ML20148F475

From kanterella
Jump to navigation Jump to search
Summary of 770617 Meeting W/Util Re ECCS Performance Evaluation Briefing
ML20148F475
Person / Time
Site: Yankee Rowe
Issue date: 06/22/1977
From: Burger A
Office of Nuclear Reactor Regulation
To:
Office of Nuclear Reactor Regulation
References
NUDOCS 8011050658
Download: ML20148F475 (47)


Text

,/

UNITED STATES

. NUCLEAR REGULATORY COMMISSION d

. p "k'1 } }

j.

WASHINGTON, D, C. 20555 "j

k.N'.

f DOCKET N0. 50-29 DATE

JUN 2 21977 LICENSEE:

Yankee ' Atomic Electric Company (YAEC)

FACILITY:

Yankee-Rowe t

SUMMARY

OF MEETING HELD ON JUNE 17, 1977, FOR BRIEFING ON MATTERS RELATING TO ECCS PERFORMANCE EVALUATION FOR YANKEE-ROWE On June 17, 1977, representatives of YAEC met with the NRC staff to report on matters relating to ECCS perfonnance at Yankee-Rowe.

A list of attendees is attached.

Important highlights of YAEC's presentations and commitments made during the meeting are summ:rized below.

A copy of YAEC's handout which illustrates significant aspects of the presentations are also attached.

On June 9,1977, YAEC shutdown Yankee-Rowe following its discovery of modeling errors in the ECCS performance analysis being done in preparation for obtaining NRC approval to operate Yankee-Rowe with the next Core XIII.

YAEC decided on early shutdown because of difficulties to resolve the analytical uncertainties in the Core XII ECCS performance analysis and to provide more time to accomplish the necessary work in preparation for Core XIII startup.

YAEC described the progressive upgrading of the ECCS which was originally

.i installed at Yankee-Rowe during 1960.

Presently, the ECCS includes q

three 50 percent pumping trains (3 High Pressure Safety Injection and 3 Low Pressure Safety Injection Pumps) capable of being powered from redundant onsite emergency diesel generators.

One ECCS accumulator provides rapid response to large ruptures in the reactor coolant pressure boundary.

Flow from the accumulator begins when the reactor coolant system (RCS) pressure drops below the pressure in the accumulator with the concurrent opening of several swirg check valves in the injection flow path.

The injection flow path separates into four safety injection lines (Yankee-Rowe is a 4-loop reactor) each connected to an RCS cold leg by a thermal sleeve.

Each safety injection line (nominal 4 inch) has a 4 inch check valve and a 4 inch motor operated valve upstream of the check valve.

A 3 inch motor operated valve is downstream of the check valve.

Existing instrumentation permits monitoring of flow in each safety injection line.

The original functional requirements 1

for the 21/2 inch 1.D. thermal sleeve no longer exists.

Prior to R

operation with Core XII YAEC intended to use the motor operated valves to isolate a break in a safety injection line downstream of the check val ve.

A break upstream of the check valve would not result in depressur-ization of the RCS.

Because of single failure implications, YAEC was

[k required to operate Core XII with power removed from the motor operated valves in the safety injection lines and the valves in the open position.

.+

THIS DOCUMENT CONTAINS h

L POOR QUAUTY PAGES

.80110&Og.o g-

(

(

JUN 2 21977 '

YAEC has previously determined in its ECCS performance analysis for Core XII that a break in a safety injection line at the location of the 2 1/4 inch 1.D. thermal sleeve would be the most limiting small break (resulting in highest clad temperature for the spectrum of small breaks).

During the Core XIII ECC performance analysis efforts YAEC discovered that if a break were assumedin the short 4 inch pipe section downstream of the 4 inch check valve in the safety injection line, this would result in a higher peak clad temperature than for the break location at the thermal sleeve.

D While the RCS blowdown characteristics would remain the same (blowdown 1

would still be through the flow resistance of the thermal sleeve), the spill of accumulator and pumped injection water to the containment floor (previously assumed through the 21/4 inch thermal sleeve) would be significantly greater because of the lower flow resistance at the location of the 4 inch break.

e To determine the impact of the modeling error on past operations with Core XII,.YAEC perfonned best estimate calculations using non-conservative assumptions.

YAEC stated that its calculations indicate that a break at the 4 inch section downstream of the 4 inch check valve in a safety injection line -would not have resulted in unacceptable peak clad temperatures, To. correct the analysis error prior to operation with Core XIII, YAEC proposed to restore power to the motor operated valves in the safety injection lines and to assume in the ECCS analysis for Core XIII, isolation of the broken safety injection line (in the 4 inch section downstream of the check valve) within 15 minutes into the accident.

To enhance the performance capability of the ECCS, YAEC had previously proposed modifications involving the addition of an injection delay feature to the ECCS accumulator subsystem.

This proposal is presently under staff review in conjunction with its review of YAEC's Core XIII i

refueling evaluation.

A model change for the large break analysis involving an alternate definition of End of Bypass (E0BY) has also been submitted by YAEC.

The staff has found this model change to be acceptable for use in the Core XIII ECCS performance analysis.

YAEC also intends to propose a model change for the small break analysis involving the use of a heat transfer correlation that more accurately describes heat transfer at low flows.

With regard to YAEC's proposal to reinstate power to themotor operated valvesin the safety injection lines to permit valve closure for preserving-accumulator inventory, the staff cormiented that considerable support would have to be provided to justify operator action (to identify and i

isolete the broken line).

The staff suggested that as an alternative to relying on operator action, YAEC should give thorough consideration to flow balancing by changing the flow resistances as necessary so that the system flows would more closely match the ECCS performance that had previously been considered acceptable.

(

c At the conclusion of the meeting YAEC withdrew its initial proposal to reinstate power to the motor operated valves in the safety injection lines and committed to the following actions for obtaining NRC approval for operation of Yankee-Rowe with Core XIII.

To provide the increased permanent flow resistances in each safety injection line by replacement.of the 4 inch check valves with a n

21/2 inch check valve or by other appropriate means as determined to be suitable and practical.

Provide descriptions and bases for the codifications.

To proceed promptly with the planned ECCS performance verification tests which in part will provide data for determining the added flow resistances needed 5n the safety injection lines.

i.

To submit detailed information in support for the planned model change for the small break analysis involving the pool boiling heat transfer coefficient.

To provide the Core XIII ECCS performance analysis with the approved evaluation models and acceptable model changen The analysis will include two large bre?ks and one small break with the safety injection dealy feature and the added flow restrictions in the Core XIII configuration.

Y.AEC also committed to submit the confirmatory Core XIII ECCS analysis for the entire break spectrum shortly after obtaining NRC approval for Core H

T.III operation.

YAEC stated that because of the anticipated heavy sur.mer demand for electric power, startup with Core XIII is scheduled for August 1,1977.

