ML18086B614

From kanterella
Revision as of 11:55, 23 February 2020 by StriderTol (talk | contribs) (StriderTol Bot change)
Jump to navigation Jump to search
Cycle 4 Startup Test Rept.
ML18086B614
Person / Time
Site: Salem PSEG icon.png
Issue date: 08/03/1982
From: Chillea L, Jackson J, Rosenfeld E
Public Service Enterprise Group
To:
Shared Package
ML18086B613 List:
References
NUDOCS 8208190194
Download: ML18086B614 (35)


Text

  • '

- NOTICE-THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCU.MENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.

DEADLINE RETURN DATE I

RECORDS FACILITY BRANCH

--1 SALEM NUCLEAR GENERATING STATION UNIT 1, CYCLE 4 STARTUP TEST REPORT

- - ~- -

8208190194 820803 PDR ADOCK 05000272 P PDR

PUBLIC SERVICE ELECTRIC and GAS COMPANY Salem Nuclear Generating Station Unit 1, Cycle 4 STARTUP TEST REPORT PRODUCED BY ~~~~#

(/f/#iiCaiEilgeer REVIEWED BY. ':It~

Technical Manager REVIEWED BY APPROVED BY

List of Tables and Figures TABLE 1 Sequential List of all Tests TABLE 2 Observed Fuel Defects TABLE 3 Summary of Zero Power Reactivity Measurements TABLE 4 Exchange Mode Rodworth TABLE 5 Flux Map Results Summary FIGURE 1 Reactor Core Map FIGURE 2 Burnable Poison Loading Pattern FIGURE 3 Flux Map 1400 FDH and TILTS FIGURE 4 Flux Map 1405 FDH and TILTS FIGURE 5 Flux Map 1406 FDH and TILTS FIGURE 6 Flux Map 1407 FDH and TILTS FIGURE 7 Flux Map 1408 FDH and TILTS FIGURE 8 Flux Map 1409 FDH and TILTS FIGURE 9 Flux Map 1410 FDH and TILTS FIGURE 10 Flux Map 1411 FDH and TILTS Appendix A Physics Test Program Descriptions and Acceptance Criteria/

Physics Results Sheet

INTRODUCTION The fuel shuffle cormnenced January 28 by removing 193 fuel assemblies from the. core. The core unloading was completed on January 31. During the unloading and until February 9, fuel inspections were performed. After unloading the core fifty-eight (58)

Incore Flux thimbles were replaced. Three (3) leaky thimbles were identified and sent off-site for metallurgical evaluation. The lower core plate was then vacuumed and loose objects (3 grid strap pieces

..,. and underwater light components) were retrieved

  • Westinghouse completed a planned inspection of ten (10) fuel assemblies (the contract for this program was a continuation from Cycle 1 and included a detailed inspection of the two optimized fuel assemblies). Upon discovering a fuel rod failure, an add-itional fifty-two (52) fuel assemblies were inspected. The failure of pin 9 in assembly C04 was due to pellets becoming wedged in the top several inches of the rod causing excessive rod growth, as diag-nosed by Westinghouse. The rod grew most and failed during Cycle 2

~nd then deteriorated in Cycle 3. Westinghouse contends that rod contact due to bowing, as was noted in the end of Cycle 2 fuel inspection, was n6t a factor in the failure. The additional fuel inspections were performed to verify the acceptability_ of these assemblies for use in Cycle 4. Nine (9) of these were replaced with assemblies of comparable burnup with no known damage. Table 2 is a list of observed defects. Additional information is available from the Salem Technical Engineer upon request.

Page 1

On February 12 the fuel reload for Salem Unit 1, Cycle 4 was completed. A total of fifty-six (56) new assemblies enriched to 3.4 w/o were loaded. The new assemblies are located in the core as indicated on the Core Loading Map, Figure 1. Two secondary source clusters, which were activated during Cycle 3 operation were loaded into locations H-3 and H-13. There are 448 depleted burnable poison rods from Cycle 1 located as shown in Figure 2. Two different burn-able poi~on cluster patterns with 20 and 24 rods were utilized.

The startup physics test program was conducted to ensure the reactor, as lpaded, was performing in accordance with design ex-J pectations and safety iimitations. Hot zero power tests were per-formed on April 12 and April 13, 1982. Power escalation testing was performed from April 20 thru May 12, 1982.

Appendix A provides a brief description of each test and a summary of test results relative to acceptance criteria.

Table 1 is a sequential listing of all tests that were conducted during the startup.

Page 2

. TABLE 1 STARTUP TESTS TYPE Reactor Startup 1. Postrefueling Initial Criticality Pull control banks with ICRR Plot Dilute to criticality Reactivity computer checkout Zero Power Physics Testing 2. ARO Boron Endpoint Test

3. ARO Isothermal Temperature Coefficient Measurement
4. ARO Flux Map (#1400)-Flux Map Analysis & Result
5. Rod Swap Reactivity Measurement (Rodworth)
6. SORC Review Power Escalation

"' Testing 7. Heat Balance and NIS Calibration 26% RTP

8. Heat Balance and NIS Calibration 50% RTP
9. Flux Map #1402 50% RTP
10. Flux Maps #1403-1407 47% RTP
11. Excore Calibration 47% RTP
12. Power Coefficient Measurement 47% RTP
13. Heat Balance and NIS Calibration 80% RTP
14. Flux Map #1408 84% RTP
15. Flux Map #1409-1411 99% RTP
16. Excore Calibration 99% R'I'P
17. Power Coefficient Measurement 100% RTP
18. RCS Flow Measurement 100% RTP Page 3

SALEM UNIT !l CYCLE 3/4 FDR

SUMMARY

FDR # F/A IDENT DISPOSITION DESCRIPTION PSDF-03 B-16 Reject Corner grid damage-Grid #2, Fac~s .*.

l and 4 PSDF-04 C-52 *Voided Replaced by PSDF-13 PSDF-05 C*04 Reject Failed fuel rod-Rod #9, between Grids 7 and 8 PSDF-06

  • C-26 Accept Several rods exhibited downward growth near the bottom nozzle PSDF-07 C-41 Vo1ded Replaced by PSDF-14 PSDF-08 C-27 Reject*. Foreign obje~t lodged betweeri

. bottom of fuel rods and bottom nozzle PSDF-09 C-13 Voided . Replaced by PSDF-15

  • PSDF-10 C-37. Reject
  • Grid damage-Grid #8, Faces 1 ar;d 4 * **

PSDF-11 C-24 . Accept Small chip missing on Grid #8 PSDF-12 Core-IV Accept Debris removed from lower coreplate Obstruction in F/A thimble tub~s PSDF-13 C-52 Reject would not permit complete insertion of an RCCA PSDF-14 C-41

  • Reject Grid damage-Grid #5, Face.l PSDF-15 C-13 Reject Corner grid damage-Grid #8,
  • Faces l. and 4 TABLE 2 Page 4

REACTOR CORE MAP SALEM UNIT :i.

DATE: 2/:i.2./02 R p N M L K J H G F E D c B A 1 F04 F23 F26 Di9 F41 F43 F02 PD114 PD94 PD ii PD42 PD28 PD Si PD43 FS3 Fii F3S CS4 F36 C40 FJi C21 F33 F22 F2S 2 PDS PD32 PD20 24P20 R43 20PB R39 20P6 Ri4S 24Pi4 PD21 FOi ES4 C29 D20 E09 CSB ES6 C14 E22 D29 C44 E63 F40 3

PDHO RS7 PD27 RiiS PD72 R102 SS3 R133 PD68 R32 PD12 R137 PD18 F20 C49 E02 E40 D18 E06 EiB E07 D22 E31 E12 Ci6 F13 4

PD37 PDiOS Ri31 PD92 PD36 PD10 R14 PD99 PD47 PD24 R128 PDBB PD106 F48 F46 D27 E20 D31 E03 DOS D40 D04 E38 DOB E37 D03 F38 FS6 s PD84 24P32 R16 PD139 PD95 PD2 PD90 PDZDS RSO PD121 PD70 PDSS R36 24P39 PD119 F37 C02 E33 D28 E4S C4B E48 EOB E13 C36 ES2 D33 EiO C28 F34 6 R2.

PD22 Ri49 PD122 PD89 PD137 R120 PD34 R112 PD129 Ri27 PD132 PD124 PD123 PD30 F4S F12 C39 E41 D23 E46 D36 E60 D09 E44. D38 E47 C24 FSO F10 7

PD26 20P11 RSB PD66 R12 PDiOi PD6S 24P4S PD4S PD11B PD73 PD7S R30 20Pi3 PD78 8

Di7 C12 ES3 E2S D32 E01 ES7 CS? E61 E16 D30 E29 E64 CiO D07 PD38 RS3 PD6 RiOS PD113 RS2 24P41 R34 24P44 R148 PD79 R7 PD131 RiO PD86 f24 F44 C34 EH D11 E36 D24 E62 D16 E43 D2S E3S C38 F29 F47 9

PD63 20P12 R3S PD93 PDS2 PDBO PD83 24P36 PD61 PD128 RS4 PD117 R49 20P9 PDB 10 F49 COB E30 D02 E27 Ci7 E34 E23 E49 C63 ES1 D21 E39 C64 FSS PD127 R122 PD62 PD100 PD126 R42 PD2S RSS PD112 R41 PD31 PDS9 PD64 RSi PD48 FOS FS4 D10 EDS D12 E19 D26 D39 D13 E1S D3S E17 D37 F06 FiB 11 PD109 PD103 24PS4 R03 PD23 PD46 PD19 RS9 PDZD6 PD104 PD97 PDBS PD111 R27 24P3S F09 C45 E04 E26 D14 E24 ESO .E21 . D06 E14 E28 C06 F19 12 PD39 PDiOB R4 PD91 PD44 PD102 Ri43 PDB? PD81 PDi R38 PD67 PD12S 13 F28 ESS C26 DiS E32 cso ESB C43 E42 DOi C07 ES9 F27 PDSO R61 PD35 R4S PD134 RS6 SS4 R26 PDi? RiO? PDS3 R1SO PD69

--fi4- - F42 .. 1-------

F32 C2S- -*F"sf- -*-**--

C22 -* F30- -- *cs:Ii-- ~Fis*- -1=- -**-FOB....

