ML20098B538
| ML20098B538 | |
| Person / Time | |
|---|---|
| Site: | River Bend |
| Issue date: | 06/29/1983 |
| From: | George Thomas ELECTRIC POWER RESEARCH INSTITUTE |
| To: | |
| Shared Package | |
| ML20093C471 | List: |
| References | |
| NUDOCS 8409260147 | |
| Download: ML20098B538 (42) | |
Text
__ - _ _ _ _ _.
l-i HYDROGEN SOURCE TERM FOR BWR DEGRADED COPI ACCIDENTS i
i 1
BY GARRY R. THOMAS NUCLEAR SAFETY ANALYSIS CENTER NUCLEAR POWER DIVISION ELECTRIC POWER RESEARCH 15STITUTE PALO ALTO, CALIFORNIA; USA i
PRESENTATION TO U.S. NUCLEAR REGULATORY COMMISSION
- 3ETHESDA, MARYLAND i
29 Juts 1983 k
8409260147 840910 PDR ADOCK 05000458 G
D
= * = = = = =..
.g.
O O
e l
t I
DEGRADED CORE PHENOMENA 9
a C
(
O
+
4 e em h
a
?
+5:
I 4
0 t
i
2
~
CORE DEGRADATION WITH INSUFFICIENT COOLING DEGRADED CORE ACCIDENTS GENERALLY INVOLVE DECAY HEATING
..e OF CORE DUE TO SUSTAINED INADEQUATE CORE COOLING e
CORE DEGRADATION PROGRESSION CHARACTERIZED BY:
e RELATIVELY SLOW INITIAL HEATUP RATES WITH STEAM COOLING
~
e LATER DOMINANCE OF ZIRCALOY OXIDATION EXOTHERMIC ENERGY RELEASE
'e RATE LIMITS FROM LOCAL STEAM OR. STEAM / HYDROGEN CONDITIONS HIGHDEGREEOFNONC0HEREiiCYI0FCOREDAMAGE s
e SPATIAL DISTRIBUTION e DAMAGE SEVERITY e
RELATIVELY SMALL SYSTEM RESPONSES REQUIRED TO ADEQUATELY SUPPLY SUFFICIENT COOLANT SUPPLIES / HEAT SINKS FOR:
'i e
PREVENTING CORE DAMAGE DUE TO OVERHEATING INTERRUPTING CORE HEATUP/ DEGRADATION, PROCESS e
Q 5
GRT 6/83 i
)
80..
gNRCCladdingOxidationCriterion=75%
3 70 3
Approximate Range in Cere-Wide Cladding Oxidatien j
Fraction in Unmitigated Degraded Core Accident
- s J'!
60 -
3l 2
5 8
j 50,
.i g
t 8
e 40,
j
-3
/
j'
.i e '
3 o
j 5
30 I
-/~
4
./,
?
/
'/
l t
i
.3 I l l
. l ~,-
.ili s
u
- ll y/
lf., l l' i
! i i
//'/
2
-.i
.i ll
/
/
/
/
/ / ll
- a
, /
/
/
10
~/
/
/
I a
f,' j /
l
/ /
l I
l
/
0 l 2000F-to l3500'Fto Time I
5200 'F (UO h > 5200 'F 1
Core Max
< 2000 'F
,-3500 'F (Zry 2
Temp Melt) l Melt) l g
I Water Top
]
Level of
,~ 3/4 Un._~ 9/10 Un-4
- v Core covered covered i e O
i Geccetry Essentially Intact
-Local Dis--Generali::ed Sjcr Slumping /EF'l 5::::-
tortion anc Slumping Head Failure slumpine Beginning t
JY 27 June /W3 1
1 1,_
1 1
(
1 BWR CORE HEATUP CODE 9
MODELING BASIS
.I
[
l 1
i I
1 i
-i l
.l. -.
'h
'ij t
s
.i. _
O l
1 o
....a
t i
4 1
STEAM DOME
/
/
i
~
/
I,/
/
( STEAM 1
I i
l 4
......L.....