1 Therefore, YAEC asked for prompt staff review of its subnittals,.

We indicated that in order for us to be responsive, YAEC must tire its submittals of the remaining items so as to allow at least two weeks for staff review,.

In this connection, we pointed out that we consider the small break codel j.

change to be the critical path item in our Core XIII revieu.

Therefore, it j

is necessary for YAEC to make this submittal as soon as possible but not later i

than two weeks from the date of this meeting.

l

/

e Alfred Burger, Project Mcnager Operating Reactors Branch fl Division of Operating Reactors f

Enclosures:

i 1.

List of Attendees Y'.:C i Ludvut D0R:0RBil /

.k 48 urger:lb'p'.. '

o = = +-

cc w/ :.ncls :

su ~ s;;g g, ygg page-i; 6/.22/77 on c's" ),. _h ji}Q]

p NRC l'ODI 318 (9 76) NRCM 0240 W us s. novsawun a

IkN E bbh

(

Meeting Summary for JUN 2 21977 Yankee Atomic Electric Company Docket NRC PDR LOCAL PDk ORB #1 Reading NRR Reading E. G. Case V. Stello K. R. Goller D. Eisenhut A. Schwencer D. Davis G. Lear R. Reid L. Shao B. Grimes W. Butler R. Baer Project Manager Attorney, OELD OI&E (3)

Licensing Assistant Each NRC participant T. B. Abernathy J. R. Buchanan t

w.

(...

MEETING WITH YANKEE ATOMIC ELECTRIC COMPANY CONCERNING YANKEE-R0WE-LIST OF ATTENDEES I.f..

- = -

NRC

l A.~ Burger.

D.' Haverkamp

.?

W. Lazarus

j. ;;.

K. Herring se7 R. Landry V. Rooney M. Chiramal S. Rhow

t N. Anderson K. Parczewski P. DiBenedetto

-... g..

K. Jabbour D. Tondi

.,.s=

F. Nolan R. Woodruff YAEC

--eaeaw J. Thayer EiY J. Consolatti W. Szymaczak

.A. Ladieu J. Chapman T. Keenan J. Turnage rx A. Husain R. Grube R. Shone g

P. Rainey M. Ebert i+.

.E Y#

' - = =

'bbt I.

JUN 2 21977

.l

)

(.

YANKEE R0k'E ECCS PERFOPJiANCE MEETING AGENDA Yankee Atomic Electric Company and Nuclear Regulatory Commission f

June 17, 1977 9:00 A'i Bethesda, Maryland NAME TIME I.

Introduction

............... R. M. Grube 9:00 - 9:10 R. P. Shone 9:10 - 9:30 II.

Rowe ECCS Description.

A.

History q

B.

Current Configuration J. C. Turnage/

9:30 - 10:15 III. LOCA Analysis................... A. Husain A.

Cerc XIII l

1.

Lar;;c Break 2.

Small Break B.

Core XII Imp.'.ications IV.

ECCS Perfor=ance Verification Tests.

P. A. Rainey 10i15 - I'J:30 Break V.

Restoration of Power to Safet'/ Injection Valves.

R. P. Shone /

10:45 - 12:15 F. D. Baxter A.

System History B.

Philosophy of Proposed Chance 1.

Operator Action 2.

Single Failure-Valve Installation C.

Electrical Circuitry Chances 1.

Spurious Valve Motion 2.

Keylock Switches

............ T. D. Keenan 12:15 - 12:30 VI.

Su._ ary.

VII.

Sub-group Discussions (as'needed)

VIII.

NRC and/or YAEC Caucus (as needed)

IX.

Conclusions 6

~ I.z..c. jid6 '

(

n

SUMMARY

s I.

SEQUENCE OF EVENTS LEADING TO SHUTDOWN A.

LOCA analysis associated with Core XIII revealed certain modeling errors.

B.'

Reanalysis of present Core XII configuration was done.to determine modeling error impact on operation.

C.

Conclusion was that shutdown was warranted due to a

analytical uncertainties and to maximize time available for Core XIII work.

II.

PROPOSED MODIFICATIONS FOR POST-CORE XII OPERATION A.

Analytical modifications regarding heat transfer correlations.

B., System Modifications 1.

Restore electrical power to eight safety injection' valves.

2.

Add additional circuitry to effectively preclude spurious valve motion.

3.

Add keylock switches to essentially eliminate the possibility of operator error.

4.

Install safety injection valves in positions upstream of check valve in each injection line to provide redundant isolation capability remote from postulated break location.

O

a.-

(

l s

III.

BASIS OF POSITION FOR RESTORING POWER TO VALVES AND ALLOWING OPERATOR ACTION

~

A.

The restoration of power to the safety injection valves essentially restores the system to its operational mode prior to Core XII, with the addition of protection for:

1.

Spurious. valve motion 2.

Operator error B.

The time required for operator action - 15 minutes is a reasonable time frame within which one can be expected to act, is outside the "immediate action" category, and, in our judgement, is acceptable for licensing.

This is particularly true in view of the fact that:

The need for any operator action exists'only for a small break of the size in question at a very specific location.

All breaks of larger size will be adequately responded to by the system independent of

~

operator action.

C.

The physical separatior of the valves in question from the break location, including the existence of barriers, precludes any d' rect impact on the valves from the LOCA.

The conclusion reached is that the valves, op'erators and wiring remain operable for the required time interval.

~..

e

.....(-

.j

(

ECCS DESCRIPTION

' HISTORY FEATURES OF ORIGINAL SYSTEM (1960)(SEE ATTACHED SKETCH) l 1.

TWO LOW PRESSURES HIGH VOLUME PUMPS.

2.

CHARGING SYSTEM CONSISTING OF THREE 33 GPM POSITIVE DISPLACEMENT PUMPS PROVIDED HIGH PRESSURE INJECTION, t

3.

BACK UP POWER PROVIDED BY TWO OUTSIDE LINES.

4.

SI. PUMPS AND FILL HEADER ROOT VALVES OPENED AUTOMATICALLY ON SI SIGNAL.

5.

OPERATOR ACTION REQUIRED TO CROSS OVER CHARGING FLOW AND

~

TO STRETCH OUT SI WATER INVENTORY.

6.

PROCEDURES PROVIDED FOR. TERMINATING LOCA WITH LOOP l

ISOLATION VALVES.

EARLY MODIFICATIONS

)

1.

ADDED ONE INTERMEDIATE PRESSURE PUMP IN PARALLEL WITH THE

{

LOW PRESSURE PUMP IN 1962.

l l

2.

IN 1970 THE CAPABILITY TO PROVIDE LONG TERM POST ACCIDENT

[

t RECIRCULATION WAS PROVIDED.

THIS SYSTEM FEA'iURED:

A.

THE CAPA31LITY TO WITHSTAND A SINGLE FAILURE OF ONE PUMP OR ONE ACTIVE VALVE.

b B.

