ML20098B538

From kanterella
Jump to navigation Jump to search
Slide Presentation Entitled, Hydrogen Source Term for BWR Degraded Core Accidents
ML20098B538
Person / Time
Site: River Bend Entergy icon.png
Issue date: 06/29/1983
From: George Thomas
ELECTRIC POWER RESEARCH INSTITUTE
To:
Shared Package
ML20093C471 List:
References
NUDOCS 8409260147
Download: ML20098B538 (42)


Text

__ - _ _ _ _ _.

l-i HYDROGEN SOURCE TERM FOR BWR DEGRADED COPI ACCIDENTS i

i 1

BY GARRY R. THOMAS NUCLEAR SAFETY ANALYSIS CENTER NUCLEAR POWER DIVISION ELECTRIC POWER RESEARCH 15STITUTE PALO ALTO, CALIFORNIA; USA i

PRESENTATION TO U.S. NUCLEAR REGULATORY COMMISSION

3ETHESDA, MARYLAND i

29 Juts 1983 k

8409260147 840910 PDR ADOCK 05000458 G

PDR

D

= * = = = = =..

.g.

O O

e l

t I

DEGRADED CORE PHENOMENA 9

a C

(

O

+

4 e em h

a

?

+5:

I 4

0 t

i

2

~

CORE DEGRADATION WITH INSUFFICIENT COOLING DEGRADED CORE ACCIDENTS GENERALLY INVOLVE DECAY HEATING

..e OF CORE DUE TO SUSTAINED INADEQUATE CORE COOLING e

CORE DEGRADATION PROGRESSION CHARACTERIZED BY:

e RELATIVELY SLOW INITIAL HEATUP RATES WITH STEAM COOLING

~

e LATER DOMINANCE OF ZIRCALOY OXIDATION EXOTHERMIC ENERGY RELEASE

'e RATE LIMITS FROM LOCAL STEAM OR. STEAM / HYDROGEN CONDITIONS HIGHDEGREEOFNONC0HEREiiCYI0FCOREDAMAGE s

e SPATIAL DISTRIBUTION e DAMAGE SEVERITY e

RELATIVELY SMALL SYSTEM RESPONSES REQUIRED TO ADEQUATELY SUPPLY SUFFICIENT COOLANT SUPPLIES / HEAT SINKS FOR:

'i e

PREVENTING CORE DAMAGE DUE TO OVERHEATING INTERRUPTING CORE HEATUP/ DEGRADATION, PROCESS e

Q 5

GRT 6/83 i

)

80..

gNRCCladdingOxidationCriterion=75%

3 70 3

Approximate Range in Cere-Wide Cladding Oxidatien j

Fraction in Unmitigated Degraded Core Accident

  • s J'!

60 -

3l 2

5 8

j 50,

.i g

t 8

e 40,

j

-3

/

j'

.i e '

3 o

j 5

30 I

-/~

4

./,

?

/

'/

l t

i

.3 I l l

. l ~,-

.ili s

u

ll y/

lf., l l' i

! i i

//'/

2

-.i

.i ll

/

/

/

/

/ / ll

  • a

, /

/

/

10

~/

/

/

I a

f,' j /

l

/ /

l I

l

/

0 l 2000F-to l3500'Fto Time I

5200 'F (UO h > 5200 'F 1

Core Max

< 2000 'F

,-3500 'F (Zry 2

Temp Melt) l Melt) l g

I Water Top

]

Level of

,~ 3/4 Un._~ 9/10 Un-4

- v Core covered covered i e O

i Geccetry Essentially Intact

-Local Dis--Generali::ed Sjcr Slumping /EF'l 5::::-

tortion anc Slumping Head Failure slumpine Beginning t

JY 27 June /W3 1

1 1,_

1 1

(

1 BWR CORE HEATUP CODE 9

MODELING BASIS

.I

[

l 1

i I

1 i

-i l

.l. -.

'h

'ij t

s

.i. _

O l

1 o

....a

t i

4 1

STEAM DOME

/

/

i

~

/

I,/

/

( STEAM 1

I i

l 4

......L.....

