ML19332B607
| ML19332B607 | |
| Person / Time | |
|---|---|
| Site: | Calvert Cliffs |
| Issue date: | 11/30/1988 |
| From: | Nair P, Mike Williams SOUTHWEST RESEARCH INSTITUTE |
| To: | |
| Shared Package | |
| ML19332B604 | List: |
| References | |
| NUDOCS 8911060065 | |
| Download: ML19332B607 (120) | |
Text
{{#Wiki_filter:._ . . . _ _ _ .. . . .. _ . .
,
't
'
l.
<
.{
,
.
-
z L. ,: - 4 ? i
-F
-
.
L PRESSURE-TEMPERATURE LIMITS FOR < L CALVERT CLIFFS NUCLEAR POWER PLANT UNIT 1 >
-f s
1 By P. K. Nair M. L. Williams (Consultant) l FINAL REPORT-
-
SwRI Project No. 06 1278-001 Prepared For Baltimore Gas & Electric Co. P. O. Box 1472 Baltimore, MD 21203 ' l November 1988
,. , p ++ #""" '"~'~~u.,,,
k d'
,
4dy
$500 y
#
.
td:--. u 5 -.,. 43., .;
.
~ ' $.
kp--l._- p;]/) S OSAN U ANTONIO THWESTRESEARC HINSTIT
-,/ .= $,~ . HOUSTON
"
!
- . - , . , - , - , ., __
- . . . . - . . . .- - - . - . . . . .
y
'
i
'
1 SOUTHWEST RESEAR'CH INSTITUTE f Post Office Drawer 28510, 6220 Culebra Road San Antonio,-Texas 78284
,
PRESSURE-TEMPERATURE LIMITS FOR
-
CALVERT CLIFFS NUCLEAR POWER PLANT UNIT 1
'
n By P. K. Nair M. L. Williams (Consultant) .
!
e FINAL REPORT t [ SwRI Project No. 06-1278-001 -
.
l
'
Prepared For Baltimore Gas & Electric Co. P. O. Box 1472 Baltimore, MD 21203 L ,
'
-
November 1988 Approved: Edward M. Briggs, Director i- Department of Structural
,
and Mechnical Systems
,
e -.
, y r+ m- , - - - . . , - + , - ~ - . . ~ - - -aa-vne.-e.-- - - w- en- w- -- w..-, - w--- - - - =
- ... - .
(' TABLE OF CONTENTS-
,
a f Section Pagg a , List.of Figures......................................................... 11
-List of Tab 1es.................'........................................-iii
..
,.
m 1.. Summary of Results and Conclusions................................ 1
- 2. Introduction...................................................... 3
- 3. Material Property Assessment...................................... 4
- 4. Neutron Fluence Calculations...................................... 8
- 5. Adjusted Reference Temperature Determination...................... 27 l; 6. . Heat-up and Cool-down Limits...................................... 30
! References.................................... ................... 34 1 APPENDIX A - Determination of Space-Dependent Source.............. A-1 g Distribution for Transport Analysis of Calvert Cliffs - 1 o APPENDIX B - Description of the 30 Flux Synthesis Method.......... B-1 APPENDIX C - Power-Time History for Calvert Cliffs, Unit 1........ C-1 > !: APPENDIX 0 - Procedure for the Generation of Allowable............ D-1 L Pressure-Temperature Limit Curves for Nuclear .j Power Plant Reactor Vessels
-
l APPENDIX E - Pressure-Temperature Limit Tables for Ca,1 vert........ E-1 Cliffs Unit 1 APPENDIX F - Pressure-Temperature Limit Table for Varying ........ F-1 Cooldown Rates for Calvert Cliffs Unit 1 (12EFPY)
^
'
g APPENDIX G - Pressure-Temperature Limit Tables for. . . . . . .. . .. . .. .. G-1 l! Isothermal Conditions for Calvert Cliffs Unit 1 l l l' l l l l 1
*
,. l
~ _ . . _ _ _ . _ . , ., . . _ _ , _ _ . _ , _. .._.
. - . . . , . . - . .. - -- - -. . ..
,
-
-
i
. ( LIST OF FIGURES 1 Figure Page
,
3.1 Calvert Cliffs Unit-l,' Reactor Pressure Vessel Map.......... 7
.
4.1 Calvert Cliffs Unit-1 00T-4 Re Mode 1........................ 9
- 4.2 Capsule Geometry Modeling................................... 10 ',
!
*t 6.1 Heat-up Pressure-Temperature Limitation Curves for.......... 32 Calvert Cliff Unit 1 Reactor Vessel (12 EFPY)
- 6.2 Cool-down Pressure-Temperature Limitation Curves for........ 33 Calvert Cliff Unit 1 Reactor Vessel (12 EFPY)
. . ,
E ,1 L 1 i
- . 4 ,
l L . h ! ii
, -
.- -
.- .. . - - - .
m i . LIST OF TABLES Table Pggt .i
3.1 Calvert Cliffs Unit No.1 Reactor Vessel Beltline ..........- 6 Material Properties. Calculated Values for Midplane Saturated Activities.'........
'
4.1 13 at Center of 7' S.C. (Calvert Cliffs-1). 4.2 Calculatg)ValuesforNon-SaturatedActivities............. 14 ("ATOR") at Center of 7' S.C. (Calvert Cliffs-1). 4.3 Non-Saturation Factors (h) Used in Dosimeters Activities.... 15
- 4.4 " Measured" Saturated Activities (ASAT) for Cycles 1-3....... 16 of Calvert Cliffs-1.
P 4.5 Comparison of Unadjusted Calculated and Measured............ 17-Parameters for Cycles 1-3 (12 month cycles) of Calvert Cliffs-1. 4.6 Relative Azimuthal Variation (a) In e (>1MeV) ............... 18 ; Incident on Vessel.
, l 4.7 Determinationof" Adjusted"o(>1) ins.C.for12.......... 20 '
MonthCycles1-3(LocationR=217.01cm,e=7*) < l 4.8 Peak e (>1) in RPV of Calvert Cliffs-1...................... 21 4.9 Neutron Spectra at Peak OT Locations: I.D. 1/4T and 3/4T.... 22 ; e 4.10 Spectrum Averaged Cross Sections at Center of............... 23 7* 5.C.
"
l 4.11 Calculated $- Lead Factors E>1f2liforCalvertClif's-1.n LF) - Surveillance Capsules and ............ 24 4.12 Determination of RPV Peak Fluence for Calvert............... 25 Cliffs-1. ,
,
-
4.13 Fluence in RPV after 12 EFPY for Calvert C1tffs-1........... 26 5.1 _ ART Evaluation for Beltline Materials for 12 EFPY........... 28 5.2 a RT NDT t's EFPY............................................. 29 5.3 Adjusted Reference Temperatures at 1/4T and 3/4T............ 29
iii 1
- . -
' ;
'
( , n x ; 5' 1. SIM ERY OF RESULTS AND CONCLUSIONS ]
'
. .
. I A detailed analysis was performed for developing new pressure-temperature I limit curves for the Calvert Cliffs Unit 1 reactor pressure vessel. The q analysis _ included new neutron transport calculations for 12, 18 and 24 month 1
cycles, development of irradiated material properties based on NRC Regulatory i Guide 1.90 Draft Rev. 2, and the generation of heat-up and cool-down limit
.
,
curves *yr ( n.y 4 EFPY from 12 EFPY to end-of-life conditions.
'
The SwRI evaluation led to the following conclusions:
- 1. Based on a-calculated neutron spectral distribution, the peak fluxes ,
s 10 n/cm2 , L incident on the Reactor Pressure Vessel (RPV) are 5.31 x 10 sec 5.69 x 10 10 n/cm2 -sec and 4.17 x 10 10 n/cm2 -sec for 12 month,
-
,
.18 month and 24 month cycles respectively.
- 2. Adjusting the calculated flux with respect to the first capsule
- dosimeter analysis the 12 month cycle peak flux on the RPV was determined to be 4.88 x 10 10 n/cm2 -sec. The value is within 4% of what was reported in the Unit-1 Capsule reportIll.
- 3 .- The calculated lead factors for the vessel ID based on surveillance. N.-
capsule locations are given below:- 0-7* 0=14' NI Cycle Type Lead Factor Lead Factor 3 12 month 1.26 0.93 ,
-
18 montn 1.23 0.90 l' 24 month 1.17 0.77 , L 4. The accumulated peak fluence on RPV ID was calculated to be 1.62 x , 1019 n/cm2 for the first 9 cycles and 4.56 x 10 19 n/cm2 to 32 ErPY. ! l
.. . - - , - - , _ _ -
. .- .- . - - - - - - .- . . .
'
-
- 5. Displacement per Atom (dpa)_for 32 EFPY were calculated to'be 7.62 x_ 'l
~10-2, 4.85 x' 10-2 and 1.4 x 10-2 for RPV ID, 1/4T and 3/4T
'[
.
respectively.
- 6. . The 12 EFPY fluence on the RPV was - calculated to be 1.96 x 1019
'
n/cm2 .- Fluence rate of 1.3138 x 1018 per year was used to develop l fluence value for 16, 20,'24, 28 _32, 36 and 40 EFPYs.
- 7. The controlling. material for RPV operations was. determined to be i weld'2-203 with Cu=0.21% and Ni=0.87%. P-T limit data was developed F for 12, 16, 20,24, 28, 32, 36 and 40 EFPYs.
'
The data also reflects y different heat-up and cool-down rates. , l
- 8. Based on the Regulatory Guide 1.99, Draf t Rev. 2 approach, the 32
.EFPY_ adjusted reference temperature for_ the controlling material will be 294*F at the RPV ID and 256'F at the 1/4T location. 'j
- 9. Based on this study the Calvert Cliff Unit I reactor vessel has 1
L adequate material toughness for continued safe operation beyond 32 ,
.,
1 EFPY irradiation conditions.
.,
a F PEG /FR-1278 2 ,t : l l'
. . -- . .. - . . _ . _ _ _ . _ . _ _ _
~ ~ '
,
. m
.
-
I: kl j
<
l DPA Vt. lues (Displacements Per Aton Per Second) in RPV of Calvert g I- Cliffs-l'Due to Neutrons with Energies'Above 15 kev s l
\
l J Radial Location 12M 18N 24W 220.895 S.1138E-11 8.8356E-11 6.2720E-11 1 222,102 7.5060E-11' 8.1737E-11 5.8022E-11 223.727 6.5401E-11 7.12195-11 5.0556E - 225.351 5.5903E-11 6.0876E-11 4.t213E-11 226.976 4.7506E-11 5.1732E-11 3.6722E-11' 228.601 4.0243E 4.3822E-11 3.1108E-11 230.225 3.4009E-11 3.7034E-11 2.6289E '231.850 2.8626E-11 3.1172E-11 2.2128E-11 233.475 2.3950E-11 2.6080E-11 1.8513E-11 235.099 1.9844E-11' 2.1609E-11 1.5339E-11 236.724 1.6185E-11 1.7625E-11 1.2511E-11 238.348 1.2868E-11 1.4012E-11 9.9467E-12 239.973 9.7644E-12 1.0633E-11 7. 5479E-12 241.598. 6.5633E-12 7.2118E-12 5.1194E-12 l=
!
1 l
, .
I
*
.
.
e i
. . .. -
. . . . - - . . . , - , , -.. . . - . . -
. . . . . . . . -
,
-
l
.
l
- 2. INTRODUCTION a
+
.The- long-term degradation of reactor vessel structural material properties due to irradiation is measured , by . the evaluation of material-surveillance; capsules removsd periodically from the reactor vessel. l Combustion Engineering, Inc. has provided the material- surveillance program for the Calvert Cliffs Nuclear Power Plant Unit 1. To date, one surveillance '
capsule has been removed and tested. Typically, the capsules contain Charpy V-notch'and tensile specimens in various combinations representing the parent
.
material, weld metal and heat-affected zone (HAZ) material of the vessel p beltline region. . In addition, the capsules contain iron, nickel, titanium,
' sulfur, uranium and copper neutron flux monitors and temperature monitors.
The objective of. the surveillance program is to correlate changes in vessel material fracture toughness properties with neutron fluence so that the reactor vessel pressure temperature limits can be determined. Recently, the
'
concern about pressurized therraal shock has placed additional requirements to
'
{ l determine the irradiated condition of vessel inner surface. The applicable ; regulations and documents that address the continued licensibility of reactor vessels include 10 CFR Part 50, Appendices B, G and H,10,CFR Part 50.61, NRC .. .
. Standard Review Plan 5.3.2, Regulatory Guide 1.99, Draft Rev 2 and ASME Boiler and Pressure Vessel Code Section III, Appendix G.
l l: . In this report a new neutron flux analysis for the reactor vessel is I~ - r presented. Based on the analysis, projected vessel fluence conditions were - L developed for assessing the long-term integrity of the vessel. Pressure-temperature limit conditions are presented for 12, 16, 20, 24, 28, 32, 36 and 40 effective full power years of operation. l l
.
PEG /FR-1278 3 w -
, - . .- - - - . -
'
.
- ~ ,,. !
- 3. MATERIAL PROPERTY ASSESSMENT In developing the pressure-temperature limit conditions for reactor
{ vessels;'the important material property required is the Reference Temperature
- Nil Ductibility Transition (RTNDT) of various vessel pressure boundary -
materials. .The locations within the pressure boundary that are of interest' include nozzle area, closure head region and. the beltline region. The nozzle ~ and closure head regions are locations of high stress.concentratior.s while the : beltline region is subject to neutron embrittlement with time. Early in the life of the reactor vessel, nozzle and closure head regions tend to control the pressure-temperature limit curves. However, with time-the beltline irradiated materials become controlling. In the case of Calvert.
!
'
Cliffs Unit 1, the controlling material t'or 12 EFPYs and beyond is the L31tline region material. Between the nozzle and the closure head region, the closure head region poses greater restrictions on the PT limit curves. ,l m, 10 CFR 50 " Fracture Toughness Requirements for Light-Water Nuclear Power !; Reactor" requires the closure head region materials to have, as a minimum, 1 RTNDT + 120' for normal operations and RTNDT + 90' for hydrostatic pressure and leak tests. In the case of non-availability of RT NDT data or where the data is not reliable, the RTNDT for the closure region is determined using the i[ method in NRC Standard Review Plan 5.3.2 Branch Technical -Position 5-2,
'
1
,
MTEB. Based on this method, the RTNDT of the closure head material was
"
l- assessed to be 60*F. ! [ To provide the submittal to NRC on the Pressurized Thermal Shock
. issue [2,5} extensive materials data information was developed by BG & E for all the bc1tline materials. Key information needed for these materials is the l
l n.aterial chemistry, especially Cu and Ni, From the data supplied by BG & E to SwRI, the Cu and Ni values for the beltline materials are presented in Table i PEG /FR-1278 4 Ll ,,
,
k
< , . .,
. . _ _ . _ . _ . .. _ _ . -... .
;
, s - ;.-./ s>
j
- .) ' ,
n
<
-; :.. s
']
i
- .
q
* '
- L $I ,, '
i 1
, :3.li These chemistry values- are usedL-in 'Section.5 of this report:toL develop-1 g3 ;the irradiated . Adjusted Reference . . Temperature: for the- critical beltline-
'l +
materials. Figure 3.'l is a Calvert Cliffs Unit-1, Reactor. Pressure Vessel Map-
-
-
.I a
;f
~
with all the key welds identified.
.
.
;
~ ' '
-
,
i
,
+
i g b
l l t .
*
$ ,
,
1
- l. -
- h 1:.
p 4 M ! 1' z s
-
e o p .f.
'
t L
- ' 1 ;.
,
-
e ,li
>
t 1, . lgf. l, i l-1 l ls PEG /FR-1278 5 u L - . . . . -. - -- - -- .-
.
. -- - . _ -
. ;.
,
- 3. Table 3.1 Calvert Cliffs Unit No. 1 Reactor Vessel Beltline Material Properties
{ l
'
.l
-
ID Cu (w/o) Ni (w/o) Initial RTNDT(.p)
- l. 2-203 0.21 0.87 -50.0
'
A.B.C 3-203- 0.21 0.69 -56.0 A,B,C ' f 9-203~ 0.23 0.23 -80.0 D-7206-1 0.11 0.55 20.0
'
D-7206-2 0.12 0.64 -30.0
'
0-7206-3 0.12 0.64 10.0 D-7206-1 0.13 0.54- 10.0 j D-7207-2 0.11 0.56 -10.0 p D-7207-3 0.11 0.53 -20.0 l l t : u
* ;
PEG /FR-1278 6 i
. -
_ .- r .
'
-.. ,
y -
.
'
as X A]
. .
,
.e ,, .- . ,
-
,
, . ,
, 8
. .
>
'
, 8 0
, , ,
. [.
-
i . . l- , , ,
, ,
..
, ,
t , I , l . .- . .
.
-
- . , .
,
2 -, .
. . . . ,
. . ,
, # 1
- , , , ,
.
g - - 4 e :
, -
.
g
.
i
.i 3, . ;
, 8, , .
, . , a
- . i i -w ,
7 i ! l l
.
l E
-- - / ,.
,
~
,
, ,
,
, -
, , ,
_
, g. .-
, -- i , .
. 6 . -
, s
. , :-
, , . . .
m . . , z .E
., . , o ,
3 -e w I l $ . l gI
-s E '.
. . .. e i I , og I - e=e
' '
-
ll I b g , , ,. m
*
, e i.
4a e i e , m
- !.
8
, ,' !, 8
, I_
l' ?
- l l d
,,
.
,
.
,
,
,,,
g R i = 8 82 $
= =
l
,
1 l
,
.,
,
- g -
, .e i ,
.,,,,
t I , . m i , i M
* , I t l' .
I i
.
,
.
,
, -
..
l e e l
,
l~2
-
c -
,
- ' '
,*
'
E A 1 * , 4 , ? i i m , 0 , e . . . , 5 ' E i ! ! e e .
'
2 3 ! ! ! ! I
$3H3Ns la 31220N WCb4 33NW1$]C 1
7 l l l l
.. .- - -. -. - - _ _ _ . . . - .. .
,
_ _
.
__ _
,
?
.% ;
N 4. NEUTRON FLUENCE CALCULATIONS
'
.
The' first surveillance capsule (263') was removed from Unit 1 following Cycle 3, after 2.94 EFPYs of operation. A detailed capsule testing and. 3
- analysis . was conducted and reported ir, Reference [1].- - The dosimetry and vessel fluence evaluation provided information on the vessel fracture toughness conditions for 3 cycles of 12 months cycle each. Beginning with cycle 5, the operating cycle period changed to.18 months. A low leakage core '
,
. and a- 24-month cycle is planned for future operations beginning with cycle
- 10. Full power conditions correspond to 2560 Mwth for cycle 1, and 2700 Mwth _
4 for all other cycles. In this section a detailed neutron transport analysis ' for the reactor cross section is presented. A discrete ordinates calculation using the DOT-4 [3] code was performed to obtain the radial (R) and azimuthal (e) fluence-rate distribution for the geometry is shown in Figure 4.1. As part of the reactor cross section model the details of the surveillance capsule geometry and
'
location has to be modeled. The inclusion of the surveillance capsules in the R-o model is mandatory to account for the significant perturbation effects from the physical presence of the capsule. Figure 4.2 represents the actual ( capsule geometry versus the DOT model used in the analy' sis. The DOT model incorporates a homogenized mixture of 'inconel and water to sirrplify the overall model while maintaining the required accuracies for the calculation. The spatial distribution of the core source was obtained by combining , plant-specific assembly-wise power values and relative pin-wise powers for the. 235 0 watt appropriate cycles. The energy distribution was represented by a , fission spectrum as specified 'n ENDF/BV. The axial variation of the flux is treated with a well known synthesis method. The DOT-4 calculations were performed with the 47- group energy structure PEG /FR-1278 8 i
, , - --. , . _ . - --
~ ^r :
7Qq
-
,
mme
..
.
.,%
1 k' RPV RPV LEER DOWNCOER BARREL 4- f
- -
.r- -] REFLECTOR ,
g gl BAFFLE
- g- . IL _ RPHERAL CORE '
- 3_ (- - -l- - ili R CORE
- i i '
! L_J__JI11 3 I ' 2- I I L_ - J ,
- I
, =-v i i_ - -4 II ,
I I I - i r-- i t- - -t 11 . 0 . 3
.
8
. .
s."l
. . .
0 1 2 3 1 3 Il I 7- l 8I 9 l4 l5 6, ?llls, ' s,, l > it
, ,
. 6 .6 tilt it i 2 8 O P, EM 2 s T3 M
. I N
- di EE E E
-- -
Enn ~ n FIGURE 4.1 CALVERT CLIFTS UIIIT-1. DOT-4 Re 900 DEL' ~
*(Surveillance Capsules at 7* and 14' are not shoesn)
,
(Somle: 1 Large Division = 11.5 inches)
. . . . ..._.. . - - < ~ . - . . _ _ ., -, .. , . . . , . .
. ._. .-
.. .- ... . - . . . . . - -.. -
..
,
. :., - l
'
(l;i l ; 1 l T. j ACTUAL GE0WTRY *
= 2.214- =
!
*-- -1.5 00---*
-* +- 138 .
,
h
* "
6 AREAS ($0. N.)
'
1.539 h STEEL = 1.125 CN SML H0 = 1.322
'750 3 l-9 [[[ j NCON 600 = 0.960 l
p TOTAL = 3.407 DOT WODEL i
= 2.214 -*
.3945 .---1.500 := .357 *'m>
-
,
- - - - - tie.see
,
-- - - - - - 2i7.947 750 c m smL - si7.oi i __ _____....e, v l sl - - - - - 21s.04
-
I I i i l l I I I t i i l i l l l HOWOGENCUS WlXTORE I I I I g 0.42 NCON 600 , ; 'O 3 3 g
- s. gO0
~ 0.58 H 2O -
v y a g
,
a 8 n A s g '$
# $ i i s t
.
FIGUT.E 4.2 CAPSULE GEOMETRY MODELING 10
- _ - _ _ . ._ _ _ _ - - _ . . , _
.. . __ . _ . _ _ _ . .. .
;
(-
? ;. '
,
;
eI for the SAILOR I4I cross section library. An S8 angular structure and a P3 Lengendre cross-section expansion were used.- The fine-group dosimeter cross-sections for the 03Cu(n,=)60Co reaction were obtained from ENOF/B-V file and were collapsed to 47 groups'using a tission plus 1/E weighting spectrum.- The other reaction cross sections were taken from the SAILOR cross section library, which is based on ENDF/B-IV data. The DPA cross sections were e obtained from MACLIB. The results of the transport calculations. for the RPV fluence analysis i
'
are presented in Tables 4.1 through 4.13. Table 4.1 presents the calculated saturated activities at the center of a 7 degree surveillance capsule for 12 ' months, 18 months and 24 months cycles of operation. In Table 4.2 the nonsaturated activities are calculated for end. of cycles 3 and 8. The- ; L nonsaturation factors developed for the various dosimeters are described in Table 4.3. The measured ASAT for the capsule is presented in Table 4.4. The-L comparison of measured and calculated parameters for the capsule 263' is.
I presented in Table 4.5. Table 4.6 contains the relative azimuthal flux (> 1 MeV) variation incident on the vessel. Adjusted flux for the 12-month-cycle with respect to the 263' capsule is presented in Table 4.7. The adjusted flux is obtained by combining the measured dosimeter g activities with the calculated spectrum-averaged cross sections using the
'
-
1 expressions given in Appendix F. Since no measured activities are available s fo the 18 and 24 month cycles, only computed activities are given for these areas. Peak flux for the various operation cycle periods in the vessel are described in Table 4.8. Table 4.9 presents the neutron spectra at the peak at the vessel I.D.. The spectrum averaged cross sections at the center of the survc111ance capsule are presented in Table 4.10. Table 4.11 presents the calculated flux in the survcillance capsules and their lead factors with PEG /FR-1278 11
- - . _ .
m o :
- p; respect to the vessel I.D.. The accumulated RPV peak fluence- levels for.
-
- various cycles is= sumarized in' Table 4.12. Table 4.13 presents the-vessel-fluence conditions after 12 EFPY.
Appendix .A- discusses the determination of space-dependent source. distribution for the transport analysis performed for Calvert Cliffs Unit 1.
' Appendix B is a description of the 3D Flux . synthesis method used in this b
analysis. The power-time history data is presented in Appendix C.
- !
.I
.
b 4 t
.
.
l: L L !
, ,
4,
,5 4
I i L
.
1
>
l: . ! i
'
!. PEG /FR-1278 12
,
,
. - _ , _ ,
f? , ;-.
.b ,
~
'
Table k.1 . Calculated Values for Midplane Saturated Activities at Center of 7? S. C. (Calvert Cliffs-1)
.
(Units'= Bq/gm) A A A SAT. SAT- SAT Dosimeter 12M Cycle 18M Cycle' 24M Cycle Fe (n,p)b4 Mn 5.65E6 5.89E6 4.17E6- , Ni(n,p)SBCo' 8.03E7 8.40E7 5.93E7 , Cu (n.o)60Co 7.00E5 7.30E5 5.27ES OU (n,f)I3 Cs 4.59E6 4.81E6 3.36E6 I 6 Ti(n,p) 6Sc- 1.57E6 1.64E6 1.17E6 i e> 1 MeV 6.69E10 7.00E10 4.88E10
& >.111 MeV 1.23E11 1.29E11 8.95E10 'l
,
-4,
- 2. ;
'
k\ s: 4;
!
.
,-
,
o
;
l
\
-
1 1
!
13 i _ .-- i
n ~
'
h .
' ; '
2 >
,
Table L.2 Calculated Values-for Non-Saturated Activities ("ATOR")( )
. '
j at Center of 7' 5.C. (Calvert Cliffs-1) Units a Bq/gm (a) (b)
; Dosimeter IbOR)3 (^ TOR)8
,
54 Fe(n,p) # Mn 3.85E6 4.66E6 ",
, ,
58 i Ni(n,p)S8Co 5.05E6 7.42E7
'
63 Cu (n ,a)60Co 2.08E5 4.15ES 238U (n,f) Cs 2.96E5 8.02E5
- 46 Ti(n,p)46 5c 1.16E6 1.45E6 ;
,
(*) (ATOR)3 d simeter activity (Bq/gm) at time of removal'(EOC-3) .
* (ASAT)I;M 1-3 (b) (ATOR)S desi=eter activity at EOC-S I L
=(bOR)3'
- IASAT)1861 4' where (Agg)g , (A g )8 =
saturated activities for 12 and 18 month cycles . hy ,3, h4 ,3 = non-saturation factors from Table 4.3 E T = time (d) from EOC3 to EOC8 = 2739 days l' } l
*
.
t ' c
.
14 i
. - - . . - , .
-
E o .i Table k.3' Non-Saturation Factors (h) Used in Dosimeters Activities Dosir.eter h 3 (hcles 1-3) 3 h4.8(Cycles 4-8) -; Fe54 0.683 .789 l NiS8 0.741 .884 Cu63 0.297 .463-Ti46 0.738 .882
'
U238 0.0643 .115 (*) h 5'non-saturation factor .l
= ,I, P) (1-e
-
T)) ,-A(T-t)) ,
) ,
where factors P), T) and T-t) are given in Appendix C.
.
r 9 15
-= ,
_.
%
, s 5'
Table 4'.4 ~;.' " Measured" Saturated Activities (ASAT) for Cycles 1-3 of Calvert Cliffs-1 ~f! . 1 Location R = 217.01 cm 9 = 7' Center of S. C. Maximum of S. C. (middle of compartment) (compartment bottos)- Dosimeter () ATOR ASAT ATOR ASAT 54Fe(n p)S4 Mn 3.45E6 5.05E6 3.57E6 5.23E6 58 Ni(n.p) 8Co 5.46E7 7.37E7 6.09E7 8.22E7 63Cu (n ,c) 60Co 1.96ES 6.60E5 2.13E5- 7.17ES S U (n,f) Cs' 3.17E5 4.93E6 3.56E5 5.54E6 46 Ti(n,p)46Sc 1.29E6 1.7526 1.36E6 1.84E6
..
(1)ATOR values taken from Table 4A of Battelle report
^
(2)A SAT * ; h
.- . _
16
. . - . . . . . . .
. .
.
.
.
'
>-
l 6
'; l '
s I
-
Table k.5 Comparison of Unadjusted Calculated and Measured Parameters for Cycles 1-3 (12 month cycles) of Calvert Cliffs-1.
-
,
-
A A
.
TOR TOR-
'
Parameter Measured O) Calculated (6) cjg5) Fe54 dosimeter activity (dps/gm)(2) 3.45E6 3.85E6 - 1.12
'
NiS8 dosimeter activity (dps/gm)(2) 5.46E7 5.95E6 - 1.09 i Cu63 dosimeter activity (dps/gm)( ) 1.96E5 2.08E5- 1.06 U238 dosimeter activity (dps/gm)( ) 3.17E5 2.96E5 0.93 T146 dosimeter activity (dps/gm)(2) 1.29E6 1.16E6 0.90 Peak & (>l NeV) at center capsule f) 6.7E10 7.08E10(4) 1.06 I ATOR values taken from Bate 11e Report
.(2)At center of capsule; time of removal from reactor (3)At location of' peak axial value (4)This is a purely calculated value---no modifications are made to in-1; corporate the experimental dosimeter results. The " adjusted flux" given in Table 4-7 reflects the incorporated measured values, and hence is believed to be more accurate.
(5) calculated activity >
"
1 experimental activity 1
.: (6) Calculated values obtained from Table 4.2 1
17
,
e a-- - --, , o v w--
--~ ,
.2V. 1 Cik j.3
- p l'4 ,
y-Table L.6 Relative A:imuthal Variation I*) In ? (> 1 MeV) Incident
'
on Vessel j T 12 Sbnth Cycle 18' Month Cycle 24 Month Cycle " 1 1.25000E+00 1.000 1.000 1.000. 2 3.75000E+00 .995 .991 .966 3 5.62900E+00 .973 .965 .906 4 6.37750E+00 .924 .915 .848 5 6.64000E+00 .896- .886 .814 6 7.00000E+00 .879 .868 .787
'7 7.35950E+00 .874 .863 .772 '
8 7.62200E+00 .887 .873- .776 9- 8.37099E+00 .910 .895 .781 < 10 9.62500E+00 .879 .862- .734~ 11 1.08750E+01 .833 .815 .680 12' 1.21250E+01 .781 .763 .630 13 1.30040E+01 .742 .726 .599 14 1.33775E+01 .709 .695 .572 15 1.36400E+01 .680 .667 .549 16 1.40000E+01 .654 .643 .528 17 1.43605E+01 .640- .630 .517 18 1.46220E+01 .639 .630- .517. 19 1.49300E+01 .646- .637 .522 t
-
20 1.55590E+01 .631 .623 .512 l' 21 1.65000E+01 .598 .595 .492' .. 22 1.75000E+01 .570 .570 . 475 23 1.85000E+01- .548 .553 .462 24 1.95000E+01 .534. .543 .454 l 25 2.05000E+01 .527 .541 .449 ' 26 2.15000E+01 .524 .544 . .446 27 2.25000E+01 .526 .551 .444- 4,
'28 2.35000E+01 .530 .561 .444 29 2.45000E+01 .535L .572 .443 -
30 2.55000E+01 .541 .582 .443 L 31 2.65000E+01 .545 .590 .441
*
. 32 2.75000E+01 .546 .594 436 33- 2.84000E+01 .545 .597 .429 34 2.98118E+01 .535 .588 .418 35 3.09600E+01 .526 .579 .413 st
.525 .578 .411 19 36 3.12330E+01 37 3.15847E+01 .524 .577 .409 38 3.20500E+01 .521 .575 .406 39 3.25500E+01 .518 .572 .402 40 3.30500E+01 .515 .569 .399 18
.-- . . - _
- .- '
I
^
r I , Table L Q Continued 7 J i 12 Month Cycle 18 Month Cycle 24 Month Cycle 41 3.30500E+01 .571 .565 .395-42 3.41962E+01 .506 .559 .392 43 3.47000E+01 .501 .554 .388 44 3.49150E+01 .498 .551 .387 45 3.53723E+01 492 .544' . 384 46 3.60720E+01 .483 .534 .379 47 3.71220E+01 ~.468 .518 .372 48 3.81720E+01 .454 .502 .365 49 3.88720E+01. 446 .492 .360 ,
- 50 3.95720E+01 438 .484 .356 E 51 4.02360E+01 433 .478 .352 52 4.07750E+01- .430 .474- .350 53 4.-12500E+01 429 .472 .349 54 4.17500E+01 427 .471 .347 55 4.22500E+01 .427 .470 .346 56 4.27500E+01 .427 .470 .345
, 57 4.32500E+01 .427 .471 .345 58 4.37500E+01 .428 .471 .345 59 4.42500E+01 .428: .472 .345 60 4.47500E+01 .428 .472 .345
,
(*) Peak value normali:ed to unity
.'
19
- ;
- .- --.
.
,
,
I
.
,
m Table' h.7 Determination of " Adjusted" $ (>1) in S.C. - for 12. Month Cycles 1-3.(Location R_= 217.01 cm, 0 = 7")
.
1 PEAK FLUX: (bottom compartment of S. C.) Dosimeter Measured ASA Calculated ce ff( } Adjusted d(>1f }
}
Fe(n p)S4 Mn
, 5.23E6. .135 6.19E10 Ni('n,p) 8 Co 8.22E7 .171 6.86E10 63 Cu (n,0)60Co 7.17ES- .00159 6.88E10
.,
Average 6.65E10 lp ' d CENTER FLUX: (middle compartment of S. c.) .
