.NuclearRegulatory Commission, Washington, D.C.,August1976.PeteBailey,Personnel Communication "St.LucieMeteorology andCRData."August,1996.FloridaPowerandLight,"St.LucieUnit1FSAR"DocketNo.50-335version88-01Section9.4,(MicroFilmversion1988).Project6783Page10of298/29/96 LeakaeLimitCalculation forStLucieUnit1AppendixAMETEOROLOGICAL ANDSITEDATAFROMST.LUCIEProject6783Pagellof298/29/96 LeakaeLimitCalculation forStLucieUnit1TO:BillHannaman8Hoh/ardPippen,SAICFrom:Peter8.Bailey,FPL | |||
==Subject:== | ==Subject:== | ||
ResponsetoyourdataneedsSt.I. | ResponsetoyourdataneedsSt.I.ucmoUnft0CroaWsa5onal Area:2867m'asedonRCS)64ftDfa,207AftHfaboveground.Sourca:Specification foranEmergency DoseCafcuhtian SystemfartheSt.LuciePfant",(HMMDoc.0804T?-8) | ||
H.M.M.Assoc,October18,$982CantrofAcornEmergency RlbmtlonSystemInfeakago: | |||
Assumed109elmSource:St.LucieUn@0UFSARg9.4.1,pg9.~(ammendment12, 12/93),Calculated tobe34.2cfm1/S"Vfsh,P,assumed100cfm,w/0.$2one-passfHtereffeclency, foremergency dosecafcufatfona (Q6.4.1stuH).Anemometer StartfngSpeed:1.0-1.6mphSourc9:StLuciaUnit1UFSAR,g2.3.3.3,pg2.3-33,undatedpage.MetDataforgjQCalcs:AttachedAnnualJFDforCY'95Thefoffeeing ninepages[nctudethe1996annualsummaryJFDIbyStability CI838,byVlindSpeedGroups,bySector,theyarefntheRegGufde1.2)suggested format.ifyouneedmoreofthhtypeinfo,justcall4078944179;lcanFaxcopi68ofthoUFSARpagesffthey'reneeded.Project6783Page12of298/29/96 LeakaeLimitCalculation forStLucieUnit1To:RLRechetteHmm:A.J.GonldDate:Februaryg1996Department: | |||
SNAB~r~L~A+ | |||
==Subject:== | ==Subject:== | ||
St. | St.LacyJointFmqnextcy DfstrfhuQon Report,AgrtualReortinfxTHnclosedaxethejointGtquencydLstabuttons of10-meterwindcHrection axtdwhtdspeedbyatxnospheric stability categoryfortheSt.Laciesita.ThhxspaxtcoverstheFourthQnarter1995andtheAnnualReporting for199$.Thesetablesaxeiathefoxxaatsuggested byNRCRegahtotyegde | ||
>>>TaM<A.~percentjonttdataxecovayvrasntetforatmospheac stability, windspeed,axutvtiaddirection, asxecomtnended bytheSecondPtoposedRevision1toNRCRegulataxy Guide1M.Porth6FourthQuarter,100percentjointdatarecoverywxLtrealized. | |||
Fortheannuall995jointfaquencydistribution report,thejointdatarecoverypercentage was9%32.Kyonhaveanyquestions, pleasecontactmeat4071N4-4199. | |||
CC'.Q.BaBeyR.E.Cox6.RhmidR.OhonBS-RC-96410 PBeProject6783Pagel3of298/29/96 LeakaeLimitC~.'culation forStLucieUnit1PLOaznaSOMSa4tZOSTCONFSNYST+LQCXStZJQCTPERIODOIRECgRSJagI<1999CODba.31'995ANNO)CoRSFQRTOFFRae30!T?SEQUENTOFNINGDXRECTXCN | |||
~MINDSECBDSTVRRT3cgtr sTXDI.ZTY CATSOO2Y10KCrmLMamCFSm(ambii~7S~IRIS~MIt04)441O.OOOD.SSS1.113O.aita.aab4.0004~0040'VIIPssD.csvD0120000lO.oooo.ia21.3110.291O.OSVO.ooo40~ado0.173~127i4,13S4~00400045o.oooo.0991.3ss0.12iO.ooaO.oooCOoaaa0y025Xo444aeM50022Oaddb0~4000ODD4~0250,4120,0000~040sO.oooo.aooO.aoo4.0220.02204409o.oooo.oooo.oooO.ooa0.4000.012LO0-440oo037bl$5Oooit40000~404~~%0~3o.aab4.1CI0.210a.aitC.ois0.0124~0000+F145730sot904400aaaa.i04400,12iaeC92bobtt0abb0~4000~ODD0~Ott4~532O,oit0~0440~DOOC0d440.5321,9DiDOC20~4000,400LlO.oooO.osva.2330.414.b.ddbb.oob171tS145ISSSS8212J.VC9.51i1+593ta5141COS9.C14aobia12i340Oa03TIRe1334d23lb.dCbaeDI22520DOe27210.355bo39CtSltD442Il.i590+343tr7ti4~915$.739OASOtoVSOb-7dia+00028%C11~21C21250~I730~01SISoJCitIVif00000thSQUZ$4CL~Z~(l?iICSdi974C4ToSSRRWLTXON6 SOS.VIOLiSVCO~30CITZQCbtT 055ELV)LTXtNSi 1325~rEaammugg yesYmir~1S.123project67S3PageI4nf298/29/96 LeakaeLimitCalculation forStLucieUnit1PrrdRZOAPdltd'RdZrIOHTCOMPANYCZeZIR'PXJWTPERZOQOt.RECORDS Jan1199StoUdo31rZPPSRCHtNZRRPDRTCPPSRCsmVlrzguaWCY CPrkatODZRRCIZON 3MD'0IXSDSPEED3Y~TZCRZrSTR53reZTY CRZXCCRY1ASQdIZIe CLXXCRtYS0M'SLli310-armmesi5323(mphl47CQQld152iSCCXZDLPCTe1D.aaaaeld5015504370.044440410.4040.1514.45700250DDO4.440a.aoa0.13cO.opp0.037O.ooaa.DDD30~4004.2354.19940120~4250Daai0.4400xic.01364'250.4440.40050.4404.12i0.3.'734Did4400D400d0404Oe012Oe3iC4~0074444Oeoao4.004oeaa4Oe4C2O.oi904044~40400.4440.412O.ODO0.400O.OOD0.440~D.DDO0~0040~040Oeoaa0040Deooa4D-DDD.0.44+0~1244Oc24.412D.DDD4Da'0ae0250~OC200250~Oao4~DaaO.oooD.o27D.o7i0,41*o.oaoO.oaoO.aaa0.452O.o25o.o12o.oaao.oao0.4000.0570~0524~4124.4400.4000~04'00~0470~0410e0250~0044~4404.2727.ii14,2'72ICCD0470Ce1d1ae24$0.39503ddC.dd24~id510e617Oe11112DCC04125.2440~DDD0~000D~19d12~94401119e700oe12iSeC54oe49$de2350XCL7~692017396074i24le1LS0.4401.3111VDC4'704'3704403.92iCe97904400PRDQQZZIr CDTIedaRY TOTRZr]I)a3~52iQe979rT058ERVATTmrS R%'CSQtgl7CD~>cRT323aav d55savmzmdc 245AT%PERCRllT~ | |||
PdgYRRQ,r3.253Project6783Paget5of298/29/96 LeakaeLimitCalculation forStLucieUnit1rxoazoa3oMxaarzcssrvcowsass>QT.RUCKED~PBRIOQQPRECC$tSslaleLA1i)95anQdd31Ippp~~stamenor9lao32arseamsI(oY ormaossXsurcrxog | |||
~mmamamssrvmxzcarcnmxz,rrr mnsooaYIO~mamamSO(aph)i~70~12111$IS~Xia24SXcTostQa2oO.aaao,x2c40374~0120~4004~0000040XxX4,X2i004$40000aaa44444XSId,XXX4~03700124~444O.OOO0.0374.037O.o12O.O12O.OOOo.aanOooao,4$2$,O,X72O,dip4OX24400O.oip002$4000OoaooOo4000dao0~OC2441744444ddo0~4004~4444~DPI0~DI'7omoaoP~OOD0~'444a+adoOsdS70,1114012OiaaaOaaooOeoooO~X344~1360.00044440~444OoaooO.X360.111OeaaD4~000Ooaoa>.4444-173.n.~i4.437o.aaoo.aao4aabd49942214.412O.aao4.040c4F4044,02'7033E4~47i4044oedao440444X2O.X2iO.aip440400120~004Deaaa4~40D0+4374~4404o4004.XSD6.90042aiao661Oe34CSoi54Oo3347,9074~33iPiCP544CI14ICP0.19412.09ioo03712,233Oe4$j1D.OSS4+26014,390Ogo747.XP3Oe499To112413CC,ccca.2109.7zpOo272S.OS20.2i77.Xi%40~000loBQSlo7i4Oe3420'370F4123561a+7990+4000maqmla,Ca~caa'(<)~3.SA.0.794CeYOKSKCVATZOSS re'LEALg4760~VmsCaYISaOSSY auSSStVSmCWe~ | |||
2PSOlTADRRCIRSLCE rCatYklstt3~2laProject6783Page16of298/29/96 LeakaeLimitCalculation forStLucieUnit1Fr,r:azrI COars4IZsaT1:ON9atlYaT.wc'QOe4'~00OFRSCORDggda.I,I$$5taaaa.31,1595mamaiaXaat2.'F ma~~$~455CrOrmauD~ZeCAl405$N2CARDmygggXCaLSTRIXLITT NLTammYMofORRI)14-gagSammrunn(~)4~7de12I31515~14)140+0400~20$.L.g$4O.$15,0.07$O.4OO50~440'~$0Ci2'N457K0~0044~4400+W$O.C330.$3402$540000.04020~OC10,4454~CCC4'34a.dl20~Oaa300124~CI549174~5040'$$D044loOOR4~551'.7199.4091ECI14.$33le544loa7072.4CS$.$$54~012OecccI55$d4540DI2oea4025579~7404049035$I,DIC0,5470D$2D~DODSOe025Oe507i,$cdI12501110'00094F0454+7792+0400~54$OaOC10~OIQ000254~QLSI.0,$7502$40025d4004.4$2O.Z<CO.idesD.O12O.ODDO.OOD20.4110,3714,1554,0IQ440040404.0374;3530,19$0,11400110,444O~D370~70$Oad1$Oa057DeOOODeooo500124'704,5$$0III00040~004C0457435$O,dds0I7$0~ODO0~400Ledsi10~CC$3734IO$$13'$7loo33$2.127$.5$54SCSCo<54O.$$17.0310.7$4$-11$I4h77'l~I1$7$11$Ia1$$4.$3050+531$.75514.41$C.3040.4704.41234.4$39.$3100000$55QQXLZICATX%)RTTOTALS(I)i30e4$39d31t>455~mme$45maxI$7co~~5254OaYO555aVmXara i2CCC~$5R~~teanaai2S.LSLProject6783Page17of298/29/96 | |||