~

!',,,,,ydPERPLkNUM N

j

[M "3

0 0

t

~i r

- e ECCS-1 c==r

...,,' -l l

W l

I i.* l

( -

i 4

8 l

. 65d'll FEECWATEF l'

=:

i lf

$: d m),

p

=

r k 55 a,

=

{

"T"t.'

t.

o.

s.

~

0 d

4' w s s

u

~-

s o

{a i w j

r, a..

s -

, s.

s v

./

i MODEL BOUNCARY w

n 1

s y,"

A y<

g a

E E

a o

s m

a.

E LCWER PLENUM E

i 4

k I

i

.1 i

CRD 1

4 I

BWR CORE HEATUP MODEL 4

i i,

1

-m.

i

(

t, j.

^

BYPASS CMNNEL CHANNEL i

m.

y t

I SHROUD CHANNEL l~

~

FUEL CHANNEL s'-'

f WALL CONTROL WALL W

/

ROD (gCLAD f

i

(

8 J

l s

i 1

j s

L-TUEL pygt RCD ROD TYPICAL.

j[

AXIAL I

NODE b@

+Q e i

l STEM i

f l

l b O.,

,0*

'l ty.

~~s' y

I j

,/

O 2

]

')

~

w y g

'4ATER y-e a

i

~

i' i

LOWER PLENUM BWR CORE HEATUP CODE CORE MODELING I

1 1

l 1

i i

1

Corner Rods Side Reds

- (4/Bundl e)

(24/ Bundle)

\\ ___ 6'@ O.O @__O_

D l

[OlOOOO@010' c,,,,,3 OOOOOO!O O FO O O O O OIO (34/sunete)

OOOOOOOO OOOOOOM I

O O O O rgit o o!o oo o o o;Oo OO[efdOOIO OOO O Oi I'l';&,1

.010_O_O_O O OlO

~

0 0'@

@iO O O O O Ol@

@00 OO!O_

Q O @ O O @ OlO,j_(*010 0 0 0 0 07 0,>

Centrol e

Slade 1(

l l

)

  • OlO @ OO @ 010"

'OlO @ O O OOICf OlO O O O O OlO OlO O O O O OlO l

O O O O O O Ol@

OlOOOO0010 doO[elOOOO OlooOr,]ool0 OIOOO140OO OIO O[eTOOOO

~

01000000@

O!O OOO OO O i

010000000 01000000

pOeOOeOO, pO eOO eOl0_O, FOUR 8UNDLE FUEL WCOULE O ~a" o -m x, h Tit RCCS BWR CORE HEATUP CODE UNIT CELL CONTAINING 4 FUEL BUNDLES AND 1 CONTROL R0D BLADE

.i I._.

o e

TOPviEW e

DODODODODO a

00TQ000000000 i

a" 00000000D0000000D0 i

OOODODODODODOOnnGDOD

~

44,,

DODuuCDuuGDODODLluGDuuO a.,

DODCDODODODODODORODODO 0000D0D00E0000D0D0D000

.=,,

QOOOODODQDCDQDODQDODonOO

=

"- DODODuuGDODODODODuuCOGDODO

= " DODODOPODQDCOODODODODODODO

= "

D000D000D00000D0D000000000

=

QDOD nrTQRnnO Dnn GD Q

~ OGOOOTOD OCT i

= "-

DODODuoODOD iODODODODODODOI

=

D0000000D

'Q]GDODODODODODOl*.

=u" D00000000 uO3LTOODODDDUOuL.NU n" ~ DnnODQOOOCDOCI9J]CD00000D0D0 L

vol' DO^OODuufDEDODODODODODuoODO

'a,, _R00000D00000D0000000000000 0000000D0D00000000000000 i.

i OOOJODOQGDODO CTOOOROD ri i

T i4 D00000D L000D00C000U00 so "

T

!OODQDODODODODOD 0D000

=,

10D0000000D000D t_.ODOC

=,,

OODODODODODODODODO o.

