ML20081B033

From kanterella
Jump to navigation Jump to search
Forwards Nonproprietary Presentation Charts Used During 950308 & 09 Meetings Between NRC & GE to Discuss Giraffe Testing & Tracg Computer Code
ML20081B033
Person / Time
Site: 05200004
Issue date: 03/08/1995
From: Quinn J
GENERAL ELECTRIC CO.
To: Borchardt R
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM), Office of Nuclear Reactor Regulation
References
MFN-040-95, MFN-40-95, NUDOCS 9503160014
Download: ML20081B033 (99)


Text

{{#Wiki_filter:O GENuclearEnergy J. E. Quinn P ' s Manager GeneralElectric Company LMR and SB Programs 175 Curtner Avenue, wC 165 San Jose, CA 95125-1014 406 925-1005 (phone) 408 925 3991 (facsimile) i March 8,1995 MFN 040-95 Docket STN 52-004 Document Control Desk U. S. Nuclear Regulatory Commission Washington DC 20555 7 Attention: Richard W. Borchardt, Director Standardization Project Directorate

Subject:

GE GIRAFFE Testing and TRACG Computer Code Meeting Non-proprietaryInformation Transmitted herewith is a copy of the non-proprietary presentation charts used during the March 8 and 9,1995, meetings between the Nuclear Regulatory Commission Staff and GE to discuss GIRAFFE Testing and TRACG Computer Code. Sincerely, Mr uinn, Projects Manager and SBWR Programs i Enclosure cc: P. A. Boehnert (NRC/ACRS)

1. Catton (ACRS) r S. Q Ninh (NRC)

J. H. Wilson (NRC) 1 l 950$$600kA 950308 h PDR ADOCK 05200004 A PDR (

GENuclearEnergy i GIRAFFE TestProgram TRACG ContainmentModeling Test and Analysis USNRC Staff Briefing March 8-9,1995 San Jose, CA filename: nrc0308 i

Meeting Goals l Reach consensus on GIRAFFE test conditions Reach consensus on GIRAFFE test instrumentation Gain staff concurrence on non-condensable measurement approach in GIRAFFEand PANDA Define the GIRAFFE data reporting method, scope, and format Explain the application of TRACG to containment modeling Review the TRACG validation plans for containment modeling I l l t i TRM 2 08 Mar 95 t .------w+r-,-->..-,.m-e---- w-,m-.- ,. - ~-,,, i,., m, .s ..m-

GIRAFFEPerspective Focus on non-condensable effects - GIRAFFEIS: A demonstration of overall containmentperformance in 1 the presence of non-condensables of different densities ? - GIRAFFEIS NOT: A definitive experiment on non-condensable distribution Context in the overall SBWR test program - GIRAFFE and PANDA for a complementary data set r r TRM 3 08 Mar 95 J l , - ~ - -,.,, -. -. _ _ _ _. _ _ _ _ _ _ _ _ _ _. _ = m

l l I i Non-condensable Gas Effects - Hypothesis Working Mvpothesis: Detail distribution aneVor composition of non-condensable gasses is NOT a critical parameter in l SBWR containment design Validation Method: Test and analyze over a wide range of Nitrogen, Helium, arid Nitrogen / Helium mixture initial conditions t TRM 4 C' Mar 95

i Non-condensable Gas Effects - Strategy l Tests: In PANDA, run bounding cases for air distribution - demonstrate SBWR insensitively in terms of containment pressure and temperature In GIRAFFE, run similar cases using nitrogen and helium as the non-condensable - demonstrate similar results for containment pressure and temperature l In GIRAFFE, run bounding cases for hellunVnitrogen mixtures - demonstrate insensitivity in terms of containment pressure and temperature Analysis: Perform TRACG analysis of above cases - demonstrate ability to predict containment pressure and temperature t Perform CSAU analysis - demonstrate insensitivity to non-l condensable distributions 4 TRMS 08 Mar 95 i -.. -... ~. . ~...

InitialCondition Map 0.2 e' H5 [ 0.18 E. 0.16 i .E 0.14 n. 0.12 i H4 5 0.1 i .o 0.08 i H7 Lt 0.06 'f l 0.04 5 0.02 i I 0 e e e o m7 T20.2 TL 0.4 0.6 0.8 1 0 El m3 Air Fraction (Pa/Ptot). TRM 6 08 Mar 95

Data Comparisons t Panda M3 to GIRAFFEH1 - Scale Effects PANDA M3, M7 and GIRAFFE T1, T2, HI - Air Content GIRAFFE H1 to H2 - Density Effect (Nitrogen / Helium) GIRAFFEH3 and H4-Mixture Effects 08 Mar 95 e

1 GENuclearEnergy SBWR Technology Program flelium Tes1 Conditions and Basis 1 Maryann Herzog March 8,1995 San Jose, CA ~ .v-

GIRAFFE Helium Test Objectives Demonstrate PCCS operation in the presence of noncondensable gases that are lighter than and heavier than steam Provide a database for TRACG qualification Provide a tie-back test to repeat a previous GIRAFFE test, including appropriate QA documentation to reinforce the validity of the previous testing 'I 1 __,_.,.r .x. y

I O GENudear Energy 25x5s,, su no. 8 REV. 0 i FLOWRATE TEMPERATURE PRESSURE O!rr=.,ENTIAL PRESSURE Pr= 101 Kro Psa. s O 7~ 373X PCC POOL '~ Pr-ZiW4 Pe s274ya b .;-fg ff z 1 T: 333K N ~~. ~ GDCS i .: POOL ~~~ g .7 l r m~ x O P .1-T ) ORYWEELL T r g m ~ l WETWELL P: 2.% KPq T p p p-ggg gpq PN,

  • i 3 k fA p,, g,qo gg, T* 40 6 K y

T: 406K g,3g2K FIGURE 3-1 GIRAFFE Test Facility Schematic [l ? 400 Scale. by Vojume ) 1

HELIUM Test H-1 Puroose: To provide a base case with 4% nitrogen in the Drywell, calculated for SBWR SSAR conditions one hour after a Main steam line break Initial conditions based on SBWR TRACG results : ? - RPV pressure set equal to steam dome pressure - Drywell, wetwell and GDCS vapor temperatures. set equal to liquid temperature, and total pressures set equal to average temperature for each vessel - RPV heater power is set equal to scaled SBWR decay power at one hour plus RPV stored energy and heat losses and D/W heat losses

