DCL-03-052, Rev 0 to WCAP-15958, Analysis of Capsule V from Pacific Gas & Electric Co Diablo Canyon Unit 1 Reactor Vessel Radiation Surveillance Program, Appendix a Through E

From kanterella
(Redirected from DCL-03-052)
Jump to navigation Jump to search
Rev 0 to WCAP-15958, Analysis of Capsule V from Pacific Gas & Electric Co Diablo Canyon Unit 1 Reactor Vessel Radiation Surveillance Program, Appendix a Through E
ML031400347
Person / Time
Site: Diablo Canyon Pacific Gas & Electric icon.png
Issue date: 01/31/2003
From: Oatley D
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
DCL-03-052, FOIA/PA-2005-0108 WCAP-15958, Rev 0
Download: ML031400347 (151)


Text

A-0 APPENDIX A LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS Specimen prefix "E" denotes Intermediate Plate, Longitudinal Orientation Specimen prefix "R" denotes Correlation Monitor Material Specimen prefix "W" denotes Weld Material Specimen prefix "H" denotes Heat-Affected Zone material Load (1) is in units of lbs Time (1) is in units of milli seconds Appendix A

t5 3001 (a

0

-j 2001 1001 5001 4001 D 3001 0

-J 2001 1001 500' 4001

-s3W

-J I

I I

0 1

2 3

4 5

Time (1)

E52, -25°F I.

I -

I -

I.

0 1

2 3

4 5

Time (1)

E49, 25°F p.

0 1

2 3

4 5

Time (1)

E55, 75-F Appendix A A-i 6

6 6

l

~~

I c

II I

I0

Time (1)

E51, 1 10-F Time (1)

E53, 125°F 0

1 2

3 4

5 Time (1)

E50, 1750F Appendix A A-2 03 0

-J 0

-J

'0 0

-J 6

A-3 5000 0

0 1

2 3

4 56 Time (1)

E54, 2500F 5000-4000-\\

  • ~3000-2000 1000 1 0

0 1

2 3

4 5

6 Time ()

E56, 2750 F 5000 4000 n 3000 2000

\\

1000 0.

0 1

2 3

4 5

6 Time (1)

R49. 25F Appendix A

O 1

2 3

4 5

Time (1)

R51, 50°F 3.

3.

3.

3.

C I

2000 1000 1

2 3

Time (1)

R56, 1000F 4

S 0

1 2

3 4

5 Time (1)

R55, 150°F Appendix A A-4

-~ 300(

C A

-j 20C 500C 400C

  • 300C 0

-J 200C 1CC 6

6 6

I

'~ ~ ~

~..

~~

~~.......

A-5 sooo

+

40007

  • 3000I-o 2000 1000~

0 1

2 3

4 S

6 Time (1)

R53, 200°F sooo 2 4000+/-

4000, 3000 4.

2000i 1000-0 1

2 3

4 5

6 Time (1)

R54, 250°F 5000 4000t T

i 3000 }

2000+/-

10001 0

0 1

2 3

4 5

6 Time (1)

R50, 300°F Appendix A

A-6 50001 4000+

3000X 20001 1000 -

0 0

1 2

3 4

S 6

Time (1)

R52, 325°F 5000 4000

  • 0 3000 2000 1000 0

0 1

2 3

4 5

6 Time (1)

WI, 25°F sooo0 4000 1-X30 00 2000 1000 0

0 1

2 3

4 S

6 Time (1)

W13, 100°F Appendix A

0 1

2 3

4 5

Time (1)

W12, 150°F 0

1 2

3 4

5 Time (1)

W9, 200°F 0

1 2

3 4

5 Time (1)

W 10, 225°F Appendix A A-7 6

6 6

A-8 5000 sooo b ~~......

4000

'3000

\\

2000..

\\

1000 0

1 2

3 4

5 6

Time (1)

W15, 300°F 5000 4000.

3000 2000

.\\

10 0 0 l..

......\\.................

1000 0

0 1

2 3

4 5

6 Time (1)

W14, 325°F 5000...........

4000..

\\.

3000 2000 1000 0

0 1

2 3

4 5

6 Tine (1)

W 16, 350F Appendix A

"- 300(

0 200(

1lOOt 5001 4001

  • G 3001 0

-J 200(

1001

,1 V.

0 1

2 3

4 5

6 Time (1)

H14, -125-F 0

1 2

3 4

5 Time (1)

H12, -50°F 3000-2 3

4 5

Time (1)

H 11, 0°F Appendix A A-9 6

6 3-

0 1

2 3

4 S

Time (1)

IH10, 72°F 0

1 2

3 4

5 Time (1)

H9, OO°F 0

1 2

3 4

S Time (1)

H15, 125°F Appendix A A-10 6

6 6

0 1

2 3

4 S

Time (1)

H16, 175°F 0

1 2

3 4

5 Time (1)

H13, 225°F Appendix A A-1l

-J 0

-j 6

6

B-O APPENDIX B CHARPY V-NOTCH SHIFT RESULTS FOR EACH CAPSULE PREVIOUS FIT* VS. SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD (CVGRAPH VERSION 4.1)

  • The previous fit was plotted by PG&E using the EPRI Hyperbolic Tangent Curve Fitting Routine.

Appendix B

B-1 TABLE B-I Changes in Average 30 ft-lb Temperatures for Intermediate Shell Forging B4106-3 (Longitudinal Orientation)

Previous Fit vs. CVGRAPH 4.1 [F]

Capsule Unirradiated Irradiated AT30 Unirradiated Irradiated AT30 S

5 3

-2 5.14 3.36

-1.78 Y

5 52 47 5.14 53.81 48.66 V

1 5.14 39.46 34.32 TABLE B-2 Changes in Average 50 ft-lb Temperatures for Intermediate Shell Forging B4106-3 (Longitudinal Orientation)

Previous Fit vs. CVGRAPH 4.1 [F]

l_______

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT50 Unirradiated CVGRAPH AT50 S

41 45 4

39.31 45.43 6.11 Y

41 94 53 39.31 91.82 52.51 V

39.31 77.51 38.19 TABLE B-3 Changes in Average 35 mil Lateral Expansion Temperatures for Intermediate Shell Forging B4106-3 (Longitudinal Orientation)

Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT35 Unirradiated Irradiated AT35 2_

29 29 0

28.65 28.92 0.27 Y

29 75 46 28.65 74.89 46.24 V

28.65 89.72 61.07 Appendix B Previous Fit CVGRAPH 4.1 Fit

B-2 TABLE B-4 Changes in Average Energy Absorption at Full Shear for Intermediate Shell Forging B4106-3 (Longitudinal Orientation)

Previous Fit vs. CVGRAPH 4.1 [ft-lb]

Capsule Unirradiated Irradiated AE Unirradiated Irradiated AE S

122 126 4

118 126 8

Y 122 119

-3 118 110

-8 (110)

(-12)

V 118 121 3

  • Values in parenthesis were calculated per the definition of Upper Shelf Energy given in ASTM E185-82.

Note that the CVGRAPH USE values were also defined by ASTM E185-82.

TABLE B-5 Changes in Average 30 ft-lb Temperatures for Surveillance Weld Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT30 Unirradiated Irradiated AT30 5 S

-67 43 110

-65.62 45.17 110.79 Y

-67 167 234

-65.62 166.97 232.59 V

-65.62 135.45 201.07 TABLE B-6 Changes in Average 50 ft-lb Temperatures for Surveillance Weld Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT5o Unirradiated Irradiated AT50 S

-23 125 148

-24.16 120.38 144.54 Y

-23 253 276

-24.16 255.73 279.9 V

-24.16 219.26 243.43 Appendix B Previous Fit*

(CVGRAPH 4.1 Fi t

B-3 TABLE B-7 Changes in Average 35 mil Lateral Expansion Temperatures for Surveillance Weld Material Previous Fit vs. CVGRAPH 4.1 [F]

q Capsule Unirradiated Irradiated ATs Unirradiated Irradiated AT35 S

-46 96 142 46.52 95:28 141.81 Y

-46 195 241

-46.52 194.25 240.77 v

-46.52 220.66 267.19 TABLE B-8 Changes in Average Energy Absorption at Full Shear for Surveillance Weld Material Previous Fit vs. CVGRAPH 4.1 [ft-lb]

Previous Fit*

CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AE Unirradiated Irradiated AE S

98 87

-II 91 81

-10 Y

98 66

-32 91 60

-31 (60)

(-38)

V 91 66

-25

  • Values in parenthesis were calculated per the definition of Upper Shelf Energy given in ASTM El 85-82.

Note that the CVGRAPH USE values were also defined by ASTM E185-82.

TABLE B-9 Changes in Average 30 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT30 Unirradiated Irradiated AT>

S

-168

-91 77

-163.55

-91.24 72.31 Y

-168

-84 84

- 163.55

-83.77 79.77 V

-163.55

-52.65 110.9 Appendix B Previous Fit CVGRAPH 4 Fit

B-4 TABLE B-O Changes in Average 50 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Previous Fit vs. CVGRAPH 4.1 [1F]

Previos Fit U

CVGRAPH 41 Fit Capsule Unirradiated Irradiated AT,0 Unirradiated Irradiated AT50 s

11

-55 56

-111.75

-55;29 56.46 Y

-111

-36 75

-111.75

-35.96 75.78 V

-111.75

-1.98 109.77 TABLE B-I I Changes in Average 35 mil Lateral Expansion Temperatures for the Weld Heat-Affected-Zone Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiatedl Irradiated AT35 Unirradiated Irradiated AT3s S

-107

-64 43

-107.5

-64.26 43.24 Y

1

-107

-36 71 1

-107.5

-36.47 71.03

-107.5 18.76 126.27 TABLE B-12 Changes in Average Energy Absorption at Full Shear for the Weld Heat-Affected-Zone Material Previous Fit vs. CVGRAPH 4.1 [ft-lb]

Previous Fit*

CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AE Unirradiated Irradiated AE S

147 125

-22 136 125

-11

-Y 147 110

-37 136 109

-27 (109)

(-38)

V 136 116

-20 Appendix B

  • Values in parenthesis were calculated per the definition of Upper Shelf Energy given in ASTM El 85-82.

Note that the CVGRAPH USE values were also defined by ASTM El 85-82.

B-5 TABLE B-13 Changes in Average 30 ft-lb Temperatures for the Correlation Monitor Material Previous Fit vs. CVGRAPH 4.1 [F]

Capsule Unirradiated Irradiated AT30 Unirradiated Irradiated AT30 S

46 112 66 46.44 112.06 65.62 Y

46 158 112 46.44 162.23 115.79 V

46.44 163.05 116.61 TABLE B-14 Changes in Average 50 ft-lb Temperatures for the Correlation Monitor Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT50 Unirradiated Irradiated AT50 S

78 146 68 78.3 143.42 65.11 y

78 190 112 78.3 188.9 110.59 V

78.3 197.42 119.12 TABLE B-15 Changes in Average 35 mil Lateral Expansion Temperatures for the Correlation Monitor Material Previous Fit vs. CVGRAPH 4.1 [F]

Previous Fit CVGRAPH 4.1 Fit Capsule Unirradiated Irradiated AT35 Unirradiated Irradiated AT3 s S

59 124 65 58.96 124.49 65.53 Y

59 178 119 58.96 178.01 119.05 V

58.96 213.46 154.49 Appendix B CVGRAPH 4.1 Fit Previous Fit

B-6 TABLE B-16 Changes in Average Energy Absorption at Full Shear for the Correlation Monitor Material Previous Fit vs. CVGRAPH 4.1 [ft-lb]

U Capsule Unirradiated Irradiated l

AE Unirradiated Irradiated AE S

124 123

-1 123 120 l

-3 Y

124 122

-2 123 112

-11 (112)

( -2)

V 123 117

-6 Appendix B

  • Values in parenthesis were calculated per the definition of Upper Shelf Energy given in ASTM El 85-82.

Note that the CVGRAPH USE values were also defined by ASTM E185-82.

Previous Fit*

CVGRAPH 4.1 Fit

C-O APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING SYMMETRIC HYPERBOLIC TANGENT CURVE-FITTING METHOD Appendix C

C-1 Contained in Table C-I are the upper shelf energy values used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 4.1. The definition for Upper Shelf Energy (USE) is given in ASTM E185-82, Section 4.18, and reads as follows:

"ipper shelf energy level - the average energy value for all Charpy specimens (normally three) whose test temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be.regarded as defining the upper shelf energy."

If there are specimens tested in set of three at each temperature Westinghouse reports the set having the highest average energy as the USE (usually unirradiated material). If the specimens were not tested in sets of three at each temperature Westinghouse reports the average of all 100% shear Charpy data as the USE. Hence, the USE values reported in Table C-I and used to generate the Charpy V-notch curves were determined utilizing this methodology.

The lower shelf energy values were fixed at 2.2* ft-lb for all cases.

  • The Charpy V-notch curves show a value of 2.19 ft-lb, rather then 2.2. This is an inconsistency with the CVGraph program; the value of 2.2 is entered into the program, however, the value of 2.19 appears on the plot. This inconsistency is not expected to alter the results.

Appendix C Table C-1 Upper Shelf Energy Values Fixed in CVGRAPH ft-lb]

Nlaterial Unirradiated Capsule S Capsule Y Capsule V Intermediate Shell Plate 118 126 110 121 B4106-3 (Longitudinal Orientation)

Weld Metal 91 81 60 66 (heat # 27204)

HAZ Material 136 125 109 116 Correlation Monitor 123 120 112 117 Material

INTER SHELL PLATE B4106-3 UNIRR (LONG)

CVGRAPI 4i lyperbolic Tangent Curve Printed at 11:11:43 on 0-19-2002 Page I Coefficients of Curve I F

A

=

60.09 B = 57.9 C = 85.44 T = 54.37 Equation is. CVN = A + B

  • I tanh((T - T)/C) I Upper Shelf Energy: 118 Fixed Temp. at 30 ft-lbs:

5.1 Temp. at 50 ft-lbs 393 Lower Shelf Energy: 219 Fixed Material: PLATE SA533B1 Heat Number: B4106-3 Orientation: LT Capsule: UNIRR Total Fluence:

300-250F 2001F 150 0

100 50~~~~~~~~~

I0 X I I ooX t-~~~~~l/

u

-300

-200

-100 0

100 Temperature in Plant: DCI Cap: UNIRR Data Set(s) Plotted iaterial: PLATE SA533BI Charpy V-Notch Da Degrees F Ori: LT Heat #: B4106-3 kta Input CVN Energy 6

6 6

215 28 22 37 46 29 Computed CVN Energy 11.45 11.45 11.45 19.47 19.47 19.47 32.46 32.46 3246

      • Data continued on next page 'll C-2 P;%

0_

(I1z__

C) 200 300 Temperature 400 500 600

-50

-50

-50

-20

-20

-20 10 10 10 Differential

-5.45

-5.45

-5.45 2.02 8.52 2.52 4.53 13.53

-3.46

INTER SHELL PLATE B4106-3 UNIRR (LONG)

Page 2 Material: PLATE SA533B1 Heat Number. B4106-3 Orientation: LT Capsule. UNIRR Total Fluence Charpy V-Notch Data (Continued)

Input CVN Energy 55 25 53.5 50 77 100 107 120.5 118 1145 Computed CVN Energy 50.44 50.44 50.44 50.44 9323 9323 9323 115.04 115.04 115.04 SUM of RDUAL Differential 4.55

-25.44 3.05

-.44

-1623 6.76 13.76 5.45 2.95

-.54 S = 5.13 C-3 Temperature 40 40 40 40 110 110 110 210 210 210 I

I

INTER SHELL PLATE B4106-3 CAPSULE S (LONG)

CVGRAPI! 4.1 yperbolic Tangent Curve Printed at 11:11:43 on 08-19-2002 Page I Coefficients of Curve 2 A = 64.09 B

61.9 C = 108.49 TO = 70.58 Equation is CVN = A + B I tanh((T - T0)/C) I Upper Shelf Energy: 126 Fixed Temp. at 30 ft-lbs:

3.3 Temp. at 50 f-lbs Material: PLATE SA533B1 Heat Number: B4106-3 I

Capsule:

Total Fluence: 2.84E+18 co M

"-q l

5H V

z4 0)

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant: DCI Cap: S Material: PLATE SA533BI Ori: LT Heat Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy

-25 10 20.33 25 32 39.51 50 59 5249 76 92 6718 125 97 92.78 125 59 92.78 200 128 115.56 350 124 12528 Si 45.4 Lower Shelf Energy: 2.19 Fixed

)rientation: LT 400 500 F

  1. B4106-3 600 Differential

-1033

-7.51 6.5 241 421

-33.78 12.43

-128 UIM of RESIDUALS =-4.95 C4

INTER SHELL PLATE B4106-3 CAPSULE Y (LONG)

CVGRAPII 4.1 Hyperbolic Tangent Curve Printed at 11:11:43 on 08-19-2002 Page Coefficients of Curve 3 A = 56.09 B = 53.9 C = 91.63 TO = 10224 Equation is. CVN = A + B tanh((T - T0)/C) I Upper Shelf Energy: 110 Fixed Temp. at 30 f-lbs 53.8 Temp. at 50 ft-lbs 91.8 Lower Shelf Energy:

19 Fixed Material: PLATE SA533BI Heat Number.

4106-3 Capsule: Y Total Fluence: 1.05E+19 Orientation: LT 0

100 Temperature in Data Set(s) Plotted Plant DCI Cap: Y Material: PLATE SA533BI 200 300 Degrees 400 F

500 Ori: LT Heat : B4106-3 Charpy V-Notch Data Input CVN Energy Computed CVN Energy 12 20 37 33 63 96 113 107 851 17.55 2831 40.53 6921 91.7 103.07 10757 Differential 3.48 244 8.68

-7.53

-621 4129 9.92

-.57 SUM of RESIDUAIS = 14.5 C-5 In z

259fY 20 150 1u 0-300

-200

-100 I

4 4

+

+

I

.1 L

600 Temperature

-25 20 50 75 125 175 225 275

/7 e,0/

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 11:11:43 on 08-19-2002 Page I Coefficients of Curve 4 A = 61.59 B = 59.4 C = 9629 TO = 96.56 l

Equation is: CVN = A + B I anh((T - TO)/C) I Upper Shelf Energy 121 Fixed Temp. at 30 ft-lbs 39.4 Temp. at 50 ft-lbs 77.5 Lower Shelf Energy: 2.19 Fixed Material: PLATE SA533BI Capsule: V leat Number. B4106-3 Total Fluence 137E+19 Orientation: LT 300-----_

250' 150 10 In 50 0

0 100 Temperature in 200 300 Degrees Plant: DCI Cap: V Data Set(s) Plotted Material: PLATE SA533BI Ori: LT Heat #: 134106-3 Charpy V-Notch Data Input CVN Energy 15 32 33 7Q 92.

94 12 Computed CVN Energy 11 2411 48.51 69.83 78.64 10152 11628

>>'* Data continued on next page I"*

C-6

-300

-200

-100 400 F

500 Temperature 600

-25 25 75 110 125 175 250 Differential 3.99 7.88

-15.51

.16 13.35

-752 5.71

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

Page 2 Material: PLATE SA533B1 leat Number. B4106-3 Orientation: LT Capsule V Total Fluence: 1.37E+19 Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy Differential 119 118.15

.84 SUM of RESIDUAIS = 8.91 C-7 Temperature 275 Ii i

i

INTER SHELL PLATE B4106-3 UNIRR (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 11:38.29 on 08-19-2002 Page I Coefficients of Curve I A = 45.01 B = 44.01 C = 88.8 TO = 4921 Equation is LE = A + B

  • I tanh((T - T0)/C) I Upper Shelf LE-89.02 Material: PLATE SA533B1 Temperature a LE 35:

28.6 Heat Number. B4106-3 Lower Shelf LE I Fixed Orientation: LT Capsule: UNIER Total Fluence.

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Plant: DC]

Cap: UNIRR Data Set(s) Plotted liaterial PLATE SA533BI Charpy V-Notch Data Ori: LT Heat : B4106-3 Input Lateral Expansion 3

3 5

19 24 20 31 39 23 Computed LE 9.51 951 9.51 16.3 16.3 16.3 26.74 26.74 26.74

'** Data continued on next page C-8 600 Temperature

-50

-50

-50

-20

-20

-20 10 10 10 Differential

-6.51

-6.51

-451 2.69 7.69 3.69 425 1225

-3.74

INTER SHELL PLATE B4106-3 UNIRR (LONG)

Page 2 Material: PLATE SA533BI Heat Number.

