ML20002B922

From kanterella
Jump to navigation Jump to search
Slide Presentation Entitled Preliminary Risk Assessment, Presentation of Results
ML20002B922
Person / Time
Site: Limerick  Constellation icon.png
Issue date: 12/09/1980
From:
NRC COMMISSION (OCM)
To:
Shared Package
ML20002B920 List:
References
NUDOCS 8101070328
Download: ML20002B922 (66)


Text

, l.

~

)

~

Limerick Generating Station Preliminary Risk Assessment i

PRESENTATION OF RESULTS 12/9/80 Pottstown Holiday Inn 4

AGENDA 4l

i. Introduction Vincent Boyer Philadelphia Electric Company Saul Levine NUS Corporation 3
11. Limerick Plant Richard Mulford Description Philadelphia Electric Company i

ll1. Features of the Limerick Roger McCandless Boiling Water Reactor General Electric Company 5

i IV. Description of Gene Hughes N

the Analysis Science Applications,Inc.

O j

V. Discussions Roger McCandless of Results General Electric Company C

VI. Summary and Vincent Boyer c

Conclusions Philadelphia Electric Company C

aJo 4

4 I

LIMERICK GENERATING STATION PRELIMINARY RISK ASSESSMENT l

i e May 8,1980 - Letter Requested Assessment of Plant / Site Combination j

  • May 21,1980 - Meeting Discussed

~

Approach e July 11,1980 - Meeting Clarified i

the Study Approach l

  • December 9,1980 - Presentation l

of Results i

f l

i

Lirnerick Generating Station Preliminary Risk Assessment PRA PARTICIPANTS i

~

e Philadelphia Electric Co.

e General Electric Co.

t i

e Science Applications Inc.

o NUS Corporation e Bechtel Power Corporation l

e Chicago Bridge & Iron Co.

o Fauske & Associates, Inc.

o Meteorological Evaluation i

Services, Inc.

0 Center for Planning Research l

I

l l

l WASH 1400 OVERVIEW

)

e First Comprehensive Study of Probabilities and Consequences of Nuclear Plant Accident Events o Directed by Norman Rasmussen I MIT?

3 and Saul Levine llAECD e Started in 1972 and Completed in 1975 o 70 Man Years and Four Million Dollars o Compared Nuclear Plant Risk / Consequences to the Risk / Consequences of Natural and Man-Made Events x

I Limerick Generating Station Preliminary Risk Assessment CASES STUDIED e WASH 1400 at Limerick Site L

e Limerick Plant at Limerick Site

9 Limerick Preliminary Risk Assessment Wash 1400 Risk Comparison 1

L MAN-CAUSED RISK 100 TOTAL N ATURAL RISK l

1000 3

1 10,000 FREQUENCY 1

(events / year) 100,000 1

1 MILLION 10 MILLION 1400 BWR 1

N 100 MILLION

\\

1 1 BILLION 1 10 100 1000 10,000 FATALITIES j

oms i

Limerick Generating Station Preliminary Risk Assessment l

WASH 1400 PLANT AT LIMERICK SITE e WASH 1400 Probabilities l

i l

0 WASH 1400 Release Fractions l

0 WASH 1400 Methods o Limerick Site Population o Limerick Site Meteorology l

i l

f Limerick Generating Station Preliminary Risk Assessment LIMERICK PLANT AT LIMERICK SITE e Limerick Plant Features o Limerick Site Features o Updated Data dn Methods

Limerick Generating Station Preliminary Risk Assessmerit RESULTS l

l c Limerick Site l

Higher Population i

l

  • Limerick Plant Better Than WASH 1400 Plant e Limerick Plant-Site Together Lower Risk Than WASH 1400 BWR l

c Limerick Generating Station Presents Minimal Risk to Public 4

i a

j l

l kl:.

\\

t 1

j i

)l l

1 l?

.z-e 2

1-4 l

a t

I\\

1' i

!h M

.x, p

b l::

1

  • i l.ib:

l I

L

l w_ _.

c

.m.

, m r.

w w

YY '

-y 9"71-4 3'=~---_

I

~:-r =-n

-- s a

3 I

y--*

l r.

