ML17229A094: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 14: Line 14:
| document type = ARCHIVE RECORDS, OPERATIONS SUPPORT-CALCULATIONS
| document type = ARCHIVE RECORDS, OPERATIONS SUPPORT-CALCULATIONS
| page count = 34
| page count = 34
}}
=Text=
{{#Wiki_filter:St.LucieUnit1DocketNo.50-335-96-273Enclosure3SAIC05-5049-05-6734-500STEAMGENERATORDEGRADATIONSPECIFICMANAGEMENT(SGDSM)LEAKAGELIMITCALCULATIONFORSTLUCIEUNITa'lef'nEmployee-OwnedCompanySAIC05-5049-05-6734-500AptechAgreementSept.,1996RevisionAPREPAREDBY:oem:KBAHNEDSY:APPROYEDBY:qe~oa8008+9iXoaePDR'DOCK05000335PPDR10260CampusPointOrive,SanDiego,California92121(61915466000Othe'AiOOirceeiArououeioue.Bosion.ColoieooSonnyg.Oevion,Hunt~le.LievizuieAnoeieaAfcleen.Oe>>Ridge.OiienoapsioAliaSeenie.enoruoeon LeakaeLimitCaculationforStLucieUnit1TableofContentsPageINTR0DUCTI0No~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~eeloo1ETHODOLOGY.....................................................................................1MRadiationReleaseModelLeakageLimitModel.QualityAssurance,.~~ooooo3EAKAGELlMIT...................................................................~......~...........3LScreeningAssessment.BasicAssumptions~~~o3~o~o4DetailedCalculation..~~~~~oooooo~~oooo4PlantSpecificData.~o~o~ooooo5ESULTSo~~~~~~~~~~~~~~~~~~~~~e~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~oo~eooo6RScreeningAssessment.~oo~oooooooooo6DetailedCalculation.~~~~~~~~~~o0~~~o~~~~0~~oooo~o70NCLUSi0NSo~~oooooooooo~~~oo~oo~~oo~eo~~oo~~~~~oo~oo~oo~~oo~ee~~~~~~~~~oooeo~~~~~oe~oooooooeeeoo9CEfERENCES.........................................................................................10RAppendixAMeteorologicalAndSiteDatafromSt.Lucle....................11AppendixBCumulativeProbabilityDistributionsforX/Q&LeakRate..23AppendixCScreeningMethodology...........................~~--------.28Pageii LeakaeLimitCalculationforStLucieUnit1ListofTablesandFiguresPageTable1Screeningresultsfordoselimitedleakageat95%confidencelevel...,...,.7Table2.LeakagetoMeetDoseLimitsattheEABforaPre-AccidentSpike............9Table3,LeakagetoMeetDoseLimitsatControlRoomforaPre-AccidentSpike..9Table4.LeakagetoMeetDoseLimitsattheEABforanAccident-InitiatedSpike..9Table5.LeakagetoMeetDoseLimitsattheCRforanAccident-InitiatedSpike....10TableC1.Screeningresultsfordoselimitedleakageat95%confidencelevel.....292527Figure8-1CumulativeFrequencyofc/QattheEABFigure8-2ConfidencevsleakagelimitattheEABforaisandpas95%meteorologicalconditions~~~~~~~~~~~~~~~~~~~t~~ttrt~~ettotooo~oottott24Figure8-3ConfidencevsleakagelimitattheEABforaisandpas99%meteorologicalconditionsFigure8-4ConfidencevsleakagelimitattheEABforaisandpas99%meteorologicalconditions................25Figure8-5CumulativeFrequencyofc/Qatthecontrolroomintake,.~~..........26Figure8-6Confidencevsleakagelimitforcontrolroomforaisandpas95%meteorologicalconditionsFigure8-7Confidencevsleakagelimitforcontrolroomforaisandpas99%meteorologicalconditions........................................~.~..~...~.......~............................27Figure8-8ConfidencevsleakagelimitforcontrolroomforaisandpasworstobservedmeteorologicalconditionPageiii
LeakaeLimitCalculationforStLucieUnit1INTRODUCTIONThepurposeofthiscalculationistodeterminethedoselimitingsteamgeneratortubeleakageforapostulatedmainsteamlinebreakaccidentconsideringSt.Lucie'ssitespecificconditions.Thepurposeoftheleakagelimitcalculationistoprovideasitespecificleakagevaluethatwouldnotexceed10CFR100(>landGeneralDesignCriteria19accidentdoselimitswithahighdegreeofconfidence.Theconfidencelevelrecommendedintheindustryproposedmethodologyforthiscalculationisa95%confidencelevelonradiationdoseforatmosphericdispersionconditionsforthe95percentileofobservedconditions.This95/95valuecanbeusedtoquantifymarginsthatexistbetweentheestimatedleakageforamainsteamlinebreakduetothesteamgeneratorconditionandthedoselimitingleakage.Thiscalculationusestheprobabilisticoption@Iforquantifyingtheleakagelimitforbothcontrolroom(CR)operatorsandindividualsatexclusionareaboundary(EAB).ThecalculationsusesitespecificdatacollectedatStLucieformeteorologicalandplantsystems.METHODOLOGYThebasisofthemethods,assumptionsandtoolsforthesecalculationsareoutlinedincurrentdocumentsprovidedbyEPRIPIandNRC(41insupportofsteamgeneratorintegrityrulemakingPl.Thecalculationisdividedintotwoparts:ascreeningassessmentandadetailedcalculation.ThemethodologyforcalculatingtheprimarycoolantaccidentleakagelimitisusedsolelytodeterminetheconditionsthatwouldresultinI>3>releaseslargeenoughtoexceedradiationdoselimitsataspecifiedconfidencelevel.Theydonotconstrainleakagebasedontheaccidentassumptionsortheinternalcharacteristicsofanoperatingplant.Therefore,theseanalysescanyieldleakagelimitvalueslargerthanallowedbytheaccidentassumptionsorthephysicalcapabilitiesoftheplant.Theleakagevalueresultsshouldnotbetakentomean"real"plantcapabilities,orthatmarginsareavailableuptotheseleakagevalues.RathersuchresultsmeanonlythatradiationdoselimitsarenotexceededforI>3>releasescorrespondingtotheseleakagevalues,aslongastheplantiscapableofoperatingwithinthestatedengineeringassumptions.Iftheplantoperatesoutsidetheseassumptions,thelimitsonleakagemustbebased,onconsiderationsotherthancompliancewithdoselimitsforthepostulatedmainsteamlinebreak(MSLB)accidentwithassociatedsteamgeneratortubeleakage(SGTL).Project6783Page1ot'98/29/96 LeakaeLimitCalculationforStLucieUnit1RadiationReleaseModelThephenomenaofinterestthatleadstopotentialradiationexposureistheincrease.iniodinereleaseratefromthefueltotheprimarycoolantwhichstemsfrompowerandpressuretransients.Themagnitudeofthistemporaryincreaseintheiodinereleaserate(calledaspike)representsasourcetermforthepostulatedMSLB/SGTLaccidentpressureandpowertransient.Twotypesofiodinespikingeventsareidentifiedinthestandardreviewplanmethodologyl6l.Thefirstisatransient-inducedspikethatisassumedtooccurpriortoaMSLB/SGTLeventorapre-accidentspike(PAS).Inthiscasethepostulatedaccidentisassumedtooccuratatimewhentheiodineconcentrationintheprimarycoolantismaximum.ThesecondeventinvolvesaspikeinducedbytheMSLB/SGTLeventitself.Forthiseventtheprimarycoolantiodineconcentrationispredictedonthebasisofaprescribedreleaseratefromthefueloranaccidentinitiatedspike(AIS).BothofthesesourcetermsareconsideredinthescreeningassessmentandthedetailedcalculationasrecommendedintheSGintegrityrulemakingdocumentation.Thedataoniodinespikinghasbeengreatlyexpandedoverthedecadesincethereviewplanwaswritten.AstudyoftheiodinespikingdatabyPostmat7lwascarriedouttoquantifythepeakiodineconcentration(p,Ci/g)fornearlytwohundredeventsandreleaserates(Ci/hr)fromnearlyonehundredeventsatavarietyofPWRs.BynotingthatthedistributionsofspikeeventsarerepresentativeofthepopulationspikesthatcouldexistpriortoandresultfromMSLB/SGTLevents,Postma'siodineconcentrationdatawereconvertedintodistributionsforreleasefromthePWRsecondarysystemtotheenvironmentasafunctionoftheprimarytosecondaryleakrate(Ci/gpm).AgenericMSLB/SGTLPWRthermalhydraulicsmodelwasusedtoevaluateareference100gpmleakfromtheprimarytosecondarysystem.ThecombinationofspikedataandtheleakratewasusedtoproduceI>3>releasedistributionsasafunctionofleakrateforthepostulatedaccidentasdescribedinRef.3.Thismodelprovidesgeneric"bestestimatewithuncertaintydistributions"forI>>>releasefromthesecondarysideofaPWRasafunctionofthePASandAISsourcetermsandtheprimarytosecondaryleakage.LeakageLimitModelForthisleakagelimitassessmentthegenericaccidentreleasedistributionswerecombinedwiththeotherdosemodelelementssuchassitespecificSt.LuciedispersionfactorsdeterminedbythelocalmeteorologymeasuresusingMonteCarloSimulation.Theresultingdistributionsareusedtoassesstheleakagelimitthatwouldassurewithahighconfidencethatpostulatedaccidentdoseattheexclusionareaboundaryandthecontrolroomdonotexceedthedoselimitsintheregulations.SitespecificmeteorologyandfeaturessuchasEABdistance,andcontrolroomfeatureshavethelargestimpactonthelimitingleakrate.Project6783Page2of298/29/96 LeakaeLimitCalculationforStLucieUnit1Useofthegenericsourcetermsrequiresseveralengineeringassumptions.Thesearethattheprimarycoolantactivityismaintainedwithinthetechnicalspecificationlimits,andthattheprimarymakeupsystemsarecapableofmaintainingprimarycoolantinventoryattheselectedleakratelimit.Noiodineplate-outisassumedinthesteamgenerator,thusthegenericreleasetermhassomeelementsofconservatismwhichcanbere-examinedifnecessary.QualityAssuranceAllcalculationsforthisanalysishavebeenconductedaccordingtotherequirementsofSAICqualityassuranceprocedures.Theseinclude:documentationofallengineeringassumptions,independentreviewofengineeringassumptions,referencecitationsforallparametervalues,independentreviewofthecontentsofallcomputerizedspreadsheets,confirmatorycalculations(eitherbyhandorusingaseparatecomputercode)forallspreadsheetcalculations,andindependentreviewofallfinalreports.ArchivedcopiesofallcomputerizedspreadsheetsandassociatedqualityassurancefilesaremaintainedbytheSAICprojectmanager.LEAKAGELIMITScreeningAssessmentThescreeningassessmentisbasedontheresultsofgenericanalysesofuncertaintyinradiationdosemodelsasafunctionofstabilityclass,distancetotheEABandtypeofcontrolrooml3l.MonteCarlosimulationswereusedtodevelopgenerictablestodescribetheleakagevaluethat,with95%confidence,wouldnotexceedthedoselimitsin10CFR100andGDC19forthepostulatedMSLB/SGTL.TheleakagelimitisafunctionofthesitecharacteristicsandtheI131accidentsourceterm.ThisleakagelimitisindependentofthecalculationfortheprojectedaccidentleakagewhichusesnondestructiveexaminationmeasuresoftheSGtubessuchasvoltsprojectedtotheendofcycletoestimateantheaccidentinducedleakagevalue.ModelsforthedosecalculationsweretakenfromUSNRCRegulatoryGuide1.78~81fortheEABandcontrolroom.AtmosphericdispersionmodelsweretakenfromUSNRCRegulatoryGuide1.145&#xc3;l.Genericdataforcoveringtherangeofwindspeedsanddispersionparametersweretakenfromstabilityclassdefinitions.Modelinguncertaintiesforrelevantplantfeaturesarebasedonindustryaveragesratherthansitespecificcalculations'and,therefore,representgreatervariancethanwouldbeobservedataspecificsite.ForinitialscreeningthedoselimitingleakagevaluesweretakenfromtabulatedresultsinRef.3.ValueswerechosenthatcorrespondtothesiteboundarydistanceforSt.Lucieandtheatmosphericstabilityclassrepresentingdispersionconditionslessfavorablethan95%ofthoseobservedatSt.Lucieduringcalendaryear1995~>ol.Ofthetwosourcetermsconsidered,thePASisalwaysmorerestrictivethantheAISProject6783Page3of298/29/96 