ML071090250
| ML071090250 | |
| Person / Time | |
|---|---|
| Site: | LaSalle |
| Issue date: | 04/13/2007 |
| From: | Landahl S Exelon Generation Co, Exelon Nuclear |
| To: | Document Control Desk, NRC/NRR/ADRO |
| References | |
| RA07-27 | |
| Download: ML071090250 (43) | |
Text
Exelknt.
Exelon Generation Company, LLC www.exeloncorp.com Nuclear LaSalle County Station 2601 North 21"Road Marseilles, IL 61341-9757 RA07-27 April 13, 2007 United States Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555 LaSalle County Station, Unit 2 Facility Operating License No. NPF-18 NRC Docket No. 50-374
Subject:
Unit 2 Cycle 12 Core Operating Limits Report (COLR)
The purpose of this letter is to advise you of the Exelon Generation Company, LLC (EGC) review and approval of the LaSalle Unit 2 Cycle 12 reload under the provisions of 10 CFR 50.59, "Changes, tests and experiments," and to transmit the Core Operating Limits Report (COLR) for Cycle 12, consistent with Generic Letter 88-16, "Removal of Cycle-Specific Parameter Limits From Technical Specifications." This report is being submitted in accordance with LaSalle County Station Technical Specification 5.6.5, "Core Operating Limits (COLR)," item d.
The reload licensing analyses performed for Cycle 12 utilized NRC approved methodologies.
The Unit 2 Cycle 12 core, which consists of NRC approved fuel designs developed by Global Nuclear Fuel (GNF) and Framatome Advanced Nuclear Fuel, Inc. (i.e., Framatome), was designed to operate within approved fuel design criteria provided in the Technical Specifications and related Bases. The core operating characteristics are bounded by the Updated Final Safety Analysis Report (UFSAR) allowable limits.
EGC has performed a review of the relevant reload licensing documents, associated Bases, and references in accordance with 10 CFR 50.59. The review process concluded that the reload does not require NRC review and approval.
Should you have any questions concerning this submittal, please contact Mr. Terrence W.
Simpkin, Regulatory Assurance Manager, at (815) 415-2800.
Respectfully, j.4---
Landahl Site Vice President LaSalle County Station Attachment cc:
Regional Administrator - NRC Region III NRC Senior Resident Inspector - LaSalle County Station
COLR LaSalle 2 Revision 2 Page 1 LaSalle Unit 2 Cycle 12 Core Operating Limits Report, Revision 0 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 2 Table of Contents
- 1. References...................................................................................................................................
5
- 2. Term s and Definitions...........................................................................................................
6
- 3. General Inform ation.....................................................................................................................
7
- 4. Average Planar Linear Heat Generation Rate........................................................................
8
- 5. O perating Lim it M inim um Critical Power Ratio........................................................................
9 5.1. M anual Flow Control M CPR Lim its.................................................................................
9 5.1.1. Power-Dependent M CPR..........................................................................................
9 5.1.2. Flow - Dependent M CPR..........................................................................................
9 5.2. Autom atic Flow Control M CPR Lim its............................................................................
9 5.3. Scram Tim e..........................................................................................................................
9 5.4. Recirculation Flow Control Valve Settings.....................................................................
9
- 6. Linear Heat Generation Rate.................................................................................................
23
- 7. Rod Block M onitor......................................................................................................................
36
- 8. Traversing In-Core Probe System.......................................................................................
37 8.1
Description:
37
8.2 Bases
37
- 9. Stability Protection Setpoints..............................................................................................
38
- 10. M odes of O peration.................................................................................................................
39
- 11. M ethodology............................................................................................................................
41 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 3 List of Tables Table 4-1 MAPLHGR for bundle(s):
A10-4061B-13GV80 A10-3561B-12GV80 Al 0-3982B-1 5GV80-1 OOM Al0-4025B-15GV80-1OOM...................................................................
8 Table 4-2 MAPLHGR for bundle(s):
GE1 4-P1 OCNAB406-18GZ-1 20T-1 50-T6-2823 GE1 4-P1 OCNAB407-16GZ-1 20T-1 50-T6-2822........................................................ 8 Table 4-3 MAPLHGR SLO multiplier for GE and AREVA Fuel.......................................
8 Table 5-1 MCPR(P) for ATRIUM-10 Fuel, BOC to NEOC, Nominal Scram Speed (NSS) 10 Table 5-2 MCPR(P) for ATRIUM-10 Fuel, BOC to NEOC, Technical Specification Scram S peed (T S S S )....................................................................................................
11 Table 5-3 MCPR(P) for GEl4 Fuel, BOC to NEOC, Nominal Scram Speed (NSS)............. 12 Table 5-4 MCPR(P) for GEl4 Fuel, BOC to NEOC, Technical Specification Scram S peed (T S S S )..................................................................................................
13 Table 5-5 MCPR(P) for ATRIUM-10 Fuel, NEOC to EOC, Nominal Scram Speed (NSS)....... 14 Table 5-6 MCPR(P) for ATRIUM-10 Fuel, NEOC to EOC, Technical Specification Scram S peed (T S S S )....................................................................................................
15 Table 5-7 MCPR(P) for GE14 Fuel, NEOC to EOC, Nominal Scram Speed (NSS)............ 16 Table 5-8 MCPR(P) for GE14 Fuel, NEOC to EOC, Technical Specification Scram S peed (T S S S )..................................................................................................
17 Table 5-9 MCPR(P) for ATRIUM-10 Fuel, FFTR/Coastdown Operation, Nominal Scram S peed (N S S )..................................................................................................
18 Table 5-10 MCPR(P) for ATRIUM-10 Fuel, FFTR/Coastdown Operation, Technical Specification Scram Speed (TSSS).......................................................................... 19 Table 5-11 MCPR(P) for GE14 Fuel, FFTR/Coastdown Operation, Nominal Scram Speed (N S S ).............................................................................................................
2 0 Table 5-12 MCPR(P) for GE14 Fuel, FFTR/Coastdown Operation, Technical Specification Scram Speed (TSSS)..........................................................................................
21 Table 5-13 MCPR(F) Limits for AREVA and GE Fuel, DLO and SLO, Supports Base Case, FHOOS, TBVOOS, One TBVOOS, PROOS, PLUOOS, and Combined EOOS................. 22 Table 5-14 MCPR(F) Limits for AREVA and GE Fuel, DLO and SLO, Supports any scenario with One Stuck TCV/TSV and/or One MSIVOOS.......................................................
