NL-22-0800, Supplement to Authorized Relief Request HNP-ISI-RR-05-02

From kanterella
Jump to navigation Jump to search

Supplement to Authorized Relief Request HNP-ISI-RR-05-02
ML22300A259
Person / Time
Site: Hatch Southern Nuclear icon.png
Issue date: 10/27/2022
From: Gayheart C
Southern Nuclear Operating Co
To:
Office of Nuclear Reactor Regulation, Document Control Desk
References
NL-22-0800
Download: ML22300A259 (1)


Text

3535 Colonnade Parkway Birmingham, AL 35243 205 992 5316 tel 205 992 7601 fax cagayhea@southernco.com Cheryl A. Gayheart Regulatory Affairs Director October 27, 2022 Docket Nos.: 50-366 NL-22-0800 ATTN: Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Edwin I. Hatch Nuclear Plant - Unit 2 Supplement to Authorized Relief Request HNP-ISI-RR-05-02 Ladies and Gentlemen:

By letter dated November 5, 2018 [ADAMS Accession Number ML18309A272], pursuant to the provisions of 10 CFR 50.55a(g)(5)(iii), Southern Nuclear Operating Company (SNC) requested Nuclear Regulatory Commission (NRC) approval of proposed Relief Request HNP-ISI-RR-05-02. The Relief Request allows Hatch Nuclear Plant (HNP) Unit 2 to continue operation with a flaw indication on one reactor pressure vessel (RPV) stud. Enclosure 2 of the letter dated November 5, 2018 provided Revision 0 of evaluation report C-3944-00-01, prepared by Dominion Engineering, Inc. (DEI), that supported continued operation.

The NRC authorized HNP Unit 2 Relief Request HNP-ISI-RR-05-02 on February 6, 2019

[ML19035A550] for the current ISI interval that ends December 31, 2025.

Subsequent to the NRC authorizing Relief Request HNP-ISI-RR-05-02, DEI discovered an error in two inputs to the evaluation report C-3944-00-01, Revision 0. DEI corrected these errors and issued C-3944-00-01, Revision 1, which resulted in two calculated stress values changing.

However, DEI concluded that the input error did not alter the conclusions of the evaluation report.

The Enclosure to this letter describes the input error and assesses its impact on Relief Request HNP-ISI-RR-05-02 authorized for HNP Unit 2.

The Attachment to this letter provides Revision 1 of the evaluation report C-3944-00-01, also prepared by DEI. The Record of Revisions on page 1 of the evaluation report, as well as Section 1 of the report, describe the changes made in Revision 1. Revision bars in the right-hand margin indicate where revisions were made. The conclusions of Revision 1 remain the same as those in Revision 0 provided with HNP-ISI-RR-05-02.

U. S. Nuclear Regulatory Commission NL-22-0800 Page 2 of 2 This letter contains no regulatory commitments. If you have any questions, please contact Amy Chamberlain at 205.992.6361.

Respectfully submitted, C. A. Gayheart Director, Regulatory Affairs Southern Nuclear Operating Company CAG/agq/cbg

Enclosure:

Description of the Input Error and Assessment of Impact on Authorized Relief Request HNP-ISI-RR-05-02

Attachment:

Dominion Engineering, Inc. (DEI) Evaluation Report C-3944-00-01 Revision 1 cc:

Regional Administrator, Region ll NRR Project Manager - Hatch Senior Resident Inspector - Hatch Director, Environmental Protection Division - State of Georgia RType: CHA02.004

Edwin I. Hatch Nuclear Plant - Unit 2 Supplement to Authorized Relief Request HNP-ISI-RR-05-02 Enclosure to NL-22-0800 Description of the Input Error and Assessment of Impact on Authorized Relief Request HNP-ISI-RR-05-02

Enclosure to NL-22-0800 Description of the Input Error and Assessment of Impact on Authorized Relief Request HNP-ISI-RR-05-02 E - 1

1.

INTRODUCTION On November 5, 2018 [ADAMS Accession Number ML18309A272], pursuant to the provisions of 10 CFR 50.55a(g)(5)(iii), Southern Nuclear Operating Company (SNC) requested Nuclear Regulatory Commission (NRC) approval of proposed Relief Request HNP-ISI-RR-05-02. The Relief Request allows Hatch Nuclear Plant (HNP) Unit 2 to continue operation with a flaw indication on one reactor pressure vessel (RPV) stud. Relief Request HNP-ISI-RR-05-02 essentially extended HNP-ISI-RR-05-01, which was expiring at Mode 5 of refueling outage 2R25 (Spring 2019), to the end of the current ISI interval (December 31, 2025). Although Relief Request HNP-ISI-RR-05-02 contained some additional licensee actions, the structural evaluation was the same as that provided with HNP-ISI-RR-05-01. Therefore, as part of the HNP-ISI-RR-05-02 basis for use, the Relief Request provided the same evaluation report (C-3944-00-01 Revision 0, prepared by Dominion Engineering, Inc. (DEI)) that had been provided with HNP-ISI-RR-05-01.

The NRC authorized HNP Unit 2 Relief Request HNP-ISI-RR-05-02 on February 6, 2019

[ML19035A550] for the current ISI interval ending December 31, 2025. Because the structural evaluation provided with Relief Request HNP-ISI-RR-05-02 was the same as HNP-ISI-RR-05-01, the HNP-ISI-RR-05-02 NRC Safety Evaluation (SE) referred to the HNP-ISI-RR-05-01 NRC SE for the structural evaluation.

Subsequent to the NRC authorizing Relief Request HNP-ISI-RR-05-02, DEI discovered an error in two inputs to evaluation report C-3944-00-01 Revision 0. DEI corrected these errors and issued C-3944-00-01 Revision 1, which is provided as an attachment to this submittal.

2.

DESCRIPTION OF CHANGES All changes in the main body of C-3944-00-01 Revision 1 are indicated by double lines in the right-hand margin. The changes to Table 3 are not indicated by double lines but are fully described in the main body of C-3944-00-01 Revision 1 and are described below.

Changes

1. Page 5 of 40: Two sentences were added to the end of Section 1, Purpose. The first of these sentences describes what changed in the calculation. The second sentence states that the changes do not alter the conclusions of the calculation.
2. Page 6 of 40: In Section 3, Input Requirements, limiting primary stress values 10.c and 10.d were changed from 28.1 ksi and 28.2 ksi to 37.9 ksi and 37.5 ksi, respectively.
3. Page 19 of 40: In Table 3, Stress Increase Due to Stud Out of Service, the following changes were made:
a. The Limiting Vessel Report Value for local membrane + bending shell stress for the head and vessel were changed from 28.10 ksi and 28.20 ksi to 37.90 ksi and 37.50 ksi, respectively.
b. The New Maximum Value for local membrane + bending shell stress for the head and vessel were recalculated and changed from 28.34 ksi and 28.66 ksi to 38.14 ksi and 37.96 ksi, respectively.

Enclosure to NL-22-0800 Description of the Input Error and Assessment of Impact on Authorized Relief Request HNP-ISI-RR-05-02 E - 2

3.

ASSESSMENT OF IMPACT The impacts of the changes from C-3944-00-01 Revision 1 are assessed below against Relief Request HNP-ISI-RR-05-02 and the NRC Staff Safety Evaluation for Relief Request HNP-ISI-RR-05-02 Authorization.

3.1 Impact to Relief Request HNP-ISI-RR-05-02 In Relief Request HNP-ISI-RR-05-02, SNC enclosed evaluation report C-3944-00-01 Revision 0. Part of the Basis for Use section of the Relief Request referred to the conclusions of evaluation report C-3944-00-01 (i.e., that all applicable ASME Code allowable stresses are met with a single stud analytically assumed out of service).

Because evaluation report C-3944-00-01 Revision 1 continues to demonstrate and conclude that all applicable ASME Code allowable stresses are met, the Relief Request still stands as written.

3.2 Impact to NRC Staff Safety Evaluation for Relief Request HNP-ISI-RR-05-02 Authorization Section 3.2.2, Structural Evaluation, of the NRCs Safety Evaluation (SE) dated February 6, 2019 (ML19035A550) issued with the authorization for the Relief Request HNP-ISI-RR-05-02, did not contain detailed evaluation of evaluation report C-3944-00-01 Revision 0. Rather, the NRC Staff referred to Sections 3.2.2, 3.2.3, and 3.2.4 of the August 10, 2017 NRC SE (ML17205A345) for authorization of HNP Relief Request HNP-ISI-RR-05-01 dated February 17, 2017 (ML17048A090), which enclosed the same the same evaluation report (C-3944-00-01 Revision 0) as HNP-ISI-RR-05-02. Therefore, in the following paragraphs the impacts will be assessed against the August 10, 2017 SE for authorization of HNP Relief Request HNP-ISI-RR-05-01.

Section 3.2.2 of the August 10, 2017 SE NRC Staff evaluated the primary membrane stress in studs with one untensioned stud. In this section, NRC Staff reviewed the approach in determining primary membrane stresses in studs and cited specific stress values from C-3944-00-01 Revision 0 for the reactor pressure vessel stud material itself. C-3944-00-01 Revision 1 did not change any aspects of the approach in determining primary membrane stresses in the studs and did not result in any changes to the stud material stress values themselves. Therefore, there is no impact to Section 3.2.2 of the August 10, 2017 SE.

Section 3.2.3.1 of the August 10, 2017 SE NRC Staff evaluated the finite element model (FEM) and analysis and concluded that the FEM modeling techniques were consistent with standard industry practice and acceptable for use in the analyses. Additionally, the NRC staff reviewed the six cases that were analyzed and concluded that the use of the six cases was acceptable. The FEM and analysis approach in C-3944-00-01 Revision 1 did not change; therefore, there is no impact on Section 3.2.3.1 of the August 10, 2017 SE.

Enclosure to NL-22-0800 Description of the Input Error and Assessment of Impact on Authorized Relief Request HNP-ISI-RR-05-02 E - 3 Section 3.2.3.2 of the August 10, 2017 SE NRC Staff evaluated the stresses in the studs and RPV closure flange compared with ASME BPV Code stress limits. The NRC concluded that the C-3944-00-01 Revision 0 evaluation of the stresses in the RPV closure flange and studs is acceptable and that the higher stresses resulting from one untensioned stud or one stud failing during service will not result in exceeding the ASME BPV Code stress limits for all service conditions. Evaluation C-3944-00-01 Revision 1 uses the same approach as Revision 0 and concludes that the stresses in the RPV closure flange and studs remain below ASME BPV Code stress limits. Therefore, there is no impact to the conclusion of 3.2.3.2 of the August 10, 2017 SE.

Section 3.2.3.3 of the August 10, 2017 SE NRC Staff evaluated fatigue usage presented in C-3944-00-01 Revision 0 and agreed with the simplified approach that was employed. C-3944-00-01 Revision 1 did not change the fatigue evaluation approach nor did it change the inputs used in evaluating the increase in fatigue usage (i.e., 0.24 ksi, 0.47 ksi, and 0.97 ksi for the maximum stress increases at the RPV head flange/shell, RPV flange/shell, and the stud, respectively). Therefore, there is no impact to the conclusion of 3.2.3.3. of the August 10, 2017 SE.

Section 3.2.4 of the August 10, 2017 SE NRC Staff evaluated the RPV flange interface separation comparison presented in C-3944-00-01 Revision 0 and found that the RPV flange interface was modeled and analyzed properly. The flange separation was driven by the maximum increases in stresses from Cases B2 and C2, which did not change. Therefore, the changes made in C-3944-00-01 Revision 1 did not result in any changes to flange separation, and there is no impact on the conclusion of section 3.2.4 of the August 10, 2017 SE.

3.3 Conclusion Based on the discussions above, the changes introduced in C-3944-00-01 Revision 1 were isolated to two inputs which only resulted in two maximum stress values changing.

Because the inputs were isolated to these values and because the values remain below ASME BPV Code stress limits, there is no impact to the conclusions of evaluation C-3944-00-01, Relief Request HNP-ISI-RR-05-02, or the NRC SE associated with the authorization of Relief Request HNP-ISI-RR-05-02.

Edwin I. Hatch Nuclear Plant - Unit 2 Supplement to Authorized Relief Request HNP-ISI-RR-05-02 Attachment to NL-22-0800 Dominion Engineering, Inc. (DEI) Evaluation Report C-3944-00-01 Revision 1 Note:

All changes in the main body of C-3944-00-01 Revision 1 are indicated by double lines in the right-hand margin. The changes to Table 3 are not indicated but are fully described in the main body of C-3944-00-01 Revision 1.

Attachment consists of 40 pages, excluding this cover page

CALCULATION

~

Dominion [n~ineerin:,1/

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

Page 1

of 40 RECORD OF REVISIONS Prepared by Checked by Reviewed by Approved by Rev.

Description Date Date Date Date 0

Original Issue J.E. Broussard T.C. Ligon T.C. Ligon D.J. Gross 2/16/2017 2/16/2017 2/ 16/2017 2/16/2017 1

Revised to correct Inputs I 0.c and Cf.~.&.~~~ ll :r.a~~ U. i.ffr-o tJ. {'".{1,4, J/

I 0.d and the affected calculation e,Jz..-1 /t,t 'J,'L

( /tfft,,zt

-J/2-rA:,z1.

jlz.~~z.2.

results in Table 3.

