ML20072L363
| ML20072L363 | |
| Person / Time | |
|---|---|
| Site: | Byron, Braidwood, 05000000 |
| Issue date: | 07/07/1983 |
| From: | Desai R, Hopewell R GOULD, INC. |
| To: | |
| Shared Package | |
| ML20072L320 | List: |
| References | |
| NUDOCS 8307130333 | |
| Download: ML20072L363 (188) | |
Text
..
r CD N OC 6c56 ~7 l.,e, - w/ i i b t,,, _
1 f
ENVIRON!! ENTAL QUALIFICATION FOR CLASS 1E LEAD-ACID STORAGE BATTERIES BYRON /BRAIDWOOD f
C0!DIONWEALTH EDISON SARGENT AND LUNDY ENGINEERS P.O. 194757, 758 KE 5145, 5147, 5149, 5186 GOULD INC.
INDUSTRIAL BATTERY DIVISION LANGHORNE, PA.
4, PREPARED BY:
APPROVED BY:
.,,e m
C LL ick c e e L (.
ru w'.
R. W. HOPEWELL R. H. DESAI
~
PCT /11Z-0 0
8307130333 830707 PDR ADOCK 05000454 A
INDEX O
SECTION - 1 TEST PROCEDURE SECTION - 2' TEST SPECIMEN HISTORY SECTION - 3 CUSTOMER RECORDS 1
t SECTION - 4 DESIGN CONTINUATION SECTION - 5 SEISMIC CALCULATION FOR TEST RACK SECTION - 6 SEISMIC CALCULATION FOR CONTRACT RACKS SECTION - 7 TEST SERIES 1
SECTION - 8 COMPARISON OF TRS VS. RRS SECTION - 9 WYLE TEST REPORT I
SECTION - 10 GOULD INSTALLATION AND OPERATING INSTRUCTIO::
I SECTION - 11 SEISMIC CALCULATION FOR NCX-600, 1680, AND 2550 CELL r
5 SECTION - 12 CONCLUSION h
l l
l O
PCT /ll-00 I
s l
O D,A r nJut., tsub AL y
FOR THE W
i t
GENERIC QUALIFICATI0:: OF CLASS IE LEAD ~ ACID STORACE BATTERIES l
y-l PLANTE & CALCID: TYPES b
d te s l
l
[
s' I
I k
i 4
Document. c.
G -a....3, 7,
s Revision =ll-Z Sovember 19, 1982 j
s c
Architectural / Engineering Fire:
Sargent & Lundy Engineers i
Custener:
Consonwealth Edison Co.
Project:
Eyron/Braidwood
~
l P.O. Nurber:
191.757, 756 Shop Order 50.
KE 3145, 3147, 5149, 5156 f
c 3
-w
- i s
- r, i
/
\\
l i
l GOULD 15C.
i INDUSTRIAL BATTERY DIVISION
'N i
LA';GHORNE, PA.
s
~~, o
/-
t h
w r
Appl. Eng'g. File.50.
9ef:
-068399 IEEE Std. 323-1974 PCT /11Z-1
' W. t n..-
.m.
. = =
_,,ms
-.amr
-mm
7-..__.
l s.[ * ^
1
,c
+
l[
j
- c..
SECTION #1 j-l TEST PROCEDURE l
GB-3454 -
l l
A.
Revisions #1 thre gh #10 involved testing cf accelerated heat aging of e
535-1979 Section 8.
lead-acid storage batteries as outlined in IEEE t
i
)
Revision #11 and any subsequent rnvision involves the use of naturally B.
.s
--s aged lead acid s'torage-batteries as outlined in IEEE 535-1979 Section 8.
1 4
4
+M e
1 i
1 4
?
~t i
)
,y
~
t' 9
u u
l 4
rj PCT /14
,u
...,-..w-.---..3,..w.,m,.,-,rf.-.,,y,
,,,,wm
...,w w.m c _ -,..., -..,,#m
..w-,-
%,nr.-4-v.Eww..r.%
w.-n.,,.~~-
1.0 SCOPE 1.1 This test plan outlines the steps to be used by Gould Inc. Industrial
)
'O Battery Division to establish the qualified life of their stationary battery cells, as described in Paragraph 1.2.
The test program will
,be performed in accordance with the requirements of IEEE 323-1974, IEEE 344-1975 and as a guidance IEEE 450-1980 and IEEE 535-1979.
Seismic qualification of battery racks will be done by analysis on a job-by-job basis, and is not to be considered a part of this Test Procedure.
Cells to be tested are NCX-1680 type cells, which are in the mid-range size for this type.
IEEE 535-1979 states "that qualification may be accomplished by type testing".
It also states that " General practice is to qualify one or O;
more sizes of a cell type and interpolate or extrapolate to other size cells V
of that type.
Definitions Section 2, Page 5 defines Cell Type as cells of identical design, for example, plate size, alloy, construction details, but that may have differences in the number of plates and spacers, quantity of electrolyte, or length of container.
The aging mechanism and seismic test portion of the test program shall consist of the following sequence.
1.
Naturally Aged Cells 2.
Pre-Seismic Capacity Test 3.
Seismic Qualification Test O
l b 4.
Post Seismic Capacity Test 5.
Functional Analysis l
l PCT /2 i
l The test specimens have the following history.
Specimens were owned and operated by New Jersey Bell Telephone Company in their Bordentown, New Jersey Central Office fer telephone standby service.
Cells are ten years old and have been operated in a full float method of charge @ 2.17 V.P.C.
Battery was located in an air-conditioned room with an average ambient temperature of 78'F.
Relative humidity was 40*..
Vibration level was
/
not obtaincble.
1.2 Seismic Test Cell Description (See Appendix II)
Type Quantity Size (WxLxH)
Weight (Approx.)
8 Hr. Capaci
- 1 MCX-510 3
11.125" x 6.5" x 18.25" 119 lbs. ea.
510
- 2 NCX-1680 3
11.375" x 14.5" x 22.5" 332 lbs. ea.
1680
- 3 FPR-23 3
13.0" x 12.5" x 19.875" 270 lbs. ea.
SSO
- 4
- FPS-25 3
13.0" x 12.5" x 19.875" 287 lbs. ea.
996 1 O
Change of designation to FPS was capacity rerating only, i
1.3 Test Fixtures Special racks for holding the battery cells during seismic qualification will be provided by Gould IBD.
Calculations demonstrating fitness of these racks for Gould's Required Response Spectra and comments or extra-polation of these racks to all seismic racks of similar design will be demonstrated in Section 5, " Seismic Calculations for Test Rack".
PCT /3
l.4 Test Cells The test cells used shall be naturally aged cells obtained from utility customer installations, thus. exposing the cells to actual operating conditions and natural environmental influences.
A description of each specimen source and operating conditions will be provided in the final report.
2.0 PRE-SEISMIC CAPACITY TE$T 2.1 Naturally aged test cells obtained from the utility customers will be transported to an outside test facility.
Test specimens to be inspe ted and evaluated at customer installation to assure suitability for qualification purposes.
2.2 Test cells will be given an equalizing charge per IEEE 450-1980 to ensure a fully charged condition.
Cells will then be placed on float charge at ambient temperature for 3 to 6 days prior to the Pre-Seismic qualification capacity test. MCX and NCX types will be on float charge @ 2.25 V.P.C.
average and FPR and FPS types @ 2.19 V.P.C. average.
Each three cell group voltage will be maintained through the float period within a tolerance of
+ 0.01 volt per three cell group.
2.3 Test cell electrolyte level will be maintained within 1/4 inch below and at the high level line during the float charge period.
2.4 Following the float charge period, a Pre-Seismic capacity test will be conducted at the published 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> rate to 1.75 V.P.C. average per IEEE 535-1979 Para. 8.2.2 (1).
If the capacity test is less than 80 percent of rated capacity, the cells may be recharged, returned to float at ambient temperature for a minimum period of 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> and retested.
If the cells fail the second capacity' test, the cells shall have failed.
PCT / 4.
3.0 SEISMIC QUALIFICATION (PER IEEE 344-1975) 3.1 Seismic Mounting and Orientation Each group of three fully recharged cells mounted in Gould-furnished racks, attached to a test lab-fabricated surface mounting fixture, hereinafter called the specimen, will be installed on a Multiaxis Simulator Table such that its longitudinal axis will be colinear with the longitudinal axis of the table.
For the second axis of the test, the specimen will be rotated 90 degrees in the horizontal plane.
The racks are designed so that the natural frequency of the racks is in the rigid region (above 33 cps.).
Rack calculations will be provided in the final test report along with transmissibility plots to demonstrate rigidity of the rack design.
O 3.2 Specimen Tie-down The mounting of specimen will simulate the actual in-service configuration as closely as practical, using standard intercell connectors, terminal plates, terminal cables and terminal hardware.
The test racks will be bolted to the test lab-fabricated surface mounting fixture. The surface mounting fixture will be welded to the shock table using 2" skip welds.
3.3 Excitation 3.3.1 Simultaneous Biaxial Excitation Each horizontal axis will be excited separately, but each one will be excited simultaneously with the vertical axis (longitudinal simultaneously with vertical, then lateral simultaneously with vertical).
The horizontal and vertical input acceleration levels will be phase incoherent during the multifrequency tests.
PCT /5
.__..m 3.3.2 Low-Level Resonant Search A low-level (approximately 0.2g both horizontally and vertically) sine sweep I
will be performed on each axis of the test configuration from 0.5 Hz to 35 Hz i
i to 0.5 Hz at a sweep rate of one-half octave per minute to establish major resonances.
Transmissibility plots of the resonant search will be provided in the test report.
1 3.3.3 Multifrequency Tests The specimen shall be subjected to 30-second duration simultaneous horizontal
{
and vertical inputs of random waveforms motions consisting of frequencies spaced one-third octave apart over the range of 0.5 Hz to 40 Hz.
The amplitude of each one-third octave frequency band width will be independently adjusted in each axis until the Test Response Spectra (TRS) envelop the i
Required Response Spectra (RRS) (Appendix III, IV or V).
!O The resulting TRS will be analyzed by a spectrum analyzer at 0.5, 1, 2, 3 and S percent damping and plotted at one-third octave frequency intervals over the frequency range of interest.
The Zero Period Acceleration (ZPA) of the RRS could be exceeded in order to meet the peak responses of the The horizontal and vertical inputs will be phase incoherent.
curves.
3.3.4 Operational Basis Earthquake (OBE) Tests l
Five OBE tests shall be performed in each test axis.
Duration of the OBE j
tests will be 30 seconds.
The TRS for the OBE tests will be analyzed at 0.5, 1, 2, 3 and 5 percent damping.
4 3.3.5 Safe Shutdown Earthquake (SSE) Tests One SSE test will be performed in each test axis. Duration of the SSE test will be 30 seconds.
The TRS for the SSE tests will be analyzed at 0.5, 1, 2, 3 and 5 percent damping.
PCT /6
i 4.0 INSTRUMENTATION
(}4.1 Excitation Control Control accelerometers will be mounted on the table at locations near the base of the specimen.
i 4.2 Specimen Response Eight specimen mounted uniaxial accelerometers will be provided during the i
l test.
Placement of the accelerometers will be as directed by the Gould Technical Representative and the Test Engineer. Control and specimen l
accelerometer plots at the required damping of the SSE test in each axis will be provided in the test report.
}
I Accelerometer placement will be similar to previous seismic tests performed by Gould at Wyle Labs, and used by many consulting engineers and utilities.
i All accelerometers will be placed in a proper position engineering-wise and will be located to provide the best possible, most meaningful results.
i l
Actual locations and photographs of accelerometer placement will be provided in the Final Test Report.
i 4.3 Electrical Monitoring i
~
One_(1) electrical monitoring channel will be provided by the test lab.
This channel will be used to continuously monitor the electrical discharge of the test cells during_the seismic test.
The discharge load will be approximately 2% of the three hour discharge rate of. the largest cell l
being tested on the shock table at the time.
Each 3 cell test group shall l
l be connected in series using standard inter-cell connectors and terminal plates with terminal cables to simulate installed conditions. When more than one 3 cell group is tested on the shock table simultaneously, all 3 cell groups will be connected in series to provide electrical monitoring of all groups during the test.
_ _=-
.... ~. =...
4
+
l 5.0 POST-SEISMIC CAPACITY TEST l
5.1 Following completion of the Seismic Test, each 3 cell group will be recharged 4
to replace ampere hours withdrawn during the Seismic Test. Ampere hours charge will be equal to 110% of the ampere hours withdrawn.
l Cells will then be given a Post Seismic Capacity Test at the published 3 hour3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> I
rate to 1.75 V.P.C. average per IEEE 535-1979 Para. 8.2.2 (1).
6.0 INSPECTION During and after seismic testing, the test specimens will be examined for abnormalities and the conditions recorded.
f 7.0 IN-PROCESS INSPECTION The records of TRS plots will be compared with the RRS plots to assure
]
compliance with requirements before proceeding with next test run. All i
vibration effects will be logged and analyzed.
7.1 The specimens will be examined for any damage following all tests.
If l
necessary, a physical tightening of hardware will be performed after each i
{
seismic test event, with justification expressed in Section 7. " Test Series Summary".
l I
7.2 During the seismic testing, the cells are connected in series and placed in a discharge mode. The series string voltage and current are monitored before, during and after seismic testing. Photographs will be taken of any noticeable physical damage that may occur as well as all specimen-mounted
~
accelerometers.
PCT /o
I 8.0 FAILURE CRITERIA A string of three cells must meet 80 percent of its 3-hour ampere hour capacity when discharged to an average final voltabe of 1.75 V.P.C.
If the initial Pre-Seismic capacity test indicates less than 80% of rated capacity, the cells may be recharged, returned to float at ambient temperature for a minimum period of 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> and the capaci y test repeated.
if the cells fail the second capacity test, the cells shall I
have failed.
1 8.1 During the seismic test, the cells shall be electrically monitored for current or voltage fluctuations which could indicate circuit interruptions.
j If there is a failure, the failure shall be analyzed, the cause identified, and the designation of random or common mode justified.
8.2 If the failure is demonstrated to be random nature, the test will be repeated using a different group of naturally eged cells from the original or similar source.
If the failure is of common mode origin, the equipment is not qualified and Gould has two choices.
{See IEEE 535-1979 7.3 (1) and (2).]
8.2.1 The equipment can be redesigned.
4 8.2.2 A different group of naturally aged cells from the original or similar sources will be used for retesting.
Retesting will use the same or lesser TRS.
(Original TRS level was generically established to accommodate maximum anticipated future requirements.)
The lower level TRS selected will satisfy the required RRS.
bG PCT /9
1 9.0 GENERIC & CUSTOMERS' TEST REPORTS i
Customers' Test Reports (Environment Qualification Report, No. GB-3454) will be generated from the generic test program report to satisfy the requirements of individual contracts on a job-to-job basis. A comparison will be provided in the report between applicable RRS curves and the TRS at 2% and 5% damping.
The report will comprise a summary, conclusions, and recommendations including a statement of qualified life.
Ten copies of a certification-type report will be issued subsequent to completion of generic testing. This report will be signed by a Registered Professional Engineer and will summarize the capacity test results, the response spectrum plots of the table motion, transmissibility plots of the resonant search, results and conclusions, details and recommendations con-cerning deficiencies and repairs, photographs of test setup, description i
and analysis of failures, etc.
The report will also contain a list of test equipment used, functional capabilities, calibrations, calculations and instrumentation log sheets.
1 The Generic Qualification Test Report "Wyle Nuclear Environmental Qualification Program Report No. 44631-2', shall include the following:
1.
The qualification information.
2.
Identification of the specific fer.ture(s) to be demonstrated by the test.
3.
Test Procedure.
4.
Report of test results. The report shall include:
A.
Objective.
B.
Equipment tested.
C.
Description of test facility (test setup) and instrumentation used, including calibration records reference.
D.
Test procedure, frequency of readings, and input data (for example, seismic acceleration and spectra).
PCT /10 1
9.0 GENERIC & CUSTOMERS' TEST REPORTS (Cont'd.)
E.
Test data and accuracy (results).
F.
Signature of test personnel and date.
G.
Supporting data.
H.
Approval signature and date.
I.
All malfunctions, whether or not they are detrimental.
O O
PCT /ll
...-.-.. - = _ _ - _ -. - -.
i, i
Appendix I References l.
t 1
i i
1.
IEEE Std. 323-1974 Qualifying Class 1E Equipment for Nuclear Power Generating Stations I
i i
2.
IEEE Std. 344-1975 Recommended Practices for Seismic Qualification of Class 1E Equipment i
for Nuclear Power Generating Stations i
3.
IEEE Std. 535-1979 Qualifying Class 1E Lead Storage 4
l Batteries for Nuclear Power Generating 1
Stations l
4.
IEEE Std. 450-1980 Recommende'd Practice for Large Lead Storage Batteries for Generating Stations and Substations (ANSI 41.15) l i
a i
I as-
}.
1 T
1 l
PCT /12-l
..__....m_,..,,,,_,_,__,___,_,_.._,
Appendix II
)
Gould Inc.
Industrial Battery Division Langhorne, PA Generic Qualification Program Naturally Aged Cells Initial Program A.
Test Group Natural Age In Yeara Calcium & Plante
- 1 MCX-510 (Calcium) 8 Years
- 2 NCX-1680 (Calcium) 10 Years
- 3 FPR-23 (Plante) 16 Years
- 4 FPS-23 (Plante) 10 Years Note:
Testing will be as outlined i' Test Procedure.
Ongoing Qualification Program f~
B.
Test Group
- Natural Age In Years
(
- 1 MCX-510 (calcium) 15 Years
- 2 NCX-1680 (Calcium) 15 Years Note:
Test Group B will be composed of naturally aged cells which have attained the required age period in actual customer service.
In the event additional test cells from the same source as in Test Group A are not available due to customer reluctance or abnormal degradation of original installation, alternate sources will be pursued.
Attempt will be made to obtain test cells of the same size or as close to the same as possible.
Feasibility of ongoing qualification beyond 15 years will be determined following test results on the 15 year naturally aged groups.
O PCT /13
APPE:; DIX III pb IM 9
i g
' r:r i n 1
Tr 9
l l
i e i ii!
.T st n_. _ __
6 6
- ,^ ^.c n,
- c.A 7
~ -
4 I I 3
_ -. = -
. L': ': L=
~~
4 --
2 T
l f !
a t i
- i t ' !.
l i
i t !
,.+i 3 i 4
e..
i i
i i.A iM4it%-
T.
16A m
9 l
s 1
.j; e
.I T
\\
s 1
y i
1__
x
\\
6 i
.r-..+ - -
p l
e
'.s1 i
s1 l
m1 v
4 1
N X-J 1
N 1
4 E.
J I
1 -
.I I
4 E
f 1
)e B
\\. I i
N/ 8
- - + -
p.. m
.. ~.._. - - -
r - -
..-gu-
--t
-_._;,_.g.
='.
-<w
/
1 il y
F.
.%I 0
I fn L
J 1
5 g
I ~,
1
.I i
%g j f
g.
1
- i I~J
( :
i O ;*
s i e e i i
[,'
(,
i e e t o old u
i g
S
~4 1
I w
g i
i e
es i
i r
i i
- I i
n U-e h
g
-u=
a< 0
- 6 3
<e as g
0" Je I
. Y.
x 2
I I
I I _
l i.
L i i i -
I ) '
4 e
i I i6 6 t1i i i si
.ti' 8
i 6
8 ! I t i i i til I!6' i
- i 'i i
i i
e !!i sii!
'i'
+
i is e i i.
e i i l $
e6ei tie i
ei i eici e
e e
e i
l i 6l t ie to i 6i i e}*
b 2
3 4
5 6 7 8 91IQ1 2
3 4
5 6 7 8 911080 2
3 4
5 6 7 8 91(
(R> )'
HZ
'%)
M Y L.W 1.\\ IV
_=3- ~~_N ; d _; _
54=4 r+41-E-!Iddi-E'l-N T-M. i ~. ; _ri jjifi-E.r: i-E- -5ti I: -!=i [ '54-5i W1-- i-j 2
-. = _. _.._
r
. _. _ _. = _,.-
= =._...
_
O [.~~--'_-__-4
---4
__IC.
.___ s _T
-~~7.
_._ _ : ~ ;
y
+
.3_3_}
/fs\\
e
)
-+~~j _
'm
. >. _, ~,
f g y
[
i
_-~_.
_ _. _. _ _ _ y'.~...
- [ A-J C
1 4
1.
y
. s,c_-
3*
~
w l
l 1
s a
1 I _
F_.
I
_IF g
1 1
-" '- f '
y I
I g
1 T
2 3
1 0
i g ;
i i
I
(
c.
i I i i
Es
~~_+----I'__._*_','-..~~-__'_,4-..___-~_'.-....__~_'-'-..-
I l
O i
= _.
Dg 9- -. ' ' ' ~ ~. ~ _ ' ' - ' _. ' --
. - -. ~ _, _ ^. -
-.~.~'.~~~-_.'._~__~_~.-'-~-4_'_---~~ - ~ ~.. -,
' - _ _ ' -. ', - _ ~ _,
~ - '. -
4
,-_..__.._t_.
Z0 L.-
9<
I O
7 up W
6.
l O
C 4
1 S
_~-
1
,4 b;
h a
N 4
_A 1
\\
\\
'_ ~
3
_gX X
I 1
L X
X X
x k
I X
w 1
x b
7 l
1 i
\\
4 U
~
X 2
a z x
x~
i
, ~
N _
i
=Ua i x s
C5[
t i
\\ _ \\
i zgg s
N s
wm I
A s
O2-
[
x 1
N4>
N
.s yg5 i
i i
\\i 7 -
s
.-.-.a---:---.
c a c.
.. _ - _.--. _ -. _ - -=. =. _ _ = _ = _ _ - _. = _ =. = _ _ = _r.___=_._==.__,_..::
\\ = _-__._._.=-_r r-.
._. 2-:
g
- b.._ - _. -.
-g
.. y A__.. _.
.w n mm e
_ -.1 s.
J C
U 7
T si'\\'
1 n
U 6
- a O
s 2
5
\\ ',
e c
1, n
1 i
1 f
1 1
I 1 a f
m 4
1 1 m
M 3
- 2
~
1 p
1
}
g 1
h 1
i I
11 y
-I p'.
I
' k 2
c ig 1
1
_--H
\\
1 1
4 J
(
I I
i h'
-4 4 _ _ __- _ __._4.
I I
t i
i k
5 5
5 l
~
~
c g,.,
j '
- ~ q n-
APPENDIX V 108 4-^
?
L_ p--._-_-
- =-_^
"^^~
= = - - - - -
^
. i -..
=--
- - _ = - _
g
_-- _ ; n
._.1._
a w 3. _. -_.
- ~ - -
5
-- ~~
7 G
6 j6
\\
4 1
5 4
T I' r
('n T'T T
^""*
- ;M? mfg;
- 7_f,
_7 O_ f_l ', 7 3
_i._.
_r a_ _v._v _i.s r.-
y I
i 1
1 9
f I I
O I I
h I
f i
4 1
5 ff i
e e i i i e ! i
+
4 i t i I I i 5
+
t
' ' i' i l i i i i i t i 5 i i r
i t i i t l ' a l l i i !
6 i l i F i '
i l l l e f I 6
i j
i n 1 i 6 i i a <
. 6 i i i i e
i i t i f I e I I i t 6
Ii hb6AROL
l *i" 1
I s
! 6 i
1p i t,
--- -Il%EZW AAl;r-g 7
f 6
1 5
4 f'
6 Q
l 3
F l
1 i
F
]
c),
a t
He n
\\.
I s
n 4a i
f 1
e In t i
I
-\\-
pg
~
l
- \\
i
\\
q1 I
\\'
' \\'
\\
l f
e l
f\\
i i i
, i e
i
! i i
+
tw i
U$!
I I
['
\\
'\\
4 I ' 4
'r 3
' l ' I r +
0 I k I I I I I I l l l 4
8
'I
(,
I I
I l l 1
m I t l 1 /
2g h
4 f_ Z a
. V-.
gg Q g 6
g C"!
i oc.
r l
.4 j l f
\\
~
M'-
M I **
6 I
U*
L l W 5
e A
_ s
=
J
~N
_.1'
[
1"
= w _
y u
\\
3
/N
\\w a
0 l
q U.
i a
e i
m m
I i
l t i
' i r
. I t i i
i
,j t i i
I
! 4 I i i a
zu i 2
'a y>
3 W
..t
CARGENT & LUNDY E NGIN E E R9 CusCAeo ATTACHMENT A (FORM 350)
RESPONSE SPECTRA FOR l
STCMCE SATTERIES SYRON/3MIDWCOD STATION "N!TS 1 & 2 SPECIFICATION F/L-2819 rv<
n - -..- - -. - - - -,
,.-a,
..-,n
CAR 2EN7 0 LUNDY ENQlN E S AO SPECIFICATION F/L-2819 cmenos t
O ATTACitMENT A CONTENTS 1.
Vertical Response Spectra Dated 3-22-73
- 0. B.E.
Sheet 28 of 150 El. 426 '-0", 439 '-0" & 451 '-0" Auxiliary Building Slab 2.
Vertical Response Spectra Dated 3-22-73 S.S.E./ Blast Sheet 32 of 150 E1. 426 '-0", 439 '-0" & 451 '-0" Auxiliary Building Slab 3.
Horizontal Floor Response Spectra Detec 3-22-73 North-South Component (O. B.E.)
Sheet 37 of 150 El. 4 51 '-0 "
Auxiliary-Turbine-Ileater Bay Building lt 4.
Horizontal Floor Response Spectra Da ted 3-12-73 East-West Component (0.B.E.)
Sheet 38 of 150 El. 4 51 ' -0 "
Auxiliary-Turbine-Heater Bay Building 5.
Horizontal Floor Response Spectra Dated 3-22-73 North-South Component (S.S.E. / Blas t )
Sheet 39 of 150 E1. 451 '-0" Auxiliary-Turbine-Heater Bay Building 6.
Horizontal Floor Response Spectra Dated 3-22-73 East-West Component (S.S.E. / Blas t)
Sheet 40 of 150 El. 451'-0" Auxiliary-Turbine-Heater Bay Building l
l OV l
. 5 Pnm--
i CLIEm COf"'CfTdEALTH EDTSON CO.
SARGEfJT& LUrJDY PR JECT BEON/BRAMOOD JCBtc/>" W F-DESIGN BY r.J DATE 3-2.7 -7 5
'" " EEA8-CHECKED BY OSB DATE 3-2.2.-73 SHEET 2 8 OF 15' a r v. m e.
d.
l l
(
oat:
2.-7 74.
I t
i IMittall Mh l l
l l
'd g
Frmano.CF5 50 13 23 10 5.0 13 13 10
.5 215 L
'i l.;.
'ii..**
l'
?:
-l t
l
. I i l l
su
- "- J '
~ -
-4 I
l
.a J
- u.
i
.a l:
, - - - r _ _,,
H.
i i
i
, - ~ ~
(;
. Li i
i,
J l
' l I L
[--- -- - 1%, DMIPING DM1FING I i I i
-- 1 u
.--t--l 1
i i lI
1---
deo 1
j
! j l j J'
i f
4% DMLDING F
I II,II/
/
1
!II!
I 1-
'I o
.a c
i r
u -
l i'.l e
?
i i
t l
I I
l i
l l;!
l
- 2:
-e
/
i l'.
l u
5 l
l l
ll i
l l
l
! lll l
C'"
/
- i. ; i i
3
.,i,
I
.I i
i u_
'i i
i, I
i
}
i i
i
\\\\\\
~
\\ \\\\
i i
/:
i
(. \\ _1 i
T i
fi i
i,
\\ \\ \\-
]
J fi i
- \\
\\
T-i i
l j.[ ~
i i
i
- i*
NN.
i i
j,.
E I
l l
~,
.i i
I i i i
l l,
lj
_a l
j t
l I.
s t
l l
l,l i
i t
i
.[
i i
i i
l
,33
}
i
_.5 l
I j
l-l i
e 1
l a
t
.w-T_2..;.
o i
- x. x x i
i i.
i i
.xxx
.i 4
xu I
t I
i ii I
i i
- i MN, l
..l....!. l l
l.i
.i i
i,; t l l Ay
.x
.o
.x
.:s
.:s
.3
.3 4
.5
.4 a
u c.s
(
)
ren sr.
v Vertical Resper.se Spectra Spectra ::o.
0.3.E.
108-CE-75 El. 426 ' -O ", 4 3 9'- O' ? 4 51 '- 0" 109-C3-75 Auxilia.~/ Euilcir.g Slab 110-03-73
1 CLIENT COfEOm/EALTH EDISON CO.
d PR JECT BY3ON/PRAIDWOCD JOB NO. 4 to1/LT c -
SARGEIT8LUDDY 1
DESIGN BY HS DATE 3-?L7-73
~'
J ENGINE E345 -
CHECKED BY GSB DATE 3-n 73 SHEET 32 OF 15(
l'~'
V) s i v. w o.
.i I
DAT:
"2-7-74 l
suitsats 45 l
Frmerxy, cps 50 M
20 10 5.0 M
r.0 10 M0 _*
'l
~ '
'I'
'iI'
_.1....__
33,
I
)
I t --'.
[2% DMPING
.2 ia0 j,,
- Y ',i
, i i 3% DMIPING i
i i i
. i 4% DAMPING
_.1_
i i I i
l t
i i
'1 3j
._l u
.j.
I
'i 5% DAMPING
.L_.l I i
7% DAMPING l
lll l
l, f
3 I,'
I
!N NI__!
! --- _f I
i i II i
O l
l l [v l
l l
l N
l l
l 4
u i, I l f
.. _.__.{...-
~
- 1. 3 l
l l
t
~
i l
(3
.ll, l
I b) l1 i
to
_p,
_.7..-...
3 7
g l
I i
l ii I
~f l
l l l
- l f [3 I
I II!
\\%\\\\
l l lIl l
j i
i i
iii IIil 1
i 5
l
,!i' i
1!!!
i o
3 l
N l
7 l
l l
-J
.33 l
l ie i
i
..S l
l 1
.i0 i
l l
M
]~-
i i
~
i I
I i
i i
i i i
N I
I I
l I
I I
ii l
l 1
,a
'l
-.,,.I....I,l, l.l..I,,,,l....I.,..I,,,,',l,l,
,l, l,,-
,,3
.cz
.o
.=
.cs
.a
.=
.i
.il
.1
.3 a
u 2.
m j
r r.x. s c.
aV Vertical Response Spectra Spectra No.
S.S.E./ Blast lO8-SS-VS Z1. 426 '-O ", 4 W- 0" 4 4 S I '- O' lO9-SS-VS
]
Auxiliary Building Slab llo-SS-VS
1 CL!ENT COT *MCfMF.ALTH Ehl3ON CD.
' SARGEPR$ LUrJDY PROJECMMN/WIWCOD JOB NO. 'PM // M 4
i DESIGN BY HS DATE R 2 7 -71 4
[a.. s T
' MN CBINE ER B -
CHECKED BY GSD C. ATE %-22.-T3 SHEET 37 OFtc50 i
a a v. m e. { j l
I DATI f2.>74 l
l immau l Hs l
l rum.ur. us
=
30 33 3
10 3.0 13 If LO
.5 d
ag,, i iii a 6 4.
i 4
i i.
.4 i1 i
i
. ts
.I m0
.,,u i
.c l
l lll l
l - -- l
--!-- - H r-l l
i i 55 i
6 ii i
i i
i i
i i i I
i I
I I I I
i l
i i
I !I I I
~
u I
l l
l l
)
IIl l
4 l
l l
l l
l l
gl% DA'IPING lll l
}"u l
40 2% DAMPING E
ll l
4% DAXPING
'll l
3 u
du I
l l
t 4
d
]a i
l I
u gs E
l l
{
1 f
i Q
/-..
u -
I
-l--
l--
---.3 u l
t i
,I a
u.
i - - ;-
.u
_i
- a
., 1
.s
. 1.
j l
I
(
i i
f g
g.
I i
i t
i i
, //,
i
\\\\ \\
i i
i; i
,t i
i I
! i ///
I
\\\\1' (j{
x
! i l
1 i
j l
I i
! U///:
I ANX.
t l;I I
j l
i i
I i p
l 1
l l
.3
'.)
.l j
l i
1 1
i j t 8
l l
l.,
l
.1
- 2 u
l' I
l l
.I l
i i
i
.i
,, u t
l 1
l l
l j
i i
a t
l i I
I i
..a l
i i,
i N.
NN $
i
,c i
' i i
N \\N.,
l
)
i i
i 3
i i i i
i i
1
,,i i
\\=
i i
! e ii l
3 s
,..I..
.i
.l 1
u l,
l
.l,!l,l
,,,l t
.1
.a
.u
..n
.u
.u
.i
.n
.2
.3
.3
.s
.s
,m
.s u
(-)
r.rie, st.
Horizontal Floor Response Spectra Spectra !!o.
1 North-South Component (0.E.E.)
El. 451'-O" 110-CE-NS Auxiliary ~urbine-Heater Eay Euilting 1
I
r____
CLIENT COWOWEALTH EDISON CO.
M JECMMN/MIWOOD JOB NOMM //W SARGEUTFa LUDDY DESIGN BY HS DATE3 22. 13 csC iRNGINEssts CHECKED BY GSB MTE 3-12.rr$HEET 38 OF ISO
- v w..
i oat:
2.r7-74 I
swiviats H5 l
rf,.mr. ces 50 33
.O 10 50 D
10 LO no _,,,,
,, ;x:
I u,
- - _ n-ian at 4..
.-F a
to
_u 1
I I
l l
l l
to g
j
-1% DAMPING 5.o
- 2% DAMPING se l
l l
to
,[ k e.-4% DAMPING l
e b
[
t i
I I !
10 M
l 5
30
/'
i i
l p
to
. to b
3 u
u j
to 4q___
....}__.
7 to
... j_ _.a ___4.
_2 F i f,,
a i---i 3
i r--
?
1 i
i iil 1///
I
\\\\ T \\i I
i ii!
I l
l l
l l ! ! ///
I l\\Y
\\l Iill
- ^
x j'.,
i i
I l.///
i l
i i xN\\!
I iiI Y//il, I
h\\
j
[3 3
i 1
Y, l
l [
l i
l l
l
, i i
.is
\\
'3
%\\
N
\\
Ng i
W
.io
,, i i
i
.uw -
i i
e i i
i a
i i e i !
6 NN i
! I +
i i
i i i i i i
N
.3 i
I
~
i i
i 1
i
! I i l
{},,,
,,,, l,.,. !, !, l.
,i,
.!....l
,.f.,.,l
, !,l,l,l,I, v
.cz
.c3
.x
.es
.os a
.n
.3
.4
.5
.6 to u
to Pef Kil!, $eC, Horizontal Floor Response Spectra Spectra No.
East-West Component (O.B.E.)
110-OB-EW El. 451'-O" Auxiliary-Turbine-Heater 3av Eu_1 dine
.).
CLIENT COMMOt."dEALTH '-TISCN CO.
J S "o '" "* " '
- 11. SARGEDTJh LUDDY DESivN BY HS DATE3 22 13 (a)-
mNGINEERS CHECXED BY GSB DATE 5 7_1.nSHEET 39 OF iSC J
a n v.
.. 6.i. i oats
- p. ;. nl i
sumats i 45 l 4
l l
l
'l rr,.m us
$4 33 JO 10 30 13 10 LO
.5 25 0.'
i 6
4 a >
+6
- 6
, r.;
J
'l'
_. L -..
__ ;.3 3 n,-'
,i 4
1 1
o8 sa0 i
8 i e i t
e I
6 I
I 6 1
,e i
u_
s I
I I I i i
i P2% DM9ING
- i I
["3
[
l l ll i
l f p 3% DMTING l i !
l
~
ll l
V /, 4% DMTING 10
- 'II N
5% DMPING u
o i
l i
l I
/_
//y 5 o"SI",o 7
i 10 M
j a
l l
N I
i l
j i
10 l
/9 V
ts 1
m i
2 l
)
M
_- - - - i --
, -d u 7
~~~i j
1 i
e
/i i
?
t i
I/
\\\\ M -
i i
f i
l/ I I 8 I
I k%%I d
j i
i i
J j
i I III i
I I
! \\\\\\\\N i
,j i
i Iili!
I h%
i l
i l
l i
I
~
~
J i
i 3
3 l
l q'
d..