14

  • f>->>se . PD16 - 24P2 . R60 20PS R132 20P14 R44 24P30 PD4 PD3 1S F07 F16 F39 D34 FS2 F17 F03 PDS7 PD74 PDiJ PD76 PD7 PDHS PD107 NORTH t FIGURE 1 Page 5

180° R P N M L K J H G F E D C B. A 1

2 24 20 20 24 3

45 4

5 24 24 6

7 20 24 20 goo 8 24 24 270° 9 20 24 20 10 11 24 24 12 13 4~

14 24 20 20  : 24 15 Number indicates number of burnable poison rods 448 Depleted BP Rods S indicates source rod Figure 2 Burnable Poison Loading Pattern Page 6

Zero Power Test Results The zero power test schedule for Cycle 4 was abbreviated with respect to previous Cycles. The shorter schedule was due mainly to a change from the traditional boron dilution m,ethod for measuring bank rodworth to a rod exchange technique.

The rod exchange method uses a calibrated reference rodbank to measure other rodbanks using a critical exchange procedure at constant RCS boron concentration. The reference rodbank is calibrated using industry standard boron dilution procedures. The total rodworth used for shutdown margin verification is then inferred using analytical procedures. Comparisons of dilution mode rodworths between measurement results and both vendor and PSE&G calculations are shown in Table 3.

A comparison of actual to predicted rod exchange positions along with their equivalent reactivity expressed in pcm are shown in Table 4.

A Boron endpoint measurement was conducted with all rods out and was well within the +/-50ppm acceptance criteria. The measured value of 1309ppm was Bppm lower than predicted.

A Isothermal temperature coefficient measurement was performed with all rods out. The value obtained was very close to the predicted value and well within tolerances.

Results of the zero power flux map (#1400) are shown in Table 5.

A tilt in the power distribution of 3.9% was discovered in the NE quadrant and the resulting peaking factors FDH and Fxy exceeded the full power Tech Spec limits, but were below the zero power limits. Consul-tation with the fuel vendor (Westinghouse) confirmed that a HZP Tilt of up to 6% was expected.

Page 7

TABLE 3 Summary Df Zero Power Reactivity Measurements Boron Endpoint:

Condition Measured (PPM) Predicted (PPM) M-P(PPM)

ARO 1309 1317 8 Isothermal Temperature Coefficient:

Condition Measured(PCM/OF) Predicted(PCM/OF) M-P(PCM/OF ARO -3.61 -3.80 0.19 Dilution Mode Rod Worth Measurement Vendor PSE&G Calculation Calculation method (pcm)  % (pcm)  %

Bank (pcm)

D 862 dilution 929 -7.2 847 +1.8 c 804 exchange 808 -0.4 800 +0.5 B 522 592 -11.8 577 -9.5 A

s 1142 2766 j 1137 +0.4 3092 -10.5 1123 2834

+1.7

-2.4 Total 6096 6558 -7.0 6181 -1.4 Note: All data represent dilution mode conditions; ie, sequential, non-overlap insertion beginning with Bank D.

Page 8

TABLE 4 Exchange Mode Rod Worth Bank Critical Exchange Rod Worth Difference x Positions Meas. Cale. Meas. Cale.

(steps) (steps) (pcm) (pcm) (pcm)  %

155.5 798 794 +4 0.5 c 154 112 120.5 452 500 -48 -9.6 B

210 210.5 . 731 719 +12 +1.7 A

96 105.5 345 413 16.5 SD 99 225 216 +9 +4.2 SC 100 158 163.5 556 569 -13 -2.3 SB 188 198 1055 1064 -9 -0.9 SA x = 595 611 -16 -3.3 s = 30 7.3 Note: All data represent exchange mode conditions; ie, the referen.ce bank moving from initial critical position to f in~l critical position in the presence of bank X.

Page 9

FLUX MAP RESULTS

SUMMARY

DATE N  !\veAxl Ave.Axial:

MAP  % BANE CB QUADRANT TILTS FliH FQZ Fxy Top Fxy Bottom ' k.

II RTP D NW NE SW SE VALUE LOC VALUE LOC VALUE LOC VALUE LOC ,;~t~i!g OFFSET 1400 4/13/82 _O 211 1300 1.0135 1.0388 .%11 .9866 1.7070 B5HI 2.7563 B5HI 1. 8350 B5HI 1.8380 B5HI 1.5422 +26.536 1402 4/23/82 50.43 224 1112 1.0125 1. 0020 .9950 .9905 1. 5201 M2MN 2.1157 M2MN 1.6139 M2MN 1.6450 M2MN 1.3206 +12.684 1403 4/23/82 48.0 188 1069 1. 0086 .9988 1.0006 .9920 1.5112 M2MN 2.0741 PllJI 1.6034 PllJI 1.6471 PllJI 1. 2935 - 2.443 1404 4/23/82 48.0 209 1069 1. 0070 .9990 1.0009 .9931 1.5231 PllJI 2.0374 PllJI 1. 6291 PllJI 1.6868 PllJI 1.2645 + 4.565 1405 4/24/82 47.7 2lf' 1006 1.0116 .9971 1.0010 .9903 1. 4944 ?llJI 2.0521 PllJI 1.5995 PllJI 1.6516 PllJI 1. 2889 + 8. 969 1406 _4/24/82 47.3 - 205 950 1.0102 1.0020 .9982 .9896 1.5000 M2MN 2.0206 PllJI 1. 5901 PllJI 1. 6360 PllJI 1. 2731 + 1. 916 1407 4/2_4/82 47.4 194 986 ~I.. 0114 1.0044 .9994 .9848 1. 5109 P4MN 2.0782 P4MN 1.6224 P4MN 1. 6622 P4MN 1.2862 - 1. 508 L-

- - 0 1408 4/29/82 84.0 228 877 11.0088 1.0031 .9970 . 9911 11.4268 M2MN 1. 8671 M2MN 1. 5066 M2MN 1. 5423 PllJI 1.2261 + 0.283 228 815 1.0062 1.0032 .9961 .9945 1.4109 -M2MN 1.8338 M2MN 1. 4931 M2MN 1. 5292 PllJI 1.2033 - 1.133 1409 5/10/82 98.0

.9967 .9940 1.4088 1 M2MN 1.8662 M2MN 1.4883 M2MN 1. 5258 M2MN 1. 2231 - 3.610 1410 5/10/82 _98. 8 219 787 1.0063 1.0030 787 1.0065 1.0026 . 9965 .9943 1. 4739 M2MN 1.8325 M2MN 1. 4942 M2MN 1. 5319 M2MN 1.2102 + 0.528 1411 5/11/82 100.0 228 TABLE 5 Page 10

FIGURE 3

~ASURED AND PERCENT. DIFF. OF FDHN SALM INCORE HAP140012.5% PWR1BK De211r1300PPMrOMWD/MTUrPT,211 R P N M , L- , ,K ,J , ,H , ,G ,F ,E ti C B A

.e57. **1,-050, -1.QOl. *****600. ;97o. 1,032. .e42.

1.7. 1 .* 7. -4.'4. -4.4, -*0* .o.

  • 796. 1.150. 1.320. .931. t.246 * *876. t.238, ,915. 1.319* 1.168. .818.
  • 010. 1.147.

s.2. 1.7. 1.7. 1.6. -2.3.

-4.3. -2.9, -.1.

.869, 1.029. li046.

1.7. 3.3.

. 8. 0 *

. *955. -i

  • 147 * ,944, a.2.

1.217; s.o.

,999, 1.169. ,.994. 1.010. 1*.053, 1.023,

-3.6.

.1. 1.7. 3,3,

.990. 1.197, 1.205. 1.*020. 1. 276.

s.o. 12.7,

. a. 4, 7.9. -.2. -.2. *-s .1. -5 .* 2 *. -3.9. , 6. 9. 10. 3

  • 13.6 *

..

  • 932. 1.375. 1.085. 1.199~ ,979, 1.-065. .871. ,797,
  • 862. 1.056. 1.011. 1.274, 1.169. 1.479
  • e.a. 14,5, 14,5,

+96G 11.2.

1.103 *.,

6.4.

.937. 1.029.

6.2. 2.5. -.2.

  • 996. 1. 059.

.. -.2.

.841.

.-2.6.

.928.

-3.5.

,943,

-3.6, -1.0.

  • 911. .840. 1.103.

3.2.

1.oao. i.i51.

