ML20072F849
| ML20072F849 | |
| Person / Time | |
|---|---|
| Site: | Oyster Creek |
| Issue date: | 06/24/1983 |
| From: | Eisenhut D Office of Nuclear Reactor Regulation |
| To: | GENERAL PUBLIC UTILITIES CORP., JERSEY CENTRAL POWER & LIGHT CO. |
| Shared Package | |
| ML20072F853 | List: |
| References | |
| NUDOCS 8306280181 | |
| Download: ML20072F849 (35) | |
Text
7590-01 UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION In the Matter of
)
)
.GPU NUCLEAR CORPORATION AND JERSEY
)
CENTRAL POWER AND LIGHT COMPANY
)
Docket No. 50-219
)
(0yster Creek Nuclear Generating
)
Station)
)
CONFIRMATORY ORDER I.
GPU Nuclear Corporation and Jersey Central Power and Light Company (the licensees) are the holders of Provisional Operating License No. DPR-16 which authorizes the operation of the Oyster Creek Nuclear Generating Station (the facility) at steady-state reactor power levels not in excess of 1930 megawatts thermal. The facility consists of a boiling water reactor (BWR) located in Ocean County, New Jersey.
II.
.During 'a routine shutdown of Browns Ferry Unit No. 3 on June 28, 1980, 76 of 185 control rods failed to fully insert in response to a manual scram from approximately 30% power. All rods were subsequently inserted within 15 minutes and no reactor damage or hazard to the public occurred.
However, the event did cause an in-depth review of the current BWR Control Rod Drive Systems which identified design deficiencies requiring both short and long-term corrective measures.
These measures were set forth in the " Generic Safety Evaluation l
Report BWR Scram Discharge System", dated December 1,1980, prepared by the NRC staff.
l 8306280181 830624 ~~
PDR ADOCK 05000219 P
~
7590-01
, To provide reasonable assurance of safe operation pending implementation of long-term corrective measures, the short-term corrective measures have i
been implemented by IE Bulletin 80-17 (with supplements) and Orders issued on January 9,1981.
i The Generic Safety Evaluation Report (SER) dated December 1,1980, endorsed the criteria and _ technical bases that were developed by a BWR Owners Subgroup for use in implementing permanent system modifications to correct identified deficiencies. These criteria were designated as either functional, safety, operating, design, or surveillance, and when taken as a whole, comprise an adequate set of criteria to resolve the issues raised during the Browns Ferry event investigation.
The SER further described an acceptable means of compliance with each criterion. Pre-implementation approval of permanent modifications using the methods described in the SER for compliance with the criteria will not be required. Alternate methods of compliance will require specific NRC approval in advance of implementation.
In addition to the criteria proposed by the BWR Owners Subgroup, the SER added a criterion to address the potential for common cause failures of the scram level instrumentation. An acceptable means of complying with this criterion was the addition of diversity in the design.
The addition of diverse instrumentation on the Scram Discharge Instrumented Volume will minimize recurrence of known common cause failures and, thus, improve system reliability.
i
..._ _ ~..,._.._ _ _ _-._ __ _ _..
7590-01
, Therefore, we have concluded that diverse instrumentation should be provided as required in the SER, with one exception: Alternative 2(d)(ii) has been deleted as a possible means of providing diversity, due to its reliance on prompt operator action. The use of level sensors employing different operating principles, or the use of level sensors made by a different manufacturer, continues to be acceptable means of providing diverse instrumentation.
On October 1,1980 letters were sent to all BWR licensees requesting a commitment to reevaluate the present scram system and modify it as necessary to meet the design and performance criteria developed by the BWR Owners Subgroup. The letter also requested a schedule for implementation.
III.
Because the implementation of modifications to meet the criteria 1
proposed by the BWR Owners Subgroup and endorsed by the NRC staff will restore the margins of safety in the BWR scram system, we have determined that these modifications should be completed on an expeditious schedule.
In response to our letter of October 1,1980 and additional discussions with the NRC staff, the licensee committed, by letter dated December 24, 1981 to install the long term modifications before reactor operation in Cycle 10. These commitments were confirmed in a June 6,1983 telephone conversation with the licensee's staff.
In view of the foregoing, I have determined that these commitments are required in the interest of public health and safety and should, therefore, be confirmed by an immediately effective order.
7590-01
. IV.
Accordingly, pursuant to sections 103,1611, and 182 of the Atomic Energy Act of 1954, as amended, and the Commission's regulations in 10 CFR Parts 2 and 50, IT IS HEREBY ORDERED EFFECTIVE IMMEDIATELY THAT:
1.
The licensee shall install the long term BWR scram discharge system modifications in conformance with the staff's Generic SER, which incorporates the BWR Owners Subgroup criteria, before reactor operation in Cycle 10 or, in the alternative, the licensee shall place and maintain the facility in a cold shutdown or refueling mode of operation until such modifications are made. Extensions of time for installation nay be granted for good cause shown by the licensee. The modifications shall include diverse instrumentation as provided in the SER with the exception that alternative 2(d)(11) will not be accepted.
2.
For those cases in which a different method of complying with the criteria than that described in the SER is chosen, the licensee shall submit the design details and supporting analyses for approval to the Director, Division of Licensing, Washington, D. C. 20555 with a copy to the Regional Administrator of the appropriate NRC regional office, at least 3 months prior to the required implementation date.
3.
Technical Specification changes required for operation with the modified system shall be submitted at le at 3 months prior to the required implet ntation date.
m
7590-01
. V.
f The licensee may request a hearing on this Order within 25 days of the date of publication of this Order in the Federal Register. A request for hearing shall be submitted to the Director, Division of Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Washington, D.C.
20555. A copy of the request shall also be sent to the Executive Legal Director at the U.S. Nuclear Regulatory Commission, Washington, D.C.
20555. A REQUEST FOR HEARING SHALL NOT STAY THE IMMEDIATE EFFECTIVENESS OF THIS ORDER.
If a hearing is requested by the licensee, the Commission will issue an order designating the time and place of any such hearing.
If a hearing is held, the issue to be considered at such a hearing shall be whether the licensee should comply with the conditions set forth in Section IV of this Order.
.The request for information made in this Order was approved by the Office of Management and Budget under clearance number 3150-0083 which i
expires on December 31, 1983. Comments on burden and duplication may be directed to the Office of Management and Budget, Reports Management, Room 3208, New Executive Office Building, Washington, D.C.
This Order is effective upon issuance.
FOR THE NUCLEAR REGULATORY COMMISSION
\\
\\
(.
l I ( 'I Q((E, (l ';)
l Darrell Eisenhut, Director Division of Licensing Office of Nuclear Reactor Regulation Dated at Bethesda, Maryland this 24 day of June 1983.
l
Enclosure
~
SAFETv LIMITS AND LIMITING SAFETY SYSTEM SETTINGS
- 2. 2 LIMITING SAFETY SYSTEM SETTINGS REACTOR PROTECTION SYSTEM INSTRUMENTATION SETPOINTS 2.2.1 The reactor protection system instrumentation setpoints shall be set censistent with the Trip Setpoint values shown in Table 2.2.1-1.
APPLICAEILITY:
As shown in Table 3.3.1-1.
ACTION:
With a reactor protection system instrumentation setpoint less conservative than the value shown in the Allowable. Values column of Table 2.2.1-1, declare the channel inoperable and apply the applicable ACTION statement requirement of Specification 3.3.1 until the channel is restored to OPERABLE status with its setpoint adjusted consistent with the Trip Setpoint value.
