ML20011A859
| ML20011A859 | |
| Person / Time | |
|---|---|
| Site: | Byron, Braidwood |
| Issue date: | 10/30/1981 |
| From: | Tramm T COMMONWEALTH EDISON CO. |
| To: | Harold Denton Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 8111030295 | |
| Download: ML20011A859 (19) | |
Text
_ - _ _ - _ _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _.
'N Commonw:cith Edison
/ One First National Plaza. Chicago. Illinois (j} Address Reply to: Post OfSce Box 767 s
Chicago, lilinois 60690 l
October 30, 1981
/ %@p q'
/
Mr. Harold R.
Denton, Director
/p
'd,F'JL.
Of fice of Nuclear Reactor Regulation I
r U.S. Nuclear Regulatory Commission Washington, DC 20555 ss NOV0:!e1981 6 "d uAm @.
Subject:
Byron Station Units 1 and 2
~~
Braidwood Station Units 1 and 2 Solid Radwaste Volume Reduction
/
gyN NRC Docket Nos. 50-454/455/456/457 Re fe:: enc e (a):
October 30, 1981, letter from B.
J.
Youngblood to L.
O. DelGeorge.
Dear Mr. Denton:
This to provide advance copies of information requested in reference (a).
Enclosed are revisions to the Byron /Braidwood FSAR which relate to the radiological impact of and shielding design for the volume reduction system.
This information will be incorporated into the FSAR in the next amendment.
Corresponding changes to the ER will also be made in the r. ext amendment of that document.
It appears that these revisions of estimated station releases and off-site dose rates are very minor and should not necessitate rescheduling of the DES.
Please contact me if there are further questions regarding this matter.
Fif teen (15) copies of the FSAR revisions are supplied for your advance review and approval.
One (1) signed original and fifty-nine (59) copies of this letter are also provided.
Very truly yours,
/Ld h T.
R.
Tramm Nuclear Licensing Administrator 1m 2786N
\\
D O Lb\\
8111030295 811030 PDR ADOCK 05000454 7 \\
A PDR 1
{
J
_ _. j f-4 I
e
. I
- i Byron /Braidwood Stations FSAR Revisions The attached material relates to the radiological impact of and shielding design for the Volume Reduction System.
1 1
l i
i 4
1 i
1 i.
i b
wwwe--..-e.-
,.._m...
m_
B/C-FSAR e
The reactor coolant activities in Table 11.1-2 are used.
A stripping efficiency of 100% is assumed.
The resulting source terms are given in Table 12.2-28.
11.1.4 Source Terms for component Failure Liquid Waste Processing System The tanks with the highest isctopic inventories, the recycle holdup tank and the spent resin storage tank, were selected for accident analysis.
The inventory used for accident analysis is I
also.tte inventory used for shielding design basis for these tankt, thus the sources are found in Subscetion 12.2.1.
The
[
accident analyses for these tanks are discussed in Subsections
[
2.3.4, 2.3.3, 2.4.12, 2.4.13.3, and 15.7.3.
I Gaseous Waste Processing System 4
The isotopic inventories in one gas decay tank to be used for the gas decay tank rupture accident are given in Table 11.1-5.
The inventories are based on the reactor coolant activity in Table f
11.1-2 and 100% stripping efficiency in the volume control tank.
The activity is further based on 40 years' inventory decay as a function of time and of the Kr-85 equilibrium levels of all other
)
isotopes.
It is assumed two units are operating simultaneously and decay tanks are switched every 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
11.1.5 Source Terms for Radwaste System Comoonents
~
i Realistic reactor coolant activities presented in Table 11.1-4 are used as a basis for the expected isotopic inventories of radwaste components for the estimate of average annual curies of l
radioactive wastes to be shipped offsite.
The radioactive inventories are presented in Tables 11.1-6 through 11.1-12.
The flow rates and operating times used in the calculation of these inventories are the design-basis parameters for the Radwaste System as described in Sections 11.2 and 11.4.
