ML20125C227

From kanterella
Jump to navigation Jump to search
Procedures,License & SAR for CNS 4-45 Type B Radwaste Shipping Cask
ML20125C227
Person / Time
Site: 07106375
Issue date: 11/30/1979
From:
CHEM-NUCLEAR SYSTEMS, INC.
To:
Shared Package
ML20125C226 List:
References
NUDOCS 8001080088
Download: ML20125C227 (177)


Text

_

O Safety Analysis Report For The 4-45 Shipping Cask l

l l

O 90010002 i

l Submitted By:

l Chem Nuclear Systems, Inc.

P. O. Box 1866 Bellevue, WA 98099 November 30, 1979 O

s ocioso,3g

i i

1 Table of Contents for the 4-45 Shipping Cask Page 1.0 GENERAL INFORMATION 1-1 1.1 Introduction 1-1 1.2 Package Description 1-2 1.2.1 Packaging 1-2 1.2.2 Operational Features 1-4 1.2.3 Contents of Packaging 1-4 1.3 Appendix l-16 1.3.1 References 1-16 2.0 STRUCTURAL EVALUATION 2-1 2.1 Structural Design 2-1 2.2 Weights and Centers of Gravity 2-1

)

2.3 Mechanical Properties of Materials 2-1 2.4 General Standards for All Packages 2-2 2.4,1 Chemical and Galvanic Reactions 2-2 2.4.2 Positive Closure 2-2 2.4.3 Lifting Devices 2-3 2.4.4 Tiedown Devices 2-10 2.5 Standards for Type B and Large Quantity Packaging 2-13 2.5.1 Load Resistance 2-13 2.5.2 External Pressure 2-17 2.6 Normal Conditions of Transport 2-20 2.6.1 Heat 2-20 2.6.2 Cold 2-20 2.6.3 Pressure 2-20 2.6.4 Vibration 2-20 2.6.5 Water Spray 2-21

(

90010003 i

I

2.6.6 Free Drop 2-21 O

2-23 (j

2.6.7 Corner Drop 2.6.8 Penetration 2-23 2.6.9 Compression 2-31 2.7 Hypothetical Accident Conditions 2-31 2.7.1 Free Drop 2-31 2.7.2 Puncture 2-46 2.7.3 Thermal 2-46 2.8 Special Form 2-47 2.9 Fuel Rods 2-47 2.10 Appendix 2-55 2.10.1 References 2-55 2.10.2 Appendix B 2-57 2.10.3 Appendix C 2 <0 2.10.4 Appendix D 2-66a 2.10.5 Appendix E 2-73

(( )

3.0 THERMAL EVALUATION 3-1 3.1 Discussion 3-1 3.2 Thermal Model 3-1 3.2.1 Analytic Model 3-1 3.3 Hypothetical Accident Thermal Evaluation 3-4 3.4 Appendix 3-15 3.4.1 Computer Codes Description 3-15 4.0 CONTAINMENT 4-1 5.0 SHIELDING EVALUATION 5-1 5.1 Discussion 5-1 5.2 Source Specification 5-2 5.3 Model Specification 5-3 5.4 Shielding Evaluation 5-6 5.5 Appendix 5-8 CE) 90010004 1

ii

-~

6.0 CRITICALITY EVALUATION

6-1 6.1 Discussion 6-1 6-2 6.2 Package Fuel Loading 6.3 Model Specification 6-3 6.4 Criticality Calculation 6-5 6.4.1 Criticality Results 6-12 6-13 6.5 Appendix 6.6.1 Computer Codes Description 6-13 7-1 7.0 OPERATING PROCEDURES 7.1 Procedures for Loading the Package 7-1 7.2 Procedures for Unloading the Package 7-2 8.0 ACCEPTANCE TESTS AND MAINTENANCE PROGRAM 8-1 8-1 8.1 Acceptance Tests 8.1.1 Fabrication Inspection 8-1 8.1.2 Preliminary Inspection 8-1 8.1.3 Routine Inspection 8-2 8-3 8.2 Appendix 90010005 l

O iii l

\\

l 90010006

()

1.0 GENERAL INFORMATION 1.1 Introduction This report presents a safeguard evaluation of the design and use of the Whitehead and Kales (W&K) Shipping Cask, Model No. 4-45, for transporting irradiated Peach Bottom Unit No.

1, fuel elements (1-5)

  • to the Idaho Chemical Processing Plant (ICPP), Idaho Falls, Idaho, or a similar facility.

All fuel elements will be individually sealed in aluminum fuel element canisters or aluminum salvage canisters.

Salvage canisters may also be transported that may contain various core components, including control rods, fuel elements encased in a removal tool, or fragments of an element, providing that the salvage canisters are not in any way more radioactive or release more decay heat than fuel

~

elements.

All shipments will be made according to Nuclear Regulatory (NRC) and De (DOT) 10CFR71(6)partment of Transpggtation Commission and 49 CFR171-179

)

respectively, regulations, for transporting large quantities of Fissile Class II radioactive materials by motor vehicle assigned for the sole use and will be unloaded from the motor vehicle by

()

the ICPP personnel or other consignee.

i Summary A safety evaluation has been made of the W&K Model No. 4-45 shipping cask (package) in accordance with NRC regulations 10CFR71 and DOT regulations 49CFR171-179.

The results of the evaluation indicate that:

(a)

The package satisfies the standards specified in Subpart C of 10CFR71 a.

90010007 References can be found at the end of the text.

(

1-1

O

\\

(b)

I'ive (5) similar packa>;es (Fissile Class II) may be assembled in accordance.with. 71.39 of 10-CFR-Part 71 (c)

Radiation dose rates are withi:' the limits specified in J 173.393 (j) of 49-CFR-Par t 173 for transport in a j

motor vehicic assi;ne d for solc usc.

t 1.2 PACKAnF orscF;TO';

l.2.1 Packaginc, l

1 A design layout o f the 'lE P.odel 50. P3-1 shipping cask for trancporting l

I irradicted ?each Sottom So. 1 reactor fuel elements is shown in Orc. wing 9123-Cd:.u.

The ecsk has a calculated loaded wei;;ht of 62,500 lbs.

It has an cuter dic=eter of 42.5 in.,

an omrcil length of 191.12 in.,

including impact liniters, and c vidth across the

.unnions of 50.0 in.

l The ensk internal cavity is 26.0 in, in dic. meter and 159.0 in. lond.

A maxinum of 19 canned fuel elements may be positioned within the cavity in the fuel-element basket shown in the drauing.

The cylindrical cask body is constructed with a 0.25-in., 304 stainless-steci ccvity liner, c maximum of 6.25-in. chemical lead, c 1.50-in, mild-stec'.

outer shell, and a 0.25-in., 304 stainless-steel overlcy.

The ccvity liner is saca velded cad polished to a 50. 3 finish.

It is welded ct both ends to oftset c onc.:

which form cavitics for the end closures.

The lead thickness is 5.25 in. frc= the bottem of the cavity o 24.5 in, above the bottem; it is 6.25 in. thich tron 21.5 r.

above the bottom to 134.5 in, abova the bottom; and it is 5.25

.a. thick over.:h e remainder of the length.

Since lead shrinks upon solidification, a pcLentec m.

cr ran;;emen t s is used to attach the lead to the inside of the outer shell.

The fins bridge une gap be tween the lead cad outer shall and enhar.ce the t.ms f e r o f acut.

A venting devices -- for the lead cavity prevents a buildup of excessive preasure f rom cither mois ture or lead durin:; a fira-tempercture excursion.

The step w cuter shall is constructed by welding three co-c <ial, formed and welded, niid :, teel cylinders.

The overlcy is ucided to the outet shell at the end of each cylins.er, and ct cutouts arouna cach trunnion.

It is spcced from the oute: shcll by ;/It-in. spot welded sp;.cers on t!.e cuter shell and scrves cs a heat shield to tr.. : i t lead meltir.;; durin;; the hypothetical fire-temperature excursion. A precsure.clles plug in the overlcy shcIl prevents a n.ildup of excessive pressure from moisa ce.

The end ccvers have 4.00 in. of chemical lead sandwiche? beu een v.ro 1.fd-i-334 stcialess-steel plates.

An impact amiter is at tac'..cd to each enn ;!u d

c.. a o serves t.s a heat shield.

The covers are tcpered to allow easier aligr. ment J r.

clasure under water.

\\

c u maheadcmp=y-c.s.pue=.

90010008 1;dward 1.ccd Ccmpany - U.S. patent.

9 l-2 m-m

1 D

D D

3-ao o

.S..

ooj o

.a

/m1 y/

i Guide pins provide final alignment of the cover bolt hnles with tcpped hcles in the ends of the cask body.

Twelve 1.25-in. diamter ASTs A325 cadmit.m-plcted steel bolts secure cach cover.

A silicone-rubber 0-ring gasket soci is used between the ecsk seat at each cad to provide secondary containment of the ccsk contents.

The fuel-clement basket is a welded structure of 5-in. 1.D. x 5.25-in. C.D.

6061-T6 aluminum c.lloy tubes spcced in concentric circles.

One tube is placed at the center with six tubes positioned around it in a circular array.

The outermost circulcr arrcy contains 12 tubes for a total of 19.

The tubes are integrclly connected to enhance hect conduction through the basket and to facilitate handling of the basket.

A 0.25-in. plate at the bottom of each tube rupports the fuel canisters with their tops above the basket cad allows ready access and use of the fuel hrnd;ing fu: ures.

Five-inch long spc.cers are inserted in the tubes beneath the shorter fucl-elen. cat ccnisters.

Lifting devices which are welded into picce bearcen tubes clso limit the free motion of the basket in the cask cavity.

i c. e -

inch thick aluminum plates are welded between the outer tubes to c,uarter c.pproximate a cylindrical outer surface.

The plates are anodizcd to enhar.te r cd i r.n t transfer of heat to the ccvity liner.

The casket contains no materials in: c r~ c c sole as nonfusile neutron absorbers or moderators.

All heat rejection is accomplished by conduction through the cash walls and radiction cnd convection from the cylindrical wall of the cask.

The ccrk p

is dcsi;;ned to operate either wet or dry; hcwever, these shipments tre picn ed to be dry uith air as the only heat transfer medium frc= the contents of the cavi ty 1.iner

(

^

of the cask.

Four S.0-in diameter lif ting; and pivotin;; trunnions are welded to the cuter shell.

An 0.5-in. thick 30', stainless steel patch plate is uelded to :.na outer shell at each trunnion for aaded strength.

The trunnions permit chnw;t ;

the cc.sk from the horizontal to the verticcl position and vice verda with c minimum effcrt.

They also serve as a ccavenient method of attaching thc ccak to the trcasport-venicle-mountin; cradle.

The trunnions are hollew and provide protective housings for the drain valves, flush valve, pressure gcu;c, prescure-relief valve, and valve cxhaust filter.- The pressure-relief valve is set c.; the oe, test pressure of 100 psig. Pipe plugs may be used as seals for the pressure gauge, vent and drain lines.

The cask is counted harinontally and handled during transport ir c structural steel cradle that is doctgned to spread the load.

runnien coch s o c.

the vehicle-mounting-cradle support and secure the caak trunnie.s.

They clic rot; tion of the cask from the vertical to the hortnontal shippit.f pom an.

Oc set of trunnion sockets is adjustcble to acconmodate changes in the 1er sh cask due to te.aperature chan.;es.

pc.da on the vehicle-c..ountinc, cradle pron..e x. c i -

tional support to the cask when it is in the horizontal position.

An impact Itaiter is a:tached to each end cover with wur of the tu ive 1.2 5-i n. covet bolta in order to l mi t the impact load on the. fuel caniste:

.: e an accidental 30-foot drop.

The ir.ya c t limiters ;re constructed by weldta, e

  • Since fuel loading is always cceemplished under water,'a drain system is pro..

s.

to renove the water alter t;.e e c/er is in p]cce on the cask.

90010009 l-3

A bundle of 2 1/2 in. nominal diameter x 18 gauge mechanical tubing V

between 1/4 in. 304 stainless steel plates and enclosing the bundle with a 1/16 in. 304 stainless steel shell as shown on Drhwing 9123-000l*.

A 4 in. long skirt fits over the cask for added resistance to radial motion in a corner drop.

Construction Specifications Complete detailed drawings with construction specifications for the W&K Model No. PB-1 shipping cask will be furnished to the cask fabricator.

Quality control procedures will be performed by experienced Battelle personnel to verify that construction and material specifications are met.

Standard construction specifica-tions and procedures that will be followed are presented in Appendix A,

Section 7.

1.2.2 Operational Features Not applicable.

1.2.3 Conten'm of Packaging In accordance with the requirements of 5 71.22(b) of 10CFR71,

/~'

Subpart B, the materials planned for shipment in the W&K Model No.

PB-1 Cask are described as follows:

(1)

Identification and maximum radioactivity of radioactive constituents.

(a)

Irradiated Peach Bottom Unit 1, whole or partial fuel elements, circular in cross section, 3 1/2 inches in diameter and up to 144 inches long, scaled in canisters in a helium atmosphere.

In case that the canisters are found not to be leaktight, salvage canisters shall be provided to ensure containment.

The maximum U-235 load-ing of each fuel element is 300 gm and the minimum atom ratio of thorium-232 to uranium-235 is 5.37, except that one such element per package may have a loading of 415 grams U-235 and minimum thorium-232 to uranium-235 atom ratio of 4.0.

The maximum enrichment of U-235 shall be 93.5 weight percent.

(b)

Solid non-fissile irradiated hardware and neutron source components, maximum weight of contents, including any container shall be 10,000 pounds.

As needed, appropriate component spacers shall be used in the cask cavity to limit movement of contents during shipment.

CS) 90010010

  • Drawing is enclosed.

1-4 mm-m-

m.

---,-7.-

y

1 t

D**D D

~

T cw c

_ 0.

?:2 Q_

r.v.,~.. n,.,3 p y n.,.,. p t,3 o, s...

(..,-:. e %,

4 m

C 6. 0' #/...

V 1

  • ^*#
  • l' u w,. /. w.3

' O f.. -. e c

.'.'T

...., 0 L c

,... vws i

c

.n 9 -) 9

.. s f.i. A" v.

1 c

.\\ s m*

.+.

.ec,.,..

u,,s

....,. 4 :. _,

g )

  • i.

e i

u.

1., s.

a.c...,. r.. g m..,.

i

,a.

n

+. u s.

  • t.

1

  • n 1 1e w' L. ?.

%. 1V.. n.... : l u. h n&Ca.Ca s0w.

1

e. O.
4.,

f ue *L

,s.eC..

..?

.a i

..uu

.v..

u u u 3.

s.

U.t 9 1

,14 u.,

.v4..

v.

O. i v.

7

,; 1.;.e s,.

1. L.

,,.v..s....L,,a,..

v..

A.

c r

.,. n.

J J.e, o. 9,.... se

.s

.s

,,,u L.

, '.r. u, u.. t.3 C.

\\,w,

.., 4.,,., 0. d' r.. u, 1 L,.u~....,.

,, e 1. = C O.,.., !.,

..-.4..

,,,9-*ms) a g e. L..., t...,

2.

.w...

.v.i....

su.

.6

..., -.. r...,. :

.,.,.,.,.1 D i.,. u, a s

+

t.s t,..,.,

g-w 9 7.%,

..a 3.e.

si. -w s u

...v...

..w

.va

,,s.....

.s v,

g., '

  • r w

.A t

--s...

.t t

it..

Oa.

1, n 4.... r h

,t (

C o.

o O u..

c. v.

.av.

t u

vs A

.i., fuel A..w

,J.u...

, ~,,.. A.. C o.....w..d u.

.,..v.......,.

.r L d:,

4 -_....w

,.s.

,. v 6...

~ '.

.,s,

.L.,..3, u-wnc 4.

A.

.v.....

....,..s 6. u.,.

...wf C,,.u.s.o uA,,.

,,u..

..,L.

u

.j

t. s r.m u u C L m.

,,,1 m C. i o *: L v !,s m-**

.. e..

c,1. L,.

.. t

.j,w..

+

L a., s. c w-u s..

v,,,,

u. s.

...u

....s.

.m

,s gj o.. A %

wi s

p 2.,1

,1,

..^

,.., a,, <

....(.

u c

.r

.. G.-

. L,,, w, -

.u... w....

u..s

.. L,

....a,

. s. s.. w..

..s g,.

......v u.

ua, _ _. w. u

_t... _.,..,....

s v, y.,ta..

.....3 c

.v...

. w.s u O.' '

.u

6. - - -..,.:

rs c.

.4. u,

....-,.e u,:

.m-

>+

. o

.o L. s s

O h

v' M.. c

t. u c. ~,..~

. u C : v-..

. ?.

.OuC

.v.,.

A

.n. w.

.3

.usv.

C...

. w,.. -.. s o.ac o.

c.

e v..

.w.6 1

2

.-0.1 O,.,,.,.,.

u 0. t s C,.,

. w su.......,-.Cu os m

.,...e

~,.... v o

.... c.. A v, e..,

4..

u.,.

O.~.

....Cw.. O.,

.s. u..

.wo.

,....n.

,. 4 1. v,

, C L.. C,

u s.,,J,,,,..,.s.a

........ o v. t v

.os

..u,

('..1.. n. 4 v..m

.s.

v.

r., O.

..v w U

.1 3..... -

...6..

j...,

U. L,

..,.L u 6 v 6 6,, 9.

s,...,,,*97 s-

.Vsj s...w v

....,1 b. C

.?

,. mi...

u...

...u p

c.,*. _g 4.,..,. o

r. o u"* {.,9 0 }

.5..

... e. s.

u..,,

.?.

m7

,....Uv.,......

b. / i s w v...o

., u a,

l i

I i

4'.'.

t r...

I

).f..*~

l

' sj i

  • 6, w e+.,.....-..

<8.As. 6.

O a'.. '.'. ~. =. '.

'l' 8 w'w.5'.'.'.,'4'.

V' v' &

L'.*.'.e' 6'.L.**'*+'lu'

.'a.**

      • '6 "L'*d'"**

a

+

  • 5-
  • ,e.

.n.r r U....

v.

....w a

  1. ". \\

. - ~ - -. ~.... ~....-.

C'w...,.,.

t,...8 6

/ ~.

..."..i......

.'J

, e

.'L.,

.,u

.V r

..g.

w w s t,

..4 L..

o w

. u t

...j gj -.

.i.. L-

-/.,,,. -..,/ -.,..to.....

.,.u

.' s L

,..-.L..-

+

m

.,L 1

. 6v......~

e. m,,

w..c.........

wU..

.t..

(.....

>6 i

  • * ' 1,F

/ i i s.

o.

4 g

~,Y

%.s'

.nv"'.....,1

% t.

...Gu

.... '/.,...,. - ^

s s

~

es v

~,....

.w.....'

< ~ /

b' U-ei v.

..w 90010011 1-5

na em e~m D

D D

3-o A_ J.}

3 e

m 7

_ Fuel rienn,t Fnecif f ections The '.:LK chipping cash, ^:odel No. PC-1, is desi.gned for transportin; nine tecn Peach Lottom Nc. 1, Iuel e'.cmants in either fuel-element ecnisters or

-inci salvsge conisters.

Specifications of the fuel elements vere ob;cincu fron.

t..

1:cccrJs Sunt: cry Report (1-5) fer the Per.ch Lottom /stomic Power Statica or derived iro a acta cata.nac :. rom t,ac t repc<rt, Deta:.ls or t,ae spent.,uel-clement canisce: were obtained from the scmo report and the Philadelphia Elec;ric Companv(S).

Specificatio; of the scivage canister also were provided by Philadelphia Electric.

listcc 1cctions usco Ior t,csc components in these ana,yscs are a

Spect:

below.

Fuel rlenants.

The recctor core of Peach Botto: Unit ::o. 1 contcins E00 fuel elements of the scmc externci geometry.

Each fuel element is a cct,le e reactor.

There cre assembly thcc is handled and loccted incividuclly within the

thorirm, four different basic types of feci elencats which differ in their uranium, rhodium, and boron content. Cutwardly, ecch fuel element has the cppecrance cf a solid graphite cylinder 3.50 inches in diameter by 144 inches long, utta a grappling knob at the top for nandling.

The fuel clccont shown in Figure 1, consists of an upper reflector secticn, a fuel-bearing middle section, and a bottom reflector section.

The primary

( )~

components making up the fuel element are a bottom connector, a sleeve, a screen, f_s cn internal fission product trcp cssembly, a louer reflector piece, fuel cc= pacts, spines, burnable poison ccmpacts (in selected elements), a fac1 cap, cnm cn uppe; dimensions used in the design of this shipping reficctor assembly.

Component cask are given in Tcble 2.

All components, except the fuel compac ts and burnable poison conpac ts ta nt are placca. in tne nollcw spines or some tuet elements, are accc 0.c c rr an., tc.

. ;a fuel compacts consist o f uranium (,v,,s.13 percent enricnec) cnc. c n, o r ;.u.m cars;ae suos tre coated in pyrolytic carbon uniformly dispersed n.s particles in a graphite matrh.

Four types of fuci elements (Types 1, 2, 3, and 4) are rec,uired for the Peach Lottom Recctor.

The fuel clements are loaded with the fcur types of Icel compacts and the ourncble poisca compacts as showa in Tabic 3 cnd Figures 2 and 3.

Design loadings for four types of fuel.cc.psets (T" pes A, 3, C, and D) cra am. '

in T..ble 4.

tlc total design 1cc. ding uithin the active corc is given in TJa'e o.

The tolcrance on lot. ding of thorium is i 3.5 percent cad o f u rca iu;. i.,

T 2.5 percent fcr cny completely assembled fuel elencat.

lac tolertace Jor

.c boron content of poison spines ts ! 5 percent in any fuel element, and the tolerm.ce on rhodium loading :.s i 20 percent f or it.dividual compcc ts.

t i

3 s

l nvoicge compositions anc, venalties escu 2a these ca.cu.ation.;

.w r

...e

.uat clercat componcats are presented in.asle c.

Thes. are bcsec ca a sleeve e e : r. ;,,

of 1.03 g/cm, c :. pine d ans t t'/ of 1.d5 g/crd, compact censities give.....

3

, o c e..in, O.

. 1..,. q Iw anu a:. averanc iuei-element,re s ;, i t o; cA, pouncs.

.,.ne non:na3 r

d

,.u each Type 1, 2, or 3 fuci-element is 0.291 kilo;rn,.

l 90010012 1-6

D * '~ ' D D

~3AEy '

O i

&.L!]

i d.

t.: i 0'

w

/-]4 \\

OPAC R Alf'G ( YYP) y

.p

./

[

r.

e.

. c-f.,..u.,o r, n c F.,

.t,,

.,it

.v

... ;.., u.

p

-3

'w. 3. _,.~ml

\\

POTiCUS PLUG

' A '., \\{, )

6"

. N,.

,. i e~ s

)

'/

l i

j n

,s J-

/

). i ~~'..v.

<.P.,,,,.,

s...

Id, -- ~ v,,',.

4 i.

,m.~

. C C.. P u..,.,.a,.,..,,.,

~.,

i. ;;-.,7,.
,
U..,

i

( '.4... ~

,'.'.'.s,'%*.s.

7

,/ i,;$ i,. >.7,/

L.,..e. p..

(

t

< g..'

.,.r.. s

.e e

e 3.,5.,

$; C',

.f,

.. ;;. /.

+

.7

. i.i i,..:. 9,.. '-

,'t IIE I

{f n. u " C ". v'.'.'

" r ' t T.,

r.,..

.,,3 7, c...,7. n, I

h N!';

t/p I

P.. g 3,>

f, q

f, a

6.a

. m., )

s - :E4 p'p~11 4,,

N G IXC;-;23 v.

u n... > p; e

.h),,h j i,1-2;.0 INCN 0!,.M 2*i C;;

5

,1

[O !!'M,

' /i W I

,v 4 p

,, p1 />

i c

W, cf

-/ H

?.

s.. ? [,,

t./,

i

.,e f,! I,'Y, i

I I

),.s ;; /i e,

t i

M,,ip i

c. <s.. i G.. g. e u
r.. a 3

, t41 /

UA l/.

u.,. t...

P.,,.....,,,,

l

.n...

.n u.

UM vig, -., ', -

p~

>..,s! r;,,

,I.

i. i-r G. s L? '

s

r. lj g c (5.V,#

I l

-- C C '? C E O

.s s

i j

., ~....~.;'

\\..

_ 7' 14

'4 4

.,,g s,;\\\\ ;i\\\\,

}

sN,u -

j

sss.',..N,N.

t

  • ~

p, v,....,.. C v'.'.'.'.' C '6 v '..'

s sNc 6 e v.

u

.g,g 4N,,.

l

  • N\\.q,'.. '.\\,8..

'.. \\s I

i

.s

,,s

. '. \\ '. *#

f. x !

l gss r

p

%\\, I

g. N' y

g\\a

'%\\

f 1

7%

, a).

s ' t...

C#

.\\. *

}

h.g'. '

t 1;

st ; :..N.

tj s

90010013 1-7

, m w,

1. i n';1:. ; }.
  • '<r-C',-.'"'*'

m

~

l& ^. m 0D&f TABLE 2.

7UEL ELEFSNT DDENSIONS

%./

Axici Dicensions. inches 144.0 l'ucl cler.ent 0.0 23.0 Connectcr ::.d trcp 0.0 29.0 l.over reflector 23.0 119.0 Fucled acetica 20.0 56.0 Type A compcetc 29.0 110.0 Type 3 or C cc pacts 55.0 119.0 110.0 Type A compacts 129.0 Upper reflector 119.0 nir=2ter. inches

_ I.D.

O.D.

0.0 1.73 Spinc Fuci compacts 1.75 2.74 Sleeve 2.75 3.5

(..

FL i

TABLE 3.

'~YPES OF FUEL ELE 32',TS EASED ON IRiCLEAR 220?ERTIES

.... - ~... _

(

Fual Element Tyn e J

  • v L

4.

Light Rhodium Ec xy Heavy Light with Burnable Zhorium, Li;,h:

.. D e.t. _.:.t.i.o. t._i o.n...... _

Rhcdium Rhodium Pn'.cen Urt.'un Spine S o'.id Solid Holicw Solid graphite graphite with poison 3:cphite l

l Ccc.pr e t :ype:

In u par 9 incl.er.

A A

A L

Ia wi(Alc 54 inchec 3

C C

D in !c. n 2'/ i:.chec A

A A

D 102

ur.ter 'cr neninal 54 56h gh core ic.cding 1

(..

90010014 1-8

e T.EGION 2 q

REGION I CURNASLE PolSON IN REGION 3 g]

\\

SOLID SPINES 60 ELEMENTS SCLID SPl"iS

"' ' _ __ l. - _ _: '

STANDARD l

STANDARD TYPE A COMPACTS l. 0 1.N.

9 YYPE A f

I c

j C O':PA C T S

__. _ e I

i o

f a

I i

j54.0 tN.

f LIGHT RH00tUM lC l

HEAVY j

TY?E C COMPACTS i

9 t

i F. HOD I UM

'6I TYPE 3 COM?AC7S l

f i

1 o

(

w E-50.0 IN i

e Il i

i D*"D "D

U' i

'3 15 s

(,

C' lJ

.,j Q

l a

9 A

D l

t-i G

t' l

t l

i

~~

?

l,

(

g

)

I i

=

I o

e I

Ei [27.c la

[

i

=

STANDAr,0 STANDARD TYPE A COMPACT 5 Type,A 1

4 C C". PACT S

,9 t,i l

w r.,

i I

f

)

l f.

l k

i

)

}_

3 a

_ in.2i i n._)

5i.n in.

3a.9 in. _

=

O.

ncuas 2. conc m m 9001001 1-9

G e 604 Fuel Elements o

O' 36 centrol Ecds

. ~.

G 19 E:::rcency Centrol Rods Recica 5 Region 2 EcGicn 1 o 102 Licht Uranius o 564 I,1cht Rhodium Elemente Eeny Thcrius Elecen; o 54 Eea7 Rhodium Elements

(?fpe II Elenenta)

(?f;c IV Ela:enta)

('2ypa I Elo;ents) o 84 Lignt Rhodiu= Ele ents

(?fpc III Element, )

$hMM\\ MAO % h J Q( M

&W M*-G.... 3 4..e.

  • e...".. 'r- -

E ll'

/h,. @.................... g' s

.

  • e *
  • e w\\K

^

.C4

-c w -- e s

.(

b... v - & B t P G. 3

[.....i. e..... e... q. o. q y q cu 4

.n.e.p..............,...

  • k l.s.

h. ". *.

  • y. *.O '. I... aI. N....S *.6
  • ' Ac.,ics......

.g U

z f

... j/.. e. N N 9, 3. e.... e.... e\\o.

.t Q

.O f*....p.* f g%gf.;g.y$n.o.\\...Q.e.C c

e..

.x Q...

g.

. g.

A Q,

sy

... g. e. e.. 4,

/.ea f

...s...N..

... p.. e..... g,... g e.. q.o e.4

..,.c..

.j.

gqcg 4

. (3 e..

J.

. A'-

. e g y..e6.c)y,,:e..,N...

c

...Q,9,

...t

. g\\

g~.J 'm...&. : ;'.4.. :

4.-

.....e.e 6y

.. a%. e. M-'... y n p.y p;p/1... z c. i

. e.

\\.

i u

r

.....e.g,,)

e. q... q... e p.........

+.

. \\. e..,:.

' w

...y.

.g.

..g.y s..e....e..

pgi

.g....e...............c,x y..,r.

.e.

J,.A.

a... n. e. u.__ e-._ %..............

... / W,;

s...s.

u N

......,/... ;/ @g /

. \\s~\\.,...T e.O

.e.e...e.....e...eo T.

.. tz.-.- e,- - O- + - + sl... G q

\\e

s \\\\... T

\\.

x 4

e To... e..... e... e M N

@s h h m W(M'.

c C--G -+-G'--G--G

\\ 's i O FUEL ELE?.',ENT AND CONTROL ROD POSITIONS 90010016 0"*o o

T Y ng

~

A RL ee e

1-10

O TABLE 4.

FUEL C0Y2ACT LOADISOS (loading per 3 inch of compact [gm])

Coccact Tvpe A

B C

D lienvy Ligh

'ieavy Description Stnndard R h od i um.

Rhodium Thorium Th-232 52.10 52.10 52.10 115.36 U-234 (max) 0.156 0.156 0.156 0.032 U-235 9.70 9.70 9.70 5.14 U-236 (max) 0.052 0.052 0.052 0.02E U-238 0.505 0.505 0.505 0.268 Rh-103 0.

1.02S 0.342 0.

Carbon 285.00 235.00 285.00 273.00 TABLE 5.

SOMINAL CORE LOADINGS O

Dencrintion Th-232 1450.0 kg U-234 3.' kg U-235 2 0 kg U-236

. 18 kg U-238 11.46 kg Rh-103 5.00 kg Boron (naturnl) 1.10 kg 90010017 i

l l-11 l

O TABLE 6.

FUEL ELEMENT CO.': POSITION Fuel compacts Sec Tables 2 and 3 Spine Graphite 1.85 g/cm Slceve Graphite 1.90 g/cm Lower reflector Graphite 1.85 g/cm Connector and trap Graphite 1.57 g/cm average Upper reflector Graphite 1.57 g/cm average I

90010018' e

l O l-12

Peach Bottom Reactor No. 1 was operated for 451.5 equivalent Os days at a full power of 115.5 Mw(t).

The fuel elements are designed to generate 112.7 Mw(t) with the remaining 2. 8 Mw(t) being produced by nuclear heating in other reactor internals.

The power generated in an average fuel element is 140 kw(t).

The design peak power generated in a hottest fuel element is approximately 174 kw(t) at 900 days of equivalent full power operation.

j Predicted fission density distributions are shown in Figures j

4 and 5 for the beginning-of-life and the end-of-life, respectively.

Fuel Element Canisters - Before removal from the reactor building, all fuel elements will be individually sealed in a canis-ter that contains an inert Helium gas atmosphere.

The canister is a composite of a 6061-H 112 aluminum alloy outer wall and 1020 mild steel inner liner.

The inner liner is 10 Ject long by 1/16 in.

thick and has an outer diameter of approximately 4.1 in.

The steel liner is provided to add weight so that the cans will not float in the spent fuel pit.

An aluminum cap is hermetically sealed to the can by magnetic swagging after the element has been inserted,,thus forming a unit with the following outside dimensions:

4.500 - 0.005 in.

O.D. x 12 ft. 8 15/16 I 1/32 in.

The wall thickness is 0.065 in.

Design external pressure on the unit is 15 psig. with a can tempera-ture of 5000F.

Many of the fuel element canisters will contain a fuel element encased in a special broken element removal tool and

()

a steel liner.

The magnetic swagging process is a closure technique which has previously been tested and found acceptable for sealing the fuel element canister.

The results of these tests form part of the data submitted to obtain the HNPF shipping cask license.

The HNPF file is available under Docket No. 70-72, Amendments 71-6 and 71-7.

About 1 in, clearance is provided between the top of the " cold" canister and the cask cover.

With a fuel element in the canister, the length of the canister will increase over 1/2 in, due to thermal expansion.

For the case of the shorter fuel element canisters, a spacer (Drawing N9123-6PB-0001, Area C-2) will be placed in the bottom of the basket.

Thus, the design provides for minimal clearance between the canister and the cover for both sizes of canisters.

Salvage Canister - The salvage canister is the same construction and configuration as the fuel element canister except that the unit dimensions are 4.750 i 0.005 in. x 13 ft. 1 7/8 1/32 in.

A leaking fuel element canister will be placed in a salvage canister.

(:)

90010019 l

l l-13

.i OhD h

e Q

goG V d'

6 (N 's

/

/

8 %

s

- ette

/

i s-V..,

/

e

~

ll

/

\\e

/ j' s

's!

N s p

2

'iA

y. '~

' s i

> {, N

~

{

_f

's,.,.',

/,s.N"N.}%

i

'0 1 #

i S. / ;q

i. - M !

~( p-.' -- NQ,'N..\\

' f ! !

.ps.Q.,' i !

~

' N, /

p' 4 "

,/

  • s f.

s,,, / ',.,,'S""(~~"p% 1i

.I

/*

's

/ /s

'.- O ' ",. f

f

' y _

_ ! _ __ _-. a

@'0 l

.- i N

//" s f.

/

/

'ss. o / / ' x M, j / 'y,f *~O'N i !

l i

. N. l l s/-N'.' ; '

/

/

N' 4..,"/

l

, s.*,

j 'N.'

O

7. ' ' '

n 0

/

s, '<

$9WV

.'. -l ~

' ~ '

/ (\\, / Q ///i,

! s.w c

'O

[

e.

~

.G

[.. D s'>r h / ! g/ D 'f>'fl sc'.hO ',, F

^

Ti

o l

c.:

'! o,

I

,.R.

h

{f.<%)

%$.:/

,'O ;f' y'. -

I

/ 's. s.

~Q.%,.

'd o.

s l

/

,o

.a y

':0 s&~..

= > '

..s.

h.V A

t L

~

~

s> t..

h e

s

.co co e

-.:, Cpy

/

C.'.,e '4\\s,Q l

'O

  • }

40

'*o

'7 /'. L,,

' T.' CI!.' SIT Y ( LO C AL / A'.* I N C ) ( D EGit.'..'I N G - O F - LI F E,

FIGURE 4.

OT CCITIC/.L Y lisi COUILIERIUM n'c A N D S m )

CL 900'0020 l-14 l

l

l 1

i 15 0

l D

  • ]D *}D'3' Y o

J U

. eb

.:s o o Ju

..s p

/$

  1. j%D l -l

,h 'N Lt 3 2

% '\\ / p'.

's m.:

[ h, /

N,. $

's

/

g,,

's d

p%

i's 's

'A

,N s-

,7 %., y,'D 7 ' ' S ]. 9 N 4. ' ^ [.' s,s s

i o-l s

i s

/ %

.N

,I, s

s

, ~.

/

N N' l,i N\\,'

I s.<

's

/

-J'o l

/

/

s /,

J-A A

x i ;

/

.s c

.;..; /

j

/

s /\\

N -.,. s \\,.

./

,o,

-r

~

/

~

s v s /

k f,

l

~~

~

f f

n

o,0 y

f O

a.a

~ -

.w/

-s 1,

e

.~

j c

s.

e i

s o

I sfs d) v

's

- c,: <

.N N s.

,.. c I-n

,~

's B*~

j' s C.,jj)

,f' n s

n o

' s,

, ' a

.^w i

e l

l j/ Q.,

f/'

Ii

\\

[ e, *cc

~k f 'c r%

y4 A.,

f"c?

p,, h o

Co h

.,dE

/' t f<> s.d o

fc

'b.,

r %o'~'s c

a

.cK fo o

o e,%

,,e^ g 4

'4

o 4, 'r';,

FICUR's 5.