J. E. 13roussard DJ. Gross D.J. Gross D.J. Gross Principal Engineer Principal Engineer Principal Engineer QA Officer The last revision number to reflect any changes for each section of the calculation is shown in the Table of Contents. The last revision numbers to reflect any changes for tables and figures are shown in the List of Tables and the List of Figures. Changes made in the latest revision, except for Rev. 0 and revisions which change the calculation in its entirety, are indicated by a double line in the right hand margin as shown here.

12100 Sunrise Valley Drive, Suite 220 Reston, VA 20191 PH 703.657.7300 FX 703.657.7301

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 2

of 40 TABLE OF CONTENTS Section Page Last Mod.

Rev.

1 PURPOSE..................................................................................................................................... 5 2

SUMMARY

OF RESULTS................................................................................................................. 5 3

INPUT REQUIREMENTS.................................................................................................................. 5 4

ASSUMPTIONS.............................................................................................................................. 6 5

ANALYSIS..................................................................................................................................... 8 5.1 Stud Primary Stress with One Stud Out of Service......................................................... 8 5.1.1 Average Stud Force......................................................................................... 8 5.1.2 Calculation of Stud Force Distribution.............................................................. 8 5.1.3 Primary Stress Comparison........................................................................... 10 5.2 Analysis of Closure Flange with Stud Out of Service.................................................... 10 5.2.1 Evaluation Methodology................................................................................. 10 5.2.2 Reactor Vessel Closure Flange Model........................................................... 11 5.2.2.1 Model Geometry......................................................................... 11 5.2.2.2 Model Boundary Conditions....................................................... 12 5.2.3 Analysis Cases............................................................................................... 12 5.2.4 Results Discussion......................................................................................... 12 5.2.4.1 RPV Closure Stresses................................................................ 13 5.2.4.2 RPV Stud Stresses..................................................................... 13 5.2.4.3 RPV Closure Flange Separation................................................. 13 5.2.4.4 Fatigue....................................................................................... 13 1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0

Dominion En~ineerin~, Inc

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

Page 3

of 40 Last Mod.

Section Page Rev.

5.2.4.5 Emergency and Faulted Conditions............................................ 14 0

5.2.5 ANSYS Input Listings..................................................................................... 14 0

5.3 Quality Assurance Software Controls........................................................................... 14 0

6 REFERENCES............................................................................................................................. 15 0

A FINITE ELEMENT ANALYSIS INPUT LISTINGS.................................................................................. 23 0

A.1 File: _HATCH2.runs...................................................................................................... 23 0

A.2 File: _MACROS.HATCH2............................................................................................. 29 0

B SOFTWARE USAGE RECORDS...................................................................................................... 40 0

CERTIFICATION The original Edwin I. Hatch Nuclear Plant Unit 2 Reactor Vessel Design Report and previous amendments, as identified in Section 6 of this rep011, are supplemented by this amendment. The original Design Report and previous amendments, in conjunction with this amendment, reafiinn the structural integrity of the components in accordance with the 1968 Edition of Section III of the ASME Boiler and Pressure Vessel Code, with Addenda through Summer 1970. All requirements of applicable Code revisions are satisfied. This evaluation was performed under Purchase Order number SNG10151695.

~\\:.~LTH Op 0~

~

~

fc.

3 JOHN E.

u BROUSSARD III >

Lie. No. 032963

  • .\\ I.

12100 Sunrise Valley Drive, Suite 220 e Z.4 2,ot..'L n E. Broussard, III. PE.

Date irginia Certificate No. 032963 Reston, VA 20191 PH 703.657.7300 FX 703.657.7301

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 4

of 40 LIST OF TABLES Table No.

Last Mod.

Rev.

Table 1.

FEA Model Inputs Table 2.

Calculation of Primary Stresses in Reactor Vessel Studs, One Stud Out of Service Table 3.

Stress Increase Due to Stud Out of Service 0

0 1

LIST OF FIGURES Figure No.

Last Mod.

Rev.

Figure 1.

Reactor Vessel Head Stud Geometry, One Stud Out of Service Figure 2.

Hatch Unit 2 RPV Closure Flange FEA Model Overall View [1]

Figure 3.

FEA Model Node Numbering and Section Cut Line Locations [1]

0 0

0

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 5

of 40 1 PURPOSE Dominion Engineering, Inc. (DEI) originally provided optimized tensioning and detensioning procedures for Plant Hatch in January 2015 [1], along with design basis evaluations for expanded elongation tolerances. The purpose of this calculation is to provide an update to these evaluations that consider the effect of a single stud out of service. This analysis considers the stresses resulting from two conditions which bound the effects of a stud out of service: (1) operating with one stud left untensioned, and (2) the unlikely condition of a stud that is tensioned then fails in service.

This calculation has been revised to correct Inputs 10.c and 10.d and the affected calculation results in Table 3. These changes do not alter the conclusions of the calculation.

2

SUMMARY

OF RESULTS The average stresses in the studs due to primary load conditions with one stud out of service were calculated using the methodology outlined in Section 5.1. As summarized in this section, all studs continue to meet ASME Code requirements for primary loads with one stud out of service.

The FEA model which was used to develop the current stud tensioning evaluations in DEI Report R-3937-00-01 [1] was used to perform an analysis of the closure flange with one stud out of service, as summarized in Section 5.2. The analysis results are summarized in Table 3. As demonstrated by the results in Table 3, operation of the Hatch Unit 2 RPV with one stud out of service does not result in any component of the RPV closure flange to exceed the design basis ASME Code allowables.

3 INPUT REQUIREMENTS The following inputs are required to calculate the average stresses in the studs due to primary load conditions with one stud out of service:

1.

The RPV design pressure is 1,250 psia and the design temperature is 575°F [1, Table 3-1].

2.

The RPV inner o-ring radius is 111.0 inches [1, Table 3-3].

3.

The RPV stud circle radius is 117.313 inches [1, Table 3-3].

4.

The number of studs in the Hatch Unit 2 RPV is 56 [1, Table 3-1].

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 6

of 40

5.

The stud shank OD is 6.0 inches, the stud shank ID is 1.0 inches, and the stud shank cross section area is 27.489 in2 [1, Table 3-1].

6.

The Sm allowable at design temperature for the RPV studs is 36.3 ksi [1, Table 3-3].

The following inputs are required for the FEA analysis of tensioning effects related to one stud out of service:

7.

Reactor vessel head and closure flange dimensions. The geometry of the model developed for this analysis is identical to the one used in the Reference [1]. The model parameters used in this FEA model are detailed in Table 1.

8.

Reactor vessel head and closure flange low alloy steel material properties. The material properties of the model developed for this analysis are identical to those used in Reference [1].

9.

ASME Code design basis summary. The design basis conditions for the RPV closure flange components updated to include the analyses performed in the 2015 tensioning optimization stress report are summarized in Table 2-1 of Reference [1]. This table includes the updated stress values as well as the appropriate ASME Code comparison and allowable stress value.

10. Primary stress design basis values. The conditions evaluated in the 2015 tensioning optimization stress report do not impact primary conditions, and therefore they were not included. Using the original closure flange design basis report [2] (referenced in the 2015 analysis), the following limiting primary stress values are obtained:
a.

Closure head / head flange general membrane stress: 22.5 ksi compared to an allowable stress of 26.7 ksi (Sm) [2, p. A-16]

b.

Vessel closure shell / flange general membrane stress: 23.8 ksi compared to an allowable stress of 26.7 ksi (Sm) [2, p. A-16]

c.

Closure head / head flange local membrane + bending stress: 37.9 ksi compared to an allowable stress of 40.05 ksi (1.5Sm) [2, p. A-7]

d.

Vessel closure shell / flange local membrane + bending stress: 37.5 ksi compared to an allowable stress of 40.05 ksi (1.5Sm) [2, p. A-7]

4 ASSUMPTIONS The following assumptions are used to calculate the average stresses in the studs due to primary load conditions with one stud out of service:

1.

The reactor vessel and head are rigid. This is consistent with the usual treatment of primary loads which only considers net forces and moments and not localization of stress from geometry and compliance effects. A consequence of this assumption is that the distribution of stud forces varies linearly with the distance from the neutral axis.

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 7

of 40

2.

The reactor vessel and head exert no contact forces on each other (i.e., the compression forces on the mating surfaces are neglected). These secondary forces serve to mitigate the redistribution of loads when studs fail, so this assumption conservatively maximizes the calculated maximum stud stress value.

3.

As a simplifying assumption, each stud is individually treated as a point force. That is, each stud contributes no bending stiffness to the cross section as a whole.

4.

The design pressure is assumed to act out to the radius of the inner o-ring of the vessel.

The following assumptions are used for the FEA analysis of tensioning effects related to one stud out of service. These assumptions are consistent with analyses described in Reference [1].

5.

All vessel elements were assigned material properties appropriate for low carbon steel at ambient temperature: E = 27.9E6 psi and = 0.3. All stud elements were assigned material properties appropriate for low alloy steel at ambient temperature: E = 29.9E6 psi and = 0.3. The differences caused by differential thermal expansion of the stud and vessel are negligible and are not considered.

6.

The modulus of elasticity in the stud hole regions of the upper and lower flanges were de-rated by the ratio shown in Table 1 to account for the removed material in the stud holes.

7.

The contact between the nut and the washer is assumed to occur at a single point location. This is considered a reasonable assumption since the nut and washer mate at a spherical surface, and therefore come into contact all at once.

8.

Beam elements that are stiff in bending are used to impose flange rotation on the ends of the studs. Despite the presence of spherical washers between the nut and the upper flange, friction acts to "glue" the nut to the flange once the stud is preloaded. At full pressure load, a modest amount of friction ( < 0.1) has been demonstrated to be sufficient to transmit the bending stresses which arise from this boundary condition. Thus, the infinite friction assumption is concluded to be more realistic than the assumption of zero friction at the spherical washer.

9.

The interface between the head and vessel flanges was simulated by a row of line elements connecting the head and vessel flanges. The location of these interface elements was selected to act at a reaction radius empirically determined from the correlation between the model predictions and the actual stud elongation data using the existing tensioning procedure.

10. All studs are assumed to be initially uniformly tensioned to the target stud elongation of 0.0397 inch, equivalent to a stud stress of 37.146 ksi [1, Table 3-1].

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 8

of 40 5 ANALYSIS 5.1 Stud Primary Stress with One Stud Out of Service The effect of a stud being out of service on the primary stress in the remaining studs is greater than simply increasing the design basis primary stress by the ratio of original to remaining studs. The change in restraint conditions caused by the inactive stud will tend to create a larger primary load in the studs adjacent to the inactive stud.

We treat the studs as a single cross section loaded in bending by the pressure on the reactor head.

Assuming one stud is out of service, and that the resulting force distribution in the studs is a linear function of the distance from the neutral axis of the stud cross section, we enforce the static equilibrium equations on the studs. Note that the linear distribution assumption is a consequence of Assumption 1. An Excel spreadsheet is used to facilitate solution of the equations which are developed.

5.1.1 Average Stud Force Ignoring for a moment that the 55 remaining studs are not uniformly distributed around the RPV closure, we can compute the average force in the studs according to the following equation. Assuming that the design pressure (in psig) acts out to the location of the inner o-ring radius (characterized by radius Ri), we have:

(

)

(

)(

)

2 2

2 1235 psig 111.0 in 869.2 kips 55 55 55 i

h P

R PA F

x

=

=

=

=

[5-1]

This value will be used in computing the actual force (and, from there, stress) distribution among the studs in a later section. For comparative purposes, we note that when all studs are intact and tensioned, the corresponding average force is (55/56)*869.2 = 853.6 kips.

5.1.2 Calculation of Stud Force Distribution Because the out of service stud is located symmetrically about the x-axis, the neutral axis of bending for the remaining studs (considered as a whole) must be oriented parallel to the y-axis in Figure 1. The

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 9

of 40 offset from the center of pressure is still an unknown at this point, however. The solution for is achieved by writing the static equilibrium equations for the reactor head Fz

=

Fi i

PAh = 0 Mn

=

Fi i

xi

(

)PAh() = 0

[5-2]

where Fz = net force in the direction parallel to the stud lengths Mn = net moment about the neutral axis xi = x-coordinate of each stud per the axes in Figure 1

= parallel offset of the neutral axis from the y-axis as shown in Figure 1 h = area of the reactor head on which the pressure force acts The coordinates xi can be written in terms of the bolt-circle radius (Ro) and i as defined in Figure 1.