.l l
11.i.6 Sources of In-Plant Airborne Radioactivity I
i Sources of in-plant airborne radioactivity for the purpose of i
I evaluating the ventilation systems are discussed in Subsection l
12.2,2.
Leakage rates are discussed there, and Tables 12. 2-46 through 12.2-48 present total liquid iodine concentrations, l
number of leakage sources, exhaust air flow rates, and fractions of maximum permissible concentrations for iodine (10 CFR 20 Appcndix B).
Previous experience of gaseous radioactive in-plant concentrations are cited in Reference 2 for the Robert E.
Ginna i
Plant.
Special design features which minimize the possibility of airborne contamination of occupied areas are proper venting of equipment, discussed in Subsectica 12.3.1.5, and proper location of valves and instruments, discussed in Subsection 12.3.1.8.
l 11.1-5
r- -
6-
.s s
O.
O ^.'. ' '
.l O
~
.~
l u.. :.
..w
-m
... u..
.-..._._n..c Table 11.1-12
=
Source Inventories in VR Equipment (in Curies)
Feed Gas / Solid First SecQnd Exhaust Isotope Tank Processor Separator Scrubber Scrubber Filter
- Dryer
- Conveyor " ' Pumps Ortus H3 3.23 4.0-4 2.0-5 1.4-1 1.63-L 1.2-2 Cr51
.09 9.1-6
<l.0-6 1.6-2 9.9-6 7.4-6 3.0-2 1.2-2 1.4-3 1.4-2 Fo55 1.23
'l.2-4 1.1-5 2.1-1 1.3-4 1.0-4 3.90-1 1.60-1 1.8-2 1.92-1 1.06 1.0-4 9.5-6 1.8-1 1.1-4 1.8-4 3.36-1 1.38-1 1.6-2 1.66-1 CoS8 Co60
.16 1.6-5 1.4-6 2.8-2 1.7-5 2.3-4 5.1-2 2.1-2 2.4-3 2.5-2 N163 1.23 1.2-4 1.1-5 2.1-1 1.3-4 2.1-4 3.90-1 1.60-1 1.8-2 2.04-1 Y91 c.01
<1.0-6
<1.0-6
<1.0-3
<1.0-6
<l.0-6
<1.0-4
<1.0-4
<1.0-6
<1.0-5 Ho99
.61 5.8-5 5.4-6 1.0-1 6.2-5 1.6-5 1.19-1 7.6-2 8.7-3 9.7-2 Tc99m
<.01
<1.0-G
<1.0-6
<1.0-3 4.6-5
<1.0-6 1.1-3 4.4-4 4.4-5 5.3-4 Tc132
.27 2.4-5 2.4-6 4.6-2 2.6-5 3.9-6 8.4-2 3.4-2 3.8-3 4.3-2 Cs134 1.81 1.7-4 1.6-5 3.1-1 1.0-4 2.06-2 5.73-1 2.29-1 2.6-2 2.90-1 Csl36
.31 3.0-5 2.8-6 5.3-2 3.2-5 1.7-5 9.9-2 3.9-2 4.5-3 5.0-2 Cs137 1.33 1,3-4 1.2-5 2.3-1 1.4-4 2.2-3 4.21-1 1.69 1.9-2 2.14-1 1131
.21 2.0-5 1.7-6 3.2-2 7.8-4 1.78-2 6.0-2 2.4-2 2.7-3 3.0-2 I132
.28 2.5-5 2.5-6 4.7-2 2.7-5 7.7-4 8.4-7 3.4-2 3.8-3 4.3-2 b
I133
<.01
<1.0-6
<l.0-6 1.0-3 1.8-5 3.8-3 1.5-3 5.4-4 5.4-5 6.5-4 Xe131m
.02
<1.0-6 Xo133m
.05
<1.0-6 Xc133
.84 6.0-6 6 s ke y 4.0 4.oxlo-*
4 8
e
- .e.
_.m
D/B-FSAR 11.3.3.3 Expected Gaseous Waste Processing System Releases Gaseous wastes consist primarily of hydrogen stripped _ from coolant discharged to Boron Recycle System holdup tanks during boron dilution, nitrogen and hydrogen gases purged from the Chemical volume Control Syst'em volume control tank when de-gassing the reactor coolant, and nitrogen from the nitrogen cover gas.
