ML20058F524

From kanterella
Revision as of 09:25, 17 December 2024 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Cycle 4,Core Operating Limits Rept
ML20058F524
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 12/01/1993
From: Killgore M, Maier S
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To:
Shared Package
ML20058F518 List:
References
RXE-93-005, RXE-93-5, NUDOCS 9312080161
Download: ML20058F524 (16)


Text

-.

RXE-93-005 l

i i'!

l t

CPSES UNIT 1 CYCLE 4 j

t CORE OPERATING LIMITS REPORT j

t November 1993

{

I I

i i

f Fred A.

Monger i

1 i

t i

i li i

I i

Date:

//

3 !T 3 l

Reviewed:

Stepn,en M. Maier l

Reactor Physics Supervisor j

l Approved:

Afad4W $ k$h144L Date:

'/$ 0 l?J Mickey /. Killgorer/

Manager, Dallas Reactor Engineering 1

l

^'I 931202 9312080161 PDR ArmCK0500g5

.P

..i r

t i

i i

DISCLAIMER I

.i The information contained in this report was prepared for the i

specific requirement of Texas Utilities Electric Company (TUEC),

I and may not be appropriate for use in situations other than'those for which it was specifically prepared.

TUEC PROVIDES NO j

WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND-l 1

OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING-j i

BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS l

FOR A PARTICULAR PURPOSE.

-i l

By making this report available, TUEC does not authorize its use by others, and any such use is forbidden except with the prior written approval of TUEC.

Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein.

In no event shall TUEC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

ii

t

.i' I

i l;

TABLE OF CONTENTS l

l 1

ii DISCLAIMER j

TABLE OF CONTENTS.................

.... iii l

t iv.

j LIST OF FIGURES t

i i

i SECTION l -

l 1

l 1.0 CORE OPERATING LIMITS REPORT

?

\\

t 2

2.0 CPERATING LIMITS..

i

}

l

.......... 2 2.1 MODERATOR TEMPERATURE COEFFICIENT 3

i i

2.2 SHUTDOWN ROD INSERTION LIMIT 3-l

)

2.3 CONTROL ROD INSERTION LIMITS

-...... 3

?

J 3-2.4 - AXIAL FLUX DIFFERENCE l

4

}

2.5 HEAT FLUX HOT CHANNEL FACTCR l

2.6 NUCLEAR ENTHALPHY RISE HOT

............... 5

)

CHANNEL FACTOR i

I I

i 1-i I

i

?

.i 6

K 4

i s

f 111 P

t e

Y n-*

c,=

v.

rm-w-,

, w wwe...-a-..-%,w-ww.

.-----vw----w-w u-.-

4, a.

i LIST OF FIGURES s

1 4

I FIGURE FAGE i

1 i

i l

1 RCD BANK INSERTION LIMITS VERSUS THERMAL FOWER 6

l i

i 2

AXIAL FLUX DIFFERENCE LIMTTS AS A FUNCTICN

.. 7 i

OF RATED THERMAL FOWER l

j 3

K(Z) - NORMALIZED F (Z) AS A FUNCTICN OF n

8 CORE HEIGHT 1

i I

4 W(Z) AS A FUNCTICN OF CORE HEIGHT - MAXIMUM 1

i 9

l l

l LOAD FOLLOW i

i i

i 5

W(Z) AS A FUNCTION OF CORE HEIGHT -

l 150 MWD /MTU 10 i

6 W(Z) AS A FUNCTICN OF CORE HFIGHT -

i

)

8,000 MWD /MTU 11 l

l 7

W(Z) AS A FUNCT'JN OF CORE HEIGHT -

r i

15*.000 MWD /MTU 12 I

i I

i 3

4 i

?

I l

IV

CCLR for CPSES UIJIT 1 CYCLE 4

...,a._

n. n r p *, m, + v-7,,1 v.. +L +..c

.c r. t'o. p,

c ou. r, n

t ~

.t.1.wa

..o

hic Core Operating Limits Report (COLR) f or CPSES U'JIT 1 CYCLE 4 has been prepared in accordance with the requirements of Te:hnical Specification 6.9.1.6.

