ML17229A096: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
| Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:ATIACHMENTATestReport- | {{#Wiki_filter:ATIACHMENTATestReport-STEAMGENERATOR TUBEIN-SITUHYDROSTATIC PRESSURETESTTOOLHYDROCHAMBERPRESSUREDETERMINATION 96f0280fOf 96f024PDRADOCK05000335iiiPDR TR-9419-CSE96-1101, Rev.0Page1of15TestReportSteamGenerator Tubeln-SituHydrostatic PressureTestToolHydroChamberPressureDetermination ReportNo.TR-9419-CSE96-1101 Rev.0ABBCombustion Engineering NuclearOperations PreparedBy:.Orsulak.ConsulgEn"eerReviewedBy:G.C.Fink,Principal EngineerApprovedBy:.F.Hall.ipalConstantDate:ApprovedBy:aJ.D.Ford.Manager.FieldQualityOperations Date:6ABBCombustion Engineering NuclearOperations 9B4P81JLN12'9617:27JlN-12-1996 17:12STLUCrE~ttCAH'tHi5t~11U't, WSV.UTestReportSteamGenerator TubeIn4itu'Hydrostadc PressureTestToo)HydroChamberPressure9etermination ReportNo.TR-94)9<SE96-) | ||
)0)Rsv.0ABBCombustion Eapncaiag NuclearOperations PreparedBy:Date:ApprovedBy:1CLlani,Qaaaye,HddQm&yOyeradcaa Date:0ABBCoebusUan EnneerinNuclear0rationsJUN-12-1996 17:37P.81 TR-9419-CSE96-1101, Rev.0Page2of15TableofContentsSectionontentsP~aeNb.1.0203.04.05.06.07.08.09.0PurposeR'eferences QualityAssurance Discussion andBackground Limitations TestDescription TestResultsConclusions Recommendations FigureITable1,TestPressureBasis10.Table2,StaticPressureTest,AxialDefectToolTable3,StaticPressureTest,Circumferential/Axial DefectToolTable4,DynamicPressureTest,AxialDefectToolTable5,DynamicPressureTest,Circumferential/Axial DefectTool12131415Attachment 1FaxedcoversheetwithReviewandApprovalSignatures Attachment 2TestProcedure (Reference 2.1)andcompleted rawdatasheetsAttachment 3PressureGaugeCalibration RecordsPages1Pages23Pages5ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page3of151.0PurposeThepurposeofthistestreportistodocumenttheresultsofthetestperformed todetermine therelationship betweenthehydropumpoutletpressureandthesealbladderpressureunderflowconditions forthesteamgenerator localized in-situpressuretesttools.Inaddition, statictestingwasperformed toestablish abaselinerelationship undernon-flowconditions. | |||
Thetestwasperformed inaccordance withtheprocedure listedinReference 2.1.Thedataunderflowconditions willbeusedtoensurethatintheeventofaleakingdefectindication, theleakagerateismeasuredattheappropriate pressure(s) withinthehydrochamber.Testingwasperformed onboththeaxialandcircumferential/axial tools.2.0References 2.1TestProcedure, SteamGenerator TubeIn-SituHydrostatic PressureTestTool,HydroChamberPressureDetermination, TP-9419-CSE96-2104, Rev.0,datedJune10,1996.2.2QAM-100,FourthEdition,Revison4.2.3FinalTestReportfortheSteamGenerator TubeIn-SituHydrostatic TestTool.TR-ESE-1030,Rev.00,T.R.No.83D,datedApril5,1994.2.4ABBCombustion Engineering NuclearOperations TravelerNo.PSL-007,In-SituHydroTest,Revision4,datedMay24,1996.3.0QualityAssurance Thetestresultsdescribed hereinaretobetreatedasSafetyRelated,QualityClass1,inaccordance withtherequirements inReference 2.2.4.0Discussion andBackground Reference 2.3describes thedevelopment andqualification testingforthelocalized in-situtesttool.Thetooldescribed inReference 2.3wasdeveloped topressuretestprimarily circumferential defectindications insteamgenerator tubesatthetubesheet region.Itisalsousedforthetestingofaxialindications. | |||
Thedesignation of'circumferential tool'sedinthisreportdoesnotpr'eclude itsuseforaxialindications. | |||
Anadditional toolwasevolvedforthetestingofaxialdefectswhicharegreaterinlengththanthosewhichcanbeaccommodated bythehydrochamberintheoriginaltool.Sincethetooldesignforthecircumferential defectshasgreaterrestrictions thanthoseforaxialdefects,thetestreportisboundingfortheaxialtool.Thelocalized testtoolcontainstwopressurecircuits; oneforsealandgripperbladders(notethattheaxialtoolisnotequippedwithgrippers), | |||
andoneforthehydrochamber.ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page4of15Thehydrochambercircuitispressurized byanairoperatedpositivedisplacement pump.Thebladdercircuitispressurized byeitheranairoperatedpositivedisplacement pumporahandpump.Thepositivedisplacement pumpsusedinthesystemareabletomaintainaprecisecontrolatagivenstaticpressure. | |||
Underflowconditions, suchasthoseexperienced duringatubeleak,thepumpdischarge pressurefluctuates betweenahighandlowlimitwitheachpumppulse.Themagnitude ofthisbandisafunctionoftheflowrateandtherestrictions withinthehose/tool assembly. | |||
Duetothesedynamicheadlosses,theactualpressureinthehydrochamberwillbelessthanthatobservedatthepumpdischarge. | |||
Reference 2.3describes testingwhichwasperformed underflowconditions toestablish therelationship betweenthehydropumpdischarge pressureandthehydrochamberpressure. | |||
Thistestconsisted ofmeasuring theswingofthepressuregaugeatthedischarge ofthehydropumpatvariousleakratesataninitialstatichydrochamberpressureof4,000psigasdirectlymeasuredinacontrolled leaktestfixture.Implementation ofthisdatainanin-situfieldtestrequiresaniterative processasthehydrochamberpressureisnotdirectlymeasurable. | |||
Theprocessinvolvesmatchingthepumpdischarge pressureswingrelativetothedesiredpressureandobservethepumpstrokerateascomparedtothedatainthetestreport.Inaddition, thetestreportexplicitly statesthattheleakratecorrection dataapplyonlytotheas-tested configuration. | |||
ForthetestingatSt.LucieUnitI,itwasrequested thatthecapability beprovidedtotestinthestraighttubeportionsatelevations wellabovethetubesheet. | |||
Thisnecessitated thefabrication ofhoseslongerthanthosedescribed inReference 2.3.Fornonleakingdefectindications, thelengthofthehosedoesnotafFectmeasuring thedesiredpressureinthehydrochamberasthesystemisstaticandthepressureisequaltothatmeasuredatthepumpdischarge. | |||