The gas decay tank capacity permits at least 45 days of decay for waste gases before discharge.'
Another source of gaseous effluents is the radioactive waste volume reduction system.
The guantities and isotopic concentration of gases discharged from the gaseous waste processing system and from the volume reduction system have been estimated.
The analysis is based on
.i engineering judgment with respect to the operation of the plant and realistic estimations of the input sources to these two systems.
The associated releases in curies per year per nuclide are given in Table 11.3-6.
j 1
11.3.3.4 Estimated Total Releases Estimated total annual releases of radioactive noble gases and particulates from the Byron /Braidwood Station waste gas process-i-
ing system were determined using the PWR-GALE computer program l
(references 3 and 4).
Parameters describing the normal operation of one unit of the station are listed in Table 11.2-2.
These
~ clues were used as input to the computer code.
Releases from routine and shutdown degassing of the primary coolant and from building ventilation systems are shown in Table 11.3-6.
l Expected releases from normal operation of the volume reduction system were determined using the estimated annual production of radioactive wastes and design flowrates and cleanup parameters for this system.
Calculated routine releases for the volume reduction system are also included in Table 11.3-6.
l s
4 1
I i
e
1:
D/B-FSAR
}
I TABLE 11.3-6 (Cont'd)
VOLUME REDUCTION SYSTEM RELEASE RATE -(Ci/yr)
Noble Gases:-
Xe 131m 5.1-01
~
1.2+00 Xe 133m Xe 133 2.1+01 Halogens:
[
I 131 2.8-03 I 132 3.7-03 l
I 133 2.1-03 i
i Tritium:
H3 2.6+01 j
Particulates:
{'
Cr 51 5.3-08 Fe 55 7.0-07 Co 58 6.0-07 Co 60 9.2-08 Ni 63 7.0-07 Y
91 1.5-09 Mo 99 3.5-07 Tc 99m 2.1-09 Te 132 1.5-07 Cs 134 1.1-05 Cs 136 1.9 Cs 137 7.4-07 l
~1 KEY: 5.1-01 = 5.1x10 L
.. ~. _..,,.. _. _.. -,. _,....,.. _.. -..... _.. _. _..,... _ _....,
~
.~-
i BYRON-FSAR TABLE 11.3-7 COMPARISON OF MAXIMUM OFFSITE AIRBORNE COFCENTRATIONS WITH 10 CFR 20 LIMITS MAXIMUM SITE ANNUAL RELEASE BOUNDARY
- 10 CFR 20 FROM ONE UNIT CONCENTRATION CONCENTRATION ISOTOPE (Ci/yr)
(UCi/ml)
(UCi/ml) 3.5-11 2.0-07 H
3 1.0+03 C
14 8.0+00 2.8-13 1.0-07 Ar 41 2.5+01 8.8-13 4.0-08 Kr 85m 5.0+00 1.8-13 1.0-07 Kr 85 7.0+02 2.5-11 3.0-07 Kr 87 1.0+00 3.5-14 2.0-08 Kr 88 8.0+00 2.8-13 2.0-08 Xe 131m 4.0+01 1.4-12 4.0-07 Xe 133m 1.6+01 5.6-13 3.0-07 Xe 133 2.0+03 7.0-11 3.0-07 Xe 135 1.5+01 5.3-13 1.0-07 Xe 138 1.0+00 3.5-14 3.0-08 I