LeakaeLimitCalculation forStLucieUnit1rrORZDa9O~SRaZXOHWOOXSAHYIToMCZEPULSED'ERZOD OtRECORDSZta.1>1555taDna.31,1995ILQQDALQQPOQTOFVXQCQQTFQQQUQXCT QFICEDDIQQCTZOQ tiZHD89REDSYVERTXCLLSZRiZLZTY CLTEOORY9ASQQXXXC)MLQOQFE0$$aiQQl~)10-HRTRRHZ'995DlaPQist6~1212-1919-2i)2i1O,lioD757O,ial0,0000~0000000O.QtiO.QCS0.6564,4290~OOOO.OOO41StdSltI17541<Idddn0400411109770$040it20~00004005oohitIziti1NQ417loodno4~400C.i35Ioi34CD7532,iCI7,99$2+171t~ict2oci~to91CC0ICIIeC221.2950.1454.429O.non'.3997.CCQE70.0991,3731.2370.2664.12iO.OOO~'~IAOOa75i94.4570,977Oo77%Oe173Oe0620ooooooi70Oe196Oe032Oeaoo00+161.150%,056900490.0000000I0.3711,70C03i60~05700000~0002O.i701.521O,i200.025O.000O.OOO3O.zco1.69io.7170.067o.aaoo.aooi4.25lL.5751,7440,1730.00000005Oa296Ie1124~7540~062oo4004~04060.23sx.aaaO.c70a.a37O.aaaa.aaa3126CeSS55o$%7te2421,7317e4472255C212251055622i365.5992+755Ce376i+1%07.26C2.325C.iia1~030c~acl53,5612DOCSI272621590,2230~00039.759T.lit0~000095SOOZu,aa22aaaVTOTQLtS)c1$.764t.littYDMsavazxaaas Faa~<tacoVALIDCLT!RORYC!%%5%TZOSB I3216IQXQFQQOXBTJLOE FURZCARi36+712Project6783Page18of298/29/96 LeakaeLimitG;;Icu/ation forStLucieUnitfFLORIDA1OVSRCr5IORTCOWPAHYSTLOCXRPLANTPERIODOPRECORDsaTi$11)XS)5hoGad31~1$5SmtDmLLAapaILTO3maaxDTmLYqmddcY cN'mnzRRCVXON ADDIflRDJtDERDAYVRRXZCDLL'RT5LZLZLZTY CSLTYCQ5LY LO~NRXERltZQQCORCD(Cgh}4753233-1!15i24Q40~0870+025ooodo0.0444~ODD0000Oo1132F9670~45200374~4400400Redda0004o.oino.474o.os7o.oooo.oooo.dooD~037Ood57.,0+0040~040OoodoOodoo50.412oe113.Oo1%1OoddoOidoo0~0004049oexdd0+057404400000ddoOo0120+0740~0040+0120~dao00004Ood2%4+324Oeo'NoedooOeaooOoddo40$%3~OC30."3455.92S0+3245I070023S7.2160334'$44OaadtCodC3Oo223Ce2330.074o.154o.oedo.aooo.oooo.doo0.4055.335t.o0.449~4~223Oedoododdo0~000ooddd.40~03704090~0000~0000~00000004~062Oo7540+037dodda0~0040+0444.4490,3220.0000.04000040~0000~0070~1530000Ooooo0~4040~400a.o.1240.223a.oooO.oooO.oooo.odo4.4620.3730.037O.aaaa,aaoO.oaaOa2724~4394,34C4'43Oi4705e397d44549470~9535399Qi3715+0200+2473o905O.lcd2.4750.433O.OZDO.ROOO.doo4.7bSS355a,adoaPACQQXLLCAZZCO$LYTOTALt9)I47555135LYOBCRLVATZOdd tOIYSASLc5760VLtXDCATNZanrOaa~7LTZCed a357~IZRCXRX)lC3t POXYCMLs4.425Project6783Page19of298/29/96 LeakaeLimitCalculation forStLucieUnit1>>ORI>lLPOSSar.IrasecoeypltYSTeIUCXI~FERIODOFlLRCCRDsalan1i1%55toOea31'955AlallBLLlofti'KtT QFICXNTPRRQQRECY OPlllsa'DIRRCTIOR JLRDWZHQBPEEDBYVRtTXCALBXLBILZTZ QLTEQCRYPABDCILLClLT5445Y aICTORKElL1~3la~lt5TER NIXD5PXR)ii7li1212~141)~24j2(BECTQRpcT,5px5a104.044.Oo052Poaao4444Oeooa4~4044-0120.052D.oooO.oaoO.aaoo.ooo41250.0740,0404.0000~0404.4044.4524.2coo.aaoo.ooo4.444o.ooow4.052o,i24O.oooo.aaaO.aaOO.oaoL5D.4040,4254,0004,0040,4440040L504374~4440.4404.4440~4044~ooo4.0DDosaoo0~000Dsoao4'040.044F0040.42S4.0000.0400.0000.4400~004D.aaoo.ooaO.OOoo.aooo.aao~4.0044412.4ODDF40400000~0005D.ooo0.00oo.oao0.404D.oaaD.aao4.4120.012o.ooo0.012a.oaoo.aaa4,0124~ODP0,440a,aaa4,4444~0000.02504124.4440~0000~00050'124074a+0000444a+Dao0F4040,4004.4004~0254550Da0000~4400+0123$004,0000.000Oopl77Sll0+4122oloo4+0455'754.457a.i2SOoIIIli44iDe07445504+214I.7520.32245550442445<442%4,4%00,0272'578DA05I0514.4124~4124~4444oppPASQUILLCLTSQORYTOTAL{0)c1.45l4.5170.0404loi4445i7I"IO555R~V1455 faRYQAR1l750'lALIDCLTIOORY4355avaTIecas 124~PSRCSNI7ea raaIsaa<1.374Project6783Page20of298/29/96 LeakaeLimitCalculation forStLucieUnit1FuoazoaFowzarzzosTccNsaNY$T.MCUSPhhHTFIS3QQOFMCCmzZan.1,1595taSec.31,199$hÃKTGLLRRQCRTOFHUtCKgg?REQX!RCY OFMZSDDIRECT205t AXDVXSQSPREADRTVR$LTZCALSTASI?yTTY CLTEQORY10-XSXXameSWaa(mph)47de@Q-1$i924)246NCTQRMESICE'.SPKCD0~2$42077202$0.27210000oaoIddR7,525O.iad1.dti2,7330.5320.025O.aaa02472.5233.7691.3110.2230.10040.14$2,275.3,4$71.$9510740.1000~1$127205~00$0~7300~0040~OaaC0~2352,472I79$17310.04$0,0407a~1731.$1$24$10~$1501$50.0125+391$.316boad29.336Vo5$0!.435$.$19$~5$15e2$75455S,5CI9.472021014222.$321,34$01$50000,5!97t500o.ill2.1522.5$71.aa2o.odvo.olsLo0.2$I2e$70152$04$$0~0450~000L14~SC92ob$$0~$1$D2990DDO0+daoL20~$$01ad970~$$$D~099DD490odL1LlO.ltc3.01711500.3220~1120000L4044$41553.2di03$30ooo1000L50~4$$2e2512~071Oe2410~0000~daao.iis2,4613,l510.309O.aoaa.oaaC0$49.05$5+527V.df34ad416~0$44+4d26F447I~$97CD702$,24$733d50337.3626.5667.$745o3$73$~90243255114$$O,tio0d49111aOOO$.3200.0000$'MQUZLZsCATER~TDVAb('Ir)I111~000aaN&%%$+BXQtLY05$$3MLTXORSPCSYEARc47$0r~CATCCOLYOSSENULTXO3td | |||
<$0$7DLTI915tCLÃflCR VCRYRMtt92.317Project6783Page2lof298/29/96 LeakaeLimitCalculation forStLucieUnit1iodine131Concentration intheControlRoomSt.Lucieunit1controlroomwithRG1.78/1.95 assumptions GWH8/20/96SAICproject6734DataforisolatedcaseRef11(FSAR148) | |||
Ref10Controlroomvolume56,292cuftControlfilteredinlet100cfm100cfmFilteredRecirculation 1900cfm(2000-100) | |||
HEPAFiltersEff.997Unfitered inleakage 56cfm34.2cfmcalculated BestestimatemodelUncertainty rangesconsidered inestimating theIPFinMonteCarloSimulations forleakagelimitThisshowstheresultsofmodelingthetransport andconcentration ofiodineI-131fortheStLucia1controlroom.I-131releasedfromaMSLB/SGTL movesfromthereleasepointtotheintakeoftheventilitation systemAconcentration (release'/Q)thentothecontrolroomthrougheitherafilteredorunfiltered path(CRI).Bistheconcentration ofl-131thatstaysinthecontrolroomvolume.Itisthedifference betweentherateofI131intoandoutofthecontrolroom-(i.e.,theIodineProtection Factor(IPF)).Theinputdatafromcontrolroomdesignfeaturesareusedtocalculate theIodineProtection Factor,andquantifythetimedependent concentration inthecontrolroomassuming thatapostulated mainstreamlinebreakhasoccurred. | |||
Thisproducesthebasisfortheconstantsourcetermassumedfortheairinthecontrolroom.DatafortheSt.LucieControlroomparameters aretakenfromRef10and11forisolatedcondition. | |||
Normalunfiltered flowintothecontrolroomis750cfmwhichisisolated35secondsafterclosesignal.Themodelforisolation belowtreatsbothunfiltered inleakage andfiltered. | |||
Therefore, thepublished filterefficiences fromFSARwereappliedincalculations. | |||
Theunfiltered leakageistreatedasdistribution toapproximately represent the35secondclosingtime.Inputdataforthecontrolroomdesignfeaturesmeanvalues:LU:=.06ltrLF:=.11hrLR:=2lu'r@:=.95Ffe'.=.95A,:=.00358 lu'nfiltered inleakage (volperhr)-.06testtoshowc.08Filteredintakeflow-.2to.05Recirculation flow-2.3to1.9Recirculation filterefficiency | |||
-.90to.997Intakefilterefficiency- | |||
.90to.997Decayconstantfor1131T1/2=8.05dayCalculations forcontrolroomdesign:Transport rateintotheControlroomsec.Transport rateoutoftheControlroomsecCRI:"-LU+(I-Ffs)LFCRI=1.819'10'time4tCRO:=LF+LU+FrsLR+A,CRO=5.76'10'timeiodineProtection FactormeanvalueCROIPF:=-CRIIPF=31.658Initialeventconditions: | |||
Initialamountofl131accident. | |||
0:=1.'oncentration factorattheintake,AoassumedtobeconstantfromfromreleasepointComputeremovalandincreaseconstants: | |||
Functions forl131Transport intoControlroom:kl:=CRIkO:=CROA(t):=AXeii(t>:=--(e'e'"kOtkl.tQkl-kOt'.=0lu,.25hr..24hrt2:=0Itr,1.0'hr..12hrProject6783Page22of298/29/96 LeakaeLimitCalculation forStLucieUnit1Appendix8CUMULATIVE PROBABILITY DISTRIBUTIONS FQRX/QANDLEAKRATEThisappendixprovidesgraphical illustrations ofthedetailedsitespecificassessments. | |||
FigureB-1presentsthecumulative distribution forX/QattheEABforSt.Luciebasedonthemeasuredatmospheric conditions described inAppendixA.Thisfigurerepresents allthecombinations ofwindspeed,direction, atmospheric stability classattheEAB.Theflatportionsofthecurveareduetotheconstantdistances totheEAB.FiguresB-2throughB-4presentfamiliesofcurvesfortheleakagelimitasafunctionofconfidence level.Theywereobtainedbycombining thedistributions fromtheSt.Luciespecificatmospheric dosemodelsforthe95%99%andworstcasemeteorology conditions attheEABwiththegenericreleasemodelsforI>3>PASandAISconditions basedonthethyroidlimitof300rem.Selectedpointsonthesecumulative distributions providethedataforTables2and3.FiguresB-5presentstheequivalent ofFigureB-1fortheControlRoom.FiguresB-6toB-8aretheequivalent ofB-2toB-4.Thesecontrolroomleakagelimitdistribution providethedataforTable4and5.Project6783Page23of298/29l96 LeakaeLimitC"/'u/ation forStLucieUnit1Cumulative Frequency forx/QatEASforSt.Lucie(meteorological datafor111/95-12/31/95) 1.00E-031.00E-041.00E-OS1.00E-06O'.00E-07 1.00E-0800.20.40.6Cumulative Frequency FigureB-1Cumulative Frequency ofX/QattheEAB0.81.00E+09Ea.1.00E+081.00E+07m1.00E+06~o1.00E+05o1.00E+04I1.00E+030~1.00E+021.00E+01I-131ReleaseResulting in<300rematEAB,Stability E(95%meteorological condition) | |||
