ML16193A658
| ML16193A658 | |
| Person / Time | |
|---|---|
| Site: | Millstone |
| Issue date: | 07/06/2016 |
| From: | Stanley B Dominion Nuclear Connecticut |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| 16-265 | |
| Download: ML16193A658 (14) | |
Text
Dominion Nuclear Connecticut, Inc.
Rope Ferry Rd., Waterford, CT 06385 Mailing Address: P.O. Box 128 Waterford, CT 06385
'dam.com U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555 DOMINION NUCLEAR CONNECTICUT, INC.
MILLSTONE POWER STATION UNIT 3 STARTUP TEST REPORT FOR CYCLE 18
~~
-~,
_g;Jf)' Dominion JUL 0 6 281&
Serial No.
MPS Lic/MLC Docket No.
License No.16-265 RO 50-423 NPF-49 Pursuant to Millstone Power Station Unit 3 Technical Specification 6.9.1.1, Dominion Nuclear Connecticut, Inc. submits the enclosed Startup Test Report for Cycle 18.
If you have any questions or require additional information, please contact Mr. Thomas G. Cleary at (860) 444-4377.
Sincerely, 16J_;5~
B. L. Stanley Director, Nuclear Safety and Licensing - Millstone
Enclosure:
(1)
. Commitments made in this letter: None
cc:
U.S. Nuclear Regulatory Commission Region I Administrator 2100 Renaissance Blvd, Suite 100 King of Prussia, PA 19406-2713 R. V. Guzman Senior Project Manager - Millstone Power Station U.S. Nuclear Regulatory Commission One White Flint North, Mail Stop 08 C2 11555 Rockville Pike Rockville, MD 20852-2738 NRG Senior Resident Inspector Millstone Power Station Serial No.16-265 Docket No. 50-423 Page 2 of 2
ENCLOSURE STARTUP TEST REPORT FOR CYCLE 18 DOMINION NUCLEAR CONNECTICUT, INC.
MILLSTONE POWER STATION UNIT 3 Serial No.16-265 Docket No. 50-423
1.0
SUMMARY
Serial No.16-265 Docket No. 50-423 Enclosure, Page 1 of 11 Pursuant to Millstone Power Station Unit 3 (MPS3) Technical Specification (TS) 6.9.1.1, a summary of the MPS3 Cycle 18 startup testing, performed following completion of the spring 2016 refueling outage, is provided.
2.0 INTRODUCTION
The MPS3 Cycle 18 fuel reload was completed on April 29, 2016. The attached core map (Figure 7.1) shows the final core configuration.
Reference [6.3]
documents that Cycle 18 uses a low leakage loading pattern (L3P) consisting of 85 new Region 20 fuel assemblies, 84 Region 19 once-burned fuel assemblies, and 24 Region 18 twice-burned fuel assemblies. All 193 fuel assemblies in the Cycle 18 core are the Westinghouse 17x17 robust fuel assembly (RFA-2) design.
The 85 new Region 20 fuel assemblies are comprised of 53 fuel assemblies enriched to 4.10 weight percent Uranium-235 (w/o U235) and 32 fuel assemblies enriched to 4.95 w/o U235. The top and bottom regions of all fuel assemblies in the C¥:cle 18 core are comprised of a 6-inch annular blanket region enriched to 2.6 w/o U 35. Placement of the new fuel assemblies in the designated fresh fuel assembly locations was made in a random fashion in order to prevent power tilts across the core due to systematic deviations in the fresh fuel composition.
The 108 re-inserted fuel assemblies were ultrasonically cleaned during the spring 2016 refueling outage. The purpose of the ultrasonic fuel cleaning was to remove adhered crud (primarily nickel and iron-based deposits) from the surface of fuel rods that have previous core exposure in order to reduce the probability of occurrence of crud-induced power shift (CIPS).
Every fuel assembly in Cycle 18 contains an insert. The inserts consist of 61 rod cluster control assemblies (RCCAs ), 128 thimble plugs, and 4 secondary source assemblies.
Subsequent operational and testing milestones were completed as follows:
Initial Criticality May 12, 2016 Low Power Physics Testing completed May 13, 2016 Main Turbine Online May 13, 2016 49% Power Testing completed May 14, 2016 74% Power Testing completed May 15, 2016 100% Power Testing completed May 24, 2016
3.0 FUEL DESIGN Serial No.16-265 Docket No. 50-423 Enclosure, Page 2 of 11 All of the 193 assemblies in the Cycle 18 core are of the RFA-2 design. This fuel design is the same as that used in Cycle 17.
4.0 LOW POWER PHYSICS TESTING The low power physics testing program for Cycle 18 was completed using the procedure in Reference [6.1] which is based on the Westinghouse dynamic rod worth measurement (DRWM) technique described in Reference [6.4].