~
!',,,,,ydPERPLkNUM N
j
[M "3
0 0
t
~i r
- e ECCS-1 c==r
...,,' -l l
W l
I i.* l
( -
i 4
8 l
. 65d'll FEECWATEF l'
=:
i lf
$: d m),
p
=
r k 55 a,
=
{
"T"t.'
t.
o.
s.
~
0 d
4' w s s
u
~-
s o
{a i w j
r, a..
s -
, s.
s v
./
i MODEL BOUNCARY w
n 1
s y,"
A y<
g a
E E
a o
s m
a.
E LCWER PLENUM E
i 4
k I
i
.1 i
CRD 1
4 I
BWR CORE HEATUP MODEL 4
i i,
1
-m.
i
(
t, j.
^
BYPASS CMNNEL CHANNEL i
m.
y t
I SHROUD CHANNEL l~
~
FUEL CHANNEL s'-'
f WALL CONTROL WALL W
/
ROD (gCLAD f
i
(
8 J
l s
i 1
j s
L-TUEL pygt RCD ROD TYPICAL.
j[
AXIAL I
NODE b@
+Q e i
l STEM i
f l
l b O.,
,0*
'l ty.
~~s' y
I j
,/
O 2
]
')
~
w y g
'4ATER y-e a
i
~
i' i
LOWER PLENUM BWR CORE HEATUP CODE CORE MODELING I
1 1
l 1
i i
1
Corner Rods Side Reds
- (4/Bundl e)
(24/ Bundle)
\\ ___ 6'@ O.O @__O_
D l
[OlOOOO@010' c,,,,,3 OOOOOO!O O FO O O O O OIO (34/sunete)
OOOOOOOO OOOOOOM I
O O O O rgit o o!o oo o o o;Oo OO[efdOOIO OOO O Oi I'l';&,1
.010_O_O_O O OlO
~
0 0'@
@iO O O O O Ol@
@00 OO!O_
Q O @ O O @ OlO,j_(*010 0 0 0 0 07 0,>
Centrol e
Slade 1(
l l
)
- OlO @ OO @ 010"
'OlO @ O O OOICf OlO O O O O OlO OlO O O O O OlO l
O O O O O O Ol@
OlOOOO0010 doO[elOOOO OlooOr,]ool0 OIOOO140OO OIO O[eTOOOO
~
01000000@
O!O OOO OO O i
010000000 01000000
- pOeOOeOO, pO eOO eOl0_O, FOUR 8UNDLE FUEL WCOULE O ~a" o -m x, h Tit RCCS BWR CORE HEATUP CODE UNIT CELL CONTAINING 4 FUEL BUNDLES AND 1 CONTROL R0D BLADE
.i I._.
o e
TOPviEW e
DODODODODO a
00TQ000000000 i
a" 00000000D0000000D0 i
OOODODODODODOOnnGDOD
~
44,,
DODuuCDuuGDODODLluGDuuO a.,
DODCDODODODODODORODODO 0000D0D00E0000D0D0D000
.=,,
QOOOODODQDCDQDODQDODonOO
=
"- DODODuuGDODODODODuuCOGDODO
= " DODODOPODQDCOODODODODODODO
= "
D000D000D00000D0D000000000
=
QDOD nrTQRnnO Dnn GD Q
~ OGOOOTOD OCT i
= "-
DODODuoODOD iODODODODODODOI
=
D0000000D
'Q]GDODODODODODOl*.
=u" D00000000 uO3LTOODODDDUOuL.NU n" ~ DnnODQOOOCDOCI9J]CD00000D0D0 L
vol' DO^OODuufDEDODODODODODuoODO
'a,, _R00000D00000D0000000000000 0000000D0D00000000000000 i.
i OOOJODOQGDODO CTOOOROD ri i
T i4 D00000D L000D00C000U00 so "
T
!OODQDODODODODOD 0D000
=,
10D0000000D000D t_.ODOC
=,,
OODODODODODODODODO o.