FIS31GN DENSiT',' (LOCAL./..v2:7 AGE)

(END-CF-Ll?E,

!-:0'.' C7;iTIC AL '!.TlM ECU!L!ET:U..:

',.'.c AMD C m) 90010021 1-15

(~)

(/

1.3 Appendix 1.3.1 References (1)

" Peach Bottom Atomic Power Station No. 1 Final Hazards Summary Report, Part C.,

Vol.

1",

Philadelphia Electric Company, Docket 50171-2 (March 3, 1964).

(2)

" Peach Bottom Atomic Power Station No. 1 Final Hazards Summary Report, Part C.,

Vol.

2",

Philadelphia Electric Company, Docket 50171-3 (March 3, 1964).

(3)

" Peach Bottom Atomic Power Station No. 1 Final Hazards Summary Report, Part C.,

Vol.

3",

Philadelphia Electric Company, Docket 50171-4 (March 3, 1964).

(4)

" Peach Bottom Atomic Power Station No. 1 Final Hazards Summary Report, Part C.,

Vol.

4",

Philadelphia Electric Company, Docket 50171-5 (March 3, 1964).

()

(5)

" Peach Bottom Atomic Power Station No. 1 Final Hazards Summary Report, Part C.,

Vol.

5",

Philadelphia Electric Company, Docket 50171-7 (August 11, 1964).

(6)

" Packaging of Radioactive Material for Transport", Code of Federal Regulations, Title 10, Part 71 (December 31, 1968).

(7)

" Radioactive Materials and Other Miscellaneous Amendments",

Code of Federal Regulations, Title 49, Parts 171-179 (October 4, 1968).

90010022 O

l-16

9 O

7 6

j i

4 4

m w 'gg b

f H

i h

6 s)

E t+

L, u.g t

t k.

T

-- r :.

r 4 x --

i L

arw. c e u.,

4 8af,T g iae. v f E

'b G

r$

e

~

C

_ _ _ ~

t y--.-

N 8

(

i

(&r k T,e... ' 8

~

s

,u r,.

+.

F

< w e. - <= i

  • s+_._.J.

-4 s

T 4

l h

llu m.,

rw&% -_.

v f

l..

'f.

,,7 g

3 ;

f

.s c.

\\

5J

/

I o\\

%q., '[$], s.'i J

4

[g_..

_. g

_ g.

p u

l 1

o

,.,..),.

4,.... ~

e

. j 1

j

_ _~__

\\

f *er sr m

I Y,.. 'g' d

\\\\

(

l

,e;.

'b IL _ \\

-T.. _,_ he A

er' t -(Q k.

4r -* _ -.. Q -;7 t

1

._ _ l}%p%,; /

v

,.4.l _ _ __. _L i

Y) k) '.,, ? I, O

90010023 O

,y,

~~~

c,A+/

. v. -

's, 1

Y f.

/*

/

I A

/i

,,;. j,- n %

/

\\

,c

,l.,

. k.

/Y W

\\ \\

//

f' [

k q_i j - q J_ 'y--%,. 5,.s p-1 1,

j_ 3 l

r

-. -, a % - [

4.

...w g +...\\

L i

L-h,t, e

l t, _

f., c.

v-- /

. y, j

g g i,Dmy j

r 7

t,-gar *3,. % ',x e

_s p;;% A %7y

,i

(

g

,\\

q

~y 4~'

\\

y Og\\

"d y~g y

}

~

s L

\\\\

A

~

h S.7 x b-g',/

.A 5/rr<0+Af)

& 4tf $.!

O 7

e

-m

B 4

2 1

v..._,..-.._.......-

I d

i=. *4.. e. '/77^.p. F

p..

p ga 4.g Me..

'W >w../ jo/T, en s

{ * *I J

[ +Kde {Q f. u a e a <,. I e /

r

  1. s.A* r.~.'. #

n............. w, H

, > g * #Q,,

{ r t-~~ ~*~' r 'g,

e~s.,

~~ + '?d

  • eof,..

a e.

.c

&.1

.,1

,- ne oc. 6.ea a.

l (&"*

ry *N r. *f',? %.r...c. : s.. r. o o r

~'

' vs ts ws *. *

- 1

...r.,

.,..t..,

e.

V N AV,_J,a *4_;~*... 4.

unf./

r/r7ttcz.rza

,f : ;.s kr.c u

. r

~

4 -

w..- v '-*. '....

.a.

_i qu....,.

i g a

n

(. r-~-* w* hn. r-

,pr

.t g,y*---t*-*,9,,.,f,!,: if %,.

r,f>._,, l) l)

  • I., h,v.1~~~

C* 8 C

i,

,* / r

.- c.

yp,. a+ ~ n.

. =. =.

~~

~...

p,*I

,. s...

G s

ss,

.a

8.,,, _* O %.x' r, R.

. p.

T. *a.,a

~-4

,.p m-i

\\,

i

,y _q Q

._.,.,,n,,

gu

% W.

0W

%M'l

^

i c._,.

. g,,

y','T.;

(.~.

7

..-

  • T~~

~

g,-

~.

4, s

6

.. - - - 7...

y; g

.-..____.___~_._..p.._..

.._.q__

4

.aie a,.

..e..__..

,,t m-_

_. ~_ - __.

_ _ +.. _ _... _ s tf 4

i i

___..__A..___,4

+48 Q

4 4

l n

,,f..,,.,

t a

,.7

.o 4

(

j

.--s.

ee

_,..mo.e>-

u _, m..;.;c#l.

2._ e

  • a w

.J y,. 9.

s.

z..

.1_...._.

i.

c,.

\\

Y

/

) J t

7

(<t /

+

m

.e. r s e.r.t a s...

s

/

. p i,

>9 a

... ~.

.c...

.... ~..

....... ~.....

. - ~

a-

k.

_ e. ; -

.x._,,

~. _.

..s;.a, e.

L ' v.

~

...v

,~

nc %.= : m, ;

, m t tj, y

~

~,.-

+

v..

Vy3

-4..N o Ap 4

w a,.e ra s ee.

m_

c 900100p w[_D,

h I,,

2 A*N

...,.. 1.t l

.~e.-

PE,

y a

(a, 1 s.. - t,.,-,

s.

.,,y

^~

- hli h

,,.,. '~.'. _. '. Mf, ;

.,n

.f'asa

  • .e n

vre

\\

.a

- r --

Ipgg gnug gemys get

^ > **.

" d.

e l

t,,,,,.

s s

.m,., u.n

.,.,,._.,p~,..,y,

-. t._. g _....,y,

>m==-.==r.---vrm.; a w

,n.

,.. e.,..

o.o o.......

I g,_ -

..{%gma,,

,3.a,. #f,, ; ;

_m, a,., w g,

.a

=*

ua

.4 3,o,,.,,,_.

a T

5L.,_,,,,,._.,.,

,,_,e,~

0 J

-5.~4.CE ;*sYe. * ** * +'L

,,w*~

+

em. x m e.

.e ?a. + s

  • pfyppg p,rr~me,r
  • 4 *" *a

.a a gr o s se. _Ju eQt_f f ycat/ ) L.

k

  • , ',. } ~_ = f. 1;l
  • >r. "=

-Q.

.v,,,,7, _,g

,i a

)...

5 4

3 2

i e.

r x

a-D *i*

' 9

' ]N @1.

li%

ol c

k@X,6 / '*

EI

').

nM

. s

/

/,

1 g

\\

8

,~

+

[A N l

. _. _............__ _ g[. g,

7,,

t t-s J

\\

(=

1 f

J i

s y,

os s.

4

}

I

/

I 1-

' x.r

~ ~ A '-~'. ',. ~ $ Y '

Aw~

I

.\\

.i

_ ~ =..

c---

, u._

1-., -

4,.

t s.---e,.......; - q I

.r a.:..

g

~

r._... l

+.

C

~ ~ ~

~

.'y

=. _

_ d _. 3

  1. 7

. j

. i r, _... _

.. __ q,

..g.. - _ _.

t.;

J

,tj{._

.__j q

i

,n

- L ll t

t,,

P t.

g

.....,....l

.s a

90010025 J

a w vn,

~

swv-

... _e.....

,~1 7-L

.. s.

l.

e....-..,

i i

r.

.. _.m 1..m

..~._.m,.

2...,.

~

'......... ~.......'

.D@O D

" d ii g.7M'-, 4--..5--.

g t.

-i3

- - p --

g.

1 oo o

1 j

a ~ h, ~:,"I~

.-a v.-~

E.-

J -

T~T~G:2~ Y

'w---~-

~~~~~~L..~..

... :_ ~

. A p~

b-r t

/

I I g.

\\

l e-f h.

1"t Anns e /!

9. Psr e r

('

(

5 ll 5,

s.

r i i i,

i

,t n

1 4 I

i 7

i i

i i

3 g,(

lf 1,. -. 4 JL o

g,m _

..a,

.m,

e. -

+

.rI i

t i

.a.,

l' l

i I

e

.i,!

i I

.j 6

r s

I

!7I t'

f 4.--g _

e 1o i i, r

__4 Ii i

5

.a

.:t. :~r}r.

S 1

. -~ z a+q

. ::= :.

; := 1 *.- : 4-"

w.=

= =:~ -. :.z._.

-8 a.

.J,.., Asc.g a w'4 's '# " '.

..e%

s u -.t f

tr

'/ as p l)

T 4

m.a

w. ~.,

F,.e g

_. ora r r...

.o.er w

i D

D.._r.r.o.es\\o\\

l

_.j i

t Y

m.

s s

/..

90010026 a

7-

- \\>

t h

q

-.. i

- 8 4

f 4

),,_.c:s.<'s,

.n.e ie

..p.

g

::= - =:.,..g-. ~....

...-.s

._ - 1,

oe s ev.

., ;;,7.,,..~.,.. -.........e i

,.s 1.

w

  • 1.t_rt m_m., ? /. U

!. c. L g g.g.

-=: =..

  • ~
      • " i2?

..~ -

~...

=.=...===- v.~,..,,_.,

, _=.,== =.y 3. ".{

~

l^

,o

, y y

-r-e.. - 3. - A 1__

... v :q 5 h

1 6

MT7k,*g"

.-...,l.-.g.._..

E' a,G ) *.

p 6 t' 'W.

  • -7d&'Q Vi,T***4C'.

Mi ~

f p.

'n.sen w ~~ ~~ ~ ~ ~

{ l ygq% ' r.1 r,.

1

%kw w a;.,

l;

-.2 _.,..J.

i S.

, t.,

a.

...3.

. a,,,

6 90010027 P

s 4

m erasep ea==

2.0 STRUCTURAL EVALUATION 2.1 Structural Design The structural integrity analysis of the W&K Model No.

PB-1 shipping cask was performed to show compliance with the applicable structural requirements designated in 10CFR71.

The m2terials used in the structural components of the cask include mild steel, Type 304 stainless steel, cold drawn mechaaical tubing (earbon steel), and ASTM A325 bolts.

For purposes of analysis, the properties of AISI 1025 carbon (i.e.,

a general purpose steel) were assumed for the mild steel properties.

2.2 Weights and Centers of Gravity Table 1.

Whitehead & Kales Model No. PB-1 Cask Weight

()

Component Weight, lbs.

Body 53,110

)

Covers (1,995 each) 3,990 Impact limiters (630 each) 1,260 Basket 920 Fuel and fuel canisters 3,420 TOTAL 62,700 2.3 Mechanical Properties of Materials Material properties for AISI 1025, 304 stainless steel, and the ASTM A325 bolts were obtained from MIL-IIDDK-5A(9).

In the cases where a value for a specific property was not quoted, it was estimated by proportioning the values given for other similar properties for the material considered.

The bolts correspond to the Type 4 fasteners included in MI L-ilDBK-5 A.

O 90010028 2-1

The surrsce temperature or the ca n was taken to be 130 'i, c.nd tac structural proper;ias werc de;rcded accordingly by the usa of data presanted in pV

!GL-l= K-5A.

Table 7 su =crines the properties of matericis used in the design.

TAELE 7.

PATERIAL PRCPERTIES UTILIZED IN Wld' MODEL NO. PB-1 CASK DESIGN

~. _ _ _. _ _ _ _ _ _ _ _, _

hterial Pro,ertv value,nsi

'S Tensile yield stress 34,500 Tensile ultincte stress 54,500 Shear yield stress 22,000 Type 304 Tensile yield stress 2S,000 stainicas steel Tensile ultimate stress 65,000 Shacr yield stress 15,000 Shecr ulticcte stress 36,500 i

Mechanicci tubing Tensile yield stress 60,000 (cold drcun.10 -

.25 carbon)

ASTM A325 bolts Tensile ultimate stress 121,000 (Type 4 fas teners)

Shear ulticate stress 90,000 egb Concercial urought Working locd 4 tons steci cyebolts, 1-in.

noainci The ;rachcnical tubing is used :.n the impcet limiters for the cask.

Materici p rop 2rties were ob tained f ron' vendor catclogs.

The ire. pac t li.c.i t < ; ;. t:c c _

Na. 2 2 - o :. ) (,* U,/

designa utilizing design curves cad dcta presented in Technical Report 2.4 General Standards for All Packages

)

2.4.1 Chemical and Galvanic Reactions - The material used, mild steel, stainlest steel, and lead, do not react with each other in such a way as to cause doloterious amounts of corrosion products.

2.4.2 Positive Closure - Positive closure of the cask is ac.omplished by 12 ASTM Type A325 bolts during normal shipping conditions.

The closure with respect to accident conditions is analyzed in a subsequent section.

de 90010029 k h [D 3,

2- ?

D"*D

  • D 3

M

('

oof

. J1 Al5L, l

o N.

T 2.4.3' Li f tinu Devices.

2.4.3.1 Support three times the locded weight.

The cask is provided with two b in, diameter trunnions at each end.

These trunnions provide a means of lifting as well as tyin;; down the ecsk during transportation.

For use as lif t ng de'cices,

only two trunnicas would be used.

increfore, the tetcl load on each trun. ion will in

\\'

3 P=3jn 7 (62,800) = 94,200 lbs.

J'ailure of t.a lif ting device can occur in any one of the four modes: fiber stress ja the cask shell, fiber s:recc in the trunnien, shear stress in the trunnion, an.

combined s;ress in the trunnion-to-chell weld.

2.4.3.1,1 Fiber stre.:s in the shell.

The shell was conservatively a.mur.ed t.o be a flat clate.

The stress wcs computed using Equations 5 and 10 of Tc'>le X of Roark(ll).

These equations vere colved eith the ciu of c computer prorrcc..

The ec,uct. ions and a co~.puter program flow chart are presented ir Apper.d;.:.

3.

/i ;urc 6 is c ahetch of the problem (t.

= 0 for thic case), and hgure - i; a t

ec?y of the printout of the compucer colution of the analysis.

The r.m xirc.ua s n e l l s tress cc cho.cn in ligurc 7 is 9,690 psi, and the margin cf cafety cscur....

he properties for c tc.inless s teel (from which the patch plate is =cde) is 1. !. v.

/7 j

I PP

,-j l

S K ->.

I-A

/

1-P l.

l l

A f

'a

's' D1 DC l

l A

[

s

(

y, y _... _. _

I Patch.victe i

~~#.-

  1. l Cack Shell M

,,w-O) i.,*

m"

, e-

. r, v 'a - 'v' i.' v'.'. u.i.' c u '.. L.'. '..').....'u.'....

.. y r..

,,..,, C.. C,..., v.m, v _..

vs.

c r. v,v.3.,,.

t v.s t n

. s.

,,....,.,.e

$,/ d ' ub

.g./

g)d' d a.. U.<). ).,..<)

3^...

.c.

..,......,V..

c.,....,..

a U.4 k.dh>.a

&.'\\ '.s.... p

/\\ d 8$

Jd E A

..\\8 a.

/h m.r ., v.1 de e s ii* Tat * * *1.r T r r4 4 4s 6 6e 4%

90010030 2-3

rh

\\J f

T ?':N'!N 16 : 3 r'

'CY M ~s N 01/05/70 i

.f;N'; I T 0 0 I N '\\L -Vr.lT I C AL L '. A D 949.00 00 T 9 A N ;' W 7 ~.r.

L ';.'. O

.'0 0 SHELL T t:1 C NEST.

1 50 MTCH DLATE THICXNT33

.50 D A T ,'

P L ^ T r

') A 71 ' J S '

6. 5 e)

T 3.tJ N N I T.' LEN>;TH 4.00 TONNI'.N ' '!T S I DE 01 At:ETE-P,. 0 0 TT IN N I.~ N INSIO 01 ^.t' r.T r ?

6 00 TrNSILE r>rSIGP ST90';S C 0 0 0 0 0 ')

SHEA7 DESIGN S T E S ~,

15700.'37

3. ;.,y.. g*..; s.\\,

y

,y

.,.ya 4.9

g., -, - g f,

j' L,- a sr

7. *,,s -., -..,

a a_

..'".'-44 1. *

-g w

EQl) ATI DN 2,

( '). 4 S n ; = / c '. ), 2 Tl ATI. N 2 BYPASSED p

\\

i.

SHELL S T 7 2. S S, L7 N 3

E RT L '; f. 0, AT 3,

401AL, E7 1 9692 74.'6 SH'-: LL ST775S, L T. '. - V r. '.T L 7 M,

AT.',

4 t. 31 f. L, E 2

.03 M A >' I

'l:' M OIAL ST.~3 AT 'i' 9 6 9 '.-

744',

MAX I : '.1:* T A N'ir N T I 6 L' iT F. 3 5.T

'q'

.00

.00

'^'

t'AXI:'lM M31 AL STV_SS AT 3%9GIk *. SdFr.TY AT

'9' IN R A C I A L ' D I -fr.C T I ^.N l'. 9 8 3 3 d' 6 Y.1 ;  !: ' TON ~1LE T T M cU I'

T 'T'!N T '1 N 19965 476 St:E r

c. Tor 35 IN T >'INNI:;N 4G93 5316 i.< a. '.~ t. y

? c: A r. T y i ;4 N N I ',

I ' > 3 E N D ].s' l.5S34 v'a q I ;'

r -; A r r. T y,.

i ' IN N I ::s IN S!!E na 2 5_015 I

o

%J

.~. ~... _ '

.,...m le' 1 ' '..~.'.. 7.

c0'.'..~..'~.c~..t~~a~'"'..O~.'.~_..".'.m'"..'.'~''e.c..,_...,..._',..c~'.m.c.

.,...... m.. c..x....,a,.

c...,. m. _.,,,

90010031 2_,

2.4.3.1.2 Fiber Stress in '.he Trunnion - In the trunnion-to-7.s()

cask attachment arrangement, a 28,000 psi design stress and a 15,000 psi shear design stress for stainless steel material was used rather than the higher values for mild steel.

Since the trunnion is welded to both the mild steel cask outer shell and the stainless steel patch plate, a weighted average design strength for these materials could have been used.

However, a more conservative choice was made to use the lower of the two values for these materials.

The maximum fiber stress was determined from Equation 5 in Appendix B.

A sketch of the problem is presented ih Figure 6 and a copy of the computer printout of the solution is presented in Figure 7.

The maximum fiber stress is 10,970 psi, and the margin of safety is 1.55.

2.4.3.1.3 Shear stross in the trunnion.

The raximam shear stress was determined from Equation 6 in Appendix B.

A sketch of the problem is presented in Fi ;urc 6, anc a copy of the cc=puter print cut of the solution is presented in Fig re t

7.

The caximu.2 shear stress is 4,2c0 pai, and the margin of safety is 2.50.

2.4.3.1.4 Combined stress in weld of trunnion to shell.

The combined fibcr and shear stress in the veld is the vectorcl sum of the two separate forces.

Since the fiber stress is the' result of the bandin;; coment of the force " P" 1r Figurc 6, it can be computed from Equation 5 and the shear stress can be computed from Ec.uation 6 in Appendix 3.

However, the dimensions for the prob lems are as t aown

- 7_

Patch P1at l[

Cask Shell x

7W l

N h y

,3 DI

.- W i

D0 s[_

.\\

e 8

Ny

--[D I

.e.,u.

y-c_-

n O

9001 2

l l

l TL l

1 l

Figure 8 Trunnion-Cask Shell Weld Problem 2-5

's f

t, 3

In this case, w = 0.

The effective outside dicmeter of wcld area can be appro>:imated by nW = DI + 2X (cos 45).

Then for Xw 2.0 in.

and DI = 6.0 (RI = 3.0)

DW = 6. 0 + (2 ) (707) (2) = 8.S25 (r = 4.414) g A copy of the computer solution print out for this problem is prerented in Figure 9.

The ma::imum fiber stress is 7,090 psi, and the ma::imum shear stress in 2,S60 psi.

The combined stress is 0

9

= n /]2f + c'h c comb v

s If

=g!7,909 D

2,860 r

1

= 7,650 psi

- 1 = 28,000 The margin of safety is y

o 7,oSO - 1 =

.,,.66 Comb 2.4.3.2 Support three times the weight of.he lid.

The lid lif tin;; Jerice consists of two 1-in. steel eye bolts screwed in the cask lid.

The boltz.re loca; y

on a dic=eter of the lid at the location of the volt circle of the lid cica re bolts, Figure 10.

/ss shown in this figure, it 1: assumed that a two-leg cable slin;;

be used to lift the lid and that the worst probable included c.ngle of the sling vill bc 90 degrees.

F n

is 900 N

C C

V 45

  • \\i h

l lw p

O4 F I C'J R'd 10.

h!D LIFTISC DEVICE P.103LEM 90010033 2-6

o V

TRi1M'JN 16:31 CY M.N 01/05/70 3

LCN31T'iOINAL-VraTIC'AL LJAD 94200 00 TR t.N F. / r 3 :;E L3AD

.00 SHr.L L T41CKNESS 1 50 P A T C :- PLATE THIC/. NESS

.50 T' AT C H

-) L A i~ R AD Iij s 6 50

~ T7UNNION LEN3TH 4.00 TRI J NN I.'; N DUTSIDE D I AXET7.a 3 528 (Effective weld O.D.)

TR:.,' N N 15 N INSIDE D I M'E TE R 6 00 s

e M AX 1' Un' TEN SI LE STRESS IN TRUNNION 7091 6565 (Weld Stress)

SHEAR S T R~;. S S IN TaVNNION 2360 2107 (Weld, Stress) i I'IC'J.Ud 9.

CO.WTER SOLUTIO': OF T! 2 A'U.LYSIC OF STRESS II,' Tik. U2LD C7

.. u. '. ~ '. ',' C 0'0'".,'" ~. '.'.'. G' '

~ 7 '

T"i. "i nt' '. '. ' u o '.' ~. 0

~1 'a' 'm' Ca' 'v' ".s '.'v.'.

D Load = 94,200 lba b

~

~

Trunnion ler.cch = 0.0 in.

cra - 2.0 in.

Moment 150,000 :..-lb Marant

=

Section ec.adulus = g (($,g">;)' - (,'s

'ni' f'.

~

' } = S3.t in

.c o,.

.e s

Tiber stress = 3,560 pri Shear strar- = 2, 8 0 0 p r. t 1

C :..!d ned s t re s s -- 4, 5 0 0 p a i 900l0034

.e ro n e ec t., = 3.15 Ov f

o l

2-7

i f')

Then if the weight of the lid is 1,970 lbs., the cable force, F

is:

C, (3)(1970) 1/2 (cos"4 5) = 1/2 F

=

.707 c

4,200 lbs.

F

=

The eye bolts are commercial 1 in. eye bolts, rated for four tons load working strength with any load orientation.

The margin of safety thus is:

~1

  • 4,'200 -1 = 0.91 M.S.

=

Fc If the bolts were pulled from the lid, the threads in the lid would fail in shear.

The shear force on each hole is:

(3) (19 sh = (1/2) 3W =

= 2960 lbs.

P 2

(-)s The effective area for shear was taken as one bolt diameter

(_

deep.

Thus:

A=

(d) ( d) = n (l) (1) = 3.14 sq. in.

The shear stress is:

Fsh sh 2960

= 940 psi sh

  • A (d) (md)

(1)(31410)(1)

The margin of safety is:

sy 15,000 MS =

_)

_ Large sh 940 90010035 7

lV 2-8

/"\\

U 2.4'.3.3 Basket Liftina Attachment The criteria require that this attachment must be able to support three times the loaded basket weight or I = 3U = (3)(4,340) = 13,000 lb The shear stress on the threads of the aluminum attachment is

=E=F a sh A

ndl where d = 1 in.

1 = d = 1 in.

13.000 0

=

- = 4,140 p s i sh (u) (1) (1) rhe margin of safety is F

- 1 = 28,000 su o

4,14 0 - 1 = 5.76.

1-3 =

sh The shear sttass on the threads of the stainicus steel lifting rod is F

sh " udl where d = root diameter = 0.843 1 = 1 in.

13,000 t

= 4,910 psi.

o

=

sh n (0. b4 3) (1) l l

The margin of safety for the stainlecs steel rod is F

- 1 = 36,500 su o

4,910 - 1 = 6.43 MS =

sh i

The aluminum lifting attachment in velded to the top of the fuel tube with a 1/8-in. veld all the way around.

The stress in the weld is i

I 90010036 Lq 2-9

4 f

F F

= - -.

cu A

(.707)ndt where d ' t; eld dic..eter - 5.12 in.

((

h d

.12.

uald thickness t

5-

=

'ihen o

l').000

-o00 p;i r

w

(. 7 07 ) (n ) ( 5.12 ) (,12 )

The inargin of tafety is

-1=E # - 1 = 1.95.

n=

9 0U U sh 2

In the event of an incident where the cask would impact on

)

its top, the lifting attachment would not be required to take any load.

The band around the outside of the basket at the top would accept the entire impact load.

The finding of the above analyses is that the lifting attach-ment is more than adequate and does not in any way compromise the cask design.

2.4.3.4 Nonlifting attachments covered or locked - The lid lifting device is designed to be removed during shipment.

All nonlif ting attachments are located within the trunnions and are protected by them.

2.4.3.5 Failure of the lifting device would not impair containment or shielding.

Impairment of containment or shield-l ing due to failure of the lifting device would be less severe l

than in the case of the 30 ft. drop which is considered in a subsequent section.

2.4.4 Tiedown Devices 2.4.4.1 No yielding with 10G longitudinal, SG transverse, and 2G vertical forces.

The four trunnions are designed for tying down the cask in addition to lifting.

For the appli-cation of the 10G and 2G force components, all four trunnions would resist the load.

For the application of the 5G force component, it was assumed that only two trunnions would resist l

the load as shown in Figure ll.

O 90010037 2-10

P

i 10 2 l

P10 o A

~

ty

~

N.

/

T..

u,., - P 5

n*10-2 f

SG 1 10-2 f:7

/),

100 #

1 j(O

/

2G 3..' 5 D]p p

D D

9 o

.I o ofL 1.

//d __,

(

FIGURE 11.

SKETCli 0F FORCES APPLIED DURISC APPLIC/. TICS OF NORMAL TR1_';SPORTATION LOADING Then rm bWu 2.55 W

=E 10

+2 P

=

10-2 4

9 Y'

P = -- (5 ) = 2. 5 W 5

2 The weight of the ensh, W, is 62,E00 lbs.

Therefore, P

= (2.55) (62,800) = 160,000 lbc.

10-2 90010038 P = (2.5) (62,300) = 157,000 lbs.

5 Failure of the tic dcun device can occur by anyone of four : nodes:

fiber stress i

in the cac,a sne,u.

naer stress in the trunnion, checr stress in the trun-.ica, :.n u cor..bined ctress in the weld between t.he trunnica cad the cask shell.

i l

2.4.4.1.1 Fibur strecc in t'.e r.he l l.

/.c in Paragrcph c.1.1, the shell wci, assu:c,ed to be a fint The stresses were conputed using Equatienc 5, 10, 18, and 20 froa Rocrk() plate.

, Table X.

A sketch of the problent is preser.ted a Fi;ure C, v'.ere P=P10-2

""O W " F '

AP?'"di* 2' ProSCntS 'ho flCV d i L i', - di (1" c

5 co;.puter code used to solve these equations and de terr.r.ne the worst p a.; c ;., l e. t r e :..

c c;.e.; tion a t ec.ch location in :.l.2 shell cdjace.n to the trunnion.

A ca;'y c.

ute print out c,2 the curc.puter coac is presentec in kigure 12.

T!.c ncxir :,.~ w m stress in the shield 1.2 27,010 pai.

The narr.in ci safety ur.ing the proper;;ce, ce the p:.tch picte (stainless steel) is 0.037.

1 2.4.4.1.2 Fiber stress in tha trunnion.

The c.a u.um fiber stress w.~> de u from dquaticn S in 1.ppendix B.

/. :.ke t ch o f the problen is presented in

cure 6, c..d a copy of the cm.tput ar print. cut of t!,e colution is presented in 13t. r e i?.

r.v C.r:. f;ber r. tress is 25,760 poi, and the.:.rgin of sc.fecy is 0.0"7.

2-11

CI-C

..,,.. yJ..., ~.,. 7 1

..,M.,.,..,,,.n..c.;,.%.,.,,

s..n. a,.,.,0,1.

s.L,. 7 C... u, i...m... c,.< u.

a... v.

.i.

a,

.... u s

.y c...~,.,,

.aa.c

. J r.y n

1....,. -.,...0.30a..- cc
d. n,

<... J I.,.

a a

.m

..i so

.s...,

6E00l006 G

Ll90*l 2VihS Al b ' I NNf'h 1 JL A 1.: i'v S /J

.'! I E i-V n LV50' O N I G N J.;

s.'I N ', I N M ib i c:. A 13 V'd a :. :: I L L-p e '

C L C '/

  • S L 8 L N '[ I N N I.c J. N I b b M:15 Evihb

' ~l l b i'.~ 21 ;f : ' I N Vci CE6*Y9L98 N I N NT O.1 NI S S  ; ' '-

i 1156' N :1 1 0 3'.I C T;IGVM NI

.V.

17 A ll i V '.: d k, is l b e vc.'

(.Los*7 M:I101L IC' 7V I1N1DNel NI

.b.

IV AlizVS. 'J N I L SV/.

l 99CO*

NC1103t10 'lVICVL NI

.b.

IV AlidVS

.L N I '., b V.4 6Y9*0$CVI

.V.

1v SSibiS TV I CV E.

<!f;,;IAVN 6 9 0'/ ' ' C O G

.b.

IV S E lbl5 'lV 11N r UNV1 X f.. I XVW d

BGS*blGLE

.D.

It-SSalS ~l110V b af:,s ! Xte!

i

[

'l ~l ~ H S C E 9 C ' 6 '/ 9 L 1 C3 ' TJ I G v h ' U. IV 'GV 1 SNV

' ': (' h b 1 S c

c 6Y9*OSCYI C U1 ' ~lV I O t b

'V IV ' G 'i c 'l

.NVE1 ' E S it.1E ' YlinS l

C. 9 0 7

  • 6 0 0 C. -

C L3 '7VI1NiuNV1

'b IV ' C V O ~1 thvel 'SSiLIS Tt ir:S t

165*6'/S01-V L3 ' ~1 V I C V :: ' h-IV ' G v t 'l t, h t i.1 ' E b id.15 Tiens 00*

E

<1

lV I GVU ' ?.

IV 'GvL~l l':.- A - C % 7 ' 'i U :- :. J. 'i TliHb 196*C9991 l L3

1V I C v d

'L IV ' C b. ~1 i t. li. - L c.c l '5610.15 T11ns 01SSVdAE E N ' I iV f...'1

'(E>/=V"59*U)

'c NL Ilti:L3

. L.1

.N C I N Nid_1 NI INie.ci Dbb if.11'.,LiN bC LLil av 1

I OC*00LSt Shi'is NUISiO LvinS r

~ ' l i b e. : J CO*COGSE 5 S h L1:. NLIb20 00*9

.'. i li'.: V I L..0:SNI h INNf.b1 00*b L'ili c:VIG e.LIS11m isi I b Ni:il 1

0 0 * 'r i1 L'N i'l NiINM.1 09*9 E l.10 V ?.

31V ~i c :sLivu 05*

S S.:iN > O I h 1 e.1';'l e : t G i b c' 1

0$*1

' 51.N > ' I. 1 TDr.5 i

L O * '/ 0 0 L G I tb. l.: b ?. 'c. n i t i 1 00*LCOL9l L., L ~l 'it 311;. ' l'. h i ' I.I I ! a.. 'l Q

G l

6L / S C./10.N: <!

A0 t i; : '/ I i.i

.I :nl g

e I

r)

(V 2.4.4.1.3 Sacar stress in trunnion.

The maximum shear stress was determined s,detch or_ the problem is presentou, in rigure o.

ir o.3 :.qu2C:on O in nppendl;..i.

n Figure 12 is a print out of the computer solution of the probic=.

The maximum chear stress is 7,230 psi, anc the =crgin of safety is 1.06.

2.4.4.1.4 Combined stress in weld of trunnion to the c :sk shell.

A sketc'.

c.. t.,ae prc.,em is presentec, in. :.i;u r e o.

ns in v.aragraph c.l.",,

the computer ecde ot o

presented in Appendi>

g, Ze,uc.r'ons 5 and 6 were used to solve the probic:a.

The dia.ensions of the problen are a.,

ta paragraph c. l./, x = 2.0 in., RI = 3.0 in.,

4.414 in.

The applied loads for this problem are P=P

=

60,000 lbs. and r

a o

157,000 lbs.

A print out of the computer solutica is10,Drecentec in rigure W " Pc)he maximum 11oer stress,, 1 n

1.,,,.

t it 6,510 psi, anc t.ne maximum shear stress is ',,500 psi.

The combined stress is gl16,510~+4,500' i

c

=

m p

qq obM o b_

17,500 psi

=

The margin of safety is F tv 22,000 PS u

- 1 =.60 1 =

c 17,500 ConD s

2.1. 4. 2 '.'ontiedown devices covered or locked.

The nontiedor:- de.icca will be located within t he trunnions and protected by them as described

  • n Parac :1p 2 4 3.3
2. 4. 4. 3 Failure of the tiedown device would not impair meeting other r e c,u i remen t s.

Failure of the tiedown device would not impair macting other requirements of the cask as described above in Paragraph 2.4.3.4 and in the subsequent sections that discuss the accident conditions.

2.5 Standards for Type B and Large Quantity Packaging 2.b.'1' tm' hr,s*c.co.

The reouirement for load resistance is that when

< ct.p ly :.uppor t ed a t its enas, L:.e cask mus t be able t o vi t!.s tand a uni for'c.ly distribute lon; ec.ual to five times the cask wehht.

Conservatively, the cute:

shell alone is assumed to support thir load.

For this cauk, the streases at tFre<

locatio; ncst Le t.naly ec, at thu midle:.gth of the cask, at the rcduced oute-d acate; of the steppac outer <.acil at the weld,.nd in the weld between t!.e two shell di.n.cter sections.

Re.crring to Figure 14, the Ivc;.tions are A, g, rnd C, re..pective!'.

Tae stress in the outer shell at locations A and h can be evaluated from the c c,u s t i on,

W c.=C t

1 j

/'

t

. or t !.o

. ress in the wld, loc:.tica C, the co: Lined shear and fiber stress rust s

h e Y L.A u a k. e s.

90010040 2-13

VI-2 lV00l006 l

i l

i 1

..,,,, r,.n 3... h, c -.,

. n..,,,.. a.c..n.,

u.... m u<.

c.-. w.

s.,a,
s.. r s D -.. r 0.,

., n...,. e...,

.a

-a.

v. s...

m...

cd, m,

~.s m

., 9 c,2.o..,-e

.v. z e n c. u. o.

.n 0 o, e.s

.n.s u,

... o

e.,s),._. 4. 0 c.

. e... :.o.u m,. 3

. c I

,c.,n I,

.r a1a t a

s.

i a aa a.

a GN3' c111; :L691

  • C t.

m ! ~t IV 1

I Et'2HS C L O l

  • 0 $ h'/

NCINNfil NI SEih1S 59 81891 NCINNf.21 NI S S 2his 'ilI5 fsS1

'lI M A 0 0 '.9 1.313At'IO 1GISNI NCINNfb1

e. g s g E311sVIC 2O I SifiC NC 16'.Nf:bi

-h UO'V H10N11 N L 1 Ni' 1:ci CS*9 S f ! 1 C'v h blVIe HCite Cg.

SSiN'/DIH1 3/ v'le h C'i v e.

CS*[

SS2N>0Thi 'lllHb

,OO*006,L9I O t 0 ~1 abb hisSNvi1 OC CCC091 C t 5 7

~L's7 C I1 U /\\ -lV.\\ ! O l 11 L N Ol O L / S C / l O N c '<,' A 3 CC:91 N f:NI.b1 Nfth

  • CCOLSl=9e 06 CCOC91='ule 09 c

O

I l

)

I

)

O Dm" l

'9'

~

1 l ()

c el d

v

3 C

A P,

l

,e

-7 l{

d, I di

=

=

40.5

/d. 5 l

1 I

i i

__ _i

.r c

i I

?1 1 a

3 7, g, 1

m t

i' 173.1 FIGURE 14.

SKETC!i OF CASK S!!G'.-lI G I.OCATIO iS "u' u" c". s'~. u "

" O's' n.mLs

')

'u.'J' r

t.

i c.

r.