This program consisted of the following: control and shutdown bank worth measurements, critical boron endpoint measurements for all rods out (ARO), and ARO moderator/isothermal temperature coefficient measurements.
Low power physics testing was performed at a power level below the point of nuclear heat to avoid nuclear heating reactivity feedback effects.
4.1 Critical Boron Concentration The critical boron concentration was measured for the ARO configuration. The measured values include corrections to account for differences between the measured critical rod configuration and the ARO configuration. The review and acceptance criteria of +/-500 and +/-1000 percent milliRho (pcm), respectively, were met for the ARO configuration.
Summary of Boron Endpoint Results Measured Predicted M-P Acceptance (ppm)
(ppm)
(ppm)
Criteria (pcm)
All Rods Out (ARO) 2060 2058
+2
.+/-. 1000
(-14.7 pcm) 4.2 Moderator Temperature Coefficient Isothermal temperature coefficient (ITC) data was measured with Control Bank D at 197 steps withdrawn. The review criteria of +/-2 pcm/degrees Fahrenheit (°F) to the predictions were met.
The ARO moderator temperature coefficient (MTC) of +0.60 pcm/°F was calculated by subtracting the design Doppler temperature coefficient (-1.74 pcm/°F) from the measured ARO isothermal temperature coefficient of -1.70 pcm/°F, and adding the delta (~) ITC correction value of +0.56 pcm/°F (~ITC corrects the MTC at the measurement conditions to the minimum temperature for
Serial No.16-265 Docket No. 50-423 Enclosure, Page 3 of 11 criticality value of 551°F). The TS limit of MTC < +5.0 pcm/°F at ARO hot zero power (HZP) was met.
Isothermal/Moderator Temperature Coefficient Results Measured Corrected M-P Acceptance (pcm/°F}
Predicted (pcm/°F)
Criteria (pcm/°F)
(pcm/°F)
ARO ITC
-1.70
-2.52 0.82 NA ARO MTC 0.60 NA NA MTC < +5.0 4.3 Control Rod Reactivity Worth Measurements The integral reactivity worths of all RCCA control and shutdown banks were measured using the DRWM technique. The review criteria of the measured worth is +/-15% or 100 pcm of the individual predicted worth, whichever is greater and the sum of the measured worths is +/-8% of the predicted worths. The DRWM rod worth acceptance criteria is defined as: the sum of the measured worths (M) of all banks shall be greater than or equal to 90% of the sum of their predicted worths (P).
Control Bank Integral Worth Results Measured Predicted M-P
% Difference (pcm)
(pcm)
(pcm)
(M-P) IP Control Bank A 774.0 769.4 4.6 0.6 Control Bank B 597.7 606.1
-8.4
-1.4 Control Bank C 784.5 828.1
-43.6
-5.3 Control Bank D 606.7 566.2 40.5 7.2 Shutdown Bank A 387.8 399.9
-12.1
-3.0 Shutdown Bank B 911.3 976.4
-65.1
-6.7 Shutdown Bank C 406.0 381.5 24.5 6.4 Shutdown Bank D 404.8 384.6 20.2.
5.3 Shutdown Bank E 82.2 82.2 0
0 Total 4955.0 4994.4
-39.4
-0.8 The measured results of the individual bank worths and the total control bank worth showed excellent agreement with the predicted values. All individual and
Serial No.16-265 Docket No. 50-423 Enclosure, Page 4 of 11 total worth review criteria were met. The acceptance criteria for the sum of the measured rod worths (greater than or equal to 90% of the sum of the predicted worths), was met.
5.0 POWER ASCENSION TESTING Testing was performed at specified power plateaus of approximately 49%, 74%
and 100% Reactor Thermal Power (RTP). Power changes were governed by operating procedures and fuel preconditioning guidelines.
Thermal-hydraulic parameters, nuclear parameters, and related instrumentation were monitored throughout the power ascension. Data was compared to previous cycle power ascension data and engineering predictions, as required, at each test plateau to identify calibration or system problems. The major areas analyzed were:
Core Performance Evaluation: Flux mapping was performed at approximately 49%, 74% and 100% RTP using the moveable incore detector system. The resultant peaking factors and power distribution were compared to TS limits to verify that the core was operating within its design limits. All analysis limits were met and the results are summarized in Section 5.1.
Nuclear Instrumentation Indication: Overlap data was obtained between the intermediate and power range nuclear instrumentation channels. Secondary plant heat balance calculations were performed to verify the nuclear instrumentation indications.
lncore/Excore Calibration: Scaling factors were calculated from flux map data using the single point calibration methodology. The nuclear instrumentation power range channels were re-scaled at approximately 49% and 100% RTP.