I I I ODODODuuCDuu n,l1li1 l 1 l D0D0D00000 l
iIIIIIIIi1 83333 2 ::
A R R A R 9 : ; ; ;R a a s a s.: : : :: a===naanaa: : : : : -
S CE ANGE MCN TCa u
3 w EawEo: ATE aAuct uCNiToame sysTEu naus a
TCTAL PENE* RATIONS FCR NUC1. EAR IM$TRUutNTS 43 BWR/6 CORE MAP SHOWING RADIAL ARRANGEMENT OF BilR CORE HEATU? CODE UNIT CELLS i
I
l l-764 Bundle Core Half Core Map - Typical for 2nd Fuel Cycle
(
(numbers in bundles re: resent different enrichment or exposure) so 2Ts 121: 14 lii n la 14 Trl s i sjTT a 3
' 2 T T s i sj I I s Il21. s ig s i 2 '
Yis lIIIIIII[II'sTsT2[ sis j sIj, ITj s l41212 l2.sgsIDsi sis 2l2]
2I tit ss 212[sia slal4lal41:14l:y41 14
,4 3141: 14 214 sl41 sis sist:12 j
ns
-[s spi s s l 2 f_I[TQ ds-[U si2 slDT2pT2pi s' 21s1 2 2
1 sim b 41s 4 l 2. 4 Isi s l s ls ta ls 212 22 2121s 21s alsis 4 1 s, 4 l :, i 4 : s 21sI23}U21:12 s i s i s i s 9: 12 s i s l a lhiIs l 21 s llT sT
'28 212!2121sl2 ts :l 2 l s 121.T Ti s1g1sp i s lsk):
sl l4 s;s!sisjajsj2l2 I
T4 4143 314 4
3 'y sa l s l 2 l.s l 2121 s l 2 : 2j 1s t 2 l 2
- ja 2g2 2l sis 8 s l s t s l s : s,l l 2 g l 2 l 2 2
s 14 -
s.21s sis Is isie ls ls l: 13 41s gt2l:
4 a s
2 DI2Ts'l 2Tsi2l 2'sisis TfTl2': 's 2's12;shl~2T2I2'
(
12 -
12 l s 2!s sls s!sisl4 4 s i s 's sI to -
2.s'2 sl21sl
_2,}127sJ212 j 212 f il s l 2 sl2:2lN2(2 sl2l2 Os -
slystag22s 2 212 21si21sjJs sls12 os --
2 g
als]ll od -
421sgrisj21s gsisisl2lsl2 sl2 2 sl 212121212 ( 21 : 12 l21212 i
u ii 01 Os 05 07 09 11 12 1s 17 is 21 222s27 3 s1 ss X 27 3 41 43 46 47 el si ss ss s7 sg Quarter Core Map showing Unit Cells and Their Core-Wide Grouping Unit Cell 1 sl8 l s18 sl' sls 214
- 12 sl2 s ls 214 sla s14 sis 214 sl2 sl2 Unit Cell 2 213 sis s_Q sis sit sls 2
s2 414 sl4 14 sie 214 2ls ls 2.2 Unit Cell 3 sis at
- 21s l:
si s 212 s12 si:
21s sl4lsl4 314 als als als 212 Unit Cell 4 sls alsj212l21s 213 2Is 212 sl2 a l4 314: 314is14 sls als 2is 2{2
,,2]
21sja :sls Unit Cell 5 3
2 s : 212 2
2 2
5 2
s Is S
Is 2is b
2 2
l4e s Unit Cell 6
- l' 8l21s121sl2l sis l2 212 2is!21sl2l:
4l4 s
sis s
Unit Cell 7 212 s l 2 : 2 l 212 l 2 8 s i s ; s, 212 2 l s ir i s l21 s l st a 8 2 sl s st2lsl2 s i 21 Unit Cell 8 2'
21:1212 2
l:
TYPICAL 764 FUEL BUNDLE, 231-INCH RPV SWR /6 CORE MAP SHOWING RADIAL ARRG'T OF BWR CORE HEATUP. CODE UNIT CELLS l
Radial Power Shape--
Function of Position Core Axial Power Shape--
For All Unit Cells i
CL Unit Cell (4 bundles)
I I
I l
s I
l I
i I
l 3
I' 1
i Onq i
I Nde o
I I
Axial
^
l Direc-I tion l
1.0 l
P/ P,y, i
13 P/P Distance Frem Centerline n
Radial Direction i
?
