NG-07-0253, Rev. 1 to Core Operating Limits Report for Cycle 21 Operation

From kanterella
Jump to navigation Jump to search
Rev. 1 to Core Operating Limits Report for Cycle 21 Operation
ML070810436
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 03/14/2007
From: Vanmiddlesworth G
Duane Arnold
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
NG-07-0253
Download: ML070810436 (34)


Text

FPL Enry Duan~e Amddf Energjy Cen~ter' FPL Energy Duane Arnold, LLC 3277 DAEC Road Palo, Iowa 52324 March 14, 2007 NG-07-0253 TS 5.6.5.d Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Duane Arnold Energy Center Docket 50-331 License No. DPR-49 Core Operating Limits Report for DAEC Cycle 21 Operation In accordance with the requirements of Duane Arnold Energy Center (DAEC) Technical Specifications Section 5.6.5.d, a copy of the Core Operating Limits Report (COLR) for Cycle 21 operation of the DAEC is enclosed.

This letter contains no new commitments and no revisions to existing commitments.

Ga Van Middlesworth Site Vice President, Duane Arnold Energy Center FPL Energy Duane Arnold, LLC Enclosure cc:

Administrator, Region Ill, USNRC Project Manager, Duane Arnold Energy Center, USNRC Resident Inspector, Duane Arnold Energy Center, USNRC Ace:

Enclosure to NG-07-0253 DUANE ARNOLD ENERGY CENTER CYCLE 21 CORE OPERATING LIMITS REPORT REVISION 1 32 pages follow

Revision 1 March 2007 Duane Arnold Energy Center Cycle 21 Core Operating Limits Report F

FPL Energy CONTROLLED COPY

0FPL Energy DUANE ARNOLD ENERGY CENTER CYCLE 21 CORE OPERATING LIMITS REPORT Revision 1 March 2007 Prepared by:

i-,

  • JBNudle-ar Fuels#4 Verified by:

/rrt DAEC Reactor Engineering Concurred by:

n/0 1

k

//4 0nager, Licensing

-/

Concurred by:

4 44 CManager, Systems E rineering Reviewed b Approved by:

7 Plant Manager, Nuclear Date: 3!

0-7 Date: 3-

-7tI-Date

Date:-

J7 Date:

-Bi Date:

7 7e7 Date:

7 7

Page 1 of 31 CONTROLLED COPY

1.0 Core Operating Limits Report This Core Operating Limits Report for Cycle 21 has been prepared in accordance with the requirements of Technical Specification 5.6.5 and is applicable to operation for which rated thermal power is 1912 MWt. The core operating limits have been developed using NRC-approved methodology (References 1, 6 and 7) and are established such that all applicable limits of the plant safety analysis are met. The Cycle 21 values for the core operating limits are provided in Section 3.0 of this report.

2.0 References

1.

General Electric Standard Application for Reactor Fuel (GESTAR-II), NEDE-24011 -P-A-1 5, September 2005.

2.

Supplemental Reload Licensing Report for Duane Arnold Energy Center, Reload 20 Cycle 21, 0000-0051-8481-SRLR Rev. 0, December 2006.

3.

Letter from F.R. Lindquist (GNF) to R. Rodriguez (FPL), "Composite MAPLHGRs for New Fuel Designs in DAEC Cycle 21," December 7, 2006.

4.

Duane Arnold Ener-gy Center Cycle 20 Core Operating Limits Report, Revision 0, February 2005.

5.

Duane Arnold Energy Center Asset Enhancement Program, Task T0201:

Power/Flow Map, GE-NE-A22-00100-04-01, Revision 0, February 2000.

6.

General Electric Licensing Topical Report ODYSY Application for Stability Licensing Calculations, NEDC-32992-P-A, DRF A13-00426-00, July 2001.

7.

General Electric Report, Plant-Specific Core-Wide Mode DIVOM Procedure Guideline, GE-NE-0000-0031-6498-RO, June 6, 2005.

Page 2 of 31 CONTROLLED COPY

3.0 Core Operating Limits

1.

