ML20199J830
| ML20199J830 | |
| Person / Time | |
|---|---|
| Site: | Comanche Peak |
| Issue date: | 11/21/1997 |
| From: | Brozak D, Choe W, Maier S TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC) |
| To: | |
| Shared Package | |
| ML20199J824 | List: |
| References | |
| ERX-97-002, ERX-97-002-R00, ERX-97-2, ERX-97-2-R, NUDOCS 9711280243 | |
| Download: ML20199J830 (17) | |
Text
. _ _ _
1I ERX 97 002, Rev. O h
CPSES UNIT 2 CYCLE 4 CORE OPERATING LIMITS REPORT November 1997 l
\\
H U h+
~
Prepared:
e Date:
Daniel E. Brozak Reactor Physics u [As /d77 Approved:
Date:
Stephen H. Maier Reactor Physics Supervisor I
Approved:
M Date: _
W Ne G. C #
Safety Ana sis Manager 9711280243 971124' PDR ADOCK 95000446 P
- PDR,
DISCLAIMER i
f The information contained in this report was prepared for the specific requirement J
of Texas Utilities Electric Company (TUEC), and may not be appropriate for use in situations other than those for which it was specifically prepared. TUEC P;'0VIDES NO WARRANTY HEREUNDER EXPRESS OR IMPLIED, OR STATUTORY,.OF ANY KIND OR NATURE l
WHATSOEVER, REGARDING THIS REPORT OR ITS USE. INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
t
-By maki19 this report available, TUEC does not authorize its use by others, and any such use is forbidden except with the prior written approval of TUEC. Any such written approval shall itse'.f be deemed to incorpcrate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall TUEC have any i
liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.
j-Y
^
ii
.i TABLE OF CONTENTS =
DISCLAIMER
~11
-111 TABLE OF CONTENTS LIST OF FIGURES iv 4
SECTION 1.0 CORE OPERATING LIMI1S REPORT 1
2.0-OPERATING LIMITS 2.
2.1 H00ERATOR TEMPERATURE COEFFICIENT 2
2.2 SHUTDOWN R00 INSERTION LIMIT 3-2.3 CONTR L R00 IR ERTION LIMITS 3
O 2.4 AXIAL FLUX DIFFERENCE 3
2.5 HEAT FLUX HOT CHANNEL FACTOR 4
2.6 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR 5
2.7 SHlRDOWN MARGIN 5
y iii
,s
.v
~
COLR for CPSES Unit 2 Cycle 4 LIST OF FIGURES FIGURE PAGE 1
R00 BANK INSERTION LIMITS VERSUS THFRMAL POWER 6
2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERHAL POWER-7 3
K(Z)
NORMALIZED F (Z) AS A FUNCTION OF a
CORE HEIGIT 8
4 W(Z) AS A FUNCTION OF CORE HEIGHT -
(Section 2.5.3(a): HAXIHUH. 0 4.000 HWD/MTU) 9 5
W(Z) AS A FUNCTION OF CORE HEIGiT -
(Section 2.5.3(b): M'XIMUM. 4.000 MWD /MlU E0L) 10 6
W(Z) AS A FUNCTION OF CORE HEIGHT -
(Section 2.5.3(b): 4.000 MWD /MTU) 11 7
W(Z) AS A FUNCTION OF CORE HO GHT -
(Section 2.5.3(b): 10.000 MWO/MTU) 12 8
W(Z) AS A FUNCTION OF CORE HEIGHT -
(Section 2.5.3(b): 18.000 MWD /MTU) 13 iv
COLR for CPSES Unit 2 Cycle 4 1.0
~ CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for.CPSES UNIT 2 CYCLE 4 ilas been prepared to satisfy the requirements of Technical Specification 6.9.1.6.
The Technical Specifications affected by this report are listed below:
I 3/4.1.1.1 Shutdown Margin T, Greater Than 200 F 3/4.1.1.2 Shutdown Margin T,, Less Than or Equal to 200*F 1/4.1.1.3 Moderator Temperature Coefficient 3/4.1.2.2 Flow Paths Operating 3/4.1.2.4 Charging Pimps Operating 3/4.1.2.6 Borated Water Sources Operating 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor 1
1 A.
^
COLR for CPSES Unit 2 Cycle 4 2.0 OPERATING LIMITS The cycle specific parreter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Technical Specification 6.9.1.6b, Items 5, 9, 10, 11, 1 13, 14, 15, 16, 17, 19, and 20. These limits have been determined such that all applicable hmits of the safety analysis are met.