I I
8
~
,gg
.. i,
e i
i, a i i,. i e
l I
I i
1 t
I f I i
6 I
l I
I i
i I
i i ! l l l
+
04 1,
- 4
".,..I....l
,l.l.I.l...I.
..I.
I..
.l l.l
!.I l.l.,
I
.~3
.:e
,:3
.a
.os
.a
.=
.i
.a
.2
.2 4
.3
.6 u
u
,S (G
)
ru.n. sw l
\\
Hori: ental Floor Response Spectra Spectra No.
North-South Conpenent (S.S.I./31ast) 110-SS-:IS
- 21. 451'-0" Au.n liary-Turbir.e-Heater Scy Eu:1 ding
CLIENT COMMOWEALTH EDISON CC.
lI
"" "Ec7
'" "'""^I""
JOB NO. 4 'Q1/L @ '
SARGEldTaiUNDY l
DESIGN BY h
DATE 3-2 E ~7 's i
G5B DATE3 11 USHEET 4o _OF l50 ENGINE ERS CHECKED BY n o v. w o.
A sat 2-7 74 suiviats M5 f rmemy. cps o
o 24 0.'
ti.e g
-[
b
'I !
e I
i
}. __....- -. _,,._..a.
1" '-
I u
i,__
_,_ ___ J i 1.2% DAMPING 1l u
3% DMTING
~
q
/ [p.4% DMPING l
j 5% DMPING q
A to
}
[ [ [ 7%,DMPING 3'
/
g l3 j
n o
/
i l
5 V
/
1 u
]
l 4
i 1'0
! t M
I
'y
. i.. ! _..._.... _ _ _.L.
J, i i s.
i xx ii,:
1 i'
i if i i
s xxxN i
?
1 IA i t i
i l\\ \\\\\\\\l I.i
{ ,
IA i Ill I
l
\\\\NNNi T i f
H J
l I
Iilii i
h%
i
]
i I
! l h\\
~
l
,W l
'3 l-5 I
M 1,,
5 i
N I
28 i,i
]
ini i
ii i
j i
ii ii i
l l
l l I
i l
l i
il l
i I l
,3 p
-,,,.I,..,i.I,l.I.i.I,;..
,,I.,,,
...,I
, I. I.! i.i.I
,..I v
.=
.o
.=
.a
.i
. i,
.i a
u
,,, sm
)
Horizontal Floor Response S ectra Spectra No.
East-West Conponent (S.S.E.' Blast) 110 'W El. 451'-G"-
I t.mril i nrv-Turbir.e-Heater Bay Building
.m SECTION #2
/~'N TEST SPECIMEN HISTORY Q
1 1.0 SOURCE The test specimens submitted to Wyle Laboratories for a seismic simulation test program were naturally aged cells obtained from New Jersey Bell Telephone Bordentown Central Office, Bordentown, New Jersey 08505.
l 1.1 Calls were manufactured in Gould manufacturing facilities located at i
467 Calhoun Street, Trenton, New Jersey. Manufacturing date was 6/71 l
on Gould Order #T-62232.
Shipment was made to customer the same month.
Complete battere shipped consisted of 27 cells of NCX-1680 type.
The I
NCX-1680 desigr ; don is the Gould commercial identification.
This type cell when sold to Western Electric for resale to the Associated Bell Companies, is identified as a 27 KS-15544 List 508 battery.
This is
.the Western Electric method of identifying equipment classification and specific size. There are no design differences between the commercial i
and Western Electric type designations.
1 Final negotiations for acquisition of the test cells was with George F.
Hughes, Network Design, New Jersey Bell Telephone, Camden, New Jersey.
t 2.0 LOCATION OF BATTERY Battery was in service at the New Jersey Bell Telephone Central Office located at 195 Crosswicks Road, Bordentown, New Jersey 08505.
(_
PCT /15
_~__,
3.0 APPLICATION Battery was used for telephone standby service in the event of commercial A.C. power failure. The battery would, therefore, assume the function of
[
sustaining telephone equipment operation in such emergencies.
Battery was installed on a two-tier steel rack with cells #1-2 and #17-23 on the upper tier and cells #3 through 16 on the lower tier.
Emergency cells were #1-4.
Twenty-three of the twenty-seven cells are used in the 48 volt main string.
The remaining four cells are used as "End Cells" which are used during emergency discharges and are switched into use to sustain total system voltage requirements as the main string voltage declines during discharge.
l 4.0 CHARGING METHOD t
The battery was maintained on a float method of charge at an average of
)
2.17 V.P.C. a Western Electric Model 302A voltage regulated power supply.
5.0 BATTERY RECORDS Customer battery records are available for the first quarter of 1972 through the fourth quarter of 1980.
See Battery Records Section #3.
Battery is identified as 48 volt - String "B".
These records reflect quarterly individual cell float voltage readings on the 23 cell main string as well as cell voltage readings on the 4 cells in the I
emergency group #1.
O PCT /16
i
).
.0 BATTERY RECORDS (Cont'd.)
In addition, the records include semi-annual specific gravity readings of cell in the main string as well as those in the emergency group #1.
J Temperature readings of pilot cell electrolyte is also recorded.
e I
t 6.0 TEMPERATURE RANGE The battery area temperature was controlled by using air conditioning.
As reflected by the records, cell electrolyte temperature ranged from a low of 70*F to a high of 81*F.
Based on temperature data available, the average yearly electrolyte temperature was 78'F.
Relative humidity while not f
recorded was approximately 30 to 60%.
I Recorded temperature values reflect no greater than a 2*F spread in battery temperature at any given time.
7.0 OPERATING-MAINTENANCE PROCEDURES Battery has been maintained in accordance with Bell System Practices which.
are comparable with Gould Installation and Operating Instructions GB-3384-B.
8.0 RADIATION EXPOSURE The test specimens were exposed to normal background radiation for their operating life span of 10 years. There are no environmental specification requirements for other than low level background radiation exposure, therefore, test specimens did not receive augmented radiation exposure prior to the seismic simulation test program.
PCT /17
s
'.0 BATTERY USAGE (EMERGENCY PERIODS)
Batteries of this type are normally sized to provide three to five hours of energency power. Actual ampere load is a variable which is determined by total telephone subscribers handled as well as subscriber traffic which varies during a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> period as well as from day to dsy.
\\
b
. W
't m'
[
r%,
- +-
4 4
D Wa l
a PCT /18
. _. _.,.. _ _ _ = - -. - -..
SECTION #3:
C_USTOMER RECORDS
~
J The customer records which are part of this section are actual record copies t
olitained from New Jersey Bell Telephone Company, for NCA-1680 type cells installed at their Bordentown Central Office located at'195 Crosswicks Road, Bordentown, New Jhrsey 08505.
The records represent quarterly individual cell voltages on the main string aswellasfth'e emergency group #1 cells.
(Figs. # 3-1, 3-2, 3-3)
+
In addition-setti-annual specific gravity res(ings cf cells referenced above are also included..,together with representative, electrolyte temperatures on cells from
~
the upper and lower tiers to reflect rain.-max. as well as-average battery temperatures D revailing[
(
p 4
e I
As outlined in-Section #2 Test History Item 1.1, the customer identification of the w
~.,
NCX-1680 is KS-15544 List 508 which is shown on the records.
The design is exactly the same.
4
/'
i
,e
. '\\v y
~,
+
U
=
4 h;
1 4
PCT /$9
.u... -.-
x--
-.-.~
l
a
[
lll11filliti!lllillilillil lil'llit lill lilllllillllitt llll lllllll1,l I!!i lill lIl_I !I!I Illi I!IlllillIll!Il Illi Illi Mi!!
Ililllill!U f Illi I ll lllll 11 Illii
,ldlsi cisilifl!i! lill llll 4)!Illl l ll llllli ll'!Illi i
! cq Il!!!d I l l l l isl lsi
! ! l l lllil22llllllll11 I!!llillllllll!
!9
$1!Ill eilli. !!!!!!
ill Illlli! M llll!
llll 11!Illllll11111 i
- Il l!! !iblii@@l@ll IllllMi!!llll Illl lll l li I!Ill e lsi ilill! !;ll;illi!il Illi H ill illi Illi IIll illl 111ll g
lillil il lfi l8 I!l l!i l l:l i l l l i l l l l l Illl IllI 11ll llll l!lll i # !!Illl 11lllllllllll1 lill Illl Illl Ill!
llll Illllllli!
L IEilllli Illllll!l Illi llll llll 11ll Illi lill Illlllllli I nim lls"RhiMWihW99191!! $l?M Illl $5!lllill!!4W!
!?!% IP91999998'ifiEW illl #Mi Illl M li ll ll l i! lll l i:j!!?iliiiH'199imeiSHi l l i!!i i !l! MilIIIll M #1 i
!!is!l3 ii2WlHliiW3H1W5ME il! dhi l I i ! # l l l l ! I l!!d 4 !
g 9d!!! iip MHiHWiHHHiilliiI:iiH liIl! # l!I'illi!!ill:
o!,g. l.ia. l I Ni U. M", Wi W"i !M94 { j i ; W l!!I y il i
- ! l !!;= $ ;
s h
!! ! l ! I l l i i l l i i ' ! ! i l '!!!!!'
!!!! !!!lll!I I IIlIll'!!!if!!ll N] k. !! ! ! ! ! ! ! ' ! ! I l l ! ' l l i ! ! I l l l i
'!Ill'll!
i:lill!lllii!!#illi 2:!
i 1
!II:i'it: l I l l ! ! ! I ! I ! ! I l ! I l l l l i l l l l I l l i ! !!!!! ! I l l fi]@!!!!!lll!!llllii illilll i!!i illi l'illll!!lli: !Ui!
sj!$lI!$lWRMYNSYYYiMMMllI?i?IIl!!@!iIllilll$l@!
9 E
i;
!!:i !!UWMSWiEli*illli! I i ji!!
I I I ! IM i l l i : i ! I lii!!
- !'l!!3
- 4IYliETlWWW ! I l Illh i l l l h ' !
!lillli!!'
g ESilll 0H1WWlMhiHWiillllalB illllN!!I!!
l!!il!
!, l ::: i yw 'l:i t, i 3 m' e ne m = =l l i u.i t p.; m i
=
I j,l:=;gl:l;; il1i;.i
- i il,,il i
i
- y gi
- m i ri I
i-i M !,M,:- l l T+ 1.y> ]M M fi$5 Wij9l i
% t. l l. l. 9 9 'gilllljjvuiillljjjjll'i ls u
l j :g -
4
+
- s :
! ::. ::, w a s a : v s
o *i. :l.:. i u l:i i i i i i ! um. v. m e:: e, i j.:s:iulllll
- g, i
- ll1-l ll-s i
r
!it a4i ai i
g
! glg lp pgm y qqmy lll 33 l ll yll ljjj jjjll s
!*ll.5M 991 ?f9I & l11 Walll H H lil! h!ll lilllli!I!
I 4 !,:0 Ilt11W M19111W HW ;illl $d3 llll 2d !I lll Illi!
3!!! IC111T11WiiW11119Ill E I
Hll lill lilll w-we e w
j l
w*' II.!.' l w1m !I M.4 I
l
, < O t I'l am 4k l ll ll ilIi ll Il 1
u i
i iiii iiii i ii i
,ii i
"i*;"i:i:
5:1 1
i il'ii "Pi'i'i:
- :P lY,' Y I
II ll l
ill I!
l l
l lir li,;
ll i
i !,
lii l!
- ;j n
,!!L tl
> L, l i
t i
i
,ii l'
i j ;!
js i
id e... !
!isl' ijr i,
!a!r
.i-q' i
. I,:
i i r:
m i,.
,1 s
i >>
!IfI, fj 1 i I ll!
!jl
' I 2
I,'!!
li l'ii I
Iii ? liii t l l i lI'*!3l' E3l '!!
I I
i i
i l
I!
lI a
I e
-e..
i IllIl'llllIllll!llll Illl ll l
l
'll I
l li]
1llll11 lll' l.!
II lI ll l
lll l
U l'II II I ll J ll il I
I Il I!
I ll l
l IlU fillll l
I il II I lll
,L4 d
- l filii ll l Il le sllli Ill l
l l
Illi
[!!!r Q
II 15Il5i ?!ll Il I
LCljilli Il ll l
Ill l]3 slll'l ellll. lillil 1sll1 Illi l 12 0 ll Ill 11 Ill lli
'lilli!!il'Ili lill!lllill I sli llll lli l
I I
i si illl l! lilil lilll II I i!lI ll II il I
g
- i 'I18 l!I il lil l i l
l I
I ll ll ll ll 1.11 i 6i' $1MRSMEGl.51M I PM ll
-91.1 l
lllII
'i !!!
1 RTE M Hs!B HHs ihUilI NR I! R
!k#i i
i: i MdeMIMB!MM3JsMH!
I NB!
I II I
I I Il5M j %i!
I!HMH!!@ H M 31N ll HH I
Ill lilllit49
!!c !!Il fJ ' I n. P ilRIlflil% TI.4 1ll l :l ril lill *lli l i l l Ehlil 1
! 9lilIll? Wlf 1?iiit9"Il lP lli HYM lill 19 il lllil1lllll g j [Mi! I I IM!Yifi1Tl1T1TIW PlYiy i I I !Hvi i I i l lb! I I I I I I !!b! je j! j!! E iW l IP iTI' Y'W V1WYiW9 l l l iMYl llll Et!!lI!l!!MMl s l' i 4 l i H W R P
- W e e d ai M W I ! l W llII # 4 H I l l liilsl ! ! I
- i { f !!IIiV~iH ti f TiV G H EslII 9 5 lIII # ii llIIt$llIli jg"
. !! ! I IEPWYiWMW?RTs l I I sp gs -
II!I BiiilIi !!!!l!ll O
!I,
i !! I I iSYiWFUMYiWh 999M l l l EE5! l l l l l 3t l l !lll l lj l l
!-l i
' !!!IICl@SV YiBTiMWiYiT1 l Wl1 I I ! I I J l l l ll!l !!l!
i j
!iil153Y W?nYP Y P M Y:illIEEE !lIl@ l g
!! ! i Is!MMMTl?iP1BYiP9III 1 W;IIIII iill IIll li!!d l 2
i.
llj lllll a
l I l.i l
l YIl3Y I
fl[I IIIl:hlll lll llll
[iliIf19:l+Wifj714 illlbi B nf RH"lWF '!Ht 1lll MJ l i l l.M il Illi l ll
%W-ilII H H lll1 3 1II IIII II
,,i '. !. I LT3'55l5R$255?ESia l l l R@J llist iI Ij l
ljl l
h
-- l-1_
_I _
_ _l_ l.1 II k llI hll l
lll l
=
}^. k :lQ
-l.'f l-f:l:
ll Q
- }
lll
~
X!
PYMPP*PYTAY1ll1115 g
1 IIl 9=
se 2n w
2 r -
l wlw: $v ~- m
- s
-]I rf, I Q j
llll k
]*
~
~
l J
F YRYVW YlV EYlV 51 9 iI
$d l
l ll
- f=
fg-
- a :;
2=zn sam a
nan a a
=
a. -.
M O
i i
I I
ii
!R
- l!
lii a
i i
.n I
!i
!'i
,. !:!.d!I !,
!?!,
53*I!
l
'llll'Illl till!!'il lli lift ll l1 I!
l I
l'i' l'Il!
1 ll l llll llL lll Ill l l l lt l ll I,'
lil
,1lll lIl lil!i llll Ill lls li lll 11 I
Ill Ill l ii!
I I
leilii Ill Il s li llll l Il O
I j!!ld "J "J I 15i lil Is! l ll
. 5 2l l
l ll ll I
ill
$k lll d l l. I!Illi I!lll ll l
! ; 6 llll 1 ll ll l
l ll g
i il illlillllll @I I ll iiifllll l
l l
'I Il i
i ll illl illjl lil I
W '
I I
I I
Ill ll ll l
Ill g
la I!!la I!ll!I pl !
l
! i i
i ll l
Ill l Ill l
l ll I
i !!!
l llll lll lll l lll lll l
l l
l l
E I
llllllll llll Ill l
ll ll 1
I I
li!!Ill ill lli l l.
Lll I
l <l II I
el II Mill WsMMMSMMMIM il M
- ti i
l Ill 2H M
! $iiill MMWd!!:M5515 lIl M PJ !
lill Illl eM R g.ll$iill!EM !MIM MM Ms!Td !Illll Ill lill Illl lllll1lllll ji
$EilllWE H H 8 s M 4 E M E s s AE l l l M l l l l 1 1 l l l l ! l ll E W I
- d
'i!Il!!
lilllll!i it!I IHI Illl Illi Ili! lillllili!W W E.i 1
1 lIll Illl llllllilllig!!!I l IIII!;!!ll!ilillililliilliilll i ' t W " ' i ' " "! ' " ! ' "' t " ' " " t d ' ' " ' '!'!!5ll O
!il
!!llllll!!ll ll!!!!lll 1:ll lllllllll llll Illi Illl IUI l
Il!I IIH lill llllll l ll l Illi I!M
[
ijhjli!!!llll!!ll!I!
!!!!Il!!!lilll llll l
llllll!
llll lill llll lii!! !
5 gl{[!!llil
,illllilillllllllilll Illi l Il ll lll lil llll Illi
- !i!!llllllllililll I!lllllll llll lll1 Il]l Illl Illi Ill!
[iIllllllll1111llillililllillI illl @9T29255Z2fd3291l fli5 Bii4 llll Illl 11ll
- g i
i i
Ill Illi il! I L* 55 5 E EM E E 2i E S E M I I 2 225
!I I
I IIII i
i!! MWS$3MMM3M ll $$
II I
I ill s
ii D NMr5mmes m1l l
i I
IIII i
3353M98WMMW3II liH I b IIII e
- ilI IN M5E54R5DMS5StiI SSiS I
II I
GWSE55MSWE5l 593 I
I I
gy -- ----l--h.=% $
.n%{nsl2
-l-
=n i
O ii i
3i i
i 1
t.
i; i!
ei
- lI 52'$;',I!*lIII l
s s
i,j l!
!..W
.i i
i
.a i
!I i
i i i, a!l, I
i t,,-
6,5
- il a!
=!
=
i
,i 6
i
SECTION #4 DESIGN CONTINUATION DOCUMENTATION The cell design for batteries supplied for Byron /Braidwood as well as test cells submitted to Wyle Laboratories for seismic simulation testing are of the same design.
Included in this section are cell section drawings covering all cell sizes in the NCX line of cells.
Types Drawing #
Fig. #
NCX-600 through 1200 107006D Rev. F
- 4-1 NCX-1344 through 1500 107012D Rev. F
- 4-2 NCX-1650 through 1950 106288D Rev. K
- 4-3 NCX-2016 through 2550 106302D Rev. E
- 4-4 These drawings demonstrate that cell type NCX-1200 & 1500 being supplied for Class lE use is the same design as the NCX-1680 naturally aged test cells submitted to Wyle Laboratories for seismic qualification.
Additional documentation of design continuation is afforded by Gould Specification Sheets GB-3325 dated 6/71 (Fig. #4-5) current at the time the test cells were manufactured.
In addition, Gould Specification Sheet GB-3325 dated 2/80 (Fig. #4-6) is the latest issue and demonstrates design continuance for currently produced cells.
The revisions noted on the cell section drawings were minor dimensional changes, change of accessory options or redrawing of original drawing with no changes, d
The materials used in cell construction have remained unchanged and traceability can be provided.
PCT /llZ-75
il -ig 7-ll l-
~~
Ws
,a l
'dl lLlJ g e..q o r e,;
1 cf 7 r _.v_ _ _ _ v_ - '
w' 7 I
=e f
=
I i
~
n...,
\\
v e
I I
T 1,'?
s
[
s i
e
=
i h
b b
e P
j
. I, l
ai i
s li 3l 6 t
~
gimme N
h g3 _.)
I el!
l l
s e
1 l
j h31g,I
~
~
iq F
=
L f
/
- h ;7 J }.%.9.L _
_ $, t!
-q f
i
.a.
=
e 2
- 3 2
e
- ,: u y?
l l j f
J/
?!
e
)
8 s
A i
s I
EhI
- {.
! \\
[h
[
'l l
1 I
t t
I y]j i~ '3Lj 9
I >'
L-3:::n y hV h1
'UW A
,/b s
u.... m A y,..
re.
=
i-i e.,- ;g g m
[ - Q p;q ct [u J'
,i D W...- g :l ILt1 *. i i w .. m, ,g .=. li I t _r
- g l
i J -l l i . l d t t -]4 y j,_ T ~- pJ on 4 a 1 o _.. -g a 1 G II 'ts m. 1 n i g O u u e. ~ -. - -. r,! .i,, e t I 8 .. #p ,e .,p. m,fIt' l l d ,f' Jg ( ? w iris.i,, 3 y. ;. p . i, i. i ;l,! I l lll l e !I iij i j(ni f l i t I 'i lji:. ! ! jl E ji i j ;j\\ II' I i iil g-Q : : t t' I 'lt Ijf ! b !L' i l s 4 3 . H j]n] I, ,o1I,4 n T (s i a i , =, ( y,i 8 .i .ii tis 4 - t i s ;, *i l u81,, )! I =+ i.: =,:.. 3 1
- : I 1 gg3!!,
5.i ?!!!g,,ll'!!'I!kiflt;lllIl - _!_ _' ?.11 'J i J i g II'
- ' Y IIY2II ; - ( CR ",Q s
si:i:2 !!!I!;i'i! ! g
~ DRAk'ING #107006-D REVISION F REV. A 6-10-71 Added type and specification tabulation. Revised Revised title to include commercial types. REV. B 11-24-71 Revised mounting height dimension from 18-17/32" 1 1/32" to 18-19/32" i 1/32". REV. C 1-24-72 Deleted reference to plastic plug used in withdrawal tube opening in cell cover. REV. D 2-2-72 Added outside negative plate shield. i REV. E l-15-73 Overall height dimension changed from 22-1/8" 1 1/8" to 22-3/16" i 1/16". All general notes replaced with reference to Gould Engineering Specifications #D-217 and #D-229. I / REV. F 1-5-77 Deleted Item #16 Parts Description with Item #14 (Accessory Item). i i t l O FIG 4-la
DRAWING #107006-D REVISION F ITD1 NO. PART DESCRIPTION RD! ARKS 1 POSITIVE PLATE
STANDARD EQUIPMENT----
i 2 NEGATIVE PLATE 3 POS. TERMINAL BUSBAR I 4 NEG. TERMINAL BUSBAR [ 5 BURNING LEAD l 6 SEPARATOR / MAT ASSY. l-7 POS. PLATE SUPPORT 8 PLATE SUPPORT ROD 9 C0VER 4 -10 CONTAINER 11 BRIDGE 12 SCREW VENT 13 FIRE ARRESTOR VENT ASSY. (SHOWN) OPTIONAL REPLACDIENT FOR ITD1 F12 14 DUMMY PLUG ASSY. (2 PER ANTDIONY, 1 PER CALCIUM)
STANDARD REQUIREMENT----
l 15 SAMPLING TUBE ASSY. (SHOWN) FURNISHED WITH CALCIDI CELLS ONLY (2 REQ'D) 16 (DELETED) 17 DUST CAP (FOR SHIPPING PURPOSES ONLY) USED ONLY WITH ITD1 #15 t I -18 SEAL NUT
STANDARD REQUIRDIENT----
19-WASHER. 20 SPACING RING 21 "O" RING GASKET f 22 CONNECTOR STUD 23 CONNECTOR NUT 24 NAMEPLATE 25 SHIM USED WHERE INDICATED i 26 0 UTER PLATE SHIELD USED WHERE INDICATED-p FIG 4-lb' . -.. _.. _ _,. _. -... _. - _. _ - -.. _ ~. _... -. -.. _,,.... _
Ep.ti ' 5 Y ' )A .--L-- ( 9 gg ~.> .v 3 7 3; . J l I h .x s
- 2. 3
- 9. }
/ z..:: i - ~ > n .O U - j i Ib i h + isy s I i m; LtL P J g l,I \\,l l i i m p L. g i j 'd l l ! L' l l r c = s r gg_ a a ~ g I. 2d! l N 7 l l Aes< 6 l hf h N t }. c -l ~ a r );. i rt s o 1 \\ '. ti .N! .fdk E I-l q[,4 - - - )- &mh_. z.5.5E. : \\ I _.-i (, %Q-;._ _ i I"" 5 [h j il h. k-x 9 r t' s ,[h.h A r~ f l [\\ 5a -qpc w <= 3 y_. w-smemri l r f,{3 _i_ [,- wy-e.~ t
- l
,.... 'i 'g 1 w~ ,,, }, g'g_ j ~[ j 4,,ej
- l,
n s l w i l. 4, A / 3 .I ( l E kl a p i i v Sk. e / - / 3, / i de / b -. l i,U], l [ f, > m. Q u I_ f i, , I, 1 l! o+ .4-0 g+ q. .i i. ll! j'[ ja Er N N' "l j / N 'l ) ji ill "/ \\ .z. _ l[ j l s G u yh,i.lgi 4Iy '1 :it.- t S Ji i !!_l l !N lhll l ,illLt I.6. : I 4 RicM+s%8+r48%s.c ~' ~. =. - . a. p.. --. -,. a a _ _
1 DRAWING #107012-D REVISION F (D i / REV. A 6-10-71 Revised mounting height dimension from 18-17/32" i 1/32" to 18-13/32" 1 1/32". REV. B 12-3-71 Revised cover ribs and vent. opening boss. REV. C 1-14-72 Deleted reference to plastic plug used in withdrawal tube opening in cell cover. REV. D 2-2-72 Added outside negative plate shield. REV. E l-15-73 Overall height dimension changed from 22-1/8" i 1/8" to 22-3/16" i 1/16". All general notes replaced with reference to Gould Engineering Specifications #D-217 and #D-229. ,-~ REV. F 1-5-77 Deleted Item #16 Parts Description with Item #14 k j (Accessory Item). (m) l v l l l l r TIG 4-2a
9 _F_!
- S, A g.
g, IJ m..e II Q O '41 { gt.. 3 m i; O h L 1 %A .e 'g~j .-~.3 y: ., ri l l 9 $p C. V., l' Q m S P' M"" ' l. lAg.lj y' + ) /
- r.. s 's
~ i, l g gf i t IL*r ] g il s 8 2 b ya p )I i t I 31 f:,d'Il = t 3y 1 '. f_ II I I. I i % *,'*l.a 3, n u m !. g e
- i i,,..,, i I ! ! ' itI ti 3
^ 3 N .h i N. s 1 l 15 fr-Q. z s.. . _o;. q .j e h N yU Y o s, v s 4 a NQ. v s 1 O, /,,. '- %X S kjh '.d, g, _ x. !J m 3 / 123 j k#A n.' 1 A i1 h n-N s.s g 4, h. If., ," A " e, n. ,s ,.e n 8 \\~ 5 w r m+ .I ~ ' -9 P G l LE-l l r o ,3 t + , l. 'f i l . c. ti i. e, ^ l = ~~ 1 a.} $ i i , 'j 9 i' 'v n 4)1 V l 2 I s i i i D O = i: M y :s a .g 1 P' 1 [ '., Qt ' i,r9 I .: ;;"i;',ll.i , Q.. j ;. ,y ix. * ' su a o,j e ,g, ~ +--v i t g ,,i.e w v i I. C f_ y q l llt 1' 1 t;.. .i:.i i a, h' t,l.. 7 o,, tet ll-m m I '.i e i lI..i g 'i \\d i I l lD /N t I . ' i ' } j. 1.' i xs' 4.. : i (t,)',
x t
c I f m .._1, i b. f' 9 "? t L1 1 N-)' i 1 s e
- 3gg, u
l s ,U La g 2 4 mi ~ e } M w lIlhl J i /- 9 4-5 .-lb I ,i 4 i IM-', s J ? d e) e a +- e '- 4 s tir ? j l c,1 i i e } ll l.jl 9 - 7 dtl ] [] [] [] [l ',6 'i e- ~ [&p t -t g c 7]-- l =_ y Ij N f 1 r,. u l ..=_=_=_= w. N- _v c, s s t '5 [n.8~1 ~tl.'l. [.:.gh h I' N O{ /iN r,#..el 2 J qi - i, e r i et tt 9 - d--gali ' A GT M- !F,,if q ,j ~ ' - ~ - w ~, o. 4,e m .p y C}. _ h $~~ 1, N. i_: a t s s m O@ ? L ,y It sp g lie e m 1' O - h E'. Y f\\ [ g ..- tm, - -E i - amp --- l h NI g Ilf / C lt N:!' g ( i i c 'O,.. n. u lj li g ] u i r I It 6 l .~ t L i 1 -f-} .[ / Y l ( [ ** -]- 1 pU j ;j :I t. i.i i i o 8 I a .i $ p; ~ n :: n n n mqd '.J $.' J' -,,, - r s S ~:., 3 3 m r
1 i DRAWING #106302-D REVISION E 1-REV. A 11-29-71 Revised to include cell types using shim. Revised mounting height from 18-17/32" + 1/32" to 18-19/32" i 1/32". REV. B l-14-72 Deleted reference to plastic plug used in withdrawal i tube opening in cell cover. 4 REV. C. 2-2-72 Added outside negative plate shield. REV. D l-15-73 Overall cell height to post changed from 22-5/32" + 1/8" to 22-7/32" i 1/16". All general notes replaced with reference to Gould Engineering Specification #D-229. 1 REV. E l-5-77 Deleted Item #16 Parts Description with Item #14 (Accessory Item). !O i l I f 1 i ( t i l ' O l 4 F10 4-4a y --,r ,,--n.,.m ._,.m,q. y- ---,-.mvg.g.e.,,_.m4,,,. ,y,,,.,,,,,,. .e,,,,,,,.,. .,,.,,e,.w._ ,.,,.,e.. ,~w,em,,,w,-m--e,~~.
DRAWING #106302-D REVISION E 1 ITEM I NO. PART DESCRIPTION REMARKS I 1 POSITIVE PLATE
STANDARD REQUIREMENT----
2 NEGATIVE PLATE j 3 POS. TERMINAL BUSBAR 4 NEG. TERMINAL BUSBAR i { 5 BURNING LEAD j 6 SEPARATOR / MAT ASSY. i 7 POS. PLATE SUPPORT i ~ j 8 POS. PLATE SUPPORT ROD 9 COVER 10 CONTAINER 11 BRIDGE j 12 SCREW VENT 1 () 13 FIRE ARRESTOR VENT ASSY. (SHOWN) OPTIONAL REPLACEMENT FOR ITEM i!12 14 DUMMY PLUG ASSY. (4 PER ANTIMONY, 2 PER CALCIUM)
STANDARD REQUIREMENT----
15 SAMPLING TUBE ASSY. (SHOWN) FURNISHED WITH CALCIUM CELLS ONLY 16 (DELETED) l 17 DUST CAP (FOR SHIPPING PURPOSES ONLY) USED ONLY WITH ITEM #15 j 18 SEAL NUT
STANDARD REQUIREMENT----
19 WASHER 20 SPACING RING l 21 "O" RING GASKET i 22 CONNECTOR STUD L 23 CONNECTOR NUT 24 NAMEPLATE () 25 SHIM USED WHERE INDICATED 26 0 UTER PLATE SHIELD USED WHERE INDICATED FIG 4-4b =..
, g
- g*
k h g,g ,I + GOdLDNNO@!i -CaIciu r. m ~ .' ij,' TYPE-NCX CAPACITIES-1650 A.H. TO 1950 A.H. @ 8 HOUR RATE TO 1.75 V.P.C. AVERAGE.
- s SPECIFICATIONS Container-Styrene-Acrylonitrile Plastic.1 k
Cover-Acryl.-Buta.-Styr. Terpolym. Plastic.' Separators-Duropor-Microporous Material. I Retainers-Fiberglass Mats. P l I Posts-Four 1" Square. Post Seals-Floating 0-Ring-Seal Nut. Vents-Screw Type-Spray Proof.2 L L g t Lovel Lines-High and Low-All Jar Faces. ',,0h' W' / Electrolyte-Height Above Plates-2-3/4" Electrolyte Withdrawal Tube-Each Cell. Sediment Space-1-1/16" Thie w. Plate cimensions Height Width ness Specific Gravity-1.215 @ 77 F. (25:C.). 3 3,,,,.. 12" .30 Inter-Coll Connectors-Lead Plated Copper. Negati.e P'aie 15 * / 2" 12" 215 l o n.evi :~c ce -,.ca .m -er s,. : : : -- :e-c.s -- i a.a a: e er >vedtea o add,ticesi cost r cc-+ ree rm, ; r ~e -E ces ce es sta". eat e a.a 'a: e at ac:10 a. c:st w Spe c.'y Gouid ' 8 e..ea' j Ampere Hour Capacities 1 Minute Rate Overall Osmensions l Approximate I i to 1.75 V.P.C. Average" in Amperes
- in inches I Wgt. in Lbs.
Elect. I ! Plates ' To 1.75 ' To 1.50 l i Net Packed Per Gals. Per j V.P.C. ' V.P.C. ' l H Wgt. i Wg t. Cell Type Cell 8 Hr. 5 Hr. 3 Hr. 1 H r. Avg. Avg. L W + ! NCX-1650 ' 23 1650 1485 1287 825 1782 3390 11-3/8" ' 14-1/2" ( 22-1/2" 340 j 366 8.1 l NCX-1680 i 21 1680 1470 1230 750 1530 2910 ' 11-3/8" i 14-1/2" ! 22-1/2" 332 i 350 8.3 i NCX-1800 25 1800 1620 1404 900 1932 3675 ; 11-3'8* 14-1<2" 22-1/2" 364 382
- 7. 8
{ NCX-1950 l 27 1950 1755 1521 ! 975 2080 1 3955 11 3'8" 14-1,2" ' 22-1/2" 380 398 76 iacsses voita;. : cc a: ess n e :e i c:~ec::-s se: n s a-:se ar:w:s
- =Gewe ra:
GOULD Gseld inc.. Industrina E emery Divis.on U ?, .'..:[ ' 'l3 -.Y .1C as.w e-s
- ec e ;EA
l l 'N'i' A L v.tys l l l 1 l m , i'Y4 h W j l ll l l 1 ^ O l i i i i i i i i i i i tw ,,, s .,E l l l l l l Ot3CMARGE CH AR ACTERISTICS e OF GOULO TYPES I60 g .9 2._._ E I NCx 8 NAx-600 NCx 8 N Ax-1650 'll 4 l l l 240 g-f l l l l 1 NCx 8 NAx-750 NC x 8 N Ax-1800 g NC x 8 N Ax-900 NC x 8 N A x-1950 f p pl p l l l l l N Cx 8 N Ax-1050 NC x 6 N Ax-2100 j 220 p N C X & N A x - 1200 NCx 8 NAx-2250 i [ ,e NCx & NA x-1350 NCx 8 NAx 2400 E Mi // A /I/ v i I ***^*- E \\\\%z/ /I/ / /1 I /j i cL'#,"'#,'"^."# l'!lTsCl MW/ / I/ii I g. A \\ REN NJ 100 a 80 60 - t wg an ' s, I '% d%% lpl l l 2 l 0 10 20 30 40 SC 60 70 80 90 t00 ll0 l AMPS PER POSITIVE ,,g, uil Ilitil l i il i i i 2 00 ' ' N' L 'VO ds l l l l l ,i m ]w! I _I l I l l l l l I l iii !iiiiiiiiii i il i i i i ,s 's '"O !I !TI I g! !l I I I I I DisCHAnoE CH AniCTEnistics 'l I/I I?i/l[i ~ l l l l l l 260 9 x 8 NAx-672 NCx 8 NAx-1680 j\\j l /j /j /j fI //. k* ! } l l l l l NCx a NAx-840 NCxa NAx-ie e 4, l/, p-i NCx a sax-ixe NCx a NAx-20i6 I l j NCx S N Ax-f 344 NCX& NAx-2184 220 5 b !/ / Y l / VI [I i l wits ructv CsAaGEO SPECiriC 5,,, MW/i /i V if VI I M '"'" % 'n'? 's,v " 0,,,, RM(I/i / /l i VI II I i IIl 5, A, MNt/ X W /1 /III A' I I ? fags s VWOOR>CW / i udI Ii 8,,x,,.0\\/WKD4 h M I X! I I l E,, NNNX! WNI LJ -+-T 'J, l ',, Y vuX/N m l l I M R P S A S P K m,' ' ' 4,J M T T " n-WX( A, iM25's ',' i :,,, x, ' 4I%l A i,'ii!ii ~1 rI l l l l i I I i i ,O 10 20 3C 4C SO 60 70 80 90 IOC .10 AMPS PER POSITIVE TC-60860 P C- =J-ER - ~ -
- e GOULD -
^ Stationary 4 power ceiis.a o
- , ew,,,c.new,,o,,,c, co,,,,,,,r (Calcium) {
TYPE: NCX CAPACITIES-600 A.H. TO 2550 A.H. @ 8 HOUR RATE TO 1.75 V.P.C. AVERAGE l SPECIFICATIONS i Container - Styrene-Acrylonitrile Plastic. i Cover - Butadiene Styrene. Separators - Microporous Material. Retainers - Fiberglass Mats. l Posts - See Below.* Post Seals - Floating 0-Ring - Seal Nut. Vents - Gould " Pre-Vent"." Level Lines - High and Low - All Jar Faces. Electrolyte - Height Above Plates 3/4" ,,,,, o,,,,,,,,, f g,,,n, f,,,,3 n$,* l Electrolyte Withdrawal Tubes - Each Cell, 8 l12'ca I 320 p:3,tne Pia e 15-12', 9 215 Sediment Space 1/16" N'C' " "'a. 15-Specific Gravity - 1.215 @ 77'F. (25'C.). 4:s:s-e:0 *- to $ 2:a * - 7.e-1 ' c scua e 1344 A-to '950 AH Fea r Inter Cel! Connectors - Lead Plated Copper. s:uare re.ceci te4a a i 1848 4-
- e 2550 A H Fewr-1' a '* 53sare l
Ampere Hour Capacities 1 Minute Rate overall Dimensions Approximate j 1 to 1.75 V.P.C. Average" in Amperes
- ininches Wgt. in Lbs.