0
~~*
a h4 4
e 5
8 GE-STS (BWR/4) 2-3
o
.l e
e h
v r
l i
s t
D o
e a
i i
E b
~w c
v w
T D
ao o
s i
D A
E
)
r p
E l
%f E AE EE ez l
l LS
) a AW
) of W RW TW g h d
l g u d ll E 5 c RO 4
oO O
AO i ct e ud i f e
g AU 2 s P
5 m P fP RP s nn s af n s s
i WL 1
f
( u%
o p i e o u
p f o
s OA (l
oL
+ m)L L
fL m
l xo o
l p
LV
/l A
Wi5A %A oA
)
) u c r
L
) u
%M x
.M
)M M 5 0 r
)
ie
)
c 9 %
)
A 2f
)R G a5R 0R
%R 6
.t
% 0k 8
)
2 0E G m1 E 2E
)E 0
1 s 1
.c 9
)
1f 2i l
1 il 1 i 3H 1
1 l
n 7 3 a 1
3 7
( o (T
0 a(T (T
(T
(
(i
(
( b
(
(
(
(
A A A
<~
5 1
N > _
5 >
5 $
5 5 <
> N N t
R n
d R
E e
n E
W m
u W
O u
o O
P r
r P
t g
L s
k L
A n
c s
A M
a i
n M
R b
S o
R I
E e
e E
h i
v r
l l
I i
H s
i 8
t D
T o
e a
l l
i T
i E
b w
c 0
v w
T D
a o
s D
A E
p P
i T
d e E
RR T DR s
l E
l T
%f E A EE e
l l
S T
) a A
) of W R I W g h d
l g u d N
5 c R
oO AO 1 'm c
e u i f e
g i
5 P
f RP s n s f s
s i
N I
2 s O
O 1
f
( u%
o p i o
p f o
s i)L f L l
x o
l p
n I
.P (l
o thi5A %
oA
)
)
c
)
c T
T
/l 6'O A
E
) u
.M
)
M 5 5*
)
9 %
)
a3R 8
%R 4 I
)
o % 5 6
)
0
.m1E N
2 5
6 l
1
)Eb 2 r 1
6
)
0 1i 1
5li 1
1 e 6 2 1
3 5 5
E P
1f 1
M I
( o
(
0 a(T
(
(T
(
( z
(
(
(
(
(
(
1 U
R A
_A A
1 T
5
<~
5 5
N >
5 >
5$
5 5 5 R
T 5
N N S
2 N
I 2
M E
E L
T e
B S
l h
A Y
a g
T S
h c
i g
s H
N l
U i
p O
l I
h 3 e
h T
x r
g r
e g 1 '
C u
e i
l u
r i i
w e
s u
i E
l l
I F
o v
o s
l n
O P
e l
s -
o R
n L
C e
i P
o n
l e
h r
l e
t r
w a
r g
P e r
i s
R t
o m
u w i
)
e s
o i
v u
s O
u d
r e
s o e
l I
e t
e l
s L v
l L
o P
C N
e h
a e
l l
l A
S T
c r -
a e r e C n
- r s
P V -
w e r w
E R
r o
d p
l y t u t o
o t
e e
d U
e e n n r a s s d
t i
l t
e m v o o D W o a t
n a a
p x
o e i i
(
l F w u i
m u
D L t
t e C o h 1
n o c l
o M s u
a l
a a
)
m eL S l
F m r l
i t
u -
v 3
M p
m e U i d C
a e c d n
l l
h e
g -
S e n
e t
s a e o e a c
4 g
n x s
w o
t a
I R
m V v V e t
/
n' a u d a o
r e
S W n
l r i 3
e a l u w a
R l
ei l
t v
e e i
R F
sH F
u i e l
l n n a g V os S U
e e i i t
r rs c
t l
r a
if w
h a a s.
L L n i.
p t e e m e
e e n i
T a
o r l
o g
r c r
m m C
c t
oP o r u
t w o i
o h o nr d a
r i
d e s e e l
i l
i P
t wF l
x o w e e y i l
S i
e p n V V a a r.
S C M c n
i d
u o
t U
e e e l )
)
i n o r r t
t r D e ei r
I D
o o S S a
n nO o l
m g N F1 2
F i
L r
a t
t m m i i t
a s
l e
r c c n n i a b b p c u e
A l
t e
a a i i r r r ri a n s
e e a a P c u ur e a a
0 n
v A a b
c l
c R R M M
(
S T f '
R M B
i I
1 I
1
(
C ee N
U 1
2 3 4 5 6 7 8 9 0 1
2 S
F 1
1 1
,.mii" SnRO 7e.
I i
i 4
l
]'
LIMITINGSAFETYSYSTEMSETTING EASES REACTOR PROTECTION SYSTEM INSTRL' MENTATION SETPCINTS (Continued) 8.
Scram Discharce Volume ~ Water Level-Hich The scram discharge volume receives the water displaced by the motion of the control rod drive pistons during a reactor scram.
Should this volume fill up to a point where there is i.nsufficient volume to accept the displaced water at pressures below 65 psig, control rod insertion would be hindered.
The reac-
-tor !is therefore tripped whin the water level has reached a point high enough to' indicate that it is -indeed filling up, but the volume is still great enough to acccmmodate the water from the movement of the rods at pressures below 65 psig when they are tripped.
The trip setpoint for each scram discharge volume is equivalent to a contained volume of (
) gallons of water.
9.
Turbine Stoo Valve-Closure The turbine stop valv'e closure trip anti ~cipates the pressure, neutron flux, and heat flux increases that would result from closure of the stop valves.
With a trip setting cf (5)% of valve closure from full opel, the l
resultant ihcrease in heat flux is such that adequate thermal margins are maintained during the worst case transient (assuming the turbine bypass valves (fail to) operate).
l j
10.
Turbine Control Valve Fast Closure,-Trio Oil Pressure-Low The turbine control valve fast closure trip anticipates the pressure,
_. neutron flux, and heat flux increase that could result from fast closure of the turbine control valves due to load r jection coincident with failure of the turbine bypass valves.
The Reactor Protection System initiates a trip when fast closure of the control valves is initiated by the fast acting sole-noid valves and in less than (30) milliseconds after the start of control valve a
fast clcsure.
This is achieved by the action of the fast acting solenoid valves in rapidly reducing hydraulic trip oil pressure at the main. turbine control valve actuat:r disc dump valves.
This loss of pressur'e is sensed by pressure swit:has whose cpatacts forn the one-out-of-two-twice logic input to the Reactor Prctection System.
This trip setting, a faster closure time, and a different valve characteristic from that of the turbine stop valve, combine to produce transients which are very similar to that for the stop valve.
Relevant tran-sient analyses are discussed in Section (15.1.0) of the Final Safety Analysis Repcrt.
11.
Reactor Mode Switch Shutdown Position The reactor =cde switch Shutdown position is a redundant channel to the automatic protective instru entation channels and provides additional manual reactor trip capability.
12.
Manual Scram The Manual Scram is a redundant channel to the autcmatic protective instr..sntatica channels and provides manual reactor trip capability.
c cm B 2-9
R" ACTIVITY' CONTROL SYSTEMS 3/4.1.3 CONTROL' RODS w
i LIMITItiG CONDITION FOR OPERATION 3.1.3.'l All control rods shall be OPERABLE.
i
. APPLICABILITY:
OPERATIONAL CONDITIONS l'and 2.
i:
ACTION:
I a.
With one control rod,iaoperable due to being immovable, as a result of l
excessive friction,.or mechanical interfe'rence, or known to be untrippable:,
1.
Within one hour:
a)-
Verify that the inoperable control rod, if withdrawn, is
' separated from all"dther inoperable control rods by at least two control, cells in all directions.