I I I ODODODuuCDuu n,l1li1 l 1 l D0D0D00000 l

iIIIIIIIi1 83333 2 ::

A R R A R 9 : ; ; ;R a a s a s.: : : :: a===naanaa: : : : : -

S CE ANGE MCN TCa u

3 w EawEo: ATE aAuct uCNiToame sysTEu naus a

TCTAL PENE* RATIONS FCR NUC1. EAR IM$TRUutNTS 43 BWR/6 CORE MAP SHOWING RADIAL ARRANGEMENT OF BilR CORE HEATU? CODE UNIT CELLS i

I

l l-764 Bundle Core Half Core Map - Typical for 2nd Fuel Cycle

(

(numbers in bundles re: resent different enrichment or exposure) so 2Ts 121: 14 lii n la 14 Trl s i sjTT a 3

' 2 T T s i sj I I s Il21. s ig s i 2 '

Yis lIIIIIII[II'sTsT2[ sis j sIj, ITj s l41212 l2.sgsIDsi sis 2l2]

2I tit ss 212[sia slal4lal41:14l:y41 14

,4 3141: 14 214 sl41 sis sist:12 j

ns

-[s spi s s l 2 f_I[TQ ds-[U si2 slDT2pT2pi s' 21s1 2 2

1 sim b 41s 4 l 2. 4 Isi s l s ls ta ls 212 22 2121s 21s alsis 4 1 s, 4 l :, i 4 : s 21sI23}U21:12 s i s i s i s 9: 12 s i s l a lhiIs l 21 s llT sT

'28 212!2121sl2 ts :l 2 l s 121.T Ti s1g1sp i s lsk):

sl l4 s;s!sisjajsj2l2 I

T4 4143 314 4

3 'y sa l s l 2 l.s l 2121 s l 2 : 2j 1s t 2 l 2

ja 2g2 2l sis 8 s l s t s l s : s,l l 2 g l 2 l 2 2

s 14 -

s.21s sis Is isie ls ls l: 13 41s gt2l:

4 a s

2 DI2Ts'l 2Tsi2l 2'sisis TfTl2': 's 2's12;shl~2T2I2'

(

12 -

12 l s 2!s sls s!sisl4 4 s i s 's sI to -

2.s'2 sl21sl

_2,}127sJ212 j 212 f il s l 2 sl2:2lN2(2 sl2l2 Os -

slystag22s 2 212 21si21sjJs sls12 os --

2 g

als]ll od -

421sgrisj21s gsisisl2lsl2 sl2 2 sl 212121212 ( 21 : 12 l21212 i

u ii 01 Os 05 07 09 11 12 1s 17 is 21 222s27 3 s1 ss X 27 3 41 43 46 47 el si ss ss s7 sg Quarter Core Map showing Unit Cells and Their Core-Wide Grouping Unit Cell 1 sl8 l s18 sl' sls 214

12 sl2 s ls 214 sla s14 sis 214 sl2 sl2 Unit Cell 2 213 sis s_Q sis sit sls 2

s2 414 sl4 14 sie 214 2ls ls 2.2 Unit Cell 3 sis at

21s l:

si s 212 s12 si:

21s sl4lsl4 314 als als als 212 Unit Cell 4 sls alsj212l21s 213 2Is 212 sl2 a l4 314: 314is14 sls als 2is 2{2

,,2]

21sja :sls Unit Cell 5 3

2 s : 212 2

2 2

5 2

s Is S

Is 2is b

2 2

l4e s Unit Cell 6

  • l' 8l21s121sl2l sis l2 212 2is!21sl2l:

4l4 s

sis s

Unit Cell 7 212 s l 2 : 2 l 212 l 2 8 s i s ; s, 212 2 l s ir i s l21 s l st a 8 2 sl s st2lsl2 s i 21 Unit Cell 8 2'

21:1212 2

l:

TYPICAL 764 FUEL BUNDLE, 231-INCH RPV SWR /6 CORE MAP SHOWING RADIAL ARRG'T OF BWR CORE HEATUP. CODE UNIT CELLS l

Radial Power Shape--

Function of Position Core Axial Power Shape--

For All Unit Cells i

CL Unit Cell (4 bundles)

I I

I l

s I

l I

i I

l 3

I' 1

i Onq i

I Nde o

I I

Axial

^

l Direc-I tion l

1.0 l

P/ P,y, i

13 P/P Distance Frem Centerline n

Radial Direction i

?