4106-3 Orientation: LT Capsule UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Lateral Expansion 44 16 45 40 60 74 86 84 85 89 Computed LE 40.46 40.46 40.46 40.46 71.17 71.17 71.17 86.73 86.73 86.73 Differential 3.53

-24.46 4.53

-.46

-11.17 2.82 14.82

-2.73

-1.73 226 SUNI of RESIDUALS =-327 C-9 Temperature 40 40 40 40 110 110 110 210 210 210 Ii Ii I

It I

I

INTER SHELL PLATE B4106-3 CAPSULE S (LONG)

CYGRAPH 41 Hyperbolic Tangent Curve Printed at 11:29 on 08-19-2002 Page 1 Coefficients of Curve 2 A = 3686 B = 3536 C = 75.79 TO = 3287 Equation is: LR = A B I anh((T - TO)/C) I Upper Shelf LE 72.72 Material: PLATE SA533B1 Temperature at LE 35:

28.9 Heat Number. B4106-3 Lower Shelf LE I Fixed Orientation: LT Capsule S Total Fluence:

84E+18 200-15F 100 0

0 50 0

U 0

100

. 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: S Material: PLATE SA533B1 Ori: LT Heat #: B4106-3 Temperature Charpy V-Notch Data Input Lateral Expansion Computed LE

-25 25 50 716 125 125 200 350 105 30 47 68 655 45.5 79 77.5 13.79 3315 4483 553 6692 66.92 7186 72.71 Differential

-329

-3.15 2.16 1Z67

-1.42

-21.42 7.13 4.78 SUM of RESIDUAIS = -2.54 C-10 U)

P-4

-05H Pa--

Ct

-300

-200

-100

INTER SHELL PLATE B4106-3 CAPSULE Y (LONG)

CVGRAPII 4.1 llyperbolic Tangent Curve Printed at I1:3829 on 08-19-2002 Page I Coefficients of Curve 3 l

A = 43.76 B = 42.76 C = 110.43 TO = 97.85 Equation is LE = A + B tanh((T - TO)/C)

Upper Shelf LE-86.52 Material: PLATE SA533BI

-300

-200

-100 Temperature at L 35:

74.8 Lower Shelf LE I Fixed Heat Number. 131106-3 Orientation: LT Capsule Y Total Fluence: 1.05E+19 0

100 Temperature Data Set(s) Plotted Plant: DCI Cap: Y Mlaterial: PLATE SA533BI 200 300 in Degrees 400 F

500 Ori: LT lleat : B4106-3 Charpy V-Notch Data Input Lateral Expansion Computed LR 13 18 31 29 50 75 84 77 9.34 17.78 2631 35.03 54.06 69.56 7M74 83.19 Differential 3.65 21 4.68

-6.03

-4.06 5.43 525

-6.19 SUM of REiDUALS = 2.94 C-1l AXU U)

'I 0a 15V ooL sr

-11X

.~~~~~~~~~I u

Temperature 600

-25 20 50 75 125 175 225 275 I

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 11:3829 on 08-19-2002 Page 1 Coefficients of Curve 4 A = 41.48 B = 40.48 C = 106.09 TO = 106.87 Equation is L = A + B I tanh((T-TO)/C) I.

Upper Shelf LE 81.97 llaterial: PLATE SA533BI Temperature at L 35:

89.7 Heat Number3 B4106-3 Lower Shelf LE I Fixed Orientation: LT Capsule V Total Fluence 137E+19

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: V Material: PLATE SA533BI Ori: LT leat : B4106-3 Charpy V-Notch Data Input Lateral Expansion Computed LK 5

19 21 46 57 56 78 722 1525 29.67 4Z68 48.33 64.41 76.86

>> Data continued on next page C-12 204T 150[

100 50:

Cl)

'--4 0)r-4-,

1)

Temperature 600

-25 25 75 110 125 175 250 Differential

-222 3.74

-&67 3.31 8.66

-8.41 113

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

Page 2 a1: PLATE SA533BI Heat Number: B4106-3 Ori Capsule V Tolal Fluence 137E+19 Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE 80 78.71 enlation: LT Differential 1,8 SUM of RESIDUALS = -1.18 C-13 Materi.

Temperature 275

INTER SHELL PLATE B4106-3 UNIRR (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 11:49.00 on 08-19-2002 Page 1 Coefficients of Curve I A = 50 B = 50 C = 10z2.68 T0 = 77.35 Equation is Shear/. = A + B I tanh{(T - TO)/C)]

Temperature at 50z. Shear.

773 Material: PLATE SA533B1 Heat Number. B4106-3 Orientation: LT Capsule. UNIRR Total Fluence:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: PLATE SA533B1 Or: LT Heat #: 134106-3 Charpy V-Notch Data Input Percent Shear 9

9 9

14 14 14 25 20 25 Computed Percent Shear 7.72 7.72 7.72 13.05 13.05 13.05 2121 2121 2121

  • -1 Data continued on next page I'l C-14 Temperature 600

-50

-50

-50

-20

-20

-20 10 10 10 Differential 127 127 127

.94

.94

.94 3.78

-121 378

INTER SHELL PLATE B4106-3 UNIRR (LONG)

Page 2 Material: PLATE SA533131 Heat Number. B4106-3 Orientation: LT Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Input Percent Shear 34 29 34 30 56 65 65 100 100 100 Computed Percent Shear 3257 32.57 3257 32.57 6538 6538 65.38 92.98 92.98 92.98 SUM of RESIDUAL Differential 1.42

-3.57 1.42

-2.57

-9.38

-.38

-.38 7.01 7.01 7.01 3 = 20.62 C-15 Temperature 40 40 40 40 110 110 110 210 210 210

INTER SHELL PLATE B4106-3 CAPSULE S (LONG)

CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 11:49:00 on 08-19-2002 Page I Coefficients of Curve 2 I

A =50 B=50 C=97 T0=87.89 Equation is Shear/ = A + B I tanh((T - TO)/C) I Temperature at Se!. Shear.

878 Mlaterial: PLATE SA533BI Heat Number. B4106-3 Capsule: S Total Fluence: 2.84E+18 Orientation: LT

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: S Material: PLATE SA533BI Ori: LT Heat : B4106-3 Charpy V-Notch Data Input Percent Shear Computed Percent Shear 8.88 21.47 31.4 43.9 6824 6824 90.98 99.55 600 Differential

-6.88

-1.47

-1.4 16.09 1.75

-1824 9.01 A4 SUM of RESIDUAIS = -.69 Temperature

-25 25 50 76 125 125 200 350 2

20 30 60 70 50 100 100 C-16

INTER SHELL PLATE B4106-3 CAPSULE Y (LONG)

CVGRAPH 4.1 llyperbolic Tangent Curve Printed at 11:9:00 on 08-19-2002 Page I Coefficients of Curve 3 F

A 50 B = 50 C = 8724 TO = 99.6 Equation is Shear = A + B tanh((T - TO)/C) I Temperature at 50z Shear:

99.6 Material: PLATE SA533BI Ileat Number. 114106-3 Orientation: LT Capsule: Y Total Fluence: 1.05E+19 100~~~~~~~~~~~~~~~~1 80-6(F 4CF 21r 0~~~~~

-300

-200

-100 0

100 Temperature in Data Set(s) Plotted Plantl DCI Cap: Y Material: PLATE SA533BI 200 300 Degrees 400 F

500 Ori: LT Beat #: B4106-3 Charpy V-Notch Data Input Percent Shear Computed Percent Shear 10 15 30 30 60 90 100 100 5.43 13.8 2428 3625 64.15 1.91 94.65 9823 Differential 4.56 1.11 5.71

-625

-4.15 5.08 5.34 1.76 SUM of RESIDUALS = 13.17 C-17 a) 0)

CD 0

)

600 Temperature

-25 20 50 75 125 175 225 Z75

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 11:49:00 on 08-19-2002 Page 1 Coefficients of Curve 4 A = 50 B = 50 C = 7205 TO = 117.18 Equation is: Shear = A + B I tanh((T - TO)/C) I Temperature at 50. Shear.

117.1 Material: PLATE SA533BI Heat Number B4106-3 Capsule V Total Fluence 1.37E+19 Orientation: LT

-300

-200

-100 0

100 200 300 400 500 Temperature in DeLrees F

.~~~~~~~~~~~~~~~~~~~~

..I Data Set(s) Plotted Plant DCI Cap V Mlaterial: PLATE SA533B1 Ori: LT Heat #: B4106-3 Charpy V-Notch Data Input Percent Shear 5

10 15 45 65 75 100 Computed Percent Shear 1.89 7.18 23.66 45.02 5539 8326 97.55

-" Data continued on next page *'1, C-18 Temperature 600

-25 25 75 110 125 175 250 Differential 3.1 2.81

-8.66

-.02 9.6

-826 2.44

INTER SHELL PLATE B4106-3 CAPSULE V (LONG)

Page 2 Mlaterial: PLATE SA533B1 Heat Number. B4106-3 Orientation: LT Capsule V Total Fluence 1.37E+19 Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 100 98.76 123 SUM of RESIDUALS = 223 C-19 Temperature 275

WELD METAL UNIRRADIATED CVGRAPII 4.1 Hyperbolic Tangent Curve Printed at 12:2017 on 08-19-2002 Page I Coefficients of Curve I I

A = 4659 R = 44.4 C = 8827 TO = -30.93 Equation is CVN = A + B I tanh((T - TO)/C) I Upper Shelf Energy: 91 Fixed Temp. at 30

-lbs -65.6 Material:

ELD LINDE 1092 Temp. at 50 f-lbs. -24.1 Beat Number 27204 FLUX LOT 3714 Lower Shelf Energy: 2.19 Fixed Orientation:

Capsule UNIRR Total Fluence:

300-:

25CFY 200 15i 10 0 03 50 I)

-300

-200

-100 0

100 200 300 400 500 600 Temperature in Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: WELD LINDE 1092 Degrees F

Ori.:

Heat #: 27201 FLUX LOT 3714 Charpy V-Notch Data Input CN Energy Computed CVN Energy 19.5 9

22.5 15.5 17.5 14 44.5 24 295 7B 7.8 7.8 17.55 17.55 17.55 37.15 37J5 37.15 Differential 11.69 1.19 14.69

-2.05

-.05

-3.55 734

-13.15

-7.65

  • ' Data continued on next page C-20 U) la 0__

Is V_

Temperature

-150

-150

-150

-100

-100

-100

-50

-50

-50

VELD METAL UNIRRADIATED Page 2 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Capsule, UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input CYN Energy 50 615 54.5 63.5 59.5 70 845 79 69 83 945 94 Computed CVN Energy 52.07 52.07 52.07 65.83 65S3 65.83 76.17 76.17 76.17 87.49 87.49 87.49 Differential

-2.07 9.42 2.42

-2.33

-6.33 4.16 832 2.82

-7.17

-4.49 7

65 UM of RESIDUALS = 26.7 C-21 Orientation:

Temperature

-20

-20

-20 10 10 10 40 40 40 110 110 110 Ijii IP I

i II I

I ii I

WELD METAL CAPSULE S CVGRAP}I 4.1 lyperbolic Tangent Curve Printed at 122017 on 08-19-2002 Page 1 Coefficients of Curve 2 A = 41.59 B = 39.4 C = 144.65 TO = 89.06 Equation is CVN = A B

  • I tanh((T - T0)/C) I Upper Shelf Energy: 81 Fixed Temp. at 30 ft-lbs 45.1 Temp. at 50 ft-lbs 1203 Material: WiELD LINDE 1092 Heat Number. 27204 LUX LOT 3714 Capule S Total Fluence 284E18 30tF 2507 200 150 50~~~~~

-s--

~

~

U' Temperatt 25 60 76 76 125 0200 250 350 Lower Shelf Energy: 219 Fixed Orientation:

300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: S Material:

ELD LINDE 1092 Ori:

leat #: 27204 FLUX LOT 3714 Charpy V-Notch Data ire Input CVN Energy Computed CVN Energy Difl 21 30 49 43 42 63 80 81 252 33.78 38.05 38.05 5119 67.01 73.31 78.91 600 rerential

-42

-3.78 10.94 4.94

-9.19

-4.01 6.68 2.08 SUM of RESIDUALS = 3.45 C-22 I

WELD METAL CAPSULE Y CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 12:20.17 on 08-19-2002 Page I Coefficients of Curve 3 l

A = 31.1 B = 28389 C = 10821 TO = 171.09 Equation is CVN = A + B I tanh((T - T0)/C) I Upper Shelf Energy: 60 Fixed Temp. at 30 ft-lbs 166.9 Material: WELD LINDE 1092 Temp. at 50 ft-lbs 255.7 Heat Number 27204 FLUX LOT 3714 Lower Shelf Energy: 22 Fixed Orientation:

Capsule: Y Total Fluence: 1.05E+19

-300

-200

-100 0

100 200 300 400 500 600 Temperature in Data Set(s) Plotted Plant: DC1 Cap: Y Material: WELD LINDE 1092 Degrees F

Ori:

Heat # 27204 FLUX LOT 3714 Charpy V-Notch Data Input CVN Energy 16 17 24 26 42 58 63 60 Computed CVN Energy 5.83 14.44 25.53 34.79 4222 49.09 57.95 59.17 Differential 10.16 2.55

-1.53

-8.79

-22 8.9 5.04 82 SUM of RESIDUAIS = 16.94 C-23 c) 7la 44)

~z-4 0) zV1 Temperature 25 100 150 185 215 250 350 400 I

I

.i i

i i

i I

WELD METAL CAPSULE V CVGRAPII 4.1 lyperbolic Tangent Curve Printed at 12:20:17 on 08-19-2002 Page 1 Coefficients of Curve 4 l

A = 34.09 B = 31.89 C = 123.9 TO = 151.46 Upper Shelf Energy: 65.99 Fixed Material: WELD (I) 10 4-,4 Q) z

(-

300F 250 200-15f 10fF 50 U'I Equation is: CVN = A + B [ tanh((T - TO)/C) I Temp. at 30 ft-lbs 135.4 Temp. at 50 ft-Ibs 2192 UNDE 092 Heat Number 04 FLUX LOT 3714 Capsule. V Total Fluence: 137E+19 Lover Shelf Energy: 2.19 Fixed Orientation:

300

-200

-100 0

100 Temperature in Data Set(s) Plotted Plant DCI Cap: V Material: WELD LINDE 1092 200 300 Degrees Ori:

Heat #: 27204 FLUX LOT 3714 Charpy V-Notch Data Input CVN Energy Computed CVN Energy 11 23 36 37 52 71 60 9.53 21.56 33.72 45.99 51.08 60.68 62.34

  • 1'$ Data continued on next page 'l C-24 400 F

500 600 Temperature 25 100 150 200 225 300 325 Differential 1.46 1.43 227

-8.99

.91 10.31

-2:34

WELD METAL CAPSULE V Page 2 Material:

ELD Temperature 350 LINDE 1092 Heal Number 27204 FLUX LOT 3714 Capsule. V Total Fluence: 1.37E+19 Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Ene 66 63.51 Orientation:

ergy Differential 2.48 SUM of RESIDUALS = 7.56 C-25 I I i

1 I

WELD METAL UNIRADIATED CVGRAPH 4.1 yperbolic Tangent Curve Printed a 1230:39 on 08-19-2002 Page I Coefficients of Curve I A = 44.58 B = 43.58 C = 94.87 TO = -25.31 Equation is LE = A + B

  • I tanh((T - TO)/C) I Upper Shelf LE 88.17 Temperature at LE 35: -465 Lower Shelf LE. I Fixed Material: WELD LINDE 1092 Heat Number. 27204 FLUX LOT 3714 Orientation:

Total Fluence

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant: DC]

Cap: UNIRR Material:

ELD LINDE 1092 Ori:

Heat :

Charpy V-Notch Data 3ture Input Laleral Expansion Computed LE 400 500 F

600 27204 FLUX LOT 3714 Differential 6.86 6.86 6.86 15.95 15.95 15.95 33.49 33.49 33.49 813 1.13 11.13

-3.95

-.95

-1.95 5.5

-1249

-7.49

'**1 Data continued on next page *'*

C-26 Capsule: UNIRR Temper;

-150

-150

-150

-100

-100

-100

-50

-50

-50 15 8

18 12 15 14 39 21 26

WELD METAL UNIRADIATED Page 2 Material: WELD LINDE 1092 ieat Number: Z7204 FLUX LOT 3714 Capsule: UNIRR Total Fuence Charpy V-Notch Data (Continued)

Input Lateral Expansion 47 58 50 60 54 62 77 74 64 76 88 84 Computed LE 47.02 47.02 47.02 60.1 60.1 60.1 70.6 70.6 70.6 83.42 83.42 83.42 Differential

-.02 10.97 2.97

-.1

-6.1 1.89 639 3.39

-6.6

-7.42 4.57

.57 SUM of RESIDUAIS = 9.55 C-27 Orientation:

Temperature

-20

-20

-20 10 10 10 40 40 40 110 110 110

WELD METAL CAPSULE S CVGRAPH 4.1 llyperbolic Tangent Curve Printed at 12.39 on 08-19-2002 Page I Coefficients of Curve 2 A=37.45 B = 36.45 C = 152.02 TO = 10555 Equation. is: L = A B I tanh((T - TO)/C) I Upper Shelf LE: 73.91 Material: 1ELD LINDE 1092 Temperature at LE 35:

952 Heat Number: 27204 FLUX LOT 3714 Capsule. S Total Fluence: 284E+18 Lower Shelf LE 1 Fixed Orientation:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: S Material: YELD LINDE 1092 Ori:

leat : 27204 FLUX LOT 3714 Charpy V-Notch Data Input Lateral Expansion Computed LE 18 28 33 32 37 57 685 69 19.76 26.85 30.45 30.45 42.09 5758 64.43 71.1 Differential

-1.76 114 2.54 154

-5.09

-.58 4.06

-21 SUM of RESiDUAIS = -25 C-28 Temperature 600 25 60 76 76 125 200 250 350

WELD METAL CAPSULE Y CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1X.39 on 08-19-2002 Page 1 Coefficients of Curve 3 1

A = 31.12 B = 30.12 C = 115.87 TO = 17924 Equation is: L = A + B

  • I tanh((T - TO)/C) I Upper Shelf LE 6124 Material: WELD LINDE 1092 Temperature a LE 35:

1942 Heat Number 27204 FLUX LOT 3714 Capsule: Y Total Fluence: 1.05E+19 Lower Shelf LE I Fixed Orientation:

20 0 15F i0iY~~~~~~~~~~~

'--4 4-,

u

-300

-200

-100 0

100 Temperature Data Set(s) Plotted Plant DCI Cap: Y Material: WELD LINDE 1092 200 300 in Degrees 400 F

500 Ori:

1eat : 27204 FLUX LOT 3714 Charpy V-Notch Data Input Lateral Expansion 13 15 24 24 37 60 58 56 Computed LE 4.93 1322 23.67 32.61 40.13 47S52 5823 59.93 Differential 8.06 1.77

.32

-. 61

-3.13 1247

-23

-3.93 SUM of RESlDUAIS = 6.72 C-29 4

4.