22 Table 6-1 LHGR Limit for GE14-P1OCNAB406-18GZ-120T-150-T6-2823........................ 23 Table 6-2 LHGR Limit for GE14-P1OCNAB407-16GZ-120T-150-T6-2822........................ 23 Table 6-3 LHGR Lim it for GE14-P1OCNAB406-18GZ-120T-150-T6-2823, Lattice 6815........
24 Table 6-4 LHGR Lim it for GE14-P1OCNAB407-16GZ-120T-150-T6-2822, Lattice 6810........ 25 Table 6-5 LHGR Limit for AREVA ATRIUM-10 Fuel A10-4061 B-13GV80 A10-3561B-12GV80 Al 0-3982B-1 5GV80-1 0OM A l 0-4025B-1 5G V80-100M.................................................................................. 26 Table 6-6 LHGRFAC(P) for ATRIUM10 Fuel, BOC to NEOC, Nominal Scram Speed (N S S )..........................................................................................................
... 2 7 Table 6-7 LHGRFAC(P) for ATRIUM10 Fuel, BOC to NEOC, Technical Specification Scram Speed (TSSS).........................................................................................
28 Table 6-8 LHGRFAC(P) for ATRIUM10 Fuel, NEOC to EOC, Nominal Scram Speed (N S S )...........................................................................................................
.. 29 Table 6-9 LHGRFAC(P) for ATRIUM10 Fuel, NEOC to EOC, Technical Specification Scram Speed (TSSS).........................................................................................
30 Table 6-10 LHGRFAC(P) for ATRIUM10 Fuel, FFTR/Coastdown Operation, Nominal Scram S peed (N S S ).................................................................................................
.... 31 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 4 Table 6-11 LHGRFAC(P) for ATRIUM10 Fuel, FFTR/Coastdown Operation, Technical Specification Scram Speed (TSSS)........................................................................
32 Table 6-12 LHGRFAC(P) for GE14 Fuel, DLO, All Exposures, Nominal Scram Speed (NSS)/
Technical Specification Scram Speed (TSSS).........................................................
33 Table 6-13 LHGRFAC(P) for GE14 Fuel, SLO, All Exposures, Nominal Scram Speed (NSS)/
Technical Specification Scram Speed (TSSS).........................................................
33 Table 6-14 LHGRFAC(F) Multipliers for ATRIUM10 Fuel, DLO and SLO Supports Base Case, FHOOS, TBVOOS, One TBVOOS, PROOS, PLUOOS, and Combined EOOS................. 34 Table 6-15 LHGRFAC(F) Multipliers for GE14 Fuel, DLO Supports Base Case, FHOOS, TBVOOS, One TBVOOS, PROOS, PLUOOS, and Combined EOOS............................. 34 Table 6-16 LHGRFAC(F) Multipliers for GE14 Fuel, SLO Supports Base Case, FHOOS, TBVOOS, One TBVOOS, PROOS, PLUOOS, and Combined EOOS...............................
34 Table 6-17 LHGRFAC(F) Multipliers for ATRIUM10 Fuel, DLO and SLO Supports any scenario with One Stuck TCV/TSV and/or One MSIVOOS....................................................... 34 Table 6-18 LHGRFAC(F) Multipliers for GE14 Fuel, DLO Supports any scenario with One Stuck TCV/TSV and/or One MSIVOOS...........................................................................
35 Table 6-19 LHGRFAC(F) Multipliers for GE14 Fuel, SLO Supports any scenario with One Stuck TCV/TSV and/or One MSIVOOS...........................................................................
35 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 5
- 1. References
- 1. Exelon Generation Company, LLC, Docket No. 50-374, LaSalle County Station, Unit 2, Facility Operating License, License No. NPF-18.
- 2.
NRC Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
- 3. AREVA Report ANP-2571 Revision 1, "LaSalle Unit 2 Cycle 12 Reload Analysis," dated January 2007.
- 4. AREVA Document 51-9024526-000, "LaSalle Unit 2 Cycle 12 Principal Transient Analysis Parameters", dated June 26, 2006.
- 5.
Nuclear Fuels Letter NFM:MW:01-0106, from A. Giancatarino to J. Nugent, "LaSalle Unit 1 and Unit 2 Rod Block Monitor COLR Setpoint Change," April 3, 2001.
- 6.
Framatome ANP Letter from R. G. Grummer to N. J. Carr, "Plant Startup Testing with POWERPLEX-IlI", RGG:04:001, January 8, 2004.
- 7.
GNF Report 0000-0034-6783-SRLR, Rev. 1, "Supplemental Reload Licensing Report for LaSalle Unit 2 Reload 10 Cycle 11," February 2005.
- 8. GNF Letter FRL-EXN-HA2-04-006, from F. Russell Lindquist to C. de la Hoz, 'Transmittal of Peak Pellet LHGR Limits for LaSalle Unit 2 Cycle 11 GE14 Bundles with Gad Suppression," August 5, 2004.
- 9.
GE Document GE-NE-0000-0022-8684-R2, "Exelon LaSalle Units 1 and 2 SAFER/GESTR Loss-of-Coolant-Accident Analysis for GEl4 Fuel", November 2006.
- 10. Framatome ANP Letter from N. Carr to M. Hsiao, "Startup with TIP Equipment Out of Service", NJC:04:031, April 20, 2004.
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 6
- 2. Terms and Definitions APLHGR APRM ATRM10 BOC DLO ELLLA EOC EOOS FFTR FHOOS GE14 GNF ICF LHGR LHGRFAC(F)
LHGRFAC(P)
MCPR(P)
MELLLA MSIV MSIVOOS NEOC NSS OLMCPR OPRM PBDA PLUOOS PPD PROOS RBM RPT RPTOOS RWE SLMCPR SLO SRVOOS TBVOOS TCV TCVOOS TIP TSSS TSV TSVOOS Average planar linear heat generation rate Average power range monitor ATRIUM-10 fuel Beginning of cycle Dual loop operation Extended load line limit analysis End of cycle Equipment out of service Final feedwater temperature reduction Feedwater heater out of service GE14C fuel Global Nuclear Fuel Increased core flow Linear heat generation rate Flow dependent LHGR multiplier Power dependent LHGR multiplier Local power range monitor Maximum average planar linear heat generation rate Minimum critical power ratio Flow dependent MCPR Power dependent MCPR Maximum extended load line limit analysis Main steam isolation valve Main steam isolation valve out of service Near end of cycle Nominal scram speed Operating limit minimum critical power ratio Oscillation power range monitor Period based detection algorithm Power load unbalance out of service Plant Parameter Document Pressure regulator out of service Rod block monitor Recirculation pump trip Recirculation pump trip out of service Rod withdrawal error Safety limit minimum critical power ratio Single loop operation Safety-relief valve out of service Turbine bypass valve out of service Turbine control valve Turbine control valve out of service Traversing Incore Probe Technical Specification scram speed Turbine stop valve Turbine stop valve out of service LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 7
- 3. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.