LeakaeLimitCali;ulationforStLucieUnit1atthehigherconfidencelevelsabove90%.TheAISismorerestrictiveatconfidencelevelsbelow70%.BasicAssumptionsThefollowingassumptionsdonotappearexplicitlyinthemethodologyusedforthisanalysisbutarekeytointerpretingtheresults:1)St.LuciewilloperatewiththeprimaryactivitywithinthelimitsstatedintheFSAR.TheI>3>releasedatabaseincludesmeasuresofI>3>releasedduringplanttransientsfromplantsthatmaintainedprimarycoolantactivitywithintheFSARlirrutsonprimarycoolantactivity.2)TheMSLB-SGTLtransientcausesnonewcladdingorfueldamage.3).Theprimarycoolantinjectionrateisassumedequaltotheleakagethroughoutthetransient.4)Themakeupinventoryislargeenoughtomaintainprimarycoolantinventoryduringthecontrolledshutdownwhichisontheorderoftwohours.5)Thereisnoreductioninthesourcetermduetoplateoutinthesecondarysystem.6)The95%confidencelevelisdominatedbythepre-accidentI>3>spike.Ingeneral,leakageratesgreaterthanabout400gpmareoutsidetheregimepostulatedfortheMSLB-SGTRaccidentsconsideredhere.SeveralassumptionskeytotheMSLB-SGTRaccidentscenariodonotapplyabovethisleakagerate.Forexample,theassumptionthattheinjectionrateisequaltotheleakrateisbasedontheautomaticresponseofthecontrolsandsafetysystemstotheMSLB-SGTRaccidentwithoutoperatorintervention.Aboveabout400gpmoperatoractionswillbeneededtocontrolsafetyinjection.Inaddition,the03>releasemodelcouldchangeaccordingtotheaccidentscenariobeingexamined,Forexample,inlowerprobabilityaccidentstreatedinprobabilisticriskassessmentstudiesadditionalsystemssuchastheinjectionsystemcouldbeassumedunavailable,andwithoutcompensatingoperatoractionstorestoreinjection,releasesat400gpmcouldresultinhigherdosesduetocladdingorcoredamage.TheseissuesarediscussedinindustryreportspreparedbySGDSMcommitteesl~.Thecladdingandcoredamagescenariosareoutsidetheboundsofthisassessment.Therefore,thevaluesintheallowedleakagegraphsabove400gpmareconsiderednotrepresentativeofthepostulatedMSLB-SGTRaccidenttransient.DetailedCalculationThedetailedcalculationusesplantspecificdatatodevelopa95/95doselimitingleakratefortheSt.Luciesite.TheobjectiveofthedetailedcalculationistoensurethatnouniquesitecharacteristicscauseamorelimitingconditionthanidentifiedbytheProject6783Page4of298/29/96 LeakaeLimitCalculationforStLucieUnit1genericscreeningprocess.ThesesitespecificcalculationsusemeasuredStLuciemeteorologicaldata,site-specificdistancestothesiteboundaryandthecontrolroom,andplant-specificcontrolroomcharacteristics.Usingthesesite-specificdata,valuesofX/QwerecalculatedforthecontrolroomandtheEABforeachofabout15,000individualmeteorologicalobservationstakenatSt.Lucieduringcalendaryear1995.AtmosphericdispersioncalculationsusedtheequationsspecifiedinNRCRegulatoryGuide1.145.Thesevalueswererankedtopermitselectionofthe95%,99%andworstobservedmeteorologicalconditions,CumulativeprobabilitydistributionofX/QfortheEABandcontrolroomappearsinAppendixB.Dosemodelinguncertaintiesweredeterminedfortheselected95%,99%andworstobserveddispersionconditionsusingtheMonteCarlosimulationmethodsdescribedinRef.3.Thepurposeofthisstepinthecalculationistoensurethatsufficientconservatismisincludedintheleakratevaluestoaccountforuncertaintiesindosemodelingwhileavoidingtheover-conservatismassociatedwitha"worst-case"analysis.TheMonteCarlosimulationincorporatesuncertaintiesinthepostulatedI>3>release,individualdosemodelparameters,andcontrolroom.Inthisdetailedanalysisthe95thpercentileof1000MonteCarlosimulations,basedonthe95thpercentileleastfavorableatmosphericdispersionconditions,wasusedtodeterminethe95/95leakrate.Inaddition,1000simulationswereconductedforboththe99%leastfavorableandtheworstdispersionconditionobservedintheStLuciedatasetto).Thesecalculationswereusedtoevaluatewhethersitespecificoutliermeteorologicalconditionscouldresultinasituationwereradiationdosewouldbethelimitingconsiderationinsettingoperatingmarginsforleakrate.CumulativefrequencydistributionsforallMonteCarloanalysesarepresentedinAppendixB.PiantSpecificDataMostofthedatarequiredforthisanalysiswereobtainedfromtheFinalSafetyAnalysisReport(FSAR)fortheSt.Lucieplantl<<l.Additionaldata,includingmorerecentmeteorologicaldatawereobtaineddirectlyfromstaffatFloridaPowerandLights>ol.ThesedataarepresentedinAppendixA.Theyinclude:1)Distancetositeboundaryinsixteendirectionscorrespondingtothewindrosesectors.ForSt.Lucietheplantboundaryiscircularwitharadiusof1561m.2)Joint-frequencytablesofwindspeedanddirectionforstabilityclassesAthroughGbasedonhourlydatacollectedatSt.Lucieduringcalendaryear1995.3)Datadescribingkeyfeaturesofthecontrolroomventsystem,airexchangeratesandisolationfeatures.Project6783Page5of298/29/96 LeakaeLimitCalculationforStLucieUnit1RESULTSScreeningAssessmentThescreeningassessmentprovidesonlyasimpleassessmenttoindicatethepotentialforlargemarginsintheleakratelimit.Becauseindustry-wide,genericassumptionsareusedinthescreeningassessmentandsite-specificassumptionsareusedinthedetailedcalculation,itisunlikelythatthesameconditionswillgeneratethesamelimitingconditionsatagivenconfidencelevel.ScreeningresultsshowthatthepotentialforalargemarginofsafetyontheleakagelimitexistsatStLuciebasedonsitespecificdoselimitingfeatures.ItalsoindicatesthereisapotentialforthecontrolroomdoselimittobereachedbeforetheEABlimitisreached.AsshowninTable1theleakagevaluesdeterminedfromthescreeningassessmentfor95%confidenceofnotexceedingthedoselimitsforapre-accidentspikeare545gpmforthecontrolroomand3,310gpmfortheEABdistance.Ifanaccidentinducedspikeisassumedthecontrolroomlimitis1700gpmandtheEABlimitis12,900gpm.Table1Screeningresultsfordoselimitedleakageat95%confidencelevel(usingTablesfromRef.3)EAB,ClassFEAB,ClassEControlRoom,TypeBLeakageLimitPre-accidentSpike(gpm)331012,100545LeakageLimitAccident-InitiatedSpike(gpm)12,90044,0001,700ForeachcaseshowninTable1thevaluesaremuchgreaterthantherecommendedlimitof200gpmcurrentlyproposedbyNEIduringthesteamgeneratorintegrityrulemakingprocess.ThisindicatesthattheleakagelimitisnotlikelytobeboundedbydoseforeithertheEABortheCRforthisaccident.Thatis,thereisapotentialforlargemarginsondose,andtheleakagelimitdependsonplantfeaturesotherthandose.Thus,adetailedcalculationusingsitespecificdatafromSt.Lucieisjustifiedinorderto:1)verifythelimitingdosecriteriaforSGtubeintegrityintermsofleakagebytakingintoaccountthesitespecificmeteorologydataatStLucie,2)refineestimatesofavailablemarginbyestimatingtheleakagethatcouldresultinadoselimitingsituation,and3)verifytheengineeringmodelassumptionsthatapplyforbothscreeninganddetailedmodels.Project6783Page6of298/29/96 LeakaeLimitCalculationforStLucieUnit1Thekeyengineeringassumptionsusedforthescreeningleveliodinedosemodelsare:1)Duringnormaloperationtheiodineconcentrationintheprimarycoolantislimitedbytechnicalspecifications.2)TheprimarycoolantinjectionrateisequaltotheleakageduringthepostulatedMSLB-SGTRaccident.3)AsinglegenericdoseanalysisequationwasusedtomodeltheEABleakagelimitinthescreeninganalysis(Le.,thedetailedanalysisselectsfrom3equationsinRG1.145).4)Site-specificparametervaluesvarylessthanthegenericscreening(e.g.,theplantcrosssectionarea,A,hasnouncertaintyforaspecificplant)5)Sitespecificwindspeedhasavariancedrivenbythedatabinsizeratherthanthewholerangeallowedbythedefinitionsofstabilityclass.6)ThetabulatedvaluesrepresentanallowedleakagefortheMSLB-SGTRaccidentassumingnoaccidentcausedcladdingorfueldamage.7)Sufficientdefense-in-depthfeaturesareinplacetokeepaMSLBaccidentfromalsocausingcoredamage.DetailedCalculationTables2through5summarizetheresultsofthedetailedsite-specificcalculation.Table2presentsthedose-limitingleakratesattheEABforthepre-accidentspikescenario.ThisisthemostlimitingscenarioforestablishingmarginsonleakageatStLucie.Thetableincludesthe95/95conditionaswellasmorerestrictivecombinationsofhigherconfidencelevelsforbothdispersionconditionsanddosemodeluncertainties,CompliancewiththedoselimitattheEABdoesnotrestrictleakratestolessthan200gpmforthe95/95condition.A200gpmlimitmaybeappropriate,ifhigherconfidenceofcompliancewithdoselimitsattheEABisrequired.Forexample,atthe95thpercentileonmeteorologicalconditionsanda99%confidencelevelforcompliancewithdoselimits(e.g.,the95/99condition)requiresanaccidentleakageof211gpmorless.Thetablealsopresentsthe99/95andthe99/99conditions.Theworstobservedmeteorologicalconditionsrequireleakagetobelimitedto403gpmfora95%confidenceofdosecomplianceand110gpmata99%confidencelevel.Theright-handcolumnofTable2indicatestheconfidencelevelondosecompliancethatwouldbeachievedbylimitingtheleakageto200gpmforeachmeteorologicalconditionevaluated.Table3presentsthedose-limitingleakratesatthecontrolroomforapre-accidentspikescenario.Noconditionlimitsleakageto200gpmorless.Restrictingleakageto200gpmachievesconfidencelevelsforcompliancewithdoselimitsofgreaterthan99%foreventheworstobservedmeteorologicalconditions.Project6783Page7of298/29/96 LeakaeLimitCalculationforStLucieUnit1Tables4and5'presentthedose-limitingleakratesattheEABandthecontrolroomfortheaccident-initiatedspikescenario.Ineverycase,limitationsonleakagearelessrestrictiveforthisaccidentscenariothanforthepre-accidentspike.Table2.LeakagetoMeetDoseLimitsattheEABforaPre-AccidentSpikeMeteorologicalConditionsLeakageLimitatStatedConfidenceLevelforDoseModel(gpm)ConfidenceLevelforDoseModelStabilityWindspeedcentile(m/s)95%99%O200gpm95%99%worstE0.22-1.56F0.22-1.56G0.22-1.561,67021121411099.299.197.8Table3.LeakagetoMeetDoseLimitsattheControlRoomforaPre-AccidentSpikeMeteorologicalConditionsStabilityWindspeedcentlle(m/s)LeakageLimitatStatedConfidenceLevelforDoseModel(gpm)95%99%ConfldenceLevelforDoseModelI200gpm95%99%worstDFG0.22-1.560.22-1.560.22-1.561,6501,7501,60042040138499.499.999.6Table4.LeakagetoMeetDoseLimitsattheEABforanAccident-InitiatedSpikesMeteorologicalConditionsLeakageLimitatStatedConfidenceLevelforDoseModel(gpm)ConfidenceLevelforDoseMadelStabllltyWindspeedcentlle(m/s)95%99%200gpm95%99'/oworstEFG0.22-1.560.22-1.560.22-1.5653803,0401,6502,7801,310696N/AN/AN/AProject6783Page8of298/29/96 LeakaeLimitCah.'f//ationforStLucieUnit1Table5.LeakagetoMeetDoseLimitsattheCRforanAccident-InitiatedSpikeMeteorologicalConditionsLeakageLimitatStated'onfidenceLevelforDoseModel(gpm)ConfidenceLevelforDoseModelPer-StabilityWindspeedcentlle(m/s)95%99%200gpm95%99%worstDFG0.22-1.560.22-1.560.22-1.566,1105,91055002,9102,9902,440N/AN/AN/ACONCLUSIONSTheresultsshowthattheleakagelevelneededtoproducedoselimitingconditionsuptothe95/95confidencelevelatSt.Lucieismuchgreaterthantheindustryrecommendedupperboundof200gpm.~Thescreeningresultsindicatedthepotentialforlargemarginsontheleakagewhichwasconfirmedwithadetailedsiteassessment.