ML17264A867
| ML17264A867 | |
| Person / Time | |
|---|---|
| Site: | Ginna |
| Issue date: | 04/24/1997 |
| From: | ROCHESTER GAS & ELECTRIC CORP. |
| To: | |
| Shared Package | |
| ML17264A865 | List: |
| References | |
| NUDOCS 9705020089 | |
| Download: ML17264A867 (71) | |
Text
AttachmentIIMarkedUpCopyofR.E.GinnaNuclearPowerPlantTechnicalSpecificationsIncludedPages:5.0-229705020089970424PDRADQCK05000244PPDR)
ReportingRequirements5.65.6ReportingRequirements5.6.6PTLR(continued)C.i.(C.w.ic~TheaoifjtWcighmethVds,=,.viidKCp':::-:deterp$ne:t+e'CSpressureand~empe~raureandTTOAPAIimitsshal'lbethosepreviouslyreviewedandapprovedbytheNRC.inNRCletterdatedHaygg,dgggii[iiii!!!!il:,.AdIII11,44~I4IgyareLsdescribedinthefollowingdocuments:1.LetterfromR.C.Hecredy,RochesterGasandElectricCorporation(RGimLE),toDocumentControlDesk,NRC,Attention:A.R.Johnson,"ApplicationforFacilityOperatingLicense,RevisiontoReactorCoolantSystemRCS)PressureandTemeratureLimitsReortPTLR'A,msfstvikt1ve7!Coutp~I't!88'Qll1redmeutsiy"'Attlclllllltlt'3!VI/Apri'i2~19r9$.2.IIAAP-1444~".,':.PIP,-'":l1"HethodologyUsedtoDevelopColdOverpressureHitigatingSystemSetpointsandRCSHeatupandCooldownLimitCurves,",fiictgoiis':;.!L!,.":::,:::,:.:2::."::::;::".Pe'e8~!3:-8Yijii'~~r,,";,5lf9,6.C.<~LC.i.wd.ThePTLRshallbeprovidedtotheNRCuponissuanceforeachreactorvesselfluentperiodandforrevisionsorsupplementthereto.R.E.GinnaNuclearPowerPlant5.0-22AmendmentNo.g,g AttachmentIIIProposedTechnicalSpecificationsIncludedPages:5.0-22 ReportingRequirements5.65.6ReportingRequirements5.6.6PTLR(continued)C.TheanalyticalmethodsusedtodeterminetheRCSpressureandtemperatureandLTOPlimitsshallbethosepreviouslyreviewedandapprovedbytheNRCinNRCletterdated<NRCapprovaldocument>.Specifically,thelimitsandmethodologyisdescribedinthefollowingdocuments:1.LetterfromR.C.Hecredy,RochesterGasandElectricCorporation(RGKE),toDocumentControlDesk,NRC,Attention:A.R.Johnson,"ApplicationforFacilityOperatingLicense,RevisiontoReactor-CoolantSystem(RCS)PressureandTemperatureLimitsReport(PTLR)AdministrativeControlsRequirements,"AttachmentVI,April24,1997.2.WCAP-14040-NP-A,"HethodologyUsedtoDevelopColdOverpressureHitigatingSystemSetpointsandRCSHeatupandCooldownLimitCurves,"Sections1,2,and4,January1996.d.ThePTLRshallbeprovidedtotheNRCuponissuanceforeachreactorvesselfluenceperiodandforrevisionsorsupplementthereto.R.E.GinnaNuclearPowerPlant5.0-22AmendmentNo.g,PP AttachmentIVGinnaStationPTLR,Revision2 GINNASTATIONPTLRRevision2RCSPRESSUREANDTEMPERATURELIMITSREPORT(PTLR)ResponsibleHanagerEffectiveDateControlledCopyNo.
R.E.GinnaNuclearPowerPlantRCSPressureandTemperatureLimitsReportRevision2ThisreportisnotpartoftheTechnicalSpecifications.ThisreportisreferencedintheTechnicalSpecifications.
TABLEOFCONTENTS1.0RCSPRESSUREANDTEMPERATURELIMITSREPORT........................22.0OPERATINGLIMITS...................................................32.1RCSPressureandTemperatureLimits..........................32.2LowTemperatureOverpressureProtectionSystemEnableTemperature..................................................32.3LowTemperatureOverpressureProtectionSyste~Setpoints.....33.0REACTORVESSELMATERIALSURVEILLANCEPROGRAM......................4.0SUPPLEMENTALDATAINFORMATIONANDDATATABLES.......................
45.0REFERENCES
.........................................................5FIGURE1ReactorVesselHeatupLimitations............................6FIGURE2ReactorVesselCooldownLimitations..........................7TABLE3CalculationofChemistryFactorsUsingSurveilCapsuleData..................................TABLE1SurveillanceCapsuleRemovalSchedule.........TABLE2ComparisonofSurveillanceMaterialwithRGl.~~~~~~~~~~~~~~~~899Predictions..9lance10TABLE4TABLE5TABLE6CalculationofARTSat24EFPY..............12ReactorVesselToughnessTable(Unirradiated)ReactorVesselSurfaceFluenceValuesat19.5and32EFPY......11PTLRRevision2
R.E.GinnaNuclearPowerPlantPressureandTemperatureLimitsReport1.0RCSPressureandTemeratureLimitsReortPTLRThisPressureandTemperatureLimitsReport(PTLR)forGinnaStationhasbeenpreparedinaccordancewiththerequirementsofTechnicalSpecification5.6.6.RevisionstothePTLRshallbeprovidedtotheNRCafterissuance.TheTechnicalSpecificationsaddressedinthisreportarelistedbelow:3.4.33.4.63.4.73.4.103.4.12RCSPressureandTemperature(P/T)LimitsRCSLoops-NODE4RCSLoops-NODE5,LoopsFilledPressurizerSafetyValvesLowTemperatureOverpressureProtection(LTOP)SystemIPTLRRevision2
- I,I 2.0OPERATINGLIMITSThecycle-specificparameterlimitsforthespecificationslistedinSection=1.0arepresentedinthefollowingsubsections.AllchangestotheselimitsmustbedevelopedusingtheNRCapprovedmethodologiesspecifiedinTechnicalSpecification5.6.6.Theselimitshavebeendeterminedsuchthatallapplicablelimitsofthesafetyanalysisaremet.AllitemsthatappearincapitalizedtypearedefinedinTechnicalSpecification1.1,"Definitions."2.1RCSPressureandTemeratureLimits(LCO3.4.3andLCO3.4.12)(Reference1)2.1.1TheRCStemperaturerate-of-changelimitsare:a.Amaximumheatupof60'Fperhour.b.Amaximumcooldownof100'Fperhour.2.1.2TheRCSP/TlimitsforheatupandcooldownarespecifiedbyFigures1and2,respectively.2.1.3Theminimumboltuptemperature,usingthemethodologyofReference2,Section2.7,is60'F.2.2LowTemeratureOverressureProtectionSstemEnableTemerature(LCOs3.4.6,3.4.7,3.4.10and3.4.12)(MethodologyofReference3,AttachmentVI,Section3.4ascalculatedinAttachmentVIItoReference3).2.2.1TheenabletemperaturefortheLowTemperatureOverpressureProtectionSystemis322'F.2.3LowTemeratureOverressureProtectionSstemSetpints(LCO3,4.12)2.3.1PressurizerPower0cratedReliefValveLiftSettinLimits(MethodologyofReference3,AttachmentVIascalculatedinReference4,AttachmentIV)TheliftsettingforthepressurizerPowerOperatedReliefValves(PORVs)iss411psig(includesinstrumentuncertainty).PTLRRevision2 