I I_

Temperature 600 25 100 150 185 215 250 350 400 I

v I 0

WELD METAL CAPSULE V CVGRAPH 41 }yperbolic Tangent Curve Printed at 1230.39 on 0-19-2002 Page I Coefficients of Curve 4 A=27.73 B = 26.73 C = 124.44 TO 85.9 Equation i LE = A + B I tanh((T - T0)/C) I Upper Shelf LE 54.47 Temperature at LE 35:

220.6 Lower Material: 'WELD LINDE 1092 Heat Number. 27204 FLUX LOT 3714 Capsule. V Total Fluence: 137E+19 Shelf LE 1 Fixed Orientation:

2007-III Ib 50 U

-300

,200 Plant: DCI Cap:

I I

I I

I

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted V

Material: W'ELD LINDE 1092 Ori:

leat : 27 400 F

Charpy V-Notch Data Input Lateral Expansion Computed LE 1

13 25 24 37 51 50 4.74 11.73 2021 30.73 35.85 47.09 49.3

>* Data continued on next page ""

C-30 500 600

?204 FUX LOT 3714 Temperature 25 100 150 200 225 300 325 Differential

-3.74 126 4.78

-6.73 114 3.9

.69

WELD METAL CAPSULE V Page 2 Material: WELD LINDE 1092 Heat Number Z7204 FLUX LOT 3714 Capsule-V Total Fluence. 1.37E+19 Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE 48 50.89 Orientation:

Differential

-2.89 SUM of RESIDUALS = -1.56 C-31 Temperature 350 c

II

WELD METAL UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 124450 on 08-19-2002 Page 1 Coefficients of Curve I A =50 B = 50 C = 75.76 T0

-1593 Equation is: Shear% = A + B I tanh((T - TO)/C) I Temperature at SOx Shear -15.9 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Capsule: UNIRR Orientation:

Total Fluence

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F 600 Data Set(s) Plotted Plant DCI Cap: UNI1RR Material: WELD LINDE 1092 Or:

Heat #: 27204 FLUX LOT 3714 Charpy V-Notch Data Input Percent Shear 18-9 14 14 13 13 30 18 25 Computed Percent Shear 282 2.82 282 9.8 9.8 9.8 28.92 28.92 28.92

'>" Data continued on next page *'

C-32 CZ V)0 Ca)

C) 0-Temperature

-150

-150

-150

-100

-100

-100

-50

-50

-50 Differential 1517 6.17 11.17 4.19 3.19 3.19 1.07

-10.92

-3.92

WELD METAL UNIRRADIATED Page 2 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Input Percent Shear 40 61 44 56 59 75 90 95 75 96 100 100 Computed Percent Shear 47.32 4732 4732 66.47 66.47 66.47 81.4 81.4 81.4 9652 96.2 96.52 Differential

-7.32 13.67

-32

-10.47

-7.47 852 859 13.59

-6.4

-52 3.47 3.47 It of RESIDUALS = 45.15 C-33 Orientation:

Temperature

-20

-20

-20 10 10 10 40 40 40 110 110 110 I

III i zI q I I

t I iq i

WELD METAL CAPSULE S CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 12:44.50 on 08-19-2002 Page I Coefficients of Curve 2 A = 50 B = 50 C = 109.59 TO = 110.74 Equation is Shear/. = A + B I tanh((T - TO)/C)

Temperature at 50z. Shear 110.7 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Capsule: S Total Fluence 284E+18

-300

-200

-100 0

- 100 200 300

- 400 500 Temperature in Degrees Data St(s) Plotted Plant: DCI Cap S Material: WELD LINDE 1092 Ori:

Heat : 27 F

0241 FLUX LOT 3714 Charpy V-Notch Data Input Percent Shear Computed Percent Shear 1729 28.37 34.66 34.66 56.46 83.6 92.69 98.74 Differential

-229

-837 10.33 533

-6.46

-3.6 73 125 1 SUM of RESIDUAIS = 3.49 Orientation:

0 U)

CD 0

a-)

00 Temperature 600 25 60 76 76 125 200 250 350 15 20 45 40 50 80 100 100 C-34

WELD METAL CAPSULE Y CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 124450 on 08-19-2002 Page 1 Coefficients of Curve 3 l

A = 50 B = 50 C = 87.67 TO = 168.75 Equation is Shearz. = A + B I tanh((T - TO)/C) I Temperature at 50 Shear 168.7 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Capsule: Y Total Fluenee 1.05E+19 Orientation:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: Y Material: WELD LINDE 1092 Ori:

Heat #: 27204 FLUX LOT 3714 Charpy V-Notch Data Input Percent Shear 15 15 45 50 70 100 100 100 Computed Percent Shear 3.62 1724 39.46 59.16 74.17 86.45 98.42 99.49 Differential 11.37

-224 5.53

-9.16

-4.17 1354 1.57 5

SUM of RSIDUAIS = 16.95 C-35 C/)

0 Temperature 600 25 100 150 185 215 250 350 100 I

II

WELD METAL CAPSULE V CVGRAP}I 4.1 hlyperbolic Tangent Curve Printed at 12:44.50 on 08-19-2002 Page I Coefficients of Curve 4 l

A = 50 B

C 66.4 TO 20156 Equation is: Shear = A + B I tanh((T - T0)/C) I Material: WELD LINDE 1092 CZ UL) 4a) 0)

C~)

0_

Temperature at 50/ Shear.

201.5 Beat Number. 27204 FLUX LOT 3714 Capsule: V Total Fluence 137E+19

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant: DCI Cap: V laterial: WELD LINDE 1092 Ori:

Heat : 2" 400 500 F

'204 FLUX LOT 3714 Charpy V-Notch Data Input Percent Shear Computed Percent Shear 5

15 25 30 80 100 100

.48 4.48 17.46 48.82 66.94 95.09 97.62 Differential 451 10.51 7.53

-1882 13.05 4.9 2.37 "t'

Data continued on next page 'l C-36 Orientation:

Temperature 600 25 100 150 200 225 300 325

WELD METAL CAPSULE V Page 2 Material: WELD LINDE 1092 Heat Number 27204 FLUX LOT 3714 Orientation:

Capsule: V Total Fluence 137E+19 Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 100 98.86 1.13 SUM of RESlDUAIS = 25.19 C-37 Temperature 350 I

I I

s

HEAT AFFECTED ZONE UNIRRADIATED CVGRAPII 4.1 hlyperbolic Tangent Curve Printed at 13:33:29 on 08-19-2002 Page I Coefficients of Curve A = 69.09 B = 66.9 C = 137.93 TO = -7125 Equation is: CVN = A + B

  • I tanh((T - T0)/C) I Upper Shelf Energy: 136 Fixed Temp. at 30 f-lbs -163.5 Temp. at 50 ft-lbs -111.7 Lower Shelf Energy: 219 Fixed Material: HEAT AFFD ZONE Capsule: UNIRR Heat Number.

Orientation:

Total Fluence: 284E+18

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted PlanL DCI Cap: UNIRR Material:

EAT AFF'D ZONE Charpy V-Notch Data Input CVN Energy 22 21 2

35 35.5 365 445 525 88 Ori:

Heat :

Computed CVN Energy 20.11 20.11 2011 3457 34.57 34.57 5535 55.35 5535 Data continued on next page....

C-38 U) la Temperature 600

-200

-200

-200

-150

-150

-150

-100

-100

-100 Differential 1.88

.88

-18.11

.42

.92 192

-10.85

-2.85 32.64

HEAT AFFECTED ZONE UNIRRADIATED Page 2 Material: HEAT AFFD ZONE Capsule UNIRR Heat Number Total Fluence Charpy V-Notch Data (Continued)

Input CVN Energy 88 825 565 115 120 87 105.5 100 1085 130 1355 142.5 Computed CVN Energy 79.32 79.32 79.32 104.5 104.5 104.5 113.76 113.76 113.76 126.9a 126.99 126.93 Differential 8.67 3.17

-22.82 10.49 15.49

-175

-826

-13.76

-526 3.01 8.51 15.51 LM of RESIDUALS = 4.09 C-39 Orientation:

Temperature

-50

-50

-50 10 10 10 40 40 40 110 110 110 I;

HEAT AFFECTED ZONE CAPSULE S CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13.53:38 on 09-03-2002 Page I Coefficients of Curve I A = 63.59 B = 61.4 C = 9237 TO = -3448 Equation is: CVN =A B I tanh((T - T0)/C) I Upper Shelf Energy: 125 Fixed.

Temp. at 30 ft-lbs -912 Temp. at 50 ft-lbs -552 Lower Shelf Energy: 2.19 Fixed Mlaterial: IIEAT AFFD ZONE Beat Number.

Orientation:

Capsule S Total Fluence 2.84E+18 300 cn 250_

150 100

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Setts) Plotted Plant DCI Cap: S Material: IEAT AFF'D ZONE Ori:

Charpy V-Notch Data iture Input CVN Energy Computed CVN Energy I

q III II

-100

-100

-10

-75 0

76 200 350 Il 21 25 43 85 115 118 132 I 1i 26.13 26.13 3827 85.51 114.71 12423 124.97 S

400 500 F

600 Heat #:

Differential 1.49

-5.13

-1.13 4.2

-51 28

-623 7.02 UM of RESIDUALS = 51 C-40 Tempera

_IRr

HEAT AFFECTED ZONE CAPSULE Y CVGRAPII 4.1 yperbolic Tangent Curve Printed at 133329 on 0-19-2002 Page I Coefficients of Curve 3 A = 5559 B = 53.4 C = 114.66 T0 = -23.9 Equation is CN = A + B I tanh((T - TO)/C) I Upper Shelf Energy: 109 Fixed Temp. at 30 ft-lbs -83.7 Temp. at 50 ft-lbs

-35.9 Lower Shelf Energy: 2.19 Fixed Material: HEAT AFFD ZONE Heat Number Capsule: Y Total Fluence 1.05E+19 30Y 7-25CFf 20(

1507 10(

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees Data Set(s) Plotted Plant: DCI Cap: Y Material:

EAT AFFD ZONE F

Or:

Beat #:

Charpy V-Notch Data Input CVN Energy Computed CVN Energy 5

1285 23 2458 42 43.65 72 55.08 63 77.08 90 9284 114 104.09 104 107.62 S

Differential

-785

-1.58

-1.65 16.91

-14.08

-2.84 9.9

-3.62 UM of RESIDUALS = -4.83 C-41 Orientation:

U)

,.0

~z-4 bl z

CD a)-r-w 1-u

()

4 4

4 1

600 Temperature

-150

-100

-50

-25 25 75 150 225 iI I

HEAT AFFECTED ZONE CAPSULE V CVGRAPII 4.1 lyperbo]ic Tangent Curve Printed at 13:3329 on 08-19-2002 Page I Coefficients of Curve 4 A

59.09 B = 56.9 C=125.62 TOz=12S Equation i CVN A + B I tanh((T - TO)/C) I Upper Shelf Energy: 116 Fixed Temp. at 30 fL-]bs -526 Temp. at 50 ft-]bs:

-1.9 Lower Shelf Energy: 2.19 Fixed Material: HEAT AFFD ZONE Ileat Number.

Capsule: V Total Fluence: 1.37E+19

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant: DC1 Cap: V Material: HEAT AFFD ZONE Ori:

Heat #':

Charpy V-Notch Data Input CVN Energy 19 36 47 66 88 128 95 Computed CVN Energy 12.75 30.89 50.87 8204 9164 94 10732 I'll Data continued on next page I'l C-42 Orientation:

U) la a) 300-200-150-100 1 A 50G-0 400 F

500 Temperature 600

-125

-50 0

72 10 125 175 Differential 624 51

-3.87

-16.04

-3.64 29.59

-1232

HEAT AFFECTED ZONE CAPSULE V Page 2 Material: HEAT AFFD ZONE Capsule V Charpy V-Notch Input CVN Energy 124 Ileat Number Orientation-Total Fluence 137E+19 Data (Continued)

Computed CN Energy Differential 111.91 12.08 SUM of RIDUALS = 17.12 C43 Temperature 225 II I I I

I I

I

HEAT AFFECTED ZONE UNIRRADIATED CVGRAPI 4.1 lyperbolic Tangent Curve Printed at 1427:03 on 08-19-2002 Page I Coefficients of Curve I A = 44.65 B = 43.65 C = 127.88 TO = -78.75 Equation is: LE = A + B t I lanh((T - TO)/C)

Upper Shelf LE-88.3 Temperature at LE 35: -1075 Lower Shelf LE I Fixed Material: HEAT AFFD ZONE leat Number.

Orientation:

Capsule: UNIRR Total Fluence:

20a-

. P-150-S 10 0) 2

-t F

Y F

0U 1

I I

I

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: HEAT AFFD ZONE Ori:

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE

-200

-200

-200

-150

-150

-150

-100

-100

-100 15 17 3

23 23 24 29 33 53 12.39 12.39 IZ.39 ZZ57 22.57 2257 37.46 37.46 37.46 400 F

leat #:

Differential 2.6 4.6

-939 A

.42 1.42

-8.46

-4.46 1553

'll Data continued on next page I

C-44

--I 4

4 4

+

4

+

+

4

  • q.

I 0

I/

5 1

1 t~0 500 600 i

I

HEAT AFFECTED ZONE UNIRRADIATED Page 2 Material: HEAT AFFD ONE Capsule: UNIRR Heat Number.

Total Fluence Charpy V-Notch Data (Continued)

Input ateral Expansion 60 52 40 7

80 64 76 78 75 82 84 83 Computed LE 54.3 54.3 543 70.87 70.87 70.87 76.51 76.51 76S5 83.97 83.97 83.97 Differential 5.69

-23

-14.3 7.12 9.12

-6.87

-.51 1.48

-1.51

-1.97

.02

-.97 SUM of RESDUAIS =-Z32 r-A, Orientation:

Temperature

-50

-50

-50 10 10 10 40 40 40 110 110 110 I

HEAT AFFECTED ZONE CAPSULE S CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1427:03 on 08-19-2002 Page 1 Coefficients of Curve 2 l

A = 4137 B = 40.37 C = 9453 TO = -4921 Equation is: LE = A + B

  • I tanh((T - TO)/C) I Upper Shelf LE: 81.74 Temperature at LE 35

-642 Lower Shelf LE I Fixed Material:

EAT AFFD ZONE Heat Number Capsule S Total luence 84E+18

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F 600 Data Set(s) Plotted Plant: DCI Cap: S Mlaterial: HEAT AFFD ZONE Ori:

leat :

Charpy V-Notch Data Input Lateral Expansion Compuled LE 15 205 16.5 32 63 74 80.5 84 9.55 2155 21.55 30.62 60.67 76.41 81.33 81.72 Differential 544

-1.05

-5.05 1.37 2.32

-Z41

-.83 2Z1 SUM of RESIDUALS = 2.05 Orientalion:

U)

P-

. r-4a)

CZ Temperature

-150

-100

-100

-75 0

76 200 350

HEAT AFFECTED ZONE CAPSULE Y CVGRAPIl 4.1 Hyperbolic Tangent Curve Printed at 14-27D03 on 08-19-2002 Page I Coefficients of Curve 3 A = 41.72 B = 40.72 C = 134.42 TO = -14.06 Equation is LE = A + B

  • I tanh((T - T)/C) I Upper Shelf LE 245 Temperature at LE 35: -36.4 Material: HEAT AFED ZONE Heat Number Lower Shelf LE I ixed Orientation:

Capsule Y Total Fluence 1.05E+19

-300

-200

-100 0

100 200 Temperature Data Set(s) Plotted Planl DCI Cap: Y Material: HEAT AFFD ZONE 300 400 F

Ori-Heat #:

Charpy V-Notch Data Input Lateral Expansion 3

18 30 52 46 60 8o 80 Computed LE 1051 18.74 31.09 38.42 5323 65.34 75.92 80.19 SUlM of RIIDUALS C-47 U)

"-4 20UW 150 5ff-U in Degrees Temperature 500 600

-150

-100

-50.

-25 25 75 150 225 Differential

-751

-.74

-1.09 13.57

-723

-5.34 4.07

-.19

= -4.47

HEAT AFFECTED ZONE CAPSULE V i

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1427:03 on 08-19-2002 Page I Coefficients of Curve 4 A =41.84 B = 40.B4 C =143.96 TO 4312 Equation is: LE A + B t lanh((T - TO)/C)

Upper Shelf LE 82.69 Temperature at LE 35:

18.7 Lower Shelf LE I Fixed Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule: V Total Fluence: 137E+19 Y

p Y

.Y*

0 100 200 300 400

-300

-200

-100 Temperature in Degrees F

Data Set(s) Plotted Plant DCI Cap: V Material: HEAT AFFD ZONE Ori:

Heat #:

Charpy V-Notch Data Input Lateral Expansion 4

22 31 45 56 71 65 Computed LE 82 18.58 29.96 49.93 5719 62.85 71.41

  • '*' Data continued on next page

C48 20(i U)

.r1-0, 1507 100 50 u

500 Temperature 600

-125

-50 0

(2 100 125 175 Differential

-42 3.41 1.03

-4.93

-IJ9 8.14 4.41

HEAT AFFECTED ZONE CAPSULE V Page 2 Material: HEAT AFFD ZONE Heat Number:

Orientation:

Capsule V Total Fluence 1.37E+19 Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE Differential 79 76.64 2.35 SUM of RESIDUALS = -1.8 C49 Temperature 225 I

HEAT AFFECTED ZONE UNIRRADIATED CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 14:0124 on 09-03-2002 Page I Coefficients of Curve I I

A = 50 B

50 C = 109.44 TO = -7294 Equation is Shear,. = A + B I tanh((T - TO)/C) I Temperature at 50 Shear. -729 Material: IEAT AFFD ZONE Heat Number Orientation:

Capsule. UNIRR Total Fluence:

0 C)

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant: CI Cap: UNIRR laterial: HEAT AFF'D ZONE Ori:

Charpy V-Notch Data iture Input Percent Shear Computed Percent She

-200

-200

-200

_150

-150

-150

-100

-100

-100 18 18 5

23 21 23 29 34 52 400 500 F

Hea #:

ear 8.93 8.93 8.93 19.65 19.65 19.65 378 37.

37M8 Differential 9.06 9.06

-3.93 3.34 1.34 3.34

-s.sa

-3.88 1411

"" Data continued on next page C-50

Temper, 600

HEAT AFFECTED ZONE UNIRRADIATED Page 2 Material:

EAT AFFD ZONE Capsule. UNIRR Charpy V-Notch Inpul Percent Shear 59 51 43 95 100 59 90 100 100 100 100 100 Heat Number Orientation:

Total Fluence Data (Continued)

Computed Percent Shear Differential 60.32

-122 60.32

-9.32 60.32

-1722 81.99 13 81.99 18 81.99 99 88.73 126 88.73 1126 88.73 1126 96.58 3.41 96.58 3.41 96.58 3.41 SUM of REI1DUAIS = 37.67 C-51 Temperature

-50

-50

-50 10 10 10 40 40 40 110 110 110

HEAT AFFECTED ZONE CAPSULE S CV'GRAPII 4.1 lyperbolic Tangent Curve Printed at 14D1:24 on 09-03-2002 Page I Coefficients of Curve 2 A 50 B = 50 C = 101.74 TO

-15.46 Equation i Shear = A B tanh((T - T)/C) 1 Temperature at

. Shear. -15.4 Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule S Total Fluence 2.84E+18

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Sel(s) Plotted Plant: DCI Cap: S Material: HEAT AFFD ZONE Ori:

Heat #:

Charpy V-Notch Data Input Percent Shear 5

10 10 40 50 90 100 100 Computed Percent Shear 6.63 15.95 15.95 23.68 57.54 85.79 98.57 99.92 Differential

-1.63

-5.95

-5.95 1631

-7.54 42 1A2

.07 SUM of RESIDUALS =.94

-52 CZ Q) 0 0)

C-)

0)

Temperature 600

-150

-100

-100

-75 0

76 200 350

HEAT AFFECTED ZONE CAPSULE Y CYGRAPH 4.1 }yperbolic Tangent Curve Printed at 14.D124 on 09-03-2002 Page I Coefficients of Cujrve 3 A = 50 B = 50 C = 113.01 1' = -3627 Equation is Shear>'. = A B tanh((T - T0)/C) ]

Temperature at 50. Shear. -362 Material: 13EAT AFFD ZONE Capsu]e: Y Heat Number Orientation:

Total Fluence: 1.05E+19

-300

-200

-100 0

100 200 300 400 500 Temperature in Decrees F Data Set(s) Plotted Plant: DCI Cap: Y Material: IIEAT AFFD ZONE Or:

600 1eat #:

Charpy V-Notch Data Input Percent Shear Computed Percenl Shear 5

25 40 70 65 84 100 100 11.79 24.45 43.95 54.97 74.73 87.75 96.43 99.02 Differential

-6.79

.54

-3.95 15.02

-9.73

-3.75 356

.97 SUM of RESIDUAIS = -4.12 C-53 0-0Z 0D 0jc Temperature

-150

-100

-50

-25 25 75 150 225 I

I I

I i

HEAT AFFECTED ZONE CAPSULE V CVGRAPII 4.1 Hyperbolic Tangent Curve Printed at 14:0124 on 09-03-2002 Page I Coefficients of Curve 4 l

A = 50 B = 50 C = 116.82 TO = -15.93 Equation is: Shear/ = A + B I tanh((T - TO)/C) I Temperature at 50:. Shear

-15.9 Material: HEAT AFFD ZONE Heat Number Ori Capsule: V Total Fluence: 1.37E+19 entation:

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant DCI Cap: V Material: IEAT AFD ZONE Ori:

Temperature

-125

-50 0

72 100 125 175 Charpy V-Notch Data Input Percent Shear Computed Percent Shear 10 13.38 45 35.82 50 56.77 75 81.83 90 87.91 100 91.77 100 96.33 Data continued on next page...