Forleakingdefects,thechangeinsystemresistance'due tothechangeinhoselengthdoeshaveanefFectonthedynamicresponseofthepumpdischarge pressuregaugeanditssubsequent relationship tothehydrochamberpressure. | |||
Consequently, foraleakingdefect,theactualpressureinthehydrochamberisindeterminate withoutadditional testing.Inordertodetermine thepressureinthehydrochamberwiththecurrenthoseconfiguration, twomethodswereconsidered. | |||
I)Hydropumpdischarge pressureswingcorrelation method,and,2)Sealbladderpressureintensification method.MethodIisthemethoddescribed inReference 2.3.Method2isbaseduponanobservation duringlaboratory testingandfieldapplication. | |||
Experience duringprevioustestinghasshownthatthebladdercircuitpressureincreases asitsinitialpre-charge pressureisapproached bytheincreasing pressureinthehydrochamber.Thispressureincreasehasbeentermed'intensification.'nce thebladderpre-charge pressureisABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page5of15reachedinthehydrochamber,thebladderpressurewillincreasewithincreasing hydrochamberpressure. | |||
Thispressurehasbeenobservedtobeapproximately 200-300psidunderstaticconditions. | |||
Itwasexpectedthattherelationship wouldbesimilarunderflow(leak)conditions. | |||
Establishing thisrelationship willprovideanaccurateindirectmethodofmeasuring thepressureinthehydrochamberunderleakingconditions. | |||
Asthebladdercircuitisnotinaflowpath,therearenoheadlossestoconsider. | |||
Pulsations wereevidentinthebladdercircuitduetothereciprocating natureofthehydropump.However,thesepulsations reflectthetruepressureinthebladdercircuitindependent oftheheadlossesexperienced bythehydrocircuit.Byinference, thepressureinthehydrochambercanthenbedetermined. | |||
Thistestfocusedonestablishing method2asthemethodofchoicefordetermining thehydrochamberpressureunderflowconditions. | |||
However,additional datawasrecordedinordertoprovidefortheuseofmethod1.Method1isnotevaluated inthisreport,however,thedataobtainedhavebeenpreserved asattachments tothisreportforanydesiredfutureuse.5.0Limitations 5.1Theevaluation ofthetestdatadoesnotconsidermethod1.Datawererecordedandattachedtothisreportwhichcansupportfutureadditional evaluation ofmethod1.AsnotedinSection4,themethod1correlation isafunctionofsystemdynamicresistance. | |||
Useofthetestresultsinmethod1correlations islimitedtosystemswithanidentical configuration tothattested.Thehoseconfiguration inthistestwasidentical tothatinFigure2ofReference 2.3withtheexception thatthelengthofthe3/16"braidedhosehasbeenincreased from30feetto50feet.Asaresult,thedataobtainedfromthistestmaybeusedtoqualifymethod1fora50A.lengthof3/16"braidedhose.6.0TestDescription Thistestingwasperformed insupportofplannedsteamgenerator tubein-situtestingattheSt.Luciepowerplant.Thesteamgenerator in-situtestisdescribed inReference 2.4.Information fromtheHydroChamberPressureDetermination testreportedhereinwillprovidethebasisforarevisiontoReference 2.4toincorporate lessonslearned.TheprotocolfortheHydroChamberPressureDetermination testwasprovidedinReference 2.1.Thetargetpressures forthistestwerebaseduponthoseanticipated forthein-situtestasdescribed inReference 2.4.Thesepressures arelistedinthetablebelowunderthecolumnheadingsCircumferential Indications andAxialIndications. | |||
NotethattheRowtitled'MSLB',wasnotincludedinReference 2.4butwasgenerated fortheHydroChamberPressureDetermination test.ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page6of15TablelTestPressureBasisBasisBaseValue(siCircumferential Indications si'"AxialIndications siNormalOperating dZ1435MSLBPressure2,5001.4xMSLBPressure"',500 3xN.O.dZ4,3051,7443,0384,2535,2311,6222,8253,9554,865Notes:1)Pressures werecorrected atotalof21.5%fromthebasevaluesfortemperature andlockedsupportinfluences. | |||
,2)Pressures werecorrected 13%fromthebasevaluesfortemperature influences. | |||
3)TheMSLBbasepressureisincreased by40%toaccountforstructural designsafetymargin.Regarding theMSLBpressure, initially, theteststeamgenerator tubetestplanincludedonly1.4xMSLBpressure, corrected fortemperature andlockedsupports. | |||
Furtherreviewsuggeststhatwhilethisvalueisanappropriate pressurefortestingstructural integrity, itisoverlyconservative withrespecttoleakratetestingfor10CFR100releaseevaluations. | |||
Asaresult,theMSLBvalue,withoutthe1.4xfactorwasalsoconsidered whenchoosingtargetpressures forthebladder/hydro chambercorrelation tests.Thecorrelation testwasconducted usingboththecircumferential/axial andlongaxiallocalized in-situtesttools.Testingwascarriedoutusingaleakratefixtureinconjunction withthesparehydropumpnormallyusedforin-situtesting.Bladderpressurewassuppliedbyahandoperatedhydraulic pump.Thetestequipment isdepictedinFigurel.StaticTest:Thestatictestwasconducted attwoinitialbladdercircuitpressures; 1,500psig,and2,000psig.Theinitialbladderpressureof2,000psigwaschosenasthisisthenormalinitialbladdercircuitpre-charge. | |||
Astheobjective ofthistestwastoprovideacomparison ofthehydrochamberpressurewiththatinthebladdercircuitforflowconditions, itwasnecessary toensurethattheinitialbladderpressurewasbelowthelowestdesiredtestpressure. | |||
Therefore, thestatictestalsowasconducted at1,500psigasthisislessthanthelowesttargettestpressureof1,622psig.Performing thestatictestatthetwopressures allowscomparison betweenthetraditional bladderpre-charge pressureof2,000psigandtheplannedbladderpre-charge pressureof1,500psig.Thestatictestwasconducted attargethydrochamberpressures of1,500,.1,600, 1,800,3,000,4,000and5,000psigforeachtoolandbothbladderpressures. | |||
The1,500psigABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page7of15valuecorresponds totheminimumbladderpressure. | |||