(

)

29 cos

, where 2

56 i

o i

i i

x R

=

=

x

[5-3]

At this point, we assume per Section 4 that the stud force varies linearly with its distance from the neutral axis. The mathematical form of the force distribution in the studs consequently may be expressed as follows, where f is a constant Fi = F + f xi

(

)

[5-4]

Substituting Eq. [5-4] into the first of Eqs.[5-2] and taking advantage of the fact that F

i

= PAh yields

(

)

(

)

(

)

1 55 55 0

0 cos o

i h

i i

i R

i i

i i

F f x PA f x x

+

=

=

=

=

[5-5]

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 10 of 40 where Eq. [5-3] has been used for xi. Since is now known, we can substitute Eq. [5-4] into the second of Eqs. [5-2], resulting in the following

(

)

(

)(

)

(

)

(

)(

)

2 2

2

(

)

0 cos cos 0

cos 55 cos 2

cos 55 i

i h

i o

i o

i h

i h

o i

i o

i o

i i

i F

f x x

PA F

f R R

PA PA FR F

f R

R

+

=

+

+

=

+

=

+

[5-6]

The values for f and can be substituted directly back into Eq. [5-4], producing the force distribution for all studs. The final results appear in Table 2. Note that the highest stud force occurs at Stud Location Nos. 2 and 56, as might be expected since these are adjacent to the untensioned stud (No. 1).

5.1.3 Primary Stress Comparison The distributed primary stud forces are divided by the stud stress area of 27.489 in2 (Input 5) to calculate the primary stud stresses. The maximum primary stud stress is calculated in Table 2 to be 32.8 ksi, which is less than the Sm allowable of 36.3 ksi; therefore, this condition is satisfied.

5.2 Analysis of Closure Flange with Stud Out of Service 5.2.1 Evaluation Methodology The effect of one stud out of service on the ASME Code comparison stresses in the reactor vessel closure flange components is evaluated using the same model used in the 2015 tensioning optimization stress report. The approach used to evaluate these conditions is to: (1) determine the stresses in the studs and vessel for the intact case and for the case of a single stud out of service under preload plus design pressure conditions, (2) determine the increase in the stresses when going from the intact to single stud out of service condition, (3) add the calculated increase in stress to the stress given in the design report which includes the effect of plant design transients, and (4) determine if the calculated single stud out of service condition stresses still meet ASME Code requirements.

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 11 of 40 5.2.2 Reactor Vessel Closure Flange Model The simulation was performed using the finite element analysis model described in Appendix A of Reference [1]. The modeling methods are summarized in this section; greater detail on the specifics of the model is described in Reference [1].

5.2.2.1 Model Geometry The vessel shell, head and flange regions were modeled using SOLID45 (3D structural solid) elements with each row of elements corresponding to one stud pitch. Studs were modeled using BEAM4 (3D beam) elements which resist tensile loads and bending moments. A three dimensional model of the Hatch RPV closure flange was simulated as shown in Figure 2. The model considers half the circumference of the closure flange, with symmetry boundary conditions at the circumferential edges.

The 3-D BEAM4 elements used for the studs and tie bars require three real properties: area, moment of inertia, and thickness (used to calculate section modulus). The stud element real properties used in the analysis are reported in Reference [1]. Tie bar properties were selected so that the area is 100 times smaller than the area of the studs, and the moment of inertia is 100 times greater than that of the studs.

This has the effect of making the tie bars rigid in bending (as they are being used, the elements have no shear deflection), so that the rotation of the flanges is imposed on the ends of the studs without affecting the stiffness of the adjacent solid elements.

The interface between the head and vessel flanges was simulated by a row of LINK8 (3D spar) elements connecting the head and vessel flanges. The location of these interface elements was selected to act at a reaction radius empirically determined from the correlation between the model predictions and the actual stud elongation data using the existing tensioning procedure.

The case of an untensioned stud is simulated by deleting the beam element representing that stud and adjusting the initial strains on the studs adjacent to the untensioned stud to produce the specified preload. If the spar elements simulating the vessel to head contact have axial tensile stresses in the pressurized condition, these elements are deleted and the coupled circumferential and radial constraints at these nodes are removed to simulate the fact that there is no longer a frictional restraining force at this location.

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 12 of 40 5.2.2.2 Model Boundary Conditions The nodes at the bottom of the vessel shell were all fixed in the vertical and circumferential directions and allowed to move freely in the radial direction. Additionally, out of plane rotations (ROTX and ROTZ) were restrained on the nodes associated with the tie bar elements. The rotation of the flange was tied to the bending of the stud by coupling the rotational degree of freedom between the node at top of the stud beam element and the center node of the tie bar elements at the top of the flange.

As noted previously, symmetry boundary conditions were applied at the circumferential edges of the model. In addition, the stud and tie bar beam elements located at each end of the model (i.e., in the first and last planes) are assigned half of the area and moment of inertia as the rest of the studs because they lie on a plane of symmetry. Similarly, the LINK8 elements representing flange contact located at each end of the model are given half the area of the rest of the flange contact elements.

5.2.3 Analysis Cases Six cases are evaluated as follows:

Case A1 represents the preload condition with all studs intact Case A2 represents the operating condition with the vessel at design pressure and with intact studs Case B1 represents the case of one stud untensioned and with all other studs preloaded to the specified initial stress Case B2 same as Case B1 with the vessel at design pressure Case C1 represents the case of all studs preloaded to the specified initial strain with one stud assumed to fail in service Case C2 same as Case C1 except the vessel is at design pressure 5.2.4 Results Discussion The results of the finite element analyses are summarized in Table 3. The increases in stress caused by the inactive stud are summarized, and the stresses are compared to the appropriate ASME Code allowables. As noted in Input 9, the ASME Code comparisons and allowables are taken from Table 2-1 of Reference [1]. The following evaluations are considered:

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 13 of 40 5.2.4.1 RPV Closure Stresses As shown in Table 3, the stud out of service has little to no impact on the stresses associated with General Primary Membrane Stress Intensity, Primary Local Membrane plus Bending Stress Intensity, and Maximum Stress Intensity Range. Each of these stress values remain below the appropriate ASME Code allowable stresses.

5.2.4.2 RPV Stud Stresses As shown in Table 3, the stud out of service has a modest immpact on the stresses associated with the stud Maximum Membrane and Maximum Membrane plus Bending stress. Each of these stress values remain below the appropriate ASME Code allowable stresses.

5.2.4.3 RPV Closure Flange Separation As shown in Table 3, the stud out of service causes an additional flange separation at the o-ring of 0.0078 inch. This increase does not impact an ASME Code allowable. The flange separation is less than the o-ring minimum springback of 0.010 inch cited in Table 3-2 of Reference [1].

5.2.4.4 Fatigue Per Table 3, the stud out of service increases the maximum stress at: (1) the head flange/shell by 0.24 ksi, (2) the vessel flange/shell by 0.47 ksi and (3) the stud by 0.97 ksi; each of these increases are approximately 1% of the previous design basis stress. According to Table 2-1 of Reference [1], the fatigue usage values in these components are as follows: (1) the head is 0.178, (2) the vessel is 0.679, and (3) the stud is 0.846. These fatigue usage values were calculated for the full service life of the component.

The impact of the 1% increase in stress for a single cycle of operation on these components is negligible. Referring to the fatigue curves in the design basis Code [7], Figures N-415A (vessel and head material) and N-416 (bolting material), it may be demonstrated for higher values of alternating stress that the number of allowable cycles is inversely proportional to the square of the increase in stress. Therefore, even if the components were operated for their full service life with the increase in stress resulting from one stud out of service, the increase in fatigue usage would be the square of the increase in stress, or 1.012 = 2%. The resulting values would remain below the Code allowable of 1.0.

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 14 of 40 5.2.4.5 Emergency and Faulted Conditions Review of the design basis conditions evaluated in the original plant design basis report [2]

demonstrates that, for the RPV closure flange components, meeting the ASME Code requirements for normal and upset conditions described in previous sections of this calculation bounds the requirements for emergency and faulted conditions. This is demonstrated on pages A-11 through A-30 of Reference [2] as follows:

The emergency condition evaluated in Reference [2] is a vessel overpressure event. The evaluated pressure is 1,350 psia, or a factor of 1.08 greater than the normal condition design pressure, but the stress allowables for emergency conditions are 1.2 times the normal condition allowables.

The faulted condition evaluated in Reference [2] is a pipe rupture event. The evaluated pressure is 1,000 psia, which is lower than the normal condition design pressure.

5.2.5 ANSYS Input Listings The RPV closure flange stud tensioning analysis described in this section is performed using the ANSYS input listing files _HATCH2.runs, _MACROS.HATCH2, and MACROS.DEI. The

_HATCH2.runs input listing defines parameters that are used by _MACROS.HATCH2 and MACROS.DEI to generate the geometry and run the stud out of service analysis cases. The input listings _HATCH2.runs and _MACROS.HATCH2 are provided in Appendix A.

MACROS.DEI is a proprietary input listing developed outside of the scope of this work. It is retained as an electronic file on a data disk [6] along with other software usage QA records required by the DEI QA program [4]. The contents of this data disk are listed in Appendix B. This data disk is retained with the project file for this task (Task 3944) and is available for on-site review by Southern Nuclear personnel.

5.3 Quality Assurance Software Controls The RPV closure flange stud tensioning analysis described in this calculation was performed on the ANSYS-A Dell Precision R7910 workstation, using Windows Server 2012 R2 Standard 64-bit operating system and ANSYS Version 15.0 which was verified on February 6, 2017, as documented in Reference [3]. This software is maintained in accordance with the provisions for control of software described in Dominion Engineering, Inc.s (DEIs) quality assurance (QA) program for safety-related

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 15 of 40 nuclear work [4].1 In addition to QA controls associated with the procurement and use of the ANSYS software (e.g., maintenance of the ANSYS Inc. as an approved supplier of the software based on formal auditing and surveillance; formal periodic verification of ANSYS software installation), QA controls associated with all ANSYS batch input listings are also carried out by DEI. These include independent checks of a batch input listing each time it is used; review of all ANSYS Class 3 error reports and QA notices to assess their potential impact on a batch input listing; and independent confirmatory analyses2 to ensure that the project-specific application of the analysis is appropriate. The review of ANSYS error reports and QA notices as well as the project-specific check calculations are documented formally in a QA memo to project file [5].

The stud primary stress calculations performed in Table 2 were generated using Microsoft Excel 2010 on a Dell Latitude E7440 with an Intel Core i7 processor and running Microsoft Windows 7. The one-time-use Microsoft Excel spreadsheet Hatch 2 Stud Primary Stress Calc v0.xlsx was prepared, checked, and reviewed in accordance with DEIs nuclear QA program manual [4] and is archived on the data disk associated with this calculation [6].

6 REFERENCES

1.

DEI Report R-3937-00-1, Rev. 0, Reactor Vessel Tensioning Optimization Stress Report -

Hatch Nuclear Plant Unit 2, January 2015.

2.

Analytical Report for Hatch No. 2 Reactor Vessel for Georgia Power Company, Combustion Engineering Report No. CENC-1232, April 1975.

3.

Dominion Engineering, Inc. Software Test Report No. STR-9898-00-19, ANSYS 15.0 Re-Verification Software Test Report. Revision 0, February 2017.

4.

Dominion Engineering, Inc. Quality Assurance Manual for Safety-Related Nuclear Work, DEI-002. Revision 18, November 2010.

5.

Dominion Engineering, Inc. Memorandum M-3944-00-01, Revision 0, ANSYS Confirmatory Analysis and Review of Error Reports / QA Notices for C-3944-00-01, Rev. 0. February 2017.

6.

Dominion Engineering, Inc. Data Disk D-3944-00-01, Revision 0, dated February 2017.

1 DEIs quality assurance program for safety-related work (DEI-002) commits to applicable requirements of 10 CFR 21, Appendix B of 10 CFR 50, and ASME/ANSI NQA-1. This QA program is independently audited periodically by both NUPIC (the Nuclear Procurement Issues Committee) and NIAC (the Nuclear Industry Assessment Committee).

2 Confirmatory analyses for a given project may include comparison of model-computed stresses to theoretical closed-form solutions and other checks on model results.

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 16 of 40

7.

ASME Boiler and Pressure Vessel Code,Section III - Rules for Construction of Nuclear Vessels, 1968 Edition with Addenda through Summer 1970.

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 17 of 40 Table 1.

FEA Model Inputs Stud and Vessel Parameters

- Number of Studs 56

- Stud Shank OD in 6.000

- Design Stud Stress Area in Shank in^2 27.489

- Calculated Stud Moment of Inertia in^4 63.568

- Membrane Stress, Preload Only ksi 35.58

- Corresponding Elongation in 0.038

- Design Pressure psia 1,250

- Stud Effective Length in 31.937 Tensioning Parameters

- Max Tensioner Pressure (new) psi n/a

- Optimized Sequence Final Pressure (new) psi 7,100

- Resulting Stud Stress ksi 37.15

- Tensioner Coefficient, Kt psi/in 5.232 Bolting Dimensions

- Stud Circle Radius in 117.313

- Stud Hole Diameter in 6.750

- Spherical Washer Radius of Curvature in 27.000

- Modulus Ratio in Hole Region 0.60 Vessel Flange Dimensions

- Flange IR in 109.690

- Inner O-ring Mean Radius in 111.000

- Reaction Radius in 113.250

- Seating Surface Outer Radius in 113.750

- Flange OR in 122.625

- Z dim to ID Transition in

-18.000

- Z dim to OD transition in

-14.500 Vessel Shell Dimensions

- Shell IR in 110.720

- Shell thickness in 5.875

- Z dim to Bottom of Transition in

-21.090 Head Flange Dimensions

- Flange IR in 109.250

- Flange OR in 122.625

- Flange Top Fillet Radius in 2.750

- Z dim to Top of Flange in 24.375

- Z dim to Recess (inner) in 0.375

- Z dim to Recess (outer) in 0.375 Head Shell Dimensions

- Shell IR in 109.500

- Shell thickness in 3.188

- Z dim to Head Coord. Sys.

in

-7.250 Hatch Unit 2 Parameter Units

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 18 of 40 Table 2.