'b)
. Disarm thr~ associated directional control valves ** either:
l
- 1) ' Electrically, or i
2)
Hydraulically by closing the drive water and exhaust l
water isolation valves.
c)
Comply with Surveillance Requirement 4.1.1.c.
j
- Otherwise, be i_n at least HOT SHUTDOWN yithin the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
l 5
~
2.
Restore-the inoperable control rod-to_0PERABLE status within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> l
p or be in at least HOT SHUTDOWN within the next 12' hours.
l
' b.
With one or more control rods trippable but inoperable for causes other l
than addressed in ACTION a, above:
I 1.
'If the inoperable. control rod (s) is withdrawn, within one hour:
5.
a).
Verify that the inoperable withdrawn control rod (s) is separated l
~
from all other inoperable control rods by at least two control l-cells in all directions, and b)'
Demonstrate the insertion capability of the inoperable withdrawn l
control rod (s) by inserting ~the control rod (s) at least'one l
notch by ~ drive water pressure within the normal operating range *.
Otherwise, insert the. inoperable withdrawn control rod (s) and disarm the associated directional control valves ** either:
a)
Electr.ically, or l-l b)
Hydraulically by closing the drive water and exhaust water l
isolation valves.
- "The inoperable control rod may then-be withdrawn to a-position no further l
.withdraven than its position when found to be inoperable.
- May be rearmed i.ntermittently, under administrative control, to permit l
i testing associated.with restoring the control. rod to OPERABLE status.
I 2
GE-STS " (BWR/4) 3/4 1 3
, REACT!VTTY CONTROL SYSTEMS LIMITING CCNDITION FOR OPERATION (Continued)
ACTION (Continued) 2.
If the inoperable control rod (s) is inserted, within one hcur disarm the associated directional control valves ** either:
-a)
Electrically, or b)
Hydraulically by closing the drive water and exhaust water l
isolation valves.
Otherwise, be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
l With more.than 8 control rods. inoperable, be in at least HOT SHUTDOWN c.
within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
SURVEILLANCE REQUIREMENTS.
4.1.3.1.1 The scram discharge volume drain and vent valves shall be demonstrated OPERABLE by:
[
I At least once per 31 -days verifying each valve to be open,* and l
a.
b.
At least once per 92 days cycling each, valve through at least one l
complete cycle of full travel.
4.1.3.1.2 When above the (preset power level) (low power setpoint) of the RW!4 l
and RSCS, all withdrawn control rods not required to have their directional
__ control valves disarmed electrically or hydraulically shall be demonstrated OPERABLE by moving each control rod at least one notch:
a.
At least once per 7 days, and b.
At least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> when any control rod is immovable as a result of excessive friction or mechanical interference.
4.1.3.1.3 All control rods shall be demonstrated OPERABLE by performance of Survaillance Requirements 4.1. 3. 2, 4.1. 3. 4, 4.1. 3. 5, 4.1. 3. 6 and 4.1. 3. 7.
"These valves may be closed intermittently for testing under administrative controls.
- May be rearmed intermittently, under administrative control, to permit testing associated with restoring the control rod to OPERABLE status.
GE-STS (EWR/4) 3/4 1-4
REACTIVITY CONTROL SYSTEMS SURVEILLANCE RE0VIREMENTS (Continued) 4.1.3.1.4 The scram discharge volume shall be determined OPERABLE by demcnstrating:
a.
The scram discharge volume drain and vent valves OPERABLE, when control rods are scram tested from a normal control rod configura-tion of less than or equal to (50)% R0D DENSITY at least once per 18 months, by verifying that the drain and vent valves:
4 1.
Close within-(30) seconds after receipt of a signal for control rods to scram, and 2.
Open when the scram signal is reset.
l b.
Proper (float) (level sensor) response by performance of a CHANNEL l
FUNCTIONAL TEST of the scram discharge volume scram and control rod block level inst,r.umentation (AT level measuring system) (after each scram from a p~ressurized condition) (at least once per 31 days).
4 I
P i
l i
l l
3/4 1-5 GE-375 (S.WR/4)...
REACTIVITY CONTROL SYSTEMS R00 BLOCK MONITOR LIMITING CONDITION FOR OPERATION 3.1.4.3 Both rod block monitor (RBM) channels shall be OPERABLE.
APPLICABILITY:
OPERATIONAL CONDITION 1, when THERMAL POWER is greater than or equal to (30)% of RATED THERMAL POWER.
l ACTION:
With one REM channel inoperable, restore the inoperable RBM channel a.
to OPERABLE status within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and verify that the reactor is not operating on a LIMITING CONTROL R0D PATTERN; otherwise, place the inopetble rod block monitor channel in the tripped condition within the next hour.
' b.
With both RBM$thannels inoperable, place at least one inoperable rod block monitor channel in the tripped. condition within one hour.
SURVEILLANCE REQUIREMENTS 4.1.4.3 Each of the above required RBM channels shall be demonstrated OPERABLE by performance of a:
CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION at the frequencies a.
and for the OPERATIONAL CONDITIONS specified in Table 4.3.6-1.
b.
CHANNEL FUNCTIONAL TEST prior to control rod withdrawal when the reactor is operating on a LIMITING CONTROL ROD PATTERN.
i' i
l l
l l
I GE-STS (EWR/4) 3/4 1-18 t
REhCTIVITY CONTROL SYSTEMS 2ASES 3/4.1.3 CONTROL RODS The specification of this section ensure that (1) the minimum SHUT 00WN MARGIN is maintained, (2) the control rod insertion times are consistent with those used in the accident analysis, and (3) limit the potential effects of the rod drop accident.
The ACTION statements permit variations fron'the basic requirements but at the same time icpose more restrictive criteria for continued
'cperation.
A limitation on inoperable rods.is set such that the resultant effect on total rod worth and scram shape will be kept to a minimum.
The. requirements for the various scram time measurements ensure that any indication of systematic,
problems with rod drives,will be investigated on a timely basis.
Damage within the control rod drive mechanism could be a generic problem,-
therefore with a control rod immavable because of excessive friction or mechanical intirferenc(, op6 ration of the reactor is limited to a time period which is reasonable to dete,rmine the cause of the inoperability and at the same time prevent operatien with;a large number of inoperable control rods.
- Control rods that are inoperable for other reasons are permitted (o be, taken out of service provided that those.in the nonfully-inserted potition are consistent with the SHUTDOWN MARGIN requirements,
/
~
The number of control rods permitted to be inoperable could be more than the eight allowed by the. specification, but the occurrence of eight inoperable rods could be indicative of a generic problem and the reactor must be shutdsn for investigation and resolution of the problem.
The control rod system is designeo to bring the reactor subcritical at a rate fast enough to prevent the MCPR from becoming less than (1.06) during the limiting power transient analyzed in Section (15.
) of.the FSAR.
This) analysis shows that the negative reactivity rates resultinffrom the scram wi,th 'the acerage response of all the drives i.s given in the specitTcations, provide theq required protection and MCPR remains greater than (1.06F.
The occurrence of '
scram times longer then those specified should be viewed as an indication of a systemic prcblem with the rod drives and therefore the surkeillance < interval is reduced in order to prevent operation of the reactor, for long pcrieds of time with a potentially serious problem.
The scram discharge volume. is required to. b'e OPERABLE so that it will be available when needed to accept discharge waterDfrom the control rods during a l
reactor scram and will isolate the reactor coolant system from the containment when required.
Control rods with inoperable accumulators are declared inoperable and Specification 3.1.3.1 then applies.
This prevents a pattern of inoperable accumulators that would result in less reactivity insertion on a scram than has been analyzed even though control rods with inoperable accumulators may still be inserted with normal drive water pressure.
