ML20091E536
| ML20091E536 | |
| Person / Time | |
|---|---|
| Site: | Salem |
| Issue date: | 04/01/1984 |
| From: | Adrienne Brown, Liscio E, Terry J WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML18092A191 | List: |
| References | |
| 1463W:42-040284, 1463W:42-40284, NSID-EIS-84-07, NSID-EIS-84-7, NUDOCS 8406010287 | |
| Download: ML20091E536 (30) | |
Text
4 hIISIO 1463W:42/040284 NSID-EIS-84-07 I
VESSEL LEVEL MONITOR SYSTEM SCALING CALCULATIONS FOR PNJ/ SALEM UNIT #2 l
PREPARED BY:
ED LISCIO/NSID, E815 b
l REVIEWED BY:
AL BROWN /NSID, ESIS i
. h WhAL*
EcM. d/3.
APPROVAL:
J. R. TERRY /NSID, E8?S, MANAGER O!bhh2 Y
PDR EPFICtivt REVISED l0 Aft
,ggg parg PvSa0104 4 afv,31.e 3 o
h HID 1463W:42/040284 NSID-EIS-84-07 TABLE OF CONTENTS Description Page
1.0 INTRODUCTION
1 2.0 SENSOR ENGINEERING UNIT CONVERSION (TABLE 1)'
1 3.0 SENSOR OFF-SCALE HIGH AND LOW SETPOINTS (TABLE 2) 4 4.0 ALARM SETPOINTS (TABLE 3) 5 5.0 NORMAL LEVEL READINGS (TABLE 4) 6 6.0 PERCENT LEVEL SCALE CALIBRATION DATA (TABLE 5) 7 7.0 READOUT LIMIT VALUES (TABLE 6) 9 8.0 DYNAMIC HEAD PUMP PERFORMANCE CURVE (TABLE 7) 9 9.0 IMPULSE LINE VERTICAL LENGTHS (TABLE 8) 11 10.0 CALIBRATION OF ANALOG INPUTS (TABLE 9) 12 l
11.0 APPENDIX A: Figures 1-3 13 12.0 APPENDIX B: Tables 1-10 18 8
EFFECTIVE REvtSED DATE pagg DATE NSio 1014 mgv. 3 4.e 3
N810 1463W:42/040284 NSID-EIS-84-07
1.0 INTRODUCTION
The purpose of this document is to explain the derivation of the plant specific values for the Yessel Level Monitor (VLM) System at PNJ/ Salem Unit #2.
2.0 SENSOR ENGINEERING UNIT CONVERSION (TABLE 1)
The sensor engineering unit conversion data converts the volts measured at the input to engineering units (*F, PSI). The ecuation to represent this conversion is:
(1) Engineering Units '*F, PSI) = A + B(V) + C(V)2 + D(V)3 + E(V)4 A.
RTD Engineering Unit Conversion Data for Impulse Line RTD's is a polynomial representing the RTD's resistance-temperature relationship at a constant current. For PNJ, the manufacturer's resistance-temperature curve for the RTD's was used to derive the following polynomial: See ecuation (2).
(2) Temperature (*F) = -411.19 + 4270.6V + 1518.7V2 + 971.87V3 Comparing with Ecuation (1):
A = -411.19 B = 4270.6 C = 1518.7 D = 971.87 E=
0.0 h
B.
DP Cell Engineering Unit Conversion Data A linear relationship between Volts and PSI is used to derive the following equations representing DP engineering unit conversion. For i
PNJ, the DP sensor's specification sheets at a temperature of 60*F and a resistance of 50 ohms were used, with the following'results:
EFFECityE REviSEo 1
oarE cart April 1,1984
,,c, NS601014 mEV. 21-0 3
ll$10 1463W:42/040284 NSID-EIS-84-07 1.
Upper Range Sensor. (DPI)
Upper Range Empty (cold)
Upper Range Full (cold) 180.625 INWC 17.625 INWC
-6.5205 PSI
-0.6362 PSI 4 mA 20 mA 0.2V 1V (3) Pressure (PSI) = -7.9916 + 7.3534V Comparing with Eauation (1): A = -7.9916 B=
7.3534
- 11. Full Range Sensor (DP2)
Yessel Empty (cold)
Vessel Full (cold) 512.875 INWC 17.625 INWC
-18.515 PSI
-0.6363 PSI 4 nA 20 mA 0.2V 1.0V (4) Pressure (PSI) = -22.984 + 22.348V Comparing with Equation (1): A = -22.984 B=
22.348 111. Dynamic Head Sensor (DP3)
Vessel Empty (cold)
Vessel Full (cold, pumps on) 512.875 INWC 1072 INWC
-18.515 PSI 38.699 PSI 4 mA 20 mA O.2Y 1.0V (5) Pressure (PSI) = -32.811 + 71.518
' Comparing with Eauation (1): A = -32.819 8=
71.51 8 l
EFFECfivE REVISED 2
catt care April 1,1984
.ios N$40 4014 REv. 218 3
) NII0 1463W:42/040284 NSID-EIS-84-07 i
C.
Reactor Coolant Wide-Range Temperature Engineering Conversion Data A linear relationship between Volts and *F is used to derive an equation representing THOT 1 and THOT 2 engineering unit conversion. For PNJ, the THOT 1 and THOT 2 specification sheets were used, with the following results:
0 700*F 1.0 5.0V (6) Temperature (*F) = -175.0 + 175.0V Comparing with Ecuation (1): A = 175.0 B = 175.0 D.. Reactor Coolant Wide-Range Pressure Engineering Unit Conversion A linear relationship between Volts and PSIA is used to derive an ecuation representing PRESS engineering conversion. For PNJ, the PRESS specification sheets were used, with the following results:
0 3000 PSIG 14.7 3014.7 PSI A 1.0 5.0V (7) Pressure (PSIA) = -735.3 + 750.0V Comparing with Ecuation (1): A = -735.3 8=
750.0 Table 1 is a summary of these calculatfors.
i EFFECTivt REVISED 3
care cars April 1,1984
..o, NSIO 1014 arv,21.e3
N810 j
1463W:42/040284 NSID-EIS-84-07 3.0 SENSOR OFF-SCALE HIGH AND LOW SETPOINTS (TABLE 2)
The off-scale high and low setpoints are the range of the sensor in engineering units.
(8) A = Off-scale low setpoint = lower end of E.U range B = Off-scale high setpoint = upper end of E.U. range A.
RTD Setpoints The water density function used for the impulse line water density at PNJ was valid from 50 to 420*F.
Comparing with relationship (8):
(9)
A=
50 B = 420 B.
DP Cell Setpoints 1.
Upper Range Sensor (DP1)
The Upper Range Sensor (DP1) at PNJ was valid from -6.5205 to
-0.6362 PSI.
Comparing with relationship (8):
(10)
A = -6.5205 B = -0.6362
- 11. Full Range Sensor (DP2)
The Full Range Sensor (DP2) at PNJ was valid from -18.515 to -0.6363 PSI.
