ML022030400
| ML022030400 | |
| Person / Time | |
|---|---|
| Site: | Cook |
| Issue date: | 07/16/2002 |
| From: | Greenlee S Indiana Michigan Power Co |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| AEP:NRC:2520, TAC MB3603, TAC MB3604 | |
| Download: ML022030400 (125) | |
Text
SOLVIA Verification Manual EXAMPLE A57 THICK-WALLED CURVED BEAM UNDER END LOAD Objective To verify the behaviour of the cubic ISOBEAM element when employed to model a thick-walled curved beam.
Physical Problem A thick-walled beam clamped at one end and subjected to a concentrated tip load, as shown in the figure below, is considered.
b = 1.0 in h = 3.0 in R = 11.5 in E= 1.0.10' psi V = 0.0 P = 10 lbf R
z Finite Element Model The finite element model used in the analysis is shown in the figure on page A57.2. Three cubic ISOBEAM elements are used to model the beam.
Solution Results The input data on page A57.4 is used in the finite element analysis. The analytical solution for this problem is given in [1].
Tip deflection, w (in):
The figure on page A57.3 shows the deformed finite element model.
Version 99.0 Linear Examples A57.1
SOLVIA Verification Manual A comparison with the analytical solution for the axial stress (psi) given in [1] yields for the integration points closest to the fixed end:
Radius Theory SOLVIA 10.208
-73.42
-73.84 10.990
-26.79
-27.01 12.010 24.50 24.80 12.792 58.61 58.85 The variation in the radial and axial directions of the above axial stress calculated by SOLVIA are shown in the bottom figure on page A57.3.
User Hints The number of available stress point locations is in this example 48 for each element. Stress tables may conveniently be used to select the points for which stresses are requested to be saved and thereby limit the amount of output. Alternatively, stress results for all integration points may be written to the porthole file and a selective display can then be made in SOLVIA-POST.
Reference
[1]
Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, 3rd Ed., McGraw-Hill, 1970, pp. 83-88.
Version 99.0 AS7 THICK-WALLED CURVED BEAM UNDER END LOAD ORIGINAL
- 2.
Z ORIGINAL
- 2.
Z Ly TIME i 1y B, 3 t
FORCE 10 MASTER 10001:
B 1t11 !
EAXES=RST SOLVIA-PRE 99.0 SOLVIA ENGINEERING A3 Linear Examples A57.2
SOLVIA Verification Manual A57 THICK-WAL ORIGINAL 2
MAX DTSPL.
6.2999E-3 TIME SOLVIA-POST 99.0 Linear Examples ED CURVED BEAM UNDER END LOAD z L y LOAD 10 SOLVIA ENGINEERING AB Ir
/
5/
Lij LI c:
AS7 THICK-WALLED CURVED I
ITIME I BEAM UNDER N -
-n -
La or 0
SOLVIA ENGINEERING AB 99.0
/
I
/
10 AXIAL 15 N
-0 C..
1.0 1.5 20.
RADI A 2.5 3.0 Version 99.0 LY)
LJ END LOAD o
E i
,g A57.3
SOLVIA Verification Manual SOLVIA-PRE input HEADING
'A57 THICK-WALLED CURVED BEAM UNDER END LOAD' DATABASE CREATE MASTER IDOF=100011 SYSTEM 1
CYLINDRICAL COORDINATES 1
11.5
/
2 11.5 90.
MATERIAL 1
ELASTIC E=1.E6 EGROUP 1
ISOBEAM SECTION 1 SDIM=3.
TDIM=I.
GLINE NI=I N2=2 AUX=3 EL-3 FIXBOUNDARIES
/
1 3 LOADS CONCENTRATED 2 3 -10.
SET MESH MESH 3
NODES=4 SYSTEM-l NSYMBOLS=MYNODES VIEW=X SMOOTHNESS=YES NNUMBERS=MYNODES ENUMBERS=YES BCODE=ALL SUBFRAME=21 VECTOR=LOAD EAXES-RST GSCALE=OLD SOLVIA END SOLVIA-POST input A57 THICK-WALLED CURVED BEAM UNDER END LOAD DATABASE CREATE WRITE FILENAME='a57.1is' SET VIEW=X MESH ORIGINAL=DASHED SMOOTHNESS=YES VECTOR=LOAD EPLINE NAME=AXIAL 1
142 242 342 TO 3
EPLINE NAME-RADIAL 1
112 122 132 142 SUBFRAME 21 ELINE LINENAME=AXIAL ELINE LINENAME=RADIAL NLIST END 142 242 342 KIND=SRR SYMBOL=I OUTPUT-ALL KIND=SRR SYMBOL=I OUTPUT=ALL Version 99.0 Linear Examples A57.4
SOLVIA Verification Manual EXAMPLE A58 BEAM SUBJECTED TO A TRAVELLING LOAD Objective To verify the mode superposition analysis procedure and the force arrival time option when applied to a model employing BEAM elements.
Physical Problem The simply supported beam, shown in the figure below, subjected to a constant magnitude force travelling across its span at a constant velocity is considered.
Y F--v IP v-t i
~
L 0.04 0.08 L = 480 in EI = 2.0-10'0 lb. in2 v=0.0 p=0.1 lbsec2/in 4
- 48. El t [s]
Finite Element Model The finite element model is shown in the figure on page A58.2. The model consists of twenty equally spaced BEAM elements with a lumped mass distribution. The dynamic response of the beam is calculated using the mode superposition analysis. To model the travelling load the time function and arrival time options are used in SOLVIA.
Solution Results The input data on page A58.4 is used in the finite element analysis. The analytical solution for a one mode solution is given in [1].
Version 99.0 F (t)
I,,
Linear Examples I
.I 1
A58.1
SOLVIA Verification Manual Linear Examples Mid-span deflection, (in):
Time (s)
Analytical [1]
SOLVIA 0.04
-0.0152
-0.0160 0.08
-0.1080
-0.1071 0.12
-0.3103
-0.3053 The figures on page A58.3 show a contour plot of the bending moment after 30 time steps and the time history response of reaction force in Y-direction and the mid-span deflection.
Reference
[1]
Biggs, J.M. Introduction to Structural Dynamics, McGraw-Hill, 1964, pp. 315-318.
AS8 BEAM SUBJECTED TO A TRAVELLING LOAD Y
ORIGINAL 1-50 X
D1,22
.I
.2
.3 4
5
.6 7
.8 9
10 11 1.2 1]3.14
.5
_16
.17
.18 1I9
_20 6_21 "NAS ER 001 10 B 0!lI1I o C llItII 0
D 11111t Y
L-x ORIGINAL
- 50.
TIME 0.02 FORCE 4340.23 SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB Version 99.0 A58.2
SOLVIA Verification Manual Linear Examples AS8 BEAM SUBJECTED TO A TRAVELLING LOAD
,- N N
I, S\\.
/
0.2 0.4 TIME F
I 0.6 C
NJ C-.
(C z
a
0
-o IN 0.
F
/
N'
\\
'-.7.
0 0.2 0.4 TIME SOLVIA-POST 99.0 SOLVIA ENGINEERING AB Version 99.0 AS8 BEAM SUBJECTED TO A TRAVELLING LOAD MAX DISPL.
0.92346 Y
TIME
- 0. 6 L
MOMENT-T MAX 7.9279E5 S7I4324ES S6.4414ES S 4504E5 4.
4 5 9 4 E5 3 468E5 "2 4775ES 1.4I
'865ES 49549 MIN-i.4901E-8 SOLVIA-POST 99.0 SOLV!A ENGINEERING AB 1
- 0.
0.0 A58.3
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A58 BEAM SUBJECTED TO A TRAVELLING LOAD' DATABASE CREATE MASTER IDOFi001110 NSTEP=30 DT=0.02 ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED IMODS=i NMODES=1 FREQUENCIES SUBSPACE-ITERATION NEIG-i TIMEFUNTION 1
- 0. 0. /
0.04 -1.
/
0.08 0. /
100. 0.
COORDINATES 1
TO 21 480.
/
22
- 0.
- 10.
MATERIAL 1
ELASTIC E=2.4Eii NU=0.
DENSITY=0.1 EGROUP 1
BEAM RESULT=FORCES ENODES
/
1 22 1 2 TO 20 22 20 21 SECTION 1
GENERAL RINERTIA=i.
SINERTIA=I.,
TINERTIA-0.08333333 AREA=i.
FIXBOUNDARIES 12 1
FIXBOUNDARIES 2
/
21 FIXBOUNDARIES
/
22 LOADS CONCENTRATED 2 2 0.86806E4 1 0.
TO 20 2 0.86806E4 1 0.72 MESH VIEW=Z NNUMBERS=YES NSYMBOLS=YES BCODE=ALL SUBFRANE-12 MESH VECTOR-LOAD NSYMBOLS=YES SOLVIA END SOLVIA-POST input A58 BEAM SUBJECTED TO A TRAVELLING LOAD DATABASE CREATE WRITE FILENAME='a58.1is' MESH VIEW=Z CONTOUR=MT SUBFRAME 21 NHISTORY NODE=i DIRECTION=2 KIND-REACTION OUTPUT=ALL NHISTORY NODE=ii DIRECTION=2 KIND=DISPLACEMENT OUTPUT-ALL FREQUENCIES MASS-PROPERTIES END Version 99.0 Linear Examples A58.4
SOLVIA Verification Manual EXAMPLE A59 FREQUENCIES OF A CLAMPED THIN RHOMBIC PLATE Objective To verify the dynamical behaviour of the PLATE element in frequency analysis.
Physical Problem The rhombic plate shown in the figure below is analyzed for its free vibration response. All four edges are fixed for translation and rotation. This problem is described in [1].
L= 10.0m ca= 45' h = 0.05 (thickness)
E=2.0.101 N/m 2 v=0.3 p = 8000 kg / m 3 L
Finite Element Model The finite element model is shown in the figure on page A59.2. A consistent mass distribution is employed in the analysis and the natural frequencies are calculated using the determinant search method.
Solution Results The input data on page A59.4 is used in the finite element analysis. In the table below the six lowest natural frequencies predicted by the finite element model are shown. The analysis results using SOLVIA are also compared with the predictions given in [1].
Version 99.0 Y
L x
Mode SOLVIA Reference solution [1]
1 7.924 7.938 2
12.969 12.835 3
18.256 17.941 4
19.057 19.133 5
24.559 24.009 6
28.187 27.922 A59.1 V
Linear Examples
SOLVIA Verification Manual The figures on page A59.3 show the contour plots of the mode shapes of the two first modes, as displayed by SOLVIA-POST.
User Hints Note that the consistent element mass matrix is not a consistent matrix in the usual sense, because linear variations in the displacements over the element are assumed and no mass is attributed to the rotational degrees of freedom.
Reference
[1]
The Standard NAFEMS Benchmarks, TNSB, Rev. 3, 5 October, 1990.
ORIGINAL i2.
SOLVIA-PRE 99.0 AS9 FREOUENCIES OF A CLAMPED THIN RHOMB+/-C PLATE Y
L-x 03 S*b NAXES=SKEL' SOLVIA ENGINEERING AB Version 99.0 Linear Examples N
A59.2
SOLVIA Verification Manual AS9 FREQUENCIES OF A CLAMPED THIN RHOMBIC PLATE REFERENCE i
t2.
MODE 2 FREG 12.969 Y
LX DISPLACEMENT MAX 0.01S317 O 01 4360
- 2. 8720E-3 9.5732E-4 MIN 0 SOLVIA ENGINEERING AB SOLVIA-POST 99.0 Version 99.0 Linear Examples A59.3
SOLVIA Verification Manual SOLVIA-PRE input HEADING
'A59 FREQUENCIES OF A CLAMPED THIN RHOMBIC PLATE' DATABASE CREATE MASTER IDOF=110001 ANALYSIS TYPE=DYNAMIC MASSMATRIX=CONSISTENT FREQUENCIES DETERMINANT-SEARCH NEIG=6 COORDINATES 1
2
- 10.
7.07106781 7.07106781 SKEWSYSTEM VECTORS 1
1 10-1 10 2 1 0 1 -1 0 MATERIAL 1 ELASTIC E=200.E9 NU=0.3 DENSITY=8000.
EGROUP 1 PLATE GSURFACE 1 2 3 4 ELI=12 EL2=12 EDATA
/
1 0.05 NSKEWS INPUT=LINE 14 1
/
23 2
FIXBOUNDARIES INPUT=LINE 1 2
/
2 3
/
3 4
/
4 1 SET NSYMBOLS=MYNODS VIEW=Z MESH NNUMBERS:MYNODS NAXES=SKEW SOLVIA END SOLVIA-POST input A59 FREQUENCIES OF A CLAMPED THIN RHOMBIC PLATE DATABASE CREATE WRITE FILENAME='a59.1is' FREQUENCIES MASS-PROPERTIES SET RESPONSETYPE=VIBRATIONMODE ORIGINAL=YES DEFORMED-NO, VIEW=Z OUTLINE-YES MESH CONTOUR=DISPLACEMENTS TI*E=1 MESH CONTOUR=DISPLACEMENTS TIME=2 END Version 99.0 Linear Examples A59.4
SOLVIA Verification Manual EXAMPLE A60 TRANSIENT HEAT CONDUCTION IN A SEMI-INFINITE SOLID Objective To verify the behaviour of the TRUSS conduction element in a transient analysis.
Physical Problem A uniform infinite solid initially at zero temperature and suddenly exposed to a constant uniform surface heat flow input at time t=0+ as shown in the figure below is considered.
k=l C=1 thermal conductivity specific heat per unit volume q' = 1 heat flow per unit area Finite Element Model The finite element model is shown in the top figure on page A60.2. In the analysis fifteen equal length TRUSS heat flow elements are used. A lumped heat capacity representation and the Euler backward method for the time integration are employed in forty time steps.
Solution Results The input data on pages A60.3 and A60.4 is used in the finite element analysis. The bottom figure on page A60.2 shows the surface temperature versus time compared with the analytical solution ([11 page 75). The temperature distributions into the depth of the solid at the solution times 0.1, 0.2 and 0.4 as predicted by SOLVIA-TEMP together with the corresponding analytical solutions ([1] page 75) are shown on page A60.3. All SOLVIA-TEMP solution curves are drawn with symbols and the corresponding analytical solutions without symbols.
User Hints
- Note that the same problem can also be analyzed using the PLANE and SOLID elements, but since only one-dimensional heat flow shall be predicted, it is most appropriate to employ the TRUSS elements in the idealization.
Reference
[1]
Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, 2nd Ed., Oxford University Press, 1959.
Version 99.0 Linear Examples A60.1
SOLVIA Verification Manual Linear Examples w
cY F
-:J A60 TRANSIENT HEAT CONDUCTION IN A SEMI-INFINITE SOLID c*mC o-,<
if-'
I o
-m A.
.0
.0
.A O
S 0 2
.S
.0 0
3
.t r I ME SOLVIA ENGINEERING AB Version 99.0 A60 TRANSIENT HEAT CONDUCTION IN A SEMI-INFINITE SOLID ORIGINAL ý-
0.2 z Lx j1
,2
.3 4
S 6
7 8
9 10 11 12 13 14 _15 _L6 17 16 19 620 21 22 23 24 25 26.27 28 29 30 31 OR IGINAL 0-
.2 Z
1 2 3
4 S
6 7
8 9
10 i t2 13 14 15 1.6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB 0
0 SOLVIA-POST 99.0 A60.2
SOLVIA Verification Manual Linear Examples SOLVIA-PRE input HEADING
'A60 TRANSIENT HEAT CONDUCTION IN A SEMI-INFINITE SOLID' DATABASE CREATE T-MASTER NSTEP-40 DT-0.01 T-ANALYSIS TYPE-TRANSIENT COORDINATES 1
TO 31
- 3.
T-MATERIAL 1
CONDUCTION EGROUP 1
TRUSS ENODES 1
1 2 TO 30 30 31 EDATA
/
1
- 1.
T-LOADS HEATFLOW 1 1.
SET MESH MESH HEATMATRIX=LUMPED METHOD=BACKWARD-EULER K=I.
SPECIFICHEAT=1.
VIEW=-Y NSYMBOLS=YES HEIGHT=0.25 NNUMBERS=YES SUBFRAME=-2 ENUMBERS=YES SOLVIA-TEMP END Version 99.0 A60 TRANSIENT HEAT CONDUCTION IN A SEMT-INFINITE SOLID co U<
'0 2
°i O
A A
S'x'A 0.0 1.5 1.0 J.q 2.0 2.5 3.r DISTANCE SOLVIA-POST 99.0 SOLVIA ENGINEERING AB A60.3
SOLVIA Verification Manual SOLVIA-POST input A60 TRANSIENT HEAT CONDUCTION IN A SEMI-INFINITE SOLID T-DATABASE CREATE WRITE FILENAME='a60.1is' NPLINE NAME=AA 1
TO 31 AXIS ID=
AXIS ID=
AXIS IDK USERCURVE USERCURVE USERCURVE USERCURVE L
2 3
2 3 4
VMIN=0.0 VMIN-O. 0 VMIN=O. 0
/ READ
/ READ
/ READ
/
READ VMAX=0.8 LABEL='TEMPERATURE' VMAX=3.0 LABEL='DISTANCE' VMAX=0.4 LABEL='TIME' A60TEMP.DAT A60TI01.DAT A60TI02.DAT A60TI04.DAT NHISTORY NODE-I XAXIS=3 YAXIS=i SYMBOL=i PLOT USERCURVE 1 XAXIS=-3 YAXIS=-i SUBFRAME=OLD ALINE LINENAME=AA TIME*0.4 XAXIS=2 YAXIS=1 OUTPUT=ALL SYMBOL=1 NLINE LINENAME=AA TIME=0.2 XAXIS=-2 YAXIS=-i OUTPUT ALL, SYMBOL=2 SUBFRAME=OLD NLINE LINENAME=AA TIME=0.1 XAXIS=-2 YAXIS=-i OUTPUT=ALL, SYMBOL 4 SUBFRAME=OLD PLOT USERCURVE 2 XAXIS=-2 YAXIS=-I SUBFRAME=OLD PLOT USERCURVE 3 XAXIS--2 YAXIS=-i SUBFRAME=OLD PLOT USERCURVE 4 XAXIS=-2 YAXIS=-i SUBFRAME=OLD END Version 99.0 Linear Examples A60.4
SOLVIA Verification Manual EXAMPLE A61 STEADY-STATE HEAT CONDUCTION IN A SQUARE COLUMN Objective To verify the behaviour of the PLANE conduction element in a steady-state temperature analysis.
Physical Problem A square column subjected to 1000 F on one side and to 0' F on the other sides, as shown in the figure below, is considered.
00 F 00 F a
1000 F Centerline k = 1 thermal conductivity a = b = 4 in.
00 F b
Finite Element Model Using symmetry considerations, only one-half of the column is modeled in the finite element mesh as seen in the figure above and the top figure on page A61.2. The model consists of thirtytwo 8-node PLANE conduction elements and the conductivity of the material is assumed to be temperature independent.
Solution Results The figures on page A61.3 give the temperature and heat flux distribution in the column predicted by SOLVIA-TEMP using the input data on page A61.4. The calculated temperatures along the centerline and the corresponding analytical solution ([1] page 167) are shown in the bottom figure on page A61.2. Note that the calculated and the analytical temperatures coincide in the figure.
User Hints
" Nodes with zero degrees temperature may conveniently be deleted as degrees of freedom. If nodal temperatures are specified to be different from zero, time functions must be used.
" If a detailed temperature solution is desired for the comer area near node 18 a finer mesh is needed for that portion.
Reference
[1]
Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, 2nd Ed., Oxford University Press, 1959.
Version 99.0 Linear Examples A61.1
SOLVIA Verification Manual Linear Examples A61 STEADY-STATE HEAT CONDUCTION TN A SQUARE COLUMN ORIGINAL 0.5 z
LY 19 BCODE TEMPERATURE SOLVIA ENGINEERING AB SOLVIA-PRE 99.0 Version 99.0 A61 STEADY-STATE HEAT CONDUCTION IN A SQUARE COLUMN I
I TIME I
Li 0
L'i LL 0.
0' H- -
\\
N%
wC YDISIANCE ALONE CE-NERl INE SOLVIA OOST 99.0 SOLVIA ENGINEERING AB A61.2
SOLVIA Verification Manual Version 99.0 A61 STEADY-STATE HEAT CONDUCTION IN A SQUARE COLUMN ORIGINAL v-0.5 Z
TIME I Y
CEy HEAT FLOW t25.42 SOLVIA-POST 99.0 SOLVIA ENGINEERING AB Linear Examples A61.3
SOLVIA Verification Manual Linear Examples SOLVIA-PRE input HEADING
'A61 STEADY-STATE HEAT CONDUCTION IN A SQUARE COLUMN, DATABASE CREATE COORDINATES ENTRIES NODE Y
Z 1
- 4.
- 2.
TO 17
- 0.
- 2.
18
- 0.
- 0.
19
- 4.
- 0.
T-MATERIAL 1 CONDUCTION K=I.
