ML12138A073

From kanterella
Jump to navigation Jump to search
FENOC-Davis-Besse Nuclear Power Station, Unit 1 Docket No. 50-346, License No. NPF-3 Submittal of Contractor Root Cause Assessment Report-Section 5
ML12138A073
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 05/14/2012
From:
FirstEnergy Nuclear Operating Co
To:
NRC/RGN-III
References
L-12-196
Download: ML12138A073 (102)


Text

N N

W N o N

z os: -

Z l>

r-t-a N:::

o

  • en

~

-n

([)

([)

N-.

J Q'Q
0

([)

(J')

C m

, ::T

'2:

0'1....

I

"'0 16

J a.x'

Exhibit 51 - Appendix Nominal 12" Rebar, 0.6%

  • This section of results are from a model with the following parameters:
  • 0.6% VF i.e. 0.6% of the elements in the first 0.1 ~~ under the horizontal rebars (bottom 180°)

are given a 7% expansion to simulate ice freezing.

  • Nominal 12" spacing

- Assumes 12" spacing and includes lap regions

- Both horizontal and vertical 12" nominal spacing PII Page, 50 ego 142 2/23/2012

_2012

Exhibit 51 - Appendix Mesh: Nominal 12" Rebar z

Standi:

Stand;:

v....

PII Page 51 CS!i 142 2/23/2012 2012

Exhibit 51 - Appendix Outer 2/1 Frozen (7% Expansion)

Nominal 12" Rebar, 0.6% VF Standc 2/23/2012 PII Page S2 Oft.. 142

Exhibit 51 - Appendix Outer 4/1 Frozen Nominal 12" Rebar, 0.6% VF Standi:

Standc Pil Pa g e 53 cSf3 14 2 2/23/2012 2012

Exhibit 51 - Appendix Outer 6" Frozen Nominal 12" Rebar, 0.6% VF Stand" fie Standi:

PII 2/23/ 2012

. Page 54 q;Iij. 142 2012

Exhibil51 - Appendix Outer 8" Frozen Nominal 12" Rebar, 0.6% VF c Standi:

Standi:

PII Page 55 <Sf5 142 2012 2/23/2012

Exhibit 51 - Appendix Outer 10" Frozen Nominal 12" Rebar, 0.6% VF Stand.:

ific Stand.:

/23/201 Pli Page 56 c5fb ;1.42 2012

Exhibit 51 - App~ndix Inner 6" @ 1% Expansion Nominal 12" Rebar, 0.6% VF stand" cific Stand" PII Page 57 Cftl 142 2/23/2012

Exhibit 51 - Appendix Inner 61/ @ 2% Expansion Nominal 12" Rebar, 0.6% VF Stand;:

eifie Stand;:

PII Pa ge 58 egg 1 4 2 2/23/2012 2012

Exhibit 51 - Appendix Inner 6/1 @ 3% Expansion Nominal 12" Rebar, 0.6% VF Stand;;

Stand;:

PII Page 59 ~ 142 2012 2/23/2012

Exhibit 51 - Appendix Inner 6/1 @ 4% Expansion Nominal 12" Rebar, 0.6% VF Standc Stand" PII Page 60 C$tJ142

")/23/2012 2012

Exhibit 51 - Appendix Inner 6" @ 5% Expansion Nominal 12" Rebar, 0.6% VF Standc clfic Stand.::

PII Page 6 1 C6El 1 4 2 2/23/2012 2012

Exhibit 51 - Appendix Inner 6" @ 6% Expansion Nominal 12" Rebar, 0.6% VF Standi:

Standc 2/23/2012 PI\\

Page. 62 Cf.t2 142 2012

Exhibit 51 - Appendix All Frozen (7% Expansion)

Nominal 12" Rebar, 0.6% VF Debonding but no laminar cracks fie Standi' Standi:

PII Page 63 cro 14 2 2/23/2012 2012

/'..J

/'..J W

S

-n

/'..J 0

('[)

N ro N

Z

l OQ
0 ro (J) c S

c:

r-t (J)

S

~

-0 N

IIIW IIIW I

a m

N

~

f

/'..J 0

J>

a

~

0* en

~

~

m x

'0

=r-Pl lO

§:

eD

~

(J1 m

~

-0

~

"0 (l) f-'

a..