THE CAPABILITY TO INCLUDE THE SHUTDOWN COOLING HEAT

{

EXCHANGER AND CLEAN UP OF THE ECCS WATER.

[

j I

i

SI SI SI SI 1

P I-PI-PI-PI-Thermal Sleeve Typical of 4 ki "N-

/

'N PI I

,. I Vapor Container

. =. -- - : :/ -

~-

'I llPSI Pump t

_1_ P1 g

Xo Go m

n "7

~

Safety

  • D PI Injection h

TK 28 LPSI Pumps w#6 7

e i

cd

==m WP sGe ORIGINAL SAFETY INJECTION SYSTDI

c t

...p c !

a.

c..

i

..- s....

g 3,

-. I s,.

r.

  • C c.

c a.

a r

e v

a4 z

r.

/'

/-

<3 6

'q & &-

e.

6

}

e..'

.I

... w e.

m s

~n It n

g

=

i y

Q s.

.l

.i..

..',.. u. i

)

5 5,

i.

4 ur

  • s E.

0 n

~

=- ll g-'?

'i y-d.

w 3

. o

  • ?

13 E j" E'i

=

E--

-g c

g-r

. O.c

(-

f -Q:.

c

.m s.

i-

. =.

='

so

=

5

.,/.T 7\\-

T. T.

I-(

4 i

T, cl,4

~

}.

E s 6 E

E

. i.

4 W

y n s

.g

. l p

.w E

I

==

v c.

.t..

;=

v.. r i.

~:.<

u a

a t; W

7

$.,s w,

g 4.

s, 3

.e.

3

~

Q

  • gdh E

~

TE IE i

y-i s

1.*

r. -

a Ty E

3 r,.'

a.

..v u-

==

  • t

.E

  • 1
  • ~=

.d

+

. s as I..

w n A n

E P e

=

-l 1"

t

.s tw 5

X 1.

5

=t s

{

v n

a a

i e

. ' 'r--

t. t.,, :. 5 i i

=

-r'.

1 p

s.

=.

-~

E; n-I -- 1 0 V-

--=

5,.

s t*

J y,

, :.3

./

r r.

i I g * *. p...:.

v g-

  • 1 o

-s

  • g s

?

a e

~

t

~

E gN.

s p,. [..

s,.

xs W,

.N..

l, g

y W

  • I y

i

.i.

r.

=a

S
    • [

g E.

4; 1

...i

. c-e, # s*

a g

g.

g3 t

1

..t=

1 on

i. 1

.e. ;

e

. i --

s.,

.Y,..

rs.n m aavn

_ _ _ _ _ _ _ _ _ _ _1.,3 r d rC.% ON DOW1TO.

..........s.,,n-c.....clA

___------------y

'9

)

l C.

0PERATOR ACTION WAS REQUIRED TO INITIATE RECIRCULATION.

CURRENT CONFIGURATION FEATURES IN 1971'A MAJOR MODIFICATION TO THE ECCS WAS MADE.- THIS SYSTEM FEATURES:

1.

REDUNDANT ON-SITE EMERGENCY DIESEL GENERATORS.

2.

THREE 50 PERCENT PUMPING TRAINS CAPABLE OF FURNISHING ECC WATER FOR THE FULL RANGE OF BREAKS.

3.

PROTECTION'FOR SINGLE ACT*

~AILURE.

4..

INJECTION FLOW COMMENCES ON CS DEPRESSURIZATION !.E.

MOV'S ARE PASSIVE.

5.

PRESSURIZED ACCUMULATOR.

6.

OPERATIOR ACTION IS GREATLY SIMPLIFIED AND IS REQUIRED IN EARLY PHASE ONLY FOR THE BREAK OF THE SI LINE ITSELF.

FOR CORE XII THE SYSTEM WAS MODIFIED TO PREVEllT SPURIOUS FAILURES AND OPERATOR ERROR.

EARLY PHASE OPERATOR ACTION WAS ELIMINATED.

IN ADDITION'LONG TERM HOT LEG INJECTION WAS PROVIDED TO PREVENT BORON PRECIPITATION.

FOR CORE XIII THE SYSTEM IS BEING, MODIFIED TO DELAY INJECTION DURING THE BLOWDOWN PHASE AND INCREASE FLOW RATES DURING ACCUMULATOR INJECTION.

1 j

r PI PI PI PI

~

O

-O O

~D Thermal Sleeve Tc Tc Typical of 4 Tc Tc 3

7 F) l7 FI,;g F1 F1 l

PI A

PI i

  • 1-j i PIw i

l 9

,.c f

I

,.9

^

  1. E '

4

..f' Pilot Oper.

From

"^"

~

M-

,_ P I Relief Valve N

x 2

~ " ~.. ~

Typical

, 7--

k:3'p -)

[

Lg1--

PI of 3

..m..

l

_.__ Recirc.

PI f

O

~ Recire.

s PI SI Accummulator ggp3r

/

Pumps Safety Injection N

TK 28 PI 1

i f

i LPSI j

j j

Pumps PRESENT SAFETY INJECTION SYSTEM I

_. _ _ _ _ _ _ _ _ _ _ _ _ _... _ _ _.. _,. _ _ _.........___.-..i.._..

m i

RESTORATION OF POWER TO SAFETY INJECTION VALVES' HISTORY

~

THE ECCS SYSTEM IN ITS PRESENT CONFIGURATION WAS ORIGINALLY DESIGNED TO PROVIDE THE CAPABILITY TO ISOLATE FLOW TO AN INDIVIDUAL RC LOOP.

THIS WAS REQUIRED ONLY IN THE CASE OF A RUPTURE OF THE SI BRANCH LINE DOWNSTREAM OF THE CHECK VALVE.

THE CORE XII ECCS ANALYSIS DID NOT ASSUME ISOLATION 0F FLOW TO THE BREAK.

BASED ON THE ASSUMPTION THAT ISOLATION WAS NOT ESSENTI AL, YANKEE PROPOSED TO PROTECT AGAINST OPERATOR ERROR AND SPURIOUS FAILURE BY REMOVING F'0WER FROM THE BRANCH LINE MOTOR OPERATED VALVES.

t PROPOSED CHANGE l

YANKEE INTENDS TO ASSUME ISOLATION OF FLOW TO THE BREAK

-[

IN THE CORE XIII ANALYSIS IN THE CASE OF THE BRANCH LINE i

BREAX DOWNSTREAM OF THE CHECK.

THEREFORE, RESTORATION OF l

POWER TO THE BRANCH LINE VALVES AND THE RE-RECOGNITION i

0F OPERATOR ACTION ARE REQUIRED.

