ML20002B922
| ML20002B922 | |
| Person / Time | |
|---|---|
| Site: | Limerick |
| Issue date: | 12/09/1980 |
| From: | NRC COMMISSION (OCM) |
| To: | |
| Shared Package | |
| ML20002B920 | List: |
| References | |
| NUDOCS 8101070328 | |
| Download: ML20002B922 (66) | |
Text
, l.
~
)
~
Limerick Generating Station Preliminary Risk Assessment i
PRESENTATION OF RESULTS 12/9/80 Pottstown Holiday Inn 4
AGENDA 4l
- i. Introduction Vincent Boyer Philadelphia Electric Company Saul Levine NUS Corporation 3
- 11. Limerick Plant Richard Mulford Description Philadelphia Electric Company i
ll1. Features of the Limerick Roger McCandless Boiling Water Reactor General Electric Company 5
i IV. Description of Gene Hughes N
the Analysis Science Applications,Inc.
O j
V. Discussions Roger McCandless of Results General Electric Company C
VI. Summary and Vincent Boyer c
Conclusions Philadelphia Electric Company C
aJo 4
4 I
LIMERICK GENERATING STATION PRELIMINARY RISK ASSESSMENT l
i e May 8,1980 - Letter Requested Assessment of Plant / Site Combination j
- May 21,1980 - Meeting Discussed
~
Approach e July 11,1980 - Meeting Clarified i
the Study Approach l
- December 9,1980 - Presentation l
of Results i
f l
i
Lirnerick Generating Station Preliminary Risk Assessment PRA PARTICIPANTS i
~
e Philadelphia Electric Co.
e General Electric Co.
t i
e Science Applications Inc.
o NUS Corporation e Bechtel Power Corporation l
e Chicago Bridge & Iron Co.
o Fauske & Associates, Inc.
o Meteorological Evaluation i
Services, Inc.
0 Center for Planning Research l
I
l l
l WASH 1400 OVERVIEW
)
e First Comprehensive Study of Probabilities and Consequences of Nuclear Plant Accident Events o Directed by Norman Rasmussen I MIT?
3 and Saul Levine llAECD e Started in 1972 and Completed in 1975 o 70 Man Years and Four Million Dollars o Compared Nuclear Plant Risk / Consequences to the Risk / Consequences of Natural and Man-Made Events x
I Limerick Generating Station Preliminary Risk Assessment CASES STUDIED e WASH 1400 at Limerick Site L
e Limerick Plant at Limerick Site
9 Limerick Preliminary Risk Assessment Wash 1400 Risk Comparison 1
L MAN-CAUSED RISK 100 TOTAL N ATURAL RISK l
1000 3
1 10,000 FREQUENCY 1
(events / year) 100,000 1
1 MILLION 10 MILLION 1400 BWR 1
N 100 MILLION
\\
1 1 BILLION 1 10 100 1000 10,000 FATALITIES j
oms i
Limerick Generating Station Preliminary Risk Assessment l
WASH 1400 PLANT AT LIMERICK SITE e WASH 1400 Probabilities l
i l
0 WASH 1400 Release Fractions l
0 WASH 1400 Methods o Limerick Site Population o Limerick Site Meteorology l
i l
f Limerick Generating Station Preliminary Risk Assessment LIMERICK PLANT AT LIMERICK SITE e Limerick Plant Features o Limerick Site Features o Updated Data dn Methods
Limerick Generating Station Preliminary Risk Assessmerit RESULTS l
l c Limerick Site l
Higher Population i
l
- Limerick Plant Better Than WASH 1400 Plant e Limerick Plant-Site Together Lower Risk Than WASH 1400 BWR l
c Limerick Generating Station Presents Minimal Risk to Public 4
i a
j l
l kl:.
\\
t 1
j i
)l l
1 l?
.z-e 2
1-4 l
a t
I\\
1' i
!h M
.x, p
b l::
1
- i l.ib:
l I
L
l w_ _.
c
.m.
, m r.
w w
YY '
-y 9"71-4 3'=~---_
I
~:-r =-n
-- s a
3 I
y--*
l r.
\\
- {
=
K y
,l y,
_Q 9,
- -Y
/
N
\\( o - --
/
s
(
4a
.,a I
%~
/,
/
M s
~, * " ~
/
Fh I
~
N Q. 7
[DL-?jini N /,
1
,,. ~
F
~
AN" T
N.