2.1 Moderator Temoerature Coefficient (Specification 3/4.1.1.3) 2.1.1 The Moderator Temperature Coefficient (HTC) limits are:
The BOL/ ARC /HZP KTC shall be less positive than +5 pcm/ F.
l; The E0L/AR0/RTP HTC shall be less negative than 40 pcm/ F.
2.1.2 The HTC surveillance limit is:
The 300 ppc/AR0/RTP MTC should be less negative than or equal to 31 pcm/*F.
where:
BOL stands for Beginning of Cycle Life AR0 stands for All Rods Out HZP stands for Hot Zero THERMAL POWER E0L stands for End of Cycle Lite RTP stands for RATED THERHAL POWER 2
COLR for CPSES Unit 2 Cycle 4 2.2 Shutdown Rod Insertion Lini_t (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.
2.3 Control Rod Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control banks shall be limited in physical insertion as shown in s
Figure 1.
2.4 Axial Flux Difference (Specification 3/4.2.1) 2.4.1 (a) For the burnup range of 0 4,000 MWD /HTU, the AXIAL FLUX DIFFERENCE (A. ) target band is +5%,
12%.
9
('E For the burnup range of 4,000 MWD /HTU to EOL, the AFD target band is +5%,
12% at 100% RTP linearly expanding to +20%, -17% at 50%
RTP. Below 50% RTP, the AFD target band remains constant at
+20%, 17%.
2.4.2 The AFD Acceptable Operation Limits are provided in Figure 2.
COLR for CPSES Unit 2 Cycle 4 4
2.5 Heat Flux Hot Channel Factor- (Specification 3/4.2.2) pm F,(Z) 's
[K(Z)) for P > 0.5 P
. F,"
Fa(Z) 5
[K(Z)] for P s 0.5 0.5 4
where:
P=
THERMAL POWER l-RATED THERM ^'. POWER 2.5.1 F * '= 2.42 -
a i
i.-
l 2.5.2 K(Z) is provided in Figure 3.
2.5.3 (a) Maximum elevation dependent W(Z) values are given in Figure 4.
These W(Z) values are valid for a burrup range of 0 to 4,000 MWD /MTU and are to be used with the AFD target band specified in Section 2,4.1(a).
(b) Maximum elevation dependent W(Z) values are given in Figure 5.
I These W(Z) values are valid for a burnup range of 4,000 MWD /MTU to EOL and are to be used with the AFD target band specified in Section 2,4.1(b). Figures 6, 7, and 8 give burnup dependent values for W(Z) for the-burnup range of 4,000 MWD /MTU to E0L.
I -
Figures 6. 7, and 8 can be used-in place of Figure 5 to interpolate or extrapolate (via a three point fit) the W(Z) at a particular burnup within the burnup ranga of 4,000 MWD /MTU to E0L.
4
COLR for CPSES Unit 2 Cycle _4 2.5.4 - A constant 2% decrease in F margin allowance shall be used to increase:
a Fa'(Z)' for compliance with the 4.2.2.2.f Surveillance Requirement for all cycle burnups.-
2.6 Nuclear Enthalov Rise Hot Channel Factor (Specification 3/4.2.3)
F",
5 F", [1 + PF, (1 P)]
where:
P=
THERHAL N)WER RATED THERMAL POWER 2.6.1 F",=
1.53 0.3 2.6.2 PF,
=
2.7 Shutdown Marain 2.7.1 Shutdown Marain - T.,; Greater Than 200 F (Specifications 3/4.1.1.1, 3/4.1.2.2 3/4.1.2.4. and 3/4.1.2.6)
The SHUTDOWN HARGIN shall be greater than or equal to 1.3% ak/k in MODES 1. 2. 3. and 4.
2.7.2 Shutdown Marair T.,; Less Than or Eaual to 200*F
- (Specification 3/4.1.1.2) a
- The SHUTDOWN MARGIN shall be greater than or equal to 1.3% 4k/k in MODE 5.
