ML20039G853: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML20039G853
| number = ML20039G853
| issue date = 12/31/1981
| issue date = 12/31/1981
| title = Assessment of Hypothetical Core Disruptive Accident Energetics in Clinch River Breeder Reactor Project Heterogeneous Reactor Core.
| title = Assessment of Hypothetical Core Disruptive Accident Energetics in Clinch River Breeder Reactor Project Heterogeneous Reactor Core
| author name = Mcelroy J, Rhow S, Switick D
| author name = Mcelroy J, Rhow S, Switick D
| author affiliation = GENERAL ELECTRIC CO.
| author affiliation = GENERAL ELECTRIC CO.
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:________          _ __ _ _ _ . _ _
{{#Wiki_filter:}}
CRBRP-GE F R-00523 DECtiv;BER 1981 AN ASSESSMENT OF HCDA ENERGETICS ON THE CRBRP HETEROGENEOUS REACTOR CORE S. K. RHOW 1 M. SWITICK
: 1. L. McELROY 1.W. JOE
>REPARED FOR WESTINGHOUSE ELECTRIC CORPORATION ONTR ACT NO. 54 7AO-192908BP i
                                                'Q?'
gf$9)%ge
              ;j '    <
                    .f -(                    ;
1 y'
g 01190221 gDR                        eaofop          G EN ER AL h' ELECTRIC 4          ., DOCK 05000537 PD9
 
                              ~                                              .-----------_ _-.______ _          _        . _ _
3
                    ,- {+pp {                                                                          CRBRP-GEFR- 00523
[II{                .y
        ~ E?7 * - 't-DATE  December 1981 l
              ?;. ,
TITLE:        AN ASSESSMENT OF HCDA ENERGETICS IN THE CRBRP HETEROGENE0US REACTOR CORE AUTHORS:      S. K. Rhow D. M. Switick J. L. McElroy B. W. Joe l
Prepared for Westinghouse Electric Corporation Contract No. 54-7A0-192908BP E~                APPLIED TECHHOI.OGY ky furth di:hbifca by as k: S cf his documtat m oi the data tub b miid ;mes ,ccr;tig te::m. iah.ati, tonig goma-meti, fo@ :r .nems yni 14 n er.:.003 a.r civisicu c.f U.3, CST;N 6?dd ad Zi"6Fhd til$ IN 0 fCCici, Did$ IGG Of flBaCt0f EZZ.!dl 3Dd Ib'haeisyy, 'JS. Ocpa:'ramt of Erstgy.
ADVANCED REACTOR SYSTEMS CEPARTMENT eGENERAL ELECTRIC COMPANY SUNNYVALE, CAUFORNI A 94088 PS-0621 GENER AL $ ELECTRIC
 
NOTICE lhis report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor the agency, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legalliability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed. orrepresents thatits use would not in fringe privately owned righ ts.
LN-1 (10/77)
 
x ACKNOWLEDGMENTS Many persons have contributed either directly or indirectly to this report; we would like to mention some of them by name.
H. K. Fauske and his staff of Fauske and Associates, Inc. deserve many thanks for contributing both analysis and major sections of Chapter 8 of this report. We also acknowledge the supporting technical contributions made by individuals working with D. P. Weber and H. Henryson of Argonne National Laboratory, R. A. Doncals of Westinghouse-ARD, and K. H. Chen (GE).
We are indebted to L. E. Strawbridge (W-ARD), G. H. Clare (W-LRM),
E. L. Fuller and W. Pasko (CRBRP-PO) for their support and valuable comments throughout the course of this work.
Special tranks also go to M. St. Pierre for her efforts in preparing this manuscript.
iii/iv
 
                                                                                                  +
ABSTRACT m
The results of hypothetical core disruptive event analyses for the      ;
CRBRP teterogeneous reactor core are reported.
The analytical results cover a large number of parametric cases includir.g variations in design parameters and phenomenological assumptions.
Reactor core configurations at both the beginning of cycle one and end of cycle four are evaluated.
The energetic consequences are evaluated based upon both fuel expan-sion thermodynamic work potential and a relative arobability assignment.
It is concluded that the structural loads which result from 101 megajoules of available expansion work at sodium slug impact on the reactor closure head, (equivalent to 661 megajoules of fuel expansion work to one atmosphere), are an adequate energetic consequence envelope for use in specifying the Structural Margin Beyond the Design Base.
                                                                                                    .(
  .                                                                viv,
 
TABLE OF CONTENTS Page ACKNOWLEDGMENTS                                              iii/iv ABSTRACT                                                        v/vi LIST OF TABLES                                                  xiii LIST OF FIGURES                                                  xvii LIST OF ABBREVIATIONS                                              xxv
: 1. INTRODUCTION                                                      l-1
: 2.
 
==SUMMARY==
AND CONCLUSIONS                                            2-1    ,
2.1  Initiating Phase                                            2-1 2.1.1    TOP at BOC Initiating Pnase                    2-1 2.1.2 TOP at E0C Initiating Phase                        2-2 2.1.3 LOF at 80C Initiating Phase                        2-2 2.1.4 LOF at E0C Initiating Phase                        2-3 2.2 Meltout Phase                                                2-4 2.3 Large-Scale Pool Phase                                        2-4 2.4 Hydrodynamic Disassembly Phase                                2-5 2.5 Conclusions on HCDA Energetics                                2-6
: 3. SAS3D CODE SYSTEM                                                  3-1 3.1 Physical Processes Related to Accident Progression            3-1 3.2 Phenomenological Modeling                                      3-3 3.2.1  Overview of SAS3D Modeling                          3-4 3.2.2 Fission Gas Release from Fuel                          3-4 3.2.3 TOP-Type Fuel Rod Failure                              3-7 3.2.3.1                  Pre-Failure Modeling      3-7 vii
 
TABLE OF CONTENTS (Continued)
Pace 3.2.3.2 Post-Failure Fuel Motion                                        3-11 3.2.3.3 Comparison of Vapor Pressure Model                              3-16 with Experiments 3.2.4 SLUMPY Model of Fuel Motion                                              3-17 3.2.4.1  Near-Fresh Fuel                                              3-17 3.2.4.2  Irradiated Fuel                                              3-18
: 4. SAS REACTOR MODEL AND INPUT ASSUMPTIONS                                              4-1 4.1 Design and Safety Parameter Data                                                  4-1 4.2 Core Assembly Grouping into SAS Channels                                          4-3 4.3 SAS3D Input Selection                                                            4-4
                                                            ~
: 5. SAS3D STEADY STATE RESULTS                                                            5-1 5.1 80C-1 Core Configuration                                                          5-1 5.2 E0C-4 Core Configuration                                                          5-2
: 6. INITIATING PHASE ANALYSIS OF TRANSIENT OVERPOWER (TOP)                                6-1 EVENTS 6.1 TOP in B0C-l Configuration                                                        6-1 6.1.1  B0C-1 TOP Case 1 - Best-Estimate Analysis                              6-1 at Design Ramp Rate of 4.ld/sec 6.1.2 BOC-1 TOP Case 2 - 4.lc/sec Ramp Rate                                    6-8 with Forced Midplane Failure 6.1.3 BOC-1 TOP Case 3 - 504/sec Ramp Rate with                                6-12 Pessimistic Doppler and Material Worths 6.1.4 B0C-1 TOP Case 4 - Case 3 plus Forced Midplane                            6-14 Failure and One Rod Failure Group 6.1.5 Core Response to Stable Power Level Above                                  6-17 Nominal viii
 
l TABLE _0F CONTENTS (Continued)
Pane 6.1.6                  Summary and Conclusions on ' TOP Event in                                                                          6-19 BOC-1 Configuration 6.2 TOP in E0C-4 Configuration                                                                                                                                6-21 6.2.1                TOP Analysis with SASBLOK                                                                                          6-21 6.2.2 E0C-4 TOP Case 1 - Best-Estimate Analysis                                                                                          6-24 at Design Ramp Rate of 4.1c/sec 6.2.3 EOC-4 TOP Case 2 - 10c/sec Ramp Rate with                                                                                        6-29 Forced Midplane Failure 6.2.4 EOC-4 TOP Case 3 - 50c/sec Ramp Rate with                                                                                        6-33 Pessimistic Doppler and Material Worths 6.2.5 E0C-4 TOP Case 4 - Case 3 plus Forced                                                                                          6-35 Midplane Failure ard One Rod Failure Group 6.2.6 Summary and Conclusions on TOP Event in                                                                                        6-36 EOC-4 Configuration
: 7. INITIATING PHASE ANALYSIS OF PRIMARY FLOW C0ASTDOWN                                                                                                          7-1 EVENTS 7.1                      Loss-of-Flow (LOF) Event in 80C-1 Configuration                                                                                    7-1 7.1.1            B0C-1 LOF Case 1 - Best-Estimate Analysis                                                                          7-2 7.1.2 BOC-1 LOF Case 2 - Effect of Fuel Vapor                                                                                      7-6 Pressure Uncertainty 7.1.3 BOC-1 LOF Case 3 - Case 2 plus No Fuel                                                                                      7-8 Axial Expansion and Pessimistic Cladding Worth 7.1.4 Summary and Conclusions on LOF Event                                                                                        7-10 in BOC-1 Configuration 7.2 Loss-of-Flow (LOF) Event in EOC-4 Configuration                                                                                                          7-11 7.2.1        EOC-4 LOF Case 1 - Best-Estimate Analysis                                                                          7-12 7.2.2 E0C-4 LOF Case 2 - Uniform Unrestructured                                                                                7-18 Fuel Melting Disruption Criterion ix
 
TABLE OF CONTENTS (Continued)
Page  __
7.2.3 E0C-4 LOF Case 3 - No Fuel Dispersal by Fission  7-20  Z l                Gas and Reduced Fuel Vapor Pressure 7.2.4 Summary and
 
== Conclusion:==
: on LOF Event in        7-22  [
E0C-4 Configuration                                    --
: 8. REACTOR CORE MELTOUT AND LARGE-SCALE POOL PHASE              3-1 EVALUATIONS 8.1  Introduction                                          8-1        _
8.1.1  State of Core at Tennination of                8-4 Initiating Phase Analysis                                    ,
8.1.1.1    TOP Events                          8-4      _
8.1.1.2 LOF Events                              8-6  --
8.2 Core Meltout Phase                                      8 ,7 8.2.1  Effects of Early Steel Blockages              8-8 8.2.2 Fuel Penetration Into Assembly Rod              8-9      __
Structure 8.2.3 Potential for Fuel Compaction at                8-12 Entrance to Meltout Phase 8.2.4 Disruption of the Core Assembly                  8-15 Structure 8.2.5 Fuel Removal Between Core Assembly                8-16  ,
Structure                                                      ,
8.2.6 Potential for Fuel-Coolant Interaction            8-21 ,
Pressurization 8.2.7 Fuel Removal Through Control Assemblies          8-26          -
8.2.8 Summary of Core Meltout Phase                    8-28        _
8.3 Large-Scale Pool Phase                                    8-30
                                                                          ~
8.3.1  Boiling Flow Regimes                            8-31 X                                        a E
 
TABLE OF CONTENTS (Continued)
Page 8.3.2 Heat Transfer at Pool Boundaries and        8-35 Its Effect on Pool Behavior 8.3.2.1  Fuel Crust Formation            8-36 8.3.2.2 Heat Transfer at Upper            8-42 Structural Boundary 8.3.2.3 Heat Transfer at Lateral          8-44 Structural Boundary 8.3.2.4 Heat Transfer Across the Bottom    8-46 Structural Surface 8.3.2.5 Power Requirement for Pool Boilup  8-47 8.3.3 Fuel-Steel Boilup Stability Considerations  8-48 8.3.4 Pressurization in a Bottled-up Pool        8-52 8.3.5 Blowdown and Fuel Dispersal                8-53 Characteristics 8.3.6 Potential for Pressure Driven              8-54 Recompaction 8.3.7 Summary of Large-Scale Pool Phase          8-55 8.4 Reactivity Effects in Disrupted Core Geometry      8-55 8.5 Summary of Reactor Core Meltout and                8-57 Large-Scale Pool Phases
: 9. ENERGETIC REACTOR CORE DISRUPTION PHASE EVALUATIONS    9-1 9.1  Introduction                                      9-1 9.2 VENUS Modeling of Reactor Core Region              9-4 9.2.1  Initiating Phase                          9-5 9.3 Hydrodynamic Disassembly During Initiation        9-8 Phase xi
 
l l
l TABLE OF CONTENTS              (Continued)
Page 9.4 Hydrodynamic Disassembly at Initiation of                        9-10 Meltout Phase 9.5 Summary and Conclusions on Energetic Reactor                    9-11 Core Disruption Phase
: 10. RELATIONSHIP OF HETEROGENEOUS CORE ENERGETICS                          10-1 ASSESSMENT TO CRBRP STRUCTURAL MARGIN BEYOND THE DESIGN BASE (SMBDB) 10.1 Definition of Pressure-Volume Relationship                      10-1 for SMBDB 10.2 Heterogeneous Core Mechanical Loads vs.                        10-2 SMBDB 10.3 Thermal Energy Conversion to Mechanical                        10-3 Loads
: 11. REFERENCES                                                          11-1 APPENDIXES A. Modifications to the SAS3D Code Release 1.0                    A-1 Version B. Description of Input Variables Used with                        B-1 SASBLOK C. PLUT02 Calculation for BOC-1 LOF Analysis                        C-1 D. SAS3D Input for EOC-4 TOP Case 1                                0-1 E. PLUT02 Calculations for EOC-4 TOP Case 2                        E-1 F. Neutronics Calculations in Support of                            F-1 Distorted Core Evaluations l
G. VENUS-II Input for EOC-4 TOP Case 2                            G-1 xii
 
LIST OF TABLES Tabit                                        Pm 1-1  Definition of Accident Sequence        1-5 Categories 2-1  Sumary of Heterogeneous Core          2-8 Energetics Consequences 2-2  Sumary of Homogeneous Core Energetics Consequences 3-1  Experimental Conditions for PNL-10    3-25 Test Series 3-2  Typical LOF Transient Conditions of Unrestructured Fuel at E0C-4 3-3  Comparison of Vapor Mass Calculation Methods 3-4  Fuel Rod Conditions at Failure with Fuel Vapor Pressure Model 3-5  Transient Conditions of Unrestructured Fuel Disruption for EOC-4 LOF Case 1A 4-1  SAS Channel Characteristics at BOC-1    4-13 4-2  SAS Channel Characteristics at EOC-4 4-3  Doppler Constants in Tdk/dT x 104 for SAS Channels at BOC-1 4
4-4  Dopper Constants in Tdk/dT x 10    for SAS Channels at EOC-4 4-5  Core Region Material Worth in Dollars for SAS Channels at BOC-1 4-6  Core Region Material Worth in Dollars for SAS Channels at EOC-4 4-7  SAS3D Input for BOC-1 LOF Case 1 5-1  Steady State Fuel Conditions at BOC-1  5-4 xiii
 
LIST OF TABLES (Continued)
Table                                              Page 5-2  Pressure Drop Comparison Between PSAR Analysis and SAS3D Analysis 5-3  Steady State Fuel Conditions at E0C-4 6-1  Sequence of Events for 80C-1 TOP Case 1A      6-39 6-2  Fuel Rod Conditions at Failure, B0C-1 TOP Cases 1 & 2                  -
6-3  CRBRP BOC-1 Steady Pcwer and Thermal Reactivities vs. Excess Reactivity 6-4  B0C-1 TOP Case IB End States with Various Coolability Assumptions 6-5  Sequence of Events for 80C-1 TOP Case 2 6-6  Expected Failure Times of Additional Channels and Core Conditions for B0C-1 TOP Case 2 6-7  Expected Power Level End State with Three Channels Failed for B0C-1 TOP Case 2 l
6-8  Sequence of Events for 80C-1 TOP Case 3 6-9  Rod Conditions at Failure for B0C-1 TOP Case 3 6-10 Sequence of Events for CRBRP BOC-1 TOP Case 4 6-11 Rod Conditions at Failure for BOC-1 TOP Case 4 6-12 Intermediate State Following Computer Error (TSC8) for BOC-1 TOP Case 4 6-13 Expec+.ed Power Level End State with Three Channels Failed for 80C-1 TOP Case 4 1
6-14 Effect of Varying the Number of Fuel Ejection Nodes with Midplane Failure on BOC-1 TOP Case.4 Core End State xiv
 
LIST OF TABLES (Continued)
Table                                              Page 6-15  Sequence of Events for Loss-of-Flow Initiated Following Stabilized Power of Twice Nominal 6-16  Sequence of Events for EOC-4 TOP Case 1A 6-17  Core Conditions and Intact Rod Cavity Pressures at 0.02 sec since Failure of Channel 1 for Cases lA and IB, E0C-4 TOP 6-18  Fuel Peak Temperature Comparison Between Steady State and Transient at 22.252 see -
E0C-4 TOP Case 2 6-19  ComparisonofFailureTimes(sec)E0C-4 TOP Cases 3 and 4 7-1  Sequence of Events for BOC-1 LOF Case 1A    7-24 7-2    Event Sequence for BOC-1 LOF Case IB 7-3    Event Sequence for B0C-1 LOF Case IC 7-4  Event Sequence for BOC-1 LOF Case 2 7-5  Event Sequence for 80C-1 LOF Case 3 7-6  Key Event Sequence for E0C-4 LOF Best Estimate Analysis (Case 1A) 7-7  Event Sequence for E0C-4 LOF Case 1B 7-8  Lead Channel Fuel Motion Modeling Effect on Core Response for EOC-4 LOF Case 1B 7-9  EOC-4 LOF Case 2 - FCI Event in Channel 14 7-10  Event Sequence for EOC-4 LOF Case 2 7-11  Event Sequence for EOC-4 LOF Case 3 8-1  Material Properties Used in Chapter 8      8-59 xv
 
LIST OF TABLES (Continued)
Table                                          Page 8-2  Results of TREAT S-Series Piston                '.
Autoclave Tests 8-3  Values of the Kutateladze Stability Parameter k 8-4  Single-Component Volume-Heated Boiling Pool Experiments 8-5  Results of Crust-Stability Experiments -
(Epstein) 9-1  Summary of E0C-4 TOP Disassembly            9-13 Calculations 10-1  Pressure-Volume Relationship for          10-5 Structural Margin Beyond the Design Base i
xvi
 
LIST OF FIGURES Figure                                                Page 3-1  Reactivity Insertion (TOP) Accident            3-30 Progression Diagram 3-2  Loss-of-Flow (LOF) Accident Progression Diagram 3-3  Transient Fission Gas Release Versus Average Unrestructured Fuel Temp:rature 3-4  Conceptual Model of Fuel Vapor Bubble Expansion 4-1  CRBRP Heterogeneous Core                      4-37 4-2  B0C-1 Radial Power Factors 4-3  EOC-4 Radial Power Factors 4-4  Normalized Axial Power Distribution away from Control Assembly 4-5  Normalized Axial Power Distribution for Fuel Assemblies Adjacent to Control Rod 4-6  Normalized Axial Power Distribution for Internal Blanket Assemblies 4-7  Orifice Zones and Mass Flow Rates for CRBRP Core 4-8  SAS3D 15 Channel Representation of CRBRP Heterogeneous Core at BOC-1 4-9  SAS3D 15 Channel Representation of CRBRP Heterogeneous Core at EOC-4 4-10  Core Region Sodium Void Worth in Dollars for SAS Channels at BOC-1 4-11  Core Region Sodium Void Worth in Dollars for SAS Channels at EOC-4 4-12  Core Region Fuel Worth in Dollars for SAS Channels at BOC-1 xvii
 
LIST OF FIGURES (Continued)
Figure                                              Page 4-13  Core Region Fuel Worth in Dollars for SAS Channels at EOC-4 4-14  Axial Node Positions for SAS Analysis (Room Temperature Dimensions) 5-1    Typical Axial Temperature Profile in CRBRP  5-7 Fuel Rcd at BOC-1 5-2    Typical Axial Temperature Profile in CRBRP        .
Internal Blanket Rod at B0C-1 5-3    Typical Radial Temperature Profile at Core Midplane in CRBRP Fuel Rod at BOC-1 5-4    Typical Radial Temperature Profile at Core Midplane in CRBRP Internal Blanket Rod at B0C-1 5-5  Typical Axial Temperature Profile in CRBRP Fuel Rod at EOC-4 5-6  Typical Axial Temperature Profile in CRBRP Internal Blanket Rod at EOC-4 5-7  Typical Radial Temperature Profile at Core Midplane in CRBRP Fuel Rod at E0C-4 5-8  Typical Radial Temperature Profile at Core Midplane in CRERP Internal Blanket Rod at EOC-4 6-1  Power and Net Reactivity vs. Time for        6-60 BOC-1 TOP Case 1 6-2    Reactivity Components vs. Time for BOC-1 TOP Case 1 6-3    Maximum Normalized Core Power vs. Blockage Area Fraction to Maintain Stable Flow in Partially Damaged Assembly                          i 6-4    Power and Net Reactivity vs. Time for 80C-1 TOP Case 2 l
xviii I
 
LIST OF FIGUP.ES (Continued)
Figure                                            Page 6-5  Power and Net Reactivity vs. Time for 80C-1 TOP Case 3 6-6  Power and Net Reactivity vs. Time for BOC-1 TOP Case 4 6-7  Channel 6 Voiding Profile for EOC-4 TOP Case 1 6-8  Core State at End of SAS Analysis for EOC-4 TOP Case 1A 6-9  Power and Net Reactivity vs. Time for E0C-4 TOP Case 1A 6-10 Reactivity Components vs. Time for E0C-4 TOP Case 1A 6-11 Power and Net Reactivity vs. Time for EOC-4 TOP Case 2 6-12 Power and Net Reactivity vs. Time for EOC-4 TOP Case 3 6-13 Power and Net Reactivity vs. Time for E0C-4 TOP Case 4 7-1  Ch.11 Fuel Motion Reactivity Comparison    7-36 Between SLUMPY and PLUT02 Predictions for 80C-1 LOF Case 1A 7-2  Ch. 11 Fuel Motion Reactivity Comparison Between SLUMPY and PLUT02 Predictions for BOC-1 LOF Case IB 7-3  Fuel Motion Reactivity Comparison Between SLUMPY and PLUT02 Predictions for BOC-1 LOF Case IC 7-4  Power and Net Reactivity vs. Time for BOC-1 LOF Case 1A 7-5  Reactivity Components vs. Time for 80C-1 LOF Case 1A 7-6  State of Core at Initiation of First Fuel Disruption (Ch.11) for BOC-1 LOF Cases IA, IB, 1C and 2 xix
 
LIST OF FIGURES (Continued)
Figure                                              Page 7-7  Core State at End of SAS Analysis for BOC-1 LOF Case 1A 7-8  Power and Net Reactivity vs. Time for BOC-1 LOF Case IB 7-9  Reactivity Components vs. Time for BOC-1 LOF Case IB 7-10  Power and Net Reactivity vs. Time for BOC-1 LOF Case IC 7-11  Reactivity Components vs. Time for BOC-1 LOF Case 1C 7-12  Power and Net Reactivity vs. Time for 80C-1 LOF Case 2 7-13  Reactivity Components vs. Time for BOC-1 LOF Case 2 7-14  Core State at End of SAS Analysis for BOC-1 LOF Case 2 7-15  Power and Net Reactivity vs. Time for 80C-1 LOF Case 3 7-16 Reactivity Components vs. Time for BOC-1 LOF Case 3                                J 7-17  State of Core at Initiation of First            l Fuel Disruption (Ch.11) for 80C-1 LOF          l Case 3 7-18  Core State at End of SAS Analysis for          i BOC-1 LOF Case 3 i
7-19  EOC-4 LOF Case 1A - State of Core at Initiation of Channel 2 Fuel Disruption 7-20  Power and Net Reactivity vs. Time for E0C-4 LOF Case 1A 7-21  Reactivity Components vs. Time for E0C-4 LOF Case 1A XX
 
LIST OF FIGURES (Continued)
Figure                                          Page 7-22 E0C-4 LOF Case 1A - Core State at SAS Termination 7-23 EOC-4 LOF Case IB - State of Core at Initiation of Channel 2 Fuel Disruption 7-24 Power and Net Reactivity vs. Time for EOC-4 LOF Case IB 7-25 Reactivity Components vs. Time for E0C-4 LOF Case IB 7-26 E0C-4 LOF Case IB - Core State at SAS Termination 7-27 E0C-4 LOF Case 2 - State of Core at Initiation of First Fuel Disruption in Channel 6 7-28 Axial Distribution of Fuel in Channel 14 FCI Event (E0C-4 LOF Case 2) 7-29 Power and Net Reactivity vs. Time for EOC-4 LOF Case 2 7-30 Reactivity Components vs. Time for EOC-4 LOF Case 2 7-31 EOC-4 LOF Case 2 - Core State at SAS Termination 7-32 E0C-4 LOF Case 3 - State of Core at Initiation of First Fuel Disruption in Channel 6 7-33 Power and Net Reactivity vs. Time for E0C-4 LOF Case 3 7-34 Reactivity Components vs. Time for EOC-4 LOF Case 3 7-3S E0C-4 LOF Case 3 - Core State at SAS Termination XXi
 
LIST OF FIGURES (Continued)
Figure                                          Page 8-1  BOC-1 LOF Best-Estimate Core Conditions  8-64 at Tennination of Initiating Phase Analysis 8-2  E0C-4 LOF Best-Estimate Core Conditions at Termination of Initiating Phase Analysis 8-3a Side View of Early Fuel Escape Paths 8-3b TOP View of Early Fuel Escape Paths 8-4  Initial - Temperature Map for Initially Molten UO  2 Contacting Initially Solid Stainless Steel 8-5  C0COTTE Experimental Device 8-6  Schematic of the S-Series Autoclave as Used for Tests S11 and S12 8-7  Upper Plenum Injection Experiment 8-8  Illustration of Modes of Contact; Mode IV was used in CORECT-II Experiment No. 18 8-9  Illustration of Apparatus and Interface Displacements for Mercury and Water 8-10 CRBRP Primary Control Assembly 8-11 Flow Regimes in a Boiling, Open Fuel-Steel Pool 8-12 Pool-Average Void Fraction Measurements 8-13 Schematic Diagram of Frozen Layer Stability Model 8-14 Schematic Diagram of the Experimental Apparatus for Jet Solidification xxii
 
LIST OF FIGURES (Continued)
Figure                                            Page, 8-15 Pool Pressurization as a Function of Power for an Equilibrium Closed Pool 9-1  CRBRP Heterogeneous Core Numbering Plan      9-14 9-2  Assembly Mapping Plan for EOC-4 Initiating Phase VENUS Model 9-3  Material Worth at Core Midplane for ECC-4 Initiating Phase VENUS Model 9-4  VENUS 19 Region Model for EOC-4 Initiating Phase 10-1  Thennal Source Specification of            10-6 Structural Margin Beyond the Design Base xxiii/ xxiv
 
LIST OF ABBREVIATIONS ACPR      Annular Core Pulsed Reactor at Sandia Laboratories.
ANL      A_rgonne National Laboratory, 9700 S. Cass Ave.,
Argonne, Ill. 60439; operated by the University of Chicago, for 00E.
ANS      American Nuclear Society, 555 N. Kensington Ave., Lagrange Park, Ill. 60525.
BNL      Brookhaven National Laboratory, Upton, Long Island, N.Y.;
operated by Associated Universities of New York for DOE.
B0C-1    B_eginning o_f Cycle one.
80EC      leginning-of-equilibrium-cycle, used to denote the state of an LMFBR core at the beginning of irradiation of each equilibrium cycle.
CAMEL    C_omponents and Materials Evaluation Loop (at ANL-E); a sodium loop containing a simulated LMFBR assembly; used in TOP tests of hydraulic aspects of fuel sweepout and/or plug formation, and for studying interactions of fuel and cladding material and fuel and the steel structure of a reactor.                                    ,,
CDA      Core-disruptive a_ccident (see also HCDA),
CDC      Control Data Corporation (computer manufacturer)
CLAZAS    ANL computer code for molten cladding relocation behavior.
COCOTTE  French experiment to evaluate molten UO2 flow behavior.
CORECT-II Experiment with liquid sodium trapped with molten UO2 '
CRBRP    Clinch River Breeder Reactor Plant, a DOE- and utility-sponsored project to design, construct, and operate an LMFBR power plant near Oak Ridge, Tenn., to demonstrate the feasibility of operating an LMFBR cn a utility grid.
xxv                                    -
 
LIST OF ABBREVIATIONS (Continued)
CW          C_old-grked, term used to describe steel treatment.
DEFORM-III_
Module in SAS4A that performs fuel and cladding thermal transients.
DEH        Direct electric heating laboratory-scale apparatus at ANL-E; generates time-varying thermal transients in a restrained fuel column, such as for experiments on fuel expansion and/or slumping during TOP and LOF thermal transients.
EBR-II      Experimental B_reeder R_eactor No. 2_; a 62.5-MWt (20-MWe) pool-type LMFBR at the INEL in Idaho; is used for tests of LMFBR fuels, materials, in-reactor instrumentation, and sodium components and systems; operated for 00E by ANL-W.
ENDF        Evaluated Nuclear Data File.
E0C-4      E_nd o_f Cycle f_our.
EOS        E_quation o_f s_ tate.
EXPAND      ANL computer code for isentropic conversion of thermal energy to mechanical work.
FCI        Fuel-coolant interaction.
FD          Fuel Disruption experiments perfonned at Sandia Laboratories.
FFTF        F_ast Flux Test Facility near Richland, Wash. (in which is located the Fast Test Reactor, FTR); a DOE facility that has a liquid-metal-cooled reactor for testing reactor fuels and materials.
FGR        Fission Gas Release experiments performed at HEDL.
FISGAS      Sandia computer code for fission gas migration and fuel swelling behavior.
FPIN-1      Fuel p_in, an ANL computer code for analyzing fuel-pin behavior during core disruptive accident conditions.
FRAS2      Eission-gas r_elease and swelling, an ANL computer code for analyzing the role of fission-product gas in fuel behavior core disruptive accident conditions.
xxvi                                  .
 
l LIST OF ABBREVIATIONS (Continued)
FRASPAR    Parametric representation of FRAS results.
FSTATE    F_uel state, an ANL transient 2-dimersional code to provide a detailed description of fuel cladding conditions during a TOP HCDA.
HCDA      , Hypothetical core disruptive a_ccident.
HEDL      Hanford Engineering D_evelopment L_aboratory, P.O. Box 1970, Richland, Wash. 99352; operated by Westinghouse Electri:
Corp. for DOE.
HUMP _    A gas-driven out-of-pile test loop at ANL-E used for experiments examining fuel sweepout and plug fomation under TOP conditions.
HUT-5      Specific overpower experiments in TREAT.
LAB        Lower a_xial _b_lanket.
_LASL      Los A_lamos S_cientific L_aboratory, P.O. Box 1663, Los Alamos, N.M. 87545; operated by the University of California for D0E.
LCS      Lower _qore_ttructure.
LEVITATE  An ANL fuel-motion module for the SAS4A code that relates to a loss-of-flow scenario; a whole-core excursion computer code for integrated treatment of post fuel-rod failure of fuel, steel, sodium and fission-product gas dynamics in voided or nearly voided regions in assemblies.
LOF        Loss of flow, a potential HCDA initiator.
LOF-d-TOP TOP-type fuel rod failure during an LOF event.
L-Series  TREAT tests to examine behavior of fuel rods under LOF conditions (L1 through LB).
xxvii
 
LIST OF ABBREVIATIONS (Continued)
MWD /T_      M_egawatt days per metric ton of reactor fuel.
MWt          M_egawatts t_hermal.
M            Sodium.
NSMH          Nuclear Systems Materials Handbook; a continuously updated handbook of material properties maint!.ined at HEDL for use by the LNFBR community.
ORNL          O_ak R_idge National Laboratory, P.O. Box Y, Oak Ridge, Tenn. 37830; operated by Union Carbide Corp. for DOE.
P1, P2, P3A, ANL designation for tests in SLSF (T1, T2, T3, T4, and P3, P4      T7 core are EG&G's designations for the same tests).
PBE          Prompt-burst experiments (Sandia).
PCRS        Primary control-rod system; a system of control assemblies and associated equipment used for normal control of the reactor and for rapidly scraming the reactor in the event of an accident.
PHTS          Primary heat-transport system.
PLHTR        A model in the SAS4A code that treats heat transfer from disrupting fuel rods to coolant channels in conjunction with the PLUT02 and LEVITATE fuel-rod disruption models in SAS4A.
PLUTO 2 An ANL module for the SAS4A code, which, with the SSFUEL/ DEFORM module, describes fuel rod behavior during transient-overpower events. This module was also used, as described in Appendices C and E herein, to estimate the early motion of molten fuel in the BOC-1 LOF analysis, and to calculate the motion of fuel and sodium in the EOC,4 TOP analysis.
xxviii
 
LIST OF ABBREVIATION 3 (Continued)
PNL Pacific Northwest Laboratory (also called BNWL, Battelle Northwest Laboratory), Richland, Wash.; operated by BMI for DOE.
PSAR                                                    P_reliminary safety a_nalysis report.
Pu_                                                      Plutonium.
REXC0                                                    Reactor excursion containment analysis, an ANL computer code that models the expansion of a vapor bubble resulting from an HCDA and the resulting loadings on and strain of the reactor enclosure.
SAS                                                      S_afety a_nalysis systems, an ANL whole-core accident excursion computer code for mechanistic analysis of HCDAs.
SAS3D                                                  Version 3D of SAS is coupled neutronic/ thermal-hydraulic computer code developed by ANL to model the response of LMFBRs to core-disruptive-accident initiation up to the point of loss of assembly geometry.
SAS4A                                                    A version of the SAS computer code that models the early stage of an HCDA.
SASBLOK                                                  Set of code modifications to SAS3D to evaluate the effect of flow blockages resulting from fuel rod failures.
SCRS                                                    Secondary control-rod system; a system of control assemblies and associated equipment normally withdrawn from the core during reactor operation and capable of terminating abnomal plant transients if the PCRS fails.
SIEX                                                      Fuel sj_ntering routine gtended, a HEDL steady-state heat-transfer computer code for thermal performance and dimension change (swelling and thermal expansion) calcu-lations of mixed-oxide fuel elements in a fast-neutron environment.
SIMMER                                                    S_n I_mplicit Multifield M,ulticomponent Eulerian Recriticality, a LASL computer code that models HCDAs from meltout through bubble expansion and collapse.
xxix
 
l LIST OF ABBREVIATIONS (Continued)
SLSF          S_ odium L_oop D fety D cility; doubly contained packaged    ,
1 sodium loop installed in the Engineering Test Reactor        i (ETR) at INEL for simulating neutronic, thermal, and hydraulic accident conditions in an LMFBR fuel assembly; operated by DOE by EG&G.
SLUMPY        Fuei-motion module of the SAS3D computer code.
SMBDB          Structural Margin Beyond D_esign Base.
SRI            SRI International, 333 Ravenswood Ave., Menlo Park, Calif.
9402S.
SSFUEL/ DEFORM ANL modules for the SAS codes, which, with the SAS/FCI or PLUT02 modules, describes transient overpower events.
TOP            Transient overp_ower, a potential HCDA initiator.
TREAT          Iransient Reactor ,T,est Facility; an adiabatic graphite-moderated reactor used to conduct transient overpower and undercooling experiments on encapsulated fuel elements and packaged loops for the LMFBR safety program; operated for DOE by ANL-W at INEL.
TSC8 ERROR    SAS3D code error message; this error is caused by attempted mixing of vapor and FCI bubbles in subroutine TSC8.
VAB            Upper Axial Blanket.
UCS            Upper core s_tructure.
UO            Uranium dioxide.
2 VENTURE        Neutron kinetics calculation code (see Appendix A of PSAR)
VENUS          An ANL whole-core accident-excursion computer code for mechanistically describing the disassembly phase of a breeder reactor that has undergone significant core disruption after a hypothesized faulted condition; superseded the MARS code.
xxx
: 1. INTRODUCTION This report documents an analysis and evaluation of generic, hypothetical core disruptive accidents (HCDAs) in the Clinch River Breeder Reactor Plant (CRBRP). The HCDA events considered herein are of such low probability that they are precluded from consideration in the design basis. Appropriate design basis accidents are defined and analyzed in the Preliminary Safety Analysis Report (PSAR), Chapter 15.II)
Two types of accident initiators are evaluated for the CRBRP heterogeneous core design: an unprotected
* transient overpower (TOP) due to assumed with-drawal of the maximum worth 3.2$ primary control rod, and an unprotected
* loss-of-flow (LOF) due to a coastdown of the primary flow system. These two types of accidents have been determined to generically represent the energetic consequences of a spectrum of core disruptive accidents.(2) The present evaluations consider the reactor core configuration at both the Beginning of Cycle-1 (80C-1) and the End of Cycle-4 (E0C-4) while the reactor is at steady, full power operation (975 MWt). The BOC-1 and E0C-4 core configurations have been selected because they envelop core burnup conditions which vary with reactor time; the evaluation of these two configurations is expected to represent the ends of the spectrum of characteristics important to energetics potential over the reactor life cycle. The present evaluations are, where appropriate, related to and compared with the previous evaluations for the earlier homogeneous core design. (3,4) Changes which have occurred in the technology base since References 3 and 4 were completed are identified and discussed throughout this report.
The potential for energetic consequences from any HCDA is accounted for in the CRBRP through the specification of a set of design loadings which the reactor vessel, closure head and primary heat transport system (PHTS) must withstand. The capability of these reactor coolant boundary components to withstand these specified HCDA loadings is defined as the Structural Margin Beyond the Design Base, or SMBDB.(2) The SMBDB loadings in turn, were derived from a consideration of the thermodynamic work potential of the reactor core fuel for extreme thermal conditions which encompass a large spectrum of HCDA scenarios.
  *In this context, " unprotected" means the assumed failure of both reactor shutdown systems to function even though a number of scram signals would be generated.
1-1
 
4 For convenience of comparison and discussion of energetics consequences, the SMBDB can be characterized by the fuel isentropic work potential, especially upon expansion to the reactor cover gas volume. This quantity is of importance because it is a relative measure of the maximum kinetic energy in the upper slug of liquid sodium which could impact the reactor vessel closure head due to the expanding, pressurized core region. The integrity of the vessel closure head prevents the early, direct release of radionuclides to the reactor containment building and thereby substantially reduces the risks associated with an HCDA event in the CRBRP. The SMBDB value established for the work potential upon expansion to sodium slug impact on the head is 101 MJ. A similar character-izing value is the core expansion to atmospheric pressure which is 661 MJ for the specified SMBDB pressure-volume relationship.
In a previous assessment of the CRBRP it was concluded that the SMBDB would provide a substantial safety margin since the best-estimate evaluation resulted in no energetic loading on the reactor coolant boundary and, for a broad range of reactor safety parameters and phenomenological assumptions, the SMBDB head impact value of 101 MJ was not exceeded. (3) The energetics assessment provided herein leads to the conclusion that the established SMBDB values are conservative, and, therefore, equally appropriate for the heterogeneous core.
The present assessment of the energetics potential, as in the previous evaluations,(3) is stated in terms of two measures; the first is a subjective assignment of the accident scenario into one of three probability categories, and the second is the thermodynamic work potential calculated by an isentropic expansion of the core fuel to a volume consistent with sodium slug impact on the reactor head. The category assignment is dependent upon 1) whether expected or less probable values for design safety parameters are used, and 2) whether specific, conservative assumptions are applied to important phenomenological process. The categories are defined to range from the n:cinal, or best-estimate, (Category 1) through pessimistic analyses of phenomenohgical behavior (Category 3).
Table 1-1 sumarizes the definition of the accident categories used in this report.
In the present evaluations for the CRBRP heterogeneous core, the accident progression of the unprotected TOP and LOF events is divided into four physically different phases:    initiating, meltout, large-scale pool, and hydrodynamic disassembly, depending upon geometric and pressure conditions within the core.
The potential for energetic consequences in each of these phases is evaluated in this report.
1-2
 
The initiating phase covers the early phase of the accident, when the existing core assembly design geometry restrains the material motions to occur in an essentially one-dimensional (axial) mode.
Loss of the hexcan radial flow restraint initiates the meltout phase. Here, part of the reactor core still satisfies the initiating phase definition, but some fuel assembly hexcan walls will have failed and the interstitial volumes between the core assemblies become avail-able. The flow of fuel in the spaces between the assemblies in the colder radial blanket and regions below the active core is phenomenologically important in terminating the energetics potential.
The large-scale pool phase chronologically follows the meltout and is defined to exist whenever the phenomenological considerations of a contiguous molten region dominate the energetics potential of the accident progression.
The final phase, hydrodynamic disassembly, is used to describe the core response to a sustained, superprompt critical excursion that might be predicted during any of the three phases discussed above. The primary assumption herein is that fuel vaporization results in pressures which far exceed the mechanical restraint of the core internal structures. Hence, the motion of materials can be modeled as purely hydrodynamic in nature.
This report is divided into chapters as follows. Chapter 2 provides the overall sumary and conclusions from the present HCDA assessment for the CRBRP relative to energetics potential and the SMBDB.
Chapter 3 identifies and discusses the current technology as modeled by the SAS3D code (4) which was used in the initiating phase analysis.
Chapter 4 describes the core arrangement along with the fuel manage-ment scheme. Power distribution and flow characteristics as well as 1-3
 
neutrenica parameters are presented which are required as input to SAS30.
The b6 sis for phenomenological modeling iripdt is also discussed.
Chapter 5 describes the steady state conditions of the core as    '
calculated by SAS30.
Chapter 6 contains the SAS3D evaluations of the unprotected transient overpower initiated events for the BOC-1 and EOC-4 core configurations.
This chr.pter also includes an evaluation of a loss-of-flow event initiated at the end of the transient overpower event following a possible return of the core to a stable power level beyond the primary system heat rejection capability.
Chapter 7 contains the SAS3D evaluations of the unprotected loss-of flow initiated events for both the BOC-1 and EOC-4 core configurations.
Chapter 8 evaluates the meltout and large-scale pool phases which develop when the core geometry is lost.
Chapter 9 presents the results of the hydrodynamic disassembly phase analyses which were performed using the VENUS-II code. (5)
Chapter 10 discusses the relationship of the energetics assessment t with the SMBDB.
Supporting calculations and information are provided in several appendices.
i j                                          1-4
 
Table 1-1 Definition of HCDA Sequence Categories Probability Category                              Definition 1                      Sequences based on nominal design data and best understanding of phenomenology.
2                      Sequences based on more conservative design data or minor variations in model uncertainties, such as modeling of fission gas release rates.
3                      Sequences based upon pessimistic assumptions of phenomenological behavior intended to enhance the energy release. (Neglecting axial expansion of the fuel rod during an LOF is an example.)
l l
1-5/6
: 2. SUMARY AND CONCLUSIONS Both TOP and LOF events, combined with the assumed failure of both reactor shutdown systems, have been evaluated for the CRBRP heterogeneous core. The BOC-1 and E0C-4 ,: ore configurations were considered in orier to represent two bounding time-dependent characteristics of the core which affect the energetics potential. A Category 1 (see Table 1-1) assessment of the potential for energetic consequences was first performed using the best-estimate understanding of HCDA phenomenology and nominal design information.
Conservative assumptions on design parameters and HCDA phenomenology were then employed to provide an estimate of the energetics potential for lower pro-bability Category 2 or 3 sequences.
The analyses were performed by dividing the accident progression into four phases: initiating, meltout, large-scale pool and hydrodynamic dis-assembly, as defined in Chapter 1 of this report. The SAS3D code was used for the initiating phase analysis, and the VENUS-II code for the disassembly phase analysis. The meltout and large-scale pool phases were evaluated using a phenomenological approach. In this approach, important physical processes affecting the accident progression were identified and analyzed in conjunction with their effect on energetics potential. The results of the analyses thus performed for the CRBRP heterogeneous core are sumarized below.
2.1    Initiating Phase The initiating phase assessment considered each of the reactivity insertion-transient overpower (TOP) and loss-of-flow (LOF) events at the 80C-1 and E0C-4 core configurations. Each of thece event-configuration scenarios is summarized. in the following paragraphs.
2.1.1        TOP at BOC Initiating Phase A best-estimate evaluation of tne TOP scenario (3.2$ reactivity insertion at 4.lt/s) at BOC-1 shows that cladding failure first occurs in nine high-power assemblies at approximately 40 seconds into the TOP transient.                                                                    Fuel ejection, due to its own vapor pressure,results in a fuel-coolant interaction which leads to fuel particulate fonnation. The fuel particulates are swept out of the core by sodium flow hydraulic forces in these lead assemblies. This results in a partially damaged, stable core which, depending upon the actual amount of fuel sweepout, can be at a power level of 10 to 110% of nominal power (975 MWt). Stabilization of such core conditions is expected to be achieved within two minutes from initiation of the TOP event.
2-1 i
_ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ ___ _                __ J
 
The use of conservative assumptions, including a forced axial midplane failure location, led to a conclusion that direct, energetic disassemblies would not occur. Instead, core end states following insertion of the 3.2$
control rod reactivity vary from permanent shutdown to a core power level beyond the heat transport system capability. The latter high power state is judged to result in failure of the PHTS and a loss-of-flow event, which in turn results in a non-energetic entrance to the meltout phase.
2.1.2 TOP at EOC Initiating Phase A best-estimate evaluation of the core response to a TOP (3.2$ at 4.lt/s) in the 60C-4 configuration indicates that permanent shutdown with a partially damaged core would result. In the best-estimate scenario, six high power assem-blies first experience cladding failure at s26 seconds into the transient. As a result of subsequent fuel ejection and sweepout, the core becomes suberitical, but only temporarily. A continued insertion of the control reactivity renders the core critical again, and causes a power increase above nominal, which is followed by cladding failure in 72 more fuel assemblies at s65 seconds into the transient. Fuel sweepout in these failed assemblies provides sufficient negative reactivity to render the core permanently shut down.
Conservative assumptions on design parameters and TOP phenomenology result in stable core power levels near nominal except for one case where core axial midplane cladding failures are assumed in conjunction with a reactivity insertion of 3.2$ at a rate of 10t/sec (Category 3). An energetic disassembly of the core was predicted for this case, using the SAS/FCI module, although use of the more pnysically correct PLUTO 2 code, in place of SAS/FCI, predicted a subpromot crit-l    ical power burst followed by permanent neutronic shutdown. The energetic conse-quence of this low probability event is well within the defined SMBDB values.
I 2.1.3 LOF at BOC Initiating Phase A best-estimate LOF response in the 80C-1 core configuration is character-ized by extensive sodium voiding and cladding melting relocation prior to fuel disruption. This characteristic results from the low effective sodium 1
I  void worth of the heterogeneous core design at BOC-1 conditions. Fuel l
j  disruption first occurs in nine high-power assemblies at s20 seconds into the l
transient and spreads to another 75 fuel assemblies within 300 msec. Liquid      l fuel drainage and partial collapse of the fuel pellet stack lead to a subprompt ciitical power burst, which is reversed by the Doppler mechanism and low fuel i                                            2-2
 
vapor pressure driven (<20 bars) fuel dispersal. The core response is nonenergetic despite a conservative modeling of fuel disruption behavior; a nonenergetic entrance to the meltout phase is predicted. One major reason for this result is that interassembly incoherence in fuel thermal conditions is pronounced during this LOF event.
The choices of more conservative, less probable assumptions did not lead to the prediction of energetic consequences. Rather, more extensive fuel-steel mixing at higher fuel temperatures is indicated, which has the effect of further retarding or reversing the fuel settling process as the meltout phase is entered. Thus, it is concluded that the LOF initiating phase at BOC-1 will be nonenergetic.
2.1.4 LOF at E0C Ini tiating Phase A best-estimate evaluation of LOF initiating phase at EOC-4 shows that the core response is characterized by extensive sodium voiding and some molten steel cladding relocation, prior to fuel disruption which first occurs at $20 seconds into the transient. Gross fuel melting, disruption of the pellet stack integrity and a low sodium vapor axial flow .* ate, due to upper clad blockages, lead to an initial gravity induced compaction of the fuel. The initial fuel compaction adds sufficient positive reactivity to cause a mild superprompt critical excursion. This behavior is attributed to the neglect of fission gas, dispersal forces which could be immediately available upon fuel disruption. The assumption of an initial compaction of irradiated fuel at much above nominal power is considered to be conservative relative to experimental test data. The core power excursion is reversed by the Doppler mechanism and nonenergetic dispersal of fuel into the axial blanket at low pressures. The reactor becomes subcritical within 20 msec from the fuel compaction induced superprompt power burst. The meltout phase is entered with the core well subcritical, with continuing fission gas release, and steel vaporization imminent in the highest power assemblies. Both of the latter phenomena would promote continued fuel dispersal.
More conservative assumptions, including the total neglect of fission gas effects do not result in energetic consequences. Except for a stronger power burst, essentially the same core response characteristics are exhibited as calculated in the best-estimate cases. Thus, it is concluded that the LOF initiating phase at E0C-4 will be nonenergetic.
2-3
 
2.2 Meltout Phase At the termination of the LOF* initiating phase, the core is at least several dollars subcritical due to fuel dispersal into the upper core structure, but is left in a largely uncoolable state with a theoretical possibility for the 0::currence of recriticality events. The ejected fuel is expected to ablate the cladding and form temporary blockages. At about the same time, the hexcans of the lead assemblies are ruptured and melt, allowing fuel to boil and flow into any existing interstitial space between the assembly hexcans. These subcritical core conditions establish the entrance to the meltout phase which is expected to last for tens of seconds.
A best-estimate phenomenological evaluation of the meltout phase indicates that escape paths for fuel removal, provided by the gaps between the assembly hexcans, can develop within the first 10-20 seconds. It is also shown that the control rod assemblies can provide additional fuel removal paths on the same time frame. During the fuel removal process recriticality events are not expected, or would be relatively mild if they were to occur, since large incoherency effects associated with the heterogeneous core design would be present.
It is expected that permanent subcritical conditions would be achieved during the meltout phase due to the removal of large quantities of fuel.
Hence the best-estimate evaluation indicates that the core would not enter the large-scale pool phase. Nevertheless, the large-scale pool phase has been evaluated by making the conservative assumption that insufficient fuel removal occurs during the meltout phase.
l 2.3 Large-Scale Pool Phase In the event a large-scale pool should form, the pool would be open, or bottled up depending upon blockage conditions. If the pool were open, the core would maintain a subcritical condition in view of the dispersive,      j boiling pool state associated with an open system and the prior loss of fuel    l during the initiating and meltout phases. If the pool were bottled up,
* This includes pessimistic BOC-1 TOP cases which result in a loss-of-flow    l (see Section 2.1.1).
2-4                1 1
1 1
 
fuel crusts would form at all contact boundaries of the pool, controlling    ,
heat losses from the pool. As the heat losses are limited by the presence of fuel crusts, sufficient energy generation is available such that steel mixed in the pool would vigorously boil and fluidize the pool. This fluidization is possible in a bottled-up pool because there is suffi-cient vapor condensation (via ablation) at the upper boundary of the pool and the necessary vapor flux represents only a small fraction of the decay heat generation. Eventually, a pool opening would occur due to meltout of the constraining blockages well before the decay power becomes insufficient to sustain a fully boiled up and subcritical condition. A subsequent blow-down of the pool would remove fuel in addition to the earlier removal during the initiating and meltout phases. This additional fuel removal and continued dilution of the pool contents by melting-in of steel and blanket material would result in a permanently subcritical system by the time boiling in the pool ceases. Pressure driven recompaction of the fuel as a result of energetic fuel-coolant interactions would not occur because such interactions can be ruled out for the fuel-sodium system (see Section 8.3.6).
Thus, it is concluded that even if a large-scale pool were postulated to form, physical mechanisms would not be realized that could lead to sustained, energetic recriticality events.
2.4 Hydrodynamic Disassembly Phase                '
Only one mechanistic entrance to the energetic disassembly phase was defined from the initiating phase. This event was based on SAS/FCI calcul-ations for a 104/sec EOC-4 TOP event with fuel rod failures pessimistically forced at the core axial midplane. Although more -realistic PLUTO 2 calculations predicted no superprompt critical conditions for this case, disassembly calculations were performed to provide further insight on the margins available.
The ramp rate used in these disassembly calculations was 43$/sec which is representative of the maximum ramp rate from PLUTO 2.        This disassembly excursion, which is tenninated within milliseconds of achieving superprompt critical conditions, resulted in a 33 MJ work potential at sodium impact with the reactor head. Large variations in the fuel vapor pressure fonnulation did not result in any significant increase in work potential. It was indicated 2-5
 
that sustained reactivity insertions of approximately twice the conservative estimate would be required to reach the SMBDB value of 101 MJ due to sodium slug impact.
Phenomenological uncertainties on the timing for steel vaporization and compactive fuel behavior led to the consideration of a hydrodynamic disassembly at the initiation of the meltout phase. However, the uncertainties considered for fuel behavior resulted in reactivity insertion rates in the low tens of dollars per second, or less at prompt critical. These rates are at the bottom of the range for which hydrodynamic disassembly calculations are deemed to be appropriate for the conditions existing in the heterogeneous l
Core at the entrance to the meltout phase.      In contrast to these low rates a VENUS calculation indicated that a reactivity insertfon rate on the order of 90 to 100 $/s would be required to reach the SMBDB energetics level.
2.5 Conclusions on HCDA Energetics The results from the present analyses are presented in Table 2-1 in tas of a probability category, fuel peak / average temperatures and the isentropic work available to both sodium slug impact on the reactor vessel head and I bar pressure.
The best-estimate assessment of the energetic consequence of an HCDA in the CRBRP is that no significant loading of the reactor coolant boundary components would occur. Additionally, no energetic consequence is predicted for a wide range of design data and phenomenological uncertainties. An energetic consequence is only indicated in one Category 3 TOP scenario and at the generic entrance to the core meltout phase. Both conditions have been examined and found to be well within the specified SMBDB.
The results for the heterogeneous core can be compared to those from the homogeneous core assessment (3) (Table 2-2). The homogeneous core cases shown are similar, though not identical, to the heterogeneous core cases presented in this report. An examination of the two tables on a case-by-case work potential basis for similar probability categories shows that the heterogeneous core is less sensitive to a range of phenomenological assumptions than the 2-6
 
homogeneous core. Note that the pessimistic cases for the heterogeneous core often combine more than one extreme assumption, and still do not yield con-sequences that approach the SMBDB.
Thus, it is concluded that the expected consequences of the hypothetical LOF and TOP accidents for the heterogeneous core are nonenergetic and that for a wide range of conservative assumptions, the consequences are well within the SMBDB defined for the CRBRP.
2-7
 
TABLE 2-1
 
==SUMMARY==
OF HETEROGENEOUS CORE ENERGETIC CONSEQUENCES Core Final      Fuel Expansico Work, MJ Probability Fuel Temperature, K At Na Slug    To 1 Bar Case Description                                                                    Category    Peak / Average        Impact    Pressure Structural Margin                                                                  -              -
101        661 Characterization (SMBDB)
Initiating Phase BOC-1 TOP Base case with Design Insertion Rate of                                            1 03 m
4.14/s Base Case with Complete Flow Blockage                                              3            ***                *
* Arbitrary Midplane Failure at 4.lt/s                                                3        4070/3190t Pessimistic Doppler and Material                                                    3              ++                *
* Worths at 50t/s Arbitrary Midplane Failure with Pessimistic                                          3        4070/3190+              *
* Doppler and Material Worths at 504/s
('
* Essentially zero; no hydrodynamic disassembly predicted l
                  **            Near shutdown to normal temperature
                  ***            Shutdown temperature after a series of meltouts (see Section 6.1.1)
'                +              These temperatures are estimated af ter a loss-of-flow which is expected to occur I                                in these pessimistic cases (see Section 2.1.1).
                  ++            Shutdotin temperature l
l
 
TABLE 2-1    (Continued)
 
==SUMMARY==
OF HETEROGENEOUS CORE ENERGETIC CONSEQUENCES Core Final      Fuel Expansion Work, MJ Probability    Fue! Temperature. *K At Na Slug    To 1 Bar Case Description                                    Category        Peak / Average        Impact    Pressure E0C-4 TOP Base Case with Design Insertion Rate of              I 4.lt/s Base Case with Extreme Blockage and                  3                ***                                  ,
Limited Fuel Removal Arbitrary Midplane Failure at 104/s                    3 o PLUT02 Calculations 5090/3580              33        111 o SAS/FCI Calculations +
ro    Pessimistic Doppler and Material                    3              2200/1440 da      Worths at 504/s Arbitrary Midplane failure, Pessimistic              3                  ***                *
* Doppler and Material Worths, at 504/s BOC-1 LOF Base Case with Fast fuel Collapse                    1              3780/2780 Base Case with Medium Fuel Collapse                  1              3660/2720 Base Case with Slow Fuel Collapse                    1              3660/2700 Reduced fuel Vapor Pressure                          2              4370/2970 Reduced Fuel Vapor Pressure plus no Fuel            3              4160/3160 Axial Expansion and Pessimistic Cladding Worth
* Essentially zero; no hydrodynamic disassembly predicted
      **    Shutdown temperature
      ***  Below normal operation temperature
      +    Less realistic sequence than PLUT02 calculations (see Section 2.4)
 
a-.    . - -
Table 2-1    (Continued)
SUPfiARY OF HETEROGENEOUS CORE ENERGETIC CONSEQUENCES Fuel Expansion Work, MJ ue Temperature, K Probability                        At Na Slug    To 1 Bar Case Description                                Category _        Peak / Average    Impact    Pressure E0C-4 LOF Base Case with 0.5 Melt Fraction and                  1                  3910/2770 Unrestructured Fuel Melting Disruption Criteria Base Case with 0.5 Melt Fraction                      1                  3940/2900 m      Disruption Criterion Only Uniform Unrestructured Fuel Melting                  2                  3690/2780 h      Disruption Criterion ***
Reduced fuel Vapor Pressure and No                    3                  4480/3120 Fuel Dispersal by Fission Gas Meltout and Large-Scale Pool Phases Base Case                                            1
                                                                                  +              +        +
Heltout Phase - Fuel Compaction                      3 Large-scale Pool Phase                              3
* Essentially zero; no hydrodynamic disassembly predicted
  **    Shutdown temperature
  ***  For comparison with homogeneous core results
  +    Not calculated, low reactivity rates not appropriate for VENUS
 
Table 2-2 SUMARY OF HOMOGENE0US CORE ENERGETIC CONSEQUENCES Core Final      Fuel Expansion Work, MJ Fuel Temperature, K Probability                            At Na Slug  To 1 Bar Case Description                                                Category __    Peak / Average        Impact    Pressure Structural Margin                                                -                -
101        661 Characterization (SMBDB)                              ,
Initiating Phase SOEC-TOP Base Case with Design Rate of 2.4t/s                              1          2935/2370 Base Case with Insertion Rate of 104/s                          2            2549/2148 Extreme Insertion Rate of 50t/s                                  3            3024/2504 Arbitrary Midplane Failure. at 2.4t/s                            3          5031/3790              26            129        l l
l E0EC-TOP Base Case with Design Rate of 2.4c/s                              1          2969/2251 Base Case with Insertion Rate of 10t/s                            2          2855/2296 Extreme Insertion Rate of 504/s                                  3          2913/2422 Arbitrary Midplane Failure at 104/s                              3            4654/ 3490              12            47
* Essentially zero
    **  This table is extracted from Reference 3 homogeneous core evaluations. Fuel temperatures cannot be directly compared with Table 2-1 values due to changes in fuel thermophysical properties between the two assessments (see Chapter 10).
 
Table 2-2  (Continued)
SUMMRY OF ll0H') GENE 00S CORE ENERGETIC CONSEQUENCES Core Final    Fuel Expansion Work, MJ uel sperature, %  At Na Slug    To 1 Bar Probability Case Description                                            Category _      Peak / Average    Impact    Pressure Structural Margin                                -                                101        661 Characterization (SMBDB)
B0EC-LOF Base Case                                        1            3278/3040 2            5800/4150          72        380 150% Sodium Worth 5690/4084          64        309 y                                                                              CLAZAS and Limited Initial Fuel Motion            3 5724/4043          65        303 N                                                                              Neglect Fuel Dispersal by Fission Gas            3 3            5647/4194          64        340 Neglect Fuel Axial Expansion E0EC-LOF Base Case                                          1            3699/3040 CLAZAS and Limited Initial Fuel Motion            3            4877/3330 Neglect Fuel Dispersal by Fission Gas              3              **/3330 Neglect Fuel Axial Expansion                      3              **/3040
* Essentially zero
                                                                          ** Not Available                                                              ,
 
Table 2-2 (Continued)
SUMARY OF HOMOGENE0US CORE ENERGETIC CONSEQUENCES Core Final fuel Expansion Work, MJ ue    empe a ure,"K Probability                          At Na Slug    To 1 Bar Case Description                              Category __      Peak / Average      Impac t    Pressure Structural Margin                                -
101          661 Characterization (SMBDB)
Meltout and Homogenized Pool Phases Meltout and Homogenized Pool                    2          s3500/3040              *
* 7 C    Imediate Reentry with Arbitrary                  3            5527/4173            55          330
    }      28$/s Driving Reactivity Homot enized Pool with Arbitrary                              5900/4540            80          473 30S/s Driving Reactivity Essentially zero
      **  Parametric case to evaluate einergetics potential in homogeneous pool
 
l
: 3.          SAS3D CODE SYSTEM The accident progression of the TOP and LOF events is divided into four physically different phases:    initiating, meltout, large-scale pool and hydrodynamic disassembly, as defined in Chapter 1. The initiating phase of the accident has been analyzed using the SAS3D Code. This chapter identi-fies major phenomena expected to occur during the initiating phase (Section 3.1), and deals with phenomenological modeling assumptions made to use the SAS3D code for the present analysis (Section 3.2).
3.1        Physical Processes Related to Accident Progression Disruption of the reactor core could, in general, occur due to a gross and sustained imbalance between reactor energy generation and heat removal by the heat transport systems. Two accident initiators leading to a sus-tained imbalance in energy generation and heat remcval are analyzed in this report: a transient overpower (TOP) accident due to withdrawal of a primary control assembly and a loss-of-flow (LOF) accident due to a coastdown of the primary flow system. Both accidents are assumed to occur while the reactor is at full power operation. When either of these is combined with the extremely low probability assumption of failure of both independent shutdown systems, the accident progression sequences considered herein could result.
For a transient overpower scenario, the dominent physical processes are considered to be as follows:
: a. power rise due to reactivity insertion
: b. melting of fuel starting at the central axis of the fuel rod
: c. rupture of the cladding due to transient loading exerted by the fuel 3-1
: d. ejection of fuel material, interaction of ejected fuel with the coolant, fuel fragmentation and hydraulic sweepout, and possible blockage formation
: e. pessible failure of internal blanket rods and ejection of blanket material and sweepout
: f. fuel and blanket materials relocation with a resultant power increase or decrease depending on the neutron kinetics imbalance.
Figure 3-1 depicts the progression paths of the accident along with the branch points. The end state of the core following a TOP event can be one of four conditions: cold neutronic shutdown, some stable power level with partial core damage, whole core meltout, and energetic disassembly of the core with mechanical work potential. The cold neutronic shutdown will occur if negative fuel motion reactivity feedback is large enough to offset the total reactivity insertion and, additionally compensate for power and temp-erature effects associated with cold shutdown. The end state of a stable power and flow will occur if fuel sweepout approximately balances the total reactivity insertion. Thermal feedback effects will then balance the reac-tivity difference to result in a critical state. Whole core disruption can occur, if the system rebalances at a power level exceeding the capability of the heat rejection system. Finally, a low probability hydrodynamic dis-assembly of the core can result in high pressure fuel dispersal if a sus-tained superprompt critical excursion occurs.
l The dominant physical processes for a loss-of-flow scenario are:
: a. flow reduction followed by coolant boiling and voiding
: b. cladding melting, relocation and freezing
: c. disruption and relocation of fuel in voided assemblies
: d. fuel dispersal into upper axial blanket and core structure
: e. overpower failure of fuel rods in assemblies with liquid coolant present
: f. neutronic effects of materials relocation and core temperature changes.
3-2
 
Figure 3-2 presents an accident progression diagram for the LOF event in the CRBRP showing the phenomenological branch points of interest.
Due to the reduced primary flow, sodium boiling and voiding occurs, first in the high power-to-flow assemblies. For the CRBRP heterogeneous core design, initial sodium voiding contributes negative or moderately positive reactivity because fuel assemblies, particularly high power-to-flow ones, contain relatively small sodium void worths. As a result, the core is slow-ly heated up, and a significant amount of cladding can melt prior to any fuel disruption. The relocation of the molten cladding is generally a positive reactivity effect and can be of significance for slowly developing scenarios.
Fuel motion combined with the potential relocation of the molten clad-ding constitutes major phenomonological branches in the progression path.
Fuel motion is generally dispersive away from the axial midplane of the core once pressures are generated by fission gas, steel or fuel vapor. Unlike the homogeneous core, overpower failure of fuel rods in assemblies with liquid coolant present is not expected to play an important role in the progression of the LOF event in the heterogeneous design, since significant voiding occurs throughout the core prior to fuel disruption.
3.2        Phenomenological Modeling The homogeneous core was analyzed using the SAS3A code (3) and the SAS3D code.(4) Phenomenological modeling assumptions made in the analysis are explained in References 3 and 4 A modified version of the SAS3D code was used to perform the present initiating phase analysis of the heter-ogeneous Core.
Section 3.2.1 provides an overview of how the SAS3D code was evolved from the SAS3A code, and of modifications made to the SAS3D code for the present analysis. Sections 3.2.2 through 3.2.4 discuss the technical basis for the code modifications and phenomenological modeling assumptions made in the present analysis. This discussion is limited to the modeling assump-tions which differ from those for the previous homogeneous core analysis.
3-3
 
3.2.1        Overview of SAS30 Modeling The SAS3D initiating phase analysis code used in preparing this report was derived from the SAS3A codeIO) which in turn was derived from the SAS2A code.(7) The latter reference provides the description of the SAS prefailure fuel rod heat transfer and sodium boiling model. Fuel rod post-failure models are described individually: fuel disruption in voided assemblies (SLUMPY) in Reference 8 fuel-coolant interaction (SAS/FCI) in Reference 9, and cladding motion modeling (CLAZAS) in Reference 10. Modifi-cations to the basic code and interpretation of input parameters are discus-sed in the individual reports of analyses in which they were introduced.
With certain specific exceptions noted throughout this report, the modeling used in the current analysis follows the description outlined with-in References 3 and 4.
The specific version of the SAS30 code used in the current analysis of the CRBRP heterogeneous core is the vesion placed on the Lawrence Berkeley Laboratory CDC 7600 system by the code developer (ANL) in October 1977 and identified by the label SAS3D Release 1.0. The actual load modules used in running the cases reported here were generated from the original card images in January 1980 using the FTN4 4.8-498/320 compiler. Modifications to the basic code have been made at various times and stored in the form of retrievable load modules which are linked with the basic code load modules at execution time, replacing the equivalent original routines. A descrip-    l
{
tion of specific changes made to SAS3D Release 1.0 is presented in Appendix A.                                                                            1 3.2.2      Fission Gas Release From Fuel Steady State Fission Gas Inventory The HEDL model reported in Reference 11 was updated and refined to predict fission gas release from fuel in the CRBRP PSAR. The updated and refined HEDL model was used in the present analysis to have consistency with 34
 
the analysis of fuel characteristics reported in the PSAR, Section 4.4, Amendment 51.II)
The correlation for fission gas release from unrestructured fuel as determined in the PSAR can be written as:
1 - exp (- At B)
F n
                                  =1 A)A2 8 exp (A 3Q)                      -
where Fn = fractional gas release from unrestructured fuel 8 = local burnup in atom percent 0 = local heat generation rate (kW/f t)
Ag = 0.5748 A2 = 0.3745 A3 = 0.0911 For restructured fuel, the correlation assumes that all gas is releas-ed.
As for the amount of fission gas generated, a fission gas yield of 24.6 atoms per 100 fissions was used for the present analysis. Comparisons of predicted values by the above correlation with experimental data are shown in the PSAR, Section 4.4 which indicate good agreement between the two values.
Transient Fission Gas Release The FRAS computer code was developed (12) to calculate transient fission gas release to grain boundaries. The FRASPAR algorithm, a para-metric representation of the FRAS results(I ) , was modified for appli-cation to the CRBRP fuel. This modified FRASPAR algorithm is used in SAS3D to calculate fission gas release from the fuel matrix from the start of the transient to the time at which fuel disrupts. It was shown that the modi-fied FRASPAR algorithm predicts more fission gas release when compared with 3-5
 
FRAS ) and, thus, provides more conservative results since less fis-sion gas will be available to disperse fuel in SLUMPY calculations. It is noted that SLUMPY uses only fission gas retained in the fuel at the time of disruption. However, the FRAS predictions of gas release are considerably lower than the release measured in the fission gas release (FGR) test ser-ies, FGR-32 through 36, at HEDL.(14) At this time, it is not clear that values of fision gas release given by the modified FRASPAR algorithm are conservative relative to FRG test data. Thus, uncertainties remain in the use of this algorithm. Consequently, the modified FRASPAR algorithm was not used in SLUMPY calculations for the present analysis.
Ancillary computer codes, such as the FRAS2 version of FRAS(15)  ,
FSTATE(16) , and FISGAS(I ) , could be used to determine the amount of fission gas retained in the fuel at the time of disruption. However, they are in various stages of development and their capabilities are yet to be demonstrated (see Reference 18 for a literature survey and comparison of the various models with data). Thus, the FGR test data were directly used for the present SAS3D analysis of the CRBRP, as explained below.
FGR tests at HEDL are the only known source to date which provides real time, quantitative transient gas release data applicable to SAS3D analyses.
The FGR data are reported in References 14, 18 and 19. Of particular signifi-cance are the Reference 18 data which were obtained at various heating rates and radial temperature gradients. These data are plotted, along with some of the data from References 14 and 19 in Figure 3-3, as a function of the calculated average unrestructured fuel temperature. Fuel rod and test para-meters for the plotted data are given in Table 3-1.
An examination of Figure 3-3 and Table 3-1 shows that the fission gas release is less when the fuel is subjected to slow heating rates (approxi-(    mately 25 C/s) early in the thermal transient. Nevertheless, the data obtained over a wide range of fuel rod and test parameters are enveloped by the dashed line shown in Figure 3-3. This indicates tnat the transient l
fission gas release can be conservatively (more releaseI correlated with the average unrestructured fuel temperature. This bounding line as expressed by the following exponential function was used for calculating the amount of j                                            3-6
 
fission gas released form the start of the accident transient to the initia-tion of SLUMPY.
Ft = 22 exp (-9533/Tu, avg); 0. < Ft < I*
where Ft = uansient release hacdon of steady state gas.
T u avg = average temperature of unrestructured fuel in Kelvin.
Table 3-2 shows transient conditions of fuel, such as heating rates and temperature gradients, which were calculated by the SAS3D code with the above correlation incorporated.      From an examination of Tables 3-1 and 3-2, it is seen that FGR test conditions are quite comparable to the correspond-ing SAS3D results; the above correlation can be reasonably applied to the CRBRP analysis. Furthermore, to address the uncertainty in fission-gas driven fuel dispersal potential, the present analysis considered a conserva-tive case where no fission gas was assumed to be available to disperse fuel (see Section 7.2.3).
3.2.3        TOP-Type Fuel Rod Failure 3.2.3.1      Pre-Failure Modeling Reference SAS3D Model (Rel.1.0)
The SAS3D fuei rod FCI model f ) includes the definition of a transient cavity within the fuel rod. The boundary of the cavity is defined by the fuel solidus isotherm after melting begins. The model was designed for fuel rods with significant burnup and high to moderate steady power which contain a central void before melting begins. The model does not function for low power fuel rods which do not restructure. At steady state the central void is assumed to contain fill gas and released fission gas in equilibrium with the fission gas plenum.
As the transient progresses the gas within the central void is heated at constant volume, thereby increasing its pressure according to the perfect 3-7
 
gas law. As the fuel begins to melt it expands in volume, decreasing the volume of the central void and further increasing the pressure of the trap-ped gas. When the melt front or cavity boundary reaches unrestructured fuel, significant quantities of fission gas trapped within the fuel are released.      This " froth gas" is treated as a separate species and is assumed to exist in the form of numerous small bubbles distributed within the molten fuel. The temperature of the froth gas is taken as the average molten fuel temperature.      The mass of froth gas is a transient quantity and is calcula-ted by the Gruber algorithm described in Reference 13. The volumes of the froth gas and cavity gas are adjusted to achieve equal pressures within the constraint of the total void space available for gas occupancy.
In the course of a power transient during which power increases but cladding remains relatively strong because of continued coolant flow, the gas pressure within the cavity will continue to increase until cladding strength is exceeded.        In the case of fuel with high to moderate burnup, failure pressure is achieved at a relatively low peak fuel temperature because of the large amount of initial cavity gas and rapid evolution of froth gas.      In this analysis the peak fuel temperature is 3302*C in the first channnel to fail for the EOC-4 Top event. That temperature corres-ponds to an equilibrium fuel vapor pressure of 1.7 bar using the reconsnended vapor pressure correlation.(20) This compares to the calculated gas pressure of 487 bar at failure, justifying the neglect of fuel vapor pres-sure in highly irradiated, gassy fuel pins.
In the case of low power and burnup fuel rods, the initial void volume is small and the gas content of the fuel may be two orders of magnitude lower than fully irradiated rods.        Provided that the rod has undergone some low ournup and is not absolutely fresh, and provided that the steady state power is high enough to lead to some restructuring of fuel, creating a cen-tral void space, the model will function as designed. These limiting ini-tial conditions are met in the current analysis, with the separate assump-tion of at least 10 equivalent full power days of burnup except for the internal blanket rods where the power is too low to form a central void.
If the SAS/FCI calculation for low power and burnup fuel rods is car-ried to rod failure, however, a completely unrealistic situation would be 3-8
 
predicted. Because the gas pressure increases slowly, power must be signif-icantly higher to cause failure. This would result in peak fuel tempera-tures corresponding to vapor pressures 20-50 times the calculated gas pres-sure. Consequently, a revised fuel rod failure model has been developed to include the fuel vaoor pressure effect, as explained below, and is used in the present analys:
Fuel Vapor Pressure Model - Revised Fuel Rod Failure The cavity model within SAS3D was revised to include a third species of vapor phase material, the fuel vapor. The existing transient rod tempera-ture calculation was accepted, placing the peak fuel temperatures adjacent to the central void volume. The fuel vapor was therefore assumed to occupy the central void volume along with the central void gas and contribute its partial pressure to the total. The froth gas was retained as a separate species occupying its own separate volume, but sharing the total void space within the cavity.
The perfect gas law was assumed for the fyel vapor with the gas con-stant calculated from the universal gas constant assuming an average molecu-lar weight for the fuel vapor. It was assumed that evaporation / condensation rates were sufficient to maintain quasi-static liquid / vapor equilibrium on the time scale of the transient.
The relationship between vapor mass and pressure requires the simultan-eous satisfaction of the sevr.n equations:
V    =V cg +Y fg i                                                    two distinct volumes  (3-1)
P fg
            =P    +P;y                                                      equilibrium pressure  (3-2) g P
g
            =M cgIYcg  cg Tcg;                                              perfect gas law      (3-3)
P    =M fg/VfgR fg Tfg;                                                perfect gas law      (3-4) fg P
y
            = My /V  R T; y y y                                                        perfect gas law    (3-5) 3-9
 
Py = P(T y);                        equation of state              (3-6)
My  =
[pc(Tf - T )/A    dV      energy conservation            (3-7) y
[for Tf>_T]    y Subscripts:
f = fuel cg = cavity gas fg = froth gas v = fuel vapor Variables:
P = Pressure, bar V = Volume, cc M = Mass, gm R = Perfect gas constant, bar-cc/gm*K T = Temperature, *K V = Free void volume in cavity, cc g
pc = Volumetric heat capacity of liquid fuel, joules /cc*K A = Heat of vaporization, joules /gm T7    = Temperature distribution of molten fuel, *K and P y Unknowns:      T,M.Vy    y g, V7,P7g, Peg The solution of these equations is done iteratively to balance the vapor production and consequent partial pressure of vapor with the gas pres-sures (both cavity and froth). The seventh equation, being a double inte-gration over the volumes, is very time consuming. Equation (3-7) has there-fore been replaced by a numeric correlation of much simpler form:
My  =M 3    1-    v                  (3-8)
T1-T3    .
3-10
 
where:
Ti = maximum fuel temperature, *K T3 = mean temperature of molten fuel, *K fi3 = mass of fuel vaporized at T3, gm (calculate.d by Eq. 3-7))
n = numeric exponent obtained by curve fit Table 3-3 shows that this numeric correlation corresponds closely with the more complex formulation of Eq. (3-7) and can be substituted without significant error. As a result Eq. (3-7) is used twice each heat transfer timestep to calculate n and M3 (Mi is always zero) and Eq. (3-8) is then used in the iterative calculations to determine the temperature of vapori-        ;
zation Ty . A test is provided to bypass the vapor pressure calculation if Ti-T3 < 0.1*C, i.e., there must be some temperature gradient in the                l liqcid fuel. During the bypass, total rod pressure is determined by the gas    l pressure as in the original SAS3D model.
Table 3-4 shows fuel rod conditions at failure calculated by the fuel vapor pressure model for the 80C-1 TOP base case (see Section 6.1).        It can be seen that the higher fuel vapor pressure is much higher than the cavity gas pressure. Thus, the fuel vapor pressure should be included in fuel rod failure calculations when a relatively small amount of fission gas is con-tained in fuel as in the case of the 80C-1 core configuration.
3.2.3.2    Post-Failure Fuel Motion SAS3D Release 1.0 Model The process of ejecting fuel from the rod is treated in the SAS3D model as follows. At rupture of the cladding, the trapoed gas in the cavity ex-pands, displacing molten fuel (or mixture of liquid / solid / gas), i.e., eject-  ,
ing fuel in the channel. The fuel ejection continuas until the expansion pressure corresponds to the channel pressure. The SAS3D model assumed that ejected fuel comes from each SAS node (Figure 4-14) containing molten fuel in proportion to the amount of molten fuel present in that node.      This 3-11
 
assumption is reasonable for gassy fuel rods such as EOC-4 fuel where dis-tributed froth gas is the principal source of expansion. Froth gas is released from melting of fuel and mixed with molten fuel throughout the cavity.
However, the original SAS3D fuel ejection model may not be accurate for nongassy fuel rods, such as B0C-1 fuel, because the fuel vapor pressure is the driving force for fuel ejection. The fuel vapor will be concentrated in the central region where the fuel temperature is highest. In this case, molten fuel will be displaced from the ' central region as the fuel vapor expands. Consequently, the SAS3D fuel ejection model has been revised as described below and is used in the present analysis for the B0C-1 core con-figuration.
Revised Post-Failure Fuel Motion for 80C-1 Fuel The fuel ejection process expected for 80C-1 fuel is discussed first, and actual modifications made to the SAS3D model are then described below.
As fuel is ejected into the channel, the fuel vapor will expand to fill the newly available volume. As the pressure drops, an additional mass of hottest malten fuel will be vaporized, sustaining the pressure source to eject fuel. An initially small fuel vapor oubble will expand as indicated in Figure 3 4 until the expanded vapor bubble uncovers the rupture. At this point all of the molten fuel lying between the rupture and the original vapor source is expected to be replaced by the fuel vapor bubble.
Based on analyses of CRBRP B0C-1 fuel rods, the rupture will be uncovered by the expanding vapor bubble while the vapor is still at a pres-sure significantly greater than the channel pressure opposite the rupture.
The vapor should then begin a blowdown process with additional evaporation of liquid fuel as the pressure drops. Calculations based upon saturation temperatures show a mass ejection of 1-3 gm of fuel per rod during this phase.
3-12 1
 
Following the vapor blowdown phase the molten fuel above the rupture location should drain into the vapor cavity. The void space above the mol-ten fuel would be filled with whatever released fission or fill gas was available. In the channel, flow would be reestablished (in the Transient Overpower Accident) and the rupture covered by frozen fuel. Additional .
major fuel ejection is unlikely in any subsequent power transient, since sufficient fuel would have to be vaporized to repressurize the cavity at some excess over channel pressure to reopen the rupture. By that time the rupture would again be in contact primarily with fuel vapor and only limited amounts of fuel would escape.
The fuel vapor pressure model assures that the immediate effect of fuel motion during an FCI is not a positive reactivity feedback. The expanding vapor bubble reduces the fuel mass and therefore reactivity at the location of peak power generation and maximum fuel worth. Even for a forced axial midplane failure location, fuel ejected into the channel at the point of maximum worth will have no immediate reactivity effect, but will begin to disperse in either direction to locations associated with lower worth . Fail-ure at any other location will result in immediate negative reactivity feed-back since fuel injected into the channel at a lower worth location is caus-ed by an equal volume of fuel vapor at the maximum worth location. The total amount of fuel ejected and therefore the total reactivity effect will be greatly reduced by a midplane failure where the failure location is in close proximity with the source of fuel vapor.
After the vapor blowdown phase is complete and the upper molten fuel column has collapsed into the vapor bubble, part of the ejected fuel reac-tivity effect is recovered. In effect, the void space is transferred to the upper part of the cavity where the displaced fuel is worth less in reactiv-ity. In any sustained or subsequent power burst, however, the void space will remain or will return to the high worth loction as vapor is generated at the point of peak power and worth.
The more rapid ejection nf hatter fuel results in more rapid and more extensive voiding than is usually calculated for fission gas driven ejec-tion. In a core for which a major source of positive reactivity feedback is 3-13
 
sodium voiding, the vapor pressure model could introduce a greater power burst due to sodium voiding alone. This effect would be more noticeable with a midplane failure where sodium voiding effects would be enhanced and fuel motion effects minimized. For the CRBRP B0C-1 core, however, calcula-      j tions show that the peak power channels which fail first in a TOP condition      ;
are all located in regions of low or even negative sodium worth. As a result the more vigorous sodium voiding which is calculated does not result in any significant positive feedback to offset the negative fuel motion effects, even with forced midplane failure.
The post-failure fuel motion calculations in SAS3D have been modified to reflect the above fuel vapor pressure model considerations. The modi fi-cations do not completely reflect every aspect of the model because certain constraints exist within the current code structure and logic. The results of the calculations done with the modified SAS3D code should be considered as the best available guide to probable courses of events.
The transient cavity model has been modified to include fuel vapor as a third gas species. The equilibrium evaporation model developed for the prefailure cavity model was adopted. The implied assumption is that the expansion process proceeds slowly enough for quasi-equilibrium to exist between the liquid fuel and its vapor.      The ejection rate calculation is not modified nor is the channel heat transfer model.      Fuel vapor does not parti- !
cipate in the fuel ejection jet or sodium interaction.
The available expansion volume and t% inertial length of the orifice equation is controlled by an input variable (Block 51, Loc 91). This loca-tion should contain an integer variable describing the number of nodes sur-rounding the peak power node which should be added to the available expan-sion volume. If the variable has the value K, then 2K+1 SAS nodes are active in producing vapor bubbles. If n is the failure node and j the peak power node, then the length (in SAS nodes) of the available expansion volume is the greater of 2K+1 or (n+1 - j+K) assuming n > j. The default value of K is zero. The inertial length used in the orifice flow equation is taken as 1/2 the length of the available expansion volume.      The value of K should 3-14
 
be determined by reference to the fuel temperature profile and pressure limits.
The reactivity effect of the expansion phase is handled by a slight rework of the FCI reactivity feedback calculation. The same algorithm is used except that the mass of fuel ejected is distributed only among those nodes within the available expansion volume instead of the entire cavity.
This results in a somewhat less negative effect of fuel motion except for cases in which only a single fuel node is involved.
At present no viable vapor blowdown model exists for the blowdown phase of the model. Because of the small mass involved, this phase contributes little direct fuel motion reactivity and serves mainly to sustain the sodium voiding and sweepout in the channel and to delay drainage of the upper liquid fuel slug in the cavity. Allowing the current channel model to con-tinue after ejection cutoff does not introduce any discrepancy greater than that of the simple, first order model itself.
Reestablishment of sodium flow in the early channels to feil, inevi-tably results in the code error identified as "TSC8 error." This accurs when liquid sodium reaches the very hot clad formerly inside the fuel-cool-ant interaction zone. Pure sodium vapor bubbles form and attempt to merge with the retreating interaction zone bubble.      The SAS3D code cannot handle this event because of its structure and ceases computation. This code prob-lem can be circumvented by use of the SASBLOK option, use of reactivity tables, or estimation of end state conditions from hand calculations.
The collapse of the upper liquid fuel slug within the cavity can be simply handled by a redistribution of mass from the upper nodes into the vapor cavity and mapping the reactivity effect from the static worth curves.
This need be done only for final shutdown estimatation, since for any sus-tained or subsequent power burst the vapor void would re-form at the loca-tion of peak worth.
3-15
 
i 3.2.3.3          Comparison of Vapor Pressure Model with Experiments The fuel vapor pressure model described here was developed as a simple approximation to a complete model of vapor pressure driven fuel ejection.
The current model is a preliminary but necessary step in reducing the incon-sistencies observed in the SASFCI model between the calculated internal energy of the fuel and the calculated physical driving pressures for fresh (i.e., very low burnup) fuel ejection.
During the development of the model, available experimental evidence was reviewed to determine the experimental basis for or against the proposed driving mechanism for fuel ejection. The pertinent test results were limit-ed by restrictions on applicability of the model. Internal fuel tempera-tures associated with significant vapor generation can only be attained in a                                            {
fresh fuel rod with a high power level and good cooling. At high ramp rates in a TOP condition, the radial temperature profile is flat and requires substantially high power levels to attain vapor pres:ure generation. No                                                j experiments were available which included both the high axial power peaking and the slow power increase typical of the CRBRP best estimate analysis.
The most applicable test results were judged to ':e those of the R9 and R12 TREAT tests which utilized fresh fuel for an FFTF 504/sec TOP scen-ario.(21) The calculated (SAS and COBRA) peak fuel temperature at failure in the R9 test was reported to be about 4400*C, producing a central vapor pressure of 77 bar using the Leibowitz correlation for mixed oxide fuel. Using the uncertainty factor quoted by Leibowitz, the fuel vapor pressure at failure could have been as low as 26 bar or as high as 231 bar.
This compares to the calculated peak fuel temperature at failure of 4816*C and partial pressure of fuel vapor of 168 bar calculated for the 504/sec                                        j ramp in CRBRP (B0C-1 TOP Case 3). With the given uncertainty of calculated temperature and pressure, the disruption of the R9 fuel could have been driven by fuel vapor pressure. Certainly the extent of the fuel disruption argues for some driving potential more vigorous than initial fill gas.
The location of failure in the R9 test could not be determined because of total disruption of the fuel. In the R12 test, failures were limited in 3-16
 
extent and located at the upper end of the fuel column.        That location of failure may have been influenced by the premature failure of one peripheral fuel rod at that location. The calculated failure location of 30 cm below the top of the fuel in the case of the CRBRP analysis was influenced by the substantially greater axial peak / average power ratio in CRBRP compared to the TREAT test.
There was evidence in the R12 test results for collapse of the central molten cavity following fuel ejection.      Both hodoscope fuel motion data and post-test examination point to post-ejection settling of fuel.        Additional-ly, the existence of a complete steel block above the upper fuel blockage in the R9 test offers some support for the model of post FCI uncoolable fuel disruption used in Section 6.1.
3.2.4        SLUMPY Model of Fuel Motion 3.2.4.1      Near-Fresh Fuel BOC-1 fuel (near fresh) pellets are expected to be sintered together as a result of restructuring during the equivalent of 10 full-power days of burnup. When the fuel is subjected to heating as encountered during LOF transients, it will undergo melting from the central region of the rod.
Internal pressurization by molten fuel due to volume increase will cause lateral expulsion of central molten fuel through cracks in the unmelted            -
shell(22,23) , and/or radial bulging of the rod.(24) This will be followed by a gravity-driven draining of molten fuel in the molten cavity.
Subsequently, the fuel rod may collapse as it loses its structural inte-grity. If the fuel continues to be heated, significant fuel vapor pressures can be generated to cause fuel dispersal.
Although computationally possible, application of SLUMPY to B0C-1 fuel was phenomenologically questioned in modeling the molten fuel rundown, because SLUMPY was developed primarily for irradiated grassy fuel. Conse-quently, an ancillary computer code, PLUT02, was used to predict the behavior of BOC-1 fuel motion for the rundown phase.( ) The PLUT02 calculation was performed at ANL and is described in Appendix C.        Four 3-17
 
PLUT02 runs were made with constant power levels, one with the nominal power (IP), and the remaining three runs with 3P, 10P and 30P. The results for other than these four power levels can be estimated by interpolation or extrapolation. Appropriate SLUMPY parameters were determined such that the fuel motion reactivity feedback obtained from SLUMPY calculations was reasonably close to the corresponding PLUT02 results. Section 7.1.1 shows how PLUT02 results when compared with SLUMPY results obtained with various parameters.
The SLUMPY model is directly applicable to the subsequent phase of BOC-1 fuel motion,    i.e., the collapse of fuel peliets. However, uncertainties exist in determining the rate of collapse. Once the middle position of the fuel rod has melted across the entire pellet cross section, upper fuel pel-lets, probably sintered together as a result of restructuring, will collapse under the influence of gravitational and other forces. The collapse rate will probably be slower than the free-fall process in view of the fact that    f the movement of fuel pellets is limited to a relatively small space within    !
l the hexcan.
Consequently, a parametric study was conducted to model the behavior of BOC-1 fuel motion, assuming that the fuel motion ranges from the free fall to a slow rundown of molten fuel. First, the free fall process was assumed by using appropriate SLUMPY parameters. Then, two types of fuel . motion between the free fall and rundown type fuel motion were evaluated by varying SLUMPY parameters accordingly. The results of this parametric study are presented in Section 7.1.1.
3.2.4.2    Irradiated Fuel The results from in-pile and out-of-pile tests with irradiated fuel were reviewed to understand fuel motion behavior during heating transients in an LOF event at EOC-4    The tests reviewed include Direct Electrical Heating (DEH) tests,( 0) in-pile tests conducted in the TREAT facility and the Sandia Laboratories FD-1 Tests.(27) The in-pile tests used neutronic power transients representative of those encountered during HCDAs, whereas the DEH tests used ohmic heating by passing an electrical current 3-18
 
through the fuel column. Later DEH tests added an external heater to provide improved control of the fuel temperature distribution during the tests. The major findings from this review are summarized in the following paragraphs.
TREAT TESTS In TREAT tests L3 and L4, gross fuel dispersal was observed. There was    -
no indication of the collapse of the upper segment following disruption, a feature related to the possibility that prior irradiation caused the fuel pellets to be sintered together.(28,29) Post-test examination of L4 showed that stainless steel blockages were formed at the top and bottom of the fuel column. Plenum gas should have had a negligible effect on fuel and cladding motion since the pressurized plena apparently discharged shortly before cladding melting.
Interpretation of data from test F1 indicated that the test fuel rod underwent massive swelling.( 0) The swollen fuel filled the available capsule volume in the test section.      This was followed by a slow collapse of the fuel column, with molten fuel draining down the central core of a swol-len mass. The absence of a fission gas-induced dispersal implies that a large amount of fission gas escaped from the fuel before disruption which occurred probably after the fuel started to melt. At the time of disrup-tion, the fuel has reached a very high temperature across the entire cross section, based on calculations ( 0) that showed radial temperature pro-files were almost flat. This means that the fuel retained a very little amount of fission gas (available to cause fuel dispersal) at the time of disruption, as Figure 3-3 indicates. Nevertheless, the F1 test results do not indicate a free-fall gravity collapse of the fuel column.
TREAT tests L5, L6 and L7 provide the most prototypic simulations available for dispersal of irradiated fuel at elevated power levels. In terms of power level around the inception of fuel melting, LS is the closest simulation of SAS-calculated conditions for a lead assembly in the CRBRP heterogeneous core.
l t
3-19
 
The test results from L5 showed substantial fuel swelling and axial dispersal of fuel. SAS analyses of the test showed the onset of fuel motion occurred after the attainment of a 50% areal melt-fraction.(31) The SAS analyses alsG indicated fuel motion occurred without significant fuel vapor pressure. This generally supports an assumption in SLUMPY that fis-sion gas pressure is the main mechanism for fuel dispersal. Post-test exam-ination of L5 showed stainless steel blockages at the bottom and top of the fuel column, which is consistent with those of L3 and L4      It is noted that the fission gas plena were depressurized in L5.
Both of TREAT tests L6 and L7 exhibited dispersive behavior after failure, as described in Reference 32-34    The fuel dispersal in L7, tested at a peak power level of about 22 times nominal, was more extensive than in L6 whic5 was tested at about 10 times nominal power. C. H. Bowers, et al.,
analyzed L7 test results with SAS3D (SLUMPY) and LEVITTE.(35) In the analysis, it was assumed that 70% if the retained steady state fission gas would escape from the fuel matrix before fuel failure and therefore could not affect fuel motion. Five percent of the remaining 30% was assumed to be immediately available to SLUMPY fuel motion while the remaining 95% was slowly available. Initiation of SLUMPY fuel motion at a 60% melt fraction coincided with the first indication of fuel motion in the hodoscope data.
SAS3D overpredicted axial fuel dispersal compared with the hodoscope data in the early part of fuel motion, although the correct trend was predic-ted.(35) This implies that a reduction in the amount of fission gas irunediately available to SLUMPY in their SAS3D calculations would have l
resulted in a better test correlation. The aresent SAS calculations used a l  zero fraction of gas insnediately available to provide a conservative esti-
! mate of immediate fuel dispersal, instead of the 5% fraction used in the L7 calculations.
I DEH TESTS Several DEH experiments with quartz simulant cladding were performed to simulate the fuel thermal history during an accident transient.(26) A bilinear ramp heating rate was used to represent a flow coastdown period followed by a neutronic power excursion. Analyses of the experiments showed 3-20
 
    ~
the basic fuel cladding failure mechanism to be fission-gas / molten-fuel interactions which can result in large internal pressures.(26) The internal pressure was relieved by (a) local fracture of the quartz; cladding and fuel stack, followed by squirting of the molten fuel through the frac-tured region, and/or (b) plastic deformation (swelling) of the outer solid fuel in the radial direction. The former process tended to occur in the short transients, and the latter in the long transients. The former type of fuel failure is similar to the SAS/FCI failure model and the latter to the I
F1 failure mode discussed earlier.
While quartz cladding was used in earlier DEH tests, later DEH tests used stainless steel. The cladding was melted off before the fuel stack was subjected to the rapid transient ohmic heating phase. This was done to lessen the mechanical disturbance of the fuel stack and to provide better representations of prototypic fuel rod conditions. In the latter DEH tests with stainless steel cladding, it was observed when fuels with a high fis-sion-gas inventory were tested that small fuel particles were of ten disper-sed radially and fell downward as the cladding melted away.(36) The tests indicate that the cladding restraint has a significant effect on the transient fuel response in voided channels. If the quartz; cladding had been melted off before fuel melting in the. earlier DEH tests which did not show      .
massive swelling, the outer solid fuel might have broken up into fragments and fallen off. In the event massive fuel swelling takes place before extensive fuel melting, fuel disruption as indicated by the DEH quartz; clad tests may occur regardless of the presence of the cladding.
FD TESTS Fuel Disruption (FD) experiments were conducted in-pile at Sandia Laboratories. In the FD-1 test series, single fsel pellets in their clad-ding, fresh or preirradiated in EBR-II, were heated in the Annular Core Pulsed Reactor (ACPR). Experimental conditions and data analysis are reported in References 27, 37-39. Some of the FD-1 experimental conditions were not prototypic of CRBRP conditions expected in a voided assembly. In the FD-1 experiments, the power ramp rates were pulsed and very high (on the order of 100 times nominal during the puM); maximum heating rates were 3-21
 
N located at the ends of the fuel pellets, and radially peak temperatures occurred midway between the centerline and the surface.      Nonetheless, quali-tative information on the role of fission gas can be obtained from these experiments.
Preirradiated fuel exhibited higher dispersive potential than the fresh
!    fuel.(27) In FD 1.6, calculated fuel temperatures showed that disrup-tion occurred probably below but close to the fuel melting tempera-ture(39); this suggested fission-gas driven fuel breakup. Gross fuel swelling of irradiated fuel rods was seen in some of the FD-1 experi-ments.I ) This result is in contrast with the assumption made in the past that fuel swelling would only be of importance for lower heating rates.( ) It is not known whether such swelling behavior observed in the FD-1 experiments can be ascribed to nonprototypic experimental condi-tions mentioned earlier.
ANALYTICAL MODELS As postulated by Deitrich and Ostensen,(40) several modes of irradiated fuel disruption appear to be possible. Among others, these include:    a) massive fuel swelling with melting of fuel in the central pellet section, b) central melting with breakup of the outer solid fuel shell, and c) breakup of solid fuel into fragments. There appear to be four major parameters affecting the fuel disruption mode: a) heating rate, b) i power level at disruption, c) fuel burnup and d) presence of the cladding at disruption. Out of these four parameters, the heating rate and power level represent essentially the same transient condition, as a heating rate is determined largely by a power level.
As for the effect of the four parameters, massive fuel swelling seems to be ascribed to a slow heating rate * (low power level). On the other l
      *In recent FGR tests (18), extensive fuel swelling was often seen at the ting 200*C/sec heating rates,    but it was not observed with bilinear ramp (
(slower heating). This behavior has not yet been fully understood.
Further analyses of the FGR data are expected, along with investigation of the heating rate effect.
i 3-22
 
hand, a fast heating rate with high-burnup fuel tends to cause breakup of solid fuel into fragments, which may or may not be preceded by melting in the central secion. The presence of the cladding prevents falling of frac-tured solid fuel. As a result, molten fuel will be ejected through fuel cracks and cladding breaches. SLUMPY modeling of fuel disruption and dis-persal behavior for the CRBRP at E0C-4 is described below.
In the best estimate of the E0C-4 LOF scenario, SAS Channel 6 (see Figure 4-9) which failed first had a low fuel burnup (see Table 5-3), a slow heating rate and a low power level at disruption relative to other fuel channels (see Table 3-5). Consequently, fuel in the lead fuel channel is assumed to undergo massive swelling which is followed by rundown of molten fuel in the internal cavity, as pictured in the analysis of the F1 test data.(30) The rundown of molten fuel was simulated by a mass averaged acceleration of the slumped fuel in SLUMPY calculations. In this case no fission gas was assumed to be available to disperse fuel, and a mass-averged 2
downward acceleration of 14 cm/sec was used for the entire slumped fuel segment, as much indicated by hodoscope data from the F1 test. In addition, a much higher rate of fuel collapse was analyzed in this report to address the uncertainty in the F1-type modeling of fuel dispersal for the lead chan-nel (see Section 7.2.1). For fuel channels other than the lead channel, fuel was assumed to break up into fragments without massive swelling. As indicated in Tables 3-5 and 5-3, these fuel channels have a high burnup and a fast heating rate (high power level) at disruption reltaive to the lead channel. In addition, the amount of fission gas available immediately after disructicn was assumed to be zero, as mentioned earlier (see Section 3.2.2).
Without any fission gas immediately available, the disrupted fuel will ini-tially settle in the SAS simulation rather than disperse. Considering that the L6 and L7 test results show a fuel dispersal trend,(34) fuel dis-persal behavior is regarded as conservatively modeled in SLUMPY.
As for the fuel disruption criterion, the use of a _60% melt fraction in SAS calculations was found to match the hodoscope data for L7,(35) while for L6 a 50% melt fraction was in good agreement with the data.      From interpretation of the data from L3 and L4, it was concluded that fuel motion would only occur when melting reached the unrestructured fuel.(29) 3-23
 
This fuel disruption criterion corresponds to about a 25% melt fraction for CRBRP fuel rods at EOC-4, according to preliminary SAS3D calculations. On the other hand, the results from DEH and F01.6 tests indicate fuel could disrupt around the time at which the fuel starts to melt.
The present best-estimate analysis used a 50% melt fraction criterion for fuel rods characterized by a massive swelling. The other type of fuel disruption (breakup into liquid and fragments) was assumed to occur when melting reached unrestructured fuel for fuel rods with the cladding melted off at initiation of failure. The failure timing for clad fuel was delayed to take into acount the restraint imposed on the fuel by the cladding; a 50%
melt fraction failure criterion was used in the presence of the cladding at initiation of failure. The present analysis addressed the uncertainty in disruption criterion for unclad fuel.
3-24
 
Table 3-1 Experimental Conditions for PNL-10 Test Series
* Av. Heating Rate,**0C/sec FGR      Starting                                        Max. Temp.
Run No. Temp., oC      Slow Phase      Fast Phase    Gradient, OC/cm 40        1350                0            160              3750 41        1250                0            150              3610 44 ***      1210              0            400              5410 45          1210              0            400              6400 46          1020            20                0              390 47          1180            22                0            1000 48          1230            32            170              3530 49          966            30            110              2220 50          1146              16            140              3150 51          1220              15            160              4100 52          1160              16          140/320            6000 This information was obtained from Reference 18.
  **  Slow heating rates were followed by fast heating rates.
  *** With 10 sec hold at end of run.
3-25
 
Table 3-2 Typical LOF Transient Conditions of Unrestructured Fuel at EOC-4 Av. Heating Rate **
at Midplane, CC/sec_          Temperature SAS                                          Gradient *** at Channel
* Slow Phase Fast Phase        Midplane,oC/cm 6                19        139                7700 2                15        166                6500 7                12        216                7390 12                12        350                6900 14                12        321                5800
* See Figure 4-9 for location of assemblies represented by SAS channel
  **    Divided into two heating phases, slow for first 200 C increase and fast for next 800 C increase.
  ***    Temperature gradient when first 200 C increase is achieved.
3-26
 
Table 3-3 Comparison of Vapor Mass Calculation Methods
* Vaporization              Vapor                Vapor Temperature                Mass                Mass C                    gms,(a)              gms,(b) 4900                      .000                .000 4800                      .003                .004 4700                      .023                .027 4600                      .074                .080 4500                      .158                .170 4400                      .297                .305 4300      .              .484                .493 4200                      .739                .740 4100                    1.036                1.051 4000                    1.422                1.433 3900                    1.867                1.891 3800                    2.384                2.429 3700                    3.028                3.054 3600                    3.737                3.770 3494                    4.633                4.633 a)          my =      p(Tjj)aVy l                                                if''
2
                                / 4900 - T  i .63 b)        my = 4.633I g4900 - 3494 )
* For BOC-1 assemblies represented by Channel    11 (Figure 4-8) 3-27
 
Table 3-4 Fuel Rod Conditions at Failure with Fuel Vapor Pressure Model      -
Peak Fuel Temp., 'C                          4900 Max. Melt Fraction                            0.73 Avg. Molten Fuel Temp., *C                    3510 Cladding Temp., 'C                            1102 Total Cavity Pressure, bar                  186.6 Cavity Gas Pressure, bar                      11.4 Fuel Vapor Pressure, bar                    175.2 Vaporization Temp., *C                        4741 Mass of Fuel Vapor, gm                      0.015 Failure Time, sec                          39.903 Failure Location    , cm                        106  P l
l
* CRBRP BOC-l Channel 11 (Figure 4-8)
    ** Elevation from the bottom of lower axial blanket 3-28
 
Table 3-5 Transient Conditions of Unrestructured Fuel at Disruption for EOC-4 LOF Case 1A SAS                    Heating        Power      Temperature Channel
* Rate, C/sec      Level ** Gradient, C/cm 6000 (High- ower Fuel) 2              49P        14000 (Med.-Power Fuel) 14                      3200          68P        12000 (Low-Power Fuel)
* See Figure 4-9 and Table 5-3
  **  P = steady state power 3-29
 
REACTIVITY INSERTION WITHOUT SCRAM i
FUEL AND/0R BLANKET MELTING AND CLADDING FAILURE WITH SODIUM FLOW IN CORE MECHANISTIC              NO FAILURE LOCATION YES                        N0'
                              ':                                          AUT0 CATALYTIC POWER COMBINED FUEL / BLANKET FAILURES RESULT                                    CREAS IN NEGATIVE REACTIVITY FEEDBACK                  ,
YES
{                              l MORE FUEL CORE DAMAGE              NO I._N_Q.              LOCKAGE C00LABLE                        y MATERIAL RELOCATION YES STABILIZED YES
                .\ POWER
                        \ ;
            ,                                      1r NO                  SUFFICIENT N GATWE RSCTWm POWER LEVEL FROM FUEL MOTION HIGH        LOW                                      YES Y                            v                                                    ,
r FLOW REDUCTION &            STABLE POWER              PERMANENT                  HYDRODYNAMIC WITH.PARIIAL              SHUTDOWN                  DISASSEMBLY CORE MELT 0VT CORE DAMAGE                                            OF CORE Fig. 3-1    Reactivity Insertion (TOP) Accident Progression Diagram 3-30
 
FLOW C0ASTDOWN WITHOUT SCRAM T
COOLANT BOILING l                                  .
Y CLADDING MELTING AND RELOCATION v
FUEL DISRUPTION
'                          ~                          '
AND RELOCATION                      i 1
NO        FUEL DISPERSAL                                l
                                          ^
SUBSEQUENT F0WER RISE YES  _
1 9
POWER DECREASE            ,
POWER BURST SUSTAINED                        STRONG FUEL        YES NO        PROMPT                        RECOMPACTION RITICAL VYES                              "
ENERGETIC                      NON-ENERGETIC DISASSEMBLY OF                      DISRUPTION CORE                            OF CORE (MELTOUT/P0OL PHASES)
Fig. 3-2 Loss-of-Flow (LOF) Accident Progression Diagram 3-31
 
0.6 I
                                                                                      /
F  = 22. esp (-9533/ Tu 'q)~
8.5                                                                        y            l
                                                                                /
f
                                                                            /l
                                                                          /
41  I A ! ;~    FCO 'to                                    /l'            t. '
B.4            1        FGit-41                                  /
l 2        T4
                                                                      /                        ,
3        FBR-45                              i 4        FSR-48                        /
5          FSR-58                      / f 3                6          FBR-51                    i
                                                                  /
2 8.3            7          FSR-52                  f                        /
    ]                8          FGt-i s              j                        /
    $                                                /8 r
E
    .*                                        /              1                m 0.2                                  f i                                      /
                                /      ,        s O'I                  \?      )                            ,
(
                              /    -  -
                  &s',              ?'A gg op a., g wa og a oj                              ,
g              g 1888 1288 1488 1688 1888 2008 2288 2438 2688 2888 3898 Average Unrestructured Fuel Temp. , C Fig. 3-3 Transient Fission Gas Release Versus Average Unrestructured Fuel Temperature. (This information was obtained from Reference 18.)
3-32
 
                      %                t s    r a                    n M        fuel
                                                                    ; ejection 2
3
                                      's    %
l                          \
                                                  \
tj = time since rupture
          ,        ,                              g
                          's                          s
                              's t      i i              t n= vapor blowdown h              s                    e s            i vapor                J              l I              8 bubble                7 gt
* g
      -- -- --, L* '                I    --      +          .- - Care - -
1 Midplane I        /                                                          '
l I      /
* i              s 0    /            p                /
                              ,-                                  steel cladding
(,
                  = 0              -y,,'                      ,
n
                                                        #          fuel i                                  ^%          -
t Fig. 3-4 Conceptual Model of Fuel Vapor Bubble Expansion 3-33/34
 
4          SAS REACTOR MODEL AND INPUT ASSUMPTIONS This chapter describes the CRBRP design and safety parameter data rela-ted to the present SAS analysis, and shows how individual assembly data are grouped as input to the SAS3D code. Then, the SAS3D input used in the pre-sent analysis is presented along with discussions of major input selec-tions.
4.1        Design and Safety Parameter Data Figure 4-1 shows the physical layout of the CRBRP heterogeneous core from Chapter 4 of Reference 1. The initial core consists of 156 fuel assemblies, 82 inner blanket assemblies and 132 radial blanket assemblies. Nine fully enriched (92% B-10) primary control assemblies (PCAs) are 13cated in the 6R7C (six row seven corner) and 3R4C positions. Six fully enriched second-ary control assemblies (SCAs) are located in the 6R7F (six row seven flat) positions.. The 6R7C PCAs operate as a bank and serve to control the reactor throughout each cycle. The 3R4C PCAs and 6R7F SCAs are normally fully with-drawn for all full power operations.
It should be noted that the core and inner blanket regions can be sub-divided into reflectively symmetric 60* sectors through the R7Cs. The rad-ial blanket may be assumed to be periodically symmetric in 60' sectors through the R7Fs.
The first cycle of operation consists of 128 full-power-days (fpd) of operation. At the end of cycle one, 3 inner blanket assemblies located at R6C at a point azimuthally midway between the R4C primary control rods are replaced with fresh (cycle 1 feed enrichment) fuel assemblies to supply sufficient excess reactivity for the second burnup cycle of 200 fpd. At the end of cycle 2 (328 fpd of operation), the entire core (159 fuel assemblies) and inner blankets (79 blanket assemblies) are discharged and replaced by fresh assemblies (156 fuel and 82 inner blanket assemblies) in the intital arrangement shown in Figure 4-1.                                              No radial blanket management is performed at the end of the second cycle. At the end of the third cycle (275 fpd), 6 4-1
____-        - _ _ _ - - _ _ _ _ _ _ _ - - _ _ _ _ . _ _ _                                                  1
 
inner blanket assemblies in R6C are replaced with fresh (cycle 3 feed enrichment) fuel assemblies to supply the excess reactivity for the fourth burnup cycle. At the end of cycle 4 (EOC-4), the entira core (162 fuel assemblies) and inner blanket (76 blanket assemblies) are again replaced with fresh fuel as in the initial (Figure 4-1) configuration. The core and inner blanket fuel management in cycles 5-6, and subsequent pairs of cycles, repeat that for cycles 3-4 The entire first row of radial blanket assem-blies is replaced at the end of cycle 4 (878 fpd), and every fourth year (1100 fpd) thereafter. The outer row of radial blanket assemblies is replaced at the end of cycle 5 (1153 fpd), and every fifth year (1375 fpd) thereafter. HCDA analyses reported herein consider the core at BOC-1 and EOC-4 conditions.
The nomalized radial power factors at 80C-1 and E0C-4 are shown on a 60* sector representation of the core in Figure 4-2 and 4-3, respectively.
The numbers represent the themal power of each assembly nomalized to the power of the average assembly. The average power assembly is obtained by dividing the themal power produced in all the fuel and internal blanket assemblies by the total number of fuel and internal blanket assemblies in the core.
Figures 4-4 and 4-5 show the nomalized axial power distribution at the end of cycle 4 for fuel assemblies away from and fuel assemblies adjacent to control assemblies, respectively.                    Fuel assemblies adjacent to control assemblies are seen to have greater axial power skew. The nomalized axial power distribution for internal blanket assemblies is shown in Figure 4-6.
The nomalized axial power distribution is given in tems of the ratio of the local axial power density to the average axial power density over the core region for each assembly.
The orificing zones and correspnding mass ficw rates are shown in Figure 4-7. There are 12 orificing zones for the entire core.                                  Zones 9 through 12, used in the radial blanket, are not included in the present analyses (see Section 4.2). The eight orificing zones associated with the core are grouped as follows:
4-2 i
                        \            _______-_-_______ - ____ - ______                          -
 
t Zones 1 through 5 - fuel assemblies Zone 6            - alternating fuel / blanket assemblies (blanket in Cycle 1 and fuel in Cycle 4)
Zones 7 through 8 - blanket assemblies.
The neutronics data for each assembly of the core were generated with ENDF/B-III cross sections and normal core design procedures at 20 axial node positions (shown in Figure 4-14) using the VENTURE computer program (see Appendix A of Reference 1). The flooded Doppler constants, sodium void worths, cladding worths and fuel worths were calculated with flooded forward and adjoint fluxes, while the voided Doppler constants used voided forward and adjoint fluxes.
4.2        Core Assembly Grouping into SAS Channels The use of the SAS3D code requires that groups of core assemblies be represented by SAS channels. The present analysis uses 15 SAS channels, which were chosen such that assembly groupings would preserve such important characteristics as assembly type, power, etc. Thus, the final 15 channel representations, shown in Figures 4-8 and 4-9 for BOC-1 and E0C-4, respec-tively, meet the following conditions for assemblies grouped into the same SAS channel.
: 1. Same assembly type, fuel or blanket.
: 2. Within 4%* of average power generation for assemblies grouped into same channel.
: 3. Within 4%* of average power-to-flow ratio for assemblies grouped into same channel.
SAS channel data correspond to the average of the design data for the assemblies grouped into a channel. Tables 4-1 and 4-2 show a summary of
* Standard deviation. Channel 1 (internal blanket) meets the conditions when the center assembly is excluded.
4-3
 
some SAS channel data thus calculated at 80C-1 and EOC-4 conditions, respec-tively.
The radial blanket assemblies were not modeled in the present SAS cal-culations because they were not expected to play an active role in the ex-cursion. This is based on the observaticn that even at E0C-4, radial blank-et power is smaller than the internal blanket power by a factor of approxi-mately three, on the average.
i l
1 The data for individual assemblies were averaged to provide correspond-                      l ing SAS channel input values according to the grouping of the assemblies.
The sodium-in and sodium-out Doppler constants for SAS channels are given in Tables 4-3 and 4-4 For this core, both at 80C-1 and EOC-4, on'e dollar of reactivity is equivalent to an effective delayed neutron fraction of 0.0034 (Chapter 4, Reference 1). Tables 4-5 and 4-6 show material worths in dol-lars in the active core region for SAS channels selected in the present analysis. The material worths are defined as the change in reactivity introduced by adding a mass of material at a given location.
Sodium void worths in the active core region are compared between SAS channels in Figures 4-10 and 4-11. It is noted that channels adjacent to the radial blanket assemblies have negative sodium void worths both at BOC-1 and EOC-4 conditions. Figures 4-12 and 4-13 compare fuel worths between SAS channels.          The worth of internal blanket material is still negative at EOC-4.
4.3        SAS3D Input Selection This section deals with the input setup for the SAS3D code. A basic model was established for each of the beginning-of-cycle-one (B0C-1) and end-of-cycle-four (EOC-4) core configurations. Some input variables of these input decks were replaced by appropriate values to represent two specific events:                        loss-of-flow (LOF) and reactivity-insertion transient overpower (TOP).
4-4
 