47 15
, f'g -
(, A s- ' '
I j$
Cf
-.G-j.:
, h,,.,/e.,
' 'i
,e
' r.
, :. S',. ' '-
,r 3 l
i l
..,[p'_ ;.
F
' ' /. -..
..x,4 *.
I
-..,,. ;l;l-.,
r-s.
, '..-j,S'kk o' -
5.*e
/
f.
.s..'
-,'/-
Q' 7
i C-
- 4. ;
~
~
,- - ~;' * **'. { f
- f.,
- , L*.bb&
-" _* 3F 2 '- ' -wm
,, p,,,,3 9,_,
- - ]* '
- ['
n ; -ws =r;%,,.,,,l,;.;
,--.,,.,, p *r
,- =. m.; u m.g -.:; % e...; ---
.. :.-- =-
.=.: =- - -
-. e _ '
q 5,.
...:1, : ; ; t...
,2 +
_ w =.
. : w + m. g m !A$:.,'.,
m- ~~$A l
l
\\-
. ZZ~ ~ * W ~ '..
g.
32;. g*v,,.;
- - -- ~
~...;-. c -.;
r...*, % M_,
- ?
s
- et.... s. 4 -
I f
l l
l i
l l
>==n, m
1 l
w _.a _..
i i
l Mark E Limerick l
Containment ses L
l l
)
l l
i Dry Well
)
. ~
l i
t Downcomer Air Space p
E
> Suppmssion Suppmss, ion Chamber Pool gog:
,[
l 1'
t i
1 Limerick j
Preliminary Risk Assessment I
FEATURES OF THE LIMERICK BOILING WATER REACTOR Roger McCandless General Electric Co.
i i
i I
i i
i i
I i
l l
}
l LIMERICK PLANT FEATURES
)
M A R K 11
{
CONTAINMENT
..J..'e b r u d._: X P a * =
CONCRETE REACTOR BUILDJNG l
t
=)
L..
l r
1 TURBINE GENERATOR I
'.iGYj j
?
.s i '. k. a -lh m
- . -.. ;-(3 b8, a:
I
,a,.
Y.
p },! -
MAIN s
- F CONDENSOR
~
N231?lf.2Z21
,,;l.'f l
f; 7 -l. -
j
- j
'tr f _..
j I 1
FEEDWATER SYSTEM SUPPRESSION POOL l
l i
l i
i i
t l
4 i
i i
I CORE PROTECTION FUNCTIONS t
t
\\
o Supply Water to Core
.I l
e Remove Decay Heat i
l 1
i
1 4
I i
i l
4 i
i t
COOLING SYSTEMS
(
f j
s Turbine
)
m
-a_........_....
Water t_..:._
3 g
s
-, - ~ -
gp t
< li l
Condensor l
i b'l
/
4 41 i
i
}
[4 i
O j
j
.,7. ~,
s s
l e
,/'
l k/'
{
1 1
i i
I i
l Control Rod Reactor Core Feedwater 1
l l
Injection isolation Cooling System System System I
I l
1
EMERGENCY COOLING SYSTEMS 1
I El IP l.
l i
=
l
/L.J:: i.-
9
- g..,
I i
s.!II h)
(
43.h?;,<
i A
lA A
A A
A A
9 I e e
a e
a a
- .-NQQaMJ@{$82-F.M'{ji9)-[;i.j.j'.3.f..
[
'ND l l'gf[i.
.w., an w c, Z. c...,.
1 Condensate i ~.a 1
storageTank' l
High Pressure Low Pressure Low Pressure l
Coolant injection Coolant lajection Core Spray System System System 3
B547.38
?