Theremaining pressures areroundedvalueschosentoapproximate theproposedtestpressures listedintheabovetable.Thestatictestwasconducted bypressurizing thehydrocircuittothetargetpressure+'00psigasindicated bythehydrochamberpressuregauge.Thesystemwasobservedforleaksandsteadypressurereadingsonallgauges.Pressuregaugereadingswererecordedas'asread'alues onthedatasheet.Thesepressurevalueswerecorrected forcalibration differences duringdatareduction inpreparation forthisreport.Thetestwasrepeatedforeachofthetargetpressures forbothtoolsatbothinitialbladdercircuitpressures. | |||
Df1*Th'dy.ilk<<ddfbhIigstaticbladdercircuitpressureof1,500psig.Theleakratetestwasnotconducted ataninitialbladderpressureof2,000psigasthisvaluewillnotbeusedatSt.LucieUnitl.Targetpressures andleakrateswereprovidedinReference 2.1.Thetargethydrochamberpressures of1,700,3,000,4,000and5,000psiglistedinReference 2.1werechosentoapproximate thein-situtestpressures forbothtoolsaslistedinTable1.Thesefourvaluesprovidedareasonable basisformatchingthetestpressures whileminimizing thenumberofteststobeconducted. | |||
However,duringtheconductofthetest,substantial pressurefluctuations duetopumppulseswereobserved. | |||
Consequently, thepressures werechangedtobetailoredtoeachtoolandtherefore tomorecloselyapproximate thespeciflctargettestpressures. | |||
Inaddition, the3xNOdZvaluewasdeletedfromtheleaktestasleaktestingatthispressureisnotarequirement ofRegulatory Guide1.121.Reference 2.1listedaseriesoftargetleakrates.Duringtheconductofthetest,somedifficulty wasencountered inachieving thesevalues,particularly athigherleakrates.Asaresult,thenearestachievable leakratewasused.Inaddition, thetestwasexpandedtoprovideadditional dataatlowleakrates.Fortheconductofthetest,thebladdercircuitwaspressurized to1,500psig+100psig.Thehydrocircuitwaspressurized tothetargetpressure+100psig.Thetestapparatus wasobservedforleaksandsteadypressurereadingsonallgauges.Subsequently, theleakratecontrolvalvewasopenedtoestablish thedesiredhydropumpstrokeratewhilemaintaining thetargetpressureasindicated bythehydrochamberpressuregauge.Thisrequirediterative adjustment ofthehydropumpaircontrolregulator andtheleakratecontrolvalve.Duetothepulsingnatureofthepump,thepressuregaugereadingswerefluctuating ataconstantamplitude uniquetoeachpressuretap.Theadjustments weremadesuchthatthetargethydrochamberpressurewasatapproximately themiddle'of theswing.Onceasteady-state condition wasachieved, thepressurereadingswererecordedonthedatasheet.Thisprocesswasrepeatedforeachpumpstrokeratetestedateachofthehydrochambertestpressures forbothtools.ABBCombustion Engineering NuclearOperations H-'1 TR-9419-CSE96-1101, Rev.0Page8of15TestResultsThetestprocedure andcompleted datasheetsusedforthistestareincludedinthisreportasanattachment. | |||
Thedatawerereviewedandcompiledinaspreadsheet formatinTables2through5to'showtherelationship betweenthebladderpressureandthehydrochamberpressure. | |||
Thedatawereusedastheas-readvalues.Thepressurereadingswerenotcorrected forcalibration variance. | |||
Thecalibration recordsforthepressuregaugesusedinthistestareattachedtothisreport.Forthe.pressuregaugesofinterest, thoseonthehydrochamberandthebladdercircuit,thedeviation fromthestandardwasidentical inthepressurerangetested+50psig.Asaresult,thetrueLQ'etween thesetwogaugesisidentical tetheas-readdZ.StaticTest:Thestatictestwasconducted attwoinitialbladdercircuitpressures, 1,500and2,000psig,forbothtools.Tables2&3presenttheresultsfortheaxialandcircumferential toolsrespectively. | |||
Forbothtoolsitwasnotedthatalargechambervs.bladderdZwasevidentuntilthehydrochamberpressureapproached theinitialbladderpressure. | |||
Subsequently, thedZwasmeasuredtobe150to250psid.ThetypicalvariancebetweentheseM'sforthesametool,atdifferent initialbladderpressures was50psi.Thevariancebetweenthetwotools,atthesamepressure, alsowasapproximately 50psi.~DiTThdy'.<<ddi"ilblddiipf1,500psigforbothtools.Thetoolsweretestedatthreetargethydrochamberpressures corresponding approximately totheN.O.M,MSLBpressureand1.4xMSLBpressureatavarietyofleakratesrangingfrom3to92strokes/min (1pumpstrokeisequivalent to0.005gallons). | |||
Notethatthetargettestpressures aredifferent foraxialvs.circumferential defects.Theresultsfortheaxialandcircumferential toolsarepresented inTables4Ec5.Duetothepulsingnatureofthereciprocating hydropump,wideswingsinallpressurereadingswereobserved. | |||
Thehydropumpairinletpressureandleakratevalvewereadjustedsuchthatthemidpointoftheswingofthehydrochamberpressuregaugeapproximated thetargettestpressure. | |||
Boththehighandlowvalueswererecorded. | |||
Additionally, thehighandlowvaluesforthebladdercircuitwererecorded. | |||
Ateachpumpstrokerate(simulated leakrate)thetruemeanvaluesofthepressurereadingswerecalculated. | |||
Thesewerethenusedtocalculate thedZoftheaveragepressures inthehydrochamberandbladdercircuit.TheLPvaluesateachtargettestpressurewereevaluated tocalculate asinglemeanvaluefortheb,Patagiventargetpressure. | |||
trialToolTheresultsfortheaxialtoolarepresented inTable4.TheresultsshowthatforagiventargetpressurethedZvariedapproximately 50psiwithtwoexceptions. | |||
Atthehighestpumpstrokerateforeachtargetpressure, thedZwasconsiderably greaterthantheaverageoftheremaining values.Inaddition, forthetargetpressureof2850psig,thedZat4strokes/min was200psidwhiletheremaining lowtomid-range leakratesrangedfrom275to325psid.Whencomparing thethreeaverageb,Pvalues,oneateachtargetpressure, itwasnotedthatasthetargetpressurewasincreased, theaverageMABBCombustion Engineering NuclearOperations 4-IC TR-9419-CSE96-1101, Rev.0Page9of15decreased. | |||
TheaveragedZfortheaxialtoolrangedfrom395psid@1650psigto250psid@3950psig.Circumferential ToolTheresultsforthecircumferential toolarepresented inTable5.'heresultsshowthatforagiventargetpressurethedZvariedapproximately 50psiwithoneexception. | |||