'I Dosimeter Measured ASAT Calculated ce ff Adjusted $(>1)- Ii )
54 Fe (n ,p)'# Mn 5.0'5E6 .135 5.98E10 58 Ni(n.p)58Co 7.37E7 .171 6.15 E10 .. 63 Cu(n,a)60Co 6.60E5 .00159 6.33E10 Average 6.15E10
<
. 4 (1) Measured values from Table 4.4 (2) Calculated values frorn Table 4.10
*
-
-n (3) Adjust 4(>1) s IASAT) measured ~}
No (c effj calc. 20
-, . . - . . . _-
-
..
.
__ i . , y q
.it i
i
.
T,able .h.B Peak & '(>1) in RPV of Calvert Cliffs ..
~,
'l
_ Radial (*) 12M Cycle,(b) 12M Cycle,(C) IBM Cycle,(c) 24M Cycle,(") Location adjusted ~ calculated calculated calculated IR RPV(R=221.29) 4.88E10 5.31E10 5.69E10 4.17E10
1/4T(R=225.98) 2.91E10 3.17E10 3.40E10 '2.49E10
- ]
.
3/4T(R=236.93) 5.94E9 6.46E9 6.93E9 5.08E9
.
'
.f'
.
'
,
,
(a)RPV liner begins at 220.5 RPV begins at_221.29_ < RPV ends at 242.41 i i ji ' (b)Obtained by dividing adjusted S.C. flux (see. Table 4.7) by lead factor I/F a in Table 4.11 '
- fj (C)0btained' by dividing calculated S.C. flux in Table 4.1 by lead factor in h Table 4.11 (Note: no experimental data is available for 18 and 24 month
~
,
. ,
cycles ) ;
. e
-; .
<
*+
)
'
. [,. **
.
3 21
.
.
-e
. . .. ,_ . .
,
i
>
r Table k.9 Neutron Spectra at Peak OT Location I (R = 219.71 6 = 2. 50, 2 = 97.2) 12 Month Cycle 18 Month Cycle 24 Month Cycle !.
,
j 5%VA FLUt FLUX FLUX i 1 1.63E89E+27 1. 73 * !,4,E+ 07 a 7.10135E*07 7.537;6E+07 1.31134E+S7N l 5.67293E+s7 7 a.R91stE+29 3.0773EE+0E 0.38041E.Se !
. 5.81799E*00 e.1*?S E.0c 4.60564E+30 A I.10750F+0c
- 1. a 3 R "K 3 7. + 0
- M.23571E+0S
.
2.5N10E+09 0;. 77;"J C +eo ;.05337E+e9 . i 7 1.70197E*09 3 . * .",? ...;E
- D 9 2.9*.:051E+99 f
- . 6.*0e55E+09 6.86845E+0* 5.2343tE+S9 4 4.40453E*B9 4.70431E+29 3.45386E+S9 i
- ;i 7.;01?OE+09 3.4359+E+29 0. 5 000'7E+S9 i i1 3.60783E+29 3.57047E*09 0.80487E+S9 l 10 1.79107E+29 1.90057E*O9 1.48193E*S9 1e a,o ;eOE 08 4.VS.;0eE+@S 3.63585E+05 1., *g . ;; 19 36 E+ 09 0 . 3 C ? O A E'+ 0 9
-
1.7365tE+S9
- 1 ". b.4350J;E+09 5.83151E+29 4.25130E+39 l
.
5.57;e7E+0* 5.960wSE+09 4.35489E+S9-1 7.418c7E+29 7.96047E+0* 5.79095E+S9 1A 1.09533E+10 1.17505E+10 8.53567E*S9 r
..-
't . 005 5 7 E + 0c 7.53394E+29 5.45967E+S9
; .' 3.41084E+29 3.65900E+09 0.65397E+39 .
'
;;1 c.19686E*e9 9 . 8 5 B C .*. E + 0 9 7.11397E*S9. /
; .74Rt E*09 6 . 3 0 4 *.35 E + 0 9 5.98543E*89 y, 0; c.33096E+29 S.*30 cE+29 6.43968E+S9 '
.,
9.5057eE+09 9.10917E+09 6.5*771E+S9 ;
;s 1.1101nE+10 1.19 91. e E + 10 9.55000E+S9-
!s 1.00145E+10 1.07*7'E+10 7.73826E+S9 . >
.
, 0/ ?.0%v5bE+29 7.56000E+0c 5.425SSE+39 E ,'
Os e . O ,';o S OE + 0 C 6.45933E+09 4.e3553E+S9
**
. 0.!;1013E+09 0.36901E*e9 1.78444E+89
O 1.:;0376E+0c 1.311c1E+09 -
9.45816E+00
;;. S e. 5 9 5 E + 0
- 0.77694E+09 1.97048E+e# *
- 1. t s't;. ? E + 09 1.79995E+09 1. 0703!;E+ 09 JJ 3.25531E+09 3.5c;!cE.co 0.56005E+C9 ,
4 22
..
.
.
I,
'
.
'
Table k.10 Spectra Averaged Cross Sections at Center of 7' S. C. Deff(b) e.gf(b) e ff(b) Reaction 12 Month Cycle 18 Month Cycle 24 Month Cycle
#
Fe (n,p) 0.135 0.135 0.137 8 Ni(n,p) 0.171 0.171 0.173 63
; Cu (n,0) 0.00159 0.00159 0.00164 8U (n,f) 0.452 0.452 0.453 46 Ti(n,p) 0.0230 0.0230 0.0236
, ff ,
h c(E) 4(E) dE , [C(E)dE 1
!
.
$
'
;
*
*
.e l-I-
23 ,
_ _.
,
Table L.11 Calculated & (E>1) in Surveillance Cepsules and Lead Factors (LT) for Calvert Cliffs-1 ,
?
,
AZIMlTFRAL LOCATION: 0 = 7' i RPV Lead 1/4T' Lead 3/4T Lead Cycle Q & (>1)(1) Facter i Factor
~
Factor ' 12M 6.69E10(6.15E10) 1.26 2.11
' 10.35 18M 7.00E10 1.23 2.06 10.08 24M 4.88E10 1.17 1.96 9.61 A21MUTHAL LOCATION: 0 = 14' !
.
Cycle Type c (>1)(I) RPV Lead 1/4T Lead S/4T Lead Factor Factor Factor 12M 4.92E10 0.93 1.56 7.62 IBM 5.12E10 0.90 1.51 7.39 24M 3.21E10 0.77 1.29 6.32
'
II)Results from transport calculations are shown (results for e = 7' are shown in Table 4.1). For 12 month 7' case the " adjusted" flux obtained from dosimeter measurements is shown in parenthesis (Table 4.7). (2)Lp , &sc (>1) , where (se is the calculated flux at the center Yp v (>l) of the surveillance capsule, and & y is the max-inumcalculatedfluxincidentattkeindicated _' RPV location (Table 4.9).
'
.
>
24
. . - -. -
- - .
_ ,
-
l- l -
-
, Table h.12 Determination of RPV Peak Fluence for Calvert Cliffs-1 ,
Cycles I3) Full Power Days Accumulated Flutnce (neutrons /eme ) 1-4 (12 month) 1441.3 6.08E18 !
'
5-8 (18 month) 1618.1 7.95E18 ,
!
9 (18 month) 404.5 (1) 1.99E18 10-EOL(24 month) 8216.1 (2) 2.96E19 TOTALS 11,680 (32 EFPY) 4.56E19 I
.
( ) Projected value based on number EFPD/ cycle for cycles 5-8 I ) Pro,lected, based on 32 EFPY lifetime (3)12 month fluence rate based on adjusted flux values in Table 4.8 . 18 and 24 month values based on calculated fluxes from Table 4.8. ,
'
.
!
.
l 25
.
- .
;
- .lr-i.
l
-
. Table ,L.13 Fluence in RPV after 12 EFPY for Calvert Cliffs.1
,
,
I Fluence neutqns . s Location. er. " RPV 1R (Rs221,29) g,93gg9 ; 1/47 (R=225,pg) 1.15E19 3/47 (R=236,93) 2,35Eis
?
$
5
+
.
,
.
'
!
!
i f 1
'
<
1 i
.-
p . !
,
1 l- 24 l
-
=
y ,,
E, i"i
; - ,
- 5. ADJUSTED REFERENCE TEMPERATURE DETEMINATION i i
NRC Regulatory Guide 1.99, Draft Revision 2, provides the approach for computing the adjusted reference nil-ductility temperatures for beltline ! paterials. The adjusted reference temperature (ART)_is given by 1 ART = Initial RTNDT + 6RTNDT + Margin (1) ; where ARTNDT (surface)
= [CFlf(0.28 - 0.1 log f) (2)
"
and CF = chemistry factor specified in Reg. Guide 1.99, Rev. 2. f = fluence factor = fluence 19 '
.
10
'
- Margin = 2 og +e 3 l
where og = initial standard deviations of data = 0'F e3 = 28'F for welds and 17'F for plate materials. , (. Table 5-1, presents an evaluation of the ART of beltline materials for 12 l ' .i ' ErpY. The large margin of 56'F was used for the weld metal 2-203, since this , material is not in the Unit ' 1 Surveillance Program. From this table it is 4 clear that the weld 2-203 is the controlling material for the pressure
,. .
. vessel. The ART of weld 2-203 at various irradiation conditions are used in developing the various P-T limit curves.
<
The through thickness attenuation of ARTNDT.is given by Regulatory Guide
! ,
1.99, Draft Revision 2, as 4M (3) ARTNDT = [aRTHDT surfacele
'
The 6RTNDT values for the various depths for the controlling weld 2-203
'
for 12, 16, 20, 24, 28, 32, 36 and 40 EFPYs are presented in table 5-2. Table 5-3 presents ART at 1/4T and 3/4T locations for the various EFPY. 4 l , PEG /FR-1278 27 1
-
, . - - , . , . - - - _ . - . - - . ._, . . . , . _ , - .-. , , ,
n I ' l l l
!
Table 5-1. ART Evaluation for Beltline Materials for 12 EFPY I I Chettistry Initial ART NDT argin l Material Cu Wi C.F. RTNDT*F Surface 'T 'F ART ; 2-203 0.21 0.87 208.2 -50 246 l A,B,C 56 252
;
3-203 0.21 0.67 178.9 -56 213 66 213 4 I A,B,C 9 203 0.23 0.23 120.5. -80 142 56 118 j D-7206-1 0.11 0.55 122.8 20 145 56 221
D-1206-2 0.'? 0.64 83.6 -30
-( 99 56 125 l
D-7206-3 0.12 0.64 83.6 10 99 56 165 ; D-7207-1 0.13 0.54 89.2 10 105 56 171
,
D-7207-2 0.11 0.56 124.2 -10 147 56 193 D-7207-3 0.11 0.53 119.9 -20 142 56 178
-
HAZ 0.18 0.19 94.2 0 111 56 167 +
.
i.
. . . ;* .-
- j l
1 28
-
'
!
- .
Table 5-2. ART NDT vs EFPY I , f ART #EI A NDT NDT NDT f I- Surface (1/4 T) (3/4 T)
'r
.
'
EFPY 'F 'F
.l 12 246 213 160 i
i
;
16 259 225 168 g 20 269 233 175 24 277 240 l 18C
'
28- 283 245 184 ; 32 288 250 187
!
36 293 254 190 - l_ 40 : 296 256 192 Table 5-3. Adjusted Reference Temperatures j at 1/4 T and 3/4 7 .
;
ART (1/4 T) ART (3/4 T) EFPY 'T 'F
.a 12 219 166 16 231 174
!
,
20 239 181 : 24 246 186 i i _- 28 251 190 , L 32 256 193 ' 36 260 196 40 262 198
-
.
'
29
;-
. -. _ . _.. - . . , _ . _ ,
.. . - . - - -- .
!
l
- 6. HEAT-UP AND COOL-DOWN LIMITS i
The adjusted reference temperature (ART) for 12, 16, 20, 24, 28 and 32 EFPYs were presented in Section 5. These ART values were used to develop the pressure-temperature limit conditions for the EFPYs described above. A SwRI computer program PTLIMT was used. The generic procedures for PTLIMT are described in Appendix D.
,
The following pressure vessel constants were employed as input data in the Calvert Cliffs Unit 1 analysis: j Vessel Inner Radius, rj = 86.81 in. < ' Vessel Outer Radius, r o = 95.43 in. Operating Pressure, P o = 2235 psig - Initial Temperature. Tf = 550'F ! Effective Coolent Flow Rate Q = 128.8 x 106 lbm/hr f 2 Effective Flow Area A = 39.83 ft Effective Hydraulic Diameter, D = 22.44 in, t Heat-up limits were computed for heat-up rates of 40'F/hr. 50*F/hr, 60*F/hr and 70'F/hr. Cool-down curves were computed for cool-down rates of O'F/hr, 20'F/hr, 50'F/hr, and-100'F/hr. Figures 6-1 and 6-2 present the heat-up and cool-town limit curves. - ,
'
respectively, for 12 EFPY. These figures were developed based on the NRC i
'
Standard Review Plan (5.3.2). In Figure 6-1, the lowest service temperatures, minimum bolt-up temperature (70'F) and inservice leak test curves are incorporated. In developing the heat-up and cool-down curves, instrument error margins of -60 psig for pressere measurements and +10'F for temperature monitoring base been included. These margins have been used industry wide to allow for possible errors in measuring instruments and to account for FEG/fR-1278 30
. . - . . . .
-
1
i- 1
,t. l ,
ic
.!
variations between bulk temperatures.and local (near beltline) temperatures. d- Appendix E presents the tables containing heat-up and cool-down data for '! 16, 20, 24, 28,~32, 36 and 40 EFPYs. j I i
!
F. 1 4 i
;
;]
1 t s (
!
,
}#
L ,
- t. ,
- j .,
l' l l l l l- ! '- PEG /FR-1278 31
*
,
e '
'x , _ _ _ _ , . _ _ _ _ .. _ _
- _ _ . _ _ _ _ _ - . - . _ _ .
l
.
5
+
.
r
.
- -
-s, ?
- ,
J C E e= b
-
w = w [ Ln
@b
=
am l u n Y U y ( -- -
* *
... E, .
_ U I
-
z U 9 l , . w I
*
@G e W b W H E >
~ w
.as 4 . .+2" =
q w y v > A
.J . 4 g g W O W& A= -
UH GM w
= We g
> l V b '
b w h i 9 e - i W' , C = g e= ; 6 - 8 C b .J C= 3 l =, w e 4 b b 3 O u '
- m. A gm l :J N po
-
1 s,
> b M
b - D" kt N.. U' w
. .b ,_
- O e&
N. i g w N ee CD &a 6 G C 43 &&
=
^ # e &b N
=
& D0 e m *
?* E C m. MU 4 eG
# %
- e &W
= H EE e w == b. g O g
- N w g e m 9 *
- C bb g -
Q e o e .
> 0 4 @@
,b w
- a .= @ .=
b 8 N em g
- W @ . - g @
& & Q H I O g M
* +
u
-
g
==
-
Sa
. a u-E
>44
> >
.
,r ,
.
-
B Q
-
-
. :. .
- w w u-m
_.. R . _ 8
-
m
= .~. I E - go m - ~ . &. _ , ,C
, . - -
- c. -- - 5
. i & C w as as lllEl llllllll:
E , 3 = 1 CC C 4 s g e 8 8 8 8 8 8 8 e 8
- a 3 e X e e 4
-
4
-
m
-
o
-
4 N
~ ~ ~ ~ -
(015d) aaness2d 32
u uu 1- . . _ .
-
-
.
.e
== = == = =-
.
L-
. .- -;.
_=~-
= = = =
=.=:gz - =.:--' n =.:===:w 7:- r
- -__L =_ ~u -: .; . ; =r .^ .:.. . - :. : ^7:-= ::=.:: '::i :
_._.1_." -.a. K
..a.
.1 n w a'~~== ~ = =+ = = 8sa m m' 3 == a^x_ m
-
._ .
-
'T s . ~ ~
- - ...._..
=55=:'~i = :7 ;"; b 2:?-; _ } Q=L:gi-==.g=;q
' ~'~~
c_==_=
=:: = =_ == =:2~-^: = ==;==- ._ 2- -- :-c ---- _
.
- = === =:2 ::m n. .g- - - - ;_ :~-'= = -
f -.z;;=L=~
- - -_ -_.-. a =_~~.'w-- :::- _f _~L"- _ A _;:~~ - - ^ a- .'~5 - ;;-T; _..:'-~~T' -;__ _ ' ; _ _ = _ : _ .. . +-=====_
-
-----------_:_:;---_--------
-
- -- _T _ q:_r;;---- -
= = = = ,= =- = ====
.
n= === = = ~= = -=- -=x=- --.
==== ,= -= =.-- _
= =___=_;_-;_-,y
==.__.______3_a__},_
_
.:~~-'----;
- - _T^__^^:^^
.-_-:.;---.__._-m=_ ; ;_---
-
._
==#_---.------- I
__ -
T-^
= _= = ,
T'--~~~~'~ .
- '
-
__---L . . _ _t-^: ^^ _ ' _' :p'-'J&
- s. m.. - - -x'- - - . - - ,
_t.'".^'___-___--.-
-
. _ ~ . _ 1-- - -
-r g,,
. _ _ - .
-
'
_ g
------------- _------._g--.-------__------_.__-__----__:z_-r_-==-
. -
7 - + :~- . r - -- no,
-
= . = =2 =
==_ =
- -
--
==== .- = = n =+=== _ _
"_'~_-'_1._-------
'
.
; ^~~~'--u_ - ~_ ^'~ ': i_j -~--- _- . 't.; ;.1 _ = _.; ;; .: 7 _-_~-_'__:___=~-_::;---__a.:__-^._,______
-
. .. ,,
_
-
ey
.--.
-
^? -
'
- - -i' ---
n - f-~ ~.- . -. ".} -^{ : - -. .:' '.w=;
-
}:~-'^^-^^=_~C..::
^ . . .;=.
^
- - T. '~ '::Q [-' f l}? ;---.--- 33 m
.
.:..- . -_: 'J.T-~- ^-- - - : _.
- . - _ _ _
- : ~-
' '
'*"'^~.'.Z^'__.'.ZZ=~..1~~=~^= G
.h.5
^
{- :z ^ - - ^ 55 l ; _ :f' >
...----.~M
==-m . ? :~
^
f
. ?!~ ---
-
- _ .
== = =1. x .c .. ,. -
=== ==-._.__=__
-
_.__.:~._-''~--~^-+ _'-^^~~-_~~~'-*--~_"-'U'.'__':_.:.-^'-r---';._3-
= =m . -
._ . =.ma . -. b ; ' - :--_-_-_ .
.
.M
- :: 'W: . - - .-
.
. . _
_L* ~': ~'? - _' ^:.i:C" : : [ 2 :: ;_ ^: _ .. ' ^: _ f^;:^_^ __. __
%- .7 .. .r~'
-.
.- _
= '
F _._ _ _ u_5=._._1 ;; :..T .: .Mz.
-::
_. : - L -- ' ;_:-__7---. _ '__ _+
-
6 g
- - _ , . . . _ - - - .
33 . .-
&
_ ._ _ .
= - a=. _ %=7 x e - 4 -
L n=xw q_ n = =:====. %f-_=- ==_p=====;=y= : aw -x c : ; .
.. = w _ y ==_=
; . y=_ :.:z.2 y
==.=..
-- --
.= = - .= ,
'^-' . :. ;: ' ':':: - _. :_= _ '. :=~ -= -^ -: ._:_~_- -^;y =_._- = T-= :'
-.
W: : _
' - '
.:L 3 b
=. -. a
'
.
;= w _== ,= ; = ga =- - - - - c.
.
.
.
l
.-
- c.__.---__.,.
. .
. ;
.
- --- : : = == : :.; - L==. -.:
.
. ;.: -_ __
' ;. . <
x..-:_= ~;;- p
+ 4
.
- _ _ - _ - , - ~ _ ___.._.__--__.....___.._______._,--___'_...'..'~.'.-~~..=::'.2._y-..2.._.-_=..y--'-
'
1 :: . 7 g _ _ _ _ _ _ . _ _ _ . . .
._ .
. .
-. . _7 . ^ _:; . . :. . z
. . _ _ _ . ; :- __ . ,
'. , . n = = n -- ~. :-g: y;-:: := ,_-.._.. = = = = > .. .. ,'
_ . . _ . _ _ _ _ . .
'
_,._~.h__...-__' _ , _ _ . .- [__ '._' '_: .
'
.[^ "__C.
'
W _
" - - - -
. . x. .:q = = ( - .: . -
.,=_"c.---
. . - : ;;
-
w
..
,-_,:_.
.
_ -
. _
= =. == = .' ' - .
-,.__=:=^:_-.^~-^~^~~~~=i2.***^~_~~-.=^^:?:: *
' '
= .:.._L .. .:'=~'~..__=^.*.*
= .
.:. :4: ::,-..,T_.
- -
;.: =~T ::=.; _
- .
e J . . =~ : :-- 1_---_____- _r - -^ _:- g !
~g-- _
_.x_r _ em=mmmg x == ..w
- g n=m= m , -
a \ ,1 - -- .
, ,
- j,_ --
-
-__m_=_=_y-- c.-x. =;.y _s =._-=._.._=_g ==== - . -
- - - -
- . ;..m. .
g g> ) _~ _ x = h
. . r . , - . ' p -- - ,= . _ 2 ___ .x : a _ ._ .= 4 --S ;-%.- - _ .--4--_- ,S,
. W. . . .__= - -a.=====
__ .
.
-
_ -]- h, g,.,
. .
~ =.
. . .
=== .... = :: m
.
u . W- ___;__, _ _ _ _ _ _ _ _ ___ 3,g 7__ y ._ g =- _g _c, ~w=C ww
- -
(
-
-
, .
- - ' ' ~ ' ' - _ - _ _ ~.m.-----
.__ ;=;.wz:= ;-- : -
- ~ 73 %nr
*;'.,*;,,'.=",':~;'_.X,_
- .
-__ - . _ - ..
-- _w _-_.- _=.= w --- .w m__ e _- x
.
_..-_ . - . ,_ _
-
_ e.
- . , -
..
_ _ s . .._ . _
,. .
, .
- . . = _ . . ..=,,m=._a,.. - -=_.=__.g=..__~
.
.
-- -_
.
=
.
_
- -
..- - w
, .
. . - ~
, .
= :-
.=.g--.=
-
,
.., .
. -
. .-
. _..
,. =. .-. .y- _ -
.-
_ _. . m .
. . ~,,.,
.
__-;.~ u._p ::x:===
.
._
n
., u
,i _ '
, .
_._
'
. .
. .
. . . -
"^
_g_W=1:( _ m== m__ _= - __
--
als W
,
.,I ..
. -
-
.
-
i_.._-' .' - ,*ll;allllll1, . T-4_2_ _ _ . - _ - 2._.. g:_=__. .,
. . .
.
__ - -. g
.
__
.
_ m_ .
= m s .t = ., _
e,.,,
.
_ ..
-
__r +. r. m~. = . . == . _ =_a u=== .=w-=m ~ .
- m=;se n;h.__= g -
.
- -
x_.- c-- = :: m _ --_ g ".
.
g - , e;n._ 2
. .. ___
. ::::::::3:;gm_L1=r s4,
_
- ==- _ _ ___::cc.v ._ -
==
g .=- = g =a =+ d:::::a.,.*.,**.f._. g_
..
== .:w= =
___ y3
-
,
._ w ----__- --
- ::[: _*- ,; y
_. ^ ; 7 --n
-
- Y
- _ _ . ,*)*'*M'--^'--~^
, ,. , , , , ,
U E'"
$ -Rn- ) eau.asen. " 7_r[.. : ly:*:=*y*',*"ll~ll::~$7 =- .-
ux=:::::ad' , + _. d
. . - . _ _ _ _
= =
m- e 1:: . .. :+ e
-
., e_ - ; - m=ggg=m__ . .,
.
. - === , --
, , ,,,
._=
.
. - -
, =. m= _ _ , ,
, . , ,,, ,,,
m=. . m = - - . e ., ,.,
, - = = = =
=-
-
m = += ,=. m== n.__ =,= -
.
,,
- p. , _ , _
l
- . - _ ==;-_g=.,,,=
_ _m_ K_ - - . __ m. .e
.
-
m. h 9 N-l . 7 ,
. s= *s=====i
==, stem ==
." . .- M~ ^ W =. E.._';tllll; lEl L_-_ : ,
.
= v - . . - -,r y. = . p_ . -mww= ::=-&
. _
. .. _
c .; ,=,gg -==::::::=. : .amm, a AwWr-]
-
.
3_
.- . -
.
w ss
--
-
. - a m=
. sw
-==us1 m,::
a
- sa ,rw := ::: = e
=
- _
g ___
- - 3 w w __----__; -
.-.-_7-.
. . = .23_;:::;.-----
_~ , ,
..
..
. - -
_
.,. e m =. - . , -
.
-
-
.
.
g .:. _
.
. ...
, , - - - -
- -
.
s, - ~ . 8-
. . . .
r_2 - .<< e
--
1 . -
; ,_ .
7 e s = e e a- g E~ 8 8 8 8
- s. . - a - -
c 4 e N 4
~
4 m = es 4 4 N ac s ~ ~ - - - - - (DISd) sansss2d l l l' 33 i 1
- . . _ - _ _ _ _ _ _ _ _ _ _ .
, - -
!
<
l ! REFERENCES l
!
- 1. Perrin, J. S. , fromm, E. 0. , F trmelo D. R., Denning, R. S., and Jung. .
t R. G. "Calvert Cliffs Unit No. 1 Nuclear Plant Reactor Pressure Vestel Surveillance Program: Capsule 263", Final Report, December 15, 1980.
-2. JAT (BG & E) letter to NRC, January 23, 1986.
s
- 3. Rhoades, W. A., Childs, R. L., "An Updated Version of the 00T-4 One-and Two-Dimensional Neutron / Photon Transport Code", ORNL-5851, Oak Ridge National Laboratory, Oak Ridge, TN, July,1982.
,
- 4. Simors, G. L. and Rouss?n, R., " SAILOR-A Coupled Cross Section Library 9
for Light Water Reactors", DLC-76 RSIC.
- 5. DonWright's(BG&E) Calculations, January 15, 1986, b
4 nl
,
&
>
PEG /FR-1278 34
. - -. . . . . _ - . - - . .
. - . . . _ - _ _ - - _ - . _ - . . . . . _ _ - _ - . _ . . _ _ _ -
. - . - _. ;,_
-
. - . . _ . . .
. . , ,
.
__,
. .
Lj
., .
fl' y..a,j i
,
r + { n.~ ,
'd[
, q. ;
_ ;- .p . .
*
!
t 5 i j P i
-'
'er .
{
.
's'
'
APPENDIX A
* '
DETERMINt.T!ON OF SPACE-DEPENDENT SOURCE DISTRIBUTION .
. FOR TRANSPORT ANALYSI3 0F CALVERT CLIFFS-1 /- j
':
1 81
*.
' ;
,
I
, *
- d' ,
.
.
,
.
~g r iv h.
<
.,/
- g. 15
.*
y (db
. ,
,
',
,
.
.
b: ! i n%
'M 1 ,f
'
1- . l , i O
~
1 n$. 2
?
PEG /FR-1278
-
4,. J'e . . . . . . , . --.-.-.,..,._,.-.-_--,_,_.......m._ . , - . - . . . ...-,r.-
-
- - . - .. . - . , , . .,. , , , . .
.-
)
-
.st 1 l
.O
'
l Appendix A. I Determination of Space-Dependent Source l Distribution for Transport Analysis of Calvert Cliffs-1 -
)
The space-dependent source distritotion used in the transport calcu-lations was obtained by combini'..g the assembly-wise power distribution with relative pinwise power values for the peripheral assemblies (i.e., XY Zones t 9, 18, 26, 34, 42, 49 in Figure A.1). The relative assembly-wise power dis-tributions for the 12, 18, and 24 month cycles are shown in Figure A.1. These values were obtained by averaging BOC, MN, and EOC distributions e provided by Baltivere Gas and Electric in References A-1 and A-2 as repre- - sentative for the appropriate cycles. (The 24 month cycle cistribution corresponds to a projected E'C core.) The absolute power produced for each j assembly is obtained by multiplying the relative assos:bly power by a value of { 2700 MWth .- =
,
12.44 . j 217 assemblies assembly i ! The absolute arsembly power distribution for each type of cycle is given l .. by Table A.1. The power density is assumed flat within the interior assemblies, ...- but is represented with a pinwise variation for the boandary assemblies,
,
which account for virtually al. of the RpV fluence. Examination of the BOC,IOC, and EOC relative pin powers provided by BG6E shows that the %i
~
'
MOC distribution is a good app +oximation for the average over the cycle, l [ and hence was useo as the representative pinwise variation. The rela-tive pin powers in the peripheral assemblies are very similar for the . 12 and 18 month cycles, and therefore the 18 month pinwise distribution A-1
.
- -
...- -- . , . .._.
._ -_ , - --. _ _ _-_ . _ . _ _ .
- - - - - ,.
I-l
)
' '
1.I is used for both (the assemblywise dist r.butions are different, however). i
'
l Tables A.2 A.3 give the rei'stive pinvite variations for configuration in Tigure A.1. The combination of the assembly and pinwise powers results in an absolute space-dependent power density defined for the quarter core. The power density values are converted to a source density by multiplying by the factor, . 7.64 x 10 16 neutron MW
/s m
,
The 1/4 core XY source distribution is then mapped ontc the 1/8 core Re mesh used in DOT by utili:ing an interpolating program previously de- ;
!
veloped for this purpose. [
?
References A-1. Letter from Stanley to P. K. Nair, dated September 10, 1986. A-2. Letter from Runion to P. K. hair, dated October 10, 1986.- ;
,
h ^
*
.
6 t i e 6
!
.
A2 -
,
l . i
____________________-_________ - _____ _-____ _ __ _ _ , , _ _
. .- .m
.. _
Figure A.? Relative Power Distribut. ions ( Assembly-wise) Z for 12, 18, and 24 Month cycles / ope , z' ! A 12M , B lik C 24M 45' 44 45 46 47 .48
/
43 1 l 49 1.27 1.14 1.12 1.22 .78 1.03
-
.74
.98 1.24 .?3 1.21 1.05 1.10 .86 1.02 1.34 1.05 1.34 1.10 1.c3 .40 35 36 37 38 39 40 41 42 1.07 1.21 1.03 86 1.20 .78 .% .65 1.20 1.01 1.17 .91 1.14 1.05 1.13 .78
- 1.37 1.07 1.32 99 1.32 1.10 1.02 32 T 27 28 29 30 31 32 33 34
"
. i.23 1.02 1.10 1.22 .84 1.22 .81 .89 1 '
.81 1.27 .89 1.24 91 1.21 .% 1.00 1.03 1.33 .99 .79 99 1.34 .97 .79 i ,
! 19 20 21 22 23 24 25 26 ' 1.07 1.28 .88 1.13 2.03 1.12 1.20 1.11 1.10 .95 1.10 .89 1.17 .88 .95 1.11 98 1.02 1.30 .99 1.32 1.05 1.29 .84 18
.73 10 11 12 13 14 15 16 17 .74 1.11 .86 1.28 1.02 1.21 1.14 .83 1.09 34
.80 1:22 .95 ; 1.27 1.10 1.25 .81 .86 1.02 1.29 1.02 1.33 1.07 1.35 1.01 1.16 9
.87 1 2 3 4 5 6 7 8 95
.79 1.11 1.07 1.23 1.07 1.27 .93 .92 .79
.56 .80 1.10 .81 1.20 .98 .66 1.04
.80 1.08 L 98 1.03 1.37 1.08 1.05 .%
a I
5[11, ;9f 'N
W ,
;
i I l ,
'
,
!
Table A.I. Absolute Assembly Powers (MWth) for Calvert Cliffs-1
'
'
.
.
l 20NE 12 Month Cycle 18 Month Cycle 24 Month Cycle , 1(**). 2.445(**) 1. 739 (* *) 2.485(**) . 2(*) 6.912(*) 4.946(*) 6. 693 (*) l 3(*) 6.663(*) 6.412 (*) 6.108(*) 4 ( *) 7.658(*) 5.027(*) 6.383(*) . . 5(*) 6.644(*) 7.459(*) 8.523(*) ? 6(*) 7.926(*) 6.103(*) 6.433(*) 7(*) 5.767(*) 5.338(*) 6.538{*) < 8(*) 5.699(*) 6.451(*) 6.003(*) : 9 10.S25 11.833 9.879 10(*) 6.906(*) 4.946(*) 6.371(*) 11 10.651 15.167 16.076 12 15.964 11.82 12.778 13 12.641 15.814 16.499 , 14 15.043 13.687 13.301 15 14.135 15.491 16.785 16 10.315 10.128 12.554 k 17 13.575 10.688 14 371 18 9.108 9.257 . 279 ! 19(*) 6.663(*) 6.812(*) 6.115 (*) 20 15.964 11.820 12.753 , 10.924 13.736 16.225
'
21 22 13.724 11.012 12.368 23 12.828 14.582 16.474 i 24 13.985 10.937 13.114 25 14.869 11.833 16.013 - 26 13.861 13.786 10.414 27(*) 7.653(*) 5.027(*) 6. 371 (* ) , 26 12.651 15.814 16.474 29 13.724 11.012 12.355
- 30 15.130 15.453 9.792 31 10.738 11.310 12.306 32 15.167 15.105 16.71
.' 33 10.041 12.007 12.044 34 11.012 12.467 9.892 V,'
35(*) 6.644 (*) 7.459(*) 8.492 (*) 36 15.043 12.567 13.276 e 37 12.828 14.595 16.449 38 10.738 11.31 17.293 39- 14.981 14.371 16.424 40 9.705 13.051 13.749
-
, l A-4 1 1
,.
l 't i _
' _,
..
