ML16090A058: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
| Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter:Attachment 3 to RBS-47668 Engineering Report No. ME-16-00002, Main Control Room Heat-up Analysis During Loss of HVAC Conditions for 24 hours IPl ATTACHMENT 9.1 ENGINEERING REPORT COVER SHEET & INSTRUCTIONS Engineering Report No. __ RB_S_-ME __ -1_6_-0_0_0_0_2_ Rev 0 ENTERGY NUCLEAR Engineering Report Cover Sheet Engineering Report Title: Page A of 303 Main Control Room Heat-Up Analysis During Loss of HV AC Conditions for 24 Hours Engineering Report Type: New 1:81 Revision D ' Cancelled D Superseded D Superseded by: Applicable Site(s): D IP2 D IP3 D JAF D PNPS D VY D WPO D D AN02 D EC:H D GGNS D RBS 1:81 WF3 D -*PLP D ECNo.62786 Report Origin: D Entergy [81 Vendor Vendor Document No.:ENTR-078-CALC-004 Prepared by: Quality-Related: D Yes [81 No ENERCON (Blake Holton I Guy Spilces I Chad Cramer) (See Page 1) Responsible Engineer (Print Name/Sign) Design Verified: Not Required Design Verifier (if required) (Print Name/Sign) Reviewed by: Paul Sicard (Acceptance Review) Reviewer (Print Name/Sign) Approved by: _____ E_d_D_ew_ee_s_e_,_(S_e_e_A_s_se_t_S_u_ite-'-) ____ _ Supervisor I Manager (Print Name/Sign) Date: (See Page 1) Date: -----Date: See AS Date: See AS EN-DC-147 REV 6 RBS-ME-16-00002 PAGEB r,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\'I Revislqn,>.1 ",Rec9rd.ofRevisfon *, :* :, . . ,,:>.. . ' .. . / * *.* " * * <, '" ( 000 Initial Issue. (2/10/16) EN-DC-147 Rev 6 I' ATTACHMENT 9.5 Entergy Engineering I RBS-ME-16-00002 Report Number Quality Related: D Yes Comment Section/ Page No. Number Review Comment TECHNICAL REVIEW COMMENTS AND RESOLUTION FORM PAGEC Engineering Report Technical Review Comments and Resolutions Form .Rev. I Title: Main Control Room Heat-Up Analysis During Loss of HVAC 000 Conditions for 24 Hours Special Notes or Instructions: Response/Resolution Preparer's Accept Initials N/A N/A For all comments and resolutions, See P2E attachments 10.002-10.005 in EC 62786. N/A N/A Verified/Reviewed By: I I Date I Resolved By: I Site/Department: I I Ph. I Date: _ I EN-DC-147 Rev 6 (PURPOSE/OBJECTIVE) RBS-M E-16-00002 PAGED This engineering report documents development review of ENERCON calculation ENTR-078-CALC-004, Revision 0, "Main Control Room Heat-Up Analysis During Loss.of HVAC Conditions for 24 Hours" (Attachment 1). This calculation is a refinement and extension of a previous MCR heatup calculation, ENTR-078-CALC-003, Rev. 3 (Reference 1). The thermal-hydraulic (GOTHIC) models used in the calculation incorporate changes and refinements to address the seven issues identified in calculation ENTR-078-CALC-003, Rev. 3 as documented in CR-RBS-2015-7237. The models also incorporate the latest control room heat load and heat load distribution information developed in EC61975 (Reference 2). The calculation has been reviewed by two independent third party reviewers, MPR Associates and Numerical Applications Inc. (NAI) (Zachry Nuclear Engineering);. References 1. ENTR-078-CALC-003, rev. 3, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours" 2. EC61975, "References for E-226 Calculation Revision" Attachments 1. ENTR-078-CALC-004, Rev. 0, "Main Control Room Heat-Up Analysis During Loss of HVAC Conditions for 24 Hours" EN-DC-147 Rev 6 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION COVER SHEET REV. 0 f.'.xcl?.Ue.nce-Evety projec.t; fVP.Fy day. PAGE NO. 1 of 303 " Title: Main Control Room Heat-Up Analysis During Loss of HVAC Client: ENTG Conditions for 24 Hours Project: ENTGRB167 -Item Cover Sheet Items Yes No 1 Does this calculation contain any open assumptions that require confirmation? (If YES, D Identify the assumptions) 2 Does this calculation serve as an "Alternate Calculation"? (If YES, Identify the design verified D calculation.) Design Verified Calculation No. 3 Does this calculation Supersede an existing Calculation? (If YES, identify the superseded D calculation.) Superseded Calculation No. Scope of Revision: N/A I Revision Impact on Results: N/A Study Calculation D Final Calculation Safety-Related D Non-Safety Related I (Print Name and Sign) 6. WU:r Date: 2/4/2016 Oriainator: for Blake Holton 6. WU>:f Date: 2/4/2016 Design Verifier: (Guv Spikes) .d)L_ Date: 2/5/2016 Accrover: (Chad Cramer) | {{#Wiki_filter:Attachment 3 to RBS-47668 Engineering Report No. ME-16-00002, Main Control Room Heat-up Analysis During Loss of HVAC Conditions for 24 hours IPl ATTACHMENT 9.1 ENGINEERING REPORT COVER SHEET & INSTRUCTIONS Engineering Report No. __ RB_S_-ME | ||
ENERCON fxceticnce ...... .f.-c>ry project. !'very do/ Revision 0 Page No. All Appendix No. Page No. Attachment 1-11 All CALC. NO. CALCULATION REV. REVISION STATUS SHEET PAGE NO. CALCULATION REVISION STATUS Date PAGE REVISION STATUS Revision 0 Page No. APPENDIX REVISION STATUS Revision No. Appendix No. 0 Description Initial Issue ' Page No. ENTR-078-CALC-004 0 2 of 303 Revision Revision No. | __ -1_6_-0_0_0_0_2_ | ||
ENERCON CALCULATION CONTROL SHEET Table of Contents CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 3 of 303 1. PURPOSE ......................................... , ............................................................................... 4 2. CONCLUSION .... : ..................... , ....................................................................................... 4 3. INPUT AND DESIGN CRITERIA ..................................................................................... 6 4. ASSUMPTIONS ........................... : ....... : ......................................................................... 11 5. METHOD OF ANALYSIS ............... , ................................................................................ 17 6. GOTHIC INPUT DEVELOPMENT ...... : .................................................................. , ........ 18 7. t=\ESULTS ....................................................................................................................... 45 8. REFERENCES ............................................................................................................... 52 Attachments Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP .............................................. 54 Attachment 2: Humidity Sensitivity ............................................ ***********************,************************** .. 170 Attachment 3: ERIS Panels Heat Load ....................................................................................... 171 Attachment 4: MCR Panel Data ................................................................................................... 176 Attachment 5: Additional Steel Heat Sinks ................................................................................... 180 Attachment 6: Email from Paul Sicard, 7/23/2015 ........................................................................ 187 Attachment 7: Email from Paul Sicard, 11912015 ........................................................................ 189 Attachment 8: PPC Heat Load Justification .................................................................................. 190 Attachment 9: GOTHIC Input File for Case 2 ............................................................................... 195 Attachment 1 O: GE Control Panel Heat Loads .............................................................. : .............. 299 Attachment 11: Climatic Data for Baton Rouge Airport ................................................................ 303 ENERCON CALCULATION CONTROL SHEET 1. PURPOSE CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 4 of 303 The purpose of this calculation is to determine the temperature of the River Bend Station (RBS) Main Control Room (MCR) for 24 hours following a Loss of HVAC. The GOTHIC model from Calculation* G13.18.12.4*027 (Reference 8.1) is used to develop this analysis. The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference "8.29) are also used in the development of this calculation. The four cases evaluated are listed below. | Rev 0 ENTERGY NUCLEAR Engineering Report Cover Sheet Engineering Report Title: Page A of 303 Main Control Room Heat-Up Analysis During Loss of HV AC Conditions for 24 Hours Engineering Report Type: New 1:81 Revision D ' Cancelled D Superseded D Superseded by: Applicable Site(s): | ||
* Case 1 (ENTR-078-CALC-004_Case 1.GTH): Loss of Offsite Power (LOOP) with mitigating actions defined In Table 4. A design basis maximum. outdoor temperature of 96°F with a diurnal temperature variation is assumed. | D IP2 D IP3 D JAF D PNPS D VY D WPO D D AN02 D EC:H D GGNS D RBS 1:81 WF3 D -*PLP D ECNo.62786 Report Origin: D Entergy [81 Vendor Vendor Document No.:ENTR-078-CALC-004 Prepared by: Quality-Related: | ||
D Yes [81 No ENERCON (Blake Holton I Guy Spilces I Chad Cramer) (See Page 1) Responsible Engineer (Print Name/Sign) | |||
Design Verified: | |||
Not Required Design Verifier (if required) | |||
(Print Name/Sign) | |||
Reviewed by: Paul Sicard (Acceptance Review) Reviewer (Print Name/Sign) | |||
Approved by: _____ E_d_D_ew_ee_s_e_,_(S_e_e_A_s_se_t_S_u_ite-'-) | |||
____ _ Supervisor I Manager (Print Name/Sign) | |||
Date: (See Page 1) Date: -----Date: See AS Date: See AS EN-DC-147 REV 6 RBS-ME-16-00002 PAGEB r,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\'I Revislqn,>.1 | |||
",Rec9rd.ofRevisfon | |||
*, :* :, . . ,,:>.. . ' | |||
.. | |||
. / * *.* " * * <, '" ( 000 Initial Issue. (2/10/16) | |||
EN-DC-147 Rev 6 I' ATTACHMENT 9.5 Entergy Engineering I RBS-ME-16-00002 Report Number Quality Related: | |||
D Yes Comment Section/ | |||
Page No. Number Review Comment TECHNICAL REVIEW COMMENTS AND RESOLUTION FORM PAGEC Engineering Report Technical Review Comments and Resolutions Form .Rev. I Title: Main Control Room Heat-Up Analysis During Loss of HVAC 000 Conditions for 24 Hours Special Notes or Instructions: | |||
Response/Resolution Preparer's Accept Initials N/A N/A For all comments and resolutions, See P2E attachments 10.002-10.005 in EC 62786. N/A N/A Verified/Reviewed By: I I Date I Resolved By: I Site/Department: | |||
I I Ph. I Date: _ I EN-DC-147 Rev 6 (PURPOSE/OBJECTIVE) | |||
RBS-M E-16-00002 PAGED This engineering report documents development review of ENERCON calculation ENTR-078-CALC-004, Revision 0, "Main Control Room Heat-Up Analysis During Loss.of HVAC Conditions for 24 Hours" (Attachment 1). This calculation is a refinement and extension of a previous MCR heatup calculation, ENTR-078-CALC-003, Rev. 3 (Reference 1). The thermal-hydraulic (GOTHIC) models used in the calculation incorporate changes and refinements to address the seven issues identified in calculation ENTR-078-CALC-003, Rev. 3 as documented in CR-RBS-2015-7237. | |||
The models also incorporate the latest control room heat load and heat load distribution information developed in EC61975 (Reference 2). The calculation has been reviewed by two independent third party reviewers, MPR Associates and Numerical Applications Inc. (NAI) (Zachry Nuclear Engineering);. | |||
References | |||
: 1. ENTR-078-CALC-003, rev. 3, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours" 2. EC61975, "References for E-226 Calculation Revision" Attachments | |||
: 1. ENTR-078-CALC-004, Rev. 0, "Main Control Room Heat-Up Analysis During Loss of HVAC Conditions for 24 Hours" EN-DC-147 Rev 6 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION COVER SHEET REV. 0 f.'.xcl?.Ue.nce-Evety projec.t; fVP.Fy day. PAGE NO. 1 of 303 " Title: Main Control Room Heat-Up Analysis During Loss of HVAC Client: ENTG Conditions for 24 Hours Project: | |||
ENTGRB167 | |||
-Item Cover Sheet Items Yes No 1 Does this calculation contain any open assumptions that require confirmation? | |||
(If YES, D Identify the assumptions) 2 Does this calculation serve as an "Alternate Calculation"? | |||
(If YES, Identify the design verified D calculation.) | |||
Design Verified Calculation No. 3 Does this calculation Supersede an existing Calculation? | |||
(If YES, identify the superseded D calculation.) | |||
Superseded Calculation No. Scope of Revision: | |||
N/A I Revision Impact on Results: | |||
N/A Study Calculation D Final Calculation Safety-Related D Non-Safety Related I (Print Name and Sign) 6. WU:r Date: 2/4/2016 Oriainator: | |||
for Blake Holton 6. WU>:f Date: 2/4/2016 Design Verifier: | |||
(Guv Spikes) .d)L_ Date: 2/5/2016 Accrover: | |||
(Chad Cramer) | |||
ENERCON fxceticnce | |||
...... .f.-c>ry project. | |||
!'very do/ Revision 0 Page No. All Appendix No. Page No. Attachment 1-11 All CALC. NO. CALCULATION REV. REVISION STATUS SHEET PAGE NO. CALCULATION REVISION STATUS Date PAGE REVISION STATUS Revision 0 Page No. APPENDIX REVISION STATUS Revision No. Appendix No. 0 Description Initial Issue ' Page No. ENTR-078-CALC-004 0 2 of 303 Revision Revision No. | |||
ENERCON CALCULATION CONTROL SHEET Table of Contents CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 3 of 303 1. PURPOSE ......................................... | |||
, ............................................................................... | |||
4 2. CONCLUSION | |||
.... : ..................... | |||
, ....................................................................................... | |||
4 3. INPUT AND DESIGN CRITERIA | |||
..................................................................................... | |||
6 4. ASSUMPTIONS | |||
........................... | |||
: ....... : ......................................................................... | |||
11 5. METHOD OF ANALYSIS | |||
............... | |||
, ................................................................................ | |||
17 6. GOTHIC INPUT DEVELOPMENT | |||
...... : .................................................................. | |||
, ........ | |||
18 7. t=\ESULTS | |||
....................................................................................................................... | |||
45 8. REFERENCES | |||
............................................................................................................... | |||
52 Attachments Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP .............................................. | |||
54 Attachment 2: Humidity Sensitivity | |||
............................................ | |||
***********************,************************** | |||
.. 170 Attachment 3: ERIS Panels Heat Load ....................................................................................... | |||
171 Attachment 4: MCR Panel Data ................................................................................................... | |||
176 Attachment 5: Additional Steel Heat Sinks ................................................................................... | |||
180 Attachment 6: Email from Paul Sicard, 7/23/2015 | |||
........................................................................ | |||
187 Attachment 7: Email from Paul Sicard, 11912015 | |||
........................................................................ | |||
189 Attachment 8: PPC Heat Load Justification | |||
.................................................................................. | |||
190 Attachment 9: GOTHIC Input File for Case 2 ............................................................................... | |||
195 Attachment 1 O: GE Control Panel Heat Loads .............................................................. | |||
: .............. | |||
299 Attachment 11: Climatic Data for Baton Rouge Airport ................................................................ | |||
303 ENERCON CALCULATION CONTROL SHEET 1. PURPOSE CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 4 of 303 The purpose of this calculation is to determine the temperature of the River Bend Station (RBS) Main Control Room (MCR) for 24 hours following a Loss of HVAC. The GOTHIC model from Calculation* | |||
G13.18.12.4*027 (Reference 8.1) is used to develop this analysis. | |||
The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference "8.29) are also used in the development of this calculation. | |||
The four cases evaluated are listed below. | |||
* Case 1 (ENTR-078-CALC-004_Case 1.GTH): Loss of Offsite Power (LOOP) with mitigating actions defined In Table 4. A design basis maximum. | |||
outdoor temperature of 96°F with a diurnal temperature variation is assumed. | |||
* Case 2 . (ENTR-078-CALC-004_Case 2.GTH): Normal operation with mitigating actions defined in Table 5. A design basis maximum outdoor temperature of 96°F with a diurnal temperature variation is assumed. | * Case 2 . (ENTR-078-CALC-004_Case 2.GTH): Normal operation with mitigating actions defined in Table 5. A design basis maximum outdoor temperature of 96°F with a diurnal temperature variation is assumed. | ||
* Attachment 1 Case (ENTR-078-CALC-004_Attachment 1.GTH): Normal operations with HVC-ACU1A(B) aligned per AOP-0060 to service water (SWP) at one hour. | * Attachment 1 Case (ENTR-078-CALC-004_Attachment 1.GTH): Normal operations with HVC-ACU1A(B) aligned per AOP-0060 to service water (SWP) at one hour. | ||
* Attachment 2 Case (ENTR-078-CALC-004_Attachment 2.GTH): Same as Case 2, except using the Main Control Room design basis maximum initial humidity of 70%. ,) Note that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. The second means to respond to a Loss of HVAC would be to cross-tie Service Water to provide cooling to HVC-ACU units. The effectiveness of this action is shown in the calculated temperature response of Attachment 1 to this calculation. The third means of providing Main Control Room temperature control following a loss of HVAC is to manually start the MCR smoke removal fan and remove ceiling tiles, an established and well-trained operator action per the AOP-0050, Station Blackout procedure (Reference 8.14). These actions provide forced air flow through the MCR and increase the effective air volume subject to heatup. These are the mitigating actions modeled in Cases 1 and 2 of this calculation. 2. CONCLUSION The results of the three cases are listed in Table 1 below. The average temperature results are given at 1, 2, 4, and 24 hours and the maximum cell temperature is also recorded. Note that the maximum cell temperature reported is the temperature in the lower and middle elevation subvolumes as this is where the operators and pertinent equipment reside. As shown in the table, average and maximum cell (local) temperatures reach their peak values at 2 hours in Case 2 corresponding to the key mitigating action of starting the smoke removal fan (see Table 5). The peak average. and maximum cell temperatures in the Case 1 and Attachment 1 analyses occur at 24 hours. Additional results, including MCR transient temperatures and temperature distribution, are included in Section 7. | * Attachment 2 Case (ENTR-078-CALC-004_Attachment 2.GTH): Same as Case 2, except using the Main Control Room design basis maximum initial humidity of 70%. ,) Note that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. The second means to respond to a Loss of HVAC would be to cross-tie Service Water to provide cooling to HVC-ACU units. The effectiveness of this action is shown in the calculated temperature response of Attachment 1 to this calculation. | ||
Case 1 2 Att. 1 \ ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 5 of 303 Table 1: MCR Temperatures for Cases 1, 2 and Att. 1 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell Description (Of) (of) (of) (of) Tavci (°F) Temo {°F) LOOP Heat Load. Mitigating 104.0 103.3 106.5 111.4 111.4 (24 hrs) 117.8 (24 hrs). actions based on Table 4. Normal Operation Heat ' Load. Mitigating actions 109.5 116.1 109.0 108.6 116.1 (2.0hrs) 121.8 (2.02 hrs) based on Table 5. -Normal Operation Heat Load. HVC-ACU1 to 110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) SWP at 1 hour. ( This is a standalone calculation derived from the RBS Station Blackout MCR heatup GOTHIC model of calculation G13.18.12.4-027 (Reference 8.1 ). Note that ariother, similar evaluation of the MCR temperature after loss of HVAC was completed in calculation ENTR-078-CALC-003 (Reference 8.29). This calculation (ENTR-078-CALC-004) reproduces information and the limiting case scenarios documented in the Reference 8.29 calculation. The current | The third means of providing Main Control Room temperature control following a loss of HVAC is to manually start the MCR smoke removal fan and remove ceiling tiles, an established and well-trained operator action per the AOP-0050, Station Blackout procedure (Reference 8.14). These actions provide forced air flow through the MCR and increase the effective air volume subject to heatup. These are the mitigating actions modeled in Cases 1 and 2 of this calculation. | ||
* calculation therefore provides a streamlined calculation of the Main Control Room temperature response to a loss of HVAC. Lessons learned from the development of the Reference 8.29 models, plus comments provided by independent reviewers (Numerical Applications, Inc. and MPR Associates, Inc.), are incorporated into the GOTHIC models used in this calculation. The models used in this calculation also incorporate changes to address the seven issues identified in the Reference 8.29 control room heatup models identified in CR-RBS-2015-7237. These issues and their resolution in this calculation are detailed below. 1. The heat capacity of structural steel has been corrected and verified through two independent references (Section 3.15 and Table 2). | : 2. CONCLUSION The results of the three cases are listed in Table 1 below. The average temperature results are given at 1, 2, 4, and 24 hours and the maximum cell temperature is also recorded. | ||