Comparing with relationship (8):
(11)
A = -18.515 B = -0.6363 EFFECfist RfviSt0 4
cart
'cate April 1,1984
..or NSIO 1014 REV,2 8 4 3
I h11510 1463W:42/040284 NSID-EIS-84-07 111. Dynamic Head Sensor (DP3)
The Dynamic Hesd Sensor (DP3) at PNJ was valid from -18.515 to 38.699 PSI (see Figure 2).
Comparing with relationship '8):
(12)
A = -18.515 r
B=
38.699 Reactor Coolant Wide-Range Setpoints The Reactor Coolant Wide-Range temperature sensors (THOT 1, THOT 2) were valid from 0 to 700*F Comparing with relationship (8):
(13)
A=
0.0 B = 700.0 lleactor Coolant Wide-Range Pressure Setpoints The Reactor Coolant Wide-Range Pressure sensor (PRESS) was valid from 14.7 to 3014.7 PSIA.
Comparing with relationship (8):
(14)
A = 14.7 8 = 3014.7 Table 2 is a sunmary of these calculations.
4.0 ALARM SETP0INTS (TA8LE 3)
Entering alam setpoints are not recomended by Westinghouse, and at PNJ alam setpoints were not used. This feature was cancelled by choosing setpoints at the lower limit of the VLM range. The lower limit of the range was -995.
Table 3 is a summary of this.
E7PECtivt AfvtSED 5
cats i
cart April 1,1984
..on wo io 4 aav. s.i.e2 i
h11880 1
1463W:42/040284 NSID-EIS-84-07 5.0 NORMAL LEVEL READINGS (TABLE 4)
The following is an explanation of nomal (expected) level readings as a function of the number of pumps running. These nomal readings are given on the VLM remote display as an operator aid.
1 A.
Upper Range Sensor (DP1)
The scaling for the upper range instrument will result in a normal l
indication of 103% level when vessel and standpipe are completely filled. When a reactor coolant pump is started in a loop with a i
RVLIS hot leg connection, that RVLIS upper range indication will indicate offscalc. low ( < 60%), and "!NVALID" will appear on the i
remote display status column.
If the pump is not running in the loop with a RVLIS connection, but other pumps are started, the upper range indication will increase slightly due to small pressure drops in the hot leg and vessel internals, resulting in the following l
indications:
l Pump Running Upper Range Indicatio,n,,
i 0
1015 I
103 - 104%
I 2
104 - 105%
3 107 - 108%
4
< 60% (INVALID)
B.
Full Range Sensor (DP2)
Fer the Full Range Sensor, the nomal value is 104'. (vessel and standolce full) for 0 pumps on. When the first reactor coo' ant cumo is started, the Full Range indication will increase to a50ut 120'.
I or to the limit value if set lower. Additional rep startuos will cause (or maintain) an offscale high indication. This condition will i
remain until RCS pumps are shut down, or until a high void condition in the vessel with RCS pumps rJnning causes a reduced pressure drop bring the indication back onscale, f
E88tCtrve ag,gg o*'8 Asril 1.1984 eso:
6 ones WO 1014 aty 3 3 3 3 u
hIISID 1463W:42/040284 NSID-EIS-84-07 C.
Dynamic Head Sensor (DP3)
For the dynacic head sensor, the nomal readings are a function of the number of pumps running. This infomation is obtained during cycling under hot conditions or calculated using pump character-i istics and pressure drops.
At PNJ, the following nomal readings were obtained ~during heatup.
l.'
o O pumps 34%
.1 pump 38%
2 pumps 50%
3 pumps 71 %
)
4 pumps 1005 Table 4 is a sumary of these results.
6.0 PERCENT LEVEL SCALE CALIBRATION DATA (TABLE 5)
The VLM calculates the following:
1.
Vessel level, in feet, above the hot leg elevation for upper range (DP1).
2.
Vessel level, in feet above the bottom of the vessel for full range (DP2).
3.
Measured Dynamic Head (DP3)..Has a scale of 0-1.
L These are converted to percent using the following equation:
(15)
% = A + B(X) f A.
Vessel Level in Feet Above the Hot Leg Elevation for Upper Range (DP1) h For this case, equation (15) becomes:
(16)
% = (%) below hot leg elevation +
X(ft) above
% above hot leg elevation (hot leg elevation). (above hot leg elevation)
O (ft) s EFFECTIVE REVISED
-7 OATE DATE April 1,1984 nacE N$lo 1014 AEV. 2143 -
h NSID 1463W:42/040284 NSID-EIS-84-07 where:
(100(%))
% below hot leg elevation =
height (f t) of RV (ft) below hot leg elevation
% above hot leg elevation =
heig t t of RV (ft) below hot leg elevation For PNJ, ecuation (16) became:
100
% = ([27.6875] [41.2708 ) + (X) ([14.58 ) [p,1.mD 100 3
- 14. 5 c.
(16) % = 67.0874 + 2.4230X Comparing with Ecuation (15): A = 67.0874 B = 2.4230 B.
Vessel Level in Feet Above the Bottom of the Vessel for Full Range.
For this case, ecuation (15 becomes 17) l 100%
17 * = (X(ft) above) g height (Ft) of RV)
RVB For PNJ, the Reactor Vessel Water Level Installation Schematic was used. Ecuation (17) becomes:
,, gy) ( 41.2708 100
)
' Comparing with Ecuation (15): A = 0.0 8 = 2.4230 EFFECTIVE REvtSED 8
OATE DATE April 1,1984 PAGE NSIO 1014 REV. 2133
l i
NSID 1463W:42/040284 NSID-EIS-84-07 C.
Measured Dynamic Head (DP3)
T'ne 0-1 scale is converted to 0-100%. For PNJ, a linear equation representing this was:
(18) % = 100X Comparing wih equation (15):
A=
0.0 B = 100.0 Table 5 is a summary of those ecuations.
7.0 READOUT LIMIT VALUES (TABLE 6)
It is recommerded that the hard limits for DP1 be 60 to 120%, DP2 be 0 to 120% and DP3 be O to 120%. These limits are set sufficiently beyond the normal indication so that malfunctions causing an abnomal indication can be detected. For example, a sensing line failure would result in an off-scale indication and would be detected if the limit value for the -
indicator is set at a value greater than the nomal value. The NRC considers this capability to be important for indicating and diagnosing nalfunctions which could otherwise be undetected or introduce uncertainties during an accident.
Table 6 is a sumary of this.