The Technical Specif.ications affected b'y this report are listed below:

3/4.1.2.3 Moderator Temperature Coefficient 3 /4.1. 3. 5 Shutcown Rod Insertion Limit 3 /4.1. 3. 6 Control Rod Incerticn Limits 3/4.2.1 Axial Flux Difference c'ux Het Channel Factor 3/4.2.2 Heat i/4.9.3 Nuclear Enthalpy Rise Hot Channel Factor

  • -4.

d i

r.Y rLP-4 C m P.,

Fm " r _c r.c_

Do" "1' I.

v~

m 2.0 OPERATIIJG LT MIT4 '

The cycle-specific parameter limits for the specifications listed in Sectica 1.0 are presented in the following subsections.

These limits have been develcped using the ?!RC-approved methodologies specif ied in Technical Specif~ication 6. 9.1. 6b, Items 1, 6,

7, 8,

9, lo, 11, 12, 14, 15, and 16.

These limits have been determined such that all applicable limits of the safety analysis are met.

2.1

ndera t or Temno rat ure C-~#f4 ci+m t (Specification 3/4.1.1.3) 2 1.1 The Moderator Terperature Coef ficient (MTC) limits are:

The ECL/ARO/HZP-MTC shal' be less positive than

+5 pcm/ r The EOL/ARO/RTP-MTC shall be less negative than

- 40 n, m /,F,.

2.1.2 The MTC surveillance limit is:

The 300 ppn/AFO/RTP-MTC should be less negative 3

than or equal te -31 pcm/ F 1

zhere EOL stands for Beginning of Cycle Life ARO atands for All Rods Cut HZP stands for Hot Zero THERMAL PCWER EOL stands for End cf Cycle Life RTP stands for RATED THERMAL PCWER I

9 den i

n l

1 COI,R for CPSES UNIT 1 CVCLE 4 i

.2 Fhutdown R c 'd *:.w wai_2r;_ Jd mi t (Specificaticn 3/4.1.3.5) i 2.2.;

The shutdown rods shall be fully withdrawn.

Fully withdrawn shall be the conditicn where shutdown rods are at a positicn within the interval of 222 and 231 steps withdrawn, inclusive.

2.3.

r,ntrol Rod Innertion Timits (Specification 3/4.1.3.6) 2 3 1 The control canks shall be limited in physical it.sertion as shown in Figure 1.

2.4 Axial Flux Difference (Specification 3/4.2.1) 2 4.1 The AXIAL FLUX DIFFERENCE (AFD) target band is

+3%,

-22%.

2 4.2 The AFD Acceptable Cperation Limits are provided in

" Fig'are 2.

a

t COLR for CPSES UNIT 1 CYCLE 4 1

2.5 Heat Flux Hot Channel Factor

- (Specification 3/4.2.2) i p nrr Q

F (Z) s

[K(Z)] for P > 0.5-l n

P i

p RTP

'O F (Z) s

{K(Z)] for P s 0.5 n

0.5 where:

P=

THERMAL POWER RATED THERMAL POWER

?

l f

2.5.1 F "TP = 2.42 n

2.5.2 K(Z) is provided in Figure 3.

.l 2.5.3 Elevation dependent W(Z)2 values for load follow operation are given in Figure 4.

j Figures 5, 6,

and 7 give burnup dependent

'I values for W(Z).

Figures 5, 6,

and 7 can be

)

3 used in place of Figure 4 to interpolate or l

extrapolate (via a three point fit) the W(Z)

}

at a particular burnup.