i-i i
1 SYSTEMS TO SUPPLY WATER TO CORE i
1 j
HIGH PRESSURE t
l 4
High Pressure injection l
4 Reactor Core isolation Cooling l
4 Control Rod Drive Cooling
-13 Pumps LOW PRESSURE Pa 4
Coolant injection
,d I
Flood 4
l l
4 Condensate
I i
l I
l l
i l
t l
Steam Safety / Relief Valve
/
i 9-
- Main Steam I
I l
4 I
Residual Heat I
h Removal System k r Core i
4 g
l Heat Exchangers
~
~
i Pumps
-Supptesslon Pool 1
L 5
B 54 7.40
l i
l 1
i
,i l
FISSION PRODUCT CONTROL FEATURES 1
e Suppression Pool e Containment Sprays i
f a Bypass Leakage Control
- Containment Leakage Filtration i
f l
l l
1 I
i i
i l
l l
1 EMERGENCY OPERATION I
e Simple System e One Vessel i
e One Loop l
e Reactor Water Level Measured 4
l l
- Simple instructions to Operator E547 4:
i i
i i
i
t l
l CONCLUSIONS I
- Multiple Water Supplies i
i I
l e Heat Removal Capability
- Fission Product Control l
i e Simple Emergency Operation l
i i
l
4 Limerick 3
Preliminary Risk Assessment 1
i l
METHODOLOGY i
I i
i 4
i Gene Hughes Science Applications, Inc.
9547 27 e
l l
l.
{
LIMERICK ANALYSIS Systems -- Limerick (BWR/4) e Procedures -- Limerick Projection e
Operating Experience Data -- Philadelphia e
Electric Company Where Applicable i
i e Containment -- Limerick Mark II
~
- Sequences -- Limerick Specific i
e Containment Analysis -- Limerick Specific l
e Consequences -- Limerick Site-Specific i
Risk -- Limerick Specific I
i i
l
i
(
Fault Success Trees
- - Event Trees <
Criteria I
i 3
l Event Specific x'
' A.
j Plant Results Frequency of y
Release 4
Release Fractions l
N u
s Offsite I
Analysis V
l Summation of Sequences i
i 9
Risk Curve
.so 2,
3 i
r l
l l
l Fault Success l
I l
Trees
- Event Trees
- Criteria l
L 7
N
./-
N Event Specific A
Plant Results Frequency of Release y
Release j
Fractions ww s Offsite Analysis
~
If Summation of Sequences II Risk Curve Eta? 34 i
ACCIDENT INITIATORS 1
e Plant Initially Operating at Power j
e Plant Safety Challenge Occurs i
l
- Normal Transient
- Small Loss-of-Coolant Accident
- Large Loss-of-Coolant Accident l
Allows Specific Capability to be Analyzed l
l
.si
.. :.i 2
c ;
4.9. 5%.,.
I I
-dhdj t, !
ugi$gifphy.1
-? ' 419:yl N ?!%'y;>
y, s
2k t-s.: sis -
n M w adha'h..
Turbine Trip Large MSIV Closure Small Loss of Feedwater Very Small IORV Loss of Offsite Power indepth Analysis for Transients Assured
i i
l PLANT-SYSTEM RESPONSE i
3 l
l
- Demands on Core Cooling i
e Demands on Containment Cooling
- Demands on Pressure Control l
(Reactor and Containment) i e Demands on Core Criticality l
l Determined for Each l
Initiator and Event Sequence l
i
l,-
l i
SUCCESS CRITERIA i
i i
j e Define Minimum Systems to Achieve Shutdown l
e Determined for Each initiator l
e Based Upon Realistic Analyses e Use Both Safety Systems and Normal Operating Systems i
l Status: Developed and Reviewed for Each Initiator l
l
.I i
l Limerick Preliminary Risk :Assessmeri:
SUCCESS CRITERIA Transients (with SCRAM l Require:
e Reactor Core Isolation Cooling r
- High Pressure Coolant Linjectionll l
'
- 1 fo 3 Feedwater Pumps l
Of
- 1 or 2 Low Pressure Core Spray Loops l
r
- 1 of 4 Low Pressure Coolant injection Pumps i
or 1 Condensate Pump o
and e Main Condenser 1 of 2 Residual Heat Removal Loops l
l t
EXAMPLE OF AN EVENT TREE Functions A
B C
D E
l l
l A
i l
AE Event AD Sequences i
i l
AC E
i ACD AB i
l i
i l
4
g.~.
l System Level Fault Trees s
f
'2
- CRD INJECTION e HIGH PRESSURE COOLANT INJECTION
,y;
(
l e CONDENSATE e LOW PRESSURE CORE SPRAY w
1,..
- AUTOMATIC DEPRESSURIZATION e EMERGENCY SERVICE WATER l
SYSTEM l
[
o POWER: AC (NORMAL),
.?.
e RESIDUAL llEAT REMOVAL AC (EMERGENCY), DC Q
- LOW PRESSURE l
j COOLANT INJECTION e DIESELS
- CONTAINMENT SPRAY e STANDBY LIQUID CONTROL i
- RHR SERVICE WATER i
j I
1 l
l FAULT TREES ARE LOGIC MODELS FOR FUNCTIONS i
]
'k.