AU GENudear Energy 25 Ass 77 su no.1, REV.0 ~ Table 9-1. GIRAFFE Integral Systems Tests Initial Conditions Parameter Value Tolerance RPV Pressure (KPa) 295 4KPa Initial Heater Power (Kw) 4l fE+ heat loss compensation IKw ~ RPV Collapsed Water Level (m)* 13.2 0.150m ~ Drywell Pressure (KPa) 294 4KPa a. Wetwell Pressure (KPa) 285 4KPa Wetwell Nitrogen Pressure (KPa) 240 4KPa GDCS Gas Space Pressure (KPa) 294 4KPa GDCS Nitrogen Pressure (KPa) 274 4KPa Suppressio'n Pool Temperature (K) 352 2K PCC Pool Temperature (K) 373 2K GDCS Pool Temperature (K) 333 2K- ~ GDCS Pool Level * (m) Suppression Pool Level * (m) 3.8 0.075m ~ PCC Pool Collapsed Water Level * (m) 23.2 0.075m f PCC Vent Line Submergence (m) 0.95 0.075m Referenced to the Top of Active Fuel (TAF) GDCS pool level should be positioned in hydrostatic equilibrium with the RPV level (including an appropriate adjustment for temperature difference).

y~y G GENudear Energy 25A5677 SH NO.18 REV. 0 P Table 9-2. GIRAFFE Integral Systems Test Matrix Drywell Initial Partial Pressures (KPa) (12KPa) GIRAFFE Helium Test No. Injection Rate Nitrogen Steam Helium (Kg/sec) dl 0 13 281 0 H2 0 0 281 13 H3 0 13 214 67 H4 0.00027 13 281 0 O b t i f i I i o I i

HELIUM Tes: H-2 Puroose: To investigate the effect of Helium on PCCS performance Helium replaces the volume of nitrogen in the drywell All other initial conditions are the same as test H-1 i m_.______ _m__________ ._m_______.m_________ ma J

Test H-3100% Meta Water Reaction at one aour post LOCA 1 ? Purnose: To investigate the effects of the maximum expected concentration of Helium on PCCS performance. Initial Conc itions: Except for the addition of Helium. in the Drywell, all other initial conditions are the same as for Test H-1. Mixture of Steam, Helium and Nitrogen in the Drywell to represent a 100% SBWR metal water reaction at hour after. a Main Steam line break (1000kg H2 generated over 1 hr) Helium equivalent to 23% of Drywell volume is injected into to upper D/W

Test H L ~ 00% MW Reaction at one hour post i LOCA Puroose: To investigate the effect on PCCS performance when the 23% volume of Helium is injected over.a one hour time period into the upper drywell Initia Conditions: Same as for Test H-1 Total mass of Helium injected = H-3 initial mass of Helium in drywell Helium injection rate = 0.00027 kg/sec. ( total of 1 kg helium will be injected)

9 Tie-3ack Test T ~

Purpose:

Repeat a Post Phase 2 Test to reinforce the validity of the previous testing Facility configuration: PCCS tube length 1.8m, D/W microheaters used, RPV heater power based on 2000mw SBW.R Initial Conditions: Based on SBWR conditions at one hour after MSLB (28% Nitrogen in D/W) Drywell to wetwell vacuum breaker is located in annular i drywell region approximately at middle of wetwell airspace (In the present SBWR design, V/B is located at wetwell roof.) GDCS injection at one hour post loca (In present SBWR ~ design GDCS injection is already completed due to increased nozzle size.) . = -

pD GENudar Energy 25a5677 su no.19 REv. 0 Table 9-3. GIRAFFE Tie-back Test Initial Conditions Parameter Value Tolerance RPV Pressure (KPa) 189 4KPa RPV Collapsed Water Level (m)* 9.1 0.150m Initial Heater Power (Kw) 96 . IKw Drywell Total Pressure (KPa) 188 4KPa Drywell Nitrogen Partial Pressure (KPa) 53 4KPa Drywell Steam Partial Pressure (KPa) 135 4KPa Wetwell Pressure (KPa) 174 4KPa Wetwell Nitrogen Pressure (KPa) 164 4KPa GDCS Pool Gas Space 188 4KPa Total Pressure (KPa) GDCS Pool Gas Space 151 4KPa Nitrogen Partial Pressure (KPa) Suppression Pool Temperature (K) 326 2K PCC Pool Temperature (K) 373 2K GDCS Pool Temperature (K) 350 2K GDCS Pool Level * (m) 14.1 0.075m Suppression Pool Level * (m) 3.5 0.075m PCC Pool Collapsed Water Level * (m) 23.2 0.075m PCC Vent Line Submergence (m) 0.90 0.075m i Referenced to the TAF

    • All pool temperatures are surface temperatures.

Test T-2 Puroose:: Widen the range ofinitial nitrogen concentration in the Drywell to demonstrate that peak D/W pressure is not sensitive to the initial nitrogen mass in the D/W Inita D/W nitrogen concentration : midway between that for Tests H-1 and T-1. (Total D/W Pressure =270 KPa) Total nitrogen concentration in t 1e system: same as H-1, therefore the Wetwell initial nitrogen concentration is less than H-1. (Total W/W Pressure =260 KPa) All other initial conditions are the same as H-1.

w-l GENuclear Energy SBWR GIRAFFE Test Program Faciy/y ci,aracteviuMon Teds l Maryann Herzog March 8,1995 San Jose, CA l l m. u m, e arr i x-e r =

GIRAFFE Facihty Heat Losses Heat losses from the facility to the surroundings will be minimized using the existing facility design features Vessels, piping and flanges encased by fiberglass insulation covered with metaljackets Microheaters installed on: Drywell vertical walls-Wetwell vertical walls & roof GDCS vessel vertical walls l Horizontal vent line RPV bundle heater power can be increased to a compensate for vessel heat losses c--

Heat Loss Tests Purnose: To determine the re. quired bundle heater power and microheater power to minimize the vessel heat losses For each Microheater the required power is determined for a maximum expected system pres.sure of 0.4 MPa To avoid generating superheated steam, the vessel temperatures are monitored to confirm that their temperatures do not exceed saturation temp. Additional RPV bundle heater power is determined to compensate for RPV heat losses and D/W heat losses at flanges & D/W floor

vil RPV Heat Loss Measurement Procedure - Supply water to expected minimum water level, 5.0 m above top of active fuel - Start RPV bundle heater power - Adjust heater power until Press.=0.4 MPa - Maintain for at least 8 hours, adjusting heater power to maintain constant pressure - Record required heater power to maintain constant pressure - Heat loss of 6 kw measured in Phase 2 tests

Drywel Heat Loss Measurement Procedure Use RPV heater power to initialize RPV pressure at 0.4 MPa Initialize D/W pressure at 0.4 MPa using house steam 4 Connect RPVand D/W by opening Main steam break line and Depressurization line valves Supply power to microheaters on D/W walls Maintain RPV and D/W Pressure = 0.4 MPa, by controlling RPV heater and microheater power Continue for 8 hours, record required power to heaters to maintain constant pressure Heat loss of 18 kw measured in Phase 2 tests, which resulted in 8 kw microheater power and 10 kw increased RPV heater power

i Wetwell Heat Loss Measurement Fill with hot water Supply nitrogen to top of wetwell and drain until water level is at 5.5 m Continue nitrogen supply to prescribed partial pressure, supply house steam until total P = 0.4 MPa Supply power to microheaters on roof and walls Maintain P = 0.4 MPa, by adjusting power to microheaters Continue for 8 hours, record required microheater power to maintain constant pressure Heat loss of about 3 kw measured in Phase 2 tests

