ML20045G834
| ML20045G834 | |
| Person / Time | |
|---|---|
| Site: | 05200001 |
| Issue date: | 07/09/1993 |
| From: | Fox J GENERAL ELECTRIC CO. |
| To: | Poslusny C Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 9307160046 | |
| Download: ML20045G834 (54) | |
Text
~
.J GENuclear Energy Gewa:Eiccur Corrpeny 175 Curtner Avenue. San Jose, CA 95125 l
i July 9,1993 Docket No. STN 52-001 1
Chet Poslusny, Senior Project Manager Standardization Project Directorate Associate Directorate for Advanced Reactors and License Renewal Office of the Nuclear Reactor Regulation
Subject:
Submittal Supporting Accelerated ABWR Schedule - I & C Diversity (Issue
- 46)
Dear Chet:
Enclosed are the SSAR markups providing the design portion of the resolution to I & C Diversity Issue #46. The analysis portion of this issue was provided in my letter dated June 18,1993.
Appendix 7C (new) entitled " Defense Against Common Mode Failure in Safety-Related, Software-Based Instrumentati8on and Control Systems of the ABWR," has been included to document the issue and record its disposition. Appendix 78 entitled " Implementation Requirements for Hardware / Software Development" provides information referenced in Appendix 7C. Appendix 7B is also utilized by Tier 1.
Please provide a copy of this transmittal to George Thomas.
Sincerely, kbf Jack Fox Advanced Reactor Programs cc: Alan Beard (GE)
Norman Fletcher (DOE)
Maryann IIerzog (GE)
Ed Nazareno (GE)
Monty Ross (GE)
Jim Sawabe (GE)
Barny Simon (GE)
JIW224 130044 I
9307160046 930709 P"
/T PDR ADOCK 05200001 T'
v j g i
A PDR Q
j
For m b-oM o n on %.pJa d rpr v M iA b SSLC 4 com % % 44-
- 64. e F W. s.cL% d e a d RP.f cg ce s i
- c. u a s, s ta- +
e e L.
,1 c.
AM s
m omy Standa d Plant
%n wiring, the PS system has been protected from a applied to the essential multiplexing system, which credible sin failure. For additional information on provides data highways for the sensor input to the redundancy f RPS subsystems, refer to Subsection logic units. Physically separated cabinets are prosided 7.2.1.1 A.2.
for the four scram logics. Fiber-optic cable routing from remote multiplexing units (RMUS) to control Redundancy of the RPS logic power supply is room equipment is shown in raceway plans provided l provided. There are four Class 1E uninterruptible by reference in Section 1.7. The criteria for separa-power sources which supply electrical power: one to tion of sensing lines and sensors are discussed in each division of the RPS. A loss of one power supply Section 7.1.
will neither inhibit protective action nor cause a The mode switch, low CRD accumulator charging l scram.
pressure trip and other selected bypass switches 711.1A.5 Actuated Devices scram reset switches and manual scram switches are all mounted on the principal control console. Each The devices actuated by the RPS trip and scram device is mounted in a metal enclosure and has a suf-logic in:lude the 120 VAC powered A and B scram ficient number of barrier devices to maintain solenoids of the HCU's and the 125 VDC powered air adequate separation between redundant portions of header dump valves. The A solenoids of all HCU's the RPS.
are energized by one division of power and the B i
solenoids of all HCU's are energized by another The outputs from the logic cabinets to the scram division of power. When any single RPS division is in pilot solenoids are run in separate rigid conduits with a tripped state or when only one of the manual scram no other wiring. The four wire ways match the four pushbuttons is depressed all of either the A or the B scram groups shown in Figure 7.2-8. The groups are solenoids will be de-energized resulting in a selected so that the failure of one group to scram will half-scram condition. A full scram of the pair of not prevent a reactor shutdown. The scram group control rods associated with a particular HCU will conduits have unique identification and are separately occur when both the A and B solenoid of the HCU routed as Division II and III conduits for the A and B are de-energized.The HCU's and associated control solenoids of the scram pilot valves respectively. This rod pairs are divided into four groups. The RPS corresponds to the divisional assignment of their supplies power to each group from separate RPS power sources.
power distribution circuits. The combination of control rods within each group is such that hot Signals which must run between redundant RPS di-shutdown can be achieved even in the event of failure visions are electrically / physically isolated by isolators to scram of an entire rod group.
to provide separation.
)
The solenoid of one of the air header dump valves RPS inputs to annunciators, recorders, and the is energized by one division of power and the solenoid computer are arranged so that no malfunction of the i
of the other air header dump valve is energized by annunciating, recording, or computing equipment can another division of power. When the solenoid of functionally disable the RPS. Direct signals from RPS either of the air header dump valves is energized the sensors are not used as inputs to annunciating or air header will be released resulting in insertion of all data-logging equipment. Electrical isolation is control rods. The arrangement of RPS power provided between the primary signal and the distribution circuits and actuated devices is shown in information output by fiber-optic cable interfaces.
Figure 72-1.
711.1.5 Environmental Considerations 711.1A.6 Separation Electrical equipment for the RPS is located in the Four independent sensor channels monitor the var-drywell, control structure, containment, and in the ious process variables listed in Subsection 7.2.1.1.4.2.
turbine building. The environmental conditions for The redundant sensor devices are separated so that these areas are shown in Section 3.11.
no single failure can prevent a scram. The arrange-ment of RPS sensors mounted in local racks is shown 7,11.1.6 Operational Considerations in Figure 7.2-2. Locations for local RPS racks and panels are shown on the instrument location drawings 711.1.6.1 Reactor Operator Infortnation provided in Section 1.7. Divisional separation is also 7.2-8 Amendment 27
L-'_
b h
I e
TEXT CHANGES
'l i
l
ABWR Standard Safetv Analvsis Renort
- APPENDIX 7B Implementation Requirements for Hardware / Software Development I
70 1
]
ABWR Standard Safetv Annivsis Renort i
1 18.
Implementation Requirements for Hardware / Software Development i
This section defines the requirements to be met by the hardware and software development implementadon acthities that are to be made available for review by the NRC. The hardware and software development-related acceptance criteria which are established through rule-making (refer to section 3.4, Instrumentation i
and Control, of the Tier 1 design certification material for the GE ABWR design) are defined such that there exists a direct correspondence between the acceptance criteria entries and requirements imposed herein on those design activities whose i
results are to be made available for the NRC conformance reviews. Those requirements presented in Table 7B.1 which correspond to individual Tier 1 acceptance criteria are specifically identified. Therefore, satisfaction of those specific requirements shall result in full compliance with the Design Cornmitment and the corresponding Acceptance Criteria presented in the Tier 1 (rule-making) design certification material established for Instrumentation and Control.
f
~
t f
I 76-2
{
1 1
ABWR standard Safetv Analvsis Renort Table 78.1 Software Development A. Software ManagementPlan (Satisfaction of the requirements presented herein shall result in the creation of a Software Management Plan which is in full compliance with the Acceptance Criteria for Item 5 presented in Table 3.4 of the Tier 1 design certification material for the GE ABWR design.)
- 1. The Software Management Plan shall define:
the organization and responsibilities for development of the software i
a.
design; the procedures to be used in the software development; the interrelationships between software design activities; and the methods for conducting software safety analyses.
Within the defined scope and content of the Sr>ftware Management Plan, accepted methods and procedures for the above activities are presented in the following documents:
(i)
IEEE 730-1984, Standard for Software Quality Assurance Plans, 1
Section 3.4 (ii)
ASME NQA2a, Part 2.7, Quality Assurance Requirements of Computer Software for Nuclear Facility Application t
(iii)
ANSI /IEEE-ANS-7-4.3.2-1982, Application Criteria for Digital Computers in Safety Systems for Nuclear Facilities (to be replaced by the issued version of P 7-4.3.2, " Standard Criteria for r
Digital Computers Used in Safety Systems of Nuclear Power Generation Stations")
1 (iv)
IEC 880-1986, Software for computers in the safety systems of nuclear power stations, Section 3.1 i
(v)
IEEE (draft H)-1992, Standard for Software Safety Plans (vi)
IEEE 1012-1986, Standard for Software Verification and Validation Plans, Section 3.5 (vii)
IEEE 830-1984, Guide to Software Requirements Specifications, Section 5 (viii) IEEE 1042-1987, Guide to Software Configuration Management Note that within the set of documents listed above, differences may exist regarding specific methods and criteria applicable to the Software Management Plan. In situations where such differences exist, all of the methods and criteria presented within those documents are considered to be equally appropriate and valid and, therefore, any of the above listed documents may be selected as the basis for elements of the SMP.
b, that the software safety analyses to be conducted for safety-related software applications shall:
78-3 I
ABWR Standard Safety Analysis Reoort (i) identify software requirements having safety-related implications (ii) document the identified safety-critical software requirements in the software requirements specification for the design (iii) incorporate in to the software design the safety-critical software functions specified in the software requirements specification (iv) identify in the coding and test of the developed software, those software modules which are safety-critical (v) evaluate the performance of the developed safety-critical software modules when operated within the constraints imposed by the established system requirements, software design, and computer hardware requirements (vi) evaluate software interfaces of safety-critical software modules (vii) perform equipment integration and validation testing that demonstrate that safety-related functions identified in the design input requirements are operational.
the software engineering process, which is composed of the following c.
life-cycle phases:
(i)
Planning (ii)
Design Definition (iii) Software Design (iv) Software Coding (v)
Integration (vi) Validation (sii) Change control
- d. the Planning phase design activities, which shall address the following system design requirements and software development plans:
(i)
Software Management Plan (ii)
Software Configuration hianagement Plan (iii) Verification and Validation Plan (iv) Equipment design requirements (v)
Safety analysis of design requirements (vi) disposition of design and/or documentation nonconformances identified during this phase the Design Definition phase design activities, which shall address the e.
development of the following implementing equipment design and configuration requirements:
(i) equipment schematic (ii) equipment hardware and software performance specification (iii) equipment user's manual (iv) data communications protocol (v) safety analysis of the developed design definition (vi) disposition of design and/or documentation nonconformances identified during this phase 78-4
ABWR Standard Safety Analysis Recon f.
the Software Design phase, which shall address the design of the software architecture and program structure elements, and the definition of software module functions:
(i)
Software Design Specification (ii) safety analysis of the software design (iii) disposition of design and/or documentation nonconformances identified during this phase
- g. the Software Coding phase, which shall address the following software coding and testing activities ofindividual software modules:
(i) software source code (ii) software module test reports (iii) safety analysis of the software coding (iv) disposition of nonconformances identified in this phase's design documentation and test results
- h. the Integration phase, which shall address the following equipment testing activities that evaluates the performance of the software when installed in hardware prototypical of that defined in the Design Definition phase:
(i) integration test reports (ii) safety analysis of the integration test results (iii) disposition of nonconformances identified in this phase's design documentation and test results
- i. the Validation phase, which comprises the development and implementation of the following documented test plans and procedures:
(i) validation test plans and procedures (ii) validation test reports (iii) description of as-tested software (iv) safety analysis of the validation test results (v) disposition of nonconformances identified in this phase's design documentation and test results (vi) software change control procedures, and
- j. the Change Control phase, which begins with the completion of validation testing, and addresses changes to previously validated software and the implementation of the established software change control procedures.
70-5
a ABWR Standard Safety Analysis Report B. Configuration ManagementPlan (Satisfaction of the requirements presented herein shall result in the creation of a Software Management Plan which is in full compliance with the Acceptance Criteria for item 6 presented in Table 3.4 of the Tier 1 design certification material for the GE ABWR design.)