C' O

2.5.1.1 Fi.aer stress at the nidlcngth.

Thc properties of the section at the midlen;th, location A, are

'.' 1

"'t (ST (6 1.51.0) (171.1)

,1 = 5 s

= --

6 6

(6.6S) (10 ) in.-lbs.

=

d (4 ^~ ' 5 -

  • 5 ) = 21. 0 i n.

l C=7

=

= n (21)3 (1.5) = 43,600 in.4

( 1)3

~

t I=n j

It is c.ated that d; vas taken an the outside diamete of the 1.50-i' ti.icL -i1J steel

. ell and that the effect of the la:M ;ated 1/4 in-thick

ens steel cht.: i is neglectua.

Also, the wei;.ht is the welsht c, f t h e loaded ca n t.;ou t t!.e impact limiters.

~ '. e fiber stress is c

ln 1 ( ' i )

(6*

C\\

' - = 3,220 pai.

,(

c, = ---

1

~),uv0, The

'.a r ;,.. o f S a t t. t y 1.s 90010042

~

c r

A.,.

1 = 22,.1 - 1 = 9.7

'.N..

r-vg A

recuced dicmter outer shell.

ihe Proper:le: oi th-2.5.1.2 F.ber strean SCCLi0n at IUCa'10n.I;, G1.ibure 10 are 2-15

t/

2

.,A 1

31.M>)2 M=5 E (1

- 1 ) = 5 (61,5401 (31,56 -

)

2 1

2 173.1 t

6 M = 3.97 (10 ) in.-lb.

I C=2 = (4 0. 5 -.5) = 20.0 in.

d 2

2 d

1=n t =n (20 ) (1.50) = 37,700 in.4 3

3

~

6 (3.973 (10 1 (20)

- = 2,110 psi f"-

37,700 a

'The ma rgin of sa fety i s 34.500 l's =

- 1 = 1arge 2,110 2.5.1.3 Cor.bined stress in weld between two steps in outer shell.

The properties of the section at the weld, location C, is 1

W 1

6 M=52 (1

--) = 3.97 (10 ) in.-lb.

1 1

C(

', ?

C =

= 20 in.

d23

- (n ) (20)3 (.707) (1.0)

~

1 " n (2 welc t

i 1 = 17,800 in.0 6

MC (3.97) (10 ) 77g)

- = 4,460 psi

' =

of I

17,000

'th e c h: a r s t r e s :, in the weld is y

=-

a Gh A

21 V=5W2 (1 -

1) = 5 (61,540) (1 - (2) ( 31. S f,) )

i 1

2 173.1 t

" 97,600 lbs.

1 A = n d,,

t (n ) (4 0. 5 -.5) (.707) (1.00) j

=

4 5:e l o, t

1 2

j 68.9 in O

= - ' 6 01 97 i Q c.

= 1,100 p31 90010043 The Cor.bined strcsg is e.,. = g... q

,4,cor"> + 1,10r o

I 2-16

1 I

i l

2 h

j c

, = 4,560 psi i

The m.rgin of safety is MS = ~..';00

't ' 5

- 1 = 6.56 9,soO 2.5.2 Es:t o rn,i Presaure. The requirement f or external pressure is that the cask must

's e able to withstand an external pressure of 25 psig zithout loss of contents.

The outer shell was c onse rvative1y 'as sumed to withs tand t his p '. c : s u re with no assistance from the lead in which case the shell could fail by stress ene end plates, stress.cailure o:- t..c c y. i nu> r : ca t socit, or co'.'iapae 01-en I t

1-1 i-inilure ot.

outer shell.

These cases are analyzed incividually below.

1 2.5.2.1 stress failure of end plates.

The severest stress condition existr when the edy,es of the end plate are assumed to be simply supported.

A c c o rd i n g, to Roark(12) ase 1, the maximum stress in the end plate may be described as:

f =3 g)2 3

,D p (3 +.s,)

c where p/.

w, D = mean diameter = (40. 5 -.5) - 1.5 = 36.5 t = 1.50 in.

Ii " 25 psig P = 0.3.

9

= 1. (18 s)'

9 Y

(2 5 ' (3 + 0.3) = 5,100 psi C

f 3

1..>

and the corresponding margin of safety is:

F MS =

1 = 3!. 503 tu

- 1 = 5.76 o,

5,100 2.5.2.2 S t re s s f ailure cf cyli: !qcal 11 - small diame ter sec tion.

The stress in the shell is given by Roark ', Case 1, as:

on I

l c

u ~-

hoop 2t where the dimensione are the :ame as abave.

The re f ore, the fiber strest is:

(25'i (3F ST

, -)

f" g) (7, g - 320 psi.

o t,m and tme saro n a safety i=:

90010044 y

MS "-tv 1 " 34,50Q -1

- la rge,

~

30 2

v f

2-17

(mw) t

2. 5. 2. 3 Collapse of the cylindrical shell small diameter section.

The critical collapsing pressure of a shell is given by Roark(lJ), Case 1, as :

F ab(

'Y

)

p a

D F

t whe re Ea clastic modulus = 29 x 10 psi.

P~ ) (1^~'0) c 1,510 psi, p

34,500

=

a c

(3S.5)

(

., )

34.500 38.5 ~

6

'l'5 )

/

1+

(29) (10 )

and t he margin of safety is :

P 1 " 1,510 - 1 = large.

c MS " -

O p

25 kJ

2. 5. 2. 4 Stress f ailure of cylindrical shell - lar;;c diamete r section.

' he stress in t.he shell is given by Roark(13)

Case 1, as:

"O o hoop 2t where the dimensions are the same as above except that d = (4 2. 5

. 5 ) - 1. 5 = 4 0. 5.

Therefore, the fiber stress is:

-(25) (40.5) 3, 4 0 '> s i '

u f

(2) (1.5) 4.nd the margin of safety is:

F-- Il 34,500 1=

- 1 = large.

M S = c..

340

2. 5. 2. 5 Collage of t he cy1:ndrical shell - !arge diameter section.

t cri:ical collapsing, pressure of a shell is given by Roarh(13)

Case 1, as:

l 1%

u

. =2 s.

)

r..

90010045 1+

( 3 ) ',

t.

t 1

1 2-18 l

O.

k

,.,.we

  • =.)

\\~

J e

/

e

. "., a s' 3 t'

~,

u s

90010046 I

l l

l l

[

l 2-19

()

2.6 Normal Conditions of Transport Effect of Transport Environment on Safety of Cask.

Normal Transport Conditions (Appendix A of 10CFR71) - The analyses in the sections below show that the cask will be in submission to:

"A package used for shipment of fissile material (and) a large quantity of licensed material.

shall be so designed and constructed and its contents so limited that under the normal con-ditions of transport specified in Appendix A of this part (cited below)"

the package will meet the requirements specified in 71.35 a and 71.35 b.

2.6.1 Heat - The conditions of subjecting the cask to direct sunlight at an ambient temperature of 1300F in still air were analyzed in the Thermal Analysis Section, 3.4.

2.6.2 Cold - Section 3.4 includes an analysis of the cask subjected to an ambient temperature of -400F in still air and shade.

2.6.3.Pressurn - The pressure requirement of 0.5 times normal atmospheric pressure is usually considered for packages which may be transported in aircraft.

The Peach Botton: Cask will not be transported in an aircraft.

However, it is conceivable that it may experience reduced pressure when transported over high mountain passes so the'more extreme reduction of 0.5 atmosphere pressure is reasonable to consider.

This pressure is approximately the same as that used in the fire accident analysis which shows that contain-ment is maintained.

2.6.4 Vibration - The effects of transportation vibration j

on the massive cask are considered to be less severe than the transportation shock forces (10, 5,

and 2G tiedown forces) discussed above and the hypothetical accident conditions described below.

()

90010047 2-20

I"3 2.6.5 Water Spray - The cask is constructed of corrosion

~#

resistant materials and is thus unaffected by water spray.

2.6.6 Free Drop - Since there is no coolant to be lost, the free drop from a height of 1 ft. will be less severe than the 30 ft. accident drop.

From the puncture accident analysis it is shown that the present cask design will withstand the 40 in, drop of a 6 in, diameter cylinder.

Since the trunnions are 8 in, in diameter, the case for the 6 in. diameter cylinder is more severe.

Therefore, a free drop on any trunnion will not cause puncture of the cask outer shell.

The trunnions must be analyzed, however, to ensure their in-tegrity during conditions of normal transport.

The analysis which follows is based on the assumption that the cask drops 1 ft. sideways onto one of the trunnions.

The resulting impact force will cause the trunnion to deflect the cask outer shell in order to absorb the impact energy.

If the cask were to strike at any angle greater than 170 from the horizontal,then the end impact limiters would attenuate part of the impact.

At any angle between 00-170, the horizontal component of the impact force would be less than 30% of the vertical component, and due to the short length of the trun-nion, create a negligible bending component in either the trunnion or the cask shell.

From conservation of energy:

f (1)

WH =

Where:

W = cask weight = 68,460 lbs.

h = free drop height = 12 in.

P = impact load, lb, d = cask shell deformatio%, in.

90010048 e) 2-21

e I

u n

r ec:

cc. w

_aa,.c 10, woe 10, t,;w 'ec cction o.7 a c y t i r.-: e -

- '. due 1

1 l

e_ c.._

.c p,

c,. - 1.

..,.t..,

1

..m.

, c m,

..a s-l

r. >

n 1.

.r 7..; o/ /e l

(.e s) a p.-

i...

(- >.

a=

w..c,.. z, c r

6 2

51'.'6 O *.' O u,,. u.r 4

O.e C a, c..

1.,

_c c.. p.

1 y -

...v,.,.v...

.. ;w..,

s 2.9 : 10 psi u

,...~

n,.i.

s..,..: /. C s

-, -,.1.

2. ]..

!..s

.c

.s~....,

. - C u.-.

...e

- '. O...:-

r.

.3.

u -

1.,...._*.

,s r u,...

m..i

2.. --

1,.

.-,i...,

c.

4 u

i

,_ n l

v 0., s._, t,u..

.. _ _, -. C.. -

.r e 1

.2 t j v 4.;

. _ t.

u o

.... vs i

c

(.,

(_.. \\ > I g

.. ;-.a

,os. s -.< )

c o c,

(_..

s-L cs o-o

1. 3.0,

C L.).

J.

u s

r 'u..,

v..

u.:.. c.

ew-.

..s.

,4.

u.. a.

2,.

.,...u,..

s,,...p,.

. u u.

is3

.:.v.

.u, o

C-In 3

V';. L.* Q o

9 t

A = Ti(D

- D...r,. )

t, d.. s n.

- *

  • n.
s-4..,

J e.c v

)

I D

d

/<

9

9..i. e. n m

~

_1_.1 0 '

v

'*'t

(, u.

beb.. ad

\\

c = 50.023 -..

g.-

L, 3.

.m

..,,.._,..1, O.

a..._......,_:~.

s..

c,.

3, s._

e, z

.,e..

~*

v.e

.m<

w 2

4.;,

=.

  • ^%

{ ~; - t 1*U P

,,I'%

. Y b.-

4 109

.c..

b6w E

d' O

.,v

(..6

.h e.e.

L&

8.

b.. +...d

-o

.w W

4 w S 464u 6ey < y u 4

..g a

T..

sm. ' g..

.\\,.

i s'a 9

a.,...,

4,

.e.

L, :..w.af.,

e

.p s

avs

s. s.

mw.

...s.'

g g.

p y...

rt w;

s,g g,

l j

2-22 1

D

, rs D

c 3-w a

_ b-~

f 2.6.7

.C.t.

- ",. c :.

.ne co na dro fran :. ne('..

cf i fact c

(

-:cr.,.ce?) cc.i ulil cc.nc 1 css demc.y to t.ne c ac,.; t r a uc c e c ; c,. c a t w

v i l '..

.2 nd ecien.. ' lere ti.ic1Ji c for t :..- 20-fcot :'c.

c.ccident c c: _; : 10; i s je c a c. c.' c t '.. c : e r.c cima in t'.m c:.6 drop, f cc.m d' t e :. the c::te-c

.1 d m C m~.. _ ' c. " "... ".,

.. c

c..,,,.. q,.

-..... -... ~.

-..t...

u.-..,_

ca.,..

c..

L

.wt.

...u

.m c, a.s..c. m

'.'O"<

cu# c c '. t ' '.. -~.. _'. '. '-

v" '.- '.*sc'.~

u..

1

  • v-..

,q...,..

c.,...s.)

, 1_1 7

s m

..e s.

.. u,1 g.,.,.,. a, 3_-,.,..

c,.

u... c u......,s -. u.

4 2.6.8 Penetration 2.6.8.1 Outer Shell Penetration i

i

. s

_o.

....s

.. $ t L

..,....i..

L., '. 1

1.. i,.

.. O J...,...-..,,

t., u-.-

j pa iC.+-..

..r

..t b.-

.f..,,

~-..,* 1. e... p~ -.

.. 4

'[ i 6.,. i..i.'.

.,.)...w,.

W.

w4'.

6

.vw L..

1. s,..

l CnO.

\\..,ua...,s. ' A'

...4s c, w..

.u

.c s

i i

i.... L, a... 4 J.-,

,. -."S-c.,.,,,1u,,.,

'n., n c '.,

,.e P".,..

. 1.

.....w

+.

1 i.. -......,..

('

.s w 3

.w

  • u.

w wus

...p 1

.......,,,..,j, e.

  • 1 2.

4,

A

,../. pJ /,, *N7.,..

r.

1. /,,,.?

,..*.-.J..

e m. s,.

.s.

.. -.. t -. - _ -

s.

..u.

.s s..

...s.

O C.e.

C.......

e.,

1...:; e.,.... '.,t C ", C,o.

9

e..

s.

,t...."

o'Ls

'1.

1 o.

. -.. ~.. --, e s'.-

.n.

e L

e vi.-

'. e..,. - J.. c c. v..-

o.r t s. ~....r 7'.

..a.

. 3; m

.m m.

Lv.i. u -,.

c.t3,.-

,., u.

?

1_.... :

,s,

~

c.

y. u

,. s,

,a,

.. m.

v_.-

u....,

.. A t,._,._.....<.,

o,_.,,

..m,..

v.

su

.. t.

.a

.u.

m

. c_.....

.m.

.t..

c,..,,

,..,w.

a.. u, 2
t.,..,..

s.,._.ms u.._...

m.

c.. t,. a,.

c;,

s. s.

s...

,,..,C.,1,

..v. f, l

An,..

4.~..~c

,e

t. s..s u,...... ~..,

.r.

.-.e s

s y...

u m_

c m.. c_.

P tf (1.0 + f T E

~

=

c-c c

n; w

w A

U; e

.u r - L.

t.c

..is e.

- _. w.,... ;

J c

y

.v

.. as v

D o+

'.A.,

Y

.w.-p.,

O.

.bI E

4 b

a.

4. bb

~

s

.O.

.h" b

c.)

Y,

e, Le i'c.-

.c.1..

.is, b

.i,af.=*

=t-f *

  • s

$..g(

  • =.f

-=9..

s. *

..,i ~-

./ J,

n, g

v r---

/r. - -

r; 1 *.. 'p C

(. L.I. t'

)

d*

dJ

%.<,',, 4

.T S'.

  • /

'J p

  • 'W

},, -

L u

1..ej

/.. [. t 'i 6.. e 3

a L.+

'

  • L 5..'.. b'a '..e..-

a,

..( '.

a. ** [r 3

.t.

u

.s

.L

...v.... v

.. J

=t u

t c,

s Sq

.a s / h%-.G g,.

m 4

A==

'4 9..I eh 4,g.i f..

3 p

  • - 1 V

4 1 b.

4 1

\\'

- >.u

'u.

r u.~

l t

.v...s v

m.

..u

,' v. -.

p, wt a.

s.

L.s-.. -

_. ~., *.-

. s L

. =.'.a....e. s f 1.. *.

,... s m

. -."1.

[.. 3 5..

s...J.,... _.

v.,

s s <-

c. C u.,,. 0 e,eu,=..~~.p')

aa s.

90010050 2-23

O e

L o e

j e -

ps p r

,. =

a.

e y

= ( o,vv0\\,

x. n ) i,. :, j q v,.,0 x (.si

,.- 0.1)

\\

l

, s o,,, c n.,.... 9 j

_?

vu

\\

1

.e 5

.-.14..,

1_r

-...... y c,. e '..

e...

._.u

....c.

s l

E., u (13 lb, (40 in.) = 520 in.-lb v

)

Is b [./

C I I4 C Ii bUC II.) U b YV.17sO [C C L*

hCUb A e. ($ C I.~. J

~.'.17 I. C' b bb1O [

C 1br[C Ur C.- ;na : :..- c _.,. r.C :..0; p 2: t r c. t c ; a y :. ; : :.111 r..; bLr.

1 l

O n[u0s.

v o

o a

a

.p.

m l

90010051 0

2-24

i p

2.6.8.2 Porous Stainless Steel Plate - The design of the J

plate assures protection of the valves.

The modification is shown in Drawing No. 9123-6PB-0001, Revision E.

  • fhe desian includes the addition of a cross-structure to the botto:a side of the porous plate.

The structure, made of 1/4 in. x '/4 in.

stainless steel is welded to the bottom surface of the plate.

The ends of the cross rest on lugs welded to the inner wall of the trunnion.

In the event of impact by a 1-1/4 in. bar, the contribution of the j

porous plate is neg1ceted.

Thus, the situation can be represented by the sketch below.

P x

t N

, ).

[

\\

O 1(

N.

F F

/

/

i N

A N

3/4 5.25

[

Q 1/4

^/

F F

/N The force, P, at which yielding of the cross n'.;

occur is pu -4 31 L

where IF

.; u li u _

T.>

c c

I = 2 (h' h )

(the factor "2"

is used since the two equal arms of the

,,U cross resist the load)

@@go 'goggg 90010052 2-25

b =.25 in.

h =.75 in.

F

= 28,000 psi c = h/2 =.375 in.

L = 5.25 in.

Then 3

I = = )(.25)(.75)

=.01758 in.4 (2

12 i

M = (.01758) /28,000) = 1310 in.lb

.375 P = (4) (1,310) = 1,000 lb 5.25 The kinetic energy of the 13-lb bar at impact is taken up by the strain energy of the cross, thus WH = Pd where W = bar weight = 13 lb H = drop height = 48 in.

P = 1,0d0 lb d = deflection of the cross.

Then l

4 d = IIE = b-

=.624 in.

P 1,000 It is assumed that the deforrc.ed cross forms the arc of a circle. The radius of curvature can be determined by considerir.g the sketch below.

O 90010053 2-26

]

Ow r-r i

r-d I

L s-a -

-r Then 2.625 d =.624 in.

2 = (r-d)2 2

+a r

2 9

r = r' - 2rd + d' + a' 2

2 d + a r=

- 2d

(.624)' A (2.625)2

- 5*S3

=

(2) (. 624) i The maximum fiber strain is b

.75

=.114 = 11.4 percent.

i c=

=

r. h 5.83 + 7.5 i

Since the clongation of stain 1 css steci is 50 percent, the cross will not fracture.

.)

1 Each end of the cross rests on a stainless steel pad 1/2 x 3/4 x 3/8 in. thick welded all the way around to the inner wall of the trunnion as shown below.

Each pad supports 1/4 of the applied load of 1,000 lb or 250 lb i

l The weld shear crea is i

j A = 2(h A w)(1/4)(.707) = (2)(3/4 + 1/2)(1/4)(.707) i

=.441 in.2 l

I P = 1000 lb cross

?

.', r lT l

a_

1/4-in weld f

e 7,

3/4 90010054 2-27

,n i

The shear stress is 250

- 570 psi.

0

=

sh

.441 The margin of safety is F

1 = 36,500 1 = 1argc.

su

,,S = g n

5,9 sh 2.6.8.3 Solid stainless plate.

The solid stainless plates covering the ends of two trunnions were assumed to be simply supported at their edges.

The load frc:a the 1-1/4 bar was assumed applied as a uniform concentric load as shown in Roark, Table X, Case 3( }.

The force required to cause yielding of the disc is 2

F 2n t a

1 p' y

__ t y 3

2 1

l' o

j (m - 1) + (m + 1) In (a-~ ) ~ 5 (* ~ 1) 2' ro a

O where Fg, = yield strength = 28,000 psi m = 1/poissons ratio = 3.33 e = plate thickness =.25 in.

a = radius of the support = 5.25/2 = 2.625 in.

r = radius of the applied load = 1.25/2 =.625 in.

Then W = 1,670 lb y

The deficction of the center of the plate is determined by equating the strain energy to the kinetic energy, or d=b=

N =.374 in.

W 1670 y

-s

, U (2)

Ibid., p. 217, 90010055 2-28 i

i f,,Y NJ-The radius of curvature is 2

2 9

2 d

+n

(.374)~ + (2.625T 9.41 in.

= - -

=

r=

2d (2) (. 374,)

The strain is t

.25

.026 = 2.6 percen t.

c=

=

-=

r+t 9.41 +.25 i

2.6.8.4 Stainless piute with hole.

One trunnion is covered with a stainless steel plate with o 1-in. hole for viewing a pressure gauge.

The applied load is assumed concentric as i.bove and the minimum force required to cause yielding is from Roark, Tabic X, Case 15.

2 F

2n m t 2

2 tv a

-b g

Y (f)+(m-1) (c

-d) 2a (m + 1) in

(^t where Fty, m and t are as above and a, b, c, and d are shown on the sketch below.

(/

W7

y. d.

Y X

Dj \\ \\ \\ i A'sl

..._l. n N s NNp

-na H-A C

p 4

b y

j a =.3 in.

b = 3.0 in.

90010056 c = 2.625 in.

d =.625 in.

/^i V

Then W = 840 lb 1

y 2-29 L=

1 0

The deficction of the plate is 6 = b = I # 'I3) =.74 in.

W S40 I

y The radius of curvature is 6

+c

(.74)~

(2.625)2 2

2

?

=

+

= 5.03 in.

f=-

26 (2) (. 74)

The strain is t

.25

.047 = 4.7 percen t.

c=

=-

-- =

r+t 5.03 r,.25 J

i O

90010057 1

i l

1 0

j 2-30

l l

(, ]~'

2.6.9 Compression - Not applicable as the package exceeds the 10,000 lb. weight limitation.

2.7 Hypothetical Accident Conditions l

2.7.1 Free Drop - Thirty-foot free drop onto a flat surface.

The first condition which the cask must withstand in the i

hypothetical accident sequence is a 30 ft. fall onto a flat unyielding surface.

There are three critical orientations which the cask can assume at the moment of impact.

These include direct impact on an end, direct impact on the cylln-drical side, and impact on an edge at such an angle that the reaction force is directed through the center of mass of the cask.

These conditions are evaluated individually below.

l 1

2.7.1.1 End Drop - In the case of a direct end impact, the force is evenly distributed over the end of the cask.

Further-more, the kinetic energy of the cask at the moment of impact must be absorbed by daformation of the impact limiter.

The

{

impact limiter was designed from design data presented by McFarland(10).

The following analysis based on McFarland's results is discussed in greater detail in Appendix C.

j l

AU For the impact lirai t e r, the specific energy absorption for axial impa..

is defined as j

SP

[

where specific ener;;y, in lb. per lb.

E

=

mecn crushing strenc (gross arc a ), psi c

a DC I ~ LIliChDOCS P((iCienCy l

unit ucight, Ib. par cu. in.

p

'I.:e

..ee n c ru c t. :.r stre ;th, thicP 3 s3 efficiency and unit weight can be expre rtd

u. t eru of t he d. :w a n w:il e s ratio, t/s uhere t ' the all thich v.

of the tube:, compri sing t he impac t limiter i

e = u.c ~ = tu c a. - r.

C's U

90010058 2-31

McFarland presents data which closch agrees with an equation derived i

to describe a rigid plastic mode of collapse of the limiter.

Then, as described in Appendix C, the mean crushing strength of an impact limiter using a loose pack tube arrangement is y (st)

o

= 47.74 o ue i

where oy " the yield strength of the material.

Then for an impact 11 ater made of cold drawn carbon steel " mechanical" tubing, hazing a yield strength of 60,000 psi, c

= (4 7. 74 ) (60,000) ( t )'?

6 (2.56) (10 ) ( t )

r QC s

8 The impact limiter is made of no:.unal 2 1/2 in 0.D.

(2.310 in. I.D.)

tubin;; with 13 gauge (.095 in.) wall thickness.

Then, 005

!' ^ 2. 510 -i. 095

.03%

=

and the mean crushing stress is L

a 6

o_C (2.86) (10 ) ( 0395) = 4,450 pai a

The exprecsion for thickness efficienc, was assumed to be the same as experimer. tali.s deternuned by McIarland; thus Il a S3.13 - 329 (2) s

" 88.12 - 329 (.0395)

SS.13 -.130 = 75 percent

=

The unit weight for the " loose packed"* tube ar angement is frem geometry

_t a

P, u "r

s where p " the density of the limiter material =.283 lb. pe r cu. in.,

then p

(3.1416) (. 2 8 3 ', (.0395) =.0351 15. per cu. in 5

u Tr.e speci fic crer:;y absorpt ion ' *1 the limiter then is c

1

(!,'!.',C)

( ' ~l ~~, )

rn E

95,000 in.-lb. per Ib.

bp "

. L,x: 1

=

~

eu 90010059

  • 111ustrated in Appendix C, Figure C-1.

2-32

The weight of the i:npact limiter then is r.

u=2 O

b SP where E,e. a the hir. etic energy of the cask = i'H W = cask weight = 62,800 lbs.

= drop height = 360 in.

The limiter weigat an also be e>: pressed as w = /sh pu where 2

Ti d

/s = gross area of the limi en r==

4 d = cask diameter = 40.5 in, h = limiter height p = unit weight of the limiter = 0.0351 lb. per ca. in.

..W T2.e r.

Ek A.np t.

u SP or L

h=_

ll-(6?,8CM ( 3 ',01 (4 T

= 5.26 in.

=

'sp ^

",u (95,000) (3.1416) (4 0. 5 ) ~ (.0351) 1 Thus, the minimua height required for the i: pact limiter is 5.26 in.

S i r.c e the c.ct iw height of the impact limiter is 8.5 in., the design is ace v:able and no lead will be deformed.

The r.u:-:Ime-deceleratar.a force which tha ;mpact limi t e r will exe. ' duri 1.:pa c t is 9

(3.1/.16 )

(t. 0. 5 V F=c A" (4,450) me 4

(5. ~/-> ) (10 ) lb.

=

90010060 2.e ac e "a u o;. a 6

,e

,e

-,)

o n

>s l' 2 80 -- " 91.5 G m a u 3

'n' 0

2-33

O The fuel cans in the cask were designed for the Hallam shipping 1

cask and will withstand up to 150G without failure (14).

Then the margin of safety of the fuel can is:

l0

-1 =.64 M.S.

=

gy,5 The basket has been designed to assure that in the event of an impact on the top, the basket will not crush the failed fuel cans.

A ring, 1/8 in. thick and 7 in, high welded to the outer edge of the basket at the top end (see Drawing 9123-6PB-0001) will support the basket in the event of an impact on the top of the cask.

The basket weighs 920 lbs.

For end impact, the impact load is 91.5G.

The total impact force then experienced by the basket is:

84,100 lbs.

(920) (91.5)

F

=

=

Imp The area of the ring:

A= 2nrt Where:

r = mean radius = 25.44 in.

t = wall thickness =.125 in.

Then:

A = 2n (2 5. 4 4) (.125) = 20.0 in.2 The stress is:

"P = 8 0 = 4,200 psi a

=

gp The margin of safety is:

MS =

DY -1 = 3

,0

-1 = 7.8 00 Imp A stepped plug is inserted flush with the cask cover and the end impact limiter bears directly upon the outboard fare of j

p\\

the plug; therefore, the impact limiter would be quite adequate to prevent the plug from breaking free due to its own inertive loading.

90010061 I

2-34 i

w ia,

2.7.1.2 Side Drog :

.e

:;e.

i:

i:t on s

0

, '.. to..; arb the L

q._,

a

'. y z i. c.,

.a i.

il n s/

lt L:

i i

s A8

\\'!$t 6

k b.

d J

-et*

%a 44 5..

4 6

, i.e; t;

e

t

.6

.t

.a. s

!c

w. '. i L:

ct

i. 'c

<a s

L.

..al vurect:

I; 1.

di

.Le

'. v,

.c e..

ce f s.

u 3,

g 3

sui:.cr C12.neter sections at e a c.) end come into contact with t.ne unyleluing tae leaG Ciong the entire 3cngtn Ot-t he c a s,a o c.g o r ms u: t i, c3

  • i.e 4

3

. 3 3

s t.r I C C e.

.ac,

Thd decelerating force at any instant d ur in;' the kinetia enargy is absorbed..

10,0c0 psi, t ics pretsure, cus t oca ry ta.nen as s

t e a c, impacc i s t he product o.: :. n e anc the c.rea of le c in contnet with the unyiciding..urf c.ce, a t that instant Ac used for t..e The problem was solved in a r.anner similar to that in Figure 18.

case of ti corner impc.ct.

The arca, Ac, was computed at a deformation of "d"

.nd c; "d + Jd".

The arithm. etic cverage o f t he two creas was used *;;th the lead an aver:.ge decelerating force uhich acted through the i l a.. pres mre to con u.te velocity cr.cnge in velocity was computed and subtracted from t;a

discence, d.

The ct the tirs w'.en the deformation ec.ualed "d".

The,1rocedure was reocated throu;a 4

2.ucce: sive increments of !.d until the cas' velocity was reduced to cero.

The computer progra:. i s discus. sed in greater detcil in Appeadix E.

3 e,

Cor"pute r so3.ution is pre se nteG i n i i gul'e S r>.

~

tde print out O.

Cne Copy oi-The na:c.c.u ceceler;. tion is 370 G, and the total amount of lead def ormed c.ec su red et Siace the c.long the cianter of One lcrier dismater section of the cask is 1.70 in.

lend thic:. ness at the.,2. 5 -in. d:aneter section is 6.25 in, the thickness et t;;e

.i. J o e s :,~..... ~.

a The C load, t ;1ca applied to the cask cover, must be resisted by taa O

12 cover bolts.

The shear stress on the bolts is C1

%\\

O Sh (A) (S) uhere f

O D

G = the impact loc.d = 370 G U = cover weight " 1,970 lbs.

9 A = area of each bolt : 1.035 in' N " nunBar of bolts = 12 i

Then the shear stress is I

( 3 7 0 ', fl,07CT s

= >S,600 psi c.

",(. 0; s, ) u.,. ;

sn

{

Th e. ~. r i r. e t 1:.fety in the A325 bo'tt.

, s v

(J O. i1 DD en 1

r7 1

.6J r

- +-

L

.JJ sec n C.

bC,bVd sn Ts e tO. - bCt pped side bW ' C o. ' t ru C L I D ;' Of t'. e e a S '/, d u'l. I. t a *.de 3 R ':'. C t i..e. c ri t ' 'JU. 2 h e. p p '.1 C G td tne i r?.N C la liter t~hich would l>c TU :.. ;ted h) tt

le

.O.10 l d *,; e !.i'itor en Ll6c eoJn, I: j',d r e 2...

f e J C '.

1:1 ;

toJ.

L O' C,~ ?

s v.

s i

hel C. N. s. \\/Uu. (.3 de c L a 'd b d h O i[. t bo \\ $'.e [ L t me U 4. i I b UL the m*u CI 1 i E.' 1 b e [ 1.5 '[e.eCL t

si f

f the s O L 'a " e T.d. plate o f t n,'

1Imiter.

1 90010062 2-35

]

d.

eh8

\\

l O Ob0h[

y

~

I i

i g

i 1

8 V

l 6

.__a o

s.'

l i

i !,

l r

w

'/

/-

l

[\\'.

/

l,

~

G

\\\\

n \\ 'i>\\,~i!

w y

, i ' s.

/\\ \\ y i

s t

j i

~~

s.

l

.C.

s i, ' ['#,-.~,C.;\\ \\ '7'. N t s

//

!\\,\\ \\ \\L'sN.

aF

, t 1

'I i

,t l\\

\\ !

i g

/

.)

iss

! '\\ \\ \\ \\ b /,

O s %-

,i,. C.

s.N u

l

", ", -..,- \\, \\ j s

s s

l Ej

~

i i

~

. \\\\'

'\\

if

\\

\\

\\

l i,

\\ '\\

s i.

N l

s e-n i

h i \\ ',

i

.1

}

\\. \\

)

l

~

O

$N g,

t

}

C rs L';

i n', \\. %

i.

i' i\\.\\

o

\\ '\\

i\\ \\

O I'

! ',l \\ \\,

  • )

I m

\\

i, i

u

. ss s i

,. \\s, f.

\\ \\.

\\

bi l

\\

v, s

l

\\'-

i i

N*

g l

CQ i

7 x

f

/,/

s' l

\\ 1

, ~ ~ ~ - -
  • ?.

\\

i

.\\

5 r1

. s

\\' v' l-

.//'

N 'g s

s-i

.~

/

~ ___

]

i l

i,

. -. - -. - ~. _, _

-l

\\

s'

\\

' j'

.s' j

l

/

O

.[

s.

/

N

/ I

/

=-f 90010063 a

i 2-36

., -v., N.

f SIDE 2 15:52 CY TUE 01/06/70 THIS IS THE SDi.UTION TO ~4E SIDE D;3P OF A ROUND CASK HAVING A STEPPED S I D E C. W F I G E?. AT 15 N, TW" DIAMETERS ONLY 4 f. "

-}>,.r c. )

c.,

h, 4 6..o.J 1,. i w t, i k

.-L

/\\ 4

,. e c. o, c

es si.

. s.J A rn a s LJ n.' J

.n. C

,w L t t d L )

CASX WEICHT=

62500 00 La CASK D I /J'E TE R =

42 50 IN.

1 s,

,.e...-...-

, / s,.,.,a-

.n.

t.,n o,

~e.

e

.un i

CUTER SHELL THiCMNESS=

1 75

.I N.

,.n--.

. s....,.. : e. a-3.00

, sJ.

e

-..2 1 un..

.i.vn...

.niv....L....,.,,,2.q_

0 00 I.,,,.

,r t_. n i L.N,,,,.....,,,.-

c

,4 wr.

c.

.01 I.N,.

-a.,,....

s c.. u.

.sa1.a.

IN IT I /iL DEF OR.%T I C N=

.00 IN.

.V. au r.. v. _-

,t. n 0

e. P ae

..2.s. -.-, ;

c.

.. v LE AD FLO'.l PRESSU'iE=

10300 00 PSI

~

LEN3TM OF LEAD UNDER IMPACT =

167 12 IN.

LENGTH AT 40 50 IN. CASK DIAMETER =

57.12 IN.

LEN37H AT 42 50 IN. CASK DIAMETER =

1 10.~ 0 0 IN.

6

. D E F O R: *.E D VELOCITY AVG DECCEL T I t'.E MSEC DISTANCE IN.

F?S G',S 10 43 7207 67.325 1899

.20 43.2011 96 3581 3316

.30 42 5196 118 3

.5759

.40 41 6993 136 75 3

.'7 7 3 S

.50 40.7501 152 93(. 1

.9759

.50 39 6755 167.4601 1.'1831

.70 38.'4747 180 7508 1 3963 30 37.1433 193.0654 1 6167

.90 35 6733 204.5803 1 8455 1 00 34 0524 215 4237 2 0545 1 10 32 0703 259.7421 2 3363 1 20 29.6924 284 1915 2 506 1 30 26.303 304.6438 2 9004 1 40 23.5372 322 9003 3 2308 1.50 19 3833 339 6448 3 6168

^

1.60 13 7399 355 2504 4 1213 i.695 1 92?9 369 506S 5.I274 i.6962 1 1023 370 0338 5 1963 1 6069

.00 370 1670 5 2883

,O, 90010064 11 0 FIO*JA 19.

CC'. M'.~.2, S OLUTIO:: CF ';;"' A:;.'.LYS IS 07 'i!3 DECCLEiGTIO:; CF '2:C CACK :'

n...,. N b-c _ r,

,\\

O. U.s 2-37

l C

u

,...,img

.y-p

\\,

O...

d. O e $ & D l

. s' l

gI f

u 6 6+.

C A 1.

kl

  • [ -

f i;

y tt Is.

)

f 1u g

.4 l

%S %

'l i

\\'

,._~h....t.._

c.:

]

sg a _.e.)

e s %ee

~;.,

6%D p es h 6=,,I t c.'t.*.

\\l e

.a s s 4.s e %**

a e-o

, n n -m

~. gm s

U6 /

4=46 6 sb &

ek.a e 4.. 44 4

he s\\ e3 I a e \\

a+',.,.. v,...a 6 A

s-I

/.+

..s

'M N

\\u\\

~.

/

V'

, / An) i 2 a U lII 0 P A

l.}

jJ w

u s, a.

.. v,,

......r l

s

)

V b

e 9

I we&

7 " V' U

  1. /

r.