3.0REACTORVESSELMATERIALSURVEILLANCEPROGRAMThereactorvesselmaterialirradiationsurveillancespecimensshallberemovedandexaminedtodeterminechangesinmaterialproperties.TheremovalscheduleisprovidedinTable1.TheresultsoftheseexaminationsshallbeusedtoupdateFigures1and2.Thepressurevesselsteelsurveillanceprogram(Ref.5)isincompliancewithAppendixHto10CFR50,entitled,"ReactorVesselRadiationSurveillanceProgram."Thematerialtestrequirementsandtheacceptancestandardutilizethereferencenil-ductilitytemperature,RT>>,whichisdeterminedinaccordancewithASTME208.TheempiricalrelationshipbetweenRT>>~andthefracturetoughnessofthereactorvesselsteelisdevelopedinaccordancewithAppendixG,"ProtectionAgainstNon-DuctileFailure,"tosectionIIIoftheASMEBoilerandPressureVesselCode.ThesurveillancecapsuleremovalschedulemeetstherequirementsofASTME185-82.AsshownbyReference1(specificallyitsReference51),thereactorvesselmaterialirradiationsurveillancespecimensindicatethatthesurveillancedatameetsthecredibilitydiscussionpresentedinRegulatoryGuide1.99revision2where:1.Thecapsulematerialsrepresentthelimitingreactorvesselmaterial.2.Charpyenergyvs.temperatureplotsscatteraresmallenoughtopermitdeterminationof30ft-lbtemperatureanduppershelfenergyunambiguously.3.Thescatterofa,RT>>valuesarewithinthebestfitscatterlimitsasshownonTable2.TheonlyexceptioniswithrespecttotheIntermediateShellwhichisnotthelimitingreactorvesselmaterial.4.TheCharpyspecimenirradiationtemperaturematchesthereactorvesselsurfaceinterfacetemperaturewithin+25'F.5.Thesurveillancedatafallswithinthescatterbandofthematerialdatabase.4.0SUPPLEMENTALDATAINFORMATIONANDDATATABLES4.14.2TheRT>>~valueforGinnaStationlimitingbeltlinematerialis256.6Ffor32EFPYperReferencel.TablesTable2containsacomparisonofmeasuredsurveillancematerial30ft-lbtransitiontemperatureshiftsanduppershelfenergydecreaseswithRegulatoryGuide1.99,Revision2predictions.PTLRRevision2 A"LI Table3showscalculationsofthesurveillancematerialchemistryfactorsusingsurveillancecapsuledata.Table4providesthereactorvesseltoughnessdata.Table5providesasummaryofthefluencevaluesusedinthegenerationoftheheatupandcooldownlimitcurves.Table6showsexample,calculationsoftheARTvaluesat24EFPYforthelimitingreactorvesselmaterial.
5.0REFERENCES
1.WCAP-14684,"R.E.GinnaHeatupandCooldownLimitCurvesforNormalOperation,"datedJune1996.2.WCAP-14040-NP-A,"HethodologyUsedtoDevelopColdOverpressureHitigatingSystemSetpointsandRCSHeatupandCooldownLimitCurves,"Revision2,January1996.3.LetterfromR.C.Hecredy,RG&E,toA.R.Johnson,NRC,
Subject:
"ApplicationforAmendmenttoFacilityOperatingLicense,RevisiontoReactorCoolantSystem(RCS)PressureandTemperatureLimitsReport(PTLR)AdminstrativeControlsRequirements,"datedApril24,1997LetterfromR.C.Hecredy,RG8E,toA.R.Johnson,NRC,
Subject:
"ApplicationforAmendmenttoFacilityOperatingLicense,"HethodologyforLowTemperatureOverpressureProtection(LTOP)Limits,"datedFebruary9,1996.5.WCAP-7254,"RochesterGasandElectric,RobertE.GinnaUnitNo.1ReactorVesselRadiationSurveillanceProgram,"Hay1969.IPTLRRevision2 MATERIALPROPERTYBASISLIMITINGMATERIAL:CIRCUMFERENTIALWELDSA-847LIMITINGARTVALUESAT24EFPY:1/4T,232'F3/4T,196F25006664SSI060666Ig~~,I~I'I~t~~f~~m2250~IN~2000~t~l.~LEAKTESTLIICIT~~~IiI~~Ii~tjI~g~~17501500CA1250-.1000750500250~I~UNhCCEPThBLE'PERhTIONHBATUPRATEUPTO60F/Hr'.HBATUPRATEUPTOIOOF/Hr.CRITICALITYI.IMITEASEDOxINSERVICEHYDROSTATICTESTTEMPERATURE(SSSF)FORTHESERVICEPERIODUPTOZ4~0EFPT~~IISIIhCCEPThBLEOPERATIO.NI~0050100150200250300350400450500IndicatedTemperature(Beg.F.)FIGUREIREACTORVESSELHEATUPLIMITATIONSAPPLICABLEFORTHEFIRST24EFPY(MITHOUTMARGINFORINSTRUNENTERRORS)PTLRRevision2
MATERIALPROPERTYBASISLIMITINGMATERIAL:CIRCUMFFRENTIALVlELDSA-847LIMITINGARTVALUESAT24EFPY1/4T,232F3/4T,196F25005004ZSl00060dI~II~iI~~2250he~W20001750l.'iI!I~i~i!\tiiiii,I~I~~Ii'.!II!~~!iI~UNhCCEPTh3LEOPERATIONI~i~~i~I'I!I!IIi~I'~150012501000!IIiII~IIhCCEPThBLEOPERhTION7505.00250=cooLDo'ANBhTESP/Hr.ozo4000tooII~0050100150200250300350400450500IndicatedTemperature(Deg.p)FIGURE2REACTORVESSELCOOLDOWNLIMITATIONSAPPLICABLEFORTHEFIRST24EFPY(WITHOUTMARGINFORINSTRUMENTERRORS)PTLReviSion2
Table1SurveillanceCasuleRemovalScheduleVesselLocationCapsule(deg.)CapsuleLeadFactorRemovalSchedule"CapsuleFluenceE19(n/cm)"77'5767'7'370247'.993.001.851.741.741.91.6(removed)2.7(removed)7(removed)17(removed)TeOStandby.50281.1051.8643.746l'eo'b'/ANOTES:(a)EffectiveFullPowerYears(EFPY).(b)Tobedetermined,thereisnocurrentrequirementforremoval.(c)Referencel.IPTLRRevision2 TABLE2SurveillanceHaterial30ft-lbTransitionTemperatureShift30lb-ftTransitionTemperatureShiftHaterialLowerShellIntermediateShellWeldHetalHAZHetalCapsuleFluence(x10"n/cm',E>1.0HeV)".50281.1051.8643.746.50281.1051.8643.746.50281.1051.8643.746.50281.1051.8643.746Predicted"('F)263237375259135168191218Heasured"('F)252530420-601401651502059010095('F)374652s]4113(a)Reference1(includingitsReference51).