Elect. ' ' Plates To 1.75 To 1.50 Gals. e i Per V.P.C. V.P.C. Net Packed Per Type Cell 8 Hr. 5 Hr. 3 Hr. 1 Hr. Avg. Avg. L W H W g t. Wgt. Cell NCX 600 9 600 540 468 300 712 1355 738 14 1 2 22 ' S 177 189 6C NCx 672 9 672 588 492 300 636 12?O 7-38 14 ' 2 22 1,8 178 190 60 NCX-750 11 750 675 585 375 880 1675 7-38 14-1 2 22-1 8 195 207 56 NCX 840 11 840 735 615 375 790 1500 7-3 8 14-1 2 22-1 8 196 208 56 i NCX 900 13 900 810 702 450 1044 1985 7-3, 8 14-1 2 22-1.8 213 225 51 i NCX-1003 13
- 008 882 738 450 942 1790 7-38 14 1 2 22 1 8 214 226 51
! NCX 1050 15 1050 945 819 525 1204 2290 738 14-1'2 22 1,8 231 243 49 i NCx 12;0 17 1200 1080 936 600 1360 2585 7 3< 8 14-1 2 22 '/8 249 261 5.0 l NCxc344 17 i344 1176 984 60C 1240 2360 9 114 14-1 2 22-1 2 268 280 68 NCX 1350 19 1350 1215 1053 675 1494 2840 91 'd 14-1/2 22-1/2 282 294 6.3 , NCX 1500 21 1500 1350 1170 750 1620 3080 9-1 4 14-1;2 22-1,2 301 313 60 i NCx-1650 23 1650 1485 1287 825 1782 3390 11 3/8 14-1 2 22 1/2 348 366 8.0 NCX-1680 21 1680 1470 1230 750 1530 2910 11-3 8 14 1-2 22 1'2 332 350 8.3 NCx 1800 25 1800 1620 1404 900 1932 3675 1138 14 1'2 22-1. 2 364 382 76 NCX 1848 23 1849 1617 1353 825 1661 3160 14-9 16 14-1 2 22 1 2 397 415 12.6 NCX 1950 27 1950 1755 152' 975 2080 3955 1138 14-1.2 22-1 2 380 398 7.3 NCr 2016 25 20'6 '764 1476 900 1788 3400 14-9 16 141 2 22
- 2 415 433 12.1 NCx 2'00 29 2'00 1890 1638 1050 2240 4260 14916 i4 ' 2 22
- 2 446 464 1 NCX 2'84 27 2 84 1911
'599 975 '924 3660 '49'6 14-1 2 22-1 2 433 451 11.5 ' NCx 2250 3' 2250 2025 '755
- 125 2400 4565 14916 1412 22 ' 2 462 480 10.9 NC v.24:0 32 240; 2 60
'672
- 200 256; 456t 14 9 '5
'4-1 2 22 1 2 479 497 10.3 i '.Cx 255C - 35 2550 2295
- 989 1275 2720 5170 14-9 16 14
- 2 22-1 2 496 514 9.7
,c.: --r:
- .s o :.., - e,
3, n, s t%: rc G J-3325 E 2/80 2.5M U 5 NC M
l f l l l l l-
- T8AL set,$l l
l l i j l l l I I M 1 90 *I l l 4 l i 8' i . AsEAAGE.r0;,3 y, l O i i t r t g l l l l t i i i __1 i l OiSc AEGE CHA AACTE AISTICS - 17c d [ i l I i j i I i 08 GOULO TvPES l w A i (' i N;z & NAr-600 NOR & NA8 '650 - 1 60 C $IF l f l f f p-] ,[df a i NOx& NAD- '5; NO X & N A X 180C NCm & Na s. 900 NCE & NAR 195: H l NCR & NAX '050 NO N & N A X-0100 l l I l 'o p s i 240 f i N0r & Na n 123; NO u & N AI-2250 fl l [ l [i f NO x & NA N-1350 NO A & NAR-24% 220 , ! n, p N x & Na,.igo: Ncx & Nam.2550 i i I_/ s WIT M FULLv CMAAGED SPECIFIC C r Ell l/ /i /! i/ i /i V ' e. I ca* *" o' ' 2's c' 7" '25' c > TEST NO T-6774 - 180 -b\\[l// ![ / I/ [i l OI h h % / / :/i i / i i if# I .e l I I l E,, @ M h\\ M !/ ! I '/! l r/ ! I l I I 100 g ,0 UNN hY NX X I i IV I I i y se NNMN M M 1 1 i r,0l! NAM M X N N ah,,,',j_ !'b i 'x
- i..
r,,Ms, ,,*z, i
- k 20
'* e, v a.- v i g,, 0 0 10 20 30 A0 50 60 70 80 v., 100 110 120 AMPERES PER POSITIVE Tc.s: cite l l% l l l } i .i j i i j i i I I l e' i i i i i ~ -2 00 [ i [] I ? i l g,, [J i (V 1 hE A ACE.ctr3 73,.$ 1 ' 4 _lI N l l 1 i l180 P ! 21 i i a H F -*
- 170 J
} j 'E D 50HA AGE CmA AACTEarST'CS WC 280; . --[ 0s GOULO TvPES 16C [ NO' ' N-'6+; E 260 NC ', ' N' ' - f 72 j i N: & NA....: Nc. & N..., i N:.&N.,-,=,
- , o. A.. =. <
20 w l 4 [ NO R & NA h-1344 NO X & N A s-2164 j $ 22UI g : ~' w:T s vu.v C A AGE: S=E:is.: I 05 200; G A A..u cc, :'5 - e s:s c. J 8 {' TEST NO T-6717 3 i Ei,\\\\\\ h e ! A\\Wh / j' i l E,,,I R K K h h N 7 l !\\!\\ m h V / s' i i i e / I s'*iA % h h M N X w/ ". i i i i, W X SN X M N N N ii i.ij A W NAMw%N uwm.i {llk Y r. rg ' s, 'sb ' ' 6e N I h l l l l l 20l W Co #- r r= r. . u l 1 l I l ,Z k t 6 l l 0 [ I I ^ ^ i 0 to 20 30 0 50 60 70 80 90 100 110 120 AMPERES PER POSITIVE Te.,:ees:e ,s f ) v could inc., industrial Battery Division ec50 :ar: ec.,e e :..er.a-: : e ca s: -
- e-e: :*e '2'5 '!2 055 5 CABLE GOULN ATS AT. L ANG MO A NE. P A - TW x GOULO LAWN 510 667 2056 An Electrical l Electronics Company ric 24-6R
O t SECTION #5 TEST RACK DRAWING AND CALCULATIONS P p
a w - -=_,a-. --a--- -..a--- 2,,,a e a e.-eA m c--a A ms. Ma. aa 13e an,-.m. w----a- .a a, ,,_A-a na.-aO --,am-na SECTION #5 TEST RACK DRAWING ( AND CALCULATIONS lO s l I e 6 l l
MATERIAL REO D FOR I5070" 76 FLACK .W e lPV I ' PC.0 GTY. DESCRIPTION T NO CONht TI' INS TO Bt 'IGH!ENEr' WIIH A T0f t510NAL n s.fu k. . I 06kE OF 's0 FI. LRS. UNI E'iS NOTED. I 2 STEEL SUFTORI $01-065899{l09 2 1 BASE STRINGER 502-043T0i 0M ~ ' 19/.1, fiY A) At i 11'SI (UNflEC IlONS TO BF V ADE W11H 5/ H.- Ib x 2F.i G. 3 4 SIDE STRINGER 502-043301-002 55 HEX.6tD BOL I NUI E W ASHERS. 4 4 END SIRINGER W 041101-024 G). IFi(M CONN 5 TO BE AII A(HED Wlilt 5/It; 18 X l.25 Li,. S to UPRIGHT TUBING S05-0789's7 074 'S ltF X. lil). BOLT NO T & WA(iln RS. 6 4 BRACING 503-O M9'40-Oi8 a O ^ HOVE CONNS TO RL TIvilENED wilH A 'OHSION A L 7 8 CORNER FliTING 505-078990002 FORCE OF 12-13 F T. LB', j 8 9 (ELL STRIP SO9-106N9002 j 9 2 (ELL SPACER 5051061314X)7 -TERM LUG CDP L.p 10 38 1/2-13 HEX HD BOLT L 25' WO2-005330 LO7-06t (250MCM)2 PER CONN. 1I i4 4* WO2 07te552 ~Il 2 5 WO2-078911-002-g.T E:D D TERM. PL ATE Its 12 1/2 HEX NUT WO6- 000383 b --Q GZU:::Qsu 15 50 V2 SPLIT LOCKWASHER WO3-005069 (OP,L.R LOI L'675il 2 PER CONN. xh 16 46 t/2-Il (L AMP!NG NUT S02 0'i0124 LINTE HCELL CONN COP.L P 17 to 1/2 SPACING WASilER 505 ON900 M)9 125X 25 T ERM (. ABLE CONN. 2,LO3 06t966002 LO6 &ll'68'6-Ot 8-Il 2'-M125' 2.LO3 086967-002 l'i S 4 J.PER CONN. .5 M OX (NOT N40WN) ,sig75 ,ig375 .I mEfi. - PliEVE N T 30, [ IORS10NAL FORCE D k (J. 11. Il ! J1 11 J:. J ~ ~ - {- -, J7) l,l SEE DETAIL A y j l OF d'i- $1F T.t Hs (3 l f) a1 g f"- = ="p-="1Adh3" - "j,&,f ,O d'h-,j lll' ~ ' 4 ~ y* w l ,1 l 11 fj$ m C ___ g.s f-J f _. Jam l 6 m / l ci, y,,- Y I2 3 A)[ E j w. e ";[ i,,(j l x w i p .l l l_. - - _f __. 1 G, j i w i g - - - g i i ly 2I I:b.... A_WH HOl E _t,0CS. 56 DI A. 3,12 Ft k 11 5 I 15) h .p h !a n. <s s, j i i i ts. 2:a25-. i i np j g, ~~
- g,
. _ = - GOULD '""LAYOUI FOR 3 CELLS NAX/NCX-16HO D} IAll A ON SPECI AllESI R ACK S0707H147b76 ~~-*" ~ C lC C. ~
- ~"' ~'
r r.;.Lnnm.m. w 078tn7C
THDF'DI0: N 3 '.' 66i ( k~'.c" -. ', T/3'(UN O= T~1-5T RACX.- M Fo's ~) c ettGIS A v./N c x-M So-JodLO IC 4 TI' E '< 5: $ 1 .- H_o_.a_..x. 9ESCCi/~lCN T 4 iE E T N o. 9:e s t ra N 9 0)O,. ho uLO M 9 0 7 S 4 ~} ~l C.. _ _ _ _ Z Er E 16 s DATA _.. _ _ S $ d o c i<. $ P ECTcd M, Fg 0 8 7 T'o L+ cic /N's c ri ci;L 5SE 5 S H oc x S P s c.T rc a wI ) F 9. o s To Sect /rp;;. w e.s c SSE C P5.. : > 0F MA
- H D A P ? 0 fLT :- T T' t N Cr 5T'. S 9
D E 5 l J.W o" 3iC5. fTK)N6EE$ 7 9::',iOM CF EHO STgiH 'J5 Z 5 b PS trA c P VE sTic A L TdEES 9 i)E... . CF d N faLr: F K a tut e. to T)c.,ia H c:= 1.'.<:.n ciHL.r 17-- \\ IG A : ; C fi TI O N' L 0 A O ' S Cr TA T,L E t3 0: AticWO4 'a T' M 7 i,' v. s 4 '. c -bf A 7( c Fo :< c o r ri,N T,L'd. (.c A C:, '7 5 15 C :,, '. ! -. T E T' (. c,4 C, l.3 ' P.ri.12.Alvf5 16 C e '. ' /., Tr- <. J et s r A N o whass eg DES I (yN A TI O N S. _ _ _ 7.0 CoKcL.U'ON 7.1 4 7 O[ E8'NIUb D PROFESSIONAL ] RALPH C. DUMACK . l, \\ t:.G:t.t t R cq y, -n. ,e r , Wk i- -- i (,. ./.. J. -. $eY p
AY. HPy ] {, MATERIAL REO D FOR 1.507 77-876 RAC K D i s At >, ( )Ceteht.IloN*: 10 BI 'IGitIENED WIIH A TOH510NAL ) PC.C QTY. DESCRIPTION ART NO l tAL OF SO FI. LBS uni l55 NOTED. I 2 STEEL SU4 PORI 501 0658 91009 2'bl.1 i f itY A).'.11 IMSI WNNElllONS TO BE MADE WITH 5/11 - 88X 2SL 6. 2 3 BASE STRINGER 502-043101 002 55 liEX llD BOI I NUI & W ASHERS. 3 4 SIDE STRINGER ild ~04%iOI m2 Ol it itM CONN 5 l0 BE ATTACHED WITH 5/ b - 18 X I.25 th. 4 4 END STRINGER 5d2 04130102 e ~ ~ i % IIF X.IID. BOL T NUI & WA94t RS. 5 4 UPRIGHT TUBING SOS 0789e'7Ii71 O MOVE CONN 5 TO BE ilullENED WITH A TORSIONAL 6 4 BR ACING S03- 07% 440 018 FORCE OF Il-11F T.1.B, 7 8 (ORNER FITTING S05-078990002 8 9 CELL STRIP 5054 06W)002 9 2 (ELL SPACER 505-1061H OO7 TERM LUG COR L P LO7-0Bl IQ. la. 1/2-13 HEX HD BOLT I 25' WO2-005330 (250HCM 32 PER CONN. Il 14 '4
- WQ2.O A552 12 54 45*
WO2-074185 g-II 2 5* WO2 07EN11002 TERM PLATE w.- l'e 12 1/2 HE X NUT WO6 000 M1 (OR.L R LOI-087511 2 PER CONN. ---3-D M SB If2 SPLIT LOCKWASHER WO3- 0050ti)~ A 16 '46 t/2-11 CL AMPING NUT 502-O'a0429 f, r,, 5 i g,._- 'INTEHCELL CONN COP.L.R 17 Le 1/2 SPACING WASHER 505 0749m 00i i 125x 25 a TERM L ABL E CONN 2 LO3h966002 e LO6 W1eNH f-ll.16 2',LO t 086967 002 I" 2,PER CONN. - 14 (NOT SHOWN) 5 MMX . ggg75 . L37$ g (" ' lor $10NAL FOl<CE ' 'b ~~ ~~' ~ ^ l 'l -PliEVENI of25-cFrIas n tn n_ _n n n 7 _ayL q k I' b ' _[ *" "' ' # ' E $g) p ? %) .[ / . [ e h ] A 41 M ~ ~ j f" ~ p p-g, q y ge ~ 3 -a rnrk a 616 j e -4 j i r_ m G _/ e-s 11 s _m_v / ut. (n g (i_<j$r s N N Q f l l i (Fsri7) N 6 >4 s(l P.~] g3 Qg n) 6 . _ _ __. g-l g ~ -r 8 1 is) 27 75 ANCHOR HOLE LOC'S. 56DI A. 3 5225 g 7' l T;6' } j 3 1825 i e i V 3f l I 15 2 Q25 8 l 1 f1 J"y' i 0) $5)
- ;.)
GOULD ~~ ~~ '""! AYOUT FOR 3(Ell 5 NAX/NCX 1680 _D.,E l All d _ ;- ---. ~. ~ " *E. ON SPEC IAL TESI RACK SO707H117 bib /. 1_. nu 9... qu - - p.. r L
o us. STg uc 2e.c c. Os a ca. c : TasT 1Gct sHE ET* 3 (' Eo rt '5 C E L L S o f: N.A X/N C X - l(o S c yog gg; 6 od L..D.-. 15 /tT.i.E.E l f 5 ( DESIGN DATA : bl ATOR A L F R E S U Chl C I G 5 ' S I D E. / VC.RTi c AL ]/ com edE,C. BAC k /V CP.TI C A L C.e r s,c o P Y N A./. c ei !II FPollT To FicrKTo079 ~/O '! ? C I D C. n S A ! Y i fs : a?']. FoR BOLT CD sTCCL FRAMEVIOR K s'.i 5 Mi c LOADlW6 FACTORS 6 S E (SAFE 5"0T DoV I N EA R.T! fs u A K E.') 8.E.F. GO U L D FULL sch'f suock s P ECTROM. Ff6 5 1 Fl&. S-4. HOP 12 : G P00 N D AccELERATlo)I = a.3 y 0 -FRotlT TO BACKhCFTICP VCPT; l,3 y 9 _ r. = p. V HORl7.. G ROOM D AccELERATior I - 7,3y N -s\\ D E To 5 \\ D t: VC' TIC N ( V E R-T. =(.7x4_ r A LLO V!AB L E vl0Rk)H6 STRESSES FO R NORMAL LOADING S. As r E.F. AICC E.!G! t n ! CDiT io t( FO R. CS E: SHALL 11oT EyC.C.ED o 3 x Y l EL D ST' EG S 4 'flEl6iti C. ( N AX [1.lC% - l'iP 9 BATTE. RIES) 3x 334 = 996
- 3 CELLS
= F nck (FCF. 6 COLD pt.'6
- 076437 (_) = 465
- vlT OF l
_nT E.R1 A L5 : M /"'} N cT g t)c.T O f i' t sT C.C L s u r '-T 0.{ 1". f.' 1 5 : AET I I A-36, Ff: S6 O n}ilS-JUTS 57 C C.L sittLe : A 1 T 11 A ,70,5. C, F, 1 2. .1 ii A' /
ob ~ c ' * " :n4, 7A'A CCo d o): DE s 16N J cc. s e l O VJ ELDING E LEC. TROD ES - S M AVI, A VJ S A S. I O F-ASS E 10 X X s SPEclFicATIo)I 5 : fr.l.S.C. 8 Til ED)T I O bl A. vi. 5 DI.1 .TE S T DCic. Co t-r1 Fo W E r4T S ', S u erar, Stas A Edo SrgiseER.5 - EOth..s iz GA. bsw. r f i co: T, d.f r'on Ftt A N E S - LZ. ^ 2. r
- 4 N/scricac Taras - TS 3 > 3 s o.zl O
0,xse m w a se - rt a .m S '4 e 4 4 i O --.-,,*n-,,, ,--,--,,+,-.,.e-- w. -,we,-,ve-e,--.- ,,n,-,--. .--n-,- ---..,,n,,-- -,-w,,,- .~ c,,,,.m,+, .r--r-- -, ~ - - - -
sit M 5 1 l RF.FERENCE: FILE REPORT PAGE III - 444 l. FULL SCALE SHOCK SPECTRUM (g PEAK) 100 l DMfPING 2% ( 1C 1 1 9 1 1 T 2 I 1ii< l .i f I i i.. i 1 ' i f t-
- 'O*
Y I 4 4,I g 6 4 4 1i, 1 4 6 i iib l e i 3 J4 1 6 4 5 8 I fi1h '"' I 3 i'WM. 11 a C ' 6. tu J' o w e O .1 ^ .'.= 4 I I 1 1 I I I I I 1 i I I i j. l l I l [ l I I I I ! I l I I I I i I ' l ' I T a ^ 2 x ,C i 4 i r + i +! i 4 , i i i i J I 6 e i 4* I' I ' Ii 3 , t i i+ '8 3 .'. n ?..' !'f8 i 6 4'i' il' I f 9 ' t
- i !
V !3*
- ie a
6 I J6 96 eie isi i .i. i , i ; 4 r i, to .O 9 I 3 T I g g C L 7 1 . i i e i i 1 G . 5 i - i-i 4 i.. a i. 4 i 6 c 6 U< 4 l I \\ P I 6 - 6 l '-a 2 . g,g m, 1 1 y i 4: ni > i i i. m , 1., . i < o i i !!! ?? i!! !! i' ' i e! 4 i!!i t ii If!Ii' i 1+i I '
- i.
- !t I!!i ti
.iii .'It
- i 7 t
,,,.pi., 4,.. .o i i i., . i ii .i. .. i i .in i i i i i i i. i.,i ii., .. i i n. 10 .f., T C W e r i g'
- e ;
( i ,i ? 'u i i t ( - e i. a 1 zga s ---+- Eag -h !: g = s I 8 g =3 <.= , lu 4 sa i m +! t' 1 g X 2 1 i i ~ I 1 l I I I t
- I I
i 1 Il f I i 1. t ! I i i t i 3 3 If 4 i 6i s t it I i .i l { ll I } I .I jI I e l ?4, III l o i, i n i, u, i n ,o i i n i 4i n i on + i u i, i n ii i 1 1 2 3 4 6 6 7 8 9 to 2 3 4 6 6 7 8 9 to 2 3 4 6 6 7 &9 1 10 100 100 j \\ Frequancy (Hz). Fi. 3-5 S Vertical Side. Shutdown Earthquake Front-to-back/ vertical
._=. _ -. - - _ - SH "b
REFERENCE:
WYLE REPORT PAGE III - 439 1 i FULL SCALE SHOCK SPECTRUM (g PEAK) 100 DAMPING 27. ( A
- 1..,A 9
1 m I 1 LEREE b T T J f I 1. j .1 i !I if 1 l m' NMB "iEb " a-t 1 F EJ ELA.: LI R E M. z I& i i I l 8 l I & 4 l} i 4 5 I I EJ L I. * ' 3 j 1 L y: l l e 4 I I I l. I: I I I ] f e i f 1 n, I Q I I i e I I I a I l. I a . [ !: i! l 1.l_ y i 3 2 i ,.o i. 4, ,u ~ O .w m, l Sr ,o =# a-u, y< 4 I h I I - 1 I ) = --^^ s noy t a 1 J
- ~
1-- l r g i g ./.I i .1 3 I' 1. t 1 ti+f .i) iiiI 6 it i 3 i t i<i L i, gg Iii il i'! I i i li!! li3' I i i titi Ii!i TviL i6i! ijti m.' i ,et i i.,: e i i 4, g d,, g.i. u m ..m m. ......m m M. l n L 1,, - t ,o ,g.j .g i i i 1 i-i i i i i i i i 1 nt, f4 g :3 <$.m 4 s. i r i i t i i 1 1 X 3 I I II I I 1 I I I rI f I fIf ff i II- ,t = l? f I t!! .t-t i 4i<l i t ,m i i , i. u,- , n,,, ". i .n, i um i. i u 1 r..ig 16b
- ' '1U Frequency (Hz)
Fig. 8-6 Horizontal Side Shutdown Earthquake Front-to-back/ vertical
a ~~ I. J. P. 6-6-91 S E ET ?' l (") J'oB S81 (" DESIGW OF M AIN ST F.lN G E RS-TOTA L in T. OF TiiREE NcJ (N An-l 690 CELL = 37 3 3 E = 996 T l!E.P E ARE Tit V EE 57 Fi tMEP3 To S1 P PO RT 71 Ii s Lo A D. r ' ' ' ' ic LOAD F 0 F, ON G ST PI N G C P = 996l3 = 33 2.
- lsctr v T
= 115 3 *iri f). D. L. ON o}lE STPit16 EP 230 _ gg3 4 + t 9 4 93 CASE 2 VIT. oF cTPINGER + v17 of c ELL as = (15 3 #lF7 PA = R B = tI63x-473 = 168 9
- li
[w e IIG 3
- ~II 14 A - 116 = - l l $. 3y.16 = - 6 6 7
^ n L = - 30 # - lit. s M0HElli G CEH Tc.R = \\ b t.9 93 4 5 - \\\\g.51 Ld5 4"
- 25 N
i I L A B = 66. ES #-FT = 79 5 4 M-lH-p) STRI NGCRS ARE U NI STRO 7 PlooO - l.63y t 6 3 x 17_ eA. t \\v d5 0 55'- I . I'c 6 If e. 219 6: 5 79 = f S,.. po S sg =. 094 Ys.bs5 y,' ' ' ~ ~ 4 .. It x. = 79N-=39IS PSI 4.c4;< 330 00 = 21 lW Psr
- 20.2 CASE E
W T. OF ST P-I N G ER. -t-W7 o f C CL L +- S S E. (f FoltT to E AC I-3 -N' to = l 181\\S 1 + liS. 3 = 31 ). 3
- I' M 6 "- 1116 5
- ir ox 3 ) l 3 -.216 4 - \\ N. 115 3 McMT G cEitT ER -=. 19 5. -+ y }lh 3
- - -e l4 7 6 d - W-i t a* 3
-Ibx.
- 10511 P SI 4.
o.9x33Ooo * -Unoo psi f. O. k.. o
- . Plooo as mn\\N s r e In 6 E.R.
Is o k. I C.s l 6 H of SIDE STRINGERS : CNC E F'D D Lono; + s sE (FFottT To Soc k) +2. Le =. 4 3 7 l l $. 3 x 3 g = ? ?7. S
- l F7
/ 510 6 T H l ; G LA > ( i-i t.._ i' W - I.6 b/i..s ; /.. -A. 5, t -@ 3 li n
o ~I. J. P. S-t o - 8 2 snEET*cc O ( MotiT t1x (.twy =. 715 4 7 39 7 if .7 7 44 3 *- I'V. l15 3 A%Ifm Lo8D = so # (REF.cor'P. cvTror i,Ct 86"Jo LooD 7) g l^ ---/ {b x. * '3 =l35l8 PSI 1 zo 6 j ?] =.4 6 4 k=\\@4lyg=17 kst Y = F. FOR SsE = 0 9x33X 17 -. 4 3. 76 KSI 4178 .j a. = 30/s35 s s'4 psr cifECk A 15 c FORMOLA l 6-l o. 5'4 1351ff =. c o.2 3 4o.46 =o.+s7 < l. 0
- . o. k..
43440, -11 700 l Cs l. Plooo &s A side sT Ri t'l & C.R is o k. s DES icrN OF EMD STglNGERS. Torn t t,a T of ' cc,LLs = 3x 3 3 7.= 9 9 6 c8s e 2E. DEAD loads + S S E (SIDE M 51DE.) +x. A i s. c 7,, ^I. MT t 38 916.= l 37 3 #I'N' g2 gpg 3 i g,, 1662 TilCBE ARE Tu]o STPlHGER.5 To FCAIST Tliis LonO 4119-LO60 vs PCA S rRINGCA: l~p ::. n.q R 7 6 Y.14 )I 16 6 2,,:. 4 319,54, #-i A/- t 10 WT = E o( &lD SrF) blG c.rzs eRE P 10 oo o insTF0's. i .~., ho g. = 4 3 '7 3 5 5 I t '7 2 2 PSI. 4 9x33000 = 41100 20 3 f, o, g, ctlC.C k VlBF ATIOFI. .4 5 na 7t/if y_MS i I'1'l ? /_ CF ..s. s co r t opor g 17s ovul v;T f f .n6 = ; RY15 -=G57 C1C.:v'.jac
i 3 i I. J. P. 5-10 'z?- ~ S"CE" 9 .DE S IGhl OF VER.TlCAL TUBE.5 : THE UPR)GH T TOBES APE 171x.15 TO SCS. p y 4 l If = Iy = 3. l6 Irl APCh=d.E9 ni L= C/=#1 I)(d P x) co; CASE 1E DEAD tilt + 5 s E. ( SIDE rb SIDG)+X J s P= 8E8 cTiota FROM DID sT Rir lG ER. ( W. 92.x 16 4 Z/t = 57 2. '7 MoHT = 5 7 7 7( E + 1T)
- 131 17. *-IN -
1317 4 Irb x, - c. 62.72. PSI 9y36000 = 3G 00 FC .,O.k. .71 CflE Ck Vl BRRTio tJ *. ,. 9.. 'DCAD Wr OF TU EE. = d. 21 "I f I-l l (O s a us L
- E.Ely I. 75 y 12.
-5 5 4 i =. 5 07 yl o (d c y gg7 Sy*>'l/ldx3 16 i 3*89 { = JE' = F46 CYCL 65l: CC CilECK THE SOLTS V4 HIC H coH NCC.T c m E. C 's t' S CCS To Et (D c 3 t GERS : REA CTlotJ AT EAC}f CttD OF ErID STRulGER li.E ~ s s E. THE9E APE Tujo BOLTS AT E.Acli EtID LOAD PCR E O LT = T73
- FROM VtilsTRUr cM A loc 2 No. 9 PA6E If EACH BOLT HAS RCSISTANCE To S LI P' =- 15 0 0 *
- 1. 0 k.
POLL 00T ST SCblC#i f =. 2.oc o "
- o. g.
't .<O
I. J. P. Ei 2'2. SirCET # lo f JOS 28) h) DESICsist oF ANGLE FFAME: 'DE41Cs t'l oF If9R12.. MElfBER. BACK) cAC 6 2I-SCAD Loops + s S E (F8DfJT To L 2p2p2hy!g. M = l.li & -. 214 t = +9i j A t t 't a s c 20901 'f An p / 6 fit.7, s , s._f.I% g = m.i p.: gobl ,4 5 j 13 25 fs t SlHPLE 50 PP. HOKT AT 4 N Fl2cri A & S N otigrn o F co M T.T Y 90 8-l y.2 5 =- 2. ;?_10 * ~ - FCF.c.br*f.ourfGT = (4 Crit!.
- 55 Lo tD* I
,', DCil6tl tt)MT A7.2 h' l'l20tf h = l 617 2 - 27 7 0 0 = ' 3 9 2 * ~ ' "' N.:2""~'" '/ \\ N collPOTEft ON6 Lysis yths PD2Fo8MGD APPLPrJCr 'V' lilE PhCk wT + 8677. wr. If 0El2.. corfo nGN7 A'T TH6 T0f. 807 FACk oT I s th llF O F r' L'/ siHP L f_. svrr t40 to T. LL'f f E9r60 ~lf 90(rIi Tile IICl&fi T oF PAC'<. 6AJtl5fl elG f08. Tifl 5 EFFC<T Fler i, #12.. LotD A7 7D6 TO P - 3x33 U.?_3 I\\45 4 hs cor4 PAR 4 D To AP plt CD L'>Ah =l54717" l
- . PEDucIlc)N FPCTO P '
U AT A = o.1+ 15 47 19 '. FIE T DCSI& FI H 0ti CN 7 7471390-2. -=. I O.29 J.1; # - if>- [b% *
- 2 5 l-2 I P51 h/I6 L LOAD : fr + + #
. '. la - f. t109 PSI fi1:: l345._.269 Fc. .w. is p1 = 5 6 F4 7 4 91 ' 9 O.' 4 :. 7 5 f'T f._ p. [ a r. S S E =
1 ~ ~ ' I. J. P. f 12 22.
- e... c e r ai; 20$ 17)
(Q. CllCLK hIS C (07lf)Lb t 6-l c. .pblJL 4 101 = o. 80 +.025 = o.s.zs 4 t.o
- o. k.
.g / 2 6000 275M ICCIG1I oF s)C;PT i CD L (GH B C.R. '. M D7 f(OHT - 139l9 4-W- (coHP 007P07 H O-t a.t Lo &D
- 2. )
S 67thL Lo AD =.1 o li *
- ~'#'
N 67 DESIGN Not4CtJT s 7613912 = 10799 i I" ' N'1 21h ' 'z ' '4 l %1697 PSE (u = PSI 14'r 7 74\\40 + 47530 = 0. s o + o. 0 6 2. =- 0. cs 6.e. \\. o .. a.g. 1/36000 O t t I l
C' F.'W "5 G-62 +H FFT 'a \\7 TOS SS4 DFS I C.M or S R A c.itJC,1 M Ay IcAD : 7 IE50* T l 'a" x h *'
- t A.y r4L Mymarg 1
i l i'a l t g de l't. /.i '" l 1 ! g-Y A = o. sos ~' c.ccc i ? r, r
- o. ice iu'
- ? C.CCGO.
3 i., : C.c ast w %,e c.14 ew f, e c.4Et G, : C. tce t*7. 44 l ql - /o.t o s < so s. n 4 200 = ce -> 5t 7.E5 "' t-nc M At * < 'r Art 5
- .Va k:
/o.sG3-2,76'S' 4 F,., J. c4 (c c M PP.E 01 ' e+.) (V'
- W)
N FT-ArRFA : 0563-c.G25 a h: C. bZ9 ew
- C.ovF WS 2
6 l O, E '5 w c,5G3 e o.477 eu 9 i /Q,2Q C) .-4, M i Fu # C. 6 ( 66) ? 29 o 6 C2G) e
- 2. 2. "'
$4 04 1 J
I.J.F. S 6 7. Sit d 13 ( ) 705 ( i FO Ubl DATlo t ! LOA DING r A r. E. : ntt toAps Agt, ni ug;. O (g 'X .A ,( s 6 _.v _. e N/ E LO CATIO N A-t'A.2. LOA DI N G. B-l, s-2 ( W T. oF RACK + c. ELLS ME RTI CA L 4 662. + S S E(FRONT To enCYj g } IoS 7 soai c. V ERT.) j y j lpo l VERTICAL l 3o 29 wT. OF PACK + CE.LL.s +5 s E (side. To SIDE./ xl sis >gg,7, l veaT.3 2 ! all i NE.T UPLIFT. 5 5 E (FPou r to 39go A Ar k IstEr27.') NE.T U PLI FT. 5S E(side. To ssDE) ' 2 3 56 VERT.) ,7 \\.) v
b t79.9 s-e- 3c ewsgr y
- o e, s E>i F G i<.r.t c r /s.'4.~t4 cT. ;S ci._.; t ~
( MFT U P:. FT - ~3989* 14 C E ! Z. $HFAR, X7 C.lEl* 1.141 7 /o.ist* 4 i.t4 7 8
- 1. i s 7
- PFS utTAv T
? WrATR AxlCMcR M LTS ARE '2" d A ~-C 1 C1 CL"Fd. A7 C. I '2G *
- s. e *.c g= c;8[>oc-os=e.o*
Tv - ' ' 'Pe. iec, s - z.nsuo.,,- eas~ .a S E f S F""f f C, 7 N, Y d9 Y M' d7 W/O C ?-4 F# '4 (~ /o s u. ic ) F, e % - t.S (.s5) i c. #1 tw/ : s r,o.') = Wf ? G ' " f"7'C Y = >'- O. *9 T' &C : 'L t &l C
- i :~ '.k) q o.L4
( C e rm2iaf y bq < F Q <-
- ~^ C 7.)
4 ,o s s
' I. J. P. 5 3 2 S+ FEET =IT O aos sei ( ARlTHMATlC FoR. COM POTE R LOADIN GS ' S' NAMIC AN A LYSIS. ViT. oF Tile B ATTERIE S H65 BECN TAKCtJ IN To Acco0NT SY INC R.EASIN& THE DEtis1TY OF lif E (0FRC.sf a11r MEM B ERS. STRESS ANALYSIS-MAIN STRIN& ER. REA CT lo rd ON AW6LE FRAME DO E To tloRW L (, WT. O F STRitJ6 E:R+ WT. OF c E LLS ) Lo A DIN 6 5 = l69 9
- FEF Sit
- TOTA L tid oF STglNG.ER.