YANKEEPROPOSESTORESTOREPdh!ERTOCS-MOV-536,537,538, l

l 539 AND SI-MOV-22, 23, 24, 25 WHICH WILL PROVIDE REDUNDANT l

CAPABILITY TO ISOLATE THE BROKEN BRANCH LINE, FROM THE CONTROL i

I ROOM.

RESTORATION OF POWER WILL PROVIDE PROTECTION AGAINST i

I

.'s

. s OPERATOR' ERROR.AND SPURIOUS FAILURE'IN ACCORDANCE WITH THE INTENT OF.BTP-18.

ANALYSIS INDICATES-THAT THE OPERATOR HAS 15 MINUTESJTO IDENTIFY AND ISOLATE THE BROKEN BRANCH.

YANKEE FEELS THAT OPERATORACTkONWITHINTHISTIMEFRAMEISJUSTIFIEDBECAUSE:

l '.

OPERATOR ACTION IS REQUIRED ONLY FOR A BREAK OF THE SI LINE DOWNSTREAM OF THE CHECK, AND 2.

NO OTHER SHORT TERM OPERATOR ACTION IS REQUIRED.

IN ADDITION ANKEE PROPOSES'TO PROVIDE IMPROVED RELIABILITY OF 'THIS ISOLATION CAPABILITY BY EITHER OF THE FOLLOWING:

1.

RELOCATE THE DOWNSTREAM VALVES OUTSIDE THE LOOPS.1.E.

REMOTE FROM LOCA IMPACT, OR 2.

INSTALL NEW REPLACEMENT VALVES OUTSIDE THE LOOP.

I t

l s

of wd e

e e

PI PI PI PI

(

-Q

-Q

-Q e.Q I

Et Thermal Sleeve

.s 1

FI' [

F l\\

Fl\\

Ff

~

I PI -

PI fi t* t _f 1%' (

(

40 fD yo 49

\\

t

'. 3, Pil t Oper.

A From

~

-k

' PI.

>.-S-Relief Valve N

~'

ontainer 2

Typical

~

~

oI 3 l.[g' kf';,/k-]

P1 i.

l l

~

~~ T '

. Recire.

EI PI t

- Recirc.

v i

n b

FI

_1

_ py gy.

N Accumuulator g 31 N

-l Safety Injection TK 28 PI 1

~

f f

f

~

LPSI y

j j

M if Pu=Ps e

PRESENT SAFETY IN.IECTION SYSTDI l

, - - - = - -

a

LOCA Ai1ALYSES

~

CORE 13 e LARGE BREAK ANALYSIS

. ECC INJECTION DELAY

~

  • ALTE.RNATE DEFINIT' ION FOR E0BY

- BREAK SPECTRUM STUDY

- BURN-UP STUDY

' REFLOOD INSTABILITY FIX o SMALL BREAK ANALYSIS

  • POOL BOILING HEAT TRANSFER l

I

  • BREAK SPECTRUM STUDY r

- CORE 12 METHOD j

- CORE 13 (WORST BREAK LOCATIOld l

d I

. REMOVAL OF THERMAL SLEEVE RESISTANC CORE 12 0 IMPLICATIONS

+ R'ESULTS AT 67% AND 50% power l

  • lilS-MATCH OF CALCULAfED AND COMPUTED RESULTS.

7

+ TEST DATA RECUIREMENTS 6 3EST ESTIMATE i

i

. ASSUMPTIONS

  • RESULTS t

CORE 13_

o CORE XIII ENVELOPING STUDY l

o EFFECT O'E OPERATOR ACTION f

E j

l

)

I e

RLP4RF/003 '12/05/'150.5 2(

YR-13 0.8 DECLS ELOOD CR EXIT ENT SENS STUDY 6902 o

o CD

_r 3

o -

o 4D

~

u ul i

U) sg r tw co s

a

.s oo j

~

an tu

~

10 3

~o to n:

1 m

o o

L j

o o

e I.

s o

o

.i-4 a

~,

~. >

j I

i i

i i

i i

i 4

n it is 20 24 28 8

4 o

g I.

TIME (SEC)

A D-

YR-13 0.8 DECLS FLOOD CR EXIT ENT SENS STUDY 3287 RLP4RF/003 12/05/7505 4 g

g g

i I

3 3

I I

o Og s

4 3-7

~

O -

LO U

t11

~

(O

~

s o d8 CO

.)

~

~

l 3

'I 00 J,

u_

H til J

ZU

-g h1

~

M o

U I

0 g

o -E i

~

T o

g i

_t i

I I

I I

I 70 4

3 it 16 24 to 31 36 40 o

20.

TIME (SEC) f

')

l

~

l

-j RLP4RF/003 12/05/'7504 @

YR CORE 13 0.8 DECLS FLOOD Cit EX ENT SEN STY 1122 oo i

O 3

~

o o

p o

W v>

s o -

s r8 CD j

s:

__j m

3 I

oo r J

u.

n W

_s zo l

-g I

j w

G' o

o O

i I.

I.

O O

N I

3[

t zo.

24 2

3 i

g To

+

T(t1E (SEC) e 0

.I____..

t i

[

1

, h7:

PROPOSED 1 l

7 rei i

i Average r.

l Relative'

~

i l

Error RMS Error

~

~

i 65.7%

77.2%

Dougall-Rohsenow 19.5 C ', -

Croenveld 5.7

-11,9

-2.9 17*9

'.s l

% ~

Proposed Yankea j

4'; p f,,,

M,

:.g u".3 g?A,%#,jip#$.,h*

d%

~

i, ud u :; sis.%=, n

.da.*sts s

Q}a...

o

  • "8

'.4 w

w:t..)MI.s E'.'.

K 6

~

s.:.gs. A a.

M.g*2f[*,p*-[ **.l

.s M

M g

- pr 'h: u.k

% t w.. ;;..e:y::ssy t,,

, u.g, u$,,c.)a..u.r.m. g.,- c,-

a,, }

p..*g;y-,

,y rt

  • ,:. :.?';.p 3 t.- y. a.... a.* 3,

d,:

s

.MA

. ~.. -

,..i S F P *' '. W W 'a 4eu:(..: O..;,$.Je *:}p,lft

  • A r
$, f. -- t
  • o-g jg*x t

-. e rp it % g*,.W,1c m

  • I'
e:c t'dit

.I '

M:8 M:t*y M

M884 2 N

raine e t, :

y.

= M "W

A gg sgsrA MM

/

id Ij

-b.. t ct if H (MEASURED) f l

g-e

____.R_.-___________.__0________,.

_,Q,,,,

1

.ii...

i a

~

~

sc C'in O

~

N#e

%)

x pa e@g xxz=: :::ca t cFm E-<

a ee;

w.. a o

x C::.

O AT251'h1 T2:ot.'

9_#W m

Q

  • +W Y M

805 W M C'3

.g.p s. a e

ew.=

x ted.r Ey I

dic 9 co c r _- 21 c.

wa e.

g g

H H

A C

l C

g;-

  • .Sy m *.ns M

u.i,.-

m.y wu ww 4

w -s.

c 2~.