400 500 F

600 Heat #:

Differential

-3.38 9.17

-6.77

-683 a08 822 3.66

HEAT AFFECTED ZONE CAPSULE V Page 2 Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule V Total Fluene 137E+19 Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 100 98.4 159 SUM of RESIDUALS = 7.73 C-55 Temperature 225

STANDARD REFERENCE MATERIAL UNIRRATIATED CVGRAPH 4.1 hlyperbolic Tangent Curve Printed at I:05:06 on 09-06-2002 Page I Coefficients of Curve I A = 659 B = 60.4 C = 81 25 TO = 95.5 Equation is CVN = A + B

  • I tanh((T - TO)/C) I Upper Shelf Energy: 23 Fixed Temp. at 30 fl-lbs 46.4 Temp. at 50 ft-]bs 78.3 Lower Shelf Material: SRM SA533BI Heat Number Orientation: LT Capsule: UNIRR Total Fluence Energy: 2.19 Fixed 30(T 25-200 15(

0 ' 1 I

-300 Temperature

-50

-50

-50

-20

-20

-20 10 10 10

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: SRM SA533BI Ori: LT Charpy V-Notch Data Input CVN Energy Computed CVN Energy 3

5 5

6 6.5 9

135 12 14.5 5.47 5.47 5.47 8.84 8.84 48.I 15.32 15.32 15.32 400 F

500 600 Heat #:

Differential

-247

-.47

-.47

-Z84

-2.34 i5

-1.82

-3.32

-B2

  • '* Data continued on next page '"

C-56 U) 10

~Iz U4 1 1) 0A) 0 e0

_I II

=,

STANDARD REFERENCE MATERIAL UNIRRATIATED Page 2 Material: SRM SA533BI Capsule: UNIRR Heat Number Total Fluence:

Orientation: LT Charpy V-Notch Data (Continued)

Input CVN Energy 22-36 35 52 58.5 415 63.5 82.5 85.5 109 108.5 1

121 117 115 117.5 125 127 Computed CVN Energy 26.74 26.74 26.74 54.83 54.83 54.3 7325 7325 7325 10249 102.49 10249 116.19 116.19 116.19 12221 12221 12221 SUM of RSIDUA:

C-57 Temperature 40 40 40 85 85 85 110 110 110 160 160 160 210 210 210 300 300 300 Differential

-4.74 925 825

-2.83 3.66

-1333

-9.75 924 1224 6.5 6

-21.49 4.8

.8

-1.19

-4.71 2.78 4.78 S = -4.17

STANDARD REFERENCE MATERIAL CAPSULE S CVGRAPII 4.1 Hyperbolic 'Tangent Curve Printed at 11.)5:06 on 09-06-2002 Page I Coefficienls of Curve 2 l

A = 61.09 B = 58.9 C = 79.04 T0 = 158.49 Equation is CVN =

Upper Shelf Energy: 120 Fixed Temp. at 30 ft-lbs 11 Material: SRM SA533BI Capsule: S I)

In

.1 4-,

0) z D

A + B

  • I tanh((T - TO)/C) 12 Temp. at 50 f-lbs 143.4 Lower Shelf Energy: 219 Fixed Heat Number Orientation: LT Total Fuence:

84E+18

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Planl: DCI Cap S Material: SRM SA533BI Or: LT H

Charpy V-Notch Data Temperature Input CVN Energy Compuled CVN Energy 25 6

6.08 76 19 15.19 125 47 37.53 125 31 37.53 150 52 54.79 200 81 89.46 250 125 109.41 400 115 119.73 Si 400 500 600 F

eat :

Differential

-.08 3.8 9.46

-6.53

-2.79 4.46 15.58

-4.73 JA of RESIDUAIS = 623 C-58

STANDARD REFERENCE MATERIAL CAPSULE Y CVGRAPII.1 Hyperbolic Tangent Curve Printed at 1l)5:06 on 09-06-2002 Page I Coefficients of Curve 3 l

A = 57.09 B = 54.9 C = 64.9 TO = 197.34 Equation i CVN = A + B I tanh((T - TO)/C) I Upper Shelf Energy: 112 Fixed Temp. at 30 ft-lbs 162.2 Temp. a 50 ft-]bs:

188.9 Lower Shelf Energy: 2.19 Fixed Material: SRM SA533BI lleat Number Orientation: LT Capsule: Y Total Fluence: 1.05E+19 300-250 20(7--

150-1007-5(7 0

100 200 300 400 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: Y laterial: SM SA533BI Or: LT Ileat #:

Charpy V-Notch Data Inpul CVN Energy Computed CVN Energy 10 335 14 7.41 25 22.91 38 38.91 54 5934 100 93.89 104 106183 119 109.89 Si Differential 6.64 6.58 2.08

-.91

-5:34 6.1

-2.83 9

3M of REIDUAIS = 21.42 C-59 a) 1

-)

U

-300

-200

-100 500 600 Temperature 50 100 150 175 200 250 295 325

STANDARD REFERENCE-MATERIAL CAPSULE V CVGRAPII 4.1 lyperlolic Tangent Curve Printed at 11.05:06 on 09-06-2002 Page I Coefficients of Curve 4 A

59.59 B = 57.4 C= 8557 TO 211.87 Equation is CVN = A + B tanh((T - TO)/C) I Upper Shelf Energy: 117 Fixed Temp. at 30 f-lbs 163 Temp. at 50 ft-lbs 197.4 Lower Shelf Energy: 2.19 Fixed Material: SRM SA533BI ieat Number Orientation: LT Capsule: V Total Fluence: 137E+19 0

100 200 300 Temperature in Degrees 400 F

Data Set(s) Plotted Plant: DCI Cap: V Material: SRM SA533BI Ori: LT leat #:

Charpy V-Notch Data Input CVN Energy 4

8 10 33 47 74 114 Computed CN Energy 3.63 4.75 10.03 24.08 51.68 83.6 104.01

  • Data continued on next page....