Reactor Coolant System (RCS) Flow: The RCS flow rate was measured at approximately 94% RTP using a secondary calorimetric heat balance for each loop with the steam generators as the control volumes. The calcl!lated RCS flow rate met the TS requirements and is reported in Section 5.3.
5.1 Power Distribution, Power Peaking and Tilt Measurements The core power distribution was measured through the performance of a series of flux maps during the power ascension, as specified in Reference [6.2]. The results from the flux maps were used to verify compliance with the power distribution TSs.
A low power flux map at approximately 49% RTP was performed to determine if any gross neutron flux abnormalities existed. At the 49% RTP plateau flux map and again at the 74% RTP plateau flux map, data necessary to perform an excore to incore calibration via the single point methodology was obtained.
Per TS
Serial No.16-265 Docket No. 50-423 Enclosure, Page 5 of 11 Surveillance 4.3.1.1, Table 4.3-1, Functional Unit 2, Note 6, a flux map at approximately 100% RTP was performed for an excore to incore calibration. The 100% RTP map also verified core power distributions were within the design limits.
A summary of the measured axial flux difference (AFD) and incore tilt for the flux maps performed during the power ascension is provided below. Additional tables provide comparisons of the most limiting measured heat flux hot channel factor (Fo) and nuclear enthalpy rise hot channel factor (F~h), including uncertainties, to their respective limits from each of the flux maps performed during the power ascension. The most limiting F0 reported is based on minimum margin to the steady state limit that varies as a function of core height.
As shown below, all TS limits were met and no abnormalities in core power distribution were observed during power ascension.
Summary of Measured Axial Flux Difference and lncore Tilt Power Burn up Rod AFD (%)
lncore Tilt
(%RTP) (MWD/MTU Position
)
(steps) 49.3 8.9 216 5.072 1.0188 73.6 27.2 216 3.821 1.0139 99.9 224.6 216 1.027 1.0107 Comparison of Measured FQ to FQ RTP Limit Power Burnup Measured FQ Fa~'t"' steady Margin to
(%RTP)
(MWD/MTU) state limit Transient Limit 49.3 8.9 N/A N/A N/A 73.6 27.2 1.8817 3.4075 8.9%
99.9 224.6 1.8536 2.603 14.8 %
Comparison of Measured FAh to FAh Limit Power Burn up FAh
(%RTP) (MWD/MTU FAh
)
Limit 49.3 8.9 1.491 1.827 73.6 27.2 1.443 1.712 99.9 224.6 1.430 1.586
Serial No.16-265 Docket No. 50-423 Enclosure, Page 6 of 11 Presented in Figures 7.2, 7.3 and 7.4 are measured power distribution maps showing percent difference from the predicted power for approximately 49%, 74%
and 100% RTP plateaus. These figures show there is good agreement between the measured and predicted assembly powers.
5.2 Borori Measurements Hot full power ARO boron concentration measurements were performed after reaching equilibrium conditions. The measured ARO, hot full power, equilibrium xenon, boron concentration was 1412 ppm with a predicted value of 1439 ppm.
The predicted to measured difference was -204 pcm which met the acceptance criteria of+/- 1000 pcm.
5.3 Reactor Coolant System Flow Measurement The RCS flow rate was determined using a secondary calorimetric heat balance for each loop with the steam generators as the control volumes.
The following parameters were measured:
RCS pressure Hot leg temperatures Cold leg temperatures Feedwater temperatures Feedwater flow rates Feedwater pressure Steam generator pressure Steam generator blowdown was not isolated during the data acquisition period.
Per TS Surveillance 4.2.3.1.3, the RCS flow was measured within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after exceeding 90% RTP. The measured flow at 94.4% RTP was 402,787 gallons per minute (gpm) with a minimum required flow of 379,200 gpm. All TS limits were met.
6.0 REFERENCES
6.1 SP 31008, Rev. 008-00, "Low Power Physics Testing (ICCE)"
6.2 EN 31015, Rev. 004-00, "Power Ascension Testing of Millstone Unit 3" 6.3 ETE-NAF-2016-0041, Rev. 000, "Millstone Unit 3 Cycle 18, Nuclear Design Report" 6.4 WCAP-13360-P-A, Revision 1, "Westinghouse Dynamic Rod Worth Measurement Technique"
7.0 FIGURES 7.1 Core Loading Pattern, Millstone Unit 3 - Cycle 18 Serial No.16-265 Docket No. 50-423 Enclosure, Page 7 of 11 7.2 INCORE Power Distribution - 49.3%, Millstone Unit 3 - Cycle 18 7.3 INCORE Power Distribution - 73.6%, Millstone Unit 3 - Cycle 18 7.4 INCORE Power Distribution - 99.9%, Millstone Unit 3 - Cycle 18
90° Serial No.16-265 Docket No. 50-423 Enclosure, Page 8 of 11
- R p
N-
'M FIGURE 7-.1 CORE LO'.ADING PATTERN
.MILLSTONE UNIT :3 -
CYCLE 18 L
K J
H G*
F I
f l
E n*
c
'B A
is.A 11:9.t.: 119A. I i9A-, 19A I i9A I i's.t.:
V22:
W.42 W34
- W23 W1*7 WSl.. V23
-t-~---+-~--+-~--+~~:1 1~B: 11s~ I
~-o~: 1,20B I ~OA 1 *20B* I 2_0A I
~o~-
- 1 *20B 11s'A 1* i*sA V:S2.