- 1. The Configuration Management Plan shall define:
the specific product or system scope to which it is applicable, the a.
organizational responsibilities for software configuration management, and methods to be applied to:
(i) identify design interfaces (ii) produce software design documentation (iii) process changes to design interface documentation and software design documentation (iv) process corrective actions to resolve deviations identified in software design and design documentation, including notification to end user of errors discovered in software development tools or other software (v) maintain status of design interface documentation and developed software design documentation (vi) designate and control software revision status. Such methods shall require that software code listings present direct indication of the software ccde revision status l
Within the defined scope and content of the Configuration Management Plan, accepted methods and procedures for the above activities are presented in the following documents:
(i)
IEEE 1042-1987, Guide to Software Configuration Management (ii)
IEEE 828-1983, Standard for Software Configuration Management Plans (iii)
ANSI /IEEE-ANS-7-4.3.2-1982, Application Criteria for Digital Computers in Safety Systems for Nuclear Facilities (to be replaced by the issued version of P 7-4.3.2, " Standard Criteria for Digital Computers Used in Safety Systems of Nuclear Power Generation Stations")
(iv)
IEC 880-1986, Software for computers in the safety systems of nuclear power stations Note that within the set of documents listed above, differences may exist regarding specific methods and criteria applicable to the Configuration Management Plan. In situations that such differences exist, all of the methods and criteria presented within those documents are considered to be equally appropriate and valid and, therefore, any of the above listed documents may be selected as the basis for elements of the CMP.
ABWR Standard Safety Analysis Recort
- b. methods for, and the sequencing of, reviews to evaluate the compliance of software design activities with the requirements of the Chip.
the configuration management of tools (such as compilers) and c.
software development procedures.
- d. methods for the dedication of commerical software for safety-related usage
- e. methods for tracking error rates during software development, such as the use of software metrics f.
the methods for design record collection and retention.
C. Verification and Validation Plan (Satisfaction of the requirements presented herein shall result in the creation of a Verification and Validation Plan which is in full compliance with the Acceptance Criteria for Item 7 presented in Table 3.4 of the Tier 1 design certification material for the GE ABWR design.)
- 1. The Verification and Validation Plan shall define:
that baseline reviews of the software development process are to be a.
conducted during each phase of the software development life cycle and the scope and methods to be used in the baseline reviews to evaluate the implemented design, design documentation, and compliance with the requirements of the Software hianagement Plan and Configuration Af anagement Plan.
Within the defined scope and content of the Verification and Validation Plan, accepted methods and procedures for the above activities are presented in the following documents:
(i)
IEEE 1012-1986, Standard for Software Verification and Validation Plans (ii)
ANSI /IEEE-ANS-7-4.3.2-1982, Application Criteria for Digital Computers in Safety Systems for Nuclear Facilities (to be replaced by the issued version of P 7-4.3.2, " Standard Criteria for Digital Computers Used in Safety Systems of Nuclear Power Generation Stations")
(iii)
IEC 880-1986, Software for computers in the safety systems of nuclear power stations Note that within the set of documents listed above, differences may exist regarding specific methods and criteria applicable to the Verification j
and Validation Plan. In situations that such differences exist, all of the methods and criteria presented within those documents are considered
)
70-7
l ABWR Standard Safetv Analvsis Recort to be equally appropriate and valid and, therefore, any of the above listed documents may be selected as the basis foi elements of the V&VP.
1
- b. that verification shall be performed as a controlled and documented evaluation of the conformity of the developed design to the documented design requirements at each phase of baseline resiew, that the use of commercial software and commercial development tools c.
for safety-related applications is a controlled and documented procedure
- d. that validation shall be performed through controlled and documented testing of the developed software that demonstrates compliance of the software with the software requirements specifications.
that for safety-related software, verification reviews and validation testing e.
are to be conducted by personnel who are knowledgeable in the technologies and methods used in the design, but who did not develop the software design to be reviewed and tested.
f.
that for safety-related software, design verification reviews shall be conducted as part of the baseline reviews of the design material developed during the Planning through Integration phases of the software development life-cycle (as defined in Criterion Ib, above), and that validation testing shall be conducted as part of the baseline review of the Validation phase of the software development life-cycle.
- g. that validation testing shall be conducted per a documented test plan and procedure,
- h. that for non-safety-related software development, verification and validation shall be performed through design reviews conducted as part of the baseline reviews completed at the end of the phases in the software development life cycle. These design reviews shall be performed by personnel knowledgeable in the technologies and methods used in the design development.
- i. the products which shall result from the baseline reviews conducted at each phase of the software development life-cycle; and that the defined products of the baseline reviews and the V&V Plan shall be documented and maintained under configuration management.
- j. the methods for identification, closure, and documentation of design and/or design documentation nonconformances.
- k. that the software development is not complete until the specified verification and validation activities are complete and design documentation is consistent with the developed software.
70 8
ABWR Standard Safety Analysis Recort D. Completion of Software Development (Satisfaction of the requirements presented herein shall result in the documented completion of the software development process which is in full compliance with the Acceptance Criteria for Item 8 presented in Table 3.4 of
)
the Tier 1 design certification material for the GE ABWR design.)
Software developrnent has been completed as defined in the SMP, CMP, and V&VP.
70-9
ABWR Standard Safetv Analvsis Renort I
I r
i f
APPENDIX 7C Defense Against Common-Mode Failure in Safety-Related,-
Software-Based Instrumentation and Control Systems of the ABWR t
e i
t
.r
+'
-t 7C-f
-..w-.
--y.-
wy
,---er
-+w*r--
f-
=-s--+n-ty-r-
ABWR Standard Safety Analvsis Renort 7C.1 INTRODUCTION The key feature of successful electronic instrumentation design for the AB\\ R is the application of state-of-the-art design techniques to modern, proven components that can be easily qualified to the required regulatory guidelines.
This is particularly true for microprocessors. Most of the effort in newer designs has been to do more functions at the highest possible speeds, which requires complex hardware and associated complex software. However, safety system logic in the ABWR uses only simple gating and interlock functions and does not require processing of complex algorithms. These functions can be very effectively accomplished by simpler microprocessors or microcontrollers, where high reliability and hardware simplicity become the key objectives.
Consistent with this philosophy is the use of state-of-the-art program design -
methods to achieve highly reliable software. These methods use simple data structures and modular, top-down programming to produce easily verifiable and testable programs that provide predictable performance.
This simplicity does not sacrifice the requirements for high speed data flow, fast time response, and good error detection, since modem microprocessors and microcontrollers fully support these requirements.
As described in Chapter 7 and Appendix 7A, the ABWR Safety System Logic and Control (SSLC) and Essential Multiplexing System (EMS) designs use programmable digital equipment to implement operating functions of the interfacing safety systems. A controlled process for software development and implementation is employed to ensure that the highest quality software is produced. The development process for safety-related software and its integration mto read-only memory (ROM) as firmware includes a formal verification and validation (V&V) program, which is described in Appendices 7A and 7B. The V&V program, under control of the Software Management Plan, is applied to software that is developed for maximum reliability and efficiency, using a set of design techniques directed towards generating the simplest possible code to be used as firmware in dedicated, real-time microcontrollers Despite the use of simple, reliable software; formal V&V; and built-in self-diagnostics, there is a concern that software design faults or other initiating events common to redundant, multi-divisional logic channels could disable significant portions of the plant's automatic standby safety functions (the reactor protection system and engineered safety features systems) at the moment when these functions are needed to mitigate an accident. Mitigation of these common mode failures, as described in the following sections, is provided by the following diverse features:
Manual scram and isolation by the operator in the main control room in a.
response to diverse parameter indications
condensate systems c.
Availability of manual high pressure injection capability i
i Tc-2
1 ABWR Standard Safety Analysis Resort
- d. Long term shutdown capability provided in a conventionally hardwired,2-division, analog remote shutdown system Note that random failures are mitigated by the divisional sensor channel and output trip channel bypass capability of SSLC. Either bypass places the remaining divisions in a 2-out-of-3 coincident logic condition such that another failure in a remaining division will not disable system operation.
7C.2 DESIGN TECHNIQUES FOR OPTIMIZING ABWR SAFETY-RELATED HARDWARE AND SOFTWARE Before considering methods used to protect against common mode failure, several techniques that are employed to ensure system reliability by minimizing both random and common mode failure probabilities are outlined below:
a.
Design of self-test, surveillance, and calibration functions are performed as part of the initial design. These functions cannot successfully be added on to the basic functional hardware.
- b. The total amount of hardware is minimized to assure highest reliability,
- c. Microprocessors with minimal instruction sets and a simple operating system are used. The " lost" computing power is not needed ar.d the limited instructions minimize inadvertent programming and operational errors. This aids in verification and validation and further enhances reliability.
- d. The highest quality, high precision components are used to gain reliability.
Designs with these components minimize manual calibration, simplify reliability analysis, and maximize surveillance intervals.
- e. To improve maintainability, self-diagnostics are implemented to locate any problem to a single assembly,
- f. The man-machine interface is implemented such that the equipment is structured into small units, with enough diagnostics so that a user can repair equipment by replacing modules and can operate the equipment by following straightforward instructions,
- g. The software design process specifies modular code
- h. Modules have one entry and one exit point and are written using a limited number of program constructs, as specified by DOD-STD-2167
- i. Code is segmented by system and function (1) Program code for each safety system resides in independent modules which perform setpoint comparison, voting, and interlock logic (2) Code for calibration, signal I/O, self-diagnostics, and graphical displays is common to all systems 70 3
ABWR Standard Safety Analysis Reoort (3) Fixed message formats are used for plant sensor data, equipment activation data and diagnostic data. Thus, cormpted messages are readily detected by error-detecting software in each digital instrument.
I
- j. Software design uses recognized defensive programming techniques, backed up by self-diagnostic software and hardware watchdog monitors
- k. A full-scope operating system is not used. The operating system for each instrument is a small, real-time kernel customized to perform only the required scheduling functions 1.
Software for control programs is permanently embedded as firmware in controller ROMS
- m. Commercial develeprnent tools and languages with a known history of successful applications in similar designs are used for software development.
- n. Automated software tools are used to aid in verification and validation The major factor, however,in implementing reliable software is the quality of the design and requirements specifications. These documents are also controlled under the formal V&V program.
7C.3 DEFENSE AGAINST COMMON MODE FAILURE SSLC performs several simple, repetitive tasks continuously and simultaneously in four independent and redundant divisions of logic: setpoint comparison,2-out-of-4 voting logic, interlock logic, I/0, and self-test. As a practical matter, the development of common software modules for many of these functions has several advantages in producing reliable programs:
a.
Promotes standardization and code reusability
- b. M.inimizes program design errors
- c. Minimizes timing differences among channels
- d. Reduces software life cycle cost (1) Simplifies verification (2) Reduces maintenance costs (3) Simplifies future changes A strong V&V program can reduce the probability of common mode failure to a very low level because the simple modules used in each division, although identical in some cases, can be thoroughly tested during the validation process. In addition to software V&V, however, SSLC has several system level and functional level defenses against common mode failure, as follows:
ica
ABWR Standard Safetv Analvsis Resort i
System Level Defenses Against Common Mode Failure a.
(1) Operational defenses (a) Asynchronous operation of multiple protection divisions; timing signals are not exchanged among divisions (b) Automatic error checking on all multiplexed transmission paths Only the last good data is used for logic processing unless a permanent fault is detected, thereby causing the channel to trip and alarm.
(c) Daily operator cross-check of redundant sensor inputs, in addition to automatic cross-checking (d) - Quarterly surveillance of trip functions (on-line with division bypass capability)
(e) Continuous self-test with alarm outputs in all system devices (2) Functional Defenses (a) Instantaneous, simultaneous, and undetected failure on a common mode error is unlikely (b) Automatic error detection permits graceful shutdown (c) Separation and independence protect against global effects (EMI, thermal, etc.)
The functional program logic in the SSLC controllers also provides protection against common mode failures, as follows:
- b. Functional Defenses Against Common Mode Software Failure (1) Control programs are not completely identical in each division (a) Interlock logic for ESF pumps and valves varies in each division (b) Each division has different quantities and types of inputs and outputs (c) Redundant sensors have data messages with unique identifications and time-tags in each division (2) Modules that are identical are simple functions such as setpoint comparison and 2-out-of-4 voting that can be readily verified 1
(3) Multiplexing and other data transmission functions use standard, open protocols that are verified to industry standards and are also qualified to Class 1E standards 7C 5
ABWR standard SafetvAnalysis Resort 7C.4 COMMON MODE FAILURE ANALYSIS As part of the ABWR probabilistic risk assessment (PRA) study, an extensive common mode failure evaluation has been performed on SSLC and the Essential Multiplexing System (see Chapter 19N). Potential sources of common mode failure that were analyzed included:
a.
Seismic effects
- b. Fire c.