IC41~I'llErs TABLE3CalculationofChemistryFactorsUsingSurveillanceCapsuleDataHaterialIntermediateShellForging05(Tangential)CapsuleFluence(x10'/cm',E)1.0VeV)<>.50281.1051.8643.746FF.80811.02791.17061.3418~RT(oF)N(~)25253042Sum:FF*hRopy('F)20.225.735.156.4137.4FF.65301.05661.37031.80044.8803ChemistryFactor=28.2'FIntermediateShell.50281.105.808100.65301.0279001.05661.8641.1706001.37033.7461.34186080.51.8004Sum:80.54.8803WeldMetalChemistryFactor=16.5'F.5028.8081149.7121.0.65301.1051.8641.0279176.41.1706160.4181.3187.81.05661.3703NOTES:(a)Reference1.3.7461.3418219.1294.01.8004Sum:854.694.8803ChemistryFactor=160.7'F(b)~RT>>~forweldmaterialistheadjustedvalueusingthe1.069ratioingfactorperReference1appliedtothemeasuredvaluesofTable2.PTLR10Revision2 TABLE4ReactorVesselToughnessTable(Unirradiated)"NaterialDescriptionIntermediateShellLowerShellCircumferentialWeld(a)PerReferencel.Cu(%).07.05.25Ni(%).69.69.56InitialRT>>('F)2040-4.8TABLE5ReactorVesselSurfaceFluenceValuesat19.5and32EFPY"x10"(n/cm',E)1.0~ev)EFPY19.5320o2.323.4915'.472.2030'.051.5645'969'.45(a)Referencel.PTLRRevision2 TABLE6CalculationofAdjustedReferenceTemperaturesat24EFPYfortheLimitingReactorVesselMaterialParameterOperatingTimeMaterialLocationChemistryFactor(CF),F"'luence(f),10"n/cm(E>1.0HeV)"FluenceFact'orFFhRTgpyCFxFFyFInitialRTgpy(I)FMargin(H),'F"ART=I+(CFxFF)+HF""NOTES:(a)ValuecalculatedusingTable5values.(b)ValuesfromTable3.(c)Reference1.Circ.Weld1/4-T160.71.851.17188-4.848.3232Values24EFPYCirc.Weld3/4-T160.7.851.955153,4-4.848.3196.9PTLR12Revision2 AttachmentVRedlinedVersionofLTOPMethodologyidentifieschangestomethodologyoriginallyprovidedinDecember8,1995RG&ElettertoNRC)
LOWTEMPERATUREOVERPRESSUREPROTECTIONSYSTEM(LTOPS)INTRODUCTIONThepurposeoftheLTOPSistosupplementthenormalplantoperationaladministrativecontrolstoprotectthereactorvesselfrombeingexposedtoconditionsoffastpropagatingbrittlefracture.TheLTOPSalsoprotectstheResidualHeatRemoval(RHR)Systemfromoverpressurizatlon.ThishasbeenachievedbyconservativelychoosinganLTOPSsetpolntwhichpreventstheRCSfromexceedingthepressure/temperaturelimitsestablishedby10CFRPart50AppendixG"'equirements,andtheRHRSystemfromexceeding110%ofitsdesignpressure.TheLTOPSisdesignedtoprovidethecapability,duringrelativelylowtemperatureoperation(typicallylessthan350'F),toautomaticallypreventtheRCSpressurefromexceedingtheapplicablelimits.Oncethesystemisenabled,nooperatoractionIsinvolvedfortheLTOPStoperformitsIntendedpressuremitigationfunction.Thus,nooperatoractionismodelledintheanalysessupportingthesetpofntselection,althoughoperatoractionmaybeinitiatedtoultimatelyterminatethecauseoftheoverpressureevent.ThePORVslocatednearthetopofthepressurizer,togetherwithadditionalactuationlogicfromthelow-rangepressurechannels,areutilizedtomitigatepotentialRCSoverpressuretransients.TheLTOPSprovidesthereliefcapacityforspecifictransientswhichwouldnotbemitigatedbytheRHRSystemreliefvalve.Inaddition,alimitonthePORVpipingisaccommodatedduetothepotentialforwaterhammereffectstobedevelopedinthepipingassociatedwiththesevalvesasaresultofthecyclicopeningandclosingcharacteristicsduringmitigationofanoverpressuretransient.Thus,apressurelimitmorerestrictivethanthe10CFR50,AppendixG<'>allowableisimposedaboveacertaintemperaturesothattheloadsonthepipingfromaLTOPSeventwouldnotaffectthepipingintegrity.3-1 acr%s.IN Twospecifictransientshavebeendefined,withtheRCSinawater-solidcondition,asthedesignbasisforLTOPS.EachofthesescenariosassumesnoRHRSystemheatremovalcapability.TheRHRSystemreliefvalve(203)doesnotactuateduringthetransients.ThefirsttransientconsistsofaheatinjectionscenarioinwhichareactorcoolantpumpinasingleloopisstartedwiththeRCStemperatureasmuchas50'Flowerthanthesteamgeneratorsecondarysidetemperature.Thisresultsinasuddenheatinputtoawater-solidRCSfromthesteamgenerators,creatinganincreasingpressuretransient.Thesecondtransienthasbeendefinedasamassinjectionscenariointoawater-solidRCSascausedbyoneoftwopossiblescenarios.ThefirstscenarioisaninadvertentactuationofthesafetyinjectionpumpsintotheRCS.ThesecondscenarioisthesimultaneousisolationoftheRHRSystem,isolationofletdown,andfailureofthenormalchargingflowcontrolstothefullflowcondition.Eitherscenariomaybeeliminatedfromconsiderationdependingontheplantconfigurationswhicharerestrictedbytechnicalspecifications.Also,variouscombinationsofchargingandsafetyinjectionflowsmayalsobeevaluatedonaplant-specificbasis.Theresultingmassinjection/letdownmismatchcausesanincreasingpressuretransient.3.2LTOPSSetpointDeterminationRochesterGasandElectricandBabcock8WilcoxNuclearTechnology(BWNT)havedevelopedthefollowingmethodologywhichisemployedtodeterminePORVsetpolntsformitigationoftheLTOPSdesignbasiscoldoverpressurizationtransients.ThismethodologymaximizestheavailableoperatingmarginforsetpolntselectionwhilemaintaininganappropriatelevelofprotectioninsupportofreactorvesselandRHRSystemintegrity.3-2 