J.

U

.a.

- -=

A v *. L.*.'

J L'y

.l.......

m. A,

,s

  • '. e

.**....l.(.,

6

+a E.

s.4 9.-e.

+=

m 8 1.... '.

s.i

..r"

,,1". t a f', 6 6'.*i' t, d

m

,%w.

g a.

s 1

m-g 3s?.....

1.

-' 7 i, ii.,

.s'/e 8Vw

/

le. e.., s w.... s. L e

4,

J

& LJ b

e4 8

r 8

g,

-s t., r r4 U'

- - s J a-a-

+'%

W

  • . $.4

,. A 4/,,,

v,.

.. J 6.

3.m(f.

..4

.U.e.

g 6s

+.

s 4

, '. U I.

(!

', ( Il)

[~

  • sh 1 'J, a j y*, ;

g

/

\\-/

6 D'de

.M %

O M&

}*

(.

_AJ q'-.1. i a

.i c_

i 3

'se

.s s '

s' L-.

Je

.J.

^

s

.s.

,,a t

~

e,

,.. (ea.

,4

,b

=4

.b 4

a' 484 4

  • 48 d

b**b A ** * * *

  • 0 2-38

1 1

gD F r = (G) (W.L)

If it is assumed that only cac-third of t'.c circumferential distance resists this force, the stress developed is F

(3701 (630) (3) tr

=.

n a.(1/ 3) (n) (d) (t)

(3. 14 l6) (40. 5 ) (.675)

"tr 6,300 psi

=

The Largin of safety is F

1 = 36.500 c0 su P.S = 0 6,300 t..

The side mpact would also produce a stress in the weld between the secppad sides of the casa.

Since the skirt of the impcct limiter would strike thc impsetina Surf acc at the scue ins tant cs the icrger dic=cter step of the cask shell, the force an

c. c ucid would be a shcar force only. Then, the stress is We n

" 2 o"=

O

^

whare g = the mcxinna deceleration = 215 G (at deformation = 1.0 in.,

Figura 19)

Uc = the weight of the small diancter cask step = 6,0$0 lbs.

A = crea of the weld = ndt

~

du 40.5

.5 = 40.0 in.

ca (1.0) (.707) =.707 in.

The stress then is (215) (S.080)

= 9'",00 ps^',

o

=-

sh (n) (40) (.707) (2)

The c.argia of safety is F

l MS = c,a - 1 = 3 6. 500 su 1 = 2.72 9,br o;s -

s 90010066 o

U l

i 2-39 t

l

I l

2.7.1.3 Corner Drop - In the case of impact on a " corner" of e

k the cask, the worst case is for the orientation where the line of action is from the point of impact on the " corner" through the center of mass of the cask, Figure 15.

For this cask, it can be assumed that the center of mass is the geometric center of the cask.

<.r-

/-

C:c'c E o.i '.

f du 40,5 in.

/

/ ' ~ ~~ M,);

\\

/

\\

/

\\,,4,;

1

/

/

h 1;g n e t Lici w.

/,/

h = S 5 ia, i

,/

/

% ' c:,;

\\

N

/

c__

./

l

\\

u " 11.96

/

(.5) (. '/ 5 ) " 6.27 es.w

'\\

U

= 6,4 50 '

J

/

d 3 s(x,_

._. s.,/

l

~

s N~_.

i 8

c t '; c i

L'. 0

/'

r?.;

h FIGURE 15 Orientation of Cask During Corner Impact O

90010067 2-40

D**D D'

T eo w

s-)

During impact on the corner, part of the kinetic energy will be abrorbed by deformation of the impc.c t limiter; and the remaining energy is assuned to I e absorbed by deformation of the lead.

As is customary, it was conservative 1 az.sumed that no energy 1; absorbed by defornation of the steel shell of the cash.

Since I

t u..e impac t limiter is ces:gaco primarily ior axiai in. pact loading, :t w111 perfarm leas eu le:ent.y tor corner or ob3:.. que l o n o..ing.

inere ore, it was assumet. t.aat g

t, c impact limiter during the citective resistance and energy absorption or_

c oblique impact could be expressed as a function of the impacting angle, or E'

"E cos tt sp sp

'ih - specific energy, however, is directly proportional to the mean crushing stress of the unpac t.1imite r.

The re f o re,

c'

=C CoS C' mc uc where 0,

= an er,ective mean crushing stress acting on the area or. tne t,.,,,

deiormed impac t,lmiter

~

i o

" mean crushing strest f or axial loading = 4,450 psi pj ze From Figure 15, it is seen that as the cash deforma during impact and the defermatict c, upon which the effective crushing stress diptance, d, increases', the area, a (a'.~,) c.ats also increases and the decelerating force increa se s.

In order to este.blian the maximum value of the decelerating torce, a compute r program uma for any value of d, Fi;;ure 15.

The deformation written to calculate the area, ac, d, was then increased by an increment > td and a n w value of the area > a

.a>. cat c

and a

^d, was mult.io. lied 5' calcul ted.

The arithmetic mean f the two areas, a c to determine a mean decelerating force dur..,

t he ef fec tive c rushing s tress, cme, tae distcnce in t e rva 3.,

-a.

Tae caange in the ve.iocity of the cass caused by the s

s s

i decelerating force acting during the t i:m for defo:mation through the distarse cd was then calculated and subtracted from the velocity at the beginning of the de fornat ion increment.

When the cask velocity was reduced to cero by successive incre.en al iterations, the problen was terminated.

The compu t e r prograr. is d) scussed in greater depth in Appeni:

D.

The impact limiter is not effective over its full height.

The efn etive indic:.a d by t ne thic hne n. e f ficiency te:n w!.ich is the ratio of La 1icht is c~tance the limiter will deform urcii fully collapsed (b o t t emed ) to the o ci-n :1 hei;,h t.

laus, in F:ou re 25, the upact :: miter 411 collapse a distance h.

! e f e re "n o t :.cmin:;".

It va e. accured that no r re energy could be absorbed by ar "

% i u:.

o f CI.e.:...

Le.' bhiCn U S [ully dc[oi,ed

....d all [crCeh Uerc '.rans[erted

  • 16 hCut
a. C T.uE10a t d Toi

',n t f CollapSCd struC$ s.re a".d tbe CE bd.nek) intU L,de,CdC

.1. i 4 6

mf)

\\ 'a l l o E t..J C s '. '.s.

Th e ' e, thC. remai n ir.' ene r,P,y '<'d s ab :'.o rbed by de f o rma t i on ci

!M v

lead whose f l e., pre r r.u re :r 10,000 pc.:.

A copy of the print out of the coneyut e r prog r a used t a pe r f or, thi s analysu, is preat nted in ::gure lo.

As noted in t his tigure, tl.e deformatioc incre.nents ured were 0.10 in.

The condition of the preb'cm wa rit dt Cver; 2-41

c mo o

n D

D D

A of_dA"2

_co 1/:17 CY V :' N O 1/O'3 / 7 0

'I' 3

4 T' i - 1 3 T '. r r; ;' L-l T I '. N T1 A C A S ', C; 77 0,> tlS!NG THr

7., L r,.,,,._ _., _.,

s,'.....,*,,,-)

6 e,,,.,

..., y,......,

. t.i c.

..-.,,-.3 s.i

)1

  • '"N 6

"4*

, - t ".ii.