8.0 DYNAMIC HEAD PUMP PERFORMANCE CURVE (TABLE 7)
The dynamic head level sensor (DP3) is compared with pump perfomance curves. These curves are represented by fourth-order polynomials..One polynomial gives pump perfomance as a function of reactor coolant temperature and the other gives pump perfomance as a function of primary pressure. This polynomial is represented by the equation:
(21) DP (P A) = A + B ( ) + C ( )
+D()3+E(h)#
The polynomial giving pump performance as a function of reactor coolant temperature is acquired by using a least-squares polynomial fitting EFFECTIVE REVISED 1
9 QATE OME April 1,1984 -
,,c, i
N5101014 R EV. 2-18 3
h NSID 1463W:42/040284 NSID-EIS-84-07 procedure on a curve obtained either during plant heat-up with all pumps running or calculated using pump characteristics and pressure drops. The polynomial giving pump performance as a function of primary pressure is acquired by using a least-squares polynomial fitting procedure on the curve represented by Ecuation (21) andconverting to saturation pressure (in PSIA) using steam tables.
For PNJ, the curve used in this document was obtained from data taken during heat up with all pumps running.
(See Figure 1)
Fitting a polynomial *.o this curve gave:
(22) DP(*F) = 22.79 + 3.755 x 10-IV - 2.115 x 10-3 2 y
~
+ 4.337 x 10-6 3 - 3.128 x 10-9 4 y
V Converting this curve to saturation pressure (PSIA) and fitting a poly-nomial (see Figure 2) gave:
FOR
< 45 PSIA
(?3) DP(PSIA) = 12.27 + 2.1908V - 14.492 x 10-2y2
- 3.7535 x 10-3y3 + 3.427 x 10-Sy4 FOR (45 -3000 PSIA)
DF(PSIA) = 36.67 - 17.267 x 10-3Y + 7.0661 x 10-6y2
-1.457 x 10-9 3 + 1.275 x 10-13y4 V
Comparing these two equations with (21):
DP(*F)
DP(PSIA) [ < 45 PSIA]
DP(PSIA) [45 -3000 PSIA]
A = 22.79 A = 12.27 A = 36.67 8 = -3.755 x 10~1 B=
2.1908 B = -17.267 x 10-3 C = -2.115 x 10-3 C = -14.492 x 10-2 C=
7.066 x 10-6 0=
4.337 x 10-6 D=
3.753 x 10-3 D = -1.457 x 10-9 E = -3.128 x 10-9 E=
3.427 x 10-5 E=
1.275 x 10-13 l
l Table 7 is a sununary of these results.
EFFECDVE
' REwSED 10 catE DATE April 1,1984 pAGE NSID 1014 R EV. 218 3.
.+
h NSIO 1463W:42/040284 NSID-EIS-84-07 9.0 IMPULSE LINE VERTICAL LENGTHS (TABLE 8)
Vertical lengths of each OP RTD cell combination are entered to correct the measured DP's for weight of water in the impulse line.
DPJ corrected = DPJ measured + HiJ PH2O (Ti)
Where:
DPg corrected = the DP corrected for impulse line water weight for the t
J " transducer (1 = Upper Range, 2 = Full Range, 3=
Dynamic Head).
th DPg measured = the DP measured by the J sensor.
th Hgj = the height of the impulse line (in feet) connected to the J th RTD. Note the DP cell whose temperature is measured by the i Hjj can be negative, zero or positive.
If H is positive, the jj weight of water is added to the measured DP.
If it is zero, that RTD does not measure the temperature of an impulse line connected to the particular DP cell.
If it is negative, the weight of water is subtracted from the measured DP.
PH2O (%i) = the density of the water at the temperature Ti 3
(1b/ft ),
Figure 3 shows how the polarity of the vertical lengths is detemined.
Each DP cell uses the same diagram. DP2 and DP3 should read the same and have the same impulse line heights. The overall height of the reactor vessel is needed for DP1 and DP2. This height nomally is from the hot leg tap point to the top of the standpipe from the vessel top up to the highest point that would drain off water if the vessel were to empty for-DP1 and from the bottom of the vessel up to the same tap point for DP2.
REVISED EFFECTIVE 11 care oarE April 1,1984
..ca Pe5401014 R EV. 213 3
(fhf) NSIO
' 1463W:42/040284 NSID-EIS-84-07 For PNJ, the Reactor Vessel Water Level Installation Schematic Drawing was used to obtain these heights.
Table 8 presents a summary of these results.
10.0 CALIBRATION OF ANALOG INPUTS (TABLE 9, TABLE 10)
Analog inputs are calibrated by inputting a voltage into the unit and storing the A/D converter reading that corresponds to the calibration point. Normally, the calibration potentiometers on the input board do not have to'be adjusted. The zerces on all ranges are calibrated first, the full-scale second. The calibration tools should have an' accuracy of at least 0.~05% and preferably 0.01%. The 0-1V and 0-10Y ranges should be calibrated carefully, while the 0-20mV and 0-100mV ranges can be calcu-lated crudely since they normally are not used in the VLM. Calibration accuracy is determined by the designer and presented in Tables 9 and 10.
l EFFECR 4 REVISED 12 DATE i
DATE Apr{l 1,.1984 PAGE N5801014 REV. 214 3
T N8IO.
1463W:42/040284 NSID-EIS-84-07 i
APPENDIX A FIGURES 1-3
\\
l 4
DYNAMIC HEAD PUMP PERFORMANCE CURVES d
't
'l EFFICTWE REVISED 13.
DarE DATE April 1,1984
,,o,
. NSID 1014 REV. 21'-e 3 '
E
'I O
yy D.
o o
3 I
8 7 " )*
s 3 C'
u g
a g
4 n
Z T T; *.
m.p I'i r~.
yDpDp-s ~ 3:
L".3 D
j
-e. p.
-~n n -
e 1
o s. > r..
or, I
~
a
~~c y
n
(--
3 N u P h
- .V'
N t s.t.
.U
- e -
3
- s. c..
- > r. 3 eC
+ 17I s
. O c ee g-e
, ci o r. ~ to x ;)
w t
c, a.. tm o, -,., -.
m-cc,. c...r..~
.r.t
_,co
,o
._ e.
r-L'o>m'J r0 N To tis N N N fu to f *> (0 44J
- t. s tes ts) t W c a.es r >
X<
I(, m.
on m sa m m o.
.s re w A
- to o a t
o y.
r O__. t.,r...
.c c9p i..
i i,i,-
,g
.- e o
a s--
312 -
u
-r R
/-g 1.n r.sr 337--
a, o
m e
,i, s
.i.
v:
) s.
~3 6 2 -
4 367--
l-5 h
n c3 412-
,/
't c
=
. a.
n m
x m
437--
r m
ih E,
4 462--
7 6 c.
T: -
481--
m
,I 512--
e' 1
+
e g ('
gg 537--
s,
- *s 562-
- /
o z
- e,/
1'l 587-s o
612 ~
F s'n
..? s
~
/4 t/3 637-em
..4 662- -/ *
?
s o"
687-4 6
a e.
==
I i
w NSIO 1463W:42/040284 NSID-EIS-84-07 FIGURE 2 PRESSURE - DP3
( 0--45 PSIA )
FOUh"i ORDER POLYNOMIAL in THE FORM OF-3-6.c4).X a+4: 3)*X 3+4ti>-X 2+3(1)*X
'i+4(f-)
C.:,e i f i.: s n t s :
A(0> 11.1782% 2 At's-2.*huS788 p(2>
.tuc92aui-M :. >.0037535505 4 < z. ) -. 000 0 3427 7 M t.