* 2. The value used for the density of concrete has been reviewed and verified through two independent references (Section 3.15, Table 2). 3. The control room floor modeling has been reviewed and revised, removing any credit for the aluminum honeycomb support structure and including modeling of the hardwood floor tiles (Section 3.5 and Figure 1, 2 and 3, Section 4.10). 4. _,The mesh size of the GOTHIC subdivided volumes representing the upper.and lower main __ control room regions has been increased to 16 (x-direction) and 8 (y-direction) nodes. The lower main control room subvolumes have also been increased to 3 (z-direction) nodes (Section 6.1 ). d 5. Appropriate momentum transport options are included in flow paths between subvolumes and between a subvolume and lumped volume or boundary condition (Section 6.6). 6. Solar heat affects are included in the thermal 'conductors representing the control room external walls and roof in all GOTHIC models (Section 6.3). 7. The control panels in the control room, previously modeled as passive heat sinks (thermal conductors) with initial surface temperature equal to the MCR temperature, have been revised to include an initial control panel internal heat rate equal to the electrical heat load ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 6 of 303 within the enclosure. With this approach, the initial temperature of the panel conductors is greater than 85°F; significantly above measured control panel temperatures. The internal heat rate in the control panel thermal conductors is shut off after the first time step so that' any residual heat in the panels is released to the MCR. * ' 3. INPUT AND DESIGN CRITERIA 3.1. This model is developed from the GOTHIC model in Reference 8.1. All changes made from the model in Reference 8.1 are documented in this calculation.1 All inputs from Reference 8.1 were verified for this calculation. Inputs retained from Reference 8.1 include: | Note that the maximum cell temperature reported is the temperature in the lower and middle elevation subvolumes as this is where the operators and pertinent equipment reside. As shown in the table, average and maximum cell (local) temperatures reach their peak values at 2 hours in Case 2 corresponding to the key mitigating action of starting the smoke removal fan (see Table 5). The peak average. | ||
* Dimensional Inputs for the MCR volumes (e.g. net free volume, hydraulic diameter, elevation, height) | and maximum cell temperatures in the Case 1 and Attachment 1 analyses occur at 24 hours. Additional | ||
: results, including MCR transient temperatures and temperature distribution, are included in Section 7. | |||
Case 1 2 Att. 1 \ ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 5 of 303 Table 1: MCR Temperatures for Cases 1, 2 and Att. 1 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell Description (Of) (of) (of) (of) Tavci (°F) Temo {°F) LOOP Heat Load. Mitigating 104.0 103.3 106.5 111.4 111.4 (24 hrs) 117.8 (24 hrs). actions based on Table 4. Normal Operation Heat ' Load. Mitigating actions 109.5 116.1 109.0 108.6 116.1 (2.0hrs) 121.8 (2.02 hrs) based on Table 5. -Normal Operation Heat Load. HVC-ACU1 to 110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) SWP at 1 hour. ( This is a standalone calculation derived from the RBS Station Blackout MCR heatup GOTHIC model of calculation G13.18.12.4-027 (Reference 8.1 ). Note that ariother, similar evaluation of the MCR temperature after loss of HVAC was completed in calculation ENTR-078-CALC-003 (Reference 8.29). This calculation (ENTR-078-CALC-004) reproduces information and the limiting case scenarios documented in the Reference 8.29 calculation. | |||
The current | |||
* calculation therefore provides a streamlined calculation of the Main Control Room temperature response to a loss of HVAC. Lessons learned from the development of the Reference 8.29 models, plus comments provided by independent reviewers (Numerical Applications, Inc. and MPR Associates, Inc.), are incorporated into the GOTHIC models used in this calculation. | |||
The models used in this calculation also incorporate changes to address the seven issues identified in the Reference 8.29 control room heatup models identified in CR-RBS-2015-7237. | |||
These issues and their resolution in this calculation are detailed below. 1. The heat capacity of structural steel has been corrected and verified through two independent references (Section 3.15 and Table 2). | |||
* 2. The value used for the density of concrete has been reviewed and verified through two independent references (Section 3.15, Table 2). 3. The control room floor modeling has been reviewed and revised, removing any credit for the aluminum honeycomb support structure and including modeling of the hardwood floor tiles (Section 3.5 and Figure 1, 2 and 3, Section 4.10). 4. _,The mesh size of the GOTHIC subdivided volumes representing the upper.and lower main __ control room regions has been increased to 16 (x-direction) and 8 (y-direction) nodes. The lower main control room subvolumes have also been increased to 3 (z-direction) nodes (Section 6.1 ). d 5. Appropriate momentum transport options are included in flow paths between subvolumes and between a subvolume and lumped volume or boundary condition (Section 6.6). 6. Solar heat affects are included in the thermal 'conductors representing the control room external walls and roof in all GOTHIC models (Section 6.3). 7. The control panels in the control room, previously modeled as passive heat sinks (thermal conductors) with initial surface temperature equal to the MCR temperature, have been revised to include an initial control panel internal heat rate equal to the electrical heat load ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 6 of 303 within the enclosure. | |||
With this approach, the initial temperature of the panel conductors is greater than 85°F; significantly above measured control panel temperatures. | |||
The internal heat rate in the control panel thermal conductors is shut off after the first time step so that' any residual heat in the panels is released to the MCR. * ' 3. INPUT AND DESIGN CRITERIA 3.1. This model is developed from the GOTHIC model in Reference 8.1. All changes made from the model in Reference 8.1 are documented in this calculation. | |||
1 All inputs from Reference 8.1 were verified for this calculation. | |||
Inputs retained from Reference 8.1 include: | |||
* Dimensional Inputs for the MCR volumes (e.g. net free volume, hydraulic | |||
: diameter, elevation, height) | |||
* Initial temperature in the lower MCR (CV1) volume of 75°F and the initial *temperature in the upper MCR (CV2) volume of 81°F .. | * Initial temperature in the lower MCR (CV1) volume of 75°F and the initial *temperature in the upper MCR (CV2) volume of 81°F .. | ||
* The initial relative humidity of 20% for both MCR volumes. I | * The initial relative humidity of 20% for both MCR volumes. | ||
I | |||
* Ceiling tile removal sequence. | * Ceiling tile removal sequence. | ||
* Metal heat sinks above suspended ceiling. 3.2. The electrical heat load in the . MCR for Case 1 (LOOP) i.s do'cumented in E-226 (Reference 8.2), Appendix E and EC61975 (Reference 8.36). Development of the heat load for Case 1 is described in Section 6.5. 3.3. The electrical heat load in the MGR for Case 2 and Attachment 1 (normal operations) is documented in E-226 (Reference 8.2), Appendix A and EC61975 (Reference 8.36). Development of the heat load for Case 2 and Attachment 1 is described in Section 6.5. 3.4. The sensible and latent:heat load due to each operator in the MCR is based on the total heat gain for an adult male for moderately active office work, 475 BTU/hr (Reference 8.13, Chapter 18, Table 1). 3.5. A GOTHIC thermal conductor representing the floor of the lower MCR is added to the models in this analysis that was not included in the Reference 8.1 model. The MCR floor consists of a concrete base floor and a raised floor section with removable wood panels (false floor). Longitudinal and lateral steel structures provide support and form cable raceways for routing cables to the control panels (Reference 8.8 and 8.28). The concrete / base floor of the MCR is 11 inches thick based on the thickness of the concrete conductors used in Reference 8.7. The air gap thickness of the MCR floor is one foot, *with the false floor having a thickness of 1-5/8" (Reference 8.8). Reference 8.8 shows the bottom of false floor elevation at 136' and the top of the false floor elevation at 136' -1 5(8". Figure 1 and 2 show the false floor panels. | * Metal heat sinks above suspended ceiling. | ||
CALC. NO. ENTR-078-CALC-004 F:;J ENERCON CALCULATION CONTROL SHEET REV. 0 f.vrtyda,. PAGE NO. 7 of 303 Figure 1: False Floor Picture Figure 2: Side View of False Floor Panel CALC. NO. ENTR-078-CALC-004 | 3.2. The electrical heat load in the . MCR for Case 1 (LOOP) i.s do'cumented in E-226 (Reference 8.2), Appendix E and EC61975 (Reference 8.36). Development of the heat load for Case 1 is described in Section 6.5. 3.3. The electrical heat load in the MGR for Case 2 and Attachment 1 (normal operations) is documented in E-226 (Reference 8.2), Appendix A and EC61975 (Reference 8.36). Development of the heat load for Case 2 and Attachment 1 is described in Section 6.5. 3.4. The sensible and latent:heat load due to each operator in the MCR is based on the total heat gain for an adult male for moderately active office work, 475 BTU/hr (Reference 8.13, Chapter 18, Table 1). 3.5. A GOTHIC thermal conductor representing the floor of the lower MCR is added to the models in this analysis that was not included in the Reference 8.1 model. The MCR floor consists of a concrete base floor and a raised floor section with removable wood panels (false floor). Longitudinal and lateral steel structures provide support and form cable raceways for routing cables to the control panels (Reference 8.8 and 8.28). The concrete | ||
* ENERCON ' CALCULATION CONTROL SHEET REV. 0 n<-t--Evtty0'"Jt'r:t *v ''Y'iay: PAGE NO. 8 of 303 3.6. The heat load from the Power Generation Control Complex (PGCC) raceways is modeled in the air gap of this composite conductor (see Section 6.5). The steel lateral structures that would act as heat sinks are conservatively neglected. Figure 3 shows the under floor area, including the streel structures and cables not modeled in the GOTHIC calculation that would act as heat sinks or thermal inertia for the heat load. Figure 3: Under Floor Area 3.7. A GOTHIC thermal conductor representing the concrete ceiling of the upper MCR is added to the models in this analysis. The surface area and thickness of the concrete is determined from Reference 8.7 as 10,656 ft2 and 24 inches respectively. 3.8. A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the models in this analysis. The surface area of the ceiling tiles is determined by subtracting the amount of ceiling tile surface area that is removed when the tiles are opened, from the total surface area of the ceiling shown in Reference 8.7 as 10,656 ft2. This conservatively underestimates the amount of tile surface area that would be present during the beginning of the event before the tiles are opened by operator actions. 3.9. Door CB136-9 is a 3'x7' doorway (Reference 8.10 and 8.11). Reference 8.11 shows the door on elevation 157'-8" that opens from stairwell 1 to the atmosphere (CB157-2) has the same dimensions as door CB136-9. This door is therefore modeled as a 3'x7' doorway. 3.10. The dimensions for stairwell 1 are documented in Reference 8.11. The stairwell starts at elevation 98' and goes to elevation 157'-8", with a 7' door. The length and width dimensions are shown as 21 '-8" and 8'-3". The MCR temperature response is expected to be insensitive to the dimensions of the stairway volume as it is a pass through volume from the atmosphere to the MGR. | / base floor of the MCR is 11 inches thick based on the thickness of the concrete conductors used in Reference 8.7. The air gap thickness of the MCR floor is one foot, *with the false floor having a thickness of 1-5/8" (Reference 8.8). Reference 8.8 shows the bottom of false floor elevation at 136' and the top of the false floor elevation at 136' -1 5(8". Figure 1 and 2 show the false floor panels. | ||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 9 of 303 3.11. The MCR smoke removal tan (HVC-FN9) draws 10, 125 cfm from the MCR (13,200 CFM -2850 CFM -225 CFM, per Reference 8.12). 3.12. Section 4.5.4 of the GE Specification for Main Control Room panels, specification 22A3888 (RBS vendor document 0242.411-000-009, Reference 8.16) require: Apparatus shall be suitable for continuous operation within the panels, or benchboard with a normal and abnormal maximum ambien_t air inlet temperature as specified in the BWR Equipment Environmental Interface Data Specification (A62-4270). Allowance shall be made for the temperature rise in the cubicle due to heat given off by other equipment in the same cubicle, when considering individual components the maximum temperature in a panel, or benchboard, shall not exceed 122°F (50°C) under the 3.13. Pl D-22-098 (Reference 8.12) shows an exhaust flow from the kitchen of 500 cfm, and an exhaust flow from the toilet of 300 cfm, which are modeled in Case 2. EE-027 A (Reference 8.26) shows the toilet and kitchen areas as being in the center of the MCR on east side. Therefore, the exhaust flow path for the toilet/kitchen fans is modeled in subvolume 1s374 on the up.per subvolume level in the east-center of the MyR for Case 2. ) 3.14. Door CB136-9 is modeled in the southwest corner of the lower MCR volume in subvolumes 1s14 (lower door and fan) and 1s142 (upper door) based on review of Reference 8.3 and 8.26 .. , 3.15. The properties for the materials used in the analysis are listed in Table 2 and 3 below. Values used in the calculation were validated with respect to the independent reference provided in the last column of Table 2. / 3.16. The effects of solar irradiation on the control roC>m walls and ceiling are included in this model. Solar irradiation is modeled using the "Sol-Air'' Methodology. The Sol-Air temperatures are calculated based on the methodology of Reference 8.13 using climatic data for the Baton Rouge Ryan Airport (Attachment 11 ). The sol-air temperature calculated for the roof is applied to the roof and all sides of the building. This is conservative as the sol-air temperature calculated for the* roof is the greater than for the sides of the building . . This sol-air temperature is applied as a "Sp Ambient & HTC" with the convective heat transfer coefficient of 4.0 from Assumption 4.6 applfed on the "B" side of the conductors representing the walls and roof. The effects of shading are conservatively neglected. See ' I Section 6.3 for more details. r / | CALC. NO. ENTR-078-CALC-004 F:;J ENERCON CALCULATION CONTROL SHEET REV. 0 f.vrtyda,. | ||
) CALCULATION CONTROL SHEET ENERCON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 10 of 303 Table 2: Solid Material Prop_erties Material Density Thermal Specific Reference Independent (lbm/ft3) Conductivity Heat Used in Reference (BTU/hr-ft-F) (BTU/lbm-F) -Calculation Steel 484 21.0 0.116 8.23. Sec. 2 8.13, Ch. 33, Table 28 Table 3 Concrete1 131.5 0.64 0.21 8.23. Sec. 2 8.13 Table 29 / Hardboard 55 0.068 0.32 8.13. Ch. 26, 8.24 Table4 Acoustical 18 0.029 0.19 8.13. Ch. 26, N/A2 Tile *Table 4 '-1. The density and thermal conductivity values are determined by averaging the range of values given in Reference 8.23 (119-144 lbm/ft3 density and 0.47-0.81 Btu/hr-ft-°F conductivity). These values are within the range of the values for sand and gravel or stone aggregate concretes provided in (Reference 8.13) (130 lbm/ft3 density, *o.58-1.08 Btu/hr-ft-°F conductivity, 0.19-024 Btu/lbm-F specific heat). ,_ 2. No independent reference found for Acoustical Tile. The properties of air vary with temperature more so than the solid materials used. Therefore, a temperature distribution for the properties of air is used based on Reference 8.24 shown in Table 1 3: Vafues were confirmed to be conservative and reasonable from Reference 8.25, Appendix I. Note that these air properties are only used in the gap of the composite conductor representing the floor and do not have a significant effect on the results of the calculation. | PAGE NO. 7 of 303 Figure 1: False Floor Picture Figure 2: Side View of False Floor Panel CALC. NO. ENTR-078-CALC | ||
CALC. NO*. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 11 of 303 Table 3: Air Properties Temperature (F) Density (lbm/ft3) Thermal Conductivity Specific Heat (BTU/hr-ft-F) (BTU/lbm-F) 60 0.07633 0.01433 0.2404 80 0.07350 0.01481 0.2404 100 0.0709 0.01529 0.2405 150 0.06507 0.01646 0.2406 300 0.0522 0.01985 0.2423 4. ASSUMPTIONS 4.1. Ten operators are assumed to be in the MCR during the event. This is conservative as AOP-0060 (Reference 8.6, Section 5.1.6) directs non-essential personnel to leave the control room during a Loss of HVAC. The operators, and thus the latent and sensible heat load due to each operator, are assumed to be distributed in the control room as follows: | -004 | ||
* ENERCON ' CALCULATION CONTROL SHEET REV. 0 n<-t--Evtty0'"Jt'r:t | |||
*v ''Y'iay: | |||
PAGE NO. 8 of 303 3.6. The heat load from the Power Generation Control Complex (PGCC) raceways is modeled in the air gap of this composite conductor (see Section 6.5). The steel lateral structures that would act as heat sinks are conservatively neglected. | |||
Figure 3 shows the under floor area, including the streel structures and cables not modeled in the GOTHIC calculation that would act as heat sinks or thermal inertia for the heat load. Figure 3: Under Floor Area 3.7. A GOTHIC thermal conductor representing the concrete ceiling of the upper MCR is added to the models in this analysis. The surface area and thickness of the concrete is determined from Reference 8.7 as 10,656 ft2 and 24 inches respectively. | |||
3.8. A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the models in this analysis. The surface area of the ceiling tiles is determined by subtracting the amount of ceiling tile surface area that is removed when the tiles are opened, from the total surface area of the ceiling shown in Reference 8.7 as 10,656 ft2. This conservatively underestimates the amount of tile surface area that would be present during the beginning of the event before the tiles are opened by operator actions. 3.9. Door CB136-9 is a 3'x7' doorway (Reference 8.10 and 8.11). Reference 8.11 shows the door on elevation 157'-8" that opens from stairwell 1 to the atmosphere (CB157-2) has the same dimensions as door CB136-9. | |||
This door is therefore modeled as a 3'x7' doorway. | |||
3.10. The dimensions for stairwell 1 are documented in Reference 8.11. The stairwell starts at elevation 98' and goes to elevation 157'-8", with a 7' door. The length and width dimensions are shown as 21 '-8" and 8'-3". The MCR temperature response is expected to be insensitive to the dimensions of the stairway volume as it is a pass through volume from the atmosphere to the MGR. | |||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 9 of 303 3.11. The MCR smoke removal tan (HVC-FN9) draws 10, 125 cfm from the MCR (13,200 CFM -2850 CFM -225 CFM, per Reference 8.12). 3.12. Section 4.5.4 of the GE Specification for Main Control Room panels, specification 22A3888 (RBS vendor document 0242.411-000-009, Reference 8.16) require: | |||
Apparatus shall be suitable for continuous operation within the panels, or benchboard with a normal and abnormal maximum ambien_t air inlet temperature as specified in the BWR Equipment Environmental Interface Data Specification (A62-4270). | |||
Allowance shall be made for the temperature rise in the cubicle due to heat given off by other equipment in the same cubicle, when considering individual components the maximum temperature in a panel, or benchboard, shall not exceed 122°F (50°C) under the 3.13. Pl D-22-098 (Reference 8.12) shows an exhaust flow from the kitchen of 500 cfm, and an exhaust flow from the toilet of 300 cfm, which are modeled in Case 2. EE-027 A (Reference 8.26) shows the toilet and kitchen areas as being in the center of the MCR on east side. Therefore, the exhaust flow path for the toilet/kitchen fans is modeled in subvolume 1s374 on the up.per subvolume level in the east-center of the MyR for Case 2. ) 3.14. Door CB136-9 is modeled in the southwest corner of the lower MCR volume in subvolumes 1s14 (lower door and fan) and 1s142 (upper door) based on review of Reference 8.3 and 8.26 .. , 3.15. The properties for the materials used in the analysis are listed in Table 2 and 3 below. Values used in the calculation were validated with respect to the independent reference provided in the last column of Table 2. / 3.16. The effects of solar irradiation on the control roC>m walls and ceiling are included in this model. Solar irradiation is modeled using the "Sol-Air'' | |||
Methodology. | |||
The Sol-Air temperatures are calculated based on the methodology of Reference 8.13 using climatic data for the Baton Rouge Ryan Airport (Attachment 11 ). The sol-air temperature calculated for the roof is applied to the roof and all sides of the building. | |||
This is conservative as the sol-air temperature calculated for the* roof is the greater than for the sides of the building | |||