Loss of DC power
- d. Loss of cooling to instrumentation e.
Sensor miscalibration (human error) f.
Setpoint drift
- g. Maintenancefrest Errors
- h. Manufacturing defects
- i. Electromagnetic Interference (EMI)
- j. Sensor input miscalibration at Remote Multiplexing Unit (human error)
- k. Software fault The primary effects considered in the analysis were those due to common mode failure of automatic initiation of RPS and ECCS. The study also examined the effects of system common mode failure on containment isolation. The effects of common mode failure on total core damage frequency were found to be negligible for all transient and LOCA initiating events analyzed in the PRA and also for the special initiating events listed above.
However, because certain of the above potential common mode failures, particularly software faults resulting from design errors, cannot be proven to have a -
negligible probability of occurrence under all circumstances, additional diverse features have been added, as described in the following section.
7C.5 ADDITIONAL DIVERSITY IMPLEMENTED IN ABWR PROTECTION SYSTEM Because extensive diversity exists at the protection system and plant levels, the use of hardware and software diversity among the redundant channels of the protection system was not considered practical for the following reasons:
Diverse software is more error prone during development and does not a.
guarantee that the resulting system will be error-free
- b. Diverse hardware and software increases V&V and system. integration costs i
ic4
l i
ABWR Standard Safety Analysis Recott
- c. The different types of hardware increases spares inventory
- d. Maintenance and surveillance require more time and attention because the diverse equipment may perform differently e.
System revision costs are prohibitive because of additional V&V and documentation f.
Performance o' redundant channels may not be consistent However, to maintain protection system defense-in-depth in the presence of a postulated worst-case event (i.e., undetected,4-division common mode failure of all communications or logic processing functions in conjunction with a large break LOCA), diversity is provided in the form of hardwired backup of reactor trip, diverse display ofimportant process parameters, defense-in-depth arrangement of equipment, and other equipment diversity as outlined below (note that diverse equipment can be in the form of digital or non-digital devices as long as these devices are not subject to the same common mode failure as the primary protection system components):
- a. Protection system diversity (1) Manual, hardwired, two-button scram (2) Manual division trip via diverse, non-microprocessor logic (3) Scram when reactor mode switch is placed in shutdown (hardwired)
(4) Manual MSIV closure (hardwired)
(3) ATWS mitigation [ Alternate Rod Insertion (ARI) and FMCRD run-in, ADS inhibit, automatic Standby Liquid Control System initiation and feedwater runback] (hardwired and diverse digital system)
- b. Defense-in-depth configuration:
(1) Fail-safe RPS and fail-as-is ESF in separate processing chaimels (2) Control systems are independent of RPS and ESF in separate triplicated processing network using diverse hardware and software from the Essential Multiplexing System network
- c. Equipment diversity (1) Output logic units use discrete gate logic and provide trip seal-in and reset, division bypass, and manual trip functions (2) The operator is provided with a set of diverse displays separate from those supplied through the safety-related, software-based logic. The displays lister; below provide independent confirmation of the status of major process parameters:
j TC 7 i
ABWR Standard Safety Analysis Recort (a) RPV waterlevel (b) RPV water level 3 alarm (c) Drywellpressure (d) Drywell pressure high alarm (e) RWCU isolation valve status (f) RCIC steam line isolation valve status (g) HPCF flow (3) Two containment isolation functions implemented with hardwired controls from the control room are also provided:
(h) RWCU line inboard isolation valve manual initiation (i) RCIC steam line inboard isolation valve manual initiation (4) HPCF manual stan in loop C (Division III) is implemented in equipment that is diverse from the automatic stan function. All interconnections are hardwired and control and interlock logic is provided in the form of either discrete logic gates or programmable logic that is diverse from the automatic start logic. The signal path of the manual logic is independent from that of the automatic logic up to the actuated device drivers (e.g.,
motor control centers or switchgear). The manual start function is not implemented in the automatic logic; however, the logic reset switch is common to both the automatic and manual logic. In addition to the manual start function, which performs all ne.cessary control actions as a substitute for automatic start, other supporting hardwired functions are provided in loop C as follows:
(a) Suction source selection (i) Manual open/close valve control of suppression pool suction valve F006 (ii) Manual open/close valve control of condensate storage, pool suction valve F001 (b) RPVlevelcontrol (i) Manual open/close valve control of injection valve F003 j
i (ii) Level 8 shutoff (c) Automatic minimum flow valve operation (F010)
(d) Harrdwired thermal relay bypass logic (e) Alarms and indicator lights for diverse logic status 7c4
ABWR Standard Safety Antivsis Reoort (5) Remote shutdown system (hardwired) provides shutdown cooling functions and displays If the protection system is disabled because of common mode failure, the operator is expected to enter the emergency operating procedures at the appropriate points as determined by the indications on the hardwired backup displays and manipulate the control functions described above.
Additional diversity is available at the plant level even if SSLC is disabled because of common mode failure. The same common mode failure would not be expected to affect the feedwater control system, which, although not safety-related, is operated by a highly reliable, triplicated fault-tolerant control system that is diverse in both hardware and software from the safety systems. Similarly, makeup water is also available from CRD purge flow and condensate pumps. These additional sources of water will generally mitigate all Chapter 15 events; however, a channel of manually-initiated HPCF, as shown in item (4) above, has been added to meet worst-case conditions.
7C 9
.g
,h 4
._Ja a.
A a
,,A
. m 4
,__m.e,A
_p me, g
4 4
l I
I i
FIGURE CHANGES k
1 l
l e
l 1
I a
J
--,-.,-,---.-.a
,-e--
.,--+-4 v.--
~
l
=l f
l u
c
.abxa iw l
l l-l Jtjj x
=
=
a
! I yC
- e-m
'?
3 3
(N o.j,
- g' 2
l? h h () h, UU Q- { 9 N'
& i \\.n l5;*l m
1
{A Ei! +l ai i,'0 7
$ w d:,h my 5
m P
4s" s s ga
?7 n e" a
m l? ;-
'$ kg *)g) 9, gg 5
g g
j(
n r 1l 4 jy;
$ $j' h[ ky[e 9
b hi M
]
7 ss
' U
~ " iri" 7_ hl
-Ed Yi
{ ij U
.h l
l
'g
[g[b @I i
.a 1m g
ly l
'T g
'I
' r!> Id kl Aih'.
I I~
~
I c
i i
<f j' fbi d
i
!m 2 i
.E 3
l L;
i i
L_2 l
i S
t rti Ey-1 T'h"S
-LJ i
i
-n 1
g a !.
a
.J,, T.
! n,j 5
! W i h
kb# h k!
h b 3h
-s z.
h-3 l0
'!5 [i M r;j gj s
7 f; y
u s
g_
..i[ J '
i: le.
l..
.,3 l
T~t.j]Rft3y]Fgj ft,Y y t.7
~ qy*p j
a:
' jrld i !%iH i9i'yjTilfigEf j
~
f; [;
r
~
3"'
!_l bI q-.J L--]
u-l T@}--
y jI
! L - ! ---y}- [_ d h
@}-
L 2
l e, ____ _;
wh-
-di!}-
L L
L____
p J
,[
a!
-I j
i i
.i j
qi
?i a
al us a
I y
k i
~
k k
5 i
+
+-
.i
<l
-il f
(i_f b
l f
'~~ l T^h 1
8 1
~
f8
- ~
~- ~
M
/}
ilT
+
7
\\
/
T-y r-i k
I.
x.._
/,I_
\\
li yi i
i
[
i h
!k i
k+
)
)
v, 1
1 1
I l~
- i-i
.see.=
1 T
T l
t.
T T
T T
Q*l "E
-_.h A
.,, h L
_J IE i
i k
i h
i
- iti, I!
i!
1
,p 1
i i!
i i
/
s.,
ti i
.y g
,g]
i
.,i-j.
m
,y a
w i
~
'"I"l [
~
"j j
a M
L i tin ag[ p!
A.
1 1
1 r
J J.
J.
a
=-Mi
-@i
=E i@ -
s-@i
- 4,07 W) 2 E
I y
+
+
f e,
+
A f
1 i
1 1
gg I,
hI (EI a1
N
,i m:.,
s o._.._ma
,7. #q- -. _.
m_., _a. j.
- o. -.:c_._.
j a
i f.
g:
g g~ p.
. %gy.7,,- --
3n U h ! b' J er,,.
u n
i
.j y
!!h!3h
.=
e.
[~~
l g'i
. o.
[
1-E C, s l
I,e I I1 3
\\
a i,
") Q
/.
O' e
=
l~
a
's r
!..i!
g
\\
i ;
,; 1 ---[-
5
. %.J
.]
7 4
sg4..
........,.f I
i I i
\\
Ij C__ 3g
=
y
, d.1
. j, qs'.4
[.,!..
r l
w 3
g E
[
E E
E 5
3 h
h.
-1 i
- O
- st i,
- D
. at
-1 9
- t s c.
0.
y L'.cd
!.I i.
O, e:
g 3
Vi *.
e t
i WV g bN' 4.,
[; #
s, 4
o:
2U1 1
i !
M
.Q i
- t l
j 4
'l -.-
r 1
E 4
- \\
^
d
I p.l 4
E-fi!is
?!
.; 'lj t~~!
~'-
En m
i
?j M h.g SJ i fg,.b s
5 T i-~~
- ~~D Mi
. f.I l I.ll
. L8) g C.)5. pa$ h' h5 g
-3 i
m n
oi aL U.,LJ U LLLJ U
,q s
L
!i e-g.g g.Q 11
" -tm ::M ts d m y
a.
5
~
- h. m
~
~/ [
~
N d5 2 u/.M r
- r u,
pu,n vn tsy g tv g/14
-, = = =
01I f
\\ \\\\
.,g
.b
~
s i
t orrer I..
lf v't h
._(-, -. - - - -
i,
- .. 9 3 t,m -
\\
--)
N 6
i
,/ ' a i y. g. 1. 18$g ** *s'n n
s l,l s
$V l __.
Q i
r V
t f
a RE%4 fr
!T e
n r
(~'LgL, (siyt4
-i 3 3 1
~
b bD ll l ! ! !
rm n
rm...
- n..
ari u,
(I h
E F
1 l 3
i s
i p
s s
i I
3 33 5 Y3 bl 53 l j l l l ! ! !
I 33I 33
=
i I
<J I
i.
~
-=
ar
- -,t o
i n
i 4.u -
4 i
[
l h
l'""
illlg,lIIilili! !I'! I !!i
!lIIlri*!!!
N NN
!a!ll!!!j!!ni,ll,lllll'!!hllfij:i iilli g
!!i,ill! j!
<! IVij l, li '
b l
'i
I r<
! gig!
U ^ l l' 3!i4 lllSL fit ir il4W!!!i.
j!W l
n t
l!!i l[i-
!!! H r : p ! i i I II !
l
,j li
- b.'
- ;..J'!!I!Nhl! j!"!mj.j!!!!hll.pl,lljg i!!
,!! Ij,,Jy'jlitig,,lgj 0
Il l
N!!k""_
eh
,<ihen E
7-f, E! O li f
!I b1
! iiu g ! i![N' 93;,
,f
! jliug f!
I i!l n ii
$laitdit'd!,fj
,)
Ltd H ! 3! u 3
- "g "j h k
r
?
,!i ds
- 1 L^-
L^J L1
'S
'~
^
i r9 jsli i5 r-E @+**
A e, r,
+ r-r*
a l!j i
I I l I "l
F-4
~
s g
[
5_
J
=
=
1=F 1=n ri=rl
,j, h I i=r ri=h I\\ --@
q g
D;MJt!, [' j 5
is n
- 1}I 61 mill 61dlli 61 lN, @,
db" i!N ii $!N 'I !
" I mali 6isillNi I !
d "' b %
rh i
g i!O$iA!llii$1l51hI 15 i b
l df (i4 I'
".. y L "a i u"
~
g,;, ;
4
.N- "
f DI i
X!
r>
r>
1, I
s e
e l W-
- -4
! I 1,.I I s' f, g
?
1
- Ofd"4Ii!:
$1 ! gg ^i!M!! !4 % i gg 4,'I Ml1=r;!!d:?4 I?