Rated core flow is 108.5 Mlb/hr. Operation up to 105% rated flow is licensed for this cycle.
Licensed rated thermal power is 3489 MWth.
For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.
The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.
Core Exposure Definitions (Reference 3):
Exposure Nomenclature Core Average Exposure (MWD/MTU)
NEOC12 31988 EOC12 34673 Maximum Core Exposure 38673 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 8
- 4. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of each fuel type as a function of average planar exposure is given in Tables 4-1 and 4-2. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 4-3.
Table 4-1 MAPLHGR for bundle(s):
Al 0-4061 B-1 3GV80 Al 0-3561 B-1 2GV80 Al 0-3982B-1 5GV80-1 OOM Al 0-4025B-1 5GV80-1 OOM (Reference 3)
Avg. Planar Exposure MAPLHGR (GWd/MT)
(kW/ft) 0.00 12.5 15.00 12.5 55.00 9.1 67.00 7.1 Table 4-2 MAPLHGR for bundle(s):
GE14-P1OCNAB406-18GZ-120T-150-T6-2823 GE1 4-P1 OCNAB407-16GZ-1 20T-1 50-T6-2822 (Reference 7)
Avg. Planar Exposure MAPLHGR (GWd/MT)
(kW/ft) 0.00 13.40 16.00 13.40 63.50 8.00 70.00 5.00 Table 4-3 MAPLHGR SLO multiplier for GE and AREVA Fuel (Reference 3 and 7)
Fuelype SLO Fuel Type Multiplier ATRM10 0.82 GE14 0.78 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 9
- 5. Operating Limit Minimum Critical Power Ratio 5.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.
5.1.1. Power-Dependent MCPR The power-dependent MCPR limit, MCPR(P), is determined from Tables 5-1 through 5-12, and is dependent on exposure, fuel type, and scram speed, in addition to power level. Tables 5-1, 5-2, 5-5, 5-6, 5-9 and 5-10 are applicable to ATRIUM-10 fuel and Tables 5-3, 5-4, 5-7, 5-8, 5-11 and 5-12 are applicable to GE14 fuel.
5.1.2. Flow - Dependent MCPR Tables 5-13 and 5-14 give the MCPR(F) limit as a function of the core flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.
5.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.
5.3. Scram Time NSS and TSSS refer to scram speeds.
To utilize the MCPR limits for Technical Specification Scram Speed (TSSS), the scram speed insertion time must be equal to or less than the values provided below.
To utilize the MCPR limits for Nominal Scram Speed (NSS), the scram speed insertion time must be equal to or less than the values provided below (Reference 4).
Notch Position I TSSS Time (sec.)
NSS Time (sec.)
45 0.53 0.38 39 0.85 0.68 25 1.90 1.68 05 3.45 2.68 5.4. Recirculation Flow Control Valve Settings Cycle 12 was analyzed with a maximum core flow runout of 108%; therefore the recirculation pump flow control valve must be set to maintain core flow less than 108%
(117.18 Mlb/hr) for all runout events (Reference 4). This value is consistent with the analyses of Reference 3.
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-1 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Nominal Scram Speed (NSS)
(Reference 3)
Page 10 EOOS Combination Base Case Base Case SLO FHOOS FHOOS SLO TBVOOS TBVOOS SLO One TBVOOS One TBVOOS SLO PROOS PROOS SLO PLUOOS Core Thermal Power (% of rated) 025 60 1
80 80(80.1) 100 MCPRP 2.0 2.10 1.52 1.41 2.11 2.11 1.53 1.42 2.22 2.22 1.57 1.42 2.23 2.23 1.58*:
i ",
1.43 2.13 2.13 1.59 1.44 2.14 2.14 1.60 1.45 2.11 2.11 1.54 1.42i,*;*
2.30 2.30*
1.63 1.47 1.41 2.31 2.31 1.64 1.48 1.42 2.10 2.10 1.52 3242 2.11 2.11 1.53 1.43 2.31 2.31 t
- 1.69 1.52 1.44 2.32 2.32 1.70 1.53 1.45 PLUOOS SLO Combined EOOS Combined EOOS SLO LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-2 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 11 r
Core Thermal Power (% of rated) 0 25 1
60 1
80 1
80(80.1) 100 EOOS Combination MCPRp Base Case 2.16 2.16 1.53 Base Case SLO 2.17 2.17 1.54 FHOOS 2.30 2.30 1.58 FHOOS SLO 2.31 2.31 1.59 TBVOOS 2.22 2.22 1.61 TBVOOS SLO 2.23 2.23 1.62 OneTBVOOS 2.17 2.17 1.55 1.45 1.46 1.45 1.46 1..48 1.49 1.45 1.46 1.64 1.49 1.45 One TBVOOS SLO 2.18 2.18 1.56 PROOS 2.32 2.32 PROOS SLO 2.33 2.33 m
PLUOOS 2.16 2.16 1
1.53 1.65 1.50 1.46 J1.45 1
1.