Operability of-the accumulator ensures that there is a-means available to insert the control rods even under the most unfavorable depressurization of the reactor.j l
GE-STS (EWR/4)
B 3/4 1-2
' REACTDTTY CONTROL SYSTEMS EASES gy
~n CONTROL RODS (Continued)
Control rod coupling integrity is required to ensure compliance with the analysis of the rod drop accident in the FSAR.
The overtravel position feature y
provides the'only positive means of determining that a rod is properly coupled and therefore this check must be performed prior to achieving criticality after g
?
f completing CORE ALTERATIONS that could have affected the control rod coupling
~
integrity.
The subsequent check is performed as a backup to the initial demon-stration.
In order to ensure tilat the control rod patterns can be followed and there-fore that other parameters are within their limits, the control rod position indication system must be OPERABLE.
4-,
The control rod housing support restricts the outward movement of a control rod to less'than (3)~inchis in the event of a housing failure.
The amount of rod reactivity which coul,d be added by this small amount of rod withdrawal is less than a normal withdrJtwal increment and will not contribute to any damage 3
to _the primary coolant sistem.
The support is not required when there is no pressure to act as a driving force to rapidly eject a drive housing.
The required surveillance intervals are adequate to determine that the rods are OPEPABLE and not so frequent as to cause excessive wear on the system i
components.
3/4.1.4 CONTROL RCD PROGRAM CONTROLS Control rod Withdrawal and insertion sequences are established to assure U
that the maximum insequence individual control rod or control rod segments which
_, lare withdrawn at a'ny time during the fuel cycle could not be worth enough to result in a peak fuel enthalpy greater than 280 cal /gm in the event of a control i
rod drop accident.
The specified sequences are characterized by homogeneous, g"
M -
scattered patterns' of control rod withdrawal.
When THERMAL POWER is greater
/
than (20)% of RATED THERMAL' POWER, there is no possible rod worth which, if dropoed at the desigli rate of the velocity limiter, could result in a peak enthalpy of 280 cal /gm.
Thu's requiring the RSCS and RWM to be OPERABLE when
+
THERMAL POWER is less than or equal to (20)% of RATED THERPN - 7 provides adequate control.
The RSCS and RhM provide automatic supervision to assure that out-of-sequence rods will not be withdrawn or inserted.
a The analysis of the rod drop' accident is presented in Section (15. _) of the FSAR and the techniques of the analysis are presented in a topical report, Reference 1, and two supplements, References 2 and 3.
The REM is designed to automatically prevent fuel damage in the event of erroneous rod withdrawal from locations of nigh power density during high power operation.
Two channels are.provided.
Tripping one of the channels will block erroreous rod withdrawal soon enough to prevent fuel damage.
This system backs up the written sequence used by the' operator for withdrawal of control rods.
GE-STS (SWR /4)
B'3/4 1-3
3/4.3 INSTRUMENTATION 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION LIMITING CONDITION FOR OPERATION 3.3.1 As a minimum, the reactor protection system instrumentation channels shown in Table 3.3.1-1 shall be OPERABLE with the REACTOR PROTECTION SYSTEM RESPONSE TIME as shown in Table 3.3.1-2.
APPLICAEILITY:
As shown in Table 3.3.1-1.
ACTION:
With the number of-OPERABLE channels less than required by the Minimum a.
OPERABLE Channels per Trip System requirement for one trip system, place the inoperable channel (s) and/or that trip system in the tripped condi-tion
- within one hour.
The provisions of Specification 3.0.4 are not applicable.
b.
With the number of.0P.ERABLE channels less than required by the Minimum OPERABLE Channels peFTrip System requirement for both trip systems, place at least one trip system ** in the tripped condition within one hour and take the ACTION required by Table 3.3.1-1.
SURVEILLANCE RE0VIREMENTS 4.3.1.1 Each reactor protection system instrumentation channel shall.be demonstrated OPERABLE by the performance of the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL
_ _ CONDITIONS and at the frequencies shown in Table 4.3.1.1-1.
4.3.1.2 LOGIC SYSTEM FUNCTIONAL TESTS and simulated automatic operation of all channels shall be performed at least once per 18 months.
l 4.3.1.3 The REACTOR PROTECTION SYSTEM RESPONSE TIME of each reactor trip functional unit shown in Table 3.3.1-2 shall be demonstrated to be within its limit at least once per 18 months.
Each test shall include at least one l
channel per trip system such that all channels are tested at least once every N times 18 months where N is the total number of redundant channels in a specific reactor trip system.
l "An inoperable channel need not be placed in the tripped condition where this l
would cause the Trip Function to occur.
In these cases, the ir.ccerable channel shall be restored to OPERABLE status within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> or the ACT:C'. required by Table 3.3.1-1 for that Trip Function shall be taken.
l
- If more channels are inoperable in one trip system than in the other, place the trip system with more inoperable channels in the tripped condition, except when this would cause the Trip Function to occur.
GE-STS (SWR /4) 3/4 3-1
J' I
TAllLE 3.3.1-1 3
]
_RfACTOR PROTECIl0H SYSl'EH INSTRUMENTATION 4
Al'PLICAllLE MINIMUM 4
2
' OPERATIONAL OPERAul.E CilANNELS
.3 filflCll_DilAL litilT CONDITIONS PER TRIP SYSTEM (a)
AC110tl Intermediate Range MoniLors(b);
I.
i a.
Neutron Flux - liigh 2.
3 1
2
- 4(c) 2(d)-
5 I
b.
Inoperative 2
41 3
1 i
j 3, 4 2
2 3(d) 3 5
Average Power Range Monitor (*):
l 2.
2 1
i a.
Neutron Flux - Upscale, Setdown 2
2
}
3(c) 2(d)
Y b.
Flow Biased Simulated Thermal '
l l"
Power - Upscale 1
2 4
2 4
c.
Fixed Neutron Flux - Upscale 1
d.
Inoperative 1, 2 2
1 g
2 l 1
3(c) 2(d) j 5
2 3
59) 2
- 4) l (c.
Downscale 1
3.
Reactor Vessel Steam Dome l
Pressure - High 1, 2(I) 2 1
4.
Reactor Vessel Water Level - Low; r
i Level 3 1, 2 2
1 i
').
Main Steam Line Isolation Valve -
59) 4 4
Closure 1
e
O lTABLE 3.3.1-1 (Continued)
,Q E
REACTOR PROTECTION SYSTEM INSTRUMENTATION TA
$')
APPLICABLE MINIMUM R
OPERATIONAL OPERABLE CilANNELS filflCT10flAl. LINIT CONDITIONS PER TRIP SYSTEM (.Q A,CT I O_tl 6.
Main Steam Line Radiation -
Iligh 1, 2(I) 2 5
7.
(Primary Containment) (Drywell)
Pressure - liigh 1, 2(h) l 2
1 i
8.
Scram Discharge Volume Water 2
1 Level - liigh 1, 2(.;)
5 2
3 R
9.
Turbine Stop Valve - Closure 1(I) 4(k) 6 T
10.
Turbine Control Valve Fast Closure, Valve Trip System Oil Pressure - Low 1((9))(I) 2(k) 6 l
11.
Reactor Mode Switch Shutdown Position 1, 2 -
1 1
3, 4 1
7 5
1 3
l 12.
Manual Scram 1, 2 2
1 s
8 3, 4 2
l 1
5 2
9
(
e J
l -
TABLE 3.3.1-1 (Continued)-
REACTOR PROTECTION SYSTEM INSTRUMENTATION ACTION ACTION 1 Be in at least HOT SHUT 00WN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
ACTION 2 Verify all insertable control rods to be insertec in the core and lock the reactor mooe switch in the Shutdown position within one hour.