I\\)

X

~

Exhibit 51 - Appendix Minimum 12" Rebar, 0.6% VF

  • This section of results are from a model with the following parameters:
  • 0.6% VF i.e. 0.6% of the elements in the first 0.1" under the horizontal rebars (bottom 180°)

are given a 7% expansion to simulate ice freezi ng.

  • Minimum 12" spacing

- Assumes minimum 12/1 spacing

- Both horizontal and vertical at least 12/1 spacing Pl j Page 65 <65 142 2/23/2012 2012

Exhibit 51 - Appendix Mesh: Minimum 12" Rebar z

z ODS: job.odb Jan 21 07:33:31 Pacific Standa ODB: job.odb Jan 21 07:33 :31 Pacific Standa "step: Step-1 yStep: Step-1 y

"Increment ltncrement 2/23/2012 PII Page 66 cS6 142 2012

Exhibit 51 - Appendix Outer 2" Frozen (7% Expansion)

Minimum 12" Rebar, 0.6% VF z

y ODB: job.odb

~tep: Step-1 "Increment Primary Var:

Jan 2209:43:51 Pacific Stand" DAMAGET (Avg: 75%)

1.0 0.9 O.B 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 z

yStep: Step-1 ltncrement Primary Var:

n Jan 22 09: 43: 51 Pacific Standi:

PI!

Page 67 CfJ1142 2/23/2012 2012

Exhibit 51 - Appendix Outer 4/1 Frozen Minimum 12" Rebar, 0.6% VF z

y 008: job.odb

~tep: Step-2

'Increment Primary Var :

Jan 22 09:43: 51 Pacific Standi' DAMAGET (Avg: 75%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 z

yStep: Step-2 Jtncrement Primary Var:

Jan 2209 :43:51 Pacific Stand.:

PII Pag e 68 c88 14 2 2/23/2012 2012

Exhibit 51 - Appendix Outer 6" Frozen Minimum 12" Rebar, 0.6% VF z

y ODB: job.odb

,;;tep: Step-3

'Increment Primary Var:

Jan 2209:43:51 Pacific Stand" DAMAGET (Avg: 75%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 z

ystep: Step-3 lfncrement Primary Var:

Jan 22 09: 43 : 51 Pacific Sta ndc PII Page 6 9 COO 14 2 2/23/2012 2012

Exhibit 51 - Appendix Outer 8" Frozen Minimum 12" Rebar, 0.6% VF z

y OD6: job.odb

-.Step: Step-4 "Increment Primary Var :

Jan 2209:43:51 Pacific Stand" DAMAGET (Avg : 75% )

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 z

yStep: Step-4 ltncrement 1

Primary Var:

Jan 22 09:43:51 Pacific Standi:

PII Page 70 0Jft) 142 2/23/2012 2012

Exhibit 51 - Appendix Outer 10" Frozen Minimum 12" Rebar, 0.6% VF z

y ODB: job.odb

,,:;tep : Step-5

'Increment Primary Var:

Jan 22 09:43:51 Pacific Stand, DAMAGET (Avg: 75%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0,1 0,0 z

yStep: Step-5 ltncrement Primary Var :

n Jan 22 09 :43:51 Pacific Standi:

PII Page 71 qfi 142 2/23/2012 2012

Exhibit 51 - Appendix Inner 6" @ 1% Expansion Minimum 12" Rebar, 0.6% VF z

y ODS: job.odb

~tep: Step-6

'Increment Primary Var:

DAt-1AGET (Avg: 75%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Jan 22 09: 43: 51 Pacific Standi:

z n Jan 2209:43 :51 Pacific Stand" yStep: Step-6 lfncrement Primary Var:

PII Page 72 cW 142 2/23/2012 2012

Exhibit 51 - Appendix Inner 6" @ 2% Expansion Minimum 12" Rebar, 0.6% VF z

y ODB: job.odb

~tep: Step-6

'Increment Primary Var:

DAMAGET (Avg : 75%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Jan 22 09 : 43 : 51 Pacific Standi:

z Jan 2209:43:51 Pacific Standi:

yStep: Step-6 ltncrement Primary Var:

PI!