1.69 1.54 1.47 F
+
1.54 Combined EOOS 2.32 2.32 Combined EOOS SLO 2.33 2.33 1.70 1.55 1
1.48 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-3 MCPR(P) for GE14 Fuel BOC to NEOC Nominal Scram Speed (NSS)
(Reference 3)
Page 12 Core Thermal Power (% of rated) 0 25 60 80 80(80.1) 100 MCPRp EOOS Combination Base Case 2.09 2.09 1.49 Base Case SLO 2.10 2.10 1.50 FHOOS 2.23 2.23 1.53 FHOOS SLO 2.24 2.24 1.54 TBVOOS 2.12 2.12 1.56 TBVOOS SLO 2.13 2.13 1.57 One TBVOOS 2.10 2.10 1.50 1.40 1.41 1.41 1.42 1 1.43 1.44 1.40 1.41 1.40 One TBVOOS SLO 2.11 2.11 1.51 PROOS 2.26 2.26 PROOS SLO 2.27 2.27 1.41 PLUOOS 2.09 PLUOOS SLO 2.10 Combined EOOS 2.26 Combined EOOS SLO 2.27 2.09 1.49 2.10 1.50 2.26 2.27 1.41 1.40 1.41 1.72 1.50 1.44 1.73 1.51 1.45 1 the 100% MCPR(P) values for FHOOS and FHOOS SLO was raised 0.01 to allow use of OPRM PBDA trip setpoint of 1.11 (See Section 9)
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-4 MCPR(P) for GE14 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 13 EOOS Combination Base Case Base Case SLO FHOOS FHOOS SLO TBVOOS TBVOOS SLO One TBVOOS One TBVOOS SLO PROOS PROOS SLO PLUOOS PLUOOS SLO Combined EOOS Combined EOOS SLO Core Thermal Power (% of rated) 0 25 60 80 80(80.1) 100 MCPRP 2.17 2.17 1.50 1.41 2.18 2.18 1.51 1.
2.31 2.31 1.58 1.43*!*
2.20 2.20 1.57
- 1.45 2.21 2.21 1.58
'*1.46 2.17 2.17 1.51@*
1.41 2.18 2.18 1.52 1.42 2.27 2.27 1.65 1.46 1.41 2.28 2.28 1.66 1.47 1.42 2.17 2.17 1.50135 1.42 2.18 2.18 1.51 1.43 2.30 2.30*
- 1;;
- ~*
1.72 1.52 1.48 2.31 2.31*
- =,,
1.73 1.53 1.49 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-5 MCPR(P) for ATRIUM-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)
(Reference 3)
Page 14 EOOS Combination Core Thermal Power (% of rated) 0 25 60 80 80(80.1) 100 MCPRP Base Case 2.10 2.10 1.52 Base Case SLO 2.11 2.11 1.53 FHOOS 2.22 2.22 1.57 FHOOS SLO 2.23 2.23 1.58 TBVOOS 2.13 2.13 1.60 TBVOOS SLO OneTBVOOS One TBVOOS SLO PROOS 2.14 2.10 2.11 2.30 2.14 2.10 2.11 2.30 1.44 1.43 A
1.43 1.44 1.46 1.47 1.43 1.44 1.64 1.48 1.43 1.65 1.49 1.44 1.43 1.44 1.69 1.54 1.47 1.70 1.55 1.48 PROOS SLO 2.31 2.31 PLUOOS PLUOOS SLO 2.10 2.11 2.10 1.52 2.11 1.53 Combined EOOS 2.31 2.31 Combined EOOS SLO 2.32 2.32 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-6 MCPR(P) for ATRIUM-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 15 Core Thermal Power (% of rated) 0 25 60 80 80(80.1) 100 EOOS Combination MCPR.
Base Case 2.16 2.16 1.53 Base Case SLO 2.17 2.17 1.54 FHOOS 2.30 2.30 1.58 FHOOS SLO 2.31 2.31 1.59 TBVOOS 2.22 2.22 1.61 TBVOOS SLO 2.23 2.23 1.62 One TBVOOS 2.17 2.17 1.55 One TBVOOS SLO 2.18 2.18 1.56 PROOS 2.32 2.32 PROOS SLO 2.33 2.33 PLUOOS 2.16 2.16 1.53
~1.46 i
1.47
~1.46 1.48 1.49
~1.46 1.47 1.64 1.50 1.46 1.65 1.51 1.47 1.46 1.47 1.69 1.57 1.52 PLUOOS SLO 2.17 2.17 Combined EOOS 2.32 2.32 Combined EOOS SLO 2.33 2.33 1.70 1.58 1.53 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-7 MCPR(P) for GE14 Fuel NEOC to EOC Nominal Scram Speed (NSS)
(Reference 3)
Page 16 Core Thermal Power (% of rated) 25 60 80 80(80.1) 100 EOOS Combination Base Case 2.09 2.09 1.49 Base Case SLO 2.10 2.10 1.50 FHOOS 2.23 2.23 1.53 FHOOS SLO 2.24 2.24 1.54 TBVOOS 2.12 2.12 1.56 TBVOOS SLO 2.13 2.13 1.57 OneTBVOOS 2.10 2.10 1.50 One TBVOOS SLO 2.11 2.11 1.51 PROOS 2.26 2.26 PROOS SLO 2.27 2.27 PLUOOS 2.09 2.09 1.49 1.41 1.42 1 Al 1 A2 1 A4 1 A5 1 Al 1.42 1.64 1.45 1.41 1
1.46 1.42 1.41 1.42 1.72 1.47 1.73 1.48 PLUOOS SLO 2.10 2.10 Combined EOOS 2.26 2.26 Combined EOOS SLO 2.27 1
227 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-8 MCPR(P) for GE14 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 17 EOOS Combination Base Case Base Case SLO FHOOS FHOOS SLO TBVOOS TBVOOS SLO One TBVOOS One TBVOOS SLO PROOS PROOS SLO PLUOOS PLUOOS SLO Combined EOOS Combined EOOS SLO Core Thermal Power (% of rated) 025 60 80 80(80.1) 100 MCPRP 2.17 2.17 1.50 1.43 2.18 2.18 1.51 1.44 2.30 2.30 1.57 1.43 2.31 2.31 1.5814 2.20 2.20 1.57 14 2.21 2.21 1.58 1.47 2.17 2.17 1.51 1.4 2.18 2.18 1.52
- 1.44
~1.665.4 1.43 2.27 2.27
,o-1.65 1.47 14 2.17 2.17 1.50 I
1.4 2.18 2.18 7
1.51714 2.30 2.30 i:
1.72 1.54 1.52 2.31 2.311.3.5 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 18 Table 5-9 MCPR(P) for ATRIUM-10 Fuel FFTRPCoastdown Operation Nominal Scram Speed (NSS)