EGROUP 1
PLANE STRAIN GSURFACE 1 17 18 19 ELI=8 EL2=4 NODES=8 FIXBOUNDARIES TEMPERATURE INPUT=LINE
/
1 19
/
19 18 T-LOADS TEMPERATURE INPUT-LINE
/
17 18 100.
T-LOADS TEMPERATURE INPUT=NODE DELETE 18 SET NSYMBOL=MYNODES MESH ENUMBER-YES NNUMBERS=MYNODES BCODE=TEMPERATURE SOLVIA-TEMP END SOLVIA-POST input A61 STEADY-STATE HEAT CONDUCTION IN A SQUARE COLUMN T-DATABASE CREATE WRITE FILENAME='a61.lis' AXIS ID=1 VMIN=O.
VMAX=100.
LABEL='TEMPERATURE' AXIS ID=2 VMIN=O.
VMAX=4.0 LABEL='Y-DISTANCE ALONG CENTERLINE' USERCURVE 1 /
READ A61TEMP.DAT NPLINE CENTER /
17 TO 1 NLINE CENTER KIND=TEMPERATURE XAXIS=2 YAXIS=1 SYMBOL=1 PLOT USERCURVE 1 XAXIS=-2 YAXIS=--
SUBFRAME=OLD SET NSYMBOLS=MYNODES MESH CONTOUR=TEMPERATURE VECTOR=TFLUX MESH VECTOR=TFLOW PLINES=CENTER ZONE NAME=EDGE INPUT=NODES
/
1 TO 17 NLIST ZONENAME=EDGE END Version 99.0 A61.4
SOLVIA Verification Manual EXAMPLE A62 STEADY-STATE HEAT CONDUCTION IN HOLLOW CYLINDER Objective To verify the behaviour of the PLANE AXISYMMETRIC conduction element when subjected to a uniform surface temperature.
Physical Problem A long hollow cylinder subjected to a uniform inside surface temperature of 100' F, and a uniform outside surface temperature of 0' F, as shown in the figure below, is considered. The cylinder is assumed to be insulated to prevent axial heat flow.
z 9=90 ri = 1.0 in r,, = 2.0in i = 100°lF 0o =O°F K = 1 (thermal conductivity)
Finite Element Model The finite element model is shown in the left top figure on page A62.2. The model consists of ten 4 node PLANE AXISYMMETRIC conduction elements and the material is assumed to have constant isotropic conductivity and constant specific heat.
Solution Results The right top figure on page A62.2 shows the calculated results in the finite element analysis using the input data on page A62.3. The temperature and flux results along radial lines are also compared with the analytical solutions [1] as seen in the bottom figures on page A62.2. Note that the calculated and analytical temperature curves coincide in the left bottom figure.
Reference
[1]
Carslaw, H.S. and Jaeger, J.C. Conduction of Heat in Solids, 2nd Ed., Oxford University Press, 1959.
Version 99.0 Linear Examples A62.1
SOLVIA Verification Manual Linear Examples A62 STEADY-STATE HEAT CONDUCTION IN HOLLOW CYLINDER ORIGINAL
. 1 Z LY R
9t tO 7
N 5
4 3
2 ORIGINAt
-4 1
SOLVTA-PRE 99.
EAXES=RST z
R BCODE TEMPERATURE SOLVIA ENGINEERING AS A62 STEADY-STATE HEAT CONDUCTION IN HOLLOW CYLINDER 2S IX SOLV.A-POST 99 0.2 0.4 I.N 0.8 1.0 DIS1ANCE 9.0 SOLVIA ENGINEERING AB Version 99.0 A62 STEADY-STATE HEAT CONDUCTION IN HOLLOW CYLINDER 1--.
E-0.0 0.2 0.4 0.6 0R8 1.0 DISTANCE SOLVIA-POST 99.0 SOLVIA ENGINEERING AB A62.2
SOLVJA Verification Manual SOLVIA-PRE input HEADING
'A62 STEADY-STATE HEAT CONDUCTION IN HOLLOW CYLINDER' DATABASE CREATE COORDINATES ENTRIES NODE Y
Z 1
- 2.
.1 TO 11
- 1.
.1 12
- 1.
13
- 2.
T-MATERIAL 1
CONDUCTION K=i.
EGROUP 1
PLANE AXISYMMETRIC GSURFACE 1 11 12 13 ELi=10 EL2=1 NODES=4 FIXBOUNDARIES TEMPERATURE
/
1 13 T-LOADS TEMPERATURE 11 100.
/
12 100.
SET NSYMBOLS=MYNODES PLOTORIENTATION=PORTRAIT MESH EAXES=RST NNUMBERS=MYNODES SUBFRAME=12 MESH ENUMBERS=YES BCODE=TEMPERATURE SOLVIA-TEMP END Version 99.0 Linear Examples A62.3
SOLVIA Verification Manual SOLVIA-POST input A62 STEADY-STATE HEAT CONDUCTION IN HOLLOW CYLINDER T-DATABASE CREATE WRITE FILENAME-'a62.lisl NPLINE NAME=RADIUS
/
11 STEP -1 TO 1
EPLINE NAME=E-RADIUS /
10 1 3 TO 1 1 3 SET PLOTORIENTATION=PORTRAIT SUBFRAME 12 MESH OUTLINE:YES CONTOUR=TEMPERATURE VECTOR=TFLUX MESH PLINE:ALL AXIS ID=1 VMIN=0 VMAX=100 LABEL='TEMPERATURE' AXIS ID=2 VMIN=0 VMAX=-
LABEL='DISTANCE' AXIS ID=3 VMIN=0 VMAX-l50 LABEL='TFLUX' USERCURVE 1
READ A62TEMP.DAT USERCURVE 2 READ A62FLUX.DAT NLINE LINENAME=RADIUS KIND=TEMPERATURE XAXIS=2 YAXIS=-
SYMBOL=i OUTPUT=ALL PLOT USERCURVE 1 XAXIS=-2 YAXIS=-l SUBFRAME=OLD ELINE LINENAME=E-RADIUS KIND=TFLUX XAXIS=2, YAXIS=3 SYMBOL-i OUTPUT=ALL PLOT USERCURVE 2 XAXIS=-2 YAXIS:-3 SUBFRAME=OLD END Version 99.0 Linear Examples A62.4
SOLVIA Verification Manual EXAMPLE A63 CHANGE IN ELECTRIC POTENTIAL DUE TO CRACK GROWTH Objective To verify the PLANE conduction element when applied to an electric conduction problem.
Physical Problem The V-notched bending specimen shown in the figure below is analyzed for a crack propagating downward from the notch. This specimen has experimentally been analyzed (Ritchie [1]) by passing an electric current through the specimen and measuring the voltage across the crack.
4.5 VOLTAGE MEASUREMENT (REF. POINT)
UNIFORM CURRENT INPUT I-w L = 100 in.
w = 20 in.
c = 5 in.
LI2 LINE OF SYMMETRY Finite Element Model Because of symmetry considerations only one half of the specimen is modeled and the uncracked finite element model is shown in the figure on page A63.2. The model consists of 8-node PLANE conduction elements. Because of antisymmetry the voltage along the uncracked centerline of the specimen is zero. Therefore, in the SOLVIA-TEMP solution the nodes on the centerline (excluding the crack) are assigned zero voltage.
Solution Results An analysis without any crack (a=0) using the input data on pages A63.4 and A63.5 gives for the reference node 4:
V, =0.378881 A crack length a of 10 inches ((c+a)/w=0.75) gives the following result for the reference node 4 using the input data on page A63.6:
Vcra = 1.24834 Version 99.0 Linear Examples A63.1
SOLVIA Verification Manual Linear Examples A crack length of 10 inches gives, therefore, the ratio Vc+a -3.295 which is in good agreement with the experimental results given in [1].
Reference
[1]
Ritchie, R.O. and Bathe, K.J., "On the Calibration of the Electrical Potential Technique for Monitoring Crack Growth Using Finite Element Methods", Int. J. of Fracture, Vol. 15, No. 1, Febr. 1979, pp. 47-55.
Version 99.0 A63 CHANGE TN ELECTRIC POTENTIAL DUE TO CRACK GROWTH ORIGINAL S--
S.
Z TIME 1 L
HEATFLUX O.06 BCODE TEMPERATURE SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB A63.2
SOLVIA Verification Manual Linear Examples A63 CHANGE IN ELECTRIC POTENTIAL DUE TO CRACK GROWTH ORIGINAL
- 2.
TIME 1
ZONE NOTCH Z
ORIGINAL
- 2.
L yTIME 1
ZONE NOTCH TEMPERATURE MAX 0.69794 0.65432 O0.5 6708 0.47984 S039259 0 30535 0.21811 O0.
13086 0.043622 MIN 0 HEAT FLUX MAX 0.23909 0.22440
- 0. 19502 0.16563 0.13625 O.10686 0.077476 0.048091 0.018706 MEN 4.0131E-3 SOLVIA-POST 99.0 SOLVIA ENGINEERING AB Version 99.0 Z Ly A63.3
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A63 CHANGE IN ELECTRIC POTENTIAL DUE TO CRACK GROWTH' DATABASE CREATE COORDINATES ENTRIES NODE 1
2 3
4 5
6 7
8 9
10 LINE LINE LINE LINE LINE LINE LINE STRAIGHT STRAIGHT COMBINED STRAIGHT STRAIGHT COMBINED STRAIGHT Y
50.
z 0.
- 50.
- 15.
48.0866 20.
47.4
- 40.
- 34.
- 0.
- 0.
- 34.
- 40.
1 2 2 3 1 3 3 4 4 5 3 5 10 1
- 20.
- 20.
- 20.
- 20.
- 0.
- 0.
0.
EL=9 EL=3 2
MIDNODES-1 MIDNODES=1 EL=2 MIDNODES=1 EL=5 MIDNODES=1 4
EL=7 MIDNODES 1 RATIO=0.2 T-MATERIAL 1
CONDUCTION K=I.
EGROUP 1
PLANE STRESS2 GSURFACE 1 3 5 10 EL1=12 GSURFACE 5 6 9 10 EL1=1 GSURFACE 6 7 8
9 EL1-4 EDATA
/
1 20.
Crack length, A=-.
EL2=7 EL2=4 EL2=4 FIXBOUNDARIES TEMPERATURE INPUT=LINE T-LOADS HEATFLUX INPUT=LINE 7
8 0.06 SET NSYMBOLS=MYNODES MESH NNUMBERS=MYNODES SOLVIA-TEMP END NODES=8 EL4=12 NODES=8 NODES=8
/
1 2 VECTOR=HEATFLUX BCODE=TEMPERATURE Version 99.0 Linear Examples A63.4
SOLVIA Verification Manual SOLVIA-POST input:
A63 CHANGE IN ELECTRIC POTENTIAL DUE TO CRACK GROWTH Crack length, A=0.
T-DATABASE CREATE WRITE FILENAME='a63.lis' SET OUTLINE=YES MESH CONTOUR=TEMPERATURE ZONE NAME=NOTCH INPUT=GLOBAL-LIMITS YMIN=40 ZMIN=10 SET ZONENAME=NOTCH MESH CONTOUR=TEMPERATURE SUBFRAME=21 MESH CONTOUR=TFLUX ZONE NAME=NODI-10 INPUT-NODES
/
1 TO 10 NLIST ZONENAME=NODI-10 END Version 99.0 Linear Examples A63.5
SOLVIA Verification Manual SOLVIA-PRE-input:
HEAD
'A63A CHANGE IN ELECTRIC POTENTIAL DUE TO CRACK GROWTH' DATABASE CREATE COORDINATES ENTRIES NODE 1
2 3
4 5
6 7
8 9
10 11 LINE STRAIGHT LINE STRAIGHT LINE STRAIGHT LINE COMBINED LINE STRAIGHT LINE STRAIGHT LINE COMBINED LINE STRAIGHT Y
- 50.
- 50.
48.0866 47.4
- 40.
- 34.
- 0.
- 0.
34
- 40.
50.
1 11 El 11 2 El 2 3 El 1 3 1
3 4 El 4
5 El 3
5 4
10 1 El z
- 0.
- 15.
- 20.
- 20.
- 20.
- 20.
- 20.
- 0.
- 0.
- 0.
5.
L=3 L=6 L=3 1 2 L=2 L=5 MIDNODES=1 MIDNODES=
MIDNODES=1 MIDNODES=1 MIDNODES=1 L=7 MIDNODES=1 RATIO-0.2 T-MATERIAL 1
CONDUCTION K=i.
EGROUP 1
PLANE STRESS2 GSURFACE 1 3 5 10 EL1-12 GSURFACE 5 6 9 10 EL1=1 GSURFACE 6 7 8 9
EL1=4 EDATA
/
1 20.
Crack length, A=i0.
EL2=7 NODES=8 EL2=4 EL4=12 NODES=8 EL2=4 NODES=8 FIXBOUNDARIES TEMPERATURE INPUT=LINE T-LOADS HEATFLUX INPUT=LINE 7 8 0.06 SET NSYMBOLS=MYNODES MESH NNUMBERS=MYNODES SOLVIA-TEMP END VECTOR=HEATFLUX BCODE=TEMPERATURE Version 99.0
/
1 11 Linear Examples A63.6
SOLVIA Verification Manual EXAMPLE A64 THERMAL EIGENVALUES AND MODE SHAPES Objective To verify the dynamical behaviour of the TRUSS conduction element in thermal eigenvalue analysis.
Physical Problem A uniform infinite liquid is considered as shown in the figure below. The conductivity, specific heat and density of the liquid are assumed constant. A column of the liquid, insulated at all the column surfaces, shall be solved for its thermal eigenvalues and mode shapes.
y
( ins) 03 Material Properties:
k = 1.08 Btu/(in sec OF) pc=1.
Btu/(in 3 F)
A/
INSULATED Finite Element Model The finite element model consists of eight equally spaced 2-node TRUSS conduction elements as shown in the figure below. A lumped diagonal heat capacity matrix is employed in the analysis.
dq
= 0 dn dn Solution Results The differential equation governing this one-dimensional heat conduction problem is a ( xk
@9 C-Do Version 99.0 Linear Examples A64.1
SOLVIA Verification Manual where 0 = temperature k = thermal conductivity C = specific heat per unit volume (C = pc where c is specific heat per unit mass and p is the mass density)
Assuming the solution to be 0-Ae-tcosT 7C L
which satisfies the insulated boundary conditions, we obtain the thermal eigenvalues
, )2 k 0,1,2,...
Applying the normalization condition L
f CA cos2 n7rudx =1 L
0 we obtain F2J_
CLL Using the input data as shown on page A64.3, SOLVIA-TEMP gives the following eigenvalues, which are compared with the analytical solution:
The modal temperatures for node 1 are calculated as follows:
Mode Theory SOLVIA-TEMP 0
0.5000 0.5000 1
0.7071 0.7071 2
-0.7071
-0.7071 User Hints Since one of the eigenvalues is zero it is necessary to specify IRBM=I in the command T-FREQUENCIES in SOLVIA-PRE.
Version 99.0 Mode Theory SOLVIA-TEMP 0
0 0
1 0.6662 0.6577 2
2.665 2.531 Linear Examples A64.2
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A64 THERMAL EIGENVALUES AND MODE SHAPES' DATABASE CREATE T-ANALYSIS TYPE=TRANSIENT HEATMATRIX=LUMPED T-FREQUENCIES NEIG=3 IRBM=1 COORDINATES 1
TO 9
- 4.
T-MATERIAL 1
CONDUCTION K=1.08 SPECIFICHEAT=d.
EGROUP 1
TRUSS ENODES 1
1 2 TO 8
8 9 EDATA
/
1
- 1.
SOLVIA-TEMP END SOLVIA-POST input A64 THERMAL EIGENVALUES AND MODE SHAPES T-DATABASE CREATE WRITE FILENAME='a64.1is' FREQUENCIES SET RESPONSETYPE=VIBRATIONMODE NLIST TSTART=1 TEND-3 END Version 99.0 Linear Examples A64.3
SOLVIA Verification Manual EXAMPLE A65 TORSIONAL SHEAR STRESS IN A T-SECTION BEAM Objective To demonstrate the calculation of shear stresses due to Saint-Venant torsion using the PLANE conduction element.
Physical Problem The T-section beam shown in the figure below is analyzed for its elastic torsional behaviour. The shear stresses due to an angle twist are to be analyzed. The angle twist, a, is defined per unit length and is taken from example A99 where the same section has been modelled by SHELL elements.
M a
M x
E GE 2(1+,v)
E=2.1.10" 1 N/m 2 wiop v=0.3 ct=9.66.10-3 2Gct = 1.56.10 9 wtop = 0.1 m d=0.l m t1 =0.01 m t2 = 0.01 m Finite Element Model The goveming equation for the elastic torsional behaviour is given in [1], art. 104:
D2p a2ýp
_2
+ ýýz_ +2Gacc = 0 where 4) is a stress function, G is the material shear modulus and aX is the angle of twist per unit length. This equation is analogous to the heat transfer equation governing planar heat flow:
a ýky ao)+ a(k, ao0"q B =
where k and kz are the thermal conductivities corresponding to the principal axes y and z respec tively, 0 is the temperature in the body and qB is the internal heat generation per unit volume. Based on this analogy, 8-node PLANE conduction elements with unit conductivity are used in the finite ele ment model, as shown in the top figure on page A65.3. In the analysis, q' is set equal to 2Ga for the torsional problem. The condition of a stress-free boundary is imposed by setting the temperatures of the boundary nodal points to zero.
Version 99.0 Linear Examples A65.1
SOLVIA Verification Manual Linear Examples Solution Results The result point lines are shown on page A65.3 and the shear stresses on page A65.4 and A65.5. The results are obtained in the finite element analysis using the input data on pages A65.5 and A65.6. The shear stresses can be obtained from the calculated heat fluxes since az az ay
=
k ay o
a y ky3 (heat flux in negative Z-direction)
(heat flux in positive Y-direction)
The maximum shear stresses at the undisturbed lines CROSS-F and CROSS-W are +/- 7.80 MPa which is in good agreement with the corresponding values +/- 7.60 for the flange and + 7.73 for the web calculated for the SHELL element model in example A99. A BEAM element model subjected to the same angle of twist per unit length 9.66.10-3 gives + 7.80 MPa in maximum torsional stress, which agrees with the value calculated here.
A very high shear stress may be calculated at the re-entrant comers between the flange and the web. If these stresses are important the actual comer radius must be used in the model.
Reference
[1]
Timoshenko, S.P. and Goodier, J.N., Theory of Elasticity, 3rd Edition, McGraw-Hill, 1970.
A6S TORSIONAL SHEAR STRESS IN A T-SECTION BEAM ORIGINAL 0.01 Z Ly SOLVIA-PRE 99.0 SOLVIA ENGINEERING AS A65 TORSIONAL SHEAR STRESS IN A T-SECTION BEAT ORIGINAL 0.01 TIME I
TEMPERATURE MAX 29034 S27220 23590 i 9961 6
R332 12702 9073 2 5443.9 1 814 6 MIN 0 SOLVIA ENGINEERING AS Version 99.0 Z
SOLVIA-POST 99.0 A65.2
[
,41p
SOLVIA Verification Manual Linear Examples A6S TORSIONAL SHEAR STRESS IN A T-SECTION BEAN A65 TORSIONAL SHEAR STRESS IN A TISECTION BEAN ORIGINAL 0.02 Z
ORIGINAL H
0.02 Z
FLANCE-B ORIGINAL 002 z
ORIGINAL
-0.02 Z
L L
SOLNSA-POST 99.0 SOLVIA ENGINEERNG AB SOLVIA-POST 99.0 SOLVIA ENGINEERING AB Version 99.0 A6S TORSIONAL SHEAR STRESS IN A T-SECTION BEAS ORIGINAL 0.02 Z
ORIGINAL 0.02 Z
COSS-A SOLVIA-POST 99.0 SOLVIA ENGINEERING AB A65.3
SOLVIA Verification Manual Linear Examples A6O TORSIONAL SHEAR STRESS IN A T-SECTION BEAR
-!/
-*I 6,00 0.2 I
0.04 0 06 0.08 FLANGE-T o/ is
-7 L.0 0
R. '02 SOLVIA-POST 99.0 0,0T 0.06 0 0T T.10 FLANGE-M SOLVIA ENGINEERING AR A6S TORSIONAL SHEAR STRESS
!N A T-SECTION BEAT
- 0. so 0,'Q o 04 o. 06 0.08 0.10 FLANGE--B II I
T 1.
0.00 0302 0.04 006 0.0S I I0 AEB-T SOLVIA-POST 99.0 SOLTIA ENGINEERING AB A6S TORSIONAL SHEAR STRESS IN A T-SECTION BEAN
.IE E I 0C 0,32 0.1 aIS C C6 CT0 0 IT WET I t
I
/
I I
Ti 0
,00 0.02 SOLVIA-POST 99.0 0.04 0.06 0.08 C 10 WEB S
N 55 R:A ENGINEERING AR Version 99.0 A65.4 A65 TORSIONAL SHEAR STRESS IN A T-SECTION BEAM r<T i
0.00 0.02 0T04 0C 06 0C08 0
C i FLANGE-S.