GDCS Vesse Heat loss Measurement Initialize RPV Pressure at 0.4 MPa - Adjust RPV heater power until P = 0.4 MPa Initialize D/W Pressure at 0.4 MPa - Supply house steam until P = 0.4 MPa Initialize GDCS Vessel Pressure at 0.4 MPa - Supply hot water and pressurize using house steam Connect RPV & D/W, open MSBL & DPVL vlvs. Start D/W microheater at previously determined power level

GDCS Vesse Heat Loss Measuremen::( Con:inued? Start power to GDCS microheater at 2 kw Maintain RPV, D/W, GDCS Pressures = 0.4 MPa by adjusting power to the RPV bundle heater Continue for 8 hours, record required power to RPV bundle heater to maintain constant pressure m =+- -r -w,--w--- vi---v --<e -y , - = - - * - - - m --r vv r r- -e -- - + .m----

Piping Pressure Loss Tests To simulate SBWR thermal hydraulic behavior the GIRAFFE line pressure losses are set equal to SBWR line losses Exchangeable orifice plate in each line allows for line pressure loss adjustment to SBWR value For each GIRAFFE line the required K is calculated: A Ps = aP n = m. o f pa n ijel sswg unes s 7 nr=' GlXAFFE ' ~ Ks h'd,n [= b (O'/nvAr[ s xsNest(ya OAy

Pressure Loss Measurement Procedure Select orifice size to match required K Air is used as nominal test gas Atmospheric temperature water is used Trial & Error method used to determine orifice size - Pressure loss is measured at 3 different flow rates - Selected orifice size is acceptable if average K is within i 20% of K sawa _m,- m ww-- r wr--- s-c- c v-- - -. v .r --s. ,__m m . m -s.o m

GENuclearEnergy i SBWR GIRAFFE TestProgram Instrumentation Summary Maryann Herzog March 8,1995 San Jose, CA l l t l m

GIRAFFE Instrumentation Summary Thermocouples used to measure temperature in gas and liquid regions of all vessels Thermocouples used to measure PCCS tube inside and outside temperature Pressure transducers used to measure gas space pressures in all vessels and water pressure in RPV Differential Pressure transducers used to measure water level: l RPV, Drywell, Wetwell, GDCS pool l PCC tube, water box and pool PCC and LOCA vent lines

Additional GDCS Instrumentation L Flow meters used to measure Flow rates: - PCCS Steam supply (venturi type) - PCCS Drain return (electromagnetic type) - GDCS Injection (electromagnetic type) - W/W to D/W Vacuum breaker line (venturi type) - Helium Continuous supply Wattmeters used to measure RPV bundle heater power 1 and Microheater power l

.) 'O' GENudaar Encayy 25x5s,, su no. s REV.O i FLOWRATc~ I TE.'APERATURE PRESSURE Oter-nENnAL PRESSURE PT* lO\\ Kf4

Psa, o

T= 575K PCC POOL ~

,f:

Pr:2'lWA BIT d h~ T-33 coc5 _ - - POOL - rh3 r-v.p w 8I p g O P ..F G1 1 DRWELt., T r 5#3 0 l = ,' @a, nev l T -I X i i Pr : '2,% KPA Pr= 2.85~ XF4 P= 296 KPn EA

  • II E f^

pu,. wo grq T' 40 6 K T= 4cSK ,357g FIGURE 3-1. GIRAFFE Test Facility Schematic (ll 4co Scale. by V olu m e. )

l l l l GIRAFFE Non-Condensable Gas Measurements Emil L. Gluekler 'f ELG: 3 7-95

GIRAFFE Non-Condensable Gas Measurements Test of Objectives: Provide non-condensable gas distribution easurement measurements using Nitrogen, Helium, and Nitrogen / Helium mixture to provide qualiHed data supplementing the temperature information for the qualiHcation of TRACG Expected Results: Gas composition at 3 measurements locations as a function of time. Measurements, sampie analysis and documentation to meet NQA-1 requirements. MeasurementAccuracy Gas composition 2 3% forconstituents ELG: 3-7-95

GIRAFFE Non-Condensable Gas Measurements Sampling Pipe i Stop Needle Valve i Valve i Bypass l X X l l X l i Absorber l l } Gas Sampling Bag Cold Trap Waterandl Thermometer l V 1 DryIce Condensation Bottle Measuring Method: Sampiing Technique, > 1 Sampie/ Hour Sample Size 1.0 Liter ELG: 3-7-95

G/RAFFE Non-Condensable Gas Measurements Measurement Technique A. Steam / Water: Weight of condensate B. Noncondensable gas (N, He): Gaschromatograph with sampling bag, sample size / frequency,1 liter every hour Gaschromatograph: o Thermalconductivitydetector (Hot wire typeinstrument) Two ceII arrangement with Wheatstone Bridge forcalibration ofsampie gas f~} (sensitivity ~ 1%) o Carriergas Ne or Ar o Separation column Area ofAttention: Sampling of gas in bottles; elimination of possible contamination prior to laboratory analysis

PANDA NONCONDENSABLE GAS CONCENTRATION MEASUREMENTS I EXISTING INSTRUMENTATION Thermocouples and pressure sensors to cover saturated conditions in drywell and wetwell Air fracdon determined from air partial pressure inferred from difference in total pressure and saturation pressure Temperature measurements at 30 locations in drywell and wetwell gas spaces f Two oxygen sensors to provide local / continuous measurement of oxygen partial pressure for saturated or superheated conditions Air fraction determined from air partial pressure inferred from oxygen partial pressure Sensors can be located at any two of eight locations s Three elevations in each drywell Each wetwell gas space 4 4 JET 8 MAR 95 i

i PCC Steady State Supply f Tuce Wall, Gas Temos. 3 Poci Temog {- y y y ,,,o x2 leertscal for an 4xOg four condonects 3xO ,o x1 cana m s 2xO - -e x 4 - O x 1 indudes 1 gas temp. 2xO- ~- O x1 @ each ieval sxO-o x3 -o x3 i sxO? 'I.: @r 1. O x 4 - o x2 IC-Drain '

  • O' y

0 x2 - O x YV~ PCC 3 Vent as ss PCC 1 Vent it fws PCC 2 Vent Break Line ,y, I PCC _m.J I Pressure hDraith l IC-Supply IC PCC 1 Equa' 0 (L PCC 2 PCC3 Vent Supply Line G-Sup. Supply dh XX 1X h h XX Safety hx3 g GDChool O 3xh valves 9 GoCS O Orsin '~ j)x3 $ 0 3x( ) di O