REACTIONS ON A.4GLE FR A M E. = -ex5 = 6 VIT-oF Rack = R65 # RACK VIT 15 T A l<.EN ttu o Accc 01lT M lticFEAcING Tile STR)NGER. REACTloN S. .,, A DDITIONA L LOAD AT REACTloN 9019T5 = R654 = 44 20
- f,!(AlH ST RI NG ER 9.E ACTiobi ON ANGLE FRAM E DOE To FACE WT +
BATT. UJ T. P= 16%.9 & 44 2 = 413. I O " + s 1. Mis c = -a-14. 23
- LOAD - 1 Rack V1T. + BAT T. vtT. + 5 5 E FRotIT To BAcKlvCc.T. C-Yi.)
c P = -:-74. 7 3 x 2 7 = 6 c5. + 1
- O
><oPiz. Foace z. At EAcn ANe t e raam E = *4++ zsxa s = >s i.zc \\ Lo6D-2 Rack WT. + BATT. VIT. + s s E. FRONT TO BACklVCAT C+Y,+ Z.) F= 24,4 3 - i.7 7 444 4 3 = - 15 6 9 6
- Il0P i t. FORCE 2 AT EACH ANGLE PRAME = 154 7 20 LOAD-3 Rack VIT. + SATT. utT. + s S E side To SIDE lVe.PT. (;rX -T) i P = a-2 4. x 5 y R.1
- G o S. 4 2.
- HO Rl 2..
FORCE X AT-EACH END dotNT = 1547 2o # LO AD .4 R A C)< WT. + BAT T. VI T. + 5 S E stDE To s)DE Vf PT C+X,+Y) P = 444 43 - I.W444 43 = -(56 9 6
- Ho gl 2.. FORCE X AT EACH EN D J OI NT
- I S A~l. 20 l
n l O s 1
Lo/ID-I R6ck WT. + SATT VIT + s S E FRoHT To B A C K Iv CF.T. (.-T, +7-) ~ Sh9 f 3"7. o 37.O .g y N 22 8,,7 2g _,g,,7 c, m c N \\' x s I a s., .) QOS**4S N G QoS +2 a ~ m y& Jo[* AL .n 6 L }J ~ )9s e a g_G.05 4 L i gor 42. i A QoS 47 g g-a* a i t i I. l O o n s a j t I ( M tp O e, k b (A LA b u o a s
i l LOAD - 2 R Ack Wr
- BAT T. \\tlT. + 6 S E FRoHT To BACk lves.T. (+Q z.)
~ SIPl, 37.O 37 o y p s N 22 e,.,, 7 22 .,2m t m \\ x-a s , y., W 156 96 V -l'-@ -+ X N d5[96 156 96 h N M 5. '[ y .i Jl e 5 3 !56 96 I56 9( m ml56 94 4 v -o ^ 3 l 1 l l I l i D .O g O O i p l 6) o N W D J c o o o
l LOA D-3 R A ck viT + B A T T. W T. +~ 5 s E s tDE To SIDE.IvCRT C+X, 'l) ' ' ~5W' 15 15 7. O 37,o m m, r p N 22 ., 2 m,,, 7 22 8 ,s, 7 m m.- J$ q a s y.g -9k d05 41 N go5 42 ~ -J y- "cas.+ z.
- t-b
,, <Me y f ~ . t, il i V 4N G t O ~ ( l 0 Jos. + t y \\ ,_f_as42 ,_f.or.42 1 I .I 2 i l O l 4 l VJ l 1 i I i 4 0 O O I s l jg l m m e s
LO/\\ D - 4 Rack WT. + BATT V I T. 4 5 S E s)pE TO S IDE.h t gT. Gx, t'O ~ '5n *T) s r. o s 7. o I ? r N 22 .,$,,, 7 ~2 7-8,,. ~7 y c. m j i AJ 1 sm _^ j 4 a o, y.g --> l5N. 94 N# tr.. ~ N l 9 Y-4 4 156 96. U. N
- t@
- > \\56 9G 4.).
y ~^ I.a vi o G+ V9 .3 (~, (a O 3 ~ 156 94 g t --> l 5 6 94 ' 4b --> t S 6 96 3 I I I I o k ame tn I vb 2 h Q d\\ s l y) o ~ Q i J O O u o s
Sn n.2o I. J. P. 5-3-se JOB SSI a, i. o
- S~!. O
.c s \\ N 22 .,2->7 22 s i w a a =. =J 4, g ( ^ = m X e O. 'W s Q. l s,. n e - w e w : G N / q C.,'%y .u No \\ %n, v. rm J = n
- a. m t.
e O 4 v y a .r R. o.os g.e. G 3,. T s
- w 4
w y a t)
- .' G k G) g
}.j, yp 9@ g . ra e ( e s 4 h 8 \\ z A S b .'O ~.
- +
n (S ; (T; . w ys g c,,.., i
- a ty
,e..n cv. < x .e r: u a @,%' d Ff \\ 4' 3 C.4 o s,.. m u a. i., w s i a 'n <o.p f'p a a w 4.y a e,o ,J. 14 A. I a F tf' DG 3 n n b. + x i, 4 s + 2 e c n o a x I t x i-n'. .m .to -s O Oj s J In c i g N D
- J M
] $h YI N g.: + T 07443~l C ' REF. 400 '- D _ Ru)Cr 8:
C. C O. 5-\\1-S7 se.w %\\ w =. t O C..O..c..LL.?.]N *. d oS 861 k A t w nv.c Aw a tyst s wa '. de us := t 7 = ;- e,u c A-; - W H o cF.. C e H S : O S R.i NG, T w/ o L o,4 01 N Dr C4 SE s AN O T N E I (C. 8 E C G LTi14 O, Wlt f4 i NId.VI MATUCd L IEEOUENCIES 45 Ec u. 0005 :
- 1. C or,I G N A v Y E,c TJ c A L ANO F4cNT To 3htf; k C5 CTi o.4 5
% s. n c ie t n s Pie,c sa e o tw. 2.. conm sw o W,zTiC g c A go S wa To f i o e. Omsc.7 n s F.li N. ? E c '/ c c.2 S FE4 SEccH S, 79' ' TEST E A ClC k 5 d 'v l N O, .k5 dE L ds ' ' 'E 'b./. 5. ? / J c! ~ / S T,u No, s.t. WE 4 u m NC I E.S W E,UE. PETS & M'N 5 O l'h / T 'IE. .r r ': r r~. a r> C. c orn r> u ra rc 7eo erre A M. 'rri e H.aTa z.u nc. s v 07 H 5 L cow)I OH EHT 7AZT S VJ A % tO.Ni t'd T ut.2 U S I (+ G h ? CF ..., 7 : c. k N A ty' St S o F-96 F t.,E c7/O'H. o ' d ( A STs.ES S AH Acy st s c? THE Tas T 't,+ c t WA s 7s,c Fe r v v.; M L i No, 7 t4 E M A 'si t.Id >/( V A c i> is. OF Cr lt o 8 0 A c c E.' i.c-r, 0. F ra o t ; T45 % E s F e c T'l 1/ 5. FuLt Sea cia. s s o c,c 5 Pec.r:<.c M d d ?. ' 15 $ Fo(C. T d ~ l o! 't e i ai i J/ $ s 7 (J f i. %,..' ).~ C',f O ? C '.' CY9.R5 '-C S e c a,,J. STe.e s s E s vl e tc e r- .5.9 is y Di, N 2 T H E C7 T STE d p L d-, ? ? N E C.$ A 4 A L / ' : L F o c. J ',, ',.c. c.:. A rio '7.fo-O k(~ c 5 t5 C:l Ti ON t c A S ~, F c~. F., t 3 a T55 TN/o Lc4 0,6 a C r 55, 'T H E. b/l A.<, STit.f: CI E x P c-r0 ? i. c E ' f I',, 7' A ! / TE S T TC A c t Trien%%t is LEs s TW4N THE Yis to S T fLE S S V4 L V E Fo>t A SA FE S HUT oowed EMIETHOU Alc.E, "THEREF0 TH-E TES T T19-cK IS c A ('A 6'Gr=. o F-5'A F E L. ve. A H S FEJ u M CT T +4 5 dr co u M O Aces.LE R.A T i o M F r_ a G u e s c i g To TH E. E ATreit< E s tW.I fQ ? Q ~:C lC E 0__Y$}_ jh$f.. .t g i OE$(k'Rk.W' h,$ l / CnqvnJ.9, nit.3 M.S r< A t N C. P.u W c c, P f=. Pg o ', ECT ST C. : u t: v, Y ~ i.,..:. 4 P r :. :,M 7 l R u F - C'. v 3M 6( i!, E E..( A f 5 3 c. R. M, C. T/.v,,,-.. ?!E. k 4 ~ x. E~ : :. : ~. E s 'r r: :- c.:. i ..:, bg e n t. l l l l
.m. e. SECTION #6 RACK DRAWINGS AND CALCULATIONS O t .p
2-k# h I-NE. 9 N f !4M o! b a O u # f f5 6 -k h 2 Qs2 3asa r N igg rq #f s n ,l 7,'.. g vg l =_ i 1 9 ] 1 l! x; Si nS S 6 F p 6 a 1 m, l o 2 l \\N h ! E [ ( f $ ~"s ~! h ~ ,5 T-h N ! ! ! ! II s
- M h!
~@ Y-n. ' _.'
- = iI
- m W4=l Hat e Q
g ---{ 5 ++H -4 s W91-M&H H+M=P*fel kb>>l&M k#.km Q. I f 'g. k 3 I i e i A - :y s yg a I i . ~ s w a }d j E W T a ,z ,v-..
- e
~, .e L -- s ---I-l, 2 Ws__..=ma ajy b E { Lru-Q vg c. xx_ _ --x em IX-- g-gd eee -y caw-e+-1 I c-e / -, y --y + gg -m-g e o e g +. saw aff g 5 g ' * - i ' 'i,, b E. l >$ f=f= m a m m d--- 5,'s ir.5!" m d u JJt j--- 3= g ?@- .;;;i
- v. s.'
t;o n w se w c-.. I2 g e wi I 39o f
- g = o u N
'e a., ~ a r srTi1 $ E$ 1 \\ l dk Ni
- p. j5~'
!!3 T-2-11 'h ala "M cvc'De e i Sg \\ se f y ii e a ). gao 1 i i 9 .s . _. _ _..,?]
- 7. a- ---fj y
o93 dhs e e 4 l,a e =4 5 i S <,,'. 3 :db .'c 2 - H Sh5 4 8 _-bJ = V l j 7h- [ 3,i E: ,5 e o Q ? 2' 6 l q,, i r3
- 5 8g 5g 7
f: I L ca PN ns ca fj =* - !. ! es d!. l i m Do M. h g4 h, } d s'-* !!/ S* = ,n y- ., t, ~ g; e, > &' g s j
- t- < *rm 6
y g p<a: g' N ~ w 'N-IC 2 rj ,) 4-r { k y.e a 23 c2 g g 11 8 n2 a
- 'd j
E ~
- M f), r E*
o 9e if " l 5 <3 l 3 g gv ca , j: :_b isi{!5!! Qi !? @f* ~I N 6 E5 5 E d i ~ ji ~ e o g:f!!!:! qui e sr et i
- vg--l1 l/
jsWd 9 3: ,i s .: e ! gag %a 8* h,,; , g-w gY 3 -6 e 29 L," :: 8% i =? E !! l 3 i .Of!T!$ E 6s 5% i -i "ini 92 93rs g!d5 vf Egg 35 O a
- I: :
p ISP-ib lj aii -1 a . - :':? I1:5
- I
$$dE5-3 d eu8 6 5 .e e 2 c. b "ii!!:::::::: 5a gsMo yi M.:::!-5.:: : =5gn g:; [q{". 4, 4 t i c sr es a 6 n &. = u ~y 5o .t o5,,i .;; 5:.s u e.;; 2:: :: s- ... !..! : E i. ' j !. 1HH i.,i q e a i.. : : s
'\\ 'g' SEISMIC CALCULATIONS SARGENT & LUNDY, CHICAGO MARBLE HILL NUCLEAR GENERATING STATION UNIT 1 & 2 CONTENTS Section Title Page I. ABSTRACT 1 II. DATA AND ASSUMPTIONS 2 1. Rack Components 2 2. Seismic Acceleration 3 3. Natural Frequency 3 4. Codes and Allowable Stresses 4 1 III. DEFLECTION ANALYSIS 5 1. Principal Directions 5 2. Vertical Deflection 6 3. Transverse Hori:ontal Deflection 9 4. Longitudinal Horizontal Deflection 11 5. Summary of Deflections & Frequencies 12 IV. STRESS ANALYSIS 13 1. General 13 2. Main Stringer 13 3. Angle Frame 14 4. Side Stringer 15 5. Intermediate Upright 15 6. End Stringer 16 7. Corner Upright 16 8. Brace 17 9. Connections 17 10. Table of Stresses 19 V. CONCLUSIONS 20 Drawing No. 064745-C & 064745-D ( ~ p-
() [ SECTION I. ABSTRACT In these calculations the natural frequencies of the rack are computed in all .1 principal directions, i.e., vertical transverse-horizontal and longitudinal-horizontal. Then the stresses in all members and connections of the rack structure are determined. The calculations are based on a static analysis of deflections of the component parts of the rack. The deflection of the individual components are then added arithmetically to find the deflection of the assembly in either horizontal and vertical direction. One section of the rack is used, as the other sections are 4 geometric repetitions. The sum of deflections of the individual components is always greater than the whole deflection of the entire structure. This is thus a conservative approach and hence the frequency calculated by this method results in a value on the safer side and adds to the safety of the rack design. Based on the deflection calculations, an equivalent system with single degree of freedom is defined and the natural frequency is computed. The frequency in all principal directions, vertical, transverse-horizontal and longitudinal-horizontal, is above 33 cycles per second. i {h The acceleration factors for seismic design are based on the Response Spectra s> given in Sargent and Lundy Specification Y-2819 fot Marble Hill Nuclear Generating Station Unit 1 & 2. 'i 1,
SECTION II. DATA AND ASSUMPTIONS 1. Rack Components The complete equipment consists of two (2) identical racks each containing 29 cells. Within each rack the cells are installed in two parallel steps, each step containing 15 cells and 14 cells respectively. The battery arrangement is shown in Gould Drawing 064745-D titled: Layout for 58 cell NCX-1200 Battery on 2-S07-074520-846 Rack (Heavy Seismic Res.) The approximate weights are listed on the Drawing as follows: NCX-1200 Cell 261# (1)-Rack S07-074520-846 1,015# 58 Cells NCX-1200 Battery & 2 Racks 17,275# The weight of the 58 cells itself is 58 X 261 = 15,138# equal to 87 percent of the total assembled rack and cell weight. Each step of each rack consists of 4 repetitive units 26 inches long aligned in a row with out to out length of 10 ft. The structural components of a unit are: - Stringers: Made of Unistrut Section P-1000 roll formed of #12 gauge strip steel. In addition to the support stringers on which the cells are mounted, there are side-and end-stringers. - Support Frames: Angles 2 1/2" X 2 1/2" X 3/8" welded with mitred joints, to form a four-sided rectangular frame. - Uprights: Structural tubing TS 3 X 3 X 0.25 - Bracing: Flat Bar 1-1/2" X 3/8" The properties of these sections are tabulated below: l PROPERTIES OF SECTIONS l X -.X AXIS Y-Y AXIS Designation Weight Area 1 S r I S r And Size Lbs/Ft in2 4 in in3 in in in3 in 4 Unistrut P-1000 1.625 X 1.625 X 0.105 1.90 .555 .186 .203 .579 .239 .294 .655 l Angle 5.90 1.73 .984 .566 .753 Same as X - X axis l 31/2 X 21/2 X 3/8" Structural Tube 3 X 3 X 0.25 8.80 2.59 3.16 2.10 1.10 Same as X-X axis Flat Bar 1.5 X 0.375 1.91 0.56 0.29 0.39 0.43 0.007 0.035l 0.101 .= 2. Seismic Acceleration The rack is designed for Safe Shutdown Earthquake S.S.E. and Operating Basis Earthquake 0.B.E. S.S.E. is the earthquake which produces the vibratory ground motion for which the battery must be able to perform its safety function. l This earthquake is expected to be the largest which could rationally occur at the site during the life of the plant. 0.B.E. is the earthquake which produces the vibratory ground motion for which the battery must be able to perform its intended function. 1 TABLE CF ACCELERATION FACTORS i 4 Horizontal Component Vertical N-S E-W 0.B.E. 1.35 1.75 3.20 l
Reference:
Specificacian l Y-2819 Sheet No. 37 38 28 i
- S.S.E.
1.90 2.40 4.50 N
Reference:
Specification j l (j ( 'Y-2819 Sheet No. 39 40 29 ( In the design the maximum accelerations are used: 0.B.E. Horizontal 1.75 Vertical 3.20 S.S.E. Horizontal 2.40 Vertical 4.50 3. -Natural Frequency i Based on the deflection calculations, an equivalent system with single degree of freedom is substituted in accordance with the method presented by M.I.T. Professor John M. Biggs in his book " Structural Dynamics" Chapter 5, pages 206 to 211. In this method transformation factors are used which convert the structural elements into the equivalent single degree system. O NS/yMf , where 6) (Omega) is the frequency in radians per second g gravity acceleration = 386 lbs/sec2 = Sum of deflections y = Mf Mass Transformation Factor from the Tables on Pages 209 and 210 of = Biggs " Structural Dynamics" ' (3 \\J \\
3. Natural Frequency (cont'd.) (- The value Mg depends on the loading and support conditions. For uniform loading in the elastic strain range. Mt 0.50 for simply supported beams, = 0.41 for fixed end beams Mg = The value (.O is then divided by 2 Pi = 6.28 to obtain the natural frequency "f" in cycles per second (cps). The natural frequencies of the rack are computed in vertical, transverse-horizontal and longitudinal-horizontal directions and in all cases this frequency is above 33 cps. 4. Codes & Allowable Stresses The structural steel conforms to ASTM A-36. The allowable stresses for 0.B.E. conditions are based on the ASCI Specification for rolled shapes and the Unistrut data for the cold formed members. For S.S.E. conditions, a stress increase of 33% is permitted. The allowable stresses for bending (F ) tension (F ) and shear (Fv) are b t listed in table below in kips per square inch. Allowable Stresses F.SI OBE SSE Steel Member Fb Ft Fv Fb F F t y Cold Formed Unistrut 25.0 22.0 15.0 33.0 30.0 20.00 Rolled Shapes 24.0 22.0 15.0 32.0 30.0 20.00 Bolts A-307 20.00 15.00 25.6 l 20.00 The design fabrication and installation of the rack conforms to the following codes and standards: -IEEE Standard 484-1975-Recommended Practice for Installation and Design of Large Lead Storage Batteries for Generating Stations and Substations -IEEE 344-1975-Recommended Practices for Seismic Qualification of Class IE Equipment and Nuclear Power Generating Stations -ANSI Cl-1978 National Electrical Code Article No. 480 -AISC.-Specification for the Design, Fabrication and Erection of Structural Steel -AISI-American Iron and Steel Institute--Specification for the Design of Cold-Formed Steel Structural Members OG \\ _4_
SECTION III. DEFLECTION ANALYSIS 1. Principal Directions The deflections in three directions are analyzed. The vertical deflection is the sum of the deflections of the main stringers and the top angle of the support frame. TWO EUD STErdqEes y i THEEE MAlu SEld6EES UPEl4HT / Y/ ///A ~ c _a \\ / SEACLl4 'A1 SUPP02.T [/ Au4LE FEAME i_, ST2UCTURAL MEMBE2S OF EAcV. UdlT The displacement in transverse horizontal direction is the sum of the deflections of the cide stringers and the upright. The displacement in longitudinal horizontal direction is the sum of the deflections I of the end stringers, the upright and the bracing. l The weight of the unit consists of the weight of the cells and the weight of l the supporting framing, accessories and hardware. There are 58 cells in two l racks each consisting of 8 units. Thus the number of cells per unit is: n = 58/2 X 8 = 3.625. The weight of cells per unit is 3.625 X 261 = 946.13 lbs. The weight of the framing and accessories is 1015 lbs. per 8-unit rack, thus l 1015/8 = 126.87 lbs. Total weight of rack unit is 126.87 + 946.13 = 1073 lbs. p 2. Vertical Deflection 2a. Main Stringer The cells are placed on stringers spanning 26" between angle frames. There are 3 lines of stringers in each 4-span row. Thus each stringer is a con-tinuous four-equal span beam uniformly loaded with the weight of cells. There are 15 cells in one row Weight 15 X 261 = 3,9150 Own weight of 3 stringers 10 ft. long, 3 X 10 X 1.9 - 57# Total 3,972v There are 4 units in a row Load each unit 3,972/4 = 993# Uniform load w = 993/26 - 38.19 lbs. in. Use uniform load 38 lbs/in The deflection of a continuous beam is the result of a downward deflection y, as fer a simply supported beam and upward deflections y2 and y3 from the support ( ) moments. The support moments are computed on next p/ page by the Moment Distribution Method. First interior support M = 2,651 in-lbs Center interior support M = 1,886 in-lbs The upward deflection is .t y= 3M12 where 1 = 26" E = 29 X 106 g 5 p,1 4 E 48EI I = 3 X 0.186 = 0.558 in y Call 1 /EI = k 1 b 2 2 6 y 26 /(29 X 106 X 0.558) = 676/(16.18 X 10 ). k= 41.78 X 10-6 15/3 x l 5/gv o.t5 " y = 3Mk/48 = Mk/16 = M X 41.78 X 10-6/16 = 2.61M X 10-6 The deflection of a simply supported beam is 4 y1 = (5/384) X v1 /EI 2 X k = 38 X 676 X 41.78 X 10-6/76.8 = 13,973 X 10-6 y1 = (1/76.8) X 38 X 26 p-r C MAIN STRINGER - MOF[.NT DISTRIBUTION k Uniform load on 3 stringers v = 38 lbs/in 4-span continuous beam, each span 1 = 26" 2 Fixed End Moment: F.E.M. = v12/12 = 38 X 26 /12 = 2141 in-lbs Distribution Factor at intermediate support 0.5 at end support 1.0 2 2 Mo = v1 /8 = 38 X 26 /8 = 3211 in-lbs Free span moment Free shear V = w1/2 = 38 X 26/2 = 494 lbs Symmetry +--- Axis F.E.M. +2141 -2141 +2141 -2141 +2141 1st Distrib. -2141 0 0 0 0 Carry Over 0 -1020 0 0 0 2-nd Distrib. 0 +510 +510 0 0 Carry Over +255 0 0 +255 -255 3-d Distrib. -255 0 0 0 0 Final Moment 0 -2651 +2651 -1886 +1886 Free Span Mom +3211 +3211 s 1/2 (Mi+M) -1325 -2268 2 Net Span Mom +1836 +943 +943 Free Shear 494 494 494 494 494 (Mi - M )/1 -102 +102 +29 -29 -29 2 Final Shear 392 596 523 523 523 Reaction 392 1119 1046 Summary: wl = 988 lbs; v12 = 25,688 in-lbs Neg. Mom. First Int. Support M = 0.104 v12 -2651 in-lbs = Neg. Mom. Center Int. Support M = 0.073 v12 -1886 in-lbs = Posit. Hom. End-Span M = 0.073 v12 +1886 in-lbs = Posit. Mom. Inc. Span M = 0.037 w12 +943 in-lbs = End Reaction R = 0.395 v1 392 lbs = Reaction First Int. Support R = 1.137 wl 1119 lbs = Reaction Center Support R = 0.937 v1 1046 lbs = s 1 m 2a. Main Stringer Deflection (cont'd.) ( End Span M,=0 MR = 2651 in-lbs V, Downward Def. of t Simple Beam. Upward Deflection from M Upward Def. Due R to Support Moment. y3 = 26.10 M X 10-6 = 2651 X 2.61 X 10-6 = 6893 X 10-6 y -y3 = (13,973 - 6,893) X 10-6 = 7,080 X 10-6 y =y Interior Span - Upward Deflection y2 + 73 = 2.61 X 10-6 (2651 + 1886) = 4537 X 2.61 X 10-6 = 11,842 X 10-6 y = yl- (Y2 + Y3) = (13,973 - 11,842) X 10-6 = 2131 X 10-6 The End-Span deflection governs. Use for all spans of the main stringers y = 7080 X lg-6 (on the safer side). This is approximately half the deflection of a simply supported beam 7080 X 10-6/13,973 X 10-6 = 0.5. 18.7 5 2b. Angle Frame 'p p p ~ The top angle is welded to the .D 5' 5'_ Fy.125 d vertical members of the box frame and is e.rsated as a rigidly supported I b beam v a n 3 point loads, symmetrically \\ / placed. The maximum deflection occurs at the conter of span and is caused by the centor load and the two loads placed 5" on either side of the center. The load on the top angle is the reaction from the stringers. Due to continuity of j g the stringers, the maximum reaction is dlj0lLE5 272x2V2r3/"a~ R = 1.137 wl R = 1119 lbs (See Moment Distribution for Main Stringers). l P Pz P i 3 Add weight of angle 5.9 X 18.25/12 = 9.0,1bs Total load 1119 + 9 = 1128 P = 1128/3 = 376 Use 376 lbs. j v v v From "koark-Formulas for Stress and Strain" the deflection at point x from lead P1 - O' D located at distance a from support is: DV2 2 3 y = 1/6 [P a (1_x)2]/(EI1 )] X [(3b+a)(1-x)-3b1] l [J l {' Here P1 = 376 lbs. 1 = 18.25 in. x = 0.125 in. a = 4.125 in b =-14.125 E = 29 X 106 psi; I = 0.984 in' .g_ 1
~ h 2b. Angle Frame (cont'd.) l d k Substitute x = 1/2 The formula simplifies to: 2 y1 = 1/48 (P a )(a-3b)/EI l 2 y1 = 1/48 (376 X 4.125 )(4.125 - 3 X 14.125)/(29 X 106 X 0.984) 6 71 = (7.83 X 17.01) X (-38.25)/(28.54 X 10 ) = -178.7 X 10-6 Deflection at midspen from center load P2 3 3 Y2 = -1/192 (P 1 )/E1 = -1/192 (376 X 18.25 /(29 X 106 2 X 0.984) ? Y2 = -11,903.5/(28.54 X 10 ) = -417.1 X 10-6 6 3 is y3 = -yi = -178.7 X 10-6 Deflection for load P Total deflection y = y1 + y2 + 73 = -(178.7 + 417.1 + 178.7) X 10-6 y = -774.5 X 10-6 2c. Natural Frequency - Vertical Direction The sum of stringer deflection and angle deflection is: y = (7080 + 774.5) X 10-6 = 7854.5 X 10-6. Use 7855 X 10-6 / The circular frequency is: Ld =dg/(yM) where g = 386 y - 7,855 X 10-6 Mg is 0.41 f 386/(7,855 X 10-6 X 0.41) (d = \\ 119,855 = 346.2 radians /sec 3 = lJ /2 Pi = 346.2/6.28 = 55.12 > 33 0.K. .f = v The rack is rigid in vertical direction. '3. Transverse Horizontal Deflection 3a. Side Stringers 1 The load is same e.s on the 3 main stringers, w = 38 lbs/in. The two side stringers are 7, j continuous beams and the moment distribution l q is same as for the main stringers. The ' I -19* b 'D l maximum deflection occurs in the end span I e) of the continuous beam and is half of the deflection for a simply supported ber.m, (see !I item 2a. of this Section III). , 5 v l r.,g v.. .i. 3 0.5 X (5/384) X wl'/(EI) where w = 38 lbs/in, 1 = 26" y= 6 E = 29 X 10
- psi, I = 2 X 0.186 = 0.372 4
y= 0.5 X (5/384) X (38 X 26 )/(29 X 106 X 0.372) = 10,480 X 10-6 in l
r 1 I l 3b. Upright l P) P i The upright is treated as a cantilever o 'y N beam with two concentrated loads P at P st f distance 7" and 14" above the point l of support of the cantilever. The ~ E N 3 load R is the reaction from the side g stringer. Due to continuity, the / o o max. reaction is: UPRWT Tuee 3<3xog R = 1.137 wl, (See item 2a - Moment I. 3,g g4 Distribution). v = 38 lbs/in, 1 = 26" R = 1.137 X 38 X 26 = 1119 lbs. P = R/2 = 559.5 lbs. The deflection of a cantilever from point load at distance b from base of cantilever is y = Pb2 (31-b)/6EI where P = 559.5 lbs, 1 = 15.5"; 6 l E = 29 X 10, I = 3.16 in' The dimension b2 = 14" for upper load and bl = 7" f r lower load. y = 559.5 b2 (3 X 15.5-b)/(6 X 29 X 106 X 3.16) y=b2 (46.5-b) X 1.01 X 10-6 O For bi= 7" b2 = 49, 46.5 - 7 = 39.5, b2 (46.5-b) = 1935.5 For b2 = 14" b2 = 196, 46.5 - 14 = 32.5, b2 (46.5-b) = 6370.0 y = (1935.5 + 6370) X 1.01 X 10-6 = 8389 X 10-6 3c. Natural Frequency in Transverse Horizontal Direction The sum of side stringer and upright deflections, is: y = (10,480 + 8,389) X 10-6 = 18,869 X 10-6 in ld = 3 g/(y X M ) where O is the frequency in radians per see f g = 386, y = 18,869 X 10-6, Mf is Transformation Factor From Biggs Table Mf = 0.41 r O=$ 386/(18,869 X 10-6 X 0.41[= / 49,895 = 223.37 radians /sec i \\ f = Q /2Pi = 223.37/6.28 [ 35 cps > 33 i "The rack system is rigid in ransverse horiz. direction. l (N. !v),
4. Longitudinal Horizontal Direction 4a. End Stringers 43 18.25" g 3 + j The end stringer is treated as a simply n g \\ supported beam. Each unit of the rack l l carries 3.625 cells at 261 lbs. y Load: 3.625 X 261 = 946.13 Own weight of 2 stringers: 2 X 1.9 X 24.25/12 - 7.67 7 l Total 953.80 lbs. II II II per lin. inch w = 953.8/24.25 - 39.33 say 39.5 lbs/in 4 Deficction y = 5/384 X v1 /EI where 6 w = 39.5 lba/in; 1 = 24.25 in; E = 29 X 10 psi; I = 2 X 0.186 = 0.372 in' 4 y = 5/384 X (39.5 X 24.25 )/(29 X 106 X 0.372) = 1/76.8 X (471,027)/0.372 X 10 ) = 16,487 X 10-6 6 4b. Upright Upright is treated as a cantilever with P h i = projection above point of support 1 = 15.5" and with concentrated loads N P at distance bl = 7", b2
- l'"-
P The load P is the reaction from end 's f ~ S stringer 2P = 1/2 X (39.5 X 24.25) = 478.94 4 o o e P = 1/2 (478.94) = 239.47 Say 239.5 lbs bN) TuSE S v3 x o.25 V y = Pb2 (31-b)/(6 EI) where P = 239.5 lbs,
- 7. 3.b 104 N
bl = 7" b2 = 14" 1 = 15.5"
- psi, I = 3.16 in' E = 29 X 106 e
y = 239.5 X b2 (3 X 15.5-b)/(6 X 29 X 106 X 3.16) 2 y = 0.435 X b X (46.5-b) For bl= 7". b2= 49, 46.5 - 7 = 39.5 b2 (46.5-b) = 1935.5 For b2 = 14" b2 = 196, 46.5 - 14 = 32.5 b2 (46.5-b) = 6370.0 y = (6370 + 1935.5) X (0.435 X 10-6) = 3618 x 10-6 0 G 4c. Bracing 4 ~ The total weight of a rack unit is P = 1073 lbs (see item 1 of Section III.) g tan G = 18/26 = 0.692; O = 34.7* e e sin G = 0.569 cosG = 0.822 w 26" 3 21 = 26/cos G = 26/0.82 = 31.6" 62 ACE I.5 xo.375 l Braces are connected at point of intersection 1 = 31.6/2 = 15.8" / : 1. ' 3 ' m ~ Axial load in brace N = P/cos G = 1073/0.822 = 1305 lbs 2 Deflection y = (N/A) 1/E where N = 1305 lbs, A = 0.563 in A i 1 = 15.8" E = 29 X 10 v/ y = (1305/0.563) X (15.8/29 X 10 ) = 1263.0 X 10-6 6 \\ 4d. Natural Frequency - Longitudinal Horizontal Direction k, The total displacement in longitudinal horizontal direction is the sum of the deflections of end stringers, upright and bracing. y = (16,487 + 3618 + 1263) X 10-6 = 21,368 X 10-6 Circular frequency: O= d8/yMg, where g = 386, y = 21,368 X 10-6 Mg = Transformation Factor from Bigg's Table Mg = 0.41 O= 386/21,368 X 10-6 X 0.41) 44,060 = 209.9 3 = f = 0 /2Pi 209.9/6.28 = 33.4 c.p.s. > 33 n The rack is rigid in longitudinal horizontal direction. 5. Summary of Deflections and Frequencies The total deflections y (in) and the natural frequencies f (eps) in principal directions are as follows: 1 Vertical y= 7,885 X 10-6 f= 55.12 cps Transverse Horizontal y= 18,869 X 10-6 f= 35.6 cps Longitudinal Horizontal y= 21,368 X 10-6 f= 33.4 cps 4 Frequencies in all principal directions are above 33 cps. The rack is rigid, so that any amplification of load to the cells is negligible. i b e l p> . l
SECTION IV. STRESS ANALYSIS ( l. General The stress analysis is done for O.B.E. and S.S.E. forces. The acceleration values are: (see Item 2 of Section II). 0.B.E. Horizontal 1.75 Vertical 3.20 S.S.E. Horizontal 2.40 Vertical 4.50 For determining the stresses multiply gravity loads For 0.B.E. Horizontal by 1.75 Vertical by 4.20 S.S.E. Horizontal by 2.40 Vertical by 5.50 All components of the rack are analyzed separately to demonstrate that the stress in each component is below the allowable stresses, as listed in item 3 of Section II. 2. Main Stringer The stringer is a four-span continuous beam with the maximum moment (see Moment Distribution item 2a of Section III) is M = 1/3 X 2651 = 883.67 in-lbs 3 The Section Modulus of the Unistrut stringer is sx = 0.203 in. For vertical acceleration sv = M/S = 883.67/0.203 = 4353 psi [\\ sy = 0.294 in For horizontal acceleration sH = 883.67 = 3006 psi 3 0.294 The stresses under seismic loads are found by multiplying the stress so by acceleration factors. For vertical loads the multiplying factor is 1 + a where a is the vertical seismic acceleration. As per Unistrut Tables, strength for cold formed member for bending is 25 ksi. This is to be used for 0.B.E. For S.S.E. stress increase of 33% = 33 ksi. Stress Under Stress in Main Stringer Under Seismic Forces Gravity Loads 0.B.E. S.S.E. sv = 4353 psi Vertical Horizontal Combined Vertical Horizontal Combined sH = 3006 psi Multiply by Acceleration Factor 4.20 1.75 5.50 2.40 Stress a psi 18,283 5,261 23,543 23,942 7,214 31,156 Allowable F psi 25,000 33,000 Safety Factor F/s 1.06 1.05 i O x/ The main stringers are safe under gravity and seismic loads. __
P, P: P 3 4 125 4.12 5 ' 5..- 5., 3. Angle Frame g P V e _ The top angle is treated as a rigidly supported beam with 3 equal concentrated loads symmetrically placed. The load is N?b2 /8 the maximum reaction from the continuous main stringers. 5: 0.%Jo in P = 376 lbs (See item 2b of Section III) The top angle is welded to the vertical P A D members of the angle frame so that 7 rigidity at support is provided. ,/ i From Roark Formulas: 1:l8.25" Moment at center of span from load at distance a from support. M = -P ab /12+R 1/2 -P (1/2-a) 2 1 R1 = P b/l where P = 376 lbs b = 14.125" 1 = 38.25" R1 = 376 X 14.125/18.25 = 291 lbs M1 - -376 X 4.125 X 14.125 /18.252 + 291 X 18.25/2 - 376 (18.25/2-4.125) 2 M1 = -929.1 + 2655.5 - 1880 = -153.6 in-lbs Moment at midspan under center load M2 - P1/8 = 376 X 18.25/8 = 857.75 in-lbs Total moment at midspan M=M2 + M1 + M3 where M3 = My M = 857.75 - 153.6 - 153.6 = 550.55 in-lbs Moment it support 2 2 2 From P. M1 = P ab f1 = 376 X 4.125 X 14.125 /18.252 929.10 in-lbs = From P. M3 = P a /b/12 = 376 X 4.1252 X 14.125/18.252 2 271.30 in-lbs = From P 2 P1/8 = 376 X 18.25/8 i M 857.80 in-lbs a = Total 2058.20 in-lbs I Maximum Moment is at support M = 2058.2 in-lbs S = 0.566 in3 s = M/S = 2058.2/0.566 = 3636 psi (O) p-.