3
=
=
!1
-M M;:
1 n=r I
g h;
li!@d:lyklY..d[#s-kM1!!":<a 3
I
$3h faid!' hi Q~
L
!" I!
s-jih n ji j! ilit l@3 l.
~
yf@sN
~.
f""LI 4i dH
({! l i Lali ' E]
1,!
?.'
X*, D..
I
's e---a.s ni f
@! @! h-
[u I
i
'L.
5--! ! p g,,
I 1
O
+
y 9 x-i X
b' D
j
__1 x4_J jiI jQ o
I,,'i** 8
@= $ 4 3,liI-< g]i k
@"[0 p
e x,
e i
~
g_ww
@- ( "~~ q=
- f
- J."$
N-
%, p,$ /
g3g.s,
- n i
u
-g4 i
t m -im m
01
,dWL
~
e x
1 s
L
. ~
l i
l l
l f
l 537eg7ao ri i
7 e
3 rs oENT: RWas SYS 2
5 4
~-
arvuume i
l 1
NOTES:
SUPPLEMENTAL COCUMENT UNDER THE FOLLOWWC OENTITIES REFERENCE E
5"*LL BE uSEo a CONJUNCTION WITN THIS DRAWtNG:
DESCNATOR
{
t ALL COUPMENTS ARE PREFtXCD BY SYSTEM MPL NO. C31 UNLESS OTNERWrSE NOTED.
t CUW SYSTEM P&O G31-210
- 2. ALL EOUPMENT ARE NON E EXCEPT PRIMARY CONTAWMENT iSQLATION VALVES AND CUW MJECTON VALVE.
- 3. LEAR DETECTION AND ISOLATION SYSTEM ED E31-1030 no s7*Tus UWO 4 FEEDWATER CONTROL SYSTEM BC C31-1030
+
- 3. Ctxga) capTmuemy; tu ta rasa en ts -
F"* M n cadraqls w e; i
NIM Dirt PMDhprsio} To D
D I
SUPPORTWC DOCUMENTS:
t t 23A4885 - MTERLOCK BLOCM DIACRAM 080) STAN0AROS 1
MA571/
c 4
l C
TABLE OF CONTENTS N
1 COVER SHEET. TABLE OF CONTENTS h
~
2 CUW PUMP COO 1A g
3 CUW OUTBOARD CONTAMMENT ISOLATON VALVE MO-FOO3 TN3 u\\{ be $3A%
CUW INSOARD CONTAMhENT ISOLATON VALVE MO-FOO2
~
3 i
MN b
- 4 *" ! 4 4
CUW VESSEL tEAD SPRAY CONTAIPesENT ISOL VALVE MO-F017 4
CUW VESSEL DEAD SPRAY VALVE MO-F010 3"
5 CUW RJECTION WALVE MO-Fots '
j UY T,*.4 (. SN[*.3 3
~
^
S CUW BLOWOOWN LINE ORIFICE STPASS VALVE MO-FC24
~
-[
S CUW F/O 096T-A ISOLATION VALVE AO-F202A.
EE U
7 CUW F/D UNIT-A ISOLATION VALVE AO-F20tA 7
CUW PUMP PURCE LINE STOP VALVE AO-F030A m asan m 8
CUW F/D BTPASS VALVE MO-FO11 marrrv aE4e east stass ss VESSEL DOTTOM HEAD DRAN LNE VALVE NO-FC19 1Ns m,e e au corses a sataigg S
9 CUW SLCWOCWN FLOW CONTROL VALVE AS-FC22 sumnsus ase e
10 CUW DUMP VALVE MO-F023 17 b
Q$57 u n m 9
" RJ m 000 TYPE: 19 0 A
10 CUW OUMP VALVE MO-F02S -
= EV Nazenoso REACTOR WATER ft heSCELLANEOUS ALARMS g,.,
CLEANUP SYSTEW
-k
[.rnE. no1ES Am RErERENCE DOC 1MNTS 3 M ACE N.Ch*4LS *. FuCNS &,
.N.CE"71{ C",
maams a.onenmar Warus /.
I.
settss 137C9700 l O 951
4 I
w a
u
.rj ootsam l
=
8 8 i
~'
- [
6 f
g
~
R 1
W 6 E
8 0
j l3 3
i i s I E i
8 gj g
g Si
.il I!
y gi gee I
nee i
I
[9 l
ga I
l! B !
l l-l 2 5 I
a.
iie.58
,Ei88 e
e ml i
3 I
$l I
l i
a g
i e
s i
a
?
7 i
S Y
9 J
lt g
s-s-
g.
g i
i-
-h
}
l l-~
-i l
u
{
e i
~<
O J
h 9
i l
t 1
l-
~
i 3
p
~
e 8
I 9
__J I
n
=
/s g
/s' 3
E E
l,,
Ee f
il, 3
m
--8, e
n v.I uc e
s y
li! S!
N4 f!!S!!ll}
lE'E liv i)
!iniTjpl sh 3
i e
e I
I t
I a
l o
=
N.
- r; la 1
.I i,-
4
' i
' 'l,1
/;
t.
wa sta22 - attartus, w w i a.
(-
f j f~
g Cw SDSheC 03.55 - Aa n rtuo - tATEn 8'
T N M SYSW hr [r hat r
,y o
DOCUuENTS (PCER TFT FCtLOwNG DiNTITYS ARE 70 MTOM w'TH TH5 CM AwNG.
LO 22, OR AN AND VENT PPING CESICN COP {1 TONS ARE.;
W uPL NCL N
WAEhtM OPERAT1NG PRESSLEE-SAuE AS uaN tK 9
aInNC CCOLNG P2HCC (FSTREAu Of v al vt J D:3 P10 (AluOsPut RC PatSSLRC FROM L A.ST v AlvE TO F LMIL 2LE2 SYSIDJ BD B21-030 W Ax OPE.R AisNG TEWPERATLftE-SAuE AS uAN LPE liDOwN SYSTEW ED C51-loso UPS T RE au Of V AL VE tE6 T F RCu L A5T 2TE;! SYSTEM 8CONDENSATD P&O PO-1010 V ALVE TO F the4L
{
JRE MTRCZN SmY SYSTEW P&O P34 - C Q 21 P1PE PO41ERS FEA LOOP C SHALL BC TFC SALE AS FOR LOOP B tO LEJ7. AGE TRE Al&ENT. RADW ASTE SYS P&O M17-010 Pits 100 ST ARTNC AT 005 (Ex AuPLE: 1OOP 8 - 005 = LOT C - 105. LOOP B - 701 = LOOP C - 231 MSSuRE VESSEL STSIEW B M-40Tl 20 g tS A tNLE p
CIMT7 CASTE SYSTEW P&O M O-1010 P
u
'110 CONTT.0L SYSTEM P&O C41-OC
- 25. N SPARCfit WTTved THE RPV IS NCLUDED H HPCF BOUNCARY, AT REWOYAL SYSTD8 PMD En-1010 JRE CORE F100NR SYSTEM PFD E22-020 QQ, bNOTHLA NOTE 0
'JRE CORE FLCODER 00 E22-1030
&m%,% -
q TS3-c30 1 PC,OL Tf uPERATURE 27,
$(GNAL pro vsD Eb B (NOT P%L LTl PLEX} y HpgOtroonE.
STS Eu En c
y sot ^'o" cool'*
N PCOL CLEA4-tP SYSTEM P&O CSI-00 CTMTY CASTE. RADWASTE SYSTEW P&O K17-100 C
1CU"lNT
'85TRUMENT DIAGR AW SYW30LS Ac-3030 td N b N[
Fusu r< E
- 6. 3 - 7 S HTo l MPL NO. E22-1010 I:1N CLA.51 Crrt SMTTY acLarD g5(1 cLAtt tt TMS ffTM S DE CCNTANS A SAFETY WAR SAFITT aCLATED 4t1A1T3rYDs D TES O pc D TTS O m3 GENERAL @ ELECTRIC
- we tcmwS
-rE wut.t 6a 3
is O
_ _ ;fao _ _ m toc _ san _,c I _
cA sAYts 1. - ri s
10 de doc TYPE. P&O
-=
= Ev=A2AmooF M 2 y
?T HIGH PRESSLRE CORE O
g.
FLOODER SYSTEu we seuss oww.ar iPettro
/ ((I*$
i.J.04 -91 107ESOO8 0 17
' m* * <
- ru a tucama 2 ruacTrna i 3 PLACE CEckats !
ArG.13 i DL*4 5717.D C
Q 1 I2 to 1 AP-mu,m 7
6 5
4 3
2 f4 i.
4 i
M K
MOTE 2.7 p --
._1 L.co e c "
i FI C"Y
\\
NOS L
,C l
I I
J I
T i
r- -
i I
l 5
y i
lH f
l 8
/ scar \\
i e
g c - _ _ _ _ u er_.. 3 i
J L _ f 1" "jT h, ::
3
- 23. +c -0 3, 3
l*
i
=
g R
2 I!
_1 SDA W -C20 j
_ao
~
~
C 40 20A-NPCF-704 (oocy, I
2ca-+cr-7:s i
t i
t 250 A-woer.007 i
e
)
i H
h204-+:r-s Gh 3R ye.j,
l2 10 0 'O '
33 h
rw p
00378-2 I
r P
res a
- post, o
3 r- - - -;
- - ""1 g
ust i
f,, y l
\\ 2sca / a l
^
l l
Dl 1
1 g+s a
?
2,
=
3 e
W
]
w a
l e
A s
a
~
g F
5 g 7 g v
ag v
v pug ed TD Fi cu ne 6.3-7 SH r. I E
300A -MM g R R P 11 ID I
Ft s arta 6,3 -7 S HT, 2.
I 1
y v
M k
H lj l7 e
'O
[.
jd
'a k
3 m
h i
i L--------
--4 i
e 2
r------------
--- J d*!e
- --4 l
l xA t
A s
s 8
i l
l
?
?
- o N
l l
c
____j l
'g
("
s A
l i
e /.
l 3
g
/ #8 \\
/ "\\
80 A-HPCT-013
'r,d 8
I f
C
\\ 16,06 f B h_2607 /8 g
i i
.i
.R 11 0 ) 3.
e
~
rh W
I co-c4 c h
roA-e-c2s, F
r o
'p PI 9
20A-MPCT-703 4 IU I
a w l
k - _ _pT
/ M T 2*6 / e
.e n 3, no,
g L_
test 2CA-+PCF-702
' ~
un),
?fB.
y#\\G g
I
& _ _ _ _ ;l E
n I
+ _ _ _ _ -( 3 i
(
l WTt s 4
e________
i l,
A l
i CVEM )
i LCA3 3
j f
t i
i y
(-_J
{
p t
s'
~
- a. )
'10 ot g
'4 otg 2
i f
2 i
/
/
I S
g 0
2*
/
/
,_ 8 /
i StoN3 C00LER WPALY --
400 A -*OCF -006 L
5 11) 4
(,-,
f'
'q SEAL 00CLE7 4'/ AY
}
I_ *)
e i
c,i c
g5 1;
k' e
I si p
8 a
s I
A
'J--~
J h
a t,
8.EE tt 3Jow
.e>
1
(
4 s
g
.h I
r--- r "3 a
8120J
'N n
g-a c 5 i
s-kl e
~
l 4
-s m
.e.....~
8 MLA I
C n
8t004
---g
-_4._ _.p o
%s u
/
\\
d
- - + - - - r 3 9 31tN 5
-- e,
- T,
~
I
~
(
w w w l
N./ t Rg,y y\\
w n.
s 4 V l
we 2
l 0
O I
2 h
t M
N l
i e
- i3E E
f ey 8 7 o
i
+Q l
cm R
j 5d N c _____________n
- o. W P i
v i
l d$2 7
w a
dD we IN3A
~3 e.
fi
. mons erw --_
h,y 1
at 0
pas b
w N /
1 t
'O'--
l
,?
g i
o*
-3?
y
-_L-i-_L m 4% _ _ _
=>4 7
7
- g o-y
(
- ]
g I
lf I
98 VIE 3 M N L_. ___'
$y y
(O 310e e t003
- ~
dR0d NIYM s
O f
O N
C N
.J l
i I
i i
48 s93 N
a $t
-6s h '. y n
v W-h
,g e
a o
g
$^"
o sn v
W 9
f!
s
~
l l
l 3
7 l
6 l
3 l
}
4 137C9462 f3 2
Revs 0NS 821-pts-Z625A g
n" tat [
I i
DR LL A
PRESSURE SE T N f
i D
Z--
3 821-Pts-Z62SO
): ))
DRY 11.