With the channel arrangement established as described in Section 4.2, the SAS input was defined as explained below. In view of practical con-siderations, this report will present the input values only for 80C-1 LOF Case 1 and E0C-4 TOP Case 1, indicate how other cases differ, and discuss those input assumptions that are considered to be most important in the calcula-tions.
The SAS3D input for 80C-1 LOF Case 1 is presented in Table 4-7. The E0C-4 TOP Case 1 input is listed in Appendix D. The input description can be found in the version of ANL SAS3D Release 1.0 which is in custody of Argonne National Laboratory.
The format of the SAS3D input is as follows:
: a. The input is divided into blocks which are assigned a name and number. These blocks can be classified into two types by format:
integer and floating point. Input blocks 1 and 11 through 14 are channel-independent, while blocks 51 and G1 through 68 must be defined for individual channels.
: b. Integer input variables are given in 1216 format. The first entry gives the initial input location treated by that card. The second entry indicates the number of input variables to be read on the card. The remaining entries are actual input variables.
: c. Floating input variables are given a (2I6,5E12.5) format. The first and second entries indicate that the initial input location and number of input variables on that card, respectively. The remaining floating-point entries are actual input variables.
In the following, some important input selections are discussed which are referred to by a pointer number shown on the right-hand side of Table 4-7.
Pointer 1 refers to location (loc.) 1 for the number of SAS channels.
See Section 4.2 for identification of these channels.
4-5
 
Pointer 2 refers to loc. 53 for the selection of equation o. tabular forms for fuel conductivity and density. The use of this option (i.e., 4) means that the equation forms used in Reference 1 are also used in the present analysis (see Section 3.2.).
Pointer 3 refers to loc. 66 for the steady-state cladding swelling correlation. The present analysis used a correlation recently developed by HEDL.(41)
Pointer 4 refers to loc. 68 concerning fission gas calculations in SLUMPY. This provision was recently added to the SAS3D code so that updated information on transient fission gas release can be used (see Section 3.2.1). In E0C-4 LOF analyses, the correlation described in Section 3.2.2 was used for channels in SLUMPY calculations (see pointer 26).
Pointer 5 refers to the prompt neutron lifetime and delayed neutron data. These are design data inputs and were obtained from the PSAR, Section 4.3.
Pointer 6 refers to reactivity insertion rates resulting from control rod withdrawal during full power operation. The selection of reactivity ramp rates is discussed in Sections 6.1 and 6.2.
Pointer 7 refers to the effective axial expansion coefficient. The SAS3A fuel expansion algorithm was judged to be inadequatek ) and therefore an extensive study was performed to develop an improved model for
!                        SAS30.(4) That study concluded that it would be physically appropriate to include the negative reactivity feedback from fuel axial expansion.
However, the present analyses still used only a fraction of the calculated value to account for possible uncertainties in the improved model. An 80%
fraction was used for 80C-1 LOF analyses and 50% for E0C-4 LOF analyses.
f TOP analyses used 20% , both for 80C-1 and EOC-4. In transient overpower cases, fuel contact with cladding may make axial expansion less effective l
j                        than in LOF cases, as discussed in Reference 4.
l i
l                                                              4-6
 
Pointer 8 refers to physical properties of fuel and cladding. There are many sources of these material properties. To have consistency between the present analyses and other related safety analyses, and also to use up-dated information, the following guidelines were applied to specify the material properties.
: a. Same property values or equation forms as used in design safety analyses reported in the PSAR.II)
: b. If not found in the PSAR, use values from the Nuclear Systems Materials Handbook (41) or from a handbook, " Properties for LMFBR Safety Analysis," edited by L. Leibowitz, et al.(20)
: c.      If not in any of above, use best available information.
1 Some of the fuel and cladding properties determined as above are as.
follows:
: a.      Fuel thermal conductivity from the PSAR, Section 4.4 K          1.079(1-P)                          1 3 2
I = (1.0 + 0.5P + 4.62P ) {A + BT + CT 3 where:
K7 = thermal conductivity, W/m*K T = temperature, *K P
                      = fractional porosity (1-fraction of theoretical density)
A = -6.0656 x 10~4 8 = 3.04212 x 10-4 C = 0.75137 x 10-10
: b.        Fuel melting temperature from the PSAR, Section 4.4 Tm = 2760 for unirradiated fuel
                = 2760 - (0.20645 x 10'3 B + 58.887) for irradiated fuel 4-7
 
where:
Tm = fuel melting temperature, *C B    = burnup in MWD /MT (15,000<B<200,000)
, c. Fuel vapor pressure a:: recommended in Reference 20.
p = exp (81.068 - 82451/T - 5.3555 in T) where:
p = fuel vapor pressure, dynet/cm2 ;
T = temperature, *K The vapor pressure calculatec as above may be uncertain by a factor of about two or threee, as noted in Reference 20. The effect of the vapor pressure uncertainty was evaluated (see Chapters 7 and 9) in a parametric study by using a fraction of the values calculated from the above equation.
: d. Cladding thermal conductivity from the PSAR, Section 4.4 K
c
                  = 9.894 x 10-4 + 1.304 x 10-6 T where:
K = cladding thermal anductivity, W/m K e
T = temperature, *K Pointer 9 refers to the cladding strength tables.                        The same values were used in SAS3A analyses of the homogeneous core.( )        Review of the Nuc-lear Systems Materials Handbook (41) indicates that those values are still applicable.
4-8
 
Pointer 10 refers to the pump decay constants used in LOF cases. The decay constants used in the present analysis are the same as those used in the analysis of the homogeneous core.(3)
Pointer 11 refers to the hydraulic diameter and flow area of the bypass channel. In SAS30, channel flows at steady state are specified as input.
The remaining sodium flow is treated as bypass flow. Since the majority (67%) of the bypass flow passes through radial blankets according to Refer-ence 1, the hydraulic diameter of the radial blanket assembly was selected as the effective hydraulic diameter of the SAS bypass flow path. Likewise, the flow area was determined such that the velocity of the SAS bypass flow was the same as the average radial blanket flow velocity.
Pointe" 12 refers to loc.153 for the coolant inlet temperature which was obtained from the PSAR, Chapter 4.
Pointer 13 refers to the number of axial heat transfer nodes in the active core and axial blanket regions. The lengths of nodes are specified in input block 61 (Pointer 18). Figure 4-14 shows the location and size of the axial nodes used in the present SAS calculations.
Pointer 14 refers to the radial position of fuel where the temperature check is made for SLUMPY initiation. This option is relevant only to EOC-4 fuel for which the SLUMPY criterion in some cases is initiated when melting reaches unrestructured fuel. A detailed discussion of SLUMPY criteria can be found in Sections 7.1 and 7.2.
Pointer 15 refers to the number of SAS/FCI rod failure groups (loc.
120). Three failure groups were used in the present analysis, except for some parametric cases in which intra-assembly incoherency effects were neglected.
Pointer 16 refers to loc.121 for the fuel rod failure criteria in the presence of sodium (SAS/FCI). The present analysis used the burst pressure criterion, as described in Section 3.2.3 of Reference 3.
4-9
 
Pointer 17 refers to the cladding outer radius. Wire wraps are attach-ed to the outer surface of cladding to maintain a gap between fuel rods. In the earlier analysis,( } these wire wraps were treated as part of the structure (hexcan) in SAS calculations. However, such modeling of wire wrsps may not be accurate for a LOF case where cladding melts away before fuel rod disruption occurs. In such a case, wire wraps will be nost likely to melt and mix with molten cladding, and therefore should be treated as part of the mobile cladding. Examination of SAS calculations with the heterogeneous core indicates that cladding relocation would occur prior to the fuel rod disruption in most channels, as a result of slow heating in the early phase of the accident, and add significant reactivities to the core.
Consequently, in the present LOF analysis the cladding outer radius was determined with wire wraps smeared on the outer surface of the cladding. On the other hand, TOP transients do not involve cladding melting. There fore ,
TOP analyses followed the earlier modeling approach, wherein the cladding radius is the design value. The wire wraps were treated as part of the structure so that the actual cladding thickness can be used in cladding strength calculations.
Pointer 18 refers to the lengths of axial heat transfer nodes at the reference temperature (input block 61, loc.134). See Figure 4-14 and Pointer 13.
Pointer 19 refers to the temperature and melt fraction at which SLUMPY is initiated. See Pointer 14 to find the radial position for temperature i criterion check.
Pointer 20 refers to the fuel-cladding gap conductance. The present analysis used the same correlation as used in Reference 3.
Pointer 21 refers to the coefficients in the coolant film heat conduc-tance. These coefficients were determined from Reference 1, as follows.
For fuel assemblies, Nu = 4.49 + 0.0147 Pe0.86 l
1 l                                        4-10
 
and for internal blanket assemblies, Nu = 0.782 Pe0 .3 where:
Nu = Nusselt number Pe = Peclet number Pointer 22 refers to the fraction of transient released fission gas that is assumed to be transported to the plenum after cladding is in contact with fuel. This input variable was taken as zero in the present analysis.
No gas flow path to the plenum would exist after closure of the gap between cladding and fuel.
1 Pointer 23 refers to input block 65. The present analysis used this input block to specify input variables for SASBLOK.(3)
Pointer 24 refers to the fraction of gravitational acceleration used in SLUMPY calculations. For 80C-1 fuel, this input was varied along with the force exerted on the upper segment (Pointer 26) as part of a parametric study to simulate PLUT02 results with SLUMPY (see Section 7.1 for details).
Pointer 25 refers to loc. 14. This input, if zero or greater than zero, specifies the total fraction of steady state fission gas available to SLUMPY calculations. If this input is negative and the value at block 1, loc. 68 (pointer 4) is greater than zero, the transient fission gas release correlation shown in Section 3.2.4 is used.                      This input was taken as zero for all BOC-1 channels and some E0C-4 channels (see Section 7.2).
Pointer 26 refers to the fraction of fission gas immediately available to SLUMPY upon its intiation. This value was taken as zero in all cases, as discussed in Section 3.2.4.
Pointer 27 refers to the force per unit mass exerted on the upper fuel segment. This option has been incorporated into SAS3D to model movement of 4-11
 
I the upper segment in various manners (see Section 3.2.1.2).          For instance, this input should be taken as zero to model a full gravitational collapse of the upper segment.      This input varied from zero to 490 dyne /gm for 80C-1 fuel as indicated in Section 7.1. For E0C-4 fuel, it was taken as zero except for the fuel which was assumed to have undergone swelling prior to disruption.      No movement of the upper segment was allowed for fuel which swells due to fission gases.
Pointer 28 refers to the fuel rod failure criteria related to the input at input block 51, loc.120 (Pointer 15). Since the present analysis used the burst pressure criterion, a fraction of the tabular cladding strength (Pointer 9) was given at this location, and was determined as follows.
First, a factor is calculated to reduce the cladding thickness adjusted in LOF analyses to the design value. It is noted that the cladding outer rad-ius was slightly augmented from the design value in LOF cases because wire wraps were treated as part of the cladding (Pointer 17). No reduction of the cladding thickness was necessary in TOP analyses, and the design value was used. In addition the cladding strength was adjusted for the cladding wastage allowance in the same manner as described in Reference 3.          The input at this location was the product of a cladding thickness reduction factor and a cladding strength adjustment factor.
Pointer 29 refers to the number of days of burnup.        Startup operation to attain full power was estimated to require a minimum period of operation equivalent to at least 10 days at full power. Therefore, 10 days of burnup at full power were specified for BOC-l fuel. For E0C-4 fuel the number of burnup days was adjusted for internal blanket assemblies. This adjustment was necessary considering that the internal blanket assemblies would experi-ence a substantial increase in power from the beginning to end of their life and that the SSFUEL module in the SAS code treats the rods being modeled as if they had been irradiated at a constant power level throughout their life.
In order to account for the effect of the power changes, the number of burn-up days was adjusted such that the product of the adjusted number of burnup days and power level at E0C-4 is the same as that of the actual number of burnup days and average power level during their life.                              I 4-12
 
Table 4-1 SAS Channel Characteristics at 80C-1 Nonnalized                                            Normalized Channel      Number of    Assembly                Average Rod Power / Flow,    Assembly Number  Type. Assemblies    Power Mass  (lux gm/cm -sec      Power, kW  J/gm (Na)    ,
Power / Flow 1      B        7        0.178      387.8          11.41      70.8            0.36 2      F      12        1.246      492.0          22.42      228.0            1.16 3      B      15        0.225      441.3          14.41      78.6            0.40 4      F      18        1.338      513.5          24.08      234.6            1.20 5      B      30        0.226      441.3          14.44      78.8            0.40
[    6      8        6        0.224      341.9          14.35      101.0            0.52 7      F      24        1.525      542.3          27.44      253.1            1.29 8      B      24        0.305      414.6          19.52      113.3            0.58 9      F      18        1.581      539.1          28.45      264.0            1.35 10      F        9        1.538      551.9          27.66      250.7            1.28 11      F        9        1.547      513.5          27.83      271.7            1.39 12      F      12        1.457      513.5          26.21      255.3            1.30 13      F      12        1.465      484.5          26.35      271.9            1.39 14      F      18        1.192      438.0          21.45      245.0            1.25 15      F      24        1.235      439.9          22.15      251.9            1.29
 
Table 4-2 SAS Channel Characteristics at EOC-4 Normalized                                          Normalized Assembly Mass Flu      Average Rod Power / Flow,  Assembly Channel          Number of                      2 Number  Type,    Assemblies      Power    gm/cm  sec      Power, kW  J/gm (Na)    Power / Flow 1          8          7        0.54        381.8          32.50        204.9        1.01 2          F      21          1.30        493.5          21.89        222.0        1.09 3          B      21          0.61        434.5          36.36        201.4        0.99 4          F          9      1.31        505.6          21.99        217.6        1.07 36          0.63        434.5          37.54        207.9        1.02 l p    5          B
  %    6          F            6      1.46        514.7          24.59        239.0        1.17 7          F      12          1.32        524.5          22.16        211.7        1.04 8          B      12          0.54        381.8          32.56        205.2        1.01 j
9          F            6      1.22        524.5          20.57        196.4        0.97 10          F      12          1.26        524.5          21.22        202.7        1.00 11          F      24          1.29        543.3          21.73        200.1        0.98 12          F      12          1.12        491.4          18.87        192.2        0.94 13          F      18          1.16        496.2          19.51        196.8        0.97 14      'F          18          0.96        431.2          16.17        187.6        0.92 15          F      24          0.98        433.1          16.57        191.4        0.94
 
Table 4-3 4
Doppler Constants in Tdk/dT x-10 for SAS Channels at BOC-1 (Axial Extensions Included)
SAS                    Number        Doppler        Doppler Channel Assembly          of        Constants      Constants Number  Type      Assemblies      (Sodium In)    (Sodirm Out) 1      B              7            -2.336        -2.291 2      F              12            -1.949        -1.569 3      B              15            -6.851        -6.269 4      F              18            -3.397        -2.565 5      B              30          -15.990      -13.112
                                            -3.170        -2.482 6      8              6 7      F              24            -5.745        -3.849 8      B              24          -14.099        -9.912 9      F              18            -4.227        -2.566 10      F              9            -1.951        -1.184 11      F              9            -1.972        -1.197 12      F              12            -2.150        -1.305 13      F              12            -2,167        -1.315 14      F              18            -2.281        -1.385 15      F              24            -3.280        -1.991 Totals    F            156          -29.119      -18.926 8              82          -42.446        4?.066 F&B            238          -71. 5A E    ~52.992 4-15
 
Table 4 4 4
Doppler Constants in Tdk/dT x 10 For SAS Channels At EOC-4 (Axial Extensions Included)
SAS                    Number        Doppler        Doppler Channel  Assembly          of          Constant        Constant Number    Tyoe        Assemblies    (Sodium In)    (Sodium Out) 1        B'              7          - 3.843        - 3.271 2        F              21          - 4.487        - 3.229 3        8              21          -13.216        -10.638 4        F              9          - 2.055        - 1.527 5        B              36          -21.980        -16.430 6        F              6          - 1.416        - 0.932 7        F              12          - 2.651        - 1.736 8        8              12          - 5.237        - 3.705 9        F              6          - 1.062        - 0.665 10        F              12          - 2.314        - 1.464 11        F              24          - 5.168        - 3.471 12        F              12            - 1.628        - 1.006 13        F              18            - 2.705        - 1.688 14        F              18            - 1.761        - 1.135 15        F              24            - 2.516        - 1.634 TOTALS    F            162            -27.763        -18.487 8              76            -44.276        -34.044 F+B            238            -72.039        -52.531 E
4-16
 
Table 4-5 Core Region Material Worth In Dollars For SAS Channels At 80C-1 SAS                    Number                                ,
Channel Assembly          of                  Sodium Number  Tyce        Assemblies        Fuel    Void  Cladding 1      B              7        - 1.596    .056      .091 2      F              12          7.873    .096      .325 3      8              15        - 4.623    .152      .272 4      F              18          13.982    .191      .582 5      8              30        -11.087    .373      .630 6      8              6        - 2.134    .068      .112 7      F              24        26.598    .144      .775
                                    -10.194 8      8              24                    .303      .629 9      F              18        20.408    ,090      .614 10      F              9          10.875    .002      .251 11      F              9          10.987    .002      .254 12      F              12          12.698    .071      .181 13      F              12        12.804    .072      .181 14      F              18        14.375    .454      .465 15      F              24        18.373    .282      .098 TOTALS                    238        119.339  0.598  -4.334 4-17
 
Table 4-6 Core Re91on Material Worth In Dollars For SAS Channels At E0C-4 SAS                  Number Channel Assembly            of                Sodium Number  Type        Assemblies        Fuel  Void  Cladding 1        8              7      - 1.164  .100      .166 2        F            21          16.761  .386      .793 3        8            21        - 3.890  .330      .585 4        F              9          7.127  .160      .333 5        B            36        - 5.905  .559      .992 6        F              6          6.060  .085      .213 7        F            12          10.220  .165      .410 8        B            12        - 1.468  .125      .233 9        F              6          4.438  .027      .127 10        F            12          9.371  .113      .335 11        F            24          18.728  .366      .827 12          F          12          7.633  .038      .096 13        F            18        11.630  .116      .375 14        F            18          8.975  .200      .123 15        F          24          11.634  .082      .082 TOTALS                  238        103.086 2.212    -5.444 4-18
 
Tabic 4-7 SAS30 Input for B0C-1 LOF Case 1 kointer
          $111111111111111000000000000000000011111111111111100C00000000000000000 E            b      ik 5000            -1                                                                                1 5            2    100          1
{g            2      40        20 21 31 h
7 li0 11 3
15 0
12 6        5          1        2 kJ              h        2          0        0        0                                  '                                  2 52          10          5          4        23      20        20          9      15          0          0          0    3.4 62              6        0          0        C        1        2          0 73
* 500          0        0        0
                -1 QPCIN              11            1        0 1            5 5. 0 0 0 0 0E -0 2 1. 00 030E -02 1. 5 00 00E + 0 2 3. 0C C 3 3E -31 5. 001 C CE + 01 6                                    i.00033 *Ch 1. 0 0 3 0 0 E * :4 1.01C3CE*04 2. 3 0
* S *E
* 0 3 11            5 35.0000C 90000P.F 01                    +00 0.3                    1 00 GC CE-0 2 1. 0 0 3 0 CE- G 3 lb              3 1.00000d=02 5.000000 5 1. 0 0 0 0 0 -0 5 2. 5 00 00 E
* 0 2 POWINA            12          1          0 5
                  !                                    !:11!!052 11              !5 l.:?l!!"8l:''21.35003f 5      1400        8                  C1i11:1!!!ii:al 3.65000f-01 1!:!!!!!i:S!
37000f*00'.:}1188ll:!)
k 6500E+CC 9.39E-A 17                      1.199E-2          2.3 0 TSE-2          1.252E-2            6.SeTE-3 22 27 5
2 3.881[-3 9.725t-6 1 9954E-1 S.975E-7 1 4366E-2            9.362E-3                7.62E-5 29              5                0.0                  0.0 39              5                00              150.0 69              3                0.0                  0.0                0. 0 -                                                6 69 99              j                0.0 C.949 78.050 0.915 150.0 0.8                                                  7 PMATCF            13          1        0                                                                                          8 1            5 1.15295E-01 6            5 2. 866 T?E-0 2 2. 5 9 62 5t-0 2 2. k2 3 k T:l-0 2 2. 3519 7!-0 2 2. 35 5 2 2E- 027.30170[-02 5 14346 -0 11              5 2.63476E-0 2 2. 57778F-0 2 2.TS 5 76E-0 2 3.05654E-0 2 3. 322 3 7E-02 16 21 f 3.43219 -02 3.43219 -02 3.43219 -02 3.63219r-C2 3.4321*E-02
                              > 1.00777 -01 6. 3 922 9 -0 2 26              5 2.50433 -0 2 2. 2 6 0 5 9 -0 2 2.119      4. 495 31.81 02 22.3.
0 5493 5 9233l-0    2 C612
                                                                                                            -0 2 2. 2. a 99E- 9 39E-0i C
31              5 2.12 819 E-0 2 2. 2 5 3 2 0E -0 2 2. 63 4 9 7E - 0 2 2.67345E-0 2 2.9060 3E- 02 36                                                          3.43                              :
ti51            li 3.43gger.02 1:iau0il:al3.632198-0! 1:!!!itt:! 1:t?g11E-02  ,1!!:351:tifi2c: 3.6321jJ S!3.63219[-02 5:12;l!E:!i 5 2.1291!E-12 2.2532CE-02 2 43497E-02 2. 673 45 E -0 2 2. 2140 3E- C 2 56              5 3.-3 21 oE -0 2 3.4J 219 -0 2 3.6 32105-3          4- 2 3.6321 or-0 3
* S6 0 7E-02 3.e3?GF-02 61              5      1231 -0 66              5 h h6393(:-Ci 7.06e47  2.69514-02 .9622-0 2 2.33 9 091 0 2 3.8 5 54b--002 2 269125-0 2 27516E-C2 71              5 2.!b 9 9 9E-0 2 2.*6 6 078-0 2 2. 6 4 761 -0 2 2. oS; 4 !E-C 2 3. 36 g er.C 2 76              5 3.60535E-02 3.6C985!-02 3.6595 -02 3.63 !e gr-0 2 3. e!* s5!-0 2 91              5  1.112 33E-0 5 2.7638      3E -201    7.G6k-7
: 2. 49  516(:-0-02 2 2.34.96226 3 5 09:,-0 2021.355h6{-32 3.19 9 0 TE- C 2 86                                                                              2.26512.=02 2.27516E-02 91              5 2.3 4 8 9 0E-0 2 2. 4 9 6 97E -0 2 2.6? 7 61E-0 2 2. 95 C 5 3E-3 2 3. 36'4 5E 2 96              *3                                          3.60515                                  3.*95a5r-C; 161              $ 2 h0595g*02 0300 01 f.60          5? S +02
                                                          .00300    -02 4.00030 -O      +0s g6.3.E0 0 }6 C ' 5r-C
* C . { 9. e 5 3        C;E
                                                                                                                                  !.C.      *03 166            5 1. 0 0 0 0
* E
* C 3 1. 2 G 3 0 0 +03 1.43000 +03 1.6C&G f*03 1.a000.
171              5 2.0 0 00 CE + 3 3 2. 2 0 000r 176              5 2. 5510 CE + 0 3 3. 0
* 0 C 0! *.0 3 2.6 00305. 0CO0E                    + 0+03 32. 6.603 3C3 0C0EOE COCE                          + " 3+0 3 2. ?69 0 3E
* 0 3 131              5 2.41513          31 2. 8 5 5 3 7r -01 03 6.C3000E.*01
: 3. 06 3 32r        3.18 30 6E-31 3.27201c-::
la6              5 3.36890(t- 01 3.42564!-01 3.519585-11 3.65665i-C1 3.96375t-C1 191              5 k .17 2 5 =E -41 4. 6 3 3 9 0 E - 01 5.1698SE-01 5. 9 7217E -G                      6.?231hE-0; 106              5 5.03730E-01 5.037398-31 5.03739 -G1 5.03739E-C1                                    5.03739E-O 20:              5 2.61513E-01 2.15 53 7I -C1 3.06332 E-                          3 1?J36f=31        3.27?O*E
* 206
            ?!1 5 3.3hS9CE-01 3.425667-01 3.51153! 01 5 6.1725kE-01 4.603905-01 5.1699sE-0 5.97217!-31 01 3.65565E-01                52 t16{c - c*:;
3.!6375 6.
216              5 5.03739E-01 5. 3 3 7 39E 5.0 37 3 9E-01 5.3373*E-01 5. :3' 3 cE - 01 IIE              I Is)LIhIE801 Isggg(({egl jegfjjg(sq[ J,&gjg!Es![ 3 q;!Pg[-i[
fii              i 1:5I514E:81 ):li!!6i:81 1:51754E:81 i:!Ifill:81 I:!!?iti:ii 241              5 2.3709CE-01 2.7 9262r-01          ~      2.9 5 T25E-01 3.09651E-01 3. :T6:2E
* kt            5 3.      kg5            3. 3 39 -01 3.423 Sj 01 3.601                    'r=0      g.975)er.
I'!i            ii:lli!!!:-01      ll i:3lg!!(:3!
i i        1:litIce:Hi I: lilii:!I 5:!s?2 i:01!!
261              5 2.37050E-01 2.79242E-01 2.9972SE-01 3. 0 9 6 51 E-01 3.17612E- 01 2g6              8 3.26555          01    3. 32139 J -01 3.62 9 6*r -01 3 601238-31 3. ? 7" *F-C1 171 361
                              ! 5:!!!!!)a:!! i:!i!!!c:!! 1: lit!!i:S! 1:lii!!i:!! 5:!t?s}2i:i!
5 2.7 00 0 CE *:1 2. 0 0 03 0E + 02 4.C C0 0 0E + 0 2 6. C
* G O CE
* 0 2 6. 0 0 0 0 0E 6 C 2 l"                    *.0 00 00E 316              l 2.1610          0E+ +  0 305.C0 3 3.
* 00 000f00  +:00f31:38888!:111:llaili
:0 3                    6. 081 0 0 !: !iiff:al 0 0E
* L3 1:liii!F !i i:;i8 ail:!!
4-19
 
L.e qta t-4 )3oupunaP(
dc6uiaJ ill                                                  p fit in i 1:isuH !!m1:!!!id:81 s              O
                                                                  !!!0213:il { !itid:!! I:!! tid:il11
!tt    } 1:th!n:j!
            ?:ti"il: i 1:U i:ta}Q :!!        1:in n 1:!htx:!! !:ain!!:n
:n!iiij!!:jjt:ti'ijj:!!t:!ti!H:ii
;n
;11 21 i 1:iiNA[:81 t1:61 s30.1,,51:81 n i:nuDl:
t:Uitfj Ui:UN!!!!!{!!itid:!!1:!!f!!!!!
:it 1:illiH:ti          :tiI!p :!! t:ititll:!!
siaD!:il 1:nin!:!!
;j?
;;1 l jig,p,!!!n}::il  40941:1111d:81
                          !:2:114:
:01 !fid3
* 02 l00i:aihtl3+n 4:i,?jjl:ii t:niill:88H
;ll    1:n;?3l!lfl'E!554:!!d'I!I5!fjlld['l{fi:ii!*Dh,li
              ?8!fi 521    l!'400003+02 i 2' k 12'I!08N+0 jg'tnnon3+01                                              000CJ3*02 b'00000J+02 N)wi                        2' 000003 *02
!!!    sll!:H88ij:!!
i !!netU j:!!!iaj:ii 2:i!!!d:!li:    9*N!!diH 000003+0    i: 2 9'tnid Ui!!n!!!!!
                                            ,:ilE8lj:81 }:8ilip:t! 8:niiH:!!
0 I 5 00 113 n            !!!!d:H i;;!!!d il i inn 3 H !!!!!i?3
{jj    lji}l:36p::if{::DN![:il2:!!Nij:!!1:3Hnj::!!1:i660p!!!                                                        :if    5 di    si ii ,2:tA,tH:ii          lie!!!:it 1:'""''"
iji    l j;:tiits3:il      l;litab::ii tiitg:ii!:tiilib                li g
s;:it    1: !:1tl1!1:                                01 1:'""''"
fil    ti:i!!!d[:ili:lliti:!!j:iijji11:!!!!i+Ht:ilup+itt:Hinl
:ii
                                                        +it !1!!!id:ji
                                                                  ;!!i!j+it 11:ti                              "s"iH+i'
                                                                                                                    "''I fu iti    ! t:!;tiil !! 1:litiil 81 i;iniit'!!i:fli!!!it!;n!!!!it i!?    !5t:!!!!!3
            !:tilail it!! 1:ti!iH
!!!                        ?:11:idit!!5:ittiili ;tniait!!i:tH!!!
                                                        '      ?!!!!!!!*!!                  it 4:i1:i!!!!l      8!!! 1n 411
        ! t:!ialp':it 4:lt!!ij':it i:tiilij:it 1:tfila!:!! 1:'fiiil':82 9
s f' 0003 0  2'000 3iZ 'N0003 0 2              0 0 3029 s 0003 i
  !'l                                                              83:1'il1:tfggTli
        } 1:llilil*ji 2:ij!ldj'!! 1:lisiij*ij 1:l!iiRl'!n i:!iH!!!!!
  !N gis    jit: usa'!!t:ifi?!!n1!!!n!:HS:'
9 +00 i*121t43*00 9' t 9,1,3
* 0 0 i's0 90 s3 + 0 0 e ' 942 4 93 + 0 0 l
di      ! t:l2!! 3:!! t:iffin:ii ;:!!!!!! n 5:i'!!!!:n i:!!!i'!!!!
j t'g        ,g
                      +  ,'iZit43+00        9* E 99593 + 0 0 9'50*0s3+00 9* 942 493 + 0C
              *        +          t        0            +                                                  0  h    3 601    g2 f 000 03 + c s 2* 000003 +02 9*0 00003 +0 2 9 *0000 03 *0 2 9* 000003+02 tli    ! 1':llia!!:il i:!!!!!!:!! !!!!!!!!:!? i:ti!!!!:il t:!!!!!!:!!
gg;    ; ;:gggp gg i 0,sta-u i nun-u 2 n.n3-u 2 u..t3-u tli    11:itsiM:il iE2sjm-03 1:ttiiH:il f:U;!!!:!! f:lliill:!! 1:'ti!!l:!!
m t:1    l 1:tdalili i:t!!!!!on        :
81 d:gi,2g:-u  elifn2 ie!iI!
il 1:liil 2:ftttD:ti05g                :                a00n-u t!?    'i!!yl1'l                    3 u
2
  #?                      iiugg:!!2:iii,i!!:!!g:!!!!!!:.!!!:
01                2gti22                9-                                          fat!!:il 032 nCu  u 11:l.iom:s                i  2ggh:lg              !!!!!s i
tif                l:f2liilf05,ronh:854:2108B                      :81 :2H881:81 tit 662
{ jigggll3+DE st*ggg00              {:'00l00p:+gr g:pggp3+0E                                                    **0CgeD!.ot g*000003+DE t-30
 
Table 4-7      (Continued) 1111      i* "!'!!#1                  1.e2rE3        1 427E3 1010 i3    1:itil:t 2.AR2E2 i:lill:!
2 682E2 1:lill:t 2 692E2
  !!E        I!:1!!!al!i! i:1!!lIl!!! 1:l!!!!j!!! i:18 tail:!! 2:llitil:li yj)      l I:Riiil:      ! i:4808i:8!
iti;      2            !!:!!          'i'll: i:RH0J:i!'- 5-'    i:Hi!!i:!! i:l!!!!i:al 8.10680          -8.24510E!O -5.355 50E iO O 2.790 3IE!0 -6.363 52E+ 04 3.58 0 0 0 E-0 !-1 2 0 0 00 E-02 1 6 00 00E-0 6 1 3880E+00                      10 21    I              i:8            15i:8
      'l    i1: I!aill:!PI:Hiii!:ii 0000 02 i:Cono 021:'iiai'-'
I:!0il85li    1:}'!$!$!:li    1:'ai!!';!!
li 65 iE:                                              f1:        :ii1:!ittil:85 1.5 39 2 4E + 0 4 1.33150 +06 3.26000E*01 1 00000E+00 11 til    56.09600l+01 1  1:!97H :!! 1: 5 0 u 0 E-01        '''""[* "
12 SPACK    15          1        0 9      1!      20      30        6      3      5      2      3      2          13 9  11      6!          )        3      1      1      2      3      5      9      1 h
89 i
2 i0        1 0
0      12      0      0      0 tiI  18        i        1-      !      I      k      0      1      0      0      1  14 ist    i        1      -.        3                                                    is.is 11 134 I
2 i        i 1
2't.
GECMIN    61          1        0 25    5 5. 96 9 0 0E-01 5. 969 0 0E-01 5. 96 9 0 0E- 01 5. 96 9 0 0 E -01 5.96400E-01 30    5 5 95 900E-01 5 96900E-01 5 96903E-01 5 96900E-01 5 969 0 0E-01 35    5 5. 96 9 0 0E-01 5. 969 0 0E-01 5 969 0 0E-01 5. 96 90 0E-01 5. 96 9 0 0E-01 40    5 5.96900E-01 5.96900E-01 5.96900E-01 5.96900E-01 5.96900E-01 49    5 6 06520E-01 6.04520E-01 6 06520E-01 6. 045 2 0 E-01 6. 0 452 0E- 01 17 54    5 6. 04 52 0E-01 6. 065 2 0E-01 6.065 2 0E-01 6. 0 4 5 2 0E -01 6. 0 45 2 0E-01 59    5 6.06520E-01 6.04520E-01 6.0 520E-01 6 06520E-01 6.06520E-01 64    5 6.04520E-01 6. 04 5 2 0 E-01 6.0 45 2 0E- 01 6. 04 5 2 0 E-01 6. 0'.5 2 0E- 01 73    5 6.64000E-01 6.4h000E-01 6.44000E-01 6.64000E=0i 6.44000E-01 78    5 6.46000E-01 6.44000E-01 6.64 0 00E- 01 6. 46 0 0 0E-01 5. 44 0 0 0E- 01 83    5 6.46000E-01 6.44000E-01 6. ke 0 0 0 E-01 6. 44 0 0 0 E-01 6. k*0 0 0E-01 88    5 6. 4000E-01 6 44000E-01 6.44000E-01 6.46000E-01 6.ab000E-01 97    5 u.k262 0E-01 1.95260E*01 9.0 0000E
* 0 0 7.0360 0E +0 0 7. 03ko 0E
* 00 18 102    5 7.0 340 0E + 00 7. 03400E +00 7.0 34 00E + 0 0 7.03 40 0E+0 0 7.0340 0E+ 00 107    5 7.03 40 0E+ 00 7.03 60 0E + 0 0 T.0 3400E *0 0 7.03 600E +0 0 7.0340 0E + 00 112    5 7.03400E+00 7.03400E+00 7.03400E+00 7.03400E+00 7.03ko0E*00 117    1 1. 46 5 8 0 E + 01 122    1 1 21920E*02 12 t. 1 3.30200E+01 126    1 9.3 4 72 0E + 01 128    1 2.43900E-01 1 31    5 3.5 00 0 0E-01 5. 70000E-01 3.61240E =0i 2. 70 00 0E +01 1. !b860E-01
      -1 POWINC    62          1        0 2    3 1.600 0 0E-02 5 0 0 000E-0 3 7.8 00 00E-0 3 167    1 8.20000E-01 4-21
 
Table 4-7 (Continued)                                                          )
Pointer 173      2 5 0 0 00 0E + 0 3 5. 00 0 00E-01                                                          19
          -1 8 MATCH    63        1        0 1    5 1.90000E-01 6.10000E-01 1.32000E-06 3.70000E-01 1.14000E 00                                20 6    5 3.0000 0E-0 3 0.0                  5.68 0 00E+ 0 5 1. 70 0 0 0E-12 9. 00 0 0 0E-01 11      4 1.0 0 0 0 0 E
* 0 0 1.3 6 0 0 0E-01 1.3 6 0 0 0E -01 1. 36 0 0 0E-01 1 5.00000E-01 16 21 19      4 T. 8200 0E-01 3. 00 00 0E-01 0.0 00 00E +00 3 0000 0E-01 23      5 2.0000 0E-01 2. 00000E-05 6.7 0200E
* 00 7. 5563 0E *0 2 5.57 0 00E-01                    22 28      5 4.7020 0E + 00 2.92500E-01 2.925005-01 5.00 000E +0 0 0.0 00 0 0E* 00 35      1 2 30000E-04 36      5 5.0 00 0 0E-0 2 7. 00 0 0 0E-01 3. 52 0 0 0E -01 9 50 0 0 0E-01 9. 560 0 0E-01 41      3 9.5600 0E-01 0 96000E +00 0.960 00E+00 64      3 1.50 00 0E-0 2 5. 00 000E-03 5 0 0000E-03
          -1 C 00L IN    64        1        0 1    4 1.00000E+01 6.30000E+00 1.54000E-02 1 00000E-05 7    6 1.0 0 0 0 0E + 01 1. 0 0 0 0 0E + 01 1 0 00 00E +0 0 1.74900E+00 12      3 0.                  6 20000E-01-2.50000E-01 19      5 5.0 0 0 0 0E
* 01 1. 0 0 000E + 01 1. 5 0 00 0E
* 01 2. 76 00 0E +01 2. 760 00E + 01 24      5 1.0 0 00 0E+06 1 00 000 E+ 06 2 0 00 00E *0 0 5.00000E +00 1.00000E+00 29      2 5.0000 0E + 03-5.00000E* 03 35      3 5.0 0 0 0 0E-01 1. 00 00 0E +0 0 1.0 00 0 0E
* 0 0
            -1 23 GA5V00    65          1        0 1      1 1.00000E*00
            -1 CLAZIN      66          1        0 1    5 7.95600E+00 6.41600E-02 1 00000E+01 1.00000E+04 0.
b    58.                  2 00000E-01 3.50000E +f,1 1.3000 0E
* 0 2 3.397 00E-01 11      5 5.50300E-01 1.10110E*01                        210.            200.0                0.0
            -1 SLUMIN      67          1        0 1    5-1.0 0 0 0 0E-01 1. 0 0 000E +0 0 8. 9 0 0 0 0E + 0 0 6. 30 0 0 0E-0 2 6. 340 0 0E *0 5 24 6    2 1.00000E-01 3.00000E+00 9    5 3.20000E *07 1.44 000E + 00 3.                        5 00000E*00 1.00000E-02 14      5 0.0                0.0              0.              1.0 0 0 0 0 E *0 8 0. 0            25,26.27 19      5 O.                1 00000E-09 0.                    O.                2. 0 0 0 0 0E-02
(                                                                          1.0 0 0 0 0E +0 0 3.50000E-02 24      5 1.30000E-03 0.00000E+00 0.0 29      5 3.00000E+06 6.40000E-01 1.3 00 00E+ 07 7.703 00E-01 1. 820 00E-01 34      5 T.0 000 0E
* 00- 1. 00 0 00E + 0 2 0.                O.                G.
41      3 0.0                0.0              0.0
            -1 FCIIN      68          1      0 1    2 9.64600E-01 5.00000E+00                                                                    28 6    4-1 0 0 0 0 0E +0 0-1.0 0 0 0 0E + 0 0-1 0 00 0 0E
* 0 0 1 00000E+00 11      5 6.3 0 000E + 00 5. 0 0 000E + 01-1. 0 0 0 00E
* 0 0-1. 0 0 00 0E
* 0 0 2. 50 0 0 0E- 0 2 16      5 2.5000 0E-02 5.00000E-02 1.0 00 00E-0 2 5.00 00 0E-0 2 1. 000 0 0E-02 21      1 9 00000E-01 27      2 1*.00000E+03 1.00000!*01 35      2 2 00000E-01 5.00000E-02 43      5 4. 0 0 0 0 0E-01 3. 0 0 0 0 0E-01 3. 0 0 0 0 0E- 01 2. 0 0 0 0 0E-0 3 4. 0 0 0 0 0E- 03 1 000 00E-0 2 3.70 0 30E+14 1.00000E+00                29 60      6 1.00000E+01 0.0 66      52.                  G.                          0.0              0.0 5.00000E-01 71      3 1.00000E-01 5.00000E-01 0.0
            -1 INPCHN      51          2        1 9    1        1
            -1 GEOMIN      61          2        1 25      5 2.6130 0E-01 2. 613 0 0E-01 2. 413 0 0E -01 2. 45 75 0E-01 2. *575 0E-01 30      5 2.4575 0E-01 2 45750E-01 2.k5750E-01 2 4575 0E-01 2 4575 0E-01 4-22
 
l l
l Table 4-7        (Continued) 35      5 2.45 75 0E-01 2. 45 75 0!-01 2.45 75 0E -01 2. 45 75 0E-01 2. 4575 3E-01 40      5 2 45 75 0E-01 2 413 00E-01 2 613 00E-01 2 413 0 0E-01 2 61100E-01 69      5 2.540 0 0E-01 2.54 000E-01 2.560 00E-01 2. !4 G00E-01 2 56 0 0 0E-01 5=      5 2.540 0 0E-01 2. 5600 0E-01 2 540 00E-01 2.54 00 0E-01 2 540 00E-01 59      5 2 5400 0E-01 2. 54 000E-01 2 5 0 00E-31 2 5400 0E-01 2. !40 00E-01 64      5 2. Su 0 0 0E-01 2. 54 00 0E-01 2. 56 0 00E -01 2.54 00 0E-01 2. 540 0 0E- 01 73      5 3.00600E-01 3.00600E-01 3.00600E-01 3 00600E-01 1.00600E-01 78      5 3.00600E-01 3.00600E-01 3. 0 06 0 0E -01 3. 0 0 6 0 0E-01 3. 0 06 0 0E- 01 83      5 3.0 060 0E-01 3. 0 0 6 0 0E -01 3. 0 06 00 E-01 3. 00 60 0E-01 3. 0 0 6 0 0E-01 80      5 3.0 060 0E-01 3. OO600E-01 3 0 0600E-01 3 00 600E-01 3. 0060 0E-01 97      1 2.92100E-01 128        1 4.27200E-01 131        3 3.19000E-01 6.00000E-01 3.61260E-01 135        1 9 57700E-02
                -1 POWINC      62        2      1
                -1 PMa7CH      63        2      1 6      1 2.70000E-03 19      3 1.6t 0 0 0E-0 2 8.6 0 0 0 0E-01 4.690 00E
* 0 0 26      1 3.33300E+02 31      1 1.00000E+00 39      5 0.98            9.13 0 0 0E-01 9.130 0 0E-01 0.96 0 0 0E *0 0 0.96
                -1 C00LIN        64        2      1 3      1 1.59000E-02 13      1 3.81630E-01 22      2 1 80000E+01 1.80000E*01
                -1 GASV00      65        2      1
                -1 CLAZIN      66        2      1 10      2 3.2540 0E-01 6.86200E-01
                -1
          $LU M !N      67        2      1 28        1 3.40000E-02 30        1 5 80000E-01
                -1 FCIIN        68        2      1 1      1 0 8176 63        1 2.30000E*16 68        2 0.0              0.0
                -1 INPCHN      51        3      1                                    -
                -1 GEONIN      61        3      1
                -1 POWINC      62        3      1
                -1 PMATCH      63        3      1 6      1 3.00000E-03
                -1 C00LIN        66        3      1
                -1 GA5v00      65        3      1
                -1 CLAZIN        66        3      1
                -1 SLUNIN        67        3      1
                -1 FCIIN        60        3      1 63        1 3.60000E*16 4-23
 
Table 4-7 (Continued)
              -t INPCHN          51        4    2
              -1 GEOMIN          61        4    2
              -1 POWINC          62        4    2 1              -1 PNATCH          63        4    2 6      1 2.60000E-03
              -1 000LIN          64        4    2
              -1 GASV00        65        4    2
              -1
      *LAZIN        66        4    2
              -1 SLUNIN          67        4      2
                -1 FCIIN          68        4    2 63      1 2.20000E*14
                - 1*
INPCHN      51        5      1
                -1 GEOMIN        61        5      1
                -1 POWINC      62        5      1
                -1
!          PMATCH      63        5      1 l                  6    1 3 00000E-03
                -1 000LIN      64        5    1
                -1 GA5V00      65        5    1
                -1 l
CLAZIN      66        5    1 1
9LUMIN          6T        5      1
                -1 FCIIN        68        5      1 63      1 3.80000E+14
                -1 INPCHN      51        6      1
                -1 GE0 MIN      61        6      1
                -1 POWINC      62        6      1
                  -1 PPATCH      63        6      1 6    1 3.00000E=03
                  -1
            *00LIN      64        6      1
                  -1 GASV00      65        6      1 l                -1 CLAZIN      66        6      1
                  -1 SLUMIN      67        6      1
                  -1 FCI!N        68        6      1 63      1 4.00000E*14
                  -1 IN#CNN      51        7      2 4-24
 
Table 4-7 (Continued)
      -1 GE0 MIN  61        7      2 POWINC    62        7      2
      -1 PMATCN    63        7      2 6  1 2.3 0 0 0 0E-0 3
      -1                                                    ,
C 00L IN  64        7      2
      -1                                                            ,
GASV00    65        7      2
      -1 OLAZIN    66        7      2
      -1 S LU MIN  67        7      2
      -1 FCIIN    60        7      2 63  1 2.70000E*16
      -1 IMPCHN  51        8      1
      -1 GE0 MIN  61        8      1
      -1 80WINC  62        8      1
      -1 PMATCH  63        8      1 6  1 3 00000E-03
      -1 C00LIN    66        3      1
      -1 GASV00    65        8      1
      -1 CLAZIN    66        4      1
      =L SLUMIN    67        4      1
      -1 FCIIN    65        8      1 63  1 3.60000E+14
      -1 INPCNN  51        9      2
      -1 GE0 MIN  61        9      7
      -1 POWINC    62        9      2
      -1 PMATCH    63        9      2 6  1 2.3 0 00 0E-0 3
      -1 000LIN    64        9      2
      -1 GASv00    65        9      2
      -1 CLAZIN    66        9      2
      -1 6LUMIN    6T        9      2
      -1 FCIIN    68        9      2 63  1 2.50000E*16
      -1 INPCNN  51      to        2
      -1 GE0 MIN  61      10        7 4-25
 
Table 4-7 (Continued)
          -1 62        10            2 POWINC
          -1 63        10            2 PMATCH 6          1 2.30000E-03 l
l            1 64        10            2 C00LIN
            -1 65        10            2 GASv00
            -1 66        10            2 CLAZIN
            -1 67        10            2 SLUMIN
            -1 68        10            2 FCI!N 63          1 2.70000E*14
            -1 51        11            2 INFCNN
            -1 61        11            7 GE0 MIN
            -1 62        11            2 POWINC
              -1 63        11              2 PM4fCN 6        1 2 30000E-63
              -1 64        11            2 C00LIN
              -1 65        11              2 GASV00
              -1 66        11              2 CLAZIN
              -1 67        11              2 SLuMIN
              -1 68        11              2 FCI!N 63          1 2.70000E*14
                -1 51        12              2 INPCNN
                -1 61        12              7 GEOMIN
                -1 62        12              2 POWINC
                -1 PMATCH            63        12              2 6        1 2 60000E-03
                -1 64        12              2 C00LIN
                  =1 65        12              2 GASv00
                  -1 66      12              2                                                            )l CLA2!N                                                                                                    l
                  -1                                                                                              l 6T        12              2 StuMIN                                                                                                    l
                  -1                                                                                              !
68        12              2 FCI!N 63        1 2.70000E+1h
                  ~1 51        13              2 IkPCHk
                  +1 61        13              7 GE0 MIN
                  -1 62        13              2 POW INC 4-26
 
Table 4-7 (Continued)
        -1 PMATCM      63      13    2 6    1 2.40000E-03
        -1 000LIN      64      13    2
        -1 GASV00      65      13    2
        =1 CLAZIN      66      13    2
        -1 SL9 MIN    67      13    2
        =1 FCIIM      64      13    2 63    1 2 70000E*14
        -1 INPCNN      51      14    2
        -1 GE0 MIN    61      14    2
        -1 80WINC      62      14    2
        -1 PMATCH      63      14    2 6    1 2.40000E-03
        +1 C00LIN      64      14    2
        -1 GASV00      55      14    2
        -1 CLAZIN      66      14    2
        -1 SLUMIN      6T      14    2
        -1 FCIIN      68      14      2 63    1 2.60000E*14
        -1 INPCNN    51      15      2
        -1 GE0 MIN    61      15      2
        -1 POWINC    62      15      2
        -1 PMATch    63      15      2 6  1 2.70000E=03
        -1 000LIN      64      15    2
        -1 GASv00      65      15    2
        -1 CLAZIN      66      15    2
        -1 SLU N IN    6T      15    2
        -1 FCIIN      68      15      2 63    1 2.50000E*14
          -1 P OW IN A  12      1      1 89    1  .95299(*00
          -1 INPCNN      51      1      1 17    2      61    7
          -1 P CW INC    62      1      1 4-27
 
Table 4-7 (Continued) 29    3    .69624E + 00      .23357E-03      .229 05E-03 5  5    .17492E+00        .39337E+00        .64365E*00          .97740E*00        .13191E*01 10    5    .15893E*01        .15 0 3 8E
* 01  .193 89E
* 01      .20G25E+01 . 20 0 2 5E
* 01 15    5    .19 3 S 9E + 01 .1819 7E + 01      .16kk9E
* 01        .140 6 5E +01      .11125E*01 20    5    .779T4E+00        . 492 6 7E + 00  .30196E+00          .17492E+00        .17410 E - 01 32    5    .3 0 0 5 3E-0 2 .10925E-01 .12727E-01                  .32292E-01 .50475E-01 37    5    .69519E-01 .8719eE-01 .10108E+00                        .10910E+00 .11021E*00 42 ,  5    .10432E+00 .92406E-01 . 7612 8 E- 01                    .57774E-01 .39634E-01 47    5    .23559E-01 .82959E-02 . 61214E- 0 2                      .39471E-02 .12540E-02 56    5    .10577E-01 .25376E-01 .33690E-01                        .19844E+00 . 665 7 8E
* 00 61    5    .12 3 8 9E
* 01 .17875E+01 .2 2191E
* 01 .24717E +01 .25134E*01 64    5    .2 3 4 6 6E + 01 .19975E+01 .15191E+01 .98336E+00                            47457E*00 l
71    5    .93 58 9E-01 .15216E-01 .96T 14!-0 2 . 41271E-0 2 . 43 4 7 0E- 0 2 l
149    5      40169E-02 .19012E-01 .27k36E-01 .7772 4E-01 . 30 2 69E
* 0 0 i
154    5 .56456E + 0 0 . S10 7 9E
* 00 .100 31E
* 01 .11153 E +01 .1133 7E + 01 l      159    5    .10 58 5E + 01 .90236E
* 00 .698 41E
* 0 0 .4474 0E *0 0 .214 69E
* 00
!      164    5    .3177EE-01 .33000E-01 .2491TE-01 .16835E-01                                  44820E-02 80    5    .82 65 9E-02 . T4449E-01 .11161E + 0 0                  .352 8 5E +0 0 . 69614E + 00 85    5    .10 8 2 9E + 01  .1445 0E + 01    .172 91E + 01      .18 9 3 6E +01      19 2 0 0E
* 01 90    5    .18 06 tE +01 .15 715E + 01        .12 4 98E
* 01      .8 8 744E +0 0 . 53 4 89E
* 00 95    5    .24 5 9 eE + 0 0 .5377 0E -01      .3 93 39E-01        .24 907E-01 .2 85 77E- 02
        -1 C00LIN    64          1        1 33    1    .38T82E+03
        -1 INPCHN    51          2        2 17    2      21T        12
        -1 POWINC    62          2        7 29    3    .4 866 0E + 01    .19494E-03      .156 93E-0 3 5  5 .1736eE-01            .52105E-01 .95525E-01                .119 8 4E + 01 .15371E*01 10    5    .18063E+01        .20234E*01 .21623E+01                .22144E+01 . 21971E
* 01 15    5    .21102E+01        .19626E*01 .17542E+01                .15458E+01 .12 5 0 5E
* 01 20    5    .97262E+00          78157E-01      .43421E-01          . 260 52 E-01    .86141E-02 32    5    .57411E-02 .21882E-01 .25552E-01 .35224E-01                                . 50 5 8 FE- 01 37    5    .67671E-01 .83928E-01              .96763E-01          .10 415E +0 0    .10487E*00 42    5    .999T3E-01 .87331E-01              .71696E-01          .54271E-01      .37294F-01 47    5    .22545E-01 .13475E-01                .99048E-02 .63336E-02                .15080E-02 56    5    .14 03 3E-01 .2 4 965E + 00        .3 8210E + 0 0 . 6 9405 E + 0 0      .3 7674E-01 61    5    .45513E*00 .12962E+01              .17 919E
* 01      .20739E*01      .21089E+01 66    5    .18992E+01        .14852E+01        .93482E+00 .32955E+0 0                .24911E+ 00 71    5    .? = 469E + 0 0 . 35 655E + 00      .2 6 0 75 E + 0 0  .16 50 3E +0 0    .157 3 8E-01 149    5    .14595E-01        .11640E+00        .173 58E + 0 0      .140 97E +0 0 . 23210E + 00 154    5    .62 T6 9E + 0 0 . 9 30 31E +00      .12 7 04E +01 .1429 9E +01 .144 90E
* 01 159    5 .13291E + 01 .109 21E + 01              .775 04E + 0 0 .42319E +0 0 a.8 04 0 2E-01 164    5    .22158E+00        .14978E+00        .11070E+00 . 715 70 E-01 .118 4 0 E- 01 80    5    .35848E*00        .13398E*01 .19913E+01 .29468E+01                          42072E*01 85    5 .56112t + 01 .69203E+01 .79393E+01 .85230E+01 .85929E+01 90    5    .814T9E+01 .72556E+01 .60457E*01                          46836E+01 .33498E*01 95    5    .22285E+01 .97535E*00 .T4373E*00 .51220E*00 .15 8 5 0E
* 0 0
        -1 C 00L IN  64          2      2 33    1    .49197E*03
        -1 INPCHN    51          3      3 17    2        61      15
        -1 POWINC    62          3      3 29    3    .87 916E + 0 0      68510E-03      .626 STE-03 5    5    .17482E+00 .38937E+00            .64365E*00            .97740E+00 .13191E*01 10    5 .15893E*01 .18038E*01                  .193 89E
* 01        .2002SE+01        .2002SE+01 15    5    .193 8 9E
* 01 .18197E*01          .164 4 9E
* 01      .14 0 6 5E +01    .1112 5 E
* 01 4-28
 
O Table 4-7 (Continued) 20      5      .7787*E+00 .49267E*00              .30196E*00 .17492E+00 .A7410E-01 32      5      .33791E-02 .11996E-01              .13962E-01 .36677E-01 .52737E-01 37      5 .71525E-01 .88972E-01                    .10248E+00 .11002E+00 .110 52E
* 0 0 42      5      .10380E*00 .111061-01              .74275E-01 .55685E-01 .3757FE-01 47      5      .21612E-01 . 66 86 9E -0 2            49215E-02 .31553E-02 . 94 0 7 0E - 0 3 56      5      .13 68 h E-01 .10962E-01            .94309E-02 .23156E+0s .86670E+00 61      5      .162 41E
* 01 . 2 33 7kE
* 01      .2 8 8 97 E
* 01 .31991E*01 .122 6 0E 6 01 66      5 .2975 8E + 01            .2 49 3 0E +01  .185 5 7E
* 01 .11606E+01 . 50 8 42 E+ 0 0 71      5 .1335 6E-02 .96296E-01                      69946E-01 .4358 0E-01 .3313 0E-02 149      5 .60122E-02 .26916E-01                    .3 8664 E-01 .12516E +0 0 . 45169E + 00
                                          .1164 0E *01    .142 76E
* 01      .15 7 53E *01    .19 8 8 3E + 01 154      5 .82147E 6 00 5      .1468 0E + 01      .12 366E
* 01    .9 30 43E
* 0 0  .593 66E + 0 0 . 2710 6E + 00 159                                                                                          73164E-02 164      5 .6T315E-02 .70628E-01 . 526 80 E - 01 .34730E-01            .5013 6E *0 0    .980 66E + 00 80      5      .12556E-01        .10 485E
* 00    .156 68E + 0 0 55      5      .15 08 9E
* 01    .1998 8E
* 01    .23 75 8E + 01 .2587 0E *01 .260 3 9C* 01 90      5      .24286E+01          .20914E *01    .16445E
* 01 .11516E +01 a. 6776 9E + 00
                        .281T 1E
* 0 0 . 36 876E-01 .2692 8E-01              .16 982E-01      .178 86E-02 95      5
        -1
* CO L IN    64              3      3 33      1      .44130E+03
        -1 INPCNN      51              4      4 iT      2        21T      18
        -1 POWINC      62              4      4 29      3 .52252E *01            .33970E-03 .25647E-0 3 5      5      .17368E-01 .52105E-01 .95525E-01 .11984E+01 .15371E+01 10      5      .18 06 3E 6 01 . 20 2 34E
* 01 .21623E*01 . 2214 4E
* 01 . 219 71E + 01 15      5      .21102E*01 .19626E+01 .17542E+01 .1545mE601 .12505E+01                    9684tE-02 20      5      .97267E+00 . 7915 7E -01              43 421E -01    .26052F=01 32      5      .66504E-02 .23337E-01 . 2 714 7 E- 01 .3642kE-01 .10590'+00            .52764F-01 37      5 .70264E-01 .96631E-01 .992T1E-01 .10610E*00 .34444E-01                                E 42      5      .9883kE-01 .859465-01              .69327E-01        . 5145 7E-01 47      5      .19660E-01 .11141E-01 . 81694E - 0 2 .51954E-02 .134                        0 0E- 02 56      5      .110 0 2E-01 . 2429 3E + 00 .3 7 3 3 3E
* 0 0 .67216E +0 0 .11472F+00 61      5      .95499E+00 .17327t+01 .2 32 76E + 01 .26509E*01 .26584f+01 66      5      .23 5 86E + 01    .15132E*01 .11246E*01              4065CE*00 .24910E+00 71      5      .79607E+00 .3ST10E+00 .29320E+00 .17930E+00 .20553E-01 149        5      .16197E-01 .12110E+00 .18003E+00 .12 G O RE + 00 . 32                      3 3 5E + 0 0
                                                                                                  .17219E
* 01 156        5      .T8 9 76E + 00 .12165E +01        .15422E + 01      .1718 6E +01 159        5      .1555 8E +01 .12530E +01          .8 66 85E
* 0 0  .45 893E +0 0 . 7798 8E-01 164        5      .25 21CE
* 00 .16773E+00 .12380E+00                  .79840E-01        .12 6 9 0E-01 80      5      .k6990E+00        .17173E+01      .2 8.187E + 01    .36283E+01        .51k32E+01 85      5      .682k2E+01        .83790E+01      .95668E+01 .10211E*02 .10220E+02 90      5      .96 012E + 01    .94539E+01      . 69 5 26E .01    . 5 314 5E + 01 .37521E+01 95      5      .2 4 65 9E + 01 .10365E+01 .78523E*00                .53393E+00 .150 0 7E + 00
          -1 000LIN      64              4      4 33      1 .51352E+03
          -1 IMPCHN      51              5      5 1T      2          61      30
          -1 POWINC      62              5      5 29      3      .88 090E + 00    .15 990E-02 .13112E-02 5      5      .17482E+00 . 389 3 7E +0 0 .643 65E +0 0 .977bOE+00 .13191E                    + 01 10      5      .15893E+01 .18038E+01 .19389t+01 .2 0 G Z 5E +01 .20025E+01 15      5      .193 8 9C + 01 .18197E+01 .16449E + 01 .14065E+01 .11125E+01 20      5 .778Tkt+00                49267E*00 .30196E+00 .17 48 2E +0 0 .87410E-01 32      5      .41866E-02 .13301E-01 .15 3 89E - 01 .36637E-01 . 556 2 9C- 01 37      5 .75207E-01 .93083E-01 .10658E+00 .11348E+00 .11261E*00 42      5      .19387E+00 .88567E-01 . 69412 E-01 .5025eE-41 . 32 8 3 9E- 01 4-29
 
Table 4-7 (Continued) 47        5      .18044E-01              47017E-02 .34.75E-02 .21931E-02 . 56 9 3 4E -0 3 56                .1920SE-01              4638kE-01 . 616 66 E- 01 . 3 9 017E +0 0 .11572E+01 5                                                                      40012E +01 .3996kE+01 61        5      .20903E*01 . 2 9 7 21E + 01 .3 64 55E
* 01 .12925E+01                              55261E+00 66        5 . 3 6 0 8 PE + 01          .29450E+01      .21310E+01
                                                                  .10  523E
* 0 0    .662 84E-01 . 650 5 7E- 02 71        5      .65 262E-0 2 .14416E + 0 0 149        5      .11826E-01              43111E-01 .607 03E -01 .16693E *0 0 . 555                      73E + 00
                                                                                                              .187 2 9E + 01
                                                  .140 73E + 01 .17183 E + 01            .18 818 E *01 154        5        .99 T51E
* 0 0                                              .6043 9E +0 0 .256 07E* 00 5 .16951E
* 01                .13 812E + 01    .995 89E
* 00 159                                                        .72149E-01          .kT222E-01          .31492E-02 164        5        .19682E-01          . 9 70 7 2E -01                                              .12 431E
* 01
                                                  .14 8 88E + 00 .22211E + 0 0          .65 78 kE +0 0 80        5      .18 645E-01                                                                      .31619E
* 01 85        $      .18 90 8E *01        .24 8 86E
* 01 .29412E
* 01 .3177 8E +01 90          5 .E8972E+0x . 24290E*01 .18458E+01 a.12506E+01                      .14699E-41 .10217E-02. 71447E+00 95        5        .2 8244E + 00 . 3260ht-01 .23653C-01
          -1 C00LIN        64                5      5 33        1          44130E+03
          -1 INPCHN        51                6        6 i
17          2            61        6 i
          -1 POWINC        62                6        6 3 . 9752 0E
* 0 0 . 317 0 0E-03 .249 21E-0 3 l
29                                                          66365E*00          .97740E+05 .13191E*01 5        5        .17482E*00 .38937E+00                                      .20G25E*01 .20025E + 01 10        5        .15893E*01          .18038E+01      .19389E*01
                                                                                          .140 6 5E + 01 .1112 5E
* 01
                              .19389E+01 .18197E+01 .16449E+01 1
15        5                                                                    .17682E+00 . 57410E- 01
                              .7787kE+00 .49267E*00 .30196E*00 l
20          5                                                                      41504E-01 . 62 6 96E- 01 l
32          5 . 5 2 2 8 5E-0 2          .15 811E - 01    .18247E-01
                              .84518E-01          .10 421E *00    .11$71E+00            .12521E+00 .12181E+00 37          5                                                                  .29498E-01 .18 4 3 7E- 01
                              .10751E+00 .82297E-01                    46409E-01 42          5                                                                    .15 30 6E-0 2        65059E-03 47          5      .1018EE-01 .3247aC-02 .23S92E-02      .255 70 E-01          .21233E+00 . 932 3 5E + 00 56          5        .8 4285E-02          .1333 4E-01 61          5        .18396E*01 . 27114C + 01 .33827E*01 .37413E*01              .11900E*01 .. 57  373342E0 5E +* 00 01 66          5        .33650E+01 .26041E+01 .18657E+01 .97 60 0E -0 2 . f 4 9 70E-0 3 71          5        .11693E + 0 0 .21690E-01 .1572 0E-01                        .10 432E +0 0 . 683 68E +00 169          5        .15535E-01          .54055E-01      .75545E-01
                                                                                            .18 3 8 2 E +01    .1518 4E + 01 l        154          5        .93299E+00 .1354kt+01 .16737E+01                          .33 6 86E +0 0 .12942E + 00 159 5      .16 031E + 01 .11594E + 01 .60 326E + 0 0                    .26345E-01 .63485E-02 166          5        .27445E-01 .52530E-01 . 39 43 5E -01 .6672 9E *00 a.12 6 56E
* 01 80          5        .18 765E-01 .15465E + 00 .2310 5E + 0 0 5 .19391E
* 01 .25 624E +01 .30297E + 01 . 3260                              6E +01 . 3210 4E + 01 85
                                                                      .142  33E  + 01        .900  02E  +0 0 .69999E
* 00 90          5        .28652E+01 .ZZ151E +01                                      .15 G 3 5E-01 . 98 535E-0 3 i
95          5 -.2 0 37 9E + 0 0 . 33565E-01
                                                                      .243  00E-01                                            '
            -1 C00LIN          6b              6        6 33          1          34189E+03
            -1 INPCHN          51              7        7 17          2          217      24
            -1 62              7        7                                                                                )
POWINC 29          3 .5953kE
* 01              .57450E-03 .3 8492E-03                                      .17276E*01
                                  .26300E-01 . 613 8 7E- 01 .11400E+00                        .16470E+01 5        5
                                  .18 32 9E + 01 .22362E+01 .23766E *01                        .24CZ9E*01 .23152E+01 10          5                                                                    .12277E+01 . 990 9 7E
* 0 0 l            15          5      .20872E+01 .18 0 6 5E + 01 .14908E+01                        .21047E-41          97696E-02 l                        5        .76296E+00 .61387E-01                  40340E-01                                              i 20                                                                                  41720E-01 .59060E-01 32          5      .86651E-02 .28450E-01 .32985E-01 .11230E+00                                      .11023E*00 76263E-01 .93308C-01              .10615E+00 37          5                                                                                        .25173E-01 42          5        .99573E-01 .80896E-01 .55423E-01 .38625E-01                  .36 0 3 3E-0 2      83891E-03 47          5        .14278E-01          77858E-02 .56943E-02                                      .5566 6E + 00
                                                                        .7 95 90 E + 0 0        .1499 0E +01 56          5        .62 593E-01 .51863E + 00
(                                    4837 9E + 0 0    .16580E+0i      .2 2 0 21E
* 01 . 25 9 31E
* 01 . 256 8kE
* 01 61          5                                                                                        .94149E+ 00 66          5 .2129 7E+ 01 .13046E+01 .19545E
* 0 0 .46261E *8 0 l              .
4-30
 
0 l
l Table 4-7          (Continued) 71    5        .13 h6 7E + 01 . 57 b9 3E + 0 0          .4 20 23E + 0 0 . 26 5 63E + 0 0 . 29 0 3 ?E-01 169      5        .34658E-01            .22930E +00 .33868E+00 .352 88E +0 0 . 22998E+ 00 154      5        .8582 3E + 0 0        .163 55E +01 .1 ST1TE + 01 .20944E *01 .20 65 8E
* 01 159      5 .1TT99E + 01                  .12 50 2E
* 01 . 5191TE + 0 0 .95 932E-01 .217 77E + 0 0 164      5            49016E+00 .24590E+00                  .18095E+00        .11E98E+00 .16718E-01 766 71E
* 01 80    5 .64255E*00 .23695E+01 .33403E*01 .53737E+01                                                                .
85    5 .10162E+02 .12436E+02 .1412 3E
* 0 2 .14969E+02 .14827E*02                              67076t+01 90    5        .13 72 3E
* 02 .11833E+02 . 9413 9E
* 01                  .69023E+61 95    5 . 3 0 04 3E
* 01 .1093bE+01 .82475E
* 00 .55615E+80 .14578E+00
            -1 000LIN        64                I        I 3f    1 . 54 22 7E + 0 3
            -1 INPCHN        51                8        8 iT    2              61        26
            -1 POWINC        62                8          8 29    3        .1190 9E + 01          .140 99E-02 .99116E-0 3 5    5        .17 68 2E + 0 0 .38937E +00              .66365E+00        .97740E+00 .13191E+01 10    $        .15893E+01 .18038E+01                    .193 89E + 01    .20025E+01 .20025E+01 15    5        .193 8 9E
* 01        .19197E+01 .16449E+01                .1606fE+01 .11125E*01 5        .7787kE+00              6926TE+00 .30196E
* 00            .17 68 2E +0 s .87410E=01 20 32    5 .34220E-02 .13102E-01 .15302E-01 .36485E-01 .E4727E-01 37    5 .73914E=01 .91739E-01 .10530E*00 .11230E+00                                      .1115 5E + 0 0 42    5 .10330E*00 .88086E-01 .69437E-01 .5074TE-01 .34000E-01 47    5 .20210E-01 . 7 0 3 9 9E -0 2 .51764E-02 .33132E-02                                  .95804E-03 56    5        .5052 7E-82 .12833E +00 .2032 8E
* 00 .59T19E-01              43607E*01
                                                                                                          .88142E+00 63522E+01 61    5        .20305E+01 .31077E*01 .39266E+01                                                  3586TE*00
                                                                                        .122 6 8 E + 01 66    5 .39181E+01 .3th97E+01 .22359E+01 .95C0 8E-01 .902S3E-02 T1    5 .24961E + 00                    20 888E +00 a.15195E +00
                                                    .919 8 8E- 01 .134 98E + 0 0 .767 95 E-41              .60616E + 0 0 169    5        .15508E-01                                                                    . 240 6 8E
* 01 154      5        .1213 5E
* 01          .17 72 5E + 01    .219 63 E
* 01 . 2415 6C +01 159      5 .21152 E + 01 .1765 8E + 01 .12616E + 01 .76652E                            *8 0 . 28566E        + 00 164      5        .58851E-01 .11kT3E+00 . 8 55 50E-01 .56365E-01 .117                                  8 5E-
                                                                                                            .133 84E
* 01 01
                              .132      01E-01  .11313E    + 00  .1693    0E  + 0 0    .62  616E  +0 0 80    5 5        .2136 8E + 01        .2 8 741E + 01    .3 4321E +01      . 37 260E *01 . 3708 8E
* 01 SS
                                                    .2 8 3 56E *01    .213 96E + 01    .142 70 E +0i      . 785 8 6E + 00 90    5        .339 3 6E+ 01 95    5        .2 894 9E + 0 0 . 3056 8E-01 .2216 5E-01                  .13 765E-01 . 92 86TE-03
            -1 C00LIN      64                6          8 33    'l            61456E+03
            -1 INPCHN      51                9          9 17    2            217        18
            -1 POWINC      62                9          9 3 .61736E
* 01 .62270E-03 .2565 8E-0 3 29                                                                          .11986E+01        .153T1E+01 5    5          .173 6 eE - 01 . 5210 5E-01 .95525E-01                    .22166E*01        . 21971E + 01-10    5          .18 0 6 3E + 01 . 20 2 3 4E + 01 .21623E*01                                  .12505E+01 5 .21102E*01 .19626E+01 .17542E*01                                    .15658E+01 15                                                                          .26052E-01        .56441E-02 20    5        .97262E+00              78157E-01        63421E-01 32    5 .71329E-02 . 2619 0E- 01 .30533E-01                                .34973E-01 .52873E-01
                                                                                          .10 660E +0 0      .10 427E + 0 0 37    5        .69 5 2 aE -01        .S5542E-01 .97952E-01 5        .91102E-01            .84279E-01 . 67 919E -01            .50E03C-01 . 34219E - 01 A2 67    5 .20673E-01 .11973E-01 .87742E-02                                    .55719E-02 .13 99 3E- 0 2
                                                                                          .17 553E +01          788 0 TE+ 00 56    5          6888 3E-01 a.61110E+ 00 .92T1TE *0 0                                        .242Thr+01
                              .28203E*00 .12721E+01                    .20 2 55E + 01    .242TSE+01 61    5
                                                                                                              .10 548E
* 01 66    5          .2 0 45 7E + 01      .13T 01E +01      .53 7 85E +0 0 -.30 669E +00
                                                                        .56 8 33 E +0 0 .35970E +00          . kO9 3 0E- 01 71    5 .16TT7E +01                  .777 00E + 00
                                .35733E-01 .26303E+00 .390TTE*00                            65239E*00 . 16675E+00 149      5
                                                                                          .20 ZG 5t *01      .20 791E* 01 154      5 .7962 6E
* 0 0 .13101E + 01                    .186 00E +01
                                                                        .915 03E
* 8 0    .375 82E +0 0      .12 0 6 0E + 0 0 159      5          .184T1E+01 .1433 5E +01 4-31
 
Table 4-7 (Continued) l 1
l 5      .5501*E+00              . 313 5 7E + 0 0      .23097E+00          .166 43E +0 0 . 22 33 7E-01 166                                                                    .30237E+01 .52058E+01                        74985E+01 l
30              5 .55177E+00                  .21360E+01 1
85              5      .99922E+01              .122 7 9E + 0 2      .                    .14939E+02 .14931E+02
                                                                                                                              .54655E+01 90              5      .16010E+02 .12325E+02 ' .14                      10132010E + 0E 2 +.77  0 43 2 7E +01 i
95              5      .35794E+01 .13 2 0 3E
* 01 .99847E
* 00 .67663E+48 .18467E+00 l
              -1 C00LIN                64              9        9 33              1 .53908E+03
              -1 INPCHN              31            10        10 17              2        217            9
              -1 P OW IRC            62            10        10 29              3 . 6 0 0 2 9E
* 01            .195 0 9E -0 3        .119 42E - 0 3
                                                                                                                              .172 7 6E+ 01 5            5 .26309E-01 .61387E-01 .11400E+00 .14 4 70E +01                                              .23152E+01 10              5 .18329E*01 .22362E+01 .Z3766C+01 . 26G                                      2 9t +01
                                                                                                          .12277E*01          .99097E+00 5      .20872E+01              .19065E+01            .16908E+01 15
                                                                                      .40340E-01          .210 4 7E-01        .37696E-02 20              5        76296E+00 .61387E-01                                            .667 5 aE-01          . 612 66E- 01 32              5      .93435E-02 .32836E-01                          .38196E-01
                                                                                                          .116 0 0 E + 0 0      .112 S OE
* 0 0 37              5        7950 9E-01            .970526-01            .110 2 0 E
* 0 0
                                                                                                                                .19096E-01 5 .99639E-01 .76435E-01                              .42553E-01          .27573E-01 42                                                                                                              .107 8 3E-0 2 67              5 .1199 6E-01 .Sh935E-02 .62346E-02 .31753E-02                            .22 796E +01        .127 55E + 01 56              5      .73 89 3E-01 *.31390E +0 0                    .123 00E
* 01 61              5      .15 76 8E
* 0 0 .47762E*00 .16630E+01 .20 7 3 5E + 01 .20499E+01 66              5      .16023E*01                76 501E +00        .66195E +0 0 .12090E +01.149 32E+01 71              5      .17 040E +01 .66903E + 00 .49950E + 0 0 .30 997E +0 0 *.356                                      3 0E-01 169                5        47243E-01 .33240E+00                            49263E+00 459380E +00 .63766E-01 154                5        7798 3E +00 .14321E *01 .19200E+01 .21638E+0i .21201E*                                  66335E+00 01 159                5      .17 83 6E +01            .11565E + 01          .152 87E + 0 0 .24203E+00
                                                                                        .2 00 30E + 00      .12677E+00          .19 42 7E- 01 166                5      .63 50 3E + 0 0 .27183!+00                                                              . 943 7 9E
* 01 80              5      .59th7E*00 .22820E+01 .32320E+01 .5                                  83 5 9E *01
                                                                                                            .16 5 0 9E + 0 2    .162 9 2E + 0 2 85              5 .11232E+02 .13756E+02 .15610E + 0 2                                                              68651E*01 90              5 .15007E*02 .12833E+02 .10126E+02                      77133E+00.72816E+01
                                                                                                          .52537E*00              .1495 7E + 0 0 95              5      .30217E*01 .10176E*01
                -1 C00LIN              64              10        10 33              1 .55186E+03
                -1 INPCHN              51            11        11 17              2        217            9                                          '
                -1 POWINC              62            11        11 29              3 . 60 J 12E + 01              .19 715E-0 3          .119 67 E-0 3
                                                                                                            .16670E*01          .17276E+01 5              5      .2 6 3 0 9E-01 .61387E-01 .11600E+00                              .24029E+01 .23152E*01 10              5      .18 32 8E + 01 .22362E+01                      .23766E+01
                                                                                                            .122 7 7E +01        . 990 9 7E + 0 0 15              5 .20872E*01 .18065E+01 .1k908E+01                      40340E-01        .21067E-01 .87696E-02 20              5 .76296E+00 . 613 8 7E- 01                                                6686EE-01 . 613 3 6E- 01 32              5      .9532hE-92 .32965E-01 .38315E-01                                                          .112 7 0E
* 0 0 37              5 .79553E-01 .97048E-01 .11014E + 0 0 .11591E+00                                                .18 0 61E-01 42              5      .99 50 6E-01 .76337E-01                        42kS2E-01 . 27 515E-01
                                                                                                                                    .10734E-02 47              5      .11921E-01 .15237E-02 . 62 5 49E -0 2 .39869E-Ot                                        .12 8 57E *01
                  $6              5      .7810 3E-01.1193 4E +01. 182 0 4E *01 .23                              017E +01
                                                                                                                                    . 20 6 S3E + 31 61              5      .15 713E + 0 0 . 89703E +00 .1678kt+01 . 20 918E +01                                    .150 64E + 01 66              5      .26162E+01 .75 47 0E
* 00 . 667 31E + 0 0 .1218 5E *01                                    .360 33E-01 71              5 .1719 6E+ 01 .68250 E +00 .499 23E
* 00 .31600E                                    *00
                                                                                                                                    .66284E-01 149                5          69 0h 3E-01 .48750E*00 .73387E+00 .59841E+00                    216 41E +01            21398E+ 01 154                5          78 92 0E + 0 0        .1646 7E +01        .193 8 4E +01
                                                                                                              .2 4 401! +0 0          467 4 9E + 0 0 159                5      .18005E*01 .11665E+01 .15405E*00 164                5      .66115E*00 .27563E+00 .20293E*00 .13C37E+00 .19483E-01 80              5 .58943E+00 .36587E+01 .50717E*01 .59056E+01                                            . 653 k 8E + 01 i
85              5      .113 5 7E
* 0 2 .1390bE*02 .15779E+02 .16679E+02 .16662E*02                                490 55E
* 01 j                                  5 .15149E*02 .129 58E +0 2 .102 21E + 0 2                                  73461E+01
-                  90 4-32
 
O Table 4-7 (Continued) 95  5    .30b67E+01 .10022E*01 .759FTE*00                      .51733E+00        .146 9 0E + 00
      -1 000LIN  64        11        11 33  1    .51352E+03
      -1 INPCMh  51        12        12 17  2      217          12
      -1 POWINC  62        12        12 29  3    .56 8 P F E +01    .21500E-03      .13 0 51E-0 3 5  5    .17369E-01 . 5 210 5E -01          .95525E-01        .11986E+01        .15 3 71E
* 01 10  5    .18 0 6 3E + 01 . 20 2 3 bE +01    .21623E*01        . 22146 E
* 01    .21971E*01 15  5    .21102E+01 .19626E+01 .17542E*01                      .1565 eE *01      .12505E*01 20  5 . 97262E + 0 0 .79157E-01                43b21E-01      .26052E-01          86841E-02 32  5    .6683?E-02 . 2714 6E-01 .31831E-01                    .bo666E-01 . 53 5 6 6E-01 37  5    .70607E-01        .97167E-01      .99953E-01        .10620E+00 .10800E+00 42  5 . 962 T 3E -01 . 813 3 7E -01 .63072E-01                    45711E-01 . 3112 6E- 01 47  5    .206T1E-01 .14300E-01 .10510E-01. .67282E-02 .196 61E - 0 2 56  5    .56 325E-01 . 75 710E + 0 0 .11510E + 01 .23 5 91E +01 a.172 7 hE + 01 61  5    .99835E+00 .32118E+00 .19920E*00                        49180E+00 .52830E+00 66  5    .3 3 3 2 6E
* 0 0 .19 42 6E -01    .416 90E
* 0 0 a . 95 710E +0 0      .12 715E
* 01 71  5    .1582 6E
* 01    .662 3 0E +0 0  .47 010E + 0 0    .29 795E +0 0 . 348 50E-01 169  5    .36080E-01 .31760E*00 .67555E+00                    .71338E*00        .25508E*00 154  5    .25 23 0E + 0 0 .71666E + 0 0      .10 663E + 01.12 525E *01            .1257 4E
* 01 159  5    .10 89 3E
* 01    .79 363E
* 0 0  .443 59E+ 0 0      .813 69E-01      .25120E*00 164  5    .516 01E
* 0 0 . 24525E + 0 0 .18105E+00 .11E85E*00                      .187 8 5 E- 01 80  5      41895E+00      .1 T 50 5E + 01 .26990E*01            69018E+01          71719E+01 85  5    .96108E*01        .1182bC+02 .13668E*02 .162 96E *0 3 .16172E
* 02 90  5    .13135E+02 .11338E+02 .90T08E*01 .6737eE+01 66321E*01 95  5    .29643E*01 J.10790E*01 .421kSE*00 .56385E+00 .17035E*00
      -1 C00LIN  6b        12        12 33  1    .51352E+03
      -1 INPCHN  51        13        13 17  2      21T        12
      -1 POWINC  62        13        13 29    3    .57176E+01        .21670E-03      .13154E-03 5  5    .17368E-01 .52105E-01              .95525E-01        .1199 hE *01      .15171E + 01 10    5    .18 0 6 3E + 01  .20234E+01      .21623E+01        .22146E+01        . 219 71E
* 01 15  5    .21102E*01        .19626E*01 .17542E*01              .1565eC+01 .12505E+01 20  5    .97262E+ 00          79157E-01        43421E-01        .26G52E-01 .56941E-02 34  5 .6518cE-02 .27220E-01                  . 31910 E -01      .40535E-01        . 53 6 2 5E- 01 37    5    .7 0 6 6 0E -01  .87200E-01      .99860E-01        .10 6 2 0E
* 0 0  .105 0 0E
* 0 0 62    5    .96235E-01 .81290E-01              .63015E-01            45660E-01 .31075E-01 47    5 .20620E-ci .14255E-01 .10bSOE-01 .67060E-02 .19325E-02 56    5    .56 T55E-01 .76620E +0 0 .116 70E *01 .238 3eE *01                        1748 0E+ 01 61    5    .10147E +01 . 33 4 G 8E + 0 0 .1 ST7FE + 0 0 .49128E+00 . 519 77E + 0 0 66    5    .3229 5E + 0 0 . 2936 5E-01 .62712E
* 0 0 .86 875E +0 0 .12 9 4 0E
* 01 71  5    .15 967E+01 .6473 5E + 00 a.673 89E
* 0 0 .30 0 3 0 E +0 0 .35215E-01 149    5    .36625E-01 .32065E+00                69 010E + 0 0    .72G96E+00 .25953E*00 156  5 . 2 510 TE + 00 . 71585E + 0 0 .106 TTC +01 a.12 571E +01 .1261                    TE
* 01 159    5    .10  92  7E  +01  .79694E+00      .h4338E+00        .791  1E-01      . 9663E
                                                                                                    + 00 166    5    .52060E*00 .24715E*00 .18 2 65E + 0 0 .11780E*00 .13 9 4 5 E- 01          72383E+01 80    5      42 68 0E
* 00    .17690E*01 .25245E+01                69691E+01 85  5 . 96 9 8 6E + 01 .11928E*02 .13 5 85 E + 0 2            .14614E*02        .162 8 7E
* 02
                                                                        . 674 7 9E *01      6664 6E
* 01 90    5 .13243E+02 .1162 9E + 0 2 .9140TE*01                      .56650E+00        .17 0 5 0E + 0 0 95  5    .29641E*01 .10950E*01 .82580E*00
      -1 C00LIN  66        13        13 33    1      486T9E*03 4-33
 
Table 4-7 (Continued)
        -1 INPCHN      51          14      14 17      2        217      18
        -1
  ,POWINC      62          14      14 29      3    .465 3 9E* 01 . 22 814E-03            .13 8 48E-0 3 5    5    .1736sE-01 .52105E-01                .95525E-01        .1198kE+01 .15171E
* 01 to      5    .18 0 6 3E *01      .2023hE+01        .21623E601        .22144E+01          .21971E+01 15      5    .21102E+01 .19626E+01 .17542E+01 .15 4 5 eE + 01 .12 5 0 5E 6 0A 20      5 .97262E+00 .7515FE-01                        43421E -01 . 260 52E -01 .26841E-02 32      5 .53868E-02 .23666E-01 .2 7 906E-01 .37601E-01 .5206cE-01 37      5 .69617E-01 .86389E-01                    .99270E-01        .10596E+00          .10 5 3 0E + 0 0 42      5 .97466E-01 .83784E-01 .66735E-01 .69320E-01 . 33 6 0 9E-01 4T      5    .21846E-01 .14550E-01 .10716E-01 .68722E-02 .20662E-02 56      5    .12 510E + 0 0 .16868E +01            .2 5641E + 01      .2 394 9E *01 -.2672 8E + 01 61      5    .2 8 977E +01 .30749E
* 01            e 319 00E+ 01      .322 6 7E *01      .31697E
* 01 66      5    .3 011 AE
* 01 . 27 554E +01          .2 k2 71E + 01    .210 5 7E +01        .15170E + 01 71      5      .1553 9E + 01 . 51975E
* 0 0          .3 9015E + 0 0 a.240 52E +0 0 . 27219E-01 149      5    .27210E-01 .26713E*00                    40200E*00 .84G40E+00 . 8 312 7E + 0 0 154      5        79 616E + 00 .75661E*00            .T2082E+00        .69310E+00          .67331E*00 159      5      .65693E+00 .63663E+00                .60804E*00        .58658E+00          .57190E+00 164        5    .55356E*00 .2013FE+00                .14 8 37 E
* 0 0 . 95 3 8 0 E -01      .1kk 3 8E -01 l          80      $    .27437E*00 .11708E*01                .16752E+01          .35610E+01          . 53 0 72E
* 01 1          85    5    .71811E+01          .88819E+01        .10150E+02 .10795E+02 .10725E*02 90      5    .99 5 7 9E
* 01    .8 6212E +01      .69 326E *01        .51677E+01 . 35455E
* 01 95      5    .22290E*01 .79148t+00                .68427E*00          .41702E*00 .13102E*00
          -1 000LIN      64          14      14 33      1 . 43 79 9E
* 0 3
          -1 INPCNN      51          15      15 17      2      21T        24
          -1 P OW INC    62          15      15 29    3        480TLE+01 .32800E-03                .19910E-03 5    5    .17 3 6 9E - 01 . 5 210 5E -01        .95525E-01          .11986E+01          .15 3 71E + 01 to    5      .15 0 6 3E + 01 . 20 2 3 4E + 01      .21623E+01        . 2214 6E +01        . 219 71E + 01 15    5    .21102E+01          .19626E+01        .17542E*01        .1565AE*01          .12 5 05 F + 01 20    5      .97262E+00        . 7815 7E - 01        43421E-01      .26052E-01          .86841E-02 32    5    .5015eE-02          .22640E-01        .26380E-01        .36C35E-01          . 50 5 5 5E- 01 37    5    .67763E-01 .54295E-01                    97188E-01      .1042SE+00          .1044 0E + 00 42    5      .97673E-01        .85285E-01        .69285E-01        .5 214 5E -01 .36260E-01 47    5      .23645E-01        .15888!-01 .117 0 0E-01                  7510 3 E-02      .22933E-02 56    5      .35 79 3E-01 . 50 52 3E + 00 . .769 0 8E + 0 0 .17 63 7E +01 .1613 7E + 01 61    5      .ibo5bE+01 .119 95E + C 1 .10 3 2 7E
* 01 .93 30 2E *0 0 . 90 796E + 00 66    5      .95 021E
* 0 0 .10 3 99E +01          .11517 E +01 a.12 60 8E +01 .13432E + 01 71    5      .137 33E +01 .50 718E + 00 .3 713 e E + 0 0 .23 5 5 8 E +0 0                  .280 6 8E-01 1k9        5      .23345E-01 .22103E+00 .3 3213E + 0 0 .5844 9E +0 0                              40360E 6 00 154        5      .19469E+00          .52942E-04        .150 92E + 0 0    .23 t76! +0 0 . 248 5 8E + 00 159        5      .19028E*00 .T7275E-01                  . 6 515 8 E-01    .22229E+00 .3635kE*00 164        5        4T126E*00        .198 9 0! + 0 0  .14688E*00          . 94 895 E-01        .15450E-01 80    5      .27945E*00 .11973d*01                  .17135E*01        .33576E*01 .49522E+0i 85    5      .6 6 85 9E + 01 . 6 27 84E + 01        .94891E*01        .10144E+02          .1015 6E + 02-90    5      .9537kE*01          . 8 392 4E + 01    .68945E*01        . 5.2 5 61 E
* 01 . 36 8 6 6E
* 01 95      5 .2375kE+01 .91868E+00 .70193E+00                              .48515E+00 .15400E*00
            -1 C00LIN      64          15      15 33      1 . 43 98 8 E
* 0 3
            -1 PMATCH      63            1      1 6    1 3.00045E-03 26      2 1 36147t+04 2.56706E-05 4-34
 
Table 4-7 (Continued) 33  1 2.05542E+01
        -1 PMATCH    63        2        2 6  1 2. 65 64 9E-0 3 26  2 8 5352eE+03 6 53154E-05 33  1 8 45856E+00
        =1 PMATCH    63        3        3 6  1 3.0004fE-03 26  2 1.3 614 TE + 0 4 2. 56 70 6E-0 5 33  1 2.05542Eh);
        -L PMATCH    63        4        4 6  1 2 531! ?E-0 3 26  2 7.61401E
* 0 3 9.20T61E-OS 33  1 6.85920E*00
        -1 PMATCH    63        5        5 6  1 3.0 0 045E-0 3 26  2 1 36147E+04 2 56706E-05 33  1 2.05542E+01
        -1 PMATCH    63        6        6 6  1 3.00045E-03 26  2 1.36147E+04 2.56706E-05 33  1 2 05542E+01
        -1 PMATCH    63        7        7 6  1 2.23233E-03 26  2 6.0756tE+03 1 24904E-04 33  1 4 59502E+00
        -1 PMATCH    63        8        8 6  1 3.00045E-03 26  2 1.36147E+04 2.56706E-05 33  1 2.0 5 54 2E + 01 1
8 MATCH    63        9        9 6  1 2.18 58 EE = 0 3 26  2 5 88869E+03 1.37220E-04 33  1 4.35450E+00
        -1 PMATCH    63      10      10 6  1 2.21712E-03 26  2 6.01333E+03 1.31590E-04 33  1 4 51399E + 0 0
        -1 P MA TCH  63      11      11 6  1 2 195FZE-03' 26  2 5.92 751E + 0 3 1.3542 9E-04 33  1 4.40 3S 1E + 0 0
        *1 PMATCH    63      12      17 6  1 2.36039E-03 26  2 6.65193E+03 1 07537E-04 33  1 5.38353E+00 .
        -1 P MA T CH  63      13      13 6  1 2. 33 8'e 0E
* 0 3 26  2 6. 54 5 T1E + 0 3 1.110 5 5E-0 4 33  1 5.23281E+00
        -1 4-35
 
1 Table 4-7 (Continued)
PMATCH  63      ik    14 6  1 2.72220E-03 26  2 9.13162E*03 5 70630E-05 33  1 9.59124E+00
      -1 PMATCH  63      15    15 6  1 2. 66 049E-0 3 26  2 8.56 892E *03 6 48036E-05 33  1 8.52043E+00
      =L ENOJOB  *1 r
4 4-36
 
I f
I
: x.      x    s      N'                    N                                        i NN
                                                  \                              \
                                                                \                    N N
I
                    \        -
18 N\ , \s $                        s sx 8
NN            i      t    N s        \N                        %    '
      '            I    \      %      'x
                                          >            '          s      N        %\N              ,
i I  '
                                )                  s    '%\        \              r  .
N  g          i
                              $ \%                          \\          s    3          '
                                                                                                    'N    .
I i
s 4              ',.                \            t N
T    'N                        \            '      1
                                                                    \                            N\          i e6 N                    No          s            N N              <                                        ,
                      \                      N                        i
                            \\\                .        I      e                      i
                                    \ \ ks\ N Radial Blankets O        Fuel Assemblies                g            Alternate Fuel-Blanket Assemblies Q        Blanket Assemblies O            coat" 1 ^"''bii'5 Fig. 4-1    CRBRP Heterogeneous Core 4-37
 
Fuel Assemoly 51anket Assemoly (O)^u='ded?
Control Assemoly 1.27            1.17 1              1.22
                                              \.45 /
1.56          0.297            1.25 0.316          1.53            1.22 1.56            1.62            1.48
                                    'fB
                                                  .227                          .314        \1.44 0.197                    0.245          1.56            1.55            1.26 1                0.24'          l.49          1.53 O.35                    1.36            0.244
                                                                                  .223
[
0.236          1.32 1.27                    .227          0.186 1.24            3.204 0.188                  1.25 l                                                0.187 0.126 Fig. 4-2 80C-1 Radial Power Factors 4-38 l
 
(      Fuel Assembly O e- ^-~
(O)d='de%'
Control Assembly 1.007            .938 1                  .976
          \ .121 1.153 /              .992
( 1.221    1.261            .544                          .994 l
                      .619          1.173                        .976 1.316          1.271                          .544          .938 1.310          1.272                        1.153
              .635                                          .61 9          1.122
    .620              .629          1.310                        1.262          1 1.309            .628                        1.318
                                                                        /1.223 \.009 1,31 2          .632
              .612            1.303                          461 1.301              .603
                                      .609 1.290              .592
    .551            1.294
              .551
    .495 Fig. 4-3 E0C-4 Radial Power Factors 4-39
 
1.5                                                                                          !
I                                              I I                                              I
                                                        =        SOC 1 I                                              I E0C4    \
l                                                1 1.0  -
l                                              g l
I I
I e
a I
l I
S Cf b
e .s      -                    !
I                                              1 l    UPPER LOWER          l AXIAL -          -
CORE                    r      - AXIAL    -
BLANKET                                                              BLANKET l
I I
I    I          I 0
0        20      40        60        80      100        120            140        160 HEIGHT AB0VE BOTT0ft 0F LOWER AXIAL BLANKET (CM)
Fig. 4-4 Normalized Axial Power Distribution Away from Control Assembly (Power Nomalized to Core Region Average Value) 4-40
 
i 1.5 I                                          I l                                          l
                                                    =            B0C1 l                                          ;
I                                          l l                                          l l                                          l I                                    20C4  l l
: $ 1.0  _                l
  !                        l l
d                        I l
A                        i
  <                                                                    l I
8                                                                    l Cf                        I
.a                                                                      l h                                                                      l
.=                        l
      .5  -
l                                            [
l                                            l I
I LOWER      1                                                UPPER
            ~ AXIAL        g=                CORE                    =I=    AXIAL
                                                                                      ~
BLANKET                                                      BLANKET g                                            l I
I              - E0C4 O                    !I          I        I                      i 0        20        40    60          80      100      120      140        160 HEIGHT AB0VE BOTTOM OF LOWER AXIAL BLANKET (CM)
Fig. 4-5 Nonnalized Axial Power Distribution Fuel Assemblies Adjacent to Control Rod (Power Normalized to Core Region Average Value) 4-41
 
1.5 EO t
BOC1 1.0  -
    "w e
d
    =
S Ct a
B g    .5  -
                                                                                        \
I O            I        I        I          I      i        i        I U        20        40      60        80      100      120      140  160 HEIGHT AB0VE BOTTOM 0F LOWER AXIAL BLANKET (CM)
Fig. 4-6 Normalized Axial Power Distribution for Internal Blanket Assemblies (Power Normalized to Core Region Average Value) 4-42
 
Fuel Assembly l
Blanket Assembly I
O Alternating  Blanket Assembly    Fuel /
Control Assembly 2
                            \' /                                        3        4
                            /                2                                                4
                                                                                                                                                              \
06
                                                                        '8 1
1                              2 7                                                7                                2 7                                                7        1                              1                      4
                                                                                                                            /
2                              7                  1                                1 0                      7 2
2 7
(6            Orifice Mass Flow Rate, kg/hr.
l l                    2                                                7        7                            Zone                BOC-1      EOC-4
!                                                                                                                  1            86180. 84850.
3                              7 2            80190. 78950.
3            75710. 74540.
8                                                  3                                            4
!                                                                                                                                69580. 68510.
5            67800. 66760.
8                                                                        6            31200. 80370.
7            40280. 39650.
8                                                                                              8            35390. 34840.
Fig. 4-7 Orifice Zones and Mass Flow Rates for CRBRP Core 4-43
 
_ . _ _ _ _        - - =                __ . _ _. . .          . - - .    . . _ _ _                  - _. _ _ - _ _ .
Fuel Assemoly Blanket Assembly (O)d='daif Control Assembly                  :
13 13                    15
( 11            11                          8                15 8                    9                          15 7                          9                8                    14
                                                                          '                        '2
((si              ,
                                                    /                                                      ,,
5                      7                        10                14 5
4                        5                  7                    10 4
3 (l) 2                  3                      5 2                          3 1                      2 1
1 Fig. 4-8 SAS3015 Channel Representation of CRBRP Heterogeneous Core at BOC-1 4-44
 
i Fuel Assembly 0        '**>        ''
(O)^n='Maf                          .
ontml Assembly 14            14 12              15 9
                        \        /  13              15
                        /
f 10              8            15 05              7            11 13 8
15 14 (F)
                                                \                      [
3              5              11            10              14 4            5                7              9 3            2 4              3              3 2            3 1              2 1
1 Fig. 4-9 SAS3D 15 Channel Representation of CRBRP Heterogeneous Core at EOC-4 4-45
 
l 0.75 0.50 -
5 8
0.25 -                  \                                      -
  , 00
  "                                                      .ms ,
12 13
    -0.25 -                                                        h Note: Numbers denote SAS channels.
x
    -0.50 Fig. 4-10 Core Region Sodium Void Worth in Dollars For SAS Channels at BOC-1 4-46                          ,
l
 
0.75 5
0.50-3 h
                              \                          II y,  0.25                    \
4 1                                    10 \      13 0.0                                              '
iy
* sss    15
    -0 . 25, h
14 Note: Numbers denote SAS channels.
    -0.50 Fig. 4-11  Core Region Sodium Void Worth in Dollars For SAS Channels at EOC-4 4-47
 
      ~
30.0 N
{
20.0 -                          \
                                      \        ''9              ''
l N N s
10.0 -            \            \
: 0. 0 N    s  N \ \q b
1
  "                                6 3
                              \            \
    -10.0 -
5            8 i
Note: Numbers denote SAS channels.
    -20.0 Fig. 4-12  Core Region Fuel Worth in Dollars For SAS Channels at 80C-1 4-48
 
30.0 20.0 -                                          11 2
9 13 15
!j              h      $        Ih          ib$hhh P      gg        5 P
  -10.0 -
Note: Numbers denote SAS channels.
  -20.0 Fig. 4-13  Core Region Fuel Worth in Dollars for SAS Channels at E0C-4 4-49
 
5' 20 - 0                        14,458 cm '
l 19 -    o
_( 7.034 cm > Upper Blanket 18 - O 7.034 cm 17  -
O4                    7.034 cm
                      /,'                            s 16 - '  O.
                      ,?        -
15  -
d.-d ' Node f  7.034 cm (13 equally spaced segments) 14  -
O              ,,
                      /                -
                      /
13 -            '
f 12 - c M
4    -
Q
                        /j .
S 3    -
O ,, 7.034 cm
                                -9r 2-                            9.000 cm    > Lower Blanket mr 19.526 cm  s 1  -
d b J'              .
Fig. 4-14 Axial Node Positions for SAS Analysis (Room Temperature Dimensions) 4-50 t
 
l 5.0        SAS3D STEADY STATE RESULTS 5.1        BOC-1 Core Configuration Neutronics and thermal-hydraulic data at steady-state are required as input to the SAS3D code. Since these data were obtained from analyses con-sistent with those in Chapter 4 of the PSAR, consistency in steady state results exists in an integral sense between the present SAS analysis and the PSAR analysis. For instance, the two analyses should produce exactly the same power for each group of assmblies (channel). The steady state charac-teristics, such as pressure drop along the rod, fuel temperature distribu-tion, etc., are presented in this section and compared with the PSAR results, as appropriate.
Table 5-1 shows the steady state fuel characterization of the CRBRP core at the beginning of cycle one (see Figure 4-8 for channel locations).
The axial temperature profiles for the fuel, cladding and coolant are shown for typical fuel and blanket channels in Figures 5-1 and 5-2, respectively.
All internal blanket rods produce a small amount of power and have a low steady state temperature. Therefore, it is reasonable to expect internal blanket rods to remain intact at 80C-1 conditions during the initiating phase of the accident.      However, such is not the case at E0C-4 conditions, as discussed in the next section.
The radial temperature profiles at the core midplane for typical fuel and internal blanket rods are shown in Figures 5-3 and 5-4, respectively.
Examination of Figure 5-3 indicates that the fuel rod has & peak temperature of around 2200*C and a significant temperature drop across the fuel-cladding gap. The large temperature drop is due to the large fuel-cladding gap which results from a negligible swelling of the fuel and cladding with 10 equiva-lent days of burnup. The gap is closed in EOC-4 fuel rods, as mentioned in the next section. The internal blanket rod has a small temperature differ-ence between the fuel pellet centerline and surface (see Figure 5-4), as a result of its low specific power.
5-1
 
Table 5-2 shows a comparison of sodium flow pressure drops calculated by SAS with those reported in the PSAR (Section 4.4) for two fuel assemblies having different orificing characteristics. Quite good agreement can be seen between the two calculations.
5.2        EOC-4 Core Configuration i
The steady state fuel characterization of the core at E0C-4 is given in l
Table 5-3. All fuel channels have 550 full power days of burnup (converted to atom percent, a/o in the table) except Channel 6 which has 275 full power days of burnup. The Channel 6 represents six fuel assemblies positioned at the interchangeable fuel / blanket locations (see Figure 4-10). The internal blanket channels have 550 days of burnup, but this burnup was adjusted because of their large variation in power level during the fuel cycle, as explained in Section 4.3 (Pointer 29).
Examination of Table 5-3 indicates that all blanket rods have reached a significant power generation level at E0C-4. They also have higher peak temperatures than fuel rods, because of the larger diameter internal blanket pellet. Although the internal blanket rods still have a lower specific power generation (watt /gm), they may be expected to play a role in the pro-gress of the accident in view of their substantial power level and high steady-state temperature. This feature at E0C-4 is unique to the current heterogeneous core design and was not encountered in the analysis of the earlier homogeneous core design. It is also noted-in Table 5-3 that Channel 6 has a higher power level and a smaller fission gas content in the fuel l          than the rest of the fuel channels. Therefore, these six fuel assemblies may lead the accident progression and behave differently from the remainder of the core.
Figures 5-5 and 5-6 show the axial temperature profiles for the fuel, cladding and coolant in typical fuel and internal blanket channels, respec-tively. The radial temperature profiles at the core midplane are shown in
.            Figure 5-7 and 5-8. Comparison of Figure 5-7 with Figure 5-3 shows that the temperature drop across the fuel-cladding gap at E0C-4 is smaller than the 5-2
 
temperature drop at 80C-1. The primary reason for the smaller temperature drop at EOC-4 is closure of the fuel-cladding gap as a result of increased swelling of the fuel relative to the cladding.
G W
\
l 5-3
 
Table 5-1 Steady State Fuel Conditions at BCC-1 Avg.          Avg.        Peak      Central Pin Power  Pin Burnup    Fuel Temp. Void Vol.
SAS Channel Tyyjt    (kW/ft)      (a/c)          (*C)        (cc)
B        3.405      0.011          814.0      0.0 1
F          7.235      0.149        1873.0      0.052 2
8          4.297      0.014          945.0      0.0 3
F          7.760      0.160        1954.0      0.108 4
B          4.305      0.014          946.0      0.0 5
4.277      0.014          956.0      0.0 6    B F          8.813      0.182        2197.0      0.243 7
B          5.812        0.019        1201.0        0.0 8
F        9.136        0.189        2158.0        0.279 9
F        8.885        0.184        2?06.0        0.251 10 F          8.936      0.185        2221.0        0.263 11 F          8.432      0.174        2057.0      0.191 12 F          8.474      0.175        2070.0      0.204 13 F          6.924      0.143        1833.0      0.028 14 F          7.149      0.147        1869.0      0.050 15 5-4
 
TABLE 5-2 Pressure Drop Comparison Between PSAR Analysis and SAS3D Analysis Assembly Mass Flow PSAR                                    SAS3D Location                    23.6 kg/sec          19.0 kg/sec        23.6 kg/sec        18.8 kg/sec t
From Vessel Inlet              4.60                  5.76                4.54              5.71 to Rod Bundle u, Along Fuel Assembly            3.50                  2.39                3.48              2.42 E    Rod Bundle From Rod Bundle                0.50                0.38                0.43              0.32 to Vessel Outlet Vessel Nozzle-to-              8.60                  8.60                8.45              8.45 Nozzle Primary Loop                              2.52                                    2.41 Note:    Tahle entries are pressure drops in bar
 
Table 5-3 Steady State Fuel Conditions at EOC-4 Avg.        Avg.        Peak      Central    Gas Pin Pcwer  Pin Burnup    Fuel Temp. Void Vol  Content SAS
(*C)      (cc)  mg/gm Fuel
* Channel    Tyce      (kW/ft)      (A/o) 1        8        9.441      1.211        1964.0      0.280      1.0 2        F        6.743      7.890        1863.0      0.274      2.9 3        B        10.546      1.373        2143.0      0.446      1.0 4        F        6.774      7.925        1857.0      0.271      2.9 5        B        10.879        1.492        2258.0      0.519      1.0 6        F          7.645      4.436        1789.0      0.213      2.5 7        F          6.819      7.997        1961.0      0.345      2.9 8        8          9.451      1.419        2088.0      0.329        1.1 9        F          6.344      7.420        1870.0      0.287        3.0 10        F          6.539      7.658        1904.0'    O.316        3.0 11        F        6.686      7.832        1904.0    0.316        2.9 12        F        5.835      6.801        1736.0      0.192      3.1 13        F        6.026      7.032        1772.0      0.225      3.1 F        5.028      5.830        1571.0      0.041      3.3 i    14 15        F        5.146      5.971        1593.0      0.062      3.3
* Unrestructuted Fuel 5-C
 
1600 1400    -
i
          -                      AVERAGE FUEL 1200 1000l -                                                                    ,a C                                                                            !
L    .  ,                                                                    ,
w        I                                                                    ;
[o 800    -
'                                  ID-WALL CLADDING U                                                          t 600 -                            -
                                      \                                -
          -                              COOLANT 400 2no  -
LOWER                                            UPPER AXIAL BLKT _      _
CORE                AXIAL RtKT    -
0 0            36      AXIAL LOCATION (CM)    129              170 Fig. 5-1 Typical Axial Temperature Profile in CRBRP Fuel Rod at BOC-1 5-7
 
800 700 -
600                          AVERAGE BLANKET l
500  -                        W ID-WALL CLADDING G
  ?_,
Y          -
5 400 5
y                                          C0OLANT r
l  N 300    _
{
200    -
100 LOWER AXIAL                                      UPPER AXIAL EXTENSION  ,.          CORE                ;; EXTCNKTON 0
0            36    AXIAL LOCATION (CM)    128                170 Fig. 5-2  Typical Axial Temperature Profile in CRBRP Internal Blanket Rod at B0C-1 l
l l
5-8
 
2200
:      =
CAVITY 2000 -
1800 -
1600 -
G 1400 U
R 5
(
W 1200 -
1000 800 FUEL                          ; CLADDIfic COOLANT, 600 N
400                                          0.253    0.295        .35 RADIAL LOCATION (CM) 0 Fig. 5-3 Typical Radial Temperature Profile at Core Midplane in CRBRP Fuel Rod at B0C-1 5-9
 
1600 l
1400 1200  _
  -.1000    -
l o u
m j 800      -
t 5
e-600 400    -
200                                                  CLADDING    ,          COOLANT FUEL                              \
0 0                  RADIAL LOCATION (CM)              0.601    0.648 0.70 Fig. 5-4 Typical Radial Temperature Profile at Core Midplane in CRBRP Internal Blanket Rod at BOC-1 l
I i
5-10 l
 
1600 1400 -
1200 -
i VERAGE FUEL 1000 -
O t,
  $  800  -
E MID-WALL f.-  0
            -                                                        CLADDING    (
400  -
00LANT 200  -
LOWER                                                                UPPER AXIAL BLKT                      ,
CORE        , , AXIAL BLKT  ;
O O                                36                                  131            170 AXIAL LOCATION (CM)
Fig. 5-5 Typical Axial Temperature Profile in CRBRP Fuel Rod at EOC-4 5-11
 