AXIAL AND RADIAL PEAKING FACTORS 4

i-w n

' ' - - - ' ' ~

i Unit Cell 4 Unit Cell 3 Unit Cell 2 Unit Cell I p __ qimarje____)

p _ _Im,agep __ _ q.. _ _ _ _ Image.r - 7 P--i r - -- 1 Image I

I '1 !

I!

(l!

i l

l l'Il l

L._ _.I [ L -- _.J._._ _ J (l! L _ __1 L

_.ll l L _._ _I H

A A

H A

11 A'

H L.__.lj'L__J cJ i

c =,t a

_ _ =

r r.=

c 881 - - l F -

ll'r-1

- - -M l - ~ 1 l_-_-gr__0q l

F- -~ ~l lI l J

g l

A.J C

I l

ld' C

I

_ _(

l ll c_J I

A IlI l

A i

I C

i L. _ _J L __ J L _ _J

_ _ _l

_ ? _l L ^_J L _.J L _ _1 l

1

(

Unit Cell 4 Unit Cell 3

. linitCc1T2 Unit Cell 1 o

I H

A H

A4 2 2 11 A 4

~

2h! - Il A

increasing __

J 2

m p

t core radius h

A C

A C( i; A-CMI 20 A C

a

/s As l

I mirror image transtt.of L[T'~l

, 21.'

d2lmuthal radiant energy

+H l

l A

l ll - hot hundle i

A - average bundle

' [_ _ _. b _ __ j C - cold bundle r _.x x>

i r-lfr- -I 1

A I)I C

l i

L _ _J L __ J Unit Cell 2 Image SCllD1ATIC 0F BWR CORE IIEATilP CODE llNIT CELL ARRANSEf1ENT TO ACC0llNT F0it RADIATION BETWEEN ADJOINING BUNDLES AND UNil CELLS I

i, 3:

3:li-i

.I BWR CORE HEATUP MODEL

~

i.

o GROSS CORE MODEL e UP TO EIGHT FOUR-BUNDLE UNIT CELLS e CORE BOTTOM INLET FLOW HYDRAULICALLY SPLIT BETWEEN FUEL BUNDLES AND BYPASS

{

e TOTAL LIQUID INVENTORY MASS & ENERGY BOOKKEEPING e BUNDLE LEVEL CALCULATIONS BASED ON MAN 0 METRIC l'

BALANCE WITHIN CHANNELS - ONE BYPASS LEVEL e MASS & ENERGY BOOKKEEPING Oii VAPOR 8 HYDROGEN IN DRIED OUT PORTION OF.EACH FOUR-BUNDLE UNIT CELL FUEL RODS AND CHANNEL WILLS HEATUP FROM NUCLEAR e

I ENERGY AND OXIDATION (STEAi AND HYDROGEN LIMITED)

I e

CONTROL BLADE HEATUP INVOLVES THERMAL RADIATION BETWEEN BUNDLES AND CONTROL BLADES 1

j e

TOP CORE SPRAY INTO UPPER PLENUM j

j CCFL FLOW INTO FUEL BUNDLES l

'l BYPASS FILLING WITH ORIFICED FUEL BUNDLE

{

BOTTOM INFLOW i

4'

- GRT 6/83 i

.l 4

l

- ~. -......