ParametersConsideredTheselectionofproperLTOPSsetpointforactuatingthePORVsrequirestheconsiderationofnumeroussystemparametersincluding:a.VolumeofreactorcoolantinvolvedIntransientb.RCSpressuresignaltransmissiondelayc.Volumetriccapacityofthereliefvalvesversusopeningposition,includingthepotentialforcriticalflowd.Stroketimeofthereliefvalves(open6close)e.InitialtemperatureandpressureoftheRCSandsteamgeneratorf.MassinputrateintoRCSg.Temperatureofinjectedfluidh.Heattransfercharacteristicsofthesteamgeneratorsi.InitialtemperatureasymmetrybetweenRCSandsteamgeneratorsecondarywaterj.Massofsteamgeneratorsecondarywaterk.RCPstartupdynamicsI.10CFR50,Appendix6"Ipressure/temperaturecharacteristicsofthereactorvesselm.PressurizerPORVpiping/structuralanalysislimitationsn.DynamicandstaticpressuredifferencesthroughouttheRCSandRHRSo.RHRSystempressurelimitsp.LoopasymmetryforRCPstartcasesq.Instrumentuncertaintyfortemperature(conditionsunderwhichtheLTOPSystemisplacedintoservice)andpressureuncertainty(actuationsetpoint)TheseparametersaremodelledintheBWNTRELAP5/MOD2-B&Wcomputercode(Ref.19)3-3 whichcalculatesthemaximumandminimumsystempressures.PressureLimitsSelectionThefunctionoftheLTOPSistoprotectthereactorvesselfromfastpropagatingbrittlefracture.ThishasbeenimplementedbychoosingaLTOPSsetpolntwhichpreventsexceedingthelimitsprescribedbytheapplicablepressure/temperaturecharacteristicforthespecificreactorvesselmaterialinaccordancewithrulesgiveninAppendixGto10CFR50I".TheLTOPSdesignbasistakescreditforthefactthatoverpressureeventsmostlikelyoccurduringisothermalconditionsintheRCS.Therefore,itisappropriatetoutilizethesteady-stateAppendixGlimit.Inaddition,theLTOPSalsoprovidesforanoperationalconsiderationtomaintaintheintegrityofthePORVpiping,andtoprotecttheRHRSystemfromoverpressureduringtheLTOPSdesignbasistransients.Atypicalcharacteristic10CFR50AppendixGcuweisshownbyFigure3.1wheretheallowablesystempressureincreaseswithIncreasingtemperature.ThistypeofcurvesetsthenominalupperlimitonthepressurewhichshouldnotbeexceededduringRCSincreasingpressuretransientsbasedonreactorvesselmaterialproperties.SuperimposedonthiscurvelsthePORVpipinglimitandRHRSystempressurelimitwhichisconservativelyused,forsetpolntdevelopment,asthemaximumallowablepressureabovethetemperatureatwhichitintersectswiththe10CFR50AppendixGcurve.Whenareliefvalveisactuatedtomitigateanincreasingpressuretransient,thereleaseofavolumeofcoolantthroughthevalvewillcausethepressureincreasetobeslowedandreversedasdescribedbyFigure3.2.Thesystempressurethendecreases,asthereliefvalvereleasescoolant,untilaresetpressureisreachedwherethevalveissignalledtoclose.Notethatthepressurecontinuestodecreasebelowtheresetpressureasthevalverecloses.Thenominal3-4 II1>><,fikt'~,t+g+s lowerlimitonthepressureduringthetransientlstypicallyestablishedbasedsolelyonanoperationalconsiderationforthereactorcoolantpumpP1sealtomaintainanominaldifferentialpressureacrossthesealfacesforproperfilm-ridingperformance.Intheeventthattheavailablerangeisinsufficienttoconcurrentlyaccommodatetheupperandlowerpressurelimits,theupperpressurelimitsaregivenpreference.Thenominalupperlimit(basedontheminimumofthesteady-state10CFR50AppendixGrequirement,theRHRSystempressurelimit,andthePORVpipinglimitations)andthenominalRCP41sealperformancecriteriacreateapressurerangefromwhichthesetpointsforbothPORVsmaybeselectedasshownonFigures3.3and3.4.WherethereisinsufficientrangebetweentheupperandlowerpressurelimitstoselectPORVsetpointstoprovideprotectionagainstviolationofbothlimits,setpointselectiontoprovideprotectionagainsttheupperpressurelimitviolationshalltakeprecedence.MassInputConsiderationForaparticularmassinputtransienttotheRCS,thereliefvalvewillbesignalledtoopenataspecificpressuresetpoint.However,asshownonFigure3.2,therewillbeapressureovershootduringthedelaytimebeforethevalvestartstomoveandduringthetimethevalveismovingtothefullopenposition.Thisovershootisdependentonthedynamicsofthesystemandtheinputparameters,andresultsinamaximumsystempressuresomewhathigherthanthesetpressure.Similarlytherewillbeapressureundershoot,whilethevalveisrelieving,bothduetotheresetpressurebeingbelowthesetpointandtothedelayinstrokingthevalveclosed.Themaximumandminimumpressuresreached(P>>><andPQiN)inthetransientareafunctionoftheselectedsetpoint(P,)asshownonFigure3.3.Theshadedarearepresentsanoptimum3-5
rangefromwhichtoselectthesetpointbasedontheparticularmassinputcase.Severalmassinputcasesmayberunatvariousinputflowratestoboundtheallowablesetpointrange.HeatInputConsiderationTheheatinputcaseisdonesimilarlytothemassinputcaseexceptthatthelocusoftransientpressurevaluesversusselectedsetpointsmaybedeterminedforseveralvaluesoftheinitialRCStemperature.Thisheatinputevaluationprovidesarangeofacceptablesetpointsdependentonthereactorcoolanttemperature,whereasthemassinputcaseislimitedtothemostrestrictivelowtemperatureconditiononly(i.e.themassinjectiontransientisnotsensitivetotemperature).TheshadedareaonFigure3.4describestheacceptablebandforaheatinputtransientfromwhichtoselectthesetpointforaparticularinitialreactorcoolanttemperature.IftheLTOPSisasinglesetpolntsystem,themostlimitingresultIsusedthroughout.FinalSetpointSelectionBysuperimposingtheresultsofmultiplemassinputandheatinputcasesevaluated,(fromaseriesoffiguressuchas3.3and3.4)arangeofallowablePORVsetpointstosatisfyboth/conditionscanbedetermined.Forasinglesetpointsystem,themostlimitingsetpointischosen,withtheupperpressurelimitgivenprecedenceifbothlimitscannotbeaccommodated.TheselectionofthesetpolntsforthePORVsconsiderstheuseofnominalupperandlowerpressurelimits.Theupperlimitsarespecifiedbytheminimumofthesteady-statecooldowncurveascalculatedinaccordancewithAppendix8to10CFR50I'IorthepeakRCSorRHR3-6 Ig Systempressurebaseduponpiping/structuralanalysisloads.ThelowerpressureextremeisspecifiedbythereactorcoolantpumpP1sealminimumdifferentialpressureperformancecriteria.UncertaintiesinthepressureandtemperatureinstrumentationutilizedbytheLTOPSareaccountedforconsistentwiththemethodologyofReference2.0.Accountingfortheeffects'finstrumentationuncertaintyimposesadditionalrestrictionsonthesetpointdevelopment,whichisalreadybasedonconservativepressurelimitssuchasasafetyfactorof2onpressurestress,useofalowerboundKfcurveandanassumed~ITflawdepthwithalengthequalto1~8timesthevesselwallthicknes3.3ApplicationofASMECodeCaseN-514Ereed:'8::".I't6'L'id:,tranrt-:I!1I!