131 5.4-02 1.9-15 1.0-10 I
132 3.7-03 1.3-16 3.0-09 I
133 7.2-02 2.5-15 4.0-10 Cr 51 5.3-08 1.9-21 8.0-08 Mn 54 4.7-03 1.7-16 1.0-09 Fe 55 7.0-07 2.5-20 3.0-08 Fe 59 1.6-03 5.6-17 2.0-09 Co 58 1.6-02 5.6-16 2.0-09 Co 60 7.3-03 2.6-16 3.0-10 Ni 63 7.0-07 2.5-20 2.0-09 Sr 89 3.4-04 1.2-17 3.0 10 Sr 90 6.2-05 2.2-18 3.0-11 Y
91 1.5-09 5.3-23 1.0-09 Mo 99 3.5-07 1.2-20 7.0-09 Tc 99m 2.1-09 7.4-23 5.0-07 Te 132 1.5-07 5.3-21 4.0-09 Cs 134 4.7-03 1.7-16 4.0-10 Cs 136 1.9-07 6.7-21 6.0-09 Cs 137 7.8-03 2.7-16 5.0-10
-6 3
- 0.26 mi E X/O = 1.11 x 10 sec/m
~11 KEY: 3.5 - 11 = 3.5 x 10 11.3-22
BRAIC.i]OD-FSAR TABLE 11.3-7 COMPARISON OF MAXIMUM OFFSITE AIRBORNE CONCENTRATIONS WITH 10 CFR 20 LIMITS MAXIMUM SITE ANNUAL RELEASE BOUNDARY
- 10 CFR 20 FROM ONE UNIT CONCENTRATION CONCENTRATION ISOTOPE (Ci/yr)
(UCi/ml)
(UCi/ml)
H 3
1.0+03
.2.6-11 2.0-07 C'
14 8.0+00 2.0-13 1.0-07 Ar 41 2.5+01 6.4-13 4.0-08 10: 85m 5.0+00 1.3-13 1.0-07 Kr 85 7.0+02 1.8-11 3.0-07 Kr 87 1.0+00 2.6-14 2.0-08 Kr 88 8.0+00 2.1-13 2.0-08 Xe 131m 4.0+01 1.0-12 4.0-07 Xe 133m 1.6+01 4.1-13 3.0-07 Xe 133 2.0+03 5.1-11 3.0-07 Xe 135 1.5+01 3.9-13 1.0-07 Xe 138 1.0+00 2.6-14 3.0-08 I
131 5.4-02 1.4-15 1.0-10 I
132 3.7-03 9.5-17 3.0-09 I
133 7.2-02 1.8-15 4.0-10 Cr 51 5.3-08 1.4-21 8.0-08 Mn 54 4.7-03 1.2-16 1.0-09 Fe 55 7.0-07 1.8-20 3.0-08 Fe 59 1.6-03 4.1-17 2.0-09 Co 58 1.6-02 4.1 ^2.0-09 Co 60 7.3-03 1.9-16 3.0-10 Ni 63 7.0-07 1.8-20 2.0-09 j
i Sr 89 3.4-04 8.7-18 3'.0-10 Er 90 6.2-05 1.6-18 3.0-11 i
Y 91 1.5-09 3.9-23 1.0-09 Mo 99 3.5-07 9.0-21 7.0-09 Tc 99m 2.1-09 5.4-23 5.0-07 i
Te 132 1.5-07 3.9-21 4.0-09 i
Cs 134 4.7-03 1.2-16 4.0-10 Cs 136 1.9-07 4.9-21 6.0-09 Cs 137 7.8-03 2.0-16 5.0-10
- 0.30 mi NW X/Q = 8.10 x 10-sec/m i
-11 KEY:
2.6 - 11.= 2.6 x 10
- 11. 3 - 2 3
TABLE 11.3-9 BYRON-EXPECTED INDIVIDUAL DOSES FROM GASEOUS EFFLUENTS DOSE RATE (mrem /hr)
TOTAL LOCATION PATHWAY BODY SKIN THYROID BONE LIVER LUNG GI-LLI Nearest Residence Plume 0.023 0.073 (0.3 mi ESE)
Ground Deposi-tion 0.057 0.067 Inhalation Adult 0.030 0.048 0.004 0.030 0.032 0.030 Teen 0.031 0.053 0.005 0.031 0.033 0.031 Child 0.027 0.054 0.007 0.028 0.029 0.027 infant 0.016 0.040 0.005 0.016 0.017 0.016 7-Nearest Garden Leafy Vegetables y)
(0.6 mi SW)
Adult 0.006 0.028 0.002 0.006 0.006 0.006 zg da Teen 0.004 0.023 0.002 0.004 0.004 0.004 4
aN Child 0.005 0.033 0.004 0.005 0.005 0.005 g
Stored Vegetables w