Calculation of Primary Stresses in Reactor Vessel Studs, One Stud Out of Service Design Pressure, P, psig 1,235 Bolt Circle Radius, Ro 117.313 in.

Inner o-ring Radius, Ri 111.000 Average force, Fbar 869.2 kips Studs Out of Service 1

Neutral axis offset, d

2.133 in.

Stud Stress Area, A 27.489 Coefficient f

-274.6 psi/in Number of Studs 56 Stud theta cos(theta) cos^2 (theta)

Fi Stress (deg)

(kip)

(ksi) 1

-180 untensioned untensioned untensioned untensioned 2

-174

-0.9937 0.99 901.8 32.80 3

-167

-0.9749 0.95 901.2 32.78 4

-161

-0.9439 0.89 900.2 32.75 5

-154

-0.9010 0.81 898.8 32.70 6

-148

-0.8467 0.72 897.0 32.63 7

-141

-0.7818 0.61 894.9 32.56 8

-135

-0.7071 0.50 892.5 32.47 9

-129

-0.6235 0.39 889.8 32.37 10

-122

-0.5320 0.28 886.9 32.26 11

-116

-0.4339 0.19 883.7 32.15 12

-109

-0.3303 0.11 880.4 32.03 13

-103

-0.2225 0.05 876.9 31.90 14

-96

-0.1120 0.01 873.4 31.77 15

-90 0.0000 0.00 869.7 31.64 16

-84 0.1120 0.01 866.1 31.51 17

-77 0.2225 0.05 862.6 31.38 18

-71 0.3303 0.11 859.1 31.25 19

-64 0.4339 0.19 855.8 31.13 20

-58 0.5320 0.28 852.6 31.02 21

-51 0.6235 0.39 849.7 30.91 22

-45 0.7071 0.50 847.0 30.81 23

-39 0.7818 0.61 844.6 30.72 24

-32 0.8467 0.72 842.5 30.65 25

-26 0.9010 0.81 840.7 30.58 26

-19 0.9439 0.89 839.3 30.53 27

-13 0.9749 0.95 838.3 30.50 28

-6 0.9937 0.99 837.7 30.48 29 0

1.0000 1.00 837.5 30.47 30 6

0.9937 0.99 837.7 30.48 31 13 0.9749 0.95 838.3 30.50 32 19 0.9439 0.89 839.3 30.53 33 26 0.9010 0.81 840.7 30.58 34 32 0.8467 0.72 842.5 30.65 35 39 0.7818 0.61 844.6 30.72 36 45 0.7071 0.50 847.0 30.81 37 51 0.6235 0.39 849.7 30.91 38 58 0.5320 0.28 852.6 31.02 39 64 0.4339 0.19 855.8 31.13 40 71 0.3303 0.11 859.1 31.25 41 77 0.2225 0.05 862.6 31.38 42 84 0.1120 0.01 866.1 31.51 43 90 0.0000 0.00 869.7 31.64 44 96

-0.1120 0.01 873.4 31.77 45 103

-0.2225 0.05 876.9 31.90 46 109

-0.3303 0.11 880.4 32.03 47 116

-0.4339 0.19 883.7 32.15 48 122

-0.5320 0.28 886.9 32.26 49 129

-0.6235 0.39 889.8 32.37 50 135

-0.7071 0.50 892.5 32.47 51 141

-0.7818 0.61 894.9 32.56 52 148

-0.8467 0.72 897.0 32.63 53 154

-0.9010 0.81 898.8 32.70 54 161

-0.9439 0.89 900.2 32.75 55 167

-0.9749 0.95 901.2 32.78 56 174

-0.9937 0.99 901.8 32.80

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 19 of 40 Table 3.

Stress Increase Due to Stud Out of Service Shell Stresses (ksi) (2)

Stud Stresses (ksi)

Flange Stud Load Gen. Membrane Local Memb.+Bend.

Maximum SI Max Memb+

Separation Load Condition Condition Case Head Vessel Head Vessel Head Vessel Membrane Bending (10^-3 in)

Preload Only Normal A1 0.07 0.28 23.82 18.11 24.60 18.48 37.10 81.56 14.7 Preload Only 1 Untensioned B1 0.09 0.28 23.83 18.10 24.61 18.49 37.10 81.59 14.7 Preload Only 1 Failed C1 0.09 0.28 23.82 18.11 24.60 18.48 40.06 81.58 14.7 Preload+Pressure Normal A2 22.13 23.49 36.93 34.17 37.02 33.94 34.91 97.92 21.2 Preload+Pressure 1 Untensioned B2 22.13 23.49 37.12 34.52 37.21 34.31 37.34 97.98 29.1 Preload+Pressure 1 Failed C2 22.13 23.49 37.17 34.63 37.26 34.41 39.30 98.89 26.6 Max. Increase from A2 (Cases B2 & C2) 0.00 0.00 0.24 0.46 0.24 0.47 4.40 0.97 7.8 Limiting Vessel Report Value (1) 22.50 23.80 37.90 37.50 64.00 47.40 45.30 95.40 New Maximum Value 22.50 23.80 38.14 37.96 64.24 47.87 49.70 96.37 Code Stress Limit Sm =

Sm =

1.5 Sm =

1.5 Sm =

3.0 Sm =

3.0 Sm =

2 Sm =

2.7 Sm =

26.7 26.7 40.1 40.1 80.1 80.1 73.5 99.2 (1) Value taken from R-3937-00-01 Rev 0 [1] or from Reference [2] as listed in Input 10.

(2) Local Membrane + Bending and Maximum SI taken at cut lines 2, 3, 4, 5, 6, and 7. General Membrane SI taken at cut lines 1 and 8. (See Figure 3).

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 20 of 40 Figure 1.

Reactor Vessel Head Stud Geometry, One Stud Out of Service x

y

Neutral Axis Blackened Stud is Out of Service 1

56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

8 7

6 5

4 3

2

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 21 of 40 Figure 2.

Hatch Unit 2 RPV Closure Flange FEA Model Overall View [1]

1's Nodal Plane 1000's Nodal Plane 2000's Nodal Plane 28,000's Nodal Plane

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 22 of 40 Figure 3.

FEA Model Node Numbering and Section Cut Line Locations [1]

1 5

11 15 1

1 81 85 4

4 71 75 3

3 61 65 2

2 111 141 119 149 169 219 269 5

7 6

5 6

7 284 281 361 8

8 364 351 354 261

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 23 of 40 A

FINITE ELEMENT ANALYSIS INPUT LISTINGS A.1 File: _HATCH2.runs

/BATCH,LIST

/COM,

/COM, **********************************************************************************

/COM, Hatch Unit 2 Stud Out of Service Evaluation

/COM, **********************************************************************************

/COM,

/INP,_MACROS,HATCH2

/INP,_MACROS,DEI

/COM,

/COM, **********************************************************************************

/COM, PRE-RUN SETUP

/COM, **********************************************************************************

/COM,

/FILNAM,Tens-1

/SHOW,plots,grph

/TYPE,1,4

/PREP7

/TITLE, Hatch2 Reactor Vessel Tensioning

/COM, Define run parameters NT = 56 ! Total number of studs in model NV = 56 ! Total number of studs in real vessel NPMAX = 56*3 ! Max number of studs any sequence TENSMX = 7 ! Max number of Tens-* routines XS = 37146 ! Final stud stress target for old tensioner XP = 7100 ! Corresponding tensioner pressure Pmax = 8500 ! Tensioner pressure cap X1 = 0.9994 ! Empirical correction factor (init guess)

X2 = 0.9854 ! Empirical correction factor (init guess)

Kt = XS*X1/XP ! Relate tensioner pressure to stud stress RLMAX = NT+1 ! Number of data items in RLIST (from ENDPOST macro)

  • DIM,TENSAR,ARRAY,TENSMX,3

/COM,

  • DIM,MPBTMPI,ARRAY,5
  • DIM,MPBTMPC,ARRAY,5
  • DIM,MPBTMPO,ARRAY,5
  • DIM,TOTTMPI,ARRAY,5
  • DIM,TOTTMPO,ARRAY,5

/COM,

/COM, *** TOGGLE TENSIONING ROUTINES ***

/COM,

/COM, To set tensioning routine I (Tens-I) to RUN, toggle TENSAR(I,1)=1

/COM To set tensioning routine I (Tens-I) to OFF, toggle TENSAR(I,1)=0

/COM, TENSAR(I,2) is number of cyclic symmetry slices (=1 for full model) for Tens-I

/COM, TENSAR(I,3) is number of passes thru OPTLOOP for Tens-I (max of 7)

/COM, TENSAR(1,1)=1 $TENSAR(1,2)=1 $TENSAR(1,3)=1 RUNMORF = 1 ! RUNMORF=1 to run out of service stud cases

/COM,

  • DIM,PLIST,ARRAY,NPMAX,4
  • DIM,RLIST,ARRAY,NT,RLMAX
  • DIM,RSAVE10,ARRAY,NV/2+1,RLMAX,6

/COM,

/COM,

/COM, **********************************************************************************

/COM, GEOMETRY FIGURES

/COM, **********************************************************************************

/COM,

/COM, Make 1/2 model to lay down 'Appendix A' plots NT = NV/2+1 ! Total number of studs in model

/COM, Clear the boundary conditions and re-do the geometry.

/PREP7

  • USE,GEOM,0 ! Create geometry

/TITLE, Hatch2 Reactor Vessel Tensioning

/VIEW,1,1,1,1 ESEL,S,TYPE,,1 NSLE

/COLOR,NUM,BLAC,1

/TRIAD,OFF

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 24 of 40

/DIST,1,1.5*HFOR

/FOCUS,1,-HFOR/4,-65,-HFOR/2.1 EPLO ESEL,S,ELEM,,41,290 ESEL,A,ELEM,,1041,1290 NSLE

/PNUM,MAT,1

/NUM,1

/AUTO EPLO ESEL,S,TYPE,,1 ESEL,R,ELEM,,1,1000 NSEL,S,NODE,,1,1000

/VIEW EPLO

  • DO,I,1,11

/COLOR,NUM,WHIT,I

  • ENDDO

/NUM

/PNUM,ELEM,1 ESEL,S,ELEM,,502,506 ESEL,A,ELEM,,1502,1506

  • REPEAT,4,,,,1000,1000 NSLE NSEL,U,NODE,,361,4361,1000

/VIEW,1,1,1,1

/AUTO EPLO

/VIEW,1,-1,1,5

/NUM,2 ESEL,S,ELEM,,501 NSLE EPLO

/USER

/DIST,1,5.75 ESEL,S,TYPE,,1 ESEL,A,ELEM,,501 NSLE EPLO ALLSEL

/AUTO

/COLOR,DEFA

/NUM FINISH

/COM,

/COM,

/COM, **********************************************************************************

/COM, TENSIONING ROUTINE 1: INITIALIZE MODEL

/COM, **********************************************************************************

/COM,

/COM,

/PREP7 NT = 10 ! Total number of studs in model

  • USE,GEOMCLUP
  • USE,GEOM,0 ! Create geometry FINISH

/COM,

/COM, Do initial sets at final pressure to solve for X1 and X2

/COM, Tension all studs except in one set and then retension stud 10 PP = NT ! Number of studs in each set NP = 2 ! Number of sets in this sequence TT = 1 ! Number of sets to achieve one-pass tens.

  • USE,ZEROIT
  • DO,I,1,NT PLIST(I,1) = I ! Load PLIST column 1 with stud numbers PLIST(I,2) = XP ! Load PLIST column 2 with ref. tens. press.
  • ENDDO
  • DO,I,NT+1,NT*2 PLIST(I,1) = 10 ! Load PLIST column 1 with stud numbers PLIST(I,2) = XP ! Load PLIST column 2 with ref. tens. press.

PLIST(I,4) = 1.0 ! Load PLIST column 4 with retens. flag

  • ENDDO
  • IF,TENSAR(1,1),GT,0.5,THEN
  • USE,GOSOLV,'Hatch2','Tens-1',1 ! Solve model X1 = X1*XS/RLIST(10,3) ! X1 is ref. stress/av. stud stress - single stud X2 = X1*XS/RLIST(1,3) ! X2 is ref. stress/av. stud stress - all studs

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 25 of 40 Kt = XS*X1/XP ! Relate tensioner pressure to stud stress

  • ENDIF

/COM,

/COM,

/COM, **********************************************************************************

/COM, TENSIONING ROUTINE 10: RUN MISSING OR FAILED STUD CASES

/COM, **********************************************************************************

/COM,

/COM,

/FILNAM,Tens-10

/COM, Change over to a half model for missing stud runs

/PREP7

  • USE,GEOMCLUP NT = NV/2+1 ! Total number of studs in model
  • USE,GEOM,0 ! Create geometry FINISH Kt = XS*X2/XP ! Relate tensioner pressure to stud stress

/COM, Tension all studs in one pass PP = NT ! Number of studs in each pass NP = 1 ! Number of passes TT = 1 ! Number of passes to achieve one-pass tens.