-----Pre-accident SpikeAccident-initiated Spike0102030405060708090100Cumulative Percentage (Confidence Level)FigureB-2Confidence vsleakagelimitattheEABforAISandPAS.O95%meteorological conditions Project6783Page24of298/29/96 LeakaeLimitCalculation forStLucieUnit11.00E+08Eo-1.00E+07I1.00E+06~1.00E+051,00E+04m1.00E+030~1.00E+021.00E+01I-131ReleaseResulting in(300rematEAB,Stability F(99%meteorological condition) | |||
-----Pre-accident Spike-Accident-initiated Spike'tl~0102030405060708090100Cumulative Percentage (Confidence Level)FigureB-3Confidence vsleakagelimitattheEABforAISandPAS899%meteorological conditions 1~OOE+08E~~1.00E+07I1.00E+06~1.00E+051.00E+04m1.00E+03O=1.00E+02l-131ReleaseResulting in<300rematEAB,Stability 8(worstobservedmeteorological condition) | |||
-----Pre-accident Spike-Accident-initiated Spike%w~1.00E+010102030405060708090100Cumulative Percentage (Confidence Level)FigureB-4Confidence vsleakagelimitattheEABforAISandPASI99%meteorological conditions Project6783Page2Sof298/29/96 LeakaeLimitCalculation forStLucieUnit11~00E-02Cumulative Frequency forX/QforControlRoomatSt.Lucie(meteorological datafor1/1/95-12/31/95) 1.00E-03E1.00E-041.00E-051~OOE-060.20.40.60.8CumulatlveFrequency FigureB-5Cumulative Frequency ofX/QatthecontrolroomintakeI-131ReleaseResulting in<30rematControlRoom,Stability D(95%meteorological conditions) | |||
-----Pre-Accident Spike-Accident-initiated Spike1.00E+08Ea.1.00E+071.00E+061,00E+051.00E+041.00E+03O1.00E+021.00E+010102030405060708090100Cumulative Percentage (Confidence Level)FigureB-6Confidence vsleakagelimitforcontrolroomforAISandPAS895%meteorological conditions Project6783Page26of298/29/96 LeakaeLimitCalculation forStLucieUnit1I-131ReleaseResulting in<30rematControlRoom,Stability F(99%meteorological conditions) | |||
-----Pre-accident SpikeAccident-initiated Spike1.00E+09o1.00E+081.00E+07m1.00E+06~o1.00E+05o1.00E+04I1.00E+0301.00E+021.00E+01~~0102030405060708090100Cumulative Percentages (Confidence Level)FigureB-7Confidence vsleakagelimitforcontrolroomforAISandPAS899%'meteorological conditions 1-131ReleaseResulting in<30rematControlRoom,Stability G(worstobservedmeteorological condition) | |||
-----Pre-accident Spike-Accident-initiated Spike1.00E+08fa.1.00E+07o1.00E+06~1.00E+051.00E+04ctr1.00E+030~1.00E+021.00E+01e~0102030405060708090100Cumulative Percentage (Confidence Level)FigureB-8Confidence vsleakagelimitforcontrolroomforAISandPAS8worstobservedmeteorological condition Project6783Page27of298/29/96 LeakaeLimitCalculation forStLucieUnit7AppendixCSCREENING METHODOLOGY Thisappendixdescribes thescreening processforusingthegenericleakagelimittableswhosepurposeistoindicatethepotential foradditional marginandjustifyasite-specific analysis. | |||
Itmakesuseofthetabulated resultspublished inEPRITR-103878, "Methodology forConsidering Uncertainties inI-131ReleaseandDoseLimitsforaPostulated Accident." | |||
Thescreening assessment stepsare:1ObtainPlantSpecificPhysicalDataa.St.LucieminimumdistancetotheExclusion AreaBoundaryis1561metersb.BoundingAtmospheric Dispersion TypeforEABandCR(ClassEisthe95%boundingatmospheric condition) c.Categoryofthecontrolroomprotection isTypeB.2.ObtainGenericAllowedleakagedataforEABandControlRoomandverifythatlocalengineering assumptions apply.a.UsetabularresultsfortheEAB(Tables5-1and5-2inReference 3)b.Usetabularresultsforthecontrolroom(Table5-3inReference 3)3.Verifysourcetermassumptions forthetwoaccidentmodeltypesa.Selectthegenericpre-accident sourceterm,whichistypically themostlimitingat95%confidence. | |||
The95%confidence boundpre-accident sourcetermcomesfromthedatafittingprocessandtheallowedleakageis33timesgreaterthantheStandardReviewPlan.b.Selectasite-specific modelofthesourcetermifconditions arenotboundedbythegenericsourceterm.4.Determine thegenericallowedleakagelimita.Lookuptheallowedleakagefortheminimumdistanceandcontrolroomtype,andselectallowedleakratesfromscreening tableswhichrepresent thecaseforaleakagethatwillnotexceedthedoselimitswith95%confidence asshowninTableC-1.Assumeboundingstability class(FforEABandAforcontrolroom),orusetheFSARallowedleakage.Project6783Page28of298/29/96 LeakaeLimitCalculation forStLucieUnit1TableC1.Screening resultsfordoselimitedleakageat95%confidence level(usingTablesfromRef.3)EAB,ClassFEAB,ClassEControlRoom,TypeBPre-accident Spike(gpm)331012,100545Accident-Initiated Spike(gpm)12,90044,0001,700b.Fortheconditions showninTableC-1asitespecificdetailedevaluation toproducea95/95%confidence leakagelimitestimateusingthemeasuredsitestability classfrequency, windspeed,direction anddistanceislikelytodemonstrate significant margins.5.Comparetheleakagelimitwiththeestimated steamgenerator leakagebasedonNDEmeasuresinsupportofcondition monitoring andoperational assessments. | |||
UsingLeakageLimitResultsAsuitablemarginbetweenthegenericleakagelimitfortheEABandthecontrolroom,andtheprojected EOCsteamgenerator leakagecanbecalculated forvariousdegreesofconfidence (e.g.,theratiooftheprojected EOCleakageat95/95tothe95/95allowedleakrate).Ifthisisasmallnumber(i.e.,lessthan0.1a),thenthegenericscreening processclearlyindicates thatthesitecharacteristics providethecapability ofmeetingtheregulatory doselimits.Amoredetailedevaluation canbeusedtodemonstrate effectiveness ofotherplantspecificfeaturesinproviding additional protection forkeepingpredicted accidentdoseswithinregulatory limits.Thevalueof0.1issuggested asanacceptable marginwhenscreening valuesareused,becausetheanalysisisbasedonmeasuresofI131thyroiddose.Thevariation betweenthewholebodyandthyroiddoseinasampleofFSARsindicates thatthedosesfromallisotopeswouldbeboundedifthemarginwas0.1.Adetailedassessment whichincludesevaluation ofthewholebodydosewouldremovethisassumption. | |||
Project6783Page29of298/29/96}} | |||
Revision as of 14:49, 29 June 2018
| ML17229A094 | |
| Person / Time | |
|---|---|
| Site: | Saint Lucie |
| Issue date: | 08/30/1996 |
| From: | JOHNSON R W, OTIS M D SCIENCE APPLICATIONS INTERNATIONAL CORP. (FORMERLY |
| To: | |
| Shared Package | |
| ML17229A091 | List: |
| References | |
| SAIC-05-5049-05, SAIC-05-5049-05-6734, SAIC-5-5049-5, SAIC-5-5049-5-6734, NUDOCS 9610280084 | |
| Download: ML17229A094 (34) | |
Text
St.LucieUnit1DocketNo.50-335-96-273Enclosure 3SAIC05-5049-05-6734-500 STEAMGENERATOR DEGRADATION SPECIFICMANAGEMENT (SGDSM)LEAKAGELIMITCALCULATION FORSTLUCIEUNITa'lef'nEmployee-Owned CompanySAIC05-5049-05-6734-500 AptechAgreement Sept.,1996RevisionAPREPAREDBY:oem:KBAHNEDSY:APPROYEDBY:qe~oa8008+
9iXoaePDR'DOCK05000335PPDR10260CampusPointOrive,SanDiego,California 92121(61915466000Othe'AiOOirceeiArououeioue.
Bosion.ColoieooSonnyg.Oevion,Hunt~le.LievizuieAnoeieaAfcleen.Oe>>Ridge.OiienoapsioAliaSeenie.enoruoeon LeakaeLimitCaculationforStLucieUnit1TableofContentsPageINTR0DUCTI0No~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~eeloo1ETHODOLOGY
.....................................................................................1 MRadiation ReleaseModelLeakageLimitModel.QualityAssurance,.
~~ooooo3EAKAGELlMIT...................................................................~......~...........
3LScreening Assessment.
BasicAssumptions
~~~o3~o~o4DetailedCalculation..
~~~~~oooooo~~oooo4PlantSpecificData.~o~o~ooooo5ESULTSo~~~~~~~~~~~~~~~~~~~~~e~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~oo~eooo6RScreening Assessment.
~oo~oooooooooo6 DetailedCalculation.
~~~~~~~~~~o0~~~o~~~~0~~oooo~o70NCLUSi0NSo~~oooooooooo~~~oo~oo~~oo~eo~~oo~~~~~oo~oo~oo~~oo~ee~~~~~~~~~oooeo~~~~~oe~oooooooeeeoo 9CEfERENCES.........................................................................................1 0RAppendixAMeteorological AndSiteDatafromSt.Lucle....................11 AppendixBCumulative Probability Distributions forX/Q&LeakRate..23AppendixCScreening Methodology
...........................