Atthehighestpumpstrokerate@1750psigtargetpressure, thebPwas75psigreaterthanthelowestvalue.Thisdiffersfromtheresultsobservedwiththeaxialtoolinthattherewerenolargedifferences atthehigherstrokerate.Similartotheaxialtool,whencomparing thethreeaverageLPvalues,oneateachtargetpressure, itwasnotedthatasthetargetpressurewasincreased, theaveragedZdecreased TheaveragedZfortheaxialtoolrangedfrom325psid@1750psigto215psid4300pslg.8.0Conclusions 8.1Thestatictestshowedthatiftheinitialbladderpre-charge pressureislessthanthehydrochambertestpressure, largedifferences willbeobservedbetweenthevaluesofthesetwocircuits. | |||
8.2Thestatictestalsoshowedthatasthetestpressureisincreased, thehPbetweenthebladderandhydrochamberdecreased. | |||
8.3Similartothestatictest,thedynamic(controlled leak)testshowedthatasthetargetpressurewasincreased, theaveragedZdecreased. | |||
8.4ThedynamictestshowedthattheaxialtoolhadalargeraverageLQ'hanthecircumferential tool.8.5Fortheaxialtool,avalueof400psiisareasonable correction factorfor,determining thehydrochamberaveragepressurebasedonthebladdercircuitaveragepressure. | |||
Thisvalue'sbiasedhighwithrespecttoincreasing pressureandsomewhatlowathighleakrates(approximately 0.5gpm).Considering theoverallpressureswinginthehydrochamberthisvalueisjudgedtobeareasonable correction factor.8.6Forthecircumferential tool,avalueof300psiisareasonable correction factorfordetern&ung thehydrochamberaveragepressurebasedonthebladdercircuitaveragepressure. | |||
Thisvalueisapplicable fortestingbothaxialaswellascircumferential indications. | |||
Thiscorrection factoristool-specific, notdefect-specific. | |||
Thevalueof300psibiasedhighwithrespecttoincreasing pressureandslightlylowatthenormaloperating dZ.Considering theoverallpressureswinginthehydrochamberthisvalueisjudgedtobeareasonable correction factor.ABBCombustion Engineering NuclearOperations A-II TR-9419-CSE96-1101, Rev.0Page10of159.0Recommendations 9.1Targetpressures inthesteamgenerator tubein-situpressuretestaslistedintheoperating procedure shouldincludeacorrection factorforpressuregaugedeviation fromthecalibration standard. | |||
9.2Forstatic,non-leaking defects,thetubetestpressureshouldbedirectlyreadfromthehydropumpdischarge pressuregauge+100, | |||
-0psig.9.3Forl~eakindefectsusingtheaxialtool,thetargettestpressureinthetubeshouldbeachievedbyadding400psitothetargetpressureandensuringthattheaverageofthebladderpressureswingmatchesthispressurewithin100psi.9.4For~leakindefectsusingthecircumferential | |||
/axialtool,thetargettestpressureinthetubeshouldbeachievedbyadding300psitothetargetpressureandensuringthattheaverageofthebladderpressureswingmatchesthispressurewithin100psi.ABBCombustion Engineering NuclearOperations CO0)C)0O0fllCDCDCDCOzOCDCO0'UCD0DHydroPumpHydroPumpGaugeIn-SituToolSteamGenerator TubeBladderPressureGaugeHydroChamberFigure1TestApparatusConfiguration HydroChamberGaugeLeakRateControlValveCOOCOrllCO0)oXI(C)BladderPumpAl(DCD0Ql TR-9419-CSE96-1101, Rev.0Page'12of15Table2StaticPressureTestAxialDefectToolInitialBladderPressure-1500siHydroChamberPressure(psig)150016001800300040005000HydroPumpPressure(psig) 150016001800300040505000BladderPressure(psig)1500182518752050320042505200ChambervsBladder1500325275250200200200InitialBladderPressure-2000siHydroChamberPressure(psig)150016001800300040QQ5000HydroPumpPressure(psig) 150016001850305040005000BladderPressure(psig)2000215021752275325042505200ChambervsBladder2000650575425200250200ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page13of15Table3StaticPressureTestCircumferential/Axial DefectToolInitialBladderPressure-1500siHydroChamberPressure(psig)150016001750300040005000HydroPumpPressure(psig) 150016001800300040005000Bladder.Pressure(psig)1500185019002050315041505150ChambervsBladder1500350300250150150150InitialBladderPressure-2000siHydroChamberPressure(psig)150015501750295040005000HydroPumpPressure(psig) 150016001800300040005000BladderPressure(psig)2000230023002350320042005200ChambervsBladder2000800700550200200200ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page14of15Table4TargetPressure1650psigDynamicPressureTestAxialDefectToolPumpRateHydroChamber(psi)Strokes/min Max.Min.Avg.Max.Bladder(psi)Min.Avg.'vg.518325391170016001650180014501625205014501750230014001850240011001750205021502350250026501950190019501900180020002025215022002225350400400350475j-',:;-':;.:':::;:%ii:::::::::".i TargetPressure2850psigPumpRateStrokes/min HydroChamber(psi)Max.Min.AvgBladder(psi)Min.Avg.430002800290022315026002875403300240028505433502300282592380022003000320034003500360041003000290028002700280031003150315031503450200275300325450LI44I4~Jal1I~I4lllllleYIIAI TargetPressure3950psigPumpRateStrokes/min HydroChamber(psi)Max.Min.Avg.Max.Bladder(psi)Min.Avg.Avg.318385680400038503925440039004150450035004000470035004100460031003850420045504600490048004050412541504350370041503700430039004350200200150200500ABBCombustion Engineering NuclearOperations p4-Ib TR-9419-CSE96-1101, Rev.0Page15of15Table5TargetPressure1750psigDynamicPressureTestCircumferential/Axial DefectToolPumpRateStrokes/min HydroChamber(si)Max.Min.Avg.MaxBladdersiMin.Avg.Avg.315306090180019002000230024501700175015501725140017001200175013001875210021502250245027002050190017501700180020753252025300200030020753252250375lI:Ilia,'",N:::;l'F,-i I'11%111Ila'IIV11TargetPressure3050psigPumpRateStrokes/min 1219337286HydroChamber(psi)Max.Min.Avg.325028503050335028003075350027503125360024003000380022003000Bladder(psi)Max.Min.3450315035503000375030003850260040002500Avg.Avg.33002503275200337525032252253250250!c~j?+2M",Pi:K Vllll4II~OlkllllMMIAlltt TargetPressure4300psigPumpRateStrokes/min HydroChamber(psi)Max.Min.Avg.Max.Bladder(psi)Min.Avg.Avg.52042598444004250432547504100442549503800437549003600'250530035004400460044504950430051004100510038005500380045254625460044504650200200225200250~WW!2iS!%!il ABBCombustion Engineering NuclearOperations 8-17}} | |||