~Atthe95/95confidencelevelthedetailedassessmentindicatedthemostlimitingcasewasthepre-accidentspikewiththecontrolroomandEABaboutequalat1600gpm,~ForaMSLB/SGTLof200gpmtheconfidencelevelisapproximately99/99thattheregulatorydoselimitattheStLuciesitewouldnotbeexceeded,Sincedoseisunlikelytobethelimitingconstraintonleakage,theplantphysicalfeaturescanbeusedindeterminingtheleakagelimitforthepostulatedMSLB.ExamplesoftheplantphysicalconstraintsthatcanbeconsideredaslimitsarethecombinedchargingpumpcapacityfortheSt.LucieplantFSAR,orthesumofthechargingpumpandhighpressuresafetyinjectionmakeupcapacity.Project6783Page9of298/29/96 LeakaeLimitCalculationforStLucieUnit1REFERENCES1.2.3.4,5.6.7.8.9.10.11.ReactorSiteCriteriainTitle10CodeofFederalRegulations,10CFRPart100,USNRC,WashingtonD.C.,June24,1975.NEI,1996."IndustryGuideforImplementingSteamGeneratorTubeIntegrityRule"Draft0,NuclearEnergyInstitute,WashingtonD.C.January1996.EPRITR-103878,"MethodologyforConsideringUncertaintiesinI>3>ReleaseandDoseLimitsforaPostulatedAccident."M.Otis,DBradleyandG.Hannaman,ElectricPowerResearchInstitute,PaloAlto,CaliforniaRev2March1996.ViewGraphnotesfromNRC-CommentsondoseuncertaintymethodsEPRIreportEPRITR-103878R1(1994)April1996..FederalRegister,NRCRuleRIN3150-AFO4,October,1994.NRC,NUREG-0800."StandardReviewPlanfortheReviewofSafetyAnalysisReportsforNuclearPowerPlants,"LWREdition,U.S.NuclearRegulatoryCommission,Washington,D.C.,July1981.Postma,A.K.,1995."EmpiricalStudyofIodineSpikeDatainPWRPowerPlants,"EPRITR-103680,Rev.1ElectricPowerResearchInstitute,PaloAlto,CA,November1995.NRC,1974.RegulatoryGuide1.78,"AssumptionsforEvaluatingtheHabitabilityofaNuclearPowerPlantControlRoomDuringaPostulatedHazardousChemicalRelease",U.S.NuclearRegulatoryCommission,Washington,D.C.,June1974.NRC,1983.RegulatoryGuide1.145,"AtmosphericDispersionModelsforPotentialAccidentConsequenceAssessmentsatNuclearPowerPlants",U.S.NuclearRegulatoryCommission,Washington,D.C.,August1976.PeteBailey,PersonnelCommunication"St.LucieMeteorologyandCRData."August,1996.FloridaPowerandLight,"St.LucieUnit1FSAR"DocketNo.50-335version88-01Section9.4,(MicroFilmversion1988).Project6783Page10of298/29/96 LeakaeLimitCalculationforStLucieUnit1AppendixAMETEOROLOGICALANDSITEDATAFROMST.LUCIEProject6783Pagellof298/29/96 LeakaeLimitCalculationforStLucieUnit1TO:BillHannaman8Hoh/ardPippen,SAICFrom:Peter8.Bailey,FPL
==Subject:==
ResponsetoyourdataneedsSt.I.ucmoUnft0CroaWsa5onalArea:2867m'asedonRCS)64ftDfa,207AftHfaboveground.Sourca:SpecificationforanEmergencyDoseCafcuhtianSystemfartheSt.LuciePfant",(HMMDoc.0804T?-8)H.M.M.Assoc,October18,$982CantrofAcornEmergencyRlbmtlonSystemInfeakago:Assumed109elmSource:St.LucieUn@0UFSARg9.4.1,pg9.~(ammendment12,12/93),Calculatedtobe34.2cfm1/S"Vfsh,P,assumed100cfm,w/0.$2one-passfHtereffeclency,foremergencydosecafcufatfona(Q6.4.1stuH).AnemometerStartfngSpeed:1.0-1.6mphSourc9:StLuciaUnit1UFSAR,g2.3.3.3,pg2.3-33,undatedpage.MetDataforgjQCalcs:AttachedAnnualJFDforCY'95Thefoffeeingninepages[nctudethe1996annualsummaryJFDIbyStabilityCI838,byVlindSpeedGroups,bySector,theyarefntheRegGufde1.2)suggestedformat.ifyouneedmoreofthhtypeinfo,justcall4078944179;lcanFaxcopi68ofthoUFSARpagesffthey'reneeded.Project6783Page12of298/29/96 LeakaeLimitCalculationforStLucieUnit1To:RLRechetteHmm:A.J.GonldDate:Februaryg1996Department:SNAB~r~L~A+
==Subject:==
St.LacyJointFmqnextcyDfstrfhuQonReport,AgrtualReortinfxTHnclosedaxethejointGtquencydLstabuttonsof10-meterwindcHrectionaxtdwhtdspeedbyatxnosphericstabilitycategoryfortheSt.Laciesita.ThhxspaxtcoverstheFourthQnarter1995andtheAnnualReportingfor199$.ThesetablesaxeiathefoxxaatsuggestedbyNRCRegahtotyegde>>>TaM<A.~percentjonttdataxecovayvrasntetforatmospheacstability,windspeed,axutvtiaddirection,asxecomtnendedbytheSecondPtoposedRevision1toNRCRegulataxyGuide1M.Porth6FourthQuarter,100percentjointdatarecoverywxLtrealized.Fortheannuall995jointfaquencydistributionreport,thejointdatarecoverypercentagewas9%32.Kyonhaveanyquestions,pleasecontactmeat4071N4-4199.CC'.Q.BaBeyR.E.Cox6.RhmidR.OhonBS-RC-96410PBeProject6783Pagel3of298/29/96 LeakaeLimitC~.'culationforStLucieUnit1PLOaznaSOMSa4tZOSTCONFSNYST+LQCXStZJQCTPERIODOIRECgRSJagI<1999CODba.31'995ANNO)CoRSFQRTOFFRae30!T?SEQUENTOFNINGDXRECTXCN~MINDSECBDSTVRRT3cgtrsTXDI.ZTYCATSOO2Y10KCrmLMamCFSm(ambii~7S~IRIS~MIt04)441O.OOOD.SSS1.113O.aita.aab4.0004~0040'VIIPssD.csvD0120000lO.oooo.ia21.3110.291O.OSVO.ooo40~ado0.173~127i4,13S4~00400045o.oooo.0991.3ss0.12iO.ooaO.oooCOoaaa0y025Xo444aeM50022Oaddb0~4000ODD4~0250,4120,0000~040sO.oooo.aooO.aoo4.0220.02204409o.oooo.oooo.oooO.ooa0.4000.012LO0-440oo037bl$5Oooit40000~404~~%0~3o.aab4.1CI0.210a.aitC.ois0.0124~0000+F145730sot904400aaaa.i04400,12iaeC92bobtt0abb0~4000~ODD0~Ott4~532O,oit0~0440~DOOC0d440.5321,9DiDOC20~4000,400LlO.oooO.osva.2330.414.b.ddbb.oob171tS145ISSSS8212J.VC9.51i1+593ta5141COS9.C14aobia12i340Oa03TIRe1334d23lb.dCbaeDI22520DOe27210.355bo39CtSltD442Il.i590+343tr7ti4~915$.739OASOtoVSOb-7dia+00028%C11~21C21250~I730~01SISoJCitIVif00000thSQUZ$4CL~Z~(l?iICSdi974C4ToSSRRWLTXON6SOS.VIOLiSVCO~30CITZQCbtT055ELV)LTXtNSi1325~rEaammuggyesYmir~1S.123project67S3PageI4nf298/29/96 LeakaeLimitCalculationforStLucieUnit1PrrdRZOAPdltd'RdZrIOHTCOMPANYCZeZIR'PXJWTPERZOQOt.RECORDSJan1199StoUdo31rZPPSRCHtNZRRPDRTCPPSRCsmVlrzguaWCYCPrkatODZRRCIZON3MD'0IXSDSPEED3Y~TZCRZrSTR53reZTYCRZXCCRY1ASQdIZIeCLXXCRtYS0M'SLli310-armmesi5323(mphl47CQQld152iSCCXZDLPCTe1D.aaaaeld5015504370.044440410.4040.1514.45700250DDO4.440a.aoa0.13cO.opp0.037O.ooaa.DDD30~4004.2354.19940120~4250Daai0.4400xic.01364'250.4440.40050.4404.12i0.3.'734Did4400D400d0404Oe012Oe3iC4~0074444Oeoao4.004oeaa4Oe4C2O.oi904044~40400.4440.412O.ODO0.400O.OOD0.440~D.DDO0~0040~040Oeoaa0040Deooa4D-DDD.0.44+0~1244Oc24.412D.DDD4Da'0ae0250~OC200250~Oao4~DaaO.oooD.o27D.o7i0,41*o.oaoO.oaoO.aaa0.452O.o25o.o12o.oaao.oao0.4000.0570~0524~4124.4400.4000~04'00~0470~0410e0250~0044~4404.2727.ii14,2'72ICCD0470Ce1d1ae24$0.39503ddC.dd24~id510e617Oe11112DCC04125.2440~DDD0~000D~19d12~94401119e700oe12iSeC54oe49$de2350XCL7~692017396074i24le1LS0.4401.3111VDC4'704'3704403.92iCe97904400PRDQQZZIrCDTIedaRYTOTRZr]I)a3~52iQe979rT058ERVATTmrSR%'CSQtgl7CD~>cRT323aavd55savmzmdc245AT%PERCRllT~PdgYRRQ,r3.253Project6783Paget5of298/29/96 LeakaeLimitCalculationforStLucieUnit1rxoazoa3oMxaarzcssrvcowsass>QT.RUCKED~PBRIOQQPRECC$tSslaleLA1i)95anQdd31Ippp~~stamenor9lao32arseamsI(oYormaossXsurcrxog~mmamamssrvmxzcarcnmxz,rrrmnsooaYIO~mamamSO(aph)i~70~12111$IS~Xia24SXcTostQa2oO.aaao,x2c40374~0120~4004~0000040XxX4,X2i004$40000aaa44444XSId,XXX4~03700124~444O.OOO0.0374.037O.o12O.O12O.OOOo.aanOooao,4$2$,O,X72O,dip4OX24400O.oip002$4000OoaooOo4000dao0~OC2441744444ddo0~4004~4444~DPI0~DI'7omoaoP~OOD0~'444a+adoOsdS70,1114012OiaaaOaaooOeoooO~X344~1360.00044440~444OoaooO.X360.111OeaaD4~000Ooaoa>.4444-173.n.~i4.437o.aaoo.aao4aabd49942214.412O.aao4.040c4F4044,02'7033E4~47i4044oedao440444X2O.X2iO.aip440400120~004Deaaa4~40D0+4374~4404o4004.XSD6.90042aiao661Oe34CSoi54Oo3347,9074~33iPiCP544CI14ICP0.19412.09ioo03712,233Oe4$j1D.OSS4+26014,390Ogo747.XP3Oe499To112413CC,ccca.2109.7zpOo272S.OS20.2i77.Xi%40~000loBQSlo7i4Oe3420'370F4123561a+7990+4000maqmla,Ca~caa'(<)~3.SA.0.794CeYOKSKCVATZOSSre'LEALg4760~VmsCaYISaOSSYauSSStVSmCWe~2PSOlTADRRCIRSLCErCatYklstt3~2laProject6783Page16of298/29/96 LeakaeLimitCalculationforStLucieUnit1Fr,r:azrICOars4IZsaT1:ON9atlYaT.wc'QOe4'~00OFRSCORDggda.I,I$$5taaaa.31,1595mamaiaXaat2.'Fma~~$~455CrOrmauD~ZeCAl405$N2CARDmygggXCaLSTRIXLITTNLTammYMofORRI)14-gagSammrunn(~)4~7de12I31515~14)140+0400~20$.L.g$4O.$15,0.07$O.4OO50~440'~$0Ci2'N457K0~0044~4400+W$O.C330.$3402$540000.04020~OC10,4454~CCC4'34a.dl20~Oaa300124~CI549174~5040'$$D044loOOR4~551'.7199.4091ECI14.$33le544loa7072.4CS$.$$54~012OecccI55$d4540DI2oea4025579~7404049035$I,DIC0,5470D$2D~DODSOe025Oe507i,$cdI12501110'00094F0454+7792+0400~54$OaOC10~OIQ000254~QLSI.0,$7502$40025d4004.4$2O.Z<CO.idesD.O12O.ODDO.OOD20.4110,3714,1554,0IQ440040404.0374;3530,19$0,11400110,444O~D370~70$Oad1$Oa057DeOOODeooo500124'704,5$$0III00040~004C0457435$O,dds0I7$0~ODO0~400Ledsi10~CC$3734IO$$13'$7loo33$2.127$.5$54SCSCo<54O.$$17.0310.7$4$-11$I4h77'l~I1$7$11$Ia1$$4.$3050+531$.75514.41$C.3040.4704.41234.4$39.$3100000$55QQXLZICATX%)RTTOTALS(I)i30e4$39d31t>455~mme$45maxI$7co~~5254OaYO555aVmXarai2CCC~$5R~~teanaai2S.LSLProject6783Page17of298/29/96
LeakaeLimitCalculationforStLucieUnit1rrORZDa9O~SRaZXOHWOOXSAHYIToMCZEPULSED'ERZODOtRECORDSZta.1>1555taDna.31,1995ILQQDALQQPOQTOFVXQCQQTFQQQUQXCTQFICEDDIQQCTZOQtiZHD89REDSYVERTXCLLSZRiZLZTYCLTEOORY9ASQQXXXC)MLQOQFE0$$aiQQl~)10-HRTRRHZ'995DlaPQist6~1212-1919-2i)2i1O,lioD757O,ial0,0000~0000000O.QtiO.QCS0.6564,4290~OOOO.OOO41StdSltI17541<Idddn0400411109770$040it20~00004005oohitIziti1NQ417loodno4~400C.i35Ioi34CD7532,iCI7,99$2+171t~ict2oci~to91CC0ICIIeC221.2950.1454.429O.non'.3997.CCQE70.0991,3731.2370.2664.12iO.OOO~'~IAOOa75i94.4570,977Oo77%Oe173Oe0620ooooooi70Oe196Oe032Oeaoo00+161.150%,056900490.0000000I0.3711,70C03i60~05700000~0002O.i701.521O,i200.025O.000O.OOO3O.zco1.69io.7170.067o.aaoo.aooi4.25lL.5751,7440,1730.00000005Oa296Ie1124~7540~062oo4004~04060.23sx.aaaO.c70a.a37O.aaaa.aaa3126CeSS55o$%7te2421,7317e4472255C212251055622i365.5992+755Ce376i+1%07.26C2.325C.iia1~030c~acl53,5612DOCSI272621590,2230~00039.759T.lit0~000095SOOZu,aa22aaaVTOTQLtS)c1$.764t.littYDMsavazxaaasFaa~<tacoVALIDCLT!RORYC!%%5%TZOSBI3216IQXQFQQOXBTJLOEFURZCARi36+712Project6783Page18of298/29/96 LeakaeLimitG;;Icu/ationforStLucieUnitfFLORIDA1OVSRCr5IORTCOWPAHYSTLOCXRPLANTPERIODOPRECORDsaTi$11)XS)5hoGad31~1$5SmtDmLLAapaILTO3maaxDTmLYqmddcYcN'mnzRRCVXONADDIflRDJtDERDAYVRRXZCDLL'RT5LZLZLZTYCSLTYCQ5LYLO~NRXERltZQQCORCD(Cgh}4753233-1!15i24Q40~0870+025ooodo0.0444~ODD0000Oo1132F9670~45200374~4400400Redda0004o.oino.474o.os7o.oooo.oooo.dooD~037Ood57.,0+0040~040OoodoOodoo50.412oe113.Oo1%1OoddoOidoo0~0004049oexdd0+057404400000ddoOo0120+0740~0040+0120~dao00004Ood2%4+324Oeo'NoedooOeaooOoddo40$%3~OC30."3455.92S0+3245I070023S7.2160334'$44OaadtCodC3Oo223Ce2330.074o.154o.oedo.aooo.oooo.doo0.4055.335t.o0.449~4~223Oedoododdo0~000ooddd.40~03704090~0000~0000~00000004~062Oo7540+037dodda0~0040+0444.4490,3220.0000.04000040~0000~0070~1530000Ooooo0~4040~400a.o.1240.223a.oooO.oooO.oooo.odo4.4620.3730.037O.aaaa,aaoO.oaaOa2724~4394,34C4'43Oi4705e397d44549470~9535399Qi3715+0200+2473o905O.lcd2.4750.433O.OZDO.ROOO.doo4.7bSS355a,adoaPACQQXLLCAZZCO$LYTOTALt9)I47555135LYOBCRLVATZOddtOIYSASLc5760VLtXDCATNZanrOaa~7LTZCeda357~IZRCXRX)lC3tPOXYCMLs4.425Project6783Page19of298/29/96 LeakaeLimitCalculationforStLucieUnit1>>ORI>lLPOSSar.IrasecoeypltYSTeIUCXI~FERIODOFlLRCCRDsalan1i1%55toOea31'955AlallBLLlofti'KtTQFICXNTPRRQQRECYOPlllsa'DIRRCTIORJLRDWZHQBPEEDBYVRtTXCALBXLBILZTZQLTEQCRYPABDCILLClLT5445YaICTORKElL1~3la~lt5TERNIXD5PXR)ii7li1212~141)~24j2(BECTQRpcT,5px5a104.044.Oo052Poaao4444Oeooa4~4044-0120.052D.oooO.oaoO.aaoo.ooo41250.0740,0404.0000~0404.4044.4524.2coo.aaoo.ooo4.444o.ooow4.052o,i24O.oooo.aaaO.aaOO.oaoL5D.4040,4254,0004,0040,4440040L504374~4440.4404.4440~4044~ooo4.0DDosaoo0~000Dsoao4'040.044F0040.42S4.0000.0400.0000.4400~004D.aaoo.ooaO.OOoo.aooo.aao~4.0044412.4ODDF40400000~0005D.ooo0.00oo.oao0.404D.oaaD.aao4.4120.012o.ooo0.012a.oaoo.aaa4,0124~ODP0,440a,aaa4,4444~0000.02504124.4440~0000~00050'124074a+0000444a+Dao0F4040,4004.4004~0254550Da0000~4400+0123$004,0000.000Oopl77Sll0+4122oloo4+0455'754.457a.i2SOoIIIli44iDe07445504+214I.7520.32245550442445<442%4,4%00,0272'578DA05I0514.4124~4124~4444oppPASQUILLCLTSQORYTOTAL{0)c1.45l4.5170.0404loi4445i7I"IO555R~V1455faRYQAR1l750'lALIDCLTIOORY4355avaTIecas124~PSRCSNI7earaaIsaa<1.374Project6783Page20of298/29/96 LeakaeLimitCalculationforStLucieUnit1FuoazoaFowzarzzosTccNsaNY$T.MCUSPhhHTFIS3QQOFMCCmzZan.1,1595taSec.31,199$h&#xc3;KTGLLRRQCRTOFHUtCKgg?REQX!RCYOFMZSDDIRECT205tAXDVXSQSPREADRTVR$LTZCALSTASI?yTTYCLTEQORY10-XSXXameSWaa(mph)47de@Q-1$i924)246NCTQRMESICE'.SPKCD0~2$42077202$0.27210000oaoIddR7,525O.iad1.dti2,7330.5320.025O.aaa02472.5233.7691.3110.2230.10040.14$2,275.3,4$71.