  • gu 3 g

non 2 ~w MSL + Main ,,,s e MSL f ()X3 $ $ 3x() OO e o VB VB (l $ BP 5' Vacuum VB P p A Breaker s _,p u u.in O I I O __fu.a vg g j. g oxy.ni Suphssion Suppbslon S* -Down 3 x() Ch$ber 1 ChoQer 2 ( )x3 Comer O O O O $ra () O O ( Ix3 \\ .o .= ll. l# O ll g O O l O O Electr. h Ecualization Line LS42/ SCHEMES.DRW 16/09/94 PANDA Instrumentation: Condensor, Pool, and Vessel Temperatures.

p_C_S_te_ad_y Stat.e_S,upply PC l IC PCC PCC PhC 1 r- -, 2 3r-T 1 1 1 IC Pool- -PCC Pool O~ yo t, r s_ IC-Drain g 2D~ s PCC 3 Vent ,s ,s PCC 1 Vent n /6 ,s PCC 2 Ver t Break Lhe us es ,s PCC M X hDrald Pressuro IC-Supply IC PCC1 Equa PCC :: PCC3 vent Supply Lhe Sup. Supply XX XX X XX Safety GDCS Pool valves g g GDCS Drain %vu. Drywell 1 l Drywell 2 we Man MSL Steam 2 RPV une 1 vs vs ts BP g" Vacuum ya ]<SP g JI Breaker fs su Main I I Main vent i vent I N8 *' 'Down-Suppression Suppression Chamber 1 Chaimber 2 Comer GDCS i 4 i a l s se -G3-- O O l l 0 ^ Electr. Heater X X T Ecualization Line T LS42/ SCHEMES.DRW 14/2/95 PANDA Instrumentation: Oxygen Sensors and Phase Detectors.

i PANDA NONCONDENSABLE GAS CONCENTRATION MEASUREMENTS i PLAN FOR ADDING TO EXISTING CAPABILITY e l Committed to add more sensors which do not depend on l assumption of saturated conditions i Alternatives being considered Oxygen sensors More like two existing sensors Other suppliers Wetbulb temperature sensors Dewpoint temperature sensors 1 Plan to' add six more sensors Two per drywell One in each wetwell gas space 4 ) 3 JET 8 MAR 95 t r

i ' g GENuclearEnergy GIRAFFE Test Program Data Transmittaland Handling ~ March 8,1995 San Jose, CA V filename: data 0308

GIRAFFERecords GEDesign RecordFile - Contains GE originated documentation - Contains all data and documentation received from Toshiba ~ - Archivalstorage for 60 years Toshiba TestFile ~- - OrganizatioWcontent as defined in Test Specification - Archivalstorage for 60 years i TRM 2 1 08 Mar 95 1.

Report Contents 4 Apparent Test Reports (ATR) - Quick look at data, conclusions, anomalies (if any) Data TransmittalReports (OTR) - Follow format of PANTHERS DTRS t - Contains validated data ~ - Specifies format of electronic data submittals Final Test Reports ~ - Contains conclusions from test program and analysis of results - l 7 TRM 3 08 Mar 95

SBWR TGst Submittals item Scheduled Actual Transmittal MFN 018-95 No. Test Submittal Title Document No. Submittal Date Submittal Date MFN No. Item No. GIRAFFE / Helium 24 Test Spedfication 25A5677 15-Feb-95 023-95 5 25 As-Built Drawing Package 31-Mar-95 33 26 Instrumentation Drawing Package 31-Mar-95 34 27 QA Plan TOGE110-T01 3-Mar-95 36 28 Test Plan and Procedures (T1,H1-H4 T2) TOGE110-T07 3-Mar-95 28,34,35 29 App.i nt Test Results (T1,H1,H2) 19-Apr-95 30 Data Transmittal Report (T1.H1,H2) 17-May-95 28,35 31 Appiient Test Results (H3,H4) 12-May-95 5 32 Data Transmittal Ren (H3,H4) 9-Jun-95 28,35 33 App.iwiii Test Resu ts (T2) 26-May-95 7 34 Data Transmittal Rwpuri(T2) 23-Jun-95 28,35 GIRAFFE / SIT 35 Test Sp.GT ieun 25A5677 Rev 1 7-Mar-95 38 Test Plan and Procedures (11-14) TOGE110-T07 Rev 1 14-Apr-95 28,34,35 37 Apparent Test Results 3-Jun-95 38 Data Transmittal Report 14-Jul-95 28,35 39 GIRAFFE Data Analysis Report 31-Aug-95 f D 0 3 Paos2 on, a na c

  • ne'

. ~ -,.

NW GENuclearEnergy Scaling of GIRAFFE He Tests By Robert Gamble NRCIGEMeeting San Jose, Ca March 8,1995 REG 3rtst

Outline e GeneralScalingMethodology e Important characteristics for He tests e Top-Downscaling + Modifications to facility e Bottom-Upscaling + PCCperformance + DryweIImixing e Additionalscaling workin progress + Scaling enhancement to address ACRS concerns + Scalingofmanometer-typeoscillations e Conclusions REG 37tE2

ScalingBackgroundandMethodology i e Scaling based on Hierarchicai Two Tiered Scaling (H2TS) developed byNRC e Top-down and bottom-up equations and discussion developed by George Yadigarogiu in Scaling of the SBWR.Related Tests, NEDC-32288 e Facilitysizingbasedon: + Full-vertical-scale i + Volumes and heat inputs at test system scale + Prototypicalfluids + Prototypicalinitialconditions REG 3rt%3 t

Time Frame of GIRAFFE He Tests i 17 REACTOR 6 GDCS IN!TIATION DRMLL GDCS DRAINED REACTOR AND DRYWELL TT N WETWELL WETWELL GDCS LONG TERM PCCS o_ PERIOD PERIOD 9 w ((' ~10 minutes 2 hours // 3 days TIME l GlRAFFE - He l REG 3ft/BIL4

4 PreliminaryScaling Conclusions e Overallfacilityhas verygoodglobalscaling + Volumes, submergences, line losses weIIscaled e GIRAFFE has large heat losses and undersized PCCS but scaling of heat sources will maintain global containment performance characteristics e Localscalingin PCC is verygood i e Smallscale (high aspect ratio) may result in mixing differences in DW e Tests should meet stated objectives of: + Operation of PCC with lighter-than-steam gas + Provide database for containment performance with I-t-s gas EG3ftF#11

ANALYSIS PLAN Four Studies with Noncondensible Gases . N only (HI) 2 . N and He (H3) 2 . He introduced over 1 hour period (H4) . N replaced with He (H2) 2 All performed on a Post -test (Bli 46) basis i Status: Received base deck from Toshiba Currently assesing against facility configuration & anodifying as needed

.VJTF O M X7T [U SO E/PE 3 /... llfG. N EL-20,723... -_-. 5 E W 2..?. --.1 .......a .....-c., ..b *k - YOU l g.g ........_....u [El? }? .30 7"pwOV ~~ T~M C]~'C%- n

  1. ffe~

~ ~3/ " .in Pv _. 7 y o 3 pfpg ]l c cu--I J l .w. V 4

  1. l$[

y 9, -. 7pu) O L PIPE 32, C El 5-- g +,... J .i.. V .._.. __.._. L O W O / i. / ~ 4-D. =es.w m, an. ame

a .. EG'. t. o . PC.c.. y . N C G~LL - _ cS J'C.(E U- =. - / 1 \\ l k 1 f. L,.., 0 29 ..... _.. l /. .g.2 9 . -/.