C-60 300-250-200/

15f 10f

-300

-200

-100 F

+~

~~~

I I

I 500 600 Temperature 25 50 100 150 200 250 300 Differential

.36 324

-.03 8.91

-4.68

-9.6 9.98

STANDARD REFERENCE MATERIAL CAPSULE V Page 2 ial: SRM SA533131 Heal Number.

Orientation: LT Capsule: V Total Fluence: 1.37E+19 Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy 120 10928 SUMI Differential 10.61 of RESIDUALS = 18.8 C-61 Maler Temperature 325

STANDARD REFERENCE MATERIAL UNIRRADIATED CVGRAPH 4.1 Hyperbolic Tangenl Curve Printed at 11D9.33 on 09-06-2002 Page I Coefficients of Curve I A = 43.65 B = 42.65 C

84.0S TO = 76X7 Equation is LE = A + B tanh((T - TO)/C) I Upper Shelf LE: 8631 Temperaturi Material: SRM SA533BI Capsule: UNIRR

^ at LE 35:

58.9 leat Number.

Total Fluence:

Lower Shelf LE I Fixed Orientation: LT 20fF 15 I00 0~

e1~~

4.

I I

I I

U 0

100

-300

-200

-100 Data Set(s) Plotted Plant: DCI Cap: UNIRR laterial: SRM SA533 Charpy V-Notch Da Input Lateral Expansion 4

3 5

9 6

10 14 15 14 200 300 400 F

3I Ori: LT Heal #:

ta Computed LE 5.03 5.03 5.03 8.84 8.a4 8.84 15.61 15.61 15.61 I'll Data continued n next page I'll C(62 r-4 4-,

a) 0 Temperature in Degrees 500 600 Temperature

-50

-50

-50

-20

-20

-20 10 10 10 Differential

-1.03

-2.03

-.03

.15

-2.&4 115

-1.61

-.61

-1.61 DU

STANDARD REFERENCE MATERIAL UNIRRADIATED Page 2 Material: SRM SA533BI

}1eat Nmber Orientation: LT Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Lateral Expansion 23 32 32 45 51 42 54 60 71 79 72 69 87 84 88 83 87 84 Compuled LE.

26.31 26.31 26.31 48.06 48.06 48.06 59.9 59.9 59.9 76.07 76.07 76.07 8291 82.91 82.91 85.9 85.9 85.9 Differential

-3.31 5.68 5.68

-3.06 2.93

-6.06

-5.9

.09 11.09 2.92

-4.07

-7.07 4.08 1.08 5.08

-2.9 1.09

-1.9 SUM of RESIDUAIS = -3.03 C-63 Temperature 40 40 40 85 85 85 110 110 110 160 160 160 210 210 210 300 300 300

STANDARD REFERENCE MATERIAL CAPSULE S CVGRAPH 4.1 lyperbolic Tangent Curve Printed at 11.1933 on 09-06-2002 Page I Coefficients of Curve 2 A = 43.48 B = 4248 C = 100.49 TO = 144.84 Equation is LE = A + B I tanh((T - TO)/C) I Upper Shelf LE. 85.97 NMaterial: SM SA533B Temperature at LE 35:

124.4 I

Heat Number:

Lower Shelf LE I Fixed Orientation: LT Capsule S Total Fluence: 284E+18 200-150 10f 0

I-

-300

-200

-100 0

100 200 300 400 Temperature in Degrees Data Set(s) Plotted Plant: DCI Cap: S laterial: SRII SA533BI Ori: LT Heat #:

Charpy V-Notch Data Input Lateral Expansion Computed LE 8.16 1821 352 352 45.66 64.71 76.64 85.44 SUM of RIDUALS C-64 0

I Temperature 500 F

600 25 76 125 125 150 200 250 400 7

20 4Z5 29.5 44.5 59.5 84 82.5 Differential

-1.16 1.78 729

-5.7

-116

-521 735

-294

= 24

-.-er

STANDARD REFERENCE MATERIAL CAPSULE Y CVGRAPI 4.1 Hyperbolic Tangent Curve Printed a 1%O9.33 on 09-06-2002 Page I Coefficients of Curve 3 l

A = 51.69 B = 50.69 C 106.44 TO = 214.43 Equation i LE = A B I tanh((T - T0)/C) I Upper Shelf LE. 102.39 Material: SRM SA533BI Temperature at LE 35:

178 Heat Number.

Lower Shelf LE I Fixed Orientation: LT Capsule Y Total Fluence: 1.05E+19

-300

-200

-100 0

100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap: Y Material: SRM SA533B1 Ori: LT Beat #:

Charpy V-Notch Data Input Lateral Expansion Computed LE 10 14 23 32 42 73 83 90 5.41 1157 2427 33.73 4486 68.03 84.1 91.1 Differential 4.58 2.42

-127

-1.73

-2.B6 4.96

-1.1

-11 SUM of RESIDUALS = 3.88 C-65 Cl) a)

CZ Temperature 50 100 150 175 200 250 295 325

STANDARD REFERENCE MATERIAL CAPSULE V CVGRAPH 4.1 lyperbblic Tangent Curve Printed at 11.09:33 on 09-06-2002 Page I Coefficients of Curve 4 A = 597 B = 5127 C = 117 TO = 254.48 Equation is: LE = A B

  • I tanh((T - TO)/C) I Upper Shelf LE: 103.54 Material: SRM SA533BI Temperature at LE 35: 213.4 Heat Number.

Lower Shelf LE I Fixed Orientation: LT Capsule V Total Fluence: 137E+19 iuu 1507 100 50

-~~~~~~~~~~~~~~~

u

-300

-200

-100 Temperature in Degrees F Data Set(s) Plotted Plant DCI Cap V Material: SRM SA533B1 Ori: LT Heat #:

Charpy V-Notch Data Input Lateral Expansion Computed LE 0

3 4

20 31 48 72 2.99 4.01 78Z 15.72 2998 50.3 71Z7

-* Data continued on next page **>'

C-66

'-4i

.- 4 0

0 100 200 300 400 500 Temperature 600 25 50 100 150 200 250 300 Differential

-2.99

-1.01

-3.82 427 1.01

-2.3

.72

STANDARD REFERENCE MATERIAL CAPSULE V Page 2 Material: SRM SA533BI Ileat Number.

Orientation: LT Capsule V Total Fluene I.37E+9 Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE Differential 80 79.9

.09 SUM of RESIDUALS =-4.03 C-67 Temperature 325

STANDARD REFERENCE MATERIAL UNIRRADIATED CVGRAPH 4 Hyperbolic Tangent Curve Printed at 11:15:09 on 09-06-2002 Page I Coefficients of Curve I A = 50 B=50 C = 100.89 TO = 85.54 Equation is. Shear/. = A + B tanh((T - TO)/C) I Temperature at 5. Shear 85.5 Material: SRM SA533BI Capsule: UNIRR CZ a)

Heat Number.

Total Fluence:

Orientation: LT

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant: DCI Cap: UNIRR Material: SRM SA533BI Charpy V-Notch Data Inpul Percent Shear 600 Ori: LT Heat #:

Computed Percent Shear 6.37 6.37 6.37 10.98 10.98 10.93 1827 1827 1827 Differential 2.62 Z62 2.62 201

-1.98 201 4.72 4.72 4.72 I'> Data continued on next page >>>>

C-68 Temperature

-50

-50

-50

-20

-20

-20 10 10 10 9

9 9

13 9

13 23 23 23

STANDARD REFERENCE MATERIAL UNIRRADIATED Page 2 Material: SRM SA533BI Capsule UNIRR leat Number.

Total Fluence Orientation: LT Charpy V-Notch Data (Continued)

Input Percent Shear 33 29 29 42 43 41 55 58 67 87 84 85 100 98 98 100 100 100 Computed Percent Shear 28B4 28.84 28.84 49.72 49.72 49.72 61.88 61.88 61.88 81.39 8139 81.39 9217 92.17 92.17 98.59 98.59 9859 Differential 4.15

.15

.15

-7.72

-6.72

-8.72

-68

-3B8 5.11 5.6 2.6 3.6 7.82 5.82 5.82 1.4 1.4 1.4 1 of RESIDUALS = 35.18 C-69 Temperature 40 40 40 85 85 85 110 110 110 160 160 160 210 210 210 300 300 300

STANDARD REFERENCE MATERIAL CAPSULE S CVGRAPII 4.1 lyperbbli6 Tangent Curve Printed at 11:1509 on 09-6-2002 Page I Coefficients of Curve 2 l

A = 50 B = 50 C = 90.18 T0 157.61 Equation is: Shear/. = A + B I tanh((T - TO)/C) I Temperature at 50>'. Shear.

157.6 Material: SRM SA533B]

Ileat Number.

Orientation: LT Capsule S Total Fluence: 2.84E+18

-300

-200

-100 0

100 200 300 400 500 Temperature in Decrees F Data Set(s) Plotted Plant DCI Cap S Material: SRM SA5331 Ori LT 600 3eat Charpy V-Notch Data Input Percent Shear I

I0 45 30 45 60 100 100 Computed Percent Shear 5.01 14.06 32.66 3266 45.78 71.9 88.58 99.53 Differential

-4.01

-4.06 1233

-2.66

-.78

-11.9 11.41

.46 SUM of RIDUAIS =.77 C-70 U)

C) 0 Temperature 25 76 125 125 150 200 250 400

STANDARD REFERENCE MATERIAL CAPSULE CYGRAPII 4.1 Hyperbolic Tangent Curve Printed at 11:15:09 on 09-06-2002 Page I Coefficients of Curve 3 A = 50 B = 50 C = 67.9 TO = 188.37 Equation is Shear/ = A + B I tanh((T - T0)/C) I Temperature at 507. Shear. 188.3 Material: SRM SA533B1 Heat Number Orientation: LT Capsule Y Total Fluence: 1.05E+19

-300

-200

-100 0

100 200 300 400 500 Temperature in Decrees F Data Set(s) Plotted Plant: DCI Cap: Y MIaterial: SRM SA533B1 Ori: LT 600 Heat #I:

Charpy V-Notch Data Input Percent Shear Computed Percent Shear 1.66 6.89 24.41 4027 58.47 85.99 95135 9824 Differential 8.33 8.1

.58

-27

-8.47 10 4.14 1.75 SUM of RESIDUALS = 24.18 C-71 0)

C) 0)

SH4 Temperature 50 100 150 175 200 250 295 325 10 15 25 40 50 96 100 100 y

STANDARD REFERENCE MATERIAL CAPSULE V CVGRAPII 4.1 yperbolic Tangent Curve Printed at 11:15:09 on 09-06-2002 Page I Coefficients of Curve 4 A = 50 B = 50 C = 901 TO = 20343 Equation i Shear = A + B I tanh((T - TO)/C) I Temperature at 507 Shear. 203.4 Material: S1 SA533BI Heat Number-Orientation: LT Capsule V Total Fluence. 1.37E+19

-300

-200

-100 0

100 200 300 400 500 600 Temperature in Degrees F Plant: DCI Cap V Data Set(s) Plotted Material: SRM SA533BI Ori: LT leat #:

Charpy V-Notch Data Inpul Percent Shear 5

10 15 30 40 65 100 Computed Percent Shear 255 4.18 10.8 25.15 4824 7211 87.76 I,,

Data continued on next page

'I C-72

4)

C-)

0-m Temperature 25 50 100 150 200 250 300 Differential 2.44 581 4.19 4.84

-824

-711 1223

STANDARD REFERENCE MATERIAL CAPSULE V Page 2 Material: SRM SA533BI Ieat Number Orientation: LT Capsule V Total Fluence 137E+19 Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 100 9227 7.72 SUM of RESIDUALS = 21.89 C-73 Temperature 325

D-O APPENDIX D DIABLO CANYON UNIT 1 SURVEILLANCE PROGRAM CREDIBILITY ANALYSIS Appendix D

D-1 INTRODUCTION:

Regulatory Guide 1.99, Revision 2, describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the method for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there have been three surveillance capsules removed from the Diablo Canyon Unit I reactor vessel. To use these surveillance data sets, they must be shown to be credible. In accordance with the discussion of Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible.

The purpose of this evaluation is to apply the credibility requirements of Regulatory Guide 1.99, Revision 2, to the Diablo Canyon Unit I reactor vessel surveillance data and determine if the Diablo Canyon Unit I surveillance data is credible.

EVALUATION:

Criterion 1:

Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements", as follows:

"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage."

Appendix D

D-2 The Diablo Canyon Unit I reactor vessel consists of the following beltline region materials:

Intermediate Shell Plate B4106-1 (Heat Number C2884-1)

Intermediate Shell Plate B4106-2 (Heat Number C2854-2)

Intermediate Shell Plate B4106-3 (Heat Number C2793-1)

Lower Shell Plate B4107-1 (Heat C3121-1)

Lower Shell Plate B4107-2 (Heat Number C3131-2)

Lower Shell Plate B4107-3 (Heat Number C3131-1)

Intermediate Shell Plate Longitudinal Weld Seams 2-442 A, B, C (Heat # 27204, Linde 1092)

Lower Shell Plate Longitudinal Weld Seams 3-442 A, B, C (Heat # 27204, Linde 1092)

Intermediate to Lower Shell Plate Circumferential Weld Seam 9-442 (Heat # 21935, Linde 1092)

Per WCAP-8465, the Diablo Canyon Unit I surveillance program was based on ASTM El 85, "Recommended Practice for Surveillance Tests on Nuclear Reactor Vessels". Per Section 3.1 of ASTM El 85-70, "Sample shall represent one heat of the base metal and one butt weld if a weld occurs in the irradiated region."

At the time the Diablo Canyon Unit I surveillance capsule program was developed, intermediate shell plates were judged to be most limiting based on the lowest initial upper shelf energy values and higher initial copper values. Hence, all the intermediate shell plates were therefore utilized in the surveillance program.

The weld material in the Diablo Canyon Unit I surveillance program was made of the same wire heat as the reactor vessel upper to intermediate and lower shell longitudinal weld seams (Wire Heat No. 27204, Flux Type Linde 1092). This represents six of the seven welds in the beitline area. The seventh weld, the intermediate to lower shell girth welds, was made from heat 21935. This weld had a higher initial USE and lower copper content than heat 27204. Thus, heat 27204 was chosen as the surveillance weld.

ASTM El 85-70 only requires that the surveillance material represent a weld in the irradiated region.

Since the surveillance weld heat # 27204 is the same as the intermediate and lower shell longitudinal welds, then this criterion is true.

Hence, Criterion I is met for the Diablo Canyon Unit I reactor vessel.

Criterion 2:

Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Appendix D

D-3 Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented in Appendix C. Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy of the Diablo Canyon Unit I surveillance materials unambiguously. Hence, the Diablo Canyon Unit I surveillance program meets this criterion.

Criterion 3:

When there are two or more sets of surveillance data from one reactor, the scatter of ARTNDT values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28°F for welds and 1 7°F for base metal. Even if the fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values.

Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTM El 85-82.

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine if the scatter of these ARTNDT values about this line is less than 28°F for welds and less than 17°F for the plate.

Following is the calculation of the best fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2. In addition, the recommended NRC methods for determining credibility will be followed. The NRC methods were presented to industry at a meeting held by the NRC on February 12 and 13, 1998. At this meeting the NRC presented five cases. Of the five cases Case I ("Surveillance data available from plant but no other source") most closely represents the situation listed above for Diablo Canyon Unit I surveillance weld metal. Note, for the plate materials, the straight forward method of Regulatory Guide 1.99, Revision 2 will be followed.

Appendix D

D-4 TABLE D-1 Diablo Canyon Unit I Surveillance Capsule Data MIaterial Capsule F('

l FF(2 l ARTNDT(3 )

FF x ARTNDT FF 2 Intermediate Shell S

0.284 0.656 o(4) 0 0.430 Plate B4106-3 Y

1.05 1.014 48.66 49.34 1.028 (Longitudinal)

V 1.37 1.087 34.32 37.31 1.182 SUM 86.65 2.64 CFpalre (FF X ARTNDT)

  • X( FF2) = 86.65. 2.64 = 32.8°F Weld Metal S

J 0.284 0.656 110.79 72.68 0.430 (Heat # 27204)

Y 1.05 1.014 232.59 235.85 1.028 V

1.37 1.087 201.07 218.56 1.182 SUM 527.09 2.64 CFm,!d = X (FF X ARTNDT) 2(

2 ) = 527.09. 2.64 = 199.7 0F Notes:

1. F = Calculated fluence from Section 6 of this report, [x 1019 nlcm2, E > 1.0 MeV].
2. FF = fluence factor = F028 -

log F)

3.

ARTNDT values are the measured 30 ft-lb shift values, [IF].

4. Actual value for Capsule S is -1.78. However, a negative shift in RTNDT should not physically occur.

Thus, a value of zero is conservatively assumed.

The scatter of ARTNDT values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table D-2.

Appendix D

D-5 TABLE D-2 Best Fit Evaluation for Diablo Canyon Unit I Surveillance Materials Material Capsule CF (OF)

FF Measured Best Fit Scatter

< 17°F (Base ARTNDT ARTNDT of Metals)

(30 ft-lb)

(OF)

ARTNDT

< 28°F (Weld

(°F)

(°F)

Mletal)

Inter. Shell S

32.8 0.656

-1.78 21.52

-23.3 No Plate B4106-3 Y

32.8 1.014 48.66 33.26 15.4 Yes (Longitudinal)

V 32.8 1.087 34.32 35.65

-1.33 Yes Weld Metal S

199.7 0.656 110.79 131.00

-20.21 Yes (Heat # 27204)

Y 199.7 1.014 232.59 202.50 30.09 No V

199.7 1.087 201.07 217.07 160 Yes Table D-2 indicates that one of the plate data points and one of the weld data points has a scatter value that is greater than a I a of 17°F and 28°F, respectively. Therefore, neither the plate nor the weld meets the criterion for credibility.

Criterion 4:

The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25°F.

The capsule specimens are located in the reactor between the thermal shield and the vessel wall and are positioned opposite the center of the core. The test capsules are in baskets attached to the thermal shield.

The location of the specimens with respect to the reactor vessel beitline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°F. Hence, this criterion is met.

Criterion 5:

The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.

The Diablo Canyon Unit I surveillance program does contain correlation monitor material. NUREG/CR-6413, ORNLITM-13133 contains a plot of residual vs. Fast fluence for the correlation monitor material (Figure 9 in the report). The data used for this plot is contained in Table 14. However, the data within this report only contains the two capsules and not Capsule V. In addition, it used the old fluence values.

Thus, Table D-3 contains an updated calculation of Residual vs. Fast fluence.

Appendix D

D-6 TABLE D-3 Calculation of Residual vs. Fast Fluence Capsule Fluence Fluence Measured RG 1.99 Shift Residual (x 109 n/cm2)

Factor Shift (CF*FF)a)

(Nleas.- RG Shift)

(F F )

S 0.284 0.656 65.62 73.01

-7.39 Y

1.05 1.014 115.79 112.9 2.89 V

1.37 1.087 116.61 121.0

-4.39 Notes:

(a)PerNUREG/CR-6413, ORNL/TM-13133, the Cu and Ni values for the Correlation Monitor Material are 0.15 Cu and 0.65 Ni. This equates to a Chemistry Factor of II 1.3°F from Reg. Guide 1.99 Rev. 2.

Table D-3 shows a 2a uncertainty of less than 50°F, which is the allowable scatter in NUREG/CR-6413, ORNL/TM-13133. Hence, this criterion is met.

CONCLUSION:

Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B and 10 CFR 50.61, the Diablo Canyon Unit I surveillance data is not credible. This is based on not satisfying the third criterion for credibility. It is recommended that PG&E review all current reactor vessel Integrity Evaluations (PTS and PT Curves) to assess the impact, if any, of non-credible data for the plate B41 06-3 and weld heat #27204.

Appendix D

E-O APPENDIX E VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY I MEASUREMENTS Appendix E

E-1 E.l Neutron Dosimetry Comparisons of measured dosimetry results to both the calculated and least squares adjusted values for all surveillance capsules withdrawn from service to date at Diablo Canyon Unit 1 are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence."IE 'I One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least squares adjusted values to within +/- 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report. This information may also be useful in the future, in particular, as least squares adjustment techniques become accepted in the regulatory environment.

E.]. I Sensor Reaction Rate Determinations In this section, the results of the evaluations of the three neutron sensor sets withdrawn to date as a part of the Diablo Canyon Unit I Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

Azimuthal Withdrawal Irradiation Capsule ID Location Time Time [EFPYI S

400 End of Cycle 1 1.25 Y

400 End of Cycle 5 5.87 V

4° - 40° End of Cycle 11 14.27

  • Capsule V was irradiated at a 40 location during Cycles 1 through 5 followed by irradiation at a 40° location during Cycles 6 through II when it was subsequently removed from service.

The azimuthal locations included in the above tabulation represent the first octant equivalent azimuthal angle of the geometric center of the respective surveillance capsules.

Appendix E

E-2 The passive neutron sensors included in the evaluations of Surveillance Capsules S, Y, and V are summarized as follows:

Reaction Sensor Material Of Interest Capsule S Capsule Y Capsule V Copper 63Cu(n,a)6oCo X

X X

Iron 54Fe(n,p)4 Mn X

X X

Nickel 58Ni(n,p)"Co X

X X

Uranium-238 238U(n,f)' 37Cs X

X X

Neptunium-237 7Np(n,f) 37CS X

X X

Cobalt-Aluminum*

59Co(n,y)6OCo X

X X

  • The cobalt-aluminum measurements for this plant include both bare wire and cadmium-covered sensors.

The copper, iron, nickel, and cobalt-aluminum monitors, in wire form, were placed in holes drilled in spacers at several radial locations within the test specimen array. As a result, gradient corrections were applied to these measured reaction rates in order to index all of the sensor measurements to the radial center of the respective surveillance capsules. Since the cadmium-shielded uranium and neptunium fission monitors were accommodated within the dosimeter block centered at the radial, azimuthal, and axial center of the material test specimen array, gradient corrections were not required for the fission monitor reaction rates. Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table E-l.

The use of passive monitors such as those listed above does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