I ' -) ^.C f 7.M-S, r.; V r C T ' l l .L L Y lN TP~

. 7,. :. c,. ;.,'.,.. '. ',

f,.,.,,.. 0

~~~

v

.I, T U '.T

.e

,.. J gc.3. u,,

7._...,.

.. 7
. :

... n.

w, 4 i.

,.s 4 -r i

.s

' ~ 1 L~10

.7 1rF' lC.' ', '

'~("uT=

/,')" *) n, c q L :3 C *, ~ '

-)I',

c?: '=

/i').50 IN.

r; '. ' ' U r.1 '; r: T =

173 19 IN.

191 1P L I ' ',;I T ~ 1 =

i: I q u7 ; rt nINq I,s p A C T I.-

s

/...,.

.s.

...; e,.,s, s.

1.

j

.cx3=

3 9n iy.

, -., L 7 u t i,. -.

Lr '.1

..L T u i  ; ' r .9,

,1 7 7. =

5 25 IN.

'^Lt T '-i l C  : ' ';,

r' N I) =

/ 00 IN.

l. - ' n,

<,.rr LI 17e

, 71 y r, u r I <; u T =

R.50 IN.

i T r 2 '. c T LI' I F' T V I C 0,' r 3 5 e rICIEWCY=

75 00 PE. CZT s r --

en r1 si INc-r

,y;;

13 Ix,

" %TI'N=

.00 IN.

I ;' I T I ' L 777' I N ! T I ', L

'!T. L ~ ~ ~ T Y =

la 4. ') O F P 's L"An mL

P r' E S 'i ' E =

10000.n0 PSI I ";) *> C - Ll"ITr' /P AN CTJSHING STENGTH=

/,450.00 PSI I P 3 ' '; ~ Y!'iLr=

11 9647

) 1 O r r 't z".' 7 9 VEL') CITY AV3 DFCCEL T I t'E l

0I*s?ANCE, IN.

FPS G'S P.S E C 1. O ')

4 3. FN 51 5 4 9 ' >

1 995:,

9. A ')

43 200A 15 2536 3.40E 3.00 41.":371 27 301'>

S.76SI 4.03 39 605 39.5/,65 7.0081 5. r' C 36 3')R1 51 99'l4 9.999 6.'19 31 7164 63 4133 I?./4433

/.. '> 3 4 i 30.3115 66.I624-13.2532 l

7.PV>

2D.4624 Bl.?)3 16./.131 4.36i 5 309 c' 4. 310 3 22 3319

') r' /, 'i 1 6476 9 5 3 9 '> :'

23.W78

". 7 "' 2 '

1 0527 95 7794

3 7206

. :8 1 ')

55')1 95 213/

-' 9 3. :' : "' 9

.>niA 3223 95.M276 23 9574 901'

.0505 9 5. r: 319 24 0409

't.

.C169 95."333 P4 0564

."OI'

.00

'15.':334

')a.0616

^

?

1-1-

r ' i e'

.r

,r L T' T D l. ~ F '; 6T C ; M.' w

'>. 9 4 6 2 IN.

  • ][ h O #** 6 6 *J 'a A
  • fI I
  • I I*

(

P9,,9 j % I 4 I # I [' ] ['

h 8* ' l 'L *,d T 1 b '.*1 w*%

g

  • b 6. or. y.y V [*) h I.*=.)."9 e
  • 5 4 614. = = & *J va ea

./**

'1 A l s V...d AD.

{ V.."*-} *u'. at l

  • Y gi 64 \\

9Y p.9

  • q {_9 S%s 6-

.4s.

+aa 4 v

m e. - s.

-srpa re s e

Oes ry,. ee e.s, < -..,.y s. (s b se._6.t. t, i n aa.,aV A a

. 6..s h a, s p w.s 4 e i.s n

.as 90010069

,_42

om m

D D

3-bal aR S

a nv 10 increments or every 1.00 in. of deformation.

At a deformation distance, d, of 6.24 in., the edge of the limiter nearest the impacted corner had " bottomed".

The computer code was so cons tructed that a solution at this point was also printed out and further incremental deformation (now representing def orma tion of lead in additic to portions of the impact limiter not yet "vot tomed") was re fe renced from this point.

The maximum deceleration occurred at the end of the deformation and was 95.8 C.

The margin of safety of the fuel canister designed to withstand 150 G is 150 MS " r - 1 =.57 93.3 The thickness of the lead remaining at the corner af te r def ormt. ton is 2.95 in, as ir.dicated in Figure 16.

The im3 met limiter structure will be loaded in chear due to the sideward thrust during impact, illustrated by shear stress, c;, in Figure 15.

The shear force is Psh " 0W where G = the deceleration calculated in Figure 16, G 7s.

(_)

W = cask weight = 62,S00 lbs.

a = 11.96 degrees The maximum value of Fsh will occur at the maximum deccleration produced by the impact limiter alene.

This is when the impact limiter first begins to " bottom",

h5 = 6.37 in., Figure 15.

At this point, the deformation distance, d in Figure 15, is 6.24 in. from Figure 16, and the deceleration is 66.2 C.

Then F

= (66.2) (62,800) (.2118) = S80,000 lb s.

sh The shear stress at this instant is F

o

- sh sh Ac where A = the area of the crushed volume.

C From Figure 17, the area A may be found as follows:

h

1. )

a =

t.,

- r

..a a

(.) = P.r; tr)

\\

v o = arc cos cos 2

' > ^

1 A = {(n ') - (n r (9 ) + (r sin s ) (r cos ?)] cos a 1

r c

2n i

90010070 l

2-u

.._m e

i O

( S i".

) (COS 3))

t

-t-r

/

/

,. cs=wc-W <./

\\,

-n fw L K~

,,TjI, ~.

t Q,

-=

,Y f ~

~~ C - a c

.-- / /

, M.. ~s-A,

-/ 5,N.

c

/.

o

s. ** { _

, -,... - - *,; m p

-s, N,,

\\ ! -

/

\\

/

/

/

l

\\

/

I

% /

s' Q-r 7 ' ~~~ ~~

/

1 e

mye<

7 i*p v.b A b l i A.'9

.\\ hn f

  • e v ;)s =

(* 7.V v.6 1/e q t s -y e,+ m 3 e it? g

  • ge p g a.o

...4kL.

p 0+3 cL;* p e

v 6.s.

.4 s

A Lr 0

L v. u s' w.i

1. L 4 e.

7 n 3.s

,.e

-s s<,.

...d 3 G.37

.c.

t

.a

1.. 'J b de g !'J O G C.

.211b Cin U

-- m C D.'. a.. b / v.s m e.e...)

e

,. u

. v i

J.*-

i 3j,3}

p c,

3 a

j r

90010071

.c. v.w w

.' a..a.- L. u.,.;.. - v 1..... a.

2-44

D**D

  • D b oo o

_s o

b (2 0 ~9 5 )"

= -

[3.1416 - 1.062 + (.8738) (.4863))

Ac

.9783

= 1,050 sq. in.

F c

c.h - 880,000 = 84 0 psi ch G c

, udo The value of the shear yield strength of metals is commonly accepted as 60 percent of the yield strength.

Similarly, then, the shear st rength of the in:pa c t lit:u t e r can be taken as 60 percent of the mean crushing stress.

Then

(.60) (4,450) o

=.60 c

=

che me 2,670 psi

=

Since the shear stress produced in the impact limiter is only 840 psi, the structure vil not fail in " sideways" shear due to the sideward thrust during the oblique,, pact.

The transverse force will also produce a shear stress in the tie ld o f the skirt to tne undplate of the impact limiter.

It is assumed that the four bolts do not contribute to resisting the transverse force.

O4 Further, it is assumed tha t only one-third of the circumferential distance of the skirt resists the tranverse force.

Then the stress is F

F t

t m

a u

1/3 A T/3 Ju t where transerse force at 66.2 C = 880,000 lbs.

F

=

d = skirt diamete r = 40.25 t6 offective skirt thic'sness u.575 Then (830 ' rno) n)

= 23,900 pst s

=

u (3.1416) (4 0..' 5 ) (0.875) l The marg:n of safety is y

vs=

- 1 ' 35 su 500 a

y'n93 - 1r 63 1

90010072 O

4 2-45 1

'O 2.7.2 Puncture

'J Forty-inch Drop on Six-inch Steel Cylinder Second in the sequence of hypothetical accident conditions to which the cask must be subjected is the 40 in, drop onto a 6 in, diameter cylinder.

An empirical equation for the minimum steel shell thickness required for lead filled casks has been developed by the Oak Ridge National Laboratory (

}

The equation has the form:

.71 t = (pg) tu Where:

t = minimum shell thickness, in.

W = weight of lead-lined cask, lb.

F

= ultimate tensile strength, psi.

Therefore, the required shell thickness is:

'4 t = (7")

(

)

= 1.18 in.

=

,50 tu on the basis of an outer shell thickness of 1.75 in.,

the present cask design is shown to comply with the regulatory puncture criteria.

2.7.3 Thermal - The results of the thermal transient analysis indicate that the cask inner cavity liner temperature reaches a maximum value of 416 F, 60 minutes after the fire begins.

This increase in temperature causes a pressure rise inside the fuel can given as:

90010073 2-46

PT O

P2=

T V

1 (14.7 psia) (416 + 460

=

7

= 24.3 psia = 9.6 psig.

From Roark(11) Table 13, Case 30, an analysis was performed for a 1/4 in. thick can wall with a 1/2 in thick cover and an internal pressure of 10 psig.

The maximum stress was 12,740 in the axial direction at the joint between the wall and cover.

Obviously the stress will be lower for a 3/4 in thick cover; hence, the can will not yield during the hypothetical fire accident.

2.8 Special Form Not applicable 2.9 Fuel Rods In the event of a drop of the cask on its side, the fuel ele-ments are protected by the fuel basket and failed fuel cans acting together.

Tb2 2 in. long tabs wolded bewteen adjacent tubes at 12 in. intervals are intended primarily to maintain tube alignment during fabrication and basket geometry during normal OV 90010074 2-47

-sb use.

Although they vill provide structural support to the basket unit in the event of a side impact no credit has been taken for them.

The following sketch shows the orientation of the basket tubes.

It is assumed that the load of the thirteen upper tubes and the canned fuel cicments shown uith cross hatch, is uniformly supported by the six tubes (not cross hatched) located in the outer portion of the lower half of the basket.

Then the total load which must be supported by each of the six tubes is 13

1. " (wf + w )g 6 t

where w = axial line load of canned fuci elements = 1.25 lb/in, f

e = axial line load of basket tube =.20 lb/in.

w g = side impact load = 370 C O

13/6 = the ratio of cross hatched ttbcs to the supporting tubes

'N 1

' Q, E N ;;: b

/ :&

'it

'2 6' :&G' n' '

Y:

\\

% ; y ! g (g.w: Q. N

%m. %@M w

s m'N

%f< <f:.

x

\\1 i

,,,q;;$s..t %.Z :::A N

-g QN i c s's: g.

b vG s

O r

90010075 Direction of impact 2-4R

It should be noted that the use of the impact load as 370 G is conservative.

.This value was calculated for the point of impac t on the external surface of the cask.

Since the cask body vill attenuate the shock wave, the impact force experienced by the contents will be less than 370 G.

No credit has been taken for this attenuation however.

Then L = (1.25 +.20)(370)(13) = 1162 lb/in.

In examining the orientation and welded construction of the basket it can be seen that the load is generally applied as three concentrated line loads and one area load as shown in the sketch below.

).

v

(

N

! /

\\

./

\\

'(

'N

/

/i

/,

s

% _. /

s -.'

,/

+

iiiiHMI In order to facilitate the analyuis it was conservatively assumed that the load pattern can be' represented by five equal forces as sho0n in the following sketch.

It uas marcover assumed that the forces are applied at c

equally distant angular locations.

Since, from statics, the tot 1 load o 2-49

F

,,..I - ~..,

,/,-

x f

Nx' r

x,7,

'\\

t, I

t i

20 N.

F F

O~

1162 lb per in. acting downward on the tube is balanced by an equal resultant force acting upward, the value of each individual line load, F, shown in the above sketch can be determined by assuming that half of the "F force" act

  • l downward and the other half act upward.

Thus, the total load is j

L = SF or F=2 L = (2)(1162) = 465 lb/in.

5 5

From Roark

, it is seen that the maximum bending moments and the shcar force in the tube can be expressed as follows:

= b (sin 0 2

-)

+M:

M 0

-tmax (1) Roark, R.J.,

Formulas for Strer.n and strain, 4th edition, McGrau-liill Dook Co, 1965, page 174, case 9.

90010077 2-50

(

-M:

>1

(- - cot 0)

-max 1'

T-T = 2 sin 0 The value of Rp at which the tube vill yield can be found from F I tv M=

C where F

= tensile yield for 6061-T6 aluminum = 37,000 psi ty 3

3, bh 12 b = unit length of tube = 1.0 in, h = tube wall thickness =.125 in, c = 1/2 h Then I=(.0) (.125) 3

~0)i"4

/i"*

= (1.63) (10 n

12

.125 c=

=.0625 in, 2

and

-0) = 96.5 in-lb/in.

= (37,000

.63)(10 M

Then solving for W in the above equations yield 2M. max 1

+

p+ max,

R

- 1 1

sin 0 0) and 2M

,_ -max 1

g-max R

1 - cot 0) 0 where 90010078 M+=ax = M

=M

= 96.5 in-lb/in.

-max I

h R = cverage tube radius = 2.56 in.

20 =

= 72 degrees 0 = 06 de;; recs =.628 radius I

2-51 l

rs

\\);

sin 0 =.588 cot 0 = 1.376 Then W

= 705 lb/in.

W

= 352 lb/in.

-max The tube will begin to yield plasticly at the lesser of these two values or at W, = 352 lb per 1.n.

The shear is 152 T = (2)(.588) = 300 lb/in.

The shear Jtress is 400 psi sh "

"b

" (1 125)

=

The margin of safety is F""

MS =

-1 O

"eh where F

= the shear strength of 6061-T6 aluminum = 28,000 psi 3

then 28,000 ~1"

"#E 2,400 Thus, the tube will collapse plastica 11y before it will fail due to shear.

It is assumed that as the tube collapses doun on the failed fuel can (a radial distance of about 1/8 in.), the tube configuration is sufficiently circular so that the collapsing force remains a constant 352 lb.

Then the force uhich vill act upon the failed fuel can is the difference between the applied lead and the collapsing force, or W"" = F-W = 4 65-352 r-90010079

= 113 lb/in.

j 2-52

(~)'

The f ailed fuel can consists of a.062-in. thick aluminum tube with a close fitting.062 steel liner. To determine the force required to initiate plastic yiciding of the aluminum outer shell, the same procedure is followed as for the analysis of the basket tube.

Thus

= El = tyI M-max c

c F

= 37,000 psi i

ty i

I = f-3 b = 1.0 in, h =.062 in.

c=

k.

t Then

~

I = -(1) (.062)3 4

~-

(1.99)(10-5)in /in.

12

.062 c=

=.031 in.

2

~

M

=.(37,000) (1. 99) (10 ) = 23.8 in.-lb/in.

-max

.037 2M-max 1

g Al R

- cot 0 In this case R = 2.344 in, and e is 36 degrees as above.

Then W

= 95 lb/in.

gy The load which the stee'l liner must withstand then is "Fe " fcc ~ "Al = 113-95 e 18 lb/in.

O 90010080 The stress in the steel liner is ES a

a Fe I

2-53

i O

where M = M,,

=-fW R(

- cot 0) g R = 2.281 in.

0 = 36 degrecs 1=

b = 1.0 in, h =.062 in.

.031 in.

=

c=

Then M = 4.39 in.-lb/in.

4 4

I = (1.99)(10 ')in /in.

O

""a (4. 39) 31)

= 6850 psi (1.99)(10-5)

Fe The margin of safety is ty, y, 34,500 - 1 = 4. 0 33 -

6,850 Fc Thus, although come of the basket tubes will yield plastically, the failed fuel can will adequately protect the fuel elements.

90010081 0

2-54

2.10 Accendix Dlo m D D

o q

2.10.1

[

]

Q, REFERE':CES (1)

" Peach Bottera Atomic Power Station !!o. 1 Final llazards Surnary Report,

Part C.,

Vol.

1", Philadelphia Electric Company, Docket 50171-2 (March 3,1964).

(2)

" Peach Bottom Atomic Power Station 1;o. 1 Final llazards Su: nary Report,

Part C.,

Vol.

2", Philadelphia Electric Company, Docket 50171-3 (March 3, 1964).

(3) " Peach Bottom Atomic Power Station 1 o.

1 Final llazards Sutmary Report, Part C., Vol.

3", Philadelphia Elec tric Company, Docke t 50171-4 (March 3, 19%).

(4)

" Peach Bot tora At omic Power S tation t;o. 1 Final Hazards Su= nary Report, Part C., Vol.

4", Philadelphia Electric Company, Docke t 50171-5 (March 3, 1964).

(5)

" Peach Bottom Atomic Power Station 1;o. 1 Final Hazards Surmary Report, Part C., Vol.

5", Philadelphia Electric Company, Docket 50171-7 (Augus t 11, 1964).

(6)

" Packaging of Radioactive Material f or Transport", Code of Federal Regulations, Title 10, Part 71 (December 31, 1966).

(7)

" Radioactive Materials and Other Miscellancoua Amendments", Code of Federal Regulations, Title 49, Parts 171-179 (October 4, 1968).

p)

L.

(8) "Instru tions to Bidders - Specification for Nuclear Fuel Shipping Cask and Transporation", Philadelphia Electric Company, Peach Bottom Atomic Power Station, Unit tio. 1 (December, 1969),

(9) Motallic Materialn and Elements for Aerospoce vehicle structuren, MIL-HDBK-5A, Change 1;otice 2, Sec tions 2.2, 2.6, and 6.1 (July 24, 1967).

(10) McParland, R.K., J r., "The Development of Metal Honeycomb Energy-Absorbing Ele-ments", Technical Report tio.32-639, Jet Propulsion Labora.;ory, Pasadena, California (July 24, 1964).

(11) Roark, Raymond J., Formulas for urenn and strain, Fourth Edition, McCraw-Hill Book Company, New York (1905).

(12) lbid., page 216.

(13)

Ibid., Chapter 12, page 248.

I (14) Letter and Data Package from D. Guggirberg,11ead of Hot Cell Operations, Culf Cencral Atomic, Inc., San Diego, California, to Mr. Cecrge ti. itid inge r,

Irradiated Fuels Branch, Divirion of Materiala Licensing, USAEC, Washington, D.C., Docket 70-72 (March 23, 1963).

1:elnes, li.A., " Structural Analysis of Shippins, Casks, Vol. 3, Effects of Jacket

' pd (15)

Physical Properties and Curvature on Puncture P.esistance", ORNL-TM-1312, vol.

3 (June, 1968).

(16)

Skirvin, S.C., " User's Manual for the TitTD Com;> uter Program (Transient lient Transfer - Version D)", GE-NMPD Report P.O. tia. 036-92 6052 -T9602 (June 23,1966).

90010082 2-55

2.10 Accendix f0 D hIg

~h*

2.10.1 W u q'f REFERENCES (1)

" Peach Bottom Atomic Power Station !!o. 1 Final lla:ards Surmary Report, Part C.,

Vol.

1", Philadelphia Electric Company, Docket 50171-2 (March 3,1964).

(2)

" Peach Bottom Atomic Power Station t;o. 1 Final }{azards Surmary Report, Part C.,

Vol.

2", Philadc1phia Electric Company, Docket 50171-3 (March 3, 1964).

(3)

" Peach Bottom Atomic Power S tation t;o. 1 Final llazards Surmary Report,

Part C., Vol.

3", Philadelphia Elec tric Company, Docke t 50171-4 (March 3, 1964).

(4)

" Peach Bottora Atomic Power Station I;o. 1 Final Hazards Summary Report, Part C.,

Vol.

4", Philadelphia Electric Company, Docket 50171-5 (March 3, 1964).

(5)

" Peach Bottom Atemic Power Station !;o. 1 Final 11azards Surmary Report, Part C.,

Vol.

5", Philadelphia Elcetric Company, Docket 50171-7 (August 11, 1964),

(6)

" Packaging of Radioactive Material f or Transport", Code of Federal Regulations, Title 10, Part 71 (December 31, 1968).

(7)

" Radioactive Materials and other Miscellanceus Amendments", Code of Federal Regulations, Titic 49, Parts 171-179 (October 4, 1968).

(S)

" Instructions to Bidders - Specification for };ucica: Fuel Shipping Cask and Transporation", Philadelphia Electric Company, Peach Bottom Atomic Power Station, Unit !;o.1 (December,1969).

(9) Metallic Materinin and Elementn for /erospace Vehicle Structures, MIL-HD3K-5A, Change ;;otice 2, Sec tions 2.2, 2.S, and 6.1 (July 24, 1967).

(10) McFarland, R.K., J r., "The Development of Metal Honeycomb Energy-Absorbing Ele-ments", Technical Repor t 1;o.32-639, Jet Propulsion Laboracory, Pasadena, j

California (July 24, 1964).

(11) Roark, Raymond J., Formulas for 9tresn and strain, Fourth Edition, McGraw-Hill Book Company, 1;cw York (1965).

(12)

Ibid., page 216.

(13) lbid., Chap ter 12, pai;e 248.

(14) Letter and Data Package from D. Cuggishcrg, llend of Hot Cell Operations, Culf General Atomic, Inc., San Diego, California, to Mr. George li, iii d inge r,

Irradiated ruels Branch, Divirica of Materiala Licensing, USAEC, Washington, D.C.,

Docket 70-72 (March 23, 1963).

(15) I;elnes, n. A., "St ruc tural Analysis of Shippin., Casks, Vol. 3, Ef f ec t s o f Jacke t hs Physical Properties and Curvat ure en Puncture Resi s tance", GR:iL-TM-1312, Vo l.

3 (Juac, 1966).

lie n t (16)

Skirvin, S.C., " User's Manual for the TUTD Computer Program (Transient Transfer - Version D)", C'J-:.MPD Report P.O. :;o. 036-926052-79602 (June 2 3, 1966).

90010083 2_ss

~

(O

't/

(17)

Brooks, F.A.,

and Miller, W., " Availability of Solar Energy", Introduction to the Utilization of Solar Energy, McGraw-llill Book Company, New York (l963),

p. 36.

(18)

Power Systems for Snaca Flight, Edited by Zipkin, M.A.,

and Edwards, R.N, Academic Press, New York (1963), " Spectral and Directional Thermal Radiation Characteristics of Surfaces for lleat Rejection by Radiation", Edwards, D.K.,

and Roddick, R.D.,

p. 435.

(19)

Arnold, E.D.4 "PiiOEBE - A Code for Calculating Beta and Gamma Activity and Spectra for.35U Fission Products", ORNL-3931 (J u ly, 1966).

(20)

Solomito, E.,

and Stockton, J., " Modifications of the Point-Kernel Code QAD-PSA: Conversion to the IBM-360 Com-ter and Incorporation of Additional Geometry Routines", ORNL-4181 (J 1968).

(21)

Golds te in, 11., and Wilkins, J.E., Jr., " Calculations of the Penetration of Gamma Rays", NYO 3075 (June 30, 1954).

(22)

Capo, M.A., " Polynomial Approximation of Gamma Ray Buildup Factors for a Point Isotropic Source", APEX-510 (November, 1958).

f-) (23) Whitesides, G.E., " Adjoint Biasing in Monte Carlo Criticality Calculations",

\\xf Trano. Am. Nucl. Soc., 11, 159 (1968).

(24)

Bell, G.I.,

Devancy, J.J.,

liansen, G.E. Mills, C.B.,

and Roach, W.H., "Los Alamos Group-Averaged Cross Sections", LAMS-2441 (1963).

910010084 fLJ i

2-56

O 2.10.2 APPENDIX B

.O i

]

, COMPUTER PROGRAM FLO..! CllART FOR A :ALYSIS OF STRESSES IN Sili',1,L A!.T) TiWNNION i

ll' 90010085 t

o I

'O 2-57

m l

O6 a

o COMPUTER PROGRAM FLO'.J CHART FOR A';ALYSTS OF STRESSES IN SHELL At:I) TRU:;NION The equations for stresses in the shc11 of the cask as defined by Roark*

for a trunnion attached to a flat plate are as follows:

_.s,'fh"fj )...(Air - m W * ;',-$,[t + (*-y') W ' ',y'-]

-tm K - dh,.

(itsamen landsag Equation 1:

[

'.hno

.[l + ("- )) W f

]

(At r = Q h e -

Equation 2:

,s 3

ol.'

'4 vsvosw' 5

)

Vr,

' ov,.ac. ei.a.a e.aptwrv.)

u. twm 14 a:en4 s.P - M e +1) N.-

n.wa.eo 3,

  • k" - U t h '
  • D -

Equation 3:

J m.(m - 1) - m.W e + 1) - 2'm' - 1)s8 W {

p 4

4 (At

  • de) h a y,;;r.,3 +

,- W "b=,3>24

. g., - o,. n,,.,. o imp (.8 - P) - 6mo'68 % '; + 44'MIm + 1)(W W r - -.,,,,r,,g a' - 6' + -

J

.s - o,. n m,n

~

O*r edr. hal e d sus newl. Inse.r ausua

(^' *" de)

  • av [ 8..ni (W.))

23, em mm se coi<

Equation 4:

w aio i;T.

-e s

ci m a,,, m. -;;,[,,,t,,(W;)] ~,--s j[..-

,r',.(a;y) i 4,4 c

a where i

i M = Pc l

P = Bending force on the trunnion e = Moment arm = 1/2 (STK + PP + TL) i STK = Shell thickness j

t PP = Patch plate thickness 90010086' i

-t = rronnien icnach STK + PP t

ro = Outside radius of the trunnion i

m = 1/poissonc ratio a = Patch plate radius l

W = Pull out force B (equations 3 and 4) a t o

  • Ronck, R.J.,

formulan for trenn nnd st rain, 4th edition, McGraw-liill Book Compaay, S t w-Yni. thet er 10. Yable X, 2-58

rm

(

)

r./

The equations for strces in the trunnion are as follows:

'o M

Equation 5:

of=-+U7 = n (r NC

+

4 4

2 2

RI )

n (r

- RI )

O o

P P

Equation 6:

o

-

sh A

2 2

U (r - RI )

o where RI = the inside radius of the trunnion and the other terms are as above.

The flow chart of the computer prograta is presented below.

START Enter P U, STK, PP, TL, r RI, a, m p

p PRI!!T Entered Values Solve Equations 1, 2, 3, and 4 L

PRI!!T Check for Equations not

, y es,*

Mathematically solvable Message about e qua t ion:

which cannot be solved, U

w f

g Combine Worst Computed Stresses at Each Point in Shell.

Compute Margins of Safety.

Compute Trunnion Stresses, Equations 5 l

Y and 6.

PR11T i

Compute liargins of Solutions to All Solvable g,7 i

Equations, :im:i:mna Stresses,

!!argins of Safety y

'(

PRllir Stres ses, !!ar;', ins of

[

Safetv 90010087 Cam 2-59

~

O 2.10.3 APPENDIX C DESIC: DATA FOR MrTAT.TA C TUBr I:GACT LI GTERS 90010088 O

2-60

l Dr P D*

Vlbu [+y q

D "d

w m

O

(/

Drs T C': DAT A rm ""T AR T C T "E Tyi'.A CT LI m tm McFarland* investigated the energ. absorption properties of all metallic devicca under static loading and dyncmic loading conditions up to impact velocities of about S0 fps.

He was able to shou that over this range of in. pact velocities the structures rc.,ponded almost identically as uader static loading.

Uc investigated tuo mator, als, aluminu.a and raaraging s teci, and three device ccafigurations, close-packed tubes, loose-packed tubes aad he:cagonal-cell honeyconb.

Figure C-1 illustrates the three configuraticas.

limiters is defined as The specific energy absorption of the impact o

T1 (C-1)

E

= mc sp Pu where E

sp fic energy, in,-lb. per l b.

=

mean crushin;; s tress, psi O

a meTi a thickness ef ficiency (also called s troke efficiency) unit ucight, Ib. per cu. in.

p w

(3 specific energy is a maanure of the degree to uhich the mass of the impact

(/

The al corber is utilized in absorbin:; the kinatie energy or the impacting body.

The raean crushin;; stress is the average stress at which the absorber structure vill begin to deforn.

Ideally, the collapse of the iupact absetbar structure vill continue at this sama stress level until all the hinetic energy is absorbed, or until t.he structure is completely collapsed. The ratio of the maximum dis taace the absorber vill cc,11cpre until "bottonin:;" occurs to the orir.inal height of the structure is the thickncas efficiency (s troke e f ficiency) of the struc ture.

The unit weight is the weight per uni t volu te occupi ed by the.. arc.posi te s t ruc ture, Figure C-1.

The uni t ueight i s a geometrical rei.ationship of tube or honeycomb cell configurations and, as r.hown in /igure C-1, it is only a function of the vall thickness, tube diameter (er ecil size) and specific ucight of the material of construct lon.

The ueight of the end plates or other attachments is not inc]uded.

The typical collapse respoane of the tubes and hoacycomb cell structures und :r anal 1 ;anin: is to form riuttiple convolutions as shown in the sbetch in Figure C-?.

The ener;:, is absorbed during col: apse in one of three different ways, rigid-plastic, elast ic, or elas ti c-plastic.

The strens pattern for the three ways i :, ahowa s chw.a ti ca lly i n P i.c;u: e C-3,.

I'.cFa r l anci presents expetinental data for steel hexa;onal cell hoc.uyenaS struc tures which correlate / cry well with relation-ships obtainul by other investigators for the rip,id-plastic mode of response,

/$[ure C-3.

T h e r, H L e Cu l ts s nG.7 that the c.ean C rusnin;; s tres S Can bu e>. pressed by the C. :';u a l i o n,

O

% = w.s y r t ::o. M-u]9,

'. e ; ;.. 1 '.,,6.

2-61

._..m

_ _... m m__

F M

O Mild P l il L (?

b Absorber Active licigh t A

A Y

' i il l e E m1 Loose Packed Close Packed licxagonal Cell Tubes Tubes lioneycomb O

\\

Pu""A Pu" P

Pu" P

rho rho rho p = unit weight p = material specific weight t = wall thickness sa mean diameter or cel? sir.c

'O FIGURE C-1.

TIIREE IMPACT LIMITER CONFIGURATIONS INVESTIGATED BY McFARLASI) AND DEFISITIO.i 0F TilCllt UNIT WEICllTS 2-62

==-t-w tt er w

g-,

-w--es',-ama4

-s-e

==a

^+i-----

we<v

=

--r-

+

-*ww me-y.g+y

,we.-+,-e-g-g

=,w+.,

g.

a.+wn weyg

  • gg ith.e'-tge:We p,9q"'P+rt rew y -

O s

i Y

Y Y

Y Y

Y Y

Collapsed Portion Unco 11apsed Portion 4

I A

A A

A A

A A

~

O FIGURE C-2.

TYPICAL COLLAPSE MODE OF TUBE OR llEXAGONAL CELL 110NEYCOMS IMPACT ABSORBER STRUCTURE i

b 1

0 0

0 Y

y y

4_

+-

.r s_

,=r r:11.

+

/

Rigid I'lastic Elastic Elastic-Plastie

O FICURE C-3.

STRESS PATTERN FOR Tile TliRl:E MODES OF ABSORBER RESPONSE j

i I

h 90010091 2-63

McFarland subsequently concludes that the specific ener;;y of the tubular structures can be closely approximated by using computed data for the hexagonal cell honeyconb.

Thus, Equation C-1 can be written for the case of a hexagonal cell and a tubular structure and the two equated.

O R

o R

( "p#

) tube (C-3)

( "p

) hex =E E

=

=

sp sp hex tube Data is also presented by McFarland which shows that the thickness efficiencies for the three types of structures illustrated in Figure C-1 dif fer by only about 5 percent.

Thus, in Equation C-3, if it is assumed that E

=9 g

tube' the equation can be rewritten as o

o

(

) hex " ( p ) tube (C-4a) u u

or p

\\

_ tube (C-4b) hex /

o

=c p

me me u

tube hex 0

Substituting the values of p from Figurc C-1 in the above equations yields close pack tubes 3n o

=

g mc 4

me cp hex y (I)2 (C-5) o

= 55.13 o s

m cp and loose pack tubes j

=Eo I

ome 8 me LP hex i

y (2)2 (C-6) o

= 47.74 o nc a

O

'e The curves in Figure C-4 are equations C-2, C-5, and C-6 plotted for the case where c

= 60,000 psi.

This is the yield strength quoted by vendors for carbon 90010092 2-64

10I 9

._....}-;

..u. j. Y y.M. W.g.W.y~ "/. _j /

.j. i 3

-... :.: 5. =. :. l.._...

{

,,_ j.l.

.l. l l 7

l

~

.j

/

..-.q.

.. :l.

(

y

~'

.. /

Clo'sc ?acded Tubes

.:12,21 :~..

J - ~ ' -' 2 ~ ~-

' ~ ~

I 6

' l Loo'se PacNed Tubes l

4 5

~

N

,o Ccm 1 2 F-

-- l.

.l l

l j

n. :- -

- I; a

i j

4 :r:----

1 I

l

_a i

~~'

_.! _ i

--. _m igl,id.- [1 c. t i

~~' ~'

R g

MUdb f Rt.sppnce

I ;; _x.*

O

$'. 6.000 nsi 6

3

/

+ ;.:

r~'.W.-

l /

.. ;j.

2Eil.h = -

- -I;';

gg... g ;

j -.l 2....

~

~{

~-

(( ]...: "... _.

~

r n

u

==_ _ _.

~ ~ ~ ~

'~2:~ C T J".

[j

......A.....

O

= = =. ~ *_.

..=

e I ///

1 4

l l. -.I

=

s 1///l L

1 1

I

.:l M

=-

m

' ' ~ '

l "l

3

. 5. _7.

7 a.

z = =fj'/ L - J ET 4 4L l

z-

=5

,e,

. /_ I/

1 1

.I

-! t -

c t

+

i i

3 l-

l
I 1

I

'.~ 4 k

.a

.4

=u 4

j u_

f

.l

.l t=

n..

.g e..,

._s 3.

, p.. ;..

n' 0010093

. FIGURE C-4 ME/J! CRUSHT:?G ST:1ESS OF Ali DiPACT LU ER MODE OF COLD-DRAW:? C/JG0:1 STEEL 7

1 U

u _.

)

i..
i.

y 6.l

,-55, s.

i, i

n 3

O nteel (.10 to,25 percent carboa), cold drn'.ra rechanical tubine,.

These curvec, th" data presented in Figtre C-1, Crd the equation ",iven by 1:cFarland for the thickness eh iciency of stcel hexagonal cell honeycomb structures, il = 88.13 - 329 ts were uued to det.ign the impact liciter.

r 90010096 2

Cos u (0 + sin 9 cos 0)

(D-2b)

=I AO C)

After continued deformation through the additional distance, od, the area fer t

a < r is 2

d + Ld cos a [(0 + ur) - sin (0 + 60) coa (0 + t,0)]

(D-3a)

A

=

2-67

O X

center of maso Cask Y

Impact Angle, c%w Line of Action of j

Decclcrating Forces

\\

Impact Limiter Deformation Distang, d 77 Impacting Surface 1\\

a. Crosn Section

, View

, Contact

?

Arca u

Cask f

O, Deformed Axial i

lleight h M

a

/

\\

/

h

-Impact Limiter V

b.

l oometric view E

g%

A Conta. Arca l

\\N F

h F

rc i

0 fb o

c. Force System 7%

s FIGURE D-1.

SKETCll OF CAS" DURI!iG IMPACT AT POI!;T UllEti IMPACT LIMITER IS PARTLY DEFORMED

[~~r

^

I i

k

\\

o

~

rK' f

'N s

/-

-l. / / N

\\

/

. /

/ ~ >N; %~

\\(Q'_<P,,% -f..'>A

,/

-es

'N

, /. ~

/

~~

s y(~

s x g-;(.. - x, /

s s

.=

j s ;.

s.

~

/

N~</

a

\\

.+

t 4. f.

..,,. i, p, p - 2.

2-69

OV and for a > r 2

d + od cos a [(0 + AG) + sin (0 + 60) cos (0 + 60))

(D-3b)

A

=

The average force acting through the deformation distance, od, was taken as the product of the contact pressure and the average of the two areas at d and at (d + od). Thus A

(d+Ad + od)

(~

F=F( 8 e

2 Then if V is the velocity of the cask at deformation d, the velocity at d + od is d

d + od " f d

W V

(od)]

(D-5)

~

where W = weight of the cask and the other terms are as defined above.

The program then continued to increase the deformation, d, in increments of od until the velocity of the cask was reduced p

to zero.

V The calculation of the decelerating force was modified when, during the execution of the program, the deformed axial height of the impact limiter, h 1"

a Figure D-la equaled the stroke distance defined as hb = h9 (D-6) where h = impact limiter active height (Figure D-la)

B = thickness (or stoke) efficiency of the impact limiter.

At this point, it was assumed that no more energy could be absorbed by those portions of the impact litaite r which had "bo t tomed".

In addition, no credit is taken for energy absorbed by deformation of the shell of the cask.

Therefore, for continued deformation, enert;y was assumed to be absorbed in the lead portions of the cac,k as well as in those portions of the impact limiter not yet bottomed.

The contribution of the lead to the decelerating force was evaluated according to Equations D-1 and D-4 as for the impact limiter except that for the lead, the term, cos a, was omitted since en:.rgy absorption by deformation of the lead is not directional.

The lead flow pressure, cor,maly accepted as 10,000 psi, was used for the term Fc in these equations.

A flow chart of the program is presented in Figure D-3.

u"-~\\

/

o**o "yv 90010099 w

A. M %gL 2-70

- -. ~.,.

O START Variable !!ames Input Y

W cask weight Enter W, D, STK, ETK, SIDETK, ENDTK, D

cask diameter 111,111MP, TKEFF, PPB, PIMP, DELT, VI STK side shell thickness ETK end shell thickness ilt SIDETK side lead thickness Etim endleagthickness initiali::e all other Variabics, Set cask height (d thout Flag values and Counters impact limiter) llIMP impact limiter height

\\/

TREFF thickness efficiency "E#

Print Program Description.

en f w pressure Print Entered Values PIMP mean crushing stress of impact limiter DELT deformation increment y

Y Perform Prclininary Calculations Other M

2 G

deccleration Increment tA TM time l

~

l comparc d + LD:hb d + Ad> h b (Eq. D-6 f

d + 6d <:' h S t Flag 1 b

Solve Eq. D-3 for (d + Ad) =

j (d + 6d) - hb Solve Eq. D-4 for Pb

'r Solve Eq. D-3 for d + ad = d + Ad IS Flag 1 Yes Set l

Subtract Eq. D-3 for Pb From Eq. D-3 for Irapact 3,

~4 Limiter + Pb 90010100 1

O FIGURE D-3.

FLOW Cl! ART OF COMPUTER PROCIMM TO CALCULATE DECULERATIO; 0F CASK IMPACTI:C 0; A COR;ER t

2-71

s O

~

l Solve Eq. D-4 for impact Limiter and Add to Solution of Eq. D-4 for Pb (if any)

Solve Eq. S Compute G, TM V

Print d + 6d, Vd + Ad' O

Y N d + 6d: ::cro d + Ad =0 STOP N

Vd + Ad-O Y

Set Initial Variables Equal to Final Variables

't 2

FICL9tE D-3.

(Continued) g i 90010101 2-72

O 2.10.5 APPE!TDIX E O

COMPI'TER ??<0 GRAM Fi,O'.J C11 ART FOR Ti!E ANATNSIS OF _ A STDE IMPACT 90010102 s

1 0

2-73

O y

COMFJTER PROGRAM F1.0M CIIART FOR TiiE A! ALYSIS OF A SIDE IMPACT The co:nputer program for a side itnpact of a cask on a flat, unyiciding surface was written to accom:nodate a cask with stepped sides.

It neglects energy absorption by yiciding of the cask shcIl and assumes that all energy is absorbed in deformation of the lead.

The dccclcrating force at any instant during t he itapac t is the product of the area of lead in contact with the unyielding surface and the flou pressure of lead (cor.nnonly accepted as 10,000 psi).

From Figure E-1 it is seen that the area in contact with the unyiciding surface varies as the deformation, d, increases.

(

f I

O

~

s

~

I I

N I

fYY/

fi.AI!//f/ff lY/b J

{

\\

w H

r FIGURE E-1.

CONTACT AREA FOR CASK UNDER SIDE IMPACT Q

> 90010103 2-74

D**D D TY@

0

.b.NUL we w

Thus, A = 2 [r - (r-d) ] !

11 d

= 2 (2rd - d )1/9~ 11 (E-1) 2 Ad Similarly after additional deformation through a distance ad. the area is

= 2 [2r (d + Ad) - (d + bd) ] !

11 (E-2)

Ad + ad The average deceleration force acting through the distance Ad is F=P(d+Ad + ad)

(E-3)

A 2

where P = the lead flow pressure.

The velocity at the end of the deformation increment is q.

(Ld)]1!

(E-4)

V I( d)

~

d + Ad W

where W = ucight of the cask Vd = vel city at the beginning of the deformation increment.

The program increases the deformation in increments of od until the velocity of the cask is reduced to ::cro.

The length of lead undergoing deformation,11, is initially teken as the Icagth of lead in the larger diameter section of the stepped cask. When the deformation has proceeded until the lead in the smaller diameter section also comes into contact with the impacting surface, the above calculations are repeated for the geometry of this portion of the cask.

The total decelerating force then is the sum of the contributior.s from each portion of the I

cask. A flow chart of the program is presented in Figure E-2.

90010104 O

I 2-75 l

. _. ~

O Variable Nar.cs START Impact

^

W cask weight Enter W, D, DSM, llT, llTD, STK, TTK, BTK,

D cask dicmeter, large step DSM cask diameter, small step P, DELT, VI ilT cask weight llTD length of large diameter :

y STK shell side thickness J

Initialize all Other Variables TTK shell thickness, top end Set Flag Values and Counters BTK shell thickness, bottom et P

lead flow pressure l

DELT deformation increment i

Y VI initial velocity Print Program Description, Pint Enctered Values C

2 i

Perform Preliminary Calculations j

i 3

Increment ad

.\\

ompar.2 d + od): (D - D S '- )

h

,~

Solv Eq. E-2 for Small (d + od)) (5 0 ")

2 Diameter Step (d + 4) 4 (D-DSM) f 2

2

/

1 FIGURE E-2.

FLOW CllART OF COMPUTER PROGRAM TO CAI.CULATE DCCELERATION OF CASK IMPACTI!:G ON A SIDE llO 90010105 2-76 L

fh iy 1

V Solve Eq. E-2 for Large Di neter Step l

o

't Add Contact Areas for Two Steps of Cask Solve Eqs, E-3 and E-4 l

V Calculate G, TM Y

l'RI:'T d + Ad, V d + Ad,

{.TM, c.

co:apare y

V

+

d + Ad: zero

(

Stop

,i Vd + Ad> 0 i

Y Set Initial Variables Equal to Final Variables 90010106 3

1 FIGURE E-2, (Continued) f l

1 2-77

n:a :na 90010107

l I

b 3.O THERMAL EVALUATION 3.1 Discussion The therac1 cnclysis presented in this section excmines the therral condition of the W&K Mcdel 50. P5-1 cack when subjec:.cd to the noraci cendi ;cr of trcnoport outlined in Appendix A of 10-CFR-Pcrt 71.

This analysis ;cetica ciso excmines the ther=cl response, and associated effects, of the W5K Modei :;o. r5-:

cask whe:. subjec ted to the hypothetical acciden t fire condition outlined in Appundix B of 10-CFh-? crc 71.

The norac1 conditions of trcncport cc they app 1; to this j

cnc,.ycis section are cc:;nec cs (1) cas,a exposea to c,irect sun 1;.

.t or 1.n, - c.cy gn (2) ccsk exposed to -40 F day in still air and shcde.

The in ctill air, c.n c hypothetical cecident condition cs it cpplies to this analysic section is de;.ned cs cn enviro:uaentcl fire radic;t thernci source..avinc a temperr.ture of 14~i5 i In cddition, the " standard fire" is defined to hn.v.