2..

a. ..,_Zf _.. _ f.. .....,1 J.----. f.-..- - -. Y. I .2 .,.3//7 -/ 9-g 3 / C.7 ...--I. ] r 3 / C 7. -l..... ._7..-.....-- y .g.., -..-. /._. ~ ~ - - s 7"~C-l 7 _. [ C l.jf. .- / 1 ....S y _ j"" j 4 n

  • p

,1 i g gg.... .$__*...._/., i i 7~C/ Y m l.. - . y. -. Y 7C / 2, TC/ o, 7'c /3 a ..1 ~O, 6S' +. ._._A-. ..Jg.. m 7."C / / M_M e 6

GENuclearEnergy 1 SBWR TRACG Containment Model ByJim Fitch l NRC/GEMeeting San Jose, Ca l March 9,1995 1

Outline e Nodalization overview e 1-d vs multi-dmodeling e Lumping of1-d components e Axial /radialceIIstructure formulti-dmodels e 1-dcomponentnodalization e M3CPTvs TRACG Vent Clearing e Suppressionpoolstratification m m. e. 2 = -,*-- - _., w- --~,+ 4,-- s- =r---- - - - - - - -,. -e n----


nv,.

n w, .4 v-ew a w -e e -. - r-,wu

~. e Wi::::.:.:fr::iis:ii::j::!:y:W:4:i:43IG$::$}:::::#fB

i::.

it<.::. i. s i ei.9::. m.. t. .i.v 3

L :.

.:'9. : y..

i.:..:::

e 3.}.:.: if

}.$.:9::.:

.:;. 39.!i.:. r m- 'cec..:. s.:.: . :c:<: i:.1:.: m .s:!. c

:.:.1.+
ci:c::k::.

.:q GED ,:..i:.(..: ::::.:.. ~..s. ,..R..

s::.

.:...:.i.e.s.: ..: :......:.......:>:..y;:< m............:s..:: ::..::....:.. ~. c ll:.\\. ..y * %.y::.% 3% , a L,,

(((((444 y, l.

r ...... e.$ 3 w.w.mm.g.;

== .=:::. xgysw .. ~. w .. ww .t..s. :.1&s&~. u.L%w:... t;:::p %y i s!

b. l, n

! ei [.* r- .... g:.:.:..: ::..: a \\..;:. : s:..;.9.:.::.

g.. *....:::.;;.

o l l::::: :.::c..::.:::..:..:.::: :: :v:.<!:.::.:.

.<.:<s

.~ y

.:!::(:..

aED-u g:... l. &4..:< it.:<.:::.:. C i ..c.. ....e:... 6 M...... 5::'.: S..: .. ff..f: !.I::Il

.:..... :.1.

5:i.s.; {I: l ... :......:.....m:... :st.: <i..; .........:.::. ;..:. e. :... :. ::.:; r..: :.. :! ri i.-:..::::

i.::::.:-

. :.... :...... :. z........ C O O-g. 5 u) s,.

    • W

<e t I 1

Condensation in Tubes and DW I March 9,1995 Bill Usry GE Nuclear Energy

Vierow experiment UC Berkeley experiment - 1990 Natural circulation experiment - no pure steam data 1 inch diameter tube (SBWR = 2 inch) TRACG correlation based on Vierow data Experiment experienced: - oscillations - temperature inversion

~o YR N R - IT 2 TE AI AI; C A 4 R R 3 W V>b M3,, g 3 D YE 3< o TT 9 O l A ,T CW iS l$ A 6 4 V v,Q C 8 w 43 3 3 3 I T

V D

A E 3 e V: 7 M 4 i L o 4 E + n 9 w H V 2 C V f

b

[ S 5 4 1 3 o wV 3 T P L 0 B 3 A 3 2 H T 2 7 Av M 8 N 6 73 E V 3 2 5 ~ 4 2 M

  1. ghM 3
  • ll '

,a e L-RI 2 E ~ P ^ X E 8 2 Er* 4 E l 2 V 3 V 2 _ 7 l 2 l 1 iTM'Ne s1 V 2V I L 1{ 4 + 0 -' 2 gEJ 3 g,i 3w$ [ n l + 31( z3 z$ y *W3 Z' D I E V R f UG 7 I I 5 V F r 1J T' e 9 l V 2 o P (] 1 5 lV 4V" l 1 5 v $3 z2G m

NEDC-32301 Tube packing gland / Axial Lecation Thermocouple inserted / in cooling water Coeiing water 0.0 -O ?-- u a outlet _s M* 4*0 $7 9.0 ---g 7 g< -eseket packing gland 6-d) 17.0 1i 30.4 I d 44.6 (m> [ / 1/4" nylon screw (spacer) 60.0 - - - i C-61.5 y 0.02" OD 55 sheathed k' J tyoe thermocouple embeded 79.B C - on condensing tube t { I[ 1/16" OD 55 sheathed 95.0 - - ' T type thermocouple embeded ah 99.6 - --- - ~~ - en plastic jacket 115.0- - - h K-- 121.3 - - - - f Cooling Jacket 13 7.0- - - d-4 14 5.1 - - - - f CondensingTube 3 ---d-171.5 - - - -- C

  • : 0.02" OD J type TC 182.0 - - i --'

m O: 1/16' 00 T type TC s " U " ***" 2 01.5 - - - -I 4h '1. [, Cooling water 241.8 Q. g\\ inlet ' g ~' ~ Figure 2.4-3. Test Section Thennocouple and Spacer Locations for Kuhn et al [1994] Experiment 2-40

Heat Flux Determination i h(x) = q"(x)/ (Tsat(x)-Tw(x)) dT (x) c c p o q"(x) = _ rcd dx i b (I)s C P b W f(x) = h'k h'fg = hfg + Constant. cp(Tsat-Tw)

Vierow results Produced Vierow-Shrock correlation (Tsukuba) 18 " normal" test results (monotonic wall T? 12 runs with " temperature inversion" I - occurred at low air mass fractions - believed to be unique to Vierow experiment configuration l 2 cases of permanent flow oscillations - occurred at iiigh air mass fractions - artifact of identical inlet and vent location (no damping j and little inertia present) l i i

l NEDC-32301 l TYPICAL STEADY-STATE TEST SECTION TEMPERATURE PROFILES l Steady-state Temperature Pronle Run #29 150 l l a b 100 &f 50 0 0 30 60 90 Postuon Along Condensing Test Secu.on(in.). I Steady-state Inverted Temperature Profile Run #17 150 c