I /~ h 3. Angle Frame (cont'd.) \\ (m / Stress in Top Stress in Top Angle Under Seismic Forces Angle Under 0.B.E. S.S.E. Gravity Loads so = 3636 psi Vertical Horizontal Combined Vertica{ Horizontal Combined Multiply by Accele- [ 5.50 2.40 ration Factor 4.20 1.75 ( Stress a psi 15,271 6,363 21,634 19,998 8,726 28,724 Allowable F psi 23,760 32,400 l Safety Factor F/s 1.10 1.13 The angle frame is safe under gravity and seismic loads. 4. Side Stringer There is no direct vertical load on the side stringers. The only force acting is the horizontal seismic force. i The design moment on the pair of side stringers is the same as on the set of three main stringers. Max. moment for the ~~ span continuous beam is M = 2651 ft lbs. / The Section modulus of the two side stringers is S = 2 X 0.203 = 0.406 in3 ( so = M/S = 2651/0.406 = 6530 psi 0.B.E. Multiply stress so by 1.75 s = 1.75 X 6530 = 11,428 psi Safe Factor 23,760/11,428 = 2.1 S.S.E. Multiply stress so by 2.40 15,672 psi Safe Factor 32,400/15,672 = 2.1 s = 2.40 X 6530 = The side stringers are safe under 0.B.E. and S.S.E. forces. 5. Intermediate Upright There is no direct vertical load. The load consists only of horizontal scismic forces. P = 4 The upright is treated as a cantilever with concentrated loads located at distance 7" and p 14" above the point of support. The loads P are the reactions from the side stringers. kr-- 'p, P = 559.5 lbs (see item 3b of Section II). -- y 1 / M = 559.5 X (7" + 14") = 11,750 in-lbs TueE 3 3,S"' so = M/S = 11,750/2.1 = 5,595 psi 5-2.lin3 m t l 5. Intermediate Upright (cont'd.) 0.B.E. Multiply so by 1.75 s = 5595 X 1.75 = 9791 psi ~ /~'h Safety factor 23,760/9791 = 2.42 O( S.S.E. Multiply so by 2.40 s = 2.4 X 5595 = 13,428 psi Safety factor 32,400/13,428 = 2.41 The uprights are safe under 0.B.E. and S.S.E. forces. 6. End Stringers There is no direct vertical load on the end stringers. The only force acting is the horizontal seismic load. The stringer is treated as a simply supported beam, see item 4a of Section III. 1= 24.25" Section Modulus of two end stringers S = 2 X 0.203 = 0.406 in3 2 0.B.E. W = 39.5 X 1.75 = 69.13 lbs/in M = (1/8) X (69.13 X 24.25 ) = 5081 in-lbs s = 5081/0.406 = 12,515 psi Safety Factor 23,760/12,515 = 1.90 2 S.S.E. W = 39.5 X 2.4 = 94.8 lbs/in M = (1/8) X (94.8 X 24.25 ) = 6969 in-lbs s = 6969/0.406 = 17,164 psi Safety Factor 32,400/17,164 = 1.88 The end stringers are safe under 0.B.E. and S.S.E. forces. 7. Corner Upright There is no direct vertical load. The only force acting is the horizontal seismic load. The upright is treated as a cantilever with concentrated equal loads at distance 7" and 14" from point of support. See item 4b of Section III. p), The reaction from end stringer is Po = 239.5 lbs. The upright is a tube ( g 3 X 3 X 0.25 Section Modulus S = 2.10 in3 0.B.E. P = 239.5 X 1.75 = 419.13 lbs M = 419.3 X (7 + 14) = 8801.6 in-lbs s = 8801.6/2.1 = 4191 psi Safety Factor 23,760/4191 = 5.66 S.S.E. P = 2.4 X 239.5 = 574.8 M = 574.8 X (7 + 14) = 12,070.8 in-lbs s = 12,070.8/2.1 = 5748 psi Safety Factor 32,400/5748 = 5.63 Note: This upright at the corner of the rack supports also half a span of ( side stringers. The stress in the upright due to side stringers is half the stress computed in item 5 of this Section IV. 0.B.E. s = 0.5 X 9791 - 4895.5 psi S.S.E. s = 0.5 X 13,428 - 6724 psi The combined stress is the geometrical resultant of the stresses from end and side stringers. 2 41912 +4895.5 = 17,564,481 + 23,965,920 = 41,530,401 2 0.B.E. s s = 6444 psi Safety Factor 23,760/6444 = 3.68 2 S.S.E. s = 57482 + 67142 = 33,039,504 + 45,077,796 = 78,117,300 ,,,s J s = 8838 psi Safety Factor 32,400/6838 = 3.66 The corner uprights are safe under 0.B.E. and S.S.E. forces.
4* jl or UPDCaHT ( U, 8. (~T Brace ^ The load in the brace is the n sultant 7 g, /w' of the horizontal component R1 and e 2 M vertical component R - 21 N =R1 cos O +R2 sin G tan O = 18/26 = 0.692, O = 34.7* 99 O 0.569, cos O = 0.822 N w o sin & = 21 = 26/cos O = 26/0.822 = 31.6" ~ 1 = 15.8 11 = 1-c = 15.5 - 1.5_ = 14" 26' O.822 B'..' ? l. 5 0.37 5 The weight of the rack unit is 1073 lbs, 4, g g gI see item 4c of Section III. O.B.E. Horizontal R1 = 1.75 X 1073 = 1877.75 lbs Vertical R2 = 4.20 X 1073 = 4506.6 lbs N=R1 cos G +R2 sin G
1877.75 X 0.822 + 4506.6 X 0.569
1543.5 + 2564.3 = 4107.8 lbs s = N/A = 4107.8/0.563 = 7296 psi Check for buckling. Radius of gyration r = 0.108 Slenderness 1/r = 14/0.108 =.130 From A. I.S.C. Manual, allovable Fa = 8,840-psi Safety Factor Fa/s = 8,840/7,296 = 1.21 l S.S.E. Horizontal R1 = 2.40 X 1073 = 2757.2 lbs Vertical R2 = 5.50 X 1073 = 5901.5 lbs N=R1 cosO +R2 sin G
2757.2 X 0.822 + 5901.5 X 0.569
2266 + 3358 = 5624 lbs s = N/A = 5624/0.563 = 9,989 psi Slenderness 1/r = 14/0.108 = 130 From A.I.S.C. Manual, Fa = 8,840 psi Multiply by ratio 0.90/0.66 = 1.36 F = 8840 X 1.36 = 12,022 psi Safety Factor F/y = 12,022/9,989 = 1.20 The braces are safe under gravity and seismic loads. 9. Connections 9a. Anchor Bolts The bottom angle of the bex-frame is anchored to the floor. Maximum load on the anchor bolts is caused by the horizontal acceleration force acting at top of frame. Total weight of 6-unit rack with 29 cells, see Section II. P = 29 X 261 + 1015 = 8,584 lbs (' M = P X h = 8584 X 22 = 188,848 in-lbs -__
1 9a. Anchor Bolts (cont'd.) P,- >s 4 There are 4 rows of 1/2" diameter N j/ g anchor bolts, 5 bolts per row. U Resisting moment, considering exterior ,2 rows only is- / \\ / \\ P / 'N /' 'g M = T X 1 = T X 33.5
- 226"$
9" 11.2 5" ;I T = M/L = 188,848/33.5 = 5637 lbs 1 ! = S3. 5 ' l Cross sectional area of 5 bolts n' Ti A = 5 X 0.16 = 0.8 in2 o = T/A = 5637/0.8 = 7047 psi s by 1.75 0.B.E. Horizontal Multipif -stress so s = 1.75 X 7047 = 12,332 psi Safety Factor 20,000/12,332 = 1.62 S.S.E. Horizontal Multiply stress so by 2.40 s = 2.4 X 7047 = 16,913 psi Allowable: Fa = (0.90/0.66) X 20,000 = 27,270 psi Safety Factor 27,270/16,913 = 1.61 The anchor bolts are safe under 0.B.E. and S.S.E. forces. /{.,) 9b. Upright Connection The reaction from side stringers is 1119 lbs, see item 5 of this Section. 0.B.E. P = 1119 X 1.75 = 1958.3 lbs s = P/A = 1958.3/0.16 = 12,239 psi Safety Factor 20,000/12,239 = 1.63 S.S.E. P = 2.4 X 1139 - 2685.6 lbs s = 2685.6/0.16 = 16,785 psi Safety Factor 27,270/16,785 = 1.62 The connection is safe under 0.B.E. and S.S.E. forces. 9c. Stringer Connection Maximum reaction from (3) main stringers is 1119 lbs. See item 2a gf Section III. Cross section area of 3 bolts A = 3 X 0.16 = 0.48 in 0.B.E. Horizontal P = 1119 X 1.75 = 1958.3 lbs s = P/A = 1958.3/0.48 = 4079 psi Safety Factor 20,000/4079 = 4.9 S.S.E. Horizontal P = 1119 X 2.4 = 2685.6 lbs s = P/A = 2685.6/0.48 - 5,595 psi Safety Factor 27,270/5595 = 4.86 '~'S The connection of stringer to angle frame is safe under 0.B.E. and S.S.E. forces. i gs.a-
i 10. Table of Stresses i TABLE OF STRESSES 0.B.E. S.S.E. Allowable Stress psi / t' x a. Structural Members 23,76(/ - 32,400 v s b. Bolts 20,000j 27,270 c. Unistrut Stringer (Main) 25,000 33,000 Maximum Computed Stress psi -Main Stringer 23,543 31,156 -Angle Frame 21,634 28,724 -Side Stringer 11,428 15,672 l l -End Stringer 5,081 6,969 Q) f -Intermediate Upright 9,791 13,428 \\ -Corner Upright 6,430 8,838 -Brace 7,296 9,055 -Anchor Bolt 12,332 16,913 -Upright Connection Bolt 12,239 16,785 -Stringer Connection Bolt 4,079 5,595 I l O O ? s #. - - _. _ _ _. _, - -, - - -, --.. ~...
4 CONCLUSIONS Based upon the analysis shovn on the feregcing pages. the data adequatel'; shous that the battery anc rack Vill l meet the requirements of the specifica* ion anc v112 perfort adequately during and after the seismic event. The equipment should be considered rigid as the design frequency of the rack is higher than 33 c.p.s. \\ k
- l l
1 /% DESIGNED BY: CHECKED BY: H. L. Mo y1f r, P.E. K. J.
- Jaworski, P.E.
Supervising Engineer Structural Engineer A11 states Design & Allstates Design & Development Co., Inc. Development Co., Inc. 4x....,,,,,,.<p+ /' rnerEcssoNet +\\ h a t Y ;, I K. J. JAWORSK! 1 1 \\ I \\4 7804-E y ENGINEER ..t.'.
SECTION #7 TEST SERIES
SUMMARY
() WYLE TEST REPORT No. 44681-2 ( 1.0 SERIES 1 AND 2 The original testing procedure as defined in Gould Test Procedure GB-3454 up through Revision #10 dated November 14, 1980 was designed to attempt generic qualification of Gould plante and calcium type batteries for Class 1E application in nuclear power generating stations by using accele-rated heat aging of the test specimens. Test Series #1 and #2 disclosed that the accelerated heat aging resulted in degradation of cell components other than the positive and negative plates. The degree of degradation of certain components was in excess of that which would occur in actual service. Other components experienced ~. N-degradation that would not have occurred during actual service. This component degradation adversely affected the discharge capacity perfornance as well as the capability to satisfy the seismic requirements. Accelerated heat aging was originally employed to evaluate the electro-chemical performance and, specifically, the positive plate deterioration and its effect on discharge capacity delivery. No seismic requirement was involved. Based on the test results, it was concluded that accelerated heat aging was not a viable method to properly evaluate the complete lead-acid cell [N system with respect to discharge capacity and seismic requirement capability. %,A 4 PCT /31
1.0 SERIES 1 AND 2 (Cont'd.) The decision was made to discontinue testing using accelerated heat aging, V but to continue the test program using naturally aged cells from actual in q service customer installations. (Reference IEEE 535-1979 Section 8 Item 8.2 Aging Procedure). 2.0 SERIES 3 (Wyle Test Report 44681-1 Appendix VIII) This test series involves testing of Gould plante type cells which is not pertinent to the report on Gould calcium type cells and will not be addressed. 3.0 SERIES 4 3.1 Specimen #1 Specimen was comprised of 3 cells #'s 1, 2, 3 Type NCX-1680 naturally aged (10 years) from New Jersey Bell Telephone Co., Bordentown, N. J. t%d 3.2 Specimen #2 Specimen was comprised of 3 cells #'s 3B1, 3B2, 3B3. Accelerated heat aged (10 years equivalency). 3.3 Specimen #3 Specimen was comprised of 3 cells #'s 12, 13, 14 Type MCX-510 naturally aged (8 years) f rom Enterprise Telephone Co., Intercourse, Penna. NOTE: Specimens #1, 2, and 3 were run concurrently, resulting in a common test response spectra (TRS). Specimen #1 pertains only to the qualification of N-line cells. Specimen #2 was a repeat test of an additional group of cells for comparison purposes with a previously tested group and is not presented for qualification. Specimen #3 pertains only to the qualification of M-line cells. PCT /32
3.4 Pre-Seismic Capacity Discharge Test \\ All 3 specimen groups were given a pre-seismic capacity test per Gould Test Procedure GB-3454 Revision 11. Section 2.0 Pre-Seismic Capacity Test - IEEE 450-1980. - IEEE 535-1979. Capacity test results were as follows: Specimen # Cell Type Cell # % Capacity
- 1 l
1 NCX-1680 1 107 1 NCX-1680 2 106 ~ l NCX-1680 3 96 2 NCX-1200 3B1 92 2 NCX-1200 3B2 93 2 NCX-1200 3B3 93 s 3 MCX-510 12 115 3 MCX-510 13 109 3 MCX-510 14 109
- Corrected For Temperature l
Documentation of above test results contained in Wyle Report #44681-2 l l Vol. #1 Section 11 Table II-I - Discharge Data Pages II-8, II-9 and Data Sheet II-69, II-72 and II-73 for N-line cells and Data Sheet II-70 for M-line cells. O l .CT/33 s
O(,/ 4.0 SEISMIC TESTING SERIES #4 ( 4.1 Seismic Qualification See Section III Pages 111-1 through III-27 NOTE: Test Series #4 is presented as the complete qualification of M-line cells. Proceding Test Series #5 and #6 will complete the qualification of N-line cells. 4.2 Test Run Descriptions Page III - 16 Table III - III 4.3 Required Response Spectrum Appendix III Page III - 20 Fig #1 g Page III - 21 Fig #2 Page III - 22 Fig #3 Page III - 23 Fig #4 4.4 Photographs Refer to Pages III-41 through III-49. Photographs III-12 through III-20. 4.5 Transmissibility Plots Appendix V Test #1 Front-To-Back/ Vertical Orientation Pages III-115 through III-126 Test #9 Side-To-Side / Vertical Orientation Pages III-127 through III-138 n v s PCT /34 .s
3 4 4.0 SEISMIC VESTING SERIES #4 (Cont'd.) 4.6 Test Response Spectrum Plots Appendix VI ( Run #7 Front-To-Back/ Vertical - OBE j Pages 111-305 through 111-314 Run #8 Front-To-Back/ Vertical - SSE Pages 111-315 through III-314 Run #14 Side-To-Side / Vertical - OBE Pages III-337 through III-346 Run #15 Side-To-Side / Vertical - SSE Pages 111-347 through 111-368 4.7 Instrumentation Log Sheets and Instrumentation Equipment Sheets Appendix VII i Pages III-493 through III-500 O k r l l i { PCT /- 34a-
5.0 TEST PROCEDURES AND RESULTS SECTION 3.0 3.3.1 RANDOM MULTIFREQUENCY TEST RESULTS TEST SERIES #4 COMMENTS FOR N-LINE CELLS 5.1 Battery Rack Cross Braces - Specimen 1 See Anomaly 14 Page 1I1-11. Also Photographs III-13 Page III-42 and Photograph III-14 Page III-43. Deformation of cross braces which resulted was due to use of improper 3/16" thick cross braces as shipped from factory. Proper thickness (3/8") braces were substituted and testing resumed. 5.2 Cell Container Cracking - Specimen 2 See Anomaly 14 Page III-11. As addressed in 3.3 of this report, specimen #2 was a repeat test of an additional group of accelerated heat aged cells for comparison purposes with previously tested groups and is not part of this report. > O ( 5.3 Cell Container Cracking - Specimen 1 See Anomaly 14 Page III-11. The crack in the bottom of one cell (#3) container resulted in minimal loss of electrolyte. Specimen was removed from test table and transported to another test site. i 5.4 Ppst Seismic Capacity Discharge Test Test cells were recharged to replace ampere hours withdrawn during seismic testing (110% return). Post seismic capacity discharge test per IEEE 450-1980 IEEE 535-1979 was conducted on Specimen 1. At start of test, 16 hours had elapsed from time container (#3 cell) cracked until start of capacity discharge test. Electrolyte level at start of test was down 3/4" (lew level line). At end of 3 hour test, electrolyte level was down 1" (plates still covered). PCT /35
5.4 Post Seismic Capacity Discharge Test (Cont'd.) ( Capacity test results were as follows: Specimen Cell Type Cell # % Capacity
- 1 NCX-1680 1
101 1 NCX-1680 2 104 1 NCX-1680 3 92
- Corrected For Temperature 2
NCX-1200 3B1 2 NCX-1200 3B2 19 2 NCX-1200 3B3 28 () For documentation of above data, see Wyle Report Vol. II Table IV-1 \\ Pages IV-6 and IV-7. Also, data sheets Pages IV-41, IV-42 and IV-43.
- Note: Cell container cracked during seismic test releasing all electrolyte thus preventing capacity discharge evaluation.
Cell #3 with cracked container in Specimen 1 group delivered 92% capacity. Even though this capacity percentage satisfied IEEE 535 - 8.3.1.4 acceptance criteria, Gould did not classify this as acceptable. l 5.5 Cell container Cracking cause Examination of cell #3 container disclosed a crack in the bottom across the cell width dimension about 1" in from the bottom-jar juncture. The cell bottom upon returning to contact with the rack rails following a \\ vertical excursion during the test, did not return flush or perpendicular to the rack rails. Therefore, severe concentrated stresses resulted. PCT /36
) 5.5 Cell Container Cracking cause (Cont'd.) \\ Examination of the 1/2" thick urethane (open cell) spacer material used between cells disclosed considerable permanent compression. The com-pression was wedge shape, starting about 1/3 the way down from the top and extending to the bottom where the thickness was about 1/8". Both spacers between the three cells were in similar condition. This compression occurred during the side-to-side / vertical orientation operating basis earthquake tests. Due to the spacer permanent compression, uniform spacing between cells was not maintained during testing thus permitting undue independent j pendulous type movement. O I \\ 5.6 Conclusions Evaluations of conditions outlined in 5.3 and 5.4 were made and a decision made to repeat the testing of another 3 cell group of naturally aged NCX-1680 cells. In addition, the cell spacer material was changed to a foamed polyethylene (closed cell) material. RESULTS TEST SERIES #4 COMMENTS FOR M-LINE CELLS 5.7 Seismic Testing Specimen #3 possessed suf ficient integrity to withstand, without compromise of structures, the prescribed simulated seismic environment. (See 3.3.1 - Random Multifrequency Test Results.) O-s_- PCT /37
5.8 Electrical Monitoring Results It was demonstrated that the specimen possessed sufficient integrity to withstand, without compromise of electrical function, the prescribed simulated seismic environment. 5.9 Post Seismic Capacity Discharge Test Test cells were recharged to replace the ampere hours withdrawn during seismic testing (110% return). Post seismic capacity discharge test was conducted per Gould Test Procedure CB-3454 Revision 11 Section 5.0 Post-Seismic Capacity Test - IEEE 450-1980 - IEEE 535-1979. Capacity test results were as follows: Specimen # Cell Type Cell # % Capacity 3 MCX-510 12 111 3 MCX-510 13 107 3 MCX-510 14 107 Specimen #3 (MCX-510) cells #12, 13, and 14 satisfied IEEE 535 8.3.1.4. 5.10 Conclusions Refer to Sections 3.4 Pre-Seismic Capacity Discharge Test; Section 5.1 Seismic Testing and Section 5.3 Post Seismic Capacity Discharge Test. This demonstrates that Specimen #3 (MCX-510) naturally aged cells 8 years old are capable of performing before, during, and after a seismic event. PCT /37a
m 6.0 TEST SERIES #5 6.1 Specimen #1 ( Specimen was comprised of 3 cells #'s 4, 5, 6 Type NCX-1680 naturally aged (10 years) f rom New Jersey Bell Telephone Co.. Bordentown, N.J. 6.2 Specimen #2 Specimen was comprised of another 3 cell group of accelerated heat aged cells (10 years equivalency). Cell #'s 4B1, 4B2, 4B3 Note: 6.1 - Only Specimen #1 is pertinent to this report. 6.2 Specimen #2 was a repeat test for comparison purposes with previously tested groups and is not part of this report. 6.3 Pre-Seismic Capacity Discharge Test /N y) Each specimen group was given a pre-seismic capacity test per Gould Test Procedure GB-3454 Revision ll-B dated January 28, 1982 Section 2.0 Pre-Seismic Capacity Test - IEEE 450-1980 - IEEE 535-1979. Capacity test results were as follows: Specimen # Cell Type Cell # % Capacity
- 1 NCX-1680 4
96 1 NCX-1680 5 96 1 NCX-1680 6 98 2 NCX-1200 4B1 88 2 NCX-1200 4B2 86 2 NCX-1200 4B3 85
- Corrected for Temperature TXcTULM i
6.3 Pre-Seismic Capacity Discharge Test (Cont;d.) ( Documentation of above test results contained in Wyle Report #44681-2 Vol. #1 Section II Table II-I - Discharge Date - Pages II-8, 11-9 and Data Sheet 11-69 II-72. Note: The above specimens were tested concurrently with those specimens referenced Test Series #4. 7.0 SEISMIC TESTING SERIES #5 7.1 Photographs Refer to Pages III-50, III-51, III-52. Photographs III-21, III-22, III-23. 7.2 Transmissibility Plots Appendix V Test #1 Front-To-Back/ Vertical Orientation Pages III-140 through III-147 \\ Test #8 Side-To-Side / Vertical Orientation Pages III-148 through III-155 7.3 Test Response Spectrum Plots Appendix VI Run #6 Side-To-Side / Vertical - OBE Pages I11-370 through III-379 Run #7 Side-To-Side / Vertical - SSE Pages III-380 through 111-397 r Run #13 Front-To-Back/ Vertical - OBE Pages III-398 through III-407 r Run #14 Front-To-Back/ Vertical - SSE Pages III-4G8 through III-425 l %_ / \\ ^ PCT /39 ~
h l } 7.4 In,strumentation Log Sheets and Instrumentation Equipment Sheets Appendix VII Pages 111-501 through 111-508 7.5 Seismic Qualification See Section III Pages 111-1 through 111-27 7.6 Test Procedure and Results Section 3.0 3.3.1 Random Multifrequenty Test Results 7.7 Specimen Integrity As indicated in 3.3.1, there were no exceptions with regard to demonstration of specimen integrity. (Test Series 5) O (_,,/ 7.8 Post Seismic Capacity Discharge Test Test cells were recharged to replace ampere hours withdrawn during seismic testing (110% return). Post seismic capacity discharge test per IEEE-450-1980 - IEEE-535-1979 was conducted on Specimen 1. O-PCT /40
7.8 Post Seismic Capacity Discharge Test (Cont'd.) ~'\\ Capacity test results were as follows: [h Specimen # Cell Type Cell # % Capacity
- 1 NCX-1680 4
92 1 NCX-1680 5 68 1 NCX-1680 6 69
- Corrected For Temperature 2
NCX-1200 4B1 26 2 NCX-1200 4B2 45 2 NCX-1200 4B3 60 Cells #5 and #6 failed to deliver the minimum of 80% capacity, therefore, Specimen 1 group did not satisfy acceptance per IEEE 535-1979 Section 8.3.1.4. /~'h 'q_) For documentation of above data, see Wyle Report Vol. II Table IV-1 Pages IV-6 and IV-7. Also data sheets Page IV-45 and IV-46. 7.9 Conclusions Test Series 5 Specimen 1 group (cells #4-5-6) f ailed qualification. Cells returned to Gould laboratory for evaluation of capacity discharge failure. l 7.10 Specimen 1 Failure Evaluation Cells #4, 5, 6 of Specimen 1 were examined at the Gould laboratory and it was determined that cells #5 and #6 failed the post-seismic capacity test as a result of the excessive RRS, particularly at low frequencies (3 to 4 l /N cycles) at 10g acceleration. It was decided to conduct another test at a I N~) l reduced RRS which would still envelope the contract specifications, PCT /41
8.0 TEST SERIES #6 8.1 Spacimtn 1 Specimen was comprised of 3 cells #7, 8, 9 Type NCX-1680 naturally aged (]O years) from New Jersey Bell Telephone Co., Bordedtown, N.J. 8.2 Pre-Scismic Capacity Discharge Test Specimen 1 was given a pre-seismic capacity discharge test per Gould Test Procedure GB-3454 Revision 11 Section 2.0 Pre-Seismic Capacity Test IEE-450-1980 - IEEE-535-1979. Capacity test results were as follows: Specimen # Cell Type Cell # % Capacity
- I 1
NCX-1680 7 104 ( l NCX-1680 8 116 i 1 NCX-1680 9 106 l
- Corrected For Temperature For documentation of above test results, see Wyle Report #44681-2 Vol. 1 Section II Table II-I Discharge Date - Pages II-8, II-9 and data sheets l
l Pages II-75 and 11-76. 9.0 SEISMIC TESTING SERIES #6 9.1 Photographs See Pages III-53 and III-54. Photographs III-24 and 111-25. 9.2 Tranraissibility Plots Appendix V Test #1 Front-To-Back/ Vertical Orientation Pages III-157 through III-160 b) x,, Test #10 Side-To-Side / Vertical Orientation Pages III-161 through 111-164 PCT /42
9.3 Test Response Spectrum Plots Appendix VI Run #8 Front-To-Back/ Vertical - OBE Pages III-427 through 111-436 Run #9 Front-To-Back/ Vertical - SSE Pages III-437 through III-450 Run #15 Side-To-Side / Vertical - OBE Pages III-451 through III-460 Run #16 Side-To-Side / Vertical - SSE Pages III-461 through III-474 9.4 Instrumentation Log Sheets and Instrumentatien Equipment Sheets Appendix VII Pages III-509 through 11I-515 9.5 Seismic Qualification O k__/ See Section III Pages III-1 through III-27 9.6 Test Procedure and Results Section 3.0 3.3.1 Random Multifrequency Test Reaults 9.7 Specimen Integrity As indicated in Section 3.0 Item 3.3.1, there were no exceptions with ( regards to demonstration of specimen integrity. (Test Series 6) 10.0 POST SEISMIC CAPACITY DISCHARGE TEST l Test cells were recharged to replace ampere hours withdrawn during seismic j testing (110% return). Post seismic capacity discharge test per IEEE-450-1980 'N - IEEE-535-1979 was conducted on Specimen 1. l \\ ,.-] PCT /43
I O ).O POST SEISMIC CAPACITY DISCHARGE TEST (Cont'd.) Capacity test results were as follows: Specimen # Cell Type Cell # % Capacity
- 1 NCX-1689 7
102 1 NCX-1680 8 110 1 NCX-1680 9 103
- Corrected For Temperature i
i l For documentation of above test results, see Wyle Report #44681-2 Vol. I Section II Table 11-1 Discharge Data Pages II-8, II-9 ana' data sheet IV-48 and IV-49. 1 I sl.0 CONCLUSIONS - TEST SERIES 6 l- ( Based on data presented in Sections Nos. 8.0, 9.0 and 10.0, it,is der.onstrated 1 s { that the naturally aged (10 years) cells of NCX type are capable of performing l before, during, and after'a seismic event. s { n I j v l i ~ '.\\ s l / ~ ' m i J ,y2 2 / 2 PCT /44 s tr <3.w- =, e-emw'vre y er y y(yp-w +- me -,g- , + - - e=**e-re+wh-Me-r-e e-ey--e--m'e N* NP-e'w*<
SECTION #7 ADDENDUM Stress Levels As indicated in comment on failure analysis of test series 5, the RRS was reduced cpproximately 40% at low frequencies (3-15 C.P.S.) along both horizontal and vertical axis during Test Series 6. Refer to Appendix III which is the original RRS used for Test Series 4 and 5. Appendix 4 portrays RRS for Test Series 6. The RRS for Test Series 6 are significantly above the RRS specified in the contract. In conclusion, the stress levels were considerably reduced in Test Series 6 compared to Te.st Series 4 and 5. [)WyleReportVol,ITableVPage-9 GJ Cell No. 6 should have pre-seismic capacity of 98% as supported by test disclosure data sheet 11-69 dated 6-19-81. This was a typographical error by Wyle, and, cecondly, this cell is not a part of qualification group. How To Derive Capacity The temperature correcti'on was per I.E.E.E. 450-1975 (Table 1, Page 11) which corrects the capacity in terms of time and not current. This correction term was used to t'cuparature correct capacity of each cell individually. Example: Cell #6 of Page II-69 Starting temperature is 82* The'Aorrectionfactoris1.014 Time re'quirement at 82* is (1.014 X 180 =) 182.5 minutes g _.) The capacity is (179 + 182.5=) 98.07% s PCT /72
_- - _ ~ b i ) Photograph Numbers (Refers to Page III-7, 44681-2) This is a typographical error by Wyle. This again is not relevant to the i qualification group. Photographs III-16 and III-17 apply, not VII-16 and VII-17. Spacing Material The material was changed to polyethelyne foam closed cell type Dow Chemical (Ethe Foam #220) on 3-12-82 E.C.0, #0017. This material has been standardized i for all Class IE or non-IE applications. This material can be readily identified by eompressing it with thumb and index finger. The original material (Urethane) g { vhen compressed, remains that way whereas the present ethefoam compresses and ^ ) then returns to its original dimension af ter pressure release. i Temperature 5argins l For every 15' rise in battery electrolyte temperature above 77', (92'F), the qualified battery life would reduce by 50%. Any prevailing annual average battery electrolyte temperature either within or beyond will affect battery life in direct proportion. ib i S / I PCT /73
r Gou ld I nc. /'D SI M fAl IEET / ?tenton, t0w N)T Test No. M 6065 Per Cent Capacity to 1.75 VPC G 77o F. ~ Cell #1 Cell #2 Cell #3 Cell #4 Cell #5 Cell #6 Remarks I 92.7 101.4 114.6 108.7 111.3 110.0 As received (12/9/65) 5-hour rate 1 Mo. float 111.1 113.4 123.9 117.4 121.2 119.5 (1/7/66) 5-hour rate 't 2 Mo. float 113.0 113.0 121.6 116.I 119.9 118.2 (3/11/66) 5-hour rate 4 4 Mo. f loa t._ 110.7 111.4 118.0 114.5 116.1 115.4 (7/18/66) 5-hour rate 'i H Mo. float Ll6.1 115.6 122.9 116.6 122.2 119.9 (3/17/67) 5-hour rate 16 M3. float Capacity test conducted to wrong cut-off voltage. (7/17/68) e, 'i 32 Mo. float ~ 113.5 120.0 116.9 119.3 120.7 (4/1/71) (10.8 5-hour rate
r V TASix v (Continued) TEST SISSIAST PftE-SEISBelC CAPACITY POST-SEISIsIC CAPACITY ~ IGATUttAL Des CElJ. (PESCEsfT) (PESCEBff) 41.lJ. 311.1 _ Alf78FICI AL ACIIIG It). let DISCN./2nd DISCId. let DISCN./2nd D15C94 OSICIts OF CE8JS tot'X - l EMU 10 Years - 80et. I 107 101 Icew, June, 1975 from leew Jersey Bell Telelemene, Bordesitowsi, 2 106 104 teew Jersey. 3 96 92 4 96 928** 5 96 68 6 -188 93 69 pmx-Sin 11 Years - eset. 12 !!5 lit esew, June, 1971 from Saterprise Teloptwee, Intercourse, 13 109 107 Pennsylvente. 14 IOS 107 Max-82pp 10 Years - Arb 381 84/92 (let Diocle.) 22 86/93 19 teew from Conald for test. 38 3 86/93 28 481 88/99 26 mw 482 86/92 45 481 85/92 60 N* g.$ sa:X-86aHe 10 Years - snet. 7 104 102 Isew, June, 1971 from Itow Jersey Bell Teleganone, aurdentowes. 8 116 110 teew Jersey. 9 4% 103 _,7
- twjed in Setemic - sto diactierge performed.
- Stosqui test whese first cell did not reach 804 capacity.
- blutivJ test to lerevent voltage reversel.
- Stosqui test whese first cell did not reach 804 capacity.
Revised 6/29/82
TABLE II-I. DISCIIARGE DATA (POST-AGING) (Portinued) TIME 'IU NATURAL OR INITIAL INITIAL DISCl!ARGE REACil FINAL FINAI. ARTIFICAL rEMPERATURE SPECIFIC RATE 1.75 VPC TEMPERATURE SPECIFIC CAPACITY ceu. TYPE ACING CEF.L NO. (*F) GRAVITY (AMPERES) (MINtfrFS) (*F) GPAVITY ( PFPCFttrl FPS-25 10 yrs-Art. 17 78 1.222 256 179 79 1.139 108 18 78 1.218 204* 80 1.135 122* 21 78 1.226 204* 82 1.132 122* Fi>H-2 3 16 yrs-Nat. 46 77 1.222 226 236 81 1.140 134 47 77 1.220 226 81 1.137 128 48 77 1.220 229 87 1.135 130 IKfX-1680 !!' yrs-Nat. I 81 1.214 410 195 85 1.136 107 2 81 1.211 192 85 1.133 106 3 81 1.210 174 85 1.136 96 4 80 1.210 175 87 1.134 96 5 82 1.212 175 87 1.1 16 96 6 82 1.214 179 87 1.136 -lou 98.,.o O 5) MCX-SIO el yrs-Nat. 12 74 1.219 133 205 80 1.139 115 Q* 13 74 1.215 194 81 1.134 109 "5 14 74 1.213 192 81 1.135 108 5* tK:X-1200 10 yrs-Art. 3B1 82 1.210 312 154 83 1.124 84 f.1 (1st Disch.) 382 84 1.208 157 85 1.122 86 383 82 1.210 157 84 1.125 86 'i' 401 80 1.216 160 81 1.132 HS 4B2 82 1.210 157 86 1.130 86 4B3 80 1.212 154 83 1.128 H5 (2nd Disch.) 3B1 80 1.208 312 167 83 1.107 92 l 3B2 80 1.210 169 82 1.111 93 3B3 80 1.214 168 83 1.112 93 401 79 1.215 312 180 84 1.117 99 4B2 79 1.214 167 83 1.116 92 i 4B3 79 1.214 168 83 1.112 92 NCX-16HO 10 yrs-Nat. 7 74 1.214 410 186 78 1.140 104 8 74 1.213 206 80 1.132 116 9 74 1.214 188 80 1.137 106
- Te r. L stopped to prevent volta 9e reversal.