Avera-ge Planar Linear Heat Generation Rate (APLHGR) -TS 3.2.1

a. The APLHGR for each fuel type as a function of Planar Average Exposure (PAE) shall not exceed the limiting value shown in Figures 1, 2, 3, 4, 5, 6, 7, and 8 multiplied by the smaller of the two MAPFAC/LHGRFAC factors determined from Figures 9 and 10.
b. During Single Loop Operation (SLO), the actual APLHGR for each type of fuel as a function of planar average exposure shall not exceed the limiting value shown in Figures 1, 2, 3, 4, 5, 6, 7, and 8 multiplied by the smaller of the two MAPFAC/LHGRFAC factors determined from Figures 10 and 11.
c. Tables 1, 2, 3, 4, 5, 6, 7, and 8 provide APLHGR limit values (KW/ft) corresponding to Figures 1, 2, 3, 4, 5, 6, 7, and 8, respectively.

The above APLHGR limits are bounding composite of the actual fuel thermal limits for Maximum Average Planar Linear Heat Generation (MAPLHGR), derived from the Emergency Core Cooling requirements of the Loss-of-Coolant Accident (LOCA) analyses, and the Maximum Linear Heat Generation Rate (MLHGR),

derived from the fuel thermal-mechanical performance limits. The individual MAPLHGR and MLHGR limits, as discussed in the BASES for TS 3.2.1, are modeled in the process computer. The above composite can be used to determine the TS APLHGR limit in the event the process computer is not available.

2.

Minimum Critical Power Ratio (MCPR) - TS 3.2.2

a. The MCPR shall be equal to or greater than the Operating Limit MCPR, which is a function of Core Thermal Power, Core Flow, Fuel Type, and Scram Time (Tau). For Core Thermal Power greater than or equal to 21.7% of rated and less than 40% of rated (21.7% : P < 40%), the Operating Limit MCPR is given by Figure 12. For Core Thermal Power greater than or equal to 40% of rated (P ;> 40%), the Operating Limit MCPR is the greater of either i) The applicable flow-dependent MCPR determined from Figure 13, or.

ii) The appropriate Rated Power MCPR from Figure 14 or 15 [Figure 16 for Recirculation Pump Trip Out-of-Service (RPTOOS); Figure 17 for Turbine Bypass Valves Out-of-Service (TBVOOS); Figure 18 for TBVOOS and RPTOOS), multiplied by the applicable power-dependent MCPR multiplier determined from Figure 12.

b. During SLO with Core Thermal Power greater than or equal to 21.7% of rated, the SLO Operating Limit MCPR is the greater of either:

i) adding 0.02 to the Operating Limit MCPR determined above, or ii) 1.38.

Page 3 of 31 CONTROLLED COPY

4.0 Reload Fuel Bundles FUEL TYPE CYCLE LOADED NUMBER GEl 4-P1 0DNAB398-1 5GZ-1 OOT-1 50-T6-3896 19 16 GEl 4-Pl ODNAB438-12G6.0-1 00T-1 50-T6-2541 19 32 GE1 4-Pl ODNAB44O-14G6.0-1 OOT-1 50-T6-2561 19 16 GE1 4-P1 ODNAB420-16GZ-1 00T-1 50-T6-2814 20 80 GEl 4-P 1 0DNAB438-14G6.0-1 OOT-1 50-T6-2815 20 40 GEI4-P1 0DNAB420-16GZ-1 00T-1 50-T6-2816 20 32 GE14-P1 ODNAB438-12G6.0-1 00T-1 50-T6-2541 21 40 GE14-P1ODNAB410-16GZ-1OOT-150-T6-2919 21 88 GE1 4-Pl 0DNAB407-1 8GZ-1 OOT-1 50-T6-2920 21 24 Note that the bundle GE I4-P 1ODNAB438-12G6.0-1OOT-150-T6-2541 loaded in Cycle 21 is identical to the assembly of the same name that was loaded in Cycle 19.

5.0 Thermal-Hydraulic Stability

a. Continued reactor operation within the "Exclusion Zone" on the power/flow map, as defined on Figure 19, is not permitted. (Surveillance Requirement 3.4.1.2)
b. Continued reactor operation within the "Buffer Zone" on the power/flow map, as defined in Figure 19, is not permitted when the thermal-hydraulic stability monitor (SOLOMON) is not operational.

Please see References 6 and 7 for more information on Thermal-Hydraulic Stability.

