ML17146A416
| ML17146A416 | |
| Person / Time | |
|---|---|
| Site: | Susquehanna |
| Issue date: | 06/19/1986 |
| From: | PENNSYLVANIA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML17146A415 | List: |
| References | |
| NUDOCS 8606240307 | |
| Download: ML17146A416 (82) | |
Text
DEFINITIONSINDEXSECTIONl.0DEFINITIONSACTIONo~~~~~~~~~~~'~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~~~PAGE1-11.21.31.41.51.61.71.81.9l.10AVERAGEQbiiNAEXPOSURE...................................AVERAGEPLANARLINEARHEATGENERATIONRATE................CHANNELCALIBRATION.............'..........................CHANNELCHECKS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~CHANNEl.FUNCTIONALTEST...................................COREALTERATION...........................................CRITICALPOWERRATIO..DOSEEQUIVALENTI-131.....................................Z-AVERAGEDISINTEGRATIONENERGY...........................1-21-21-21-21.11EMERGENCYCORECOOLINGSYSTEM(ECCS)RESPONSETIME.........1-21.12END-OF"CYCLERECIRCULATIONPUMPTRIPSYSTEMRESPONSETIME..1"2l.13l.141.15l.16FRACTIONOFLIMITINGPOWERDENSITY................FRACTIONOFRATEDTHERMALPOWER....................FRE(UENCYNOTATION....................,...........GASEOUSRAOWASTETREATMENTSYSTEM............~...~1"31-31-31.17IDENTIFIEDLEAKAGE........................1-31.181.191.20l.21ISOLATIONSYSTEMRESPONSETIME....................LIMITINGCONTROLRODPATTERN......................LINEARHEATGENERATIONRATE.......................LOGICSYSTEMFUNCTIONALTEST..................... 31~%~~~~~~~~~~1~%~~~~~~~~~~1-41.22MAXIMUMFRACTIONOFLIMITINGPOWERDENSITY.................1"4l.231.241.25MEMBER(S)OFTHEPUBLIC...........................MINIMUMCRITICALPOWERRATIO.........OFFSITEDOSECALCULATIQNMANUAL...........1-41-41"4SUS)UEHANNA-UNIT28606240307860619PDRADOCKo5o00388PPDR
INDEXLIMITINGCONDITIONSFOROPERATIONANDSURVEILLANCEREUIREMENTSControlRodMaximumScramInsertionTimes....~~~~~~~~~~ControlRodAverageScramInsertionTimes..............SECTION3/4.0APPLICABILITY.............................................3/4.1REACTIVITYCONTROLSYSTEMS3/4.1.1SMUTDOWNMARGIN........................................3/4.1.2REACTIVITYANOMALIES...................................3/4.1.3CONTROLRODSControlRodOperability......................PAGE3/40"13/41-13/41-23/41-33/41-63/41-7.FourControlRodGroupScramInsertionTimes...........3/41-8ControlRodScramAccumulators..............'...........ControlRodDriveCoupling..............................ControlRodPositionIndication........:..........-ControlRodDriveHousingSupport......3/4.1.4CONTROLRODPROGRAMCONTROLSRodWorthMinimizer....................................RodSequenceControlSystem................VRodBlockMonitor...............'.......................3/4.1.5STANDBYL'I(UIDCONTROLSYSTEM..............3/41-93/41-113/41-133/41"153/41-163/41-173/41-183/41-193/4.2POWERDISTRIBUTIONLIMITS3/4.2.1AVERAGEPLANARLINEARHEATGENERATIONRATE.............3/42-13/42.2PRHSETPOINTSo~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A3/42-53/4.2.3MINIMUMCRITICALPOWERRATIO.......................3/4263/4.2.4LINEARHEATGENERATIONRATE............................3/42-10CofFoEL,FMC.f=oEC.3/e2-3/q2-SUS)UEHANNA-UNIT2iv T
LISTOFFIGURESINDEX3.1.5-13.1.5"23.2.1-13.2,1-23.2.l-33-22-.I-'3.2.$-la.3Z.K-lb283.Z.4.2-l~~3.4.1.1-13.4.6.1-14.7.4-1B3/43-1REACTORVESSELMATERLEVEL........................83/43-8PAGESODIUMPEHTABORATESOLUTIONTEMPERATURE/CONCEHTRATIONREQUIREMENTS........................3/41-21SOOIUMPEHTABORATESOLUTIONCONCENTRATION......,,.3/41-22MAXIMUMAVERAGEPLAHARLINEARHEATGENERATIONRATE(MAPLHGR)VS.AVERAGEPLANAREXPOSURE,G6PIIELIPPE8CR383(.8,)....3/I2-2MAXIMUM'AVERAGEPLANARLINEARHEATGEHERATIONRATE(MAPLHGR)VS.AVERAGEPLANAREXPOSURE,GEPI/ELIPPEECR233(*.'R*').3/I2-3fhRwl'%VIAA~E'RA4KPL,&tJA~LINEARHEATCSEhJEPATlOhl'RATE(lAAft'h>R)VSaAVE'RAOEl3t3V~LKPl&)STREP8F)0(MLlhlEAQHFATcu&IEQAT10NRATSFoRAPRhh~I="TIoI<T~UER$csAvERRcuEPLANARWPOOVRKiE~N9xgFoGlFLOWbePeuOEN~~aPEemNGLlrnlT(RONSar~<O.aroW+HO'h)P~'5EMIJOELIThhCPR~WATlt4hLlfAIT(RSIACGT<0.&QN+QZ9bgRK~WEOFbwERhhCPROPGRATIMCoLIMITLINEARAE'AT46NERA71~RAl'E.(QgPR.)UNII'TVEQSLISgQ5RAQKKAhlARE'IIP~~~~>EMIN,'ONfXgPVK(THERMALPOWERLIMITATIONS.........................:3/44-1bI~MINIMUMREACTORVESSELMETALTEMPERATUREVS.REACTORVESSELPRESSURE.............:.............3/44-18SAMPLEPLAN2)FORSNUBBERFUNCTIOHALTEST..'......3/47-15B3/4.4.6"15.l.1-'15.l.2-15.1.3-1a.5.l.3-1b6.2.1-1'-6.2.2-1FASTNEUTRONFLUENCE(E>iMeV)AT1/4TASA'UNCTIONOFSERVICELIFE....~..~~~~~~~~~~~--~~"~~.EXCLUSIONAREA.LSPOPULATIONZONE...............................MAPDEFININGUNRESTRICTEDAREASFORRADIOACTIVEGASEOUSANDLIQUIDEFFLUENTS..........:...........MAPOEFIHINGUNRESTRICTEDAREASFORRADIOACTIVEGASEOUSANDLIQUIDEFFLUEHTS.......................OFFSITEORGANIZATIONUNITORGANIZATION............-.'..B3/44-75-25"35-5~6-36-4SUSQUEHANNA'-UNIT2xxiiAmendmentHo.2
LISTOFTABLESINDEXTABLE1.22.2.1-1SURVEILLANCEFRE(UENCYNOTATION...................OPERATIONALCONDITIONS............................REACTORPROTECTIONSYSTEHINSTRUMENTATIONSETPOINTS~~~~~~~~~~~~~~~~~~~~~~~~~~~~i~~~~~~~~~~~~PAGE3-102-43.3.1"13.3.1-24.3.1.1-13.3.2-13.30223.3~234.3.2.1-1REACTORPROTECTIONSYSTEMINSTRUMENTATIONSURVEILLANCERE(UIREMENTS......;...ISOLATIONACTUATIONINSTRUMENTATION...............ISOLATIONACTUATIONINSTRUMENTATION.,SETPOINTS...~.3/43-73/43-113/43-17ISOLATION:SYSTEMINSTRUMENTATIONRESPONSETIME....3/4'-21ISOLATIONACTUATIONINSTRUMENTATIONSURVEILLANCERE(UIREMENTS........."............;................3/43-23REACTORPROTECTIONSYSTEMINSTRUMENTATION.........3/43-2REACTORPROTECTIONSYSTEMRESPONSETIMES..........3/43-63.3.3-13.3.3-2EMERGENCYCORECOOLINGSYSTEMACTUATIONINSTRUMENTATION...................................EMERGENCYCORECOOLINGSYSTEHACTUATIONINSTRUMENTATIONSETPOINTS.........................3/43-283/43"313.3.3-34.3.3.1-1EMERGENCYCORECOOLINGSYSTEHACTUATIONINSTRUMENTATIONSURVEILLANCEREQUIREMENTS..;......3/43-34EHERGENCYCORECOOLINGSYSTEHRESPONSETIMES......3/43-333.3.4.1-13.3.4.1"2ASSRECIRCULATIONPUMPTRIPSYSTEHINSTRUMENTATIONATWSRECIRCULATIONPUHPTRIPSYSTEMINSTRUMENTATIONSETPOINTS.......3/43-373/43-38SUSQUEHANNA-UNIT2XXl11 LISTOFTABLESContinued'INDEXTABLE4.8.1.1.2-1DIESELGENERATORTESTSCHEDULE....................4.8.1.1.2-2UNIT1ANOUNIT2DIESELGENERATORLOADINGTIMERS..4.8.2.1"1BATTERYSURVEILLANCEREQUIREMENTS.................3.8.4.1-1PRIMARYCONTAINMENTPENETRATIONCONDUCTOROVERCURRENTPROTECTIVEDEVICES...."................PAGE3/48-73/48-83/48-153/48-263.8.4.2"1MOTOROPERATEDVALVESTHERMALOVERLOADPROTECTION...........3/48-313.11.1.1-1MAXIMUMPERMISSIBLECONCENTRATIONOFDISSOLVEDORENTRAINEDNOBLEGASESRELEASEDFROMTHESITETOUNRESTRICTEDAREASINLIQUIDWASTE................4,11.1.1.1-1RADIOACTIVELIQUIDWASTESAMPLINGANOANALYSISROGRAM~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~P4.11.2.1.2-1RADIOACTIVEGASEOUSWASTESAMPLINGANDANALYSISPROGRAM.....~~~~~~~~~~~~~~~~~~~~~3/411-23/411-33/411-103.12.1-13.12.1-2REPORTINGLEVELSFORRADIOACTIVITYCONCENTRATIONSINENVIRONMENTALSAMPLES..3/412"9RADIOLOGICALENVIRONMENTALMONITORINGPROGRAM.....3/412-34.12.1-1DETECTIONCAPABILITIESFORENVIRONMENTALSAMPLEANALYSIS..~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~3/412-10B3/4.4.6-1REACTORVESSELTOUGHNESS........................;.83/44-65.7.1-1COMPONENTCYCLICORTRANSIENTLIMITS..............5-86.2.2-1MINIMUMSHIFTCREW,COMPOSITION....................6"5SUSQUEHANNA-UNIT2XXV1 1.0OEFINITIONS'hefollowingtermsaredefinedsothatuniforminterpretationofthesespecificationsmaybeachieved.ThedefinedtermsappearincapitalizedtypeandshallbeapplicablethroughouttheseTechnicalSpecifications.ACTION1.1ACTIONshallbethatpartofaSpecificatioowhichprescribesremedialmeasuresrequiredunderdesignatedconditions.AVERAGEl~tEXPOSUREl.tTheAVERAGEBUNOLEEXPOSUREshallbeequaltothesucioftheaxiallyaveragedexposureofallthefuelrodsinthespecifiedbundledividedbythenlaoeroffuelrodsinthefuelbundle~.TheAVERAGEPLANAREXPOSUREshallbeapplicable'toaspecific'lanarheightandisequaltothesuiaoftheexposureofallthefuelrodsinthespecifiedoundleatthespecifiedheightdividedbythenuihberoffuelrodsinthefuelbuncle.AVERAGEPLANARLINEARHEATGENERATIONRATE1.3TheAVERAGEPLANARLINEARHEATGENERATIONRATE(APLHGR)shallbeapplicabletoaspecificplanarheightandisequaltothesumoftheLINEARHEATGENERATIONRATESforallthefuelrodsinthespecifiedbundleatthespecifiedheightdividedbythenumberoffuelrodsinthefuelbundle.CHANNELCALIBRATIONle4ACHANNELCALIBRATIONshallbetheadjustment,asnecessary,ofthechanneloutputsuchthatitrespondswiththenecessaryrangeandaccuracytoknownvaluesoftheparameterwhichthechannelmonitors.TheCHANNELCALIBRATIONshallencompasstheentirechannelincludingthesensorandalarmand/ortripfunctions,andshallincludetheCHANNELFUNCTIONALTEST.TheCHANNELCALIBRATIONmaybeperformedbyanyseriesofsequential,overlappingortotalchannelstepssuchthattheentirechanneliscalibrated.CHANNELCHECKle5ACHANNELCHECKshallbethequalitativeassessmentofchannelbehaviorduringoperationbyobservati'on.Thisdeterminationshallinclude,wherepossible,comparisonofthechannelindicationand/orstatuswithotherindicationsand/orstatusderivedfromindependentinstrumentchannelsmeasuringthesameparameter.CHANNELFUNCTIONALTESTle6ACHANNELFUNCTIONALTESTshallbe:a..Analogchannels-theinjectionofa'simulatedsignalintothechannelascl'osetothesensoraspracticabletoverifyOPERABILITYincludingalarmand/ortripfunctionsandchannelfailuretrips.b.Bistablechannels-theinjectionofasimulatedsignalintothesensortoverifyOPERABILITYincludingalarmand/ortripfunctions.TheCHANNELFUNCTIONALTESTmaybeperformedbyanyseriesofsequential,overlappingortotalchannelstepssuchthattheentirechannelistested.SUS)UEHANNA-UNIT2 DEFINITIONSFRACTIONOFLIMITINGPOWERDENSITY1.13TheFRACTIONOFLIMITINGPOWERDENSITY(FLPD)shallbetheLHGRexistingatagivenlocationdividedbytheorthatbundletype.*LHQR.sycei6rdinS'@~on3.Z.ZFRACTIONOFRATEDTHERMALPOWER1.14TheFRACTIONOFRATEDTHERMALPOWER(FRTP)shallbethemeasuredDERMALPOWERdividedbytheRATEDTHERMALPOWER.FREUENCYNOTATION1.15TheFREQUENCYNOTATIONspecifiedfortheperformanceofSurveillanceRequirementsshallcorrespondtotheintervalsdefinedinTablel.l.GASEOUSRADWASTETREATMENTSYSTEM1.16AGASEOUSRADWASTE.TREATMENTSYSTEMshallbeanysystemdesignedandinstalledtoreduceradioactivegaseouseffluentsbycollectingprimarycoolantsystemoffgasesfromtheprimarysystemandprovidingfordelayorholdupforthepurposeofreducingthetotalradioactivitypriortoreleasetotheenvironment.IDENTIFIEDLEAKAGE1.17IDENTIFIEDLEAKAGEshallbe:a.Leakageintocollectionsystems,suchaspumpsealorvalvepackingleaks,thatiscapturedandconductedtoacollectingtank,or.b.Leakage'ntothecontainmentatmospherefromsourcesthatarebothspecificallylocatedandknowneithernottointerferewiththeopera-tionoftheleakagedetectionsystemsornottobePRESSUREBOUNDARYLEAKAGE.ISOLATIONSYSTEMRESPONSETIME1.18TheISOLATIONSYSTEMRESPONSETIMEshallbe,thattimeinterval'romwhenthemonitoredparameterexceedsitsisolationactuationsetpointatthechannelsensoruntiltheisolationvalvestraveltotheirrequiredpositions.Timesshallincludedieselgeneratorstartingandsequenceloadingdelayswhereapplicable.Theresponsetimemaybemeasuredbyanyseriesofsequential,overlappingortotalstepssuchthattheentireresponsetimeismeasured.LIMITINGCONTROLRODPATTERN1.19ALIMITINGCONTROLRODPATTERNshallbeapatternwhichresultsinthe'corebeingonathermalhydrauliclimit,i.e.,operatingonalimitingvalueforAPLHGR,LHGR,orMCPR.LINEARHEATGENERATIONRATE"1.20LINEARHEATGENERATIONRATE(LHGR)shallbetheheatgenerationperunitlengthoffuel'od.Itistheintegraloftheheatfluxovertheheattransferareaassociatedwiththeunitlength.SUSQUEHANNA-UNIT21-3