~~--------.2 8Pageii LeakaeLimitCalculation forStLucieUnit1ListofTablesandFiguresPageTable1Screening resultsfordoselimitedleakageat95%confidence level...,...,.7 Table2.LeakagetoMeetDoseLimitsattheEABforaPre-Accident Spike............9 Table3,LeakagetoMeetDoseLimitsatControlRoomforaPre-Accident Spike..9Table4.LeakagetoMeetDoseLimitsattheEABforanAccident-Initiated Spike..9Table5.LeakagetoMeetDoseLimitsattheCRforanAccident-Initiated Spike....10 TableC1.Screening resultsfordoselimitedleakageat95%confidence level.....292527Figure8-1Cumulative Frequency ofc/QattheEABFigure8-2Confidence vsleakagelimitattheEABforaisandpas95%meteorological conditions
~~~~~~~~~~~~~~~~~~~t~~ttrt~~ettotooo~oottott24 Figure8-3Confidence vsleakagelimitattheEABforaisandpas99%meteorological conditions Figure8-4Confidence vsleakagelimitattheEABforaisandpas99%meteorological conditions
................25 Figure8-5Cumulative Frequency ofc/Qatthecontrolroomintake,.~~..........26 Figure8-6Confidence vsleakagelimitforcontrolroomforaisandpas95%meteorological conditions Figure8-7Confidence vsleakagelimitforcontrolroomforaisandpas99%meteorological conditions........................................
~.~..~...~.......~............................27 Figure8-8Confidence vsleakagelimitforcontrolroomforaisandpasworstobservedmeteorological condition Pageiii
LeakaeLimitCalculation forStLucieUnit1INTRODUCTION Thepurposeofthiscalculation istodetermine thedoselimitingsteamgenerator tubeleakageforapostulated mainsteamlinebreakaccidentconsidering St.Lucie'ssitespecificconditions.
Thepurposeoftheleakagelimitcalculation istoprovideasitespecificleakagevaluethatwouldnotexceed10CFR100(>l andGeneralDesignCriteria19accidentdoselimitswithahighdegreeofconfidence.
Theconfidence levelrecommended intheindustryproposedmethodology forthiscalculation isa95%confidence levelonradiation doseforatmospheric dispersion conditions forthe95percentile ofobservedconditions.
This95/95valuecanbeusedtoquantifymarginsthatexistbetweentheestimated leakageforamainsteamlinebreakduetothesteamgenerator condition andthedoselimitingleakage.Thiscalculation usestheprobabilistic option@Iforquantifying theleakagelimitforbothcontrolroom(CR)operators andindividuals atexclusion areaboundary(EAB).Thecalculations usesitespecificdatacollected atStLucieformeteorological andplantsystems.METHODOLOGY Thebasisofthemethods,assumptions andtoolsforthesecalculations areoutlinedincurrentdocuments providedbyEPRIPIandNRC(41insupportofsteamgenerator integrity rulemakingPl.
Thecalculation isdividedintotwoparts:ascreening assessment andadetailedcalculation.
Themethodology forcalculating theprimarycoolantaccidentleakagelimitisusedsolelytodetermine theconditions thatwouldresultinI>3>releaseslargeenoughtoexceedradiation doselimitsataspecified confidence level.Theydonotconstrain leakagebasedontheaccidentassumptions ortheinternalcharacteristics ofanoperating plant.Therefore, theseanalysescanyieldleakagelimitvalueslargerthanallowedbytheaccidentassumptions orthephysicalcapabilities oftheplant.Theleakagevalueresultsshouldnotbetakentomean"real"plantcapabilities, orthatmarginsareavailable uptotheseleakagevalues.Rathersuchresultsmeanonlythatradiation doselimitsarenotexceededforI>3>releasescorresponding totheseleakagevalues,aslongastheplantiscapableofoperating withinthestatedengineering assumptions.
Iftheplantoperatesoutsidetheseassumptions, thelimitsonleakagemustbebased,onconsiderations otherthancompliance withdoselimitsforthepostulated mainsteamlinebreak(MSLB)accidentwithassociated steamgenerator tubeleakage(SGTL).Project6783Page1ot'98/29/96 LeakaeLimitCalculation forStLucieUnit1Radiation ReleaseModelThephenomena ofinterestthatleadstopotential radiation exposureistheincrease.
iniodinereleaseratefromthefueltotheprimarycoolantwhichstemsfrompowerandpressuretransients.
Themagnitude ofthistemporary increaseintheiodinereleaserate(calledaspike)represents asourcetermforthepostulated MSLB/SGTL accidentpressureandpowertransient.
Twotypesofiodinespikingeventsareidentified inthestandardreviewplanmethodologyl6l.
Thefirstisatransient-induced spikethatisassumedtooccurpriortoaMSLB/SGTL eventorapre-accident spike(PAS).Inthiscasethepostulated accidentisassumedtooccuratatimewhentheiodineconcentration intheprimarycoolantismaximum.ThesecondeventinvolvesaspikeinducedbytheMSLB/SGTL eventitself.Forthiseventtheprimarycoolantiodineconcentration ispredicted onthebasisofaprescribed releaseratefromthefueloranaccidentinitiated spike(AIS).Bothofthesesourcetermsareconsidered inthescreening assessment andthedetailedcalculation asrecommended intheSGintegrity rulemaking documentation.
Thedataoniodinespikinghasbeengreatlyexpandedoverthedecadesincethereviewplanwaswritten.AstudyoftheiodinespikingdatabyPostmat7l wascarriedouttoquantifythepeakiodineconcentration (p,Ci/g)fornearlytwohundredeventsandreleaserates(Ci/hr)fromnearlyonehundredeventsatavarietyofPWRs.Bynotingthatthedistributions ofspikeeventsarerepresentative ofthepopulation spikesthatcouldexistpriortoandresultfromMSLB/SGTL events,Postma'siodineconcentration datawereconverted intodistributions forreleasefromthePWRsecondary systemtotheenvironment asafunctionoftheprimarytosecondary leakrate(Ci/gpm).
AgenericMSLB/SGTL PWRthermalhydraulics modelwasusedtoevaluateareference 100gpmleakfromtheprimarytosecondary system.Thecombination ofspikedataandtheleakratewasusedtoproduceI>3>releasedistributions asafunctionofleakrateforthepostulated accidentasdescribed inRef.3.Thismodelprovidesgeneric"bestestimatewithuncertainty distributions" forI>>>releasefromthesecondary sideofaPWRasafunctionofthePASandAISsourcetermsandtheprimarytosecondary leakage.LeakageLimitModelForthisleakagelimitassessment thegenericaccidentreleasedistributions werecombinedwiththeotherdosemodelelementssuchassitespecificSt.Luciedispersion factorsdetermined bythelocalmeteorology measuresusingMonteCarloSimulation.
Theresulting distributions areusedtoassesstheleakagelimitthatwouldassurewithahighconfidence thatpostulated accidentdoseattheexclusion areaboundaryandthecontrolroomdonotexceedthedoselimitsintheregulations.
Sitespecificmeteorology andfeaturessuchasEABdistance, andcontrolroomfeatureshavethelargestimpactonthelimitingleakrate.Project6783Page2of298/29/96 LeakaeLimitCalculation forStLucieUnit1Useofthegenericsourcetermsrequiresseveralengineering assumptions.
Thesearethattheprimarycoolantactivityismaintained withinthetechnical specification limits,andthattheprimarymakeupsystemsarecapableofmaintaining primarycoolantinventory attheselectedleakratelimit.Noiodineplate-out isassumedinthesteamgenerator, thusthegenericreleasetermhassomeelementsofconservatism whichcanbere-examined ifnecessary.
QualityAssurance Allcalculations forthisanalysishavebeenconducted according totherequirements ofSAICqualityassurance procedures.
Theseinclude:documentation ofallengineering assumptions, independent reviewofengineering assumptions, reference citations forallparameter values,independent reviewofthecontentsofallcomputerized spreadsheets, confirmatory calculations (eitherbyhandorusingaseparatecomputercode)forallspreadsheet calculations, andindependent reviewofallfinalreports.Archivedcopiesofallcomputerized spreadsheets andassociated qualityassurance filesaremaintained bytheSAICprojectmanager.LEAKAGELIMITScreening Assessment Thescreening assessment isbasedontheresultsofgenericanalysesofuncertainty inradiation dosemodelsasafunctionofstability class,distancetotheEABandtypeofcontrolrooml3l.MonteCarlosimulations wereusedtodevelopgenerictablestodescribetheleakagevaluethat,with95%confidence, wouldnotexceedthedoselimitsin10CFR100andGDC19forthepostulated MSLB/SGTL.
Theleakagelimitisafunctionofthesitecharacteristics andtheI131accidentsourceterm.Thisleakagelimitisindependent ofthecalculation fortheprojected accidentleakagewhichusesnondestructive examination measuresoftheSGtubessuchasvoltsprojected totheendofcycletoestimateantheaccidentinducedleakagevalue.Modelsforthedosecalculations weretakenfromUSNRCRegulatory Guide1.78~81fortheEABandcontrolroom.Atmospheric dispersion modelsweretakenfromUSNRCRegulatory Guide1.145Ãl.Genericdataforcoveringtherangeofwindspeedsanddispersion parameters weretakenfromstability classdefinitions.
Modelinguncertainties forrelevantplantfeaturesarebasedonindustryaveragesratherthansitespecificcalculations
'and,therefore, represent greatervariancethanwouldbeobservedataspecificsite.Forinitialscreening thedoselimitingleakagevaluesweretakenfromtabulated resultsinRef.3.Valueswerechosenthatcorrespond tothesiteboundarydistanceforSt.Lucieandtheatmospheric stability classrepresenting dispersion conditions lessfavorable than95%ofthoseobservedatSt.Lucieduringcalendaryear1995~>ol.
Ofthetwosourcetermsconsidered, thePASisalwaysmorerestrictive thantheAISProject6783Page3of298/29/96 LeakaeLimitCali;ulation forStLucieUnit1atthehigherconfidence levelsabove90%.TheAISismorerestrictive atconfidence levelsbelow70%.BasicAssumptions Thefollowing assumptions donotappearexplicitly inthemethodology usedforthisanalysisbutarekeytointerpreting theresults:1)St.LuciewilloperatewiththeprimaryactivitywithinthelimitsstatedintheFSAR.TheI>3>releasedatabaseincludesmeasuresofI>3>releasedduringplanttransients fromplantsthatmaintained primarycoolantactivitywithintheFSARlirrutsonprimarycoolantactivity.
2)TheMSLB-SGTL transient causesnonewcladdingorfueldamage.3).Theprimarycoolantinjection rateisassumedequaltotheleakagethroughout thetransient.