, i
!
'
i i r
;
Table A.1. Continued ; 2one 12 Month Cycle 18 Month Cycle 24 Month Cycle 41 11.957 14.010 12.629 42 8.088 9.668 4.006 , 43(*) 7.926(*) 6.103 (* ) 6.371(*) )
'
44 14.135 15.491 16.685 45 13.985 10.937 13.089 ^ 46 15.167 15.105 16.698 47 9.705 13.015 13.736 48 12.778 13.687 12.853 l 49 9.182 10.676 5.027 , 50 0.0 0.0 0.0 217 SN MW Average Assembly Power = 217 assemblies
, 12*44 ass.
(*)! ssembly per :one '
.
(**)] assembli per :ene 1 1 r ! : : 1 t
- l l
l ! 1
- A-5 l
l- !
.
_ _ . _ . . . _ . . . _ . . . . _ _ , . _ _ . . 2 - . . .
.
I s I
.
N A
'
C 0044 4 C
&c 0000 i W
n.N e e e On - >S- n. e om 4 n.M - S a t e enNW on.44- - O n. Mt e eb W .N 44440Nb e. n. b t 4
, .
e e e e e be t b . b b @W bb . , 44 S .NP2&P b. b. P d N b terne 4 M.
;
.
4 e4 e e4 N & @
,' 4 e b.5S S. > e6 e4 e4 e4 4. S m 4 4. b . t - M n b s l 3
b=S
- S t. P N 4 4 n 9 9. O N e N . Nen e M e M
'
, e NP e f S
e t. S S p . bb b b 2 9 5 W N 4 94W b. e ce N . e 4 S .P
. .
SS e .- W 3 . 4 en M n P P
.
3
,
e 4 - 4 M M ; QS e .
+
'
.>S s e 4 4 4 M M S. S. M P
. naeW Q. E . .Q P. S S .>b*b AS N
4.. b e4 N n. N a
- f. n. M. .
'
@ 4 W S2 e P & N n N w.>4 S. .OS&.MMDba&p>MG
.
NNn
.
e5 f C N < S S e e
# . - N e . .- >. &. &. v. W. W. ( 39 b. 45 4 m>N St 4 etOt#54NS .ht e &N . NN 44eM-nt i M NP.--
1 ,
. e .w ;
I y &-N& NN@n44G S. P. S n neS S. 4 MSS .N S. S 4 S. S & S M. P.
-
u e e. &* e S S S e e. w. c. m a. c. ENSS- . T32 NNNWa
- n. - m e
ta-N=.S 4 e
.
e 2 aS4=S
&
A N . . e .9
- C3 2. N &ceSN .
W n t. SS-MP3NSN
. e .
N n N4 M - S nMP Mt N n. N <Me
, P O n P.
e a M N. N 4. P .- M s$ -4 --Nta B
, t. &. S N E S S >. 2 2 Q. 3. &. W b 4S e 4 . 4. -. N. 4 e e N P.
e i
'
.
m R N. 9. 9. e 4 N S P N
. e t eMP -- e w - aw e -- e 4. w =. N N=3 NNme - E e . M -
O e t &. s a-SS->>>WPN 423 e SMSnENMP 4m NNme-
. e . . . . e> W . e 4MOnSbS & OSM n m O <te40N e . Nat--wNM 4. M
'
W M f S. S. . N. N. a. e > W
>>
- e . e . . e M. . . . e N N. 4- =ee
> >4 >m
.
k 3 -
- 0 - . S. S
--
.------ . . . . .N N t m. W.# M 3. 4~~N-S&
- n. . Saw Q b S Sh a w n. = 3
.n
-
NS44nen4nnt S. e
= 48N e. aSe N=
w MS4P
. tMt s-
. 4 44-
.
-N>4N
(
*N ,
!
- a M M. N. S. S. S S . N . N. . S. -
. . P P. P .S e. .N 4 . N. b = S.
. N M. . ------=ww wn S. m. am> --
. e CD w-mSSNSSN== n. .
. .
- -
' @ wN 4 .. m 6
- g b Sc&404&SSPSS a f .n.NMaNS&etan
-
*Sc N
-
.
4.=>N4N Nbten W
.e .MS-2 S S. M. S S. S. S. N. S. S. N. a.
. N= .=NPN- 4N* n gf=4m 4 A w .
>eem...n
.S=-====99== . m . . M. n .
- 3. pF .
* -S N w . aM w 03. S m 3 9 - 4 = w .. m .== .. '
l' P SS-m NSS-NS S e a m e . n
.
.m 5 N S..n N4 w ~it ~ S. S. M. . 9. O @S. M. e .s. . G.NM. - = m 5-m . m FN m e. M m & M m -
=4 empM e a ess---===S9=-- eS . = P. = = O 19 N e. n. h.
p
.
a a a S= e . .m.*N t e m f B. p.
. . . . e
;
; j. & MNO gNetw-S N mn am .--Maw e F. w.a mm .ma
, w a t e N. NS S.e am...wma @ B N. .M. . . M. N aNN. aN=PrmntwM B n-e 4 M .. v
. -
,
.
;
. -e M. e -- -
. .
e- e e S N-NwN E. e -MNStN M 4 W S eNm 4 p
.s
'#
N = a an e G N N S. . N S
=5 N e e N. S e
.
. y N MMabnN446 = 4MN Ne= eE e N e *8 . . .
i a=- P-- w- e E .a a wa
,i e N. N.. N. N. N.......: - - - a = =e4eMeM N ae -eaeSeS. Pe e a e
> 4 a aN==
S
= ----awa---www. m.
ej. , .: i. - .=e =.'. =. . -
-
A e e .
- e. =e
.
.. &. S. *e =w g . ' . . . .. . '. . ' . E E E -E l w-------w
.
....w.. - - - - - a .E -- N- m. - c-E i
EEEEEEEEEEEEEEE+EEEEEEt WP NP 4> 4P NP hhhh h hh8 hhh6
---------------S h
-----
. . 1 i
.
I e. A-6 1 i
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ - _ _ _ _ - _ _ _ _
. ..
.-~. _,
-
4.m: . ;
.
Tchle A.2. C&t med 4
.867 .873 .9 .85 .71 .38 .53 .52 48. 495 .594 .454 .357 .274 91Rt. 1.195 1.144 1.139 1.143 1.158 1.352 e.see B.See 1.273 1.852 e.990 e.941 0.886 8.863
.885 .72 .674 .63 .58 .532 .494 .48 .438 494 .372 .333 .286 .248 91H1 0 1.193 1.142 1.138 1.142 1.157 1.348 B.Ree
'
8.Ree 1.246 1.022 B.965 8.917 e.868 B.832 34Z 91Hl.e 1.220 1.171 1.176 1.172 1.135 1.240 1.325 , 1.279 1.14.5 1.011 e.973 e.928 8.85e B.794 14Z 91R1.0 1.256 1.333 1.448 1.436 1.29e 1.138 1.118 ' 1.861 1.841 1.115 1.174 1.113 9.939 B.771..._14Z _ _ __ 91R1.8 1.295 1.*04 0.988 B.See 1.423 1.143 1.992 i 1.955 1.e37 1.213 B.000 e.see 1.826 B.737- 142 - 91R1.9 1.388 1.429 8. Bee 0.999 1.425 1.139 1.001 > 1.042,1.827 1.284 0.000 e.see 1.812 e.743 14Z ' 91RI.e 1.288 1.364 1.481 1.464 1.391 1.125 1.e78 1.936 1.019 1.994 1.156 1.898 9.985 8.724 14Z ! ' 91Rt.e 1.292 1.262 1.274 1.261 1.299 1.156 1.111 1.862 1.e31 1.998 8.984.B.923 9.833 8.747 1%Z - T 91RI. 1.294 1.261 1.271 1.256 1.281 1.145 1.984 1.e5 1.827 1.884 .977
" ,
.915 .823 .741 14Z l 91R1. 1.265 1.351 1.465 1.444 1.288 1.999 1.839 1.982 981 1.858 1.189 ;
i 1.837 .858 .689 14Z i
- 91Rt. 1.273 1.466 8.8 e.9 1.39 1.1 1.828 .992 .976 1.136 9.9 8.8 .923
' ,
.675 14Z i 91Rt.
.654 1.259 1.45 e.e e.B 1.377 1.994 1.920 .992 .969 1.121 S. _. S . 9 '
t 14Z 91R1. 1.217 1.297 1.488 1.391 1.24 1.882 1.e47 1.812 6-1.91 1.' 842
.963 .785 .622 14Z
~
9kR1'. .674 .598 1.179 1.134 1.137 1.128 1.184 1.197 1.277 1.234 1.865 .897'.G37 14Z ! 91R1. 1.147 1.898 1.893 1.992 1.1 I 1.312 e.e e.9 1.16 .887 .885 .73 .654
.59 14Z
, 91RI. .584 1.147 14Z i.995 1.888 1.986 1.893 1.392 8.~B. 1.152 ~.882 .8 .725 .649 ~ i
91Rt. 1.172 1.121
.647 .573 14Z 1.119 1.187 1.981 2.17 1.242 1.292 1.857 .87 .888 .735 ' ' - - -
,; '
91R1. .575 1.29414Z 1.272 1.371 1.348 1.197 1.94 .99Y .969 .915 .956 .979 9. 73
-}
91R1. 1.239 1.41 e. S. 1.314 1.835 .963 .933 .954'1.936 9. B. .812 .583 14Z ,
.i
.I J 4 ?
. . . _ -. _ _ . . . . .. , _ ~ . - . . _ . - . . . . ~ . . . . - _ . - . . . . . , . _ _ . _ _ _ . _ _
. - _
F: t t >
.
i I.
,
.
.l f!
Y I
,
?
.
I J
?
CD 4 b 4 b n 4 ' b - O M M M 4 4 4 n. 0-
- b. b.
M N 4 b. n. . 4 0-CD Q & B -5 . 4
. S . b. . 4 n S .
b M S S N 4 (4- S S 5 f4 5 - M - C 4 E 4 o. b e . S. S S. S O. n
&. . S . S
,
S S S
.
-(1
-
- S . S ] 4 n.
4 5 S N l 4 & b S ' M C M e S & b n.
.
S.
-
. 0- . 4 (D E 4 M S . O C S m. S n. -
!
4 . . M S S S 4 > b 4 0- S S M N & . N N (D S
- N 4 N S C e & M &. 5 4 4 o
,
S. . N ED S &. (D . 4 N
- C Q .
S b. . S o 4 (J . S afi S S S b 0- G S - N & . m & &. n m & M 4 0- b S
. . n 4 . 6 M & b n - S . W S. W M 4 8 4 & O. S . &. S . & ,
- M . S b S S S C
& & 0.- S 4 4 S .
. . & M & - .
S
,
& - & C. CD 4 4 S S.
n n (4 n CD S . tc S S - 4 S S 0- . S . . 04 0- . . S N S - S. S &
. S. - S (D N S . .
- 4 C CD - - G G
'
'-
4 4 M 4 . . - 0- 0- i N 4 & - 0- S S 4 (D M i j S. EL S. S . 0.- e. (J (D f i - . S n C S S S. S m
,
l '
- . - - n M - . .
-
b
& & & n Q - S
@ CD M . . 4 N 0-S n n b - S ,S S 4 M M n - S . S. &. 0- S C %
. . . - (D e - S . . - (.g
- M. - - N S S m. 5
- 4 N N 2 b S. '
I
. n 4 E . . - 4 - 6 J. .
S N C - M - - N 04 0- CD m - . . . &. .
S
.
M. -
. - - 5 S.
- S &.
S C. S S $.'.-
-N N b (D $ $ 4 4 N
,$ 4 4C4 4 M n & 4 M
- 0-c- - N 0- -
* *.
4 N - . n. S. S. . . 0.- > F.
*
. . . - - S S - S S . S
$
- S S S S S u 4 b &b ' C O' ' ID '* *M- ' S. 4 'J S. 0- S.
i M 44-4N-4 -W =b4--N-4 .4 -N4-
- t. 4 N n. N M n. -nENnEM 2M SE
.
N. (v.4 4 h . . . .- . - . E .- 4.-E S. 4.-
- E 0-
. = 0.-
t E
-
&. M -
9 = -N-4 N .N -SO-SP- 0- e-SO-B&S -5 &S .>
< 0- S.
-
.N - -S4 4 4 0- 0n 4 4 64 &M 4 0- N M l- -
W . N-
. .
3 ^i 4 n .
- 6b (D 4 0 -& 4 0- N 0- S& >-
- i 24E E - . 4 . 4. Nt -. - N4- n N 04 - n. N 4$ .4. N4S. M.N S. M.4N 0. 44
. MN g
0-
-
0-
-
&
0 - S - - S - o. S
- - 4 - - S - - S - - S 4- - S = oS. -
.
t l l i . t l A-D i
- - -. . . - . -. -- - -
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ , _ _
** O' Table A.2. Continued 8.987 1.R16 1.964 1.819 B.883 B.747 B.783 9.678 B.626 E.641 p.642 9.58 e.464 8.363 14Z 91R1.0
. " e.98 1.082 n. 9. 0.926 0.706 m.643 0.617 e.582 0.655 B. B. G.49 .348 14Z 91R1.e
.322 R. */4 3 1.934 e.0 H.O 0.868 8.653 0.59 0.564 m.534 0.695 s.e e.e e.455 14Z 91R1.9
, 0.879 G.878 9.997 0.853 0.716 R.585 m.535 0.513 8.478 0.499 e.511 e.46 9.368 H.?96 14Z 91R1.8
.813 .713 .669 .629 .575 .529 .491 .472 .434 .403 .374 .337 e.293 0.258 14Z 77RI. 1.29 1.25 1.25 1.22 1.17 1.12 1.98 1.95 1.83 1.91 1.98 .96 .99 .83 282 77Rt. 1.25 1.32 1.43 1.49 1.24 1.07 1.03 .99 .97 1.95 1.12 1.97 .99 .73 28Z 77H1. 1.25 1.43 8.88 0.98 1.33 1.06 1.01 .97 .95 1.12 e.ee 8.88 .94 .69 20Z
'
.
p 77R1. 1.22 1.48 S.88 e.38 1.31 1.e4 .99 .95 .92 1.97 9.98 9.88 .89 .65 28Z 4 77R1. 1.17 1.24 1.33 1.31 1.16 1.91 .98 .94 .89 .94 .98 .92 .75 .69 20Z
77R1. 1.12 1.97 1.96 1.94 1:01 1.96 1.13 1.87 .93 .99 .76 .78 .62 .56 20Z i 77R1. 1.97 1.82 1.98 .99 .98 1.13 8.80 0.98 .97 .77 .79 .64 .58 .52 20Z 77Rt. 1.95 .99 .97 .96 .94 1.98 B.99 e.00 .95 .74 .68 .62 .55 i.51 28Z 77R1. 1.83 .97 .95 .92 .89 .94 .98 .95 .82 .69 .64 .59 .52 .47 20Z 77RI. 1.92 1.05 1.11 1.97 .94 .81 .77 .74 .69 .72 .73 .67 .55 .44 20Z 77R1. 1.91 1.12 e.ee e.ee .98 .76 .70 .68 .64 .53 e.98 e.99 .57 .42 , 28Z ,
77H1. 20Z
.97 1.07 m.Se e.MM .92 .7M .64 .62 .59 .67 m.Se B.99 .53 .38 77R1. .99 .99 .94 .89 .76 .62 .38 .55 .52 .55 .57 .53 .42 .34 20Z 77Rt. 20Z
.83 .74 .69 .66 .61 .56 .52 .51 .47 .44 .42 .38 .39 .38
_,_, i
,g , q ,
'
- '
_ _ __ __ _ . _ ., _._ __ _ . ,_ _ _ _ _ . _ - _
M,r = , 1 p 5
' '
-
3 1 j
;
.'1
'),-
"
;
'
,
g g ]. ] l 1
-
. .
-
,
.
,
l
.
.
.
!
-
-
.' : j l
,
'
I
. l
*
.l
. .
i i
& &
l l M D 4 f M f .* b b N f
'
3
< <
Q r- m C
< 0 a e n N 5 > -
b '
. C. C. . &. . . P. . b. b. b. l . 4 . .
S S S S S S S S S S S S Sj S , i
'
tb S 4 c1 - IF 6 N .N S 4 4 5 N'
& S S S & & (D b 4 'M a IF 4
- N n t M
. CD C > e > 4 4 4 + N l .n 4 .b D.* b- 0. n (D. MDJ P. (4 a &.ea 4.- (D - 2 5 S (D. 6 b. >4 6. h46-2 44 4 e < 1 3 8 4* S - *S S f* S 4* S 4* S f S f *S
- S
- S
- S* f S M S
- M. S M*
. . . . .
f u . . . .
>. SNS S SNSMSNSa. 4N
'
- u 4 S CD o N 5. ti-4 S *5 SSSPSMS 4 m N 4 - S m
& M b n a 9 8 4- g -
g t t l y >.n- > :P4 S .e S S .4f*&.4> >.-N 0. N D* S S. b .& .4(D &.M* 5 5 n(D. MEOe t
. (D O. b . .N t. S S n. S #.1 4 S O. S O. S 4 S
- 9
- 8
- S O. S n. 9 4 5
- N & S
- LJ!-'
. . . . . . . ea DS4S S S S 4 S n S = S (D S & S = S S SOS 3S4 . N N. b
+.n.M N 9 e .-
$
. : S - n 4 S a e a b '.
E.fi ta -.N N .SS S.SS d e.(4D &. nb 0. #4 (F.4b W.Ne n. 4 n. 2 .* as w
. . S.(DN .> W
- n. 4 b o. m M = ,
l- o 6 S S. S S - 4. S O. S O. S O. . S O. - 4 5 .S
- . . . . - n. S 4 .a M N. O a . N. N.ga N. -> '.
' "
>SSSSS S&StSbSoSSS S S S n S 4. 4 -4.
- m 25 e M N S 4 S
- M o SN . . *4 Y w - 4 S S m S. & -4S . . . - .n
- > P. 4e P. S N &. P. N B . (D . . .M h e. a MN
,
N S .S abs 4845 5 t 4 M a M. 6 .
*,,
i-i
-
,, . . . . 8 4. = 4 9 . . a 4 9 n.4* . 4 .
m
/
' NS45S345NS45 55SNS S=3SSNS=S .5 4. 4 . . ..S #
=
c 4 N S > 0 8 4 S N a CD e M M W A. a m N N =N , S. ra S. e:D .M-.h G G - 4 s. N& S. SS . c(F_ .b (> n e. 4 .M=M=M& .N .S . > N (m
. D- M. M. 6 .Mem.
l- 4 a b a b - CD. - C a h. a b. S 4 5 4 9 4. = 4. a b. a b S . S O. 4. N 4 4. a . n f.t
. , .
- y . . . . ;
a MS=SbSSSnSMSnS4S SbSnBMS S4S b m n M
- *-
't u
- 4 N c o- N n n = a N a b ba a Met 1 ,
-
""
S. 44 S. 4e s 44 S. 4M S.nN S.4(D S. e (D S. M M .NP S. P N M. hS M. 4 S M. =. N - M S. M b' S. n= . N4 e. 9 b 4 4 6-N
- b. a b a b N - CD = cD. b. = 4. a d. a 4 9 4 9 4 .hS 4. e= 4. 6= 4. M
- +
as 4 S
. .
S
. . . . . . n M i -
- S S S S S S S S S S S S
- e M. M. M. M.
9 S. 44 9. Me eS g n S. (S S
.c S. Sn S.: =P S. M S. &M S S. 8 S. Sb5 S. D S.4S S.4nef 3 S.
- b S S. n thF. - b .- N e' $ a.
.A
.- a F w
. : e. = N 2 . 2 .z x. = > .=. .= . e . . b. = 4. =- 4. . 4. <=<= <=
E,. 3*ESESE*ESE*SSE*E*E*E*E*E*E*E*E'E'E*E'
- - - - - - - - * - - a - =
.
i e A-10
; .
.
s
.
--,,,,--,,,,y , - . , , _ , - - . , _ _ . . . . , ,--v
- . - _ ~ - . -
_ l I
- \1 l
i
'
1 l
' ,
h s t
.
s-3 l r a > I g E j i g g g E. b. , e
- M a & 3 4 '
> & G 2 h
. o' N S G e Q S a S e e e e N N e e 4 N e & 9 m- s 4 4 n M e .
3 a m ; eb e et 4 -ne M 4 &. nNm 4 M f4 4M SMS e NM e 4 N &.
&N 5-@ nS= M& > S.
S a &. - F.
,
Maa a a Na Na . Na NSn &
.
O eN 4 4
.N 5
. e r4 M. ae to . .b e . e t. e e> . S. S . M g
.
r i e e n. 45 S. 43 S. 4 C 4 SeM b t>< N e M 4
& 4 S e** .'
! ' Wa bba fon 4Nta d 4S e. WNS n N M (4 e m& = e g4 s ha SMa 4M- eMa . - SNa eNN 4 e 4 e
- l- S ine44 . . 44 . es em
,
' . .e4 e . O e e W o. Ne .- *
. 4543 4
9eM 4 S e * . 94 BN me & 2 e sp 34 l M e n4 e a bWS EN e b ne bM S. N & 4Mobb& enf . )
*aNePa e bS . n ann ea n.eMaMge n. pp 4 '
RNa N bMa bMa a M m aM e. .n Na t St O
,
N e& .> e e e b . e eSS . .aS e eM e4 M. .a 4e (d e e . .& = eM n. m a . n 4 -- 38 99 a- EN eSS y eS eN S4&M . S *4mo S. n & S S l ?* *,
- 4- tabNNa@&N . ~ S.
e e4 4 eeeM SSSSS&SS ab w 4 (a n &. 4.MbNS 4 eana4-S MN4N.a e 4N e eN ea e eMw Na e e e n*N e .N e eBS e S e em e et e eNb e e end b 69 5 o e e nS aS a n e(D M S e m a M e eb SW e@t a $m 9 b 3bMN 3 4. m S ae- 4348m33 8 e e o eb e 4 e@ e e tMaSM
-
8 6m eenw o -S Sa e mm e44m StS e a = em ea s
- 4 MN *N tN- t * = Ma NMw -
, a ae4 et* . eMM e e44 . eM4 . N. S b e em4 e e * *b e -- @ N -
i c o n. o ~3 .wm wW ab 95- e8 e b. e- 4 5 4., f U- e =4 w S. S :D
. .
.N>!. .4= . .ea e ebN e
- N e =34 3 4O e3 e *
= S m w' Snw . nt= tNa New e e
*
.
.- -Me - . ,' Q40N e e f t NI MtN{atN W StN ae e
& W w N M c S. =E a. - fwNaa a -
-
m 3. S
*
. me e{ m. e
.
e
.
..e
.
b e e e G. M. a ea EbESES
= em .= .
b e S & S 449 N48 enSS4WSSt. > > 4 wna
,
e eSM .Na een&4Nbs444bbeeM4N e Er S eS46 e S.
- N O E
- n. M. neeE m e e n. a W O. N .'w S4Na e Ma
- W b b
=
.A S w 2 . .E S= t. N eEw .S t
. N a'.E W 4.
. N. a E e . ' eES e eESN eN eN e
--
[g a a -> a
> >
a 3
=
>
a p-
=
&
w
>
a
>
( a (
- 4 a
,
, !
,
,
5 A-ll I
.
,v. , -w. - . y.. ., - - . , ,. . . , _ , - . _._..m-,-_... ., - - , _ _ - - , .
- . - . . - . . . . - . . ~ - . . . ~ . . - _ . - . , _ . . . r .
I a
~d 0
?
I
.- v,
,
>
> N w w w S M w = N m' L9 L9 m f m M E 4 = b i-N w w w > b T. &. 4
- m. S
. . . . . . . b. b. .
S S S S S S S S S S S S S S S 4 M 4 8 4 M - n N M ! M w N
- S a & 4 N S W t N
> > > > > > m m b b b
,
&. . . . . . . . .. . S. . .
54SNSMSNENSM-NSmStSfS=SPSbS-
.
S & & W n M a S S S S S 4 m O.s N f. MSf. N4 t .N e f a.St h f a.Nt44 . .
- 4. NM.f 4> M. N NM-N M. m . 4 p
M
- e b.
m 6
. SS.S--. S=SPSS.S&.S>S . . m. GS S P. S P. S G. S b s t
. . . .
t
.
b
= F e
. . N SP-4*aamS4S45=SPSbstSNSnS4BS W & 4 4 0 a & b b m 4 N e.
b a 4 4 wb 4 n. .
*.
t M . m t e. b n. 4. N# n. n4 -0..b me =.m f 4 4.M9 4 n. n. NftSt> .t .f 4 n N
- m. W . N S. S - S .S . S = S P. S P. S F S F. S S. S 9. S P. S E. S ,
. . . . - .
. n t
M
!
m a4a ns S t N a e 4 4 a nSSSSS4Sb=as S & 4 4 4 N 3 SSS>t t . . 4 SM - .
&. F. M 4 & b. M4 M M 5
m m.S .
.n.So b e n. MW O. NN O. M= n. 4 . . .e n. f n. . n. - F
- . S. S N S aMa
. .S .S=Se.S>S&.B . . P.SS.S .
S
. S S. S .S S-NSa N
- n. f
- 8. t S. S S w a SMSnSSSN=MS S S
. 3 M N N n N - S N
-S t a- S -
(D a N Sb Nb o. N. n. N N. 5.aP 3
. N >. - SNbM
<
. - . M .. .n.> G b 4 4. N 4 4.tb 4. n54.&4 N .m.M4N t n. . M &S .S .
'
-
M 8.nn S.ntN . =. S - S N S N E S. S > S P. S S. S > S P. S
. . . . . . S S. S S. S .S O W
S eaS &. (P - 44= & a s4 - - 4S - S >P S 2e S4t S 4-
- 4 = 4a - N> S >t S =4 . . N. S. Mn S.
-
.
M SNS ,. ? S M . N .N .S e F5S35 4F4Sn 0F0.S4 S
.N . ,f c, '
- n. .n. 8S.-S-s-9-S N b e h b m e m. i S S S B S . S . S .4S.St 54S
- 6 5 - 4 4 og'4. - M
. . .
. 8. NS. . . . . . . . . . . . .t R. NN O.
SSSSSN 4 N n 4. S
.
= S - 4. - n. w >e m - - a g = bb4-S=4--StS&SMw m 5 n M & . 4 a &
.
~g'
,. 4So- 4 b b W b l-I3 @S b. 8 ,. l c $. E.s S. 4.
*Sa S.
aS a.b. a S4. 3.
- 9b.
.S.
E S. S
=
S .S. S. Sb.
= a a
. S S. 5m. S. S. S. S4. S.
.
a = 0.6MnMM4 N N a= N S. N 349. S. 4 54. 4349. S4. S
,
* =
- a a =
- MEtENE ESEng E '
* * =
m a a n .s ESESENEbENEP 4 o S g b $ 4
= -
wEat->=4=4=N n M N u 9 . S. . S.
. < > m.Me w
. m. & w = I. t . e m. e e.> >. e . e b. e 4. > 4 & 4* 4.S. n. e. n. S. M. Sc
. *
=9=>=mt NSNSNSNSNSNSNSNSNSNSNSNSNSNSm t t t t e t 4 4 e e 4 e t ESEPESE a w m
-
,
y EmN. Ea 4 .aE 4. w
.
= = = w = w a w- w
'
w ? w
'
w a =>=4w tm r
'
< > t & . P M. & M. & Me P
=
*
& 'M M i b b 5N . N .N b. ! NONMNNN a f 4 4
#
4NtStat
-ta p = i
- -
. t . - M. a
- . ;
.
/.-12 l
-
g -s.-g y--... - ,.m -.,--.ww-- ., ,:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ._ _. _.
' ~~ '
.,
-
^ '
.._-
'
"
W Table A.3. Continued '
.361 .329 .313 S.S 8.8 .221 .178 14Z 91R1.9
.599 .553 .539 .592 .446 .488 .373
.341 14Z
.311 .283 .265 .237 .199 .167 91R1.8 .565 .527 .491. 455 .419 .394 .366
.335 .294 .267 .249 .213 .105 .155 14Z. 91R1.9 .541'.591 .464 429 .394 .~376 0.0
! B.O .200 .251 .224 198 .171 .144 14Z 91R1.9 .517 .477 .440 .485 .372 .355 0.0 0.0 .279 .234 .298 .103 .150 .133 16Z 91R1.8
.493 .453 .417 .383 .351 .322 .306
.278 .242 14Z 91R1.9
.216 .191 . 169 .146 .123 I .468 .429 .419 .376 .331 .392 .274
.240 .222 141 91R1.9
.197 .182 .161 .135 .113
.227 .293
.441 .429 9.8 9.9 .323 .281 .253 107 9.9 9.9 .129 .104 j 14Z 91R1.9
.412 .392 9.8 B.8 .299 .259 .231
.2e7 .184 .17e e.e e.e .11e .e94 14Z 91Rt.W
, p
; .370 .344 .326 .299 .259 .232 .000
w
.185 .165 .147 .136 .121 .191 .004 14Z 91R1.8
.338 .381 .272 .248 .225 .293 .182
.162 14Z
.145 .129 .114 .198 .987 .872 77R1.9 .941. 791 .752 .714 .673 .631 .592
.554 .517 .492 .446 .488 .367 .322 28Z 77R1.9 .915 .772 .767 .725 .658 .694 .562
.524 .488 .454 .436 .499 .345 .296 28Z 77R1.9 .793 .704 .998 .888 .653 .577 .532
.494 .459 .443 . Bee .999 .336 .275 20Z 77R1.8 .767 .754 .998 .999 .621 .546 .592
.465 .433 .415 .998 .900 .313 .236 20Z 77R1.8 .734 .605 .673 .638 .550 .512 .472
>
.436 .464 .373 .357 . 325 .278 .237 20Z 77RI.R .697 .64J .608 .569 .518 .47R .468 i
-
.4R6 .378 .348 .310'.297 . 254 .218 l 29Z 77RI.9 .658 .6e4 .568 .521 .483 .466 .see.
.998 .360 .323 .293 .263 .232 .199- I 20Z 77R1.9 .618 .560 .526 .408 .452 .436 . Bee
.
'
i
! .See .342 .299 .269 .248 .211 .302 2eZ 77R1.s .Se2 .537 .497 .46e .425'. 392 .376 1
", .346 .393 .273 .245 .219 .193 .165 J
!
l .. .
'
;.
-
-k .
- h '
_ -_ . _ _ _, ._ _ . _ _ . _ _ _ _ _ _ - _ _ _ _ _ _ . _ _ _ _ .__ _ _ _ . ___
.
=, ,
. .
..
~- .
, ,
'
-- -~ m-
-
Table A.3. Continued 28Z 77R1.8 .549 .598 . 491 .453 .399 .365 .334
-
.385 .276 .248 .231 .297. 176 . ISO 28Z 77RI.8 .516 .490 .000. 000 .309 .330 .306
.277 .259 .233 .000'.000 .166 .135 20Z 77R1.9 .479 .462 .000 .000 .357 .309. 277
.250 .225 .218 .000 .000 .150 .121 20Z 77R1.8 437 401. 305 .333 .306 .275 .247
.222 .299 .180 .169 .151 .127 .197 20Z 77R1.9 .309 .347 .317 .209 .263 .230 .214
.193 .173 .155 .139 .124 .108 .091 28Z
,
l
>e
' wa t~
.
4 F <
.
e i . $ . _ _ . - , ~. - . . -. , .- . . . - - - - , . . . .. ..... - ,. . . - . . - . - . . .
, , . . - . . .. . . . - .
_
-
. :,,
, y,. -
g,
- t. ; . . .;
k y ~; . _ i ;l
;;$:y , -
. o li:<.,,,
j ':- 'l r << _
.:
a s; i l
-.4 ,
- e. .
..- i
. .)
'
% !,
H. ., 1 . .
- APPENDIX B
-
DESCRIPThi 0F THE 3D FLUX SYNTHESIS METHOD
.
.g. -
4
+
.;
I' , '; ,,
,I e 3
~*
.
,
,
[! '1-
, .A i.
.
'
s 55
.,. .& -
.
- a
.
I 'k'
- i .g
,
*-
,_
.h.
'
.
.
.
l
!
', PEG /Fh ?;3 l j
-
,g; . , j
'
- . . . . . . . . - . . .. . - . . . - . . - .
-
... . . . . . - - - . . .
_ i 1
~ '
1
.f
'i I 'l Appendix B. Description of the 3D Flux Synthesis Method l
;
'
4 A.3D (RfZ) flux distribution is s>mthesi:ed using the following well established approximation: i
$RZ(R,Z) 0(R, 0, 2) =
(R0(R,0) = $ A(R,Z) 'B.1-RO
!
where OR0.is the flux.obtained from the R0 DOT calculation; and l'
'
A(R,Z) E = axia1' distribution function obtained
'R by representing the RZ flux s-($ R* ')
I distribution and dividing it by L the integral over Z of the RZ flux, i.e., i- C R !fRZ dZ . . , In previous studies the RZ flux distribution was represented by ..