  • USE,ZEROIT
  • DO,I,1,PP PLIST(I,1) = I ! Load PLIST column 1 with stud numbers PLIST(I,2) = XP ! Load PLIST column 2 with ref. tens. press.
  • ENDDO
  • USE,GOSOLV,'Hatch2','Tens-10',1 ! Solve model - Case A1 SAVE,,A1
  • DO,I,1,NT
  • DO,J,1,RLMAX RSAVE10(I,J,1) = RLIST(I,J)
  • ENDDO
  • ENDDO
  • USE,ZEROIT I=1
  • USE,PSOLV,'Hatch2','A2',2.0,1235 ! Solve model - Case A2 SAVE,,A2
  • DO,I,1,NT
  • DO,J,1,RLMAX RSAVE10(I,J,2) = RLIST(I,J)
  • ENDDO
  • ENDDO
  • USE,ZEROIT I=1

/COM, BEGIN SOLUTION PHASE

/SOLU ANTYPE,STATIC,REST SFDELE,ALL,ALL EKILL,502

/TITLE, Hatch2 Reactor Vessel - Case C1 - Preload Only TIME,3.0 SOLVE FINISH

/POST1 SET,,,,,3.0

  • USE,POSTER
  • USE,ENDPOST FINISH SAVE,,C1
  • DO,I,1,NT
  • DO,J,1,RLMAX RSAVE10(I,J,5) = RLIST(I,J)
  • ENDDO
  • ENDDO
  • USE,ZEROIT I=1
  • USE,PSOLV,'Hatch2','C2',4.0,1235 ! Solve model - Case C2 SAVE,,C2
  • DO,I,1,NT
  • DO,J,1,RLMAX RSAVE10(I,J,6) = RLIST(I,J)
  • ENDDO
  • ENDDO

/COM, Check for flange contact links which came out of compression LCHG = 0

  • DO,I,1,NT

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 26 of 40

  • IF,RLIST(I,10),GT,0,THEN LCHG = 1.0

/PREP7 EKILL,I*1000-499 ! EKILL 501 El. in row CPDELE,I CPDELE,100+I FINISH

  • ENDIF
  • ENDDO
  • IF,LCHG,EQ,1.0,THEN
  • USE,ZEROIT I=1
  • USE,PSOLV,'Hatch2','C2',5.0,1235 ! Re-Solve model - Case C2 SAVE,,C2A
  • DO,I,1,NT
  • DO,J,1,RLMAX RSAVE10(I,J,6) = RLIST(I,J)
  • ENDDO
  • ENDDO
  • ENDIF

/COM, Clear the boundary conditions and re-do the geom.

/PREP7 SFDELE,ALL,ALL CPDELE,ALL,ALL EDELE,ALL NDELE,ALL

  • USE,GEOM,0 ! Create geometry FINISH

/FILN,Tens-10B

/COM, Tension all studs in one pass except stud 1 PP = NT-1 ! Number of studs in each pass NP = 1 ! Number of passes TT = 1 ! Number of passes to achieve one-pass tens.

  • USE,ZEROIT
  • DO,I,1,PP PLIST(I,1) = I+1 ! Load PLIST column 1 with stud numbers PLIST(I,2) = XP ! Load PLIST column 2 with ref. tens. press.
  • ENDDO
  • USE,GOSOLV,'Hatch2','Tens-10B',1 ! Solve model - Case B1 SAVE,,B1
  • DO,I,1,NT
  • DO,J,1,RLMAX RSAVE10(I,J,3) = RLIST(I,J)
  • ENDDO
  • ENDDO
  • USE,ZEROIT I=1
  • USE,PSOLV,'Hatch2','B2',2.0,1235 ! Solve model - Case B2 SAVE,,B2
  • DO,I,1,NT
  • DO,J,1,RLMAX RSAVE10(I,J,4) = RLIST(I,J)
  • ENDDO
  • ENDDO

/COM, Check for flange contact links which came out of compression LCHG = 0

  • DO,I,1,NT
  • IF,RLIST(I,10),GT,0,THEN LCHG = 1.0

/PREP7 EKILL,I*1000-499 ! EKILL 501 El. in row CPDELE,I CPDELE,100+I FINISH

  • ENDIF
  • ENDDO
  • IF,LCHG,EQ,1.0,THEN
  • USE,ZEROIT I=1
  • USE,PSOLV,'Hatch2','B2',3.0,1235 ! Re-Solve model - Case B2 SAVE,,B2A
  • DO,I,1,NT
  • DO,J,1,RLMAX RSAVE10(I,J,4) = RLIST(I,J)
  • ENDDO
  • ENDDO

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 27 of 40

  • ENDIF

/COM, Check again for flange contact links which came out of compression LCHG = 0

  • DO,I,1,NT
  • IF,RLIST(I,10),GT,0,THEN LCHG = 1.0

/PREP7 EKILL,I*1000-499 ! EKILL 501 El. in row CPDELE,I CPDELE,100+I FINISH

  • ENDIF
  • ENDDO
  • IF,LCHG,EQ,1.0,THEN
  • USE,ZEROIT I=1
  • USE,PSOLV,'Hatch2','B2',4.0,1235 ! Re-Solve model - Case B2 SAVE,,B2B
  • DO,I,1,NT
  • DO,J,1,RLMAX RSAVE10(I,J,4) = RLIST(I,J)
  • ENDDO
  • ENDDO
  • ENDIF FINISH

/COM, Clear the pressure boundary conditions

/PREP7 SFDELE,ALL,ALL FINISH

  • USE,ZEROIT
  • ENDIF

/COM,

/TITLE, Hatch2 Reactor Vessel Tensioning FINISH SAVE

/COM,

/COM, **********************************************************************************

/COM, PRINT RESULTS

/COM, **********************************************************************************

/COM,

/COM, Print contents of PSAVE and RSAVE arrays

/OUT,RESULTS,OUT

/NOPR

  • IF,RUNMORF,EQ,1,THEN
  • USE,PRINTENS,'PSAVE10','RSAVE10',6,'Stud OOS',0
  • ENDIF

/OUT

/GOPR FINISH

/COM,

/COM, **********************************************************************************

/COM, RUN COMPLETE

/COM, **********************************************************************************

/COM,

/FILN,Tens-0 PARSAV,ALL

/COM, Do some file cleanup

/SYS, del CMMAKER

/SYS, del ENDPOST

/SYS, del GEOM

/SYS, del GEOMCLUP

/SYS, del GODETEN

/SYS, del GOSOLV

/SYS, del OPTLOOP

/SYS, del POSTER

/SYS, del POSTER2

/SYS, del POSTER3

/SYS, del PRINTOLR

/SYS, del PRINTENS

/SYS, del PSOLV

/SYS, del READSI

/SYS, del ZEROIT

/SYS, del NPL

/SYS, del linrept

/SYS, del *.dbs

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 28 of 40

/SYS, del *.stat

/SYS, del *.osav

/SYS, del *.PCS

/SYS, del *.PVTS

/SYS, del *.BCS

/SYS, del *.full

/SYS, del file.log

/SYS, del Tens-1.*

/SYS, del Tens-10.e???

/EXIT

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 29 of 40 A.2 File: _MACROS.HATCH2

/COM, --------------- MACROS.HATCH2, Revision 1, Created February 2017 ----------------

/COM, **********************************************************************************

/COM,

/COM,

/COM,

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM, CREATE GEOMETRY MACRO

/COM, ----------------------------------------------------------------------------------

/COM,

  • CREATE,GEOM

/COM, ------------------------------------------------------------------

/COM, GEOMETRY AND RUN PARAMETERS

/COM, ------------------------------------------------------------------

/COM, Loads and Material Properties Esteel = 27.9E6 ! Young's modulus (psi)

Ds = 6.000 ! Stud shank diameter (in)

As = 27.489 ! Stud area (in^2)

Is = 63.568 ! Stud mom. of I (in^4)

Ls = 31.937 ! Stud effective length (in)

Estud = 29.9E6 ! Tune Estud or Ls to get right effective L

/COM,

/COM, Bolting Dimensions SCR = 117.313 ! Stud Circle Radius (in)

NDs = 6.750 ! Stud Hole diameter (in)

SWRC = 27.00 ! Spherical Washer Rad. of Curvature (in)

Ehole = 0.60*Esteel ! Derate in stud hole regions

/COM,

/COM, Vessel Flange Dimensions VFIR = 109.690 ! Vessel flange inner radius (in)

! CBIR = 0.000 ! Core Barrel groove inner radius (in)

IORR = 111.00 ! Inner O-Ring radius (in)

SSOR = 113.75 ! Seating Surface outer radius (in)

RR = 113.25 ! >>> TUNE REACTION RADIUS <<<

VFOR = 122.625 ! Vessel flange outer radius (in)

! ZVFS = 0.000 ! Z dimension to vessel flange surface (in)

! ZBCB =--0.000 ! Z dimension to bottom of Core Barrel groove ZVIT =-18.00 ! Z dim to vessel inside trans. (120's row)

ZVOT =-14.50 ! Z dim to vessel outside trans. (130's row)

/COM,

/COM, Vessel Shell Dimensions VSIR = 110.72 ! Vessel shell inside radius VSTH = 5.875 ! Vessel shell thickness ZVTR =-21.090 ! Z dimension to bottom of vessel transition

/COM,

/COM, Head Flange Dimensions HFIR = 109.25 ! Head flange inner radius HFOR = 122.625 ! Head flange outer radius HFFR = 2.750 ! Head flange top fillet radius ZTHF = 24.375 ! Z dimension to top of head flange ZHFRI = 0.375 ! Z dimension to head flange recess - inner ZHFRO = 0.375 ! Z dimension to head flange recess - outer

! /COM,

! /COM, Head Shell Flange Transition

! RTCS = 0.000 ! Radial dimension to Transition Coordinate System

! ZTCS = 0.000 ! Z dimension to Transition Coordinate System

! IRTR = 0.000 ! Inner radius of transition area

! ZUIC = 0.000 ! Vertical rise of OD Transition

/COM,

/COM, Head Shell Dimensions HSIR = 109.50 ! Head shell inner radius HSTH = 3.188 ! Head shell thickness ZHCS = -7.250 ! Z dimension to Head Coordinate System AHT = 19.0 ! Approximate start of head shell region

/COM,

/COM,

/COM,

/COM, At = As/100 ! Arbitrarily small tie bar area (in^2)

It = Is*100 ! Arbitrarily large tie bar mom. Of i (in^4)

Dt = Ds*100 ! Arbitrarily large tie bar diameter (in)

RLTH = 0.005 ! Reaction link thickness (in Z direction)

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 30 of 40 Ar = As*100*(RLTH/Ls) ! Reaction link area tuned for stiffness

! 100 times greater than stud (in^2)

/COM,

/COM,

/COM, ------------------------------------------------------------------

/COM, MATERIAL PROPERTIES

/COM, ------------------------------------------------------------------

/COM, Set types, mats, and reals

/COM, Element types ET,1,SOLID45 ! Solids - vessel (no associated real props)

ET,2,LINK8 ! Links - for reaction (REALS: AREA,ISTRN)

ET,3,BEAM4 ! Beams - studs (A,IZZ,IYY,TKZ,TKY,THETA,ISTRN)

/COM,

/COM, Material properties

/COM, Material 1 for GENERAL USE MP,EX,1,Esteel MP,NUXY,1,0.30

/COM,

/COM, Material 2 for STUD ELEMENTS MP,EX,2,Estud MP,NUXY,2,0.30

/COM,

/COM, Material 3 for STUD HOLES MP,EX,3,Ehole MP,NUXY,3,0.30

/COM,

/COM, REAL PROPERTIES

/COM, R,1,0 ! Real 1: Dummy real for solid elements R,2,Ar ! Real 2: Reaction links R,3,Ar/2 ! Real 3: Cutting plane reaction links R,4,At,It,It,Dt,Dt,0 ! Real 4: Tie bars R,5,At/2,It/2,It/2,Dt,Dt,0 ! Real 5: Cutting plane tie bars R,11,As,Is,Is,Ds,Ds,0 ! Real 11:Stud elements

  • REPEAT,NT,1 ! Assign different reals to each stud

/COM,

/COM,

/COM, ------------------------------------------------------------------

/COM, NODE DEFINITION

/COM, ------------------------------------------------------------------

/COM,

  • AFUN,DEG

/COM, Establish coordinate systems LOCAL,20,0,0,0 ! Cartesian on lower mating surface LOCAL,21,1,0,0,0,0,-90,0 ! Cylindrical on lower mating surface (z up)