Revision as of 14:49, 29 June 2018
| ML17229A096 | |
| Person / Time | |
|---|---|
| Site: | Saint Lucie |
| Issue date: | 06/12/1996 |
| From: | FINK G C, FORD J D, ORSULAK R M ABB COMBUSTION ENGINEERING NUCLEAR FUEL (FORMERLY |
| To: | |
| Shared Package | |
| ML17229A091 | List: |
| References | |
| TR-9419-CSE96-1, TR-9419-CSE96-1101, NUDOCS 9610280101 | |
| Download: ML17229A096 (17) | |
Text
ATIACHMENTATestReport-STEAMGENERATOR TUBEIN-SITUHYDROSTATIC PRESSURETESTTOOLHYDROCHAMBERPRESSUREDETERMINATION 96f0280fOf 96f024PDRADOCK05000335iiiPDR TR-9419-CSE96-1101, Rev.0Page1of15TestReportSteamGenerator Tubeln-SituHydrostatic PressureTestToolHydroChamberPressureDetermination ReportNo.TR-9419-CSE96-1101 Rev.0ABBCombustion Engineering NuclearOperations PreparedBy:.Orsulak.ConsulgEn"eerReviewedBy:G.C.Fink,Principal EngineerApprovedBy:.F.Hall.ipalConstantDate:ApprovedBy:aJ.D.Ford.Manager.FieldQualityOperations Date:6ABBCombustion Engineering NuclearOperations 9B4P81JLN12'9617:27JlN-12-1996 17:12STLUCrE~ttCAH'tHi5t~11U't, WSV.UTestReportSteamGenerator TubeIn4itu'Hydrostadc PressureTestToo)HydroChamberPressure9etermination ReportNo.TR-94)9<SE96-)
)0)Rsv.0ABBCombustion Eapncaiag NuclearOperations PreparedBy:Date:ApprovedBy:1CLlani,Qaaaye,HddQm&yOyeradcaa Date:0ABBCoebusUan EnneerinNuclear0rationsJUN-12-1996 17:37P.81 TR-9419-CSE96-1101, Rev.0Page2of15TableofContentsSectionontentsP~aeNb.1.0203.04.05.06.07.08.09.0PurposeR'eferences QualityAssurance Discussion andBackground Limitations TestDescription TestResultsConclusions Recommendations FigureITable1,TestPressureBasis10.Table2,StaticPressureTest,AxialDefectToolTable3,StaticPressureTest,Circumferential/Axial DefectToolTable4,DynamicPressureTest,AxialDefectToolTable5,DynamicPressureTest,Circumferential/Axial DefectTool12131415Attachment 1FaxedcoversheetwithReviewandApprovalSignatures Attachment 2TestProcedure (Reference 2.1)andcompleted rawdatasheetsAttachment 3PressureGaugeCalibration RecordsPages1Pages23Pages5ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page3of151.0PurposeThepurposeofthistestreportistodocumenttheresultsofthetestperformed todetermine therelationship betweenthehydropumpoutletpressureandthesealbladderpressureunderflowconditions forthesteamgenerator localized in-situpressuretesttools.Inaddition, statictestingwasperformed toestablish abaselinerelationship undernon-flowconditions.
Thetestwasperformed inaccordance withtheprocedure listedinReference 2.1.Thedataunderflowconditions willbeusedtoensurethatintheeventofaleakingdefectindication, theleakagerateismeasuredattheappropriate pressure(s) withinthehydrochamber.Testingwasperformed onboththeaxialandcircumferential/axial tools.2.0References 2.1TestProcedure, SteamGenerator TubeIn-SituHydrostatic PressureTestTool,HydroChamberPressureDetermination, TP-9419-CSE96-2104, Rev.0,datedJune10,1996.2.2QAM-100,FourthEdition,Revison4.2.3FinalTestReportfortheSteamGenerator TubeIn-SituHydrostatic TestTool.TR-ESE-1030,Rev.00,T.R.No.83D,datedApril5,1994.2.4ABBCombustion Engineering NuclearOperations TravelerNo.PSL-007,In-SituHydroTest,Revision4,datedMay24,1996.3.0QualityAssurance Thetestresultsdescribed hereinaretobetreatedasSafetyRelated,QualityClass1,inaccordance withtherequirements inReference 2.2.4.0Discussion andBackground Reference 2.3describes thedevelopment andqualification testingforthelocalized in-situtesttool.Thetooldescribed inReference 2.3wasdeveloped topressuretestprimarily circumferential defectindications insteamgenerator tubesatthetubesheet region.Itisalsousedforthetestingofaxialindications.
Thedesignation of'circumferential tool'sedinthisreportdoesnotpr'eclude itsuseforaxialindications.
Anadditional toolwasevolvedforthetestingofaxialdefectswhicharegreaterinlengththanthosewhichcanbeaccommodated bythehydrochamberintheoriginaltool.Sincethetooldesignforthecircumferential defectshasgreaterrestrictions thanthoseforaxialdefects,thetestreportisboundingfortheaxialtool.Thelocalized testtoolcontainstwopressurecircuits; oneforsealandgripperbladders(notethattheaxialtoolisnotequippedwithgrippers),
andoneforthehydrochamber.ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page4of15Thehydrochambercircuitispressurized byanairoperatedpositivedisplacement pump.Thebladdercircuitispressurized byeitheranairoperatedpositivedisplacement pumporahandpump.Thepositivedisplacement pumpsusedinthesystemareabletomaintainaprecisecontrolatagivenstaticpressure.
Underflowconditions, suchasthoseexperienced duringatubeleak,thepumpdischarge pressurefluctuates betweenahighandlowlimitwitheachpumppulse.Themagnitude ofthisbandisafunctionoftheflowrateandtherestrictions withinthehose/tool assembly.
Duetothesedynamicheadlosses,theactualpressureinthehydrochamberwillbelessthanthatobservedatthepumpdischarge.
Reference 2.3describes testingwhichwasperformed underflowconditions toestablish therelationship betweenthehydropumpdischarge pressureandthehydrochamberpressure.
Thistestconsisted ofmeasuring theswingofthepressuregaugeatthedischarge ofthehydropumpatvariousleakratesataninitialstatichydrochamberpressureof4,000psigasdirectlymeasuredinacontrolled leaktestfixture.Implementation ofthisdatainanin-situfieldtestrequiresaniterative processasthehydrochamberpressureisnotdirectlymeasurable.
Theprocessinvolvesmatchingthepumpdischarge pressureswingrelativetothedesiredpressureandobservethepumpstrokerateascomparedtothedatainthetestreport.Inaddition, thetestreportexplicitly statesthattheleakratecorrection dataapplyonlytotheas-tested configuration.