V21 XSS; X6S X02
- X62.
X04 X.73* * 'X57 V20
-V:29' l*SA
- 20B 2:0B
- 20A
'J.'9B 2.0A,. *19A 2.0A l*9B'
'20A 2:0B
- *20B lSB V3'S
'X75'
- XS1
- x39:
W.74 X_lS W16' xto W71.
- x43 XB2
X67 VSl:
lSA
- l'OB 19B 19B-,
- 1'9B 19A
- iOA, 19A
- 19B, 1:9B 19B-
-26B l:SA 2
3
- v24 XSS' W69 WSl W53 WlS X22
'W.04 W59:
WS2 W6S X69 V17 ----*4 1BA 2*0B
- ;20A:
19B 20A*
- 19A 20A-. '1'9B 2 OA l9A-20A 19B 20A 2'0B
- I.SA v.2s X-?S*
x4s w7.a
- x~1,
- w21 X-31
.w72
- ip~2 wn
.xs2.
ws.o
- _'x3:s*
xs9 v.13 1:§.A I 2.b.B I i:9B 19B 19A I -.ibA I 19A I 2,0A: I 19A I :'20A I *i:9A I 19B: 'I J.9B' I 20B 19A.
W4.5. I X7S. :1 W62. I wss I W32: I.*xo.s I W1'4 I XS3* I W27 I XlO* I *W37. I W60 I wn. I *X79 I W44
.J.*gA
- w4o
- -19A WlS
~19)\\:
w3.s.
'19A W46
- 20A *1 :20A xli
- .X14 l9A wo6
.:!'OB* I
>19A I 2 OA:-,
X63
,W02; X24 29A X12 2.0A
- x21 19.A.
woi 20B., J:9B I 19B X'76
- W?.6.
W56 20A X3s;
.J.9A
- w.1*9 J.9B' 1 *20A:
?(64
.X40
'20A*. I
- 1.9A x1.3*
- wr
- :r HA*. I
'.2 OA W36:
.xo_s_
20A I 19A Xl6
. WAl 19A-I' 20A w4s MS 20A x26 l:9A
- wso 20A_
x.30 f9A. I 20A,
- ,W52.
- XJ!S 19A W25
'20A I 19A X46
- -wos
-.i'sA I 20'3 *1* :2.oA. I i9:B I ioA* *I i9.k I 20A *I* i9B I 2oA
- vrs X60. '*X47*
'WS4
- x42; "W20 X33 W61
.x29 l.9A W0.3'
- 20A X49' 1:9A.:
W2*9*
20A 1t'o*9*
.20A x27
- J.
- 9B W66-20A
- x:i:~i
'1911:
W24 19A_
w6.s 20A x:h 20A xc>i 20A., *r9A I 20B X1:9.
W09'
,X64 l9A., 20A I 2011:
WOl
- x3*4*
X03 19~1* 19B.
W5'4. :.W67 20B X77 i:9'A. I
- 2oA: I 19B' I'.oA I 2o:B W3 9*. 'X4*4*
W,7.9
- X3.7 c*X54' 19A
?1'33 19A W3S
- ).9A*
w26 1'9A W49*
1s:A.
VlS
-.5-
- -*'6' 7*
-8
-:9
-*.to
-11 l:SA. '.20B 19B 1'9B;
,l9B 19:A.
20A:.
19-A, 19B'.
.19B 19B. *.20B, lSA v26.
x1.2*
w10 ws3:
-w.Ss w11 x3.6.
w:to.
ws7
- w77, w6,i;
. xT4 v2a
---~12 lSB
- 20B 20B 20A
- 19B 20A.. 19.A:
20A 19B.
'2.0A 20B
- 20B l:SA:
13 VS3
- X'6'6 xso
- xso*
W63 X2S
- wi2 X25 W:75.
- .J!
- 4'1' X'7.I X70' V4'4
- 20:8*
- 20B 26A. *, '20B<
20.ti..
20B'.
.'20-B lSA_,. *]:s's v:39 v1'9.
