ML102871090

From kanterella
Jump to navigation Jump to search
Mar 8 Pnsc De Tensioning Briefing
ML102871090
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 03/08/2010
From:
Progress Energy Co
To:
Office of Information Services
References
FOIA/PA-2010-0116
Download: ML102871090 (33)


Text

Crystl Rier Uit ConainentDelmintio

-B~~~~~~ac 8,ef-2010

-- CIrDe7T--nsi.n-in---

March 8, 2010 Paul Fagan and Charles Williams i

Progress Energy

Aqe-pda o De-tensioning Scope and Sequence o De-tensioning Analysis Results o Uncertainty Analysis o Dome Assessment o PII Document Reviews o De-tensioning Phase Monitoring o Engineering Logistics o Questions AFleat.

Progress Energy 2

SGR Opening Showing Delamination Boundary SGR Opening Dimensions

@ Liner 23' 6" x 24' 9"

@ Concrete Opening 25'0" x 27" 0" 3

Eniern RearWokFo

,/ Indicates Completed Task MPR Calc on LODHR (fuel load)

MPR Tendon r Analysis Sequence EC Mod EC 75221 I Reinforcement Re-tensioning

& Concrete

& Post-Repair Placement Testing Permanent Repair SProgress Energy 4

I L-tnio g

_Scp and S

equenc o Scope and Sequence specified as Option 1OF in EC 75218 Rev. 2 o 155 Horizontal (of those, 17 already de-tensioned as part of SGR) o 64 Verticals (of those, 10 already de-tensioned as part of SGR) o0 0

0 0

0 0

0 0

0 0

0 0

Passes(3 vertical and 8 horizontal)= V, H, V, 1V (5 Sequences, 10 tendons) 1 H (7 Sequences, 20 tendons) 2V (6 Sequences, 24.tendons) 2H (8 Sequences, 18 tendons) 3H (14 Sequences, 32 tendons) 4H (14 Sequences, 35 tendons) 5H (3 Sequences, 7 tendons) 6H (4 Sequences, 10 tendons) 3V (5 Sequences, 20 tendons) 7H (4 Sequences, 10 tendons) 8H (3 Sequences, 6 tendons)

H, H, H, H, H,V, H, H Progress Energy

901 opionOEo 17 Iu IM E I 1 1 IllE_-

E Rl X

uI d Mli~

V-I filVil 61V14 V-1 V-2 NiJ V-3 V-4 61 EVOS 61V16 V3 61V1 2 61V13 V4 GIV1O 61V15 1

13H18 35H18 51H18 2

13H420 35H20 51H19 3

13H22 35H422 4

13H24 35H24 514H24 5

13H38 35H38 51H38 6

13H42 351442 514442 7

13H44 35W44 51H444 V-6 61VO7 6V1V18 34V18 34V07 V-7 Si1OS 61V20 34V20 34V05 V-8 61V03 61V22 34V22 34V03 V-9 61Vul 61V24 34V24 34V01 V-10 12V23 56V02 23V02 45V23 V-1I 12V21 56V04 23V04 45V21 8

42H17 9

42H19 10 42H"21 62H21 64H21 11 42H23 62H423 64H23 12 424425 62H25 64H25 13 42H35 14 42H41 62H41 64H41 15 424443 62443 64H43 16 35H17 17 35H19 18 134421 35H21 19 13H23 35H23 514H23 20 13H425 35H425 514H25 21 13H27 51 H27 22 134"29 514H29 23 13431 514H31 24 13H433 51H33 25 13H35 51 H35 26 13H37 35H37 514H37 27 13H39 35H39 514H39 28 131441 35H41 51H41 29 131443 351443 514H43 47 62H29 64H29 48 62H33 64H33 49 42H37 62H"37 64H37 50 42H39 62H39 64H39 44 13H20 514H28 45 13H32 514H32 46 13H36 35H36 514H36 V-12 V-13 PV-14 V-15 V-16 51 52 53 54 61V06 61VI1 34V19 61V04 61V21 34V21 61V02 61V23 34V23 12V24 56VOl 23V01 12V22 56V03 23V03 34V06 34V04 34V02 45V24 45V22 30 42H18 31 42H20 64H20 32 424422 644422 62H22 33 424424 64H24 62H24 34 42H26 64H26 62H26 35 624428 64H28 36 62H30 64H30 37 62H432 64H32 38 62H34 64H34 39 42H36 62H36 64H36 40 42H38 82H438 64H38 41 42H40 62H140 64H40 42 424442 621H42 64H42 43 42H444 62H44 4W444 13H26 35H26 51H26 134430 514H30 13H34 51H34 13H40 35H40 51H40 55 62H27 64H427 56 621431 64H31 57 62H35 64H35 "m,ý Fim Indicates tendons already de-tensioned as part of SGR Progrss Energy