ACTION 3 Suspend all_ operations involving CORE ALTERATIONS
- and insert all insertable control roos within one hour.
ACTION 4 Be in at least STARTUP within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />.
ACTION 5 Be in STARTUP with the main steam line isolation valves closed within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> or in at least HOT SHUTDOWN within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.
~Y InitiateafeductioninTHERMALPOWERwithin15minutesand ACTION 6 reduce turbine first stage pressure to < (250) psig, equivalent to THERMAL POWER less than (30)% of RATED THERMAL POWER, within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.
ACTION 7 Verify all insertable control rods to be inserted within one hour.
ACTION 8 Lock the reactor mode switch in the Shutdown position within one hour.
-- -ACTION 9 Suspend all operations involving CORE ALTERATIONS *, and insert all insertable control rods and lock the reactor mode switch in the SHUTDOWN position within one hour, n
l l
l O
- Except cvement of IRM, SRM or special ' movable detectors, or replacement of LPPM strings provided SRM instrumentation is CPERASLE per Specification 3.9.2.
l f
GE-STS (EWR/4) 3/4 3-4
TABLE 3.3.1-1 (Continued) 1 REACTOR PROTECTION SYSTEM INSTRUMENTATION TABLE NOTATIONS (a)
A channel may be placed in an inoperable status for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for required surveillance without placing the trip system in the tripped ccndition provided at least one OPERABLE channel in the same trip system is monitoring that parameter.
(c)
This function shall be automatically bypassed when the reactor mode switch is in the Run position.
(c)
The " shorting link's" shall be removed from the RPS circuitry prior to and during the time any control rod is withdrawn
- and shutdown margin demonstrations performed per Specification 3.10.3.
(d)
The non-coincident NMS reactor trip function logic is such that all channels go to both trip sys_te.ts.
Therefore, when the " shorting links" are removed, the Minimum OPERABLE fhannels Per Trip System is 4 APRMS and 6 IRMS.
(e)
An APRM channel is inoperable if there are less than 2 LPRM inputs per
~
level or less than (11) LPRM inputs to an APRM channel.
(f)
This function is not required to be OPERABLE when the reactor pressure vessel head is unbo,,lted or removed per Specification 3.10.1.
(g)
This function shall be automatically bypassed when the reactor. mode switch is not in the Run position.
-- T h)
This function is not required to be OPERABLE when PRIMARY CONTAINMENT INTEGRITY is not required.
(i) With any control rod withdrawn.
Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
(j)
This function shall be automatically bypassed when turbine first stage pressure is 5 (250) psig, equivalent to THERMAL POWER less than (30)%
of RATED THERMAL POWER.
(k)
Also actuates the E0C-RPT system.
"N:- required for control rods removed per Specification 3.9.10.1 or 3.9.-10.2.
GE-STS (BWR/4) 3/4 3-5
I
' TABLE 3.3.1-2 fil J,
REACTOR PROJECTI0tt SYSTEM RESPONSE TIMES TA
?!
It[SPONSE TIME g
fijilCI10llAl. Illit I
__(Secondr.)_
I l.
a, tientron Flux - liigh flA b.
Inoperative HA 2.
Average Power Range Monitor *:
i a.
Neutron Flux - Upscale, Setdown
'NA b.
Flow Biased Simulated Thermal Power - Upscale 6
5 (p.09)(**)
c.
Fixed Neutron Flux - Upscale
$ (0.09) d.
Inoperative NA (c.
Downscale NA) l R
3.
Reactor Vessel Steam Dome Pressure - liigh 1 (0.55) i ((1.05) 4.
Reactor Vessel Water Level - Low, Level 3 5 0.06)
T 5.
Main Steam Line Isolation Valve - Closure 6.
Main Steam Line Radiation - High
!A 7.
(Primary Containment) (Drywell) Pressure - High 8.
Scram Discharge Volume Water Level - liigh NA 9.
Turbine Stop Valve - Closure 5 (0.06) 10.
Turbine Control Valve Fast Closure, Trip Oil Pressure - Low
< (0.08)#
11.
Reactor Mode Switch Shutdown Position fiA 12.
Manual Scram NA t
t-
^tteutron detectors are exempt from response time testing.
Response time shall be measured from the detector output or'from the input of the first electronic component in the channel.
(This provision is noi, applicable to Construction Permits docketed after January 1, 1978.
See Regulatory Guide 1.18, November 1977.)
^^(flot) Including simulated t.hermal power time constant, 6.11 seconds.
- Measured from start of turbine control valve fast closure.
i t
~
TAlli.E 4. 3.1.1-1
{'
IIEACI0lt Pit 0 TECTI 0tl SYSTEM INSlRUMEllTATIOil SURVEILLANCE REQUIREMEllTS O
CilAfitlEL OPERATI0tlAL'
!.~,
CilANilEL FUNCT10!lAL CllANNEL C0tIDIT10!!S FOR WillCll f)
]
l'UllCIIOilAL llNIT CllECK TEST CALIBRATIOH SURVEILLANCE REQUIRED 1.
a.
Neutron Flux - liigh S/U S,(b)
S/U(c),W R
2 l
S W
R 3,4,5 b.
Inoperative NA W
NA 2,3,4,S 2.
Average Power Range Monitor
):
a.
Neutron Flux -
5/U,5,(b)
S/U(c),W SA 2
I Upscale, Setdown S
.W SA 3, 5 b.
Flow Biased Simulated Thermal Power - Upscale 5,D((9))
S/U(c),y g(d)(e) SA,(R(h))
j 5
c.
Fixed Neutron Flux -
~
Upscale S
S/U(c),y g(d), SA 1
d.
Inoperative NA W
NA 1, 2, 3, 5 l (c.
llown!,cale S
W' SA 1)
-l 1
3.
Reactor Vessel Steam Dome Pressure - liigh (S)
M (R) 1, 2
.c 4.
Low, level 3 (S)
M (R) 1, 2 I
S.
Main Steam Line Isolation Valve - Closure NA M
R 1
6.
11ain Steam Line Radiation -
liigh S
M R
1, 2(j) 7.
(Primary Containment) (Drywell) l Pressure - liigh (S)
M (R) 1, 2
t TAllLE 4.3.1.1-1 (Continued)
Th E
REACIOR PROTECTI0tl SYSTEM INSTRUMEllTATION SURVEILLANCE REQUIREMEllTS M
CilAtlNEL OPERATIONAL S!
CilANNEL FUtiCTIONAL
' CilANNEL CONDITIONS FOR WilICil C
FUtiCTIONAL UtlIT CllECK TEST -
CALIBRATION SURVEILLAtlCE REQtlIRED B
8.
Scram Discharge Volume, Water Level - liigh (S)
M (R)
' 1, 2, S(I) l 9.
Turbine Stop Valve - Closure (S)
M (R) 1 t
10.
Turbine Control Valve-Fast I
Closure Valve Trip System Oil Pressure - Low (S)
M (R) 1 11.
Reactor Mode Switch Shutdown Position NA R
NA
/
1,2,3,4,S 12.
Manual Scram NA M
NA 1,2,3,4,5 T
(o (a) ficutron detectors may be excluded from CilANNEL CALIBRATION.
(b) The IRM and SRM channels shall be determined to overlap for at least ( ) decades during each startup af ter entering OPEllATI0ilAL CONDITION 2 and the I{tM and APRM channels shall be determined to overlap for at least (h) decades during each controlled shutdown, if not performed within the previous 7 days.
(c) Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> pri.or to startup, if not. performed within the previous 7 days.