AXIAL AND RADIAL PEAKING FACTORS 4
i-w n
' ' - - - ' ' ~
i Unit Cell 4 Unit Cell 3 Unit Cell 2 Unit Cell I p __ qimarje____)
p _ _Im,agep __ _ q.. _ _ _ _ Image.r - 7 P--i r - -- 1 Image I
I '1 !
I!
(l!
i l
l l'Il l
L._ _.I [ L -- _.J._._ _ J (l! L _ __1 L
_.ll l L _._ _I H
A A
H A
11 A'
H L.__.lj'L__J cJ i
c =,t a
_ _ =
r r.=
c 881 - - l F -
ll'r-1
- - -M l - ~ 1 l_-_-gr__0q l
F- -~ ~l lI l J
g l
A.J C
I l
ld' C
I
_ _(
l ll c_J I
A IlI l
A i
I C
i L. _ _J L __ J L _ _J
_ _ _l
_ ? _l L ^_J L _.J L _ _1 l
1
(
Unit Cell 4 Unit Cell 3
. linitCc1T2 Unit Cell 1 o
I H
A H
A4 2 2 11 A 4
~
2h! - Il A
increasing __
J 2
m p
t core radius h
A C
A C( i; A-CMI 20 A C
a
/s As l
I mirror image transtt.of L[T'~l
, 21.'
d2lmuthal radiant energy
+H l
l A
l ll - hot hundle i
A - average bundle
' [_ _ _. b _ __ j C - cold bundle r _.x x>
i r-lfr- -I 1
A I)I C
l i
L _ _J L __ J Unit Cell 2 Image SCllD1ATIC 0F BWR CORE IIEATilP CODE llNIT CELL ARRANSEf1ENT TO ACC0llNT F0it RADIATION BETWEEN ADJOINING BUNDLES AND UNil CELLS I
i, 3:
3:li-i
.I BWR CORE HEATUP MODEL
~
- i.
o GROSS CORE MODEL e UP TO EIGHT FOUR-BUNDLE UNIT CELLS e CORE BOTTOM INLET FLOW HYDRAULICALLY SPLIT BETWEEN FUEL BUNDLES AND BYPASS
{
e TOTAL LIQUID INVENTORY MASS & ENERGY BOOKKEEPING e BUNDLE LEVEL CALCULATIONS BASED ON MAN 0 METRIC l'
BALANCE WITHIN CHANNELS - ONE BYPASS LEVEL e MASS & ENERGY BOOKKEEPING Oii VAPOR 8 HYDROGEN IN DRIED OUT PORTION OF.EACH FOUR-BUNDLE UNIT CELL FUEL RODS AND CHANNEL WILLS HEATUP FROM NUCLEAR e
I ENERGY AND OXIDATION (STEAi AND HYDROGEN LIMITED)
I e
CONTROL BLADE HEATUP INVOLVES THERMAL RADIATION BETWEEN BUNDLES AND CONTROL BLADES 1
j e
TOP CORE SPRAY INTO UPPER PLENUM j
j CCFL FLOW INTO FUEL BUNDLES l
'l BYPASS FILLING WITH ORIFICED FUEL BUNDLE
{
BOTTOM INFLOW i
4'
- GRT 6/83 i
.l 4
l
- ~. -......