X,6i xs.4*
xo6 x6s.-
X0-7 x83 x.56 V14 y:,:9; 14
'l'.SA*
19A 19A-
'19A 19A 1'9A
-:!:SA -----------* '15*
-V16, "W43, W31 jW2S_
'W30
'l'.<'.4'.7' V27' oo
.LEGEND
.f"""R"l Reg:i:on* :Identifier*
~
Fue.l. Assembly Ide:ci.ti'fi~r
. REGION ASSEMBL*IES ENRICHMENT
- 1sA:
2:0.
- 4. io
.. 1.SB:
4
- 4 * *95 l9A 52 4,10*
19B 20A 2bB
.32 53 3,2
.4.*95-4.1*0
.4.:95
Serial No.16-265 Docket No. 50-423 Enclosure, Page 9 of 11 N
M L
I*
FIGURE. 7*.'2 INc;!ORE Power* Distribution -
- 49. 3%
- Mu.:r.sTONE.UNIT,3 -
C:YCLE iB K
H G
I I
I F
I E
i D
c B
A I I t;f273 d,4~(1 1'fi.45~ 0".46l :o:457 1'0,A3~ Q.282 --,'---1 1
1,.___+----1--* 1
~6:2:
-5.'0- K.-5.'!) -5.1
-4.6. 1\\.-'2.?y -2.8 v0.24E o.461 :1.024 1(.L'12~ '1.09ol-1*'.20~ *1.t06 *n.60 '1.069 0.417 di249..... -------+""""--.2 r--._-5.Q,; -4.9
~6~.1 r--._-4.'9,;, -4.7 r-z:-4.3y
~3'.*1
-1,A,.4
-1.9 4.?
o.2:49 o.a.t5 1.. 135 *t:t35 1.190 *1'.206V':i.oa~ '1.221V'.i.257 1'.194V'1'.16i 0;81i'.~b:252 ---
3
- .z7
~2.6 * -3.7 *: -6'3:
-'6A
- .5,0 r--._*4.6y.c3:5' K_~0.4.J -l.1 * "-"'1.6.;1.. c2:4 \\:-:3'.*1,;
'il.41ski.. 16~ 1:291 ':1.263 1.-26*a t.os11i1:201 *:1.099 1.264 t.257 1.32~ *:1:16.s.0:481
,~1.4;-r--._-1.'~ -.*f'.1*
o::5*
D.4
-3.8 ~~2.a.;1
~2.'2 0.4-0.1 0:8:
"D.9
-o:a -+--4 tJ.';:2.9o 1,081 t,196 1.24$,.-;,... 21~ 1.fo9 f192 1:,1~9V,j_201' *1.. ~~2'1~25~ 1.283V'1.211 *1,0§8 0,288 - 5 o:.o.. ~"0;_3
-0.9. -0.8 '-"DA; -D.. 5 "2.. 7. -2.6 f\\.:-2:.5,;1 o,6 "2.?:;,1 2.1 '-. p.6.:; o.. 6
-1.0
?'8.4~ *1:1a*1 1f.i*.28c 1,273 1:1'2oli1.26? *1.o?:fiV'.r,.1111.101 1.296 *1.142 t.286 1.. 2aof1.190 o.439... 5
,_.:d.'5;). 'Cl,4 I'-: 1A,;
1.:1
'OA* K:-0.9) -1}3 K.-1.8,;1.. -0,6' 1.4 2.4. 1.8 : O.t "- bc7.;.-Cl9 o.4a6 t.157 1.2a5/1.,t3} :1.2s8 t.o9al<i.117 o.98o t.126 1'G.*1oe *1.230 1.133/.i.27~ 1.149 0.476 - 7
- 1.5
~.4 1J3 K 1:2j :o.5
.:07 1,-1.2.) "1.3
-*D..4 1,0.6..,1 0.4. 0.8 '-"0:3,:...
0.4
-0.8 Vo;_po~ 1.. 282'1J5e 1 :258 f1.22e *1.126vo.Qa7 1.030.o,ga_gV.,.128 1.. 214 '1*.24s '.1.1Ai /.1.27'Q o.496.-*a f\\:..2:0.J 2.0 "- 1.8.:,_
1:fr x 1.2.J
~0.4 K_-0.6/. *1.2 : -0:4 ~~O:Gy 0.2 (D?j'.J0:5y <1.27 0.8 DA89v1:.16,E. 1.2$7' 1,15'j,'1.261 t.f22 1.1$6_0*,.995v1.111' 1,p93/1:,.2~~ 1;J:34 1:274 1:155ro.,4~~ *- 9 J.9* f\\...1:._9) 1.4 24
.~2:_9 2.2 1.7 * <O:*a r\\.:-_1 :B,;1 _ ~~.2',, 1,12,,, _0:9-. a:T
_1.2 '- p.a; U.456 1-.216 1.286 1;3200\\:16~ 1.329~'1.12) 1.-132 t.0.83 1,,2,(3 1.123i".1,2i~ 1:287 *t.196 0.449 -.10
.2'.9
- 2._9 1.2 A;~: ;,_*4~3./ '4.b ~ 1.A)' d.1. -1.4..