1600 1400  -
1200  -
1000  -                        AVERAGE BLANKET G
w
  $  800  -
5 t                                                                            '
5 r
600  -
ID-WALL CLADDING 400                                          COOLANT 200    -  LOWER                                              UPPER j              AXIAL                                              AXIAL l
EXTENSION                      CORE            ; ; FXTENSTON  y 0
0              36                                131            170 AXIAL LOCATION (CM)
Fig. 5- 6 Typical Axial Temperature Profile in CRBRP Internal Blanket Rod at E0C-4 l
l l
5-12
 
l 2000 1800  -
CAVITY _-
1600  -
,    1400  -
U N
E 1200    -
t 5
e-1000 -
800 -
600 _
FUEL                      ; :;LADDINJi COOLANT N
400 0              RADIAL LOCATION (CM)                0.2603 0.2996        3.5 Fig. 5-7  Typical Radial Temperature Profile at Core Midplane in CRBRP Fuel Rod at EOC-4 5-13
 
2200 m
CAVITY 2000  -
1800  -
_ 1600
: y w
u y 1400    -
o:
E 5
1200  -
LADDING                                -
COOLANT 1000  -
FUEL                                                                _
                                                                                                            ,i ,,
800 l
L 600                                                                                                                      l N      -
0                                                                                        .        0.6602 0.70 RADIAL LOCATION (CM)
Fig. 5-8 Typical Radial Temperature Profile at Core Midplane in CRBRP Internal Blanket Rod at EOC-4 5-14                                      .
: 6.          INITIATING PHASE ANALYSIS OF TRANSIENT OVERPOWER (TOP) EVENTS As mentioned in Chapter 1, potential core disruptive accidents are generically represented by a TOP or an LOF with the assumed failure of both reactor shutdown systems. The initiating phase of the TOP event is analyzed for both the BOC-1 and EOC-4 core configurations using the SAS3D code, and the analysis results are presented in this chapter.
6.1        TOP in 80C-1 Configuration The initiating phase of a TOP event at the Beginning of Cycle (80C-1) is analyzed in this section. All fuel and internal blanket assemblies at 80C-1 are assumed to have an equivalent 10 days of burnup at full power, repre-senting the lowest probable burnup condition at full power fr; the fuel cycle.
As discussed in Section 3.2.3, the fuel vapor pressure is the driving force for fuel rod failure in the 80C-1 core configuration. Therefore, the fuel vapor pressure model described in Section 3.2.3 is used in the present BOC-1 TOP analysis. A best-estimate evaluation is made, which is followed by analyses of the sensitivity to various pessimistic assumptions.
6.1.1        BOC-1 TOP Case 1 - Best-Estimate Analysis at Design Ramp Rate of 4.14/sec l
The transient overpower accident is initiated by a hypothetical reacti-i vity insertion of 3.2$ at 4.1(/sec; the maximum worth and rate of reactivity insertion that can be produced by uncontrolled withdrawal of the peak worth l control rod at its design speed. The withdrawal is initiated at full power steady conditions and the primary pumps are maintained at full head.      Both plant protection systems are arbitrarily assumed to fail.
A preliminary assessment indicated that uncertainties in the amount of fuel ejected results in a range of equally probable paths in the TOP acci-dent progression. That is, for the same relative order of probability (Cat-egory 1) a range of fuel mass ejections needs to be considered. Hence, 6-1
 
results of two calculations are presented. Case 1A assumes that molten fuel between the lowest vapor producing node and the cladding rupture node is available for ejection. Case IB assumes that only molten fuel at or between the peak power node and the rupture is available for ejection. This latter case establishes a lower bound on the amount of expected fuel ejection.
The scenario for Case 1A will be presented first. Table 6-1 lists the significant events of the accident sequence. The power and reactivity his-tories are shown in Figures 6-1 and 6-2.
Fuel melting, and thereby fuel rod cavity growth, are initiated in the It fuel assemblies between 12.95 and 20.95 seconds into the TOP transient.
l is significant to note that at no time during the transient do the internal blankets reach melting temperatures. At the peak power the highest tempera-ture in the internal blankets, Channel 8, remains 225'C below the melting temperature. The power generation in the internal blankets at 80C-1 is too low to cause melting in this accident sequence.
At 35.27 seconds into the transient, sodium boiling is initiated at the assembly exit in Channel 13 which has the highest power to flow ratio (see Table 4-1). At this time, the reactivity insertion results in the core power being nearly three times nominal (3P). As the power level further increases, other fuel channels experience boiling initiated at the assembly exit. By 39.90 seconds, all fuel assemblies except those represented by Chs. 2, 4 and 15 are involved in boiling. Although the sodium flow decreases due to an increased pressure drop associated with boiling near the exit, the altered axial pressure gradient results in single-phase liquid sodium flow in the core region. As the power increasas, the boiling interface slowly progresses upstream. The reduction of flow because of boiling increases cladding temperatures, and significantly reduces the cavity pressure required to fail the cladding in the affected channels.
At 39.903 seconds into the transient cladding rupture occurs in Channel 11 due to a high fuel vapor pressure generated in the cavity. Table 6-2 shows the condition of the rod and sodium channel at failure. The failure location l                                      6-2
 
_  =                            _-              -    -      . .
of 106 cm* is 30 cm above the peak' power location.        Sodium flow reverses 7 ms following failure with the lower liquid interface reaching a level of 13.4 cm, well into the lower blanket region, 74 ms following reversal.
Because of the location of Channel 11 relative to the radial blankets, the net result of this large and rapid voiding is a small negative feedback, essentially having no effect on the rest of the core.
Fuel is rapidly ejected from the molten cavity under the influence of the expanding vapor bubble. The fuel rod internal pressure is sustained much longer than a gas driven ejection by evaporation of additional fuel within the cavity as the pressure drops. By 41 ri following rupture, the vapor bubble has expanded sufficiently to fill the available volume between the lowest vapor producing node and the rupture node. At this point the vapor bubble still has a_ pressure of 69 bar; 41 bar in excess of the sodium channel pressure.                            .
With the vapor bubble in contact with the rupture, the fuel rod cavity depressurizes by direct vapor blowdown until the cavity pressure and channel pressure equalize. An additional 2 gm of fuel per rod is evaporated and expelled during the blowdown phase. This additional fuel, representing about 4% of the total fuel ejected, is not explicitly considered in the SAS30 reactivity calculation, but would contribute additional negative feed-back. This amount of neglected fuel is much less than the uncertainty asso-ciated with the calculation of the total fuel ejected. (The fuel ejection uncertainty is addre tsed as tha naxt case in this section.)
As liquid sodium reenters the hot interactive zone, boiling will occur which inevitably results in a SAS3D code error caused by attempted mixing of sodium vapor bubbles with the interaction zone. The SAS3D run terminates on this "TSC8 error" at 40.053 seconds (149 ms after rupture) at a decreasing power of 0.53P and a net reactivity of -5.07 dollars. The core cannot be
    *The datum line used throughout this report is the bottom of the lower axial blanket.
6-3
 
considered permanently shut down at this point, however, because there is          l still 1.56 dollars of assumed contro's reactivity to be inserted and the cavity molten fuel is in an unstable axial distribution. It is necessary to esti-mate the final end state by examination of potential fuel relocation and reactivity effects.
The pressure in the fuel rod cavity remains in equilibrium with the chan-nel as long as the rupture remains open. If the cavity pressare falls below the channel pressure, sodium vapor will enter the cavity, where due to the high fuel temperature it acts as a noncondensible gas. Molten fuel within the cavity above the rupture will drain downward, affording an opportunity to plug the rup-ture with frozen fuel. The potential for resealing the cavity varies with the elevation of the rupture on the fuel rod, the extent of the rupture and the volume of molten fuel above the rupture zone. Qualitatively, the potential
                                      ~
for resealing a midplane failure is very high, while a rupture occurring at the upper extremity of the cavity will remain open. If a seal forms, the cavity pressure will drop to a low value as fuel vapor condenses, whereas if a seal does not form, the cavity will rtmain in equilibrium with the channel pressure at the rupture elevation by interchange of sodium vapor. Liquid sodium cannot enter the cavity, since even at decay heat levels fuel temper-atures in excess of sodium saturation temperatures are encountered.
In the base case there are 5.9 grams of molten fuel in the cavity above the rupture, and only 0.12 grams would be required to seal the assumed rup-
! ture orifice. Therefore, the probability of resealing is high.      If all the molten fuel above the rupture drains downward into the cavity, a net posi-tive reactivity feedback of 0.25 dollars is calculated by shifting that mass on the fuel worth curve. This would still leave the core 4.8 dollars sub-critical. The reentering sodium would effectively cool the damaged rod, freezing all of the molten fuel in the cavity. The remainder of the trans-ient can be considered a repeat of the initial 4.1(/sec reactivity addition until the full 3.2 dollars is inserted. After the full 3.2 dollars is inserted and the Doppler, fuel expansion and coolant reactivities adjusted l  for the colder conditions, the core is estimated to stabilize at a power level of about 0.1P. This estimate is based on Table 6.3 which was genera-l ted by repeated SAS3D runs at constant levels of " excess" reactivity.
6-4
 
i The results for the parallel fuel ejection scenario (Case 18) will now be considered.      The core response for Case IB is exactly the same as that for Case 1A until the time cladding rupture first occurs in the lead channel (Ch. 11). Even after the first cladding rupture, the calculation proceeded in parallel to Case 1A with only minor differences in timing of events. The principal difference was that at the time of sodium reentry (TSC8 error) the net reactivity for Case IB was only -3.55 dollars because of the smaller amount of fuel ejected, as compared with -5.07 dollars for Case 1A.      The fuel sweepout reactivity for Case IB does not offset the total reactivity insertion by 8 cents. As a result, the core will assume a stable power level of 1.1P based on SAS3D calculations (Table 6-3).      The nine assemblies of Channel 11 have ejected a total of 80 kg of fuel into the coolant, but flow is reestablished at essentially nominal operating condition. Tempera-tures are r.ormal everywhere with no further fuel melting expected. The core is expected to remain in this stable state without further damage.
The question of long tenn coolability in the presence of partial block-  l ages could be addressed by using SASBLOK(3), as is the case for the analysis of E0C-4 TOP events (see Section 6.2). However, because of uncer-tainties in fuel ejection phenomena, particularly during the fuel vapor blowdown phase, external calculations were made to determine acceptable blockage sizes which would not cause further failure in a damaged assembly.
In these external calculations, the blockage was modeled by a loss coeffici-ent which is related to the area ratio of a porous plug as reported in
  , Appendix A of Reference 3. Boiling predicted upstream of the blockage was taken as indicative of flow starvation and further damage. The two-phase pressure gradient downstream of the block was handled parametrically by a multiplier on the single-phase pressure drop. The nominal value of that multiplier was taken from calculations of stable boiling at the channel exit (flashing) by the SAS3D code. This nominal value was found to be 10-20 for average void fractions between 0.50 to 0.95.
Figure 6-3 shows the results of these calculations and defines a region of coolability for a partially damaged channel. Three cases are shown. The broken line defines the limit of the assembly power (relative to steady state powar) for stable flow as a function of blockage area ratio if the 6-5
 
blockage occurs at the assembly exit. For this special case, the region of stable flow does not depend on the two-phase multiplier.      The two solid lines give the assembly power limit for stable flow if the blockage is loca-ted in the upper axial blanket region. On the other hand, the horizontal line at 1.5P represents an approximate limit of the plant heat removal capability on a long-term basis. A scoping assessment of tne heat transport system has determined that above this steady power level some failure of the PHTS is probable, leading to some type of flow reduction transient. This I case is addressed in Section 6.1.5. For power levels below 1.5P and block-l age area ratios of less than 87%, the core will remain coolable.
l 1
For Case 18, the local power level for the damaged channel (Ch.11) will be approximately reduced from the estimated global power level of 1.1P by the amount of fuel ejected, 23.5% of the total fuel; the estimated local l power for Ch.11 is 84% of nominal steady power.      The blockage area ratio allowable for stable flow at this power level is 95% from Figure 6-3.      The l flow rate was calculated to be 22% of nominal. Likewise, for Case 1A where l the core global power level is 0.1P the allowable blockage area ratio will be more than 99%. Observation of recent upper plenum injection tests (42) indicates that should a blockage form, its area ratio should be less than 95%. Thus, it is concluded that the accident will terminate with the core at a power level of 0.1P to 1.lP.
To address uncertainties in blockage assumptions for the above best-estimate evaluations, a pessimistic accident path (Category 3) as examined by assuming that the damaged assemblies are not coolable in Case 18. Start-ing from the Case IB end state at 1.1P, this pessimistic accident progres-sion with the uncoolable damaged assemblies would be as follows. Eventual l voiding and dryout of the assembly is inevitable under these conditions, leading to cladding melt and relocation. At the near nominal power condi-tion, this melting and relocation would proceed slowly with some relocated cladding forming an additional flow blockage in the upper blanket region.
The remainder of the molten cladding would drain to form a plug beginning at the lower blanket / core interface (similar to LOF ints addressed in Section 7.1). The result of this relocation in Channel 11 would be a gradual inser-6-6
 
tion of approximately 294 reactivity with an associated power increase to about 1.5P.
The lack of a heat sink means that the fuel in Channel 11 would begin to melt, and drain as in the LOF case (see Section 3.2.4.1). This would result in a slow insertion of positive reactivity, as discussed in Section 3.2.4.1. The core power increase would continue and would result in fail-ure of the next channel.
The next channel in the failure sequence is Channel 10 which is similar in size and thermal condition to Channel 11. Under the same driving condi-tion as the initial failure, fuel would be ejected and swept out, introduc-ing a large negative reactivity effect of -3.2 dollars. The final end state, including sweepout of fuel in Channels 10 and 11 plus fuel and clad-ding relocation in Channel 11 is shown in Table 6-4. The power will now stabilize at 0.49P and Channel 10 will require 10% of rated flow to prevent boilout and disruption of its fuel.      Channel 11 is, of course, assumed to be completely blocked by steel and fuel plugs.
Two paths, a coolable or noncoolable Channel 10, are apparent. It is considered very improbable that a flow of at least 10% cannot be restored in the damaged Channel 10. However, it is again assumed that the damaged chan-nel is not coolable.      Following the same path of progression as beforc leads to the cladding relocation and slow initial collapse of fuel in Channel 10 and subsequent failure of Channel 7.      The failure of Channel 7 (24 assem-blies) will introduce a large negative feedback driving the reactor subcri-tical. The core temperature will rapidly be reduced as the power decreases with th sodium flow maintained. Positive Doppler feedback (# 1$) will raise the net reactivity somewhat but the core will remain well subcritical.
The entults of following this path are shown in Table 6-4 The power will rapidly reduce to decay heat levels, initially 4% of nominal power, at which the flow required for Channel 7 to remain coolable is less than 2% of nominal.
Based on CNiEL tests,(43) it is believed that a total blockage of the assembly is very unlikely, and that at least 2% of nominal flow can be maintained at full pump head.
6-7
 
The subsequent path of the noncoolable, damaged channels involves pos-sible melt-through of the hexcan wall, which is addressed is Chapter 8.
Sufficient fuel escape paths wa.21d be provided by the interstitial space between assemblies, as discussed in Section 8.2.5, so that a large amount of fuel would be dispersed from its original high worth core location. It is believed that this fuel dispersal combined with the earlier fuel sweepout would be sufficient to maintain the core permanently subcritical.
6.1.2      BOC-1 TOP Case 2 - 4.14/sec kamp Rate With Forced Midplane Failure
* One conservative variation on the best estimate calculation which pro-duces significantly different results is related in part to the uncertainty of failure location, and in part, to uncertainty in the total amount of fuel which is ejected in a vapor pressure expulsion case.      In this variation, the fuel rod is forced to fail directly in the peak power node despite the mech-anistic bases supporting failure at a higher elevation where the clad is hatter.
In a fission gas driven ejection, this choice forces positive fuel motion reactivity and maximum voiding feedback. As explained in the discus-sion of the vapor pressure model (Section 3.2.3), however, the immediate reactivity effect of a midplane failure on fuel motion feedback with vapor pressure driven ejection is zero or slightly negative.      The rapid FCI zcne expansion contributes to fuel dispersal without contributing any significent sodium void reactivity because the first assemblies to fail in the 80C-1 core have negligible sodium worth.
Table 6-5 shows the sequence of significant events from the SAS3D cal-culation for Case 2. Figure 6-4 shows the power and net reactivity histor-ies. There is no difference from the      Case 1 sequence until 39.904 sec when
! cladding rupture occurred in Case 1.      Because failure is forced at the peak i
l l *The words " forced midplane failure" connote forced failure at the peak axial power node in this report.
l l                                          6-8
 
power node, which has stronger cladding, a higher fuel temperature must be attained before vapor pressure is great enough to rupture the cladding at the core midplane. Before this can occur, another of the lower power chan-nels (No. 14) begins sodium boiling. It is worth noting that the power level is slightly less than for Case 1 at failure despite higher tempera-tures. The Doppler and fuel expansion feedback are becoming more signifi-cant and are tending to hold net reactivity and power constant.
Cladding rupture occurs at 40.413 seconds into the transient, 0.51 seconds later than Case 1. Table 6-2 shows the fuel rod and channel condi-tions at failure. Events in the channel reflect the smaller mass and the higher temperature of the ejected fuel. Sodium flow reversal occurs in 5.7 ms following cladding failure. Only 5.9 ms pass between flow reversal and maximum downward penetration to 28 cm above the base of the lower blanket, a reflection of the lower ejected mass and total energy relative to Case 1.
Fuel is ejected for 9.6 ms before the vapor bubble uncovers the clad rupture site and begins to depressurize directly into the channel.(21)
Only 8 gm of fuel is ejected per rod in this case, giving a high prob-ability that the SAS3D modeling of 1007, sweepout is valid. The R-12 TREAT test demonstrates that amounts of fuel on the order of 8 gm/ rod could be ejected without blockage or even significant damage to adjacent cladding .(
The reentering sodium causes the calculation to terminate on a TSC8 error as sodium reaches the hot clad in the former interaction zone. The SAS3D run terminates at 0.99 dollars subcritical with 1.54 dollars of con-trol rod withdrawal reactivity still to be inserted. Power is falling rapidly, but is still at 1.45P when the run terminates.
Using the same logic for evaluating end st1tes as employed for Case 1 it can be shown that Channel 11 fuel rod failure is inadequate to shut down the core permanently or even achieve the stable end state of Case 1. The fully collapsed fuel reactivity for Channel 11 is only -0.337 dollars. The next channel expected to fail is Channel 10, based on conditions at failure 6-9
 
of Channel 11, plus the observed sequence for Cases 3 and 4 (Section 6.1.3 and 6.1.4).
A reactivity balance indicates that Channel 10 would fail at about 48 seconds if Channel 11 were fully collapsed. If the cavity of Channel 11 should become fully expanded, the resultant negative fuel feedback would delay failure in Channel 10 to 59 seconds.
It is anticipated that as the power level increases, fuel will begin to melt in the damaged channel (ch.11) and a cavity will re-form containing molten fuel in the lower part with a large bubble of fission gas and sodium vapor occupying the upper part of the cavity. The pressure in the cavity is expected to be below channel pressures because of fuel vapor condensation following the plugging of the rupture. As the power continues to increase l
fuel will begin to vapurize at the location of peak temperature. Colder liquid fuel above the location of peak temperature fuel will be lifted by I  the expanding vapor as water is lif ted in a coffee percolator. The percola-tion of liquid fuel results in negative reactivity feedback as fuel mass is displaced from a high worth location to positions of lesser worth. The resulting negative feedback becomes a function of the balance between vapor-ization of fuel at the peak temperature location and the condensation of fuel vapor on the colder upper cavity walls. No fuel can be ejected until the entire cavity is pressurized to greater than channel pressure opposite the plugged rupture.
I In the present case the restricted fuel ejection in Channel 11 is in-sufficient to prevent a second failure. It is not clear whether additional fuel is ejected in Channel 11 or whether the vapor bubble is fully estab-11shed before repressurization can occur. The conservative approach is to assume no additional ejection of fuel from the damaged rods, internal boilup of fuel to less than the maximum reactivity effect and subsequent failure of additional fuel rods. Channel 10 is similar in size, power level and reac-tivity effect to Channel 11 and should undergo the same response to failure as did Channel 11. Sodium voiding positive reactivity is not a factor here either, and the fuel motion effects differ only slightly from the earlier failure in Channel 11.
6-10
 
The combined fuel reactivity effect of Channels 10 and 11 provide a range from -0.55$ (fully collapsed) to -0.69$ (fully expanded). Using the same logic to investigate end states leads to the conclusion that the core could recover to power levels indicative of additional rod failures as early as 56.7 seconds and no later than 77.76 seconds into the transient as shown in Table 6-6. Because the full 3.2 dollars of control rod reactivity is not completely inserted until 78.05 seconds, it is considered likely that fail-ure conditions would be reached before the assumed control rod reactivity could be fully inserted.
The next channel to fail in sequence, Channel 7, is a much larger col-lection of 24 assemblies located between the row 7 control assemblies. Full voiding of the sodium adds 14.34 reactivity, much larger than Channels 10 and 11, but not enough to cause any power burst.
The most probable end state for this case, where fuel ejection has been severely restricted, is a total of 42 fuel assemblies damaged with approxi-mately 74 kg of fuel dispersed in the coolant. The fuel motion reactivity swing in the damaged assemblies runs from a low of -3.39 dollars to a high of -1.56 dollars. Table 6-7 shows the probable reactivity balance for the end state of Case 2. The fully collapsed cavity is clearly an unstable state, as is the fully expanded cavity. The core could stablize somewhere in the vicinity of a power level of 2P where vapor pressures in the failed channels are around 2.0 - 2.5 bar (4-5 times the hydrostatic head of the liquid fuel column). Any reduction in power would result in decreasing vapor pressure leading to collapse of the boiled-up fuel column with in-creasing reactivity and power. Any increase in power would lead to addi-tional vaporization and expansion of the boiled-up fuel causing a reduction in reactivity and power. This power level is insufficient to cause stable bulk boiling in the high power channels. However, since the core power probably exceeds the PHTS capacity, some further damage to the core is ex-pected. The long-term consequences of this end condition are discussed in Section 6.1.5.
6-11
 
1 l
6.1.3      BOC-1 TOP Case 3 - 504/sec Ramp Rate With Pessimistic Doppler and Material Worths Consistent with the CRBRP PSAR (Section 4.3, Amendment 51), uncertain-ties on material reactivity worths were established. The sodium voiding
[
worths were increased by 60% of the local absolute value, making positive void worths more positive and negative void worths less negative. The Dop-
; pler constants were decreased (i.e., made less negative) by 20% of their absolute value. The fuel worths were decreased by 40% to minimize the effects of fuel sweepout. Decreasing fuel worth also has the effect of decreasing fuel expansion feedback. Steel worths are not a factor in tran-sient overpower cases since steel melting and relocation does not occur.
The CRBRP PSAR (Section 4.3, Amendment 51) identifies a low probability control system fault which could conceivably result in a reactivity inser-tion rate of as much as 334/sec. The driving reactivity insertion ramp was chosenat504/sectoprovidecorrespondencewithTREATtestsandotheran-alyses. The difference between'334/sec and the cnosen 504/sec is considered to be within the same generic range of high insertion rates yielding similar Core response.
Table 6-8 shows the tining of events in the accident sequence for Case
: 3. The histories of the power and net reactivity are shown in Figure 6-5.
The most significant factor in comparing Cases 1 and 3 is the time scale shortening. The order of events is identical until after Channel 12 begins to experience sodium boiling. In Case 3, Channels 7 ana 10 do not experience bulk boiling before failure whereas they do in Case 1. There is less time to transfer heat from the fuel rod to the soaium at the faster ramp. Fuel l
rod conditions at failure are shown in Table 6-9.
The first clad rupture occurs at 2.962 seconds into the transient at 22
; cm above midplane, 7 cm closer to the peak power node than in Case 1.                The cladding temperature is lower and, therefore, the required failure pressure is higher. A larger fraction of the failure pressure is provided by fission gas in the faster transients because the temperature in the unrestructured fuel is higher, producing more froth gas. Fuel vapor is still responsible for 87% of the failure pressure.
6-12
 
Sodium flow reversal occurs 9.6 ms following rupture and the FCI bubble reaches its maximum downward penetration at 16 cm into the lower blanket within 48 ms of flow reversal. Unlike Case 1, the sodium voiding does have a small effect here because of the increased void worth. The voiding in Channel 11 actually reverses the negative effect of the fuel sweepout brief-ly and causes a mild power increase just before the second channel, Channel 10, fails.
Channel 10 fails at 2.980 seconds also at 22 cm above the midplane, producing the same response as Channel 11 except that the combined effects of fuel dispersal in Channels 10 and 11 overwhelm the voiding reactivity contribution of Channel 10 and power continues to drop.
At 2.995 seconds the third and last channel, Channel 7, ruptures at 22 cm above midplane and again follows a very similar sequence of events.
Channel 7 is composed of 24 assemblies and introduces over 264 of void reac-tivity, but it has little effect on the core response in light of the -534 fuel motion feedback coming from 10 and 11.
Because of the abrupt flow reversal in the 42 failed assemblies, the lower plenum is pressurized and flow increases in the remaining assemblies.
Between 3.019 seconds and 3.052 seconds sodium boiling actually ceases in three of the moderate power channels which had earlier initiated bulk boil-ing at the exit.
At 3.052 seconds flow has begun to reenter all three of the damaged channels, and by 3.074 seconds boiling has resumed in all those channels and initiated in two other lower power channels (12 and 14) despite the rapidly decreasing power. This is a reflection of the large amount of energy stored in the fuel rods and of the relative flow starvation in the intact channels, caused by the collapsing FCI zones drawing twice the normal flow into the damaged channels.
At 3.074 seconds sodium reaches the hot cladding in Channel 11 and causes a TSC8 error (mixing of vapor and FCI bubbles). At that time the power has fallen to less than one-half nominal with a net reactivity of 6-13
 
    -7.05 dollars. An evaluation of the final end state fuel motion reactivity shows a maximum of -8.06 dollars, with the cavity fully collapsed, and 351 kg of fuel dispersal into the coolant. This reactivity feedback is suffic-ient to offset all the additional control rod worth and loss of Doppler and fuel expansion feedback upon cooldown.
After the power level has fallen to a decay heat level of 7% of nominal the minimum flow required to cool the damaged assemblies is estimated to be less than 2% of nominal. It is not likely that any further damage to the core could occur, even though substantial flow blockages might exist.
The reason for the benign result of this accident sequence is the very high ramp rate which induces failure in three channels at nearly the same time, ensuring a substantial ejection and sweepout of fuel. In that sense this case more closely resembles the homogeneous core cases, which typically ended with multiple failures in one burst followed by neutronic shut-down(3). The heterogeneous core has distinctly different characteris-tics that generally result in less coherent behavior. However, the high initiating ramp rate tends to increase the coherence in the response.
6.1.4      BOC-1 TCP Case 4 - Case 3 Plus Fcrced Midplane Failure and One Rod Failure Group This very conservative case includes the pessimistic material worths and the accelerated reactivity addition of Case 3 along with the forced midplane failure of Case 2. In addition only one FCI rod failure group per channel is used to increase the positive reactivity effects of voiding and early fuel motion.
The sequence of events (Table 6-10) does not differ from Case 3 until cladding rupture is predicted to occur in Channel 11. Case 4 is restricted to failure at the midplane (actually axial peak worth node) and, therefore, continues to accumulate energy in the fuel and coolant until 3.032 seconds when cladding is predicted to fail at the midplane in Channel 11. Failure conditions, as shown in Table 6-11, are quite different from the other cases because of the relatively cold cladding at that location. A much higher 6-14
 
pressure is required to fail the cladding at that location relative to Case 2 because of the cladding strength.
Because of the higher pressure, fuel ejection lasts only 5.8 ms follow-ing failure before the cladding rupture site is uncovered by the fuel vapor and ejection ceases. The enhanced voiding reactivity due to the more posi-tive worths and increased coherence actually results in a mild power increase for 8.3 ms due to voiding at the midplane. After that time the negative fuel motion reactivity in the channel exceeds the voiding reactiv-ity feedback, and the power decreases. The FCI bubble barely reaches the top of the lower blanket at 35 cm by 60.8 ms after failure. The lower sod-ium slug has already begun reentry before additional channels fail.
Channels 10 and 7 fail in the same sequence as in Case 3 at 3.101 and 3.114 seconds, respectively. In both cases the rapid midplane voiding with enhanced void reactivity produces a brief increase in power followed by a resumption of the general decrease occasioned by fuel expanding away from the core midplane.
The calculation is concluded by the usual TSC8 error in Channel 11 at 3.139 seconds, before sodium reentry has begun in Channels 10 and 7. At termination the power and reactivity are decreasing at an accelerating rate.
The net reactivity has just reached subcritical and is decreasing at 33$/
sec. Power is falling but is still at a level of 3.3P due to the imbalance in the delayed neutron population. Figure 6-6 shows the power and net reac-tivity histories up to the termination of SAS calculations.
A review of the possible end states discloses a fully collapsed fuel feedback of -1.53 dollars and a fully expanded fuel feedback of -2.90 dol-lars from the three channel failures calculated. Complete fuel sweepout and collapse of the molten fuel in the cavity are expected to be completed with-in 0.25 seconds after the initial failure.* Table 6-12 shows the reactivi-ties associated with the two possible intermediate states assuming no change in Doppler and fuel expansion feedbacks (these are related to fuel average temperature which decreases slowly). Coolant reactivity is assumed to re-turn to the pre-failure value upon resuming full flow. With a fully col-
* Based on full pump head across the core in the flow channel and gravity driven collapse of the liquid fuel within the cavity.
6-15
 
lapsed fuel cavity, the net reactivity would be no more than -0.59 dollars indicating a sufficient margin for the short term power decrease to contin-ue.
The final state of the core upon complete insertion of'all the control rod reactivity at 6.4 seconds is shown in Table 6-13. A stabilized power state is indicated similar to Case 2, the slow ramp with midplane failure.
In comparison with Case 3, there is simply not enough fuel ejected and swept out to achieve the complete shutdown, even though the same number of chan-nels failed more or less together.
The uncertainty in the amount of fuel ejected in the midplane failure cases led to the completion of two additional SAS3D calculations, the results of which are shown in Table 6-14. These cases are based on a varia-tion in the algorithm used to select the active nodes for midplane failure ejection. The preferred algorithm is the use of only the peak power node (also the failure node) as the source for ejected fuel. The reasoning for this selection is that with the failure opening adjacent to the pressure source, only a brief spurt of liquid fuel would be ejected before the vapor bubble blanketed the opening. This was the modeling used in Case 4.
As noted in Table 6-14, other algorithms for selection of active eject-ion nodes are to look at the temperature profile in the cavity and select those nodes which contain fuel at temperatures exceeding the saturation tem-perature of the fuel at fuel ejection cutoff pressure or at vapor flow cut-off pressure. This results in a wide range of uncertainty of fuel ejection and potential for fuel compaction at the midplane.
These variations were run with the SAS3D code with no unanticipated resul ts. In both of the additional cases the additional fuel ejected leads to a more rapid power reduction at the failure of Channel 11.      In neither variation did any other channel fail before sodium reentered Channel 11 and terminated the run. It is noted that in both cases the damaged fuel rod cavities are assumed to be fully collapsed. As shown in Table 6-14, the three different assumptions on fuel ejection all result in a steady power level above 1.59, which is judged to be beyond the long term PHTS capacity.
6-16
 
Namely, further damage to the core is indicated for Case 4      The generic termination of a continued high power state is evaluated in Section 6.1.5.
Another SAS3D run was made to investigate the effect of varying the ejection inertial length (9) in midplane failure cases. It was felt that with such a short distance between the pressure source and sink, much greater acceleration of the ejected fuel was possible and could affect the course of the transient. A run was made similar to Case 4 with one ejection node and an inertial length of 3.5 cm instead of the SAS3D default of about 35 cm.
The shorter ejection length did affect the detailed course of the tran-sient but not the outcome. A very Drief period of ejection occurred with more vigorous exchange of energy to the sodium and evert faster sweepout of ejected fuel. The power dropped so rapidly that Channel 11 completed its response through the TSC8 error without any additional channels failing.
The total amount of fuel ejected was still the same, however, so the addi-tional Channels 10 and 7 would eventually have to fail. In this case, the failures would occur sequentially instead of in parallel. The more rapid fuel ejection made the 50(/sec ramp response look less coherent, like the 4.14/sec ramp response, only on a shorter time scale.
6.1.5        Core Response to Stable Power Level Above Nominal In several of the cases analyzed for the 80C-1 TOP, the analysis term-inated in a condition at elevated power. All of the assumed control reac-tivity had been inserted, but not enough fuel had been ejected and swept out to compensate. The core then stablized at a power level above nominal for an extended period of time.
A scoping assessment of the PHTS response to a sustained core elevated power and rated sodium flow was performed. For a considerable increase in core power (507.), the heat transport systems should be capable of extended operation without failure. At power levels above 1.5P, all accident pro-gression paths were considered to lead to a flow reduction transient.      The 6-17
 
flow reduction rate could range over a wide interval, including nonnal coastdown, dependent upon the actual PHTS failure mode. For the purpose of a scoping assessment, the nominal flow coastdown was considered to provide a defined reference and allow for comparisons with earlier analyses of combin-ed T0P/LOF events.(3)
The case selected for analysis to define the termination of the high            j steady power state is a modification of the Case 1 results which assumes              I that the core is stab 11 zed at a power level of 2P, with Channel 11 flow reduced by 25% and its power reduced by 22% (the amount of fuel removal required to achieve the twice nominal power end state). A power level of 2P was chosen to minimtze the possibility of an imediate FCI in the next chan-nel to fail in sequence which would eject and sweep out enough fuel to shut        -
the core down imediately. The goal was to define the potential for energe-tics based upon whole core involvement. The sequence of events is presented in Table 6-15.
At 3.53 seconds into the flow coastdown transiant, sodium boiling starts in the lead channels. Early boiling combined with the heatup of fuel introduced negative feedback moderating the net reactivity to -Sc and the power to about 1.8P until 5.40 seconds when flow reversal in Channel 7 begins. At about the same time, cladding motion begins in Channel 13 followed at 5.50 seconds by cladding relocation in Channel 9. Channel 9 steel motion provides a slow but steady driving ramp until Channel 15 flow reversal occurs at 5.94 seconds. The large negative void worth of Channel 15 dominates until fuel motion begins in Channel 9 at 6.034 sec.
The modeling assumptions for fuel motion are consistent with those used in Section 7.1: initiation at 50% mass melt fraction and slow collapse at 0.25 gravity. The collapse of fuel in Channel 9, augmented at 6.143 seconds by the collapse of Channel 13, provided a steady driving ramp. A mild (16$/s) superprompt critical excursion occurs at 6.211 seconds reaching a peak power level of 226P at 6.217 seconds.
6-18
 
Energy deposited in the fuel during the burst causes disruption of Channels 7,10,11 and 12 with significant vapor pressure produced in Chan-nels 7, 9, 10 and 13. Steel is intimately mixed with the fuel in Channels 7, 10, 11, 12 and 13. In Channel 13 there is a frozen partial block above and below the core, and in Channel 9 there is a complete but still mobile steel plug above the core. The hexcan walls of Channels 9 and 13 are still intact but are heating up rapidly.
At 6.222 seconds a slow collapse of fuel is indicated in Channel 15.
At 6.223 seconds, however, a clad failure occurs in Channel 4 with subse-quent fuel-coolant interaction. This failure 36.8 cm above the core mid-plane results in immediate and substantial negative reactivity. At 6.229 seconds the core is driven subcritical at a rate of -200 $/sec primarily provided by fuel vapor pressure dispersion of fuel in Channels 7, 9 and 13 with fuel sweepout in Channel 4 contributing 18% of the shutdown rate.
The analysis was concluded at 6.271 seconds into the flow coastdown with the instantaneous power level at 0.30P and a net reactivity of -16.79 dollars. Channels 7 and 9 provide -13 dollars of reactivity. Both Channels 9 and 13 have melted through the hexcan walls. None of the channels has a total, immobile clad blockage and Channel 7 is still dispersing fuel at a reactivity rate of -167$/sec. The prognosis is for continued dispersion of fuel with potential for deep penetration into the upper rod structure with freezing and blockage combined with gradual meltthrough of the hexcan walls.
A nonenergetic entrance to the meltout phase (Chapter 8) is indicated.
6.1.6        Summary and conclusions on BOC-1 TOP Events An insertion of 3.2$ of reactivity was assumed to occur in the CRBRP BOC-1 configuration during full power operation. The redundant plant pro-tection systems, either of which would normally act to terminate this event without fuel rod damage, were also assumed to fail,, The response of the reactor core was examined over a wide range of assumptions, including varied reac-tivity insertion rates, design safety parameter uncertainties and phenomeno-logical behavior modes.
6-19
 
The best-estimate scenario (Category 1 as defined in Chapter 2) results in a stable, partially damaged core at 10% to 110% of nominal power for the range of assumptions made on the amount of fuel ejected. The long-term coolability of the daaged assemblies is estirsted to be good with physical-ly reasonable blockage assumptions.
A 504/sec ramp rate with pessimistic Doppler and material worths (Cate-gory 3 case) results in permanent neutronic shutdown. Three channels repre-senting 42 fuel assenblies fail within a 40 ms period. Fuel sweepout result-ing from these failures is sufficient to render permanent shutdown without energetic consequences.
A Category 3 case evaluated at 4.24/sec with forced midplane failure results in a steady core power level which is judged to be beyond the heat transport system capability with loss of primary flow the expected outcome.
This result is in contrast with the previous homogeneous core analysis which showed a superprompt critical power burst in an equivalent TOP case at B0EC(3) (see Table 2-2). The difference in the core response is attri-buted to the incoherent thermal response characterizing the heterogeneous core and the fuel rod failure mechanism associated with low-burnup fuel.
Another Category 3 case at 504/sec with forced midplane failure also results in a steady power level beyond the heat transport system capability for the same reason.
The consequences of the steady power state beyond the heat transport system capability were generally examined by a loss-of-flow initiated from approximately 2P. This case results in a coherent fuel compaction in which cladding is mixed with fuel without prior steel blockages, reminiscent of the homogeneous core response. Collapse of fuel in the lead channels re-suits in vigorous generation of fuel vapor pressure and massive ejection of fuel into the upper blanket and structure. The consequences of this event appear to be less severe than the loss-of-flow from nominal power where prior steel blockages can form, restricting the extent of fuel dispersal (see Section 7.1). A nonenergetic entrance to the meltout phase is indica-ted for this case.
6-20
 
I l
Based upon the range of calculations performed it is concluded that no s'qnificant potential for energetic loadings results from the assumption of g
these hypothetical events in the CRBRP.
6.2        TOP in EOC-4 Configuration The basic assumptions for this assessment follow those for the 80C-1    !
configuration; a 3.2$ reactivity insertion and assumed failure of both plant protection systems. The differences in core response are directly attri-buted to the evolution of the fuel and core safety parameters from the 80C-1 to the EOC-4 configuration.
All fuel and internal blanket assemblies at E0C-4 are highly irradiated relative to the BOC-1 core (see Section 4.1). Consequently, in the case of the E0C-4 core, significant fission gas pressures are generated at relative-ly low peak fuel temperatures durir.g TOP transients, as discussed in Section 3.2.3. For instance, in the best estimate case to be described, the fission gas pressure in the lead channel was about 500 bar with a peak fuel tempera-ture of 3300*C at failure of the fuel rod. That peak fuel temperature cor-responds to a 2 bar vapor pressure according to the fuel vapor pressure cor-relation described in Section 4.3. Similarly, other channels had a neglig-ible fuel vapor pressure at failure. Therefore, the fuel rod failure model as built into SAS3D (Release 1.0) was used in the EOC-4 TOP analysis (see 3.2.3).
Because of the difference in the driving force for fuel rod failure, the continuation of the TOP assessment is performed in a manner different from that discussed for the 80C-1 scenario. Particularly, SASBLOK(3) was extensively used in the EOC-4 TOP analysis. Therefore, a brief descrip-tion of the SASBLOX approach is given next before the actual case analysis.
6.2.1        TOP Analysis with SASBLOK SASBLOK represents a set of code modifications to SAS subroutines. A detailed description of SASBLOK can be found in Appendix A of Reference 3.
6-21
 
This section discusses why and how SASBLOX was used in the present analysis of E0C-4 TOP events.
l SAS/FCI calculations assume that fuel ejected from the fuel rod will l be eventually swept out of the assembly without forming any blockage in the flow path. However, some experiments have been conducted to address con-cerns over this assumption. Such experiments include TREAT tests R9 and R12,(21) and CAMEL tests.(43) The data from these tests have been reviewed to utilize the results in the TOP analysis.
No blockage was indicated in the R12 test, while the R9 test showed a complete flow blockage in the test section. However, the R12 test is most applicable to a case where a power reduction occurs imediately after the rod failure. Failure of the lead CRBRP channel belongs in this category.
On the other hand, the R9 test better simulates a case where a substantial power level is maintained long after the rod failure. In this case, a l
substantial amount of fuel will be ejected, which can result in a complete blockage in the flow path. The R12 test had a scram upon a 40% reduction of the inlet flow, while no 3uch provision was included in the R9 test (resulting in an overpower condition beyond the initial rod failure for a long transient period).
Out-of-pile experiments have been performed in the ANL Components and Materials Evaluation Loop (CAMEL) to examine the prototypic hydraulic aspects of fuel sweepout and plug fomation.(43-45) In these CAMEL tests, molten UO , pr duced by a thermite reaction, was injected into a 2
single or multiple-rod section through which liquid sodium flowed. The data from these tests generally indicated some degree of blockage and partial sweepout. These out-of-pile tests lacked inter-rod interaction which would lead to a nonuniform blockage femation.        In actual cases ejected fuel from one side of the rod would trigger the failure of rods adjacent to the failure side and blockages would tend to form on the failure side. As a nonuniform blockage formation would reduce the blockage effects on sodium flows, the actual flow reduction due to blockages may not i
6-22
 
be as severe as CAMEL tests indicated. Nevertheless, the CAMEL tests suggested that formation of blockages and partial sweepout cannot be ruled out in a TOP accident.
The test results reviewed above indicate a trend that a high degree of blockaoe would be expected for a large amount of fuel ejected at a rapid rate. This kind of fuel rod failure is expected to occur in a case where a prolonged high power follows the rod failure, as in the R9 test. On the otner hand, a small fuel ejection would result in a limited or no blockage as in the R12 test. In conjunction with the whole core response, the former case is likely to be the result of an autocatalytic power burst in which the power keeps on increasing even after the fuel failure.      In most cases, fuel rod failures are followed by a decrease in the power level, and therefore, only a limited blockage is expected to be formed. As for fuel sweepout, it appears that only a small amount of ejected fuel can remain in the core region because a larger fuel deposition will cause melting of the cladding underneath and be swept out of the core region along with the molten clad-ding.
In the present analysis, three combinations of blockage and fuel sweep-outareconsideredatthedesignramprateof4.1(/sec(Section6.2.2): a) no blockage with a complete sweepout (SAS/FCI assumption), b) 72% areal blockage
* with 80% fuel sweepout, and c) pessimistic (Category 3) 92% areal blockage with 40% fuel sweepout.
SAS calculations under the assumption of blockage and partial sweepout required the use of SASBLOK, cecause of the modeling limitations of SAS/FCI..
Even in cases where no blockage with complete fuel sweepout was assumed, the use of SASBLOK was also necessary because of an inability to continue iCI calculations (TSC8 error) and prohibitively long computer running time. The TSC8 error occurs in SAS calculations when a sodium vapor bubble forms be-neath the FCI zone and tries to merge with it. In all E0C-4 TOP cases analyzed in this report, SAS calculations had to be carried out long after occurrence of the first channel failure, as discussed in the following sec-
* The coolability of blockages is assessed in Reference 3, which shows the maximum porous blockage that can be liquid cooled is an 80% areal blockage.
6-23
 
tions. A prohibitively long computer running time would be required to complete the case, because the SAS code is structured to use very small FCI time increments even after FCI calculations are completed. When such a case occurred, SASBLOK was used to complete the evaluation.
6.2.2      EOC-4 TOP Case 1 - Best-Estimate Analysis at Design Ramp Rate of 4.14/sec This case is a best-estimate analysis of a reactivity insertion without scram at E0C-4 in the CRBRP. The reactivity insertion selected for this case is identical to the 80C-1 assessment and corresponds to the design l
maximum value, a 3.2$ rod withdrawal at a ramp rate of 4.14/sec.
The initial stage of the reactivity insertion is followed by a power rise, which is moderated by the Doppler and fuel axial expansion reactivity feedback. As the power increases, fuel .in the lead channel, Channel 6, be-gins to melt in the internal cavity of the fuel column at 15.65 seconds into the transient. This molten fuel reduces the volume available to the entrap-ped fission gas in the cavity as the molten fuel produces froth gas and expands in volume. The reduction of the available fission gas volume, com-bined with the temperature increase, generates high cavity pressures causing mechanical loads and rupture of the cladding.
The lead fuel channel has a cladding failure at 26.092 seconds into the transient. At this time, the power level is 2.6 times nominal (2.6P) with a net reactivity of 19 cents. The Channel 6 internal cavity pressure is 486 bar at the time of rod failure. As fuel is ejected from the cavity, and is swept upward under the influence of the pump head, negative reactivity feed-back is produced. The total reactivity feedback from Channel 6 fuel motion is -1.56 dollars by the time fuel ejection and sweepout are completed. The total amount of fuel ejected is 33 gm per rod. The core is subcritical with other channels still intact. About two-thirds of the 3.2 dollar reactivity is yet to be inserted. At this point, three branch cases, Cases 1A, 1B and IC, were analyzed using SASBLOK, as indicated in Section 6.2.1. Case 1A, which assumed no blockage with complete fuel sweepout, and Case IB, a 72".
6-24
 
areal blockage with 80% of FCI calculated fuel sweepout, are considered equally probable branches of the best-estimate scenario. Pessimistic Category 3 assumptions of 92% areal blockage and 40% fuel sweepout were used in Case IC to examine the impact of an uncoolable assembly.
Case 1A is simply an extension of SAS/FCI calculations with the use of SASBLOK for Channel 6. The Channel 6 voiding profile simulated by SASBLOK is compared with the voiding profile calculated by SAS/FCI, in Figure 6-7.
As a result of using SASBLOK, this case was completed without consuming excessive computer running time. The core remains subcritical until the control rod has withdrawn enough to overcome the negative reactivity feed-back from Channel 6 fuel motion. As more control rod reactivity is insert-ed, the power slowly increases again, and tne core experiences another tran-sient overpower condition.
One of the internal blanket channels, Channel 3, fails at 64.152 sec-onds into the transient. Then, two other internal blanket channels, Chan-nels 1 and 5, aise fail within 0.3 seconds.            Since internal blanket material has negative worth even at EOC-4 (see Figure 4-13), a positive reactivity feedback is produced from sweepout of blanket material. As a result, the core net reactivity increases up to 73 cents, by which time failure of fuel Channel 14 is initiated producing negative reactivity feedback. Within
, 0.302 seconds from this failure, the only remaining internal blanket chan-nel, Channel 8, fails. Reactivity contributions f rom this failure are posi-tive, but not significant.
Finally, additional fuel rod failures (Channels 2, 4 and 15) introduce significant negative reactivity, bringing the core to subcritical condi-tions. When SAS calculations are concluded at 65.039 seconds, the core has a net reactivity of -7.5 dollars with an instantaneous power of 0.43P. All internal blanket assemblies and 48% of the total fuel assemblies have fail-ed, as illustrated in Figure 6-8. The blanket and fuel rod failures produce a combined reactivity of -9.1 dollars with additional negative reactivity still being added at -31$/sec, which is considered sufficient to result in 6-25
 
permanent shutdown.* Thus, even with the control rod fully withdrawn, the fuel sweepout would provide permanent shutdown. The power and reactivity histories for this case are shown in Figures 6-9 and 6-10.      Table 6-16 lists the significant events of the accident sequence.
In Case 1B, SASSLOK was used for the lead channel, Channel 6, assuming that ejected fuel blocks 72% of the flow cross section area and 20% of the ejected fuel remains in the core region. Because of the partial sweepout, the negative fuel motion reactivity feedback from failure of Channel 6'was adjusted to be 80% of the values calculated by SAS/FCI. The 72% areal blockage assumption reduces the Channel 6 flow to 75% of nominal when the flow is fully reestablished. Significant events for this case are listed in Table 6-17.
The response of the core for Case IB is similar to that for Case 1A, except for the timing of various events. As in Case 1A, the failure of Channel 6 is followed by subcritical core conditions for a long period. As more control reactivity is inserted, the core becomes critical again and ex-periences another TOP excursion. Then, one of the internal blanket chan-nels, Channel 3, fails at 55.818 seconds into the transient, as compared with 64.152 seconds in Case 1A. This blanket channel failure is followed by failure of two more internal blanket channels, Channels 1 and 5, within 0.36 seconds. The three blanket channels fail sooner in Case IB than in Case 1A because the power recovers sooner in Case 18 as a result of the 20% reduc-tion of the Channel F negative fuel motion reactivity.
SAS3D calculations for Case 1B were terminated about 0.02 seconds after the failure of Channel 1, because of a code problem. However, based on the results for Case 1A, it is possible to predict the subsequent response of the core for Case 1B. As pointed out earlier, the core response for Case IB is similar to that for Case 1A. For instance, the same channels had failed in exactly the same sequence at the termination of SAS calculation.                      Fur-thermore, the two cases have similar rod cavity pressures for the unfailed
* Temperature change reactivity requirements for shutdown from hot-full power to aero power conditions are satisfied which are specified in the CRBRP PSAR Section 4.3.2 (Amendment 51).
6-26
 
channels under similar code conditions about 0.02 sec after failure of Chan-nel 1 (when the run was terminated for Case 1B), as shown in Table 6-17.
Therefore, the behavior of the next channel failures for Case 18 is expected to be similar to Case 1A.
Accordingly, fuel motion reactivity for Case IB would be 80% of the value for Case 1A in consideration of the partial sweepout assumption, and would amount to about -7.3 dollars. This negative fuel motion reactivity feedback is sufficient to counterbalance the 3.2 dollar control rod reactiv-ity insertion and additionally render permanent shutdown.
Therefore, it is concluded that the best-estimate scenario for EOC-4 TOP would result in permanent shutdown over the probable range of areal blockage and fuel sweepout.
Following tne determination of the best-estimate progression it was decided to evaluate an ' alternate path wherein the lead channel might not be coolable following failure.      SASBLOK was used in Case IC to apply pessimis-tic assumptions about fuel sweepout and blockage conditions to SAS/FCI cal-culations for the lead channel, Channel 6. This case assumes that 92% of the flow area is blocked by ejected fuel, and that only 40% of the ejected fuel calculated by SAS/FCI is swept out of the active core region.        Accord-ingly, the negative fuel motion reactivity feedback used in Case 1C is as-sumed to be 40% of the values calculated by SAS/FCI. It is noted that the above assumptions for post-failure behavior of the lead channel are consi-dered pessimistic, as discussed in Section 6.2.1.
The control rod reactivity insertion for Case 1C overcomes the Channel 6 negative fuel motion reactivity sooner than in Case 1A, because of the re-duced negative fuel motion reactivity in Case IC.      The 92% areal blockage assumption reduces the Channel 6 flow to only 30% of nominal after flow is reestabli,shed.
Insufficient cooling resulting from the flow reduction causes sodium boiling in the failed channel (Ch. 6). As this failed channel becomes void of sodium, the cladding melts and starts to relocate at 32.916 seconds into 6-27
 
the transient in a manner similar to that encountered in a typical loss-of-flow case (Chapter 7).
It is apparent that the failed channel (Ch. 6) could not maintain its rod geometry with the 92% areal blockage and 40% sweepout assumed in Case IC. Furthermore, relocation of molten cladding indicates that the fuel originally assumed to remain in the core region could remelt and move out of the core along with molten cladding. Then, Case IC would become closer in reactivity effect to the case of complete fuel sweepout with complete block-Since it is beyond age. Eventually, fuel melting and motion will occur.
l the capability of SAS3D to model a secondary fuel motion in a fuel channel
!                which has already undergone a TOP-type failure, a qualitative evaluation has been made for the response of the core following cladding relocation, as follows.
Upon completion of cladding relocation and additional fuel sweepout, the net reactivity feedback from cladding relocation and fuel sweepout in Channel 6 will be about -1.36 dollars (-1.56 dollars from 100% fuel sweepout (see Case U4) plus 20 cents from cladding relocation (see Table 4-6)). Since the flow path is now considered completely blocked, the remaining fuel in Chan-nel 6 will start to melt, and molten fuel would ultimately drain down in the internal cavity created during the earlier TOP failure. This kind of fuel motion is expected to be similar to that calculated by PLUT02 for 80C-1 fuel (see Appendix B) and would produce positive reactivity feedback on the order of 10 to 154/sec per assembly, i.e., 60 to 904/sec for Channel 6 (six assem-blies). The resulting higher ramp rate would cause fuel channels to fail earlier than blanket channels
* because the fuel material has a higher power generation density than blanket material. This phenomenon, which is caused by fuel meltdown in the lead channel, is a major point of departure from the accident path predicted in Case 1A or Case IB where blanket channels fail after the lead channel failure.
                    *For instance, in E0C-4 TOP Case 3 (504/sec) two fuel channels,14 and 15, fail after the lead channel without any blanket channel failure because of the high ramp rate.
6-28 i
 
Two fuel channels,14 and 15, are likely to fail because the high ramp rate caused by fuel meltdown in the lead channel produces a condition simi-lar to that in Case 3 (Section 6.2.4), which is a high ramp rate case that predicted the failure of those two channels. Based on the Case 3 result for failure of Channels 14 and 15, and after adjusting for the arbitrary material worths used therein, it is estimated that failure of these two channels will produce a negative reactivity of approximately -3 dollars.
Eventually the fuel in the lead channel could completely collapse and be accumulated on the cladding blockage formed at the lower blanket / core inter-face. Continued energy generation will cause the hexcan wall to fail and some of the fuel could be dispersed through the interstitial space between hexcans (see Section 8.2.5).
However, to conservatively estimate the reactivity feedback from such fuel motion, the hexcan failure is ignored, and it is assumed that all the collapsed fuel will lie on the lower cladding blockage.      The reactivity feedback based on this assumption is estimated to be about 80 cents. This means that the lead channel failure would produce only -56 cents (-1.36 dollars plus 80 cents), instead of -1.56 dollars predicted in Case 1A.
Consequently, the total reactivity feedback from failure of the three fuel channels, 6,14 and 15, would amount to -3.56 dollars. The -3.56 dol-lar negative reactivity is not sufficient to render cold shutdown after counterbalancing the 3.2 dollar control rod reactivity insertion. However, the core will be stable at some power level below nominal.      Therefore, it is concluded that even with very conservative fuel motion assumptions this case would result in a benign termination of the accident.
6.2.3      EOC-4 TOP Casa 2 - 104/sec Ramp Rate With Forced Midplane Failure Case 2 used a reactivity ramp rate of 10 cents /sec with rod failure forced at the core midplane. This case was intended to provide a comparison between the CRBRP heterogeneous core and the earlier CRBRP homogeneous core responses to these assumptions. This particular case was chosen because SAS analyses with the homogeneous core resulted in a superprompt, energetic burst.(3) The 104/sec ramp rate was used in the homogeneous core anal-6-29
 
ysis as a representative low ramp rate, although the maximum design ramp rate was 2.44/sec (vs. 4.14/se; for the heterogeneous core).
The initial response of the core to the 10 cents /sec reactivity inser-tion is similar to that for Case 1 except that the power and reactivity increases faster in Case 2.      The lead channel, Channel 6 fails at 12.055 seconds into the transient at a power level of 3.3P.      Initially, the ejec-tion of fuel at the core midplane results in a positive reactivity feedback as a result of fuel relocation and density increases. The maximum positive reactivity from this failure is 19 cents, but the core is never close to superprompt critical conditions. As the ejected fuel is swept out, the reactivity decreases and becomes negative about 60 ms after failure. When complete sweepout of the ejected fuel concludes, the total fuel motion reac-tivity feedback is -2.22 dollars which is sufficient to result in a tempor-arily subcritical core condition.
The difference in the initial core response between the homogeneous and heterogeneous core design is pronounced. The homogeneous core enttred a superprompt critical disassembly, while the heterogeneous core becomes sub-critical without 5eing close to superprompt critical conditions. The early failure and small size (6 assemblies) of the lead channel are the principal reasons for the difference in core response. The fuel in the lead channel is ejected and swept out before any other channels became involved in the case of the CRBRP heterogeneous core, whereas with the CRBRP homogeneous core four channels (42% of core fuel) became involved at nearly the same time. In other words, incoherent thermal responses associated with the heterogeneous core EOC-4 design play the predominant role in keeping the core from being superprompt critical.
On the other hand, there is not ereugh fuel involved in the tweepout to ensure permanent shutdown in the heterogeneous core. To complete the assessment SASBLOX is used to simulate SAS/FCI calculations for Channel 6.
l l
Because of negative reactivity feedback from fuel motion in Channel 6, the power continues to decrease, down to the level of 0.63P. Then, the power slowly recovers as the decrease in fuel temperature reduces the nega-6-30
 
l tive Doppler and fuel expansion reactivity feedback, and more reactivity is inserted by assumed continued withdrawal of control. Finally, at 22.252 seconds into the transient the core reaches a point where the control rod reactivity inserted completely counterbalances the negative fuel motion reactivity with a 97.54 reactivity remaining to be inserted at 104/sec. At this time, the power is slightly above nominal, and the combined reactivity feedback from Doppler, fuel expansion and sodium coolant is very small.
The transient overpower event from 22.252 sec is like another 104/sec TOP event starting from a quasisteady state. However, there is a signifi-cant difference in fuel temperature between the original steady state and the transient state at 22.252 sec, as shown in Table 6-18. Fuel tempera-tures at 22.252 sec are much lower than those at steady state for fuel chan-nels, and much higher for internal blanket channels. Consequently, three blanket channels, Chs.1, 3 and 5, have rod failures before failure of any fuel channel (other than Ch. 6). These blanket channel failures initially produce negative reactivity because of the midplane failure criterion, but they eventually produce positive reactivity feedback as blanket material is swept out.
The power and core net reactivity continue to increase. At 39.716 seconds into the transient, fuel channel 14,11% of the core fuel assemblies, has a rod failure which ultimately gives negative reactivity feedback.      This negative reactivity substantially reduces the net core reactivity, but is not enough to offset the positive reactivity feedback from the blanket fail-ures.
Then, Chs. 2 and 4, approximately 19% of the core fuel assemblies, have rod failures almost simultaneously at low net reactivity and power, which produce positive fuel motion reactivity feedback as a result of the midplane failure criterion. These fuel rod failures also yield positive reactivity feedback from FCI sodium voiding (see Figure 4-11). Consequently, the core is driven superprompt critical at 39.86 seconds into the transient while the two fuel channels are still providing positive reactivity feedback. At this point, the PLUT02 code (25) was used to evaluate the behavior of fuel motion and fuel-coolant interaction in these two channels. SAS/FCI modeling assumptions are unrealistically conservative, especially relative 6-31                            -
 
to rate effects, when the core approaches superprompt critical condi-tions.(3) For instance, the SAS/FCI reactivity algorithm assumes that the fuel is ejected into the sodium flow region in proportion to its distri-bution throughout the molten fuel cavity without physical modeling of the fuel motion within the cavity. The result of this assumption is often an autocatalytic fuel compaction rather than the more correct hydrodynaaic internal motion. The PLUT02 code models this kind of situation more realis-tically by solving hydrodynamic ecuations for the cavity fuel motion. A detailed description of the PLUT02 calculations for Channels 2 and 4 is presented in Appendix E.
To understand the PLUT02 results from the standpoint of the whole core response, SAS3D calculations were re-performed by replacing the SAS/FCI results with the PLUT02 results with the use of SASBLOK. The power and net reactivity histories obtained from these SAS3D calculations are shown in Figure 6-11.
According to the SAS3D/PLUT02 calculations, the core experiences a subprompt (864) power burst at'39.854 sec into the transient, rather than a sustained superprompt power excursion which was predicted by SAS/FCI. As shown in Figure E-1 (Appendix E), fuel motion reactivities calculated by PLUT02 are initially positive because of the forced midplane failure assump-tion as in SAS/FCI calculations. However, in the PLUT02 calculations the fuel motion reactivity peaks at 24 per assembly, which is not sufficient to bring the core to superprompt critical conditions. A reactivity balance indicates that the core would not become superprompt critical unless a fuel motion reactivity of at least 2.54 per assembly occurs in Channels 2 and 4.
As discussed in Appendix E, this value was not reached despite various con-servative assumptions made in parametric PLUT02 calculations.
SAS3D calculations, with the PLUT02 results incorporated via SASBLOK, were carried out further until it was assured that no more core assemblies would fail. After the subprompt power burst mentioned above, the analysis indicates that the core power and net reactivity continue to decrease mainly because of fuel sweepout in Channels 2 and 4. Then, 30 msec after the sub-prompt power burst, failure of Channel 15 occurs, initially resulting in a 6-32
 
positive reactivity addition to the core. However, the core net reactivity keeps on decreasing because of a larger negative reactivity due to fuel sweepout in Channels 2 and 4. The only remaining internal blanket channel, Ch. 8, also fails 42 msec after the Channel 15 failure. Reactivity contri-butions from this failure are insignificant, and have a negligible effect on the core net reactivity which continues to decrease.
SAS3D calculations for this case were terminated at 39.958 sec into the transient. At this time the instantaneous power and net reactivity are 1.14P and -1.93$, respectively, and would continue to decrease. The total, combined reactivity feedback from fuel / internal blanket sweepout is expected to be approximately the same as Case 1A (or 18), because exactly the same channels have failed in both cases. The end state for this case is predic-ted to be permanent shutdown, as predicted for Case 1A. Thus, it is conclu-ded that this case would result in permanent shutdown after undergoing a subprompt critical power burst.
Despite the predicted absence of superprompt critical conditions based on more realistic PLUT02 calculations, disassembly calculations were perfor-med based on the less realistic SAS/FCI accident progression to provide insight into the margins available.      For these disassembly calculations, the ramp rate used was 43$/sec which is approximately the maximum driving ramp rate of the subprompt critical power burst predicted by the PLUT02 calcula-tions. The PLUT0-2 predicted ramp rate was used because of the deficiencies in the SAS/FCI calculations noted previously in this section.      The VENUS results for this case are discussed in Section 9.2.
6.2.4      EOC-4 TOP Case 3 - 504/sec Ramp Rate with Pessimistic Doppler and Material Worths The objective of Case 3 is to evaluate the effect of uncertainties in design neutronic calculations by using the nominal plus or minus an uncer-tainty for some of the neutronic parameters. The uncertainty values consid-ered are 20% for Doppler constants, and 60% for sodium void worths. The 6-33                                      ,
 
uncertainty values for fuel and cladding worths
* are taken to be 40%. In
~
particular, all these uncertainties are assumed to be simultaneously biased toward the direction of increasing positive reactivity. For instance, the absolute values of positive sodium void worths are augmented, but those of negative sodium void worths are reduced in absolute value.
The CRBRP PSAR (Section 4.3, Amendment 51) identifies a low probability control system fault which could conceivably result in a reactivity inser-tion rate of as much as 334/sec. The driving reactivity insertion rate for Case 3 was chosen to be 504/sec to provide correspondence with TREAT tests and other analyses performed at 504/sec. The ramp rates of 334/sec and 504/sec are considered to be within the same generic range of insertion rates yielding similar core responses.
The power and net reactivity traces for this case are plotted in Figure 6-12. Channel 6 fails first at 2.452 s and 22 cm above the midplane.        The mid-plane fuel melt fraction at failure is approximately 43%. The fuel motion reactivity reaches an asymptotic value of -1.25 dollars about 130 ms after failure. Then, two more fuel channels, Channels 14 and 15, fail at 2.670 sec and 2.998 sec into the transient, respectively. The power has been maintained at levels above nominal during the period from the first channel failure to the next two channel failures. This result is in contrast with Cases 1 and 2 which have a long cooling period, and is attributed to the use of pessimistic design neutronic data, and to the higher reactivity inser-tion.
Failure of the three fuel channels yields significant negative reacti-vity, but not enough to render immediate shutdown. Determination of the -
final core state required the use of SASBLOK to avoid excessive computer running time associated with small SAS/FCI time increments, as discussed in Section 6.2.1. SASBLOK calculations assumed .no flow blockage along with complete sweepout, as in the case of SAS/FCI calculations.
* Since no cladding relocation occurred in Case 3, the cladding worth un-certainty has no effect on the SAS calculation for this case.
6-34
 
Extended SAS calculations predicted no more rod failures in any of the remaining channels. Instead, the core conditions are stablized at a power level of 1.2P. The reactivity feedback from fuel sweepout in Chs. 6,14 and 15 offset the 3.2$ reactivity insertion except 12 cents. The Doppler feed-back counterbalances the remaining 12 cents and a 2 cent coolant reactivity resulting from slightly hotter operation than nominal. The fuel tempera-tures are very slowly decreasing, and were well below the melting point in all channels. A scoping assessment of the heat transport system capability indicates that at this power level the heat could be dissipated by the sys-tem (see Section 6.1.5). Thus, the core is expected to remain in a neutron-ically and thermally stable state without further damage. Therefore, this case is considered to be benign without potential for energetic conse-quences.
6.2.5      EOC-4 TOP Case 4 - Case 3 Plus Forced Midplane Failure and One Rod Failure Group Case 4 contains all the conservatisms of Case 3 and, in addition, as-sumes that all fuel rods in the same channel would fail simultaneously at the midplane of the core.      The forced midplane failure criterion will assure positive reactivity feedback immediately after fuel rod failures at the E0C-4 ondition. One FCI failure group for the same channel takes no credit for intraassembly incoherency effects on failure time. Thus, this case was intended to assess the combined effect on energetics potential of pessimis-
  -tic design values and pessimistic phenomenological assumptions.
The forced midplane failure causes a slight delay in rod failure of the lead channel (Ch. 6). The lead channel failure occurs at 2.494 sec into the transient, as compared with 2.452 sec in Case 3.      The failure delay is due to the fact that a lower cladding temperature at the midplane required a higher cavity pressure to meet Wst pressure criteria. It is noted that the cladding strength is strongly temperature dependent.
The initial reactivity feedback from the rod failure is positive be-cause of the forced midplane failure, as in Case 2.      The initial positive 6-35
 
e fuel motion reactivity feedback expedites subsequent failure of other chan-nels. Channels 14 and 15 fail earlier than in Case 3, despite rod failure delays associated with the forced midplane failure. The timing of rod fail-ures for this case are compared with those for Case 3 in Table 6-19.
The SAS/FCI calculation was terminated when a vapor bubble forms be-neath the FCI interaction zone and tries to merge (TSC8 error) in Channel 6.
Since SAS/FCI was unable to handle this condition, SASBLOK was again used to extend SAS calculations.
The same channels fail in Cases 3 and 4    However, the amount of eject-ed fuel in Case 4 is larger than in Case 3. Higher failure pressures and more m'olten fuel associated with the forced midplane failure result in more molten fuel ejected at the time of failure. The larger amount of ejected fuel results in greater negative fuel motion reactivity after fuel sweepout.
The total fuel motion reactivity from failure of Channels 6,14 and 15 is
  -4.9 dollars, as compared with -3 dollars in Case 3. The power and net reactivity histories are shown in Figure 6-13.                          .
Since the responses of the core in Case 4 are similar to those in Case 3, the final state of the core in Case 4 can be roughly estimated from the results for Case 3. First of all, the -4.9$ reactivity is more than the 3.2 dollar control rod reactivity insertion, but the negative reactivity balance is not sufficient to render permanent shutdown. Since fuel temperatures are decreasing, no more channels are expected to have failures. Consequently, the core will be eventually stablilized at some power level with the net re-activity balanced by Doppler and fuel axial expansion reacti rities. Noting that the Doppler constant is near5y the same as 80C-1 and EOC-4, Table 6-3 can be used as a guide to conclude that the excess reactivity of -1.7$ would result in a stabilized core power below 0.1P. Therefore, this case is con-sidered to result in a nonenergetic termination of the accident.
6.2.6      Summary and Conclusions on EOC-4 TOP Events The best estimate analysis indicates that the insertion of 3.2$ reacti-vity at the maximum design rate of 4.1(/sec would lead to multiple fuel rod 6-36
 
failures with fuel sweepout followed by permanent shutdown. Channel 6 rep-resenting six assemblies at the alternating fuel-blanket assembly locations has rod failures well ahead of any other channel. The early failure of the lead channel leads to subcritical conditions for a long period. Finally, when the 3.2$ reactivity is almost fully inserted, blanket and additional fuel assemblies have rod failures. The net result of these failures is to introduce sufficient negative reactivity to render permanent shutdown.
An insertion rate of 104/sec with forced midplane rod failure which is a Category 3 case results in two different end states dependtag upon the detailed physical modeling of the same phenomena. Permanent shutdown pre-ceded by a subprompt (864 net reactivity) power burst was predicted accord-ing to PLUT02 calculations, whereas SAS/FCI predicted a sustained super-prompt power excursion. The PLUT02 results are more realistic than the SAS/FCI results in view of modeling deficiencies at near-prompt critical condi-tions which exist in SAS/FCI, as described in Reference 3.        Nevertheless, since both models start from a core state which is appropriate for the model assumptions, and predict a rapid increase in core net reactivity (>754) following fuel rod failures, disassembly calculations were performed to provide further insight on the margins available. The results of these disassembly calculations are presented in Chapter 9.
A 504/sec ramp with pessimistic Doppler and material worths results in a stable power level near nominal.      Early rod failures in three channels (Chs. 6,14 and 15) have fuel sweepout which approximately balances the total reactivity insertion of 3.2$. Calculations were carried out until the core reached a stabilized critical state with no additional failures predic-ted. Ler;-term stable conditions with partial core damage are predicted.
Another 50(/sec case also results in a stable power level below nominal despite forced midplane rod failure and one failure group combined with pes-simistic Doppler and material worths. Fuel sweepout from early failures approximately balt.nces the total reactivity insertion as in the case discus-sed above.
6-37
 
SASBLOX was used in the lead channel for the base case to evaluate the effect of flow blockage and partial sweepout, as compared to SAS/FCI calcu-lations which assume no blockage and complete sweepout. No change in the accident path is expected to occur with a 72% areal blockage and 80% fuel sweepout assumption which is considered reasonable in view of a relatively small amount of fuel ejected. However, with the assumption of a 92% areal blockage and a 40% fuel sweepout, the accident path is significantly altered from the SAS/FCI predicted path. With such a pessimistic blockage and fuel sweepout assumption, the alternate scenario is preilicted to progress through sodium voiding followed by cladding relocation ar;d fuel meltdown in the lead channel. The end state of the core is a stable power level below nominal instead of the permanent shutdown predicted by SAS/FCI.
In conclusion, according to a best-estimate analysis, or even with very pessimistic Category 3 assumptions, a TOP event in the core at E0C-4 is a nonenergetic event, in which the core is permanent'y shutdown, or stabli zed at some power level near nominal. Only when some particular improbable sets of pessimistic Category 3 assumptions are made, such as forced midplane failure at 10 (/sec, can conditions be found for core disassembly with ener-getic consequences.
l l
6-38
 
Table 6-1 SEQUENCE OF EVENTS for BOC-1 TOP Case lA Net Time  Normalized Reactivity      Channel (Sec)  Power        ($)            No.                Event 12.9500  1.516      0.133          11      Fuel Melting Begins 13.2500  1.529      0.134          10      Fuel Melting Begins 13.4500  1.538      0.134            7    Fuel Melting Begins 14.3000  1.576    0.137              9    Fuel Melting Begins 16.1500  1.666      0.143            13      Fuel Melting Begins 16.4000  1.679      0.144            12    Fuel Melting Begins 18.5000  1.789      0.150            4    Fuel Melting Begins 20.1000  1.880      0.155            2    Fuel Melting Begins 20.2500  1.888      0.155            15    Fuel Melting mBegins 20.9500  1.928      0.156            14    - Fuel Melting Begins 35.2659  2.953      0.164            13    Sodium Boiling Begins 35.3859  2.963      0.164            11    Sodium Boiling Begins l
36.3359  3.040      0.165            9    Sodium Boiling Begins 37.6558  3.131      0.162            12    Sodium Boiling Begins 38.1858  3.183      0.165            7    Sodium Boiling Begins 38.6149  3.247      0.172            10    Sodium Boiling Begins 38.7949  3.268      0.173            15    Sodium Boiling Begins 39.9031  3.359      0.170            11    Clad Rupture Occurs 9 105 cm 39.9102  2.639    -0.074            11    Sodium Flow Reversed 39.9439  1,.125    -1.647            11    Fuel Ejection Cutoff l 39.9776  0.588    -4.558            11    Maximum Bubble Growth
! 40.0201  0.542    -5.009            14    Sodium Boiling 40.0526  0.531    -5.074            11    TSC8 Error (Sodium Reentry) 6-39
 
Table 6-2 Fuel Rod Conditions at Failure, BOC-1 TOP Cases 1 & 2 Case                                        1          2 Channel                                      11          11 Failure Time, sec                      39.904        40.413 Failure Loc., em                        105.5          76.1 Peak Fuel Temp., b                        4900          4949 Max Melt Fraction                        0.725        0.728 Avg. Molten Fuel Temp., oC                3510          3531 Flow Rate, gm/cm sec                        415          243 Cladding Temp., *C                        1102          1022 Elevation *, cm                        105.5          76.1 Total Rod Pressure, bar                    189            198 Partial pressure, Cavity Gas, bar                                11.5            9J5 Partial pressure, Fuel Vapor, 'uar                              177            189 Equilibrium Temp., C                      4741          4769 Mass of Fuel Vapor, gm                  0.015          0.019 Volume of Fuel Vapor, cc                0.149          0.182    )
*Above bottom of lower axial blanket i
6 40
 
Table 6-3 CRBRP BOC-1 Steady Power and Thermal Reactivities vs. Excess Reactivity Fuel Axial Excess        Steady              Doppler  Expansion      Coolant Reactivity, Normalized Power      Reactivity. Reactivity,    Reactivity (Dollars)      Level              (Dollars)  (Dollars)      (Dollars)
        -1.50        0.085              0.942      0.096        -0.033    ,
        -1.00        0.263              0.643      0.087        -0.026
        -0.50        0.568              0.329      0.055        -0.015 0.00        1.00                0.00        0.00          0.00 0.25        1.289              -0.179      -0.049          0.010 0.50        1.661              -0.380      -0.098          0.024 0.75        2.193              -0.605      -0.136          0.043 1.00        2.887              -0.802      -0.182          0.067 6-41
 
Table 6-4 BOC-1 TOP Case 1B End States with Various Coolability Assumptions Subcase                            (a)          (b)        (c)
Fuel Relocation, $            -3.123        -4.119    -9.669 Cladding Relocation, $          0.00          0.294      0.586 Programed, $                    3.200        3.200      3.200 Excess Reactivity, $              0.08        -0.63      -5.88 Coolant, $                        0.003        -0.018    -0.033 Fuel Expansion, $                -0.015          0.063    0.096 Doppler, $                      -0.055          0.408      0.942 Nonnalized Power                  1.09          0.49  0.06 to 0.08 (d)
(a) Channel 11 FCI (Coolable)
(b) Channel 11 (Not coolable)
Channel 10 FCI (Coolable)
(c) Channels 11 and 10 (Not coolable)
Channel 7 FCI (Coolable)
(d) Core subcritical; decay power over short tenn 6-42 l
l
 
Table 6-5 Sequence of Events for 800-1 TOP Case 2                            l Net Time  Normalized Reactivity    Channel (Sec)    Power      ($)          No.            Event 12.9500    1.516      .133          11      Fuel Melting Begins 13.2500    1.529      .134          10      Fuel Melting Begins 13.4500    1.538      .134            7      Fuel Melting Begins 14.3000    1.576      .137            9      Fuel Melting Begins 16.1500    1.666      .143          13      Fuel Melting Begins 16.4000    1.678      .144          12      Fuel Melting Begins 18.50D0    1.789      .150            4      Fuel Melting Begins 20.1000    1.880      .155            2      Fuel Melting Begins 20.2500    1.888      .155          15      Fuel Melting Begins 20.9500    1.928      .156          14      Fuel Melting Begins 35.2659    2.953      .164          13      Sodium Boiling Begins 35.3859    2.963      .164          11      Sodium Boiling Begins 36.3359    3.040      .165            9      Sodium Boiling Begins 37.6558    3.131      .162          12      Sodium Boiling Begins 38.1858    3.183      .165            7      Sodium Boiling Begins 38.6149    3.247      .172          10      Sodium Boiling Begins 38.7949    3.268      .173          15      Sodium boiling Begins 40.0929    3.363      .167          14      Sodium Boiling Begins 40.4131    3.337      .155          11      Cladding Failure 40.4189    3.362      .161          11      Sodium Flow Reversal 40.4227    3.454      .186          11      Fuel Ejection Cutoff 40.4777    1.924      .494          11      Maximum Bubble Growth 40.5377    1.453      .990          11      TSC8 Error 6-43
 
Table 6-6 Expected Failure Times of Additional Channels and Core Conditions for B0C-1 TOP Case 2 Notes:      (a)          (b)        (c)        (d)
Time, sec                    48.171        59.122    56.707    77.756 Reactivities, $                                                          .
Programmed                  1.975        2.424    2.325      3.188 Doppler                    -1.034        -1.034    -1.034    -1.034 Fuel Expansion            -0.406        -0.406    -0.406    -0.406 Coolant                    -0.026        -0.026    -0.026    -0.026 Fuel Motion                -0.337        -0.786    -0.687    -1.550 Net                        0.172          0.172    0.172      0.172 Estimated Normalized          3.4            3.4      3.4        3.4 Power (a) Failure time for Channel 10 with fully collapsed cavity in Channel 11 (b) Failure time for Channel 10 with fully expanded cavity in Channel 11 (c) Failure time for Channel 7 with fully collapsed cavities in both Channel 10 and 11 (d) Failure time for Channel 7 with fully expanded cavities in both Channel 10 and 11 6-44
 
l Table 6-7 Expected Power Level End State with Three Channels Failed for B0C-1 TOP Case 2 Notes:    (a)            (b)          (c)
Reactivities, $
Progra.auned          3.200            3.200        3.200 Doppler                0.165          -1.456      -0.523 Fuel Expansion        0.027          -0.334      -0.122 Coolant              -0.006            0.151        0.036 Fuel Motion          -3.386          -1.561      -2.591 Net                    0.00            0.00          0.00 Estimated Nonnalized Power                . 0.84            5.32          2.0 Cavity Vapor Pressure, bar              0.00          s 1500      2.0 - 2.5 (a) Vapor bubbles in cavities fully expanded (b) Vapor bubbles in cavities fully collapsed (c)  End state at best-estimate cavity condii. ions 6-45
 
Table 6-8 Sequence of Events for 80C-1 TOP Case 3
:                        Net i      Time Normalized Reactivity    Channel (Sec)    Power      ($)            No.        Event 1.5677    3.297      .564          11    Fuel Melting l  1.7177    3.427      .570            7  Fuel Melting 10    Fuel Melting 1.8155    3.596      .582            9  Fuel Melting 1.9155    3.991      .593          12    Fuel Melting
.                                        13    Fuel Melting 2.0655    4.496      .609            4  Fuel Melting l  2.1646    4.875      .619            2  Fuel Melting 15    Fuel Melting 2.2760    5.160      .626          14    Fuel Melting 2.8345    8.481      .662          13  Sodium Boiling Begins 2.8806    8.812      .665          11  Sodium Boiling Begins
  . 2.9061    8.391      .663            9  Sodium Boiling Begins 2.9431    9.028        .659          12  Sodium Boiling Begins l  2.9447    9.023      .658          15  Sodium Boiling Begins 2.9615    9.030      .655          11  Cladding Rupture 2.9711    6.580        .517          11  Sodium Flow Reversal 2.9600    7.094        .563          10  Cladding Rupture 2.9870                                10  Sodium Flow Reversal 11  Fuel Ejection Ends 2.9947    4.010        .207          7  Cladding Rupture 3.0017    3.103        .035          7  Sodium Flow Reversal 3.0042    2.582        .249          10  Fuel Ejection Ends 3.0190    1.655        .963            7  Fuel Ejection Ends 11  Maximum Bubble Growth 12  Sodium Boiling Ends 6-46
 
Table 6-8    (Continued)
Sequence of Events for 80C-1 TOP Case 3 Net Time Normalized                Reactivity      Channel (Sec)    Power                    ($)          No.              Event 3.0215    1.527                  -1.134            15          Sodium Boiling Ends 3.0365    0.903                  -2.728            10          Maximum Bubble Growth 3.0503    0.641                  -4.452            9          Sodium Boiling Ends 3.0515    0.618                  -4. 68 2          7          Maximum Bubble Growth 3.0565    0.562                  -5.334            15          Sodium Boiling Resumes 3.0628    0.514                  -6.013            9          Sodium Boiling Resumes 3.0690    0.478                  -6.622            14          Sodiua Boiling Resumes 3.0740    0.456                  -7.052            12 '        Sodium Boiling Resumes 3.0741    0.456                  -7.052            11          TSC8 Error I
6-47
 
Table 6-9 Rod Conditions at Failure for 800-1 TOP Case 3 Channel                                11              10        7 Failure Time, sec                    2.961        2.980    2.994 Failure Loc., cm                      98.2          98.3    98.3 Peak Fuel Temp, C                    4816          4824    4813 Max. Melt Fraction                  0.737          0.751    0.758 Avg. Molten Fuel Temp., C            3514          3501    3494 Flow Rate, gm/cm2 sec                  471            561      578 Cladding Temp., *C                    1081          1041    1048 Elevation *, cm                      98.2          98.3    98.3 Total Rod Pressure, bar                195            204      200 Partial Pressure, Cavity Gas, bar                            24.4          26.9    26.6 Partial Pressure, Fuel Vapor, bar                            170            177      173 Equilibrium Temp., C                  4722          4739    4729 Mass of Fuel Vapor, gms              0.007          0.006    0.006 Volume of Fuel Vapor, cc            0.068          0.058    0.057
* Above bottom of lower axial blanket 6-48
 
Table 6-10 Sequence of Events for CRBRP BOC-1 TOP Case 4 Net Time  Normalized Reactivity      Channel (Sec)      Power      ($)            No.        Event 1.6677    3.297      .564            11    Fuel Melting Begins 1.7177    3.427      .570              7  Fuel Melting Begins 10  Fuel Melting Begins 1.8155    3.696      .582              9  Fuel Melting Begins 1.9155    3.991      .593            12  Fuel Melting Begins 13  Fuel Melting Begins 2.0655    4.496      .609              4  Fuel Melting Begins 2.1646    4.875      .619              2  Fuel Melting Begins 15  Fuel Melting Begins 2.2760    5.160    .626            14    Fuel Melting Begins 2.8345    8.481      .662            13    Sodium Boiling Begins 2.8806    8.812      .665            11    Sodium Boiling Begins 2.9061    8.991      .663              9  Sodium Boiling Begins 2.9431    9.028      .659            12    Sodium Boiling Begins 2.9447    9.023      .658            15    Sodium Boiling Begins 2.9795    9.002      .650              7  Sodium Boiling Begins 2.9895    9.000      .648            14    Sodium Boiling Begins 3.0052    8.998      .645            10    Sodium Boiling Begins 3.0324    9.064      .641            11    Clad Rupture 3.0382    9.848    .672            11    Fuel Ejection Cutoff 3.0395    10.074    .677            11    Sodium Flow Reversal 3.0932    6.007    .446            11    Maximum Bubble Growth 3.1009    5.908    .437            10    Clad Rupture 3.1055    6.018    .448            10    Sodium Flow Reversal 3.1067    6.166    .464            10    Fuel Ejection Cutoff 3.1144    5.930    .437              7  Clad Rupture 3.1190    5.867    .434              7  Sodium Flow Reversal 3.1202    6.154    .465              7  Fuel Ejection Ends 3.1389    3.304    .021            11    TSC8 Error (Sodium Reentry) 6-49
 
Table 6-11 Rod Conditions at Failure for BOC-1 TOP Case 4 Channel                                11            10      7 Failure Time, sec                  3.032        3.101  3.114 Failure Loc., cm                    76.2          76.2  76.2 Peak Fuel Temp., C                    5022          5141  5127 Max. Melt Fraction                  0.851          0.855  0.853 Avg. Molten Fuel Temp., C            3553          3632  3624 Flow Rate, gm/cm2 sec                  438            577    564 Cladding Temp., 'C                    956            911    917 Elevation *, cm                      76.2          76.2  76.2 Total Rod Pressure, bar                279            347    338 Partial Pressure, Cavity Gas, bar                          24.2          27.6  26.3 Partial Pressure, Fuel Vapor, bar                          255            320    311 Equilibrium Temp., C                  4912          5026  5012 Mass of Fuel Vapor, gms              0.010                0.010 Volume of Fuel Vapor, cc            0.071          0.060  0.061 I
      *Above bottom of lower axial blanket 6-50
 
Table 6-12 Intermediate State Following Computer Error (TSC8) for 80C-1 TOP Case 4 Notes:    (a)              (b)          (c)
Time, Sec                    3.139            3.639        3.639 Reactivities $
Programmed              1.569            1.819        1.819 Doppler              -0.665            -0.665      -0.665 Fuci Expansion        -0.284            -0.284      -0.284 Coolant                0.413            0.074        0.074 Fuel Motion          -1.053          -2.896        -1.529 Net                  -0.021          -1.952        -0.585  .
Estimated Normalized        3.3            <1.0          <1.0 Power (a) End of SAS3D Run, TSC8 error (b) Fully expanded cavities, 0.5 sec later (c) Fully collapsed cavities, 0.5 sec later 6-51
 
Table 6-13 Expected Power Level End State with Three Channels Failed for BOC-1 TOP Case 4 Notes:      (a)              (b)        (c)
Reactivities , $
i l
Progr=Juned            3.200          3.200        3.200 Doppler              -0.250          -1.483      -0.523 Fuel Expansion        -0.067          -0.341      -0.122 Coolant                0.013            0.154      0.036 Fuel Motion            -2.896          -1.529      -2.591 Net                    0.00            0.00        0.00 Estimated Normalized        1.37              5.40        2.00 Power (a) All cavities fully expanded (b) All cavities fully collapsed l
(c ) End state at best-estimate cavity conditions 6-52
 
Table 6-14 Effect of Varying the Number of Fuel Ejection Nodes with Midplane Failure, on 80C-1 TOP Case 4 Core End State Notes:    (a)            (b)            (c)
Fuel Ejected, gn/ rod                        11.5            31.4          53.8 Channels Failed                          11,10,7            11,10          11 Total Fuel Ejected, kg                                104.8            122.6          105.1 Reactivities, $
Programmed                            3.200            3.200          3.200 Doppler                            -0.523            -0.368        -0.537 Fuel Expansion                      -0.122          -0.096        -0.127 Coolant                                0.036          0.021          0.34
.          Fuel Motion                          -2.591          -2.757        -2.570 Net                                    0.00            0.00          0.00 Estimated Normalized                      2.00            1.58          1.94 Power Minimum Nominal Flow, ;                      49              34            35 (a) The modeling used in Case 4.                      Only the midplane node of fusi is ejected.
(b) Three nodes of fuel are ejected which have fuel temperatures exceeding the saturation temperature at fuel ejection cut-off pressure.
(c) Five nodes of fuel are elected which have fuel temperatures exceeding tne saturation temperature at vapor flow cut-off pressure.
A-53
 
Table 6-15 Sequence of Events for Loss-of-Flow Initiated Following Stabilized Power of Twice iloninal Net Time    Normalized      Reactivity      Channel (Sec)          Power            ($)            No.            Event 0.000            2.00          0.000            -      Loss-of-Flow Sequence Begins. Channel 11 has 78% Power and 75% Flow 3.529          1.87          0.004          13      Boiling Begins 3.749          1.86        -0.002              9      Boiling Begins 4.049          1.83        -0.011            12      Boiling Begins 4.169          1.82        -0.018              7      Boiling Begins 4.219          1.81        -0.020            11      Boiling Begins 4.319          1.79        -0.034            10      Boiling Begins 4.339          1.79        -0.033            13      Flow Reversal 4.449          1.74        -0.060            15      Boiling Begins 4.559          1.70        -0.080              9      Flow Reversal 4.789          1.88          0.029            13      Cladding Melt 4.869          1.88          0.028            11      Flow Reversal i
4.959            1.82        -0.004              9    Cladding Melt 5.194            1.84          0.006          14      Boiling Begins 5.209            1.84          0.006          12      Flow Reversal 5.379            1.76        -0.040            13      Cladding Motion Begins
!  5.404            1.77        -0.035              7      Flow Reversal 5.504            2.13          0.148            9    Cladding Motion Begins 5.602          2.29          0.200          11      Cladding Melt 5.649          2.31          0.203          12      Cladding Melt 5.689          2.52          0.267          10      Flow Reversal 5.764          2.57          0.272            7      Cladding Melt 5.869          2.60          0.268              4    Boiling Begins 6-54
 
Table 6-15 (Continued)
Sequence of Events for Loss-of-Flow Initiated Following Stabilized Power of Twice Nominal Net Time    Normalized      Reactivity      Channel (Sec)      Power            ($)          No.            Event 5.944          2.34        0.175          15        Flow Reversal 6.034          2.09        0.073          9        Fuel Motion Begins 6.083          2.26        0.144          2        Boiling Begins 6.112          2.48        0.222          11        Cladding Motion Begins 6.143          3.24        0.409          13        Fuel Motion Begins 6.148        3.46          0.445          10        Cladding Melt 6.178        6.13          0.687          12        Cladding Motion Begins 6.206      54.42          0.979          7        Cladding Motion Begins 6.210      103.50          0.996          7        Fuel Motion Begins 6.211      130.37          1.001          -        Prompt Critical 016$/sec 6.212      155.73          1.001          10        Fuel Motion Begins 6.215      218.12          0.993          12        Fuel Motion Begins 6.216      223.23          0.989          11        Fuel Motion Begins 6.217      226.28          0.986          -
Peak Power 6.222      126.69          0.938          15        Fuel Motion Begins 6.223      74.16          0.889          4        FCI Occurs 6.229        3.62        -0.072          -
Subcritical 0 -200 $/sec 6.271        0.31        -16.796            -        End of Analysis 6-55
 
l Table 6-16 Sequence of Events for EOC-4 TOP Case 1A Time      Nonnalized  Net Reactivity      Channel Power            ($)            No.        Event (sec)
O.                -    Insertion of 3.2$ reactivity O.        1.
begins 1.81            0.16              6    First fuel melting 15.650 16.200      1.84            0.16              5    First internal blanket melting 26.092      2.63            0.19              6    First cladding rupture 26.154      2.15            0.                -    Core becomes subcritical 1.09            0.                -    Core becomes critical again 39.334 64.152      2.64            0.17              3    Cladding failure 64.279      3.47            0.36                5    Cladding failure 64.446      5.58            0.57                1    Cladding failure 9.84            0.73                -    Peak net reactivity 64.582 64.582      9.84            0.73            14,8 to        to              to                    Cladding failure 64.914      7.76            0.63              2,4 65.039      0.43          -7.50                -  End of SAS calculation with fuel sweepout in progress 6-56
 
Table 6-17 Core Conditions and Intact Rod Cavity Pressures at 0.02 sec since Failure of Ch.1 for EOC-4 TOP Cases lA and 1B Case 1A Case IB Power Level                                    6.1    6.7 Net Reactivity, $                              0.61    0.63 Cavity Pressure, bar
* Ch. 2                                          152      133 4                                        151      132 7                                        112      102 8                                          38      44 9                                        130      126 10                                          97      92 11                                        113      103 12                                        186      182 13                                        166      162 14                                        733      622 15                                        596      547
* These pressu es are in very small cavities and, based on the FCI cavity model, do not result in severe cladding stress.
6-57
 
l                                                ,
Table 6-18
- -                Fuel Peak Temperature Comparison Between Steady State and Transient at 22.252 sec - EOC-4 TOP Case 2 SAS                        Peak Temp          Peak Temp i                Channel                  atStegd State        at 22 252 sec Number            Tyge          (C                    (OC )
1              B          1964                2383 2              F          1863                1455 1                    3              B          2143                0.01*
4              F          1857                1460 S              B          2258                0.03*-
6              F          1789                1473 7              F          1961                1458 8              B          2088                2403 9              F          1870                  1353 10              F          1904                  1393 11              F          1904                  1409 12              F          1736                  1336 13              F          1772                  1342 14              F          1571                  1278 15              F          1573                  1306
* Melt Fraction 6-58
 
f 1
i                                                                                                                                                                                                  !
Table 6-19 Comparison of Failure Times (Sec)
E0C-4 TOP Cases 3 and 4 9
;                                                  Channel                          Case 3                                              Case 4 6                            2.455                                                2.495 14                            2.671                                                2.593                                                .
j                                                    15                            2.998                                                2.619                                                    ,
l I
I 4
r J
4
.                                                                                      6-59 iJ
  , , _ . . . - -  . - - . . _ .                          - _    - , _ . , - , -            . . . - . - , _ , - . - . , - . - . . . ,          ,. --.,---.-..,..,,,...w-              ,. ,
 
fl
                                                                                                      ~
zmi y0g4* O
                    -                      8rsm-1          3          5        7          9                1 3
              -          -            -      -        -                1            4
                                                                          -          0
_        g          -            _    -          _
0 4
l e
m 8    i 8    T 9      .
3    s v
y t
i i            v i 1 t
c e a s 2    e a 7    R    C i
9    t  P 3    e    O N    T d      1 n -
a 0 i
0 r 8 e
w r o o 6    P f 5
y 9
3    1 6
g i
F 0
4
:_                - ~                9 I
m5  - '    -
o 1
3 2                                          0                              0 0                      0                  1                              1 1                      1 e52 8N3            oz
                                ?g 1,l\lflli
 
1_
0                                                        %            3
$                                                                              2 5      -1 a
8 5  ja-                  1 - Net 2                    2 - Doppler h                    3 - Axial Expansion E                    4 - Fuel
              -9 _
      -11            i      i        i          i      i      6      1    1 39.40          39.56              39.72          39.88        40.04 TIME IN SECONDS 3-2 1-3 0
$      3 a
8 5      E                    1 - Coolant "9    #**
$                    3 - Steel a:
              -9            ,        i        i          i      i      e      i    I 39.40            39.56              39.72          39.88        40.04 TIME IN SECONOS Fig. 6-2      Reactivity Components vs. Time for 80C-1 TOP Case 1 6-61
 
2.8    -
BLOCKAGE AT EXIT                    I = 10 or 20 N
N 2.4    -
s BLOCKAGE AT UPPER BLAtlKET g = jo N
                                                                                                                      \
              $ ; 2.0      -                                                                                            \
BLOCKAGE AT UPPER BLANKET { = 20                                            \
h
                                                                                                                            \
e
*                    .6      ,,,,,,,,,                            pgggg (gggy 97 pygg                      ,p,,,      ,    \, ,        p,,
M                                            ,
                                                                                                                                    \
O                                                                -
Id      -
e
                                                                                                                                      \
m                                  ,
a        e                                                                                                                        g
    "        x
            .g '
(
R      0.8    -
I                ,
I
* TWO SINGLEPilASE      PRESSURE PilASE PRESSURE        GRADIENTGRADIENT '
  ,                  0.4    -
                        /
          /
_1          t I            I        i          I            t        i      n 0.0          0.1          0.2        0.3      0.4            0.5      0.6      0.7    0.8        0.9          1.C BLOCKAGE AREA FRACTION Fig. 6-3 Maximum Normalized Core Power vs. Blockage Area Fraction to Maintain Stable Flow in Partially Damaged Assembly
 
.~.
t ,                                    , y'      E      _.              :
                                                                                                                                  - s 4m.
m                                                                  s s_.        ,        '.,
m:
4 2                                                                            _    3 10 7 1
2
                                                                                                                -->          U I                                                                              -l    :o 10                                                                                        9 cn                5                :
Q h                3 a
:                                                                                  g
_  -3  q S                _
M                                                                            4--
d E
o E            0                                                                                - [- p g          10 7  ..                                                                                g G
                                          ~_
                                                                                                                        -7 10-I                                                                                -9 39.90              40.06              40.14              40.30          40.54 TIME IN SECONDS Fig. 6-4    Power and Net Reactivity vs. Time for 80C-1 TOP Case 2
 
2                                                      -3 10 --
1 Ei
            -                                                          w
      , ,,1                                      -
                                                                  ~1-OC .> ~~;                                                            o w          -                  7                                    H
: m. @
                                                            -->        2 o-        :
2                                                                  -3  3 h
* E
                                                                    -S
  @ 100 _-                                                            !8
:                                                      m
                                                                    -7
                                                                    -9 i        i      i 10-I            l      l 2.98        3.14 2.50      2.66            2.62 TIME IN SECONDS Fig. 6-5 Power and tiet Reactivity vs. Time for 80C-1 TOP Case 3
 
10 -                                                                -3
[                                                          -1
:z G
1
* e 10    -                                                                - I 9 a          -
Q g          ..
                                                                            - -3  .<
U          _
E b    U                                                                  -S  8 r
9 10 g
                  ?                                                                5
:                                                            -7 10
          -I
                                                                              -9 2.50          2.66              2.82      2.98        3.14 TIME IN SECONDS Fig. 6-6    Power and Het Reactivity vs. Time for 800-1 TOP Case 4
 
7 400.
  .S
                                                              ~
8                                                                    -
  $ 300.    -    Upper Interface g                                                                  SAS/FCI I                                                            ---SASBLOK
  ,2
[ 200.    -
I
  .S l  !  100. r wer n erface
                                                                  ~~~~
y                                    ___-
,  e
  =    0.                    ;                  ,                  ,
l Gio                0.04              0.08                0.12        ,
Time from Pin Failure (sec)
Fig. 6-7  Channel 6 Voiding Profile *for EOC-4 TOP Case 1 l
l
* No SASBLOK curve for the upper interface was drawn because of limited output edit. However, an excellent agreement between SAS/FCI and SASBLOK results was indicated based on the limited number of data points.
l l
6-66 l
l l
 
Channel Number Fuel Assembly l
Blanket Assembly BlanYAser Control Assembly l
[ / ,o \ " [j/
                /
                                    /,f//M                                      \
        \                            n WW
                /// n\
        /                                  /    '#            '
7                                              /4/
    /                11 M          /          /Q\g                    "/
A
                                                      \12                      f 10 f                              l                    )b l O)'
                                                            ~
l              ,
2 Intact ing Ruptured j        )
Fig. 6-8    Core State at End of SAS Analysis for EOC-4 TOP Case 1A 6-67
 
i 1
I 1
I        10 __                                                            -3
_~
              ~
                                                              .                3 m
I
              ~
                                                      '                            =
l              .                                                                  N
_ -1 9" x      -
o l
'      W o                                                                          y a
m                                                                              A d 100_                                                                  <
b  b        :.                                                                G a        _
o k-      _ -5 8_
E        }                                                                  U m
                                                                                -7
                                                                                -9 10'I        I        I        I 64.15    64.30    64.45    64.60 64.75  64.90  65.05 65.20 64.00 Fi 9. 6- 9 Power and Net Reactivity vs. Time for EOC-4 TOP Case 1A
 
i 1-
                  =f                        ~ W 2
1 - Net m
E -3      2 - Doppler a
y          3 - Density z          4 - Fuel except Ch. 6
  ~ -5 C
C D
W -7 _.
W                                                                    1,4
        'l      t                  I    I        i      l    t    I    I 64.00  64.15                64.30 64.45 64.60    64.75 64.90 65.05 65.20 TIME IN SECONDS Fig. 6-10 Reactivity Components vs. Time for E0C-4 TOP Case 1A 6-69
 
3 10    _
1 l
I 2
                            's                          I l                                s 10                          s                                          _
:                    s s
                                                        /                          2
:                        s
                                                'ss
                                                      /--*                          A
                                                                                    =
1 0 g l                        Q l
    "            ~
l                        2,_.
l o    I          '                                                              H 10                ~                                                    -    "
d                                            4--      g
:              's s                    l E
  ?
4-  j:
u              -                      '                                          o O o            .
s
                                                  -s                            -1 r-z
                  -                                                                G d
U 10      -
\
i i
:        With PLUT02 Results
]                  ~                                                            -2
                      - --With SAS/FCI Results
          ~I 10 I        I          i        i      i  i  i 39.75              39.80                39.85        39.90  39.95 TIME Ifl SECONOS Fig. 6-11    Power and Net Reactivity vs. Time for EOC-4 TOP Case 2
 
l'    l 2Q xk2} s 8 gG 0        5        0 0        5                  5                        .
                        .              1      1        2 1                0            -
0 0
2 5
I      .
7        e 1
i m
T 0          .
I5            s 1        v y
t i
5        v 3 I            i 2      t e 1
S  c s m"                                          D  a a N  e C O R c                        0    C E t O P
I0  1 S
N e T N      4 I d      -
n 0 E  a 0 M      E i5    . I  r 7    T  e r w o o f P
i 0      2 1
5        -      s 6
g
                                            .                  5      i I2          F
__                    0
      -  : - _  -    _5  - ~ _ ~              _
I 2                I                0 0
1 0
1 0
1
                                                      '0 1
gE' $ mgE s f a$
i      l
 
Me AbE -              E aoF>xtn 0            0                  0          0        0    0 2            1      0          1          2        3    4
                            -        -          -        -            2 3
                                                            ~        ,8 2
e m
I                                                    4        i T
                                                                      , 2              .
s v
y t
                                                                      ,0        S i 2      D  v N i 4 O  t C  c e E  a s e
S  e a
                                                                      ,6            R C N
1      I  t P e O E  N T M
I  d 4 T  n -
                                                                      ,2            a C O
1          r E e
w o o r
P f b                                            ,8 3
1 6
g
                                                                        ,4            i      _
F
                                        .  -          - - _                0              _
        -- ~ _ _ _ - _ .        -
I 4
2                    1                    o                  -
0 0                      0                    0 1                      1                    1                1
:g2 a    Sd,. _
E PM
 
7.0          INITIATING PHASE ANALYSIS OF PRIMARY FLOW COASTDOWN FVENTS This chapter deals with the initiating phase of a Icss-of-flow (LOF) event initiated from full power operation with the assumed failure of both shutdown systems.      Both the 80C-1 and EOC-4 core configurations are analyzed using the SAS3D code.
In the course of performing the current assessment, it was observed that in some cases the SLUMPY module used nonphysical boundary conditions in fuel motion calculations, as described in Appendix A. Corrections to the SLUMPY program were incorporated into a modified version of SAS3D. All the best estimate cases (80C-1 LOF Cases 1A,18 and IC, and E0C-4 LOF Cases 1A and 18) were performed with the corrected SLUMPY, and the results from these runs are presented herein.        The parametric cases were run with the original SLUMPY module and are presented along with a discussion of the effect of the nonphysical boundary conditions on the accident progression. In these cases the use of the original SLUMPY module was judged to provide a conservative estimate of the fuel motion reactivity feedback.
7.1          Loss-of-Flow (LOF) Event in BOC-1 Configuration i            The initiating phase of the unprotected LOF event at 80C-1 is analyzed in this section. As in the 80C-1 TOP analysis, all fuel and blanket assem-blies are assumed to have an equivalent 10 days of burnup at full power.
Because of uncertainties in the SAS3D modeling of disrupted fuel behav-ior for such low burnup fuel rods as the 80C-1 fuel, ancillary calculations were conducted with the use of the PLUT02 code ( ) to evaluate the
,  post-disruption behavior of fuel at BOC-1, as discussed in Section 3.f.4.1.
The results of these ancillary calculations were used as a basis for assess-ing the validity of related SAS3D input parameters in the 80C-1 LOF analy-sis.
7-1 1
 
7.1.1        BOC-1 LOF Case 1 - Best-Estimate Analysis This case provides a best-estimate analysis within the scope of curren-tly available models for a loss-of-flow event at the Beginning of Cycle One (80C-1) in the CRBRP heterogeneous core design. Phenomenological best-esti-mate modeling assumptions are made with nominal design values in this case.
As in the TOP event, the initial disruption of fuel in the LOF represents a point in the best-estimate progression where, although a specific phenomeno-logical behavior is probable, the detailed physical parameters arti uncer-tain. Because of the importance and uncertainty in the rate of molten fuel
' rundown and collapse, three alternate branches were considered for the best-estimate analysis (see Section 3.2.4). In the study, three cases,1A,18 and 1C, were evaluated with different combinations of SAS30/SLUMPY input parameters. Case 1A assumes that disrupted fuel rods collapse under the full gravitational force in a manner sin.ilar to the best-estimate analysis of the CRBRP homogeneous core design.(3)      In Case 18, the upper fuel segment is assumed to collapse at an acceleration equivalent to half the full gravitational force (0.5g), and the disrupted fuel at 1g. For the final branch, both the upper segment and the disrupted fuel are assumed to fall down at 0.25g in Case IC. Fuel dispersal by fission gas is assumed to be precluded in all three cases, although the fuel is known to contain some fission gas with the equivalent of ten days of burnup at full power.
Before discussing the progression of the event, SLUMPY pred1ctions of fuel motion reactivity obtained with the three combinations of SLUMPY para-meters are compared with the corresponding PLUT02 predictions (see Section 3.2.4.1). Figures 7-1, 7-2 and 7-3 show a comparison between the two met-hods for Cases 1A,1B and 1C, respectively. From these comparisons, SLUMPY parameters can be related to fuel motion reactivity feedback relative to PLUT02 predictions. It is noted that PLUT02 predictions shown in the com-parison are given in terms of bounding values. Actual PLUT02 calculations were made with a constant power level, atereas the power varied with time in SLUMPY calculations. In order to make comnarisons on a common basis, it is necessary to have PLUT02 results for varying power lavels. These 'resul ts can be estimated from the results obtained with constant power levels, in      1 terms of bounding values for the minimum and maximum power levels. For in-    l 7-2 I
l l
 
stance, the power in Case 1A varies from 2.3P (i.e., 2.3 x nominal power) to 133P before fuel vapor pressure begins to disperse fuel in Channel 11.                                                                  It is reasonable to expect that PLUT02 results for this period are bounded by the values obtained with constant 2.3P and 133P levels.
I Examination of Figures 7-1, 7-2 and 7-3 indicates that higher fuel                                    l collapse rates result in larger fuel motion reactivity feedbacks.                                                                  In Case 1C which has the lowest collapse rate, SLUMPY predictions of the reactivity feedback are comparable to PLUT02 predictions. Evaluation of all these three cases will provide a basis for assessing the effect of SLUMPY modeling assumptions on the outcome of the accident relative to the PLUT02 predic-tions.
Significant events for Case 1A, such as sodium boiling, cladding motion, etc., are listed in Table 7-1.                                    Figures 7-4 and 7-5 show the power and component reactivity histories.                                    The initial effect of the primary                              flow coastdown on the reactor core is a gradual temperature increase, which results in negative reactivity feedback due to the Doppler effect and fuel axial thermal expansion. Sodium boiling occurs first in Channel 11, which is immediately followed by boiling in Channel 13. Sodium boiling becomes more vigorous involving more channels. The reactor remains subcritical until 19.583 seconds into the transient, by which time molten cladding motion has introduced sufficient positive reactivity to bring the core recritical at 0.82P.
The net reactivity remains positive with increased cladding motion reactiv-ity, bringing the power above the steady-state level at 19.65 seconds after initiation of the primary flow coastdown. Molten cladding moves both upward and downward, and has formed flow blockages in several channels by the time (20.145 sec) fuel motion is first initiated in Channel 11, as shown in Fig-ure 7-6. At this time the total sodium void reactivity is still negative
(-364),becausevoidinghasnotyetoccurredinchannelscontainingthebulk of positive void reactivity (See Figures 4-10 and 7-6).
Fuel disruption was judged to be initiated at a fifty percent melt fraction. The fuel motion in Channel 11 and subsequent fuel failures in 7-3
 
other channels generate a positive reactivity feedback due to compaction of disrupted fuel near the core midplane and falldown of the upper segment. As a result, the core is driven close to a superprompt critical condition. A power increase to 170P follows, which expedites the fuel temperature in-crease. However, the negative reactivity contributions from the Doppler and fuel expansion feedback keeps the core from becoming superprompt critical.
Sufficient energy has been added to the core to produce significant fuel vapor pressures in Channels 11 and 9. The fuel vapor pressure has caused a strong axial fuel dispersal, which brings the core to subcritical conditions again. The hexcan of Channel 11 is calculated to melt at approximately 20.29 sec, at which time the core is subcritical.* SAS calculations were carried out slightly further assuming that failure of the Channel 11 hexcan would have a negligible effect on the overall core conditions during a short time immediately after the hexcan failure. This is equivalent to assuming that no interstitial gap volume is available. SAS calculations for this case were concluded at 20.338 seconds into the transient.
At the conclusion of the SAS calculation, the net reactivity of the core is -5.5$ at a decreasing power level of 0.49P. The status of the core is depicted by Figure 7-7. Fifty-four percent of the fuel assemblies have had fuel disruption with cladding blockages formed in the axial blanket regions. The remaining fuel assemblies exhibit extensive sodium voiding except for those represented by Channel 2 in which sodium voiding has just begun. None of the internal blanket assemblies has had sodium voiding or rod failures.
Two more cases,1B and IC, were analyzed within the best-estimate as-sumptions. Case IB assumed that the upper fuel would collapse under half the fu17 gravitational force (0.5g), and the disrupted fuel with I g.      For the final analysis, both the upper segment and the disrupted fuel were assu-med to collapse at 0.25 g in Case IC. (It is noted that the full gravita-tional force was assumed for both the upper segment and disrupted fuel in Case 1A.) The timing of various events for Cases 18 and 1C is shown in Tables 7-2 and 7-3, respectively. Figures 7-8 through 7-11 show the power and net reactivity histories.
* Melting of the hexcan is approximate since SAS3D does not property account for fuel crusting on steel as noted in Chapter 8 or interassembly heat transfer.
7-4
 