G3e &

Q w???C_ '54 x

CD

~

J W * ?.g_ M xict N_u,,f::=a J

yg

- - - - gy g

Mo u3 8

P gg xx 6

C

_J se L

-b J

x) tus W

Z N

i

=

wrewv v. x m

xco usa mx men e xx as l

/

l X

bx gb 1 I A t 1

I 1

i e it i

t t

I t

a iii t

i e

t a

p t ot z_o t ot opt t

J (3SUG) H/H e

4 4

e e

/

e 9

8

?

e 1 E 4 4 I

s s

I a a ii1 1

1 4

5 5 I I i 1

4 5

6 1

i 8

n a

h g

E 4*

m X AM EDE N 104 X

g w ra.h, M

M XM A

W Aw= ' a n._.z.

M

- W un rm W

X

.- m C*.

M H

W C'

ts.

~

t' O

.g.

-v... g g

N x x sammt 6

u e

g3 6.e f %* -.&

O O.

way-t s-o 43 w

h i

J N

b l

-h J

w xx 2

M W

4

~

X m

anst

=

M Mt 5

/

X Mb GI ot pl pl g

g

( 3-313-t'n/019 ) H 9

/

e s

b AMKEE ROWE Eccs it4 7ec.T io N Loop qeosergy

\\

(,,, b v

p 9

ff 9 W ELGoW $"

gO 9

V nea MC.']DR. OPEMTeb VALVE 4" 13 '

VAWE 3es a

41 ft 4x3 1

'IEDU" THER M A L.

S LE E VE rr POSTOLATEb 90 ELBOW t BREAK Ft.o N tNsTRU ME N TATiet)

W 2.

It MOT 0;r. OPERKT6b VALVE 4

'M Mase Ge'r psa &w 4 fre ss.

tS*

3' HEADE P.

Y,fMMINAt.

g// NOMt N AL Y

h y

< Flow

=

r-1.:

4 4

i$

'! +%

1 wes e meeve

kNK5E Rcw

.E.CCS sus-Mopet.

4 6

l 1

AccuMutgrOR O

d

+

9 5

l 8

)

I 3 LOOPS y

a i

i O

e 4

I 6

l 14 eat >ER i

1

,i I

i d

d TUNC.T 1O N l

I I

I l

VOLUME 6

l l

r 1

(

+

~

LOCA ANALYSES, CORE 12.BEST ESTIMATE ASSuxPTIONS

  • AVAILABILITY OF OFF-SITE POWER 0 3 LPSI & 3 HPSI AVAILABLE O CHARGING PUMPS AVAILABLE 0' MAIN COOLANT PUMPS RUNNING UNTIL CAVITATION O STEAM DUMP ON HIGH SECONDARY PRESSURE UNTIL

+

CONTAINMENT ISOLATED i

  • NO UNCERTAINTY ON ANS DECAY CURVE
  • NON-EM HEAT TRANSFER LOGIC
  • MODIFIED HEAT TRANSFER FLOOR s
  • ENVELOPING PIN CONDITION o

e d

.O YR CORE 12 PSEUDO-DEST ESTI!iRTE BLC 100!!N RELnP4/003 12/14/760G 1G/7 o

i i

e i

i i

~

  • J cu

.s.-

N

& l} >=

c 'j U) tL e

ttI o

bk f.j io ~

ff)

!;d I

o t>

6 s

4

.O O

~

L) o 1

I I

l ~

I I

I I

I t0 200 400 600 B00 1000 1200 1400 1G00 1000 2000 TIME (SEC)

O e

n

N L3

~

O

.c4 a

O o

t.O 4

4 I

4 N

L' N

g

.-e N

N 8

..e C

Q c

N O

O

,,e.

M O

C L.)

C.".

o Ov O

O 4

N H

i

.ge.,_

=-..=e.

-.e C

M..

O I

O

=-

La P

fn ymw C.:

~

O

~

J

" td C

O w

  • t b

H d

C d

k,.i oO 4

~

5 0

y 1-w n

'.d 9

&s' Jr:J H

LO 8

w u

C 5%

4#

1oa 5

3 A

s~

m t.,i

?

w c

N b

Og c:

e U

>~

e e

t t

t t

61 Z(

D1 C

S f

3 1 1W

( 1.J ) 12A37 28n1XIW IV03

i p

(

e e

(.oo 8

e i

i i

i i

i u

s.,

9

~

s' o

O N

o

~

a i* 'e ino C

eo N..

o,

,.-c.

C".

1w

~ C.:"

e o.e

'n o

Q N

'r o

a y

0

~

l a

-l o

og c',

n

. >=4 U

.H I-C o

o

,9 W

H Lo a

w us O

lo O

D o

W o,,

co C.

N s

W oo y.

u ou 4

1

.s i

e i

t t

f

O Ot3 003 031 031 CS Ot 3

a e a e

f,-,l,,- - 36>

.n; a: a

.)

.:I n

' a,,u eac n

O e

7

e YR CORE 12 PSEUD 0-CEST ESTIiiRTE GLG'.'D0'!il RCLCP4/003 12/14/"/C03 1G/7 I

I I

I 4

3 3

8 I

..s -

_t 7

~

o -

'.t

^

U Itj (O

O

--ts (G to J

v s

! ~.

O go ts I L. +

Cb T.

.10 3-c 3

u O

C C

N n

t) 4 9

g 1

I t

I i

t I

1 I

f c0 200 400 000 000 1000 1200 1400 1G00 1G00 2000 TIME (SEC) a O

t

YRt!XEE ft0llE CORE 12 P3EUDD-DEST ESTI!!f1TE 2.25 10 St10K

!! =50.0 UTU/l!R-FT2-F g

g g

g _.--.

g g

2400 2300.

2200'.

2100'.

~

2000.

1900.

1:00.

it.

~

1/U0

t. :

[5 1000'.

1500'.

i.:

e, 2:

1400.

i. :

1300.

u.

1200.

1100.'

1000 S00

~

800.