14':;

1.020

  • 1.178 7.2. 2.6. C"
  • -'* . 2. -1. o .. -.9. -.4. -1.a. -1.0. 3 .1. 8.6. 12.s. 14 + J 1.083. 1-.311. .894. 1.Q44. .875. .* 924. *.* 871 j *.972. ,974,
  • 9'21. .893. 1.110 * ,970. 1.399. 1.134

-.4. -.9. -2.1.

.860.

-1.9. -1.0.

,955, 1.006.

-.9.

.761.

-.7.

.981.

-2.2.

  • ,941,
  • 0. 5,4. a.1.
  • 012. 1.106. 1.202. 1.009.

9.6. 12.3

,954, 1.193. 1.048.

B 2.2. -.9. -1.9. -2.1. -2.0. -1.a. -3.2. -4.2. -3.5. -.7. 3,4. 6.5. s.1.

,* 1.053, 1. 304. i895. 1.019. ,957, ,901. .840. .931.

  • 841. ,908 * .ass. 1.073, .952. 1.380. 1.102 9 .* 4.2. -
  • 3' -3.3. -4.1. -4.3. -4.6. -5.1. -4.4. -3. 6 *. -.-9. 1. 9. 6.0. 8 .1. 9. 1 1.059. .941. 1.035. .927. ,-997,
  • 790 *.
  • 887. .912 * .894. .1313. 1.045. .972. 1. 083. .990
  • 1 o_. c.o. 3.0. 1. 1. -6,8. -6,S. -6.9. -4.7. -.5. o. -4.0. -4.2. -2.3. -2.3. 5 .a. 8' 4.

,877. 1. 350. 1.066. 1.090. .903. .984.* .839 * .

  • 782. .850.. ,979, .958. 1.144. 1.046. 1.324. .90~

11.. 4,5, 4.J. 4 ,4. -6 *.9. -:7*fl* -7.7. -.6 .2. -5,4, -4.9. -e.2. -2.3. -2.3. 2 .4' 1.121.

  • 882. 1.047. 1.066. .906. 1.001. 1.055, 1. 007' .914. 1.074. 1.085. .946. 1.149 *

- .1. -4.6. -7.2. -9.o. -9.0. -6.o. -s.o. -~*~* C" - -8.3. -8.3. -3.a. 2.3.

,714. 1.013. .862. .931.

  • 940. .827. 1.119. .840. .960. *.984 * .890. 1.055. .766.

13 -4.6. -4.6. -6.8.

  • 722. 1.062. 1.210.

-9.5. -s.5. -s.2.

  • 856. 1.207 *

.. -7.4. -6.7.

.867. 1.217,

-6.6. -4.4.

.a7o. 1.241, 1.oaa.

-3.a * -, 7'

  • 751 +
2. 3.

14 * - -4.6. -6.1. -6.7. -6.5. -5,4, -5.3. -4.6. -5.o. -4,4, -3.B. -.e *

.805* ,979, .961 * .

  • 595. ,968. *, 981. .806. MEAS 15 -4.4. -5.3. -s.2. -4.6. -s.o. -4.3* DI Fl-CALCULATEti POWER TILTS <NORMALIZED TO 1.000>
  • 9994. .*9976
  • ! 1.0135
  • 1.0388 1.0276 1.0799 1.0072 1.0516

.9868 1.0234

.9611 * . .9866

. ------.--~----* .

  • 9354.
  • 9498 POSITIVE *~y--1,1s .- NEGATIVE. :"Y-*-11t. r*-*-.

1.0261 ,9739

  • POSITIVE -x- *vs. NEGATI-VE--X- TILT --
  • 1;0127 .9873 Page 11 SALM INCDRE MAP1~0012.5% PWRrBK D@211r1300PPHrOMWti/MTUrPT.2r1

Power Escalation Testing Power was increased to approximately 29% on April 21 and held there for eight hours to soak the turbine. On the next day power was increased at 3%/HR to 47% and allowed to stabilize.

On April 23 three incore flux maps were conducted in order to

  • obtain data for an Excore calibration (Maps #1402-1404) however, a defective NIS meter (N41 lower) prevented any usable information from being determined. The defective meter was replaced and Incore flux maps #1405-1407 were conducted the next day to provide the necessary data for the Excore calibration. Peaking factors for the maps conducted at the 47% RTP level were found to meet the full power limits and the quadrant power tilt had diminished to approximately 1.0% in the Nw quadrant. The target ~I was determined to be +l. 9% and this value was set into the instrumentation. The Power Coefficient measurement was conducted and a value of -10.11 pcm/%

obtained. The value was compared to the FSAR limiting curves and found to be in the acceptable region.

Preliminary data evaluation at the 47% RTP level was conducted and power escalation was started at 3%/HR on April 25. Power was stabilized at 82% RTP on April 28 and a heat balance was obtained.

for NIS calibration. Incore flux map #1408 was conducted and re-sults were within the full power limits. The quadrant power tilt was approximately .9% in the Nw quadrant. Power escalation was then continued with several interruptions due to heater drain pump problems, condensate strainer cleaning, and circulators being out of service.,

Page 12

On May 11 the plant reached the 100% RTP level and was stabilized.

Incore flux maps #1409-1411 were conducted to obtain data for an Excore calibration. The peaking factors obtained with these maps were within the full power limits.

  • The quadrant power tilt was approximately .6% on these full power maps. The power coefficient measurement was conducted and a value of -11.49 pcm/% was obtained.

This value was compared to the FSAR limiting curves and found to be in the acceptable region. A target 6I value was determined to be

-1. 0% and set into the instrumentation.

The statepoint data collection and subsequent RCS Flow calculation were completed on May 12 with a measured flow of 385,013 gpm.

The measured value exceeds the minimum 100% RTP required flow in the Technical Specifications of 349,200 gpm.

Page 13

FIGURE 4*

1SU.- eiND PERCENT. DIFF, OF FDHN

,-- t SALM INCORE MAP1405r47.67~ PWRrBK D~216,1006PPMr34MWD/MTU,pT.6*5 p N M ,L * *K * *J  ;  ; ,H , ,G ; ~ F * ,E , D C . . -" .. B :~,-

,791, A.

, 967, .939. ~598. ,919. .899, .736.

,797, 1.142. 1.209, 3 .~,.

,999, 1.171.

. -.a.

.856. 1.142.

-.a. -3.6.

. -3,7,

  • 835, 1.156. 1.047, .760 *

. . .760.

10.9,

~

1.078.

11.0. 3.6.

.967. 1.040, 1.063, 3.a. -.~. -2,4. -2.e. -3.5. -,9,. 1.7, 7.0.

  • 895. 1.154, ,979, .989 * ,995, .910. 1.068. .790.

a.1. 0.1. a.1. 3,4, 3,5, -1.5, _-:3.2./  :...3~3. -3.7. -1.0. 1.7. 12. 4.

1.079, 5.3.

.942. 1.127. 1.139, 5.3. .6. -4.2.

1~002.

-4.2.

1.076. 1.105, 1.067.

-4.3. -5.4. -5.1 .

.989, 1.161. 1*.130, -*

.9.54. 1.119,

-5,5, -2.4. .9. &.6; 9,3,

..872. 1.278

  • 1.052. 1.193. .9Ej7. 1.093,
  • 952. .889. ,945, 1.081. .992. 1.195, 1. 071. 1+24Bi .827.

14.6. 10.0. 5. 3. ..4. -5.J.- -5,4,  :-4. 6. -5.1. -5.3. -6.4. -4.B, *.s. 7.2. 7. 4. a ,9.

1.067. .991. 1.004. 1.013. 1.107. .903. 1.005, 1.032, ,999, .as6. 1.07s, 1.054, 1.079, -.915. 1.014.

14.7.

1.027. 1.262.

14.9, -1.a. -3.o. -4.2.

,995, 1.079, ,943, 1.009,

-s.s. -5.o. -5.3.

. ~

-6,6, -7,3. -6,B, ,9, 5,6, 6 .1. 9. 0 *

  • 961. 1.063. ,952; .996.
  • 943
  • 1 .119 * .936. 1.233,
  • 99::.;.
11. 4. 7,4. -1 .1. -3. o *. * -5.1. -5 ... 5. -4.5. -3.a * . -s,4, -6.7. -s.1. 3;4.
  • 63~. .938. 1.200. 1.-091.
  • 941. 1.047, 1.103. .853.

1.063. 1.022.

,932. 1.110. 1.213 *

4. 9 *

.935

  • 7 *9.

8 .1.*

,997, 1.240.

5.2. 1.7.

,939, 1.066.

-3.1.

. -4,7, -5.2. -A.1.

,934, 1. 008 .... 954. 1.030.

-s.7. -7.s. -7,4, *-s.6. -1.s. 2.1. 4,9,

,933, .. 991. ,947, 1. 078. .911. 1.245. .996.

a.2. s.s.

1. 028. ,954, 1.105.

3,7, -4.2.

,995,* 1.091 *.

-6.1. -5.6.

  • 895. 1.002. 1.019,

-6.7. -7.2. -7.2. -4.a. -3.1. *6* 6.0. B .1 *

  • 991. .882 . 1. 088 * ,994, ,979, ,939, 1.009, 10.5. 10.6. s.o. -5.7. -6.3. -5,3, -6.s. -6.4. -7.7. -5.9. -5.8. -4,4, 8.7. 8.4.
  • 856. 1.306, 1.121. 1.121 * .. 980. 1. 083. ,944, .889.
  • 956. 1. 090. .988. 1.129, ,955, 1.250. .819.