--
- the results obtained from a DOT RZ calculation, while the radial fluy t was obtained from a one-dimension calculation. However, it has been R
discoverc.i that a simpliet approximation gives similar results (within , a few percent; as the results of these transport calculations for loca- gpl
.-
l l tions not outside cf the RPV and near the reactor midplane. In this Q approach we represent 9 CRZ (R,Z) P( )
.' A(R,Z) I s B.2
*R [g MU where P(Z) is the average axial distribution o# power in the core. The function P(Z) has been represented by discrete nodal values obtained
.
. by averaging BOC, MQC and EOC relative axial powers provided by Balti-more Gas and Electric for the peripheral assemblies. The relative axial power values were provided at 51 points for the 12 and 18 month cycles,
*
. D-1
'
< ,c s - -
__ - .
, #
and at 24 points for the 24 month cycle. Therefore employing - the expres-
sion eq. B.2 for axial point k, we find
. ,
'b i
.P k
A(R,Z) : A(2)
- A g a ; Kal, . 8 of. Axial points JP(Z)d2 There are 51 points used for the 12 and 16 month cycles,.in the axial dimension. The 51 points define 50 nodes (i.e., intervals). .
The active core height w s assumed to be 136.7 inches, so that the ~, heig5t of each axial interval will be:
,
?
; , (136.") (2.54) = 6.94 cm 50- , ,
To calculate the integrated axini power we use the expression
'
50 f P(I)dZ - [ Tk 01 3 I'3 0 k=1 where kP is the average power -(relative) in the kth axial node. This vs.lue is approximated'by F " Pk+ +1
, where Pk-and Pk +1 are the k
point powers taken- from the axial nower data provided by 3G5E. Sub-stituting this expression for Fx into eq . (B.3) gives ,
*
$
-5
/0 P(I)dZ -
Pk-( ) ~ ' AZ1 I'4 2 - kol !
~
- - .
- -
-
Eq. B.4 was used to approximate the denominator of eq. B.2, for the 12 and 18 month cycles.
- The axial distribution provided by BG6E for the 24-month'cyc1'e only has 24 intervals instead of 51 as for the 12 and 18 month cycles. A similar development for this gives
.
'
B-2
,
a e- w w er w w _ N t-
,
t
,;
[ t: i
+
'J Pk'l i'l P
f P(:)d;.. [{ 2 J}] '2
I'0 j i
where 4Z2 = ( "" ( '$ }
- 15.1 cm 1 23
'
Eq. B-3 was used to approximate the denominator of eq. B.2 for the 12 (IEs month cycle.
';
The final axial synthesis factors for the 12 and 18 month cycles are'given in Table B.1, and for the 24 month cycle in Table B.2. In order to compute the 30 flux or activity at some axial location' (corresponding'to a height I in Table B.1 and B.2), for some R6 location one must
'(a) find the flux or activity at theappropriate(k,0) g 3 location in the DCT RO run l: (b) find the axial flux factor at the appropriate node K l'
(( ) compute the 3D value using expression C(Ry , By , g) = $ R6(RI , 03)*Ag 6 (*)For exa:ple, in the 12 month cycle'the peak power corresponds approxi- h. mately to I = 97.2. From Table B.1 it can be seen that the axial flux factor :'or tnis location is equal to 3.26 x 10~3 Therefore all activties ,
'
and flutes in the DOT RO output should be multiplied by this factor in ordert,bobtainthecorrespondingpeakvalues. ,
; !
l l l
-
} t l l
!
B-3
-
{.
. . - - .. -
-- ,
'.. !
J l
'
l
.
, References 7
B-1. R. E. Marker, B. L. Broodhead, M. L. Williams, "Recent. Progress and Developments in LWR-PV Calculational Methodology," Reactor Dosimetry, , D. Reidel Publishing, Dordrecht, Holland, 1985. . B-2. M. L. Williams, P. Chowdhary, "D0TSYN: A Module >for Synthesizing Three-Dimensional Fluxes in the LEPRICON Computer Code System," .
,
Electric Power Research Institute. B-3. N. Tsoulfanidis, " Calculation of Neutron Energy Spectra in the Core ~ ' and Cavity of a PWR ( ANO-1)," EPRI NP-3776, Electric Power Research ;
'
Institute, 1984
,
.B-4. Ltr. from Stanley to Nair, dated September 10, 1986.
-
l l 1 / .' l
.
.. B-4
,
, -,. , - ,,- . . , , . v- + - - - - . --
'~
W1 .
' l,
$g) 3rld ; I ! J< l
*
- n TableLB.1. . Axial Distribution Factors for Flux Synthesis: 12 and 18 Month Cycles
+
-i 2(c.w.) Ak, 12 Month Ak. 18 Month (TOP) 347.2 1.61E-3 1.55E-3 l 340.3 1.82E-3 1.77E-3 333.3 2.08E-3 1.98E-3 326.4 2.21E-3 2.16E-3 319.4 2.51E-3 2.33E-3 312.5 2.52E-3 2.49E-3 305.6 2.65E-3 2.62E-3 298.6~ 2.77E-3 2.47E 2.87E-3 2.84E-3
'
291.7 204.7 2.96E-3 2.92E-3 277.8 3.02E-3 2.98E-3
, -270.8 3.06E 3 3.04E-3 263.9 3.09E-3 3.08E-3 ,
256.9 3.12E-3 '3.11E-3 250.0- 3.14E-3 3.12E-3 243.1 3.24E-3 3.13E-3 236.1- 3.24E-3 3.13E-3 229.2. 3.14E-3 3.12E-3 '
-222.2 3.13E-3 3.11E-3 215.3 3.12E-3 3'10E-3
.
208.3~ 3.10E-3 3.10E-3 201.4- 3.09E-3 3.09E-3
-194.4 3.09E-3 3.08E-3 g 187.5 3.08E-3 3.08E-3 c i 180.6 3.08E-3 3.08E-3 (MIDDLE)- 173.6 - 3.08E-3~ 3.09E-3 et[t J
166.7- 3.07E-3 3.07E-3 2 159.7 3.08E-3 3.09E-3 e.g: 152.8 3.10E-3 3.11E-3 145.8 3.12E-3 3.14E-3 , 138.9 3.15E-3 3.17E-3'
.
'
131.9 3.17E-3 3.20E-3 125.0 3.19E-3 3.23E-3 118.1 3.21E-3 3.26E-3 111.1 3.23E-3 3.28E-3 .;
,
104.2 3.25E-3 3.30E-3 (PEAK). 97.2 .3.26E-3 3.31E-3 90.3 3.25E-3 3.31E-3 83.3 3.24E-3 3.30E-3 76.4' 3.21E-3 3.27E-3 69.4 3.17E-3 3.23E-3 62.5 3.18E-3 3.18E-3 55.6 3.30E-3 3.09E-3 B-5
'
7
. . - - .-. . - .-. .
_ _ _. _. r i 7
' >
,
,
k# L
;,
y i -s' .; L.
.:
p:: - y
- _ >
t
.i
. Table B.1. Continued-
.
.
2 12 Month 18 Month, l 48.6 2.948.-3 2.99E 41.7 2.82h-3 2.87E-3 ,
' 34. 7 - 2.74E 3 2.73E-3 27.8- 2.57E 2.57E-3 '. 20.8 2.42E-3 ~ 2.38E-3
- 13.9 2.16E-3. 2.18E-3 6.9 . 95E-3 1.96E-3 (BOTTOM) 0.0 1. 7s D 3 1. 77f-3 i
s t
,
- l. .
1 ,
'
k
.
- .'$. .
,
.
B-6 f
-
'
Vi j -
,
?
-
-i
,3 ;+ .
,- u c ,, ,
' s 't ?
,.a- ,
'
,
#
. l t f
I Jl i,. Ot3 4 - !, , ~ Table B.2.-~ Axial Distribution Factors for Flux Synthesis- f
'
24'. Month Cycle ,
,
*
'
, l
>
,
g Z ' ( e..u,,- )~ Ak, 24 Month
,
-> = (TOP)' 134 7.2- 1.35E '
s1
'
'
332.1 1.92E-3 , 317.2- 2.40E-3 "' 301.9 2.70E-3 266.8 2.93E ( 2 71 ~. 7 ' 3.09E-3 256.6 3.16E-3 241.5 3.18E-3 i
- 226'.4 3.18E-3 1
<
211.4 3.17E-3 196.3 3.17E-3 181.2 3.18E-3
,
(MIDDLE: 173.6 15 166.1 3.18E-3 151.0- 3.19E
.135.9- 3~.21E-3 120'.8 3.22E-3 105.7 3.23E-3 ..
'
_(PEAK)= 90.6 3.23E-3 I; 75.5 3.18E-3 ' 60.4 3.03E-3 45.3 2.82E-3 ?? l,
"'
l 30.3 '2.53E-3
.15.1 2.06E-3
.
,
(BOTTOM) 0.0 1.51E-3 - l l
- y. :-
t 4 i e
- 4 i
'!
o
*
'
B-7
.
l r
.{
' , _
W. N :fT's ,
,
1
; [ A
- 3. - 1 .
- .- ;;
- . .-
N >: , J l '
.@'.. i
[s
-
.
S
;tt
'
'{f {
, e -
.
,.
- .
,
.
's -
l- ,g + t -}
.
.
-
.g
'i j h; ,
,
;
'
,
a 7 3 -
..
)
APPEND!X C- , "y. f ir o'
.
"
+.
- POWER-TIME HISTORY FOR CALVERT CLIFFS, UNIT 1
'
L. p,
'
l:g
- t'R i
,
-4[N ,g' t
. . 4
!,.. ..
i: ,
,
.
+
t
. O <
<..
yay
,i ,
. - , ,
g }l
~ '
,,,
. x,
.
, .
%
.
.
4 4
)
\
.-
.CEG/FR-1278
'
~ v 1 .. J . + . , - . , - . , < , - - , . .e n s . ---- - - , , , . , - - ~a -
- - - - - - ^ - '
. , .
7 W l
; g ;-l <
l c, , j
<
I
~
j Appendix C. Power-Time History for Calvert Cliffs, Unit 1 l Table C.1 gives the power time history for Cycles 1-3. which . correspond to the 12 month cycles that the first surveillance l capsule was in the reactor. _ ~ Table C.2 gives the power tLee history for Cycles 4-8. Cycle 4 is a 12 month cycle, while the remainder are 18 menth cycles. i
,
ss. t'.'. ' '
*
.
- C-1 9
h
,
, , . . - . . -r<<e - - , - - + e ' ' *
}
^ ^
* ^ ~
p , ! %l l 4c. .o QS }j f} Gllp i
, ]
J
-
1
, - .
Table C.1. Power Time History for Calvert Cliffs Unit-1; 1
' '
Cycles 1-3 (12 month cycles) J Fraction of. g g;: Operating' Reference. Irradiation . Decay
'
Time Step: Period Power (P3) Time (Tj) Time (T-tj) - 1 1-75 0.169 31 1549 2 2-75 0.305 28 1521 3 3-75 0.429 31 1490: 4 4-75 0.413 30 1460 5 5-75 0.553 31 1429 i" 6 6-75 0.679 30 1399 7 7-75 0.801 31 1368 8 8-75 0.402 31 1337 9 9 0.636 30 1307 10 10-75 0.929 31 1276 11 11-75 0.861 30 1246- -i 12 12-75 0.906 31 1215-13 1-76 0.878 31 '1184 14 '2-76 0.902 28 1156 15 3-76 0.921 31- 1125 16 4-76 0.500 30 1095 17 5-76 0.931 31 1064 18 6-76 0.893 30 1034 19 7-76 0.920 31 1003 20 8-76 0.932' 31' 972 21 9-76 0.836: 50 942 22 10-76 0.907 31' 911 23 11-76 0.785 30- 881 24 12-76 0.614 31 850 25 1-77 0.0 31 819 i l 26- 2-77 0.0 28 791 ' 27 3-77 0.0 31 760- c,a l 28 4-77 0.687 30 730 ' 4:-- 29 5-77 0.745 31 699 l 669 ' 30 6-77 0.871 30 31 7-77 0.915 31 638
.
- 32 8 0.928 31 607 L 0.954 30 577
L 33 9-77 . 34 10-77 0.848 31 546 h -l 35 11-77 0.961 30 516 L 36 12-77 0.872 31 485 37 1-78 0.563- 31 - 454 38 2-78 0.0 28 426 39 3-78 0.0 31 395 40 78 0.387 30 365 i ' 1 ! e e t C-2 !.
':
-
) .
,
,
m -
,
fg I ' '
;-- . . .
>
- - 6 > s ,
,a
'
a -.
- -
. . ,
-t
y ,
-I: Table C.1.. Continued L
Fraction of .
'
Operating Reference Irradiation Decay , Time' Step Period Power'(Pj) Time (Ti) Time (T-ti) .
-
;
41' 5-78 0.627 31 334 42 .6-78 0.905 30 304 I'..
-43 7-78 0.876 31' 273 44 8-78 0.901. 31 242 ,
45 9-78 0.912 30 212 < <
'
46 10-75 0.916 31 181 47 .11-78 0.897 30 151 38 12 0.482 31 120 49 1-79 0.344 31 89 50 2-79 0.943 28 61 51 3-79 0.943 31 .t 0 > 52 4-79 0.652- 30 0 Effective Full Power Days = 1073.2 s
.
&
9
.
.,
C-3
.c
>
3
'
,
;.
- - .
, .- .,_
nv w ^
' 'X< , j
- l o !
k
. . i I Table C.2.- Power Time History for Calvert Cliffs Unit 1:
Cycles 4-8 (1) 1 Fraction of Operating Irradiation Isacay
-
Time Step Period Re ference(2) Power (P3) Time-(T4) Time (T-t4)J r- 1 5-79 0.00- 31 2708 ~
"
2 6-79 0.00 30 2678 >
-l 3 7-79 0.373 31 ~ 2647.
- l A 8-79 0.881 31 2616 -
5 9-79 .0.953 30 2586 6 10-79 0.904 31 2555 7 11-79 0.612 30 2525 8 79 ~0.561 31 2494 9 1-70 0.463 21 2463 10 2-80 0.431 28 2435' 11 3-80 0.949 31 2404 12 4-80 0.846 30 2374 13 5-80 0.821 31 2343 f 14 6-80 0.943 30 2313-15 7-80 0.953- 31 2282 . 16 8 P0 0.946 31 2251 17 9-80 0.056 30 2221 18 10 80 0.450 31 2190 19 11-80 0.00 30 3160-20 12.80 0.00 31 2129. t 21 1-82 0.539 31 2098 ! 22 2-81 0.979 28 2070
- i. 23- 3-81 0.960 31 2039' 24 4-8' O 782 30 2009 0.895
'
5-81 31 1978
'
l 25 i 26 6-81 0.811 30 1948 L 27 7-81' O.430 31 1917 28 8-81 0.909 31 1886 29 9-81 0.944 30 1856 , 30 10-81 0.728 31 1825 31 11-81 0. 8'/ 8 30 1795 l
...
'
32 12-81 0.983 31 1764 . ' 33 1-82 0.982 31 1733 34 2-82 0.082 28 1705 35 3-82 0.980 31 1674 , 36 4-82 0.526 30 1644 "
.37 5-82 0.00 31 1613 38 6-82 0.00 30 1583 l' 39- 8-82 0.725 31 1552 40 8-82 0.747 31 1521 41 0-82 0.672 30 1491 42 10-82
- 0.995 31 1460 43 11-82 0.96& 30 1430 1'
C-L l: ~
. . ..
~ . . - . -. -
- . . . .
g .. .
- f. .h
,i f
7 39 Table C.2. 1-Continued 6
~
44 10-32 0.940 - 31' 1399 45- 1-83 0.942 31 1368 , 46' 2-83 , 0.891 28 1340 1 47 3-83 0.980 31 1309 , 48 4-83 0.809 30 1279 49 5_-83 0.989 31 1248 50 6-83 0.910 30 1218 51- 7-83 .988 31 1187
~ , 52 8-83 .932 31 1156- - - .
53 9-85. .896 30 1126 2" ' 54 10 0.0 31' 1095 ' 55 11-83. 0.0 , 30 1065 56 12-83 .531 31 1034 . 57 1 .932 31 1003 ' 58 2-84 .976 28 975 59 3-84 .807 31 944 60- 4-84 .994 30 914
.61 5-84 .176 31 883 62 6 84 .981 30 853 63 7-84 .996 31 822 64 8-84 .882 31 791
- 65. 9-84 .992 30 761 66 10 .965 31 730 .
':I ' 67 11-84 .785 30 700
'
68- 12-84 .501 31 669 , 69 'l-85 .885 31 638 . , , L- 70 /-85 .967 28 610 3. i -- 71 3-85 .979 -31 579
'
- l. 72 4-85 .151 30 549 73 5-85 0.0 31 518 74 6-85 0.0 30 JS8 ,
75 7-85 0.0 31 . 457 76 S-83 .226 31 426- i' l .77 9-85 .3'28 30 396 7a . ; l 78 10-85 .776- 31 365 79 11-85 .995 30 335 80 12-85 .994 31 304
'
-
81 1-86 .932 31 273 82 2-B6 .997 28 245- t.4 83 3-86 .772. 31 214 h 84 4-86 .991 30 184 35 5-86 .996 31 153 86 g-86 .919 30 123 87 <-86 .94 31 92
- 88 S-86 .977 31 61 89- 9-86 .995 31 31 90 10-86 .717 31 0 Ef fective Full Power Days = 1986.2 (1) Cycle 4 is 'a 12-month. cycle; all others,18 month.
(2) Reference Power = 2700 Mwth. C-5 3-
... .
.
g _. . . _ . . . - _.. _ . . . - . . - - . ._. . _ . -
~ :q.
g,-
.
- s. .-
.,
i I rs$:;
,
'
<
-4.g
'.i
'
t .
- 2
,' .a-
,
ii -
.-
':
-- '
,,' Y'
,.
4$. ,
. l;
; o;
,
APPENDIX D y
'
h- -
= PROCEDURE FOR THE GENERATION OF ALLOWBLE -
L- PRESSURE-TEMPERATURE LIMIT CURVES FOR NUCLEAR ;* !I - POWER PLANT REACTOR VESSEL 5 - a . I }.
.c 8 Il ..e
,
,
!
'
I .'
,
..,
;, !
4 i
.
g
>.
'7 s 0
. . .
<
..
O F 4 ',-
,
e
^ + f A_ -.,. ,
4 a fi PEG /FR-1278 e.L.. .. . . .. .-.,...,__,.-..._,,,.,...,......._,,,..w-,.,....%.m.,.m--,., . - - , .v-.__. - , - - , ~ . ,
. - . ,. _ _ . . . _ _ _ . . _ . _ ___
3 1
.. .
..
.
j
!
' PROCEDURE FOR THE GENERATION OF ALLOWABLE
, i; '-
-
PRESSURE-TEMPERATl'RE LIMIT CURVES FOR NUCLEAR POWER PLANT REACTOR VESSELS l l i
. . 1
)
1
!
'i A. Introduction l The fo11cwing is a description of the basis' for the generation of pressure-tempero are 11mit curves for inservice leak' and %c'restatic tests, he.atup and coolcown operations, and core operation of reactor Dres-sure . ves si. ;.
-
The safety margins employed in these -procecures ecual er
,1 ,
exceed these reccmmended in the ASME Boiler ard Pressure Vessel Ccde. i: Sectien III, Ac:endix G, " Protection Against Nonductile Failure," 1983
..
Edition (through Summer '.98t. Addenda). I
"
B. Backoround Tne basic :arameter used to determine seife vessel operational con-cition's is the stress intensity f actor, Kg, which is a functicn of the striss state and flaw configuration. Tne Kg corresponding to . memDrare
,
tension u given by
- .
K Im
- M m* "m (0 -
&,
&"
where y is :ne memorant stress correc;, ion f accer for the postulated flaw Likewise, Kg corresponding to bending is 1 S t .*e s s . L and e, the mem:rane A.-
.- 'given by l
,
- H (2)
K Ib b'#D l .! l- where 4 0 is 19e cencing stress correction f actor and :b is tne Dending I For vessel sec:icn thickness of 4 to 12 inches, the maximum pos-stress. tulatcc surf ace f'.e., -hich !s assumed to be normal to the direc: ion of , D-1
'
- i. -l
!
. .._ , . . _ . . _ _ .. -
. - . . . . -. - - - . . - -.
;
(
'
- .
maximum stress, r.as a depth cf 0.25 of the section t91cxness and a length , of 1.50 times the section thickness. Curves fer Mm versus tne seuare rect .[ of the vessel wall thickness for the postulated flaw are givt-< in Figure 1 as taken from the Pressure Vessel Coce (ref. Figure G-2114.1). These curves are a function cf the stress ratio parameter e/e y, where e j is tre
. material yield strength which is taken to Se 50,000 psi. The bending cor-
'
rection factor is defined as 2/3 M, and is therefore ottermined ' fr:m Figure 1 as well. The basis for these curves is given in ASME Boiler ard Pressure vessel Code, Section XI, " Rules for Inservice Inspection of .nu-clear Power Plant C:me:nents," Article A-3000.
'
The Code specifies tne minimum Kg that can cause failure as a (.nc. tion of material tem erature, T, and its. reference nil ductility tempera-ture, RTNDT* ~"IS *i"I*"* is cefined as the reference stress intensity K! factor, X;g, and is given by
'
Kgg .= 26777. + 1223. exp -[ 0.014 93(T-RTng7 + 160) ] (3) where all ter:eratures are in.cegrees Fahrenneit. A plot of tnis ex *es-
- sien is given in Figure 2 taken from thi Code (ref. Figure 3-2010.1). 7'
_ C. ' Pressure-Temperature Relationshipt ,
- 1. Inservice Lesk and Hydrostatic Test
During performance of inservice leak and hydrostatic tests, the reference stress intensity f actor, Kp, must always be greater than
-
1.5 times tre Ky causeo ey pressure, tnus 1.5 K 3 <Kg (4) D-2
.- , . - :
. __ _ . - . . . _ . . - ._ _. _ _ - - - _ _ _ _ _ _. ._
<,.
r ,
.. .,
.; .
,
h , r
,
9
, 3.C -
'
I I I l l 1 // , l_ 3'0 . l.'.E M B R AH E = K ,, = M, a 'm .-~ ~ I . 0
'
'
' B EN0!NG lt , eMb " 'b -l .p M e 2 / 3 f.i m
" b / -
.
,/,//
/\
2.0 i
/
20 ~ ' l
.
m 2.4 -
,
\
'
/ V' 2.0
--
--* w -
T-
, . .
,,, . _ . . . _ . . . _ .. . _ _ _-
l l ' l.G , I l.4 1.2 -
! "
l.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.42.6 2.6 3.0 3.2 3.4 3.6 3.6 4.0 ' YTHICKNESS (IN.) ,
-
.
u Figure 1. StressC3rrectionFactor I D-3 J.i .. . . _ _ . ._ _ _ ____.__ ____ . _ . . . _ . _ _ - _ _ _ . _ _ _ . _ .. ._, . , . . . _ . . . _.
, -
' ^ g
, . ,
'
-
- a ,
l
'
.i 6
,
-
17 0
! I i 1 I l ICO - - l - - =e -~ -- -
;-** 'g )/
15 0 - (N ,g - 2G.7 77) al.0 0 3 :C C'* " -h * *I n et ~'% j [g g f40 % -lEFE i g g g33 . . r., g a r.EPEr<:t. t STrtSS INTENSITY FACTon _ J20 -- -- -) --- T = TEMERt.Tunt. t.T Wl:H K in ! l IS PE AMITTrt),*F \ 11 0 RTgy e T EFEREt;0E I ". 00011LITY i g' l gg - TEt,',v t MTURE .._ 1;950 - I I I l 1
- I /;
+ -
.- 3 ; j j l /; l j u ,
so ,. L. E l i l l
-
1 1 I n x 70 ' l- . c0 ___.] l \ l / l l l i l l l l I l' 50
.e
-- -ll l 1 I I
-
'
J l I i l l .I 1 l l l 1 l l
" ' - ~ ~
.
l- 1 , I l l- l I l l 20 -- , I l
--
l l l l -l l l 10 . . .
, , , ,
.I
.
.g - i I i, I i i i e i i
, -240 -2 0 0 ' -;C0 -12 0 e 0 0 40 80 .32 0 130 200 240 TCMPER ATLCE RELATIVE TO Tsim,(T-hT,;37) FAMREhMEIT DEGREES
,
.
1 Figure 2. Reference Stress Irtensity Factor l D-4
. ... . . _ - . - - . . . . . . _ _ . . . _ . .. -- .
- . . - - - - . - . . - . -
. f I !
or ,
>
1.5 Mm ~m
- IR (5)
. For'a cylinder'witn inner radius rg and outer radius re , the
'
. stress distribution due to internal pressure is given by r
- r 4
2
\ r,2+r\ 2
,
"(YI " 2 2 "2
(0) ("o ~ "1 4 ) : With 1/4T flaws possible at both inner and outer' radial locations, i.e.,
.
l I j' at rif4 = R + 1/4(re-rj) and r374 = rj + 3/4(r,-rg), the maximum stress 4 ;
,
l' will occur at the' inner flaw location, thus [ r$ 2
) 'r 32+(1/4r+3/4r)2" g 8* C 2 r,2 -r j (1/dr + 3/4r g)2 With the cperatien pressure known, i.e., P , we determine the o
minimum coolant tet.gerature that will satisfy Equation (4) by evaluating ]
. .
l
= (8)
K gg 1.5 M, ,,,
. j M
and Cttermine :ne corresponding coolant- temperature, T, from Equation (3)
, for the given RTNDT at the 1/4T location. For this calculation, Equation - i
.
1 (3) takes the form 1
. .
K - 26177. - (9) i = RINCT(1/ T) - 160. + 68.9988 in 1223.
. s
-
i D-5 l
.
4 8
, ._ - - ,- ., .- . . _ _ . - ~ . . - . . _ -
~. . - . . . - -. . .
'
6 . h[ . l The . inservice curves are generated for an coerating pressure bi , y range of '.96 P, to 1.14 Po , where Po is the design operating pressure.
- 2. Heatup and Cooldown Operations u
h At all' times during heatup and cooldown' operations, the ref-
.
erence stress intensity f actor, K g, must always t eater than the sum
,
of 2 times the Kyp caused by pressure and the Kg ci J by thermal gradi-
! .
ents, thus }. 2.0 (;p + 1.0 Kig < Kig (10) 1- er
.
L , u 2.0 Mmemax *KIR - kit (11) where e is the maximum allowable stress due to internal pressure, and max. K;g is the ecuivalent linear stress intensity f actor produced. by the
<
thermal gradients. To cotain the equivalent linear-stress intensity fac-
. .-p ter cut to tnermal gracients requires a detailed tnermal stress analysis.
I The cetails cf tne required analysis are given in Section D. 4 S H ng neatuo the racial strets distrioutions due to internai cressure ano :nermai gradients are snewn sthematically in: Figure 3a. As-suming- a possiele flaw at tne 1/4T location, we see from Figure 3a that
. .
'
'
the' thermal stress tends to alleviate the pressure stress at this point in [ the vt ssel wall and, therefore, the steady state pressure stress would re-Oresent the maximum stress ccncition at tne 1/4T location. At 'the 3/4T flaw location, the pressure .7,ress and thermal stress add and, therefore, the comoination fcr a given heatup rate represents tne maximu= stress at
.
D-6
.
5t.
.
. - , _. , _ _ . - , , , _ , _ _ ,, . . .
l
- ^I '
.
+
, 3: ;
.
' '
0 UTER RADIUS
--
-
.
T 1 3 3/4T.
,. 3 3 .
, 1 .
- 1 1/4T 3
1 4
-lNNER RADIUS .
Pressure stress distribution - Thermal stress distribution I (a) Heatup
,
e l
'
u OUTER RADIUS ", _ 3 I 3/4T.
"
1 .
._
(
-
3 / 3 1/4T :[ 3 , s :4 ;
'
.- INNER RADIUS Pressure stress distribution Thermal stress distribution-L (b) Cooldown .
,
j; ! l Figure 3. Heatup and Coofdown Stress Distribution L D-7 l 1 [ p
- u. e .
.. .-. - - - . - . .- .
; -
1 (1 j d
]
.
' thei3/4T location. ~ Tne maximum overall stress bet.een the 1/4T and 3/4T
.
. ...
location' then determines the maximum allowacie reactor pressure at l the 'l
'
given coolant temperature. o - .The heatup pressure-temperature curves are thus generated by. calculating the maximum steady state pressure based on a possible flaw at , the 1/4T location from K gp 1
. P (1/4T) = b
'[ r,2
'
)[r,2(1/4r,+3/4r)2)
+
q .9 1
' 2 2
- r$ ; (1/4r;+3/4r j )2 where H m is cetermined from tne -curves in Figure 1 and KIR 15 Obtai"*d from Ecuation (3) using the coolant temperature and RTNDT at the 1/47 location. Here we may nets that Mm must be iterated for since it is a function of tne final stress ratio to yield strength (c/e ) y.
At the 3/4T location, the maximum pressure is determined from
<
' Ecuttien (11) as K tp - kit Pg3x(3/4T) = ,, 2 3 ? (1/de,-3/cre)2 \
+
M '
*
-4 2*'* 2 r,2 -r g (1/4rg 3/4r e)2 )
"
,
,
wnere Kgg is obtained from Equation (2) using the material temperature and RTNDT at the 3/4T location and Kg is cetermined from tne anslysis proce-dure outlined in Section D. Mm is detemined from Figure 1. Tne minimum of these maximum allowaole pressures at the given coolant temoerature determines the maximum operation pressure. Each heat-up rate of interest must te analyzed on an individual basis. D-0
.
e- s e---e - , - , ~
-- - -~. a- n-, .-v-- v w,--,
p.. 1
;
^ ' h. l rp ,
. ,
' '
The coolcown analysis pro:eeds in a similar' f ashion as tnat j f
- described for heatup with the following exceptions: We note from Figure l l
'
L35 that during cocidown the 1/47 locations always controls the maximum l
& j stress since the thermal- gracient products tensile' stresses at the 1/4T j location. Thus the - steady state pressure is' the same as that given in-Equation (12). For each cooldown rate, the maximum'oressure is evalcated
'
.e at-the 1/47 1ccation from
,
Ktg - Kit
*
'
D
'8*(1/4T) = 2
) [r 32.(3/4r *l/4r,)2h U#)
[ r 4 g
- r, -r 4 2 (3/4r 4+1/4r,)-
is obtainee from Equation (3) using the material temperature and 7 where KIR RTHDT at the 1/4T tocation. <!t is determined from the thermal aralysis
-
t described in Section-D. t~
,
It is of interest te note that during cooldown the material temperature will lag the coolant temperature ' and, therefore, the steady 2 state pressure, wnich is evaluated at the coolant temperature, will ini-I tially yield tne ' lower maximum' allowaole pressure. Wne,n the thermal gra- ' s dients ir. crease, the stresses do likewise, and, finally, the transient
*'
analysis governs the- maximum allowable pressure. necce, a point-ey-point
; comparison must be made - between the maximum allowable pressures producec by steady state analyses and transient thermal analysis to determine the minimum of the maximum allowaole pressures, u ,
- 3. Core Operation At all times 'that the' react 0" core is critical, the temDera-ture must be higner an :nat recuired fer inservice hydrostatic testing,
-
D-9 ,
,
.'
,[
- - - - - - -
L _
<# # l $/o
! kA Ny gI/// IMAGE EVALUATION 7///p dd k///7 TEST TARGET (MT-3) 4 R>f %/g[,4? l.0 ;;m na y l[ RE I.I [" ESS I.8
"
1.25 1.4 i L6 1 4 150mm >
< 6" >
%
;k*% /+fe'%
*+gfAg// -
.
,
<gg
.%yc 77777
.
v
. _
9 53' &) il Ybo IMAGE EVALUATION ///gf \ Mff h% *f \ h TEST TARGET (MT-3) Y ([,4 k///7 /g, < g Y/ l l 1.0 lN E c a p= I
'
'm e
l,l 5C bdO l.8 l 1.25 1.4 1.6 i 4 150mm >
< 6" >
4 'b 4 Avy gin
**4 33a//p o r t
<>e%ew 4
%sm. !v A
- _ - -
-
- , .
,s.9 49 l hho .
*)* IMAGE EVALUATION
,///g'Nj d?
gk//7 Y f/ TEST TARGET (MT-3) 4
%Q'/, %[/g[,
l.0 'g m n a
' m g...u. !
m l,l f
- bb 1 L8 1.25 1.4 1.6 4 150mm *
-
4 6" >
^
;
- f+,f,,,p ,
_ _
.
v;('
; $
% _
. -
E
#@@TN YkA
/
IMAGE EVALUATION ///j// / 'I/g
//4. TEST TARGET (MT-3) 6 , # .
1 1'0 femm l G m g'-=n=
'
s nu : l,l
- bb U1
'l.25 _
l.4 1.6 l l 4 150mm >
< 6" # #
A% p A*' / 'bA
<>> a
-
7//o O <4 #w i;: i e b .
.
a
.--
-
.-a -u+.. - -
t. Ll t. j
<
1 b
and ' in ' . addition, the pressure-tempe*ature relationship ~ shall previce at l 1
'
least a 40'F' margin over that required for heatup and cocid wn eperations,. -i l Thus the pressure-temperature limit curves for core operation may be con-structed directly from th'e inservice leak and hydrostatic test and heatup analysis results. D. Thermal Stress Analysis l i The equivalent linear stress due to' thermal gradients is cbtained-from a detailed thermal analysis of the vessel. The temperature distribu-tion in the vessel wall is. governed by the partial differential equatien
'
- cT7 - K [(1/r)Tr +Trr) = 0 (15) tubject to initial condition T(r,0) = T o, (16) and boundary concitions ,
-KT r (r4,t) = h [T e (t) - T(rg,t)) , (17)
.
and l 7 (r ,t) = 0 (18) . 7 e where Te=To + Rt. (19) L [ : , l .: 6 is the material density, e the material specific heat, K the heat con.