o

(

BWa CORE HEATUP CODE

~

CODEFEAT0RES i

G

.--h e

e 6

e 9

e i

e J

e 1

s t

'i 1

e

0

~

BWR CORE HEATUP MODEL (CONT'D) e STRUCTURES OUTSIDE CORE e SIMPLIFIED AB0VE CORE STRUCTURE (STEAM SEDARATOR/

DRYER) - HEATED BY VAPOR & HYDROGEN FROM CORE THERMALRADIATIONMODELIEGOFSHROUDANDRPV e

WALL e DOWNCOMER LEVEL CALCULATION BASED Ofi RPV MAti0 METRIC BALANCE AND CONSISTENT WITH TOTAL RPV INVENTORY GRT 6/83 4

1 i

i 1

i

F

(

.i -

HYDROGEN SOURCE TERM CALCULATIONS i

e SCOPING STUDY OF H PRODUCTION RATES COMPLETED 2

6 e HYDROGEN PRODUCTION DURING HEATUP LIMITED BY STEAM SUPPLY / PRESENCE OF HYDROGEN

(

l e

PROGRESSING DEGRADED CORE ACCIDENT (N0 ATTEMPT AT I

CORE RECOVERING)DOES NOT RESULT IN MAXIMUM H2 RATE PRODUCTION s--

s PROBABLE MAXIMUM H2 RATE PRODUCT.IO10CCURS IN EARLY PHASE OF RECOVERING-OF CORE (ECCS INJECTION) STARTING FROM ALREADY ADVANCED HEATUP (PORTIONS OF CORE AT OR ABOUT ZIRCALOY MELT CONDITIONS) j e ABSOLUTE H2 PRODUCTION RATE PEAKS IN CORE WILL BE

}

SOMEh"dAT MUTED WHEN H FLOWS REACH DRYWELL/WETWELL 2

(

i l

GRT 6/83 3

-)

i i

f

.l

.c..

IlVDIV)6EN SOURCE 1ERM CALCULAll0NS T

SCOPING SIUDY KSULTS ESULTS ACCIDENT CONDlil0NS PRODUCTION ('8"/ ge)

RADIAT10N START OF CORE START OF CORE CORE FLOW 162 RtM PRESSUE (Ain)

MODEL UNC0VCRING (SEC)

KCOVCRY (SEC)

(LDn/SEC)

PEAK SUSI.41T a f M.

l 3

I t

0

'0.5 1.5 ($10 nin.)

1

'2 IULL 7200 l

2

'2 UNIT CELL 7200 0

'O.5 j

0

'0.66 1.5 ('15 nin.)

3

'40 filLL 7200 i

q

$40 IULL 7200 10,000 8 (CRD)

'0.8

'0.6 ($10 nin.).

5

'40 rULL 7200 10,000 90 (RCIC)

'l.5 (<1 nin) 1.8 ('10 nin.)

I

$1.35

'0.6 (* 7 nin.)

l 6

90 UNIT CELL 7200 10,000 660(gDRE)

PRAY e

i i

f*

t I

2 i

s e

.g 1

1,

'T J

1 I

i

.e e*$D 4

l.

6 e

6 g

9 m.

5 W

e ew 5

O ee 4

I em e

1 l

1 1

i a

e

~

1 3.::::

l si t e. t..n4 %,.

'FE55U'C=0.J MPA I

'3.4c00 NI"

\\

~

t 3.:::0 4

k

\\

2.s ::

\\

\\

\\i I

2.2:0:

[w.

~

1 l

\\

1 W

.e:::

i 1

w I

1. 4:00

\\

t y

\\

N N xI

. f

\\

t 8 8000 A

i N

l N'

1 O.20:0 1:n.:3 seco,cc

ggg, go g ggg g, g3 flRC.SEC:h:5 I'

MINIMUM IMS PM43[ ([y[L i

t

~

4 L

t

0 o

k I

31 EAM t !MITl hG

[

i 3:30.::

rr.a.or sw. < =r n j

l T MAX

/

/

/

/

2 ::.:n

/

r

/

22:3.::

.z.

ll: 1 ::.:n s

w cD

-ec

~

6 w

1n::.::

/

/

2:::.::

i

- - - - 80s. ::