Page 73 q13 142 2/23/2012 2012

Exhibit 51 - Appendix Inner 6" @ 3% Expansion Minimum 12" Rebar, 0.6% VF z

y ODB : job.odb "step : Step-6 "Increment Primary Var:

DAMAGET (AVg: 75%)

1.0 0.9 O.S 0.7 0.6 0.5 0.4 0.3 0.2

- 0.1 0.0 Jan 22 09:43 :51 Pacific Stand" z

n Jan 2209:43:51 Pacific Stand" yStep : Step-6 llncrement Primary Var:

PII Pa,ge 74 142 2012 2/23/2012

Exhibit 51 - Appendix Inner 6" @ 4% Expansion Minimum 12" Rebar, 0.6% VF z

y ODB: job,odb

,?tep: Step-6

'Increment Primary Var:

DAMAGET (Avg : 75% )

1.0 0,9 0,8 0,7 0,6 0,5 0.4 0,3 0,2 0,1 0,0 Jan 22 09:43:51 Pacific Standc z

n Jan 2209:43:51 Pacific Standi:

yStep: Step-6 ltncrement Primary Var:

PII Page 75 qf5 142 2/23/2012 2012

Exhibit 51 - Appendix Inner 6" @ 5% Expansion Minimum 12" Rebar, 0.6% VF z

OOB: job.odb y ~ ~tep: Step-6 "Increment Primary Var:

OAMAGET (Avg: 75%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Jan 22 09:43:51 Pacific Stand.:

z Jan 22 09:43:51 Pacific Standi:

yStep: Step-6 ltncrement Pri mary Var:

PI!

Page 76 <Ji16 142 2/23/2012 2012

Exhibit 51 - Arpendix Inner 6" @ 6% Expansion Minimum 12" Rebar, 0.6% VF z

y ODS: job.odb

~tep: Step-6

'Increment Primary Var:

DAMAGET (Avg : 75%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Jan 22 09:43:51 Pacific Standi:

z n Jan 22 09 :43 :51 Pacific Stand" ystep: Step-6 ltncrement 1

Primary Var:

PII Page 77 err? 14 2 2/23/2012 2012

Exhibit 51 - Appendix All Frozen (7% Expansion)

Minimum 12" Rebar, 0.6% VF z

y ODS: job.odb

,?tep: Step-6

'Increment Primary Var:

DAMAGET (Avg: 75%)

1.0 0.9 O.S 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Jan 22 09:43:51 Pacific Standi' z

Jan 22 09: 43: 51 Pacific Standi:

yStep : Step-6 ltncrement Primary Var:

PH Page 78 1 42 2/23/2012 ion

x,

.0 c:

(J) a..

Cl. <<

I..

LO 15:c x

UJ 0...

V)

!:i

l V) u.. >

LLI M

  • ' a:::

N M

N

("Ij N

N 0

N

""0

.~

r:::

r-i

(].)

i a..

~

I 0

<Xl l!)

(l) 01

Q rc!

..c Po.

W u.. >

~

~

c..

~

<C

£:a LLI V')

~

+-'

s LLI V')

(J) a::::

V) tlO s::: Z N

(J)

LLI N

(J)

M 0

N u.. C (Yi, N-..

N

Exhibit 51 - Appendix.

Dense Rebar, 1% VF

  • This section of results are from a model with the following parameters:
  • 1% VF i.e. 1% of the elements in the first 0.1" under the horizontal rebars (bottom 180°) are given a 7% expansion to simulate ice freezing.
  • Dense rebar

- Assumes some sub-6" spacing (2" to 6" centers)

- Based on the photo earlier in these slides PII Page 81 @

142 2012 2/23/2012

Exhibit 51 - Appendix Mesh: Dense Rebar z

z fic Standar y

1.

PI!