Page 4 of 31 CONTROLLED COPY

TABLE I Average Planar Linear Heat Generation Rate (APLHGR) Limit as a Function of Planar Average Exposure for GE14-P1ODNAB398-15GZ-10OT-150-T6-3896 Planar Average APLHGR Exposure Limit (GWdIST)

(kW/ft) 0.00 10.15 0.20 10.19 1.00 1D.27 2.00 10.37 3.00 10.47 4.00 10.58 5.00 10.69 6.00 10.80 7.00 10.91 8.00 11.03 9.00 11.09 10.00 11.10 11.00 11.11 12.00 11.14 13.00 11.07 14.00 11.03 15.00 11.00 17.00 10.93 19.13 10.81 20.00 10.75 25.00 10.18 30.00 9.65 35.00 9.17 40.00 8.72 45.00 8.19 50.00 7.67 55.00 6.10 57.56 4.83 Page 5 of 31 CONTROLLED COPY

TABLE 2 Average Planar Linear Heat Generation Rate (APLHGR) Limit as a Function of Planar Average Exposure for GE14-P1ODNAB438-12G6.0-10OT-150-T6-2541 Planar Average APLHGR Exposure Limit (GWd/ST)

(kW/ft) 0.00 9.76 0.20 9.83 1.00 9.94 2.00 10.08 3.00 10.14 4.00 10.20 5.00 10.27 6.00 10.33 7.00 10.40 8.00 10.47 9.00 10.54 10.00 10.61 11,00 10.68 12.00 10.64 13.00 10.60 14.00 10.56 15.00 10.53 17.00 10.45 19.13 10.32 20.00 10.26 25.00 9.89 30.00 9.50 35.00 9.11 40.00 8.68 45.00 8.21 50.00 7.53 55.00 5.05 55.40 4.85 Page 6 of 31 CONTROLLED COPY

TABLE 3 Average Planar Linear Heat Generation Rate (APLHGR) Limit as a Function of Planar Average Exposure for GE14-P 10DNAB440-14G6.0-10OT-150-T6-2561 Planar Average APLHGR Exposure Limit (GWd/ST)

(kWlft) 0.00 9.52 0.20 9.59 1.00 9.68 2.00 9.79 3.00 9.91 4.00 10.03 5.00 10.12 6.00 10.19 7.00 10.27 8.00 10.34 9.00 10.42 10.00 10.50 11.00 10.57 12.00 10.53 13.00 10.50 14.00 10.48 15.00 10.46 17.00 10.41 19.13 10.30 20.00 10.25 25.00 9.89 30.00 9.51 35.00 9.12 40.00 8.69 45.00 8.21 50.00 7.50 55.00 5.02 55.33 4.86 Page 7 of 31 CONTROLLED COPY

TABLE 4 Average Planar Linear Heat Generation Rate (APLHGR) Limit as a Function of Planar Average Exposure for GE14-Pl 0DNAB420-16GZ-1 OOT-150-T6-2814 Planar Average APLHGR Exposure Limit (GWd/ST)

(kW/ft) 0.00 9.70 0.20 9.74 1.00 9.82 2.00 9.92 3.00 10.03 4.00 10.15 5.00 10.26 6.00 10.39 7.00 10.51 8.00 10.64 9.00 10.77 10.00 10.90 11.00 11.02 12.00 11.02 13.00 11.00 14.00 10.97 15.00 10.94 17.00 10.87 19.13 10.75 20.00 10.71 25.00 10.26 30.00 9.80 35.00 9.34 40,00 8.78 45.00 8.23 50.00 7.69 55.00 5.74 56.75 4.86 Page 8 of 31 CONTROLLED COPY

TABLE 5 Average Planar Linear Heat Generation Rate (APLHGR) Limit as a Function of Planar Average Exposure for GE1 4-P1 0DNAB438-14G6.0-1 0OT-1 50-T6-2815 Planar Average APLHGR Exposure Limit (GWdIST)

(kW/ft) 0.00 9.37 0.20 9.46 1.00 9.57 2.00 9.72 3.00 9.84 4.00 9.96 5.00 10.08 6.00 10.21 7.00 10.33 8.00 10.40 9.00 10.47 10.00 10.53 11.00 10.60 12.00 10.55 13.00 10.51 14.00 10.47 15.00 10.44 17.00 10.38 19.13 10.28 20.00 10.23 25.00 9.88 30.00 9.50 35.00 9.10 40.00 8.67 45.00 8.20 50.00 7.51 55.00 5.03 55.36 4.85 Page 9 of 31 CONTROLLED COPY

TABLE 6 Average Planar Linear Heat Generation Rate (APLHGR) Limit as a Function of Planar Average Exposure for GE14-Pl ODNAB420-16GZ-1 00T-1 50-T6-2816 Planar Average APLHGR Exposure Limit (GWd/ST)