\\

- {

=

K y

,l y,

_Q 9,

- -Y

/

N

\\( o - --

/

s

(

4a

.,a I

%~

/,

/

M s

~, * " ~

/

Fh I

~

N Q. 7

[DL-?jini N /,

1

,,. ~

F

~

AN" T

N.

47 15

, f'g -

(, A s- ' '

I j$

Cf

-.G-j.:

, h,,.,/e.,

' 'i

,e

' r.

, :. S',. ' '-

,r 3 l

i l

..,[p'_ ;.

F

' ' /. -..

..x,4 *.

I

-..,,. ;l;l-.,

r-s.

, '..-j,S'kk o' -

5.*e

/

f.

.s..'

-,'/-

Q' 7

i C-

4. ;

~

~

,- - ~;' * **'. { f

- f.,

, L*.bb&

-" _* 3F 2 '- ' -wm

,, p,,,,3 9,_,

- ]* '

- ['

n ; -ws =r;%,,.,,,l,;.;

,--.,,.,, p *r

,- =. m.; u m.g -.:; % e...; ---

.. :.-- =-

.=.: =- - -

-. e _ '

q 5,.

...:1, : ; ; t...

,2 +

_ w =.

. : w + m. g m !A$:.,'.,

m- ~~$A l

l

\\-

. ZZ~ ~ * W ~ '..

g.

32;. g*v,,.;

- - -- ~

~...;-. c -.;

r...*, % M_,

- ?

s

- et.... s. 4 -

I f

l l

l i

l l

>==n, m

1 l

w _.a _..

i i

l Mark E Limerick l

Containment ses L

l l

)

l l

i Dry Well

)

. ~

l i

t Downcomer Air Space p

E

> Suppmssion Suppmss, ion Chamber Pool gog:

,[

l 1'

t i

1 Limerick j

Preliminary Risk Assessment I

FEATURES OF THE LIMERICK BOILING WATER REACTOR Roger McCandless General Electric Co.

i i

i I

i i

i i

I i

l l

}

l LIMERICK PLANT FEATURES

)

M A R K 11

{

CONTAINMENT

..J..'e b r u d._: X P a * =

CONCRETE REACTOR BUILDJNG l

t

=)

L..

l r

1 TURBINE GENERATOR I

'.iGYj j

?

.s i '. k. a -lh m

  • . -.. ;-(3 b8, a:

I

,a,.

Y.

p },! -

MAIN s

- F CONDENSOR

~

N231?lf.2Z21

,,;l.'f l

f; 7 -l. -

j

j

'tr f _..

j I 1

FEEDWATER SYSTEM SUPPRESSION POOL l

l i

l i

i i

t l

4 i

i i

I CORE PROTECTION FUNCTIONS t

t

\\

o Supply Water to Core

.I l

e Remove Decay Heat i

l 1

i

1 4

I i

i l

4 i

i t

COOLING SYSTEMS

(

f j

s Turbine

)

m

-a_........_....

Water t_..:._

3 g

s

-, - ~ -

gp t

< li l

Condensor l

i b'l

/

4 41 i

i

}

[4 i

O j

j

.,7. ~,

s s

l e

,/'

l k/'

{

1 1

i i

I i

l Control Rod Reactor Core Feedwater 1

l l

Injection isolation Cooling System System System I

I l

1

EMERGENCY COOLING SYSTEMS 1

I El IP l.

l i

=

l

/L.J:: i.-

9

g..,

I i

s.!II h)

(

43.h?;,<

i A

lA A

A A

A A

9 I e e

a e

a a

.-NQQaMJ@{$82-F.M'{ji9)-[;i.j.j'.3.f..

[

'ND l l'gf[i.

.w., an w c, Z. c...,.

1 Condensate i ~.a 1

storageTank' l

High Pressure Low Pressure Low Pressure l

Coolant injection Coolant lajection Core Spray System System System 3

B547.38

?