I PST RN 0 OI E
TIME I
° -f.............
..........J7..............
0.00 0.02 C0'01 a 106 0 '08 0 16 FLANGE-B SOLVIA-POST 99.0 SOLVIA ENGINEERING AS c*
5
,^
x i
-.\\
SOLVIA Verification Manual A6S TORSIONAL SHEAR STRESS IN A T-SECTION BEAM TIME I O.0 2 0 4 0 4 0 1I0.
CROSS F
- o.
2.0 0
4.0 6.0 4 0 1a00
- 1 i
CROSS-W SOLAIA-P0 2
499.0 SC' VIR ENGINEERTNG RB SOLVIA-PRE input HEAD
'ASS TORSIONAL SHEAR STRESS IN A T-SECTION BEAM' DATABASE CREATE COORDINATES ENTRIES NODE Y Z 1
.0.1
/2.1.1 /3
.0 0.09 /4
.045.09 5.055.09 6.1.09 7
.045.0 /
.055 T-MATERIAL 1
CONDUCTION K-i.
SET NODES-S MIDNODES=1 LINE STRAIGHT 3 4 EL-36 LINE STRAIGHT 4 5 EL=8 LINE STRAIGHT 5 6 EL-36 LINE COMBINED 3 6 4 5 LINE STRAIGHT 1 2 EL-SO EGROUP 1
PLANE STRAIN T-RESULTS=NPLUXES GSURFACE 2 1 3 6 EL2-S GSURPACE 5 4 7 8 EL2-S0 P-LOADS HEATGENERATION 1 1.56046E9 TO 1280 1.56046E9 SOLVIA-TEPRinu EXUDARE TEMPERATURE IT-LINES ST-PLOTORIENTATIONDUCRTRITNKI MSHT NNUMER-8MYDNODES=NYI L YOE LVIA-STEMPH 4EL3 EIND TAGT45E=
Version 99.0 Linear Examples A65.5
SOLVIA Verification Manual SOLVIA-POST input A65 TORSIONAL SHEAR STRESS IN A T-SECTION BEAM T-DATABASE CREATE WRITE FILENAME-'a65.lis' SET OUTLINE=YES PLOTORIENTATION=PORTRAIT MESH CONTOUR=TEMPERATURE FLANGE-T /
80 2 5 1 TO 1 2 5 1 FLANGE-M / 400 2 5
1 TO 321 2 5 1 FLANGE-B /
640 3 7 4 TO 561 3 7 4 WEB-T / 641 1 8 4 STEP 8 TO 1273 1 8 4 WEB-M / 645 1 8 4 STEP 8 TO 1277 1 8 4 WEB-B /
648 2 6 3 STEP 8 TO 1280 2 6 3 CROSS-F /
18 1 8 4 STEP 80 TO 578 1 8 4 CROSS-W / 961 1 5 2 TO 968 1 5 2 PLINE=FLANGE-T SUBFRAME=12 PLINE=FLANGE-M PLINE=FLANGE-B SUBFRAME=12 PLINE=WEB-T PLINE=WEB-M SUBFRAME=12 PLINE=WEB-B PLINE=CROSS-F SUBFRAME=12 PLINE=CROSS-W EPLII EPLII EPLI EPLIt EPLIN EPLIN EPLIN EPLIN MESH MESH MESH MESH MESH MESH MESH MESH AXIS AXIS AXIS AXIS AXIS AXIS AXIS AXIS AXIS VMIN=0 VMIN=-10.E6 VMIN=-20.E6 VMIN--10.E6 VMIN=-20.E6 VMAX=10.E6 LABEL='STRESS-XY' VMAX=0.
LABEL='STRESS-XY' VMAX=20.E6 LABEL='STRESS-XY' VMAX=10.E6 LABEL='STRESS-XY VMAX=20.E6 LABEL='STRESS-XZ' VMAXM0.
LABEL='STRESS-XZ' VMAX=0.
LABEL='STRESS-XZ' VMAX=10.E6 LABEL='STRESS-XZ' VMAX=20.E6 LABEL='STRESS-XZ' EVARIABLE ZFLUX TYPE=PLANE KIND=TZFLUX RESULTANT STRESSXY STRING='-ZFLUX' FLANGE-T FLANGE-M FLANGE-M FLANGE-B FLANGE-B WEB-T WEB-M WEB-B CROSS-F CROSS-W STRESSXY YAXIS=3 SUBFRAME=12 KIND=TYFLUX YAXIS=-5 STRESSXY YAXIS=3 SUBFRAME=12 KIND=TYFLUX YAXIS-16 STRESSXY YAXIS=4 SUBFRAME-12 KIND=TYFLUX YAXIS=12 STRESSXY YAXIS=1 SUBFRAME=12 KIND=TYFLUX YAXIS=14 STRESSXY YAXIS=5 OUTPUT=ALL SUBFRAME=12 KIND=TYFLUX YAXIS=-5 OUTPUT=ALL Version 99.0 4E 4E 4E 4E 4E NE NE NE 1 VMIN=0 3 VMIN=-10.E6 4 VMIN=0.
5 VMIN=-10.E6 12 13 14 15 16 RLINE ELINE RLINE ELINE RLINE ELINE RLINE ELINE RLINE ELINE END Linear Examples A65.6
SOLVIA Verification Manual EXAMPLE A66 FUNDAMENTAL FREQUENCY OF A CANTILEVER, 4-NODE SHELL Objective To verify the dynamical behavior of the 4-node SHELL element in frequency analysis when employing skew systems.
Physical Problem Fundamental frequency and mode shape in Y-Z plane of a cantilever beam of rectangular cross section as shown in the figure below is to be calculated. The cantilever is the same as previously analyzed in Examples A44 to A50 using other elements.
H b Ih L=1.0 m b = 0.05 m h = 0.10m 0 = 300 E = 2.0.10t" N/m 2 v = 0.30 p = 7800 kg/m3 Finite Element Model Ten 4-node SHELL elements are used to model the cantilever beam as shown in the figure on page A66.2. Because of symmetry only one half of the cantilever is modeled using symmetry boundary conditions along line 1-4. The determinant search method of analysis and a consistent mass discretization are employed in the frequency analysis.
Solution Results The theoretical solution for this problem is presented in Example A44.
The SOLVIA numerical solution using the input data on page A66.4 gives the following results:
Version 99.0 1Z Linear Examples A66.1
SOLVIA Verification Manual User Hints
"* Employing a lumped mass matrix in the finite element analysis yields the result f = 81.13 Hz.
"* Note that when the strain energy in the elements are calculated in SOLVIA-POST in a frequency analysis, modal stresses and strains must be requested to be calculated in the SOLVIA analysis.
Version 99.0 A66 FUNDANENTAL FREQUENCY OF A CANTILEVER, 4-NODE SHELL ORIGINAL 0---S---
0.0 z
X Y
B2DC I
MAS7ER C0000 B 011101 C 1O00CI D 111i1t SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB Linear Examples A66.2
SOLVIA Verification Manual A66 FUNDAMENTAL FREQUENCY OF A CANTILEVER, 4-NODE SHELL REFERENCE 0.05 MAX DISPL.
0.44956 MODE 1 FREO 80.983 z
X Y
DISPLACEMEN MAX 0.44956 S0.42!47 0.36527 O.30907
- 0. 25288 o
- 19668
- 0. 14049 0 084293
- 0. 028098 MIN 0 SOLVIA-POST 99.0 SOLVIA ENGINEERING AB A66 FUNDAMENTAL FREQUENCY OF A CANTILEVER, 4-NODE SHELL MAX DISPL. [--
0.44956 MODE I
FREO 80.983 z
X Y
STRAINENFRGY DENSITY SHELL TOP MAX S.3486E8 5.0143E8
'4.3458E8 3.6773E8 3.0089E8
- 2. 3404E8 1 6719F8 S3.3493E7 MIN 68571 SOLVIA-POST 99.0 SOLVIA ENGINEERING AB Version 99.0 Linear Examples A66.3
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A66 FUNDAMENTAL FREQUENCY OF A CANTILEVER, 4-NODE SHELL' DATABASE CREATE ANALYSIS TYPE=DYNAMIC MASSMATRIX=CONSISTENT FREQUENCIES DETERMINANT-SEARCH NEIG=1 MODALSTRESSES=YES SYSTEM 1
CARTESIAN PHI=30 COORDINATES 1
/
2 0.025
/
3 0.025 SKEWSYSTEM EULER-AN 1
/
4 0 1 GLES
/
1 30.
MATERIAL 1
ELASTIC E=2.E11 NU=0.3 DENSITY=7800 EGROUP 1
THICKNESS GSURFACE SHELL 1
0.1 2
3 4 1 ELI=-0 EL2-1 NODES=4 NSKEWS INPUT=SURFACE 2 3 4 1 1
FIXBOUNDARY 156 INPUT=LINE FIXBOUNDARY 12346 INPUT=NODE FIXBOUNDARY 2346 INPUT=NODE
/
1 4
/2
/
2 MESH NSYMBOLS=MYNODES NNUMBERS=MYNODES BCODE=ALL SOLVIA END SOLVIA-POST input A66 FUNDAMENTAL FREQUENCY OF A CANTILEVER, 4-NODE SHELL DATABASE CREATE WRITE FILENAME='a66.1is' SET RESPONSETYPE-VIBRATIONMODE FREQUENCIES MASS-PROPERTIES SUMMATION KIND-ENERGY DETAILS=YES MESH MESH END CONTOUR=DISPLACEMENT ORIGINAL=DASHED CONTOUR=ENERGY Version 99.0 Linear Examples A66.4
SOLVIA Verification Manual EXAMPLE A67 SCORDELIS-LO CYLINDRICAL ROOF, 4-NODE SHELL Objective To verify the 4-node SHELL element to model cylindrical shell structures.
Physical Problem A cylindrical shell roof subjected to gravity loading is considered, see figure below. The shell roof is supported on diaphragms at the ends and it is free along the longitudinal sides. The problem is the same as for Example A30.
R = 300 in E = 3.0-106 psi L = 600 in V = 0.0 h = 3.0 in (thickness) 0 = 400 Shell weight = 90.0 lb/sq.ft diaphragm X
Finite Element Model Due to symmetry, only one quarter of the cylindrical shell roof needs to be considered. The part A-B-C-D in the figure above is modeled using 144 SHELL elements, see figures on page A67.3.
The nodes corresponding to the diaphragm side (side DA) are fixed for translation in the y-and z-directions. Symmetrical boundary conditions are applied along sides BC and CD.
Solution Results This example problem has been used extensively as a benchmark problem for shell elements. The analytical shallow shell solution generally quoted for the vertical deflection at the centre of the free edge (point B) is -3.703 inches [1] although some authors use -3.696 inches. A deep shell exact analytical solution quoted is -3.53 inches. Input data is shown on page A67.5. The numerical solution for the vertical deflection calculated with SOLVIA at point B is -3.609 inches.
The deformed mesh and the axial stress and circumferential stress along line CB are shown on page A67.4.
Version 99.0 Linear Examples A67.1
SOLVIA Verification Manual User Hints
- SOLVIA-PRE automatically assigns GLOBAL rotations for shell midsurface nodes with boundary condition for rotation specified. The boundary conditions for the finite element model along sides BC and CD are specified as follows:
Along side BC (line 3-4) u, = 0y = 0, = 0 where u, = translational displacement along x-direction 0y1 0, = rotations about y-and z-axes respectively.
And along side CD (line 4-1) uy = 0 = 0z = 0 where uy = translational displacement along y-direction 0e = rotation about x-axis
- Note that SOLVIA-PRE automatically handles the specification of midsurface vectors that are used by the SHELL elements.
Reference
[1]
Scordelis, A.C., Lo, K.S., "Computer Analysis of Cylindrical Shells", J. Amer. Concr. Inst.,
Vol 61, pp. 539-560, 1964.
Version 99.0 Linear Examples A67.2
SOLVIA Verification Manual Linear Examples A67 SCORDELIS-LO CYLINDRICAL
- ROOF, 4-NODE SHELL ORIGINAL s-o 50.
Z x '- y SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB Version 99.0 A67 SCORDELIS-LO CYLINDRICAL ROOF, 4-NODE SHELL ORIGINAL i
- 50.
Z X
Y MASTER 000000 B 010101 C 01i1000 O 011101 E 100011 1F 10111 SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB A67.3
SOLVIA Verification Manual Linear Examples A67 SCORDELIS-LO CYLINDRICAL ROOF TIME I
Cr) 09
/
N 0
0 N
N IS0 200 250 4-NODE SHELL TIME I
LINE-CB SHELLSURJACE
[OP SOLVTA-POST 99.0 LINE-CB SHELLSURFACE
[OP SOLVIA ENGINEERING AB Version 99.0 C>
(I) u)
LO 0
so 100
\\,
A67.4
SOLVIA Verification Manual SOLVIA-PRE input HEADING
'A67 SCORDELIS-LO CYLINDRICAL ROOF, 4-NODE SHELL' DATABASE CREATE ANALYSIS TYPE=STATIC MASSMATRIX=LUMPED SYSTEM 1 CYLINDRICAL COORDINATES ENTRIES NODE R
THETA XL 1
300 90 300 2
300 50 300 3
300 50 0
4 300 90 0
MATERIAL 1
ELASTIC E=3.E6 NU=0.
DENSITY=0.208333 EGROUP 1
SHELL STRESSREFERENCE=ELEMENT RESULTS=NSTRESSES THICKNESS 1 Ti=3.0 GSURFACE 1 2 3 4 EL1=12 EL2=12 NODES=4 SYSTEM=1 FIXBOUNDARIES 246 INPUT=LINE 4 1 FIXBOUNDARIES 23 INPUT-LINE
/
412 FIXBOUNDARIES 156 INPUT=LINE
/
3 4 LOADS MASSPROPORTIONAL ZFACTOR=1.
ACC=-1.
MESH NSYMBOLS=MYNODES NNUMBERS=MYNODES BCODE=ALL ZONE NAME=EDGE INPUT=GLOBAL-LIMITS XMAX=25 MESH OUTLINE=YES SET HEIGHT=0.2 TEXT=NO AXES=NO MESH ZONENAME=EDGE ENUMBERS=YES GSCALE=OLD SUBFRAME=OLD SOLVIA END SOLVIA-POST input A67 SCORDELIS-LO CYLINDRICAL ROOF, 4-NODE SHELL DATABASE CREATE WRITE FILENAME='a67.1is' MESH ORIGINAL=DASHED OUTLINE=YES CONTOUR=MISES EPLINE NAME=LINE-CB 133 4
3 TO 144 4 3 ELINE LINENAME=LINE-CB KIND=SSS OUTPUT=ALL SUBFRAME=21 ELINE LINENAME=LINE-CB KIND:SRR OUTPUT=ALL NLIST ZONENAME=N3 DIRECTION=1234 MASS-PROPERTIES END Version 99.0 Linear Examples A67.5
SOLVIA Verification Manual EXAMPLE A68 ANALYSIS OF A FLANGED ELBOW Objective To verify the PIPE element to model the in-plane bending behaviour of a flanged elbow.
Physical Problem The figure below shows the flanged elbow problem considered. The pipe bend radius R equals 250 mm and the enclosed angle is 900. The pipe material is linear elastic. The elbow is subjected to a concentrated end moment, M 5.0- 106 (Nmm).
R = 250 mm A
6 = 12.5 mm 2d = 275 mm "8
E
,E=200 GPa 4
B 1
a=a-6/2 x
Finite Element Model Only one half of the pipe elbow (from A to C, see figure above) is modeled because
"* the ovalization boundary conditions are symmetric about the mid-point C (at point C, 0 = 450).
"* the elbow is subjected to a constant bending moment (i.e., considering the free body diagram, the structure is loaded symmetrically about the mid-point C).
The boundary conditions are
"* At point A: Fixed displacement, rotation and in-plane ovalization.
"* At point C: Ovalization displacement derivatives with respect to the longitudinal direction of the pipe are zero.
The circular pipe structure from A to C is modeled using six cubic PIPE elements as seen in the figure on page A68.3. The integration method used in r-and s-direction is closed Newton-Cotes by specify ing RINT = -7 and SINT = -3. Twenty-four integration points are used for the integration in the circumferential direction, TINT = 24.
A SHELL element model of the elbow is used as a reference solution.
Version 99.0 Linear Examples A68.1
SOLVIA Verification Manual Solution Results Input data of the PIPE element model is shown on pages A68.5 and A68.6 and for the SHELL element model on pages A68.10 and A68.1 1.
The SOLVIA numerical results obtained using the PIPE element are compared with the experimental and analysis results in ref. [1] and with the results of the SHELL element model as follows:
Flexibility factor, f EXPERIMENT [I]
ANALYSIS [1]
SOLVIA SOLVIA PIPE element SHELL element 1.8 2.0 1.55 2.04 where f= 2
=ux agE M
R A reasonable agreement is observed between the experimental and computed values using the PIPE element. A good agreement can be seen between the analytical solution and the SOLVIA reference solution using SHELL elements.
Axial stress factor:
Sa axial M
a2t = (Yaxial M
c M
c =
- 7.391 m*at Hoop stress factor:
Shoop N ihoop ca2t hoop M
c The distribution of the axial and hoop stress factors along the circumference at nodes I and 19 are shown in the top figures on page A68.4. The distribution along the innermost (intrados) and outermost (extrados) radii of the bend are shown in the bottom figures on page A68.4. The corresponding results from the SHELL model are shown on page A68.9.
A good agreement exists between the stresses of the analytical solution [1] and the SOLVIA reference solution using SHELL elements. The stress solution obtained using PIPE elements is approximate and the agreement with the experimental results presented in [1] is only reasonable. If a detailed stress solution is sought the SHELL element is recommended to be used.
Reference
[1]
Whatham, J.F., "In-Plane Bending of Flanged Elbows", Proceedings Metal Structures Conference, The Institution of Engineers, Perth, Australia, Nov. 30-Dec. 1, 1978.
Version 99.0 Linear Examples A68.2
SOLVIA Verification Manual Linear Examples A68 ANALYSIS OF A FLANGED ELBOW, PIPE ELE ORIGINAL 2-
- 0.
TIME I
ZONE PIPE SOLVIA-PRE 99.0 EME N TS Z
X y
MOMENT SE6 r
s EAXES=
STRESS-RST
'AST ER 100011 B 11111' SOLVIA ENGINEERING AB Version 99.0 A68.3
SOLVIA Verification Manual Linear Examples 4,
Q 200 401) 600 8CC iOCO NI -C IR
/
\\
- 7F/
,*,*/
?I 200 400 601) 800 034' N 9-CIRC SOLVIA-POST 99.0 SOLVIA ENGINEERING AB A68 ANALYSIS OF A FLANGED ELBOW PIPE ELEMENTS TIME 4'
/
L
\\,
i I ",
/'
/
"4 /
0 260 00 6 0 8C, 1000 N -CIRC 7
\\
E II F
lk\\
0 200 400 SOLVIA-POST 99.0 1
,./
060 800 lo00 CIRC SOLVIA ENGINEERING AS A68 ANALYSIS OF A FLANGED ELBOW, PIPE ELEMENTS N\\
- ",\\1 0
42 0 6C 8C 100 INTRADOS FIME !