(kW/ft) 0,00 9.69 0.20 9.73 1.00 9.81 2.00 9.91 3.00 10.02 4.00 10.14 5.00 10.25 6.00 10.37 7T00 10.50 8.00 10.62 9.00 10.75 10.00 10.88 11.00 11.00 12.00 11.00 13.00 10.97 14.00 10.94 15.00 10.91 17.00 10.84 19.13 10.73 20.00 10.69 25.00 10.26 30.00 9.80 35.00 9.34 40.00 8.78 45.00 8.22 50.00 7.69 55.00 5.73 56.73 4.87 Page 10 of 31 CONTROLLED COPY

TABLE 7 Average Planar Linear Heat Generation Rate (APLHGR) Limit as a Function of Planar Average Exposure for GE1 4-P1 ODNAB410-16GZ-1 00T-1 50-T6-2919 Planar Average APLHGR Exposure Limit (GWd/ST)

(kW/ft) 0.00 9.44 0.20 9.49 1.00 9.59 2.00 9.73 3.00 9.87 4.00 10.01 5.00 10.16 6.00 10.32 7.00 10.48 8.00 10.63 9,00 10.77 10.00 10.91 11.00 11.02 12.00 11.04 13.00 11.02 14.00 11.01 15.00 11.01 17.00 10.97 19.13 10.87 20.00 10.83 25M00 10.38 30.00 9.85 35.00 9.23 40.00 8.64 45.00 8.10 50.00 7.59 55.00 6.09 57.37 4.89 Page 11 of 31 CONTROLLED COPY

TABLE 8 Average Planar Linear Heat Generation Rate (APLHGR) Limit as a Function of Planar Average Exposure for GE14-P10DNAB407-18GZ-100T-1 50-T6-2920 Planar Average APLHGR Exposure Limit (GWd/ST)

(kW/ft) 0.00 9.38 0.20 9.43 1.00 9.53 2.00 9.66 3.00 9.80 4.00 9.95 5.00 10.10 6.00 10.26 7.00 10.42 8.00 10.57 9.00 10.71 10.00 10.82 11.00 10.93 12.00 10.93 13.00 10.91 14.00 10.84 15.00 10.78 17.00 10.65 19.13 10.52 20.00 10.46 25.00 10.05 30.00 9.60 35.00 9.15 40.00 8.60 45.00 8.06 50.00 7.55 55.00 5.30 55.93 4.83 Page 12 of 31 CONTROLLED COPY

APLHGR vs Planar Average Exposure G E14-P1ODNAB398-15GZ-1OOT-150-T6-3896 14.0 13.0 12.0 4r11.0 0

§

  • loe 0

=

10.0 z=

E=

o 5

9.0-CC o

m 0 '

7.0-6.0 5.0 4.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Planar Average Exposure (GWdIST)

Figure 1 Page 13 of 31

APLHGR vs Planar Average Exposure GE14-P1ODNAB438-12G6.0-10OT-150-T6-2541 0

0z 0

m 0

0Mu a-CL (D

4-,

E 4)

C 0

Cu 1~

0)

C 4)0 Cu 4)=

14.0 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 Planar Average Exposure (GWdIST)

Figure 2 70.0 Page 14 of 31

APLHGR vs Planar Average Exposure GE14-PIODNAB440-14G6.0-1OOT-150-T6-2561 14,0 13.0 12.0

  • . 11.0 0
ýL 10,0 0

9,.0 o

4 6.0 5.0 4.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Planar Average Exposure (GWdIST)

Figure 3 Page 15 of 31

APLHGR vs Planar Average Exposure GE14-PIODNAB420-16GZ-10OT-150-T6-2814 00z-q 0

m 00 C-4) co flU S

a, C

0 05-a, C

a, 4-'U C) 14.0 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 0.0 10.0 20.0 30.0 40.0 50,0 60.0 Planar Average Exposure (GWdIST)

Figure 4 70.0 Page 16 of 31

APLHGR vs Planar Average Exposure GE14-Pl ODNAB438-14G6.O-1 OOT-150-T6-281 5 0

0z=4 0

I-m 0

0

-o 0

14.0 13.0 12.0 11.0 10.0 9.0 8.0 7.0 I.

.7 T

6.0 5.0 4.0 0.0 0.0 10.0 20.0 30.0 40.0 Planar Average Exposure (GWd/ST)

Figure 5 50.0 7

60.0 Page 17 of 31

APLHGR vs Planar Average Exposure GE14-PIODNAB420-16GZ-1OOT-160-T6-2816 00 z.-I 0

m 00 I-.