(d) This calibration shall consist of the adjustment of the APRM channel to conform to the power values calculated by a heat balance during OPERATIONAL CONDITION 1 when TilERMAL POWER > 25% of RATED 8
TilERMAL POWER.
Adjust. t.he APRM channel if the absolute difference is greater than 2% of RATED TilERMAL POWER.
Any APRM channel gain adjustment made in compliance with Specification 3.2.2 shall not be included in determining the absolute difference.
(c) This calibration shall consist of the adjustment of the APRM flow biased channel to conform to a calibrated flow signal.
(I)
The LPRMs, shall be calibrated at least once per 1000 effective full power hours (EFPil) using t.he TIP system.
(g) Verify measured core flow to be greater' than or equal to established core flow at the existing pump speed.
((h) This c~alibration shall consist of (the adjustment, as required, of) (verifying) the 6 i 1 second l
simulat.ed thermal power time constant. )
(i)
This function is not required to be OPERABLE when the reactor pressure vessel head is unbolted l
or removed per Specification 3.10.1.
(j) Wit.h any control rod withdrawn.
Not. applicable t.o control rods removed per Specificat. ion 3.9.10.1 or 3.9.10.2.
fNSTRUMENTATION
~
3/4.3.6 CONTROL R0D 3 LOCK INSTRUMENTATION LIMITING CONDITION FCR OPERATION 3.3.6.
The centrol rod block instrumentation channels shown in Table 3.3.6-1 shall be OPERABLE with their trip setpoints set consistent with the values shown in the Trip Setpoint column of Table 3.3.6-2.
APPLICABILITY: As shown in Table 3.3.6-1.
ACTION:
With a contro'1 rod block instrumentation channel trip setpoint less a.
conservative than the value shown in the Allowable Values column of Table 3.3.6-2, declare the channel inoperable until the channel is restored to 0PERABLE status with its trip setpoint adjusted consistent with the Trip Setpoint value.
b.
With the number jf OPERABLE channels less than required by the Minimum GPERABLE Channels per Trip Function' requirement, take the ACTION required by Table 3.3.6-1.
SURVEILLANCE REQUIREMENTS 4.3.6 Each of the above required control rod block trip systems an'd instrumentation channels shall be demonstrated OPERABLE by the performance of
~~ 'the CHANNEL CHECK, CHANNEL FUNCTIONAL TEST and CHANNEL CALIBRATION operations for the OPERATIONAL CONDITIONS and at the frequencies shown in Table 4.3.6-1.
GE-STS (BWR/4) 3/4 3-47
~'
O I
TABLE 3.3.6-1 S
CONTROL ROD BLOCK INSTRUMENTATION h
MINIMUM APPLICABLE OPERABLE CllANNELS OPERATIONAL TRIP FUNCTION PER TRIP FUNCfl0N CONDITIONS ACTION k
1.
ROD BIOCK-MONITOR (")
d a.
Upscale 2
1*
60 h.
Inoperative 2
1*
60 60 c.
Downscale 2
la 2.
APRM e
8 a.
Flow Biased Neutron Flux -
g 1
61 Upscale 4
- ' t
I 61 b.
Inoperative 4
l',
2, 5 c.
Downscale 4
1 61
)
d.
Neutron Flux - Upscale, Startup 4
2, 5 61 3.
SOURCE RANGE MONITORS Detector not full in(b) 3 2
61 R
a.
2 5
61 3
2 61 I
b.
Upscale (c) 2 5
61 co 3
2 Inoperative (c) c.
d.
Downscale(d).
3-2 4.
INTERMEDIATE RANGE MONITORS a.
Detector not full in ((*))
6 2, 5 61 b.
Upscale 6
2, 5 61 Inoperati 6
2, 5 61 Downscale{g) c.
6 2, 5 61 i
d.
5.
SCRAM DISCllARGE VOLUME a.
Water Level-High (2) 1, 2, 5**
62 b.
Scram Trip Bypass (2)
(1, 2,) 5**
62 6.
REACTOR COOLANT SYSTEM RECIRCULATION FLOW a.
Upscale 2
1 62 b.
Inoperative 2
1 62 c.
(Comparator) (Downscale) 2 1
62 i'
TABLE 3.$.'6-1(Continued)
CCNTROL ROD BLOCK INSTRUMENTATION ACTION ACTION 60 -
Declare the RBM inoperable and take the ACTION required by Specification 3.1.4.3.
With the number of OPERABLE Channels:
ACTION 61 a.
One less than required by the Minimum OPERABLE Channels per Trip Function requirement, restore the inoperable channelto OPERABLE status within 7 days or place the inoperable channel in the tripped condition within the ne,xt hour.
b.
Two or.more lesa than required by the Minimum OPERABLE Channe)s per Trip Function requirement, place at least one inoperable channel in the tripped condition within one hour.
With the number of OPERABLE channels less than required by the ACTION 62 Minimum OPERABLE Channels per Trip Function requirement, place the inoperable channel in the tripped condition within one hour.
NOTES With THERMAL POWER > (30)% of RATED THERMAL POWER.
With more than one control rod withdrawn.
Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
a.
The RBM shall be automatically bypassed when a peripheral control rod is selected (or the reference APRM channel. indicates less than (30)% of RATED THERMAL POWER).
b.
This function shall be automatically bypassed if detector count rate is
> 100 cps or the IRM channels are on range (3) or higher.
c.
This function shall be automatically bypassed when the associated IRM channels are on range 8 or higher.
d.
This function shall be automatically bypassed when the IRM channels are on range 3 or higher, e.
This function shall be automatically bypassed when the IRM channels are on range 1.
-GE-5T5 (SWR /4) 3/4 3-49
i TABl.E 3.3.6-2 l$
CONTROL R0D BLOCK IllSTRUMENTATI0tl SETPOINTS a
T2 IRIP fullCTION TRIP SETPOINT ALLOWABLE VALUE 1.
R0D BLOCK MONITOR R
a.
Uprcale 5 0.66 W"+ (40)%
< 0.66 W + (43)%
8 b.
Inoperative NA 5A c.
Downscale 1 (5)% of RATED TilERMAL POWER 1 (3)% of RATED TilERMAL POWER 2.
APRM a.
Flow Biased Neutron Flux - '
5,0.66 W + (42)%^
5 0.66 W + (45)%^
Upscale b.
Inoperative NA NA c.
Downscale 1 (5)% of RATED 4liERMAL POWER i 1 (3)% of RATED TilERMAL POWER d.
Neutron Flux - Upscale, Startup 5 (12)% of RATED TilERMAL POWER
$ (14)% of RATED TilERMAL POULR 3.
SOURCE RANGE MONITORS a.
Detector not full in NA NA 5
0 b.
Upscale
<.(2 x 10 ) cps
< (5 x 10 ) cps R
c.
Inoperative NA 5A
^
d.
Downscale
> (3) cps 1 (2) cps 4.
INTERMEDIATE RANGE MONITORS a.
Detector not full in NA NA b.
Upscale 5 (108/125) divisions of 5 (110/125) divisions of full scale full scale c.
Inoperative NA NA d.
Downscale 1 (5/125) divisions of 2 (3/125) divisions of full scale full scale s
5.
SCRAM DISCllARGE VOLUME a.
Water Level-liigh 5(
) inches 5(
) inches b.
Scram Trip Bypass NA NA 6.
REACTOR COOLANT SYSTEM RECIRCULATION FLOW a.
Upscale 5 (108/125) divisions of 5 (111/125) divisions of full scale full scale b.
Inoperative NA
, NA c.
(Comparator) (Downscale) 5 (10)% flow deviation 5 (11)% flow deviation
^The Average Power Range Monitor rod block function is varied as a function of recirculation loop flow (W).