2/23/2012 Page 82 em 142 2012

Exhibit 51 - Appendix Outer 2" Frozen (7% Expansion)

Dense Rebar, 1% VF z

y XStep:

Incre Primary Var: DAMAGET PII 2/23/2012 Page 8 3 <83 142 2012

Exhibit 51 - Appendix Outer 4" Frozen Dense Rebar, 1% VF z

y ~ xstep :

Increm Primary Var: DAMAGET PII

.2/23/2012 Pa g e 84 <84 1 4 2 2012

Exhibit 51 - Appendix Outer 6" Frozen Dense Rebar, 1% VF z

y ~ xStep :

Incremen Primary Var: DAMAGET PII 2/23/2012 Page 85 <8f5 142 2012

Exhibit 51 - Appendix Outer 8" Frozen Dense Rebar, 1% VF z

y ~~ xstep :

Increment Primary Var: DAMAGET PII 2/23/2012 Page 86 cst 142 2012

Exhibit 51 - Appendix Outer 10" Frozen Dense Rebar, 1% VF Z

nnR *.,,~------,-

iii

" :51 Pacific Standar Y --.1-. xStep:

Increment Primary Var: DAMAGET PII Page 87 ~ 142 2012 2/23/2012

Exhibit 51 - Appendix All Frozen (7% Expansion)

Dense Rebar, 1% VF Z

nnR * ;~...-..

1: 51 Pacific Standar y ~ xStep:

Increment 1

Primary Var: DAMAGET PII 2/23/2012 Page 88 egg 1 42 2012

Exhibit 51 - Appendix Freezing Results NOMINAL 6" REBAR, 1% VF PII Page 89 <8f9 142 2/23/2012

_2012

Exhibit 51 - Appendix Nominal 6" Rebar} 1% VF

  • This section of results are from a model with the following parameters:
  • 1% VF i.e. 1% of the elements in the first 0.1" under the horizontal rebars (bottom 180°) are given a 7% expansion to simulate ice freezing.
  • Nominal 6" spaced rebar

- Assumes 6" spacing and includes lap regions Page' 90 <!to 142 2/23/2012

_2012

Exhibit 51 - Appendix Mesh: Nominal 6" Rebar Standi:

y PI!

2/23/2012 Page 91 cOO. 142 2012

Exhibit 51 - Appendix Outer 2" Frozen (7% Expansion)

Nominal 6" Rebar, 1% VF Standa

, 2/23/2012 PII P;;l.ge 92 GJi 142 2012

Exhibit 51 - Appendix Outer 4/1 Frozen Nominal 6" Rebar, 1% VF Standa PI!

Page 93 ~ 142 2012 2/23/2012

Exhibit Appendix Outer 6" Frozen Nominal 6" Rebar, 1% VF c Standa 2/23/2012 PII

. Page 94 cif4 l42 2012

Exhibit 51 - Appendix Outer 8/1 Frozen Nominal 6'1 Rebar, 1% VF 5tanda PI!

2/23/2012 Page 95 ~ 142 2012

Exhibit 51 - Appendix Outer 10" Frozen Nominal 6" Rebar, 1% VF ific Standa PI!

2/23/2012 Page 96.<Jj6 142 2012

Exhibit 51 - Appendix Inner 6" @ 1% Expansion Nominal 6" Rebar, 1% VF Standa PII 2/23/2012 Page 97 ~ 142 2012

Exhibit 51 - Appendix Inner 6" @ 2% Expansion Nominal 6" Rebar, 1% VF Standa PII 2/23/2012 Page 98 egg 142 2012

Exhibit 51 - Appendix Inner 6" @ 3% Expansion Nominal 6" Rebar, 1% VF iflc Standa PII Page 9 9 <00 142 2/23/2012 2012

Exhibit 51 - Appendix Inner 6" @ 4% Expansion Nominal 6" Rebar, 1% VF Standa Standa 2/23/2012 PII Page 100 R1b 142 2012

Exhibit 51 -Appendix Inner 6" @ 5% Expansion Nominal 6" Rebar, 1% VF standa Standa PII Page 101 1m. 142 2/23/2012 2012

Exhibit 51 - Appendix

  • Inner 6/1 @ 6% Expansion Nominal 6" Rebar, 1% VF Standa c Standa PlI 2/23/2012 Page 1 02 14~

2012

  • Exhibit 51 - Appendix All Frozen (7% Expansion)