0 0

I-0 0

0 0I-0 0

0 0

0U..

0 0

00 14.0 13,0 12.0 11.0 10,0 9.0 8.0 7.0 6.0 5.0 4.0 0.0 10.0 20.0 30.0 40.0 50,0 60.0 Planar Average Exposure (GWdIST)

Figure 6 70.0 Page 18 of 31

APLHGR vs Planar Average Exposure GE14-PIODNAB410-16GZ-10OT-150-T6-2919 14.0 13.0 12.0 11.0 o

gi 0

10.0 u

=

0 1

9.0 r-0.2 m

06 ro g~

7.0 6.0-5.0 4.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 Planar Average Exposure (GWdIST)

Figure 7 Page 19 of 31

APLHGR vs Planar Average Exposure GE14-Pl1ODNAB407-18GZ-10 OT-1 50-T6-2920 0

0z p-0 m

0o a.

4)

E CD 14.0 13.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 Planar Average Exposure (GWd!ST)

Figure 8 70.0 Page 20 of 31

Flow Dependent LHGR and MAPLHGR Multipliers 1.10 Note:

For single loop operation, MAPFAC(f) is determined 1.00 using Figure 11 f

0.90 0

o Z

<0.80 o ° 0

T*

For F < 75.8%

0,60.

LHGRFAC(f) = 0.006769 X F + 0,4869 MAPFAC(f) = 0.006769 X F + 0.4869 For F a 75.8%

LHGRFAC(f) = 1.0 MAPFAC(f) = 1.0 0.50 where:

F = Core Flow in % of Rated 0.40 0

10 20 30 40 50 60 70 80 90 100 Core Flow (% rated)

Figure 9 Page 21 of 31

Power Dependent LHGR and MAPLHGR Multipliers 1.10 1.00 0.90 00 0

U.

0a 0.80 0.70 0.60 SP *86,7%

I S40%5P<8,< e For P <21.7% No Thermal Umits Required For 21.7% S P < 26% and F r 50%

LHGRFAC(p) = 0.55 + 0.014 X (P - 26%)

00 MAPFAC(p) - 0.55 + 0.014 X (P - 26%)

For 21.7% 5 P < 26% and F > 50%

LHGRFAC(p) = 0.50 + 0.016 X (P - 26%)

260%1:5 P < 40%

MAPFAC(p) = 0.50 + 0.016 X (P - 26%)

- tFlow *;50%

}

HRA~)=078+0058 P*4%

For 26% s P < 40% and Fs 5o0%

LHGRFAC(p) = 0.706 + 0.005286 X (P - 40%)

MAPFAC(p) = 0.708 + 0.005286 X (P -40%)

For 26% z P < 40% and F > 50%

LHGRFAC(p) = 0.58o + 0.006786 X (P - 40%)

MAPFAC(p) = 0.581 + 0.005786 X (P -40%)

For 40% s P < 86.7%

21.7%:5 P < 26%

LHGRFAC(p) = 0.952 + 0.005225 X (P - 86.7%)

Flow r. 50%

26MAPFAC(p)

= 0.952 + 0.005225 X (P - 86.7%)

Flow > 50%

For P ! 86.7%

LHGRFAC(p) = 1.00 MAPFAC(p) = 1.00 where:

P = Core Power In % of Rated 21.7 %/.

+/-

Pý <.2 26 F = Core Flow in % of Rated Flow > 50%

0.50 0.40 0

10 20 30 40 50 60 Core Thermal Power (% rated)

Figure 10 70 80 90 100 Page 22 of 31

Flow Dependent MAPLHGR Multipliers Single Loop Operation 1.10 1.00 0.90 00z 0.80 m

2 V

0.70 -

00 0.60 For F < 34.5%

MAPFAC() = 0.006769 X F + 0.4869 For F Ž 34.5%

MAPFAC(f) = 0.72 0.50 where:

F = Core Flow in % of Rated 0.40 0

10 20 30 40 50 60 70 80 90 100 Core Flow (% rated)

Figure 11 Page 23 of 31

Power Dependent MCPR Limits 0-0.)