.ductivity of the material, h the heat transfer coefficient betaeen the
=ater coolant and vessel material, R the neating rate, T, tne initial ccolant temperature, T(r,t) the temperature distribution in the vessel, r the s;atial coordinate, ar.d't the temporal coordinate.
l
0-10 ~. -, _ _ . . . . ~ . _ . - __ ___ __.. _..___ . . -_ _ __ _
re n s , m .
-
y :~ 8 ,
, , ,
. ,
'
, iN w lA f.inite: difference solution ;rocedure is employed to solve for.the
~
, -
'
h;C ' radial = temperature distriber, ion at various time stecs- along the heatup cr _
.cooldesn l cycle. The finite difference equations for N1 radial points,JatL t
. distance ar apart, across~ tre. vessel: are:
~
;
- t for 1 < n < N ,
p
,
"
atJ
'
T t+at , '" r ) y, j,
"
. ec(ar)2 -(2 +n .. T"t i .h.c ;
! EIE
'
.
(1 +r I" ) Tt+1+Tt n n
-1 , -(20) ce(ar)2 . n ,
for n = 1 ,
,
f ' '
'
7:+: , t, atK Ar) , ath T t-(1 , 1 - oc(ar)2 rt. oc(ar). 1
-y
.. -
.
- t. . .-
'
+
(1 + s,) T2 + rn T' (21) c.
,
rg K
.c(ar)2 , .
-4. - )
land for n N ,,
.
h.2~
-:
' * '
L 7t + ; ,. ~ y , 'atK I t . Kat
. (22)
" '
oC(ar) -
- C(ar) -
b . 'v3 l- . .
..-
. For stability in the finite difference operation, we must choose at aae for a given ar such that both l*i-i t
**
-'K *
)s 1 (23) oc(ar)2 (2 + r*1 l
l
.
D-11 1 .. l e e lj, '
,
.
- . -.. - _ -- . _ _ . . -. .
'
u I.. and II * )*i r) 5 1 (24)- [ ec r)2
,
are satisfied. These conditions assure'us that heat will not. flow in the direction cf increasing temperature, which, of course, would violate the second 1aw of thermodynamics. Since a large variation in coolant temperature is considered, the f dependence of (K/:C), K, and h. on -temperature is included in the analysis by treating tnese as constants only during every 5'F increment in coolant temperature and then uodating their values for the next 5'F increment. The depencence of (K/ c) called the thermal diffusivity and K, the thermal conductivity, can be determined from the ASME Boiler and Pressu-e Vessel n Code,. Section : !, A;pendix ! - Stress Tables. A linear regression anal-L ysis of the taDular' values resulted in the following expressions: i. K(T) = 38.211 - 0.01673
- T (BTU /HR-FT 'F) -(25) and 2 '
k(T) = (K/cc) = 0.6942 - 0.000432
- T (FT 'HR) (26) l
'
.
,
'
-
-where T is in degrees Fahrenheit.
-
The heat transfer c: efficient is calculated based on forced convec-tion under turbulent flow conditions. The variables involved are the mean velocity of the fluid c:elant, the e:;uivalent (hydraulic) diameter of the l, coolant channel, and the density, heat cacacity, viscesity, and inermal D-12 l l* f
.
-
-
.- .. - -
- conductivity of the cool' ant. For water coolant, allowance for the varia-tions in physical properties with temperature may-be made'by writing *
'
f h(T) = 170(1+10-2'* T 5
- T2 )-v0 .8 /00 2 (27) where v is in f t/sec, O in inches, the temperature is in 'F, and h is in Stu/hr-ft 2 *F. The values for the heat-transfer coefficient given by this relationship are in g:od agreement with those obtained from the Dittus.
Beelter equation for temperatures up to 600'F. The mean velocity of the coolant, v, is generally given in terms of the effective coolant flow rate 0 (Lbm/hr) and effective flow area A (ft2 ). Given the relationsnio
*
- (T) = 62.93 - 0.48 x 10-2 , T - 0.46 x '10-4
- T2 (28)
,' for tne density of water as a function of temperature, the mean velocity l l: 1, cf tne coolant is Obtained from l- ! v = Q/(3600
- c(T)
- A) .
(29) l The tnermal stress dist- Ntion is calculated from l l 2 2
.
r+r r . eT(r,t) = [ h ,j iT(r,t)rdr-T(r,t)+ r h (r,2 -r 2) r T(r,t)rdt (30)
.r . .
4 l l
- Glasstone, S., Princieles of Nuclea- Reactor Engineering, D. van N stra9d C ., Inc., New Jersey, :p. 667-668, 1960. -
D-13
' ll L
. - . . .
. ,;
'
- l,
.f where o is the coefficient. of ~ thermal expansien (in/in 'F). E is Young's <
r modulus' and v is Poisson's ratio. This expression can be obtained from - ; Theory of Elasticity by Timoshenko and Goodier, pp. 408-409, when imposing , a zero radial stress condition at - the cylinder ' inner and outer radius. Poisson's -ratio is taken to be constant at a value of 0.3 while o and E are-evaluated as a function of the average temperature across the vessel
.
r T,yg = 2 r T(r)rdr. (31) L The' dependence of the coefficient of thermal expansion on temperature is 1 taken to be 2
.2(T) = (a1-a2 *T+a 3
- T ) x 10-6 (32) where
(- Material- at a2 a3 A302-? 6.776 0.003636 -0.1381 x 10-5 m A533-6 6.776 0.003636 -0.1381 x 10-5 ' l A508-2 6.125 0.004131' -0.6735 x 10-6 ! The deper:ence Of Young's modulus on temperature is taken to be
.
9 6
*'
E(T) = (29.57 - 0.005363
- T - 0.1918 x 10-6
- T2 ) x 10 , .(33)
.
.
Equation 32 and 33 were - obtained from regression - analysis of tacular values given in Section !!I, Appendix -I of the ASME Boiler and Pressure
.
Vessel Coce. The resulting stress distribution given by Equation (30) is not linear; however, an ecuivalen linear stress distribution is determine:
.
D-14
. _ . . _ . . _ _ __ _ . . _ - _ . _ . _ . _ _ _ . _ . _ _ _ - _ _ . . . .
. - '
,
(
- L
- i i
, l .;
- l ,
f*om the resulting moment. The nement produced be the nonlinear stress
,
i distribution is given by . r
- M(t) = b ,r 'T (r,t)rdr (34) i where b is a unit d&pth of the vessel. Here we note that the moment is a .
function of time, i.e., coolant temperature via Te = To + Rt. For a lin-ear stress. distribution we have that
# max * (3I)
,
where e,,, is the maximum cuter fiber stress, c the distance from the neu-tral axis, taken to be (re - rg)/2, and I the section area moment of iner-tia which is given by bh 3 D("a * "i) b2 (36) I = 77- = ,
,
- Combining- nese ex;ressions results in the equivalent linear stress cut to
' thermal grac4ents
-
'T(I'*)"d# (3) i
-
-
# max * *bt " (r, - r g)2 The thermal stress intensity facter K!t is hen cefined as K. =M (38)
.,
b *bt D-15
. . _ _ - . . - . . - . .- - -- - -- ._. - - _ - _ _ - - -
. ... . , - - - - -
/( : s 1 o Up _, where M b is determined from the curves given in Figure 1 wherein Mb
- 2/3 M,. It is of interest _ to note that a sign change occurs :in- the stress- <
calculations during a cooldown analysis since the thermal gradients pro- , duce : compressive stresses at the vessel outer radius. This sign change must then be reflected in the Kit calculation for the cooldown analysis. Normalized temperature and thermal stress distributions during a typical. reactor heatup are given in figure 4 The radial temperature is W, snown normalized with respect to the average temperature, Tgyg, by '! T-T L T = i-T avg max * (39) The thermal stress e:uivalent lineari:ed stress, as calculated by Ecua-tiens (30) ano (37), are normali:ed witn respect to the maximum. thermal stress. Here we note that the actual thermal stress at the 3/4T location is - considerably less than tne maximum equivalent linear stress which yields additienal safety margins during the heatup cycle. Similar temper- . ature ano thermal stress distributions are developed during cooldo=n. The s
'
- trends a'e nearly identical as those snown in Figure 4 when the inner and outer vessel 1: cations are reversed witn the 1/47- 10 cation beccming tne critical point,
,
.
0[ E. Example Calculations The following example is cased on a reactor vessel with the follow-ing characteristics: Inner Radius = 82.00 in. (rg) Outer Radius .= 90.00 in. (re) D-16 _ _ . . _ _ _ _ . _ _ - _ _ _ . . , _ - - - . _ . _ - , , . _ . . _ . . _ _ - . _ -_ - , _ . - . . - _ . , _ . . _ _ . _.
- . - . , . . . - , - . - . . -
,h, , ...j' . .
-
@ .1
,
I t OUTER WALL l r 1.0 - f )
/
- 0,8 -
1
.l
-
0.6 -/ 'l
'
l
=
0.4 Y - ;
,
L
-
0.2 -
' ' '
0
/' ' '
.
- 1. 0 0 1.0 - 1. 0 0 1.0-lNNER WALL- <
~ '
Normalized temperature Normalized stress distribution ( ATl4Tmax )' distribution ( al a max I '
., c ,
.
Figure 4. Typical Normalized Temperature and Stress Distribution During Heatup
'
,-
,
!- D 17
.
,
. - . . - . - . , . . . . . . . . . . . . . . . . _ , . . . .
A' Operating Pressure' = 2250 psig (P,) i , Initial Temperature- = 70*F (T,). Final Temperature 550*F (Tf ) Effective Cociant Flow Rate = 100'x 106 lbm/hr (Q) Ef fective Flow Area = 20.00 ft2 (g) - Effective Hydraulic Diameter = 10.00 in.- (D) , RTNOT (1/4T)
= 200'F'-
= 140*F- '
RTHDT (3/4T)
< In the thermal stress analysis 21 radial points were used in the
~
finite - difference scheme. Going from 70'F to the final temperature of
.
550'F, approximately 12,000 time (temperature via T = To + Rt) steps were required in the thermal analysis for the 100'F/hr heatup rate. The re-s sults of the example com;utation are shown in Figures 5 through 9. Figure 5 gives the reference stress intensity factor, Kgp_, as a function cf temperature indexed to RTNOT (1/4T). For the steady state analysis, K gg is converted directly to allowable pressure via Equation-12.- During the heatup and cocidown thermal analyses tne material tem-cerature at the 1/4T and 3/4T and thermal stress intensity factors Kg ; are J recuired to ccm:ute a11ewable pressure <ia Equations (13) and (14).- Tre i material temperatures versus cociant temperature curing the 100*F/hr heat-
,. up ard cooldown analyses for an 8-in. A302B wall are given in Figure 6.
Figure 7 gives the corresponding thermal stress intensity f actor at the
-3/4T and 1/4T locations as a function of coolant tencerature. For an 8-3/4-in, wall tnickness commonly encountered in the larger pressurized water reactors, the 50*F difference between the coolant and 3/4T vessel wall temperatu*es snown in Figure 6 would increase to 60-65'F. Also, the D-1B
. _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - _ - - _ _ _ _ - - - - - _ _ _ _ _
-
-
_
.-- n2 -
'
.
-
,
-
.,
'
, 200 i i i .. ..
- .i.
,L.
- .:
.
d IM ~
~
< RTNOT( 1/4T ) - 200*F l i i
,
-
C 1
. - -
120 -
-
i-
,
l ._
'
i 32 , - g '. M
*-4 M ~
-
l
.
l
,
t l
+
i
! T
- ; .
g - _
,
l , , l l !
,
I , Q R R i 1 1 50 100 150 - -200 250 300 350 400 ' , TEMPERATURE (*F ) '!
- ;
1 Figure 5. - Reference Stress intensity Factor as a Function of Temperature Indexed to RTNDT( 1/4I) : 4 1
'
i
'
i I
;g dl0 in ' ~
. _ _ _ _ , . . _ . , _ _ _, , _ ...._ _
.=. .. ._-;__ ..-.. _ . , _ _ . . . _a .
.
. _ _ -. .. .. . . . - . . --
_
,
, , .
,) '
{
.)
-
[ " . f]:4
. ..
"
.
~ 100*FlHR HEATUP ( 3/4i Location ) .t
-
. /
/
~
li ..
.
-- 100:'FlHR; COOLDOWN ( 1/4T Locstion )
i := -. , . .
)f -
/'
^
- . 300 -
/
- .. -
f f ,
.j/
l ~
^/
/ 3 l _ /
\.
.+ / .
} g 200 ,
-
7
-
R a 7 g /. o p '{ , / I (
~
/
{ j /
#
0 / ' 100 -
/- EXAMPLE VESSEL CONDITIONS:- .
8-in. A302B Wall : , 20G*F i RTNDT (1/4T) = . 1 .
,
RTNDT (3/4T) = 140*F
,
'
0- ' - ' - ' 50 100 200 300 COOLANT TEMPERATURE (*F ) i Figure 6. Vessel Temperature as a Function of Coolant Temperature D-20
. ....~. .
. .
. . . -.- .- . ---
{f
< t
.
;;;
l\p ,' .
.
s ,
. >
.
*;
.
,
'
4;:-
-,
"
- 16. - #," :
q
,
,
,s j#,#s# .
l
;
-
-
-
-
-
14 ,
.
1
.
s - t 12 - 0 l 1. i' I L '
.
._. -
l . p 5 10L cc y L . c;
- 1
- 1.;
-
Et 8-M l
.
Y .
.
6-i
, 100 *F /HR HEATUP ( 3/4T Location ) L
-- 100 *FIHR COOLDOWN ( 1/4 Location )
'
4l- -
,
'
EXAMPLE VESSEL CONDITIONS: , 8-1n. A302B Wo11 2p RTNDT (1/4T) = 200 F
.
! RTNDT (3/4T) = 140 F l
0 t ' - ' 50 100 200 300 COOLANT TEMPERATURE (*F )
-
Figure 7. Thermal Stress Intensity Factor as a Function of Coolant Temperature D-21
- . . . . , , , . . . - . . . . . . . . - . . . . . _ . . , - . . . _ _ . _ _ - - _ - - _ - _ _ _ _ _ - _ _ _ _ _ _ - - . . . _ - . . .
- .. . - - . .-_ - . . .
I l
-.
'
values for Kit would be' of the orcer of 20 ksi .'in, considerably above that shown for an 8-in. wall in Figure 7. f I Figures. 8 and-9 demonstrate the construction of the allowable com- l i posite pressure and temperature curves for the 100'F/hr heatup and cool-down rates. The-composite curves represent the lower bound of the thermal. and steady state curves with the addition of margins of +10*F and -60 psig-for possible i_nstrumentation error. Figure 8 also shows the leak test 'I limit, corrected.for instrument error, as obtained frem Equation (9). The 1 limit points are at the operating pressure 2250 psig and at 2475 psig
,
wnich corresponds to 1.1 -times the operating pressure. The critically Timit is also shown in Figure 8 and is constructed by providing for a 40'F margin over that required for heatup and cooldown and by - recuiring that the minimum 'teme2rature ce greater than that required by the leak test s limit. l II L
'
,
.
1.
,
D-22 l^ l-
.. .- -. . - . - .
. . . . - - . , - .-- - _ -._- . . - - - - - . -
_
. .
. - . - - . - . - . - - - - . . - _ - - . - . _ . .
.
,
' '
Ls
.
. . . . . .
>.- ,
<
>-
--
.: -
., _
< .
.
u _
>
s l. Cg
-
a_ u _.i , , _. N _ R 4' __x. _ _
-
y ' 3:
,N =
,
.l< N =
w t- N w E_ N _ . as'
.-
,. .a N g.
-"
"
a N ~
;
- _ \ .
s t u
<
w 2 m w w s o a m 3
-
_.
-
- g. v
5 m. \ < e s - = = c= < g w . .
*n E E 1. -
- .
5.sw >. a
-
-.e ~
E -
=_ g $ g .,
-
- _
.
,
E'.e G < e 1 e v s s.
- -
'i p =. g e S,S z _ Cm
-
- ..
t _= _ w Ri _ R- ai
>w -
** 1 2
=e u
i
, ,y
-
wT r g-l l-
-
E E
$
=
i 1 - 8 ,l v. E
~
I l
,
, , , , i i g
a x -: 8 a e s -
= 4
~ -
.
-23 .
(5sd)! 380SS38d 03.!.Y010NI
. . _ _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . . _ . . _ _ _ . . . . _ . . . _ . _ _ _ . _ _ . . _ . . _ _ . _ . _ .
,
.
~- ;
^
.
.
,
-
_ 2
---
.
-
,
_. . __ ,
.
_. . _ ,' , , _:.,__
.- __
,- ._
,.
. . . / -
- /
- /
. 2000
-
/ -
! 4
^
en COMFOSi1E CURVE ~100*FillR COOLDOWN . i ( Margins of il0*F and , j
-
-60 psig for instrument error )
/,
ta - i m 1600
-
- a
- m
, nn ! to ! m ! G-l l3 1200
-
/ -
i ? y E o COOLDOWN
- - t
4 o z ! - y STEADY STATE 800 -
/y ,
'
i !
-
e'- ' i ! - t ! 400 -
-
a ' s I e s i 1 50 100 150 200 250 300 350 t
'i INDICATED TEMPERATURE (*F i
, ; figure 9. Pressure-Temperature Curves for.100*FIHr Cooldown
.
' f y, 9 _T T , y u s
.... . _ _ _ _ _ . , ._'-- -___'___ =- _ - __ __-_ ____-_____-_- - _ .. - . . _
"~ ' "'~
Q :'
'
~ ~~~ ~ ^ ~~ ~
V 'f^ g ]~ '
!.l y%
,
,
'
'
<, -'
- j. 1
,
,
'
ym . i', 5
,,
,,
L. ;;p . ? '
;; . .
. ?
--
f;y. ;
' ' ;; ,
'%; s f '
{t: k ,-
- .
'
,
S j s 1
, 0d ~}
- , '
, ..l- -t
, .
N
'
APPENDIX E
'
. -
.
'
PRESSURE-TEMPERATURE: LIMIT TABLES FOR CALVERT CLIFFS UNIT 1 *
.r.
'
.
_ i
- t
.
'
E-1 Heat-U'p Conditions ~ ~
- l. . I ;.
'
;
Rates: 40'F/hr
'
> f
. . .
, 50*F/hr .c
"
. -
..
60'F/hr 4 *L . . , 70'F/hr
-
r;.n
. I.
?%
s a
's
.
.%
f
'
.g [
4-
-
,. ,. 1.
- l$ .
o l "$ $ ' tj y 3V ..
.
,
, .
^
f
'
1
=,*eee-m- .-ye.. ,,..- .w., ..,,-.,+#.e,e----e-.g.-,w ,-eer,- , , , ,..y-4.,--wv+--- 9
a, - - - . . - . ,- . , v .. - . - - . . - - -,
. ny o .
7 , i
,
tih i y I '
' ALVERT CLIFFS UNIT 1 PT 1.1MIT CURVES (REC-0 VIDE 1.99 REV 2) t 4ATUP ANALYSIS - HEAT R!SE RATE = ~ 60. 0 (DEOF/HR )
i
,
le EFPY 20 EFPY 24 EFPY 29 EFPY 32 EFPy 36 EFPY 40 EFPY TEMP *RESS PRESS PRESS PRESS PRESS PRESS PRESS B0 0 3*4 5 346:6 341.4 337.4 334,5 324.7- 322.9 85 O. 354 5 346-6 341.4 337 4' 334 5. 324.7 322. 9
, 90 0 354 5 346.6 341.4 '337.4 334.5 324.7 :322.9 95.0' 354 5 346.6 341.4 337.4 334.5 324.7 322.9 100 0 354 5- 346.6 341.4 337.4 334.'5 324.7 322.9 105 0 354 5- 346.6 341.4 337 4 334 5 324.7- -322.9 110.0 4154 5 346.6 34 1. 4 - 337.4 334.5 324.7 322.9 115.0 3!4 5 346 6 341.4 337.4 334 5 324.7 322.9 120 0 354 5 346.6 341.4 337 4 334.5 324.7. 322.9 125.O_ 354.5 34o.6- 341.4 337.4 334.5 324.7- 322.9 130. 0 354 5 346.6 341.4 337.4 334.5 324.7 322.9 135.0 354.5 346.6- 341.4 337,4 334.5 324.7 322.9 140 0 354 5 346.6 341.4 337.4 334.5 324.7 322. 9 145.O. 354 6 346.6 341.4 337.4 334.5 324.7 322.9 l 150.0 -355 6 347.2 341.6 337.4 334.5 324.7 322.9 155.0 357 7- 348.7 342.7 338.3 335.2 324.G . 322.9 160.0 360.7 351.1 344.8 340.0 336.7 325.7 323.6' 165 0 364 7 354 4 347.6 342.6 339.O 327.4 . 325.2 170.0 3e9 5 358.5 351.3 345.9 342.O_ 329. 9 327.6 175.0 375 2 363 4 355.7 350.0 345.S 333.1 330.7 l' 361. 0 354.S 350.4 337, 1 334.4 l 190. 0 381.9 3692 1st O 369 3 375.B 367. 0 360 4- 355. 6 341.9 339. 0 - i 190.0 397.7 383,2 373. 8 366.7 341.6 347.2. 344.1 195 0 407.0 391.5 301.4 373.5 368. 4 3S3.4 350,1 j
-200 0 417 3 400.7 399 9 301.6 375 9 360.2 396.7 '
.205.0 429 6 410.8 399 1 390.3 304. 1 367. 9 364.1 210.0 440.9 421.9 409.3 399.9 393.2 376.4- 372.3 215.0 454.4- 433.8 420.4 410.3 403.2 3SSi e 381.3
- l. 395.8 - 391.1' 220.0 469.0 447.0 432.5 421.7 414. 0 225. 0 484.7 461.2 ~445.7 434.1 425.e 406. G 401.S 4 230.0 501. G 476.5 460.0 447.5 439.6 418.9 413.S 'f 235.0 520.2 493 1 475.3 462.0 452,5 431.9 426. 1 -
240.0- 540.2 511.1 492.0 477.7 447.5 446.0' 439.3-l- - 245.0 Sol. 7 530.4 509.9 494.6, 483.6 461.3' 4S4. 6 1' 250.O' 584.9 551.3 529.3 512.8 501.1 477.7 470.6 L 255 0 609.8 573.9 550.2 532.5 519. 9 495.5- 487. 8 I' 260.C 636.7 598 1 572.7 553.7 540.2 514.6 S06.4 265.O e65.7 624.2 597.0 576.6 562.1 S35.2 Sae. 4 270.O e96. 8 6 f.2. 3 623.1 601.2 585.6 SS7.4 See. 0 275.0 730.3 682. 5 651~. 1 627.7 610.9 SS I . 4 971.3 ( 65e.1 638. 1 607,1 S96. 2 290.0 766.3 715.0 681. 3 l 285 0 905.0 749.9 713.G- 686.0 6e7. 5 634.7 423.1- g1 290.O- 846.6 787.5 748.7 719.7 699.0 664.S 652.0 .s9. 295.0 884.7 027.9 786. 3 755.1 732.8 696.S 603.1 '- 300. 0 920. 1 864.4 821. 0 '792.4 765.8 731.0 714.S l 305.0 959.2 999.5 051.7 521. 0 792.4 768.0- 752.4 {: 310.0 999. 0 935.0 884. 7 851.7 821. 0 797.9 .796.9 h
'
315.0 1042.9 974.2 920.1 994.7 B51.7 Sae. 9 815.0
- l.
- 320.0- 1090.1 1016.2 950. 2 920. 1 904. 7 850. O S45.3
' 32S. O 1140.7 1061.4 999. 0 958. 2 920.1 991.S 377.0
.
s . E-1 i: I
*- .m--,.-.. . - , .. ...-.-.w-. . . , _ , . . ,.we..~m. . , .._,,_,...~._-y v.-... .,_,.,w. . . . , . . . , _ , , .
, . . -
, -- - . .- .- - . --- - .
'
~
,
3
..
'
CALVERT CLlFFS UNIT 1 PT. LIMIT C O VESL (RE6 OU2DE 1. 99 CEV SF q HEATUP ANALYS46 - HEAT RISE RATEa 60.0 (DEGF/HR) 16 EFPY 20 EFFY 24 EFPY 28 EFPY 32 EFPY 36 EFPY 40 EFPY-TEMP PRESS PRESS PRESS PRESS PRESS PRESS PRESS .
,
'
330 0 11#5 1 1109 9 1042 9 999.0- 958.2 927.4- 912. 7 335 0 1253 4 1162 0 1090 1 1042.9 999 0 966. 0 990.2 340 0- 1316.1 1227 9 1140.7 1090.1 1042 9 1007.S. 990.S' ' 345 0- 13E3 3 1278 0 1195.1 1140.- 7 l 1090.1 1052 0 .1033.5
- 350 0' 1455 3 1342 4 1253.4 1195.I 1140.7 1099.9 1080.3 +
355 0 1532.7 1411. 5 1316.1 1253 4 1195.1 1151.2 1130.2-360 0 1e15. 5 1485.6 1383 3 1316 1 1253 4 1206.3 1183.S - 365.0 1704 4 1565.1 1455.3 1333.3- 3316.1 1865.5 1841 3, ( 370.0 1799 5 1650 3 1532,7' 1455.3 13b't. 3 1329.0- 1303.1 375 0- 1901.4 1741.6 1615 5 1532,7 1455.3 1397.2 1369, 3 '. 380 0 2010.4 1839.4 1704.4 1615.5 1532.7 1470.3: '1440, 4- ! 3 0 5. 0 2127.0 1944 1 17'9.5 1704.4 1615.5 1948.6 -1916.6' 390.0 2251,6. 2054.2 1901.4 1799.5 1704.4 1632.7 ,1999. 4 - 395.0 2384.7 2175.9 2010.4 1901,4 1799.5 1722,7 1656.0 ' 400.0 2526.5- 2303.S 2127.0 2010,4 1901,4 1919.2 -1779.S 405 0 2678 6 2440.3 2251.6 2127.0 2010.4 1932.9 1880.3 410.0 2640.2- 2585.S 2384,7 2251.6 2127.0 2033.0 1997.9 415.0 3012.0 2742.0 2526.5 2384.7 2251.6 3181.1 -8103.9 420.O 3194.6 2907.6 2678.6 2526.5 2384.7 3277.4 3835.9
'
425.0 3368 3 3083 7 2840.2 2678.6 2526 5 2418.1 2396.9 430.0 3592.2 3270.0 3012.0 2840.2 2678.6 2989.8 8497.3 l- 435:0 3808.3 3469.0 3194.6 3012.0 2640,2 2709,9 3646. 4 440 0 4036.0 3677.3 3388. 3 3194.6 3012.0 3873.4 M06. S 445.0 4275.'1 3898. 0 3592. 2 3388. 3 3194.6' '3047.4 3976.5 s
'
450 0 4527.2 4130.3 3008. 3 3592.2- 3388. 3 3238. R 3156.9-~ 455 O' 4789 9 4373.9 4036.0- 3808.3 3592.2 3480.1 M40. 4 460.0 5122.2 4629.7 4275.1 4036.O 3000. 3 3634.3. 3391. 3 ' 465 0 5479.4 4919 9 4527.2 4275.1 4036.0 3083.6 3763.9-470.0 5863.5 5262.0 4709.9- 4527.2 4275.1 4088. S 3599. 3 475.0 6276.5 5629.7 5122.2 4709.9 4527.2 4333.9' 4486.O- ' 480. 0 6720.6 6025.2 5479.4 5122,2 . 4789.9 4577.0 4478.6
'
485.0 7198.0 6450.3 5863. 5 5479.4 5122.2 48S4.0 4738. 3 l 490 0 7711. 2 6907.4 6276.5 5863. 5 5479.4 8191.1 SOS 3. 4 495 O S263.1 9593.6 " 7395.S 6720.6 6276. 5 5863.5 9408.S , 500.O 8856.4 7927.2 7198.0 6720.6 6276.5 9943.3 5734.0 l 505.0 9494,3 8495.3 7711.2 7198.0 6720.6 6368.3 6191.0 510 0 10180.2 -9106.0 8263.1 7711.2 7199.0 6812.S. 44W.6- - 515.O~ 10917.6 9762.7 8856.4 8263.1 7711.2 .7297.1 7099.1 ; 520.0 11710.4 10468. F, 9494.3 8856.4 8263.1 7817.S 7608.O i 525.0 12562.8 11227.8 10180.2 9494.3 8056.4 8377. S140. 9
, 530. O 13479.3 12044.0 10917.6 10180.2 9494.3 8979.6 8738,6 535.0 14464.7 12921.5 11710 4 10917.4 10100.2- 9686.S 9363.3 540.O 15524.I 13864.9 12562.8 11710,4 10917.6 10333.6 100m. 3 545.O 16663,1 14879.2 13479.3 12562.O 11710.4 11070.7 10768.0-550.0 17887.7 15969.5 14464.7 13479.3 12S62.8 11873.1- 11946.3 -
555. 0 19204 4 17142.3 15524.1 14464.7 13479.3 12739.O 18M6. 4 ! 560. 0 20620.0 18403.O 16663 1- 15524.1 14464.7 13669.6 1 W .6
.
...
g 2
.
E-2'
--
_. -- . . - . - _ ,
. - - -
, __ _
.
I-
+
.
,
I
.d CALVERT CLIFF 5 UNIT 1 PT LIMIT CURVES
% tREG CVIDE't.99 REV 21 HEATUP ANALYSIS - MEAT RISE RATEe 70.0 (DEGF/HR) 16 EFPY 20 EFPY '24 EFPY 29 EFPY 36 EFPY TEMP- PRESS 32 EFPY. .40 EPPY-PRESS. PRESS PRES $ PRESS PASSS PRSES 90 0 333 2 324 8 319 2 '315 0 311: 9. 300.9 998.9.
. SS 0 333 2 324 8 319.2 315.0 300.9 i
90 0 333 2 311.9 393.9
, 324 8 319 2 315.0 311.'9 300. 9 ' age. 9 95.0 333.2 324.e 319.2 315.0 311, 9 300.9 age. 9 100 0 333 2 324 0 319.2 '315. 0 311, 9 300.9- age. 9 ;
.105 0 333 2-- 324 8 319.2 315.0 311. e 300.9 393.9 110 0- '133 2 324 8 319.2. 315.0 311, 9 300.9~ 398.9 -
115 0 333 2 324 8 319,2 31S.0 311.9 300. 9 393.9
, 120 0 333 2 324.t 319. 2 315.0 311.9 300,9 age, 9 125 0 333 2 324.S 319.2 315.0 311.9 300.9 '393.9 130.O. 333.2 324.S 319.2 315.O ~ 311, 9 MO. 9 393,9 -
135.0 333 2 324.B 319.2 315.0 311.9 200.9 . 393.9 140 0 333.2 324.S 319 2- 315.0 311,9 - 300. 9 age. 9 : 4 145 0 333.2 324.O 319.2- 315.0 311. 9 330.9 393.9
'
150.0- 333 2 324 3 319.2 315.0 311.9 300.9 age. 9 ' 1 SS. 0 333 4 324: 8 319.2 31S.0 311.9 200.9 age.9 160.0 334 5 325.5 319.S 315.0 311,9 '300.9 393. 9 p 165.0 336.7 327.0 320.7' 315 9 31 2. S 301.0 398.9 ? 170.0' 339 S 329 5 322.7 317.6 314.0 301. S - 399,7 ' 175.0 343 0- 332.8 325 S 320.1 316 3 303. S 301.3 100. 0 348.7 336.9 329,2 323.4 319.3 309.9 303,4 y !' 185 0 354 S 341.9 333 7 327 5 323. 1 309.1 306.4 190.0 361,2 347.7 338.9 332.3 313.C 327.6 310.3'-
.
.
195.0 368. 9 354 4 345 0 .337.9 332.9 317.7 314.6
--
200.'O 377.4 362.0 3S1.9 344,3 330.9 383.1 319. S ~ ( 205 0 387. 0 370.5 359.6 . 351.S 345.8 339. 3 339.S p' 210 0 397.6 379.9 368 3 359. 6 3 53. 4 336.2 33.S' , 215.0 409.2 390.2 377.8 368. 5 361.9 344.0 340.0 . !- 220.0 422.0- 401.6 300. 3 378.3 371.2 393.6 348.3
- F 225 0 435.9 414.1 399.S 399.1 381.-S 362.1 397. S
'<
'
230.0. 4St. 0 427.7 412.3 400.9 392.7 372.5- 367.6. l
'
235.0 467.S 442 4 426. 0 413.7 404.9- 383.9 378.6
<
240.0 485.3 4Se.4 440.S 427.6 410. 2 394. 3 390.7 245.0 504. 5 475 8 456.9 '442,7 432.6 409.8 403.7-. 250. O S25.3 494 5 474 3 459. 1 440.3 424.4' 417.917 < 255. O S47,9 514. 7 493.0 476.7 46S;1 440.3 433,3 260 0 572. 0 536 5 513,2 495.9 483. 3 497.4 449,9 ,
~265 0 599.2 Sec 0 S35. 1 Ste.3 503. 0 479.9 467.9 % '
i. '= 270.0 626.3 505.4 SSS. 6 530. S 524.2 498.9 487.3 " - ' 275.0 656.6 612.7 SS4. O S42.4 S47. 1 917.3 SOS.1 280.0 689.2 '642 1 611.3 500. 2 571,7 540. 5 - 830.S 295.O 724.4 673.8 640.7 615.9 593. 2 S65. S 984. S
'
L '290.0 762.1 707.9 672.4 645.7 -426. 7 598. 3 900,9 295 0 902.7 744.S 706;4 677.S 657,4- 621. 3 609.0 300.O B46.3 793.9 743.0- 712.3 690. 4 est. 4 639. 3 305.0 893.2 826.2 732. 4 749.1) 726.0 689.8 671. 7 '
-310.0 943.5 071.7 824. 6 789.'3 764.2 731.S . 706.6 315.0 997.6 920.S 870. 0 932. 2 905.2 760.S 744,3 ' / 330.0 1055.6 973.0 918 e 073. 2 949, 2 902. 1' 704.6 325.0 1117.9 1029.3- 971.2 927.6 996. 3 See. S - W. O i %-
E-3
,
e
,-
,ev.-.-e. s,c., , , . ,
- g -.w.. ~ . . . - - - - - . - , - - .. . - - .-.