-:l...,,!r.':i",,:e-::tc;t't,OW~Ot'the:::Preeeureqdeter~1ned<t~aSStf+SPPendec;8"~"~-allewe,paragraphG-2215,ofsectionxtoftheAsMEcode"t.QYt~te,:spp1RVgfog@fASME"::Code!Casa'N.".:.St'8'":lnclsaeae:::the.JOJeletfttg,::,ntarglh)1A:::tl'l8~fSQIOtl~!OfifltstprBssule-tJ88lperatutst!Ilnttt;".,Oulpseirrh~WIK~,hsi'L!tCp'Sile'nagfedercods,:case;N-".ste:.requfreetLfg%~!o:bs;:effecthretstcoolantaetnpelatureeffeesdfen~Ok'RooeF.:::.Orgg~epganttefnPcrateree;OOrreegoadingLtd,a::.reaoforrtrSeeel~mitalptetnPetaiure;:."::-:.Ot!8Idfetenoerrolnethfnefdtr.:,treese~t'Sudsceil'ee~ahteniftTtetr't+~80%F~whicheverisgreater.RTNpTisthehighestadjustedreferencetemperatureforweldorbase3-7 metalinthebeltlineregionatadistanceone-fourthofthevesselsectionthicknessfromthevesselinsidesurface,asdeterminedbyRegulatoryGuide1.99,Revision2.3.4EnableTemperatureforLTOPSTheenabletemperatureisthetemperaturebelowwhichtheLTOPSsystemisrequiredtobeoperableibTrhe:Sfn~naL70:3:egabfeltsntpeinturele,,eetabliihed.uefnng::Ihe:fffdinne;prOV¹d:::byASliilegtfCede.'.Case,,NSO',::;:Fhe,A'8MB!Code!CsiY%.',<,'.:.i6~@ris.'en'::"en+N(RCF':,.qu,.d~teBpeYa~FNnnrreegnndfnffi'O~ihetreantnrbTee'See!!ltrrii:eetil!i'eiiiPiiiiiiire!r'll'RT:sj,"LSgsePNiggtfeP,';-Thee&QeaeWTWhinheeeriSgreateraSdeeCrtbedInSeCtiOn3.3e!Tliialdaffnlt7nn"..I'SYafenr!euPPOited!~[i!thentitreebngbouestgwneds6roup~ihsafnnaTenabfe'ternpeinturefedererrnfned~as(IITianr+807paf;3-8
TheRCScoldlegtemperaturelimitationforstartinganRCPisthesamevalueastheLTOPSenabletemperaturetoensurethatthebasisoftheheatinjectiontransientisnotviolated.TheStandardTechnicalSpecifications(STS)prohibitstartinganRCPwhenanyRCScoldlegtemperaturesislessthanorequaltotheLTOPSenabletemperatureunlessthesecondarysidewatertemperatureofeachsteamgeneratorislessthanorequalto50'FaboveeachoftheRCScoldlegtemperatures.3-9 Figure3.1TYPICALAPPENDIXGP/TCHARACTERISTICSI(g2500~~2000z~O15000O0U1000I-9500Clz'FNR100IMPOSEDPORVPIPINGLIMITIMPOSEDRHRSPIPINGLIMIT00100200300400500lNDICATEDCOOLANTTEMPERATURE,'F3-10 Figure3.2TYRICAL:RRESSUR2'TRANSIENT:.:(1.'REL'IEFVAVLECYCLE):.8EVPOINT-------------RESET~Uride3-11 Figure3.3""SAP'03N3'::>>':DET.ERMIINATIQN'(MASSINPUT):'APPENDIX:GSIAXIMUMt;IMIT'AVPMAX,'CP&SEAL':::PERFORMANCECRITERIA;;.;;;SETPOINTRANGEPORVSETPOIN7):PSlGThemaximumpressurelimitistherginimumoftheAppendixGlimit,thePORVdischargepipingstructuralanalysislimit,ortheRHRsystemlimit3-12
Figure3.4'(HEAT:INPUT)-"'APPENDIX:GSIAXIMUMt;IMIT'.--------------Pex--------IIIRCPA:SEALIPERFORMANCECR1TERlASETPOINTRANGE:PORVSETPOINT):PSIGThemaximumpressurelimitIstheminimumoftheAppendixGlimit,thePORVdischargepipingstructuralanalysislimit,ortheRHRsystemlimit3-13
4.0REFERENCES
NUREG1431,"StandardTechnicalSpecificationsforWestinghousePressurizedWaterReactors",Revision0,September,1992.2.U.S.NuclearRegulatoryCommission,"RemovalofCycle-SpecificParameterLimitsfromTechnicalSpecifications",GenericLetter88-16,October,1988.3.U.S.NuclearRegulatoryCommission,RadiationEmbrittlementofReactorVesselMaterials,ReulatoGufde1.99Revislon2,May,1988.4.CodeofFederalRegulations,Title10,Part50,"FractureToughnessRequirementsforLIght-WaterNuclearPowerReactors",AppendixG,FractureToughnessRequirements.5.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInservlceInspectionofNuclearPowerPlantComponents",AppendixG,FractureToughnessCriteriaForProtectionAgainstFailure.6.R.G.Soltesz,R.K.Disney,J.Jedruch,andS.LZiegler,NuclearRocketShieldingMethods,Modification,UpdatingandInputDataPreparation.Vol.5-Two-DimensionalDiscreteOrdinatesTransportTechnique,WANL-PR(LL)434,Vol.5,August1970.7.ORNLRSICDataLIbraryCollectionDLC-76SAILORCoupledSelf-Shielded,47Neutron,20Gamma-Ray,P3,CrossSectionLibraryforLightWaterReactors.ASMEBoilerandPressureVesselCode,SectionIII,"RulesforConstructionofNuclearPowerPlantComponents",Division1,SubsectionNB:Class1Components.BranchTechnicalPositionMTEB5-2,"FractureToughnessRequirements",NUREG4800StandardReviewPlan5.3.2,Pressure-TemperatureLimits,July1981,Rev.1.10.ASTME-208,StandardTestMethodforConductingDrop-WeightTesttoDetermineNil-DuctilityTransitionTemperatureofFerriticSteels,ASTMStandards,Section3,AmericanSocietyforTestingandMaterials.11.B8WOwnersGroupReportBAW-2202,"FractureToughnessCharacterizationofWF-70Weld4-1 Material",BBWOwnersGroupMaterialsCommittee,September1993.12.Letter,ClydeY.Shiraki,NuclearRegulatoryCommission,toD.LFarrar,CommonwealthEdison-Company,'ExemptionfromtheRequirementtoDeterminetheUnirradiatedReferenceTemperatureinAccordancewiththeMethodSpecifiedIn10CFR50.61(b)(2)(i)(TACNOS.M84546andM84547),DocketNos.50-295and50404,February22,1994.13.CodeofFederalRegulations,Title10,Part50,"FractureToughnessRequirementsforLight-WaterNuclearPowerReactors,AppendixH,ReactorVesselMaterialSurveillanceProgramRequirements.14.Timoshenko,S.P.andGoodier,J.N.,TheoofElasticit,ThirdEdition,McGraw-HillBookCo.,NewYork,1970.15.