ForthetestingatSt.LucieUnitI,itwasrequested thatthecapability beprovidedtotestinthestraighttubeportionsatelevations wellabovethetubesheet.
Thisnecessitated thefabrication ofhoseslongerthanthosedescribed inReference 2.3.Fornonleakingdefectindications, thelengthofthehosedoesnotafFectmeasuring thedesiredpressureinthehydrochamberasthesystemisstaticandthepressureisequaltothatmeasuredatthepumpdischarge.
Forleakingdefects,thechangeinsystemresistance'due tothechangeinhoselengthdoeshaveanefFectonthedynamicresponseofthepumpdischarge pressuregaugeanditssubsequent relationship tothehydrochamberpressure.
Consequently, foraleakingdefect,theactualpressureinthehydrochamberisindeterminate withoutadditional testing.Inordertodetermine thepressureinthehydrochamberwiththecurrenthoseconfiguration, twomethodswereconsidered.
I)Hydropumpdischarge pressureswingcorrelation method,and,2)Sealbladderpressureintensification method.MethodIisthemethoddescribed inReference 2.3.Method2isbaseduponanobservation duringlaboratory testingandfieldapplication.
Experience duringprevioustestinghasshownthatthebladdercircuitpressureincreases asitsinitialpre-charge pressureisapproached bytheincreasing pressureinthehydrochamber.Thispressureincreasehasbeentermed'intensification.'nce thebladderpre-charge pressureisABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page5of15reachedinthehydrochamber,thebladderpressurewillincreasewithincreasing hydrochamberpressure.
Thispressurehasbeenobservedtobeapproximately 200-300psidunderstaticconditions.
Itwasexpectedthattherelationship wouldbesimilarunderflow(leak)conditions.
Establishing thisrelationship willprovideanaccurateindirectmethodofmeasuring thepressureinthehydrochamberunderleakingconditions.
Asthebladdercircuitisnotinaflowpath,therearenoheadlossestoconsider.
Pulsations wereevidentinthebladdercircuitduetothereciprocating natureofthehydropump.However,thesepulsations reflectthetruepressureinthebladdercircuitindependent oftheheadlossesexperienced bythehydrocircuit.Byinference, thepressureinthehydrochambercanthenbedetermined.
Thistestfocusedonestablishing method2asthemethodofchoicefordetermining thehydrochamberpressureunderflowconditions.
However,additional datawasrecordedinordertoprovidefortheuseofmethod1.Method1isnotevaluated inthisreport,however,thedataobtainedhavebeenpreserved asattachments tothisreportforanydesiredfutureuse.5.0Limitations 5.1Theevaluation ofthetestdatadoesnotconsidermethod1.Datawererecordedandattachedtothisreportwhichcansupportfutureadditional evaluation ofmethod1.AsnotedinSection4,themethod1correlation isafunctionofsystemdynamicresistance.
Useofthetestresultsinmethod1correlations islimitedtosystemswithanidentical configuration tothattested.Thehoseconfiguration inthistestwasidentical tothatinFigure2ofReference 2.3withtheexception thatthelengthofthe3/16"braidedhosehasbeenincreased from30feetto50feet.Asaresult,thedataobtainedfromthistestmaybeusedtoqualifymethod1fora50A.lengthof3/16"braidedhose.6.0TestDescription Thistestingwasperformed insupportofplannedsteamgenerator tubein-situtestingattheSt.Luciepowerplant.Thesteamgenerator in-situtestisdescribed inReference 2.4.Information fromtheHydroChamberPressureDetermination testreportedhereinwillprovidethebasisforarevisiontoReference 2.4toincorporate lessonslearned.TheprotocolfortheHydroChamberPressureDetermination testwasprovidedinReference 2.1.Thetargetpressures forthistestwerebaseduponthoseanticipated forthein-situtestasdescribed inReference 2.4.Thesepressures arelistedinthetablebelowunderthecolumnheadingsCircumferential Indications andAxialIndications.
NotethattheRowtitled'MSLB',wasnotincludedinReference 2.4butwasgenerated fortheHydroChamberPressureDetermination test.ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page6of15TablelTestPressureBasisBasisBaseValue(siCircumferential Indications si'"AxialIndications siNormalOperating dZ1435MSLBPressure2,5001.4xMSLBPressure"',500 3xN.O.dZ4,3051,7443,0384,2535,2311,6222,8253,9554,865Notes:1)Pressures werecorrected atotalof21.5%fromthebasevaluesfortemperature andlockedsupportinfluences.
,2)Pressures werecorrected 13%fromthebasevaluesfortemperature influences.
3)TheMSLBbasepressureisincreased by40%toaccountforstructural designsafetymargin.Regarding theMSLBpressure, initially, theteststeamgenerator tubetestplanincludedonly1.4xMSLBpressure, corrected fortemperature andlockedsupports.
Furtherreviewsuggeststhatwhilethisvalueisanappropriate pressurefortestingstructural integrity, itisoverlyconservative withrespecttoleakratetestingfor10CFR100releaseevaluations.
Asaresult,theMSLBvalue,withoutthe1.4xfactorwasalsoconsidered whenchoosingtargetpressures forthebladder/hydro chambercorrelation tests.Thecorrelation testwasconducted usingboththecircumferential/axial andlongaxiallocalized in-situtesttools.Testingwascarriedoutusingaleakratefixtureinconjunction withthesparehydropumpnormallyusedforin-situtesting.Bladderpressurewassuppliedbyahandoperatedhydraulic pump.Thetestequipment isdepictedinFigurel.StaticTest:Thestatictestwasconducted attwoinitialbladdercircuitpressures; 1,500psig,and2,000psig.Theinitialbladderpressureof2,000psigwaschosenasthisisthenormalinitialbladdercircuitpre-charge.
Astheobjective ofthistestwastoprovideacomparison ofthehydrochamberpressurewiththatinthebladdercircuitforflowconditions, itwasnecessary toensurethattheinitialbladderpressurewasbelowthelowestdesiredtestpressure.
Therefore, thestatictestalsowasconducted at1,500psigasthisislessthanthelowesttargettestpressureof1,622psig.Performing thestatictestatthetwopressures allowscomparison betweenthetraditional bladderpre-charge pressureof2,000psigandtheplannedbladderpre-charge pressureof1,500psig.Thestatictestwasconducted attargethydrochamberpressures of1,500,.1,600, 1,800,3,000,4,000and5,000psigforeachtoolandbothbladderpressures.
The1,500psigABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page7of15valuecorresponds totheminimumbladderpressure.