0 20 40 60 SOLVIA-POST 99.0 INNRADOS SOLVIA 80 I0G ENGINEERING AS A68 ANALYSIS OF A FLANGED ELBOW, PIPE ELEMENTS a-4 o so 100 ISO 200 250 300 3sO EXTRADOS 0 ~ r- ---. ~
0 100 ISO 200 250 3CC 350 EXTRADOS SOLVIA-POST 99.0 SOLVIA ENGINEERING A8 Version 99.0 A68 ANALYSIS OF A FLANGED ELBOW. PFPE ELEMENTS IME x
I
ý I 11i H
x c*
A68.4
SOLVIA Verification Manual SOLVIA-PRE input HEADING
'A68 ANALYSIS OF A FLANGED ELBOW, PIPE ELEMENTS' DATABASE CREATE MASTER IDOF=100011 OVALIZATION=IN-PLANE SYSTEM 1
CYLINDRICAL COORDINATES ENTRIES NODE R
THETA 1
250 90 TO 10 250 72.9 TO 19 250 45 20 MATERIAL 1
ELASTIC E=2.E5 NU=0.28 EGROUP 1
PIPE RINT=-7 SINT=-3 TINT=24 SECTION 1
DIAMETER=275 THICKNESS=12.5 ENODES 1
20 1
4 2 3 TO 6
20 16 19 17 18 OVALIZATION-CONTINUITY 1 1 0
/
4 1 2 STEP 3 TO 16 5 6
/
19 6 0
FIXBOUNDARIES 234
/
1 20 FIXBOUNDARIES OVALIZATION
/
1 LOADS CONCENTRATED 19 4 -5.E6 MESH ZONENAME=PIPE NSYMBOLS=YES BCODE=ALL VECTOR=MLOAD, EAXES-STRESS-RST SOLVIA END Version 99.0 Linear Examples A68.5
SOLVIA Verification Manual SOLVIA-POST input A68 ANALYSIS OF A FLANGED ELBOW, PIPE ELEMENTS DATABASE CREATE WRITE FILENAME='a68.lis' NAME=NI-CIRC 1205 1206 1207 1213 1214 1203 1220 1221 1222 NAME=N19-CIRC 2205 2206 2207 2213 2214 2203 2220 2221 2222 1208 1215 1223 2208 2215 2223 1209 1216 1224 2209 2216 2224 1202 1217 1201 2202 2217 2201 1210 1211, 1218 1219, 2210 2211, 2218 2219, EVARIABLE EVARIABLE CONSTANT RESULTANT RESULTANT NAME-SIGAXIAL TYPE=PIPE KIND=SRR NAME=SIGHOOP TYPE=PIPE KIND-STT NAME=C VALUE-7.391 NAME=S-AXIAL STRING='SIGAXIAL/C' NAME=S-HOOP STRING-'SIGHOOP/C' SET PLOTORIENTATION=PORTRAIT SUBFRAME 12 RLINE LINENAME=N1-CIRC RESULTANTNAME=S-AXIAL RLINE LINENAME=N19-CIRC RESULTANTNAME=S-AXIAL SUBFRAME 12 RLINE LINENAME=N1-CIRC RESULTANTNAME=S-HOOP RLINE LINENAME=N19-CIRC RESULTANTNAME=S-HOOP NAME=INTRADOS 6201 4201 3201 6201 4201 3201 NAME=EXTRADOS 6203 4203 3203 6203 4203 3203 5201 7201 2201 5201 7201 2201 5203 7203 2203 5203 7203 2203 SUBFRAME 12 RLINE LINENAME=INTRADOS RESULTANTNAME=S-AXIAL RLINE LINENAME=INTRADOS RESULTANTNAME-S-HOOP SUBFRAME 12 RLINE LINENAME=EXTRADOS RESULTANTNAME=S-AXIAL RLINE LINENAME=EXTRADOS RESULTANTNAME=S-HOOP NMAX NMAX NLIST EMAX END OUTPUT-ALL OUTPUT=ALL KIND-DISPLACEMENT KIND=OVALIZATIONS KIND=REACTIONS DIRECTION=4 Version 99.0 EPLINE 1 1201 1212 1204 EPLINE 6 2201 2212 2204 EPLINE 1 1201 6 1201 EPLINE 1 1203 6 1203 TO TO Linear Examples A68.6
SOLVIA Verification Manual Linear Examples A68A ANALYSIS OF A FLANGED
- ELBOW, SHELL ELEMENTS ORIGINAL i SO.
TIME I
z X -~--
Y MOMENT 2.SE6 b b NAXES=SKEW S HELL TOP SHELL BOTTOM NON-SHELL SOLVIA ENGINEERING AB SOLVIA-PRE 99.0 Version 99.0 A68A ANALYSIS OF A FLANGED ELBOW, SHELL ELEMENTS ORIGINAL so.
Z x
y B
R E" IMASTER B 0010 0 1 3310 D 10 111 E 110011 F 222222 SHELL TOP SHELL BOTTOM NON-SHELL SOLVIA-PRE 99.0 SOLVTA ENGINEERING AB A68.7
SOLVIA Verification Manual A68A ANALYSIS OF A FLANGED ELBOW, SHELL ELEMENTS MAX DISPL.
N 032428 TIME I ZONE EGI N
Y A68A ANALYSIS OF A FLANGED ELBOW, SHELL ELEMENTS MAX DISPL. -
0.032428 Z
TIME I
ZONE EGN X
Y 861.7 S SHELL TOP MAX 27,507 S24. 484 18.239 1.993 5 7479
-0. 49743 5 7428
-12 988 9.233 MIN-22.356 SOLVIA-POST 99.0 SOLVIA ENGINEERING AR SHELL TOP MAX 7.7298 S6.2996 S3.1393 0.5788
-2.2815 N-S 1418
-8. 0023
-10. 863
-13.723 MIN-15,103 SOLVIA ENGINEERING A8 A68A ANALYSIS OF A FLANGED ELBOW, SHELL ELEMENTS MAX DISPL.--H 0.032428 Z
TIME I
ZONE EG6 y
Y I
EVIATION OFj MISES SHELL TOP MAX 0.034025 0.031899 0.027646 S.023392 I 0.019139 I 0.0 14886 10.080633 6 3798E-3 2.126E-3 MIN 0 SOLVIA ENGINEERING AB A68.8 SOLVIA-POST 99.0 SOLVIA-MOST 99.0 Version 99.0 Linear Examples
SOLVIA Verification Manual Linear Examples A68A ANALYS7S OF A FLANGED ELBOW.
SHELL ELEMENTS
\\,
/
a 0oo 20 0
300 4ýc SOD FLANGE-C SHELLSURFACE TOP SYM--CIRC ~TH SHLSRAETO
/
S~/
>4/
>- /
0 1o 00o 100 400 s00 SYM--CRO OH LLSURFAC-TOP SO1LVTA-POST 4990 5SOLHOA ENGINEERIING HA A68A ANALYSIS OF A FLANGED ELBOW, SHELL ELEMENTS
-~-1
-T-ME
-I S.
C.
.Ti
- i..
20 40 60 80 to INTRADOS SHELLSURFACE TOP TIME I D
20 40 SOLVIA-POST 99.0 60 80 1o0 INTRALOS SHELLSORFACE TOP SOLVIA ENGINEERING AB A68A ANALYSIS OF A FLANGED ELBOW, SHELL ELEMENTS 1
T0imE !
r 0
1oo 200 300 40o so4 FLANGE-C SHELLSURFACH TOP
\\
/
/'
//
tOO...0 0
40.
SOLVIA-POST 99.0 SYM-CIRC SHELLSURFACE TOP SOLVIA ENGINEERING AB Version 99.0 A68A ANALYSIS OF A FLANGED ELBOW.
SHELL ELEMENTS 0
so 00 IS0 200 2S0 300 EXRAOOS SHELLS AFAC TOP o
0 so 100 150 200 250 300 EXTRADOS SHELLSURFACE
[OP
-OLSI..
OST 0
0...
A >HiOEC.IN, A SOLVA-POT 990 SLVIAENGIEERIG A I
o o
A68.9
SOLVIA Verification Manual SOLVIA-PRE input DATABASE CREATE HEADING
'A68A ANALYSIS OF A FLANGED ELBOW, SHELL ELEMENTS' SYSTEM 1 TOROIDAL THETA=-90 RADIUS=250 SET SYSTEM=i COORDINATES ENTRIES NODE R
THETA PHI 1
131.25 0
45 2
131.25 180 45 3
131.25 180 90 4
131.25 0
90 5
0 0
90 MATERIAL 1 ELASTIC E=2.OE5 NU=0.28 EGROUP 1 SHELL STRESSREF=ELEMENT RESULTS=NSTRESS GSURFACE 3
2 1 4 EL1=20 EL2=20 THICKNESS 1 12.5 SKEWSYSTEM VECTOR 1
100 011 NSKEWS INPUT=LINES 12 1
FIXBOUNDARIES 345 INPUT=LINES /
1 2 FIXBOUNDARIES 156 INPUT=LINES /
1 4 /
2 3 FIXBOUNDARIES 1256 /
5 RIGIDLINK INPUT=LINES 345 LOAD CONCENTRATED 5 4 -2.5E6 VIEW ABC 3 3 1 SET VIEW=ABC COLOR EFILL=SHELL MESH NNUMB=MYNODES NSYMB-MYNODES BCODE=ALL MESH NAXES=SKEW OUTLINE=YES VECTOR=MLOAD MEMORY SOLVIA=20 SOLVIA MODEL
SUMMARY
=DETIAL END Version 99.0 Linear Examples A68.10
SOLVIA Verification Manual SOLVIA-POST input
- A68A ANALYSIS OF A FLANGED ELBOW, SHELL ELEMENTS DATABASE CREATE SYSTEM 1 TOROIDAL THETA=-90 RADIUS=250 WRITE 'a68a.lis' NLIST N5 VIEW ABC 3 3 1 SET ZONE=EGi VIEW=ABC SET PLOTORIENTATION=PORTRAIT MESH CONTOUR SRR VECTOR=REACTION MESH CONTOUR=SSS MESH CONTOUR=SDEVIATION EPLINE INTRADOS 1 1 5 9 2 TO 20 1 5 9 2 EPLINE EXTRADOS 381 4 11 7 3 TO 400 4 ii 7 3 EPLINE SYM-CIRC 20 2 6 10 3 STEP 20 TO 400 2 6 10 3 EPLINE FLANGE-C 381 4
8 12 1 STEP 20 TO 1 4 8 12 1 COLOR LINE SET HIDDEN-NO ORIGINAL-YES OUTLINE=YES NNUMBER=MYNODES NSYMBOL=MYNODES MESH PLINES=SYM-CIRC SUBFRAME=22 MESH PLINES=FLANGE-C MESH PLINES=INTRADOS OUTLINE-YES MESH PLINES=EXTRADOS OUTLINE=YES EVARIABLE NAME=SIGAXIAL TYPE=SHELL KIND=S11 EVARIABLE NAME=SIGHOOP TYPE=SHELL KIND=S22 CONSTANT NAME-C VALUE=7.391 RESULTANT NAME-S-AXIAL
'SIGAXIAL/C' RESULTANT NAME=S-HOOP
'SIGHOOP/C' RLINE FLANGE-C S-AXIAL SUBFRAME=12 OUTP=ALL SYSTEM=1 RLINE SYM-CIRC S-AXIAL OUTP=ALL SYSTEM=i RLINE FLANGE-C S-HOOP SUBFRAME=12 SYSTEM=1 RLINE SYM-CIRC S-HOOP SYSTEM=i RLINE INTRADOS S-AXIAL SUBFRAME=12 OUTP=ALL SYSTEM=i RLINE INTRADOS S-HOOP SYSTEM=1 RLINE EXTRADOS S-AXIAL SUBFRAME-12 OUTP=ALL SYSTEM=1 RLINE EXTRADOS S-HOOP SYSTEM=I END Version 99.0 Linear Examples A68.11
SOLVIA Verification Manual EXAMPLE A69 ANALYSIS OF A ROTATING TUBULAR SHAFT Objective To verify the option of consistent mass centrifugal loading in the analysis of rotating axisymmetric structures.
Physical Problem A long hollow cylindrical shaft rotating with an angular velocity of 10000 rad/sec is considered as shown in the figure below. The cylinder is assumed to be guided so that no axial displacement can occur.
TOP VIEW E=l1.0.10' psi v = 0.33333 Z*w P = 2.54. 10-4 lb-sec2/in 4
co =10000 rad/sec ro = 0.25 ri =0.16 SIDE VIEW 1
r Finite Element Model Due to the end boundary conditions and the applied loading, the zz-component of strain is zero along the entire length of the shaft and therefore only a unit length of the shaft is discretized. Eight 8-node PLANE AXISYMMETRIC elements are used to model the shaft in the radial direction as shown in the top figure on page A69.3.
Solution Results The analytical solution is given by [1]
1 3-2v 2
ro2rir2 t+2Vrj2 8
1-v 2
3 -2v Version 99.0 Linear Examples A69.1
SOLVIA Verification Manual 13 2v 2
2
_ro2r2 r 2 YY 8
1-v pC0 2 r
+rv r2 a2z= v ( G" + (YYY)
The displacement in the radial direction can be calculated from the circumferential strain:
Uy= r.cx = L(cyx -V(G. + Cy The SOLVIA numerical solution obtained using the input data on pages A69.4 and A69.5 is as follows:
Stresses in psi at some nodes:
y-coord.
Ox yz (in)
SOLVIA Theory SOLVIA Theory SOLVIA Theory 0.16 1472 1470 3.3
- 0.
491.8 490.1 0.25 767.8 767.4 0.8
- 0.
256.2 255.8 Radial displacements:
y-coord.
SOLVIA Theory (in)
(in)
(in) 0.16 2.0912.105 2.0912.10-5 0.25 1.7053-10-5 1.7054.10-5 The bottom figure on page A69.3 shows the variation of radial displacement, circumferential stress, radial stress and axial stress along a line in the radial direction.
A contour plot of von Mises effective stress is shown in the figure on page A69.4.
User Hints
- The consistent mass centrifugal loading yields improved numerical results for the shaft stresses compared to when the option of lumped mass centrifugal loading is employed.
Reference
[1]
Wang, C.T., Applied Elasticity, McGraw-Hill, 1953.
Version 99.0 Linear Examples A69.2
SOLVIA Verification Manual Linear Examples A69 ANALYSIS OF A ROTATING TUBULAR SHAFT ORTGINAL
.0 OS SOLVIA-PRE 99.0 SOLVIA ENGINEERING AB A69 ANALYSIS OF A ROTATING TUBULAR SHAFT SHAFT 0,30 0.02 0 o4 0o06 0.o8 0.10 SHAFT SOLVIA POST 99.0 SOLVIA ENGINEERING AB Version 99.0 z
LY R
'6 A69 ANALYSIS OF A ROTATING TLBULAR SHAFT TIN 0.00 0.02 0.04 0.00 0ý0 0
ý g I e
TIME 0.0oo 0.0o2 0.0 o,
o.0o6 o I8 o go RADTUS NODE 3 4
SOLVIA-POST 99.0 SOLVIA ENGINEERING AB A69.3
SOLVIA Verification Manual SOLVIA-PRE input HEADING
'A69 ANALYSIS OF A ROTATING TUBULAR SHAFT' DATABASE CREATE MASTER IDOF=I01111 ANALYSIS TYPE=STATIC MASSMATRIX=CONSISTENT SET MYNODES=
COORDINATES ENTRIES NODE Y
Z 1
.16 2
.25 3
.16
.02 4
.25
.02 MATERIAL 1
ELASTIC E=1.E7 NU=.33333 DENSITY=2.54E-4 EGROUP 1
PLANE AXISYMMETRIC RESULTS=NSTRESSES GSURFACE 4
3 1 2 ELi=8 EL2=1 NODES=8 LOADS CENTRIFUGAL OMEGA=1.E4 AX=0 AY=0 AZ=-
BX=0 BY=0 BZ=i MESH NSYMBOLS=YES NNUMBERS=YES ENUMBERS=YES SOLVIA END Version 99.0 A69 ANALYSIS OF A ROTATING TUBULAR SHAFT MAX DISPL H
2.0912E-S Z
TIME t
Y R
MISES MAX 129S.46 S12S6.78 1:79.40 1102.03 1026.66 947.282 869. 909 792.536 715.162 MIN 676.475 SOLVIA-POST 99.0 SOLVIA ENGINEERING AB Linear Examples A69.4
SOLVIA Verification Manual SOLVIA-POST input A69 ANALYSIS OF A ROTATING TUBULAR SHAFT DATABASE CREATE WRITE FILENAME='a69.1is' MASS-PROPERTIES EPLINE NAME=SHAFT 8
6 8 TO 1
6 8 NPLINE NAME=RADIUS 3 19 TO 4
SET PLOTORIENTATION=PORTRAIT SUBFRAME 12 ELINE LINENAME=SHAFT KIND=SXX OUTPUT=ALL ELINE LINENAME-SHAFT KIND=SYY OUTPUT=ALL SUBFRAME 12 ELINE LINENAME:SHAFT KIND=SZZ OUTPUT=ALL NLINE LINENAME=RADIUS DIRECTION=2 OUTPUT=ALL SET PLOTORIENTATION=LANDSCAPE MESH CONTOUR=MISES SUMMATION KIND-LOAD DETAILS=YES NMAX END Version 99.0 Linear Examples A69.5
SOLVIA Verification Manual EXAMPLE A70 WAVE PROPAGATION IN A ROD Objective To verify the GENERAL mass/stiffness element option in dynamic analysis.
Physical Problem A cantilever structure subjected to an axial step load is analyzed for its dynamic response using the central difference method as shown in figure below. The dimensions and loading of the structure are the same as Example A52 where TRUSS elements were used. Note, however, that the bar structure in Example A52 is free at both ends, while one end is here fixed.
2 pO
1000.0 kg/m3 E = 2.0.109 N/m2 LU 1.0 xZ Finite Element Model The bar structure is discretized using five 8-node GENERAL mass/stiffness elements, see top figures on page A70.4. Each GENERAL element is an 8-node rectangular SOLID element with elastic material properties. The stiffness matrix input for each of the GENERAL elements is calculated using the principle of virtual work, see top figure on page A70.3. The lumped mass matrix input for each of the GENERAL elements is obtained by assigning 1/8th of the corresponding element mass to each element degree of freedom, see bottom figure on page A70.3. The time step chosen, At, is given by At = Ls where c is the wave velocity given by c
c Ls and Le is the smallest side of an element.
Version 99.0 Linear Examples A70.1
SOLVIA Verification Manual Solution Results The obtained results for GENERAL element nodal forces are compared with the theoretical solution given in ref. [1]. The input data on pages A70.5 and A70.6 gives the following results:
Nodal force at top surface of elements THEORY SOLVIA Before wave front 0.0 0.0 After wave front, prior to the first reflection
-250.0
-250.0 of the wave from the fixed end (t < L/c)
After the first reflected wave from the fixed
-500.0
-500.0 end has passed (t > L/c, t < 2L/c)
The wave front is observed to advance one element per time step as specified by the time step At.
Nodal and element time histories are shown in the bottom figures on page A70.4.
User Hints See Example A52.
Reference
[1]
Zukas, J.A., Nicholas, T., Swift, H.F., Greszcruk, L.B., and Curran, D.R., Impact Dynamics, John Wiley & Sons, 1982.
0.5556E8 -0.5556E7
-0.1944E8
-0.5556E7 0.111 1E8
-0.111 IE8
- 0.1389E8
-0.111 1E8 0.5556E8
-0.5556E7
-0.1944E8
-0.111IE8 0.1111E8
-0.111IES
-0.1389E8 0.5556E8
-0.5556E7
-0.1389E8
-0.1111E8 0.1111E8
-0.111IE8 0.5556E8
-0.11lIE8
-0.1389E8
-0.I111E8 0.111iE8 KE =
0.5556E8
-0.5556E7
-0. 1944E8
-0.5556E7 0.5556E8
-0.5556E7
-0.1944E8 0.5556E8
-0.5556E7 0.5556E8 Element Stiffness Matrix (symmetric) 0.25
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
0.25
- 0.
- 0.
- 0.
- 0.
- 0.
- 0.
0.25
- 0.
- 0.
- 0.
- 0.
- 0.
0.25
- 0.
- 0.
- 0.
- 0.
ME=
0.25
- 0.
- 0.
- 0.
0.25
- 0.
- 0.
0.25
- 0.
0.25 Element Lumped Mass Matrix (symmetric)
Version 99.0 Lineal" Examples A70.2
SOLVIA Verification Manual Linear Examples A70 WAVE PRCPAGATION iN A ROD CRIGINAL 0OS Z
12
""I 11
.0 16 20 19 Is 6 24 B
23 MASTER 22lA 9L E
N G
S1VA9F99 n SOLiVTA FNrTNE-TRIEO AR A ROD 2
X Z A70 WAVE PROPAGATION IN ORIGINAL 0.1 TIME 1.4142E-1 2
3 SOLVIA-PRE 99.0 SOLO:
A70 WAVE PROPAGATION IN A ROD
//
//
//
, // /
\\\\J/
Lo O s
10 I.S 2.0 2ý5 3 0 TIME SOLVIA-POST 99.0 I.S 2.0 2.5 30 LIEE SOLVIA ENGINEERING AB FORCE 250 IA ENGINEERING AB IN
\\
.0 Cs 1 0 Version 99.0 A70.3 2
T
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A70 WAVE PROPAGATION IN A ROD' DATABASE CREATE MASTER IDOF110111 NSTEP=20 DT=1.4142E-4 ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED METHOD=CENTRAL COORD I NATES 1
0.1 0.
1 2
0.1 0.1 1 3
- 0.
0.1 1 4
- 0.
- 0.
1 STEP 4 TO STEP 4 TO STEP 4 TO STEP 4 TO 21 22 23 24 0.1 0.1
- 0.
0.
- 0.
0 0.1 0 0.1 0
- 0.