i-i i

1 SYSTEMS TO SUPPLY WATER TO CORE i

1 j

HIGH PRESSURE t

l 4

Feedwater 4

High Pressure injection l

4 Reactor Core isolation Cooling l

4 Control Rod Drive Cooling

-13 Pumps LOW PRESSURE Pa 4

Coolant injection

,d I

Flood 4

Core Spray l

l l

4 Condensate

I i

l I

l l

i l

t l

l DECAY HEAT REMOVAL l

Steam Safety / Relief Valve

/

i 9-

- Main Steam I

I l

4 I

Residual Heat I

h Removal System k r Core i

4 g

l Heat Exchangers

~

~

i Pumps

-Supptesslon Pool 1

L 5

B 54 7.40

l i

l 1

i

,i l

FISSION PRODUCT CONTROL FEATURES 1

e Suppression Pool e Containment Sprays i

f a Bypass Leakage Control

  • Containment Leakage Filtration i

f l

l l

1 I

i i

i l

l l

1 EMERGENCY OPERATION I

e Simple System e One Vessel i

e One Loop l

e Reactor Water Level Measured 4

l l

  • Simple instructions to Operator E547 4:

i i

i i

i

t l

l CONCLUSIONS I

  • Multiple Water Supplies i

i I

l e Heat Removal Capability

  • Fission Product Control l

i e Simple Emergency Operation l

i i

l

4 Limerick 3

Preliminary Risk Assessment 1

i l

METHODOLOGY i

I i

i 4

i Gene Hughes Science Applications, Inc.

9547 27 e

l l

l.

{

LIMERICK ANALYSIS Systems -- Limerick (BWR/4) e Procedures -- Limerick Projection e

Operating Experience Data -- Philadelphia e

Electric Company Where Applicable i

i e Containment -- Limerick Mark II

~

  • Sequences -- Limerick Specific i

e Containment Analysis -- Limerick Specific l

e Consequences -- Limerick Site-Specific i

Risk -- Limerick Specific I

i i

l

i

(

Fault Success Trees

  • - Event Trees <

Criteria I

i 3

l Event Specific x'

' A.

j Plant Results Frequency of y

Release 4

Release Fractions l

N u

s Offsite I

Analysis V

l Summation of Sequences i

i 9

Risk Curve

.so 2,

3 i

r l

l l

l Fault Success l

I l

Trees

  • Event Trees
  • Criteria l

L 7

N

./-

N Event Specific A

Plant Results Frequency of Release y

Release j

Fractions ww s Offsite Analysis

~

If Summation of Sequences II Risk Curve Eta? 34 i

ACCIDENT INITIATORS 1

e Plant Initially Operating at Power j

e Plant Safety Challenge Occurs i

l

- Normal Transient

- Small Loss-of-Coolant Accident

- Large Loss-of-Coolant Accident l

- Transient Without SCRAM l

Allows Specific Capability to be Analyzed l

l

.si

.. :.i 2

c ;

4.9. 5%.,.

I I

-dhdj t, !

ugi$gifphy.1

-? ' 419:yl N ?!%'y;>

y, s

2k t-s.: sis -

n M w adha'h..

Turbine Trip Large MSIV Closure Small Loss of Feedwater Very Small IORV Loss of Offsite Power indepth Analysis for Transients Assured

i i

l PLANT-SYSTEM RESPONSE i

3 l

l

  • Demands on Core Cooling i

e Demands on Containment Cooling

  • Demands on Pressure Control l

(Reactor and Containment) i e Demands on Core Criticality l

l Determined for Each l

Initiator and Event Sequence l

i

l,-

l i

SUCCESS CRITERIA i

i i

j e Define Minimum Systems to Achieve Shutdown l

e Determined for Each initiator l

e Based Upon Realistic Analyses e Use Both Safety Systems and Normal Operating Systems i

l Status: Developed and Reviewed for Each Initiator l

l

.I i

l Limerick Preliminary Risk :Assessmeri:

SUCCESS CRITERIA Transients (with SCRAM l Require:

e Reactor Core Isolation Cooling r

  • High Pressure Coolant Linjectionll l

'

Of

r

or 1 Condensate Pump o

and e Main Condenser 1 of 2 Residual Heat Removal Loops l

l t

EXAMPLE OF AN EVENT TREE Functions A

B C

D E

l l

l A

i l

AE Event AD Sequences i

i l

AC E

i ACD AB i

l i

i l

4

g.~.

l System Level Fault Trees s

f

'2

,y;

(

l e CONDENSATE e LOW PRESSURE CORE SPRAY w

1,..