I i

I t

i

' Technical Specification 6.9.1.6b, Item 9 uses the term T(Z) rather than'W(Z) to represent the elevation dependent F o

multipliers; however, for the purpose of this report, the terms l

W(Z). and T(Z) are equivalent and the W(Z) naming convention will be l

retained.

i I

4

'l i

i COLR for CPSES UNIT 1 CYCLE 4

?

i t

i 2.6 Nuclear Enthalov Rise Not Channel Factor t

(Specification 3/4.2.3)

[

f F an s

F"TP

[1 + PFui (1-P)]

'f N

3, where:

P=

THERMAL POWER l

RATED THERMAL POWER

^

2.6.1 F"T"n = 1.55 3

i 2.6.2 PFai= 0.2 i

1

?

s 1

)

1 5

_. ~. _... _. _. - _ -. _ _ _

8

__._..q _{__

_ g _:N

_j_j_

g

_9___.g

_3__

_Q_Z_

~~~

ZZZZ TZZ1 ~~ZZZ T{l ZZZ: g -

Z

{.~Z g

_ q_.

-i-T

_ ~. __ q_._N S

_.. j 9 ____44_

_p._.._ ______ _} __

.. q_._._ ___}i.__

4

_ _p_

__p_

a

_.._4__

3 g.

w

___7

_y__

.._f__

q _3_b_

gu jE

N--- :d a ::ZZ7 Z:

Z:Z:

is Z: 1.--:-

- :ZZ: :ZZ

- :Z-t- :ll I

t f-'

N

.ZNt-ZZZZ TZ~{. ZZTZ ZZZZ Z f

_ f_

_ T_.

o H

t e -

.c n j

_.]

2p_.. __{_~

_1_p 4_j m p "h

o ]e y.

5 S

",_3 tw

~

U p

_--_-_. _ -_. -_ _7~

., = _

y r

g

_ _p

. _ _. y

_p

__4.

,7 }_._j_ q__

...._ }._ {_ $g 7g g

g 0'

-l 5!- _}- H -t.-

I..._,_

y.$

._r-_-l _--_---F_.-_

. _.\\-

_f_ - -

. _} -.

'__I _-d_f q_-._-._-__.q p.

g w

=

__._, _4.

a._.._

__~ _.._

.p

. _j p

m

____L

____-t-V-b._.

g

-k -' -

7.-

- dp

-- _7p _

-o 3

  • {p 2j y

s g

T-t ---

- P t-e q2p g

[i

r

.4___

A_

g

...N _

ip \\q__

._4 _4__

_p y =is g r-m

_.]__ _-_

g y.

H w

to a

e 3

__7 Q,_ __7.,_-

[

,g3

_.-y

_.g_y -- a. y m -y_.

- _y (.

g j }. j

" O g

.. ___ {___ _q_

_. _._j\\ 4,

__j._._

. __j.

._.y

. j _ {...

_pj _ L g

p j

O

_ p._

7

. {_ _...q. _

g 7

,a, 9

g q _, _ _.

. {__

j

- ~ ' '

,g 7

o N

-t--

n-t-t-

~ -

t-- YT rr

-t-r u

>at b

.T-b S

g s

9___.

.g

_ {...__.._.

_l__ _ _. _. ___

_..q_h.__.

y

_. 12

,_.. _p

..j _ J 7.'

~y_-

c_,

.e a

m

{_

.j

..._._7_ 7 }, _ {_

__.~

q T-k~

~ 7-{

c g

_9

__g

_.._9_ _4_

._.._7__

, _ ' _ ' ~ ~

~_! }_p 4

d k

_}_

_.._A _.j_q <

_1 _

__ _.q.. _. _

_ q.w.

j l

m

_{_.._j..

_. _j _,_

.. A_.. _L ib m

__j_

{_.

_ _ q._.__ __{_..

g _

p 4-J__

__9 __

._7 _7 { p _ q_7 qq_

_r p

-.._7 7_

g

_. _gN _ 4.j_. _ p4_j.. _j,_b_.q..

~

-3

_..[N __.}-

p 4 1} _

_ __y_ -t j__ __q _

p_{. %.f_{+{_

N

_ }..

i g

_.. -t-2

~ P.

y M-N

_ q' j,-

+-

r p _,{_

)_