A estssusE mr = /
t e
e23-Prs-za2sc C
Y L ~ l E OC in NOTE Po L C 8 021-PIS-76250 R DRY LL $ CAL )))< 2-IL b +- O PRESSURE ur m / g l 8 "5 3 COMMON FOR O LOOPS 8 & C $g usE SPicFIC A TION LOCATK)N Q 2" UN PS Z = = 4M i ~ $ TO HPCF SE 2 2/4 LOOP 'C" oN . J RT B - 7' B A M. POCATOR LOCA TKW N N U HPCF - LOOP B NTIATION LOGIC (CONTD ON SH 4) TYP1 CAL FOR LOOP C EXCEPT AS NOTED 1 1 O R S ? Asuas
- 7. 3 - 1 A
H A E R s anns = = =
== na 137C9462 0 - wa TmsES w-27 9 91 -FE um u ;& f4L J = n UCI e d BH I:: 3 %* 7 6 5. 4 s esmem@ ttactate 1
e. 7 6 5 u 4 3 2-137C9462 'N arvsrsa i uCR E HPCr v Sv5 RESET g E POSI RESET = two AUTO OPEN SPRhG RETURN - CST V ALVE . M7 FOO1B 2 HGH DRYWELL PRESSURE W 'B' 3 C4 '~ c4' w ? e 4 M -e_ p d t>--y;-# e f M SIGN EA D-N TE T ET 8 VALVE F00Sa y g B2h LS-Z603E-3 N REACTOR LEVR \\ O'V I O A^ l ele s t5 / @g7rS?EY V v d mcr v i SS ? NMTED [ ,a fW VALVE F0098 O- ,D o 9 o 82b lS-Z603F-3 % sN S: I LEVEL \\ DV 2 g - d / START DsESEL ^CT 3yg LEVEL st5 / j (Gtuamareg 9 ![ 821-- LS-Z603G-3 ' l' d l M NJECTON gm.\\ OlY 3 (: l( l. 2/4 j,r HEACTOR OPEN TO WATER 5g / ,j py ; 2 . gy VALVE F0038 ' LEVEL ,r NOTE C .,'- j! 6 h' 'r4 ,J + r, a 4 r \\ ft 82b lS-2603H-3 4 3 START 10 . g. PUMP COO 10 2 A7 l RE T LE \\ UV 4 e 3 LEVEL 5 /' ? TO gg i r <r 9, 4,7 7 (003B TO s, 4 L gi, a, g 4 g P{ IL
- h. BYPASS uCC i
m j i 7 p OVERLOAD NS w P i i--- j ^ h i 11 D 5g USE SPECflCATON L OCA TION U ) M W i n /> uk 3 f / /. PS A ET 4 e M e 'f f/'jd$ j ? RR W A/ s, n VU W f) i V})f f,V f& S v v 0 - v v y RT YS MCR A NO. NDICATOR LOCATON i ARLED IfCF Y WM4.lAs. NYiATION N N COLLAR ARMED r PBS START C i A ) T O R s HPCF - LOOP B NTIATION LOGIC (CONT'D FROM SH3) hT Y : '""' U ~I g_ g E R i s so.ams -
== = 137C9462 O
- "' WS TORRES A%
27 9 91 _T8Th7 4 ,5 ME WilfNjla/It. J h f/ OC .4 s 5 .4. . ~.... -. w
- - +,,
~., - - ..--%m, e 4
4 3 2 137C9462 N 7 6 5 o n-HAMDWIRE]NTT~ 5ta.TlPLEX Y ncg HPCF T SYS RESET l l 1 P85} ' RESET a twO) AUTO OPEN E p/ gr g CSQA L _ SMNG RE_ TURN _ _ _, _ __ _____ g 10 tElH DRYWELL PRESSLRE )l-tecr - %, TEST RETURN 3 NIIAI CLOSE TO G cAe_^- n e. SK;NAL SEALED-N VALV F00P/c B21-LS-7603E-3 l l! ) gyg \\ DV 1 q L 7 $4 f REACTOR @g7 VALVE FOO9fc l tcCr g V b l l ,tir l'TEsS El*E" 5 15 / ~ 6 NTIAT g ~*" l I l D i 0 [ 9 d B21-LS-2603F-3 0 'i I 3 3 l f7 ART DIETEL g REACTOR gyg \\ DV 2 l frv s LS / h,, m mm N l DG-c only _ 4 t !L 821-LS-Z603C-3 d $. FUECTION OPEN TO N jI i REACTOR LEVEL \\ DV 3 g 2/4 87 VALVE F003/c-WATER l LEVEL / y y ft 4
- 2.
ST ART T ~ B21-LS-7603H-3 l l T A7 f EN d REACTOR gyg \\ DV 4 Mf Q 3 3 RT jf g4 WATER 4. TO AR 4 s t5 / f 7 / LEVEL FOO38 iO n d?, ' jr j li g IL O fp'j BYPASS MCC N5 g '7 OVEPLOAD d G g 88 C7 TRP CONTACTS 7 c _.a _ n o g, sr,Jrif,,g ' < b T 1 L__,,_,_~----~--J g USE SfY CIFICA TION t OC ATaON - h ; ; L t w t _ Mi g, " ^ ^. ; - [7 b; 'b i 0 7 h 4 1 A l y V Df = "3 auto ortu PS >?#g C51 vat vE ET j sf '% $ pr I*U FDCYC RR d// q / v v ( n-Q ",Y 'a ~~ A I S' /1 A A = ~~-- ~ "__"__"__.J "N' ~ ~ VALV'E Four/c i 0N RT Hs9RD w/R E_ YS l } (N0Y tmtLrtPLEXED upts Y, Q,y,QQ B ,DiwALVE FWc A NO. WA@ WAW mTED 3 r l C WCR g N l w(f 'y' mua3AL nt\\A1nm N l O STAer estset COLLAR ARu[O Gm** * " PBS N k START f M -A *"'I C C L. 4,E,/,Yo*;,c j h g i 0 R bc HPCF - LOOP h NTIATION LOGIC (CONT'D FROM SH3)~ g l F/ause 7 3 -/ TYPC'.L Em?OP O a A EMCC"" "I NOTLD 1 l E. ^ca.n*o E 1 icts R ci S - ~ _ s 137C9462 [ r_0 ~ = WB 10RRES w 21 9 91 / "".' 5__ 7-CCTSS SSI W E WitEtMl7 u i t, J s. f/ 3 A 8 ~4 l g
l f 137C9462 l'5 4 3 2 6 3 u 7 ne m ia REF DOC 2 NOTE 6 M PUMP START SCNAL O HPw sus = "ir E REF DOC 6 NOTE 3 START 2 BUS VOLTAGE >70% 5 (WO) r PULL LOCK h C008 HPCF PUMP y ER A i (wo) 'Ub> (wO! RLu ) (WO3 - (WOI --* TPU -/ SuPeREssoN eOOL \\ l _ V ~ 3J L*' ($ !_m t/SEC D H T m D SLTTION F0068 FULLY OPEN L -(WO3-(WOI-LMT SWITCH _O COMENSATE STORACE g j TAPM SUCTON F000 Fit.LY OPEN LMT SwlTCH / b ^ l C PStoose TPu SJC ON sSET PONT SM t (WC) PO C REr 00C 2 NorE 6 V EN TPU RT + PUMP STOP SGNAL g ] AR J I? Q HPCF PUMP COO 18 REF 00C 6 NOTE 7 t=1 SEC NS e G BUS VOLT AGE \\ TYP: CAL 10ft-60GKi- [ CXCE"! AS NOTE 0- \\ 5 301 / SI USE SPE CFCA TON LOCATON $j UN REF DOC 6 NOTE 7 pS ET [ MOTOR PROTECTNT \\ ~ TPU < TESTABLE DECK VALVE \\ 7 \\ RELAY TRf* SGNAL / gy FOO48 FULLY OPEN / SE W ndCR L NO-FOB 8 ca cK vALvl IO Is g TEST SwtTO4 MCR g EQUALIZNG VALVE A NO-POCATOR LOCATON i POSI TEST 7 SPRNG RETURN .,,,_j L E OPEN N r.- oE + CtOSE-g g N PLIECTION VALVE \\ < F0038 FULLY CLOSE C / NO-FOO48 J' FC A TPU ~~1 7 cMI[vALvr o C 4* N R EOUAUZNG VALVE \\ ( F0198 FULLY OPEN t p OE CLOSE S j O E " 5 7-3 -/ c H A E I-A TESTABLE Cl4ECK VALVE F0040 & EQUAllZING VALVE F0198 SNE (, i TYPLCAL FOR F0D4C & F019C 07C9462 / 0 - we TONRES m - _ 27 9 m '_aci e a uns I:: $%e il - -f E we.mtwiM a2M-Jeg ~
ll 137C9462 f5 4 3 2 7 6 9 u R DO / NQtt/ ' "C" '/ [ E 0 '(- f H'CF RAP $ START REr DOC 6 NOTE 3 / / \\ CS AUTO d BUS VOLT AGE =70% HAgy)wjgg ~ CT MyLTifLEJC) STOP (wm PULL LOCK f Coed / { e AA p d wCr Puun y uca M10 o cwo g v m evu n (HTMTION'ggj' k 6 ecr y /P h '**- 2, s, g c s s s tWO4 - two)- { / O d [) - V ~ V t=1 sic D / s e sS m PO R \\ q - secTa r Y OPE two:-twos - O M
- to uretts.
CONDO 6 ATE STORAGE I,
y(NOI N TIPlf
l J
gn S
=
/
a HPCF PUVP COOlhC REr 00C 6 NOTE 7 t=1 SEC ws G
J y":C.'t r0" cc i
[
sus votTAGE
\\
EnCE T n
\\
5301
/
si usE SPt CFC Alm (OCATCW p
( " " n es ou ~3 e s;L-ent sneer) gg7 nnt g un77,
[TEsTAaE DE ALVE \\
f A
RP 2
A r0048ftA.LY OPEN /
/
h O'SrIsEshh, j
[u,
=g,s-p A
twoi ocR mW-rC
/ \\
O EOUAUZrc yAfVE Y
i 3
m ac og tocarm Pzsl TEST #
4
// seRm Reitm
/->
/
/ wa N
n em
/
f r-DE -*--
ctosE N
1 RECTION VALVE
\\
/
[' ' roosa rutty closE N
[
NO
/
C
/
,/
re"rOO48 i
/
/
c N%% _y b
/
/
/ m
/
1 v
/
/C/
/
E /+
OFTN R
[
A
/ EcuAurec
\\
,\\ r0ise rutty'ALVE t
/
oeEN y y
DE -*--
ctosE
,Q s
h A wer
- 7. 3 -/
e'
- TESTADLE CHEC VALVE 040 & EOUAll2NG VALVE F0199
( E sur. 7 s- / TYP!CAfrFOR FOO4C & E019Cl N - weToRHEs = 2r 9 91 137C9462 0 ocT e: m71 o tT B -FE wtwrt u m eAc. s f. I
4 3 2 137C9462 f$ 7 6 5 u PDixus f~~~~ HARowtRE (No7 matr! PLEX) f"V d ,/ h*kk'[Y hj o"'5A b 1 j g c oCR f g /. Pfr DOC 6 NOTE 3 l L g tecF PunF [ j START ~ DUS VOLT AGE 570% l l gg 3 l P',A.L LOCK f p g y ,a # Q>-" r e u ~ ~~ MOI- = TPU ) two)-- O l T g m u (< t_ ') _ w w -- g J l tTSEC O g <S1.CTEDM FOO68 FULLY OPE SUPPRLSSON POOL l l (WO) - IwOk - O A f I LMT SW1TCH l CONDENSAIE STORACE ~f l TCJe< SUCTION FOO10 FULLY
- in/
I [ OPEN tui SWITCH >=~ [~ ~ c l O s SET PONT[\\ p')LL PLM) d f OC Y A SUCTON g x o (WOI PO ~ ,_,/g V PRESSURE 5 //w><Ns [ L 1 EN C 9 . L o TPU RT / - -~ b7 y ) l ) l3 ST Pume suctioe. reesrume sicuAs. I __/ / 0 + it t=1 SEC S 'HPFPUMP C00i/C 7 REr ooc 6 NOTE 7 p-U / OUS VOLTAGE \\ i i No"i )\\ / { v mr. m c nzm, WE N IC A MW lOCATON m / l PS REF DOC 6 NOTE 7 f ~ g I uOToR PROTECirVE \\ RR / yy 1ESTA8tE CHECK, VALVE.\\ 9 RELAY TRf> SsGNAL / 1 g Fco4s rut,LY,OP S // ,,,,,,,J, p <wa r + '- orOeo% n // uCa// gr .-p_#_ [ fc~ N-yS CRCK V ALI a MCR, 6 nest smTCH /* [. - f EOUALIZNC V A(VE Yag, s B No FOCATOR t 0 CAT ON x PBSl-TEST /, @(g ['--~ OPtN' ) N g E $PRNG RETURNf/ l ' j/ // ~oc E-CtosE N r. PUECTIOf[ VALVE \\ / y rc / f; NO-FOO4B l FOO3G FALY CLOSE / Og O / TN / ! IE5TAUI I T ' /_'_ CFECK YALYL g O [w i E -w -> OPENS R y% E'OOALIINC VALVE \\ /* S /Ot98 FULLY OPEN / DE 4* ClOSE g 4 /p RGuRE ~7. 3 ~/ T / \\f H A A ), G g / y ?*p g sur. g i TEST ABLE CHECK VALVE 'F0040 & EO At lZING VALVE F0190 S % TYPICAL.f,ORJ 004E &.f 019C ~* Cg# p -0 g so,, n,,, _137C9462f: %M ? .1 - wa u sEs 27 s 91 u T. mn-3 e -.rE w m t e e I 4 i i A t l .......m...