an insting for 30 minutes..

cizective source en:ssivity or 0.9, anc. the t,aer=cl absorptivity o.c t.ne exposed c.

ecsk surfc.ce is defined to be 0.8.

Fur:f rs gp A cidplcne cylindrical region of the WR Model 50. PB-1 cosk wcc arcl{2ed in detail to asacss the potential for lead ccit during a postulated hypot.:eticca fire enc to determine the noruc1 therc.1 condition of the ccck cnd its contents.

T, M can;.

This cnclysa concider; ;.cct transfer throu;;h the cylindrical wall of the,acttu n

is the coat severc thc rrcl condition which could ens t since the top anc covers of the cask have sufficient therm.1 protection in the form of thick s tructurcl plc.tes (i.e., 1.50-in. thich stcinless stecl ecver inner P10tc - 1 2b thick itc..nless steel cover outer plates) and steel impact limiters.

These structures provtde a significant ther=cl capacitance and/or resistance.

The results cf the charmal trcasient anc.lycis indicate that the ens' inner liner temocrcture reaches a maximum value of 416 F, 60 minutes af ter the hypothetierl accident fire begins (30 minutes after the cnd of the hypo:.etical accident fire) cnd that the ac::icum lead temperature at any time 6uring or after the fire i s 42 C l'.

The crclysis assumed temperatures at co mencement of U.c tire corre..panc to nortcl operr. tion on a 100 F day with a 14,250 Stu/hr interncl heat lond.

Since no lead r:eltc durinz, or efter the tire, no lecd is lest fror the shielo region. The tcupercture of tt: hottest aluminum iuel can 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> after the a J of the hypothe cical tire accident in 442 F which is scfely belev the limitin; 3C:. I fer th; aluminur fuel ccas set in the structural enclysis acetion of this saie:,

cnalyais report.

3.2 Thermal Model 3.2.1 Analytic Model

!, v C

r.u t h a..;c i trrn; tent enclys;c was carried out using the THT-D rt-7 trcar.fer cca,utcr proers*..

A cylindriccl cc: Lion representctivu ot, the L.;c; w:.c

. 7,. m,

.... m.g.

,,a.

. -.%c-.

m. ~~.e.. 21 cnd r.i ure 22 i ll u:.t rc;. Lae a

a.

o;.

,,u

<, ce.

..2,

.w.

.a thernc1 codels cac.lyacd by ti.e..;T-a ceuputer prodrcm.

90010108 3-1

5 j

I l

i I

l i

Q Q,

@3"O' I

i

~

t i

D u

I e

1 I

I.

es o o

o

.y s

e i

1 i

e r

i j

e i I

I i

(

t l

s i

i l

i I

t

[

( ;E

= l t

e

'so.

.,., ', ' f).**

9 f

a*; nb 0

)

,/

1 s

me e'.

sv -ei

,j 4

e

  1. .e 4.

5 i

,i

./.. s

<..s l

y I,';t / lll '. :.

s s,.

.') } ls : O $ l

  • l l

l t

i pl e

i l

I i,..'*

e l

l

.. ' ". ".*'.". _~

.._.I C-

)

'g.7 1

l I

6 i

l 4

I i

i i

a l

s l

1 I

l a

j ~h.

{

1

  • V j
. V i./.1,.

d

  • ILe > [O o.

i,'l

=, */"'

I g

i l

1 l

i

)

i s

t l

'.7E

  • 'g 3

i i

I l

g i

l 4

l g

i e

e l

f

<l'[,$ # f ** A $ $ ',

l O5 i

e.

I i

i n.w.

i ap a 4me l

.'yj le.* !s,' ?l' ' ' ~

  • h '

,*d eJ,',*.

il} f.

{ s ?s' "'e a- +) {

e

^

l w

e V

l

)

1

, i a i *.

1.*

  • L,.' r L :*,l.,

,1 b;.:.

l

/

i v

/ / (',

./. a 6

'.f l

  • I 1

I r * !'*

4 se

(

i j

?.

I

...,- ; j,.,.

i q.

.v t. u i

n g_

~

i 1

~ w t

f l

I l

llo :,5 II'i LiA:

y i

c w,_ %

i

. u.u:

in,- - fli,

.,. :. :. l

. /s i

i i

r ~

i

.n e

-4 l

j i

- - - - - I-p.:

i i

i i

l i

i s

i i

i

(

l l'

Nos,;. J O d

!,i.m l

l I

e i

q j

j l

! NoXi /'-

/, c'4 ;,

i i

i i

I

~

i l

:) ?

JL 1

.c...

..J...

. -n I.

c

_m...

.~

s..

O e

l l

l

('

l

. ~.~:

i

, i....., *, ;,. /.,

n.

.. a i

I i

i i

i i

e l

7 i

r i

i

. s i

i 4

i l

k l

t i

i I

l l

i i

i l

l l

l l

-2 90010109

i 3!O

$$0$ 05@3ff 1

l l

i V

i~.

s "4

N

/

N

\\s

\\'N

(

)&

r-1 ccesw:

,nN p,/p vy N c<mgu m r-1 = = =

7gmdpgp4 j

p 9

4

\\\\'

Basm P\\\\j/'T%'NH t ~i c h

~

i w

l Nsas%jfk$;) 7 ijm f

r tg'j;&y/

900iono O

F~'

v m m 22. mam=ravausaum=

3-3

D D

n U.

s

_a The design concept cost signif,icant to the thermal anclysis of the W&K Madc No. ?S-1 shipping ccsk is that of a 0.25-inch thick stainless s teel overlay shall (c ther=ci buffer chcil) which enecpsulctcc the cask body.

The planned use of eveniv spcccd npot-ualded spccers, 1/16-in, high, will assure an air gap between the overlcy chcli cnd the 1.50-in. thick steci outer shell. This air gcp will in:.cdc the therac1 pulcc resulting from the hypothetical fire.

A constant 0.125-in.

cir cap wcs used in the trcasient her.

trcasfer cnclysis of the W&K ::odel No. P3-1 cask exposed to the hypothetical fire although it eca be shown that cc tuch cs c

.v,,,-in cir gap wou,.c, exist m,,uc to c2..,rcrences in therac1 expansions c ring the u

fire period.

3.3 Hypothetical Accident Thermal Evaluation

'.ac secrting tc=perctures (at accrt of the 30-minute fire) of the cask system, shown in Figure 23, were eniculated for conditions corresponding to c 100 F dcy cnd c ccsk thermal load of 14,250 stu/hr.

Norcr.1 condition operating traperctures for the ecsk cystem (130 F day, ccsk enposed to direct sunlight in scili cir cnd -40 F dcy, ccsk setting in the shade in still air are illustrcced' in Figure 24.

Since the cack system hcs a high therac1 ccpccity, a 24-hour cverage colar locd on a c1ccr dcy ct the cu= cr solstice for 42 N latitude wcs used (cee Figure 2 5).

This solar lond wc3 computed for a horizontc1 surfccc hcving a crocc-acctional crec equivalent b the rectcagular crosc-section crec of the

("'

Wik Model No. ?3-1 ccsk (i.e., 42.5 in. x 173.12 in.) cnd having cn cvercge cbsorptivig of 0.55.

The cverc;c solcr lond wcs computed to be o

9

[51.5 f t') x [.55] x [125 Bru/hr f t") = 3540 Btu /hr there o

51.5 ft~ ~ rectcasular cross-sectional area of WSK Model No.

PB-1 cask

.55

= curface cbccrptivity of cask 9

~

125 Ltu/hr-f t = 24-hour cverage colcr load computed by the follouing equation 7.30 p.m.

f r

S(t)dt

)

= 24-hour cverage solcr lond 9.ons v -...

i 11 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> N

aere S(t) = colcr incidence for horicontal surfcce at summ2r solstico for

(("_)

42.. icttitude cc e function of time.

See Figure 25. For I

anclysis purposes S(t) = 310 cosO.E}

\\1o.

'!ce to tal heat. hi ch auct be rejected frca tbc curface of the WLK Mcdel No. p3-1 cccx for cncly is purpoces is thcreiere 17,790 Stu/hr.

I 3-4 1

o 5

$$$$fgjggg 7 ~~

xx r

293 F

/

'N

=

\\

r

Xz_,

x, r

.; /..

~

\\.

x,s,,

\\.

" 32 F l\\

V]

bi

\\

p rl96 F s

r

.1- <tue i

1 s

m,-

s v i

n,

^>

')

L.,nNj :

/

%=

/

F

/

/

\\

/ g,

,~

90010112

- E: S 3-5

i t

1 hf h fk" i

J a m uk L%

(,)

t.

I

. >. y I

I l

J'

% ( %,,

j I..

9.n.

l

=r.

l Ws I

4 I

35.

I

'. =c t

\\

\\

11 kl O.

9 q

..i

%e=

f l

A _02:.::ui. t. ~aw

!=.L

4....

}

l X- $ ur~R bHELL i D.'th l

c m..

0 -

.o

,,,, e nm..

e b

.L O

_ - <.v a..;. ~ <. a.: i n.,.-- '.n

~.

.,_1

  • a g Q(.m..

l I

t dre) I' 5 *.~

t ** /( O'TIf $ lT*c._e,: r. r cr ?,told 6 I' [ t/7 f l..

l l

N; 1

_ Gaa c-'

a-

\\

MN i

d e

I c--

l l

x>-,

1 I

a i

I I

I a

u_

a n..

I

/.;..a

,clo i

n co

/.o uw l

t i

g, i

1 i.

. a,e _ z. u L ;

/, ;,,\\--

v. y I

I I

I I

1

._....i..__...._..--_--.

~3 2g ----

90010113

n u

em a

oo o

,w I i!

l I ! ! I i

  • ", l_ l l I_l 8 L-o

.o

,lO -l i l l

.o I I i l i r/

4

..N s-7 ' ^ !'

g

  • (.. /, _. ! ' t.

.f a.o o.: {'

i l

1 I I '

I. U.,!

f!'!'7.%_

g 7._ t a

' I I.

. _)

Jc

  • I N

/__1 yI l

l l l 1 f I /r

. i,,,I,1--

g I

fl

,f _.

i i i. l l l

e

.I _..

1,.l c

e a

! l l I i

  • i H_i l I

~

i O

_' _ _ ; f,j i i I

H

._ i N

,n

-f

,a

,I l.. i I 6.- i.

i 1 o

6---.

Jl. -

e.>

/ __i / >- l a, }

a i u

[ _{,,o l

- i m

,I c [, m_

I I 5l ! I I i

) -

'r!

, m 7, e

i i [

i.. y -J

-~l-r,

- g i..

. i o.

g, O

Il7 - ;

l I

_i.f t i-JiTTTr.._jsb(i/G,,0 i !

0 o.

l J '

L_!- L.,,.I...

si :-

0 I

p

l.

s _ t_ i

...!. ;I I i i

g

,d..

-4

< C

..)

y y

_\\.'. I i..,,__, )

I i i i

1\\' _/,i __.i ' i _,i i.,

_ I. !.. l l

_ L..

2.

,N_. s..i._ e

,I..,il_.,

_.J m

.s ao l

I I I i

[

..i

~

g o

m I l l

-. l.\\,\\.l l.

I

_I_i.g.

g I. '. l/, _

'I i

a

,i __1\\. _ i

.ys m

I

,i_ i,

.i l

,1 O

e 7..,

I l

i

< l 7._,a x

.I g.

s

,o g.

m%, i ;t.~

~

l l

~

a mn, :,,,

N

~1 hl l l l !

'. [l i l y

l i e i i i, I I~ 'i

-l F..>

IDi>i.ii 7

.--T1 I

e 1i l ! I i L,1 i l 1 n

F q.

Q o

A4 E'

b N

M L;i q

ri s>

g M

"o

,8; tofv:

o u

O 90010114 I

I i

3-7

nn na nn D

D D.3-]

Uwl 3

~.

n r.

iy for conservatism the thermal ccpccitance of the graphite fuel elements cad their enenpsulating aluminua fuel ccnu contained in the cask ccvity, uns negiccted for the therr:1 trcnsient calculations of cask shield temperatures.

The actericis therncphysicci eroperties unich were c= ployed are shown in Tab 1cs 6,

9 cnd 10. The caodized outer surface of Cic aluminuu fuel-clement basket was assumed to ncva cn effective criccivity of 0.S.

The nonnal operating condition temperctures of caci contents (fuc1 c1c=ent ecns cad bcsket), assuming a rcximum thermal loc.d of 17,790 Ltu/hr (14,230 stu/hr deccy hect, 3,540 3:u/hr solar load) for the casa systcn, cre illustrated in Firgure 24.

Since it is excretaly unlikely that the cask

.rc accident wat,c in any position other

.. i vou lu, se cnguitec,ay t,ac.nypo t,.ic tic a.

y u

than the horizontal position (i.e., normal shipping position is horizontcl), the s tart-in3 tc=parctures for the fire transient calculctionn are those illustrated in Figure 23.

Figurc

'.5 illustrates the ther cl history of sc1ceted regions of the ccak contents during the fire anc up to 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> after the hypothetical fire accident at uhich tina artificici cooling may be used.

Although the cask system uns cnal.yzed for a totat internci nect lond of 14,250 3:u/hr, the total hec; trcnaferrcd by condunion, thennal radiation, and convection frca the alun.inun packet to the inncr liner of the cask (wall of the ecsk cavity) is only 12,700 Stu/hr.

ens :.shet The rcmcincag source thennal p:uar (1,550 Ltu/hr) escapes the fuci element region of the ccuk cavity in the fon of ga:=.a radiction incident on the ensk cc.vity

11.

The bcshet and fuel element region temperatures illustrcted in Figure 24 and Figure 26 cre therefora cciculated for a heat transfer of 12,700 Stu/hr. of ther.ncl gg power from the cluainum bcsket to the ecsk ccvity wcl1.

U To properly cccount for the cxici spreading of the heat generated in the centrcl 50-in. fueled region of the fuel element, an cxial section consisting of (1) the grcphite fuel clencnt, (2) the cluminum and iron fuel can, and (3)

.n en-closing clu=inun tube from the fuel element basket was analyzed cscuting the therac1 nect source distribution illustrcted in Figure 27.

The distribution ucs catcrcined by fitting the equation S(x) = A + L cos [ny]

(x in inches) gj to capirical data.

The empirical dcta used cre listed below:

1 I

(1)

Maximuni reactor fuel element operating power = 174 huth (2)

Average recctor fuel cicacnt operating power = 140 kwth (3)

Mc :inun. local - to-core average specific pouer ratio = 1.59 (4)

Maximuni fuel element decay power = 750 Btu /hr (5)

Torcl fuel ele.aent fueled region volume =.5 ft (r.ccumes 90-in. long. 3.5-in dic. fueled region) n f

Using the above dctc x

3 S(x) = (703.5 + 11i6.5 cos [w:]) ntu/hr-f t 9

i 7sd I

90010115 l

3-8

i

/,.T T

J

'\\.)

T!.L12 L TIZPJ-:Or2iYSICM, r OrERTIES LYPL0iFD FOR L?;D IJ:D STEEL r----==..-,

- - - =. = -. - - - = - = = =. - =. -

_. = - _ - - =

- = - = - - - - _ - - - - - - - = =.. = -. - - =. = - -. = = = - - - = =

La. c' Density = 705 lb/ft

citing Temperatera 621 F a

Latent i: cat =- 10.5 Btu /lb Tc:rp er ature,

Thet,::a1 Conductivity, Specific IIent, T

Btu /hr-ft-F Etu/1b Emissivity

~

32 20.1 0.0303 1.0 212 19.6 0.0315 1.0 Y-372 18.0 0.0338 1.0 b

9 T

621 S.8 0.0337 1.0 500 8.9 0.0326 1.0 b

9 M

sten 0

9 M

3 Density = 403 lb/ft Latent IIent = 120 Etu/lb b

' citing Tc: perature = 1800 F W

Temperature, Thermal Conductivity, Specific IIcat, b

F Bru/hr-ft-F Ete/lb Eriss!vil'4 b

m 0.8(c) 1.0(b) 32 8.0 0.11 ao 212 9.4 0.11 0.S, 1.0 572 10.9 0.11 0.S, 1.0 O

932 12.6 0.11 0.S, 1.0 IECO 15.0 0.11 0.8, 1.0

~

CX

== ;--.-=------.

-- -.- -.-. -. = - --- =

- - = - - = = - = = - = = = = -

- - - = = = - - ~ ~ ~ ~ ~ =

^

(c) :or steci curf ace exncsed to flace, c = 0.8.

(L) rer rt c' surf.:ccc vie re:; c:sch other across internci cir gnpt, en 1.0.

r-b

'h

]

O l

lJ id ih

,3......,,

,7.U,.,.-.,..,,

,,.ls,,,,.,..;

s v.4..

... V., n. s J

.. w.

1. L.' a

,,.~.,

.n

,.....,/

. 4. s t. L 4..

.v..... s A s,. k

.A....

.~. - -

- ~. -_ _. -

_.y..-~.-.:w=____x-=

~[..=

m

1. h /.:u f a L.)

eo0

....., u esvJ

.s w sa w;

6 G...L.... U

-r-

+p

,>..,.w.

. "*.op4sd -

.. J. w < I.,

i

,... / -

3

s. sw,.. u s. - "..
1. I s> s u s 1.

.w c..,, 1.

.........9 vs,...,,..,,...,

+

.. L,.n. 6

.s.w....

.w.,..,s u a,s e w

.6j

..o

. / '.s..

...f 1,.,/ D

....6 2..

i

,,.,g, 7

s.

n e r e

n eG beU LL e

a-r o. w.

e c

s

. A4 ou e

n 7 15 ro e %l eVed a

er o **

  • 5 g

1.q...t e 9.e o

ass

.v u.s.

O

>r..

OsJ

- e jt

.s.. _ < - * ),

sc.

- 1/V

..;Df

e. *
  • s
6. c...,L......u..e
3.,. U U.,

r w

6w..s...

..e s i. ~

./V.> U t ;s.

y

- ss

. (1 O j m i g,e 1>.4.,

.;..1 L O._. %. C., 2,,.....,f v ), e t... e., 4 ;e i,.

a..

e a

wa-

..ww....

s. 3 6

.. s.

w

.s.,.

, _ d [ '*. r - E ' - i-

t c. / *) h

". P ?

-rI

<J C.

.9c

.e-s v,

9,;

C!

['.ry). e.C,)

nr.*

e e..s e u'4 uJ nn Q 'e

(' J

)L s w" J

'. ~

s eus e

rr 1v d*

..n. s'.

. v *v

< r

., w w

--.::,===- - -.:..:: :=-..

==.. ;= u ; :.

=:= = =: = =:..

....u:-

. _ - - = -

90010117 I

l 3-10 w

O

" 0 0' 8Qp"6 T/.3LE 10.

Tr.ERM0?O'S; CAL PRG?ZRTIES EMPLOYED FOR GRAEi1TE Gr %i te O

Density = 11S lb/ft Thernal Conductivity (2) specific nea:

Tc=percture, v

Bru/'-

ft r Btu /lb Emissivitv 100 15

.18 1.0 300 15

.235 1.0 400 15

.26 1.0 500 15

.29 1.0

~. - - _. -.... - - -... - - - -. - _..

90010118 O

3-11

q o

m s

i i

bu bru JLllm I,

i i

i o

Q i,

i-I LS I !.

l.

,m a

J

(

\\,

,?.

L i

l l

I.

I.

l t

.g-l.Y j

f I,

\\

i i

p, o

i i

I '

~...

g-)

l li l!

4

=

l..e e

i m

i i

i i

I a

l l

l Li

,i i

I

%lw l

l y

ai

~ -:

i

.u i

s. t u.

h.

i.

u i

~ssa L

i, i.

+-

q:.. z w a'

l l

\\,!

C 'i "e ~. t.

1'--

S. J =: 1 *C i

~

i ii r: 4 o

I

', i,

% :.;. u G l

U t-; i. ~.' 4 N

l l

@l N'

i k C. ~ L. :2-l II 1

1l7-4-i-,l;

{

c <; O ' ' l+

Qr-u q:

a t.,

i

-n t.

<.,s r

a

~

l

i..

el-E I

1, a

f, i

O Ol g l,'

I i

i l

1 1*-

i C

e.

I

(-

)/i '..--'

~~N g

p i

i o

,e l.

,.~_

s' 4. -. [ !

S l '.

,~,.' /

I

)

\\

l e>

l l

d j

l

\\,

i t

l l."

q l

N"N I

N l lt s1 NN.lN I

l l

i N.

I I

1 l

l%

i

'NL

~

c)

G

()

O

-)

{

l

(. )

O

()

()

.O i

r) e4 I

l b

  • J

-,f. +, s - 3 jm e,a,-

,-_o ;,...

7.f TJ T j rs i t

l i

i 1

O l

l I

I i

4 I

l I

i I

I 90010119 2n

... l... - L --

94~

A 3

I D

+

i

~, I I

v.

J l

'. i j

i l

t j

I' l

(

i i

t

',m i

i i

1 I

\\

/

l l

I, i

.m. 3 i

i v

t.

.' a i

l 3

U i

j i- '.

i o.. v i

l I

L, I

I l

.Q

__'c__,

1

. ~. _.

i k

'H

.j I

'- i t

i l

{

"~

l i

p h

l g

> i #

l I

m' i

1+.-

I f

g i

l l

_. ' '.'0..--.,

-i t

i

'.e b

l.i,'

N N

.i4 l

l j

S' L,,

l j

i f

g i

I i

i i

i c, i f.

l N

=

j i

.s m

l l

y4 c..

.c..

I l

I cc

....e

{

h g

t.i s.}

j i

j (a,.

I i

' ' ' _ ^ ;.."...

?

i l

i t.

i

^ '

q.

l t

b., y l

j i

i U i

'/

%.l I

I N.

i i

s _'

I I

"g" g

A s

i j

i u'

/ i t

i 1

.' a =:.= i w.esvv l

i I

i 1

1 l

O l

l g

~

d v

(.

l

,\\

i Cd

/

l I

i c.

l

/'

i

\\

6~ l' i

i.

l i

i x

i

[.",

l N

t h

8 o

l l

I I

o i

.. (

I I

f l

t i

4 l

K 8

l l

l.

I i

o i

i l

I 1

.*

  • J W' J q l

l I

l t

i j

i I

l I

t.

i i

i l

i l

l l

i l

5 i

t 1

i

]

i r,

I I

i i

)
)

'2

)

,3

.,)

-J

~. >

w t

i I

=

3

/

.. J... - a., <..f ::,f,.'

,e

,,/

....=a n.

..w-._.

{'

[

i i

i j

i i

i i

i i

i 6,

s j I

i s

6 N-I l

f i

l l

l l

I I

I i

l 1_

.3.13_.'..____...'_._____.._.._'

..s 90010120

1

(]

It was determined that of the 222 Btu /hr generated in the center 2 ft. section of the fueled region of the fuel element, 39.8 Btu /

hr or 17.9 percent was conducted axially.

The thermal analysis of the basket region assumes that the remaining 82.1 percent of the available heat load is conducted and/or radiated from the central 2 feet of the fuel and basket in the radial direction only.

The top and bottom covers of the cask were not analyzed specifically since the analysis presented above contains sufficient conservatism to permit extrapolation to those cask regions.

Furthermore, the end covers are protected from the fire b-the steel impact limiters.

90010121 O

9 a

3-14

d 3.4 Appendix 1

3. 4.1 Computer Codes Description THT-D - Trnnsient Dr -Trcnsf_er nrc~rr-

"crsien D (Ori"jnctor -

Q rri "ric E mnan")

The Ti1T-D computcr pra rr. cc putes transient cad stecdy state temocratura solutienc for t:trae-diccasiraci nact tr:n:f2: pn : le;u,

0 cer 1,200 te::7.ntt.e no..s hcVe been he.nl led in c siny.e proble., but the ac tual n=ber poscib le dt :~ _:

er the m

available cceputer =2 ory and t!,, c=unt o f nc,n-gccre tric al data.

Proticas :nn i r.c lud a :

Node - to-r.c le h er.t transfer by conductica, ceavactica, and TCc1Ction.

Mode-t:-bcundar; heat transfer by cor ea c tica an ' r ed i r. t i c..

Intert hect for nn ico'_hc rmcl p;.we ch

.gu :~0r c:, en t.e rial.

.. e r s u p ;:..uud input in c luc, e a.

us (1)

Cecc.atrical dit oio..:,

c c r ne c t i c..; s, c.l r.turic.1 re; rer:e ic; temper: t e :: e nodas w:.ich can ha._ up ::

facer C0 u e n :, s.a t d r. :.. c:.

e detailed or, if applicable, a p p a n :..c. t e l o y t ;. r e -

> -- I ly o r t:;c go;; m l d....m n s : c am f o :- rects maula, parallelepip i.)

(2)

Flow Sec=etry tvi convec:icn data re f erenec: for nodes :.b r n,'.

Sich fluid fic.:s.

(3) Radiatinn linkages betvcen nodes or between nodes and external boundaries without litait to the nuaber of linkages for a node face.

(4)

Initial rates for fluid flow, surface flux, and internal heating.

(5)

Convective heat transfer coefficient data.

These take the form of tables of Nusselt Number as a function of i;cynolds Number for which linear interpointion is done between the natural logarith::.3, or the form of correlation ecuations of t.he Dittus-Boelter type for Nusselt Number.

90010122 n

eIb 3-15 t

t I

(6)

Thermal resistance coefficients which can be assigned between faces of neighboring nodes.

(7) Temperature-dependent tables for material properties, including emissivitics for boundary radiation.

Material property tables can also indicate the isothermal energy absorption (assuming heating) which is to take place during phase change.

(8)

Time-dependent tables which can include fluid inlet temperature or boundary fluid temperature, convective heat transfer coefficients, fluid flow, surface flux, internal heating, and temperature for radiation boundaries.

Considerabl-lata checking is donc to assure consistent, complete prob 1cm input and thus avoid.. ated computer time.

Edited output in the form of tables of physically connected nodes and tables of temperatures as functions of time can be obtained to enhance readability of output and to facilitate data plotting.

Temperature solutions are obtained by iterative solution of simultancous algebraic equations for node temperatures derived from finite-difference analysis.

The use of simultaneous equations (the implicit method of formulating nodal heat balances) precludes any stability limitations on time-increments and pc mics a direct steady-state solution at any stage of a computer run, including solutions to serve as initial conditions for a transient.

Convergence of a temperature solutica is recognized and controlled by tolerances on the residual hcot balances which O

provide a measure of the " imperfection" of a solution as well as by the conven-tional maximum cheace im enx node tc=reratere duries en iterecien ewcea.

Figurc F-1 illustrates typical nodal geometries which can be constructed, and examples of the face-to-face connections (face 1 to face 3; face 2 to face 4; face 5 to face 6).

Since only face connections of arbitrary node-to-node arrangements are required, 1, 2, or 3-dimensional le at transfer networks con be readily constructed.

d 90010123 0

3-16

/,/ q ~.~.,

r.

/

d-

\\

\\

s,/

y

~ ' s\\L-N ~-

s

/

/

',t

/

f

[('

d'

. (' % p

/

~L.

.~.,.

I

$. '/

-s's lV i, o

o o,

i Nj.. ' p,<.~%'~,/ y..

. 3...'NQ p.J i

3 i

j N.

2 1

5 1

[':~'s':>s.N i

l

<s.

,.- x g

g-s,..,-!

,i

.vi

~s.

i l

t

.2 j */

.4

('NW

~s.l

(

O' l

.+

i 3

i~~s

(.t a)

, *.\\

/s.-% m-} h.

o QQ Q

D D

D"

. s-

.A.

s,s !

fm

-oo o

N,0, Qh

\\\\\\

\\. W\\

'(

\\

90010124 I./,

16 ft 1,/

! ! l'

..l' %s. -:, '>'7's o cs f

ge u,/

s

>\\ c,

\\\\

/

~ ~.h,

/

N.y o

3-17 F ITt RF. p.1.

F.:.:Nii>I.T.'; 07 ::lf.I. A;.y ::0DE F.:Ci'. CO:.VECT 02:

~ :e5:?:V ia:: ro;. t;T Ti.;'-D C? N ' r' I' W '.

b P:ca :nuL H

I 90010125 i

l

4.0 CONTAINMENT O

All items in this section are covered in other sections.

O 90010126 P

I

)

O 4-1

4 4

84 a

ud g

g 90010127

oo o

0 D

D f

o n l\\

ol 1

=

5.0 SHIELDING WALUATTON

-./ 5.1 Discussion u. c,.n..

m..,

w.... -

m

a. - em v.

~.

. c u. -,

.3.,s.a....

......o w

...v

.w

.w. c..

e...s.w.

.u:....

t... t,.. a-

., u. c,

-s..

.u.

s,.

x.m.

.c a u,.

m 4

-m.-

uw.n.

NRC.-

s..m.

..s..-

.2,...--

,.ew_. -

u,.e

.s J

%) b

.we b bk*

4.....

  • d.&e a

.eA a,e.

s,,4.'

^ '"

.4)

..,,4.W w s L4...,

.m b

n k.

8 4a 4. L, c V >. g

's,*.

w...

v....Aw.u g. is s

s. L, /.

l f.*

.'. s u s., 4

.'ve w ' l. 4.

ieL,%

w s

4

..v..

6. w g

I et \\,.

w.

La 3

w..

....G Wn.

s

,u.

..w, w...., u..,.

\\.1L p 4 / p 4,

- e un

.w

.s.-

6

...,..s.>..a.,

wv

...m.e.iw.s

. v

.=.

s+...I"..,..,v*=.'.

p.pt,. t..ew.-

s.

s.

+.

e s-

[*

7 t....

..ew m...w 6

D

  • 4 4.4 8

e 8

4 s

m

. bd w a. h"-. *.b.'.'

.'*..E'.'g b..'..#'8'

'=.pb.

b.bb, sve s

.w ga ksh'.

,4... w,

.dAl. &

.Ve.,..

b

.6 %e M'.k'

.3ha..

b.

m h#.

9

_&k

,......,. r a'... w.. u... c.

ug.

..w.<g a s3 3.-,

v..

c

..o

....w.

,su,,.-.

-a sa.

u s.

,..a

. vu

..w s.

'a..,-

v.

s- )

%.---s ')

L. u, s v.....w s....%.

s.

... ' O.

.w

.c

\\.

, o, *

,s e s.,

o'hv

....t.

4. W. r.,.
s. w u,

.. -.u

.0

... ww

.i.

v

..... e. u s

.w_....

e

.tw

..b.-nr vs-b...e.e

%m.... _

w.a=

s.e a.

. = b.e

=

w's..,.

4.

b...4 h4

..b

.".P' g

.m L * *.a.* *

. e

.a.v..

a m.-

O s.

..g.e v

..'=.a

,q

-s a

='Aw."

s >.

u...-..

...s....u..

s sa s

. a...,v w

a s

1 L...-3..u G. e. L. s

..s r s....,..

v..

bs s,.

- g m,

L g ro.

w..

s..

i.

\\.,

w eJ 4.e..k=%,.

h

.w e,

ai.ie k r

kd

.6%.

.'4 kw..e h

g 4

8 a.

g, e

. b 9b...p 6 h. kE h..

h,%.

.ew de u.e y

....k.

A ba.

. % b.

4.

b.

he e hJ e-e

.h.

3 e,.'

..e.

U6 6.

4A.L _,. ".

,, q,,,-,

, w.. L %..

e r ;)

.a

.w.,

LJ w.L w..

A.

.e

, g A 4 4

4

.b b.

.e=b,-

(,./. b 4 0 I 5 L +.,J

  • 1

%#4n8

\\*

.A.

W

."J.. m..

.A

.a v...

6.'.

?

3 6.w p

s a

L t

.,e

.v.

..,.,, b Ls..

+v s

t V

.w.

b

=u

.. w s.

6%

)

.*.,e )'.

"6 I *

<=#

b g.-

..L--

L' *

'.... e.aJ*.

6.

.L.

'..w (L. sL,,*=

  • * *. b 4..

6-ev.

s.

n.

Y4-..

w.'aw

.1 e c.

. m

.6o a*

.. m.

...6 t

..w('

uV.is.-

.. 4. L,

  • , v.

s. e t, 6&.

m.s.

..v.

3 s

s L *

's,/

L.-*

.j,

>=

e J ',' g,, j w..

s...,,

  • t,

.w s

(,

. i s

s g

a.v Oi j

..v..-

.s p-

..v.~

.6..e

.. u 1,. a..

f s.,.

...4 o.

.p.g b

(

b.

,%J

.. m

.,' sl.a g.8

.b % 4 k k.e4&.q..i s

. t.k g%.

k M

S b %,8

..a.

&. & h f %

.gg

(

4 I

+

e s.

s

..ps s

.5.

4 u,

4).. j,

j g

wa.. J.f

\\ '....

(,..,

6 90010128 5-1

D Tfl ' D MD ~Y '

uJ (U, 6J mb o

O v

(3) 10 m:.111rca par hour 6 feet from the externcl surface of the car or vehicle e

s a

. =

(4 cillirca per nour ln an' noracl,iv occupieu osit;cn f

ry

.n the car or vehicle, except that this provision does not cpply to private motor ccrriers.

in cddition, the ecsk upon subjection to the specified hypotheticci conditicca of frec drop, puncture, cad fire (thermal) will meet the folicuing rce,uirezcat f rom 9 71.36 (c.) (1) of 10-CFR 71 :

(1) The reducticn of shic1. ding woula not be s.'fficient to increcsc the externc.1 radiation dose rate to more thc.n 1,000 millirem per hour 3 feet from the external suriccc of the pcckr.ge.

5. 2 Source Soecification

"'ha fcilouing beta and garna relense rates due to the becc deccy of U ' 35 fiscion procucts were compe.ted u;ing con.puter program PHCZaE(3) *for 120 J

dcys followin reactor operation for 900 cc,uivalent full power acys:

o 9.64 x 10 curies /kg U"'5 4

.,)

Beta activity

=

e particles /sec-kg U'#"r 15 3.57 x 10 Seta relense rate

=

10 235 Lata cncrcy relecac rate = 1.27 x 10 Mev/.s e c -kJ U 0.355 Mav Average beta caergy a

4 235 3.64 x 10 curies /hg U G'c.=a cctivity

=

10 1.35 x 10 photons /ccc-kg U Gan=. release rate

=

Camac caergy rclease rate = 6.71. 10N' Mev/see-kg U235 Averc;;c gcmma energy = 0.647 ::cv 15 23'5 Letc -: g:.nna energy reicase rate = 2.14 x 10 Mev/sec-kg U Ccnc.c ruicc.cc retas in 12 ener.,y groups c.re presente:' in Table 11.

These relec.sc rates arc based on c conversica factor of 3.38 1010 fissions /sec-watt.

Releaac rc..es fcr 450 dcys cperation are essentially :he scac cir.cc fission product pr: duction cnd decay are nearly in ec;uilibrirm at 450 days.

the U"35-Th fuel ev.clu Cince the l'cach 3ctten So. 1 rocctor emn.io.ves

'.;ghur f ac1 burnup :.nd lever fuc1 coars, protsetiniu::.-233 s also a to cchieve c

scurce of consider:.bly bcta and gan=c energy in the pecch bottom fuel.

Pr o t a c t iniur.-

233 is for=2d n' the recctor by the following series of processes:

-u-3

.3.

,0

<9, 1

i gy

-s-

.g,__,

9g 4..

T, I

n t'

-O 233 i

b 233 P

l.h e

.?!.

i D

-l

-r 9 3 9001012Y O

g 5-2

(

om n~

D D

D.T

~

The protcetinium-233 then deccys by bet:. c=ission yd J..

w a

eo

. 9,, -

,p

.. o.

.s c. :';

x r

c2, u e

ss witc. c h.if-lifc of 27.4 cc.ys and c totc1 cr.crgy release of 0.568 >:ev/dicinteg tio:.

i c.e actc pac:icle;zncrgics are 0.263 0', 0.15 ', and 0.575; and the associated pactan 3

caergies are 0,31"", 0.016 - 0.42 Mov.

in the Peach Botton The ccuili1> ium c,ucatity of protcctinium-233 present g v-,.,.,

,. c..s v.., ( ~.

,r. e. c e. r,..o.a g

.7 s,p,..:,, m

, n a, a,....

ac,..e....

.p v~.,. e,.

..s 1021 ?bv/h: cr

, c,

.c..

o

.., s s a

totc[ cneri;. rc' cased by this much protactinium-233 is 1.3S.

.v.

(a c. c c t <. _. 3, o..

ne vC,,

c

.c u..u....,...o

..u...,,,.

. a u, e....o:

t., e, o

....n...

.-..z.

,s 3....f.._

.s..

d..'.:creacc in the '.02 Type-4, heavy-thorium cic=en c) is 261 Bru/hr-element.

The This comparcs with 1.06 x 10,,

.u.

s >.

4_.,,

cc--,

._ o o..

c..,.o.o_c-<.

..L3

.sa.

g..

e.

s,u a.c,,...

t

..........c,...,

.. e.-

Mv/sec-kg U-~

1:

i,.,

7.6 10 *" di:v/;ec-h3 v'~ 5 d e 0..

0.4-Mev ;rcup dua to fission product decsy. The source fcc group 1 in T.ble d.ncludes '.acth contribucions.

.u.ch of the Type

-1,

-2, or -3 fuel cleacnts contains 0.291 kg uranium-

.. u... e u.

.., c o., s,

e m, c, - 1.o 0 c.

).c, celu.y

.a.

z i

es.r.

m...,

....o.

s

.u

(

Pn "

2" 261 Stu/hr-clement 341.5 Scu/hr-ciccent Fission products P."-s3 + fiacion products

- 602.5 Stu/hr-element The pouer scacrcted during full power operation in an cycrage fuel ele =nt fuel clement is approni-140 '.s.u(t), and the pcck power generated in a hottest

.: tely 17e 'c;( t) :. : C',0 c.ys.

Therefore, the cc.ximum fuel element energy relemse

.m

<c

m. V u..,.

c w,..

}.

As ys

...u w

,.7',' x 602.5 = 750 Stu/hr-clecent a.r U

!.11 fuc1 cic ants were conservatively scsumed to be maximum pcwer eleccats.

'_' h u e t.c c clement cociteins 3.7 10" curies of gc=s rcy emitter, cnd a loc.d 02 is elements costatns 7.05,_ 105 curies.

These cc=.c ray sources cait 5.90 x 1014

. v/sc ciement or

.12.,10' Lv/sec-19 cic=ents.

The totcl energy source in a.s..

n c., v

.s.,.....c

, c, l..i. o. s.,., w act

.c s..

Tac radial sourec distribution in the fuel compacts was assumed flat All shielcing cciculations nssumed the relative.:nc.1 cistr:

Lu t. c.

au c.1: c iculctions.

c-

-., e.c,

.c,.,.,., t, : c o.i c: < t.,., u.. e..u.,

,,. 3 o.n,.,, c. o.

tj:c. c>,..c. - < a, :... s t...a

...m

.s i...

.. v...

c,,..

.,...o..,.,..c,

,. :.o

.e

,. a t, e n >. o.:..,. u.

g..; s...:,a u c.; c. s n-.

.a y..

.c.-.

r.

......,c,.

. _.. u.

5.3 Model Specification J._...,,, q.

,.,s,g 4 *,,,,,

u,.,,t,J

., o C o

,),,, L, g,.. L, - i,.. n,,...,,

{.,...,.

.u.

e

....u es.

q.ie....,..,o.,.,*

v.

s in the thipping c..;k t.no g...=a daae.ates en craal to tae ca;k.

The point-;e.rne1 3.w...

.w.

90010130

.s. m. m. mm.

s3

k ff -

OO O

D e

n.

I p

J Ceu.' 'a d W^ ' C ~c a asn

^ a a

,y..,, t.! 7 O t' i v' '., m. 1

+;c* m D *a* w"n e a

as

..r, s,

1.,.,L L u Li.

. a..L u

e

.v

- - - - - - - - - - - - - = - ~ - - - - -

S w.rc e E..c r;y R:.nge Average.,'ergy

~ -,, -

L.

vy y.: v Phccons/ rec 'v" U

3'

' ' ' v / r. <> c t - "-d c.. c.. 3 a

1 C.1 - C.4 0.3

.250 E + 16,i

.866 E + 15 2

0.4 - 0.9 0.63

.727 E + 15

.458 E + 15 3

c.9 1.35 1.10

.246 E + 15

.270 E + 15 4

1.35 - 1.8 1.55

.151 E + 14

.234 E + 24 5

1.0 - 2.2 1.99

.167 E + 13

.332 E + 13

)

6 2.2 - 2.6 2.3S

.336 E + 13

.800 E + 13 7

2.a - 3.0 2.75

.575 E + 12

.158 E c 13

.,,c-c 3.0 - 3.5 3.25

.934 E + 11

.;0 _a c.

c i

9 3.5 - 4.0 3.70

.410 E + 11

.152 E + 12 10 4.0 - 4.5 4.22 0

0 11 4.5 - 5.C 4.70 0

C 12 5.0 - 5.5 5.25 0

0 3.794 E + 15 1.631 E t 15

- = - - ' - - - - - -

Is :sd.250 E + 16 a;. 2 S 0 >: 10 90010131 nU 5-4

m\\

i r

ke/

c. thOd u r. : J 1.- Q.D 25 /. e cr.?a in c o the uSe of pOir.t-to-pOfat attenuatica functiOnc t h e o, O i r. - L O - n. O.#, t

..._....v..

.m..~.

.. c g,, w.. s.

o..
2. 3 u.....eu
  • H.m t

.d w

.~

w

.c._..

q b... :-o.r,,

v,.r L..

.1

... s. 't ) u m,~. _,.h; 5 03.,,

CD.. t. t,

/,..,

1 s

e uw.

wj

. e L,...u.

1 v. -

.C..-

(,,w h,,..

j wo

, w l 0 ' '.

G'.# ". c' v" ".' j'

.' o r o..,.>., '. O U *

  • t'

-,O w,.0 c u,.:a,,, c

'2

... u. c J w

y r u,.

c.h........ r.

g y,.,. L, p.

c

.ww..wv s.

p......

j

.....v...

s g... C c'

,C, ' '.#. t.'.' u' w0'.~~.'3'.'.'.u'.s.,

-O u...,

..2

.,j c

uss..ev 2

o.

o N, u,

.. 3 u4.

L. :

..,s

..,u..

.,v......

s

... s s

I

.,),/,..,

.au.

A*

{s y u. *.

c

...- 6 0 y u,. O.,.

c. ', u, 6 0.1.;.

1

..u

.......ww..w.

s

. A... j s

'..u.

o no w...

v.g....

-.. O J.

u p p. v. 4.. - 1.On

.(O

....u..j w

s u

..,t,..$ c..,..s,

..u ic M

..,.i....n L

1.. 0 c... 0 0.. cvs 0

o

.v...

c sj

.'.,f.-.'.s t r i C r.1 " 0:2.OJU r.C Ou S S y S C U!.'.S, CVCn L'herc it is i portant 00 C Cn SidC r ICs.l.d t ion

-,.1 u,...?.c6

. t.. r v. L... id s,., U u. 3. e.,u.

L.

C A

,b um...

y t

'.w...

1 s

1. w L,1 -..u...e.

O r.p u,.. g,. e e L,.,,a.1 w,,.;C s.

O 'c t :,

3.,-,r..,~"*

g,"

',L.'.'..c

-r o

"* b

....s

.s.

w s

o.v o

.co.

..;v, LOW u n a v,.

). I t,1.i Lw

..s.

i *

.. m. i. \\..

O.

.u

6. c,... a.. w. u. G.

s o.. s.

c o.

s..

.u.u..,.. a. v*

4.,...,.:

L.v.

u.

...c l...,-...,,h,....,..

( s,., _

s..,,. L. :..., s L l c

(.,s. v.. s O.e

...u...

...,a

--c

..oo u.su...

.u.

s O-c...-.......,

.v u,.L; li.

.t.,.4.,..,a-u L' j, C L.., g 0 1 u. o, u.

yg..' u s

.c u s, w,

\\, v,

. 'c.,....,.

s.. u G v..,. u }. :.. L,1. u s.

.o t,.

s

~

.....u sc v..

6

.s.-,..

o

.s

. w."L.

r u.u v.r

. vt. a u L,,.,. a,. >..

1 O u.?

-A L.

. oc s.

v.tu oy

...,,..'..s t.,. 0 L...... c,, ; o.. c t

e C *..

1...w-.,..

.O

..o

.o s

a.

..s 3 t v u., s C C -., 1. v-,u. * -

c.

1.

,1.,j, O

.), 2. t,. 4 L

n.,, !d u n s h. C.. c a i

--.,.c

.....ue...

uu,

.u

.s C.

..,,'d, u

.s

,w, n.

ou i

o

.. s.,e,,. v.. s so

.5 t.w o C ;1 t

,w....

.v.-

4

.,,,e

...,, v L.

.e. L.,. h t, u

1

,. s..,. s. s,.. o,,. 01..

p.tuwv. >

n,.,

..-j

  • -.......Du

..s

.........C o.

, u-t..f.s h u.. l

... L,

-g L o G...

O. b l,,. \\,C u il A v o <. S v L,,,.,.,,.. e v, t, ; V L,.

L.

. i - i p

c,.e. : v

.c

-J

..4 s

.u v.~s.

L.G..,.....o.... u i

..a s

g c.

, 2. t,.1A L: e.

  • 2 2.,,.,.

a.,...,,

0 s.uso s..e. c,. L

.up.v..s s

Vve,.. v w L.

s.

s 3.....,,,u 6

.us uu u s. v..

.r..,, eL.. c o w,..

us A,v.,...-. w w A C.,

c....),,, S S O L

,..4

..s

.t ua L. -..

e u6.es.uuw.O

[m

. PO..

0-?u-.-,

st.

o u

v 6

.a.

tw

\\+)

. h L, p a. a. a. l w

..,.a..,

m,,,. n c, u c.. O.-

, i, a.

woe i

u..c. a.:

~. A c... u..,

r, 0-

r.. e, ac.....u.a w

2 o

..a w

.i t

2, c..,_.., g, o n, e a u,

. c,u,..

i 4,

Gm..

ecto

......e

.r

c. o.u,
y. o....,.,

u, m..,. m.,

..c u

oo

..v.g

.u.s, T

.,. i O.,,.,

u' ', ).

u ~., o

.. v

.mu.

pa D

D 3'

a l

~n..,

... m.On, M,

,,l 3 c

r.,

d-

- I '". (-.. ),

e,.,,

r, a

6 u

6 J

L.

j 4

m. :.. c t?.c fit c' n. articles 0:' enerw F at the receiver due to.m tiClea of a v' 'd C U O $. U ". 1 "w b t ". c I. ".' 'o'.

e.

9, v

s... -. g, -
c..,., e g s ).

....w u

a

..L 6 o j

, Q... t-p L. e.,. 1

. s v t O..

L.

1 1 ),

t L. C 4

,, v u. f 0 L, r..L.; L s

.e J

e.t.,..,

P O.,,,

c...

p.

u 4

c.

. m i.

. e.. ;,,, >..

g r,...

o 6..uw

.sw.

u C h...., e < O.,

r. u n C t <. O n

,,.... - s1

.co

a. b.. L. u..

.,l,.-v u'.,, L

,.t.

... u w w.

l u.

t.

L.

4.,.

3 6

u.. w s.

o y

,,c o. n v u, uw v.

u f-g

,1

h. I *'

\\ j./,.,

-L:, L1 Y,,,

1 J

9

~

... t c..,.... t l O n. L, a C

,.. 1/ e e

t f v...., :..v.. A v u 't w

..ua 6.v.

ti crr r-o tL n (u;),

r,,,

1, oj u.

i L.q

.. P-

.~

6. ~.. ( o. ), e L.,

r, a

J u

.c 1.

O e. l......g, a. O.g

e.. L tJ i e,. t.

,1 1

L.

6 s..

w...

L

..,. L. 6 1 J..,..os s.....a se s

A o.u vj o 6.. c..

.c...v..

u

.v g.

j u L.

L......

m 1

.... L, t. - (,..v....s p....,.,.

f-w,

. ~.....,.u..

1 L,. v...

j

...........-....3u g

....w s

.... ~..

v...,..s,eu u..

s0.,

,..,, a. L, u u.,,

1..,..

(/

. e. t...1 L > w,

.i js.s.

..u

,...j

-.1

..6 L.

O.,

-L.

.. ( e. y,

,. a., d

c. 0,. C,..p L.. e..., p.....g.oj..

..v.

  • ... u, 90010132 s-s

M

~]

v r

i "v. [ E.. s'2. ), ;..) = D [ E, (E. ), p.,3 exp -

p E. (E.)

.f

..s

==1 t.hece 2[E, (1..), p.,) is a buildup fce tor used to determine empirically the ec:.ttered"condribun sa to the co!.. pater detector responce.

Encollidad contributionn of ecch di.; crate ener;;y source are determir.ed correc tly by the exponentici funet tor.

1.u: u.ap fr.ctors(20 obtained by a moments method solution of the Bolt:>ms,n transpor:.

ec,uction have beca fitted by the following cubic polynomials with encellent recults:

+ 5 (E))x 3(x) ' S (E ) + 5 (E))x + y(2 )x 3

g 3 1

x i the nun.ber of reluxction lengths cr. countered and is given by

9..

' D P, p-1, r

X (., ). /

e_,v

t. 4 )

d a

\\

r.

n

.-d 1

/.

_3

.. l

~

The buildup ccefficients are computed

..a QAD-P5A from biveriant polynomic.1 er.?res s; on:,

ad co'..~icients reported in APEX-510 (5).

Tae b ivc.rian t polynomici coefficients c.nd :.tasa g =

rc.y total absorption coefficients are incorporated in the p r o g r c:c..

(l.D uns used to coa.;.ure gc.:cna doce rates external to the cash for v.rying uniform thichc.escen of 1 ad in the ecsk body and end coverc.

A nu e '. e.: r c.adel of the cac': cor.ccpuuci desi;n uc prep:. red that contained 9 elements, 10 cc: positions, 3d rcaions, c.n.

26 regior boundcries.

The central fuel element c.cacribcd in detati uith a ;;cn.:n cource only in the fuel ccmpt.c ts.

As indic;.

1 T bic 6, c.vercge grcphite densitica in tae re;; ion were computed f rom the fuel-e laten t total weif. cnd the specificc; ions of the fuel compacts, spine, s. c e '.

ca,.icwer rettector. i n e o t,..e r

,t o ; u e,t etements anc t.c.e bac;ce t we re,..omo;,er.ir cround the centrol element and treated n; a second source with an approprictely averc;;cd uniform rcaici dis triuution.

D:ternal gamma done rates were computed along radial traveracc ct t!.c

c.idplc.no of the fueled cection,