_p a

-n"-1r wr

_7._.. _

_7

_._7 9 t -

~~

o o

N

?

R 8

8 S

?

R 8

E S

?

R n

n n

O (uweaptpi.w sdan) NO!11 sod NNVil 00M n.

4

a n ug Ogw g u gm v Eo@m Q

xa m m::u p9

m$

so imgga ooag 5

8

.7 T7_. _y_ f_Ii h1 7__.

Tq _jta i

7_

q J

I q.gj rp _.

p+rq ~r_ p h_ !l

.[

c3 g_ i

- _ N j

t

~

_ _i

~

7_

8

__~-

~ -

~.___ i_i r

~__

_ yp Tp,_{

,I

~

7_

i gyv0,ggg

,I 4

w77

,g,{m m

p

~7_

  • =6%Po7 f

3yQ e,7 j'

2

~

7 i77_

i j

4_7 iq.

i 7_

pq N 77_

i

- j 7p-

~

j+y{_Y _7 j_

7 7

c7 1H R 1

tr7_ i yO~f =g,b

,1 -

~

A

. Wq _ _

t J

\\

~

_.L1 O

Tthyj. q,.r. w 4 {__

o 1

d j

~__{_

t i

~

4_

l'

~_

~

}

V S

TY

~

G 7_q _qt__ m, y_

T'q I

L r

~

~

I

. i_

j H

_N 1

i _ _Qih_.i

~

. i

- _. 3_ _.

~

11 Lr qTn.

~.

~

G R

. Mq_p,!

'~

H

.id jg I

h_ y }.

2 I

i q1

_ dy 7_T.-

V

_. T 9_

1 h }__

i { 4_p<

~_

j t

p,_

~..

1 TT

~ _

p[.7

~

1 0

?

~_

~

I 7__

~ _ _..

J,_ j

~ _

f S-

. n7 L

Jl

._'h N

i 7_

H 7_7_

i7pj N"-

~

.y T~_

q V,_

j 7

7qyt Ty_

3

~.

i_ 7_ f_!_4_

7E d'

j H

R j

i 1

a_c7

. tYtp k._.q h_.I,.

d

}

^

fg.3l

_ ~

T g.7H R

. _ F T.__i._

~

r.___

t, _ _ i+~ t[

iF_

- d_

~

~-

4 T

q~_f-T y },.

q

~

7. ;H 7].

,p._..

~1 r, _j L p...

__i

,r

{q _ ~ '~-

~

~ ~

. Wp_ q,H 7i p.

~ _

p7y* 1p7_ _. Typ i PPl-i i

p L L_

j

.~

r'

~

j F

~

S F-~._

~

q..

.Th Mqg_j_

~q

_pi d";-

D_H

~ _

q_

_ r.

p 4

T._.

i d'T t

q gy L

_ _T.-

' +t{ 1 T4_ {.N._7i gt T7 L

7

_ _. ~-'

T____.

F 7 y4 4-F

____j {,

~

t i{

1; T;_

'e

?e

.o

~

me "O

r E5 g agg HNCw x, dg Q:bA gvd d t

i

i COLR FOR CPSES UNIT 1 CYCLE 4 i

FIGURE 3 K(Z) - NORMALIZED F (Z) AS A FUNCTION OF CORE HEIGHT l

n l

j l

l f ll i

(0.0,1.0)]l l

l I

l

' ](6.0,1.0)

{

'llill li I

I I

li l':

i i

l I

l i1ll M I

l 11 Illi 0.9 l

l l

i i

l t

l (12.0,0.925) l I

J l

l l I4 'l l

1 i

i 8

t i

j i

i I

I i.

l

{

l l

Q 0.7 ll l :'

5

{

I!l, I

I I

i LL 1

l!

l l!!

ll l

j c

II it i

1 i

w N 0.6

,,i

]

I I

2 l

I

+

l I

l I

5 0.5 1

l l

i I

l;Ll Z

._a_..

1 j.

ii 1

i i

)

1 l

I i

l l

.8 ilI 1 !!

l

'A O A l

l Ii I

j

_.l_l i

il i ll 1 :

.l !+

n._

i i

!:l I. I ; l,.

I i

] Il i

i il l

!l ll!

il!

lb f

,, l 1

!!ll !!! lIII llI! Ii ill l

!l l!

1 L

t l

i i

It'!

l

^

,ii llll ii I

j l lI l

1 l

1 l!

l g_

l' j wl_ u_._ m..

i1 i

1

+

l j

!l l

l l __l 0.1