SYSTEM l

[

o POWER: AC (NORMAL),

.?.

e RESIDUAL llEAT REMOVAL AC (EMERGENCY), DC Q

- LOW PRESSURE l

j COOLANT INJECTION e DIESELS

- CONTAINMENT SPRAY e STANDBY LIQUID CONTROL i

- RHR SERVICE WATER i

j I

1 l

l FAULT TREES ARE LOGIC MODELS FOR FUNCTIONS i

]

'k.

'I i(

)

03235 8

f*'

)

i l

l d

W g

n :.,;p,j y

.: !:n,L b' - v*".a. bh h

w'~

. s,,7.. -

y

a. ::, -

l f' 'asC' L...'

Q L.adiL.. <

u.

l 4

', o;g'.e %:. A 4

b-

/1.T4 It

&^

o k.. u,,%

p ya ame

..s.

...*ag g

U, Eik."e'. s.G..r:.0 G #

fs. 'd lM a

M 2

(

e C4,$ 'b$

N v

D.. M.

r.

t., if s>=O1,

' lAv,

,'t

~e' 5w

, >~ s.

- l ~:

. 9 t:,W I

O

-..--me

]

Success Fault l

Trees

+- Event Trees *

- Criteria l

i A

(

Event Specific i

l Plant Results l

Frequency of l

Release p

[

8 Release Fractions l

w 2 Offsite Analysis l

T Summation of i

Sequences y

j Risk Curve

TO DETERMINE FREQUENCY OF EACH EVENT SEQUENCE e Select input Probabilities for Fault Trees e Run "Wam Code" Series to Combine Probabilities to Determine the System Level Failure Probability

  • Quantify Event Tree Sequences by Combining

-- Initiator Frequency

-- System Level Fault Tree Values i

Frequency of Each Event Determined

9 I

i i

CRITERIA FOR SELECTION l

OF DATA i

e Most Recent Data l

e Generic BWR Data e WASH-1400 t

Result: Best Available Data Used

5 OVERVIEW OF ACCIDENT SEQUENCE PROBABILITIES e Attempt to Maintain the Same Criteria for Successful System Operation as We Perceive was Used in Wash-1400

- No Heroic Actions l

- Once a System Falls the System Stays Failed j

- Little Credit Given for Operator Action Within l

30 Minutes j

e Changes Only in the Following i

- Differentiation in the Types of Accident Initiators

- System Success Criteria l

- Containment Overpressure Relief i

- New Data (Components, Maintenance, Diesels Offsite Power) l Result: Limerick-Specific Event Trees Quantified with Best Available Data i

1

l i

1 Fault Success Trees

  • Event Trees
  • Criteria r

7, l

Event Specific I

w I

I Plant Results Frequency of I

Reisase Rei ase Fractions g

l L.__ _ _

_ _ _.J Offaite Analysis U

Summation of Sequences y

Risk Curve 8647 32

h m,.

e_

.a.

_a_..>-

m_.

m m

..u l

t

    • o

/

/

~

Boll PVMelt inter Core Uncovery Pressure Vessel Core-Concrete and Meltdown Melt-Through Interaction Mass and Energy Flows Contempt-Lt Heat Transfer and Atmosphere Exhange Containment Conditions (Reactor Vessel, Drywell, Wetwell, Misc. Compartments)

.,c :,

4

CORE MELT ANALYSIS

. _.1 1

p 1

i L.!

V I

i i

L,

?,

A V

j

  1. -ap]u - 9.

r

,Pllp,.glh) j r=

3 p-g :',

/

3

.s 1'

i e ev ena w'/

r I

J g;

3..... ua a

'.Qiff ll e

I i

F Eu. x.,j g

r 1

g o.

1.

?

M ARK il CONTAINMENT i

a 4

GENERIC ACCIDENT SEQUENCES e Melting Before Containment Failure e Melting After Containment Failure 4

i e Transient Without SCRAM i

e Transient Without SCRAM (Heat i

Removal Failure Case)

~~

I l

l I

J

j i-

)

i i

4 l

EACH GENERIC EVENT ANALYZED i

TO DETERMINE a

i e Time of Release 4

i

)

l e Fraction of Core Content Released i

  • Path and Energy of Release I

i l

l

l.

l l

BASED UPON DETAILED EVENT l

l SEQUENCE PHYSICS f

a Compartment Flows l

e Plant Conditions l

e Phases of Event are Used to Establish Release Fractions

I RELEASE FROM FUEL WASH-1400 Methodology

1. Eight Species Classes 4

Examples:

F Halogens (1, Br)

Tellurium Group (Te, Se, Sb) 1

2. Four Components Fuel Rod Rupture l

Fuel Meltdown Steam Explosion Concrete Penetration

3. Two Physical Forms 1

Gaseous 1

Particulate i

i

i I

j DECONTAMINATION FACTORS (DF)

Impact on Limer'ri:

1

- : c :- temina tion Source Release Fractions Primary System Retention No Credit Taken -- Inability l

to Quantify Effect I

l Suppression Pool Scrubbing Credit Taken for Saturated as Well as Unsaturated Pool i

Primary Containment and Same DF as Used in Wash-1400 i

Retention but Retention Times in Some Cases are Longer Standby Gas Treatment Same DF as Wash-1400 l

e.

l

//h th" A&

f/bo y

F Y>

//k/4k*

4 / A ;+,,,< >s/q,eg.g gy, y

.. eEE _. _

TEST TARGET (MT-3) t I

l 1.0

!!En lat am i,

g g {au m

l,l h,

bb 11.8

{

~

I.25 1.4 1.6 4

6"

=

I i

j ll

  • I t:fl ll '

- d[f*/,

zzz;z 9

s 4

4A p%y

%gy, y

se 4

,_. eme T,.

TEST TARGET (MT-3) l l

1 i

l.0 lgmsu

, E l22 4

l 2 na l,l k

  • lfffN l.8 f

i l.25

' l.4 1.6

)

6~

=

)

p%

++

  • $ifh

'khh+f@

/

%f 4k

i 1

i i

t DECONTAMINATION FACTORS i

j M eltciown V e s s e : F z...

Conditions Release Va D oriz t..

Containment Failure at i

4 4

End of Release 100 10

[

Containment Failure i

Initiates Release 10 10

{

i i

1

'~

MMGB92nWE R MZd t i

i i

l l

1 i

i i

i 1

A l

i i

i l

i

)

CONTAINMENT FAILURE MODES

.i

)

e No Failure at All i

e Drywell Region 1

Drywell and Wetwell Region Wetwell Air Space i

e Wetwell 1: Drain Pool?

e Leak (Small?

l

  • Leak llLarge?

e Steam Explosion llIn-Vessel?

e Steam Explosion llIn-Containment?

e Hydrogen Deflagration Failure

i e

)

)

6 6

c t

n n

(

(

eu K

n 6

E e

Eq O 7 y '7 6 6

& hp a

v e

S n a e

l h

y me b

t t

r ne u ds a t

e si aGr mya T

SF t

S ek ga ra e L L l tua oe PL l

e leru wl yi a rDF l

l e

e r

wu l

t iea WF r

ek ga ra e L L

-on 2l c

H pi xs E

de er 2 su l

d. ui aa CF e

n r

t u

ian es r

t e s

v nmOre o

C p

e l

r e

u r

s e s s

s v

e e

V Orp et l

r o e CM w

,ii!ItJj:1

.ljj li!l!i

4 i

i l

"CRAC" CA.LCULATION Specify Fractions of isotope Groups l

i e Time of Release e Energy of Release i

e Evacuation Model l

e Weather I

e Population Calculate Consequences

l l

"CRAC" CODE i

i e Runs 91 Trials

?

Summed j

e Sum isotope Categories j

e Sum-Up Meteorology Selected for Each Case e Sum-Up Population Sectors e Weights with Frequency / Stores --

l 3

" Bookkeeping Code" 1

Result N Risk Curve i

i 1

ADDITIONAL SAFETY MARGIN l

(Not Evaluated) j e Nuclear Regulatory Commission Actions in Response to Three Mile Island l

e institute for Nuclear Power Operations Recommendations l

e Nuclear Safety Analysis Center i

l Actions Being Taken (Now in Progress?