FAGE NO. III-7 TEST KEPORT NO. 44631-2 3.0 TEST PROCEDURES AND PISULTS (Continued) 3.3.1 Random Multifrequency Test Results (Continued) Test Series 4 (Continued) During Test Run 15, one (1) battery of Specimen 2 jammed against the horizontal restraint of the battery rack cracking the trans-perent bettery jar, which allowed the electrolyte solution to leak out as documented in Notice of Anomaly 14 (Appendix I) and shewn in Photograph III-15. A post-test inspection (at the completion of Test Run 15) revealed a crack along the bottom of one of the batteries of Specimen 1, which allowed the electrolyte solution to leak out as documented in Notice of Anomaly 14 (Appendix I) and shown in Photographs -VH-16.. and -VH-D.- 1II-16 111-17 Descriptions of the test runs are contained in Appendix II. f TRS plots of the control accelerometers from a selected OBE test and the SSE test in ea::h orientation for each test series at 0.5, 1, 2, 3, and 5% damping are contained in Appenclix VI. The Functional Test retults are contained in Section IV. 3.4 Specimen Response Procedures Four (4) uniaxial piezoelectric accelerometers were located on each specimen for each test series. The placement of the accelerometers was at the direction of the Gould Technical Representative. An FM tape recorder provided a record of each accelerometer response. The horizontal accelerometers were oriented in the front-to-back direction during the FB/V testing, and reoriented in the side-to-side direction during the SS/V testing. The number of specimen response accelerometers mounted on the specimens for each series are as follows: MOUNTED NUMBER OF SERIES ACCELEROMETERS PHOTOGRAPHS 1 16 III-3 thru III-6 2 12 III-9 thru III-11 4 12 III-10 thru III-20 5 8 III-22 thru III-23 6 4 III-25 Revised 6/29/82 k WYLE LAMIRATORIES Hunt 9ville PSCality
i DATA SHEET l Page No. IV-48 Report No. 44681-2 Customer bI WYLE LABORATORIES Specimen A'Wett! Part No. RJCX*//10 Amb. Temp. 'ALY 100 No. Y U I~ # Spec. Photo 4/e Report No. W N~2-Para. Test Med. del Start Date I~'Y '## StN I' n Aslow Specimen Temp. Ab GSI ile ?d1?-SIfsmie Dirchanee. 4todyss MAAM Test Title CEL L Cat. A. CE1.4 ' TOTA ).Remn ts l TIAfs e ry e7
- 9
/A/6/ /J /.3 /2 IV Same. G eer. I hogs l 'M'P 'N'F 7/*F 34 35 3/ 37 moe<ikA Chs m l T:17 A049 J.JH 2.9/1 t /03
- 0. C. V' 3:+d 1931 t rir I.923 r114 smia. E/n se) Time 7:r0
/fn /.95/ 1. 11 ] 5 799 l f.*0T L 93Y /. 12 7 /. FAT 7 970 femid. E/sssee! 7h e l 1:ao 19tt nu i.m s'nf 4 9:n-
- 1. ro r a il
/.br s: 73 0 esmis enaJ 7;-a 9:rs /. n r i 1s> /.1 11 r.at it:tr /.877 /.T1/ /.179 C/ro 9amia. E/ysd %a //:20 /89s A779 /.Tff KFM N:n;- /.2// lit 7 /.963 C.S74 iao mia. E/As. sea Tir,s l W:ro /.744 /.rro /.Mt C-Ga //:fr I.fA4 1733 /. 73 7 2 47/ /re m/J. E/aud 1he //:34 / 997 17/a /. De T9// //:35 /.9 19 f.??f/?H s:$17 /JIrsns. C/snad % e //.'3'? & L 997 L 9ff S F9T 172. nig.E/ sos eel &e //.* 3 f I. 913 /. '195 & 526/ /14 n/M. Elapsed D'ae //:47 /.iff (7h I.70[ S /13 5.llla/s. E/ speed See I 193 min Tested By[- A 'd' Date: P-*' i / Specimen Faded Scecimen Passed Witness ~ Date: NO A Wntien Sheet No. / of A h Approved N!M W H-614 A revised 6-29-82
O2TC90-~o,ag2 4 o Q 'oT:% C %.h $ $ 7'i.'- N. u. 2., =t * *. $. .x. I l M ..D,.,.'. f ~*
- s.. <
.x. =. 4 -:: T t . ~v ,c, o. c. %. C. e, O, Q c o. e.l 6 s e .<,.,i-x e:. i e
- :g c 4k d N.Y.f. a
~ ' g,{ f 1 2 '.'. h 2.4 i.'. 4....,_...)..... ....,P _t, A .s : i l l ~' s' ....._.._.m..... -))
- l l
'.O& '.Y * ) f .g y) P ?P ,e a P ts 'd J J d ..g. g d 4 M,f ~m$i.'f'W. &'d .i-o o .J. .. e,.! ; u ' v z N~ G . L u,. ;. _:. .e-G C ~~ C h' d. _ E ~ c.s ;; s ~J 3. 4. +g.4 ;)' 9 9._ O. 9 S Q '8 a. d: .n M r, o .v . a4 -
- n.sn 3 s
o . - a-f. p w
- E p.
- 28 S 33 P, 4 N,< gad 44 w
= w e. l
- & g. "','f J J o 2 ::.k.2 G,J /o ':r.=
J h f a u,=a) J & 22 t ed s. '. O
- m.e.G.4 9 '.s. y k.,,
.' ' o % o s 7-C e .o o 9 s-wi ~ ? * ' } f.,. 5 /,,,<-A A.c p,;f,9 p g g y p;g #g,,.)o=.y f _g n,,g,g l j } " U Q .a ;a g,., g
.. g.=._=a..=.;o e =
,3 a : 3 3 o in. o g,,3,,,,, 3 s ." C F *? PC5GS#994'GvfgGW9hSys98DAICS5 'il % '~ l i 9 9 .'o <: : y ~ $ pl t d m e . i .(. v o. d m? -.l . i. b. e
- a.
2... Co - l 1. .y
- . w.
ou .C. mrne i hlhIf ._ ; :..,; l -3,! ,,.- - - l l' I I . 4r l 1,' 3- .- + 3 i gpr +
- y..'
z.,.. n f f C 4.a '3
- a.Tft,
N M. O4 n$ ad q. w l g m. u -%. 97 T.g O QY ) l-J ' w ! n e, r ' -.,.s t. 7 .;r a .4i -G i =_% 'rt L~. ; ; 4 e s1 w i 4
- h; !'c :. j I
a% g . __. s A cd h,ll, i Y
- (5 '
W s {, g $3 ? o i O e. s.o e ,8 &.s l' ~ M \\ gg" D u l i O kbb g ..U I i 1 We Ei .. ! ~; r 0 %. %.4 /A
SECTION #8 ) COMPARISON OF SEISMIC TEST TRS VG. RD.3 (NCX) Seismic test was conducted on naturally aged cells as described in Gould Test Procedure GB-3454 Revision #11. Gould response spectra at both 0.B.E. and S.S.E. levels at 2% damping (Fig. 5, 6, 7, 8 - Page III-24-25-26-27 in Wyle Report) were enveloped during the seismic test at all frequencies. Following comparison response spectra curves are provided at 2% damping: Fig. 8-1 Vertical operating basis earthquake front-to-back/ vertical Fig. 8-2 Horizontal operating basis earthquake front-to-back/ vertical I Fig. 8-3 Vertical operating basis earthquake side-to-side / vertical Fig. 8-4 Horizontal operating basis earthquake side-to-side / vertical Fig. 8-5 Vertical safe shutdown earthquake front-to-back/ vertical fig. 8-6 Horizontal safe shutdown earthquake front-to-back/ vertical i Fig. 8-7 Vertical safe shutdown earthquake side-to-side / vertical Fig. 6-8 Horizontal safe shutdown earthquake side-to-side / vertical l These plots compare the Byron /Braidwood R.R,S. and Gould R.R.S. with T.R.S. l T.R.S. envelopes Byron /Braidwood and Gould R.R.S. at all frequencies. l All the cells were capacity tested prior and after the seismic test as required by I.E.E.E. 535 documentation regarding the capacity test date as provided in r Section SA of this report. All cells met the capacity requirement. The cells \\ were also examined visually and no physical damage was observed. FCT/112-77b
The required transmissibility plots are provided in Wyle Test Report for Series 6 1 as follows: Test #1 Front-to-back/ vertical axis for both horizontal cnd vertical control accelerometers - Pages III-157 through III-160. Test #10 Side-to-side / vertical axis for both horizontal and vertical control accelerometers - Pages III-161 through III-164. These plots indicate that the fixture is a rigid one and amplification due its structure is insignificant. Section 5 and Section 6 of this report analyze the test fixture and contract rack j using static analysis approach to prove that both the test fixture and the contract racks are rigid structures. 1 i i l [ I DO ' PCT /46
.. ~.. - Legend
- TRS
- 9'
- III' G Byron /Braiuwood RRS Report No. 44681-2 FULL SCALE SHOCK SPECTRUM (g peak)
Byron /Braidwood Station 1CCk 1.0 C 10 0 1CCCC CAMPING E 100se e e t e e r s l s s 7_ - l 1 1 i .i 10.e s e 1 r e e e g g, 8 5 1 "l l. .) " ^^~ i i 1 n - n ,'mF ' '. i
- i. i i.
'I i ill 121. E i l. l i R,F 6 Il1 ,i! i t I i etij .iT
- r P
t I ,i. e e y p r 1 30 e -L-he T 4 a. a ~- ___1 l / its e i. .i.
- i..
i., i l gl l- 'I I-t , *L-i a i ie... a . e e e s ie ... 1 e e io 1 10 100 1CCO Fmuency (H22 SPECIMEN LOCATICN NO. Fig. 8.1 ~ r-e W AXIS TEST GUN NO. i Comparison of TRS vs RRS Vertical OBE Front-to-Back/ Vertical 2% Damping
m I Legend l
- TPS Page No. !!!-429 Report No. 44681-:
O Byron /3raidwood RRS FULL SCALE SHOCK SPECTRUM (g PeakJ Byron /Braidwood Station Commonwealth Edison Co. 1.00 10 0 100% 1CCCC CAMPING clo e e e l l 4 I I l i i 10 'e O i== ? e ~" L _a n-+ a m - = e '.g n' 1,,: 1 .1 e .4 i iii-er,. o 1 z o n i. iy o i
- i..i i
1 ,i.. n. ..y o ,,i ..mt ,,n n 1 ,, ^ _ -. f %[ l y + 1 !* w! v y. 8 a = = 37 = i -i i i O a a . *
- r e s ie a
a 1 10 100 100"~ Frecuency (Hz) ~ SPECMEN LCCAT:CN NC. Fig. 8.2 b AXIS TEST AUN NC. Comparison of TRS vs RRT Horizontal OBE Front-to-Back/ Vertical 2% Damping
l =... i Legend Page No. :: -458 Repor. No. 446a1-2
- TRS i
l FULL SCALE SHOCK SPECTRUM (g Posid G Byron /Braidwood RRS Byron /Braidwood Station 1.00 10 0 1CO q 1CL1. Commonwealth Edison Co. CAMPING d 100. e e 1 1 y e j s l ( i i i I e 1 I I 10 1 i i i e 2 t JF S !$ 1 AI x-w n .r-i u- , i r m s y . i. m. i. 1, i 1. - 1 's i 2r .t. 1:.
- !!t i
I I i e i ! I fill <h li ' li i >I - 1 +1 II + t : I! tsi I: if i3i ie i i E' I i i 8 i i1
- !I
~ e i il i+1 ' IiIi 4 4 3 !II I lI !'i f I i 6 1 e ~ Ne ~ = v i 1. 8 r i __ uni i i i I i i ww 0 w 8 '8 a
===4mmu e e i a I : usagem a u $! use$=>> umesmapp = m
==
g
- -~Z M
M I l I l I I r i T i n 1 i r 1 1 i i i li 1 II e-1 i< 1' I iI I i 1 1 - 4.*i t. i+ i+ ii - l .1, i 1 +3 y i a a .. e r e s ie a ... r e e in a . e e r e io 1 10 Frecuency (Hz) SPEC: MEN I' LCCATTCN NC. Fig. 8.3 AXIS TEST RUN NC. Comparison of TRS vs RRS Vertical OBE Side-to-Side / Vertical 2*; Da= ping ...m.
Legend l Page No. ::I-453 Peport No. 44681-2 TRS I FULL SCALE SHOCK SPECTRUM [g peakj G Byron /Braidwood RRS Syron/Braidwood Station 1.0 C 10 C 1COk 1CCCC Co=monwealth Edison Co. CAMPING 100.L _ .,e I e l a t 4
- I
.i l 6 10's + e f s 4 a e8 = %I . j 1 ii'f E - I:.
- TliL, y
,1 .F I'!! I. '.i sf: i ,. t g, 1 I!. 1 i i 1 l j}j T . 6 lj ji g i,:r ...i u.. o, i e. 3 3 i ,4,, 1,, U f u. 3 1: i I 4 lw 8" I u-a r r 1 l SS i -L - i. O' ' +- i a a + *
- r a. 's a
a ... r. ie .,.e,. 1 10 1CCC Frecuency (Hz) 1 l s SPECMEN LCCATlCN No. Fig. 8.4 AXIS TEST AUN NC. I l Comparison TRS vs RRS Horizontal OBE i Side-to-Side / Vertical 2% Damping
l Legend Page No. !!!-444 TRS Repor: No. 44681-2 FULL SCALI SHOCK SPECTRUM (g peak) G Byron /Braidwood RRS Byron /Braidwood Station 1.00 10 C 100 2 1CCCC Commonwealth Edison Co. CAMPING d 100,,7 e a ? ega e 4 s 8 10,e e e e s m e 2 ~ 'i ?= 1 f I I 1 . FE EP I 1 1 I Ie f '[ I i. I I IF i3 I i 1 i%F.. i i i i i i i
- ti i i i#
I. 4 66 6 6F l' e i i f i 4 I, rt i 44 Igei 'l: I i i i it ti i! : +I e e ~ 2 1 7 e -3 30 e = 8 = e a 1__. an 3* -q \\ 0 I' t a a . e e r e e ie a a . e e a . e e r. ic 1 10 Frecuency !Hzl SPEC: MEN LOCATION NO. VC A ~ Fig 8.5 Axis F E/d TEST AUN NC. / Comparison of TRS vs RRS Vertical DBE (SSE) Front-to Back/ Vertical 2% Damping
l l Legend TRS l Page No. :::-439 G Byrcn/Braidwood RRS Report No. 44681-2 FULL SCALE SHOCK SPECTRUM (g Peak! l Byron /Braidwood Station Commonwealth Edison Co 1.0 C 10 0 1CO 2 1CCCC CAMPING b 100. 9 e s 9 I b L I' L i .i. l l t 1 l 1 i e ,} ~ --- 5 _=. E ~ 1 2, ~ ^ k y s x II _I.Y I !l! 1 L
- 1 a.EJ:
'1 1, 1 I J l I'. LI'# r I' ).! \\/ - i ~ l !iji i I 1 i i fi a 1 ii If!. iii 6 i L{ f e e}li ei1 r i
- i
- i
- i i
1. y s i: w na 3 *, s g__-- = EE2 a s h o 33. i ( l i. l 3 3 1 . I. m g s s s e e r e e so a s s e e i e e,e a s s e e i e e.o 1 10 CC Frecuency [Hz) ) SPEC: MEN LCCAT;CN NO. l pig, g,g N,I l Axis TEST AUN NC. Comparison of TRS vs RRS Horizontal DBE (SSO Front-toBack/ Vertical 2: Damping
..,-_.,.....-.m. - ~ = ~ ~ - - - - ~ - ~ ~ ** Leeend l Page No. :::-468 7gg i Report No. 44681-2 G Byron /Braidwood RRS PULL SCA!,E SHOCK SPECTRUM Ig peak) Byron /Braidwood Station t Commonwealth Edison Co. i 1.0 C 10 C 1CO 2 1CCCC i OAMPING lMcl l 100' . a::t e e i w l 1 4 i. 10 e a f e e m ur -f 2, - f h.- o i ii m ,,. ;,o n-. 1 _'I m V f / e ii a h.. EEE!! EE E EE !! E E I E @ h E I EE IM M bh ih !!! =!! = = E e 33 1 1 1 I i r i j g i a .i,.... i a a ... r a s ie a a ... r e e ie a .,,e 1 10 100 10CC g SPECMEN LCCATICN NC. N ~ Fig. 8.7 ,d TEST RUN NC. M AXIS Comparison of TRS vs RRS Vertiac1 DBE (SSE) Side-toSide/ Vertical 2% Damping .m. ~..
i I l Legend l
- TRS j
Page No. :: -463 G Byron /Braidwood RRS Repcrt No. 44681-2 FULL SCALI SHOCK SPECTRUM Ig peak) Byron /Braidwood Staticn Commonwealth Edison Co. 1.0 C 10 C 1CO 2 1CCCC CAMPING N 100e 9 e s e i 10 'l ? 4 e 4 3 l u1 3 3 1,, e e V ? [: ~0!! 1: 90 i e a ... r e s ie a a ... r e s ie a a .r.... 1 10 100 1000 g SPECMEN LCCATICN NO. OO Fig 8.8 ~ SN, TEST AUN NO. D Axis Comparison of TRS vs RRS Horizontal DBE(SSE) Side-to-Side / Vertical 2% Damping w.
SECTION #9 INDEX WYLE LABORATORY TEST REPORT #44681-2 { VOLUME I 0F II ( Page 1 Brief Summary of Cells Tested in Program. Page 2 Test Sequence - References. Page 3 Specimen Description - Quality Assurance. Page 4 Table 1 - Test Specimen Identification Artificially Aged Cells. Page 5 Table II - Identification of Naturally Aged Cells. Page 6 Table III - Battery Sizes and Weights. Page 7 Table IV - Test Sequence. Pages 8-9 Table V - Test Summary. SECTION I THERMAL AGING Pages I-1 through I-5 Requirements, Procedures and Results. Appendix I Notices of Anomaly (s k,,) Pages I-7 through I-16. Appendix II Table Page I-18 Table I-I Power Supply / Cell Group Assignments. Appendix III Figure Page I-20 Fig. 1 Test Chamber Layout with Thermocouple Locations. Appendix IV Photographs Pages I-22 through I-38 Cell and/or Chamber Layout. Pages I-39 through I-46 Time Temperature Cell Component. Appendix V Typical Data (Monitoring) Sheets Page I-48 Cell Temperature Page I-49 Charger Float Voltage. Page I-50 Charger Float Current Appendix VI Pre-Thermal Aging Cell Data Pages I-52 through I-55 Appendix VII Instrumentation Equipment Sheets Pages I-58 through I-68 -"3 Appendix VIII Discharge Capacity Data on H O Loss Accident Cells 2 ) Pages I-70 through I-108 s \\ PCT /22
SECTION #9 (Cont'd.) 1 SECTION II POST-THERMAL AGING-FUNCTIONAL Pages 11-1 and II-2 Requirements - Procedures - Results Appendix I Notices of Anomaly Pages 11-4 and II-5 Appendix II Table Page II-8 and II-9 Table II-I Discharge Data (Post Aging) Appendix III Figure Page II-12 Figure II-l Capacity Discharge Test Setup 1 Appendix IV Photographs Pages II-14 and II-15 Discharge Setup Appendix V Data Sheets Post-Thermal Aging Capacity Discharge Data for Seismic Series I. Pages II-18 through 11-59 Post-Thermal Aging Capacity Discharge Data for Seismic Series II. Pages 11-60 through II-63 Naturally Aged Pre-Seismic Capacity Discharge Data for Seismic i ~ Series III. Pages II-64 through II-67 Thermal Aged and Naturally Aged Capacity Discharge Data for Seismic Series IV and V. Pages II-68 through 11-73 Naturally Aged Pre-Seismic Capacity Discharge Data for Seismic Series VI. Pages 11-74 through II-76 Appendix VI Instrumentation Equipment Sheets Pages II-78 through II-80 l l O PCT /23 i i -<,-----,.r w ,--,yv., --,,g- ,-,-.p ,,p,-, ,,-+e,- er--- wv-q -3 -,--i e a y er T-""v-'e
r l l 1 SECTION #9 l INDEX l / WYLE LABORATORY TEST REPORT ) (, VOLUME II OF II SECTION III SEISMIC QUALIFICATION Pages III-l through III-8 Data Summary Requirements - Test Procedures and Results. Appcndix I Notices of Anomaly Pages III-9 through III-11 Appendix II Tables Page III-14 Table III-I Series 1 Test Run Descriptions. Page III-15 Table III-II Series 2 Test Run Descriptions. Page III-16 Table III-III Series 4 Test Run Descriptions. Page III-17 Table III-IV Series 5 Test Run Descriptions. Page III-18 Table III-V Series 6 Test Run Descriptions. Appendix III Figures Page III-20 Fig. 1 Horizontal Operating Basis Earthquake (67% SSE) Required Response Spectrum. Page III-21 Fig. 2 Vertical Operating Basis Earthquake (67% SSE) Required Response Spectrum. N Page III-22 Fig. 3 Horizontal Safe Shutdown Earthquake g / Required Response Spectrum. 4 Page III-23 Fig. 4 Vertical Safe Shutdown Esrthquake Required Response Spectrum. Page III-24 Fig. 5 Horizontal Operating Basis Earthquake Required Response Spectrum. Page 111-25 Fig. 6 Series 6 - Vertical Operating Basis Earthquake - Required Response Spectrum. Page III-26 Fig. 7 Horizontal Safe Shutdown Earthquake Required Response Spectrum. Page 111-27 Fig. 8 Vertical Safe Shutdown Earthquake Required Response Spectrum. Agpendix IV Photographs III-I Through III-25 Page 111-30 through III-54 Specimen Test Setups Test Series 1 through Series 6. Appendix V Transmissibility Plots Series 1 Test #1 Side-To-Side / Vertical Axis HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-57 through III-72 Test #8 Front-To-Back/ Vertical Axis g-g HCA = Horizontal Control Accelerometer. I VCA = Vertical Control Accelerometer. d ' * ~ ' Pages III-73 through III-88 PCT /24 i
SECTI6N #9 (cont'd.) Series 2 Test #1 Front-To-Back/ Vertical Axis HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-90 through III-101 Test #10 Side-To-Side / Vertical Axis HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-102 through III-ll3 Series 4 Test #1 Front-To-Back/ Vertical Axis HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-115 through III-126 Test #9 Side-To-Side / Vertical Axis HCA = Horizontal Control Accelerometer. VCA - Vertical Control Accelerometer. Pages III-127 through III-138 Series 5 Test #1 Front-To-Back/ Vertical Axis (~^ HCA = Horizontal Control Accelerometer. j,,i VCA = Vertical Control Accelerometer. Pages III-140 through III-147 Test #8 Side-To-Side / Vertical Axis HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-148 through 111-155 Series 6 Test #1 Front-To-Back/ Vertical Axis HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-157 through III-160 Test #10 Side-To-Side / Vertical Axis HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-161 through III-164 Appendix VI Test Response Spectrum Plots Test Series 1 Run #5 Side-To-Side / Vertical Axis - OBE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. .r ' Pages III-167 through III-176 PCT /25
SECTION #9 (Cont'd.) Run #9 Front-To-Baek Vertical Axis - OBE HCA = Horizontal Control Accelerometer. g VCA = Vertical Cottrol Accelerometer. Pages III-177 through III-186 Run #14 Front-To-Back/ Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-187 through III-210 Run #17 Side-To-Side / Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-213 through III-238 Test Series 2 Run #6 Front-To-Back/ Vertical Axis - OBE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-240 through III-249 Run #9 Front-To-Back/ Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages 111-250 through III-271 Ak-Run #15 Side-To-Side / Vertical Axis - OBE s' HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages 111-272 through III-281 Run #16 Side-To-Side / Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-282 through III-303 Test Series 4 Run #7 Front-To-Back/ Vertical Axis - OBE HCA = Horizontal Control Ac celerometer. VCA = Vertical Control Accelerometer. Pages III-305 through 111-314 Run #8 Front-To-Back/ Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-315 through III-337 Run #14 Side-To-Side / Vertical Axis - OBE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. ('j 'T Pages III-337 through III-346 i Run #15 Side-To-Side / Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages 111-347 through 111-368 PCT /26
SECTION #9 (Cont'd.) Test Series 5 Run #6 Side-To-Side / Vertical Axis - OBE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelecometer. Pages III-370 through 111-379 Run #7 Side-To-Side / Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-380 through III-397 Run #13 Front-To-Back/ Vertical Axis - OBE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-398 through 111-407 Run #14 Front-To-Back/ Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-408 through 111-425 Test Series 6 Run #8 Front-To-Back/ Vertical Axis - OBE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-427 through III-436 Run #9 Front-To-Back/ Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-437 through III-450 Run #15 Side-To-Side / Vertical Axis - OBE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages III-451 through 111-460 Run #16 Side-To-Side / Vertical Axis - SSE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages 111-461 through III-474 Appendix VII Instrumentation Log Sheets Instrumentation Equipment Sheers Series 1 Pages III-477 through III-515 g PCT /27
SECTION #9 (Cont'd.) b) (7-Appendix VIII Seismic Test Report #44681-1 Seismic Simulation Test Program on One Battery Rack Containing 3FPR-23 Battery Cells Pages 1 and 2 Summary Pages 3, 4, 5 Test Requirements Pages 6, 7, 8 Test Procedures and Results Page 9 References Page 10 Table I Test Run Descriptions Page 11 Fig. 1 Horizontal Operating Basis Earthquake i Required Response Spectrum. Page 12 Fig. 2 Vertical Operating Basis Earthquake Required Response Spectrum. Page 13 Fig. 3 Horizontal Design Basis Earthquake Required Response Spectrum. Page 14 Fig. 4 Vertical Design Basis Earthquake Required Response Spectrum. Page 15 Fig. 5 Capacity Discharge Test Setup. j Page 16 Photograph 1 Test Setup Side-To-Side / Vertical Orientation. Page 17 Photograph 2 Accelerometers 1H, 2V, 3H, and 4V (FPR-23). Page 18 Photograph 3 Accelerometers 5H, 6V, 7H and 8V (FPS-25). Appendix I Transmissibility Plots Test #1 Front-To-Back/ Vertical Axis HCA = Horizontal Control Accelerometar. VCA = Vertical Control Accelerometer. Pages 20 through 27 Test #8 Side-To-Side / Vertical Axis HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages 28 through 35 Appendix II Test Response Spectrum Plots Run #6 Front-To-Back/ Vertical - OBE HCA = Horizontal Control Accelerometer. l VCA = Vertical Control Accelerometer. Pages 38 through 47 Run #7 Front-To-Back/ Vertical - DBE l HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages 48 through 65 Run #14 Side-To-Side / Vertical - OBE ((}/ HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages 66 through 75 PCT /28
SECTION #9 (Cont'd.) Run #15 Side-To-Side / Vertical - DBE HCA = Horizontal Control Accelerometer. VCA = Vertical Control Accelerometer. Pages 76 through 93 Appendix III Instrumentatien Log Sheets And Instrumentation Equipment Sheets Pages 96 through 101 Appendix IV Pre-Seismic Capacity Test Instrumentation Data Sheets And Instrumentation Equipment Sheets Pages 104 through 107 l Appendix V Post-Seismic Capacity lest Instrumentation Data Sheets I And Instrumentation Equipment Sheets Pages 110 through 113 Appendix VI History of the Naturally Aged Cells Pages 116 and 117 SECTION IV POST-SEISMIC CAPACITY DISCHARGE TEST l Page IV-1 Requirements - Procedures. l Page IV-2 Results. Appendix I Notice of Anomaly Page IV-4 Notice #14, 4 Appendix II Table Page IV-6 and IV-7 Table IV-I Discharge Date - Post Seismic. Appendix III Figure IV-1 Page IV-1 Capacity Discharge Test Setup. Appendix IV Data Sheets - Capacity Discharge Data Seismic Series 1 Cells: lAl, lA2, lA3 1B1, 1B2, 1B3 1C1, 1C2, 1C3 1Dl, 1D2, 1D3 Pages IV-13 through IV-30 Seismic Series 2 Cells: 2A1, 2A2, 3A3 3B1, 3B2, 3B3 2Cl, 2C2, 2C3 Pages IV-3? through IV-35 PCT /29
. _ -. - - ~ _ .. - _ =_ _. _. i SECTION #9 (Cont'd.) i ) Seismic Series 3 4 Cells: 17, 16, 21 l; 46, 47, 48 Pages IV-37 through IV-39 Seismic Series 4 l Cells: 1,2,3 ) 12, 13, 14 3B2, 3B1 Pages IV-41 through IV-43 6 1 I Seismic Series 5 Cells: 4, 5, 6 4BI, 4B2, 4B3 Pages IV-45 and IV-46 Seismic Series 6 Cells: 7,8,9 Pages IV-48 and IV-49 i Appendix V Instrumentation Equipment Sheets l Pages IV-52 through IV-55 l Section 5 Gould Test Procedure (Heat Aging) Pages V-2 through V-18 4 i 1 i 10 PCT /30 l ---w +w--weve,--wee,e-m v -x+-erm s-r-+,- - - - + - +mav~-~---++orm-------w,wv--vw-em~- - m ww-x- e saw e- -w---e-w ---w-w,--wvv-w ,v v p --w ,--g r,-v r~ w
t SECTION #10 COULD II;STALLATION AND OP,E_RATII;G INSTRUCTIONS GB-3384D e/80 t t These instructions are designed to cover a wide variety of battery' applications 1 and are, therefore, not finite for specific usage. / Additional guidance for Class 1E lead storage batteries is referenced-in IEEE 484-1975 and IEEE 450-1980. These shall be used as the final determinent. j s I l l l / O v PCT /21 g i
p. Stationary Battery Installation O and operating instructions E 6 1 ? .E 't- ' e %y ,,s... ~q~~ - ~-l ) 2.* ', ",:^ ,j+.,. },- _.C'. ..,..... k r.- f. _..? -. __ j _. -. h.., . y < (<. ' ' '., ' ' ,:.4 9 5 .,.v.g 2.. . 3.'M*\\ g _Q n j. ~. 1 e.-,, ), Y $i .,)',,'. {"
- 4. ;,. - (
y 1,'y.9,. i. ;, -L '.~,-
- r. #
1 N., f, 't- , g
- . f -
}.,,'. ',... . p ,,1 ,'s T e.' s. . {
- -. l'
}.') .- M* ) ~ d I . y
- ^
I- .r ( g. la y I - 3 5ft p : m. w..-
- g. s
.. s '.i.. , ;y c. .O.4 M'*==;,- Q..s 1 % ~ /t j } f [,f f J i1 {-h h.Mh. '. lg, ~ ffll__ly' c. P'p. i * +,;*.^' -e ,e a .,? '? .= ! a , (AQ.. , f _.,-~'I"', + .,j ' w. 7 -c, ^%g.,. 4. V 1.. m- .t +
- : x 4 :
- - +gq 3
-l fa . g.x .4 ... ' i,y' N'.,.,,, .g,. 'i-u L. f t /. - a T. .,A j. a,. ,e _*k e.. fma. ,,. _.. 4,,, 3;;, c' ~.g g ""T
- j
+ r. .m.;. r 's, }'. ',- p' [' _ j ' ' b '[, 4 *. ';g..?. i'E < m t,, f %* ' g.f {lW *.': ' 'ry,.,... [ -.[, L ' '. * $ ,,y. ./.* h'4
- ,..g, e',
.g ge
- l
.;.2. b, "4 j 'i:.. Y 9f/e.i_ e ,y, g d 'i o e 'j iN g j ' ",g ' e, f. < ' +f. i. - ~.. -. i /.t. '" i i ) GOULE Electronics & Electrical Products
l l O a' 7 t / i O A YOUR GOULD REPRESENTATIVE s SALESPERSON TELEPHONE LOCATION O s
D STATIONARY BATTERY INSTALLATION l AND OPERATING INSTRUCTIONS LEAD ANTIMDNY TYPES LEAD CALCIUM TYPES g i ' % ggggp::= 4 GOULe Elcctronics & Electrical Products
INDEX CN> page page SECTION I SECTION iX 1.0 General Information. 1 9.0 Operation 8 9.1 Floating Charge Method 8 SECTION 11 9.2 Float Charge Float Voltages 8 2.0 Safety Precautions..... I 9.3 Voltmeter Calibration. 9 9.4 Cycle Method of Operation 9 SECTION lil 9.5 Recharge 9 3.0 Receipt of Shipment 2 SECTION X 3.1 Concealed Damage. 2 10.0 Equalizing Charge 9 3.2 Electrolyte Levels 2 10.1 Equalizing Frequency. 9 10.2 Equalizing Charge Method 10 SECTION IV SECTION XI 4.0 Storage Prior to Installation. 2 4.1 Storage Location. 2 11.0 Specific Gravity 10 11.1 Hydrometer Readings..... 10 4.2 Storage Interval 2 4.3 Ory Charged Batteries. 2 11.2 Correction for Temperature.. 11 11.3 Correction for Electrolyte Level. 11 SECTION V 11.4 Specific Gravity Range. 11 5.0 Rack Assembly. 2 SECTION Xil SECTION VI
- 9* *'
6.0 Unpacking and Handling. 3 SECTION Xill (v) 13.0 Pilot Cell 12 SECTION Vil 7.0 installation 3 SECTION XIV 7.1 Battery Location 3 14.0 Records 12 7.2 Temperature 3 SECTION XV 7.3 Temperature Variation. 4 15.0 Water Additions. 12 7.4 Ventilation. 4 7.5 Placement of Cells 4 SECTION XVI 7.6 Cell Terminal Hardware 4 16.0 Tap Connections. 13 7.7 Connecting Cells... 4 7.8 Completing Installation 5 SECTION XVil 17.0 Temporary Nonuse 13 SECTION Vill SECTION XVill 8.0 Initial Charge.... 7 18.0 Battery Cleaning. 13 8.1 Constant Voltage Method 7 8.2 Constant Current Method 8 SECTION XIX 8.3 Initial Charge Electrolyte Levels. 8 19.0 Connections. 13 TABLES FIGURES TABLE A 7 FIGURE 1. 3 TABLE B 7 FIGURE 2 5 TABl.E C. 8 FIGURE 3. 6 TABLED. .10 FIGURE.1. 6 ) TABLE E .10 FIG URE S. 11 v BA TTER Y TYPES. .14 ~.
SECTION I Failure to follow this precaution will result in excess heat and violent chemical reaction g s'J 1.0 GENERAL INFORMATION E. If electrolyte comes into contact with Caution! Before proceeding with the un-skin or clothing, immediately wash with water packing, handling, installation and operation and neutralize with a solution of baking soda of this lead acid storage battery, the follow-and water. Secure medical treatment. If elec-ing general information should be reviewed trolyte comes into contact with the eyes, wash together with the recommended safety pre-or flush with plenty of clean water. Secure cautions. medical treatment immediately. A lead-acid battery is an electro-chemical F. Exercise care when handling cells. When device containing an electrolyte which is a lifting straps and strap spreaders are provided, dilute solution of sulfuric acid and water. use them w.th appropriate mechanical equip. i Th.is electrolyte is corrosive and can cause ment to safely handle cells and avoid injury injury. to personnel. Lead-acid batteries, when installed, are capable G. Promptly neutralize and remove any of high voltage which can cause electrical electrolyte spilled when handling or installing shocks to personnel, i cells. Use a baking soda / water solution (1 lb. All lead-ac.d batteries, in the course of er gallon of water) to prevent possible in-normal operation, generate gases which can jury to personnel. be explosive. H. Make sure that all battery connections Stationary batteries (when installed) are are properly prepared and tightened to pre. usually on float charge continually, unless vent possible injury to personnel or failure on discharge in the event of A.C. failure, of system. 4 l. Familiarize personnel with battery install-ation, charging and maintenance procedures. Restrict access to battery area, permitting "i"*d P.*'.s n nel nly, t reduce the possi-SECTION ll bility of injury. J. Whenever possible, when making repairs 2.0 SAFETY FRECAUTIONS to charging equipment and/or batteries, in-terrupt AC and DC circuits to reduce the A. Wear rubber apron, gloves and safety possibility of injury to personnel and damage goggles (or face shield) when handling, in-to system equipment. stalling or working with batteries. This will help prever.t injury due to splashing or spill-age of sulfuric acid. B. Prohibit smoking. Keep flames and sparks NOTE of all kinds away from vicinity of storage if the foregoing precautionsare not batteries as liberated or entrapped hydrogen fully understood, clarification should gas in the cells may be exploded, causing be obtained from your nearest Gould injury to personnei and damage to cells. representative. Localconditionsmay introduce sitaations not covered by C. Never place metal tools on top of cells, Gould Safety Precautions. Here since sparks due to shorting across cell termin-als may result in art explos, ion of hydrogen gas again, contact the nearest Gould representative for gu. dance w. h i it 4 protect against short. in or near the cells, insulate tool handles to your particular safety problem; ing. also refer to applicable federal, state D. When preparing electrolyte, always pour and local regulations as well es in-acid into water, NEVER water into acid. dustry standards.