~..
2 2. 2 ~'
4-
+.
.I2.'-
3__
..w 3m4...
..s,, '~
20.7--
30,2__
-t l9.7--
19.2--
e.,
.s
- -?L;/NOMI EL m
.o w
.o e
e f.
02 LH h
O na th tr Q
- n O.3
?,
y
.M LH h
1
.n as ce m m m m,
EFFECTIVE REvtSED DATE April 1,1984 15 oarE
.. E NSIO 4044 REv. 214 3
=
W ll3ID 1463W:42/040284 NSID-EIS-84-07 FIGURE 2A PRESSURE - OP3 (45-3000 PSIA) 3r.iR's LADER POLYNOMIAL IN ThE iORM uf'.
Y=M 4)-X 4+4(31-X 3+A(?).x 2+A(' >.X 1 +4 ( (,
.ceteictents:
4(O)=36.67565606;
.4 ! > -. O t 7267 75482 9(2);7.06615970000E-06 M 3) -!.45764319000E-09 A(4>=1.27576400000 -;3 3.ha 36-
\\
.t.-..9 24-,,
7,3.e s 7;__w w
3 '. --
\\*
30--
M 25--
- h 29- -.
y +.
N 27--
s
- tene 26--
'en 3 c,..
e' 24--
x
.N.,
4*
22--
2;..
N.,.
POLYNQM1AL 20--
-A.r ~ _-
W
,t, e,
x, o
v, v.r.
.r.-
u.
c.
v.
+
u, y.
y e.
o.
r m
r e.
ru O
f%
C AJ (a
r.
Q (u
F.
C O.y o';
c.,
.O EFFECTNE RfwSED att April 1,1984
..oe 16 onre Ms01014 REV. 2183
n NSIO 1463W:42/040284 NSID-EIS-84-07
~
d 4
4 37 @
f 9
I M4 I
O I
(
8, @
g OVERAL!.,
l T
A HEIGHT "r @+
f f
I H
I 5
l i
7 7
7 4
i i
FIGURE 3 Notice that it is not necessarily the case that the RTDs will be in the same order, but the loop direction should remain constant throughout the analysis. When the elevation increases this usually detemines a positive height.
H PCSm VE M6 PCSCVE g
H NEGADVE H7 NE3ATIVE g
H PosmVE H PQ3mVE 3
g M
NEEADVE H, posmyg 4
H3 et EFFECTIVE REVISED caTE April 1,1984 17 care
..cc
~sio icia arv. a.i-n
T NSIO
-1463W:42/040284 NSID-EIS-84-07 6
APPENDIX B a
TABLES 1-10 SETPOINTS AND CALIBRATION DATA i
i r
)
1 I
I i
EMECTr4 ' April 1,1984
..c,E as VISED Datt 18 o it NSIO 1014 mEV. 2+143
~
W 'ilSID 1463W:42/040284 NSID-EIS-84-07 TABLE 1 SEl;50R ENGINEERING UNIT CONVERSION DATA i
' TABLE i SENCO2 ENGINEEt!NG UNIT CONERSION DATA
- 21*****t****t21*****************!****
- fonct Vori
- Sen w
- Senser Too
- A
- B tC
- D 1E t
t tient abIt
- _t tt********tetett**tt****statttt************ttttt*********** *tstitsttttttttt**tttttttttttttttstettttttttt**
- 14
- 1
- ITDi
- TE1313,TE1323 * -4.ii2E+12
- 4.271E+l3
- 1.519E+13
- 9.719E+02 t 0.OllE+00 *
- 14
- 2
- tTD2 '
- TE1317,TE1328 * -4.112E+02
- 4.271E+03
- 1.519E+03
- 9.719E+02
- 9.660E+10 t 114 3 3
- ITD3 TE1315,TE1325 * -4.112E+42 3 4.271E+03 2 1.519E+l3
- 9.719E+02 t 0.OllE+ll P.
- 14
- 4
- ITD4 1 TE1316,TE1326 * -4.ii2E+l2 3 4.271E+03
- 1.519E+03 8 9.719E+82
- 8 lt0E4tl
- 314 1 5
- ITD5 : TE1314,TE1329 I -4.112E+12
- 4.271E+03 1 1.519E+13
- 9.719E+02 8 0.lllE+18 *
- 14
- 6 *ITD6 *TEi319,TE1324 * -4.112E+02 1 4.271E+03
- 1.519E+63
- 9.719Etl2
- 6.ltlE+50 t 114
- 7
- ITD7 *TE1318,TE1327 * -4.ii2E+l2 3 4.271E+03
- 1.519E+13
- 9.719E+02
- 8.OllE+00
- sit t8 *llD8 *TA3C31,TA3836 * -4.112E+t2 1 4.271E+l3
- 1.51?E403
- 9.719E+02
- 9.lllE+49
- 114
- 9
- RD9 3 N.A.
t 0.lllE+tt
- 8 lttE+tt t 0.IllE+ll
- 1.000E+00t 0.lllE+08 8 814
- il ! ITDit
- N.A.
t 8.ltlE+00 1 0.tllE+ll
- 8.650E+lt t 0.0$lE+ll
- 8.lllE+0C 1 814 3 11
- RTDit t N.A.
- 8.ll0E+ll
- 9.lllE+l8
- 0.000E+ll
- 8.00lE+10 t 8.tllE+lt *
- 14 12 8 RTD12
- N.A.
t 6.lllE+08 1 8.lllE+002 0.ltlE+88
- 0 LOSE +05
- 8.IttE+18 2 114
- 13
- ITDi3
- N.A.
- 8.ll0E+10
- 6.lilE+ll
- 8.000E+00
- 8.OllE+10 t 8.OllE+50
- 114
- 14 8 tTD14
- N.A.
E l.lllE+ll 1 8.lllE+00t 6.000E400 t 0.ltttit$
- O.itlE430 t 114 8 15
- ITD15 I N.A.
t 8.ll0E+ll
- 0.lllE+8C
- 0.00lE+10
- 1.0llE+30 t i.ti!E+tt tie
- 16
- DPi
- LT1311,LT1328 1 -7.992E+88 1 7.353E+49
- 0.000E+t3
- 8.ll!E400t 0.tttE+00 t 214
- 17
- DP2.
- LT1311,LT1321 1 -2.298E+ti t 2.235E+t1 1 0 lltE+ll
- l.00lE+60 1 0.030E+00 r 114
- 18 : DP3
- LT1312,LT1322 * -3.282E+ti
- 7.iS2E+61 1 0.086E400
- 0.00tE460 t 0.000E+00 t 814 8 17
- TH0Ti tTE413,TE433
- -1.750E+42
- 1.750E+12 3 0.lttE+ll
- l.08 E+00 t 8.0llE+ll k 114 8 29
- THOT2 : TE423,TE443
- -1.75tE+62 8 1.751E+02
- 8.800E+tl
- 0.00lE+ll* 8.lO3E+69
- 814 8 21
- PtESS
- PT483.PT485
- -7.353E+12
- 7.511E+t2 2 0.IllE+ll 1 8.OllE+00 t 0.lllE+l0 t
- ttutstatstst:4sts*******stantst*******************************tttttttt**tst tttttt ttttttt a ats stri ztstttt!
j I
- l EFFECTIVE REVISEo out April 1,1984 no.