4 3 2- -l 13h 162 l~$ 7 6 5' u = t Y HPCF ~B {- E N ECTON VALVE LocP c CS F~CLOSE i N j p RfF 00C 2 NOTE 6 ~ l MANUAL 5 / \\ OVERROE l VALVE OPEN SCNAL b i mer v M -I L- - D E 'gi } i y, I --~ w oosa l L ' HPc v *c ' e MCR fL Auro rurroat " NICTON VALVE i OeEN REACTOR HGl ~-> CLOSE 921-LS-Z601A-1 MTE 3 + WATER LEVEL TL REACTOR \\ gy ) - q H SENAL SEAL-N A 0 b ) ( F-OPEN ) V y u / REF DOC 2 NOTE 6 B21-LS-Z608-1 EN C ' 2 REACTOR \\ov2 VALVE CLOSE SIGNAL RT ll WATER 2 LEVEL 8 I AR i + ll LEVEL / I {O Q ss s 7 B2h LS-Z601C-1 ) NS Z --@- xm F-CLOSE L 0^5F -Q~' s - -~ h 4 PS (WOI-B2h LS-2600-1 --))) 1L VU \\gy4 gu 4(REACTOR WATER 2 LEVEL 8 I f SE I LEVEL / I ON M LeoP c R to "/ O COMMON FOR ' ~* , O ,, LOOPS B_&_C A NO. INOCATOR LOCATON N g _g_ E4 = M toop c" d = NOTE S' 4 '3 ' INJECTION VALVE FOO3B R TYPICAL FOR F003C S EXCEPT AS NOTED. o 37, b4 Loo P "B" ( FOO3 C CONT'fuufb ou ~ A '- LEVEL NExtSHEET). E A 5
- CR l
sNr. 7 W "W' WiR LVL HESET PBSI-RESET so.AnsEs ea'un " 137C9462 O SPf0NG REILRN " WB TORRES 2^ ^ 27 9 91 ~
- -*FE wt HEt na 9_fa III.
J t. f/ OCTS3 M l" 7 = I I i -A' 3 - l e m
3 eww de2 9 A. O m w a u ,9,j 397602.n l ID ob 1* 5 5 s o e 3 R E N e g e w* ' ~h A u r g 8 [$ B 0 s s: w 0 N W C l" w 2 m h l ;b l h S' 5 6 f yhw l f %j,: m ;" 1
- 't
- :S:::
< - z a z u-<- o-e l o-= w z e i n 3 k G' h.. 5 E' s, le g \\ ~ '8 [ ga t ) r!, M>< l i ^ ^ 5' s 1 s e $[M I r s %' d n g W W L t i 5 i ^9 w N sm.- 11: t-11 [ s t w 8 z '4,h p d i s \\ e. e-e I k-. ~ttt m e ~ s g c 7 ' \\qg E ' ' O \\ z --~ [ ' 53 X X x=qy~ y. s a y l ~ k W l1 ru r, _m I if,I a,% g x-, w. slI y ,y -w N. s__jk l f e e e I g i. I I w n s s f x T' ~ t SliM l t p ,o a s a T bu3 E
- f. Q d
. id zm' d j e g i - M $.k ^ \\fs hIf l "8dE l $, h-s w z I e e" i q 3 5se !ss !}e -k sc" ?!se ~ e _ _ _ _ _ _k;gisgl != vie vsg s
- p )&g yew._ ?gba_$np:&Y s--
1 u Y 1* l ~ l a l u & I a i
l' l g g A f~ ggoQ" E D C 0 __ e N N O O O T r A A C C 1 O O t r 1 L 2 / H 2._ 6 6,. 4 N s 4} 9C - O R 3 9 7 o 7 C1 T A T 9 7 5 3 C 4 3 1 i c 3 r i x E 1 C r e E n d T P u C IS, s Ol /F ES o c U N in ica R h@ QnRO 1NS auN S 1 / t C ,NN C oR OT,tRS = 9 / s A N SUP gv Y M 0 3 W 2 9,. f E 7 1 i V }1l t 3 u LA 2 V u e g E 4 s S O O t-g T i U --4 t s C C A o S f l o e5 s r T m 3 O S. J L s u T ul m t t = R ( a R K s O U N T W A 8 0 E T1 W F i 3 ) ) 0 C = E0 1D CF OE E N S A OT C EP O RE FO L O OV N Pw C g TL R C SA OS jg o~ F oo p V FA Y E L f oL p TN LT I I g *o AO AP w IC O hW CE SIT IC W W NC P ( ( W EU Y X N E D 4 S T [ NO I C g xj l$ =- ' = r G N = i 7 = : ) 10 s w t ) j X E 3 A LF my t i ac = = _ 4 n 8 . e o ro ( _ (N c I l O I W P Eo o T _Ro g / w \\/ s t w <) !O R ( / E o W FE SD _ g
- I 6
NI A R A R H \\/ RE T V OO g ~ )6 T g[ UN L 0 O AH 6 0 E A c V PFN L R E O 6 8 NC L T E i E A u L E E 6 0i T N ~ L P A S NV OO 1w O O T N V o OLO O O O R E O CS N S N S c V PFN U p l SAy N C SVl u L N E E E S E ~ g l E l P S O S NV e' N H A /g E O l r RNu O OLO O E C V P T 0 A SVL 2 C C POr P M M l F RNU e L L SAY / O U U P O C N T p cT' DN S UC 2 E L r E Su E r C i F C V V em C POF e l T S o e O ~ "e 'F A S S l O L L e U PT L D A CI C C D A YN t V S UC 7 s F V T )\\ SW'[Ag R< (HN F O SU P t E E I T S A R T S S NT AI C C 'i { I N l A E D c + 9 l1 i
4 3 2 137C9467 l~$ 7 6 5 u ncvans W ^,, m,-MV, y,,'sWW * * ^ },- 1 -I t r PO-t.5 - 7601A 5N / _ SUPPRESS!ON POOL SUCilON VALVE F0000 h /CONO STORAcE orv i E s
- ^-^^-' y;2.e At--Kva-fm E
7 (\\ TANx wAItR Sc TPoiNr LEVEL low l 3 / ggpgy g q d' PO-LS-Z6010 9 O p DV 2 I' CO/o STORAGE o s \\ it.NK WATER SETPOINT +h /' LEVEL LOW /
- Ff t
{ j[ PO-tS-Z601C J 2/4 REF DOC 2 NOTE 6 ,I Coro STORAGE s \\ P( d, 2 NOTE 4 V ALVE OPEN 58GNAL OfV 3 4 3 ~* TANK WATER SETPOINT A // \\ LEVEL LOW g 4 Pu-tS-Isoo MO F OO60 %wgR SErPerf' UV 4 Y D a::qd" Ap CONO STORAGE 5 d-brrcwrwruCR o ( ~ L a uc - m tt g p ~ om " w lui;&D fM4V-2' - l,f, si - ~ CtOSE K V V Lg/ >??'(.,1 A A /' / *~'r / 2 J IL 7 1 Q 4g t 7' p ? w v V k, h nisGQh ",^,^v^fy h Nr&W h?,'l,^v 4 C = 4 d OC co IWO) - A (wo) + T 31-LS-2658 A --(WOI -* u UY I I StJTt<t SSIUN 2 C 4 POOt WATER SETPOnT RT ~ LEVEL FO4 jh ' a AR L q '[ T 31-LS-76588 Y{G* f0 4 "SUPPR(SSON 2 \\ [ UV 2 / N5 4 (7) 4 POOL WATER SE TPONT + g U 7 / l LEVEL HGH USE SPEC 41C A T ON (OCATON ( F-OPEN ) Sl 4 d, = N T31-LS-7658C UN 2/4 l SETPOINT[\\ gy 3 ET ~ SUPPRESSON 2 POOL WATER ~ s NOTE 4 gg j ,j; ] ~/ LEVEL HGH vu y w m 7' REr DOC 2 NOTE 6 tu T31-LS-26580 Jj?L 1 4 f/ ^ 7 \\v4 ? U Sr g
- 7 SuPeRtSSoN z
d VAtVE CLOSE 50NAL ON SETPOINT[ POOL WATER j \\ RT (EVEL HGH m(?Q,;1&j., u y B if,cy1Y2}Jh! .q /7 4 -V V i.. ,7 A NO ,ccATOR t oCA TION Ls B m, - y f;[ L -?spNn a n N vq' yt ( f v sy IotAA/ vNg^vWLK ,4l ^ '*0'~" C M SIN O 'v 4 d,[hhN F-CLOSE ) l r y;QQf,.S Jr.C e, A t' v- ._e T s s/P suttics vALYE / O R F -OPEN 7pg d CS AUTO ] _-- O F-Ct OSE E 7. N t-ECS H A MCR E A suCToN IUTu R TRA NSFER fyERROE.l } p-sonaws er e v. S su r. 12 NOmAt Ji h OVE RRiDE (WOI - 3 g
- w010RRES N
. 27 9 91 " NORMAL" POS' TON 4=*FE wtHEtul%f46 J fp _OCT 0 3 EST~D # *ll 9
- KEY REMOVADtE N i
i
pgy
~s-=
CD 4
j o
u
,9J 29t6DLD l
y o l-5 5
s li a
m 7D s
~
k' m
C
~
k D At 5
h g
M 2
t<
ui:
0 s@@
0 !::
w e
g z
i o
m -
g y
y Y
k
> z $
L,,
o zN o S
2 q G' 9 0 u 8
N
- z m - z o s w z "z *w
.<zzszu-<-ome o-zwx-t 5 1 voz-moso mamme>-mo q
osum<-_zo N
^
i c v
-====
l
^
4 6:
8 e
?
I E
e i
l m s w
a -
vl g w!
w w T b__.