5
COLR for CPSES Unit 2 Cycle 4 FIGURE 1 R00 BANK INSERTION LIMITS VERSUS THERMAL POWER 240 iL__
a L..l a_ ;_
t i
l l
I i_
i I
e (81.6.222)
(27.3,222) 220 1
{ h
_b
.A ql _L L l _'_4_
i i
! 4 f '
i i
4 '44 7
l
/
iii r
rr-
+
i:,r m,i
,i i
r,r ii i
_L
!*!'/ !
4
_.L
!I L J '. y I i BANK B l
I '
l
! I i
.F.
J
!j i
i i
i i
j g y-
.q
._p.
.q._
j 7
+
180 11_p
. a_.L
! 1.Ap
_1_I' I
4lI!
T'
_ __1 1
!: AJ-J F+!!'!
A_4+_._
J.E'w
+
n i ++F +,T+ !,F -H4 R
160 r (0.164)+
1 a
!.: L _LL'L aLLp 2 _.._
_4_
. I' _i-p i !
14_ 4
_.._ _}__L_ L1' 4 y
_l i ! U_
L
_L i
i_r(2
,2'6) +
i
-h+
i l !- +14
+-4 +-{_1_l l
ll -i!!
y
,+
E 1,,
3
_{JJJ_ _ty ! !
1_
_t,4_LLL
! !!L 4'
4
_p
_}__q _p
,;_.F
~
l!!~$- k 4:f g
3
. -jy _7 1
_h_ _p
_l EviK C
~ T-
- , i t-r Ft t~ i1'Mii~
~
120 2
1
_ L' '_'
I
/!!L I
1 J4_
. ! LL 11 1
! _t_
S
_)
M
'/J_! !
_j___. _ J!
J_%_ J __
1,_i L
-I,
!!I -r/r !!!
Wr ! ! h- !, cr,
!i l !!
t:
0 A[._._
-_LL A
._L i
-T
! !_T L 2 t'-.
_L i
l I
i i
i t~
. i i
__T.
i1 i
i i
~~
Ti~
r~ aY~- ht---t-i i
i i i i /iiii i
i i
80 8
{I [IY Y!lI +dY l
l ~Y T-~
YY ~-Y~fY YT
~t _p.7_T i;i_
i
~ T~
BANK D
! 1 7;i!
_f. -r..
_ _t-[_~
i 7,
_7 7-
_p_
7_
_p 60
_}4l y.J/_
j j
_1_
j._' ;
_L
_._LL y y_- }- pj j
_,_f(_
4_._
+
40 111 At
!I ti i
4!
_LL.}!_!
J 4 I
l b
ht~t r i b _-Y li
!!i d-H-a j-H!
1 i
20
! 1_ _
.a ! I i 1_J _L L T
['
7'.__.!!!!
! i i
_.4_
1
_t 4 I l
I l
I i
1
! (31.0)'-
0 0
10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED THER"AL POWER NOTES:
1.
Fully withdrawn shall be the condition where control reds are at a position within the interval of 222 and 231 steps withdrawn, inclusive.
2.
Control Bank A shall be fully withdrawn.
6
COLR for CPSES Unit 2 Cycle 4 FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER
~
q___
l t
i 1
I i i
__. ( 17,90)
_ _,(12,90) :. I.
I j
l l j l-p jt1l{j l --+y-_
~
t t I "i
i i
l 1 I i i
((UNACCEPTABLEi i (t[
~ ~I 2_^
_. UNACCEPTABLE OPERATION h
d OPERATION i tY -HT T/ l!
i r
l iiii i I ii,i 80
~
f~
~
h ~ _ m~
-9 g-
-- ACCEPTABLE
-l p jjp-,j m
r,
-j
(
y--
- - q-7 t-rY ti T OPERATION f7 yi-r-g y t-73 4
,__f._ __1_ __j_
i I. !
__L !J_p
- l. '
_f~
l I 4__ _L
_! i__ a_
t._
{ +47__p
_q_
l
_ _q rrr r,
r, : :
i m
i 60
_ _L
__t.
_L L
i L _1_j _ _.
L1
_a__!