Theremaining pressures areroundedvalueschosentoapproximate theproposedtestpressures listedintheabovetable.Thestatictestwasconducted bypressurizing thehydrocircuittothetargetpressure+'00psigasindicated bythehydrochamberpressuregauge.Thesystemwasobservedforleaksandsteadypressurereadingsonallgauges.Pressuregaugereadingswererecordedas'asread'alues onthedatasheet.Thesepressurevalueswerecorrected forcalibration differences duringdatareduction inpreparation forthisreport.Thetestwasrepeatedforeachofthetargetpressures forbothtoolsatbothinitialbladdercircuitpressures.
Df1*Th'dy.ilk<<ddfbhIigstaticbladdercircuitpressureof1,500psig.Theleakratetestwasnotconducted ataninitialbladderpressureof2,000psigasthisvaluewillnotbeusedatSt.LucieUnitl.Targetpressures andleakrateswereprovidedinReference 2.1.Thetargethydrochamberpressures of1,700,3,000,4,000and5,000psiglistedinReference 2.1werechosentoapproximate thein-situtestpressures forbothtoolsaslistedinTable1.Thesefourvaluesprovidedareasonable basisformatchingthetestpressures whileminimizing thenumberofteststobeconducted.
However,duringtheconductofthetest,substantial pressurefluctuations duetopumppulseswereobserved.
Consequently, thepressures werechangedtobetailoredtoeachtoolandtherefore tomorecloselyapproximate thespeciflctargettestpressures.
Inaddition, the3xNOdZvaluewasdeletedfromtheleaktestasleaktestingatthispressureisnotarequirement ofRegulatory Guide1.121.Reference 2.1listedaseriesoftargetleakrates.Duringtheconductofthetest,somedifficulty wasencountered inachieving thesevalues,particularly athigherleakrates.Asaresult,thenearestachievable leakratewasused.Inaddition, thetestwasexpandedtoprovideadditional dataatlowleakrates.Fortheconductofthetest,thebladdercircuitwaspressurized to1,500psig+100psig.Thehydrocircuitwaspressurized tothetargetpressure+100psig.Thetestapparatus wasobservedforleaksandsteadypressurereadingsonallgauges.Subsequently, theleakratecontrolvalvewasopenedtoestablish thedesiredhydropumpstrokeratewhilemaintaining thetargetpressureasindicated bythehydrochamberpressuregauge.Thisrequirediterative adjustment ofthehydropumpaircontrolregulator andtheleakratecontrolvalve.Duetothepulsingnatureofthepump,thepressuregaugereadingswerefluctuating ataconstantamplitude uniquetoeachpressuretap.Theadjustments weremadesuchthatthetargethydrochamberpressurewasatapproximately themiddle'of theswing.Onceasteady-state condition wasachieved, thepressurereadingswererecordedonthedatasheet.Thisprocesswasrepeatedforeachpumpstrokeratetestedateachofthehydrochambertestpressures forbothtools.ABBCombustion Engineering NuclearOperations H-'1 TR-9419-CSE96-1101, Rev.0Page8of15TestResultsThetestprocedure andcompleted datasheetsusedforthistestareincludedinthisreportasanattachment.
Thedatawerereviewedandcompiledinaspreadsheet formatinTables2through5to'showtherelationship betweenthebladderpressureandthehydrochamberpressure.
Thedatawereusedastheas-readvalues.Thepressurereadingswerenotcorrected forcalibration variance.
Thecalibration recordsforthepressuregaugesusedinthistestareattachedtothisreport.Forthe.pressuregaugesofinterest, thoseonthehydrochamberandthebladdercircuit,thedeviation fromthestandardwasidentical inthepressurerangetested+50psig.Asaresult,thetrueLQ'etween thesetwogaugesisidentical tetheas-readdZ.StaticTest:Thestatictestwasconducted attwoinitialbladdercircuitpressures, 1,500and2,000psig,forbothtools.Tables2&3presenttheresultsfortheaxialandcircumferential toolsrespectively.
Forbothtoolsitwasnotedthatalargechambervs.bladderdZwasevidentuntilthehydrochamberpressureapproached theinitialbladderpressure.
Subsequently, thedZwasmeasuredtobe150to250psid.ThetypicalvariancebetweentheseM'sforthesametool,atdifferent initialbladderpressures was50psi.Thevariancebetweenthetwotools,atthesamepressure, alsowasapproximately 50psi.~DiTThdy'.<<ddi"ilblddiipf1,500psigforbothtools.Thetoolsweretestedatthreetargethydrochamberpressures corresponding approximately totheN.O.M,MSLBpressureand1.4xMSLBpressureatavarietyofleakratesrangingfrom3to92strokes/min (1pumpstrokeisequivalent to0.005gallons).
Notethatthetargettestpressures aredifferent foraxialvs.circumferential defects.Theresultsfortheaxialandcircumferential toolsarepresented inTables4Ec5.Duetothepulsingnatureofthereciprocating hydropump,wideswingsinallpressurereadingswereobserved.
Thehydropumpairinletpressureandleakratevalvewereadjustedsuchthatthemidpointoftheswingofthehydrochamberpressuregaugeapproximated thetargettestpressure.
Boththehighandlowvalueswererecorded.
Additionally, thehighandlowvaluesforthebladdercircuitwererecorded.
Ateachpumpstrokerate(simulated leakrate)thetruemeanvaluesofthepressurereadingswerecalculated.
Thesewerethenusedtocalculate thedZoftheaveragepressures inthehydrochamberandbladdercircuit.TheLPvaluesateachtargettestpressurewereevaluated tocalculate asinglemeanvaluefortheb,Patagiventargetpressure.
trialToolTheresultsfortheaxialtoolarepresented inTable4.TheresultsshowthatforagiventargetpressurethedZvariedapproximately 50psiwithtwoexceptions.
Atthehighestpumpstrokerateforeachtargetpressure, thedZwasconsiderably greaterthantheaverageoftheremaining values.Inaddition, forthetargetpressureof2850psig,thedZat4strokes/min was200psidwhiletheremaining lowtomid-range leakratesrangedfrom275to325psid.Whencomparing thethreeaverageb,Pvalues,oneateachtargetpressure, itwasnotedthatasthetargetpressurewasincreased, theaverageMABBCombustion Engineering NuclearOperations 4-IC TR-9419-CSE96-1101, Rev.0Page9of15decreased.
TheaveragedZfortheaxialtoolrangedfrom395psid@1650psigto250psid@3950psig.Circumferential ToolTheresultsforthecircumferential toolarepresented inTable5.'heresultsshowthatforagiventargetpressurethedZvariedapproximately 50psiwithoneexception.