_ -. _ _a 0
a a
s_J
!iak imR 5
i s e le ct 5 %
z g
8 n
=8 5W m e-t l
C o t gu
& c n a
D C3 nh 4 i
t N
e W
L
'c E
Q gL m +
au
{$ k o;.$Q V
o! U' ?W q
,/ o n
O "I C
\\
/
h[
(l' j'
/
8 ib z
!C 0
{
i g
3 s
v
s 3
(
5 h 5 A
h fgs z
3 i h
)
'tr' y6 %
s i
A c
e i
- q fys dWMM' Dk3h g%-
s 5 b a i ' q. I M';,'ccc 3. A.n g 1 _g hN!"t:t-V g e .swswa* s e M ' - - ~ j -w:gm n n w q g B E s s a B /A /,_N /N /A /N /N l 5 ,[ 2[ ~@ s@ uf uI m w z5 r ,e em !gM! ![ 3 k 5 5 5 5 ! [ 2 e3 V5* 5 ji R' @@Eji ! @*i n E d1 5!I 5 5's 15. V5, ys, S 9 m s $!!3 $ "s 5*s $l s 5 <? !i3 ?!33 ? @whl-- !1) l D 3 !"pS s ~ p' >> Zhe Z [p5 3 5 p" < p" a s. 3p0 e v c < g [- 6 s 5 5 5 ~ l t"v'v'v n - <,' W-M V. u; :: -m=_m:.n- >~m - - ~ m_v V W
l 2 07C9462 l's 7 0 5 o 4 3
==a y, hih ^a f SUPPRESSION POOL SUCTION V ALVE F OOf _._ -'~~ I s Div 1 E E
- Aga syc
-w, m _(ccce p . _ ~ n.. O U~. Ls2609, ( (MN T1NUEb FRom PRocq 54EET)
- f sci $oNT
+-9-) y a = ,,. l > p} w,Ny [ ) -n / _ l0$$?!""f l 8 / ~ t y j! .. a xyf4 .7/ u4e ccwo sioaxcc s 41ER SE1PONT ) ) s' cj,p wrmm,,,. g TCMJtow sf = j ma o ttvt o y/ r / ~ ~- al"
- w sucine L
s Ar / [}$j' 2ETE' f / j p p ',2 7 / / /= - /f / /a c s G c.03 _ oc i = ui-ts-zesar )m.,_ ~ a71 V PO / stmtssOn s a r,oi __ C Poot wAtff sETPONT q EN ttvtt im R ", d : f y s C t t y w /__ / i ^ /-,/ "s soPoo [r , '/, - .u. EVEtitGH / o g i31-1.s-zss$ / I r p 2j-- / ( F f[EN USE SPE C5 IC A 1ON LOCATON Sg / / d av 3 uN i e sumssoN 2 x 'j '-'s-rw -/ ))) g'/ 8 \\ t vtt KTPONT/ PO& w R 7-OTE 4 c N / e< sc2 1e e / ye i /# esag*ga 5"f[. })#U //vety s[ y 4 / ( 7, l / rs / .i a o ,, n-I N[ t ,,g/ F-m w m e w_ar_ n, m y ~,4 + F-etv> c LOOP C ONLY l ~ l A wg / of k q ~ ~,~;; i ) = D > [K = s cs 4uio s 32 f l Ie F-CL OSE o ["J00 / { 1 fic;use 7.3-1 J H A g { l A g l nsm;,7, ggyi W -- A s"= 14 &rmva*v}$rD't./*,11%[ ,.e 1%s""l,u 7l ? ", uzC94e2 / i 4ta W V@s ~ v~m~ _ <....< m. a 3 -1.mn: < :, ? ? ~ ' ~ I
l 5 0 3 2 137C9462 l'9 7 6 intW5CN5 REF DOC 7 NOTE 6 VALW OPEN SIGNAL { PS 7607Fs 0) 2 Q WO-F0100 MCR V l F-OPEN ) MINIMUM FLOW MCR WenAJM FLOW VALVE t VRW F-OPE N ) OPEN h CS AUTO GOW IM F-CLOSE e F-CLOSE ) g N IN G l m-( V _IO. D 0 F25 rsOne q
- two, HPCF FLOW F
y FLOW 2 SETPOINT l J REF DOC 2 NOTE 6 VALVE CLOSE SIGNAL C MNMUM FLOW VALVE F0108 (Foto c ou /vEXT SNEET) 4YNC ^ L FCf? FC'00 y fcn CE lCIbC EN C 1 R5I RETURN VALVE w I tittRaiTLE Ant r1 RT OPEN IWCI go.-F0080 = Lg73 ,g g CS AUTO H CLOSE O TESTRET[]RffVEVE MCR N5 4 V fTHROTTLEABLE) G
- PCF"C"
[ F-OPEN ) Cl
- Sg USE SPE COC A Tm TOC A Tm Au 70 IN3 FIAFloM &
~ UN Tt hh (WO) HPCF 1., t4TMTON ' g3' ~ F-CLOSE ) u HARD wf R6 (war MutrortGY) loce"c" mLY SE fu ri uh TEST RETURN VALVE (THROTTLEABLE) FOOBB N y TYPICAL FOR FOO8C EXCEPr 45 NOTED YS g MCR NO O CA M tOCAlm A TEST BYPA55 ',ALVE] N ITHROTTLE AE1El N uPEN (WO) U MO-FOO98 CS Auto .O MCR n N UT) CL OSE C g TEST BYPASS VALVE A ~,nArieg P ) urcr c- @ a MN T O a ( F-OPEN C1CSE g s _m 5 " 'B' ?g = J ~? ? Fraune
- 7. 3 -1 P4TIATON
) g -( r-CLOsE ) E apert ~ Ozo umime c,<er mriec ex) uwe ~c~mo-R N"'"iU#M##b TEST DYPASS VALVE (THROTTLEADLE) F0090 i 137C9462 [ 'O ~ TYPICAL FOR F009C EXCEFr 45 AerED _ we 3 A*rE wwEtu svie ' 3 af YT7FEst (* fW
Y t cn W O O ,6,l E9t60LCL l e so la
- =~
2 some 8 8 ', N s w n. s Aa g e i e o m g m o ;- r- = u s , b K u , p - C s 2 s "t = uoz-mose -zm-zoswz-m < Z Z 3 Z U -- <
- 0 E m 0-Iwsm
((} Oawz<--Zo m a a w c > -- m o m > 8 *.s 2 3-E2 i 9 @@ f (4 q I Dg = 3 9 j b__. s. S;Ms i.@@\\ .. s s @'s --6 m 3 mk k, V l l E v3 3, e $$h 5 j >d E l s tg" d z$ z y $4 g z w < r 8 1,*,, $ v,g o n a4 t o d lI ,8,8\\ng DB d \\ l t -N 8 m 'S 'd'\\- '? S b _.* _ d '\\\\ ^ ^ p u " og sg g y "\\gg s\\ g ss \\ N(1.sss\\\\ g s 4 m i m n. y* vn 5 s] La i 7---__, n .. a i O p le m 4 'O m m I _J up {p e s O O I p t m e m e m a' e t is ( r e 8a u 1 4 s a s lgo a r t 5 ? ) i !@} 3 i= C sC s. { c 'b/VL S" ( s( d W 3 g. j i '%JVL %s } B x p 9,,ses 7 i i t i e.4m-EM af at = m e i u o I ve e% ? Q i d 55 9 V =g = 1 a { m g o m e e ~ m e am v, m s m m e% ) o. e, y-mu 3 5 a s-g g d %[ $$b i 8 [ IE d d j } s! A } a 4 83 v)hE' !! 5 8 $ k"B l V la l r i rV v L____________J t ./ i I = o
l 3 l 2 l 137C9462 fli) l 4 7 6 5 o REvt90N5 E TABLE 2: itf RWAL REL AY BYPASS uCC IOUruENT L'ST FOR tPCF LOOP B (TYPtCAL F OR HPCF LOOP Cl E NT SYSTEu DESCRPTON E22-wo-f 001B HPCF CST SUCTUN V ALVE E 22-90-F 0030 tPCF NJECTON V ALVE t #2CF LOOP B E 22-uO-F OO68 toCF S/P SUCTION V ALVE g E22-uO 0029 FPCF TEST REiiEM VAL %E tTHROT TLEABLEI r ??-wo- 0090 HPCF TEST HYPASS V ALVE us e4clei HPCs uiNmAu FtOw VAtvE C HPCF (QOP D - THERMAL RELAY BYP ASS t.OGIC (Loop C ON N E ET 5NE ET) 8 j9~ EN '""Cm FOf' ' #:;F LOO;' O Ri AR TO g i1 e NS m C u USE SPt LW 8C Af(;N f OC AIlON 5g UN td'CF NTIATiON SIGNAL O "? [I V RR 'j VU tu %f WR ON HI T HE RM At 1 L Af I MCC yS g IHF RVM Rt L AY OYPA,i NOfNAL h-NO M CA?OR IOCA4 W M --* BYPA55 ~ ARw o A ffSI l ^ twol - - KOS N RE Y RE uGV A!M E N N SLL' TABLE 2 U "NORuAL" POSif 0N A N C I A T O e S ? Asuns
- 7. 3 -/
A H E S H 7: 17 wrm s ,.o U /C916 / O ~ w9 sons 27 9 vi ~ * " ocT e a sgt it..i esi AT,7~u 'iG~ihY a ,, i,f l i =
~ 4 3 l 2 l ~ 157c946h (10\\ 7 6 9 a E T E 2: THRuAL REL AY BYP MCC EQUIPMENT 4tST FOR WCF LOOP YPCAL FOR HPCF LORC) / DESCRPTION SYSTEM 2-uO WCF CST SUCTON E E22 -uO-F 0030 HPC VALVE HPCF LOOP 8 E. -FOO68 S/P SUC ALVE O E22-uO ' 6PCF TEST RETURN VALVE i TLE AOLEI ALVE C r - 0098 r TEST BYPA E44 u0 -F 01C i 6PCF . FLOW VALVE c oc 10.-- ( L O O P B o n Pits O R SI/E E T) C 3 Po HPCF LOOP,m m,.THE, R_M AL R_E_LA. m OY, PASS LOGIC I .~ Y tu __] "b l' 3 '= - %--- ~_ A _~ //A f<D WircE -~, ( ~$ H PCF "C " Ma rs trat I? 3 om rs A rr ou (N0 7~ MU LTI PL E >c) \\ g N5 L_ W-- -~ q k usE saca c Arc" t oc Arow Si ~ 18 % bk EAroNSicNAt _ p l l 5 gA ~ G l ( et V RR VU I { iu ( .o f uce B Rr 414 f ) T & RM,At, w 1[ istRvAt RrtA, l 8P s uAt t u g hO 'NU" # ' ,yg g A { g l =s ,gs, l b -* BYiUSS J: wry RLuoVABt E IN SEC TAatE 2 o "N RuAL" POSH 2 A \\ N e C I I s A l- - R S ? F'ac,uA s '7. 3-1 ^ SMT 18 A ~~.1/C916? ~~ we s oRst s ,w, 21 9 si _ _,c-j_O 5'^^ " 5 1 = >. ssi -...... suir 2 .l 6 i
1 P 1 5 E f a!!{$!N y a m::d f g 1. a g g. i E e e 1 a } = i le g s s g E' - 1 6
- ! e a
12 !s5l58 I U rg iee!Es s E jv ej jEIE en 8 a in = lg. IdE i a !gjr d v,j a o p f.,1! 1! P E i es cr g g 5 ,3 i e er Ni -lE. II rL a rg l' i!!sli!>! r !~g g g g d E o ! sf !!_ 4 5! s i ' ' !!, h,i! en.If i,i! 'g h D ) 4 is ! 4i.ti r f 5se!!es,;*ii
- a g-sag y e; x
- h. n q
< 4 as e rr lr l en!! ! p ea,ay y ggd g 1 jply l!!!b;!!!f!!!!lidly!;j!!'g'lr"!a7.;;J g i rl ad i; d p ;g! !! !j l r;! l ln!j% as }b i i !! ! l*d } r p ils jd i tijijili!j n s a s!l j i1.g,iJ n!,"1i; ~ lei A a n.gm! si rI5ks!s dag gi g! f "* !ls! !$ ,irg* rl-l9l l h ll llll l lg $ 3 5 d l 5 gi8iII5ls!!!i 1 i e ..g s I l l l ) u ,,,,-,,---,,_,n m ,-,r*, -w,--m
-e 5 5 i i e e c lk 3 's a i i f4-3 5 I s s E l ta g 9 g%2 c$ !!,;na :. *;" ':: ;* <====u- -o = o-:- - 2 'N { E= e-E Y samt g T( = !s o E N ~ W W Of 3 g 'g g"E a a e o m c g E u s = ,,d 1 m = g? F a 4 4 w o s .n j I 2~3 3$~d >.8 9 4 42 Is t gg 3 B R s E e x C } = / /% b. m a 4 + 1 9 J; 'j b [5 "A N}a 2 3 sa 1. et 9 O_ e3 u. e 3 2a o 2 2 ((v [v k b 4 3 g l U $ l v D1 / m b "P' y W e
Standard Plant . mano. arv a l f l l 7 l l s 5 l o 3 2 E D PS 2625A / tech DRvWEtt M, g mssa = ^ 3, R$ 79229 N t R5 2675C sag!g g C -/ p mg l 20.12 M eT pysm ' a g mssa u P5 Z9230 pee SUBIE 5g tSE SPE CF C A toe LOCAfOt Y n pu ?A 'I 0; O -8 A wwon toch e N4 L ogg apoTE3 I5M b u fE R5 i m l [ P Dks 3 asef 6h Est6_ R E G W LS .a i. Dd 4 I A paJTC3 45&i6 5 HCH DRYWELL PRESS ALARMS AND IADMC.ARXS Ameadamm n urr,s Figure 7.3-2 NUCLEAR BOILER SYSTEM 18D (Sheet 29 of 37) u.. . m...--.- - m-' a v W w M r'-e-w a A a.