  • 100 j

E E s e a

  1. . 50 0

0 30 60 90 Position Along Condensing Test Section (in.) Figure 2.1-3. Typical Steady-State Condenser Tube Wall Temperatures for Vierow (1990) Experiment (Used with permission) 2-27

Temperatures During Oscillation Run # 10 Real Start Time = 15:50:01 -*-- Tao -*-- T38 150 1 5

t s

a 1 100 r y vf 9 7 = r 50 ' O 60 100 150 200 250 300 time (sec) Figure 2.1-4. Sample Thermocouple Time Records for an Oscillatory Run of Vierow [1990) (Used with permission)

Tsukuba Correlation ( 3 1/3 3pfr 8= $P (P ~ Pg) f f hey = f f h r ; h r = kr / 8 i2 re re f = (1 + 2.88x10-5 Re 1 m.18) shear enhancement l b f2 = (1 - C Ma ) non-condensable degradation where (for steam / air mixtures) C = 10 b = 1.0 for Ma < 0.063 C = 0.938 b = 0.13 for 0.063 < Ma < 0.60 C = 1.0 b = 0.22 for Ma > 0.60 e not descriptive of physical process - gas side resistances add to liquid film resistance instead of acting as a multiplying factor e suitable as an engineering approach-

TRACG Correlation (laminar film) b f2 = (1 - C Ma ) where (for steam / air mixtures): C=10 b = 1.0 for Ma < 0.06586 C = 0.938 b = 0.I3 for 0.06586 < Ma < 0.4911 C = 1.0 b = 0.22 for Ma > 0.4911 fl = 1 + 2.88 x 10 -5Re 1 m.18 for Refs 1000 fis3 }

1 Siddique Experiment MIT experiment - 1992 1 Forced flow experiment - air / steam and helium / steam runs 2 inch tube promoted secondary side mixing by injection of air bubbles (didn't specify how much) l Determined heat transfer similar to Vierow i 1 l l l i l

v w Siddique results Initial results showed much higher heat transfer at inlet of tube (compared to Vierow) - large differences explained by inappropriate extrapolation at the inlet of the tube Developed correlation ignores thermal resistance of condensate film Differences in steam / air and steam / helium behavior shown - On mass basis, helium degrades h.t. more than air - On molar basis, air degrades h.t. more than helium l No unusual behaviour - No oscillations or temperature inversions reported

1 Ogg Experiment i 2nd U.C. Berkeley Experiment i - 1991 Forced flow experiment - air / steam and helium / steam runs 2 inch tube Results lacked reproducibility Tube wall thermocouple became detached Results were~never published 2 ---n --v- - + r-v

k l 1 Kuhn Experiment l l i Improved on cooling jacket design and bulk temperature determination - Itteratively determined bulk water temperature using turbulent Navier-Stokes calculations No oscillations or temperature inversions Correlations for both steam / air and steam / helium Lowest standard deviation Probably the best database Agrees well with Vierow data for similar conditions 'I -w --e-e

P I F 4-3- + IbN I 2-I' i i + h.S.P $i O K .{. h ierow-Schrock -l i V i y 10000-

f. Li,,

o 5 I l f k q i 7 7 M-*-i-.4-H l f i.%.,,.;3 o4 3 6- ? o-.m 'a.. -+1.: ^ s-.+ 4 .. -j..hj. 3 [_ 4-r-+ iJ l 4 g L .-. !-.[ i !.,- + 4.l.o[. j....;.lo i .Q 3 'i G 0% ~I O 2- . - - ~. -k !+. ~ o A+4 [a 4! L. I .2 i .b r-

-- 4 E

1000- ~.JiF (U it o p 7 } + ; _ :- A'cg -;.-_-.....;. J 4.;... .. id t +;, 6-lo io 3 i g 3 r g - +, -g

r j-7j 6-j--+!i i

fo s !!I i 3-

do {

!o o

i 2-

!.-t-ri-i i i i .....'.g 100-4 i 2 3 4 56 2 3 4 56 2 3 4 100 1000 10000 h,,,,yi.,,, W/m^2 K Figure 7-1 Heat Transfer Coefficients Predicted by K-S-P and Vierow-Schrock Correlations versus Vierow's Experimental Data + i 103

I I l 10000- -i I-4 1 -J + t i.._.11-- 'I43 9- --. i --.. -1 I ..j i +._.+ ' 4 4 e-f. I_ I + ,. t_ 7- ~< 4 7..S + 6- ----s--- ...k. +' -L. l E+ s-j u 4- -*- l hj 4p.- 9.- g n ++ + 4 E 4 i i L 2 s 3 1 !i + 4 1 T N++p.+% ~ = f. 3 2- --. .4 + 3 4 + 9 m I ++ I s + F + + 4 I + + + 9 + 1000- .I l-p. I I I g~ e- ..l. + -Wg j ~~~[-- .. _j ..[ 7 -.------{- I. -- ... + [.. .. ~. - - I 6- -t t -t bbI i i k i i ibbI i 1 1000 10000 FITRAC-G(W/@2 b) Figure 3.6-8. Plot of the lleat Transfer Coeflicient Predicted by the Kuhn et al. [1994] SteanVAir Correlation Versus the lleat Transfer Coeflicient Predicted by the Correlation Currently in TRACG i l [_

F Does TRACG nonconservatism matter? Typi'cally the TRACG correlation predicts that inside resistance is 25% of total resistance - Resistance would be raised to 35% of total for Kuhn - Equivalent to a 20% reduction in heat transfer area - 33% reduction in tube area would raise containment pressure by 2.5 psi TRACG overpredicts Kuhn at high h and high Re - occurs at inlet of tube - TRACG correlation will account for less than 25% of total resistance for conditions where TRACG and Kuhn disagree n Effect is less than 2.5 psi r,

DW Correlation Same as in PCCS tubes - Shear enhancement (fi) not likely to play a role During blowdown condensation is 15 fps - wetwell aborbs 130 fps (full power seconds) - long terrr. drywell condensation is only 40 kW TRACG correlation predicts less heat transfer than Kuhn and Dehbi Dehbi is based on natural convection flows and may not be applicable during a blowdown f l l

G CA n h R u T K 5 s 0 n o i t a 4 le 0 ~ rro n C o i 2 3 t f 0 ca fo r f s n s a o 2 s 0 m i r r i a A p m 1 o N 0 C s s\\ O 1 5 5 5 0 7 0 2 0 0 N-

c i c bh A D m e 5 ^ 0 5 4 0 4 0 5 ~ 3 ~ 0 ~ 3 n 0 ~ o i t ~ ca ~ r 5 F ~ 2 s 0 sa M r 2 A i 0 5 ~ 1 0 1 0 \\ \\ 5 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 5 0 5 0 5 4 3 3 2 2 1 1 mS i2 53r&eE= i