_ g_
l p aQ,__ _{__
l
_4 g q! pg_
a_! i r m
2.uc rr 50 I I
.._Ll_l.L
__ _j __
J__1_;._
! ! i I
( 34.50) _
!lI._
(33.50)
' -h
~-f I
Y}i I
j t-Yt T
i i i i
-1 i
i wo 40 i
i i
wm
_a_
____{_9_ y_{_
__ _.9 7 _7_7 p_
_p u
L. 2 i
22 a _i i
~T l
l
-}J y
--A m-r ii i
i 20 j,
d I-i
__.L I
I
~i-i I
i i
i F-~
10 I l L _!
__{_j__
l r
i
- _p
- r ;
t i
L a
c I
I 0
40 30
-20 10 0
10 20 30 40 DEVIA1 ION FROM TARGET AXIAL FLUX DIFFERENCE (*)
7
~
COLR for CPSES Unit 2 Cycle 4 FIGURE 3-K(Z)
NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT
.I1ll 1ll1I (0.0.1.0)
(6.0.1.0) liti 11 3
lll llll lill h 0.9 T.
- d.I. (12.0.0.925)~
I 4___
ll I
i 0.8 il I
i j
j y
5 0.7
=
E
!l.-.
... i ll l
I
.i ill 0.6
- -[ l--
l_
l I
l l
l 0.5
~
_I
..i l.I N
0.4 sE l
l'
}
l l
0.3 l
. _. _ I__
i ll I
i ll 0.2 I
l 1
l
. d--
I 0.1
_ d._
0 O
1 2
3 4
5 6
7 8
9 10 11 12 CORE HEIGHT (FEET) f Ax1al Ax1al Axial Axial E.Je K(Z)
Node K(Z)
Node K(Z)
Node K(Z) 61 0.9250 53 0.9450 45 0.9650 37 0.9850 60 0.9275 52 0.9475 44
- 0. % 75 36 0.9875 59 0.9300 51 0.9500 43 0.9700 35 0.9900 58 0.9325 50 0.9525 42 0.9725 34 0.9925 57 0.9350 49 0.0550 41 0.9750 33 0.9950 56 0.9375 48 0.9575 40 0.9775 32 0.9975 55 0.9400 47 0.9600 39 0.9800 1 31 1.0000 54 0.9425 46 0.9625 38 0,9825 Core Height (ft) = (Node
- 1)
- 0.2 8
)
COLR for CPSES Unit 2 Cycle 4 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT (Section 2.5.3(a): MAXIMUM, 0 4,000 MdD/NTU) 1.300
-1.250 1.200 5
l g1.1E0
,3 g
4 L
--N-
-f 1.100 h
l b
(
1.050 1
1.000 O
1 2
3 4
5 6
7 8
9 10 11 12 i
i BOTTON CORE HEIGHT (FEET)
TOP Axial Axial Axial Axial Node W(Z)
Node W(Z)
Node W(Z)
Node W(7) 41 1.097 30 1.094 19 1.153 52 61 51 1.132 40 1.095 29 1.102 18 1.159 50 1.121 39 1.092 28 1.108 17 1.161
- 49.
1.113 38 1.089 27 1.115 16 1.168 48
-1.107 37 1.085 26 1.120 15 1.172
' 47
'1.102 76 1.080 25 1.126 14 1.177 46 1.099-35 1.076 24 1.130 13 1.183 45 1.097 34 1.074 23
.1.134 12 1.1M '
44 1.097 33 1.075 22 1.138 11 1.192 43 1.099-'
32 1.079 21 1.142 1 10
- 42 1,099 31 1.086 20
-1.147 Core Height (ft) = (Node
- 1)
- 0.2 9
COLR fer CPSES Unit 2 Cycle 4 FIGlRS 5 W(Z) AS A FUNCTION OF CORE HEIGHT (Section 2.5.3(b): MAXIMUN. 4.000 MWu/MTU EOL) 1.307 t
i t
I j
i I
I 1.250
.I l
1.200 i
g 1.150 l
I I
8 A
+
W/
E T
1.100
}
l j --
I 1.050
. __. L._
0 1
2 3
4 5
6 7
8 9
10 11 1E Bu N CORE HEIGfi (FEET)
TOP Axial Axial Axial Axial Node W(Z)
Node W(Z)
Node W(Z)
Node W(Z) 41 1.130 30 1.132 19 1.149 52 61 51 1.129 40 1.132 29 1.141 18 1.152 50 1.117
- 39 1.132 28 1.147 17 1.158 49 1.109 38 1.131 27 1.151 16 1.166 48 1.106 37 1.130 26 1.155 15 1.178 47 1.106-36 1.127 25 1.158 14 1.189 46 1.108:
35 1.123 24 1.1%
13 1.200 45 1.111 A-1.117 23 1.157 12 1.209 44 1.116 33 1.112 22 1.155 11 1.219 43 1.122 32 1.113 21 1.153 1 10 42 1.127_
31 1.121'
_20 1.150 Core Height (ft) = (Node
- 1)
- 0.2 10
COLR for CPSES Unit 2 Cycle 4 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT (Section 2.5.3(b): 4.000 MWD /HTU) 1.300 1.250
___4_
i
__ w 1.200
. { _____.1__
l I
__.L.
_4._
N
_}__ _{.__g
__ ) __
.q_
m:s
'e 2 5
._a_ _A i
_u
_s i
i h
I
_q _
g l_
%z w
4
_hPh
.lD.ph.