Stes ps Strength)a Panel 23 Pass 10 121 psi 40%

H26 Panel 56 Pass 11 78 psi 61%

H30 QProgress Energy

Opio 1*

Result Pae 12 Maiu Stes-as1 S, Max. Principal (AVg: 75o%)

+ 1,.14e+03

+2.000:+02 1.667e+ 02

+1.333e+02

+1.000e+02

+6.667e+01

+3,333e+01

-229e0

-3:333e+01

-6 667e+01

-1,000 e+02

-1.333e+02

-1.667e+02

-2.000e+02 90 psi z

Step; Step-12_Passll Increment 1: Step Time 1.000 Primary Var: S, Max. Principal Deformed Var: U Deformation Scale Factor: +1.000e+02 Pro ress Ene my

Opio 1*

Reut Pae23MxmmSrs Pas 10 S, Max. Principal (Avg. 75%H)

+ I.849e+ 03

+2.000e+02

+1.667e+02

+1.333e+02

+1.oooe+02

+6.667e+01

+3.333e+01

-2.269e-05

-3.333e+01

-6.667e+01

-1.000e+02

-1.333e+02

-1.667e+02

-2.000e+02 Z

Step: Step-1 l 0asslO YlXI Increment 1: Step Time =

1.000 Primary Var: S, Max. Principal Deformed Var: U Deformation Scale Factor: +1.000e+02 P

SProgress Energy

Opio 1 OF Reslt Pae 45 Maiu Stes-as1 E

0 A

S, Max. Principal (Avg: 75%)

1.910e--03

+2.000e+02

+ 1.667e-l02

+ 1.333e+02

  • 1. 000e+ 02

+6.667e+01

+3.333e+01

-2.289e-05

-3.333e+01

-6.667e+01

-1.O00e+02

-1.333e+02

-1.667e+02

-2.000e+02 0'ýO --.

)e z

Step: Step-12_Passll Increment 1: Step Time =

1.000 Y Primary Var: S, Max. Principal Deformed Var: U Deformation Scale Factor: +1.000e+02 C Progress Energy

Opio 1*

Result Pael 56MxmmSrs Pss1 S, Max. Principal (AVg: 75"&)

+1 1872e+03

+2:000e+02

+ 1.667e+02

+1:333e+02

+1.0a0e+02

+6.667e+O1

+3.333e+01

-2 289e-05

-3:333e+O1

-6 667e+O1

-1:0O0e+02

-1 333e+/-02

-1:667e+02

-2.000e+402 Step: Step-12_Passll Increment 1: Step Time =

1.000 X Primary Var: S, Max. Principal Deformed Var: U Deformation Scale Factor: +1.000e+02 Progress Energy

Opio 1*

Reut Pae 61 Maiu Stes-Pss1 S, Max. Principal I (Avg: 75")

-- 1.676e+ 03

+2.000e+02

+ 1.667e+02

+1.333e+02

+1.000e+02

.+6 :667:+01

+3.333e+01

-2.289e-05

-3:333e+01

-6 667e+O1

-1:000e+02

-1 333e+I02

-1:667e+02

-2.000e+02 I rA I

Step: Step-12_Pass11 Increment 1: Step Time 1.000 X

Primary Var: 8, Max. Principal Deformed Var: U Deformation Scale Factor: +1.O00e+02 Progress Energy

Opio 1*

eut Granulr Chec Pas1 Pane 23 Pae 23 Pae 61 Pae 61

  • Stp Stes belo 20 Stesblo 0s I

I I ps Stegh S

tegh Step 52 123 psi 38.5%

< 25 psi

> 87.5%

Step 54 121 psi 39.5%

< 25 psi

> 87.5%

Step 56 80 psi 60%

81, 69 psi 59.5, 65.5%

t Progress Energy

Opio 1*

Result Granula Chc ae*3tp5 S, Max. Principal (Avg: 75%)