o
(
BWa CORE HEATUP CODE
~
CODEFEAT0RES i
G
.--h e
e 6
e 9
e i
e J
e 1
s t
'i 1
e
0
~
BWR CORE HEATUP MODEL (CONT'D) e STRUCTURES OUTSIDE CORE e SIMPLIFIED AB0VE CORE STRUCTURE (STEAM SEDARATOR/
DRYER) - HEATED BY VAPOR & HYDROGEN FROM CORE THERMALRADIATIONMODELIEGOFSHROUDANDRPV e
WALL e DOWNCOMER LEVEL CALCULATION BASED Ofi RPV MAti0 METRIC BALANCE AND CONSISTENT WITH TOTAL RPV INVENTORY GRT 6/83 4
1 i
i 1
i
F
(
.i -
HYDROGEN SOURCE TERM CALCULATIONS i
e SCOPING STUDY OF H PRODUCTION RATES COMPLETED 2
6 e HYDROGEN PRODUCTION DURING HEATUP LIMITED BY STEAM SUPPLY / PRESENCE OF HYDROGEN
(
l e
PROGRESSING DEGRADED CORE ACCIDENT (N0 ATTEMPT AT I
CORE RECOVERING)DOES NOT RESULT IN MAXIMUM H2 RATE PRODUCTION s--
s PROBABLE MAXIMUM H2 RATE PRODUCT.IO10CCURS IN EARLY PHASE OF RECOVERING-OF CORE (ECCS INJECTION) STARTING FROM ALREADY ADVANCED HEATUP (PORTIONS OF CORE AT OR ABOUT ZIRCALOY MELT CONDITIONS) j e ABSOLUTE H2 PRODUCTION RATE PEAKS IN CORE WILL BE
}
SOMEh"dAT MUTED WHEN H FLOWS REACH DRYWELL/WETWELL 2
(
i l
GRT 6/83 3
-)
i i
f
.l
.c..
IlVDIV)6EN SOURCE 1ERM CALCULAll0NS T
SCOPING SIUDY KSULTS ESULTS ACCIDENT CONDlil0NS PRODUCTION ('8"/ ge)
RADIAT10N START OF CORE START OF CORE CORE FLOW 162 RtM PRESSUE (Ain)
MODEL UNC0VCRING (SEC)
KCOVCRY (SEC)
(LDn/SEC)
PEAK SUSI.41T a f M.
l 3
I t
0
'0.5 1.5 ($10 nin.)
1
'2 IULL 7200 l
2
'2 UNIT CELL 7200 0
'O.5 j
0
'0.66 1.5 ('15 nin.)
3
'40 filLL 7200 i
q
$40 IULL 7200 10,000 8 (CRD)
'0.8
'0.6 ($10 nin.).
5
'40 rULL 7200 10,000 90 (RCIC)
'l.5 (<1 nin) 1.8 ('10 nin.)
I
$1.35
'0.6 (* 7 nin.)
l 6
90 UNIT CELL 7200 10,000 660(gDRE)
PRAY e
i i
f*
t I
2 i
s e
.g 1
1,
'T J
1 I
i
.e e*$D 4
l.
6 e
6 g
9 m.
5 W
e ew 5
O ee 4
I em e
1 l
1 1
i a
e
~
1 3.::::
l si t e. t..n4 %,.
'FE55U'C=0.J MPA I
'3.4c00 NI"
\\
~
t 3.:::0 4
k
\\
2.s ::
\\
\\
\\i I
2.2:0:
[w.
~
1 l
\\
1 W
.e:::
i 1
w I
- 1. 4:00
\\
t y
\\
N N xI
. f
\\
t 8 8000 A
i N
l N'
1 O.20:0 1:n.:3 seco,cc
- ggg, go g ggg g, g3 flRC.SEC:h:5 I'
MINIMUM IMS PM43[ ([y[L i
t
~
4 L
t
0 o
k I
31 EAM t !MITl hG
[
i 3:30.::
rr.a.or sw. < =r n j
l T MAX
/
/
/
/
2 ::.:n
/
r
/
22:3.::
.z.