0 INITIAL ACCELERATION 1
0 0 -1000 TO 4
0 0
-1000 EGROUP 1
GENERAL MATRIX 1
STIFFNESS 1.5555556E8
-. 555556E7 2.5555556E8
-. 555556E7
-. 194444E8
-. 111111E8
-. 194444E8 3.5555556E8
-. 555556E7 -. 138889E8 4
.5555556E8
-. 111111E8 5.5555556E8
-. 555556E7 6.5555556E8
-. 555556E7 7
.5555556E8
-. 555556E7 8
.5555556E8 MATRIX 1
MASS 1
0.25 2
0.25 3
0.25 4
0.25 5
0.25 6
0.25 7
0.25 8
0.25 ENODES 1
3 4 1 2 7 8 5 6 TO FIXBOUNDARIES
/
21 TO LOADS CONCENTRATED 1 3 -250 TO 4 3 -250 SET MESH MESH
-. 138889E8
-. 194444E8
-. 194444E8 5
-. 555556E7
-. 138889E8
-. 11111IE8
-. 111111E8
-. 1111lIE8
-. 111111E8
-. 555556E7
- 111111E8, 111111E8
- 111111E8,
.138889E8
- 111111E8,
.111111E8
.11111IE8 19 20 17 18 23 24 21 22 24 PLOTORIENTATION=PORTRAIT NSYMBOLS=YES NNUMBER=YES BCODE=ALL ENUMBER=YES VECTOR=LOAD SOLVIA END Version 99.0 Linear Examples A70.4
SOLVIA Verification Manual SOLVIA-POST input A70 WAVE PROPAGATION IN A ROD DATABASE CREATE WRITE FILENAME='a70.1is' SET PLOTORIENTATION=PORTRAIT SUBFRAME 12 NHISTORY NODE=i DIRECTION=3 KIND=DISPLACEMENT OUTPUT=ALL NHISTORY NODE=I DIRECTION=3 KIND=VELOCITY SUBFRAME 12 NHISTORY NODE=1 DIRECTION=3 KIND=ACCELERATION EHISTORY ELEMENT=3 POINT=i KIND=FZ OUTPUT=ALL END Version 99.0 Linear Examples A70.5
SOLVIA Verification Manual EXAMPLE A71 TRANSIENT ANALYSIS OF A CORNER (BACKWARD-EULER)
Objective To verify the PLANE conduction element for transient analysis using the Euler backward scheme.
Physical Problem The figure below shows the 90' semi-infinite comer considered. The two sides AB and BC are subjected to a prescribed temperature T, = 50' and the initial temperature within the semi-infinite domain is To= 0'. The heat capacity of the material is constant. A transient analysis is performed to calculate the temperature distribution within the semi-infinite domain at different values of time.
cc "k = 35.0 thermal conductivity T=
C = 100.0 specific heat per unit volume 0o Finite Element Model The top figure on page A71.2 shows the finite element model considered. The domain is discretized using a l0 x 10 mesh of 4-node PLANE conduction elements. Each element size is 0.075 x 0.075.
The conduction matrix is evaluated using a consistent heat capacity matrix. The time step is At=0.016.
Solution Results The input data on pages A71.4 and A71.5 is used in the finite element analysis. The calculated temperatures at time 0.096 are shown in the top figure on page A71.3 together with the analytical solution [1]. The analytical solution curve is drawn without any symbols.
The bottom figure on page A71.3 shows the nodal heat flow and the element heat flux along the edge Z=0 at time 0.096 together with the analytical solution (again drawn without any symbols).
The nodal heat flow is only due to conduction and is a scalar quantity which is positive when the net conductive heat flow based on the attached elements is directed from the node. The calculated heat flow at the right end node of line N-EDGE considers one element only, which explains the 50% lower value.
Version 99.0 Linear Examples A71.1
SOLVIA Verification Manual The element heat flux is the conductive heat flow per unit area. The heat flux at an element point is calculated based on the temperature gradient at the point. The element heat flux has a geometric direction and is a vector quantity.
The top figure on page A71.4 shows contours for the temperature and the element heat flux at time 0.096. The boundary nodal heat flows drawn as vectors, although they are scalar quantities, are also shown.
User Hints
"* A larger value of the time step At can also be employed for analysis because the Euler backward time integration scheme is unconditionally stable. However, changing the time step affects the accuracy of the solution.
"* Note that the trapezoidal rule integration method used in Example A72 gives a better solution.
Reference
[1]
Carslaw, H.S., and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed., Oxford University Press, Inc., N.Y., 1959.
Version 99.0 Linear Examples A71.2
SOLVIA Verification Manual A71 TRANSIENT ANALYSIS OF A CORNER (BACKWARD-EULER)
INE 0.096 O-L I--
Gd C
j
-0r2:27 "
\\-
0a1 0.2 0.
0.4 O.S 0.6 0.7 0.8 0.9 1.0 i.
DISTANCE ALONG THE DIAGONAL SOLVIA ENGINEERING AB A71 TRANSIENT ANALYSIS OF I
I TIM1E 0.096, pi C
L.
UJ CL 0.2 0..t 0.6 A CORNER (BACKWARD-EULER)
NJ D
-i 0
0.8 DISI-ANCE ALONG N-EDGE SOLVIA-POST 99.0
/
,%/
///
/ /,
/ /
i/
, ///
1/
F 0.0 0.2 3.4 0.6 0.8 DISTANCE ALONG EL-EDGE SOLVIA ENGINEERING AB Version 99.0 6.0 SOLVIA-POST 99.0
!
Linear Examples I
A71.3
SOLVIA Verification Manual Linear Examples A71 TRANSIENT ANALYSIS CF A CORNER (BACKWARD-EULER)
ORIGINAL i
0.2 Z
ORIGINAL v--
0.2 TiME 0.096 Ly TIME 0.096 z Ly N.
N TEMPERATURE MAX SO.000 46.953 40.860
- 34. 767 28.674
- 22.
80
-16.487 10.394 4.3004 MIN 1.2538 N-EDGE EL-EDGE SOLVIA-POST 99.0 HEAT FLOW
'116.12
- --=HEAT FLUX MAX 5573.6 5225.3 4528.6 3831.9 3135.2 2438.5 1741.8 "1045,1 348.35 MIN 0 SOLVIA ENGINEERING AB SOLVIA-PRE input HEAD
'A71 TRANSIENT ANALYSIS OF A CORNER (BACKWARD-EULER)'
DATABASE CREATE T-MASTER NSTEP=6 DT=0.016 T-ANALYSIS TYPE=TRANSIENT HEATMATRIX=CONSISTENT, METHOD=BACKWARD-EULER COORDINATES
/
ENTRIES NODE Y
Z 1 TO 11
.75
.75
/
13
.075
.0 TO 22.75
.0
/
23
- 0.
.75 T-MATERIAL 1
CONDUCTION K=35.
SPECIFICHEAT=100.
EGROUP 1
PLANE STRAIN T-RESULTS=NFLUXES GSURFACE 1 22 11 23 E-1=10 EL2=10 NODES=4 T-LOADS TEMPERATURE INPUT-LINE 1 23 50.
/
1 22 50.
MESH NSYMBOLS=MYNODES NNUMBERS=MYNODES SOLVIA-TEMP END Version 99.0 A71.4
SOLVIA Verification Manual SOLVIA-POST input A71 TRANSIENT ANALYSIS OF A CORNER (BACKWARD-EULER)
T-DATABASE CREATE WRITE FILENAME='a71.1is' NPLINE NAME=DIAGONAL
/
1 TO 11 AXIS ID=i VMIN=0.0 VMAX=50.
LABEL='TEMPERATURE' AXIS ID=2 VMIN=0.0 VMAX=1.1 LABEL='DISTANCE ALONG THE DIAGONAL' USERCURVE 1 READ A71TEMP.DAT NLINE LINENAME=DIAGONAL XAXIS=2 YAXIS=1 TIME=0.096 SYMBOL=4, OUTPUT-ALL PLOT USERCURVE 1 XAXIS=-2 YAXIS=-1 SUBFRAME-OLD SUBFRAME 21 NPLINE NAME=N-EDGE
/
1 13 TO 22 AXIS ID=3 VMIN=500.
VMAX=0.
AXIS ID=4 VMIN=0.0 VMAX=0.75 LABEL-'DISTANCE ALONG N-EDGE' USERCURVE 2
READ A71FLOW.DAT NLINE LINENAME=N-EDGE KIND=TFLOW XAXIS=4 YAXIS=3 SYMBOL=4 OUTP=ALL PLOT USERCURVE 2 XAXIS=-4 YAXIS=-3 SUBFRAME=OLD EPLINE NAME-EL-EDGE
/
1 1 2 TO 10 1 2 AXIS ID=5 VMIN=0.
VMAX=6000.
AXIS ID=6 VMIN=0.
VMAX=0.75 LABEL='DISTANCE ALONG EL-EDGE' USERCURVE 3
READ A71FLUX.DAT ELINE LINENAME=EL-EDGE KIND=TZFLUX XAXIS=6 YAXIS=5 SYMBOL=4 OUTP=ALL PLOT USERCURVE 3 XAXIS=-6 YAXIS=-5 SUBFRAIE=OLD SUBFRAME 21 SET OUTLINE=YES MESH CONTOUR=TEMPERATURE PLINE-N-EDGE MESH CONTOUR-TFLUX VECTOR=TFLOW PLINES-EL-EDGE END Version 99.0 Linear Examples A71.5
SOLVIA Verification Manual EXAMPLE A72 TRANSIENT ANALYSIS OF A CORNER (TRAPEZOIDAL RULE)
Objective To verify the PLANE conduction element for transient analysis using the trapezoidal rule (Euler method, ca = 0.5).
Physical Problem Same as Example A71.
Finite Element Model Same as Example A71.
Solution Results The input data on page A72.3 is used in the finite element analysis. The calculated temperatures along the diagonal at time 0.096 are shown together with the analytical solution [1] on page A72.2.
A good agreement with the analytical solution is observed.
User Hints
- A larger value of the time step At can also be employed for analysis because the trapezoidal rule of time integration is unconditionally stable. However, a change in time step affects the accuracy of the solution.
Reference
[1]
Carslaw, H.S., and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed., Oxford University Press, Inc., N.Y., 1959.
Version 99.0 Linear Examples A72.1
SOLVIA Verification Manual A72 TRANSIENT ANALYSIS OF A CORNER (TRAPEZOIDAL RULE)
ORIGINAL I--
0.2 TIME 0.096 Z
ORIGINAL i
0.2 L~y TIME 0.096 TEMPERATURE MAX 50.000 46.908 40.725 34 542 28.358
- 22. 17S 1S.992
- 9.8086
- 3. 6253 MIN 0.$3367 SOLVIA-POST 99.0 HEAT FLUX 5338LN SOLVIA ENGINEERING AB Version 99.0 Z
L.y Linear Examples A72.2
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A72 TRANSIENT ANALYSIS OF A CORNER (TRAPEZOIDAL RULE) T DATABASE CREATE T-MASTER NSTEP=6 DT=0.016 T-ANALYSIS TYPE=TRANSIENT HEATMATRIX=CONSISTENT, METHOD=TRAPEZOIDAL COORDINATES
/
ENTRIES NODE Y
Z 1
TO 11
.75
.75
/
12
- 0.
.75 13
.75 T-MATERIAL 1
CONDUCTION K=35.
SPECIFICHEAT-100.
EGROUP 1
PLANE STRAIN GSURFACE 1 13 11 12 EL-=10 EL2=10 NODES=4 T-LOADS TEMPERATURE INPUT=LINE 1 12
- 50.
/
1 13 50.
SOLVIA-TEMP END SOLVIA-POST input A72 TRANSIENT ANALYSIS OF A CORNER (TRAPEZOIDAL RULE)
T-DATABASE CREATE WRITE FILENAME='a72.1is' NPLINE NAME=DIAGONAL
/
1 AXIS ID=i VMIN=0.0 VMAX=50.
AXIS ID=2 VMIN=0.0 VMAX=1.1 TO 11 LABEL='TEMPERATURE' LABEL='DISTANCE ALONG THE DIAGONAL' NLINE LINENAME=DIAGONAL XAXIS-2 YAXIS=1 TIME=0.096 SYMBOL=4, OUTPUT=ALL SUBFRAME=OLD USERCURVE 1 READ A71TEMP.DAT PLOT USERCURE 1 XAXIS--2 YAXIS=--
SUBFRAME=OLD SUBFRAME 21 MESH OUTLINE=YES CONTOUR=TEMPERATURE MESH VECTOR=TFLUX END Version 99.0 Linear Examples A72.3
SOLVIA Verification Manual EXAMPLE A73 SEMI-INFINITE REGION SUBJECTED TO CONSTANT HEAT FLUX Objective To verify the TRUSS conduction element in transient analysis using the Euler forward integration.
Physical Problem The figure below shows the semi-infinite domain considered. The boundary at x = 0 is subjected to a constant heat flux, qS = 1.0. An analysis is performed to calculate the temperature distribution within the domain at different values of time.
k = 1 thermal conductivity C = 1 specific heat per unit volume q' = 1.0 heat flow per unit area CO
-00 Finite Element Model The figure below shows the finite element model consisting of eight TRUSS conduction elements.
The lumped specific heat matrix is employed and the time step is At = 0.015.
1 2
3 8
9 qS= 1.0 Solution Results The input data on pages A73.3 and A73.4 is used in the finite element analysis. The obtained solution for temperature distribution is given on pages A73.2 and A73.3 together with the analytical solution
[1 ] at time 0.105 and 0.06. A reasonable comparison with the analytical solution is observed consider ing the coarseness of the mesh.
User Hints
- The Euler forward method is conditionally stable. The time step At is chosen such that At (Ax )2 4a Version 99.0 qS Linear Examples A73.1
SOLVIA Verification Manual where Ax = shortest element length Linear Examples a = thermal diffusivity k
C In this problem Ax = 0.250 and a = 1.0.
Reference
[1]
Carslaw, H.S., and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed., Oxford University Press, Inc., N.Y. 1959.
Version 99.0 A73 SEMI-INFINITE REGION SUBJECTED TO CONSTANT HEAT FLUX I.
I.
,I
.T I rE, O.O S U7I 6.o
SOLVIA Verification Manual Linear Examples SOLVIA-PRE input HEAD
'A73 SEMI-INFINITE REGION SUBJECTED TO CONSTANT HEAT FLUX' DATABASE CREATE T-MASTER NSTEP=7 DT-0.015 T-ANALYSIS TYPE=TRANSIENT HEATMATRIX=LUMPED, METHOD=FORWARD-EULER COORDINATES 1
TO 9
- 2.
T-MATERIAL 1
CONDUCTION K=1. SPECIFICHEAT=1.
EGROUP 1
TRUSS ENODES 1
1 2 TO 8
8 9 EDATA
/
1 1.
T-LOADS HEATFLOW SOLVIA-TEMP END
/
1 1.
Version 99.0 A73 SEMI-INFINITE REGION SUBJECTED TO CONSTANT HEAT FLUX TIME 0.06
~
1 Li o.2 0CA o 0.6 0.8 1ý0 1!2 1.!
.1:6 1:8 2.0 DISTANCE SOLVIA-POST 99.0 SOLVIA ENGINEERING AB I
A73.3
SOLVIA Verification Manual SOLVIA-POST input A73 SEMI-INFINITE REGION SUBJECTED TO CONSTANT HEAT FLUX T-DATABASE CREATE WRITE FILENAME='a73.1is' AXIS ID=i VMIN=0.
VMAX=2.
LABEL='DISTANCE' AXIS ID=2 VMIN=-.1 VMAX=.4 LABEL='TEMPERATURE' USERCURVE 1
READ A73TI06.DAT USERCURVE 2
READ A73TI10.DAT NPLINE NAME=MEDIUM
/
1 TO 9
NLINE LINENAME=MEDIUM TIME=0.105 SYMBOL=i XAXIS=1 YAXIS=2, OUTPUT=ALL PLOT USERCURVE 2 XAXIS=-i YAXIS=-2 SUBFRAME=OLD NLINE LINENAME=MEDIUM TIME=0.060 SYMBOL=4 XAXIS=1 YAXIS=2, OUTPUT=ALL PLOT USERCURVE 1 XAXIS=-I YAXIS=-2 SUBFRAME=OLD END Version 99.0 Linear Examples A73.4
SOLVIA Verification Manual EXAMPLE A74 HEAT GENERATION IN SEMI-INFINITE SOLID (TRAPEZOIDAL)
Objective To verify the TRUSS conduction element with the option of internal heat generation.
Physical Problem The figure below shows the semi-infinite domain considered. The domain surface at X = 0 is insulated. The internal heat is only generated in the region 0 *< X < L. The initial temperature is zero and a transient analysis is performed to calculate the temperatures within the domain at different values of time. The material conductivity and specific heat are constant over the entire temperature range of interest.
A k = 0.125 thermal conductivity C = 0.50 specific heat per unit volume B
L = 0.04 length dT q
q=0 d
0 q0B= 1500 heat generated per unit dX 00,.
co volume and unit time "X
X=0 X=L
-00 Finite Element Model The figure below shows the finite element model considered which consists of 16 TRUSS conduction elements. The heat generation region, 0 <CX _< L, is discretized using two elements. The time integra tion of response is performed using the trapezoidal rule (ca = 0.5). The time step is At = 0.0016 and a lumped specific heat matrix is used.
1 2
3 4
5 16 17 REGION OF INTERNAU HEAT GENERATION Version 99.0 Linear Examples A74.1
SOLVIA Verification Manual Solution Results The input data on page A74.4 is used. The obtained solution for temperature variation within the domain is given on page A74.3 together with the analytical solution [1] at times 0.0032 and 0.0096.
A good comparison with the analytical solution is observed. The bottom figure on page A74.3 shows the heat flux in the elements.
Reference
[1]
Carslaw, H.S., and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed., Oxford University Press, Inc., N.Y., 1959.
Version 99.0 Linear Examples A74.2
SOLVIA Verification Manual Linear Examples LUj i_
A74 HEAT GENERATION IN SEMI-INFINITE SOLID (TRAPEZOIDAL)
I I
TIME 3.2E-3 I
U)
K 0.25 0.30 0.35 DISTANCE WITHIN THE MEDIUM SOLVIA POST 99.0 SD VIA ENGINEERING AS A74 HEAT GENERATION IN SEMI-INFINITE SOLID (TRAPEZOIDAL)
U TIPE 9.6E-,3 F X
D
-j
,kU 3-LU '3 t
0-
-*~~O r
m TRUSS SOVIA POST 99 0 SOLVIA ENGINEER.NG AB Version 99.0
'
I
<3.1
('3 I 0
./
\\
4 0.20 0.25 0,30 0.05 0.00
- 0. to 0. I5 0.20 SOLVIA-POST 99.0 SOLVIA ENGINEERING AB q,
0.0C 0
- 0. 10 0.0S SOLVIA-POST 99.0 SOLVIA ENGINEERING AB A74.3
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A74 HEAT GENERATION IN SEMI-INFINITE SOLID (TRAPEZOIDAL)'
DATABASE CREATE T-MASTER NSTEP=6 DT=0.0016 T-ANALYSIS TYPE=TRANSIENT HEATMATRIX=LUMPED METHOD=TRAPEZOIDAL COORDINATES 1
TO 17 0.32 T-MATERIAL 1
CONDUCTION K=0.125 SPECIFICHEAT=0.5 EGROUP 1
TRUSS ENODES 1 1 2 TO 16 16 17 EDATA
/
1 1.
T-LOADS HEATGENERATION 1 1500.
/
2 1500.
SET VIEW=-Y NSYMBOLS=YES MESH NNUMBERS=YES SUBFRAME=12 MESH ENUMBERS=YES SOLVIA-TEMP END SOLVIA-POST input A74 HEAT GENERATION IN SEMI-INFINITE SOLID (TRAPEZOIDAL)
T-DATABASE CREATE WRITE FILENAME='a74.1is' EPLINE NAME=TRUSS
/
1 1 TO 16 1 NPLINE NAME=MEDIUM
/
1 TO 17 AXIS ID=1 VMIN=0.
VMAX=.32 LABEL='DISTANCE WITHIN THE MEDIUM' AXIS ID=2 VMIN=0.
VMAX=20.
LABEL='TEMPERATURE' USERCURVE 1 READ A74TI32.DAT USERCURVE 2 READ A74TI96.DAT NLINE LINENAME=MEDIUM XAXIS=1 YAXIS=2 TIME=0.0032, OUTPUT=ALL SYMBOL=i PLOT USERCURVE 1 XAXIS=-1 YAXIS=-2 SUBFRAME=OLD NLINE LINENAME=MEDIUM XAXIS=-1 YAXIS=-2 TIME-0.0096, OUTPUT=ALL SYMBOL=4 SUBFRAME=OLD PLOT USERCURVE 2 XAXIS=--
YAXIS=-2 SUBFRAME=OLD ELINE LINENAME=TRUSS KIND=TFLUX SYMBOL=i OUTPUT-ALL END Version 99.0 Linear Examples A74.4
SOLVIA Verification Manual EXAMPLE A75 HEAT GENERATION IN SEMI-INFINITE SOLID (FORWARD-EULER)
Objective To verify the TRUSS conduction element with the option of internal heat generation and with the time integration performed using the Euler forward method.
Physical Problem Same as in figure on page A74. 1.
Finite Element Model Same as in figure on page A74.1. The time step employed is At = 0.0004.
Solution Results The input data on page A75.3 is used. The calculated temperatures are shown in the top figure on page A75.2 together with the analytical solution [1] at times 0.002 and 0.010. A good comparison with the analytical solution is observed. The bottom figure on page A75.2 shows the heat flux in the elements.