2.1 SAFETYLIMITSBASES
2.0INTRODUCTION
Thefuelcladding,reactorpressurevesselandprimarysystempipingQJaretheprincipalbarrierstothereleaseofradioactivematerialstothe5environs.SafetyLimitsareastahlishedtoprotecttheintegrityorthesebarriersduringnormalplantoperations.and,anticipatedtransients.ThefuelcladdingintegritySafetyLimitissetsuchthatnofueldamageiscalculatedtooccurifthelimitisnotviolated.Becausefueldamageisnotdirectlyobservable,astep-backapproachisusedtoestablishaSafetyLimitsuchthattheMCPRisnotlessthanthelimitspecifiedinSpecification2.1.2.MCgreaterthanthespecifiedlimitrepresentsaconservativemarginrelativetotheconditionsrequiredtomaintainfuelcladdingintegrity.Thefuelcladdingisoneofthephysicalbarrierswhichseparatetheradioactivematerialsfromtheenvirons.Theintegrityofthiscladdingbarrieisrelatedtoitsrelativefreedomfromperforationsorcracking.Althoughsomecorrosionoruserelatedcrackingmayoccurduringthelifeofthecladding,fissionproductmigrationfromthissourceisincrementallycumulativeandcontinuouslymeasurable.Fuelcladdingperforations,however,canresultfromthermalstresseswhichoccutfromreactoroperationsignificantlyabovedesignconditionsandtheLimitingSafetySystemSettings.Whilefissionproductmigrationfromcladdingperfora-tionisjustasmeasurableasthatfromuserelatedcracking,thethermallycausedcladdingperforationssignalathresholdbeyondwhichstillgreater.thermalstressesmaycausegrossratherthanincrementalcladdingdeterioration.Therefore,thefuelcladdingSafetyLimit-isdefinedwithamargintothecon-ditionswhichwouldproduceonsetoftransitionboiling;MCPRof1.0.Theseconditionsrepresentasignificantdeparturefromtheconditionintendedbydesignforplannedoperation.Thc/ACPRfuelcloddy'natnfgriAGaf~ti'~g't'ssvresMcddv~nnnormalojherattostandduring.antlcspatwoperatyshnaloccvrtkaes,cttfeast'9.vPoofwd.<typalrcdsWxl-3Theuseofthe~correlationisnotvalidforallcriticalpowercalculationsatpressuresbelow785psigorcoreflowslessthan10%ofratedflow.Therefore,thefuelcladdingintegritySafetyLimitisestablishedbyothermeans.ThisisdonebyestablishingalimitingconditiononcoreTHERMALPOWERwiththefollowingbasis.'incethepressuredropinthebypassregionisessentiallyallelevtationhead,thecorepressuredropatlowpowerandflowswillalwaysbegreaterthan4.5psi.Analysesshowthatwithabundle.flowof28x10'bs/hr,bundlepressuredropisnearlyindependentofbundlepowerandhasavalueof3.5psi.Thus,thebundleflowwitha4.5psidrivingheadwillbegreaterthan28x10'bs/hr.FullscaleATLAStestdatatakenatpressuresfrom14.7psiato800psiaindicatethatthefuelassemblycriticalpoweratthisflowfsapproximately3.35MWt.Withthedesignpeakingfactors,thiscorrespondstoaTHERMALPOWERofmorethan50KofRATEDTHERMALPOWER.Thus,aTHERMALPOWERlimitof25KofRATEDTHERMALPOWERforreactorpressurebelow785psigisconservative.SVS(UEHANNA-UNIT2B'-1AmendmentNo.26 SAFETYLIMITSgpZ~~ir~~~>S~roep~.gBASES2.2THERMALPOWERHihPressureandHihFlowefuelcladdingintegritySafetyLimitissetsuchthatnomeanisticfueldageiscalculatedtooccurifthelimitisnotviolated.ncetheparameterwhichresultin.fueldamagearenotdirectlyobservablduringreactoropeation,thethermalandhydraulicconditionsresultininadeparturefrnucleateboilinghavebeenusedtomarkthebeg'ingoftheregionwhere1damagecouldoccur.Althoughitisrecogniedthatadeparturefromcleateboilingwouldnotnecessarilyresulin"damagetoBWRfuelrods,thecricalpoweratwhichboilingtransition'scalculatedtooccurhasbeenadopedasaconvenientlimit.Ho~ever,euncertaintiesinmonitoringthecorecratingstateandintheprocedur'sedtocalculatethecriticalpowerresltinanuncertaintyinthevaleofthecriticalpower.Therefore,theelcladdingintegritySafetLimitisdefinedastheCPRinthelimitingfuelsemblyforwhichmoreth99.9XofthefuelrodsinthecoreareexpectedtavoidboilingtransitinconsideringthepowerdistributionwithinthecorendalluncertaintiTheSafetyLimitMCPRisderminedusintheGeneralElectricThermalAnalysisBasis,GETAB,whichisstatisticmodelthatcombinesalloftheuncertaintiesinoperatingparametsandeproceduresusedtocalculatecriticalpower.TheprobabilityofeourrenceofboilingtransitionisdeterminedusingtheGeneralElectricrticalguality(X)BoilingLength(L),GEXL,correlation.TheGEXLt.orrelatiisvalidovertherangeofconditionsusedinthetestsofthedtaedtodevelopthecorrelation.Therequiredinputtothesta~sticalmelaretheuncertaintieslistedinBasesTableB2.l.2-1andtheminalvaluesofthecoreparameterslistedinBasesTable82.1.2-2.ThebasesfortheuncerintiesinthecorepaametersaregiveninNEDO-20340andthebasisrtheuncertaintyintheXLcorrelationisgiveninNEDO-10958-A.Theperdistributionisbasedonaypical764assemblycoreinwhichtherodptternwasarbitrarilychosentopoducea'skewedpowerdistributionhavingtgreatestnumberofassembliesattlathighestpowerlevels.Theworstdstributionduringanyfuelcyclewouldhotbeassevereasthedistributiousedintheanalysis."GeneralElericBWRThermalAnalysisBases(GETAB)Data,Correla'onandDesignapplation,'"NEDO-10958"A.Generalectric"ProcessComputerPerformanceEvaluationAccuracy"NEDO-240andAmendment1,NEDO-20340-1datedJune1974andDecember197respetively.SUS)UEHANNA-UNIT2B2-2
SAFETYLIMITSh/sd5~i'0&9,/.gBASES2.1.2THERMALPOWDERHighPressureandHighFlowOnsetoftransitionboilingresultsinadecreaseinheattransferfromthecladand,therefore,elevatedcladtemperatureandthepossibilityofcladfailure.However,theexistenceofcriticalpo~er,orboilingtransition,isnotadirectlyobservableparameterinanoperatingreactor.Therefore,themargintoboilingtransitioniscalculatedfromplantoperatingparameterssuchascorepower,coreflow,feedwatertemperature,andcorepowerdistribution.Themarginforeachfuelassemblyischaracterizedbythecriticalpowerratio(CPR),whichistheratioofthebundlepowerwhichwouldproduceonsetoftransitionboilingdividedbytheactualbundlepower.Theminimumvalueofthisratioforanybundleinthecoreistheminimumcriticalpowerratio(MCPR).TheSafetyLimitMCPRassuressufficientconservatismintheoperatingMCPRlimitthatintheeventofananticipatedoperationaloccurrencefromthelimitingconditionforoperation,atleast99.9Ãofthefuelrodsinthecorewouldbeexpected,toavoidboilingtransition.Themarginbetweencalculatedboilingtransition(MCPR=l.'00)andtheSafetyLimitMCPRisbasedonadetail-edstatisticalprocedure.whichconsiderstheuncertaintiesinmonitoringthecoreoperatingstate.OnespecificuncertaintyincludedinthesafetylimitistheuncertaintyinherentintheXN-3criticalpo~ercorrelation.XN-NF-524describesthemethodologyusedindeterminingtheSafetyLimitMCPR..ITheXX-3criticalpowercorrelationisbasedonasignificantbodyofpracticaltestdata,providingahighdegreeofassurancethatthecriticalpowerasevaluatedbythecorrelationiswithinasmallpercentageoftheactualcriticalpowerbeingestimated.Theassumedreactorconditionsusedindefiningthesafetylimitintroduceconservatismintothelimitbecauseboundinghighradialpowerfactorsandboundingflatlocalpeakingdistribu-tionsareusedtoestimatethenumberofrodsinboilingtransition.StillfurtherconservatismisinducedbythetendencyoftheXN-3correlationtooverpredictthenumberofrodsinboilingtransition.TheseconservatismsandtheinherentaccuracyoftheXN-3correlationprovideareasonabledegreeofassurancethat'uringsustainedoperationattheSafetyLimitMCPRtherewouldbenotransitionboilinginthecore.Lfboilingtransitionweretooccur,thereisreasontobelievethattheintegrityofthefuelwouldnotnecessarilybecompromised.SignificanttestdataaccumulatedbytheU.S:NuclearRegulatoryCommissionandprivateorganizationsindicatethattheuseofaboilingtransi-tionlimitationtoprotectagainstcladdingfailureisaveryconservativeapproach.MuchofthedataindicatesthatLMRfuelcansurvive,oranextendedperiodoftimeinanenvironmentofboilingtransition.
BasesTableB2.1.2-2NOMINALVALUESOFPARAMETERSUSEDINTHESTATTICALANALYSISOFFUELCLADDINGINTEGRITYSAFETYMITTHERMALPERCoreFlowDomePressureChannelFlowAreaR-Factor3323MW108.5Mlb/hr1010.4psig0..1089i'Highenriment-1.043Mediumeichment-1.039Lowenrchment-T.030SUS/UEHANNA-UNIT2B2-4 REACTIVITYCONTROLSYSTEMS3/4.1.2REACTIVITYANOMALIESLIMITINGCONDITION.FOROPERATIONdilfcrcncetehrW>~mon>+or~Corekegrrnd~cprrdrcfcd<ore,keg3.1.2Thereactivityshallnotexceed1Xdeltak/k.APPLICABILITY:OPERATIONALCONDITIONS1and2.ACTION:digaexcgreX&rWiththereactivitythanKdelta.k/k:a.Within12hoursperformananalysistodetermineandexplainthecauseofthereactivitydifference;operationmaycontinueifthedifferenceisexplainedandcorrected.b.Otherwise,beinatleastHOTSHUTOOWNwithinthenext12hours.SURVEILLANCEREOUIREMENTSthonlkorcdclorc4<@..12*i<<'+EH&FR-andthepredictedshallbeverifiedtobelessthanorequaltoAdeltak/k:~ce4fa.Ouringthefirst'tartupfollowingCOREALTERATIONS,and7~MWD~~o4coreevpceorc.b.AtleastonceperduringPOWEROPERATION.SUS(UEHANNA-UNIT23/41-2 3/4.2POWERDISTRIBUTIONLIMITS3/4.2.1AVERAGEPLANARLINEARHEATGENERATIONRATELIMITINGCONDITIONFOROPERATION,@QE4oelandAveR4aES~ouexseev~e4re~3.2.1AllAVERAGEPLANARLINEARHEATGENERATIONRATES(APLHGRs)foreachtypeoffuelasafunctionofAVERAGEPLANAREXPOSUREshallnotexceedthelimitsshowninFigures3.2.1-1,3.2.1-2,and3.2.1-3."APPLICABILITY:OPERATIONALCONDITION1,whenTHERMALPOWERisgreaterthanorTEEEEE0EE.ACTION:WithanAPLHGRexceedingthelimitsofFigure3.2.1-1,3.2.1-2,or3.2.1-3,initiatecorrectiveactionwithin15'inutesandrestoreAPLHGRtowithintherequiredlimitswithin2hoursorreduceTHERMALPOWERtolessthan25KofRATEDTHERMALPOWERwithinthenext4hours.TSURVEILLANCEREUIREMENTS4.2.1AllAPLHGRsshallbeverifiedtobeequaltoorlessthanthelimitsdeterminedfromFigures3.2.1-1,.3.2.1-2,and3.2.1"3:a.Atleastonceper24hours,b.Within12hoursaftercompletionofaTHERMALPOWERincreaseofatleast15KofRATEDTHERMALPOWER,andc.Initiallyandatleastonceper12hourswhenthereactorisoperatingwithaLIMITINGCONTROLR00PATTERNforAPLHGR.d.TheprovisionsofSpecification4.0.4arenotapplicable."SeeSpecification3.4.1.1.2.aforsingleloopoperationrequirements.SUSQUEHANNA-UNIT23/42-1AmendmentNo.26 CllCm'3g4120.LLI~4I-11QLLIgZKeD+101000;12.2I200;12.0eooo;12.6PERMISSIBLEREGIONOF10.000:12.816,000;:12.9='0.000;12.60;11.730,M0:OPERATI96,00010.00016.00020.00026.00030.000AVERAGEPLANAREXPOSUREIMWdlt)FIGURE3.2.1-1HAXIHUHAVERAGEPLANARLINEARHEATGENERATIONRATE(HAPLHGR)VERSUSAVERAGEPLANAREXPOSUREINlTIALCOREFUELTYPE8CR183(LOWENRICHHENT).