Adult 0.083 0.081 0.033 0.084 0.079 0.081 Teen 0.103 0.102 0.057 0.108 0.100 0.101 Child 0.169 0.171 0.138 0.180 0.167 0.167 Nearest Meat Meat Animal Adult 0.019 0.023 0.016 0.019 0.019 0.019 (0.6 mi SSE)
Teen 0.013 0.016 0.014 0.013 0.013 0.013 Child 0.017 0.021 0.025 0.017 0.016 0.016 s
Nearest Milk Cow Milk (1.5 mi NE)
Adult 0.027 0.102 0.012 0.027 0.025 0.025 Teen 0.037 0.164 0.024 0.040 0.036 0.035 Child 0.062 0.321 0.059 0.069 0.061 0.060 Infant 0.099 0.730 0.113 0.115 0.099 0.097
.,_ w g-y M _
_ metse m a-u s -
r
TABLE 11.3-9 BRAIDWOOD - EXPECTED INDIVIDUAL DOSES FROM GASEOUS EFFLUENTS DOSC_ RATE (mrem /yr)
TOTAL LOCATION PATHWAY BODY SKIN THYROID BONE LIVER LUNG GI-LLI Nearest Residence Plume 0.023 0.074 (0.3 mi NW)
Ground Deposi-tion 0.039 0.046 Inhalation Adult 0.032 0.051 0.004 0.C32 0.034 0.032 Teen 0.033 0.057 0.00ra 0.033 0.035 0.033 Child 0.029 0.057 0.007 0.029 0.031 0.029 Infant 0.017 0.043 0.005 0.017 0.018 0.017 Nearest Garden Leafy Vegetables (0.3 mi NW)
Adult 0.032 0.089 0.012 0.032 0.031 0.031 w
Teen 0.023 0.071 0.012 0.023 0.022 0.022 Child 0.028 0.101 0.022 0.029 0.028 0.028 E'
W h
Stored Vegettoles 8
st Adult 0.457 0.451 0.173 0.460 0.447 0.451 0
Teen 0.573 0.569 0.298 0.585 0.565 0.567 E
Child 0.947 0.952 0.727 0.975 0.941 0.940 W
Nearest Meat Meat Animal Adult 0.056 0.061 0.047 0.056 0.055 0.056 (0.3 mi WSW)
Teen 0.038 0.042 0.042 0.038 0.037 0.038 Child 0.048 0.055 0.074 0.049 0.048 0.048 Nearest Milk Cow Milk (1.7 mi WSW)
Adult 0.018 0.051 0.008 0.019 0.018 0.018 Teen 0.026 0.080 0.016 0.027 0.025 0.025 Child 0.044 0.154 0.040 0.047 0.043 0.043 Infant 0.070 0.338 0.077 0.077 0.070 0.069 Nearest Milk Goat Milk (4.1 mi E)
Adult 0.016 0.031 0.004 0.016 0.915 0.015 Teen 0.022 0.048 0.008 0.024 0.021 0.021 Child 0.036 0.089 0.020 0.040 0.036 0.035 Infant 0.056 0.185 0.038 0.064 0.056 0.055
.l 12.2.1.2.5 Volume R ducticn Syntcm e
The Volume Reduction System (VRS) processes dry solid waste O
and dries evaporator bottom concentrates into a salt.
This salt is mixed with a binder which solidifies the mix inside a 55 gallon drum (see Table 12.1-44).
A detailed descrip-tion of the VRS' operation is in Section 11.4.
The shielding design for the VRS uses the design basis concentrates holding tank sources in Table 12.1-36.
The solid waste sources contribute an additional 0.36%.
The processing of these two feed streams use the material balance given in Table 12.2-49 and Figure 12.1-1.