Nominal 6" Rebar, 1% VF Standa fic Standa PII Page 103 M 142 2/23/2012

Exhibit 51 - Appendix Freezing Results 12" VERTICALS ONLY, 1% VF 2/23/2012 PII Page *104 Nf4 1 42 2012

Exhibit 51 - Appendix 12/1 Verticals Only, 1% VF

  • This section of results are from a model with the following parameters:
  • 1% VF i.e. 1% o/the elements in the/irstO.1" under the horizontal rebars (bottom 180°) are given a 7% expansion to simulate ice freezing.
  • Nominal 12" spacing 0/ verticals only

- Assumes 12" spacing and includes lap regions

- Horizontal bars stay at 6" nominal spacing PII Page 105 m 1 42 2/23/2012 2012

Exhibit 51 - Appendix Mesh: 12" Verticals Only Standa y

2/23/2012 PII Page 106 R16 l42 2012

Exhibit 51 - Appendix Outer 2/1 Frozen (7% Expansion) 12" Verticals Only, 1% VF Standa PlI Page 107 Ntl142 2/23/2012 2012

Exhibit 51 - Appendix Outer 4" Frozen 12" Verticals Only, 1% VF standa 2/23/2012 PII Page 1 08 NJ8 14 2 2012

Exhibit 51 - Appendix Outer 6" Frozen 12" Verticals Only, 1% VF Standa 2123/2012 PII Page 1 0 9 1<00 142 2012

Exhibit 51 - Appendix Outer 8" Frozen 12" Verticals Only, 1% VF Standa PII 2/23/2012 l?age 110 nJQ 142 2012

Exhibit 51 - Appendix Outer 10" Frozen 12" Verticals Only, 1% VF c Standa PI!

Page 111 1<1fJ. 142 2/23/2012 2012

Exhibit 51 - Append ix Inner 6" @ 1% Expansion 12" Verticals Only, 1% VF Standa PII 2/23/2012 Page 112 HQ 142.

2012

Exhibit 51 - Appendix Inner 6" @ 2% Expansion 12" Verticals Only, 1% VF c Standa PI I 2/23/2012 Page 113 1<1; 1 42 2012

Exhibit 51 - Appendix Inner 61/ @ 3% Expansion 12" Verticals Only, 1% VF Standa PII 2/23/2012 Page 114 B~ 142 2012

Exhibit 51 - Appendix.

Inner 6" @ 4% Expansion 12" Verticals Only, 1% VF Standa Standa Pl i Page lIS]qf5 142 2/23/2012 2012

Exhibit 51 - Appendix Inner 6" @ 5% Expansion 12" Verticals Only, 1% VF Standa Standa 2/23/2012 PI!

Page 116 1116 142 2012

Exhibit 51 - Appendix Inner 6/1 @ 6% Expansion 12" Verticals Only, 1% VF fie Standa e Standa 2/23/2012 PII Page 117 1Clf7 1 4 2 2012

Exhibit 51 - Appendix All Frozen (7% Expansion) 12" Verticals Only, 1% VF Standa Standa

.2/23/2012 PI!

Page 1 18 1=1:18 14 2 2012

LL. >

?ft-t-I a!-<<

al LLI a!

~

c...

N t-I V)

+-' z

J V)

OJ -

0:::

tlO ~

s::: 0 N

OJ N

OJ

.-f N

Z u..

(Y')

N-...

N 0

Exhibit 51 - Appendix Nominal 12/1 Rebar, 1% VF

  • This section of results are from a model with the following parameters:
  • 1% VF i.e. 1% of the elements in the first 0.1" under the horizontal rebars (bottom 180°) are given a 7% expansion to simulate ice freezing.
  • Nominal 12" spacing

- Assumes 12" spacing and includes lap regions

- Both horizontal and vertical 12" nominal spacing 2/23/2012 Pil 1?age 120:r:ro 142

Exhibit 51 - Appendix Mesh: Nominal 12" Rebar stand" Standi:

y PI!

Page 121 m. 142 2/23/2012 2012

Exhibit 51 - Appendix Outer 21/ Frozen (7% Expansion)

Nominal 12" Rebar, 1% VF Standar c Standar 2/23/2012 PII Pa ge 122 m 1 4 2.