5 a

1 ::.::

s:::.:n

:n 13::1. ::

TIMt.SEC:hCS MArtMUM :tRO*!NS itsPgaATURE

,.1 t

e 9

i 9

e

f-i c.2sta

\\*

$1 ERM t IMIT) NG

  • 8 f$$U8 f.0. ; =PA 1

1 8.2200 TCH2R P

C.2000 I

0.12 0.16C:

l 0.1400

?

i

'i o

s O.12CO I

l' i

!0.le:e I

i l

il8 I

es q

e 3

C.Ct:0

'I 2.08:0 l,'

I l

c. e s t.

f

'\\\\

0.C200 t

t.23:0

?ccc. to set:.en ces. ::

gs:g:, ::

f!M(.SI :h:$

MTCRC:(N GENEARfjgN RRig 4

e e

i c

,6CC.CO*C

\\

S1 E AP, t IMITjNG PP ESSUF E = 0. ; MPR 353.t000

/

1

,/

/

d t

300.CCC:

/

I 250.C ::

E

c.e::o e

t 15:.:::o

/

l i

I.

300.C000 i

~

.l..

SS.CCCC l

C.C *C l

78f*8* 8C 8088.to 1 000. to cco, gg flMt.Stt:NO!

CunnULAt!YE MICROGEN GENERAT]CN

]

t 4

/

I

9 4

m.*

iI O

4 5

1 t

s

. 4 e

4 h'

1

.s ne RUN 3 i.

?

.4.)

f Y

=

, e e

4 h

9 a

N e

6 t

i

)

sI n

4 i

i.

I 4

)

l 9

=

- = =

.e_

+

9 l

1

)

.l,

'i

)

4.cccc q

F 5 IERM LIP ITE]

'.j 81! ESSURE = 4.th?A WI. MIN l

3.5Ccc l

.4 I

i

.)

I..

3.CCoc o

1 i

2.50C0 e

J C

w 1

>=

y

~

I j

  1. i.CCcc

',s u.

.y 1.SCcc

~

x i

1.c000

-1 N

1

\\ N 2

.a N

j c.becc A

c.cccc

,3

'j 1c00.

9 C CC.

TIME.h M OS

11000, i

9!h!"Us. TWO PHASE LEVEL

'l

  • d
  • i d

a

,o

_y e

, me e *

(

li y

(

l 32Co.

l I

6

\\

/

I i

i

.)

$ REAM LD ITED

/

I I

I 30C0.

/

TCMAX

/

2 co.

t

(

2ECC.

.4 J

1-

'i

z. 2200.

,e v

I

.J y 2* C.

'i

~

ui

^

~

c 3 1200.

a

+

i l

e

=

I I.6CC.

a r

L.,

14 C O.

i i

a 1200.

l CCC.

f.

/

_e00.

(

l

'i SCO.

1 I

/,

4 3

4gg, 1000.

9000.

TIME.h M OS

13000,

.j i

MSXIMUM CLECCING TEMPE9c7U.qE q

I

'1 i

-l-t 9

w-ta my

?

y?+-

ee-r+

1o--=a+

.ve*

    • W-rt' 9=-

t

t...

l, i

I I

l I

S F E AM, L D ITED i-

-l 0.2800 enE55uRE=s.iars l

TI:H2R 0.2400 1

~

f I

l I

i 0.2000 l

c t

z c

s; 4

y 00.ie00 5-b s.

1 rc c

L::

a o

J I

I p.1200

,I P

)

l l

l l

'l

~'

0.C8:0 I

I I

l l

f

!{f l.

kkf b

i 0.0400 P

J e

1 D.0000

~

7000.

9000.

7 y gg, g;gg3 30]:.

4

~1 HTORCGEN GE N E 2. A i ! O N R;iE l

t I

8 ~

e i

4

~

we

  • ge N -.

j.

-(

i 450.

l l

l S"E A." L D ITED g-(

Pl!ESShRE=4.1p?A res2 i l

. c o.

g J

f 350.

[

/.

i I

300.