The response of the core in both Case 18 and 1C is the same as that in Case 1A until initiation of fuel motion in the lead channel (Ch.11). Even after this event, the core responses are all very similar to each other. No additional channels have cladding motion after the lead channel fuel motion in all three cases. The same fuel channels have had fuel motion in the same order, as comparison of Tables 7-1, 7-2 and 7-3 indicates, although their timings are slightly different. SLUMPY initiation for other than the lead channel is delayed in Cases 18 and 1C relative to Case 1A, as a result of the smaller positive fuel motion reactivities for the Cases.
As in Case 1A, both of Cases 18 and 1C have a power burst as a result of positive reactivity feedback from fuel drainage and collapse in the lead channels. The peak power for both cases is lower than that for Case 1A (114P for Case 18 and 113P for Case 1C). As observed in Case IA, the nega-tive reactivity cor:tributions from the Doppler and fuel axial expansion keep the core from becoming superprompt critical. Again, as in Case 1A, signifi-cant vapor pressures are generated in Channels 11 and 9.      The fuel vapor pressures cause a strong fuel dispersal, which rapidly brings the core to subcritical conditions. SAS calculations were terminated while the core is still subcritical in both Cases 1B and 1C, when the hexcan of the lead chan-nel is indicated to have melted.
As indicated above, there is no basic difference in the response of the core between the three cases (IA,18 and IC) despite the differences in SLUMPY fuel motion modeling assumptions. All three cases undergo a power burst, which is quickly subdued by the Doppler and fuel axial expansion reactivity feedback. Subcritical conditions are subsequently reached as a result of a strong fuel dispersal driven by fuel vapor pressure in the two lead channels (Chs. 11 and 9). This indicates that the outcome of the acci-dent is relatively insensitive to fuel motion uncertainties within the range between the free-fall process and PLUT02-type rundown of molten fuel.
In all three cases, the hexcan wall of the two lead channels (Chs. 9 and 11) is melted at the conclusion of SAS calculations, while the core is still subcritical.      At this time, based on the SLUMPY model, dispersed fuel in the lead channels is accumulated near both axial ends of the core region
                              .            7-5
 
and in the upper axial blanket region.      In other fuel disruption channels representing fifty-seven fuel assemblies, the upper fuel segment and disrup-ted fuel continue to collapse in the absence of dispersive forces and a freezing model. With the losc of the core geometry, it is more appropriate to treat subsequent core conditions within the next analysis phase where phenomenology not treated in SAS3D can be addressed.        Therefore, the subse-quent response of the core is analyzed as part of the meltout phase in Chapter 8.
7.1.2      BOC-1 LOF Case 2 - Effect of Fuel Vapor Pressure Uncertainty I
Because of the preclusion of fuel dispersal by fission gas, fuel dis-persal is caused only by fuel vapor pressures in Cases 1A,1B and IC. The correlation for fuel vapor pressure is obtained from Reference 10, which indicates that the recommended values are judged uncertain by a factor of two or three. Hence, fuel vare pressures were reduced in Case 2 from the recomended best-estimate value by a factor of three to assess the effect of the uncertainty in calculation of fuel vapor pressures.        This reduced pres-sure is approximately equivalent to the UO2 vapor pressure correlation      ,
used in the homogeneous core assessment.(3) Other input values are exactly the same as those used in Case 1A.
Table 7-4 shows the timing of various events for Case 2.        The power and reactivity histories of the core are given in Figures 7-12 and 7-13.          Since !
this case used exactly the same modeling assumptions as in Case 1A, except          i for the fuel vapor pressure calculation algorithm, the response of the core is exactly the same as in Case 1A until the time that significant vapor pressures are generated in the lead fuel disruption channel (Ch.11) in Case 1A.                                                                                <
l l
Fuel dispersal induced by fuel vapor pressure is delayed in Case 2            1 relative to Case 1A, as a result of using one-third the best estimate fuel          l vapor pressure. Consequently, the net reactivity continues to increase due          !
to increased positive reactivity feedback from the lead channel and from subsequent fuel disruption in other channels.      Therefore, the core reaches    l superprompt critical conditions at 20.265 seconds into the transient, with a        l driving reactivity rate of approximately 28 $/sec.
7-6 l
l
 
However, the superprompt critical condition lasts for only a very short period (1 msec), with peak conditions of 277P and 1$ because of fuel disper-sal by fuel vapor pressure in the lead channel, combined with the negative Doppler reactivity feedback. Subsequently, more fuel channels (Chs. 7, 9, 10 and 13) experience vapor pressure induced fuel dispersal, which brings the core rapidly back to a subcritical condition at 20.272 seconds :nto the transient. There are significant differences between this case and Case 1A in the conditions of the core when vapor-pressure induced fuel dispersal occurs in the lead channel. The fuel tannerature and melt fraction are much higher than in Case 1A, because of a high core power maintained over a lon-ger period (caused by the delay of fuel dispersal).
Consequently, all fuel assemblies have had fuel disruption or cladding failure (Channel 2 only) in Case 2, as opposed to Case 1A where only 54% of fuel assemblies have fuel disruption. Notably, Channel 2 has a TOP-type failure (ejection of molten fuel through cladding breach in the presence of coolant) at 20.274 seconds when the core is subcritical. This LOF-d-TOP failure which occurs with a 68% melt fraction is caused by a fission gas pressure of 257 bar in the internal cavity.      The high pressure is attained despite a small gas content because the central void virtually disappears as fuel is melted and expands. However, because of the small gas content, fuel is only briefly ejected, producing relatively small negative reactivity feedback. This failure is overshadowed by large negative reactivities from vapor-pressure iriduced fuel dispersal in other fuel channels, and has a negligible influence on the overall behavior of the core.      The maximum fuel temperature at failure in Channel 2 is only 2909 C precluding any fuel vapor pressure driven ejection.
SAS calculations for this case were concluded at 20.292 seconds into the transient. The state of the core at this time is depicted by Figure 7-14      The hexcan of the lead channel is indicated to have failed at this time. The net reactivity of the core is -9.6$ at an instantaneous power level of 0.4P. The fuel motion ramp is approximately -530 $/s, due to dispersal by fuel vapor pressure primarily in Channels 7, 9,11 and 13.
With the loss of the core hexcan geometry, the SAS3D analysis was termina-ted.
7-7    -
 
Continued subcritical decay heat generation would lead to a slow melt-out of the fuel and cladding in the core. It is expected that significant vapor pressures would be generated from boiling of cladding intermixed with the very hot fuel, by the time dispersed fuel may collapse again. The steel vapor generation would be sufficient to boil up and retard any collapse of the liquid fuel. The progression of the LOF event for these conditions will be continued into the meltout phase which is discussed in Chapter 8.
7.1.3      BOC-1 LOF Case 3 - Case 2 plus No Fuel Axial Expansion and Pessimistic Cladding Worth This case was intended to very conservatively evaluate the combined effects of uncertainties from three different sources on the outcome of the BOC-1 LOF event. The three sources of uncertainty considered are fuel vapor pressure, fuel axial expansion reactivity feedback and cladding reactivity worth. This case used one-third of the best-estimate values for fuel vapor pressure, as in Case 2, and took no credit for negative reactivity feedback from fuel axial expansion as opposed to 80% of the SAS calculated value used in Cases 1 and 2. As for cladding worth,1.4 times the best-estimate values were used in this case. It is noted that cladding relocation contributes significant positive reactivity at 80C-1 conditions (up to 2.1$ in Case 1A).
The timing of various events for this case is given in Table 7-5.      The power and reactivity histories are shown in Figures 7-15 and 7-16.      Because of the absence of fuel axial expansion reactivity feedback, boiling of cool-ant begins earlier than in Case 1A, as comparison of Tables 7-1 and 7-5 indicates. Cladding motion first occurs in Channel 11 at 14.777 seconds into the transient, which is about 1.1 seconds earlier than in Case 1A.
However, the core remains subcritical until relocation of molten cladding has introduced significant positi /e reactivity, as in Case 1A.
The core heats up faster than in Case 1A, as a result of neglecting fuel axial expansion reactivity feedback. Consequently, the first fuel dis-ruption (Ch.11) occurs about 2.5 seconds earlier than in Case 1A. Reloca-tion of molten cladding is less extensive at the time of fuel disruption 7-8
 
in this case. Positive reactivity feedback from cladding relocation is actually smaller at this time than in Case 1A (1.4$ vs.1.63) despite the 40% higher cladding worth. Likewise, flow blockages formed by relocated steel are less extensive than in Case 1A. Figure 7-17 illustrates the state of the core just prior to occurrence of Channel 11 fuel disruption.
Peak fuel temperatures in all fuel channels are also higher at the time of the first fuel disruption in this case than in Case 1A. For instance, four fuel channels have already experienced fuel melting as opposed to two fuel channels for Case IA. As a result, the first fuel disruption is quick-ly followed by fuel disruptions in other channels. Positive reactivity feedback, mainly from fuel disruption in the two lead channels (Chs.11 and 9; 27 assemblies), drives the core to superprompt critical conditions at 17.694 seconds into the transient with a driving reactivity rate of approxi-mately 14 $/sec. At this low reactivity rate, the superprompt critical conditions are relatively mild with peak conditions of 325P and 1.02$ as a result of the strong Doppler negative reactivity feedback. The core ap-proaches superprompt critical again as positive reactivity feedback from fuel disruptions increases. However, the increased Doppler feedback and fuel dispersal by vapor pressure in the lead channel prevent the second superprompt burst from occurring. Subsequently, continued fuel dispersal by fuel vapor pressure (f 20 bar) in the lead channel and other fuel channels (110 bar) brings the core well below critical conditions. As in Case 2, fuel Channels 7, 9, 10 and 13, in addition to the lead channel, have vapor-pressure driven fuel dispersal. Nc fuel channel has had a TOP-type fuel failure. SAS calculations for this case were concluded at 17.840 seconds into the transient. Figure 7-18 shows the state of the core at this time.
The net reactivity of the core is -20.1$ with a decreasing power level of 0.25P at the conclusion of SAS calculations.
Continued subcritical decay heat generation would lead to a slow melt-out of the fuel and cladding in the core. The subsequent path of the LOF event for this case would be similar to that for Case 2. Namely, steel vapor generation would be high enough to prevent or retard the collapse of fuel. The meltout phase of the LOF event for this condition is discussed in Chapter 8.
7-9                  -
 
7.1.4      Sumary and Conclusions on BOC-1 LOF Event The most probable course of events (Category 1) for a loss-of-flow accident at the B0C-1 configuration is given by the analyses of Cases 1A,1B and IC. These analyses are of the same order of probability and differ only in the assumption made on the rate of fuel collapse prior to formation of vapor pressure.
The best-estimate response of the core is to heat up slowly at below nominal power and reactivity due to the combined negative feedbacks from sodium voiding, Doppler and fuel axial expansion. The power and reactivity rise above nominal values due to the melting and relocation of the fuel rod cladding. This steel will relocate and form blockages at the axial ends of the core prior to fuel disruption in the lead fuel assemblies. Melting and drainage of the very low burnup fuel will induce a subprompt power burst, generating fuel vapor pressure.
The generation of substantial vapor pressure (approximately 20 bar) acts in conjunction with the inherent Doppler and axial expansion mechanisms to quickly terminate the excursion and render the reactor subcritical. The pressurized fuel is ejected into the UAB where it is expected to ablate the upper rod cladding and freeze, forming a block supported by the intact upper core structure, and in part, by the high pressure in the core. Fuel in the core region will continue to attack the hexcan wall which is calculated to be near melting and hottest above the core midplane. Failure of the hexcan due to a combination of melting and internal pressurization would allow for fuel flow into any available gap volume interstitial to the core assemblies.
The energy generated in the subprompt burst is sufficient to melt and disrupt the fuel rods in fifty-seven colder assemblies (37% of core fuel) which either fonn a pellet jumble or settle under the combined influence of sodium vapor flow and gravity. Any fuel settlement could introduce positive reactivity and cause a power rise from the subcritical state. The subsequent meltout response of the core is expected to be piece-wise because of interassembly incoherency in local thermal conditions 7-10
 
and in power. During the potential power rise, some of the intact fuel assemblies will disrupt, and some disrupted fuel assemblies will become notter and generate fuel vapor pressures to cause fuel dispersal. The fuel dispersal will be followed by subcritical conditions similar to the initiai subprompt power burst. Thus, a nonenergetic entrance to the meltout phase is expected in the best-estimate (Category 1) case.
Reduction, by a factor of three, in the fuel vapor pressure magnitude as a function of fuel temperature serves to increase the severity of the initial power e::cursion and causes fuel disruption or cladding failure in all fuel assemblies. In this Category 2 case, 8% of the total fuel assem-blies experience a mild, gas pressure induced LOF-d-TOP when the core is subcritical, which has a negligible effect on the core response because of the small amount of fuel ejected and the strong fuel vapor pressure driven dispersal throughout the core. The more extreme temperature state, higher degree of entrained steel and continuing vapor pressure dispersal lead to a
' conclusion that steel boilup would probably prevent any further fuel col-lapse and preclude recriticality, as the core enters the meltout phase.
An attempt to force an initial, energetic burst by neglecting fuel axial expansion, increasing the steel reactivity worth, and reducing the fuel vapor pressure was unsuccessful. In this Category 3 case, the core responds by voiding earlier and entering the power burst with less cladding motion. The excursion is only mildly stronger than the Category 2 case discussed above because of strong vapor pressure driven dispersal. The end state of the core is similar to the Category 2 case except that the earlier sodium voiding negates any LOF-d-TOP events. Steel entrained in the disrup-ted lead fuel assemblies is at 2670'C, just below its boiling point. A nonenergetic entrance to the meltout phase is indicated in this Category 3 case.
7.2          Loss of Flow (LOF) Event in EOC-4 Configuration This section presents the results of the initiating phase analysis of an LOF event without scram at E0C-4      . All fuel assemblies at E0C-4 are high-ly irradiated, representing the highest burnup condition in the fuel cycle.
7-11                                        -
 
Fission gas effects in fuel dispersal calculations were conservatively modeled in the present analysis. As explained in Section 3.2.2, a conserva-tive correlation of test data was developed to determine the amount of fis-sion gas contained in the fuel at disruption, and was used in the present analysis by incorporating it into the SAS3D code. Furthermore, SAS3D input parameters were determined such that no fuel dispersal driven by fission gas could occur immediately after fuel disruption. As discussed in Section 3.2.4.2, this modeling approach is believed to be conservative, compared with test data which, in general does not show potential compaction for ir-radiated fuel.
7.2.1      EOC-4 LOF Case 1 - Best-Estimate Analysis This case provides a best-estimate assessment of the consequences fol-lowing a flow coastdown at full power without scram in the CRBRP at EOC-4 conditions. A brief description of the SAS modeling selected for this Cate-gory 1 case is provided as background, followed by the SAS analysis.
Nominal values are employed for all design parameters, material proper-ties and reactor physics parameters, e.g., Doppler and sodium void worth.
These values, their bases and the EOC-4 reactor configuration are presented in Chapters 4 and 5.
The E0C-4 configuration is characterized as a low to moderate sodium void worth core. Voiding of the active fuel and internal blanket core sod-ium flow volume results in 2.2$ of reactivity, while 1.4$ represents the maximum positive contribution from voiding the fuel assemblies alone (Table 4-6). Thus, the effective positive void worth is approximately 1.4$ when the expected delay in internal blanket assembly voiding is considered. Off-setting the low void worth is a low effective Doppler resulting from the much lower specific power in the internal blankets and their slow transient thermal response.      Due to these unique design features of the heterogeneous core, the Doppler constant (Tdk/dT) to be associated with the core response at fuel disruption in LOF events is that of the voided fuel assemblies, a relatively low value of -0.0019 (Table 4-4).
7-12
 
Phenomenological judgments of importance concern fuel axial expansion, stored plenum gas release, cladding relocation and freezing, fuel disruption criteria (both voided and unvoided conditions), and fuel dispersal mechan-isms. The judgments made in modeling the core response are affected by the above described core characteristics and their impact on the core conditions to be expected at fuel disruption.
Fuel axial expansion is an expected, inherent feedback of the core during a LCF event. However, due to the near term inability to measure the fuel expansion for prototypic, irradiated fuel under LOF conditions, only 507,of the SAS calculated feedback was chosen as prudent for this E0C-4 assessment.
Plenum fission gas release is expected for the CRBRP EOC-4 condition following cladding melting near the core-UA8 interface as discussed in Ref-erence 46. Its main impact is expected to be a lower probability and extent of upper cladding blockages. Modifications to the SAS3D Code to reflect this judgment, however, could not be completed in time for this assessment.
Since the removal of steel from the core into the UAB both has a positive reactivity effect and, by forming blockages, hinders fuel dispersal, the neglect of plenum gas release is considered to be conservative.
Cladding relocation is modeled with CLAZAS in a manner similar to that used in Reference 4      Steel is allowed to relocate after a thermal delay to represent two-dimensional flow effects within the assembly. The rate of relocation is reduced by imposing increased frictional resistance to better match available experimental data.
The release of fission gases from the fuel matrix and its interaction with fuel during melting and disruption are discussed in Sections 3.2.2 and 3.2.4 The lead fuel represented by Channel 6 and the internal blankets have been modeled in a manner to reflect the TREAT F1 experiment. With a lower fission gas content, and slow temperature rise and melting, this fuel swells and essentially remains in place. The remaining fuel is modeled as being disrupted and dispersed by fission gases, although not efficiently uoon initial disruption.      Because of the uncertainty in the fuel disruption 7-13
 
criterion, two cases, lA and IB, were analyzed within the best-estimate
    ~
assumptions. In Case 1A the fuel disruption criterion is a 50% fuel melt fraction or melting of the gas bearing unrestructured material, depending upon the presence or absence of cladding radial restraint respectively.
Case 18 assumes all channels disrupt at a 50% fuel melt fraction.
The assessment of the LOF event Case 1A based upon SAS3D analyses fol-l lows. These analyses support the general modeling assumptions and indicate the unique role played by the lead fuel in Channels 2 and 6.
I After trip of the primary pumps the flow rapidly diminishes leading to 1
reactor heatup and ultimate sodium boiling in Channel 6 at 12.65 seconds.
Doppler and axial expansion feedbacks ma1ntain the reactor just subcritical with a power level drifting down to 0.84P. The boiling front works its way slowly into the core and is near the bottom of the UAB when flow reversal and chugging in Channel 6 is initiated about one second after boiling (13.33 seconds). Boiling in Channels 2 and 4 is initiated at about the time sodium voiding reaches the core midplane in Channel 6, followed about a second later by Channel 7. A similar, somewhat slower voiding process follows in these channels.
Sodium voiding spreads throughout the fuel assemblies (Channels 2, 4, 6, 7, 9-13) and brings the core above critical. This voiding (1.2$) and cladding relocation in Channel 6 (54) increases the power and net reactivity to 2.4P and 46 cents by 19.23 seconds when cladding motion initiates in Channel 2. Relocation of cladding in Channels 2, 4 and 6 adds 36 cents of l
reactivity which increases the net reactivity and power to 60 cents and 4P
;    when fuel disruption (50% melt) initiates in Channel 6 at 19.6 seconds. At disruption this fuel is radially unrestrained due to previous cladding melt-ing and relocation. The unrestructured fuel is characterized by a high I
temperature (2675'C), low gas retention (13%), and is half molten with a gradual radial temperature gradient (4800*C/cm) across the unrestructured fuel. These conditions are consistent with the modeling assumptions of fuel swelling and nondispersal. Thus, the disruption of fuel in Channel 6 does not immediately affect the core response.
7-14
 
Channels 2 and 4 are the next to disrupt at 19.89 and 19.93 seconds, some 40 msec apart, due to melting of unrestructured material below the midplane of the unclad fuel columns. The maximum melt fraction in Channel 2 is 27% and in Cnannel 4 is 30%. At this time sodium voiding had extensively progressed throughout the fuel assemblies (all being voided from below the core midplane into the gas plenum region) with some boiling in the internal blanket assemblies. Figure 7-19 presents the sodium void and clad blockage distribution at disruption of Channel 2 when the power and net reactivity are approximately SP and 62 cents, respectively. The unrestructured fuel temperature in Channel 2 is 2270*C with a thermal gradient 7300*C/cm, and 48% gas retention. These conditions are more dispersive than in Channel 6.
However, without immediate fission gas availability and with solid, un-restructured material in SLUMPY, Channel 2 representing 13% of the core fuel, settles due to the gravity force. The reactivity feedback is initial-ly 4$/s and accelerates to 15-20$/s driving the core through superprompt critical.* The excursion is reversed by Doppler feedback after attaining peak values of 1.01$ and 250P generating 4.1 full power seconds (FPS) of ene rgy . **
The energy addition is sufficient to result in fuel disruption in all remaining fuel assemblies.      In particular, Channel 6, which had previously disrupted into a liquid-foam structure, very quickly develops a strong fuel
  *In this centext, it should be noted that the behavior of fission gas and fuel dispersal is actually conservatively modeled in this best-estimate analysis, as discussed in Sections 3.2.2 and 3.2.4.2. The fission gas release data is correlated in such a way that the amount of fission gas available to disperse fuel in SLUMPY calculations is less than that indi-cated by the test data. In addition, no fission gas is assumed to be available immediately after disruption, so that disrupted fuel will com-pact initially rather than disperse, although the test data generally exhibit dispersive fuel motion. Therefore, it is reasonable to expect that a less conservative, more realistic modeling of the fission gas and fuel motion behavior might have yielded no superprompt power burst.
** Calculated for a period from a net reactivity of 95c on the rise to 85c on the decrease.
7-15
 
vapor pressure (16 bar) which axially disperses the fuel and terminates the nuclear excursion. Channels 4, 7,10 and 11 (representing 35% of the core fuel) are also strongly dispersed by low gas pressure (# 5 bar) expansion after a brief delay to allow for fission gas release. The core is rendered
-4$ subcritical within 70 msec of the superprompt excursion and remained subcritical until 20.11 seconds at which point the SAS calculation was term-inated.                                                                            l At termination of the SAS analysis the entire core fuel assemblies have been disrupted. The net reactivity and instantaneous power are -8$ and 0.5P. The inner blanket assemblies have been extensively voided and blanket        :
fuel melting has just begun. Channels 2, 4, 6 and 7 all have significant vapor and fission gas pressures (6 - 17 bar) existing in the SLUMPY regions with the hexcan wall of Channel 6 entirely melted.
Table 7-6 presents a summary of the event sequence for this case, while Figures 7-20 and 7-21 depict the power and reactivity histories of interest.
Figure 7-22 presents the core conditions at the entrance to the meltout phase. The engulfed cladding segments within the core will soon reach the steel vaporization temperature and the resulting fuel fluidization would oe expected to alleviate any collapse of fuel. The expected general core be-havior beyond this time is discussed in Chapter 8.
Case IB was analyzed to address the current uncertainty in fuel disrup-tion criteria. While in Case 1A Channels 2, 4 and 7 are assumed to disrupt at melting of the unrestructured fuel in consideration of lack of- radial restraint, Case 18 assumes all channels disrupt at a 50% fuel mass melt fraction criterion. This delays disruption until higher thermal conditions are experienced in those three channels and results in less fission gas being available for fuel dispersal. Figures 7-24 and 7-25 provide the power' and reactivities for Case 18, while Table 7-7 summarizes the event se-quence.
7-16
 
The transient response of the core for Case IB is identical to that for Case 1A through the disruption of Channel 6. Channels 2, 4, and 7 are delayed in disruption approximately 0.2 second due to the change in disrup-tion criterion. The increased interval results in enhanced sodium voiding and cladding relocation leading to a somewhat higher power and reactivity state than Case 1A. The Channel 2 fuel initial collapse again results in a superprompt burst (350P,1.01$) which is more peaked than Case 1A. Again, it should be noted that the superprompt power burst results from a conserva-tive modeling of the fission gas and fuel motion behavior, as discussed for Case 1A. The burst is quickly reversed by Doppler feedback, but has added sufficient energy to cause fuel disruption in all remaining fuel assemblies, as in Case IA. Again, Channel 6 quickly experiences an extensive fuel dis-persal driven by moderate vapor pressure (15 - 20 bar), which is followed by a low pressure fission-gas fuel dispersal in other fuel channels.
Consequently, the core is rendered subcritical within 20 msec of the superprompt excursion. SAS calculations were terminated at 20.2671 sec into the transient, when the net reactivity and declining power are -5.13$ and 0.7P with increasing negative fuel motion reactivity (-28 $/sec). Fuel dis-ruption has occarred in all fuel assemblies with disrupted fuel intermixed with cladding segments except for the lead channel. The intermixed cladding segments are expected to soon generate significant vapor pressures, which will retard any fuel collapse. Figure 7-26 shows the core end state for Case 18. As in Case 1A, this case is expected to enter the meltout phase which is discussed in Chapter 3.
i.
Comparison of the results of Cases 1A and IB fndicates that the delayed disruption in Channels 2, 4 and 7 has no significant effect on the outcome of the accident. Within the range of the best-estimate judgments the super-prompt excursion is mild and is quickly followed by subcritical conditions due to general fuel dispersal.
After examining the best-estimate scenario it was decided to explore a diffarent accident progression path which would recognize a further uncer-tainty in modeling the fuel dispersal in Channel 6. Because of the swelling assumption, the fuel was modeled as collapsing slowly, thus producing posi-7-17
 
s
                                                                ~
tive reactivity at a relatively slow rate. 'To address >this uncertainty, the core response was re-evaluated by changing the' fuel collapse rate for Chan-nel 6 to,19 wi_thout fission gas effects, prior .to 4he supe'rprompt excursion.
The full' gravity collapse enhances pos'itive reactivity feedback substantial-ly, as shown in~ fable 7-8. Consequently', the superprompt excursion is reached sooner than in the case of a slower collapse.\ Again, however, the
                                                ~
excursion is reversed by Doppler feedback, qulickly f.ollowed by fuel disper-sal' and subcritical conditions. Namely, the overail sequence of events is similar, although the excursion with the full gravity. Collapse was milder than the excursion with the slower collapse (see Table J. 8); - $1erefore, it T
is concluded that the collapse rate mo(eled for Channel 6Aas no significant J'
offect on the outcome of the accident.                                                  ,
                                                                *                        ?
7.2.2        E0C-4 LO_F Case 2 - U_niform Unrestructured Fuel Melting Disruption Criterion _        ' J                                              -
The assumptions in this' case are meant to principally place the behav-ior of Case 1 into perspective with the best                    '' ate homogeneous core analysis presented in Reference 3, The ma                            .ture herein is to utilize
' the temperature vs. fission gas release curve of Section 3.2.2, which is          '
based on a more extensive data base and is conserva'tive relative to Refer-ence 3.
s                  -
Mciting of the gas bearing, unrestructured fuelis ass'umed to generate suf ficient pressurization to disrupt the fuel rods with or without the clad-ding ra' dial restraint. In general,,the strength of the cladding must also be considered when a melting criterian is applied.
The lead, fuel, Channel 6, is calculated to initially disrupt above the midplane at 19.24 seconds with a local melt fraction of 15%. The fuel rad-
                                        ~
ial temperature profile is at the solidus point from the rod centerline to the unrestructured material which has a near uniform temperature of 2645'C.
                                                              ~
Under these conditions the unrestructured material is assumed to disrupt as solid particulate with a correspondingly slow release of the 15% of the 7-18 s
a
 
_7 s
steady state gas which is retained. Channel 6 fuel is blocked from disper-
;        sing upward by interaction with the cladding segments (SAS internal boundary condition). The fission gas available mitigates, but does not prevent a gravitational induced collapse of the disrupted fuel and upper fuel rod      )
segment toward the core midplane. A sustained reactivity insertion of 864 at 5-10 $/s is calculated based on the fuel collapse. This behavior drives the core on a subprompt burst from a power and net reactivity of 2.5P and 474 to 200P vd 994. The energy generated disrupts all other fuel assem-blies. The btest occurs with all but Channels 14 and 15 voided to below the core midplane. Of these two, Channel 14 is calculated to suffer.an FCI with fuel ejected into soditsn above the core midplane and below a large previous-ly formed sodium vapor bubble. Figure 7-27 depicts the sodium void and steel blockage distribution at the initiation of the fuel collapse in Chan-nel 6.
The burst energy is sufficient to melt the unrestructured material, release fission gases, and provide for a generally dispersive fuel behavior.
An exception is Channel 15 which has a low specific power at unrestructured fuel melting. This channel experiences rapid refreezing of the fuel and without gas availability, a collapse.
The fuel dispersal readily offsets the additional reactivity caused by additional cladding motion in Channels 2 and 6 (744). The core is rapidly brought to and maintained at more than -35 subcritical. As the core power drops, Channels 12 and 13 also refreeze and could begin to settle, adding reactivity. The primary shutdown reactivity stems from fission gas disper-sal in Channels 2 and 6 (-1$ each) and the FCI generated fuel expulsion in Channel 14 (-3.4$). Thus, the prediction of an FCI in Channel 14 is a key accident branch point affecting termination.
Failure of Channel 14 occurred just after flow reversal due to sodium boiling. As a result of the boiling induced high cladding temperature, the failure occurs at 0.77 of the core height. The existing sodium vapor bubble and low-inlet plenum pressure (3.6 bar) allowed the FCI zone to rapidly expand at nominal pressures (5 bar) resulting in a very large fuel ejection (407, of total fuel). Modeling of the FCI for this event was consistent with 7-19
 
i that performed for the homogeneous core design (Reference 3) except for the smaller, more conservative rip length of 5 cm. The sweepout of 95% of the ejected fuel is probably an optimistic calculation, but acts to offset the unrealistic restraint on Channels 2, 4 and 6 fuel ejection into the UAB.
Additional information on the Channel 14 failure is presented in Table 7-9 and Figure 7-28.
The SAS calculation was terminated 180 msec after the subprompt burst with an existing power and net reactivity of 0.6P and -5.4 $. decreasing at
-15$/s. The core state is similar to the base case with complete fuel dis-ruption, internal blanket melting initiated and melt-through of the Channel 6 hexcan.
Examination of SLUMPY calculations indicates that nonphysical boundary conditions were imposed by the CLAZAS subroutine. The pressurized fuel in disrupted channels did not disperse beyond a certain cladding segment or into the UAB region, although the fuel should physically disperse. If the nonphysical boundary conditions were removed, the fuel would disperse fur-ther, and the core would be more subcritical than the SAS3D results indi-cate.
Figures 7-29 through 7-31 present the core response and end state for the assumed conditions of the case. Table 7-10 summarizes the sequence of events during the accident progression.
7.2.3      EOC-4 LOF Case 3 - No Fuel Dispersal by Fission Gas and Reduced Fuel Vapor Pressure This analysis combines a conservative assumption on fission gas behav-ior with uncertainties in the fuel vapor pressure to severely restrict the ability of fuel to disperse. All other model assumptions are consistent with Case IB of the EOC-4 LOF analysis.
The core response is exactly the same as Case IB up to the initiation of fuel disruption in the lead Channel (6) at 19.60 seconds. The power and net reactivity are 4P and 604 at the 50% melt fraction failure criterion.
7-20 s
w                                            .__
 
Due to the neglect of any fission gas interaction with the disrupted fuel and the upper cladding blockage cutting off sodium vapor flow, the fuel col-lapses under gravity forces. As in Case 18 (Channels 2 and 4), the reactiv-ity addition from early fuel collapse is sufficient to generate a prompt burst. This burst is stronger due to the conservative assumptions on fuel dispersal mechanisms, with peak conditions of 450P,1$ net reactivity, and generation of 7.3 FPS of energy. Prior to significant energy generation the fuel assemblies had voided to below the midplane region, essentially elimin-ating LOF driven TOP events. The sodium void and clad blockage distribution at the time of Channel 6 disruption, 153 msec prior to prompt critical con-ditions, is shown by Figure 7-32.
The energy addition generates high fuel vapor pressures in the six lead assemblies modeled by Channel 6 (# 40 bars) and moderate pressures (<10 bar) in other fuel assemblies. The net effect is a strongly negative fuel dis-persal (-300 to -600 $/s) in Channels 2, 4, 6, and 7. These assemblies com-prise 30% of the driver fuel inventory at E0C-4 The aforementioned SLUMPY-CLAZAS model interface inconsistency imposes a very conservative restrictior, in the extent of fuel dispersal allowed.      However, the core is driven well subcritical (-10 $) by the fonnation of dense fuel slugs at the axial ex-tremes of the allowed dispersal zone. This SLUMPY modeled configuration is retained by the persistence of a high pressure vapor bubble near the core midplane during the colder fuel disruption and potential collapse. The lower power channel fuel collapse and voiding of the internal blankets would increase the net reactivity at about 10-12 $/s if the hot, pressurized fuel cannot expand further. The SAS calculation was terminated at 20 seconds, approximately 250 ms after the prompt burst, with a declining power and net reactivity of 0.7P and -6.6 $, respectively. Fi gures 7-33, 7-34 and Table 7-11 present the reactor response and event sequence for this case.
The core state at SAS termination is depicted in Figure 7-36. The Channel 6 hexcan wall and UAB cladding are extensively melted. A fuel vapor bubble of 31 bar pressure is calculated within Channel 6 at this time, but has not been allowed to further expand. The UAB steel in Channels 2, 4 and 7 is also extensively melted and a partial collapse and mixing of the UAB pellets with the fuel is probable after the pressure subsides.
7-21
 
With consideration of the severe restrictions placed on fuel dispersal by the SLUMPY-CLAZAS interaction and the neglect of fuel freezing to struc-ture in the colder assemblies a significant recriticality event is not jud-ged likely. Rather, a nonenergetic entrance to the meltout phase is indi-cated.
7.2.4 Summary and Conclusions on LOF Event in EOC-4 Configuration The most likely progression of events for the initiating phase of an E0C-4 LOF event is that given by the following summary of Case 1. Sodium voiding in the E0C-4 configuration is a positive reactivity effect of a magnitude which overcomes the Doppler and fuel axial expansion mechanisms.
Thus, cladding melting and relocation occurs at 1-2 P and serves to further increase the reactor power and reactivity. The first fuel to disrupt exper-iences a gross swelling behavior and does not have in immediate impact on the transient. The next fuel to disrupt does not have an immediate or rapid source of fission gas and, therefore, conservatively collapses under near gravity forces. A moderate, superprompt critical excursion occurs which re-sults in rapid fuel dispersal by vapor pressure (# 15 bar) and fission gases
(< 5 bar) in the lead fuel assemblies. The burst energy melts and disrupts the remainder of the fuel assemblies, and causes additional sodium and steel removal. As the reactor is rendered subcritical, many of the disrupted low power fuel assemblies refreeze and, without a rapid source of fission gas, can partially compact. The core fuel is completely disrupted with hexcan and UAB steel melting indicated in the highest power assenblies. Based on the hexcan near-melting temperature and a 15 bar fuel vapor pressure in the lead six assemblies an e6rly failure of the hexcan radial boundary is expected. Radial and axial two-plise fuel flow is probable from these ruptured assemblies into any existing space interstitial between assemblies.
The internal blankets are void of sodium with little or no melting of the pellets. A nonenergetic meltout of the core is expected with steel boiling imminent in the highest power assemblies.
7-22 l
l
 
A delay in the disruption of the next to lead fuel assemblies has a negligible effect on the outcome of the accident, and so does an assumed faster fuel collapse in Channel 6. The disruption delay results in a more peaked prompt excursion, while the faster collapse produced a less peaked excursion. In both cases, the prompt excursion is followed by subcritical conditions due to fuel dispersal driven by fuel vapor pressure.
When fuel disruption and imediate fission gas availability are modeled as in the CRBRP homogeneous core analysis (3) , the initfal fuel to dis-rupt did not disperse due to its low temperature and the SAS coding restric-tion due to engulfed cladding segments. A fuel collapse and subprompt ex-cursion occurs resulting in general fuel rod disruption and a LOF-d-TOP failure in lower power fuel assemblies. The LOF-d-TOP event provides a strong negative reactivity feedback due to fuel sweepout rather than a cold, potential gravity collapse as in the base case. The FCI event combines with fission gas dispersal in the lead, voided assemblies to provide subcriti-cality. The final core state is similar to Case 1 and is expected to pro-gress into the meltout phase without significant energetics.
The last analysis was made with conservative Category 3 assumptions on fuel  dispersal. The fission gas dispersal mechanism was ignored and the
,  fuel vapor pressure reduced by a factor of three. A stronger but still moderate supc:rprompt excursion results which provides for a high pressure fuel disper sal. No significant energetic event is indicated as the core progresses into the meltout phase.
In conclusion, an LOF without scram event in the EOC-4 configuration will result in nonenergetic core disruption via initial fuel collapse lead-ing to both fuel vapor and fission gas dispersal for a wide range of assump-tions on failure criteria and dispersal mechanisms.
7-23
 
Table 7-1 Sequence of Events for 80C-1 LOF Case 1A*
Time          Normalized      Net Reactivity    Channel (sec)            Power            ($)            No. Event 0.0              1.0              0              -    Unprotected flow coastdown initiates 11.150            0.80          -0.11            11    Sodium boiling initiates 15.840            0.71          -0.14          11, 9    Cladding relocation to                                    initiates 16.413            0.78          -0.04            13 17.2650            0.64          -0.26            -      Sodium boiling initiates in all fuel channels except channel 2 18.463            0.60          -0.26                    Cladding relocation to                to              to        7, 12, 10 initiates 18.655            0.70          -0.06 20.145            2.27            0.63          11      First fuel disruption. Doppler
                                                          = 0.2$, Axial =-0.38$. Sodium void = -0.36$, Cladding =
1.55$
20.231            57              0.98          9, 13    Fuel disruption to              to                to          7, 12    initiates 20.254          118                0.99 20.256          140                0.99              -    Peak net reactivity with 2.59 from fuel and cladding 20.259            170              0.98              -    Peak power 20.270              3.0          -0.03                -    Core subcritical , negative reactivity from vapor pressure driven fuel disperso in channels 11 and 9 20.338            0.49          -5.48                -  End of SAS analysis . Hexcan has melted in channels 11 and 9
* full gravitational force (1 g) for both disrupted fuel and upper segment.
7-24
 
t Table 7-2 Event Sequence For.,
B0C-1 LOF Case IB SAS                        Number        Voiding  Cl adding    Fuel Channel      Assembly        of        Initiation  Motion    Motion Number        Type      Assemblies        (Sec)  (Sec)      (Sec) 1            B            7              -        -          -
2            F            12            20.216      -          -
3            B            15              -        -          -
4            F            18            17.265      -          -
5            B            30              -        -          -
6            B            6              -        -          -
7            F            24            13.540  18.463      20.298 8            8            24              -        -          -
9            F            18            11.330  16.135      20.270 10            F            9            13.640  18.655      20.301 11            F            9            11.150  15.840      20.145 12            F            12            13.350  18.625      20.310 13            F            12            11.160  16.413      20.286 14            F            18            16.700      -          -
15            F            24            15.790                -
1 g for disrupted fuel and 0.59 for upper segment.
7-25
 
1 Table 7-3 Event Sequence For BOC-1 LOF Case IC*
Number              Voiding  Cl adding  Fuel SAS Assembly          of            Initiation  Motion  Motion Channel Type      Assemblies            (Sec)  (Sec)    (Sec)
Number 1            B            7 2            F          12                20.216      -        -
3            B          15 4            F          18                17.265        -        -
5            8          30                    -
6            8            6 F-        24                  13.540  18.463    20.343 7
8            8          24                    -
18                13.330  16.135  20.306 9            F F            9                13.640  18.655  20.345 10 F            9                11.150  15.840  20.145 11 F          12                13.350  18.625    20.356 12 F          12                11.160  16.413    20.329 13 14            F          18                16.700        -
15              F        24                15.790        -        -
0.25 g for both disrupted fuel and upper segment 7-26
 
Table 7- 4 Event Sequence for 800-1 LOF Case 2*
SAS              Number          Voiding      Cladding    Fuel Channel                of          Initiation      Motion    Motion Number    Tyjyt  Assemblies          (Sec)        (Sec)    (Sec) 1      B            7              -            -        -
2      F          12            20.215          -
20.274 (FCI) 3      8          15              -            -        -
4      F          18            17.265          -
20.264 5      8          30              -            -        -
6      B            6              -            -        -
7      F          24            13.540        18.463    20.245 8      B          24              -            -        -
  ?      F          18        , 11.330        16.135    20.231 10      F            9            13.640        18.655    20.246 11      F            9            11.150        15.840    20.145 12      F          12            13.350        18.625    20.254 13      F          12            11.160        16.413    20.238 14      F          18            16.698          -      20.267 15      F          24            15.790          -      20.264
* Case 1A plus one-third best estimate fuel vapor pressure.
7-27
 
Table 7-5                                                                            l Event Sequence for BOC-1 LOF Case.',
SAS            Number      Voiding                            Cladding    Fuel Channel            of      Initiation                            Motion    Motion Number  Type, Assemblies      (sec)                                (sec)    (sec) 1      B        7 2      F        12      16.149                                          17.708 3      B        15 4      F        18      15.494                                          17.706 5      B        30 6      B        6 7      F        24      12.492                              16.726    17.699 8      B        24 9      F        18      10.682                              14.992    17.669 10        F        9      12.722                              16.994    17.700 11      F        9      10.542                              14.777    17.644 12      F        12      12.392                              16.981    17.701 13      F        12      10.542                              15.296    17.698 14      F        18      14.996                                          17.708 15      F        24      14.262                                          17.706 Case 2 plus no axial fuel expansion feedback and 1.4 times best estimate cladding worth.
7-28
 
l Table 7-6 Key Event Sequence for EOC-4 LOF Best Estimate Analysis (Case IA)*
Net Time  Normalized    Reactivity  Channel                        Event (Sec)    Power            (t)        No.
0.00      1.0            0            -
Unprotected flow coastdown initiates.
12.65      0.8          -9            6        Sodium boiling at core outlet.
13.33      0.8        -12              6        Sodium flow reversal.
14.3-15.5 0.8            -8        2,4,7        Sodium boiling.
15.1-16.3 0.8            s0          2,4,7        Sodium flow reversal.
17.80        1.2          18            6        Cladding relocation at 200* C above melt.
18.60      1.9          41            -
Sodium void exceeds 1$.
18.80      2.0          40            -
Boiling in all fuel assemblies .
19.20      2.4          46            2        Cladding relocation initiates .
19.49      4.0          65            5        Sodium boiling in internal blanket.
19.60      4.0          60            6        Fuel disruption forms foam structure.
19.70      4.0          57            -
All fuel assemblies voided to core midplane region.
19.82      4.3          59            -
Doppler and axial expansion exceed -1$.
19.90      $6.5        s68            2,4        Fuel disruption and initial collapse.
19.97        -          -
19.97        -          -                        Prompt burst to 250P ,1.01$. Dis-ruption of all remaining fuel assemblies.
: 19. 99      4.2          7              -
Core subcritical again.
  " Fuel disruption at 50% melt fraction or melting of unrestructured fuel d: pendent upon presence or absence of radial restraint.
7-29
 
4 Table 7-6 (Con't)
Key Event Sequence for EOC-4 LOF Best Estimate Analysis (Case 1 A)
Net Time  Normalized Reactivity    Channel Power      ( c)        No.                  Event (sec) 2 0.06    0.6    -687            6        Hexcan wall melts. Internal vapor pressure is 25 bar.
2 0.09      0.5    -816            -
SAS calculation terminated.
7-30
 
Table 7-7 Event Sequence for EOC-4 LOF Case IB*
Net Time    Normalized                          Reactivity    Channel                        Event
  .[$gl    Power                                  W            No.
1 0.0                      1.0                    0          -        Unprotected flow coastdown initiates.
13.33                    0.8                    -12            6        Sodium flow reversal.
15.1+16.3 0.8                                  s0          2,4,7      Sodium flow reversal.
17.80                      1.2                  18            6        Cladding relocation initiates.
18.60                      1.9                  41            -
Sodium void exceeds 1$.
19.20                      2.4                  46            2        Cladding relocation initiates.
19.49                      4.0                  65            5        Sodium boiling in internal blanket.
19.60                      4.0                  60            6        Fuel disruption forms foam structure.
19.70                      4.0                  57            -
All fuel assemblies voided to midplane region.
19.80                        4.3                59            -
Doppler and axial expansion exceed -1$.
19.89                        4.8                62            -
Case 18 diverges from Case 1A 19.97                          4.7                59      1,3,5,8      Boiling in all interna 1' blankets.
20.1 2                        7.8                72        2,4        Fuel disruption and initial collapse.
20.16                                  -          -            -        Prompt burst to 350P,1.015 Disruption of all remaining fuel assemblies.
20.17                      4.0                  -7            -
Core subcritical due to fuel dispersal.
20.18                          1.7            -144            6        Hexcan initiates melting.
20.20                          1.3            -230    2,4,6,7,10,11    Independent clad motion exceeds 1$. Sodium plus steel equals 2.4$.
20.27                      0.5                -513            -        High vapor pressure fuel dispersal terminates excursion. SAS calcu-lation terminated.
  "Same as 1A except all fuel disrupts at 50% melt fraction.
7-31
 
Table 7-8 Lead Channel Fuel Motion Modeling Effect on Core Response for EOC-4 LOF Case IB F-1 Type      Full Gravity Fuel Collapse Fuel Collapse Peak power level                                  349P          287P Peak power time, sec                          20.1590        20.1059 Peak net reactivity, $                          1.01          1.01 Peak net reactivity time, sec                  20.1559        20.1021 Reactivity contribution by lead channel at peak net reactivity, $              0.06          0.33 Power level at 20.267 sec*                      0.69P          0.59P Net reactivity ($) at 20.267 sec              -5.13          -5.93 Number of disrupted assemblies                all fuel      all fuel at 20.267 sec                                assemblies    assemblies
* SAS calculations were terminated at this time in both cases.
7-32
 
Table 7-9 1
EOC-4 LOF Case 2 - FCI Event in Channel 14 Fuel Rod Characteristics                                                          Value Steady state peak power , W/gm                                                      102 Steady state peak burnup , GWD/T                                                    66 Steady state peak gas release , %                                                    75 Claddirig midplane fast fluence (E>0.1 MeV) , n/cm 2                                99 x 1022 Cladding midplane temperature , C                                                  483 Fuel Rod Failure Conditions                                                        Value Fuel peak temperature , C                                                          2689 Molten cavity average temperature , C                                              2689 Fuel peak power , W/gm                                                            7210 Fuel peak melt fraction , %                                                          36 Cladding temperature at failure location , C                                      1065 Sodium inlet flow rate , %                                                          -7 Molten cavity gas pressure , bar                                                    163 Failure location above midplane , cm                                                14 Reactor inlet plenum pressure , bar                                                  3.6 Stdium vapor bubble location above midplane (boiling) , cm                          28 Assumed rip length , cm                                                              5 Post-failure Characteristics                                                      Value Fuel ejected per rod, gm                                                            69 Fuel sweepout beyond active core , %                                                95 Peak sodium vapor pressure , bar                                                    $15 Re-establishment of sodium flow , s                                                0.18 7-33
 
Tablo 7-10 Event Sequence for EOC-4 LOF Case 2 Net Time    Normalized  Reactivity    Channel (sec)      Power        (d)          No.                        Event 0.0        1.0          0            -            Unprotected flow coastdown initiates.
19.24        -            -            -            All events prior to this time are identical with Case 1.
19.24      2.5          47            6              Fuel disruption by melting into unrestructured region initiates collapse and power burst.
19.41      47.0          96            2.4            Fuel disruption. Doppler and axial expansion exceed -1$.
19.45        -            -              2,6          Clad motion and fuel collapse drive core through subprompt burst attaining 200P and 996. Disruption of all re-maining fuel assemblies.
Channel 14 fails by FCI.
19.47      4.1          -7      2,4,6,7,10,11          Fission gas dispersal drives core subcritical.
19.64      0.6        -537            14              Strong FCI fuel expulsion maintains core subcritical offsetting cold fuel collapse and physical prevention of fuel ejection into UAB in Channels 2, 4 and 6.
Fuel disruption upon unrestructured fuel melting with fission gas dispersal as in the homogeneous core analysis (Ref. 3).
7-34
 
Table 7-11 Event Sequence for EOC-4 LOF Case 3 Net Time    flormalized    Reactivity    Channel Power (Sec)                    (t)          No.                      Event 0.0        1.0            0              -          Unprotected flow coastdown initiated.
19.60      4.0          60              6            All events up to this time are identical to Case 1.
Fuel disruption at 50% melt and collapse due to neglect of fission gas. All fuel assemblies except Channels 14 and 15 are voided to below the core midplane.
19.72    21              92              -
Doppler and axial expansion exceed -l$. All fuel assem-blies voided to below core mid-plane.
19.74    73              97          2,4,7          Fuel disruption and initiation of collapse.
19.76      -              -
6            Collapse of fuel induces prompt power burst to 452P and 1$.
All other fuel assemblies dis-rupted.
19.78      5.7          -5          2,4,6,7          High vapor pressure dispersal of fuel drives core sub-critical. Hexcan melting
,                                                        in Channel 6.
19.81      0.6        -1028              -
Maximum negative fuel reactivity of -10.8$ attained. Cold fuel collapse starts to raise net reactivity.
19.84      0.6        -928              -            Independent cladding motion exceeds 1$. Sodium plus clad reactivity is 2.2$.
20.02      0.7        -660            9-15          Cold fuel settling at 6 $/s.
Channels 14, 15 passed peak positive worth. SAS calcu-lation terminated.
Neglect fission gas dispersal anti reduce fuel vapor pressure by factor of 3.
7-35
 
SLUMPY b
      ~
Prediction U
D    -
u U h  ,
D T 4  -
  'G M    _
A Estimated a                                                  '        PLUT02
        -                                    ,-                Prediction
        .                        ,s l  i  i  e i    l i  e  i  i  l  i e i
          .m-              i i    i 0.05              0.10            0.15            0.20 0
time from failure, sec.
Fig. 7 1 Ch. 11 Fuel Motion Reactivity Comparison Between SLUMPY and PLUT02 Predictions for 80C-1 LOF Case 1 A
 
i i
n d        o                              n    B n            e      i                e 1
o          t        t 0
e i
t a 2 c m0      i            i      2          e w e  sa Y c                i T d                                  t P i                t U e                        0          e C M d                s L r                  n              B U e                E P P                                        F L r                                        i              n O S P                                                        o s L
                                    -                          i    1 i
r a C p O c
mB o
                                  /-
5 e      C r l      1    s          o
                                                              ,  yf 0        t
                                        ,        i          e  i s
                                          ,                  r  v n u  i o l
t i i
a  c t f    a c i              e i R d
                                  -        >                m o          e
                                            /
i r  n r 0 f        o P i
1 t 2
                                                          . e  o 0 0 m i    M T t        U l    L e P
                                      .                          u F d n
1      a 1
Y
                                                                    . P 5        h M 0        C    U.
I 0              S 2
7 g
i F
. . -    -    - . _  -    -            -        0 8                4 xg5M* y$ b    g  5=E I
 
x  8 -
Ch. 11 i
8    -
M                                            SLUMPY s
y  3 Prediction b                                                                                    Ch. 7 b
l/ A 0
5 4  -
                                                                                ,        >      (*
Ch. 13 /
          ~
Estimated h                                                  /
PLUT02
          -                                      /      - - - -
Prediction 6
                                            ~
          ~
e      l    I  e  i  I          l a    e    i  I  l  n  e a n  .                s    t 0.05            0.10                0.15                      0.20 0
Time from failure, sec.
Fig. 7-3 Fuel Motion Reactivity Comparison Between SLUMPY and PLUT02 Predictions for BOC-1 LOF Case IC
 
l!
g* A          <G    E      Gm*
7          5    3          1        l        3      5        7      9
                                                                      .            4
    -          -    _          _          -      -        _      -        _  4 0
2 e
6      i m
3      T j              ,0 2        s v
y t
i v A i    1 t
                                                        >                              S D
c e a s 8 N      e a 2 O    R C C
i 0 E    t F 2 S      e O H L N
I  d 1 n -
E    a C M        0 I    r B T    e
                          -'                                                                  w r o o 0    .
P f 2
0 2        4 7
g i
F 2
1
      .-                _?                      _              _                    0 2
I 2                    1                  0              -
0                0                    0                0              0 1                1                    1                1              1 aE2        NU<koz y
 
3-1-
2
_\\-                    3 s  5 a
8            1 - Net 5        2 - Doppler
$            3 - Axial
                    *P""'      "
h                                            1 g            4 - Fuel                            4 s
i        i        i      i    i      i
            ,      i          i 20.12              20.20          20.28            20.36      20.44 TIME IN SECONDS 3-3' 1-2 1
E  -1  -
3 a
8              1 - Coolant 5 -3    -
2 - Programed
$              3 - Steel g    5 a:
    -7  -
    -9 7            i          i    i        i        i      i    i      I 20.12                20.20          20.28            20.36      20.44 TIME IN SECONOS Fig. 7-5      Reactivity Components vs. Time for BOC-1 LOF Case 1A 7-40
 
e              E g              R a              O k          -      C c                          I                                    l i
o                                              j!'
5 b                                                                ,-
1 i                                                            i-e e                      .
t          -
s                                                    , ln  :
4 n
1 e                        .
                                ';e I ii o
t                                        -
i e                                    . j!              ' ,
t p
i                                                                                  3 p                                                      i 1      u m                                    _'      i        !e                                r o                                                                                        s C                                                                                  2    i D 2
                                      -.                          .i                1 l d E                                                      ,
                                                        ,                i 1
1 e n u a i'
F f
i C
                                          .l' l    t 1 s
r ,
                                          . -                                              i B
                                                                                . V        F I f      ,
                                                                'I                  '  L    oA E        I I              N    n p                                                                              8 N    o s d                                                                  ,
A  i e e  -
l i
t s d    -                                                                                C    a a i    -                                                                                    i C o  -
1  t v                                                                                      - i F nO C
O  I L O                                                                                      B M,.,  .
7      t 1 a -
e0 rB C
6      o C r o
d                                                                                          f f e                                                                          ,
o  )
l l                                                                                          e1 i                                                                          ,        5      t 1 f                                                                                          a t      .
m                                                                                        S h u                                                                                              C i                                                                                              (
d                            -                                                            6 o                            -
4      7 S                            .
j j
g j                                                                                          i
[
          ,                                                                          3      F
                      ;                                                    i 2
1 0                0                                            0 0                5 1
r [-5Ox j3
                        ?t
 
                                                                                                          -                                c
( xib,    /
SAS Fuel  Assembly        Cnannel Num' Blanket Assemoly 0 Alternating    Blanket Assemoly    Fuel /
                                        ~
                                            ,'..                                                              Control Assemoly
          , : .' ','.3.a..-
* :3 g:,- ' / .
                                        .'x~. .,.'
l;..
: /              iY ' f ' . . * . ': ,' .' .                        ,,        .,
  ..,y.,                                    x x                        ...../...  .
                                                                          .1 5 . ./ , . , * . .
    ,N/'                        s,                                                          ,
3i/                                      8                        l-
                    '-                                                      ' f : , 5 '. . . ....-
                                                                '                    /'
8                                                              ' ,15 .' '.
\          [                                          ''
/                '?'            -        '
                                                            '9                                    8
                                                                                                                                .ik-N                        lg[                                  Az-l^', s.        .
                                                                                                                              ;42.'
* 5                                                                          8                                ~
q              ,s                                .
      ~5        . ; l.,      .            5 0            b,              , l 4 .'
                ' -l,,.
                    .' i .; ; . . . ....
5                            Nz '7rR,'-ta y'  '
                                      ..'.'.,                                                              t
                                        'g'.,,'.. . . . ' *. : . .,
3                                * *4 !,*. *
                                                        * .,                                        6 Intact, no boiling
      .' l .'
  *,2' ' .. * . ' . ' .
3                                  5
                .:..:.-                                                                                                    Extensive voiding
                    ' '2..,-
                          * ' f.'l:  . . . l. . .. .
3                                . 2. .-
                                          '***                                                                            Disrupted fuel Relocated cladding
        )                                                                                                                      and disrupted fuel      ;
i Fig. 7-7 Core State at End of SAS Analysis for BOC-1 LOF Case l A 7-42
 
lll            l
                                \l!lll 2Aw9G2~d
* GG 7          5    3        1              I              3          5        7        9 4
4 1
0 2
I e
6    i m
                                                          #                                    I 3
0 T
2      s v
y t
S i B i
D  v    I i
h t      e 0  c s C  a a 8 E    e C 2  S R 1
0 N        F 2  I t O e L E N 1
M I
d      -
n C T
m'                                                      l a 0 8
r e r w o o f 0    P 2
l 0    8 2      -
7 g
i i
F 2
1
_:: .~ _ -
_::  ~' -
                                                    . : I          - .
I
                                                                                              -  0 2
3                2                      i                            0                -
0                0                        0                          0                0 1                1                      1                            1                1
                          $8' 8dagE 8
 
1-2 0-                                                          \\                                                  _
1 - Net E
y              2 - Doppler                                                                                              1 d            3 - Axial Expansion 4
8            4 - Fuel 5 -5 _
C C
3 5 m
      -11                          I                I              I      I                                i    l      l I      I 20.12          20.20              20.28                      20.36                                  20.44 TIME IN SECONDS 3-                                                                                                                -3 1-2 0-1 N
3 a
8 1 - Co lant 5 -3 g            2 - Progransned 3            3 - Steel b -5 5
=
          -9                    I      i              i                i            i                          1    l        l I
20.12          20,20                  20.28                  20.36                                  20.44 TIME IN SECONDS Fig. 7-9    Reactivity Components vs. Time for BOC-1 LOF Case IB 7-44
 
l'                            I                        l1          lllIl 2Q ARd<c *8rGE                                                                      _
7      5            3          1        1          3      5              7  9              4
                                                                  -                  -              4
_      -            _          -          _        -          _          ~
                .                '                                                                0 2
0                                            I e
i m
T 6
3          .
T                                                        i 0
s v
2 y
t i C v    I i
C                                                              i S t  e D c s N a a O e  C
                                      #                                                        i 8 E 2
C R S t O 0 N N e L F
2  I          1 d        -
E n C M a O I          B T r t
e r w o o f P
0 2      0 l          1 0          -
2      7 g
i i        F 2
1 7'  ~
7::        -
_::                        0 I              2 3                    2                    1                    0                    ~
0                    0                    0                    0                  0 1                    1                    1                    1                  1
                                      $E'SddEE        I
                                                    ~A*
l      lll
 
1                              -
                                                    ^
                                                                                                                                          '      '^
x                                                                                  ,,              2                              ,
3                          '
    .                            ~
                                                                  ~
      .                                                                                                                                                            .s .
1 . Net        ,
2 - Doppler 3 - Axial Expansion 4 - Fuel                                -
1 3
                                                -                                                        1 M                                                                                      4 E                                .
9_
                          -11                ,                  ,        ,            ,          ,.                              i          e                    a 20.12                        20.24                20.36                    20.48                                            20.60 TIME IN SECONDS 3-
                                                                                              /                                                                            1 1
1-2                                                              l 0
1 s
* 1 - Coolant                          -
                    $              2 - Programed
                    ~
3                  3 - Steel U
                    ],u                                -7
                            -9                                                              i        i                                e          i                I g                    ,      i 20.12                          20.24                20.36                    20.48                                              20.60 TIME IN SECONDS Fig. 7-11        Reactivity Component vs. Time for BOC-1 LOF Case 1C 7-46
 
C?
c 9 Era    ~O 'O$g iT 1                1            1              1                1 0            0              0                0 0_n                            1 2
                    - ~ :    i_ .
                                                    ~  ::_ 2    _ .    : ::_ 3 0
1 2
F      2I i      0 g        .
      .      1 7      4 1      2I 2      0 f  P  TI o  o  I  7 r  w e
r  M 2I 8
0      E 0 C
a n  I I
4 1  d  N 9 L  N  S2I O  e F  t  E0 C  R  C.
a  e  O2 s  a  N2 e  c  O 2I t
2  i    S 0 v        .
i y
t      2 4                                                    .
v      2I s
    .      0 T      2 i
m      7 e      2I i
O 0
2 9
2              -        -        _        -          _            _
0                                          r 3
I~-  .    'd      7.      ?" -      tn*        e ...
_ . l 2      zLt J- eM g .t t 1
                                                - z O__.a_
I (l
I2    eIcu
 
11                                                            m
                                                                /
I e          _2
                      *-                                                                      3 m                                                                  ~
cc 1 - Net
                $*                    2 - Doppler d'-
C 3 - Axial Expansion b T_                  4 - Fuel C
                -i_
E.
E T_
                      -                                                                        1,4 71                          i              i          i        i        i    i
                                !      i                i 20.12 20.14 20.17 20.19'20 22 20 24 20 27 20.29 20.32 TIME IN SECONOS cn _
s4
                $                                                                        \
3
                                                                                              =
3                                                        _-
gi_
O 1 - Net b''        _
2 - Coolant
[                      3 - Programmed
                ~d                      4 - Steel
                -i_
E.
yi_
T                  i        l      i        i          i        '
i I    !
20 12 20 14 20 17 20.19 20.22 20.24 20.27 20.29 20.32              '
TIME IN SECONOS Fig. 7-13 Reactivity Components vs. Time for B0C-1 LOF Case 2 7-48
 
SAS Channel Numoer xx  Fuel Assemoiy Blanke:.Assem:iy O A1: BianKe:
err.a:ing AssemFueI/
ly Control Assem=ly
                                                                                  )
4              14 f1          ' ,9      -
              ^r,              e N,I//, /
8                1 (6 )74                Jf Q            '
2 5                    h      '
8
                                                                                /
        'S                5                7
                                                        .0          ,      ,
f                                                  ,                  ,
                                        ;                                        l
                      ,4      f Intact, no boiling
              !/        /                                      Extensive voiding 2      FC, i              2 Disruoted fuel f                                                      S      Pelocated claddina l
I                                            h        and disrupted fuei Fig. 7-14 Core State at End of SAS Analysis for 80C-1 LOF Case 2 7-49
 
l l
l I
l 3                                                            -
6.
10 m
              ~
f                                          _
1-2 2                J                                                    _l 10 _                                                                      =
Ei l
3
                                                                              -4, 9 l  .
      '                                                                            4
\                                                                                  2 I
7  8        -
e                                                          G N
  $  D 101 -                                                              - <
E
!    h            -
      !!                                                                            8 l
                                                                          --14.
{E 10 _
                ~
I              --19~
:                                      /
            -l W                  2 10                                                                  =24.
I      I        I    i      I    i I
17.62 17.66 17.70    17.74 17.78      17.82 17.86 17.90 17.94 TIME IN SECONDS Fig. 7-15 Power and Net Reactivity vs. Time for B00-1 LOF Case 3
 
I
: 6. -
: 1. -                                              3 2
      ~~~
E                                      1 - Net y                                    2 - Doppler
: 9. -                            3 - Axial Expansion
  ~
4 - Fuel C
E -14. -
U 5
x
    -19. -                                                1 4
    -24.
t      i      i        i        i        i    i    i 17.62 17.66 17.70 17.74      17.78      17.82 17.86 17.90  17.94 TIME IN SECONDS
: 6. -
                                                          -4
: 1. -                T                              3 2
0 -4.    -
1 - Net 8                                    2 - Coolant 5 -9.    -
3 - Programed
  $                                    4 - Steel E
O -14.
5 m
    -19.  -
    -24.                                                            i    i
            ,    i      i      i                  i        i 17.62 17.66 17.70 17.74      17.78      17.82 17.86 17.90  17.94 TIME IN SECONDS Fig. 7-16 Reactivity Components vs. Time for BOC-1 LOF Case 3 I
7-51
 
E e                      R g                      O                v a              0        C k
c i
o                                                                      S b                                                                      I i
e e
t s                                                                      4 1
e t
e                                                                    3 i
p                                                                      1 m
o                                                                      2        l C                                                                        1        e u
F E                                                                      '1 1        t l                            s 3 I
0          r 1        i e F s I
                                                -                                          a
                                                -                                  f C 9          o    F
                                                -                                    n O L    o L I
i E
          '                                  -                    i^
T.;                    '
N    t 1 I. i
                                              -                                N    a -
d e
                                              -                  i'8          A    i C t 0
                                                            .b                H    i B d                                          -                l              C    n i                                          -
o                          lI! ,
l I      r V              l 1
o C    t f 0      a O
                                                                                          )
4 B      e 1 r 1 o
C      .
h
                                                                          , 6        f C l
o(
d
                                                        )
e n      -
e                                                                '              t      o  .
l                                              ,i!        !
a i      _
l                                                                                  t t        _
5        S p        _
i f
i u  _
r  _
m                                                                                7 s 1 i i
u                                                                                  - D d                                                                    1 7
o                                                                      4          .
S                                                                                    g i
F
  @                                                                          3 2                _
1                .
o                                0                    _
0            0                                                                        _
5            0                S                                                      _
1            1                                                                        _
5
* g2M $R<
YM
 
l SAS Channel Number xx    Fuel Assemoiy Blanket Assemoly O Alternating        Fuel /
Blanket Assemoly Control Assemoly J,          "
                                        /
sq                    -
3 15 5;          .
8    s                  //
                      /
8                I 6              '7                            '
2
                                                        '    0
                'S              5            7  /
                              ,4            6 3              4 Intact, no boiling 2
Extensive voidin9
                  )              2 Disrupted fuel 1
Relocated cladding 1                                                  and disrupted fuel Fig. 7-18 Core State at End of SAS Analysis for 80C-1 LOF Case 3 7-53
 
E R
O            .
C J
l e
u                                                5 F
1 d
e t
p u
r s                                                4 i                                                  1 D
n d                                                  I J        i t
o a
t                                                            i n                                              :
2          n a                                                1 I
l o                                                            t o                                          -                  a C                                          -
e
      -                                                          r n 1
1          o o C i f p o u t
0                  r d                                                  1 e s i                                                              t i o                                      ._          9        a D V                                      -
t L    S        l
:'                              E              e 8 i t      - u O
l t            F A
l    A i    1 2 7 C e      l 4      s e a n
                  ! -                                    6    -
E 9. }} 5i' . y' j
C    C    n e                                                      0              a g
a                                                      E    F    h O    C k
c                                                            L o                                                                    f l                                                            4    o B                                                                -
5 C
l 0
E e
e t                                                            9 S                                                            1
        -                                        -      4          -
7 E                                            -
g 3        i F
g                                              2 1
0              U            0 U            5            0 5
1              I 5 J5Gx ,2E ym*
 
i i
3 l      10      :                                                        -5
_3 2                                                              -1 10 2
G e
_-1  y o
E o            -
4
    '                                        4--                              2 a                                                                      -3  O y  y 10 1 -
ln
    ~            -
                                                                  ->            ~
2 m
8
                      ~
o z
                                                                            -5  r-G a
7 10      -
1                                                      -g_
0                                                                  -11 19.56              19.72            19.88      20.04      20.20 TIME IN SECONOS Fig. 7-20 Power and Net Reactivity vs. Time for E0C-4 LOF Case 1A
 
1~
3 0                                              \\
2 m            1 - Net
$                2 - Doppler
-j o            3 - Axial Expansion 5        4 - Fuel C
G
{
5 e                                                                1
      -11                                    i        i      i    i      i
              ,      ,      i 19.56        19.72              19.88          20.04        20.20 TIME IN SECONDS 3
1 3
1-                            _ _
0                                                        '2 E
$    d C
3        1 - Coolant
$            2 - Programed 3 - Steel o  6 m
    -7 _
    -9                                    i        i      i      i    i
                ,      i      i 19.56        19.72            19.88            20.04        20.20 TIME IN SECONDS Fig. 7-21 Reactivity Components vs. Time for E0C-4 LOF Case 1A 7-56
 
l Power                                0.5              P/P                                              x        Fuel Assembly n
Net Reactivity -8.0                                                                                              SAS Channel Number Blanket Assemoly Peak Fuel Temp. 3900                                    C Control Assembly
      /'                                            /
    /4  1 lf
    'I              /2/, l' //15l                                  '
              ,              / ll
                                                            /l                              /:
      / ,'            ,
                              .I          ,      ,'      , . ' * .,
jl                        p y'l                        ..:                .'.'. -                                                  /,
                                          .      5-                    f l13/                    ,
la e N,,
N
                                                          //X/                                    .:
                                                                                                  . b...
                                                                                                                      /
i
                                                                                                                                  ,l
                                                  ,                i j ; ,'                          *
                                                                                                                  , 13    '/
6' f /                I              11 ,
                                                            / ! / [11                                    *
                                                                                                                          /    //
  -(17)fk            '*
                  .5*.
                                            / /                            '/    '.
                                                                                                  . 5 , ',
j l12 l      _
                                              ~
                                            ,5 .
                                                  '                        j H
                                                                                                                    ! 10      ,/ !    / 14 I,/,!,Ill!f,
: '. '.          I'll ' . '                        . . .
                                                                  ,,      j                              ,
                    ,/( 7)
                                                                        , *: 1. ~. ' ( 6 )                                    '-
2 /                        '
                                                                          .o.-
                                                                            '~ "
(6)            ,'                                  -
                                                                                                                            /
                    ', . 3 -
                                                          '2                                          6 s                                                                          ,
                                                                                              *                  /
(6) s                                    (17)/
                                          .l*.                            .,                  .
4                ,
                                        . 3.-                                  3, *. -
: 7)                          ,
                                                          ,' 3      .
Extensive voiding f              ,
                    )6)/
    ,1.
2                                                                              Disrupted fuel and steel
                  .      .1**
Channel pressure (bars)                                                              Blocked flow cnannel shown in parentheses                                                                and disrupted fuel
      .1.
Fig. 7-22 EOC-4 LOF Case 1A- Core State at SAS Termination 7-57
 
E R
O 1      C i
e u                                          5 F                                            1 d
e t
p u
r                                          4 s                                          1 i
o                                                      n o
i 3      t 0                                            1 i
t i
a t
n
                                    -        2      I n
a                                          1 i                                    _
t o                                                    a o
C                                                      e r
    -                                          1 1
o C        n o
0                                                      f o
i t
p 0        e        u a                                            1 t        r i
9      a        s o                                                  t      i v                                                  L E
S      D
    -        _                                  8 NN    -    l e
O            _
7 C A
l i
B I      F u
4 e      2 s
: x. G nt*    l_      6 -    a      l
      !                  i              -
C  C        e e                                                0            n g                                                E  F        n a                                                    O        a k                                      .              L      h c                                                            C o                                                  4 l
5        -    f B                                                    C        o 0
l                                                      E e
e t                                                    3 S                                                    2 4        -
    -                                                  7 E
g 3      i F
2
                -                                1 0            0 0
0            5        0 5
1        1 5 .hC* uR<
7S
 
l                                                                                              l l          '      l' 2@ m>4~54 ~              pG 7            5          3        l                    3            5      7      9 1_                                      -          6
_          _      -          _        -            _      _                3 0
2
                                                                =
i e
i m
6 1        T.
i 0        s 2          v y
t B i I v
S i e
                                        ~                                                    i D t s c a z                                                                            N O
C a C e
6      E R F 9      S      O t            t L 9 N        e 1      I N 4 E d C M  n 0 I  a E T
l r r e o wf o
P 6
7 l          4 9        2 1          -
7 g
i i
F
: -      - ~ ~        _ :~: -            7:  I s  .    .
_1 5
6 9
3                          2              1                          0                  -        1 0                          0                  0                      0                  0 1                          1                  1                      1                  1 j
g22 Ed'              =
sln 1 lll
 
1-0                                                                3 2
          -l _
g,                  1 - Net
      }8                  2 - Doppler
              ~
3 - Axial Expansion 5              4 - Fuel                                          1 C
G                                                                    4 U -7 _
5 x
_g -
          -11                  ,        ,          ,      ,    ,      ,        i 19.56          19.76                19.86        20.16            20.36 TIME IN SECONDS 3-1--
2 0
E a
1 - Coolant z
      ~
2 - Programed C                    3 - Steel E
      !3                                                                            -
6 m
            - 7 __
            -9                            ;-        1      i    i        i      i
                        ,        3 19.86        20.16            20.36 19.56        19.76 TIME IN SECONDS Fig. 7-25      Reactivity Component vs. Time for E0C-4 LOF Case 1B 7-60
 
Power                              0.7        P/P g                                  xx      Fuel Assembly i
SAS Channel Number Net Reactivity -5.13                          5 iade Assemoly Peak Fuel Temp. 3940                        'C Contrni Assembly 14
              /
                                        //
                                      , ' 14
                                /              /            /
12 / /                /          15 l
3                        35
                    !0                l l          . 8 '' . . I 5'l' (5)j              ', .,        '.':
                                                                          !, ,/ /              '
j !j j,                  . . -
                                                                                    . .              /
                                                                                                                  /
1/
A'7                                    'k i        /-        .8-                /
                        .-              (                                                                    2
    ,,..          ' l 5 '. ;' . , .
l            .'.-              l l
                                    .5..                              n                                              14/
    .3 K. *:;' .. .
4                      ..o.-
                                                                ~
                                                                    ,(5)      ._
l l107l/
(5) 9
                                                                                                                /
j
                                                                                                                        /
I (4)/                              .-        .;,.          (5) "
                                                                                                                    /
2                          5.-
(4)      .
                                                                          ~
                                                                                          \
N
                                            .-      (4)            * :.:
                                                                    ..3.;      (20) 4      i                    .3-                '
                                      '''I                              '
(4)/'                                  -      -
                                                  , [3 ' *.
* Extensive voiding (4
      .' l . -                            2      '                                                    Disrupted fuel and steel
:.        (4)
                          ..        Channel pressure (bars)                                            Blocked flow enannel
    . 1 *,                          shown in parentheses                                              and disrupted fuel Fig. 7-26 EOC-4 LOF Case IB - Core State at SAS fermination 7-61
 
E R
O            _
L        C            _
5 1
l t
i .
n I                                    o i
t 3          a 1        i t
a f
t n                                            f'            n i            I a                                              ~
l o                          -
t o                          -                                a      6
      ~
C                                                            e          .
    -                                              1          r      h 1          o      C C
  @                                            l f
o i
n 0                  n d                                                  1          e        o i                                                            t      i o                                                3          a      t V                        _.                            L    t        p E    S        u n.
p 8 NN                r s
C                                                      A H    2 i
D 7 C        e      l 4      s        e 6    -    a        u e  E                            -                    C 0
C        F g                                                          F        t a                                                    E O        s k                                        ,
L        r c                                                                    i o                                                          4        F l                                                              -
B                                                  5        C        f l                                                            0          o e                                                          E e
t S                                                            7
_                                                              2
    -                                                4            -
7 E                                                    3 i
g F
2 1
0      0              0 0              5                0 5
1      1 5  2$* d="
yO
 
80                                                                                                                                                    -
r1        i l
i                            i 70          - LAB -                  Core                                                            j        L-]                      - UAB -    -
A          20 msec l
I B - - - 120 msec 60                                                                                                                      1                            -
1 I
I                                  C .... 184 msec l
50                                  Flow Channel                                                -J                    l                              -
i                      i
__                    i 1
b 40 e
E                                                                                                                ...        t_ ~ 7                  >
S 30
                                                                                                  -~
i l
o5 20      -
b ~'!                  -
g s
cs                                                  :
10  -                                              i                                    .
                                                "                                                                                                    {
y  E        O              ""?$                - - - - - -
i i -                                                    1 O g                                                      '                                                                            . ,j                                Ejection      Sweepout z -10        -                                      e--
from        above c                                                            - --                                                                                                        pin %        UAB %
      & -20        -
l            [        '
                                                                                                                    ,                j E                                                          i i                                A          12          0 G -30        -
Pin Cavity                            ;                                                                    l                                B          33        39 e
                                                                                                                                -J                                    C,          39        61 E
o _40        -
                                                                " -' i                                                        i
      ,s ,                                                      ~- <                                                          g....:
a                                                                                                                        i
          -50      -
                                                                        ,~ ~ l i
i                                      ,- - .1
: . . .!- ,                              J
          -60        -                                                      :        " ,--- r-                              -                                    -
          -70        -
                                                                                                              ,.. .i                                                -
          -80                  - - - - -                -                                                                                        --
Fig. 7- 28 Axial Distribution of Fuel in Channel 14 FCI Event (E0C -4 LOF Case 2)
 
2 - S801900 NI A IA11]S3B 13N                                    m u:
9      .g      .;          3        .g,      .g.      L          m-I            I        I        I        i i        f m
                                                                -e                u?
m m
                                                                              ,    5        -
E i a            i-m          a m          >
N                                                        d~ u>
b o  .g  m en z      -
o C\J o          g U    @    m
                                                                                    $$      "    0 a
mz  ,_,
eoma y  e SuI      . a o
l                y                            m-        u. w
: c. -    "
2 o
                                                                                                  +
u o
                                                                                      =
Q        N O        A e        e, cn e.
k i....... ,    ,......            3.......      i....... ._
m            ~                -              e              .
O            o                  o              o o
1-- 83M0d 032110W80N 7-64
 
m_
C g-                            1] u a            -
5    i _
                                                        %\
U                1 - Net
>M
-i_
2    neppler
[                3 - Axial Expansion 6-a: D 4 - Fuel I _                                                            g 9
r-j      i      l        l        l      l    I    I    I 18.89 18.99 19.09 19 19 19.29 19.39 19 99 19.59 19.89 TIME IN SECONOS m_                            -
u3
.>                                                                  -2
, ~ -{                                          #                    -4 2-
~
i-          1 - Net U
2 - Coolant
>m                3 - Programmed C          ~
4 - Steel O.
W uo i_
i r-l      l        1        i      i    i    i      i 18.8918.9919.0919.1919.2919.3919 M919.5919 89 TIME IN SECONOS Fig. 7-30 Reactivity Components vs. Time for EOC-4 LOF Case 2 7-65
 
Power                                                            xx\) Fuel Assembly 0.61 P/P, Net Reactivity                  -5.40 $                                  SAS Channel Number Peak Fuel Temp.                    3700 C                                Blanket Assembly Control Assembly              ,
1
* l
                                              '6, f %
x.,%.
i-
            \,s ( Y            /
q4        /
i                  w      1 P''                        // /t-
                                ,,'                    og o ' f,;:
O O        '
y              y                  2'        ,,m "fgx p; 6                              1'
                                                                      /0            13    N
                  /
                              . . ,          /                          .,'    l  '  ////
                '                                                      '  .:              / '-
5-0
* 11                  C            M 3                        *5
                            'A                        '.,    '
o (g)
                                                                  ..      ~
V 03                      ,/2                  c f'                  0          o    O (8)      o              /
            /
0        0 o o                      Extensive voiding
              'I7)                                      3o o                                            O 0 N(8)                                                            Disrupted fuel and steel g    1                            2 0 o              Channel pressure (bars)                  Blocked flow enannel o                                                                  and disrupted fuel C
1 shown in parentheses.
O o
Minor voiding FCI bubble Fig. 7-31 E0C-4 LOF Case 2 - Core State at SAS Termination 7-66
 
f              l    ll      1 .l                1          '
E t
l 0                                  _
C
                          ]                                                _                                      _
                                        ,4  i'                                                                  _
5                      _
l                                  1                    _
t n
a                                                                                    4 l                                                                                      1 o                                                                                                n o                                                                  '
o C                                                                                                i
      -                                                                                    3        t a
g                                              ,    l i      ,
m iI 1
i t
i n
i 2
1        I t
                                                                ~                                    a    6 e      .
1          r    h 1          o    C C
t n
f      i o
d                                                                                        0              n i                                                                                      1          e    o o                                                .
t a
i t
V                                                -                                      9 t      p L  S        u
        -                                                                                        E
                                                                                              ? NN            r s
C                                                                                            A H  3 i
D 7 C      e    l 4    s      e 6    -
a      u C  C      F e                                                                                          O  F      t g                                                                                          E a                                                                              ,!              O        s k                                                                                              L        r c                                                                                                    i l
o                                                                                              4 F
B                                                                                        5      C      f 0        o l                                                                                              E e
e t                                                                                              2 S                                                              .                                3
_                        4        -
        -                                                          _                                7 E                                                                                          3 i
g F
2 M                                                  -
1 0                0                    0 5                0                    5                              0 1                1
                                  $        g^ A b r?)
I        l1l
 
l CRBRP ECC LOF        CASE 3 POWER + REACTIVITY VS TIME                      '
3                                                            _ -
1 0 --                        -
:                                                              .m
_i -l 2                                                                    $
7, 10 _ :
ct E                              ->                          _ T -j y
a e
w        :                                                                  g b        -
4--                                                .
      .10'_                                                            _T 3 8
r" 5
                                                                            .t 2        n>-
3 a
0 h
z 10 _  :                                                  i        my
              .                                                                n
              .                                                              . til z
10''                                                                T I        I        I    I      I    I      I 19.60 19.66 19.72 19.78 19 8'l 19.90 19.96 20.02 20.08 IIME IN SECONOS Fig. 7-33 Power and Net Reactivity vs. Time for E0C-4 LOF Case 3
 
1 N              /      _
T_                          h\                                  b a                                        \
tr                                      ]
3                                              1 - Net
.u M, -
o                                              2 - Doppler o
3 - Axial Expansion z.w i _                                      4 - Fuel W
>n                                                                  1 u_
W u
3 w      -
9 1
I        I        l      1        I      l          l  d 19.60 19.66 19.72 19.78 19.84 19.90 19.96 20.02 20.08 TIME IN SECONDS 4
1      -                                                            3 gi_
a            .
1 - Net zMl -
~
2 - Coolant 3 - Programed
        .                                      4 - Steel
>a                                                                            1
-i_
W W
E&i _                                                                1 l
l m
I l      l        l        I      4        I      4      I  I 19.60 19.66 19.72 19.75 19 84 19.90 19.96 20.02 20.05 TIME IN SECONDS Fig. 7-34 Reactivity Components vs. Time for EOC-4 LOF Case 3 7-69
                                                                            .1
 
i l
Power                                                            0.67 P/P o                                                                                  Fuel Assembly Net Reactivity                                                -6.60 $                                                                                        SAS Channel Number Blanket Assembly Peak Fuel Temp.                                                  4480 C                                                                    J Control Assembly
      -h                                                  /    \
                                                                  ,/
      \/x.                                        , 12                        .-/
                                                                                      'j,, 13 .
_A                                                                                              ,
      \                                      f10 f. / ' 3 ' . // g',./                          -
                                                                                                                                  ;.- 1E\ /                          b-
                                                                                          ','.'                        /
                                                                                                                                  )        l,                          ,,
                                                                                                                                                            /              /
[
(4)                33
                                                                                                                                                                    )[
4V.;.                                                                                                      \              .
_-  .                        6-3 y.
                                                                    .h*.
                                                                          /
7_,Y
                                                                                                                      / U ',c/ y >c /,.
                                                                                                                                                                      'X K-C'-                                                                                                    .
: 4)                                                      ,
O -(4)                                              .                      -
                                                                                                                                    ,x      E
                                                                                                                                                                        /                                                                        ;
                            ' ,sj                  .
3
* y(31),
                                                                    . 'o            .                                        3 Extensive voiding 4%                            2                      ,
* 3 ,,
o Disrupted fuel and steel
          .1                    ,
                                                    ~      1*                                                                                                              Blocked flow channel
                                                              .        Channel pressure (bars)                                                                          and disrupted fuel
                .1                                                      shown in parentheses, l
l Fig. 7-35 E0C-4 LOF Case 3 - Core State at SAS Termination l
7-70                                                                                                                  i
 
1 s
l
: 8. REACTOR CORE MELTOUT AND LARGE-SCALE POOL PHASE EVALUATIONS 8.1    Introduction In previous chapters of this report extensive calculations have been= presented incorporating the existing technology as it relates to the initiating phase analysis of loss-of-flow and reactivity insertion events without scram. These calculations have clearly shown that the potential for initiating phase accident energetics capable of challenging the CRBRP primary system structural integrity is very low for the CRBRP heterogeneous core design.      Reactivity rates associated with initial material motions such as sodium voiding, cladding and fuel relocation were shown to be limited to a few tens of dollars per second.      It is generally accepted that such reactivity. addition rates would not result in any significant pressure loading on the closure head or PHTS boundary.
Despite the demonstrated low probability of energetic events in the initiating phase, adequate fuel removal leading to a largely intact and coolable core was not generally demonstrated. In particular, the loss-of-flow accident mechanistic calculations based upon SAS3D (which is capable of tracking the early accident progression up through initial fuel dispersal) indicate that the core is left in a largely uncoolable state with the theoretical possibility for the occurrence of energetic recriticality events.
The purpose of this chapter is to continue to describe the accident progression beyond the initiating phase predicted by the SAS3D calcu-lations until a permanent suberitical fuel configuration is established.
The description of the accident progression beyond the initiating phase is based upon phenomenological understanding. Fundamental and verified physical principles and models are used to assess the expected behavior of the reactor through thtt disruption process. This phenomenological 8-1
 
approach is believed to provide the best technical basis within current technology to evaluate the low-probability, complex core states. When addressing the.phenomenological behavior of fuel, experiments are often performed with Uranium Dioxide (UO  2
                                            ) as opposed to the actual Uranium-Plutonium Dioxide [(V,Pu)02 ] fuel. These two materials can be considered identical in their physical behavior as described herein.
The termi meltout and large-scale pool will be used to denote the two phenomenological core configurations of interest in describing the accident progression beyond the initiating phase. The meltout phase constitutes an interval of time during which the rod structure internal to individual assemblies and the hexcan radial boundaries are destroyed.
    -The motion of fuel material is essentially limited to be within single or small groups of assemblies, or the gaps between the assemblies.      A large-scale pool is identified as a contiguous volume of liquid core materials which is of sufficient size such that its phenomenological behavior will dominate the accident progression relative to energetics potential. In this definition, intact internal blankets or fuel assem-blies may exist at the same time a large-scale pool exists.
Dhenomenological evaluations of the above defined chronological configurations are presented in two major sections of this chapter (8.2 and 8.3). Within each major section individual phenomena are separately discussed and then pulled together into a progression
!    scenario in the sumnaries (Sections 8.2.8 and 8.3.6). These sections l
l    are introduced by a brief'sunnary of the initiating phase calculations I
for the LOF and TOP events (8.1.1) which orovide the initial conditions for this chapter. The best-estimate LOF events are selected as an l
appropriate basis for the disruption phase considerations. Finally, the results of neutronic calculations which helped to guide the overall assessment of energetics potential during this phase are discussed in Section 8.4.
8-2
 
The key questions to be answered in this chapter are:
e    Will sufficient fuel removal occur during the meltout phase so as to preclude a bottled-up critical core configuration?
e    Do physically realizable mechanisms exist to produce sustained, superprompt critical excursions?
To address these questions Section 8.2 examines the potential for blockages to form and prevent fuel removal from the core region. The escape paths are ide'etified along with considerations of the driving      .
for :es to disperse or compact the fuel. If the availability of large free volumes in between the hexcan geometry surrounding the core, and the flow of fuel downward through control assemblies is found to provide early fuel escape paths which can make the core permanently subcritical, the core would not enter the large-scale pool phase.
During the meltout phase of the accident progression, the potential for significant reactivity insertions and sustained prompt critical excursions is estimated to be very low because of the incoherence in fuel motion (compaction) provided oy the yet intact assembly hexcan boundaries and the readily available dispersive forces provided by fission gases, sodium vapor,and fuel / steel vaporization.
However, uncertainty exists in the above meltout scenario.
Specifically, the depth of penetraticn of fuel into the axial blanket regions and the timing of the fuel access to the ex-core volumes relative to the formation of a large molten pool of core materials are the most important uncertainties. To address these uncertainties, a pessimistic (Category 3) accident path has been examined by assuming that a large-scale bottled-up pool of molten fue.1 is fonned with most of the fuel trapped in the active core region.      The physical phenomena affecting the behavior of a bottled-up core pool are analyzed in Section 8.3. The balance between heat losses and core pcwer generation is examined and compared to the power required to provide for pool boilup. It is shown that boilup would be expected down to very low 8-3
 
values of specific power generation (si-2% of nominal) due to the available condensation sinks and the action of fuel crusts to regulate the energy losses. The potential for sustained prompt-critical excursions is judged to be very low. In this context, it is noted that the theoretical potential for large-scale coherent fuel motion with a bottled-up core pool configuration has been discussed in some early scoping evaluations.(48)
The physical mechanism of self-pressurization and FCI back-pressure, which have been proposed as capable of creating coherent pool collapse, are examined and found to not lead to such conditions. Rather, the entrapped boiling pool of core materials is expected to ablate away the blockages and reach a subcritical configuration prior to the cessation of vapor production due to too low a decay heat level.
8.1.1      State of Core at Termination of Initiating Phase Analysis 8.1.1.1      TOP Events The TOP events involve an increase in the core net reactivity and power generation while the primary coolant flow remains unchanged. A description of the core response under various assumptions during the initiating phase is provided in Chapter 6.
The most probable path (best-estimate) of a TOP accident at B0C-1 is the mechanical failure of fuel rods in the nine lead assemblies, resulting in the ejection and removal of fuel, which is followed by stable core coaditions. The power level ranges from slightly above a near-term decay heat level (0.lP) to 1.10P. The damaged fuel assemblies are estimated to be coolable under a wide range of blockage assumptions at such a power level. If some particular pessimistic assumptions are made, the core may reach a stable power level beyond the PHTS capability to remove the energy from the system. In this pessimistic 8-4
 
case, reduction of the primary flow resulting f rom a PHTS boundary failure is predicted which is followed by ftM disruption, similar to a nominal LOF case initiated from steady state full power. However, the cladding is mixed with disrupted fuel, and no separate steel blockages form in this case, as compared to the nominal 80C-1 LOF cases where extensive steel blockages are predicted to occur prior to fuel disruption. Since disrupted fuel will disperse more easily without pre-existing steel blockages, the consequences of this loss of flow after the TOP event will be less severe than the nominal B00-1 LOF cases (see Section 6.1.5). Hence, the disruption phase energetics potential resulting from a flow reduction following a TOP at 80C-1 would be generically similar to and expected to be bounded by the core disruption phase events for a 80C-1 LOF, which are analyzed in the following sections.
The best-estimate case for a TOP accident at E0C-4 predicts mechanical failure of fuel and blanket rods in all fuel and internal blanket assemblies except for 90 fuel assemblies located in the intermediate power core region (see Figura 6-7). The damaged assemblies are estimated to be coolable for a reasanable degree of flow blockages.
The core is brought to a cold shutdown condition because of the large amount of fuel swept out of the core region; the accident is terminated with the initiating phase. For a range of pessimistic assumptions, the core is stabilized at a power level below or slightly above nominal (within the PHTS capability for energy removal) except in one instance of arbitrarily assumed midplane rod failures. As discussed in Section 6.2.3, PLUT02 predicted permanent shutdown in this instance.
However, the less accurate SAS/FCI evaluation predicted a sustained superprompt critical excursion. The energetic consequences of a      ^
, superprompt critical excursion are evaluated in Section 9.3. Thus, the TOP accident at E0C-4 is considered to be terminated in a benign manner during the initiating phase except in one pessimistic case which could enter the hydrodynamic disassembly phase.
8-5
 
8.1.1.2    LOF Events _
The LOF event is initiated by a coastdown of the primary flow system combined with the assumed failure of both independent scram systems. The response of the core during the initiating phase is analyzed in Chapter 7.
The best-estimate path of an LOF accident at BOC-1 is a gradual heatup of the core, followed by sodium voiding in fuel assemblies.
The fuel rod cladding subsequently melts and relocates to form flow blockages at the axial ends of the active core region prior to fuel disruption in the lead assemblies. Fuel disruption characterized by a slow drainage of molten fuel induces a subprompt power burst. This initial power burst results in the generation of significant fuel vapor pressures in 27 lead fuel assemblies. The resulting fuel dispersal into the UAB region of the lead assemblies renders the core subcritical. The initiating phase analysis was terminated shortly after the hexcan wall melted in nine of the 27 lead assemblies. The best-estimate core conditions at this time are depicted in Figure 8-1 for use in the meltout phase analysis. Pessimistic BOC-1 LOF cases increase the level of the initial subprompt burst, but still result in negligible energetics. Due to the decreased time interval prior to the power burst, a more extensive mixing of cladding steel and fuel is indicated in these cases. Thus, a larger amount of steel vapor could readily        ,
form to retard or reverse any fuel settling process during the            :
disruption phase. This means that the best-estimate initiating phase core conditions encompass the pessimistic cases, as far as the meltout phase analysis is concerned.
The best-estimate EOC-4 LOF case results in a mild superprompt critical power burst, which lasts for a very short period with negli-gible energetic consequences and is followed by subcritical conditions.
The core conditions at the termination of the initiating phase analysis are depicted in Figure 8-2. Cladding blockages are formed in some of i
8-6
 
the fuel assemblies which have experienced fuel disruption. A more extensive mixing of cladding steel and disrupted fuel is indicated compared with the best-estimate 80C-1 LOF case. Significant fuel vapor pressures are generated in the six lead fuel assemblies, where the hexcan wall has been melted. In the remaining disrupted fuel assemblies, fission gas is released slowly from the fuel, ar,d pressures increase in the disrupted region. Some of these fuel assemblies have already exhibited fission gas driven fuel dispersal.      Extensive sodium voiding has occurred in all internal blanket assemblies. A pessimistic E0C-4 LOF case results in a stronger but still moderate superprompt critical excursion compared with the best-estimate case.
However, steel blockages are relatively less extensive and the core materials much hotter. Thus, as in the BOC-l configuration, the disruption phase assessment should be based on conditions resulting from the best-estimate EOC-4 evaluation.
8.2 Core Meltout Phase This section assesses the processes which govern the disruption of the original core assembly geometry due to a continued energy imbalance.
following the initial fuel dispersal in an LOF scenario.      The meltout phase is considered complete when one of the following conditions is reached: 1) fuel is sufficiently dispersed to ensure pennanent subcriticality, 2) the characteristics of a contiguous fuel pool l
dominate the core neutronic behavior, or 3) a sustained superprompt critical event occurs.
As analyzed and discussed in this section, it is concluded that early fuel removal (the first path) is the most probable one and that an energetic event, if it occurs at all, would be of limited severity.
These conclusions are consistent with a previous assessment } and are principally based on the extensive incoherence which exists in the heterogeneous core at entrance to the meltout phase (Figures 8-1 and 8-2), the early availability of fuel discharge paths, and the dispersive characteristics of a volumetrically heated, molten fuel-steel mixture.
8-7
 
Because of continued energy imbalance in the core and the need to permanently remove additional fuel from the core region to assure subcriticality (Section 8.4), the avail' ability of early fuel escape paths and the potential for fuel collapse at the entrance to the meltout phase become key areas of importance in concluding that the accident progression is nonenergetic. The various phenomena which could enhance or inhibit either fuel escape or dispersal are examined in the following subsections in approximate chronological order.
8.2.1    Effects of Early Steel Blockages The SAS3D code models the upper steel blockages as thick and complete for both BOC-1 and E0C-4 LOF events. This calculation is inconsistent with the one-dimensional R series tests,(29) which indicated that upper steel blockages would be thin (millimeters) and could be breached by 2 to 3 bar differential pressure. The 37 rod, two-dimensional P3A and P3 experiments (49) also showed thin (approxi-mately 20 nun) vented blockages. It is judged, based on the experimental data, that the upper steel blockages formed in the lead channels are thin and incomplete; i.e., vented at the time of fuel dispersal, and therefore would not have a severe effect on the ability of' fuel to penetrate into the assembly upper axial blanket (UAB) structure. Based on these observations the SAS predicted blockages were assumed to form in the UAB region and not at the UAB/ core boundary. However, such blockages were treated conservatively in that they are assumed to prevent further fuel dispersal.
If an early complete upper steel blockage were fonned cutting off sodium vapor flow, a thick lower steel blockage would also be formed.
This lower blockage would be much more substantial and would limit the ability of fuel to penetrate downward into the assembly structure.
In many of the lower power fuel assemblies which disrupt later in the scenario, the upper steel blockages would not be complete at 8-8
 
l the time of fuel motion due to the limited time available between cladding and fuel disruption. In these assemblies the intra-assembly incoherence effect would result in continued intermittent flooding and unflooding of molten steil, i.e., cladding sloshing.( 0) This process has been experimenta ly verified for simulated CRBRP conditions. (51) Thus, a sigt.ificant amount of liquid steel would remain in the proximity of the hot .ael in these lower power assemblies, and only a partial lower steel blockage would form.
8.2.2 Fuel Penetration into Assembly Rod Structure The penetration of the fuel into and beyond the UAB and LAB regions is important in terminating the initiating phase and providing additional time for steel vaporization to occur in the core region. The steel vapor, besides fluidizing the molten fuel and maintaining subcritical conditions, will provide a major driving force for ejecting fuel out of the active core region.
Although penetration of fuel into the upper core structure (UCS) is expected, the possibility of fuel freezing and plugging is confirmed by applicable in-pile experiments. While the fuel in the experiments was conclusively shown to be dispersive, there is strong evidence that the dispersal is restricted due to freezing and plugging, with pre-existing steel blockages stopping the flow for fuel disruption at low temperatures and pressures.
A current understanding of the fuel / steel freezing and plugging phenomenon is discussed below, from both analytical and experimental considerations, and a specific inference is drawn for the CRBRP meltout phase accident progression path.
The fuel freezing and plugging experiments of Refs. 42, 52 and 53 are the most comprehensive available. Some of the experimental findings 8-9
 
with regard to fuel penetration were for conditions characteristic of an initiating phase dispersal into the UCS. The maximum penetration distances were about 0.3 to 0.4 m and the plugs formed were not complete. For conditions representative of dispersal through the lower axial blanket, the penetration distance was also about 0.4 m, but the plug was. complete. For conditions representing blowdown of core materials through a break in a pre-existing upper plug, the penetration was much greater due to the large mass injected, but a complete plug was also formed. Test debris were characterized by evidence of appreciable cladding melting and mixing into the flowing fuel. The ablated steel was found to contribute to the blockage formation, and especially at the leading edge of the flow.
A simpic correlation based on the energy required to freeze the fuel mixture by melting steel predicts fuel penetration distances in excellent agreement with the test results.(52,53) The correlation suggests that effective heat exchange, without stable fuel crusting, exists between the fuel and the steel structure; the penetration distances will be larger for a higher initial steel temperature, larger mass of injected fuel and higher initial fuel temperature.
These experiments illustrate the complex nature of the freezing                              !
j process in such geometries, and also clearly demonstrate that substantial fuel penetration is possible and would be expected.
Several detailed analytical models have been proposed to describe the freezing process. These models basically employ one of two heat transfer mechanisms; namely, conduction or turbulent heat transfer.
For conditions satisfying tube flow approximations and with contact temperatures between the cold solid surface and hot fluid below the melting temperature of the cold material, the conduction based model is applicable based upon experimental findings using simulant materials.(54) There are several models based on turbulent heat transfer, among which are: bulk-freezing,(55) ablation-induced bulk 8-10
 
l freezing,(56) and a thin film heat transfer model.(57) Based on experimental resuits,(53) the turbulent heat transfer based models appear to be appropriate for fuel freezing prediction where simultaneous fuel freezing and steel melting will occur in the region adjacent to a highly turbulent flow 'ield. However, it should be nuted that if the bulk-freezing or ablation freezing models are used, the fuel penetration could be underpredicted as dsnonstrated by comparison with test results.(52,53) It should also be noted that the thin film heat transfer model is under development and has not been reasonably verified.
Consistent analytical predictions of the experimental data are not yet available. However, it appears that the simple energy balance con-sideration of Refs. 52, 53 provides a good prediction for rod geometries when the initial fuel conditions can be estimated (e.g. , from SAS3D),
although the underlying physical processes are not fully understood.
The presence of liquid sodium above the core, either as films or a boiling interface, has been shown to nave an insignificant effect on the ability of fuel to penetrate the upper assembly rod structure.( 0)
The fuel flow simply pushes the sodium out of the way without any significant pressurization. The general subject of fuel-coolant interactions in various geometries will be discussed in detail in Section 8.2.6.
Data from the CRBRP-prototypic experiments (52,53) were used as a guide to estimate the penetratian of the ejected fuel in the lead fuel assemblies for the BOC-1 (Channel 11) and the E0C-4 (Channel 6) LOF events. It was concluded that the B0C-1 fuel wculd penetrate well into tne UAB, and the E0C-4 ejected fuel could penetrate into the upper fission gas plenum region. The tennination of the initiating phase by substantial fuel ejection into the UAB region is certainly supported by the above considerations. However, the experiments (42,52,53) also showed evidence of fuel freezing and plugging above and below the active ore regions. Thus, it is currently appropriate to consider the accident progression on the basis that fuel freezing and complete plugging will take place in the upper and lower extensions of the 8-11 c
 
disrupted fuel assemblies, thereby delaying the path to a permanent subcritical deposition of the fuel debris outside the core region,              '
i.e., sealed fuel assembly systems cannnt be ruled out at this time.
In contrast to the inability to fully understand the fuel freezing process in the rod bundle geometry, analytical capabilities for simpler geometries, such as flat channels and tubes, have been verified against basic experimental data (see Section 8.2.5). The penetration of fuel through the simpler geometries is considered to be a primary escape path for fuel, as will be discussed in Section 8.2.5.
8.2.3 Potential for Fuel Compaction at Entrance to Meltout Phase This section considers the fuel state immediately after the termination of the initiating phase.      The intent of the section is to examine the likelihood of a rapid, coherent recriticality event in the presence of extreme incoherence in fuel conditions.
Figures 8-1 and 8-2 depict the extreme range of conditions within the core at the entrance to the meltout phase. The core has been driven subcritical by the fuel vapor and fission gas dispersal of the lead fuel into the UCS. As described in the previous section, the ejected fuel freezes into the UCS by ablating the available steel, and cannot readily niove further up or reenter the core until it has remelted. By examining the details of the fuel conditions represented by Figures 8-1 and 8-2, one can phenomenologically divide the fuel assemblies into three groups: the hot fuel vapor driven lead assemblies, the very cold essentially intact assemblies, and those assemblies which are of intennediate power and thermal conditions. The intact internal blankets can be considered a subset of the cold fuel assemblies.
In the lead ass a blies the axial acceleration of the dense liquid fuel slugs by the low density vapor will initiate vapor penetration into the liquid, and ultimate liquid slug breakup due to the growth of Taylor instabilities at the planar density discontinuity. Vaporization of the hot fuel will continue as condensation and depressurization occurs, which is 8-12
 
envisaged as a turbulent process. The very hot fuel would continue to vigorously boll and attack the can wall, while mixing with colder fuel.
Hexcan steel will rapidly join and fluidize the local fuel pool, down to about 10% of rated power and, with failure of the weakened hexcan due to internal pressurization, allow for fuel flow into the inter-stitial gaps. These extremely hot conditions exist in approximately 20% of the 80C-1 and 4% of the EOC-4 fuel assemblies.      Suppression of vapor production prior to hexcan meltout and fuel flow into the inter-stitial gaps, especially in the BOC-1 configuration, would be expected to lead to a power burst, fuel boilup and enhanced attack of the can walls. Strong bursts are not to be expected due to the larne inco-herency of behavior among assemblies, the Dresence of gases and vapors to mitigate compaction , and the rapid dispersal potential of the fuel pool. Nevertheless, the potential energetics consequence of fuel compaction behavior is addressed in section 9.4.
A large portion of the 80C-1 core (45%) is voided of liquid sodium, but intact and unblocked (Figure 8-1). These assemblies will significantly lag benind the fuel disruption process in the rest of the core. Ulti-mately, this low power microstructure fuel would be expected to foam and
;  swell as it melts at low power. The EOC-4 core scenario results in a similar large population (55%) of the core assembifes at low temper-ature and specific power (Figure 8-1). These assemblies were con-servatively considered to have been disrupted at a fuel melt fraction j  of 50% even though significant cladding and fuel pellet structure was still intact. The sodium vapor flow will provide a strong upward force on the fuel particles. Liquid fuel and steel would rapidly refreeze onto the intact cladding and hexcan structure. Larcer fuel chunks would tend to jumble and be supported by the vapor flow and intact rod geometry. Thus, a coherent compaction of the fuel would not be expected.
i Additional, low power melting would again lead to extensive swelling and fuel foaming (see Section 3.2.4).
8-13
 
For the portions of the core which are in between the above described conditions, liquid steel is typically present in the fuel regions of the assemblies during the power burst. This close centact mode results in a large heat transfer area with the fuel and would aid in the rapid production of steel vapor, Additionally, the presence of fuel fission products and gases would provide a degree of fuel swelling and limit its mobility. Any settling or drainage of materials would be inhibited by freezing, and would not result in rapid sustained large reactivity effects when coupled with the incoherence among different assembly conditions. Again, the consequence of fuel compaction behavior has been addressed in section 9.4.
The internal blanket assemblies are essentially undamaged and stable at the entrance to the meltout phase as a result of their low specific power. The worst predicted condition is in tne EOC-4 con-figuration where, although extensive sodium voiding has occurred, the hottest cladding inner surface temperature is well below steel melting.
With the core subcritical and the power rapidly dropping, these assemblies would be stable for an extended period of time relative to the $10 seconds required for fuel assembly meltout.
In summary, the entrance to the meltout phase is characterized by substantial incoherence in fuel conditions. In most cases inherent mechanisms are readily available to disperse the most mobile materials or inhibit coherent compactions. Large, coherent reactivity effects are not foreseen during the period prior to fuel-steel boiling and dispersal as described in the following sections.
8-14
 
l i
i                                                                                                                                      l l
8.2.4 Disruption of the Core Assembly Structure As discussed in the previous section, the lead fuel assembly hexcans will be ruptured and/or ir,elted near the core midplane upon                                          )
initiation of the meltout phase. Once fuel-steel boiling occurs in the other assemblies, their hexcan walls will also begin to rapidly melt.                  For a churn-turbulent fuel-steel pool (3700 C, BOC-1 Channel 11) transferring heat across a solid fuel crust (near its melting point),
the heat flux to the crust and therefore the can wall is approximately 2
280 W/cm                      leading to a wall bulk liquidus condition in 1.3 to 2.5 seconds for an initially hot (1400*C) and cold (900 C) wall, respectively.
These estimates, which are consistent with the earlier assessments of Ref. 58, are based on a low pool-side heat transfer coefficient 2
(0.314 watt /cm -C) from Ref. 59 and the dimensionless method of Ref. 60 (using the data in Table 8-1) which accounts for the energy released by fonnation of the fuel crust. Thus, the heat losses to the entire hexcan wall from the disrupted, extremely hot fuel within a single assembly are calculated to be only a small fraction (approximately 12%) of the energy which would be generated at nominal power. Dependent on the effectiveness of the upper condensation heat sink, the assembly j                        fuel pools will remain vigorously boiling as well as pressurizing prior to hexcan failures because the ma,jority of the energy generated in the assembly is available for vapor generation and the energy required for a churn-turbulent flow regime is only a small fraction of 1% of fuel assembly power (Section 8.3.2.5). Pressurization relative to ambient pressure will be on the order of 10 + 5 bar (see Section 8.3.4).                    ,
i i
8-15
    --. ..- - . .,. ,---      ,.,_,--.__,_._._,y            ,..,,.,..~.---,.-._.u_,,__.,__., ,. _ . ~ _ - -  - - _ _ . - - - - - ,
 
The rupture time of the hexcan boundary, although not predicted accurately, will be less tnan the meltthrough time as the internal pressure will fail the wall boundary and allow the pressurized pool to escape into any interstitial volume between the assemblies. The above process of melting, rupture and fuel ejection is spatially and temporally incoherent across the core based on the local conditions and power distribution upon entering the meltout phase. The molten fuel within and discharged out of the ruptured assemblies will form localized fuel pools which will be vigorously boiling due to fuel or steel vapor generation. The vapor pressure will be the primary driving force to disperse the fuel throughout any interstitial volume toward the core periphery. Deep radial (including blanket and shield regions) and downward fuel penetration is anticipated once the fuel reaches the core periphery and enters the very cold inlet regions.
The disruption of the core assembly structure will be incoherent based on the initial core conditions and the power generation distri-bution. Disruption of the fuel assemblies will take place over a        '
period of many seconds with the lead assemblies immediately pressurizing and dispersing into the available assembly and interstitial gap volume.
8.2.5 Fuel Removal Between Core Assembly Structure i
The core assembly hexcans touch each other only at the load pad region _(13 to 23 cm above the active core) and at the top of the assembly. Elsewhere there is a gap between the cans that is normally
;          filled with sodium at approximately the core outlet pressure. The j          actual gap size in the area of interest, i.e., below and outside the 8-16
 
l
                                                                                )
1 active core region, would be about 0.5 cm during a loss-of-flow without scram accident for either the 80C-1 or EOC-4 cores (see Figure 8-3).
While the gap area external to the active core region would be filled with cold sodium, the gaps adjacent to the disrupted, core fuel                l assemblies would be near the sodium saturation temperature with sodium boiling and dryout in process, or imminent. The maximum reactivity effect of voiding sodium from the interstitial gap volume can be roughly estimated by the mass ratio (s0.18) of this sodium to that flowing through the core assemblies where positive void reactivity exists (Tables 4-5 and 4-6). The estimated, maximum insertion is 27 to 46 cents at 80C-1 and EOC-4, respectively. This amount of reactivity is not significant as the core is well subcritical at this time. At the tennination of the initiating phase of the LOF event, tne hexcan walls of the disrupted lead assemblies have been ruptured and/or melted through (Figures 8-1, 8-2). The pressures within these assemblies are        o about 5 bars in 80C-1 and 17 bars in E0C-4, higher than the background p' essure in the interstitial volume. The boiling fuel will principally be driven by fuel vapor pressure into existing gaps between the hexcans.
The effects of fuel freezing and potential fuel-coolant interactions on the radial and downward penetration of fuel are discussed below and in the next section.
The physics involved in suddenly contacting molten fuel and solid steel structure has been established and described mathematically in Reference 61.        Figure 8-4 is an initial temperature map for the U02~
steel system that shows the system characteristics in three distinct regions.      In region I, where the initial steel structure is below s700*C, molten UO will n t melt the steel interface.            In region II, 2
where the initial steel structure is above N700*C, simultaneous U0 2
solidification and steel melting occur. The high values in region III will not occur in practice, but serve to illustrate how high one must heat molten UO before it fails to solidify upon contact with solid 2
stainless steel.        Thus, if the '..iitial temperature of the stainless steel is below 7CO*C, one can expect tue solidification on solid steel 8-17
 
structure to occur.              In this latter case a freezing model(62) based upon stable crust formation and a conduction principle is appropriate to investigate fuel penetration behavior.(62,63) On the other hand for initial steel temperatures above 700 C, the fuel flow will result in steel melting upon contact and potential ablation into the fuel flow. Therefore, such conditions may result in a shorter penetration distance than the conduction-freezing model would predict.(63)
At the termination of the initiating phase, SAS3D calculations indicate that the hexcan temperature below and radially outside the core region is below 700'C except for an upper 15s30 cm portion of the lower axial blanket region in the high-power assemblies. Therefore, the conduction-freezing process would determine fuel penetration in the interstitial gaps except for those associated with the high-power assemblies, where steel ablation into the fuel flow may shorten the fuel penetratian.
However, all the interstitial gaps are interconnected and the high-temperature interstitial gaps where initial ablation may occur are adjacent to the low temperature gap regions (e.g., internal blanket assemblies). Note that every fuel assembly has at least one hexcan face adjacent to a blanket or control assembly. Hence, molten fuel in the ablated and potentially plugged gap regions would bypass the blockage by flowing into the adjacent low-temperature gaps.
Therefore, the conduction model described below which is applicable to the low-temperature gaps would provide a reasonable core-wide estimate of how deep molten fuel can penetrate into the interstitial gaps outside the core region.
An additional bypass flow. path is into the internal volume of the lead fuel assembly lower axial blanket due to the ablation of the hexcan below the steel plug formed in the initiating phase.
On the basis of turbulent flow, constant pressure drop conditions, and the assumption of a constant structure temperature, the following 8-18
 
conduction model closed form solution for the flow penetration distance x is obtained.(62) p f      g7/11          g 4/11 X          T        1 7 APD I lU = 0.085'                                      (8-1) h (Aa3)            (pv2) where D  h is the hydraulic diameter, v kinematic viscosity, A growth constant (s 1.0), as thennal diffusivity of fuel crust, o liquid fuel density and AP pressure drop. Similarly, the mass of liauid, m ,
p that emerges from the opposite end of the channel can be expressed as, 3 = 3.3 x 10 -3  [ Dh "
m h
g  y-                  2          2
                                                        - 0.159      (8-2) h (AaL)(ovLj s
where L is the length of the flow passage and C its wetted perimeter.
The above relationships have provided good agreement with both low-melting simulant as well as prototypic materials injected into initially empty channels with non-melting walls. In particular, we note the substantial agreement with the recent French C0COTTE expert-ments,(63) where molten UO2 (up to 5 kg) fills a funnel and penetrates into a 600 mm long empty steel tube with an I.D. of 6 mm, (see Figure 8-5). The parameters of this experimental study include the driving pressure (0-2 bars) and the temperature of the tube (20-900 C).
On the basis of experiments carried out to date, it is concluded that the conduction model is the appropriate model to describe the flow of molten fuel in a cold channel (temperatures up to 750 C have been tested).(63) This finding is particularly well demonstrated by C0COTTE    .
experiment No. 2 with an initial tube wall temperature of approximately
* The presence of cold liquid sodium is discussed in Section 8.2.1.2.
8-19
 