0J 3.60 3.40 3.20 3.00 2.80 2.60 2.40 2.20 2.00 1.80

+

1-21.7% S P < 26%

Flow> 50%

0 0

z 0

0 0

_ 217%1P<26%

F low *5 50%

I260%

q FP < 40%

For P < 21.7% No Thermal Limits Required For 21.7% < P < 26% and F > 50%

OLMCPR(p) = 3.00 + 0.100 X (26 - P)

For 21.7% < P < 26% and F : 50%

OLMCPR(p) = 2.48 + 0.070 X (26 - P)

For 26% s P < 40% and F - 50%

OLMCPR(p) = 2.03 + 0.015 X (40 - P)

For 26% s P < 40% and F s 50%

OLMCPR(p) = 1.83 + 0,00929 X (40 - P)

For 40% s P < 45%

K(p) = 1.28 + 0.0134 X (45 - P)

For 45% i P < 80%

K(p) = 1.15 + 0.00867 X (60 - P)

For P 2! 60%

K(p) 1.0 + 0,00375 X (100 - P) where:

OLMCPR(p) = Power Dependent MCPR Operating Limit K(p) = Power Dependent MCPR Multiplier P = Core Power In % of Rated F = Core Flow In % of Rated 26% P<40%

Flow s60%

1.60 1.40 1.20 1.00 I

I I

I I

[

I I

Note: Y-axis Numbers Represent (a)

OLMCPR(p) for 21.7% < P < 40%

(b)

K(p) for P > 40%

+

~

f

+/-I 0

10 20 30 40 50 60 Core Thermal Power (% rated)

Figure 12 70 80 90 100 Page 24 of 31

Flow Dependent MCPR Limits 1.55 I

For 30% q F! ;73.4%

MCPR(f) = -0.00576 X F + 1.693 1.50 For F > 73.4%

MCPR(t) = 1.27 where:

F = Core Flow In % of Rated 1.40 00 Z1.35 0; r o

r 1,30 0

0 1.25 1.20 1.15 1.10 0

10 20 30 40 50 60 70 80 90 100 Core Flow (% rated)

Figure 13 Page 25 of 31

MCPR vs Scram Time (Tau)

BOC to 13470 MWd/ST Cycle Exposure Option B Option A 1.38 1.37 0

0Z 1 36 z

1.35 0

0 ILI 1,34 1.33 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0,8 0.9 1.0 Tau Figure 14 Page 26 of 31

MCPR vs Scram Time (Tau) 13470 MWdIST to EOC Cycle Exposure Option B Option A 1.44 1.43-0 0

=

1.42 So_

1=

o O 1.41 0

1.40 1.39 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Ta u Figure 15 Page 27 of 31

MCPR vs Scram Time (Tau)

RPTOOS Option B Option A 1.64 1.62 1.60 0

0 z

0 I-00 0<

1.58 1.56 a.

O 1.54 1.52 1.50 1.48 1.46 1.44 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Tau 1.0 Figure 16 Page 28 of 31

MCPR vs Scram Time (Tau)

TBVOOS Option B Option A 1.48 1.47 -

0 0o rn a

o 1.45 0

1.44-1.43 0.0 0.1 0.2 0.3 0,4 0.5 0.6 0.7 0.8 0.9 1.0 Tau Figure 17 Page 29 of 31

MCPR vs Scram Time (Tau)

TBVOOS & RPTOOS Option B Option A 1,68 1.64 00z 0

00

-u 1.60 a.

Q1.56 1.52 1.48 1.44 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Tau 1.0 Figure 18 Page 30 of 31

DAEC Stability Power/Flow Map Cycle 21 - 1912 MWth 110 100 90 80 0) 0 0

0 D.

0=

o-0 70 60 50 40 30 20 10 0

L _

K--

~LfL--44+

1 I i i...

..... T_

i j_

Iy i-L.........T f

L f.I.. L_

I_ I.I..

M E L L L A L im it Zone

-- ~

(100.6%)

Exclusion Buffer Zone 96% Load Line N O T E : C o n t i n u e d o p e r a t i o n a b o v e t h e MELLLA limit or beyond the core flow limit is not allowed. Take action to exit the re g io n im m e d ia te ly.

It-

£ V r

ii u*

-pp e

- ~

7.. - v---

- -.. -}--,

._.Tt :

f i

.- 52.3%1 Load Line L

Core Flow Limit

_k I

Natural Circulatlon Line"f-:-b 4 1.

.- Minimum Pump Speed Lo

_ -, PrtctoLn 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 L

1100 1000 900 800 2

0 700 600 500 400 300 200 100 0

0 5

10 15 20 25 30 35 40 45 50 Core Flow (Mlbihr)

Figure 19 Page 31 of 31