'~

i 8

i Q 250.

e Cec J

l 2 2t1 I

I I

i 150.

l

/

I

{

/

j i

50.

_h _. _.. _ _ _ _ - -..._. g,

j 20 c 0.

9ccc*

11ME.h b iOS

' 3 FC-I I

CUMMULAT!vE STCRCC.Es GENE =.Ri!Ch

'I I

8

l e

O_

i 1

e i

RljN 4

.I t

t 1

l 9

em h

4 I

.6 4

't,

.l, e

t 9

eh i

t i

9 I

e i

i 1

e.

-= - -

-+=..

e e

3.0 ::

letL RA !afftN.CM:

PPE5597t = 4. l MPE L'M i h 3.4 ::

l

\\

\\

3.:::.

\\

I

2. :::

\\

e zg.

w 2.22:0 s

tas.

1.t ::

I

\\

1.4:0:

l s

I 4

I l

n. : -

\\

/

N

/

v 0,80:

10:8.80 0000. CD 11000.C0 13000.CO 11Mt.St *4:3 f;

MIN! MUM TWC FMRSC LEVEL t

l 1

ii i

=......

e-

.~.e.

1 0

t

+

l t

5

{

28:C.20

~

f~

RLL RAC !AT!( N+ CRC

(

PfE55UP E = 4.1MPA a

24:3.00

.=,a4 y

i n::. ::

.(

200:. C:

I it*.

E.

.m 5 ::::.::

wa e

g

ii
:.::

c w

I w

i 1:C0. CC 4

I i

sc::. c:

ecc. ce j

Sc:. cc

'lI

/

.. ecc. c3 7000.00 secc. co ecc. co

cc.co TIME.5tC3hCS MRr!PUM Cla:D!NG TEMPE*ATung

't 4

I.

3

)

i 1

1 e

e ems.

.-.e.

.+e

.-==

w

O i

4 0.3600 e_,

se,,et,,

v.r.,

P E55UPE.g.I npa I *IR C.3:::

I

~

a. 2 e a.a

]l l

C. 2 4 0 f

ll l

I c. :::

8 E

I

~

2 i$

c.li::

I d! l j

' ( Il t d

i til f

ll\\)f,4h;-h,,

.ir::

' V' I

l C. f::

't Ulbl i

l i

0.Co*D

./

ii i

2.0000 IEEE* C0 11000.3:

33::g, gg IIRC.SLCCNCS M10M*3[n Gghts,gt;gg pqrg i

1 t

e 4

1

(

t10.::::

ALL MAC IRf!! N. R:

" ' " * ' ' ' -'e

/

4:3.0000

/

TCH2 550. :::

5::.::::

g 450.0000 4.::::

c350.C:::

r

/

l c

\\

2::.::::

z 250.::::

2::.000:

10.::::

/

1 :.::::

50.0:::

/

0. :::

1:::.::

3 00.::

3:::.::

11RE.StCCNCS COMmutAf!vt HT:P:CEN G(ht?A!!:h e.

ti e

s 0

I 9

9

k' i

k

    • ~.oem..

..,e e

e h

I 6

RUN 5 e 4 O

G e

O h

- a m

O e.>

h

=

m

.=

I e

  • * ~ te s e o

me 4

S

  • P 6,

e 4

0 f

1 9*

e t

e e

le e

i l

t i

~

.I i

ett ma0!Iftch.**1C 3.0000

{PPI15UME f.gMP9

\\MUllN

\\

3.40C3

/

\\

/

1

\\

t

\\

2.8*CJ

  • ~ y

=

W I

.: 2.secc E

\\

/

\\

/

0..

\\

/

\\

/

A

/

I i

i.<c::

l

\\

/

i g

3.cCoc sN,(,

e O.4000 i

1000.CC 8000.30 9CC0. to 10'000. CP 11003.20 12000.CS

.13C00.C0 tint.st::mes j

MINIMUM TNC PMRst LEVfL 4

i i

I I

-1 a

a e

t i

i I

t g

j 2.:.:o..