19 ons NSID 1014 REv. 2133
T NSIO 1463W:42/040284 NSID-EIS-84-07 r
TABLE 2 SENSOR OFF-SCALE HIGH AND LOW SETPOINTS TABLE 2 SENSOR OFF-SCALE HIGli AND LOW SETPOINTS tittt ttttttttttttttttt tttttttttttttttttttttttttttttttt?ttttttttttttttttttttttttf
- Fsnctient Variable t Senser None
- Senser Tag 3 LO t HI
- tstst***tttttttttttssatttttttttttttt****tst****tttttt****** tit ****************
Sil
- 1
- ITD1
- TEi313.TE1323 2 5.00E+ 01 3 1.200E+02 *
- 10 t 2
- RTD2
- TE1317.TE1328
- 5.000E+0i
- 4.200E+12
- 211 2 3 2ITD3
- TE1315.TE1325
- 5.000E+018 1.265E+02
- sit t 4 t' aid 4
- TEi316.TE1326
- 5.lliE+0i
- 4.200E+02
- til
- 5 3 ITD5 3TE1314.TE1329
- 5.0llE+01
- 4.20lE+02 *
- 10 t 6 t RTD6 t TE1319.TE1324
- 5.000E+11 1 4.20lE+02
- til
- 8
- RTDS
- TA3831.TA3835.* 5.000E+0i
- i.20tE+02
- 318
- 7
- RTD7
- TE1318.TE1327
- 5.00SE+0i
- 4.200E+02
- sit
- 9
- ITD9 3 N.A.
1 1.OllE+08 8 0.000E+09
- sil I il
!RTDit
- N.A.
t 8.00lE+08 t 0.000E+ll
- l sil 8 11
- RTD11 3 N.A.
2 0.00K+ 01 3 0.00lE+08
- til 1 12 1RIDi2 1 N.A.
t 0.80lE+08* 8.000E+00
- til
- 13 1ITD13
- N.A.
- l.000E+38 8 0.10lE+08
- l til 1 14
- RTD14
- N.A.
t 0.00!E+00 t 0.000E+00 t i
316
- 15 tRTD15
- N.A.
t 0.00lE+04
- 0.800E+ 08
- 210
- 16
- IPi tLT1318.LT1320 t -6.52iE+00 t 6.362E-ti t 310 t 17 DP2 Lii311.LT1321 3 -1.557.+ 01 2 -6.363E-Gi
- stb t 18
- DP3
- LT1312.LT1322 1 -1.S52E+0i
- 3.870E+0i !
- 10
- 19 TH0Ti TE413.TE433 3 8.000E+00 t 7.80:E+02
- l til
- 21
- THOT2
- TE423.TE443
- 1 IllE+61
- 7.00tE+12
- til
- 21 2 PRESS
- PT403.PT485 3 1.47tE+ 01 2 3.liSE+63
- i ttt******************************tttttttttttttttttttttttttttttttttttttttttttttt:
i i
i lt-i EF FECTivE REVISED 20 o4TE o.TE April 1,1984
..cE NSIO 1014 n EV. 21-4 3 -
E NSID 1463W:42/040284 NSID-EIS-84-07 TABLE 3 ALARM SETPOINTS TABLE 3.
ALARM SETPOINTS
- ttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt!!!st!
Tenc
- Alarn 1Penos
- DPi 3 DP2
- DP3
- DPi *
- tien
- runnina t
t t
t t
- stastattatss tatssssta tutssstattsss*********** * ***********ts****nt strut s a tttts :s ts til 1 Alarn tt
- -9.94tE+0i *-9.9019 91 *-9.903E+li
-99 til
- Alarn
- 1 t-9.9ttE+112-9.90!E+0i t-9.920E+01 * -97
- tii Alara
- 2 t-9.90lE+ti t-9.903E+ti -9.9stE+ti * -99 *
- til
- Ale
- n
- 3 1-9.9ttE+61 t-9.900E+0i 8-9.781E601 * -97 *
- 11
- Alarn
- 4 2-9.900E401 t-9.?COE+0i t-9.969E+li t -99 statstrusts****unststarttssst!!stattttstatstssssists 1tstittt2*ntstit**stt**ttsst i
4 i
EFFECTIVE nEVISED 21 oArt DATE Apr11 1, 1 m am NSIO 1014 nEV. 2183
T NSID 1463W:42/040284 NSID-EIS-84-07 TABLE 4 NORMAL LEVEL READINGS 9
l-TABLE 4 NORML LEVEL READINGS tatt**ttttstritsutzt**tstttuttttttt!*tsttttutttttttttt*****ntttttttt**tttttt**tttttttttttttttttt
- Functions Pino Condition
- DPi
- DP2
- DP3
- DP i
- tritut*****ttttarttttttttttttttttttttttt***ttttttttttttttttt**********tttttttt********tttttttttttts 17 tl
- 1.03tE+42 3 1.140E+42
- 3.illE+01
- 6. 0
- 17 ti t 1.046E+02
- 1.26tE+02
- 3.80!E+0i t 4.8
- 27 22
- 1.85tE+42 3 1.200E+12
- 5.IllE+61 1.6 1 17 r3
- 1.071E+42
- 1.200E+02
- 7.illE+li
- l.l
- 27 14 2 5.lllE+61 t 1.200E+12
- 1.00lE+02
- 1.0 t ttt***tttt**ttsatttttttrattttat**ttttrats**stttt***tsttttttttt***tttttttttttttttttttttttttttttttttt!
1 4
l l
i WECM REVI$ED o^re April 1,1984 ncE 22 oars essiO 1014 REV. 2143
m W NSID 1463W:42/040284 NSID-EIS-84-07
=
TABLE 5 PERCENT LEVEL SCALE CALIBRATION DATA TABLE 5 PDCENT LE','EL SCALE CALIB2ATION D.4T4
- strittttttttttttt:ststarttttttttttttttttt :ttttttttittttttttttttttttttttttt:sttttttttttzstetzttstr
- Fenctient Coefficient
- DPi
- DP2
- DP 3 1 LPi *
- t**statttttttttttttttttttttttttttttt****ttttttttttttttt sttttttttttttttttutttttttttttttttturtttt!
28
- A
- 6,789E+01
- 9.000E+l8 1 0.08tE+68 8.0
- 88 88
- 2.422E+60
- 2.423E+68 1 1.lllE462 1 6,8
- sts*** t***ustsststtts**stutstats*** tat ***tststatsst***tatttttttst*******ntstuttstat******ststt l
l t
l
.l UFECTIVE REVISED DATE April 1, 1984 pace 23 OATE.