-0.Lf-O] ""1_,oj 2:CJ*
1,.7 1.6 V0.3oi 1:.1A1 1.248 1;3t3f1.27( 1...154 1.254'1;.22~ 1.226 :1.119'1_23e 1.2?0 '1:226 *1.094/0.29'1 -11 K-4:5_,1 4.6 3.l 4:5 ~.3:8/ 3.5 1.8 1,D".9'.I 0:1
- o.4 "1'.D.:J
- 1:1 t-;6
- o.9,o.3;
.D..492 1.,163.1,*G26*1.2a6v1.29( 1..137 t:245i'.1.T2E 1.270 1.26?;'1.32~* 1.ra1 0.484 ---12 1.4
-1'.4 1.1 : :Z4 I\\:. 2.5;-
1.2.. 'DA rs.. D.4/ 0:6 0.8 '-.. D~.9) 0:1
~DA:
b,.259vti.. 83~ 1.1a2~_'.23'2 *1.28'1 i'.282'1.14) '1.264 *1.263 t.200 1.184 o:836v0:252 ---13
~ma \\:..;.~o.~: '0:2' <,.. 2,27 1.5 1_.3 *~ o.5./'. -o.4
~l.4
-0.9 o:.4
-0.1
~~1:q;,
1J.25'2 ~0:.488 *t,167 -1;192/.i.15). t:-2*59 1:141-/,L142 1*;072Fo.482 0.259 ---- 14
"-.-Q.. ~,1
- oA*
- 2J 1;.4 '- Q,9_,,
1.0' ; -~0:3 '-~3::3) -*r.7 y0.8)."0,8'
- {o.29e OA47.D.48t 1JA9E,D..4'75 DA28 0.285 :---------
.,_.1,7:_,
t~
b.4
~.o'.6..1: -1.0.
~3.4
~2,,1
- o Measured Power o/o,DiffereDce:(M-'P)/P
- D.Me:asured LoCaticiii 15
R b.295 0.0
'D.451
,0.2_;;
0.495 1.2
'0.511
"- 1:8; 0:498 1.. 6 0.460 2,0
/
o.3oe i\\.. 3.0/
FIGURE 7 *. 3 INCORE Power oi*stribution - 73. 6%
MILLSTONE UNIT 3 -
CYCLE 18 p
N M
L K
J H
G F
E D
I I I
I I
I I
I I
0.281 0:433 V0.46E 0.480 0.468 '/'o.43s 0.287 I
-5; 1
-4.b i\\.-4.5
-4.4
-4.3 \\....-2:'!; -2.7 I
1t0.253 0.464 1.019 V:i.11e 1.090 '1.19e 1.101 1.1'41 1.052 0.479 1\\.-4.9,1 -4.7
-5.0 1\\.-4.0,1 -4.0 \\..-3.6,1
~2.7
-1.4
-1.4
-1.8 0.254 0.805 1.107 1.'126 1.188 1.205 '1:08s 1..217 '/'1.23E 1.170 /'1.13~
c2.3. -2.5
- -3.7
-5.1
-5.0
-4.4,-4.. 1_) -3.3 l\\..'0:5,1 -1.1 l\\..""1.6./
VaA~ V'.1.13e 1.258 1.246 1.265 1.095 /1.216 1.110 1.256 1.237 1.281 1\\.-1.2_; 1\\.-1.'!; -1*.1 0.6*
0.7
-3.4,-2.7_; -2.1 0.2 0.1 0.7 1.064.1.177 1.232 /'1.22c 1.12'6 1.207 1.193 V'.1.21~ 1.1.34 '1.24'E 1.261
-0:3. -0.5
-0.3,-_0.1_; -0:2
-2.9
-2.9 1\\.-2:8,1 0.5 i\\.. 2.0./
1.9 1.:166 V'.1.26s 1.274 1:138 v1.28e 1.104 '1.13 1.130 1.315 1.156 1.272 0.8 I\\. 2.0,1.. 1.7 0.9* 1\\.-Q.9,1 -2.0,-2.2/ -0.4 1.4 2.5 1.3 1.149 1.284 '1.15f 1.. 255 *1.122 '1.148 1.013 1.160 '1.13'2 1.245 1.140 1.5 2.1 i\\.. 1:5,1 0.5*
-1.1,-1.6,1 -2.0
-0.6 "-.. 0,6,1 0.2 0'.5 1.268 v.;.16d 1.268 '1.241 "1.148 '1.019 1.058 1.026 '1.15£! 1.231 '1.255 2.0 I\\.. 2.1./
1.5 i\\.. 1.1_; -1.2,-1.5,1 -1.8
-0.8,-0.5,1 0.2 i\\.. 0.5./