'I i(
)
03235 8
- f*'
)
i l
l d
W g
n :.,;p,j y
.: !:n,L b' - v*".a. bh h
w'~
. s,,7.. -
y
- a. ::, -
l f' 'asC' L...'
Q L.adiL.. <
u.
l 4
', o;g'.e %:. A 4
b-
/1.T4 It
&^
o k.. u,,%
p ya ame
..s.
...*ag g
U, Eik."e'. s.G..r:.0 G #
fs. 'd lM a
M 2
(
e C4,$ 'b$
N v
D.. M.
r.
- t., if s>=O1,
' lAv,
,'t
~e' 5w
, >~ s.
- l ~:
. 9 t:,W I
O
-..--me
]
Success Fault l
Trees
+- Event Trees *
- Criteria l
i A
(
Event Specific i
l Plant Results l
Frequency of l
Release p
[
8 Release Fractions l
w 2 Offsite Analysis l
T Summation of i
Sequences y
j Risk Curve
TO DETERMINE FREQUENCY OF EACH EVENT SEQUENCE e Select input Probabilities for Fault Trees e Run "Wam Code" Series to Combine Probabilities to Determine the System Level Failure Probability
- Quantify Event Tree Sequences by Combining
-- Initiator Frequency
-- System Level Fault Tree Values i
Frequency of Each Event Determined
9 I
i i
CRITERIA FOR SELECTION l
OF DATA i
- PECO Specific l
e Most Recent Data l
e Generic BWR Data e WASH-1400 t
Result: Best Available Data Used
5 OVERVIEW OF ACCIDENT SEQUENCE PROBABILITIES e Attempt to Maintain the Same Criteria for Successful System Operation as We Perceive was Used in Wash-1400
- No Heroic Actions l
- Once a System Falls the System Stays Failed j
- Little Credit Given for Operator Action Within l
30 Minutes j
e Changes Only in the Following i
- Differentiation in the Types of Accident Initiators
- System Success Criteria l
- Containment Overpressure Relief i
- New Data (Components, Maintenance, Diesels Offsite Power) l Result: Limerick-Specific Event Trees Quantified with Best Available Data i
1
l i
1 Fault Success Trees
- Event Trees
- Criteria r
7, l
Event Specific I
w I
I Plant Results Frequency of I
Reisase Rei ase Fractions g
l L.__ _ _
_ _ _.J Offaite Analysis U
Summation of Sequences y
Risk Curve 8647 32
h m,.
e_
.a.
_a_..>-
m_.
m m
..u l
t
- o
/
/
~
Boll PVMelt inter Core Uncovery Pressure Vessel Core-Concrete and Meltdown Melt-Through Interaction Mass and Energy Flows Contempt-Lt Heat Transfer and Atmosphere Exhange Containment Conditions (Reactor Vessel, Drywell, Wetwell, Misc. Compartments)
.,c :,
4
CORE MELT ANALYSIS
. _.1 1
p 1
i L.!
V I
i i
L,
?,
A V
j
- -ap]u - 9.
r
,Pllp,.glh) j r=
3 p-g :',
/
3
.s 1'
i e ev ena w'/
r I
J g;
3..... ua a
'.Qiff ll e
I i
F Eu. x.,j g
r 1
g o.
1.
?
M ARK il CONTAINMENT i
a 4
GENERIC ACCIDENT SEQUENCES e Melting Before Containment Failure e Melting After Containment Failure 4
e Transient Without SCRAM (Heat i
Removal Failure Case)
~~
I l
l I
J
j i-
)
i i
4 l
EACH GENERIC EVENT ANALYZED i
TO DETERMINE a
i e Time of Release 4
i
)
l e Fraction of Core Content Released i
- Path and Energy of Release I
i l
l
l.