ll: 1 ::.:n s
w cD
-ec
~
6 w
1n::.::
/
/
2:::.::
i
- - - - 80s. ::
5 a
1 ::.::
s:::.:n
- :n 13::1. ::
TIMt.SEC:hCS MArtMUM :tRO*!NS itsPgaATURE
,.1 t
e 9
i 9
e
f-i c.2sta
\\*
$1 ERM t IMIT) NG
- 8 f$$U8 f.0. ; =PA 1
1 8.2200 TCH2R P
C.2000 I
0.12 0.16C:
l 0.1400
?
i
'i o
s O.12CO I
l' i
!0.le:e I
i l
il8 I
es q
e 3
C.Ct:0
'I 2.08:0 l,'
I l
- c. e s t.
f
'\\\\
0.C200 t
t.23:0
?ccc. to set:.en ces. ::
gs:g:, ::
f!M(.SI :h:$
MTCRC:(N GENEARfjgN RRig 4
e e
i c
,6CC.CO*C
\\
S1 E AP, t IMITjNG PP ESSUF E = 0. ; MPR 353.t000
/
1
,/
/
d t
300.CCC:
/
I 250.C ::
E
- c.e::o e
t 15:.:::o
/
l i
I.
300.C000 i
~
.l..
SS.CCCC l
C.C *C l
78f*8* 8C 8088.to 1 000. to cco, gg flMt.Stt:NO!
CunnULAt!YE MICROGEN GENERAT]CN
]
t 4
/
I
9 4
m.*
iI O
4 5
1 t
s
. 4 e
4 h'
1
.s ne RUN 3 i.
?
.4.)
f Y
=
, e e
4 h
9 a
N e
6 t
i
)
sI n
4 i
i.
I 4
)
l 9
=
- = =
.e_
+
9 l
1
- )
.l,
'i
)
4.cccc q
F 5 IERM LIP ITE]
'.j 81! ESSURE = 4.th?A WI. MIN l
3.5Ccc l
.4 I
i
.)
I..
3.CCoc o
1 i
2.50C0 e
J C
w 1
>=
y
~
I j
- i.CCcc
',s u.
.y 1.SCcc
~
x i
1.c000
-1 N
1
\\ N 2
.a N
j c.becc A
c.cccc
,3
'j 1c00.
9 C CC.
TIME.h M OS
- 11000, i
9!h!"Us. TWO PHASE LEVEL
'l
- d
- i d
a
,o
_y e
, me e *
(
li y
(
l 32Co.
l I
6
\\
/
I i
i
.)
$ REAM LD ITED
/
I I
I 30C0.
/
TCMAX
/
2 co.
t
(
2ECC.
.4 J
1-
'i
- z. 2200.
,e v
I
.J y 2* C.
'i
~
ui
^
~
c 3 1200.
a
+
i l
e
=
I I.6CC.
a r
L.,
14 C O.
i i
a 1200.
l CCC.
f.
/
_e00.
(
l
'i SCO.
1 I
/,
4 3
- 4gg, 1000.
9000.
TIME.h M OS
- 13000,
.j i
MSXIMUM CLECCING TEMPE9c7U.qE q
I
'1 i
-l-t 9
w-ta my
?
y?+-
ee-r+
1o--=a+
.ve*
- W-rt' 9=-
t
t...
l, i
I I
l I
S F E AM, L D ITED i-
-l 0.2800 enE55uRE=s.iars l
TI:H2R 0.2400 1
~
f I
l I
i 0.2000 l
c t
z c
s; 4
y 00.ie00 5-b s.
1 rc c
L::
a o
J I
I p.1200
,I P
)
l l
l l
'l
~'
0.C8:0 I
I I
l l
f
!{f l.
kkf b
i 0.0400 P
J e
1 D.0000
~
7000.
9000.
7 y gg, g;gg3 30]:.
4
~1 HTORCGEN GE N E 2. A i ! O N R;iE l
t I
8 ~
e i
4
~
we
- ge N -.
j.
-(
i 450.
l l
l S"E A." L D ITED g-(
Pl!ESShRE=4.1p?A res2 i l
. c o.
g J
f 350.
[
/.
i I
300.