2012

Exhibit 51 - Appendix Outer 4" Frozen Nominal 12" Rebar, 1% VF Standar Standar Page 123 1m 142 2/23/2012 PII 2012

Exhibit 51 - Appendix Outer 61/ Frozen Nominal 12" Rebar, 1% VF Standar ific Standar 2/23/2012 PI!

Page 124 Rt4 142 2012

Exhibit 51 - Appendix Outer 8" Frozen Nominal 12" Rebar, 1% VF Standar fic Standar PII Page 125 ~ 142 2012 2/23/2012

Exhibit 51 - Appendix Outer 10" Frozen Nominal 12" Rebar, 1% VF Standar Standar PII Page 126 m 142 2/23/2012 2012

Exhibit 51 - Appendix.

Inner 6/1 @ 1% Expansion Nominal 12/1 Rebar, 1% VF Standar Standar PII Page 127 m 142 2012 2/23/2012

Exhibit 51 - Appendix Inner 6" @ 2% Expansion Nominal 12" Rebar, 1% VF Standar Standar PII 2/23/2012 Page 128 p.z18 142 2012

Exhibit 51 - Appendix Inner 6" @ 3% Expansion Nominal 12" Rebar, 1% VF Standar Standar PII Page 1 29 1Cl191 4 2 2/23/2012 2012

Exhibit 51 - Appendix Inner 6" @ 4% Expansion Nominal 12" Rebar, 1% VF Standar Ific Standar PII Page.130 100 1 42 2/23/2012 2012

Exhibit 51 - Appendix Inner 6/1 @ 5% Expansion Nominal 12/1 Rebar, 1% VF Standar Standar PI!

2/23/2012 Page 131 1@.. 142 2012

Exhibit 51 - Appendix Inner 6" @ 6% Expansion Nominal 12" Rebar, 1% VF Standar Standar 2/23/2012 PII Page 132 m l42 2012

Exhibit 51 - Appendix All Frozen (7% Expansion)

Nominal 12" Rebar, 1% VF Standar Standar PH Page 133 P.3f3 142 2/23/2012 2012

.~

-0 C

Q)

Q..

Q..

L()

~

0

.c x

UJ V')

1--'

s V'I Q) a::::

b.O C

N Q)

Q)

~

U LL

~

~

D::

<C al LU D::

N

~

~

J

~

- -Z

~

N

<:l' rl

~

<:l' r')

rl Q) 0"1 CU

0.

N -i I

0 N

CL N

rl a

N m

N r..J

Exhibit 51 - Appendix Minimum 12" Rebar, 1% VF

  • This section of results are from a model with the following parameters:
  • 1% VF i.e. 1% of the elements in the first 0.1" under the horizontal rebars (bottom 180°) are given a 7% expansion to simulate ice freezing.
  • Minimum 12" spacing

- Assumes minimum 12" spacing

- Both horizontal and vertical at least 12" spacing PII 2/23/2012 Page 13513f5 142 2012

Exhibit 51 - Appendix Mesh: Minimum 12" Rebar z

OD6: job,odb Jan 2107:33:31 Pacific Standa z

006 : job,odb Jan 21 07:33:31 Pacific Standa

,?tep: Step-1 yStep: Step-1 y

'Increment ltncrement PII Page 13 6 R\\f6 142 2/23/2012.

201-2

Exhibit 51 - Appendix Outer 2" Frozen (7% Expansion)

Minimum 12" Rebar, 1% VF z

y 006: job.odb "step : Step-l

'lncrement Primary Var:

Jan 21 07: 33:31 Pacific Standa OAMAGET (Avg : 75% )

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 z

yStep : Step-l

~ncrement 1

Primary Var:

Jan 21 07:33 :31 Pacific Standa PII Page 13 7 J.q3ff 142 2/23/2012 2012

Exhibit 51 - Appendix Outer 4" Frozen Minimum 12" Rebar, 1% VF z

ODS: job.odb y ~,?tep : Step-2

'Increment Primary Var:

Jan 2107:33:31 Pacific Standa OAMAGET (Avg: 75%)