-O NSID 1014 mEv. 2 3 33~
i
\\
W NSID 1463W:42/040284 NSID-EIS-84-07 TABLE 6 READOUT LIMIT VALUES i
I TABLE 6 IEADOUT LI1i!T VALUES
- stttttttttsts*****tttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
- Functient Linit
- DPi
- DP2 1 DP3
- LP i *
- t****ttttttttttttsstitst***tsttttttssstttttttttttttttttttttttstattttttttttttttttttttttttttttttttts 39
- La
- 6.lllE+11 1 0.000E+10
- l.lllE+08
- 0.0
- t?
- Hi
- 1.200E+t2 1 1.295E+02 8 1.23tE+82
- 9.5
- i stattstartstststssta tttttttttttts******tatatttttttt tts* ****tatstststsst**s tratt sutts********sts st**
l i
I i
i EFFECTIVE 24 O E DATE April 1,1984
,,gg N5101014 R EV. 218 3
.)
n
v T NSID 1463W:42/040284 NSID-EIS-84-07 TABLE 7 FLOW HEAD PUMP PERFORMANCE CURVE I
TABLE 7 FLCW l LEAD PU@ PERFORM.wCE CU2VE
- stettstartstettttt****tstatttsstrastsattratststartstststrusttttttttttttttttttsststuttttttttttr
- Functient lanet
- Press /Teno A
- B C
3D tE l'
- st**ut***tt***ttratttutstt********tt***tttttttttttttttttttttt**ttttttttttttttttttttttitttt!
til
- LOW t PRESS
- 1.22SE+0i
- 2.191E+101 -1.449E-ti
- 3.754E-63 * -3.42tE-05 *
. ti3
- HI
- PRESS
- 3.668E+0i * -1.727E-92
- 7.066E-661 -1.458E-49
- 1.276E-13
- 113
- LOW t TEW
- 2.2SlE+11
- 3.755E-li * -2.itSE-13
- 4.33t!-06 * -3.12?E-09
- 113
- HI
- TEMP
- 2.2SOE+0i
- 3.755E-ti t -2.tiSE-63 1 4.332E-66 * -3.129E-09 :
attttttatartstatits*******stt************tt:t****************t 1*******1stut*****Istat*tattss t * ***
isnction 12 5ETPOINT P: 4.500E+61 SETPOINT T: t.ittE+61 i
l EFFECTNE AfVieEo 25 oarE DME April 1,1984 8' AGE NSIO 1014 mgv.2 g e3
T NSIO NSID-EIS-84-07 1463W:42/040284 TABLE 8 1.futSE LINE VERTICAL LENCTHS TRAIN A
- tttuttststarts******* strut ************************* **********tsttttttts tettt ttttttt ttt tt t tt t t ts
- Func
- Vari t Senser
- Senser
- DPi DP2 1 DP3
- DP i *
- tien table Nanc
- Too
- t************statt***stststaattsstattsst*******sttstats****************ntstats*** statttiststat 16 ti tRTDi
- IEi313
- 6.000E400 t -1.108.C+0i ! -1.104E+41 1 8.8 86 22 stTD2
- TE1317
- 8.0llE+08 * -1.25BE+li * -1.253E+0i 3 0. 0 t 16 13
- RTD3 TE1315
- -i.SSEE+61 1 -1.853E+0i ! -1.25SE+11
- l.l I i
36 14 tRD4
- TE1316
- 1.929E+0i 1 1.92SE+0i
- 1.92SE+0i
- 8. 0
- 16 35 tRDS
- TE1314
- 1.622E+11
- 1.622E4ti
- 1.622E+11 1 1.8
- 86 36
- RTD6 TE1319
- -2.479E+04 8 0.800E+18 : l.lllE+00
- l.0 t 26 87 tRD7
- TE1318 8 8.lllE+10 1 4.592E+ti * (.592E401
- B.6 8 86 88 SRTD8
- TA3831 3 0.00lE+lt t 3.542E+10
- 3.542E+00 t 6.0
- 16 39
- RTD9
- N.A.
t0 tI tt
- l.0 t 36 til tRDie
- N.A.
t8 10 tt
- l. 0
- 26 til.
tRDit
- N.A.
tt
- I t0
- 6.9 t 36 112 2RD12
- N.A.
0 tt
- 4
- 6. 0 2 86 313
- RTD13
- N.A.
tt
- 0
- I t 6.t 16 114 3RTD14
- N.A
- O tI tt
- 0. 0
- 16 315
- RTDiS
- N.A.
- 0
- 0
- I t 8.8 t
- tstattats**stst****ttrats****** stst**ststats****tattstat******ttut******stt******
26 316 2DPi
- Lii318.LT1329 Overoll Height
- 1.444E+61 86 217 2DP2
- LT1311.Lii321
- Overall Heicht
- 4.275E+01 sattssstrutstutt ttstsatttttt ttttt*****************t:1*************ttttt ttttttttttutttttttttttttts I. 0LSE L1!E VERTICAL LENGTHS 9
TRAIN B tattttttttttttttttttst*ttttttttttttttttttttttttttttttttt* sttttttttttttttttttttttttttttttttttttttttr
- Func
- Vari
- Senser
- Senser
- DPi
- DP2
- DP3
- DP i 1 I tien t chle
- None
- Tao 1
- sts*tsts*****tstsst**stsstaatst**stttttttsstattrat****tstsattatst**** sttatttstatst*sts:
86
- 1 22H1 TE1323 t 3.StlE+64 * -1.108.E+li
-1.iHEdi t 8.8 :
36 12 tRB2
- TE1329 1 0.Bi!E+00 8 4.592E+l1
- 4.592E+01
- 6.3 1 16 13 ttD3
- TE1325 1 -2. 09E4 6 1 0.0lOE+00 1 0.000E+88t1.1
- 26 14
- RTD4
- TE1326
- -1.85E+0i * -1.85BE+11 * -1.25EE+01
- 9. 0 t 86 85
- RTD5
- TE1329
- 1.928E+118 1.92SE+61 1.92SE+41 t 1.8 1 i
26 36
- TD6 TE1324 1.622E+011 1.622E+li
- 1.422E+01
- 8.0 t j
i 16 17 tRTC tTE1327
- 8.80lE*10 1 -1.25SE+01 * -1.25SE+61
- t.l
- 86
- S 3RTD8
- TA3836 3 0.0llE+ll 3.542E+10 2 3.542E+08 8 0.0
- 86 39 tRD9 t N.A.
t6
- I 8
8.8 86 til
- Rull
- N.A.
!I t8 80 t 1.0 l
86 tii
- RDit
- W.A.
t8
- I tI t 1.8 I
$6 112 3RTD12 8 N.A.
t0
- 8
- I I l. 0 t
- 86 313 2RH13 8 N.A.
tt 0
8l t t.8 86 314 3RTD14 8 N.A.