The basic assumptions are given in Table 12.2-50, and the decontamina-tion factors (DFs) are given in Table 12.2-51.
The sources used for the shielding design are given in Table 12.2-52, and the shielding design is shown in Figure 12.3-23.
The expected normal operating (realistic) sources for the VRS equipment are given in Table 11.1-12.
Tha VRS is expected to operate 61.5 days per year, i.e.,
approximately 17% of the time.
O i
(])
O 4
b
(:)
r b
e 1
i
~
~
,)
7 B/B-ESAR e
12.2.4 References 1.
" Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion ALAP for Radioactive Material in Light Water Power Reactor Effluents,"
WASE-1258, July 1973.
2.
Radiation Analysis Design Manual, WCAP-7664, January 1973.
3.
" Source Term Data for Westinghouse Pressur'ized Water Reactors," WCAP-8253, Pittsburgh, Pa., May 1974.
4.
"Oconee Radiochemistry Survey Program", RDTPL75-4, Babcock &
Wilcox, May 1975.
5.
WASH-1258, " Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criteria ' Low as Practicable' for Radioacti"e Material in Light-Water-Cooled Nuclear Power Reactor Effluents," U.S. Atomic Energy Commission, 1973.
e i
t s
%, b j
W 1
1 4 I 4
L b.
x i
L I
I
\\
\\
k r
i
'N r+9 i
12.2-11 k
_-gy---
,.-.m, c
-,n-
-n
---v-
'v--
- - ~
^
I E'/B-FSAR
/
TABLE 12.2-4A COMPOSITION OF A SINGLE 55-GALLON RADWASTE DRUM FOR SHIELDING ANALYSIS OF DRUM STORAGE AREAS l.
Spent Resin MIXTU'RE DENSITY VOLUME WEIGHT COMPONENT (lb/ft3)
(ft3)
(1b) radioactive water &
spent resins 75 4.5 340 cement 94 2.85 270 7.35 610 O
2.
Volume Reduction System MIXTURE bENSITY VOLUME WEIGHT COMPONENT (lb/ft3)
(ft )
(1b) 3 VRS salt 500 binder 235 100 7.35 735 0
F 12.2-56
^
l
~
Table 12.2-49 j
VOLUME REDUCTION SYSTEM MATERIAL BALANCE Rate Total Solids
' Liquids Gases Flow Path 8/hr t/hr 4/hr
- /hr SOLIDS AAA 0.30 28,94 28.94 CCC 0.62 22.97 22.97 FFF 1.27 83.28 83.28 LIQUIDS BP 56.3 500.2 50.00 450.2 EE 1893.7 19601.5 5516.40 14185.1 HH 24.8 258.1 72.30 185.8 II 56.6 460.0 0.09 459.9 JJ 1319.6 10718.4 2.18 10716.2 KK 31.8 258.5 0.05 258.4 NN 43.6 354.5 0.07 354.4 GASES E+F+Y 1272 281.4 1.9 279.5 O
K+Z 1212 268.0 1.8 266.2 l
R 4194 312.6 2.2 310.4 l
V 1584 217.3 83.28 0.9 133.1 X
22572 893.5 6.3 887.2 B
45036 1637.2 2.03 329.2 1305.9 G
50478 2208.4 43.36 304.5 1860.6 H
95670 3822.6 22.42 633.7 3166.5 I
66804 4524.5 0.212 1357.8 3166.5 J
47694 3451.8 0.002 285.3 3166.5 M
34284 2066.6 0.002 170.8 1895.8 N
21810 1385.2 114.5 1270.7 S
45978 1895.8 43.36 302.2 1550.2 I
Solids in cubic feet per hour Liquids in gallons per hour Gases in cubic feet per hour (I
___----__s-
Tablo 12.2-50
. Source Assumptions for Volume Reduction System O
I. Liquid Feed Stream 9231pci/Lb FSAR Tab.i 12.2-36 decayed to..
6 days (the actual mean decay)
(time is 14.8 days)
' ~~
A.