. . This sol-air temperature is applied as a "Sp Ambient & HTC" with the convective heat transfer coefficient of 4.0 from Assumption 4.6 applfed on the "B" side of the conductors representing the walls and roof. The effects of shading are conservatively neglected. | |||
See ' I Section 6.3 for more details. | |||
r / | |||
) CALCULATION CONTROL SHEET ENERCON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 10 of 303 Table 2: Solid Material Prop_erties Material Density Thermal Specific Reference Independent (lbm/ft3) Conductivity Heat Used in Reference (BTU/hr-ft-F) | |||
(BTU/lbm-F) | |||
-Calculation Steel 484 21.0 0.116 8.23. Sec. 2 8.13, Ch. 33, Table 28 Table 3 Concrete1 131.5 0.64 0.21 8.23. Sec. 2 8.13 Table 29 / Hardboard 55 0.068 0.32 8.13. Ch. 26, 8.24 Table4 Acoustical 18 0.029 0.19 8.13. Ch. 26, N/A2 Tile *Table 4 '-1. The density and thermal conductivity values are determined by averaging the range of values given in Reference 8.23 (119-144 lbm/ft3 density and 0.47-0.81 Btu/hr-ft-°F conductivity). | |||
These values are within the range of the values for sand and gravel or stone aggregate concretes provided in (Reference 8.13) (130 lbm/ft3 density, | |||
*o.58-1.08 Btu/hr-ft-°F conductivity, 0.19-024 Btu/lbm-F specific heat). ,_ 2. No independent reference found for Acoustical Tile. The properties of air vary with temperature more so than the solid materials used. Therefore, a temperature distribution for the properties of air is used based on Reference 8.24 shown in Table 1 3: Vafues were confirmed to be conservative and reasonable from Reference 8.25, Appendix I. Note that these air properties are only used in the gap of the composite conductor representing the floor and do not have a significant effect on the results of the calculation. | |||
CALC. NO*. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 11 of 303 Table 3: Air Properties Temperature (F) Density (lbm/ft3) | |||
Thermal Conductivity Specific Heat (BTU/hr-ft-F) | |||
(BTU/lbm-F) 60 0.07633 0.01433 0.2404 80 0.07350 0.01481 0.2404 100 0.0709 0.01529 0.2405 150 0.06507 0.01646 0.2406 300 0.0522 0.01985 0.2423 4. ASSUMPTIONS 4.1. Ten operators are assumed to be in the MCR during the event. This is conservative as AOP-0060 (Reference 8.6, Section 5.1.6) directs non-essential personnel to leave the control room during a Loss of HVAC. The operators, and thus the latent and sensible heat load due to each operator, are assumed to be distributed in the control room as follows: | |||
* Five operators are located in the central horse shoe area of the MCR (subvolumes 1s55-1 s57, 1 s71-1 s73, 1s87-1 s89, 1s183-1s185, 1s199-1 s201, and 1 s215-1s217). These operators are referred to as Senior Reactor Operators (SROs) in this calculation. | * Five operators are located in the central horse shoe area of the MCR (subvolumes 1s55-1 s57, 1 s71-1 s73, 1s87-1 s89, 1s183-1s185, 1s199-1 s201, and 1 s215-1s217). These operators are referred to as Senior Reactor Operators (SROs) in this calculation. | ||
* The heat load from the remaining five operators is spread evenly across the lower and middle subvolumes of the lower MCR, based on the assumption that these operators will be continuously moving around the MCR to open up\ panel back doors, ceiling tiles etc. \ The total heat load from each operator is 475 BTU/hr (Input 3.4). This total heat load includes a sensible heat load of 250 Btu/hr/operator (Reference 8.13, Chapter 18, Table 1) with the balance (475-250 = 225 Btu/hr/operator) as latent heat. In this analysis, the total heat lo.ad per *operator is modeled as a sensible heat addition to the MCR using GOTHIC heater components. While this approach does not account for the increase in relative humidity that would' result from the latent heat addition, it does conservatively over-estimate the impact on the control room temperature by ' maximizing the sensible heat rate. 4.2. The suction flow for the smoke removal fan is from the screened intake registers located in the southwest corner (2s144), around the center of the west wall (2s136), and along the center of the north wall (2s193), all in the upper plenum (through damper HVC-DMP68/69/70, respectively). The for the smoke removal fan is assumed to be split into these three locations, weighted based on the normal flow through these registers. See Section 6.6 for more details. 4.3. The mitigating operator actions are given in Table 4 for Case 1. The mitigating operator actions are given in Table 5 for Case 2. The mitigating actions were ,, ) | * The heat load from the remaining five operators is spread evenly across the lower and middle subvolumes of the lower MCR, based on the assumption that these operators will be continuously moving around the MCR to open up\ panel back doors, ceiling tiles etc. \ The total heat load from each operator is 475 BTU/hr (Input 3.4). This total heat load includes a sensible heat load of 250 Btu/hr/operator (Reference 8.13, Chapter 18, Table 1) with the balance (475-250 | ||
= 225 Btu/hr/operator) as latent heat. In this analysis, the total heat lo.ad per *operator is modeled as a sensible heat addition to the MCR using GOTHIC heater components. | |||
While this approach does not account for the increase in relative humidity that would' result from the latent heat addition, it does conservatively over-estimate the impact on the control room temperature by ' maximizing the sensible heat rate. 4.2. The suction flow for the smoke removal fan is from the screened intake registers located in the southwest corner (2s144), | |||
around the center of the west wall (2s136), | |||
and along the center of the north wall (2s193), | |||
all in the upper plenum (through damper HVC-DMP68/69/70, respectively). | |||
The for the smoke removal fan is assumed to be split into these three locations, weighted based on the normal flow through these registers. | |||
See Section 6.6 for more details. | |||
4.3. The mitigating operator actions are given in Table 4 for Case 1. The mitigating operator actions are given in Table 5 for Case 2. The mitigating actions were ,, ) | |||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' PAGE NO. 12 of 303 | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' PAGE NO. 12 of 303 | ||
* determined based on the referenced procedural guidance, as well as operator interviews, and actual operator actions taken during the loss of HVC event that occurred on March 9, 2015. Five Operations shift managers or control room supervisors were interviewed in the development of the operator actions and timing which are being assumed within this calculation. The 104°F assumed in Case 1 for initiating ceiling tile removal is considered a conservative trigger for operators to remove MCR ceiling tiles: Removal of MCR ceiling tiles does not impact the MCR envelope, thus operators could perform this action earlier. Some operators indicated this could be initiated in a 30-60 minute time frame after a Loss of HVAC if other actions provided no MCR temperature control. GOTHIC trips are used to initiate the different mitigating actions defined in Tables 4 and 5. 4.4. As described in Table 5, Case 2 includes an operator action to open control room door CB 136-9 into the southwest well of the control building and position a portable fan in this open doorway exhausting into' the stairwell. The also open door CB157-2 to the control building roof at the top of the stairwell. This allows the MCR volume to exchange air with the stairwell and for the portable fan (and later, the smoke removal fan) to draw outside air into the MCR. The stairwell is modeled as a single lumped parameter volume, which results in the stairwell air having a uniform temperature. The free volume of the stairwell is reduced by 30% to account for the stairs in the volume. The stairs and walls in this stairwell volume are conservatively neglected as heat sinks. While this lumped volume approach limits the effectiveness of the stairwell in cooling the air that circulates into the MCR since bidirectional flow and local reduction in stairwell temperatures .. are not captured, the lumped volume does result in uniform mixing of the relatively hot MCR air with the entire stairwell volume. This ignores the stagnant air inventory that would at the lower elevations of the stairwell and thus may under estimate the temperature of the air in the stairwell that is returned to the MCR through the open door. To confirm that the lumped parameter approach is conservative for this calculation, a sensitivity calculation was performeo using-the limiting Case 2 model with a subdivided stairwell volume. The resulting MCR transient temperatures were shown to' be the same as that pre.dieted by the lumped stairwell volume. Therefore, the lumped stairwell model was retained for this analysis. 4.5. A diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere that provides makeup flow to MCR (see Section 6.2). All.cases use a maximum design basis temperature of 96 °F consistent with Reference 8.17 and FSAR Table 9.4-1. The mean daily temperature range that is applied to all cases is based on the climatic data from Attachment 11 for the month of July (Reference 8.13), as this is the most conservative month. The mean daily temperature range specified is 17°F. In each case, the outside air temperature is kept at 96°F for the initial four hours. This conservatively maintains a high outside air temperature until all mitigating actions have been implemented. Outside air temperatures would be considerably lower for much of the year. Attachment 11 shows monthly data for the Baton Rouge airport, approximately 25 miles south of RBS. 4.6. A specified convective HTC of 4 BTU/h-ft2-°F in conjunction with the sol-air temperature developed in Section 6.3 is applied to the outside surface of the thermal conductors representing the walls to the atmosphere, based_ on a typical 7.5 mph wind during summer (Reference 8.13, Chapter 26, Table 1 ). | * determined based on the referenced procedural | ||
ENERCON ,CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 13 of 303 4.7. The portable electric fan that will be staged in door CB136-9 in Case 2 has a flow rate of 2800-4000 CFM (Attachment 6). The lower bound of this value, 2800 CFM is assumed in the analysis. The fan is modeled using a GOTHIC volumetric fan component positioned in the flow path representing the lower half of door CB136-9. Any flow seepage around the sides of the fan is neglected. The flow path representing the upper half of the door remains unobstructed when the fan is running. The fan flow rate is assumed to be constant at the minimum rated flow noted above. Variations in* flow rate due to any back flow or seepage is neglected. 4.8. The heat transfer coefficient (HTC} on the "B" side of the floor thermal conductor is "Sp Ambient and HTC" with the ambient temperature set equal to the most limiting room from ENTR-078-CALC-001 (Reference 8.18) with operator actions to open doors at 4 hours. This room was determined to be DC Equipment Room 1 A. This is a conservative method for modeling th? boundary node for the floor conductor as the DC Equipment room is under a small portion of the MCR, and.all other rooms under the MCR do not experience as severe of temperature increases. The convective HTC is set to 1.63 BTU/IJ- | : guidance, as well as operator interviews, and actual operator actions taken during the loss of HVC event that occurred on March 9, 2015. Five Operations shift managers or control room supervisors were interviewed in the development of the operator actions and timing which are being assumed within this calculation. | ||
) ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 14 of 303 Page 5, Appendix F. Modeling the composite false floor as entirely wood is conservative as; wood is a less efficient heat conductor than aluminum metal. (Per Table 2, the hardwood flooring thermal conductivity is 0.068 Btu/hr-ft-°F versus 96.67 Btu/hr-ft-°F for aluminum used in Reference 8.29). Thus, modeling the false floor as all wood limits the heat transfer out of the* lower MGR volume. As discussed in Attachment 8 of Reference 8.29 (Response to NRG Question 20), a portion of the total false floor area is covered by carpeting to reduce noise C!nd enhance operator comfort (see Reference 8.35). This modification was implemented by RBS design change RBS-ER-98-0228. The GOTHIC floor conductor does\ not include this carpeting material. This is an acceptable assumption as (1) the carpet material covers only , about 1/3 of the total floor area, and (2) the effect on room temperature by omitting the aluminum composite structure was determined to more than offset the effects of including the carpet material. | The 104°F assumed in Case 1 for initiating ceiling tile removal is considered a conservative trigger for operators to remove MCR ceiling tiles: Removal of MCR ceiling tiles does not impact the MCR envelope, thus operators could perform this action earlier. | ||
* 4.11. The ceiling tiles) are modeled as acoustical tiles based on a typical material for ceiling tiles. 4.12. The initial relative humidity of the outside air is set to 53%. This is based on the initial 96°F dry bulb temperature (see Section 4.5) and 81°F wet-bulb temperature consistent with Reference 8.17 and FSAR Table 9.4-1 using a psychrometric chart (ASHRAE, Reference 8.13). The outside air absolute humidity is assumed to remain constant throughout the transient and is based on this initial relative humidity *and atmospheric pressure (14.7 psia). The relative humidity varies with changes in diurnal temperature (see Section 6.2). | Some operators indicated this could be initiated in a 30-60 minute time frame after a Loss of HVAC if other actions provided no MCR temperature control. | ||
* 4.13. The mass of the heat generating equipment inside the MGR panels is not explicitly modeled (see Section 6.4.3). The sensible heat released from the control panels and electrical equipment inside the panels is accounted for by initializing control panel thermal conductors with the non-LOOP control panel heat load to increase the conductor temperature and maximize the stored heat (see Section 6.5.2). 4.14 The roof and walls of the control building are concrete. Therefore, the solar absorptivity of the roof and walls is set to 0.6 based on the recommended value for concrete from Reference 8.13, Chapter 4, and Table 5. 4.15 Based on Reference 8.2, Appendix F, BYS-INV02 batteries provide power to the some of the components (including the computer equipment as well as some of the lighting and control panel heat load) during a LOOP (Case 1 ). Page 12 of Reference 8.2 states that these Non-safety DC loads have a 2 hour design battery life. The heat loads powered by this battery is assumed to stay on for a total of 4 hours to bound this battery life (see Section 6.5.3) and any sensible heat that would be released after the batteries have been depleted. The lighting heat load during the LOOP scenario (Case 1) is assumed to be uniformly reduced based on inspection of Reference 8.33 which shows the lights powered by different panels are evenly distributed throughout the MGR. 4.16 Lighting heat load that is not in luminous ceiling areas is assumed to be split between the lower and upper MCR-85% to the lower MCR and 15% to the upper MGR. Page 26.8 of Reference 8.34 states that the heat-to return for unventilated fixtures, such as ones not in the luminous ceiling area, is between 15 and 25%. The low end of this ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 15 of 303 range, 15%, is used for conservatism. Lights in the luminous ceiling area are assumed to have 100% of the heat load deposited into the lower MCR. 4.17 All cases are initiated assuming that the Main Control Room HVAC (HVC) system has been operating and maintaining the lower and upper MCR at the initial temperatures (75°F and 81°F per Section 3.1) with the outside air and sol-air temperatures continuously varying over each 24 hour period as described in Section 6.2 and 6.3. The cases are assumed to start at the time of peak sol-air and ambient temperature (1 :00 p.m.), thus maximizing the initial temperature in the thermal conductors representing the concrete 'walls and ceiling. 4.18 As stated in Section 3.1, the base cases use an initial MCR relative humidity value of 20%. This is the *minimum value per the Environmental Design Criteria (EDC) and this minimum value is selected to maximize the control room dry bulb transient temperature. A sensitivity case (Attachment 2) assuming an initial MCR humidity of 70%, the Environmental Design Criteria (EDC) maximum value (per Reference 8.17), is also evaluated. This value is higher than MCR humidity values recently recorded during normal operations (see table below), which averaged 58.8%. LcicatiOn,:C:(* ::: * .'.:'.: *;, ::\4;* Humidity: era>** Just inside MCR door 61.3 OSM office across MCR 59.5 By C91-P600 PPC CPU 61.2 cabinet By H13-P821 EHC Cabinet 59.0 By H13-P630 annunc. 57.5 Panel Behind H13-P808 bench board panel 56.9 By P852 02 BOP Aux relay 57 .2 pnl Between P870 and P863 panels Behind P601 panel .. *i*; ,. By P601 ,By P680 Bv P870 ) 58.5 58.7 58.8 58.5 58.9 ENERCON CALCULATION CONTROL SHEET Table 4: Mitigating actions for Case 1 Time Action 0 Loss of Control Building cooling(failure of HVC-ACU1A(B) to run due to chiller failure) Loss of Offsite Power: Div.1 and/or Div.2 Standby DG's respond successfully. < 30 min Operators attempt to restart chillers or manually start HVC-ACU1A(B). These actions are assumed to fail. 30 min Compiete actions to open back panel doors in Control Room. Operators would normally initiate steps to align SWP to provide cooling to HVC-ACU's Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited. 104°F Initiate actions to remove ceiling tiles. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 16 of 303 Basis AOP-0060 (Reference 8.6) Step 5.1.1 and Operator Interviews. AOP-0060 (Reference 8.6) AOP-0060 step 5.1.2 (Reference 8.6). and Operatqr Interviews AOP-0050 (Reference 8.14) and Operator Interviews. | GOTHIC trips are used to initiate the different mitigating actions defined in Tables 4 and 5. 4.4. As described in Table 5, Case 2 includes an operator action to open control room door CB 136-9 into the southwest well of the control building and position a portable fan in this open doorway exhausting into' the stairwell. | ||
Time 0 <30 min 30min 1 hour 1 hour 30 minutes. 2 hours ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 17 of 303 Table 5: Mitigating actions for Case 2 Action Basis Loss of Control Building cooling (failure of HVC-ACU1A(B) to run ,due to chiller failure) Offsite Power available. Toilet and Exhaust Fans remain running. / Operators attempt to restart chillers or manually start AOP-0060 (Reference 8.6) Step HVC-ACU1A(B). These actions are assumed to fail. 5.1.1 and Operator Interviews. Complete actions to open back panel doors in Control AOP-0060 (Reference 8.6) Room. Operators would normally initiate steps to align SWP to AOP-0060 step 5.1.2. (Reference provide cooling .to HVC-ACU's 8.6) and Operator Interviews Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited (See Attachment 1): | The also open door CB157-2 to the control building roof at the top of the stairwell. | ||
* Operations open Main Control Room door CB136-9 to SW Operator Interviews stairway (near elevator) and open door from stairwell to the outside A portable electric fan staged in door CB 136-9 to exhaust Operator Interviews from Main Control Room. Smoke Removal fan (HVC:-FN9) started to provide Main SOP-0058 (Reference 8.30) Control Room Ventilation. Section 5.5 and Operator " \ Interviews 2 hours 30 Initiate actions to remove ceiling tiles. AOP-0050 (Reference 8.14) minutes 5. METHOD OF ANALYSIS The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for .24 hours following a Loss of HVAC. GOTHIC is/ a general purpose thermal hydraulic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). ' \ GOTHIC models developed for this calculation are based on the model from G13.18.12.4*027 (Reference 8.1). The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference 8.29) are also used in the development of this calculation. | This allows the MCR volume to exchange air with the stairwell and for the portable fan (and later, the smoke removal fan) to draw outside air into the MCR. The stairwell is modeled as a single lumped parameter volume, which results in the stairwell air having a uniform temperature. | ||