.na at,he top of the cauh cavity.

Dose ra te s

  • .*e r c cico corputed c.leng c.n axici traverse above the top cover.

A sin:;1e calculai;c:. Le:c.:

d.c bo:to.; cover

.ve a 13 percent ac,wer core re.t e thc.n throe;,h the top cove. the 1

1 7

i

. :.c.c...

desa2tc of u.ese cc.cu.arioc.s were usesi in ce.ecting the cecign ecc

,s s.

o.Ln>.Gw,,

AI.

5. 4 Shielding Evaluation dub:.ecuently, the auc'ecr model una revised te dencribe the cack of

-,c. e

.,rc an' c,,a-u n anc conttr.a nc,c,ose rate cc cu ctions were c o m,i e t e c,,

m. -

i c:::.crr.:.:. done rates are presented tr inble 12.

Doac rates at the ends were c.t ltiplied y the fclicwinj axial s tres aing convec tion f actors:

2.67 Sur::.ce 1.035 3 feet l (

. '..e G e f c C l o r b w e r e e s t i r.'.*.t e d b y C ar" J t i ' ', dose rate. at pcG i Li on' I l. D C s... vii 1.1. 0

.
. i

. r o... L.. J 0,.. t r i.1 L 1 c!?. M. t,.. t L. th J.u r T Ou..d i ni',

f ue 1-b..UU.C t cSkemD}* d ' l e.. e d c.C 'i fJr....c,',

the ;cLio Of Lac dose

..te without the f u e l-b.a s'..e t

..S e:U 3 y t o L '... t vi d! !!.e...: L e!'.'.e l y i n ? ac e.

' 'a i L, in effect, CorrectG for der.Lua Tcy LtreJ..:.i;',

l

..u.m um

.....u; mbem.

90010133

0 00f 0 oggq J

., o s...,,.. c. 5 n,...,:..,.,..,u c.u u u

. e...,,. 3 3.

v c

.a.

w..

l

w.. _ _............ _. ~. - - -....... - -... -.. _...

.. -. ~. -. - -

Receiver Coordinates Dose Rate

" a :' f r i f r.,

Ax i c.1 in.

mrem /hr Cr.sh curface 1;ot tom of ccvity

.C3SS 72 from truck surface Bottom of cavity 1.E6 u.5x surfcco r,u e.l micpinne 70,0 35 fror cask curface Fual tr.idplcne 242.*

72 fror.: truck surfcce Ac1 t.udplane 9.23 C:.sk surfcce Top of fuel 17.1 72 2rc.a :. ruck surface Top of fuel 5.15 Ccsk st.cfsce Top of cavity

.00336 O

72 f<c= <rm=k su=fcce

ca ef cevier 1.17 Axin Top surface 12.0

/.xic 36 abova top surface 2.16

/.x is Bottom r.urface 7.45 Axic 36 below bottom surface 1.50 20.12 36 below bottom surface

.77S**

d

/,f t e r 30- f t. side d rop.

n

    • A f t e; 3'J-f t. corner dron..

1 0

90010134 s

s O

5-7

o f-

'.' c..:.. a c.2 '...: c in c lu d e t, :c.e doce rate predicted thrOugh the bottorc,ccrnor t

........ t.....,

%... e.,e. u.e...

..c u cp cs. t,c

-.c

.c L...c.

n i

p cs.

s

..u..

t

.u s

.. tu

.............. v :,,c.

u....

. ta.. c...

uO.

u

., 3

- 1 4. r..s.

.....t..

c.

.v a

A O.. wdC C u.'m ss C v..

L. ~.. o.

..e

....O.....,,.')

... n u..,.. O.;

t

.c. c e.

?.*

. v-u.c

..u.

.w.

.o 6..-, C C C \\,C.

-%.. L.

v.ww g

y

.. C.,- g,. s: 04

.sv j

L- -....uw

, u

-s t

.n.

.. suC..,. u,uC.

v...'.

r

.,... G: eAv

..u

... -.w gv (5.0.

0

,2. w L' v1

..v..

w..w

,. 0 u..,. L,.e

i. 0.

u s

s w

6...

  • .....4.%.,.,

......,s...../.O

..c s v.,.,

.....,/ -.

u

..n. t, ee.

.a.

..s; w...u.

..s...,I s v......u c u c...

s.

r, O-

. t.

\\.,., e.u. 4 %. L,,

i..us, v 0 v,.6, i s. s u,.,

2 s L. _.,. v.

>v.,.

.u

...e

. ~...

a mf wow-v.

.r.

w..,.

w.u s t,

v..,

L. e,

.e,,,.,.

c,. 0 C

e...

4..,.

b s, U

.ym...... -.,

('.' %

..... s

.. v.

,.uf s

f 3 s.,,

s

.-..,..,, s.s, (,,, j.

.... c J V i ut,. u.

., L;

s t ~

s.v w

,.uyf.

...., L, l.,,., 0,, AOr u t

e

...,.,,..C

.u. o s

.u..s,~

.c.

,,. u. 0.. sv.c us.

w..

s u

,,.. u 4

4.

7 f.C CwhCU..'.Cau ROL* i fi.U *. 4.G50 TCCc3 at thc Onds Of the CgLa urc 12.C

...;/h r

.c,..u

.o.. -

.c.

.ry....

t...

e, n

, t. t,

  • v ? s...g,.,

e ws...,.uwu w'.,.L, u.

wc.

Ao. L, e,.

..w s

-..; _.e... _ O.

.t. J _..._/.....

r a

... e ;. -

u 44,,

w..

.... L. L.

tu..c

_}

s v l o, w,,.,

c., p C..., ?

w.

e.... u

.s.....,... -.

s

w..

e c...:

..u 6..e u,, e. V u. ' t. mug

,s.j w..c

.sv.

..cs u,. s.

nd..,gg.. o 6. v.. s 3 u

+.

....Jl s > g...

c w..

.s 3

.. +

O: LG.

n

.s w-w.

w..:

e

....... s. u u

.s. w

..L

uOsw,

.c.i-c

.u.

A

..t.

...c C..w.

S L,,,, L, v.

w.o 4-s

.....u..

\\, c.,

.,y ;,O $.. s

...,., m. v p. und

.r C.

s.

u s. w : [ v..

-v.

w

..u.

,. u v.....,

u' v.,.

7 u..a s.

Q

.w

. s, s s..., j,,,

f,

. 1 C /.......'%..

..u..,. s. :

../,. 9 8)

J p

t. u s.

4--

... wA 0vv............. d,, m.

e. u,.

-O,

.3 y,Q

... c 3

,,e.,,,

e.

. t. w...

..wyvu..w L,O,..,.,.,..u....s

/.. s. o

v..-
t. O m.

v.

a.

- e t c u w,.. l

,, L 4 -, O.,,.

-.. 3.tu 3..

-. 3 L...,y

. L3, I s

.. /.

a

... - u

..a3

...f

~.

i

0..... v u..

0

-s..-w

.O.,.,

y Acu.

., c,. C.

u.e..e

.eu e. l ~., c,. s

%,,u,.....

g,..

.a v

.....o u

..u. j.

s o s....

w...

v,.

e.r.. s. 5,,,.... J s,s

2. v_ _. s 'j

%..u e i,...,L4

...w. w.,

s.,

c.

.,u, Cs...

..t.

v A c..,, un, p.,, n...

.e t.

g.

.... u.. L.,,, ;.

L: o,,.n d.e.,. y v \\, v,,,

g..,

.u c, i c G

,,......t, v.

- 3 t.

1 O2

... w u\\.,

. $.. i.,.

gy

.j

...y

.?.uo.

o.. w c,

.,, ),

,t.

s. c.,. 1 L y,,u. c 3

/,sJu q2

, s.v

.eu..,V.._..,.

...uw

.a..,

6

..s

.v s

j

.f,....:

e.

...<....1 L.

.c.

.w...<...

- m

.su.y..

u,

.v w.l t, f, O,u,. C.,,...,...,

..y

.......+

.. j s.

u..

10. d

$ -..e N, /.,, M.. c. t, c. *a thu s1 v,,.e Q.. : J.v a

- w.

......,.,.,,fA.....

m.'.

wo e

g

..s v.

3 u.

s.......

2 1.

s, r..

.. - L w,. h..,

...)

.. g,

u.

..3...,

w.,

u c l e u.

1,,,

.1 C-w.. L3 A,u c,1.

%,, snew u Js y

.v..

.u c..c,.

..s

. u., \\, / s.c, N

y n).. 1 s,

.v i.,

o

.e.U. a1 C, i t.. _, g. h,, c

.c>

.4 e6...

swv

,svu

.4

..w.

w..-

As s

1. v, A i.. c.cw
  • rs i ',

e,. +

1.. ~r *...

< ~,,., / s.ue, c.>. s.g..-.,....

s r

s.

s.

, n. :la e.

- s e s u.,.,p a c

.v s

m u.

~.

v

. s. c, s.~,s 3

-.. a

..y/.

4-

  • g O

.. t(v u-u,,.._...,,,.,,...c...,.,,,4 1

m....

., y

~.wu.

o m.

..~..s..

, 9. ". v....... u.r

,... v..,

.sc.,. c es

.,o

.. c.1. 4.,.,t. y,.

c.

m..,.,

...u u...

, s e g. c.....,...j,..

to

. _C J O.

.. ;...L L. -Sc1 c'.c"; cat ha C ting r;,C c j s (,6 5 L Cg/ hr q le,;cn t,,

s 5.5 Appendix (1)

" Packaging of Radioactive Material for Transport", Code of Federal Regulations, Title 10, Part 71 (December 31, 1968).

(2)

" Radioactive Materials and Other Miscellaneous Amendments",

Code of Federal Regulations, Title 49, Parts 171-179 (October 4, 1968).

D * * ~D')

  • D

D l @G J.

X In l

90010135 5-9

(3)

Arnold, E.

D., "PHOEdE - A Code for Calculating Beta and (v)

Gamma Activity and Spectra for 235U Fission Products",

ORNL-3931 (July, 1966).

(4)

Solomito, E.,

and Stockton, J.,

" Modifications of the Point-Kernel Code QAD-PSA:

Conversion to the IBM-360 Computer and Incorporation of Additional Geometry Routines", ORNL-4181 (July, 1968).

(5)

Capo, M.A.,

"Polynominal Approximation of Gamma Ray Buildup Factors for a Point Isotropic Source", APEX-510 (November, 1958).

90010136 O

~

O 5-9

h 90010137

O

6.0 CRITICALITY EVALUATION

6.1 Discussion Regulatory Criteria Regulatory criteria pertaining to criticality which are applicable to Fissile Class II shipments such as in the W&K Model No. PB-1 Cask are delineated in S 71.37 and 5 71.29 of 10CFR71.

These sections of the regulations are summarized as follows:

O 3 71.37 Evaluation of an array of packages of fissile material.

(a)

An array of packages shall be evaluated by subjecting 1

a sample package to the conditions specified in 71.38, 71.39 or 71.40.

(b)

In determining whether the standards of the Class I,

II and III sections are met it will be assumed that consistent with the condition of the package:

(1) The fissile material is in the most reactive credible configuration.

(2) Water moderation occurs to the most reactive

()

extent.

90010138 l

l 6-1

6. 2 Package Fuel Loading Determination of Allowable Number of Packages The number of allowable packages that can be shipped was calculated from the equation:

t where N is the allowable number of packages and I is the trans-t port index or minimum number of radiation units.

For the case of sole use of vehicle shipments, 5 173.396(f) or 49CFR states that for nuclear criticality control purposes, the transport index must not exceed 10.

Thus, using this transport index, 5 71.39 Specific standards for Fissile Class II package.

()

(a)

For a Fissile Class II package; design, constructed, loaded, and number limited so that:

(1) Five times the number of undamged packages would be suberitical in any arrangement with close water reflection.

i (2) Two times the number of packages damaged by the Appendix "B"

tests would be subcritical in any arrangement with close water reflection and optimum interspersed moderation or built-in moderation if it is greater.

(b)

The number of radiation units to be fifty divided

)

()

by the allowable number of packages, rounded up to next higher tenth.

90010139 6-2 i

%.)h the number of casks that could be shipped was calculated from the above equation and found to be 5.

On the basis of the allowabic number of packages determined above, f 71.39 of 10-CFR-Part 71 specifies that SN or 25 packages remain suberitical under normal conditions and that 2N or 10 packages remain suberitical under accident conditions.

The container is shown to undergo little dimensional change in the accident conditions; thus, shipment of 25 packages will be the most reactive case.

6. 3 Model Specification Calculationn1 Procndure The criticality evaluation of the W&K Model No. PB-1 shipping container f~T was made using the KENO computer code.

A modified 16-group llansen and Roach"

~-)

cross-section set was used for all calculations.

The fuel for all calculations was assumed to be compac t Type A (see Table 1 and Figure 1).

This fuel type is the most reactive of the fuels to be shippt TABLE 1.

FUEL COMPACT LOADINGS FOR PEACll EOTTOM FUEL (loading per 3 inch of compact [gm])

Connact

"'y p r.

A B

C D

lleavy Light lleavy D o r,c r i o r i e n Standard K h o- ~. i um Phodium Thorium Th-232 52.10 52.10 52.10 115.36 U-234 (max) 0.156 0.156 0.156 0.082 U-235 9.70 9.70 9.70 5.14 U-236 (max) 0.052 0.052 0.052 0.026 U-238 0.505 0.505 0.505 0.268 Rh-103 0.

1.028 0.342 0.

Carbon 285.00 285.00 285.00 273.00 (D

%/

/

90010140

  • Bell, R.I., Devancy, J.J., 11a nsen, C.E., Mills,

C.B.,

and Roach, W.ll., "Los Alamos Group-Average Cross Sections", LASM-2441 (1963).

6-3

s

? D' T1

__. 1 D**]Oee.lu eJ.A k a

hN Q

G.

  • __l

\\

(.

t, r,s,na,s ;v,,,. n a. ( e,.* o n. t, t

i;

\\.

-v...,....,,,

s,,,,

L...,...

P. m. 3,., <., -,.,

_~

..v..

)..

- /'

POCOUO PLUG

!Ts':N '.!

,w. N ;V ;

l l 1brN ' 4

'n

..s F U" L C.*. P N W.

,,s.s s.

,i

..S::

e v.s

')v. 0 ' '.r A,

,,,.,I,....,.,

_w.

j/.

.}

l I'

'f *r,..-, ( p

.J r

3,.

' e

. i L<

L C n.. c,,, C...

e. v.,., n.e.,. Ls

.c.o e >;

-v

. r,

.?.

l.

.IQ '

l.y;U.L_o v.

r-.., -

7

/',.,-- *-

CO.It,:G;:C0 M,... '.. (, f U

.N (v':.:.%w., ' V,:..:-

e.y

\\'t

\\'

N*

fs

~

mg L g,,,.,.. -, r.

u i.

.4 v. v.

,s 4,

,.n

, y,,

  1. ! s ; '

'iq

'r.k

. s :')

4 ;;

.e 6

p'-

,.r-

q 1

.gJ s

f.sV) '

2 6 : ' : ~ I'A u:2... q i nyi....,,...

,,, vt.

a

/ - n,;

V H '/.s Vj;

'){ \\\\ s n W ' U $j ( n6-"~ 5.0 i t.'CM C ?l. ' C *i C.';

! $,, U % t '.

'.'h !! ! /i. p

. n. s, c ')I. f v.

/,', C /

4, ; '.9

!q

's,, ;d ?!in ',

'y.

/t g

i n. /,

t',A

'i.e,q

(,m. lle. C.. r:<,

o, <t,e

r., g 3

g

,t

('t,V h ',)s t,6

- I L...,c.

.,,, L T f.,m, f,.,..e.,.

...,., L..

.m oa...,

~.- -

. i....

g, i /o y i

.j.

. p:, e.,i,, n -., i.,

.,.a..

t,,e,

..) d U b t e

0CRCCU

,L'

.. ~,

- ( ?.9%..w,D. Q h

C N,;t.\\, 'i w

M\\".NJ.

' N. N a N.

,, 0.... ~..,. C 0.., _ C,.,

4 iv

.....e.,..

.N,,s, s s s s

\\s.nN..... Ns,

N J.

NN iss

,s..

\\-

l \\.,..

wN L.v is. i,,'..Ny.

n

_ - _ _ h..._l:,k; Ni n

i 900l0l4l Y

l 1,

l l

6-4 FICURE 1.

PEAC!! DOTTOM RCACTO.( FUEL EI.D 2."I'

O

\\)

Calculations were made for a 5 x 5 x 1 array of PB-1 containers surrounded by a water reficctor.

It was assumed that there was no water between the units of this array.

This represents the most reac tive configuration for 25 PB-1 containers.

The analytical model for the PB-1 concainer is shown in Figure 2 and the number densitics for each region are shown in Tabic 2.

The active fuel region of the inner cavity of the shipping container was homogenized assuming water filled t.no inner cavi ty.

6. 4 Criticality Calculation Using this analytical model, the calculated value of K f for a ci 5 x 5 x 1 array of Peach Bottom I containers was 0.72 0.02.

Additional calculations were made to determine the effect of homogeni-Couparison zation of the inner cavity material on the calculated value of Kcif.

(~

was made between a detailed analytical model of a 2 x 2 x 1 array of Peach Bottom fuc currounded by a lead reficctor and one where the fuel and basket were homogenized.

The detailed analytical model for the 2 x 2 x 1 array of Peach Bottom fuel is shown in Figure 3 and the number densitics for each region are given in Tabic 3.

For this calculation there is no homogenization of the fuel.

Only the 90-in. active 1cngth of the Peach Bottom fuel is considered and each fuel element is placed in an aluminum basket identical to those used in the PB-1 shipping container. The calculated X for this model was found to be.31 ff i.015.

A second calculation was made for which the fuel region (containing four Peach Ecttom fac1 elements), was homogenized.

Figure 4 shows the analytical model used for this calculation and Tabic 4 gives the number l

n) densitics for cach region of the model.

The calculated K for this model j

ff

(,

was.33

.015.

l 90010142 6-5

Regi.on 6 Outer liner (1.5 in.)

Region 5 g3V Lead Region 4 7

Inner liner (.25 in.)

N.-

2.75"

-h,, -

/

/ /,

j/ j'/

27" Region 2

/ reficctor (graphite) y

/

\\

/

Y

~

/

/

//

/

/

~

/

/,

\\

f'\\ /

4

/

/

/'

90" Region 1

(

/

fuel (homogenized) j

/

A/

^/

y

'x';;

x"

/

/

u

\\/

~ f j

/

/

l

/

/

27" Region 3

/.

b reficctor (graphite) j f

v 6.25"

_m

"'^ " " " ~ ' :'^t

" ^*^' '^' "

O I

90010143 6-6

I

,]

l}

TA1;LE '<.

I.T.':EER DENSiT i's FOR AALYT1 CAL MJDCL OF Tile PEAC:1 BCTTO:1 ::0. 1 CO::TAINCR Number Density R., c i a n*

Materirl x 1024 1

Carbon (spine)

.00811 Carbon (aleeve)

.01304 Carbon (fuel)

.01081 2D U

0000188 U238

.000000966 232

.0001023 Th Al

.004172 O

Fe

.002609 11

.02487 0

.01244 2 and 3 Carbon

.03460 Al

.004172 Fe

.002609 H

.02487 0

.01244 4

Fe

.08487 5

Pb

.0329 6

Fe

.08487

~.. _ _ _.. = = = = = = - = -


:----.-=

  • See Figure 2 for region descriptions.

90010144 O

l 6-7

Unit Description Region 1 Coine (1. 73" O. D.

i 2 Fuel (2.74" 0.D. >

3 Sic < vc (3. 5" 0.D.

/

4 Vo.d (4.188" 0. D.

/

Mild steel (4.31

/

[5 0.D.)

f f

,[

,"[ "[,"D

/

r 7 Water (5.0" 0.D. ),

8 Aluminum basket

' f (5. 25" 0. D. )

9 Water g

j Cross Section of Puel Arrav Geometry l

/

l N

' l>x,./l s

/

i Regions m -

,/

/,/

g Q

/

G.2 5"

/p R. ion p

7

'fi

/

l

/,'

\\

y v,

/x-on 11 g

s Qy&&' X'>'

,o9,,,45 6-8 FIGURE 3.

GEOF3TRY MODEL FOR DETAILUD FUEL CALCULATION

TABLE 3.

NUMBER DENSITIES FOR DETAILED MODEL*

Number Density Region 2

Nor.:b er Materini 0.D.,

inches x 10 4 Fuel Unit 1

Graphite (spine) 1.73

.0928 2

Fuel 2.74 U235

.001428 U238

.00000536 Th232

.000776

,0822 C12

/^

3 Graphite (sleeve) 3.5

.0953

'\\ }'

~

4 Void 4.188

.0000 5

Mild steel 4.312

.08487 6

Aluminum 4.5

.0603 7

Water (H,0) 5.0

.067,.0335 8

Alurainum 5.25

.0603

.067,.0335 9

Uater (H,0)

Reflector 10 Water (H,0)

.067,.0335

.0329 11 Lead

=_

See Figure 3 for region descriptions.

90010146 l

6-9

=

m

/

/

\\

/,/ /,' /,/ \\

/

h h h

/\\

' 6.2 5"

/

N

/

Homogenized

,a \\

10.5"

\\

p h / i if s'

a p

'N

\\

~

N FIGURE 4.

GEOMETTsY MODEL FOR l!0MOGE"IZED FUEL CALCULATION G) 90010147

/

O 6-10 l

~

. O 4 g TABLE 4.

NUBEER DENSITIES FOR IIOMOGENIZED MODEL OF 2 x 2 x 1 FUEL ARRAY Number Density Materint x 1024 IIononenized Fuel Carbon (fuel)

.0167 Graphite (spine)

.01253 Graphite (sleeve)

.02016 U235

.00002906 U23 8

,00000149 Th232

.0001581 Al

.006443 Fe

.004033 pd.

Wa ter (11,0)

.01431,.007155 Reflector Water (11,0)

.067,.0335 Pb

.03348 90010148 0

6-11

6. 4.1 Criticality Results b

kJ

\\

The results of these two calculations show that the homogenized fuel model compares favorably with the detailed fuel model for calculation of These results substan-K and yicids slightly conservative values of K ff.

ff calculations, tiate the validity of the fuel homogenization for the PB-1 K ff since this same fuel homogenization scheme was used for the calculation of the 5 x S x 1 array of PB-1 containers.

90010!49 0

8 6-12 l

/OV k

6.5 Appendix 6.5.1 Computer Codes Description i

Q Q (Orininator - Onk Ridce National Laboratory)

KE50 is a three-dimensional multigroup Monte Carlo criticality code written in FORTPJtS IV for the IBM-360 computer.

The Bc t te lle-Columbus ve rs ion of this code has been converted to the CDC-6400 computer.

A salient feature of the code is its special geometry packa;;c (CEM) which allows three-dimensional descriptions of systems which are made up of cylinders, spheroids, and cuboids.

For vore compicx systems, the code can use the generalized geometry package (GEOM) developed for the 05R Monte Carlo code. With this package, any system can be handled which can be described by a collection of plans and/or quadratic surfaces, arbitrarily oriented and intersecting in arbitrary fashion.

Multigroup cross sections such as the llansen and Roach 16 group set are used.

Up to 30-grcup cross sections can be used with the Battelle-Columbus version of KESO.

In the code, neutron scattering is assumed to be isotropic in the laboratory system for all elements except hydrogen.

The anisotropic scattering of hydrogan is found from the randomly determined energy change associated with

(-}

the neutron-hydrogen collision.

v Energy and spacially dependent biasing can be used to reduce the variance in systems with regions of widely ranging neutron importance.

The computer time required to solve a given problera is quite short as compared to siuilar Monte Carlo codes.

Also, KESO generally has shorter computing times than the two-dimensional transport code, DOT, for the same problem.

90010150 m

v 6-13

1 m

b 90010151 A

7.0 OPERATING PROCEDURES

)

7.1 Procedures for Loading and Unloading the Package L

Detailed loading and unloading procedures are given Appendix 7.2, Procedure No. TR-OP-002, " Handling Procedure for Chem-Nuclear Systems, Inc. (CNSI) Transport Cask CNS 4-45, C of C No.

USA /6375/B (F).

90010152 O

h 7-1

I REVISIONS REV.

DESCRIPTION DATE APPROVED O

O y'

m, n... -; -,f bdA%bl' '

90010153

. : l. - 4._..l

.], l

..-_ & l.?

"' A ~ T REVISION STATUS SHEET 1

2 3

4 5

6 7

8 9

10 11 12 13 14 15 16 17 REv.

SHEET is 19 REV.

PREPARED DATE 7//dj%

///z/79 CHEM - NUCLEAR SYSTEMS, INC.

CHECKED /

TITLE

( b'd,+dt7

//. Jy T7 9 IIANDLING PROCEDURE FOR CllEM-NUC LEAi SYSTEMS, INC. (CNSI)

ENGINEER

/i -

/

TRANSPoliT CASK (. " 4-45, MoDEL NUMBER PB-1

[ ML /[f#5

  1. 'Y 71 CERTIFICATE OF COMPLIANCE NUMBER 6375 r

2.'L';,,/,v/7f UNC0ER0 LED COPY APPROVE D,fg.yp CONTR ACT NO.

DOCUMENT NO.

REV.

SHEET h.hMg/v//[//h4 TR-OP-002 1

CNSO 1001/8 78

r 3

TABLE OF CONTENTS O

TITLE / APPROVAL PAGE 1

TABLE OF CONTENTS 2

LIST OF FIGURES 2

1.0 SCOPE 3

2.0 CASK DESCRIPTION 3

3.0 REFERENCES

7 4.0 REQUIREMENTS 7

5.0 llANDLING PRECAUTIONS 8

O 6.0 LOADING PROCEDURE 9

7.0 UNLOADING PROCEDURE 15 8.0 REPORTS AND RECORDS 19 LIST OF FIGURES FIGURE 1 CNSI Transport Cask CNS 4-45, Model Nwnber PB-1 4-5 FIGURE 2 User Check-off Sheet 6

90010l54 O

DOCUMENT REV.

SHEET TR-0P-002 2

q CNSO 1002s8 78 j

r 3

1.0 SCOPE

?

1.1 Purpose This document establishes procedures for the routine landling, loading, and unloading of CNSI Transport Cask CNS 4-45 Model Number PB-1.

1.2 Applicability This procedure applies to CNSI Transport Cask CNS 4-45, Model Number PB-1.

2.0 CASK DESCRIPTION The CNS 4-45 (Fbdel No. PB-1) is a mild steel encased shipping cask designed for transporting low-level radioactive material (see Figure 1).

The cylin-drical cask is 173 1/8 inches long and 42 1/2 inches in diameter except for 31-5 /8 inches at the end which is 40 1/2 inches in diameter.

The principal shielding consists of 61/4 inches of lead.

The cask cavity is 26 inches in diameter and 159 inches long.

(}

Each end of the cask has a cover and an impac t limiter.

Each impac t limiter is bolted to the lid and the cask by four (4) of the twelve (12) 1 1/4-inch cover bolts. There are twenty-four (24) cover bolts in all.

Each lid con-sists of two (2) 1 1/2-inch stainless steel plates with 4 inches of lead shielding.

Each impact limiter consists of a bundle of 2 1/4-inch,13 gauge tubing welded between 1/4-inch stainless steel plates.

The cask also has two (2) drain valves and a vent.

CASK WEIGHTS (APPROXIMATE):

CASK LID WEICitT 3,000 pounds IMPACT LIMITERS (EACil) 630 po und s CASK WEIGilT (EMPTY, WITil LIDS INSTALLED) 57,050 pounds MAXIMUM CASK PAYLOAD (INCLUDING Sil0 RING) 10,000 pounds HAX1 MUM CASK WEIGitT (LOADED) 67,050 po und s MAXIMUM DECAY llEAT 3,715 Watts 90010155 oV DOCUMENT H EV.

SHEET 1R-OP-002 3

CNSo 1002/8 78

r 3

I

.... -;q.. -

wmt,v -,

y e-0 a

4 z,.,,,

E *' #) ***4Q

. - :.s i g;f.'.

'D, p-'

~

. D,,,,Y.7 4I.* '

.. - mN; t~ r. ^ 1,

.', f E 'r 5

.g A

'3 EE

.d. t.d

',. n,,,.L,j,%chf##'?* -

[M if*kV

..0'l.

y=

y'

]

uo

]~'M.'d >

1 j

5; r * '4'r

~

wm r

w.

u=3 as.

r q,

.} f 1

. g'?.

1

...,.mS ?4.x JA4 we i

.c

,~

h $?sh* il~!h.

~

'~

f"

..~

t

~.

'A i

,s 3 N

O II i.

s

p/.s cr.Wt.%.wte;?.-..'d.d..;;s ;9.CP;t..
j t

..o.W c~+

h t...c !

' w, g w.

eM-MN((N$qsIkN.(5436[h f$.h)nh hh' 9 j

. i o.

v.

'$ff -

ESU hk I'

/"

0:

lGh $p

'I'.yY.((

~,T:<61

... :.. t.f'M 9,:/n

,.. c y,f.pM:

Aq:

C.% f..u

..fi$.

r s

r p

e.+f;s, w., 't:-

z

,rp-m.

--rm

\\

. s.,... us..- - w:.&,;&.,

m

...(: s e a f p> g

[

4

, :. <,4

_.{.

i'i W. T : @**i.?;,;19:4.,d

,f. 3,.f>W:py* :

s.p,~.w,$.::.'t:;4.Q

,,y:x??

H 1

A. m.,

-=

ef{, r,7

..a

.,.,n c..s

. < V s; yc... es. i ~..V ;

y

, i..

1-e.

.?!B..,'~$Q'?&$:'.-%.'.$)

&.kNhY:

W % i.?,W ;;,

, ;.,, y.a

..,.m:..yI,.A a.

:.g s

p e..e>

c

,v.y i r <

s.;g e.

e,,s.,s u..u.,,

3

. ~

.,s.~i:g ;..c..'r-rs

2. :w. 4

.m-:m k

,,.. q, g

..,4 g,..

.a

%w a

. ra

. :: q;a;w-.. n

' e.

g. > c. >'., q m.

.r

.,.,<o-s

'+'.u,m.,.,,

i

f. "

r.

i

.....~.f; ) ?.. v.

. +.

,- ;,,w.,8..

.,.i... ~ s.

c tj.

1

..,qg..:

f.

).....l'

.f: ;,

hf~

h!s f....

,gge.?;y s,'LG:.y P;

y

.s

  • m.:.a..

v'y. o., m Q

i., ;~

l>

hbhl.

l

.N.N.f:4$

f%'f-

-l

((

  • ';,...'I

[

h $'W

(

m....s*.'[3

j '.

I 3

c...

i4 g***..

' i ',

--*r*MgjcQ,.

  1. 1

.,,,. f,.. (; m. a,, '

  • 4

~~

%,d,.4W';4 Q

. ?,;;),I,6 : ~,,,,., t,.

w

"."+..*?.

t. ;,,.,,,. W.

$.g

-s N... '.'.;.'s le.y.

C'.8$ M hY.W.:Lj,a 4.a,c 7'

'ii.'&., 't :. ' '.. ', ' *.

N

,. R.

.,,s

,t I

v.

l.

.w 7,-

re:

v.a t

_Aj ;

e'ik.'o.

2 4,,

...< 'M $) j

~

Figure 1.

CNSI Transport Cask CMS 4-45, Model Number PB-1 OOCUMENT REV.

SHEET TR-OP-002 4

)

CNSO 1002/8-78 90010156

.-W_-

.M 4

e.

J 3

Wim

,.a m

t)

N

\\,

a 7-

, e,M e

g

. cx-p lq,.

lW g

\\x m= _

-y, N

,N\\

M w:qbs ;n,

N H

m i

s fl U\\m l

'..m Ne s s

2

-s.

N j

f (

"., % \\

l, y

'r ')

ka

\\,%

6-U,\\

t s 4 s

'~~.'\\\\

k

'a k

i t

l Y/

s s

(g * ~

t e

4 J

.hk

4._.

D

h.. y....

$@:' :.S'

,s

.y n

c.

wa s

e i

h 6

8 es N

h m,

4 o

(

O y'

.__iD l

I 2..

a 4

, q

~

e m,

p

.o, s

s W y1 h

a,-

as C i-le,

W l

' =*

p=4 cx

+

W"I bI

-O l

w J

,.:: *' zu n n o.

o2 L

, _ s

,y e

C

.n m

4 t0 O

d h

et,

>v 3c ;/., c.

E' y

s.*

,.D 9--

Uj h' b *

.n a G

$1.

,]

d 4

w, Q

" et e
1,
3.,

e

. a 1

m m f2

-z

[ 7,9

<* H cr e-e 4.,.."- c. ':'

-f. d b

T M

o g

Q 552 Gk1 Y $3 L 3,6 1

, :=

sa-27.4 s c Q

. J-J

%J

  • 9a j*

.n

ri 4 s

d" 90010157 OOCUMENT REV.

SHEET TR-OP-002 5

L J

CNSO 1002/8 78

f h

m l'SER CHECKOFF SilEET Date Shipment Number

!!aste Identification Operator (s) lip Technician (s)

Shipper Driver Time of arrival at Site Time of departure f rem site Please initial when item completed: Operator (0), Supervisor (S) 1.

Disposable Lince Closure Devices Replaced (0)

(S) 2.

Caskets Inspected (0)

(S) 3.

Lid bolts torqued (0)

(S) 4.

Cask sealed (0)

(S) 5.

Caek tiedowns inspected (0)

(S) 6.

Vehicle Placarded (0)

(5)

Please fill in blank and initial: Operator (0) Health Physist (H?),

Supervisor (S) 7.

Car,k Payload (includins shoring)

Mar..

Actual l

l (0)

(S) 8.

Decay heat-watts (if applicable)

Ms.

Actual (o)

(S) 9.

CMC 4A a at 6 ft. frun tailer

(!!?)

(S) 10.

CMt% =

at cask surface (HP)

(S) 11.

Smearable (d/m/100 cm ) =

(HP)

(S) 2

.m....,...............,...._.=..........................

........~..........

Ilealth 6 Saf et y (!! 6 S) - Please fill in blanks anJ initial.

CAliA =

_at 6 ft. from taller (H!.S )

CAMMA =

_ at cask nurface (i! s S) 2 12.

Smearable (d/m/100 cm ).___.

(itsg)

..........n u.................

................~

.n..,........,-

I hereby certify that the above statenwnt is correct and the car,k hu been load.:d and tested in accord tuce wi t h approved procc Jurc s.

Operator (s) 11 E. S Tech (s)

-~

~

Supervisor (s)

~~

~

Figu re 2.

User Check-off Sheet i

DOCUMENT R E V.

SHEET g

k

)

CNSO 1002<8 78 I

(

r 3

3.0 REFERENCES

Code of Federal Regulations (CFR)

Title 10, Part 71 Title 49, Part 172 Parts 173.389-173.398 Part 391 Federal Motor Carrier Safety Regulations Part 393.100 CNS1 Transport Cask CNS 4-45, Fbdel No. PB-1 Certificate of Compliance No. 6375 Battelle Memorial institute Drawings No. 9123-6PB-0001, Rev. E (Whitehead 6 Kales PP-1 Shipping Container) and 000-000-552, Re v. A (Fuel Basket Container Assembly PRDC) 4.0 REQUIREMENTS 4.1 Tools, Materials, and Equipment--At Shipper's Location 4.1.1 CNSI-furnished Items (a) CNS 4-45 (PB-1) cask and trailer

( b) CNS 4-45 (PB-1) cask license and documentation (c) CNS 4-45 (PB-1) cask lid gaskets and spare inrts (c) CNS 4-45 (PB-1) f uel basket container or liner, as required (e) CNS 4-45 (PB-1) cask lifting yoke (f) CNS 4-45 (Pb-1) lid lif ting device (g) CNS 4-45 (PB-1) cask pressurization test equipment (h) CNS 4-45 (PB-1) red und ant lif ting yoke, if required (1)

Pressure relief valve 4.1.2 Shipper-f urnished Items (a) Crane compa tible with loaded cask, filled fuel baske t, and cask lids

( b) Auxiliary mobile crane compatible with cask lids and im pac t limiters (c) Cask and lid lif ting yokes (d) Lif ting sling compatible with filled fuel basket and loaded cask (e)

Lif ting tools compatible with cask lid lif ting devices O

90010159 DOCUMENT H E V-SHEET l

TR-oP-002 7

)

\\

j CNSO 1002/8 78

r 3

(f) Tools (1) 0-150 ft lb and 150-600 f t lb torque wrenches (2) Proper size sockets (3) Ratchet and breaker bar with drive (g) Acceptable bolt lubricant (Moly-Z, Neolube, or Anti-Seize)

(h) Health physics (HP) instrumentation and support materials 4.2 Tools, Materials, and Equipment--At Unloading Site (a) Crane compatible with loaded cask, filled fuel basket or liner, and cask lids

( b) Auxiliary mobile crane compatible with cask lids and impact limiters (c) Lif ting and unloading hardware (d) Horizontal lid lif ting yoke (c) Front end loader or equivalent equipment (f) One throw-away hook assembly with approximately 30 feet of cable at tac hed (g) Wood blocks (h) Lif ting sling compa tic.e with loaded cask, filled fuel basket or liner, and cask lid (1) Tools (1) 0-150 ft lb and 150-600 f t lb torque wrenches (2)

Proper size sockets (3) Ratchet and breaker bar with drive (j) Ac ce p table bolt lubricant (Moly-Z, Neolube, or Anti-Seize)

(k) Health physics (HP) instrumentation and support materials i

1 4.3 Prerequisites Not applicable.

4.4 Acceptance Criteria Not applicable 5.0 HANDLING PRECAUTIONS 5.1 Treat the inside of the cask, the bottom of the cask lids, and any material removed as contaminated.

5.2 When lifting the cask, keep crane cables vertical at all times to avoid 1ateral movement of the cask.

90010160 DOCUMENT REV.

SHEET TR-OP-002 8

j CNSQ 1002,8 78

r 3

5.3 When unloading the cask, remain clear of the cask as the lid is removed.

Radiation will stream f rom the cask.

}

5.4 Survey the cask cavity for radiation and contamination levels af ter the cask contents have been removed.

Decontaminate as required by t he health physics technician af ter the contents have been removed.

5.5 Remove any liquid f rom the cask cavity.

Treat this liquid as radio-ac tive waste.

5.6 Visually inspect the cask for damage to the cask lids, gasket, gasket seating surfaces, lif ting trunnions, lif ting yokes, impact limiters, or tie-downs.

5.7 To prevent personal injury and cask damage, ensure tha t free-standing ladders are secured and attended by personnel.

Do this before climbing onto the cask.

5.8 Before the cask leaves the facility, the following shall be confirmed:

(a) That any external lif ting lugs or trunnions are properly covered for transport.

(b) That the cask is secured to the trailer in accordance with Section 393.100 of the Federal Motor Carrier Safety kegulations and the Certificate of Compliance.

(c) That trailer placarding and cask labelling meet DOT Specifications (CFR Title 49, Part 172).

(d) That exterior radiation levels do not exceed 10 mR/hr at 6 f eet and 2 mR/ hr in t he tractor cab, in accordance with 49 CFR 173.393 (j).

(e) That the outer package is sealed with anti-tamper seals.

(f) That all drain plugs are securely installed and sealed with anti-tamper seals.

6.0 LOADING PROCEDURE NOTE:

KEEP CRANE CABLES VERTICAL AT ALL TIFIS TO AVOID LATEkAL MOVEMENT OF Tile CASK.

Tile CASK SilALL BE REPLACED ON Tile TRAILER IN Tile EXACT ORIENTATION AS IT WAS RECE1VED UNLESS SPECIFIC APPROVAL AND/OR INSTRUCTIONS TO TtlE CONTRARY ARE RECE1VED FROM CNSI.

IDENTIFY Tile " TOP" OF Tile CASK BY Tile REMOVABLE PORT IN Tile CENTER OF 90010161 Tile " TOP" LID.

DOCUM E N T R EV.

SHEET TR-0P-002 9

CNSo 1002/8 78

..., ~

I r

3 6.1 Position the trailer under the overhead crane (35-ton capacity).

()

6.2 Prepare to remove t he impact limiters.

CAUTION:

EACil 1MPACT LIMITER WEIGHS 630 POUNDS.

I (a) Attach the crane hook on the mobile crane to the lif ting lug on cach impact limiter.

( b) Remove the four (4) 1 1/4-inch bolts on each impact limiter using a two-inch socket.

(c) Slowly remove each impact limiter.

(d) Move each impact limiter to a convenient position on the trailer or in a clean set-down area.

(e) Detach the crane hook.

6.3 Prepare to attach the cask lif ting yoke.

(a) Using a 1 1/2-inch socket, remove the two (2) 1 1/2-inch bolts that at tach each tie-down plate to the cask cradle in four places.

Remove a total of eight (8) bolts and retain them for re-installation.

( b) Remove the four (4) cask tie-down plates and retain them for re-installation.

(}

(c) Attach the crane hook to the lifting yoke.

(d) Remove the two (2) keepers by removing two (2) bolts each.

(c) Attach the lifting yoke to the two (2) lif ting trunnions on the

" t o p" o f t he ca s k.

(f) Raise the cask about six inches and attach the two (2) keepers to the lif ting yoke with two (2) bolts each.

Use a 1 1/8-inch socket to attach the bolts.

6.4 P re pa re to upright the cask on the trailer.

NOTE:

DO NOT PLACE ANYTHING UNDER THE CASK UNTIL THE CAbK IS IN A COMPLETELY UPRIGiff POSITION.

(a) Slowly lift the cask to a vertical position, keeping the crane cables vertical at all times to avoid lateral movement of the cask.

Slowly advance the crane bridge, or the trailer, if necessary, while lifting the cask.

( b) Inspec t the cask for damage.

If necessary, rinse road dirt from the cask exterior.

(c) Place clean plywood or equivalent material under the bottom of the

(}

cask to prevent foreign material (contamination) f run embedding DOCUMENT REV.

SHEET TR-UP-002 10 y

90010162

r 3

into the surface of the cask.

Plywood should be secured to the lower trunnions and retained to protect the bottom of the cask when it is lowered into the pool.

6.5 Pre pare to open the cask vents.

CAUTION: TREAT ALL PLUGS' REMOVED AS CONTAMINATED.

(a) Expose the valve and test ports by removing the four (4) covers at the center of each trunnion, four (4) cover bolts each.

(b) Remove the pipe plugs f rom the two (2) drain valves un the bottom of the cask and the vent valve on the top of the cask. Re tain the plugs for re-installation.

(c) Open the two (2) drain valves on the cask bottom.

(d) Open the vent valve at t he top of the cask.

(e) Ensure that all valves are in the full open position.

6.6 Prepare the cask for lowering into the pool.

NOTE:

Tile CASK LID IS NORMALLY REMOVED UNDERWATER.

1F Tile LlD IS TO BE l

REMOVED BEFORE THE CASK IS IMMERSED, CONTACT TifE tlEALTil PHYSICS DEPARTMENT BEFORE REMOVING Tile LID.

(a) Attach the lid lif ting device to the cask lid.

(b) Move the cask to the pool.

(c) Remove the cask lid bolts.

(d)

Lower the cask to the bottom of the pool. Allow time for the cask to fill with water before removing the lid.

This step will prevent inrushing water from dislooging the 0-ring from the lid.

NOTE: WHEN Tile AIR BUBBLES STOP COMING FROM TriE TOP VENT, THE CASK IS FULL OF WATER.

(e) Allow the cask lifting yoke to swing down and clear the lid.

(f) Remove the crane hook, if necessary.

6.7 P re pa re to remove the cask lid.

CAUTION:

TREAT THE UNDERSIDE OF Tile L1D, THE INSIDE SURFACES OF Tile CASK, AND ANY BOLTS OR SEALS REMOVED AS CONTAMINATED.

(a) Confirm tha t the cask is filled with wa ter.

(b) Attach the crane hook or a suitable extension tool to the lid lifting device.

(c) Slowly remove the cask lid.

1 NOTE:

CAREFULLY OBSERVE Tills OPERATION TO CONFilL'1 TilAT THE 0-RING DOES NOT FALL FROM ITS RETAINING GROUVE.

IF TIIE 0-RING DOCUMENT REV.

SHEET TR-OP-002 11 k

)

CNSQ 1002/8 78 90010163.

r 3

DOES FALL, REMOVE Tile LlD FROM Tile POOL AND RE-INSERT TtE 0-RING OR REPLACE IT WITil A NEW 0-RING.

(d) Move the lid to a convenient position (in the pool, on the deck, or suspended f rom the crane or extension tool).

(c) Remove the crane hook, if necessary.

6.8 Load the cask, exercising caution not to damage the gasket seating surfaces.

NOTE:

ADD VERTICAL OR LATERAL SPACERS TO Tile CONTENTS OF THE CASK, IF NECESSARY, TO PREVENT SIGNIFICANT MOVEMENT DURING NORMAL TRANSPORT CONDITIONS.

6.9 Pre pare to replace the cask lid.

(a) Attach the crane hook to the cask lid lif ting device, if necessary, and lift the lid onto the cask.

( b) Carefully lower and position the lid on the cask using the align-ment pins.

NOTE:

TWO (2) ALIGNMENT PINS MUST BE ENGAGED BEFORE THE LID IS PROPERLY ALIGNED.

6.10 Prepare to raise the cask to the surface of the pool.

CAUTION:

TREAT THE CABLES, TFE CASK, Tile CRANE IIOOK, AND THE LIFTING YOKE AS CONTAMINATED.

RINSE THEM WITH CLEAN WATER.

(a) Attach the crane hook to the lif ting yoke, if necessary.

( b) Slowly lift the cask to the surface of the pool and insert the lid bolts, ha nd-tig ht.

l (c) While raising the cask, rinse the cables, cask, crane hook, and lif ting yoke with clean water.

(d) Suspend the cask over the pool and allow all of the water to drain out of the cask.

(e) Estimate if an appropriate amount of water has drained out of the cask, an amount consistent with the cask contents.

If it appears that drain blockage has occurred, check clearance with a hand pump or slight (5-10 psi) pressurization.

(f) Rinse the valve ports with clean water.

CAUTION: DO NOT MOVE Tile CASK FROM Tile POOL SURFACE WilILE IT IS STILL DRIPPING WATER.

(g) Monitor the cask (as required by the health physics technician) for neut ron and gamma radia tion.

l 1

DOCUMENT REV.

SHEET TR-OP-002 12

)

90010164

'~" ~ ""

ymt

,.t

-v.m"--

-W-, -mw,,

ge w,

e-w, m

mw-t+r v v-er

,.w-1

~

r 3

(h) Allow the cask to drain completely.

NOTE:

PROVIDE ANT 1-FREEZE INSIDE THE CASK TO PREVENT FREEZING, IF APPROPRIATE.

6.11 Prepare to check the pressure relief valve.

(a) ' Unscrew the relief valve f rom t he trunnion and place it on test stand.

( b) Increase the pressure until it relieves at 65 psi.

(c) Re place the valve if it is faulty or re-install the valve if it is operable.