! LOCAL,22,1,RTCS,ZTCS ! Cylindrical system 1 for head curvature LOCAL,23,1,0,ZHCS ! Cylindrical system 2 for head curvature LOCAL,24,2,0,ZHCS ! Spherical system for head stresses

/COM,

/COM, Define keypoints on theta = 0 plane CSYS,20 BOTZ=-100+ZVTR N,1,VSIR,BOTZ ! SHELL I.R. AT BOTTOM OF MODEL N,5,VSIR+VSTH,BOTZ ! SHELL O.R. AT BOTTOM OF MODEL N,81,VSIR,BOTZ+100 ! SHELL I.R. AT BOTTOM OF FLANGE N,85,VSIR+VSTH,BOTZ+100 ! SHELL O.R. AT BOTTOM OF FLANGE

/COM,

/COM, DEFINE FEATURES ON MATING SURFACE N,161,VFIR,0 ! Flange inner surface N,162,(VFIR+IORR)/2,0 ! "Core barrel groove inner surface" N,163,IORR,0 ! Inner o-ring radius N,164,RR,0 ! Reaction radius N,165,SSOR,0 ! Outer limit of seating surface N,166,SCR-NDs/2,0 ! Bolt hole inner edge N,167,SCR,0 ! Bolt circle N,168,SCR+NDs/2,0 ! Bolt hole outer edge N,169,VFOR,0 ! Flange outer surface flwdth = HFOR-HFIR ! Flange width - head flwdtv = VFOR-VFIR ! Flange width - vessel iormo = RR-IORR ! Inner o-ring moment arm

/COM,

/COM, COPY FEATURES THROUGH VESSEL FLANGE NGEN,2,-10,161,169,1,0,(ZTHF-Ls)/2 ! Copy mating surf. thru lower flange (150's)

NGEN,2,-20,161,169,1,0,ZTHF-Ls ! Copy mating surf. thru lower flange (140's)

NGEN,2,-50,161,169,1,0,ZVOT ! Make 110's row for O.D. feature FILL,151,156,,,,2,-10 ! Even out 150's and 140's row

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 31 of 40 FILL,111,117 FILL,116,118 NGEN,2,-20,111,117,1,0,(ZVIT-ZVOT) ! Make 90's row for I.D. feature NMODIF,97,NX(85)

FILL,91,97 NGEN,2,10,91,97,1,0,-(ZVIT-ZVOT)/2 ! Make 100's row for transition FILL,111,141,2,121,10,9,1

/COM,

/COM, FILL IN REST OF NODES IN VESSEL FLANGE FILL,1,5 FILL,81,85 FILL,1,81,7,,,5,1,0.4 ! FILL IN VESSEL SHELL NODES

/COM,

/COM, ARRANGE HEAD FLANGE SURFACE NODES CSYS,20 NGEN,2,40,161,169,1,0,RLTH ! COPY LOWER MATING SURF. TO UPPER FLANGE N,201,HFIR,RLTH ! HEAD FLANGE INNER SURFACE FILL,201,203 NGEN,2,10,201,209,1,0,ZHFRI-RLTH ! COPY UP THROUGH UPPER FLANGE NGEN,6,10,211,219,1,0,((ZTHF-ZHFRI)/5)! COPY FIVE ROWS UP THROUGH UPPER FLANGE FILL,221,226,,,,5,10 ! ALIGN 220'S ROW

/COM,

/COM, MOVE HEAD SHELL IR NODES CSYS,23 NMODIF,231,HSIR

  • REPEAT,4,10 FILL,231,234,,,,4,10

/COM,

/COM, DEFINE NODES IN FREE HEAD CSYS,23 N,361,HSIR,90 ! TOP OF HEAD (INNER SURFACE)

N,364,HSIR+HSTH,90 ! TOP OF HEAD (OUTER SURFACE)

N,271,HSIR,AHT ! LOCATE I.R. AT TOP OF FILLET RADIUS N,274,HSIR+HSTH,AHT ! LOCATE O.R. AT TOP OF FILLET RADIUS FILL,271,361,8,,,,,2.5 ! FILL IN HEAD INNER RADIUS FILL,274,364,8,,,,,2.5 ! FILL IN HEAD OUTER RADIUS FILL,251,254,,,,12,10 ! FILL IN INTERIOR HEAD NODES

/COM,

/COM, SWEEP OUT AROUND 360 DEGREES CSYS,21 NGEN,NT+1,1000,ALL,,,0,360/NV,0 ! MAKE FULL SWEEP OF MODEL NROTAT,ALL ! BRING CS'S INTO ACTIVE CS

/COM,

/COM, ------------------------------------------------------------------

/COM, ELEMENT DEFINITION

/COM, ------------------------------------------------------------------

/COM,

/COM, _____________________________________

/COM, MAKE SOLID ELEMENTS TYPE,1 MAT,1 REAL,1 EN,1,1,2,12,11,1001,1002,1012,1011 ENGEN,1,4,1,1,1,1 ! SWEEP ACROSS BOTTOM ROW ENGEN,10,8,10,1,4,1 ! SWEEP UP TO BOTTOM OF FLANGE SHPP,OFF ! TEMPORARILY TURN OFF SHAPE WARNINGS EN,81,81,82,92,91,1081,1082,1092,1091 EN,82,82,93,92,92,1082,1093,1092,1092 EN,83,82,83,94,93,1082,1083,1094,1093 ENGEN,1,2,1,83 EN,85,84,96,95,95,1084,1096,1095,1095 EN,86,84,85,97,96,1084,1085,1097,1096 EN,91,91,92,102,101,1091,1092,1102,1101 ENGEN,1,6,1,91 ! make 91 - 96 ENGEN,10,2,10,91,96,1 ! make 101 - 106 ENGEN,10,2,10,101 ! MAKE 111 ENGEN,1,8,1,111,111,1 ! SWEEP RIGHT TO MAKE 112 - 118 ENGEN,10,5,10,111,118

/COM, EN,201,201,202,212,211,1201,1202,1212,1211 ! MAKE 201 ENGEN,1,4,1,201,201,1 ! SWEEP RIGHT TO MAKE 202 TO 204 ENGEN,10,2,10,201,201,1 ! SWEEP UP TO MAKE 211 ENGEN,1,8,1,211,211,1 ! SWEET RIGHT TO MAKE 212 TO 218 ENGEN,10,5,10,211,218,1 ! SWEEP UP TO TOP OF FLANGE ENGEN,10,10,10,251,253,1 ! SWEEP THROUGH SHELL

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 32 of 40 EN,351,351,1351,1361,361,352,1352,1362,362 ! MAKE 351 ENGEN,1,3,1,351,351,1 ! FIX UP LAST ROW

/COM,

/COM,

/COM, ASSIGN BOLT HOLE REGION ESEL,S,ELEM,,146,500,10 ! SELECT INNER SIDE OF BOLT HOLE ESEL,A,ELEM,,147,500,10 ! SELECT OUTER SIDE OF BOLT HOLE EMODIF,ALL,MAT,3 ! ASSIGN BOLT HOLE DIFFERENT MATERIAL ESEL,ALL ENGEN,1000,NT,1000,ALL ! COPY AROUND CIRCLE

/COM,

/COM, _____________________________________

/COM, MAKE LINE ELEMENTS FOR STUD TYPE,2 REAL,2 EN,501,164,204 ! REACTION FORCE LINK TYPE,3 REAL,11 MAT,2 EN,502,147,267,361 ! STUD

/COM,

/COM, _____________________________________

/COM, MAKE LINE ELEMENTS FOR TIE BARS REAL,4 MAT,1 EN,503,146,147,207 EN,504,147,148,207 EN,505,266,267,207 EN,506,267,268,207 ! TIE BARS EN,507,162,163,204 EN,508,163,164,204 EN,509,164,165,204 EN,510,202,203,164 EN,511,203,204,164 EN,512,204,205,164 ! REACTION SURFACE ENGEN,1000,NT,1000,501,512,1 ! COPY REST OF WAY THROUGH

/COM,

/COM, _____________________________________

/COM, ASSIGN INDIVIDUAL REAL PROPERTIES TO EACH STUD

/COM, STUD REAL IS STUD NO. + 10

  • DO,I,1,NT ESEL,S,ELEM,,I*1000-498 EMODIF,ALL,REAL,I+10

/COM,

/COM, _____________________________________

/COM, DO SOME NODAL CLEANUP NSLE,U NDELE,ALL ! DELETE UNUSED NODES NSEL,ALL NUMMRG,NODE,0.001 ! MERGE OVERLAPPING NODES

/COM,

/COM,

/COM, ------------------------------------------------------------------

/COM, APPLY BOUNDARY CONDITIONS

/COM, ------------------------------------------------------------------

/COM, CSYS,21

/COM, _____________________________________

/COM, COUPLE UPPER AND LOWER FLANGE AT REACTION RADIUS CP,1,UX,164,204 ! COUPLE IN X AXIS CPSGEN,NT,1000,1,1,1 ! SWEEP UX SET AROUND CIRCLE CP,101,UY,164,204 ! COUPLE IN Y AXIS CPSGEN,NT,1000,101,101,1 ! SWEEP UY SET AROUND CIRCLE

/COM, APPLY DISPLACEMENT BOUNDARY CONDITIONS NSEL,S,LOC,Z,BOTZ ! SELECT BOTTOM OF MODEL D,ALL,UY ! APPLY ZERO VERT DISP D,ALL,UZ ! APPLY ZERO VERT DISP NSEL,ALL ESEL,S,REAL,,4 ! SELECT TIE BAR ELEMENTS NSLE ! SELECT TIE BAR NODES NSEL,U,NODE,,207,99207,1000 ! DESELECT CENTER NSEL,U,NODE,,361 ! DESELECT TOP OF FLANGE D,ALL,ROTX,0,0,,,ROTZ ! HOLD ROTATIONS ON TIE BARS ESEL,ALL

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 33 of 40 NSEL,ALL

/COM,

/COM, _____________________________________

/COM, APPLY PRYING FORCES DUE TO CORE BARREL SPRING AND CORE SUPPORT LOAD

  • IF,Fspr+Fcsl,GT,1.0,THEN
  • DO,I,1,NT F,131+(I-1)*1000,FZ,-(Fspr+Fcsl)/2 F,132+(I-1)*1000,FZ,-(Fspr+Fcsl)/2 F,201+(I-1)*1000,FZ,+Fspr/2 F,202+(I-1)*1000,FZ,+Fspr/2
  • ENDDO
  • ENDIF

/COM,

/COM, _____________________________________

/COM, PUT SPECIAL BOUNDARY CONDITIONS ON VESSEL FOR PARTIAL MODELS

  • IF,NT,LT,NV,THEN
  • IF,ARG1,LT,0.5,THEN ! USE MIRROR SYMMETRY B.C.s

/COM, DELETE EXTRA ELEMENTS AND NODES BEYOND LAST STUD EDELE,(NT-1)*1000+1,(NT-1)*1000+499

/COM, DO SOME NODAL CLEANUP NSLE,U NDELE,ALL NSEL,ALL

/COM, CHANGE REALS ON CUTTING PLANES ESEL,S,ELEM,,501 ESEL,A,ELEM,,501+(NT-1)*1000 EMODIF,ALL,REAL,3 ESEL,S,ELEM,,503,512 ESEL,A,ELEM,,503+(NT-1)*1000,512+(NT-1)*1000 EMODIF,ALL,REAL,5 ESEL,ALL NSEL,S,NODE,,1,1000 NSEL,A,NODE,,1+(NT-1)*1000,NT*1000 NSEL,U,NODE,,204,99204,1000 D,ALL,UY NSEL,ALL

  • IF,Fspr+Fcsl,GT,1.0,THEN F,131,FZ,-(Fspr+Fcsl)/4 F,132,FZ,-(Fspr+Fcsl)/4 F,201,FZ,+Fspr/4 F,202,FZ,+Fspr/4 F,131+(NT-1)*1000,FZ,-(Fspr+Fcsl)/4 F,132+(NT-1)*1000,FZ,-(Fspr+Fcsl)/4 F,201+(NT-1)*1000,FZ,+Fspr/4 F,202+(NT-1)*1000,FZ,+Fspr/4
  • ENDIF
  • ELSE ! USE CYCLIC SYMMETRY B.C.s

/COM, GET RID OF EXCESS ELEMENTS EDELE,(NT-1)*1000+1,(NT-1)*1000+350

/COM, SWING LAST PLANE AROUND TO 0 DEGREES NSEL,S,NODE,,NT*1000+1,(NT+1)*1000 CSYS,21 NMODIF,ALL,,0 NSEL,A,NODE,,1,1000 NSEL,U,NODE,,164,204,40 NROTATE,ALL CPINTF,ALL,0.001 NSEL,S,NODE,,NT*1000+1,(NT+1)*1000 NMODIF,ALL,,NT*360/NV NSEL,ALL NROTATE,ALL

/COM, BRING BACK LAST PLANE OF ELS.