(Reference 3) 1.69 1.54 1.49 1.70 1.55 1.50 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-10 MCPR(P) for ATRIUM-10 Fuel FFTR/Coastdown Operation Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 19 Core.Thermal Power (% of rated)
EOOS Combination 0
25 6 60 80 1
80(80.1) 1oo MCPRp Base Case 2.30 2.30 1.58 Base Case SLO 2.31 2.31 1.59 TBVOOS 2.30 2.30 1.65 TBVOOS SLO 2.31 2.31 1.66 One TBVOOS 2.30 2.30 1.59 One TBVOOS SLO 2.31 2.31 1.60 PROOS 2.32 2.32 PROOS SLO 2.33 2.33 PLUOOS 2.30 2.30 1.58 1.47 164 152 1.46 4
-I*
1.65 1.53 1.47 1.46 11.47 1.701.571.53 PLUOOS SLO 2.31 2.31 1.59 Combined EOOS 2.32 2.32 Combined EOOS SLO 2.33 2.33 1.71 1
1.58 1.54 i
I LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-11 MCPR(P) for GE14 Fuel FFTR/Coastdown Operation Nominal Scram Speed (NSS)
(Reference 3)
Page 20 EOOS Combination 4
Base Case Base Case SLO TBVOOS TBVOOS SLO One TBVOOS One TBVOOS SLO PROOS PROOS SLO PLUOOS PLUOOS SLO Combined EOOS Combined EOOS SLO Core Thermal Power (% of rated) 025
11 1
80 80(80.1) 100 MCPRp 2.23 2.23 1.53 1.42 2.24 2.24 1.54 1.43 2.23 2.23 1.59
'...o:
,;/
1.45 2.24 2.24 1.60 1..46**';
2.23 2.23 1.54 1.42*%
2.24 2.24 1.55 1.-43 2.26 2.26 1.64 1.48 1.42 2.27 2.27 1.65 1.49 1.43 2.23 2.23 1.53
- 1.42 2.24 2.24 1.54
- 1.43 2.26 2.26 1.721.1.4 2.27 2.27 I1.73 1.52 1.49 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 5-12 MCPR(P) for GEl 4 Fuel FFTR/Coastdown Operation Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 21 Core Thermal Power (% of rated) 0 25 60 80 1
80(80.1) 100 EOOS Combination MCPRP Base Case 2.30 2.30 1.57 Base Case SLO 2.31 2.31 1.58 TBVOOS 2.30 2.30 1.61 TBVOOS SLO 2.31 2.31 1.62 One TBVOOS 2.30 2.30 1.57
-roli T
nQQ n 23 1 231 1.58 1.43 1.44 1.46 1.47 111....46 1.43 1.44 1.65 1.50 1.43 ne PROOS 2.30 2.30 PROOS SLO 2.31 2.31 PLUOOS 2.30 2.30 1.57 1.66 1.51 1.44 172
- 1.56 1.43 1.72 1.56 1
1.53 4
PLUOOS SLO 2.31 2.31 1.58 Combined EOOS 2.30 2.30 Combined EOOS SLO 2.31 2.31 1.73 1.57 1.54 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 22 Table 5-13 MCPR(F) Limits for AREVA and GE Fuel, DLO and SLO Supports Base Case, FHOOS, TBVOOS, One TBVOOS, PROOS, PLUOOS and Combined EOOS (Reference 3)
Flow MCPR(F)
(% rated)
Limit 108.0 1.11 100.0 1.19 30.0 1.55 0.0 1.55 Table 5-14 MCPR(F) Limits for AREVA and GE Fuel, DLO and SLO Supports any scenario with One Stuck TCV/TSV and/or One MSIVOOS (Reference 3)
Flow MCPR(F)
(% rated)
Limit 108.0 1.11 100.0 1.30 30.0 1.75 0.0 1.75 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 23
- 6. Linear Heat Generation Rate The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 6-1 through 6-5 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), or the core flow dependent LHGR Factor, LHGRFAC(F) as applicable. The LHGRFAC(P) is determined from Tables 6-6 through 6-13. The LHGRFAC(F) is determined from Table 6-14 through 6-19.
Table 6-1: LHGR Limit for GE1 4-P1 OCNAB406-18GZ-1 20T-1 50-T6-2823 (Reference 8)
Lattices 6806, 6812, 6813, 6814 and 6816 LHGR Limit kW/ft 6806: P1OCNAL071-NOG-120T-T6-6806 6812:
P1 OCNAL435-18G7.0-120T-T6-6812 6813: P1OCNAL435-6G7.0/9G6.0-120T-T6-6813 6814: P1 OCNAL429-6G7.0/9G6.0-120T-E-T6-6814 6816:
P1OCNAL071-18GE-120T-V-T6-6816 U02 Pellet Burnup LHGR Limit (GWd/MTU)
(kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 6-2: LHGR Limit for GE1 4-P1 OCNAB407-16GZ-1 20T-1 50-T6-2822 (Reference 8)
Lattices 6806, 6807, 6808, 6809 and 6811 LHGR Limit kW/ft 6806: P1OCNAL071-NOG-120T-T6-6806 6807: P1OCNAL437-6G8.0/10G7.0-120T-T6-6807 6808: P1OCNAL437-2G8.0/7G7.0/5G6.0-120T-T6-6808 6809: P1OCNAL430-2G8.0/7G7.0/5G6.0-120T-E-T6-6809 6811:
P1OCNAL071-16GE-120T-V-T6-6811 U02 Pellet Burnup LHGR Limit (GWd/MTU)
(kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 24 Table 6-3 LHGR Limit for: GE14-P1OCNAB406-18GZ-120T-150-T6-2 8 2 3, Lattice 6815 (Reference 8)
Lattice 6815 LHGR Limit kW/ft P1 OCNAL429-6G7.0/9G6.0-120T-V-T6-6815 U02 Pellet Burnup LHGR Limit (GWd/MTU)
(kW/ft) 0.0 13.40 16.0 13.40 17.3 13.25 18.5 13.11 19.8 12.97 21.8 12.74 25.5 12.32 31.5 11.63 37.6 10.95 43.5 10.27 49.4 9.61 55.1 8.89 60.8 8.24 66.5 6.63 70.0 5.00 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 25 Table 6-4 LHGR Limit for GE14-P10CNAB407-16GZ-120T-150-T6-282 2, Lattice 6810 (Reference 8)
Lattice 6810 LHGR Limit kW/ft P1 OCNAL430-2G8.017G7.0/5G6.0-120T-V-T6-681 0 U02 Pellet Burnup LHGR Limit (GWd/MTU)