!If!lA

_l4a Il i

li l.

ii ll!

l1' i

li l

l' f!

{lli i

i -

i

I ij I-i 1

1 i:

ji

.1' %

.giq n. y.ia y_,4 4Lp;4_. __a _LJ_L l l!

l l

l t

0 i

0 1

2 3

4 5

6 7

8 9

10 11 12 noTTOM CORE 11EIGIIT (FEET)

TOP t

i

?

8

~

l COLR for CPSES UNIT 1. CYCLE 4 1

i FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT

.l MAXLMUM LOAD FOLLOW 1

4 i

j

-t

[

1.30

_J_

t i

i t

i-t i

i i

~T i

i i

l t-

-t i

-+-

l

~T-i T

Y' i

1 1

I 1.25 l

-t-l

{

y_

j

~T~

1 I

I I

I i

1.20 t

j_ q._ q__.l l

l g

__.y _.

q._

j 7__

7 f

T

~1-7 i

p l

j_.

a.

D 1.15 2

!_ _j_ d

_?_

i.

.__j_

l

_ T __

i i

.t_

t._ _2_

i i

7 I

'i 2

4 l

._ _q_ [

l' i

j l v!l_A l

_u

,. _u m

I I

i

_g_ 7 i_

i 7__

i 1.05 l

_q_

__l___

4_ __!_

4

__{

_-4

._.7._

. 7 7

1.00 O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 i

f BOTTOM CORE HEIGHT (FEET)

TOP i

Asial Asial Asial Axial N<de W(Z)

Nmte W(Z)

Node W(Z)

Nade W(Z)

-l 1 - 10 21 1.137 32 1.090 43 1.096 f

'f 11 1.197 22 1.133 33 1.002 44 1.091-12 1.191 23 1.129 34 1.096 45 1.087 i

1 13 1.1 R5 24 1.12fi 35

1. l(K) 46 1.084 14 1.178 25 1.122 36 1.102 47 1.082 15 1.171 26 1.117 37 1.104 48 1.080 16 1.162 27 1.111 3K 1.104 49 1.079 17 1,155 25 L106 39 1.104 50 1.079 18 1.150 29 1.101 40 1.104 SI 1.082 l

19 1.146 30 1.046 41 1.102 52 - 61 i

20 1.141 31 1.093 42 1.100 i

1 i

Core Height (ft) = (Node - 1)

  • 0.2 l

9 t

~!

t i

COLR for CPSES UNIT 1 CYCLE 4 1

1 FIGURE 5 W(Z) AS A FUNCTICN OF CORE HEIGHT 150 MWD /MTU l

t i

1,30 i

j i

i i

i I

j i

i I

i i

i i

i i

I i

i l.25 i

i i

i i

i i

l I

l i

I i

}

l i

l 1

i i

i

- i 1.20

__ j_

.1__..

s ti 1

3

_ _L i

i 4

~;

9~~

r i

i i

i i

Q -~

4 i

i 1

D 1.15

_h 1

2 I

._r_

l l

l f

2 i

J_

2 i

i i

i 1.10

~

4

_L CV i

_q_._H_

l l

l l

1.05 m.

~_

.~

l l

I 3

I.

I

. e d %. -

I i

.__L_ _i

_L

_1._..

i i-i i

+

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0.

i BOTTOM CORE HEIGHT (FEET)

TOP l

. 1 i

4 Anal Asial A sial Asial W 2)

Node W(Z)

Mde W(Z) l Node W(Z)

NoJe 1

1 - 10 21 t.137 32 1.072 43 1.087 -

11 1.178 21

! 133 33 1.072 44 1.086 12 1.175 23 1.429 34 1.076 45 1.086 l

13 J J71 24 1.126 35 1.079 46 1.084 l

14 a.168 25 1,122 36 1.082 47.

1.0R2

~

15 1,164 26 1.117 37 1.085 48 1.080 i

16 1.160 27 1.111 38 1.087 49 1.079

.l 17 1.155 26 1.105 39 1.087 50 1.079 l

18 1.150 29 1.097 40 1.088 51 1.082 l.