12 12.4. 12.2. -5.7. -5.9. .:.6.2.

. ~*.

1. 105. .928. 1.098. 1.129,

-5.4. -5.1.

  • 992. 1.076. 1.121. 1.077,

-4.2. .6. -:s.2.

.988. 1.122. 1.057,

-.5.1.

-4.4.

,955, 1.099.

7, 6

  • 7.6.

7,9,

  • 731. 1.037.

-1.9.

  • 910.
  • 963. 1+003 *

-s.2. -4.3. -4.1. -4.2.

.886, 1.162 *

-5.6.

.885. 1.007. 1.035,

-5.6. -5.6. -4.5.

7. 3.

,934, 1.042. .754.

4.o. 4.o. 1. 7. -4.2. -2.3. -2.s . . -2,5, -2.7. -1.9. 3.0.

,739, 1.060. 1.190. .886. 1.177.

  • 876. 1.173, I

.aa2. 1.203, 1.076.

4,4, 4.4.

,742, 7.2.

4.o. 3.o. 2.0. 2.4. .1. -.2. -.3.

1.9; 3.1. 4.5. 4,4,

  • 815.
  • 976 * +612 *
  • 939. ~949 * .788.

6.7. 4,7, 1.6. 1. 4. 1.7. 3.2.

DIFF SALM INCORE MAP1405r47.67X PWRr~K D~216r1006PPMr34MWD/MTUrP~.6,5 CALCUL~TED POWER TILTS <NORMALIZED 70 loOOO>

.9998 *

  • 9727 1*.0234 *

'1,0214

1. 0116, * .9971 . ~ .

.9862

    • 1;0212 -1. 0088 1+0190 .9963

... 1.0010 * *.9903

  • ,9937
  • 9831.
  • 9844 vs; NEBATIVE ..:.y..:.~TILT"-***

0 POSITIVE -Y-1.0043 *,9957 Page .14 POSITIVE *..:.x- VS, NEGATIVE -X- TTI T

FIGURE 5 SALM INCGRE MAP~406*46,'6S~ PWR,b~ D@2CS1950PPM143MWD/MTL,F .~,:

'"* ,K ,J iH ,G ,F .::. D  ;-:

,777.

  • 948. .926. .592, .95i *
  • 97'7 * .817.

1 2.2. 2.3. .4. -1.4. 3. 2. 7. 5.

  • 795. 1t151. 1.189.
  • 877
  • 1.159. .852. 1.168. .877. 1t:I.87. :I.: 048 * ~:*
  • / ..: c .

2 11 t 7. 11 .*s.  :

  • 1. 2.4. -1. 0. -2.7. -.3.  ::.
  • 0. 1. 7. 6.S.

,. ?'/'i' I 1. 101. 1. 026. 1.046. ,997, 1 .*147. .876. ..9-93.*

  • 9'9 9.
  • 911. l.* 065
  • t 7 S.i.~ I -

2.6.

. *1. i". 6.5.

~."

3 10. 1. .::* .1 f -2.4. -3,8, -3.6. -3 .1. - *7 t 11 t *.::.

  • 7 / I t 1.127. 1.144, 1. 006. 1. 0.70. 1. 102. .996. i.170 *. 1.133. .951. :t~111.
  • C* *~ tl t 1 t 263
  • 9t 0 1 t 0 6 T.

t "

  • J
  • 1
  • 2 0 0 .,:

-4 .1. -4. 1. -5.0 * -5.9.

.946.

.886.

-5.0. -1.9.

.942. 1.089. 1.002. 1.199. 1;065. 1.238

  • 1 0.

t 6 t 1. 8~5t

9. 0. 6. 8'
  • 7. -5.4. -5.6. -5 .a.- -5.9. -6.0. -4.0. t 7. b t b. s.
1. QG().
  • 926. 1. 017. i.028. 1. Hl5.
  • 906. 1.006
  • 1.034. ,999,
  • 891. 1. 053. -*1.070. .899.

6 1 lt t 6. 8.6. -.3. -1.s. -4.8. -5.5. -5.4. -6.8. *-7. 1.

  • 7. 4. 6. 5' 3 . .
  • 93*1.

7

1. 022.

11 t 3.

1.242.

6. 1.
  • 900. 1. 092 *

- * .:.i.

  • 941. 1.011 *

-5.7.

,959, 1.059.

-4,9, -4 .1.

  • 950.

-5.8.

.997.

-7. 0.

.946

  • 1 .11 s.

..:.5 t 2. . .::. 2. 9.

1. 22l.
4. 3.

, 9 f:*':,

/ ' -~

1.091. ,939. 1.049, 1.100.

  • 846. 1. 064. 1. 025. ,934, 1
  • 110 t .929 .

8 ~ t 1. 1. 2 *. -3.4+ -5.2. -4.3. -5.7. -7.5. -7. 4. -5.7. --1. 7. 1. 7. 4. 4 .. -:'9'...i

  • 99*2' t 1. 233 t
  • 937. 1. 068 * .934. 1. 008.
  • 952. 1. 030. ,937,. ,995, '950. 1.081. .910. 1. 237 *
  • 9~ . ::*

9 7.8. J. 3" 3.6. -4.3. -6.3. -6.0. -5.6. -6.7. -7.0. -7.1. -4,7, -:3 .1.

  • 6. 5.6.
1. 01 a. * '741. 1.097,
  • 987. 1.095. .899
  • 1. 0.04. 1. 023. ,997,
  • 890. 1. 096 *
  • 990 ..
  • 980. .924 * .99S JO-. 10 f 1. 10.2. .-5.6. -5.7. -6.3. -5.4. -6.4. -6. 1. ~-7. 2. -5.5. -5.4. -4.0
  • 8.2.
  • 850~ l .i 299. 1. 118. 1.124. .982. 1.084. ,943,
  • 891. .957
  • 1.098. ,999, 1.139. .958. 1.238.
  • 81 J.

1 :i.. 12. 2. 12. 1. 11. 9. -5.6. -6.0. -6.4. .-5. 8. -5.2. -4.4. -4.4. -4.4. -4 .1. 6.9. 7. C*

1.094. .912. 1.100. 1.134, .996. ~.076. 1.124, 1.oso *

  • 993. 1.137. 1.070 *
  • 932. 1. 078.

12 6.8. 1.s. -2.0. -4.9. -s.*o. -4.s. -4.o. -4.2. -5.2. -4.6. -4.6. 3,9*. " -,

.Jt-..Jt

,/':!6. 1.029 . . . 907. ,962. 1.001. .885. 1.163. ,979, ,994, 1.025. .936. 1.042. .732.

13 3o0t 2t9t 1121 - 4 *3 * - 2 *4 *

.876. 1.175.

  • -2. 6 * -2
  • 4 *

,876. 1.163.

- 3 *3 * -3.0. 2.0.

,957, 1.189. 1.076.

4.5. 4.2.

.741.

3. 9
  • 14

.803.

") 'J

.966. .940.

.3.

  • 612.
  • 1.(

. .928. .926.

  • 0. 2. 1 *

,777, 4.5. 4t 2*

MEf.iS

!.5 5,6. 4. 1. 1. 9. 1.s. .6. -.2. 2 .* 2. DIFF SALM INCORE MAP1406146.68Z PWR1BK D@2051950PPM143MWD/MTU1PT.615 CALCULATED POWER TILTS <NORMALIZED TO 1.000l
  • 9949.
  • 9863

.9906

1. 0102 1.0020 1.0256 1.0176 1.0204  !..0075
1. 01!32 .*. ,9974

- .9.982 -

.. .9896

.9815

  • 9811. *
  • 9819 postnvE-*-v-_ vs~ .NEGATIVE -v- -TILT 1.0061 ,9939

---P.03-ITIVE' -X- VS. NEGATIVE -X- TILT

.9958 1.0042 SA~M INCORE MAP!406146.68Z PWR1BK D@2051950PPM143MWD/MTU 1 PT.61~ Page.15

FIGURE 6 MEASURED AND PERCENT, DIFF, OF FDHN SALM INCORE MAP1407r46.36X PWRrBK D@194r986PPMr53MWD/MTUrPT.6*5 M L K J H G F E D C B

.R. P N

  • 766. .933 * .915. .588, .* 936. ,973,
  • 799
  • 1 lo 3
  • 1. 4. -1. 8. 2 t 1. 5,7, 5.6,

,794~ 1;147. 1.173,

  • 858. ;t.148. .848. 1.156. .857. 1.173. 1.085. .769
  • 1.1
  • 3
  • 11
  • 4
  • 1*2
  • 1.6. -1.5. -2.9. -.9. 1.4. 1.2. 5.3. 10. 6.

,789. 1.120.

  • . ,999, 1.016, i,935, .885. 1.148, .876.
  • 991.

,974, ,870. 1.108 . . . 761.

3 11.a. 11.1. 11.3 * . 1.1. 1.1. -2.6. -3.8. -3.6. -3 .1. -3.1. -3.1. 10.6. 10.~.

1.1s1. 1.oos. 1.086. i.154, 1.015, i.077, 1.120. 1.093, 1.016. 1.156. 1.134, .968. *1.106.

4 12.3. 12 .. 2. -3.5. -3.5. -3.5 * . -4.7. -4.7. -4.2. -3.3. -3.3. .s. 7.8. 8. 0 ..