(kWft) 0.0 13.40 14.8 13.40 16.1 13.39 17.4 13.24 18.6 13.10 19.9 12.96 21.7 12.75 25.4 12.33 31.4 11.64 37.4 10.96 43.4 10.29 49.2 9.62 55.0 8.91 60.7 8.26 66.4 6.68 70.0 5.00 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 6-5 LHGR Limit for AREVA ATRIUM-10 Fuel Al 0-4061 B-1 3GV80 Al 0-3561 B-1 2GV80 Al 0-3982B-1 5GV80-1 OOM Al 0-40251B-1 5GV80-1 OOM (Reference 3)
Pellet Exposure LHGR Limit (GWd/MTU)
(kW/ft) 0.00 13.40 17.70 13.40 61.10 9.10 70.40 7.30 Page 26 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 6-6 LHGRFAC(P) for ATRIUM10 Fuel BOC to NEOC Nominal Scram Speed (NSS)
(Reference 3)
Page 27 EOOS Combination Base Case Base Case SLO FHOOS FHOOS SLO TBVOOS TBVOOS SLO One TBVOOS One TBVOOS SLO PROOS PROOS SLO PLUOOS Core Thermal Power (% of rated) 8010.1 25 60 80 808,)100 LHGRFACp Multiplier 0.72 0.72 1.00 1.00 0.72 0.72 1.00 1.00 Y
0.67 0.67 0.93 1.00 0.67 0.67 0.93 0
0.72 0.72 0.95 0.72 0.72 0.97 1.00 0.72 0.72 0.97 1.00 0.65 0.65 1
0.90 1.00 1.00 0.65 0.65 0.90 1.00 1.00 0.72 0.72 1.00 1.00 0.72 0.72 1.00 i
1.00 0.65
.65 0.88 0.94 0.98 0.65 0.65 0.88 0.94 0.98 PLUOOS SLO Combined EOOS Combined EOOS SLO LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 6-7 LHGRFAC(P) for ATRIUM10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 28 Core Thermal Power (% of rated) 0 25 60 80 80(80.1) 100 EOOS Combination LHGRFACp Multiplier Base Case 0.71 0.71 1.00 Base Case SLO 0.71 0.71 1.00 FHOOS 0.66 0.66 0.93 FHOOS SLO 0.66 0.66 0.93 TBVOOS 0.69 0.69 0.93 TBVOOS SLO 0.69 0.69 0.93 One TBVOOS 0.71 0.71 0.97 One TBVOOS SLO 0.71 0.71 0.97 PROOS 0.64 0.64 PROOS SLO 0.64 0.64 PLUOOS 0.71 0.71 1.00 S100 1.00 089 1.00 1.00 0.89 1.00 1.00 1.00 0.88 0.93 0.97 PLUOOS SLO 0.71 0.71 1.00 Combined EOOS 0.64 0.64 Combined EOOS SLO 0.64 0.64 0.88 0.93 0.97 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 6-8 LHGRFAC(P) for ATRIUM10 Fuel NEOC to EOC Nominal Scram Speed (NSS)
(Reference 3)
Page 29 EOOS Combination Base Case Base Case SLO FHOOS FHOOS SLO TBVOOS TBVOOS SLO One TBVOOS One TBVOOS SLO PROOS PROOS SLO PLUOOS PLUOOS SLO Combined EOOS Combined EOOS SLO Core Thermal Power (% of rated) o 25 60 80 80(80.1) 100 LHGRFACp Multiplier 0.72 0.72 1.00 7
1.00 0.72 0.72 1.00 1.00 0.67 0.67 0.93 1.00 0.67 0.67 0.93 1.00 0.72 0.72 0.94 1.00 0.72 0.72 0.94 1.00 0.72 0.72 0.97 1.00 0.72 0.72 0.97 100 0.65 0.65 0.90 1.00 1.00 0.65 0.65 l
0.90 1.00 1.00 0.72 0.72 1.00 1.00 0.720.721.001.00 0.65 065 0.88 0.93 096 0.65 0.65 10.88 0.93 0ý.96 I
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 6-9 LHGRFAC(P) for ATRIUM10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 30 Core Thermal Power (% of rated) 0 25 60 80 80(80.1) 100 EOOS Combination LHGRFACp Multiplier Base Case 0.71 0.71 1.00 Base Case SLO 0.71 0.71 1.00 FHOOS 0.66 0.66 0.93 FHOOS SLO 0.66 0.66 0.93 TBVOOS 0.69 0.69 0.93 TBVOOS SLO 0.69 0.69 0.93 OneTBVOOS 0.71 0.71 0.97 One TBVOOS SLO 0.71 0.71 0.97 PROOS 0.64 0.64 PROOS SLO 0.64 0.64 PLUOOS 0.71 0.71 1.00
..... *1.00 1.00
~1.00
~1.00 1.00 "1.00 0.89 1.00 1.00 0.89 1.00 1.00 S1.00 1.00 0.88 0.93 0.95 PLUOOS SLO 0.71 0.71 1.00 Combined EOOS 0.64 0.64 Combined EOOS SLO 0.64 0.64 0.88 0.93 0.95 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 6-10 LHGRFAC(P) for ATRIUM10 Fuel FFTR/Coastdown Operation Nominal Scram Speed (NSS)
(Reference 3)
Page 31 Core Thermal Power (% of rated) 0 25 60 80 80(80.1) 100 EOOS Combination LHGRFACp Multiplier Base Case 0.67 0.67 0.93 Base Case SLO 0.67 0.67 0.93 TBVOOS 0.67 0.67 0.90 TBVOOS SLO 0.67 0.67 0.90 One TBVOOS 0.67 0.67 0.93 1.00 1.00 1.00 1.00 090 096 1.00 0.90 0.96 1.00 One TBVOOS SLO 0.67 0.67 0.93 PROOS 0.65 0.65 PROOS SLO 0.65 0.65 PLUOOS 0.67 0.67 0.93 0.90 0.96 1.00 1.00 0.88 0.93 0.96 PLUOOS SLO 0.67 0.67 0.93 Combined EOOS 0.65 0.65 Combined EOOS SLO 0.65 0.65 0.88 0.93 0.96 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 6-11 LHGRFAC(P) for ATRIUM10 Fuel FFTRPCoastdown Operation Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 32 Core Thermal Power (% of rated) 0 25 60 80 80(80.1) 100 EOOS Combination LHGRFACp Multiplier Base Case 0.66 0.66 0.93 Base Case SLO 0.66 0.66 0.93 TBVOOS 0.66 0.66 0.89 TBVOOS SLO 0.66 0.66 0.89 One TBVOOS 0.66 0.66 0.92 One TBVOOS SLO 0.66 0.66 0.92 PROOS 0.64 0.64 PROOS SLO 0.64 0.64 PLUOOS 0.66 0.66 0.93 100 S.