The trip setting of this function must be maintained in accordance with Specification 3.2.2.
. - - _ = -
l h
TABLE 4.3.6-1 S
U)'
CONTROL ROU BLOCK INSTRUMENIAIION SURVEILLANCE REQUIREMENTS 3
~
CilANNEL OPFRATIONAL
- d CilANNEL FUNCTIONAL CHANNEL CONDITIONS FUR WillCil g)
SURVEILLANCE REQUIRED TRIP FUNCTION CllECK TEST CAllBRATION 1.
R00 BLOCK MONITOR a.
Upscale NA S/U(b)(c)
(c) ja I
q b.
Inoperative NA S/U NA 1*
1*
c.
Downscale NA S/U Q,
e i
2.
APRM t
s i
a.
Flow Biased Neutron Flux -
Upscale (NA)
S/U
,M (Q) 1 NA 1,2,5 b.
Inoperative NA S/U(b),M c.
Downscale (NA)
S/UIb)'H (0)
I f
d.
Neutron Flux - Upscale, Startup (NA)
.S/U
,M (Q) 2, 5 U
3.
SOURCE RANGE MONITORS w
a.
Detector not full in NA S/U(b) W NA 2, 5
' E b.
Upscale NA S/U(b),W Q
2, 5 c.
Inoperative NA S/U
,W NA 2, 5 d.
Downscale
. NA S/U
,W Q
2, 5 4.
INTERMEDIATE RANGE MONITORS S/U((b) W NA 2, 5 i
a.
Detector not full in NA b),W Q
2, 5 S/U(b),W b.
Upscale NA NA 2, 5 S/U(b),W
]
c.
Inoperative NA S/U Q
2, 5 d.
Downscale NA 5.
Water Level-liigh NA (M) (Q)
R 1, 2, 5**
~
b.
Scram Trip BypaAs NA M
NA (1, 2,) 5^^
I 6.
REACTOR COOLANT SYSTEM RECIRCULATION FLOW a.
Upscale NA S/U
,M Q
1 b.
Inoperative NA S/Ug),M NA 1
j i
c.
(Comparator) (Downscale)
NA S/U
,M Q-1 4
e
o TABLE 4.3.'6-1 (Continued)
~
CONTROL ROD BLOCK INSTRUMENTATION SURVEILLANCE RE0VIREMENTS NOTES:
a.
Neutron detectors may be excluded from CHANNEL CALIBRATION.
'b.
Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> prior to startup, if not performed within the previous 7 days.
c.
Includes reactor manual control multiplexing system input.
With THERMAL POWER > (30)% of RATED THERMAL POWER.
~
With more than one control rod withdrawn.
Not applicable to control rods removed per Specification 3.9.10.1 or 3.9.10.2.
~ 7i 3E-STS (B',lR/4) 3/4 3-52
REFUELING OPERATIONS 3/4.9.10 CONTROL ROD REMOVAL SINGLE CONTROL ROD REMOVAL LIMITING CONDITION FOR OPERATION 3.9.10.1 One control rod and/or the associated control rod drive mechanism cay be removed from the core and/or reactor pressure vessel provided that at least the folicwing requirements are satisfied until a control rod and associ-ated control rod drive mechanism are reinstalled and the control rod is fully inserted in the core.
The reactor mode switch is OPERABLE and locked in.the Shutdown position a.
or in the Refuel position per Table 1.2 and Specification 3.~9.1.
b.
The ' source range ' monitors (SRM) are OPERABLE per Specification 3.9.2.
The SHUTDOWN MAR,blN requirements of Specification 3.1.1 are satisfied, c.
' except that the control rod selected to be removet, 1.
May be assumed to be the highest worth control rod required to be assumed to be fully withdrawn by the SHUTDOWN MARGIN test, and 2.
Need not be assumed to be immovable or untrippable.
d.
All other control rods in a five-by-five array centered on the control rod being removed are inserted and electrically or hydraulically disarmed or the four fuel assemblies surrounding the control rod or control rod drive mechanism to be removed from the core and/or reactor vessel are removed from the core cell.
e.
All other control rods are inserted.
APPLICABILITY:
OPERATIONAL CONDITIONS 4 and 5.
ACTION:
With the requirements of the above specification not satisfied, suspend removal of the control rod and/or associated control rod drive mechanism from the core and/or reactor pressure vessel and initiate action to satisfy the above requirements.
GE-STS (BWR/4) 3/4 9-12
P.EFUELING OPERATIONS SURVEILLANCE REOUIREMENTS 4.9.10.1 Within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> prior to the start of removal of a control rod and/or the associated control rod drive mechanism from the core and/or reactor pressure vessel and at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> thereafter until a control rod and associ-ated control rod drive mechanism are reinstalled and the control rod is inserted in the core, verify that; The reactor _ mode switch is OPERABLE and locked in the Shutdown, position a.
or in the Refuel position with the "one rod out" Refuel position interlock OPERABLE per Specification 3.9.1.
b.
The SRM channels are OPERABLE per Specification 3.9.2.
l c.
The SHUTDOWN MARGIN requirements of Specification 3.1.1 are satisfied per Specification 3.9.10.1.c.
l d.-
All other contrpi rods in a five-by-five array centered on the control rod being removed are inserted and electrically or hydraulically disarmed or the four fuel assemblies surrounding the control rod or control rod drive mechanism to be removed from the core and/or reactor vessel are removed from the core cell.
e.
All other control rods are inserted.
mm e 9
I G
GE-STS (SWR /4) 3/4 9-13
[REFUELINGOPERATIONS PULTIPLE CONTROL R00 REMOVAL LIMITING CONDITION FOR OPERATION 3.9.10.2 Any number of control rods and/or control rod drive mechanisms may be removed from the core and/or reactor pressure vessel provided that at least the following requirements are satisfied until all control rods and control rod drive mechanisms are reinstalled and all control rods are inserted.in the core.
The reactor mode switch is OPERABLE and locked in the Shutdown position a.
or in the Refuel Refuel position " position per Specification 3.9.1, except that the one rod-out" interlock may be bypassed, as required, for those control rods and/or control rod drive mechanisms to be removed below
, after the fuel assemblies have been removed as specified The source rande monitors (SRM) are OPERABLE per Specification 3.9.2.
b.
The SHUTDOWN MARGIN requirements of Specifi, cation 3.1.1 are satisfied.
c.
d.
All other control rods are either inserted or have the surrounding four fuel assemblies removed from the core cell.
The four fue.1 assemblies. surrounding.sach control rod or control rod e.
drive mechanism to be removed from the core and/or reactor vessel l
are removed from the core cell.
APPLICABILITY:
OPERATIONAL CONDITION 5.
ACTION:
l With the requirements of the above specification not satisfied, suspend removal of control rods and/or control rod drive mechanisms from the core and/or reactor pressure vessel and initiate action to satisfy the above requirements.
1
(
e l:
GE-STS (BWR/4) 3/4 9-14
FkFUELINGOPERATIONS 3
SU:J.'EILLANCE REOUIREMENTS 4.9.10.2.1 Within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> prior to the start of removal of control rods and/or control rod drive mechanisms from the core and/or reactor pressure vessel and at least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> thereafter until all control rods and control rod drive echanisms are reinstalled and all control rods are inserted in the core, verify that:
a.
The reactor mode switch is OPERABLE and locked in the Shutdown position or in the Refuel position per Specification 3.9.1.
b.
The SRM channels are OPERABLE per Specification 3.9.2.
c.
The SHUTOOWN MARGIN requirements of Specification 3.1.1 are satisfied.
d.
All other controi rods are either inserted or have the surrounding
~
four fuel-assemb. lies removed from the core cell.