,999, 1.107, ,959, .907. .966. 1.123. 1.012. 1.205. 1.060. 1. 228.

  • 834. 1t262. 1.067. 1.1e2 * .. ._, l ~

9 t 4. 6.8. -1.1. -4.8. -4.9. -4.8+ -3.9. -3.9. -3.5. -3.5. t 8 I 6. 1. 6,. 4 I

1. *J4:3. +909t 1.016. 1.034. 1. 118. ,915, 1.017. 1.057. 1.008. .905. 1. 097. 1.059. 1.066.
  • 885 ..

6 s.o. -.3. -1.5+ --4. 1. -5.o. -4.6. -3.6. -s.4. -6. 0. -5.9.

  • 9. 4.6, ~ ~

1t230 I ,901; 1.098. .952. 1.021. .968. 1.067, .961. 1.011. . 957. 1.126. .931

  • 1.214, 7 -1. 9.

.. -5.o. -5.1. -4.2. -3.4. -4,9, -6r1. -4.5.

  • 6. 2.9. 4. 2.  ;:_,, ..
  • 950. 1.060. 1.107, .841. 1.073. 1.037. ,945, 1.119. 1.211 .926.

s I t .::. t 4. 7 t 1 3 I t

.., ~

-..:..

  • 7 . -4.S. -4.6. -3.7. -5.2. -6.7 * -5. o .. -1. 2. 1.9. 4. 3 ~

9

    • ~79, 1.223+ ,936.
3. 4.

1.0i'6.

-3.8. -...; .

  • 944. 1. 020 *

/. -5.3t

.* 962. *1.038.

-4.8. -6.1.

,947, 1.008.

-6.3. -6.3.

,959, 1.oss.

-4.3.

.909. 1f228

. 5. 5. 4.

I

  • 92(1, 1.0\10. .994. .906. 1.016. 1.034, 1.ooa. .898. .994 * .975. . 905.
10. 9. 3. 7 .. o. - ...;5*,3, -5"". 2. - 6 *0 * --~
  • 7 ** -~ 5 *...8 * - 5 *5 * -6.8. --5 .* 3. -4.3, / < .!
  • 835. 1.276. 1.103. 1.132, .989. 1.093 *
  • 955. .901 * .968. 1.106. 1.001. 1.141. .956. 1.220. ~79C
11. 10.7. 10.6. 10.4. -5.*.3+ -5.8. -6.1. -5. 1. -4.6. -3.s. -5.o. -4.6. -4.5. -4. 3' 5' 7.

1.osa. ,91~. 1.133, 1.154. 1.011. 1.os5. 1,132, 1.088 *

  • 999. 1.140. 1.073. ,920. 1.064.

12 6.2. 2.i * . 7 .* -3.5. -3_.a*. -4.0. -3.6. *:--3.7. -5.0. -4.7. -4.7. 2.5. 3.,S' .

  • 727. 1.031, ,912. ,972. 1+003. .885, 1.164. .878. .991. ,995, .920. 1.027. .724.

13 2.9. 2~9. 1.6. -3.4. -2.-0. -2.6. -2.4. -3.3. -3.i. -1.1. 2.s., 2,4, 2.4.

,735, 1.056. 1.1s1. +860, 1.165 *

  • 871. 1.153. .842. 1.149. 1.019,
  • 731; 3.0. 2_.5, 1.9, t. 8. - .1. -.3. -1.1. -.4. -.9. -1~1
  • 2.4.

. I I

,797,

  • 955. ,930. ,"606 *
  • 91.7. .914. .751. ME Ac' 15 5.3. 3. 9., 1. 4. 1. 2'
  • o. -.7 * -.s. DI :"F SALM INCORE MAP1407.46.36Z PWR1BK D@194.9a6PPMr53MWD/MTU.PT.6*5 CALCULATED POWER TILTS <NORMALIZED TO 1.000l

,9954, .9891 1.0114

. 1.0044

.9923 1.0273 lo 0197 ,*

.* 1.0208 1.0072 i.0143*,

.. .9948

  • 9994 .* .9848

,9797

  • 9846.
  • 9748 POSITIVE -Y- VS. NEGATIVE ~Y- TILT 1.0079 .9921 Page 16

FIGURE 7 MEAS.U[\ED AND. PEF:CENT, DIFF, OF FDHN SALM INCORE MAP1408184Z PWR,BK D@2281877PPM1lBOMWD/MTU1PT.S17 R P N M L K J H G F E D C B A

  • 7*65.
  • 938. .917 * .
  • sas * .924 *
  • 951+ .776 *

-.5. -.5. -1.a. -3.o. -1. 0.

  • 9,
  • 9.
  • 753. 1.095, .1.167. *-* 876. 1.154. .* 850 . 1.156 * ,971, 1 .165. 1.029, ,732.

-2.s.

2 6.4. . 6. 4.

,739, 1.048 * .

  • 932. 1.000. 1.024,

-.5 *.

. -* -3 .-6 *

.ass .* i,154,

-2.4.

  • ss2.

-1.1 * -.7.

,997, .

  • 990 *
  • 0. 3 *. 4 .*
  • 893. 1.029 * ,749, s.4. s.4. 4.5. -.5. -.s. -2. 5 ... -3 .1. -.3 .1. -3.2. -1.6.
  • 0. 3. 4. 6. 8 *

,935, 1.121. 1.166. 1.026,

4. 7.
  • 6. -1.5.

1~os5~ 1.129, 1.086. 110171 1.1671 1.123,

-2.9. -3.0. -2.4 * -1. 5.

" *8 *

.924. 1.077.

5 3.,,

4 t

,819. 1.221. 1.036. 1.193, 1.021. 1.132. .990,

  • 925. 19S4. 11125. 1.022. 1.198, 1. 037. 1. 212.

.s. -.6. 3, 7.

6"'3. 4.3. 3.7. -1.4. -1.4. - '1. -.7.

.. -1.9 .. -*1.2. 1.2. 3. 8.

1.000.

  • 913. 1.035. 1.041. 1.139, ,941, 1.os0. 1.08s. 1.041, .926. 1.123. 1.049._*1.052 *
  • 902.

6 6. 4. 3.9. 1.0. .1. -.a. -.a. .7. ,4, -1.0. -2.4+ -2.2. .9. ~ 2.6. 3. ~:

,9*9, 1.218. ,910.* 1.106.

  • 977. 1.055, 1.009, 1.11a. 1.006. 1.051. .983. 1.115 * .923. 1.210.

5 . .rt. 2 9 t7~Jt t 4 1+19~

. 4.

  • . 1.112.

-.2. -1.1. -.6.

970. 1.093. 1.155.

.6. 1.3. ,3,

.910. 1.130. 1.078.

-1.0. -

  • 4.
  • 6.

,973, 1.120. 1.203.

.912.

2.2. .7. -.9. -1.1. -.4. * .s. -.a. -1,7. -1.s. -.8. -,1. 1.4. 1.9.

I f 962 f 1.209, .916. 1.093 *.

  • 970. 1.050. .999. 1.087. '.990. 1.046. .9S1
  • 1.101. .914. 1.211.

9 .... 3. 6. -1.s. -1.1. -.4. -1.5. -1.2. -1.5. -.6. -.7. .9. 2.3 .

... '7 / ..; * .* 910. 1.054. 1.020. 1.127, ,932 *. 1.063. 1.082. 1.054, .923, i.125; i.019, 1*.oos. .895 *

10. 3t 7 3.6. 2.8. -1.9. -1.9. -1
  • 7
  • 1*1* - *2 *
  • 21~ -~.7. -2.1. -2.0. -1.7. 1. 9.

t

.802. 1.222. 1.045, 1.161. 1.000. 1.120. ,9S8. .93l. .996. 1.119. 1.016. 1.162 *

  • 902. 1.186.
  • 77E
11. 4 5.;

t -2.6. -2.4. - .3.

  • 2. *6 * -2 .5*. -1. 8 * -1. 8. -1.7. 1. 5.

,999, 1.093, 1.146. 1.008. 1.107, 11155. 1.109, 1.015, 1.161. 1.093, ,891 * .1.030 *.

12 2 .1. -.4. -2.0. -3.2. -3.2.

.. -1.0. -.7. -.9. -2.5. -2.0. -2.0. - .1. *7*

  • 703.

t 3 t

,997,

. 2.

  • 885.

-.a. -

.971 *

~

-.:i.;:).

,997,

-3.2.

  • .s81. 1.156 *

-3.2. -3.0.

.884. 1.001.

-2.9. -2.s.

  • 986.

-2.0.

,879 *

-1.5.

.9S71

~,. 8.

.700 *

- .1.

.710. 1.027, 1.164. .869. 1.161. .S64. 1.162. .860. 1.150, 1.014, .702.

-.a .

. 14

  • 4. -.2.
  • 780,

-1. 4 *

.938.

-2.0. -1. 9.,

  • 921 * .
  • 599 * .
  • 922+

-2.5.

.920 *

-2.0.

,754,

. .-1. 5. -.s .

ME{iS 15 1.5. -.5. -1.3. -1 .* 2. -1.2. -2.5. -2.0. DIFT SALM INCORE MAF'140S184Z PWR1BK D@2281877PPM11BOMWD/MTU,PT,5 1 7 CALCULATED POWER J-ILTS <NORMALIZED TO 1.000)

I 9979.

  • 9S98 *.

.9938 1.0088 1.0031 1.0197 1.0074

. ~- ....