User Hints The Euler forward method is an explicit time integration method and, therefore, conditionally stable. The time step At is chosen such that At=(Ax )2 At-(x) 4a where Ax = shortest element side a = thermal diffusivity (k/C = thermal conductivity/specific heat per unit volume)
In this example, Ax = 0.02 and a = 0.25.
Reference
[1]
Carslaw, H.S., and Jaeger, J.C., Conduction of Heat in Solids, 2nd ed., Oxford University Press, Inc., N.Y., 1959.
Version 99.0 Linear Examples A75.1
SOLVIA Verification Manual Version 99.0 A75.2 Linear Examples
SOLVIA Verification Manual Linear Examples SOLVIA-PRE input HEAD
'A75 HEAT GENERATION IN SEMI-INFINITE SOLID (FORWARD-EULER)
DATABASE CREATE T-MASTER NSTEP=25 DT=0.0004 T-ANALYSIS TYPE=TRANSIENT HEATMATRIX=LUMPED METHOD=FORWARD-EULER COORDINATES 1
TO 17 0.32 T-MATERIAL 1
CONDUCTION K=0.125 SPECIFICHEAT=0.5 EGROUP 1
TRUSS ENODES 1 1 2 TO 16 16 17 EDATA
/
1 1.
T-LOADS HEATGENERATION 1 1500.
/
2 1500.
SOLVIA-TEMP END SOLVIA-POST input A75 HEAT GENERATION IN SEMI-INFINITE SOLID (FORWARD-EULER)
T-DATABASE CREATE WRITE FILENAME-'a75.1is t EPLINE NAME-TRUSS
/
1 1 TO 16 1 NPLINE NAME=MEDIUM
/
1 TO 17 AXIS ID=i VMIN=0.
VMAX=.32 LABEL=-DISTANCE WITHIN THE MEDIUM' AXIS ID 2 VMIN=0.
VMAX-20.
LABEL='TEMPERATURE' USERCURVE 1 READ A75TI02.DAT USERCURVE 2 READ A75TI10.DAT NLINE LINENAME=MEDIUM XAXIS=1 YAXIS=2 TIME=0.002, OUTPUT=ALL SYMBOL=i PLOT USERCURVE 1 XAXIS=--
YAXIS=-2 SUBFRAME=OLD NLINE LINENAME=MEDIUM XAXIS=-1 YAXIS=-2 TIME=0.010, OUTPUT=ALL SYMBOL=4 SUBFRAME=OLD PLOT USERCURVE 2 XAXIS=--
YAXIS=-2 SUBFRAME=OLD ELINE LINENAME=TRUSS KIND=TFLUX SYMBOL=i OUTPUT-ALL END Version 99.0 A75.3
SOLVIA Verification Manual EXAMPLE A76 RESPONSE SPECTRUM ANALYSIS OF A SIMPLY SUPPORTED BEAM Objective To verify the response spectrum analysis methods.
Physical Problem A simply supported beam is exposed to an earthquake load and a gravity load in Z-direction as shown in figure below. The earthquake load is defined by the acceleration response spectrum shown in the table below. The gravity load acting in the negative Z-direction is 9.81 m/s 2.
u(X fl z _i_
L -- X L
E = 2.0.10 " N/m2 I = 8.33333.10-' m4 A = 0.01 m 2 L=10m p = 7800 kg/m 3 The modal damping values are 1% of critical damping RESPONSE SPECTRUM Frequency Damping Damping Damping Damping Damping 0.5%
2.0%
5.0%
7.0%
10.0%
33 9.81 9.81 9.81 9.81 9.81 9
48.66 34.74 25.60 22.27 18.64 2.5 58.37 41.69 30.71 26.68 22.37 0.25 7.22 5.64 4.63 4.24 3.84 Finite Element Model The model is shown in the left figure on page A76.3. It consists of eighteen BEAM elements.
A consistent mass matrix is used.
Solution Results The input data on pages A76.5 to A76.6 has been used for the solution.
The right figure on page A76.3 shows the three calculated mode shapes and the calculated displacements due to the gravity load. The subspace iteration method was used for the frequency analysis.
The left top figure on page A76.4 shows the distribution of bending moment along the beam in the deformed configurations corresponding to the three mode shapes and the gravity load.
Version 99.0 Linear Examples A76.1
SOLVIA Verification Manual The right top figure on page A76.4 shows the relative displacement results from the response spectrum analysis using the three modes. Modal combination number 1 is an SRSS combination of the modal displacements. Modal combination number 2 is also an SRSS combination of the modal displacements but includes in addition the residual displacements. The residual displacements (without the ZPA-factor of 9.81) are also shown separately. One may note that the residual displacements mainly consist of contributions from mode shape number 5. The spatial combination displays the response spectrum results (including residual terms) superimposed on the displacements due to gravity loading.
The left bottom figure on page A76.4 shows the corresponding absolute acceleration results from the response spectrum analysis. Note that the residual absolute accelerations are largest near the supports.
The right bottom figure on page A76.4 shows the corresponding bending moment results from the response spectrum analysis.
The calculated results are in good agreement with the analytical results given in reference [I]. Some selected results obtained for spatial combination number 1 are given below. For comparison results from the analytical solution and results from a model using 36 BEAM elements are also given in the table.
Analytical SOLVIA System Results solution 18 el.
36 el.
Rel. displ. at X=5:
-0.3591
-0.3574
-0.3587 Abs. accel. at X=5:
64.19 63.76 64.08 Moment at X=5:
58861.
58733.
58833.
Reaction at X=0:
19684.
19067.
19402.
User Hints "The capability of calculating residual quantities are of much interest when a significant portion of the response comes from high frequency modes, thus those modes which are not explicitly included in the response spectrum analysis. This situation could arise, for example, when a large mass is located close to a support and the reactions at the support are to be calculated. Note, however, that the portion of the mass of the model which is lumped at fixed degrees of freedom cannot be included in calculations of reactions or other response quantities. Only elastically supported masses are considered in the calculations.
" The total model mass considering active degrees of freedom, thus elastically supported masses, is 725.8 kg in the Z-direction using the SOLVIA-POST command MASSPROPERTIES. The considered 3 modes can model 691.2 kg in the Z-direction, which is the sum of the squares of the modal participation factors obtained in the listing from the command MODALCOMBINATION.
Hence 691.2/725.8 = 0.952 of the total elastically supported model mass in the Z-direction is considered by the 3 modes.
"* Excitation by a unit response spectrum in a selected direction would result in a unit acceleration in that direction of all nodes provided all the modes of the model are included. When a truncated number of modes is included, which is done in practice, then the nodal acceleration values will in Linear Examples Version 99.0 A76.2
SOLVIA Verification Manual Linear Examples general differ from the unit value. The calculated nodal accelerations can be graphically displayed over the model and the difference to the unit acceleration can be used as a quality measure that indicates how well the selected number of modes describes the model response in the studied direction. Of course, an accurate response requires that the model is fine enough and this is not revealed by the unit acceleration test or the above total mass ratio or by the residuals.
" Note that the earthquake load is large in this example and hence causes rather large lateral deflections. If the supports of the beam are capable of taking axial load then additional stiffness would be present in the beam due to geometric stiffness effects.
An approximate model of geometric stiffness effects could be achieved by basing the frequency analysis on the linearized stiffness matrix corresponding to a configuration with suitable lateral displacements and hence with axial stresses in the beam.
A detailed analysis would be achieved by performing a time history analysis and using the large displacement option. This requires knowledge, however, of the acceleration time history at the supports.
Reference
[1]
Larsson, G. and Olsson, H., "Response Spectrum Analysis Methods in SOLVIA-POST",
SOLVIA Engineering AB, Visterds, Sweden, May, 1987.
I 0 MASTER 010101 B 111101 C 11101!
Z LK RESPONSE SPECTRUM PERCENT OAMIPINI 11S~
7
~to1
... -0
. S,
7/,
- 7,/-
10 100 F.REOUCN..T SOLVIA ENGINEERING AB A76 RESPONSE SPECTRUM ANALYSIS OF A SIMPLY SUPPORTED BEAM 1OD SEAP TIME a-0 10 NBEAM NCOE 1 2
MODE SHAPE TIME 2 0
2 4
6 a
to NBEAM NODE I -
2 MODE SHAPE TIME 3 0
2 NBEA1 NODE 1 2
TIE IT 0
~
2 6
8 to.
1 SOLVIA-POST 99.0 NBEAM NODE I -
2 SOLVIA ENGINEERING AB A76 RESPONSE SPECTRUM ANALYSIS OF A SIMPLY SUPPORTED BEAM ORIGINAL h
i-.
Z ORIGINAL -
I 63
! 4 5
6 7
8 ;9.10
[i 12,13,14,15=,1 17
_18 1,9 20 2 o 1 SOL'VA-POST 99.0 Version 99.0 A76.3
SOLVIA Verification Manual Linear Examples A76 RESPONSE SPECTRUM ANALYSIS OF A SIMPLY SUPPORTED BEA£ MCDE ýHAPE TM
,o TO' CIP
{TME 0
2 6
I8 )
EBEAM MODE SHAPE TIM 2
I 6
8 10 EREAM RESAM TIMF I
o o 0
2 SOLVIA POST 99.0 N-EBEAM SOLVIA ENGINEERING AB A76 RESPONSE SPECTRUM ANALYSIS OF A SIMPLY SUPPORTED BEAM Mn~ar PAMT TT*
NBEAM NODE I 2
R o
.RESICDUAL 42CR
/
\\C TM11 3
/
0 2
4 6
8 13 NBEAM NCDE 1 2
MODALICOMB r,
r*E 2
ABE AM SPATTAI rTMR
.4, I
a 2
SOLVIA-POST 99.0 NCDE 1
2 TTF I
4 6
5 1
NBEAT NODE 1 -
2 SOLVIA ENGINEERING AB Version 99.0 A76.4 0
. I 0
?
N
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A76 RESPONSE SPECTRUM ANALYSIS OF A SIMPLY SUPPORTED BEAM' DATABASE CREATE MASTER IDOF=010101 NSTEP=1 FREQUENCIES SUBSPACE-ITERATION NEIG=3 SSTOL=1.E-10 ANALYSIS TYPE=DYNAMIC MASSMATRIX=CONSISTENT IMODS=2, NMODES=3 CORRECTION=YES SET MYNODES-0 COORDINATES 1
/
2
- 10.
/
3
- 1. 0.
- 1.
MATERIAL 1
ELASTIC E=2.E11 DENSITY=7800.
EGROUP 1
BEAM RESULTS=FORCES SECTION 1
GENERAL RINERTIA=.1407E-4 SINERTIA=.833333E-5, TINERTIA=.833333E-5 AREA=.01 GLINE NI=i N2=2 AUX=3 EL=-8 FIXBOUNDARIES 13
/
1 2 FIXBOUNDARIES
/
3 LOADS MASSPROPORTIONAL ZFACTOR=1 ACCGRA=-9.81 SOLVIA END SOLVIA-POST input A76 RESPONSE SPECTRUM ANALYSIS OF A SIMPLY SUPPORTED BEAM DATABASE CREATE WRITE FILENAME='a76.1is' SET PLOTORIENTATION=PORTRAIT SET VIEW=-Y ORIGINAL=YES DEFORMED=NO NSYMBOLS=YES MESH BCODE=ALL SUBFRAME=14 MESH NNUMBERS=YES GSCALE=OLD FREQUENCIES MASS-PROPERTIES RSPECTRUM 1 AXES=2 TITLE='RESPONSE SPECTRUM' SUBFRAME=1121, PLOT=YES FACTOR=1.0 0.5 2.0 5.0 7.0 10.0 33 9.81 9.81 9.81 9.81 9.81 9
48.66 34.74 25.6 22.27 18.64 2.5 58.37 41.69 30.71 26.68 22.37 0.25 7.22 5.64 4.63 4.24 3.84 DAMPING 1
/
1 1 TO 3 1 Version 99.0 Linear Examples A76.5
SOLVIA Verification Manual SOLVIA-POST input (cont.)
Linear Examples MODAL-COMBINATION MODAL-COMBINATION SPATIAL-COMBINATION 2 1.
1 RSPECTRUM=1 DIRECTION=Z METHOD=SRSS, RESIDUALýNO 2
RSPECTRUM=1 DIRECTIONýZ METHOD=SRSS, RESIDUAL=ABS 1
METHOD=SRSS STATTC=1 NPLINE NAME=NBEAM 1
4 TO 20 2
EPLINE NAME=EBEAM 1
1 2 TO 18 1 2 SUBFRAME 14 SET RESPONSETYPEýVIBRATIONMODE NLINE LINENAME=NBEAM DIRECTION=3 NLINE LINENAME=NBEAM DIRECTIONý3 NLINE LINENAME=NBEAM DIRECTION=3 NLINE LINENAME=NBEAM DIRECTION=3 RESPONSETYPE=TIMERESULT KIND=DISPLACEMENT TIME=1 KIND=DISPLACEMENT TIME=2 KIND=DISPLACEMENT TIME=3 KIND=DISPLACEMENT, ELINE ELINE ELINE ELINE LINENAME=EBEAM LINENAME=EBEAM LINENAME=EBEAM LINENAMEýEBEAM KINDýMT TIMEýl SUBFRAME=14 KIND=MT TIMEý2 KIND=MT TIME=3 KIND=MT RESPONSETYPE=TIMERESULT SUBFRAME 14 SET RESPONSETYPE=MODALCOMBINATION NLINE LINENAME=NBEAM DIRECTION=3 KIND=DISPLACEMENT TIME=1 NLINE LINENAME=NBEAM DIRECTION=3 KIND=DISPLACEMENT, RESPONSETYPE=RESIDUAL TIME=3 NLINE LINENAME=NBEAM DIRECTION=3 KIND=DISPLACEMENT TIME=2 NLINE LINENAMEýNBEAM DIRECTION=3 KIND=DISPLACEMENT, RESPONSETYPE=SPATIALCOMBINATION TIME=1 SUBFRAME 14 NLINE LINENAME=NBEAM DIRECTION=3 KIND=ACCELERATION TIME=1 NLINE LINENAME=NBEAM DIRECTION=3 KIND=ACCELERATION, RESPONSETYPEýRESIDUAL TIME=3 NLINE LINENAME=NBEAM DIRECTION=3 KIND=ACCELERATION TIME=2 NLINE LINENAME=NBEAM DIRECTION=3 KIND=ACCELERATION, RESPONSETYPE=SPATIALCOMBINATION TIME=1 ELINE ELINE ELINE ELINE NLIST NLIST NLIST NLIST NLIST LINENAME=EBEAM KIND=MT TIME=1 SUBFRAME=14 LINENAME=EBEAM KIND=MT RESPONSETYPE=RESIDUAL TIME=3 LINENAME=EBEAM KIND=MT TIME=2 LINENAME=EBEAM KIND=MT RESPONSETYPE=SPATIALCOMBINATION, TIME=1 KIND=REACTION RESPONSETYPE=TIMERESULT TSTART=1 KIND=REACTION RESPONSETYPE=VIBRATIONMODE TSTARTýl TEND=3 KIND=REACTION RESPONSETYPE=MODALCOMBINATION TSTART=1 TEND=2 KIND=REACTION RESPONSETYPE=RESIDUAL TSTART=3 KIND=REACTION RESPONSETYPE=SPATIALCOMBINATION TSTART=1 SET RESPONSETYPE=SPATIALCOMBINATION NLIST N12 KIND=DISPLACEMENT TSTART=1 NLIST N12 KIND=ACCELERATION TSTART=1 ELIST EL9 TSTART=1 END Version 99.0 A76.6
SOLVIA Verification Manual EXAMPLE A77 HARMONIC RESPONSE OF A TWO-DEGREE-OF-FREEDOM SYSTEM Objective To verify the harmonic response method.
Physical Problem A sinusoidal force is applied to one mass of the undamped two-degree-of-freedom system shown in the figure below.
F F =F0 sin cot Fo =IN m1 =l1kg m 2 = 1 kg ki = 1.0.104 N/m k2 =1.5.104 N/m Finite Element Model The model consists of two SPRING elements and two concentrated masses.
Solution Results The input data on pages A77.3 and A77.4 has been used.
The figures on page A77.2 and A77.3 show the harmonic response at node 3 for displacement, velocity and acceleration and the response for SPRING element 1.
The analytical solution for the response at node 3 is:
U tmz- -i2k 2F 1; Mm(2
_ )
-2
)(C022-co2)
VzU.&O a
-u3 aw u.ho2 where u = displacement v = velocity a = acceleration F = exciting force amplitude wo = angular frequency of the exciting force co,
= angular frequency of mode number one (02
= angular frequency of mode number two in 1, m 2
= masses, see figure above kJ, k2
= stiffnesses, see figure above Version 99.0 Linear Examples A77.1
SOLVIA Verification Manual Amplitude of the response at node 3:
Linear Examples Frequency Analytical SOLVIA Hz u[m]
v[m/s]
a[m/s2]
u[m]
v[m/s]
a[m/s 2]
6 1.575.10-4 5.938.10.3 2.238.10-'
1.576.10-4 5.942.10-'
2.240.10-'
12 3.330.10-4 2.511.10-2 1.893 3.328.10-4 2.509.10-2 1.892 30 1.704.10-'
3.212.10-'
60.54 1.704.10-'
3.213-10-'
60.56 36 2.100.10-5 4.750.10.3 1.074 2.080.10-5 4.705-10-3 1.064 User Hints
"* The response amplitude at the natural frequencies are infinite for an undamped system. Of this reason the damping values to SOLVIA-POST must be greater than 10-5 % of critical damping. In this example damping values of 0.0001% are used to simulate an undamped system.
" Note that the element forces are positive in the global x-direction, see
- 1) figure. The low frequency response of the element force F' 10 at element 1
1 1 point I is therefore negative, thus a phase angle of -180'. By selecting RESULTS = STRESSES in the EGROUP command and specifying a stress transformation constant S in the PROPERTYSET command one can achieve that a positive element response means tension.
OF A TWO-DEGREE-OF-FREEDOM SYSTEM EXCITATION IN NODE 2 DA I
If1i
//
'N
/"
5 t
I 20 25 30 3S 40 FREOGUENCY S OJ..
- 99.
SOLV!A-POSY 99.
SOLVIA ENGINEERING AB A77 HARMONIC RESPONSE OF U.
0, A TWO-OEGREE-OF-FREEDOM SYSTEM EXCITATION 7N NODE 2 DoR I
/ \\,
'I
//
/
/
5 i.0 Is 20 25 30 35 FREQUENCY
<F 0<
I SOLVIA-POST 99.0 Version 99.0 A77 HARMONIC RESPONSE SOLVIA ENGINEERING AB A77.2
SOLVIA Verification Manual Linear Examples A77 HARMONIC RESPONSE OF A TWO-DEGREE-OF-FREEDOM SYSTEM EXCITATION IN NODE 2 D0 I1
/"
C
/
/
0 IS 20 25 FREOLENCY SOLVIA-POST 99.0 SOLVIA ENGINEERING AB SOLVIA-PRE input HEADING
'A77 HARMONIC RESPONSE OF A TWO-DEGREE-OF-FREEDOM SYSTEM, DATABASE CREATE MASTER IDOF=011111 FREQUENCIES SUBSPACE-ITERATION NEIG=2 MODALSTRESSES=YES COORDINATES 1
- 0.
TO 3
- 3.
MASSES 2
- 1. /
3 1.
EGROUP 1
SPRING DIRECTION=GLOBAL PROPERTYSET 1
K=1.0E4 PROPERTYSET 2
K=1.5E4 ENODES
/
1 1 1 2 1
/
2 2 1 3 1 EDATA
/
1 1
/
2 2
- r FIXBOUNDARIES SOLVIA END
/
1 Version 99.0 30 35 40 g
u2 U
Q A77.3
SOLVIA Verification Manual SOLVIA-POST input A77 HARMONIC RESPONSE OF A TWO-DEGREE-OF-FREEDOM SYSTEM DATABASE CREATE WRITE FILENAME='a77.1is' SET PLOTORIENTATION=PORTRAIT SET RESPONSETYPE=VIBRATIONMODE FREQUENCIES NLIST TSTART=1 TEND=2 DAMPING 1
/
1 i.E-4 NHARMONIC-RESPONSE NO]
FE]
2 1 1.
- 0.
END DATA NHARMONIC - RESPONSE 2 1 1.
- 0.
END DATA NHARMONIC - RESPONSE 2 1 1.
- 0.
END DATA EHARMONIC - RESPONSE 2 1 1.
- 0.
END 2 1.E-4 DE=3 DIRECTION=1 KIND=DISPLACEMENT, ND=40.
FSTEP=0.1 AXES=3 OUTPUT=ALL NODE-3 DIRECTION=i KIND=VELOCITY, FEND=40.
FSTEP=0.1 AXES=3 NODE=3 DIRECTION=I KIND=ACCELERATION, FEND=40.