1.0 8.000 0.89 0.96 1.00 0.89 0.96 1.00 1.00 C
1.00 0.88
ý 0.93 0.95 PLUOOS SLO 0.66 0.66 0.93 Combined EOOS 0.64 0.64 Combined EOOS SLO 0.64 0.64 i
i 0.88 0.93 1
0.95 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Table 6-12 LHGRFAC(P) for GE14 Fuel DLO, All Exposures Nominal Scram Speed (NSS)/Technical Specification Scram Speed (TSSS)
(Reference 3)
Page 33 Core Thermal Power (% of rated) 0 25 40 60 100 EOOS Combination LHGRFACp Multiplier Base Case 0.54 0.54 FHOOS 0.48 0.48 TBVOOS 0.54 0.54 One TBVOOS 0.54 0.54 PROOS 0.40 0.40 PLUOOS 0.54 0.54 1.00 1.00 1.00 1.00 1.00 1.00 I
Combined EOOS 0.40 0.40 0.97 Table 6-13 LHGRFAC(P) for GE14 Fuel SLO, All Exposures Nominal Scram Speed (NSS)/Technical Specification Scram Speed (TSSS)
(Reference 3 and 7)
Core Thermal Power (% of rated) 0 25 40 CP*
60 100 EOOS Combination LHGRFACp Multiplier Base Case SLO 0.54 0.54 FHOOS SLO 0.48 0.48 TBVOOS SLO 0.54 0.54 One TBVOOS SLO 0.54 0.54 PROOS SLO 0.40 0.40 PLUOOS SLO 0.54 0.54 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 Combined EOOS SLO 0.40 0.40 0.50 0.78 0.78
- CP is the cutoff power level and equal to 58.60% for Base Case SLO, TBVOOS SLO, One TBVOOS SLO and PLUOOS SLO; 58.87% FHOOS SLO; 72.50% for PROOS SLO; and 75.74% for Combined EOOS SLO conditions.
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 34 Table 6-14 LHGRFAC(F) Multipliers for ATRIUM10 Fuel, DLO and SLO Supports Base Case, FHOOS, TBVOOS, One TBVOOS, PROOS, PLUOOS and Combined EOOS (Reference 3)
Flow LHGRFAC(F)
(% rated)
Multiplier 108.00 1.00 80.00 1.00 30.00 0.75 0.00 0.75 Table 6-15 LHGRFAC(F) Multipliers for GE14 Fuel, DLO Supports Base Case, FHOOS, TBVOOS, One TBVOOS, PROOS, PLUOOS and Combined EOOS (Reference 3)
Flow LHGRFAC(F)
(% rated)
Multiplier 108.00 1.00 83.60 1.00 30.00 0.55 0.00 0.55 Table 6-16 LHGRFAC(F) Multipliers for GE14 Fuel, SLO Supports Base Case, FHOOS, TBVOOS, One TBVOOS, PROOS, PLUOOS and Combined EOOS (Reference 3 and 7)
Flow LHGRFAC(F)
(% rated)
Multiplier 108.00 0.78 83.60 0.78 57.40 0.78 30.00 0.55 0.00 0.55 Table 6-17 LHGRFAC(F) Multipliers for ATRIUM10 Fuel, DLO and SLO Supports any scenario with One Stuck TCV/TSV and/or One MSIVOOS (Reference 3)
Flow LHGRFAC(F)
(% rated)
Multiplier 108.00 1.00 80.00 1.00 30.00 0.75 0.00 0.75 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 35 Table 6-18 LHGRFAC(F) Multipliers for GE14 Fuel, DLO Supports any scenario with One Stuck TCV/TSV and/or One MSIVOOS (Reference 3)
Flow LHGRFAC(F)
(% rated)
Multiplier 108.00 1.00 100.20 1.00 30.00 0.41 0.00 0.41 Table 6-19 LHGRFAC(F) Multipliers for GE14 Fuel, SLO Supports any scenario with One Stuck TCV/TSV and/or One MSIVOOS (Reference 3 and 7)
Flow LHGRFAC(F)
(% rated)
Multiplier 108.00 0.78 100.20 0.78 74.02 0.78 30.00 0.41 0.00 0.41 LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 36
- 7. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 5):
ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.66 Wd + 54.0%
Operation 0.66_Wd_+_54.0%
Single Recirculation Loop 0.66 Wd + 48.7%
Operation 0.66IW__+__8.7%
The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked. The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%.
Wd - percent of recirculation loop drive flow required to produce a rated core flow of 108.5 Mlb/hr.
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 37
- 8. Traversing In-Core Probe System 8.1
Description:
When the traversing in-core probe (TIP) system (for the required measurement locations) is used for recalibration of the LPRM detectors and monitoring thermal limits, the TIP system shall be operable with the following:
- 1. movable detectors, drives and readout equipment to map the core in the required measurement locations, and
- 2.
indexing equipment to allow all required detectors to be calibrated in a common location.
The following applies for use of the SUBTIP methodology:
The total number of failed and bypassed LPRMs does not exceed 50% (Reference 10).
With one or more TIP measurement locations inoperable, the TIP data for an inoperable measurement location may be replaced by data obtained from a 3-dimensional BWR core monitoring software system adjusted using the previously calculated uncertainties, provided the following conditions are met:
(A) When there is not a prior complete TIP-calibrated data set available:
- 1. To comply with Technical Specification SR 3.3.1.1.8, LPRMs, within their calibration frequency, in locations without a TIP trace are not recalibrated,
- 2.
LPRMs in locations without a TIP trace will not be used by POWERPLEX in any core power distribution calculations, and
- 3. The total number of out-of-service TIPs does not exceed 42% (18 channels).
(B) When there is a prior complete TIP-calibrated data set available:
- 1. All TIP traces have previously been obtained at least once in the current operating cycle when the reactor core was operating above 20% power, (Reference 6) and
- 2. The total number of simulated channels (measurement locations) does not exceed 42% (18 channels).
Otherwise, with the TIP system inoperable, suspend use of the system for the above applicable monitoring or calibration functions.
8.2 Bases
The operability of the TIP system with the above specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core. The normalization of the required detectors is performed internal to the core monitoring software system.
Substitute TIP data, if needed, is 3-dimensional BWR core monitoring software calculated data which is adjusted based on axial and radial factors calculated from previous TIP sets. Since the simulation and adjustment process could introduce uncertainty, a maximum of 18 channels may be simulated to ensure that the uncertainties assumed in the substitution process methodology remain valid.