9 I

Limerick Preliminary Risk Assessment DISCUSSION OF RESULTS Roger McCandless General Electric Co.

i i

l Limerick i

l Preliminary Risk Assessment i

l DISCUSSION OF RESULTS l

  • Site Differences
  • Plant Design Differences o Data Differences e Methodology Differences

i l

I l

LIMERICK SITE COMPARISON l

(Relative to WASH 1400) i l

e Realistic Site t

l e Higher Population l

l e Different Weather i

l e Same Evacuation Model l

i i

LIMERICK DESIGN COMPARISON

[ Relative to WASH 1400 BWR?

i

  • MK ll Reinforced Concrete Steel-lined Containment l
  • Containment Overpressure Relief e More and improved Safety / Relief Valves e improved Piping

(

l

  • Improved Shutdown System
  • More Reliable Offsite Power

x

)

Limerick Preliminary Risk Assessment site comparison 1

L MAN CAUSED RISK 100 TOTAL NATURAL RISK 1000 N

h 1

10,000 FREQUENCY 1

(events / year) 100,000 1

1 MILLION WASH 1400 BWR AT LIMERICK SITE 1

10 MILLION N

1

\\

100 MILLION WASlH 1400 B g\\

1 i

1 BILLION 1

1 10 100 1000 10,000 FATALITIES j

ouasa l

i LIMERICK DATA COMPARISON

{ Relative to WASH 1400) i i

l

  • Larger Data Base 1
  • Initiating Frequencies I
  • Equipment Reliability
  • Maintenance Times

i LIMERICK METHODOLOGY COMPARISON 4

1 (Relative to WASH 1400?

{

  • Improved ^omputer Models i

i e More Comprehensive Treatment of Transients 1

e Updated Decontamination Factors i

l e Updated Treatment of Hydrogen / Steam Physics

/

  • Use of Emergency Operator Guidelines 4

l

s S

Limerick Preliminary Risk Assessment Methods & Data Comparison 1

L MAN CAUSED RISK a

N TOTAL NATUR AL RISK 3

1000 1

10,000 FREQUENCY 1

(events / year) 100,000 1

i WASH 1400 BWR WITH UPDATED METHODS f

1 MILLION AND DATA AT LIMERICK SITE 1

N l

10 MILLION 1

N 100 MILLION WASH 1400 BW

\\

1 1 BILLION 1 10 100 1000 10,000 FATALITIES 03235 4

i i

LIMERICK DESIGN COMPARISON i

(Relative to WASH 1400 BWR) i l

l

  • MK ll Reinforced Concrete Steel-lined Containment 1

]

  • Containment Overpressure Relief
  • More and Improved Safety / Relief Valves e improved Piping
  • More Reliable Offsite Power

s

)

1 Limerick Preliminary Risk Assessment Design Features Comparison 1

OTAL MAN CAUSED RISK 1

100 TOTAL NATURAL RISK I

1000 3

1 10,000 i

FREQUENCY 1

(events / year) 100,000 4

1 g

i 1 MILLION WASH 1400 BWR WITH UPDATED METHODS AND DATA AT LIMERICK SITE'

  • DOES NOT INCLUDE j

10 MILLION LIMERICK DESIGN FEATURES 1

100 MILLION LIMERICK AS DESIGNED 1

1 BILLION

~

3 10 100 1000 10,000 FATALITIES 03235 S

i Limerick Preliminary Risk Assessment Risk Comparison Summary J

)

L MAN-CAUSED RISK 100 h

TOTAL NATURAL RISK j

1000 3

j i

l 1

10,000 FREQUENCY 1

(events / year) 100,000 1

WASH 1400 BWR WITH UPDATED METHODS AND DATA AT LIMERICK SITE" 1 MILLION I

  • DOES NOT INCLUDE -

10 MILLION N

LIMERICK DESIGN FEATURES 1

N 100 MILLION WASH 1400 BWR d LIMERICK AS DESIGNED j

1 BILLION 1

10 100 1000 10,000 FATALITIES 032J's6

i Limerick i

l Preliminary Risk Assessment i

I i

SUMMARY

AND CONCLUSIONS i

l Vincent Boyer Philadelphia Electric Co.

l l

l i

I b

r.

i Limerick Preliminary Risk Assessment Limerick / Wash 1400 Risk Comparison 1

L MAN-CAUSED RISK 100 h

TOTAL NATURAL RISK 500U N

1 10,000 FREQUENCY 1

(events / year) 100,000 I

1 1 MILLION 3

gH 1400 BWR 10 MILLION 1

N 100 MILLION LIMERICK

\\

1 1 BILLION 1

10 100 1000 10,000 FATALITIES

,