+ 1.880e+03

+1.250e+02

+1.146e+02

+ 1.042e+02

+9.375e+01

+8.333e+01

+7.292e+01

+6.250e+01

+5.208e+01

+4.167e+01

+3.125e+01

+2.083e+01

+1.042e+01

-5.722e-06

-1.042e+01

-2.083e+01

-3.125e+01

-4.167e+01

-5.208e+01

-6.250e+01

-7.292e+01

-8.333e+01

-9.375e+01

-1.042e+02

-1:146e+02

-1.250e+02 02 Progress Energy z

Step: Step-4,_Seq53 Y-LX Increment 1: Step Time =

Primary Var: S, Max. Principal Deformed Var: U Deformation 1.000 Scale Factor: +1.O00e+

Opio 1*

Result Grnlrhc Pane a1Sep5 S, Max. Principal (Avg: 75%)

+ 1.676e+03

+ 1.000e+02

+9.167e+01

+8.333e+01

+7.500e+01

+6.667e+01

+5.833e+01

+5.000e+01

+4.167e+01

+3.333e+01

+2.500e+01

+1.667e+01

+8.333e+00

+1.907e-06

-8.333e+00

-1.667e+01

-2.500e+01

-3.333e+01

-4.167e+01

-5.000e+01

- 5."833e+O1

-6.667e+01

-7.500e+ol

-8.333e+01

-9.167e+01

-1.000e+02

-1.394e+02 I

J-% A I

z Step: Step-8_Seq57 Increment 1: Step Time =

1.000 X

Primary Var: S, Max. Principal Deformed Var: U Deformation Scale Factor: +1.000e+02 a

Progress Energy

UcranyAna i

Reut o Summation of Bias and Uncertainty - 30.1%

o Bias - Peak Energy for Delamination 200 psi versus 225 psi - 11.1%

o Uncertainty-19.0%

o Computer Modeling - 13.3%

o Temperature Effects - 5.0%

o Pre-existing Crack Size - 13.3%

o Tendon Forces - 11.0%

o Square root sum of squares o Uncertainty based on 95% probability Thin Progress Energy

Dom

-Asses*

a o Dome has radial reinforcement throughout (unlike wall section that delaminated)

O Dome repair area -1800 #6 -reinforcement radial anchors O Non-repair area (from ring girder transition area to repair area)- 2006 #8 reinforcement hooks o Ring girder heavily reinforced in transition area to dome o MPR calculation assessed the dome as acceptable o Dome assessment included in EC 75218 o Conclusion - Dome not susceptible to delamination due to de-tensioning wall tendons within option 1OF

,4

Float, Progress Energy
O14,

.,g~~~

=

.T,.

~i 3w Si

'4 AwyT in',,~~~~

Ae

.A.DA4' L2Z szý ROW

~

X-4Repair area

\\,-"w ~

~

WllN W~

V free TT ASUTV100 UCTI TWS A4 AW FMOAO fad lal anh

SP-aPc

-e t

an

. Ow

  • r' ma av~e o PII Summary Letter o Supporting Document Examples

" Methodology

" SGR Shape and Delamination Correlation

" Option 1OF Results for Passes and Steps

" Margin to Delamination (Uncertainty and Bias) o Progress Energy Owner Reviewed and Accepted Using EGR-NGGC-0003 o Attachments to EC 75218 0

7h Progress Energy

Detesonn Phas Moitri 1.

o. Strain Gauges o Acoustic Emissions o Containment Wall Concrete Temperatures o Contingency and Post De-tensioning IR Scans

& Progress Energy

Ia

-tesionngPas M

S Sri o Strain Gauge Monitoring o Vendor-Sensing Systems (24 hr coverage) o Two locations - Panel 4-5 o One location near 1 st set of tendons to be de-tensioned o Second location near first tendon, next to an SGR de-tensioned tendon o Criteria established in Engineering Change o Localized monitoring capabilities o Measures relative strain changes in radial direction o Strain changes towards reduction in tension strain o Maximum compressive strain Tf Progress Energy