13Ig)~I12Q)~CDL~~0)q)11QC0)g)~10CO0).C91102;12.211023.'...:.16,535;:..:..:...5512;12.8..:......12.6.::::220;,'2.0~~~4~~~I~~~~~.:.'.PERMISSABLE...'EGIONOFOPERATION~~22,046;:12.6~~~~~-:33,069;:10.8~~~~.::27,558;11.706000100001600020000260003000036000AveragePlanarExposure(MWD/MT)MAXIMUMAVERAGEPLANARLINEARHEATGENERATIONRATE(MAPLHGR)VERSUSAVERAGEPLANAREXPOSUREGEFUELTYPESSCR183(1.83/oENRICHED)FIGURE3.2.1-1 C~mMCalI13RgJR~O~PPgg11g2Ne-10FAILz0122100;196000;PERSREGlONOPERABL0N216,000;12220,000;12.1000;1630,MO11206,00010.00016,00020,MO26,MO30,000AVERAGEPLANAREXPOSURE{lNWdlt)FIGURE3.2.1-2HAXIHUHAVERAGEPLANARLINEARHEATGENERATIONRATE(HAPLHGR)VERSUSAVERAGEPLANAREXPOSUREINITIALCOREFUELTYPE8CR233(HEDIUHENRICHHENT)
~'
13L(Q~~12q)OI)110)~(D~(3.E+X(g~10QCI~~5512.::-:::.:.....16,535;:.::..I.'33,06S;112~~~~~~PERMISSABLEREGIONOFOPERATIONII~~~~~~~~~~~~~~~~~~~~~~~~I1102,12.112.0220;:.':..:.:11,023;:.2.::.11.611.S:.'2.1MeI05000100001500020000250003000035000AveragePlanarExposure(MWD/MT)'AXIMUMAVERAGEPLANARLINEARHEATGENERATIONRATE(MAPLHGR)VERSUSAVERAGEPLANAREXPOSUREGEFUELTYPES8CR233{2.33%ENRICHED)FIGURE3.2.1-2 IL~-.gogi-ta<QIllcfR$XgKz12200;11.61000;6MO;1111.4110PERhhlSSIREGIOOPION10.1.616,000;11.620,000;11.0:26,000;030.000;9.76,00010,00016.00020,00026.000AVERAGEPLANAREXPOSURE{MWdltlFIGURE3.2.1-3HAXIHUHAVERAGEPLANARLINEARHEATGENERATIONRATE(HAPLHGR)VERSUSAVERAGEPLANAREXPOSUREINITIALCOREFUELTYPE8CR711(NATURALENRICHHENT)
12g)~CCO~C$I~10q)O,CSDX8COI-C~~~~~\~\~~~~~~~~~~0.0;10.2~~~~~~~~~~~~I~~~~~~I~~~~~~~~'ERMISSABLEREGIONOFOPERATIONI~I~~~~~~~~~I~I~\~~~~~I~~~~~~~~::20,000;10.2~~~~~~~~~~~I~II~~~~'~~~~~~~:.,25,000;9.6~~~~~~~~~~~~~~~~~~~~~~~~I~I\~~~~~~~~I40,000;:,:,,7.6~~~~~I~I~I~~II~~~~~~~~~~I~~~~~~~0600010000160002000026000300003600040000AverageBundleExposure(MWD/MT)MAXIMUMAVERAGEPLANARLINEARHEATGENERATIONRATE(MAPLHGR)VERSUSAVERAGEBUNDLEEXPOSUREEXXON9X9FUELFIGURE3.2.1-3
'4 POWERDISTRIBUTIONLIMITS3/4.2.2APRMSETPOINTSLIMITINGCONDITIONFOROPERATION3.2.2TheAPRMflowbiasedsimulatedthermalpower-upscalescramtripsetpoint(S)andflowbiasedneutronflux-upscalecontrolrodblocktripsetpoint(SRB)shallbeestablished.accordingtothefollowingrelationships:TriSetointAllowableValu'eS<0.8W+59K)TS<0.BW+6ZX)TSRB<(0.58W+50K)TSRB<(0.58W+53K)Twhere:SandSBareinpercentofRATEDTHERMALPOWER,W=LooIIrecircu1ationflowasapercentageofthelooprecirculationflowwhichproducesaratedcoreflowof100millionlbs/hr,T~LowestvalueoftheratioofFRACTIONOFRATEDTHERMALPOWERdividedbythe,MAXIMUMFRACTIONOFLIMITINGPOWERDENSITY.Mherc'.,'The.FR4CTIONCIPLINIITIIhIIPPOWER'bEN5ITQ(FLPD)%r66WLI+lISadLAalLulEARHEATGEPIPFATIOAl'FREE(I.Hcow')dividf.'dIcbtII<3.+PegSpec'14C&On3.2.9.I,CndbThcFLPD4brFecoofuelI'sWc.ac&alLH&'RBI'sidedbgWd'INEARAE'4TQ&IKRATIoA4'RPTR5omFi'pics.2.2-l.Tl5aliAIaytless"lhasaoIduct.(<cp[.oAPPLICABILITY:OPERATIONALCONDITION1,whenTHERMALPOWERisgreaterthanorfIATEIIYhEIN0ER.ACTION:WiththeAPRMflowbiasedsimulatedthermalpowerupscalescramtripsetpointand/ortheflowbiasedneutronflux-upscalecontrolrodblock,tripsetpointlessconservativethanthevalueshownintheAllowableValuecolumnforSarS>>,asabovedetermined,initiatecorrectiveactionwithin15minutesandaU)ustSand/orSRtobeconsistentwiththeTripSetpointvalue",within2hoursorreduceIIHERMALPOWERtolessthan25KofRATEDTHERMALPOWERwithinthenext4hours.SURVEILLANCEREOUIREMENTS4.2.2TheFRTPandtheMFLPDshallbedetermined,thevalueofTcalculated,andthemostrecentactualAPRMflowbiasedsimulatedthermalpower-upscalescramandflowbiasedneutronflux-upscalecontrol,rodblocktripsetpointsverifiedtobewithintheabovelimitsoradjusted,aqrequired:a.Atleastonceper24hours,b.Within12hoursaftercompletionofaTHERMALPOWERincreaseofat1east15KofRATEDTHERMALPOWER,'andc.Initiallyandatleastonceper12hourswhenthereactorisoperatingwithMFLPDgreaterthanorequaltoFRTP.d.TheprovisionsofSpecification4.0.4arenotapplicable.'WithMFLPDgreaterthantheFRTPduringpowerascensionupto90KofRATEDTHERMALPOWER,ratherthanadjustingtheAPRMsetpoints,theAPRMgainmaybeadjustedsuchthatAPRMreadingsaregreaterthanorequalto100KtimesMFLPD,providedthatthe"adjustedAPRMreadingdoesnotexceed100KofRATEDTHERMALPOWER,therequiredgainadjustmentincrementdoesnotexceed10KofRATEDTHERMALPOWER,andanoticeoftheadjustmentispostedonthereactorcontrolpanel.SeeSpecification3.4.1.1.2.aforsingleloopoperationrequirements.SUS(UEHANNA-UNIT2'/42.-5AmendmentNo.26 18-~I\~~~~~~~~~~~~~..0.0;.16.0~~~~~~~~~~~~~~~~~~~e~16CMp~~V1C]4C~0evUe(g12e>Kcc~CLcgQ10C:pLL~~h24,0014.60;~'~~~~~~~~~~~~~~~~~~~4~I~~I~h~~4J~~~~~~h~h~it~~~~~~~~~~P.~h1~~~I1'II'~1~~~~~~~~~~~~:..43,200;9.7\~hh'~~~~~hhah~J~~I~~~~~~~~~~48,000;8.6I~~~~~C'hh~~~~~~~01000020000300004000050000AveragePlanarExposure(MID/MT)LINEARHEATGENERATIONRATEFORAPRIVISETPOINTSVERSUSAVERAGEPLANAREXPOSUREEXXONSXSFUELFIGURE3.2.2-1
POWERDISTRIBUTIONLIHITS3/4.2.3MINIHUHCRITICALPOWERRATIOLIMITINGCONDITIONFOROPERATION.2.3TheHINIMUMCRITICALPOWERRATIO(MCPR)shallbeequaoorgreaterntheRCPRlimitdeterminedframFigure3.2.3-1aorFig3.2.3-lh,asicable,timestheKfshowninFigure3.2.3-2,providehattheend-of-cyclereculationpumptrip(EOC-RPT)systemisOPERABLEperpecification3.3.4.2andturbinebypasssystemisOPERABLEperSpecificon3.7.8,.with:ave-BAB=0.86seconds,controlaveragescraminsertiontimelimittonotch39peecification3.1.3.3,688+1.65{N)~(0.052),nEi=1avenN.where:nnumbersurveillancetestspormedNi=numbof,activecontrolrodsmeaedti=avagescramtimetonotch39ofalseillancetest,andtodateincycle,intheisurveillancetests,odsmeasuredinthei.-thN>talnumberofacti'verodsmeasuredincification4.1.3.2.a.APPLBILITY:OPTIONALCONDITION1,whenTHERMALPOWERisgreaterEDTHERMALPOWER.orequalto25XofSUS)UEHANNA-UNIT23/42-6Amendmeno.10 POWEROISTRIBUTIONLIMITSLIMITINGCONOITIONFOROPERATIONContinuedACTION:a.Withtheend-of-cyclerecirculationpumptripsystemiableperSpecification3.3.4.2,operationmaycontinueandthevisionsofSpecification3.0.4arenotapplicableprovidedthaithin1hour,MCPRisdeterminedtobegreaterthanorequaltoeMCPRlimitasafunctionofaveragescramtimeasshowninFigu.2.3-.1aor.Figure3.'2".3-1b,asapplicable,EOC-RPTinopeecurve,timestheKfsh~ninFigure3-2.3-2b.iththeturbinebypasssysteminoperaberSpecification3.7.8,o~ationmaycontinueandtheprovisiofSpecification3.0.4arenopplicableprovidedthatwithinur,MCPRisdeterminedtobegrethanorequaltotheMCPRtasafunctionofaveragescramtimeshownin.Figure3.2.3-1aFigure3.2.3-1b,asapplicable,turbinpassinoperablecurvimestheKfsho~ninFigure3.2.3-2.c.WithMCPRsthantheappableMCPRlimitdeterminedfromFigure3.2.aorFigure2.3-lb,asapplicable,andFigure3.2.3-2,initiatecoriveact'ithin15minutesandrestoreMCPRtowithinthereqedliwithin2hoursorreduceTHERMALPOWERto,A~lessthan25KofTTHERMALPOWERwithinthenext4hours.~~SURVEILLANCEREUIREMEHTS4.2.3MCPR,withab.cshallbedetermi3.2.3-t=1.0pr'operformancfortheeinaccordancexasdnedinSpecification3.usedtodeterminethelimitwithi2hoursoftheconclusioneachscramtimesurveillancetesequiredbySpecification4.1.ftheinitialscramtimemeasurementsSpecification4.1.3.2,orTprovisionsofSpecification4.0.4aotapplicable.terminedtobeequaltoorgreaterthanthpplicableMCPRlimitdfromFigure3.2.3-1aorFigure3.2.3-lb;aslicable,andFigureAt.,leastonceper24hours,b.Within12hoursaftercompletionofaTHERMALPOWERreaseofatleast15%ofRATEOTHERMALPOWER,and'mInitiallyandatleastonceper12hourswhenthereactowithaLIMITINGCONTROLROOPATTERNFORMCPR.ThepAvisionsofSpecification4.0.4arenotapplicable.operatingSUSQUEHANNA-UNIT23/42-7AmendmentNo.10 POWERDISTRIBUTIONLIMITS3/4.2.3MINIMUMCRITICALPOWERRATIOLIMITINGCONDITIONFOROPERATION3.2.3TheMIHIMUMCRITICALPOWERRATIO(MCPR)shallbey~c~c~al~sdef~rmif,&fro~Fibre3K3ofF(porc.3.Z.3>>lb,~casap)(faye~F~~APPLICABILITY:OPERATIONALCONDITION1,whenTHERMALPOWERisgreaterthanof'ATlBTEIUSER.ACTION:4t7WC)WithMCPRlessthantheapplicableMCPRlimitdetermined~hei*II.iIla~\,towithintherequiredlimitwithin2hoursor'reduceTHERMALPOWERtolessthan25"ofRATEDTHERMALPOWERwi.hinthenext4hours.SURVEILLANCEREOUIREMEHTS4.2.3.1MCPRshallbedeterminedtobegreaterthanorMCPRlimitdeterminedfromFigurc8,P.s-la.a.Atleastonceper24hours,'qualtotheapplicable'3.2.s-)b>AndFIgorc,3.2.3-Z:b.Within12hoursaftercompletionofaTHERMALPOWERincreaseofatleast15XofRATEDTHERMALPOWER,andc.Initiallyandatleastonceper12hourswhenthereactorisoperatingwithaLIMITIHGCONTROLRODPATTERNforMCPR.Tine.prcxlieonsaIrN"ntapplire4te.