4CG'C and a differential driving pressure of 2 bar. Once the flow was initiated, fuel penetrated the tube, and 170 gms of UO2 was found in the exit tank in the form of a solidified foam. When Eq. (8-2) is used to compute the discharged mass, the result is 179 gms. As is evident, the conduction freezing model is in excellent agreement with the data from this experiment.
Application of the above conduction model (Eqs. 8-1, 8-2) for the flow of fuel between the hexcans (at 600*C; hl) yields a penetration distance of approximately 280 cm. This is based upon a gap cross sectional area of 9 cm , gap width of 0.5 cm, hydraulic diameter of 0.92 cm, a pressure difference of 1 bar, and the properties in Table 8-1.
The effect of liquid sodium flow on the opposite side of the hexcan wall (e.g., fuel flow outside and sodium flow inside of an internal g
blanket assembly) will help to maintain the hexcan at low temperatures in harmony with the model assumption. The calculated penetration of 280 cm is well beyond the distance required for the fuel to flow downward from the LAB-core interface to the core support structure, (115 cm), or outward to the radial blanket / shield region and then axially to the UAB or core support structure (s200 cm). The gap volumes associated with the region below the core (top of LAB to core support structure) and in the radial blanket / shielding region (bottom of load pad above core to 6
core support structure, 224 cm) are approximately 0.25 x 10 and 0.9 x 106 cc, respectively (see Figure 8-3). The gap volumes were estimated as the length x area x number of assemblies, with 253 and 438 assemblies in the core and radial blanket / shield regions, respectively.
6  3 Since the volume of the disrupted core fuel is approximately 0.7 x 10 cm ,,
more than enough escape volume would appear available to assure fuel removal from the core region as fuel continues to disrupt. The gap volume adjacent to a single assembly (i.e., below core) is sufficient to provide for removal of about half of the fuel in the disrupted assembly. Neutronics calculations show that the early removal of >30% of the core fuel will
* 162 (fuel assemblies) x 38 (kg/ assembly) x 1/8.65) (cc/gm) 8-20
 
provide a significant negative reactivity effect relative to recritic-ality potential (see Section 8.4).                                      Hence, the availability of the volumes described above can be expected to play a significant role in the reactivity state of the core.
Furthermore, the anticipated superheat of the fuel (at least 200*C) needs to be included in the fuel escape considerations. Then according
;                  to a heat flux balance k(Tg - T,,7 j )
6 = h(Tp-T)                                                                                      (8-3) g which describes the fuel crust thickness 6, in terms of she thermal conductivity (k), flow heat transfer coefficient (h), and relt:vant temperatures (fuel _ melt and flow), and a value for h of approximately 2
1.3 watt /cm                "C            (turbulent flow at a velocity of 100 cm/s), the fuel crust thickness would be limited to the order of 1 mm which is relatively small compared to the gap thickness, i.e., the penetration would not be restricted by the crust fonnation. We also note that under these conditions the sensible superheat carried by the molten fuel is large compared to the heat lost through conduction during the time period of the transient flow which is of the order of one second.
Thus, the gap volumes between the reactor hexcan structure are seen to represent a large viable, early escape path for fuel.                                                        This conclusion is based upon experimental data and analytic evaluations of the fuel's ability to penetrate into the colder, flat plate interstitial gap geometry, and by a straightforward estimate that the volumes provided by these spaces are large relative to the core fuel volume.
8.2.6 Potential for Fuel-Coolant Interaction Pressurization Fuel contact with liquid sodium will occur, in a variety of modes during the relocation of, fuel from the core to a pennanent subcritical 8-21 i
 
configuration. Pressurization due to sodium vaporization has been proposed as a mechanism which can prevent or retard fuel removal from the core. Four contact ccnfigurations are of principal interest herein:
: 1) multiphase fuel ejection into the rod bundle structure within an assembly, 2) flow of fuel through the flat, interstitial assembly hexcan spacing, 3) homogeneous, two-phase ejection into a pool of sodium, and
: 4) fuel meltthrough and injection into initially sodium filled control or internal blanket assemblies.
Sustained pressurizations are not expected in any of the above noted reactor configurations. Under reactor conditions, it is very unlikely to maintain liquid-liquid contact or to achieve fine mixing of the initially separated fuel and sodium on a large scale.
In particular, the early FFTF and CRBRP analysis (58,3) of the potential for fuel to escape between the hexcans considered the presence of liquid sodium to have a significant retarding effect on the penetration due to possible fuel coolant interaction pressures.
However, upon further review this effect is considered to not be significant because trapping and intermixing of sodium with dense liquid fuel for these geometrical configurations can be ruled out on the basis of fluid stability considerations.
During the sodium expulsion process driven by high density fuel, it is physically impossible to trap significant amounts of sodium in the gaps between the hexcans. Stability considerations do not allow liquid sodium films to be left behind on the hexcan walls (such as occurs during sodium boiling / voiding), because the liquid sodium is being pushed out by a much heavier fluid. In the relatively small areas at the front of the fuel flow, where the fuel is directly exposed to cold liquid sodium, the contact temperature is sufficiently low (<900 C) so as not to produce any significant sodium vapor pressure.
Additionally, the presence of the cold hexcan walls (900 to 450*C) 8-22
 
would reduce the potential for sustaining a sodium vapor pressure effect.
The above conclusions are based upon first principle arguments and completely supported by applicable experiments, including in-reactor and out-of-reactor tests with reactor materials as well as fundamental experiments relating to stability considerations. These experiments, which cover a range of fuel-sodium contact configurations, are sumarized in the following paragraphs.
In-Reactor Tests. No energetic interactions between molten UO and 2
sodium were observed in the TREAT S-series tests,(64) where clad fuel rods were melted down in stagnant sodium (see Figure 8-6), for very high energy transients. Results of the S-series autoclave tests are sumarized in Table 8-2. Instead of energetic fuel-coolant interactions, following initial pressure relief (which can be related to the fuel vapor pressure), supersaturated fuel liquid flashing and subsequent vapor condensation are the likely processes, rather than liquid-liquid heat transfer. In summary, the liquid sodium was seen to act more like an energy-dissipating fluid rather than a working fluid. (0 }
A large number of less severe transients have also been carried out in the TREAT reactor during the last two decades.(29) All of these transients have led to very incoherent, low energetic interactions.
In fact, in many cases if not all, it is not possible to differentiate between sodium vaporization and fission-gas release events.(29)
In the Sandia prompt burst (sl ms period) energetics (PBE) studies, single, 15 cm long UO  2 fue! rods were irradiated in a stagnant sodium-filled autoclave (similar to the S-series discussed above) in the Annular Core Pulse Reactor.(66) For times prior to the stopping of the piston, the noted pressures are consistent with fuel vapor pressures; sodium vaporization events can be ruled out. This result is consistent
* The most severe transients in the S-series tests were Sll and S12 transients, whose pulse period was approximately 23 ms.
8-23
 
with the earlier TREAT S-series experiments. Care, however, must be used when interpreting energy conversion efficiencies from the TREAT tests.(0 ) In the S and PBE experiments, the piston was principally accelerated by the fuel vapor pressure which was later brought to rest when it reached a piston stop. In this regard, most of the implied energy conversion arises from pressure attributed to sodium vaporization events, which occur after the piston comes to rest.( ) This should not be unexpected since the liquid sodium is trapped with the hot fuel in a constant volume system resulting in " confined" boiling.(68,69) The pressure-time history under such conditions would be expected to be largely dependent upon the system heat loss dictated by condensation processes. It is important to note, however, that events following the stopping of the piston in such autoclave experiments are not relevant to the reactor case under consideration.
Out-of-Reacter Tests. In connection with the above experiments, it is noted that confined boiling leading to significant sodium vapor pressure has been noted in the recent CORECT-II Experiment 7b. 18.( N )  In these experiments sodium is allowed to flood a chamber containing a crucible holding several kilograms of molten U02 . Experiment No. 18 was carried out with a geometrical configuration assuring substantial external constraint. Again such tests are ideally designed to trap liquid sodium along with hot fuel (see Figure 8-8) and significant sodium vapor pressures should not be unexpected. As already noted above, such experiments are not relevant to the reactor case.
The absence of liquid sodium entrapment has been illustrated by out-of-pile experiments. Prototypic experiments,(70) using the thermite method to produce a mixture (U02+N0 + gases) to simulate reactor materials (fuel + steel + gases), were performed by ejecting the molten mixture into 7 and 37-rod prototypic fuel-rod geometries (see Figure 8-7), with and without liquid sodium present. These experirents have demonstrated that the freezing and ablation processes, between the molten mixture and the relatively cold rod structure, control 8-24
 
1 the fuel motion and not the thermal interactions;'no significant differences could be discerned in tests with and without sodium
)      illustrating the difficcity in trapping sodium under such conditions.
The physical reason for this is discussed further below.
Basic Experiments.            For sodium boiling, it has been recognized for a long time, .that. a film of liquid sodium remains on the heated clad surface at the time when the bulk liquid sodium is being displaced by sodium vapor.I7I) The magnitude of this film thickness appears on the average to represent approximately a 15% liquid fraction. However, a complete reversal of the characteristic of a " film" occurs when a more dense fluid is responsible for accelerating a less dense fluid out of a channel.        In this situation the more dense phase completely sweeps out any of the less dense fluid with no residual film left behind.                Hence, it is not possible for fuel expulsions to entrap liquid modium and lead
!    to energetic FCI's.
This effect hss been demonstrated in basic experiments, in which a constant bore U-tube apparatus was filled with two fluids of different i
density.(72) The apparatus and results of one experiment which is typical are shown in Figure 8-9. Water was placed over mercury as shown in the figure. Gas was used to accelerate the two fluid columns from the right as indicated by the arrows. On the right hand leg of the U-tube, a less dense fluid is displacing a heavier fluid - air to water to mercury, while on the left hand side the opposite is the case.
The interface displacement measurements clearly indicate a liquid film left behind on the right hand side while none remains on the left l    hand side where the heavier fluid is displacing the less dense fluid.
The physical explanation for this reversal of phenomena can be deduced from first-order considerations of the motion of an interface separating fluids of different densities. Given an initial tendency for a residual liquid film of the less dense fluid to be left behind l
8-25
 
in such processes, this tendency is offset by the effect of a pressure gradient acting over two fluids of unequal der.sity. The less dense fluid is accelerated more rapidly than the more dense fluid. Such results are consistent with experimental findings.( 2)
Thus, extensive experimental support is available to justify the conclusion that the presence of sodium will not introduce significant, sustained coolant-fuel interaction pressurization to retard the fuel penetration and, therefore, that the sodium filled gaps between the core assemblies located in the lower regions and outside of the core would provide viable escape paths for early fuel removal.
8.2.7 Fuel Removal Through Control Assemblies As seen in Figures 8-1 and 8-2, the hottest fuel assemblies to initially disrupt are adjacent to control rod assemblies. For the B0C-1 core these control assemblies have the rods inserted approximately 32 cm (13 inch) from above into the active fuel region. For the E0C-4 core, the second assemblies to disrupt are located next to the                                                        ,
primary control rod channels in their fully out position (these are used for reactor scram). For both core loadings three out of six flats of the control assemblies are exposed to the disrupted assemblies.
The principal features of the CRBRP primary control rod assembly of interest here are illstrated in Figure 8-10: the gap between the inner absorber can relative to the main hexcan, the annular bypass flow in this space, position of the absorber rods relative to the bottom of the active fuel region, and the shield block and orifice configurat,fons.
If the gaps adjacent to the disrupted fuel assemblies assure efficient fuel removal escape paths as discussed in Section 8.2.5, sodium voiding and melting of the primary control hexcan assemblies l
may be rather minimal, although stress analyses for such conditions have indicated that the hexcans are likely to crack open.( }
8-26 1
 
I However, if it is postulated that the gaps between the ducts cannot remove all the fuel as indicated above, nominal estimates of the heat flux to the control hexcan flats that are exposed to boiling fuel would be of the order of 200 w/cm2 , (see Section 8.2.4). The flow split (bundle / assembly) in the primary control assembly (PCA) is nominally 70% at EOC, so that 30% of the flow is the bypass flow between the hexcan wall of the PCA and the inner steel can around the absorber rod bundle. At about 16-20 s'econds following initiation of pump coastdown the total ficw will be at most 20% of nominal flow. This translates into a bypass flow of only 6% nominal flow. This heat flux is well in excess of that required to reach sodium boiling. In fact a heat balance involving the total flow within the PCA, considering the expreure to only three control hexcan flats, is predicted to result in bu.k boiling.
For such conditions elementary considerations of Ledinegg type instabi-lity(74) requires that the bypass flow drops to essentially zero, implying that the outer exposed hexcan wall dries out. Overheating and rapid meltthrough of the control hexcan wall, including the wall portion below the active absorber rod location (32 cm in position) is, therefore, unavoidable. Rapid local entry of boiling fuel into the control rod assembly is predicted with subsequent pressurization and displacement of sodium. Relative to upward penetration (this rod structure would be as difficult to penetrate as a normal fuel assembly),
the downward penetration appears unrestricted before reaching the orifice region where the fuel flow is slowed down but not necessarily stopped. The liquid sodium present in the shield and orifice regions would not retard the fuel motion for the same reasons as noted in Section 8.2.6. The 25 nun diameter hole provided in the shield block is too large to allow complete plugging to take place independent of the freezing mechanism adopted. In fact, a consideration of the maximum fuel crust thickness, 6 max '
6 max
                                    =      2k(Tf -T g )/q 8-27
 
that can exist due to internal heat ger.eration (q), shows that at a power level of 10%, 6 max  is of the order of 5 m which is substantially less than the 25 mm hole in the shield block.
Thus, it is concluded that the primary control assemblies con-stitute additional viable escape paths to assure sufficient ectly fuel relocation away from the core region to significantly reduce the probability of large-scale pool of molten fuel with criticality poten-tial.
8.2.8 Sumary of Core Meltout Phase                          ,
During the power burst which terminates the initiating phase, fuel in the lead assemblies is driven away from the core midplane and into the upper core structure (UAB and fission gas plenum) where it ablates the steel cladding and freezes into an assumed, substantial blockage.
Failure of the lead hexcans due to a combination of melting and internal pressurization will allow for fuel flow into any existing interstitial volume between the fuel assemblies and enhance voiding of the interstitial volumes. These processes render the core many dollars subcritical and establish the entrance to the meltout phase.
In the extremely hot lead assemblies the fuel will be boiling and existing liquid steel will be rapidly entrained leading to steel vaporization and further dispersal. In the colder, intennediate power fuel assemblies which are disrupted, fuel was mixed with available liquid steel during the power burst which enhances the potential for early steel boiling. Any potential fuel compaction in these assemblies due to liquid draining (prior to steel boiling) and pellet jumbling will be temporally incoherent and slow due to the stabilizing effects of fissson gas induced fuel swelling / dispersal and sodium vapor flow where inlet-to-outlet plenum com.anication exists. Approximately half
* The secondary control assemblies would also be available for fuel removal at a somewhat later time.
8-28
 
of the fuel assemblies are voided of sodium but princip511y intact.
Potential failure of the rods is indicated for the E0C-4 conditions based upon 50% melt fraction criterion. These voided assemblies have intac'. cladding and would be expected to fail in a TOP fashion with fuel radially ejected into the voided bundle. The ejected fuel would be expected to freeze onto intact cladding /hexcan. surfaces and to have particulates swept upward by the sodium vapor flow. Coiierent, com-pactive relocations of fuel would not be expected under these conditions.
Due to the early, high internal power generation (e.g., 0.1) and the formation of fuel crusts on steel surfaces, the individual assembly pools will vigorously boil and pressurize to approximately 5-10 bars.
As the hexcan boundaries fail, the boiling fuel will rapidly flow into the assembly interstitial gaps. Once the localized fuel pools reach a periphery of the active core the interstitial gaps offer excellent escape paths into the lower axial and radial blanket / shielding regions.
The colder (<700 C) hexcan steel in these regions will not melt upon contact with the flowing fuel because the steel is too cold (Figure 8-4).
Instead the fuel readily forms a thin, poor conducting, stable crust and allows the remaining liquid fuel to penetrate deeply through the
  ?lat plate, gap geometry.
The control assemblies can also act as effective escape paths for fuel to melt into and internally flow down into and likely through the orifice block region.
By these processes fuel is readily removed from the core region into both the lower axial and radial blanket / shield regions as well as the control assemblies. Such fuel removal is in addition to fuel which had been previously ejected into the upper and lower axial blanket rod structure during the power burst at the end of the initiating
* The SAS3D code is not capable of modeling this type of fuel behavior and the fuel was conservatively modeled, with SLUMPY, as being completely disrupted and mobile.
8-29
 
phase. The resulting large negative reactivity will enhance the effects of the incoherence in fuel thennal conditions throughout the core and reduce sensitivity to uncertainties in localized fuel behavior. Continued fuel removal, beyond about one-half of the original core mass is judged to effect permanent suberiticality, thus precluding the formation of a large-scale, bottled-up pool with criticality potential.
8.3 Large-scale Pool Phase As just described this phase is not expected to occur. However, it is recognized that uncertainties exist in the timing of the important phenomena leading to gross fuel removal from the core. Thus, the behavior of large pools is assessed herein to ensure that unacceptable energetic consequences are not likely to occur even for this lower probability configuration.
Principally, the issue of energetic potential in a large-scale pool of fuel at lower power, i.e. ,1 0.lP, relates to the potential for gravity driven collapse and/or pressure driven recompaction due to energetic fuel-coolant interactions as coherent fuel compaction modes.
However, as illustrated below, these concerns can be alleviated by the fact that the fuel under these hypothetical conditions, i.e., the postulated formation of a large-scale pool, is strongly dispersive as a result of steel vaporization even for completely bottled-up core conditions, and energetic fuel-coolant interactions can be ruled out for the mixed oxide-Na system.
To assess the behavior of a large-scale pool relative to fuel compaction, it is necessary to define the relationships among energy generation, system heat losses, and the resulting pool flow regime.
Hence, the following sections examine flow regimes as a function of superficial vapor velocity (8.3.1), heat losses and the critical role of fuel crusting onto steel surfaces (8.3.2), and the power requirements to attain specific flow regimes (8.2.2,5). These phenomenological 8-30
 
evaluations are used to support the conclusion that the pool will be strongly dispersive, due to steel vapor flux, down to very low specific power generation states (1-2% of nominal).
Phenomenological arguments for the existence of a boiling, dispersed pool state in either an open or closed system, are discussed in Section 8.3.3. A perspective is also offerd on some recently published analyses which would appear to be in conflict with these phenomenological arguments.
The potential pressurization of a closed pool system is addressed in Section 8.3.4 A hlance between energy generation, heat losses, and the pool temperature (pressure) result in pool pressurization being limited to about 5-10 bars. Additional fuel loss upon meltout of the upper blockages and the further dilution of the pool contents are shown to occur well before the power generation falls below that required to sustain a dispersed pool state (Section 8.3.5). Finally, sustained pressurization and pool recompaction due to fuel ejection from the core region are shown to be ruled out based upon both theoretical considerations and experimental data (Section 8.3.6).
8.3.1    Boiling Flow Regimes It can be readily concluded from the concepts, analyses and experimental infonnation on flow regimes to be developed in the remainder of this subsection that an open fuel pool will be in a stable dispersive state to maintain the core in a subcritical condition. Therefore, the main objective here will be the evaluation of a postulated bottled-up pool.
A prerequisite to the analysis of heat transfer and material motion in a boiling pool system is a definition and description of boiling
' low regimes. The main features related to the flow regime are:
8-31
: 1) characterization of void fraction and volumetric vapor slip flow velocities as a measure of the dispersiveness of the boiling pool,
: 2) effects of heat transfer to the surrounding structure on the pool boilup behavior, and 3) effects of boiling pool dynamics (pool dispersion and material motion) on the recriticality potential of the fuel pool.
If complete fuel-steel blockages are formed and the subsequent formation of a bottled-up pool is postulated, pressurization of the pool could take place. Pressurization will slow down the vaporization process by restricting the fonnation and transfer of vapor out of the two-phase pool. For a' postulated stable boiling pool, the subsequent flew regimes and their transitional characteristics can be approximated in the followin                The Kutateladze stability parameter, K, which has been used( g manner.0} as a criterion for the transition of flow regim a two-phase volumetrically heated system is defined as U*y p K=                                        (8-4) 4 Y go(oH - PL)
Here, U is the critical superficial velocity of the lighter phase, is the density of the continuous phase, o is the surface tension of C
the heavy fluid, and pH and p( are the densities of the heavier and the lighter fluid, respectively.      The values of the Kutateladze stability parameter are given in Table 8-3.      The stability parameter is directly proportional to the superficial vapor velocity. Thus, according to this criterion the flow regimes will be: bubbly, bubbly compact / foam, churn-turbulent, dispersed droplets, and so on with increasing super-ficial velocity.      Although the Kutateladze stability criterion has been
* It can be established that for a large bottled pool, bubbly, bubbly compact / foam and churn-turbulent flow are the regimes of interest (Ref. 75). While dispersed droplet flow is expected for an open pool, it is less likely to be a stable flow regime in a bottled pool.
8-32
 
verified in a liquid-liquid system for predicting droplet breakup, the application of the criterion to the vapor-liquid system such as steel vapor and liquid fuel involves some uncertainty as was observed in open volumetrically heated pool experiments.(77) In the experiments      it was observed that churn-turbulent flow persisted at superficial vapor velocities up to five times that predicted by the Kutateladze criterion.
Additionally, the transition between flow regimes occurred oter a range of superficial velocities rather than at a unique value. Although uncertainties are seen to exist, the basic approach to defining flow regime transitions was confimed.
In a low pressure pool, the boiling point of steel is close to the melting point of fuel so that the molten fuel-steel mixture behaves similar to a saturated liqu'd subjected to volumetric heat generation.
The fluidization of the fuel by steel vaporization can then be illustrated by fairly straightforward application of two-phase flow theory. The pertinent flow regime boundaries can be constructed for a pool with internal energy generation producing vapor by combining the Kutateladze stability criterion (Eq. 8-4) with the following expression for the superficial vapor velocity, j, as a function of distance, Z, above the pool bottom.
J=h(1-E)Z/ph  g fg                      (8-5)
Here E is the average void fraction in the pool below height Z, o
g is the vapor density and Q is the energy rate per volume going l into vapor production. The flow regime map for a fuel-steel volume-heated pool appears in Figure 8-11.
In the years following the above analysis of boiling flow regimes, the relevance of the Kutateladze correlation to ficw regime transitions served as the basis for a series of fundamental experimental and theoretical investigations.(59,77-85) Table 8-4 summarizes the one-component experiments and the cool-average void fraction results are 8-33
 
l l
compared in Figure 8-12.                              In this table the superficial vapor velocity is normalized to an expression for the terminal rise velocity of vapor bubbles in an infinite sea of liquid; 0.25 9oL (PL-Pg)
U,=  1.53              2 (8-6)
P
_        L    _
where      g                              = gravitational acceleration constant pL,9 = density of liquid (L) or vapor (g) ?hase
                                                  = surface tension of the l'iquid el While considerable scatter exists in the data, a pool-avet age void fraction of approximately 0.4 to 0.5 is reached for a dimensionless superficial vapor velocity of the order of 1.0 (see Figure 8-12) which, by Equation (8-5) is found to correspond to a vaporization power of only a small fraction of 1% of nominal power. We note, however, that the predicted transition to dispersed droplet flow was not observed in the above data. The implication of this result relative to recriticality occurrence is favorable, because the extension of the churn-turbulent regime increases the potential for boil-up relative to the dispersed droplet regime. The latter regime provides for the maximum possible vapor drift, and hence, minimum boilup for the same vaporization power level.
i Thus, based on the above considerations and the data for vapori-zation power levels exceeding 1% of nominal power, the equivalent fuel
* It has recently been confinned that the high void fraction data of Farrahat(78) are due to an additive catalytic foaming substance and the high void fraction data are therefore characteristic of a foam regime.
8-34 I
 
inventory in the reactor core would experience a boilup average void fraction exceeding 40%.
8.3.2 Heat Transfer at Pool Boundaries and Its Effect on 0001 Behavior The effect of boundary heat transfer on the molten pool behavior depends on whether the pool is open or closed. In an open pool system, the dominant mode of heat transfer is through heat of vaporization, which maintains the pool in a boiling state, and vapor loss from the pool. If an appropriate condensing surface exists above a closed pool, a similar boiling pool could also be maintained except that no mass would be transported out of tne system, instead a closed loop of mass flow would be maintained through refluxing. The open pool and self-pressurizing behavior was experimentally and analytically investigated in Ref. 78.
It was determined that for a range of superficial vapor velocities the pool was monotonically dispersive. The dispersive condition could be maintained even at an equivalent decay heat level of 1 to 2% for a very modest upward heat sink available to the system. For a postulated closed or " bottled-up" pool, transient pressurization will be a major mechanism in addition to condensation and boundary-ablation, which will affect the potential for vapor transport in the bottled pool. The transient pressurization of the closed system will depend on the heat transfer to and across the entire structural area constituting the boundary of the enclosed pool. Vapor generated in the two-phase pool will either escape into the above pool gas space if such a void space exists or be entrained in the pool responding to the level of pressurization by collapsing or expanding of the two-phase pool.
Heat transfer at the boundary of the bottled pool can be divided into the following regions of interest:
(1) Formation of fuel crusts, (2) Upper-pool structural boundary, 8-35
 
(3) Lateral structural boundary, (4) Bottom pool surfaces.
The heat transfer across the pool boundaries is dissipated by transient conduction through the steel structure, energy absorption by increasing the temperature of the steel structure and blankets, and energy absorption by structure / blanket melting.
Each of these regions of interest is discussed in the following paragraphs. Their total relationship to the pool behavior is presented in Subsection 8.3.2.5.
8.3.2.1    Fuel Crust Formation The fonnation of a fuel crust at the pool boundary can reduce the noncondensation heat loss. Because of the closeness between the steel boiling temperature and the fuel solidus temperature, heat loss will be significantly reduced in the presence of a stable fuel crust; i.e., the tem-perature difference between the pool and its surrounding fuel crust is small.
As illustrated in Figure 8-4 if the initial temperature of the stainless steel exceeds approximately 700 C (which is the case of interest), one can expect simultaneous steel melting and fuel solid-ification to occur.
We note that Figure 8-4 is based upon simultaneous fuel crust growth and steel melting taking place in a quiescent medium; in fact, this can seldom be so. In practically all fast reactor safety applications, the melting solid steel is immersed in a flow of molten fuel. The steel melting rate in this circumstance depends on the behavior of the solid fuel layer which forms when the flowing fuel comes into contact with the solid steel surface and then " floats" on the steel melt. Since the frozen fuel layer does not have a solid surface to " stick" to, 8-36
 
l F
i mechanical processes for crust removal may prevent the fuel crust from insulating the melting steel surface. In considering heat exchange between the molten fuel stream and steel structure, the mechanical stability of the growing fuel crust is a most important concept. In the absance of the solid fuel layer, the melting steel is exposed to the hot fuel (at approximately 3000*C) and the " driving force" for heat losses is the difference between the fuel temperature and the steel melting temperature, which can be of the order of 1600 C.        On the other hand, if heat is transferred from the fuel flow to the steel melt front through a layer of frozen fuel, which isolates the melting steel from the fuel flow, the relevant driving temperature is reduced by about an order of magnitude of 150*C, because the fuel crust is at the solidus temperature of 2850 C.
Since the presence of an insulating fuel crust is of considerable importance in governing the rate of heat transfer, its presence will be examined in some detail. The following mechanisms for fuel-crust removal have been postulated: 1) buoyancy,(51) 7.) turbulence within the molten fuel stream, and 3) turbulence in combination with extreme temperature stresses that must exist within the solid fuel layer itself.(87)
The actual behavior of a growing crust on a melting surface does not support the aforementioned mechanisms for crust erosion. An investigation of frozen-crust stability yielded results of qualitative interest for the present purposes.(00) In this work a linear stability analysis was employed to study the mechanical behavior of a growing crust on an underlying lighter melt layer in a gravity field. Figure 8-13 represents a schematic illustration of a growing, submerged frozen crust.
The analysis compared well with experimental observations for low-melting point material pairs (88) (see Table 8-5). A notable result was that a ceramic fuel crust gecwing on melting steel was predicted to be stable against buoyancy forces.
Further evidence for the existence of a protective crust has been found by injecting hot Freon ll2A (melting point of 40 C) into a 8-37
 
thick-walled ice pipe maintained at its melting temperature throughout.
The major emphasis in this study was on the melting attack of the ice pipe wall by the turbulently flowing Freon. Sections of Freon crust were observed to form on the inner melting ice wall and slide over the melting ice with a jerking motion in the direction of flow. Numerical results based on a stable Freon-crust / ice-melt film model were compared with the experimentally determined results for ice melting. Despite the complex crust motion and the absence of a continuous crust surface, the model was found to represent the data reasonably well. This indicates, perhaps, that the crust sections and molten film flow side-by-side with the crust sections flowing together and covering large areas of the melt film          -
below.
In a melting-freezing heat-transfer experiment (see Figure 8-14) a high-velocity jet of hot water was directed at the end of a column of frozen octane (melting point of -56*C).(90) Again, in this stagnation-region flow geometry, a thin protective ice crust was observed to control the rate of melting of the frozen octane material.
As a practical matter, if the flowing material has a large potential for solidification on the wall material, as in the above-referenced experiments, crust removal leading to exposed wall-melt layers is difficult to attain. Even if crust breakup and removal take place, it is doubtful that molten-stream / wall-melt interfaces would appear for any significant length of time. Clearly, if the time for fuel recrystallization is negligible compared to a time characterizing the rapidity of mechanical crust removal, the distinction between mechanically stable and unstable crusts loses all its significance. Under such conditions, crust growth would be expected to influence the wall-melting rate strongly. This is the case for fuel crusting on melting steel.
Suppose that a portion of the solid steel surface is suddenly exposed to molten fuel as a result of the turbulent moving fuel stream, sweeping away a section of protective fuel crust and underlying steel 8-38
 
i melt. Fuel will then quickly fill this clearing and contact the solid steel surface. If perfect thermal contact is achieved, an interface temperature of approximai.ely 1600 C at the surface of fuel-steel separation will be established instantaneously (see Figure 8-4). In the opposite case of poor thermal contact, the steel surface will not melt and the fuel crust is stable. The time necessary to grow a new protective fuel crust with intermediate thennal contract can be estimated as follows.
As the temperature of molten fuel is lowered, the kinetics of the formation and breakage of solid fuel clusters (embryos) dictate that spontaneous nucleation will occur when the fuel temperature is near approximately 2100'C.(9I) (A good rule of thumb for predicting the lowest temperature to which a pure liquid could be supercooled is approximately 0.8 Tmp, where T,p is the melting point in degrees Kelvin.) In other words, whether crystallization begins at an interface or within the melt, the molten fuel cannot be expected to remain liquid below this temperature. In fact, the process of homogeneous nucleation represents the maximum supercooling that can be tolerated by pure fuel.
The presence of the fuel-steel interface will most likely encourage nucleation, thereby lowering the tolerance of the fuel melt to super-cooling.
The fact that the interface temperature between molten fuel and steel falls well below the spontaneous nucleation temperature indicates that fuel crystallization cannot proceed until a sufficiently thick thennal boundary layer, 6, is developed to " uncover" crystalline embryos of the critical size rcrit, namely, r
crit = 2.5 h st                    (84) where h st is the latent heat of fusion (per cubic centimeter) and o is the interfacial tension.(92) Conduction theory predicts the familiar square-root growth law for the thermal layer:
8-39
 
6 = Vac                              (8-8)
The waiting time for fuel crystallization is obtained by invoking the equality 6 = 2rcrit' UI
                                      -      -2 t=8      h (8-9) sz
                                                              -I            -2 For molten UO with a thermal diffusivity a = 0.007 cm s , o = 500 g s          ,
2 and h sz = 2.8 x 10 10 g cm
                            -I s' , we get t = 3.6 x 10 -13 s. Thus, the time to crystallization is negligibly small . This must be considered as a rather crude approximation, since for very short times, the Fourier conduction fonnulation may not be valid. The calculation does, however, demonstrate that fuel crystal growth at the fuel - steel interface must take place practically instantly.
Of course, the steel melt layer will not be protected from the fuel flow until individual crystalline embryos combine to form a frozen layer in thermodynamic equilibrium with the fuel stream (at the fuel solidifi-cation front). Under this condition, when conduction-controlled crust growth prevails, the temperature drop on the fuel side of the growing crust is limited to the difference between the free stream temperature and the fuel melting temperature. Early in the crystallization process, there is no conduction restriction to crust growth. Instead, freezing is controlled by the rate at which molecules cross the liquid-solid inter-face, that is, by the molecular reordering process. During this period, the fuel temperature at the solidification front, T, rises to the fuel melting temperature T,p, while the solidification front propagates into the U0,3 melt at a velocity R which can be described by the expontential law (9I)
Ik(cms-I)=78840(exp(-1.54-I) - 19.4 exp(-4.476-I)]                  (8-10) 8-40
 
where 45  T mp At the spontaneous nucleation temperature of approximately 2100 C established for UO , the solidification velocity is predicted to be 2
k=508 cms-I                            (8-11)
For conduction-limited crust growth, the velocity of solidi-fication is usually expressed by k = A Ya/t                              (8-12) where the growth constant A is approximately 0.9 for a UO    2 layer growing on melting steel. The time at which kinetically controlled fuel solidification gives way to conduction-limited growth can be obtained approximately by equating expressions (8-11) and (8-12) and solving for t:
2
                                                  -8 t=y=2.2x10 R
s                (8-13)
The time needed for establishing cor. duction-controlled UO 2 crust growth on melting steel is indeed very short. Let us compare this time with the time it takes turbulence eddies to remove sections of crust from the melting wall. The turbulent or eddy velocity u turb in the wall layer is small compared to that of the free stream U,. In terms of an order of magnitude, we have for flow past a flat plate U
                              "turb = 0.19    01                      (8-14)
Re where Re is the flow Reynolds number based on the length scale in the 3    -I direction of flow. For a UO flow f approximately 10 cm s 2
and a 8-41
 
6 length scale of approximately 10 cm, Re = 10 . According to Eq. (8-14) eddy velocities, which cause crust motion away from the wall, are of the order of magnitude of
                                                  -I u
turb = 45.0 cm s Over the period of time it takes to grow a protective crust, of the
              -8 order of 10 s, see Eq. (8-13), the crust displacement due to turbulence is only 10-6 cm, a distance equivalent to about 1/10 the crust thickness.
Clearly, there is insufficient time to remove the crust, considering the short period during which fuel crystallization will " cement" growing cracks or " repair" existing gaps between crust sections. Thus, predictions of steel melting rates must incorporate the insulating effects of a solid fuel layer.
8.3.2.2 Heat Transfer at Pool Upper Structural Boundary High heat transfer across the pool upper structural boundary would l
maintain the boundary as an effective condensing surface. Heat dissi-pation through conduction into the steel structure is essentially determined by the melt front temperature (approximately 1400*C) and the ambient temperature of the structure (approximately 900 C) and is relatively fixed. The rate of heat extraction from the pool is therefore controlled by the structural melting rate when the pool is not in contact with the boundary. This, in turn, controls the steel vapor condensation rate. For a fully boiled up pool in contact with the upper boundary, a fuel crust will form on exposed steel surfaces and limit the heat transfer as discussed in Section 8.3.2.1. The pool upper boundary energy transfer is qualitatively given below.
At the beginning of the formation of the closed pool, the pool upper structural surface is relatively cold compared to the saturation temper-ature of steel vapor and forms a good condensing surface. The steel component of the upper surface will form a liquid steel film with a l
8-42
 
limiting thickness beyond which it will not be mechanically stable. When the pool comes into contact with the surface, a thin fuel crust will be l                    formed and affect the rate of steel melting. The steel film will break up periodically and become entrained into the pool. The new exposed surface will provide for a continual condensing capacity.
If the steel film, regardless of the presence of an initial fuel crust, were not stripped off, the condensation potential of the upper surface would be limited by heating of the steel film until its surface temperature becomes equal to that of the steel vapor flux condensing upon it. After this condition is reached, the system response will be controlled by conduction and the rate of steel structure melting. In this hypothetical situation of a stable upper film the pool will pressurize until a heat loss balance occurs by the increasing pool temper-ature. Further information on pressurization is presented in Section 8.3.4 after heat losses in the entire system are addressed.
The expected configuration is a boiled up two-phase pool. A conser-vative estimate of the heat transfer can be obtained on the basis that the radial liquid recirculation velocity is bounded by the upward free stream liquid velocity.(93) The free stream liquid velocity is simply given by j
ug sy-U,s75cm/s                        (8-15)
Thus, for an order of magnitude estimate, the radial two-phase velocity at the top of the boiling pool would be of the order of 100 cm/s and the heat transfer coefficient in this highly turbulent two-phase layer can be estimated from l
1 hTP " h (1 - og)                        (8-16) 8-43
 
Assuming a value of the top void fraction of approximately 0.70 and 2
h approximately 1 watt /cm *C, h TP is approximately 3.1 watt /cm ,.C.
Based on the core upper cross-sectional area (100 cm radius) and a AT of approximately 200*C, this translates to an equivalent volumetric 3
power density of the order of 20 watt /cm . This value for heat loss is approximately 1% of nominal power (nominal power is approximately 1675 watt /cc) for the B0C-1 core fuel inventory.
8.3.2.3 Heat Transfer at Lateral Structural Boundary Both experiments (78) and analyses (78,94) have shown that' vapor generation is sensitive to condensation heat loss in a closed system.
The. major condensation heat transfer takes place at the pool upper struct' ural surface discussed previously. It is therefore beneficial to have a high heat loss at the pool upper structural boundary to enhance pool boilup, increase ~ condensation and reduce pressurization. The heat loss across the lateral structural boundary in contact with the two-phase pool tends to decrease the pool temperature without contributing conden-sing capacity for promoting vapor generation in the closed system.
It das shown in Reference 94 that noncondensation heat loss reduced the superficial velocity of a closed boiling system and therefore was detrimental to pool boilup. The noncondensation heat loss occurs at the lateral structural boundary and bottom surface. The heat loss characteristics at the lateral structural boundary differs from that at the bottom surface. The heat loss at the bottom surface will be dealt with separately in Section 8.3.2.4.
The transport of energy from the two-phase pool to the lateral structural surface can take two different paths simultaneously. One is the heat conduction across a thermal boundary layer fed by turbulent diffusion from the bulk of the pool due to boiling agitation. The second path is fluid circulation through the boundary layer where the 8-44
 
l hot liquid from tne pool is cooled down and gives up thermal energy to the structure. The flow in the boundary layer is downward driven by density differences. In addition, the agitation of rising bubbles close to the structural boundary would be expected to enhance heat loss.
The turbulent action favors local heat transfer while flow circulation affects transport of energy from the main body of the pool to the colder boundary. For a molten pool of large radial scale, heat transport through flow circulation will be the dominant mechanism that regulates and homogenizes the temperature level of the pool, which in turn controls the pool vapor generation capacity.
Free convection heat losses from the all-liquid fuel pool surrounded by fuel crusts, can be estimated from assuming turbulent flow on the vertical wall,595) as follows 0    0 f=0.138Gr.36(Pr.175 - 0.55)                                                              (8-17)
A temperature driving force of (3000-2800'C) (i.e., taking into account the presence of the crust) leads to an h of approximately 2                                                                                                  2 0.20 watt /cm *C, and a corresponding heat flux of 40 watt /cm . For the whole-core pool of CRBRP dimension (90 cm height), this translates into an equivalent volumetric power density of approximately 4.0 watt /cm3 ,
Thus, free convection, single-phase heat losses would be able to remove only a small fraction of 1% of nominal power for the whole-core liquid pool.            (For a single assembly pool these losses would represent approximately 1% of nominal power.)
A boiling system would provide an upper limit to the lateral heat losses and is the expected configuration. The churn-turbulent flow regime is characteristic of a relatively large circulation flow pattern resulting from nonuniform void profiles, i.e., the resulting density differences between the core and the wall regions result in a gross 8-45
 
1 circulating flow within the boiling system. The flow pattern will be a rising core of hot two-phase mixture surrounded by a descending annulus of relatively cool liquid along the walls which flows onto the bottom surface as a single-phase layer. In this case the heat losses to the vertical walls can be based upon forced convection turbulent boundary layer flow 0
Prl /3 f=0.037Re.8                                (8-18)
As an order of magnitude, the previously estimated value of                                    '
100 cm/s for the liquid velocity is used to calculate h from Eq. (8-18).
2 This leads to a value of 1.0 watt /cm - C. This method of estimating heat losses from a boiling pool is in good agreement with determined heat transfer coefficients from measurements in volumetrically heated boiling pools such as noted in Table 8-4. For a temperature difference of 200*C (because of the existence of a fuel crust), this leads to a 2
heat flux of approximately 200 w/cm                              and is equivalent to a volumetric power density for the whole-core liquid fuel pool of approximately 20 watt /cc,* which is equivalent to sl% of nominal power.
8.3.2.4 Heat Transfer across the Bottom Structural Surface The bottom surface heat transfer is expected to be conduction limited.(96,97) Without the penetration of the boiling pool to the bottom surface (because of the presence of t'he circulating flow), a stable single-phase layer will fann. The bottom heat losses can be estimated using the free convection heat transfer coefficient of 2
0.20 watt /cm                      - C and the driving temperature difference of 200*C.
For the CRBRP active core dimensions the heat loss is equivalent to s0.1% of nominal power.
* The corresponding value for a single assembly boiling pool is approximately 165 watt /cc or s10% of nominal power generation.
This value is probably on the high side because a circulation velocity of the order of 100 cm/s may be difficult to reach in a single assembly geometry, i
1 8-46
 
Since the bottom surface heat losses are only a small fraction of the lateral surface heat losses, the total heat losses through the lateral and bottom pool boundaries correspond only to sl% of nominal power. Now, the power generation required for developing a fully boiled-up pool will be considered in light of the estimated heat losses.
8.3.2.5 Power Requirement for Pool Boilup The equivalent volumetric power density required for a fully boiled-up pool (approximately 35-50% void fraction) can be assessed from the churn-turbulent drift flux function. The dimensionless
  . superficial velocity is related to the average void fraction I by j/u s                                  (8-19) 1  _a which leads to the following expression for the required power density.
2a  U,  og    A pog)    h fg 9%                                                    (8-20)
(1 - E)    V pagj The superficial vapor velocity associated with a fully boiled-up pool (35-50% void fraction) is seen from Eq. (8-19) to be independent of pool size and is approximately 25 to 50 cm/s. The corresponding equivalent vapor producing power density is approximately 2 to 4 watt /cm3 ,
Thus, only a small fraction of 1% of nominal power is required to sustain a fully boiled-up pool.
1 Since heat losses from the whole core boiling fuel pool correspond only to 1-2% of nominal power (calculated in 8.3.2.3 and 4), and the required power density for sustaining boilup is only a small fraction (0.25) of this value, we conclude that the core fuel can remain at i                                            8-47
 
least fully coiled-up down to decay heat levels of 1-2% which would not be reached before approximately 3000 to 30,000 s following initial subcriticality. Tne largest share (s70%) of the decay heat generating components are solids as opposed to volatiles. Thus, the generally stated number 1% of nominal power is not significantly altered by the potential of volatile product disengagement from the pool.
Hence, a dispersed flow regime will persist down to power levels as low as 1-2%. Well before this power level is reached, even if the core is postulated to be temporarily bottled-up, the fuel inventory in the active fuel region would have been permanently dispersed into subcritical configurations by the meltout and blowdown of the core materials (s300 s); Sections 8.2.6, 8.2.8, and 8.3.5.
8.3.3 Fuel-Steel Boilup Stability Considerations Liquid fuel pool boilup stability (i.e., absence of collapse) is assured if the necessary vapor flux to sustain a fully boiled-up core condition can be removed at the top surface. This can bascially be accomplished by two means: either sufficient openings are available at the top so as to allow the required vapor flux to escape, and/or sufficient heat losses (i.e., heat sinks) are available at the top to continuously condense the required vapor flux.
The necessary escape area to assure boilup can be obtained by setting the vapor quality, X, in the following expression equal to unity
                                            #gdA g core "    escape (8-21)
Thun, on the basis of a superficial vapor velocity of approximately 50 cm/s3 the necessary escape area to assure pool boilup is estimated to bc only a small fraction of 1% (approximately 0.2%) of the core cross-sectional area. Considering the CRBRP heterogeneous core design, where at least one flat of every driver fuel assembly faces a blanket, 8-48
 
primary or secondary control assembly, a continuous range of escape paths will be fonning as a large-scale boiling pool is postulated to form. The boiling fuel-steel mixture will reach these escape paths as long as the pool remains boiled-up; this would clearly be the case if Eq. (8-21) is satisfied. The key question is: Can such escape paths completely disappear?
If the escape paths are initially larger than that required for boil-up, a two-phase mixture will be entering the paths where the vapor disengagement and hence vapor quality is determined by Eq. (8-21).
For these conditions, the escape path may decrease in size. But in so doing, the quality will also necessarily increase in order to continue to accommodate a fully boiled-up state. In the limit all vapor (steel) will be escaping, which is physically unable to further decrease the escape paths. What is inferred here is that complete plugging cannot take place, because the sealing process is self-limited by the need to sustain a boiled-up system. Thus, in the absence of upper heat sinks and system power transients it can be concluded that the development of a large-scale bottled-up system would be most unlikely.
On the other hand, in the presence of heat sinks, two-phase ejection would be enhanced, and as such heat sinks would tend to promote a bottled-up core because in this case a boiled-up core does not depend upon escape paths if adequate heat sinks are available to assure a fully boiled-up state.
In this regard, the heat losses at the top would appear to be more than sufficient to condense the necessary vapor flux to sustain maximum boil-up. In Section 8.3.2.2 the upward heat los: was estimated'to be equivalent to a pool power density of 20 watt /cc, as compared to approximately 2.0 watt /cm required to condense the necessary vapor flux 8-49
 
to sustain boil-up. Thus, this large condensing potential will assure a stable boiled-up fuel pool even when the cure is completely bottled-up. l In fact, the excess potential for condensing vapor will enhance the buoyancy driven vapor-liquid flow, thereby further eliminating the potential for vapor collapse.
In sununary, the above phenomenological arguments suggest that stable !
conditions in which the fuel is maintained in a steady, expanded confi-guration by the upward untion of condensible (steel) vapor should be expected, consistent with all the experimental and analytical evidence to date. However, this picture is in contrast to recent SIMMER calcu-lated secuences for a 1 css-of-flow hypothetical core disruptive accident which are best characterized by oscillatory motions of compact regions of liquid fuel which eventually result in superprompt critical bursts.@0}
However, whi'le the SIMMER code includes the strong coupling between fission power and fuel motion, which is not included in the above discussion, it is not believed that the effects of nonuniform fission power can over-whelm the classical fluid mechanical balance between interfacial drag due to upward flowing steel vapor and the mass of the fuel. Rather, it is believed that the predicted oscillatory fuel motion is due to several idealities within the physical models included in SIMMER. These are discussed further below.
It is important to note that dynamic, oscillatory fuel motion is p.edicted with SIMMER only when blockages are postulated to form in both the lower and upper axial blankets in a manner that results in little or no fuel removal from the reactur core. This severely limits the degree of subcriticality achievable within the active core zone.
* The principal mode of heat transfer is by liquid-vapor-liquid interaction. Heat removal from the hot fuel-steel-vapor mixture results in ablation melting of the fuel-steel structure which is swept into the hot liquid-vapor mixtures. The subcooling generated by this process provides ample surface breakup of liquid and vapor to essentially eliminate any effect of noncondensible gases upon condensation process.
8-50
 
The short fuel penetration lengths of approximately 10 cm associated with these tightly sealed core conditions is at variance with both analyses of fuel plugging and thermite fuel freezing experiments, indi-cating at least 30-40 cm fuel penetrations. Although steel blockages that form during the clad relocation phase of the accident may retard the early removal of fuel from the core, the rate of remelting of these blockages should be quite high owing to direct fuel impingement on the core side of the blockages. At this stage, the SIMER code does not include a model for the melting erosion of above or below core blockages.
The impervious surfaces of blockages exposed to the disrupted core can only be treated as adiabatic.
This adiabatic blockage-surface condition not only artificially reduces the rate at which fuel departs from the active core zone, but also tends to remove the only mechanism for sustained fuel dispersal.
This is especially true when the whole core is in a disrupted state.
As discussed above, there must be some condensation of steel vapor on the upper axial blockages in order for the steel vapor to pass upward through the active core zone and in doing so levitate the fuel. Heat loss to the upper boundary promotes pool boilup; it is crucial to the process of fuel dispersal in a closed systein. Fuel expansion in a core with an assumed adiabatic upper boundary can only be temporary.          Fuel collapse must follow, leading to a power burst and a repetitive process
! of fuel expansion and collapse.
In some SIMER accident calculations, appreciable upper heat sinks are present due to remaining fuel rod stubs that are predicted to protrude from the upper boundary into the active core region after the axial blockages are fonned. The stubs are capable of removing heat by conduction in the radial direction, which is the only direction for heat removal allowed within the architecture of the SIMMER code.
Following a power burst, however, the SIM ER-predicted flow of molten material to structural heat sinks is so strong that the material in the calculational nodes adjacent to the cold rod stubs becomes single-phase.
8-51
 
This eliminates the condensation process along with the concomitant flow of steel vapor, and the disrupted fuel region begins to pressurize and collapse. Eventually, enough fuel material collects to produce a prompt critical burst. It is this description of the core response to a power or pressure source at the center of the disrupted region that necessarily results in the predicted oscillatory spring-mass motion of liquid fuel slugs. Rather than core expansion resulting in increased mixing, in the SIMER calculation the arrival of fuel material at the core boundaries leads to the separation of fuel and vapor, thereby causing the vapor condensation rate to fall off to practically zero.      This SIMER ideal-ization will not represent disrupted core expected behavior. The occurrence of fluid mechanical instabilities will cause the low-density high-pressure regions to penetrate and mix with the more dense regions of molten material during core expansion. Such fluid mechanical instabi-lities are known to be operative even in the most transient flow processes and ultimately lead to small-scale turbulence. Turbulence introduces fuel mass-transfer effects between the molten fuel " films" that build up on the boundaries due to fuel impingement and the two-phase disrupted core. Specifically, rupturing of relatively cold molten material " films" adjacent to cold boundaries and introduction of packets of this material into masses of hot vapor will result in efficient vapor condensation which, in turn, will raise the level of mixing, leading to prolonged or permanent fuel dispersal.
8.3.4 Pressurization in a Bottled-up Pool As demonstrated in Section 8.3.2.3 and 8.3.2.4, the heat losses are l
l  initially estimated to be considerably less than the energy production in the fuel due to decay heat. Therefore, in the case of a postulated
  " bottled-up" core, pressurization would seem unavoidable. However, as the pressure increases, so will the temperature and heat losses, At the same time, the pover is monotonically decaying. These competing factors can be accounted for in a straightforward manner and suggest that the pressuri-zation would be limited to at most 10 bar, and is probably more likely 8-52
 
to be about 5 bar. This pressure would be reached at a power level around 3 to 4f. of nominal power and is estimated as follows. A layer of fuel crust is assumed to form on the inner boundary of the closed pool. An energy balance is obtained by equating the rate of sensible energy increase and energy for vaporizatien with the pool power, less the total boundary heat loss. Because of the. presence of boundary heat losses, the pool temperature will reach a maximum when the pool power equalizes the boundary heat loss. This results from the heat loss being proportional to the temperature difference between the pool and fuel crust. The heat loss will, therefore, correspondingly increase until it equalizes the power generation. For a given power level the pool temperature, hence the pool pressure, is bounded by the value at which the boundary heat loss equalizas the power generation. Using a fuel crust temperature of 2850*C, a heat transfer coefficient of 1 watt /cm 2 *C for the side well and above pool boundaries and 0.2 watt /cm 2 *C for the pool bottom surface, a quasistatic pool temperature power rel3tionship (hence, a pool pressure-power relationship) is generated as shown in Figure 8-15. Although the required condensation flux increases faster than the heat loss as pressure increases (since the condensation flux is proportional to pressure and the heat loss is proportional to the temperature difference), the considerable margin illustrated in Section 8.3.3 will continue to assure boil-up.
8.3.5 Blowdown and Fuel Dispersal Characteristics For the hypothetical bottled-up core configuration it is anticipated that substantial escape paths will be first generated in or at the l upper structure edge, assuming freezing and plugging indeed produces bicckages of significant pressure containment capability. Consideration of ablation heat transfer attack on a typical fuel / blanket axial
* For a single assembly bottled-up boiling liquid pool at nominal power level which is of interest in the meltout phase analysis, similar pressure levels are anticipated prior to hexcan failure as a result of the relatively higher heat losses (see Section 8.2.5).
8-53
 
structure suggests that blowdown will occur about 300 seconds following initial subcriticality at a pressure level of 5 to 10 bar, corresponding to a power level of approximately 3% of nominal power.
This transient blowdown of the pressurized pool would remove fuel from the pool, in addition to the earlier removal during the initiatir.g and meltout phases. This additional fuel removal and continued boiling and dilution of the pool contents due to melting-in of steel and blanket material would result in a permanently subcritical system.
8.3.6 Potential for P' essure Driven Recompaction Two geometric configurations have been of concern relative to the pressure-driven recriticality hypothesis: 1) ejection of molten fuel                    j from the active core region into the upper (or lower) assembly structure (blanket and fission-product plenum) that might contain liquid sodium, and 2) injection of molten fuel directly into the upper (or lower) sodium plenum following unplugging of a postulated "bottledup" core.
The first of these was considered in detail in Section 8.2 in connection with the assessment of fuel penetration in sodium filled gaps between the assembly ducts. Both experiments and analyses show that no potential exists for sustained pressure events capable of leading to flow reversal and recompaction of fuel. Contrary to Ref. 98 which assumes              j that sodium liquid films initially present on the blanket-plenum inter-face can be trapped and intermixed with molten fuel, stability consider-I ations of a lighter fluid being displaced by a heavier fluid show that this is not possible (Section 8.2.6).
The second configuration has been addressed by numerous other applicable tests carried out in " unconstrained" geometry. In well over                l a hundred tests involving molten UO              2 and liquid sodium under a variety of contact modes, including in-pile tests, no large-scale vapor expiosions i
8-54 l
 
l l
or energetic fuel-coolant interactions have ever been obr vved. These findings are consistent with the Interface Temperature Spontaneous Nucleation Criterion ( } which rules out large-scale vapor explosions for the UO -Na system, 2
8.3.7 Sunnary of Large-scale Pool Phase                                          l l
A large-scale pool with neutronic criticality potential is not.
expected to develop due to the progressive loss-of-fuel to the LCS and radial blanket / shield interstitial regions as dispersive, boiling fuel-steel regions develop, and by fuel flow down through control assem-blies.
The formation of a fuel crust, wherever the pool is in contact with a steel boundary, controls the degree of energy losses from the pool.
Steel, either ablated into or originally mixed with the pool, will vigorously 0011 and fluidize the pool at power levels down to approxi-mately 1 or 2% of the rated 975 MW core power. This fluidization will        ,
take place even in a closed pool because there is more than sufficient vapor condensation at the upper pool boundary, and internal pressurization is limited by enhanced heat losses at the higher temperatures.                -
Opening and blowdown of the pool due to meltout of the existing above core blockages is expected to occur well before the 1-2% power level is reached due to melting and continuous ablation of the upper pool boundaries (300 vs. 3000 s). Thus, continued dispersal and further dilution of the core materials will assure a pennanently subcritical system.
8.4 Reactivity Effects in Disrupted Core Geometry At the SAS3D calculated termination of the initiation phase a power burst has ejected fuel from the hot, lead fuel assemblies into the UAB region and generally dispersed fuel within the axial confines of the 8-55
 
active core region. The point kinetics method within SAS3D estimated the net reactivity to be several dollars subcritical and decreasing.
The SAS estimate could not reflect the expected, additional penetration of fuel material into the fission gas plenum region, nor the radial discharge of the lead fuel into existing gaps between the fuel assemblies as described in Section 8.2. Both of these effects would lead to a lower power core reactivity estimate than calculated by SAS3D.
The early progressive escape of large fractions of the fuel into the lower core and radial blanket structure will maintain the system subcritical even if some fuel settling or re-entry occur. This continuing orccess of fuel escape was judged to assure permanent subcriticality and negate the potential formation of a large-scale, bottled-up pool.
It was also judged that the relocation of core material required to form the boundary of a bottled-up, large-scale pool would result in large negative reactivity effects.
In support of the latter judgments, some very conservative calcu-lations were performed on two generic configurations which assumed complete plugging without accounting for the early fuel escape paths discussed previously. These calculations were perfonned to guide the phenomenological assessment of the core disruption phase. Details of the calculational technique and neutronics models are provided in Appendix E. For the current purposes it is sufficient to note that the removal of approximately 30% of the active core into the axial blanket regions appears sufficient to maintain subcriticality in both an annular or core-wide bottled, boiling pool configuration. This amount of material is approximately the lower bound required to form a substantially plugged region in the first place. Hence, the presence of early escape paths and fuel-steel boiling will assure system subcriti-cality even under the low probability progression to a large-scale pool.
8-56
 
8.5 Sumary of Reactor Core Meltout and Pool Phases
~
An evaluation of the disruption phase of an LOF without scram accident indicates that progessive fuel losses will lead to a suberitical core configuration. In contrast to the steel ablation and plugging which occurs as fuel penetrates into the hot UCS, fuel can readily penetrate into the cold gaps between fuel assemblies in the LCS where the flow process is conduction controlled, without rapid steel ablation. Fuel freezing and the presence of liquid sodium in these LCS gaps are shown to not significantly retard fuel penetration and removal. Additional early escape paths are also provided by the control rod assemblies.
During this early fuel removal process recriticality events are not expected due to the readily available stabilizing /dispersive forces provided by freezing to intact structure, fission gases, sodium vapor flow and fuel / steel vaporization. If they should occur, such events would be relatively mild in view of the large incoherence effect provided by the CRBRP heterogeneous core design.
Despite its predicted absence, the consequences of a large-scale pool of molten fuel have been examined. Once boiling initiates in an open system a " bottled-up" core configuration can only occur if a boiled-up core is assured by adequate heat sinks at the top of the pool in the first place. Such heat sinks are likely to exceed the required vapor flux to sustain boilup, suggesting that a sealed pool system could develop temporarily. It is shown that due to the presence of fuel crusts, the heat losses are insufficient to cause pool collapse.      Pool blowdown due to meltout of the above core blockages is predicted to occur well before the decay power becomes insufficient to sustain a fully boiled-up and subcritical condition. This transient blowdown would remove additional fuel beyond that removed earlier during the initiating and meltout phases. This additional fuel removal and continued dilution of the boiling pool contents, by steel and blanket 8-57
 
material, would result in a permanently subcritical system. Pressure driven recompaction of the fuel as a result of energetic fuel-coolant interactions will not occur because such interactions can be ruled out for the UO / steel-Na system. Thus, it is concluded that even if a 2
large-scale pool is postulated to occur, physical mechanisms cannot be realized that will lead to sufficiently energetic recriticality events so as to challenge the CRBRP structural margin.
8-58
 
Table 8-1 Material Prcperties Used in Chapter 8 Fue:                  Steel Properties                Liquid        Solid      Vapor      Liquid Melting Point (*C)                        2850                    1400 Boiling Point ('C)          3890                    2820 Latent heat of
        . fusion (J/g)                                278                    272 Latent heat of
          ' vaporization-(J/g)            2000                    7409 Specific heat    -
0.50        0.46        0.37        0.775 (J/gC)    '
Density (g/cc)              8.65        10.00        2.2E-4      5.90 Thermal Conductivity
(    )
3.66E-2      2.93E-2                0.314 Viscosity (poise) 0.043                                0.06
                                ~
Surface Tension              420                                  1600 (dyne /cm)
:D 8-59
 
Table 8-2 Results of TREAT S-Series Piston Autoclave Tests Max. (local)        Amplitude of    Calculated Fuel Energy at      Max Pressure    "*"9Y U"~
Time of First            Pulse version to Test    No. of Rods          Pulse                              'Jork (J/g-oxide)            (MPa)        (J/g-oxide) 5                2073              3.7                <0.1 S3 54          5                2245                12                0.6 55          5                2036                20                  4 56          7                1973                14                  3 57          7                1894              2.4              < 0 .1 58          7                1852              5.3              < 0 .1 S11
* 1                3130              13.6                  1 S12
* 1                3120              6.8                  1
* Single rod contained in a Na annulus inside a Mo heat sink to simulate thermal conditions for an excursion with period si msec.
8-60
 
Table 8-3 Values of the Kutate'ladze Stability Parameter k Nature of Process                                      1 Breakdown of bubbly flow.                                        so.3; o c *P H Breakdown of churn turbulent flow - drop                        s0.14; pC
* PL fluidization of a heavier fluid by a
      ' lighter fluid.
* C = continuous phase H = heavy fluid L = lighter fluid 8-61 i
 
Table 8-4 Single-Component Volume-Heated Boiling Pool Experiments Maximum Heating                                Flow      j 9*/U *
                                                                                          ~
Reference          Test Fluids          Mode                Geometry      Meas'urement cylinMcal water / dyed
* sS*15i Farahat, et al.                        "i'# "3**                                    E          13 particulate (1976)(78)*            additives                          Oj        m Gustavson, et al,      water / zinc      electrical        v    e                                1.8 sul fa te                          17 cm x 23 cm              &
(1977)(82) rectangular Gabor, et al.          water / zinc                      V*SS* Si                                  2 a
N                            sul fate electrical        15.2 cm x 19.1 cm E
(1976)(83)                                                  15.2 cm x 28.1 cm Ginstu:rg, et al,      water / zinc                        vse                                    19 electrical                                    &
sul fate                            6.4 cm x 8.9 cm (1979) (79)
Greene, et al.        water / zinc                                                  a          1.8 electrical        vess (1979)(59,85)          sul fa t.e                          18 cm x 33.5 cm rectangular f[s2 n x 3.81 cm Koontz (1977)          water            microwave (81)                                                        16.51 cm x 3.81 cm i
* Note that particulate additives acted as catalyst to generate foaming.
 
Table 8-5 Results of Crust-Stability Experiments (Epstein) (88)
Material    Mel ting                            Physical
                                                    . .                            Vessel  Cutoff Expt.                                                      b              nd    0 ameter Wavel e th Crust- ability (U p )                          Gra                                                                    Observation' (Lower)
Sf"*'              t T p
* c 0
1      Freon-ll2A            40            1.6        Liquid, 50                7        6        Maqinal        Sm HO2 O          1.0        Liquid, 20                                    A c
                                                                                                                =d 2      Lead          327                  11.70        Liquid, 335                7      280          Stable        Stable Gallium              30            6.0        Solid, -20                                    A >> d c
3    HO 2
O          1.0        Liquid, 2                  7        3        Unstable      Unstable CH            -57                  0.7        Liquid, -30                                    A  *d 8 18                                                                                            c 4                                                      Liquid, 2                  7        6        Marginal      Unstable Liquid, -55                                    A c
                                                                                                                *d
'?                a                "              "                      "                                                      c 5                                                                                3        6          Stable        Sta ble 0                                                                                                          A c
                                                                                                                >d 6          "                "              "
Liquid, 2                  7      16          Stable        Stable Solid, -78                                    A c
                                                                                                                =d 7
15      16          Marginal      Stable Ac"d 8
30      16          Uns table      Stable A
c
                                                                                                                <d
  'The crust was pronounced stable if it prevented most of the lower liquid or melt from rising to the surface of the upper liquid.          Occasionally a small amount of lower liquid material was observed to escape from be-neath the crust through small openings that formed between the vessel wall and the crust edge, b The elastic constants of solid Freon Fluorocarbon ll2A were taken to be comparable to those of other ethylene-type molecules for which such properties are available; in particular E = 400 MPa and c = 0.4 for polytetra-fluorethylene were chosen.
c A relatively thick continuous ice layer containing trapped octane droplets was observed.
 
                                                                                        -Peak Fuel Temp., 'C x    .uel      ssembly Power Level:                        0.6P Net Reactivity: -3.08$
Blanket Assembly Control Assemoly 2500                            2500 4 /'3                                            2600 3700            ,        .        / 3400                        2600 .
(8)          , ' .b,.
s
                                                                            .  :, ' .J.
370                                  1100                -
2600 .
      /                y8):0/                                            J L                .-  .
                                                                      . 'sy['
2600                .
A- 330b                                350 1100              -
2500 -
900                          /3300/ '                                                          .,
900                                                    1100    .. , j      3000[.f      ..
                                                                                              //,,                , j. . .    .
900                        3300/          x 3300 900                                                                                                              -
7 g f' ~
Q 2500 260d                                900                    3300                  3300 /
                                                                                                                ,/
l 2600,-              .          900 900                          . 2600                    900 2500 ,                          900                            900                            Extensive sodium voiding 00 .        ,
900                                      Disrupted fuel w/o blockages                  ,
800                          25,00
                                              ..-                                                            xtensive mixing of cla M
!                            800                                                                          steel and fuel Fuel Vapor Pressure 800 re he e O                    !
b1          g l
l
* The middle portion of the hexcan wall has melted.
l Fig. 8-1                B0C-1 LOF Best-Estimate Core Conditions at Termination                                              l of Initiating Phase Analysis (Case 18) 8-64
 
Peak Fuel Temp.(Node), C S
xxx > Fuel Assembly Power Level:                                      0.7P                                                                  /
Net Reactivity: -5.13$
Blanket Assembly Control Assembly
                    / /.                                  . / /. .
2500              .                          2500 H
                      . .                                    . .        . 7 /.,
            .e.            .
2700 ,              .
7,,;2600', of . .
      . 2700                                          . 2700 /.                        .,2600 /,
        ..                y'*/ /. /. . .                                .
y./ *                        /y.
3100                                  2200                , ,                2600                        //
                                                          ..                  ..        , / /.
7,/* * *2600                / /= =
* 2300'                  .'.
2700                                .
3300
                                                                      * /3100/. 7, * ;. 2200-
                                                                                                                                              ,    ..      ,/ j 2500
                                                                                                                                                  /. v./ -
                    % .:..' </3100                    : . w/.
* 3100 .
* 2700 n'.
                                                                                                                                                      /. 2700,
                                                                                          .,.          .          :..        .            .              */ i 2300 ,                                                                    *23,00
                                                                                                                                                    *            */
                                                                                                                                                                    / .7,
                                                        . . .      .                                                  ..                              */ . .        i, 22= ;                                          23" -                      < 31"                                      -
i yy,.).s"    .
                                                                                                                                                      . .,2700~      /
* 3400
                                                                .    . 2300'                -
* 3300.                                    /
                                                                    =
e,
* i.          /            -l-                    ..
                                                                                                                .            .                          */ / /,
l                                                          3400 ,              ,        '2300
                                                                                                                      ;j
                                  -          ~                                                        '
                              ,2500 -
* 900                '
                        =          -
* 3400 (20 e 430./,
* N                                  Extenshe sodum voWng
                                              ,        '.250.0                          -[2205,.
      .y,-                                                  . . .
                            ., ' 400                    .      * ,
* 2200 h Disrupted fuel w/o                  I 2105                ./.
3400
: v. u blockages l
                                                  . *      ,      .        Fuel Yapor Pressure                                                  .*.
Extensive mixing of cladding
          . . ' .2100 -                                                    (bars) shown in steel and disrupted fuel parentheses
      '..2100 Disrupted fuel w/ blockages
* The middle portion of the hexcan wall has melted.
I Fig. 8-2 E0C-4 LOF Best-Estimate Core Conditions at Termination                                                                                                                j of Initiating Phase Analysis (Case 18)                                                                                              l 8-65
 
PLUGGED REGIONS
                                                    /
UAB
                              /                                    / hM ADS LOAD h    h    f    h    h          .
                                                          ''            RADIAL RADIAL BLANKET PCA                  1    RADIAL SHIELDING CORE REGION d
s"          .
Q              ,,              ,
b          d
                                ,  a        l 2                                              5
                                          /        N            , Y  ,
                                                                                <            b LAB                                                      L s          s 5
2 l
CORE SUPPORT PLATE 1
Fig. 8-3a Side View of Early Fuel Escape Paths (not to scale) 8-66
 
i e RADIAL SHIELD O                      00          - r=,
                                            -!8 4!!
l Fig. 8-3b Top View of Early Fuel Escape Paths (not to scale) 8-67
 
No V
                -                                        solidification II 8000  -
3                        002 solidification 1                              and
                ~
1                        SS melting
:j6000 yy
      ~
        ~
3        -
5 2
I
                /
4000  -
No SS/
                / melting im;,vog      //    ,    /,    ,
0          400            800        1200          160 "
Solid-stainless steel Initial          im ,SS Tempersture, *K i
Fig. 8-4        Initial-Temperature Map for Initially Molten UO 2 Contacting Initially Solid Stainless Steel 8-68
 
l l
1 U0* liquid
                                    -      /
                        '          =
                        '        ~ ,
7't        A          F r
t_____      fw unnel w          6            i pfical pyromefer I
43-
  /
l dumping                  .,
device                  II
                                          \ est fsection l
Fig. 8-5 COCOTTE Experimental Device (This information was cbtained from Reference 63.)
8-69
 
JTK ocw:oue
                                &j;
                                                                              !                  uncan anno, TRANsoucta r e cy                                    a-
                    ;                                                        s AS$oftsgn            ,N                    e:
:                  W g; s                    ,          i mston cawry-
                    ~
                            .%1Q        :              .
uutn              '
V<;                    .
                                                              .S
                                                                                                  *MAno causw' leT.iy[ f' '
l                      "p 08t#GY AS$ongga s
                    $d- $dk' PtsTog -                                                              f;    s
                                % ,L ; 'f.-
3,== /.                  / k.    ~ W sAhom7tas s
entuany aurocuve
[g            g .%
ue
                                        .-=
N'            .'fl    i s
s                              /
5
                          ~ ~~
:T                            ,      $/ anNn"?
M en -                                                    '
E/j                                              .W
                / /;:
                                            ~
                                                                      'll stconoany
  %                N
                                                                ,.,            :                  Yt33EL ux:Anoms (s)                -
                                            \
                                                                    /
                      ;                  ,s
                      ;\                    s'      .                          i
                      $\                ' \
s s
IU e,
l
                                                                                                    %p
                                                                                  / suppog.7 s
l                  .
N                  s-s S.g'< :~
I                          !
Patssuet i                .d''f                            -
l q
l' i
F'                    -          .
s
                                    '                            \
Fig. 8-6 Schematic of the S-Series Autoclave as Used for Tests S11 and S12 i
8-70
 
p
                      /                                                                                    \          '
h t
1,                N      I
                                                                                          /
j g
: s. - l        .
                                                                    ----~~.
                                    )
GAS PRESSURE !                                                                  ,
MEASLSEMEN                            f                                                        NECTCR PRESSLAEj
  $ TRAIN GAUGE)                                r                                              (STRAW GME)
                                        'lI      %d L                                          ll g Jfe,E                                      ,;_g        .
s                                    j,.
  "'"E)                                                                                          .I' l                                      1              .
                                                                                                                      /jf/
RExa.E              T t
                                              ,        N                                    )                                e SCDiuM          '['                                                            l  1'                                -TmTE DUMP g
(                          j j'                                                                        l
                                                                                                        )Ip 37lNiCTCR T[ l                l                  \fp            p
                                                                                -                                            Avis r i
                                                  \
f(/
i
(
                                                                                              .1-  T'    -
                                                                                                                  - i 4230 C0,8 l 0.015 WALL)
              /                          -                -
                                                                                                        ~
                                                                                                              \ }-
s'                                        $
l                                                      ,  ,
                                                                                                                                    *)<
      ;        ;          l VR                    1 l  -
N, ' ll l
j/
l 4 ,.                N                '
                                                                                                                                /
                                                                                                    '' Y / ''
                                          .b                      \^                  l                      s l
                '~
                                                          \'~,,        +        g Y l'%
s          /
                                                                                                                              ,/
i<
(l    \
                                                                  / lN                                    lI NJ
                            '7 ]
g hN          s I
l l
                                                                                                                        }
bCATCH r                                  /-'                                    s
                                        /            ,/                VALVE
                                                                                                                    /
l                              .[,      ,
FILL LINE                                \          j OUTER CONTANMENT                                                                  PIEZOELECTRIC PRESSURE TRANSOUCERS l
Fig. 8-7 Upper Plenum Injection Experiment 8-71
 
I  I 1          y Gas                                      _ _ _      . . ,
U0 2
I
[                        UO No.
          ~~l Y = 5. 61 V2+Y1 = 13.371 - vol U02                  2 MODE I  (LOW STRESS Ill THE            V) = 5.571 - vol 002 IflTERACTION ZONE)              MODE II    (MODERATE STRESS IN THE INTERACTION ZONE) ri V
3
          'j,n      f//
V 3      7^      yff V
          -                                                /
W i
y    -
f 2
f                                V I      #              [
          /            [                            f y
3
      /                                      U0 2
V) = 1.41 - vol U02                          V1 = 1.41 - vol UO2 V2 = 5.61                                    V2 = 5.61 V3 = 0.761                                  V3 = 0.071 MODE III      (HIGH STRESS IN                MODE IV      (VERY HIGH STRESS IN THE THE INTERACTION ZONE)                        INTERACTION ZONE)
Fig. 8-8      Illustration of Modes of Contact; Mode IV was Used in CORECT-II Experiment No. 18 (This information was obtained from Reference 69.)
8-72
 
I          I            I                  I    I                              I o AIR - H      2 O@
o Hg-H2 O @
O H2 0-Hg @                o H20 - AIR @
18 16
                                                      )
14                            5
                ! ._                    HO        -
s
                    . g ia        -
2 g
NA go              -
bS Q y, 8            -            Hg                                                                      -
J
                $        a:  "6  -
PRESSURE o                              \p/p 4 -
                                          /
A                                                                              -
2    /                                                                                      -
                                    /"
                                      -            l            I                    I    I                              I O      20      40              60                80    10 0                            120 TIME, msec Fig. 8-9      Illustration of Apparatus and Interface Displacements for Mercury and Water (This information was obtained from Reference 72.)
8-73
 
b                  /'                                        37 ASSORSER p,
i DRIVELINE A d          4 HANDLING ~#                ?
SOCKET                                l C                                                        . - INNER DUCT TOP LOAO J            " I]f)
PAD SCRAM ARREST "I              I $
FLANGE                                                  'a, COUPLING
                #                                                    ,, - B C PELLETS    g I
h,            - BOTTOM QUTER DUCT A                                            j  Aj PLENUM l
                                                                  ,  e.    ,  eWIRE WRAP CONTROL R00 s                                            (.'    I SHAFT                                                  1
                                                                                      - LABYRINTH Oljj              r  e SEAL BOTTOM WEAR PAQ
                                                              -g l                .J C SHIELD BLOCK
      ^'
JOINT          \        ,    l JOINT LABYRINTH
                                  /
I                      [
SEAL TOP WEAR PAD
                #                ,p CONTROL ROD e ORIFICE PLATES N  _        ,/
N  _        /
A80VE CORE J
LOAD PAD          N  _
p l
y PISTON hlNG g  _
j                          .        i            -- INLET NO ZZLE a
s      y PISTON RING g
:sWI N/                                                7 OISCRIMIN ATOR
                                      /                            -
t
                                  /'
Fig. 8-10 CRBRP Primary Control Assembly I
8-74 f
l l
 
          '#                                                      l t iIIIE hl
                =
I IIIIill                        l
                                                                              =
Dispersed droplets 10~I =-                                                            -:
a          =                                                            =
g          -
                                                                              =_.
u.
                -            Churn turbulent                                  -
g          _                                                            _
to-2  __
                                                                              =
: u.          =
o          =                                                            =
z          --
I o          _
t-          _.
10~3 _- -      Bubbly How
                =                                                            =
                =_                                                            _
30-4        I  I  IIItill                        I    I  i i I I 11 0.01                                0.1                            1 RELATIVE POWER Fig. 8-11 Flow Regimes in a Boiling Open Fuel-Steel Pool 8-75
 
lc 10        .    . .    .....g          .    . . . . .                    .,    .g....
                                    .                                                  " "**" ,,,,.1          F .h ei et A c                          / **-~      #,s~
O                      f                                                      *c~.
as -
y"a#                        c. y.. ..
s.,a.sao                      Ac..-      e a                                                                    .**s
                                    @              /
t ..    .    /                                    ',              - <e,- ) , .. .,
2          /                      /-S                                      -
s- .~m g          j                              3.-                                                      _
g I                '{,. /A ~%
e                .w                g* c.~    .. .                      __
                                                            ,',
* j.
C" t.a.a .. 8                      vo,h.a r.as 47 42  -
s" .a M                            r.. o n
                                  'E, ,,
: c. u
[M[ ./. .". i      .
is
                                                                                .    .    . . . . . . / is so e
                                                                                                                  .      . . n\. . .
soc o Superficial Vacor Velocity Ratio, Jg-/U=
Fig. 8-12 Pool-Average Void Fraction Measurements y
9 FROZLN CMUST x-                8
                                                                                    ^          ^              ^                  g
                                                .m,- I. -      ,;        +
a4ELT LAYER (2) h l ,,,,,,,,,,,,,,s                  ,  ,,,s-          ,--            --
3,,,
SOUD SoVNoARY Fig. 8-13 Schematic Diagram of Frozen Layer Stability Model
* Farahat data based on catalyst induced foaming.
                                **  See Table 8-4 for sources of data.
8-76
 
l 1
                        \\\\\\\\\\\\
b                      suoE OUS            p CABLE            .
SY N,C Moren                                  m MELTA8LE g                                  9 a  u-    j                                              .
REC CER              gno cA p ys .
                        \ p                  g      On zr.
h\%\%%N A warta      --
J Fig. 8-14      Schematic Diagram of the Experimental Apparatus for Jet Solidification (This information was obtained from Reference 90.)
8-77
 
1 1
100                                                                          =-- m ., =                                -        = m                  =----a = - - -                                      = = =                      ===--w==.                                                            w                          ---
l
            .= = = =1, m = -_ . m. _=: mm m.w.t
                                                          ==
m.-=                    . + =- m + m- .- =                                                                  =. s=                          m=
                                                                                                                                                                                            = =.5:. - ., ::= = ;:- -_= . r = { - z := - . - = . = - = = = - - - -
:- . =    ' ^ .w            a=~-            .a == 7                  m- -l=[- ::a= -
                                                                                                                                                                                                                                              '= - ==4 : .1                                          =.=.=-2:-
                                                                                                                                                                                                                                                                                                                  ^
J --
                                                                                                                          ====-.i=).-.-~.'h.
            ---&-===                            -_--j=- -~==---t.~=r..                                                                                                              - - -
:-2-_2              - --                        -
g_
_ _ ---; { ;- - .dr-                                            :- r.j_:- x =                  -=2'--          _ _ _ _
                                                                                                                                                            " ;M == - - - - "- ~;--+.                                                        g__;_          ,_ :      mi y--p _                                      - ::ife 1_:- ;
                                                                                                                                                                                                            -Ed ui . . - ' ~Ed='. &rJ-r' _ =.= =rd {'._ - h
            ;;: rs:-                                ;;;;
                                                                      =.;-i-91 4                ._-.-.r;='
                                                                                                                ~
                                                                                                                            .=Z--
                                                                                                                                                                                      .--i- ~ ;
7
              =: ._z l "= T "-=#5== - =.----a _ . : .: M= "t                                                                                                                                                e#:== e==# h - =1-Mte-;
                                                                                                                                                                                                                                                                                                                                    =-
                                                = . _ _ --. - . - .-- = . = = . _..=-- . . . . - - - - ... = . - . - . _ . . _ _ - - y.=- . . g 3,/_-_.----                                            = r--
              .-.=_==.                                                                            :
                                                ..-_~.
_ _ __ , - - - p- _ .
                                                                                                                                                                                              . = _ _ _ .
                                                                                                                                                                                      .--.__L..-_--                                              _-.--;                                  -                                    t ---- - .
mg . - l-- .. _ ....
            , _ _.. s
: p. .-                      -,
              .._...g..                                                                                                                                        _
:- -H                            _
t                                                                                                                              ..                          I                                                          i--/                      -.
p ==                  --              -_._-_u.
                                                                                                                          - . - _ . _ _                                                  .                                  _ _ . .                              f.
_f'_-'~                    ---
f                                ._.-
                                                                                                                                                                                        . . ~ .
              . _ . +                                                                                                                                                                                                                            _                      . _ . . - - . .                          ..                      .__
y      - . _ .                                                          --                                                                  __                  y--.                                        _-- . . -                                                      .            . .--
R            i
                                                                                                                                                                                                                                                                          -X
_      .~ F--_ ?j
            ~ ~ * *                                                                                                                                                                                                                      ;
                                                                                                                                                                                                                                            ~
1~ ~                            . " :~~~
                                                                                                                                                                                                                                                                                                              ~
                                                                                                                                                                                                                                                                                                                                  ~ -l 7.:
                                                                                                                                                                                        ,~~r--- _-                - . ,                                          ---
                                  + - --~ w
                                                                                                                                                                                                                                                                                  ; __                    -_---              3, ~ ~- - - _
                                                                                                                                                                                ,i                                .
                                                                                                                                                                                                                                                              ~
                                                                                                                                                                                                                                                                            .2. . --                                    .: .          .. -
n, 1
<                                                                                                                                                                    1.
ca                                                                                                                                                              1                                                                                                        , _ , . , _ . . _
                                                                                                                                                            .i, e
w                                                                                                                                                                                                                                                                                                            _ . . _ . _          _
m                            <1
                                                                                                                                          ._,]
n                                                          . _ _ . _ . _._                                        _ . . .
D                                                                                                                                                                                                              - _ _ . _                      _                          . . - .
W                                  i                      i *                                                                            :I                                                                                                                            .. _ . - .                                            .    . . - _ _ _
w    10-            .                      .                  .
                                                                                                                                      #.                      . i g                nn
                =--.=-.---
g_.==
g-; :-----
                                                                                + . = . .
                                                                                -- = =_
::_r -.
                                                                                                                            . .=n =--
                                                                                                                            - f -=a:.=-                  -;- ;.-4= --&
                                                                                                                                                                                            =r ~ - --- n 2=      = . + = - - m = --- -
                                                                                                                                                                                                                                                                -_w,.-
                                                                                                                                                                                                                                                                                - . = - -
                                                                                                                                                                                                                                                                                                          +~.== m -
                                                                                                                                                                                                                                                                                                            . = . . - -            ;=.==
          ,~
l                  -
                                          .-k--      =-+e=.- .==-+.=;.                              ===h=                  (L .= =-g = = = . + -                                          = = = . - -            :d==- = .--                                      =.-      =+-: r-                                ====O-=
it. L ..= -i=-=---                                  L__--                          ' =- :-                      : :.= ==.--                    --L-~==1._...i-g-
                                                  == t :- :L^.. _ , . .                          . .. . i= k=.-]-~n--==x.-
c-              ,&  _gr= k -                                          ;g ._- _g-g.jm                                      .-_--.=                        . q,4                          m.        - __;..__,__                              _y _ _ ;                    ___ g y g ._ q_ = _ ._=. .                    ,
E=mr r                              -            na-            n._____. 5 Erg.j - : } { {-                                          ._'.c=- - - = (- =; 2 =
                                                                                                                                                                                                                                              - ;;1 : i--                      21 cf-- -i= - - p: [ .
                                                                                                                                                                                                                                                                                                                                                . n:=
7
_. z 2 =-                                                =. _=1- . .i=w
                                                                                                  +                                                    = = = = ==2;^a                                                                                                                                                              r =t==
                . - -.                                    = ':=". . ' _ .2. -p/ "-W==_= =_----._.-
                                                                                --?                      ~_.                _ , . - . _                                                    _
                                                                                                                                                                                              ~
JW ~ ~ ~ - ' . .
                                                                                                                                                                                                                                                                                                                                    ~~''',----.
                ~~~~.'~~~~:-                                                  T_-*:. '~$...
                                                                                                                  ~~~'*"~
                                                                                                                                                          ~.*.^ ' ' ' ' * * ~ 1**~*''*~.                        - - - - - - -                      . . - - - .
q                                        .- --.-.
                                                                                                                              ~~__~~~'~~.~1                                                                                                      __-
                                                                                                                                                                                                                                                                      .4, _. _ _ . _ _ _ _ t=. _
t
              -_..---                                                                    ;                                                                                                                                                                        . . , _ . - .                                                  g _=_
f-
                                                                                                                                                                                                                                                                                                                  .--.1-.                        -.
g    .
__L._.
t= -. . .' .:-_- s [._~                                                Ci .
w_.---.                                                  -                  . - -                                                                                              . . --.-
                                                                      ,f.      -                                            - _ _
                                                                                                                                                                                                                                                                                                                              . . w .-- .
j--                                                        _ . - . _                                                                                                          -_
                                                                                                                                                                                                                                                                                                              ...._.4
                                                            . 1                                                                                                                                                                                  _ _ . _ . . ._
                                                          ,1 3
r'                          _.                                          .
y
_..                                            _m .. _
2 0                                                                2                                          4                                                            6                                                  8                                                      10                                                    12 PERCENTAGE OF CRBRP POWER (975MW)
Fig. 8-15 Pool Pressurization as a Function of Power for an Equilibrium Closed Pool 8-78
: 9. ENERGETIC REACTOR CORE DISRUPTION PHASE EVALUATIONS 9.1  Introduction All of the best-estimate evaluations of Chapters 6 through 8 terminate with virtually zero associated mechanical damage potential. To detennine the margin available, less probable accident paths are also investiggted to determine their consequence. The Category 3 scenarios presented in this chapter are based on assumed phenomenological behaviour that is believed to be very improbable. In addition, simple parametric calculations are performed to explore sensitivity to key variables. The events analyzed and the methods used are sunrrarized below.
In the TOP assessment of Chapter 6, only forced, improbable midplane failures under specific ramp conditions resulted in a sustained superprompt excursion according to SAS/FCI calculations; more realistic PLUT02 calcul-ations predicted a subprompt power burst for the same case (see Section 6.2.3). Since both methods predicted rapid increases in core net reactivity
(>75c) due to forced rod midplane failures, disassembly calculations were performed to provide further insight on the margins available, and the results are provided in Section 9.3. Some unique combination of driving reactivity rate, pessimistic fuel sweepout and forced midplane failures at irradiated conditions appears necessary to result in direct disassembly. Results of disassembly calculations for this case are provided in Section 9.3.
In the LOF assessment of Chapter 7 none of the conservative, Category 3 assumptions led to direct disassemblies of the reactor core. Instead, the reactor enters the meltout phase which was assessed in Section 8.2. The phenomenological evaluation of the meltout phase indicated that as localized disruption and boiling pools reach the core peripheral regions, fuel will escape into the large volumes represented by the hexcan interstitial gaps in the LAB and RB regions. Additional downward escape paths are represented by the control assemblies which communicate with the lower sodium plenum regions.
This fuel escape will neutronically tenninate the accident and would preclude  ,
a large-scale pool phase. The largest uncertainties relative to fuel dynamics and recriticality exist at the initiation of the meltout phase, ininediately following the SAS predicted power burst. A scoping estimate of the energetics 9-1 i
 
potential associated with such events is based on a comparison with both earlier results (3) and some preliminary reactivity calculations discussed in Section 9.4.
The formation of a large-scale bottled up pool is considered to be a Category 3 event. The chapter 8 assessment of this configuration did not indicate the likelihood of any sustained superprompt excursions. Thus, no disassembly evaluations of the large-scale pool phase are presented in this chapter.
The disassembly evaluations were performed with the VENUS-II code (5) which provides a two-dimensional, Lagrangian hydrodynamics model coupled to a point reactor kinetics model via an appropriate fuel equation of state.
Fuel vapor pressure is the only driving pressure for reactor disassembly.
No credit is taken for volatile fission products, steel or sodium vapor pressure. In addition to a specified reactivity driving function, the point kinetics model accounts for the temperature and spatial effects of the Doppler mechanism and material displacement effects.
The VENUS-II code used herein is identical with that employed during earlier analyses (3) with one exception. In order to approximate the 1.eibowitz vapor pressure correlation for mixed oxide fuel,(20) the ANI.-Menzies relation-ship for UO2 vapor pressure built into VENUS-II is multiplied by the value 3.67 as an input constant, A, to allow parametric evaluations. Hence, the fuel vapor pressure (dyne /cm ) is dependent upon fuel temperature ( K)' by, P = A exp (-4.34 in T - 76800/T + 69.979),            (9-1) where A is an input specified constant equal to 1.0 for UO2 and 3.67 for mixed oxide.
There are several criteria which should be satisfied in order to justify a VENUS disassembly cciculation. Primarily, the reactor must be undergoing a sustained superprompt critical burst. The reactivity must be at or near prompt critical, and must be increasing at a fairly high rate (30$/sec or higher) which shows no signs of abatement. The peak-temperature fuel regions must be in a largely molten state (since VENUS-II assumes that the reactor materials behave as an isotropic, non-viscous fluid) and high fuel vapor pressures must be imminent to satisfy the assumption of hydrodynamic behavior. However, high 9-2
 
single phase pressures at VENUS initiation are to be avoided, because the initial accelerations which result lead to an underestimate of the energetics.
All of the disassembly calculations presented below were done when the above-mentioned criteria were satisfied. In all cases, care was taken to begin the disassembly calculation early enough to ensure that conservative estimates of the energy generated were made in VENUS-II.
The initial conditions used to model the core for direct SAS transfer were generated as follows:
: 1. Power, fuel and steel mass, and material worths wers taken from the various fuel and blanket assembly hex-z data based on core nominal design calculations (Chapter 4).      -
: 2. Fuel temperatures and liquid sodium distributions were taken from the transient SAS3D output on a channel basis and mapped point-wise onto the VENUS r-z model grid. The local Doppler constant change with sodium voiding was also linearly accounted for in this mapping.
: 3. The power level, precursor concentrations and net reactivity were taken directly from the SAS3D output.
: 4. Driving reactivities were either calculated beyond the VENUS entry point via SAS3D or simply estimated based on SAS3D information and first-order judgments explained in each case. For example, when forced midplane failures are a major contribution to the driving reactivity, the reactivity rate was specified based on PLUTO results, to account for SAS/FCI modeling limitations. It should be noted that all channels contributed to the driving reactivity.
The consequences resultir.g from all of the cases are cast in terms of comparison with the isentropic work potentials which characterize the SMBDB loadings, namely,101 and 661 MJ by core fuel expansion to impact on the closure head and atmospheric pressure, respectively.
9-3
 
The isentropic fuel expansion work potential was obtained by an independent sum over all of the core nodes according to the expression,(100)
Work = [C (T0 -T) - U + R W M,                    (9-2) where C is the specific heat of liquid fuel, T0 is the initial fuel temperature, T is the fuel temperature after expansion to a given pressure P, L is the latent heat of the vaporization of fuel, X is the final mass fraction of fuel vapor, R is the ideal gas constant for one gram of fuel vapor, and M is the ma:s of fuel in the node. The fuel temperature and vapor pressure are related by the equation of state chosen, e.g., (9-1). Thus, the work calcu-lations are based on the temperature distributions that exist at the termina-tion of the VENUS neutronics calculation. The total work-energy to any given end state is then obtained by summing over the entire core fuel. Those nodes which were at a very high temperature contributed a much higher fraction than did those at or below the average core temperature. The peak and average core fuel temperatures are reported for each of the disassembly calculations.
The equivalent core fuel temperatures which were used to derive the SM8DB loadings are discussed in Chapter 10.
Finally, the perfect gas law is used to compute the volume occupied by the fuel vapor as the expansion takes place. Results are presented, both for expansion to 1 bar and for expansion to a volume which is the equivalent of 7
the inert cover gas volume (2.1 x 10      CC). The latter quantity will provide a meaningful estimate of damage potential if the sodium slug were to impact the reactor closure head when such an expansion has occurred.
9.2 VENUS Modeling of the Reactor Core Region This section describes the VENUS modeling performed to evaluate potential consequences from hydrodynamic disruption of the core during the initiating phase. This initiating phase model uses the nominal design information to describe the reactor at a point in the SAS calculation where the core fuel is essentially in its normal geometry and is described in the following subsection.
9-4
 
The potential for energetic consequences during the meltout phase are judged to be represented by reactivity addition rates which are too low for VENUS calculations (Sec. 9.4). A specific VENUS model of the meltout phase, therefore, does not appear in this report.
9.2.1  Initiating Phase.Model A primary consideration in modeling the CRBRP core for energetic dis-assemblies was that the best, consistent infennation was in a hex-z format while the VENUS-II computer program assumes an r-z geometry. Core informa-tion such as fuel temperature, power, material reactivity worth and material distributions are azimuthal (e) as well as r and z dependent. Expansion'of        ;
high temperature regions would be expected to occur in the e direction as          l well as radially between the outer internal blankets in rows 8 and 9. The      l modeling techniques developed for these analyses preserve as much of the hex-z    I detail as possible while accounting for the expected behavior of the reactor      I core during disassemLly.
The following criteria were used as guidance in mapping each assembly onto the VENUS grid for the E0C-4 core:                                            l l
(a) Beginning with the first row, each row of assemblies is mapped into successive annular rings of increasing radius in the VENUS grid. Thus, the relative radial relationships are preserved.
(b) The mapping sequence of assemblies within each radial row (e variation) into a VENUS region is based upon the overall radial worth distribution shape calculated by a row-to-row average (over e )
of worth at the reactor core midplane for fuel and blanket, separately.
Thus, the general radial dependence of material worth is represented.
(c) The major fuel and blanket groupings in the core are preserved in the VENUS model.
(d) To preserve the fuel and blanket temperatures predicted by SAS, assemblies of one SAS channel are not mixed with assemblies of another channel.
9-5
 
These criteria were judged to provide the best-estimate model of the CRBRP core. A detailed description of the mapping procedure and model decisions used for the present analysis is presented below.
Figure 9-1 shows a 60 section of the reactor core with each assembly numbered. The core is reflectively symratric on a 60 sector basis, Figure 9-2 depicts the assembly mapping sequence beginning with the center of the reactor at VENUS mesh Number 2 and ending with the fuel-radial blanket boundary at VENUS mesh Number 39 for the EOC-4 model. The region between radial mesh lines 39 and 45 representing the radial blanket and a portion of the radial shield had no individual assembly mapping because these regions were only expected to affect the analysis by providing inertial restraint to radial expansion. Beginning at the center core, assembly 32 of row 1 is mapped first followed by assemblies 33 and 34 in row 2 and assemblies 1, 2 and 3 in row 3. The order in which assemblies 33 and 34 and assemblies 1, 2 and 3 are mapped is based upon the overall radial worth profile of the reactor core for blanket and fuel, respectively. The mapping sequence resulted in the radial material worth profile shown in Figure 9-3 and the VENUS model shown in Figure 9-4. The radial worth profile is important because it is used by VENUS to predict radial motion reactivity feedback effects. For example, a positive radial displacement of radial mesh line 16 at the core midplane (see Figure 9-3) would produce a positive reactivity insertion since the material worth increases as r increases at that location.
The row-by-row mapping of assemblies was a general criterion applied throughout the core except for specific instances where other factors were considered more important. The row 8 and row 9 isolated blanket assemblies (assemblies 44 - 47) were mapped outside the row 9 fuel to keep the row 7, 8 and 9 high power fuel assemblies hydrodynamically coupled without an artificial blanket ring being introduced in the middle of the fuel region.
Assemblies 17 and 25 in row 9 were assumed to be part of row 10 for two reasons.
First, since the assemblies had to be mixed with other assemblies to meet the minimum node radial dimension required by the VENUS computer code, it was consistent with the established mapping criteria to combine the assemblies with assemblies 26 and 31 in row 10 represented by the same SAS channel. (The SAS channel representation for the E0C-4 core is shown in Figure 4-9). Secondly, the assemblies are on the outer boundary of the active core like the assemblies of row 10.
9-6
 
There were several instances where two types of assemblies were in a row and a-decision was made on which assembly type would be mapped first. In each case,the decisior; was 3ased upon the pertinent data. As an example, control assembly 48 in rob 4 could have been mapped outside the blanket assemblies of that row, but it was conservatively mapped on the inside since the pressure in the row 5 fuel assemblies would then act directly on the row 4 blanket assemblies forcing them to move inward and produce a positive reactivity feedback. Mapping the control assembly on the outside would produce the opposite non-conservative effect.
In another instance, blanket assemblies 4 and 8 were mapped on the outside of the row 5 fuel assemblies because they are further from the center of the core. This put them in the VENUS region containing the row 6 blanket assemblies, and preserved the radial worth profile. In a    4 third instance, control assemblies 49, 50 and 51 were mapped inside the row 7 fuel assemblies for two reasons. First, there was the desire to keep the high power fuel assemblies in rows 7 and 8 together. Second, the control assemblies act as a buffer between the row 6 blanket assem-blies and the row 7 fuel assemblies reducing inward motion of the blanket assemblies and, therefore, reducing the associated negative reactivity feedback. Again, this modeling is a conservative approach.                l 1
1 The alternating fuel / blanket assemblies (38 and 43) constitute a  !
special consideration in the VENUS modeling process. First, these assemblies were assumed to be part of row 7 so that they would be I
included within the hydrodynamic zone formed by the row 7, 8 and 9 fuel assemblies. Secondly, because of limitations in the method used by VENUS to calculate the radial worth gradients, they were given their own region in VENUS (region 13 in Figure 9-4). VENUS uses spatially dependent
' material worth data to define worth gradients within each VENUS region which is then used to calculate the change in reactivity due to material i displacements. However, since assemblies 38 and 43 contained lower 9-7
 
burnup fuel, the material worth is much higher than for the other fuel assemblies and VENUS would calculate a nonphysical reactivity change for any given radial displacements based upon the hex-z nature of the worth information available. Figure 9-3 shows the relatively high worth of assemblies 38 and 43, located between mesh lines 25 and 26. The neutron flux distribution, given in Figure 4.3.51 of the PSAR, in conjunction with a first-order estimate of the worth change by displacement, indicated that the change in reactivity due to radial displacements in this region would be overpredicted by VENUS.
Putting these fresher fuel assemblies in their own region recognized the hex-z method of calculating material worths and prevented the modeling of inappropriate radial worth gradients by VENIS. Consideration of the neutron flux distribution previously mentioned also indicated that these fresher fuel assemblies were located at the highest neutron flux in the core. Any r or e motion of these assemblies would result in a negative reactivity feedback. Using the neutron flux distribution as a guide, the radial worth l          gradients were estimated and the appropriate material worth data were given for these assemblies in the VENUS model . The evaluation of the VENUS analyses confirmed that the sign of the radial motion feedback predicted for this region was appropriate for the predicted displacement. The VENUS-II input for E0C-4 TOP Case 2 is presented in Appendix G.
9.3 Hydrodynamic Disassembly During Initiating Phase Of the large number of SAS3D evaluations in Chapters 6 and 7 only one specific category 3 scenario resulted in an energetic disassembly; EOC-4 TOP Case 2 when based on the conservative modeling within SAS/FCI (Section 6.2.3). The case assumed failure of both fuel and internal blanket rods at the axial midplane. The mechanism causing the sustained superprompt con-dition was the failure of both fuel and blanket rods and the subsequent sodium, fuel and blanket material relocations. It has been previously shown that for such conditions the SAS/FCI model, using fission gases as the driving force, can become non physical in its calculation of fuel reactivity feed-backs.(3) The SAS/FCI reactivity feedback calculation is nonphysical in that internal fuel rod momentum, inertia and compressible flow effects are ignored, and is most in error during high power conditions near prompt critical.
9-8
 
Indeed, more realistic PLUT02 calculations for the same case predicted a subprompt power burst rather than a sustained superprompt-critical excursion (Section 6.2.3). However, to provide a conservative estimate of energetics potential for this Category 3 case, VENUS calculations were perfonned based on the use of less realistic SAS/FCI calculations. In view of the autocata-lytic nature of the SAS/FCI modeling,(3) the driving ramp rate for these VENUS calculations was 43$/sec which is approximately the rimp rate of the subprompt power burst predicted by PLUT02. (It is noted that the ramp rates predicted by SAS/FCI for the earlier homogeneous core VENUS calculations (3) were also adjusted in accordance with results predicted by PLUT01, which is the previous versionofPLUT02.)
The initial fuel and sodium conditions associated with the disassembly were obtaired at the end of the SAS calculation based on the SAS/FCI results discussed in Section 6.2.3. Three VENUS calculations were performed to ascertain the nominal consequence as well as the effect of the uncertainty in fuel vapor pressure on the calculated energetics. Besides the driving ramp rate, the vapor pressure is considered to be an important variable controlling energetics. The base case approximates the Leibowitz vapor pressure corre-lation for mixed oxide fuel (discussed in 9.1). Two additional cases use approximately one-fourth and twice the nominal vapor pressure relation to examine stated uncertainties.(20) With a multiplier of 0.27, the vapor pressure becomes that of the original ANL-Menzies relationship for UO2 used in the VENUS calculations for the CRBRP homogeneous core design.(3) Using a multiplier of 2.0 is considered to be a reasonable upper level to examine the effects of uncertainties.
Table 9-1 presents a summary of the initial conditions, the VENUS results and the fuel expansion work potential for the above calculations.
The calculated head impact energy of 33 N is well within the SMBDB value of 101 N. The large imposed variations in vapor pressure do not modify the above conclusion. Reducing the vapor pressure did not significantly alter the thennal consequence which indicates that the disassembly power burst is Doppler dominated. The resulting work potential is significantly reduced, however, due to the lower equivalent fuel vapor pressures. Doubling the fuel pressure resulted in a quicker disassembly after the burst and hence quite lower peak temperatures. The net change in the expansion work potential was very small.
9-9
 
To assess the additional margin represented by the SM808, a parametric calculation was performed which indicated that a sustained insertion on the order of > 80$/s would be required to reach the SMBDB level.
9.4 Hydrodynamic Disassembly at Initiction of Meltout Phase An evaluation of the core meltout phase was presented in Chapter 8.
It was concluded that the most likely progression path was a nonenergetic dispersal of fuel into both the lower core structure and radial blanket /
shield regions. During the meltout period, the most uncertainty in the pro-gression path exists immediately following the initiating phase power burst.
The key phenomena were discussed in Section 8.2.3, wherein the reactor fuel assemblies were phenomenologically separated into three types (lead, intermediate and low power) depending upon the fuel physical conditions. Although the core-wide fuel behavior is expected to be very incoherent and generally benign, some fuel compaction cannot be excluded at this time.                    Therefore, scoping reactivity calculations were perfomed to investigate the effects of fuel compaction in the B0C-1 configuration where the highest potential for energetic consequences are judged to exist. In particular, the negation of fuel boilup in the lead assemblies (17% of core fuel assemblies) is assumed to allow compaction of liquid mobile fuel which had not penetrated into the UAB. Uncertainties associated with the drainage or settling of fuel within the intermediate power assemblies (36% of the core fuel assemblies) are also considered as a potential source of reactivity insertions.
As stated in Section 8.2.3 it is quite likely that the lead fuel (SAS Channels 9 and 11) will be in a churned-up state following the initial vapor pressure induced dispersal. It is herein assumed that the vapor production is rapidly diminished leading to a collapse of the two-phase system upon the existing lower steel-fuel blockage. Recompaction to liquid densit' begins near the bottom of the core and proceeds upward as the existing vapor bubbles rise and the void space is eliminated. At the same time the upper interface of the churned-up region would begin to drop starting from a zero initial velocity. A coherent collapse in Channels 9 and 11 would result in an
* The DIF3D code was employed with eight neutron energy groups.
9-10
 
approximate 10$/s reactivity insertion at prompt critical. However, the initial fuel conditions in Channels 9 and 11 are different, and it is quite improbable that the fuel would behave coherently in all 27 assemblies.
Reactivity insertion rates which result from a range of assumptions Cn the behavior of the fuel are in the range of a few tens of dollars per second. Such insertion rates are at the bottom of the range for which hydro-dynamic disassembly calculations are deemed to be appropriate for the                ,
conditions existing in the heterogeneous core at the entrance to the meltout phase. In contrast to these low rates a VENUS calculation modeling meltout recriticality indicates that a reactivity insertion rate of the order of 90 l
to 100 $/s would be required to reach the SMBDB energetics level.
In sununary, although the best estimate progression path for1tne meltout phase is a subcritical fuel removal, recriticality due to fuel compaction was examined. Based on a consideration of the large incoherency in fuel conditions and scoping reactivity calculations, the SMBDB energetics level provides a large margin for uncertainties in fuel behavior at initiation of the meltout phase.
9.5 gaunary and Conclusions on Energetic Reactor Core Disruption Phase l
l Disruption and dispersal of core materials leading to a permanent subcritical state is expected to occur at low pressures such that significant mechanical loadings will not be imposed upon the primary heat transport system (PHTS).
Uncertainties in the phenomenological behavior of core materials do remain and lead to a consideration of energetic core disruptions. The consequences of these uncertainties, along with parametric calculations to quantify the margins which exist in the SMBDB definition, have been assessed.
Only one mechanistic entrance to the energetic disassembly phase was indicated from the initiating phase. This was an EOC-4 TOP at 104/sec 9-11
 
with forced fuel rod midplane failures. Although this TOP event was non-energetic when analyzed with the more realistic PLUTO-2 code, the use of SAS/FCI did result'in a sustained superprompt critical excursion. Hence, this case not only involved a set of remote phenomenological assumptions on materials behavior during a TOP 6 vent, but also was based on less realistic SAS/FCI calculations. The energetics consequence was judged to be repre-sented by a sustained reactivity insertion, through prompt-critical, of approximately 40-45$/s. This insertion resulted in a 33 MJ work potential at sodium impact with the reactor head. Large variations in the fuel vapor pressure formulation did not result in any significant increase in work potential. It was indicated that sustained reactivity insertions of approximately twice the conservative estimate would be required to reach the: SMBOB value of 101 MJ due to sodium slug impact; the limiting character-ization for this analysis.
The core disruption phase of the accident scenario was described in phenomenological terms in Chapter 8. No energetic recriticalities were foreseen in either the meltout or large-scale pool phases. The potential consequences of a fuel compaction and disassembly at the initiation of the meltout phase were examined. It was. concluded that the consequences could be represented by a reactivity insertion rate of a few tens of dollars per second or less. These consequences are well within the SMBDB.                          In contrast, VENUS calculations indicate that reactivity insertion rates of the order of 90 to 100$/s are required to reach the SMBDB energetics level.
9-12
 
Table 9-1 Sunnary of EOC-4 TOP Disassembly Calculations Nominal UO Vapor 2          2 x Nominal Initial Condition              Case
* Pressure **  Pressure Ramp Rate, S/sec                43            43            43 Core Avg. Temp., K            2551        2551          2551 Core Peak Temp., K            3002        3002          3002    ,
Normalized Power                35            35            35 Reactivity, S                  .98          .98          .98 l
VENUS-II Results Core Avg. Temp., K            3582        3563          3517 Maximum Temp., K              5090        5073          4970 Energy in Molten
. Fuel, MJ                      3219        3161          3020 Normalized Peak Power                        2014        2038          2005 Duration of Disassembly, msec              7.8          8.8          7.7 Fuel Expansion Work, MJ Work-Energy to Na-Slug Impact                  33            17            39 Work-Energy to 1 bar                          111            56          127 Approximates Leibowitz mixed oxide vapor pressure 1.0 Nultiplier in Eq. (9-1) 9-13
 
1 1
Fuel Assently 81anket Assee ly
                    '                                                                    Altemating Fuel /
Blanket Assesely Control Assenely 24              30
                              \f        /  23              29
( 16/          15              46
                                                                                  /
j 28 47              21                            27 O49 43                  11              20                            19 18 42                                              44 8                  41              10                            14                17  10 !
6              39                                      8 3                  36                4 2              35                          g h hk i
34                    1 4
7 f
33          3 32              ,
1 Fig. 9-1 CRBRP Heterogeneous Core Numbering Plan 9-14
 
32              33                34          3          2            1      48 8                8                8            F          F            F      C (1)              (1)              (1)          (4)        (2)          (2) 2                4                6                8      9              11      12    13 37        35      36        7        6      5      39      4    42      40      41 8
l B        B        B        F        F      F      B      B      B      B        B (3)    (3)    (3)        (4)    (2)      (2)    (5)    (3)    (5)    (5)      (5) 13      14      15        16      17      18      19      20      21      22      23    24 49        38        9      10      14      13      20      18        19            44 50        43      12      11      15      16      22      24        21            47 51                                                                    23 C        F        F        F      F        F      F      F        F              B (6)      (7) i (11)      (10)      (9)    (11)    (12)    (13)            (5) 24      25      26        27      28      29      30      31      32              34      35 45        17      28      27        :      assembly number (Figure 9-1) l      46        25      21      30 l
26 31 B        F        F        F      :      assembly type (Fuel, B,lanket, Cpntrol)
(8)      (14) _ 115)      (15)      :      SAS channel (Figure 4-9) 35      36      37        38      39 *--- VENUS radial mesh number (Figure 9-7)
Fig. 9-2 Assembly Mapping Plan for E0C-4 Initiating Phase VENUS Model 9-15                                                l
 
                                                            -      _                              0
                    -                    -        -                                                4 1
l e
d o
M S
l s      I0            U i
ar i e 2
1 N
E db                      V am ru n                      e s
S                          a Uh                      h Ns                      P Ee
.                                                              -                      Vm                        g i
I 0            n i
                                              -                                        :            0          t 1
a
                                          -                        .s            33 6                        i t
                                                                ~                                              i
                                                                    -  .        e.4                            n 4e                                                                          I B                                                3
                                                                                                        )
_                                                                          4 m        -
e                          _                                                              I0      c    C 8  (
                                -                                                                              0
                              .                                                                          n    E
  -                                                                                                        o      r
                              -                                                                          i t        o
                            -                                                                            a    f c
o      e L        n a
I0    l      l p
i e  s4              6 a
_                                      d 2                i
_                              d      i
                                                                            -                              a      M R
e e91                              r o
C t
6          I0              a i
                        -                                                      s      1            4 h
t r
_      s3 o
0 1
W
_                                                                                      l a
i I0              r i
2            e
                            -                                              a 0        s8 t
a M
3 9
                                                                                  %s2                                  .
s                            0            g i
                      -                    -        ~                  -
F 4        3                    2      1          O    1                        2
                                          ^ Sxm 8ki zta EI3 ym ll                    l                ? '                      l\l      (Il            lll
 