1. 0165

.9980

  • . .* . .! 1_. 0135 .1.0072

.9970 .9911

.9854

  • 9866 *
  • 9842 POSITIVE -Y- VS, NEGATIVE -Y- TILT 1.0060 .9940 POSITIVE -X- VS. NEGATIVE -X- TILT

.9971 1.0029

.I . Page 17 SALM INCORE MAP1408184~ PWR!BK D@2281~77PPM1l80MWD/MTU1PT,5,7

FIGURE 8 1£ASUHED AHD PERCENT, DIFF, OF FDHN SALM INCOR~ MAP1409198,043Z PWRrBK D@228r815PPM1510MWD/MTU1PT.517 F\ P N M L K J 8 G F E D C B A

.759. .931. .. 911.

  • 58_7. .918. ,944, .770 *
  • 746. 1. 083.

-1.2.

1.157.

.-1.2 .. -2+4t

  • 872. 1. 152.

II -3+6+

  • .850.

. -1. 6

  • 1.155 .

.* 3.

  • 869.
  • 3.

1t022 * +72? *

-1.2. -1. 2.

. -2.9. -3.7. -2.6. -1. 4. -

  • 4. 3 .1.

t"." ~

.J+.J*

. 732+ *1.037. '.92~. ,993, 1.019.

  • 888. 1.154. .863. ,996. .987 * .889. 1.024.
  • 747.

4.4. 4.4. 3,6.  :....1.2. -1.2. -2.6. -3.1. -3.1. -3.2. -1. 8. -

  • 4. 3 .1 f 6.5 *
    • ~o. 1.119, 1.173, 1.033, 1.oss. 1.132, 1.08B. 1.01s. 1.163, 1.119,
  • -.8. ,-

'*(

'" -

  • 8. -2+7+ -215+ -2 t 2.+

. s~s. 1.207, 1.026. 1.188. 1.025. 1.137.

  • 9.96 *
  • 931 * .989. 1.126. 1.022. 1.193, 1.034, 1.2os . t I "/ .* ,

3.4.. 2+7+ .~. -.8. 3. 5 t 3. ::

. ?o~. 1t031. 1.040. 1.142,

  • 946. 1.065. 1.095, 1.049. .930. 1.127. 1,049+ 1.054 * .903 .

.o.

.J.**:J+ ..'.i+'J+ .4.
  • 907.- 1.103.
  • -,5. -.3.

.980. 1~061. 1.016.

1.2. +9+

1.127, 1.014,

.. -.3. -2.0.

1.058.

-1,8t

  • 989. 1.116 *

+9*+ L+i.J+

.926.

.::. + I 1+213 .

+ ..) ,.

7 - '1. - . 5. -.8. -.1.* 1.2. 1.9~ 1.0. -.4. 1. 9. 2 t 3. 3. *.:.

... 11..:.:-.. + 1.186. 1.110.

,973, 1.099. 1.163 * .918. 1.139. 1.086 *

  • 979. 1.122. 1.205. ..913 +
  • 9!JO,

- t 1 +

  • 908. 1.095 *

- f 9. -.9. ,J,, 1.1.

,975, 1.050; 1.008. 1.098 *** 999, 1. 054.

- .1.

-1. 0. - . 3.

.985

  • 1.102.
  • i .

.916. 1.211.

1. 9.

2 * .2. -

  • 0. -1.2. -1.3. -.4. .4. -
  • 6 .. - .~. -.s. -... 3. *-. 6. . 9.

t 87'7. 1. 037. 1.024, 1.130. .~38. 1.076. 1.094. 1.067. .930. 1.128. 1.009. ,894.

..:. ~ .:.:. .. 2. 1. 1. 0. -1.5t -1.5. -1.2. 2:2. .9. 1.4. -2.0. -1. 7 * -1.7.. 1.~1 * .!. * .'

j 79;_ + 1+205. 1+032+ 1.163. 1.011. 1.125, ,997, ~944. 1.oos. 1. 124. 1.017, 1.162. .982. 1.184.

  • 777'

-1.9. -1.6.

.!. l f 3.3 .

1. 03~.

'3. 3. -1

  • 6 . -2. 2. -1 *. 9.
  • 6.
  • sss. 1.091. 1.147. 1.010. 1.114. 1.164. 1.118. 1.021. 1.163: 1.095
  • 1
  • 3. 1 . 7.

. -1. 6.

  • 87'4, 1.029.
i.2 1. 4. -.6. -1.9. -3.0. -3.0. -.4. .2. -.o. -1.9. -1.6. -1 .. 6. .2. . Ci *

. 702.

  • 994.
  • 884. .973 * ,999,
  • 884. 1.161.
  • 889. 1.007 * .988 *
  • 884 *
  • 990 * .702
  • 13
  • 1. *1* -.9. -3.2. -3.0. -3.0. -2.6 * -2.5+ -2.3. -1. 7. -
  • 9 *. - *.4. . 2.

. 709. 1.021. 1.157.

  • 867. 1. 165 * .868. 1.166 * .861. 1.152. 1. 017. .705.

14 . 2. -.~.

~

-1.2. -1. 7 * -1.8. -1.7. -1.7. -2.4., -1.7. -.9. -.4.

  • 771.
  • 932 * .
  • 923 * ,603.
  • 924 * .919 * .755.

ME~iS 15

  • 4. -1.0 * -1 .-Ci** -1 .1. -2.4. -1.7. DIFT SALM INCDRE MAP1409198+043Z PWR1BK D@2281815PPM*510MWD/MTU1PT.5 1 7 CALCULATED POWER TILTS CNO~MALIZED TO 1.000J
  • 9969.
  • 9892

.9931 1.0062 1.0032

1. 0154 1. 0172
l. 0034 ,9998 -*--:****

1.0094

'. 1. oos:::;

.9.961 .9945

.9890

  • 9888.
  • 9892 POSITIVE -Y- V~ 1 NEGATIVE -Y- TILT 1.0047 .9953
Page 18

FIGURE 9 R P N H L

  • 753.

~

,922.

1EASURED AND PERCENT. DIFF. OF FDHN 1410r98.837X PWR,BK DW219r7B7PPHr534HWD/HTUrPT.6rBr5r7 J

,905.

H

.584.

G

,912

  • F

,935, E

    • 763.

D C B A 1

-1 *.3.

  • 746. 1.001. 1.1so.

-1.2.

.861. 1.145,

-1.7,

.847. 1.149,

.1. .o.

.860. 1.153, 1.021 * .726.

2 5.3. 5,3, -1.3. -1.1. -3.0. -3,9, -2.6. -1.2. -1.1. -.5. 2.4.

  • 927.
  • 998.
  • 988. .889, 1.021 * .741 *

,733, .1.039.

  • 990. 1.014. .886. 1.153 * .883.

3 3.7. -1.s * -3.1. ..,.2.9. -1.1. ..* 6. 2.4. 5,4 ..

1.062. *..* 928. 1.124. 1.115. 1.036. 1.089. 1.136. 1.092, 1.024. lol6"/, 1.120. .917.

,7, -1~5.

4

... 4,0.

-.9.

  • eo6. 1.203, 1.025. 1.191, 1.029, 1.141, 1.001.

-.9. .-2.9. -2.6. -2,7. -2~0.

.937. .~96.

  • 3. 2.s
  • 1.135. 1.020. 1.195, 1.031, 1.201 * .792.

5

  • 5,9, 3.6. 2.6. .5. ~*9* -.9. ,3, .o * -.1. -1.s. -1.1. .a. 3.2. 3,4, 4.1.

+8980 lr027t lo041, lo146t ,952. 1.072, 1.103. 1.057, ,930, 1.134, 1.os2. 1.os1. .894. .970.

6

  • 3.5. -.6. - ,.3, 1.4. -1.0. .9. 3,0, 4 .1.
  • I * * * ,994,
  • 970. 1.207 * ,9o5* 1.105.
  • 995, 1.069. 1~022. 1.132, 1.019, 1.065. 1.11~'. 1.200 * .961.

-.3. 1.s. -.J.

7

  • 5.o.
  • 607.

2.3.

.905. 1.184. 1.113.

-,9.* .1.

  • 979. 1.100. 1.110.

2.4, 1.2.

.916. 1.143, 1.092 *

  • 1*
  • 1 *

,904. 1.125. 1.2os.

2.s.

.912

  • 4.0 *

.609.

8

  • 2,5, 1.1. -.3. -1.0. -.9.* .s. 1.6. .5. -.7. -1.0. -.4. .o. ~1.4. 1.9. 2.9 *
    • +946. 1.193, ,905, 1.097,
  • 980, 1.063. 1.014. 1.102. 1.004. 1.059,
  • 989. 1.104, ,915. 1.205 * ."950
  • 9
  • 2,4, 1.2. -.3. -1.4. -1.4. -.4. ,7, -.3. -,3, -.a. -,4, *-.1. .a. 2.2. 2.a *
  • 889. 1.033, 1.026. 1,134, .942, 1.oe2. 1.101. 1.074, ,BB4. .947 *
  • a.
10. 2.s. -1.7.

.. -1,3, 1.0.

1.6. 1.9, 1. 7

  • 0788. 1.203. 1.033. 1.166. 1.016.* 1.131, 1~004. .948. 1.013. 1.120. 1.020. 1.165. ,902. 1.175,
  • 771.
11. 3.6.* -1,7. -2.2. -1.a. 1.3, 1.6. -2.1. -1.a. -1.a. -1 .* 7, 1.3
  • 1.037.
  • 092. 1.096. 1.1s2. 1.01s. 1;120. 1.161. 1.121. 1.023, 1.166, 1.090, .BBB, 1.023.