Particulate 7484pCi/Lb Material Balance was used to determine decontamination b
factors (FSAR Table 12.2-51' B.
Noble Gases 306pci/Lb All decontamination factors assumed to be 1.0.
C.
Tritium 108pCi/Lb Assumed to have the same concentration as the evaporator feed and to be in the form of HTO,DTO, and T20.
D.
Halogens 1333FCi/Lb 1.
Soluble 121pci/Lb This is 9.1% of the O
halogens which assumes that the radwaste evaporator processes 90.9%
soluble halogens with a
.DF = 100.
2.
Particulate 1212pCi/Lb This is 90.9% of the halogens which assumes that the cadwaste evaporator processes 9.1%
particulate iodine with a DF = 10000.
3.
Methyl 0.0pCi/Lb It has been asuu=ed that all forms of valital haloge."
have been vent.:-: from the radwaste evap-'stor and do not appear in the feed stream.
II. Solid Feed Stream 34.5pci/Lb Uses WASH-1258 which specified 4Ci per 1000 cubic feet.
The isotopic distri-bution is assumed to be the same as is in the liquid feed stream without the O-noble gases.
Then 2.42Ci/Lt of noble gases are added resulting in 4.3 Ci per 1000 cubic feet.
s I
Tablo 2-51 VOLUME REDUCTION SYSTEM DECONTAMINATION FACTORS **
Isotope Solid Waste Gas /Sclid First Second Exhaust VR System Types Processor Dryer Separator Scrubber Scrubber
'l Filter 9 Total Tritium 1
1.
1 83/73 119/25 1
3.07 i
Nobles 1
1 1
1 1
1 1.00 4
Particulater, 1
5/3 83/41' 342*
106 1000 4.26 x 10,,7 i
Halogens 4.26x10f a)
Particulate 1
5/3 83/41 342*
106 100 b)
Soluble 1
5/3 1
83/72 119/25 100 3.78 x 10 c)
Methyl #
1 1
1 1
1 10/3 3.33 d)
Total 1
5/3 9/5 81/11 29/6 92 3.79 x 10' i
This is the total DF for this scrubber.
The DF for the gas stream is 101
- The fractions are within 1% of the expected DF's.
O The VR system's gaseous exhaust is heated prior to passing through the deep bed
(-11 inches thick) charcoal filter.
All methyl iodine comes from the dry solid waste.
The dry solid waste is assumed to contain 12% methyl, 8% particulate and 80% soluble iodine.
}
q-es.-3.
-m,g,s. <,.
g.
m y,,ew
S O.
O ^.'
O e.
e
..:a
.. -... a
- u.~.-.--a.-
- ~. - +.
.-..- -. - +..
Table 12.2-52 Source Inventaries in VR Equipment *
(in Curies)
Feed Gas / Solid First Second Exhaust Isotope Tank Processor Separator Scrubber Scrubber Filter Dryer Conveyor Pumps Druss H3 3.23 4.0 -4 2.0 -5
.14 1.628-1
.012 Cr51
.09 9.1 -6 8.4 -7
.02 9.9
-6 7.4 -6
.03
.01
.001
.01 Fe5S 1.23 1.2 -4 1.1 -5
.21 1.3
-4 1.0 -4
.39
.16
.018
,19 CoS8 1.06 1.0 -4 9.5 -6
.18 1.1
-4 1.8 -4
.34
.14
.016
.17 Co60
.16 1.6 -5 1.4 -6
.03 1.7
-5 2.3 -4
.05 02
.002 03 N163 1.23 1.2 -4 1.1 -5
.21 1.3
-4 2.1 -4
.39
.16
.018
.20 Y91
.19 2.
-5 2.
-6 03 2
-5 2.8 -5
.06 02
.003
.04 Mo99 20.5 1.98-3 1.85-4 3.52 2.09 -3 5.5 -4 6.48 2.59
.294 3.29 Tc99m
.16 2.
-5 1.
-6 03 2.