ENGEN,(NT-1)*1000,2,(NT-1)*1000,1,350,1 ! COPY AROUND CIRCLE

/COM, FIX UP COUPLES ON EDGE PLANES CP,1,,NT*1000+164,NT*1000+204 CP,101,,NT*1000+164,NT*1000+204 CP,1501,UZ,164,NT*1000+164 CP,1502,UZ,204,NT*1000+204

  • ENDIF
  • ENDIF

/COM, Define a few components for later use

  • USE,CMMAKER,201,500,'NHEAD','EHEAD'
  • USE,CMMAKER,1,200,'NVESSEL','EVESSEL'
  • USE,CMMAKER,221,500,'NHEADR','EHEADR'

/COM, Define pressure surfaces for PSOLV macro

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 34 of 40 NSEL,S,NODE,,1,99999,10

/COM, Select additional nodes which form crevice between flanges out to the

/COM, inner o-ring NSEL,A,NODE,,161,99999,1000 NSEL,A,NODE,,162,99999,1000 NSEL,A,NODE,,163,99999,1000 NSEL,A,NODE,,201,99999,1000 NSEL,A,NODE,,202,99999,1000 NSEL,A,NODE,,203,99999,1000 CM,PSURF,NODE NSEL,ALL SHPP CHECK

  • END

/COM,

/COM, ----------------------------------------------------------------------------------

/COM, END GEOMETRY MACRO

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM,

/COM,

/COM,

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM, CREATE CMMAKER MACRO

/COM, ----------------------------------------------------------------------------------

/COM,

  • CREATE,CMMAKER NSEL,NONE ESEL,NONE
  • DO,I,0,(NT-1)*1000,1000 NSEL,A,NODE,,ARG1+I,ARG2+I
  • IF,I,EQ,(NT-1)*1000,THEN
  • IF,NT,LT,NV,EXIT
  • ENDIF ESEL,A,ELEM,,ARG1+I,ARG2+I
  • ENDDO CM,ARG3,NODE CM,ARG4,ELEM NSEL,ALL ESEL,ALL
  • END

/COM,

/COM, ----------------------------------------------------------------------------------

/COM, END CMMAKER MACRO

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM,

/COM,

/COM,

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM, CREATE GEOMCLUP MACRO

/COM, ----------------------------------------------------------------------------------

/COM,

  • CREATE,GEOMCLUP CPDELE,ALL,ALL CMDELE,NHEAD CMDELE,EHEAD CMDELE,NVESSEL CMDELE,EVESSEL CMDELE,NHEADR CMDELE,EHEADR EDELE,ALL NDELE,ALL
  • END

/COM,

/COM, ----------------------------------------------------------------------------------

/COM, END CMMAKER MACRO

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM,

/COM,

/COM,

/COM, **********************************************************************************

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 35 of 40

/COM, **********************************************************************************

/COM, CREATE ENDPOST MACRO

/COM, ----------------------------------------------------------------------------------

/COM, RLIST columns as follows:

/COM, RLIST(J,1) = Flange Displ. last pass

/COM, RLIST(J,2) = Stud Initial Elongation Real Constant

/COM, RLIST(J,3) = Stud Final Membrane Stress

/COM, RLIST(J,4) = Stud Max. Membrane+Bending Stress

/COM, RLIST(J,5) = Maximum Membrane Stress during any pass

/COM, RLIST(J,6) = Pass Number at which Max. Membrane Stress Occurs

/COM,

/COM, RLIST(J,7) = Angular Rotation of Upper Flange (radians)

/COM, RLIST(J,8) = Angular Rotation of Lower Flange (radians)

/COM, RLIST(J,9) = Inner O-ring separation

/COM,

/COM, RLIST(J,10) = Force on Contact Link Element

/COM, RLIST(J,11) = Global X Shear Force on Coupled Set

/COM, RLIST(J,12) = Global Y Shear Force on Coupled Set

/COM,

/COM, RLIST(J,13) = Mu Required to Prevent Flange Mating Surf. Slide

/COM, RLIST(J,14) = Mu Required to Prevent Flange Stud Washer Slide

/COM,

/COM, Cut Plane Stress Intensities:

/COM, Line 1 - Vessel Far Field Cut Plane (RLIST(J,15) to RLIST(J,19))

/COM, RLIST(J,15) = Linearized SI at Inner Surface

/COM, RLIST(J,16) = Linearized SI at Center of Surface (Membrane SI)

/COM, RLIST(J,17) = Linearized SI at Outer Surface

/COM, RLIST(J,18) = Total SI at Inner Surface

/COM, RLIST(J,19) = Total SI at Outer Surface

/COM,

/COM, Line 2 - Vessel Local Cut Plane - Lower (RLIST(J,20) to RLIST(J,24))

/COM, Line 3 - Vessel Local Cut Plane - Middle (RLIST(J,25) to RLIST(J,29))

/COM, Line 4 - Vessel Local Cut Plane - Upper (RLIST(J,30) to RLIST(J,34))

/COM, Line 5 - Head Local Cut Plane - Lower (RLIST(J,35) to RLIST(J,39))

/COM, Line 6 - Head Local Cut Plane - Middle (RLIST(J,40) to RLIST(J,44))

/COM, Line 7 - Head Local Cut Plane - Upper (RLIST(J,45) to RLIST(J,49))

/COM, Line 8 - Head Far Field Cut Plane (RLIST(J,50) to RLIST(J,54))

/COM,

  • CREATE,ENDPOST

/COM, Finish by loading results in RLIST

  • DO,J,1,NT ENUMB = J*1000-498 ! El. no. of subject element
  • GET,RLIST(J,3),ELEM,ENUMB,ETAB,MEMBSTRS ! El. membrane stress
  • GET,DUMBOT,ELEM,ENUMB,ETAB,MAXM+BI ! El. membrane+bend stress (I)
  • GET,DUMTOP,ELEM,ENUMB,ETAB,MAXM+BJ ! El. membrane+bend stress (J)

RLIST(J,4) = DUMBOT > DUMTOP

/COM, RSYS,21 NNUM1 = (J-1)*1000+131 ! Node 131 NNUM2 = (J-1)*1000+139 ! Node 139 NNUM3 = (J-1)*1000+211 ! Node 211 NNUM4 = (J-1)*1000+219 ! Node 219 RLIST(J,7) = (UZ(NNUM4)-UZ(NNUM3))/flwdth ! Upper Flange Rotation (radians)

RLIST(J,8) = (UZ(NNUM2)-UZ(NNUM1))/flwdtv ! Lower Flange Rotation (radians)

NNUM1 = (J-1)*1000+164 NNUM2 = (J-1)*1000+204 RLIST(J,9) = UZ(NNUM2)-UZ(NNUM1)+iormo*(RLIST(J,8)-RLIST(J,7))

/COM, ENUMB = (J-1)*1000+501 ! El. no. 501

  • GET,RLIST(J,10),ELEM,ENUMB,ETAB,FORCE ! El. Force CMSEL,S,EHEAD NSEL,S,NODE,,(J-1)*1000+204 FSUM ESEL,ALL NSEL,ALL
  • GET,RLIST(J,11),FSUM,,ITEM,FX ! Global X-Shear Force
  • GET,RLIST(J,12),FSUM,,ITEM,FZ ! Global Z-Shear Force

! RLIST(J,13) is resultant shear divided by link membrane force

  • IF,RLIST(J,10),LT,-1.0,THEN RLIST(J,13) = -SQRT(RLIST(J,11)**2+RLIST(J,12)**2)/RLIST(J,10)
  • ELSE RLIST(J,13) = -1 ! Trap divide by zero
  • ENDIF SLIPCNST = 2*Is/(Ds*SWRC*As) ! Constants in washer slip calc
  • IF,RLIST(J,3),GT,1.0,THEN RLIST(J,14) = SLIPCNST*(RLIST(J,4)-RLIST(J,3))/RLIST(J,3)

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 36 of 40

  • ELSE RLIST(J,14) = -1 ! Trap divide by zero
  • ENDIF

/COM,

/COM, Cut Lines:

  • USE,READSI,11,15,21,15,J ! Cut 1: Nodes 11 to 15 in CSYS 21
  • USE,READSI,61,65,21,20,J ! Cut 2: Nodes 61 to 65 in CSYS 21
  • USE,READSI,71,75,21,25,J ! Cut 3: Nodes 71 to 75 in CSYS 21
  • USE,READSI,81,85,21,30,J ! Cut 4: Nodes 81 to 85 in CSYS 21
  • USE,READSI,261,264,24,35,J ! Cut 5: Nodes 261 to 261 in CSYS 24
  • USE,READSI,271,274,24,40,J ! Cut 6: Nodes 271 to 274 in CSYS 24
  • USE,READSI,281,284,24,45,J ! Cut 7: Nodes 281 to 284 in CSYS 24
  • USE,READSI,351,354,24,50,J ! Cut 8: Nodes 351 to 354 in CSYS 24
  • ENDDO
  • END

/COM, ----------------------------------------------------------------------------------

/COM, END ENDPOST MACRO

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM,

/COM,

/COM,

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM, CREATE PRINTENS MACRO

/COM, ----------------------------------------------------------------------------------

/COM,

/COM, PRINTENS arguments as follows:

/COM, ARG1 = PSAVE Text

/COM, ARG2 = RSAVE Text

/COM, ARG3 = Loop Ending No.

/COM, ARG4 = Free Text Field (e.g., 'Existing')

/COM, ARG5 = Sequence Print Flag (1 = Print Sequence)

/COM,

  • CREATE,PRINTENS
  • DO,K,1,ARG3
  • VWRITE,K

('-----',/,'Tensioning Sequence Iteration ',F2.0)

  • VWRITE,ARG4

('-----',/,A,' Procedure Results -')

  • VWRITE (2/,'Stud Stress Summary',/)
  • VSCFUN,MAXCOL1,MAX, %ARG2%(1, 3,K)
  • VSCFUN,MINCOL1,MIN, %ARG2%(1, 3,K)
  • VSCFUN,AVECOL1,MEAN,%ARG2%(1, 3,K)
  • VSCFUN,MAXCOL2,MAX, %ARG2%(1, 4,K)
  • VSCFUN,MINCOL2,MIN, %ARG2%(1, 4,K)
  • VSCFUN,AVECOL2,MEAN,%ARG2%(1, 4,K)
  • VSCFUN,MAXCOL3,MAX, %ARG2%(1, 5,K)
  • VSCFUN,MINCOL3,MIN, %ARG2%(1, 5,K)
  • VSCFUN,AVECOL3,MEAN,%ARG2%(1, 5,K)
  • VSCFUN,MAXCOL4,MAX, %ARG2%(1,14,K)
  • VSCFUN,MINCOL4,MIN, %ARG2%(1,14,K)
  • VSCFUN,AVECOL4,MEAN,%ARG2%(1,14,K)

/COM, MEMBRANE MEMB+BEND MAX. MEM. REQUIRED

/COM, STRESS STRESS STRESS WASHER MU

  • VWRITE,'MAXIMUM',MAXCOL1,MAXCOL2,MAXCOL3,MAXCOL4 (A7,3X,3(F9.0,3X),3X,F7.4)
  • VWRITE,'MINIMUM',MINCOL1,MINCOL2,MINCOL3,MINCOL4 (A7,3X,3(F9.0,3X),3X,F7.4)
  • VWRITE,'AVERAGE',AVECOL1,AVECOL2,AVECOL3,AVECOL4 (A7,3X,3(F9.0,3X),3X,F7.4)
  • VWRITE (2/,'Head and Head Flange Cut Planes Stress Summary',/)
  • VSCFUN,AVECOL1,MEAN,%ARG2%(1,51,K)
  • VWRITE,AVECOL1

('General Membrane Stress Intensity ',F6.0)

  • VSCFUN,MAXCOL1,MAX,%ARG2%(1,36,K)
  • VSCFUN,MAXCOL2,MAX,%ARG2%(1,41,K)

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 37 of 40

  • VSCFUN,MAXCOL3,MAX,%ARG2%(1,46,K)

MAXCOL4 = MAXCOL1 > MAXCOL2 > MAXCOL3

  • VWRITE,MAXCOL4

('Maximum Local Membrane Stress Intensity ',F6.0)

  • VSCFUN,MAXCOL1,MAX,%ARG2%(1,35,K)
  • VSCFUN,MAXCOL2,MAX,%ARG2%(1,40,K)
  • VSCFUN,MAXCOL3,MAX,%ARG2%(1,45,K)

MAXCOL4 = MAXCOL1 > MAXCOL2 > MAXCOL3

  • VSCFUN,MINCOL1,MAX,%ARG2%(1,37,K)
  • VSCFUN,MINCOL2,MAX,%ARG2%(1,42,K)
  • VSCFUN,MINCOL3,MAX,%ARG2%(1,47,K)

MINCOL4 = MINCOL1 > MINCOL2 > MINCOL3

  • VWRITE,MAXCOL4 > MINCOL4

('Maximum Local Mem + Bend Stress Intensity ',F6.0)

  • VSCFUN,MAXCOL1,MAX,%ARG2%(1,38,K)
  • VSCFUN,MAXCOL2,MAX,%ARG2%(1,43,K)
  • VSCFUN,MAXCOL3,MAX,%ARG2%(1,48,K)