12 1.6.

  • 703.

-.3. -1,9,

,996.

  • 0es.

-2.0.

.974.

-2.9,

-.999.

-.2. .1.

.aa5. 1.160 *

-.1. -2.1. -1.1.

, BBB, 1 , 005,

-1.1.

.aes.

-.7.

  • 9B7.

.2 *

.697

  • 13 *o. -.o * -1.0. -3.1. -2.s. -2.e.

.-2.2. -1.1. -.9. -*. 7 *

  • 709. 1.019. 1.149. .857; 1.161. .866. 1.162. .ass. 1.149, 1.016. .703.

14 *o. -1,4. * -1 .* s * -1.6. -1.7. -* 1

  • 5. -1.a. -1.0. -.9 *
  • 764. 09240 ,919.
  • 601. .920 * .915 * ,753, MEAS ,

15 -

  • 1. -1.0 * -1;0. -.e. -1*.9. -1.4. DIFF l410r98,837X PWRrBK D9219r787PPHr534HWD/MTUrPT.6rB*5;7 CALCULATED POWER TILTS (NORMALIZED TO 1.000>

0°9964.

  • 9895 *

.9929 1.0063

  • 1.0030 1.0163
  • 1.0039 1.0166

.9984

.. 1.0101 1.0075 09967 * ,9940

.9B95

  • 9894.
  • 9896
  • POSITIVE -Y- VS, NEGATIVE -Y- TILT 1.0047 ,9953 Page 19

FIGURE 10 "EASURED AND PERCENT. DIFF. OF FDHN SALH INCORE "AP1411r100.045% PWk*BK D@228r787PPHr560HWU/HTUrPT~5r7

... *-~ P .N H * ... L * .K *. .J * ** .H .* '* ,G * ,F 0 ,E

  • D C B A
  • 756.
  • 927. .?>i2. .
  • 591.
  • 920.
  • 942.
  • 768
  • 1

" **

  • 7SO.
  • 1 i 088
  • 1
  • 15.2. . <868
  • 1 *.1s2 *
  • -1.6. -1.6. -2.3. .3.1. -1.4.
    • 952 *. 1
  • t 5e.

.1. .1.

.a10. 1.150. 1.020. .726.

-.6.

2  :....

,732*. 1.037.

6.0. '6,0.

  • 926.

. -1.6. -1.6. *-2.9.

  • 989. 1.014 * *see;

-3.6. -2.s.

1.1ss.

-1.3. -1.1.

.ass. 1.003,

  • 989
  • 2.1.

.887. 1.020 * ,742

  • 3 4*.4.

1.059.

4,4.

  • ~924.

3.8. -1.6. -1.6. -2.1. -3.o, 1.111. t.173. 1.034. 1.086. 1.131. l.089. 1.022. 1.166. 1.119.

.. -2.9~ -2,7. -1.6.

.918. 1.067.

5,9, 4

  • ..* . 3.8.

. . -.7.

. -2.9, -:-2.6. -2.6. -1.9. -1.3.

,995,

,909. 1.129. 1.02s. 1.195, 1.030.

.6. 4,5,

.... :.* sos. 1.206. 1.026. 1.1ae. 1.021. 1.139,*

5 .... ' 5.s. 3.4. 2.7. .6. -.6.. -.6.

  • 4.

.930.

-.2 *

.. -.3. -1.4. -.a. 1~2. 3,1.

.789 3.1

  • .: - .989.
  • 907. 1.033. 1.041, 1.143, ,949, 1.066. 1.095, 1.049, ,932, 1.129. 1.049, 1.oso * .968

.1. -.4.

I 6 *.

5.4. 3.2.

,973. 1.215.

.6..

.909. 1.105. .981. 1.063. 10017. 1.127. 1.014. 1.059 *

. . .. -.4. -1.a.

... 1.0.

  • 990. 1.116. .924. 1.209, 3.1

~961 7 *

  • . .610.
  • 1 ..

.1.

  • 974. 1.101. 1.165.

1.9.

.921. 1.141. 1~087 *

-.3 * .a.

,9eo *. 1.122. 1.204

  • 1.7. 3,3

.610 1.4. -.o. -.a. *-.a, .3. 1 .. 2.

  • 1. -.a * -1.0. -.3. .1. 1 .. 4. 2.5
    • -*** .952.*
    • .: .. 1.202 *.
  • 909. 1.097, ,977, 1.os9. *1.010. 1.101. 1.002. 1.055, ,997, 1.103, 1.200. .952

.. -.3. -.1.

9 *

  • .. .
  • 960.
  • 898. 1.035.
  • o. -1.0.

1.025~

-1.2.

1.132, ,940, *1.077~

.5.

1.097, 1,069 *

-.7 *

.931. 1.129, 1.023, 1.013

  • 1.9 *

.890.

2.4

.951.

10~. 2.2. .a. -1,4 .. -1.0. 2.3.

1.1. 1.6. -1!6' -1. 6. .-1. 3. 1.3. 1.3.

  • . ~*

.792; 1.2oe. i.035, 1.164. 1.012. 1.126. ,999. ,945, 1.010. 1.126. 1.019, 1.165. .986. 1.100. .774.

11.

t,. *

  • 1.034,

-1.7. .7.

.* 994,*1.091. 1.148. 1.011. 1.. 114. 1.165. 1.119, 1.023. 1 *.165. 1.097, 1.a. -1.7. -1.4 *. -1.3. 1.2, *

.,893. 1. 027.

1.2.

. 12 .. 1.3.

  • 698.

-1.0. -2.0. -2.e. -2.9.

.990 * .as1. .973. 1.000.

-.3.

.ass. 1.161.

.2.

.1. -1.1. -1.4. -1.4 *

.889. 1.007, ,995, .aao.

.o.

.987 *.

.6.

.101.

-.4. -.4. -.6.

13

  • 705. 1.010. 1.156.

-3.0.

  • 867. 1.166.

-3.0. -2.s.

  • 868. 1.166 *

-2.3. -1,9. -1,4.

.860. 1.149, 1.012 * .703.

.o.

l4 -.3. *"". 8.

-1.3.

-1.1.. -1.a.

  • 770. . .*.932.

~>o *

.923.

.. -1.1. -1.e.

.604. .923 *

-2 *.5.

.918. .753.

~.7.

HEAS.

15

  • 3. -1.0. -1.1.

.. -1.0~ -1.1 *

-2,5, -1,9,

  • DlFF
  • SALM INCORE HAP1411r100.045% PWRrBK D&22B*787PPHr560HWD/HJUrPT,5,7 CALCULATED POWER TILTS <NORMALIZED TO 1.000)

.*9966.

  • 9899 *

.9933 1.!)164

  • 1.0154 It * *
  • 1t 0065
  • 1. 0026 1.0103 1.0075 1.0041 * .9996
  • 9889.
  • 9891

.. ,9965 * ,9943

.9890 POSITIVE -Y- VS. NEGATIVE -Y- TILT 1.0046 .9954 POSITIVE -X- VS. NEGATIVE -X- TILT

.9985 1.0015 Page .20

APPENDIX A STARTUP TEST PROGRAM DESCRIPTION SALEM UNIT 1 CYCLE 4 The startup program is written such that there is a mandatory hold point at the zero, 50, and 100% testing plateaus. The Station Operating Review Committee reviews the data and makes a decision as to continued escalation of power. Deviations between measurement and design beyond established tolerances could call for a review of test data, a repeat of the measurement or a review of the safety analysis. Operation is always within FSAR and Technical Specification limits.

A-1

STARTUP TEST PROGRAM. DESCRIPTION SALEM UNIT 1 CYCLE 4 Test: Initial Criticality Initial Conditions:

0 Mode 3, Tave = 547 F, CB= 2000 ppm Shutdown Banks Withdrawn Control Banks Inserted Test

Description:

Pull control banks to D at 160 steps.

Dilute to criticality.

Checkout reactivity computer.

Acceptance Criteria:

Design:

Reactivity computer readings are within 4%

of doubling time measurements.

FSAR/T.S.:

Reactor must achieve criticality with the control banks above the zero power insertion limits.

A-2

STARTUP TEST PROGRAM DESCRIPTION SALEM UNIT 1 CYCLE 4 Test: Flux Mapping Initial Conditions:

HZP, ARO Test

Description:

Operate Flux Mapping System in accordance with Part 13 of the Reactor Engineering Manual Incore Flux Mapping System Operation".

Acceptance Criteria:

Design: Assembly Power Design + 10% for assembly Power > 0.9 Design+ 15% for assembly Power < 0.9 FSAR/T.S.:

Not applicable below 5% power.

A-3

STARTUP TEST PROGRAM DESCRIPTION SALEM UNIT l CYCLE 4 Rod Worth Measurements Initial Conditions:

HZP The rod exchange method is scheduled to measure all control bank worths. Based on the results of these measurements, additional measurements using the boron dilution method may be necessary.

Test

Description:

Determine the worth of the reference rod bank by using the boron dilution method. Exchange this reference bank with another bank while keeping the reactor critical and constant RCS boron concentration. Using the heights of the rod banks with respect to the reference bank, infer the equivalent boron dilution rod worths using analytical techniques and compare results to acceptance criteria.