Atthehighestpumpstrokerate@1750psigtargetpressure, thebPwas75psigreaterthanthelowestvalue.Thisdiffersfromtheresultsobservedwiththeaxialtoolinthattherewerenolargedifferences atthehigherstrokerate.Similartotheaxialtool,whencomparing thethreeaverageLPvalues,oneateachtargetpressure, itwasnotedthatasthetargetpressurewasincreased, theaveragedZdecreased TheaveragedZfortheaxialtoolrangedfrom325psid@1750psigto215psid4300pslg.8.0Conclusions 8.1Thestatictestshowedthatiftheinitialbladderpre-charge pressureislessthanthehydrochambertestpressure, largedifferences willbeobservedbetweenthevaluesofthesetwocircuits.
8.2Thestatictestalsoshowedthatasthetestpressureisincreased, thehPbetweenthebladderandhydrochamberdecreased.
8.3Similartothestatictest,thedynamic(controlled leak)testshowedthatasthetargetpressurewasincreased, theaveragedZdecreased.
8.4ThedynamictestshowedthattheaxialtoolhadalargeraverageLQ'hanthecircumferential tool.8.5Fortheaxialtool,avalueof400psiisareasonable correction factorfor,determining thehydrochamberaveragepressurebasedonthebladdercircuitaveragepressure.
Thisvalue'sbiasedhighwithrespecttoincreasing pressureandsomewhatlowathighleakrates(approximately 0.5gpm).Considering theoverallpressureswinginthehydrochamberthisvalueisjudgedtobeareasonable correction factor.8.6Forthecircumferential tool,avalueof300psiisareasonable correction factorfordetern&ung thehydrochamberaveragepressurebasedonthebladdercircuitaveragepressure.
Thisvalueisapplicable fortestingbothaxialaswellascircumferential indications.
Thiscorrection factoristool-specific, notdefect-specific.
Thevalueof300psibiasedhighwithrespecttoincreasing pressureandslightlylowatthenormaloperating dZ.Considering theoverallpressureswinginthehydrochamberthisvalueisjudgedtobeareasonable correction factor.ABBCombustion Engineering NuclearOperations A-II TR-9419-CSE96-1101, Rev.0Page10of159.0Recommendations 9.1Targetpressures inthesteamgenerator tubein-situpressuretestaslistedintheoperating procedure shouldincludeacorrection factorforpressuregaugedeviation fromthecalibration standard.
9.2Forstatic,non-leaking defects,thetubetestpressureshouldbedirectlyreadfromthehydropumpdischarge pressuregauge+100,
-0psig.9.3Forl~eakindefectsusingtheaxialtool,thetargettestpressureinthetubeshouldbeachievedbyadding400psitothetargetpressureandensuringthattheaverageofthebladderpressureswingmatchesthispressurewithin100psi.9.4For~leakindefectsusingthecircumferential
/axialtool,thetargettestpressureinthetubeshouldbeachievedbyadding300psitothetargetpressureandensuringthattheaverageofthebladderpressureswingmatchesthispressurewithin100psi.ABBCombustion Engineering NuclearOperations CO0)C)0O0fllCDCDCDCOzOCDCO0'UCD0DHydroPumpHydroPumpGaugeIn-SituToolSteamGenerator TubeBladderPressureGaugeHydroChamberFigure1TestApparatusConfiguration HydroChamberGaugeLeakRateControlValveCOOCOrllCO0)oXI(C)BladderPumpAl(DCD0Ql TR-9419-CSE96-1101, Rev.0Page'12of15Table2StaticPressureTestAxialDefectToolInitialBladderPressure-1500siHydroChamberPressure(psig)150016001800300040005000HydroPumpPressure(psig) 150016001800300040505000BladderPressure(psig)1500182518752050320042505200ChambervsBladder1500325275250200200200InitialBladderPressure-2000siHydroChamberPressure(psig)150016001800300040QQ5000HydroPumpPressure(psig) 150016001850305040005000BladderPressure(psig)2000215021752275325042505200ChambervsBladder2000650575425200250200ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page13of15Table3StaticPressureTestCircumferential/Axial DefectToolInitialBladderPressure-1500siHydroChamberPressure(psig)150016001750300040005000HydroPumpPressure(psig) 150016001800300040005000Bladder.Pressure(psig)1500185019002050315041505150ChambervsBladder1500350300250150150150InitialBladderPressure-2000siHydroChamberPressure(psig)150015501750295040005000HydroPumpPressure(psig) 150016001800300040005000BladderPressure(psig)2000230023002350320042005200ChambervsBladder2000800700550200200200ABBCombustion Engineering NuclearOperations TR-9419-CSE96-1101, Rev.0Page14of15Table4TargetPressure1650psigDynamicPressureTestAxialDefectToolPumpRateHydroChamber(psi)Strokes/min Max.Min.Avg.Max.Bladder(psi)Min.Avg.'vg.518325391170016001650180014501625205014501750230014001850240011001750205021502350250026501950190019501900180020002025215022002225350400400350475j-',:;-':;.:':::;:%ii:::::::::".i TargetPressure2850psigPumpRateStrokes/min HydroChamber(psi)Max.Min.AvgBladder(psi)Min.Avg.430002800290022315026002875403300240028505433502300282592380022003000320034003500360041003000290028002700280031003150315031503450200275300325450LI44I4~Jal1I~I4lllllleYIIAI TargetPressure3950psigPumpRateStrokes/min HydroChamber(psi)Max.Min.Avg.Max.Bladder(psi)Min.Avg.Avg.318385680400038503925440039004150450035004000470035004100460031003850420045504600490048004050412541504350370041503700430039004350200200150200500ABBCombustion Engineering NuclearOperations p4-Ib TR-9419-CSE96-1101, Rev.0Page15of15Table5TargetPressure1750psigDynamicPressureTestCircumferential/Axial DefectToolPumpRateStrokes/min HydroChamber(si)Max.Min.Avg.MaxBladdersiMin.Avg.Avg.315306090180019002000230024501700175015501725140017001200175013001875210021502250245027002050190017501700180020753252025300200030020753252250375lI:Ilia,'",N:::;l'F,-i I'11%111Ila'IIV11TargetPressure3050psigPumpRateStrokes/min 1219337286HydroChamber(psi)Max.Min.Avg.325028503050335028003075350027503125360024003000380022003000Bladder(psi)Max.Min.3450315035503000375030003850260040002500Avg.Avg.33002503275200337525032252253250250!c~j?+2M",Pi:K Vllll4II~OlkllllMMIAlltt TargetPressure4300psigPumpRateStrokes/min HydroChamber(psi)Max.Min.Avg.Max.Bladder(psi)Min.Avg.Avg.52042598444004250432547504100442549503800437549003600'250530035004400460044504950430051004100510038005500380045254625460044504650200200225200250~WW!2iS!%!il ABBCombustion Engineering NuclearOperations 8-17