Detesonn Phs Monitoring 0

K Progress Energy

Detnsinng PhsS MS*

S S

Sn o Acoustic Emissions o Vendor - MISTRAS (24-hour coverage) o NDT method to detect transient elastic stress waves (i.e. cracking) o Two - 10 ft x 60 ft 2D arrays (panel 2-3 and 4-5) o 27 additional sensors on other panels (linear arrays) o 4 sensors on the dome o One 2D array provided in location of first tendon to be de-tensioned o Second location near first tendon next to an SGR de-tensioned tendon and at critical stress location of panel 2-3 o Monitoring Criteria Basis o CR3 concrete cores tested to optimize the detection algorithms o Testing provided wave velocities, and acoustic signatures from micro cracking and crack. propagation to establish basefine criteria o System will filter out background noise and panel 3-4 noise using guard sensors.

o Criteria includes; energy magnitude, duration, amplitude and others I*

Progress Energy

Detesonn Phs Monitoring Seso Laou

Deteson Phs Moiorn Seso Laot(oniud ON" AL as a

a 5.

44a m

m 3m4 1.

A B

C D

E F

G J'

L A

B C

A B

D E

F G

G L*-

C M

0 M

840-0 FUEL P

8L=. RtOOF EL 2-C4 0 -

RBCN-001 1 P

R V

X V

AA 0

E F

G

'a I

M 0

p R

S U

v

'Sa-x Y

Z AA AB AC AD AB AC AD EL $W ILW laws a w WMMEMiTE B=,G ROOF EL 14W-W INTEMEIXATE BLDG. ROOF EL 14V-W RBCN-0012 RBCN-0013

Deteson Phas Monitorin AE Testing of concrete core Core sample with low aggregate (Wall)

Core sample with normal aggregate (Wall)

-Plot of Amplitude, Load vs. Time Core sample with normal aggregate (Dome) 7,-

U-S U-0 IO 200 30D 40P ogeW E

e70 9W W 1 1212 FhInk

~t Progress Enemgy

Ietnso Phs Monitoring QProgress Energy

w4u""W"M"

1. -.1.,,,. 1 '.

I ý Y!.b. ý X Pbdi., 'm ch.-b, L-P) 60-i

207, I

-mj 50 100 ISO I

I 1

1 200 250 300 350 40D 4w II I

I I

550 5w0 05 650 700 IClýý,

M ýi.-

ýt.l V-T-

x

.1.

3903 I1R.il 22.0-410.68 410.10

.9.9*

24.76 QProgress Energy

3et ns io 0q~

has M* S S

o Reactor Building Concrete Temperature Monitoring o Analysis requires control of concrete wall temperature gradient o 2 monitoring locations exterior (4" within concrete core) o 2 monitoring interior instrument channels o CRT Operations Lead will monitor using OSi/PI o Daily reporting of avg AT, and provide target value to OPS for containment wall temperature control o Ops controls containment wall using: RB cooling (SW or Cl) and purge fans o Criteria established in Engineering Change o < 10 degree avg. between inside CV and outside o Based on 7-day rolling average MF Progress Energy

Detesonn Phs Monitoring uIQtD

.7 DAY 4" SOUTH WALL Value 61.3282 o7 DAY 4' WEST WALL Value 554669

  • 7 DAY RB WALL TX-I Value 65 5733 u7 DAY RB WALL TX-2.Value 659857 94
2 Panel 4-5 Exterior Temp F-and 22-3 Exterior mý 50 212712010 3
41 12 26PM lk k7 daysq4;> e

.7 day avUS4" o7da avW 4".7 day ave hnetT33-I 7 day ave linerTX-2 3Fo$-l10 3'41:12 226 PM Progress Energy

aD-esoin

_Pas Moi

-orin o Impulse Response (IR) testing and core boroscopic inspections o Contingency IR testing based on monitoring results o Post de-tensioning IR testing in 5 panels and dome required o All panels and dome except the delaminated panel o Boroscopic inspections of existing cores except within the delaminated panel and cores with strain gages and temperature monitoring devices NO Progress Energy

Engi-peg Logstc o Engineering Staffing o 24 hr PGN and SGT integrated engineering team coverage o PGN Responsible Supervisors (Ortalan, Marckese) o Minimum of 2 PGN Responsible Engineers (RE) each shift o Dedicated PGN engineer coverage at monitoring station o Field Revisions completed by PGN RE's o Field Revisions approved by PGN Supervisors o Work package revisions reviewed by PGN engineering o Engineering Change Package o EC 75218 Revision incorporates option 1OF o EC Revision ready for Responsible Supervisor and PGM approval o SGT Work Package revision with Responsible Engineer review Thinet Progress Energy

Su mr u

stin Questions 33