SECTION lli SECTION IV O I V 3.0 RECEIPT OF SHIPMENT 4.0 STORAGE PRIOR TO INSTALLATION Immediately upon delivery by the carrier, 4.1 STORAGE LOCATION examine for possible damage caused in transit. Damaged packing material or if the battery is not to be installed at the stainir.g from leaking electrolyte would indi-time of receipt, it is recommended that it be cate rough handling. If such conditions are stored indoors in a cool [600F (15.6oC) to found, make descriptive notation on delivery 900F (320C)], clean, dry location. Do not receipt before signing. If cell damage is tier pallets or possible cell damage may occur. found, request an inspection by the carrier and file a damage claim. 4.2 STORAGE INTERVAL For batteries shipped wet, fully-charged, the following storage intervals from date of ship-ment to dam of instaHadon and inWal charge 3.1 CONCEALED DAMAGE should not be exceeded: Shortly af ter receipt (within 15 days), examine Lead Antimony Types: all cells for concealed damage. Pay particular Three (3) Months attention to packing material exhibiting dam-Lead Calcium Types: b age or electrolyte staining. Cells with electro-Six (6) Months V lyte levels more than 1/2" below top of plates Storage beyond the above stated periods can I have suffered probable permanent damage due result in sulphated plates which can be detri-to plate exposure to air. If this condition or mental to battery life and performance. other ce5 damage is found, request an inspec-tion by the carrier immediately and file a The battery should be given its initial charge concealed damage claim. (see Section 8.0) before the end of the above stated storage intervals and repeated for each additional storage interval. Failure to charge in accordance with the above can void the battery's warranty. 3.2 ELECTROLYTE LEVELS 4.3 DRY-CHARGED BATTERIES Cells are shipped with electrolyte levels about For batteries shipped dry-charged, follow 1/8" below the high level line. During ship-special handling and preparation instructions ment, the levels drop due to the loss of gases supplied as well as appropriate sections of this from internal cell components. The amount Manual. of drop in level wi1 vary with each type of cell. Electrolyte levels, when received, may range from the high level line to slightly below the low level line. If this condition SECTION V exists, make no addition of electrolyte or water at this time (see Section B.3). If certain h>) cells have low electrolyte levels, with less than 5.0 RACK ASSEMBLY \\- 1/2" of plates exposed to air, add battery ) 9rade sulphuric acid of the same specific Assembly of the battery rack should be com-gravity as the remaining cells; thus bringing pleted in accordance with the Gould drawing low level cells up to the average level of other and/or instructions included with the rack, cells. GB-3492 or GB-3493. ___-___a__________
SECTION VI Af ter removal of outer carton and top spacers, tne cell should still be resting in the bottom corrugated tray. This tray is designed to be 6,0 UNPACKING AND HANDLING easily broken away to permit positioning of a lifting strap under the cell with a minimal Most cells are packed in individual corrugated amount of cell tilting. cartons. Some smaller size cells are packed in a master carton containing 2 (two) or 3 A lif ting strap and a strap spreader are fur-nished for use with mechanical lifting (three) cells. Cartons are shipped on wood devices, when cells weigh 75 pounds or pallets. Remove material holding cartons to See figure 1 which shows typical pallets, exercising care when cutting banding p sitioning of strap and spreader, material to prevent injury. If individual cells are to be moved to another location, do not Always use lifting straps and spreaders, when remove carton at this time. Exercise caution provided, together with suitable mechanical if using a two-wheeled hand truck and, to lif ting devices to prevent injury to personr.el prevent spillage of electrolyte, do not tilt or damage to cells. cell more than 25 degrees from vertical. Never slide cells across rough surfaces as severe When cells have been brought to the install-scratching of plastic container bottom may ation site, remove carton sleeve and top result in stressing and rupturing of the jar with corrugated spacers. subsequent loss of electrolyte. At all times, exercise care when handling cells to prevent scratching of plastic jars and covers. F L k M y e, r g - V\\ {; SECTION Vil j k., /M =..i V- ) n. -.. <ft1i'):.T..h p 7.0 INSTALLATION ya k I
- .F.;, [ f j Q I h
f:. g-5 , g.'- J 4..l }. y:.?. 7.1 BATTERY LOCATION ~. + >..x a
- *:j,.
f,>"L' h./ Q.., y k{, '+; y / 3.a j.M.( i p y It is recommended that the battery be in-v. stalled in a clean, cool, dry location. Cells ' jr, N 3 n n ; (i A.A g.f ;, Pj;j-should not be exposed to heating units, strip $ 1,,: <c. '. Y., zi i~ heaters, radiators, steam pipes or sunshine 9 A:. S l..' [ l."l '}y.).t.$ d h[- through a window. g -3
- g.
- + g. zf pr _ k l'f #
_.;-h,.' ] !.W{. y _y; ;. y> pq n y.34 < ogN e ' / 7.2 TEMPERATURE FIGURE 1 A battery location having an ambient tempera-ture of 750F(24oC) to 770F(250C) will result in optimum battery life. Batteries operated j U DO NOT LIFT CELLS BY THEIR TER-in high ambient temperatures will result in reduced life. Therefore, for longer life and i MINAL POSTS. Support the cells from 9 the bottom when handling and unpacking, ease of maintenance, locations having cooler in general, units weighing less than 75 pounds amb,ient temperatures are recommended. are handled manually, being supported from The normal battery operating temperatures the bottom. are between 60*F (16*C) and 90 F (32 C). 3 1
i 7.3 TEMPERATURE VA.RlATION When installing cells on the rack, start at the lower step or tier for stability and safety /O The location or rack arrangement should result reasons. 'd in no greater than SoF (2.780C) variation in Place cells on the rack so that the positive ter- ) cell temperatures of a series string at any given minal (marked."+") of each cell adjoins the time. If a greater variation is found, steps negative terminal (marked " ") of the next should be taken to correct the condition. cell. The standard spacing between cells is When uniform cell temperature is maintained, 1/2"at the top of the jars, the need for equalizing charges may be elim-inated or reduced in frequency. Adjacent cells should not touch;nor should any cell contact the metal rack supports or metal cable conduits. Check for proper alignment and 1/2" spacing between cells. Adjust cell 7.4 VENTILATION position where necessary. This should be com-pleted bef ore irstallation of intercell connec-Ventilation should be provided in the battery tors. room or area to prevent hydrogen, liberated The cell post surfaces have a coating of No-from the cells in service, from exceeding a 1% Ox-Id "A"* grease applied at the factory, concentration. Concentrations about this Do not remove any grease from posts. Rc-coat percentage can result in an explosive mixture, any surfaces that may have been exposed which could be ignited by sparks from adja-during handling of the cells. cent electrical equipment as well as accidental sparks or open flames introduced by person-nel. All air moved by ventilation in the battery room or area should be exhausted 7.6 CELL TERMINAL HARDWARE into the outside atmosphere and should not (- be allowed to recirculate into other confined On Gould "D", "E", and "F" type cells, two areas. lead-covered brass nu s are used in conjunction with a brass stud on each post. These are pre-greased at the factory with No-Ox id "A" 7.5 PLACEMENT OF CELLS grease and are shipped installed on cell posts. During installation of the intercell connectors It is assumed at this point that the battery (see Section 7.7), exercise care to provide equal rack has been assembled. Study the rack extension of the brass stud past each connector. layout and wiring drawings to determine Hold one end of the stud and install one of the proper location of the positive and negative lead-covered nuts finger tight. Install secord terminals of the battery; this will establish nut while holding first nut. This will provide correct positioning of the initial cell on each equal engagement of the nuts and stud. rack row. Cells are normally installed with On Gould "M" and "N" type cells, pre-plate edges perpendicular to rack length. greased stainless steel bolts, nuts and washers Measure and mark the center of the rack are supplied for cell terminals. stringer length. Determine the number of cells to be placed in each row. When an odd number of cells are in the row, place the center of the initial cell at the center point of the rack stringer length. 7.7 CONNECTING CELLS When an even number of cells are in the row, Refer to the cell arrangement drawing to deter-locate the initial cells so that the center of the mine the quantity, size and correct positioning p space between cells coincides with the center of the intercell connectors. On the "N" type d mark of the stringer length, h cells using 1-1/4" wide connectors, the bolt J holes are located off-center. Position con. necter so that the lesser dimension faces rrasemars or rne oearcorn cnem ca< co. downward on the celi post. 4
G:ntly clean cont:ct surfacts only, of the lead cuamv no nocustss '"'"""'"'""5
- " """*C" "5' plated intercall connectors, terminal plates and cable lugs using a brass suede brush or =00 C~
O 9 grade sandpaper. Cauticn: Do not use powered wire brush or coarse abrasives, as lead plating may be removed exposing copper, As contact surfaces are cleaned, apply a thin ~~ coating of No-Ox-Id "A" grease to these sur-b O> faces only. Starting at conter of the cell row, install con- _.O~B ~O nectors per wiring diagram and cell arrange-C m ment drawing. On cells using stainless steel bolts, washers 1 TO :O~ d>- = and nuts, make sure a washer is placed be-tween the bolt head and connector as well as g n -g between the nut and connector. N,, CAUTION When installing terminal hardware, C- - OE_Q f_O > - do not permit any items to fall into cell. If such material remains ~O 4 in the cell, contamination will re. O ~07 sult; requiring replacement of the [ .s; cell. in FIGURE 2 As. tercell connectors are installed, adj.ust them to a level position and finger tighten Following the torquing of stainless steel hard-4 hardware. ware, apply a thin coating of No Ox-Id "A" All terminal hardware installed on connectors grease to bolts, washers and nuts using a 1" should now be tightened as outlined in the p int brush. following table: Complete connecting of cells by installing necessary inter-row, inter tier or inter rack "D" type single cells - i2 lead-covered nuts with 1/4" stud.) cable connectors. Do not connect battery to charger at this time. Tighten to 75 inch pounds. "E" and "F" type cells - Re-check to be certain that the cells are con-(2 lead covered nuts with 5/16" stud.) nected positive (+) to negative (-) throughout Tighten to 100 inch pounds. the battery string. Measure the total voltage at the battery terminals. The voltage should .'M" type cells - be equal to the number of cells times the volt-(Stainless steel hardware). Tighten to age of one of the cells. Example: 60 cells 100 inch pounds. times 2.05 volts = 123 volts. "N" type cells - (Stainless steel hardware). See Figure 2. 7.8 COMPLETING INSTALLATION NOTE Cells of 1200 ampere hours or less may have Torque both lead covered nuts as been shipped with Gould Pre-Vent " vent / well as the bolt head and nut of filling funnels in place. These vents have g, stainless steel hardware to their flexible plastic caps installed for shipping s prescribed torque values. Torquing purposes. These caps may be removed and only one pde of either combination discarded, or they may be left in place if will not provide the desired tight-the battery environment is dusty. (See ness. Figure 3). 5
l m., d O } l
- ~*,f
...n, E ; .i i i i FIGURE 3 FIGURE 4 i O Cells from 1344 empere hours up through CAUTION 2550 ampere hours may have been supplied Before disposing of flexible plastic with a Gould Pre-Vent. For this size cell, the caps or screw type shipping caps, Pre-Vent units are not shipped in place. A neutralize any electrolyte on them standard screw type vent is used for shipping in a baking soda - water solution purposes. If Pre Vent units were specified, to prevent injury to anyone hand-they would have been packed separately with ling these discarded items, other accessories. Remove the screv-type shipping vent one at a time and instaII a Pre Vent unit. Discard the shipping vent. Electrolyte Withdrawal Tubes Other type cells may have separate explosion Certain calcium cells are equipped with two resistant vents installed at time of shipment. electrolyte withdrawal tubes which are in-l Separate plastic filling funnels are supplied stalled in the diagonal corners of the cell. along with this type vent. These funnels also These permit the taking of specific gravity have flexible plastic shipping caps. Here readings at a point about one-third from the again, these may be removed and discarded top of the plates. (See Section 11.1.) Refer or lef t in place if environment is dusty. to Figure 3. Tne Gould Pre-Vent assembly and other ex-A flexible shipping cap is installed on each I plosion resistant vents are designed to prevent withdrawal tube. These may be removed and external sparks or flames from igniting and discarded af ter neutralizing or left in place as exploding internal cell gases. (See Figure 4). dust covers. 6
Plastic Numerals (See Page 15) INITI AL CH ARG E Flastic cell numerals and battery terminal Recommended Voltages and Time Periods polarity labels are provided for 12-cell batter-ies of 40 ampere hours and over. These should TABLE A be installed per instructions included with the numerals. The positive terminal cell is usually Lead-Antimony and Plante Types designated as cell al in the series string Ceu Volts Time-H rs. Batterv-to-Charger Connection 2.24 200 The positive (+) terminal of the battery should 2.27 150 be connected to the positive (+) terminal of 2.30 120 the charger and the negative (-) terminal of 2.33 90 the battery to the negative (-) terminal of the 2.36 75 charger. 2.39 60 TABLE B Lead-Calcium Types SECTION Vlli Time-H rs. Time-H rs. Time Hrs. 1.215 1.250 1.300 Cell Volts sp. gr. sp.gr. sp. gr. 8.0 INITIAL CHARGE 2.24 444 2.27 333 Batteries lose some charge during shipment as 2.30 210 well as during the period prior to installation. 2.33 148 333 The battery should be installed and given its 2.36 100 235 400 initial charge as soon af ter receipt as possible. (See Section 4.0). 2.39 67 160 267 2.42 108 182 c ( \\ 2.45 73 125 2.48 83 8.1 CONSTANT VOLTAGE METHOD Constant voltage is the principal method to NOTE give the initial charge, as most modern Time periods listed in Tables A and B chargers are of the constant voltage des.ign. are for cell temperatures from 70oF in addition, sone systems have equipment (21oC) to 90oF (320C). For tempera-with voltage limitations making the use of tures 550F (130C) to 690F (20.50C) constant current charging undesirable. double the number of hours. For Determine the maximum voltage that may be temperatures 400F (40C) to 540F applied to the system equipment. This voltage (12oC) use four times the number of divided by the number of cells connected in hours. series will establish the maximum voltage per cell that may be used. The above recommended time periods are Establish whether the battery is of lead-considered r'ninimum. Raise the voltage to antimony, Plant 6 or lead-calcium construction the maximum value permitted by the system by referring to type on ce!! name plate and equipment. When charging current has compare this with the cell type listings on tapered and stabilized (no further reduction pages 14 and 15. for 3 hours), charge for the hours shown in For lead-antimony and Plante types, refer to the appropriate table and for the battery Table A and for lead calcium types refer to temperature, at the time of stabilization, until Table B to obtain various voltages and associ-the lowest cell voltage ceases to rise. Moni-ated time periods recommended. Select the high-toring of cell voltages should be started during est voltage the system will allow, to perform the the latter 10% of the applicable time period to initial charge in the shortest period of time. determine lowest cell in battery. 7
l 8.2 CONSTANT CURRENT METHOD 9.2 FLOAT CHARGE - FLOAT VOLTAGES If there is no limitation to the voltage that The following are the float voltage ranges re-V may be applied to the system equipment, commended for the various types of batteries, j constant current charging may be used for Select any " volts per cell" value within the the initial charge. Charge the battery at its range listed that will result in the series string finish rate listed in the Tables on pages having an average volts per cell equal to that 14 and 15. Continue to charge at this value. Do not interchange voltage ranges from value until the lowest cell specific gravity one type to another. remains stable over a 5 hour period. If the TABLE C ampere charge rate used is below the listed Recommended Float Voltages finish rate, increase the 5 hour stable period Lead-Antimony Types 2.15 to 2.17 propo.-tionately. For example, if the charge ohs per di rate is 1/2 the finish rate, increase the stable Plante Types 2.17 to 2.19 period from 5 hours to 10 hours. Where high volts per cell ambant temperatures prevail, cell tempera-Lead-Calcium Types: tures should be monitored so that 110oF Nominal 1.215 sp. gr. 2.17 to 2.25 (430C) is not exceeded. A reduct,on in the i volts per cell charge rate or temporary suspension of the Nominal 1.250 sp. gr. 2.23 to 2.33 charge should be made to permit cells to cool. of s per cell Resume charging when cell temperatures are Nominal 1.300 sp. gr. 2.28 to 2.37 at 900F (320C) or below. volts per cell 8.3 INITIAL CHARGE - Modern constant voltage output charging ELECTROLYTE LEVELS equipment is recommended for the floating charger method of operation of Gould During the initial charge, there will be an in-stationary type batteries. This type of crease in the electrolyte levels and they may charger, properly adjusted to the recommen- ) go above t" high level mark. (See Section ded float voltages, together with adherence J.2). Tho is .2 to gases, that were lost dur. to recommended maintenance procedures, ing transportation or standing in storage, being will assist in obtaining consistent service-restored to the cells. Do not remove any ability and optimum life. electrolyte even though levels may be above Af ter the battery has been given its initial high level. When battery is placed on floating charge (see Section 6.0), the charger should charge (See Section 9.21,the electrolyte levels be adjusted to provide the recommended should return close to the high level line. float voltage (see Table C) at the battery terminals. For example, a 60-cell lead-SECTION IX antimony battery should have 130 volts maintained at its terminals. 60 cells x 9.0 OPERATION 2.17 volts per cell (V.P.C.) = 130 volts. Do not use float voltages for lead-antimony 9.1 FLOATING CHARGE METHOD r Plante types higher than shown in Table C, as excessive water consumption and re-In this type of operation, the battery is con. duced battery life will result. netted in parallel with a constant voltage Lead-calcium types may be floated at any of the charger and the critical load circuits. The voltage values (Table C) shown for a particular charger should be capable of maintaining the nominal specific gravity. Use the lower V.P.C. value required constant voltage at battery terminals in the appropriate nominal specific gravity group, m and also supply a normal connected load where system equipment voltage limitations will ') where applicable. This will then sustain the not permit higher values. The use of higher V.P.C. t battery in a fully charged condition and also values may mske it unnecessary to give an equaliz-make it available to assume the emergency ing charge. However, the use of higher float volt-power requirements, in the event of an AC ages where high ambient temperatures prevail, power interruption or charger failure. may result in reduced battery life. 8
i 9.3 VOLTMETER CALIBRATION Do not excud those voltage valu:s listed in Table D or Table E on page 10. Panel and portable voltmeters used to indi- {V] cote battery float voltages should be accurate SECTION X at the operating voltage value. The same holds true for portable meters used to read individual cell voltages. These meters shooid 10.0 EQUALIZING CHARGE be checked against a standard every six months and calibrated when necessary. An equalizing charge is a special charge given a battery when non uniformity in voltage or specific gravity has developed between cells. It is given to restore all cells to a fully charged 9.4 CYCLE METHOD OF OPERATION condition using a charging voltage hiaher than the normal float voltage and for a specified This metnod is recommended for lead-number of hours, as determined by the voltace antimony and Plants type cells only. Lead-used. calcium cells should not be cycle operated. Non uniformity of cells may result from low in cycle operation, the degree of discharge floating voltage due to improper adjustment will vary for various applications. Therefore, of the charger or a panel voltmeter which the frequency of recharging will also vary, reads incorrect (higher) output vo!tage. Also, The recharge is conducted by manually starti variations in cell temperatu es greater than ing the charge, generally using the normal 50F (2.78oC) in the series string at a given finish rate listed on pages 14 and 15. The time, due to environmental conditions or amount of charge necessary depends on the rack arrangement, can cause low cells. number of ampere hours discharge. If a shorter recharge period is desired, higher 10.1 ECUALIZING FREQUENCY j charge rates equal to the eight hour rate of (V discharge may be used when the battery is The following guidelines cover lead-antimony, more than 25% discharged and the cell voltage Plants and lead calcium types. Recommen-on charge is below 2.33 volts. When the cell dations not applying to all tupes will be so voltage reaches 2.33, the charge rate should desigr.ated. be reduced to the normal finish charge rate. The charge should be stopped when the spe-A. An equalizing charge should be given quar-cific gravity is ten (.010) points below the terly or as required by conditions in the follow-normal fully charged value, ing paragraphs (Note: lead calcium types at n minal 1.215 sp. gr. floated at 2.20 V.P.C. to The battery is now available for the next dis-2.25 V.P.C., nominal 1.250 sp. gr. floated at charge recairement. The battery should be 2.27 V.P.C. to 2.33 V.P.C. and nominal 1.300 given an equalizing charge monthly by con-sp. gr. floated at 2.31 V.P.C. to 2.37 V.P.C. tinuing the regular charge until there is no may not require equalmng charges). increase in specific gravity of the pilot cell for three houes, when using the finis ~n charge rate. B. Equalize when the temperature corrected specific gravity of the pilot cell (or any cell for the quarterly reading) is more than 10 points below its full charge value. (See Section 11.2.) C. Equalize when the floating voltage of the 9.5 RECHARGE pilot cell (or any cell for the quarterly reading) All batteries should be rechar0ed es soon as is below 2.13 volts (nominal 1.215 sp. gr.), possible following a discharge (within 8 hours). 2.18 volts (nominal 1.250 sp. gr.), and 2.23 With constant voltage chargers, this will be volts (nominal 1.300 sp. gr.) or more than.04 accomplished automatically. However, to volts below the average for the battery. V recharge in the shortest period of time, raise D. Equalize to complete a recharge of the l the charger output voltage to the. highest battery in a m'inimum length of time follovting value which the connected system will permit. an emergency discharge. 9
E. If accurate quarterly records are main. NOTE tained (See Section 14.0) and the individual Time periods listed in Tables D and ,s (d) cell voltages and temperature corrected spe-E are for cell temperatures from cific gravities show no increase in spread from 700F (210C) to 900F (3200). For j the previous quarterly readings, equalizin9 temperatures 550F (130C) to 690F may be deferred. (See Section 11.21. (20.50C) double the number of F. Equalize once a year even though preced-hours. For temperatures 400F ing conditions did not require. (Lead calcium (4 C) to 540F (120C) use four times the number of hours. types floated per paragraph A, may n_ot require annual equalizing.) The above recommended time periods are con-sidered minimum. Raise the voltage to the maximum value permitted by the system 10.2 EQUALIZING CHARGE METHOD equipment. When charging current has tapered and stabilized (no further reduction for 3 Constant voltage charging is the pref erred hours), charge for the hours shown in the ap-method for quing an equalizing charge. De-propriate table and for the battery tempera-termine the maximum voltage that may be ture at the time of stabilization, until the applied to the system equipment. This volt-lowest cell voltage ceases to rise. Monitoring age, divided by the number of cells connected of cell voltages should be started during the in series, will establish the max; mum voltage latter 10% of the applicable time period to per cell that may be used to perform the determine lowest cell in battery. equalizing charge in the shcrtest period of time. For lead antimony and Plante types, refer t Table D and for lead calciwn types, refer to SECTION XI Table E to obtain various vohage and associ-O ated time periods recommindgd. 11.0 SPECIFIC GRAVITY M EQUAll21NG CHARGE Recommended Voltages and Time Periods In a lead-acid cell, the electrolyte is a dilute solution of water and sulfuric acid. Specific TABLE D gravity is a measure of the weight of acid in Lead Antimony & Plante Types the electrolyte as compared to an equal vol-Cell Volts Time Hrs. ume of water. Therefore, electrolyte with a specific gravity of 1.215 means it is 1.215 2.24 80 2 times heavier than an equal volume of water which has a specific gravity of 1.000. 2.33 36 2.36 30 2.39 24 TABLE E 11.1 HYDROMETER READINGS Lead Calcium Types Specific gravity is used in determining a cell's Time Hrs. Time Hrs. Time rs. state of charge. It decreases as the cell dis-charges and increases as the cell is charged; Cell Volts sp gr. sp. gr. sp gr. reaching its original value when the cell is 2 66 ful y charged. Specific gravity is expressed to the third decimal place (1.215) and is 2.30 105 (N 2.33 74 166 measured by a hydrometer float enclosed in ( ) 2.36 50 118 200 a glass barrel / rubber bulb syringe. D' raw suffi- '~ 2.39 34 80 134 cient electrolyte into the barrel, holding the j 2.42 54 91 syringe vertical and with no hand pressure on 2.45 36 S2 bulb, so that float is freely floating without 2.48 42 touching sides or top of syringe. 10
The gravity is rtad on the hydrometer sc:le at reading. This will give a more accurate reading the flat surf ace of the electrolyte. (See Figure of the average electrolyte density. 5). ,o 1 1 11.2 CORRECTION FOR TEMPERATURE G When taking specific gravity readings, correc-f \\ / tions must be made for variations in tempera-( ture of the electrolyte. For each 30F (1.670C) ( ) in temperature of the electrolyte above 770F r-) (~~7 (250C) add one point (.001) in specific gravity l { l to the observed hydrometer readings; and for I each 30F (1.670C) in temperature below 770F b (250C) subtract one (.001) in specific gravity ^ 3 l from the observed hydrometer reading. s !.ses EXAMPLE: l, Rooding I Hydrometer Cell Corrected to ( / k Reading Ternperature Correction 770F (250Cl 1.213 sp. gr. 580F(200C) .003 points = 1.210 sp. gr. i 1.207 sp. gr. 860F(300c) + 003 points = 1.210 sp. gr. gl l' 1.204 sp. gr. 950Ft350C) +.006 points = 1.210 sp. gr. i i fgip 11.3 CORRECTION FOR a ELECTROLYTE LEVEL L- ' W w The loss of water from the electrolyte due to U L evaporation as well as conversion of the wate-FIGURE 5 to hydrogen and oxygen by charging current; also affects the specific gravity value. For v) Clean the hydrometer glass barrel and float example: A fully charged cell with correct with soap and water as required for ease of high level at 77oF (25oC) will have a nominal read,ng and float accuracy. i s ecific gravity of 1.215. When the electroly e When recharging a lead-calcium cell, the spe-level has been reduced from evaporation and cific gravity reading lags behind the ampere charging by 1/4", the specific gravity will be hour input due mainly to the very low end of approximately 6 points (.006) higher or 1.221 charge currents. Mixi1g of the electrolyte is -@ 77oF(25oC). Therefore, when taking hy-slow due to the small amount of gas generated; drometer readings, the electrolyte level refer-so the gravity readings do not reflect the actual enced to the high levelline should be recorded state of charge. A similar condition exists for proper evaluation of the specific gravity after water additions. Therefore, meaningful value. This applies when taking a pilot cell gravity readings can only be obtained at the reading or for 10% of the cells when taking a top of the cell af ter an equalizing charge or quarterly set of readings, af ter six weeks on float, y For this reason, most Gould lead-calcium cells 11.4 SPECIFIC GRAVITY RANGE have electrolyte withdrawal tubes to permit sampling of the etecvolyte at a point one third Gould stationary batteries are furn. hed with a js ( down from the top of the plates. A long rub. @ 77 F (25,1y charged specific gravity of 1.215 " *Inal ful i ber tip on the hydrt meter is inserted into the C). tube to provide an everage value of cell specific gravity and a more occurate indication on the For special applications, nominal specific gravi-state of charge. ties such as 1.250 or 1.300 @ 77*F (25'C) may be ' ih When taking a hydrometer reading, the base used. i V of the hydrometer syringe should be pressed The specific gravity may range.010 points firmly against the tube opening to prevent within a battery for any of the nominal values back splash of electrolyte. Fill and empty the @ 77*F (25*C) with the electrolyte level at the hydrometer at least once in each cell before high level line and still be considered satisfactory. 11
SECTION Xll A. Upon completion of the initial charge and with the battery floating at the desired O float voltage for one week, read and record N._ / 12.0 CELL VOLTAGE VARIATION individual cell voltages, specific gravities ) (corrected to 770F(25oC), ambient tempera-The tabulation below indicates the normal ture plus cell temperatures and electrolyte cell voltage variation that may exist with the levels for 10% of the cells. The cell tempera-battery on float and no greater than a SoF ture readings should be from each step or tier (2.78oC) variation in cell temperature of a of the rack to reflect temperature range of series string at any given time. the battery. NORMAL VOLTAGE VARI ATION This first set of readings will be the basis for comparison with subsequent readings to re-Type Float Voltage Variation flect possible operating problems and the Lead; Antimony 2.15 to 2.17 V.P.C. {.04 V.P.C need for corrective action. Plante 2.17 to 2.19 V.P.C _.04 V.P.C Lead Calcium Nominal 1.215 sp. gr. 2.17 to 2.2b V.P C 105 V.P.C B. Weekly - Pilot cell voltage and also total Nominal 1.250 sp. gr. 2.23 to 2.33 V.P.C 1.05 V.P.C battery float voltage at battery termir als. Nominal 1.300 sp. gr. 2.28 to 2.37 V.P.C 1.05 V.P.C C. Monthly - Pilot cell voltage, specific gra-SECTION Xill vity, temperature and electrolyte level. D. Quarterly A complete set of individual l 13.0 PILOT CELL cell readings as recommended in "A" above. E. Any time the battery is given an equal-A pilot cell is selected in the series string t izing charge (see Section 10. 7), an additional reflect the general condition of all cells in the (q,/ battery regarding specific gravities, float volt-after battery has been returned to normal ) set of individual cell readings should be taken age and temperature. It serves as an indicator float for one week. These will serve as an up-of battery condition between scheduled over-dated basis for comparison with future all individual cell readings. readings. A slight amount of electrolyte may be lost F. Record dates of any equah.. zing charges each time a specific gravity reading is taken, even though it is recommended that all elec-as well as total quantity of water when added, trolyte in the hydrometer be returned to the Also record any maintenance and/or testing cell af ter reading. Therefore, it is suggested performed. that the pdot cell be changed to another cell The foregoing suggested frequency of record annually to provide a representative specific taking may have to be modified sorr.ewhat to gravity indicator for the battery, suit local requiremants. See Page 15 for Battery nameplate SECTION XIV SECTION XV 14.0 RECORDS 15.0 WATER ADDITIONS A complete recorded history of the battery operation is most desirable and helpful in ob-There are two conditions in the operation of taining satisfactory performance. Good batteries which cause a reduction in the amount records will also show when corrective action of water in the electrolyte, resulting in a lower-h may be required to eliminate possible charg-ing of the electrolyte level. These are normal y V ing, maintenance or environmental problems. evaporation and the conversion of water into A The following data should be read and perma-hydrogen and oxygen gases by the charging nently recorded for review by supervisory current. These gases are liberated through the personnel: cell vents. Periodically, this water loss must 12
be replaced with approved or distilled water Every three months, temporarily connect bat-to maintain the electrolyte level between the tery to charger and give it an equalizing charge. high and low level lines. To return to normal service, re connect all if suitability of the local water supply for use open connections, give equalizing charge and in storage batteries is questionable, contact then return battery to normal float voltage. U your nearest Gould representative for instruc-tions regarding procedure for submitting a SECTION XVill sample for analysis. A report will be ren-dered as to whether or not the water is seit-able. 18.0 BATTERY CLEANING If water is to be stored in containers, they Per. dically, clean cell jars and covers w.th a io i should be clean and of non-metallic material; water dampened cloth to remove accumulated such as: glass, hard rubber, porcelain or plas-dust. Cell parts damo with electrolyte should be neutra;ized with a baking soda - water Infrequently used water lines should be purged solution (1 lb. of soda per gallon of water). to remove accumulated impurities; thus pre-Apply with cloth dampened with the solution, venting their introduction into the battery. making sure none is allowed to enter the cell. Water additions should be scheduled prior to Continue to neutralize until fizzing action an equalizing charge so that mixing with the ceases, then wipe area with a water dampened electrolyte occurs. Also at unheated install-cloth to remove soda solution. Wipe dry with ations, arrange water additions when battery a clean cloth. temperature is above 500F(100C). in CAUTION: Never. troduce " battery additives" into a Do not clean plastic cell jars or covers w,th i Gould battery. solvents, detergents, oils or spray type cleaners, SECTION XVI s these materials may cause crazing and crack-o) ing of the plastic materials. (v 16.0 TAP CONNECTIONS SECTION XIX lt is not recommended that tap connections be used on a battery, as possible unbalance 19.0 CONNECTIONS between the groups of cells may result. This can cause overcharging of the untapped group Battery terminal and intercell connections of cells and undercharging of the tapped cells should be corrosion free and tight to provide supplying the load. This condition can cause satisfactory operation while on float charging unsatisfactory operation and reduced battery or when supplying emergency power. Per-life. iodically, these connections should be in-spected. For proper removal of corrosion, SECTION XVil disconnect the connections involved. Where l circuit continuity must be maintained, use l 17.0 TEMPORARY NONUSE temporary flexible cables, of adequate current l carrying capability, as parallel connections. [ An installed battery that is permitted to stand Remove corrosion by neutralizing with a idle for a period of time shoulet be treated in baking soda - water solution. Gently clean the following manner. With the battery on the affected area using a suede brush or =00 normal float, add approved water to cells to grade sandpaper. Apply a thin coating of bring electrolyte level to the high level line. No-Ox-Id "A" grease to the cleaned contact Give the battery an equalizing charge per surfaces and re-establish connection. Rein-p(y Section 10.2. Following completion of the stalled terminal hardware should be torqued equalizing charge, open connections at the to values in Section 7.7 (Connecting Cells). battery terminals to separate charger and load Annually, all terminal and intercell connections circuit from battery. should be re-torqued per Section 7.7. 13
BATTERY TYPES * ) LEAD-LE AD-l } ANTIMONY L E AD-ELECTRO-SPECIFIC CALCIUM LEAD. ELECTRO-SPECIFIC CALCIUM I 8 H R. LYTE GALS. G R AVITY CELL ANTIMONY 8 HR. LYTE GALS. GRAVITY CELL j CELL TYPE A. H. PER CELL RANGE ** TYPE CELL TYPE A. H. PER CELL RANGE" TYPE AS-5 to 0 09 55 1200 66 80 F T C 21 2 ASS TO O 09 55 1320
- 6. 5 90 FTC 23 j
3 AT5 '10 0 08 67 1440
- 6. 4 95 FTC 25
- 2. or 3 85-5 15 0.115 80 1560 8.3 85 FTC 27 7 85 9 30 0 25 80 1680 82 90 F T C-29
( 3 87-7 30 0 16 90 1800 82 95 F TCS 29 [ 2 or 3 CS-7 50 0 32 85 2 M A X - 170 170 1.3 75 2MCX 170 ! 2. o r 3 CS O-7 50 0 32 85 2 M A X-190 193 13 85 2MCX 190 { 2 of 3 CS 13 100 0 54 95 2 MAX 255 255 12 100 2MCX 255 { 2. or 3 CSO-13 100 0 54 95 MAX 285 285 1.7 80 MCX-285 ! 2. or 3 055 50 0 29 100
- 2. or 3 DSC 5 M AX 340 340 1.6 100 MCX 340 i 2. or 3 DSO 5 50 0 29 100
- 2. or 3 DSCO 5 MAX 380 380 2.1 90 MCX 380
! 2 or 3 DS. 7 75 0 40 100
- 2. or 3 DSC 7 M A X-425 425 19 105 MCx 425 t 2 or 3 050-7 75 0 40 100
- 2. or 3 DSCO-7 M AX 475 475 28 110 M C X -4 75
, 2. o r 3 DS 9 100 0 50 100 2 or 3 DSC 9 M A X 510 510
- 2. 7 105 M C X-510
- 2. or 3 050-9 100 0 50 100 2 of 3 DSCO 9
- 9 A X 535 595
- 2. 7 120 MCX$95 D K R-5 50 0 34 85 DC 5
~N A X 600 ~600 60 65 NCX 600 i DKR7 75 0.64 75 DC-7 N AX 672 672 60 60 NCX 672 DKR3 100 0 59 95 DC 9 N AX 750 750 55 85 NCX 750 DKR11 125 0 90 80 DC-11 N A x -863 640 56 80 NCX 840 D K R 13 150 0 86 105 DC 13 N A X 900 90C 51 105 N C X -900 0 t R.15 175 1 00 95 DC 15 N A X -1008 1008 5.1 100 NCx 1008 E K R 11 200 17 55 EC 11 N A X 1050 1050 49 125 NCX 1050 E K R 13 240 1.6 80 E C-13 N A x 1200 1200 50 150 N C X - 1200 E K R 15 280 15 100 E C 15 N A X 1344 1344 68 100 NCX 1344 E K R 17 320 18 100 EC 17 N AX 1350 1350 63 100 N C x -1350 t E K R-19 360 23 85 E C 19 N A x - 1500 1500 60 120 N C X - 1500 E K R 21 400 22 95 E C-21 N A M 1650 1650 80 90 N C X-1650 ) EKR23 440 27 90 EC 23 N A x 1680 1680
- 8. 3 100 N C x 1580
/ EKR 25 480 26 100 EC 25 N A x-1800 1800 76 115 NCX 1800 t EKR 27 520 31 90 EC-27 N A X 1848 1848 12 6 80 NCX 1848 E K R 29 560 30 100 E C 29 N A X 1950 1950 73 150 N C X - 1950 1 F K S 17 626 36 90 FCS 17 N A X 2016 2016 12 1 90 N C X -2016 F K S 19 704 34 105 FCS 19 N AX 2100 2100 11 5 105 NCX 2100 F K S 21 782 49 90 FCS 21 N A X 2184,2184 11.5 100 NCx 2184 I F K S-23 860 48 105 F CS 23 N A X-2250 2250 10 9 115 NCX 2250 F KS 25 938 67 90 F CS-25 N AX 2400 2409 10 3 130 N C X-2400 FKS 27 1017 65 100 FCS 27 N AX 2550 2550 97 150 NC%2550 F K S 29 1096 63 105 FCS 29 PLANTE TYPE CELLS F K S 31 1173 61 110 FCS 31 2 or 3 CFE-3 8 0 12 50
- 2. or 3 ET A 5 120 1.3 45 2 or 3 ETC-5
- 2. or 3 CPE*s 16 0115 90
, 2. or 3 ET A 7 180 12 80 2 or 3 ETC-7
- 2. or 3 CPE 7 24 0.171 85 I
ET A 9 -do 17 75 E T C-9 DPR 5 40 0 35 85 e i E T A-11 300
- 2. 0 75 E TC 14_
D P R-7 __ 60 0 65 65 [ E T A 13 360 29 60 E T C-13 DPR9 80 0.64 100 E T A 15 42O 2.7 75 ETC 15 DPR 11 100 0 90 90 E T A 17 480 35 65 E TC-17 D P R 1.3 120 1 01 90 I E T A-19 540 3.4 75 ETC 19 DP R-16 140 1.27 85 l E T A-21 600 42 75 ETC.21 DP R-17 160 1.17 90 f ET A 23 660 41 75 ETC 23 EPR 9 160 1.8 45 1 FT A 13 720 46 75 EPR 11 200 1.7 75 F T A 15 840 42 85 EPR 13 240
- 1. 6 110 F T A 17 960 56 80 EPR 15 280 18 115 F T A 19 1080 53 90 EPR 17 320 2.5 95 F T A-21 1200 68 80 E P R-19 360
- 2. 4 115 F T A 23 1320 6.5 90 FPS 11 415 52 75 i
FTA 27 1560 8.3 85 F PS-13 498 46 90 h F T A 29 1680 82 90 F PS-15 581 40 105 F T AS 23 1800 82 95 FPS 17 664 3.7 120 ( ) 720 40 75 F TC 13 F PS-19 747
- 5. 5 90
\\,./ 840 3.9 85 F TC 15 F PS-21 830 49 100 ) 960 55 80 F TC.17 F PS-23 913 64 1 C,0 F { 1080 54 90 F TC 19 FPS 25 996 6.1 110 'R$fer to Paragraph 8.2 for use of these tables.