$9510740.1000~1$127205~00$0~7300~0040~OaaC0~2352,472I79$17310.04$0,0407a~1731.$1$24$10~$1501$50.0125+391$.316boad29.336Vo5$0!.435$.$19$~5$15e2$75455S,5CI9.472021014222.$321,34$01$50000,5!97t500o.ill2.1522.5$71.aa2o.odvo.olsLo0.2$I2e$70152$04$$0~0450~000L14~SC92ob$$0~$1$D2990DDO0+daoL20~$$01ad970~$$$D~099DD490odL1LlO.ltc3.01711500.3220~1120000L4044$41553.2di03$30ooo1000L50~4$$2e2512~071Oe2410~0000~daao.iis2,4613,l510.309O.aoaa.oaaC0$49.05$5+527V.df34ad416~0$44+4d26F447I~$97CD702$,24$733d50337.3626.5667.$745o3$73$~90243255114$$O,tio0d49111aOOO$.3200.0000$'MQUZLZsCATER~TDVAb('Ir)I111~000aaN&%%$+BXQtLY05$$3MLTXORSPCSYEARc47$0r~CATCCOLYOSSENULTXO3td<$0$7DLTI915tCL&#xc3;flCRVCRYRMtt92.317Project6783Page2lof298/29/96 LeakaeLimitCalculationforStLucieUnit1iodine131ConcentrationintheControlRoomSt.Lucieunit1controlroomwithRG1.78/1.95assumptionsGWH8/20/96SAICproject6734DataforisolatedcaseRef11(FSAR148)Ref10Controlroomvolume56,292cuftControlfilteredinlet100cfm100cfmFilteredRecirculation1900cfm(2000-100)HEPAFiltersEff.997Unfiteredinleakage56cfm34.2cfmcalculatedBestestimatemodelUncertaintyrangesconsideredinestimatingtheIPFinMonteCarloSimulationsforleakagelimitThisshowstheresultsofmodelingthetransportandconcentrationofiodineI-131fortheStLucia1controlroom.I-131releasedfromaMSLB/SGTLmovesfromthereleasepointtotheintakeoftheventilitationsystemAconcentration(release'/Q)thentothecontrolroomthrougheitherafilteredorunfilteredpath(CRI).Bistheconcentrationofl-131thatstaysinthecontrolroomvolume.ItisthedifferencebetweentherateofI131intoandoutofthecontrolroom-(i.e.,theIodineProtectionFactor(IPF)).TheinputdatafromcontrolroomdesignfeaturesareusedtocalculatetheIodineProtectionFactor,andquantifythetimedependentconcentrationinthecontrolroomassumingthatapostulatedmainstreamlinebreakhasoccurred.Thisproducesthebasisfortheconstantsourcetermassumedfortheairinthecontrolroom.DatafortheSt.LucieControlroomparametersaretakenfromRef10and11forisolatedcondition.Normalunfilteredflowintothecontrolroomis750cfmwhichisisolated35secondsafterclosesignal.Themodelforisolationbelowtreatsbothunfilteredinleakageandfiltered.Therefore,thepublishedfilterefficiencesfromFSARwereappliedincalculations.Theunfilteredleakageistreatedasdistributiontoapproximatelyrepresentthe35secondclosingtime.Inputdataforthecontrolroomdesignfeaturesmeanvalues:LU:=.06ltrLF:=.11hrLR:=2lu'r@:=.95Ffe'.=.95A,:=.00358lu'nfilteredinleakage(volperhr)-.06testtoshowc.08Filteredintakeflow-.2to.05Recirculationflow-2.3to1.9Recirculationfilterefficiency-.90to.997Intakefilterefficiency-.90to.997Decayconstantfor1131T1/2=8.05dayCalculationsforcontrolroomdesign:TransportrateintotheControlroomsec.TransportrateoutoftheControlroomsecCRI:"-LU+(I-Ffs)LFCRI=1.819'10'time4tCRO:=LF+LU+FrsLR+A,CRO=5.76'10'timeiodineProtectionFactormeanvalueCROIPF:=-CRIIPF=31.658Initialeventconditions:Initialamountofl131accident.0:=1.'oncentrationfactorattheintake,AoassumedtobeconstantfromfromreleasepointComputeremovalandincreaseconstants:Functionsforl131TransportintoControlroom:kl:=CRIkO:=CROA(t):=AXeii(t>:=--(e'e'"kOtkl.tQkl-kOt'.=0lu,.25hr..24hrt2:=0Itr,1.0'hr..12hrProject6783Page22of298/29/96 LeakaeLimitCalculationforStLucieUnit1Appendix8CUMULATIVEPROBABILITYDISTRIBUTIONSFQRX/QANDLEAKRATEThisappendixprovidesgraphicalillustrationsofthedetailedsitespecificassessments.FigureB-1presentsthecumulativedistributionforX/QattheEABforSt.LuciebasedonthemeasuredatmosphericconditionsdescribedinAppendixA.Thisfigurerepresentsallthecombinationsofwindspeed,direction,atmosphericstabilityclassattheEAB.TheflatportionsofthecurveareduetotheconstantdistancestotheEAB.FiguresB-2throughB-4presentfamiliesofcurvesfortheleakagelimitasafunctionofconfidencelevel.TheywereobtainedbycombiningthedistributionsfromtheSt.Luciespecificatmosphericdosemodelsforthe95%99%andworstcasemeteorologyconditionsattheEABwiththegenericreleasemodelsforI>3>PASandAISconditionsbasedonthethyroidlimitof300rem.SelectedpointsonthesecumulativedistributionsprovidethedataforTables2and3.FiguresB-5presentstheequivalentofFigureB-1fortheControlRoom.FiguresB-6toB-8aretheequivalentofB-2toB-4.ThesecontrolroomleakagelimitdistributionprovidethedataforTable4and5.Project6783Page23of298/29l96 LeakaeLimitC"/'u/ationforStLucieUnit1CumulativeFrequencyforx/QatEASforSt.Lucie(meteorologicaldatafor111/95-12/31/95)1.00E-031.00E-041.00E-OS1.00E-06O'.00E-071.00E-0800.20.40.6CumulativeFrequencyFigureB-1CumulativeFrequencyofX/QattheEAB0.81.00E+09Ea.1.00E+081.00E+07m1.00E+06~o1.00E+05o1.00E+04I1.00E+030~1.00E+021.00E+01I-131ReleaseResultingin<300rematEAB,StabilityE(95%meteorologicalcondition)-----Pre-accidentSpikeAccident-initiatedSpike0102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-2ConfidencevsleakagelimitattheEABforAISandPAS.O95%meteorologicalconditionsProject6783Page24of298/29/96 LeakaeLimitCalculationforStLucieUnit11.00E+08Eo-1.00E+07I1.00E+06~1.00E+051,00E+04m1.00E+030~1.00E+021.00E+01I-131ReleaseResultingin(300rematEAB,StabilityF(99%meteorologicalcondition)-----Pre-accidentSpike-Accident-initiatedSpike'tl~0102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-3ConfidencevsleakagelimitattheEABforAISandPAS899%meteorologicalconditions1~OOE+08E~~1.00E+07I1.00E+06~1.00E+051.00E+04m1.00E+03O=1.00E+02l-131ReleaseResultingin<300rematEAB,Stability8(worstobservedmeteorologicalcondition)-----Pre-accidentSpike-Accident-initiatedSpike%w~1.00E+010102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-4ConfidencevsleakagelimitattheEABforAISandPASI99%meteorologicalconditionsProject6783Page2Sof298/29/96 LeakaeLimitCalculationforStLucieUnit11~00E-02CumulativeFrequencyforX/QforControlRoomatSt.Lucie(meteorologicaldatafor1/1/95-12/31/95)1.00E-03E1.00E-041.00E-051~OOE-060.20.40.60.8CumulatlveFrequencyFigureB-5CumulativeFrequencyofX/QatthecontrolroomintakeI-131ReleaseResultingin<30rematControlRoom,StabilityD(95%meteorologicalconditions)-----Pre-AccidentSpike-Accident-initiatedSpike1.00E+08Ea.1.00E+071.00E+061,00E+051.00E+041.00E+03O1.00E+021.00E+010102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-6ConfidencevsleakagelimitforcontrolroomforAISandPAS895%meteorologicalconditionsProject6783Page26of298/29/96 LeakaeLimitCalculationforStLucieUnit1I-131ReleaseResultingin<30rematControlRoom,StabilityF(99%meteorologicalconditions)-----Pre-accidentSpikeAccident-initiatedSpike1.00E+09o1.00E+081.00E+07m1.00E+06~o1.00E+05o1.00E+04I1.00E+0301.00E+021.00E+01~~0102030405060708090100CumulativePercentages(ConfidenceLevel)FigureB-7ConfidencevsleakagelimitforcontrolroomforAISandPAS899%'meteorologicalconditions1-131ReleaseResultingin<30rematControlRoom,StabilityG(worstobservedmeteorologicalcondition)-----Pre-accidentSpike-Accident-initiatedSpike1.00E+08fa.1.00E+07o1.00E+06~1.00E+051.00E+04ctr1.00E+030~1.00E+021.00E+01e~0102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-8ConfidencevsleakagelimitforcontrolroomforAISandPAS8worstobservedmeteorologicalconditionProject6783Page27of298/29/96 LeakaeLimitCalculationforStLucieUnit7AppendixCSCREENINGMETHODOLOGYThisappendixdescribesthescreeningprocessforusingthegenericleakagelimittableswhosepurposeistoindicatethepotentialforadditionalmarginandjustifyasite-specificanalysis.ItmakesuseofthetabulatedresultspublishedinEPRITR-103878,"MethodologyforConsideringUncertaintiesinI-131ReleaseandDoseLimitsforaPostulatedAccident."Thescreeningassessmentstepsare:1ObtainPlantSpecificPhysicalDataa.St.LucieminimumdistancetotheExclusionAreaBoundaryis1561metersb.BoundingAtmosphericDispersionTypeforEABandCR(ClassEisthe95%boundingatmosphericcondition)c.CategoryofthecontrolroomprotectionisTypeB.2.ObtainGenericAllowedleakagedataforEABandControlRoomandverifythatlocalengineeringassumptionsapply.a.UsetabularresultsfortheEAB(Tables5-1and5-2inReference3)b.Usetabularresultsforthecontrolroom(Table5-3inReference3)3.Verifysourcetermassumptionsforthetwoaccidentmodeltypesa.Selectthegenericpre-accidentsourceterm,whichistypicallythemostlimitingat95%confidence.The95%confidenceboundpre-accidentsourcetermcomesfromthedatafittingprocessandtheallowedleakageis33timesgreaterthantheStandardReviewPlan.b.Selectasite-specificmodelofthesourcetermifconditionsarenotboundedbythegenericsourceterm.4.Determinethegenericallowedleakagelimita.Lookuptheallowedleakagefortheminimumdistanceandcontrolroomtype,andselectallowedleakratesfromscreeningtableswhichrepresentthecaseforaleakagethatwillnotexceedthedoselimitswith95%confidenceasshowninTableC-1.Assumeboundingstabilityclass(FforEABandAforcontrolroom),orusetheFSARallowedleakage.Project6783Page28of298/29/96 LeakaeLimitCalculationforStLucieUnit1TableC1.Screeningresultsfordoselimitedleakageat95%confidencelevel(usingTablesfromRef.3)EAB,ClassFEAB,ClassEControlRoom,TypeBPre-accidentSpike(gpm)331012,100545Accident-InitiatedSpike(gpm)12,90044,0001,700b.FortheconditionsshowninTableC-1asitespecificdetailedevaluationtoproducea95/95%confidenceleakagelimitestimateusingthemeasuredsitestabilityclassfrequency,windspeed,directionanddistanceislikelytodemonstratesignificantmargins.5.ComparetheleakagelimitwiththeestimatedsteamgeneratorleakagebasedonNDEmeasuresinsupportofconditionmonitoringandoperationalassessments.UsingLeakageLimitResultsAsuitablemarginbetweenthegenericleakagelimitfortheEABandthecontrolroom,andtheprojectedEOCsteamgeneratorleakagecanbecalculatedforvariousdegreesofconfidence(e.g.,theratiooftheprojectedEOCleakageat95/95tothe95/95allowedleakrate).Ifthisisasmallnumber(i.e.,lessthan0.1a),thenthegenericscreeningprocessclearlyindicatesthatthesitecharacteristicsprovidethecapabilityofmeetingtheregulatorydoselimits.Amoredetailedevaluationcanbeusedtodemonstrateeffectivenessofotherplantspecificfeaturesinprovidingadditionalprotectionforkeepingpredictedaccidentdoseswithinregulatorylimits.Thevalueof0.1issuggestedasanacceptablemarginwhenscreeningvaluesareused,becausetheanalysisisbasedonmeasuresofI131thyroiddose.ThevariationbetweenthewholebodyandthyroiddoseinasampleofFSARsindicatesthatthedosesfromallisotopeswouldbeboundedifthemarginwas0.1.Adetailedassessmentwhichincludesevaluationofthewholebodydosewouldremovethisassumption.Project6783Page29of298/29/96
}}
}}

Revision as of 13:54, 25 April 2018

Rev a to SAIC 05-5049-05-6734-500, Steam Generator Degradation Specific Mgt Leakage Limit Calculation for St Lucie Unit 1.