19 1.146 30 1.000 41 1.0F.8 52 - 61 r

20 1.141 31 1 081 42 1.087 j

1 1

Core He ht (t!) = (Node - 1)

  • 0.2 g

i 10 i

i w-i-eev.

r-m r we -

w r

i w

1-

-t

1 COLR for CPSES UNIT ~1 CYCLE 4 l

i FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT

~8,000 MWD /MTU 1.30 1

j 7

I 1_

l l

l I

i i

i ID i

i i

i i

i.

i i.

~~I i

_1 I

i E

T-~

i i

1.20 I

_j_

_j_

N j

j i

l.

i lll:

. _d,_

j l

i 4

i

\\i i

i t

i i

R 1.15 i

2 h,

I i

g I

i l

1 1

i i

i

\\i i

l i

i h

N-~i l

l l

i i

T i

r T I

i T ~~ '~~T i

i i

1

-I-~~

j

'T

~~i ~ T i

i

.i i

1 l

1.05 t

I

_a__ _.L. __4_

i i

i l

l r-l l-T i

i i

i i

T i

~

l.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 2

BO N M CORE HEIGHT (FEET)

W Asial Axial Axial Asial Nrde W(Z)

N de W(Z)

Nnde W(Z)

Node W(Z) d 1 - 10 21 1,135 32 1.080 43-1.091 I

il 1.186 22 1.131 33 1.088 44 1.089 12 1.182 23 1,127 34 1.085 45 1.086 13 1.177 24 1.123 35 1.089 46 1.083 14 1.172 25 1.119 36 1.092 47 1.080 15 1.167 26 1.114 37 1.094 48 1.078

]

16 1.161 27 1.109 38 1.096 49 1.076 17 1,155 28 1 104 39 1.096 50 1.073 18 1.149 29 1.00 K 40 1,097 SI 1.071 l

i 19 1.143 30 1.092 -

41 1.095 52 - 61 j

20 1 138 31 t.086 42 1.093

'l Core Height (ft) = (Node - 1)

  • 0.2 11

~.

j 1

COLR for CPSES UNIT 1 CYCLE 4 FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT 15,000 MWD /MTU l

1.30 I

i I

i i

l I

i j

I i

I t

i i

i i

i I

i i

1.25 1

1 I

I I

i I

i i

_j i

i s

i I.

i 1.20 I

l i

t i

i J

-N i

t i

i i

i

.d__. L

_k

__j._. _!

l g

q_

l l

_{_ _.i ]._

{

l l

D 1.15 6

l

_+!.--~.

f

'~

g 4.

!_ b. __

i 2

+N l.10

!y)~~

3 l

l j

j j

h j

g_

N.

l I

+

!.._I_

i f

L._

\\

r i

e I

1.05

~

l '.T i

i i

6 i

y

_7 q _.

_7_ _;

_ 77

_ 7__

1.00 0.0 1.0 2,0 3.0 4.0 5.0 6.0 7.O 8.0 9.0 10.0 11.0 12.0 t

i TOP BOTTOM CORE HEIGHT (FEET)

Axial A6sl A xial Axial Node W(Z)

Node W(Z)

Node W(Z)

Nmic W(Z) 1 - 10 21 1.134 32 1.090 43 1.096 i

il 1.107 22 1.130 33 1.092 -

44 1.091

}

12 1.191 23 1.126 34 1.096 45 1.087 13 1.185 24 1.122 35 1.100 46 1.0K 1 14 1.178 25 1.118 36 1.102 47 1.075 j

15 1.171 26 1.115 37 1.104 4K 1.071 16 1.162 27

1. ! ! !

38 1.104 49 1.068 l

17 1.153 28 1.106 39 1.104 50 1.065 l

18 1.147 29 1.10I 40 1.104 51 1.064 19 1.143 30 1.006 41 1.102 52 - 61 20 1.13R 31 1.093 42

1. !(X) i Core lieight (ft) = (Node - 1)
  • 0.2 e

i 12 t

i

-.v..

.