ENERCON CALCULATION CONTROL SHEET 6. GOTHIC INPUT DEVELOPMENT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 18 of 303 The volumes, conductors, and initial conditions from Reference 8.1 that were verified to be correct and/or reasonable are retained in this model. New or revised inputs are documented in this calculation. 6.1. Control Volumes and Bot;mdary Conditions The SBO model (Reference a.1) uses a 4X x 2V x 2Z subdivision for the upper and lower MCR (Control Volume (CV) 1 and CV2). The analysis in this calculation further subdivides the lower MCR into a 16X x av x 3Z subdivision and) the upper MCR into a 16X x av x 2Z subdivision (see Figure 4). The hydraulic diameters for the cell face variations and volume *variations are set to the default values, allowing GOTHIC to calculate these parameters internally. ' The location of the first vertical subdivision in the lower MCR control volume (CV1) is adjusted so that the lower half of door CB136-9 is connected to the lower subvolumes and the upper half to the middle subvolumes. The second vertical subdivision in the lower MCR control volume is at the height of the top of the control panels (7.5 ft). Three control volumes are added"to model the atmosphere, stairwell 1 and an exhaust ' volume. The first control volume added (CV3) represents the atmosphere which provides makeup flow to the stairwell volume. This is a flow-through volume as described in Section 22.10 of the GOTHIC User's Manual (Reference a.5). Temperature in this atmosphere volume is controlled using a diurnal temperature forcing function applied to the pressure and flow boundary conditions connected to this volume, as described in Assumption 4.5. The -volume is arbitrarily set to 30,000 ft3. The flow boundary flow rate is set to 200 lbm/sec to maintain the desired conditions in the control volume. ' The second control volume added (CV4) represents stairwell 1. Door CB 136-9 opens into this stairwell on elevation 136'-1 5/a". This volume is connected to the atmosphere volume (CV3) on elevation 157'-a". The height of the stairwell is determined by subtracting the bottom elevation, 9a' as shown on Reference a.11, from the top elevation. The top elevation is assumed to be equal to the elevation at the top of stairwell 1 of 157'-a" shown on Reference a.11, plus the door height (7 ft, Input 3.9). The height of stairwell 1 is calculated below. Hstairwell = 1,64.667 ft -98 ft = 66.667 ft The volume of the stairwell is calculated based on the stairwell dimensions given in Input 3.1 O . and the height calculated above, reduced by 30% (Assumption 4.4), as shown below Vstairwell = 0.7 * (L | The free volume of the stairwell is reduced by 30% to account for the stairs in the volume. The stairs and walls in this stairwell volume are conservatively neglected as heat sinks. While this lumped volume approach limits the effectiveness of the stairwell in cooling the air that circulates into the MCR since bidirectional flow and local reduction in stairwell temperatures | ||
.. are not captured, the lumped volume does result in uniform mixing of the relatively hot MCR air with the entire stairwell volume. This ignores the stagnant air inventory that would at the lower elevations of the stairwell and thus may under estimate the temperature of the air in the stairwell that is returned to the MCR through the open door. To confirm that the lumped parameter approach is conservative for this calculation, a sensitivity calculation was performeo using-the limiting Case 2 model with a subdivided stairwell volume. The resulting MCR transient temperatures were shown to' be the same as that pre.dieted by the lumped stairwell volume. Therefore, the lumped stairwell model was retained for this analysis. | |||
4.5. A diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere that provides makeup flow to MCR (see Section 6.2). All.cases use a maximum design basis temperature of 96 °F consistent with Reference 8.17 and FSAR Table 9.4-1. The mean daily temperature range that is applied to all cases is based on the climatic data from Attachment 11 for the month of July (Reference 8.13), as this is the most conservative month. The mean daily temperature range specified is 17°F. In each case, the outside air temperature is kept at 96°F for the initial four hours. This conservatively maintains a high outside air temperature until all mitigating actions have been implemented. | |||
Outside air temperatures would be considerably lower for much of the year. Attachment 11 shows monthly data for the Baton Rouge airport, approximately 25 miles south of RBS. 4.6. A specified convective HTC of 4 BTU/h-ft2-°F in conjunction with the sol-air temperature developed in Section 6.3 is applied to the outside surface of the thermal conductors representing the walls to the atmosphere, based_ on a typical 7.5 mph wind during summer (Reference 8.13, Chapter 26, Table 1 ). | |||
ENERCON ,CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 13 of 303 4.7. The portable electric fan that will be staged in door CB136-9 in Case 2 has a flow rate of 2800-4000 CFM (Attachment 6). The lower bound of this value, 2800 CFM is assumed in the analysis. | |||
The fan is modeled using a GOTHIC volumetric fan component positioned in the flow path representing the lower half of door CB136-9. | |||
Any flow seepage around the sides of the fan is neglected. | |||
The flow path representing the upper half of the door remains unobstructed when the fan is running. | |||
The fan flow rate is assumed to be constant at the minimum rated flow noted above. Variations in* flow rate due to any back flow or seepage is neglected. | |||
4.8. The heat transfer coefficient (HTC} on the "B" side of the floor thermal conductor is "Sp Ambient and HTC" with the ambient temperature set equal to the most limiting room from ENTR-078-CALC-001 (Reference 8.18) with operator actions to open doors at 4 hours. This room was determined to be DC Equipment Room 1 A. This is a conservative method for modeling th? boundary node for the floor conductor as the DC Equipment room is under a small portion of the MCR, and.all other rooms under the MCR do not experience as severe of temperature increases. | |||
The convective HTC is set to 1.63 BTU/IJ-ft 2-°F based on heat flow upwards (Reference 8.13, Chapter 26). The initial temperature of the* thermal conductor representing the floor is set to the average of the initial temperature of DC Equipment Room 1 A (78 °F) and the initial temperature of the MC.R (75°F), or 76.5°F. 4.9. Multiple other operator actions are available as a response to a loss of control building cooling. | |||
AOP-0060 (Reference 8.6) provides instructions for use of Service Water to directly cool the control building Air Conditioning Units. This action was not credited in ttie analyses in the body of this calculation, but the time delay associated with attempting this was implicitly accounted for in development of the operator action timeline based on operator interviews. | |||
Operators are able to manually initiate ACU 1 A(B) main control room air conditioning units from the Main Control Room, overriding interlocks with the Chilled Water System. This action was taken during the March 9, 2015, loss of control building ventilation event by the Main Control Room staff. A case with HVC-ACU1 aligned to service water is evaluated in Attachment 1 to this calculation. | |||
Multiple portable fans are available at River Bend which could be used to provide control room ventilation. | |||
Attachment 6 provides a picture and information on the electric ppwered fan credited in this analysis. | |||
The River Bend fire brigade van contains a gasoline powered portable fan with a flow rate of greater than 14,000 CFM which could be staged to provide ventilation to the main control room (Fire Brigade members are trained in techniques for effective ventilation). | |||
A picture of this fan is also provided in Attachment | |||
: 6. FLEX portable fans and diesel generators are also now available on site at .. River Bend to provide ventilation as required. | |||
Thus, multiple other means of providing ventilation and cooling of the main control room are available besides those credited in this calculation. | |||
4.1 O. The floor (see also Section 3.5) is rnodeled using a composite conductor with three regions representing the false floor panels, an air gap, and concrete. | |||
The false floor is modeled as hardboard, based on pictures of the floor panels shown in Figure 1 and 2. Figure 1 and 2 show the floor is a wood composite | |||
: material, supported by an aluminum composite structure and steel supports as documented in Reference 8.9, | |||
) ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 14 of 303 Page 5, Appendix F. Modeling the composite false floor as entirely wood is conservative as; wood is a less efficient heat conductor than aluminum metal. (Per Table 2, the hardwood flooring thermal conductivity is 0.068 Btu/hr-ft-°F versus 96.67 Btu/hr-ft-°F for aluminum used in Reference 8.29). Thus, modeling the false floor as all wood limits the heat transfer out of the* lower MGR volume. As discussed in Attachment 8 of Reference 8.29 (Response to NRG Question 20), a portion of the total false floor area is covered by carpeting to reduce noise C!nd enhance operator comfort (see Reference 8.35). This modification was implemented by RBS design change RBS-ER-98-0228. | |||
The GOTHIC floor conductor does\ not include this carpeting material. | |||
This is an acceptable assumption as (1) the carpet material covers only , about 1/3 of the total floor area, and (2) the effect on room temperature by omitting the aluminum composite structure was determined to more than offset the effects of including the carpet material. | |||
* 4.11. The ceiling tiles) are modeled as acoustical tiles based on a typical material for ceiling tiles. 4.12. The initial relative humidity of the outside air is set to 53%. This is based on the initial 96°F dry bulb temperature (see Section 4.5) and 81°F wet-bulb temperature consistent with Reference 8.17 and FSAR Table 9.4-1 using a psychrometric chart (ASHRAE, Reference 8.13). The outside air absolute humidity is assumed to remain constant throughout the transient and is based on this initial relative humidity | |||
*and atmospheric pressure (14.7 psia). The relative humidity varies with changes in diurnal temperature (see Section 6.2). | |||
* 4.13. The mass of the heat generating equipment inside the MGR panels is not explicitly modeled (see Section 6.4.3). The sensible heat released from the control panels and electrical equipment inside the panels is accounted for by initializing control panel thermal conductors with the non-LOOP control panel heat load to increase the conductor temperature and maximize the stored heat (see Section 6.5.2). 4.14 The roof and walls of the control building are concrete. | |||
Therefore, the solar absorptivity of the roof and walls is set to 0.6 based on the recommended value for concrete from Reference 8.13, Chapter 4, and Table 5. 4.15 Based on Reference 8.2, Appendix F, BYS-INV02 batteries provide power to the some of the components (including the computer equipment as well as some of the lighting and control panel heat load) during a LOOP (Case 1 ). Page 12 of Reference 8.2 states that these Non-safety DC loads have a 2 hour design battery life. The heat loads powered by this battery is assumed to stay on for a total of 4 hours to bound this battery life (see Section 6.5.3) and any sensible heat that would be released after the batteries have been depleted. | |||
The lighting heat load during the LOOP scenario (Case 1) is assumed to be uniformly reduced based on inspection of Reference 8.33 which shows the lights powered by different panels are evenly distributed throughout the MGR. 4.16 Lighting heat load that is not in luminous ceiling areas is assumed to be split between the lower and upper MCR-85% to the lower MCR and 15% to the upper MGR. Page 26.8 of Reference 8.34 states that the heat-to return for unventilated | |||
: fixtures, such as ones not in the luminous ceiling area, is between 15 and 25%. The low end of this ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 15 of 303 range, 15%, is used for conservatism. | |||
Lights in the luminous ceiling area are assumed to have 100% of the heat load deposited into the lower MCR. 4.17 All cases are initiated assuming that the Main Control Room HVAC (HVC) system has been operating and maintaining the lower and upper MCR at the initial temperatures (75°F and 81°F per Section 3.1) with the outside air and sol-air temperatures continuously varying over each 24 hour period as described in Section 6.2 and 6.3. The cases are assumed to start at the time of peak sol-air and ambient temperature (1 :00 p.m.), thus maximizing the initial temperature in the thermal conductors representing the concrete | |||
'walls and ceiling. | |||
4.18 As stated in Section 3.1, the base cases use an initial MCR relative humidity value of 20%. This is the *minimum value per the Environmental Design Criteria (EDC) and this minimum value is selected to maximize the control room dry bulb transient temperature. | |||
A sensitivity case (Attachment | |||
: 2) assuming an initial MCR humidity of 70%, the Environmental Design Criteria (EDC) maximum value (per Reference 8.17), is also evaluated. | |||
This value is higher than MCR humidity values recently recorded during normal operations (see table below), which averaged 58.8%. LcicatiOn,:C:(* | |||
::: * .'.:'.: *;, | |||
::\4;* | |||
Humidity: | |||
era>** Just inside MCR door 61.3 OSM office across MCR 59.5 By C91-P600 PPC CPU 61.2 cabinet By H13-P821 EHC Cabinet 59.0 By H13-P630 annunc. 57.5 Panel Behind H13-P808 bench board panel 56.9 By P852 02 BOP Aux relay 57 .2 pnl Between P870 and P863 panels Behind P601 panel .. | |||
*i*; ,. | |||
By P601 ,By P680 Bv P870 ) 58.5 58.7 58.8 58.5 58.9 ENERCON CALCULATION CONTROL SHEET Table 4: Mitigating actions for Case 1 Time Action 0 Loss of Control Building cooling(failure of HVC-ACU1A(B) to run due to chiller failure) | |||
Loss of Offsite Power: Div.1 and/or Div.2 Standby DG's respond successfully. | |||
< 30 min Operators attempt to restart chillers or manually start HVC-ACU1A(B). | |||
These actions are assumed to fail. 30 min Compiete actions to open back panel doors in Control Room. Operators would normally initiate steps to align SWP to provide cooling to HVC-ACU's Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited. | |||
104°F Initiate actions to remove ceiling tiles. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 16 of 303 Basis AOP-0060 (Reference 8.6) Step 5.1.1 and Operator Interviews. | |||
AOP-0060 (Reference 8.6) AOP-0060 step 5.1.2 (Reference 8.6). and Operatqr Interviews AOP-0050 (Reference 8.14) and Operator Interviews. | |||
Time 0 <30 min 30min 1 hour 1 hour 30 minutes. | |||
2 hours ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 17 of 303 Table 5: Mitigating actions for Case 2 Action Basis Loss of Control Building cooling (failure of HVC-ACU1A(B) to run ,due to chiller failure) | |||
Offsite Power available. | |||
Toilet and Exhaust Fans remain running. | |||
/ Operators attempt to restart chillers or manually start AOP-0060 (Reference 8.6) Step HVC-ACU1A(B). | |||
These actions are assumed to fail. 5.1.1 and Operator Interviews. | |||
Complete actions to open back panel doors in Control AOP-0060 (Reference 8.6) Room. Operators would normally initiate steps to align SWP to AOP-0060 step 5.1.2. (Reference provide cooling .to HVC-ACU's 8.6) and Operator Interviews Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited (See Attachment 1): | |||
* Operations open Main Control Room door CB136-9 to SW Operator Interviews stairway (near elevator) and open door from stairwell to the outside A portable electric fan staged in door CB 136-9 to exhaust Operator Interviews from Main Control Room. Smoke Removal fan (HVC:-FN9) started to provide Main SOP-0058 (Reference 8.30) Control Room Ventilation. | |||
Section 5.5 and Operator | |||
" \ Interviews 2 hours 30 Initiate actions to remove ceiling tiles. AOP-0050 (Reference 8.14) minutes 5. METHOD OF ANALYSIS The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for .24 hours following a Loss of HVAC. GOTHIC is/ a general purpose thermal hydraulic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). ' \ GOTHIC models developed for this calculation are based on the model from G13.18.12.4*027 (Reference 8.1). The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference 8.29) are also used in the development of this calculation. | |||
ENERCON CALCULATION CONTROL SHEET 6. GOTHIC INPUT DEVELOPMENT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 18 of 303 The volumes, conductors, and initial conditions from Reference 8.1 that were verified to be correct and/or reasonable are retained in this model. New or revised inputs are documented in this calculation. | |||
6.1. Control Volumes and Bot;mdary Conditions The SBO model (Reference a.1) uses a 4X x 2V x 2Z subdivision for the upper and lower MCR (Control Volume (CV) 1 and CV2). The analysis in this calculation further subdivides the lower MCR into a 16X x av x 3Z subdivision and) the upper MCR into a 16X x av x 2Z subdivision (see Figure 4). The hydraulic diameters for the cell face variations and volume *variations are set to the default values, allowing GOTHIC to calculate these parameters internally. | |||
' The location of the first vertical subdivision in the lower MCR control volume (CV1) is adjusted so that the lower half of door CB136-9 is connected to the lower subvolumes and the upper half to the middle subvolumes. | |||
The second vertical subdivision in the lower MCR control volume is at the height of the top of the control panels (7.5 ft). Three control volumes are added"to model the atmosphere, stairwell 1 and an exhaust ' volume. The first control volume added (CV3) represents the atmosphere which provides makeup flow to the stairwell volume. This is a flow-through volume as described in Section 22.10 of the GOTHIC User's Manual (Reference a.5). Temperature in this atmosphere volume is controlled using a diurnal temperature forcing function applied to the pressure and flow boundary conditions connected to this volume, as described in Assumption 4.5. The -volume is arbitrarily set to 30,000 ft3. The flow boundary flow rate is set to 200 lbm/sec to maintain the desired conditions in the control volume. ' The second control volume added (CV4) represents stairwell | |||
: 1. Door CB 136-9 opens into this stairwell on elevation 136'-1 5/a". This volume is connected to the atmosphere volume (CV3) on elevation 157'-a". | |||
The height of the stairwell is determined by subtracting the bottom elevation, 9a' as shown on Reference a.11, from the top elevation. | |||
The top elevation is assumed to be equal to the elevation at the top of stairwell 1 of 157'-a" shown on Reference a.11, plus the door height (7 ft, Input 3.9). The height of stairwell 1 is calculated below. Hstairwell | |||
= 1,64.667 ft -98 ft = 66.667 ft The volume of the stairwell is calculated based on the stairwell dimensions given in Input 3.1 O . and the height calculated above, reduced by 30% (Assumption 4.4), as shown below Vstairwell | |||
= 0.7 * (L | |||
* W | * W | ||
* H) = 0.7 * (21.667 | * H) = 0.7 * (21.667 | ||
* 8.25 | * 8.25 | ||
* 66.667) = 8,341.84 ft3 The third control volume added (CV5) is the exhaust plenum for flow from the smoke removal fan. The volume is arbitrarily defined as 10,000 ft3 and a pressure boundary (5P) is connected to this volume to ensure it does not pressurize. | * 66.667) = 8,341.84 ft3 The third control volume added (CV5) is the exhaust plenum for flow from the smoke removal fan. The volume is arbitrarily defined as 10,000 ft3 and a pressure boundary (5P) is connected to this volume to ensure it does not pressurize. | ||
ENERCON CALCULATION CONTROL SHEET I I I i 144--CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 19 of 303 L --I -----------------------------------t--------------------1 I l ! I I ! I r !L ! I I I I ! I I I I ..------------1<< I k ____________ 1 I I -+-+-+-+-1---+-+-+-1-+-+-!-+-+-tt;l I l I lt IL L Figure 4: GOTHIC Lower and Upper MCA Volumes | ENERCON CALCULATION CONTROL SHEET I I I i 144--CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 19 of 303 L --I -----------------------------------t-------------------- | ||
) ENERCON CALCULATION CONTROL SHEET 6.2. Outside Air Temperature and Humidity CALC. NQ. ENTR-078-CALC-004 REV.O PAGE NO. 20 of 303 As stated in Section 4.5, a diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere which provides makeup flow to MCR using the methodology provided in Chapter 14 of ASHRAE (Reference 8.13), which is summarized by the following relationship: Tdb,h = Tdb,des -f(DR) Where Tdb,h =hourly dry bulb temperature (°F), Tdb,des = design dry bulb temperature (96°F), f= hourly daily range fraction (ASHRAE Table 6), DR = daily range of dry bulb temperature (17°F), As discussed in Section 4.5, the outside air temperature is kept at 96°F for the initial four hours. The varying outside air temperature is implemented using a GOTHIC forcing function referenced by the flow and pressure boundary conditions used to define the outside air flow through atmospheric volume. The outside air pressure is constant and assumed equal to 14.7 psia. As stated in Assumption 4.12, the outside air absolute humidity is assumed to remain constant throughout the transient such that the relative humidity varies with changes in diurnal This is accomplished in GOTHIC by specifying an appropriate steam volume fraction in the applicable outside air flow and pressure boundary conditions. The. steam volume fraction is calculated . based on the initial relative humidity (53%) and atmospheric (total) (14.7 psia). Per the GOTHIC User's Manual (Reference 8.5), steam volume fraction is defined as: where Ps =steam partial.pressure, PT= total pressure (14.7 psia). Relative humidity is defined as: where P9 = steam saturation pressure, From ASME steam tables: P9(96°F) = 0.8416 psia. °Vs Ps Vsf = Vr = Pr r *--.__ | 1 I l ! I I ! I r !L ! I I I I ! I I I I ..------------1<< | ||
ENERCON CALCULATION CONTROL SHEET Therefore, CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 21of303 Ps = (RH)(P9) = (0.53)(0.8416) = 0.44605 psia, and by substitution 0.44605 Vst =, 14.7 ='0.030343 Using the above steam volume fraction and the diurnal temperature variation, the outside air relative humidity varies with dry bulb temperature, as the air temperature decreases. | I k ____________ | ||