'~
i 8
i Q 250.
e Cec J
l 2 2t1 I
I I
i 150.
l
/
I
{
/
j i
50.
_h _. _.. _ _ _ _ - -..._. g,
j 20 c 0.
9ccc*
11ME.h b iOS
' 3 FC-I I
CUMMULAT!vE STCRCC.Es GENE =.Ri!Ch
'I I
8
l e
O_
i 1
e i
RljN 4
.I t
t 1
l 9
em h
4 I
.6 4
't,
.l, e
t 9
eh i
t i
9 I
e i
i 1
e.
-= - -
-+=..
e e
3.0 ::
letL RA !afftN.CM:
PPE5597t = 4. l MPE L'M i h 3.4 ::
l
\\
\\
3.:::.
\\
I
- 2. :::
\\
e zg.
w 2.22:0 s
tas.
1.t ::
I
\\
1.4:0:
l s
I 4
I l
- n. : -
\\
/
N
/
v 0,80:
10:8.80 0000. CD 11000.C0 13000.CO 11Mt.St *4:3 f;
MIN! MUM TWC FMRSC LEVEL t
l 1
ii i
=......
e-
.~.e.
1 0
t
+
l t
5
{
28:C.20
~
f~
RLL RAC !AT!( N+ CRC
(
PfE55UP E = 4.1MPA a
24:3.00
.=,a4 y
i n::. ::
.(
200:. C:
I it*.
E.
.m 5 ::::.::
wa e
g
- ii
- :.::
c w
I w
i 1:C0. CC 4
I i
sc::. c:
ecc. ce j
Sc:. cc
'lI
/
.. ecc. c3 7000.00 secc. co ecc. co
- cc.co TIME.5tC3hCS MRr!PUM Cla:D!NG TEMPE*ATung
't 4
I.
3
)
i 1
1 e
e ems.
.-.e.
.+e
.-==
w
O i
4 0.3600 e_,
se,,et,,
v.r.,
P E55UPE.g.I npa I *IR C.3:::
I
~
- a. 2 e a.a
]l l
C. 2 4 0 f
ll l
I c. :::
8 E
I
~
2 i$
c.li::
I d! l j
' ( Il t d
i til f
ll\\)f,4h;-h,,
- .ir::
' V' I
l C. f::
't Ulbl i
l i
0.Co*D
./
ii i
2.0000 IEEE* C0 11000.3:
33::g, gg IIRC.SLCCNCS M10M*3[n Gghts,gt;gg pqrg i
1 t
e 4
1
(
t10.::::
ALL MAC IRf!! N. R:
" ' " * ' ' ' -'e
/
4:3.0000
/
TCH2 550. :::
5::.::::
g 450.0000 4.::::
c350.C:::
r
/
l c
\\
2::.::::
z 250.::::
2::.000:
10.::::
/
1 :.::::
50.0:::
/
- 0. :::
1:::.::
3 00.::
- 3:::.::
11RE.StCCNCS COMmutAf!vt HT:P:CEN G(ht?A!!:h e.
ti e
s 0
I 9
9
k' i
k
- ~.oem..
..,e e
e h
I 6
RUN 5 e 4 O
G e
O h
- a m
O e.>
h
=
m
.=
I e
- * ~ te s e o
me 4
S
- P 6,
e 4
0 f
1 9*
e t
e e
le e
i l
t i
~
.I i
ett ma0!Iftch.**1C 3.0000
{PPI15UME f.gMP9
\\MUllN
\\
3.40C3
/
\\
/
1
\\
t
\\
2.8*CJ
- ~ y
=
W I
.: 2.secc E
\\
/
\\
/
0..
\\
/
\\
/
A
/
I i
i.<c::
l
\\
/
i g
3.cCoc sN,(,
e O.4000 i
1000.CC 8000.30 9CC0. to 10'000. CP 11003.20 12000.CS
.13C00.C0 tint.st::mes j
MINIMUM TNC PMRst LEVfL 4
i i
I I
-1 a
a e
t i
i I
t g
j 2.:.:o..