In TRACG, the laminar correlation is used for Re < 1000 and the turbulent correlation is used for Re > 2000. Between 1000 and 2000, the Nusselt number is determined by cubic spline interpolation between the laminar value, Nut, and the turbulent value, nut ' Re 'f Re Nu(Re)= Nu +[Nu -Nu ] 3-2 -1 -1 t r t <1000

,g1000 j

Based on the original UCB ("Tsukuba" or "Vierow-Schrock") data, a factor is applied to the Nusselt numbers calculated as above. This factor can be written in the form f = f,f, with Re,= ##* f, = 1 + 2. 88 x 10 Re,'

xDp, The f factor accounts for film thinning and induced waviness caused by the interfacial i

shear from the flowing vapor mixture. The following restriction is applied f, s 3 Re s 1000 f, = 1 Re;t2000 r r Re " f Re fi s3-2 3-2 -1 -1 1000 < Re < 2000 (1000 sj(1000 j g The f factor accounts for degradation due to the presence of air or nitrogen in the vapor 2 mixture. It is given as a function of the local ratio of non-condensable m sss to total vapor mass in the form 1-10A! Os Af so.06586 f, = < 1 - 0. 938 Af' O.06586 s Af < 0.49107 1 - Al"' O.49107 s Af s 1.0

3,. ..] p ac> p nq ';' i s L 9s.-+.. i l TRACG condensation heat transfer correlation d -?,/.. b Nomenclature . h: local condensation heat transfer coefficient j k: liquid film conductivity liquid film viscosity p: liquid film density - l t T: mass flow rate of condensate per unit of tube circumference j .l I wm: nas flow rate of vapor mixture j i i i Hm: . vapor m xture v scos ty D: tube inner diameter - g: acceleration due to gravity i M: ratio of non-condeasable mass to total vapor mass l Define a local Nusselt number as j t i f p' ' I. { i h

  1. ,h Nu=

N k Define a condensate film Reynolds no. Re = Jr 1 j i Based on classic ; pure-steam condensation from a stagnant vapor to a vertical surface L 1.10 Re ' icminar film + Nu=< g p ,0.0195 Re' turbulentfilm i (See, for example, Bunneister, L.C., "Convectiva Heat Transfer", Wiley,1983, pp 643 to 659) i I L 1 9 --.m

\\ L i 1 _D C l @CO .g t Q \\ "3O' LLI \\ CO 'C >4 ( s @mCOO O O \\ 4 C>C

Conservation Equations - 7 Conservation Equations solved for each computational cell 3 Mass Equations ( vapor mixture, total mixture, non-condensible) = 2 Energy Equations ( vapor mixture, liquid) i 2 Momentum Equations ( vapor mixture, liquid) . Dependent variables - P,a,Tv,T,P,V,V f a y f i - Vapor phase is a inixture of steam and non-condensible gas i . P = Ps + Pa

  • 0v=9s+9a

. eygy = e 0s + e 0a s a

\\ - Vapor phase is perfectly mixed within a cell ) . Vy = V = V 3 a . Ty = T = Ta 3 - Different cells can have different concentrations of steam and non-condensible gas

i i

=================mm.m==========mmmmmmmmmmmmmm..mmm........ ca....... i. RELEVANT SHORT TERM CONTAINMENT PHENOMENA { A. ~ Listed in-TAPD, Table 6.1-1 TRACG Qualification Plan - Remaining Activities i PSTF PSTF B. Response During Blowdown Phase MARK II MARK III Drywell/Wetwell Pressure and Temperature XC7 X X i Vent Clearing Time MV1 X Main Vent Flow. MV3 X i - Condensation on Wa*==M1 Walls WW5 X i b wdl G 1-I C. Pool' Stratification { - Pool Mixing and Stratification Effects WW6 X l

=========================================.m.................................... l i i d I F 4 i e i l l.- i

======================r============================================

CONTAINMENT PHENOMENA EXAMINED IN M3CIPT QUALIFICATION A. Shown in NEDM-21712, " Data Comparison with M3CIPT - The Mark III Loss-of-Coolant Simulator" B. Drywell - Pressure XC7 - Temperature MV1 C. Main Vent Flow MV3 D. Wetwell - Airspace Pressure (Mark II) WW5 - Suppression Pool Temperature Distrib. WW6

=================================================================.,============, l s

I fa t 'a======================================================== 3

====================c Simulations' Selected to Test TRACG PSTF Mark III Tests Phenomena. 5703-01 XC7, W1, MV3, MV1 5703-02 XC7, W1, MV3, MV1 5703-03 XC7, W1, MV3, MV1 f i 5707-01 W6 I 5807-29 W6 L PSTP Mark II Tests Phenomena 5101-29 XC7, W5 i 5101-33 XC7, W5 j

==========================================================s=======

+ 4 i i t a 1 i e i I l q I-i I

9 4 GENuclearEnergy Code Application Methodology for Containment l ByRobert Gamble I NRC/GEMeeting San Jose, Ca March 9,1995 REG 36%1 ..~. -,,

1 Outline e GEPlan Overview e CSAUMethodologyandDccumentation Overview e DetailedReview + Nodalization + Parameters /Phenomosa + Uncertainty + Sensitivity + UncertaintyCombination REG 34%2

GE Application Methodology for Containment e Method to ensure applicability of code and determine uncertainty on predictions l + Primary variable for containment is pressure e GEmethodbasicallyfollows CSAUMethodology 4 l e An example is the transient application in NEDE-32178P 5 i i

CSAUMethodology ~ l o ELDENT 1 tif AEQJRMNTS S'CCFY gnggt

    • "uo c"Ammts TAPD

'ruosa a gm 4 A , =7 2 amtmz ccnettvr errs u-rato. czzz - 4 was amt 8EENptandNS 3AM S COtrFT apO maam gw(gng,gg amt M*O4J8A ('9III S 4 GEL dB N ATE >G CE a %~ M ocle.\\ LTI4. ~.. t + eld 4NT 2 jd*8,, T ASSESSENT Y A#C RANCNG CF v PARAWTDts wM - rra eo. ran een CAL CLLJvm 4 4 f-ami 4

c..
cha, CC5" sets 'u'nec a*"

C CAerms ocneaar em.cuatos n si av 4 ris unsc.**= i mLratoe cara enz cara aan e rr vrp i h.,, r L/ + tra 'r' ,c .G. UW N eta,c,, Olds se ac rs'ensei e AC3AaCY ,,se.s a".O. S, rt ,o ct m, i + ma6 me KTD**< trrtet .pctitf apet, 7 NActCpt W T e