FSTEP=0.1 AXES=3 ELEMENT=i POINT=i KIND-FX FEND-40.,
FSTEP=0.1 AXES=3 Version 99.0 Linear Examples A77.4
SOLVIA Verification Manual EXAMPLE A78 RESPONSE SPECTRUM OF TWO LOAD PULSES Objective To verify the response spectrum calculations based on an accelerogram input directly to SOLVIA POST.
Physical Problem To find the maximum response of an undamped one-degree-of-freedom system subjected to an isosceles triangular load pulse and a constant force attained with finite rise time, see figures below.
Isosceles triangular load pulse load F, =IN t d =O0.2 s
=
5 Hz td time td 2 Constant force attained with finite rise time load F2 =IN tr =-0.1s F2 tr time Finite Element Model The shock responses are calculated directly in SOLVIA-POST with the command RESPONSE SPECTRUM. The input data is shown on page A78.6. A database in SOLVIA-POST based on porthole file results is needed although the accelerogram data is input directly to SOLVIA-POST. A dummy analysis of 1 time step is therefore run using SOLVIA-PRE and SOLVIA in order to create a porthole file for the database. The input data for this SOLVIA-PRE run is shown on page A78.5.
Version 99.0 Linear Examples A78.1
SOLVIA Verification Manual Solution Results The theoretical solution to the acceleration response is given in [1] p. 49:
Isosceles triangular load pulse:
2(t sin cot) 0 *t*
td /2 td (0O2 t<t/
a=-td
-- t + l[2sin (ot- -
sin cot}l td / 2 <ttd a=
2 2sin co L--)sin o)t (t -td)ltL td-<t Constant force attained with finite rise time:
a I (t sin c t) t_
a= 1+ - [sin co(t-tr)-sin cot]
t> tr cotr where co= 27tf f is the natural frequency of the one-degree-of-freedom system t = time CO td =27c / td The maximum response has been calculated for the values 10, 20, 30 and 40 of the parameter NINTEGRATION and the parameter TEND is 1 sec.
Response at the frequency 4.5 Hz due to triangular pulse:
Solution Max. acceleration Figure on page Theoretical solution 1.515 NINTEGRATION=10 1.454 A78.4 (left top figure)
NINTEGRATION=20 1.514 A78.4 (right top figure)
NINTEGRATION=30 1.513 A78.4 (left bottom figure)
NINTEGRATION=40 1.514 A78.4 (right bottom figure)
Version 99.0 Linear Examples A78.2
SOLVIA Verification Manual Response at frequencies 0.1 Hz and 4.5 Hz due to a constant force with finite rise time:
Solution Frequency 0.1 Hz Frequency 4.72 Hz Figu Max. acceleration Max. acceleration re on page Theoretical solution 2.000 1.672 NINTEGRATION=40 0.1731 1.670 A78.5 (left top figure)
TEND=l NINTEGRATION=40 1.996 1.670 A78.5 (right top figure)
TEND=10 User Hints
- If a high degree of accuracy is required in the calculations it is generally necessary that the value of NINTEGRATION, thus the number of integrations per period, is large.
"° It is also important that TEND is large enough to allow the maximum response to develop. This is exemplified by the response for the force with constant rise time, see left top figure on page A78.5, in particular at low frequencies.
Reference
[1]
Biggs, John M., Introduction to Structural Dynamics, McGraw-Hill, 1964.
Version 99.0 Linear Examples A78.3
SOLVIA Verification Manual Linear Examples A78 RESPONSE SPECTRUM OF TWO LOAD PULSES
'TRANILARIk i 0ULS 0 ýEND RESPIDNS SPEC RATD ATA 71 E M 15TOR DATA FACT7R IDTOEO-.
-D 0
-7
\\
/00
\\\\
/'
N\\
A IT SOLVIA-POST 99.0 iTS 0
FREOUENCY SOLVIA ENGINEERING AB A78 RESPONSE SPECTRUM OF TUC LOAD PULSES RIANGT LAR PULSE NNT=20 TEND-1 RESPONSE 3PECT.RU.4 5ATA TImE HISTCRY DATA FACTOR.
I GooE-0o DAMP E
0.E SOLVIA-POST 99.0 S10 i's 20 FREQUENCY SELVIA ENGINEERING AB A
5 Vo AT 20 SREEOUENCY ILVIA-POST 99.0 SOLVIA ENGINEERING AB Version 99.0
-o I
A78 RESPONSE SPECTRUM OF TWO LOAD PULSES TýIA.OULAR AU SE LOSTf40 TENDO!
-S
'oNSC - ECRUM DATA ETO
.ISTORY DATA FACTOR IQTOE0OT DAMP Y. 0.
F 0/A, 0
A78 RESPONSE SPECTRUM. OF TWO LOAD PULSES TRIANGULAR PULPSEMNTNT-OO TEDI RESPONS.A S
TRU T dAT.A TIrE HISTORY DATA FACTOTR I.3OAE.O
/
r J/
I
\\
/
0 10 20 FREQUNENCY SOLVIA-POST 99.0 SOLVIA ENGINEERING AB SO
\\ \\
m o
0
\\\\
/
/ /
I J
A78.4
SOLVIA Verification Manual Linear Examples SOLVIA-PRE input HEADING
'A78 RESPONSE SPECTRUM OF TWO LOAD PULSES' DATABASE CREATE MASTER IDOF=011111 NSTEP=d ANALYSIS TYPE=DYNAMIC MASSMATRIX-LUMPED COORDINATES 1 /
2
- 1.
EGROUP 1
SPRING DIRECTION-AXIALTRANSLATION PROPERTYSET 1 K=3.E4 M=20 ENODES
/
1 1 2 FIXBOUNDARIES
/
1 LOADS MASSPROPORTIONAL SOLVIA END XFACTOR=I.
ACC=-9.8 Version 99.0 A78 RESPONSE SPECTRUM OF TWO LOAD PULSES CUNSTANT FORCE N T ID0 TEND. I RESPHNSE SPECTRUM DATA T1ME HISTCRI DATA 1ACTOR HD000)-00 DX MP 0 a 4
I LI 0
1, t, 5 23D 2S 3D FRERUENCY SOLVIA-POST 99.0 SOLVIA ENGINEERING A8 A78.5
SOLVIA Verification Manual Linear Examples SOLVIA-POST input A78 RESPONSE SPECTRUM OF TWO LOAD PULSES DATABASE CREATE WRITE FILENAME='a78.1is' SET PLOTORIENTATION=PORTRAIT NEWPAGE=NO
RESPONSE
DATAFORMAT=TIME-VALUE NINT=10 TEND=i OUTPUT=ALL TITLE=-TRIANGULAR PULSE NINT=10 TEND=i' FSTART=I.019 FEND=20 FINCREMENT=2 VMIN=0.5 VMAX=i.6 0
- 0.
- 0.
END DATA 0.1 1.
/
0.2 0.
/
100.
0.
RESPONSE
DATAFORMAT=TIME-VALUE NINT=20 TEND=1 OUTPUT=ALL TITLE='TRIANGULAR PULSE NINT=20 TEND=i' FSTART-i.019 FEND=20 FINCREMENT=2 VMIN=0.5 VMAX=1.6
- 0.
- 0. 0.
/
END DATA
RESPONSE
- 0.
- 0. 0.
END DATA 0.1 1.
/
0.2 0.
/
100.
- 0.
DATAFORMAT=TIME-VALUE NINT=30 TEND=i OUTPUT=ALL TITLE-'TRIANGULAR PULSE NINT=30 TEND=i' FSTART=I.019 FEND=20 FINCREMENT=2 VMIN=0.5 VMAX-I.6 0.1 1.
/
0.2 0.
/
100.
0.
RESPONSE
DATAFORMAT=TIME-VALUE NINT=40 TEND-l OUTPUT=ALL TITLE='TRIANGULAR PULSE NINT=40 TEND=I' FSTART=I.019 FEND=20 FINCREMENT-2 VMIN=0.5 VMAX=I.6
- 0.
- 0.
- 0.
END DATA
- r 0.1 1.
0.2 0.
100.
0.
RESPONSE
DATAFORMAT=TIME-VALUE NINT-40 TEND=I OUTPUT=ALL TITLE-'CONSTANT FORCE NINT=40 TEND-I' FSTART=0.1 FEND=30 FINCREMENT=5 VMIN=0 VMAX=2 0.
- 0.
- 0.
END DATA 0.1 1.
/
100. 1.
RESPONSE
DATAFORMAT=TIME-VALUE NINT=40 TEND=-0 OUTPUT=ALL TITLE='CONSTANT FORCE NINT=40 TEND=i0' FSTART=0.1 FEND=30 FINCREMENT-5 VMIN=0 VMAX=2 0.
- 0.
- 0.
END
/
0.1 1.
/
100. 1.
Version 99.0 A78.6
SOLVIA Verification Manual EXAMPLE A79 EARTHQUAKE EXCITATION OF A BEAM STRUCTURE, FLOOR RESPONSE SPECTRA Objective To demonstrate the calculation of floor response spectra due to earthquake loading using modal superposition time history analysis.
Physical Problem A beam structure is subjected to ground acceleration in the two global horizontal directions X and Y.
The ground acceleration time histories are given in the unit rn/s 2 and are shown in the right figure on page A79.3. A point mass at one corner on level H, gives an asymmetrical mass distribution.
L Geometry H-3.0m H =-.
II- =2.0 m L =.5 m B =1.0 m Circular section Diameter D = 20 mm Material E=2.10 1" N/m 2 v-0.3 p= 7850 kg/m 3 Modal damping of 5%
Point mass m-= 10kg Finite Element Model The input data on pages A79.8 to A79. 11 is used in the analysis. 176 BEAM elements model the beam structure as shown in the left figure on page A79.3. Response spectra for the ground accelera tion in the X-and Y-directions are shown in the bottom figure on page A79.3. The ground accel eration contains frequencies up to about 50 Hz. The element mesh is, therefore, made fine enough to model natural frequencies up to at least 50 Hz. The modal time integration is performed with the time step size of 0.002 sec in 5500 time steps using 32 eigenmodes. The mode shapes are shown on pages A79.4 and A79.5 and include frequencies up to 57.4 Hz.
Version 99.0 H
H, Linear Examples F-A79.1
SOLVIA Verification Manual The response spectra for the acceleration at the corner nodes on level H, are calculated in SOLVIA POST. Using LOADS MASSPROPORTIONAL the calculated acceleration from SOLVIA is meas ured in a moving system (relative acceleration). To obtain absolute acceleration at nodes for the re sponse spectrum calculation it is necessary to add the corresponding ground acceleration time history since the mass proportional load is applied in the negative coordinate directions.
The top figures on page A79.6 show the time histories of the relative displacements and the relative accelerations at node 6. The calculated distributions of the relative displacements and accelerations at time 2.000 seconds are shown as vector plots in the left bottom figure on page A79.6. The scanned absolute maximum values of the relative displacements and accelerations in each nodal direction over the entire time span are shown as vector plots in the right bottom figure on page A79.6. The scanning of these values was requested in the SOLVIA-PRE command NHIST-PORTHOLE. Response spectra based on the absolute accelerations in the X-and Y-directions of the corner nodes on level H1 (node 5, 6, 7 and 8) are shown in the figures on page A79.7.
The envelope spectra based on all the comer nodes spectra on level H1, considering both the X-and Y-directions, are shown in the left top figure on page A79.8 with damping values of 2% and 5%. The envelope spectra broadened by 15% are shown in the right top figure on page A79.8.
User Hints
"* The ground acceleration contains frequencies up to about 50 Hz, see the left bottom figure on page A79.3. With ten time steps per period at the frequency of 50 Hz the time step size will be 0.002 sec.
" The output results are controlled with the SOLVIA-PRE commands NHIST-PORTHOLE, NSAVE and PORTHOLE. The nodal time histories and the time functions are saved on file SOLVIA63.DAT using the command NHIST-PORTHOLE. The nodal response of the whole model is saved at six time steps (1000, 2000, 3000, 4000, 5000 and 5500), see command NSAVE. The element results are suppressed with the command PORTHOLE SAVEDEFAULT=NO.
"* The applied base accelerations are the same at all the support points of the model. Hence, the base translates as a rigid body and the ground wave is assumed to hit the base support points with no difference in arrival time.
" The equilibrium equation for the base excitation is MU + KU = -Mdiigx - Mdyigy where dx and dy are direction vectors with zeroes in all components except +1 (plus one) in each of the components corresponding to the X-and the Y-directions, respectively.
Hence, a negative mass proportional loading, as used in this example, corresponds to a positive ground acceleration along the same coordinate axis.
Note also that the X-Y-Z system is moving with the ground and we obtain a response measured in this moving system. Therefore, to obtain in this example the absolute acceleration response (which is measured in a fixed system) it is necessary to add the ground acceleration time history.
Version 99.0 Linear Examples A79.2
SOLVIA Verification Manual Version 99.0 Linear Examples A79.3
V)
- 4) c)i 000 T0
I 000 00 T 0 2 I
0-z 001 T cý 10 N N 001 10
04 1000 001 rLi.
i 1015 Li O
1 00 0
10 NO 0
00 2Li-
-
01 0
0.00 Li o
To><
to 0
0 10 LI LI 0 Li 0 Li Li 100.0 700 0
Li 00-*
iii0o 0
-)
00 00 C
LI LI 0
0 0
Li i00 000 Li 0<0 0<0 Li 0
0 05 Li Li o
00<
.0,'
-
00 0-0 Li
Li-
<00-000 I
0 C
TCILi T
0 1 i
1 0
0 Li Li II
J.I
--
LI 0
0J 0*i 0
OLi OLi 0
I Li Li 00 00 Li 0
0 0
LI S
Li 000 0
Li 0<0 000 0
Li ON,:
00=
0
C)
C) 0 C)
C) 0
'-I C)
-4 0
Ci)
Ix 0010o T5 q
ON ON C) 0 0/)
L1 C)
SOLVIA Verification Manual Version 99.0 Linear Examples A79 EARTHQUAKE EXCITATRION OF A EAM STRUCTURE, FLOOR RESPONSE SPECTRA REFERENCE IF 1
.S 2
REFERENCE
-H 0.S MAX DISPL 0.3832 Y_ X MAX DISPL.
-. 046964 Y
X MODE 17 FREO 24 164 MODE 18 FRED 26.448 REFERENCE S
Z REFERENCE 0.5 N
z MAX DISPL
.1 0322 X
MAX DISPL
- 0. 483 X
IODE 19 FNEO 26.483 MODE 20 FREO 28.357 SOLVIA-POST 99.0 SOLVIA ENGINEERING AB A79 *ARTHCUAKE EXCITATION OF A BEAM STRUCTURE, FLOOR RESPONSE SPECTRA REFERENCE H-0.5 Z
REFERENCE
-H 0.5 Z
MAX DISPL.
0.47953 y
X MAX DISPLý I 0.48633
\\L-x MODE 21 FRED 32.396 MODE 22 FREO 33 048 REFERENCE I-H 0 S z
REFERENCE O
H 0 N MAX DISPL.
04923
,X MAX DI SPL.
- 0. 42593 YLX MODE 23 FREG 34,679 MODE 24 FRED 39.159 SOLVIA-POST 99.0 SOLVIA ENGINEERING AR A79 EARTHOUAKE EXCITATION OF A BEAM STRUCTURE, FLOOR RESPONSE SPECTRA REFERENCE H-0.5 2y REFERENCE
- H 0.5 y
MAX DISPL.N-D3361 MAX DISPL.-
10.31391 L_-X MODE 25 FRED 43.
36 MODE 26 FRED 45668 REFERENCE O.S Z
REFERENCEH-0*.
z2 MAX DISPL. I-0.25242 Y\\.t-x MAX DISPL.
0.2832 Xtx MODE 27 FRED 51.711 MODE 28 FRED 54.72 I
9 SOLVIA-FONT 99 0 SOLVIA ENGINEERING AR
- 79 EARTHOUAKE EXCITATION OF A BEAM STRUCTURE, FLOOR RESPONSE SPECTRA REFERENCE
,- H 0.5 Z
REFERENCE H-H 0 5 MAX DSL. H 0.42338 X
MAX DISPL 0.36617 YZ MODE 29 FRE0 56 128 MODE 30 FRED 56.279 REFERENCE H-O.S z
REFERENCE
-H 0.5 2
MAX DISPL 43131 Y
x MAX DESPL 0.41381 MODE 31 FREO 56.92 MODE 32 FREO 57.424 SOLVIA-POST 99.0 SOLVIA ENNGINEERING AB A79.5
SOLVIA Verification Manual Linear Examples A79 EAATHQUAKE EXAITATION OF A BEAM STRUCTURE, FECOR RESPONSE SPECTRA Eif
['>.vii rI j
[........
i' 2
4 SOLVIA-POST 99.0 6
8 to 12 TIME 4
6 8
I1 12 TIME SOLVIA ENGINEERING AD Version 99.0 A79 EARTHQUAKE EXCITATION OF A BEAM STRUCTURE, FLCOR RESPONSE SPECTRA O R I G I N A L H
0 5y5 MAX DISPL 2.0692E-3 X
TIME 2 DISPLACEMENT 2.0692E 3 ORIGINAL H 0.5 Z
MAX DISPL.
2.0692E-3 yL\\
x TIME 2 ACCELERATION I.I SA9 SOLVIA-POST 990 SOLVIA ENGINEERING AB I
S A79.6
SOLVIA Verification Manual Version 99.0 Linear Examples A79.7 A7D EARTHOUAKE EXCITALTON OF A REAM STRUCTURE, FLOOR RESPONSE SPECTRA RESPONSE SPECTRUM FIMEFUNCTION I FUNCTIONzAZ-OR !.0A O E-00 DAMP 20 5.o OA0?0 C0 10 FREQUENCY RESTO.N3E SPECTRU.M TIMEFJ.NCTION 2 zUNCIIONFACT0R IODOEO00 DAmP 1 2 G S.
o.i L '
to""
t"
- 0.
II 101110 FREQUENCY
,ROVTA-PR.0T 9Q0n SR. I TA ING0NEERING AB A79 EARTHOUAKE EXCITATION OF A REAM STRUCTURE, FLOOR RESPONSE SPECTRA RESF0PONE SETOURM10 roýFN 1:00 I F A IDOýNFACTER I10000E00 N i I
£ 1O AAtO 0,
10 lO' FRORUENCY RESPOON*.
SrECTRUM T100F1NCTION 2 FUNCTIONF.CVOA IDOD E-0O I LA I
0 ORF10 to0 FREQUENCY SOLVIA-POST 99.0 SOLVIA ENGINEERING AB A79 EARTHQUAKE EXCITATION OF A BEAD STRUCTURE.
FLOOR RESPONST SP0CTRA RESPONSE SP CTRUM R
IAORTION' I
.UNCTIONFALCTOR I GO000 DARP
- 5.
0 C
I,j O0 1
10 100 FREQUENCY RESPOAS 0SPECT.RUmN TIMFUNCTION 2 FUNCTIONFACTOR I.OO00 DARP A -
0 $
I 0.I 1
0X FREQUENCY SOLVIA-POST 99.0 SOLVIA ENGINEERING A0
SOLVIA Verification Manual Linear Examples A79 EARTHQUAKE IXC0:AT0N OF A BEA3 STRUCTURE. FLOOR RESPONSE SPECTRA NODES LEV E:
ENELOPE Et*oRE 7
0AP X 2. NUMBER OF SCANNED SPECTRA a
S/ t i too op FREQUENCY NIODES LýEVE 11 ENVELOPF SPEC0TRUM OAP X 0.0 NUABER OF SCANNED SPECTRA 8 rI I J\\
I Yf
9
./
!-~
0o. 1o SOLVIA-POST 99.0 SOLVIA E
I00 FREQUENCY NGINEERING AB
- 0.
I I0 I00 000 FREQUENCY SOLVIA-POST 99.0 SOLVIA ENGINEERING AR SOLVIA-PRE input DATABASE CREATE HEAD
'A79 EARTHQUAKE EXCITATION OF A BEAM STRUCTURE, FLOOR RESPONSE SPECTRA' MASTER NSTEP=5500 DT=0.002 ANALYSIS DYNAMIC IMODS=1 NMODES=32 FREQUENCIES SUBSPACE-ITERATION NEIG=32 SSTOL=I.E-8 NQ=60 MODALDAMPING INPUT-K-WEIGHTED PORTHOLE SAVEDEFAULT=NO NHIST-PORTHOLE DISPSCAN=ABSMAX VELSCAN=ABSMAX ACCSCAN=ABSMAX 6 1 DISP /
6 2 DISP 5 1 ACC TO 8 1 ACC 5 2 ACC TO 8 2 ACC 1 0 TIMEF 2 0 TIMEF NSAVE FIRST1=1000 LAST1=5500 INCRI=-000 MATERIAL 1 ELASTIC E=2.0E1T NU=0.3 DENSITY=7850 MODALDAMPING=5 COORDINATES 1000
/
5002
/
9003
/
0 2 1.5 0 0/
6 1.5 0 2/
10 1.5 0 3/
3 1.5 1 0/
7 1.5 1 2/
11 1.5 1 3/
Version 99.0 A79 EARTHQUAKE EXCITATION OF A BEAM STRUCTURE, FLOOR RESPONSE SPECTRA NOSES LEV 10 FOSENSNO ENEL PE-FE U
KAGP A 2 0 9N7U3.R OF SCANNED SPECTRA 8
5RDADINING TABLE I O. I 10100
'000 FREIUJENCY NODES LEVLL
,I 10 X BROAOENING MEN E PE SP EC T0 U DAIP 0 S.C 0
US OER 0F SCANNED SPECTRA 8 B0OA0ESISG TO LE 40 80 12 0 1 0 1 2 1 3 U
A79.8
SOLVIA Verification Manual SOLVIA-PRE input (cont.)