_y
<
-
s i 1 ,
.
1 e :
-
CALVERT CLIFFS UNIT 1 PT LIMIT CURVES (REG CUIDE 1 99 REV 2) I
. l... HEATUP ANALYSIS - HEAT RISE RATE = 70.0 (DE9F/MR)' '
16 EFPY 20 EF#Y 24 EFPY 2B EFPY 32 EFPy 36 EPPY 40 EFPY-TEMP . PRESS PRESS PRESS PRESS PREd$ 'PEESS PRESS ~
'
.
.330 0 1154 7 1089 8 1027 5 900.7 947 4 894. 7 874.9 335.0 1253 4~ 1154 6 1007. 6 1037.7 999.0 946 2 924.6 340.0 1316 1 1217 9 1140.7 1090.1 1042 e 2001.5, 970.2 .
345. 0 1J83 3 1279 0- 1195.1 1140.7 1090.1 1092.0 -1033.8 350.0 1455 3 1342,4 1253.4 1195.1 1140,7 1099.9 1000,3 l 355.0 1532 7 1411 Sc 1316.1 1253.4 1195.1 1151,2 1130.E ; 360.0 to15 5 14e5. 6 1383.3 1316.1 1253.4 1206. 3 1183.S l 365.0 1704.4 1565.I 1455.3 1383.3 1314.I 1869. 5 .1841.3: 370 0 1799.5' 1650 3 1532 7 1455.3 1393.3 1329. 0 1303.1 i 375.0 1901.4 1741.6 1615 5 1532.7 '1455.3 1397.3 1369.3' ; 360:0 ~2010 4 1839.4 1704 4 1615-5 1532.7 1470.3 1440.4 305.0 2127 0 1944.1- 1799.5 1704.'4- 1415 5 1948.6 1916.4 j 390:O 2251.6 - 2056 2 1901.4 1799. 5 1704.4 1633. 7 1999.4 . l 395. 0 2384.7 2175 9 2010.4 - 1901.4 1799.5 1732.7 - 1686.0
- 1 400.0 2526 5 2303.S 2127.0 2010 4 1901.4 1919.3 1779.S' i 405.0 2e70 6 2010.4 1983. S 2440.3 2251.4 2127.0 ISSO. 3 %'
410.0 2940 2 2585 8 2384.7 2251. 6 2127.0 '3033.0' 1987.9- 34 ' 415.O 3012.0 2742.0 2526.5 2384.7 2251.6 2191.1 3108.9 7 420 0 :;194 6 2907.6- 2676.6 2526.5 2384.7 3277.4- 3339,9 g 425 0 ' 3368.3 3063 7 2840 2 2670.6 2526 5 3412.1 2396.9 ; ' 430.0 3592.2 3270 8 3012.0 2840.2 2670 6 2588.S 8497.3-435.0 3808 3 3469 0 3194.6 3012.0 2840.2 2709.9 ' 3646.4 440.0 4036.0 3677 3 3388 3 3194 6 3012 0 3073.4 3806.S 445.0 4275.1 3098.0 3592.2 3389.3 ' 3194c6 3047.4 8976.S , 450.O. 4527.2 4130.3 3808.3 3592.2 3300.3 3832. 3 3196,9 , 455.0 4789 9 4373.9 4036 0 3000.3 3592.2 3480.1 3340.4 - l- 460. 0 5122.2 4629.7 4275.1 4034. 0 3008. 3 3634.3 3931.3
- f 465.0 5479.4 4919 9 4527.2 4273.1 4034. O WS2. 4 3743.9 l= 470.0 5963.5 5262.O 4789.9 4527.2 4275.1 4083.S 3939. R 475.0- 6276.5 5629.7 5122. 2 4709.9 4527.2 4333.9 .4336.0 480. 0 -6720 6 6025.2 5479.4 5122,2 4789.9 4577.0 4479.4 .
465.0 7190 0 6450.3 5863.5 5479.4- 5122.2 4094. 0 4739,3 l l'l'- 490.0 - 7711.2 6907 4 6276. 5 5863.5 5479.4 9191. 1 9083.4 3 495.O S263.1. 7398.8 6720.6 6276.5 5863. 5 9593.4 8405,5 500. 0 8856 4 7927.2 7199.0 6720.6 6276.5 9943.3 9784.0 505.0 9494.3 8495.3 7711. 2 7198.0 6720.4 6363. 3 6191.0' 7 510.0 10100 2 9106 0 8263.1 7711.2 7198.0 esta. 8 46M.4 % l' ' 515.0 10917.6 9762 7 8856, 4 8263.1 7711.2 7297. 1 7099.1 520.O 11710.4 10468 9 9494.3 0856.4. 8263.1 7017.S 7409.O M 525.0 12562.6 11227.8 10190.2 .9494.3 8856. 4 - 3377.7 8140 9 530. 0 13479.3 12044.0 10917.6 10100.2 94*4.3 8979.4 3733.6= 535.0 14464.7 12921.5 11710.4 10917.6 10100,2 9686.S 9368.3-540. 0 15524 1 13864.9 12562. 8 11710.4 30917.4 103B2. 4 800M. 3 di 545.0 16663.1 14879.2 13479.3 12562.0 11710.4 11070.7 10769.O M 550. 0 17987.7 15969.S 14464.7 13479.3 12562.8 11875.1 - 11946.3 555.0 17204.4 17142.3 15524.1 14464.7 13479.3 12739. S 13M6. 4 g 13669.6
' '
560.0 20620.0 18403.0 16663.I 15524 1 14464.7 1389.6 ,
,
. Jj Q,
.
.
i
-
E-4
*
.
,. 9' y.cy, g.y ,.g.,p. ,g,wg.,,,g,,..<p e w g- ,,wg ,y ,-y-wpwwp- gi.ywwwy 9 -y.- y----
*' vmt-+'ww.X.-a. --u---m. _m_.w
- ..s .r e.-p.mw%.-y ,,yy-,. , 4 7 y
^
;pg. 3
-
,y y' <
- - , ); ;
- .-!
.. .>
- ;,
.
.
. 3:
u ,
;
, is l ;
'
-'
1
-
,
i
- f. '
. , ,
.l-
-;
i.
, , ,
P i
,
I,5 ' !
. ,; p:.
>
r. 4 E-1 Cool-Down Conditions ,
,
Rates: .C'F/hr 20'F/hr.
!
50'F/hr .
- - 10C'F/hr l
.j :
.
/ .
.
1-l' , I L i _.
!
'
,
. .
1 . . m, l . I 1 I l-E-5 4
, ,
, . - e . - - , .
qu , ..- i
.
,
<
~l T
E
.
'CALVERT CLIFFS UNIT 1 PT LIMIT CURVES.- (REO OUIDE 1.99 REV 2)
;
>c .MEATUP 6NALYSIS - HEAT RISE RATE = 40 0 (DEOF/HR)-
.
16 EFPY 20 EFPY 24 EFPY 29 EFPY 32 EFPY 36 EP'PY
' TEMP. ' PRESS 40 EFPY PRESS PRESS PRESS PRESS PAGES PRESS i i
'
80.0 397.4 390.5 396. 0 382.6 300 1 372.6- 371.O t
- 95. 0 397.4 390 S- 396. 0 382 6 372.6 i;D 90.0 397.4 300 1' 371. O
..
390 S 386. 0 382.6 300. 1 372. 6 371. 0
'95.0 397.4 390.5- 396. 0 302.6 372.6 100.0 397 4 380 1 371.0-390.S 306 0 392 6 380.1 372. 6- 271. 0
. 105.0 397 4 390.S 396. 0' ' 382. 6 300.1 372. 6 371.0 110.0 397.4 390.S 386. 0 382 6 300. 1 372. 6 371. 0 115.0 397.4 390.S 3s6 0 302.6 ~ 380. 1 372. 6 371. 0 120,0 397.4' 390.S 336. 0 382.6- 330,1 372. 6 371.O 125.0 397.4 390.S 386. 0 '382. 6 300. 1 372.6 371. 0 130,0 3*S. 5 391.1 384. 3 382.7 390.1 372.6 371.0-135.0 400.7 392. 9 387.7 303.S 331. 0 373.0 371.3 'i 140.0 403.9 395.S 390.0 305.8 382. 9 ??4. 3 372. 9 145.0 408. 0 399. 0 393.1 398,7 305.6 'J76 3 n' 150.0 413 0 403.4 397.1 392.3 39t 0 379.4
'374.6-377.4 1 SS. 0 418. 9 400.5 401.7 396.7 393.1 383.1 300.9 160. 0 425.S 414.4 407.1 401.7 397.G 387.4 309. 0 '
~ 165. 0 432.9 421.0 413J2 407.3 403.2- 392.3 M9. S '
170. 0 441. 0 428 3 419. 9 413 6 409.2 397. 9 399. 2 ~ 175.0 450,0 436.3 427.3 404.1 420.6 41S. 8 401.2 , ' 180 0 459.8 445 1 435.5 429. 2 423 1 410.9 407.8 105.0 470.5 454.7 444 4 436.6 431.1: 418.4 415.1 190.0 . Ac2. 0 465.1 454. 0 445.7 439.7 426-6 422.0 - 195,0 494.5 476.3 464,4 4 5 5. S 449. 1 435. 5 431. 6 - 200.O SOS. 0 488. 5 475.7 466.2 459.3 445.1 441. 0 ' 205.0 522. 6 501.7 407.9 477.6 470.3 455.6 491.1 210.O S38. 4 515.8 501. 1 490.0 482. 1 466. S 462.0 213.0 SSS.3 531. 1 515.3 503.4 494.9 479.9 473.S' 220.0 571.O ~547.6 330.6 S17. O SOS. 7 492.0 486. 5 229. 0 583. 0 564.2 S47. O S33,3 523. 5 506.1 300. 1
; 230.0 596.0 575.7 559. O 549,4 539.5 521, 3 914. 9 235.0- 609.9 - Set.1 571.0' 559. 8 549.4- 337.6 930.7 L 240.O .624.8 . 601.4 903 0 S71.O SS9 e 591.4 547, 3~
I ' 245.0: 640.9 615.7 596. O SS3. 0 571;0. Se t. 9 557. 4 250.0 650. 1 631 1 609.9 596. 0 - SS3.-0 573.3. 968.4 255. 0 676.7 647 6 624. S 609 9 996. 0 SSS. 9 800. S 260 0 696 6 665.4 640.9 624.8 609.9 598. 6 993.2.
265.0 710.0 604.S 690. 1 640.9 624. 8 412.7 606.9.-
270.0 741.1 705.0 476.7 498. 1 640. 9- 627.9 681. 7 275.0 765.9 727.1 696. 6 676.7 690. 1 644,2 637.S j 290.0 792.4 750.8 710. 0 496.6 676. 7 661.7 654. S ~ h 295. 0 421. 0 776.2 741.1 710.0 696.6 600.5 672.O a E 290,0- SSI. 7 003.6 765.S 741.1 710. 0 700.7 693. S $ 295.0 884. 7 833.0 792.4 765.0 741.1 722. S 713.6 4 2o0. 0 920. 1 e64. 6 921. 0 792.4 765.S 74s. S 736.3 305. 0 958.2 090. 5 091. 7 821. 0 792.4 770.9 740.7 310.0 999.0 935.0 884. 7 051, 7 821, 0 797.9 706. 9
- 315. 0' 1042,9 974.2 980. 1 884.7' 891.7 Sae. 9 915.O
'
- 320.0 1090.1 1016.2- 999. 2 920.1 084.7 090.O S49,3 325. 0 1140.7 1061. 4 999. 0 950. 2 920.1 091. S 877. E L
1
1 E-6 ] l-
'
1 l J
.m, . _ . . _ _ _ _ _ . _ _ _ , . , _ . . _ . . _ . . . _ . _ . . _ . , . . . _ _ . , _ . . . _ , . . _ . . _ _ .. _ .
F v
- , , ,
1
; ,
.
>
[' CALVERT CLIFFS UNIT 1 PT LIMIT CURVES. (REO QUIDE 1,99 REV 2) ! HEATUP ANALYSIS - HEAT R13E RATEm 40.0 (DE9F/HR) L16 EFPY. 20 EFPY 24 EFPY 28 EFPY ' 32 EFPy 36 EPPY 40 EFPY TEMP PRESS PRESS PRESS PRESS PRESS PRESS PRESS 330.0
. 1195.I 1109.9 1042.9 999.0 950.2 937.4 912.7 335 0- 1253.4 1162.0 1090.1 1042.9 999.0 966.0 980.2 ;
340.0 1316 1 1217.9 1140.7 1090.1 1042.9 1007.S 990.5 345.0 1383.3 1278.0 1195.1 1140.7 1090.1 1052.0 1033.8 350.0' 1455 3 1342.4 1253,4 1195.I 1140.7 1099,9 1000.3 355.0- 1532.7 1411.5 1316.1 1253.4' 1195.1 1151.2 1130.2
~ 360, 0 1615.5 1485.6 1303.3 1316.I 1253,4 1206.3 1103.S 365.0 1704.4 1M5. ! 1455.3 1383.3 1316 1 1265.9 1241.3 370.0 1799.5 1650.3 1532.7 1455.3 1383 3 1329.0 1303.1 375 0 1901,4 1741.6 1615.5 1532.7 1455.3 1397.2 1369.3 300.0 2010.4 1839 4 1704,4 1615.5 1932,7 1470.3 1440.4 095.0 2127.0 1944.1 1799.5 1704.4 1615. 5 1940.6 1916.6 390.0 2251.6 20M.2 1901.4 1799.5 1704.4 1632,7 1999.4 i 395.0 2384 7 2175.9 2010.4 1901.4 1799.5 1722.7 1686.O J 400.0 2526.5 2303.S 2127.0 2010.4 1901,4 1819.2 1779.S. H 405.0 2678.6 2440.3 2251,6 2127.0 2010.4 1932.9~ 1800.3-410.0 2840 2 2585.5 2384. 7 2251.6 2127.0 2033.0- 1997.9-415.0 3012.0 2742.0 2526.5 2384.7 2251,6 2191.1 2102.9 gi
'
420.0 3194.6 2907.6 2678.6 2526.5 2384.7 2277.4 3329.9 p -425 0 -3389.3 3083.7 2840.2 2678.6 2526.5 2412.1 '2386.9 ' 430.0 3592.2 3270.G 3012.0 2944,2 2678.6 3899.S 2497.2 ' 435.O' 380s.3 3469 0 3194.6 -3012.0 '2840.2 2709,9 8646,4'
.j 440:0 4036.0 3677.3 3388. 3 3194.6 3012.0 2873.4 M .8 445.0 427b 1 3899. 0 3592.2 3388. 3 3194.6 3047.4 3976.S 450.O 4527.2 4130.3 3008. 3 3592.2 3358. 3 3232.2 Site. 9 .
o 455.0- 4789.9 4373.9 4034. 0 3808. 3 3592.2- 3428.1 3 40. 4 3 460.0 5122.2 4629.7 4275.1 4036.0 3000. 3 3634.2 3951,2 465.0 5479.4 4919.9 4527.2 4275.1 4036. 0 3382.6 3763.9 470 0 5663.5 5262. 0 4789.9 4527.2 4275.1 4083.5 3999.2 475.0 6276.5 5629.7 5132. 2 4789.9 4527.2 4323.9 4M6. 0 *
- l --- 400 0 6720.6 6025.2 5479.4 5122.2 47P9.9 4577.0 4475.6 '
4854.0 4735.E
~
485. 0 7198.0 6450.3 5863. 5 5479.4 5122.2 490.0- '7711.2 6907.4 6276.5 5963. 5 3479.4 8191.1 9093.4 495.O. 8263 1 7398.S 6720.6 6276.5 5863. 5 5953,6 9409.S 500.0' 8656.4 7927.2 7199. 0 6720.6 6276.5 9943.3 5794. 0 l- 505, 0 9494.3 0495.3 7711.2 7199.0 4720.6 6362.3 6191.0 510.0 10180.2 9106.O S263. 1 7711.2 7199.0 6812.S 6639. 6 515.0 10917.6 9762.7 SSM.4 8263.1 7711.2 7297.1 7099.1 520.0- 11710 4 10448.S 9494.3 SSM. 4 8043, 1 7817.S 7600.0 525.O~ 12562.S 11227.8 10100.2 9494.3 GBS6. 4 8377.7 8148.9 530. 0 13479.3 12044.0 ' 10917.6 10180.2 9494.3 8979.6 8733.6 . 535.0 14464.7 12921.5 11710,4 10917,6 10100.2 9636.8 9363.3 10322.6 100M. 2 ' -9*
.540. 0 15524.I 13564.9 12962. S 11710.4 10917.6 545.0 16663.1 14879.2 13479.3 12562.8 18710.4 11070.7 10769.0 550.0 17887.7 15949.8 14444.7 13479.3 18962.S 11878.1 11946 3 555.0 19204 4 17142.3 15524.1 14464.7 13479.3 12739.8 1326.4 560.0 20620.0 18403.0 16463.1 19524.1 14444.7 13669.6 1 W .6,
'
.
.
E-7
. . _ _ _.
- - - -
. - . -_ .
s 7 ,
.
i 1 p C ALVERT ' CLIFFS ' UNIT 1 PT LIMIT CURVES. (REG OUIDE 1.99 REV 2) l HEATUP. ANALYSIS
- MEAT RISE RATE = 50.0 (DEOF/HR).
to EFPY 20 EFPY 24 EFPY 20'EFPY 32 EFPY 34 EFPY 40 EFPY l TEMP. PRESS PRESS PRESS PRESS PRESS PRESS PRESS 80.0 375.9- l 36B. 5 363.6 359 9 357.2 340. 5 346.9 95 0 375: 9 3te 5' 363 6 359.9 357 2 348, 5 346. 9 90 0 375.9 368.5 363.a 359.9 357.2 340.5 346.9 95.0 375.9- 360 5 363 6 359.9- 357,2. 348.5 346. 9 100. 0 375 9 368. 5 363.6 359.9 357.2 340. 5 344, 9 4 105 0 375 9 368 5' 363,6 359.9 357.2 # 340. 5 346.9 l 110.O. 375.9 368. 5 343.6 359.9 357.2_ 340.5 346,9 j 1i5 0 375.9 368. 5 343 6 359.9~ 357.2 349 5 346. T 120l0 '375.9 360.5 363. 6 359.9 357 g 340. 5 346:9 125 0 375.9 357.p 348, 5 346,9 E 368 5 363.6 359.9 346,9 130.0 375.9 340. 5- 363.6 359.9 357.2 349 5 348, 9 346.9 M 135.0 375.9 368. 5 363. 6 359.9 357 p
-140.0 376 9 369. 0 363.G 359. 9 357,2 340.5- 346. 9 145,0 379.0 370.5 365.0 360.9 357.g 348.7 346.9 41
150 0 382. O 373.0- 347. 1 362.7 359.6 349. G 347.9 155.0 386 0 376 4' 370.1 345.4 362.0 351.7 349.6 ;i 1t0. 0 3'O. 9 380.6 373.0 368. 0 365.2 354.3 352.2 165.0 396.6 385.6 370.4 373.0 369. 1 357.8 359.4 l
'
173. 0 403 2 391.4 383 6 377.8 373.7 361.S 359. 3 175 0- 410.6 397.9 389L6 383.4 379.0 366.6 364.0 l 100. 0 418 9 405.3' 396.4 399.7 305. 0 372.1~ 369.2 ' 185 0 429 0 413.4 403.9 396.7 391.7 378.3- 375.2 190.0 438 1 422.4 41 2. 2 404.5 399. 0 305.1 381.8 195.0 449 0- 432 2 421.3 413.0 407.1 392.7 399. E ' 200.O 461 0 443.0 431.2 422.3 die. 0 401. 0 397. 2 205.0 473 9 454.6 442.0 432.5 425.7 410.1 406.0 - 210.0 ASS. 0 467.3 4 5 3. 7 443,9 436. 2 - 420.0 415,6. 215.0 503.1 480 9 466.4 455.4 447,6- 430.G 426.0 - 220.0 519 6 495.7 480. 1 468.4 460. 0 442.4 437,3 225.0' 537 3 511.6 494J.9 482.3 473.3 455.0 449.5 >
;! 230.0 556.3 528.8 510. S 497.3 437,7 468.6 A62. S
- 235.0 576.9 547.4 ' 528. 0 513.5 503.2 483.3 477.O I 240.0 599. 1 547.4 See. 6 '4J 1. 0 -519. 9 499.1 492,4 245.0 623 0 580 9 See. 6 549.9 537,9 Ste.1 500. 9 534.5
'
570.1 557.3 526, 7 250.0 640.6 612.0 SSS.1 . 255.0 676 2 636.9 611.2 591. 9 578.2 554.2 545.9 260.0 096.6 643 7 636. 1 615.4 600.6 575.9 SM.5 265.0 718.0 684.5 650. 1 640.6 624. S 598 4 588. G 270.0 741.1 705.0 676.7 650. 1 640.9 623.0 612.7 275.O 765.S 727.1 696.& 676.7 650. 1 644.2 637.5 200.0 7'2.4 750.G 718.0 696.6 676.7 661.7- 654.5 285 0 821. 0 776.2 741.1 718.0 696.& 680.5 672.S 290 0 851.7 803. 6 765. S 741.1 718. 0 700.7 692. 5 295.O 884 7 833.0 792.4 743.S 741.1 732. 5 713.6 300.0 920c1 864.6 821. 0 792.4 765.S 765. G 736.3 305. 0 950.2 999.5 951, 7 821.0 792.4 770.9 760.7 310.0 999. 0 935.O 884. 7 351.7 821. 0 797.9 736.9 315.0 1042.9 974.2 900. 1 994.7 351.7 926.9 815.O 320. 0 1090.1 1016.2 958.2 920.1 SS4 7 850. O S45.3 , i
'
325.0 1140.7 1061.4 999.0 958.2 920,1 991.5 877.S l . E-8 l ! 1 l
.,a , , . . . - - . . . . . . + , . ...-.~n- n....r..,-_....,..n,-- - - , - . . - - , ,
-
- -. . . - - , . - - - - - , . - - - - - - - - -- + - . .-..
,_ .. .. _. ._ . .._ . _ .. .
,
9
.
.f l
L k 10 CALVERT CLIFFS UNIT'1 PT LIMIT CURVES. (REG GUIDE 1.99 REV 2)- 1 J1- .HEATUP ANALYS!$ - HEAT RISE RATE. 50.0 (DEOF/HR)
.
14 EFPY. 20 EFPY 24 EFPY 28 EFPY 32 EFPY 36 EPPY 40 EFPY TEMP PRESS PRESS PRESS PRESS PPESS PRESS- PRESS 1042.9 927, 4 912,7-330 0-- 1195.1. 1109.9 999.0 950 2 335.0 1253 4 1162.0 1090.1 1042.9 '99. 0 966.0 .M2 340.C 1316.1- 1217 9 1140.7 1090 1 1042.9 1007.5 990.5
.345 0 1383.3 1270.0 1195.1 1140.7 1090.I 1092.0 1033.8 350 0 1455 3 !!342.4 1253.4 1195.I 1140.7 1099.9 1000.3 355 0 1$32 7 1411.5 1316.1 .3253 4 1195.I 1151.2. 1130.2 360.0 tot 5 S- 1485.6 1383.3 1316.I 1253.4 1206.3 1193.8 365.0 1704.4 '1565.1 1455.3 1383.3 1316. 1 1249.9 1841.3 370 0 1799.5 1650.3 1532,7 1455.3 1303. 3 1329.0 1303.1 375.0- 1901.4 1741.6 1615 5 1532.7 1455.3 1M7. 2 1369.3 390.0 2010.4 1839.4 1704.4 1615.5. 1532.7 1470.3 1440.4 385 0 2127.0 1944.1 1799.5 -1704.4- 1615.5 1948.6 1916.6 390.0 2251.6 '2056.2 1901.4 1799.5 1704.4 1632.7 1990.4
'395 0 2384.7 -2175.9 2010.4 1901.4~ 1799.5 1722 7 1484 0 400 0 2526.5 2303.S 2127.0 2010.4 1901.4 1919.8 - 177' 8 405.C 2678.6 2440.3 2251.6 2127.O' 2010,4 1922,5 1900.3 410 0 2840.2 2505.8 2384.7 2251.6 2127.0 2033.0 1997.9 415.0 3012.0 2742.0 2526; 5 ~ 2384.7 2251.6 .2151,1 2102.9 420.0 3194.& 2907.6 2678.6 2526.5 2384.7 2277.4 2335.9 425.0 3388.3 3083,7 2840.2 2678.6 2526.5 2412.1 2396.9 430.0 3592.2 3270.S 3012.0 2840.2 2678.6 2555,S 2497.2 435.0 3900, 3- 3469.0 3194.6 3012.0 2840.2 2709,9 2646.4 440,0 4036.0- 3677.3 3309. 3 3194.6 3012.0 2073.4 2006.S 445.0 4275,1 3898.0 3592.2 3300.3 3194.6 3047,4 2976.S 450.0 4527.2 4130.3 3808. 3 3592.2 3308. 3 3232,2 3186.9 455.0 -4789.9 4373.9 4036.0 3808.3 - 3592.2 3420.1 3348. 4 4034.0 3000. 3 3634.2- 3891,2.
l 460.0 5122.2 4629.7 4275.1 ' 465.0 5479.4~ 4919.9 4527.2 4275.1 4036. O 3852. 6 3763.9' 470 0 5863.5 5262.0 4709.9 4527,2 4275.1 4082.5 MM. 2 Y 4333,9 4226.0 '- 475.0 6276.5 5429 7 5122.2 4789,9 4527.2 480. 0 6720,6 6025.2 5479.4 5122.2 4789.9 4577.0 4475.6 485.0 .7190.0 6450.3 5863.5 5479.4 5122.2 4494.0 4735.2-490.0 7711.2 6907.4 6276.5 5863. 5 5479.4 5191.1 90S3.4 5533.6 9409; 9 ~ 495.0 8263.1 7398.8 6720.6 e276.5 5863. 5 500. 0 8856.4 7927. 7190.0 6720.6 6276.5 9943 3 3794.0-505.0 9494.3 8495.3 7711.2 7199.0 6720.6 6362.3 6191.0 , 6812.8 66M,6 510.0 10180.2 9106.0 8263.1 *:.. i *S. O 7099.1 515.0 10917.6 9762.7 8856.4 8263.1 . 7715.2 7297.1 520 0 11710.4 10468.8 9494 3 0956.4 8263.1 7817.S 7609.0 525. 0 12562.9 11227.8 10100.2 9494.3 8856.4 8377.7 8188 9 530. 0 13479.3 12044.O 10917.6 10100,2 9494.3 8979.6 8783 6 '+ 535. 0 14464.7 12921.5 11710.4 10917,6 10100.2 9636.S N. 3 J 540.0 15524.1 13064.9 12562.8 11710.4 10917.6- 10322.4 100m.2- 4~ 545.0 16663.I 14879.2 13479.3 12542.8 11710.4 11070.7 10769.O 550. 0 17887.7 15969.8 14464.7 13479.3 12562.8 11079.1 11840 3 555.0 19204.4 17142,3 15524.1 14444.7 13479.3 127M 8 18384 4 560.0 20620.0 18403.0 16663.1 15524.1 14464.7 13669.6 1 m .6
*
;
u -
)
? / L l-
.
- E-9
. .. . _ . _ . _ . _.._ ..m. _ -- _._, _ , -
_ . . . . . .- - -.. - .
; ; 73 .
. l
..
l
.g . ~
CALVECTCL7FFSUNIT1PTL1M:7 CURVES. (REG OVIDE 1.99 REV 2) ) CUOLDOWN ANALYSIS - HEAT DROP RATE = - 0 O(DEGF/HR) i le EFPY 20 EFPY 24 EFPY 28 EFPY 32 EFPY 36 EFPY 40 EFPY TEMP: PRESS PPE55 PRESS PRESS PRESS PRESS PRESS 560.O_ '20e20 0. 18403 0' 16663 1 15524.I 14464.7 13669.6 13399.6 555 0 19204 4 17142.3 15524.1- 14464.7- 13479 3 12739.G. 12386.41 550 0 17BE7.7' 15969 0 14464 7 13479 3 12562.9 11075.1' 11946,3 545. 0-. ' 166e3 1 14979.2 13479.3 12562.0 -11710.4 540.O. 11070.7' 10768.0 1 15524.1- 13964.9 12562.S. 11710.4- 10917 6 10322.6 10030.2
'.
535 0 14464 7 12921.5 11710.4 10917 6 10100.2 9426; G 9368.3- ' 530 0 13479 3 12044.'O 10917 6- 10100.2- 9494 3 8979 6 ' 8733.6 525 0 125e2 0 11227.0 10190.2 9494.3 8856 4 8377.7 9148.9 ' 520 0. 11710 4 10469.S 9494 3 0956.4 9263 1 7017,G - 7609.0 515 0 10917.6 9762.7 0956.4 8263.1 7711.2 7297.1 7099.1 1 i- 510.0- 10190 2 9106.O S263.1 7711.2 7198 0 6812.S 6630.6 i 549. 0 9494.3- 9495.3 7711.2 7190. 0 6720.6 6368.3 6191'0-500.0
.
8656.4 7927.2 7199. 0 6720.6 6276.5 9943.3 9784.0' 495. O S263 1 7398.S 't 6720.6 6276.5 SS63 5 SSS3. 6 9409 S 490.0 .7711.2 6907.4 6276.5 5963. 5 5479.4 S191.1 9093.4. ' 405. 0 7199.0 6450.3 5463. 3 5479.4 5122.2 ' 4854.0 4733,a. , 400 0 6720 6 6025.2 5479.4 -5122.2 4789.9 4577.0 4479.6 , 475.0 6276.5 5629.7- 5122.2 4789 9 4527.2 4333.9 4336.O J 470 0' 5863.5 5262.0 4789.9 4527.2 4275.1 4082.0 3999.'2 465.0 5479 4 4919.9 4527. 2 4275.1 4036,0 382 6 3763.9 t 440.0- 5122.2 4629.7 4275,1 4036.0 3800. 3 "e634,a 3SSI. 3 455,0 4789 9 4373.9 4036.0 3900. 3 3592.2 3488.1 3348.4 , ' 450.0 4527.2 4130 3 3808, 3 3592,2 3388 3 3232.2 3196.9-445.0 4275.1 3999. 0 3592. 2 3300.3 31?4 6 3047.4 3976.S
'440.0 4036 0 3677.3 3308,3' 3194.6 5012. 0 2073.4 M .8-3469.O
,
435.0- 3006 3 3194.e 3012.0 2940.2 2709.9 3646,4-430,0 3592.2 3270.S 3012.0 2940.2 2670.6 3988.O S497.3 ; I- 425.0 3398 O 3093.7 2640.2 267P. 6 2526.5 2412.1 3396.9 . i- 420.O. 3194.6 2907.6 2670.6 2526.5 2384 7 3377.4- SERS. 9 !. 415.0 3012.0 2742,0 2526. 5 2251. 6 8191.1 2384.7 3108.9 . 410. 0 2040 2 2585.8 2384.'7 2251.6 2127.0 3033.0 1987.9
,-
405.0 2670.6 2440 3 2251.6. 2127.0 2010.4- 1988.S 1980.3
- l 400.0 2526.5 2303.S 2127.0 2010.4 1901.4 1819.2L 1779.8-395.0 2364 7' ' 2175.9 2010.4 1901.4 1799.5 1722.7 1686.0 390.0' 2251.6 2056.2 1901.4 1799.5 1704.4 1632.7 1998.4~
305.'O 2127 0 1944.1 1799,5 1704.4 1615.5 1948. 6 < 1916.6 380. 0 2010.4 1839.4 1704.4 1615. 5 1532.7 1470.3 1440.4 , 375.0- 1901.4 1741.6 1615.5 1532.7 1455.3 1397.2 1369.3 - 370.0 1799.5 1650.3 1932.7 1495.3 1303.3 1339.0 1303.1 365. 0 1704.4 ~ 1565.1 1495.3 1383.3 1314.1 1345.9 1341.3 360. 0 1615.5 1485.6 1333.3 1316.1 1253.4 1306.3 1183.S' 3 5 5. 0 1532.7 1411.5 1316.1 1293.4 1185.1 1191. 8 ~ 1130.3 350.0 1455 3 1342.4 1253.4 1195.1 1140.7 1099.9 1980.3
- 345 0 1393.3 1278.0 1195.1 1140.7 1090.I 1093.0 1933.S 340.0 1316.I 1217.9 1140.7- 1090.I 1042.9 1007.S 990. S 335.0 1253.4 1162.0 1090.1 1042.9 999. 0 966.0 . 980.3-330.0 1195.I 1109.9 1042.9 '999.O- 958. 2 987.4 913.7 '
325.0 1140.7 1061.4 999.0 958. 2 930.1 891.S 877.8
- 320.0 1090.1 1016.2' 958.2 920.1 084.7 090. C 949, 3
. 315.0 1042.9 974.2 920. 1 884.7 851.7 Ste. 9 815.O l
l L 1 E-10
.