6.12 Prepare to move the cask to the decontamination area.

(a) kemove the keepers f rom the cask yoke, if necessary.

(b) Remove the lifting device from the cask lid.

(c) Clo se the top vent.

(d) Close one (1) of the two (2) drain valves on the bottom of the cask.

(e) Replace the plug in the closed drain valve and in the top vent.

(f) Tighten the eight (8) 1 1/4-inch lid bolts using an alternating in t te r n.

Torque them to 100 j; 10 f t lb (90 + 9 ft lb if lubricated).

(g) Re-torque the eight (6) lid bolts to 300 f: 30 f t lb (270 + 27 f t lb if lubricated), using an alternating pattern.

6.13 Prepare to [wrform the cask pressurization tesc.

(a) Attach the cask pressurization test equipment to the open drain i

valve on the bottom of the cask.

J (b) Pressurize the cask to a minimum of 30 psi or a maximum of 60 psi.

(c) lloid the pressure for five (5) minutes while checking for pressure leakdown with the test equipment gauge.

If the cask does not hold pressure, check for leakage in the 0-rings in the top and bottom lids, the two (2) drain valves, the cask vent, and the pressure gauge connections at the four (4) trunnion locations.

(d) Vent the cask to the plant ventilation system, the f uel pool, or other acceptable contamination containment area.

(c) Correct any leakage and repeat t he pressure test, if necessary, until the Icakage is controlled.

(f) Clo se the drain valve and repeat t he pressure test for 30 seconos to assure a sealed drain valve.

DOCUMENT R EV.

SHEET TR-OP-002 13

(

CNSo 1002,8 78

r 3

(g) Remove the pressure test equipment and replace the pipe plug in the drain valve.

6.14 Decontaminate the cask and yoke surfaces. Obtain a health physics sur-vey to confirm that the cask is free of contamination.

6.15 Prepare to replace the cask on the trailer.

CAUTION:

KEEP CRANE CABLES VERTICAL AT ALL TIFIES TO AVo1D LATERAL F10VEh!ENT OF Till: CASK.

l 1

NOTE:

REPLACE Tile CASK ON TIIE TRAILER IN THE EXACT ORIENTATION AS RECE1VED.

(a) Attach the lif ting yuke and keepers to the cask lif ting trunnions, l

if necessary.

( b) Lift the cask in a vertical position.

1 (c)

Back the trailer under the cask.

(d) Lower the cask onto the trailer by caref ully lowering the bottom trunnions into t he tie-down saddles at the appropriate end of the trailer. Flove the crane bridge or back the trailer SLOWLY to keep crane cables vertical.

No te t he o f f se t of t he bo t tom trunnions to tilt the cask in the proper direction, j

(c) Remove the keepers f rom the lif ting yoke while the cask is at a convenient height and before the trunnions enter the lower saddles.

(f) Remove the lif ting yoke and decontaminate all parts.

(g) Reload the yoke, the lid lif ting device, the pressure tester, and all spare parts onto the trailer.

(h) Place the cask tie-down plates on the cask cradle and replace the two (2) 1 1/2-inch bolts *. hat attach the pla tes to the cask cradic in four (4) places.

Replace a total of eight (8) bolts in all.

To rr;ue to 100 + 10 f t lb (90 + 9 ft Ib if lubricated).

(1) t!ove the cask and trailer outside the loading f acility, if necessary.

6.16 Prepare to re plac e the impac t limiters (a) Attach the crane book to the lif ting lugs on each impact limiter.

( b) Position each impact limiter on the cask.

(c) Re place the four (4) 1 1/4-inch bolts on the impact limiters using a 2-inc h socke t.

Torque to 70 + 7 f t Ib (63 + 7 ft lb if O

90010166 DOCUMENT HEV.

SHEET Tk-0P-002 14

)

CNSO 1002/U 78


r e-


...--r a+

--n-~-

v.

r 3

(d) Attach lead wire seals to the lif ting shackles on the impac t limiters and secure t hem to t he trunnions.

Seal both impact limiters.

6.17 Before the cask leaves the facility, the following shall be confirmed:

(a) That any external lif ting lugs or trunnions are properly covered for transport.

( b) That the cask is secured to the trailer in accoraance with Section 393.100 of the Federal Motor Carrier Safety Regulations and the Certificate of Compliance.

(c) That trailer placarding and cask labelling meet DOT Specifications (CFR Title 49, Part 172).

(d) That exterior radiation levels do not exceed 10 mR/br at 6 feet and 2 mR/hr in the tractor cab, in cordance with 49 CFR 173.393 (j).

l (e) That the outer package is sealed with anti-tamper seals.

(f) That all drain plugs are securely installed and sealed with anti-tamper seals.

6.18 Complete the USER CHECK-OFF SIIEET and send a copy along with the shippent.

7.0 UNLOADING PROCEDURE NOTE:

ALL PERSONNEL llANDLING TtiE FILLED FUEL BASKET SilALL OBSERVE ESTABLISilED SITE RADIATION PROTECTION PROCEDURES.

KEEP CRANE CABLES VERTICAL AT ALL TIMES TO AVolD LATERAL MOVEMENT OF Tile CASK.

1 Tile CASK SHALL BE REPLACED ON THE TRAILER IN Tite EXACT ORIENTATION AS IT WAS RECE1VED UNLESS SPECIFIC APPROVAL AND/OR INSTRUCTIONS TO Tile CONTRARY ARE RECEIVED FROM CNSI.

1DENTIFY TIIE " TOP" 0F THE CASK BY Tile REMOVABLE PORT IN Tile CENTER OF TILE " TOP" LID.

l 7.1 Position the unloading crane at an optimum distance to facilitate off-loading and to minimize operator exposure.

O 90010167 DOCUMENT R E V.

SHEET TR-OP-002 15 CNSQ 1002/8-78

r 3

7.2 Prepare to remove the impact limiters.

ks CAUTION:

EAOl IMPACT LIMITER WEIGHS 630 POUNDS.

g l

(a) Attach the crane look on the mobile crane to the lif ting lug on each impact limiter.

( b) Remove the four (4) 1 1/4-inch bolts on each impact limiter using a two-inch socket.

(c) Slowly remove each impac t limiter.

(d) Move each impact limiter to a convenient position on the trailer or in a clean set-down area.

(e) De tach the crane hook.

7.3 Pre pa r e to remove the cask tie-down plates.

(a) Using a 1 1/2-inch socket, remove t he two (2) 1 1/2-inch bolts that attach the tie-down plates to the cask cradle in four (4) places.

i Remove a total of eight (8) bolts and retain thean for l

i re-in s ta lla tio n,

j

( b) Remove the four (4) cask tie-down plates and retain them for re-installation.

7.4 P re pa re to lif t the cask horizontally.

(

(a) Attach the cask lif ting slings to the crane hook and position the sling around the four (4) cask lif ting trunnions.

(b)

Lift the cask horizontally.

(c)

Position the cask (on plastic sheeting) near the disposal trench and block the " top" end of the cask with wood bloc ks to allow lid removal.

7.5 Prepare to remove the cask lid.

CAUTION:

REMAIN CLEAR OF THE CASK AS Tile L1D LS REMOVED.

RAviATION WILL STREAM FROM Tile CASK.

(a) Position the mobile crane to remove the lid from the cask.

(b) At tach the horizontal lid lif ting yoke to t he " to p" lid of the cask.

(c) Attach the mobile crane to the liitina yoke.

(d) Remove the remaining eight (8) 1 1/4-1 ch bo.i ts from the cask lid.

Retain for re-installation.

(c) Remove the cask lid.

Swing it clear of the cask and wrap it in plastic.

Leave it suspended f rom the mobile crane or position a s required.

DOCUMENT H EV.

SHEET TR-OP-002 16 L

)

CNSo 1002/8-78

r 3

7.6 The health physics technician shall conduct a radiation and contamination survey to determine of floading precautions.

7.7 Prepare to remove the contents oC the cask.

(a) Attach the hook / cable assembly to the liner.

i i

CAUTION:

DO THIS AS QUICKLY AS POSSIBLE TO MINIM 1ZE EXPOSURE.

j (b) Reposition the cask over the edge of the trench ano allow the cask to rest on the ground. The open end of the cask should be over the l

disposal area of the trench.

(c) Lead the throw-away cable assembly f rom the cask to the front-end loader.

(d) As directed by the llP technician, vacate all persons from the inunediate area except for the crane operator and a rigger.

The rigger shall stand in clear view of the crane operator.

CAUTION:

THE NEXT STEP MUST BE DONE CAUTIOUSLY TO AVOID BREAKING THE CAB LE.

DO NOT ALLOW THE CABLE TO GO SLACK.

DO NOT PERFORM ANY MOVEMENTS IN A JERKING MANNER.

j (e) Slowly move the front-end loader so that the attached cable will a

pull the liner out of the cask.

Continue movement until the liner clears the cask and is in burial position in the trench.

(f) Detach the throw-away cable f rom the f ront-end loader.

Allow the cable to fall into the trench.

7.8 Reposition the cask to its earlier position on wood blocks.

7.9 The health physics technician shall survey the interior of the cask for radiation and contamination levels.

Decontaminate if acceptable levels 1

are exceeded.

CAUTION:

TREAT ANY LIQUlD IN THE CASK OR USED IN TdE DECONTAMINATION PROCESS AS CONTAMINATED.

]

7.10 Visually inspec t the inside of the cask for damage or for liquid accumu-lation.

If the inside surf aces of the cask are damaged, remove the cask

]

f rom service.

7.11 As the health physics technician directs, clean the inside of the cask lid, t he 0-ring, and the seating surfaces.

Replace the 0-ring if it is damaged.

7.12 Prepare to replace the cask lid.

(a) Vf sually check to confirm that the 0-ring is in place in its re-90010169 taining groove.

DOCUMENT REV.

SHEET 17 TR-0P-002 CNSo 1002/8 78

r-(b) Attach the crane hook to the lif ting yoke on the cask lid and lif t the lid onto the cask.

(c) Position the lid on the cask using the alignment pins.

NOTE:

TWO (2) ALIGNMEfC PINS MUST BE ENGAGED BEFORE THE LID IS PROPERLY ALIGNED.

(d) Replace the eight (8) 1 1/4-inch lid bol ts, using an alternating 1

pa t te r n.

Torque them to 100 f 30 f t lb (90 1 9 ft Ib if j

lubricated).

(c) hetorque the eight (8) lid bolts to 300 f 30 f t Ib (270 1 27 ft lb if lubricated), using an alternating pattern.

(f) Remove the lid lif ting yoke and the crane book.

j 7.13 Decontaminate the cask and yoke surfaces.

Obtain a health physics sur-vey to confirm that the cask is free of contamination.

7.14 Prepare to replace the cask on the trailer.

CAUTION:

KEEP THE CRANE CABLES VERTICAL AT ALL TIMES TO AVOID LATERAL MOVEMENT OF TIIE CASK.

(a) Attach the lif ting sling to the cask lifting trunnions, if necessary.

( b) Lift the cask in a horizontal position, keeping crane cables ver-tical at all times to avoid cask swing.

(c) Lower the cask onto the trailer by carefully lowering the cask into trunnions into the tic-down saddles on the cask cradle.

NOTE:

REPLACE Tile CASK IN Tile EXACT ORIENTATION AS RECE1VED.

InB DESIGNATED " TOP" 0F Tile CASK IS 1 DENT 1FIABLE BY THE REMOVABLE PORT IN TlIE " TOP" LID.

(d) Remove the lif ting slings.

(e) Reload the lid lif ting device and all spare parts onto the trailer.

(f) Place the cask tie-down plates on the cask cradle and replace - the two (2) 1 1/2-inch bolts that attach the plates to the cask cradle in four (4) places.

Replace a total of eight (8) bolts in all.

Torque to 100 f 10 f t Ib (90 2 9 ft Ib if lubricated).

7.15 Prepare to replace t he impact limiters.

(a) Attach the crane hook to the lifting trunnion on each impact limiter.

( b/ Position each impact limiter on the cask.

90010170 O

DOCUMENT HEV.

SHEET TR-0P-002 18 J

CNSO 1002/8 78

r 3

(c) Replace the four (4) 1 1/4-inch bolts on the impact limiter using a 2-inc h soc ke t. Torque to 7017 f t lb (63 1 6 ft lb if lubricated.

(d) Attach lead wire seals to both impact limiters.

7.16 The health physics technician shall survey all exterior surfaces of the cask for contamination and radiation levels.

Decontaminate, as re-quired, to meet the limits set forth in Section 173.397 of CFR 49.

7.17 Before the cask leaves the facility, the following shall be confirmed:

(a) That any external liiting lugs at trunnions are properly covered for transport.

( b) That the cask is secured to the trailer in accordance with Section 393.100 of the Federal Motor Carrier Safety Regulations and the Certificate of Compliance.

(c) That trailer placarding and cask labelling meet DOT Specifications (CFR Title 49, Part 172).

(d) That exterior radiation levels do not exceed 10 mR/hr at 6 feet and j

2 mR/hr in the tractor cab, in accordance with 49 CFR 173.393 (j).

(c) That the outer package is sealed with anti-tamper seals.

(f) Tha t all drain plugs are securely installed and scaled with anti-tamper seals.

8.0 REPORTS AND RECORDS The following reports shall ace a.t1 loaded shipments:

(a) Radioactive Shipping Record (RSR)- prepared by the shipper's nealth physics department.

( b) Vehicle Radiation Survey-prepared by the shipper's health physics l

department.

(c)

Bill of Lading-prepared and certified by the shipper.

(d) User Check-off Sheet-prepared and signed by the shipper.

4 r

]

90010171 O

DOCUMENT nEV.

SHEtT TR-0P-002 19 CNSo 1002/8 70

g,-

U jl 90010172 s=

l

8.0 ACCEPTANCE TESTS AND MAINTENANCE PROGRAM 8.1 Acceptance Tests 8.1.1 Fabrication Inspection In addition to the standard testing procedures described in Construction Specifications and Procedures and Appendix 7.2, the following inspections will be performed by the fabricator to the satisfaction of Battelle personnel prior to shipping the cask to the Peach Bottom Atomic Power Station:

(1)

Check the mechanical fit and operability of all parts, including the cask lifting yoke and tilting device.

(2)

Pressurize the internal cavity of the cask with water and air to 150 psig and hold for one hour.

()

(3)

Check the operability of the relief and drain valves.

8.1. 2 Preliminary Inspection The following inspection and tests will be completed at the Peach Bottom Atomic Power Station before the initial use of the cask.

1 (1)

Check all tiedown mechanisms for appropriate tightness after receipt of cask.

1 (2)

Check all steps of loading procedure for fuel and salvage canisters.

(3)

Verify handling capability during all steps.

(4)

Check mechanical fits and clearances of all components, including fuel and salvage canisters.

(5)

Check cask for complete water drainage.

90010173 8-1

(6)

Check cask decontamination using Peach Bottom

('}

Atomic Power Station decontamination procedure.

V (7)

Verify shielding effectiveness by measuring radia-tion levels in air at all cask exterior surfaces with cask fully loaded with irradiated fuel elements.

(8)

Verify cask thermal capacity by monitoring mid-plane outer surface temperature of fully loaded cask until equilibrium is achieved.

8.1.3 Routine Inspection Prior to each use, the cask will be given a routine inspection to ascertain that the cask and its contents satisfy the applicable requirements in Subpart C of 10CFR71 and 49CFR171-179, including the following:

(1)

Visual inspection of cask for damage.

(2)

Visual inspection to assure that the cask cover is in place and properly sealed.

()

(3)

Placement of lock wires and seals on drain valves.

(4)

Monitor external radiation levels to assure that radiation constraints are not exceeded.

1 (5)

Monitor the cask outer surface temperature to assure that the equilibrium temperature will not exceed the maximum design operating temperature during transport.

90010174 O

8-2

t i

i

):

i a

8.2 Appendix O

STANDARD COETRUCTIO SDi'CIFTCATT O :3 A?.~D PROCEmfRES

?

90010175 l

i I

s I

8-3

o STA?:DATID CO::STRifCTIO!! SPECIFTCATIO!:S A!!D PROCEDURES Cask Surface Finish 746-SF-801 Acceptable surface finish to be used in cask construction where machined and/or polished surface components are joined or assembled are listed belcw:

(1) The material surface should be machined or polished in the same direction where at all possibic (2)

The surface finish of the components should be comparable (3)

Acceptable equivalent surface finishes (A)

Number 3 ground surface (B)

Microfinish No. 63 on machined surfaces (C)

Cold rolled finished surface (D)

Polished surface using 150 gr'it Welding Procedure for Cask Construction

/48-WP-101 Revised 6/1906 General This specification covnrs the welding of austentic stainicos stec1 and clad stainless steel by the Metallic Arc Process and the TIG Proccos.

The following provisions are essentially those of the American Society of Mechanical Engineers Bo11ers and Pressure Vessel Code Section VIII Unfired Pressure Vessels 162 Edition and Section IX Welding Qualifications 1962 Edition.

Operat or nualification All welders shall be qualified in accordance with Section IX of_ the AS:E Boiler and Presourc Vessel Code, 90010176 re m a1 This procedure is applicable when welding involves joining the follcwing (1)

Plate

- ASTM A-167 TP 304 (2)

Pipe

- ASTM A-312 TP 304 (3) nars

- ASTM A-276 TP 304 (4)

Plate

- ASTM A 240 TP 304 8-4

n Filler Metal Electrode materials shall comply with the following:

(1) ASTM - A - 298 E-308-15 lime coated (2)

ASTM - A - 2 98 E-310-15 line coated (3) ASTM - A - 371 GR-308 (TIG Process)

(4)

ASTM - A - 276-65 E-308-L Process (A) Welding of all passes shall be done by the shi.1ded metal are process or the tungsten inert gas process.

(B) Tungsten cicctrodes shall confona to ASTM B-297 and shall be classification EWth-2.

Shiciding gas shall be welding-grade argon of 99.9 minimum purity.

(C)

Inert gas shielded tungsten arc welders must be equipped with starting amperage adjustment control and built in high f requency to permit easy s tarting, continuous operation and to produce crater free welds.

Ab Preparation of Base Metal (A)

No welding is to be done on edges or surfaces which have been are or flame cut. Where arc or flame cutting is employed, not 1 css than the following amount of material shall be removed from the cut edge.

Thickness of Material Cleanup Allowance Up to 1 in.

1/4 in.

1 in. to 2 in.

1/2 in.

2 in, to 3 in.

3/4 in.

All (plasma cut) 3/32 in, min.

(B) All paint, oxides, and scale on any surface involved in and for a distance of 2 in, adjacent to a weld joint shall be removed by grinding prior to any welding, (C) The surface of the base metal shall be free of oil, grease, cutting fluids and other impurities for at least 1 in. on cach side of the joint.

(D) Linear defccts on the surface of the veld joint end preparation shall be repaired for a minimum of 3/4 in. from both edges of the weld joint if the i

defects:

1 (1) Arc not approximately parallel to the surface of the base material (2) Arc approximately parallel to the surface of the base material and are in excess of the limits specified below from various base natcrial thicknesses:

8-5

D"*]D "D ~P~Y /

.h_

o o Ju o

_3 A) i Maximum Total Defect Base Material Thickness Leneth in 3 in.

1/4 in, or below 1/16 in.

Above 1/4 in. to and 1/8 in.

including 1/2 in.

Above 1/2 in, to and 1/4 in.

including 2 in.

Above 2 in.

3/4 in.

(E)

Defective material such as linear defects, cracks, craters, s la:;

occlusion or porous welds will be removed by grinding.

Grinding shall be donc using rubber or resin bonded aluminum oxide or silicon carbide whccis.

If burrs are required, carbide burrs will be used, none of which have been previously used on ferrous type material.

(F) On all ground out cavities no less than a 1/16-in, radius per 1/4-in.

of depth will be permitted.

Preheat and interpass Temperature Preheat shall not be employed except when the base metal is below 60 F.

Preheating shall be performed to raise the temperature of the base metal to within (r) the range of 60 to 85 F.

The interpass temperature shall not exceed 200 F for seal welds and 350 F for other welds.

}:culpmen t (A) Wire Brushes - wire brushing shall be done when using stain 1 css steel wire burshes which have not previously been employed on any other type material.

(B)

Grinding Wheels - grinding shall be donc using rubber or resin-bonded aluminum oxide or silicon carbide whccls not previously used on any other type material.

(C)

Deburring - filing or deburring operation shall be carried out only with carbide files or deburring tools not previously used on any other type material.

Joint Preparation and Assembly (A)

The edges or surfaces of all parts to be joined by welding wilI be prepared by machining or grinding, and will conform to dimensions outlined on pro-duetion drawings, (B) All joints will be cleaned and free of all scale, dirt, grease, pd oil, paint, or other foreign matter.

90010178 s_c

i D""D

  • D

~ 3' o

.f

, S oo

_3 3;e l d f r.e Terb:inue (1) Welding technique using electrode weaving uhall not exceed ti.-

times the diranater of the electrode core wire being employed.

(2)

There vill be no undercutting valleys, grooves, or other irt-u-

larities along the edges or at the conter of the weld reinfarcement.

(3)

All slag or flux remaining on any layer will. be rc:noved beicro the next successive layer is deposited.

All craters shall be e,round out.

L gu.

penetrant inspect first laycr (roat pass) of all welds.

Visual inspection or;;

vill be used betueen successive beads except liquid penetraat inspection of '

pass. The final pnss vill not contain an;. unfilled crater.s or trac hs.

(4)

A1) gas holes, cracks, trapped slag, and undercuttin;: r. hall b removed f ren any pass before the succeedini; layer is applied.

The f 2nal pues not contain any cracks or unfilled craters.

(S)

Defective unterial recaval cee 748-WP 101 Preparation of Dane section A, B, C, D, E, F.

(6) Water soluble EUTCCTO cash, Protee to Metal ::o. 2 or an equvc.

liquid nash or anti-spatter congeund will be used to protect polished curtam and to facilitate weld spatter recoval.

(7)

Upon cotc.pletion of the veld, all flux and weld spatter will i-removed and the veld finished by abrasive motheda or by nachanical fini; %r.;

finish suitable for dye penetrant excmination.

(See Liquid Tcac trant J un'ec 'i s Procedure :o. 748 DP1).

(8) Final finish of all velded arcar, vill cemply with notationn er, drawing. All finishin:; will be accomplished by brushing, grinding, buffine, m machining of surfaces where necer.cary.

=7nnnection (A) Vicuni - All uelds chall be vir.nally inspect d for con lict _

at the fo ! ) cwir.g c '....

the drawings and requiren.untr of the welding procedure (a)

Prior to valdian for empliance wi t h the drawint; inc lud i n;;:

(1) Ueld end preparation dirensions and :.hape (2)

C lear r.nce d imr.u i ons of backing 1. trip ia o q; '. : 1d ed.

(3)

Alip,nrwa r s and fi t~.p o f iLe pit cer O

(b)

Aftec '. A di.v, rar cc: pl1: nee VtLh the UTaVin.W, and SUT. D finish requirccais inc lu ; A:y,:

j 90010179 (1)

S R.e o f l e; e anJ throat of fil NL unida 8-7

D**D

  • D'T

.b..

66 o

.:n 1

1 m)

I\\-

(2)

Contour and surf ace condition of outside surface of welds (3)

Degree of undercutting (4)

Evidence of mishandling, tool marking, or cxcessive grinding.

(c) All welds shall be inspected for soundness of liquid penetrant or examina tion as per attached Specification No. 748 DPl.

Licuid Penetrant Tnspection 748-PT-201 Revised 12/1/67 Surface preparation The surface being examined shall be free from scale, slag and adhering or imbedded contamination.

As welded surfaces, following the removal of slag, shall be considered suitable for liquid penetrant inspection without grinding if this daco not interfere with interpretation of the test results and if the weld contour bicads into the base material without undercutting.

()

(A)

Pre-cleaner used shall be Acetone or Trichloroethylene.

v (B) Liquid Penetrant Test Material - Magnaflux Penetrant - Type SKI-HF having the trade name -Sporcheck--raanufac tured by Magnaflux Corporati a or any equivalent culfur and chloric.; free material may be used.

(C) Developer - Magnaflux Type SKD-NF, nonflammabic (sulfur free 4 Trade name--Spotcheck--manfuactured by Magnaflux Corporation or equivalent.

(D) Cleaner - lugnaflux Penetrant Clearner, Type SKC-NF or equi alent.

Application and Procedurc The temperature of the surf ace to be tested shall be between 50 F and 100 F.

Cleaner shall be used on the surfaces in the weld areas and allowed to thoroughly dry for 5 minut'en.

The complete surface shall be thoroughly and uniformly coated with penetrant by spraying or bushing and shall be kept corapletely wetted for a minimum of 10 minutes and a maximum of 20 rainutes.

Any complete drying of penetrant during this time shall require recleaning and repeating the test.

After the alloted application time has expired, the dye penetrant shall be removed by wiping the surface with a lint-free cloth.

This operation will continue until most of the penetrant has been removed.

The remaining penetrant

~%

shall be rensoved by wiptng the surface with a c'1can cloth dampened with penettant (d

cicaaer.

Flushing of the surface with any liquid following application of the penetrant and prior to developing is prohibited.

90010180 8-8 t

b

\\J Surface drying - The drying of test surfaces after the removal of excess penetrant shall be accomplished only by normal evaporation, or by blotting with absorbent paper or cican, lint-free cloth. Forced air circulation in excess of normal ventilation in the inspection area shall not be used.

Developing - A nonaqueous wet developer recommended by the penetrant manufacturer shall be used.

Immediately prior to application, the developing liquid should be kept agitated in order t> prevent settling of solid particles dispersed in the liquid.

The developer shall be uniformly applied in a thin coating to surfaces by spraying unless otherwise specified for specific cases in the the test approved inspection procedure.

Pools of wet developer in cavitics on the inspection surfacd shall not be pennitted since these pools will dry to an excessively heavy coating in such areas resulting in the masking of indications.

Inspection should be made a minimum of 5 minutes and no later than 30 minutes after the developer is applied.

Lighting in test area - The test area shall be adequately illuminated for proper evaluation of indications revealed on the test surface.

Final cleaning - When the inspection is concluded the penetrant materials shall be removed as soon as possible by means of suitable solvents in'accordance with the grade of cleaning required by system or component specifications.

(

Acceptance Standards for Liquid penetrant Tnspection If indications are believed to be nonrelevant, at least 10 percent of each type of indication shall be explored by removing the surface roughness believed to have caused the type of indication to determine if defects are present.

The absence of indications upon reinspection by liquid penetrant inspection after renoval of the surface roughness shall be considered to prove that the indications were nonrelevant with respect to actual defects.

If reinspection reveals any these indications and all of the or'ginal indications in the same area shall l

indications, l

shall be considered to be defects.

Defects shall be evaluated to the acceptance standards below:

l (A) All surfaces shall be free of all cracks, laps, fissures, and other linear defects, and free of linearly disposed rounded defects when there are four or less such rounded defects in a line and each is separated fron. the adjacent defects by less than 1/16 inch.

Rounded defects are any defects that prcduce liquid penetrant indications which are circular or elliptical with the long axis less uwrc than twice as long as the other exis and with no sharp corners.

(H) Liquid penetrant inspection shall be used to evaluate rounded defects which are not linearly disposed.

All surfaces shall be free of linear and linearly disposed defects ac specified in (A) above and shall also be free I

of rounded defects in excess of the limits specified in Table A-1.

' ou 910010181 8-9 T

)

~

e+

i

)

%.J TABLE A-1.

ROUNDED DEFECT LIMITS Maximum dimension of rounded defect Number of indicated rounded defects n

{)

allowed per square inch or per 6-inch length of weld, whichever is less.

1/32" and less The total number of indicated defects shall not exceed 20 and shall be randomly distributed.

Greater than 1/32" to and The total number of defects shall not Ancluding 1/16" exceed 10 and shall be randomly distributed.

Creater than 1/16" None allowed.

90010182

,3 w

I

}

l 8-10

i a m 2

ljvdrostatic Testine p ro c ed u __e r

736-itT601 leak testing will be employed to chec)

.he cavity for leaks.

Pressure of tuo such test s will be performed af ter the cavity subasscnibly The fi rs t construction has been completed.

to complete this test.

Teraporary plugs can be used in cavity openings consists of closing the necessary openings in the cavity and completely The test to a na<imum The cavity will then be pressurized with air filling with water.

be held for a period of one hour with pressure of 150 psig.

This pressure must no detectable leakage.

A final leak test will be perferned after the cask is completed.

The same procedure will be followed as for the first test with all permanent fittings in place, and with the relief valve opening scaled.

pourino Procedure for Lead Shieldin" 746-LP-1001 Revised 5/3/t>6 followed in providing This specification covers the standard practice void-free lead shielding.

1, Cleanice of Lead Centainers Interior cavities and surf aces of container shells which are 1.1 to be in contact with lead shielding will be cleansed of loose mill scale, weld slag, and all carbonaceous materials.

1.2 Containers vill be filled with water for the purpose of cleaning, checkint; f or leak tightness.

1.3 Units required to r!iasipate lars.c quantities of heat and the Edward Lead Company's patentea which do not i nc or ;s o r a t e i

heat removal fins will be cleaned by sandblasting before l

assembly.

1.4 Curfaces to uhich lead is to be bonded will be tinned prior to fabrication where practical.

Weld areas to be tin ir 1" f rou each veld surf ace, 1.5 Individual procedures vill be established f or bonding; tead t

to the surfaces of fabricated containers, 90010183 l

8.11

m 6g) i 2.

Material Selection 2.1 Lead of a grade qualifying as Federal Specification QQ-L-171c-f Grade C or B29-55 or equivalent will be used in shipping containers unless otherwise specified.

j 2.2 Special lead types will be selected and tested for low back-ground shiciding systems where this requirement is specified.

3.

Description of Eculpment 3.1 Sufficient melting capacity must be provided to allow for continuous pouring of the lead.

3.2 All kettles must be provided with facilities for pouring 1 cad from the bottom of the kettle.

3.3 Pumps will be utilized to fill extra long or high containers.

3.4 Equipment for dross-free pouring will be used where required.

I

l..

Openinn for Lead Fi111na, C/

4.1 Containers will be provided (where possible with large pour openings in order to allow for easy dross removal and proper agitation of the molten lead.

(A 4-in, diameter opening is the minimum size for adequate lead pouring and dross removal).

4.2 All areas which could possibly trap air will be vented with scal-off plugs.

5._ Preheatinn of cont ainers 5.1 Normally the lead containment will be uniformly heated to 450-500 F ( 25 F) over the entire surf ace prior to lead pouring. The above temperature will be checked by a contac L pyrometer.

5.2 Air drafts must be limited so as not to vary the heating and cooling temperatures of the container surface by more than 50 F.

p,.

Fillinn of Containers 6.1 The temperature of the Icad at the tic.c of filling must normally range from 750 F to 800 F.

The lead temperature, when poured, must not exceed 850 F because of excess drons formation.

If l

copper, brass, or aluminum alloys are present in the lead 90010184 l

3 12

1 cavity, the maximum lead pouring temperature must not exceed 750 F ar.d remain molten for not more than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.*

6.2 A lead fill pipe will be located to minimize splashing as the molten 1 cad enters the container.

6.3 The lead fill pipe will be located to prevent the tc.

mn 1 cad from impinging upon the container walls, therc re--

sulting in hot-spot distortion of the container.

6.4 The lead fill pipe must be located so that the molten lead does not impinge upon any copper or brass parts in the J

container.

6.5 The lead-flow rate should be adjusted for continuous flow in order to fill the container as rapidly as possibic.

6.6 At the completion of the fill, the temperature of all lead in the containment must be above 625 F as checked by a chromel-alumel thermocouple sheathed in stainless stccl.

6.7 The molten 1 cad in the filled container must be mechanically agitated for the purpose of freeing any entrapped solid

. O" particles, dross, or gas bubbles.

7.

Lead cooling 7.1 The molten lead in the container raust be cooled from the bottom up in increments small enough to insure that only one solidi-fying front exists in the container.

A normal cooling profile in a cylindrical container above the solidification front should show increment of 10 F to 20 F per foot of height.

7.2 The molten Icad in the container must be thoroughly probed and agitated to facilitate the release of entrapped gas and particulate raatter, 7.3 All foreign matter and dross must be removed from the surface of the lead.

8.

Filline Lead Shrinkace Void 8.1 Molten 1 cad at a minimum temperature of 750 F will be added in small increments from ladles to fill the normal shrinkage void.

The temperature of the molten 1 cad resting in the container awaiting solidification should not exceed 700 F.

The temperature of this 1 cad shall be continuously monitored.

90010185 8a

g

(

8.2 A record will be kept of the weight of all lead added to fill the shrinkage void when a volumetric check is made in place of gamma probing.

~

8.3 Direct heat may be carefully applied to the lead surface last in the solidification process to insure that the fill area is free of voids.

8.4 The fill opening will be filled to the proper icvel, dross removed, and the lead surface firc-polished to finish the pouring procedure.

9.

Closure of 1oad Fill Onenings 9.1 All openings must be cleansed of lead splatter and Icad oxide before velding the closure plug.

9.2 closure-plug velds must not penetrate into the lead.

Shicidinn Intecrity Tentine Procedure 748-GP-401 Revised S/3/68 O)

'w 1.

Scope This procedure covers the limits and methods for testing the integrity of the lead shiciding in radioactive material shipping containers by ieans of a gamma ray source.

i 2.

Equipment (a)

The gamma ray source shall be encapsulated and the external surface free of loose contamination.

(b) The gat =ta ray source and detection equipment shall be capable of detecting a void, at any place in the mad shielding, equivalent to the thichness of the penetrameter in the table below.

This censitivity capability shall be checked with the lead penetrameter attached directly to the outer surface of the container.

(c)

Shiciding components to be tested should be located so as to be from any shielded or unshielded source of radiation which r.iight othetwise remote interfere with reliable test results.

(d)

The equipment for positioning the source shall be capable of the center near physically locating the source on or near the container bottom at the top just below the cover and at all intermediate positions inside the cask.

90010186 8-14

ra;o TABLE A-2.

GAMMA PR03E SE:;SITIVITY Cl! ART l

=

Thickness of Lead, Dimensions of Penetrameter inchos inches Indication 2

.062 x 1 x 2 clear definition 4

.093 x 2 x 4 clear definition 6

.125 x 3 x 4 clear definition 8

.187 x 4 x 4 clear definition 9

.250 x 5 x 5 definite indication 10

.30 x 6 x 6 definite indication 11

.500 x 6 x 6 definite indication t'\\__

3.

(;n=ma Probe T nspec t i on (a)

The entire surface of the container shall be gamna prcbc inspected on a grid as given below.

Lead Vertical l!orizontal Thickness,

Distance, Distance, inches inches inchen 2

2 2

4 3

3 6

3 3

8 4

4 9

4 4

10 4

4 (b)

All significant deviations in chielding integrity shall be recorded on an appropriate drawing and be made available to the inspector.

(c)

Questionable areas shall be mapped and outliacd on the side of the container with chalk.

(d) Any area showing a shielding deficiency of 10 porcent belew the normal average shall be repaired. The repair shall be accomplished by a procedure acceptable to the owner and reprobed as in (c) above.

l 90010187 8-15

i O

4.

Innpection Repo_r_ts Final inspection reports containing actual eensured radiation values shall be prepared. All questionable and repaired areas and their final neasured radiation values shall be shown on an appropriate nap of the exterior of the container.

900l0188 0

9 0

8-16

^ ^ ^ " '

- ~ - - - - - - -

- -