* 6.3. Sol-Air Temperature Methodology Solar heat loads to\ the MGR roof and walls are modeled by assigning a temperature boundary condition to the GOTHIC internal thermal conductors representing the roof and walls. The assigned temperature is the sol-air temperature. Sol-air temperature is the outdoor air temperature that, in the absence of all radiation changes gives the same rate of heat entry into the surface as would the combination of incident solar radiation, radiant energy exchange with the sky and other outdoor surroundings, and convective heat exchange with outdoor air (Reference 8.13, Chapter 18). The calculation of the sol-air temperatures follows the example in Reference 8.13, Chapter 18. The following example is a calculation for the sol-air temperatures on the exterior surface of the roof for July at a location based on Baton Rouge Ryan Airport which is approximately 25 miles south of River Bend Nuclear Station. Definitions of many of the variables in the equations below are from Reference 8.13, Chapter 14. The example given below is for the roof of the MGR at the most conservative time of 1 :00 pm, which is when the transient is assumed to start. This sol-air temperature is calculated for each hour of the day. As discussed in input 3.16, the sol-air temperature calculated for the roof is conservatively applied to all the walls of the upper and lower MCR. The maximum outside air temperature is set to the design basis maximum temperature of 96°F. The daily temperature range is set to 17°F based on the mean daily temperature range for the Baton Rouge Ryan Airport in July (Attachment 11). Note that, per Assumption 4.5, the outside air temperature is kept at 96°F for initial four hours but the sol-air temperature is varied over the entire transient. 4J = south orientation = 0° r = surface tilt from horizontal = 0° 1 :00 PM Local Standard Time (LST) = hour 13 to = 95.2°F (temperature at 1 PM based on daily temperature range) Latitude: 30.54 N (ASHRAE data from Baton Rouge Ryan Airport) Longitude: 91.15 W (-91.15) (ASHRAE data from Baton Rouge Ryan Airport) taub (Tb: 0.542 (ASHRAE data from Baton Rouge Ryan Airport) for July) , taud (Td): 1.845 (ASHRAE data from Baton Rouge Ryan Airport) for July) Calculate solar altitude, solar azimuth, surface solar azimuth, and incident angle as follows: From Chap 14, Table 2 in ASHRAE, solar position data and constants for July 21 are, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ET =-6.4 min 0 = 20.4° E0 = 420 Btu/h*ft2 PAGE NO. 22 of 303 Local standard meridian (LSM) for Central Time Zone= -90°(Reference 8.13, Chapter 14, Table 3) | 1 I I -+-+-+-+-1---+-+-+-1-+-+-!-+-+-tt;l I l I lt IL L Figure 4: GOTHIC Lower and Upper MCA Volumes | ||
* a=0.6 based on concrete (Reference 8.13 Chapter4, Table 5, Assumption 4.14) ho=4.0 BTU/hr- | ) ENERCON CALCULATION CONTROL SHEET 6.2. Outside Air Temperature and Humidity CALC. NQ. ENTR-078-CALC-004 REV.O PAGE NO. 20 of 303 As stated in Section 4.5, a diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere which provides makeup flow to MCR using the methodology provided in Chapter 14 of ASHRAE (Reference 8.13), which is summarized by the following relationship: | ||
ENERCON Et,b = Eb cos 8 = (241) cos (15.0) = 232.8 Btu/h*ft2 CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 23 of 303 Ratio Y of sky diffuse radiation on vertical surface to sky diffuse radiation on horizontal surface Y = 0.55 + 0.437 cos 8 + 0.313 cos28 = 0.55 + 0.437 cos (15.0) + 0.313 cos2(15.0) = 1.264 Diffuse irradiance Ed-Horizontal Ed= Eo exp (-T drrfld) ad= diffuse air mass exponent = 0.202 + 0.852Tb-0.007Td-0.357TbTd = 0.29387 Ed= Eo exp (-Tdrrfld) = 420 exp (-1.845(1.035°.2s3s7)] = Btu/h*ft2 Diffuse irradiance Etd-Nonvertical surfaces Et,d= Ed(Y sin(i.)+cos('E) = (70.5)(1) = 65.1 Ground reflected irradiance Er,r Et,r = (Eb sin f3 + Ed)p9(1 -cos "i..)/2 = [241 sin (75.0) + 65.1](0.2)[1 -COS. (0)]/2 = O Btu/h*ft2 Total surface irradiance Er , Et= Et.b + Ed+ E, = 232.8 + 65.1 +O = 298.0 Btuih*ft2 Sol-air temperature: te = to+ aE, /ho-EliRlho = 95.2 + (0.6)(298.0)/(4) -{1)(20)/(4) = 134.9°F I This sol-air temperature is calculated for each hour of the day and applied as a "Sp Ambient & HTC" using a GOTHIC forcing function on the walls and roof of the upper and lower MGR. 6.4. Thermal Conductors )* 6.4.1 MGR Walls The GOTHIC thermal conductors representing the concrete walls in the lower and upper MGR volumes are consolidated into North, West, South and East Walls and spanned across the subvolumes adjacent to the walls. The dimensions of the lower MGR are 144 ftx 74 ftx 9.115 ft (Reference 8.1). The dimensions of the upper MGR are 144 ft x 74 ft x 8.670 ft (Reference 8.1). The surface area for the north and south walls for the MGR is calculated below. ' SAN+S LMCR = 74 ft* 9.115 ft= 674.51 ft2 The surface area of the east and west walls for the lower MGR is calculated below. | Tdb,h = Tdb,des -f(DR) Where Tdb,h =hourly dry bulb temperature | ||
(°F), Tdb,des = design dry bulb temperature (96°F), f= hourly daily range fraction (ASHRAE Table 6), DR = daily range of dry bulb temperature (17°F), As discussed in Section 4.5, the outside air temperature is kept at 96°F for the initial four hours. The varying outside air temperature is implemented using a GOTHIC forcing function referenced by the flow and pressure boundary conditions used to define the outside air flow through atmospheric volume. The outside air pressure is constant and assumed equal to 14.7 psia. As stated in Assumption 4.12, the outside air absolute humidity is assumed to remain constant throughout the transient such that the relative humidity varies with changes in diurnal This is accomplished in GOTHIC by specifying an appropriate steam volume fraction in the applicable outside air flow and pressure boundary conditions. | |||
The. steam volume fraction is calculated | |||
. based on the initial relative humidity (53%) and atmospheric (total) | |||
(14.7 psia). Per the GOTHIC User's Manual (Reference 8.5), steam volume fraction is defined as: where Ps =steam partial.pressure, PT= total pressure (14.7 psia). Relative humidity is defined as: where P9 = steam saturation | |||
: pressure, From ASME steam tables: P9(96°F) = 0.8416 psia. °Vs Ps Vsf = Vr = Pr r *--.__ | |||
ENERCON CALCULATION CONTROL SHEET Therefore, CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 21of303 Ps = (RH)(P9) = (0.53)(0.8416) | |||
= 0.44605 psia, and by substitution 0.44605 Vst =, 14.7 ='0.030343 Using the above steam volume fraction and the diurnal temperature variation, the outside air relative humidity varies with dry bulb temperature, as the air temperature decreases. | |||
* 6.3. Sol-Air Temperature Methodology Solar heat loads to\ the MGR roof and walls are modeled by assigning a temperature boundary condition to the GOTHIC internal thermal conductors representing the roof and walls. The assigned temperature is the sol-air temperature. | |||
Sol-air temperature is the outdoor air temperature that, in the absence of all radiation changes gives the same rate of heat entry into the surface as would the combination of incident solar radiation, radiant energy exchange with the sky and other outdoor surroundings, and convective heat exchange with outdoor air (Reference 8.13, Chapter 18). The calculation of the sol-air temperatures follows the example in Reference 8.13, Chapter 18. The following example is a calculation for the sol-air temperatures on the exterior surface of the roof for July at a location based on Baton Rouge Ryan Airport which is approximately 25 miles south of River Bend Nuclear Station. | |||
Definitions of many of the variables in the equations below are from Reference 8.13, Chapter 14. The example given below is for the roof of the MGR at the most conservative time of 1 :00 pm, which is when the transient is assumed to start. This sol-air temperature is calculated for each hour of the day. As discussed in input 3.16, the sol-air temperature calculated for the roof is conservatively applied to all the walls of the upper and lower MCR. The maximum outside air temperature is set to the design basis maximum temperature of 96°F. The daily temperature range is set to 17°F based on the mean daily temperature range for the Baton Rouge Ryan Airport in July (Attachment 11). Note that, per Assumption 4.5, the outside air temperature is kept at 96°F for initial four hours but the sol-air temperature is varied over the entire transient. | |||
4J = south orientation | |||
= 0° r = surface tilt from horizontal | |||
= 0° 1 :00 PM Local Standard Time (LST) = hour 13 to = 95.2°F (temperature at 1 PM based on daily temperature range) Latitude: | |||
30.54 N (ASHRAE data from Baton Rouge Ryan Airport) | |||
Longitude: | |||
91.15 W (-91.15) | |||
(ASHRAE data from Baton Rouge Ryan Airport) taub (Tb: 0.542 (ASHRAE data from Baton Rouge Ryan Airport) for July) , taud (Td): 1.845 (ASHRAE data from Baton Rouge Ryan Airport) for July) Calculate solar altitude, solar azimuth, surface solar azimuth, and incident angle as follows: | |||
From Chap 14, Table 2 in ASHRAE, solar position data and constants for July 21 are, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ET =-6.4 min 0 = 20.4° E0 = 420 Btu/h*ft2 PAGE NO. 22 of 303 Local standard meridian (LSM) for Central Time Zone= -90°(Reference 8.13, Chapter 14, Table 3) | |||
* a=0.6 based on concrete (Reference 8.13 Chapter4, Table 5, Assumption 4.14) ho=4.0 BTU/hr-ft 2-°F based on 7.5 inph characteristic of the summer months (Table 1 in Chapter 26 of Reference 8.13, Assumption 4.6) E=1 (Chapter 18 of Reference 8.13) 11R=20 BTU/hr-ft 2 (Chapter 18 of Reference 8.13) Apparent solar time (AST) AST= LST + ET/60*+ (LON-LSM)/15 | |||
= 13 + (-6.4/60) | |||
+ [(-91.15 | |||
+90)/15] | |||
= 12.817 Hour angle H, degrees H = 15(AST-12) | |||
= 15(12.817 | |||
-12) = 12.3° Solar altitude 13 sin 13 = cos L cos o cos H + sin L sin o =cos (30.54) cos (20.4) cos (12.3) +sin (30.54) si.n (20.4) \ : 0.97 I 13 = sin-1(0.96) = 75.0° Solar azimuth cp cos cp = (sin 13 sin L-sin o)/(cos 13 cos L) .;; [(sin (75.0) sin (30.54) -sin (20.4)] /[cos (75.0) cos (30.54)] | |||
= 0.6382 cp = cos-1(0.6382) | |||
= 50.3° Surface-solar azimuth y y=cp-ljJ | |||
= 50.3-0 = 50.3° Incident angle 8 cos 8 = cos 13 cos y sin L + sin.13 cos L = cos (75.0) cos (50.3) sin (0) + sin (75.0) cos (0) = 0.966 a = cos-1(0.966) = 1 S.0° Beam normal irradiance fa Eb= Eo exp(-Tbf7ilb) m = relative air mass = 1/[sinl3 | |||
+0.50572(6.07995 13 expressed in degrees . = 1.035 \-ab = beam air mass exponent | |||
= 1.219-0.043Tb-0.151Td-0.204TbTd | |||
= 0.7131.0 Eb= 420 exp [-0.542(1.035o.11310)] | |||
= 241 Btu/h*ft2 Surface beam irradiance Er;b I \. . | |||
ENERCON Et,b = Eb cos 8 = (241) cos (15.0) = 232.8 Btu/h*ft2 CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 23 of 303 Ratio Y of sky diffuse radiation on vertical surface to sky diffuse radiation on horizontal surface Y = 0.55 + 0.437 cos 8 + 0.313 cos28 = 0.55 + 0.437 cos (15.0) + 0.313 cos2(15.0) = 1.264 Diffuse irradiance Ed-Horizontal Ed= Eo exp (-T drrfld) ad= diffuse air mass exponent | |||
= 0.202 + 0.852Tb-0.007Td-0.357TbTd | |||
= 0.29387 Ed= Eo exp (-Tdrrfld) | |||
= 420 exp (-1.845(1.035°.2s3s7)] | |||
= | |||
Btu/h*ft2 Diffuse irradiance Etd-Nonvertical surfaces Et,d= Ed(Y sin(i.)+cos('E) | |||
= (70.5)(1) | |||
= 65.1 Ground reflected irradiance Er,r Et,r = (Eb sin f3 + Ed)p9(1 -cos "i..)/2 = [241 sin (75.0) + 65.1](0.2)[1 | |||
-COS. (0)]/2 = O Btu/h*ft2 Total surface irradiance Er , Et= Et.b + Ed+ E, = 232.8 + 65.1 +O = 298.0 Btuih*ft2 Sol-air temperature: | |||
te = to+ aE, /ho-EliRlho = 95.2 + (0.6)(298.0)/(4) | |||
-{1)(20)/(4) | |||
= 134.9°F I This sol-air temperature is calculated for each hour of the day and applied as a "Sp Ambient & HTC" using a GOTHIC forcing function on the walls and roof of the upper and lower MGR. 6.4. Thermal Conductors | |||
)* 6.4.1 MGR Walls The GOTHIC thermal conductors representing the concrete walls in the lower and upper MGR volumes are consolidated into North, West, South and East Walls and spanned across the subvolumes adjacent to the walls. The dimensions of the lower MGR are 144 ftx 74 ftx 9.115 ft (Reference 8.1). The dimensions of the upper MGR are 144 ft x 74 ft x 8.670 ft (Reference 8.1). The surface area for the north and south walls for the MGR is calculated below. ' SAN+S LMCR = 74 ft* 9.115 ft= 674.51 ft2 The surface area of the east and west walls for the lower MGR is calculated below. | |||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 24 of 303 SAE+W LMCR = 144 ft* 9.115 ft= 1312.56 ft2 The surface area of the north and south walls for the upper MCR is calculated below. SAN+S UMCR = 74 ft* 8.670 ft= 641.58 ft2 The surface area of the east and west walls for the upper MCR is calculated below. SAE+W UMCR = 144 ft* 8.670 ft = 1248.48 ft2 6.4.2 MCR Floor and Ceiling As discussed in inputs 3.5 and 3.7, GOTHIC thermal conductors representing the floor of the MCR and the ceiling of the upper MCR plenum are added to the GOTHIC model. The surface area of the floor conductor is determined from the dimensions of the MCR, 144' x 74' (Reference 8.1 and 8.26). The GOTHIC thermal conductor representing the floor is spanned across the lower subvolumes of the lower MCR volume. The GOTHIC thermal conductor representing the ceiling of the upper MCR is spanned across 'the upper subvolumes of the upper MCR. | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 24 of 303 SAE+W LMCR = 144 ft* 9.115 ft= 1312.56 ft2 The surface area of the north and south walls for the upper MCR is calculated below. SAN+S UMCR = 74 ft* 8.670 ft= 641.58 ft2 The surface area of the east and west walls for the upper MCR is calculated below. SAE+W UMCR = 144 ft* 8.670 ft = 1248.48 ft2 6.4.2 MCR Floor and Ceiling As discussed in inputs 3.5 and 3.7, GOTHIC thermal conductors representing the floor of the MCR and the ceiling of the upper MCR plenum are added to the GOTHIC model. The surface area of the floor conductor is determined from the dimensions of the MCR, 144' x 74' (Reference 8.1 and 8.26). The GOTHIC thermal conductor representing the floor is spanned across the lower subvolumes of the lower MCR volume. The GOTHIC thermal conductor representing the ceiling of the upper MCR is spanned across 'the upper subvolumes of the upper MCR. | ||
* SAceiling = floor = 144 ft* 74 ft = 10,656 ft2 The thickness of the concrete walls in the lower and upper MCR volumes is increased to the actual thickness of 24 inches, as the zero heat flux boundary condition (Reference 8.1) is no longer applied. The sol-air temperature forcing function, determined in Section 6.3, is applied as the HTC on the B side for the concrete walls of the lower and upper MCR volumes, as well as to the ceiling for the Upper MCR volume. 6.4.3 Control Panels The surface area of the control panels is split into three separate GOTHIC thermal conductors: one for the west half of the room, one for the northeast quadrant and one for the southeast quadrant. The GOTHIC conductors representing these control panels are spanned over the appropriate subvolumes in the lower _and middle subvolumes of the lower MCR volume based on the height of 7.5 ft for the control panels given in Reference 8.27. The dimensions and locations of the control panels are from Reference 8.26 and 8.27. Attachment 4, Tables 1-3, shows the calculation of the surface area for each of the control panel groupings. Note that this calculation does nottake into account the interfacial surface area between panels as was done in Reference 8.1. An effective thickness is calculated to account for the metal mass present in this interfacial area, as well as on the bottom surface of the control panels. | * SAceiling | ||
* This effective thickness is determined by calculating the total metal volume based on the nominal thickness of 1/8" from Reference 8.1 and multiplying by the total surface area (including the interfacial area and bottom surface area) for the metal panels, calculated in Table 4 of Attachment 4. This product is then divided by the surface area exposed to air calculated in Attachment4(Tables1-3) of this calculation, shown below. As discussed in Assumption 4.13, the equipment mass inside of the control panels is not modeled. Initialization of these ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 25 of 303 conductors to reflect the electrical heat load in the cabinets and the resulting higher panel temperatures and stored heat is described in Section 6.5.2. 0.125 in* 20,265.1 ft2 teff = 7,764.63 ft2 + 3,234.14 ft2 + 3,728.76 ft2 = 0*172 inches 6.4.4 Additional MCR Heat Sinks Steel heat sinks of various thicknesses are also added based on the walk down notes provided in Attachment 5. The walk down notes and Reference 8.26 are used to determine the general area that the identified heat sinks are located in order to accurately model their physical location in the GOTHIC model. 6.4.5 Ceiling Tiles A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the model. The thickness of the ceiling tile conductor is set to 5/8" based on Reference 8.1, Page 29. The acoustical tile material defined in Table 2 is used for this conductor. The surface area of the ceiling tiles is calculated by subtracting the surface area of the ceiling tiles removed, from the total surface area as discussed in Input 3.8, shown below. -2 . ft2 -. 2 SAceilingTiles -10,656 ft -80 tiles* 8 -.-l -10,016 ft tie 6.4.6 Metal Work Above Ceiling The metal work above the suspended ceiling tiles is represented by a single conductor spanned over the upper MCR volume. The total surface area and thickness of this conductor are determined from Reference 8.1. 6.5. Heat Loads The MCR heat loads for each case are distributed in the actual location of the heat source. The magnitude and location of the heat loads is based on information in E-226 (Reference 8.2) and EE-027 A (Reference 8.26) as modified by EC 61.975 (Reference 8.36). All individual heat loads are modeled in GOTHIC using heater components located in the appropriate subvolume with a constant heat rate equal to the heat load. Some notes regarding the heat load distribution are provided below: | = | ||
floor = 144 ft* 74 ft = 10,656 ft2 The thickness of the concrete walls in the lower and upper MCR volumes is increased to the actual thickness of 24 inches, as the zero heat flux boundary condition (Reference 8.1) is no longer applied. | |||
The sol-air temperature forcing function, determined in Section 6.3, is applied as the HTC on the B side for the concrete walls of the lower and upper MCR volumes, as well as to the ceiling for the Upper MCR volume. 6.4.3 Control Panels The surface area of the control panels is split into three separate GOTHIC thermal conductors: | |||
one for the west half of the room, one for the northeast quadrant and one for the southeast quadrant. | |||
The GOTHIC conductors representing these control panels are spanned over the appropriate subvolumes in the lower _and middle subvolumes of the lower MCR volume based on the height of 7.5 ft for the control panels given in Reference 8.27. The dimensions and locations of the control panels are from Reference 8.26 and 8.27. Attachment 4, Tables 1-3, shows the calculation of the surface area for each of the control panel groupings. | |||
Note that this calculation does nottake into account the interfacial surface area between panels as was done in Reference 8.1. An effective thickness is calculated to account for the metal mass present in this interfacial area, as well as on the bottom surface of the control panels. | |||
* This effective thickness is determined by calculating the total metal volume based on the nominal thickness of 1/8" from Reference 8.1 and multiplying by the total surface area (including the interfacial area and bottom surface area) for the metal panels, calculated in Table 4 of Attachment | |||
: 4. This product is then divided by the surface area exposed to air calculated in Attachment4(Tables1-3) of this calculation, shown below. As discussed in Assumption 4.13, the equipment mass inside of the control panels is not modeled. | |||
Initialization of these ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 25 of 303 conductors to reflect the electrical heat load in the cabinets and the resulting higher panel temperatures and stored heat is described in Section 6.5.2. 0.125 in* 20,265.1 ft2 teff = 7,764.63 ft2 + 3,234.14 ft2 + 3,728.76 ft2 = 0*172 inches 6.4.4 Additional MCR Heat Sinks Steel heat sinks of various thicknesses are also added based on the walk down notes provided in Attachment | |||
: 5. The walk down notes and Reference 8.26 are used to determine the general area that the identified heat sinks are located in order to accurately model their physical location in the GOTHIC model. 6.4.5 Ceiling Tiles A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the model. The thickness of the ceiling tile conductor is set to 5/8" based on Reference 8.1, Page 29. The acoustical tile material defined in Table 2 is used for this conductor. | |||
The surface area of the ceiling tiles is calculated by subtracting the surface area of the ceiling tiles removed, from the total surface area as discussed in Input 3.8, shown below. -2 . ft2 -. 2 SAceilingTiles | |||