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 38
- 9. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):
Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp)
Confirmation Count Setpoint (Np) 1.11 14 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.
The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits.
Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.
The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 39
- 10. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:
Equipment Out of Service FFTRJ Options ei 2
ELLLA MELLLA ICF Coastdown4 Base Case Yes Yes Yes Yes Base Case SLO Yes No 6 N/A Yes FHOOS8 Yes Yes Yes N/A5 FHOOS SLO' Yes No 6
N/A N/A5 TBVOOS 7 Yes Yes Yes Yes TBVOOS SLO 7 Yes No 6
N/A Yes One TBVOOS 1 0 Yes Yes Yes Yes One TBVOOS SLO10 Yes No 6 N/A Yes PROOS Yes Yes Yes Yes PROOS SLO Yes No 6 N/A Yes PLUOOS Yes Yes Yes Yes PLUOOS SLO Yes No 6 N/A Yes Combined EOOS3' 9 Yes Yes Yes Yes Combined EOOS SL03' 9 Yes No 6 N/A Yes Limits support operation with any combination of 1 SRVOOS, up to 2 TIP machines OOS (or the equivalent number of TIP channels), up to a 20°F reduction in feedwater temperature (except for conditions with FHOOS), and up to 50% of the LPRMs 0OS with an LPRM calibration frequency of 1250 effective full power hours (EFPH) (1000 EFPH +25%). All limits support PLUOOS < 60% RTP.
2 With or without 1 stuck closed TCV or TSV (except for TBVOOS - TBVOOS do not support TCV or TSV stuck closed).
Note: The MCPR and LHGR operating limits may be different based on whether 1 TCV or TSV is or is not stuck closed due to MCPR(f) and LHGRFAC(f) considerations. The pressurization MCPR(f) limits and LHGRFAC(f) multipliers should be applied to support operation when any of the following EOOS conditions exist: one stuck closed TCV, or one stuck closed TSV or one MSIVOOS. Note that operation with 1 MSIVOOS is supported as long as core thermal power is maintained < 75% of 3489 MWt.
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 40 3 Any combination of TCV slow closure, no RPT and/or FHOOS. For FFTR/Coastdown any combination of TCV Slow Closure and/or no RPT (as a reduced feedwater temperature is already assumed as part of the base assumptions for FFTR/Coastdown).
4 FFTR/Coastdown Operation is defined as any cycle exposure beyond full power/flow, all rods out condition with plant power slowly lowering while core flow is held constant. TBVOOS and one TBVOOS limits for FFTR/Coastdown operation are only valid for Cycle 12 core average exposures greater than 31,988 MWD/MTU. The current analysis supports up to 1 00"F decrease in feedwater temperature.
5 During FFTR/Coastdown portion of the cycle, feedwater heaters are taken out of service to achieve the FFTR.
6 The SLO boundary was not moved up with the incorporation of MELLLA. The power-flow boundary for SLO at power uprated conditions remains the ELLLA boundary for pre-uprate conditions.
The TBVOOS condition assumes that the turbine bypass valves do not trip open on turbine control valve fast closure or on turbine stop valve closure. However, operation of the turbine bypass valves via the pressure control system is credited, i.e. all bypass valves must be capable of opening in this EOOS.
The FHOOS option supports a feedwater temperature reduction of 1 00°F.
9 Any combination of TCV slow closure, in combination with one (or more) TBVOOS. Any combination of TCV slow closure, in combination with one TBVOOS and 1 TCV or TSV stuck closed. TCV slow closure in combination with more than one TBVOOS and 1 TCV or TSV stuck closed is not supported per Note 2.
'0 The one TBVOOS condition assumes that one turbine bypass valve does not trip open on turbine control valve fast closure or on turbine stop valve closure. Operation of one turbine bypass valve via the pressure control system is not credited, i.e. this EOOS assumes the one bypass valve is not capable of opening.
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 41
- 11. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
- 1. XN-NF-81-58 (P)(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," March 1984.
- 2.
ANF-524 (P)(A) Revision 2 and Supplements 1 and 2, "ANF Critical Power Methodology for Boiling Water Reactors," November 1990. [XN-NF-524 (P)(A)]
- 3.
ANF-913 (P)(A) Volume 1 Revision 1, and Volume 1 Supplements 2, 3, 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses," August 1990.
- 4.
XN-NF-84-105 (P)(A), Volume 1 and Volume 1 Supplements 1 and 2; Volume 1 Supplement 4, "XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis,"
February 1987 and June 1988, respectively.
- 5.
EMF-2209 (P)(A), Revision 2, "SPCB Critical Power Correlation," September 2003.
- 6.
ANF-89-98 (P)(A), Revision 1 and Revision 1 Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995.
- 7.
EMF-85-74 (P)(A) Revision 0 and Supplement 1(P)(A) and Supplement 2(P)(A), "RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model," February 1998.
- 8.
EMF-CC-074 (P) Volume 4 Revision 0, "BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2," August 2000.
- 9.
ANF-CC-33(P)(A) Supplement 1 Revision 1 and Supplement 2, "HUXY: A Generalized Multirod Heatup Code with 10CFR50, Appendix K Heatup Option," August 1986 and January 1991, respectively.
- 10. XN-NF-80-19 (P)(A) Volume 4 Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads," June 1986.
- 11. XN-NF-80-19 (P)(A) Volume 3 Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description," January 1987.
- 12. XN-NF-80-19 (P)(A) Volume 1 and Supplements 1 and 2, "Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis," March 1983.
- 13. NEDE-24011-P-A-14, June 2000 and the U.S. Supplement NEDE-24011-P-A-14-US, June 2000, "General Electric Standard Application for Reactor Fuel".
- 14. EMF-2158(P)(A), Revision 0, "Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2", Siemens Power Corporation, October 1999.
- 15. EMF-2245(P)(A), Revision 0, "Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel", August 2000.
LaSalle Unit 2 Cycle 12
COLR LaSalle 2 Revision 2 Page 42
- 16. EMF-2361 (P)(A), Revision 0, "EXEM BWR-2000 ECCS Evaluation Model", May 2001.
- 17. NEDO-32465-A, "BWR Owner's Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.
- 18. ANF-1358(P)(A), Revision 3, 'The Loss of Feedwater Heating Transient in Boiling Water Reactors", Framatome ANP, September 2005.
LaSalle Unit 2 Cycle 12