~+~e0~5IQ~pgl~p~'3FQ~g[ggpp~saaNI'.88~~
MINIMUMCRtttCALPOWERRATIOQCPR)VERSUS~ATRATEDR.Oeg4plruk'AO~0)ii~$0$~~i~ofof~~~t<<0~Igf~fttt~I~I~~~~~tf~ofo)~I~~~00~I~~~I~)~~~~~~Ittt~~~ft)~~$04~~~04<<~~I~jel~~~~~~~I<<I~~~}tfo)1Aojojo:f:jrt:I::I~~~~~~~~OtoitIt00~Iftf'tool~<<5~~fifo~~~\~i~~~~~~~~Iolt:IOL'eit~0~i~i~f440)rf0~I~)oft)oftef~le)till~oi~~~~~~4tttet}I~14~fr)II~~04$0)~~~~~~0<<HN1~)~)ojot~~~~~~~~Ottteol~~j'I'iI'itl04lo~1~~~1<<1000~~~~~~~IIIfojoI~fNt1004~fefo)~)~~~~~'I'I'tot~f~)tfof~fofoiol~Itjt)~0~~fr)~)~)~~loioloie~~~~~00)ofoto~ftftfof~~~~~Hoo~000~~~~~to)1~it)el~)~~loF0'~~HI<<I~~~~~~I~)~)If~Ifofofi}~efofof~)~$0$0410oillo$0$~0!olllrl~~~~~~~~~~~~~r001000~1100I001~0NN04~~~~~~~~~~~~I~ft)1't'}'I'I~otofot~~~~~~~~~~~HIttoto~~lI1I010~~I~IItof~I'I'I'I100)lt~loll)el$04lol~~'44$~~~~~~~~~~~~~Nlf00<<~loeettt<<04)ef~lo04)044oioiejoief't'toI'~~I~10)~Io}~0jtft)~)~4$~$0$1000$1toi<<1~~~~~~~~~~~~~fef0I0)oft}0)~~~~~}NNI0~)etc]0f~I0loiol~~~II<<IIII~~itofeef~I~If~iiel~'4+404~fef~~OflftfOft~~~~~~~~1)ottet~INl~oftfofI)~~Oft}~~~it)0)~I~~~~~~~0000~~~~Iel0$0~I~foI~I~I~~i~~~~foI0104fofo~111~~~tlfI.~~~lo~IteI)~~jW~fe~4~01~I~~~~~NHI~~~~~}40~~I~~ltl~~~~~HNI~0<<~~~~4)eltiI~~~~410}IeteI~j'0$0)t)~~0000$0$~~~~~~t'I~iei~)of0}0)~~4$0~ftet~t01~~~~Nt'll~~~I~jo$14$~~~~~~00~01~I~~~~~ltioit~~~~~I0<<N00~I~)4)0$0~loll)04~leloleo~~~~~~44)040$~~ie)~I~I~~4$0014~~~~~~I'i'}oi<<0$04$0~~~~~10oeoII~~fifoftfo0~~0$0$0I~I0$<<~Ittd~I~~1~4~~)0~~~~)~)~)~4$0$0~~~~ttt<<0~I~l~I~Iefto<<I0I~~~itIlt~~~~01~I~~~l04$0$~~~~~Ieoeo00~)~)0}1}~~004It4~~~~~f~)~~~to0$1~I~~0)10~~~Heeootr~~~~)I}0~0~00~~~~~~~~I~Ifttoiei4~~~I~)ol~~~~~111tH~~~~~fofolof000$0$0'~~~~~~OttO~~~~~~0<<otel~~~~101~10)Ijejojgj~~~~~~000~~I~~~~~~~$1loi~l~~~~~)tee)of~4jt)ol~l~~~~Nt<<~~~~)0~004~~~I~I~)0)~~~~~ItfetcI~}0)0}0}~$0$4j~$0~~\~'I'I'I'I'4lolbio~je~ft~~~io444~~~~~$044~~~~~~I~I~jolt)~I~~~~~~40fNeo~~fe)ofof~lolelelr~l~iolt~~~~~~0I400\II~~~tttl}ott~4$0)ei~~e0444~~~~~0010)~~~10fI~i~~I~~~~~~~~~~~~)efo)~lotofo~jt<<000~~~~10}o~0~f~i~)0f0~)0~l~}of~I~)0)90~lof044HN00<<~~~~~io)~)~)~~f4~~)~)~~~~~Itt~}I~~~~~~~~~~00<<N10<<teOONo~0~~~~~~~~~~~lol~0}0}I~~otter~y~~jojejojt~~~~NIIIO<<1~~~~~flitf01~~'tie)I~~~~l~~~Itt~~I~~~~lt~I~0000<<00~~~~~1HNoo~~~~~~No~I~00)000<<0~0~~~~0014<<tt~~~<<4~IIN0~~J~~00~I~I~I~I~~0~I~~~~~~00<<000HI000~~~~~~~~l~illlie~~~~00010~~~~~~~I0}4)0}~~jolt)el~~~~~~~~~)IN)~$04)0).tjogjiIIjt'0}0)ot~~~I~I~~~~~itl04$~~~~00/0~jjjojojt~~~~~eetotoot~~~~ftfofo~lelllol~~~~~~~~ftf~fof~~jofojoj~010I0)0~I~I~Ie)I~~~~~1<<lt<<~~000~I~I~lolte04~~~~~4H<<1~~~~~~totttf~$04$0$0110011~I~ftftfof~Iiolel~4~~~~~~~~I~)~)~)~~fttololt~teftto<<~j).jj.~~~~~~~~~~~)~)0}0}~$0)044~~~~~0~'H<<tI~~~~~)~)~)~I~~ftoto~l04loi~~~~~ITjj~$'0'~~~ttrolol~~~~~~~~~~1$1~IH00<<<<401~~~~~~~~ltlolo~~Ot~I~IO~~~~It~~1~~~~~~I~00010~~~~~~41<<000~~~~~01~0~~~I~~~~I~0I~I~III0I~00000~~~~~~~~0000404If10101Ho0~~~~~0~I~I~~~$000~444$0~~~~ototi00I~~~~~40~ootj~~~~~Ittttt~I~~~~fe)lf~I~~jojtj~~40014lo~~~~~4N\OHI~~~Ifttott}~~iolllolo~004$00~~0~~~I0ItIetI~~~~~foftfof~$04$~~oioioooi~~~~10000<<1~~~~~foftftft~$0440~4'ej~~~~~OHI~~0)~I~I~~4lolol0~~~~~~)~){of~~lollie)~~~~~~0<<ettot~~~~)oft)~f~~itt00~~~~~<<0~~~~~IIIII~~leltlolo~00400$~~~~~<<etotto~~~~~0~fofoi~~lolol~'~~~otltotio~~~~~III0114~~~~~~)~It}\I~ioioi~j~OH10HII~~~~~~~~000<<000~~0~~ttf~I~I~~$044)0~~~~~~~~~f~foeofo0$0$0$14~~~~~~~)oft'0Ijoiololo~fitoft~ftfoftfo04lelele~~~~Hte10NI~~~~fof~frft01010{If0~)I{I)do~~~~~i1000teI~10)01't~~ftf~}Ifo~1044it~~~~~0<<1101~~~~~ftftfti~~fof~)of~4$04lo~ft}tftfo~}0If~~4)le~i!.1~t~Itt~')0~)~~to~4I',.~fofo)of~~I~I~)01~ititle)i~~~~~)It<<<<t~~~~foftftft~toto)ot~to)o}0)~~~~011<<0<<~~~~00001II~~~~~~fofo}ofo~4$4+4~~It)0000~~~~00~I~I~~~~~~~~~~~~Nt~~~~~00<<0~~~1.0}1~itli~~~HIIH~~~~0Itt0<<I~~~~~ftf~I~I~~l<<olgt~0HI~04~~~~~~I00~Otoe~~~~~f10{1~~00)044~~~~Nto00I)I~0<<00<<t~~~~~0041~00~~~~~~I'f't't'lH14$0~~~~IItNII0~JXQ9+at'4i~fo~loufo)~)04}ti~~~Ht~~~I~}~I~I~~jolt)I)0~~~4r0000~I~~~~I'tofto~jof0$04~totototo+lotINNI0$04$0~I0)t1oeIjI~I~}of~)~~loll)14~jojoi04N'I'I't~)0$0}0}~~ititeei~~~~~H~INN~)~)If1)~tie<<NI0~1$044~~~~Itofo~ftI)~~iet~~~4$440~it)04$0~~~~~ttlte040~~~~~)0it)~~$04$0$0~$4e4$0~t<<400<<4ijji~44foio'H'tot0tet0)0}0f0loioi0~44$0)~0000foI1I)otttot40$0$04~I~~jo0I~<<444$.~44)oit~~~Of.04.OdOAOP0.00.74.84,fo22ueA!i&A!14thfha~MfhapchohftjCOCICYOpicoQI0CCCNtTfhapemhfe;MafhT4rhfhOI>ateOperebfo4COC-RffAndXajhlQAlhoSypataOperable~RIMSETPERMS',3.aTRIPHJNCTIONl,a,2SUS)UEHANNA-UNIT2flOURCWdf13/4'2-eAmendmentNoe26 oIzoooURoIC8888Al88'1.'arscf,Il~~gII-RDoXXccvoooooI-,I-.u.~u.~QocoopCJ0ud~a0CCd~OgNICDo>>oP)cUUJo<CCVC9UeCCdClClSUS/UEHAHI<A-UNI23/42-9 1.7E161.6C1.4tX:O1.3Figurestobesuppliedlater1.24060607080TotalCoreFlow(%OF.RATED)90100FLOWDEPENDENTMCPROPERATINGLIMIT(RBMSETAT<0.66W+40%)FIGURE3.2.3-1a1.7~E160)1.61.4CLlECLO1.3Figurestobesuppliedlater4060607080TotalCoreFlow(%OFRATED)90100FLOWDEPENDENTMCPROPERATINGLIMIT'"(RBMSETAT<0.66W+42%)FIGURE3.2.3-tb 0
1.71.B~~1.5CCL01.4LLOFigurestobesuppliedlater1.31.220304060607080CorePower{/oOFRATED)REDUCEDPOWERMCPROPERATINGLIMITFigure-3.2.3-280100 POWERDISTRIBUTIONLIMITS3/4.2.4LINEARHEATGENERATIONRATEMITINGCONDITIONFOROPERATION3.2.4TheLINEARHEATGENERATIONRATE(LHGR)shallnotexceed13.kl/ft.APPLICABITY:OPERATIONALCONDITION1,whenTHERMALPOWERisgaterthanorequaltoofRATEDTHERMALPOWER.ACTION:WiththeLHGRoanyfuelrodexceedingthe'limit,initiatcorrectiveactionwithin15minutesndrestoretheLHGRtowithinthelimiwithin2hours.,orreduceTHERMALPOWtolessthan25KofRATEDTHERMALPERwithinthenext4hours.SURVEILLANCEREUIREMENTS4.2.4LHGRsshallbedetermintobeequalorlessthanthelimit:a.Atleastonceper24hos,b.Within12hoursaftercomptioofaTHERMALPOWERincreaseofatleast15KofRATEDTHERMALP,andc.Initiallyandatleastoncee2hourswhenthereactorisoperatingonaLIMITINGCONTROLRODTTERforLHGR.d.TheprovisionsofSpecifcation4.0.arenotapplicable.g4gA,SUSQUEHANNA-UNIT23/42-10
POWERDISTRIBUTIONLIMITS3/4.2.4LINEARHEATGENERATIONRATELIMITINGCONDITIONFOROPERATIONPE-trJIPJTHP~(e-Z3.2.4.1TheLINEARHEATGENERATIONRATE(LHGR)forGEfuelshallnotexceed'13.4kw/ft.APPLICABILITY:OPERATIONALCONDITION1,whenTHERMALPOWERisgreaterthanorfIATKDIIIEINLK.ACTION:WiththeLHGRofanyfuelrodexceedingthelimit,initiatecorrectiveactionwithin15minutesandrestoretheLHGRtowithinthelimitwithin2hoursorreduceTHERMALPOWERtolessthan25KofRATEDTHERMALPOWERwithinthenext4hours.SURVEILLANCEREUIREMENTS4.2.4.1LHGRsforGEfuelshallbedeterminedtobeequaltoorlessthanthelimit:a.Atleastonceper24hours,b.C.Within12hoursaftercompletionofaTHERMALPOWERincreaseofatleast15'fRATEDTHERMALPOWER,andInitiallyandatleastonceper12hourswhenthereactorisoperatingonaLIMITINGCONTROLR00PATTERNforLHGR.d.TheprovisionsofSpecification4.0.4arenotapplicable.3/42-10 POWERDISTRIBUTIONLIMITS3/4.2.4LINEARHEATGENERATIONRATE~~~ENCFUELLIMITINGCONDITIONFOROPERATION3.2.4.2TheLINEARHEATGENERATIONRATE(LHGR)forENCfuelshall'notexceedtheLHGRlimitdeterminedfromFigure3.2.4.2-1.APPLICABILITY:OPERATIONALCONDITION1,whenTHERMALPOWERisgreaterthanorI'IIIETEETEEEIEIEll.ACTION'WiththeLHGRofanyfuelrodexceedingthelimit,initiatecorrectiveactionwithin15minutesandrestoretheLHGRtowithinthelimitwithin2hoursorreduceTHERMALPOWERtolessthan25KofRATEDTHERMALPOWERwithinthenext4hours.SURVEILLANCEREUIREMENTS4.2.4.2limit:LHGRsforENCfuelshallbedeterminedtobeequaltoorlessthantheAt1eastonceper24hours,Within12hoursaftercompletion'ofaTHERMALPOWERincreaseof.atleast15KofRATEDTHERMALPOWER,andInitiallyandatleastonceper12hourswhenthereactorisoperatingonaLIMITINGCONTROLRODPATTERNforLHGR.d.TheprovisionsofSpecification4.0.4arenotapplicable.3/42-10a 1614Eto12C0~~10C9lg8Ld)C"~~~~~~I~'~'II~~~~~~~~J~J~~~~~~~~~~~~~~35,000;.:9.5~~~~L~~0~:PERMISSABLEREGIONOFOPERATION.:~~IJ~~~~~~'I\~C1'I1~~~~~~~~~~'0~~~~~ww~~~I4~J~~~~L~L~~~~~~~J~~~48,000;:.7.72..0.0;13.0.;-.