4)Themakeupinventory islargeenoughtomaintainprimarycoolantinventory duringthecontrolled shutdownwhichisontheorderoftwohours.5)Thereisnoreduction inthesourcetermduetoplateoutinthesecondary system.6)The95%confidence levelisdominated bythepre-accident I>3>spike.Ingeneral,leakageratesgreaterthanabout400gpmareoutsidetheregimepostulated fortheMSLB-SGTR accidents considered here.Severalassumptions keytotheMSLB-SGTR accidentscenariodonotapplyabovethisleakagerate.Forexample,theassumption thattheinjection rateisequaltotheleakrateisbasedontheautomatic responseofthecontrolsandsafetysystemstotheMSLB-SGTR accidentwithoutoperatorintervention.
Aboveabout400gpmoperatoractionswillbeneededtocontrolsafetyinjection.
Inaddition, the03>releasemodelcouldchangeaccording totheaccidentscenariobeingexamined, Forexample,inlowerprobability accidents treatedinprobabilistic riskassessment studiesadditional systemssuchastheinjection systemcouldbeassumedunavailable, andwithoutcompensating operatoractionstorestoreinjection, releasesat400gpmcouldresultinhigherdosesduetocladdingorcoredamage.Theseissuesarediscussed inindustryreportspreparedbySGDSMcommittees l~.Thecladdingandcoredamagescenarios areoutsidetheboundsofthisassessment.
Therefore, thevaluesintheallowedleakagegraphsabove400gpmareconsidered notrepresentative ofthepostulated MSLB-SGTR accidenttransient.
DetailedCalculation Thedetailedcalculation usesplantspecificdatatodevelopa95/95doselimitingleakratefortheSt.Luciesite.Theobjective ofthedetailedcalculation istoensurethatnouniquesitecharacteristics causeamorelimitingcondition thanidentified bytheProject6783Page4of298/29/96 LeakaeLimitCalculation forStLucieUnit1genericscreening process.Thesesitespecificcalculations usemeasuredStLuciemeteorological data,site-specific distances tothesiteboundaryandthecontrolroom,andplant-specific controlroomcharacteristics.
Usingthesesite-specific data,valuesofX/Qwerecalculated forthecontrolroomandtheEABforeachofabout15,000individual meteorological observations takenatSt.Lucieduringcalendaryear1995.Atmospheric dispersion calculations usedtheequations specified inNRCRegulatory Guide1.145.Thesevalueswererankedtopermitselection ofthe95%,99%andworstobservedmeteorological conditions, Cumulative probability distribution ofX/QfortheEABandcontrolroomappearsinAppendixB.Dosemodelinguncertainties weredetermined fortheselected95%,99%andworstobserveddispersion conditions usingtheMonteCarlosimulation methodsdescribed inRef.3.Thepurposeofthisstepinthecalculation istoensurethatsufficient conservatism isincludedintheleakratevaluestoaccountforuncertainties indosemodelingwhileavoidingtheover-conservatism associated witha"worst-case" analysis.
TheMonteCarlosimulation incorporates uncertainties inthepostulated I>3>release,individual dosemodelparameters, andcontrolroom.Inthisdetailedanalysisthe95thpercentile of1000MonteCarlosimulations, basedonthe95thpercentile leastfavorable atmospheric dispersion conditions, wasusedtodetermine the95/95leakrate.Inaddition, 1000simulations wereconducted forboththe99%leastfavorable andtheworstdispersion condition observedintheStLuciedatasetto).Thesecalculations wereusedtoevaluatewhethersitespecificoutliermeteorological conditions couldresultinasituation wereradiation dosewouldbethelimitingconsideration insettingoperating marginsforleakrate.Cumulative frequency distributions forallMonteCarloanalysesarepresented inAppendixB.PiantSpecificDataMostofthedatarequiredforthisanalysiswereobtainedfromtheFinalSafetyAnalysisReport(FSAR)fortheSt.Lucieplantl<<l.
Additional data,including morerecentmeteorological datawereobtaineddirectlyfromstaffatFloridaPowerandLights>ol.
Thesedataarepresented inAppendixA.Theyinclude:1)Distancetositeboundaryinsixteendirections corresponding tothewindrosesectors.ForSt.Lucietheplantboundaryiscircularwitharadiusof1561m.2)Joint-frequency tablesofwindspeedanddirection forstability classesAthroughGbasedonhourlydatacollected atSt.Lucieduringcalendaryear1995.3)Datadescribing keyfeaturesofthecontrolroomventsystem,airexchangeratesandisolation features.
Project6783Page5of298/29/96 LeakaeLimitCalculation forStLucieUnit1RESULTSScreening Assessment Thescreening assessment providesonlyasimpleassessment toindicatethepotential forlargemarginsintheleakratelimit.Becauseindustry-wide, genericassumptions areusedinthescreening assessment andsite-specific assumptions areusedinthedetailedcalculation, itisunlikelythatthesameconditions willgeneratethesamelimitingconditions atagivenconfidence level.Screening resultsshowthatthepotential foralargemarginofsafetyontheleakagelimitexistsatStLuciebasedonsitespecificdoselimitingfeatures.
Italsoindicates thereisapotential forthecontrolroomdoselimittobereachedbeforetheEABlimitisreached.AsshowninTable1theleakagevaluesdetermined fromthescreening assessment for95%confidence ofnotexceeding thedoselimitsforapre-accident spikeare545gpmforthecontrolroomand3,310gpmfortheEABdistance.
Ifanaccidentinducedspikeisassumedthecontrolroomlimitis1700gpmandtheEABlimitis12,900gpm.Table1Screening resultsfordoselimitedleakageat95%confidence level(usingTablesfromRef.3)EAB,ClassFEAB,ClassEControlRoom,TypeBLeakageLimitPre-accidentSpike(gpm)331012,100545LeakageLimitAccident-Initiated Spike(gpm)12,90044,0001,700ForeachcaseshowninTable1thevaluesaremuchgreaterthantherecommended limitof200gpmcurrently proposedbyNEIduringthesteamgenerator integrity rulemakingprocess.Thisindicates thattheleakagelimitisnotlikelytobeboundedbydoseforeithertheEABortheCRforthisaccident.
Thatis,thereisapotential forlargemarginsondose,andtheleakagelimitdependsonplantfeaturesotherthandose.Thus,adetailedcalculation usingsitespecificdatafromSt.Lucieisjustified inorderto:1)verifythelimitingdosecriteriaforSGtubeintegrity intermsofleakagebytakingintoaccountthesitespecificmeteorology dataatStLucie,2)refineestimates ofavailable marginbyestimating theleakagethatcouldresultinadoselimitingsituation, and3)verifytheengineering modelassumptions thatapplyforbothscreening anddetailedmodels.Project6783Page6of298/29/96 LeakaeLimitCalculation forStLucieUnit1Thekeyengineering assumptions usedforthescreening leveliodinedosemodelsare:1)Duringnormaloperation theiodineconcentration intheprimarycoolantislimitedbytechnical specifications.
2)Theprimarycoolantinjection rateisequaltotheleakageduringthepostulated MSLB-SGTR accident.
3)AsinglegenericdoseanalysisequationwasusedtomodeltheEABleakagelimitinthescreening analysis(Le.,thedetailedanalysisselectsfrom3equations inRG1.145).4)Site-specific parameter valuesvarylessthanthegenericscreening (e.g.,theplantcrosssectionarea,A,hasnouncertainty foraspecificplant)5)Sitespecificwindspeedhasavariancedrivenbythedatabinsizeratherthanthewholerangeallowedbythedefinitions ofstability class.6)Thetabulated valuesrepresent anallowedleakagefortheMSLB-SGTR accidentassumingnoaccidentcausedcladdingorfueldamage.7)Sufficient defense-in-depth featuresareinplacetokeepaMSLBaccidentfromalsocausingcoredamage.DetailedCalculation Tables2through5summarize theresultsofthedetailedsite-specific calculation.
Table2presentsthedose-limiting leakratesattheEABforthepre-accident spikescenario.
Thisisthemostlimitingscenarioforestablishing marginsonleakageatStLucie.Thetableincludesthe95/95condition aswellasmorerestrictive combinations ofhigherconfidence levelsforbothdispersion conditions anddosemodeluncertainties, Compliance withthedoselimitattheEABdoesnotrestrictleakratestolessthan200gpmforthe95/95condition.
A200gpmlimitmaybeappropriate, ifhigherconfidence ofcompliance withdoselimitsattheEABisrequired.
Forexample,atthe95thpercentile onmeteorological conditions anda99%confidence levelforcompliance withdoselimits(e.g.,the95/99condition) requiresanaccidentleakageof211gpmorless.Thetablealsopresentsthe99/95andthe99/99conditions.
Theworstobservedmeteorological conditions requireleakagetobelimitedto403gpmfora95%confidence ofdosecompliance and110gpmata99%confidence level.Theright-hand columnofTable2indicates theconfidence levelondosecompliance thatwouldbeachievedbylimitingtheleakageto200gpmforeachmeteorological condition evaluated.
Table3presentsthedose-limiting leakratesatthecontrolroomforapre-accident spikescenario.
Nocondition limitsleakageto200gpmorless.Restricting leakageto200gpmachievesconfidence levelsforcompliance withdoselimitsofgreaterthan99%foreventheworstobservedmeteorological conditions.
Project6783Page7of298/29/96 LeakaeLimitCalculation forStLucieUnit1Tables4and5'present thedose-limiting leakratesattheEABandthecontrolroomfortheaccident-initiated spikescenario.
Ineverycase,limitations onleakagearelessrestrictive forthisaccidentscenariothanforthepre-accident spike.Table2.LeakagetoMeetDoseLimitsattheEABforaPre-Accident SpikeMeteorological Conditions LeakageLimitatStatedConfidence LevelforDoseModel(gpm)Confidence LevelforDoseModelStability Windspeedcentile(m/s)95%99%O200gpm95%99%worstE0.22-1.56F0.22-1.56G0.22-1.561,67021121411099.299.197.8Table3.LeakagetoMeetDoseLimitsattheControlRoomforaPre-Accident SpikeMeteorological Conditions Stability Windspeedcentlle(m/s)LeakageLimitatStatedConfidence LevelforDoseModel(gpm)95%99%ConfldenceLevelforDoseModelI200gpm95%99%worstDFG0.22-1.560.22-1.560.22-1.561,6501,7501,60042040138499.499.999.6Table4.LeakagetoMeetDoseLimitsattheEABforanAccident-Initiated SpikesMeteorological Conditions LeakageLimitatStatedConfidence LevelforDoseModel(gpm)Confidence LevelforDoseMadelStablllty Windspeedcentlle(m/s)95%99%200gpm95%99'/oworstEFG0.22-1.560.22-1.560.22-1.5653803,0401,6502,7801,310696N/AN/AN/AProject6783Page8of298/29/96 LeakaeLimitCah.'f//ation forStLucieUnit1Table5.LeakagetoMeetDoseLimitsattheCRforanAccident-Initiated SpikeMeteorological Conditions LeakageLimitatStated'onfidence LevelforDoseModel(gpm)Confidence LevelforDoseModelPer-Stability Windspeedcentlle(m/s)95%99%200gpm95%99%worstDFG0.22-1.560.22-1.560.22-1.566,1105,91055002,9102,9902,440N/AN/AN/ACONCLUSIONS Theresultsshowthattheleakagelevelneededtoproducedoselimitingconditions uptothe95/95confidence levelatSt.Lucieismuchgreaterthantheindustryrecommended upperboundof200gpm.~Thescreening resultsindicated thepotential forlargemarginsontheleakagewhichwasconfirmed withadetailedsiteassessment.