700

~

GOD' i

11'0 1200 O

id0 2d0 3d0 4d0 5d0

-600 7d0 8d0 0d0 10D0-0 TIME (SEC) 1 0G/16/77-

.3

YR CORE 13 SUGK LOCR nc2.25 IllCH ID CL0llan GPECHTOCRELOP4/003 12/14/760.6 15/7 n

c2 I

I i

4 i

e i

I I

N O -

N

~

o o

~O V) n n.o V) to bt

(*

n n_ g o~

C-s 8

~

~

o n

1 1

1 1

1 1

i f

I c0 200 f

400 C00 D00 1030 1200 1400 1CC0 1000 2000 TIliE (SEC) 9

i YR CORE 13 SMBK LOCn na2.25 INCH 10 DLONeu OPERnTORRELAP4/003

}2/14/760615, g

i I

I I

I

_J E

cJ s_

. LL.

mo s

to w

E-

..to w cc a

}--

>c e-.

r ta

e g

o n

g i

I I

I I

I to 200 400 000 000 1000 1200 1400 1G00 1000 2000 LIMr fSEC)

i

.... _. YR CORE 13 SMBK LOCA mm2.25.-INCH 10 OLONun OPERATORRELAP4/003 12/14/7G06 u I--

I g

g i

I I

I 3

/

n r-3 Q

~

)[

70 O

to e

M t.)

ttJ n -

(n u tn g

~

E la

_I 0

o<

tu M

d'$

[

~

n U

'r o

CJ x5 e

1 1

i i

l' t

t i

I c0 200 400 C00 000 1000 1200 1400

~1000

1000, 2000 TIME (SEC) 1

ig 9,

40 e

,I S

N e

LO (D

a

'O o

a e

i e-i i

i i

i N

s Y

w g

N O

g w

=

e.e N

O

.O e

s v

o L

l

_,,)

\\

Y p

O e

o I

e

^

\\

ltu s.

I' 1 O Oo N

=

13

/

t g.,

ZiO O

I _.)

=..

I O

wOW

==

O

.g lw Lt I l

C II iU H.

.w O

l o

=

to i

N 27 d

O O

C U

C U

t M

O c3 o

C 1

LO t

O lt.J o

=

N M

j O

O (d.

J t

t r

t 00C 003 COI 3

COL C09 COS 1

IZMr (32S/W31) ad WQCDU

l l

YRtlMEE R0!!E CORE 13 OPERATOR RCTI0tt T000EE H = 5.0 GTU/itR-FT2-F 2400.

~

2300.

2200'.

2100.

2000.

1900.

1000.

i 1700.

ins Ei 1600.

n

< r.

1:i00.

Is t n.

2:

1400.

Is t e

1300.

nu:

s 1700.

o 1100.

[

i 1000.

~

^

900.

000.

~

  • 100.

c00:

O 100 200 000 400 500 ',.

i i

600 700 000 000 1000 1100 1:'00 TIl1E (SEC)

O e

g m.

g

6.

,, c2 6

s O

..O w

O

_g C

m

'O

    • O CO t&J W

O O

O O

~~ O H

C3 Z

O

, m 9

L y &.

.O c e_.

O b

e,L m

O 3

W u

M g==

bJ O

e O

N y

w

-O a

C. g UJ O

t g

g n

. m O,

>=

f O

w O

~M O

e y !!

3 L.L)**.

4 O

O CG

-O v

ta W

.M g

O

)

O

>=

O m

O

  • O N

O

"" O

\\

(

'~'

O e O O O O = = = 5 e zu = = 2

=O O

m O O O O O O O c c/ ~

O 5, E E *= 8 T.,,

e c.

e n N - O O O.

e.

a.

N N N N N -

O *.*.*i.' '4. *.J " c"r.' O 1 C *.'1, (J)

+

~

l i

9 ECCS PERFORMANCE VERIFICATION TESTS OJBECT:

~

1.

VERIFY SYSTEM RESISTANCE' CALCULATIONS.

2.

VERIFY PUMP CHARACTERISTICS.

3.

SIMULATE WORST SMALL BREAK ACCIDENT AS REALISTICALLY AS IS FEASIBLE.

i METHOD:

4 l

1.

VARIOUS PUMP COMBINATIONS AND FLOW PATHS WILL BE

USED, ADDITIONAL INSTRUMENTATION WILL BE ADDED AS REQUIRED.

^

TESTS:

1 1.

TWO TRAINS (HPSI 8 LPSI PUMPS) INJECTING TO LOOP #2 ONLY..

2.

THREE TRAINS (HPSI 3 LPSI PUMPS) INJECTING TO LOOP #2 ONLY.

3.

TWO TRAINS INJECTING TO 3 OR 4 LOOPS.

4.

THREE TRAINS INJECTING TO 3 OR 4 LOOPS.

wA 4

4 m

0

l

.d ;

PI PI PI PI

-O o

o O

r

'W Thermal S1ceva Tc Tc

- Typical of 4 3

Tc 3

7 F)

Tc 7

F1:g F),

F1 PI L

PI-j k

'I y ( -

PIO t b

f' i-

\\.

PI Vapor

-[

Pilot Oper.

From

\\'.

_PI Relief valve N

2 Typical PI Of 3 I-

~~

"%..,,, M }'ef6N,

+-

i

__ Recire.

PI

~Recire.

f b

e.

t t

tv S.

Accummulator

37 Safety 1

Injection TK 28 e'

PI

/

i k

k

_k LPSI

~

c.

J J

J

)4 V

9

~

PRESENT SAFETY IN.IECTION SYSTEM 1

m

4 s

9 0 I 4

s 4

e %gt

,g b.qh\\ [,,. D 5'*

O st *D eb$j o%

6 3

's sg *.63 1 %sy.64o

,%b~

L{'

5 s

(,s,s a y%,.4 -

y 65 51 N '

dl i

ECT y

['

9vogg]

p.4 63 G q,gsg 1

a s1.

g 6

L 60 cass T.C-y*

p utoBCd p

z 9-st *q_ (35* " gto i

%~CW

_m s s.

e-sA3 5s G*s 5

O~~'

.pe -

ed6 s

s e

[ sf, ss+' u-

.e

?

to 0 s ae s

,[.

63 31 9-634,r.,.

S$43 3z.y 63b *, SfLw-

'ss2 ;

~

youkco9.

(

I j

F~!R' Ac4g 6\\ D e,

/

rw V

o

$)

\\[4 yt.9 Bo SM-2 as R E'!! 5 E D Sf Tl77 t a n.s

v

v. n N'

(.;:

c St u y

g : _,

v 3

o

a.- d E 1

N535:

6 l4 NM.$ k g ar i

4 s In

+

-s

}

ot-

~

7 b

85 I I et g-q p

i.

t s

4 1

1 aY el o

a et ( 1-

.r v C

p..

t irh

./

g 8 d Nl b.

II" l ti g

...q

< u 3r i

l e v

.4 y

je ' g

,M l

9.c '.

i e!

!, *i.e il I.i

!!l! l. l 1

' ti ro:

.i, e

c d

ti. l e

i-ti l-e:

,=

u

-(

p

,,a h

s t

/

it P a  ;.

4 t I 8

s s

I o

..t_.___.

._.;.ly 2 @$j J

../

a

.;. nad i

i I

,u g

a e

n

e (.
s. b :

l 1

l I

r s'eN f;q !.

"-d i 0;( di,34 l I.

i, :ig r+a.

i e

i Q.-

-,.p

.g a

i.