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInserviceInspectionofNuclearPowerPlantComponents",AppendixA,AnalysisofFlaws,ArticleA@000,MethodForK,Determination.16.WRCBulletinNo.175,PVRCRecommendationsonToughnessRequirementsforFerriticMaterials",WeldingResearchCouncil,NewYork,August1972.17.ASMEBoilerandPressureVesselCodeCaseN-514,SectionXI,Division1,"LowTemperatureOverpressureProtection",Approvaldate:February12,1992.18.BranchTechnicalPositionRSB5-2,"OverpressurizationProtectionofPressurizedWaterReactorsWhileOperatingatLowTemperatures",NUREG4800StandardReviewPlan5.2.2,OverpressureProtection,November1988,Rev.2.19.BWNT,"RELAPS/MOD2,AnAdvancedComputerProgramforLight-WaterReactorLOCAandNon-LOCATransientAnalysis,"BAW-10164P-A.20.InstrumentofAmerica(ISA)Standard67.04-1994.4-2 AttachmentVIFinalVersionofLTOPMethodology(ReplacesmethodologyoriginallyprovidedinDecember8,1995RG&ElettertoNRCwhichinturnreplacedmethodologyprovidedinSection3toWCAP-14040)
LOWTEMPERATUREOVERPRESSUREPROTECTIONSYSTEM(LTOPS)INTRODUCTIONThepurposeoftheLTOPSIstosupplementthenormalplantoperationaladministrativecontrolstoprotectthereactorvesselfrombeingexposedtoconditionsoffastpropagatingbrittlefracture.TheLTOPSalsoprotectstheResidualHeatRemoval(RHR)Systemfromoverpressurization.ThishasbeenachievedbyconservativelychoosinganLTOPSsetpointwhichpreventstheRCSfromexceedingthepressure/temperaturelimitsestablishedby10CFRPart50AppendixGI'Irequirements,andtheRHRSystemfromexceeding110%ofitsdesignpressure.TheLTOPSisdesignedtoprovidethecapability,duringrelativelylowtemperatureoperation(typicallylessthan350'F),toautomaticallypreventtheRCSpressurefromexceedingtheapplicablelimits.Oncethesystemisenabled,nooperatoractionisinvolvedfortheLTOPStoperformitsintendedpressuremitigationfunction.Thus,nooperatoractionismodelledintheanalysessupportingthesetpointselection,althoughoperatoractionmaybeinitiatedtoultimatelyterminatethecauseoftheoverpressureevent.ThePORVslocatednearthetopofthepressurizer,togetherwithadditionalactuationlogicfromthelow-rangepressurechannels,areutilizedtomitigatepotentialRCSoverpressuretransients.TheLTOPSprovidesthereliefcapacityforspecifictransientswhichwouldnotbemitigatedbytheRHRSystemreliefvalve.Inaddition,alimitonthePORVpipingisaccommodatedduetothepotentialforwaterhammereffectstobedevelopedinthepipingassociatedwiththesevalvesasaresultofthecyclicopeningandclosingcharacteristicsduringmitigationofanoverpressuretransient.Thus,apressurelimitmorerestrictivethanthe10CFR50,AppendixGI'IallowableisimposedaboveacertaintemperaturesothattheloadsonthepipingfromaLTOPSeventwouldnotaffectthepipingintegrity.3-1 0IIiE'II Twospecifictransientshavebeendefined,withtheRCSinawater-solidcondition,asthedesignbasisforLTOPS.EachofthesescenariosassumesnoRHRSystemheatremovalcapability.TheRHRSystemreliefvalve(203)doesnotactuateduringthetransients.ThefirsttransientconsistsofaheatinjectionscenarioinwhichareactorcoolantpumpinasingleloopisstartedwiththeRCStemperatureasmuchas50'Flowerthanthesteamgeneratorsecondarysidetemperature.Thisresultsinasuddenheatinputtoawater-solidRCSfromthesteamgenerators,creatinganincreasingpressuretransient.Thesecondtransienthasbeendefinedasamassinjectionscenariointoawater-solidRCSascausedbyoneoftwopossiblescenarios.ThefirstscenarioisaninadvertentactuationofthesafetyinjectionpumpsintotheRCS.ThesecondscenarioisthesimultaneousIsolationoftheRHRSystem,isolationofletdown,andfailureofthenormalchargingflowcontrolstothefullflowcondition.Eitherscenariomaybeeliminatedfromconsiderationdependingontheplantconfigurationswhicharerestrictedbytechnicalspecifications.Also,variouscombinationsofchargingandsafetyinjectionflowsmayalsobeevaluatedonaplant-specificbasis.Theresultingmassinjection/letdownmismatchcausesanincreasingpressuretransient.3.2LTOPSSetpointDeterminationRochesterGasandElectricandBabcock&WilcoxNuclearTechnology(BWNT)havedevelopedthefollowingmethodologywhichisemployedtodeterminePORVsetpointsformitigationoftheLTOPSdesignbasiscoldoverpressurizationtransients.ThismethodologymaximizestheavailableoperatingmarginforsetpointselectionwhilemaintaininganappropriatelevelofprotectioninsupportofreactorvesselandRHRSystemintegrity.3-2 ParametersConsideredTheselectionofproperLTOPSsetpointforactuatingthePORVsrequirestheconsiderationofnumeroussystemparametersincluding:a.Volumeofreactorcoolantinvolvedintransientb.RCSpressuresignaltransmissiondelayc.Volumetriccapacityofthereliefvalvesversusopeningposition,includingthepotentialforcriticalflowd.Stroketimeofthereliefvalves(open&close)e.InitialtemperatureandpressureoftheRCSandsteamgeneratorf.MassinputrateintoRCSg.Temperatureofinjectedfluidh.Heattransfercharacteristicsofthesteamgeneratorsi.InitialtemperatureasymmetrybetweenRCSandsteamgeneratorsecondarywater1J.Massofsteamgeneratorsecondarywaterk.RCPstartupdynamicsI.10CFR50,AppendixGt'Ipressure/temperaturecharacteristicsofthereactorvesselm.PressurizerPORVpiping/structuralanalysislimitationsn.DynamicandstaticpressuredifferencesthroughouttheRCSandRHRSo.RHRSystempressurelimitsp.LoopasymmetryforRCPstartcasesq.Instrumentuncertaintyfortemperature(conditionsunderwhichtheLTOPSystemisplacedintoservice)andpressureuncertainty(actuationsetpolnt)TheseparametersaremodelledintheBWNTRELAP5/MOD2-B&Wcomputercode(Ref.19)3-3 Sr';