EGROUP GLINE GLINE GLINE GLINE GLINE GLINE GLINE GLINE Linear Examples I
BEAM MATERIAL=i Ni i N1=7 N1=5 N1=7 N1=9 N1=11 N2=5 N2=7 N2=9 N2=ii N2=6 N2=8 N2=I0 N2=12 AUX=2 AUX=4 AUX-2 AUX=4 AUX=9 AUX=-I AUX=5 AUX=7 EL=I6 EL-i6 EL-8 EL=8 EL=f2 EL=I2 EL=i2 EL=I2
/ /
/
/
/
/
/
/
SECTION 1 CIRCULARSOLID D=20E-3 BOUNDARIES iiiiii NODES /
1 2 3 4 MASS /
6 i0.
TIMEFUNCTION i
/
READ
'A79XDIR.DAT' TIMEFUNCTION 2 /
READ
'A79YDIR.DAT' GLINE GLINE GLINE GLINE GLINE GLINE GLINE GLINE Ni=2 N1=4 N1=6 N1=8 NI=6 N1=8 N1=10 N1=12 N2=6 N2=8 N2=10 N2=12 N2=7 N2=5 N2=II N2=9 AUX=I AUX=3 AUX=i AUX=3 AUX=I0 AUX=I2 AUX=6 AUX=8 EL=-6 EL=i6 EL=8 EL=8 EL=8 EL=8 EL=8 EL-8 LOADS MASSPROP XFA=-i YFA=-
ZFA=
LOADS MASSPROP XFA=0 YFA=-l ZFA=
VIEW Vi -i
-2 1.5 SET PLOTORIENTATION=PORTRAIT VIEW=
MESH AXIS 1 VMIN=-i.
VMAX=I.
PLOT TIMEFUNCTION 1 YAXIS=i SUBFR.
PLOT TIMEFUNCTION 2 YAXIS=i SOLVIA END SOLVIA-POST input ACCGRA-i.0 NCUR=I ACCGRA=i.0 NCUR-2
/1 NSYMBOL=Y NNNUMBERS=MYNODES
\\ME=I2 A79 EARTHQUAKE EXCITATION OF A BEAM STRUCTURE, FLOOR RESPONSE SPECTRA DATABASE CREATE NHIST-PORTHOLE=YES WRITE FILENAME='a79.1is' SET PLOTORIENTATION=PORTRAIT NEWPAGE=NO FREQUENCIES
RESPONSE
KIND:ACCELERATION TIMEFUNCTION=1 FUNCTIONFACTOR=1.D0, FSTART=0.5 FEND=-00 FINC=I VMAX:8.
PEAKTOL=I.E-4, AXES=4 OUTPUT=ALL SUBFRAME=i2
- 2.
- 5.
RESPONSE
KIND=ACCELERATION TIMEFUNCTION=2 FUNCTIONFACTOR=i.DC, AXES=4 VMAX=8 FSTART=0.5 FEND=-00 FINC=i PEAKTOL=i.E-4
- 2.
- 5.
VIEW Vi -i
-2 1.5 SET RESPONSETYPE=VIBRATION ORIGINAL=DASHED VIEW=V1 MESH TIME=I SUBFRAME=22 MESH TIME=2 / MESH TIME=3 /
MESH TIME=4 MESH TIME=5 SUBFRAME=22 MESH TIME=6 / MESH TIME=7 / MESH TIME=8 Version 99.0 A79.9
SOLVIA Verification Manual SOLVIA-POST input (cont.)
MESH TIME=9 SUBFRAME=22 MESH TIME=10 MESH TIME=11 MESH TIME=13 SUBFRAME=22 MESH TIME=14 MESH TIME=15 Linear Examples MESH TIME=i2 MESH TIME=16 MESH TIME=20 MESH TIME=24 MESH TIME=28 MESH TIME=32 MESH MESH MESH MESH TIME=17 SUBFRAME=22 TIME=18 MESH TIME=19 TIME=21 SUBFRAME=22 TIME=22 MESH TIME=23 MESH TIME=25 MESH TIME=26 SUBFRAME=22 MESH TIME=27 MESH MESH TIME=29 SUBFRAME=22 TIME=30 / MESH TIME=31 SET RESPONSETYPE=TIMERESULT DIAGRA-M=GRID NHISTORY NODE=6 DIRECTION=1 KIND=DISPLACEMENT NHISTORY NODE=6 DIRECTION=2 KIND=DISPLACEMENT NHISTORY NODE=6 DIRECTION=1 KIND=ACCELERATION NHISTORY NODE=6 DIRECTION=2 KIND=ACCELERATION SUBFRAME=12 SUBFRAME=12 MESH ORIGINAL=DASHED TIME=2. VECTOR=DISPLACEMENT SUBFRAME=12 MESH ORIGINAL=DASHED TIME=2. VECTOR=ACCELERATION SET RESPONSETYP=CASE-COMBINATION MESH ORIGINAL=DASHED TIME=1 VECTOR=DISPLACEMENT SUBFRAME=12 MESH ORIGINAL=DASHED TIME=3 VECTOR=DISPLACEMENT
RESPONSE
KIND=ACCELERATION NODE=5 DIRECTION=1 TIMEFUNCTION=1, FUNCTIONFACTOR=I.DO FSTART=0.5 FEND=100 FINC=1 VMAX=8, AXES=4 SAVE=YES PEAKTOL=I.E-4 SUBFRAME=12
- 2.
- 5.
RESPONSE
- 2. 5.
KIND=ACCELERATION NODE=5 DIRECTION=2 TIMEFUNCTION=2, FUNCTIONFACTOR=1.DO FSTART=0.5 FEND=100 FINC=1 VMAX=8, AXES=4 SAVE=YES PEAKTOL=1.E-4
RESPONSE
KIND=ACCELERATION NODE=6 DIRECTION=1 TIMEFUNCTION=1, FUNCTIONFACTOR=1.DO FSTART=0.5 FEND=100 FINC=1 VMAX=8, AXES=4 SAVE=YES PEAKTOL=I.E-4 SUBFRAME=12
- 2.
- 5.
RESPONSE
KIND=ACCELERATION NODE=6 DIRECTION=2 TIMEFUNCTION=2, FUNCTIONFACTOR=1.DO FSTART=0.5 FEND=100 FINC=I VMAX=8, AXES=4 SAVE=YES PEAKTOL=1.E-4
- 2.
- 5.
RESPONSE KIND=ACCELERATION NODE=7 DIRECTION=1 TIMEFUNCTION=1, FUNCTIONFACTOR=1.DO FSTART=0.5 FEND=100 FINC=1 VMAX=8, AXES=4 SAVE=YES PEAKTOL=1.E-4 SUBFRAME=12
- 2.
- 5.
RESPONSE
- 2. 5.
KIND=ACCELERATION NODE=7 DIRECTION=2 TIMEFUNCTION=2, FUNCTIONFACTOR=I.DO FSTART=0.5 FEND=100 FINC=1 VMAX=8, AXES=4 SAVE=YES PEAKTOL=I.E-4 RESPONSE KIND=ACCELERATION NODE=8 DIRECTION=1 TIMEFUNCTION=l, FUNCTIONFACTOR=1.DO FSTART=0.5 FEND=100 FINC=I VMAX=8, AXES=4 SAVE=YES PEAKTOL=I.E-4 OUTP=ALL SUBFRAME=12
- 2. 5.
Version 99.0 A79.10
SOLVIA Verification Manual SOLVIA-POST input (cont.)
RESPONSE
KIND=ACCELERATION NODE=8 DIRECTION=2 TIMEFUNCTION=2, FUNCTIONFACTOR=1.DO FSTART=0.5 FEND=i00 FINC=1 VMAX=8, AXES=4 SAVE=YES PEAKTOL=1.E-4
- 2.
- 5.
ENVELOPE KIND=ACCELERATION TITLE='NODES LEVEL Hi',
VMAX=8 AXES=4 SUBFRAME=12
- 2.
51/52/61/62 71/72
/
81/82 ENVELOPE KIND=ACCELRATION TITLE='NODES VMAX=8 AXES=4 OUTPUT=ALL
- 5.
51/52/61/62 71/72/81/82 LEVEL HI',
BROADENING-TABLE 1
.1 15.
110. 15.
ENVELOPE KIND=ACCELERATION BROADENING= 1 TITLE='NODES LEVEL Hi, 15 % BROADENING' VMAX=8 AXES=4 SUBFRAME=12
- 2.
51/52
/
61/62 71/72
/
81/82 ENVELOPE KIND=ACCELRATION BROADENING= 1 TITLE='NODES LEVEL Hi, 15 % BROADENING' VMAX=8 AXES=4 OUTPUT=ALL
- 5.
51/52/61/62 71/72/81/82 ZONE HI INPUT=NODES /
5 6 7 8 SET ZONE=HI RESPONSETYP=TIME-RESULTS NMAX KIND=ACCELERATION NUMBER=10 DIR=123 SET RESPONSETYP=CASE-COMBINATION NMAX KIND=DISPLACEMENT NUMBER=5 DIR=123 TSTART=1 TEND=1 NMAX KIND=DISPLACEMENT NUMBER=5 DIR=123 TSTART=2 TEND=2 NMAX KIND=DISPLACEMENT NUMBER=5 DIR=123 TSTART=3 TEND=3 END Version 99.0 Linear Examples A79,11
SOLVIA Verification Manual EXAMPLE A80 CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS Objective To verify the use of the command CASE-COMBINATION in SOLVIA-POST when different boundary conditions of a model are used.
Physical Problem A simply supported thin square plate is considered as shown in the figure below. A concentrated load acting in the negative Z-direction is applied at point A.
Simply supported plate E=2.0.10" N/m 2 v=0.3 a = I mn h = 0.010 m (thickness)
P2 = 400 N Finite Element Model Due to symmetry of the structure only one quarter of the plate is considered. The concentrated load is non-symmetric and, therefore, four runs with different boundary conditions are performed. A 4 x 4 mesh with 4 node SHELL elements is used.
The finite element model with boundary conditions for the four cases is shown on page A80.3. A finite element solution of the whole plate, with 64 elements, has been used as a reference solution.
Solution Results Boundary conditions and input data for the four cases:
Version 99.0 Y
Linear Examples A80.1
SOLVIA Verification Manual The results from the four cases are saved in the SOLVIA-POST database and then combined using the command CASE-COMBINATION.
Numerical results:
Case Stress-xx [MPa]
Stress-yy [MPa]
Mises el 10 node 5 el 10 node 5 effective stress [MPa]
Bottom surface Bottom surface el 10 node 5 Bottom surface 1
0.8003 1.0330 1.023 2
0.7374 0.8619 0.808 3
0.7606 0.8182 0.794 4
0.6694 1.0035 0.891 Casecombination 2.9677 3.7165 3.431 Reference solution 2.9677 3.7165 3.431 The deformed mesh of case 1 to 4 and of the combined case are shown on pages A80.3 and A80.4.
Note that the von Mises effective stress is not a linear function of the stress components. Hence, in a linear case combination the von Mises stress should not be combined as other results but should be recalculated based on the combined stress components. Recalculation can be specified by the parame ter MISES in the SOLVIA-POST command CASECOMBINATION and recalculation is default when FUNCTION = SUM.
Version 99.0 Case Z-displacement (mm) at point A (node 5) 1
-0.09436 2
-0.04117 3
-0.04510 4
-0.05302 Casecombination
-0.23365 Reference solution
-0.23365 Linear Examples A80.2
SOLVIA Verification Manual Linear Examples A8JD CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS MAX DISPL.
-S.
S9SE-S z
TIME 3 Y
,X MASTER 110001 8
totolo C 111O0 O) 11110051 0
D J
XI!O LOAD SDISPLACEMENT MAX 0. ISB5E-S I 8370E-5
- 4. 1921E-S 3.5471 E-5 2.9022E-5
- 2. 2573E-5 I. 6123E-S 9.6740E-6 3.2247E-6 M'IN 0 SOLVIA ENGINEERING AB MAX DISPL
-S.
IS9SE-S TIME 3 SOLVDA-POST 99.0 A80D CASE-COMBINATIONS WITH DIFFERENT BOUNDARY COND17INS MAX DISPL. -
- 4. 1783E-S 5 TIME 2 Y
X ASOD CASE -COMSINATICNS WITH DIFFERENT BOUNDARY CONDITIONS MAX DISPL. >- 2. 2456E-4 Z
TIME iY X
MASTE.R 1 10001 E [
01OO[
F 1011 G 111101 MAX DISPL.
2 2456E-4 Z
TIME I
YqX LOAD DISPLACEMENT MAX 2.2560E-4 2.1053E-4 1[.8246E-4 1.5439E 4 I 2632E-4 9*B.24SE S
-7.017sE-5 1.4 21osE-S I.403SE-5 MIN 0 SOLVIA-POST 99.0 SOVIA FNDINFFRINr AR MAX DISPL.
H-- 4 1783E-S TIME 2 SOLVIA-POST 99.0 LOAD 100 DISPLACEMENT MAX 4.1783E-5 3.9172E-5 3 3949E-S
- 2. 8726E-5 2.3503E-S t.8280E-S 1.3057E-5 7.8343E-6 S
MIN 0 SOLVIA ENGINEERING AB A80.3 MAST ER 1 110001 CB ý i Cc?
D I lCII E 111101 Z
0 111 X A80D CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITDONS MAX DISPL. H 6.2248E-5 z
TIME 4
Y x
D.
D MCDII MAX DISPL. H 62248E-5 Z
TIME 4 Y
1,X LOAD 1 05 DISPLACEMENT MAX 6.2248E-N S.83S8E-S
- 5. 0577E-5 S.2796E-S
- 3. 501SE-5 2.7234E-5 1 9453E-6 S.0672E-S 3.8905E-6 MIN 0 SOLVIA-POST 99.0 SOLVIA ENGINEERING AD Version 99.0 Cý
SOLVIA Verification Manual Version 99.0 Linear Examples A80.4
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A80A CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS, Case 1 Symmetric and symmetric DATABASE CREATE MASTER IDOF=110001 COORDINATES ENTRIES NODE X
Y 1
- 1.
- 1.
2
- 0.
- 1.
3
- 0.
- 0.
4
- 1.
- 0.
5 0.5 0.25 MATERIAL 1
ELASTIC E=2.Ei1 NU=0.3 EGROUP 1
SHELL RESULT=NSTRESS GSURFACE 1 2 3 4 ELl=4 EL2=4 NODES=4 THICKNESS 1
0.01 LCASE 1
LOADS CONCENTRATED 5
3 -100 FIXBOUNDARIES 3 INPUT=LINES
/
2 3
/
3 4 Symmetric conditions, Line 1-2 FIXBOUNDARIES 4 INPUT=LINES
/
1 2 Symmetric conditions, Line 1-4 FIXBOUNDARIES 5 INPUT=LINES
/
1 4 SOLVIA END Version 99.0 Linear Examples A80.5
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A80B CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS, Case 2 Anti-symmetric and Anti-symmetric DATABASE CREATE MASTER IDOF=II0001 COORDINATES ENTRIES NODE X
Y 1
- 1.
- 1.
2
- 0.
- 1.
3
- 0.
- 0.
4
- 1.
- 0.
5 0.5 0.25 MATERIAL 1 ELASTIC E-2.E11 NU=0.3 EGROUP 1
SHELL RESULT=NSTRESS GSURFACE 1 2 3 4 EL1-4 EL2=4 NODES=4 THICKNESS 1
0.01 LCASE 2
LOADS CONCENTRATED 5
3 -100 FIXBOUNDARIES 3
INPUT-LINES
/
2 3
/
3 4 Anti-symmetric conditions, Line 1-2 FIXBOUNDARIES 35 INPUT=LINES
/
1 2 Anti-symmetric conditions, Line 1-4 FIXBOUNDARIES 34 INPUT=LINES
/
1 4 SOLVIA END Version 99.0 Linear Examples A80.6
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A80C CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS' Case 3 Symmetric and Anti-symmetric DATABASE CREATE MASTER IDOF=110001 COORDINATES ENTRIES NODE X
Y 1
- 1.
- 1.
2
- 0.
- 1.
3
- 0.
- 0.
4
- 1.
- 0.
5 0.5 0.25 MATERIAL 1
ELASTIC E=2.E11 NU=0.3 EGROUP 1
SHELL RESULT=NSTRESS GSURFACE 1 2 3 4 EL1=4 EL2=4 NODES=4 THICKNESS 1
0.01 LCASE 3
LOADS CONCENTRATED 5
3 -100 FIXBOUNDARIES 3
INPUT=LINES
/
2 3 Symmetric conditions, Line 1-2 FIXBOUNDARIES 4
INPUT=LINES
/
1 2 Anti-symmetric conditions, Line 1-4 FIXBOUNDARIES 34 INPUT=LINES
/
1 4 SOLVIA END 3 4 Version 99.0 A80.7 Linear Examples
SOLVIA Verification Manual SOLVIA-PRE input HEAD
'A80D CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS, Case 4 Anti-symmetric and symmetric DATABASE CREATE MASTER IDOF=-i0001 COORDINATES ENTRIES NODE X
Y 1
- 1.
- 1.
2
- 0.
- 1.
3
- 0.
- 0.
4
- 1.
- 0.
5 0.5 0.25 MATERIAL 1
ELASTIC E=2.E11 NU=0.3 EGROUP 1
SHELL RESULT-NSTRESS GSURFACE 1 2 3 4 EL1=4 EL2=4 NODES=4 THICKNESS 1
0.01 LCASE 4
LOADS CONCENTRATED 5
3 -100 FIXBOUNDARIES 3
INPUT-LINES Anti-symmetric conditions, FIXBOUNDARIES 35 INPUT=LINES Symmetric conditions, Line FIXBOUNDARIES 5
INPUT=LINES SOLVIA END
/
2 Line
/
1 1-4
/
1 3
1-2 2
3 4 4
Version 99.0 A80.8 Linear Examples
SOLVIA Verification Manual SOLVIA-POST input A80A CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS Case 1 Symmetric and symmetric DATABASE CREATE END SOLVIA-POST input A80B CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS Case 2 Anti-symmetric and anti-symmetric DATABASE ADD END SOLVIA-POST input A80C CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS Case 3 Symmetric and anti-symmetric DATABASE ADD END Version 99.0 Linear Examples A80.9
SOLVIA Verification Manual Linear Examples SOLVIA-POST input A80D CASE-COMBINATIONS WITH DIFFERENT BOUNDARY CONDITIONS Case 4 Anti-symmetric and symmetric DATABASE ADD WRITE FILENAME-'a8Od.lis' CASE-COMBINATION 1 STANDARD 1I1.
2 1.
3 1.
4 1.
NLIST ZONENAME=N5 TSTART=i TEND=4 NLIST ZONENAME=N5 RESPONSETYPE=CASE-COMBINATION SHELLSURFACE LISTRESULTS=BOTTOM PLOTRESULTS=BOTTOM ELIST ZONENAME=ELl0 TSTART=i TEND=4 ELIST ZONENAME=ELl0 TSTART=I TEND=4 SELECT=S-EFFECTIVE ELIST ZONENAME=ELl0 RESPONSETYPE=CASE-COMBINATION ELIST ZONENAME=ELi0 RESPONSETYPE=CASE-COMBINATION SELECT=S-EFFECTIVE VIEW ID=i XVIEW=-i YVIEW=-i ZVIEW=1 SET VIEW=i PLOTORIENTATION=PORTRAIT NSYMBOLS=MYNODES MESH NNUMBERS=MYNODES BCODE=ALL TIME=i SUBFRAME=i2 MESH VECTOR=LOAD CONTOUR=DISPLACEMENTS TIME=i MESH ENUMBERS=YES BCODE=ALL TIME=2 SUBFRAME=i2 MESH VECTOR=LOAD CONTOUR=DISPLACEMENTS TIME=2 MESH BCODE=ALL TIME=3 SUBFRAME=i2 MESH VECTOR=LOAD CONTOUR=DISPLACEMENTS TIME=3 MESH BCODE=ALL TIME=4 SUBFRAME=i2 MESH VECTOR=LOAD CONTOUR=DISPLACEMENTS TIME=4 SET PLOTORIENTATION=LANDSCAPE RESPONSETYPE=CASE-COMBINATION MESH CONTOUR=DISPLACEMENTS MESH CONTOUR=MISES VECTOR=REACTION END Version 99.0 A80.10