- Specific gravity range applies tp en 8 hour capacity discharge.
14 , -. -. _ ~
INSTRUCTIONS STATIONARY POWER BATTERY Oj PLASTIC CE LL NUMER AL APPLICATION V To insure proper adhesion of the pressure 4. Nurrerals are shipped mounted on a sensitive plastic cell numerals, and polarity plastic backing strip. They are easily removed markings supplied with your Gould Station-by peeling back the plastic strip. Keep finger ary Power Battery, the following procedure contact with adhesive backing on numeral to should be followed: a minimum. 1. Numerals and polarity markings should 5. Locate and place numeral on side of not he applieo until after the cells have been jar, being careful that there is no conflict installed on the rack. It is recommended that with electrolyte level lines or side rails of they be applied to jar surfaces only, and not SEISMIC TYPE R ACKS. For clean appear-to cell covers or rack rails. ance, exercise care in numeral placement so
- 2. Clean the plastic jar surface, in the that all numerals are in the same relative posi-tion on each cell.
area where numeral is to be located, by using a cloth dampened with a washing soda solu-Install polarity markings on the appro-tion. Immediately dry the area using a soft priate cells in the same manner. dry cloth ta remove residual wcshing soda. CAUTION [ Do not use any solvent type 6. Following applicatiun of cell numerals matrials as they may cause damage to the and polarity markings use a dry cloth to rub plastic jai material. entire surface of each label to insure proper surf ace contact. 3. It is a general practice to designate the ) positive terminal cell as #1 with succeeding cells in series in ascending order. TYPICAL BATTERY NAMEPLATE } GOULD NO. OF CELLS TYPE SERI AL NO. CAPACITY AMPERE HRS. AT HR. RATE SPECIFIC GRAVITY GOULD INC., INDUSTRIAL BATTERY DIVISION, LANGHORNE, PA.19047 ROI 041921 {N, t ) m./ 15
O b l l l Gould Inc., Industrial Battery Division E 2050 Caoot Boule-3 Aest. LaNhorne. Pa.19017 { Teteonore (215) 752-0555 f CS Ca UCis GB 33848 SM 7/82 Pr.nted in U.S A. (Part No. 299-003384)
SECTION #11 DYNAMIC CELL ANALYSIS ~ As described in this report, a battery three plate model was established using intermediate plates as mass points on the double cantilever beam. The busbar is treated as a center point of the cantilever. This model was analyzed using strudel software programming. It was determined that the NCX-1680 cell has a first mode at 92.89 hz whereas the NCX-2550's first mode occurred at 105.11 hz. This analysis establishes that the NCX-1680 and NCX-2550 are similar in behavior as far as vibration is concerned. As established in the other portion of this report, NCX-1680 and NCX-2550 ) are similar in design and also have the same materials for their component parts. The NCX-1680 weighs 332 lbs. whereas NCX-2550 weighs 496 lbs. The difference is due to the number of plates used in both designs. NCX-1680 uses 21 plates whereas NCX-2550 uses 35 plates. l f O PCT /ll-51
- s. c. o.
s-to-az sacaT
- l ce# '
$ E Fo fCI_0'N TH E M ATH E MA TI C,%.i2 ET R R.M I'M A Ti oM _ ol I.H.E h L oW E S.T _ t4 A T U.re A ( oF THE INTERNA ( Et,EMENT l F v s o c e s c '(A g-I G B o N c x/'H AMO N c xdA X - 2. 55'o. cF CT o tJ L 0 B ATieg 55 C 0 t4 572.QCT! cM o F. 7 KE N cx /N AX.- I G o o ~d A7F E tt T_ ' 't i i D 73 ATT R G.'( Cod s ( S TS oF lo Po SITru s ?c A T 5 S A N (? l Il Na G ATive PtoTES A g.g A N O,e.g A cT ee s sTac,y" A. s l o t-L o u; S ' \\.04 y e. U, i~a A. '7CATC DIE: TAILS R.EF C ic F4 P ~ Go u to ptz Aus t N 0r 5 : ro e 3 se a t' M a tu < a -r tu < dJ '?- b >' I o C 7 27 - c - o o l, fos tisve G e.<, ") ~,b '74 + L o (7 2.5-c NecrATivs &c, o. ti o.7.r3 /' ,0.2.t s " s O- \\. o 4 k r 7WE WEcr A Ti ve. Pt A TE S IEesT o t4 TH E T5 o iT o N ( CFTHE F> ATtes y c A S ( N CT AT TWo foi NTS A N 4 d d.TE l MT AC C O M M ECIT-To E AcH oTHEd.kT T H E. To v# Tly A Co M Wf'o N TERMIN A L. 3 Ad T ri E fos TivE PLATE 5 A A. E S u (>f od.TE 9 AT T H E To r A T 7W fo i NTS Sy PLASTt c 'R o C S A N r/ AN 0s. Lt.5 TH AT IN T U f.N REST oH THE ToF o F 'T H E. N EcrATi v E PL6-TE S. Ei4 c H Po S t T i vie PL A TE-IS A L S o S a P ro,cT7s. O AT' T H E To F BY A Co M M ON TEFbeflN AL B A lt. T H E. PL A T E. 5 AAE C o W $ i O E.LKO IN FI N ITEt y' 1Ci Gi t r/ I N THE PE g.Pe N o t e ct A R PLsWe a y Yie Tu a o F TH e. Tla H T t '( fa c.k R O SE.P A rt ATo C S. f~or-Putut Mor s o F PArtTS At4 0 ASSpr/tist R E F 0 d'. 70 (To()L6 PtC4UllMCrS O 1 o E li t - i> i n a bf r N A L f'o s T (?cs) 105b53-h PLATc S J PPoer 2 0 0 .i 0 4 2. 8 8 - D C ac t A s s retr > t y' I O G ') c '5 - C PLATE. S d F Po 8.7~ ( AW CrLE)
)
- .. c. L.
6-lo - s z su S 1 cos srgucIlot4 oF THE Nc x/N /3 x - z Sfo T>ATn-e_y-Joe e C I T ii t 5 TATTECf 15 Sirmv At( To 't-tfA I G 8o 3 A~iT Erc.Y EXcE/ 7 THA r IT c o K s t ST.S OF l'? Po s t7t v e Pt.a Ta s A p l s nee.97tv P:.a T E S 4 R E A N LrF_a AcTEeuoTet y A s Fo Lt.o ws , c., g s ". c Ml __ Fetc P'L ATE 9ETaiL S kEFEr< 4 y - @g. ~ D. 4 To Cr out P P E AuJtN(75 $a e a {< e d f ui g d I c 57 7,,7 - c e o I, Pos tTWE Gre.. e ? $ $ ( d l o s 7 t.3 - c W re e M w c CT R _g _.z i s " c.m i
- _ ggt o
- o.7 e s" ;
l Foz PgacGNCTS oF FA RTS AN v AssEV(BLY 8.E.FEfC. To GoLLLO P R A W LN C7 $ ; Iot853-A PLATE SuPPoer 72 oo ~ l o G ') e 7_ - D c Ett SacTtoN l c G ') c 3 - C PL,9TR Su.F f o(T' ( Anc cm ) 1 o7 l7 3 - P Po si TNm B'd.5 75AR i IVf ATE 4/ A(., r!.0FE ATl E $ CoWn-Rot 4 To 'B'oTtf. 3AIT ER.iES ', (.E A C - CA L C.I d.M( 0 wit hlcrT.
- fo 9 l. 2.
Fi '3 S113 MUrf./.eTr.6 96 N 5 C'[:Gl5'f[- li
- 2 x ( O P. S. [. ; To i SSO N 'S CATI o = 0. 4 f' L A S Ttc Roo U t4 :7 W CrT. = 7l. S [Ff ',
$43ME6Tc 6 PEMS TY: O C
- O ix.l0'P.S.(,' Po t s S o t4 's EATi o = 0.42
'c A ST.c PL AT5. U N iT Vl e 7. = 4 4 FT *, S W. T5 NIE /lGE // PEN S iT 'l
- O Es o.3 z. x : c' g.s. i. ; Po i s s o s ')
12,4 rio = o.42 2 L i c.T 9_o t_y T. e. $ P5 ci Fic CTE.W i T Y
- l. I.l 5
h. C. Li, 6 - l o - 9 '2. SH
- 5 9c.veLaFtviENT' CI ST E_d CTIl(C,$4 _F/ C CE L S_3EficE S ER.TI N.h TH E V r4TERNAL ELE.NENTS coF EA CH BTf EK.'(,
T \\ NA7dcAL Fe.codeNc'( ls pitecTty gecATea To TH4 EtelitNT ST i FF NESS, 'THE $7 # FFEK THE ELRt 7/E.8 7 ( 5 THE Fftt= H E. R T N E 3 t; ATU R A L. FRecueHcy vliLL BE. C oM PA E'IN CT THE NEcrWTivE ' P't A T E S V (7H 7tf E Pos iT IVE PL A TE.5 54 P' Po(CT S Y STE.M IT 15 E v i o rE N T THAT THE NEcrA T f vt5 (>t oTE.S H Av i9 A STI FF e r% SuffotCT C'o N o iTs 0W, Sinc 2 h/ 2 A rCE INTEtt2STiE D IN THE ElflplENTS W ITH T HE L OW ES T N 47 URAL FEEcuM cy, o N L y T H E. f'oS (Ti vE PL ATE S Vlardit I NYt? S TI Cr 4TitD, ALL SotuTtoN S LL T i L i t.IE D c o t r1 P d TE(4 D'/WAylic AN A L?( S t S OFF E ctEi7 3 '( , CTT S T ra. up t Pgoc2e A M 9fi N.&, E ) c,H f'os i Tiv E PL6 TE !5 SuFfodTTES kT THE. To (' AT TH<CEE Po t N T S *, AT E A c H E N O Pa y rHE Pc AS Ti c Rov A H 4 T't ATE AHC7C E. it a FvtE S R.N.T I N C7 TWo 5 4 e Foicr3, THE -tH i rtv SU FFORT 3Ein T H fbu s SA /E Loc 4TE O 144 rt. cN o. E.No S u f fo(T point, a s ~i W E fx_c N c t r'AL Fs sTu ft E S oF TH E S Trc u c.T U lt A L Flo vie L. ARE A s FoLLows :
- 1. E A c.H [#c S : T i vE PL A T E IS F AB!ticATED F rz. oM LE A D I N A CTit.tC f4TrE tt N.
To S't w/ P e t F '( o d 7t A N A L'f S i S V/s. C r2 E A T E O AN t Os A L i? &.D Fit A NIE B y Ivf AIN TAlH i N Cr TH E C.7 fL i v M/Et odf T As A c o W sTA NT, THE V/ET PA S TE. 7 +M r 15 A00E0 To THE C7tteD V/AS c o t4 9 t p E,< E.O A s D'/ A S.S ONLy ANO t4 oT & rf T(C t f5l.iTlW Ct To TC i ce l 017'(, ALL FoseTivE e c. A T e s 4,<. e i v a s ri c 4 L m s t a. E s S H as ua wec o, sT Foa. B oTH B ATrebres, 7 OHt 1 Two SU Pf o@TS %fEttis Co n s t CE.iC Fc 0 hCTs %Cn Fo d EAcH fos I T i vie PL A TE A s A con sarcvAr t ve. A ssu rvi c ri o co s a A T THE 3 d.S P/ A (C ANd 7 S E TEco N O AT T H E THE M os7 9t sTA N T PL A S T'! c 9.o 0 L o c a ri oN, 0. EAcR T3 A TI E tt'( M o o s t co W s i s TE D o F 3 F u LL f'oS ITtYE PcgTE Pos i ri o s a. 0 A r T $ ( t2 T /o sT F t mJc i T3 c.e. L o c a 7, o N S i N CT4.OthiC. To Co dTrLO L Corr 1 P UTE.tC D'{ H A pit C hHAuf5l5 VJ.~Hs
i 1 R. C. D. 6 9 2. S H * 's-RE As oW 45CE Lt M ITS. TWE T$ti s 3A rc o F 3e TH 3ATrna ES h An.e sesoce Sea.W, Pe urste caricrwie t Ns.rursercs, Futt r FtdTES h/E rti5 Pt A CE O 47 7HE ENOS oF EMcH C A N 7iL m.v 5 it. A W /J 7 H-E. T 4 i rt 9 'Fu L t. fc A 7E \\N'A.5 Pos t T o !'.' AT mio-seas (sa:LTv.iitrew Te rc m t s a cs) o F T H E T u. S B A SiHtE Tif a i G S o 3 A Trn.cy d4 S A H EVEN N u teCD.,c oF Pc,9 72 ScTWEEM TEtt.Mt N A L 5 T HE fos (Tts e P LA T E N E A a.a s r N i 3 S P A N Po s t Ti O H %f A S c o H S o t?i5,C.M O. THE VIE M A t NI N Cr Po s i Tiv E PLA TE S Fo rt ' E A c H B ATrerty' WA S A s t LL NIE O , A5 MASS CoMCEW T,C ATt ON S A LO N 4 E AS FECTI V& T4 d S D A (C AHo PL A-S T t C 700 LacertoHs. 'R E 51.t LT S oF DyNAPI(c,dW4cyS(S, oi~ STfg_h L fxop_f AN(.M.IN & g Low eT N aTou s F,<.eev e s e y e i: <, H c X - ( 6 8 o 'B ATrut y = 92 a cyctes/sEc. Nc x-z5So 7 ATrc,cy = 1051 cyc t es /sec. C o K c c u3.i_og.', m i p tty o F T H E. N c.X - Z 5 5'o 3 ATT ErC 15 (7(tRSTE(C THE g< a i ve ry o s rt+ e u cx-l e e[o rsAire,ty. ruos rwa O
' I. J. P. 6 8 7 suser
- 5 mot 2FL or:
POSLTivE PLA~rES 9,ISI ND
- s.,
sus-EAR rPt.Asvic :mp j 'w LT^ 'O A PL.A.bTx, Rop 2 9 m m v _y I i s .THIC{< NESS OF +VE e' l i n GRID = o.318 e .4 i 'L4&T. OF +VE GRID =59 DEslTY OF LEAD x O. N . g ., slo L. oF CmRIB:.5.d -t =l 4 a 5 1.4 g 4 ~ 4 v t.PROPE RIl.ES oR.M EMBERS
- EWCtTH. OF A LL M EM BE R'S =-?> 151875 +4x 12 77 +Svio.
l A . tot L L l i4 = l TOTA L-VOL. oF ALL s i t MEMBERS e 14. 7 5 t u g 5geA oP MEMBERS =Jyf =0'l3 IN !, CROSS SE CTION A L Q / ( E Q OlV A L Li t T VJIDTH OF MEMS8RS = 01.3 [o.3)2 = o.41 ul
h~ h t-2 l- _ ___9 _-.-m / e m O = W IQ ,3 v" r o W- ~ q O 7 6 - K 4-S b.-- s i 3 '/-- 2 J '1 A tt tz 11 i 19 10 28 2-23 2.4 zg 24 17 28 QS) Qt) Cl0 5.-i Q Q Q1 9 G I O h
- 93.6,,
)i s 29 16 So 3,8 37 33 3+ 35 34 17 37 33 29 43 41 42 4G 4-f 45 18 46 ^ = 6.;y)\\;. ~ 6 i\\ s n g (,iyg qg. g.,9 :.3a -s \\g g A g .p N C ,p w 0) u 4 1 m 13 14 15 x-I a s r. a- / lo 11 11 7 H ~ 4
e ~ L. J P. G - 9.-8 2. SHEE Ty 7 job 890 .. o g. \\ 10.875" .l.43 3 s y s G pG . : \\S.. 19 P ;- 9 IM l ..p. - s-g ( l -Q en - is 4 3 s-a O* 66 g O' O.- a ^ h 'j, -l v v ,l }." L r ..~;. u .i.. v ~. ,.1 s i - 3 6 '9 t y i g / g a. l l g e k .-.-...mm.. m m
ti.'J. P. 6-9-82. SH 6.ET 8F 3 J 6' S Y O .....a ~ s 3 ( 'I jo.pf75" r i t.I,3Tal m s b .23 ($3 l ' J7 ^ r-l g, g,l}- ~. 4 . (.%. A,l 14-A oy O 3 .p 1 i g 5 .a. v c_ l 11 2, Z s x.. - .3.._ ~~ s .s ~ e-.6.... s r. s V. I 5, KOk ^) ' Y c' - s .r- .>\\ ..,e ,b_... -,e ,, - - - +
SHEE7*9 ~ I. J. P. (2 8 7. Jos 890 (, 10.8'75" t.t SYo y \\ @l ye d n te k, (3 = ,) a .c g, ,ae 4 N, Al / '\\5 s. n sy p' \\ @e i a. 4,I . c, o 5 'm Lc;) 12
- 1.
Z g s e g e - e q O ~ t
2-. J. P. 6-9-82. MEET c m Jos s90 h. w O Ci I g E _e -- i, 'h sn ,w m. J.. C8 'n i y til _s f f,. I I ob k '.. ) : .N. N o ,m y j s ') N (Q A N F N j',,'; l c(jl W l$h b '. it gF j (g) gy l .: ft. - - -M at a u WI I r;.4 " I' 'd @D g c
- ,.4 ' l e g
v.. gi S 9 y;: --> b a n k-a $g' 3; m 0U N nl n* M N 1 7;f2 h c e j k y'. o 3 l-,o. t 9,.... g 's l 9u j N d ') t . gF y.5) l 4, h l 8 f'* (g ~A
- . i wF I
'3 N w N e "O A 4 c..,3 l 4 g y g,,, g to %w l o. O
- ?
7s n 9S r. a u u e e g I 'd) G i y l go 4 6 49' 649" g, g y g, g 9 1l 1 - _1 q y, y
. c gg g g p g, I, g, p, f - 9. g - ..J.OB 290 a e. m. r c. \\
- 10. M 5"
( , 1.G33 ~ 4 l w ~l .\\9 1 g.t r~ 7 i ,,4
- o..
e 1 . gx C;. in g.. ~ 6* W 'l3 a t' A s .3 . gl "4.. ) v v z-lo - (g) .L, .s Z v a. s e 3
- o..
I I
..C........-..... .sHEEry f2. I. J. P. 9-82. JO .,B 890 ~ (
- 10. M 5
.. ' ' ' ' ' ~. ,1.43 3 ~ 43] ..n @ l1 6 8. .e n. e O q 4 p 6 <.) g Y a g 4 n m-u+ -g i I ) O' a. ' gl 1, a N). [9 / .y b 2. og Z %') O g e g p s * .rj-d I-g e 8 - g S 4 g T l -.r m.. -
--a p gy g.q g 1,,, p, Joe,290 O ...'e t p. 'r, t. 2 A, ) , f ' g, 1O. BT , \\.WC5 O 't g,- e 9 .,g g ; .a r~ g. h VT. ,.,... ) (t ..t
- e g
g . D.5 -G . ee O 4 s. gg .d. .6- $15 ^. o. (4*s g @. g . e. sl - . v. Q i l ) 4, .12. - (,) 3, m Z .x, s g I O .g f 8 .g g 8.. O i O I t g 8, e \\ g
~ 8 7_ Saes74l cFi r..
- 0. ' G - I d o G $ l' O REfoU 0 N T dE._hidLTMt<l AIJ C_A L __9_EIE@. MIN ail 0 N p.F T_H E
. low E_s-i K A T d E A L F E e Q U E N c '( o F ___T+4 E I NT E g N A L ELEME NT S ? 6 od_L P EAT T E R Y N c. x/N A X - C= c> o. C 0 9 STE d CT Lo W O F T}f E._KC x /W A X - G oo '6ATi'EIt Y : o,19 5 " >1 s .Fot. PL ATE 9ETAI L S RE FE r< A-[i f *- \\- To dodLg PtcAu)(N6rS : -A-M E d b S 3 d lo6722-C-Ool fostT(VEC74 w g d. s<.>nig d 3 y y I06723-C t4Ec7ATivs 6 f { g+ + n I l 0.31 $ go.131 yo.7I5" i 3 ) o.n d',J, i T Hi s T. ATTE C.'( Cou s t s TS o F 4 Po s i Ttv e PLATE S M O 6 NSLTATiVE PLATES ARE. AWGEO Ar-TEEN ATELy As Shou)N A 6 oV E., THE MECrA7tVE PL ATE.S 'KEST oW THE lo7FoM oF THE SATTEKy, G A S I N Cr 4T TWO foiWTS A NO ARE INTaRcoNMEcTEP To EACK 07 tf E R A T T H E. TO P '5 '/ A CO MM 0 h' Tf fc Nf/N A L. 3 AK. THE Pos iT VE P'L ATE S A rcn Sd FracTErp AT TH E To F AT Two PotMTS 3y PLAST (C 8005 A W# ANGLES TH A T IN TufCN 35S T ON THE To f' o F THE N Ecr A TiVE PL ATE S. E AcH 7'o s > T) ve PLATE I5 A Ls o Su PPoETE D A T THE To f" U y A co't 45</o M 'T c.ic M t H A L. TS A6. TtfE PLATES age cows tpE R.EP INFIN ITE L Y WIcxi P IN TH E ,M.K PeH /)te dL A K PL AN E 3'y VI RTdE OF THm. Tl6MTL'( PAceED P' / CTS A NO dSSEMN( Q~- 7 g y e.g C 0 P A R. A ToIt 5, Fo R. PC/,uJiN Cr 5 oi: A l t 3o (7o a e p pg p uu,g (7 5,' t ioCSO-A elate sueeoer Rop ' ) o7o o c.o -P Se C7 t oW A L AssEm ru l PLAT 5 SJFroc7 (A>;6LE) f iol F2 I-C Pos,TivE 3ds 3 AR ioGSc3-C
R. C. O. ' G -l 5 - S 2 .h{1s y d *L J o a e et o .h/l A reel A L fro P_ff TIE S_', L en o - CatciuM 11w iT Vert = Gil.t 8, SamscCrEO PENSm(- G tT. E t x s o r.s. t. ', l'o ss s o ta T Art o = o. 4 \\ 4/ 3 DH iT b/crT. = 71 6 FT '.> Sa s.MER6 EO DeHs t ry = o Pt AST:c Roo E. = 0. 5 x 10
- f. s. l. ) foi s 3 o W 's E' A rio = o 47 0
I PLASTtc PLATE UN iT VcrT = 44 F 3 Td5M5E6-Er9 PENSITY-o E = C.'5 2 y 1 0
- f. S. (. ') fo lSSc N 'S 7 AT( 0
- O.41 Et Scrflo L4 T E.
S P5ct FIC br%AVITY
- I E.\\S
_D_eVEco PMEN T OF STRil cTU E AL_jvfoOEL_ 'REPReSENTIN& 'T_HE. ,1 M7SEN A L ZLEM E N_T.S O F T_Hji TG A77E E Y. O N ATU.RAL FdeedERY is pisecrcy gE tarEp To Twe IceMENT, STt FFMES$. THE STiFFEfC THE ELEMENT 15) T l4E ffl6&E fC THE NATdTcAL FRE Gd.Escf WiLL 75E. C.oMr AEtN C7 THE NECrATlVE Pt.A TeS W l TH THE. Pos mvE PLA7ES S4FPofar SYsTFh/ IT l 5 EV t 0EN T T H A T TH-E. NEGATIVE Pc ATE S NAVE A ST lFFE/C SuPfoE7 coNarTIOR, Sigcm. WP %ccE INTcEESTED IN THE E LEM E N TS M/ ITH 7t4 E LoWE.5T h(ATdRA L FRcGusNc y) ON cy T PoSiTI4E. PLATE S Vf1E K.E. l H VE S T l CrATEO. T H E Sout.)Tt 0 M 1.1.T I L l'Z. E S C OW1 Fd TEIC. 9 N N AN l G AN ALYS I S O FF 5fC.E 9 @ T CT T ST R, d DL PEo cricAMPTIN C7, 'THE 9ErWc t FAL 'i E ATdCES OF THE STgdcTUE AL tvfo0EL dEE d5 Fo c-L o w S '. \\. E AC.d fos ITIMG. TLA TE 15 FASKlcATED F120M. l.E A 9 lu A CT rz i o FA TT E R N, 'To S I NI P'Lt F y o u rc. A N a c'(s t S WE O caeoTuo As ioeacizeo esc 4 - a T5y tvraisTo "<uct TNe ex o VIE.lG tlT A S A Co N ST,4 WT. TW E WE.T PA S TE T H A T I s Acom o To T H E Crrt i O WA5 c o8s # 0E!C E O As 'V/ A SS o s c.'( A Nv N o T C o H T1C.lTSL.J.TI N LT T o % (C2 I V IT '(. ~T H E l 0 5 t TI M E 7t. A T5 5 FO.C TH: IS ATTF A t/ A t::.E I D E NTic A L I K S IZ E.} $ M A FE A W O WE t HT T
snehr 6 dos 89 o I.9( e l 5 - 8 7. \\ Tae N - L ise. B A71-Etty C a t t s, A t. L FoK ost_y Two 5'uProcTs Warce coH9coeltEf) A MosT i oHe AT Tum Tu s B A g. A Wo T s a Ss. con O AT' TH E E AcH Pos : PLA STic Eop LocATroN. ' Pt STA N T fo s iTi v 5 codis(ST3 0F ~3 RJLL 'T H E Brit 5ftj MocELA4e PosiTicsea At Tue Exrgemer wrs4 tor e sis AT AW Pc A7a s. Tw/ o TidST$AR Asofos (T N aT'cA-TE WA S ENOS oF T H E. Loc ATtoS T H E co W CE NT1C A T(o}4 A t o% RE K.E M 4 : W t NQ ASSdME9 AS A 'NT A S S l.oC A Tt o H S. T HE PrLt1-!tAf (* Bd.S % A$. hilC (?LA 5 tlc \\200 Fe tt F d L L fos IT Ng PL ATE S velor7sLttm ')To bA AT CW T45. S E.tE.cT Re A-s og Fo et tb vHAT T3 ATTErt.s[l-E. I G 80 MO ECfO 34Trls.rces.s. se I tS A c a.sg iva rs te. co vi r'A4< s o W co u t.9 Ts a t /40s. oF Tt , o O fEL dN ALYSI 5 cP $7R.dPL Pro (.r4ApfknRdrl fas o L-r > oF Oy N AMIC Lowest W ATuenc Facoissc'( Fo4 79 E N c.X - Go o 3 ATrs4f = I iz.8 c.yct.s> Th Sac 60 %TE4f ,Q o3-11 PAlf L}0 A %I IT+1 T H-5. H C X " l G t 1.o war bl A.Tutt4 9 Fanou s H c y Fo d 7 Na N CS-I G S 0 3 ATTE4[
- 92. 8 C y cLE.S ftM H C.X Goo 3 ATrRit f l
0 0n 0 t7Y OF Ti4E o scuru m s m sc x-t e 30 mrruy. EM Force THE
6 - l u 6 't, 39,g7 %4 .. ~... W6 890-Mot?FL'oi POStTtvl2 P L.ATES -, v6s d 9.18%- ~ s s,., sus-e,AR f**Pt AS%< P49 ^ W ( 9 tr^ ' 0%p% ; ic gep a I e.. g <6 %) v N g e , THICKNESS OF +VE e s I !dRID = O 318" j wet. ce +ve asto , 59 l ~ I)EslTY OF LEAD .x O( 3 j o,4 ' Int r '.', V o L. o F G,R i b - 1.a V =14.15 iN 5 9 'e s j I .l v 9 !.PEOPERII.ES _0F.M EMSERS : ... a _...:_... i. EW&TH.OF ALL M EM BER's =.t.x 151875 +4x I2a7 +3xto \\ l TOTA L L g g'8 = g TOTA L VOL. oF ALL MEMBERS c 14 75 tu h
- f. cgoSS SECTIOhJ A L 58EA 0F MEMBERS = 1405 5013 IN
.'. EQ u NA L EN T WIDTH OF MEMBERS = 0.t.S jo.sig = o.41 u
I, J.'P. 6-9-87. SHEET #5 job 890 i t h % to , = - l O w .h ~ 0 $ qY Q c w 4 ,~ 4 a = g s w to 4 N ,in m +. (.c; .f..,' (j. O v 9 b b. I C: m, gi a s t ne 6 a e t-ra. w Qu '0 Q = 'L Y u s W 9 e rsa @ qc-so ,i
- m,a 6 6[
m C. 69' 4 69" d.69" ,m o s ,s ,h f e I i l l l \\ t 1 l g l l l 1 l \\
........ gy g gy.o g Joe.896 s g ..' ^ " ' 1 O. 8~15" <t.t,$5 (@i). .)956.7 ^. .16,, JX t i ~.. .p N / (f9) \\ A M' 4 13 9 q a.- y p .-. o R / q. i . v v .L gn ,g z O V s i l .e t I
a ~ I SH E ET * ~7 job.590 C AY }o.ST y z- .4 g\\.!,33 y d*, e .20 (: d,' - p v S - p L. p 2 @.- s / m %g og .5-lA-A k @. a...i p I 9 ). 9 l O_ 1 I\\ '&.,.) f ,Z e t O t + i \\O l ~ \\ l e l l
9 - 3gggT S 8 0F.# 8 . J oB'. 3 90
- ^ '
F ) o. S'7 > + ( rp\\.I,775 l 6A ?* 1 7 9 ts _ p .e :s s 1 g _.. mJ g g. G,D' N b j* o 'Is L r h) { p D ,:\\ q. i I h O_ 3 . I 2, Q'8., ~ 2 b g I g g 1 l 1 O ~ t s .-y-.~v. _,.y. .----e - -, - -w-m.-
~ SECTION #12 CONCLUSIONS i The primary objective of this test program was to demonstrate capability of our batteries and racks in accordance with the following documents in general and i i Sargent & Lundy Specification F/L 2819 for the Commonwealth Edison Company Byron /Braidwood Project in particular. 1. ANSI /IEEE Std 279-1971, Criteria for Protection Systems for Nuclear Power Generating Stations. i 2. IEEE Std 308-1978, Criteria for Class lE Power Systems for Nuclear Power l Generating Stations. 3. IEEE Std 323-1974, Standard for Qualifying Class lE Equipment for Nuclear Power Generating Stations. 4 ANSI /IEEE Std 450-1975, Recommended Practice for Maintenance, Testing, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations. 5. ANSI /IEEE Std 484-1975, Recommended Practice for Installation Design and Installation of Large Lead Storage Batteries for Generating Stations and Substations. i 6. ANSI /IEEE Std 344-1975, Recommended Practice for Seismic Qualification of Class lE Equipment for Nuclear Power Generating Stations. 7. IEEE Std 380-1975, Definitions of Terms Used in IEEE Standards on Nuclear Power Generating Stations. 8. IEEE Std 485-1978, Recommended Practice for Sizing Large Lead Storage Batteries for Generating Stations and Substations. 9. American Institute of Steel Construction (AISC) Standard Specification for 2 (T the Design, Fabrication and Erection of Structural Steel for Buildings, New b York. 1965. 10. IEEE Std 535-1979 TEEE, Standard for Qualification of Class lE Lead Storage Batteries for Nuclear Power Generating Stations. 1
L i O' Sections #1and#7ofthistestreportdescribethemethodologyusedincarrying i out this test program. f Sections #2 and 3 demonstrate the origin as well as the environmental and i operating conditions to which the naturally aged test specimens were exposed. Section #4 demonstrates that the naturally aged test specimens and those cells i being supplied on the Commonwealth Edison Co./Sargent & Lundy contract for i Byron /Braidwood Project are of the same design and materials. Section #5 demonstrates that the test fixture used for this test program is adequately strong for the Gould required response spectra. D ) Section #6 demonstrates that the racks supplied under Commonwealth Edison Co./ ( Sargent & Lundy Engineers contract for Byron /Braidwood Project are also adequately strong and are rigid structures having natural frequency of vibrations above 33 hz. Section #7 summarizes the test series involving all naturally aged specimens. Each test series is comprised of pre and post seismic capacity discharge tests and random T multi-frequency vibration test. I' Sections #8 demonstrates that the test response spectra envelopes the required i I l response spectra of Gould as well as Commonwealth Edison Co./Sargent & Lundy Engineers contract.for the Byron /Braidwood -- all frequencies at 2% damping. Section #9 contains two Wyle test reports -- No. 44681-1 and 44681-2. 44681-1 ,-s (n,sh'demonstratesthecapabilityofGouldplante' type of batteries. This report is 3-not part of_this-documentation. 44681-2 demonstrates the capability of Gould ,, : PCT /llZ-79_
l ~ calcium flat pasted plate type of batteries. These types of batteries are supplied under Commonwealth Edison Co./Sargent & Lundy Engineers contract for Byron / Braidwood Project. The complete report, as described above, describes, docu=ents and demonstrates that the batteries supplied by the Industrial Battery Division of Gould, Inc. under Commonwealth Edison Co. contract for Byron /Braidwood Project are capable of meeting with Sargent & Lundv Engineers Specification F/L 2819. The NCX type is qualified for a period of (10) ten years when operated in a yearly average temperature of 77'F and when installed and operated in accordance with IEEE 484-1981, IEEE 450-1980 and Could Installation and Operating Instruction GB-3384B 6/80. ()TheIndustrialBatteryDivisionofGouldInc. intends to pursue an ongoing qualifi-cation program to determin maximum qualified life beyond currently established 10 jear qualified life for NCX type. l l l l l 1 O PCT /112-80}}