The measured specific activity of each monitor, the physical characteristics of each monitor, the operating history of the reactor, the energy response of each monitor, and the neutron energy spectrum at the monitor location.

Appendix E

E-3 The radiometric counting of the neutron sensors from Capsules S and Y was carried out at the Westinghouse Analytical Services Laboratory at the Waltz Mill Site.1E-2] The radiometric counting of the sensors from Capsule V was completed at the Pace Analytical Laboratory, also located at the Waltz Mill Site. In all cases, the radiometric counting followed established ASTM procedures. Following sample preparation and weighing, the specific activity of each sensor was determined by means of a high-resolution gamma spectrometer. For the copper, iron, nickel, and cobalt-aluminum sensors, these analyses were performed by direct counting of each of the individual samples. In the case of the uranium and neptunium fission sensors, the analyses were carried out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.

The irradiation history of the reactor over the irradiation periods experienced by Capsules S, Y, and V was based on the reported monthly power generation of Diablo Canyon Unit I from initial reactor startup through the end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to Capsules S, Y, and V is given in Table E-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

A R =

A NoFY Cj I-e X'

Pre where:

R

=

Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pref (rps/nucleus).

A

=

Measured specific activity (dps/gm).

No

=

Number of target element atoms per gram of sensor.

F

=

Weight fraction of the target isotope in the sensor material.

Y

=

Number of product atoms produced per reaction.

Pj

=

Average core power level during irradiation period j (MW).

Pref

=

Maximum or reference power level of the reactor (MW).

Cj

=

Calculated ratio of O(E > 1.0 MeV) during irradiation period j to the time weighted average O(E > 1.0 MeV) over the entire irradiation period.

=

Decay constant of the product isotope (I/sec).

tj

=

Length of irradiation period j (sec).

td

=

Decay time following irradiation period j (sec).

Appendix E

E-4 and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio Pj]/[Pf] accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional Cj term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

The fuel cycle specific neutron flux values along with the computed values for Cj are listed in Table E-3.

These flux values represent the cycle dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, additional corrections were made to the 23SU measurements to account for the presence of 235U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation.

Corrections were also made to the 238U and 237Np sensor reaction rates to account for gamma ray induced fission reactions that occurred over the course of the capsule irradiations. The correction factors applied to the Diablo Canyon Unit I fission sensor reaction rates are summarized as follows:

These factors were applied in a multiplicative fashion to the decay corrected uranium and neptunium fission sensor reaction rates.

Results of the sensor reaction rate determinations for Capsules S, Y, and V are given in Table E-4. In Table E-4, the measured specific activities, decay corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed. The fission sensor reaction rates are listed both with and without the applied corrections for 23sU impurities, plutonium build-in, and gamma ray induced fission effects.

Appendix E Correction Capsule S Capsule Y Capsule V 235U ImpuritylPu Build-in 0.873 0.844 0.831 238U(y,f) 0.958 0.958 0.958 Net 238U Correction 0.836 0.809 0.796 237Np(y,f) 0.985 0.985 0.985

E-5 E. 1.2 Least Squares Evaluation of Sensor Sets Least squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a Best Estimate neutron energy spectrum with associated uncertainties. Best Estimates for key exposure parameters such as ¢(E > 1.0 MeV) or dpats along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, R; + R = E, (5qig

, +/-ci '3,9N g

relates a set of measured reaction rates, R,, to a single neutron spectrum, 4g, through the multigroup dosimeter reaction cross-section, q.g, each with an uncertainty o. The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least squares evaluation of the Diablo Canyon Unit 1 surveillance capsule dosimetry, the FERRET code'E~6' was employed to combine the results of the plant specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters ((E > 1.0 MeV) and dpa) along with associated uncertainties for the three in-vessel capsules tested to date (a total of five capsules have been removed to date; two of the five are in storage).

The application of the least squares methodology requires the following input:

1 - The calculated neutron energy spectrum and associated uncertainties at the measurement location.

2 - The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.

3 - The energy dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Diablo Canyon Unit I application, the calculated neutron spectrum was obtained from the results of plant specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section E. 1.1. The dosimetry reaction cross-sections and uncertainties were obtained from the SNLRML dosimetry cross-section library[E-7]. The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations byASTM Standard E1018, "Application of ASTM Evaluated Cross-Section Data File, Matrix E 706 (IIB)".

Appendix E

E-6 The uncertainties associated with tlie measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least squares procedure in the form of variances and covariances.

The assignment of the input uncertainties followed the guidance provided in ASTM Standard E 944, "Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance."

The following provides a summary of the uncertainties associated with the least squares evaluation of the Diablo Canyon Unit I surveillance capsule sensor sets.

Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

These uncertainties are given at the Ia level.

Dosimetry Cross-Section Uncertainties The reaction rate cross-sections used in the least squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least squares adjustment applications. These cross-sections were compiled from the most recent cross-section evaluations and they have been tested with respect to their accuracy and consistency for least squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Diablo Canyon Unit I surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

Appendix E Reaction Uncertainty Cu(n,a)'Co 5%

-Fe(n,p)-Mn 5%

-Ni(n,p)sCo 5%

2-U(n,f) 37Cs 10%

237Np(n,f)137Cs 10%

' 9Co(n,y)6Co 5%

E-7 These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

Calculated Neutron Spectrum The neutron spectra input to the least squares adjustment procedure were obtained directly from the results of plant specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

M

= R 2 + R

  • R
  • P.

where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties Rg and Rg specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

Pg, = [I-6J6g, +

e where H

(g - g) 2 2y2 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlations over a group range y (O specifies the strength of the latter term). The value of 5 is 1.0 when g = g', and is 0.0 otherwise.

Appendix E

E-8 The set of parameters defining the input covariance matrix for the Diablo Canyon Unit I calculated spectra was as follows:

Flux Normalization Uncertainty (Rn) 15%

Flux Group Uncertainties (Rg, R..)

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 29%

(E < 0.68 eV) 52%

Short Range Correlation (0)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E < 0.68 eV) 0.5 Flux Group Correlation Range (y)

(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 E. 1.3 Comparisons of Measurements and Calculations Results of the least squares evaluations of the dosimetry from the Diablo Canyon Unit I surveillance capsules withdrawn to date are provided in Tables E-5 and E-6. In Table E-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least squares adjusted reaction rates.

These ratios of M/C and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. In Table E-6, comparison of the calculated and best estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules.

The data comparisons provided in Tables E-5 and E-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, it may be noted that the uncertainty associated Appendix E

E-9 with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12% at the a level. From Table E-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6% for neutron flux (E > 1.0 MeV) and 7% for iron atom displacement rate. Again, the uncertainties from the least squares evaluation are at the Icr level.

Further comparisons of the measurement results with calculations are given in Tables E-7 and E-8.

These comparisons are given on two levels. In Table E-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table E-8, calculations of fast neutron exposure rates in terms of 4(E > 1.0 MeV) and dpa/s are compared with the best estimate results obtained from the least squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron reactions range from 0.78-1.12 for the 15 samples included in the data set.

The overall average M/C ratio for the entire set of Diablo Canyon Unit I data is 0.94 with an associated standard deviation of 8.3%. This value is used to determine the Best Estimate fluence (E >1.0 MeV) and iron atom displacement values on a cycle wise basis. Table E-9 lists the Best Estimate values on a cycle by cycle basis for the fluence at the capsule center as shown.

In the comparisons of best estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.86-1.00 for neutron flux (E > 1.0 MeV) and from 0.88 to 1.02 for iron atom displacement rate. The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 0.91 with a standard deviation of 8.3% and 0.93 with a standard deviation of 8.3%, respectively.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Diablo Canyon Unit I reactor pressure vessel.

Appendix E

E-10 Table E-1 Nuclear Parameters Used In the Evaluation of Neutron Sensors Monitor Material Copper Iron Nickel Uranium-238 Neptunium-237 Cobalt-Aluminum Reaction of Interest 63Cu (n,a) 54Fe (n,p) 58Ni (n,p) 238U (n,f) 237Np (n,f) 59Co (n,y)

Target Atom Fraction 0.6917 0.0585 0.6808 0.9996 1.0000-0.0015 90% Response Range (MeV) 4.9 - 11.8 2.1 -8.3 1.5-8.1 1.2 - 6.7 0.4 - 3.5 non-threshold Fission Product Yield Half-life (7) 5.271 y 312.3 d 70.82 d 30.07 y 6.02 30.07 y 5.271 y 6.17 Notes: The 90% response range is defined such that, in the neutron spectrum characteristic of the Diablo Canyon Unit I surveillance capsules, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.

Appendix E

E-11 Table E-2 Monthly Thermal Generation During the First Eleven Fuel Cycles Of The Diablo Canyon Unit I Reactor (Reactor Power of 3338 MWt through October 6, 2000, and 3411 MWt thereafter)

Thermal Thermal Thermal Generation Generation Generation Year Month (MWt-hr)

Year Month (MWt-hr)

Year Month (MWt-hr) 1984 11 167071 1988 1

2035485 1991 3

0 1984 12 781228 1988 2

1710575 1991 4

1610788 1985 1

84750 1988 3

274544 1991 5

2161086 1985 2

497207 1988 4

0 1991 6

2392176 1985 3

1854601 1988 5

0 1991 7

2481053 1985 4

0 1988 6

0 1991 8

2482327 1985 5

1632108 1988 7

927368 1991 9

2350718 1985 6

2286901 1988 8

2358057 1991 10 2481357 1985 7

2435846 1988 9

2068428 1991 11 2197143 1985 8

2218873 1988 10 2427826 1991 12 2480444 1985 9

2374552 1988 11 2368095 1992 1

2480772 1985 10 2163216 1988 12 2404073 1992 2

2322063 1985 11 1523963 1989 1

2398489 1992 3

2138149 1985 12 1929994 1989 2

2207286 1992 4

2224782 1986 1

2424269 1989 3

2449786 1992 5

2410682 1986 2

2102251 1989 4

2162399 1992 6

2400268 1986 3

2406348 1989 5

2441421 1992 7

2418213 1986 4

2132185 1989 6

2363360 1992 8

2381626 1986 5

2490682 1989 7

2468579 1992 9

835392 1986 6

2163689 1989 8

2384230 1992 10 0

1986 7

1842336 1989 9

2400292 1992 11 1352555 1986 8

1366070 1989 10 439623 1992 12 2428355 1986 9

0 1989 11 0

1993 1

2483047 1986 10 0

1989 12 818953 1993 2

2065992 1986 11 0

1990 1

2433618 1993 3

2338926 1986 12 48788 1990 2

2037409 1993 4

2402015 1987 1

1140482 1990 3

2491017 1993 5

2481334 1987 2

2028965 1990 4

2377992 1993 6

2256675 1987 3

2277945 1990 5

2516299 1993 7

2482118 1987 4

2394500 1990 6

1585625 1993 8

2480942 1987 5

2118322 1990 7

2340515 1993 9

2400588 1987 6

2141394 1990 8

2473468 1993 10 2432353 1987 7

2381703 1990 9

2370556 1993 11 2401678 1987 8

2090122 1990 10 2443130 1993 12 1867363 1987 9

2375321 1990 11 2346761 1994 1

2437616 1987 10 2308588 1990 12 1793532 1994 2

2242952 1987 11 2347282 1991 1

2391971 1994 3

872868 1987 12 1817741 1991 2

27364 1994 4

0 Appendix E

E-12 Table E-2 cont'd Monthly Thermal Generation During The First Eighteen Fuel Cycles Of The Diablo Canyon Unit I Reactor (Reactor Power of 3338 through October 6 2000 and 3411 MWt thereafter)

Thermal Thermal Thermal Generation Generation Generation Year Month (MWt-hr)

Year Month (MWt-hr)

Year Month (MWt-hr) 1994 5

546539 1997 7

2480639 2000 9

2391812 1994 6

2383038 1997 8

2466623 2000 10 400560 1994 7

2493803 1997 9

2394045 2000 11 695918 1994 8

2490277 1997 10 2361899 2000 12 2449052 1994 9

2407121 1997 11 2389197 2001 1

2385664 1994 10 2482344 1997 12 2468651 2001 2

2291938 1994 11 2398894 1998 1

2404594 2001 3

2537268 1994 12 2059217 1998 2

2188679 2001 4

2450959 1995 1

2425927 1998 3

2414420 2001 5

2537285 1995 2

2242278 1998 4

2336535 2001 6

2381547 1995 3

2449140 1998 5

2469944 2001 7

2533658 1995 4

2298107 1998 6

2360812 2001 8

2536196 1995 5

2485576 1998 7

2414420 2001 9

2455470 1995 6

2387434 1998 8

2414420 2001 10 2534575 1995 7

2479699 1998 9

2336535 2001 11 2177067 1995 8

2478524 1998 10 2414420 2001 12 2506152 1995 9

2070677 1998 11 2336535 2002 1

2537285 1995 10 0

1998 12 1572621 2002 2

2260854 1995 11 60824 1999 1

2474763 2002 3

2530637 1995 12 1650488 1999 2

500553 2002 4

2217016 1996 1

2482638 1999 3

1098455 1996 2

2271956 1999 4

2396984 1996 3

2045407 1999 5

2480081 1996 4

2397718 1999 6

2396014 1996 5

2480874 1999 7

2473999 1996 6

2198496 1999 8

2474498 1996 7

2329842 1999 9

2136320 1996 8

1911123 1999 10 2214363 1996 9

2398306 1999 11 2224383 1996 10 2481168 1999 12 2464655 1996 11 1686924 2000 1

2377796 1996 12 2425633 2000 2

2298401 1997 1

2470296 2000 3

2469797 1997 2

2215833 2000 4

2352203 1997 3

2479111 2000 5

1311575 1997 4

1429228 2000 6

2400627 1997 5

0 2000 7

2481168 1997 6

2072263 2000 8

2479288 Appendix E

E-13 Table E-3 Calculated C. Factors at the Surveillance Capsule Center Core Midplane Elevation Fuel O(E> 1.0 MeV) [n/c m2-s]

C Cycle Capsule S Capsule Y Capsule V*

S Y

V*

I 7.23E+10 7.23E+10 2.24E+I 0 1.000 1.267 0.761 2

6.03E+ 10 1.94E+I 0 1.057 0.657 3

6.28E+10 1.60E+10 1.101 0.542 4

4.85E+ 10 1.63E+ 0 0.850 0.554 5

4.14E+ 10 1.54E+ 10 0.726 0.522 6

4.16E+10 1.411 7

4.1 IE+10 1.394 8

3.69E+10 1.252 9

3.87E+ 10 1.314 10 3.80E+ 10 1.289 1 1 3.84E+ 10 1.305 Average 7.23E+10 5.70E+ I0 2.95E+ 10 1.000 1.000 1.000

  • Note: Cj factors based on the ratio of the cycle specific fast (E > 1.0 MeV) neutron flux divided by the average flux over the total irradiation period were deemed unsuitable for Capsule V since reaction rates did not vary by constant values as a function of azimuthal position for this capsule. To a large extent, this was due to moving Capsule V from a 4° to 40° location following the fifth fuel cycle. As a result of this observation, the Cj terms that were utilized in the final Capsule V analysis were based on the individual reaction rates determined from the synthesized transport calculations. The final Cj terms for Capsule V, which are based on individual reaction rates, are reported on the next page of this table.

Appendix E

E-14 Table E-3 cont'd Calculated Ci Factors at the Surveillance Capsule Center Core Midplane Elevation (Capsule V only)

Fuel Capsule V Reaction Rates [rps/atom]

Cycle 63Cu (n,oa) 54Fe (n,p) 238U (n,f) 237Np (n,f) 59Co (n,y) 59Co (n,y) 5 9Co (n,'Y) Cd I

2.22E-17 1.99E-15 2.67E-15 8.37E-15 5.66E-14 7.12E-13 3.69E-13 2

1.96E-17 1.74E-15 2.33E-15 7.25E-15 4.88E-14 6.09E-13 3.16E-13 3

1.66E-17 1.45E-15 1.94E-15 5.99E-15 4.02E-14 5.01E-13 2.60E-13 4

1.71E-17 1.49E-15 1.99E-15 6.14E-15 4.10E-14 5.08E-13 2.63E-13 5

1.62E-17 1.40E-15 1.88E-15 5.79E-15 3.87E-14 4.79E-13 2.49E-13 6

2.78E-17 2.98E-15 4.10E-15 1.45E-14 1.12E-13 1.69E-12 8.94E-13 7

2.77E-17 2.96E-15 4.06E-15 1.44E-14

1. IOE-13 1.66E-12 8.81E-13 8

2.50E-17 2.66E-15 3.65E-15 1.29E-14 9.89E-14 1.49E-12 7.90E-13 9

2.64E-17 2.80E-15 3.84E-15 1.36E-14 1.04E-13 1.56E-12 8.27E-13 10 2.60E-17 2.75E-15 3.77E-5 1.33E-14 1.02E-13 1.53E-12 8.1OE-13 11 2.64E-17 2.79E-15 3.83E-15 1.35E-14 1.03E-13 1.55E-12 8.20E-13 Average 2.28E-17 2.27E-15 3.09E-15 1.05E-14 7.77E-14 1.12E-12 5.89E-13 Fuel Capsule V Cj Cycle Cu (n,a)

-4Fe (n,p) 238w (n,f)

Np (n,f) 59Co (n,y)

Co (n,yn,yd 1

0.97 0.88 0.86 0.80 0.73 0.64 0.63 2

0.86 0.76 0.75 0.69 0.63 0.55 0.54 3

0.73 0.64 0.63 0.57 0.52 0.45 0.44 4

0.75 0.65 0.64 0.58 0.53 0.45 0.45 5

0.71 0.62 0.61 0.55 0.50 0.43 0.42 6

1.22 1.31 1.32 1.38 1.44 1.51 1.52 7

1.21 1.30 1.31 1.37 1.42 1.49 1.50 8

1.09 1.17 1.18 1.23 1.27 1.34 1.34 9

1.16 1.23 1.24 1.29 1.34 1.40 1.40 10 1.14 1.21 1.22 1.26 1.31 1.37 1.37 11 1.16 1.23 1.24 1.28 1.33 1.39 1.39 Average 1.00 1.00 I 1.00 1.00 1.00 1.00 1.00 Appendix E

E-15 Table E-4 Measured Sensor Activities And Reaction Rates Surveillance Capsule S Reaction 61Cu (n,a) 60Co Location Top Bottom Average Measured Activity (dps/g) 4.470E+04 4.290E+04 Saturated Activity (dps/g) 3.146E+05 3.019E+05 Radially Adjusted Saturated Activity (dps/g) 3.269E+05 3.137E+05 Radially Adjusted Reaction Rate (rps/atom) 4.987E-17 4.786E-17 4.887E-17 54Fe (n,p) 54Mn W-3 Charpy W-4 Charpy W-8 Charpy E-41 Charpy R-47 Charpy Average 58Ni (n,p) 58Co Middle Average 8.200E+06 4.785E+07 4.986E+07 7.137E-15 7.137E-15 238U (n f 137CS (Cd) 238U (n,f) 137 Cs (Cd) 237Np (n,f) 13 7Cs (Cd) 237Np (n,f) 137 Cs (Cd) 5 9Co (n,y) 6 Co Middle Middle Top Middle Bottom Average 1.310E+05 4.634E+06 4.634E+06 3.043E-14 Including 2 35U, 2 39pU, and y,fission corrections:

9.970E+05 3.527E+07 3.527E+07 Including y,ission correction:

7.560E+06 7.350E+06 7.870E+06 5.321 E+07 5.173E+07 5.539E+07 59Co (n,y) 60Co (Cd)

Top 4.030E+06 2.836E+07 Middle 3.980E+06 2.801E+07 Bottom 4.050E+06 2.851 E+07 Average Notes:

I) Measured specific activities are indexed to a counting date of February 2, 1987.

5.098E+07 4.956E+07 5.307E+07 2.454E+07 2.423E+07 2.466E+07 2.545E-14 2.250E-13 2.215E-13 3.326E-12 3.233E-12 3.462E-12 3.340E-12 1.601 E-12 1.581E-12 1.609E-12 1.597E-12 2)The average 23 8U (n.f) reaction rate of 2.545E-14 includes a correction factor of 0.873 to account for plutonium build-in and an additional factor of 0.958 to account for photo-fission effects in the sensor.

3) The average 237Np (n,f) reaction rate of 2.215E-13 includes a correction factor of 0.985 to account for photo-fission effects in the sensor.

Appendix E 1I.130E+06 1I.130E+06 I.150E+06 1.330E+06 1.350E+06 2.716E+06 2.716E+06 2.764E+06 3.196E+06 3.244E+06 2.830E+06 2.830E+06 2.880E+06 2.739E+06 2.780E+06 4.486E-15 4.486E-15 4.565E-15 4.342E-15 4.408E-15 4.457E-15