V'.1.156 t.282 1.156 1.266 1.143 1.178 1.029 Vi.13f 1.118 '1.25c 1.147 I\\. 1.9_;
1.7 1.9 1.. 9
'1..4 0.9
-0.5 l\\..~2-~ c1 ;5 \\. 0.1,1 u 1.186 1.265 1.29'8 /.i.165 1.335 '1.14s 1.160 1.111 1.287 1.139 '1.268 2.'2 1.1 3.3,3.3_; 2.9 "1.2/ -0.2
-1.4
-0:8 1.. 0 i\\.. 1.2.)-
1.106 1.212 1.278 '1.25s 1.161 1.271
/
1.23~ 1.245 1.129 "1.23'E 1.256 3_;1 2.1 3.2 i\\.. 3.1,1 2.9 1.8 '\\. 0.8_;,
0.2 0.1 i\\.. 1.4_,,
1.6 0.489 1.126 1.279 1.264 V'.1.28~ 1.152 1.256 V'.1.14!: 1.258 1.251 '1.28s 0.4
-2.1 0.6 2:3. I\\. 2.3; 1.6 0.6 I\\. o:5) 0.2 1.1, 1.3j b.261 vo.812 1.144 '1.2oe 1,.263 1.276 '1.14~ 1.259 1.'.238 1.186 1.165
-1.9 l\\.~1.6;1 -0.6. i\\.. 2:1/
1.5 1.4 \\.. 0.6_;.-
-0.2
-1.0
-0.1 1.3 Va.256 0.486 1.079 1.165 '1.141 1.254 1.135 '1.135 1.062 /'o.488 1\\.-1.. 5,1 -0.4.
1.1 b.7,0.8,1 0.9 o.o. i\\.. -2.2,1 -1.0 '- 0.2,;
. '0:*29) '0.452 0.491 '0.50~ 0.486 0.440 0.293;
'- 0.7,;
0.4 0.4 '- O.'!; -0:8
-2:4
-1.0
- o Measured Power
- % Difference(McP)/P D
Measured Location Serial No.16-265 Docket No. 50-423 Enclosure, Page 1 O of 11 c
B
.A I
I 0.254
- 2
-2.3 0.808 vb_25s --
3
-2.2 li\\..-2;6_;
1.141 0:484 --
4
-0.8
-0.6
'1.19'2 1.080 0.295* - 5 i\\.. 0.6.J 0.7
-0."3 1.257 '1.16? 0.449 - 6 0:5' i\\.. b.5.J -0.4
'1.26e 1.141 0.489 - 7 i\\.. 0:3,1 *b.5
-0.2
'1.14~ '1.26d 0.509 - 8 i\\.. ~0.6,1 "-.. 1.4_:;
1.4 1.272 1.151 Va.49E_ - 9 1.1 1.7 I\\.. 1.4_;
1.278 1.180 0.459 -10 2:7 2.0 2.0 1.212 1.080 vo.29"f -11
- 2.5 1.2 I\\. 1.0,1 1.162 0.489 --12 1.0 0.2 0.832 'D.259 --.13
- o.7 i\\.."0.<V 0.266
....;*14 O:O
-15
R.
0:298 0:0
/0.45~
.,-0.2..1
'0.500 0:8
/0'.51<
I\\. 1.0/
0.501 1.0 0.461 1.1
/. '
.0.301
"'2.3/
FIGURE 7.. 4 INCORE Power.Distribution -
99.9%
MILLSTONE UNIT 3 -
CYCLE_ 18 p
N M
L K
I I I
I 0.284 OA38
-5.3
-3.9 1tQ.2fil 0.473 1.010 1
'1.10~
1\\.-3.3/ -3.5
-5."3 !'-. -4.1..1 0.257 0.804 1.099 1.11.5 1.173
-2:7
-2.4
-3.7
-5.4
-5.4 1/o.4it 1
'1.11~ 1.234 1:234 1.257 1\\..-1.8/ 1,-2.1;.; -l.6 0.8 0.8 1.051 1.160 1.211 I/'.. )
1,22. 1.132
-1.0
-1A
-0.9 1\\...0:3.1 0.4 "1.151 1'1.25C 1.261 1."142 1,-;; _3c}i
-b.1 I\\. 1.5,;
1.4 1.2 I\\.. 0.1..1
- 1.1:43 1.276 1
'1.14~ 1.266 1.'147 0.9 1.5 I\\. 1.2/
~.O 0.3 1.256 '1.15~ 1 :27.2 1/1.2£1E 1,.181 1.1 '- 1.4..1 1.5; I\\. 1.3:;
0.4 v1.147 1.268 1.157 t276 1.163 I\\. 1.1-/
0.6
- 2.0-2.2 2.G 1.168 1.237 1.287 I/'.