~Atthe95/95confidence levelthedetailedassessment indicated themostlimitingcasewasthepre-accident spikewiththecontrolroomandEABaboutequalat1600gpm,~ForaMSLB/SGTL of200gpmtheconfidence levelisapproximately 99/99thattheregulatory doselimitattheStLuciesitewouldnotbeexceeded, Sincedoseisunlikelytobethelimitingconstraint onleakage,theplantphysicalfeaturescanbeusedindetermining theleakagelimitforthepostulated MSLB.Examplesoftheplantphysicalconstraints thatcanbeconsidered aslimitsarethecombinedchargingpumpcapacityfortheSt.LucieplantFSAR,orthesumofthechargingpumpandhighpressuresafetyinjection makeupcapacity.
Project6783Page9of298/29/96 LeakaeLimitCalculation forStLucieUnit1REFERENCES 1.2.3.4,5.6.7.8.9.10.11.ReactorSiteCriteriainTitle10CodeofFederalRegulations, 10CFRPart100,USNRC,Washington D.C.,June24,1975.NEI,1996."Industry GuideforImplementing SteamGenerator TubeIntegrity Rule"Draft0,NuclearEnergyInstitute, Washington D.C.January1996.EPRITR-103878, "Methodology forConsidering Uncertainties inI>3>ReleaseandDoseLimitsforaPostulated Accident."
M.Otis,DBradleyandG.Hannaman, ElectricPowerResearchInstitute, PaloAlto,California Rev2March1996.ViewGraphnotesfromNRC-Commentsondoseuncertainty methodsEPRIreportEPRITR-103878 R1(1994)April1996..FederalRegister, NRCRuleRIN3150-AFO4, October,1994.NRC,NUREG-0800.
"Standard ReviewPlanfortheReviewofSafetyAnalysisReportsforNuclearPowerPlants,"LWREdition,U.S.NuclearRegulatory Commission, Washington, D.C.,July1981.Postma,A.K.,1995."Empirical StudyofIodineSpikeDatainPWRPowerPlants,"EPRITR-103680, Rev.1ElectricPowerResearchInstitute, PaloAlto,CA,November1995.NRC,1974.Regulatory Guide1.78,"Assumptions forEvaluating theHabitability ofaNuclearPowerPlantControlRoomDuringaPostulated Hazardous ChemicalRelease",
U.S.NuclearRegulatory Commission, Washington, D.C.,June1974.NRC,1983.Regulatory Guide1.145,"Atmospheric Dispersion ModelsforPotential AccidentConsequence Assessments atNuclearPowerPlants",U.S.NuclearRegulatory Commission, Washington, D.C.,August1976.PeteBailey,Personnel Communication "St.LucieMeteorology andCRData."August,1996.FloridaPowerandLight,"St.LucieUnit1FSAR"DocketNo.50-335version88-01Section9.4,(MicroFilmversion1988).Project6783Page10of298/29/96 LeakaeLimitCalculation forStLucieUnit1AppendixAMETEOROLOGICAL ANDSITEDATAFROMST.LUCIEProject6783Pagellof298/29/96 LeakaeLimitCalculation forStLucieUnit1TO:BillHannaman8Hoh/ardPippen,SAICFrom:Peter8.Bailey,FPL
Subject:
ResponsetoyourdataneedsSt.I.ucmoUnft0CroaWsa5onal Area:2867m'asedonRCS)64ftDfa,207AftHfaboveground.Sourca:Specification foranEmergency DoseCafcuhtian SystemfartheSt.LuciePfant",(HMMDoc.0804T?-8)
H.M.M.Assoc,October18,$982CantrofAcornEmergency RlbmtlonSystemInfeakago:
Assumed109elmSource:St.LucieUn@0UFSARg9.4.1,pg9.~(ammendment12, 12/93),Calculated tobe34.2cfm1/S"Vfsh,P,assumed100cfm,w/0.$2one-passfHtereffeclency, foremergency dosecafcufatfona (Q6.4.1stuH).Anemometer StartfngSpeed:1.0-1.6mphSourc9:StLuciaUnit1UFSAR,g2.3.3.3,pg2.3-33,undatedpage.MetDataforgjQCalcs:AttachedAnnualJFDforCY'95Thefoffeeing ninepages[nctudethe1996annualsummaryJFDIbyStability CI838,byVlindSpeedGroups,bySector,theyarefntheRegGufde1.2)suggested format.ifyouneedmoreofthhtypeinfo,justcall4078944179;lcanFaxcopi68ofthoUFSARpagesffthey'reneeded.Project6783Page12of298/29/96 LeakaeLimitCalculation forStLucieUnit1To:RLRechetteHmm:A.J.GonldDate:Februaryg1996Department:
SNAB~r~L~A+
Subject:
St.LacyJointFmqnextcy DfstrfhuQon Report,AgrtualReortinfxTHnclosedaxethejointGtquencydLstabuttons of10-meterwindcHrection axtdwhtdspeedbyatxnospheric stability categoryfortheSt.Laciesita.ThhxspaxtcoverstheFourthQnarter1995andtheAnnualReporting for199$.Thesetablesaxeiathefoxxaatsuggested byNRCRegahtotyegde
>>>TaM<A.~percentjonttdataxecovayvrasntetforatmospheac stability, windspeed,axutvtiaddirection, asxecomtnended bytheSecondPtoposedRevision1toNRCRegulataxy Guide1M.Porth6FourthQuarter,100percentjointdatarecoverywxLtrealized.
Fortheannuall995jointfaquencydistribution report,thejointdatarecoverypercentage was9%32.Kyonhaveanyquestions, pleasecontactmeat4071N4-4199.
CC'.Q.BaBeyR.E.Cox6.RhmidR.OhonBS-RC-96410 PBeProject6783Pagel3of298/29/96 LeakaeLimitC~.'culation forStLucieUnit1PLOaznaSOMSa4tZOSTCONFSNYST+LQCXStZJQCTPERIODOIRECgRSJagI<1999CODba.31'995ANNO)CoRSFQRTOFFRae30!T?SEQUENTOFNINGDXRECTXCN
~MINDSECBDSTVRRT3cgtr sTXDI.ZTY CATSOO2Y10KCrmLMamCFSm(ambii~7S~IRIS~MIt04)441O.OOOD.SSS1.113O.aita.aab4.0004~0040'VIIPssD.csvD0120000lO.oooo.ia21.3110.291O.OSVO.ooo40~ado0.173~127i4,13S4~00400045o.oooo.0991.3ss0.12iO.ooaO.oooCOoaaa0y025Xo444aeM50022Oaddb0~4000ODD4~0250,4120,0000~040sO.oooo.aooO.aoo4.0220.02204409o.oooo.oooo.oooO.ooa0.4000.012LO0-440oo037bl$5Oooit40000~404~~%0~3o.aab4.1CI0.210a.aitC.ois0.0124~0000+F145730sot904400aaaa.i04400,12iaeC92bobtt0abb0~4000~ODD0~Ott4~532O,oit0~0440~DOOC0d440.5321,9DiDOC20~4000,400LlO.oooO.osva.2330.414.b.ddbb.oob171tS145ISSSS8212J.VC9.51i1+593ta5141COS9.C14aobia12i340Oa03TIRe1334d23lb.dCbaeDI22520DOe27210.355bo39CtSltD442Il.i590+343tr7ti4~915$.739OASOtoVSOb-7dia+00028%C11~21C21250~I730~01SISoJCitIVif00000thSQUZ$4CL~Z~(l?iICSdi974C4ToSSRRWLTXON6 SOS.VIOLiSVCO~30CITZQCbtT 055ELV)LTXtNSi 1325~rEaammugg yesYmir~1S.123project67S3PageI4nf298/29/96 LeakaeLimitCalculation forStLucieUnit1PrrdRZOAPdltd'RdZrIOHTCOMPANYCZeZIR'PXJWTPERZOQOt.RECORDS Jan1199StoUdo31rZPPSRCHtNZRRPDRTCPPSRCsmVlrzguaWCY CPrkatODZRRCIZON 3MD'0IXSDSPEED3Y~TZCRZrSTR53reZTY CRZXCCRY1ASQdIZIe CLXXCRtYS0M'SLli310-armmesi5323(mphl47CQQld152iSCCXZDLPCTe1D.aaaaeld5015504370.044440410.4040.1514.45700250DDO4.440a.aoa0.13cO.opp0.037O.ooaa.DDD30~4004.2354.19940120~4250Daai0.4400xic.01364'250.4440.40050.4404.12i0.3.'734Did4400D400d0404Oe012Oe3iC4~0074444Oeoao4.004oeaa4Oe4C2O.oi904044~40400.4440.412O.ODO0.400O.OOD0.440~D.DDO0~0040~040Oeoaa0040Deooa4D-DDD.0.44+0~1244Oc24.412D.DDD4Da'0ae0250~OC200250~Oao4~DaaO.oooD.o27D.o7i0,41*o.oaoO.oaoO.aaa0.452O.o25o.o12o.oaao.oao0.4000.0570~0524~4124.4400.4000~04'00~0470~0410e0250~0044~4404.2727.ii14,2'72ICCD0470Ce1d1ae24$0.39503ddC.dd24~id510e617Oe11112DCC04125.2440~DDD0~000D~19d12~94401119e700oe12iSeC54oe49$de2350XCL7~692017396074i24le1LS0.4401.3111VDC4'704'3704403.92iCe97904400PRDQQZZIr CDTIedaRY TOTRZr]I)a3~52iQe979rT058ERVATTmrS R%'CSQtgl7CD~>cRT323aav d55savmzmdc 245AT%PERCRllT~
PdgYRRQ,r3.253Project6783Paget5of298/29/96 LeakaeLimitCalculation forStLucieUnit1rxoazoa3oMxaarzcssrvcowsass>QT.RUCKED~PBRIOQQPRECC$tSslaleLA1i)95anQdd31Ippp~~stamenor9lao32arseamsI(oY ormaossXsurcrxog
~mmamamssrvmxzcarcnmxz,rrr mnsooaYIO~mamamSO(aph)i~70~12111$IS~Xia24SXcTostQa2oO.aaao,x2c40374~0120~4004~0000040XxX4,X2i004$40000aaa44444XSId,XXX4~03700124~444O.OOO0.0374.037O.o12O.O12O.OOOo.aanOooao,4$2$,O,X72O,dip4OX24400O.oip002$4000OoaooOo4000dao0~OC2441744444ddo0~4004~4444~DPI0~DI'7omoaoP~OOD0~'444a+adoOsdS70,1114012OiaaaOaaooOeoooO~X344~1360.00044440~444OoaooO.X360.111OeaaD4~000Ooaoa>.4444-173.n.~i4.437o.aaoo.aao4aabd49942214.412O.aao4.040c4F4044,02'7033E4~47i4044oedao440444X2O.X2iO.aip440400120~004Deaaa4~40D0+4374~4404o4004.XSD6.90042aiao661Oe34CSoi54Oo3347,9074~33iPiCP544CI14ICP0.19412.09ioo03712,233Oe4$j1D.OSS4+26014,390Ogo747.XP3Oe499To112413CC,ccca.2109.7zpOo272S.OS20.2i77.Xi%40~000loBQSlo7i4Oe3420'370F4123561a+7990+4000maqmla,Ca~caa'(<)~3.SA.0.794CeYOKSKCVATZOSS re'LEALg4760~VmsCaYISaOSSY auSSStVSmCWe~