Acceptance Criteria:

Design: Design value + 10% on total banks worth Design value + 15% on any individual bank Design values-are listed on attached Table.

FSAR/T. S.:

Worth of all rods less most reactive stuck rod must he 1.6% ~K/K.

A-4

STARTUP TEST PROGRAM DESCRIPTION SALEM UNIT 1 CYCLE 4 Test: Boron Endpoint Initial Conditions:

HZP Endpoint is run for the ARO configuration.

Test

Description:

Adjust RCS boron to near the just critical endpoint configuration. Move rods to endpoint while measuring additional worth on the reactivity computer.

i Acceptance Criteria:

~

r Design:

Design* + 50 ppm FSAR/T.S.:

Design* + 100 ppm

  • Design values on attached Table.

A-5

STARTUP TEST PROGRAM DESCRIPTION SALEM UNIT 1 CYCLE 4 Test: Isothermal Temperature Coefficient Initial Conditions:

HZP The coefficient is measured at the ARO rod configuration.

Test

Description:

0 Starting with Tave= 547 F, cooldown the primary system 0

approx. 5 F.

0 Heat the primary system back up to 547 F.

The X-Y recorder will plot reactivity vs. Tave.

Acceptance Criteria:

Design:

0 ARO: -3.3 + 3 pcm/

FSAR/T.S.:

. 0

(~K/K/)/ F <MTC* <0

-2.9 x 10

  • The design value of Doppler coefficient is subtracted from the measured isothermal measurement to derive the measured moderator temperature coefficient (MTC).

A-6

STARTUP TEST PROGRAM DESCRIPTION SALEM UNIT 1 CYCLE 4 Test: Power Coefficient Initial Conditions:

Reactor power is not changing. The Xenon concen-tration is within 3% of its equilibrium value.

This test is run twice during the startup program.

First at 47% power, then at 100%.

Test

Description:

Take a heat balance. Change turbine power between 2%

and 4% with the control rods in manual. The Tave and

~T recorders will monitor changes in these parameters as a function of time.

Acceptance Criteria:

Design:

Design value* + 30%

FSAR/T. S. :

Must fall between upper and lower curve assumed in FSAR accident analysis.

  • See attached curve (Figure A-1)

A-7

RX. ENG MAN PART 200

.:: :SALEM I, CYCLE IV ACCEPTANCE CRITERIA SHEET l PHYSICS RESULTS Parameter Test Measured Required Requirement Comments Measured Conditions Value Value Reference Isothermal Critical <Oxl0-4 AND T.S.3.1.1.( r;;.r>#cl Temperature Coef f icieni;.

HZP ARC.

Critical., HZP

-l* >-2.9xl0-4Ak/k/oF

-3.8+3

<Ox10-4 AND Ref. 2.3 ~

//Ir-C/B D lnst:=rted !Vfr >-2.9xl0-4Ak/k/°F

-4.5+3 T.S.3.1.1.4 Ref. 2.3 Critical Critical &~~

Boron Concentration HZP, ARO critical., HZP

\301 1317!,Scippm

{Cal. from ARO Boren)

. Ref. 2.3 PART .l.5 q

't C/B.D inserted (:!:. )ppm Ref. 2.2 tJ I""

Critical, HZP N.A. N.A.

C/B C inserted µ )(}-

Critical, HZP N.A. N.A.

C/B B inserted J )r:t Critical, HZP N.A. N.A.

C/B A inserted f\J \fr Power Figure 1 + 30%

- Ref. 2. 3 12*" I Coefficient 47% RTP /v. JJ Limits Figure of

2. Ref. 2 *.4 65 Figure 1 :!:. 30% Ref. 2.3

~RTP //, *~ ~ Limits of 1o0%:J

/ltJ ro Figure 2. Ref. 2.4 Reactivity Critical (Dquj:>le Time ~ llc<-7./...J J~

Computer HZP, controlling Reactivity + 4%) Ref. 2.3 Check on C/B D ~7 :H.>" + 1.07: '

.,. 2. 42. ; l* tl.9..

' I'- _Ll_ :!:. ;(. 5"~

Revie-d By~

~

{/?Al-ctor E!i4

  • eer)

APR ....o. mP?

.....rv.._

ltX .ENGR DEPT Salem I, Cycle 4 *Page 3 of 28

.. Refueling Test Sequence

Refueling Test Sequence SALEM I, *CYCLE IV

.ACCEPTANCE CRITERIA SHEET 2

  • ROD WORTH RESULTS ROD SWAP RESULTS ROD BANK TEST MEASURED DESIGN VALUE COMMENTS CONDITIONS. INTEGRAL REF. 2.3 WORTH AND TOLERANCE

- '{f.S'f""

SUM OF ROD SWAP

&ear -#7't"" 1

,0 '"9' 6561'~ 656 CONTROL BANKS TEST ONLY AND

  • SHUTDOWN BANKS e-ir.~ro-1(-f~
  • IF THE ACCEPTANCE CRITERIA IS NOT MET PERFORM ROD WORTH MEASUREMENTS USING DILUTION OF CONTROL BANKS D,C,B,AND A.

CONTROL BANK ROD WORTH RESULTS (DILUTION)

Rod Bank Test Measured Design Value comments Conditions Integral Ref. 2. 3 Worth and Tolerance Control ARO,  :!:.

D NIA-929 139

  • :t#

Control ~I J CB D IN, c N/A- 808  :!:. 121 it *' if; Control CB D,C IH,  :!:.

B *tJ/r+- 592 89

  • .:c
  • Control A

CB D,C,B IN, \

tv/A- 1137  :!:: 171

" llC :4C Control N/A Banks

. +)/A-:

3466  :!:. 347 at * ..

Sum -

    • IF THE ACCEPTANCE CRITERIA IS NOT MET CONTINUE ROD WORTH MEASUREMENTS IN ACCORDANCE WITH APPENDIX A.
      • IF THE ACCEPTANCE CRITERIA FOR ANY ONE BANK IS NOT

.WITHIN THE 15% ~LERANCE, EVALUATE SAFETY IMPLICATIONS.

Rev<ewed B~,f--

(R a r Eng1n l APR 8 1982 EX ENGB DEPT Rx. ENG MAN PART 200 Salem l:, Cycle 4 *

  • Paqe 4. ~f 28
  • ~

.Rx. ENG MAN PART 200

. SALEM I, CYCLE IV

  • ACCEPTANCE CRITERIA SHEET 3 FLUX MAP RESULTS Parameter Test Measured Required Requirement Measured Conditions value value Reference F6NH Nuclear

=

Critical, HZP, 11/0V

/1*.(Atta (Max) 70 6~ (Max) .

hed Code
!:_10% for F/A pwr~.9 /,75, (J.:3

+15% for F/A pwr<.9 Map) Tfor measures Thimbles)

Ref. 2.3 Enthalpy Hot Channel ~:" )t()-'J- "'

/,S~O I <1.55_9,-.0+0.~P)]

- '" 8'°1 T.S. 3.2.3 Factor

~i. s*5 ci. o+o. 2<1-Pl l T.S. 3.2.3

"' 95%

Map ll/ II /. '1)3' L,S~ '-'

.* FQ {Z)

Heat Flux Hot Channel Factor

=

Critical, HZP, l'liJV

.. 7S63

~(4.64) tj,

[K(z))

'16 *z,

~(4.64] [K{z)] 5'.

T.S. 3.2.2 (INFO)

T.S. 3.2.2

~:" JYo1- ~,//5"7 . f, 'If"  ::3

~(2.32) [K(z)) T.S. 3.2.2

~:s~l~LL /. 'i3~ > p~-~110 Critical, HZP, <F RTF <F L T.S. 3.2.2 TOP /, i°).,S- l> - xy - xy r F C

. XY *.  :~ l'IUD BOTL~ fi"'1 ~D 1.65 1.67 1.98 2.004

{INFO)

~omputed Radial Peaking ~a:" Jl/0 I--

TOP j. /,J'J~

BOT / .. i~.£ 1.65 1.67 f,fJ!!

l'j9.S-~

'3 T.S. 3.2.2 Factor

'*'~

I* 'l'l'I l 1.65 T.S. 3.2.2

~a! ' LI/IL 5 TOP BOT l.~ S'..J l f. 1.67 l,,)

Reviewed B~ ctor E g eer Salem 1, Cycle -4 Paqe S of 28 Refueling Test Sequence 81982 RX ENCR DE.~

QJ u

i::

0 QJ 0  ::s N 01

-20 QJ Ul

  • ~ -18

.µ II)

QJ E-4

~ t:J'I i::

CJ -16 *ri z .....

QJ fl:I  ::s

  • 'M

-111 &*

. &?

I.fl I -12 I

0 I

q:

"'11' t5 c..>

ffi -10 CD tl 0

t:J'I A.

NOTE 2.

N ffi 'M CJ rz.. A. 0 H

-8

~

~. 5 rJ)

D.

~

-6 MOTE I: *uPPU CORVP HOST llEOATIVE DOPPLER

-IJ DOPPLER OllLY POWER DEFECT :: -1.ei 61 llOTE 2: *LOWER CURVE* LEAST llEGATIVE

-2 DOPPLER ONLY POWER DEFECT :

I*

-o . .-r.it.*~

.' ~

G>

0 .....

0 0 20 110 60 80 100 >t u*

PERCENT POWER .

d