l l
BASED UPON DETAILED EVENT l
l SEQUENCE PHYSICS f
a Compartment Flows l
e Plant Conditions l
e Phases of Event are Used to Establish Release Fractions
I RELEASE FROM FUEL WASH-1400 Methodology
- 1. Eight Species Classes 4
Examples:
F Halogens (1, Br)
Tellurium Group (Te, Se, Sb) 1
- 2. Four Components Fuel Rod Rupture l
Fuel Meltdown Steam Explosion Concrete Penetration
- 3. Two Physical Forms 1
Gaseous 1
Particulate i
i
i I
j DECONTAMINATION FACTORS (DF)
Impact on Limer'ri:
1
- - : c :- temina tion Source Release Fractions Primary System Retention No Credit Taken -- Inability l
to Quantify Effect I
l Suppression Pool Scrubbing Credit Taken for Saturated as Well as Unsaturated Pool i
Primary Containment and Same DF as Used in Wash-1400 i
Retention but Retention Times in Some Cases are Longer Standby Gas Treatment Same DF as Wash-1400 l
e.
l
//h th" A&
f/bo y
F Y>
//k/4k*
4 / A ;+,,,< >s/q,eg.g gy, y
.. eEE _. _
TEST TARGET (MT-3) t I
l 1.0
!!En lat am i,
g g {au m
l,l h,
bb 11.8
{
~
I.25 1.4 1.6 4
6"
=
I i
j ll
- I t:fl ll '
- d[f*/,
zzz;z 9
s 4
4A p%y
%gy, y
se 4
,_. eme T,.
TEST TARGET (MT-3) l l
1 i
l.0 lgmsu
, E l22 4
l 2 na l,l k
- lfffN l.8 f
i l.25
' l.4 1.6
)
6~
=
)
p%
++
- $ifh
'khh+f@
/
%f 4k
i 1
i i
t DECONTAMINATION FACTORS i
j M eltciown V e s s e : F z...
Conditions Release Va D oriz t..
Containment Failure at i
4 4
End of Release 100 10
[
Containment Failure i
Initiates Release 10 10
{
i i
1
'~
MMGB92nWE R MZd t i
i i
l l
1 i
i i
i 1
A l
i i
i l
i
)
CONTAINMENT FAILURE MODES
.i
)
e No Failure at All i
e Drywell Region 1
Drywell and Wetwell Region Wetwell Air Space i
e Wetwell 1: Drain Pool?
e Leak (Small?
l
- Leak llLarge?
e Steam Explosion llIn-Vessel?
e Steam Explosion llIn-Containment?
e Hydrogen Deflagration Failure
- i e
)
)
6 6
c t
n n
(
(
eu K
n 6
E e
Eq O 7 y '7 6 6
& hp a
v e
S n a e
l h
y me b
t t
r ne u ds a t
e si aGr mya T
SF t
S ek ga ra e L L l tua oe PL l
e leru wl yi a rDF l
l e
e r
wu l
t iea WF r
ek ga ra e L L
-on 2l c
H pi xs E
de er 2 su l
- d. ui aa CF e
n r
t u
ian es r
t e s
v nmOre o
C p
e l
r e
u r
s e s s
s v
e e
V Orp et l
r o e CM w
,ii!ItJj:1
.ljj li!l!i
4 i
i l
"CRAC" CA.LCULATION Specify Fractions of isotope Groups l
i e Time of Release e Energy of Release i
e Evacuation Model l
e Weather I
e Population Calculate Consequences
l l
"CRAC" CODE i
i e Runs 91 Trials
?
Summed j
e Sum isotope Categories j
e Sum-Up Meteorology Selected for Each Case e Sum-Up Population Sectors e Weights with Frequency / Stores --
l 3
" Bookkeeping Code" 1
Result N Risk Curve i
i 1
ADDITIONAL SAFETY MARGIN l
(Not Evaluated) j e Nuclear Regulatory Commission Actions in Response to Three Mile Island l
e institute for Nuclear Power Operations Recommendations l
e Nuclear Safety Analysis Center i
l Actions Being Taken (Now in Progress?