ML17229A094
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 08/30/1996
From: JOHNSON R W, OTIS M D
SCIENCE APPLICATIONS INTERNATIONAL CORP. (FORMERLY
To:
Shared Package
ML17229A091 List:
References
SAIC-05-5049-05, SAIC-05-5049-05-6734, SAIC-5-5049-5, SAIC-5-5049-5-6734, NUDOCS 9610280084
Download: ML17229A094 (34)


Text

St.LucieUnit1DocketNo.50-335-96-273Enclosure3SAIC05-5049-05-6734-500STEAMGENERATORDEGRADATIONSPECIFICMANAGEMENT(SGDSM)LEAKAGELIMITCALCULATIONFORSTLUCIEUNITa'lef'nEmployee-OwnedCompanySAIC05-5049-05-6734-500AptechAgreementSept.,1996RevisionAPREPAREDBY:oem:KBAHNEDSY:APPROYEDBY:qe~oa8008+9iXoaePDR'DOCK05000335PPDR10260CampusPointOrive,SanDiego,California92121(61915466000Othe'AiOOirceeiArououeioue.Bosion.ColoieooSonnyg.Oevion,Hunt~le.LievizuieAnoeieaAfcleen.Oe>>Ridge.OiienoapsioAliaSeenie.enoruoeon LeakaeLimitCaculationforStLucieUnit1TableofContentsPageINTR0DUCTI0No~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~eeloo1ETHODOLOGY.....................................................................................1MRadiationReleaseModelLeakageLimitModel.QualityAssurance,.~~ooooo3EAKAGELlMIT...................................................................~......~...........3LScreeningAssessment.BasicAssumptions~~~o3~o~o4DetailedCalculation..~~~~~oooooo~~oooo4PlantSpecificData.~o~o~ooooo5ESULTSo~~~~~~~~~~~~~~~~~~~~~e~~~~~~~~~~~~~~~~~o~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o~~oo~eooo6RScreeningAssessment.~oo~oooooooooo6DetailedCalculation.~~~~~~~~~~o0~~~o~~~~0~~oooo~o70NCLUSi0NSo~~oooooooooo~~~oo~oo~~oo~eo~~oo~~~~~oo~oo~oo~~oo~ee~~~~~~~~~oooeo~~~~~oe~oooooooeeeoo9CEfERENCES.........................................................................................10RAppendixAMeteorologicalAndSiteDatafromSt.Lucle....................11AppendixBCumulativeProbabilityDistributionsforX/Q&LeakRate..23AppendixCScreeningMethodology...........................~~--------.28Pageii LeakaeLimitCalculationforStLucieUnit1ListofTablesandFiguresPageTable1Screeningresultsfordoselimitedleakageat95%confidencelevel...,...,.7Table2.LeakagetoMeetDoseLimitsattheEABforaPre-AccidentSpike............9Table3,LeakagetoMeetDoseLimitsatControlRoomforaPre-AccidentSpike..9Table4.LeakagetoMeetDoseLimitsattheEABforanAccident-InitiatedSpike..9Table5.LeakagetoMeetDoseLimitsattheCRforanAccident-InitiatedSpike....10TableC1.Screeningresultsfordoselimitedleakageat95%confidencelevel.....292527Figure8-1CumulativeFrequencyofc/QattheEABFigure8-2ConfidencevsleakagelimitattheEABforaisandpas95%meteorologicalconditions~~~~~~~~~~~~~~~~~~~t~~ttrt~~ettotooo~oottott24Figure8-3ConfidencevsleakagelimitattheEABforaisandpas99%meteorologicalconditionsFigure8-4ConfidencevsleakagelimitattheEABforaisandpas99%meteorologicalconditions................25Figure8-5CumulativeFrequencyofc/Qatthecontrolroomintake,.~~..........26Figure8-6Confidencevsleakagelimitforcontrolroomforaisandpas95%meteorologicalconditionsFigure8-7Confidencevsleakagelimitforcontrolroomforaisandpas99%meteorologicalconditions........................................~.~..~...~.......~............................27Figure8-8ConfidencevsleakagelimitforcontrolroomforaisandpasworstobservedmeteorologicalconditionPageiii

LeakaeLimitCalculationforStLucieUnit1INTRODUCTIONThepurposeofthiscalculationistodeterminethedoselimitingsteamgeneratortubeleakageforapostulatedmainsteamlinebreakaccidentconsideringSt.Lucie'ssitespecificconditions.Thepurposeoftheleakagelimitcalculationistoprovideasitespecificleakagevaluethatwouldnotexceed10CFR100(>landGeneralDesignCriteria19accidentdoselimitswithahighdegreeofconfidence.Theconfidencelevelrecommendedintheindustryproposedmethodologyforthiscalculationisa95%confidencelevelonradiationdoseforatmosphericdispersionconditionsforthe95percentileofobservedconditions.This95/95valuecanbeusedtoquantifymarginsthatexistbetweentheestimatedleakageforamainsteamlinebreakduetothesteamgeneratorconditionandthedoselimitingleakage.Thiscalculationusestheprobabilisticoption@Iforquantifyingtheleakagelimitforbothcontrolroom(CR)operatorsandindividualsatexclusionareaboundary(EAB).ThecalculationsusesitespecificdatacollectedatStLucieformeteorologicalandplantsystems.METHODOLOGYThebasisofthemethods,assumptionsandtoolsforthesecalculationsareoutlinedincurrentdocumentsprovidedbyEPRIPIandNRC(41insupportofsteamgeneratorintegrityrulemakingPl.Thecalculationisdividedintotwoparts:ascreeningassessmentandadetailedcalculation.ThemethodologyforcalculatingtheprimarycoolantaccidentleakagelimitisusedsolelytodeterminetheconditionsthatwouldresultinI>3>releaseslargeenoughtoexceedradiationdoselimitsataspecifiedconfidencelevel.Theydonotconstrainleakagebasedontheaccidentassumptionsortheinternalcharacteristicsofanoperatingplant.Therefore,theseanalysescanyieldleakagelimitvalueslargerthanallowedbytheaccidentassumptionsorthephysicalcapabilitiesoftheplant.Theleakagevalueresultsshouldnotbetakentomean"real"plantcapabilities,orthatmarginsareavailableuptotheseleakagevalues.RathersuchresultsmeanonlythatradiationdoselimitsarenotexceededforI>3>releasescorrespondingtotheseleakagevalues,aslongastheplantiscapableofoperatingwithinthestatedengineeringassumptions.Iftheplantoperatesoutsidetheseassumptions,thelimitsonleakagemustbebased,onconsiderationsotherthancompliancewithdoselimitsforthepostulatedmainsteamlinebreak(MSLB)accidentwithassociatedsteamgeneratortubeleakage(SGTL).Project6783Page1ot'98/29/96 LeakaeLimitCalculationforStLucieUnit1RadiationReleaseModelThephenomenaofinterestthatleadstopotentialradiationexposureistheincrease.iniodinereleaseratefromthefueltotheprimarycoolantwhichstemsfrompowerandpressuretransients.Themagnitudeofthistemporaryincreaseintheiodinereleaserate(calledaspike)representsasourcetermforthepostulatedMSLB/SGTLaccidentpressureandpowertransient.Twotypesofiodinespikingeventsareidentifiedinthestandardreviewplanmethodologyl6l.Thefirstisatransient-inducedspikethatisassumedtooccurpriortoaMSLB/SGTLeventorapre-accidentspike(PAS).Inthiscasethepostulatedaccidentisassumedtooccuratatimewhentheiodineconcentrationintheprimarycoolantismaximum.ThesecondeventinvolvesaspikeinducedbytheMSLB/SGTLeventitself.Forthiseventtheprimarycoolantiodineconcentrationispredictedonthebasisofaprescribedreleaseratefromthefueloranaccidentinitiatedspike(AIS).BothofthesesourcetermsareconsideredinthescreeningassessmentandthedetailedcalculationasrecommendedintheSGintegrityrulemakingdocumentation.Thedataoniodinespikinghasbeengreatlyexpandedoverthedecadesincethereviewplanwaswritten.AstudyoftheiodinespikingdatabyPostmat7lwascarriedouttoquantifythepeakiodineconcentration(p,Ci/g)fornearlytwohundredeventsandreleaserates(Ci/hr)fromnearlyonehundredeventsatavarietyofPWRs.BynotingthatthedistributionsofspikeeventsarerepresentativeofthepopulationspikesthatcouldexistpriortoandresultfromMSLB/SGTLevents,Postma'siodineconcentrationdatawereconvertedintodistributionsforreleasefromthePWRsecondarysystemtotheenvironmentasafunctionoftheprimarytosecondaryleakrate(Ci/gpm).AgenericMSLB/SGTLPWRthermalhydraulicsmodelwasusedtoevaluateareference100gpmleakfromtheprimarytosecondarysystem.ThecombinationofspikedataandtheleakratewasusedtoproduceI>3>releasedistributionsasafunctionofleakrateforthepostulatedaccidentasdescribedinRef.3.Thismodelprovidesgeneric"bestestimatewithuncertaintydistributions"forI>>>releasefromthesecondarysideofaPWRasafunctionofthePASandAISsourcetermsandtheprimarytosecondaryleakage.LeakageLimitModelForthisleakagelimitassessmentthegenericaccidentreleasedistributionswerecombinedwiththeotherdosemodelelementssuchassitespecificSt.LuciedispersionfactorsdeterminedbythelocalmeteorologymeasuresusingMonteCarloSimulation.Theresultingdistributionsareusedtoassesstheleakagelimitthatwouldassurewithahighconfidencethatpostulatedaccidentdoseattheexclusionareaboundaryandthecontrolroomdonotexceedthedoselimitsintheregulations.SitespecificmeteorologyandfeaturessuchasEABdistance,andcontrolroomfeatureshavethelargestimpactonthelimitingleakrate.Project6783Page2of298/29/96 LeakaeLimitCalculationforStLucieUnit1Useofthegenericsourcetermsrequiresseveralengineeringassumptions.Thesearethattheprimarycoolantactivityismaintainedwithinthetechnicalspecificationlimits,andthattheprimarymakeupsystemsarecapableofmaintainingprimarycoolantinventoryattheselectedleakratelimit.Noiodineplate-outisassumedinthesteamgenerator,thusthegenericreleasetermhassomeelementsofconservatismwhichcanbere-examinedifnecessary.QualityAssuranceAllcalculationsforthisanalysishavebeenconductedaccordingtotherequirementsofSAICqualityassuranceprocedures.Theseinclude:documentationofallengineeringassumptions,independentreviewofengineeringassumptions,referencecitationsforallparametervalues,independentreviewofthecontentsofallcomputerizedspreadsheets,confirmatorycalculations(eitherbyhandorusingaseparatecomputercode)forallspreadsheetcalculations,andindependentreviewofallfinalreports.ArchivedcopiesofallcomputerizedspreadsheetsandassociatedqualityassurancefilesaremaintainedbytheSAICprojectmanager.LEAKAGELIMITScreeningAssessmentThescreeningassessmentisbasedontheresultsofgenericanalysesofuncertaintyinradiationdosemodelsasafunctionofstabilityclass,distancetotheEABandtypeofcontrolrooml3l.MonteCarlosimulationswereusedtodevelopgenerictablestodescribetheleakagevaluethat,with95%confidence,wouldnotexceedthedoselimitsin10CFR100andGDC19forthepostulatedMSLB/SGTL.TheleakagelimitisafunctionofthesitecharacteristicsandtheI131accidentsourceterm.ThisleakagelimitisindependentofthecalculationfortheprojectedaccidentleakagewhichusesnondestructiveexaminationmeasuresoftheSGtubessuchasvoltsprojectedtotheendofcycletoestimateantheaccidentinducedleakagevalue.ModelsforthedosecalculationsweretakenfromUSNRCRegulatoryGuide1.78~81fortheEABandcontrolroom.AtmosphericdispersionmodelsweretakenfromUSNRCRegulatoryGuide1.145Ãl.Genericdataforcoveringtherangeofwindspeedsanddispersionparametersweretakenfromstabilityclassdefinitions.Modelinguncertaintiesforrelevantplantfeaturesarebasedonindustryaveragesratherthansitespecificcalculations'and,therefore,representgreatervariancethanwouldbeobservedataspecificsite.ForinitialscreeningthedoselimitingleakagevaluesweretakenfromtabulatedresultsinRef.3.ValueswerechosenthatcorrespondtothesiteboundarydistanceforSt.Lucieandtheatmosphericstabilityclassrepresentingdispersionconditionslessfavorablethan95%ofthoseobservedatSt.Lucieduringcalendaryear1995~>ol.Ofthetwosourcetermsconsidered,thePASisalwaysmorerestrictivethantheAISProject6783Page3of298/29/96 