Wd els.m N""
1.050
__7,_ __ _ _ _..
1.000 O
1 2
3 4
5 6
7 8
9 10 13 12 BOTTON CORE HEIGHT (FEET)
TOP Axial Axial Axial Axial Hode W(Z)
Node W(Z)
Node W(Z)
Node W(Z) 41 1.113 30 1.1D4 19 1.147 52 61 51 1.129 40 1.112 29 1.112 18 1.152 50 1.117 39 1.111 28 1.118 17 1.158 49 1.109 38 1.110 27 1.123 16 1.165 48 1.104 37 1.107 26 1.129 15 1.172 47 1.101 36 1.104 25 1.134 14 1.179 46 1.100 35 1.098 24 1.138 13
- 1. Y 3 45 1.101 34 1.092 23 1.140 12
- 1. 91 44 1.105 33 1.087 22 1.141 11 1.196 43 1.109 32 1.088 21 1.143 1 10 42 1.112 31 1.094 20 1.144 Core Height (ft) = (Node
- 1)
- 0.2 11
-~ -
COLR for CPSES Unit 2 Cycle 4 K
FIGURE'7-W(Z) AS A FUNCTION OF-f.0id HEIGHT (Section 2.5.3(b): 10,000 WD/MTU) 1.300 1.250 A
.N 6-1.200 m
t
.N j
3r g1.150 3
4, a
j 7
1.100 I
1.050 1.000 0
1 2
3 4
5 6
7 8
9 10 11 12 B0lTOM CORE HEIGHT (FEET)
TOP Axial Ax1al Axial Ax1al Node W(Z)
Node W(Z)
Node W(Z)
Node W(Z) 41 1.120 30 1.120 19 1.149 52 61 51 1.124 40 1.120 29 1.128 18 1.150 50 1.114 39 1.119 28 1.134 17 1.154 49 1.107 38-1.118 27 1.139 16 1.162 48 1.103 37 1.115 26 1.144 15 1.172 47 1.102 36 1.112 25 1.147 14 1.181 46 1.104 35 1.107 24 1.149 13
.1.189 j
45 1.107~
34 1.102 23 1.150 12 1.196 44 1.111 33 1.099 22 1.150 11 1.202 43 1.116 32 1.101 21 1.150 1 10 42 1.119
~1-1.109 20 1.149 4
Core Height (ft) = (Node
- 1)
- 0.2 12
n COLR for CPSES Unit 2 Cycle 4 FJGURE 8 W(Z) AS A FUNCTION OF CORE HEIGHT (Section 2.5.3(b): 18,000 MWD /HTU) 1.300 i
1.250 I
1.250
_ _ {__
l I
_L_
__ L_
N f
l u
\\w-m I
i 4
M
._ 7__
1.100 q_
7_
l I
1.000 0
1 2
3 4
5 6
7 8
9 10 11 12 BOTT0H CORE HEIGHT (FEET)
TOP Axial Axial Axial Axial Node W(Z)
Node W(Z)
Node W(Z:
Node W(Z) 52 61 41 1.130 30 1.132 19 1.149 51 1.122 40 1.132 29 1.141 18 1.150 50 1.114 39 1.132 28 1.147 17 1.156 49 1.108 38 1.131 27 1.151 16 1.165 48 1.106 37 1.130 26 1.155 15 1.178 47 1.106 36 1.127 25 1.158 14 1.189 46 1.108 35 1.123 24 1.158 13 1.200 45 1.111 34 1.117 23 1.157 12 1.209 44 1.116 33 1.112 22 1.155 11 1.219 43 1.122 32 1.113 21 1.153 1 10 42 1.127 31 1.121 20 1.150 Core Height (ft) = (Node
- 1)
- 0.2 13