9 I
Limerick Preliminary Risk Assessment DISCUSSION OF RESULTS Roger McCandless General Electric Co.
i i
l Limerick i
l Preliminary Risk Assessment i
l DISCUSSION OF RESULTS l
- Site Differences
- Plant Design Differences o Data Differences e Methodology Differences
i l
I l
LIMERICK SITE COMPARISON l
(Relative to WASH 1400) i l
e Realistic Site t
l e Higher Population l
l e Different Weather i
l e Same Evacuation Model l
i i
LIMERICK DESIGN COMPARISON
[ Relative to WASH 1400 BWR?
i
- MK ll Reinforced Concrete Steel-lined Containment l
- Larger Standby Gas Treatment System
- Containment Overpressure Relief e More and improved Safety / Relief Valves e improved Piping
(
l
- Improved Shutdown System
- Spray Pond for Emergency Cooling Water
- Improved Emergency Pump Capability e Four Dedicated Emergency Diesel Generators
- More Reliable Offsite Power
x
)
Limerick Preliminary Risk Assessment site comparison 1
L MAN CAUSED RISK 100 TOTAL NATURAL RISK 1000 N
h 1
10,000 FREQUENCY 1
(events / year) 100,000 1
1 MILLION WASH 1400 BWR AT LIMERICK SITE 1
10 MILLION N
1
\\
100 MILLION WASlH 1400 B g\\
1 i
1 BILLION 1
1 10 100 1000 10,000 FATALITIES j
ouasa l
i LIMERICK DATA COMPARISON
{ Relative to WASH 1400) i i
l
- Larger Data Base 1
- Initiating Frequencies I
- Equipment Reliability
- Maintenance Times
i LIMERICK METHODOLOGY COMPARISON 4
1 (Relative to WASH 1400?
{
- Improved ^omputer Models i
i e More Comprehensive Treatment of Transients 1
e Updated Decontamination Factors i
l e Updated Treatment of Hydrogen / Steam Physics
/
- Use of Emergency Operator Guidelines 4
l
s S
Limerick Preliminary Risk Assessment Methods & Data Comparison 1
L MAN CAUSED RISK a
N TOTAL NATUR AL RISK 3
1000 1
10,000 FREQUENCY 1
(events / year) 100,000 1
i WASH 1400 BWR WITH UPDATED METHODS f
1 MILLION AND DATA AT LIMERICK SITE 1
N l
10 MILLION 1
N 100 MILLION WASH 1400 BW
\\
1 1 BILLION 1 10 100 1000 10,000 FATALITIES 03235 4
i i
LIMERICK DESIGN COMPARISON i
(Relative to WASH 1400 BWR) i l
l
- MK ll Reinforced Concrete Steel-lined Containment 1
]
- Larger Standby Gas Treatment System l
- Containment Overpressure Relief
- More and Improved Safety / Relief Valves e improved Piping
- Improved Shutdown System o Spray Pond for Emergency Cooling Water Improved Emergency Pump Capability Four Dedicated Emergency Diesel Generators
- More Reliable Offsite Power
s
)
1 Limerick Preliminary Risk Assessment Design Features Comparison 1
OTAL MAN CAUSED RISK 1
100 TOTAL NATURAL RISK I
1000 3
1 10,000 i
FREQUENCY 1
(events / year) 100,000 4
1 g
i 1 MILLION WASH 1400 BWR WITH UPDATED METHODS AND DATA AT LIMERICK SITE'
- DOES NOT INCLUDE j
10 MILLION LIMERICK DESIGN FEATURES 1
100 MILLION LIMERICK AS DESIGNED 1
1 BILLION
~
3 10 100 1000 10,000 FATALITIES 03235 S
i Limerick Preliminary Risk Assessment Risk Comparison Summary J
)
L MAN-CAUSED RISK 100 h
TOTAL NATURAL RISK j
1000 3
j i
l 1
10,000 FREQUENCY 1
(events / year) 100,000 1
WASH 1400 BWR WITH UPDATED METHODS AND DATA AT LIMERICK SITE" 1 MILLION I
- DOES NOT INCLUDE -
10 MILLION N
LIMERICK DESIGN FEATURES 1
N 100 MILLION WASH 1400 BWR d LIMERICK AS DESIGNED j
1 BILLION 1
10 100 1000 10,000 FATALITIES 032J's6
i Limerick i
l Preliminary Risk Assessment i
I i
SUMMARY
AND CONCLUSIONS i
l Vincent Boyer Philadelphia Electric Co.
l l
l i
I b
r.
i Limerick Preliminary Risk Assessment Limerick / Wash 1400 Risk Comparison 1
L MAN-CAUSED RISK 100 h
TOTAL NATURAL RISK 500U N
1 10,000 FREQUENCY 1
(events / year) 100,000 I
1 1 MILLION 3
gH 1400 BWR 10 MILLION 1
N 100 MILLION LIMERICK
\\
1 1 BILLION 1
10 100 1000 10,000 FATALITIES
,