. All,RRDI LTICN.RCIC k
PRl;$$URE.A.lMPP I
72 0. ::
v 2003 C:
i
~
i 1200. C I
l JE*:.
i 3
aW is J 1400. :
e3
~
c c
w I 12:3. C w
i 2000.00 9::. ::
\\
$ 20. C0
/
_..4:C. C0 s
1:23.00 0000.:
9000.30 1c000. 00 11:00.00 12:00.c3 i
TIME.SECONC$
MAXTMUM CLACDING TEMPERATURE l
1 4
i "4
s i l
+9 1,
e
..,--..-.-..,,n-,
,v.m
~~-e
-~ - - ~ ~ v
- =-'vve
- '~ '
'" ~~"
g 1
C O.10:3 ALI.RROI ITICN.MCIC 8.8500
-,,; g,;,p,--
TCn2R 0.8cco g
i>
1 0.55C0 C.50:a C.45:0 a 0.4c::
i U
i
- 0 n.35:
if E
E y
C.3 **
~
Y 4
ar C.:500 i
f 1
C.200:
O.35C C.t:::
/
S.0SCO i
1 i
- s. coco 1:00.20 8000. C:
s;::. :o
- .==
t3:00.::
- C.eo i3:::. ::
f!MC.SECONOS q
I MTCR*0EW CEhEA4f1:N PATE I,
l l
+
j I
5I 450.0000 All,RADI IT!ch.RCIC PRI:55URE i4) MPR
.co. ceco
(
teu2 350.C0 0 300.C:00 I
a 250.0003 p
Gcoo a
- 2c
- .c
- :o Ist.:cco 1
3CC.c:00 5c.::::
....c.0000 4
f f
1300. c0 acco.co secc.co gogog 'c0 110c0.00 320c0.00 33cco.cc 7!MC,SEC:WC5 CUMMULATIVE MTCACGEN GENERATICM i
I i
I 1
1 l
I l
i l
t e.
.. = =....
J e
e h
O RUN 6'-
e G
ene m
0 a
e 9Slp h
9 i
e b
O I
e
.e j
i I
l e
h
\\
I l
9 e
l
i ig.
I TIME VERSUS MAX. CLAD TEMPERATURE r
TEST 5B: SATURATED CORE SPRAY
.g g
g g
i 2000 i.
1500 ng e
~
1000 500 l
~l I
l o7000 8000 G000 10000 TIME AFTER SCRAM (SF.CONDS) l 4
J n
y
_. _.-g-
-.~y..
,-e.,,
.y y
,w%-,,.
s i
4
SUMMARY
e DETAILED BWR CORE HEATUP CODE DEVELOPED PRODUCTION RATES COMPLETED e SCOPING STUDY OF H2 e. PEAK CORE PRODUCTION RATES (g 1.5 tsM/SEC)
OCCUR FOR SHORT PERIODS (4-1 MIN) AT INITIATION OF ECCS OPEPATION e
SUSTAINED CORE PRODUCTION. RATES. (( 10 MINUTES)
FOR ALL CASES RANGE OVER 0.5-0.8 tsM/sec THESERATESAREATCORE-ACIUALPEAKRATESTO e
TO DRYWELL/WETWELL WILL BE LOWER (MUTED) AS A RESULT OF PRIMARY SYSTEM THERMAL HYDPAULICS t
GRT 6/83 g
"a
-,v
1 t
TIME VERSUS TOTAL MASS OF HYDROGEN AND SENERATION RATE TEST 58: SATURATED CORE SPRAY 500
.I I
. _I i
- - TOTAL MASS 400-x RATE
~
0.S 0 w
0.80 o M
300 m
w tn v3 s
e I
x 0.40 ~w i
200 p
H a
o r
s C
D.20 100
=
,2
'I I
I O
7000 8000 0000 10000 TIME AFTER SCRAM (SECONDS)
I 4
.a I
1
~
i l
l f
. _, _. _ -....., _.., _ _. ~.,. - - - -.