Radial Location (cm)
O.                      16.795                            38.612                              62.518                                                    100.968                        129.553
      "                            !          ist                  i        16          list                i I I ti l ii                              il        't          i i i 1                162.56 l          ,
i        11        illi                t                i      i          i      1:        '
t      I  i  i  i i            i        i                          i    ,e                  i                I      I  I  I  i 1
4                      i              f        I i
                                                                                                                                  '4                  i          .i          l  I  i  !
II      l l            't-                                                    i                              i  i  t  t 1i                    I'          I      f                                                            I i                    i  i  i
                                                    !!                    ii            I                  l                        l 1,                  I          i          i  i  !
I              i l-          iii          i              ii          i                    i        I                                                  i          i  i  I 36                      i ,,            , ,,          ,            ,,          , ,,,                                        i 11,, ' , i                                                    --127.0 i          fe        ? I1          i                    i    i l: i                    i I                    it            i                      t    !        I ll l          l          8        1  i                    i        {t4            l l$                    ii            i        l6            i    6  t    i i          i          i        i          i              i    it6i                      i )                6    .i          i        i i          e        i    e l        4          i      ei          i ii t                                i      i-        e      i        ti            e i      t    #
e
                                                                  !      ie                  ii                            i      i        i      i        ii            i i i          4 u                        ,                                                                                      ,I t        si            i e e i                      >
i          i
                                                                                                                    !                                  i        it            j i 1          e              1 i;
i e i i l 1
  ,a                                                                                                                                                                  i                I                    o g                                                                                                                                                '        .                      i                    g x      --
1                      p-- -S--4,4                                      11                  15        --            46 -17                            18f ,      19          C
  %                                              !i                                  i      6                                          i                                      i ,    l.                    E g                                              ii                                        i                                                                        '
I            !
  <                            l                                                                                                                                            i            ?
m                            i                                                                              .        .                                                  .    ' , i Q
g u,
l i ,
il      l
                                        , ie i      ;              e i
s        i                i i            e i          5 e                                            e                                      i              i          ,        , ,i 4        i , i .
  >        l                  i        i!i                    -
                                                                                                #                                                                          i , i i e
i t                              '
tf      #    -
                                                                              !                              t                                                    I      t i
* I i              i i.                  6,      ,                    .                                .                                    .        ,.            . . . ,
            ,              i    6,              ei      si                  .            ,                            i                        e        ii            . , , ,
e              i li                  ei      $I              I I        i      I                                  (                  !        ii            I 8      1  6
            '              '    ''              ''      ''              ''          '                        '          ' ' ' '                  '        ''            i ' ' '
10                                                                                    !                                                                                                          35.56 i        t  iet            ll            ii          i li                      i                        leii                  i              i i t l l                  '
I                    i      i                    i    l                          I                        li                    i              i i i i t                    i      l                    i    i                                                      i              ii                i    . I i
                                -l              21          i 1/6        el      l                                    u                      I si              i i t        i l                                          ll            l1                    (t                i i l        i l                                                i        !                      I                      i 1    i t                                                i                                                        i i    i i                  i          i                                    t              li.                        I        i i i        6 2                                ,                              ,                                ,
                                                                                                                                                                          .                      . O.
2                            8                      16                                    25                                                            39                          45 VENUS Radial Mesh Numbers Fig. 9- 4 VENUS 19 Region Model for EOC-4 Initiating Phase 9-17/10
 
i
: 10. RELATIONSHIP OF HETEROGENEOUS CORE ENERGETICS ASSESSMENT TO CRBRP STRUCTURAL MARGIN BEYOND THE DESIGN BASE (SMBDB) 10.1  Definition of Pressure-Volume Relationship for SMBDB The pressure-volume (p-v) relationship for the SM8DB was defined based upon extensive previous analyses and considerations of HCDA events. (2) The judgments which formed the basis for the selected p-v relationship were the following~:
: 1. No energetic consequences were predicted based upon a best understand-ing of HCDA phenomenology.
: 2. Significant energetic consequences were only plausible when low proba-bility assumptions were made on physical processes.                    ,
: 3. At the termination of a calculated energetic core disassembly the fuel  '
is the only significant thermal energy source to generate potential mechanical damage.
: 4. A fuel themal energy state was chosen which encompassed a wide range 4
of both phenomenological and arbitrary assumptions.
: 5. Although many dissipative mechanisms were identified, a thermodynamic-ally limiting, isentropic process for mechanical work extraction from fuel was selected to define the p-v relationship. (100)
The themal source was chosen based upon the absence of energetics in the nominal progression paths and engineering judgments on the probability of event occurrences, to encompass a wide spectrum of core-disruptive initiators and phe-nomenological assumptions. With allowance for a broad range of uncertainties, as wall as arbitrary assumptions, the calculated conditions associated with the CRBRP homogeneous core resulted in core average and peak temperatures less than 4600 and 6000*K, respectively.(3) The most energetic conditions within this ranga resulted from hypothesized sustained superprompt recriticalities in a homo-i gI:nized, molten core configuration.
The thermal energy source for the SMBDB characterization was chosen to rcpresent a molten core condition with fuel temperatures of 6030/4800*K (peak /
average). The detailed fuel mass-temperature is provided as Figure 10-1. The themal characterization was purposely not related to any specific analysis, but was defined to encompass a large range of HCDA scenario consequences.
10-1
 
The themal source of Figure 10-1 was converted into a pressure-volume relationship by the assumption of an isentropic two-phase expansion process, the ANL-Menzies fuel (Uranium dioxide) vapor pressure, and use of a perfect gas law to define the fuel volume. (100) This pressure-volume relationship (Table 10-1) was judged to provide a substantial margin relative to the potential of the core materials to apply mechanical loads on the reactor coolant boundary.
f t, Table 10-1, was subsequently employed as the source tem for available work in a two-dimensional structural dynamics model of the reactor coolant boundary.
Integration of the pressure-volume curve yields work potentials of 101 and 661 N for volume increases equivalent to sodium slug impact on the vessel closure head and to atmospheric pressure, respectively. These work potential values, especially that for head impact, can be used to generally compare the energetics consequences of any HCDA scenario to the Structural Margin Beyond the Design Base capability.
10.2 Heterogeneous Core Mechanical Loads vs. SMBDB The best-estimate evaluations presented in Chapters 6 through 8 show that the assumed TOP and LOF accidents do not result in energetic consequences for the heterogeneous core. Thus, as in the homogeneous core,(3) assumed TOP and LOF events without scram protection in the heterogeneous core are expected to terminate with negligible mechanical loads on the reactor structure.
A range of pessimistic assumptions was employed in the initiation phase calculation, but did not result in an energetic consequence, except in one instance where midplane failures were forced during an EOC-4 TOP scenario (Category 3). The resulting work energy for this Category 3 case was 33 N for sodium slug impact and 111 N for a 1 bar expansion. This work energy is well within the SMBDB work energy of 101/661 N.
As a parametric study, the ramp rate used in the E0C-4 TOP energetic case was arbitrarily increased to determine a limiting ramp rate which yields the SM808 head impact work. The work energy to slug impact of 101 N (SMBDB) was achieved when the ramp rate determined under Category 3 assumptions was approximately doubled; e.g. 80$/s. The work energy to 1 bar expansion at this limiting ramp rate was only 350 MJ, which is well below the corresponding work energy of 661 N. The reduction in the 1 bar expansion work potential is due to the change in the fuel equation of state (Section 9.1), as well as the specific core design which results in less fuel at the peak temperatures at E0C-4.
10-2
 
l The ' Category 3 uncertainties associated with the potential for fuel compaction at initiation of the meltout phase were addressed in Section 9.4.
Such uncertainties were judged to result in reactivity insertion rates below those appropriate for a hydrodynamic disassembly. A parametric VENUS calculation was performed to determine the reactivity insertion rate required to reach the SMBDB head impact energy (101 MJ) at the initf a-tion of the meltout phase. The required reactivity insertion rate is on the order of 90 to 100 $/s, indicating substantial margin for compactive fuel behavior.
Although a bottled-up, critical configuration was not mechanistically defined, Category 3 assumptions were inferred to conservatively define two large-scale, critical pool configurations. The geometries selected and the resulting neutronic characteristics are defined in Appendix F. A VENUS calculation was again performed to determine the reactivity ramp rate required to reach the SMBDB in these large-scale pool' core configurations. The limiting ramp rate for the SMBDB work energy (head impact) was estimated to be approximately 75$/s. Hence, a substantial margin exists to accommodate a sustained superprompt excursion in a bottled-up critical core.
Thus, for a large range of low probability, Category 3 conditions, the mechanical work energy associated with an HCDA in the heterogeneous core j      is bounded by
* 33 MJ for the slug impact and S 111 MJ for a one bar expansion,
. which is well within the SMBDB work energy of 101/661 MJ. Thus, a sub-stantially higher ramp rate than the perceived Category 3 conditions can be acconinodated by the SMBDB defined conditions.
10.3 Thermal Energy Conversion to Mechanical Loads Uncertainties in the conversion of fuel thennal energy to mechanical loads was previously considered in the selection of the SMBDB (Ref. 3, Chapter 12).
At that time it was concluded that essentially all uncertainties in the real core expansion process would degrade the thennodynamic potential of the fuel source to perform mechanical work.
10-3
 
Since the homogeneous core assessment was completed, additional analytic and experimental information has become available to further support the position that the isentropic expansion selected for CRBRP is very conservative. Of parti-cular note are the extensive computer calculations perfcrmed with the SIMMER code (101) and the heat transfer / fluid dynamics experiments performed at SRI International (102) and Purdue University.(103) This new information strongly demonstrates the highly dissipative, nonisentropic charactistics of the two-phase expansion process. In particular, the coupling of the fluid dynamics with the upper core structure and the resulting flow throttling greatly reduces the loads transmitted to the reactor head.(102) Additional information has also been generated to support the absence of sustained FCI overpressures during the ejection of fuel into the upper sodium pool. (42)
Based upon the assessment provided herein, it is concluded that the SMBDB source tenn provides adequate margin to acconinodate the energetics potential of the CRBRP heterogeneous core. Additionally, an increasing amount of new in-formation, both experimental and analytical, further supports the conservatism inherent in the isentropic expansion process that was assumed in developing the component loadings from the SMBDB thermal source term.
10-4
 
Table 10-1 Pressure-Volume Relationship for Structural Margin Beyond the Design Base 3
P(bar)              V(m )
273.0                2.56 203.0                2.62 147.3                2.88 103.8                3.60 86.1                4.31 70.8                5.42 57.6                7.23 46.5              10.10 37.1              14.75 29.3              22.01 22.8              33.13 17.6              49.54 13.3              75.38 10.0              115.26 l
l l
l l
l                                                !
i 10-5
 
20 100 Fuel Mass    7500 Kg 18  -            ~4                                        Average T    4800 OK        -
90 l
G                                                              Peak T        6030 K                  g g  16  -                                  g--  7 80  [
E                                          I    I
* t 5: 14  -
                                    -7        I i                                            -
70    g l
g_7                                                    ~
E                                    i I
12  -
l      __j                                                    -  60 a                  r7          i                                                                        e L _ .)                                                              -  50 a    10  -
f                  l
                      !                                                                                    I h                                                      l                                    -
40    S r
    ?*  8  -
l 2                                                      i                                              <c 0
E I                                    '7                                              0
;  y    6  -
l                                          L--  q 30    2 i                  I                                                    L_,                            i 4
20 l                                                        I 2  -
rJ                                              l L-1              -
10 8
l    .    .    .    .    .    .      ,      ,      .    :  .'    ,    ,
36    38  40    42    44    46    48    50    52    54    56    58  60    62  64 0
FUEL TEMPERATURE (100 K)
Figure  10-1 Therwal Source Specification of Structural Margin Beyond the Design Base
: 11. REFERENCES
: 1. CRBRP Preliminary Safety Analysis Report, Project Management Corporation, Docket No. 50-537.
: 2.  " Hypothetical Core Disruptive Accident Considerations in CRBRP; Energetics and Structural Margin Beyond the Design Base,"
CRBRP-3, Vol. 1.
: 3. J. L. McElroy, et al., "An Analysis of Hypothetical Core Disruptive Events in,the Clinch River Breeder Reactor Plant," CRBRP-GEFR-00103, General Electric Co.,, April 1978.
: 4. W. R. Bohl, et al., "An Analysis of the Unprotected Loss-of-Flow Accident in the Clinch River Breeder Reactor with an End-of-Equilibrium-Cycle Core," ANL/ RAS 77-15, May 1977.
: 5. J. F. Jackson and R. E. Nicholson, " VENUS-II: An LMFBR Disassembly    -
Program," Argonne National Laboratory, ANL-7951, 1972.
: 6. F. E. Dunn, et al., "The SAS3A LMFBR Accident Analysis Computer Code,"
ANL/ RAS 75-17, April 1975.
: 7. F. E. Dunn, et al., "The SAS2A LMFBR Accident Analysis Computer Code,"
;          ANL-8138, October 1974.
: 8. W. R. Bohl, "SLUMPY: The SAS3A Fuel Motion Model for Loss-of-Flow,"
ANL/ RAS 74-18, August 1974.
: 9. L. L. Smith, et al., "SAS/FCI: The SAS3A Fuel-Coolant Interaction Model," AtlL/ RAS 75-33, Argonne National Laboratory, December 1975,
: 10. W. R. Bohl and T. J. Heames, "CLAZAS: The SAS3A Clad Motion Model,"
ANL/ RAS 74-15, Aug. 1974.
: 11. D. S. Dutt, et al., "A Correlated Fission Gas Release Model for Fast Reactor Fuels," Trans. ANS 15,, p.198 (1972).
11-1
: 12. E. E. Gruber, " Calculation of Transient Fission Gas Release from 0xide Fuel," ANL-8143, November 1974.
: 13. E. E. Gruber, " Transient Gas Release from Oxide Fuels: Parametric Representations of FRAS Results," ANL/ RAS 75-7, March 1975.
: 14. C. A. Hinman and O. D. Slagle, "Ex-Reactor Transient Fission Gas Release Studies, Fuel Pin PNL-2-4," HEDL-TME 77-83, May 1978.
: 15. E. E. Gruber, "FRAS Code Development," ANL-ROP-54, October 1976.
: 16. C. C. Meek, "FSTATE," ANL/ RAS 77-49, November 1977.                  -
: 17. R. W. 0 stensen, "FISGAS - A Code for Fission-Gas Migration and Fuel Swelling Behavior in an LMFBR Accident," SAND 78-1790, Nov. 1979.
: 18. C. A. Hinman and E. H. Randklev, "Ex-Reactor Transient Fission Gas Release Studies, Fuel Pin PNL-10-50 and 55," HEDL-TME 79-52, Sept.
1980.
: 19. O. D. Slage, et al., " Experiments on Melting and Gas Release Behavior of Irradiated Fuel," HEDL-TME 74-17, 1975.
: 20. L. Leibowitz, et al., " Properties for LMFBR Safety Analysis,"
ANL-CEN-RSD-76-1, March 1976.
: 21. R. N. Koopman, et al., " Final Report for TREAT Transient Overpower Tests R9 and R12," ANL/ RAS 80-11, Argonne National Laboratory, April 1980.
: 22. B. J. Wrona and T. M. Galvin, " Fuel Behavior Slightly Above or Below the Failure Threshold," Trans. ANS, 21, p. 306, 1975.
: 23. B. W. Spencer, et al., " Summary and Evaluation of R-Series Loss-of-Flow Safety Tests in TREAT," Int. Mtg. on Fast Reactor Safety and Related Physics, Chicago, Ill. , October 1976.
11-2
: 24. H. Kwast, " Phenomena Observed During Failure of Fast Reactor Fuel Pins Tested under Loss-of-Cooling Conditions," Int. Mtg. on Fast Reactor Safety Technology, Seattle, WA, August 1979.
: 25. H. U. Wider, et al. , "The PLUT02 Overpower Excursion Code and a Comparison with EPIC," Int. Meeting on Fast Reactor Safety Technology, Seattle, WA, August 1979.
: 26. G. Bandyopadhyay and J. A. Buzzell, " Role of Fission Gas and Fuel Melting in Fuel Response During Simulated Hypothetical Loss-of-Flow Transients," Nuclear Technology, 4_7,, January 1980.
: 27. G. L. Cano, et al., " Visual Investigation of Reactor Fuels Response to Simulated LOF Heating Conditions, First Series," SAND 79-0940, October 1979.
: 28. J. G. Eberhart, et al. , " Final Report on Test L4, A Loss-of-Flow Experiment," ANL-76-130, December 1976.
: 29. C. E. Dickerman, et al., "Sumary of TREAT Experiments on Oxide Core-Disruptive Accidents," ANL-79-13, February 1979.
: 30. R. G. Palm, et al., "F1 Phenomenological Test on Fuel Motion: Fincl Report," ANL-78-50, May 1978.
: 31. R. Sims, et al ., " Loss-of-Flow Test L5 on FFTF-Type Irradiated Fuel,"
ANL-78-24, March 1978.
: 32. R. Sims, et al., " Interim Report for ANL/ RAS Loss-of-Flow Test L6,"
ANL/ RAS 79-20, August 1979.
: 33. R. Sims, et al ., " TREAT Test L7 Simulating an LMFBR Loss-of-Flow Accident witi. FTR-Type Fuel," ANL/ RAS 80-5, Argonne National Laboratory, June 1980.
: 34. R. Sims, "An Interpretation of Fuel Motion in Recent TREAT Experimants with LMFBR Fuel," ANL/ RAS 79-18, July 1979.
11-3
: 35. C. H. Bowers, et al . , " Analysis of TREAT Tests L7 and L8 with SAS3D, LEVITATE AND PLUT02," International Meeting on Fast Reactor Safety Technology, Seattle, WA, August 1979.
: 36. G. Bandyopadhyay and J. A. Buzzell, " Cladding and Fuel Motion of Irradiated Stainless Steel-Clad Mixed 0xide Fuels in Response to Simulated Thennal Transients," Int. Meeting on Fast Reactor Safety Technology, Seattla, WA, August 1979.
: 37. R. W. 0 stensen and M. F. Young, " Analysis of In-Pile Fuel Disruption Experiments," Trans. ANS, 2_8, 8  p. 437 (1978).
: 38. R. W. 0 stensen, " Comparison of FISGAS Swelling and Gas Release Predictions with Experiments," Specialist Workshop on Predictive Analysis of Material Dynamics in LMFBR Safety Experiments, Los Alamos, NM, March 1979.
: 39. D. H. Worledge and G. L. Cano, " Study of the Dispersive Potential of Irradiated Fuel Using In-Core Experiments," Int. Meeting on Fast Reactor Safety Technology, Seattle, WA, August 1979.
: 40. L. W. Deitrich and R. W. 0 stensen, " Assessment of Fission-Gas-Driven Fuel Disruption and Dispersal in a Hypothetical LMFBR Loss-of-Flow Accident," ANL/ RAS 77-4, February 1977.
: 41.  " Nuclear Systems Materials Handbook," HEDL-TID-26666, Hanford Engineering Development Laboratory, as of January 198C.
: 42. B. W. Spencer, et al., "Results of Recent Upper Plenum Injection Tests," Proc. of the International Meeting on Fast Reactor Cafety Technology, Seattle, WA, August 1979.
: 43. B. W. Spencer, et al., " CAMEL T0P/ Fuel Sweepout Single-Pin Test C2,"
ANL/ RAS 77-22, July 1977.
: 44. Reactor Development Program Progress Report, July 1979, ANL-RDP-85,
: p. 2.21.
11-4
 
                                                                            \
i
: 45. U.S. Department of Energy Fast Reactor Safety Program Progress Report, October-December 1979, ANL/TMC 80-1, p. 60.
: 46. B. W. Spencer, et al., " Interim Report on TREAT Test R8, a Seven-Pin-Loss-of-Flow Test with Pressurized Pins," ANL/ RAS 78-39, September 1978.
I
: 47. T. G. Theofanous, " Multiphase Transients with Coolant and Core      I Materials in LMFBR Core Disruptive Accident Energetics Evaluation,"
NUREG/CR-0224, Purdue University, July 1978.
: 48. W. R. Bohl, "Some Recriticality Studies with SIMMER-II," Proc. Int.
Mtg. Fast Reactor Safety Technology, Seattle, WA, August 19-23, 1979.
: 49. T. E. Kraft, et al., " Simulations of an Unprotected Loss-of-Flow Accident with a 37-pin Bundle in the Sodium Loop Safety Facility,"
Proc. Intl. Mtg. on Fast Reactor Safety Technology, Seattle, WA, Aug. 19-23, 1979.
: 50. H. K. Fauske, "Some Coments on Cladding and Early Fuel Relocation in LMFBR Core Disruptive Accidents," Trans. Am. Nucl. Soc., Vol. 21, j    pp. 322-323, 1975.
l l
: 51. R. E. Henry, et al., " Wood's Metal Cladding Relocation Experiments,"
ANL/ RAS 77-37, 1977
: 52. B. W. Spencer, et al., " Reactor-Material Fuel Freezing Experiments Using Small-Bundle, CRBR-Type Pins," ANL/ RAS 79-11, Argonne National Laboratory, July 1979.
i
: 53. B. W. Spencer, et al., "Sumary and Evaluation of Reactor-Material Fuel Freezing Tests," Proc. Intl. Mtg. on Fast Reactor Safety Technology, Seattle, WA, Aug. 19-23, 1979.
: 54. F. B. Cheung and L. Baker, Jr., " Transient Freezing of Liquids in Tube Flow," Nucl. Sci, and Eng., Vol. 60, No. 1, May 1976.
t 11-5
: 55. R. W. 0 stensen, et al., " Fuel Flow and Freezing in the Upper Sub-assembly Structure Following an LMFBR Disassembly," Trans. Am.
Nuc. Soc., Vol. 18, June 1974.
: 56. M. Epstein, et al., " Transient Freezing of a Flowing Ceramic Fuel in a Steel Channel," Nuc. Sci. Eng., Vol. 61, 1976.
: 57. S. W. Eisenhawer, et al., "A Study of Heat Transfer from a Flowing Liquid to a Melting Wall," Proc. Intl. Mtg. on Fast Reactor Safety Technology, Seattle, WA, Aug. 19-23, 1979.
: 58. J. F. Jackson, et al., " Report un the Core Disruption Phase of an Unprotected Flow - Coastdown Accident in FTR," ANL/ RAS 74-16, August 1974.
: 59. G. A. Greene, O. C. Jones, Jr., and N. Abauf, " Boundary Heat Transfer from Volumetrically Boiling Pools: Bubbly and Churn-Turbulent Flow Regimes," Trans. Am. Nuc. Soc., Vol. 33, 1-986, San Francisco, CA, Nov. 1979.                                                        ,
: 60. M. Epstein and G. M. Hauser, "The Melting of Finite Steel Slabs in Flowing Nuclear Reactor Fuel," Nucl . Eng. and Design, 5_2,, pp. 411-428, 1979.
61 . M. Epstein, " Heat Conduction in the UO 2Cladding Composite Body with Simultaneous Solidification and Melting," Nucl. Sci. Eng.,
Vol . 51, pp. 84-87,1973.
: 62. M. Epstein, L. J. Stachyra and G. A. Lambert, " Transient Solidifi-cation in Flow into a Rod Bundle," J. Heat Transfer, Vol.102, No. 2, May 1980.
: 63. G. Maurin and M. Amblard, "An Approach of Molten Fuel Relocation Problem: Fuel Freezing," ANS/ ENS Int. Topical Mtg. on Nuclear Fower Reactor Safety, Brussels, October 16-19, 1978.
11-6
: 64. R. W. Wright, et al., "Sunnary of Autoclave TREAT Tests on Molten Fuel-Coolant Interactions," Proc. Fast Reactor Safety Mtg.,
CONF-740401-P1, Beverly Hills, CA, p. 254, April 1974.
: 65. M. Epstein and D. H. Cho, " Fuel Vaporization and Quenching by Cold Sodium; Interpretation of TREAT Test S11," Proc. Fast Reactor Safety Mtg. , CONF-740401-P2, Beverly Hills, CA, April 1974.
: 66. T. R. Schmidt, "LMFBR Prompt Burst Excursion (PBE) Experiments in the Annular Core Pulse Reactor (ACPR)," Proc. Int. Mtg. on Fast Reactor Safety and Related Physics, CONF-761001, Chicago, IL,                    ,
October 5-8, 1976.
: 67. K. O. Reil and M. F. Young, " Prompt Burst Energetics on the Oxide /
Sodium System," Proc. Int. Mtg. on Fast Reactor Safety Technology, Seattle, WA, August 19-23, 1979.
: 68. H. Jacobs, et al., " Fuel-Coolant Interaction Phenomena under Prompt Burst Conditions," Proc. Int. Mtg. on Fast Reactor Safety Technology, ' -
Seattle, WA, August 19-23, 1979.
: 69. A. Amblard and H. Jacobs, " Fuel-Coolant Interactions; the CORECT-II UO 2
            -Na Experiment," Proc. Int. Mtg. on Fast Reactor Safety Technology, Seattle, WA, August 19-23, 1979.
: 70. R. E. Henry, et al. , " Experiments on Pressure-Driven Fuel Compaction with Reactor Materials," Proc. Int. Mtg. on Fast Reactor Safety and Related Physics, CONF-761001, Chicago, IL, October 5-8, 1976.
: 71. H. Fauske, R. Henry and M. Grolmes, "An Assessment of Voiding Dynamics in Sodium-Cooled Fast Reactors," ANL/ RAS 74-20, Argonne National Laboratory, August 1974,
: 72. M. A. Grolmes and G. A. Lambert, " Liquid Film Considerations for LMFBR Accident Analysis," Proc. ANS/ ENS Int. Conf., Washington, D.C.,
November 17-21. 1980.
11-7
: 73. S. J. Hakim and J. M. Kennedy, " Development of Transition Phase Code," ANL-RDP-70, p. 6.74, April 19/8.
: 74. M. Ledinegg, " Instability of Flow During Natural and Forced Circulation," Die Warme, 61(8) 91, 1938.
: 75. F. J. Martin, " Bottled Transition Phase Analysis-Preliminary Report,"
HEDL-TME 78-64, Hanford Engineering Development Laboratory, Richland, WA, April 1980.
: 76. H. K. Fauske, " Boiling Flow Regime Maps in LMFBR HCDA Analysis,"
Trans. Am. Nuc. Soc., Vol. 22, 385-386 San Francisco, California, Nov. 1975.
: 77. T. Ginsberg, O. C. Jones, Jr. , and J. C. Chen, " Volume-Heated Boiling Pool Flow Behavior and Application to Transition Phase Accident Conditions," BNL-NUREG-24984, Brookhaven National Laboratory, Upton, New York, Oct. 1978.
: 78. M. Farahat, R. E. Henry and J. Santori, " Fuel Dispersal Experiments with Simulant Fluids," Proc. Int. Mtg. on Fast Reactor Safety and Related Physics, USERDA Report CONF-761001, Vol. IV, pp. 1707-1714, 1976.
: 79. T. Ginsberg, O. C. Jones and J. C. Chen, " Flow Behavior of Volume-Heated Boiling Pools: Implications with Respect to Transition Phase Accident Conditions," Nucl. Tech., Vol. 46, pp. 391-398, 1979.
: 80. K. W. Orth, et al., " Hydrodynamic Aspects of Volume Boiling,"
ANL/ RAS 80-6, March 1980.
: 81. F. A. Koontz, " Volumetric Boiling - A Fundamental Study of the Phenomena Pertaining to LMFBR Safety," M.S. Thesis, Purdue University, August 1977; see also Reference 47.
s 11-8
: 82. W. R. Gustavson, J. C. Chen and M. S. Kazimi, " Heat Transfer and Fluid Dynamic Characteristics of Internally Heated Boiling Pools,"
BNL-NUREG-50722, Brookhaven National Laboratory, September 1977.
: 83. J. D. Gabor, et al. , " Heat Transfer from Heat-Generating Boiling Pools," Nat. Heat Transfer Conf., St. Louis, MO, August 1976.
: 84. M. Epstein, " Transient Behavior of a Volume-Heated Boiling Pool."
ASME Winter Meeting, Paper No. 75-WA/HT-31, Houston, TX, December 1975.
: 85. G. A. Green, O. C. Jones, and N. Abuat, " Comparison of Measured and Calculated Average Void Fraction in Volume-Boiling Pools with Inclined Boundaries," ANS Transactions 33, San Francisco, CA.
Nov. 1979.
: 86. V. K. Dihr, et al. , Proc. Int. Mtg. on Fast Reactor Safety and Related Physics, CONF-761001, Vol. 3, pp.1172-1182,1976.
: 87. R. W. 0 stensen, Trans. Am. Nucl. Soc., Vol. 27, p. 662, 1977.
: 88. M. Epstein, " Stability of a Submerged Frozen Crust," J. of Heat Transfer, Vol. 99, pp. 527-537, 1977.
: 89. A. Yim, M. Epstein, S. G. Bankoff, G. A. Lambert and G. M. Hauser,
    " Freezing Melting Heat Transfer in a Tube Flow," Int. J. Heat Mass Transfer, Vol. 21, pp.1185-1198,1978.
: 90. M. J. Swedish, M. Epstein, J. H. Linehan, G. A. Lambert, G. M. Hauser and L. J. Stachyra, " Surface Ablation in the Impingement Region of a Liquid Jet," AIChE Journal, Vol. 25, pp. 630-638, 1979.
: 91. A. W. Cronenberg and H. K. Fauske, "UO Solidification Phenomena 2
Associated with Rapid Cooling in Liquid Sodium", J. Nucl. Materials, Vol . 52, pp. 24-32,1974.
: 92. J. Frenkel, " Kinetic Theory of Liquids," Dover, Chapter VII, 1952.
11-9
: 93. K. Koide, et al., " Behavior of Bubbles in Large-Scale Bubble Column,"
J. of Chem. Eng. of Japan, Vol. 12, No. 2 April 1979.
: 94. T. Ginsberg, " Role of Condensation on Dispersion of Closed Boiling UO Systems," Am. Nuc. Soc. Trans., Vol. 26, pp. 363-364 June 1977.
2
: 95. H. Kato, N. Nishiwaki and M. Hirata, "On the Turbulent Heat Transfer by Free Convection from a Vertical Plate," J. Heat Mass Transfer, Vol. 11, pp. 1117-1126, 1968.
: 96. L. Baker, Jr. , R. E. Paw, and F. A. Kulacki, " Post-Accident Heat Removal - Part I: Heat Transfer Within an Internally Heated Non-Boiling Liquid Layer," Nucl . Sci. Eng. , 61, 222, 1976.
: 97. L. Boon-Long, T. W. Lester, and R. E. Faw, " convective Heat Transfer in an Internally Heated Horizontal Fluid Layer with Unequal Boundary
<      Temperatures," Intl. J. Heat Mass Transfer, 22, 437, 1979.
: 98. R. J. Henninger and R. E. Alcouffe, " Effects of Fuel-Sodium Film Interaction and Delayed Fission Gas Release on Extended Fuel Motion in a High-Power LMFBR Subassembly," Trans. Am. Nucl . Soc. , Vol . 34,
: p. 524, June 1980.
: 99. H. K. Fauske, "Some Aspects of Liquid-Liquid Heat Transfer and Explosive Boiling," Proc. Fast Reactor Safety Mtg., CONF-740401, Beverly Hills, CA, April 2-4, 1974.
100. D. H. Cho and M. Epstein, " Work Potential from a Mechanical Disassembly of the Voided FFTF Core," Argonne National Laboratory, ANL/ RAS 74-17, August 1974.
101. C. R. Bell, et al., " Advances in the Mechanistic Assessment of Post-Disassembly Energetics," Proc. of the International Meeting on Fast Reactor Safety Technology, Seattle, WA, August 1979.
102. R. J. Tobin and D. J. Cagliostro, " Effects of Vessel Internal Structures on Simulated HCDA Bubble Expansions," SRI International Technical Report No. 5, November 1978.
11-10
 
103. T. G. Theofanous and M. Saito, "The Tennination Phase of Core Disruptive Accidents in LMFBRs," PNE-79-146, School of Nuclear Engineering, Purdue University, W. Lafayette Indiana, December -
1979.
i 1
1 l
l 11-11/12
 
APPENDIX A Modifications to the SAS3D Code Release 1.0 Version A specific version of the SAS3D was placed for access by the general us2r on the Lawrence Berkely Laboratory CDC 7600 system, and is identified by the label SAS3D Release 1.0. Modifications to the Release 1.0 version of SAS3D have been made for the present analyses to use updated information on material properties and HCDA phenomenology, and to provide better editing features. These modifications are stored in the form of relocatable load modules which are linked with the Release 1.0 load modules at execution time, replacing the equivalent original routinas. This appendix presents a d:scription of such modifications to the SAS3D code Release 1.0.
Material Properties and Correlations The fuel density and conductivity functions have been extended to in-clude additional forms and correlations. In addition to the previously de-fined forms, if IRH0K (Block 1, Location 45) = 3 and IGPBLT (Block 51, Loca-tion 9) = 2, properties from Reference A-1 for UO2 will be selected; whereas if IRHOK = 3 and IGPBLT / 2, the properties of mixed oxides will be selec-tcd. In this way different properties may be assigned for the driver fuel and internal blanket fuel.      In addition, if IRH0K = 4 the fuel conductivity sprcified in Reference A-2 will be selected. Since this reference does not distinguish between mixed oxide and pure UO2 properties, driver fuel and blanket fuel are treated in the same way.
j      The clad swelling correlation from Reference A-3 was added as an option.
To use this correlation IWANG (Block 1, location 66) is set greater than 1.
The Outt correlation used to calculate the amount of fission gas re-tained in the fuel rod has been modified in two ways.      First, the coeffici-
; ents of the existing correlations were modified to correspond with Reference A-2. Second, a new and more accurate correlation recomended by Dutt(A-4) was programed into the code as an option. This optional cor-A-1
 
relation may be exercised by setting IOPFC6 (Block 1 Location 26) = 2.      Any other value results in use of the old correlation with updated coeffici-ents.
The fission gas remaining in the fuel rod at the time slumping is ini-tiated may be input directly or calculated by the code. The calculation of gas remaining may now be done by two different methods. If IFGR (Block 51, Location 68)< p the Gruber model adopted in Reference A-5 is used whereas if IFGR > 0 the correlation to HEDL data discussed in Section 3.2.2 of this report is used.
The vapor pressure correlation coefficients may now be input in Block 13, location 1127-1129 for fuel and locations 1130 and 1131 for steel. If the sum of the coefficients for a particular material is less than 1 x 10-10, the coefficients default to the original ANL equation of state values.
The new vapor pressure model for rod rupture requires Block 13, loca-tions 1097-1104 be reserved for the energy of vaporization for up to 8 fuel types. Also, Block 68 Location 21 must contain the gas constant for the fuel vapor.
A loss-of-flow coastdown of either tabular or functional form may be initiated at times other than steady state. Coastdown may be initiated at any arbitrary time greater than 1. x 10-10 seconds by specifying PMPTRP (Block 14, Location 155) as the time in seconds since the start of the tran-
                                                        -10 sient. If PHPTRP < 1 x 10 on input, it is reset to a very large value. Al-ternatively, the coastdown may be initiated when a scram sional is received.
This feature may be used to trip the coolant pumps at a preset power level during a rod withdrawal. The scram reactivity table is preset to a uniform zero insertion rate. Coastdown may be prevented by presetting the scram initiators (Block 11, Locations 9,10 and 11) impossibly high.
A-2
 
l The test for approaching computing time limit is now performed whether or not restart files are to be saved.                  The test is made on system computing units rather than CPU seconds as is more appropriate for the Berkeley CDC 7600 system. The computation is halted if the amount of computing units re-maining is less than the greater of 250 or TCOSTP (Block 11, Location 18). The number of computing units used during each time-step is printed to monitor running time.                                                                                l l
A memory dump may be forced on a normal exit by setting IDMP (Block 1, location 79) > p. This feature has proved useful in debugging problems                      l that do not result in a system error.
Fuel Coolant Interaction Modeling and Criteria An option is available to allow the fuel rod to fail by burst pressure or melt fraction.      If FSMEC (Blk 68, Loc 20) > 1. x 10-10 and MFAIL                      i (Block 51, location 121) = -4, the failure algorithm compares the burst pre-ssure parameter against the failure criterion FSPEC (Blk 68, Loc 1) and the melt fraction against FSMEC, and initiates a fuel-coolant interaction when either criterion is met.
If failure by other than the burst pressure criterion is predicted, the internal rod pressure may be adjusted to correspond to the pressure required to fail the clad at the predicted failure node. If IYELD (Block 51, Loca--
tion 131) > b the total cavity volume will be adjusted slightly (usually less than 5%) to obtain failure pressure in the trapped fission gas. The total PV energy in the gas remains constant.
A test is made at each time step for collapse of the central void due to oxpansion of melting fuel, on a small but finite mass of fission gas. This pathological condition has been observed in preliminary calculations of in-ternal blanket rods. A warning message is printed if this condition occurs, but no action is taken by the code.
A-3
 
A fuel vapor model has been added to the fuel rod model to account for clad failure and fuel expulsion in fuel rods with little or no fission gas.
The model is extensively described in Section 3.2.3 of this report.
The SASBLOK calculational procedure developed for the SAS3A Code has been described in Reference A-6. The model has been adapted to the SAS3D logic and incorporated into the code. Appendix B is a listing of input re-quired for operation of the SASBLOK model .
SLUMPY Modeling The force acting on the upper fuel rod segment GJF (Block 67, Location
: 18) has been changed to an acceleration in accordance with instructions re-ceived from the code developer. This modification permits use of different gravity acceleration factors on the upper segment and the slumped material, useful in modeling the relocation of fresh fuel (Section 3.2.4.1).
It was observed during the course of this analysis that SLUMPY incor-rectly calculated the flow area for cases in which slumped fuel penetrated the upper blanket. As a result, more fuel was entering the blanket region than was physically possible. The code module FUAREA was modified to cor-rectly calculate the flow area when the blanket penetration was predicted.
The inclusion of the blankets in the flow area calculation resulted in an unrealistically severe pressure pulse being generated when a falling fuel rod segment reversed direction due to core pressurization and struck the stubs of the blanket fuel. The rapidly changing flow area, as the two pieces of fuel column approached contact, produced a severe pressure pulse which sometimes caused the falling segment to be accelerated back into the core at high vel-ocity with reactivity feedback. The problem was resolved by modification of the code module FALL 2 and redefining the input variable FPOSUP (Block 67.
A-4
 
Location 19). The upper segment may only move downward if its location is greater than the value of FPOSUP. This value is set at -2.0 cm in the input so that the upper segment may never get closer than 2.0 cm below the blanket. The value 2.0 cm comes from the modeling in the flow area calculation where all 1
sudden area changes are moothed by a 1.0 cm long taper.                                                      I The physical reasoning for the above change is that the picture of the segment falling several cm, then reversing direction and retracing its path exactly to impact the same blanket stub is unrealistic. The actual . case would more nearly appear as a jumble of broken segments and individual pel-lets resembling an incoherent pile of straws. The provision of a gap be-tween the upper fuel segment and the blanket rod stubs is then a more rea-sonable approximation of the irregular area changes.
It was also observed that boundary conditions were originally built into SLUMPY which tied the disrupted fuel boundary velocity to the movina                                  j clad slug nearest the core midplane. When fuel overlapped moving clad by failing at a higher elevation, the slumped boundary was stopped until the clad slug caught up. In several cases, this prevented fuel from dispersing even though there was a very high driving pressure and no real physical res-                                l traint. This was corrected by modifying the code module CLAZAS. The limit-ing clad slug was identified as being the slug nearest the midplane which completely filled the flow channel. Slugs which did not fill the channel were ignored.
Changes in the calculation of fission gas available to SLUMPY were re-ported under Material Properties and Correlations. A fix of a SLUMPY rezon-ing error is reported under Specific Code Corrections.
Clad Motion Modeling To represent the case for decoupling of clad motion from sedium vapor flow, changes were made to the clad motion model. Three variables were ad-ded to the input list:
A-5
 
EXACEF (Block 66, Location 15)    - Extra acceleration, adds to gravita-Default = 0.0                    tional acceleration.
CLPDEF (Block 66, Location 16)    - Coupling coefficient between molten Default = 1.0                    clad and sodium vapor. Multiplier on friction factor 1. x 10-10 g CLPDEF f 1.0.
FBLKEF (Block 66, Location 17) - Location of upper clad blockage.      If Default = 0.0                    FBLKEF > 1. x 10-10 it overrides other assignments of Blockage Loca-tion.
Tn model simple clad drainage, it is necessary only to supply a very small
                          -10 value larger than 1. x 10      for CLPDEF. Drainage may be slowed down or speeded up by adjusting the extra acceleration in either a positive or negative sense.
Additional Editing Features A label record is generated by system calls to uniquely identify a run-ning job. The label information is written to all files produced by the SAS3D code so that all files can be identified and traced to a particular job by visual inspection. This identification includes label records on all plot files, a unique label for all restart files, and page header identifi-cation for each page of the output file. When restart files are read, the label record is scanned and job identification data for the source and time of the restart is written to the output file.
The title block of the input deck has been expanded to include a vari-able number of lines not exceeding nine lines of text. Begin Text and End Text are marked by unique delineation. If text is encountered before the Begin Test delineation, the original SAS3D title block must be pro-vided. The additional title block is useful in identification of runs and input files and comprises part of the label record written to all external files.
A-6
 
Messages are written to the dayfile (system log) at scattered points throughout the code to report on progress of the calculations. The dayfile is usually the first available piece of information about the success or failure of a run, and these messages greatly accelerate error location and correction.
The internal rod pressure is written to the output file each time step prior to failure. The maximum rod failure parameter and failure criterion are written for each channel if the failure parameter exceeds 80% of the failure criterion. The input edit has been modified to print the sum of all material worths, in dollars, for each channel as a check on input proces-sing.
The plct record was modified to match the record length of the existing plot package. The change involves eliminating unused locations in the reac-tivity array. The temperature data stored on the plot record was also modi-fied to record the maximum value of each temperature, and the elevation of its location, instead of recording all temperatures at a fixed elevation.
Specific Code Corrections An error in the rezoning calculation of slumped fuel was corrected ac-cording to instructions received from the code developer. This correction eliminated a problem with compaction of slumping fresh fuel.
An error was discovered and corrected which prevented use of tabular data representing slumping of fuel containing no fission gas. A channel pressure calculation was being attempted without prior initialization of gas pressures.
Tha correction involved bypassing the gas pressure calculation when tabular slumping was used.
Additional error messages are now written to the dayfile and output upon encountering certain recurrent code problems. Examples are the "TSC8 error" frequently encountered and the rezoning error mentioned above.
A-7
 
Appendix A - References A-1    L. Leibowitz et al., " Properties for LMFBR Safety Analysis,"
ANL-CEN-RSD-76-1, March 1976.
A-2    CRBRP Preliminary Safety Analysis Report, Project Management Corporation, Docket No. 50-537.
A-3    " Nuclear Systems Materials Handbook," HEDL-TID-26666, Hanford Engineering Development Laboratory.
A-4    D. S. Dutt and R. B. Baker, "SIEX-A Correlated Code for the Prediction of Liquid Metal Fast Breeder Reactor (LMFBR) Fuel Thermal Performance," HEDL-TME 74-55, June 1975.
A-5    W. R. Bohl et al., "An Analysis of the Unprotected Loss-of-Flow Accident in the Clinch River Breeder Reactor with an End-of-Equilibrium-Cycle Core," A'lL/ RAS 77-15, May 1977.
A-6    J. L. McElroy et al., "An Analysis of Hypothetical Core Disruptive Events in the Clinch River Breeder Reactor Plant,"
CRBRP-GEFR-00103, General Electric Co., April 1978.
A-8
 
l Appendix B l
Description of Input Variables Used with SASBLOK SASBLOK represents a set of code modifications which was developed    )
for the SAS3A code to evaluate blockage effects in TOP-type failed assem-blies. A detailed description of SASBLOK can be found in the homogeneous core assessment.      The SASBLOK model has been adapted to the SAS3D logic and incorporated into a modified version of the SAS3D code Release 1.0.
The Appendix shows a listing of input for use of SASBLOK.
FORTRAN SYMBOL        DEF IN ITION / COMME NTS                                    UNITS LOCATION 9 LOCK 1
* INPCOP IPREAN        NUMBER OF ENTPIES IN PREA VS TIME TABLE, 32 IPREAN=0, OR 2.LE.IPREAN.LE.20.
(SEE IPOWER, PREAT9, AND FRE ATM) .
DEFAULT 1      IPREAN =0.
9 LOCK 12
* POWINA 49-68        PREATB        VALUE OF PREA IN T ABLE LOCATION (L)
(L)        L=1,IPREAN.
VERSUS TIME SINCE INITIATION OF TRANSIENT.                    SEC l69-88          PREATM l
(SEE IPOWER AND IPREAN).
* INPCHN SLOCK Si 86            IXX          =0,  FOR TABLE LOOKUP FISS IO N GAS VOIDING.
(SEE INPUT BLOCK 65 - GASV001.
87          IF IZ        NUMBER OF ENTRIES IN THE FISSIch GAS INTERF ACE T ABLE FOR TREATING FISSION GAS RELEASE BY TABLE LOCKUP. 1.LE.IFIZ.LE.20 (SEE TFIS, PFIS, ZFISU, AND ZFISO).
88          JRUPT        CLAD RUPTURE SEGMENT FOR FISSI0h GAS PELEASE CALCULATION, 0.LE.JRUPT.LE.MZ.
IF JRUPT.EQ.0, CHECK ALL N00ES FO S F AILURE.
59            ISLOK        AT END OF SASBLOK (T IME .GE. T SBLK + TM AXFS )
IF ISL OK .EO . i. RESET SUBBLE TYPE TO VAPOR IF IBLOK.NE.1, LE AVE 8089tE TYPE AS FISSION G AS IZAP        PESERVED FOR SASSLOK USE, MUST SET.EO.ZERO 90 120            NTOTFL        SET NTOTFL.EO.0, TO SUPPRESS FC I IN CNANNEL
* J. McElroy et al., "An Analysis of HCDA's in the CRBRP," CRBRP-GEFR 00103, General
_ @lG@ri@ Co. o April 1978.                  ._ -
 
FO RT R AN LOC A T ION SYMBOL    DE F IN IT ION / COMME NT S                        UNITS
.........................................................................o
* G A SV00 SLOCK 65 1          PFIZSS    F ISSION-G AS PLENUM REFERENCE                    ATM PPESSURE AT TEMPERATURE TR.
OEFAULTI        1.0.
2          TMAXFS    M AXIPUM TIME FOR USE OF GAS                      SEC RELEASE TABLE.
3-22        T F IS    TIME SINCE INITI ATION OF FISSI0h-                SEC (I)      GAS RELEASE. 1.L E. I. LE. IF IZ .
VERSUS 23-4h      PFIS      FISSION-GAS PRESSURE AT TIME                      ATM (I)      TFIS(I), 1.LE.I.LE.IFIZ.
VE RSUS 43-62        ZF ISU    GAS 9UBBLE UPPER INTERFACE                        CH (I)      POSITION AT TIME TFIS(I), 1.LE . I . L E . IFI Z.
VE DSUS 63-62        ZF ISO    GAS BUBELE LOWER INTERFACE AT                      CM (I)        TIME T FIS (I ) , 1.LE . I.LE . IFI Z .
33          SBLKOM    NOT USED 54          TSELK      TIME AT WHICH SAS8(OK MODEL IS INITIATED          SEC 95          T29LK      TIME REQUIRED FOR 9 LOCKAGE FORMATION            SEC (USUALLY GREATER TMAN TMAXFS) 36          X<EL<      EXIT LOSS COEFFICIENT A FTER BLOCK AGE FORPATION 87          PLOS      FRACTIONAL LOSS OF POWER GENERATION IN CHANNEL FOLL OWING SWEEPOUT AND BLOCKAGE FORMATION B-2
 
APPENDIX C PLUT02 Calculation for BOC-1 LOF Analysis Application of SAS3D/SLUMPY to 80C-1 fuel was phenomenologically ques-tioned in modeling the rundown of molten fuel, because SLUMPY was developed primarily for irradiated gassy fuel. Consequently, the PLUT02 code (C-1) was used to predict the behavior of 80C-1 fuel motion for the rundown phase.
This appendix describes the PLUT02 calculation, which was performed at ANL/ RAS using typical BOC-1 fuel conditions.
The molten fuel rundown can be approximately simulated with the within-rod fuel motion in the PLUT02 code. This PLUT02 model, together with the PLHTR hrat transfer model of SAS4A,(C-2) can simulate fuel melting and slump-ing in the molten cavity within a swollen rod, with the cavity growing as more of the fuel melts and molten fuel runs down the sides of the cavity.
Figure C-1 demonstrates the modeling of the melting of a fuel rod as it is done in PLUT02. Figure C-la shows the fuel rod in its initial intact condi-tion. As the rod heats up, cladding melts with some being moved upwards where it refreezes to form a blockage, while the majority of steel flows downward and solidifies into a second cladd'ng blockage, as shown in Figure C-lb. This leaves a bare fuel rod which swelis homogeneously to fill the channel area, with a molten cavity forming at the hottest part of the fuel rod, as indicated in Figure C-Ic.      Molten fue? flows downwards and piles up at the bottom of the cavity. The cavity grows as more fuel melts, until, finally, most of the rod has melted and run down, as shown in Figure C-Id.
In actual calculations, it was assumed that the homogeneous radial fuel swelling caused the fuel to fill 90% of the entire channel cross section be-fore any fuel rundown occurred in the fuel rod molten cavity. This configu-ratinn is drawn from the CRBRP design specifications. Fuel motion was ini-tiated when the fuel melt fraction at the midplane had reached 50%. This was done in order to be somewhat consistent with SLUMPY calculations. The cavity diameter was assumed to be on the isotherm Tsolidus +
0.1(Tliquidus - Tsolidus) of the swollen fuel. The molten fuel and solid fuel in the swollen pellet initially has a smear density of about i
C-1
 
                                                                                          )
4g/cc.          The fuel was allowed to run down only within the molten fuel cavity and not in the interconnected solid fuel porosity. The melt-in of the fuel into the cavity and the accompanying cavity enlargement were calculated with the PLHTR subroutine. In the calculations performed, the cavity was not al-lowed to extend into the lowest 7 cm of the active fuel, where a clad block-age was assumed which would not allow solid fuel swelling. No fission gas or fill gas were assumed to impede the running down of the molten fuel in the cavity. This should maximize the fuel slumping and make it more nearly like fresh fuel slumping. The remaining forces acting on the fuel in these calculations were therefore gravity, friction, momentum exchange between the slumping fuel and the melting-in fuel, and the pressure head of the station-ary molten fuel in the lowe* part of the fuel cavity.
Two runs were made with PLUT02, one with the power set equal to the nominal power (IP) and one with the power set to three times nominal (3P).
This allows the fuel reactivity insertion to be estimated by interpolation over a range of power levels. Figures C-2 and C-3 show plots of the radial-ly and axially mass-averaged velocity of all rod nodes containing moving molten fuel (i.e., molten fuel which has settled in the lower part of the rod is not considered), while Figure C-4 gives a qualitative demonstration of the progression of fuel slumping. Also shown in Figures C-2 and C-3 are the reactivities of the entire fuel rod as functions of time for nominal power and three times nominal power, respectively.          In both cases, there is an initial rapid (around one-half the acceleration of gravity) slumping, as indicated in Figure C-4a, and a related reactivity ircrease due to the ini-tially molten fuel running down. The reactivity change is positive since the 80C-1 worth curve peaks below the midplane of the active fuel. The mag-nitude of the average velocity of the fuel decreases as the fuel reaches the bottom of the cavity and is stopped, as shown in Figure C-4b. Eventually, additional fuel satisfies the slumping criterion and begins to move down-wards, as shown in Figure C-4c, causing the average velocity magnitude to increase capidly. This fuel runs down until it hits the dense molten fuel in the lower part of the cavity as shown in Figure C-4d, at which time the velocity moves back towards zero. This pattern is repeated several times as additional fuel melts into the cavity, with rates of fall of the fuel rang-ing from 30% to 80% of the acceleration of gravity. Two more PLUT02 runs were made with higher power levels,10P and 30P. Figures C-5 and C-6 show the fuel motion reactivities at these two power levels.
C-2
 
I t/                                / ht                                                                      '
                                                                                                                                                                      / N
                                                                                                                                                      )
I    '/          I
                                                      %              N''                                                                        't l                l              1            Q                p                                                                                                          h
                                                                                                                                                                                            -- SOLID CilANNELl
                            *^                              CLADDING l UL l                                  BLOCKAGE l l
I
                                                                                          /l SOLID FUEL I                                                                                    l                                                      i                                    i l                l                        p/        l                                                      l V0ID.
l l                l-CLADDING                                        fi fD.!                                                                  !,                ,_,y l
                                                                                      '1,
                                                                                      .:                                                                                        ffl.
                                                                        ,j/!
                                                                                      ~
                        !                                            l                                                                                    !)
                                                                                                                                                                                '            -    DENSE
                                                                                            --WORTil MAXIMUM !:(fkkhN$[N'96 l                                  MOLTEN]
                                                                                      )                                                                            '* j            E              MOLTEN
                                                                        / h .,                                                                              jii .jj[f.[j lpy., FUEL Z                                                      l FUEL jf7                                                                              .
: c. < ;,.g ,
V010 ' f'. ,f l                                                                                                                                ..?      n l
pSOLID FUEL l                                        -.,;        j' MELT                                                        k.98l              '$
g                                        FRONT                                                                                          SOLID
        !                l                                                                      I                                                                  7,;fg.:lfgj;li.1 wn: > 0:c        .        -
                                                                                                                                                                                            / FUEL N /j//b 1                I N            N                N j/ S                                                                                                      N l        /      l              h        /h                  h /A                                                                                h (a)                            (b)                            (c)                                                                                        (d)
Fig, C-1    PLUT02 Modeling of Fuel Melting (a) Initial rod configuration (b) Solid fuel rod with cladding melted and forming blockages (c) Swollen fuel rod cavity (d) Most of fuel rod has melted and slumped
 
24 20 20
                                          ,                                  7-0          .
                                                                            /    t      3 l
                                                                          /
f                                    j            16j tti
            --                                              -          J                m sa -20                                        ,,                                    m E                                                                                  <t a
o                                          /                                    I2 m A  ly                                        /                                          S s
      -40  --
                          /
_>                                              -L  8 8
      -60 4
i
                          ~
                  /
      -80      /
              /                      l                                                o O                      1000                2000                    3000 TIME, ms Fig. C-2 Mass-averaged Velocity and Reactivity as Functions of Time as Calculated by PLUTO for the Heterogeneous CRBR Core at Nominal Power
 
60                                                                ---    --
l                    , - _
l                        28 40                                                /              '
                                                                                        /
                                                                                      /                            24 20                                            I
                                                                                    /
20 m h 0
                                                                              /s                                        m w
j  ~
l> -20 g                          ,
p_3j
                                                                  /                                                  12 3C
                                                                /                                              _        n
                                                              /                                                      e 4
                                                    /
                                      -80
                                            >                          l 0
0                        1000              2000                  3000 TIME, ms Fig. C-3 Mass-averaged Velocity and Reactivity as Functions of Time as Calculated by PLUTO for the Heterogeneous CRBR Core at Three Times Nominal Power
 
                      ' SOLID                                                                                    N SOLID FUEL
                                                      '' SOLID FUEL
                                                                                  /  /        "
FUEL
                                                                                                  #          /
[                            /
                                                                  /
                                                                                    /
                                                                                  )}f, AVERAGE VELOCITY  /
V010
                                                                                                              /
j/
a  -MOLTEN j.
Ly          W    CALCULATED '
      /V        Yj[/        FUEL      /            /              'I              d ilERE
                                                                                                  '          l
      /h,          0/                /            /              /\            ..                Q
              ,fl /
it                            /            /              / i '.        ;V          n    / l.      /
        ')
                        - VOID                                    j. -                            7
[                  }                    9hi)
                                              ,7 2                            i( j.    - MOLTEN
(                                            0                            l .i,                          .,.        FUEL l*
(b)                            (c)                            (d)
(a)
Fig. C-4 (a) Initial fuel motion, (b) Initially molten fuel is stopped at the bottom of the cavity, (c) Additional fuel melting and running down, (d) Additional molten fuel stopped by the pool of molten fuel at the bottom of the cavity.
l
 
40 -
I 30  -
b
                            -0
                          "    20  _
E 8
10  _
0 .. _                      !            I
                                                                          ~
l__. _
i      a          i o                      200          400        600            800    1000        1200      1400 Time, ms Fig. C-5 Fuel Motion Reactivity as a Function of Time as Calculated by PLUTO for the Heterogeneous CRBR Core at 10 Times Nominal Power
 
a  0                      -
0 0
1 O
T U
L P
y b
d
  .                                        e i  0        t 0        a 8        l        r u e l
c wo a P C
l s a a n    i e
m o  m i N T
s f e i0 0        o m  i 6s        n T m    o i 0 t 3 e    c          .
m    n t i      u a T    F e  -
a r o  _
s C a
R yB t R        -
i C v
i0          i s 0        t u 4          c o a e      -
e n R e g .
n o      _
o r i e        ._
t t o e        _
M i    l
_                                            l        e
_                                            e h u t
_                                            F 0
r i
0 o
6 f 2          -
C g
i F
0 0  5  0    5    0  5  0 3  2  2    1    1
          > 2@$$#8    '
nb
 
Appendix C - References C-1            H. U. Wider et al., "The PLUT02 Overpower Excursion Code and a Comparison with EPIC " Int. Meeting on Fast Reactor Safety Technology, Seattle, WA, August 1979.
C-2            D. R. Ferguson et al., "The Status and Experimental Basis of the SAS4A Accident Analysis Code System," ANS/ ENS International Meeting on Fast Reactor Safety, Seattle, WA, Aug.1979.
                                    /
C-9 /10
 
Appendix D SAS3D Input for EOC-4 TOP Case 1 jyggt s ti t git tisp o c o o n s o o o o o o o o o o n a a tti t t tis ti s t it o c o n o c es s o n s o o o o o o o o i      i t.il. "n'!              -$
ig      ;                                                                                                        ,
Il      )      2I        $1      21      51          .            t        z ti    tj          i        '
2!        a
* g      is e        o        o Pi      .      54          8        8      i
    <i                ')          q      q        4.      .          .            .        ,        ,        ,
11    to        6          T        3      1          1            z        3        5        9        1 l        o      u            o            a        6 H        l        l ip 12; tj          !        !        !      !          !            a        i        o        o        1 3        1      -.        z
        !!r              j        !        !
        !!i              i        I        '
t  o,ers'            11          g i
    ,owisi
                !A      1      1:i!oi![::! 1:!!!!!{ini2"'"5-"$""'
I!:i!!i!c:!ii:lillic                                              !:ioner.n:!!" i:1:!!!!:!! !:!!!
,                      ir          i        e i      i ::51:!!!!!! !:'1888 :!! i:i!!W                                              i! 'I:ili    "-"
                                                                                                                ''2!!l,0!
: 1)      i ' *r!Fitj!! ' l?!!1).i!!' ''"                  ' '!!!!!j:n
                                                                                    !i2'!!!!;    ::it!!!'!:21
                          !      i:iaie:!        ';?Utt:1                        *'
l!1
                  ,      I'              !:!
a..
isi:a 3.2                    3.,
il        I            a.ki            'l:!!!                "i:1 PMATCM            13          1        o I                J ts        l h!Hn!Eill
                          , 3.        tn -oz 3. lill#!lill n u w- n 3.
li - n 3. ntlif.ill!!!!!
I!Hns!,g!ill                      w-n 3. utli.llii4.e 2
u    !!
ji        i :laGil:il1:                    :llj!!jil                                                                        :
gn3..A??j:li3. n -ni:2!till:i si tt          i {:lijyj:!!
3 i:llnlg}}}:II tlIIIIIIN:!! ljjjjjjl3ll 1:
liu      !I 3.lllj'i%e "E5 d u i:.fiin:      !I I lII';!!                !!ori.:.t,it?ui!l                    li.!llg*li!I  I::!IEE I
: n. gg3. !i!?c                !!
3 oi 7.omr;-n                  n r. -or n.,e:
91 it        lii:tiilli:li!:!!!!
3:;ggp              af i:::24)d::li:41215                                    :lilitic:n I:lil!!lii:lallii:li  I.ns,t*g:o2 3l! !)      1 it96      i I:It!%?l:af I::12%)f:af I:li!!!i:!! I:4tillE:al 1:fD!!F: !
5 3.6o$.5E-o2          3.6as s5!!-o2
:15 -3.6o5 55g:o2 3.6o5 :5E-o2                      3.6e5:35 1 ':288ll        9E-o2
        *p                  F-                                                                                                              ,
llj} 4:""'  llllj!!!i l![jjjl[ ii ':liali 142 N        ll:!),,f,l:!.i.
f.l'l)llli'li!
se fl[INI!:li                      1:j!!!Pi!!
1111:l: ! 1:d!!N:li 2:iti!I!:il
                                                                                                                          !!!!!!j!!!  !!!!!!ll I
        "I                5    l *!!!"l::!!      jji'i!P:!!    !:!ni!':            1      *n!!'-" i:!#!?l:!!
                                                                                          'ib1ti!!!!        2: Ali!!:!!
        !!!              I!!)lt!!i...litai:!!1:!Atid:tl iit              i !:liiill:ii !:'ii!!!:11 !:ini!!:!! 1:ili!!!:ii 1:!ni?i:!!
D-1
 
lit    I !:DilEf:31 2: 45188E:81 3:fA31ti:31 1:171Hi:81 2:MHiF:21 lit    i 1:! Mill:li 1:76!!i:li 1:81H11: 1 1:24G?i:!! 1:iMuf:l!
  !)?    i 2:n!!n:n !:!!iin: i i:112ni:li i:Hiiil:ii !:ini!i:i!
  !!!    Ii:!!in!:111:infli:n!:liviti:!!1:!liiti:!1:!91!i{:!!
it!
  !!!    l2:niln:n!:!!i!P:n!:t!!n!:lii:!ni!l':n!:
i1: Hint:111:litiO!:      "*
Hine:n1 !:316:1
          'l l::          I llt ut            1 t!!!'l"!!.jjj1!!!ni!jjjj 5 1 073636 .01      01
                                        !!ne. i:Hiiji:1!
06544E.01            !! ,i n ! 1:linii:li i:n          1:!!n li nij::ini!"i:3!
i n"!! !
01 1.05 a tt .01 1. 047 3 6E .01 1. 03 h 5 3E
* 01 3p6 M
386      L 5 1 0736Li!![litill 3E +01 1. 0LilliiE!!          Hill!!!Ei.011.0473eE+01ll!!!!!!!iil 6544E + 01 1.05664'      :                  1 03753E ni                            in1:!!!t i1:iitij{:niin!L[:1&i:!%11t                          l:li 1:1!!it[n:ll 7:32127{jll!
n    ! i:!!i!w                  : * :n 1:Nati<                                  Uli!
t'i      ' i:!!!!jj:"li'i:i:"!!!jh          i.ji    i:jjg[h:n  ni I:!U!!':!!'Ti!lll:i i:7:nittl.0ll di nu                              i 'i:Pi;%E.01                      -
tf&
tti I*:nt'!$]!!iI:3115j:l!!!
hn:lla W i:ntt!Eni i:l!!nE! .O n., 011:!z.gj.ni.*
l k."h7h,jl31 i      l1 1:!)l
:ni:!n'hE.h j
                                                                                      !.gf]ill:al eu.n            !j}!! !
                                                                                      ,62 til    i i:!!n!l::n :::lintni 7:!;illh:n 7:litul 561    !1 i:2.70000E n n E.i!  01 Ili                                            ll 1:U8881:11 t:!ailil:11 !:%i8881:15 in      iii:nni4nii:in I:Hini:in I:nlill:ni      & I: liniiti! j:innin! i:Elini: !
  !!i        i i:!ali88:!i f:!nn!:!! t:2!i!!!n! i:!!!nini !:n!nt:8!
  !!!      ii i:14 i:in"!!!::n          i:Un';':n !:Nn!'!::!! i:n!"!!n! ijgjjjj:"n 214                          li1:litill:1!):tutiif1:t!!!                    :ll 1. "'""*
2        "
5i:!'
P}1
  ?&
Tu I  J:!    igm:!!
nu:
5 a.70u0E.if              1:!'Il!ii.l'14.Onod:.11"'I"!
n 2.uun 0i:d i:!Dtl          i:st1ti:  n .Onon.n  ):n)!Tl:!j 1:t!!l'in 2 "'" "2 li! Hil!!!!!1! lillill!1! li!!!!!!1! !!!!!!!!'ll !!!!!!!!'!!
Hi          ' 4:!nn' 't i:!nn'                                    t !:nnP n!
901 I5 9f:*inal.!%
15000E 04
                                            !.:.n8:35.it 55 000f    !? i:!nia.0 9 7.45    9: Inn 0 00El .0  l49i:1na!!.ji!:j'uf 4):Jia:E F .00 00 0E 09 5 09 Pt          i 1:lilPf:111:iniil:11 !:08:!f: 1 f:ll!alf;n F:llinF R n  .i'i..:i,,n!n 0u        ai i: inn! !! 1:Una! !! :nniin !!1. ::ninl!!
it&        I !: Hi nl:u882.zTuol:u i:lliU o . 5u ur u 1.u n doituti n 2:72;!          I l !8
: % 1:$I7I0l:a 5g.suzee.g                5.unu.lii.:uuu.:o 3.nux.n z.uun.n p!i l          I1:  0!I!!:n 1:l!!!H:
5 5.;;g;g.g i
5.unu.n ::iibtn :o3.una.az.aun.n ..uuu.n 2:Rt!!!:n 1:iHul:n gg l.i.i i      i5 !:Wini:n 5.3uz u.o4:lil5!:n                  ..uu .nt:Rt!!!:n 5..nn .a::itut.l:::            3.nuu.u1:1n.Pl:
z.u J .o!
III        I! i:!nin:n filIl}INI 'f:nalli:              35
                                      """"' j:188881:11  ' " " " ' " ' t:!{tllllll
                                                                          ' " '        4:Ull[jjjj ili 0-2
 
Ili      i 1:ltitil:811:418131:              81 5:lt U l ll 1: fill 1 81 190632,=012.31622j:-012                                  f:
46212[:-012 01 97002j:14Hi 81 gg        g ggg g -gg n!                                          -" 2- ''Ii:'I'U"I!ji t
all      l1 1':fdh01:!!
i!"
E:!! * *3    i:4!!!jj:!!                      * ' ''    I:llyjj!jj'""-"
j:'nU!!: !
iti                        '
                                                                                                      '7"25-"
Ui        i51:14N i:!!!!d::Si  31 t *32I-" i:en!!':!!  z "'zz 1:!!Di'I:!! i:i!!!!'I:-"!! !:4H!!:!
                                                                                " z a'tz          z lu        j !:{!n!!!!i i:nn!':l! ':!n!!!!!!                    """"3 !:!nia';1!
                                                                                    '  '""I*" ':1!!!!!!!!
E """*"
1;i            i 08:nE:n            2 3: Ziit!''i Zistinti 21st'Til'""I"3          i                                                            :
in!          3
                                                                          'n't!!!il 18!!        I        's!!!!il          3i f tliii gj A
3
                            'iii't I 3:s.:d%8!!:ii    111:
                                              'lii 8.llall!'tii
:li litilall:l11:"I              0 iliti'til    8.s0IIII.u 8.1lun*u
:li1:t1981:41 ag jill i            !g2.76u,g!!e;  21:
2.76;i 1 3!i:0g*0; 20          2.7agge; 2.n00a.02 2.7ut 1.162057 g            5 0 10600g-0 26510E *06-5.35550E +00 2 79837E*01-4 36652E* 06 6 3.50000E-0 -1.20 000E-02 1 600 00E-06 1.3000E*00
                    !0.              *
* h                              0.                    5.0 00 00E-0 2 5 00 000E-03 1.00000F-03 50 li 1:1!656 li 1: %tti a
M 5      7.50000E-02 i!:!!!88{*8M:            Hili 111: 3:1                1 00000l:02                  2.h0000F@=0 ig          ! *i Nhf 0E+02 2.50000E-01 2
15            1        0 SP4CKM
          -1 GEONIN      61            1        0 25        5 5. 96900E-0.* 5 96900E-01 5.969 00E-01 5. %90 DE-01 5. %9 00E-01 30        5 5.%900E-01 5.96900E-01 5.969 0 0 E-01 5.96 90 3 E-01 5. %9 0 0E- 01 35        5 5. % 900E-01 5 96900E-01 5 969 00E-01 5. 56900E-01 5. %90 0E-01 60        5 5. % 90 0E-01 5 96900E-01 5.969 00E-01 5.96900E-01 5.969 0 0E-01 69        5 6.0652 0E-01 6 06520E-01 6 04520E-01 6 06520E-01 6 06520E-01 56        5 6.0652 0E-01 6. 06520E-016.06520E-01 6.06520E-01 6 06520E-01 59        5 6.0652 0E-01 6. 06520E-01 6. 0 652 0E-01 6.06520E-01 6. 0452 0E-01 66        5 6 06520E-01 6 06520E-01 6.06520E-01 6 04520E-01 6.04520E-01 73        5 6.*262 0E-01 6 6262 0E-01 6.62620E-01 6.62620E-01 6.426 2 0E-01 70        5 6.62 62 0E-01 6. 6262 0E-01 6.6262 0E-01.6.42620E-01 6 4262 0E-01 83        5 6 6262 0E-01 6 62620E-01 6.62620E-01 6.42620E-01 6 62620E-01 00        5 6.62420E-01 6. 62620E-01 6.4262 0E-01 6.62 620E-01 6. 4262 0E-01 97        5 6 42620E-01 1 95260E *01 9.0 00 00E* 00 7.01600E+00 7.03600E* 00
(        102          5 7.0360 0E + 00 7.03600E
* 00 7 03600E *00 7.03400E *00 7.03600E* 00 107          5 7.03600E+00 7.03600E*00 7.03600E*00 7.03400E+00 7.0340 0E*00 112          5 7 0360 0E + 00 7.03 600E *00 7.03600E *00 7.03600E*00 7.0360 0E* 00 1 1.66500E*01 117 122          1 1 21920E*02 126          1 3.30200E+01 126          1 9.3672 0E
* 01 120          1 2. 63 90 0 E-01 131        5 3.5 000 0E-01 5.70000E-01 3.7006 0E-01 1.70 00 0E 601 1. 56060E- 01
            -1 POW INC      62          1        0 2        3 1 400 00E-02 F. 00000E-03 7.0 0000E          167          1 0.20000E-01 2 5 00000E*03 5.00000E-01 173 I
                                                                                ~
D-3
 
          =1 PPATCH          63        1      0 1      5 1 90000E-01 6.10000E-01 1.32000E-0 4 3. 70 000E-01 1 140 00E 00 6        5 1.0 080 0E-0 3 0.0                  5.44 0 00E + 0 5 1.70 0 0 0E-12 9. 000 0 0E-01 11        4 1 0 0 0 0 0C + 0 0 1. J6 0 0 0 E
* 01 1 3 6 0 00E-01 1. 36 G 0 0 E-01 16        1 5. 2 0 0 0 0E-01 19        4 7.8200 0E-01 3. 00 00 0E-01 0.0 0000E *0 0 3.00 00 0E=01 23        5 2 0 000 0E-01 2. 00000E=05 4.70200E
* 0 0 7.55630E *0 2 5 97000E-01 20        5 4.7020 0E + 00 2 92900E-01 2.92500E-01 5 00 000E *0 0 0.300 0 0E* 00 35        1 2.30000E-04 36        5 5 0 0 0 0 0E=0 2 7. 0 0 00 0E-01 3.520 0 0E-01 9.0 0 C00E-01 9. 560 00E- 01 41        3 9 56000E=01 0.96000E+00 0.96000E*00 44        31.50000E-02 5 00000E-03 5 00000E-03
          -1 C00LIN          64        1      0 1      4 1 0 0000E*01 6 30 000E +00 1 54000E-02 1 00000E-05 7      4 1 0 0 0 0 0E
* 01 1. 00 0 00E *01 1.0 00 00E
* 0 0 1.74900E +0 0 12        33.                  6.20000E=01-2 50000E-01 19        5 5 00000E *01 1 00000E *01 1.50000E *01 2 06000E*01 2 04000E*01 24        5 1.00000E*06 1.00000E+06 2.00000E*00 5.00000E+00 1 00000E*00 i          29        2 5.00000E*0 3-5 00 000E +03 35      3 5 00000E-01 1 00 000E .00 1.0 0000F
* 00
          -1 GASWOO          65          1      0 1*    1 1 00000E+00
            -1 CLAZIM          66          1      0 1      5 7.95400E+ 00 6.41600E-02 1.00000E *01 1 00000E+04 8.
6      5 O.                  2. 0 0 0 0 0E-01 3.5 00 00E + 01 1 30 00 0E +0 2 3. 397 0 0E-  00 01 210.          200.0 11        5 5.5030 0E-01 1 19110E *01
            -1 67          1      0 6LUMIN 1      5-1 00000E-01 1.40000E-02 0.90000E *00 4.3000 0E-0 2 6. 340 00E*05 6      2 1 00000E-01 3.00000E*00                            5. 0 0 00 0E + 0 0 1 0 0 0 0 0E- 02 9      5 3.2 0 00 0E
* 07 1.440 00E + 00 0.                  1s00000E*00 1.00000E*03 14        5 0.0 -              0.0              0.
: 2. 0 00 0 0E- 02 1.00000E-09 8.                  8.
19      58.                                                  1.00000E*00    3. 50 0 0 0E-0 2 24        5 1.30000E-03 0. 00000E +00 0.0 29      5 3.0 0000E*06 6.40000E-01 1 3 00 00E *07 7.703        8.
00E-01    1 4.62000E-01 34      5 7.0 000 0E
* 0 0-1. 0 0 0 0 0E
* 0 2 8.
41      300                  0.0              0.0
            -1 FCIIM            60          1      0 1    2 9.65000E-01 5.00000E +00 6      6-1 0 0 00 0 E
* 00-1 0 0 0 0 0E
* 00-1. 0 0 0 0 0E
* 0 0 1 00 G 0 0 E +0 0 11        5 6.3 0 00 0E + 0 0 5. 0 0 00 0E
* 01-1 0 00 00E + 0 0-1 000 0 0E *00 2. 50 0 0 0E-02 16        5 2.50000E-02 5 00000E-02 1.00000E-02 5.00000E-02 1.00000E-02 l
27        2 1.00000E*03 1.00000E+01 35      2 2.0 00 0 0E-01 5. 00 090E-02 43      5 4.0 000 0E-01 3. 00000E-01 3 0 00 00E-01 2. 00000E-0 3 4. 000 00E-03 60      4 3. 7600 0E +02 0.0                  1.0 00 00E-02 2 09230E +14 1.00000E+00
: 3.                        00              0.0 5.00000E-01 66      58.
71      3 1 00000E-01 5 00000E-01 0 0
              -1 INPCMM          51          2      1 9    1          1
              -1 GEONIN          61          2      1 25      5 2.4130 0E-01 2 413 00E-01 2 41300E-41 2.4575 0E-01 2 45750E-01 5 2.4575 0E-01 2 4575 0E-01 2 45750E-01 2 45750E*01 2.45750E-01
                ,    5 2 4575 0E-01 2 45750E-01 2 45750E-01 2 45750E-01 2 45750E-01
              ,,      5 2.4575 0E-01 2. 41300E-41 2 41300E-01 2.41300E-01 2 41300E-01 l
D-4
 
49        5 2.5400CE-01 2.54000E-01 2 54000E-01 2 54000E-01 2. 540 0 0E-01 54        5 2. 540 0 0E-01 2. 54 00 0E-01 2 540 0 0E-01 2. 5s 0 0 0E-01 2. 540 0 0E-01 59        5 2.54 0 0 0E-01 2. 54 00 0E-01 2 54 0 00E-01 2.5400 0E-01 2 540 0 0E-01 64        5 2 54 0 0 0E-01 2 54000E-01 2 540 00E-01 2 54000E-01 2 54000E-01 73        5 2.9210 0E-01 2 92100E-01 2.9210 0E-01 2. 9210 0E-01 2. 9210 0E- 01 78        5 2.92100E-01 2.9 2100E-01 2.9 2100 E-01 2.9210 0 E-01 2. 9210 0 E- 01 83        5 2 9210 0F=01 2 92100E-01 2.9210 0E-01 2.92100F-01 2.9210 0F=01 l'                  5 2.92100E-01 2 12100E-01 2.92100E 01 2 92100E-01 2 42100E-01 se 97        1 2 92100E-01 120          1 4.2T200E-01 131          3 3.19000E-01 6.00000E-01 4.51590E-01 135          1 9.57FOSE-02
        -1 POWINC        62        2        1
        -1 P M6T CH      S3        2        1 6        1 2.59100E-04 19        3 1 47000E-02 0.60000E-01 4.49000E*00 26        1 3.33300E*02 31        1 1.00000E*00 39        5 0.90                9 13000E-01 9 13000E-01 0 96000E+00 0 96
        -1 000LIN        44          2        1 3      1 0 0159 13        1 3.01830E-01 22        2 1.0 650 0E
* 01 1 0 65 0 0E +01 at GASV00        65.        2        1
        -1 CLAZIN        66          2        1 10        2 3.254 0 0E-01 6 84200E-01
          -1 StuMIN        67          2        1 2      1 1 00000E*00 14        1-1.00000E*00 10        1 0.0 20        1 3.40000E-02 30        1 5.80000E-01 at FCIIN        68          2        1 1        1          0.0400 60-        1 5 50000E*02 63        1 2. 0 F 12 0E
* 14 68        2 0.0                  0.0
          - 1' INPCNN        51          3        1
          -1 GEONIN        61          3        1
          -1 POWINC        62          3        1
          -1 PMATCN        63          3      '1 6      1 0.01300E-04
          -1 C00LIN        64          3        1
          -1 GASV00        65          3        1
          -1 CLAZIN        66          3        1
          -1
[                  6F          3        1 i  JFLUNIN l          -1 D-S
 
60          3        1 FCIIN 60          1 3 4 000E*02 63          1 2 11540E*14
                  -1 91          4        2 INPCNN 61            4        2 GEONIN
                  -1 POWINC            62          4        2
                  -1 63          4        2 PNATCN 6          1 2 50F00E-$4
                  -1
            *0OLIN          64          4        2
                    =1 65          4        2 GASV00
                    -1 66          4        2 CLA21N
                    -1 67          4        2 SLUNIN
                    -1 60            4        2 FCI!N 63          1 2.0F 14 0E *14
                    -i 51          5        1 INPCNN
                    .g        .
61          5        1 GE0 MIN
                    -1 62          5        1 POWINC
                      -1 63          5        1 PNATCN 6          i f.22900E-04
                      -1 64          5        1 C00LIN
                      -1 65          5        1 GASV00
                      -1 QLAllH            66 ,          i        1
                      -t 6F          5        1
              .0LUMIN at                                1 FC11M            60          0 60          1. 4.0 4 0 0 0E
* 0 2 63          1 2.200 TOE *14
                      -1 51            6        2 INPCNN
                      =L 61            6        2 GEONIN
                        -1 POWINC            62          6          2
                        -1 PMATCN            63            6        2 6          1 3 25500E-04
                        -1 64            6        2 C00LIN
                        -1                                2 G AS V00-          65          6
                        -1 66            6        2 CLA!!N
                        -1 67            6        2 StuntN 2          1 1 40000E-02 0-6
 
14        100 18        1 1.00GCGE*03
          -1 l
FCIIN        68          6        2          ,
1        1 8.8 00 0 0E-01            l l        60        1 2.75000E*02 63        1 2 98680E*14
          -1                                      f INPCHN        51          T        2          I l        -1                                      1 l  GEDMIN        61          F        2
          -1 POW INC      62          7        2
          -1 P N4 T CH    63          T        2 6      1 2 54888E-84
          -1 C00LIN        64          T        2
          -1 GASv00        65          F        2
          -1 CLA21N        66          T        2
          -1 6F            T      2 stumrN
          -1    .
FCI!N        68          7        2 63        1 3.36940E*14
          -i INPCHN      51          8        1
          =1
  .GEOMIN        61          4        1 l
1 POW INC        62          8        1
          -1 l  PM4TCM          63        0        1 l            6      1 8.r260eE-e4
:          -1 l  C00LIN          64        8        1
            -1 GA5v00        65        0        1
            -1 CLAZIN        66,        8        1
            -1 stuMIN          6F          G        1
            -1 FCIIN          68          8        1 60        1 6.43 0 0 8E
* 0 2 63        1 2.3555pE*14
            -1 INPCHN        51          9        2
            -1 GEONIN        61          9        2'
            -1 POW INC        62          9        :
            -1 P M4 T CH. 63          9        2 6      1 2. 6430 0 E-8 4
            =1 COOLIR        64          9        2
            -1 GA$v00          65'        9        2
            -1 0-7
 
l
                                                            )
CLAZIN        66          9    2
                      -1 6F          9    2 SLUNIN
                      -1 FCI!N        68          9    2 63        1 3.798T0E*14
                      -1 INPCNN        91        Le      2
                      -1 GEONIN        61        10      2
                        -1 POWINC        s2        10      2
                        -1 PNATCN        63        10      2 6        1 2. 6268 0E-84
                        -1 C00L7N        64        10      2
                        =L GASV00        65        18      2
                        -1 CLAZIN        66      18      2
                        -1 StuMIN        tr        to      2
                        -1 FCI!N        68        10      2 63        1 3.648FSE*14
                        -1 IMPCNN        51        11      2
                        -1 GEONIN        61        11      2
                        -1 POW INC      62        11      2  .
                        -1 PMATCH        63        11      2 6        1 2 60100E=94
                        -1 C00LIN        64        11      2
                        -1 GASV00        65        11      2
                        -1 CLAZIN        66        11      2
                        -1 67        11      2 StuMIN
                        -1 FCIIN        68        11      2 63        1 3.44640E+14
                          -1 INPCNN        51        12      2
                          -1 GEON!N        61        12      2
                          -1 POWINC        62        12      2
                          -1
;                  PNATCN        63        12      2 6      1.2. TS 20 0E-0 4
                          -1 COOLIN        64        12      2
                          -1 GASV00        65        12      2
                          -1 CLAZIN        to        12      2
                          -1 D-8
 
GLUMIN      67        12      2
      -1 FCIIN      68        12      2 63      1 3. 78 06 0E + 14
      -1 INPCNN      51        13      2
      -1 GEONIN      61        13      2
      -1 POW INC    62        13      2
      -1 PNATCN      63        13      2 6      1 2. 73100E-04 1            .
C00LIN      64        13      2
      -1 G45V00      65        13      2
      -1 CLAZIN      66        13      2
      -1 SLUNIN      6T        13      2
      -1 FCIIN      60        13      2 63      1 3.71610E+16
      =L INPCHN    51        14      2
      -1 GEONIN      61        14      2
      -1
.POWINC      62        14      2
      -1 PNATCH      63        in      2 6      1 3.06900E-04
      -1 C00LIN    64        14      2
      -1 GASV00    65        ib      2
      =1 CLAZIN    66        14      2
      -1 StuMIN      4T        14      2 ai  .
FC11N      68          14      2 1    1 8.60000E-01 63      1 3 53 0f 0E*16
      -1 IMPCHN      51        15      2
      -1 GEONIN      61        15      2
      -1 POWINC      62        15      2
      -1 PNATCH      63        15      2 6      1 3.01000E-06
      -1 C00LIN    64          15      2
      -1 GASV00      65        15      2
      -1 CLAZIN      66        15      2
      -1
$ LUNIN      tr
* 15      2 l
D-9  l l
l
 
      -1 FCIIN      68          15      2 1    1 8.60000E-01
    - 63      1 3.51840E*ih
      *1 POW INA    12            1    1                                                      .
89      1      .C9142E+00
      =L ENPCHN      51            1    1 17    2          61    7
      -1 POWINC      62            1    1 29      3 .19825E*01 .30629E-03 .32711E-83 5    5 .15580E*to 48508E+00 .638T8C+00                            .89585E*00 .12620E*01 10      5 .159T0E*81 .18151E*01 .19865E+01 .20955E+01 . 212 6 7E
* 01 15      5 .20566E*01 .20256E+0i .162032*01 .13G87E+01                  .19675E*00      . 934        8 tE
* 00
                                                                                                      . 85690E-01 24      5 .66215E*00            44653E +00      .3 0 301E
* 0 0 32      5 .89117E-92 .14403E-01                  .21939E-01        .35019E-91                .58561E-81 37      5 .67329E-01 .83259E-01 .96669E-01                        .10217E+00 .10359E*00          60994E-01 42      5 .98696E=e1 .48160E-01 .T4089E=81 .57927E-81 47      5      .26146E-01 .16963E-et . 8 3193E-0 2 .37893E-02 63929E*00 .22521E.82  .128 3 7E
* 01 56      5      .66 586E-0 2 .1019FE-01 .T9613E=0i                          433 69E *01            642 69E
* 01 61      5    .22 52 7E
* 01 .31616E+01 .38830E*01 .18036E*01                                      90266E*00 66    5        416T 1E
* 01 .35311E*01 .27191E
* 01 71      5    .1868FE+ 50 . 57137E-01            .494  76E-01.      32      8 33E-01        a.19    595E-01 169      5    .61906E-02 .16981E-01 .171T3E-01 .22726E *0 8 .63233E*                                        00
                                                                                                          .210 4 7E*01 156      5    .10 860E
* 01 -.15 061E *01        .18 534E *01 -.20 670E+01
                                                          .12959E +01          .86900E +00              .4673 0E+ 00 159      5      .197T9E*01 .16887E *01                                  .25950E-01 . 4 76 3 9E-0 2
                      .10081E*00 .48875E-01                433F 6E-01 166      5                                                                                          51821E
* 09 80      5      .2 0927E-01 -. 53 699E-01 =.16106E *00 -.19                  506E +es
                                                                                .12T20E      *01        .1300 0E* 01 85      5      .8T731E,6 80 .1215tE +0i          .11306E  +01 90      5 .12140E + 01 a.10221E *01 .11569E *01 -.70460E                .29863E-42
                                                                                              *t e . b2669E* 00 24644E-02 95      5 .12701E*te .88814E-81 .25006E-91
        -1 C00LIN      64            1    1 33      1 .381T5E*t3
        -1 INPCMM      51            2    2 17      2      217    21
        -1 POWINC      62            2    2 29      3 .47697E *01            66868E-03 .322 06E-93 5    5        33 T 81E-01 .11823E*00 .185 7 9E
* 0 0 .12330E*01                          . 3 50 3 2E
* 01
                                                                                                          .2u353E*01 10      5 .1722eE*01 .18 917E
* 01 .19677E+01 .20268E+01                .16299E+01            .1618sE*01 15      5 . 2 0 015E + 0.1    .192 5 5E + 01    .18157E*01 5 .11739E*01 .13 512 E
* 0 0 .92S9FE-01 .36723E-81                .50671E-41 .168 9 0E-01 20                                                                                                49321E-01 32 45166E-01 5 .19369E-si . 29 737E-01 .86803E-01 .9306kE-01 .94 06 0E- 01 37      5 .63500E-01 . 77663 E-01 42      5    .8966EE-01 .4 0161E -01 .69389E-01 . 53                      5 77E-41 . 375 71E-01 47      5    .23701E-01 . 30 3 5 9E-01 .13880E-01 .60                        52 3E-0 2 . 365 7 0E- 02 59260E+00              48476E*00 56      5    .67657E-01        23437E+00 .61616E*00                                              413 76E
* 01 68 563E  +61 61      5 .16200E+01 .26973E+01 .35666E*01 66      5    .38053E*01        31109E
* 01  .20946E*01          .99660E      680      . 66656E-01 5    .91400E* te -.780 66E
* 00 .31214E *0 0 .68314E-41          .129 50E *0 0 . 3532bE-01 71                                                                                              .51690E* 00 169        5 .26533E-01 .10 859E~* 00 .22950E*00    .20 0T4E
* 01        .2333    0E *01          .23769E*01 156      5 .11127E *01          .16627E  +  01
                          .22043E*E1 .18531E*01            .13574E*01              .78363E*ee            .22609E*0s 159      5 164      5 .25857E*00 .29063E*00 .1354TE*00                          .59591E-41 .16960E-01      .54100E*01 80      5 . 42 679E
* 0 0 .13110E
* 01 .2 470 7E
* 01 .39090E *01 . 97560E
* s t 85      5    .70 40 9E + e t .85484t*e1 .90073E+01 . 96 493 E *01                                45956E
* 01 90      5 .93161E
* 01 .43846t*01 .79644t*01 .62833E*01 95      5 .31363t*81 .17333E*01 .8786tE*e8 40561E*te .12093E*te l
D-10
 
            -1 64            2      2 C00LIN 33      1        4934 6E + 83
            -1 51            3      3 INPCHN 17      2          61      21
            -L 62            3      3 P OW INC 29      3      .2219 0E+01          .13216E-0 2 .10637E-02 5      5      .155 80E
* 00 .40508E*00 .63878E*00.20955E+01            .89585E*00  . 212 .12620E*01 67E + 31 10      5 .159T0E+01                .18151E
* 01 .19865E*01 15      5      .20566E*01          . 20254E 6 01 .162 03E
* 01.194TSE+00.13G87E*01 . 3569  934 80E-01 0E
* 00 20      5 .66215E+00 .44403E+00 .3 03 81E
* 0 0 32      5      .10135E-81 .15790 East . 2 3623 E-01 .36974E-et .52463E-01 37      5      .69 20 2E-01 .84854E-01 .95518E-01 .57191E-01          .1025 9E 60    . 390 3.1036TE600 63E-01 42      5      .98 48 7E-01 .97774E-01 . 74742 E -01                                    .145 76E- 02 47      5      .23 741E-01 .1371SE-81 . 615 05E-9 2 .26516E-02          48986E*09 .14497E*01 56      5 .61197E-02 .52034E-02 .64363E-01                                48061E*e1 .be841E*81 61      5 .25371E+0i .35460E*01 .43297E*st          .294  66E
* 01  .19040E*01      .88550E*00 66      5        45 5 77E
* 01 . 3 86 31E
* 01 71      5        56531E-01 .22506E*00 .10903E +0 8 a.4630                        3E-01
                                                                                    .2543 FE *00 .775    .13391E-01 8 0E
* 00 149      5 .8080TE-02                .19566E-01 .213 65E-01                              . 24710E *01 154      5        1314TE
* 01 .18100E *01. 220 01E 601 .24329E +01 .478 40E* 00 159      5      .2 310 9E+ si .19696E + 01 .150 89E
* 01 .99139E *0 0 164      5      .45382E-01 .13458E*00 . 7813 9E- 01 .35554E-01                                .19726E-01
                                                                                                      .58794E*00 80      5 .24697E-01 .56111E-01 .17103E*SO .2152                            3E*0+41
                                                                                    .14G49E    0    .142 83E* 01 85      5 .9952 9E
* 0 0 .13T06E +01 a.1258              9E *81      .85 071E +0 0 . 44763E* 00
                              .13 231E
* 01 .11146E *01 .1317FE *01 90      5                                                            .46 4T7E-42 .4882 9E-04 95      5        79174E-81 .35626E-41 .27143E-04                              '
              -1 64            3        3 C00LIN 33      1 .43449E*03
              -1 INPCHN      51            4        4 17      2        217        9
              -1 62            4        h P OWINC l              29      3      .47712E*01 .20553E-03 .15273E-03    .185 7 9E
* 0 0 .12330E+41 .15032E*01 5      5 .33781E-01                1182 3E
* 0 0                                        .20353E*01 10      5 .1722eE+0i .1891TE+01 .196TTE*01 .20 26 8E *01 .1418 8 E
* 01 15      5 .20015E+01 .19255E*01 .19157                    E * -01
                                                                    .92 897E  01 .16299E      601 .16890E-01
                                                                                      .50671E-01 20      5 .1173 9C 6 01 .13512E
* 0 0 . 4774FE -01 .36517E-01 .50420E-01 32      5      .22167E-81 . 32 4 73 E-01 37      5      .65607E-01          79683E .886TTE-01 . 94843E-01 . 95727E- 01 42      5      .90 96 7E-01 . 81380E-01 . T 020 TE-01 .53633E-01                          .175 9. FE-02 363 2 0 E-01 47      5 .2019 7E- 01 . 2 0 3 8 TE-01.5.80200E-02                      .32703E-02 3433E
* 0 0 .49127E      +00 . 52 3 57E + 00 56        5 .51610E-01 .21690E
* 00 .34563E*01                            39217E *01 .39967E*01 61        f .1604TE+01 .262 4 7E *01                                    .93 747E *0 5 . 94 0 00E-01 66      5      .36710E+01 .29953E+01 .20073E*01 5 .1019 3E
* 01 -.98857E +00              .38158E
* e 8 .13667E *0 0 . 3162 7E-01 71 149        5 .28537E-01 .98T93E-01 .20513E            .18913E
* 0 0 .71300!-02 .54147E+00
                                                                              +01 a.22 867E +01 .232 43E *01 154        5 .1113 0E *01 a.16427E *01 .13223E
* 01 a.75417E *0s .192 93E* 00 159        5 .21560E*01 a.18107E +01                                      66127E-01 .16063E-01 164        5 .33673E*00 4151TE*00 .17573E*00                              39430E+01 . 5419 3E
* 01 80        5      48 45 DE
* G8 .1419 FE
* 01 .25950E *01 85        5 .70190E*01 .84933E*81 .89233E*01 .95470E*01 .45543E                              964 5* 01 7E
* 01 90        5    .92 G8 3E
* 01 .82880E*01 .Ts810E*01 .42203E*01 95        5 .3133eE*e1 .15T33E*e1 . 732 5eE
* 89 .31753E*te .95113E-01
                -1 64            4        4 C00LIN 33        1 . 50 55 9E
* t 3
                =1 D-11 f
 
                                                                          -u            - _ _          _-.-                .    - - _ - _- - -
1 INPCNN        51              5      5 17      2          61      36
                            -1 P0u tNC      62              5      5 29      3      .22 901E* 01 .21980E-02 4.16430E=O2 5 .1558CE*00 40508t+00 .630F8E*00                          .49585E*06 .12620E*01                            i 5                                                                                      . 212 6 TE
* 01 10      5 .15970E*01 .18151E *01 .19465E*01 . 20 955E +01 15      5 .20566E+01 .28254E*01                        .16203t+81 .130sTE*01 44683E*80 .30381E*80 .19 4 T SE
* 00
                                                                                                                                .93480E+00 45690E-01 20      5 .66215E+00 32      5      .10742E-01 .16T10E-01.96170E-        .2482FE=91        .30592E-01 01 .1029eE+00                . 53 511E-01
                                                                                                                      .1034TE*00
'                            37      5 .T021bE-01 . 85T44E -01                                                                                  ;
42      5 .98450E 81 .874T6E-41 74384E-41 .55904E-01 . 37 5 65E-01 4T      5 .22110E-01 .142          .12915E-41        . 532 3 6E-0402F0. 21865t-0 F 9E-01 .54458E-82 2 .1124tE-02 0E *0 0 .13945E*ti 56      5 .2290 4E-G r                                              44538t*01            492 3 8t
* 01 61      5 .25240E*01 .35463E*01 .43F43E*e1                                                75FFFE + 44 66      5        45005t*01 .36543t+41 .28985t*01- .17.4500          975E0E-41  *01 .12 49 0t= 01                  i T1        5        548 3 0E 41. 2 645 FE *8 0 .11988E *08                                  .F6412E* 00 149        5 .10838t-41 .20420t-01.1616FE-42 .2620TE                  24485E*01. *00 247 33t*01 154        5      .1314TE* ti .18225E *G1. 2212FE *41                                      .41595t* 00 159        5 .23000E*41 .195FSE*01.14814t *01. 942 42t *te l                            164        5 .2516 0E-4 2 4456FE-91        615182t * .14999t*08 00 .82FF3E-91            .35170t=41 14457t*00                  .10205t-81
                                                                                                                        . 44469tott 88      5 .23865t=61                                                1253    0E  *ti  =e12FI9E*01 5 . 86TOTt
* 80 a.12160t *01 .11212t*01                      01838t *00 .3029Ft6 88 SS 90      5 .11765t *01 .9F89FE
* 08 .12444E *01 95        5 . 31765E-01. 60 433t=82 .11644t=81 e42423t-92 .11782t=92
                              -1 64              5      5 000LIN
'                              33        1        43449E*03
                              -1 51              6      6 INPCNN 17        2          21T      6
                              -1 POWINC        62              6      6 29        3      .53 361E
* 01          141STE-0 3 .93150E-0 4 5      5      .42392E-01 '.13565E*00 .21196E*00 .129T2E*ti      .2068FE*It
                                                                                                                    .1522068FE+01 61E
* 01 is        5 . 2 7 381E
* 01 .19246E*41 .20094E*81 .15685(*01 .13441E+01 15        5 .201F0E*01 .19246E*01 .1TF20E*01 i
20        5 .10852E*01 .11022E*00 .59348E-81                            .33913E-415350?E-01 49FSTE-81 .39644E-01                    .1695FE-01 32        5 .21699t=01 . 330 3 0E -01                                .10 0 2 9E + 0 0 .10079C*00 37        5 .69116E-01 .63TTOE-01 .93918E 91                            4870TE-01 .24319E-01 42        5 . 9510 5E-41 .e3s40E-01 .69921E-81 4T        5 .13464E-01 .16069E-01 .68691E-02                          .34463E-02 .73161E-02
                                                                                    .82FF8E
* 00 a.96340E *80 .1365 8E
* 40 56        5      .6443 0E-01 .10550E *80              32F45t*01    .37560E+01 . 30 2 4 5E
* 01 61        5 .130F0E+01 .2 4# 4 5E *01                              .2 45 40E *0 5        .10 445E
* 01
'                                66        5      .34690E+01 .27405E*01 .16045E*01                  .34915E-82 .22470E*01 T1        5 a.14930C+01 .92110E*00 .26520E*00                        .142 6 5t *0 0      .470 0 5E + 00 149        5        36110E-41 .13675E*00 .29268E*00                  .242 55t *01 a.24590E* 01 154        5 .11255E*01 .1718 0E*41 .21718t +41                      .500 2 5E *00        . 39815E
* 00 159        5 . 22645E *01.18690E*01 a.12755t *01 164          5 .50660E*00 .38490E*00 .13164t*te .16130E-81 . 9F 315E
* 00 80        5 .549T5t*00 .1TT80E*01 .32366E*01 .49505E+41 .64645t*01 85        5 .49245t*01 .10795t*02 .11648t*02 .12445t*tt              .T t4 00E *01 .12558t*e2
                                                                                                                            . 550 0SE
* 01 96        5 .11940E*82 .10788E*82 .18868t*02 44415E*GG 27420E-81 4
95        5 .34425t*01 .16400t*01 .43558t*04
                                -1 64              6      6
                          'C00LIN 33        1 .51466t*03          .
                                -1 51            T      T INPCNN 17        2        217      12
                                  -1 62            T      T POWINC D-12
 
l i      29      3        68 09 6E
* 01      .2 6 50 8E-0 3  .173 5t E-0 3 5    5        42392C-01 .13565E+00 .21196E+00 .12972E*01                                    .15261E*01              '
10      5    .17381E*01 .19266C+01 .20096E*01 ..15665E+01                20 6 8 TE
* 01 .236tTE*01
                                                                                                          .13 681E
* 01 15      5 .20178E*01 .19266E*01 .1TT2GE*01                                33913E-01 .1695 FE- 01 20      5 .10852E*01 .11022E*00 .59368E-01              51735E-01      .39615E-01              .52930E-01 32      5    .2 3110E = 01 .36960E-01                                                            986TEfe01 37      5 .682T5E-01 .82634t=01 .92066E-01 .96171E-01                    64260E-01 . 236 4 5E = 01 62      5    .93151E-01 .822 TIE-01 . 69 3 60 E -01 67                                                    .69515E 5 .13245E-01 .16560E-01 .85555E* 0 0 .952 T5E *00          82  .28795E            82 .16625E-02
                                                                                                          .11320E*00 56      5 a.72 595E-01 . 33635E *00                                      36985E*0s .37640E*01                        )
61      5 .12710E*01 .2 3540E +01 .32200E*01                                                                            ,
6e      5 .36215E+01 .27100E*01 .15650E*01 .1933 0E *0 0 .1133 0E + 01                                                  l 71      5    .15690E* 01 . 96 86 0E +44 a.33 775E
* 00 3120 9 5E
* 0 0 -..65105E*88                33 69 5E-01 149      5 .30STOE-01 .14T90E+OS .30078E+00 .14955E*00 .23 0T OE* 01 156      5    .10 87 0E
* 01 .166 95E
* 01 .21100E
* S1. 23550E *41                              .35485t*00 159      5 . 22 010E 6 01 .18215E +01                    123F OC +01. 66340E *08
                                                              .1S T 65 E
* 0 0  .60710E-01              .16 08 0E-81 166      5 .62385E+GO .41250E+00
'        80      5 .4T465E+00 .16095E*01 .26025E*01 .62500E*01                                        .54690E*01
                                                                                  .102 TIE *02 .18350C*e2 SS      5 .T5690E+41 . 909 0 0 E +01                  .96330E+01 489T0E*01 98      5 .9066 0E
* 01 .88T10E*01 .44684E*01 .64600E*01                                          09165E-81 95      5 .31090E*01 .14165E*01 . 68 4 55E + 8 0 .30900E*08
          -1                                                                          .
000L IN    64              7      7 33      1      .52645E*03
          -1 thPCHN      51              8      8 17      2            61    12
          -1 P OW INC    62                8      8 29      3 .19461E *01              . 52376E-0 3 .37050E-0 3 5    5 .15500E*00                .405 0 0E +98    .63078E+00 .89585E+80 .12620E*01 5      .15 97 0E
* 01 .18151E*01              .199 65 E
* 01 .20955E*01 . 212 6 TE
* 01 10                                                                                              .93680E*00 15      5 .20566E*01 .20256E+01 .16203E+81 .13087E+01 . 956 90E- 01 20      5 .66215E+00 .44603E+00 .30391E*00 .19675E*80                  .36696E-01 . 519 5 6E-01 32      5        .90612E-02 .15155E-01 . 2 3 485E -01                                            .19250E*00 l          37      5 .68646E-01 .8418FE-01 .96552C-81 .10140E*00                  .5 FT 81E-01              60681E-01 62      5        .97492E-81 .471TTE-91                .75 0 76 E-01 47      5        .2 5 62 0E-81 .16 32 0E -01 .768T6E-02 . 31456E-0 2 .17340E-02 56      3 .12500E-01                    83890E-01 .16635E*00 .81160E-01 . 80.36060E*01              63 5E
* 00 l
61      5 .16385E*01 .24095E+01                        299T0E+01    . 33650E            *01 66      5      .31 T T 5E
* 01      .26860E*01 .20225E*01 .12385E*01 .66970E*00 5 .1233 5E
* 00 .24670E
* 00 .10925E + 00 .62210E-01                                  .106T5E-01 l
71                                                                                                .68530E*00 l
1 69      5 .16515E-01 . 55 675E -01 .72550E-01 .10 615E *00 .176 0 0E
* 01 156        5      .90 3 8 5E
* 00 a.12825E *01          .15650E
* 01 .17315E +01
: a. 30 72 0E
* 00 159        5      .166 90E
* 01 .1410 5E + 01 .10860E
* 01 =.69 745E +0 0 .85400E-82 5  .45610E-02 .11605E+00 .66680E-01                            .29940E-01 166 80      5 .89115E-02                  .45 0 00E-02 .66475E-81 .50305E-81 .32605E* 00 5        .6 2 02 5E + 0 0 . 0 92 0 5E + 0 0 . 8 4115t
* 0 0    .943 4 0E +0 0 .9615 5E* 00 45                                                                                                .38190E* 00 90      5 . 89375E6 00 a.76730E* 00 .957tSE*t 0 .62 895E+88                                        19995E-03 95      5        .37 065E-41          20135E-01 .38115E-83 .3335tE.8 2
          -1 C00LIN      64                8      8  ,
33      1        .3 0115E
* 0 3
          -1 INPCHN      51                9      9 17      2          21T        6
          -1 POWINC      62              9        9 29      3          6662 TE
* 01 .1962 3E =8 3 .66510E-0 4 5    5 .42392E-01 .13565E+08 . 21196t + 0 0 .129T2E+81 .152 61E
* 01 10      5        .17 3 81E
* 01 .192 4 6t + 01 .20094E+01 ..19445E*01  28 6J TF
* 41.13          . 286 87E 481E
* 01* 01 15      5 .20178E*01 .192 66E
* 01 .1TT20E+01 D-13
 
20                    5    .10 85 2E
* 01 .11022E*00 .5 93 4 8E-01 .33913E-01 .16957E-01 5 .2139 5E-01 .34200E-01 .52370E-01                            40 53 5E-01 . 53 3 6 0E- 01 32 37                    5 .68560E-01 .82930E-01 .92320E-01 .98625E-01 . 99 9                                      2 5E- 01 42                    5    .93360E-01 .82380E-01 .69175E=0i .4T670E=01 .22415E-01 47                    5 .13030E-01 .17015E-01 .73625E-G2 .30780E-02 .16960E-02 56                    5 .90405E-01 .42 830E *00                    10705E
* 01        13200E +01. 54 870E* 00 61                    5    .25 63 5E 6 0 0    .109 0 0E +01 .17245E*01 .20585E*01 . 21140 E + 01 66                    5 .18895E+01 .1b180E+01 . 60310E + 0 0 .4440 0E *0 0 .126 95E
* 01 F1                    5 =e15 06 5E *01. 93345E*00 .32295E + 0 0 .1109 fE +0 0 . 25765E-01 149                    5        47175E-01 .18760E+00 .39215E*00 .31780E+00 a.14900E*00                        .1642 0E
* 01 154                    5        64555E
* 0 0 .10975E + 01 .14315E
* 01 .1613 5E *01 159                    5 .1510 0E+01 .12 40 5E +01 .8 0610E
* 0 0 a.20 24 5E+0 0 .39460E*00 166                    5 .58160E*00 .37415E*00 .14375t*00 .63580E-01 .13255E-01 80                    5    .3 818 0E + 0 0 .11525E+01 .21390E
* 01 .34540E+01 . 50 69 5E
* 01 85                    5 .65600E*01 .78975E+01 .83900E*01 89380E*01 .90110E*01                                  41935E
* 01 90                    5 .05985t+01 .FT480E*01 .75435E*01 .59400E*01                .244 TOE *0 0 .T4330E-01 95                  3 .262 0 5E *01            +11200E*61 .54620E+00
        -1 C00LIN                    64            9      9 33                    1 .52445E*03
          -1
  .!N#CHN                    Si            10    10 17                    2        217      12
          -1 POW INC                  62            10      10 29                    3        4605 7E *01    .23142E-0 3      .14640E-0 3 5                    5 .42392E-01 .13965E+00 .21196E+00                          .129T2E*01 .15261E
* 01 10                    5    .17 3 81E
* 01    .19 2 4 6E
* 01 .20 0 94E
* 01 .20687E*01 . Z G 6 87E 6 01 15                    5 .20178E+01            .19 2 4 6E + 01 .1TT20E*01 .15685E+01 .13481E+01 20                    5 .10852E*01 .11022E+00 .593 48E-01 .33913E-01                                        .it957E-01 32                    5        21930E-01 .34445E-01 . 5213 5E-01 .39935E-01 . 5310 0E-01 37                    5 .68385E-01 . 827 3 5E -01 .92095E-01 .98185E-01 .98700E-01    47920E-01 . 2 312 5E- 01 42                    5    .9318 0E-01 .82305E-01 .69335E-01 47                    5      .13235E-01 .17130E-01 .73925E-02 .30765E-02 .16685E-02                          .20745E + 00 56                    5    .84 0 3 0E-01      .39260E
* 00 a.977 05E
* 0 0 .1137 0E *01 61                    5        8 0 70 5E
* 0 0 .17550E*01 .2 5 0 80E
* 01 .29105E+01 . 297                      3 5E
* 01 66                    5 .26925E*01 .21070E+01 .11330E *01                          .65315E-01              .117 45E + 01
                                                                                                                        ,286 85E-01 T1                    5 .1523 0E
* 01          .963 6 0E
* 0 0 .34115E
* 0 0 .120 65E +0 0 149                    5        44350E-01 .17250E+00            .35325E*00 .23575E *0 0 .30235E*00
                                                                            .17 8 00E
* 01 .19925E +01                  .2023 0E+ 01 156                      5    .87 3 8 0E + 00 .13935E *01                                                      .36215E*00 159                      5    .18 665 E
* 01 .15460E +01          .10 415E + 01 . 3513 5E +0 0 164                      5 .59360E+00 .39145E*00 .153 85E
* 0 0 .58550E-01 .14685E-01 80                    5        41715E*00 .12615E + 01 .23420E601 .38775E+01 .53555E*01 5 .69200E+01 .83300E+01 .88310E601 .9410 0 C +01 .94465E*01 85                                                                                                              44800E*01 90                    5 .90585E*01 .81515E+01 .79715E601 .63015E 601 95                    5- .28300E+01            .12 45 5E +01    .60 240E
* 0 0    .27 0 5 0E + 0 0 . 822 9 5E-01
          -1 000LIN                    64            10      10 33                    1 . 52 445E
* 0 3
            -1 INPCHN                    Si            11      11 17                    2        21T      24
          -1 P6WINC                    62            11      11 29                    3        4715 2E
* 01 . 516 7 8E -0 3 . 3 4710E-0 3 5                5 .33781E-01 .118 23E *0 0 .18579E*00 .12310E*01 .15032E*01 10                    5 .17228E*01 .1891TE+01 .196TTE*01 .2026                                      eE*01 .20353E*01 15                    5 .20015E+01 .19255E+01 .1815FE+01 .162 9 9E
* 01 .14188E*01 20                    5 .11739E*01 .13512E*00 . %2 89TE- 01 .50671E-01 .16 8 90E-01 32                    5      .22 3 6 5E-01 . 3329 5E -01          49075E-01 .37290E-01 .50768E-01 37                    5 .65T65E-01 .19635E-01 .88231E-01 .94131E-01 .94866E-01 42                    5 . 90 0 T 3E-01 .80585E-01 . 6 9713 E- 01 .53143E-01 . 359 9 0E-01 9
D-14 9
 