LeakaeLimitCali;ulationforStLucieUnit1atthehigherconfidencelevelsabove90%.TheAISismorerestrictiveatconfidencelevelsbelow70%.BasicAssumptionsThefollowingassumptionsdonotappearexplicitlyinthemethodologyusedforthisanalysisbutarekeytointerpretingtheresults:1)St.LuciewilloperatewiththeprimaryactivitywithinthelimitsstatedintheFSAR.TheI>3>releasedatabaseincludesmeasuresofI>3>releasedduringplanttransientsfromplantsthatmaintainedprimarycoolantactivitywithintheFSARlirrutsonprimarycoolantactivity.2)TheMSLB-SGTLtransientcausesnonewcladdingorfueldamage.3).Theprimarycoolantinjectionrateisassumedequaltotheleakagethroughoutthetransient.4)Themakeupinventoryislargeenoughtomaintainprimarycoolantinventoryduringthecontrolledshutdownwhichisontheorderoftwohours.5)Thereisnoreductioninthesourcetermduetoplateoutinthesecondarysystem.6)The95%confidencelevelisdominatedbythepre-accidentI>3>spike.Ingeneral,leakageratesgreaterthanabout400gpmareoutsidetheregimepostulatedfortheMSLB-SGTRaccidentsconsideredhere.SeveralassumptionskeytotheMSLB-SGTRaccidentscenariodonotapplyabovethisleakagerate.Forexample,theassumptionthattheinjectionrateisequaltotheleakrateisbasedontheautomaticresponseofthecontrolsandsafetysystemstotheMSLB-SGTRaccidentwithoutoperatorintervention.Aboveabout400gpmoperatoractionswillbeneededtocontrolsafetyinjection.Inaddition,the03>releasemodelcouldchangeaccordingtotheaccidentscenariobeingexamined,Forexample,inlowerprobabilityaccidentstreatedinprobabilisticriskassessmentstudiesadditionalsystemssuchastheinjectionsystemcouldbeassumedunavailable,andwithoutcompensatingoperatoractionstorestoreinjection,releasesat400gpmcouldresultinhigherdosesduetocladdingorcoredamage.TheseissuesarediscussedinindustryreportspreparedbySGDSMcommitteesl~.Thecladdingandcoredamagescenariosareoutsidetheboundsofthisassessment.Therefore,thevaluesintheallowedleakagegraphsabove400gpmareconsiderednotrepresentativeofthepostulatedMSLB-SGTRaccidenttransient.DetailedCalculationThedetailedcalculationusesplantspecificdatatodevelopa95/95doselimitingleakratefortheSt.Luciesite.TheobjectiveofthedetailedcalculationistoensurethatnouniquesitecharacteristicscauseamorelimitingconditionthanidentifiedbytheProject6783Page4of298/29/96 LeakaeLimitCalculationforStLucieUnit1genericscreeningprocess.ThesesitespecificcalculationsusemeasuredStLuciemeteorologicaldata,site-specificdistancestothesiteboundaryandthecontrolroom,andplant-specificcontrolroomcharacteristics.Usingthesesite-specificdata,valuesofX/QwerecalculatedforthecontrolroomandtheEABforeachofabout15,000individualmeteorologicalobservationstakenatSt.Lucieduringcalendaryear1995.AtmosphericdispersioncalculationsusedtheequationsspecifiedinNRCRegulatoryGuide1.145.Thesevalueswererankedtopermitselectionofthe95%,99%andworstobservedmeteorologicalconditions,CumulativeprobabilitydistributionofX/QfortheEABandcontrolroomappearsinAppendixB.Dosemodelinguncertaintiesweredeterminedfortheselected95%,99%andworstobserveddispersionconditionsusingtheMonteCarlosimulationmethodsdescribedinRef.3.Thepurposeofthisstepinthecalculationistoensurethatsufficientconservatismisincludedintheleakratevaluestoaccountforuncertaintiesindosemodelingwhileavoidingtheover-conservatismassociatedwitha"worst-case"analysis.TheMonteCarlosimulationincorporatesuncertaintiesinthepostulatedI>3>release,individualdosemodelparameters,andcontrolroom.Inthisdetailedanalysisthe95thpercentileof1000MonteCarlosimulations,basedonthe95thpercentileleastfavorableatmosphericdispersionconditions,wasusedtodeterminethe95/95leakrate.Inaddition,1000simulationswereconductedforboththe99%leastfavorableandtheworstdispersionconditionobservedintheStLuciedatasetto).Thesecalculationswereusedtoevaluatewhethersitespecificoutliermeteorologicalconditionscouldresultinasituationwereradiationdosewouldbethelimitingconsiderationinsettingoperatingmarginsforleakrate.CumulativefrequencydistributionsforallMonteCarloanalysesarepresentedinAppendixB.PiantSpecificDataMostofthedatarequiredforthisanalysiswereobtainedfromtheFinalSafetyAnalysisReport(FSAR)fortheSt.Lucieplantl<<l.Additionaldata,includingmorerecentmeteorologicaldatawereobtaineddirectlyfromstaffatFloridaPowerandLights>ol.ThesedataarepresentedinAppendixA.Theyinclude:1)Distancetositeboundaryinsixteendirectionscorrespondingtothewindrosesectors.ForSt.Lucietheplantboundaryiscircularwitharadiusof1561m.2)Joint-frequencytablesofwindspeedanddirectionforstabilityclassesAthroughGbasedonhourlydatacollectedatSt.Lucieduringcalendaryear1995.3)Datadescribingkeyfeaturesofthecontrolroomventsystem,airexchangeratesandisolationfeatures.Project6783Page5of298/29/96 LeakaeLimitCalculationforStLucieUnit1RESULTSScreeningAssessmentThescreeningassessmentprovidesonlyasimpleassessmenttoindicatethepotentialforlargemarginsintheleakratelimit.Becauseindustry-wide,genericassumptionsareusedinthescreeningassessmentandsite-specificassumptionsareusedinthedetailedcalculation,itisunlikelythatthesameconditionswillgeneratethesamelimitingconditionsatagivenconfidencelevel.ScreeningresultsshowthatthepotentialforalargemarginofsafetyontheleakagelimitexistsatStLuciebasedonsitespecificdoselimitingfeatures.ItalsoindicatesthereisapotentialforthecontrolroomdoselimittobereachedbeforetheEABlimitisreached.AsshowninTable1theleakagevaluesdeterminedfromthescreeningassessmentfor95%confidenceofnotexceedingthedoselimitsforapre-accidentspikeare545gpmforthecontrolroomand3,310gpmfortheEABdistance.Ifanaccidentinducedspikeisassumedthecontrolroomlimitis1700gpmandtheEABlimitis12,900gpm.Table1Screeningresultsfordoselimitedleakageat95%confidencelevel(usingTablesfromRef.3)EAB,ClassFEAB,ClassEControlRoom,TypeBLeakageLimitPre-accidentSpike(gpm)331012,100545LeakageLimitAccident-InitiatedSpike(gpm)12,90044,0001,700ForeachcaseshowninTable1thevaluesaremuchgreaterthantherecommendedlimitof200gpmcurrentlyproposedbyNEIduringthesteamgeneratorintegrityrulemakingprocess.ThisindicatesthattheleakagelimitisnotlikelytobeboundedbydoseforeithertheEABortheCRforthisaccident.Thatis,thereisapotentialforlargemarginsondose,andtheleakagelimitdependsonplantfeaturesotherthandose.Thus,adetailedcalculationusingsitespecificdatafromSt.Lucieisjustifiedinorderto:1)verifythelimitingdosecriteriaforSGtubeintegrityintermsofleakagebytakingintoaccountthesitespecificmeteorologydataatStLucie,2)refineestimatesofavailablemarginbyestimatingtheleakagethatcouldresultinadoselimitingsituation,and3)verifytheengineeringmodelassumptionsthatapplyforbothscreeninganddetailedmodels.Project6783Page6of298/29/96 LeakaeLimitCalculationforStLucieUnit1Thekeyengineeringassumptionsusedforthescreeningleveliodinedosemodelsare:1)Duringnormaloperationtheiodineconcentrationintheprimarycoolantislimitedbytechnicalspecifications.2)TheprimarycoolantinjectionrateisequaltotheleakageduringthepostulatedMSLB-SGTRaccident.3)AsinglegenericdoseanalysisequationwasusedtomodeltheEABleakagelimitinthescreeninganalysis(Le.,thedetailedanalysisselectsfrom3equationsinRG1.145).4)Site-specificparametervaluesvarylessthanthegenericscreening(e.g.,theplantcrosssectionarea,A,hasnouncertaintyforaspecificplant)5)Sitespecificwindspeedhasavariancedrivenbythedatabinsizeratherthanthewholerangeallowedbythedefinitionsofstabilityclass.6)ThetabulatedvaluesrepresentanallowedleakagefortheMSLB-SGTRaccidentassumingnoaccidentcausedcladdingorfueldamage.7)Sufficientdefense-in-depthfeaturesareinplacetokeepaMSLBaccidentfromalsocausingcoredamage.DetailedCalculationTables2through5summarizetheresultsofthedetailedsite-specificcalculation.Table2presentsthedose-limitingleakratesattheEABforthepre-accidentspikescenario.ThisisthemostlimitingscenarioforestablishingmarginsonleakageatStLucie.Thetableincludesthe95/95conditionaswellasmorerestrictivecombinationsofhigherconfidencelevelsforbothdispersionconditionsanddosemodeluncertainties,CompliancewiththedoselimitattheEABdoesnotrestrictleakratestolessthan200gpmforthe95/95condition.A200gpmlimitmaybeappropriate,ifhigherconfidenceofcompliancewithdoselimitsattheEABisrequired.Forexample,atthe95thpercentileonmeteorologicalconditionsanda99%confidencelevelforcompliancewithdoselimits(e.g.,the95/99condition)requiresanaccidentleakageof211gpmorless.Thetablealsopresentsthe99/95andthe99/99conditions.Theworstobservedmeteorologicalconditionsrequireleakagetobelimitedto403gpmfora95%confidenceofdosecomplianceand110gpmata99%confidencelevel.Theright-handcolumnofTable2indicatestheconfidencelevelondosecompliancethatwouldbeachievedbylimitingtheleakageto200gpmforeachmeteorologicalconditionevaluated.Table3presentsthedose-limitingleakratesatthecontrolroomforapre-accidentspikescenario.Noconditionlimitsleakageto200gpmorless.Restrictingleakageto200gpmachievesconfidencelevelsforcompliancewithdoselimitsofgreaterthan99%foreventheworstobservedmeteorologicalconditions.Project6783Page7of298/29/96 LeakaeLimitCalculationforStLucieUnit1Tables4and5'presentthedose-limitingleakratesattheEABandthecontrolroomfortheaccident-initiatedspikescenario.Ineverycase,limitationsonleakagearelessrestrictiveforthisaccidentscenariothanforthepre-accidentspike.Table2.LeakagetoMeetDoseLimitsattheEABforaPre-AccidentSpikeMeteorologicalConditionsLeakageLimitatStatedConfidenceLevelforDoseModel(gpm)ConfidenceLevelforDoseModelStabilityWindspeedcentile(m/s)95%99%O200gpm95%99%worstE0.22-1.56F0.22-1.56G0.22-1.561,67021121411099.299.197.8Table3.LeakagetoMeetDoseLimitsattheControlRoomforaPre-AccidentSpikeMeteorologicalConditionsStabilityWindspeedcentlle(m/s)LeakageLimitatStatedConfidenceLevelforDoseModel(gpm)95%99%ConfldenceLevelforDoseModelI200gpm95%99%worstDFG0.22-1.560.22-1.560.22-1.561,6501,7501,60042040138499.499.999.6Table4.LeakagetoMeetDoseLimitsattheEABforanAccident-InitiatedSpikesMeteorologicalConditionsLeakageLimitatStatedConfidenceLevelforDoseModel(gpm)ConfidenceLevelforDoseMadelStabllltyWindspeedcentlle(m/s)95%99%200gpm95%99'/oworstEFG0.22-1.560.22-1.560.22-1.5653803,0401,6502,7801,310696N/AN/AN/AProject6783Page8of298/29/96 LeakaeLimitCah.'f//ationforStLucieUnit1Table5.LeakagetoMeetDoseLimitsattheCRforanAccident-InitiatedSpikeMeteorologicalConditionsLeakageLimitatStated'onfidenceLevelforDoseModel(gpm)ConfidenceLevelforDoseModelPer-StabilityWindspeedcentlle(m/s)95%99%200gpm95%99%worstDFG0.22-1.560.22-1.560.22-1.566,1105,91055002,9102,9902,440N/AN/AN/ACONCLUSIONSTheresultsshowthattheleakagelevelneededtoproducedoselimitingconditionsuptothe95/95confidencelevelatSt.Lucieismuchgreaterthantheindustryrecommendedupperboundof200gpm.~Thescreeningresultsindicatedthepotentialforlargemarginsontheleakagewhichwasconfirmedwithadetailedsiteassessment.