E-16 Table E-4 cont'd Measured Sensor Activities And Reaction Rates Surveillance Capsule Y Reaction 63Cu (n,ax) 6OCo Location Top Bottom Average Measured Activity (dps/g) 1.23E+05 1.28E+05 Saturated Activity (dps/g) 1.52E+05 1.58E+05 Radially Adjusted Saturated Activity (dps/g) 1.45E+05 1.51 E+05 Radially Adjusted Reaction Rate (rps/atom) 2.21 E-17 2.30E-17 2.26E-17 54Fe (n,p) 5Mn W-09 Charpy W-16 Charpy E-49 Charpy E-56 Charpy Average 58Ni (n,p) 58Co Middle Average 9.58E+06 2.09E+07 238U (n,f) 137Cs (Cd) 238U (n,f) 137Cs (Cd)

Middle 4.68E+05 Including 235U, 1.69E+06 1.69E+06 239Pu, and y,fission corrections:

237Np (n,f) 137Cs (Cd) 237Np (n,f) '"Cs (Cd) 59Co (n,y) 6Co 5 9Co (n,y) 6OCo (Cd)

Middle Top Middle Bottom Average Top Middle Bottom Average 3.44E+06 1.38E+07 1.46E+07 1.39E+07 6.53E+06 7.42E+06 6.37E+06 1.24E+07 1.24E+07 Including y,fission correction:

1.70E+07 1.80E+07 1.71 E+07 8.05E+06 9.15E+06 7.85E+06 1.62E+07 1.71 E+07 1.63E+07 7.65E+06 8.69E+06 7.46E+06 7.94E-14 7.82E-14 1.06E-12 1.12E-12 1.06E-12 1.08E-12 4.99E-1 3 5.67E-13 4.87E-1 3 5.18E-13 Notes: I) Measured specific activities are indexed to a counting date of August 1, 2002.

2) The average 238U (n.f) reaction rate of 8.84E-15 includes a correction factor of 0.831 to account for plutonium build-in and an additional factor of 0.958 to account for photo-fission effects in the sensor.
3) The average 237Np (n.f) reaction rate of 7.82E-14 includes a correction factor of 0.985 to account for photo-fission effects in the sensor.

Appendix E 1.02E+06 1.05E+06 8.87E+05 9.03E+05 1.15E+06 1.19E+06 I.OOE+06 1.02E+06 1.IOE+06 1.13E+06 1I.15E+06 1.1 7E+06 1.74E-15 1.80E-15 1.83E-15 1.86E-15 1.81E-15 1.99E+07 2.85E-15 2.85E-15 1.11 E-14 8.84E-15

E-17 Table E-4 cont'd Measured Sensor Activities And Reaction Rates Surveillance Capsule V Reaction 63Cu (n,cx) 6OCo Location Top Bottom Average Measured Activity (dps/g) 3.80E+04 3.81 E+04 Saturated Activity (dps/g) 7.80E+04 7.82E+04 Radially Adjusted Saturated Activity (dps/g) 8.12E+04 8.14E+04 Radially Adjusted Reaction Rate (rps/atom) 1.24E-17 1.24E-17 1.24E-17 54Fe (n,p) 54Mn 238U (n,f) 137 Cs (Cd) 23 5U (n,f) 13 7Cs (Cd) 23'7Np (n,f) 13 7Cs (Cd) 237Np (n,f) 137 Cs (Cd) 59Co (n,y) Co

"'Co (r R-48 Charpy R-42 Charpy H-2 Charpy S-58 Charpy S-52 Charpy W-2 Charpy Average Middle 1.58E+06 1.62E+06 1.47E+06 1.90E+06 1.87E+06 1.75E+06 2.52E+05 2.55E+06 2.62E+06 2.37E+06 3.07E+06 3.02E+06 2.83E+06 1.64E+06 2.66E+06 2.73E+06 2.48E+06 2.65E+06 2.60E+06 2.44E+06 1.64E+06 Including 235U, 239Pu, and yfission corrections:

Middle Top Middle Bottom Average 1.23E+05 3.1 IE+06 2.82E+06 3.01 E+06 7.99E+05 7.99E+05 Including y,fission correction:

6.38E+06 5.79E+06 6.18E+06 i,y) 'Co (Cd)

Top 1.53E+06 3.14E+06 2

Middle 3.17E+04 6.51 E+04 5

Bottom 1.52E+06 3.12E+06 2

Average Notes: I) Measured specific activities are indexed to a counting date of March 30, 1985.

6.1I E+06 5.54E+06 5.91 E+06 2.77E+06 5.74E+04 2.75E+06 4.22E-15 4.33E-15 3.93E-15 4.19E-15 4.13E-15 3.86E-15 4.11E-15 1.08E-14 8.64E-15 5.1OE-15 5.02E-15 5.98E-16 5.42E-16 5.79E-16 5.73E-16 2.71E-16 5.62E-18 2.69E-16 1.82E-16

2) The average 238U (n.f) reaction rate of 8.64E-15 includes a correction factor of 0.837 to account for plutonium build-in and an additional factor of 0.960 to account for pholo-fission effects in the sensor.
3) The average 237Np (n.f) reaction rate of 5.02E-1 5 includes a correction factor of 0.984 to account for photo-fission effects in the sensor.

Appendix E f

E-18 Table E-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates At The Surveillance Capsule Center Capsule S Reaction Rate [rps/atom]

Best Reaction Measured Calculated Estimate M/C M/BE 63Cu(n,a)60Co 4.89E-17 4.46E-17 4.69E-17 1.10 1.04 54Fe(n,p)54Mn 4.46E-15 5.01E-15 4.87E-15 0.89 0.92 18Ni(n,p) Co 7.14E-15 6.91E-15 6.96E-15 1.03 1.03 238U(n,f 37Cs (Cd) 2.54E-14 2.50E-14 2.49E-14 1.02 1.02 237Np(n,f)1 37Cs (Cd) 2.21E-13 1.97E-13 2.10E-13 1.13 1.05 59Co(n,y)6oCo 3.34E-12 2.93E-12 3.32E-12 1.14 1.00 59Co(n,y)6Co (Cd) 1.60E-1 2 1.53E-12 1.60E-1 2 1.04 1.00 Ca psule Y Reaction Rate [rps/atom]

Best Reaction Measured Calculated Estimate M/C M/BE 63 Cu(n,a)60Co 3.67E-17 3.69E-17 3.58E-17 0.99 1.02 54Fe(n,p)5 Mn 3.44E-15 4.02E-15 3.63E-15 0.86 0.94 58Ni(n,p)58Co 5.23E-15 5.54E-15 5.1 OE-15 0.94 1.02 238U(n,f)137Cs (Cd) 1.82E-14 1.98E-14 1.77E-14 0.92 1.03 237Np(n f)137Cs (Cd) 1.24E-13 1.54E-13 1.30E-13 0.81 0.95 59Co(n,y)6Co 2.35E-12 2.26E-12 2.35E-12 1.04 1.00 59Co(n,y)6oCo (Cd) 1.15E-12 1.18E-12 1.15E-12 0.97 1.00 Capsule V Reaction Rate [rps/ tom]

Best Reaction Measured Calculated Estimate M/C M/BE 63Cu(n,a)6OCo 2.26E-17 2.32E-17 2.16E-17 0.97 1.04 5 Fe(n,p)5 Mn 1.81E-15 2.32E-15 1.97E-15 0.78 0.92 58Ni(n,p)"Co 2.85E-15 3.16E-15 2.77E-15 0.90 1.03 238U(n,f)137Cs (Cd) 8.84E-15 1.08E-14 9.24E-15 0.82 0.96 237Np(n,f)'37Cs (Cd) 7.81E-14 8.06E-14 7.39E-14 0.97 1.05 5 9Co(n,y)6oCo 1.08E-12 1.13E-12 1.08E-12 0.95 1.00 59Co(n,y)6oCo (Cd) 5.18E-13 5.87E-13 5.20E-13 0.88 1.00 Appendix E

E-19 Table E-6 Comparison of Calculated and Best Estimate Exposure Rates At The Surveillance Capsule Center Notes: ) Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period.

Notes: I) Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period.

Appendix E 4(E > 1.0 MeV) [n/cm2 -s]

I Best Uncertainty Capsule ID Calculated Estimate (I )

BE/C S

7.23E+ 10 7.26E+lO 6%

1.00 Y

5.68E+ 10 5.05E+10 6%

0.89 V

3.04E+I 1

2.61 E+

1 6%

0.86 Iron Atom Displacement Rate [dpa/s]

Best Uncertainty Capsule ID Calculated Estimate (I )

BE/C S

I.22E-10 1.23E-10 7%

1.01 Y

9.56E-1 8.44E-1 1 7%

0.88 V

5.05E-I 4.39E-1 1 7%

0.87

E-20 Table E-7a Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions M/C Ratio Reaction Capsule S Capsule Y Capsule V 63Cu(n,(x) Co 1.10 0.99 0.97 54Fe(n,p)54Mn 0.89 0.86 0.78 s Ni(n,p)"Co 1.03 0.94 0.90 238U(n,p)' 37Cs (Cd) 1.02 0.92 0.82 237Np(n,f)'37Cs (Cd) 1.12 0.81 0.97 Average 1.03 0.90 0.89

% Standard Deviation 8.7 8.2 9.8 Note: 1) The overall average M/C ratio for the set of 15 sensor measurements is 0.94 with an associated standard deviation of 8.3%.

Table E-7b Comparison of Measured/Calculated Individual Sensor Reactions without Recourse to the Least Squares Adjustment Encompassing all In-Vessel and Ex-Vessel Dosimetry In-Vessel Ex-Vessel Combined Average Unc.

Average Unc.

Average Unc.

Reaction M/C (I )

M/C (I )

M/C (I )

63Cu(n,a)'Co 1.02 7.0 0.87 8.0 0.95 10.6 54Fe(n,p)54Mn 0.84 5.7 0.84 11.1 0.84 0.0 5RNi(n,p) 5SCo 0.96 6.7 0.89 10.6 0.93 4.9 238U(n p)'37Cs (Cd) 0.92 10.0 0.96 11.4 0.94 2.8 237Np(n, f)'37Cs (Cd) 0.97 16.0 0.98 13.1 0.91 0.7 Linear Average 0.94 6.7 0.91 6.0 0.91 43 Table E-8 Comparison of Best Estimate/Calculated (BE/C) Exposure Rate Ratios BE/C Ratio Capsule ID (E> 1.0 MeV) dpa/s S

1.00 1.02 Y

0.89 0.89 V

0.86 0.88 Average 0.92 0.93

% Standard Deviation 8.0 8.4 Appendix E

E-21 Table E-9 Best Estimate Fluence and Iron Atom Displacement Values on a Cycle-By-Cycle Basis Cumulative Best Estimate Values Operating

¢(E > 1.0 MeV)

Iron Displacements Cycle Time I n/cm2)

Idpa)

{EFPY) 40 400 Capsule 40 400 Capsule V*

V

  • 1 1.25 8.03E+ 17 2.59E+18 8.03E+ 17 1.34E-03 4.51 E-03 1.34E-03 2

2.27 1.37E+ 18 4.36E+ 18 1.37E+ 18 2.28E-03 7.59E-03 2.28E-03 3

3.45 1.91 E+ 18 6.48E+18 1.91E+18 3.18E-03 1.13E-02 3.18E-03 4

4.51 2.41 E+ 18 7.96E+ 18 2.41 E+18 4.01 E-03 1.38E-02 4.01E-03 5

5.87 3.01 E+ 18 9.58E+18 3.01 E+ 18 5.01 E-03 1.67E-02 5.01E-03 6

7.14 3.60E+ 18 1.I1 E+ 19 4.53E+ 18 5.99E-03 1.93E-02 7.64E-03 7

8.47 4.19E+ 18 1.27E+19 6.09E+ 18 6.98E-03 2.20E-02 1.04E-02 8

9.75 4.69E+ 18 1.40E+ 19 7.44E+ 18 7.81 E-03 2.44E-02 1.27E-02 9

11.38 5.40E+ 18 1.58E+19 9.25E+ 18 8.98E-03 2.75E-02 1.58E-02 10 12.87 5.98E+ 18 1.75E+ 19 1.09E+ 19 9.96E-03 3.03E-02 1.87E-02 I1 14.27 6.60E+ 18 1.91 E+19 1.25E+ 19

l. lOE-02 3.3 E-02 2.14E-02 Projections 16.00 7.34E+ 18 2.1OE+19 1.22E-02 3.64E-02 Projections 24.00 1.08E+ 19 3.02E+ 19 1.80E-02 5.25E-02 Projections 32.00 1.43E+ 19 3.94E+ 19 2.38E-02 6.85E-02 Projections 40.00 1.78E+19 4.87E+19 2.97E-02 8.45E-02 Projections 48.00 2.13E+19 5.79E+19 3.55E-02 I.OOE-01 Projections 54.00 2.39E+19 3.98E-02 1.12E-0 1 Notes: 1)
  • Capsule V was irradiated at a 4 capsule position for cycles 1-5 at which point it was moved to be irradiated in a 40° location until it was removed at the end of cycle 11.

Appendix E

E-22 Table E-10 i

Best Estimate Azimuthal Variation of Maximum Exposure Rates And Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface Appendix E Cumulative Cumulative Neutron Flux (E > 1.0 MeV)

Cycle Irradiation Irradiation

[n/cm 2-s]_

Length Time Time Cycle

[EFPS]

[EFPS]

[EFPY]

O0 150 30° 450 I

3.94E+07 3.94E+07 1.25 6.14E+09 9.73E+09 1.23E+I 0 1.90E+ l 0 2

3.23E+07 7.16E+07 2.27 5.40E+09 7.69E+09 1.06E+ 10 1.59E+10 3

3.72E+07 1.09E+08 3.45.

4.39E+09 7.16E+09 1.08E+I 0 1.66E+10 4

3.34E+07 1.42E+08 4.51 4.49E+09 6.89E+09 8.68E+09 1.30E+10 5

4.31 E+07 1.85E+08 5.87 4.25E+09 6.42E+09 8.01E+09 1.09E+10 6

4.01 E+07 2.25E+08 7.14 4.44E+09 6.96E+09 8.07E+09 1.1OE+10 7

4.18E+07 2.67 E+08 8.47 4.28E+09 6.88E+09 8.18E+09 1.08E+ lO 8

4.04E+07 3.08 E+08 9.75 3.81 E+09 6.24E+09 7.50E+09 9.84E+09 9

5.13E+07 3.59 E+08 11.38 4.17E+09 6.36E+09 7.64E+09 1.02E+I 10 4.72E+07 4.06 E+08 12.87 3.71 E+09 6.61 E+09 7.95E+09 9.98E+09 11 4.58E+07 4.52 E+08 14.27 4.02E+09 7.46E+09 8.63E+09 I.OOE+ I0 Projection 5.29E+07 5.05 E+08 16.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10 Projection 2.53E+08 7.57 E+08 24.00 4.18E+09 6.84E+09 8.16E+09 1.06E+ 10 Projection 2.53E+08 1.0 IE+09 32.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10 Projection 2.53E+08 1.26E+09 40.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10 Projection 2.53E+08 1.5 lE+09 48.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10 Projection 1.89E+08 1.70E+09 54.00 4.18E+09 6.84E+09 8.16E+09 1.06E+10

E-23 Table E-10 cont'd Best Estimate Azimuthal Variation of Maximum Exposure Rates And Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface Appendix E Cumulative Cumulative Neutron Fluence (E > 1.0 MeV)

Cycle Irradiation Irradiation

[n/cm2]

Length Time Time Cycle

[EFPS]

[EFPS]

[EFPY]

00 150 300 450 I

3.94E+07 3.94E+07 1.25 2.42E+17 3.83E+ 17 4.85E+ 17 7.46E+17 2

3.23E+07 7.16E+07 2.27 4.16E+ 17 6.31E+17 8.26E+ 17 1.26E+ 18 3

3.72E+07 1.09E+08 3.45 5.79E+17 8.97E+17 1.23E+18 1.88E+18 4

3.34E+07 1.42E+08 4.51 7.29E+ 17 1.13E+18 1.52E+ 18 2.31E+18 5

4.31 E+07 1.85E+08 5.87 9.12E+17 1.40E+ 18 1.86E+18 2.78E+18 6

4.0 E+07 2.25E+08 7.14 1.09E+18 1.68E+ 18 2.19E+18 3.22E+18 7

4.18E+07 2.67 E+08 8.47 1.27E+18 1.97E+ 18 2.53E+ 18 3.67E+ 18 8

4.04E+07 3.08 E+08 9.75 1.42E+ 18 2.22E+ 18 2.83E+ 18 4.07E+ 18 9

5.13E+07 3.59 E+08 11.38 1.64E+ 18 2.55E+ 18 3.22E+ 18 4.59E+ 18 10 4.72E+07 4.06 E+08 12.87 1.81E+18 2.86E+ 18 3.60E+18 5.06E+ 18 11 4.58E+07 4.52 E+08 14.27 1.99E+ 18 3.20E+ 18 3.99E+ 18 5.52E+ 18 Projection 5.29E+07 5.05 E+08 16.00 2.22E+18 3.56E+ 18 4.42E+18 6.08E+ 18 Projection 2.53E+08 7.57 E+08 24.00 3.27E+ 18 5.29E+ 18 6.48E+ 18 8.75E+ 18 Projection 2.53E+08 1.0 IE+09 32.00 4.33E+18 7.02E+ 18 8.54E+ 18 1.14E+ 19 Projection 2.53E+08 1.26E+09 40.00 5.38E+18 8.74E+ 18 1.06E+ 19 1.41E+19 Projection 2.53E+08 1.51 E+09 48.00 6.43E+ 18 1.05E+ 19 1.27E+ 19 1.68E+ 19 Projection 1.89E+08 1.70E+09 54.00 7.22E+18 1.18E+19 1.42E+19

.88E+19 l~~~~~~~~~~

E-24 Table E-10 cont'd Best Estimate Azimuthal Variation of Fast Neutron Exposure Rates And Iron Atom Displacement Rates At the Reactor Vessel Clad/Base Metal Interface Appendix E Cumulative Cumulative Iron Atom Displacement Rate Cycle Irradiation Irradiation

[dpa/s]

Length Time Time Cycle

[EFPS]

[EFPS]

[EFPY]

00 15° 300 450 3.94E+07 3.94E+07 1.25 9.96E-12 1.56E-1 1 1.99E-11 3.06E-1 I 2

3.23E+07 7.16E+07 2.27 8.74E-12 1.23E-11 1.70E-11 2.57E-Il 3

3.72E+07 1.09E+08 3.45 7.13E-12 1.15E-II 1.74E-I1 2.68E-I1 4

3.34E+07 1.42E+08 4.51 7.28E-12 I.IOE-11 1.40E-11 2.10OE-1 5

4.311E+07 1.85E+08 5.87 6.88E-12 1.03E-I1 1.29E-11 1.76E-Il 6

4.011E+07 2.25E+08 7.14 7.20E-12 1.IE-1I 1.30E-11 1.77E-I1 7

4.18E+07 2.67E+08 8.47 6.94E-12 LIOE-11 1.32E-1I 1.75E-Il 8

4.04E+07 3.081E+08 9.75 6.18E-12 9.99E-12 1.211-Il 1.59E-I1 9

5.13E+07 3.591E+08 11.38 6.76E-12 1.02E-1I 1.23E-11 1.65E-II 10 4.72E+07 4.06E+08 12.87 6.04E-12 1.06E-I1 1.28E-11 1.61E-ll 11 4.58E+07 4.52 E+08 14.27 6.55E-12 I.I9E-11 1.39E-11 1.62E-II Projection 5.29E+07 5.051E+08 16.00 6.78E-12 1.09E-11 1.31E-11 1.71E-1I Projection 2.53E+08 7.571E+08 24.00 6.78E-12 1.09E-11 1.31E-11 1.7113-II Projection 2.53E+08 I.OE+09 32.00 6.78E-12 1.09E-11 1.31E-11 1.71E-ll Projection 2.53E+08 1.26E+09 40.00 6.78E-12 1.0913-11 1.3113-11 1.71E-1l Projection 2.53E+08 1.511E+09 48.00 6.78E-12 1.09E-11 1.3113-11 1.71E-1I Projection 1.89E+08 1.70E+09 54.00 6.78E-12 1.09E-1 1.31E-11 1.71-I

E-25 Table E-10 cont'd Best Estimate Azimuthal Variation of Maximum Exposure Rates And Integrated Exposures at the Reactor Vessel Clad/Base Metal Interface Appendix E Cumulative Cumulative Iron Atom Displacements Cycle Irradiation Irradiation

[d a]

Length Time Time Cycle

[EFPS]

[EFPS]

[EFPY]

00 150 300 450 3.94E+07 3.94E+07 1.25 3.92E-04 6.13E-04 7.83E-04 I.21 E-03 2

3.23E+07 7.16E+07 2.27 6.74E-04 1.01 E-03 1.33E-03 2.04E-03 3

3.72E+07 1.09E+08 3.45 9.39E-04 1.44E-03 1.98E-03 3.03E-03 4

3.34E+07 1.42E+08 4.51 1.1 8E-03 1.81 E-03 2.44E-03 3.73E-03 5

4.31 E+07 1.85E+08 5.87 1.48E-03 2.25E-03 3.OOE-03 4.49E-03 6

4.01 E+07 2.25E+08 7.14 1.77E-03 2.70E-03 3.52E-03 5.20E-03 7

4.18E+07 2.67 E+08 8.47 2.06E-03 3.16E-03 4.07E-03 5.93E-03 8

4.04E+07 3.08 E+08 9.75 2.31 E-03 3.56E-03 4.55E-03 6.57E-03 9

5.13E+07 3.59 E+08 11.38 2.65E-03 4.08E-03 5.19E-03 7.42E-03 10 4.72E+07 4.06 E+08 12.87 2.94E-03 4.58E-03 5.79E-03 8.18E-03 11 4.58E+07 4.52 E+08 14.27 3.24E-03 5.12E-03 6.43E-03 8.92E-03 Projection 5.29E+07 5.05 E+08 16.00 3.59E-03 5.70E-03 7.12E-03 9.82E-03 Projection 2.53E+08 7.57 E+08 24.00 5.31 E-03 8.47E-03 1.04E-02 1.41 E-02 Projection 2.53E+08 1.0 I E+09 32.00 7.02E-03 1.1 2E-02 1.38E-02 1.84E-02 Projection 2.53E+08 1.26E+09 40.00 8.73E-03 1.40E-02 1.71 E-02 2.28E-02 Projection 2.53E+08 1.51 E+09 48.00 1.04E-02 1.68E-02 2.04E-02 2.71 E-02 Projection 1.89E+08 1.70E+09 54.00 1.1 7E-02 1.88E-02 2.29E-02 3.03E-02 I

E-26 To document the ex-vessel dosimetry program the following tables have been extracted from Reference E-8.

Capsule Identifications for Ex-Vessel Irradiations Azimuth Capsule Identification - Cycle 1 Irradiation

[degrees]

Core Top Core Midplane Core Bottom 0.0 F

13.5 E

33.8 D

45.0 C

B A

Azimuth Capsule Identification - Cycle 2 Irradiation

[degrees]

Core Top Core Midplane Core Bottom 0.0 A

10.9 B

35.1 C

42.0 (48.0)

D E

F Azimuth Capsule Identification - Cycles 3-4 Irradiation

[degrees]

Core Top Core Midplane Core Bottom 0.0 A

10.9 B

35.1 C

42.0 (48.0)

D E

F Azimuth Capsule Identirication - Cycles 5-6 Irradiation

[degrees]

Core Top Core Midplane Core Bottom 0.0 G

10.9 H

35.1 1

42.0 (48.0) 3 K

L Appendix E I

E-27 Appendix E Azimuth Capsule Identification - Cycles 7-10 Irradiation

[degrees]

Core Top Core Midplane Core Bottom 0.0 M

10.9 N

35.1 0

42.0 (48.0)

P Q

R

E-28 Contents of Multiple Foil Sensor Sets Cycle I Irradiation Capsule ID Bare or Radiometric Monitor ID and Cadmium U

U Position Covered Fe Ni Cu Ti Co Nat.

Dep.

SSTR A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 D-1 D-2 D-3 E-1 E-2 E-3 F-I F-2 F-3 Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

A 3

B/7 C

2 D

4 E

5 F

6 DU SI SH DK DL DM CN/CU CL/CK CM CP/CR CT/CS AU/CU 9

3 7

I 8

2 10 4

11 5

12 6

UN-05 UN-06 UN-07 UN-08 UN-09 UN-10 U8-05 U8-06 U8-07 U8-08 U8-09 U8-10 DC-19 DC-23 DC-01 DC-09 DC-17 DC-21 DC-02 DC-10 DC-03 DC-Il DC-04 DC-12 Appendix E

E-29 Cycle 2 Irradiation Capsule ID Bare or Radiometric Monitor ID and Cadmium Position Covered Fe Cu Nb Co U-238 SSTR A-1 A-2 A-3 B-1 B-2 B-3 C-1 C-2 C-3 D-1 D-2 D-3 E-1 E-2 E-3 F-1 F-2 F-3 Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

G H

N I

0 J

p K

R L

S M

AK AL AM AN AO AP S

T N

0 p

R AS A

AR B

AP C

AN D

AO E

AM F

G H

I K

M W2-7 W2-8 W2-5 W2-6 W2-3 W2-4 W2-9 W2-10 W2-1 W2-2 W2-11 W2-12 Appendix E

E-30 Cycles 3-4 Irradiation Capsule ID Bare or Radiometric Monitor ID and Cadmium U

I Position Covered Fe Ni Cu Ti Co De Nb SSTR A-1 A-2 A-3 B-1 B-2 B-3 C-i C-2 C-3 D-1 D-2 D-3 E-1 E-2 E-3 F-1 F-2 F-3 Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Coy.

Cd Coy.

Bare Cd Coy.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Coy.

Cd Cov.

AA AB AC AD AE AF AG AH Al AJ T

U K

L M

N 0

P AR AS AT BG BH BJ AA AB AC AD AE AF G

H I

J K

L M

N 0

P R

S G

H I

J K

L W8-07 W8-08 W8-05 W8-06 W8-03 W8-04 W8-09 W8-10 W8-01 W8-02 W8-11 W8-12 Appendix E

E-31 Cycles 5-6 Irradiation Capsule ID Bare or Radiometric Monitor ID and Cadmium U

Position Covered Fe Ni Cu Ti Co Dep.

Nb SSTR G-1 G-2 G-3 H-1 H-2 H-3 I-1 1-2 1-3 J-1 J-2 J-3 K-1 K-2 K-3 L-1 L-2 L-3 Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

BA CA BB CB BC CC BD CD BE CE BF CF G

H I

K L

AA CA AB CB AC CC AD CD AE CE AF CF W23-7 W23-8 W23-5 W23-6 W23-3 W23-4 W23-9 W23-10 W23-1 W23-2 W23-11 W23-12 Appendix E

E-32 Cycles 7-10 Iadiation Capsule ID Bare or Radiometric Monitor ID and Cadmium Position Covered Fe Ni Cu Ti Co Nb U-238 Np-237 M-1 M-2 M-3 N-1 N-2 N-3 0-1 0-2 0-3 P-1 P-2 P-3 Q-1 Q-2 Q-3 R-1 R-2 R-3 Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

Bare Cd Cov.

Cd Cov.

BA AA BB AB BC AC BD AD BE AE BF AF A

B C

D E

F A

B C

D E

F BA AA BB AB BC AC BD AD BE AE BF AF A

B C

D E

F 14 15 16 17 18 19 8

9 10 12 13 14 Appendix E

E-33 The results of the dosimetry evaluations performed for the Diablo Canyon Unit I Ex-Vessel capsules withdrawn to date from locations opposite the core axial midplane are provided below. The data tabulations for each capsule evaluation include the following information:

I - The Measured, Calculated, and Best Estimate reaction rates for each sensor.

2 - The Measurement to Calculation Ratio (M/C) and the Measurement to Best Estimate Ratio (MIBE) for each sensor.

3 - The Calculated and Best Estimate values of neutron flux (E > 1.0 MeV) and Iron atom displacement rate with associated uncertainties.

4 - The Best Estimate to Calculation Ratio (BE/C) for both neutron flux (E > 1.0 MeV) and Iron atom displacement rate.

The M/C and M/BE ratios for the individual sensors establish a comparison between measurement and calculation before and after the least squares evaluation. The reduction in these reaction rate ratios for the best estimate case is an indication of the improvement in the neutron spectrum and corresponding reduction in uncertainty brought about by the application of the least squares procedure. The comparisons of calculated and best estimate values of neutron flux (E > 1.0 MeV) and Iron atom displacement rate with associated uncertainties also provided an indication of the improved results obtained with the least squares procedure.

Appendix E

E-34 Capsule IDF Azimuthal LocationO.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycle I Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-1 37 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Cd Cd Cd Measured 1.97E-1 9 1.37E-1 7 1.98E-1 7 8.61 E-17 1.88E-15 4.22E-1 4 1.94E-14 Calculated 3.37E+08 1.33E-12 Calculated 2.24E-19 1.68E-17 2.41 E-17 9.52E-17 1.68E-1 5 6.93E-1 4 2.59E-1 4

% Unc.

14 14 Best Est.

1.92E-1 9 1.41 E-17 2.03E-1 7 8.33E-1 7 1.72E-15 4.27E-14 1.94E-14 Best Est.

3.03E+08 1.26E-12 M/C 0.88 0.82 0.82 0.90 1.12 0.61 0.75

% Unc.

6 9