47    5 .205T3E-01 . 213 5 5E-01 .82145E-02 .32460E-02 .16t60E-02 56    5    .7 04T 5E-01 .29540E *0 0 .71393E
* 0 0 .74825E +0 0 .25484E*C0
                    .13408E+41          .23643E+01            31985E+01      .36 4T3E +01    . 3715 8E
* 01 61    5
                    .33968E+01 .27358E+di .17300E*01                          .6563 eE +0 0  .336 75E* 00 66    5 T1    5    .12 0T 3E + 01      .10 5 8 3E
* 01 .39610E
* 0 0        .13 5 T3E *0 0 . 306 2 9E-01 149      5    .37288E-01 .13193E*00 .25753E*08                          .1022 7E +00 .450 45E* 00
                                        .15 6 8 5E + 01    .197 5 5 E
* 01 . 22 G Z 3E +01    . 22 3 5 5E
* 01 154      5    .10 32 9E
* 01 5    .2 0 70 3E +01          17 313E +01    .12 38 3E +01 . 66113E +0 0        .10 314E
* 00 159 164    5      40225E*00 .u3138t+00 .17968E*00 .65918E-01 .15750E-01 50    5    .44100E*00 .13198E*01 .24433E*01 .39273E+01 .54020E*01
        $5    5 .69FF8E+01 .84105E+01 .87683E+01 .93565E*01 .94413E*01                          449 T 8E
* 01 90    $ . 9012 0 E
* 01 .81210E*01 .77T80E*01 .61493E*01 95    5 .30480E+01 .15218E+01 .T1863E+00 .3884&E+00 .9076TE-81
        -1 C00LIN      64          11        11 33    1    .54332E*03
        =1 INPCHN      51          12      12 1T    2      217        12
        -1 POWINC      62          12      12 29    3      40942E*01            162 84E-03      .100 55E-0 3
                                                            .185 7 9E + 0 0 .12330E+01        .15 0 3 2E + 01 5  .5    .33TS1E-01 .11823E*00                                                    . 20 3 5 3E
* 01 10    5    .17228E*01          .18 91 TE *01    ' .196TTE*01        .202 6 8E *01 15    5    .20015E+01 .19255E+01 .19157E
* S 1 .16299E+01 .1416                            8E + 01 20      5    .117 3 9E
* 01 .13512E*00              .92S9TE-01 .50671E-01 .16 9 9 8E- 01 5 .17815E-01 . 29 99 5E -01                    47825E-01 .37380E-01              49645E-01 32 37    5    .64664E-01 .78839E-01 .87799E-01 .93474E-41 . 94 64 9E - 01 42      5    .89T44E-01 .79994E-01 .68544E-01                            51490f-01 .34TT5E-01 47      5 .22565E-01 .28800E-01                      .12930E-01 .!5145E-02 .31185E-02
                                                                                              .10 3 45E + 01 56    5    .64 82 0E-01 . 3 5 94 0E
* 0 0 .10 030E + 01. 14610E *01 61    5    .5432 5E
* 00 .6442 5E-01 .36615E*00 .57660E+00                          .61815E*00 66    5    .49205E+00 .2153 0E + 0 0 .295 85E + 0 0 .75*60E +0 0                    .10 765E
* 01 F1    5 .12955E*01 .84190E + 00                      29965E +0 0      10 560E +0 0 .25570E-01 149      5    .34195E-01          .16035E*00        .38440E*0 0 - 43400E+0B .14555E*e0 154      5    .17 24 5E
* 00        46645E
* 00 .69610E + 0 0          .819 3 0E +0 0 . 6413 5r + 00 159      5 .T620 0E
* 0 0          .59 53 5E
* 00 -.319 40E
* 0 0        .16 595E-01 .23860C+00 164      5      43230E*00 .30875E+00 .12305E+00 .473 65E-01 .1227                              0 E- 01 43635E*01 80    5    .27660E*00 .87520E+00 .1672SEn01 .31015E+01 .78010E*01 85    5 .56910E*01 .68785E*01 .T2510E*01                              7732 0E +01
                    .74485E+01 . 6710 5E
* 01 .63330E*01                        49660E+01      .35 3 2 0E
* 01 90    5 95    5 .230T5E+01 .ieT40E*01                      .53845E+00        .24980E+80        796T5E-01
        -1 000LIN      64          12      12 33    1      4914 4E
* 0 3
        -1 INPCHN      51          13      13 17    2      217          17
        -1 P OW I NC    62          13        13 29      3      42 3 3 6E + 01    .2 70 4 8E-0 3      .16 4 79E-0 3 5    5    .33751E-01          .118 23 E + 0 0    .185 79E
* 0 0    .12330E+01 .15032E*01 10    5    .17228E*01          .19917E*01 .196TTE*01 .20269E*01 .20353E*01 15      5 .20015E+01 .19255E+01 .1815 F E
* 01 .1629 9E + 01 .1418                            8 E
* G1
                                                                                                .16 890E- 01 20      5    .11 T3 9E
* 01 .13512E+00 . 92 $ 9FE- 01 .55671E-01                          48S53E-01 32      5    .18 0 2 3E-01 .29697E-01                  46720E-01 .36163E-01 37      5    .63 796E= 81 .77846E-01 .86700E-01 .92T63E-01 .93640E-01 42      5 .89000E-01 . 7 96 9 3 E- O L . 6 8 9 9 0E- 01 .52903E-81 . 36 6 93 E- 01 47      5    .24040E-81 .3099eE-01 .13977E-01 .59670E-02 .33473E-02 56      5    .60 36TE-01 . 31840E
* 00 .84863E
* 0 0 .105 83E +01 . 3443 7E
* 00 61      5      43660E+06 .11660E*01 .1752TE+01 .20(33E+01 .21197E*01 66    5 .19197E*01 .14940E*01- .41400E+00 .78557E-41 .58853E* 00 0-15
 
71    5 .110T 3E +01        .11917E +00      31043E +00      11543E +0 0 a.20093E-01 149    5    .32140E-01 .14390E*00            .32313E+00 .269 53E +0 0 a .144 8 7E
* 00 154    5 . 5 8 3 97E
* 0 0      94 2 53E
* 00 .12 T 8FE
* 01. 1442 0E *01 .14T 0 3E
* 01 5 .1160 Tr e 41.. It 3?1E v 01.. T8100E
* 0 0 =.1T 563r *00          . 70 0 2 TE-01 159 164      $ .J444TE600 .1029?t*00 et/150t+00 sllJ17t=01 .tJ1/dT=01 90    5 .29T63E+e0 .9501TE*00 .1600TE*01 . J1693E *01 44201E*01              78683E*01 05    5    .57490E*01 .69490E*01 . 729 9 0E
* 01 .77927E*01 90    5 '.7518FE*01 .6T840E*01 .6450TE*01 . 50 95 7E
* 01 .!TS20E*01        32213E=01 95    5    .2400.4 +0i      e t # 51 TE +01 .431178600 .29200E+00
        -1 C00LIN    64          13    13 33    1 . 49616E
* 0 3
        -1 INPCNN    SL          14    14 17    2      217        18
        -1 POWINC    62          14      14 29    3 .35017E
* 01 . 17609E-0 3            11351E-0 3 5    5 .33781E-01 .11023E*00 .195 7 9E
* 0 0.20260E*01        .12330E*01 .15032E*01 10    5 .17228E*01 .19917E*01 .196TTE*01 .16219E*01 . 20.14188E*01            35 3E
* 01 15    5 .20015E+01 .19255E.01 .1815FE*01 20    5 .1173 9E
* 01 .13512E*00            .92 S 9FE-01 .50671E-01 .16990E-01 44684t=01 32    5 .15tT3E-01 .27155!-01 .43079E-01 . 352                  7 7E-01
                                                                      .93457E-01 . 944 0 9E- 01 37 -  5    .63804E-01      .7 813 5E-01 .0724TE-01 42    5    .89767E-01 .40424E-01 .6965FE-01 .53617E-01 . !?637944E-02          5 9E-01 47    5 .24730E-01 .31600E-01 .14594E-01 .64260E-02          .13 593E
* 01 .13 955E
* 01 56    5      4975 8E-01 . 2912 3E + 0 0 . 8 0 235E + 0 0 61      5    .13 018E 6 01    .120 6 3E *01.10 418E +01 .475 5 0E *0 0 .95592E
* 00 66    5 .9790 9E*00 .1043 8E + 01 a.12225E + 01 .1270 8t +01 a.123 2 0E+ 01 11    5 .11542E *01 .66 90 8E
* 00 -.240 28E
* 0 0 .8T25 0E-41. 21218E-01 149      5 .256?TE-01 .12662E*00              .319 73 E
* 0 0 .46260E*00 .38520E*00 154      5 .288T2E600 .18695E*00 . 4 3193E- 01 .32547t=01 . 20 66 3E- 01 159      5      47328E-01      .10 75 3E + 00 .22202E*00 . 310 3 5E +0 0 .36887E*00 164      5      40555E+00 .24768E*00 .98163E-01 .3038FE-01 . 99233470E*01        3 3E- 02 80    5 .1916 0E
* 0 0 ' .61695E+00 .1191TE
* 01            .23 37 0E *01 44117E+01 .53660E*01 .57250E+01 .61153E+01 .61758E*01 t
05    5 90    5 .58985E+01 .53193E+01 .49468E*01 .34750E601 . 27767440E-01            0 3E
* 01 95    5 .18120E*01 .44733E*00 43444E*00 .20!43E*00
        .- 1 C00LIN    64          14      14 33    1      43122E*03
        -1                                    '
IMPCNN    51          15      15 17    2      217      24
          *1 POWINC    62          15      15 29    3 .35946E *01 .25158E-0 3 -.16342E-0 3 5    5    .33T81E-01 .11823E+00 .185 79E
* 0 0 .12330L+01 .15032E*01 10    5    .17 22 SE + 01 .18 917E
* 01 .196TTE*01 .2026 8E 601 .20353E+01 15    5 .20015E*01 .19255E+01 .10157E+01 .16299E*01 .14180E*01 20      5 .11T39E*01 .13!12E+00 .92 8 9FE-01 .50671E-01 .16                      59 0E- 01 47750E-01 32    5    .15770E-01        26763E-01      43048E-01 .34573E-01 37    5 .62930E-01 .77155E-01 . 462 68t = 01 .92520E-01 93 610 E- 01 42      5 . 89 215E-01 . 0 0 2 3 3E-01 .69920E-01 .54493E-Gi .3s973E-01        4146BE-02 47    5 .2559 5E-01 . 33 795E -01 .15793E-01                  70020E-02 56    5 a.44460E-01 .24503E* 00 .60113E* 0 0 .18200E *01 .790 5 0E
* 00 61    5 .50649E
* 00          21794E *00 . 54429E =01 .19T18E+00 . 227 9 5E+ 00 81462E'+ 00 66    5    .1516 0E
* 00 .19790E-01 .3 2153E
* 0 0 .59163E *0 0 71    5 .96952E *40 .626 03E
* 00 .23455E + 00 .80905E-01. 22445E-01 149      5 .23200E-81 .11160E
* 00 .26963E*00 .32425E*00 .14950E*00 154    . 5 .42218E-01 .22420E *00 .37644t *00 .45555E*00 .472 48t* 00 159      5    .4240 3E
* 00 .32015E *00 .15546E *00 . 23118E-01 .18910E*00 0-16
 
164          5 .32378E+00 .23180E+00 . 97137E = 81 .39700E-01            .10635t=01 32390E+01 80          5 .1970$E+00 .61920E*00 .11994E+01 .22 st tE *01 .51615E*01 45          5    425T3E*01 .51785E+81 .55D5eC+01 .54944E+01 90          5 .57025E*01 . 515 0 0E 6 01        44J35E*01 .3622sE*01 . 2714 0E
* 01 15          5 .18700E+01 .9461TE+00              49164E+00 . 2339 3E *00 .76513E*01
        -1 000LIN          64        15    15 33          1    4330aE*03
        -1 P MAT CM        63        1      1 6        1 l.48735E-06 26          2 2 48294E+03 T.71834Eath 33        1 1.2 992 9E
* 0 0
        -1 PMATCM          63        2      2 6        1 2.566T1E-06 26        2 T.56850E+42 4 32543E-t3 33        1 6 87953E 41
        -1 PMATCM          63        3      3 6        1 6 61591E-th 26          2 2.06943E*03 1.8899eE-83 33          1 1 09583E*00
        -1 PMATCM          63          4      6 6        1 2.56349E-04 26          2 T.53959E+02 8.372 Bet-03 33        1 6.87616E-81
        -1 PMATCM          63        5      5 6        1 5 996e6C-04 26'        2 1.9429 3E + 0 3 1 260 56C-0 3 33        1 1 03233E*99
          -1 P MA TCH        63        6      6 6        1 3 20695E-06 26          2 1 0 879 0E
* 0 3 6. 020 31E-03 33          1 T.53754E-01
          -1
* PMATCM          63        T      T 6        1 2.54T92E-04 26          2 T.43 T6eE+02 8 6032TE-03 33          1 6. 85 972E-01
          -1 PMATCH          63          8      8 6        i F.12092C-06 26          2 2.2 8 606E*03 9.79544E-06 33          1 1 16 8T5E* 00
          -1 PMATCM          63        9      9 6        1 2 61861E-06 26          2 T.88910E*02 T.64666E-83 33        1 6.93411E-01                                                          l
          -1                                                                                J PMATCH          63      10      10                                                      I 6        1 2.54637E-06 26          2 T.6a4TTE*82 8.85452E-83                                              )
33        1 6. 94 02 3E= 81
          -1 PMATCM          63      11      11 6        1 2. 54619E-04 26        2 T.55 713E+s2 4. 33325E-03                                            l
                                                                                            \
l l
l 0-17
 
33  1 6 4T899E-81
      -1                                                                    l PM4TCH    63      12    12                                                  j 6  1 2.728SEE-04                                                    I 26  2 8.54113C+02 6 52361E-03                                        l 33  1 T.0492TE-01
      -1 P MAT CH  63      13      13 6  1 2. 64 30 5E-0 4 26  2 8.2TF15E+02 6 94640E=83 33  1 T.00155E-01
      -1 PMATCH    63      in      in 6  1 3.0b109E=O4 26  2 1 0142 6t + 0 3 4. 62 644C-0 3 33    1 T.37893E=31
      -1 PMATCH    63      15      15 6  1 2.9 eel 2E-te 26    2 9 45451E*02 4198* set-43 33  1 T.38900E-81
      -1 ENOJOS    -1 0-18
 
l Appendix E PLUT02 Calculations for E0C-4 TOP Case 2 For the EOC TOP case 2 discussed in Section 6.2.3, SAS/FCI predicted a sustained superprompt critical excursion due to monotonically increasing fuel motion feedbacks in Channels 2 and 4. This was at least in part due to an unrealistic SAS/FCI assumption of fuel ejection without regard to motion internal to the fuel rod. Since the SAS/FCI model is known to produce unrealistically conservative results in fuel motion reactivity feedback rates for a superprompt power excursion,(E-1) the PLUT02 code (E-2,E-3) was employed to obtain a more accurate understanding of the behavior of fuel motion and fuel-coolant interactions in SAS Channels 2 and 4.
The PLUT02 code, in comparison to SAS/FCI, represents several major improvements in modeling the failure phenomena of fuel rods during transientoverpoweraccidents.(E-2) Among these improvements are a compressible hydrodynamics treatment of the fuel rod cavity, the allowance of fuel-sodium slip in a nonuniform FCI zone and a treatment l
of compressible sodium boundaries to the FCI zone.
The PLUT02 model used in the present calculations was based upon the SAS predicted conditions in Channel 2. The PLUT02 results were also    !
used for Channel 4 because both channels are very similar in those characteristics which are important in determining the reactivity feed-back. For instance, the material worth, power and temperature distri-butions are similar for the two channels. As a consequence of the above, SAS predicted that the two channels would fail at nearly the same time (see Section 6.2.3).
The problem description, including material worth distributions, used in the PLUT02 calculation was determined from the SAS calculation, where appropriate. Parameters specifying initial conditions for the PLUT02 E-1
 
model, such as cavity dimensions and temperature distributions, were detemined from the SAS-predicted conditions at the time of cladding failure. The post-failure cavity dimensions specified as input to PLUT02 were determined by assuming that the PLUT02 cavity radius grows at a linear rate to match the dimensions predicted by SAS/FCI for a 16.6 msec period after the cladding failure which extends into the superprompt regime.
In addition to the base PLUT02 case, three parametric cases were analyzed to address uncertainties associated with input values. The base PLUT02 case used the same ejected fuel particle radius as SAS/FCI; 0.025 cm. Two additional cases were computed using fuel particle radii of 0.050 cm and 0.100 cm to reduce fuel sweepout and thus increase the positive fuei .t.ctlur. reactivity feedback. The choice of the particle sizes examined was based on a literature review of PLUT02 applications to TREAT experiments. (E-2) A third parametric case reduced the molten fuel viscosity by a factor of 10 to achieve a more rapid fuel motion in the cavity toward the core midplane failure location, and thus increase the positive fuel motion reactivity feedback.
Results for the base PLUT02 analysis show that the fuel motion    ,
reactivity is initially positive and greater than that predicted by SAS/FCI (see Figure E-1). The fuel motion reactivity peaks at 1.95t/ assembly and then quickly decreases due to fuel sweepout. In comparison, SAS/FCI predicted a monotonically increasing positive fuel motion reactivity feedback (an autocatalytic behavior). Motion of the upper and lower sodium slug interfaces predicted by PLUT02 is also more extensive than that predicted by SAS/FCI during the 16 msec after the failure. As a result, the sodium void reactivity predicted by PLUT02 is greater (see Figure 2). The net effect of both fuel and sodium feedbacks in PLUT02 is a rapid pulse (s7 msec) of positive reactivity followed by a strong, rapid negative reactivity contribution.
E-2
 
The results of the parametric cases performed are presented in Table E-1. Increasing the particle diameter did increase the peak fuel positive reactivity, but only by approximately 5% which is insufficient to affect the conclusions. The factor of 10 decrease in molten fuel viscosity (principally affecting the fuel rod cavity solution) only results in an earlier time for the peak fuel reactivity; 6 vs. 7 msec.
Hence, neither parametric variation would affect the overall PLUT02 results or impact on the whole core SAS assessment.
The results for the base PLUT02 case were substituted for the SAS/FCI predicted failure of Channels 2 and 4 in the SAS calculation using SASBLOK. The SAS calculation with the PLUT02 input (presented in Section 6.2.3) did not result in a sustained superprompt excursion due to the rapid negative reactivity resulting from fuel motion.
Based upon the difference in core response (see Figure 6-11) a comparison was made between the cavity size used in PLUT02 and the size predicted by SAS with the PLUT02 results incorporated. Due to the originally assumed linear growth in the cavity radius for the PLUT02 evaluation, and a slightly conservative initial size, the SAS and PLUTO cavities were very naarly.the same. Hence, the two solutions are con-  I sistent and a further iteration was unnecessary.
E-3
 
Table E-1 Peak Fuel Motion Reactivity Results for PLUT02 Cases Fuel Particle    Peak Fuel            Time of Radius        Reactivity            Peak (cm)      (cents / assembly)    (msec)
Base case                                      0.025            1.95              7 Case A                                          0.050            2.03              7 Case B                                          0.100            2.06              7 Case C                                          0.025            1.95              6 (0.1 x fuel liquid viscosity)
E-4
  - - .- -          _ - - - - - - - -        _ --            ,    ,,          -  - - ~ - -
 
  -.m-2.5
                                                            /              -
2.0 _                                              /
                                                    /
                                                  /
          -                                  /                PLUT02
                                          /            ----- SAS/FCI t-  1.0    ~
                                      /
5                                  /
5 m    .5
                                /
0_    _//      /
      .5 I              I              I 0            5              10            15            20 TIME IN MSEC Fig. E-1  Fuel Motion Reactivity per Assembly 2.0
,  1.5    ,
E C
E
~
1.0  ~
v                                                            -
2
                                                      /
      .5                                          /
                                          /                    PLUT02
                                    /
y                          -----SAS/FCI O              -
1              I              I O            5              10            15            20 TIME IN MSEC Fig. E-2 Sodium Void Reactivity E-5
 
Appendix E - References
' E-1    J. L. McElroy, et al. , "An Analysis of Hypothetical Core Disruptive Events in the Clinch River Breeder Reactor Plant,"
CRBRP-GEFR-00103, General Electric Co. , April 1978.
E-2    H. U. Wider , et al., "An Improved Analysis of Fuel Motion During an Overpower Excursion," CONF-740401-P3, Proc. Fast Reactor Safety Meeting, p. 1541, Beverly Hills, California (1974).
E-3    H. U. Wider, et al. , " Analysis of TREAT Transient Overpower Experiments Using the PLUT02 Codes," LA-7938-C, Specialists Workshop on Predictive Analysis of Material Dynamics in LMFBR Safety Experiments, March 13-15, 1979, p. 153.
E-4    C. H. Bowers, A. M. Tentner and H. U. Wider, " Analyses of TREAT Tests L7 and L8 with SAS3D, LEVITATE, and PLUT02,"
LA-7938-C, Specialists Workshop on Predictive Analysis of Material Dynamics in LMFBR Safety Experiments, March 13-15, 1979, p. 242.
E-6
 
Appendix F Neutronics Calculations in Support of Distorted Core Evaluations Distorted reactor configurations have been neutronically calculated both to guide the energetics assessment and to allow for a parametric evaluation of the margin represented by the SMBDB.
These scoping calculations were done prior to completion of the detailed energetics assessment presented in this report. Thus, none of the generic configurations are directly related to either calculated or phenomenologically described configurations in the body of the report.
Additionally, the understanding of fuel escape into the interstitial gaps surrounding the active core was not foreseen, and no credit is taken for these volumes in the hypothesized blockage configurations used for these pool calculations.
The neutronics calculational sequence that was used in the cross section generation and criticality determination is the same as that used in the core design and is shown in Figure F-1. Calculations for ,the BOC-1 and E0C-4 design configurations were first performed as a bench-mark against which the distorted configurations can be compared.
Two generic, molten pool configurations were considered and four separate calculations are presented herein. The first configuration, Case 1 (Table F-1, Figure F-2 ), represents the potential formation of a large-scale annular pool in the BOC-1 configuration, some seconds after an initiating phase power burst has rendered the core subcritical. The fuel assemblies in the inner region of the core are assumed to have suffered
* Fuel and steel densities are stated relative to a normal fuel assembly design while blanket is relative to a normal internal blanket assembly.
F-1
 
an FCI type failure. Fuel has been removed from the core region and swept into the UAB where it is assumed to have frozen and plated out on the existing rod structure. These assemblies are considered to remain intact, being coolable by sodium flow past the blockages. The main annulus of fuel assemblies has previously voided sodium and, after vapor pressure induced fuel expulsion into the UAB/ plenum region in the lead assemblies, formed a boiling fuel-steel pool. The available flow volume in the axial blanket extensions in this outer fuel region were assumed to plug (to contain the pool) with a composition of fuel / steel based on the normal fuel assembly mass ratio of 3.1 to 1. The upward penetration distance is based on the amount of steel heat sink required (axial blanket cladding and wire wrap) to cool the fuel to its solidus point (Ref. F-1) and typical SAS predicted fuel temperatures. The downward penetration was arbitrarily set. Pre-existing upper steei blockages are also represented in the lead fuel assemblies. All of the blanket and control assemblies are assumed to remain intact based on their low specific power and continued sodium flow at termination of the initiating phase. Thus, about 25% of the fuel and 19% of the steel in the annular regiod has been expelled into the axial blankets. The remaining material has boiled up within the allowable volume and was assigned a temperature of 2800 C. Overall, approximately 23% of the total core fuel has been removed. This configuration was calculated to be subcritical by 21$. In order to parametrically calculate the reactivity insertion rate encompassed by the SMBDB for this generic configuration, the material in the pool was densified to attain a near critical eigenvalue. For this scoping assess-ment the axial density gradient selected was based on a transient calcula-tion presented in the literature; Ref. F-2. Additionally, some of the previ-ously ejected core fuel was allowed to reenter the pool from the UAB. The r-z configuration for Case 2 is presented in Table F-2 and Figure F-3.
The corresponding eigenvalue was 2$ suberitical. This configuration was subsequently used to estimate the reactivity insertion rate necessary to approach the SMBDB work potential discussed in Chapter 10.
F-2
 
The other generic configuration addressed was a core-wide bottled-up boiling pool of fuel, blanket and steel; a configuration not expected to occur. The third and fourth configurations examined a core-wide pool in the B0C-1 and E0C-4 configurations. The BOC-1 configuration, Case 3, is defined in Table F-3 and Figure F-4. The plugging of the boundary is rather arbitrary and was made to be a uniform fuel / steel blockage repre-sentative of a low pressure core dispersal. The fuel to steel mass ratio of the ejected material is based on the fuel assembly design; the same as used in the previous cases. Approximately 27% of the original core fuel and 17% of the steel mass is relocated into the blankets. The remaining fuel is homogenized with the inner blanket and steel inventory.
The primary control assemblies were assumed to melt and, due to the low density of Baron Carbide relative to the other core materials, relocate upward into the UAB; a conservative reactivity assu:rption.
The density of the molten pool was conservatively based on experi-mental results (Ref. F-3). A conservative void fraction (a) of zero was associated with bubbly flow and transition to churn-turbulent flow (a104) was assumed to occur when the superficial vapor velocity exceeds the bubble terminal rise velocity. The profile used was calculated based upon a pool power of 2% of nominal power with the pool temperature assumed at 3000 C. Due to the lower material densities at these high temperatures, the average core region void volume is approximately 35%.
The r-z diffusion theory estimated eigenvalue for this BOC-1 confi-guration was 2.2$ subcritical. Thus, the approximate removal of one-fourth of the core fuel along with the control material, followed by boilup will result in subcritical conditions. Similarly, it was calculated that if less than 20% of the core fuel is removed along with the control, the reactor would be supercritical. The 80C-1 configuration shown in Figure F-4 was used to estimate the reactivity rate required to approach the SMBDB, as discussed in Chapter 10 of this report.
F-3
 
                      ~
l l
l The EOC-4 core wide pool configuration, Case 4, is essentially the same as the 80C-1 (Case 3) except for the core composition and control changes with the change in configuration. In the E0C-4 case a more conservative expulsion was assumed with 83% cf the fuel and 92% of the steel still remaining in the core region. The neutronics model is described in Table F-4 and Figure F-5. The estimated reactivity value is 7$ supercritical. Hence, somewhat more fuel would need to be ejected to bring the pool subcritical.
Thus, for these conservative configurations, it is estimated that removal of approximately one-third of the core fuel, followed by boilup would result in subcritical conditions. Table F-5 presents a summary of the calculations discussed herein.
F-4
 
Appendix F - References F-1    B. W. Spencer et al., " Reactor Material Fuel Freezing Experiments Using Small-Bundle, CRBR-Type Pins," ANL/ RAS 79-11, Argonne National Laboratory, July 1979.
F-2    R. E. Alcouffe and R. J. Henninger, "An Examination of Sub-assembly Scale Fuel Motion Using the SIPHER-II Code," ANS/ ENS International Meeting on Fast Reactor Safety, Seattle, WA, August 1979.
F-3    G. A. Greene, O. C. Jones, Jr. and N. Abuat, " Comparison of Measured and Calculated Average Void Fraction in Volume-Boiling Pools with Inclined Boundaries," ANS Transactions 33, p. 546, San Francisco, CA, Nov. 1979, i
l l
I l
F-5
 
Table F-1 Annular Pool Case 1 Material Description by Region (See Figure F-2)
REGION                          DESCRIPTION 1            Lower Axial Shield 2            Lower Attachment / Transition Region 3,4          Radial Shield 5            Fission Gas Plenum 6(6a)        Base Inner Blankets (plus Row 4 Corner Control Rods) 7.8          Base Radial Blankets 9            0.786 of Base Fuel 10          Base Fuel 11          0.75 of Base Fuel and 0.81 of Base Fuel Steel 12 ,17      Base Inner Blanket Extensions (plus Row 4 Corner Control Rods)
(12a,17a) 13,14.18,19 Base Radial Blanket Extensions 15,20        Base Axial Blankets 16.22        Base Axial Blankets plus 0.633 of Base Fuel and 0.38 of Base Fuel Steel 21          Base Upper Axial Blannets plus 0.25 of Base Fuel and 0.772 of Base Fuel Na 23          Base Upper Axial Blankets plus 1.47 of Base Fuel Steel 24          Row 7 Na Channel 25          Row 7 Corner Control Rods and Na Channel 26          Row 7 Corner and Flat Control Rods 27          Row 7 Control Rods and Na Channel
    %uber Densities F-6
 
i Table F-2 Annular Pool Case 2 Material Description by Region (See Figure F-3) l REGION                            DESCRIPTION 1-10              Identical to Case 1 11a              1.306 of Base Fuel and 1.423 of Base Fuel Steel s                >        t          >
lib              1.306                      1.423 11c                1.306                    1.423 11d                1.132                    1.233 lie              0.958                      1.044 lif  .          0.786                    0.856 lig              0.745                    0.812 11h                0.594                    0.649 j  1 11              0.544                    0.594 lij                0.501                    0.547 lik                0.458                    0.501 111                0.387                    0.408 lim                0.387          II        0.408      If 1
lin                0.696 of Base Fuel,1.518 of Base Fuel Steel and 1.1 of Base UAB t            >          .          >            t      ,
llo                0.290                0.320                      0.0 12-27              Identical to Case 1 1
* Number Densities                                                                1 F-7
 
Table F-3 Core Wide Pool Case 3 Material
* Description by Region (See Figure F-4)
(BOC-1)
REGION                                          DESCRIPTION 1-5          Identical to Case 1 6            0.4350 of Base Fuel. 0.7760 of Base Fuel Steel, and 0.3153 of Base Inner Blanket t          >          r                ,          w            ,
7            0.6458                  1.0561                      0.4090 8            Base Radial Blankets with 0.10 of Base Fuel Na 9            Base Radial Blankets 10,16        Base Inner Blanket Extensions plus 0.420 of Base Fuel and 0.252 of Base Steel Fuel 10a,16a      Base Inner Blanket Extensions plus 0.445 of Base Fuel and 0.268 of Base Fuel Steel 16b          Base Inner Blanket Extensions plus 0.457 of Base PCA B 4C 11,17        Base Inner Blanket Extensions (plus Row 4 Comer Control Rods)
(11a,17a) 12.18        Base Radial Blanket Extensions with 0.10 of Base Fuel Na 13,19      Base Radial Blanket Extensions 14,20        Base Axial Blankets plus 0.633 of Base Fuel and 0.380 of Base Fuel Steel 15.21        Base Axial Blankets 22          Row 7 Na Channel 23          Row 7 Na Channel plus 0.57 of Base Fuel and 0.33 of Base Fuel Steel 24          Row 7 Corner and Flat Control Rods plus 0.57 of Base Fuel. 0.35 of Base Fuel Steel and 0.457 of Base PCA B 4C 25          Row 7 Comer and Flat Control Rods 26          Row 7 Flat Control Rods and Na Channel
* Number Densities F-8
 
l l                                Table F-4 Core Wide Pool Case 4 Material Description by Region (See Figure F-5)
(EOC-4)
REGION                        DESCRIPTION 1-5          Identical to Case 1 6,6a,7      0.5253 of Base EOC-4 Fuel, 0.81629 of Base E0C-4 Fuel Steel and 0.30037 of Base E0C-4 Inner Blankets 8            Base Radial Blankets with 0.10 of Base Fuel Na l 9            Base Radial Blankets 10,16        Base Inner Blanket Extensions plus 0.420 of Base Fuel and
!              0.252 of Base Steel Fuel l
10a,16a      Base Inner Blanket Extensions plus 0.445 of Base Fuel and 0.268 of Base Fuel Steel l
l  16b        Base Inner Blanket Extensions plus 0.243 of Base PCA B C 4
i 11,17        Base Inner Blanket Extensions (plus Row 4 Corner Control (11a,17a)
Rods) l 12,18      Base Radial Blanket Extensions with 0.10 of Base Fuel Na l
13,19      Base Radial Blanket Extensions i
14,20      Base Axial Blankets plus 0.633 of Base Fuel and 0.380 of Base Fuel Steel
* Number Densities F-9
 
Table F-4  (Continued)
Core Wide Pool Case 4 Material Description by Region (see Figure F-5)
(EOC-4)
REGION                                          DESCRIPTION 20a            Base Axial Blankets plus 0.633 of Base Fuel, 0.380 of Base Fuel Steel and 0.243 of Base PCA B 4C 15,21          Base Axial Blankets 22            Row 7 Na Channel 23            Row 7 Na Channel plus 0.57 of Base Fuel and 0.35 of Base Fuel Steel 24            Row 7 Corner and Flat Control Rods plus 0.57 of Base Fuel.
0.35 of Base Fuel Steel and 0.243 of Base PCA B 4C 25          Row 7 Corner and Flat Control Rods 1
26          Row 7 Flat Control Rods and Na Channel
* Number Densities F-10
 
Table F-5 Sumary of Distorted Core Eigenvalue Calculations Fuel Mags Case    Description          in Core (%)  Eigenvalue    Change}tyReactiy (3)
                      -      BOC-1 Base Design        100        0.9862          -
1      BOC-1 Annular Pool        77        0.9111        -20.5 2      BOC-1 Annular Pool        81        0.9788        -2.0 with Compressed Density Profile 3      BOC-1 Core Wide          73        0.9780        -2.2 Pool
                      -      E0C-4 Base Design        100        0.9896            -
4      EOC-4 Core Wide          83        1.0154          7.0 Pool
* Relative to base design fuel assemblies
                    **  Change from base design, 1$ = 0.00367 F-ll
 
ET0X                                  i 30 NEUTRON ENERGY GROUP INFINITELY DILUTE CROS5 SECTION DATA II PUPX CMVERT DATA TO ISOTXS & BRK0XS FORMAT ISOTXS p
BRK0XS SPHINX CORRECTIONS FOR COMPOSITION          NUCLEAR AT(N TEMPERATURE, ELASTIC REMOVAL.      '  DENSITIES, COLLAPSE TO 21 ENERGY GROUPS          10 CORE.MODEL ISOTXS IN f    DTE FORMAT W22 NUCLEAR ATOM DENSITIES,      =    M-OmaSIONAL DIMSIM 2D CORE MODEL M        TION m RZ GE M Y If CRITICAL EIretVALUE, K
EFF Fig. F-1 Critical Eigenvalue Calculational Sequence F-12
 
l      l l111I            ll l 1                                                                ;
                                                                  <x"% z%gJ 5 1          1          2 1          5                      4          8          3
(              8          4                      5          1          7 c0            .                                                        .
m              8          3 7
8          3          6
                                    )0              1                                  1          7          1 9          9                      9          9          3 F
g i
(
1 1
F                                                  2                  6                7 2
2.N*        '
1      1                1          2 A                                                  5      0          9    ,0 1
n n
u                  % . *R        '            '
1                                  1 5
l                                        2        2                  G                7 a
a                                                  a                  a r                  R.*5          '
i      t                  t        2 P
o                                                  s      o          9      o        1 o
l O. 2          '
R                    1 C                            a                    2                  6                1 7
a                            d F
s e
I n
S.*3 i    d            :                                  :                  .  :
1 1      TN
                      <  3.*0 ,s        1                                      -              .
3            ha e                    c g
(
sV,                                                              1                .L 2
B      eoi                  m                  1    1 1          ~-    8 O                                                5    4 C      Rd
        -    ae                                                                          2 1      dd                                                                          2
      )      i E.j          '
aA                                          1 6              1    ..
* 2                                  7 r    l                                                                                      .
5 z
Ra el g
i x vM1B l    89S          '
2        1 5
1 1        n  y        ~
C    iy                                          1                                  i o    o                                            2                    7              s n
f    s n        -2.
* o          '
i g                                                  1                                  1 u                                                  4                  8              9 r              -Z.*G a                                                                      3 t
i o
n 4
                      .3
                        . m$
 
l
                                                                                      /
237.613 5                                      5 181.379                              -
aa                                      )
                                                        =
17a 21 17    21            17      22 (717 20 18  13
                                                        '!!0
* 145.819 C      11m                um 10          10            ill                  n' ilk                M 8                                            til                ul J                                      -
til                111 5,_            6    9    Ga    9 6          11h L            G uh 7      8 3  4 a                                              us f                us 11f
[                                              11f
.s                                            u.                  u.
E                                            lid                  ild 11c                  uc 10          10            um                  um 54.379                              -
                                        ~
11a                  na gg                  A 12    15    12a 15  12        15              12 15 13      14 18.819 2                                    2 1
0.0 (cm)                          Radius,cm N
m    =
20 w o    3 e ,2
                                                          *33a 8m e ,                2 m
3
                                                                                    =
G_    $    i    $&      $$
                                                          $ v$ 8' f f  d Na Veided Axially In These Radial Regions Fig. F-3 Annular Pool Case 2 (B0C-1) r-z Configuration F-14
 
237.613 5                    _
5 181.379                            ,
                                                    =-
168.044        17      .1L. 17s    2L. 17          21      17 21 is      is 154.709                                                          ->
145.319    --
le      2o  ase    20    m      :    .20    se 20 5
J 5
j                                                6                          s 9 3    4 2
61.413 7
4  h        to        14    toa 14        to      ;;    14  ko 14 11        15    its    15    11            15  11 15      12 13
(    18.819
                                                        ~
2                                    2 8.344 1
0.0              ,      ,    ,      ,          ,,          ,,        ,  ,
(m)                                          Radius, cm a
                      ~
R w
                                    "!.R e o 32 e,
                                                                  *3$
8m eE,              G m
S
                                                                                          =
b            $$              $            b$$$                $  $
v            _.
Na Vofded Axially In These Radial Regions Fig. F-4 Core Wide Pool Case 3 (80C-1) Configuration F-15
 
237.613 5                _
5 181.379                                                  ;
17              21        17a 21    17  E    21    17 21 18      19 154.709 145.819 to            2o          saa  m    ten  A:    so    se20 7
5
    . 114.167
  %                                                                                  8  9 3  4 2m
  =                                                        6
  <r 61.413 54.379                                              6e 45.589      18            14          188 14    18  MA    14  1854 11            15          11a 15    11 m        13  1115      12 12 18.819 2                            2 8.344 i
1 0.0          '                  '    '  '                    ''      '    '
(cm)                                              Rhdi'us,cm
                        =                R      5R        Z 3:0      "E'NS  ga5        ::
* 9      99        995                            9    9 I
l
(    $
9 N      %O        $33        EE      83 rr.-
G l              -
m                %,r Na Vofded Axially In These G h W ons Fig. F-5 Core Wide Pool Case 4 (E0C-4)r-z Configuration i
F-16
 
Appendix G VENUS-II Input for E0C-4 TOP Case 2 The following VEN'JS input listing is for the E0C-4 TOP 2 initiation phase nominal case discussed in Section 9.2.1. Card types in the listing
' are identified by the letters CD and the card number. The identifiers are for assisting the reader in understanding the input listing and are not part of the VENUS input. Repetitive data for one card type were replaced by a statement indicating the value of the data.
G-1
 
f 1
1 COI EOC 7CP 24 GEFoun523. fss1949. Cagoen2innsn48ne7 9n74ielen?5. vHSDvs. 67-29-A0 C07                                        .
13      s2        l      1        n CO2' O.01            2doo.n          350s 7 Col 1        0    900    inn        I    lon              n      Me              2        4      3        1 CDs                                                                        .
2        n      0      :        a        n            2        1            ?    25          t        n C05 e.E0e Cna                                                                                                .                .
t o',      20.E.ne        9n.C*d*                  5'.E*af                  9.                  9 Cn*      mantAt "EsH LGCLff0NS                                                  *
: n.                .1174n Eat .elgen roi                    45276 Eat ,tange En7                    9471* ros 14715 EU2        3067a Eos      27731 tap            ,25g91 ros ,stato r n 7                    29774 rna 31596 Eu2        45145 Enz    .lant7 *ns                41*79 Faz ,sant9 En2                    47n77 Fn7 445FA Eu?        91959 EnJ      94714 E02              96eJt r97          ,949J1 Pn2            429ta ses
        .e8423 E37 .n4073 E07            .71936 E07              .7*Aan *as              74418 En7        7*938 Faz
        .n>522 Cop        .Aases tos .nsan9 E0s                  .n99a7 rns ,o77s1    ,
Fn7      .onann vos 9a9e5 E02 .1009e9 Eat .to4695E01                          1inan2 Fat .tt5it9Foi .Il193nFoi 124553E03 .t29551Fot Cotn      A*IAL "ESH LOCAffnNS                                                  *
: n.                .ana10 E01 .nnean Eoi .t3115 Ens ,17?an *n2                                        22?25 En3 2eefn Cop .tttti Ens              199 4 Enz              19677 En7 ,1059e Ea2                  .aotti E .17 89825 E07        93149 E17      1 ate 7 '0!          .sut7A Enp ,hle19 r n ;                  .g7217 ras 76729 Eu2          7424* E07      777s1 Eos              41290 ra  n      ,a n777 En7        . *M114 (o7 91931 En; .e53a4 Enp              9ane9 E03 * .t e;342En1 ,tnia#8En1                              1094t9F04
        .ItJ932E01 .ttedd*En1 .ll***eE04 .t21443Ent f t 274n0Fa t                                            13:449F91 11549nE01 .t40335E01 .tda79aE04 .t49225Ent .t*1470En1                                            158119En1
        .t*29enE03 Colo' tn              =1.4              1.n                    3 *. 7 C0tl REL AT!vE puaE4 DE'1!7V                        .                            .
2904*E*dt        290seE*01        371n9 E*0 s,          121o*t+at          ,123a4E+61          323anE*dt 599 tee *dt    .9143eC**f        9943eE*01              99977E
* n t n,                          15928E*nt
        .le77eE*ot        .153 2E+9:      .aotn7E*01              .ao11aE+nt ,eonz8E+0i                      47*5aE*nt 3e24*E*ut      .17589Eent        37t%7t+0g              373anE+et                              . ton 91E*n7 44436E+nt n,949a2E+nt
        . *n9FaF*ot      .n03 7E*nt      .afig7E+nt                                    ,                    5in42F*at 51402E*dt 4s95tE*01 4 93s02E*01 O.
                                          .3667tE+0*                32;n9E+nt n,442etE*nt n. 45778E+nt
                                                          .n.
5311tE*at ,933itE+61 6                  .a7927E*01      .a792?E*01                                    ,                    53373E*nt
  ,        51373E*01      .A176eE*nt      .AlnitE*01                4tostE+nt              at217E+nt C.
9927hE*0t        97371E*nt    .9ata9E*0s              .A2219E*nt            ,82193E*nt
                                                                                          .                  8185'F*nt
        .el49 AE*wl        99412E*nt    .*2n24E*0'              .*t127E*at            "e149 8
E*nt n.
13763E+d7      .t240eE*ns        8712tE+01            .ftA46E*a? ,tt9idE+47 79aAFF*nt 7estnE*ut        92*23E+nt      77421E*0s                                          e          .*n157F*nt n,
        .*2358E+01        .at299E*nt 4                    . n. 649tnE*at e,931s  ,
E+nt
                                                                                        ,77tesE+nt
                                                                                                      . G.        .
: n.              .eg151E*0t              .*9153E*nt            ,                    77teerent 77233E+ot        77233E*91 .itaanE*02                  .t11486*a2          r  et11 *E*n7      .tt378F*17 0                  .A5776E*0t      .n3n27E*08            .massutent            ,tt9t9E+n7        .itS12t+a7
        .its.2E*d2        .a91anE*nt      . A 494 t E *41        .A9712E+at            ,847s4E+nt        .a8959Eent 6                    .i4e%9E*13      .t*Atag*gp              ,t1976E*ns ,14119E*n7                    .tSetnE*n3
        .ittahE*d3        .*d58eE*nt      . tot *7E*n7            . tot 17E*a7 ,879etE+nt                    7h9d*E+49
        .M*5 tit +49        47312E*11      45A29E*nt n.                            6,                  O.
O,                n..            n.                .
44?n6E*nt ,947 %eE+nt . tug 8aE*17
        .tn94eC+47 .30999E*02 .tagoogeny ,t7e77E.np ,tygg3 gen? .t7813E*as G-2                          _
v_^
 
9 9
l L
1 i
            'livts3*02 c*                  *12@lm3+oc *siw213+ec [stcep3+?f 'se9oh3*oc                                                l
            *16liF3+02 *44 183*0t *ltif43*0c *82LF*3=wt *02Awc 3*02 *lF91td*ut
            *t?9963+cf &*
* F tc213 +& C *tnhEs3+wC *iWL62349( *REe6w1*0t
            'ZEtth3+02 *ltLt43+ut *iht6f3*0c
* leu 213+wd# ,690(E3+ut *!?etui*oC
            *l06523462 *l fre034bt *lEt203*oC *ltne.t34vt 4 #
U*                                0*                G*                    #;4t}t1+UE O'lf0113*02  *
            *lesP13404 O'      *l eEP83+ot*lehht3*02 *leh593*uc' *t56453*0t                                *2w
            *r sE 16 34et- c* E 463 *a f e *
            *ts9ts34of *tsliF3,uc
* rebel 3*OC '**lewbb3*88 #
                                                        -        t989e3*ve              s*= 3.oc *is.Et63*02    tsa.bt
                                                                                    # iwlle3*8E *leble3*0E
            *6942e3402 *le4 9e3+oc 0*                          *EStwc3*wt # tit 5 3*02        6            ?taLp2*ot
* rov 613*0s 'f6ne32 9# *ttetu3+oc *clit93+wt #c6eh03*0f 'tle593*D(                            *
            '646063462
* lee 693*cc *lvlic3*oC                *894103+9(          #nvE623+ot o*
k*                  C*          G*  *
* o*                  u#                *
                                                                                                            *lgttv3euc
            *114203404 *864183+w2 *864143*oC
* 16 4 ie 3 *w t'                    #  6otke3*Dc            *itciaJ*vc
* tee 953*ed
* htsaE3euc 'E1ue8 3+oc U*                                  ttel t3+kc 'c12liJeuc
            *rtsts3*of *hteew3*ot 'EEees3*0c *irttelewt' '#c2W553*@r *rPtlh3+ht
            *2261E3402 *frelb3*oc *tt4213+oc u*                                    .'ehhtt3+uc *elotn3 eve fles13 02        s6iwos*vt    tese 3.oc *sisse3. c # tuut i 3.uc e. nuJ.vc
                                *                                                                          *tneft3*ot
          ,.*Fm*le3+oc ,.fFtt53+oc ,.*le95u3+0C          - ,. *temrv3+uc ,#cSiwt3*9(
* rte 9v3*0t *erE9r3+oc *tewwt3eoc *feew13euc *es.6 0 1*?c '2pelp3+ot
                , t be 43 *s t    e19113 04    esuls3 eve        e14093.ot u '              -
e 99s3.ve
            *294143*02 *firtr3+oc *e ttF 6 3*DC *ere9e3*wt #efut93+vf *fwwotJ+uc 74 4163 9o *teht3*eg J, *lew?t3+OC - *rg*wE3*6e 0 #                          ~ ~*
m
* wege3* te 1          .'&t46234e4<*eFf9f7eet;sEew063*ei'*86Lik3*eca
            *                              '                                  #e16403+02 'E91ew3*0c
            *ftiv13402 *htE942*04 'tscet3+0* *few03*wd *tUoWA3*0f 'iF01p)*94 sseia3.se 0-                0-            -  0-                  o#        -            0*
w*                    *te95r3*0( *fs9hc3*0E *ilvt02*ws                    #  kiw493*02
            *Et604 3402 *5eele3*0c *LL6WC3*0c *hteWt3*de # hetth3*0c u'E16013*0c                          *
)              E hp E*3 *.f f *tetbe1+oc *tewwP3*0E *hP41E3*wc # hsubh3*uc *ht5203'ud l            '196hp3*oc
            *                *t54Lt3*94      119163*0c '*t 9**t 3
* v s #s*tet3+@f v *
            *42s4              '95*963,ot 'Eew242,04
                                            '                  *9?*003+wt        # 906002oW(            *ht2013*9#
            *tt96,2340#3402 *ewsDF3+0f *ewh                    .* E9l t,s1*ec        Elatr3+?f
* solo 3+uc
  - & n C*sMEt34s4*ewsto)%.e*; , cc3*oC          ^ *; ;' J O*              -
* 4f e*                  o*
* E  ed  953+      0 *
* te 4953
* w  t'        *E9*t83'vc o'LW*dl3+?c
            *gwtleD*02
* t9 48 93 + 01 *t1491+01                *htets3*91 't1e403*b1
                                                                                    *                      *tESSuh+ut
                                *eF66e3*bt  *el*lt3*OC *eFEfb3*84 $11o*e3+Uk                                *ieulhJ'us o'EE0042*01
                                *epetE3eut *eE1w43+oc *evobt3'wt ene**3*DC                                  *tehW63euf u*                    *169113+01  *Eh66(3+01          'Ets6v3*Wk        #  teiW03*&1            *151242*91
            *tt6 13 *01 *t604 3*et            E001v3+01 *tuot*3*wt *etv613*Wt *thh583*uc
            *re6243+01 *cELEt3+01 'ra
* tl*3*01 o
* c#                      c*
o*                  o*          O*            ~      *e09183*wd # t09k83*92 *eb8663'uf
            *eE8663*04 *esro&3*0# *ehset3+0C *E gk053 4# A # ttlu53*#h *1tfGb1+ui
            *ftc6934(1 0*                  *50(bc3*0c
* r ew t61*w d #ese**3*pc *Egthv3*ot
            *ft6043+9f *tf5LE3*06          'Sf1b63*0C          *hct081*8C          # mEhwF3+ut            *ht6bB3*uc
            *gfloF3*ef c*                  *efhtE3*91 *tocE03ewt                      tt4w43+ut *1thetJ+ut
            *E96883401 *t9et03*pE            Efttu3*ot
* L tp 2,3 *p a ##stedv3*01 *hlleb3*oc
* eE WE63 +02
* tit 043 01 *'fk9Fe3*ei *fvlie3*wt v #                                  O*
0*          O*
* 0*                    #stee 53'w#          *etovh3*pc O'ELEt9340E
              *                *5ftt93+oc *h t eiv3 **lC *hteiw1+wt # sit *93+et                            *e06iuJ 91
            *p06193+ok *el0263*uL 0*                            '6nkok3*wc # htseE3*ht                      *E99293+0t
              *elbib3*bt
* ell 6v3*94 *e t ke13*01' *#le9914ve # how w h3'uc                                *gP6uuJ+U(
              **lm023*eC *#lEff3*0C 0*                          *elcih3*wt #sthhsieut                      *elhtth*ut
              'epaks3*01 *E636 3+uS *suteW3*ot *lkh's 3*w A # t#tep3*#t                                      *ielkuA'91
              '90htf340( *h(F113*0c *fuowe3ebk *tlebe3ewt Q*                  o*          0*
* u*                    u#teeh.3+uE
                                                                                    #                      *o'mousu3*ot
              *h9W*03+cf **FE613,02 *ecie63+oc *eFe9f3*wt # 9ts6 13                                          'ekortsout
              *es9**3+vE *re***3+ts *setuv3+ot p*                                    **otac3'uf  'w# '426:53*vf I
l l
                                                    .w _
a, j~p
 
                                                                                                                    ~
                                                                                                                ~
                      .ha298E*o7 .e532tt+ot .asin9g+at .astitE+as *72116E*57                                                  7ennng+o7 72548E*07          71773E*07      7t*24E+07 o.                          ,90718E+ot                41733E+ot 493e*E*01          43795E+n3 .s7ea7E+ot .ase25E+at ,1amo2E+n3            ,                          40132E a1 44t32E*01          70814E*o# .6719AE*os .13762E*nt ,143.5E+gt                                      .13741E+44 8                  O.              O.                0,,                                            0
                      .e3147E*07 .63187E*e7                78744E+07          707A*E*n7 a,Fo1=*E*n7
                                                                                                  ,                          74344E*o7 4439%E*01 .sA901E *41 .sA989E601                      44t:1E+nt        4,.              ,,          78149Eeo7
                    . 7144 steep 7e927E+g7- .saynag+qv                      .a 8742E +,5 - ,emas4E*o3' Ate 8At*op 79454E&OF .Al772E*17 .Ana53E*47 . Sin 2*E*n* n,                                                      54721E*01 44875E*03 .a4757E*nt                44an1E*ct          45167E*n) ,8**I*E.n1 .st702Eent 43112E*03 .a3132E*02                79779E+07          70ne7E*ns p ts7sa teot                        3e931E+01 3439tE*o3 0                    4                  o.                  0,teto                    O.
4                    .64473E*03      .am e r3g+47          7etn4E*op          ,            aten7 .?e253E*o3
                      .Th253E*ut            9tt5tt+ot .So7s7E+03                907s7E*at ,"ca9aE*nt 0 9ee8FE*07        .At9e8E*n7        831.3E*07          91445E+at ,919n?E+01 .St717F+nt 893n9E*02        .A5a53E*07      .pnggig+97        .Arnt7E*ns ,a7m99E n3 4 57708E*03          920 tee *n1    91936E*at        .a9 mite *at          ,ansyaE+nt ,99nt3r.nl 444 79E *01        45590E*01    .e9990E*01        .Ataa*E+ps            ,71***E+n7                3778eE+61 39139E*01 .18376E+ol 0                            0..                                            9
: n.                  4                  7375mE+as          7379AE*na. n,s7ageE,o#
                                                                                                  ,                        .adnesE+n7 4213'E*dF- .A2139E647 .51acht+0g                    .929 79E +a t f 979i9E + ni                    .53 tone *61
                . 3.                      9122eE*07      847**E*08        '.4979#E*97 ,93755E+nt                          53a3hE*al 559eFE *05          95 tate +07    97 n 4 *E *93      95a93E+ns ,onin E+na                          4s983r+o7
_4              . . .. .m042*E*o f . 5ae*AE+et . .53494E**Y ,,9713tE+ol. 5072tE*01 57Pt AE+4T .me*23E*ot .athanE+4T' .47he4E*et n,93t77E+o7 .4t?90E*47 19452Et01          40740E*01      50n6AE+0* e.                            ,                  , 0 S.                  O.              O.                      7943tE*ap ,7A411E+07                          46797F+02 49797E*of .AsA94E+02 .Aeasag+07                        557 8E+nt ,94a79E+el                          54421g,gt 99950E*01 0,                        969n*E*47          934ttE*as ,950n E+02            n            55h79r+01
                      .557t2E*01 .9537tE*og .tane1E+ot                                              .tna9AE+ol .e9asaE*o7
                      .iaoc.E+ 3 0                        . .,.9 7E * -.*7187.Ei. 3 . e.1    +a s;99 ..E. 1                  5 285E.ni 52915E*03 .5403AE*a3 .a7427E644 .a9799 Emet ,a979eE+ot .* est?E+pp
          .          .S*949E*67            404&7E+61 .s2tA*E+44                414*8E*99        #,        .        , 4
: w.      -
                                      .Q@ ~ ,: - %:
* ar, -            ~~
                                                                                                    ,ntegetent ,ntedngsny-1aletE *or 90564E*e7 90471E+0p .e#47tE*e7 ,9e793Eto3                                                  962ge,*og 5eJoAE*01 .54427E*01 4                                .t ca7aE +n t ,97a nTE*n2 . **t29F*07 57823E*ut .9720 9E+ol              5e45'E*ot .to9anE+at toin1E+ot .to*17 E*61
                      .tnet8E+03 .to*4tE*e1 0                                  449enE*nt ,9At*2E*n3,                          5719er.nl
                      ,55725E+03            44ctnE*ol      55s9nE+ot          4890eE*at ,945a1E+nt                          9nsA3r+ot
                      .tp2snE*03            9428tE*07      4te2eE*41          4311aE+nt ,e2174E+03 0 4                  3              4                  n.                    9                            4ae04E*67 4eanAE*o?          93489E+02    .*3a4*E+0p            93*enE*ns *939eAE*57,                          977m7E.o1 5732eE.45          9732sE*ot      97499E+44 4                            ,t04anE+ot .totodE*01
                      . i n
* 7eE *0 3    .*8te#E*ol        94797t+ot          97499E**1 ,la84*E*51                        .tG934E*ot 19923E*05          3080tE*of . ton 2eE+44 8                              ,6977tE*03                59239F **1 54727E*01          9472FE*03 .54*AFE*41                5490ttent , a*7o4E +e 3                        919a*E.91 91501E *0 T      .30*57E+91 .*199*E*ez .e264sE*et , set 43E+ot                                      .e335er'at G.                  4              O.              , s.                    9,          ,            G.
4efa5E*02 . A* 74 5E *o 3          .SeaA*E*07          9es4*E+ay          ,*6*otE+o2 .*oeott+os 58e54E***            97900E*ot      57eaAE*44                                                          10729F+o1 183 A8E *o 3 .toSetE*ot            9Aa37g ot          54120C+et 94edeE+nt 4,9A9=5E*nt
                                                                                                                            .itta7E+ot 1482*E*03 .It22eE*e3 .IttonE*ot
                                                                                                                            .bea0**.*nt 57a9aE*01 .i5977eE*e1 t t 2*E*a t n,97195C+oi              .
40039E*ot .56A9eE*et                                                        ,                          54171g+ot 92101E*01            9210tE*ot .10*92E*01              9et9tE*n7 ,a1192E+al .asnt3t+nt 41456E*03 8                    4                  o.                    n,                      O.
9                      .46417E*oF .mAht7E*0s .*e97tE*ns .*A9ft!*nt .*9699E*a7 9....E +0 7          9892 E.o1      9A.57E t            98 97s. 1              989.9E.n3 0,
                      .t#940E*01          .tQe0 8E*01      10789E +44          19*4S(tat ,99997E+nt .                      . *#n34E*01 O
y                                      "*
* ST          S G-4                      -
                                                                                                          =
 
                                                                                                - 4 o
l
                                  .ita24C+44 .ft059E*ni          .Itan4E*44          .st139E+al 5747tE+at ,96ta7E+ol et1,aE+ot 4
                                  .efte2E+01 .ed539E*01            98147E*01                                  ,                      97612Eent 5a777E+44      92514E*41      52914E*01                                                      .e392ag+nt
                                                                                        .IttgaE+af o,9A2e7C+n2
                                  .se*7tE*03      .ad207E*01 8                      a.                        ,*
                                                                                                                              , 3 O.              8                  89e 67E *07        .a9ae7E+n7 , 49i?Een2                          99517E+02
                                  . **613E te 2 .**e33E*42        .Se76eE*01            98 79 aE +n i ,947,aE*ot                      9a*2*F.+04
: s.        .
                                                  .g 10e.5E*01 c.t of t0E+0*          .19492E+et '9e695E*e4                          99745E*ot 593 E ,      .il53 E 3 .tir SE *                  .fi97.E. 1                tino4E..          .iiariE.01 5                .67to2E*et-      6093AE+0*            597taE+pt ,47*itE*o1                          56147E+ot 579a*E*01 .9107eE+01            97m29E*01            92929E+et ,tt296E+ot                          942taE*47
                                  .a1741E*ot .e5238E*of . sea 64E*01 n.                                                            O.
4              O.              4      ,        ,
                                                                                        ,nsaggE+e7. O,A46.5E*a7 ,                      94n25E+87 98625E+02      987 ace *02    9874aE*07          .59at4E*nt ,949a9E*nt 9M949E*ot 54e79E*01 4                  .t09e=E*01 .tonteE+et ,tn7 ?9E*nt                                    99101E*41 59e92E+w1      99t29E+01    .tta19E*04 .itne5E+et ,tta7aEen1 .itteeE+nt
                                  .It370E+d1 0                      6* mane *01          40736E*nt ,9ea PE+nt                          9744tr n1 55907E+93      9770*Eent    .lon98E+01            52601Eent                                  .ftt94E 61
                                  .*m32tE+02      .a3597E+01      .a9naig at ' sa377E+ng g,,47 ente +ot                            n.
8              G.              6      .
                                                                                ,n.                              nemanEsn2 .sh4Anten7
                                                                                                                ,94596E + a l 94*19E*02      9e639E>07      9675tE*07          .*n?9tE+n7                                      56127Eeot 58t27E*03 .482a0E*o3 0. -                    . . t,9 ? s5E +a t          ,t oman Evol .t"977E*41 549 79E *01    980.7E*n1      5a70mE*04 .tt204E*st                          tome 2E*nt        .It7 ale *nt
                                  .ItttTE*43 .IttelE+03 3                              '.bo769 E+et ,99711E*ot ,                      99357E*ot
                                  . 5720 f Efe'E s .954 eat ** F .57292E+4K. 5049%+et , ,92274E+si                                    .?222tE+c.1
                                  .te***E+4T 0, 4,*            ' .eeJe    t E+o0,7" .s174eE+et _ o, ' .se721 E**1          n        ~ ',43*nt f+el        0
                                                                                                                                      .nn9%1Eso7 94teoE*n7 ,9atnoE+42 93no *E*ot 44553E*02    .*a05tE*07        94astE*07 5760eE+01        97e04E*ol      97739E+04 n.                              ,tna97E*of . tot 22E+ot
                                  .to298E+F  0 1 .9sas7E+os          9a919E+ot          54ty7E+at                to9 3 agent      .t0552E+ot 19942E*01 .30419E*at          . tone 7t+04 m.                              ,A5eyetent            59826E+ot 5=F7eE+et ,,50nact+nt 5*1oeE*us .9e5LdE601            5a77'E*0t                                                        51754E+nt
                                  .S t 736E +01  .3 06 T5C+ni      937h0E+0F          42496E*at * ,aa3iME*n1                        435n9E+01 Oo                              Y.                                                                Om I.-      - .                  ~ v I.
                                  . seq 75t+0g n .noq7W.+eW .noosaEwey .',some oE+ep .,4,
                            ~ *,                                                                                ,9ens5E+ng .*nnsgese*
57134E+0T .5e577E*03            5a97?E*01''.14707E*at                                          .!0001F*ot 944tSE+47        482.2E+n7      97en4C+01 ,57493C691 n,97tstE+01          ,                      10asut.n1 140*1E+01 .toseeE+et .to3a9E*01                                                                  .a3*18F+01 5762eE+01 .qys e 3g+ol ,5914tE*04 .t017tE*at        53ss3E*nt n,997.5E+el  ,                    .dSte*E*al 5341eE*01 .40838E*at .tn7ttE*04 .A9641E*a7 f s2t t?E+e t                                            23524E*41
                                    .EP749E+05 0                o.              , o.                                              0 45et0E+a7 o,asa,t 0E**7 .a55toten7 S.                  7e745E*op      74749E*07 955 toe +n2      958**E+et      59ea*E+0s            95aa*E+as ,4957      ,
4E.o1 0 9ese #E*02 .etet9E*47 93a41E+0* ,9426tE+*T- ,963a6E+nt 5enntE*at 99025E *02      1582eE*02      9917aE*67            9875aE*n7 ,9sa aEen7 0
                                    .edts*E*01      . Meet 9E*o1      56117t+ot            534a8E*al ,91993E+61                          58657E*03 84149 Et03      4982aE*43      a9A20E+01 .eeessE+47 ,a9ta7E*o2 .al292F+n1
                                  .e26eoE 01 .atiseE+4s d                              ..                                        0, 72216E*n7 ,,8035hE+02 3,              D.                  72714E,+47                                ,                      44124E+07 4asanE+4P .80420E*07            9490hE+0? .geofetent ,94ainE+el                                  .Me191F+61 0,                  89315E*os .staa7E*0p .nT9 4E+sp ,944e2E*al 94944F*01
* 2h01F*o7 5ee04E*03        93t30E*na .*nt2*E*07 .*3a55E*97- ,92an9E+n7 4                  .6un07E*91      .Sen48E*01            9'*thE+at              ,91709E+nt            54241F+nt 512*3E+01      .a 97tt+o1 .ansang*0s .es94cC*nt ,9tt73E+c2                                          40079E*n7 107e9E+03      .at19'E*41 .a o m4 3E*01 8,.                              O,                  . 8 4              O..              G.      _        . . hest *E*** ,6es9*E+n2                            74193E*o7 74192E*02    .?d279E*07        7577*E*07            927e5E +a t ,9ta97Eeot                        91447E+nt 5t9e9E+ot u.                    47s*4E***            79aa9E*ap              ,st2 93E*o2            52eueE+nt 52te5E*01 .52363E*41          .shalAE*47            43739E*ap .selteE*o?                          854aaE+47 s
I e
O G-5 ~~          -
e e
 
i                                                                                                                                                                                              .
* s I
                                                                                                                                                            .                                    l 1
l 4553tE*07 0                                            5eetoE*04                512*eE+nt *9264*E*ol              ,                      .a't22r+ol 476 toe +v4          .91102E*n1                      4563*E*04                4 mis 3E+nt                              5 E t          ."d210E+n7 73*e2E*07 .3de09E*01                                  39m49E*44                3*711E*nt 8,4e                    ,
m3 +o O. .
: n.                      8                              O.                      O.                                        99en*E+42 .59'e9E+02 6e705E*02 .6e705E*02 .be742E+ap                                              .h=782E+n2                          ",4961eE + n 3        .a923nE+01
                        . ** 2 3M *01 .a5349E*41 0                                  _
                                                                                                          .74 t eEtap ,7t?48E+n7 73009E+n7 49997E H L. 56833E*4% ..a*73?g*** :.77118E+ * ,7a844E+e7 77404F*np 76735Eter ' .7e96*E*e* O'.-                                          .. ,.53928E*** ,eA24tE+03 50007E+05
                        .s 19eE*03                  4477eE+01 . sag 2*E*0t .a2777E*et ,se2tAE+n1 .e4234E*01 757t3E*02 .4ee99E*07 .3% ,qE*04 .17agnE*nt n,37237E*n1 3 4                        4                              6                      n.                                      ,              .
52767E+o2 17 767t +47            9864*E+42                    5%4eE*op                44763C*a2                          ,9A7=3E*na              4ae75E*nt 44300E*03 .melonE*05 . s=g o *E H 4 P.                                                                            ,452.2Eeo7            .e31n7E*07 45452E+os
                          .ma2e2.E*02              .se,974E
* g1 . 4744*E*os .dete t r.*n t ;4e994,E*a)                                              Anise 47
                          .e 2. E *02 . 7 2nE.o2 .e74.,E.o* n.                                                                                                        .~. 1E.et 87025E *0L1            4307eE*01 .at73nE*01                                  4% 59E*n t ,eo77tE*o3                                    .atan9E*o)
                                                  .eeed E*02                      5A911E*07                34479E+nt                              1547tE*ni            35n19F+01
            .        . .4t6aeE*01 0      -
O.                      e,                                    n;90572E+n2s. 90972E+ns
                          .aSal2E*02                45412E*os                    50913E+07              .*09 1E+n7 4 5312E+04 .e2905E*01                                47ee4E *44                                                                          56tnaE n2
                      . 54%3E+07 95247E*07                                        419*4E*04              ~.a3o.3E*nt 434eoC*a t 0,,83393E+43            ,
                                                                                                                                                                      .g as,qg+n7 5eeraE*02 .56770E*47                                  54to*E*07                                                                            5en31E+0g 58231E*e7 389ttE+et o, 23a                          AE+43            1732' stent
                          .at493E*04 .a363st+at .te73aE*0s                                                                                        4 3#ee3E**h.344e3E**5 s .97435E+eha.5e197Eeek.                                                                        [3t*95E*nt            33aseE*at .          L..
                                                                                                                                                                                              ~ +
                                                                                                '?.                                                            .0,
                                                                          "                                                    -~
32e9eE+os 0                                      0.'                      n                                ,
3me57t+07 .e2132E*n2 W,42312E+a2 4                              18057E*42                                                                                ,                        42342E+a7 32342E+42 .19958E+01                                .3**1nE+41 .19430E**1                                            18750E*ol 9 4Fn49 E*02              45558E*o2                    46113E*ah' 'a02 toe *nt 'e07ftt+st                          #                  .Jon25F+ol
* 99040Et02 .a7499E*02                                  4975tE*05                44494C+a7 ,484 02 (*g2 C.
                          .$2t6tE*01 .38002E*01                                  .sn290E*01                1e191L*at ,1527tE+ot                                        390stE+ot 3e*?frao1              35407E*of                    3564?teet 5049CE*0T .29972E*0T 0                                                ,8,sens*E*as O,422n2E*s7                    ,
0 299t2E+o3 9                ..      0                      .    , , .3164*E+07.                3360eE*ny ,15tgaE*na .35tsag+np 4e8i38*e3 .Te***F**1
                        '.33L95E+@t                      195
                                                    .35,0..EWO2                    36toag      +gg --/ '.3e.4 1 t77E..          3E*eT, ,165.iE. 3 .wswE.O
: o.                          .3                    E.07    .ir      siE+0, 36372E+e3 .s0758E+a2                                  1*es t t+4R              40*enE+97 ,a c es t t + v)2 .u0127E*n7 0,                          .178s2E*ot                      3alagE+4t                1e977E+ t ,12ee4E+03 .itee tt+03 35ageE+03 .31285E+01                                  17117E*0s                12tS7Eeot n,19*stE+n7 S. 3544eE*a2 2*4 t Att01 .77707E+4T                                77737t+ot 4                                            . ,
G.                      J.                            8        ,          ,      7 ele 7E+n7 ,76t=7E+o7                                      2910eE*07 29106E+02                79te0E*07 .29teaE+07                                  32163E*** ,12t14E*o3                                      32 tout 41 3217eE*03 4                                          .32te1E*07                3112eE+n7 ,11457E+n2                                        32579E+n) 5242*E*01              12424E+03                    13746E+0* ,,12654E*n2 ,114,aE+o2                                                    33441E *07 31555E*02 W.                                          33:A4E+0s.. 79*07E+at                                          12en?E+ol            289387+o1 27719E+01 .11e41E*41                                  7744*E*04                74445E+41 ,78419E*01                ,                      33037E *o7 4
29017E+47 .23907E*91                                  24740E+es                247maE*e4 e,7127eE+n7 J122*E*n7              .
: n.                      J.                            W.                        a.                                      ,
3e04E*02            .23e4*E*e7                    .21e34E+ez                  36
                            . 2.7 i ot.47            . 22 0E. . O.                                      . .
7,6,,1eE*            0E *a,          *Sa,7E.a2 .a2.t n7 ;e2en4E+n7                      dar *o7 24 19E.n2
                            .a2762E*02                8292eE*02 .a25 aE*er                                  2717t E
* n7 ,7e a47E+02                                    27ae7Eens 27156Eeva .2721eE+42 0                                      .                3 712*E ** 7 ,13471E+42 .s24ceE+n*
17149E*42 .11392E*07 .a t q39E +4 r                                            36ettE*n2 ,17m nE+n2 .37Aner n2 26796t+07              73535E*n2 .311Ast*e7                                  32a2eE+n7 ,tts)3E*of G.
4                        O.                            4                        O.                                  4                        . lea 7eE*o7
                            . t e s 2*E *of        .taa.*E*sp ..ts7e                      . e E+as 1479eten7 , tn2,0Een2                                                1=1str+ns 34018E+67              1eujME*02                  .latt4E+97 4                                                  ,743:3E+os              1 %e t E en*
19**9E+02 .1455 7E*97                                3ag4*E+e7                34tyagen* ,73t9tt*o2                                      .20e*7 t+n7 2 255F+da              7tnteE*47                    2t netteos n. .                                                7ee,aE+n2            2703*E*o2 9
3r e
e                              e i                        ,__                  _ _ _ _ _ _ _ _                                          - _ _ _ _ __ __
 
l
* s s  ..
        .le57tE*02          .25A90E*37              258*1E*0h .3394*E+as                  *,795%9E*a7              3d'A1E***
34583E+42 .2073eE*a2                  .t**t#E*0s              75148E*ns ,26ta*E*n7                        25743E+47 8                                      O.                . 4                      0,.                    O.
        .t2793E+V2 i.,2793E*17 5                .te*30E*07 .t4730E+ny ,ta2a7E+n2 .t4247E+n7
        . 26523E*07 .2e3tlE*07 .263ttE*0s                                2e17tE*g2 0,                      ,      .tS821E+os 15315E *02      .35575E*47              24694E*47 ,26737E*as                          573E*n7 .te498E*o2 15%4EteF .14954E*02 .te176E+0* .t 4405E+es e,,2e                                                          22149F*42 2e2s9Eter 2e723E*02                      193etE*op .t479aE*a7 ,79915E+02                                  22A5eE*o2 23640E+07 .23e40E*02 .tht17E*43 .144*E*a7 .t95g3C+07 .29251E+42                                                            l
          .I*A99E*07 0,                        e.                .a..                    0,                    O.
1                        97650E*41            97659E*01          . tome 2E*gs ,tna 2E*n7                        10475E*ns      l
          .td475E*02 .t,8897E*02                  .te746E+03          .tafa6E*as ,ts? NAE +n7 0 12077E*d2 . I t e94r.*4 7              .t14AAE*02          .t*32aE*e7 ,t4619E+g7                          14932E.n7 32591E*07 .t216fE*o3                  .t2437E*of .t2s9tE*ns .t2522Eens 0        *
          . t e452E *07      .t4A29E*o2              1941*E*03        .iepottenz            ,t17n E+h7s            .t9474F*ns
          . t e 29 8E *02    .teAe3E+43          .tega1E*02            12329E*a3 ,to42 E+n2          A              13159E+n) 14422E*02 .14t?7E*n2 0                                .n.                                            a.                  ,
71219E+at o,797t*9E+nt 1                    G.                        712t*E*01                                                        79211E*at      '
793ttE*01            793tlE*0s            177e3E+03        .t244tE*ap          ,,taestE+n7 .t2e7nE.oz 4                      .A8043E+08              8575*E+01        ,atfo6E*et          ,taazeE+n7                12845F+n2 12767Et07          910 ate *er          4PseoE*0t -        92167E**t          ,91t3tE+61                9I32nE*of 4                      .itS58E*02 . t e s t 4E *o s .12439E+n7                        ,1=7 3E+ot                1en*3r.nt
          .t2459Et02          .3094tE*02. .it15AE*07 .it158E*a7 agoint*01                                              7a97aE.at
          .9st14t*4r          .*F455E*er', . 95es1E*h e.                    .      -- ,ne,                  ,    5
      ~0                    e.'
                              .Se5g2E*01 e.'        .
                                                              ~~
                                                                  .      50at*E**t          ,'.
                                                                                              ,  08,4E+gt 1                56527E*nt
          .Se527E*0t                                .5e982E*dt          .a3450E*at            ,ett?*E*gt            .A3tF9Fent 851e9E*09 9                            .a2457E*0t          .6043sE*at            . etan9E*ot          .A4397E*0t
                                                                                              ,*57,5E*st 4e52eE*0          .s400aE*4              65937E+0i          ,=320E* t                                  .oS07tE*ot 65te*E,01 0,                              7ha17E*01            68713E *91        ,seantEent            .a586dE+nt 65775E*01        .A1984E*41              72758E+4:                                                      .edtedF*nt 5.n2E.0 i        .et9 2E.6.              6i9 9E.0t          . 290 E.ni7a73.sE *= t o;747            0      tee +.o t
: n.                  O.                G.                  ,e.                  , ,165ini+gt 365 toe *at
          ,,*e t t l Eto t . .a06LtE+0i              4465AE+4e ,40664E*e1 ,an t (/F.*g t                              45758t*0s 45758E+49 '.e58e3E*9t-e.'                                  -.s5t                  437 eE*ot .aa4s9E*at'
          . 6 2aE.0,          ..e 94E ,1          .6 ,,'.E* a '. 7.S.6E**t5E.ai ;91,.e.o1      ,5                  . 72. E. ,        l
          ..ori.E.08          ..e.iaE.et      G.          .              9e75.E*nt ,                32E.ot ... 7.E.n,
          .e**mettot          .e787eE*01            45 ott+4e.          1975nE*nt ,ettilEent                      .attttg+ot
          .se ng1E*01        .a0486E*St          .3e874E*0t            3520aE+at                              0 8                  G.                  8                  . e _.                , n,taeo7E*ot        ,
23ne2E+nt 23062 Etat        .25652E*0t            2*657E*0s            256A2C*et ,75aa2E*41 .tt7tnE+ot 3te e2E*01        .118e2E*01          .3t934E*0t n.                              ,245stEent 27607E*dt 24077Et01            119Z3E*ot          3t97tE*4{            31776E+ai ,7's' ate +nt                    787 ate *nt 29645 Etat        .29510E*0t            2'471E*0s o.                              172n7E+et              3359tE*ot 3i955e.Gi            42ie7E..t          .nif7E.oi .unioE..i                        ,73siE.4,
                                                                                              ;742eE+01 24,6.E.n, 28268E901        .79tteE*01            25571E+0t            2342*E*61                  1              23795E+ot 4                  O.                  O.                    6                    9 ,.                  3 EDt*                                      .
l'        6        0        t              e      1          s        e                    o.            2*no.
CDf6                                                          .
e.3*E-05            1.38E*e2 1.92709E*tt 7.tAE=0s            3.1*E=02 A.564*6E*tt e.32E.Os            1.35E.01 2.67ammE+tt t.23E.01            3.15E*41 2.62n48E*lt 1.56E.0a            1.37E 04 s.79:37E+tz t.43E*04          1.745E on 4.a06osE*t t EDt7 3.3ateE*03            2.55E.ot                      0 *.        s'.IE.a7            9'.a 1E.o 1 En20 gq        ',.[          .
4
 
r i
1.E*2n .3s1069 E*tt                      1.E*th                      t,                  n ".              n '.
CD2
: v.              e.                      0.i                0*. t                    4*.                v.
CD23 1          INNER aLANNE7                              _
2        2        9      J              7      es        4          es        a Cots. g es ,  a.?        6    47 CD25. t -
              . l e214E *4 3              4                      ' 0 *. .ie795E+ns co2.. t G.                  .11740E*01              95720E*0s        .t2696E+ns *ta7anE*42 .                        16795E*n7 CO27 1 27225E*0t      .aee75E*ot .itit1E*03                  'issssE*as
                                                                          .                    *7
                                                                                                , ann 1E*o#              2assaE*n2 2889%E+02 .13334E*07 .37119E*n7                            .a c A 36E
* n .3    ,sa351E*42                47a76F+os
              .St3A7E*02          9490eE*op            ,qsa2nE*nz            61937E*as ,h5asaE*n2 .eaortE+n7 72444E*02 .Fo001E*07                      79927E*07          83n19E*n7 ,8*5stE*n7
* 0nf16.*o)
* 159pE*v7 .or:0 7E*op                  . tone;g*ot        .tuat4E*nt ,147e6E*nt .ittt 7 tent 11369E*03 .t182tE*01                  .t2t?8E*41        .t252aE*nt ,t2cp2E*n1 .:33 7p*n3
              .tl4tlE*03 .14254E*03                    .te7n0E+01        .tSta5E*at            .tS5m*E*n5                1603EF*nt CD29. t
          ..ItSt9E.44 ..:1338E.a* ..:0*77E.co ..tt'stIE ae .*9'to7E.nm                          ,t                  ..t12AIE.na
          ..I1919E.04 *.I1338E an ..t0977E.0a ..tttttE e4 .                                                          ..t 124 3r.n4
          ..!1519E.44 *.1 L33*E 04 ..t oo??E on ..t t t t t E.an .,,e tto7Ew                        t 117Eena    A . .t1283E.on 9        tt33st.ea .,to#77E.4s.                    tttttE.es . '9tl97E.9 8 *.t1281E.ne
        ... 1151 E.0A %..2SW3tE.e#'. 29444E.es . 2047eE.aa~.,7tnaoE n* . 2129ng.on
          . 29479E.48t-
          . 39a43E.04 ..3520eE=0a . 26737E.48 . 771stE=na ,.,77aieE.no ..27745r.n*
          ..'154tE.4* . 84907E.4m . 434*aE.0* ..e4857E*aa ..eaen2E=oA . 45107E.oa              *
          .13140E.47 *.t 205eE.0 7 . 99526E.44 . 90m34E.a* .,et3g6E.44 . 91878Eena
          . 2 t aAIE.47          19 8 set.6? .14977E.07 ..t t986E.17 .,t oS95E o f . te02E.o ?
    ,      . 2150 7E.07 *.3 96 73C.0 7 .196n*E.4? ..t ent 4E.*? .,16635E=n? ..I.t#612E.47
          ..Slet0E.47 ..a3375E.47 ..e2go9E.07 .~.e2494E n7 .,siegaE.oy . a2a_eng.07                                    .
          . 43810E.47 . 43375E.07 ..a2505E.4! ..s2s9aE a? .,.42444E.47 *.a2eo0g.o?
          .69139E.07            49478E=07 =.71149E.47                      71118E.*7 .,713nlE.of . 71284E.47          .
        ' . 69 tet E.e7 *.69897E.97 . 7tt7at.47 . 7tia1E *f+,7t 324E.07 . 713n9E.o?                                    .
          ..M2417E.47 ..a 3749E.07    4
                                                      . 84131E.0? '..me197E.gf .,46172E.07 *.96187E.n7
          . 82s57E.47 . 8374 t. 9 7 . 8 4131E.n f . 84 tS7E.47                                    m6372Een? ..ae187E.47
          ..*e426E.07 =.9e24 7E.07 . 9em *9E.nT ..***s5E.* 7 .,9**a                            ,        l E.n 7 .. t o no7E.n*
          . 944a2E.47 =.9eJeaE.of . 999n9E.47 . 9996aE.n7 ., ton 10E*n* *.t neneE=oh
          ..tn542E*46
* t0742E.04 ..Ittm3E.44 ..!1ta8E.e4 .,tt1g2E.ne ..'t106r.nh
          . 10143E.06 .t0783E. % ..ttt41E.06 ..tt AAE.** ,11112E*n4 *. 11t*4F.nh
          . 1J070E.46 ..t0289E*06 ..t0727E.44 ..!0734E.nh .                                                8
          . 97335E.47 ..*9et0E.07 . 10st6E.06 ..tCa23E.a* .,t071                                , t ospE.46  7E.c*.t0Fa2E.on 6 .touttE.nn
          . 91 t eet 07 ..e3274E.o ? . 9719t E *? . 9794*E.*? .,9749 3Een? . 77t7r n?
          ..* t 157E.47 *.9 5265E.07 ..*7ss t E.4! . 97*7*E.=T ,*7aa1E.n f . 997707E.87 l          =.77036E.07 . 78948E 07 . 82?sttr.oy .J, era 25E=e7 -,a2a                                      n et.n7 . .a2*n?E.^7
          . 77036E.07 . 799aaE.nf ..sp7bt E 07 . 82875E=nf .,a2a n6E=a? . 82'07E o?
          .,666A4E.d7 ..h4444E.4 7 . 70433E.0?.. 70431 E n 7 .,7an)nE o? . 70829                                        .      r.o t  ?
          . 6eo70E.or            6ao52E.47 . 70at4E.or . 70staE.e7 .,$ 7nan                          pat 7E=of *.704 toe of 7E.
          . 5e t 3st.47 . 9ea8eE.0 7 ..ss 3MaE 07 . 98124E.a? ,                                                          992a2E.07 l          . 50115E.47 *.geseat.o? ..Sain2E.er ..gs79*E.9 7                                      ,982s*E.97      o ? ..5421*E.o?
,          .13 3*7E.07 *.t2*30E*07 . 31994E.07 . 11aset..e 7 .,1t a17E.n7 *.3177'E.0 7 i
          ...I31197E.47                                                                            tta17E=o?  nA = .e49eag.on
                                                                                                                        .31779F.of 440 sE.4 7 *.129
                              ..t 33 33ng.o?
7E.0 7 ... 3t n70eE.47 t eeng.or ..gt aget.e7 .,999                  9E 9
            ..I
* A43E.0 7 ..t 33 tSE.0 7 ..t o t ?*E.07 ....]t no29E=a      On5sE.n7?., .,*ali              tt.n* ..*8 3 4*E.0 a
            ..Alst4E.44 *.e927eE 0a ..anantE.0a . 18ealE.aa . 177a0E na . 3451*E.on
            . 57942E.04 ..a760tE=0* . 26*t *E de .' 25ao2E.no .' Joop1EenA . 73aa4F.ns
            . 27405E d* *.tro74E.o* . 762aeE.co . 65a7nE.*e .,9nt%7E.n*                          ,
                                                                                                                      . 52447E.o*
            . 55neaE=0* . 350e5E.0e .3677tt.ta .aoe77E.ta .in996E.n9 .t34ttr.o#
                          .                                              .m~            .
                                                                    .G-g            -
a
  "                                          - ~ ~ - -
 
e    .
            ..in. 7E.0,        ..+.i.3E.i.. .iea.E.O.              . i .. ,7 E. ,. .      ,  tass.t.n.          20n0ir.n.
            =.'7484E.to *.6dl2aE le *.19692E.tn . 12*n4E*tn .,Ago7aE=t't *.49t30F.It
            . 92ee4E.to . 6at2AE.ta ..te e2E.tn      n        . 12904E-tn .,non7hE.it .. 44 ting.st
            . 9264tE.10 =.48128E=t1 =.19n97E tn . 1290sE.tn ..son 7et.it .aetinE.tt i
l i          CD2'= t                                                          *
* 5259648E0 e.te4383C.~4 .tgo40s2E.4                        .505Ito                        o.              n '.
C030. t.
* 0*.      -
0 ".            0        *3a31E+ns
                                                                      .                        *2i4E+el
                                                                                                .                        n '.
l          CD11. t l            n.                *. e709E.02 0                      o.                      *932ilE.01 C012- 1 g      .30459E02                .A2        *792E0                  53915                *277a7
                                                                                                    .                . tone?
CD13 t t200            I200                0 *.                    n '.          *41
                                                                                                    . tan CD15* 1 At .L Adt .tn459E*02 l          CD18. t ALL 4HE .87000E+00 Col 7* 1 at.L ARE .Te200E*01 CD18* 1 alt. 4RE .51915E*ne CO39 t                                                                            '
              . 37732t*t5        .3778 N*40*;. 277n7t+0h '277s2E+ne                          1 E          77792Esna 2'
          . .27782E*0e
            '                    .77752E W .27? APE *e f ,.27797CoeM [77                            a? *nn .77744r.an 277A2E*no 27742E*04        2778JE+00        27742E*0n          2778;E*ne ,777e2Eene                      277Anrean 27782Etoo .77782Een* .27747E*0n                      77?m2E*na # 777a?E*nn                    27?A2renn 27742E*06        77782E*00        27747E*05          27782E
* nit          777a2E+nn          77742E+on 27782E+00        77782Eene        27797E+0a          27782E*nn ,377A2Eeno                      27787F*nn 27782E*00 .27782E*00              277a*E*nn          27747E*nn ,7774tE+no                      277AJE*nn 277A2E*06 .27782E*no              277A7E*06          27792E*=n ,77?mpt+0n                      27742F+nn 27742E*00 .77782E*00              27747E *06        777m7Etan              777a7t+nn          7T747Fonn 277A2E*00 .J T782E *00            27747E*0s          27747tL*ne ,77712E*nn                      27782F*nn 27782E,0s, -. 77782E +n?          27742E+4e. 277mM,en ,777p2E*no                                27782Eenn    .
27742E*05 .2 T752E *n @            277R2E*06-        27782E*nn ,777m2E+nn ,                    77792E+nn 27742E+00 .77782E*00            .27747t+0*          77787E*nn              777e2E*no          27762rean 277A2E900 .77782E*06              77747E*05          27742E*en ,77747E*nn                      2778JFenn 27792Eton .J7762Eend . 77a7E*0e                      77782E*ne ,2774RE+nn                      277A4E*nn 27742Et04        .77782E*0n.      777R7E*06          77742E*go ,777a7E+oO                      77792E+nn 27742E+00        .27782E+00        277R7E+08          777MPE*nn ,77747E+no                      77742r+na 27792Eton .27782E*na              27742E+0a          777M2E+nn ,,777a2E+nn                      27742tenn l                27792EMO        .27782E*00        27787E*05          77782E+nn ,77742E+on                      27787renn 27742E906        .37782E*00-      27747Eenn                                ,77742E*..'          77792 Fann
                .ag3ggg.cg        ,p 39gg.og      ,3.gogg.g,          777m2E*n?, ,,,,gggE.nl
                                                                      ,paggeg                                      96499E.nt
: n.                8              G.                n.
n,                  3 4                  O.              O.                4                      n,                  G.
i            6.                O.              4.                G.                      n,                  n.
l            n.            -    O.              O.                M.                      Q,                  C.
6,                O,              0,                O.                      4,                  n.
O.                O.              G.                O.                      n,                  d.
4                  O.              O.                n.                      n,                  0,
: n.                O.              G.                6                      n,                  O.
4                  O.              6                n.                      n,                  O.
4                  6              4.                n.                      n.                  O.
: n.                O.              O.                6                      n*,                  J.
O.                O.              O.                e.                    n,                  n.
8                  O.              4                  9                      n,                  O.
O.                O.              G.                n.                    n.                  n.
U k
                                                            , . - ~ .  ..
:E-9            -
                                                                            -- ~.
                                                            ~ L                    .
 
i                                                                                                  ,
e b
l l
O.                O.                  O.                6                      n,                          0 l'i          9.                O.                  O.                O.                      e,                          9 0                  G.                  O.                O,                      e,                          O.
j            0                  O.                  O.                4                      n,                          O.
Q.                O.                  O.                O.                      O,                          O.
t            9.                O.                  O.                8                      e,                          0
: e.                9              '
: 0.              , n.                      p.                          0 C040* 1 at.L &#E' .t 6d97E *oo CO23* 2        loner AMIAL *t.at4*Et                .
A          2      12          2      4    le            12        to              e CO24- 2 a          a        e          a CO25 =    2                                    .
355n0E *02                  6      .16795E+0*        .P re 70E *a 7 CO26* 2                                              .
19435E+02 .21seaE+62                .2eae2E*07          2e93tE*n7 CO27 2 22229E*01        .noeF5E*98          1*t11E*05          15958E*as              *7an
                                                                                                      . ostena            2naang.n2 29493E *02        .4313AE*03 CO29* 2 1252sE*10 *.A55e3E*t 3 *. A95etE*t ti =. A t 4 38E*i e 1252*E=18 *. A55e3ke t 9 *.A*543E+te ..Alq3AE=en
_  . c.t2524E t etS.A55eit.ee. *.45%1E*t O .4193*E*i 4 - . --
12T2*E=I4 *.a55g3(et4 e,499,3(els                      ,4 q]A(ete
                  .54477E*0* .98309E*15 .5810*E-0* .62438E***
95825E=49 .lotSOE=44 .tnts4E.0a                            3 0 n e 3E.e#
49744E*49 .61179E=6a , g g g yeg.0R                        12750E*aA
                  .St 3 4eE*4* .t1913E=09                11913E.c o .t3259E an
.            t028+ 2 3259444E0 *.1o4343E.1 .1595a42E.*                              *505tta
                                                                                  .                                      n'.            n '.
CD10 2
:    #                                0 *.        *. 3e13E*as :". '.2 {4E en t                              8 '.
C031* i                  ,''''6.c.
4                  *.4*73*E-02 8                          O'.                          *35410E.02 C032= 2 1045*E02                  .**        *T*2EGI
                                                            .                      '. 325 s t              !stnet                2346*
C033= 2 1200              1200                0*.                      n '.              *02252 CD15- 2
                      &LL &#E .toa19E*02 C0%* 2 a(L aeg .apon0E*00 C017* 2 atL 4WE .7e200E*0t Cose. 2 att 4eE .3252tE*00 CO39 2 AL L Aug .4ggetE,00 C040- 2 aLL 4ag .213eeE*4e Coal
* 3        F'JEL A        10        12        to        6    3h            12        14              3 C028+ 3 6      2*          4      2+
CO25= 3
                  .t270ng*01 .t$$eogeny .geregg 0p                            27 syne +e2 C07t= 3
                                                                  .G -              4
 
                                                                                    . 6 h
e l
i                                                                                                                                          1 88435E*02      .711o sE ***      2eno2E+0*            '.2e 5 3 t E *a s                                                  h CD27- 3                                                                                                                          1 373t*E*02 .s043eE*08              88451E*07 '.e7atotoap
* st                , 387E*n7            548 0 48. + a 2 54a20E*07 .41937E*02            .69 e54E 60 7              44e7tE*as          ,77taAE*n2          76a99E+a7 79522E*07      .A303*E*03        46496E*02              90n73E*a*          , *15aaE*n7          87to7F*17
              .to042E*01 .30staE*01                10766E*09            .itst?E**1            .tte.9Eent        .ita2tr+o3
              . t 2 S 72E *0 5 .12528E*03
          , CO29- I                                    .
1273tE 06 .1270'E=66            .t2725Ef66              .t2773E=a4 12715f.06 .t27t3E*e+              32729E-44 .t2777E nh 16106E.0e      .t004AE=0*      .let2*E=o* .t6149E n*
              .t=t96E 06        .to098E.4e      . Int 24E*06 .t6tmeE.as 19429E.06      .394eug.ae      . tono 1E*C4            .l497aE=an 19831E.06      .19949E o*      . tea 94E.0=              19475Eenn 232e5E.06 .233 tee =9e            7339tt.4*              23aa7E.an 23265E 0* .735t6E.o6              2tt'1E 04                23s47E=an 2544tE.96 .23779E.ne              73m6mt On .J305eE n*
25098E.06          73905E.04      21**7E-04                73*97E a*                                                      l 26en0E*06      .Jo09FE*ah      .26a27E*06              sJot47E*ah                                                        !
2640tE.o*      . sos 32E.ee      26. .e.un              2 =s 0 2 E -n
* 26445E*06        .2eA2eE*o*        2M s t E-4*            27 t o t E en
* 2e*49E 06          7o428E-o*      2 44 ' E =0
* 2710tE=e*
              .25627E .2 57= 2 E-0 6          .25a976***              .26n23E-a*
        , . . .. . asea 6E+ .35743E-0*< .2saetE.** r .2*a22E=a+                                      _                                .
* 2'133*E.4m
              .              *.23451E.04- .2396*E=ee .736+9E4 +
23338E.G6 .23s59E.0g            .23g4 9E=9 A              234ASE=nh 1
22949E 04      .2303*E*0e        2 3 t 37E*44 ,73257E a4 22998Ench .230jaE*0e              23137E-44 .23757E*a*
19715E de        .l d5e d E*c 6  .t*9tPE.86 .ts989E=a&
19412E.46 .t450 7E-04 .las **E.46 .tA972E.a*                                          ,
              .te465E=0* .taa50E.0e . t aa f t E.0* .t452cE.a*
l              .tes45E*06        .t445cE=a6      .t e e 7t E*44          .1d*29E-a=
              .it2tfE=em .. 1033E*0*; .1 n *46E.4 4.-                    .1099eE an                        ,
              .It213E*86 ".t.L02*E=6e.*.1e**.*E=e V .tOggeE a*
CDP *= 1                                                            *
* t                925 6ceen .itasa3E t .t1 9ae2E.*                                .505ii.                      o.                o '.
!          C030- 3 4                  O.                  0 *.      *2962
                                                                            .        Etna            27eE*ot                  d '.
CD3t* 1
: n.                *.6e70'E*a2 0                          n.                      *sm848E.ot CO32* 5
                .t p0 70 COP              .82          *. T*2Eoi                '.325 p t            *stpet
                                                                                                          .                233a*
C035* 1
* 1290'.            1200                    0 *.                    *.            *02227 C035 1 ALL &#E .10070Ce02 C036- 5 ALL LRE .42000E*00 C01T= 1 ALL &#E .79200E*01 C03 A- 1 ALL 4RE .3252tE*oo                              .
        . C019= 3            ThE C07.fRCLLFD VOtn $#Act OpffGN uss mrrn gPPLTE0
: 2.                2.              2                      2'e l              2                  2,              2                      2r i              2.                2,              2.                      2,
: 2.                                  2                      7.
: 2.                2[
                                  .?              2                        i.
G-il              ,      _                        .
w                    -
 
f-I                                                                                                    ,    ,
1
: 2.                  2'e                2                      2'e
: 2.                  Er                  2.                      2r
: 2.                  2,                  2                      Er
: 2.                  2,                  2.                      Er 26242E*00 2                            2.                . 2.
8                      .30223E*03            20221E*04              20223E+na 8.,.,,,,,            9                  O.                      o,
: e.    .n
: 0. .              . e. -                    n ..
W.                  9                  0                      O.
O.                  O.                  O.                      O.
: 9.                  O.                  G.                      a.
O.                  O.                  O'.                    4 9                    9                  4                      4 O.                  9                .0                        0 .'
O.                  O.                  G.                      O.
: n.                    .40819E+04          .40at9E*04              .sonteCono
                      . t le19E +04 2.
2' 2,,
2.
2 6
Ep 3                    2                  2                      2e 7                    2                  2                      2. *
: 2.                  f.-                2                      2.
Coso 3 At .L 4mt .233eeE*oe CDPh e. ..upEA . an g at at.4MEr
                                                              ' *' FI.'46
                .% vn y'.- i h              ' !2 .' ~ i h-      -
                                                                            ~'
: F7 -. W*
CO24= a 4        4        4        8 CO25- 4                                                        .
                      .1425eE+03 .t2700E*01                    .167e5C+02                2767aE*a7
* CD26* *
                      .tA435E*02          .71404E*07            245e2E*05            '.2      93tE*a*
CO2To a                                                                                      *
                      .t2922E*03 .t33e7E*43                      13mi t E *04              14756E +a).        .te74aE+o3          .t 3145 E +4 3 15gegte41 ? .f es3sg,*47 '                  .    .
                                                                              - : -9 .              .
CO20- a 8274*E*c4 .515 t *E*0*                  5 t 9 t a E.4 e .enpeat.ae 6827tg.de .e1155E a*                                              14787t=am 34594E*08 .2eT59g.0a                  .413 2,75  5,9g.0 g.04  a        25703E=an 24175E.0a .to2 elk *08                .t67*1E-om .tel3tE=a*
                      .I3413E*04 .tt457E*08 .Ite57E=04 1154aE.na 39154E *0 * .14122E*49                  3st27g.0 ,                3en5tE.co 35158E*09 .1st22E.0* 14:22C.de . tea 5tE.ne 35158E*09 .34122E*0e                  .3at22E***                  16051E*ae CD29. a
* 5259es#Es *.10e383E.1.t S*Mo*2f=4                                      .505 tis                    d '.            o'. '
CDia- *            .                  .                        .                                    .                        .
0'.                O.                      O.
                                                                                ~
                                                                                            .3433E+as            ..278E+n3                  3 CD3t= a
: e.                  *.64F04-62 9 ,                              e'.                      ".70893E=52 CD32 s
                        .t045,E02                    .a7            *7*2E4t
                                                                      .                          '.125 s t          *. eta =t          23164 Cn 3 3. .
* I200'.              1200.                      0 *.                      a.          *02272 CO15* 4 41 L 488E .10459t+07 C016- 4                                                            ,
4.L 4    4RE .8200CE+00 CD37= 4
                                      .                                          G                  -
Im
 
i ALL ARE .7e200E+88 C034- 4                                                                                                                                                -
ALL ARE .3252tE*40 C059=
* 4LL ARE .41491EtOS Cose 4 su. see .2,3s.E,ae CO2b 5 CONTPOL'                i 12          2                    7        17                      11          as          s
(                                  CO28- 5 13r                          de l
,                                          3      82          1      42 CO25 5
                                    .te256E*01                          3    .27670E*03                2977stens CO24= 5 2802tEt02 .2e722E*03                      2ea23E*07 C027* 5
* 22225E*0s .se475E*Ot                    .1ttttE*0s              '.t5454E*ms            ,7ano3E*n2                  2aes a E+as 2 840 F. *0 2 .13339E*02                .373t*E*0s              .acm36Een2 ,aa353Een2                            .a797ag.op 513*76 02 .54904E*02                      59429E*0?              6t*37E*e*            ,agaget n2                  6do7tE.a7 73e48t*02              7e005E*o3 . 79427E *07 .A3039E*n7                                ,%%qeE*02                ,0 0 6 7 3 F. *o 2 91590E*47. 9710TE+02 .tene2E+01 .t os t eE+a s                                          *
                                                                                                                                .to7.6E*n3              .ittitr*a3
                                    .f t 46*E +01 .it82tE*01 .127 77E *4 4 .t2524E*nt                                        ,12*p2E*ot                .t3367E*41 138ttEt03 .ts25eC+el                      147c0 E*0 t,        .15:e5 Etat .tise*E.ot                            .teo3eE*nt CO2W 5 hkh}h                    h.kk D h 425,Gb.W M F1 - -
5259ee8En .3es383E.3 .tseg.laar                                        *505t34
                                                                                                              .                                0.                    n '.
CD30 5                                                      -
0.*                  0.                  3 *.      *3433E*ne
                                                                                                          .                          'pimE*01                          n.
Coll. 5 0,                    *.6470'E*02 0                          O'.                        0 *.
C012= 5
                                      .I 0459C07                      .3F _', *.7*210t ...._ ,                ,      i. ..            '99562                  4en3n n                      'C013= Tw
                                                                    <  *~ *: -' ..                        ' c-          .*            - -
t 0 0 0'.            t 0 0 0'. '' ,M
                                                                                  -  t t000".
                                                                                        "++:                            /.                  '. n l CD35= 5 ALL ARE .ta459Etel Cole = 5 42000E*0s
!                                      82000E*00 l                                      82000E+40 I
8 2000E*0ft
* 82000gtve 42000Et04 8;n00E+0e 92080E*06 82000Ee00 82000E+40 92640E+00 82000E*04 82000Et00 42000E900 i
82000E*00 84000E*04
,                                      82000Et00 92000E*0e 82000E*00 42000E*fo D
                                                      -                                    ~kT"'--                                                            -
e g-
                                                                                                                                                                            = , e- mg ..
 
0 e
r e
s
                        'vF0003408
        '              '9200034n0
                        *w20vs340c
                        *g005 3*00              '
                        *se09E3,00                                                                  1
                        'emowt3400
* ee 0ftE3400
                        *ee0W53*00
                        *ew09134od
                        *ee09f3400
                        *seh9t3400
                        *se0Wf34OW
* neo e f 3 +e D
                        *0e0Wt3404 j
* e20093+ow
                        *stu003+00 j                  *v20003+00
                        'st0003+pO
                        'e20003+00
                        *yt0002*oc
                        *620004+04~
                        *etoC03400 3014- 5 3Gsg*h9,esi5      *torD03. ;*01 c , a-.  - _ y: ,
c-  -
                                                                      -y" ..
fli VM3 0*
3016* L
                        *seb923+00                                                                        *
                        *6eE9F3400
                        *6ebeF3400
                        *6669F34PO
                        *seh9f3+04
                        'eh9F3 +00                                                  .
                      -' *th9f3**tS-
                        *seh923404
                        *keb*t3+00
                        *We&8F3406
* web *F3+00
                        *te59P3404
* woe 9t34ps
                        *666923+09
                        *Be49f3404
* t.t k*f 3 *0 8
                        *keh9F340#
* 6 eE*t3 +0 0
                        *9669t3409
                        *Seb9f3+00
                        'v h *t3+00
                        *t59112400                                                                    .
                        *0600034ps
                        *se96e3+09
                        *eF9ee34pO
                        *9f96e3,00
* 979 > erI + 0 8
                        **f96e3400
                        '9p9ee34c&
                        *eF9ee3*pS
                        *et**e3+08 l
l  .
l l
S-1 3            -
i 1    -
W
 
b i
626*eE*00 62e9sC+00 424esEt00 3570eE*ve                                                                                      .
3370st+0*
3370sf+0e 33704Etda                                        ,
3370aE+0e ' ,      -              e-          .M'      ~,. s          ,4-31? nee *40                    -
                  .3370st***
3370aE*00                    .
CD50= 5 94340E.41 98160E.41 94340E*dt 9e3ADE=41 14140E*0t
                  .es3A0E*dt 9e340E-vt 98380E*4l
                . 9s168E*0t
        .          94340E*09                                *'                  -.. -
9e14eE*1t                                        ,s          , .
              . = '4WE*# t'                ich. a.
                                                                                    *.3y 3N' ?O%
          '': % 96}490 Emet'i ,Q.r.ych                  @?A Q ,p df-M
                                                                  -Q'**ay      *$ h                    't 4eIA0E 49 -                                                  f.,
9e348g.0t 94390E=vt                                                      .-4
                  .ea3soE=ot 94340E*e t .                                                        -
                  . *e34aEWt 94348E*01                                      . ,                  ,
96340E*0s                        ,                            . ,,
                  .tS347E*48 -                              J. 4' f,4 * ^ , * . .
1no 00E+ *J n                                        >:
4e302E*00 3430eE*ee
* 3e30tE&de 34306Etee            '
3630eE*00                                                      .
3e106E*06
                . 3e30et+0e                                        ,            . . -
,                .Jo30*E+0e                            .                        .. .
l                .3e306Et0e .                                                .          .
l
                  .34300E*08                                                -        ,
,                    3430eE908      -                                  ' i -                .
                . 50ee7Et48                                    ,..?-              .4 5ee67E*de                                -*    ..>-r..
54467E*0s                                      .      .
58467E*04                            .                      .
                  ,58647E*0n 586e7E*40 5Ae 7E*09 44467E *d e CO23. e        INf4ER RLAras!T t3        2            te                ;          13          es        th          as      e CD24 5                          i            .
3      47              3            42
                                                                                  ^TISTG I                                                                  .
 
E025= 6
          .it256E*03                0      .2*i74E*07    38612E*p2 CO24. e                                        .
19482E*02    .144e7E*02      .36978E*07 CO27. n 27225Etet      66475E*01      .tttt1E+0s .tS959E*es " anon    , 1E*42 24aa4E*of 29493E902    .3333*E*02        371t'E*07  40436fons ,sa393E*g7 .sTA70E*n2 5t347E*02      54*0sE*c2        54a20E*43  41937E*e2 ,65agaten2            66*7tt np 72464E*w2      700 05E *o 3-    79927E+07  A 341*E + 47 ,86594E*n2          90073Eens 93590E*02      97107E*07 .tnio7E*01 .iostaE*n3 ,t07.6E*ot                  .titt?E+43 19869E*03    .st*2tE+0! .t2172E*04            3292aE*e3 ,12922E*ot            13361E+ot 13AttE*01 .t8256E*ot .te7ent.01 .tSta5E*at .is5a*E*03                      .t6o38E+41 Cna4 6
        ..tel35E.0a ..stt53E*08 =.tthl0E=0e
        *.lel35E*04 *.tttS3E*08 e.tt4 toc =va
        ..tet39E.08 =.ttt53E*0" =.t:4 toe.0a
        ..te 35E*04 *.t11536*08 a. s t s t nE*0's
        . 2e195E*0m *.19esoE*0e ..t*217E*0n
        *.3194tE*0A *.25t3FE=0a . 2eg3ng.0a                  -
        . 7791tE*08    *                . 68392E=44
        . 1094aE.07 ..e6492E*0A
                          .ool39E*08 a.47928E=oA
        . 2 net'E=07 *.t9725E*o?            19etaE=0i
        *.209e9E=47 .t*759E*07 . 19esAE=0?
        . 50237E*07 a.50045E*07 =.a9anaE*47
        . 50237E*07 *.900a5E*07 *.ae s4AE.o?
        *.92272E=47 *.43e07E*07              82A3'E-07
        . 42300E*07 .83431E*07              82p67E*07
        *.9 790*E *97 *.89467E*0 7 *.99191E*of
        *.*7909E=47 =.99847E*07 e.99391E=0Y
        =.t.ll40E=46 *.it s29E*0e .i t acoE=0*
        =.ttle2E=46 *.it43tE*06 =.tta02E.ca
          .12376E*06 =.t2710E 46 . 1267aE.04
        . 12377E*06 t2711E*06 . 12670E.04
        . 1:462E*46 *.12088E 06 ..t 2138E.04 e t t14*E *06 *.ft729E*06 *.ttmo4E.On
        ..ta793E.de ..t09aeE=ce =.11037E o4
        =.t#792E*04 *.io945E*a6 =.t 43nt.a6
        =.'190 2E*0 T .92419E*o f +.93410E*47                        -
        =.9 9 90iE*07 *.*2619E*07            93410E*0i                                              -
        =.74730E*07      .i93e*E*of =.8079eE*0f
        . 747ttE 47 =.79350E.07 ..sopT9g.oi
        = 44717E*07 =.4537eE*47              65917E*07
        =.ed69t t 07 =.4534*E*of . 65m4?t*07 e.33a.aE.07 =.1506et.07 . 3ae9et.07
        . 31s**E*07 *.3508AE*07              3a996E.o?
        ..So*62E=44 =. 9 0299E*a 7          9th9*E=0 m l        . 5ee3*E*04 *.t027tE=07 . 92eo6E.0a
!            3*945E*09 =.e5788E=ca            31753E es
          .34110E=44 =.10 tate *04 *.19911E*04 3077'E=0a =.A502*E=09 =.2542tE-09 165eiE*04 .e743tE=tf            294e*E*0e
          .to64*E*04 .33435E*09              279a*E.0e 2103tE.09 .e8ee9E.tt            3eg46geto
          .23031E*09 .946e9Eatt            .1a40hE*la 2303tt.09      9ese9E.tt      .3a606C=t5 CO29 e 52594eSE0 =.1 eel 41E.1 .1589057E**            ".945tta            4 *.            i.
j      C010. n I
                        .                            G-16 _-            .
 