whichcalculatesthemaximumandminimumsystempressures.PressureLimitsSelectionThefunctionoftheLTOPSistoprotectthereactorvesselfromfastpropagatingbrittlefracture.ThishasbeenimplementedbychoosingaLTOPSsetpolntwhichpreventsexceedingthelimitsprescribedbytheapplicablepressure/temperaturecharacteristicforthespecificreactorvesselmaterialinaccordancewithrulesgiveninAppendixGto10CFR50I".TheLTOPSdesignbasistakescreditforthefactthatoverpressureeventsmostlikelyoccurduringisothermalconditionsintheRCS.Therefore,itisappropriatetoutilizethesteady-stateAppendixGlimit.Inaddition,theLTOPSalsoprovidesforanoperationalconsiderationtomaintaintheintegrityofthePORVpiping,andtoprotecttheRHRSystemfromoverpressureduringtheLTOPSdesignbasistransients.Atypicalcharacteristic10CFR50AppendixGcurveisshownbyFigure3.1wheretheallowablesystempressureincreaseswithincreasingtemperature.ThistypeofcurvesetsthenominalupperlimitonthepressurewhichshouldnotbeexceededduringRCSincreasingpressuretransientsbasedonreactorvesselmaterialproperties.SuperimposedonthiscurveisthePORVpipinglimitandRHRSystempressurelimitwhichisconservativelyused,forsetpointdevelopment,asthemaximumallowablepressureabovethetemperatureatwhichitintersectswiththe10CFR50AppendixGcurve.Whenareliefvalveisactuatedtomitigateanincreasingpressuretransient,thereleaseofavolumeofcoolantthroughthevalvewillcausethepressureincreasetobeslowedandreversedasdescribedbyFigure3.2.Thesystempressurethendecreases,asthereliefvalvereleasescoolant,untilaresetpressureisreachedwherethevalveissignalledtoclose.Notethatthepressurecontinuestodecreasebelowtheresetpressureasthevalverecloses.Thenominal3-4 Q6p~II1tv~'=<<fj lowerlimitonthepressureduringthetransientistypicallyestablishedbasedsolelyonanoperationalconsiderationforthereactorcoolantpump¹1sealtomaintainanominaldifferentialpressureacrossthesealfacesforproperfilm-ridingperformance.Intheeventthattheavailablerangeisinsufficienttoconcurrentlyaccommodatetheupperandlowerpressurelimits,theupperpressurelimitsaregivenpreference.Thenominalupperlimit(basedontheminimumofthesteady-state10CFR50Appendix8requirement,theRHRSystempressurelimit,andthePORVpipinglimitations)andthenominalRCP¹1sealperformancecriteriacreateapressurerangefromwhichthesetpointsforbothPORVsmaybeselectedasshownonFigures3.3and3.4.WherethereisinsufficientrangebetweentheupperandlowerpressurelimitstoselectPORVsetpolntstoprovideprotectionagainstviolationofbothlimits,setpolntselectiontoprovideprotectionagainsttheupperpressurelimitviolationshalltakeprecedence.MassInputConsiderationForaparticularmassinputtransienttotheRCS,thereliefvalvewillbesignalledtoopenataspecificpressuresetpolnt.However,asshownonFigure3.2,therewillbeapressureovershootduringthedelaytimebeforethevalvestartstomoveandduringthetimethevalveismovingtothefullopenposition.Thisovershootisdependentonthedynamicsofthesystemandtheinputparameters,andresultsinamaximumsystempressuresomewhathigherthanthesetpressure.Similarlytherewillbeapressureundershoot,whilethevalveisrelieving,bothduetotheresetpressurebeingbelowthesetpointandtothedelayinstrokingthevalveclosed.Themaximumandminimumpressuresreached(P>>andP~,)inthetransientareafunctionoftheselectedsetpoint(Ps)asshownonFigure3.3.Theshadedarearepresentsanoptimum3-5 rangefromwhichtoselectthesetpointbasedontheparticularmassinputcase.SeveralmassInputcasesmayberunatvariousinputflowratestoboundtheallowablesetpointrange.HeatInputConsiderationTheheatinputcaseisdonesimilarlytothemassinputcaseexceptthatthelocusoftransientpressurevaluesversusselectedsetpointsmaybedeterminedforseveralvaluesoftheinitialRCStemperature.Thisheatinputevaluationprovidesarangeofacceptablesetpolntsdependentonthereactorcoolanttemperature,whereasthemassinputcaseislimitedtothemostrestrictivelowtemperatureconditiononly(i.e.themassinjectiontransientisnotsensitivetotemperature).TheshadedareaonFigure3.4describestheacceptablebandforaheatinputtransientfromwhichtoselectthesetpointforaparticularinitialreactorcoolanttemperature.IftheLTOPSisasinglesetpolntsystem,themostlimitingresultisusedthroughout.FinalSetpointSelectionBysuperimposingtheresultsofmultiplemassinputandheatinputcasesevaluated,(fromaseriesoffiguressuchas3.3and3.4)arangeofallowablePORVsetpointstosatisfybothconditionscanbedetermined.Forasinglesetpointsystem,themostlimitingsetpointischosen,withtheupperpressurelimitgivenprecedenceifbothlimitscannotbeaccommodated.TheselectionofthesetpolntsforthePORVsconsiderstheuseofnominalupperandlowerpressurelimits.Theupperlimitsarespecifiedbytheminimumofthesteady-statecooldowncurveascalculatedinaccordancewithAppendixGto10CFR50'IorthepeakRCSorRHR3-6 Systempressurebaseduponpiping/structuralanalysisloads.Thelowerpressureextremeisspecifiedbythereactorcoolantpump41sealminimumdifferentialpressureperformancecriteria.UncertaintiesinthepressureandtemperatureinstrumentationutilizedbytheLTOPSareaccountedforconsistentwiththemethodologyofReference2.0.Accountingfortheeffectsofinstrumentationuncertaintyimposesadditionalrestrictionsonthesetpolntdevelopment,Nwhichisalreadybasedonconservativepressurelimitssuchasasafetyfactorof2onpressurestress,useofalowerboundKRcurveandanassumed~/~Tflawdepthwithalengthequalto1~8timesthevesselwallthickness.3.3ApplicationofASMECodeCaseN-514iASMECodeCaseN-514I'allowsLTOPStolimitthemaximumpressureinthereactorvesselto110%ofthepressuredeterminedtosatisfyAppendixG,paragraphG-2215,ofSectionXIoftheASMECode"'.TheapplicationofASMECodeCaseN-514increasestheoperatingmarginintheregionofthepressure-temperaturelimitcurveswheretheLTOPSisenabled.CodeCaseN-514requiresLTOPStobeeffectiveatcoolanttemperatureslessthan200'Foratcoolanttemperaturescorrespondingtoareactorvesselmetaltemperature,ata1/4tdistancefromtheinsidevesselsurface,lessthanRopy+50F,whicheverisgreater.RTD~isthehighestadjustedreferencetemperatureforweldorbasemetalinthebeltlineregionatadistanceone-fourthofthevesselsectionthicknessfromthevesselInsidesurface,asdeterminedbyRegulatoryGuide1.99,Revision2.3-7 