Capsule IDE Azimuthal Location 13.5° Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycle I Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Cd Cd Cd Measured 2.28E-1 9 1.65E-17 2.41 E-17 1.08E-1 6 2.12E-15 4.98E-1 4 2.96E-1 4 Calculated 4.89E+08 1.93E-1 2 Calculated 2.97E-19 2.36E-1 7 3.39E-1 7 1.37E-16 2.43E-1 5 9.30E-1 4 3.95E-14

% Unc.

14 14 Best Est.

2.23E-1 9 1.71 E-17 2.47E-1 7 1.02E-16 2.02E-1 5 5.1OE-14 2.93E-1 4 Best Est.

3.74E+08 1.57E-12 M/C 0.77 0.70 0.71 0.79 0.87 0.54 0.75

% Unc.

6 10 Appendix E M/BE 1.03 0.97 0.98 1.03 1.09 0.99 1.00 BE/C 0.90 0.95 M/BE 1.02 0.96 0.98 1.06 1.05 0.98 1.01 BE/C 0.76 0.81

E-35 Capsule IDD Azimuthal Location33.8' Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycle I Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 3.11E-19 2.57 E-17 3.72E-1 7 Cd 1.67E-16 Cd 3.06E-15 8.58E-14 Cd 4.56E-14 Calculated 7.44E+08 3.OOE-1 2 Capsule IDB Azimuthal Location45.00 Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycle I Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpals Measured 3.73E-1 9 2.93E-17 4.72E-1 7 Cd 2.32E-16 Cd 3.73E-15 6.60E-14 Cd 4.06E-14 Calculated 8.34E+08 3.15E-12 Appendix E Calculated 3.91 E-1 9 3.30E-1 7 4.81 E-17 2.03E-16 3.78E-1 5 1.35E-13 5.78E-14

% Una.

14 14 Best Est.

3.10E-19 2.59E-1 7 3.77E-1 7 1.61 E-16 3.07E-1 5 8.69E-14 4.54E-14 Best Est.

5.96E+08 2.46E-12 M/C 0.80 0.78 0.77 0.82 0.81 0.64 0.79

% Unc.

6 9

M/BE 1.00 0.99 0.99 1.04 1.00 0.99 1.00 BEJC 0.80 0.82 Calculated 4.26E-1 9 3.63E-17 5.30E-1 7 2.26E-16 4.11E-15 1.32E-13 5.02E-14

% Unc.

14 14 Best Est.

3.68E-1 9 3.11 E-1 7 4.67E-1 7 2.03E-1 6 3.76E-1 5 6.81 E-14 4.OOE-1 4 Best Est.

7.60E+08 2.88E-12 WC 0.88 0.81 0.89 1.03 0.91 0.50 0.81

% Unc.

6 9

MBE 1.01 0.94 1.01 1.14 0.99 0.97 1.02 BE/C 0.91 0.91

E-36 Capsule IDA Azimuthal LocationO.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycle 2 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-1 37 Cd Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 Co-59(n,g)CO-60 Cd Fldx(E > 1.0 MeV) dpa/s Measured 1.88E-1 9 1.33E-17 7.87E-1 7 4.24E-14 1.72E-14 Calculated 2.89E+08 1.12E-12 Calculated 1.98E-19 1.46E-17 Best Est.

1.86E-19 1.35E-17 8.20E-17 7.62E-17 5.81 E-14 4.26E-14 2.17E-14 1.73E-14

% Unc.

14 14 Best Est.

2.68E+08 1.04E-12 Capsule IDB Azimuthal Location 10.9° Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycle 2 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 Co-59(n,g)CO-60 Cd Flux(E > 1.0 MeV) dpa/s Measured Calculated Best Est.

2.OOE-19 2.36E-19 1.99E-19 1.47E-17 1.82E-17 1.51E-17 9.41 E-17 1.04E-16 8.84E-17 4.94E-14 2.36E-1 4 Calculated 3.68E+08 1.46E-12 7.28E-14 3.05E-14

% Unc.

14 14 4.98E-1 4 2.36E-1 4 Best Est.

3.17E+08 1.28E-12 Appendix E M/C 0.95 0.91 0.96 0.73 0.79

% Unc.

8 11 M/BE 1.01

  • 0.99 1.03 1.00 0.99 BE/C 0.93 0.93 M/C 0.85 0.81 0.90 0.68 0.77

% Une.

8 12 M/BE 1.01 0.97 1.06 0.99 1.00 BE/C 0.86 0.88

E-37 Capsule IDC Azimuthal Location35. 1° Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycle 2 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 Co-59(n,g)CO-60 Cd Flux(E > 1.0 MeV) dpa/s Measured 3.11E-19 2.45E-1 7 1.71 E-16 3.03E-1 5 8.55E-14 4.29E-1 4 Calculated 6.57E+08 2.62E-1 2 Calculated 3.54E-1 9 2.95E-17 1.80E-1 6 3.31 E-1 5 1.16E-13 4.96E-14

% Unc.

14 14 Best Est.

3.08E-1 9 2.53E-1 7 1.59E-16 3.02E-1 5 8.62E-14 4.28E-14 Best Est.

5.88E+08 2.39E-12 M/C 0.88 0.83 0.95 0.92 0.74 0.86

% Unc.

7 10 M/BE 1.01 0.97 1.08 1.00 0.99 1.00 BE/C 0.90 0.91 Capsule IDE Azimuthal Location42.00 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycle 2 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpals Measured 3.21 E-19 2.44E-17 Cd Cd 1.77E-16 2.95E-15 7.65E-1 4 3.51 E-14 Cd Calculated 7.13E+08 2.76E-112 Calculated 3.68E-19 3.11E-17 1.93E-16 3.56E-1 5 1.1 6E-13 4.66E-1 4

%Unc.

14 14 Best Est.

3.14E-19 2.56E-17 1.62E-16 2.99E-15 7.71 E-1 4 3.52E-1 4 Best Est.

5.99E+08 2.37E-12 M/C 0.87 0.78 0.92 0.83 0.66 0.75

% Unc.

7 9

MIBE 1.02 0.95 1.09 0.99 0.99 1.00 BE/C 0.84 0.86 Appendix E

E-38 Capsule IDA Azimuthal Location O.00 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 3-4 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured Calculated Best Est.

M/C 1.55E-1 9 1.72E-1 9 1.55E-1 9 0.90 1.12E-17 1.25E-17 1.13E-17 0.90 1.61 E-17 1.79E-17 1.61E-17 0.90 Cd 6.46E-17 6.98E-17 6.34E-17 0.93 Cd 3.58E-14 5.05E-14 3.62E-14 0.71 Cd 1.70E-14 1.88E-14 1.69E-14 0.90 Calculated 2.45E+08 9.60E-1 3 I% Unc.

14 14 Best Est.

2.24E+08 8.80E-1 3

% Unc.

7 11 Capsule IDB Azimuthal Location 10.90 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 3-4 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 1.82E-19 1.34E-17 Cd Cd 8.26E-17 1.61 E-15 4.45E-14 2.16E-14 Cd Calculated 3.27E+08 1.30E-12 Appendix E MIBE 1.00 0.99 1.00 1.02 0.99 1.01 BE/C 0.91 0.92 Calculated 2.14E-19 1.63E-17 9.24E-17 1.62E-15 6.43E-14 2.69E-1 4

% Unc.

i4 14 Best Est.

1.81 E-19 1.37E-17 8.07E-17 1.54E-15 4.49E-14 2.16E-14 Best Est.

2.92E+08 1.1 9E-12 M/C 0.85 0.82 0.89 0.99 0.69 0.80

% Unc.

7 10 M/BE 1.01 0.98 1.02 1.05 0.99 1.00 BE/C 0.89 0.92

E-39 Capsule IDC Azimuthal Location35.1° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 3-4 Measured 2.94E-1 9 2.23E-1 7 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 Co-59(n,g)CO-60 Cd Flux(E > 1.0 MeV) dpals Calculated 3.34E-1 9 2.75E-17 Best Est.

2.89E-1 9 2.31 E-17 M/C 0.88 0.81 1.52E-16 1.66E-16 1.43E-16 0.92 7.50E-14 1.06E-13 7.56E-14 0.71 3.68E-14 4.50E-14 3.68E-14 0.82 Calculated 6.06E+08 2.40E-12

% Unc.

14 14 Best Est.

5.24E+08 2.13E-12

% Unc.

8 12 Capsule IDE Azimuthal Location42.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 3-4 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-1 37 Cd Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 Co-59(n,g)CO-60 Cd Flux(E > 1.0 MeV) dpals Measured 2.78E-1 9 2.29E-17 3.46E-1 7 1.60E-1 6 Calculated 3.50E-1 9 2.92E-1 7 4.25E-1 7 1.80E-16 Best Est.

2.78E-19 2.34E-17 3.46E-1 7 1.50E-16 MIC 0.79 0.78 0.81 0.89 6.52E-14 1.05E-13 6.60E-14 0.62 3.28E-14 4.23E-14 3.27E-14 0.78 Calculated 6.60E+08 2.54E-1 2

% Unc.

14 14 Best Est.

5.58E+08 2.19E-12

% Unc.

7 1 1 Appendix E M/BE 1.02 0.97 1.06 0.99 1.00 BE/C 0.86 0.88 M/BE 1.00 0.98 1.00 1.07 0.99 1.00 BE/C 0.84 0.86

E-40 Capsule IDG Azimuthal LocationO.0° Ex-Vessel Axial Location Core Midplane Irradiation PeriodCycles 5-6 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Cd Cd Cd Measured: Calculated 1.58E-19 1.67E-19 1.1OE-17 1.22E-17 1.63E-17 1.73E-17 7.41E-17 6.76E-17 1.24E-15 1.17E-15 3.43E-14 4.71 E-14 1.48E-1 4 1.76E-1 4 Calculated 2.37E+08 9.19E-13

% Unc.

14 14 Capsule IDH Azimuthal Location 10.90 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 5-6 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd Np-237(n,f)Cs-1 37 Cd Co-59(n,g)Co-60 Co-59(n,g)CO-60 Cd Flux(E > 1.0 MeV) dpa/s Measured 1.80E-1 9 1.28E-17 1.89E-1 7 8.20E-1 7 Calculated 2.05E-1 9 1.56E-17 2.23E-17 8.79E-1 7 Best Est.

1.78E-19 1.32E-17 1.90E-17 7.61 E-17 M/C 0.88 0.82 0.85 0.93 4.06E-14 5.87E-14 4.1 OE-14 0.69 2.05E-14 2.47E-14 2.05E-14 0.83 Calculated 3.11 E+08 1.22E-12

% Unc.

14 14 Best Est.

2.72E+08 1.09E-12

% Unc.

7 11 Appendix E Best Est.

1.56E-1 9 1.14E-17 1.64E-1 7 6.62E-1 7 1.21 E-15 3.46E-14 1.48E-14 Best Est.

2.37E+08 9.28E-1 3 M/C 0.95 0.90 0.94 1.10 1.06 0.73 0.84

% Unc.

6 9

MIBE 1.01 0.96 0.99 1.12 1.02 0.99 1.00 BE/C 1.00 1.01 M/BE 1.01 0.97 0.99 1.08 0.99 1.00 BE/C 0.87 0.89

E-41 Capsule IDI Azimuthal Location35.1° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 5-6 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 2.39E-1 9 1.79E-17 2.78E-1 7 Cd 1.21 E-16 Cd 2.21 E-15 6.45E-14 Cd 3.12E-14 Calculated 4.74E+08 1.89E-12 Capsule IDK Azimuthal Location42.00 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 5-6 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 2.23E-1 9 1.65E-17 2.63E-17 Cd 1.22E-16 Cd 1.92E-15 5.44E-1 4 Cd 2.64E-14 Calculated 4.98E+08 1.93E-12 Appendix E Calculated 2.66E-1 9 2.17E-17 3.14E-17 1.30E-1 6 2.38E-15 8.43E-14 3.58E-14

% Unc.

14 14 Best Est.

2.35E-19 1.87E-1 7 2.76E-1 7 1.15E-16 2.19E-15 6.49E-1 4 3.12E-14 Best Est.

4.23E+08 1.73E-12 M/C 0.90 0.82 0.89 0.93 0.93 0.77 0.87

% Unc.

6 9

M/BE 1.02 0.96 1.01 1.05 1.01 0.99 1.00 BE/C 0.89 0.92 Calculated 2.67E-1 9 2.21 E-17 3.22E-17 1.36E-16 2.48E-1 5 8.23E-14 3.29E-14

% Unc.

14 14 Best Est.

2.19E-19 1.75E-17 2.60E-17 1.1OE-16 1.99E-15 5.49E-1 4 2.63E-14 Best Est.

4.05E+08 1.60E-12 M/C 0.84 0.75 0.82 0.90 0.77 0.66 0.80

% Unc.

6 9

M/BE 1.02 0.94 1.01 1.11 0.96 0.99 1.00 BE/C 0.81 0.83

E-42 Capsule IDM Azimuthal LocationO.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 7-10 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-1 37 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 1.46E-19 1.03E-17 1.43E-17 Cd 6.29E-17 Cd 1.24E-1 5 3.1 8E-14 Cd 1.38E-14 Calculated 2.22E+08 8.67E-1 3 Capsule IDN Azimuthal Location 10.90 Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 7-10 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-1 37 Cd Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 Co-59(n,g)CO-60 Cd Flux(E > 1.0 MeV) dpa/s Measured 1.70E-19 1.22E-17 1.79E-17 7.87E-1 7 1.64E-1 5 3.89E-1 4 1.96E-1 4 Calculated 2.98E+08 1.17E-12 Appendix E Calculated 1.56E-1 9 1.1 3E-17 1.62E-17 6.32E-1 7 1.10E-15 4.53E-1 4 1.69E-1 4

% Unc.

14 14 Best Est.

1.44E-19 1.04E-17 1.48E-17 5.98E-17 1.16E-15 3.21 E-1 4 1.38E-14 Best Est.

2.14E+08 8.65E-1 3 M/C 0.94 0.91 0.88 1.00 1.13 0.70 0.82

% Unc.

6 9

M/BE 1.01 0.99 0.97 1.05 1.07 0.99 1.00 BE/C 0.97 1.00 Calculated 1.96E-1 9 1.49E-17 2.13E-17 8.41 E-17 1.47E-15 5.69E-1 4 2.39E-1 4

% Unc.

14 14 Best Est.

1.67E-1 9 1.26E-17 1.82E-17 7.50E-17 1.52E-15 3.93E-14 1.96E-14 Best Est.

2.73E+08 1.14E-12 MIC 0.87 0.82 0.84 0.94 1.12 0.68 0.82

% Unc.

6 9

M/BE 1.02 0.97 0.98 1.05 1.08 0.99 1.00 BEIC 0.92 0.97

E43 Capsule IDO Azimuthal Location35.1° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 7-10 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 Co-59(n,g)CO-60 Cd Flux(E > 1.0 MeV) dpa/s Measured 2.25E-1 9 1.74E-1 7 2.59E-1 7 1.18E-16 2.53E-15 6.OOE-1 4 2.85E-1 4 Calculated 4.52E+08 1.80E-1 2 Calculated 2.54E-19 2.07E-17 3.OOE-17 1.24E-16 2.27E-1 5 8.11E-14 3.45E-14

% Unc.

14 14 Best Est.

2.22E-1 9 1.79E-1 7 2.63E-17 1.13E-16 2.35E-1 5 6.04E-1 4 2.85E-1 4 Best Est.

4.22E+08 1.76E-12 M/C 0.89 0.84 0.86 0.95 1.11 0.74 0.83

% Unc.

6 9

M/BE 1.01 0.97 0.98 1.04 1.08 0.99 1.00 BE/C 0.93 0.98 Capsule IDQ Azimuthal Location42.0° Ex-Vessel Axial LocationCore Midplane Irradiation PeriodCycles 7-10 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 2.07E-1 9 1.65E-17 2.53E-17 Cd 1.18E-16 Cd 2.42E-1 5 5.14E-14 Cd 2.40E-1 4 Calculated 4.68E+08 1.82E-12 Appendix E Calculated 2.52E-1 9 2.08E-17 3.03E-1 7 1.28E-1 6 2.34 E-1 5 7.87E-14 3.15E-14

% Unc.

14 14 Best Est.

2.05 E-1 9 1.71 E-17 2.54E-17 1.11E-16 2.29E-15 5.19E-14 2.40E-1 4 Best Est.

4.19E+08 1.70E-12 MIC 0.82 0.79 0.83 0.92 1.03 0.65 0.76

% Unc.

6 9

M/BE 1.01 0.96 1.00 1.06 1.06 0.99 1.00 BE/C 0.89 0.93

E-44 The results of the dosimetry evaluations performed for the Diablo Canyon Unit I Ex-Vessel capsules withdrawn to date from locations opposite the top and bottom of the active are provided following. The data tabulations for each capsule evaluation include the following information:

I -

The Measured, Calculated, and Best Estimate reaction rates for each sensor.

2-The Measurement to Calculation Ratio (M/C) and the Measurement to Best Estimate Ratio (M/BE) for each sensor.

3 - The Calculated and Best Estimate values of neutron flux (E > 1.0 MeV) and Iron atom displacement rate with associated uncertainties.

4 - The Best Estimate to Calculation Ratio (BE/C) for both neutron flux (E > 1.0 MeV) and Iron atom displacement rate.

The M/C and M/BE ratios for the individual sensors establish a comparison between measurement and calculation before and after the least squares evaluation. The reduction in these reaction rate ratios for the best estimate case is an indication of the improvement in the neutron spectrum and corresponding reduction in uncertainty brought about by the application of the least squares procedure. The comparisons of calculated and best estimate values of neutron flux (E > 1.0 MeV) and Iron atom displacement rate with associated uncertainties also provided an indication of the improved results obtained with the least squares procedure.

Appendix E

E-45 Capsule IDC Azimuthal Location45.0° Ex-Vessel Axial Location Core Top Irradiation PeriodCycle I Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-1 37 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpals Measured 1.04E-19 9.41 E-1 8 1.67E-17 Cd 8.49E-17 Cd 1.10E-15 3.68E-14 Cd 1.77E-14 Calculated 2.40E+08 9.36E-1 3 Capsule IDA Azimuthal Location45.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycle 1 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 1.38E-19 1.31 E-17 Cd Cd 8.02E-17 1.53E-15 4.31 E-1 4 2.27E-1 4 Cd Calculated 2.62E+08 1.02E-12 Calculated 1.29E-19 1.11E-17 7.04E-1 7 1.32E-15 4.41 E-14 1.69E-14

% Unc.

14 14 Calculated 1.1 9E-19 1.03E-17 1.50E-17 6.47E-17 1.21 E-15 4.09E-1 4 1.56E-14

% Unc.

14 14 Best Est.

1.07E-19 1.01 E-17 1.57E-1 7 6.99E-1 7 1.21 E-15 3.70E-14 1.76E-14 Best Est.

2.64E+08 9.92E-13 M/C 0.87 0.91 1.11 1.31 0.91 0.90 1.13

% Unc.

6 9

M/BE 0.97 0.93 1.06 1.21 0.91 0.99 1.01 BE/C 1.10 1.06 Best Est.

1.41 E-19 1.28E-17 8.13E-17 1.52E-15 4.35E-14 2.24E-1 4 Best Est.

3.03E+08 1.16E-12 M/C 1.07 1.18 1.14 1.16 0.98 1.34

% Unc.

7 9

M/BE 0.98 1.02 0.99 1.01 0.99 1.01 BE/C 1.16 1.13 Appendix E

E-46 Capsule IDD Azimuthal Location42.0° Ex-Vessel Axial Location Core Top Irradiation PeriodCycle 2 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-1 37 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 1.13E-19 8.36E-1 8 Cd Cd 7.64 E-17 1.12E-15 3.58E-1 4 1.79E-1 4 Cd Calculated 2.63E+08 1.02E-12 Calculated 1.35E-1 9 1.15E-17 7.13E-17 1.32E-15 4.17E-14 1.70E-14

% Unc.

14 14 Best Est.

1.11E-19 9.14E-18 6.14E-17 1.16E-15 3.60E-1 4 1.78E-14 Best Est.

2.31 E+08 9.37E-1 3 M/C 0.84 0.73 1.07 0.85 0.86 1.05

% Unc.

7 10 M/BE 1.02 0.91 1.24 0.97 0.99 1.01 BE/C 0.88 0.92 Capsule IDF Azimuthal Location42.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycle 2 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Cd Np-237(n,f)Cs-137 Cd Co-59(n,g)Co-60 Co-59(n,g)CO-60 Cd Flux(E > 1.0 MeV) dpa/s Measured 1.39E-1 9 1.1 8E-17 Calculated 1.36E-19 1.16E-17 7.67E-1 7 7.28E-1 7 Best Est.

1.39E-19 1.19E-17 7.50E-1 7 M/C 1.02 1.02 1.05 4.14E-14 4.28E-14 4.16E-14 0.97 2.OOE-14 1.75E-14 1.99E-14 1.14 Calculated 2.69E+08 1.05E-1 2

% Unc.

14 14 Best Est.

2.78E+08 1.09E-12

% Unc.

8 11 Appendix E M/BE 1.00 0.99 1.02 1.00 1.01 BE/C 1.03 1.03

E-47 Capsule IDD Azimuthal Location42.0° Ex-Vessel Axial LocationCore Top Irradiation PeriodCycles 3-4 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 9.72E-20 7.58E-1 8 Cd Cd 6.1OE-17 1.20E-1 5 3.22E-14 1.56E-14 Cd Calculated 2.23E+08 8.69E-1 3 Calculated 1.17E-19 9.79E-18 6.05E-1 7 1.12E-15 3.59E-14 1.46E-1 4

% Unc.

14 14 Best Est.

9.62E-20 8.07E-1 8 5.43E-17 1.15E-15 3.23E-1 4 1.55E-14 Best Est.

2.07E+08 8.62E-1 3 M/C 0.83 0.77 1.01 1.07 0.90 1.07

% Unc.

7 10 Capsule IDF Azimuthal Location42.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycles 3-4 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpa/s Measured 9.98E-20 8.74E-1 8 Cd Cd 5.65E-1 7 9.83E-16 3.65E-14 1.74E-14 Cd Calculated 2.23E+08 8.77E-13 Calculated 1.15E-19 9.71 E-1 8 6.05 E-1 7 1.13E-15 3.63E-1 4 1.48E-14

% Unc.

14 14 Best Est.

1.01 E-19 8.72E-1 8 5.51 E-17 1.01 E-15 3.66E-14 1.72E-1 4 Best Est.

2.04E+08 8.11 E-13 M/C 0.87 0.90 0.93 0.87 1.01 1.18

% Unc.

7 9

Appendix E M/BE 1.01 0.94 1.12 1.04 1.00 1.01 BE/C 0.93 0.99 M/BE 0.99 1.00 1.03 0.97 1.00 1.01 BE/C 0.91 0.92

E-48 Capsule IDJ Azimuthal Location42.0° Ex-Vessel Axial LocationCore Top Irradiation PeriodCycles 5-6 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpals Measured 7.70E-20 6.26E-18 1.10E-17 Cd 5.40E-17 Cd 9.87E-16 2.60E-14 Cd 1.27E-14 Calculated 1.71 E+08 6.71 E-13 Calculated 9.04E-20 7.54E-1 8 1.10E-17 4.65E-1 7 8.60E-1 6 2.83E-1 4 1.15E-14

% Unc.

14 14 Capsule IDL Azimuthal Location42.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycles 5-6 Measured Calculated Cu-63(n,a)Co-60 6.77E-20 8.66E-20 Fe-54(n,p)Mn-54 5.68E-18 7.28E-18 Ni-58(n,p)Co-58 9.62E-18 1.06E-17 U-238(n,f)Cs-137 Cd 3.91 E-17 4.53E-17 Np-237(n,f)Cs-137 Cd 6.99E-16 8.49E-16 Co-59(n,g)Co-60 2.72E-14 2.84E-14 Co-59(n,g)CO-60 Cd 1.23E-1 4 1.15E-14 Flux(E > 1.0 MeV) dpals Calculated 1.67E+08 6.64E-1 3

% Unc.

14 14 Best Est.

7.77E-20 6.80E-1 8 1.05E-17 4.70E-17 9.63E-1 6 2.61 E-1 4 1.26E-14 Best Est.

1.80E+08 7.30E-1 3 Best Est.

6.91 E-20 5.95E-1 8 9.09E-1 8 3.88E-17 7.27E-1 6 2.72E-14 1.22E-14 Best Est.

1.45E+08 5.89E-1 3 Appendix E MIC 0.85 0.83 1.00 1.16 1.15 0.92 1.10

% Unc.

6 9

M/C 0.78 0.78 0.91 0.86 0.82 0.96 1.07

% Unc.

6 9

M/BE 0.99 0.92 1.05 1.15 1.02 1.00 1.01 BE/C 1.06 1.09 M/BE 0.98 0.95 1.06 1.01 0.96 1.00 1.01 BE/C 0.87 0.89

E-49 Capsule IDP Azimuthal Location42.0° Ex-Vessel Axial LocationCore Top Irradiation PeriodCycles 7-10 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-1 37 Np-237(n,f)Cs-137 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpals Cd Cd Cd Measured 7.25E-20 6.37E-18 1.17E-17 4.57E-17 1.05E-1 5 2.27E-14 1.15E-14 Calculated 1.83E+08 7.08E-13 Calculated 9.84E-20 8.14E-18 1.18E-17 4.98E-17 9.12E-16 2.92E-1 4 1.19E-14

% Unc.

14 14 Best Est.

7.53E-20 6.81 E-18 1.07E-17 4.69E-1 7 9.93E-16 2.29E-1 4 1.14E-14 Best Est.

1.81 E+08 7.28E-13 M/C 0.74 0.78 0.99 0.92 1.15 0.78 0.97

% Unc.

6 9

Capsule IDR Azimuthal Location42.0° Ex-Vessel Axial LocationCore Bottom Irradiation PeriodCycles 7-10 Cu-63(n,a)Co-60 Fe-54(n,p)Mn-54 Ni-58(n,p)Co-58 U-238(n,f)Cs-137 Np-237(n,f)Cs-1 37 Co-59(n,g)Co-60 Co-59(n,g)CO-60 Flux(E > 1.0 MeV) dpals Cd Cd Cd Measured 7.59E-20 7.39E-18 1.1 6E-17 4.05E-17 9.42E-1 6 2.68E-14 1.30E-14 Calculated 1.80E+08 7.04E-1 3 Calculated 9.48E-20 7.90E-18 1.15E-17 4.88E-17 9.04E-1 6 2.92E-1 4 1.19E-14

% Unc.

14 14 Best Est.

7.99E-20 7.30E-1 8 1.1OE-17 4.69E-17 9.20E-1 6 2.69E-1 4 1.29E-14 Best Est.

1.76E+08 6.95E-13 M/C 0.80 0.94 1.01 0.83 1.04 0.92 1.09

% Unc.

6 9

Appendix E M/BE 0.96 0.94 1.09 0.97 1.06 0.99 1.01 BE/C 0.99 1.03 M/BE 0.95 1.01 1.05 0.86 1.02 1.00 1.01 BE/C 0.98 0.99

E-50 Appendix E References E-l.

Regulatory Guide RG-1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.

E-2.

RSAC-PGE-807, "Analysis of Neutron Dosimetry form Diablo Canyon Unit I Surveillance Capsule Y," Anderson, S. L. July 26, 1993.

E-3.

E. B. Norris, "Reactor Vessel Material Surveillance Program, Capsule S - Turkey Point Unit No. 3, Capsule S - Turkey Point Unit No. 4," Final Report SwRI Project No. 02-5131 and SwRI Project No. 02-5380, Southwest Research Institute, May 1979.

E-4.

P. K. Nair and E. B. Norris, "Reactor Vessel Material Surveillance Program for Turkey Point Unit No. 3: Analysis of Capsule V," Final Report SwRI Project No. 06-8575, Southwest Research Institute, August 1986.

E-5.

WCAP-14044, Revision 0, "Westinghouse Surveillance Capsule Neutron Fluence Reevaluation,"

April 1994.

E-6.

A. Schmittroth, FERRETData Analysis Core, HEDL-TME 7940, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

E-7.

RSIC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Section Compendium", July 1994.

E-8.

WCAP-15780. "Fast Neutron Fluence and Neutron Dosimetry Evaluations for the Diablo Canyon Unit I Reactor Pressure Vessel." December 2001.

Appendix E