2PSOlTADRRCIRSLCE rCatYklstt3~2laProject6783Page16of298/29/96 LeakaeLimitCalculation forStLucieUnit1Fr,r:azrI COars4IZsaT1:ON9atlYaT.wc'QOe4'~00OFRSCORDggda.I,I$$5taaaa.31,1595mamaiaXaat2.'F ma~~$~455CrOrmauD~ZeCAl405$N2CARDmygggXCaLSTRIXLITT NLTammYMofORRI)14-gagSammrunn(~)4~7de12I31515~14)140+0400~20$.L.g$4O.$15,0.07$O.4OO50~440'~$0Ci2'N457K0~0044~4400+W$O.C330.$3402$540000.04020~OC10,4454~CCC4'34a.dl20~Oaa300124~CI549174~5040'$$D044loOOR4~551'.7199.4091ECI14.$33le544loa7072.4CS$.$$54~012OecccI55$d4540DI2oea4025579~7404049035$I,DIC0,5470D$2D~DODSOe025Oe507i,$cdI12501110'00094F0454+7792+0400~54$OaOC10~OIQ000254~QLSI.0,$7502$40025d4004.4$2O.Z<CO.idesD.O12O.ODDO.OOD20.4110,3714,1554,0IQ440040404.0374;3530,19$0,11400110,444O~D370~70$Oad1$Oa057DeOOODeooo500124'704,5$$0III00040~004C0457435$O,dds0I7$0~ODO0~400Ledsi10~CC$3734IO$$13'$7loo33$2.127$.5$54SCSCo<54O.$$17.0310.7$4$-11$I4h77'l~I1$7$11$Ia1$$4.$3050+531$.75514.41$C.3040.4704.41234.4$39.$3100000$55QQXLZICATX%)RTTOTALS(I)i30e4$39d31t>455~mme$45maxI$7co~~5254OaYO555aVmXara i2CCC~$5R~~teanaai2S.LSLProject6783Page17of298/29/96
LeakaeLimitCalculation forStLucieUnit1rrORZDa9O~SRaZXOHWOOXSAHYIToMCZEPULSED'ERZOD OtRECORDSZta.1>1555taDna.31,1995ILQQDALQQPOQTOFVXQCQQTFQQQUQXCT QFICEDDIQQCTZOQ tiZHD89REDSYVERTXCLLSZRiZLZTY CLTEOORY9ASQQXXXC)MLQOQFE0$$aiQQl~)10-HRTRRHZ'995DlaPQist6~1212-1919-2i)2i1O,lioD757O,ial0,0000~0000000O.QtiO.QCS0.6564,4290~OOOO.OOO41StdSltI17541<Idddn0400411109770$040it20~00004005oohitIziti1NQ417loodno4~400C.i35Ioi34CD7532,iCI7,99$2+171t~ict2oci~to91CC0ICIIeC221.2950.1454.429O.non'.3997.CCQE70.0991,3731.2370.2664.12iO.OOO~'~IAOOa75i94.4570,977Oo77%Oe173Oe0620ooooooi70Oe196Oe032Oeaoo00+161.150%,056900490.0000000I0.3711,70C03i60~05700000~0002O.i701.521O,i200.025O.000O.OOO3O.zco1.69io.7170.067o.aaoo.aooi4.25lL.5751,7440,1730.00000005Oa296Ie1124~7540~062oo4004~04060.23sx.aaaO.c70a.a37O.aaaa.aaa3126CeSS55o$%7te2421,7317e4472255C212251055622i365.5992+755Ce376i+1%07.26C2.325C.iia1~030c~acl53,5612DOCSI272621590,2230~00039.759T.lit0~000095SOOZu,aa22aaaVTOTQLtS)c1$.764t.littYDMsavazxaaas Faa~<tacoVALIDCLT!RORYC!%%5%TZOSB I3216IQXQFQQOXBTJLOE FURZCARi36+712Project6783Page18of298/29/96 LeakaeLimitG;;Icu/ation forStLucieUnitfFLORIDA1OVSRCr5IORTCOWPAHYSTLOCXRPLANTPERIODOPRECORDsaTi$11)XS)5hoGad31~1$5SmtDmLLAapaILTO3maaxDTmLYqmddcY cN'mnzRRCVXON ADDIflRDJtDERDAYVRRXZCDLL'RT5LZLZLZTY CSLTYCQ5LY LO~NRXERltZQQCORCD(Cgh}4753233-1!15i24Q40~0870+025ooodo0.0444~ODD0000Oo1132F9670~45200374~4400400Redda0004o.oino.474o.os7o.oooo.oooo.dooD~037Ood57.,0+0040~040OoodoOodoo50.412oe113.Oo1%1OoddoOidoo0~0004049oexdd0+057404400000ddoOo0120+0740~0040+0120~dao00004Ood2%4+324Oeo'NoedooOeaooOoddo40$%3~OC30."3455.92S0+3245I070023S7.2160334'$44OaadtCodC3Oo223Ce2330.074o.154o.oedo.aooo.oooo.doo0.4055.335t.o0.449~4~223Oedoododdo0~000ooddd.40~03704090~0000~0000~00000004~062Oo7540+037dodda0~0040+0444.4490,3220.0000.04000040~0000~0070~1530000Ooooo0~4040~400a.o.1240.223a.oooO.oooO.oooo.odo4.4620.3730.037O.aaaa,aaoO.oaaOa2724~4394,34C4'43Oi4705e397d44549470~9535399Qi3715+0200+2473o905O.lcd2.4750.433O.OZDO.ROOO.doo4.7bSS355a,adoaPACQQXLLCAZZCO$LYTOTALt9)I47555135LYOBCRLVATZOdd tOIYSASLc5760VLtXDCATNZanrOaa~7LTZCed a357~IZRCXRX)lC3t POXYCMLs4.425Project6783Page19of298/29/96 LeakaeLimitCalculation forStLucieUnit1>>ORI>lLPOSSar.IrasecoeypltYSTeIUCXI~FERIODOFlLRCCRDsalan1i1%55toOea31'955AlallBLLlofti'KtT QFICXNTPRRQQRECY OPlllsa'DIRRCTIOR JLRDWZHQBPEEDBYVRtTXCALBXLBILZTZ QLTEQCRYPABDCILLClLT5445Y aICTORKElL1~3la~lt5TER NIXD5PXR)ii7li1212~141)~24j2(BECTQRpcT,5px5a104.044.Oo052Poaao4444Oeooa4~4044-0120.052D.oooO.oaoO.aaoo.ooo41250.0740,0404.0000~0404.4044.4524.2coo.aaoo.ooo4.444o.ooow4.052o,i24O.oooo.aaaO.aaOO.oaoL5D.4040,4254,0004,0040,4440040L504374~4440.4404.4440~4044~ooo4.0DDosaoo0~000Dsoao4'040.044F0040.42S4.0000.0400.0000.4400~004D.aaoo.ooaO.OOoo.aooo.aao~4.0044412.4ODDF40400000~0005D.ooo0.00oo.oao0.404D.oaaD.aao4.4120.012o.ooo0.012a.oaoo.aaa4,0124~ODP0,440a,aaa4,4444~0000.02504124.4440~0000~00050'124074a+0000444a+Dao0F4040,4004.4004~0254550Da0000~4400+0123$004,0000.000Oopl77Sll0+4122oloo4+0455'754.457a.i2SOoIIIli44iDe07445504+214I.7520.32245550442445<442%4,4%00,0272'578DA05I0514.4124~4124~4444oppPASQUILLCLTSQORYTOTAL{0)c1.45l4.5170.0404loi4445i7I"IO555R~V1455 faRYQAR1l750'lALIDCLTIOORY4355avaTIecas 124~PSRCSNI7ea raaIsaa<1.374Project6783Page20of298/29/96 LeakaeLimitCalculation forStLucieUnit1FuoazoaFowzarzzosTccNsaNY$T.MCUSPhhHTFIS3QQOFMCCmzZan.1,1595taSec.31,199$hÃKTGLLRRQCRTOFHUtCKgg?REQX!RCY OFMZSDDIRECT205t AXDVXSQSPREADRTVR$LTZCALSTASI?yTTY CLTEQORY10-XSXXameSWaa(mph)47de@Q-1$i924)246NCTQRMESICE'.SPKCD0~2$42077202$0.27210000oaoIddR7,525O.iad1.dti2,7330.5320.025O.aaa02472.5233.7691.3110.2230.10040.14$2,275.3,4$71.$9510740.1000~1$127205~00$0~7300~0040~OaaC0~2352,472I79$17310.04$0,0407a~1731.$1$24$10~$1501$50.0125+391$.316boad29.336Vo5$0!.435$.$19$~5$15e2$75455S,5CI9.472021014222.$321,34$01$50000,5!97t500o.ill2.1522.5$71.aa2o.odvo.olsLo0.2$I2e$70152$04$$0~0450~000L14~SC92ob$$0~$1$D2990DDO0+daoL20~$$01ad970~$$$D~099DD490odL1LlO.ltc3.01711500.3220~1120000L4044$41553.2di03$30ooo1000L50~4$$2e2512~071Oe2410~0000~daao.iis2,4613,l510.309O.aoaa.oaaC0$49.05$5+527V.df34ad416~0$44+4d26F447I~$97CD702$,24$733d50337.3626.5667.$745o3$73$~90243255114$$O,tio0d49111aOOO$.3200.0000$'MQUZLZsCATER~TDVAb('Ir)I111~000aaN&%%$+BXQtLY05$$3MLTXORSPCSYEARc47$0r~CATCCOLYOSSENULTXO3td
<$0$7DLTI915tCLÃflCR VCRYRMtt92.317Project6783Page2lof298/29/96 LeakaeLimitCalculation forStLucieUnit1iodine131Concentration intheControlRoomSt.Lucieunit1controlroomwithRG1.78/1.95 assumptions GWH8/20/96SAICproject6734DataforisolatedcaseRef11(FSAR148)
Ref10Controlroomvolume56,292cuftControlfilteredinlet100cfm100cfmFilteredRecirculation 1900cfm(2000-100)
HEPAFiltersEff.997Unfitered inleakage 56cfm34.2cfmcalculated BestestimatemodelUncertainty rangesconsidered inestimating theIPFinMonteCarloSimulations forleakagelimitThisshowstheresultsofmodelingthetransport andconcentration ofiodineI-131fortheStLucia1controlroom.I-131releasedfromaMSLB/SGTL movesfromthereleasepointtotheintakeoftheventilitation systemAconcentration (release'/Q)thentothecontrolroomthrougheitherafilteredorunfiltered path(CRI).Bistheconcentration ofl-131thatstaysinthecontrolroomvolume.Itisthedifference betweentherateofI131intoandoutofthecontrolroom-(i.e.,theIodineProtection Factor(IPF)).Theinputdatafromcontrolroomdesignfeaturesareusedtocalculate theIodineProtection Factor,andquantifythetimedependent concentration inthecontrolroomassuming thatapostulated mainstreamlinebreakhasoccurred.