--;------'.-";.-.-'.-"-;---.24,000;~~I'20010000200003000040000AveragePlanarExposure(MWD/MT)50000LINEARHEATGENERATIONRATE(LHGR)LIMITVERSUSAVERAGEPLANAREXPOSUREEXXON9X9FUELFIGURE3.2.4.2-1 INSTRUMENTATIONEND-OF"CYCLERECIRCULATIONPUMPTRIPSYSTEMINSTRUMENTATIONLIMITINGCONDITIONFOROPERATION3.3.4.2Theend-of"cyclerecirculationpumptrip(EOC-RPT}systeminstrumentationchannelsshowninTable3.3.4.2-1shallbeOPERABLEwiththeirtripsetpointssetconsistentwiththevaluesshownintheTripSetpointcolumnofTable3.3.4.2-2andwiththeEND-OF-CYCLERECIRCULATIONPUMPTRIPSYSTEHRESPONSETIMEasshowninTable3.3.4.2-3.APPLICABILITY:OPERATIONALCONDITION1,whenTHERMALPOWERisgreaterthanorIIIEETIIIIIII"IllACTION:Withanend-of-cyclerecirculationpumptripsysteminstrumentationchanneltripsetpointlessconservativethanthevalueshownintheAllowableValuescolumnofTable3.3.4.2-2,declarethechannelinoperableuntilthechannelisrestoredtoOPERABLEstatuswiththechannelsetpointadjustedconsistentwiththeTripSetpointvalue.WiththenumberofOPERABLEchannelsonelessthanrequiredbytheMinimumOPERABLEChannelsperTripSystemrequirementforoneorbothtripsystems,placetheinoperablechannel(s}inthetrippedconditionwithinonehour.cod.e.WiththenumberofOPERABLEchannelstwoormorelessthanrequiredbytheMinimumOPERABLEChannelsperTripSystemrequirementforonetripsystemand:1.If.theinoperablechannelsconsistofoneturbinecontrolvalvechannelandoneturbinestopvalvechannel,placebothinoperablechannelsinthetrippedconditionwithinonehour.2.Iftheinoperablechannelsincludetwoturbinecontrolvalvechannelsortwoturbinestopvalvechannels,declarethetripsysteminoperable.Withonetripsysteminoperable,restoretheinoperabletripsystemtoOPERABLEstatuswithin72hoursorevaluateMCPRtobeequaltoorgreaterthantheapplicableMCPRlimitwithoutEOC-RPTwithin1hour"ortaketheACTIONrequiredbySpecification3.2.3.Withbothtripsystemsinoperable,restoreatleastonetripsystemtoOPERABLEstatuswithin1hourorevaluateMCPRtobeequaltoorgreaterthantheapplicableMCPRlimitwithoutEOC-RPTwithin1hour"ortaketheACTIONrequiredbySpecification3.2.3."IfMCPR1sevaluatedtobeequaltoorgreaterthantheapplicableMCPRlimitwithoutEOC-RPTwithin1hour,operationmaycontinueandthepro-visions'ofSpecification3.0.4arenotapplicable.SUSQUEHANNA-UNIT23/43-40 REACTORCOOLANTSYSTEMRECIRCULATIONLOOPS-.SINGLELOOPOPERATIONLIMITINGCONDITIONFOROPERATION3.4.1.1.2Onereactorcoolantrecirculationloopshallbeinoperationwiththepumpspeed<90Koftheratedpumpspeed,andaOthefollowingrevisedspecificationlimitsshallbefollowed:1.Specification2.1.2:theMCPRSafetyLimitshallbeincreasedto1.07.2.'able2.2.1-1:theAPRMFlow-BiasedScramTripSetpointsshallbeasfollows:3.TriSetointAllowableValue<0.58W+5'5R.Specification3.2.1:TheMAPLHGRlimitsshallbethelimitsspecifiedinFigures3.2.1-1,3.2.1-2,and3.2.1-3,multipliedbyee.0-Specification3.2.2:theAPRMSetpointsshallbeasfollows:5.Table3.3.6-2:follows:TriSetointAllowableValue.555%lT~NtTSRB<(0.58W+46K)TSRB<(0.58W+49%)TtheRBM/APRMControlRodBlockSetpointsshallbeasa.RBM-UpscaleTrioSetointAllowableValuel.,<0.66W+352.<0.66W+37K<0.66W+40K5.a.1and5.a.2shallbeusedinconjunctionwiththeMCPRlimitsspecifiedinFigures3.2.3-1aand3.2.3-Ib,respectively.b.APRM-FlowBiasedTriSetointAllowableValue<0.5+46b.APRMandLPRM"""neutronfluxnoiselevelsshallbelessthanthreetimestheirestablishedbaselinelevelswhenTHERMALPOWERisgreaterthanthelimitspecifiedinFigure3/4.1.l.1-1.c.Totalcoreflowshallbegreaterthanorequalto42millionlbs/hrwhenTHERMALPOWERisgreaterthanthelimitspecifiedinFigure3.4.1.l.l-l.APPLICABILITY:OPERATIONALCONDITIONS1"and2",exceptduringtwoloopoperation.8ACTION:a.Withnoreactorcoolantsystemrecirculationloopsinoperation,taketheACTIONrequiredbySpecification3.4.1.1.1.SUSQUEHANNA-UNIT23/44-lcAmendmentNo.26 0
PLANTSYSTEHS3I4.7.8HAINTURBINEBYPASSSYSTEHLIMITINGCONDITIONFOROPERATION3.7.8ThemainturbinebypasssystemshallbeOPERABLE.APPLICABILITY:OPERATIONALCONDITIONl.eUPE.UI<+ACTION:Withthemainturbinebypasssystempnoperab1e,restorethasystemtoopERABLEstatuswithin2hoursorsbmmeNmNCPRtobesepaltoorgreaterthantheapplicableHCPRlimitwithoutbypasswithin1hourortaketheACTIONrequiredbySpecification3.2.3.SURVEILLANCEREQUIREMENTS4.7.8ThemainturbinebypasssystemshallbedemonstratedOPERABLEatleastonceper:a.b.7daysbycyclingeachturbine'bypassvalvethroughatleastonecompletecycleoffulltravel,and18monthsby:1.Performingasystemfunctionaltestwhichincludessimulatedautomaticactuationandver'ifyingthateachautomaticvalveactuatestoitscorrect'position.2.DemonstratingTURBINEBYPASSSYSTEMRESPONSETIMEtobelessthanorequalto0.30second.+}pphC.~isevalvatrdhapp)icuble,JVlCPRlaminitmapdonhnmdhclWegypliiable,.icBbe.egvc(Qorgrex+erthanwhwgP~~~/ErbfhatP8PEMO~p(~)5)o~g$SpE'ctFlE'Mon3.0+Qfc-Ao+SUS(UEHANNA-UNIT23/47-30 3/4.1REACTIVITYCONTROLSYSTEMSC4BASES3/4.1.1SHUTOOWNMARGINAsufficientSHUTOOWNMARGINensuresthat1)thereactorcanbemadesubcriticalfromalloperatingconditions,2)thereactivitytransientsassociatedwithpostulatedaccidentconditionsarecontrollablewithinacceptablelimits,and3),thereactorwillbemaintainedsufficientlysubcriticaltoprecludeinadvertentcriticalityintheshutdowncondition.Sincecorereactivityvalueswillvarythroughcorelifeasafunctionoffueldepletionandpoisonburnup,thedemonstrationofSHUTOOWNMARGINwillbeperformedinthecold,xenon-freeconditionandshallshowthecoretobesubcriticalbyatleastR+0.38%deltak/korR+0.28%deltak/k,asappro-priate.ThevalueofRinunitsof%deltak/kisthedifferencebetweentheWVlfvs3Lgcf3'5,50c<iCi~'j4Thevalueof'Rmustbepositiveorzeroandmustbedeterminedforeachfuelloadingcycle.TwodifferentvaluesaresuppliedintheLimitingConditionforOperationtoprovideforthedifferentmethodsof.demonstrationoftheSHUTDOWNMARGIN.Thehighestworthrodmaybedeterminedanalyticallyorbytest.TheSHUTOOWNMARGINisdemonstratedbycontrolrodwithdrawalatthebeginning.oflifefuel'ycleconditions,and,ifnecessary,atanyfuturetimeinthecycleifthefirstdemonstrationindicatesthattherequiredmargincouldbereducedasafunctionofexposure.Observationofsubcriticalityinthisconditionassuressubcriticalitywiththemostreactivecontrolrodfullywithdrawn.Thisreactivitycharacteristichasbeenabasicassumptionintheanalysisofplantperformanceandcanbebestdemonstratedatthetimeoffuelloading,butthemarginmustalsobedeterminedanytimeacontrolrodisincapableofinsertion.3/4.1.2REACTIVITYANOMALIEStheSHUTOOWNMARGINrequirementforthereactorissmalleulcheckonactuitionstothepredictedconditionsisry,andthechangesinreactivityinferredfromthesesonsofrodpatterns.Sincethecomparisonsareeasichecksarenotanimpositiononnormaloperations.A1%chslaanisexpectedfornormaloperationsoachansmagnitudeshouldbehlyevaluated.Achangeas1%wouldnotexceedthedesignconditsohereactorathesafesideofthepostulatedtransients.4//PLY~tdI'TtElb)SEA:TtuaMP~SUSQUEHANNA-UNIT283/41-1
>/f.l-2EAcTIUIT0-Sincethe'HUTOOHNMARGINrequirementissmall,acarefulcheckonactualreactorconditionscomparedtothepredictedconditionsisnecessa~.Anychangesinreactivityfromthatofthepredicted(predictedcyrekff)canbedeterminedfromthecoremonitoringsystem(monitoredcorekff).Intheabsenceofanydeviationinplantoperatingconditionsorreactivityanomaly,thesevaluesshouldbeessentiallyequalsincethecalcuIationalmethodologiesareconsistent.Thepredictedcorekffiscalculatedbya30coresimulationcodeasafunctioneffofcycleexposure.Thisisperformedforprojectedoranticipatedreactoroperat-ingstates/conditionsthroughoutthecycleandisusuallydonepriortocycleoperation.-Themonitoredcorekffisthekfascalculatedbythecoremonitoreffeffingsystemforactualplantconditions.Sincethecomparisonsareeasilydone,frequentchecksarenotanimpositiononnormaloperation.AlXdeviationinreactivityfromthatofthepredictedislargerthanexpectedfornormaloperation,andthereforeshouldbethroughlyevaluated.Adeviationaslargeas3Zwouldnotexceedthedesignconditionsofthereactor.