-5 5.5 -7
.05 02 002 02 Te132 1.12 1.0 -4 1.0 -5
. 19 1.1
-4 1.6 -5
.35
.14
.016
.18 Cs134 83.7 8.06-3 7.55-4 14.38_
8.49 -3 9.53-2 26.51_
'10.62 1.201 13.46 Cs136 61.2 5.90-3 5.52-4 10.51 6.21 -3 3.2 -3 19.38 7.76
.878 9.84 Cs137 54.5 5.25-3 4.91-=
9.37 5.53 -3 9.10-2 17.26 6.91
.782 8.76 I131 38.4 3.79-3 3.25-4 6.12 1.477-1 1.616 11.41 4.57
.511 5.71 1132 1.17 1.0 -4 1.0 -5 19 4.51 -3 1.6 -3
.35
.14 016
.18 I133
.26 2.
-5 2.
-6
.04 1.01 -3 3.1 -3
.08
.03
.003 04 Xc131m
.21 1.
-6 Xe133m
.50 4.
-6 Xc133 8.44 6.0 -5
- All other long lived Isotopes have an inventory that is at least a factor of 50 less than Cr51..
~8 Key:
4.0-4 = 4.0x10 i
\\
l e
9
FIGURE 12.2-1
-l VOLUME REDUCTION SYSTEM
~'/.
'r
..M..' ' -
e i
c_go)-
1 iM -
R blower F-4
.1 gas / solid' separator filter
~
II i
G s
1
'y -1 l tr S
mg heater
- 3__,
dN E-1 (S
CC,C feed tank
~
j r>
, exhaust
[S-2 filter T-1
/
H-5 I IY hopper
)(B MCC I U
?"
E-2 (m
g/S heater h0PPer R-1 scrubber
!!- 3 p_4 G
f.
3(D U3 d
N i f K+ Z
~
scrubber' r
R-3
+AAA DD p S-3
..r.
E y
5:.
,e gi+
e J F r
solid waste
'I i' c
processor o
(j conveyor U FFF d
1 r f R-2 EE d FF k) -
NN.
E i
g z
r--
rm P-3 p
MM d KK
);II
's GG R
JJ
~
U O
X E, P-5 g
w * ->-
1111 P-2 p
-- 4 i
.~
s.
to radwaste. '
l indicates outside air
.;c.
l,
..I es
- 'f.
s*~
.e g,
/*,
f..
r y
m B/C-FSAR k.
waste gas compressor cubicle, 1.
gas analyzer cubicle, recycle evaporator feed' pump cubicles, m.
n.
gas decay tank cubicles, o.
RER pump cubicles, p.
containment spray pump cubicles, q..
volume control tank valve aisles, r.
concentrations, pump cubicle,
_ _ __. _.._____ s.
fuel handling building, and t.
volume reduction equipment cubicles.
12.3.3.4 ventilation Design Features The ventilation system parameters f or radiologically significant areas in the auxiliary building are provided in Table 12.2-45.
12.3.4 Area Radiation and Airborne Radioactivity Monitorinq
~
Instrumentation Two fixed systems are provided to monitor radiation / radioactivity levels within the plant.
These are:
a.
the area radiation monitoring system (ARMS), and b.
the continuous airborne monitoring system (CAMS).
Portable CAMS and automatic samplers are also provided to supple-ment the fixed monitoring systems.
The fixed ARMS is provided to continuously meas.ure, indicate, and record the levels of radiation in general access and operational areas.
Radiation alarms are activated when predetermined levels are exceeded.
The objective is to keep operating personnel informed of the radiation levels in the selected areas and thus assist in avoiding unnecessary or inadvertent exposure.
The fixed CAMS is provided to measure, indicate, and record the levels of airborne radioactivity at locations where significant airborne radioactivity is likely.
The objective is to assist in avoiding unnecessary or inadvertent exposure.
CAMS also provides a means for identifying trends in air concentration levels and j
the source of the activity.
Each fixed CAM activates a control room alarm when predetermined levels are exceeded.
Fixed CAM are each dedicated to monitoring a particular ventilation pathway for high aircorne radioactivity.
l I
i 12.3-38 e