-10,656 ft -80 tiles* 8 -.-l -10,016 ft tie 6.4.6 Metal Work Above Ceiling The metal work above the suspended ceiling tiles is represented by a single conductor spanned over the upper MCR volume. The total surface area and thickness of this conductor are determined from Reference 8.1. 6.5. Heat Loads The MCR heat loads for each case are distributed in the actual location of the heat source. The magnitude and location of the heat loads is based on information in E-226 (Reference 8.2) and EE-027 A (Reference 8.26) as modified by EC 61.975 (Reference 8.36). All individual heat loads are modeled in GOTHIC using heater components located in the appropriate subvolume with a constant heat rate equal to the heat load. Some notes regarding the heat load distribution are provided below: | |||
* The lighting heat load is based on inspection of Reference 8.33 and 8.36. 15% of the lighting heat load not in the luminous ceiling areas is assigned to the upper MCR volume as described in Assumption 4.16. | * The lighting heat load is based on inspection of Reference 8.33 and 8.36. 15% of the lighting heat load not in the luminous ceiling areas is assigned to the upper MCR volume as described in Assumption 4.16. | ||
* Attachment 10 gives the heat loads in the NSSS (H13-P600 series) control panels in the control room. The heat loads of these select panels are applied in their actual location, based on Reference 8.26. The remaining heat loads from control panels are found from Reference 8.36. | * Attachment 10 gives the heat loads in the NSSS (H13-P600 series) control panels in the control room. The heat loads of these select panels are applied in their actual location, based on Reference 8.26. The remaining heat loads from control panels are found from Reference 8.36. | ||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE. NO. 26 of 303 | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE. NO. 26 of 303 | ||
* The heat load for the Honeywell computer equipment is determined from Attachment 8. The heat loads for the individual panels are located based on Reference 8.26. | * The heat load for the Honeywell computer equipment is determined from Attachment | ||
: 8. The heat loads for the individual panels are located based on Reference 8.26. | |||
* As discussed in Section 3.6, the heat load from the PGCC raceway is modeled in the air gap of the GOTHIC composite thermal conductor representing the floor. The heat load is distributed evenly across the floor. *. Heat loads from lighting panels, miscellaneous panels, the radiation monitor (RMS-CAB 170), and the kitchen were located based on Reference 8.26. | * As discussed in Section 3.6, the heat load from the PGCC raceway is modeled in the air gap of the GOTHIC composite thermal conductor representing the floor. The heat load is distributed evenly across the floor. *. Heat loads from lighting panels, miscellaneous panels, the radiation monitor (RMS-CAB 170), and the kitchen were located based on Reference 8.26. | ||
* As discussed in Assumption 4.1, five operators are assumed in be in the horseshoe area of the MCR. The remaining five operators are assumed to be implementing actions such as opening panel doors, ceilingJiles etc.; thus the heat load from these operators is spread evenly across the lower and middle subvolumes of the MCR. | * As discussed in Assumption 4.1, five operators are assumed in be in the horseshoe area of the MCR. The remaining five operators are assumed to be implementing actions such as opening panel doors, ceilingJiles etc.; thus the heat load from these operators is spread evenly across the lower and middle subvolumes of the MCR. | ||
\ 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 27 of 303 Figure 5 below shows the MCR layout from Reference 8.26 with the GOTHIC lower subvolume grid outline. Subvolume numbers at the middle and upper grid elevations are equal to these values increased by 128 (middle) and 256 (upper). The location of the vertical grid lines is shown in Figure 4. This drawing, in conjunction with Reference 8.26, is used to determine the location of heat loads as well as heat sinks from Section 6.4 and Attachment 5. ' . ' -Pi.AA I I ' I EE-027 A with GOTHIC Subvolume Grid ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-:CALC-004 REV.O PAGE NO. 28 of 303 6.5.1 Lighting The lighting heat load and distribution is determined from Reference 8.33 and Reference 8.36, summarized in Table 6 below. Table 6: Lighting Fixtures Fixture Type BG -BJ BM BU ' BV Total No. 8 79 1'33 2 3 No. of tubes 2x8=16 4x79 =316 4x133=532 2x2=4 2x3= 6 Total watts 768 15, 168 14,364 110 165 The total heat load is therefore 30,575 Watts. The luminous ceiling area in the center of the room is shown to have 75' "BJ" fixture types from Reference 8.33. The heat load from these 75 fixtures is distributed evenly between subvolumes 1s294-1s297, 1s310-1s313, 1s326-1s329, 1s342-1s345, and 1s358-1s361 (20 total subvolumes). As discussed in Assumption 4.16, the entire heat load from these lighting fixtures is assumed to be deposited into the lower MGR volume, based on these lighting fixtures being in an elevated ceiling area, and therefore not ventilated. The heat loads are distributed to each subvolume using GOTHIC heaters. The heat load per heater for these subvolumes is calculated below. . , tubes W BTU _ 75 fixtures* 4 fixture* 48 tube* 9.478e 5-/W Qcenterarea = = 0.68 BTU /s 20 subvolumes The luminous ceiling area on the south end of the MGR is shown to have 4* "BJ" fixture types, and all 8 of the "BG" fixture types from Reference 8.33. The heat load from these 12 fixtures is distributed evenly between subvolumes 1s318-1s319 and 1s334-1s335. The entire heat load from these lighting fixtures is assumed to be in the lower MGR volume, based on these *lighting fixtures being in an elevated ceiling area, and therefore not ventilated. The heat*load per heater for these subvolumes is calculated below. ( . tubes . tubes ) W BTU 4 fixtures* 4 fixture+ 8 fixtures* 2 fixture 48ti:ibe | \ 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 27 of 303 Figure 5 below shows the MCR layout from Reference 8.26 with the GOTHIC lower subvolume grid outline. | ||
* 9.478e 5-/W Qsouth area = 4 subvolumes * = 0.364 BTU /s The remaining lighting heat load is spread evenly across the remaining subvolumes (104 total). As discussed in Assumption 4.16, 85% of the heat load from lighting not in the luminous ceiling areas is assumed to be deposited into the lower MGR; the remaining 15% is input into the corresponding subvolumes in the upper plenum volume. The heat load per heater fc;>r this remaining lighting heat load is calculated below. | Subvolume numbers at the middle and upper grid elevations are equal to these values increased by 128 (middle) and 256 (upper). | ||
The location of the vertical grid lines is shown in Figure 4. This drawing, in conjunction with Reference 8.26, is used to determine the location of heat loads as well as heat sinks from Section 6.4 and Attachment | |||
: 5. ' . ' -Pi.AA I I ' I EE-027 A with GOTHIC Subvolume Grid ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-:CALC-004 REV.O PAGE NO. 28 of 303 6.5.1 Lighting The lighting heat load and distribution is determined from Reference 8.33 and Reference 8.36, summarized in Table 6 below. Table 6: Lighting Fixtures Fixture Type BG -BJ BM BU ' BV Total No. 8 79 1'33 2 3 No. of tubes 2x8=16 4x79 =316 4x133=532 2x2=4 2x3= 6 Total watts 768 15, 168 14,364 110 165 The total heat load is therefore 30,575 Watts. The luminous ceiling area in the center of the room is shown to have 75' "BJ" fixture types from Reference 8.33. The heat load from these 75 fixtures is distributed evenly between subvolumes 1s294-1s297, 1s310-1s313, 1s326-1s329, 1s342-1s345, and 1s358-1s361 (20 total subvolumes). | |||
As discussed in Assumption 4.16, the entire heat load from these lighting fixtures is assumed to be deposited into the lower MGR volume, based on these lighting fixtures being in an elevated ceiling area, and therefore not ventilated. | |||
The heat loads are distributed to each subvolume using GOTHIC heaters. | |||
The heat load per heater for these subvolumes is calculated below. . , tubes W BTU _ 75 fixtures* | |||
4 fixture* | |||
48 tube* 9.478e 5-/W Qcenterarea | |||
= = 0.68 BTU /s 20 subvolumes The luminous ceiling area on the south end of the MGR is shown to have 4* "BJ" fixture types, and all 8 of the "BG" fixture types from Reference 8.33. The heat load from these 12 fixtures is distributed evenly between subvolumes 1s318-1s319 and 1s334-1s335. | |||
The entire heat load from these lighting fixtures is assumed to be in the lower MGR volume, based on these *lighting fixtures being in an elevated ceiling area, and therefore not ventilated. | |||
The heat*load per heater for these subvolumes is calculated below. ( . tubes . tubes ) W BTU 4 fixtures* | |||
4 fixture+ | |||
8 fixtures* | |||
2 fixture 48ti:ibe | |||
* 9.478e 5-/W Qsouth area = 4 subvolumes | |||
* = 0.364 BTU /s The remaining lighting heat load is spread evenly across the remaining subvolumes (104 total). As discussed in Assumption 4.16, 85% of the heat load from lighting not in the luminous ceiling areas is assumed to be deposited into the lower MGR; the remaining 15% is input into the corresponding subvolumes in the upper plenum volume. The heat load per heater fc;>r this remaining lighting heat load is calculated below. | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 29 of 303 W + 110 W + 165 W) | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 29 of 303 W + 110 W + 165 W) | ||
* 9.478e -4 /W QMCR-lights = 1 4 b l = 0.1134 BTU /s 0 su vo umes 0.15(14,364 W + 110 W + 165 W) | * 9.478e -4 /W QMCR-lights | ||
* 9.478e -4 BTU /W . Qplenum-lights = 104 b l s = 0.02 BTU /s su vo umes For the scenario (Case 1 ), lights powered by panels 1 C5 and 1 C,6 are lost at the onset of the event. Lights powered by 1C10 and 1C11 are conservatively assumed to remain on for four hours based on them being powered by BYS-INV02 which has a battery life of 2 hours _, (See Assumption 4.15). Lights powered by 1 C9 remain on for the duration of the event as they are powered by a diesel generator (Reference 8.36). An even reduction in the lighting heat load is applied to all the lights, as discussed in Assumption 4.15. This reduction factor is shown below for the first 4 hour period, as well as the 4-24 period: 6.5.2 11889 Watts Lighting | = 1 4 b l = 0.1134 BTU /s 0 su vo umes 0.15(14,364 W + 110 W + 165 W) | ||
* Watts 5937 Watts Lighting Reduction4-24hours = 30575 Watts= 0.194 Control Panels Attachment 10 gives the hept loads for equipment inside the H13-P600 series (NSSS) control panels in the control room. The heat load for these panels is localized based on Reference 8.26. The heat load is distributed evenly among the lower and corresponding middle elevation subvolumes in the lower MCR volume. The heat load for the P600 panels given in Attachment 1 O is not reduced for the LOOP scenario. The heat load for equipment in the H13-P630 panel and the H13,.P800 (BOP) series panels are determined from Reference 8.36. The P600 panel heat loads are shown in Table 7. The P800 panel heat loads are shown in Table 8. Note that panel H13-P845 is given in Attachment 10 and Reference 8.36; 'the more conservative value from Reference 8.36 is used. Panel H 13-P680 is provided in Attachment 1 O as well as Attachment 8; the more conservative vaiu*e in Attachment 1 O is used in the analysis. The heat load for the P800 panels during a LOOP are determined from Reference 8.36 and given in Table 9. | * 9.478e -4 BTU /W . Qplenum-lights | ||
ENER ON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 30 of 303 Table 7: P600 Normal Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-PXXX {Watts) {BTU/s)* subvolume {s) subvolume {s) BTU/s P600 200 0.19 26 154 0.095 P601 1600 1.52 73,89 201,217 0.379 P604/614 1200 1.14 42 170 0.569 P607/P612 600 0.57 94 222 0.284 P61 O/P654/P652 1000 0.95 93 221 0.474 P619/P634 1200 1.14 110 238 0.569 P621/P628 600 0.57 45 173 0.284 P623/P632 1000 0.95 60 188 0.474 P625/P693 1300 1.23 91 219 0.616 P629 500 0.47 29 157 0.237 P630 3300 3.128 59 187 1.564 P631/P618 900 0.85 109 237 0.427 P637 800 0.76 111 239 0.379 P642/P613/P622 1000 0.95 92 220 0.474 P651 /P653/P655 1150 1.09 61 189 0.545 P680 800 0.76 55,56,57 N/A 0.253 P669/P691 1800 1.71 44 172 0.853 P670/P692 1800 1.71 108 236 *0.853 P671 1000 0.95 107 235 0.474 P672/P694 1800 1.71 43 171 0.853 TOTAL 23,550 22.33 | = 104 b l s = 0.02 BTU /s su vo umes For the scenario (Case 1 ), lights powered by panels 1 C5 and 1 C,6 are lost at the onset of the event. Lights powered by 1C10 and 1C11 are conservatively assumed to remain on for four hours based on them being powered by BYS-INV02 which has a battery life of 2 hours _, (See Assumption 4.15). Lights powered by 1 C9 remain on for the duration of the event as they are powered by a diesel generator (Reference 8.36). An even reduction in the lighting heat load is applied to all the lights, as discussed in Assumption 4.15. This reduction factor is shown below for the first 4 hour period, as well as the 4-24 period: 6.5.2 11889 Watts Lighting Reduction 0_4 hours = 30575 = 0.389 | ||
* Values are converted from Watts usmg a conversion factor of 9.478e-4 BTU/s/Watts Based on Reference 8.36, panels H13-P612 (400 Watts), H13-P630 (3300 Watts), H13-P634 (1000 Watts), H13-P680 (800 Watts) are powered by BYS-INV02. Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1)'. / | * Watts 5937 Watts Lighting Reduction4-24hours | ||
.ENERCON fvery.rfay CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 31 of 303 Table 8: P800 Series Control Panel N.ormal Heat Load and Distribution Panel Heat Heat Load Lower Middle Per Heater Number Load Heat Load H13-PXXX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0.474 . 40,41 168,169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 1095 1.038 95 223 0.519 P844/P854 1995 1.891 81,97 209,225 0.473 P845 620 0.588 58 186 0.294 P849 750 0.711 51 179 0.355 P850 4125 3.910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 750 0.711 50 178 *0.355 P855 176 0.167 3*5 163 0.083 P861 400 0.379 103 231 0.190 P863 185 0.175 38,54 166,182 0.044 P869 2214 2.098 84 212 1.049 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 19,806 18.77 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ) / | = 30575 Watts= 0.194 Control Panels Attachment 10 gives the hept loads for equipment inside the H13-P600 series (NSSS) control panels in the control room. The heat load for these panels is localized based on Reference 8.26. The heat load is distributed evenly among the lower and corresponding middle elevation subvolumes in the lower MCR volume. The heat load for the P600 panels given in Attachment 1 O is not reduced for the LOOP scenario. | ||
The heat load for equipment in the H13-P630 panel and the H13,.P800 (BOP) series panels are determined from Reference 8.36. The P600 panel heat loads are shown in Table 7. The P800 panel heat loads are shown in Table 8. Note that panel H13-P845 is given in Attachment 10 and Reference 8.36; 'the more conservative value from Reference 8.36 is used. Panel H 13-P680 is provided in Attachment 1 O as well as Attachment 8; the more conservative vaiu*e in Attachment 1 O is used in the analysis. | |||
The heat load for the P800 panels during a LOOP are determined from Reference 8.36 and given in Table 9. | |||
ENER ON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 30 of 303 Table 7: P600 Normal Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-PXXX | |||
{Watts) {BTU/s)* | |||
subvolume | |||
{s) subvolume | |||
{s) BTU/s P600 200 0.19 26 154 0.095 P601 1600 1.52 73,89 201,217 0.379 P604/614 1200 1.14 42 170 0.569 P607/P612 600 0.57 94 222 0.284 P61 O/P654/P652 1000 0.95 93 221 0.474 P619/P634 1200 1.14 110 238 0.569 P621/P628 600 0.57 45 173 0.284 P623/P632 1000 0.95 60 188 0.474 P625/P693 1300 1.23 91 219 0.616 P629 500 0.47 29 157 0.237 P630 3300 3.128 59 187 1.564 P631/P618 900 0.85 109 237 0.427 P637 800 0.76 111 239 0.379 P642/P613/P622 1000 0.95 92 220 0.474 P651 /P653/P655 1150 1.09 61 189 0.545 P680 800 0.76 55,56,57 N/A 0.253 P669/P691 1800 1.71 44 172 0.853 P670/P692 1800 1.71 108 236 *0.853 P671 1000 0.95 107 235 0.474 P672/P694 1800 1.71 43 171 0.853 TOTAL 23,550 22.33 | |||
* Values are converted from Watts usmg a conversion factor of 9.478e-4 BTU/s/Watts Based on Reference 8.36, panels H13-P612 (400 Watts), H13-P630 (3300 Watts), H13-P634 (1000 Watts), H13-P680 (800 Watts) are powered by BYS-INV02. | |||
Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1)'. / | |||
.ENERCON fvery.rfay CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 31 of 303 Table 8: P800 Series Control Panel N.ormal Heat Load and Distribution Panel Heat Heat Load Lower Middle Per Heater Number Load Heat Load H13-PXXX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0.474 . 40,41 168,169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 1095 1.038 95 223 0.519 P844/P854 1995 1.891 81,97 209,225 0.473 P845 620 0.588 58 186 0.294 P849 750 0.711 51 179 0.355 P850 4125 3.910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 750 0.711 50 178 *0.355 P855 176 0.167 3*5 163 0.083 P861 400 0.379 103 231 0.190 P863 185 0.175 38,54 166,182 0.044 P869 2214 2.098 84 212 1.049 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 19,806 18.77 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts | |||
) / | |||
. ' ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 32 of 303 Table 9: P800 Series Control Panel LOOP Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-P:>(XX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0:474 40,41 168, 169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 437 0.414 *95 223 0.207 P844/P854 1995 1.891 81,97 209,225 0.473 P845 0 0.000 58 186 0.000 P849 750 0.711 51 179 0.355 P850 4125 3.'910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 0 0.000 50 178 0.000 P855 176 0.167 35 163 0.083 P861 400 0.379 103 231-0.190 'P863 185 0.175 38,54 166,182 0.044 P869 1500 1.422 84 212 0.711 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 17,064 16.17 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts | . ' ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 32 of 303 Table 9: P800 Series Control Panel LOOP Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-P:>(XX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0:474 40,41 168, 169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 437 0.414 *95 223 0.207 P844/P854 1995 1.891 81,97 209,225 0.473 P845 0 0.000 58 186 0.000 P849 750 0.711 51 179 0.355 P850 4125 3.'910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 0 0.000 50 178 0.000 P855 176 0.167 35 163 0.083 P861 400 0.379 103 231-0.190 'P863 185 0.175 38,54 166,182 0.044 P869 1500 1.422 84 212 0.711 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 17,064 16.17 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts | ||
* Based on Reference 8.36, panels H13-:P850 (4125 Watts) and H13-P844/854 (1995 Watts) are powered by BYS-INV02. Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1 ). As discussed in Section 6.4, the control panels are represented in the GOTHIC model by three thermal conductors. The temperature of the panels is initially greater than the surrounding MCR ambient temperature due to the heat load from the electrical equipment inside the | * Based on Reference 8.36, panels H13-:P850 (4125 Watts) and H13-P844/854 (1995 Watts) are powered by BYS-INV02. | ||
* panels, which is modeled using heaters external to the panels. To account for the energy (heat) initially in the panel conductors and to ensure that the temperature of the control panel thermal conductors is greater than the room at the beginning of the transient, the total control panel heat load from E-226 (Reference 8.2) is input into the control panel thermal conductors for the first 0.1 seconds. The volumetric heat rate used for these control panel thermal conductors is calculated below based on the total (non-LOOP) panel heat load of 30,018 watts from Reference 8.2, or 28.45 BTU/s, and the total panel conductor volume. | Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1 ). As discussed in Section 6.4, the control panels are represented in the GOTHIC model by three thermal conductors. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 33 of 303 28.45 BTU/s Q"' Control Panels-Initial = -------------------::--:-:=-:--! 2 f 2 7 f 2) 0.172 in (7,764.6 t + 3,234.14 t + 3,728. 6 t | The temperature of the panels is initially greater than the surrounding MCR ambient temperature due to the heat load from the electrical equipment inside the | ||