. All,RRDI LTICN.RCIC k

PRl;$$URE.A.lMPP I

72 0. ::

v 2003 C:

i

~

i 1200. C I

l JE*:.

i 3

aW is J 1400. :

e3

~

c c

w I 12:3. C w

i 2000.00 9::. ::

\\

$ 20. C0

/

_..4:C. C0 s

1:23.00 0000.:

9000.30 1c000. 00 11:00.00 12:00.c3 i

TIME.SECONC$

MAXTMUM CLACDING TEMPERATURE l

1 4

i "4

s i l

+9 1,

e

..,--..-.-..,,n-,


,v.m

~~-e

-~ - - ~ ~ v

  1. =-'vve
  • '~ '

'" ~~"

g 1

C O.10:3 ALI.RROI ITICN.MCIC 8.8500

-,,; g,;,p,--

TCn2R 0.8cco g

i>

1 0.55C0 C.50:a C.45:0 a 0.4c::

i U

i

- 0 n.35:

if E

E y

C.3 **

~

Y 4

ar C.:500 i

f 1

C.200:

O.35C C.t:::

/

S.0SCO i

1 i

s. coco 1:00.20 8000. C:

s;::. :o

.==

t3:00.::

C.eo i3:::. ::

f!MC.SECONOS q

I MTCR*0EW CEhEA4f1:N PATE I,

l l

+

j I

5I 450.0000 All,RADI IT!ch.RCIC PRI:55URE i4) MPR

.co. ceco

(

teu2 350.C0 0 300.C:00 I

a 250.0003 p

Gcoo a

2c
.c
:o Ist.:cco 1

3CC.c:00 5c.::::

....c.0000 4

f f

1300. c0 acco.co secc.co gogog 'c0 110c0.00 320c0.00 33cco.cc 7!MC,SEC:WC5 CUMMULATIVE MTCACGEN GENERATICM i

I i

I 1

1 l

I l

i l

t e.

.. = =....

J e

e h

O RUN 6'-

e G

ene m

0 a

e 9Slp h

9 i

e b

O I

e

.e j

i I

l e

h

\\

I l

9 e

l

i ig.

I TIME VERSUS MAX. CLAD TEMPERATURE r

TEST 5B: SATURATED CORE SPRAY

.g g

g g

i 2000 i.

1500 ng e

~

1000 500 l

~l I

l o7000 8000 G000 10000 TIME AFTER SCRAM (SF.CONDS) l 4

J n

y

_. _.-g-

-.~y..

,-e.,,

.y y

,w%-,,.

s i

4

SUMMARY

e DETAILED BWR CORE HEATUP CODE DEVELOPED PRODUCTION RATES COMPLETED e SCOPING STUDY OF H2 e. PEAK CORE PRODUCTION RATES (g 1.5 tsM/SEC)

OCCUR FOR SHORT PERIODS (4-1 MIN) AT INITIATION OF ECCS OPEPATION e

SUSTAINED CORE PRODUCTION. RATES. (( 10 MINUTES)

FOR ALL CASES RANGE OVER 0.5-0.8 tsM/sec THESERATESAREATCORE-ACIUALPEAKRATESTO e

TO DRYWELL/WETWELL WILL BE LOWER (MUTED) AS A RESULT OF PRIMARY SYSTEM THERMAL HYDPAULICS t

GRT 6/83 g

"a

-,v

1 t

TIME VERSUS TOTAL MASS OF HYDROGEN AND SENERATION RATE TEST 58: SATURATED CORE SPRAY 500

.I I

. _I i

- TOTAL MASS 400-x RATE

~

0.S 0 w

0.80 o M

300 m

w tn v3 s

e I

x 0.40 ~w i

200 p

H a

o r

s C

D.20 100

=

,2

'I I

I O

7000 8000 0000 10000 TIME AFTER SCRAM (SECONDS)

I 4

.a I

1

~

i l

l f

. _, _. _ -....., _.., _ _. ~.,. - - - -.