EnableTemperatureforLTOPSTheenabletemperatureisthetemperaturebelowwhichtheLTOPSsystemisrequiredtobeoperable.TheGlnnaLTOPSenabletemperatureisestablishedusingtheguidanceprovidedbyASMEXICodeCaseN-514.TheASMECodeCaseN-514supportsanenableRCSliquidtemperaturecorrespondingtothereactorvessel1/4tmetaltemperatureofRTNp~+50For200'F,whicheverisgreaterasdescribedinSection3.3.ThisdefinitionlsalsosupportedbytheWestinghouseOwner'sGroup.TheGinnaenabletemperatureisdeterminedas(RTNpY+50F)+(instrumenterrorI~I)+(metaltemperaturedifferenceto1/4T).TheRCScoldlegtemperaturelimitationforstartinganRCPisthesamevalueastheLTOPSenabletemperaturetoensurethatthebasisoftheheatinjectiontransientisnotviolated.TheStandardTechnicalSpecifications(STS)prohibitstartinganRCPwhenanyRCScoldlegtemperaturesislessthanorequaltotheLTOPSenabletemperatureunlessthesecondarysidewatertemperatureofeachsteamgeneratorislessthanorequal.to50'FaboveeachoftheRCScoldlegtemperatures.3-8
Figure3.1TYPICALAPPENDIXGP/TCHARACTERISTICS(g2500~2000z.~~15000OEL'~U1000ClI-Q500CloF/HR100IMPOSEDPORVPIPINGLIMITIMPOSEDRHRSPIPINGLIMIT00100200300400500INDIGATEDCOOLANTTEMPERATURE,'F3-9 P
Figure3.2TYRICAL'RESSURE:TRANSIENT"(1';REL'IEF,',VAVLECYCLE):;",":RESE73-10 Figure3.3:,'.SETPO)NT::.:":DET.ERMIINATION:"(MASSINPUT):'APPENDIX'GMAXIMUMl.'IMIT'CP&'SEA'L':::PERFORMANCE'CRrrE8%;:::;:SETPOINTRANGE:PORVSETPOINT):PSIGThemaximumpressurelimitistheminimumoftheAppendixGlimit,thePORVdischargepipingstructuralanalysislimit,orthe'RHhsystemlimit3-11
Figure3.4-.;-SEFPQ)NT::DETERMIIMATION:(HEAT:INP.UT)'APPENDIX:GMAXIMUMI.'IMIT'-------------Pue--------PL)ÃIIRCRN:SEAL::;PE%'.QRMANCE'CRrrERtA::::::SETPOINT.RANGE:p.SP,ORVSETPOIN7):PSlGThemaximumpressurelimitistheminimumoftheAppendixGlimit,thePORVdischargepipingstructuralanalysislimit,ortheRHRsystemlimit3-12 NUREG1431,"StandardTechnicalSpecificationsforWestinghousePressurizedWaterReactors",Revision0,September,1992.2.U.S.NuclearRegulatoryCommission,"RemovalofCycle-SpecificParameterLimitsfromTechnicalSpecifications",GenericLetter88-16,October,1988.3.U.S.NuclearRegulatoryCommission,RadiationEmbrittlementofReactorVesselMaterials,ReulatoGuide1.99Revision2,May,1988.4.CodeofFederalRegulations,Title10,Part50,"FractureToughnessRequirementsforLight-WaterNuclearPowerReactors",AppendixG,FractureToughnessRequirements.ASMEBoilerandPressureVesselCodeSectionXI,'RulesforInserviceInspectionofNuclearPowerPlantComponents",AppendixG,FractureToughnessCriteriaForProtectionAgainstFailure.6.R.G.Soltesz,R.K.Disney,J.Jedruch,andS.IZiegier,NuclearRocketShieldingMethods,Modification,UpdatingandInputDataPreparation.Vol.5-Two-DimensionalDiscreteOrdinatesTransportTechnique,WANL-PR(LL)<34,Vol.5,August1970.ORNLRSICDataLIbraryCollectionDLC-76SAILORCoupledSelf-Shielded,47Neutron,20Gamma-Ray,P3,CrossSectionLibraryforLightWaterReactors.ASMEBoilerandPressureVesselCode,SectionIII,"RulesforConstructionofNuclearPowerPlantComponents",Division1,SubsectionNB:Class1Components.BranchTechnicalPositionMTEB5-2,"FractureToughnessRequirements",NUREG4800StandardReviewPlan5.3.2,Pressure-TemperatureLimits,July1981,Rev.1.10.ASTME-208,StandardTestMethodforConductingDrop-WeightTesttoDetermineNil-DuctilityTransitionTemperatureofFerriticSteels,ASTMStandards,Section3,AmericanSocietyforTestingandMaterials.11.B&WOwnersGroupReportBAW-2202,"FractureToughnessCharacterization'ofWF-70WeldMaterial",B&WOwnersGroupMaterialsCommittee,September1993.4-1
u.Letter,ClydeY.Shlraki,NuclearRegulatoryCommission,toD.L.Farrar,CommonwealthEdisonCompany,"ExemptionfromtheRequirementtoDeterminetheUnirradiatedReferenceTemperatureinAccordancewiththeMethodSpecifiedin10CFR50.61(b)(2)(i)(TACNOS.M84546andM84547)",DocketNos.50-295and50404,February22,1994.13.CodeofFederalRegulations,Title10,Part50,"FractureToughnessRequirementsforLight-WaterNuclearPowerReactors",AppendixH,ReactorVesselMaterialSurveillanceProgramRequirements.14.Tlmoshenko,S.P.andGoodier,J.N.,TheoofElastlcit,ThirdEdition,McGraw-HillBookCo.,NewYork,1970.15.ASMEBoilerandPressureVesselCode,SectionXI,"RulesforInserviceInspectionofNuclearPowerPlantComponents",AppendixA,AnalysisofFlaws,ArticleA-3000,MethodForgDetermination.16.WRCBulletinNo.175,"PVRCRecommendationsonToughnessRequirementsforFerritlcMaterials",WeldingResearchCouncil,NewYork,August1972.17.ASMEBoilerandPressureVesselCodeCaseN-514,SectionXI,Division1,"LowTemperatureOverpressureProtection",Approvaldate:February12,1992.18.BranchTechnicalPositionRSB5-2,"OverpressurizationProtectionofPressurizedWaterReactorsWhileOperatingatLowTemperatures",NUREG4800StandardReviewPlan5.2.2,OverpressureProtection,November1988,Rev.2.19.BWNT,"RELAPS/MOD2,AnAdvancedComputerProgramforLight-WaterReactorLOCAandNon-LOCATransientAnalysis,"BAW-10164P-A.20.InstrumentofAmerica(ISA)Standard67.04-1994.4-2
AttachmentVIILTOPEnableTemperatureCalculation1(FirstuseofLTOPenabletemperaturemethodology)