* 12 inf ft .BTU = 0.133! 3 t -s For the LOOP (Case 1 ), this initial internal heat rate is also used, although the LOOP panel heat loads are lower. This, together with the assumption that the computer equipment heat loads are maintained for 4 hours (Ass1,.1mption 4.15), ensures that the total stored energy is conservatively represented by the panel conductors. 6.5.3 Equipment Heat load from computer equipment includes that from the Honeywell HS 4500 Plant Process Computer (PPC) system (C91 panels), Emergency Response Information System (ERIS) data acquisition chassis, Orbital Network Engineering (ONE) computers, computer workstations, network switch and servers, and personal computers. An initial estimate of the heat load due to the Honeywell computer was obtained by taking field measurements of current on each disconnect in the panels and multiplying by the voltage. These measurements and the resulting heat loads are included as Attachment 8. The distribution of the Honeywell computer heat loads is based on the location of the panels provided in Reference 8.26. Similar to the control panel heat loads, t.he heat load from computer panels in the same subvolume are summed and the combined heat load from these panels is distributed between the lower subvolumes and the corresponding middle subvolume. The heat loads and distribution for these Honeywell panels is shown in Table 10. Table 1 O: Honeywell Computer Panel Heat Load and Distribution Panel Number Heat Heat Load Lower Middle Per Heater Load Heat Load C91-PXXX (Watts) (BTU/s)* Subvolume subvolume BTU/s Communications 294 0.279 90 N/A 0.279 Cabinet P60S/P600/P603 2049.3 1.94 63 191 0.971 P625 217.35 0.21 31 159 0.103 P621 /P620/612 2857.3 2.71 47 175 1.354 P624 546.25 0.52 51 179 0.259 P622 441.6 0.42 18 146 0.209 P623/650/616 1305.25 1.24 34 162 0.619 P63,0/P631 1030.5 0.98 62 190 0.488 P613 182.85 0.17 94 222 0.087 P615/642 2256.85 2.14 46 174 1.070 P614 180.55 0.17 30 158 0.086 P632/P633 139.15 0.13 72 200 0.066 TOTAL 11,500.95 10.90 / *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts E.NERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 34 of 303 Figure 6 below shows the location of the individual personal computers (PCs) in the MCR (Reference 8.36). The PCs have a heat load of 300 W each per Reference 8.2, Appendix A, Page 35. Based on Attachment 8, the heat load from PCs in the southwest area near. the Honeywell panels is already accounted for using the measured loads from these panels, thus these PCs are not accounted for as an additional heat load. The subvolume locations for each of the PCs is given in Table 11. \ | * panels, which is modeled using heaters external to the panels. To account for the energy (heat) initially in the panel conductors and to ensure that the temperature of the control panel thermal conductors is greater than the room at the beginning of the transient, the total control panel heat load from E-226 (Reference 8.2) is input into the control panel thermal conductors for the first 0.1 seconds. | ||
CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET REV.O PAGE NO. 35 of 303 ENERCON 'CALCULATION CONTROL SHEET ,CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 36 of 303 Table 11: Heat Load Distribution for Personal Computers Heat Load , Heat load Heat Source (watts) General Location Subvolume (BTU/s)" PC1/2 600 Center Area 72 0.569 PC3 300 Center East Wall 104 0.284 PC4 300 Center East Wall 105 0.284 PC5/6 600 Center Area , 87 0.569 PC7 300 Center Area 71 0.284 PC8/9 600 Center Area 199 0.569 PC 10/11 600 Center Area 106 0.569 PC 12-Shift Manaaer 300 NW Corner 1 0.284 TOTAL 3600 | The volumetric heat rate used for these control panel thermal conductors is calculated below based on the total (non-LOOP) panel heat load of 30,018 watts from Reference 8.2, or 28.45 BTU/s, and the total panel conductor volume. | ||
* Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts The heat load from the ERIS system is determined in Attachment 3. Table 12 gives normal operations heat load distribution. Table 13 gives the LOOP heat load distribution after 4 hours when the BYS-INV02 batteries have been depleted. The heat load from panels in the same subvolume are summed. Table 12: Normal Heat Load Distributicm for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 358.8 0.340 378 H13-Y703A 370.8 0.351 282 H13-Y703D 226.8 0.215 281 H13-Y710B/D/E 873.6 0.828 380 H13-Y711A 132 -0.125 382 'H13-Y712B/D 741.6 0.703 379 H 13-Y713A/D 741.6 0.703 284 H13-Y714B/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y730B 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 132 0.125 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 c 0.215 '371 H13-Y747A 226.8 0.215 275 H13-Y7478 370.8 0.351 274 H13-Y748B/E 453.6 0.430 369 H13-Y750E 226.8 0.215 277 H13-Y751A 226.8 0.215 377 H13-P721 240 0.227 31 TOTAL 7461.6 7.072 CALC. NO. ENTR-078-CALC-004 EN CON CALCULATION CONTROL SHEET REV.O PAGE NO. 37 of 303 Table 13: LOOP Heat Load Distribution for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 132 0.125 378 H13-Y703A 0 0.000 282 H13-Y703D 226.8 0.215 281 -H13-Y7108/D/E 741.6 0.703 380 H13-Y711A 0 0.000 382 H13-Y712B/D 741.6 0.703 379 H13-Y713A/D '741.6 0.703 284 H13-Y7148/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y7308 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 0 0.000 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 0.215 371 H13-Y747A 0 0.000 H13-Y7478 0 0.000 274 H13-Y7488/E 0 0.000 369 H13-Y750E 0 0.000 277 H13-Y751A 226.8 0.215 377 H13-P721 0 0.000 31 TOTAL 4,950 4.692 As discussed in Assumption 4.15, the heat load from all of the computer equipment is assumed to remain on for 4 hours during the LOOP scenario (Case 1) which bounds the 2 hour design battery life as well as sensible h"eat released after the batteries have been depleted. The ERIS equipment loads shown In Table 13 are assumed to remain on for the duration of the event. 6.5.4 Remaining Heat Load The remaining heat loads include the miscellaneous panels, the lighting panels, the radiation monitor (RMS-CAB170), the kitchen, the PGCC rac_eway, operators and other miscellaneous equipment which are found from Reference 8.2 and 8.36. The heat load and distribution for these remaining heat loads is given below in Table 14 (Case 1) and Table 15 (Case 2 and Attachment 1 ). j | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 33 of 303 28.45 BTU/s Q"' Control Panels-Initial | ||
,, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 38 of 303 Table 14: Heat Load Distribution for Case 1 Heat Source Heat Load General Location Subvolume (s) Heat load (watts) (BTU/s)* See SR Os 696.1 Horseshoe area Assumption 4.1 0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 0 Ewall 118 0.00 RMS-CAB170 0 WWall 9 0.00 LAC-PNL 1 C5/ LAC-PNL 1 C6 0 Middle W wall, upper 134 0.00 LAC-PNL 1C9 39.98 Middle W wall, uooer 135 0.038 LAC-PNLC10/ LAC-PNL 1 C11 40.1 Middle W wall, uooer 133 0.038 BYS-PNL0282/ BYS-PNL02A2 116 Nwall 65 0.1099 SCl-PNL02/ SCl-PNL01 0 NWall 49 0.00 SCA-PNL 1 OA2 0 NW wall 17 0.00 SCA-PNL 1082 0 NE Wall 113 0.00 VBS-PNL018 82 SE wall 128 0.07772 ENB-PNL028/ SCM-PNL01 B 291 J SE Wall 112 0.277 VBN-PNL0181 145 SWall 96 0.137 VBN-PNL01A 1NBN-PNL02 392 SWall 64 ' 0.372 SCM-PNL01A/ENBPNL02A 312 SW Wall 48 0.296 VBS-PNL01A 78 SW Wall 32 I 0.074 Samsuna Flatscreen 0 EWall 230 0 Shift Manager Coffee Pots 0 NW Corner 129 0 HU Clock Reset Display 0 WWall 136 0 Printer/Copier 0 w*wa11 137 0 Desktop Printers 0 Horseshoe area 103-106 0 FLEX Radio Console 0 Horseshoe area 232 0 Exit Lights 36 West Wall 259,270 0.034 Emergency Lights 1296 Along MGR Walls See below 1.501 PGCC Raceway 650 Under the floor N/A 0.62 TOTAL (w/o Operators) 3,478.1 TOTAL (wl Operators) 4,870.3 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 39 of 303 Table 15: *Heat Load Distribution for Case 2 and Attachment 1 Heat Heat load Heat Source Load General Location Subvolume (s) (BTU/s)* (watts) SROs in Horseshoe Area 696.1 Horseshoe area See Assumption 4.1 *0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 1443 East wall 118 1.37 RMS-CA8170 1900.11 WWall 9 1.80 LAC-PNL 1 CS/ LAC-PNL 1 C6 125.83 Center W wall, uooer 134 0.12 LAC-PNL 1C9 39.98 Center W wall, upper 135 0.038 | = -------------------::--:-:=-:-- | ||
* LAC-PNLC10/ LAC-PNL 1C11 40.1 Center W wall, uooer 133 0.038 8YS-PNL0282/ 8YS-PNL02A2 116 Nwall ' 65 0.1099 SCl-PNL02/ SCl-PNL01 134 NWall 49 0.127 SCA-PNL 1 OA2 51 NWwall J 17 0.0483 SCA-PNL 1082 51 NE Wall 113 0.0483 V8S-PNL018 82 SE wall 128 0.0772 EN8-PNL028/ SCM-PNL01'8 291 SE Wall 112 0.277 V8N-PNL0181 145 SWall ' 96 0.137 V8N-PNL01A 1/ V8N-PNL02 392 SWall 64 0.372 SCM-PNL01A/ EN8-PNL02A 293 SW Wall 48 0.277 V8S-PNL01A 78 SW Wall 32 0.074 Samsung Flatscreen 250 EWall 230 0.237 Shift Manager Coffee Pots 120 NW Corner 129 0.114 HU Clock Reset Display 192 WWall 136 0.182 Printer/Copier 849 E/WWall 15,120 0.81 Desktop Printers 800 Horseshoe area 103-106 0.758 FLEX Radio Console 268 Horseshoe area . 232 0.254 Emergency/Exit Lights 133 Wwall 259,270 0.126 PGCC Racewav 1350 Under the floor N/A 1.28 TOTAL (w/o Operators) 9,084.0 TOTAL Cw/ Operators) 10,476.2 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts As discussed in Assumption 4.1, five operators are assumed to be working in the central horseshoe area. The heat load from the five operators is spread across 18 subvolumes in the horseshoe area. The heat load for each individual heater is calculated below. 0.66 BTU /s BTU QsRos = 18 h = 0.037--eaters s The remaining operators are assumed to be evenly distributed throughout the MCR to simulate the actions of them opening the control panel doors and the ceiling tiles. The heat load from the remaining five operators is distributed evenly over the lower and middle subvolumes of the lower MGR. | ! 2 f 2 7 f 2) 0.172 in (7,764.6 t + 3,234.14 t + 3,728. 6 t | ||
ENER'CON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 40 of 303 0.66BTU/s . BTU Qo t = = 0.00258 --pera ors 256 heaters s The heat load from the Emergency (1296 Watts) for Case 1 (Reference 8.36) is evenly distributed amqng the 44 upper elevation,subvolumes in the lower MCR that are adjacent to the MCR walls-subvolumes 257-272, 273, 288, 289, 304, 305, 320, 321, 336, 337, 352, 353, 368, 369-384. The heat load per subvolume is calculated below. BTU/s 1296 Watts* 9.478e -4 Watt QEmergency Lights-LOOP= 44 subvolumes = ,0.028 BTU /s , . The heat load from the Emergency lights (13 Watts) is added to the heat load for the Exit lights which are located in the upper subvolumes by the doors along the West wall of the lower MCR-subvolumes 259 and 270. The heat load from the PGCC raceway is modeled in the air gap in the composite floor conductor as a volumetric heat generation rate. The heat load of 650 watts from the PGCC raceway for Case 1 is divided by the surface area of the floor conductor (10,656 ft2) and the thickness of the air gap (1 ft) to determine the volumetric heat generation rate, shown bel,ow. | * 12 inf ft .BTU = 0.133! 3 t -s For the LOOP (Case 1 ), this initial internal heat rate is also used, although the LOOP panel heat loads are lower. This, together with the assumption that the computer equipment heat loads are maintained for 4 hours (Ass1,.1mption 4.15), ensures that the total stored energy is conservatively represented by the panel conductors. | ||
6.5.3 Equipment Heat load from computer equipment includes that from the Honeywell HS 4500 Plant Process Computer (PPC) system (C91 panels), | |||
Emergency Response Information System (ERIS) data acquisition | |||
: chassis, Orbital Network Engineering (ONE) computers, computer workstations, network switch and servers, and personal computers. | |||
An initial estimate of the heat load due to the Honeywell computer was obtained by taking field measurements of current on each disconnect in the panels and multiplying by the voltage. | |||
These measurements and the resulting heat loads are included as Attachment | |||
: 8. The distribution of the Honeywell computer heat loads is based on the location of the panels provided in Reference 8.26. Similar to the control panel heat loads, t.he heat load from computer panels in the same subvolume are summed and the combined heat load from these panels is distributed between the lower subvolumes and the corresponding middle subvolume. | |||
The heat loads and distribution for these Honeywell panels is shown in Table 10. Table 1 O: Honeywell Computer Panel Heat Load and Distribution Panel Number Heat Heat Load Lower Middle Per Heater Load Heat Load C91-PXXX (Watts) (BTU/s)* | |||
Subvolume subvolume BTU/s Communications 294 0.279 90 N/A 0.279 Cabinet P60S/P600/P603 2049.3 1.94 63 191 0.971 P625 217.35 0.21 31 159 0.103 P621 /P620/612 2857.3 2.71 47 175 1.354 P624 546.25 0.52 51 179 0.259 P622 441.6 0.42 18 146 0.209 P623/650/616 1305.25 1.24 34 162 0.619 P63,0/P631 1030.5 0.98 62 190 0.488 P613 182.85 0.17 94 222 0.087 P615/642 2256.85 2.14 46 174 1.070 P614 180.55 0.17 30 158 0.086 P632/P633 139.15 0.13 72 200 0.066 TOTAL 11,500.95 10.90 / *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts E.NERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 34 of 303 Figure 6 below shows the location of the individual personal computers (PCs) in the MCR (Reference 8.36). The PCs have a heat load of 300 W each per Reference 8.2, Appendix A, Page 35. Based on Attachment 8, the heat load from PCs in the southwest area near. the Honeywell panels is already accounted for using the measured loads from these panels, thus these PCs are not accounted for as an additional heat load. The subvolume locations for each of the PCs is given in Table 11. \ | |||
CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET REV.O PAGE NO. 35 of 303 ENERCON 'CALCULATION CONTROL SHEET ,CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 36 of 303 Table 11: Heat Load Distribution for Personal Computers Heat Load , Heat load Heat Source (watts) General Location Subvolume (BTU/s)" | |||
PC1/2 600 Center Area 72 0.569 PC3 300 Center East Wall 104 0.284 PC4 300 Center East Wall 105 0.284 PC5/6 600 Center Area , 87 0.569 PC7 300 Center Area 71 0.284 PC8/9 600 Center Area 199 0.569 PC 10/11 600 Center Area 106 0.569 PC 12-Shift Manaaer 300 NW Corner 1 0.284 TOTAL 3600 | |||
* Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts The heat load from the ERIS system is determined in Attachment | |||
: 3. Table 12 gives normal operations heat load distribution. | |||
Table 13 gives the LOOP heat load distribution after 4 hours when the BYS-INV02 batteries have been depleted. | |||
The heat load from panels in the same subvolume are summed. Table 12: Normal Heat Load Distributicm for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 358.8 0.340 378 H13-Y703A 370.8 0.351 282 H13-Y703D 226.8 0.215 281 H13-Y710B/D/E 873.6 0.828 380 H13-Y711A 132 -0.125 382 'H13-Y712B/D 741.6 0.703 379 H 13-Y713A/D 741.6 0.703 284 H13-Y714B/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y730B 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 132 0.125 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 c 0.215 '371 H13-Y747A 226.8 0.215 275 H13-Y7478 370.8 0.351 274 H13-Y748B/E 453.6 0.430 369 H13-Y750E 226.8 0.215 277 H13-Y751A 226.8 0.215 377 H13-P721 240 0.227 31 TOTAL 7461.6 7.072 CALC. NO. ENTR-078-CALC-004 EN CON CALCULATION CONTROL SHEET REV.O PAGE NO. 37 of 303 Table 13: LOOP Heat Load Distribution for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 132 0.125 378 H13-Y703A 0 0.000 282 H13-Y703D 226.8 0.215 281 -H13-Y7108/D/E 741.6 0.703 380 H13-Y711A 0 0.000 382 H13-Y712B/D 741.6 0.703 379 H13-Y713A/D | |||
'741.6 0.703 284 H13-Y7148/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y7308 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 0 0.000 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 0.215 371 H13-Y747A 0 0.000 H13-Y7478 0 0.000 274 H13-Y7488/E 0 0.000 369 H13-Y750E 0 0.000 277 H13-Y751A 226.8 0.215 377 H13-P721 0 0.000 31 TOTAL 4,950 4.692 As discussed in Assumption 4.15, the heat load from all of the computer equipment is assumed to remain on for 4 hours during the LOOP scenario (Case 1) which bounds the 2 hour design battery life as well as sensible h"eat released after the batteries have been depleted. | |||
The ERIS equipment loads shown In Table 13 are assumed to remain on for the duration of the event. 6.5.4 Remaining Heat Load The remaining heat loads include the miscellaneous panels, the lighting panels, the radiation monitor (RMS-CAB170), | |||
the kitchen, the PGCC rac_eway, operators and other miscellaneous equipment which are found from Reference 8.2 and 8.36. The heat load and distribution for these remaining heat loads is given below in Table 14 (Case 1) and Table 15 (Case 2 and Attachment 1 ). j | |||
,, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 38 of 303 Table 14: Heat Load Distribution for Case 1 Heat Source Heat Load General Location Subvolume (s) Heat load (watts) (BTU/s)* | |||
See SR Os 696.1 Horseshoe area Assumption 4.1 0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 0 Ewall 118 0.00 RMS-CAB170 0 WWall 9 0.00 LAC-PNL 1 C5/ LAC-PNL 1 C6 0 Middle W wall, upper 134 0.00 LAC-PNL 1C9 39.98 Middle W wall, uooer 135 0.038 LAC-PNLC10/ | |||
LAC-PNL 1 C11 40.1 Middle W wall, uooer 133 0.038 BYS-PNL0282/ | |||
BYS-PNL02A2 116 Nwall 65 0.1099 SCl-PNL02/ | |||
SCl-PNL01 0 NWall 49 0.00 SCA-PNL 1 OA2 0 NW wall 17 0.00 SCA-PNL 1082 0 NE Wall 113 0.00 VBS-PNL018 82 SE wall 128 0.07772 ENB-PNL028/ | |||
SCM-PNL01 B 291 J SE Wall 112 0.277 VBN-PNL0181 145 SWall 96 0.137 VBN-PNL01A 1NBN-PNL02 392 SWall 64 ' 0.372 SCM-PNL01A/ENBPNL02A 312 SW Wall 48 0.296 VBS-PNL01A 78 SW Wall 32 I 0.074 Samsuna Flatscreen 0 EWall 230 0 Shift Manager Coffee Pots 0 NW Corner 129 0 HU Clock Reset Display 0 WWall 136 0 Printer/Copier 0 w*wa11 137 0 Desktop Printers 0 Horseshoe area 103-106 0 FLEX Radio Console 0 Horseshoe area 232 0 Exit Lights 36 West Wall 259,270 0.034 Emergency Lights 1296 Along MGR Walls See below 1.501 PGCC Raceway 650 Under the floor N/A 0.62 TOTAL (w/o Operators) 3,478.1 TOTAL (wl Operators) 4,870.3 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 39 of 303 Table 15: *Heat Load Distribution for Case 2 and Attachment 1 Heat Heat load Heat Source Load General Location Subvolume (s) (BTU/s)* | |||
(watts) SROs in Horseshoe Area 696.1 Horseshoe area See Assumption 4.1 *0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 1443 East wall 118 1.37 RMS-CA8170 1900.11 WWall 9 1.80 LAC-PNL 1 CS/ LAC-PNL 1 C6 125.83 Center W wall, uooer 134 0.12 LAC-PNL 1C9 39.98 Center W wall, upper 135 0.038 | |||
* LAC-PNLC10/ | |||
LAC-PNL 1C11 40.1 Center W wall, uooer 133 0.038 8YS-PNL0282/ | |||
8YS-PNL02A2 116 Nwall ' 65 0.1099 SCl-PNL02/ | |||
SCl-PNL01 134 NWall 49 0.127 SCA-PNL 1 OA2 51 NWwall J 17 0.0483 SCA-PNL 1082 51 NE Wall 113 0.0483 V8S-PNL018 82 SE wall 128 0.0772 EN8-PNL028/ | |||
SCM-PNL01'8 291 SE Wall 112 0.277 V8N-PNL0181 145 SWall ' 96 0.137 V8N-PNL01A 1/ V8N-PNL02 392 SWall 64 0.372 SCM-PNL01A/ | |||
EN8-PNL02A 293 SW Wall 48 0.277 V8S-PNL01A 78 SW Wall 32 0.074 Samsung Flatscreen 250 EWall 230 0.237 Shift Manager Coffee Pots 120 NW Corner 129 0.114 HU Clock Reset Display 192 WWall 136 0.182 Printer/Copier 849 E/WWall 15,120 0.81 Desktop Printers 800 Horseshoe area 103-106 0.758 FLEX Radio Console 268 Horseshoe area . 232 0.254 Emergency/Exit Lights 133 Wwall 259,270 0.126 PGCC Racewav 1350 Under the floor N/A 1.28 TOTAL (w/o Operators) 9,084.0 TOTAL Cw/ Operators) 10,476.2 | |||
*Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts As discussed in Assumption 4.1, five operators are assumed to be working in the central horseshoe area. The heat load from the five operators is spread across 18 subvolumes in the horseshoe area. The heat load for each individual heater is calculated below. 0.66 BTU /s BTU QsRos = 18 h = 0.037--eaters s The remaining operators are assumed to be evenly distributed throughout the MCR to simulate the actions of them opening the control panel doors and the ceiling tiles. The heat load from the remaining five operators is distributed evenly over the lower and middle subvolumes of the lower MGR. | |||
ENER'CON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 40 of 303 0.66BTU/s | |||
. BTU Qo t = = 0.00258 --pera ors 256 heaters s The heat load from the Emergency (1296 Watts) for Case 1 (Reference 8.36) is evenly distributed amqng the 44 upper elevation,subvolumes in the lower MCR that are adjacent to the MCR walls-subvolumes 257-272, 273, 288, 289, 304, 305, 320, 321, 336, 337, 352, 353, 368, 369-384. | |||
The heat load per subvolume is calculated below. BTU/s 1296 Watts* 9.478e -4 Watt QEmergency Lights-LOOP= | |||
44 subvolumes | |||
= ,0.028 BTU /s , . The heat load from the Emergency lights (13 Watts) is added to the heat load for the Exit lights which are located in the upper subvolumes by the doors along the West wall of the lower MCR-subvolumes 259 and 270. The heat load from the PGCC raceway is modeled in the air gap in the composite floor conductor as a volumetric heat generation rate. The heat load of 650 watts from the PGCC raceway for Case 1 is divided by the surface area of the floor conductor (10,656 ft2) and the thickness of the air gap (1 ft) to determine the volumetric heat generation rate, shown bel,ow. | |||
* BTU/s ,,, 650 Watts* 9.478e -4 W _ BTU Q PGCC Raceway-Case 1 = 10,656 ft2 | * BTU/s ,,, 650 Watts* 9.478e -4 W _ BTU Q PGCC Raceway-Case 1 = 10,656 ft2 | ||
* 1 ft -5.8e -5 ft3 _ s The same methodology is used for the heat load for Cases 2 and Attachment 1, based on a PGCC raceway heat load of 1350 Watts. BTU/s 1350 Watts* 9.478e -4 W BTU Q"' PGCC Raceway-Case 2 &Att. 1 = 10,656 f t2 | * 1 ft -5.8e -5 ft3 _ s The same methodology is used for the heat load for Cases 2 and Attachment 1, based on a PGCC raceway heat load of 1350 Watts. BTU/s 1350 Watts* 9.478e -4 W BTU Q"' PGCC Raceway-Case 2 &Att. 1 = 10,656 f t2 | ||