1.0 0.9 0.8 0.7 0.6 0. 5 0.4 0.3 0.2 0.1 0.0 ZOOS: job.odb t

yStep: Step-2

..... lfncrement 1

Primary Var:

Jan 2107:33 :31 Pacific Standa PII Page 138 ~ 142 20L2 2/23/2012

Exhibit 51 - Appendix Outer 6" Frozen Minimum 12" Rebar, 1% VF z

y ODS: job.odb

-.Step: step-3 "Increment Primary Var:

Jan 21 07: 33:31 Pacific Standa DAMAGET (Avg : 75%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 z

yStep: Step-3 ltncrement Primary Var:

tJan 21 07:33:31 Pacific Standa PI I Page 139 ~ 1 42 2/23/2012 2012

Exhibit 51 - Appendix Outer 8/1 Frozen Minimum 12" Rebar, 1% VF z

y 006: job.odb

,?tep: Step-4 "Increment Primary Var:

Jan 21 07:33:31 Pacific Standa DAMAGET (Avg: 75%)

1.0 0.9 O.B 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 z

yStep: Step-4 ltncrement Primary Var:

Jan 2107:33:31 Pacific Standa PII Page 140 142 2012 2/23/2012

Exhibit 51 - Appendix Outer 10" Frozen Minimum 12" Rebar, 1% VF z

y ODB: job.odb

~tep : Step-5

'Increment Primary Var:

Jan 21 07:33:31 Pacific Standa DAMAGET (Avg: 75%)

1.0

- 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 z

yStep: Step-5 ltncrement Primary Var:

Jan 2107:33:31 Pacific Standa PII Page 141 1~ 1 4 2 2/23/2012 2012

Exhibit 51 - Appendix All Frozen (7% Expansion)

Minimum 12" Rebar, 1% VF z

y ODB: job.odb

-?tep: Step-6

'Increment Primary Var:

DAMAGET (Avg : 75%)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Jan 2107:33:31 Pacific Standa z

Jan 2107:33:31 Pacific Standa yStep: Step-6 ltncrement Primary Var:

PII Page 142 f4I2 142 2/23/2012 2012

Exhibit 51: Freezing and Rebar Spacing Study Appendix VIII-52

© 2012. Performance Improvement International

Exhibit 51 Freezing Failure and Rebar Spacing Sensitivity Study Background and Purpose A set of analyses was performed to quantify the propensity to propagate a laminar crack due to freezing of ice under the horizontal rebars. The study was done using a wide range of rebar densities, as this seems to be a key factor in the observed extent and therefore the propagation of the laminar cracks.

Specifically, the issue is the density of rebars in 2 dimensions (not 3 dimensions) in the outer face (OF) rebar mat. There are locations, such as the top 20 feet of the walls where the nominal spacing ofthe horizontal rebars is 6". With laps and normal construction tolerances, this can lead to regions where there is less than 2" of clear spacing between the horizontal rebars. It was also observed that in some locations the vertical rebars were crowded on either side of the jacking bars in order to accommodate the hydraulic jacking heads used during the slip-forming operation. An example of this is shown in the following figure.

Figure 1: Tight rebar spacing around a hydraulic jacking head "Enabling Event" Considered In these models, the "enabling event" is a freezing failure in which the "sides" of the shoulders freeze first and trap moisture in the centers of the shoulders. The "sides" of the shoulders include the regions where the shoulders transition into a wall thickness of 30", including the flute valleys and the transition

© 2012. Performance Improvement International Page 1 Page 1 of 6

Exhibit 51 to the base cylinder. As the temperature drops outside, the shoulders freeze after the thinner parts of the wall (the flute "valleys" and the thinner midsections between the shoulders). The shoulders insulate the OF rebar mat and delay changes in temperature in the middle of the shoulders. As the concrete near the outer surface of the building freezes, temperature and pore pressure gradients are formed in the concrete.