  • anned eras mac start h

A -c.n. 'h

    • 1EMJTMfv II catcLaroe 4

.... 3.,.g....., i _ac"J. =,, con mass 'a .7,,,,, +-- ii.....c':a...?.?.......j tanrarx> -2 4 N ANTY ANAL n s 'C',p g7 =cre==. ,a Ma MWCN%

Requirements, Code Capabilities and Parameter Assessment = 71EDIDs e CGK I 'Tiif' 8EIEhtC CDeLETE 00Gaerfafscre Last 5 m.a=W. ca, gal,,,, immy e - c=n 2 fi .E "ao"c -ice AE I ,nm I l REG $5%5 1 ~,, -

Nodalization and Ranging of Parameters 4 ww= nYtum Ftytefe CALGAATIEME i f h 5 w ri-.e t - va m.a, GDPAfE CALGAATIOPS CDMAME CALQA.AT1t>$ v1 SCTS tasc erm E1 KT WE ETS tasC PPP PCDaLizAfsth OATA SAE oaf 4 SAE

    • 'm warith e maatt 0530#

1 I = _ s e. i e "'8,M 2 T Tv i =#,7, uNCtsetamtv CW' KAE REG 36%6 -.~.- . =

Sensitivity and Uncertainty Analysis I N C8K eus me see EuPEmeef 9 tacDtiAmir ACt3MACY l + 9 Was ace ~ spCEftfANTY gy g g N NU WAS ape tsCEstiAWTY CF 8EActtzt W tt Pampagtt e Ape STATE see spettwity 12 Call 3 LATED 4 I T-'~~&~&~~~~) ~

  • ~~~j an'"a,,"m".,

c=

==t* '8 i tecmEfWess TRT' "

...c s. m....:l 4

TOTAL tsCEftTAMrY TO CALE1 LATE N MIpenft0 34 mA TECFC 98p REG 34%T

Nodalization e Basic nodalization is set e Reviewing consistency of nodalization e Some additionalnodalization studies to be done e SBWR nodalization willbe changedif necessary e Nodalization willbe specifically discussed for each test in LTR REG 11%8

Phenomena andParameterSelection e Revising PIRT and adding more detail e PIRTranking done conservatively to make sure allpossibly l importantparameters considered e Developing PIRT/non-dimensionalnumber table to: + Help reduce number ofparameters to consider + Hel,n quantifysome PIRTparameters + Verify test applicability for different phenomena i REGM%9

Uncertainties andSensitivities Uncertainties i r l e Several Types: code modeling, plant parameters, scale effects e Separate effects tests used to determine uncertainties in parameters where possible e Then component tests and othersources of data Sensitivities e Preliminary sensitivity studies used to determine important phenomena in set provided by PIRT ranking + e Detailed sensitivity done on reduced set of parameters e Parameters varied one at a time orin combinations to determine sensitivity ofimportant performance parameters (Containment Pressure) to each parameter REGW511 l

n-Containment Example - PCC flow / pressure drop e Importantparameters: fl/D, K e Relatively simple to determine uncertainties, adjust parameters and determine sensitivity l 1 t-1 REG 369514

Combination ofUncertainties e Twolikelymethods forcontainment + (1) GRS method Fixed number of cases for a given certainty + (2) Square root ofsum of the squares (SRSS) Requires linearindependence of uncertainties Combined sensitivities to show linearity (2 parameters at a time) Combination of most sensitive parameters to show linearity e Othermethods + Boundinganalysis + ResponsesurfacefMonte-Carlo e Combinations of methods also possible REG 389516 L._.

Actevey YbA 1 $ 10 f N ! A l' S I o TN I'Olk ~J.1 l_' L M i A i u i JYJ I A l 5 D*'a*'=a I D J Tf j M fA TM_] 3 J ]rie t1 si sIie>s Test & Analpis Ibn C5 M~fest b AMs'Piogem DewdEun E NRC b ARCS _ TAPO Remow _ cla== 1Aru. R s-A _ Gt Revnes 1AfD - ftensam B 5 Revses IAfD - Rennen C _ [ ~ . RC Endeses IAPD-Revuon 8 N gndacn_p; D - Rewmem C Teenne Tepical Report ___ _--._ - ---. c. 'b Maed Ges Tests - Phase 2 ~' ~ ~ ~ ' C'1] Patown Tee Sect /5 ingle Gas Tests - Phase 1 Pederm T+ Beck Tests - f%ese 3 " ~ ~ ~~ ~ ~ ' ~ M ~~.I Pedown System inteacten Tests ~ M EI ._E 1 PA_NT!MRS PC_CS. _ _ ___.__ ___ __ _ _. Pedoen First Pnoesty thennet Hydrauht Tests Pedoen Cythe Perlesmence t.sT -- M Complete theenet Hydroute 5e'"sE ~ __I PANTHERS ICS ~ Piepees fEittffEIEPressuno fYes~-Phese 1 ~ Podeem thesmet Hydrouhe IM ,Prepose Feeshty for thgh PiessuseTesEPhase 3 E lPedesm lhennet Hyrkeuhc Tests E I PANDA ~~ ~' ~ E Presses Fecary At P54 Pedaan SMS eEie~sts 51 58 ~~' E Podesm $ seedy State feste $7 59 E_] Facery Chesectearstics M Pedeen feno6ent Teets M3'Ui. UI~ E P55 tene*ent 15 OS. U5:Me E Poefeen lensteen feAE U M9 US ~ ~ ~ El Pre A Post Test Analysee PoWoon Penthess PCC5 Not tests Anetyees Pedaem Penshees IC Pie tests Answes Podenn Ponthem E Post Tests Anesyses ~ Pedoen PANDA Pro Tests Analyses Wo ' % ' - ' -

  • P-Perfoon PANDA Pr,st fests Anotyses TRACG W etten oote.me mACu Uoaei ge; &UE;;te.n,t, Propose IRACO Ouehteenson & Apphesnon &TR

+ NRCR mRsTms fiResPend to RA= on mACG ims m NRC Propee SE R On TRACG LTHe m ~ O C eenerugraerestc.paieresse % ui T" ,e Wh== ,",,e," SingMisd BoMsg WatoP Itentser _ Z ,, _ ee s ,0.sens a w -

'~ ~ ' = s A_ tm E>c& b mmu p l Meeting Goals Nd fl ) y,4 e u m +ons <s "0 J l Reach consensus on GIRAFFE test conditions n54-i c Reach consensus on GIRAFFE test instrumentation O le-- l Gain staff concurrence on non-condensable measurement approach in GIRAFFEand PANDA Yes, d,-h. excee+im, as noW in ack+ sh h f 5 Define the GIRAFFE data reporting method, scope, and format Pro revs 'va4 d'U*a resotum Pmrts5 . Explain the application of TRACG to containment modeling y Review the TRACG validation plans for containment modeling me); 53 pro 3 ress aw A TRM 2 08 Mar 95 -}}