Thisproducesthebasisfortheconstantsourcetermassumedfortheairinthecontrolroom.DatafortheSt.LucieControlroomparameters aretakenfromRef10and11forisolatedcondition.
Normalunfiltered flowintothecontrolroomis750cfmwhichisisolated35secondsafterclosesignal.Themodelforisolation belowtreatsbothunfiltered inleakage andfiltered.
Therefore, thepublished filterefficiences fromFSARwereappliedincalculations.
Theunfiltered leakageistreatedasdistribution toapproximately represent the35secondclosingtime.Inputdataforthecontrolroomdesignfeaturesmeanvalues:LU:=.06ltrLF:=.11hrLR:=2lu'r@:=.95Ffe'.=.95A,:=.00358 lu'nfiltered inleakage (volperhr)-.06testtoshowc.08Filteredintakeflow-.2to.05Recirculation flow-2.3to1.9Recirculation filterefficiency
-.90to.997Intakefilterefficiency-
.90to.997Decayconstantfor1131T1/2=8.05dayCalculations forcontrolroomdesign:Transport rateintotheControlroomsec.Transport rateoutoftheControlroomsecCRI:"-LU+(I-Ffs)LFCRI=1.819'10'time4tCRO:=LF+LU+FrsLR+A,CRO=5.76'10'timeiodineProtection FactormeanvalueCROIPF:=-CRIIPF=31.658Initialeventconditions:
Initialamountofl131accident.
0:=1.'oncentration factorattheintake,AoassumedtobeconstantfromfromreleasepointComputeremovalandincreaseconstants:
Functions forl131Transport intoControlroom:kl:=CRIkO:=CROA(t):=AXeii(t>:=--(e'e'"kOtkl.tQkl-kOt'.=0lu,.25hr..24hrt2:=0Itr,1.0'hr..12hrProject6783Page22of298/29/96 LeakaeLimitCalculation forStLucieUnit1Appendix8CUMULATIVE PROBABILITY DISTRIBUTIONS FQRX/QANDLEAKRATEThisappendixprovidesgraphical illustrations ofthedetailedsitespecificassessments.
FigureB-1presentsthecumulative distribution forX/QattheEABforSt.Luciebasedonthemeasuredatmospheric conditions described inAppendixA.Thisfigurerepresents allthecombinations ofwindspeed,direction, atmospheric stability classattheEAB.Theflatportionsofthecurveareduetotheconstantdistances totheEAB.FiguresB-2throughB-4presentfamiliesofcurvesfortheleakagelimitasafunctionofconfidence level.Theywereobtainedbycombining thedistributions fromtheSt.Luciespecificatmospheric dosemodelsforthe95%99%andworstcasemeteorology conditions attheEABwiththegenericreleasemodelsforI>3>PASandAISconditions basedonthethyroidlimitof300rem.Selectedpointsonthesecumulative distributions providethedataforTables2and3.FiguresB-5presentstheequivalent ofFigureB-1fortheControlRoom.FiguresB-6toB-8aretheequivalent ofB-2toB-4.Thesecontrolroomleakagelimitdistribution providethedataforTable4and5.Project6783Page23of298/29l96 LeakaeLimitC"/'u/ation forStLucieUnit1Cumulative Frequency forx/QatEASforSt.Lucie(meteorological datafor111/95-12/31/95) 1.00E-031.00E-041.00E-OS1.00E-06O'.00E-07 1.00E-0800.20.40.6Cumulative Frequency FigureB-1Cumulative Frequency ofX/QattheEAB0.81.00E+09Ea.1.00E+081.00E+07m1.00E+06~o1.00E+05o1.00E+04I1.00E+030~1.00E+021.00E+01I-131ReleaseResulting in<300rematEAB,Stability E(95%meteorological condition)
Pre-accident SpikeAccident-initiated Spike0102030405060708090100Cumulative Percentage (Confidence Level)FigureB-2Confidence vsleakagelimitattheEABforAISandPAS.O95%meteorological conditions Project6783Page24of298/29/96 LeakaeLimitCalculation forStLucieUnit11.00E+08Eo-1.00E+07I1.00E+06~1.00E+051,00E+04m1.00E+030~1.00E+021.00E+01I-131ReleaseResulting in(300rematEAB,Stability F(99%meteorological condition)
Pre-accident Spike-Accident-initiated Spike'tl~0102030405060708090100Cumulative Percentage (Confidence Level)FigureB-3Confidence vsleakagelimitattheEABforAISandPAS899%meteorological conditions 1~OOE+08E~~1.00E+07I1.00E+06~1.00E+051.00E+04m1.00E+03O=1.00E+02l-131ReleaseResulting in<300rematEAB,Stability 8(worstobservedmeteorological condition)
Pre-accident Spike-Accident-initiated Spike%w~1.00E+010102030405060708090100Cumulative Percentage (Confidence Level)FigureB-4Confidence vsleakagelimitattheEABforAISandPASI99%meteorological conditions Project6783Page2Sof298/29/96 LeakaeLimitCalculation forStLucieUnit11~00E-02Cumulative Frequency forX/QforControlRoomatSt.Lucie(meteorological datafor1/1/95-12/31/95) 1.00E-03E1.00E-041.00E-051~OOE-060.20.40.60.8CumulatlveFrequency FigureB-5Cumulative Frequency ofX/QatthecontrolroomintakeI-131ReleaseResulting in<30rematControlRoom,Stability D(95%meteorological conditions)
Pre-Accident Spike-Accident-initiated Spike1.00E+08Ea.1.00E+071.00E+061,00E+051.00E+041.00E+03O1.00E+021.00E+010102030405060708090100Cumulative Percentage (Confidence Level)FigureB-6Confidence vsleakagelimitforcontrolroomforAISandPAS895%meteorological conditions Project6783Page26of298/29/96 LeakaeLimitCalculation forStLucieUnit1I-131ReleaseResulting in<30rematControlRoom,Stability F(99%meteorological conditions)
Pre-accident SpikeAccident-initiated Spike1.00E+09o1.00E+081.00E+07m1.00E+06~o1.00E+05o1.00E+04I1.00E+0301.00E+021.00E+01~~0102030405060708090100Cumulative Percentages (Confidence Level)FigureB-7Confidence vsleakagelimitforcontrolroomforAISandPAS899%'meteorological conditions 1-131ReleaseResulting in<30rematControlRoom,Stability G(worstobservedmeteorological condition)
Pre-accident Spike-Accident-initiated Spike1.00E+08fa.1.00E+07o1.00E+06~1.00E+051.00E+04ctr1.00E+030~1.00E+021.00E+01e~0102030405060708090100Cumulative Percentage (Confidence Level)FigureB-8Confidence vsleakagelimitforcontrolroomforAISandPAS8worstobservedmeteorological condition Project6783Page27of298/29/96 LeakaeLimitCalculation forStLucieUnit7AppendixCSCREENING METHODOLOGY Thisappendixdescribes thescreening processforusingthegenericleakagelimittableswhosepurposeistoindicatethepotential foradditional marginandjustifyasite-specific analysis.
Itmakesuseofthetabulated resultspublished inEPRITR-103878, "Methodology forConsidering Uncertainties inI-131ReleaseandDoseLimitsforaPostulated Accident."
Thescreening assessment stepsare:1ObtainPlantSpecificPhysicalDataa.St.LucieminimumdistancetotheExclusion AreaBoundaryis1561metersb.BoundingAtmospheric Dispersion TypeforEABandCR(ClassEisthe95%boundingatmospheric condition) c.Categoryofthecontrolroomprotection isTypeB.2.ObtainGenericAllowedleakagedataforEABandControlRoomandverifythatlocalengineering assumptions apply.a.UsetabularresultsfortheEAB(Tables5-1and5-2inReference 3)b.Usetabularresultsforthecontrolroom(Table5-3inReference 3)3.Verifysourcetermassumptions forthetwoaccidentmodeltypesa.Selectthegenericpre-accident sourceterm,whichistypically themostlimitingat95%confidence.
The95%confidence boundpre-accident sourcetermcomesfromthedatafittingprocessandtheallowedleakageis33timesgreaterthantheStandardReviewPlan.b.Selectasite-specific modelofthesourcetermifconditions arenotboundedbythegenericsourceterm.4.Determine thegenericallowedleakagelimita.Lookuptheallowedleakagefortheminimumdistanceandcontrolroomtype,andselectallowedleakratesfromscreening tableswhichrepresent thecaseforaleakagethatwillnotexceedthedoselimitswith95%confidence asshowninTableC-1.Assumeboundingstability class(FforEABandAforcontrolroom),orusetheFSARallowedleakage.Project6783Page28of298/29/96 LeakaeLimitCalculation forStLucieUnit1TableC1.Screening resultsfordoselimitedleakageat95%confidence level(usingTablesfromRef.3)EAB,ClassFEAB,ClassEControlRoom,TypeBPre-accident Spike(gpm)331012,100545Accident-Initiated Spike(gpm)12,90044,0001,700b.Fortheconditions showninTableC-1asitespecificdetailedevaluation toproducea95/95%confidence leakagelimitestimateusingthemeasuredsitestability classfrequency, windspeed,direction anddistanceislikelytodemonstrate significant margins.5.Comparetheleakagelimitwiththeestimated steamgenerator leakagebasedonNDEmeasuresinsupportofcondition monitoring andoperational assessments.
UsingLeakageLimitResultsAsuitablemarginbetweenthegenericleakagelimitfortheEABandthecontrolroom,andtheprojected EOCsteamgenerator leakagecanbecalculated forvariousdegreesofconfidence (e.g.,theratiooftheprojected EOCleakageat95/95tothe95/95allowedleakrate).Ifthisisasmallnumber(i.e.,lessthan0.1a),thenthegenericscreening processclearlyindicates thatthesitecharacteristics providethecapability ofmeetingtheregulatory doselimits.Amoredetailedevaluation canbeusedtodemonstrate effectiveness ofotherplantspecificfeaturesinproviding additional protection forkeepingpredicted accidentdoseswithinregulatory limits.Thevalueof0.1issuggested asanacceptable marginwhenscreening valuesareused,becausetheanalysisisbasedonmeasuresofI131thyroiddose.Thevariation betweenthewholebodyandthyroiddoseinasampleofFSARsindicates thatthedosesfromallisotopeswouldbeboundedifthemarginwas0.1.Adetailedassessment whichincludesevaluation ofthewholebodydosewouldremovethisassumption.
Project6783Page29of298/29/96