4                                                                                          ..
l
* O '.              G.              0 *.    *3as3E+a.
                                                                        .                  ..iinE*41                a.
Coll- *
: e.                  ... 7a*E.07 e.                      o.                  *i2an aE*4a C0 5J* 4.
                  . tea 59E04                .43        *7*2f0I
                                                        .                  *13919
                                                                            .                  *27742
                                                                                                .              .t6A97 CD33= # -
* 1200            1280'.              O '.              n.            *41146 l          Co1S* a l                      at,L ARE .1n459E*02 C036+ 6 ALL 4WE .42000t*00 C017*
* at,L Apg .Fe200E*01 Col #=
* aLL 4WE .51935E*30 C039 e 27792E*00          .27752E+10      .27i97E*45 27792E*on .27792E*40                27742E*0s 27742E*04          .27792E*49        27747E*09 27782E*06          .27742E*00      .27787E*oo
* 27742Et0e .27782E*91                2?Tm?E*04 27742E*04            27782E*0)      2779?t*64 27742E*00          .J7782E*03-      27792E*08
          ... i.27782E*49 .27782E*W. , .27742E*9*> . , ,                      ~    ~
V .27782Eter 27792E804- .2?TG2E Y "' 4-27742E*00 .27742E*oo .A7T92E*4e 27742E*00 .J7742E*04 .27?42E*03 27742E*06 .27782E*01                27792E *04 27742E*00          27782E*00      2??82E*0s 27742E*00 .27742E*0?                27722E*g4 27792E*0& .27782E *4es            .27742E*0a
,                  27782E*0@ .27782E*09 .27742160s j                27742E*00 .27792E*00                27i42E *085 27792E*0e ' .27752E*6                27742E*0s 27792E*00 .27742E*0I                27782E*04 27742E*00          .27782E*10      .2 7792E *4 e                                                                ,
94328C.0t        .A412eE.08      .as129E.41 O.                  G.
* 4                                                                              ,
O.
G.                  J.
O.    '            G.              O.
9                    O.              4 O .,                S.              O.                                                                            l 0                    G.              G.
O.                  e.              e.                                                                            l
              ..                  e.              G.
: n.                  O.              4 9                    O.              4.
1                    8              9                                                                  ,
O.                  O.            'S O.                  G.              0..
O.                  9              O.
6                    O.              O.
8                    O.              O.
6                    9              O.
: 6.                  O.              9 O.                  7              O.
8                    3              O.
O.                  G.              1 4
                                                              , , Land"          *[    ,
G-17 .
g
 
1 i                                                                                            -    s
  )
1 Cos0* 6 ALL 48E .te497t*00 CO23 7          LaaCR Ast AL pr.      ANwEr 16        2        19        2      16          15        to      th              a C02e. 7 3      A          3
* CO25= - T
                        .35560E*42                    .e. 1sst2E+0            .s7077E*as CO26+ 7                                          .
84tt*C+02          43030E*02 .a5756E*07 C027* 7 2222SE*0t .6o479E*01 .itit3E*43 .is958E*as
* pan 03E*62                        ,                      2 ass 4E*op 24893E*02 .33330E*02 CO24* 7
                      . 22572E=0* .8041*E-14 *.44t5tE-ta i                *.22572Ea09
* 84ateE*IO ..salitE.ta                                                              .
                      *.22972E*09 * . 403 tee-ti *.aatstE=ta
                      *.22572E=0* .AostoE=fa =.astilE-ta                                            '
                        .AAtt7E=ta .ne729E=09                  6 7 494 E*4 9 29tteE*48 .t t110E*oA .itantE*4a
                      ..edt1*E*0' .1143*E*0F 43 t '11E*0 *
    ,                w.12stSE*04 .tt380E=0*                  64537E*09 CO2*= 7
                  .;..sss** aee.          .1**3*3r-1 .1,=s0 2e * ,. - .sosner.. .
                                                                                                                      ,  &~.            i.. -
Cols. 7                                                  ,                                                            .
O. - ,30      32E*a.                        .
O.                O.                            .                        .25aE*n3                    C.
C031- 7 4                  *.4e709E*o2 9                        ~0                        *54ts9E=42 C012* T                                                              *321pi
  ..l
                          . loa 59CO2                .42
* 792ESI              .                      *atagt
                                                                                                                    ,                  23164 C033* T                                                  *                  ~
    !                            1200'.            12? e".                  e.                e.                *n22p3 l                C035= T                                      -
* i                        ALL ARE .10499E*07 l                CD36= 7 i                        ALL AWE .82000E*00 i                C037* 7 ALL 4HE .74200E*01 l              C018= T l
ALL 4RE .3352tE*00 1                Co1** 7 3                        ALL 4RE .at49tE+00 Como. 7 ALL 44E .2336tE*de CP33- 4        FUEL te      to        19      te      to          3n        to      is              3 CO28= 4 l                            3      26          3    26 C025- 4
                        .t2700E*01 .355e nE*02                3*nt2E*05          '.4 70 t?E *a s CO2k- 9 44119E*02 .s303cE*o2 .asi16E*03 CO27- 4 37319E*07          40936E*nt .asts1E+os .afsintenz                        *et147E*4s .sa*0aE*ns 4897tE*n7 ,72am8E*n2
                      . 54a20E*02 . 1937E*07                  69454E*02                                                          76009E*07 79522E*02        .p3n39E*02 .n6456t*07                    90371E*as            ,*1940E*n7
* 7tn?E*07
                        .in842E*01        .t0411E+01 .toteeC*at .tttt?E*al                                .tts*9E*01          .tt82tE*01 l                        .latF2E*03 .3252eC+41                                  ,
{
l                                        ,
G        .          .
e                                                                    e
                                                                                                                                                ^-
 
1.
j CO29* 4
,              1127mE*06 .t34e5E*06                13359E*04                                                                    -
(              13282E*06            33a69E*06      13391E*44 t            .te797E*96          .te978E*86      .t492tE*ah l
              .le797E*06 .10979E*64                .te92tE*46 l              20447E*de          .20846E*04        2nnesE*86
[              20091E=46            2985tE*e6      2n ne9E *44 l              2e t 79E*46n .24412E*40 .2aertE*04 24179E*04 .2det2E*o4 ,2e s7 t E*on 24126E*04          .2477'E***      .keA71E*06 2s977E*06 .24759E*a6                2:a7aE*04 27192E*0e            2o9e2E-4e      27111E***
27153E*06 .27444E*4e                27agtgeen t              27190E*06            2789eE*os      2Ai49E=44 l            .27190E*0e .2789eE*46                .2at49E*04 24a39E*04 .2efa5E=e4              .2642*E*04 2e414E*04 .2e743E*0e                24924E*44 2en2ng*g4 .2430aE*0e                2as41E*0*
2442dE*ie            24304E*4e      2eaa1E*on
              .23572E*0* .23475E*ah                .31e2tE*06 42397tE*06 .2347 eE*o t                23*20E*46
              .t *t i t E*46 .1985*E*0*            .to**oE=04
              .tm*9#E*06 .19043E*96                  19949E*Wh
              .t e64 9E=44. . I '48 7*E*0s        .1see st-46                          '                              '
          '..Ises*E W '.t4479E*e6 ^& tee *4E** C
              .it248E*04 .it279E*c6 .i t en4E*06
              .It248E*04 .It271E*e6 . i t on 1E*06                                                              -
CD29* e                                              -
52s9=.8E0 *.3e 343E*i .is so.2E..                        ,5n5: 3.                            0.            0.      .
C030* 4 0 '.              4              0*.      *2962E+as
                                                                        .                        ".276 E +o 3              o '.
C03t= 4
* 4                    *. =7a9E*o2 0*                    0                        . 3542E*oi Cos2- + .                  -                  .                    - -
.                .10070CO2                  .82        *792E0i--
                                                        .                  '. 32T3 9                *41891
                                                                                                    .                  23166 l
C033* 9
* 1200'.              1200'.            0*.                  *.              *n2222 C035* 4 ALL ARE .t0070E+42 CD36- 8 ALL ARE .82000E*00 CD37* 4
,                  att ARE .7e200E*01
* l        CD38* 9 I
ALL &#E .3252tE+00 CO39* 4                TME CONTROLLFO votD SPACE OpftoM was eggs applipo l
: 2.                                  2 1              2.
2.
2*!.
2 E
2 2
l l              2.                  2C              2.
: 2.                  2',            2.
: 2.                  2              2
: 2.                  2 ,.            2
: 2.                  2.              2.
: 2.                  2 ".            2
              .Jt242E*00          2'.            2.
A ..                    .20223E+0J .29223E*05 4                    O,              4 I
_ G-19              .
                                                      =
* o .
b 9                  8                  8
: 9.                O.                  O.
O.                  S.                1 4                  O.                O.
O.                  O.                9 O.                  O.                O.
O.                  O.                O.
: 9.                  9                  S.
i                9                      .40619E*oo        . son 19E+04 l                  .I163*E*0e          7,                2 j                  2.                  2,                2 l                  2.                  2,                2.
: 2.                  2,,                2 l,                  2.                  2                  2.
Cond. 4                                                                  .
ALL ARP. .213eoE+40 CO23 9        uppCR 4xgAL RLANNE7                                                                                    .
to        3e          19      to        to      as        19        se          a CN8* 9                                a 1          9          3 i              CO25 9                                                                        ..
                        .le256E*04 .t2700E*91                    38el7E*07        97077C*n8
    ~
i              CO2** 9 40119E*42
                , - CD27* 9'          "' ' 43030E+07
                                                ' '          ' 45756E*05''
12922E603 .i33eTE*03                .t lie t t E*01:  .t' 4256E
* a t        . t4750E+51        .15145E+41 19549E+03          .t o0 31E +0 's CO29 e 11458E*07            43792E*0s        .asanag.4, 9204dE*04 .50e22 E .,,e                36(itg.on 552e4E*04 .1232ng.es                    31i4*E*04 l                    27017E=44 .tS382E*48                  .15444E=04
                        .tTt42E.04 .t2593E*48                  .it12tF.*44 38417E=4*          .3*5e1E*04 .37ta9E-0*                              -
444t?[e09            145e][e49 ,17tq4{.4e 44417E=09 ele 5e3E*08                  37io9E.0e CO29- 1 5259esaE0 =.te4363E.1 .1599052E==                              *505114
                                                                                        .                          5 *.              n '.
C010= 9 0                  4                  A*.    *3433E*as
                                                                                    .                          274E+01                o '.
CDit- 9                                                                              *
: n.                  ..ee7eE-er a.                          e '.                      . r6359E.h7 C012 9
                          .10459E02                    .a2          *. 792E0 s            ".325 pi              *41498
                                                                                                                .                  23166 C033 9                                *
* 12'J 0              1290.                  0*.                  a.            *02222 CD15= 9 4LL 4RE .10459t+02 C03** 9 4L L tag .330egt.,0g C037 9 ALL 4RE .79Ef0E+98 C01A* 9 4LL AHE .37521t,40 C059= e ALL AWg .gg89t(,04 C040- 9 ALL 4RE .213eeE*80 4
W G-20'- :-                    -
  .. L --  - . .                                          ======= =
 
i l
* s t
i CO23=to        INNER OLAN(E7 19      2        24        2    19        44            2a      se            a CO24=to 4      42          5    42 CO25=to
                      .te25eE*01                  0    47n77E*05              5892eEtas                                                        j CO26=to                                                                                                                        1
                      .e4328E+02 .5076 9E602          .51698E+0*              5433*E*na *993a*E*42  .                    5ee2tE*a2            '
57473E+02 .5452eg*0s CO27=to                                                                            *
                      .22225C*01 .6e475E*01            .Itit1E+05            ~.159s*E*as            .zo061E op .2asaAE*n8 2ngg3E*02        13338E*02 .371t9E*os                  40436E*ep *44153E*02                        47myng.op
                      .St387E*02        .549 0eE*02    58423E*07              41937E*a? ,,6gsgoE*n2 .a497tE*o2 72448E+02        7 enc 5E*ns    79922E*02              41n3*E*n* ,8655*E*42 .'4P73E+n2                                  l 93590E*02 . eft 07E*33 .to462E*01 .tostaE*as ,ta786E*41 .itti?E*ni                                                        ;
                      .It46 E+01 9          .it421E*01    .12tT2E*0s .1292eE*at
* 129:2E*nt .133e7t*e1                    I 134ttE*01 . t' 425eE *01      .te1n0E*01 .tSte5E*e3 .ts549E*o3 . ten 3aE*n1                                              l CO28=to                                                    '
* i
                    =.12535E-CA        .lets3E=0*      1512JE-48 =. ten 71E.e4 .. tang 2E=om =.14 Alas,.no                                      j
                    . 19586E 04 .te338E=os
                    =.12535E=04 *. tat 43E=os . 19128E*on =.14673E=en =*. tang 2E=o4 =.14834E=n*                                                  l
                    =.15546E*08 .to338E*0s                                    '
l
                    . 12535E.08 .tata3E.o* . 1912nE o* =.t*473E=e* **.14052E=54 =.ta43aE=an                                                      '
                  . 8558tE=44 *.t*334E=0*                . . _ _              . -              -
l
                    .175 35E=eC=.tels3E=ar ..t9329g.ee .14671E=an .* t an92E-no .1443ag.on                                                        )
                    *.19546E*08 *.t o3 3 9E *4 A            .                .                      ,
                    =.19428E*0m =.24589E*0* *.25t e0E*0m =.25456E=a9 .255a aE=5m *.2765eE.on
                    =.24s4*E=de          2992eE.oa                    -
                    . 2184AE*04 *.3134?E.o# =.3t492E=0m . 12367E=am **.130ItE=44 =.3496nt-Ga
                    . 34434E*04 . 18712E=ce                                      ,                  ,
                    =.4102 7E =4 4 *.75433E*08 *.71371E*0n . 759saE=pn ..an2i2E=5a *.42724E=na
                    ..A513aE.On e.m7548E=os
                    . 4F45nE=4m          3073AE.o r ..t oh3t g.05 .10i32E=ei =*.t t e45E=57 =.t t 494'E=n7 a.i t 976E=4 7 *.12256E=47              .          . .. ,                . .                    .
                    *. le047E*07 *.18487E=of =.17a2t E=gy ..t T79eE=af . t 45 tSE=n f .1972eE=n?
                    . 189tnE.07 ..t949mE=of
                    ..t *0 AIE=47 *.t 6520E=o f .17556E.of =.17427E=at **.14547E.57 4.187595.n 7
                    .,18943E 07 .19127E*c 7                            ,                    , ,
                    *.4e442E*07 *.47792E=s? ..s7ns9E=oy ..aTeseE=e7 ..g70.2E+of *.4718tE=4i
                    . 47%96E=Of ..a74ttE=07
                    .. sos.2E=07 . 47792E e7 ..To.5E.0i ='. 745 E ? .*.37ne2E.n? .. 7i8 E.07
                    . 47296E=47 *.a7 tite.oT                ,          , , , ,                , ,.
                    *.798 32E=47 *.79974E=07 =.797 9 AE=47 =.79123E*n7                                  .7844 4E=0 7 *.76 49eE=A7
                    . 74503E.07 *.76512E=47                            . ,
                    =.7994t E 07 +.A000eE*07 .799 t bE=47 . 79154E=*i =*.745 tt E=4 7 *.7852 t t.a7
                        .74530E=47 .7853*E*47                                                  . .              .
                    *.97342E*07 *.#e947E*07 *.9649t E*0Y *.95635E*af *.94432E*n? *.9456 t E=of I                    .94502E.07 *.94ss3E=ar
                    . 97342E=07 =.94947E.07 . 96*9t E 4i e'.95635E=ni .* 9a622E=o7 *.8456 t E=0 7 a.945n2E*07 *.esas3E.of                ,                                          ,
                    ..It269t=06 =.tt!86E+9e =.itt49E.0= ..ttn07E*a6 .i44 foe =44 =.1086tE=at
                    =.t op53E=06 *.t 0845E=o6                                                          *
                    = it27tE*06 *.ttt88E*0e *.ltt5tE=44 ..Itn0 E*n4                      9  =.10ai>E nn =.10461r=ne l                    . 14855E-06 *.t0847E*a4 l                    . 12522E.04 .12 stat =0e *.12164E=0*                          1220pE+ce =*.12ngsE.44 .12040r 0a
!                    . 12027E*ve *.t201eE-oe l                    =.12522E=06 a.124tAE*04 =.121e9E=04 4.12208E=as =*t2ngeE=46 *.12netE=on i                    e,12024E.06 *.120tSE=0e
                                                                      .G-21            ..
c' ,            -
L J _ ------ _ ---.- --.------------.---                                                                                        . _ . _ _ _ _ . _
 
                                    .. l l 4=eE*06 *.1177 t E*9 e =. l t Y 14 E-04                                                                                              .I1962E=a6 =.tt'ieE=4e        J            =.ttenut-o*
                                    . 11392E=0e *.t!!80E=04                                                                                                                                              .
                                    =.11499E*46 *. t !412E**6 *.11158F=0* =.it203E*e6 a.ttn9 E=en                                                                                                                    9            11as4E.e4
                                    =.t1937E=46 *.lto26E=S6
                                    =.106e4E.4e *.1040eE*04 *.10927E*46 . toe 03E=ne .*.t12aaE=de =.to279E=0e
                                    ..la267E.de =.10259E-96
                                    ..tn6eef =46 *.10ee5E=4e =.10926E-46 '.t oe02E*an *.t J241E=ne *.t 027sE=an
                                    =.tn2eeE.46 *.t025AE*ee
                                    . 4497 tt.47 =. Adea tt.0 7 =.47aa7E=0i ='.47t 2DE**i =,.a m a12E=67 =.9 15aE-ai
                                    =.44272E=47 *. net 9eE=q7
                                    ..sa*7tg=e7                                                        .naastE-99 ..afad2E-of *.Afi22E=ei =*.ne412E=57                                                                          .ne350E=ny
                                    =.8*272E 47 a. set 9eE=e?
                                      =.77094E.47 . 775e5E=0 7 *.76653E=of ..t* S50E.ei ,.76619E=a, ? *.76585E=of
                                    . 74379E.47 =.7e253E.07                                                                                                            .                          . ,
                                      . 77077E=of .7 75a AE-07 .7h01eE.47 *.7e135E.a7 .i6es t E=of =. 7e4*t E=o f
                                      =.76345E=47 . 76239E=o?                                                                                                          ,
                                      =.ee341E=47 =.65593E=07 *.43te7E=47 ..he75eE=e7 . 6=44 9E=n7 *.65901E=a7
                                      =.49723E*47 *.n55e3C-47
                                      =.ne159E=u? ..e55edE=47 =.431 ale-o? ..e a fi E=ni .,Ane                                                                                                                    1E=47      =.65 Afar =nt
                                                                                                                                                                                                            .        n
                                      =.eSe99E.07 *.65519E*47
                                      . 3 t12#E=47 *.13342E-of . 3 nit 9g.4i .'.12i92E-a7 *tanenE.nf                                                                                                        .                    .13425E=47              (
                                      . 335e9E.47 .13313E=*7-                                                                                                          , ,
13342E=47 . 30219E=o7 . 32t 92E e'7 .,14999E.47                                                              a.13atsg=oy
                                      . 31520E=e7                                                                                                                                                          .
                                      . 315eMad7                                                    *.313L3E=ef                                          . . . -
                                  - ..eSt7?E*## % 9#54E=e Ca 41975E=4e'.'.Y299tE=ee .*.94*a                                                                                                                            n E.es . 5523trans
                                      =.Sl**tE*44 =.seagtE.ce
                                      =.62490E=44 *.e8753E=1a =.ageATE=0* . 9224eE=am .*.spei9E=4a =.sa*09E=ns
                                      =.51338E=04 *.477e7E o*
                                      =.57933E.#e .f347eE=0* .10io2E.0a                                                                                                              20ae&E.ea *30mi1E=o4  .                      3377eg=na 3=at1E*4* .19e46E=4*
                                      =.1422tE=4*                                                                9533tE-q* .it*4*E=en '.709 31E.ga ".2*991E=5a .sta sE=na 3 e 458E =48 .te244E=08                                                                                                                    .                                                                  ,
54448E*49 .t 2515E*18                                                                                        1394eE=en                  2to22E*gm *2          . Ate 3E.48            29216F=na l
39232E 44 .112eeE=o4                                                                                                          . ,                              ,
                                          .Sa19'E-** .aSajtE*69 .Ae*15E=9' .12e9tE=as                                                                                                                          19'a3E=4a .teta9E=an
                                          .tn347E=e4 .te549E=48                                                                                                          .
49043E=49 .n3219E=o9                                                                                          615=1E=0*                  8482tE-99 *to722E.ea  .                      19719E=om
                                          .to796E=0m                                                              10773E=0A
* 19ta0E.09 .72303E-9*                                                                                  .2en19E=ce                        7e>91E***                3asenE=n*          .24t32E=o*
23720E*09 .23308E=49                                                                                                                                                                                            ,
2*t32E.a*
                                                                                                                                                                                    ~
19:ent=.* .32303E.o*                                                                                          2setst-**                  2=2*st-a*              *s
                                                                                                                                                                                                            . 940E=n*                                      :
23720E.4* .7330eE=09
                                          .t e t e0E=49 .223o1E*e9- 2 e a 19E-4*                                                                                                      24793E *** *3a540E=o9  .                      2 132F=49 2 3720E *** .73308E*04 CD2**to
* 5259es4E3 a.Tes343E=3 .15990a2E**                                                                                                            *545
                                                                                                                                                                                          .      tie                        o.                o '.
CD14=ta
* G '.                    F.                                          0*.
                                                                                                                                                                                      .3833E +4 s                '.2i4E *51                    n, ED31.f4 4                                                              =.te7m*E=02 6                                                              a.                        *35547E+ce CO32=to
                                            . toe 59E02                                                                  .s*                                    *792E0i
                                                                                                                                                                .                          '.13959                  *277a2
                                                                                                                                                                                                                      .                  . tea 97 C033=to 1200                                              1294                                            0 *.                      n'.                *nt3a4 Cos5=ie                                                                                                                                                                                                        .
ALL aRE .toa59Eed2 CD16-to att aat .A7000E+00 8
e G f2                    "^
  . _ _ _ _  h    _ . . _ - . . .                                                                    _ _ _ _ _                                                                                                                              _
 
                                                                                                                                        \
s                                                                                            . .
l C037=to                                                                                                      )
l                                    ALL ARE .7e200E*0t C038=to 4LL 4HE .53935E+00 C019=to                .
                                ,27742E*00          2F782E*03      27742E+05      27782E* nit *27742E*50 277a2E*00 .777A2E+00            27742E*0n      27792E*na ,27742E+0n 27782E*0n .JT792E*01            27747E*0n      277s2E+an ,777,          92E+no 27782E*00 .27782E*no          .27742E*06    .277s2E*in        277.12E*nn 27742E*00      .27782E+01        277a2E*0n    '27742E+gn *277a2E+no ,
27782E+40    .27782E*03        277A2E*00      277A2E+no ,777a2E*06 27742E*00        77782E*00      27747E+da      277a2E+an ,777q2E+nn 27782E+00      .27742E*00 .27797E*0n          .27742E*mn      f 27742E*no 27792E*04 .27782E+00            27742E*0n      27782E+an ,777A7E+nn 277 APE *06      77782E*o0      27742E*9e      77742E*ag ,777a2E+00 2774*E600 .py782E*dd            27742E*48      77742E+an ,777a2E+nn
                                .27782E*0n .27742E+nd            .27742E*nn .277q7E*an            27742E+oo 27782E*0n .77742E*ni            27747E*9a      27792E*nn *77742E*nn 27782E+vn .27792E*ni            27747E+0n      27792E+an ,277a2E+nn 27742E*no .77782E*0n            27792E+0n      27782E+an ,777a2E+nn 27782E*00 .27782E*00            .27797E*nn      2774M*aa ,27742E+0n 27782E*00 .27782E*49            .27792E*04 . 2.77 A 2 E *n n ,77742E*00 27752!,90 .27782E*oc            27792E*0a      27782E+an ,777a2Eenn 27782E*00        27742E*nd      27792E+0a      277 A2E *ne
                              ~ .21782E+W .27782E*00'.' *.27797t+4e;              277n2E eno ^,77732E+0W
                                                                                                    ,277 A2E+n n
                                .ait33E=0t .84328E=41              85111E=49      85t33E=nt    ,ast33Eent        -
0                n.              O.            n,              n,
: 0.              J.              O.            O.              n, O.              O.              9.            O.              O, O.              O.              O.            6              n, O.              0..              O.            n.              8, G.              .n .              O.            O.              n, S.              O.              O.            a.              n,
: 9.              0 .,            6              O,              n, J.              G.              O.            n.              O, O.              O.              O.            4              n, O.              O.              O.            c.              O, 9                G.              O.            p.              O, G.              O.              O.            6              O, Oe              G.              Ce            n.              n, 1                O.              6              4              a,                                    -
O.              9                O.            n.              n r
6                O.              O.            n.              8, 4                O.              4              a.              6, G.              O.              O.            6              n, 1                O,              O.            O.              O, O.              O.              O.            4              4 CDe0=In                                                                                              '
ALL &HE .16497feno CO23.I1      CONTRr)L 2a      7          25    7      2s    as      2g      as            a CO2d=1t 3    42          1  a2 CO25=tt                                  .
                                  .le256E+03                6      5892eE+07      62919E*a2 CO2*=tt
                                  .ietg6E*02        .*012tE*as      6sA52E*o?
CO27=tt G        ._
og e-N N6 66 6 ee
 
                                                                                    ,  g i
k l
l 22225E+0t      .46e75E+nt          .Ittt1E*da        . tS994E*as *,76al:1E+o2                    7eaugE*n7 288*3E*02 .3333aE*03 .3 7t t *E *op                  .aon3*E*c7 ,oe343E*02                      .eT*70E*92 91387E*02 .5s90eE*07 .54s2nE+0s                        6te3FE*n7          .eSagsE*n2            .n8*7tr*a2 72448E+42        7eouSE*02          7*g27E*op          43a3*E*n) "se9s6E*o2,                      90n71E.62 91596E+47        97107E*02 .106e7E*04 .10staE*et ,tofe eE*g3                                      .Ittt7F*01
            .lt469E*03- .stG2tE*of .t2172E*01                        1252eE*nt ,12972E*01                      131*FE*43
            .t34ttE*03 .f425eE*01 .ta7enE*04 .tSta5E*at .tssn*E+ot                                              16034E*al CO24*tt                                                                                                                          '
ALL 4AE 0 CD29-ll                            .
52594e8E0      .te4343E.* .359qna2E-*                      .5nSite                          o'.              n.
* C038-it 0,                      4            a*.      *3431E*as
                                                                      .                        2ieE*n1                    4 '.
Colt =tt
: n.            ~.s.709E=e2 n.                          a.                  n*.
C012=tt
* 10454CO2                      .A2
* 792Edi                  a.              *9o2ie
                                                                                                  .                  .t2784 C113*tt
* 1000,              t000,            1000'.                n.                    *.01 C015=tt ALL AWE .10459E*02 Cole-ft 82000E+40 42nq0E*01                  ._
47004E*09-          - - : P: '      JP * /
* 4 4..-    -
82008E*00 82000E*00 42000E*04                                        .
8200nCoon 82400E*00 82000E*04 82000E*04 62900E*00
            .A2408E*J*
8 !000E +00 82000E*04 92000E*00 g            82000E+00 92000E*10
            .d200ct+0e 92000Eeve                          -
f            82000E908 62000E*00 42000E+00
            .A2000E*00 79tt6E*WA 69458E*00
            .tS458E*04
            .te697E+00 04739E+00 49719E900
            .etT39E*00 44739E*00          -
44739E*00 44739E*00
            .d*73*E900 82000E*00 42490E*do t
e        .
                          ,                                              ~
G 24-                                          .
                                                                                  '~
am & FWsee
 
                                                                .
* s                    ,
                                                                                              ~
i
                                                                                                      ~
I i
82000E600
;                          82000E*00 l
!                        .A2000E*04 l                          8234AE*06
* 92000Etoo                                                                                          ]
l 82900E+00 CD17=11 ALL 48E .79200E*03 C034=11 ALL 4RE 0 CM'-t t
                          .ne2ttE*09 9e21oE*00 9421eE+49 46216E*00 8eiteE*00
                          .e*218E*00 8e218E+09
                          .Aa2 tee *00 8*21eE+00 9921*E*00 8421eE*09 46216E*04 4a216E *00      . . '
                                            " : ,:
* A t". ' f %i'... r. .u ' ? .; -
                        . ;neg g sg sey .                                                                ,
,                        .d62tsE*do l                        .As2 tee *uo 947 tee *00
* 4#216E 600 84216E*00 9421eE *0s 64047E+0e l                            79452E*Ce
                          .e2146E*49
                          . sele 9E*00
                          .**193E*00 69393E+00
                          .o*324E+0g
                          .o F754E *0 ft
                          .eF75aE*04 677saE*00
                          .e773aE+0a 4775eE*04
                          .tT71stego 6115eE*0n 346t*E*00
                          .3*e t M *0 n 346t*E*ea 344t*E*06 3Att'E*00 38419h*00 3Aet*EeJo                                                  ,
3A61*E*00 C080=tt 127msE*0n
                          .tJ78 set 00
                          .!47AaE*00
                          .I279aE*09 9
n,,-~~--
                                                                  . sps;      .- -      .            .
 
1278sf+00 12798E*08 127 AGE 900 127saE*00 12744E*00 12794E+00 3274eE900 12784E900                                                                                              ~
                .1278at,06
              .t2784E*00 1274sE*00
              .t2748E*oe 12744Et00 1274e(too
                .t2748E'On                                                                  .
                .t27msE*00 12953E*00 19118E*00
                .36assE*oO 3se05Etoo 29607E*40 29607E*G9 2*476E*0n 31246E*00
              .31246E*4tw..rfl[.Wrf 31296E*09
                                              , "e ;t , . g.,
31246E*00 3 9 2 e6E *40                              '
342s*E*00
                .3t24mE*08 56 tite *00 5et3tE*0m 54t3tE*gs 5el3tE,ue 5413tE*04 5etstE*0n 9et3tE*04 5etitE*00 CO23 12        t.OnER Argat mLANatt ( F:El ANO Rt,&NMr7 a 35 E%LIF.3                )-
25        2    39
* 29      1a      le    in          a CO24=t3 ta        a    la      a CO25=t2
* 35960E*02              3    .6NtAE*07 .to096AE*at CO26=t2
                .e347ti+07 .ne248E*07            69409E*07        73tsaE*as *7963et*n;
                                                                                ,                      77499F*ns
                .At010E*02 .A3593E*45            89731E*0F . net?6E*as            9097 7E+07      .ost3ag*n;
                .*7392E*02        9*757E*02 C077-17 22225E*41      .64678E*0t    .itit3E*05 '.I5958E
* a h *706/3E*o7
                                                                                  .        i      .2easaE*ns 24893E*07 .13338t*07 CO25+t2                                                            '
                .13632E=to .71430E*te =.9029fE*l5              '.930
                                                .3 t inmit.0e ..ya7,19E.astE.a          ., nae 71E.49
                                                                                                    .gtaett.no 27655E*09 .31582E=os                                            ,panntE.n*            749: W .o
* 2A350E.09 .27472E n9                                          *
              . 13el2E*to          71430E=tc    .*424tE-ta . 787etE=ao 53n59E.a*              i1E.6*    .alente.no 27655E*0e      .115a2E*0*    .It*62E=44                      .,ang
                                                                                  .J364tE=09            25t91E.no 28190E=0*      .77472E*oe e
D G-26      '.            -
m, k C_
 
k l
h 1
1                                                                                            *
                . 13432E.to          7ta30E.tr . 9eintE.In .5303*E.a* ,anaf1E=oo                                          .atsetE.n*            l 27655E.99 .1t$42E.n9              31542E.co . 747ett.no . 2aontE.no      .                              25to1F.no          ;
                  .28350E.09          2r172E.09                        *
* I
                ..lle32E.te          71430E.tc . 9n24tt.ti .53n39E.ao ,ausf3E.49                                          .a196tt.no 27455E.49 .311425 69              31942E.09 . 7479tE=a* . 2anotE.n9                                      25103E.49 29350E.0* .27472E.o*
                    *6taat 0* .t240lE.08              57719E=0*        '.28835E.a4          *2nAi4E.44 .td599g.na 2107ng.08 .20073J.n*            .20071E.ca . 72n58E no ,3nat*E.09        .                          .!89t91.oA
                  .t?A77E.A4 .3779at.08
: l.                .ti422E.va          2029tE.oe      .fandeE.0a            3ngt7E.an *anta  ,
ct.na              27es3t.na l                .32*ttE.04        .410tSE.ca      .3 tat 9E.04 . 70289E.a* .anan1E.n9                                  .290ect.aa I                  27o0AE.04      .27529E.o*
* 19a12g.0a      .25476E=0a        5ngt2g.co            93eseE an                ?44E.n*                17891E.n*
I                  5ea03E.94 .s9257E.0              .a*257E.de . 18999E.an .,nt.aosttE=no                                  .sa=32r.na
                  .a53 t t g.0a    .e53teg.0a 2194dE.de      .29890C=48      .tato9E.oo          '.$.as tE.a m
                                                    .e213aE.9a ..a39egt.no                .,77p{1E.64
                                                                                                                            .a5ndet.am 732aat.04          62338E.08                                                .ft 8v?E.ni                .esfaag.na 54 acte.04        480o7E.om                                                                                          .
CO2*al2                                                          *
* 5259eadE0      . 3ea343E.1    ,tga9442E.*                .5n5tta                            4 *.              1 C030 12 0,              e,                $[        *, 3e33g+me              ,2fgE,o1                        C, Co11.i2
            . i.
C0 52.t 2'
                                '.msfa9EM2.3
                                      '      ~~ V *      .Jx M.ic. N ^**^    .,"            ".s06eAE.41
                    .tCa51E02                22        *. 792E0i              3298 t'              *41991
                                                                                                        .                        2336.
C0llal2
* 1290            120 n'.              0 *.                  a.              *. n2222 Col 9 12 ALL AWE .in459E*02 CD16 12 tL L ARE .82090E*00 CD17.t 2
,                      ALL AWE .7e20cE>at
(              C038 12
                  .la52tE*on .1252tE*0n .3252tE*04 '.3292 t E +an *1212tE+nn                                                  3252tt.no 33*2tE*00 .3252tE*ea .3252tE*0e .53935E*ne ,91915E*00                      .                          .3252tr+no 3252tE+00 .1252tE*co 5212tE*00          3292tE*oo      3292fE*44            1292tE+an *1295tE+4n
                                                                                                ,                              1292tE+nn 1252tE*00, .3252tE+nn            .3252'E+0a            53*35E*ae              43919E+no                  3252tE no 3252tE*06 .32T2tE*09 3252tEtoe          1sS2tE*00      3292tE*49          '.3252 f E**n        *1295tE*04                    3212tE*nn 3252tE*04          3252tE*00      32a2tt+0*            53935E+ae ,93g15Eenn,                            1252tE+no 3752 t Etoe .1252tE*ai 3252tt+00 .1252tE*00 .3292tE*0                          1292tE+na *125)tE+no .3252tE*an 3252tE+0e .1252tE+e9 .3252tE+0a 53'35E+ae ,91'15E*no                        .                            3252tE+nn 3252tE*0s .1252tE*00                .
3252tE+0e          1252tE*0n .3292tE*0a '.1292tE*a* *121stt+4a              ,                            3252tE*en
                  .3292tt+00 .3252tE*49 .3252'E*0e 93935E**e 53915E*nn .3292tE*no 32521E+0c .3252tE*oe                                                                        .
3292tE*04 .32521E*en .3292tE+0* '.1292tE*an *1295tE*48                                                    3292tt+nn 3212tE*00 .12521E*0n .3292tr+0e                          53935E*aa ,53919E+no
                                                                                                .                            32921E+nn 3252tE*40 .3252tE*00 3252tE*00          4252tE.04      3292tE+0a            1292tE*an
* 125s t E+no                          32*2tt+no 3252tE*00 .3252tE*no .3292tE*0a .93939E*nn ,53815E+nn                      .                            329Ptt+0n 3252tE*04 .1252tE+01 3292tE*00 ,.1252tE*on .1292tE+04                        3292tE*ae *1292tE*ne                            3292iE+nn 1252tE*04 .1252tE*0n .3252tE+0* 53835E*ae ,93'1                              .
9E.on              3292tE+na
                                    -                            -G;27 ~            ~
e
 
k 3252tE*00 .3252tC*ca C039 12                                                                                        *
              .alA9tE*00        .alectE*e1 .atsotE*oe                    ,atA9tE*an                                  stAotE*no .staa:E*nn
              .atA9tE*04        .at49tE*gu      4t Aet E*0s                  27737 tea 6                            77742E+oo                  4189tE+nn
              .el89tE*00        .a!49tE*00
              .at99tE*08          4189tE*49 .atmotE*05                  '.atA9tE*ne                      *et49tE*54                          4149tE*na
              .atAetE*04        .alegtE*no .atnetE+0a                          27747E*an                    ,77747E+0n
                                                                                                              .                              .st*9tF+6a    .
4tA9tE*06 .al49tE*00
              .et99fE*00        .at09tE*01 .atmofE*0s .atagtE+aa
* et a9t E*sa                                                              .atA9E*ng
              .a:A9tE*06          4189tE*e3 .atAotE*4n                        77742E+an ,777a2E*oo          .                              .et*9tr*4n 414*lE*06          4149tE+04                                                                *
              .atAetE*40        .e1A9tE*44    .alastE*0s                .s!Atl[*an                        ,5lagtE*n4                      .GIA9lF*n4 4189tt*0p          4189tE+0a  .atagtE*ne                      77737E*an                            77?a7E+gn .elmettenn 4149tEt40      .a199tE*iG
!                414*tE*04        .a189tE+4a    .stA1tE*49                  . elm 9tteng                      ',ggan tE.e4 , eta 4tr,46 4tA9fE*40          4149tE*4*  .etmetE*4n                      77782E*en                              27742Eeno . taetE*84 4tAelE*00        .a1991E*00
* f                419*tE*0a        . eld 9tE*no  .etmofE*04                  .ala9tE*aa                                  etaelE*no            .e1891F+an
                .....iE*an        .sia,iE*04    ..i..ir*.a                        777A2E+a.                    ,777a2E+no
                                                                                                                .                            ..ta9ir.a.
l                4144tE*44      .a149tE*04                                                                  *
                .at49tE*0n        .a1691E*no .staetE+9n                    '.atm9tE*a4                                  at491E+n4            .at**lF*40 l                49A*tE*08      .a1891E*pc    .a199tE*18                        777a7E*aa ,77792E*no            .                              8149tE+aa    .
41.89 t E *4 0  .a189tE*04
                . ate 9tt+04.. 4149tE*ca        .ats*1E*44                                                                                    .atA9tE*ne
                                                .at**tE*44 ..at**tE*an.*,27792E*neet*9tE*be
                .et4**E*00 8189tE*04                                              7T742E*as .                                                  . eta 9tg.nn
                .St99tE*0s .dlA9tE*04 C0ao-t2 233e.E*00          233eeE*00    23te=E*ne '.23 3 eel *n o *7316eE*no                          ,                              233eaE*da 213e=E *4 a      .731eeE*14    .233eeE*1d . lea 97E*an .te897E*n4                                                            .233eeF*an 233eeE*00 .233eeE*01                                                                                                                        '
2136eE *00      .233eeE*04    2116.E*04                        233eeE*no
* 7 31eeE+f n                                      233eeE+44 713eeE*10        .233eeE*09    2114eE*1a .te497E*en ,teAo7E*ne                                .                              231oeE+na 231eeE*00 .733eeE+0S l              2336*E*00 .731e=E*no            231*eE*44                        233enE*ah
* 7316eE*no                                        233e=E*aa
  !              2336eE*00 .733eeE+4a            231*aE*06                  . tea 97E*an (te407t+nn                                            7316er.on 2336*E*00 .233eeE*00                                  .                              ..
233eeE+00 .233eeE*00            231e=E*04                        2316eE*99 *731aeE+an                                        2136eE*an 213etE*00 .733eeE*04            2314=E*0s . tea 97E*ae , tea                                    .                97E+no      233eeE*06 2136*E*00        .233eeE*00 213e=E*04          7334eE*00    231oeE*06                        231enE+an *713aeE*hn                                        233,eE.nn 2 33etE *00        7336eE*01    231eet*a8 . tee 97Etaa                                        ,te e7E*oo m          233eeE*00 2114eEtoe .233emE*ne 233eeE*04 .233etE*oo            2116eC+4h                        2334eE*no *,733enE*on                                        233eeE*en 2334eE*00          731**E*06    231eeE+0a .te497E*aa .te497E*0n                                                                2336eE*0n 2336*E*00 .233eeE*04 233eeE*00 .233eeE*03            2314eE*oi                          2316eE+an *733eetenn                                        233eeE*nn
              . 2 3 3 6*E *0 0 .2134*E*04        231 bee +0e .te497E*ne ,te4e7E+no                                .                            233eer+4n 2336*E*0s .2336eE*00 233eeE *40        .733eeE*00    2314=E*14 '.231eeE +aa                                          *73366E+no                    233e*Eene 2134eE*00        .7336eE*44    2314eE*0* .in497E*an                                            ,te g7E*no n          2330*E*no 233eeE*00 .233etE*94 CO23 13-        FutL 75        to      26    lu          29            34                      24      te                            3 CO2a.g3 3      24        1    7e CO25*l3
                .t7700E*04 .15be nE*a2            62918E*05 '.ede21E*a7 Code =t3 S
                                                                        ~G-28~~' :'.-                                                .
e
_________._______m_      _ _ __ _ _ _ _ _ _ _ _ _
 
62436E902          4347tE*n8        64i49E*45 CD27 83
* 373t9E*d8 .a043hE+02              .est41E+os ' s f a 7 n E ** * ,9 t34 7E+ 2                            . 14904E*o7 54e20E*02          41937E*02        45assE*07            6497tE*a8 ,72anAE+n7                            . fean5E.02 79122E*07          8303*E*n? .se956E*07                .*0nf1E*n7            ,839anE+nt                . 47to7E*12
        .tnoe2Et03 .tostaE*ol              .tG764E**4          .ittt?E*nt              .Its tE+n3 e                    . it*2tg.nl 12172E 03 .3252ag g3 CO24=13
        .te74 9E*06        .44804E*06      eleA4*E=44 14798E*46      .le80'E*1e      .tnae4E.0n 21447E*06 .21554E*04                21428E+nk 2144FE=04        .a tis 4E-o e    .2th2ag.o.
2e59'E *0 e        2664 7E *o e. 24778E*06
        .26405E*96 .ste93E-4e              .24740E 0=
        .312e0E*Me .11343E=ce              .3taa9E.0=
3tJedE=0* .113a3E.4e .Ste49E n=
32g25E=0e          3303eg.0.        31 sig=o.
        . 3 2 9 2
* E *4 4 .13037E.co .31ta9E.on 34415E=06            497eE*ne      35444E.dn 38 856E.4 e        3*97tE=n= .3*n4*E=44 39113E-06      .3522*L**e        .351aaE.n*
35tt3E=46      .1522*E-06        .1914sE***
3360*E-06 .13715E*ow .33529E-46 31*o2E*4 A .337L3E-4*-. 33m21E=e4                          ..
34435E=4e .3803eE**er ^ .30736E.au '
          . 3 4415E*0 *      .1063*E=16      ..t o ?34E =4 h 2**2*E=ve        .1u G 2 eE.c e    30126t*4h 29*2ag.46                        .30t21E*06 10027E=ne 2se0*E=46        -74690E.4 e      2e77tE=44
          .2a40 2E.04 .se64 3E *d e .2s744E.e4 14913E*06 .149etE *1e .l'n28E-94                                                            *
          . t 4*0 3E-0 6 .t 496*E=4 6            1*n2*E-44 12835E.0a          12977E=4* .129taE+en
          .t2828E*06 .12471E*0* .12918E=44 CD29-13                                                                                              *
* 52594e8E8 *.16s383C=1 .1599082E**                            *505tia
                                                                          .                              s.                  0.
CD30 13 0'.              v.                0 *.    *a9saten.
                                                                    .                        236E*nt                        n '.
CDit=t3
* 0                    . 709E-or 8                        a.                        .i4..iE-ni CO32=13
            . ton 70E07                .A 7        *7*2E0{
                                                    .                      '.32579              *4t499
                                                                                                .                          23344 CD13=l3                                                *
* 12v0            1200                  4                    *.            *02222 CD15=l3                                  -
ALL ARE .ie070E*42 CD16 33 aLL sat .s2000E*0s CD17=t3 aLL aRE .79200E+4t CD14=t3                                        .
ALL A8E .3752tt+00 CD1**t3            FHE CDmfacLLrO votD SpaEE cp7 tow wa s arFN a*PLtED ALL adt 2
* CD44=t3 ALL a#E .2336eE*44 CD21*14        UP'EM as1AL mLaNut? ( rutt ago mLanurf assE"qLIEs 1 25      lb        39      le      29        4a        3e          es          4 Me w ** S * ,
                            .                            . G 29              -        -
e e
M-u                  ------.iC  -
 
m CO2a.ts                                                                                                    ,
le      4                                          14            4 CO25=to                                                                                          *
                                                    .tm25eE+01 .12700E*01                                                      42914E+43 .100964E**1 C046-te                                                                                                              .
                                                    .e sa7 t E *02                          .ne2a4E*o2                        6eno9E*os                  73:44E+as          *796}9E+n2
                                                                                                                                                                              ,                        7794aEko2 4taloE*c2                                    83593E*08                  49739E+0*                .aot?6E*as            . *08 77E*a2              94934E*47 97302E+02                            .**757E*nt CD27-tm 12922E*03 .t336FE*ot .t3at1E*nt .t4256E+at *st?5cE+al                                                                  .                      . tite 5E *ot 19549E*01 .te438E*03 CO24-ta
                                                      . *e912E*04 . tot 15E=of .12agag.of                                                                  302n=E.e7 ;esapaE.44                        .itdonE.47 41147E.04                                      79928E*os                7**2*E*As              .t4952E an .e7suaE 09                            40295E.e4 5as7tt.0a .96estE=os
  +
7 t o2 PE-04                          .74196E.no                      ,93 27E*om                '.77a59E am          *739,nE.54
                                                                                                                                                                              ,                        .n7nanE.as l*                                                  .elt12E=44 .ntet2E.na                                                      6tst2E.4a .tteo9E am                          .to9 6E.44 1                31179E.am 49 t t *E *4 a .ala99E.na 35017E 04 .a09e E*0m                                          n      .5984*E.na                .e2a37E.aa * ,19995E.on                        .s94oet.on 3511eE=04 .3etStE*14                                                  .34tS*E*0m                .147 t t E *a n .It5a4E=o4                    .1994dE=om 245= t E =ca .25713E=om 94300E.09 .20847E.oa                                                    2725at.0a              '.2 t t 'at.a m      *to7 6E.5m 4                2ea7?E.na 17863E*J4                                      144SdE*o*            .t a somt.On                44a'at.c'          ,7531
                                                                                                                                                                                .          2E=no        .to25#E.on
                                                  . , .! st.40E.=4m .r3721E*0*                                                      -
                                                                                                                                        -%      u?                    .    -
64148E*04                              .f3820E*98- .t T77hE=4R                                  .t3664E*** *124q2E.44                          19244E.on
                                                      .tli95E*ua .t2a03E*08 .t2sont.on .n2139E=a9 ,9417*E.o*                                                                    .                      .e437et.48 9ee9*E*0*                                      9137'E*oT 23*17E*07                              .47033E*o*                      45977E.09                  3sss0E=ae ,*ta9stE.59                      .atalog.49 31048E*0*                              . 3 e d e
* E *0 * .36enat.o*                              15n56E=n*              12444E.99              14a24E.o*
27247E.09 .24teht.49                                                                              3a9ang.a* *129stE=59 . stet 1E.4*
21917E-47                                        47033E.09              45577g.oe 310asE*0*                                .3eaedE.49                      16anet.o*              .tS454E.a* ,12949E=o9 .                        .tesdag.0, 27247E.49 .Jele5E-o*
23917E.07                                .e T0 3 3C-o
* 45977E oo                149anE.no *149etE o*                        .statog.oo a                                                  31nesE.4*                                .1ea48E*o9                    36aa4E.0*                .15854E=a*          ,.t26a'E.5*                34e24E.n9 27247E.49                                .2*te1E=o9 Cn2*.to 5259644E0 =.164343E=1 .1589042E**                                                                      *905tta
                                                                                                                                                                .                              6 *.              o '.
C010*le 0,                                                      6                ,07,          *. 3a35E+as            *2jaE+o3
                                                                                                                                                                                    ,                              n, CD3 tate                                                                                -
4                                  =.64729E-02 0                                                  O.                      *te2ist=51 C012.ta                                                                                                                              *stagt
                                                          .to459E02                                                        82        *792E0i
                                                                                                                                      .                          ' 3257 t'
                                                                                                                                                                  ,                      .                    233e6 C033*14                                                                                      *
* 1209'.                                                  1260      .          0                        *.              *62222 CD15=ta ALL &#E .to459E*42 C036 te ALL &#E .42900E*00 CD17-t*
aLL 4RE .7e200E*01 CD34*te 3252tE+04                                            1252tE+oo          1;g2tE*15                3292tE+** *12*ptE+4e                          3292tt+44 3252tt+00                                            1252tt+01          3792fE*08                53915E*98 ,93919E+08 .                        3292tE+on
                                                        .3252tE+0s .12521E*00 32521E*4*                                          1252tE*o9        .1292tE*0*                  1292tE*a9 *179ptE+50                        3252tE+na 3252tt+0e                                          1252tE*o'        .3752tE*0a                  43939E+ae ,93919E*mo .                        32521E*06 4
g;jg=f , . '                        .
 
                                                                                          * ~                                          -
J
                                                                                                                                      =
b 32521E+ue    .125'2 t E
* o 0
* 3252tE*00 .1252tE*04                      3292tt+0h        3252tE*an ,1295tE+50                    1252trean
              .3252tE+00 .12529E*e9 .1252tE*46 .53935E*aa 91'15E+oo                                                .3252tr*0s 3292tE*00 .1252tE*01 32921E*00          1252tE+0G              1292tE*0n        3297tE*a5 *1295tE+no                    3252tE+0n          4 3212tE*00 .1252tE*43 .3252tE+0n 93939E+an ,93919E*no                            .                    3292tE+0a 3252tE*00 .1252tE*00 3292tt+00            1212tE*o9            3292tt+04 '.3292tE*nk *1293tE*no                          3212tE*na 3292tE*00 .1252tE*aa                      1292tE*0a .53939E*ao ,93*19E+aa      .                  .3252tE+na          -
3252tE*00 .1452tE*06 3212 t t +00  .1252tE*9J                  1252fE*05        1212t E+as              125a:E+na        3J52tEeno 3252tE*04 .32121E*0J                      3292tE*94        33931E+ag          *,9111*E+oo
                                                                                                .                    32921E*an 3252tE*00 .3212tE*4a 3212tE*1a .1252tE*01                    .1212tE*05 '.1292tE*nn *129stE+n9                        .32921E*nn 3252tt+0a .3252tE*gd .3212tE*oe                            13939E*a9              93115E+oo        3292tEeno 3292tE+uo .1212tE*0J 3292tE+00 .3252tE*ne                      1292tt+44 '3297tE*no
                                                                          .                *12971E*ee
                                                                                                ,                    3252tE*on            _
3212tt+vo .3252tE*ot .3292tE*da 33935E+an 91919E+oa                                                  3242tE*8" 3252tE*00 .3252tE*01 CD39-t*
* 4tA*tE+0a    .a189tE**4                  4 a9tt+4a .etm9tE*no ,stmotE+50                            41a98E*on              .
                .ete98g+0n .ataglE*S3                      41A9tE+0e 0                              37742E+00 0
                .at49tE*00      .a!49tE*09
                . eta 9tE*0s .AtA91E+ge; .etsetE*oe. . eta 9tE*an.
eta 9tE+de .et49tE*gn
                .st89tE*0s      .at*9tE+00              .sta9tg*0e e,                          ,277a2E+no 0 41A9tE*00              11a9tE604
                ,4tq9tE+0a              4199t E*04      .atnetEend      '.elagtE*ah            *
                                                                                                  ,elastE+e4          2199tr*on
                .dlA9tE*00      .4189tE*00              .at49tE*ca p.                              277m2E*no 0 4t49tE*00 .s199tE*06
* 8tA41E*06              1149tE*04 .a1891E*45            '.atA91E+ah                etAotE*40 .et*9tF*an 8tA9tE+00              4169tE+01          4149tE*00 4                          ,27Fa2E+00 0                      ,1 4189tt+04 .alA9tE*00                                                            *
                . eta 9tE*00 .ataglE*0J                    .etn9tE*05 .stA9tE*eo ,4tagtE*on                            4tagtr+no 4tA9tE*04                4149tE*03      .sta*lE*0a 4                              277m2E*no 0,
                .atAotE*00 .at49tE+oa                                                              *                                          -
3989tE*00              41911E*o9        .stA9tE*04 . eta 9tC*94                ,et*stE*o9          1388tE*o9 4tA9tE*00            4149 t E *00        8tA9tE*06 0        .                    277m2E+go 0                          .
4ta9tE*06        .atA9tE*04                                                      *
                .StA9tE+00                4189tE*01        4199tE*45 . eta 9tE*ao , eta 9tE*no                      .st49tr+4a 4tA9tE*00      .a1991E*08              . elm 9tE*0a 0                              77742E*60 0
                .al8etE*00        .at#9tE*4e 4149tt+00        .s1991E+04            .atA9tt+ud . eta 9tE+an *at89tE+oo      ,37742E+oo 1 4199tE*on        ,
4199tE*0a        .s199tE*04            .s t Aet E*og e.                        .
                . eta 9tE*00              4149tE*no                                                                                        -
CDa0=t1 2136eE*00 .233eeE*om                      2316aE*04 .{1166E*ah *733n6E+on                            2116eE*an        a 213etE*04 .23344E*80                    .23366E*44      .te897E*an ,te8        .
7E+00        213 ear *ao 23366E+00 .233etE*01 233e6E*ao .233e*E+83                      23166E*05        2316eE*an *23366E+oo  ,                  233a*E*on 23366E+00              233e*E*01        231eeE+0a . tea 97E+an                    16A1FE+no        233eeE*on 2336eE*00        .233e=E+ns 23ie.E*00              233.eE*0e      .231..E*0a      .23ie.E+aa              ,233 ee*no          23ie.r*na 233anE*00        .233etE*14            .231e=E*ue      .te**7E*an              . tea 97E*on      2316eE*c0 2334*E*eo        .233eeE+04 2334*E*04        .233eeE*03              2314eE*04        2316eE*94 *213n*Een4                      231eeE*08 213e6E+Ga .233eeE*o0                      231onE*04 .te497E*an ,te8*7E+o4        .                  733eer.co        _
23366E*0s                233eeE*09                                                                                      -
2336eE*00 .233eeE*oa                      211h=E*05        23166E+ea *233        . nee +nn      233eer+on a
E a
                                  .                                    -G.31~          -        -
e
                                -----.-.------iiii-.i
 
2336eE*00 .233etE*os              231e*E*d5                                      .te4*?E*an *te897E+50
                                                                                                                                .                    2336eE*no 2336*E*00      .2 3 34*E *18
                                                                                                            .231 nE*a4 ,233e              E+5A 23366t*40      .23366E*1a      .231e*E*0n                                                            ,          n          2336eE*ao 233==E*00      .233eeE*04      .231**E*04                                        . tea 97E*an .te497E*oo                  23166E*06 2114=E*00      .2336*E*0' 23366E*00 .233eeE*00              23106E*0h .23166E*aa *231n6E+no                                    ,                    2336*E*on 23366E*0s .233e6E*se            .23466E*44                                          16497E*aa .te807E*no                  233e*E*4a
                        .23366E*00 .233eeE *4 )
2316eE*00 .233e*E*0e              23164E*45                                          23166C*no *231a4E+no                  233n*E*on 2336*E*00 .233=aE**4              23166E*on . tea 97E*an ,te                                          .
97t+no e              2336er*no 233e=E*00 .233**E*o9 r.023-85        FUEL-26      le        34    19      26              34                                  3e    th            1 CO2a.15 8      26        8    26 Cn25=t1                                                                        .
12708E*03 .tS5e nE*d2          .64423E*07                                            4eAo9E*a2 CO2 eat 5 64298E*02        69405t*02      71iesg.o2                                          75639E*a2 *77enaE.52 ,ato3cg.n2 43593E*02      .*5735E*o2 CO27-15                        .
37 31*E *02 .ad83*E*e2        . sets 1E*03                                      .s747eE*** *9      , tin 7E*52          54994E*82 5pe20E*02 .e1937E*02            .tSc54E*02                                          6447tE*a2            724anE*e2        76005r*a2
                      .. 79522E&#2 .A10F8E642 .A4556C+47 19471E*na . ,,*1990E*o2                97107F*02
                      '. test 2E*41. .104 tee *0T' .tt7h*C+4T.-.ftst?Ese1' .itan9E*nt                                                              .t1A2tE*al
                        .t2172E+03 .3292*E*01 CO2A*li                                                                                                    *
                        .te52tE=46 .13733E*ot .1352tE*44                                                    .13n2*E***              12na6E 56 .Itan9E 46 113 t n E.46  .itt7tE*06
                        .te525E.0a        .t 373 7E.0 6 .33527g.0h                                              13027E*eh *'2490C=56
                                                                                                                                  .                  .tt471E=a*
1131 eE *46    .I118 0E*06                                                      *
* 1827'E*46 .t7325E*06 .175 EAE=06 .16917E*94 .le2i4E=56 .l4914E 46
                        .t e5 0 t E.4e .t ot SSE**
* g
                        .ta279E=04 .37329E*9e .175 s ag.44 .16917t=a6 *te2i9E=56                                                .                  .t## tag.nn
                        . l e54 t E *46    .t4155E=46 22269 E*06      .attT7E*oe      20ib3E*14                                          20ta8E.gn *t97m3E.o6
                                                                                                                                  .              .t8502E=o6 178esE=06      .tT330E=ne 22273E.46 .2ttetE*4,            20767E.44                                      '.20t'92E a6 *197a6E=no
                                                                                                                                  .                .ta505E de 17847E=46 .t7335E-96
* 25407E-46 .246eeE-4& .2eo*5E*46                                                      23aetE nh          72*g7E 46        2 tea 4E.n*
j                        2ns7AE 4e .2020aE=06 25867E=46      .2*4e *E*C 4    2 e n 99E=46                                        23aetE=ne *22997E=ne
                                                                                                                                  .                  7teneE=oh 20978E=C6 .20208E-16                                                                                  *
                          .2653nE*46          2ea t t E.oe .2sigot.on '.2e237E=a6                                                    23ti4E=0e        22326F=a6 2t347t=04 .30529E*06 26510E.06 .Jee t t E.oe          2aie t g.46                                        2823sE.a. *23ti6E.ot
                                                                                                                                  ,                  22327E.nh 213*7E-46 .20529E=06 6 3400lE 06        26212E*cn      26I29E 46 '.2594 t E.es *. 2asioE.0e                                                      23enir.o6 22576E=46 .217 tee *06 28002E=0* .24212E=66 .26t26E-06 .25962E=ab .*2ss2tt.56                                                                    236C6E=ah 22576E=ge        .217 tee =oe 2918tE=4e .24403E*** .2 m2e n g.o g ,257as t.an *2atiSE=56                                            .                  23774E=84 2275tE*44      .216gaE*96 2914tt.46        2e403E=06      262*AE=46                                          25+4 9 E=**      *246i9E=en
                                                                                                                                    .                  23776E.a6 2275tE 46      .218get.o*          ,
27460E.06 .25367L-06          .25258E.4*                                          2472eE=n* *216    . tee =ne      22913E=an
                          .2145tE+0e .218e7E 96 27058C=ce .25366E+ot          .29256E*0*                                        '.24719E=a6        *23679E=n6
                                                                                                                                    .                  22812E n4
                                            -                                      iG-32 ~~~;                          ,
__m v
 
                                                                            = s i
    ,21650E=4e .2104eE*0e 247e7E 04          .2320*E=06        .23io7E=0h          22994t-n4 *2tF4tE.56
                                                                                .                      20919E=ne 19967E=46 .19255E-04 2s7s7E.06            23209E.6 ,        23tn7g.on          7299aE.ae *. 7t folt.na                20st'E=04 19ta7E.0e .19255E*4 6 25555t=4e .23302E=06 .23is9E=04                            73004t n*      *71871E=n6
                                                                                .                      20250E.on 19643E.06 .19135E=04 25596E*46 .23302E*0e                    23784E*06          23409E=a4 .*7teihE.no                .'202 e 9 E =n e
    .t*t42E*0e .I,gt3aE.no                                                      *
    .21876E*46          .1922dE*0e        .2009aE*06        .i'287E*a6        . tat =8E=56        . lea 91E.on 16128E*04          .t5416E=n6 2tartE.06          .39215g.o.          2nnosE.n=          19pn2E.n= *tatn3E.ne
                                                                                ,                      1648aE.0e 14120E*06 .t1812E*nt                                                      .
    .1797'E=06 .44987E*ne                  .t'ia1E=06        .t190'E-a*            14179E=nn .t2377E.nn 123e9E=0* .123etE=0e 17nf*E.06 .349e7E an                .19 fete.on        .te9.oE.no        *tilait.no
                                                                                ,                      12377E.n=
1236*E+44 .t23etE=n=                                                    *
    .t1960E=de .st45tE-ne                  .toA*1E=nh          11209E=e4        .ttto3E=46            86n52E.n7 9ane3E*07 .o2807E=n?
11474E*06            31447E*Ca      .1024aE=ch .t0203E=an *Ito98E.nh    .                    . neat 2E.67
    .Tn405E*07            .s2772E**7 C929-t5 5259ea4En          . 3e4383t.1 .tsesos2E-*                  .n 5114
                                                                    *'a                        h*.                  n'.
CO30=ls                  - '                    ~
DJ                  'O .            '0L. . '*29,2E+es
                                                                .                    2feEent                        o '.
CD3 tats                                                                      *
: n.                  * .ee709E*o2 4                      n '.                  19eosEenn CD32 15 e.10070E02                    .A7        *7*270I
                                                .                      325mi          *atm91
                                                                                        .                      . 233ne CD33=ls
* t 2 0 0'.          1200                  n*,                  a.          *n2223 CD35=t1 ALL &#E .tn070E*02 CD3e=ts aLL 4Rg .nponoE*ot CD37-15 aLL 4HE .7e200E*01 CD34=t5                                              .
ALL A8* .3752ttoon                                                                                ,
C019*tS              fME C0ftfROLLFO V0fD $8&ct OP7f 0N Ms3 8EFH APPLIED ALL 4Hf 2 Cose=15 ALL 4RE .233eeE*00 CD23*to          INAER BL Af8ME7 f aC7Tvt C0pt CNt.f I la      to        3e        11      3a      3*        3.      te        a CD2s.t.
3      26          2      7e CD25 86 12700E*01 .35560E*02 .86an9E*0s '.92707E*ns CD26*t6 84t76t+v2            89"a7E*02        .*em77E*02        .
CD27 14 3731st+02 .soaleE*ns .ma153E*0s .a7a7aE*as *513n7E+92                                            5490aE.12
    .Sa820E*02            .et*37L+a8          45a54E*07 .nsoftE+ns ,72saAE*ns                          76009E*ns 79122E+02 .a3039E*07                  36956E*47          00471E*ns ,93190E+97
                                                                                  ,                    97107E+n2
      .ta462E+01 . G4:1E*01                  .307eAE+01        .tttt?C*nt        .it8e9E*n1' .Itagtg.43 12tf2E*01 .t252sg n3 CO20*!a e                            #
G-33
                                  -                                                                    h___        __  _
                                                                                                                              - h,
 
    *f.                                                                                s rr                                                                                          -
T              -
                        .*193eE=0A      .41583E=48 . 6749'E=0a
                    . 9e242E.04 *.41859g=ca . 67*06E*08
                    . 34444E=07 .12a23E.q? . 2a cA0E.4?
                    . 36448E.07 *.32e23E*of            24annt.4!
                    . 6032st.07        .gg399E=07 *.52680E=0?
                    ..e4350E*07        .99e22E=of =.5276tE-97
                    ..Al937t=47 *.73720E.o? ..e575aE=0?
                      . 4t917E.07 *.73720E*07 =.4979aE=0?
                      . 9544aE=07 *.Aeta5E*07 *.77n49E*07
                    ..*550eE-07 *.Aete2E=97 =.77 tale-4?
                      =.10625E-06 *.9592eE*of .89ettE*07
      ;              =.tde2*E-0* .95932E=of ..A99t9E=o?
i              ..tA0g5E*06 *.eese2E.07 ..Afa35E-97
      ,              . 97747E-07 .92513E=07 . 47a35E=47 i              . 9n43tE=07 .Aet10E=47 =.A160*E=0?
      ,              . 9a42t E=47 *. Ae t e t E=47 =.8164aE=0?
j              . 75933E=07 =.7252*E=07 ..*4A25E+0?
                      . 75433E.07 =.7242eE*of =.nen29E 07 t              ..e9420E=07 =.62e92E 07 =.59asoE-47
                      =.6540eE=07 *.eZe74E=07            5es37E-0?
        ,            . 54327E-07 *.518e*E *7 ..aest*E**T
                      . 5e103E.e7          9tme5E o? ..se 99E-4?
e
                      . 2eeseE.v7 *.24389E=of            2eo42E.07
                      =.2e6464=*1r *.74340E*oP .=.2e947E-97              -              -
,'                    . 2 t 32eE-48 *.24722E=9 P =.39s*6C-44
                      =.2tae*E=va .28477E*08 =.35461E=04 Cn29.t6                                              ,                        ,              ,
                        .5254648E0 .1443A3E.1 .19 eses 2E==                .505134                4.            a.
C030.te
* O '.            O.          O'.    *343!E*3a
                                                                        .                  2f4E*n1                o.
C031 le
                                                                    *.                  ,150i3E*58 9                *.66709E.42 e.                                  .
C032=t6
                          .tca59E02              .A2    *7*2E0i
                                                            .                '.53999        *27742
                                                                                              .                .te**7 CO33*le l                    1200'.          1200'.          0*.                i.        *0tlas t        C0 55* t 6 l'
ALL &AE .10499E*02 C0 h*tt i                ALL 18E .82000E*4e C03?=le ALL ARE .7e200E*01 C018*ts ALL ARE .53935E+00 C03*.16 27792Etoe .27782E*04 277s2E+0m .27782E*03 27782E*00      .27782E*0i>
27782E+0e .27782E*ed 27742E*00      .27782E*08 27792Et00      .27782E*00 27742E *00    .27782E*00 27782E*0s      .27792E*00 277a2E*00        77782E*ac 27742E*00 .27782E*4a 27782E900      .27742E*0?
2??A2E*0e      .27782E*00 45133E 41 .27782E*no 9
G-34 ~~~:      -
e
 
                                                                                                .
* s i
I b
i 0                  .27782E*00
: n.                  .77782E*oc 9                  .2T792E*0a G.                  .27782E*01 Se                  .27782E*00 o,                  .2T782E*00 0                  .27782E.0e
: n.                  .27742E*0c
: o.                  .27742E*00 6                    .27782E*oo 0                    .2 7 7 6 2 E
* 0's G.                  .27782E*0r.
9                    .27782E*00 CDeo-16 ALL ARE .te697E*00 C073*17          FUEL 3e      in      3e                                    to            5.      3.              3      3.        3 CnP**ST e      2n        3                                  2n CO25=t7                                                                          .
      - 12700E+01 .155edE*o2                                                      92207E*os .in0*eAE*at CO2e=17 9et3eE902 .*e0eJEbe3                                                  97107E647            949e5E*as *49797E*n2.                  1009e#E*01
    .CD27*t t .                                                .....                    ..
                                                                                '.ea151E*07. '.sid7eE+ay *,St 347E*a7 .Se#0er*n2
    ~ ' . J T7 t *E *0 7 ' ..so83*E*13 5ae20E*02 .n1937E*o?                                                .eSe54E*07 .e897tE*ap                        72*a8E*07          7ea05r*g2 78522E*02        43039E*02                                          86956E*07            9an71E*a2 ,439anE*a2,
* 7t01E*o7
            .lo662E*01 .tosteE*ol                                                .ta76aE*0t .Ittg7E*as ,ttee eE*o3 .itA2 tron 3
            .t7t72E*03          1252*E*11 C0JA*t?
99 756E.47        86890E-4 7 .P954tE*0i                                                  .Ae29tE=*i *4159eE.of                        42A27E-n7 49792E.47      .me921E*07                                            45472E=07          .Se122E.a7            ,43590E.67          .aga5pg.07 12t3pE.es .t1588E*06                                                .ll234E 9h .tt156E=ah ,ttajoE=at            ,                  .tl962E.86
            .12t3PE.06 .t158AE o= .it23eE-06 .It:56E*as ,tta7*E.n* .Itan2R.ah 1542eE 06 . tee 3tE=04 .tes19E.on                                                              14e36E an ,e199et.n*                  13474E=a4 15429E=0e .te43eE*06 .tet27E*0h .teo39E=en ,13*99E no .t3479E.06
            . t a 332g.a s .373neg.qe ,16 p g o g.a. ,te 39g.en ,te51tE=ne .toeslE o*
14332E*06 .173eet 06 16710Ee4h . l ee t 9C.e4 ,th41tE=n* .lo e*3E o*
19258E.06 . t S t 3 7E*o n .17etaE=0m .tF130E *6 .t?2mAE.on .17teeE.a6 19259E*04 .t al 3*E a6 ,, t 7 s t hE=0 4 .t713tE.ah *172e eCen* .t7te7E.ot 28e20E*06 .192e2E.46 .tmeA1E.06 .tateeE am ,,141oAE no .tA222E.o6 2082IE 06 .192a3E=o6 .taan1E.04 .3819eE.a4 ,tninAE.ne                                                                                  14222E.ne 24362E=46          1933tE*46 .tane4E*ob                                                        18971E.46 ,184!*E.e4                  19397E.ne 29262E.06 .39292E.oe . tan =4E.0*                                                              3897tE.a6 ,tasy9E.ge                  19187E .44 1980sE.04 .18513E-96 .l?*3aE*44                                                                1783*E 9n ,t??s3E*om .t7647r.44 19e02E.06 .to51tE.06 .t?917E.04 .1743AE.a4 f t7782E.o*                                                                                17e46E.on 17etAE**6      .teee9E*oe                                            161 A4E+44 .te783E=e4 , t e t m 2E=n*                        . t e04 t t.46 176tAE-06        8 69t*E*06                                        . !
* 386E*0 6        .te283E*** ,tetA2E.a* .te04tE.46
            .t eto AE=46 .tott2E.oe                                                157*7E-96 .tS45PE-an ,tS9i6E ao                                15381E.on 1 **47 E *46    .t ot t 1E-14                                      .t S 79t E.44              35657E a4          tS9(nE.go .t5180F.on 11268E.0= .13051E=o4                                                .t29t'E=0* .t276*E.a* ,t2nP9E.a6            ,
                                                                                                                                              . t 2 sseE-46 112 tee =44 .13047E*ee                                              .tP967E=44 .t2763E ah ,*12672E.en .t284tt.44 97143E.47          983eOE*07                                          944A7E*47          .*7en2E.e7              eo72E n?          9ee42E.o?
9 71e 3E.47        94360E=of                                          9amATE.or                97en2C=47 ,9ha?PE=a7
                                                                                                                              ,                    9eeA2E.o?
            .be175E.07        .69e20E.q?                                            7tameE.07 .to943E.a7 ,4* 3 t SE.n f . ease 7r.47
            .**A40E.07          69888E.07                                          7 t a51E *47            70952E.n? . e47 e et.n 7              48014E.47 CD2*=tf                                                                                                  *
* 5259448E 4 *. 3ee 383E.1 .1999a s2E.4                                                            .50Slie                    o.                      S '.
                                                                                                      =
                                                                                              ..A
                                                                                                                  ^ * '
G-35                              .                      .
                                                                                                    -~                                          .
 
4
* s C010=lf
* G.                        O '.                      0                  *2*e2E*e4
                                                                                                            .                        2ieE*n)                0 '.
Coitai?
* O.                      =.6e709E=02 9                                        O '.                                . 5472tE=51 CD12-tr                                                                                                                                                    ,
                    .30070E02                              .A2                  *792FOI
                                                                                .                                  '.3257I              *41P91
                                                                                                                                          .              '.23346 C033=t7
* 1200                        1204                          0 *.                                9              *82252 CD15=tf ALL ADE .touf0E*47 C016=t f ALL ARE .87900E*Jo l        C037=tf l                  ALL 6aC .7g200E*01 C058=17
    !                  ALL AAE .3252tE*00 l        CD39=ty                Twg CONTROLLFO 90fD SPACE 08ff0M WAS 8FE4                                                          48 'LIFO
: 2.                      2 ',                      2
    !          3                      2,                        2                                                                                                            -
1            J.                    2                        2.
  .l            2.                      Zy                        2
: 4.      .            2'                        2.
: 2.                                              2
* 2 . ..        ..      E',
2                        3.,                                                                                              ,
r;            '~ - 2,                          2.'
2..                    %,                      2.
: 2.                      2,                      2.                    -
: 2.                      2                        2.
g          2                      2.                      2.
  .                  1277tE*Jo 2 ',                              2 '.
O.                        2,                      2
      ,        m.                        2,                      2
      !        n.                        2,                      2.
l 9                        2,                      2,.
:        4                        2                        2.
j        0                        2,,                      2 G.                        2                        2
: o.                        r,                      2
: o.                        t.                      2.                                                                                                        '
G.                        2',                      2 O.                        2                        2.
O.                        2',                      2 '.
l        6                        2                        2.
      !      Coa 0=t?
ALL 4HE .2336eE*00 CO23.te          OtifER 8(ANmEt 19          7          as              2                19    se                          44      se          4 CO24=l*                                                                                                                                                  .
5        42            5          42 CO25=l4                                                                        *
                  .16256C*01                  '
3      1069mAE*01 12as53E*as CD26=ta
* 19333E*03 .iG80aE*11                                66 *17E +07                          6567EE*ai          . t22i'E*43 C027 =to
* 2222SE*01          ..o*T5E*08              . flit 1E*07                        '.1595AE*ap                , 70041E*07        2aa#8r+o7                  ,
28493E*02 .1333eE*n2                                  371t*E*07                  .aon16E+n7              , es193E*02      .a7970E*o2 51347E*o2 .5490sE*o7                                5as2aE*07                            6t*17E*a7          , *5agaEen2        68971E+o2 72a48E*07              7e005E*07                      7gs2*E*07 .aln39t*n7                                    a6554Een7
* 0073r*o7 4                          -
F f                                                                      .rW                  =      p G-36                                          -                    -
D
            -                m-    .m            .a--_--          - - - _ - -                - - - _ - . - -
 
                                                                                                                                                                                                                                                                                                      *P
                                                                                                                                                                                                                                                                %. K se.'u -
C 0
S av 93590C902                                              97107E*07 . 05e#E*61 . oeteE*nt *t97,eE*ns .I1117E*n)                                                                                                                                                                                            ,'
12172E+0* .t292eE+nt ,,12*22E+01 .t3107E*ot
        .i t 4 69E *03                                      .it82tE*03                                                                                                                                                                                                        ~ ~
1341tE*03 .td25bE*03 .te700E*04 .tSts9E*nt .tS580E*n3 .le638E*ol                                                                                                                                                                                    l'.
C929.to                                                                                                                                                                                                                                                                              '
ALL,ARE 0                                                                                                                                                                                                                                      .,                                                        ,
CD2'=14                                                                                                                                                                                                                                                                                          "
5259eeSE0 *.1e43s3E.3 .ts990s2E.*                                                                                                                                              *505
                                                                                                                                                                                        .        tis                          4*.                o'.          ..
C07.0.ta
* 0                                                          4                                                          0                    *3033E*as                        279E*nt                    6      *                ...
CD3t=19 o*,
                                                                                                                                                                                                                                                                      #/ ' ~                                  -
                                                                                                                                                                                                                                                                                                                        )
6                                                  *.ho709E.92 0                                                                                                          3                                                                              C C032*ta
          .toa59E02                                                                            .88                                    *792Coi
                                                                                                                                        .                                                  '.53819                      *2f1 42
                                                                                                                                                                                                                        ,                  .toA97                        [t i *-
CE33*19 t
CD23 t, 000aaotat 33tEtn 1000,                                                    1000
                                                                                                                                                                                    *7707
                                                                                                                                                                                    .          tent                    *113ne
                                                                                                                                                                                                                                                                ~"
                                                                                                                                                                                                                                                                                                      ,e'            &
34                                2                        45                              7                        ea                            44                    49          es                e                                                            * ..
C0ge.tg                                                                                                                                                                                                                                                                                  *                    -
3                        42                                I                      e2 CO25 19
* 4
        .te25eE*03                                                                                  0.                  12a553E*ot .17995 3 E
* a 3-                                                                                                                            '
CDat=19                                                                                                                                                                                                                                                                                        3-
                                                                                                                                                                                                                                                                                          ~
17539E*u3 .127CSE*01 .12A72E*01                                                                                                                                                                                                              ,
CD27-19 .                                                                                                                                                                                                                                                                                                      ,
22225E*4t;' hoe 71E*ot .i t t t3E+0i .t595AE*a> *769n1E*n2                                                                                                                                                                    74aesE*op                        - -
2mne3g*02                                          .33*3ag*0;                                                .37319E*02                                                40 alee *op f ea191E*o2            27670r*n2              . j'
* 5t347t+u2 .549daE*n2                                                                                                54a20E*os                                            .=1937E*na                  ,45as::E*o; .eao7tE*n2                                                              .J
                                                                .yo00 5 E*op                                                                                                          8163*E*as ,ae99eE*n2                              90073E*n7              .% ~ +,                g                e-72a4 AE *02                                                                                                        79822E*03
        .tl5*0E*02 9Tt07E*g2 .tnes2E*01                                                                                                                                              108 tee *nt                ,107eieE*ni            .ittt7E*al              >
        .tlee9E*01 .itA2tE*01 .t2tT*E*01                                                                                                                                          .t292sE*at ,t2*p2E*ot .133o7F*ol                                                          , * '
_ .,                          c 139ttE*03                                          .1425*E*01                                                .ta7acC*04                                                35te5E*nt .ts9a9E*n1 . ten 34E*nt                                                                      '
CO29=t*                                                                                                                                                                                                                                                    ,, .
ALL ARE 0                                                                                                                                                                                                                                        ,
Co2**t'                                                                                                                                                                              *                                      *                  *
                                                                                                                                                                                                                                                                                                      'W  ^
525%#6ic *.164383E.1 .ts990a2Ca*                                                                                                                                              .905tia                                n,                n,
                                                                                                                                                                                                                                                                .5 ~ - *  ^
CDl0=19                                                                                                                                                                                                                                          ~
4' 6                                                          6                                                          0*.                *3631E**e
                                                                                                                                                                                      .                              -27AE*i1                      0
                                                                                                                                                                                                                                                                ' );*-r C031-t9                                                                                                                                                                                                                                                                  .
6                                                  *, set 9                      0 E*o? Q.                                                                              O.                      o *,                                                  y, -                                u C032=l9                                                                                                                                                                                                                                                          --                          i-
                                                                                                                                                                                                                              *i9                                                                    '
            .I tt<59E02                                                                                47                                *792E0i
                                                                                                                                          .                                                          e.                        .                  '. a n          .                        .
CD13=t9                                                                                                                                                          *              *                                                                                    '
1000'.                                                    1000.                                                      1000                              .e4918Eei                                *.at CD91. t 7085tE*ut .7085tE*01                                                                                                70sglE*0s                                            70astE+at *70A9tE*o1                              7085tE*ni                        - -                        3 70451Eent ,70 A9tE*n1
          .T085tE*03 .7085tE*01                                                                                                7045tE*0t                                                                                                7045tE*61 70aStE*al ,7049tE*al 74A5tE+03 .7085tE*of                                                                                                70nstg*01                                                                        ,
70astg.nz 7045tE*03 .7095tE*01                                                                                                7n85tE*04                                            7045tE+et ,7aa9tE*ol 7aa9tE*al                                                -
3515aE*03                                                85354E+ol .A915aE*04                                                                                              45354E*at                    451 gee *o3        85354E*al 98912E*09 .e4912E*nt ,945                                                                  2E*ni                                            '
          . *e912E*03 .#4512E*03                                                                                                                                                                                  ,                      9a9 2E*os                                                      -
          .it343E*0s .11343E*0s .itta1E*os . itis 1E*o4 ,tt3e3E+oe .tt341E*os                                                                                                                                                                                                              :.,
12474E*0s .t2erRE*0s                                                                                                12674E*0s .t247AE*na ,t26ipE*os 1267mE+ca                                                                                          <
          .t3979E*0e .t1978E*0e .1197aE*oe .t397AE*as ,t197atena                                                                                                                                                                          1397aE*as                          -
139R2E*0e .t3942E*os .ite42C*os .t3es2E*ns ,139s2E*oe                                                                                                                                                                        33042E*os                                                                      s
          .t7e2aE*04 .37424E*0s .17e2aE*as                                                                                                                                            1742eE*as ,1742eE*ca .tfe2eE*os                                                    ' -
17424E*0s .t742eE*o1 .17s24E+04 .t7agaE*aa                                                                                                                                                              t7apaE+oe          .t?S24r+na                                            ,
709 tee *as ,7ni 4E*ne 205 tee *0e .305 tee +69 .pngtaE*os                                                                                                                                                                            t              209 tee +4e
          .Ja917Etos .20517E*os .2ogt?E*0s                                                                                                                                            20917E*ne ,299t?E*oo        .
                                                                                                                                                                                                                                    .Po117E*0s                                      -            - ' '
                                                                                                                                                                                                                                                                                                            ~
                                                                                                                                                                                                                                                                                    'M          .
x e          f.    ,,
e          - W
                                                                                                                                                                                                                                                                                                ' f.            .
f
                                                                                                                                                          .--            G                .
S-                                                                  ..
                                                                                                                                                                                                                                                                    ' . l.
                                                                                                                                                                                                                                                                                                                      ~;
e              >.
V .*
 
""T""
i                                                                                      . .
2220sE*0s .3220eE*na                    227noE*0s      72704E*as *327a aE*na                2220aE*na 2721sE+0a            2221*E*na          272 nae *04    22 Jose *ne ,722n aE+os              2223aE*na 23asaE*va .33a8aE*0a .21emsE*0s                        73ssaE*as ,23anaE*na                  23ssaE+ne 23aanE*os .33a86E*ca .23as4E*ca ~ 33aneE+ne                            ,73ameE+ga 2418 teens ,pa3ntE+ge 23adnE*na 2ala E+0a .7e38tE*qe .passig.ca                                                                2839tE*na 24342E*os            34182E*0s        2stm2E*4e        783A2E*as ,2a3a2Ene                  2a187rene 25023E+0a .25023E*0s .25023E*0s                          75n23E*as ,25023E+o4                  25n23Eeos 25023E+os .25023E*0s .75n21E*0s 25n23E*ea ,25043E*na                                          25623E*As 2e82*E*08          .74429E*0s          78A29E*0s        2an2*E*as ,28A2*E+0a
                                                                                              ,                    2aA2*E*nt 2em29E*0s        .Jan2*E*os        .2am2*E+0a      .pana*E*na ,7aa2*E*na                .p4m2*E.as 2881nE*04            7a430E*01          74A3nE*ne      24A30E*as ,7aA10E+na                  2aA30Eena l              .2sA3nE*ue          .2483nE*04 .24m3nE*os .;4a3nE*as ,7443aE+na                              .p an t or. *o s 2277eE*08            2277eE*na .22771C+0a              7277aE+as ,2pfT"E*oa                  2277aE*ne 2277tE+0e            2277tE*0e          2777tE*4a      7277tE*ae ,7277tE*ne                  2277tr*na 2,n58'E*04        .J  u S 8.u..a o .2,0449E+0a s9T    ,4          2,0 9 s*E + n e
                                                                                .,E.as      ,2e  ,,2nin4E+ne
                                                                                                        ,E.na  .J,o
                                                                                                                . es.5 9 6 .na  45,.n o
                  . n,.5E.es          .,os              . n,A,E.0.      .
l,              .lfa92E*ua          .t7e92Eeos .37se2E*0s .gyo92E*as ,tta92E*na .tTo#2Eena                                          '
l 37492E*4e          .IFa92E+$s .I7a*7E+ne                17a92E+aa ,tfoo2Eene ,374a2Eene
    .                19127E+0s .t5127E*nd                .l*!27E*0s      .tSt27E*ne ,tSt77E*na .tSt27Fone i                19125E+0a .tSt25E*0s                .tSt29E*0s .t512iE*na ,15:24Eens .tSt25E*ne
  )              .lleeft*va .t3e9FE*01                  .t1*e7E*0s          13497E*an          13no7E*na .t3no7E+na j
    !              .1313tE60s .t3131E*ni .13:3tE+0a                          13 tite *an' ,.titttE+os .13titr+ne 12336E*4a .t2330E*1a .37136E*ne                        3213eE*as *12114E*na
                                                                                              ,                    12316E*na
                  .tt464E+0a .:to 1E*na      e            .1Ian*E*0s . 1so4E*as ,11a n9E+04                        11164Eens 30993E*0s .t0*e3E*os .tn9a3E*0ec .t09a3E*ne ,*to* ate *ga .tn911E+ng 947asE*03            947aaE*of        9myest+0* .*97aeE*at ,afa aEent .e47eaEent 997aaE*03 .oA7aat*01                    9stesE*ng .gsfesE*at                447aa E*n)        94744Een) 947asE*01            997anE*01 .en7a4E+04- 9ataeE*nt ".987so E*ot                            9874ar*nt E051+ 2
* 6773eE+03        .n772*E*c3 . eft 2*E*04 '.67 729Een t ,h771eE*43                        .n??2*E+ni 4772*E*01        .a772*E*01 .nf73AE*01 .67729E*al                          4772*E+a3      .e7729E*ni 6773eE*03        .=7729E*of .nf729E*04 ,n7729E*nt *745 93E*n3                                7 acee tent 7ae69E*01            74a n'E *0 T      78 male *nt    78a2atens ,7sapaE*n3                ,7as28E*01 8e76'E*03          .aoe43E*n3          8ee83E*01 . sees 3E*at ,9227aEent.                    92163E+nt 92te3E*01            921e3E*03 l          CO5t. 3 l              2ttf2E+0a .211135684                    2ttt3E*0s      7ttt3E*na *7ttBE*5e
                                                                                              ,                    2 tit 4E+na i              211 tee +0a        .211 tee *08      .23870E*0s        7382*E*ns ,73A2*E*ne                  23A29E*na
      !              2347nE+0a .23A29E*na                    2342*E+0a      73A29E*as ,7en22E+na                  25967E+na 259.7E+0a .259e7E*na                    2en2eE+0a-      25969E*as ,75eg*E*ns                  25ee9E+on 2147eE*0s          .718 28 t.*0 4 .27a2pE+0a            27a22E*ne ,27eteE*na                  27a22E*na 27822E+0s            77822E*04          2A*60E*0s      78926E+as ,28*76E+os                  26926E*na
                    . 2 4
* e 2E *0 s-  .36926E+oe .2892st+0a              .78*29E*ae .2* epee +os              .2035aE*na 2*35aE*as          .2 935aE*04 .2
* e17E *9 a          2435AE*as
* 39148E *ne                2935eE+na 2*797E+0a          .;*77eE*0a        .7*776E+08        79776 Ewe ,7*797t+ne                  2*77eF*na 2977eE*0s .3977eE*0s                    2*et1E*0s    .;*52EE+na ,7a5pAE+no                  29529E no 1
i              2940*E*0s .3952st+oe .2952aE*0s                        7952eE+ne ,792tnE+na
                                                                                                ,                  292n5E*na 2*205E+0a .7920SE+4e                    2*71aE+0a      78705E+ne ,792n9E*no                  29209E*ne 29649E*0s .7ee2*E*0s                    7s,2*E*0s      79629 Ewe ,paesSE+ge                  76628E*na 28e28E*0s            26429E*0s        27tttE*0a        27to2E*as ,77tn2E*na                27102E*os 27 tine *0s .2 7140E*o s .271onE+0a                    .27 tone *as        .257n9Eens        257tigens 25713E+os .25713E+0a .297n9E+ee                          257t3E*as *25713Eena                25713E*ns 2a32*E*0s            74359E*ne .2415'E*0s              2a359E*as ,;a3pTE*na
                                                                                                .                  2a158Eene 2s35eE+0a .7435pE*ne c098. a 37e5tE*04 .t2720E*0s .t2NoE*os                          3272nE*na
* 8 239t E*ne            .t2eetE*0s 32 ente *04        .tdeo tt ua          37n3nE+0e    .t2 tote *as      ,,12tosEens          12 tate *no 1tittE+0e          .t1544E*a*        .it*4aE*0s      ,ttssaE.na          .ttPa*E*na        .tt122E+ne
                                        -                              G        -
N * --
m.
 
                                                                              * +
b
                .st322E*04 .tt322E+os            .to774E*04        30451E+as ,14A31E+ne                  .t0451E*n4
                .to778E*4a .30853E+0a .toA53E+0a .t0853E+ns .to778E+os                                      10853E+ne
                .tn853E,0s .to853E+os Co5t= 6 7teOSE+03 .7te05C*os            7teoSE*ot      7 tao 5E*st *7te45E+gt                    7too1E*os 7te05E*03          71e05t*o3    7ta05E*04      71aosE+gt ,7tsost+os                      7teoir+nt 47739E+03      .37739E+01    .A771*E+01        979e5 tens ,97999E+ol                    97**1E*n3      s 11939E+0a .t1939E+oo .Ite3eE*0s                13sa2E+as ,tle    ,
2E+as e          .t3442F*04
                .te906E*0s .3490eE*0s e.14*o6E*0s .t49ttE*ne ,1**itE*0s                                    .ta9ttE*oa
                .ta718E*0s .t47taE*os              187 tee +0a    187 tee *as          187'4E+os t            197tegene 2tT93E+0a .21793E*os .2t?93E*0s .at?95E+as ,21795E+os              ,                      21795E+na 23456E*0s .23a5eE+os            21ainE+0a      23e56E*na ,73496E+oa                      23aser+ne 2s70$E*0s .24705E*08 .24709E*ne                2s797Eens ,74747E+os                      24707F*as 256A8E+0a .25 44E*od .256A8E+os                256A*E+ne          ,756a9E+na              256A9t*os 24530E+04 .2*534E*44 .26510E*04              .2693eE*a9 ,2651oE+na                        2a511E+na 2e256E+0e        7e25eE*0s      26756E+0e      76755E+aa ,Je445E+os                      26255E.ca
                .26208E*0s .2e20dE*04 .2eponE+0a .7e208E*as ,762n8E+os                                        7 29eE+os 2377eE+0s          3377oE*na ,,23??qE*0s        23766E*as ,717.6E*n4                    .237aeE*na 21762E*0s          7t7o2E*oa .21767E+os        71759t*as ,7175 E+ne          9          21758E+ne 14376E*0s .td37eE*na .14176E*0s .t0176E+as ,ta376E+os                                    .t4379E+na
                .tS732E+04 .tS732E*0s              15737E*0s .tS72*E+na ,tS729E*nd                        .'5729E qa
                .lat42E*0s .38162E*0s .tsts7E+4e .335anE+as ,115a E+o4                          n        .135anE*na 12645E+0a .t2645E*0s .t26a9E+0a .tt67nE+as                            tte7hE+ou          .ite7nE+na
                .tlo79E+0a .31479E+4a .tta7eE*04                  98855E*al ,94895E*o3
                                                                                      ,                    .gasqqr+n3 9aq55g,03 .oe855E+ot- .gea55E+0s                9An55E+at .onsq5E.os                      98459F*oi C05t= 7                              -
                .e7736E+03        .67729E*03      67t2*E+05      67734E**1        ,6772'E+ol            .eT72*E*n3 6771eE+05          6772*E*01  .e772*E*0t        6773eE+nt ,4777aE*ol                      67729E+n3 7aso3E+03      .7ase*E*03    .?ase*E+03        7648tE+al        ,*7pA7AE+n1 74826E*ol 86769 E*03 .8ete3E*03          .A6 43E*ot        4277pE*nt          . 2163E*ol          92tt3E*nt CD5t= 4 21172E*0s .21113E+na ,2It13E+0a                  21t75E+ns' *7 Ig6C+na                    21:I6E+os 2387c ti; >0 s    23829E*os    23a29E+0e      23470E+as ,73879E+ne
                                                                                      ,                      23a29Eene
                .26022E*0s .75867P+0e .29 *67E + 0 e            .2642aE*as              7so%eE+os          .2586*F*es 2747aE*0s          77822E*oJ .27a22E*0s          2747sE*ss *77a72E+os                      27422E*na 28960E+04 .76820E+04              2n*26E*0s      28*62E*na ,2497AE+oe                      28828E*ne 29428E*0s .7935eE*og .29454E*0s                  29432E*ne ,2*354E+6a                      2o35ar+os 2*797E*0s .2977eE*04              29776E+es      797e7E+ns ,,7977et.o a                    2977eE+ne 2*6t3E+44 .79928E*os            2092aE*44  .2960*E*as ,7e92eE*ca                        29524E+4a 29230E*0a .79205E*0s            2*pn*E+os      2*230E*as ,292o1E+na                      292097.ca 29ee9E*0s .28629E*os              2a#2*E+0a .2664eE*ne ,24474E*0s                          2962aE+os 27tttE+oa .27102E.0a 27tn7E+0*                  27119E+aa ,77t4pE+ne                      27 tone +os 25765E*0s .25713E*os .257t1E*0s .2570*E+pa ,757,1E+ge                                    25711E*ne 2532*E *0s .2a35'E*04            24159E*os .as127E*ne                71394E+os            24358E*na C05t= 9
                  .t265tE+0a .t2726E*ca .12I20E+0a .t239tE+ns
* t ,24st E+os 12eelE+ns 12030E*04 .12 t o t E *o e .1210tE+os              1511E*ae
                  .ft249E*04 .t1322E*0* .it322E*0s                  1,0774E*ae 1                  ,tt94dEens. toms
                                                                                      ,to4q3E+os          .itS44F*ne 3E+0a 10778E*04 .t0853E*0s .30a53E+0a                  30778C*na .toA93E+na . toms 3E*na CO5tato 71578E+05 .71soSE+03            7197mE+0t    '.71g y nt,+ e t *719i8E+53 .?tS74E+n3 7teo5E+03          7157AE*of    7t979E+04      71979E*at ,7tS7aE*o3                      71aosE+ol 71578E*o3          71578E+o3    71978t*01      71974E*nt ,7tangE*ol
                                                                                      ,                      71579r+o3 71578Et03 .71978E*o3            88478E+os      2773*E*al ,ana7 E+o3          9  . mea 75r+os 94475E+01          99100E+n3  .g7eogE+0t    .e9 tone *at ,e9tgoE*ol                      99100E+n1 12t2*E*0s        .t193*E*0s .t212*E*0s        .12128t*ne ,tso s eE+na .t3645E*os 11442E*0s        .33685E*4e .33nA9E*0s          13645E*as ,ts2{ngene ,se96er+na 152tCE*04 .35210E*oa .t9710E*0s                .t5715E*44 .ta9ttE+os .tS7tSE*os
                                                                      * . p        e
        ;                                                    G-39          -
                                                                                                    ~
 
                                                                                            --_. . .o      :_ ,_
6 112 5E+0a .tS2t1E*as              19i36E*0s          347 tee +as      , t9 tine +os                .t9t36F+na 19t36E*04      .1913tE*08      .197 tee *0s        19136E*ne            tet16E*04                  19834(+ne 2214AE*0s        7t?93E*os        22t4*E*0a          22tn8E*as ,77tasEene 22t9tg+na
                    .21795E*0s .22191E+0e .22t9tE*ca .2219tE*as f 73971E*04 .23a56E*na 23473E*0s .23873E*os .21471E+0e ,73A73E*ne ,73a56E*os                                                  23873Eens 23473E+va .73473E*08              25i?*E*04          24705Eens ,79175E+os                              25179E*ns 25tT5E*0a .25177E+n4              28707t+0a          25t77E*as ,25t??E*os                              25t77Eene 2e230E+04 .25e34E*gs, 26330E*0s                      2673nE+na ,76230E+ne                              2623tgene 2364*E +0a .7423tE*04 .2623tE*0s                    2e23tE**e            76997E*04                  2e930E+ne 26942E60s .2e982E*4e              26987E*0s          26942E*as ,24510E*os                              2eeM2E*0a 2s542E*04 .7e962E*0s .24792E*0s                      2=256E*ns        ,7e792E+0e                      2e782F*41
                                                        .26399              2efetE*na ,2,=797E+ne 267*2E*ne 77 E*0. *0 .7e 2 6792.E        s 20
                                      .2      E..a *0 s2 77,E+0a 792.E                E...      2e,7 E*a. ', n7+eE.as                              2nr7et.a.
26200E*0s .2 77sE*08 .Pe778E*0s                      2677eE*as ,742i4E*64                              23770E*ns 282taE*0s .2etteE+0a .242                            24249E*ns              2376eE*o4                  24249F *n e 2 20.E+0. .7 2s9E*0                    2e.o. .2,,62e.na '22,,7e*8 22118E*0s                                                            72,.>E.n.
22112E*02 .72tSEE*01              2t?99E*04        72tA#E*as ,32sa ng+ga                              7218aE*na
                      .t4770E*da .t637eE*04 .tA773E*0s .t477nE*9e ,14??6E*ne                                                    147t*E.ga
                      .tA174E*0s .t877aE*4e .tA770E*0s .tA77aE*as .'6a m*E*ca . t i v3 2?
* n a
                      .ince9E*04 .teca9E*04 .lene E+0a          e        . tono 6E*as          ",tS729E*68                  .tedlat*ne
                      .t*0e9E*04 .toaanE*4e              .tes33E*ca      .tetA2E+na ,tae13E*ne .t4e13E*os
                      . tea 33E*os .t37o7E*os              139adE*0s        137e7E+ns ,t17,7E+na .t376FE.no 124 ale 60s .tge45E*ga          .1284tE*4e      .t2AstE*as ,t744tE*ne .itd1tE*os
                      .IteF0E*0s .t193tE*04 .tta3tE*0s                  .It43tE*gs                  et2i?E*4e .Ito79Eena
                      .tt2tTE*04 .st217E*04 .it217E*4a                        19792C+al ,9anggE*ns                              99792E*n1 99792E*01        99792E*01        99797E*01        98455E+nt ,99712E*e3                              48712F*nt 99792E*01        99792E*03        98455E*44  ~
99792E*nt ,99792E*o3
                                                                                                .                              99792E*n3 C05t*t2
* 64826t+01 .44tF9E*01              67715E *01        6an49E*nt              anaeE+ni                  67715E*os
                                                        .e7949E*01          71979E*nt          ,*7 0 8162 + n t                67302Een1
                      .e750tE*01 .47549E*03                                                    ,,477 9E+03 67329E+01 .67329E*03              6842*E*04        6817AE***                  t                      6do89E+at 64026Et01 .47715E*01              67981E*0%      .679e9E+nt          ,679e*E+et                      7197ar*41 70840E*04 .47302E*0f              67129E*01        67129E*nt ,6447eE*ni                            .h817AF643
                      .h7715E+03      .48089E*13          68026E*04          67715E*at ,679ntE*01                              67549E*nt
                      .e7549E+03        71579E*0T        70aenE*0T          67102E**1          ,6732*E+n3                  .*732*E*01 644264+0T .48L78E*e1              67719E*01          6Ae4*E+nt          ,44626E*n3                    47715F603 6 754 t E *0 5 .67549E*01        .67449E*04          7197pC***            704an E*ns                .67302E*a3 47329Et03 .tT329E*01              77129E*et      ".759 tee *at
* 7s3e2E+nt                    75 a*2E *n 3 7% t 96E *01 . 7e192E*g1          7330tE*04          739e7E*a4 ,719e7E*ni
                                                                                                  ,                            .AAa75E+n1 65359E+01' .7229tE*03              72e29E+44          72a29E+n1 ,a2793E*o3                              40*t*E*nt 797ttE*03        4028tE+03 . 7941sE*01                787ttE*nt ,77092E*ol                              77e29E*nt 77a29E+01 .e9100E*01 .ga124E*0s                      755t?E+at            75779Een3                    75729E+o1 9 2949E +47- .a9999E+03          .atselE*01        .A6957E*nt ,48715E+91                            .A648tE*01 83720E&c1 .84344E*03            .netesE*01        '.12 t 2*E*n a        ,tt34"E*o4                  .A1219E*n1 88556E+gi .stS5eE+nt            .tonn*E*0s          9615aE+ot          ,9t9a*E+43                      95026F*al 8'2a2E*at ,a*2a2E*ot 94495E*03        9190*E+01      . ApeneE*04                              .                              13485E+0e 12646E+es        85305E*13        85733E+0*        85733E*st E051-t5-19445t*0e .i9444E*15 .2tS66E*0s                    .2tge6Eena *22943E*as                              .22'esF
* n e 284 tee *0s .2eet0E+ge          .28607E*4e          2a404E*ee ,7%oa7E*oe                              250eAE*ne 2912eE*04 .2532eg,0s .25peaE ca                      2576aE*as ,2Mn13E+na#
25093E*as 2e730E+va .74729E*ga .33e77t+0e                      73eytEene            ,22*57E*ge                    22*27E*4e 21663E +0 a    .216 lE*01 Cost-te
                        . I t 16* E *0 4 .12203E*04 .12117E*0s              .t!*67E*as            *ttA56E*As                    12317Foos
                        .it9 tee *va .t205aE*03 .t205aE*0s                  .te433E*as ,t3591E+os .it7taE ca
                        .it717E+c4 .81717E*44              .It21*E+0a        .tlan7C*ae          ,,tA0=tE+os                  .ithe9E*ne
                        .itit4E90s .t206tE*0s              .lt497t+0s        .t:A24E*as            .ttA2eE*04                  .t3747E*ne 6
                                                                    - .g,40~ " .-      ...
^    -- -----._.--              ._-_        _                                                              __ _
 
                                        \
:          'c l                                                                                    .
1,                                                                    .- s M.
a 3
9.'    -
t.
lq-
          .t3824E*gs .11527E*0s .iti22E*0s              . t1922E+ee      ,1073eE+os .ttaa9E+os
          .it705E*0s .tt2a5E*04 .ittofE*0s                  It705Eens ,t:3m1E+os .Itiost+6e
          .IIS05E*04 .1284tE*os .t275tE*0s              . itP6tE+aa      ,t'129tE+ne          .tt25tE+44 163*0 E 90 s .itt2*E*0s .itteeE*0s          . 10e3*E*as .inattE+ne .it19eE+os
          .la93eE*0s .ttna5E*04 .ttne5E*0s              . ItA3tE*ne .t:1n9E+ne .tos74Eens 30860E+ve .t0Aa0E*01      .to7 tee *0s      . t09eeE+as
                                                                            ,to 3e 7E+9a              30789E+ne                          -#J'                          ,
          .tometE*0s .30937E*0s        .30714E+44        . 10AtSE+as          10415E+na            11217F+0a                                        _/
10839E*0s  .te*8'E*0s .tn643E+0s            . 306=1E+as      ,9a*?*E*g1                10*73F*ne
          .tna72E+0s .30503E*04            101a*E*0s    . toe 72E+as ,to3:nE+sa
                                                                            ,                        10396E+os.                                        r '
            .t0394E*0s .e9792E*e3          977anE601      .10136E*ae ,to347Eoss .10307Eens                                '
                                                                                                                                                ,)
99978E*03  .19673E*0s    . toe 72E*0s        30503E+as                                10e74F*4a 997*2E*as '*to3n9E*ns
            .to30E*0s .t0394Eene . tnt *4E*0s                                #    7740E+61      .tu13nE+os                              ' '
14307E+de    1030TE*04  .*4978E*41        .ioe71E+as            tost 2t+na .to493E+ne                .'y
  *,          1014*E*0s .t3872E*01 .101tSE+4a            .t0l'eE+aa .solq*E*na                      99792E+al                                      -
17700E*01 .3033eE*44 .10307E+0e              .t0107E*as C051 15                                                                                                      ..q -
220tng*0s    .20985E*14 .2tantE*9a          '.20g51E*as
* 7non9E+ge            .t*213E*qa
            .t*142E*de    .t 4542E*01 .22nt1E*4e          .20*48E+na        ,7te aE+ne n              2n95er.oo 2698#E+os  .1923eE*04    .t*484E*oe      .te9deE*na ,76ts1E*os                      23713r.no                              ..
23640E*04 .733tFE+0d        .237t1E*0e          22035L*ai ,729n2E+n a                    22842Eene
                                                                                                                          - '^
2414sE+ue .;3713E*og      .25 aaE*0s          73117E*as ,23713E+os
                                                                              ,                      22835F.no                                            .
27442E*0s .22e82E*0m      .26397E*0e        .;5nsaE*na ,75eo*E*na                      2a954Fona 25c5sE+us .;3477E*cs      .2a721E+0a        .pa723E*aa ,762n aE+ne                    25656E.no                    e 2945tE*de  .7d*58E*nd    .31656E*ca          33AroE*as ,7877 5E+n a                  2822*F+os 24871E+ue    274a6E*0s      27341E*0s        26764E+64 ,27a enE+ne                    25tcot ca                .
257tnE*04 .25710E*0s .an97tt+0a                274aeE*as ,77143E+es                    267e4Eens      -                    -
27asettos .75todE+os .257 toe +os              25710E+ne ,2*o7aE+na                    26328t+og      - - ,                                            4 78188E*04 .7762SE*as          2912aE*0s        25*34E+as ,76e57E oe                    2ea57E *ce                                                $
                                                                                                                      >'~
2*0AnE*06 .JS32eE*04 28t20E*4a                27627E*na ,34136E+na                    25435E+0*                                                .
            .26assE*0s .2 45aE*0s .30n2aE*4a .29108E*as .7s783E+0e                                  .2838aE*os                            si 29108E*0s .pego7E*06          27i2tE*0s '.2782tE*as *30n32E+na                          29109E*ne        p-79788E*0a    783a8E+04      2*to*E*0s      .JoeoAE*ne        ,77 tate +ee            27 tate +ca 28692E*0s . 29tt*E*0a        2*2 toe +0a    .past3E*ne ,29tt4E*04                      2em23g.0a        .
27550E*04 .77550E*04          29a*7E**e        29tt6E*as ,797t9E+os
                                                                              ,                      265t1E*os      ;"
            .2*t16E*0s .pe423E+0*        .27950E*ca .2755cE+as ,7**97E+ne                          .20039E*ca          i; 2ae57E*0s .pa55dE*et          2*n3*E*0s        264t3E+ne ,7787 9E+4a                  27a25E*6a                                          ..
2**15E*va .7903'E*08        .2*s57E*04        2nsgaE+as ,7eo1*E*os                    2e412E*0s                                              .
27e25E*ea .37a25E*05 2a927E*0s .Jo47tE*0e 2*sttE*08        76927E*as ,246g4E+ne
                                          .27aelE*06 . 27061E*ne ,7*st tE+ne 290t1E*0s 29927E*04 f ' . ' 3(~
2862mE*0s .24013E*6t .2m927E*0s              . 264 76E*ne      #  770*3E+e1          270e3E*ca          A - -
2 e155E*0s    2422eE*0s      77aA7E+0a      . 26se4E+as ,7827eE*44                    2603aE*na          ',
            .2eatSE*0s . poet 9E*as .2a151g*0s            . pg723E***        ,27sg9E*oe .2emang*os                                                            S,
            .Ja225E*0s .2e033E*04 .24staE*0s              . pestaE*as ,;6e33E+ns                    2ee87E*ne      '.'-
260e4E*06 .25643E*as        .26e47E*0s      . 25tS3E+ne ,795a9E*os                      25529E*0s      s-                    -
24420E*0a    2eee5E+oa      24666E+94      . 25642E+ae          76445E*ne            25151Foos            - "*                                  .
2552ag+0a    2552eE*09      251 tee *0a    . 25437E+ne ,#eAm8E+ns 2s*27g*ne
                                                                                                                      '4
            .25e37E*0s .25ta5E*0s .25co5E*0e              . 25009C***        .253iAE+es .J5437E*os                            .
                                                            . 25ta5E+ns *750g4E+ns                    25co*E oe
                                                                                                                      ~
244e#E*0s .2e*27E*ot .25437E*04
* 24419E*4s .2e't0E*es        2e943E+44      . 7aa30E*ne        ,7aoiqE.0e 23'31E+os                                                              '
24318E*4s .24314E+01        28417E+0a      . 24*0*E+aa        ,24503E+ns
                                                                                .                      24230E+ca 2990*E*04  .;393tE*04      2att?E*04      . 24117E*ne
* costete
              .tS210E*os .i39g2g*01 .t3319E*0s              . 33*geEens *fot16E*As
                                                                                ,                    .t7853E+08
              .let36E*0s .t7e53E*c5 .72iA4E*0s              . 70sa3E*ae ,77tostens                    209d>E*na 23873E*0s  .2225*E*0s        23a?1E*oa      . 2275eE*ne ,25179E*4a                    23512E*os                              ~
25tf7E*0s    7351*E*os .26739 E *4 e        . 7417tE+ao ,2621tE*na                    24372E*ne              -
2ee92E,0s  .3471*E*95 .24*A2E*0s            . 24719E*nd          86742E*na            2a9a9E*oe 2e792E*0s    745eAE*og    .2677eE*04      . pa9saE*pa        ,767 ice *os        24964E*44 1.
                                                                                                                                            .m P
I.
9, Y...
                                                                                                                      . i'                      y mm.am**                                                                        ?
3                        w,.-                .
                                                                                                                      . w:            '
g.
 
r                      -
                                                                                                                                                                                                            .c.                                      ...
s.
                                                                                                                                                                                                                                                                - 1,3. ,,p;                .
                                                                                                                                                                                                                                                                              =            N
} ,                  .                                                                                                                .                                      .
es 2 2i.E*0                            .,25.3E*4-                                  .2.            ..co..                          225..E*a.
1710SE*a8 ,tA77eE*os 72 i ,2E
* ti.              2o3.iE. .
37301 gene 2218Af*04 .Po390E*ge .tey7aE*04                                                                                                                                      .
                                .loce*E*Us .t49s2E+as                                                                16ee6E+4a                                    34*3*E*as CMI-I t
* 18tgeE*os 14493E*04 .t819tE*at . tai *tE+4e                                                                                          . ten *9E*ee                                tat 18Eene                              .
19976E*04                            30266E *e4 .207a6E*04                                                                .t*e76E*ns ,202n4Een*                                                    20264F*os 22tc7E*0s .22399C+4a .27399E*ea                                                                                                221o*E*as ,72egtE*os                                                  22a01E*os 23522E*0s .23737E*0s                                                              23737E*0a ~ 23122E*as. ,,737trE*na                                                                                23717E*os 24594C+0s                            34376E*ad                                  2a37ag*gs                                    24 t SM*as ,741}*E*9a                                                2417eE*ga
    !                              2444*E*04 .24908E*te. .2a*#4E*6e                                                                                              746e9E*ae                                7a*gAE*ne                    2480sg*os
    !                              29334E*os .7519 7E
* pe. .2St*7E*cs                                                                                            25118E*as ,79te7E*os                                                  2519?E*oe 2Sa22E*0s .3%258E*94 .25pgagege                                                                                                2sa27E*as ,7525                      ,
Eene 4            25254E.oa
        ,                          2521*E*04                          .2So1*E*08                                    2* e ***E
* c a.                              2S719E*as                            ,25a?=E+at                      25 MeC*as 244 ele *0s                        .24773E*os                                    2e771E*os                                    7easoE*as                            ,7a772E* s                    2d772E*a4 2estaE*4a                          .7s43*E*o4                                  .2881*E*44                                      2ea77E*as                            ,2ang*E*os                    2an3*E*oe 2 htiE*04                          .33e92E*42                                  .J3h*7E*ea                                  .236tM *as                              .J3692E*o9                    .23ao2E**e 223stE*ga                          ~.221aeE*ge                                .27te4E*6a                                  .221 ace *ns                            ".27tanE*od                    221aetens s
e #
L.-
4                    - .
A                                                %
s C.      n.
                                                                                                                                                                                                                                                                          ~
                                                                            ,                . . . . s $"< ,. 2 4. -                          5.        r ,3 -
                                                                                                          ' ,,. ,. -                          ,g                        ,
                                                                                                                                                                                              ,~
                                                                                        .. ?
                                                                                                                    ~~_                    . .r":.. [ -                        ,
                                                                                                                      .-            4.'~..*..                                      .
                                                                                                                      \< . ; 6 l , , t i s'
                                                                                                                                                                                -'        ~; -'g
                                                                , f - . . ,3 -.- ' , . , A . ,7. -                                                            .p' '. .,C a- g . w                            - ',
: s. . ... : , -                  -<
3.a  ,
: 9.    .~ .                                .
f g;              * ' * '
                                                                                      ,    - 9' ?                Y 'N$,.,,                    pl. . _      ". -f..u,  f - .. .                        ;          ..
                                                  . " ' R.' p                      ?. , :''* .f Y'* W h ' ' *. ?{..,* .--
                                    .- ..                . ./                                            , ..
                                                                                                                              . :., - a . .                                                      *
                        -                                -                4.? , ,                                [. .. .; -                        .              . -                    4.'.        2,'          ,_
{.,'                                                                      *"                  '
                                    ' .-                                .' ' L                - '                                      y
                                                                      ,      . . ... 4 . . w w w , .d .u. p., . .y                                                          ,.-                                      3. .. -
                                                                                      . . ;3 p = . ,.fp.,g; y_'-                                                                                                          ,          ,.              -
n
                                                            . * .4.y, . .ys y                        .;s-
                                                                                                                                    ..g.
s            .,
                                                                                                                                                                                          .Q. g,      . ,. ,
                                                                                                                                                                                                                                                            .,                . . .qji e . s,.
                                                                        . ' &*R
: t. ;',, rC,            ,. -.                                        ir--                                                              ,            .n          R
                                                                      ._%            sk k.G, .. . ,                                    . -
r
                                                                        .-...*. - ,.s %. - . -m.
                                                                                                                    . }-V,. f'3;. . :                              -
e                        *:                                                ,,-                                                                                    .
                                                                          - wr4,4.go                  C '}v- F,r9  -c J.*q.,.
                                                                                                                                                                                              , , , '..                  ..                                        ,                        .e s=.      *                      ,        e                ,-                                    ,e.            ..),                                      -
                                                                                                                                                                                                                              .                                  4
                                                                                -              ;\w s Pfisc-                                                      . . . ..                                              .
: o.                    +
s' e , .*a
                                                                                                        - .f.,-                                            g .*                                    1                                                                        .
n.
                                            .,'        ,,.\ ~.,s;* ,,
                                                                                                              +' , . - , , ,                                                                        ~T.                .,
* g y- ; L'('h*(G Q.W'a
                ' '                                                                                                                                                                ~                                                                                          R- ',          '
                        ~                                                                                                                                                                  -
                                                                                                                                                                                                          .%.e                                                          '~
m.. f. . .h., .YS'_                                                            ..
                                                        '' ((-                                                                                                                ,,
                                                                                                                                              . h.4
                                                                                          .            N.                          _m          ___.-.__cr--..-bm--                                                                                  _
 
AllAICEI IllCIII IfillEl IIPAIIElli ADVANCED REACTOR SYSTEMS DEPT.
* SUNNYVALE, CALIFORNIA GENERAL @ ELECTRIC}}

Latest revision as of 22:48, 19 December 2024

Assessment of Hypothetical Core Disruptive Accident Energetics in Clinch River Breeder Reactor Project Heterogeneous Reactor Core
ML20039G853
Person / Time
Site: Clinch River
Issue date: 12/31/1981
From: Mcelroy J, Rhow S, Switick D
GENERAL ELECTRIC CO.
To:
Shared Package
ML20039G845 List:
References
CRBRP-GEFR-0052, CRBRP-GEFR-00523, CRBRP-GEFR-52, CRBRP-GEFR-523, NUDOCS 8201190221
Download: ML20039G853 (300)


Text