~ E g %L
- y*kC B
A $i e f l .{2 3 T 5 s 4 2 3 4 T 4 9 4 C a O u 6 S 1 9 4 1 R m 9 7 o U l f C h N a 7 2 c 0 sa l m - I r - e 2 ,ti _ a -lI " e2 1I l l _ SS ti r eK o6 s7e t 9
- e 3
=M ,lI l I O f t l l T T T T T T T T T T T T T M N M U U U U U U U U U U U U CE ,P TP TW3O3 P P P P P P e P P P T T T T T T T T T T T M 1 TU3 7 u9 9 u9 O UM WS W1 I 4 US U3 U6 U3 U6 UB u8 U 2 D2 2 2 OI Q1 O1 O1 O1 Ok o1 O O O 5 = T T T T T T T T T T T e, T C C C T T y T T C C C C C C C E E E IE E CE c C C E E E iE E IE E E E t Q Q G Qf O (e OH OH OH OP OH OH eH OP G QE GE GE QE CE CE oE GE $F oE E GE O oH H OH O (7 Oa O6 O6 4 E tS lS LS L L$ LS L$ L$ LS LS LS LS LS LS LS tS LS 2 S1 Si S2 S D DN F r D DM AN A G. G. AN A 0 C O i O o t l O l P I N1N PM 7D TO fD TD O o N e F$ FS Fs FS N i OV Dt Or S S I e O v f v N S S MM E E N E E i R U U 8 9, 9 8, L t R R U R 2 R2 8 1 f 1 mT u U 1 4% t2 9t e2 S N RN RN Re 9 e 6 e $t1 2 1 S S H S s R CT EN C# cN oS oS Rt S S N MG N N D I 5L NL BL BL OO aO O E O E E E MS MS s E E E E m O a E O M M a R P L* R R TG TS I TIV I Tt IN N I8 P D T LP iN h V =V W L E V V T T T T 8 N t L t ML N A V D WD D ED AA A A A A AA E Er TD H EI H H H H LD tO AR L S E I
- a. 2 T
M M M M O Y SsG T C C C C C o E f A O, O O, Sv Sv WA
- 2. U% U1. O,
E e U\\ I ML T 3 W4 V HD Ot N H N N T T aL ML UN UN UN. T TUN i T C v Y T L CA AF ML m I O C I SI SI LL t W3 MN A S E E E AI AC At AO Vu VIU N .N F I "N O O DC V DM WFO 9N 4NE 8N 9N T T f T RN RN O U t H8S K N N N N S4 SA SA SA T T VV I .M "S S T T T I E V VV VA SA 5A SA SA WL WI WI DT SN SN v GV R RP PE DH 2C DH DH H T T T T CO oO PE e et AC AC AN AN AH AN AC AC RL I D tO S SR RL AC .D l W A T T I T N = D o D D M H O U O E C R O / / U L b L ) T M M M M T I T M u N A T RT RT R R M E 4 E 4 E R O C 4 "C LG T P tC I Ap "H AH AH A A A A 1 M M I IG L L H e L AL "( ML " A A R W D =L A y " L 1 s E LB 2 3 4 S 8 I S S 0 1 4 I 8 G I 2 I 4 S I A 5 S S 8 S S S 5 S T ( g A g B
7 6 5 o 4 3 eS OENT: RCIC SYS 2 137C9479 fi aviSms PEFERENCE DOCUMENTS Le0ER THE FOLLOWING IDENTITES SHALL BE USED N CONJUNCTON wtTH THIS DRAWING. t ALL EQUIPMENT AND NSTRLA4ENT PREF!XED BY SYSTEu NO, E51-UNLESS OTHERWGE NOTED. MPL NO. 2. DVGIONAL SONALS TO ANNUNCIATORS SHALL DE 1 MAKEUP WATER CONFXNSATE SYSTEM OD P13-030 GOLATED FROM MON-E ALARM. 3. THE POWER TO CONTROL LOCC AND TO THE MOTOR OPERATED ~ ~ F036 VALVE SHALL flE SUPPLED FROM O!VG10N 2 POWER-3. WCLEAR n.)lLER SYSTEu e'&O B21-1010 4 LEAK DETLCTON & ISOLATION SYSTEM OD E31-1030 4. THE LOCC DESCN SHALL NCORPORATE PROVISIONS TO REVERT 2/4 LOGC TO 2/3 LOCC DURNG BYPASS OF A SNGLE 5. ATMOSPrtPC CONTROL SYSTEM BD T31-030 DMSiON OF SENSORS. ALSO, THE LOCC DESIGN SHALL NOT PLRMiT THE BYPASS OF HORE THAN OPE OVGON OF SENSORS AT A TIME. 5. SETPONT VALUE G NOT SLOJECT TO THE APPROVAL OF THG DOCUMENT. 6. POWCR SUPPLY SHALL DE DIVISION 1 UNLESS OTHERWISE SPECF EO. 7 N p)fc/Sp CMTA/4M&lf /56LA fted U"b'* ' OW 1-MMun cogrM MD
- M M'MA V' M " W '"
N'M iE PAAPtAkfED (NorMistrirtogy) 16 7/r//Aal ceA7/JL /4cJ1. k I TITLE TITLE A I C i COVLR/ CONTENTS / NOTES 12 STE AM SUPPLY LP)
- BO'sRD ISOL VALVE F035
) TABLE t AMAJNCIATOR/ ALARM LGT I 12 STEAM SUPPLY LINE f dTROARO GOi VA4 VF F036 3 RCC F4TIATON LOCC 12 TURONE EXHAUST iC SMRESSON POOL VALVF F039 4 RCC AUTO SHUTDOWN 12 VACUUM PUuP DSCH/ ACE tSOL VALVE F047 13 STEAM LtE WARM UP VALVE F048 4 LEAK DETECTON fSOLATON ~ 4 CONDENSATE PUMP DSCHARGE DRAN VALVE F03t t3 STEAM SUPPLY BYPA5S VALVE F045 l-5 CONDENSATE PUMP DGCHARCE DRAN VALVE F032 14 MOTOR OPERATED IL4DNE TRP & THROITLE VALVE 5 DRAN POT SYSTEM ISOLATION VALVE F040 15 THERWAL OVERLOAD RELAY BYPASS S STEAM NLET TRAP BYPASS VALVE F058 TABLE 2: LST OF EOtMPMENT WITH THERMAL 15 OVERLOAD REL AY BY 3 ASS 5 DRAN POT SYSTEM tSOLATON VALVE F041 g B 6 TURBNE GOVERNOR VALVE 16 RCIC OUT-OF-SERVICE ALARM 17 MGCELLANEOUS ALAEMS h] 6 VACLAJM PUMP TESTABLE CHECK VALVE FOO5 AND I EOUAll2NG VALVE F026 MPL NO. E51-030 7 CONDENSATE PUMP gg,,g,7 ct,3g eggg 8 NJECTON VALVE F004 sArFTY RELATED SEEE CLASS lE TMS ITEM IS OR CONTAINS A SAFETY teJCLEAR SAFETY RELATED MINIMUM FLOW BYPASS TO SUPPRESSON POOL VALVE FOt1 RELATEo nEM e YES O NO O YES U NO 8 5"^ ""* 5 9 CONDENSATE STORACE TANK SUCTON VALVE FOO1 Nuclear acuacacewwi W8 TORRES C -- - 3 7 T g gy Son Joee CA 9 SUPPRESSON POOL SUCTON VALVE FOO6 p="FE W!LHELMIM ha-f f/ ^ OA DOC BD O STEAM SUPPLY TO TUR8:NE VALVE F037 ] .g l A C ING S EM 10 COOLNG WATER SUPPLY VALVE F012 gg g g At 11 TEST DYPASS TO SUPPRESSON POOL VALVE FOO8 tpaESS OYM.RWISE SPECFED 11 TEST OYPASS TO SUPPRESSON POOL VALVE FOO9 M Si FRACTIONS & D 3 PLACE DECMALS & ANCLf5 i DMH 5139 Q C lE 1 "l, 2
k _f- $y h.- ~ g . C i I E1 N or 3 _ I o o 1 n T a O IT _ c C O O 9 - L L 2 7 9 1 4 7 9 C n N 4 l O 9 R C 7 i O t 0 A 7 C A 3 N T f C 1 i l 7 C O 2 l E N P I P S ES 1 r S O. 9 f E U N E, 7 f + . 3 CkTRf5 ,NSTRU ENTS a O[RAfNG 5UPERfSORY ANNUNc8ATONS oT 5 ~ 2 l T -~ 5". M 'e S e h l l E t f R F } R H O Ch @ t R R@ R I w C CR gl e B E M u W h F C C C C A t I O a D D ga 1 d v 3 s c V t "v e# E E A E E g m P O yv N H w N E S X N 3 T S T_ 7'm S E p O O E N E" P EP O L L r O g ( O O L C o 6 C 9 5 a r 7 m C e^ N_ 3 t 3 N 3 R 4 a o O) 0 t 0 u 0 c rC s 1C F F f F 4 O(L (L OL L O v g MT i lT ML R O L uT T ML T = 1 = - ) ) _. ) ) E N E N S S P O E E P O O L O LC ) ) ) ) C 4 ( f P O E T F F N ES N E S E ( ( F O O L O L C 9 C 6 3 F 5 3 F F 3 0 0 F 7 F 4 0 F ( ( ( 0 i F ) O O F O O t ( M M f W O W M O E M E ) ) V _ E V _ V L O O L ) )O E {O __ L A ( ( V ( ( L W W A W W V A V V A N L V i 1 N O O i O I O i O I T P to r ( N W T )O A _ A L N i 3 W L O O A O I _ O ( N S S O I L T4 S O I S S LA I T* D E I ALC NOO D LA R R E CISD . R AL F NO A P G S C _ A S E OI O P R TCR O S B U B C A ER T S S E H N TC EOE s n U RTS f I ER O O C S S E EO T I i4 l t N RT E D T I g. 2 L H P NI S P L [A' / Y L U M \\/ Y A U L P 1 P X P V ND U V P E M 6 O S ND U U IA M CA N C O L L S E U T T N CN N l{ E t I TG A EN M B A O O TC A R V T CS E T ES S C E U S O T I N S v v N T T O t O R R H t O N KO R v O 4 KO S C E c u sV O N CCE F4N v IP AT C T FP A T T E M TV E L a A S E"O EA M U E t u E O E"O A L L 5L N S oL N E ET i L LL S A S L S LI s - O BT O u O P O BT O uAE O A E L AU S AYP eV P O BS i AO e N t AU S s t S L E C VA H O C A c VP O t C VA I o T m C/ E P O/ I XN ( N c C r uN /\\ r O F MN [\\ I F F PO F EO I r u "N e t t EE B uT EE T EE y r RP v F RP A uA RP R t O t O uL O UI es Y-F Y M'$ Y Ol E-E- '4 Y E_ c 4 S T L_ O
- kF AI SI 5
E S w K"F KT S KT u e. v O* 7 T t s K _,K K s { I k + E D C 8 i' l,lg:fI.}}