REACTIVITYCONTROLSYSTEMSBASES3/4.l.3CONTROLROOSThespecificationofthissectionensurethat(1)theminimumSHUTOOWNMARGINismaintained,(2)thecontrolrodinsertiontimesareconsistentwiththoseusedintheaccidentanalysis,and-(3)limitthepotentialeffectsoftheroddropaccident.TheACTIONstatementspermitvariationsfromthebasicre-quirementsbutatthesametimeimposemorerestrictivecriteriaforcontinuedoperation.Alimitationoninoperablerodsissetsuchthattheresultanteffectontotalrodworthandscramshapewillbekepttoaminimum.There-quirementsforthevariousscramtimemeasurementsensurethatanyindicationofsystematicproblemswithroddriveswillbeinvestigatedonatimelybasis.Oamagewithinthecontrolroddrivemechanismcouldbeagenericproblem,thereforewithacontrolrodimmovablebecauseofexcessivefrictionormechan-icalinterference,operationofthereactorislimitedtoatimeperi'odwhichisreasonabletodeterminethecauseoftheinoperabilityandatthesametimepreventoperationwithalargenumberofinoperablecontrolrods.Controlrodsthatareinoperableforotherreasonsarepermittedtobetakenoutofserviceprovidedthatthoseinthenonfully-insertedpositionareconsistentwiththeSHUTOOWNMARGINrequirements.Thenumberofcontrolrodspermittedtobeinoperablecouldbemorethantheeightallowedbythespecification,buttheoccurrenceofeightinoperablerodscouldbeindicativeofagenericproblemandthereactormustbeshutdownforinvestigationandresolutionoftheproblem.ThecontrolrodsystemisdesignedtobringthereactorsubcriticalataratefastenoughtopreventtheMCPRfrombecominglessthanthe1'imitspeci-fiedinSpecification2.1.2duringtheco~~~id'.transientanalyzedin+he.cyclesilicic.traneen<ana4sisio~Thisanalysisshows.thatthenegativereactivityratesresumingFromthescramwiththeaverageresponseofa11thedrivesasgiveninthespecifications,providetherequiredprotectionandMCPRremainsgreaterthanthelimitspecifiedinSpecification-2.1.2.Theoccurrenceofscramtimeslongerthenthosespecifiedshouldbeviewedasanindication'ofasystematicproblemwiththeroddrivesandthereforethesurveillanceintervalisreducedinordertopreventoperationofthereactorforlongperiodsoftimewithapotentiallyseriousproblem.ThescramdischargevolumeisrequiredtobeOPERABLEsothatitwillbeavailablewhenneededto.acceptdischargewaterfromthecontrolrodsduringareactorscramandwillisolatethereactorcoolantsystemfromthecontainmentwhenrequired.Controlrodswithinoperableaccumulators.aredeclaredinoperableandSpe-cification3.1.3.1thenapplies.Thispreventsapatternofinoperableaccumu-latorsthatwouldresultinlessreactivityinsertiononascramthanhasbeenanalyzedeventhoughcontrolrods'withinoperableaccumulatorsmaystillbein-sertedwithnormaldrivewaterpressure.Operabilityoftheaccumulatorensuresthatthereisameansavailabletoinsertthecontrolrodsevenunderthemostunfavorabledepressurizationofthereactor.SUS(UEHANNA-UNIT2B3/41-2AmendmentNo.26 ll REACTIVITYCONTROLSYSTEMSBASESCONTROLRODS(Continued)ControlrodcouplingintegrityisrequiredtoensurecompliancewiththeanalysisoftheroddropaccidentintheFSAR.TheovertravelpositionfeatureprovidestheonlypositivemeansofdeterminingthatarodisproperlycoupledandthereforethischeckmustbeperformedpriortoachievingcriticalityaftercompletingCOREALTERATIONSthatcouldhaveaffectedthecontrolrodcouplingintegrity.Thesubsequentcheckisperformedasabackuptotheinitialdemonstration.Inordertoensurethatthecontrolrodpatternscanbefollowedandthereforethatotherparametersarewithintheirlimits,thecontrolrodpositionindicationsystem'mustbeOPERABLE.Thecontrolrodhousingsupportrestrictstheoutwardmovementofacontrolrodtolessthan3inchesintheeventofahousingfailure.Theamountofrodreactivitywhichcouldbeaddedbythissmallamountofrodwithdrawalislessthananormalwithdrawalincrementandwillnotcontributetoanydamagetotheprimarycoolantsystem.Thesupportisnotrequiredwhenthereisnopressuretoactasadrivingforcetorapidlyejectadrivehousing.TherequiredsurveillanceintervalsareadequatetodeterminethattherodsareOPERABLEandnotsofrequent'stocauseexcessivewearonthesystemcomponents.3/4.1.4CONTROLRODPROGRAMCONTROLSControlrodwithdrawalandinsertionsequencesareestablishedtoassurethatthemaximuminsequenceindividualcontrolrodorcontrolrodsegmentswhicharewithdrawnatanytimeduringthefuelcyclecouldnotbeworthenoughto.resultinapeakfuelenthalpygreaterthan280cal/gmintheeventofacontrolroddropaccident.Thespecifiedsequencesarecharacterizedbyhomogeneous,scatteredpatternsofcontrolrodwithdrawal.WhenTHERMALPOWERisgreaterthan2P~ofRATEDTHERMALPOWER,thereisnopossiblerodworthwhich,ifdroppedatthedesignrateofthevelocitylimiter,couldresultinapeakenthalpyof280cal/gm.ThusrequiringtheRSCSandRWMtobeOPERABLEwhenTHElUQLPOWERislessthanorequalto20KofRATEDTHERMALPOWERprovidesadequatecontrol.TheRSCSandRWMprovideautomaticsupervisiontoassurethatout-of-sequence.rodswillnotbewithdrawnorinserted.f0l~pgRP>~PTheanasaccidentispresenoftheFSARandthetechniquesofthdinatopicalreport,Refereppements,References'2and3.TheRBMisdesignedtoautomaticallypreventfueldamageintheeventoferroneousrodwithdrawalfromlocationsofhighpowerdensityduringhighpoweroperation.Twochannelsareprovided.Trippingoneofthechannelswillblockerroneousrodwithdrawalsoonenoughtopreventfueldamage.Thissystembacksupthewrittensequenceusedbytheoperatorforwithdrawalofcontrolrods.SUSQUEHANNA-UNIT2B3/41-3 ParametricControlRodOropAccidentanalyseshavesho~nthatforawiderangeofkegreactorparameters(whichenvelopetheoperatingrangesofthesevariables),thefuelenthalpyriseduringapostulatedcontrolroddropacci-dentremainsconsiderablylowerthanthe280cal/gmlimit.Foreachoperatingcycle,cycle-specificparameterssuchasmaximumcontrolrodworth,Oopplercoefficient,effectivedelayedneutronfraction,andmaximumfourbundlelocalpeakingfactorarecomparedwiththeinputstotheparametricanalysestodetermine.thepeakfuelrodenthalpyrise.Thisvalueisthencomparedagainstthe280cal/gmdesignlimittodemonstratecomplianceforeachoperatingcycle.Ifcycle-specificvaluesoftheaboveparametersareoutsidetherangeassumedintheparametricanalyses,anextensionoftheanalysisoracycle-specificanalysismayberequired.Conservatismpresentintheanalysis,resultsoftheparametricstudies,andadetaileddescriptionofthemethodologyforper-formingtheControlRodOropAccidentanalysisareprovidedinNN-NF-80-19Volumel.
0 REACTIVITYCONTROLSYSTEMSBASES3/4.1.5STANDBYLIUIDCONTROLSYSTEMThestandbyliquidcontrolsystemprovidesabackupcapabilityfear.bringingthereactorfromfullpowertoacold,Xenon-freeshutdown,assumingthatnoneofthewithdrawncontrolrodscanbeinserted.Tomeetthisobjectiveitisnecessarytoinjectaquantityofboronwhichproducesaconcentrationof660ppminthereactorcoreinapproximately90to120minutes.Aminimumquantityof4587gallonsofsodiumpentaboratesolutioncontainingaminimumof5500lbs.ofsodiumpentaborateisrequiredtomeetthisshutdownrequire-ment.Thereisanadditionalallowanceof165ppminthereactorcoretoaccountforimperfectmixing.ThetimerequirementwasselectedtooverridethereactivityinsertionrateduetocooldownfollowingtheXenonpoisonpeakandtherequiredpumpingrateis41.2gpm.Theminimumstoragevolumeofthesolutionisestablishedtoallowfortheportionbelowthepumpsuctionthatcannotbeinsertedandthefillingofotherpipingsystemsconnectedtothereactorvessel.Thetemperaturerequitementforthesodiumpenetratesolutionisnecessarytoensurethatthesodiumpenetaborateremainsinsolution.Withredundantpumpsandexplosiveinjectionvalvesandwithahighlyreliablecontrolrodscramsystem,operationofthereactorispermittedtocontinue~orshortperiodsof'-timewiththesysteminoperableorforlongerperiodsoimewithoneoftheredundantcomponentsinoperable.Surveillancerequirementsareestablishedonafrequencythatassuresahighreliabilityof.thesystem.Oncethesolutionisestablished;boroncon-centrationwillnotvaryunlessmoreboronorwaterisadded,thusacheckonthetemperatureandvolumeonceeach24hoursassumesthatthesolutionisavailableforuse.Replacementoftheexplosivechargesinthevalvesatregularintervalswillassurethatthesevalveswillnotfailbecauseofdeteriorationofthecharges.R.C.Stirnand'J.A.Woolley,"RodDropAccideysisforLargeBWRs,.TopicalReportNEDO-105272C.J.Paone,R.C.Stirnand.o,upplement1toNED0-10527,July1972J.M.Haun,C.oneandR.C.Stirn,Addendum2,.edCores,"Sup1toNED0-10527,January1973SUSQUEHANNA-,UNIT2B3/41-4 3/4.2POWERDISTRIBUTIONLIMITSBASESThespecificationsofthissectionassurethatthepeakcladdingtemperaturefollowingthepostulateddesignbasisloss-of-coolantaccidentwillnotexceedthe2200'Flimitspecifiedin10CFR50.46.3/4.2.1AVERAGEPLANARLINEARHEATGENERATIONRATEThisspecificationassuresthatthepeakcladdingtemperaturefollowingthepostulateddesignbasislass-of-coolantaccidentwillnotexceedthelimitspecifiedin10CFR50.46.Thepeakcladdingtemperature(PCT)followingapostulatedloss-of-coolanaidentisprimarilyafunctionoftheaverageheatgenerationrateofallthedsofafuelassemblyatanyaxiallocationandisdependentonlysecondilyontherodtorodpowerdistributionwithinanassembly.TpeakcladtempatureiscalculatedassumingaLHGRforthehighestpowerrodwhichisequaltorlessthanthedesignLHGRcorrectedfordensificati.ThisLHGRtimes1.isusedintheheatupcodealongwiththeexposdependentsteadystategaponductanceandrod-to"rodlocalpeakingfacr.TheTechnicalSpecificationAVERPLANARLINEARHEATGENERATIONRATE(HGR)isthisLHGRofthehighestpowereroddividedbyitslocalpeakingctor.ThelimitingvalueforAPLHGRisshoinFigures3.2.1-1.3.2.1-2d3.2.1"3.'hecalculationalprocereusedtoestablisheAPLHGRshownonFigures3.2.1"1,3.2.1-2and3.2.1-3iased.onalossf-coolantaccidentanalysis.TheanalysiswasperformedusingneralEleic(GE)calculationalmodelswhichareconsistentwiththerequientsfAppendixKto10CFR50.A'ompletediscussionofeachcodeemplointheanalysisispresentedinReference1.Differencesinthisanascomparedtopreviousanalysescanbebrokendownasfollows.InutChanes1..CorrectedVaportionCalculation-CoeffientsinthevaporizationcorrelationudintheREFLOODcodewerecocted.2.Incorpordmoreaccuratebypassareas-Thebypareasinthetopgu'wererecalculatedusingamoreaccuratetenique.3.Crectedguidetubethermalresistance.4.Correctheatcapacityofreactorinternalsheatnodes.SUSQUEHANNA-UNIT283/4"2-1~REPLACEmi~HSEcAow3/g Thepeakcladdingtemperature(PCT)followingapostulatedloss-of-coolantaccidentisprimarilyafunctionoftheaverageheatgenerationrateofalltherodsofafuelassemblyatanyaxiallocationandisdependentonlysecondarilyontherodtorodpowerdistributionwithinanassembly.ForGEfuel,thepeakcladtemperatureiscalculatedassumingaLHGRforthehighestpoweredrodwhichisequaltoorlessthanthedesignLHGRcorrectedfordensification.ThisLHGRtimes1.02isusedintheheatupcodealongwiththeexposuredependentsteadystategapconductanceandrod-to-rodlocalpeakingfactor.TheTechnicalSpeci-ficationAVERAGEPLANARLINEARHEATGENERATIONRATE(APLHGR)forGEfuelisthisLHGRofthehighestpoweredroddividedbyitslocalpeakingfactorwhichresultsinacalculatedLOCAPCTmuchlessthan22004F.TheTechnicalSpecificationAPLHGRforExxonfuelisspecifiedtoassurethePCTfollowingapostulatedLOCAwillnotexceedthe22004Flimit.ThelimitingvalueforAPLHGRisshowninFigures3.2.1-1,~3.2.1-2>and3.'Z.l-3.ThecalculationalprocedureusedtoestablishtheAPLHGRshownonFigures9-z.l-l9.z.)-p,a<s.z.l3isbasedonaloss-of-coolantaccidentanalysis.TheanalysiswasperformedusingcalculationalmodelswhichareconsistentwiththerequirementsofAppendixKto10CFR50.ThesemodelsaredescribedinReference1orXN-NF-80-19,Volumes2,2A,.2Band2C.