" it 1%,

ni i yT-8 it

  • 8
i i,

.,i 3Y.

r:

a1 t; : D, :e g

is

.t

~,c -

?,1A, s

=

i i

5

~

{

fA [

c t

wi-.=

.j l 3

1.:, ' -...,

i

,,l

~~ h!

,#, (

iI 3 i u.

t:.

m

!! : M :

Wh mm.

J

~2. h.

c m......~ y. r.

I p:.

I

... :A

~

f' m.

t_ ~-.i

v. p)

.i t.;; * ' ?@* !

J~;.,3 8

'--y t'e

..s p, "

~

iv.g i

i j

j

-/<* 1 P

.e i

r

. c: -

1!$dm1 m.

l "m" 9 p h--- A..e

-+

e m

s.

d{j,.o

{!I lII 5

8 L' t'O i,,_,;,,ef

}

t s.

j l-i,.Q ns.

.s.

s

-- ' 7 4 w 'c l

a rt i : -> 1

.i' i

'u

',a tl ) 4.o-(

s r l li~' i; n _f.

' M

+

!e

--s:8 f

i s

}

5 I

s>- /

us8 g

1 1.

--- s s

y a

es md y

i

,d.l t.

ij r

a

, c. e. q,

_i i

s;!

t<

j v *ro,...! c3ty; ;

p,

3 i

I,,

.Q, 0

,4 91 T. '-

ij,

t

! W :

e L.r isl ii,

ps 7-

=

i v

c2 i

i l:

le i

q,

.r h?y fi w

-1_.a

- ) J 'il:lI-r.3 J

4g

}s lIC-3 Ibr' tit

!!! it'

~ "'

-~'

~^"

y C -4> -'!

c,

ip.sq T i ;

2,,s J d

.n I

e, < = ll 8i

.I f

i.

f j

r I

i

.n s

y

j 0--
i Wf ry i

.c fi N [

l

'j c

wis g=,

tgp' WW M-b@'

8 e

l.l l

i s

l

.-..h er=' c*' :s !5,.

O ;* :s.IN 8 e* e rs.!N..-. d..'

..... - ~.

j,d,'

l

'8 I I

r: c: ::

C.-

-1.O I.

s 3,

.t

  • a 1

'sa c

E~ d!

en t.i.

t N

48:

I".' *i,t I

.=s l :['h(=.~

j' ji i dgi

! _' ji d

3

-- -. g l

i aji C--p d

's E[,. L.

e '13 s

1 t.

T~

r*-

1

  • 2 1.,

ft E.*

of g

,r f

-.h*',9

~

Id 4

j g

1 is a

t w-4l 1 j

L.c:.

b

[m:: 'l 1

i j

i Wr j

L.

i g e, g :,

.l:

e I g.

e

,__ [.2, 3

m

,,g 1I it e

m ti. -

l 11

.I e sa: l :,

i c

2-.

j' l'

-ir

[. ]

.Ej

$. ji lll ig w

it I

i' i

g l<

_g -.-

I ',.

i,i

--z,

4

[*

e, i

e a

i

- ii -

s

=:

1 1,:

~n

, u

.ja g

' I

I t i

[$

o I'r.,

?~

Q 1

.~ =

l i n.

r*, 8 ii,.i a

,-l;I f

g e<.-.

i li 7

o

.i]

1

.,,g n.t,w e

e,

.11, Ia 3

d 3I 0 iii ---- _: ::

I

!!i w

T I

i fi,. s)i,-

t t!

e k,

x_, ;

1 I,.

i 5.

I...

s a

gg 1.

u-

,.u w

E==

i i ',i,l f, "

4*, a s._.

M P e

4

-Q w

pm

@r a-..--. -

i o-i i

is 8,g 3

L-,r n

m x.

-:=

L4 y

1 o._.

a

-g m

o-m L.es i.

i, s.

i g

a o

, o.=

F s:.

,.O

m. n_

v s ;,;;> o.=w I

11 n

....t m, :,.

3,,,

i

^C*a. >C.,J*,'*j*.

"si g q

  • 8 i

l." ** g O -- ::

p
=

li T=

e

{-;,

,4 i,

i

~>

.e

'- 7 -2

_ :=

i.

2 -

o

..a :

  • .i;.

U 7 -c c.c. = ;

j i

g iws di e

g.

b r.: =.i a._

o

- e.:

s e-c t

r-e#c.

.a iw

---2 s

o. crc:

.h.

i

=:: I

_a.,

p i

'l 4

!ii E

"o =:: i 2_

-a i

+s e

p,. ;,

imz l

-8 '**".,

-..==a..

"l s.-

3

1. i {- 2

-- 3 v a =

.a i

5

--7.x es

_isp j j

, _.- a

.l e

c

. :::..i

=

s i

2 e-i.

i.-m

.a; 1

l i

i w..a

_. n n,..,,

Lg.,

i.

__2.

.O

, ~..

_.... _a

l u. --

u..,t.s.[=

.t -.-

t _2 iw

-21 Jo

-,a.:

73. :.3 2+. - I. A y j 1:

l

.: a-

.,w-,

i

e. -.

A g_.;-

,a a

c's..)w. ::

.48,.c g

'u

~~'"

x.

?

%,ff -

i,; i.

8.'- u.......

g L'e:-

,i' -.

6)

.e

~

3.

~

^

i

~.

i ll e-n F

ad.

Pr 2

a h.B O2 o

S

=-

l

=

s y

cl

~

a e

r Mi h

In O w y

n t hh

~

et -

t f a e S aMe 2

i P

E S

S 62 S

dMi I

D a

N d d e el eic e c 'o 2

r ts 0t 2

2z nnN 269 V23 32 4-l i l_ -

1~

v5

-P-OoV S. K.

MMO I

2 M

02

~

l 2z I.I-I Eo G_be d~-

.S

,c Ss 3-S.

8

.IE 4

5

.R 2f 3

E O V 5 Dv F O V Ds MO P

~

D 2

IM I

9,92

.M S -

~

s E

R3d,

~

1 G27 3 2 AVS 3

L-ig s

S_ -

D O V I

MO 21 Y IM 02 fA d,-

R S n-A RC

=

=

O, TF%

E z

Qw S1 U

N C-R Rs 5

ER LEV O

Rg AV RO1

~

ML &

a M0 I

DR2 M

EIM s-TF/

LI S0 N8 c.1 E SC N

O A4 2 2 Cm 4 -

=

=

==

f, t

1T

)V

=

(

2

~

Yh 2

3 eP

)

=

V-NE (4

=

O M

E.

)

%2 EE A

MC EM 22 4-

i'.,l,

't

~

3r

~

n

~

r' c.

ii, p.

t.

e

.l w-

?

ad' 1

Pt 1,

@J

-y B 1-

?,

b w b~

o6

=

t

=

4. l e

1-e o 3

~

~

r yi h t

,I o a

@, I C n

.y h +m -

i tet

?_

.9 f A c aMe

. E S2 S

S I -

u lMt a

C a

N d d e e ele a ab 2_

i t

2 02 c cN 2

32 22 o

o.