8 1
-
.-. ,, .
. . - . _ - . - . - . - . . - . - . - - - -- - - --- - - --- - ---------
. _. - - - . . - . . .-.. .. . . - - - - . -.- . _ . - - . .
'
la r
.
'[ CALVERT CLIFFS UNIT 1-PT'LINIT CURVES. (REG GUIDE 1.99 REV 2) '
. COOLDOWN ANALYSIS -' HEAT DROP RATE = 0.0tDEOF/HR) 16 EFPY 20 EFPY 24 EFPY '29 EFPY 32 EFPY 36 EFPY l 40 EPPY
.v . TEMP PRESS PRESS PRESS PRESS. PRESS PRESS ' PRESS 310. 0 999 0 935 0 334 7 351, 7- 321 0 797.9 796,9 305.0 959.2 898 5 051.7 521.0. 792.4. 770.9 760.7 300 0 920 1 944. 6 821. 0 792.4 765.8 749.S 736.3 295.0 864.7 333.0 792.4 765.8 741.1 722. S' 713.6 290.0' B51. 7 903.6 765 O 741.1 '
719 0 700.7 692. 5 205 0 821 0 776.2 741.1 718.0 696 6 480.9 678. S - t 200. 0 792 4 790. B 710. O 696.6 676.7 6el 7 684 8 I 275.0 765 6 727 1 696.6 674.7 690 1 644. R 637.5 4 270.0- 741.1 705 0 676 7' 690.1 640 9 627. 9 eE1. 7 26S 0 719 0' 604.S 659. 1 640.9 624.9 613.7 606.9-260.0 696.6 665.4 640.9 624.S 609,9 999. 6 993.I 255 0 676.7 647.6' 624. B . 609 9 996. O SSS. 9 800.S 250.0 659 1 631.1 609. 9 996.0- 583. O 973.3 Ste. 6 24S. O e40 9 615.7 996. O 993.0 571. 0 961. 9 887.4 240 0 624 8 601.4 SS3. 0 571.0 599 s 981. 4 947, 3 - l 235.0 609.9 988.1 971. O 599. S 549.4 541. 5 S37. S . j 230.0 596 0 575.7 999 0 949.4 539. 7 533.4 sm.9; 225.0 583 0 564.2 549.4 539.7 530.7 983.9 800. 7 = , 220.0 571.0 553.5 539.7 530.7 S22.3 Ste. 0 913.O ~ i 215.0 559 9 543 5 530.7 S22.3 514. 5 900. 6 309.O ; i 210 0 549 4 534 2 922.3 514. S 507.3 301. 8 499.2L l !' 205.0 539.7 525 6 514 5 507.3 500. 5 499.4 493.0 : l l 200.0 530.7 517.6 S07. 3 S00. S 494.2 459. 9 487.R-195 0 522 3 510.1 S00. S 494.2 48e. 4 484. 0 481.9 l 190.0 514 5 903, 1 494.2 433.4 433,0 470. 8 476.9 . 195.0 507.3 496.7 488. 4 403.0 477 9 474.1 478.3 l 190. 0 500. 5 490 7 4 0 3. 0 477,9 473.2 469. e 465. 0 175.0 494.2 485.1 477.9 473.2 46e e 465. S 464.O 1 [- 170.0 488 4 479 9 473.2 468. 8 464.e det. 7 460. E ' ' L . 165.0 493 0 475.O 460. S 464. S 461. 0 498. 1 494. S 160. 0 477.9 470.6 464. S 461.0 457.5 484. 8 493.9
- 155.0 473.2 466.4 461. 0 497. 5 494.2 491.7 450. 9 190. 0 460. 9 462.S 457.S 494. 2 491. 2 448.S 447.7 145.0 464.8 458.9 494.2 491. 2 448,3 446.2 445. E '
140.0 461.0 455.5 451.2 448.3 449.7 443,7 443.7 135 0 457.S 452.3 448 3 449.7 443 2 441.4 440.8 130.0 454.2 449.4 445.7 443.2 441.0 439. 2 438.4 125.O~ 451.2 446.7 443.2 441.0 438. S 437,2 436.5 120. 0 440.3 444.2 441.0 430. 8 436.9 439.4 434.6? l, 115.O- -445.7 441.9 430. S 436. 9 439.0 433. 6 433. O.s. ' 110.0 443.2 439.7 436.9 439.O' 433.3 438.0- 431.4 1 > 105,0 441.0 437.6 439. 0 433.3 431.7 430.5 489.9' 100. 0 439 8 435.8 433.3 ~ 431,7 430.3 489. 1 4M.4 g ' 95.0 436 9 434.0 431.7 430.3 429. 9 487. S 437.3 l- 90. 0 435.0 432;4 430.3 429.9 427.6 486.6 486.1 7 05.0 433.3 430,8 438, 9 427. 6 426.4 429. S 439.0
- 80. 0 431.7 429.4 427, 4 426.4 429.3 434.4 424.0 l'
,
*
.
-
j ( 3
.
. l .' l
.
.
E-11
. . . _ . . . . _ . . - . _ . _ , _ _ . . _ . _ . . . . . _ . . _ . , . _ . .__.
C L C6LVERT' CL!FFS UNIT 1 PT LIMIT CURVES RES OUIDE 1 99 REV 2) l COOLDOWN' ANALYSIS-- MEAT DROP RATE 3 20. 0(DE9F/>ft ) ' '
- H- .
16 EFPY; 20 EFPY 24 EFPY 28 EFPY 32 EFPY 36 EPPY 40 EFPY
, TEnP PRESS- PRESS PRESS PRESS PRESS PRESS POESS:
MO. 0 20620 0 18403.0 16663.1 15524.1 14464.7 13669.6 13299.6' 555.0 19204.4 17142.3 15524.1 14464.7 13479.3 12739.S 12386.4
. 550.0 17987/7 15969.0 14464.7 13479.3 12 % 2.8 11879.1 11946.3' 545.0 1**63.1 14879.2 13A79.3 125$2 8 11710.4 11070.7- 10769.Oc
.540.0- 15524 1 13864 9 12562.8 11710.4 10917.6 10322.6 100M.2
11710.4 9626.S 9362.3-
'
.535 0 14464.7 12921.5 10917.6 10190.2 530.0' 13479.3 12044.0 10917.6 10180.2 9494.3 9979.6 0733.6 525.0 12562.9 11227.8 10180.2 9494.3 8856. 4 0377.7 9148,9 L 520.0- 11710:4 10468.S 9494.3 8854.4- 8263.1 7817.S 7609,0 515.0 10917.6 9762.7 8856.4 8263.1 7711.2 7297.1 7099.-1'-
510.0 10190.2 9106.O S263.1 7711,2 7198.0 6012.S 6620.6 - 905. 0 9494.3 8495.3 7711.2 7198.0 6720.6 6362.3 6191.0 500. 0 SSM. 4 7927.2 7198. 0 6720.6 6276.5 2943.3 9784.0' 495.O S263.1 7399.S 6720. 6 6276.S 5863. 5 5553.6 9409.S' 490.0 7711.2 6907.4 6276. 5 9863. S 5479.4 9191.1 9093,4 485.0 7199.0- 6490.3 5863. S 5479.4 5122.2 4884.0 4735, a 1 480.0 - 6720.6 -6025.2 5479.4 5122. 2 4789.9 4977.0 4479,6 475.0 6276.5 5629.7 5122. 2 4799.9 4527.2 4323.9 4226.O ; 470.0 5863.5 5262.0 4709.9 4527.2 4275.1 4083. S 3999,2
"
;
465.0 5479.4 4919.9 4527.2 4275.1 4036. 0 3092. 6 3763.9-460.0 5122.2 4629.7 4275,1 4036.0 3000. 3 3634,2: 3891.2 i 455.0 4789.9 4373.9 4036.0 3808, 3 3592. 2 3429.1 3340,4- 1 450.0 4527.2 4130.3 3908. 3 3592.2 3388.3 3232.2 3196.9 i 445.0 4275,1 3998.0 3992. 2 3300. 3 3194.6 3047.4 2976.S 440.0 4034.0 3677.3 3308. 3 3194.6 3012.0 2073.4 -2006.S' 435.0 3809.3 3469.0 3194.6 3012.0 2840.2 2709,9 2646.4. 430,0 3592.2 3270.S 3012.0 2040.2 2470.6 2999.S 2497.2 , 425.0 3388.3 3083.7 2940.2 2670.6 2526.5 2412.1 2396.9 I 420.0 3194.6 2907,6 2670.6 2526,5 23S4.7. 2277.4 2239,9 , i 415.0- 3012.0 2742.0 2S24. 5 2384.7 2251.6 2191.1 2188.9 l 410.0 2640,2 2985.S 2384.7 2251.4 2127.0 2033.O. 1987.9 ! 405.0 2678.6 2440.3 2251,6 - 2127.0 2010.4 1922.S ' 1MO. 3 A 400.0 2526.5 2303.S 2127. 0 2010.4 1901,4 1819,2 1779.S~ 395. 0 2384.7 2175.9 2010.4 1901.4 1799.5 1722.7 1686.0l 390.0 2251.6 20 % .2 1901.4 1799. 5 1704.4 1632.7 1998.4 309.0 2127.0 1944.I 1799. S IN4. 4 1615.5 1948.6 1916.4 380.0 2010.4 1939.4 1704.4 1615.5 1532.7 1470.3 1440.4 375.0 1901.4 1741.6 1615.5 1532.7 1455,3 1397.2 1369.3 370.0 1799.5 1690.3- -- ~ 1 SM.-7 1455.3 1303.3 1389. O 1300.1 365.0 1704.4 1 %5.1 1495.3 1383,3 1316.1 1965.S 1841,3 360.O 1615.5 1489.6 1 23,3 1314.1 1253.4 12%.3 1883.8 399.0 1532.7 1411.9---- - 1364. 1-- 1253.4 1195.1 1191.B 1830.8 350.0 1455.3 1342.4 1293. 4 1195.1 1140.7 1096.9 1079.9 . 345.0 1333.3 1270.0 1199.1 1140.7- 1086.4 1044.6 1084.6$ 340.0 1314.1 1217.9 1140 100k 9 1034.9 999. S 977.3
- 335.0 1253.4 1162.0 1086. 6 1034,9 996. 9 950.4 933,1. )
330.0 1195.1 1100.3 1035.1 987. 0 942.3 900.1 898.O t 329. 0 1140.7 1096:3 987. 1 942.4 900.7 868.S 303.S 320.0 1086.3 2006.O 942. 5 900.S 862. 1 838. 2 919. 2
,' 315.'O 1035.4 960.1 901.0 862.2 326.1 798 2 738.3
..
.
1 E-12 l l l
. . . - . . . _ . _ ._.___. . _ . . . _ _ _ . _ _ . . _ . . _ , _ _ . , . . ~ . . . . . _ _ ~ . . . , . . _ . - . _ . -
. . _ . _ . .
C6LVERT CLIFFS UN!T 1 PT LIMIT CURVES. (REC OUIDE 1.97 REV 3) { CDOLDOWN ANALYSIS - HEAT DROP RATE. 20.0(DEGF/HR) s le EFPY 20 EFPY 24 EFPY 29 EFPY 32 EFPY 36 EFPY 40 EFPY TEMP PRESS PRESS PRESS PRESS PRESS PRESS paggs 862.4 826.3 792.7
'
310.0 987.S 917.4 766. 9 794.4 305.0 #42.8 377.6 826.4 792.0 761.6 737.1 789.3 300 0 901 3 840.6 792. 9 761.7 732.6 709.7 699.3 295 0 662.7 906.2 761 S 732.8 705 7 684. 2 674. 9 290. 0 826.8 774.2 732.9 705 9 680 7 660.6 691. 5 PSS 0 793 4 744.4 706 0 600. 8 657.4 638.5 630.1 200.0 762.3 716.8 601.0 697.6 639 8 618.1 610.2 279.0 733.3 691.0 697.7 639.9 615.6 399.0 39g,g 270 0 706.5 667.1 636.1 619.8 997.0 331,3 gy4, 4 269.0 661.4 644.8 616. 0 997.1 579.6 964.9 998. 5 260.0 659.2 624 1 997.3 979.7 563.4 949.6 S43.7 299.0 636.6 604.9 979.9 963.6 948. 4 333,4 ggg, 9 290. 0 616.9 997. 0 963. 8 948.6 934.5 988. 2 317.3 249.0 597.9 970.3 940. 8 934.6 521. 5 309, 9 ggg, g 240.0 590. 4 994.9 934. 8 921.7 909.4 498. 4 494.0 239.0 564.3 540. 5 921. 9 909.6 498.3- 437, 9 agg,g 230.0 $49.3 527.2 909,0 498.4 407. 9 473.0 4y4,3 225.0 539 3 514. 8 499. 6 480. 0 479.2 468. 8 465. 3 220. 0 522.4 903.2 488. 2 479.4 469.2 460.3 437.0, t 215. 0 S10.3 492.5 470 6 469.4 460.9 432.4 449, 4 210.0 499.1 482.6 469.6 461.1 493.2 443,1 443,3 209.0 400.7 473.3 461.2 493.3 446.0 438. 3 439.6 200.0 479.1 464.0 493. 9 446. 2 439.3 431.9 439, 3 199.0 470.1 456. 8 446.3 439. 9 433.1 486.0 433.7 190.0 461.9 449.4 439.7 433.3' 427.3 490.6 418.4 199.0 454.1 442.5 433.9 427. 5 $22.0 419.3 413,3 190. 0 446.9 434.2 427; 7 423. 2 417.0 410.7 400.9 175.0 440.2 4 30. 2 422.4 417.2 412.4 406.4 404.7 170.0 434.0 424.7 417.4 412. 6 400.2 408.3 400.7 169.0 429. 2 419.6 418. 9 400. 3 404.2 393.3 ggy, g 160.0 422.9 414.9 406. 9 404.4 400. 9 393,0 393. 6 199. 0 417.9 410.4 404.6 400.7 397. 1 391. 9 390. 9 190 C 413,3 406.4- 400: 4 39P: 3- 394. 0 300.O W. 6 . 145.0 409.1 402.6 397. 9 394. 2 391.1 386.0 394. 9 140.0 405.1 399.1 394.4 391. 3 388.4 393.4 333,4 139. 0 401.9 399. 9 - 391: 9- 399 6- 399.9 331.O m, g 130. 0 399. 1 398. 8 308.7 396.1 383.6 373, g gyy 9 125.0 394.9 390.1 386. 2 383.8 301.4 376.0 379.9 120.0 392.0 397; D-- -- BRD. 9 - 381. 6 379.9 374,9 374, g 119.0 389.3 389. 1 355. 9 379.7 377.7 373. 1 373.4 110.0 356. 9 385. 9 379. 9 377.0 376.0 371. 9 370. 8 109.0 304. 9 300.9 - - 37De 0 - 376 1 - 374.4 370.0 369. 3 100.0 382.4 379.0 376.3 374.6 373.0 368. 6 368. 0 99.0 390.4 377.2 374.0 373.2 371.7 367.3 366. 8 90.0 379.6 379.6 379. 3- - 371.9 370.9 366.1 368.6
- 99. 0 376.9 374.8 372.0 370.6 369.3 369.0 364. 6
- 90. 0 379.3 372.8 370.9 369. 9 368.3 364.0 363. 6-l -
. .
- O
.
e E-13
. _. _ _ _ _ _ _ _ _ _ _ - - - - - - - - -- - - ~ - - -
.
, i
', !
;
i '
'l CALVERT CLIFFS UNIT 1 PT LIMIT CURVES (RE0 QUIDE 1.99 REV 21 !i C00LDO*N ANALYSIS - MEAT DROP RATE. 50,0(DE0F/HR) l .:
l ' 16 EFPY 20 EFPY 24 EFPY 2D EFPY 32 EFPY 36 EFPY 40 appi l TEMP #RESS PRESS PRESS PRESS PRESS PRESS 560 0 Pats - 20000 0 18403 0 16663 1 15524.1 14464 7 13669.6 1 M09. e 555 0 19204 4 17142 3 15524 1 14464 7 13479 3 18739.8 183h6. 4 550 0 17997.7 19969 e 14464 7 13479.3 12562 8 11879.I 11946.3 545 0 16663 1 14879.2 13479 3 12962.9 11710.4 11070.7 10769.0 I 540 0 15524 1 13864 9 12562.0 11710 4 10917 6 10383.6 10039.3 i l 535 0 14464 7 12921.5 11710 4 10917.6 10100 2 9636. G ' 530. 0 13479 3 12044.0 10917.6 10190.2 9368.3 i 9494.3 9979.6 9739.6 ' 525 0 12562 0 11227 9 10190.2 9494.3 Dele 4 9377.7 0148.9 - 520 0 11710,4 10468.5 9494 3 9996.4 9263 1 7917.8 7609.0 ; 915 0 10917 6 9762 7 9996 4 8263.1 7711. 2 7897.1 7099.1 510 0 10100 2 9106.O S263.I 7711.2 7198 0 es t a. 0 663,4 > 909 0 9494.3 9499 3 7711.2 7199 0 6720.6 6368.3 900 0 9056 4 7927.2 6191.0 7199 0 6720 6 6276 5 9943.3 9734.4 499 0 9263 1 7390.8 6720 4 6276 9 9863 5 9993.6 9409,3 490 0 7711.2 6907.4 6276.9 9663.9 9479.4 9191. 1 405 0 7198 0 9083. 4 6490.3 9963 9 9479.6 9122.2 4894.0 4 r39. 3
'
400 0 6720.6 6025 2 9479 4 5122.2 4799 9 4977.0 4479.6 ; 475 0 6276.5 9629 7 S122. 2 4799.9 4927.2 4333.9 470 0 5563 5 5262.0 4386.9 , 4799.9 4527.2 4275.1 4083.9 3939.3 , 465 0 5479 4 4919 9 4527.2 4275.1 4036 0 3953.6 3743.9
- ' 460 0 5122 2 4629. 7 4279.1 4036.0 3000 3 3634,a 3991,3
,
l 459 0 4799 9 4373 9 4036.0 3000.3 3992.2 3438. I 3 43.4 i ' 450 0 4527 2 4130,3 3000.3 3992.2 3308.3 3333.3 3196.9 i
,
445.0 4275.1 3098 0 3992 2 3308. 3 3194.6 3047.4 3976.9 I 440. 0 4036.0' 3677 3 3300. 3 3194.6 3012.0 3973.4 435. 0 3000 3 MD6. O , ' 3469.0 3194.6 3012.0 2640 2 3709.9 3646.4 ' 430.0 3992.2 3270 0 3012.0 3940 3 3678.6 3999.S 3497.3. + 425 0 3388 3 3083 7 2040 2 3670.4 2926.5 3412.1 8396.9 ' 420. 0 3194.6 2907.6 2675.6 2926.9 2384. 7 3377. 4 M39. 9 415.0 3012.0 2742.0 3986. 9 8304.7 3891. 4 2191.1 3108.9
!
410.0 2840.2 2585 9 2384.7 3291.6 2137.0 3033.0 1987.9 i 405.0 2678 6 2440.3 2291. 6 2127.0 2010. 4 1933.3. 1MD. 3 400 0 2926.5 2303 8 3187.0 3010.4 1901.4 1819.3 1779.3-395.0 2304.7 2175 9 2010.4 1901.4 1799.5 1783.7 1486. G L
. 390.0 2251.6 2056 2 1901.4 J799.9 1704.4 1632,7 1993.4' 349. 0 2127 0 1944.1 1799 9 1704,4 1619.S 1948.6 '
380. 0 2010.4 1939.4 1916.6 1704.4 1615.5 1532.7 1470.3 1440.4 375.0 1901.4 1741,6 1619.9 1932.7 1499.3 1397. I 1369.3 370.0 1799.5 1650.3 1932.7 1499.3 1383.3 1899. 0 1803. t 365. 0 1704.4 1965.I 1499.3 1383.3 1316.1 1869.9 1841.3 360 0 1619.5 1485.6 130'l 3 1316.1 1253.4 1806.3 1103.3 i^ 395 0 1532.7 1411 S 1316.I 1893.4 1899.1 1891.3 115.9 350.0 1455 3 1342.4 1893.4 1195.1 1140.7 1099.9 1979,4%y 345.0 1383.3- 1270.0 1195.I 1140.7 1090.1 1044.1 1981, t - 340.0 1316.1 1217. 9 1140.7 1090.1 1038.9 900,0 966.7 339 0 1253.4 1162. 0 1090.1 1033.1 978 0 936. 0 916.1 330.0 1199.1 1109.9 1033.2 97s.2 926.9 887. 9 969.9-
- 329 0 1840.7 tote 6 970.4 927.1 879.4 Sea. 4 889 t '
- 320 0 1090.1 1000.I 927.4 879.4 839.2 500.4 794.4 315 0 1033.9 947.7 879.9 R39. 9 794.2 761.9 746. 9
.
I E-14
,
b
__ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . . _ - _ _ . . . . _ . _ _ . _ _ _
-
k iI-3 . 4 .
.'
~
O'548 1 'C43 5 ESE 9 CSE 1 '605 C 'ter! E '062 0'06 8 'C48 t'943 t ' CSS 9'998 5'998 9'OSC 4 '162 0'68.
- e'ets t 'sta t 'ese 4 'see t Ler 0'oea C'C6C 0 'oe i 9'443 3 943 2 ~684 6 965 8'888 9'164 I '665 0 'te l 3'943 g'443 4 995 C'988 C 045 C'C64 1 '46E O 00t l 1'943 g '943 0 '498 9 '448 6 'let t'664 C '6ef 0 601 I v 9'443 C'003 C'688 9 ' T 43 4 'CM E '463 9'IOC 0 'Ot t 3*13 0 333 6 06E 3 'C64 4 ' Set t'662 E 90C 0 'G11 0 *m 3 'CW G 865 2 'Get 0'Let 6'10C 0'40C 0 '0E t
' S 9W 4 ' ggt 4 ' 96E 9 '465 E'00C G '90C 0 'Ott 0 GEt )
'
S '9W 6 '433 6 965 4 '465 8'80C t 40C t Cic 0 'OC T 1'433 3 'cer E '66E C 20C 9' SOC 9 '0IC 0 ~4tc 0 GCl 8 *tes 4 34g 8 '10C i'60C 9 '80C 0'ttC 6 '02C 0 Opt l 3'943 y 'gea 9'90C 2 SCC 6'fTC 4'4tC i G3C 0 ~6tt t 0'468 9'96g 4'40C 6 't tC 4 's tt a tac 4'64C 0 041 , t'006 9'10C 0 't IC t Gtt t 'ett t '9tC 4 'tCC 0'461 ' , S COC 1 '60C 9 9ft 0 'ett 4 CRC 4 '0CC t 'otC 0 '091 l E '40C 6' OOC 4 SIC E ' CRC C'Sec 0'9CC 6 '6tc 0 69I i l + 1*1It 0'CIC 4 F3C S '43C C CCC 9'tWC 3 3GC 0 041 l 9'stt t'4tt t'43C 8 '3CC 4'OCC 9'4tC 0 46C 0 'G41 l 1 '0W E'WWE C'ECC E SCC 4'ttC i tGC t'99C 0 OGt ' (
1'SEE C ' Ast 4 '4CC 0'ttC 0 'Ott ! 19C C 94C 0 G8I
- s 'est 6 '3CC S 'CtC C OSC 9'46C 4 99C 6 20C O'041 C '958 0'est 8 6tC 1'46C 0 '69C 6 94C 3 '36C 0 ~G41 4'898 6 '89C 4 94C S '99C 4'ELC 9 G9C 2 309 0'004
- S ' cst 9'g8C 0 99C t '24C 6 ' t SC C 46C 0 Ctt 0 403
' 0 '968 t'09C 0 '84C O ' I SC 8'06C 4 409 9't3t 0 013 i t '99t t 39C 9'09C C 06C 0 '009 8'919 3 '4Ct O'GIS
-
9'C48 8 '44C 6 '60C C 009 9't19 9 ett 4 049 0 023 l .- 4'883 3 '9st 6'66C t 'Itt C C89 8't99 3 '699 - 0 433 i l'368 1 'Let 4 'O t t 8 Ett 4 SCt 4 469 4 ott 0 OC3 . S' COD E'Get t #29 9 ~6Ct t '499 4 049 6'449 0 ~6C3
- 1'S19 3 039 0 GCW 6 999 6 C99 6'989 1 '914 0'095 i 9'489 t Cgt t ett 6 C99 9'649 C' tot 4 4CG 0 495 1 ' t 99 6 999 0 C99 E '649 $~969 0 Ctt 8 946 0 062
, 9'869 6 199 8 349 I 969 S'916 C Ce6 9'44G 0 648 i E '149 0'349 4 tat C'ett t'tCS 0 494 0 909 0 093 t '999 4 416 0 'tC4 ' C'649 9'G66 6'994 9 OC9 0 695 E'906 0 '91g 9 CCS 3 666 C ett 4 'Cl* 8 849 0'043 4't#6 1' pts 4'946 4'446 6'509 6 0t9 9 649 0 442
- 8'994 g 'ggs G'446 S'309 C 659 3 049 'C 334 0 003 l- 9'496 1'04g i 309 6 849 4 469 4't04 4'454 0 Get
'
0 'Cet E'909 4 039 C'469 C'899 9 GC4 4 Get 0 063 0'049 3 *1C9 0 469 0 889 C'It4 1'344 4 9CS 0 463 E'999 C'099 9 489 6 034 4'944 C tis s Ces 0 00C 9'949 9 't 49 9'034 9 9G4 9 964 4 C68 I 336 0 40C l C'Itt a '434 0 9G4 G 964 8 'GC8 9 Sea ! 443 0 OIC
9934d 993e4 53344 $53Wd SS3sd $$3W4 $33ad eW34 l Add 3 09 Adda 9C Ad43 3C Add 3 03 Ads 3 93 Add 3 03 AdJ3 91 (WM/443010 04 *34WW 40W0 LV3H a $!$A7WNW NM001003 It (3 A3W 64't 34!d0 03W) 13AWo3 4!W!1 is i 1!NO $43!73 1W3A7W3 h
.
r-.. -- , ,.,-,,,.,,-.-e- -.n.. , ,- , . - . . -,,- - ,. ,
, - . . _ . - - - -.. - . . - ~ - - - . . - - . - . . . - -- .
. I I !
CALVERT CL1rFS UN17 1 *T Lim!T CuevES tREC GUIDE 1.99 REV 21 !
.
C00LDOWN ANALYSIS - MEAT DROP RATEm 100 OtDEGF/HR) ! 16 EFPV 20 EFPY to EFPY 29 U'Y 32 EFPY 36 EFPY 7EMP PRESS 40 EPPY , PREF 5 PRESS PRESS PRESS PASSS #SSN t
.l 560 0 20620 0 184C3 0 16663 1 15924 1 14464 7 13669.6 1 M .6 -
555 0 1'204 4 17142 3 1!S24 1 14464.7 13479 3 18739.8 18M6. 4 ' SSO. 0 17887.7 19969 e 14464.7 1347' 3 12262. 8 11879.1 11944.3 S45.0 16663 1 14879 2 13479.3 12S62.5 11710 4 11070.7 10769.0 l 540 0 15324 1 13964.9 12S62. 8 !!710.4 10917.6 10388.6 1003.8 535 0 14464 7 12921.S- 11710 4 10917.6 10180.2 9684.S 9368.3
,
530 0 13479 3 12044.0 10917.6 10180.2 9494.3 8979 6 9733.6 SIS 0 12S62. O 11227 0 10180.2 9494 3 SSS6. 4 8377.7 9148.9 S20 0 11710 4 10468 8 9494.3 8096.4 8263.1 7917.8 7609.0
,
31S.0 10*17.6 9762 7 8956 4 9263 1 7711. 2 7897.1 7099.1 910 0 l t o t to. 2 9106 0 8263. 1 7711.2 7198.0 6018. G 66N.6 l SCS. 0 9494.3 6495 3 7711. 2 7198. 0 6720.6 6368.3 6191, e 600 0 88S6. 4 7927 2 7190.0 6730.6 6276 S 5943. 3 9784.8 , 495.O S263.1 7398 9 6730 6 6276 S 9863. S 9993.6 9409. S "i 490 0 7711.2 6907 4 6276.9 SS63 9 S479. 4 9191.1 9093.4 489. 0 7198.0 6490.3 9963. S 5479.4 5122. 2 4894.0 4739.8 400. 0 6720.6 60&S 2 S479.4 9122.2 4709.9 4977.0 4479.6 *
,
475 0 6276 S 5629 7 S122. 2 4709.9 4527.2 4333.9 4E 8 470.0 5863 3 5262 0 4789.9 4527. 2 4278. 1 4088.9 3989.8 465.O S479 4 4919.9 4S27. 2 4275.1 4036 0 3058.6 2763.9
'
460 0 $ 122. 2 4629 7 427S 1 4036.0 3000. 3 3634,8 3891.8 45S.0 4789 9 4373 9 4036 0 3000 3 3992. 2 3489.1 3348.4 ; 450. 0 4527.2 4130 3 3908 3 3992.2 3388. 3 3838.8 3196,9 445.0 4275 1 3898 0 3998. 2 3388. 3 3194.6 3047.4 3976.8 4036 0 i 440.0 3677 3 3368.3 3194.6 3012. O 8873.4 N06. O
~
435 0 3000 3 3469.0 3194 6 3012.0 3940. 2 3709,9 Sede. 4 l g 430 0 3592.2 3270 0 3012.0 8840. 2 3670. 6 SSSS. S 3497.8 i 425 0 3300 3 3003 7 2840. 2 3670. 6 2926 5 3418.1 3396.9
,
- l 420 0 3194 6 2907 6 2670.6 2936.S 23e4.7 8877. 4 M .9 419 0 3012. 0 2742.0 2986. S 2384.7 3251
- 3191.1 8108.9 410.0 2040.2 2985 3 2384.7 3251. 4 2127.0 8033.0 1987.9 +
-
405 0 2670.6 2440.3 2391.6 2127.0 2010. 4 1988. 9 1NO. 3 l 400.0 2526 S 2303 e 21a7. 0 2010.4 1901.4 1919.8 1779.s . 395.0 2384.7 2175.9 2010,4 1901.4 1799.S 1788. 7 1686,8 ' l 390.0 2251.6 2056.2 1901.4 1799. 9 1704.4 1633.7 1998.4 .
] 305. 0 2127. 0 1944.I 1799.5 1704.4 1615. 9 1948.6 I S te. 6 380. 0 20101 4 1839 4 1704.4 1615.5 1832. 7 1470.2 1440.4 375.0 1901.4 1741.6 1619.5 1532.7 1455.3 1397.8 1349.3 370.0 1799.t 1650.3 1938.7 1455,3 1303.3 1389. 0 1303.1 365. 0 1704.4 1969.1 1499.3 1303.3 1316.1 1469.9 1841.3 360. 0 1615.S 1485.6'
.
1303. 3 1316.1 1893. 4 1804.3 1103.S
'
355.0 1532.7 1411.S 1316.I 1893.4 1899. 1 1191.8 1130.3 . 390. 0 1459.3 1342.4 1253.4 1899.1 1140,7 1999,9 1000,3 6 345.0 1383.3 1270.0 1195.1 1140.7 1090.1 1998.0 1933.0 :.4 340.0 1316.I 1817.9 1840.7 1090.I 1042. 9 1004.1 979.3
~ 335, 0 1253.4 1862. 0 1090.1 1042.9 991.G 940.7 918,7 330.0 1199.I 1809.9 1042. 9 992.1 928.1 079.9 896.7 325. 0 1140.7 1061.4 992.4 988. 3 868. 7 083.3 Mt. 6
.
320.0 1090.I 1016.2 989. 7 969, 0 313. S 770.6
- 319.0 1042.9 954. 0 869.4 013.S 762. 1 790.4 ~
731, 6 7N. 8 l l l *
.
E-16
*
.
.-
. . _ - .-- -- - _ . .. _ . - - .
.
.