POWERDISTRIBUTIONLIMITS'ASESAVERAGEPLANARLINEARHEATGENERATIONRATE(Continued)1.CoreCCFLpressuredifferential-1psi-Incorporateassumptiontflowfromthebypasstolowerplenummustoverea1psipreredropincore.2.IncorporatRCpressuretransferassumpt'TheassumptionusedintheSAFE-REFLpressuretransferwhehepressureisincreasingwaschanged.AfewofthechangesaffectThesechangesarelistedbelow.dentcalculationirrespectiveofCCFL.iver,..1.BreakAreasheDBAbreakareawascalatedmoreaccurately.b.ModelCha1.mprovedRadiationandConductionCalculation-IncorationofCHASTE05forheatupcalculation.Alistofthesignificantplantinputparameterstotheloss-of-cootaccidentanalysisispresentedinBasesTable83.2.i-l.3/4.2.2APRMSETPOINTSThefuelcladdingintegritySafetyLimitsofSpecification2asedondistributionwhichwouldyieldthedesignLHGDTHERMALPOWER.Theflowbiaslatedthermalpower-upscaleettingandflowbiasedsimulatedthermalpowealecontrolockfunctionsoftheAPfNinstru-mentsmustbeadjustedtoensuheMCPRdoesnotbecomelessthan1.06orthat>2Xplasticstresnotinthedegradedsituation.Thescramsettingsandrodsettingsareadjuste'cordancewiththeformulainthisspecionwhenthecombinationofTHERMALandMFLPDindicatesahiakedpowerdistributiontoensurethatanLHGRtr'ouldnotbeincreasedinthedegradedcondition.lapp~<~~,~gSacro&5/8.Z.Q/n)5C<+SUS(UEHANNA-UNIT2B3/42-2 Theflowbiasedsimulatedthermalpower-upscalescramsettingandflowbiasedsimulatedthermalpower-upscalecontrolrodblockfunctionsoftheAPRHinstru-mentslimitplantoperationstotheregioncoveredbythetransientandaccidentanalyses.'Inaddftfon,theAPRHsetpointsmustbeadjustedtoensurethat>1%plasticstrainandfuelcenterlinemeltingdonotoccurduringtheworstanticipatedoperationaloccurrence(AOO),includingtransientsinitiatedfrompartialpoweroperation.'TheTodor~~d4adjst~gpss~pDinrSLSbaSedon9he.FL6)sr:ulcutat.(dbydw4m%C.0.c~al-LH&R,bqWe.r-H(nRoh'nialpro~t=.The.Lt:exon~><<~t'-cvr<C,ihP6vrea.z.g-)xxon5Trelectvun'~<instFuelFhilvrc(PRFF)l(nt'homnInis,basedFrure3.+<of'Ct'5(GndsW~8.t'@hoWA4<</(.2under'4jchc-lactic(jnandAeiini'q<hyis,pro9eete'cldUri'n~400'c.'I<el~eVCo+orvsooifooctgsl"M<Qpg+sHmts'sba5sefon~eFLppd2(cu(ofecl+~~iioifuL4&QBlahgrec>Red4m~<~4ue(tn5pec<$ic<.ben.3.7.s.l~i4>/+.Z-cgNmPT SasesTableS3.2.1-1SIGNIFICANTINPUTPARAMETERSTOTHELOSS-OF-COOLANTACCIOENTANALYSISPlantParameter.CoreTHERMALHER......................3439Mwt"wchcorrespondsto105KofatedsteamflowVesselSteamOutpu...............'.....14.15x06respontosteamflowVesselSteamOomePressu..............10psiaOesignBasisRecirculationLne'reakAreafor:a.LargeBreaks4.153ftibm/hrwhichcor-105Kofratedb.SmallBreaks1.0ftFuelParameters:N0.02ftFUELTYPEInitialCoreFUELBVNOLEGEOMETRY8x813.41.41.18PEAKCHNICAL,INITIALSPEC-ICATIQNOESIGNMINIMUM.LEARHEATXIALCRITICALGERATIONRATEPKINGPOMER(kw/ft)FATORRATIOAmoredetailedlistingfinputof'achmodelanditssourcispresentedinSectionIIofRefernce1andSection6.3oftheFSAR."ThispowerlevelmtstheAppendixrequirementof102.Thecoeheatupcalculatioassumesabundlepowerconsistentwithoperatiofthehighestpowedrodat10'fitsTechnicalSpecificationLINHEATGENERATIORATE1imit.SUSQUEHANNAUNIT2B3/42-3 POWEROISTRIBUTIONLIMITSBASES3/4.2.3MINIMUMCRITICALPOWERRATIOTherequiredoperatinglimitMCPRsatsteadystateoperatingconditionsasspecifiedinSpecification3.2.3arederivedfromtheestablishedfuelcladdingintegritySafetyLimitMCPR,andananalysisofabnormaloperationaltransients.Foranyabnormaloperatingtransientanalysisevaluationwiththeinitialcon-ditionofthereactorbeingatthesteadystateoperatinglimit,itisrequiredthattheresultingMCPRdoesnotdecreasebelowtheSafetyLimitMCPRatanytimeduringthetransientassuminginstrumenttripsettinggiveninSpecifica<<tion2.2.ToassurethatthefuelcladdingintegritySafetyLimitisnotexceededduringanyanticipatedabnormaloperationaltransient,themostlimitingtransientshavebeenanalyzedtodeterminewhichresultinthelargestreductioninCRITICALPOWERRATIO(CPR).Thetypeoftransientsevaluatedwerelossofflow,increaseinpressureandpower,positivereactivityinsertion,,andcoolanttem-peraturedecrease.ThelimitingtransientyieldsthelargestdeltaMCPR.WhenaddedtotheSafetyLimitMCPR,therequiredminimumoperatinglimitMCPRofSpecification3.2.3isobtainedandpresentedinFigures3.2.3-la~aa4-3.2.3-lb,and323-2.WhenthelessoperationallylimitingRodBlockMonitoringtripsetpoint(.66W+42KfromTable3.3.6-2)fsused,themorelimitingMCPRcurveFigure3.2.3"1bisapplicableduetoalargerdeltaMCPRfromthe~A%~RodWith-drawalError(RWE)transient.Figure3.2.3-laisapplicablewhentheRodBlockMonitortripsetpoint(.66W+40KfromTable3.3.6-2)isused.eevaluationofagiventransientbeginswiththesysteminitialparametersshinFSARTable15.0-2thatareinputtoaGE-coredynamicbehaviortrasientmputerprogram.Thecodeusedto.evaluatepressurizationevents(3)15describedNEOO-24154andtheprogramusedinnonpressurizatioventsisdescribedin00-10802.Theoutputsofthisprogramalowiththe(2)initialMCPRforminputforfurtheranalysesofth'ethelylimitingbundlewiththesinglhanneltransientthermalhydrauITASCcodedescribedinNEOE-25149.Theprialresultofthisevationisthereduction(4)inHCPRcausedbythetransieThepurposeoftheKffactorofFigu3.-2istodefineoperatinglimitsatotherthanratedcoreflowconditis.tlessthan100KofratedflowtherequiredMCPRistheproductoftCPRaneKfactor.TheKfactorsassurethattheSafetyLimitRwillnotbeViotedduringaflowincreasetransientresultingfromotor-generatorspeedcon1failure.TheKffactorsmaybeappliedtobomanualandautomaticflowcontroldes.TheKfactoruesshownTnFigure3.2.3-2weredevelopedgencallyandareapileetoallBWR/2,BWR/3andBWR/4reactors.TheKfacswerederivedTngtheflowcontrollinecorrespondingtoRATBOTHERMALPOatratecoreflow..SUSQUEHANNA-UNIT2(.@p~~/SEcY(0%3//+.2-'!NW<7B3/42-4AmendmentNo.26 Theevaluationofagiventransientbeginswiththesysteminitialparam-etersshowninthecyclespecifictransientanalysisreportthatareinputtoaExxon-coredynamicbehaviortransientcomputerprogram.TheoutputsofthisprogramalongwiththeinitialHCl'Rformtheinputforfurtheranalysesofthethermallylimitingbundle.Thecodesandmethodologytoevaluatereriza-tionandnon-pressurizationeventsare-describedinXN-HF-79-71.TheprincspalresultofthisevaluationisthereductioninHCPRcaused.bythetransient.1c'of~Fi>>le~es'3.2.5-la.a~dS.zz-(4deli~>>ala~Mpetdent;NCPR.O~t~np\>'miteV41Aassuage~u+~wM4$yLim'itltt<PR~ill~athe.uiola'Reddwin~o.4'lou>inrrra>>r.~'pe)Q5)gnffQSLpl'finyA~c~oWr-cje~<<cueSp+~~~>o'(E'~add'w4.&CpRiSar>pC~LCul~4~J8>rm>>~a~u~lZto~c~+at~'=~>>-gutovabc,4(omcon~r01F1(u(r>.2.3zcue(inesMe.powerclepende>>t'iCMepu~Ct)nylimni~l'hiC<>aaSurea~c~~e.~"~~i'('~'tMCpgu>illawb>>giolakrdwthervrn+oAa.4>>rdwa<rrco&'t<o4'IZa[lerr.tqj4at'rdff0rria-reducedfiai.u>>rtaiiaitio'n.pt/br,/JBMAti~j<'.g(de..Moisteai&~~~~~~~'~P~'~o~'~~ye.L5kcfieet<un~~'Ac81cPXp@~jf~gee~Q/e8Pog+Yj~t+)gfeAScKot\.Ivgyp~~ywak/e>>>><4Th<bgN~Ci7ietett/mgepmui7h"P=dt--RP747/nnoui8oac~ypcrAtwapualr4'Prtetlt&~fAQ4PICAPW/+Wet~4~
POWEROISTRIBUTIONLIMITSBASESMINIMUMCRITICALPOWERRATIO(Continued)orthemanualflowcontrolmode,theKffactorswerecalculatechthatfortheimumflowrate,aslimitedbythepumpscooptubese>ntandthecorresponTHERMALPOWERalongtheratedflowcontr>ne,thelimitingbundle'srelativeerwasadjusteduntiltheMCPRceswithdifferentcoreflows.TheratiotheMCPRcalculatedat1venpointofcoreflow,dividedbytheoperatinglim'PR,determitheKf.Foroperationin.theautomaticontrolmode,thesameprocedurewasemployedexcepttheinitialdistribuwasestablishedsuchthattheMCPRwasequaltotheopinglimitMCPRatTHERMALPOWERandratedflow.TheKffasshowninFigure3.2.3-2areconservatoroitheGeneralElectriantoperationbecausetheoperatinglimitMCPRsofSpe'a-ti.2.3aregreaterthantheoriginal1.20operatinglimitMCPRuserhegenericderivationofKf.AtTHERMALPOWERlevelslessthanorequalto25KofRATEDTHERMALPOWER,thereactorwillbeoperatingatminimumrecirculation.pumpspeedandthemoderatorvoidcontentwillbeverysmall.Foralldesignatedcontrolrodpatternswhichmaybeemployedatthispoint,operatingplantexperienceindi-catesthattheresultingMCPRvalueisinexcessofrequirementsbyaconsiderablemargin.Duringinitialstart-uptestingoftheplant,aMCPRevaluationwillbemadeat25KofRATEDTHERMALPOWERlevelwithminimumrecirculationpumpspeed.TheMCPRmarginwillthusbedemonstratedsuchthatfutureMCPRevaluationbelowthispowerlevelwillbeshowntobeunnecessary.ThedailyrequirementforcalculatingMCPRwhenTHERMALPOWERisgreaterthanorequalto25KofRATEDTHERMALPOWERissufficientsincepowerdistributionshiftsareveryslowwhentherehavenotbeensignificantpowerorcontrolrodchanges.The~requirementforcalculatingMCPRwhenalimitingcontrolrodpatternisapproachedensuresthatMCPRwillbeknownfollowingachangeinTHERMALPOWERorpowershape,regardlessofmagnitude,thatcouldplaceoperationatathermallimit.3/4.2.4LINEARHEATGENERATIONRATEThisspecificationassuresthattheLinearHeatGenerationRate(LHGR)inanyrodislessthanthedesignlinearheatgenerationeveniffuelpelletdensificationispostulated.
References:
1.Gener'al.ElectricCompanyAnalyticalModelforLoss-of-CoolantAnalysisinAccordancewith10CFR50,AppendixK,NEOE-20566,November1975.SUS(UEHANNA-UNIT283/42-5AmendmentNo.10 3/4.4REACTORCOOLANTSYSTEMBASES3/4.4.1RECIRCULATIONSYSTEMOperatfonwithonereactorrecirculationloopinoperablehasbeenevaluatedandfoundacceptable,providedthattheunitfsoperatedfnaccordancewithSpecification3.4.1.1.2.Forsingleloopoperation,theMAPLHGRlimits'aremultipliedbyafactorofO.ck~1k'..Thismulbplicatronpre'ctvctesectcndHoperationcviThoneloopau+o4service~Forsingleloopoperation,theRBMandAPRMsetpointsareadjustedbya7Xdecreaseinrecirculationdriveflowtoaccountfortheactiveloopdriveflowthatbypassesthecoreandgoesupthroughtheinactiveloopjetpumps.Surveillanceonthepumpspeedoftheoperatingrecirculationloopisimposedtoexcludethepossibilityofexcessivereactarvesselinternalsvibration.SurveillanceondifferentialtemperaturesbelowthethresholdlimitsofTHERMALPOWERorrecirculationloopflowmitigatesunduethermalstressonvesselnozzles,recirculationpumpsandthevesselbottomheadduringextendedopera-tioninthesingleloopmode.Thethresholdlimitsarethosevalueswhichwillsweepupthecoldwaterfromthevesselbottomhead.THERMALPOWER,coreflow,andneutronfluxnoiselevellimitationsareprescribedinaccordancewiththerecommendationsofGenera1ElectricServiceInformationLetterNo.380,Revision1,"BWRCoreThermalHydraulicStability,"datedFebru-ary10,1984.Aninoperablejetpumpisnot,initself,asufficientreason.todeclareare-circulationloopinoperable,butitdoes,incaseofadesignbasisaccident,increasetheblowdownareaandreducethecapabflityofrefloodfngthecore;thus,therequirementforshutdownofthefacilitywithajet,pumpinoperable.Jetpumpfailurecanbedetectedbymonitoringjetpumpperformanceonaprescribedscheduleforsignificantdegradation.4RecirculationpumpspeedmismatchlimitsarefncompliancewiththeECCSLOCAanalysisdesigncriteriafortwoloopoperation.ThelimitswillensureanadequatecoreflowcoastdownfromeitherrecirculationloopfollowingaLOCA.Inthe.casewherethemfsmatchlimitscannotbemafntafnedduringtheloopoperation,continuedoperationfspermittedfnthesingleloopmode.Inordertopreventunduestressonthevesselnozzlesandbottomheadregion,therecirculationlooptemperaturesshallbewithin50Fofeachotherpriortostartupofanidleloop.Thelooptemperaturemustalsobewithin50oFofthereactorpressurevesselcoolanttemperaturetopreventthermalshocktotherecirculationpumpandrecirculationnozzles.Sincethecoolantfnthebottomofthevesselfsatalowertemperaturethanthecoolantfntheupperregionsofthecore,unduestressonthevesselwouldresultffthetemperaturedifferencewasgreaterthan145'F.SUSQUEHANNA-UNIT2B3/44-1AmendmentNo.26 1