~Atthe95/95confidencelevelthedetailedassessmentindicatedthemostlimitingcasewasthepre-accidentspikewiththecontrolroomandEABaboutequalat1600gpm,~ForaMSLB/SGTLof200gpmtheconfidencelevelisapproximately99/99thattheregulatorydoselimitattheStLuciesitewouldnotbeexceeded,Sincedoseisunlikelytobethelimitingconstraintonleakage,theplantphysicalfeaturescanbeusedindeterminingtheleakagelimitforthepostulatedMSLB.ExamplesoftheplantphysicalconstraintsthatcanbeconsideredaslimitsarethecombinedchargingpumpcapacityfortheSt.LucieplantFSAR,orthesumofthechargingpumpandhighpressuresafetyinjectionmakeupcapacity.Project6783Page9of298/29/96 LeakaeLimitCalculationforStLucieUnit1REFERENCES1.2.3.4,5.6.7.8.9.10.11.ReactorSiteCriteriainTitle10CodeofFederalRegulations,10CFRPart100,USNRC,WashingtonD.C.,June24,1975.NEI,1996."IndustryGuideforImplementingSteamGeneratorTubeIntegrityRule"Draft0,NuclearEnergyInstitute,WashingtonD.C.January1996.EPRITR-103878,"MethodologyforConsideringUncertaintiesinI>3>ReleaseandDoseLimitsforaPostulatedAccident."M.Otis,DBradleyandG.Hannaman,ElectricPowerResearchInstitute,PaloAlto,CaliforniaRev2March1996.ViewGraphnotesfromNRC-CommentsondoseuncertaintymethodsEPRIreportEPRITR-103878R1(1994)April1996..FederalRegister,NRCRuleRIN3150-AFO4,October,1994.NRC,NUREG-0800."StandardReviewPlanfortheReviewofSafetyAnalysisReportsforNuclearPowerPlants,"LWREdition,U.S.NuclearRegulatoryCommission,Washington,D.C.,July1981.Postma,A.K.,1995."EmpiricalStudyofIodineSpikeDatainPWRPowerPlants,"EPRITR-103680,Rev.1ElectricPowerResearchInstitute,PaloAlto,CA,November1995.NRC,1974.RegulatoryGuide1.78,"AssumptionsforEvaluatingtheHabitabilityofaNuclearPowerPlantControlRoomDuringaPostulatedHazardousChemicalRelease",U.S.NuclearRegulatoryCommission,Washington,D.C.,June1974.NRC,1983.RegulatoryGuide1.145,"AtmosphericDispersionModelsforPotentialAccidentConsequenceAssessmentsatNuclearPowerPlants",U.S.NuclearRegulatoryCommission,Washington,D.C.,August1976.PeteBailey,PersonnelCommunication"St.LucieMeteorologyandCRData."August,1996.FloridaPowerandLight,"St.LucieUnit1FSAR"DocketNo.50-335version88-01Section9.4,(MicroFilmversion1988).Project6783Page10of298/29/96 LeakaeLimitCalculationforStLucieUnit1AppendixAMETEOROLOGICALANDSITEDATAFROMST.LUCIEProject6783Pagellof298/29/96 LeakaeLimitCalculationforStLucieUnit1TO:BillHannaman8Hoh/ardPippen,SAICFrom:Peter8.Bailey,FPL

Subject:

ResponsetoyourdataneedsSt.I.ucmoUnft0CroaWsa5onalArea:2867m'asedonRCS)64ftDfa,207AftHfaboveground.Sourca:SpecificationforanEmergencyDoseCafcuhtianSystemfartheSt.LuciePfant",(HMMDoc.0804T?-8)H.M.M.Assoc,October18,$982CantrofAcornEmergencyRlbmtlonSystemInfeakago:Assumed109elmSource:St.LucieUn@0UFSARg9.4.1,pg9.~(ammendment12,12/93),Calculatedtobe34.2cfm1/S"Vfsh,P,assumed100cfm,w/0.$2one-passfHtereffeclency,foremergencydosecafcufatfona(Q6.4.1stuH).AnemometerStartfngSpeed:1.0-1.6mphSourc9:StLuciaUnit1UFSAR,g2.3.3.3,pg2.3-33,undatedpage.MetDataforgjQCalcs:AttachedAnnualJFDforCY'95Thefoffeeingninepages[nctudethe1996annualsummaryJFDIbyStabilityCI838,byVlindSpeedGroups,bySector,theyarefntheRegGufde1.2)suggestedformat.ifyouneedmoreofthhtypeinfo,justcall4078944179;lcanFaxcopi68ofthoUFSARpagesffthey'reneeded.Project6783Page12of298/29/96 LeakaeLimitCalculationforStLucieUnit1To:RLRechetteHmm:A.J.GonldDate:Februaryg1996Department:SNAB~r~L~A+

Subject:

St.LacyJointFmqnextcyDfstrfhuQonReport,AgrtualReortinfxTHnclosedaxethejointGtquencydLstabuttonsof10-meterwindcHrectionaxtdwhtdspeedbyatxnosphericstabilitycategoryfortheSt.Laciesita.ThhxspaxtcoverstheFourthQnarter1995andtheAnnualReportingfor199$.ThesetablesaxeiathefoxxaatsuggestedbyNRCRegahtotyegde>>>TaM<A.~percentjonttdataxecovayvrasntetforatmospheacstability,windspeed,axutvtiaddirection,asxecomtnendedbytheSecondPtoposedRevision1toNRCRegulataxyGuide1M.Porth6FourthQuarter,100percentjointdatarecoverywxLtrealized.Fortheannuall995jointfaquencydistributionreport,thejointdatarecoverypercentagewas9%32.Kyonhaveanyquestions,pleasecontactmeat4071N4-4199.CC'.Q.BaBeyR.E.Cox6.RhmidR.OhonBS-RC-96410PBeProject6783Pagel3of298/29/96 LeakaeLimitC~.'culationforStLucieUnit1PLOaznaSOMSa4tZOSTCONFSNYST+LQCXStZJQCTPERIODOIRECgRSJagI<1999CODba.31'995ANNO)CoRSFQRTOFFRae30!T?SEQUENTOFNINGDXRECTXCN~MINDSECBDSTVRRT3cgtrsTXDI.ZTYCATSOO2Y10KCrmLMamCFSm(ambii~7S~IRIS~MIt04)441O.OOOD.SSS1.113O.aita.aab4.0004~0040'VIIPssD.csvD0120000lO.oooo.ia21.3110.291O.OSVO.ooo40~ado0.173~127i4,13S4~00400045o.oooo.0991.3ss0.12iO.ooaO.oooCOoaaa0y025Xo444aeM50022Oaddb0~4000ODD4~0250,4120,0000~040sO.oooo.aooO.aoo4.0220.02204409o.oooo.oooo.oooO.ooa0.4000.012LO0-440oo037bl$5Oooit40000~404~~%0~3o.aab4.1CI0.210a.aitC.ois0.0124~0000+F145730sot904400aaaa.i04400,12iaeC92bobtt0abb0~4000~ODD0~Ott4~532O,oit0~0440~DOOC0d440.5321,9DiDOC20~4000,400LlO.oooO.osva.2330.414.b.ddbb.oob171tS145ISSSS8212J.VC9.51i1+593ta5141COS9.C14aobia12i340Oa03TIRe1334d23lb.dCbaeDI22520DOe27210.355bo39CtSltD442Il.i590+343tr7ti4~915$.739OASOtoVSOb-7dia+00028%C11~21C21250~I730~01SISoJCitIVif00000thSQUZ$4CL~Z~(l?iICSdi974C4ToSSRRWLTXON6SOS.VIOLiSVCO~30CITZQCbtT055ELV)LTXtNSi1325~rEaammuggyesYmir~1S.123project67S3PageI4nf298/29/96 LeakaeLimitCalculationforStLucieUnit1PrrdRZOAPdltd'RdZrIOHTCOMPANYCZeZIR'PXJWTPERZOQOt.RECORDSJan1199StoUdo31rZPPSRCHtNZRRPDRTCPPSRCsmVlrzguaWCYCPrkatODZRRCIZON3MD'0IXSDSPEED3Y~TZCRZrSTR53reZTYCRZXCCRY1ASQdIZIeCLXXCRtYS0M'SLli310-armmesi5323(mphl47CQQld152iSCCXZDLPCTe1D.aaaaeld5015504370.044440410.4040.1514.45700250DDO4.440a.aoa0.13cO.opp0.037O.ooaa.DDD30~4004.2354.19940120~4250Daai0.4400xic.01364'250.4440.40050.4404.12i0.3.'734Did4400D400d0404Oe012Oe3iC4~0074444Oeoao4.004oeaa4Oe4C2O.oi904044~40400.4440.412O.ODO0.400O.OOD0.440~D.DDO0~0040~040Oeoaa0040Deooa4D-DDD.0.44+0~1244Oc24.412D.DDD4Da'0ae0250~OC200250~Oao4~DaaO.oooD.o27D.o7i0,41*o.oaoO.oaoO.aaa0.452O.o25o.o12o.oaao.oao0.4000.0570~0524~4124.4400.4000~04'00~0470~0410e0250~0044~4404.2727.ii14,2'72ICCD0470Ce1d1ae24$0.39503ddC.dd24~id510e617Oe11112DCC04125.2440~DDD0~000D~19d12~94401119e700oe12iSeC54oe49$de2350XCL7~692017396074i24le1LS0.4401.3111VDC4'704'3704403.92iCe97904400PRDQQZZIrCDTIedaRYTOTRZr]I)a3~52iQe979rT058ERVATTmrSR%'CSQtgl7CD~>cRT323aavd55savmzmdc245AT%PERCRllT~PdgYRRQ,r3.253Project6783Paget5of298/29/96 LeakaeLimitCalculationforStLucieUnit1rxoazoa3oMxaarzcssrvcowsass>QT.RUCKED~PBRIOQQPRECC$tSslaleLA1i)95anQdd31Ippp~~stamenor9lao32arseamsI(oYormaossXsurcrxog~mmamamssrvmxzcarcnmxz,rrrmnsooaYIO~mamamSO(aph)i~70~12111$IS~Xia24SXcTostQa2oO.aaao,x2c40374~0120~4004~0000040XxX4,X2i004$40000aaa44444XSId,XXX4~03700124~444O.OOO0.0374.037O.o12O.O12O.OOOo.aanOooao,4$2$,O,X72O,dip4OX24400O.oip002$4000OoaooOo4000dao0~OC2441744444ddo0~4004~4444~DPI0~DI'7omoaoP~OOD0~'444a+adoOsdS70,1114012OiaaaOaaooOeoooO~X344~1360.00044440~444OoaooO.X360.111OeaaD4~000Ooaoa>.4444-173.n.~i4.437o.aaoo.aao4aabd49942214.412O.aao4.040c4F4044,02'7033E4~47i4044oedao440444X2O.X2iO.aip440400120~004Deaaa4~40D0+4374~4404o4004.XSD6.90042aiao661Oe34CSoi54Oo3347,9074~33iPiCP544CI14ICP0.19412.09ioo03712,233Oe4$j1D.OSS4+26014,390Ogo747.XP3Oe499To112413CC,ccca.2109.7zpOo272S.OS20.2i77.Xi%40~000loBQSlo7i4Oe3420'370F4123561a+7990+4000maqmla,Ca~caa'(<)~3.SA.0.794CeYOKSKCVATZOSSre'LEALg4760~VmsCaYISaOSSYauSSStVSmCWe~2PSOlTADRRCIRSLCErCatYklstt3~2laProject6783Page16of298/29/96 LeakaeLimitCalculationforStLucieUnit1Fr,r:azrICOars4IZsaT1:ON9atlYaT.wc'QOe4'~00OFRSCORDggda.I,I$$5taaaa.31,1595mamaiaXaat2.'Fma~~$~455CrOrmauD~ZeCAl405$N2CARDmygggXCaLSTRIXLITTNLTammYMofORRI)14-gagSammrunn(~)4~7de12I31515~14)140+0400~20$.L.g$4O.$15,0.07$O.4OO50~440'~$0Ci2'N457K0~0044~4400+W$O.C330.$3402$540000.04020~OC10,4454~CCC4'34a.dl20~Oaa300124~CI549174~5040'$$D044loOOR4~551'.7199.4091ECI14.$33le544loa7072.4CS$.$$54~012OecccI55$d4540DI2oea4025579~7404049035$I,DIC0,5470D$2D~DODSOe025Oe507i,$cdI12501110'00094F0454+7792+0400~54$OaOC10~OIQ000254~QLSI.0,$7502$40025d4004.4$2O.Z<CO.idesD.O12O.ODDO.OOD20.4110,3714,1554,0IQ440040404.0374;3530,19$0,11400110,444O~D370~70$Oad1$Oa057DeOOODeooo500124'704,5$$0III00040~004C0457435$O,dds0I7$0~ODO0~400Ledsi10~CC$3734IO$$13'$7loo33$2.127$.5$54SCSCo<54O.$$17.0310.7$4$-11$I4h77'l~I1$7$11$Ia1$$4.$3050+531$.75514.41$C.3040.4704.41234.4$39.$3100000$55QQXLZICATX%)RTTOTALS(I)i30e4$39d31t>455~mme$45maxI$7co~~5254OaYO555aVmXarai2CCC~$5R~~teanaai2S.LSLProject6783Page17of298/29/96

LeakaeLimitCalculationforStLucieUnit1rrORZDa9O~SRaZXOHWOOXSAHYIToMCZEPULSED'ERZODOtRECORDSZta.1>1555taDna.31,1995ILQQDALQQPOQTOFVXQCQQTFQQQUQXCTQFICEDDIQQCTZOQtiZHD89REDSYVERTXCLLSZRiZLZTYCLTEOORY9ASQQXXXC)MLQOQFE0$$aiQQl~)10-HRTRRHZ'995DlaPQist6~1212-1919-2i)2i1O,lioD757O,ial0,0000~0000000O.QtiO.QCS0.6564,4290~OOOO.OOO41StdSltI17541<Idddn0400411109770$040it20~00004005oohitIziti1NQ417loodno4~400C.i35Ioi34CD7532,iCI7,99$2+171t~ict2oci~to91CC0ICIIeC221.2950.1454.429O.non'.3997.CCQE70.0991,3731.2370.2664.12iO.OOO~'~IAOOa75i94.4570,977Oo77%Oe173Oe0620ooooooi70Oe196Oe032Oeaoo00+161.150%,056900490.0000000I0.3711,70C03i60~05700000~0002O.i701.521O,i200.025O.000O.OOO3O.zco1.69io.7170.067o.aaoo.aooi4.25lL.5751,7440,1730.00000005Oa296Ie1124~7540~062oo4004~04060.23sx.aaaO.c70a.a37O.aaaa.aaa3126CeSS55o$%7te2421,7317e4472255C212251055622i365.5992+755Ce376i+1%07.26C2.325C.iia1~030c~acl53,5612DOCSI272621590,2230~00039.759T.lit0~000095SOOZu,aa22aaaVTOTQLtS)c1$.764t.littYDMsavazxaaasFaa~<tacoVALIDCLT!RORYC!%%5%TZOSBI3216IQXQFQQOXBTJLOEFURZCARi36+712Project6783Page18of298/29/96 LeakaeLimitG;;Icu/ationforStLucieUnitfFLORIDA1OVSRCr5IORTCOWPAHYSTLOCXRPLANTPERIODOPRECORDsaTi$11)XS)5hoGad31~1$5SmtDmLLAapaILTO3maaxDTmLYqmddcYcN'mnzRRCVXONADDIflRDJtDERDAYVRRXZCDLL'RT5LZLZLZTYCSLTYCQ5LYLO~NRXERltZQQCORCD(Cgh}4753233-1!15i24Q40~0870+025ooodo0.0444~ODD0000Oo1132F9670~45200374~4400400Redda0004o.oino.474o.os7o.oooo.oooo.dooD~037Ood57.,0+0040~040OoodoOodoo50.412oe113.Oo1%1OoddoOidoo0~0004049oexdd0+057404400000ddoOo0120+0740~0040+0120~dao00004Ood2%4+324Oeo'NoedooOeaooOoddo40$%3~OC30."3455.92S0+3245I070023S7.2160334'$44OaadtCodC3Oo223Ce2330.074o.154o.oedo.aooo.oooo.doo0.4055.335t.o0.449~4~223Oedoododdo0~000ooddd.40~03704090~0000~0000~00000004~062Oo7540+037dodda0~0040+0444.4490,3220.0000.04000040~0000~0070~1530000Ooooo0~4040~400a.o.1240.223a.oooO.oooO.oooo.odo4.4620.3730.037O.aaaa,aaoO.oaaOa2724~4394,34C4'43Oi4705e397d44549470~9535399Qi3715+0200+2473o905O.lcd2.4750.433O.OZDO.ROOO.doo4.7bSS355a,adoaPACQQXLLCAZZCO$LYTOTALt9)I47555135LYOBCRLVATZOddtOIYSASLc5760VLtXDCATNZanrOaa~7LTZCeda357~IZRCXRX)lC3tPOXYCMLs4.425Project6783Page19of298/29/96 LeakaeLimitCalculationforStLucieUnit1>>ORI>lLPOSSar.IrasecoeypltYSTeIUCXI~FERIODOFlLRCCRDsalan1i1%55toOea31'955AlallBLLlofti'KtTQFICXNTPRRQQRECYOPlllsa'DIRRCTIORJLRDWZHQBPEEDBYVRtTXCALBXLBILZTZQLTEQCRYPABDCILLClLT5445YaICTORKElL1~3la~lt5TERNIXD5PXR)ii7li1212~141)~24j2(BECTQRpcT,5px5a104.044.Oo052Poaao4444Oeooa4~4044-0120.052D.oooO.oaoO.aaoo.ooo41250.0740,0404.0000~0404.4044.4524.2coo.aaoo.ooo4.444o.ooow4.052o,i24O.oooo.aaaO.aaOO.oaoL5D.4040,4254,0004,0040,4440040L504374~4440.4404.4440~4044~ooo4.0DDosaoo0~000Dsoao4'040.044F0040.42S4.0000.0400.0000.4400~004D.aaoo.ooaO.OOoo.aooo.aao~4.0044412.4ODDF40400000~0005D.ooo0.00oo.oao0.404D.oaaD.aao4.4120.012o.ooo0.012a.oaoo.aaa4,0124~ODP0,440a,aaa4,4444~0000.02504124.4440~0000~00050'124074a+0000444a+Dao0F4040,4004.4004~0254550Da0000~4400+0123$004,0000.000Oopl77Sll0+4122oloo4+0455'754.457a.i2SOoIIIli44iDe07445504+214I.7520.32245550442445<442%4,4%00,0272'578DA05I0514.4124~4124~4444oppPASQUILLCLTSQORYTOTAL{0)c1.45l4.5170.0404loi4445i7I"IO555R~V1455faRYQAR1l750'lALIDCLTIOORY4355avaTIecas124~PSRCSNI7earaaIsaa<1.374Project6783Page20of298/29/96 LeakaeLimitCalculationforStLucieUnit1FuoazoaFowzarzzosTccNsaNY$T.MCUSPhhHTFIS3QQOFMCCmzZan.1,1595taSec.31,199$hÃKTGLLRRQCRTOFHUtCKgg?REQX!RCYOFMZSDDIRECT205tAXDVXSQSPREADRTVR$LTZCALSTASI?yTTYCLTEQORY10-XSXXameSWaa(mph)47de@Q-1$i924)246NCTQRMESICE'.SPKCD0~2$42077202$0.27210000oaoIddR7,525O.iad1.dti2,7330.5320.025O.aaa02472.5233.7691.3110.2230.10040.14$2,275.3,4$71.