4-v L l l_ -

-P-o IN 0?-

S. 2 M'

l 1^

IB 2z G

e~

I-3~

= h ~ 4. "-

s_7 6

S 2

!E" 5

E R2

)LW Ow 0

Y,S F

4, q'

e h' K

Lc

~

~

P, A3 f

R2 2

3 2 L-Gv S-Ao IG I

-}

DM 02 I

22 YS q'

4-R c-d AR

=

O EU TF OW SZ Z

C N

RE RS l

Lg-ER V

E LM0 "v

MA OR2 L

ROI c

TF/

EIM S0 Li N N8 02 ES OA4 22 Cm 4 -=.

g 2

S lT

)V iA +)

. Y A 22 C P iA +')

v NE (A i

o

%2 n

A t)i EC

. 02 MC EM 2-24

i

+

g CONTROL 1

EMEEENCY TRANSFORMER

. 1.

~

MCO.1 (420V) -

480/120V

.=:l3 LS z

==LS TDpo t)E '

._ls%

~5%

-5%

IBRQUE

-S3/o SW

' t.

5 SW a

) )

)52.

SI.

=l:420.. '

@SP @N'. f @ SIP....,

Y,..,.

-A

~

E C9

_ SI

~

A.3E '

3

-a 3

.k.

g.a

-g r,,

0 e

v.

G A2 s '

u

- o s

-s c?

~~

+

.L..

42.c A-A2.D~~-

'?

'i

~-

~~__T ~ ~-5%

~

c.

y 55 r.A20

-Ld2-0

-.c -Sy,

~

-g

.c.-

[;
.

o s

P

.l: ~

n2.c

.l~

.g

.u-420

. '. f, ;1 -

~u

~

..s s

~

Q9 '

.~

.~

43

~

5Yo i '- :

+f..

),

N Cst E E ~

o

.t E'l: -

l. SIP-Located :d Safety. Irgee.4mw Pawet.

2.M-1.ncaicd M Muh Cohitn\\ Bohrd-

~

Nbelear Sec+mn

(noy-Ss,1 L

c

-j

.g-..

~

ELEMENTARY DIAGRAM FOR CS Mov 53(o SIMILAR FOR CS MOV-531,538,539

  1. a

\\

.. ::. w.

e..

- J J -

_m__,_____

-., _ _ _ _ _,i,___ _ _ _

.p.

.y..


. w.

a f.

n s-l,5

-s

+

n 9

in d,ia,r*=

.u s

le

_=

,r,.

u. e a n

- ~s'fi 4,..

lwIf 4

s lii l ii 1

=

i it m

e ei4

_(.._ _

l ial.l

$,=!

i ee.

e

'r. -

g,.

i n

e T

@ ' lll.T.

Q.

11li p~ #'

I I

l

m..

@ '.l.;:l:

~

b Du h_,. r Thzy.._, tit I

~'*

11 h!

s a

k-~N TI,N d

HTi 6'd ll:,_.J-!"

j r.

e l

j 0 't

!{3 j

III

=

e t

+==h.'> !

.0 a

1 49-ij; 3

iif*

Jh i

~

L.,i.L

's nJ a

m

g. g.

E.,,

~

i t< 11 s

3 e fj se 9 a ===a =

1-r ij lI,ah 2

':2 "".

I

'. [I +

/

j

%s 9.-... -

o r!J

t i 1

_e

@ ' u.=

> ---c:::

e--. - -. -

o-r

,_._ _.7 b

!l8 L.-

l e :3 r.14 0-d s

=

" "g gI ".-.ATl@

lg G:

'd C WU;P.m 4

I t

+,.1 m.

C-frI d.~~ :""j

.O TTi I

  • --CE I

+

T i

I iE

-,s

-CE O ---.'

"A*

st.::

'i

)

+!,

lI e(c==> 4 3

I I 42,.s l

o' o

rp#. nl -,r=

[!-

=

_rhp,..e.;; ::]

ji_

M*

O

... /.l::

'b

'.r--

i, a

"v.A "=11

.iu

--=

8 l..

i8

,i

-- m 0 -

'r.':

l

,i -

g

__,."d i lI g I

J lk,,. _ 1,3

-cm

-4 9 ::

[g 4} o re:.::

l

=

l l'

inca p-^C o.=J

=

  • *CE O.*=

I' Q{ il'ij fCn=

b

' 9-C

_ :.m 23 j

l j 8

g-e s inca e

=

i

i. -cs

.-. =

2 t[I9 I l^

tii 3

I legg l

Q3 l' 4

- -!M t

, :::~ tj 7

{

I

.::.=

t.

~_.,~1

  • "3 IAcm l;

- -CD--

O-..-

~

_li-E - -- - Il,E 4

(..,

~r:

7 @. d..

-. -m h, 3,@

8

} II 14p3 (L.....,.e., :

  • -. -cs O.. ;=

5,D;:

y,:

-. - -- ; e,Gb,

?_ --::

pi

~ "'"'**""'

i e

8'

'lL........)

"I1 4

l i.

-t hij 1,

i

~L 1

CO W OL EMERGENC.Y )-TRAN9FORMER

'M CE ('1EDV

-c MD/l?DV i

y

._LS F w ooel

=LS mm.

~13 LS

~~. 2 2.

/-

~~

~22

-22

f SW <A

-2E SW,

t '.

~

~

))

2 l. CS

_uzo l_._ca

.Lec '

SIP N

SIP

. " i ~-

.f y ;..

t(

%E

,_4go -

",(1:: 0 20~22 T-22 ic Et T-Et

/.

~-

q STP _,Ag.c

.3

~.gz

~

(2h cg.

420[.

.L __

[42-C h$

g r

.zz --

-.ez

..i

. NOTES'-

a 149 1 22.

I.CS-2 fo be a&.vlockd swifch m

IDr[KOL

~

TRANSFORMER -

FOSE LSP L cated at SafeFv Injechon Pael -

4ED/120V 3.N.- Localed af Main:

./

.49 [

'[

42X==

Control Bost d'-Nucleat-

'92-X = =

= = CS-2 Sec4iod -

.,i IC.gE _

t

._pgg N61~I

/g?k 4/e

~:

.F,. Mov-22I s',

y-

.E s

x. P El.EMENTAR'( DIAGRAM FOR SI-MOV 22

'l.-

e SI-MOV P_.4, SQMDV 25. AND

.SIMILAR FOR SI-MDV 23, CS-MDV 538, CS-MOV 539 y,_. _

CS-MOV 53G, CS-MOV 5Tl, i.,

l m.

.. -