-T.:
e.
The four fuel assemblies surrounding each control rod and/or control rod drive mechanism to be removed from the core and/or reactor ressel a.re removed from the core cell.
4.9.10.2.2 Following replacement of all control rods and/or control rod drive mecnanisms removed in accordance with this specification, perform a functional test of the "one-rod-out"' Refuel position interlock, if this function had been bypassad.
P GE-STS (EWR/4) 3/4 9-15
2/4.3 INSTRUMENTATION BASES 3/4.3.1 REACTOR PROTECTION SYSTEM INSTRUMENTATION The reactor protection system automatically initiates a reactor scram to:
a.
Preserve the integrity of the fuel cladding.
b.
Preserve the~ integrity of the reactor coolant system.
Minimize the energy which must be adsorbed following a loss-of-coolant c.
accident, and Prevent inadver.gnt criticality.
'd.
This specification provides the limiting conditions for operation necessary to preserve the ability of-the system to perform its intended function even during periods when instrument channels may be out of service because of main-tenance.
When necessary, one channel may be made inoperable for brief intervals to conduct required surveillance.
The reactor protection system i~s made up of 'two independent trip systems.
There are usually four channels to monitor each parameter with two channels in each trip system.
The outputs of the channels in a trip system are combined in a icgic so that either channel will trip that trip system. The tripping of
--both trip systems will produce a reactor scram.
The system meets the intent of IEEE-279 for nuclear power plant protection systems.
The basas for the trip settings of the RPS are discussed in the bases for Specification 2.2.1.
The measurement of response time at the specified frequencies provides assurance that the protective functions associated with each channel are com-pleted within the time limit assumed in the accident analysis.
No credit was taken for those channels with response times indicated as not applicab.le.
Response time may be demonstrated by any series of saquential, overlapp'ing or total channel test measurement, provided such tests demonstrate the total channel response time as defined.
Sensor response time verification may be demonstrated by either (1) inplace, onsite or offsite test measurements, or (2) utilizing replacement sensors with certified response times.
GE-STS (BWR/4)
B 3/4 3-1
~
=,.,
INSTRUMENTATION BASES 3/4.3.5 REACTOR CORE ISOLATION COOLING SYSTEM ACTUATION INSTRUMENTATION The reactor core isolation cooling system actuation instrumentation is provided to initiate actions to assure adequate core cooling in the event of reactor isolation from its primary heat sink and the loss of feedwater flow to the reactor vessel without providing actuation of any of the emergency core cooling equipment.
~
Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference between eacti Trip Setpoint and the Allowable Value is equal to or less than the drift allowance assumed for each trip in the safety analyses.
3/4.3.6 CONTROL ROD BLOCK INSTRUMENTATION l
The control rod block-functions are provided consistent with the require-ments of the specifications in Section 3/4.1.4, Control Rod Program Controls and Section 3/4.2 Power _D.istribution Limits.
The trip logic is arranged so that a trip in any one of the ii1 puts will result in a control rod block.
Operation with a trip set less conservative than its Trip Setpoint but within its specified Allowable Value is acceptable on the basis that the difference'between each Trip Setpoint and the Allowable Value is equal to or less than the drift allowance assumed for each trip in the safety analyses.
3/4.3.7 MONITORING INSTRUMENTATION 3/4.3.7.1 RADIATION MONITORING INSTRUMENTATION The OPERABILITY of the radiation monitoring instrumentation ensures that; (1) the radiation levels are continually measured in the areas served by the
--individual channels; (2) the alarm or automatic action is initiated when the radi-ation level trip setpoint is exceeded; and (3) sufficient information is avail-able on selected plant parameters to monitor and assess these variables follow-ing an accident.
This capability is consistent with the recommendations of (NUREG-0737, " Clarification of TMI Action Plan Requirements," November 1980).
i 3.4.3.7.2 SEISMIC MONITORING INSTRUMENTATION The OPERABILITY of the seismic monitoring instrumentation ensures that suf-ficient capability is available to promptly determine the magnitude of a seismic event and evaluate the response of those features important to safety.
This capability is required to permit comparison of the measured response to that used in the design basis for the unit.
(This instrumentation is consistent with l
the recommendations of Regulatory Guide 1.12 " Instrumentation for Earthquakes",
April 1974.)
3/4.3.7.3 METEOROLOGICAL MONITORING INSTRUMENTATION The OPERABILITY of the meteorological monitoring instrumentation ensures that sufficient meteorological data is available for estimating potential radia-tion doses to the public as a result of routine or accidental release of l
radioactive materials to the atmosphere.
This capability is required to evaluate the need for initiating protective measures to protect the health and l
safety of the public.
(This instrumentation is consistent with the recommenda-l tions of Regulatory Guide 1.23 "0nsite Meteorological Programs," February 1972.)
GE-STS (SWR /4)
B 3/4 3-4
j,,~R5FLEL33 OPERATIONS BASES-3/4.S.E REFUELING PLATFORM The 0PERABILITY requirements ensure that (1) the refueling platform will be esed for handling control rods and fuel assemblies within the reactor pressure vessel (2)_each cri.ne'and hoist has sufficient load capacity for handling fuel assemblies and control rods, and (3) the core internals and pressure vessel
~
are prctected from excessive lifting force in the event they are inadvertently enga;ec during-lifting operations.
3/4.9.7 CRANE-TRAVEL - SPENT FUEL STORAGE POOL The restriction on movement of loads in excess of the nominal weight of a fuel assembly over other fuel assemblies in.the storage pool ensures that in the event this load is dropped 1) the. activity release will be_ limited to that contained in a _ single fuel assembly, and 2) any possible distoition of fuel in the storage racks will not result in a critical array.
This assumption is consistent witly.the act_ivity~ release assumed in the safety analyses.
l 3/4. 9.8 and 3/4.9.9 WATER LEVEL - REACTOR VESSEL and WATER LEVEL -SPENT FUEL 5TORAGE P0OL The restrictions on minimum water level ensure that sufficient water depth is available to remove (99)% of the assumed (10)% iodine gap activity released
-from the rupture of an-irradiated fuel assembly.
This minimum water depth is consistent with the assumptions of the accident analysis.
3/4.9.10 CONTROL ROD REMOVAL These specifications ensure that maintenance'or repair of control rods or control rod drives will be performed under conditions that' limit the probability of inacvertent criticality.
_The requirements for simultaneous removal of more than or.e control rod are more stringent since the SHUTDOWN MARGIN specification
.._ provides for the core to remain subcritical with only one control rod fully withdrawn.
j
-3/4. 9.11 RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION The requirement that at least.one residual heat removal loop be OPERABLE or that an alternate-method capable of decay heat removal be demonstrated and that an alternate method of coolant mixing be. in operation ensures that 1) suf-ficient cooling capacity is available to remove decay heat and maintain the l
water in.the reactor pressure vessel below 140 F as required during REFUELING, l
and 2) sufficient coolant circulation would be available through the reactor core to assure accurate temperature indication and to distribute and prevent
[
' stratification of the poison in the event it becomes necessary to actuate the
. standby liquid _ control system.
l The requirement to have two shutdown cooling mode loops OPERABLE when there
~is less than (23) feet of water above the reactor vessel flange ensures that a.
single failure.of the operating loop will not result in a complete. loss of resid-ual heat removal capability.
With the reactor vessel head removed and (23) feet of water above the reactor vessel flange, a large heat sink is available for core ccoling.
Thus, in the event a failure of the operating RHR loop, adequate i
time is provided to initiate alternate methods capable of decay heat removal l
or e ergency procedures to cool the core.
7 f
GE-5TS _(EWR/4)
B 3/4 9-2
-.