Model Details Figure 2: Mesh: View from the Right and Left Page 2

© 2012. Performance Improvement International-Page :2 of 6

Exhibit 51 Figure 3: Detailed Mesh Section Material Properties Concrete:

Elastic modulus =4.94 Msi, Poisson =0.2 I

I*

Steel:

Elastic modulus =29 Msi, Poisson =0.3 loads and Boundary Conditions The*******************

The model

© 2012. Performance Improvement International Page 3 Page 3 of 6

Exhibit 51 Analysis Design Water expands 9% when it freezes, I!!!!!!!!!!!!!!!! This serves as a calibration for the rebar density study and also serves to partially validate that this failure mode is at least plausible.

Once a good calibration is achieved in the regions with dense rebar, additional models are run in regions with less rebar density to test the influence of the rebar density.

Scenarios Considered Five sets of different rebar spacing scenarios were modeled. They inciuded:

1. <6" - Tightly-spaced rebar with a pattern based on the figure above. In this scenario, the vertical rebars have a variable spacing from 2" to 6". The horizontal bars have a nominal spacing of 6" with laps. This results in a ciear spacing between bars of 0.6" to 4.6".
2. 6" nominal-Both horizontal and vertical bars have a nominal 6" spacing, inciuding laps, which creates a clear spacing between bars of 2.6" in some locations and 4.6" in others.
3. 6"H/12"V - Horizontal bars are spaced with the same nominal 6" inciuding laps. The vertical bars are given a nominal 12" spacing, inciuding laps.
4. 12" nominal-Both horizontal and vertical bars have a nominal 12" spacing, inciuding laps.
s. >12" - Both horizontal and vertical bars are placed 12" from each other, but no laps are included and the bars are 8" from the boundary edges of the model, simulating a scenario with bars that are more sparse than 12".

Page 4

© 2012. Performance Improvement International Page 4 o f 6

Exhibit 51 Results Summa y The results are summarized in the table below.

The "rebar spacing" variable is summarized above and presented in the legend, and the "extent of cracking" is a scale from 0 to 3 that serves to simplify the extent of the damage observed in each model. The meaning of each level from 0 to 3 is described in the third legend following the table below. A level of "3" is a complete delamination along the OF rebar mat similar to the center of shoulder 9 *****. A level of "a" is no damage.

What the results show is that there is a clear trend toward more damage with tighter rebar spacing. The models with all 12" rebar spacing showed no laminar cracks at all.

Motivating Rebar Extent of Legend: Rebar Spacing

<6" Sub..{j" spacing, e.g. 2",4" 6"

ominal 6" spacing of all bars, w/ laps 6"/12" 'aminal 6" spacing horizontals and Nominal 12" spacing verticals 12" Nominal 12" spacing of all bars, w/laps

>12" Wider than 12" spaCing Legend: Extent of laminar cracks o

No 'aminar cracks 1

Sparse, up to 12" x 12" 2

Continuous, up to 24" x 24'-'

3 Extensive, larger than 24" x 24" with localized double cracks Table 1: Results summary Note that no models were created to analyze scenarios with no motivating force as the rebar spacing alone is not capable of causing a failure without a motivating force.

© 2012. Performance Improvement International Page 5 Page 5 of 6

Exhibit 51 Conclusions This study shows that only a small fraction of the voids under the rebars need to fill with water and freeze in order to get laminar cracks. And, for a given motivating force, there are large laminar cracks that form in regions with dense rebar and none form in regions with sparse rebar.

This study shows that freezing of ice under the horizontal rebars is a plausible failure mode by establishing the conditions under which this modality matches the observed failures and then further testing the mode to show that there is no failure in regions with sparse rebar.

This study shows that for the same motivating force, there are large laminar cracks that form in regions with dense rebar and do not form in regions with sparse rebar. With a given motivating force,

                                                  • all of the models with 6" spacing of rebar showed the development of some laminar cracks, while none of the models with 12" spacing of both horizontals and verticals showed any laminar cracking.

This study establishes that rebar spacing is a probable contributing factor because the tighter rebar spacing can facilitate crack propagation. In regions with wider rebar spacing, damage is less likely because of the absence of this contributing factor.

© 2012. Performance Improvement International -

Page 6 Page 6 of 6

Exhibit 52: Test Report from the University of Colorado

© 2012. Performance Improvement International- _

Appendix VIII-53