MAXCOL4 = MAXCOL1 > MAXCOL2 > MAXCOL3

  • VSCFUN,MINCOL1,MAX,%ARG2%(1,39,K)
  • VSCFUN,MINCOL2,MAX,%ARG2%(1,44,K)
  • VSCFUN,MINCOL3,MAX,%ARG2%(1,49,K)

MINCOL4 = MINCOL1 > MINCOL2 > MINCOL3

  • VWRITE,MAXCOL4 > MINCOL4

('Maximum Local Stress Intensity ',F6.0)

  • VWRITE (2/,'Vessel and Vessel Flange Cut Planes Stress Summary',/)
  • VSCFUN,AVECOL1,MEAN,%ARG2%(1,16,K)
  • VWRITE,AVECOL1

('General Membrane Stress Intensity ',F6.0)

  • VSCFUN,MAXCOL1,MAX,%ARG2%(1,21,K)
  • VSCFUN,MAXCOL2,MAX,%ARG2%(1,26,K)
  • VSCFUN,MAXCOL3,MAX,%ARG2%(1,31,K)

MAXCOL4 = MAXCOL1 > MAXCOL2 > MAXCOL3

  • VWRITE,MAXCOL4

('Maximum Local Membrane Stress Intensity ',F6.0)

  • VSCFUN,MAXCOL1,MAX,%ARG2%(1,20,K)
  • VSCFUN,MAXCOL2,MAX,%ARG2%(1,25,K)
  • VSCFUN,MAXCOL3,MAX,%ARG2%(1,30,K)

MAXCOL4 = MAXCOL1 > MAXCOL2 > MAXCOL3

  • VSCFUN,MINCOL1,MAX,%ARG2%(1,22,K)
  • VSCFUN,MINCOL2,MAX,%ARG2%(1,27,K)
  • VSCFUN,MINCOL3,MAX,%ARG2%(1,32,K)

MINCOL4 = MINCOL1 > MINCOL2 > MINCOL3

  • VWRITE,MAXCOL4 > MINCOL4

('Maximum Local Mem + Bend Stress Intensity ',F6.0)

  • VSCFUN,MAXCOL1,MAX,%ARG2%(1,23,K)
  • VSCFUN,MAXCOL2,MAX,%ARG2%(1,28,K)
  • VSCFUN,MAXCOL3,MAX,%ARG2%(1,33,K)

MAXCOL4 = MAXCOL1 > MAXCOL2 > MAXCOL3

  • VSCFUN,MINCOL1,MAX,%ARG2%(1,24,K)
  • VSCFUN,MINCOL2,MAX,%ARG2%(1,29,K)
  • VSCFUN,MINCOL3,MAX,%ARG2%(1,34,K)

MINCOL4 = MINCOL1 > MINCOL2 > MINCOL3

  • VWRITE,MAXCOL4 > MINCOL4

('Maximum Local Stress Intensity ',F6.0)

  • VSCFUN,MAXCOL1,MAX,%ARG2%(1,9,K)
  • VWRITE,MAXCOL1 (2/,'Maximum Inner O-Ring Separation is ',F7.5,' inches.')
  • VSCFUN,MAXCOL1,MAX,%ARG2%(1,13,K)
  • VWRITE,MAXCOL1

('Required Mating Surface Mu to Prevent Slip is ',F7.5,'.')

  • IF,ARG5,EQ,1,THEN
  • VWRITE,ARG4

('-----',/,A,' Procedure - Sequence Listing',/)

/COM, SET NO. STUD NO. PRESSURE RETEN. FLAG

  • VWRITE,SEQU,%ARG1%(1,1,K),%ARG1%(1,2,K),%ARG1%(1,4,K)

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 38 of 40 (4(F9.0,3X))

  • ENDIF
  • VWRITE,ARG4

('-----',/,A,' Procedure Results - Stud Stresses',/)

/COM, MEMBRANE MEMB+BEND MAX. MEM. ACHIEVED REQUIRED

/COM,STUD # STRESS STRESS STRESS @ SET NO. WASHER MU

  • VWRITE,SEQU,%ARG2%(1,3,K),%ARG2%(1,4,K),%ARG2%(1,5,K),%ARG2%(1,6,K),%ARG2%(1,14,K)

(F5.0,5X,4(F9.0,3X),2X,F7.4)

  • VWRITE,ARG4

('-----',/,A,' Procedure Results - Flange Contact Forces',/)

/COM, GLOBAL GLOBAL REQUIRED

/COM,STUD # LINK FORCE X SHEAR Z SHEAR FLANGE MU

  • VWRITE,SEQU,%ARG2%(1,10,K),%ARG2%(1,11,K),%ARG2%(1,12,K),%ARG2%(1,13,K)

(F5.0,3X,3(E11.4,2X),2X,F7.4)

  • VWRITE,ARG4

('-----',/,A,' Procedure Results - Flange Deflections',/)

/COM, UPPER FLANGE LOWER FLANGE O-RING

/COM,STUD # ROTATION ROTATION SEPARATION

  • VWRITE,SEQU,%ARG2%(1,7,K),%ARG2%(1,8,K),%ARG2%(1,9,K)

(F5.0,4X,3(E11.4,4X))

CLNO = 0

  • DO,L1,15,50,5 CLNO = CLNO+1 L2 = L1+1 L3 = L1+2 L4 = L1+3 L5 = L1+4
  • VWRITE,ARG4,CLNO

('-----',/,A,' Procedure Results - Cut Line ',F2.0,/)

/COM, INNER CENTER OUTER INNER OUTER

/COM,STUD # LIN. S.I. LIN. S.I. LIN. S.I. TOT. S.I. TOT. S.I.

  • VWRITE,SEQU,%ARG2%(1,L1,K),%ARG2%(1,L2,K),%ARG2%(1,L3,K),%ARG2%(1,L4,K),%ARG2%(1,L5,K)

(F5.0,2X,5(F9.0,3X))

  • ENDDO
  • ENDDO
  • END

/COM, ----------------------------------------------------------------------------------

/COM, END PRINTENS MACRO

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM,

/COM,

/COM,

/COM, **********************************************************************************

/COM, **********************************************************************************

/COM, CREATE PRINTOLR MACRO

/COM, ----------------------------------------------------------------------------------

/COM,

/COM, PRINTOLR arguments as follows:

/COM, ARG1 = RSAVE ARRAY TEXT (e.g., 'RSAVE7')

/COM, ARG2 = Case Type (e.g., 'II')

/COM, ARG3 = Starting Case No.

/COM, ARG4 = Ending Case No.

/COM, ARG5 = Starting Vessel Cut Plane No.

/COM, ARG6 = Ending Vessel Cut Plane No.

/COM, ARG7 = Starting Head Cut Plane No.

/COM, ARG8 = Ending Head Cut Plane No.

/COM,

  • CREATE,PRINTOLR

/COM,

  • IF,ARG2,EQ,'II',THEN INDADD = 5
  • ELSE INDADD = 0
  • ENDIF
  • DO,K,ARG3,ARG4
  • VSCFUN,MAXCOL1,MAX,%ARG1%(1,3,K) $TABLEC2(INDADD+K,2) = MAXCOL1/1000
  • VSCFUN,MINCOL1,MIN,%ARG1%(1,3,K) $TABLEC2(INDADD+K,1) = MINCOL1/1000
  • VSCFUN,AVECOL1,MEAN,%ARG1%(1,3,K)
  • VSCFUN,MAXCOL2,MAX,%ARG1%(1,4,K) $TABLEC2(INDADD+K,3) = MAXCOL2/1000
  • VSCFUN,MINCOL2,MIN,%ARG1%(1,4,K)
  • VSCFUN,AVECOL2,MEAN,%ARG1%(1,4,K)

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 39 of 40

  • VSCFUN,MAXCOL3,MAX,%ARG1%(1,5,K)
  • VSCFUN,MINCOL3,MIN,%ARG1%(1,5,K)
  • VSCFUN,AVECOL3,MEAN,%ARG1%(1,5,K)
  • VSCFUN,MAXCOL4,MAX,%ARG1%(1,14,K)
  • VSCFUN,MINCOL4,MIN,%ARG1%(1,14,K)
  • VSCFUN,AVECOL4,MEAN,%ARG1%(1,14,K)
  • VWRITE,ARG2,K

('-----',/,'Elongation Tolerance Case C',A2,'-',F2.0,/)

  • VWRITE,ARG2

('Level ',A2,' Elongation Tolerance Results - Stud Stresses',/)

/COM, MEMBRANE MEMB+BEND MAX. MEM. ACHIEVED REQUIRED

/COM,STUD # STRESS STRESS STRESS @ SET NO. WASHER MU

  • VWRITE,SEQU,%ARG1%(1,3,K),%ARG1%(1,4,K),%ARG1%(1,5,K),%ARG1%(1,6,K),%ARG1%(1,14,K)

(F5.0,5X,4(F9.0,3X),2X,F7.4)

  • VWRITE,ARG2

('-----',/,'Level ',A2,' Elongation Tolerance Results - Flange Contact Forces',/)

/COM, GLOBAL GLOBAL REQUIRED

/COM,STUD # LINK FORCE X SHEAR Z SHEAR FLANGE MU

  • VWRITE,SEQU,%ARG1%(1,10,K),%ARG1%(1,11,K),%ARG1%(1,12,K),%ARG1%(1,13,K)

(F5.0,3X,3(E11.4,2X),2X,F7.4)

  • VWRITE,ARG2

('-----',/,'Level ',A2,' Elongation Tolerance Results - Flange Deflections',/)

/COM, UPPER FLANGE LOWER FLANGE O-RING

/COM,STUD # ROTATION ROTATION SEPARATION

  • VWRITE,SEQU,%ARG1%(1,7,K),%ARG1%(1,8,K),%ARG1%(1,9,K)

(F5.0,4X,3(E11.4,4X))

CLNO = 0

  • DO,L1,15,50,5 CLNO = CLNO+1 L2 = L1+1 L3 = L1+2 L4 = L1+3 L5 = L1+4
  • VWRITE,ARG2,CLNO

('-----',/,'Level ',A2,' Elongation Tolerance Results - Cut Line ',F2.0,/)

/COM, INNER CENTER OUTER INNER OUTER

/COM,STUD # LIN. S.I. LIN. S.I. LIN. S.I. TOT. S.I. TOT. S.I.

  • VWRITE,SEQU,%ARG1%(1,L1,K),%ARG1%(1,L2,K),%ARG1%(1,L3,K),%ARG1%(1,L4,K),%ARG1%(1,L5,K)

(F5.0,2X,5(F9.0,3X))

  • ENDDO
  • DO,L,ARG7,ARG8
  • VSCFUN,TMPMAXSI,MAX,%ARG1%(1,L*5+13,K)

TABLEC2(INDADD+K,4) = TMPMAXSI > TABLEC2(INDADD+K,4)

  • VSCFUN,TMPMAXSI,MAX,%ARG1%(1,L*5+14,K)

TABLEC2(INDADD+K,4) = TMPMAXSI > TABLEC2(INDADD+K,4)

  • ENDDO
  • DO,L,ARG5,ARG6
  • VSCFUN,TMPMAXSI,MAX,%ARG1%(1,L*5+13,K)

TABLEC2(INDADD+K,5) = TMPMAXSI > TABLEC2(INDADD+K,5)

  • VSCFUN,TMPMAXSI,MAX,%ARG1%(1,L*5+14,K)

TABLEC2(INDADD+K,5) = TMPMAXSI > TABLEC2(INDADD+K,5)

  • ENDDO TABLEC2(INDADD+K,4) = TABLEC2(INDADD+K,4)/1000 TABLEC2(INDADD+K,5) = TABLEC2(INDADD+K,5)/1000
  • ENDDO
  • END

/COM, ----------------------------------------------------------------------------------

/COM, END PRINTOLR MACRO

/COM, **********************************************************************************

/COM, **********************************************************************************

Title:

Hatch Unit 2 Operation with One Stud Out of Service Evaluation Calculation No.: C-3944-00-01 Revision No.:

1 Page 40 of 40 B

SOFTWARE USAGE RECORDS The following table lists the Software Usage Records for the ANSYS analyses performed in support of this calculation. These records are included on the Data Disk D-3944-00-01 [6] in their native electronic formats. This data disk is retained with the Task 3944 project file and is available for on-site review by Southern Nuclear personnel.

File Name Description

_HATCH2.runs Input file which sets run parameters and performs the closure flange evaluation cases.

_MACROS.HATCH2 Input file which sets the finite element model geometry and boundary conditions specific to the Hatch Unit 2 RPV model.

_MACROS.DEI Input file which performs stud tensioning and closure flange analyses.

RESULTS.OUT Formatted output file which contains the stud stress results for the closure flange analysis cases.

_HATCH2.out Full output file generated automatically which includes every ANSYS operation performed throughout the analysis.

HATCH2.err Automatically generated error file which includes all warnings generated during the analysis.

Hatch 2 Stud Primary Stress Calc v0.xlsx Microsoft Excel spreadsheet used to perform stud primary stress calculations.