Il
- I t0 t 8.8 l-16 315 8tD15
- M.A.
- I
- I tI t 8.8 8 86 216 18P1
- LT1318.LT1326 OverallHeight 1.444E+41 26 317 88P2 LT1311,LT1321 Overall Height
- 4.275Edi EF FECTIVE REWSED 26 cart DATE A%) 1, l@
PAGE NSIO 1014 PCv. 3143
I W NSID l
1463W:42/040284 NSID-EIS-84-07 TABLE 9 CALIBRATION OF ANALOG INPUTS - ZERO SETTING ee.. es es. 40 ee. 40 es es et et es to e, 4e.. ee et ee to ee - ee 46 ee ee et eD a-o ee 1
ee es es eW ee ee
- as o ee
- D ee
- es es ee ee es ee r=*
ee ee es en ee ee e
es ee ee es ee et es es es ce er ee ee es ee e*
- *e ee ** ** es ee **
- e aus en en en en er em amp e en enn en e en en er e as em se e*
e.s
.ee W gpi W @W b4 m @ WWW@@ p@ @@ W WO@ et ce e
ge eDes, y se se eum en en en ap aus en em e es e e en en en en euD e em as ** ee es es w ww ww ww w w w==*
ww ww w w w w ww es es ep
.e me ed.e se e ce ee w eo ee.e..e se e.
e ad se e.e se oss e ne.d em ce en e a ee e e er w ae amp.
-e
.e.
.e==
we
.e
.o
=
.e
.e we.e
.e are
-* we==.e ee e, ee =
ee go ese en g e en as em gunen en== en em 4e en ep aus en e en as ein as ce es em e. gna esha ee,=,m.m e e,m, e a,n, e en em eum e en e,m e,m em e,n. en e en em. am er es e a
,=
m
=
=
==
=
=== ee ee ee n *==et 4* ee et et M ee
=r ** ee et ee.
a
= e
=,= m e.n ee e
et e* ep et ee op 4e pt ce. 40.
ee ee ee e*s et, es e
er ee se es e
ee ee et eb we ee ee so e 0 ee
- P ee 46 40 h B.
ee eD e>
w em me ee e*
N w ee ee
- e 4 es e.p e et ce em 46 es es es es ee ee ee es ee es es er ee et ee ce ee et es to ee go ee ge em ce en e an en enn as er e en e en e e susen e en e e en eut ee ee m W W W W W W W 619 ha WWW es e e e en an e,. =am en' W W W t mW W eJ4 em as'n e e en en em em es eo, e
eeee=, e e au.s eum au em amp e
ee
=a w w w w
ww w w w w w w so ww. w ww se ae y er w ee.=e me.e.m,e.e e.me.3 ee.4 ee s.e ee =.=7.e.=.5.e.8 me es es.e **
C3 ee et eD e w ee
we=
e we e
.e we e
e we e.e e=== we.* ase we we ee Z
ee w et se ek g me ee e-
- * ** es sam ee en* em ** em auD e e as een en en en en en en en en en en en am ee C
es en es p=e
.e em aus e,%n e,m a,mm e am.o e,=n e,um. e,== e,=n. e,n e,n. e,n en e,m>= a,un, e am.ae,=, e,=n aun es e.e
= a -
=
=
% e
=
a=
a e ee pm e
ce e*
w ee n wg er as
- es et es et ee ce ee es es ce ee ** et op et to ee M 4e ** ee e* ** ** es es *e
 GD ee ee se et ee et C3 ee et e*
ee ee gas ee es et om es y
ee
- e e ee r=4 ee ep % o ee e>
ee er ea== es em t
ep
- pie y ee op aC.es se eD GD et ee et ee es es ee es e> es eD ee eup es er ee es ep ** es ee er (f3 ee es es ee et e==
ee se 3> e>
ao em aun an> aus e een en ese em en em en eum e em e em em en en aan go se amm e en am e ems en se g a.
e.n en an en en e.= en en aus e.=en as e eu.t
- 3 ee ep== we we
==== we we we we
.e we we
.e
.e ce es et as eD en ee===.se me w w w =
.ma o e w =ss w w emie z m
.e we we ee ee i
(,, e2 ce e se e w ee se.e.e e op.e meP -e.mse e.e.e os -na.us.e.e.=e.=p.=e.e me w w =* ma
=a w ee s-se ee
- = GD m,. es er e se em amm eum e en e e as e e em amp en en e e en en em ee b_J 3
. =s af em as ea ch es e e en en e e aun e as an e e e en en amo e e en en e ee ans ee se,aus e. *en e. aun,en sun.
eum. emn sus aun en.=, en e e,=n,e,en,en e e B (lD es an en e p=e se
=,
, a
,====,= em a s s.
,=
= = =,== ge ac.,,4 es e*
et u,a ee o= an ee
- ** ** ee se es eo es et ee e* ee ** e ** es e* es et ce et ge en er et et ** **
ee 2
ee e*
e ee ee
- C ee er se ee eo es es L.
ee eo ee os e.D en ee go e
- e et e up ee ee ee ee 2
ee e
. u o ee ee e
ee es eD es op ee me e==
ee e>
- p=4 y ee e
>=
ee
- e 4 ee aK ee se
- ee et ee es es et es er ee ** es ceeeeseeeseees ee es es es ee ee ee a
op ee 3> **
es en e en e em aus e en e en e en en es e em am em ao en en ee ee aum e.en amm en.en aus em.en e.n es e an a.us e.n e.n. e e.n en e m.e sue en
.Eh em E ee we e
e w
,e e
o.e==.e w w w w op==
=e
.e we.
=e we
=*e, a
em ee ao
==
., w ee w w w==
.J op en an et a w es w w==*
ww w w w es es en en em> e e e em en e e emp se e en en e en en en en e se
- cJ ** h aC e,e e
en e e*
es ch ee amp en e e an e amo en e amp amo e e en en enn aus e enn en en es 2
sJ n
en aun an en=m ee ee em N ee. n amm e e.m e,=n e,s e,n em e e,.n au.m e.n enn e en en e,=
se ee e ee
- e eo p e e es ee ** a e* **
sm m m em em o
ss o e om e,
se en es n.a ee m
,s a
a
> ee ** ee en cecegemee6 es eo er ee ** ee e*
em em ee en es **
ee ee op r"1 m W ed O= w P=
em== r d e*
ee es me t'J CJ CJ CJ &J CJ CJ CJ CJ PJ es P81 rei P y=1 r=1 Pat Ps1 ps1 m ee es P."1 Me we we.=1 po1 M e er eD we we P 1 we o== P1 asp e ao kJ haJ e'C se
- e ee et e
4" as em" ee
>=,a.
>=e =J.hs.J kJ" kJ aJ W k.=J 6J ee
>= ee p-=
>==
B-m.