PLANTSYSTEMSBASES3/47.6FIRESUPPRESSIONSYSTEMSTheOPERABILITYofthefiresuppressionsystemsensuresthatadequatefiresuppressioncapabilityisavailabletoconfineandextinguishfiresoccurringinanyportionofthefacilitywheresafetyrelatedequipmentislocated.Thefiresuppressionsystemconsistsofthewatersystem,sprayand/orsprinklers,COsystems,Halonsystemsandfirehosestations.Thecollectiveca)abilityofthefiresuppressionsystemsisadequatetominimizepotentialdamagetosafetyrelatedequipmentandisamajorelementinthefacilityfireprotectionprogram.Intheeventthatportionsofthefiresuppressionsystemsareinoperable,alternatebackupfirefightingequipmentisrequiredtobemadeavailableintheaffectedareasuntiltheinoperableequipmentisrestoredtoservice.Whentheinoperablefirefightingequipmentisintendedforuseasabackupmeansoffiresuppression,alongerperiodoftimeisallowedtoprovideanalternatemeansoffirefightingthaniftheinoperableequipmentistheprimarymeansoffiresuppression.ThesurveillancerequirementsprovideassurancesthattheminimumOPERABILITYrequirementsofthefiresuppressionsystemsaremet.AnallowanceismadeforensuringasufficientvolumeofHalonintheHalonstoragetanksbyverifyingtheweightandpressureofthetanks.Intheeventthefiresuppressionwatersystembecomesinoperable,immediatecorrectivemeasuresmustbetakensincethissystemprovidesthemajorfire'suppressioncapabilityoftheplant.Therequirementforatwenty"fourhourreporttotheCommissionprovidesforpromptevaluationoftheacceptabilityofthecorrectivemeasurestoprovideadequatefiresuppressioncapabilityforthecontinuedprotectionofthenuclearplant.3/4.7.7FIRERATEDASSEMBLIESTheOPERABILITYofthefirebarriersandbarrierpenetrationsensuiethatfiredamagewillbelimited.Thesedesignfeaturesminimizethepossibilityofasinglefireinvolvingmorethanonefireareapriortodetectionandextinguishment.Thefirebarriers,firebarrierpenetrationsforconduits,cabletraysandpiping,firewindows,firedampers,andfiredoorsareperiodicallyinspectedtoverifytheirOPERABILITY.3/4.7e8MAINTURBINEBYPASSSYSTEMThe,requiredOPERABILITYofthemainturbinebypasssystemisconsistentwiththeassumptionsofthefeedwatercontrollerfailureanalysisinNyctspy@'cfrees>en'nalysis.SUSQUEHANNA-UNIT2B3/47-4 0~,
DESIGNFEATURES5.3REACTORCOREFUELASSEMBLIESor7V5.3.1Thereactorcorshallcontain764fuelassemblieswitheachfuelassemblycontaining62fuelrodsandtwowaterrodscladwithZircaloy-2.Eachfuelrodshallhaveanominalactivefuellengthof150inches.Theinitialcoreloadingshallhaveamaximumaverageenrichmentof1.90weightpercentU-235.Reloadfuelshallbesimilarinphysicaldesigntotheinitialcoreloadingandshallhaveamaximumaverageenrichmentof~weightpercentU-235.+.oCONTROLRODASSEMBLIES5.3.2Thereactorcoreshallcontain185controlrodassemblies,eachconsistingofacruciformarrayofstainlesssteeltubescontaining143inchesofboroncarbide,B4C,powdersurroundedbyacruciformshapedstainlesssteelsheath.5.4REACTORCOOLANTSYSTEMDESIGNPRESSUREANDTEMPERATURE5.4.1Thereactorcoolantsystemisdesignedandshallbemaintained:a.InaccordancewiththecoderequirementsspecifiedinSection5.2oftheFSAR,withallowancefornormaldegradationpursuanttotheapplicableSurveillanceRequirements,b.Forapressureof:l.1250psigonthesuctionsideoftherecirculationpumps.2.1500psigfromtherecirculationpumpdischarge'tothegetpumpsoc.,Foratemperatureof575F.'VOLUME5.4.2Thetotalwaterandsteamvolumeofthereactorvesselandrecirculationsystemisapproximately22,400cubicfeetatanominalTof528'F.SUSQUEHANNA-UNIT25-6 NOSIGNIFICANTHAZARDSCONSIDERATIONSThefollowingthreequestionsareaddressedforeachoftheproposedchanges:I.Doestheproposedchangeinvolveasignificantincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated?II.Doestheproposedchangecreatethepossibilityofanewordifferentkindofaccidentfromanyaccidentpreviouslyevaluated?III.Doestheproposedchangeinvolveasignificantreductioninamarginofsafety?oDefinition1.2,AveraeExosureI.No.ThischangereflectstheadditionoftheaverageexposuredefinitionappropriateforExxonNuclearCompany(ENC)fuel.TheENCPOWERPLEXcoremonitoringsystemdeterminesMaximumAveragePlanarLinearHeatGenerationRate(MAPLHGR)basedonaveragebundleexposureratherthanaverageplanarexposure,whichistherelatedtermforGeneralElectric(GE)fuel.Thisadditionaldefinitionisthereforeadministrativeinnature.II.No.SeeIabove.III.No.SeeIabove.oDefinition1.13,.FractionofLimitinPowerDensitI.No.Thischaneisadministrativeinnature'thedefinitionwasalteredtoreflecttheappropriateLinearHeatGenerationRatetobeusedindeterminingFLPD,sinceaLinearHeatGenerationRatecurvespecificallyfordeterminationofAPRMsetpointshasbeenprovidedinthisanalysis.ThisisjustifiedunderSpecification3/4.2.2,APRMsetpoints.II.No.SeeIabove.III.No.SeeIabove.oSecification3/4.1.2,ReactivitAnomaliesI.No.ThischangeisadministrativeinnatureinthatitreflectshowPOWERPLEXdetectsreactivityanomalies;POWERPLEXmonitorsKeff,whichisamoredirectmeasurementofreactivitythanroddensity.Thisbettermonitoringmethodhasnoanalyticalramifications.II.No.SeeIabove.III.No.SeeIabove.oSecification3/4.2.1,AveraePlanarLinearHeatGenerationRateThechangestothisspecificationreflecttheuseoftheaveragebundleexposuredefinitiondiscussedabove,changestoremainingGEMAPLHGRfigurestoreflectachangeinexposureunits,theremovalofallGE.711/
44~44r,IIPO't~f4PIIh~I"I'IhIP44hrh4I),I'lFI4II~I4'*PFf,(>>44t~r4~4 enrichedfuel,andtheadditionofappropriatelimitsforallCycle2ENC9X9(XN-1)fuel.No.ExceptforthenewXN-1fuellimits,eachoftheabovechangesareadministrativeinnature.Fortheaveragebundleexposuredefinition,thiswaspreviouslydiscussed(seeDefinition1.2).Figures3.2.1-1and3.2.1-2forGEfuelhavesimplybeenalteredduetotheconversionoftheabscissaunitsfromMWD/ttoMWD/MTforconsistencywiththenewFigure3.2.1-3.ThecurrentFigure3.2.1-3hasbeendeletedsincethe.711%enrichedfuelitappliedtowillnotbepartoftheCycle2core.NewFigure3.2.1-3illustratestheMAPLHGRlimitsforXN-1fuel.TheselimitsarebaseduponanENCanalysisoft'eLossofCoolantAccident(LOCA)asdescribedinXN-NF-86-60(attached).Basedonthisanalysis,operationwithintheproposedMAPLHGRlimitswillensurethatthePeakCladdingTemperature(PCT)remainsbelow2200'F,localZr-H0reactionremainsbelow17%,andcore-widehydrogen2(productionremainsbelow1%forthelimitingLOCAasrequiredby10CFR50.WithrespecttoGEfuel,theattachedReloadSummaryReportshowsthattheXN-1fuelishydraulicallyandneutronicallycompatiblewithGEfuel.ThereforetheexistingMAPLHGRlimits,basedontheGELOCAanalysisprovidedintheFSAR,remainapplicableforUnit2Cycle2operationwithGEfuel.No.Althoughthereare'bviousphysicaldifferencesbetweentheXN-1fuelandtheGEP8X8Rfuel,therearenosignificantdifferencesintheiroperatingcharacteristics.Therefore,theadditionofZN-1fuelintheCycle2coredoesnotcreatethepossibilityofanewordifferentkind'ofaccidentfromanyaccidentpreviousevaluated.No.Theanalysesperformedweredoneinaccordancewith10CFR50AppendixKanddidnotpredictasignificantreductioninanysafetymargin.ThemethodologyusedtoperformtheCycle2safetyanalysescontainsimilarinherentconservatismstothosewhichsupportedtheinitialcore.oSecification3/4.2.2,APRMSetpintsThisspecificationhasbeenchangedtoexplicitlydefineTforGEfuelandforENCfuel.SinceforENCfuelTisdependentonatransient-basedLHGR,anewfigure,3.2.2-1,hasbeenprovided.No.ForGEfuel,themethodofcalculatingThasnotchanged.ClarificationwassimplyprovidedtoensurethatTwasproperlydetermined.Thispartofthechangeisthereforeeditorial.ForENCfuel,theTfactorismodifiedbyanexposure-dependentLHGRwhichisbasedonExxon's"ProtectionAgainstFuelFailure"(PAFF)lineshownonFigure3.4ofZN-NF-85-67,Revision1.ThisLHGRis IIPP'I providedinnewFigure3.2.2-1,whichcorrespondstotheratioofPAFF/1.2.Underthislimit,claddingandfuelintegrityareprotectedduringanticipatedoperational,occurrences(AOO's),includinganoverpowerconditionfortransientsinitiatedfrompartialpower.Therefore,thischangewillensurefueldesignlimitsarenotviolated.No.Again,forGEfuelthechangeiseditorial.ForENCfuel,asstatedinIabove,thenewLHGRlimitprovidesassurancethatcladdingandfuelintegrityareprotectedduringAOO's.SincetheENCfuelishydraulicallyandneutronicallycompatiblewithGEfuel,noneweventswerepostulatedtooccur.No.ForGEfuel,nochangehasoccurred.SincenolimitpreviouslyexistedforENCfuel,theonlycomparisonthatcanbemadeiswiththemethodofcalculatingTforGEfuel.Sincebothmethodsareshowntoprovideappropriateprotectionagainst1Xcladstrainandfuelcenterlinemelting,nosignificantreductioninsafetymarginhasoccurred.oSecification3/4.2.3,MinimumCriticalPowerRatioNo..Someeditorialchang'estothisspecificationconsistentwiththemethodologiesbeingutilizedtodetermineMCPRoperatinglimitshavebeenprovided(seetheattachedmarked-upTechnicalSpecificationchanges).AsdetailedintheSusquehannaSESUnit2Cycle2ReloadSummaryReport,QCPRresultsforlocaltransientshavebeencompletedbasedonapprovedmethods(seeSummaryReportReference13).ThemethodologyfordeterminingQCPRsforcore-widetransientsisreviewedhere,butactualTechnicalSpecificationoperatinglimitsarenotsuppliedbecausethecalculationsfortheFeedwaterControllerFailure(FWCF)andLoadRe)ectionWithoutBypass(LRWOB)transientshaveyettobecompleted.WhenthesehCPRsareknown,operatinglimitswillbesubmittedbasedontheseandthelocaltransientresults.TheplanttransientmodelusedtoevaluatethesystemaffectsoftheFWCFandLRWOBtransientsisENC'sCOTRANSAcode(SeeSummaryReportReference16).ThisoutputwillbeutilizedbytheXCOBRA-Tmethodology(seeSummaryReportReference23)todeterminebCPRs.TheCOTRANSAcodehasbeenusedinpreviousapprovedlicensingsubmittals.TheZCOBRA-Tcodeisappropriateforuseinthisapplicationbecauseitprovidesamorerealistictreatmentoftransientphenomenathanpreviouslyutilizedmethodsandhasbeenbenchmarkedagainsttransientcriticalheatfluxtestsasreportedintheabovementionedreference.Allcore-widetransientswillbeanalyzeddeterministically(i.e.,usingboundingvaluesofinputparameters).Basedontheabove,themethodusedtodevelopoperatinglimitMCPRsfortheTechnicalSpecificationsdoesnotinvolveasignificant
,PI4'I44PIIpg,4(C4>>r~'IgxJJPIIP4pt.gf,pj's~44pf~4I'f4PtlxpxPC4I44P)I4044'4r-~4444pIPPJJP44Itf'I4fI~4,f,I't4'I)PPfPx4I.,P-)'x oincreaseintheprobabilityorconsequencesofanaccidentpreviouslyevaluated.II.No.Themethodologydescribedcanonlybeevaluatedforitsaffectontheconsequencesofanalyzedevents;itcannotcreatenewones.TheconsequencesofanalyzedeventswereevaluatedinIabove.IIINo.AsstatedinIaboveandingreaterdetailintheSummaryReport,themethodologyusedtoevaluatecore-widetransientsisconsistentormorerealisticthanpreviouslyapprovedmethodsandmeetsallpertinentregulatoryrequirementsforuseinthisapplication.Therefore,itsusewillnotresultinasignificantdecreaseinanymarginofsafety.oSecification3/4.2.4,LinearHeatGenerationRate.ThisspecificationhasbeenchangedtoprovideappropriatelimitsforENCfuel.TheGElimitof13.4kw/fthasnotchanged.I.No.Newspecification3/4.2.4.2andFigure3.2.4.2-1reflectappropriateLHGRlimitsforENCfuelundersteady-stateconditions.Thefigureisbasedoninformationprovidedinthefuelmechanicaldesignanalysis(XN-NF-85-67,Rev.1)andassuresmargintodesignlimitsforthelifeofthefuel.II.No.ThischangereflectsanadditionalcontrolwhichhasbeenpreviouslyacceptedforGEfuel.AdditionofthiscontroltoENCfuelwillnotcreatethepossibilityofanewordifferentaccident.III.No.Thisnewcontrolhasbeenshowntoensurecompliancewithallrelevantfuelmechanicaldesigncriteriaandthereforeensuresappropriatesafetymargin.oSecification3/4.3.4.2,End-of-CcleRecirculationPumTriSstemInstrumentationI.No.NewactionstatementshavebeenprovidedtoensurecompliancewithappropriateMCPRlimitswhenEOC-RPTisinoperable.TherequirementsareconsistentwiththoseinthecurrentMCPRSpecification;thereforethischangeisadministrativeinnature.II.No.SeeIabove.III.No.SeeIabove.oSecification3/4.4.1.1.2,RecirculationLoos-SinleLoo0erationI.No.Thisspecificationhasbeenchangedtoprecludeextendedoperationwithonerecirculationloopout-of-service.Sincethisspecificationpreviouslyallowedsuchoperation,thischangeconstitutesanadditionalrestrictionwhichismuchmoreconservativethanthecurrentprovisions.Therefore,itwillnotincreasetheprobabilityorconsequencesofanypreviousevaluation.
tItItt;cI' II.No.SeeIabove.III.No.SeeIabove.oSecification3/4.7.8,MainTurbineBassSstemI.No.Thischangeissimilartothatproposedforspecification3/4.3.4.2andisproposedtomakethisspecificationconsistentwiththechangesto3/4.2.3,MinimumCriticalPowerRatio.SincethischangeisconsistentwiththerequirementsinthecurrentMCPRspecification,nochangeinlevelofcontrolhasoccurred.Therefore,thischangeisadministrativeinnature.II.No.SeeIabove.III.No.SeeIabove.oSecification5.3.1,FuelAssembliesI.No.Aswritten,thisspecificationprovidesGEP8XSRgeneralcoredesigninformation.TheproposedchangesprovidethesameinformationfortheENCfuelbeingintroducedinCycle2.ThisgeneralinformationwaspartofamuchmoreelaboratesetofinputsusedtogeneratetheattachedanalysesandtheTechnicalSpecificationlimitsdiscussedabove.SincetheTechnicalSpecificationsandassociatedanalyseshavebeenshownnottoincreasetheprobabilityorconsequencesofanypreviousevaluation,theproposedchangetothissectionisprimarilyeditorialandthereforewillnotdegradethecurrentlevelofsafetyatSusquehannaSESUnit2.II.No.SeeIabove.III.No.SeeIabove.rrs/msf202584a pIP'l~,I'~8t~w~O.