$9510740.1000~1$127205~00$0~7300~0040~OaaC0~2352,472I79$17310.04$0,0407a~1731.$1$24$10~$1501$50.0125+391$.316boad29.336Vo5$0!.435$.$19$~5$15e2$75455S,5CI9.472021014222.$321,34$01$50000,5!97t500o.ill2.1522.5$71.aa2o.odvo.olsLo0.2$I2e$70152$04$$0~0450~000L14~SC92ob$$0~$1$D2990DDO0+daoL20~$$01ad970~$$$D~099DD490odL1LlO.ltc3.01711500.3220~1120000L4044$41553.2di03$30ooo1000L50~4$$2e2512~071Oe2410~0000~daao.iis2,4613,l510.309O.aoaa.oaaC0$49.05$5+527V.df34ad416~0$44+4d26F447I~$97CD702$,24$733d50337.3626.5667.$745o3$73$~90243255114$$O,tio0d49111aOOO$.3200.0000$'MQUZLZsCATER~TDVAb('Ir)I111~000aaN&%%$+BXQtLY05$$3MLTXORSPCSYEARc47$0r~CATCCOLYOSSENULTXO3td<$0$7DLTI915tCLÃflCRVCRYRMtt92.317Project6783Page2lof298/29/96 LeakaeLimitCalculationforStLucieUnit1iodine131ConcentrationintheControlRoomSt.Lucieunit1controlroomwithRG1.78/1.95assumptionsGWH8/20/96SAICproject6734DataforisolatedcaseRef11(FSAR148)Ref10Controlroomvolume56,292cuftControlfilteredinlet100cfm100cfmFilteredRecirculation1900cfm(2000-100)HEPAFiltersEff.997Unfiteredinleakage56cfm34.2cfmcalculatedBestestimatemodelUncertaintyrangesconsideredinestimatingtheIPFinMonteCarloSimulationsforleakagelimitThisshowstheresultsofmodelingthetransportandconcentrationofiodineI-131fortheStLucia1controlroom.I-131releasedfromaMSLB/SGTLmovesfromthereleasepointtotheintakeoftheventilitationsystemAconcentration(release'/Q)thentothecontrolroomthrougheitherafilteredorunfilteredpath(CRI).Bistheconcentrationofl-131thatstaysinthecontrolroomvolume.ItisthedifferencebetweentherateofI131intoandoutofthecontrolroom-(i.e.,theIodineProtectionFactor(IPF)).TheinputdatafromcontrolroomdesignfeaturesareusedtocalculatetheIodineProtectionFactor,andquantifythetimedependentconcentrationinthecontrolroomassumingthatapostulatedmainstreamlinebreakhasoccurred.Thisproducesthebasisfortheconstantsourcetermassumedfortheairinthecontrolroom.DatafortheSt.LucieControlroomparametersaretakenfromRef10and11forisolatedcondition.Normalunfilteredflowintothecontrolroomis750cfmwhichisisolated35secondsafterclosesignal.Themodelforisolationbelowtreatsbothunfilteredinleakageandfiltered.Therefore,thepublishedfilterefficiencesfromFSARwereappliedincalculations.Theunfilteredleakageistreatedasdistributiontoapproximatelyrepresentthe35secondclosingtime.Inputdataforthecontrolroomdesignfeaturesmeanvalues:LU:=.06ltrLF:=.11hrLR:=2lu'r@:=.95Ffe'.=.95A,:=.00358lu'nfilteredinleakage(volperhr)-.06testtoshowc.08Filteredintakeflow-.2to.05Recirculationflow-2.3to1.9Recirculationfilterefficiency-.90to.997Intakefilterefficiency-.90to.997Decayconstantfor1131T1/2=8.05dayCalculationsforcontrolroomdesign:TransportrateintotheControlroomsec.TransportrateoutoftheControlroomsecCRI:"-LU+(I-Ffs)LFCRI=1.819'10'time4tCRO:=LF+LU+FrsLR+A,CRO=5.76'10'timeiodineProtectionFactormeanvalueCROIPF:=-CRIIPF=31.658Initialeventconditions:Initialamountofl131accident.0:=1.'oncentrationfactorattheintake,AoassumedtobeconstantfromfromreleasepointComputeremovalandincreaseconstants:Functionsforl131TransportintoControlroom:kl:=CRIkO:=CROA(t):=AXeii(t>:=--(e'e'"kOtkl.tQkl-kOt'.=0lu,.25hr..24hrt2:=0Itr,1.0'hr..12hrProject6783Page22of298/29/96 LeakaeLimitCalculationforStLucieUnit1Appendix8CUMULATIVEPROBABILITYDISTRIBUTIONSFQRX/QANDLEAKRATEThisappendixprovidesgraphicalillustrationsofthedetailedsitespecificassessments.FigureB-1presentsthecumulativedistributionforX/QattheEABforSt.LuciebasedonthemeasuredatmosphericconditionsdescribedinAppendixA.Thisfigurerepresentsallthecombinationsofwindspeed,direction,atmosphericstabilityclassattheEAB.TheflatportionsofthecurveareduetotheconstantdistancestotheEAB.FiguresB-2throughB-4presentfamiliesofcurvesfortheleakagelimitasafunctionofconfidencelevel.TheywereobtainedbycombiningthedistributionsfromtheSt.Luciespecificatmosphericdosemodelsforthe95%99%andworstcasemeteorologyconditionsattheEABwiththegenericreleasemodelsforI>3>PASandAISconditionsbasedonthethyroidlimitof300rem.SelectedpointsonthesecumulativedistributionsprovidethedataforTables2and3.FiguresB-5presentstheequivalentofFigureB-1fortheControlRoom.FiguresB-6toB-8aretheequivalentofB-2toB-4.ThesecontrolroomleakagelimitdistributionprovidethedataforTable4and5.Project6783Page23of298/29l96 LeakaeLimitC"/'u/ationforStLucieUnit1CumulativeFrequencyforx/QatEASforSt.Lucie(meteorologicaldatafor111/95-12/31/95)1.00E-031.00E-041.00E-OS1.00E-06O'.00E-071.00E-0800.20.40.6CumulativeFrequencyFigureB-1CumulativeFrequencyofX/QattheEAB0.81.00E+09Ea.1.00E+081.00E+07m1.00E+06~o1.00E+05o1.00E+04I1.00E+030~1.00E+021.00E+01I-131ReleaseResultingin<300rematEAB,StabilityE(95%meteorologicalcondition)-----Pre-accidentSpikeAccident-initiatedSpike0102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-2ConfidencevsleakagelimitattheEABforAISandPAS.O95%meteorologicalconditionsProject6783Page24of298/29/96 LeakaeLimitCalculationforStLucieUnit11.00E+08Eo-1.00E+07I1.00E+06~1.00E+051,00E+04m1.00E+030~1.00E+021.00E+01I-131ReleaseResultingin(300rematEAB,StabilityF(99%meteorologicalcondition)-----Pre-accidentSpike-Accident-initiatedSpike'tl~0102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-3ConfidencevsleakagelimitattheEABforAISandPAS899%meteorologicalconditions1~OOE+08E~~1.00E+07I1.00E+06~1.00E+051.00E+04m1.00E+03O=1.00E+02l-131ReleaseResultingin<300rematEAB,Stability8(worstobservedmeteorologicalcondition)-----Pre-accidentSpike-Accident-initiatedSpike%w~1.00E+010102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-4ConfidencevsleakagelimitattheEABforAISandPASI99%meteorologicalconditionsProject6783Page2Sof298/29/96 LeakaeLimitCalculationforStLucieUnit11~00E-02CumulativeFrequencyforX/QforControlRoomatSt.Lucie(meteorologicaldatafor1/1/95-12/31/95)1.00E-03E1.00E-041.00E-051~OOE-060.20.40.60.8CumulatlveFrequencyFigureB-5CumulativeFrequencyofX/QatthecontrolroomintakeI-131ReleaseResultingin<30rematControlRoom,StabilityD(95%meteorologicalconditions)-----Pre-AccidentSpike-Accident-initiatedSpike1.00E+08Ea.1.00E+071.00E+061,00E+051.00E+041.00E+03O1.00E+021.00E+010102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-6ConfidencevsleakagelimitforcontrolroomforAISandPAS895%meteorologicalconditionsProject6783Page26of298/29/96 LeakaeLimitCalculationforStLucieUnit1I-131ReleaseResultingin<30rematControlRoom,StabilityF(99%meteorologicalconditions)-----Pre-accidentSpikeAccident-initiatedSpike1.00E+09o1.00E+081.00E+07m1.00E+06~o1.00E+05o1.00E+04I1.00E+0301.00E+021.00E+01~~0102030405060708090100CumulativePercentages(ConfidenceLevel)FigureB-7ConfidencevsleakagelimitforcontrolroomforAISandPAS899%'meteorologicalconditions1-131ReleaseResultingin<30rematControlRoom,StabilityG(worstobservedmeteorologicalcondition)-----Pre-accidentSpike-Accident-initiatedSpike1.00E+08fa.1.00E+07o1.00E+06~1.00E+051.00E+04ctr1.00E+030~1.00E+021.00E+01e~0102030405060708090100CumulativePercentage(ConfidenceLevel)FigureB-8ConfidencevsleakagelimitforcontrolroomforAISandPAS8worstobservedmeteorologicalconditionProject6783Page27of298/29/96 LeakaeLimitCalculationforStLucieUnit7AppendixCSCREENINGMETHODOLOGYThisappendixdescribesthescreeningprocessforusingthegenericleakagelimittableswhosepurposeistoindicatethepotentialforadditionalmarginandjustifyasite-specificanalysis.ItmakesuseofthetabulatedresultspublishedinEPRITR-103878,"MethodologyforConsideringUncertaintiesinI-131ReleaseandDoseLimitsforaPostulatedAccident."Thescreeningassessmentstepsare:1ObtainPlantSpecificPhysicalDataa.St.LucieminimumdistancetotheExclusionAreaBoundaryis1561metersb.BoundingAtmosphericDispersionTypeforEABandCR(ClassEisthe95%boundingatmosphericcondition)c.CategoryofthecontrolroomprotectionisTypeB.2.ObtainGenericAllowedleakagedataforEABandControlRoomandverifythatlocalengineeringassumptionsapply.a.UsetabularresultsfortheEAB(Tables5-1and5-2inReference3)b.Usetabularresultsforthecontrolroom(Table5-3inReference3)3.Verifysourcetermassumptionsforthetwoaccidentmodeltypesa.Selectthegenericpre-accidentsourceterm,whichistypicallythemostlimitingat95%confidence.The95%confidenceboundpre-accidentsourcetermcomesfromthedatafittingprocessandtheallowedleakageis33timesgreaterthantheStandardReviewPlan.b.Selectasite-specificmodelofthesourcetermifconditionsarenotboundedbythegenericsourceterm.4.Determinethegenericallowedleakagelimita.Lookuptheallowedleakagefortheminimumdistanceandcontrolroomtype,andselectallowedleakratesfromscreeningtableswhichrepresentthecaseforaleakagethatwillnotexceedthedoselimitswith95%confidenceasshowninTableC-1.Assumeboundingstabilityclass(FforEABandAforcontrolroom),orusetheFSARallowedleakage.Project6783Page28of298/29/96 LeakaeLimitCalculationforStLucieUnit1TableC1.Screeningresultsfordoselimitedleakageat95%confidencelevel(usingTablesfromRef.3)EAB,ClassFEAB,ClassEControlRoom,TypeBPre-accidentSpike(gpm)331012,100545Accident-InitiatedSpike(gpm)12,90044,0001,700b.FortheconditionsshowninTableC-1asitespecificdetailedevaluationtoproducea95/95%confidenceleakagelimitestimateusingthemeasuredsitestabilityclassfrequency,windspeed,directionanddistanceislikelytodemonstratesignificantmargins.5.ComparetheleakagelimitwiththeestimatedsteamgeneratorleakagebasedonNDEmeasuresinsupportofconditionmonitoringandoperationalassessments.UsingLeakageLimitResultsAsuitablemarginbetweenthegenericleakagelimitfortheEABandthecontrolroom,andtheprojectedEOCsteamgeneratorleakagecanbecalculatedforvariousdegreesofconfidence(e.g.,theratiooftheprojectedEOCleakageat95/95tothe95/95allowedleakrate).Ifthisisasmallnumber(i.e.,lessthan0.1a),thenthegenericscreeningprocessclearlyindicatesthatthesitecharacteristicsprovidethecapabilityofmeetingtheregulatorydoselimits.Amoredetailedevaluationcanbeusedtodemonstrateeffectivenessofotherplantspecificfeaturesinprovidingadditionalprotectionforkeepingpredictedaccidentdoseswithinregulatorylimits.Thevalueof0.1issuggestedasanacceptablemarginwhenscreeningvaluesareused,becausetheanalysisisbasedonmeasuresofI131thyroiddose.ThevariationbetweenthewholebodyandthyroiddoseinasampleofFSARsindicatesthatthedosesfromallisotopeswouldbeboundedifthemarginwas0.1.Adetailedassessmentwhichincludesevaluationofthewholebodydosewouldremovethisassumption.Project6783Page29of298/29/96