U CALVERT CLIFFS UNIT 1 P7 LIN!7 Cupvt$ (REC OUIDE 1,99 REV 21 1 COOLDOWN ANALY5!$ - ME4T on0P maig.100 e spggp/He t
, le EFPY 20 EFPY 24 EFPY 28 EFPY 32 EFPY 34 EFPY 40 EPPY TEmr PRESS pmEEE PREES PRESS PRESS PRESS PARSS 310 0 **3 3 893 0 814 2 762 5 714.4 676.0 690. 6 30t 0 829 7 83e 3 762 9 714 8 670 0 633.7 617 s 300 0 6?C 4 783 S 715 2 670 4 6tt s M4 3 979. 3 295 0 615 4 734 3 670 9 629 2 990 S 997 7 943.7 290 0 "44 2 698 9 629 8 591 0 554 9 983.7 910.6 ;
295 0 716 6 646 $ 591. S SSS 4 921. 9 498.8 400.0 200 0 472 4 607.2 SS6 0 522 3 491 3 463. 0 491.6 275 0 e31 3 $70 7 S23.1 491.9 462.3 439.8 489.3 270 0 593 2 936 8 492 S 463 S 436 4 410.9 400.6
". 265 0 557. 8 SOS 3 464. 1 437.1 411.9 397. 0 377.3 260 0 $24 9 476 1 437.S 412 6 399. 2 369.3 396. 7 255. 0 494 S 449 1 413 3 399.9 360. 1 349.1 337.3 290 0 466 2 423 9 390 6 368 9 340. 6 336. 4 319. 1 245 0 439 9 400 5 369.6 349.4 330 5 3M.1 303.3 240 0 415 5 378 9 3SO 2 331. 3 313 3 393.1 M6. 8 23S 0 3'2 9 390 9 332 1 314 7 999.4 379. 3 373. 4 230 0 372 0 340.3 315.5 299.2 294.1 364.6 899.1 RSS 0 352 6 323 2 300 1 294.9 270.9 251.9 346. 3 220 0 334 6 307 3 205 8 271.W 2SS 7 240. 1 339.4 l 215 0 319 0 292.6 272 6 299.6 247.4 889.3 334.9 . p^
2 1 0. 0 302.6 27' 0 260 4 240 3 237.0 319.3 819.3 209.O. 298 4 266 4 249 2 237,9 227.4 310.0 806.3 200 0 275 3 254,8 238 8 228 3 218 9 801. 9 197.9 199 0 263 1 244 1 229 2 #19 9 210.4 193.6 190.3 190.0 2 5 1. 9 234 2 220 4 211. 3 202.9 186.3 103.3 ! ISS 0 241.6 225 1 212.3 203 0 196 0 179 6 176.0 l 100. 0 232 0 216.7 204 8 196.9 199,6 173.4 170.8 l 175. 0 223 2 209 0 197 9 190.6 103 8 167.8 169.3 170.0 21 S. I 201.9 191. 5 194.8 170. S 163.9 160.3 " ' 165.0 207 6 195 4 ISS 7 179.4 173.6 197.7 199.6 160,0 199.3
'
200.7 190.4 174.5 169.I 193.3 191.4 ISS 0 194.4 183. B 175.9 170.1 169.0 149.3 147.4 190.0 199 6 178 8 171.0 166 0 161. 3 149.6 143.9 145. 0 183.3 174.2 167.0 162.3 157.9 142.I 140.6 140 0 170,0 169 9 163.2 190. 9 194. 9 139.1 137.6 135 0 174 0 166 1 I S9. 9 195.9 192,0 136.3 139.0 130. 0 169.9 162.6 ISe e 153 0 149.S 133.9 13k. 9 125 0 166 2 159.4 154 0 190.9 147.2 131.9 130.3 120. 0 162.9 156. 5 191. 5 148.2 149.I 189.3 15.I 115 0 159 8 153.8 149.2 146.I 143.3 187.9 136.4 ,
'
110.0 157.0 151.5 147.2 144.3 141.7 189.9 184.O
"
105.0 154. 5 149.4 149, 3 142.7 144. 2 184. K 133.3
- 100.O' 152.2 147.S 143 7 141.3 139. 0 183.9 1M. 0
'
95.0 150.2 145.0 142,3 140 0 137.9 181.7 130.9
- 90. 0 148 4 144.3 141. 1 138.9 137. 0 830.6 119.9 99.0 146.8 143.0 140. 0 130. 0 136, a 119.7 119.0
- 90. 0 145.4 141.0 139.0 137.2 139.5 118.9 118.3
*
.
l l , f
'
l. E-17 - l l l
. . . . --
- - . - .__ _ . - - - - -.
- - - ~ - - . . ~ . _ . . . _ . _ _ . . . _ . _ _ _ _ _ _ _ , , , . _ _ _ _
~
;
f , %::
.
_ cD*
;I-
.. y
[[' .. 4
#( ;:
l wT. 4 i e '.
- gg ,
- .
.
- n
,
"
APPENDIX F ,, i
"'
PRESSURE. TEMPERATURE LIMIT TABLE FOR VARYINe C00LDOWN RATES s FOR CALVERT CLIFFS UNIT 1 (12 EFFY) ' RATES: 550*F 70 250*F : 100*F/hr 3
!
(250'F RATES 50'F/hr L 40'F/hr ~
,
1 . 20'F/hr .
@
-
.
.
3
, a o., 8
<f,.
s t 4'
;
-
#
l' . bN <
.
'
<r l
,,e,,R.,,,, .
,
-. - - - - . - - -. - .. -. . . - . .- _ . - - . - _ .
CALVERT CLIF# VAR I ABLE C00LDOWN RATE Cl,mvES
'
C00LD0lm - MEst DROP RATEcvARIABLE (DEOF/>R) 12 EPPY ,
'
g- 12 EFPY
- f. TEff N(RATE) PRESS N(R4TE) PRESS mtRATE) paggg l
- 310. 0 100.0 1109.0 100.0 1109.8 100 0 g g o,, g
- 309. 0 100,o 1061.3 100.0 1061.3 100 O g og g , 3 !
! 300.0 100,0 1016.1 100.0 1016.I 100 0 1016.1 I
295.0 100.0 996. 1 100,0 996. 1 100 0 9 ! 290.0 100.0 394.S 100,0 994. S 100 0 g,96.1 4, S ! 29S.0 100.0 837,3 100.0 637.3 100.0 337,3 ! 200.0 100.o 7es. t 100.0 7e4.1 100 0 7e4.1 l 275.0 100,0 734.6 100.0 734.6 100.0 734, 6 l 270.0 100,0 680.6 200.0 400,6 100,0 680.6 ' 249.0 100 0 645. e 100,0 649. 0 100.0 645. S , 260 0 100.O 606.I 100.0 6M.1 100.0 606,1 ! 295.0 90.0 864.1 40.0 969. 6 20.O 339, 3 , 290. O So, O S41.4 40.O S49. S 20 0 993,6 ; 249. 0 90.O S23.6 40.0 937.3 20.0 994. 7 ) 240,0 90.0 907.4 40.0 839. S 20.0 590. 3 I 239.0 90.0 492,9 40.0 914. 0 20.O 988.O < 230.0 S0. 0 470. 9 40.0 902. 6 20.0 971, 9 . 229. 0 90. 0 448,3 40.0 491.4 20.0 899, e i 220.O So. 0 452. 0 40.0 400.4 20.O S47. S . 219.O S0. 0 441. 0 40.0 469.6 20.O S33. 3 ! 210,0 90.0 429,7 40.0 499.1 20.0 333. 3 ! 205.0 90. 0 419.1 40.0 440. 9 20.0 311. 3 > 200. O S0. 0 400,9 40.0 439. 1 20.0 900.8 ! 199.o 50. o 399,3 40.0 429.7 20.0 490.4 : 190.o So. 0 390.2 40.0 420.7 20.0 4e0, y i 189.O SC. 0 301. 6 40.0 412.2 20.0 471.6 ' l 100. O S0. 0 373.6 40.0 404.1 20.0 463.1 : 175 0 90 0 369.9 40.0 396.4 20.0 493.1 ! l' 170.O SC. 0 395.0 40.0 399.2 20.0 447,7 ' 20,0 ' t 165.0 90. 0 392. 0 40.0 3SR. 4 440.e i 160.0 50.0 349.7 40.0 376.0 20.0 434.4 : 155.0 50.0 339.0 40.0 370.0 20.0 433.4 . 190. O S0. 0 334.2 40.0 364.4 20.0 433.3 ' 149.O So. 0 329. 0 40.0 399. 3 20,0 417.7. 140.0 S0. 0 324.2 40.0 354.3 20.0 413.9-135.O S0. 0 319.7 40.0 349.S 20.0 400.4 ' 34s. s 404.3-
-
130.o S0. 0 31e. s 40.0 20.0 125.O S0. 0 311,6 40.0 341. 6 20. 0 400.9 l
'
120.O So, 0 307.9 40.0 330.0 20.0 396.9 ' 1 1 S. O S0. 0 304.5 40.0 334.6 20. 0 393. e ' 110. O S0. 0 301.4 40.0 331.4 20.0 390.6 i 109.0 90. O P99. S 40.0 3M.5 20.O M7. FJ ; I t oo. O S0. 0 29s. e 40.0 ass. e 20.0 ass. t ! 99.0 90.0 293.4 40.0 333.3 20.o sea 7 90.0 90.0 391,1 40.0 311. 0 20.0 300.4
- GS. 0 90.0 299.0 40.0 310.9 20.0 379. 3
. 90. O SC, 0 387.0 40.0 317.0 20.0 374.4
- 79.0 90.0 SSS. 2 40. 0 319.3 20.0 374.4 ,
70.0 90. 0 283.6 40.0 313.5 20.0 373. 9 l l
.
; r-1 -
,
[ _ .. . . _ . _ _ . _ . . _ _ .._ _ _ _ _
__ _
. r --
- __
_ _ _ . _ . _ _ _ _ . . _ _ . - _ _ _ _ _ _ _ . _ _ _ _ _ . , CALWRT CLIFF VA9! ABLE C00LDOWN ROTE CURVES l I COOLDOWN - MEOT CAOP R4TEev4R14pLE (SESF/2 1 j l
'
12 EFPY L
-
7tw M(R4TC) patSS M(R6Ttt PSESS MIR4TE) PRESS
,) -
960. 0 100.0 24469.0 100.0 36469.0 100.0 24469.O I ! SSS. 0 100.0 22700.6 100.0 23790.6 100.0 23700.6 l SSO O 100.0 31314.0 100.0 31814.0 100.0 21314.O I I Sol 0 100 0 197S6.8 100,0 197M. 6 100.0 19756.S
- S40.0 100.0 16401,4 100.0 19401.6 100.0 19401.4 S39.0 100.0 17141.0 100.0 17141.0 100.0 17141.0 930.0 100.0 19968.6 100.0 19968.6 100 0 19968.6 l
' Sal.0 100.O t 4878.1 100.0 14878.1 200.0 14878.1 ' l 920. 0 100.0 13963.8 100.0 13963.S 100.0 13963.S 515.0 100.0 12930.S 200.0 13930.S t oo. 0 13930.S 510.0 100.0 12043.1 100. 0 18043.1 100.0 18043.1 , 509. 0 100, 0 11827.0 100,0 11387.0 100. 0 11837.O i 500. 0 100.0 10467.9 100.0 10467.9 100.0 10467.9 =,
'
499.0 100.0 9762.0 100.0 9768.0 100.0 9768.0 490.0 100.0 9105.3 100,0 9&OS. 3 100.0 9109,3 , 489. 0 100.O S494.6 100.O S494.6 100.O S494.6 400,0 100.0 7986.6 100.0 7986.6 100.0 7986.6 475.0 100.0 7398.3 100,0 7398.3 100.0 7398.2 470.0 100.0 6906,8 100,0 6906.6 100,0 6906.S 46S.0 100.0 6449.8 100.0 6449.8 100.0 6449.S 460.0 100.0 6024.7 100.0 6034,7 100.0 6034.7 4SS 0 100.O S629.3 100.O S689. 3 100.O MR9. 3 490. 0 100.O S361.6 100.O 9961.6 100.0 9861.6 445.0 100,0 4919.S 100.0 4919.3 100,0 4919.S 440.0 100.0 4629.I 100, 0 4689.3 100.0 4689.3 435.0 100.0 4373.9 100.0 4373.5 100.0 4373.S , 430.0 100,0 4129.9 100, 0 4139.9 100, 0 4139.9 ' ' 425.0 100,0 3897.7 100. O M97. 7 100,0 3997.7 l 430.0 100.0 3677.0 100.O m77. 0 100.0 3677.O J l a 415.0 t oo. 0 3468. 7 100,0 346a. 7 100.0 3468.7 1 410.0 100,0 3270.S 100.0 3270.5 100.0 3270.9 ; l 405.0 100,0 3083.5 100.0 3003.9 100,0 3083.S ; l ' 400.0 100,0 2907.4 100.O 8007.4 100.0 3907,4 ) ,.1 399.0 100,0 2741.8 100.0 8741.8 100.0 2741.O j { 390.0 100,0 2585.6 100,0 SSSS. 6 100,0 SSSS 6 305. 0 100.0 2440,1 100. 0 3640. L 100,0 3440.1 300.0 100.0 2303.6 100,0 2303.6 100,0 3303.6 1 1 375.0 100.0 2175.7 100.0 8179.7 100,0 8179.7 l 1 370.0 100,0 30M. 0 100.0 3006. 4 100.0 8086.0 , 365. 0 100,0 1944.0 100,0 1944.0 100.0 1944.O i 360.0 100.0 1839.3 100,0 1839.3 100.0 1939.3 i all. 0 100,0 1741.5 100,0 1741.5 100.0 1741.5 i 390. 0 100.0 1690.8 100,0 1600.8 100.0 1690.3 1965.0 , l 349.0 100.0 1MS 0 100,0 R MS. 0 100,0 340. 0 100,0 1489.9 100.O _ _ tema.S 100,0 14e9. 9 i l 335.0 100,0 1411.4 100,0 1411, 4 100.0 1411.4 3
-
330. 0 100.0 134a. 3 100.0 134a. 3 100.0 134a, 3 ; l* , 3al. 0 3a0. 0 - 100.O 100.0 t a77. 9 . la17,8 100,0 . 100,0 1s77.9 1:17.8 100.0 100.0 1877.9 1 17.S l 319.0 100,0 1161.9 100.0 1861.9 100.0 1161.9 l l l '
\
1 T2 l-1
- , - . . - . . . - . . . . .- - .
, - - . . . . - - . - . - . . -
t
. ...
.
s ,,
.h
- ;
l ..?
.i
- ,
l
. ss - Ql4,>;~
'
- 1
.
.f.'\ ,
,. APPENDIX G A
'
'< PRESSURE-TEMPERATURE LIMIT TABLES FOR l ,- ISOTHERMAL CONDITIONS FOR CALVERT CLIFFS UNIT 1
. . > .; i I
( s
~
,
g. l
%.g ll l
.
'
l . .
'
II: M y 1 ..
.
f; d: p I t .3 I PEG /FR-1278 u
. . - - - . . - - - - - - _ . . 1
, ..
- i
!
s
l l
, CALVERT CLIFF UNIT 1 HEAT UP TABLES -- HEAT UP RATE = STEADY STATE '
.
12 EFPY 16 EFPY 20 EFPY 24 EFPY 28 EFPY 32 EFPY 36 EFPY 40 EFPY TEMP PRESS PRESS PRESS PRESS PRESS PRESS PRESS PRESS 70 432.3 428.8 426.8 425.3 424.2 423.3 422.6 422.2 75 454.0 430.0 428.1 426.4 425.3 424.2 423.5 423.1 80 45.7 431.7 429.4 427.6 426.4 425.3 424.4 424.0 85 457.6 433.3 430.8 428.8 427.6 426.4 425.5 425.0
*
- 90 439.6 435.0 472.3 430.2 428.8 427.6 426.6 426.1
- 95 441.8 436.8 434.0 431.7 430.2 428.8 427.8 427.3 100 444.2 438.8 435.,7 433.5 431.7 430.2 429 1 428.6 105 446.7 440.9 437.6 435.0 433.3 431.7 430 5 429.9 110 449.4 440.2 459.6 436.8 435 0 433.3 432.0 431.4 115 450.5 445.7 441.8 438.8 43L 8 435.0 433.6 403.0 120 455.4 448.0 444.2 440.9 438.8 436.8 435.4 434.6
, 125 458.8 451.1 446.7 440.0 440.9 438.8 437.2 436.5 100 ' 462.4 454.: 449.4 445.7 443.2 440.9 439.2 438.4 105 466.3 457.4 452.3 448.3 445.7 443.2 441.4 440.5 140 470.5 461.0 455.4 451.1 448.5 445.7 443.7 442.7 145 475.0 464.7 458.8 454.0 451.1 448.3 446.2 445.2 159 479.8 468.8 462.4 457.4 454.2 451.1 448.8 447.7 155 485.0 470.2 466.0 461.0 457.4 454.2 451.7 450.5 160 490.6 477.9 470.5 464.7 ' l 461.0 457.4 454.8 453.5 l 165 496.6 482.9 475.0 468.8 464.7 461.0 458.1 456.8 , 170 500.1 488.5 479.8 475.2 468.8 464.7 461.7 460.2
'
l 175 510.0 494.0 485.0 477.9 473.2 468.8 465.5 464.0 4 180 517.5 500.5 490.6 482.9 477.9 473.2 469.6 468:0 "
.
'
185 525.5 507.2 496.6 488.3 482.9 477.9 474.1 472.3
'
190 5!4.2 514.5 503.1 494.0 488.3 482.9 478.8 476.9 195 545.4 522.5 510.0 500.5 494.2 488.3 484.0 481.9 200 550.4 500.6 517.5 507.2 500.5 494.2 489.5 487.2 ( 205 564.1 509.7 525.5 514.5 507.2 500.5 495.4 493.O t
'
l 210 575.7 549.7 5!4.2 522.3 514.5 507.2 501.8 499.2 l 215 588.0 559.8 540.4 530.6 522.3 514.5 500.6 505.8 220 601.0 570.9 553.4 59.7 500.6 522.0 516.0 513.0 . 225 615.7 500.0 564.1 549.0 509.7 530.6 500.9 520.7 230 631.0 595.9 575.7 559.8 549.0 539.7 5;2.4 528.9 235 647.6 609.8 588.0 570.9 559.8 549.3 541.5 577.8 240 665.3 624.7 601.3 583.0 570.9 559.8 551.4 547.3 045 684.4 640.8 615.7 595.9 583.0 570.9 561.9 557.6
- 250 704.9 658.1 631.0 609.8 595.9 583.0 573.0 568.6 4
- 255 727.0 676.6 647.6 624.7 609.B 595.9 585.5 580.5 $
260 750.7 656.6 665.! 640.8 624.7 609.8 598.6 593.2 N 065 776.2 718 0 684.4 658.1 640.8 624.7 612.7 606.9 270 800.5 741.0 704.9 676.6 658.1 640.8 627.9 621.7
#
275 802.9 765.8 727.0 696.6 676.6 658.1 644.0 637.5 280 864.5 792.0 750.7 718.0 696.6 e76.6 661.7 654.5 285 898.5 820.9 776.2 741.0 718.0 696.6 680.5 672.8 290 9!4.9 851.6 805.5 765.8 741.0 718.0 700.7 692.5 295 974,1 884.6 002.9 792.3 765.8 741.0 722.5 713.6 000 1016.1 920.0 864.5 320.9 792.3 765.8 745.8 706.3 005 1061.0 958.1 898.5 851.6 820,9 792.3 770.9 760.7 310 1104.B 999.0 974.9 884.6 851.6 820.9 797.9 786.9 015 1161.9 104 0. c; 974.1 920.0 884.6 851.6 826.9 815.0 l- 000 1217.8 1090.3 1016.1 95E.1 920.0 884.6 858.9 845.3
!!5 1277.9 1140.6 106,'1.7 459.0 95B.1 900.0 891.5 877.8 l
1
, .w I
;
I 330 1342.3 1195.0 1109.8 1042.9 999.0 958.1 927.4 912.7 335 1411.4 1253.3 1161.9 1090.0 1042.9 999.0 966.0 950.2 340 1485.5 1316.0 1217.8 1140.6 1090.0 1042.9 1007.5 990.5 345 1565.0 1303.2 1277.9 1195.0 1140.6 1090.0 1052.0 1033.8 050 1650.0 1455.2 1:42.3 1253.3 1195.0 1140.6 1099.9 1080.0 355 1741.5 1532.5 1411.4 1316.0 1253.3 1195.0 1151.2 -1130.2 360 1839.3 1615.4 1485.5 1383.2 1316.0 1253.3 1206.3 1183.8 . 365 1944.0 1704.2 1565.0 1455.2 1383.2 1316.0 1265.5 1 41.3 ' 370 2056.0 1799.4 1650.0 1532.5 1455.2 1383.2 1329.0 1300.1 375 2175.7 1901.3 1741.5 1615.4 1532.5 1455.2 1397.2 1369.3 380 2303.6 2010.3 1839.3 1704.2 1615.4 1532.5 1470.0 1440.4 1 385 2440.1 2126.9 1944.0 1799.4 1704.2 1615.4 1548.6 1516.6 390 2585.6 2251.5 2056.0 1901.3 1799.4 1704.2 1632.7 1598.4 395 0741.8 2384.5 2175.7 2010.3 1901.3 1799.4 1722.7 1686.0 400 2907.A 2506.3 0300.6 2126.9 2010.3 1901.3 1819.0 1779.8 405 3080.5 2678.4 2440.1 0251.5 2126.9 2010.3 1922.5 1880.3 , 410 0070.5 2009.9 2585.6 2084.5 2251.5 2126.9 2000.0 1987.9
~
415 5468.7 3011.8 2741.8 2506.0 2384.5 2051.5 2151.1 2102.9 400 3677.0 0194.0 2907.4 2678.4 2506.3 0384.5 277.4 2005.9 425 0897.7 5388.0 3083.5 28!9.4 0678.4 2526.0 2412.1 0756.9 450 4109.9 7591.9 3270.5 0011.8 2809.9 2678.4 2555.0 2497.0 405 4373.5 0808.0 3468.5 !!94.3 3011.8 2839.8 2709.9 0646.4 440 4629.0 40:5.6 3677.0 0088 0 0194.3 3011.0 2870.4 2006.8 445 4919.5 4274.7 3897.7 0591.9 3088.0 5194.0 3047.4 0976.5 450 5261.5 4526.8 4129.9 3808.0 3591.9 3388.0 30:2.2 0156.9 7 435 5629.0 4789.5 4375.5 4035.6 3808.0 0591.9 0408.1 3348.4 460 0024.7 5101.8 4609.2 4274.7 4005.6 0808.0 3634.0 3551.2 465 6449.8 5479.0 4919.5 4526.8 4074.7 4035.6 3852.6 0760.9 470 6906.8 5860.1 5261.5 4789.5 4526.8 7989.2 l 475 7398.0 6276.0 5609 3 51:1.8 4789.5 4274.7 4526.8 4082.5 4323.9 4:26.0 480 7926.6 6700.0 6024.7 5479.0 5121.8 4789.5 4577.0 4475.6 485 8494.6 7197.4 6449.8 5865.1 5479.0 5121.8 4854.0 4775.2 490 9105.0 7710.6 6906.8 6276.0 5860.1 5479.0 5191.1 5053.4 jhh , 495 9762.0 8260.4 7398.2 6720.0 6:76.0 5863.1 5553.6 5405.5 i 500 10467.9 8855.7 7926.6 7197.4 6720.0 6276.0 5940.7 5784.0 gg l 505 11227.0 9493.6 8494.6 7710.6 7197.4 6700.0 6060.3 6191.0
'
510 12040.0 10179.4 9105.3 8262.4 7710.6 7197.4 6812.8 66:8.6 515 12920.5 10916.7 9762.0 8855.7 8262.4 7710.6 7097.1 7099.1 520 10860.8 11709.5 10467.9 9493.6 8855.7 8260.4 7817.8 7605.0 525 14878.1 10561.8 11227.0 10179.4 9490.6 8855.7 , l: v 530 15968.5 10478.0 12040.0 10916.7 10179.4 9490.6 8077.7 8979.6 8148.9 8700.6 - i 5!5 17141.0 14463.5 12920.5 11709.5 10916.7 10179.4 9606.8 9062.0 '
-
540 18401.5 155 2.8 13860.8 10561.8 11709.5 10916.7 10:22.6 10038. l' 545 19756.6 16661.8 14878.1 17478.0 10561.8 11709.5 11070.7 10765.0 550 21 13.9 17886.3 15968.5 14460.5 13478.2 12561.8 11875.1 11546.0 555 20780.6 19002.9 17141.0 15522.8 14467.5 1747E.2 *2709.8 1:056.4 8 560 24465.0 20616.4 18401.5 16661.8 155 0.8 14460.5 10669.6 10089.6 ! i i
_ t h y
!
Calvtkt CLIFF tmit 1 NEA1 OROP 1Attt$ " HEAT OkDP kA1!* $1t@Y Statt 12 (FPY 16 (FPT 20 EFPY 24 IFPY 28 (FPY 32 IFPY 36 (FPY 40 (FPY tiMP PRtl$ PtllB Pttll Pet $$ Pkt$5 PRIS$ PRt$$ Phill 560 24465.0 20618.4 18401.5 16661.8 15522.8 14463.5 1M69.6 13289.6
$$$ 22780.6 19202.9 17141.0 15522.0 14463.5 iM78.2 12739.8 12386.4 !
550 21213.9 17886.3 15968.5 14463.5 1M78.2 12561.8 11875.1 11546.3 'i
$45 19756.8 16661.8 14878.1 13478.2 12561.8 11709.5 11070.7 10765.0 W 540 18401.5 15522.8 13863.8 12561.8 11709.5 10916.7 10322.6 10038.2 ,
535 17141.0 14463.5 12920.5 11709.5 10916.7 10179.4 9626.8 922.3 530 15968.5 13478.2 12043.0 10916.7 10179.4 M93.6 8979.4 8733.6 525 14878.1 12561.8 11227.0 10179.4 9493.6 8855.7 8377.7 8148.9 g, 520 13863.8 11709.5 10467.9 9493.6 8855.7 8262.4 7817.8 7605.0
$15 12920.5 10916.7 9762.0 8855.7 8262.4 7710.6 7297.1 7099.1 3+
$10 12043.0 10179.4 9105.3 8262.4 7710.6 7197.4 6812.8 6628.6 ,
505 11227.0 9493.6 8494.6 7710.6 7197.4 6720.0 6362.3 6191.0 500 10467.9 8855.7 7926.6 7197.4 6720.0 6276.0 5943.3 5764.0 4 95 9762.0 8262.4 7398.2 6720.0 6276.0 5863.1 $$53.6 5405.5 490 9105.3 7710.6 6906.8 6276.0 5863.1 5479.0 $191.1 5053.4 . 485 8494.6 7197.4 6449.8 5863.1 5479.0 $121.8 4854.0 4735.2 ' 480 7926.6 6720.0 6024.7 5479.0 $121.8 4789.5 4577.0 4475.6 4 75 7398.2 6276.0 5629.3 5121.8 4789.5 4526.8 4323.9 4226.0 470 6906.8 5863.1 5261.5 4789.5 4526.8 4274.7 4082.5 3909.2 465 6449.8 $479.0 4919.5 4%26.8 4274.7 4035.6 3852.6 3763.9 i
'60 6024.7 5121.8 4629.2 4274.7 4035.6 3808.0 3634.2 3551.2 455 5629.3 4789.5 4373.5 4035.6 3808.0 3591.9 3428.1 3348.4 !
450 $261.5 4526.8 4129.9 3808.0 3591.9 3388.0 3232.2 3156.9 ' 445 4919.5 4274.7 3897.7 3591.9 3388.0 3194.3 3047.4 2976.5
'
.40 4629.2 4035.6 3677.0 3388.0 3194.3 3011.8 2873.4 2806.8 j 435 4373.5 3808.0 3468.7 3194.3 3011.8 2839.9 2709.9 2646.4 1 430 4129.9 3591.9 3270.5 3011.8 2839.9 2678.4 2555.8 2497.2 425 3897.7 3388.0 3083.5 2839.9 2678.4 2526.3 2412.1 2356.9 420 3677.0 3194.3 2907.4 2678.4 2526.3 2384.5 22T7.4 2225.9 415 3468.7 3011.8 2741.8 2526.3 2384.5 2251.5 2151.1 2102.9 410 3270.5 2839.9 2585.6 2384.5 I251.5 2126.9 2033.0 1987.9 405 3083.5 2678.4 2440.1 2251.5 2126.9 2010.3 1922.5 1880.3 400 2907.4 2526.3 2303.6 2126.9 2010.3 1901.3 1819.2 1779.8
'
! 395 2741.8 2384.5 2175.7 2010.3 1901.3 1799.4 1722.7 1686.0 390 2585.6 2251.5 2056.0 1901.3 1799.4 1704.2 1632.7 1598.4 4' 385 2440.1 2126.9 1944.0 1799.4 1704.2 1615.4 1548.6 1516.6 380 2303.6 2010.3 1839.3 1704.2 1615.4 1532.5 1470.3 1440.4 375 2175.7 1901.3 1741.5 1615.4 1532.5 1455.2 1397.2 1369.3 370 2056.0 1799.4 1650.2 1532.5 1455.2 1383.2 1329.0 1303.1 'I 365 1944.0 1704.2 15e5.0 1455.2 1383.2 1316.0 1265.5 1241.3 <
360 1839.3 1615.4 1485.5 13&3.2 1316.0 1253.3 1206.3 1183.8
, 355 1741.5 1532.5 1411.4 1316.0 1253.3 1195.0 1151.2 1130.2 ,
- 350 1650.2 1455.2 1342.3 1253.3 1195.0 1140.6 1099.9 1080.3 i 345 1565.0 1363.2 1277.9 1195.0 1140.6 1090.0 1052.0 1033.8 340 1485.5 1316.0 1217.8 1140.6 1090.0 1042.9 1007.5 990.5 335 1411.4 1253.3 1161.9 1090.0 1042.9 999.0 966.0 950.2 330, 1342.3 1195.0 1109.8 1042.9 999.0 958.1 927.4 912.7 325 1277.9 1140.6 1061.3 999.0 958.1 920.0 891.5 877.8 320 1217.8 1090.0 1016.1 958.1 920.0 884.6 858.0 845.3 315 1161.9 1042.9 974.1 920.0 884.6 851.6 826.9 815.0 310 1109.8 999.0 934.9 884.6 851.6 820.9 797.9 786.9 305 1061.3 958.1 898.5 851.6 820.9 792.3 770.9 760.7
>
- - - ,
I !
!
l 300 1016.1 920.0 864.5 820.9 792.3 761.0 745.8 736.3 I 295 974.1 Sk .6 832.9 792.3 765.8 718.0 722.5 713.6 j 290 934.9 851.6 E3.5 765.8 741.0 696.6 700.7 692.5 285 89f 5 820.9 776.2 741.0 718.0 676.6 680.5 6 72.8 l 280 b4.5 792.3 750.7 718.0 696.6 658.1 661.7 654.5 l 275 832.9 765.8 727.0 696.6 676.6 M0.8 M4.2 637.5 I 270 803.5 741.0 704.9 676.6 658.1 624.7 627.9 621.7 I 265 776.2 718.0 684.4 658.1 H0.8 609.8 612.7 606.9 ! 260 750.7 696.6 665.3 MD.8 624.7 Ett 598.6 593.2 i 255 727.0 676.6 M 7.6 624.7 609.8 595.9 585.5 580.5 , 250 704.9 658.1 631.0 609.8 595.9 583.0 573.3 568.6 ' 245 684.4 MD.8 615.7 595.9 583.0 5 70.9 561.9 557.6 240 665.3 624.7 601.3 583.0 570.9 559.8 551.4 547.3
'
235 647.6 609.8 588.0 570.9 559.8 549.3 541.5 537.8 230 631.0 595.9 575.7 559.8 549.3 539.7 532.4 528.9 225 615.7 583.0 5k.1 549.3 539.7 $30.6 523.9 520.7 220 601.3 570.9 553.4 539.7 530.6 522.3 516.0 513.0 215 588.0 559.8 543.4 530.6 522.3 514.5 508.6 505.8 210 575.7 549.3 534.2 522.3 514.5 507.2 501.8 499.2 205 5k .1 539.7 525.5 514.5 507.2 500.5 495.4 493.0 ; 200 553.4 530.6 517.5 507.2 500.5 4 94.2 489.5 487.2 ' 195 543.4 522.3 510.0 500.5 494.2 488.3 'N . 0 481.9 190 534.2 514.5 503.1 494.2 488.3 482.9 478.8 476.9 185 525.5 507.2 496.6 488.3 482.9 477.9 474.1 4 72.3 180 517.5 500.5 490.6 482.9 477.9 473.2 469.6 468.0 175 510.0 494.2 485.0 4 77.9 473.2 468.8 465.5 464.0 170 503.1 488.3 479.8 4 73.2 468.8 4k.7 461.7 460.2 165 496.6 482.9 475.0 468.8 464.7 461.0 458.1 456.8 160 490.6 477.9 470.5 464.7 461.0 457.4 454.8 453.5 155 485.0 -473.2 466.3 461.0 457.4 454.2 451.7 450.5 150 479.8 468.8 462.4 457.4 454.2 451.1 448.8 447.7 145 475.0 4 64.7 gen 454.2 451.1 448.3 446.2 445.2 140 470.5 461.0 458.8 451.1 448.3 445.7 443.7 442.7 6 135 466.3 457.4 455.4 448.3 445.7 443.2 441.4 440.5 130 462.4 454.2 452.3 445.7 443.2 440.9 439.2 438.4 125 458.8 451.1 449.4 443.2 440.9 438.8 437.2 436.5 l 120 455.4 448.3 444.2 440.9 438.8 436.8 435.4 434.6 115 452.3 445.7 441.8 438.8 456.8 435.0 433.6 432.0 110 449.4 443.2 439.6 436.8 435.0 433.3 432.0 431.4 105 446.7 440.0 437.6 435.0 433.3 431.7 430.5 429.9 100 444.2 438.8 435.7 433.3 431.7 430.2 429.1 428.6 i 95 441.8 436.8 434.0 431.7 430.2 428.8 427.8 427.3 90 439.6 435.0 432.3 430.2 428.8 427.6 426.6 426.1 . 85 437.6 433.3 430.8 428.8 427.6 426.4 425.5 425.0
- g 80 435.7 431.7 429.4 427.6 426.4 425.3 424.4 424.0 75 434.0 430.2 428.1 426.4 425.3 424.2 423.5 423.1 70 432.3 428.8 426.8 425.3 424.2 423.3 422.6 422.2
. .
s I. I t
.}}