.t==
ee 9== y== >=.> p ce
- D
- we ps,.
e e
.... a,,un we P.J
- -- sh* ee e
=
==%
ce 6 es em e
e 6
a=*
- ps.3 ee ao.1 y=. &J't =4. a.m" Cem op f*
me
- ee
.e
. p g peg e.e we.
ee to ee ee C e e**
es r*1 781. P'1 781 f.*1 P.81. f.*1 3 4 4 4.ag 4 4 4.rei F."1.P.'.1.e cJ e ee e psi
.e
. er g au-ee w geJ 4 e kJ neJ 4 3 3 3 3 2 3 X
>=.J we e
op w 0 ee we LJ. g.Jm.- -
e, 4
>=
o-.
en E4 t==
ee haJ go.
.- e Eh ee go ** J J.
=>=P'*
>==
ee.
e.D ee >= a.==*SS=*e.- >6
- ep eD ee.
. eD. et e6 ee. ** 4e et er 8.
ee ce ek e 6
et es na er eD 4e m
.=e @J P89 en" W
=e PJ E'S es w
'e
==
==
a=
>= CA es
.au" W 2 Pm. 2 O'm..e e..e. -
e.J Pr1 me P C es op C.
cJ m 9 e ud op ee
.m&e
- e. s m... - - - - - -
r.s ~
0 o eo
.. e.m... m o.
Se ee c.e ee ee ** e* ee e. e.
et ee - ee e
..e ee en ep.
.ee ee.
ee ee e
e.e
.Se -
eeil ee ee e.e I
ee e
.e
.e
.e eo, a.
es mm.e,e en ce se ee et se en es o.e.e e. O m - es ee ee = J m.e m.
u e-.
a e
et es s
- .e are PJ PJ et we PJ f81 45* 1.Ji 2 Ph ee.
O*
e W
=
e me ee.
ee e.
ee es se SD ee ee ee ee
.m 5
ep et ee
.e,
.ee
- 3. w w w w w w w w w w w w w w w w w w w w w.2 E
e
. ue
.e.e wo -
.e.e e_
ee
.... co.
co..... ee..
e.e
- e. ep. ee 3...
- ee EUECTivE REVISED 27 oarE onE April 1,1984 ncE
' N901014 mEV. 21 s3 w-+
-.4 q
m,_am--
,y,
^
y I'E QE
{0 3
?
[
~
table 10 o
CAlll*Ai!0N OF ANALOC INPUIS - FULL SEALE SEillNC k
Q E
I i
r-
$488888888888888384888888888 tit 8 tit tt t t t 08848 tit t t t t t t t t t t t 4888 tit tt t t t t t t t t tt4818 titttt 4888888888883 $$$888888888888t l88 tl 8 Ionction 8 Veriehle 8 Senser 8 8 Sensert Range g
8 8 None t
8 laa 8 8
d 888880448888488888888888188888888888888888448tt8888888888884468888tittttttttt38titeltttttttttttttstetstet 8tstit4ttstettet Q
8 8 I-28 nY t 0-100 nV
$ I-1 V
$ I-il V o
'1 R
$488488884ttt088888888888888888888888848888888888888888888884tt$888488888888tt 8
8 F.S.
8 F.S.
- F.S.
8 F.3.
- F.S.
8 F.S.
8 F.5.
8 F.S.
- g 8
8Espect tactual 8Espect 8 Actual 8Espect 8Actuel itspect *Actuolt if 0
$$4888888888818881884 $$ $t88888888888888888888888888888888888888838811888888888888888888888888888881888888888888888888 * $ 841 g
815 si teill 81E1313.TEl3238)f40(FFIt t)FII4(IFF8 t)f40&tFFEt 8)f44&(FFEt t
815 82 8 TID 2 81E1317.TE13288)Fil(FFF8
- )fil&(FIF8
- )Fil&(FFEt
- )F4R(FFEt - 8 r-m 815 83 tRID3 81El315,TE13254)fil(FFF8 8)Fil&(FFit
- )f44&(FIEt t)f44&(IFEt t
5 "o
415 84 8R104 31E1316.lE13264)Til(FFIt t)fil&(FFFt 8)fil&(FFE8 t)F46&(FFFt 1:
m 815 85 tRIDS ITE1314.iEt3298)Iit(IFFt 8)fil&'.IIIs 8)f40&(IIEt
)f4t&tFFEt t
8 815 86 8 TID 6 81Et319.1E13248)Ill(FFIt 3)FBl&(FFFs t)F40&(FFE8 8)f44&(FFEt 8
2 815 87
- Rit? 8TE1318,IE13278)ftt(FFFt
- 8) Fit &(IIft 8)f40&(IFEt t)f46&(IFEt 8
p
$15 88 8tIDS siA3831,1438368) Fit (FFF4
,$)Fil&(FFF8 8)f404(FFE8
- )F4K(FFE8 8
g 815 89 tRID9 8 N.A.
- 8) fit (FIFt t)fil&(FFF8 8)f40&(IFEt t)f4t&(FFEt t
g ag
$15 811 4 RID 11 8 N.A.
t)FII(FFF8 t)fil&(FFF8 8)F44&(ffE4 t)f44&(FFE8 8
y
"' M 815 811 tRID11 8 N.A.
8)fil(FFF8 8)fl04(Iff8
- )f40&(IFEt 8)f40&(IIEt 8
m
$15 812 8R1012 1 N.A.
3)fil(FIF8 1)Fil&(FFFt 8)Fil&(FFE8
- )F444(FFEt i
m z
b 815 813 tRID13 8 N. A.
- 8) fit (FFIt
- 4) Fit &(FIFt t)f486(IFEt 8)f40&(IFEt t
815 814 8RIDl4 N.A.
1)TIlfiFF8 8)fil&(FFF8 8)FtIL(FFE8
- )f44&(FFEt a
g 4
815 815 '
tRIDl5 8 N.P..
8)fil(FFIt t)Fil&(FFIt t)F40&(FFEt t)f46&(IIEt 8
$15 816 DP1
- LT1311.Lil3281)Fil(Iff8
- 8) Fit &(FIF8 8)F40&(FFEt
- )f 40MIFEt 8
Y i
815 817 tDP2 8 Lit 3ti. Lit 32tt>FlI(FFIt 4)fil&(FIF8' 8)F40&(FFEt t)f48&(IFEt t
I
$15 818 3DP3
$lil312.Lil3223)fil(FIF8 t) Fit &(FFF8 8)F48&(FFE8
- )F41MIFEt t
c2 815 819 tiH0f t tie 413.1E433 8)Iit(FFF8
- 8) fit &(fir 4 t)f4t&(FFEt
- )f46&(IFEt t
815 421
- IH012 81E423.IEtt3 t) Tit (FFit 3)fil&(FIF8
$)Fil&(FIES
- )F48MIFFt l'
$15 821 tPRESS tP1483,Piil5 t)fil(IIIt
- )ftt&(IIF8 t)I40&{FFEt 8)f49&(trEt 888888888888348188888888888888888888188888888811888341888888888$111188488888888888tt 8888 $ $$$$48888t it$tt $ $$888888888 t t tt t t Il i
.