- 1:16E 1.344 1_.o
-0.2
.3:2 I\\. 3.3/
3.1
'1.. 093 1.1.98 1.262 1'1.25~ 1.163 2.4 1.6 3.1 1\\..3'.0..1 3.0 0.487 1.102 1.247 *1.241 1'1.26:
-0:6
-3.4
-0.6 1.6 I\\. 1.6/
0.261 l/d.Sd~ 1, 121 Vi.19c 1.241
-3.0 l\\.~2. 7/ -1.8 1\\...1.2/
0.7 ivo.25"E 0.484 1:063 1.149 1\\.-3.. b/ -1.4 o.1
-0.3 IV0:29~ 0.454 I\\. 0.3,,
-0:*2 D
- o Measured Power
% Difference (M"P)/P Measured Location J
I
,/ '
0.47~
"'-4.6/
1.089
-4.1 1.205 44 1.10.1
-2.9 1.228
-1.7 1.131
-0.5
'1.18~
\\. 0.0:1
/1.05E
\\. 0.8'/
1.214 2A
/
1.161
"'- 2.0/
1.282 2.2 1.152 1.5 1.269 1.0 l/1.135 I\\. b.2_)
d.495
-0.2 H
G F
E D
I I
I I
1-:Q.4~ 0.290 I 0.486 0.47G I
-4.. 5
-4.6 1\\.-2.6/ -'2...7 1'1 :19~ 1.098 1.130 1.037 0.475 1\\-.-3.8..1 -3:1
-1.9
-2.4
-3.3 1'1.o~ 1.215 1'121'E 1.149 II'.
1.~0E r\\. -4.0/ -3.3 l\\.~1:3; -2.3 l\\_-3.2/
v.;.227 1.114 1.249 1.217 1.256 1\\.-2.1..1 -1.9 0.4
-0.4 0.2 1.212 1'1.2~ 1.143 v.;.251' 1.247
-1.6 1\\.-1 :6/
1.2 f\\.. 2.7;1 1.9 1'1.16S 1.149 1.326 1.159 1.264 1\\..-b.6.1 0.4 rn 2.7 1.4" 1.051 *1.191 1/,1.'15~ 1.260 1.145 0.1 0.5 I\\. 1.3;
.. 0.9 1.0 1.102 1.055 1'1.18~ 1.244 V'.1.26f 0.2 o:5 l\\.:0.7; 1.0 1\\.1.1,;
1.064 /'. '
1.171 *1.144 v;.2~ 1.152 1.3 \\-OJ.1 0.0 I\\. 0.9,;
1:5 1.187 1.134 1."307 1,144 ~.26'2 0:9
-0.3 0:3 1.3 \\. 1.4,;
l'1.24S 1.254 1.134 1'4_23~ 1.239 I\\.. 1.4_)
0.4" 0.5 I\\. 1.3,;
1.4 1.261 1'1.141 1.254 1.236
/
~
1.26t 0.6 I\\. 0:6:,
0."6 1.0 r\\. '.1.0/
"1.1~ 1,254 1,.223 1..171 1J48 I'<.. 0.2/ -0.5_
-1.4
-0.7 0.6 1.246 1.130 1'1.12: 1.052 1/(,.4~
0.3
-0.4 l\\..~2-.9,,
-1.4 I\\.. O:O~
l/0.50~ 0.491 0.442 0.295 I\\.. 0.0_.,
-1.b
~3-.1
-1.7 Serial No.16-265 Docket No. 50-423 Enclosure, Page 11 of 11 c
B A
I I
(j;256
- 2
-3.0 0.. 801 1'0.2~ --
3
-2.8 r\\. c2.6 /
1.. 12-<l 0.485 --
4
-1.5
-1.0 1'1,1n 1.066 0.296 - 5 f\\._-0.2/
~0.1
-1.3 1.239 1;;.. 1~ 0.449 - 6 c0.1 r\\.-0.2) -1.5 l/1.26~ 1.139 0.492 - 7 r\\: 0.2/ DA
-0.8 "1.1~ "1.2~ 0.516 - 8 I\\. *0.7..1 r\\. 1.4..1 1.4 1.272 1.154 '0.50~ - 9 1.2.
1.9 \\. 1A_,;
1.260 1'174 0.464 -10
- 2.3 1.9 2.0 1:195 1.070 "0.3oc -11 1.6 0.8 \\. 0.7) 1.'.155 0.495 --12 1.1 0.8 0.831 170.26( --13 0.8 I\\. 0.8/
0.270
-14 0.4
-15