* 1 ft = 1.2e -4 ft3 _ s \ 6.6. Flow Paths and Volumetric Fans Flow paths (FP) are added to model door CB136-9 that opens from the lower MCR volume to the stairwell volume (FP 13, 14, and 21 ), the door that opens from the stairwell volume to the atmosphere (FP15, FP16), and exhaust paths for the smoke removal fan (FP18, 19, 20) and the toilet/kitchen fans (FP22). The door flow paths are split and modeled as parallel flow paths to allow for counter-current flow. The flow paths are sized based on Input 3.9. The first two flow patl]s (FP13 and FP21) model the lower half of door CB136-9; one flow path for when there is no fan, and the other for when the fan is staged in the lower half of the door. The flow path without the fan (FP13) is closed using a GOTHIC door component when the staged fan starts at 1 hour and 30 minutes in Case 2 (Table 5). The other flow path (FP14) models the upper half of door CB136-9. Once the door is opened, this flow path provides the supply air for the smoke removal fan, portable fan, and toilet/kitchen fans. The height of each door flow path is 3.5 ft (half of the total height of 7 ft). The flow area and hydraulic diameter for the door paths are calculated below. ( \ '.. | * 1 ft = 1.2e -4 ft3 _ s \ 6.6. Flow Paths and Volumetric Fans Flow paths (FP) are added to model door CB136-9 that opens from the lower MCR volume to the stairwell volume (FP 13, 14, and 21 ), the door that opens from the stairwell volume to the atmosphere (FP15, FP16), and exhaust paths for the smoke removal fan (FP18, 19, 20) and the toilet/kitchen fans (FP22). The door flow paths are split and modeled as parallel flow paths to allow for counter-current flow. The flow paths are sized based on Input 3.9. The first two flow patl]s (FP13 and FP21) model the lower half of door CB136-9; one flow path for when there is no fan, and the other for when the fan is staged in the lower half of the door. The flow path without the fan (FP13) is closed using a GOTHIC door component when the staged fan starts at 1 hour and 30 minutes in Case 2 (Table 5). The other flow path (FP14) models the upper half of door CB136-9. | ||
Once the door is opened, this flow path provides the supply air for the smoke removal fan, portable fan, and toilet/kitchen fans. The height of each door flow path is 3.5 ft (half of the total height of 7 ft). The flow area and hydraulic diameter for the door paths are calculated below. ( \ '.. | |||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 41 of 303 Adoor = H | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 41 of 303 Adoor = H | ||
* W = 3.5 ft* 3 ft = 10.5 f t2 4A 4*10.5 Dh = Pw = 2 | * W = 3.5 ft* 3 ft = 10.5 f t2 4A 4*10.5 Dh = Pw = 2 | ||
* 3.5 + 3 = 4.2 ft The inertia length and friction length for this flow path are set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The flow path connection for the lower half flow paths of CB136-9 (FP13 and FP21) is connected to the lower subvolume of the MCR volume in the sbuthwest corner (subvolllme 1s14). The flow path connection for the upper half of CB136-9 (FP14) is connected to the upper subvolume of the MCR (subvolume 1 s142). The orientation of this connection is set at the bottom of the subvolume so that it can provide flow and mixing with the lower subvolumes when the staged fan flow path is open. The inputs for the toilet/kitchen flow path are arbitrarily defined with a height (ft), flow area (ft2), hydraulic diameter (ft), and inertia length (ft) of 1. The toilet and kitchen fan flow path is modeled in a subvolume near the center of east wall (1s374) based on review of Reference 8.26. The toilet/kitchen fans are only used for Case 2, when offsite power is available. Before door CB136-9 is opened, the supply air for the toilet/kitchen fans* is through the pressure boundary (FP1) which provides outside air flow at 96°F. FP1 is arbitrarily located in subvolurTie'1s94. This is conservative as the HVAC rooms which are connected to the MCR with ductwork are not expected to heat up significantly through this event, and would provide leakage at a cooler temperature. | * 3.5 + 3 = 4.2 ft The inertia length and friction length for this flow path are set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | ||
The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The flow path connection for the lower half flow paths of CB136-9 (FP13 and FP21) is connected to the lower subvolume of the MCR volume in the sbuthwest corner (subvolllme 1s14). The flow path connection for the upper half of CB136-9 (FP14) is connected to the upper subvolume of the MCR (subvolume 1 s142). The orientation of this connection is set at the bottom of the subvolume so that it can provide flow and mixing with the lower subvolumes when the staged fan flow path is open. The inputs for the toilet/kitchen flow path are arbitrarily defined with a height (ft), flow area (ft2), hydraulic diameter (ft), and inertia length (ft) of 1. The toilet and kitchen fan flow path is modeled in a subvolume near the center of east wall (1s374) based on review of Reference 8.26. The toilet/kitchen fans are only used for Case 2, when offsite power is available. | |||
Before door CB136-9 is opened, the supply air for the toilet/kitchen fans* is through the pressure boundary (FP1) which provides outside air flow at 96°F. FP1 is arbitrarily located in subvolurTie'1s94. | |||
This is conservative as the HVAC rooms which are connected to the MCR with ductwork are not expected to heat up significantly through this event, and would provide leakage at a cooler temperature. | |||
* The inputs for the smoke removal fan flow paths (FP18-20) are defined based on Reference 8.8. Reference 8.8 shows the opening for the DMP 68 and 69 to be 48" x 36". The flow area and hydraulic diameter for these dampers (FP19, 20) is calculated below. 48 in x 36 in 2 ADMP68/69 = . 2 = 12 ft m 144 ft2 ' 4 | * The inputs for the smoke removal fan flow paths (FP18-20) are defined based on Reference 8.8. Reference 8.8 shows the opening for the DMP 68 and 69 to be 48" x 36". The flow area and hydraulic diameter for these dampers (FP19, 20) is calculated below. 48 in x 36 in 2 ADMP68/69 = . 2 = 12 ft m 144 ft2 ' 4 | ||
* 12 ft2 Dh-DMP 68/69 = 48 in 36 in = 3.43 ft (2 | * 12 ft2 Dh-DMP 68/69 = 48 in 36 in = 3.43 ft (2 | ||
* 12 in/ft+ 2 | * 12 in/ft+ 2 | ||
* 12 in/ft) Reference 8.8 shows the opening for DMP 70 to be 108" x 48". The flow area and hydraulic diameter for this damper (FP18) is calculated below. 108 in x 48 in 2 ADMP70 = . 2 = 36ft m 144 ft2 4 | * 12 in/ft) Reference 8.8 shows the opening for DMP 70 to be 108" x 48". The flow area and hydraulic diameter for this damper (FP18) is calculated below. 108 in x 48 in 2 ADMP70 = . 2 = 36ft m 144 ft2 4 | ||
* 36 ft2 Dh-DMP7o = 108 in 48 in = 5.54 ft (2 | * 36 ft2 Dh-DMP7o | ||
= 108 in 48 in = 5.54 ft (2 | |||
* 12 in/ft+ 2 | * 12 in/ft+ 2 | ||
* 12 in/ft) | * 12 in/ft) | ||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 42 of 303 *, The inertia length and friction length for these flow paths are set to 10 ft and Oft respectively, based on the insensitivity of the model to these parameters. The height is set 1.0 ft. The loss coefficient is set to zero as the flow is forced using GOTHIC volumetric fans. As described in Assumption 4.2, the flow through each of the dampers is weighted based on the total flow of 10, 125 cfm (Input 3.11) and the normal flow through the dampers, shown below. , ( 7600 cfm * ) FlowDMP6B/69 = 10,125 cfm | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 42 of 303 *, The inertia length and friction length for these flow paths are set to 10 ft and Oft respectively, based on the insensitivity of the model to these parameters. | ||
* 7600 cfm + 7600 cfm + 21000 cfm = 2,125.7 cfm . ( , 21000 cfm * ) = 10,125 cfm | The height is set 1.0 ft. The loss coefficient is set to zero as the flow is forced using GOTHIC volumetric fans. As described in Assumption 4.2, the flow through each of the dampers is weighted based on the total flow of 10, 125 cfm (Input 3.11) and the normal flow through the dampers, shown below. , ( 7600 cfm * ) FlowDMP6B/69 | ||
* 7600 cfm + 7600 cfm + 21000 cfm = 5,873.6 cfm The flow paths representing the ceiling tiles (FP2-10) are distributed across the upper subvolumes of the lower MCR and connected to the corresponding upper MCR subvolume. The first tile flow path that opens is split into two different flow paths of equal area (40 ft2) in order to allow for cpunter current flow when the tiles are initially opened. The loss coefficient, inertia lengths and friction lengths for the tile flow paths used in Reference 8.1 are retained in this analysis as they were to be reasonable. Flow paths 23-53 are added to-model the egg crate panels shown on Reference 8.8 and 8.31. Based on Attachment 7, there are 16 registers along the-west wall, and 15 along the East wall; this is also shown in Reference 8.31. Based on Attachment 7, the egg crate panels are squares that are 1/2" x 1/2"; the registers have 18 holes in one dimension and 80 in the other ' dimension. The opening area and hydraulic diameter for each egg crate panel is: calculated below. -0.5 in x 0.5 in . 2 A Egg crate = . 2 . | = 10,125 cfm | ||
* 7600 cfm + 7600 cfm + 21000 cfm = 2,125.7 cfm . ( , 21000 cfm * ) | |||
= 10,125 cfm | |||
* 7600 cfm + 7600 cfm + 21000 cfm = 5,873.6 cfm The flow paths representing the ceiling tiles (FP2-10) are distributed across the upper subvolumes of the lower MCR and connected to the corresponding upper MCR subvolume. | |||
The first tile flow path that opens is split into two different flow paths of equal area (40 ft2) in order to allow for cpunter current flow when the tiles are initially opened. The loss coefficient, inertia lengths and friction lengths for the tile flow paths used in Reference 8.1 are retained in this analysis as they were to be reasonable. | |||
Flow paths 23-53 are added to-model the egg crate panels shown on Reference 8.8 and 8.31. Based on Attachment 7, there are 16 registers along the-west wall, and 15 along the East wall; this is also shown in Reference 8.31. Based on Attachment 7, the egg crate panels are squares that are 1/2" x 1/2"; the registers have 18 holes in one dimension and 80 in the other ' dimension. | |||
The opening area and hydraulic diameter for each egg crate panel is: calculated below. -0.5 in x 0.5 in . 2 A Egg crate = . 2 . | |||
* 80 holes | * 80 holes | ||
* 18 holes = 2.5 ft m 144 ft2 4 | * 18 holes = 2.5 ft m 144 ft2 4 | ||
| Line 107: | Line 429: | ||
* 12 *inff t | * 12 *inff t | ||
* 80 holes | * 80 holes | ||
* 18 holes) The. inertia length for the egg crate panel flow paths is set to 10 ft, based on the insensitivity of the model to this parameter. The friction length for the Egg Crate panels is set to 0.0417 ft based on the flow length given in Attachment 7 as 0.5 inches. The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The momentum transport option is set to "N" (in-line momentum transport) for flow paths between a subvolume and a lumped volume or a pressure boundary condition (e.g. the door flow path, smoke removal fan flow path, etc.), as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the ceiling tile and egg crate panels flow paths is also set to "N" ._ | * 18 holes) The. inertia length for the egg crate panel flow paths is set to 10 ft, based on the insensitivity of the model to this parameter. | ||
ENERCON CALCULATION CONTROL SHEET 6.7. Control Variables CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 43 of 303 GOTHIC control variables are used to record the maximum cell temperature in the lower MCR volume as well as calculate the average temperature of the MCR. A GOTHIC "max" control variable is used to record the maximum cell temperature in the lower and middle subvolumes of the lower MCR volume (cv1). A GOTHIC "max" control variable is also used to record the maximum cell temperature for the entire lower MCR volume (cv7) The average temperature of the MCR is calculated on a volume-averaged basis by numerically averaging the temperatures in the lower, middle and upper subvolumes separately using GOTHIC control variables cv2, cv3, and cv5 (sum of the temperatures in the lower, middle or upper subvolumes, divided by the number of cells-128). The average temperature of the lower two subvolumes (TA) is then calculated taking the volumetric average of the lower and middle subvolumes, using the equation below. VL: Total volume of lower subvolumes (144 ft x 74 ft x 3.48513 ft x 0.9 = 33,423.8 ft3) TL: Average Temperature of lower subvolumes TA: Average Temperature of the lower two subvolumes in the lower MCR VM=Total volume of middle subvolumes (144 ft x 74 ft x 4.0193 ft x 0.9 =38,546.7 ft3) TM: Average Temperature of middle,subvolumes Rearranging to solve for the average temperature, TA. VL TM+v-TL T -M A-Vi + 1 VM The GOTHIC "sum" Control Variable (cv4) has the following form. Where "G" and "an" are coefficients and "Xn" are variables. Therefore "G" is the inverse of the denominator of the equation that solves for average temperature, 0.53559. The coefficient "aa" is zero. "TM" is taken to be variable "X/', making coefficient "a1" equal to one. 'TL" is taken to be variable "X2", making coefficient "a2" equal to VLNM, or 0.867. No other variables or coefficients were used in calculating this Control Variable. The average temperature of the lower and middle subvolumes (cv4) is then average with the average temperature of the upper subvolumes (cv5) using the same equation as above. | The friction length for the Egg Crate panels is set to 0.0417 ft based on the flow length given in Attachment 7 as 0.5 inches. The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The momentum transport option is set to "N" (in-line momentum transport) for flow paths between a subvolume and a lumped volume or a pressure boundary condition (e.g. the door flow path, smoke removal fan flow path, etc.), as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the ceiling tile and egg crate panels flow paths is also set to "N" ._ | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 44 of 303 VA: of lower and middle subvolumes (144 ft x 74 ft x 7.50443 ft x 0.9 = 71,970.5 ft3) TA: Average Temperature of lower and middle subvolumes in the lower MCR Ts: Overall average Temperature of the lower MCR VH=Total volume of the upper subvolumes (144 ft x 74 ft x 1.61057 ft x 0.9 =15,446 ft3) TH: Average Temperature of upper subvolumes Rearranging to solve for the average temperature, Ts. Therefore "G" is the of the denominator of the equation that solves for average temperature, 0.17669. The coefficient "ao" is zero. "TH" is taken to be variable "X1", _making coefficient "a/' equal to one. "TA" is taken to be variable "X2", making coefficient "a2" equal to VANH, or'4.65949. No other variables or coefficients were used in calculating this Control Variable. 6.8 Blockages Blockages are added to the lower MCR volume (CV1) to model the effects on the flow patterns of the control panels and the walls surrounding the kitchen area and shift manager's office. The blockages are constructed based on the physical location of these components as shown in Reference 8.26 and 8.27 and are located coincident with the nearest x-or y-direction grid line. For example the blockage representing the panels in 1H13-U7 4 7 is located on the second grid line between subvolume 1 s34 and 1 s35, up through subvolumes 1 s50 and 1 s51. Blockages are constructed so they do not displace any volume in the MCR; a 10% reduction in the MCR free volume has already been incorporated (see Reference 8.1 ). | ENERCON CALCULATION CONTROL SHEET 6.7. Control Variables CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 43 of 303 GOTHIC control variables are used to record the maximum cell temperature in the lower MCR volume as well as calculate the average temperature of the MCR. A GOTHIC "max" control variable is used to record the maximum cell temperature in the lower and middle subvolumes of the lower MCR volume (cv1). A GOTHIC "max" control variable is also used to record the maximum cell temperature for the entire lower MCR volume (cv7) The average temperature of the MCR is calculated on a volume-averaged basis by numerically averaging the temperatures in the lower, middle and upper subvolumes separately using GOTHIC control variables cv2, cv3, and cv5 (sum of the temperatures in the lower, middle or upper subvolumes, divided by the number of cells-128). | ||
\ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 45 'of 303 7. Results Figure 7 shows tile average transient temperature in the MCR for 24 hours for Case 1. The average temperature in the MCR increases to approximately 105 °F at approximately 1.2 hours. The temperature then decreases to approximately 103°F due to the effects of removing the ceiling tiles, which is initiated ten minutes after the average temperature of the MCR reaches 104 °F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1 C11 panels are dropped at the end of the BYS-INV02 battery life at 4 hours when the average temperature is approximately 107°F, which reduces the average temperature to approximately 103°F. The average temperature then gradually increases to 111.4°F at 24 hours. This case does not include the simple and obvious action of opening doors to the Main Control Room. 115 110 105 100 LI:" (]J .._ ::J .., 95 ro '-*******************************************************************************l********************************************************************************************************************************************-********************************************************************************************************************-**-*****-***""' *********** ............. _ ...... . OJ 0.. E (!) f-90 85 80 75 0 5 10 15 20 25 Time (hrs) Figure 7: Average MCR Temperature for Case 1 | The average temperature of the lower two subvolumes (TA) is then calculated taking the volumetric average of the lower and middle subvolumes, using the equation below. VL: Total volume of lower subvolumes (144 ft x 74 ft x 3.48513 ft x 0.9 = 33,423.8 ft3) TL: Average Temperature of lower subvolumes TA: Average Temperature of the lower two subvolumes in the lower MCR VM=Total volume of middle subvolumes (144 ft x 74 ft x 4.0193 ft x 0.9 =38,546.7 ft3) TM: Average Temperature of middle,subvolumes Rearranging to solve for the average temperature, TA. VL TM+v-TL T -M A-Vi + 1 VM The GOTHIC "sum" Control Variable (cv4) has the following form. Where "G" and "an" are coefficients and "Xn" are variables. | ||
( ENERCON CALCULATION CO,NTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' I PAGE NO. 46 of 303 . Figure 8 shows the maximum subvolume temperature of the lower MCR for Case 1. The maximum temperature increases to approximately 112°F before the tiles are opened which results in the maximum temperature decreasing to approximately 111°F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1C11 panels is dropped at the end of the BYS-INV02 battery life at 4 hours when the temperature is approximately 114°F; which reduces the temperature to approximately 108°F. The temperature than gradually increases to 117.8°F at 24 hours. 120 115 110 105 LI:' -100 (]) .... ::l ... ro ._ QJ 0. E 95 90 85 .................................................. ,............. ......... .. ...... . 80 ........................... ***+*-----------------------***----***------.................................... , ........................... .. 0 5 10 Time (hr) 15 20 Figure 8: Maximum Local MCR Temperature for Case 1 25 ENERCON I CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 47 of 303 Figure 9 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 1. The initial relative humidity is 20% and decreases to approximately 8% at 24 hours. 25 I ' I 20 ** i r I I 15 >-.., 'Ci .E I I I I I J ;:, :r: Q) > :;:; ro (ii cc. 10 I ...*.... \f **------------* --5 " J . 0 0 5 10 15 20 25 Time (hrs) Figure 9: Relative Humidity in the Horseshoe Area for Case 1 ENERCON / f,etyday CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 48 of 303 Figure 10 shows the average temperature of the MCR for Case 2. The average temperature in the MCR increases to a peak value of 116.1 "F at two hours when the smoke rem'oval fan is energized. Note that the operator actions of opening door CB136-9 at one hour and staging the portable electric fan at one and a half hours are shown to have a negligible impact on the room temperature. Note also that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually -start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. Following start of the smoke removal fan, the average temperature decreases to approximately 112°F, then decreases again when the ceiling tiles are removed at two and a half hours. The'average temperature then with changes in the outdoor air temperature, and at 24 hours is 1_Q.8.6"F. 120 115 90 I I 85 U-***-----) /' 80 75 0 5 10 15 .I 20 25 Time (hrs) Figure 10: Average MCA Temperature for Case 2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 49 of 303 Figure 11 shows the maximum subvolume temperature in the MCR for 24 hours for Case The maximum subvolume in the MCR reaches a peak value of 121.8°F at 2.02 hours. Ceiling tile removal further decreases the maximum subvolume temperature, and at 24 hours the maximum subvolume temperature is 116.8°F. 125 120 115 -7 J A ********.,********* **************--*--***-.,_u, ... .,,,,,,,,,,_,,,,,_,. .. ,.,,.,, *.. ., ******** ., .*..... 110 1-................................................................. t*****-..................................................................... , ............................................................................ . Q) .... ::;, 105 '§ 100 Q) n. E 95 85 80 75 0 5 10 15 Time (hr) Figure 11: Maximum Local MCR Temperature for Case 2 20 25 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV. 0 fKi;:t>n{e* £w:r:y P'Circr fHY1 Jar PAGE NO. 50 of 303 Figure 12 shows the temperature distribution of the lower and middle subvolumes of the lower MCR at the time the limiting local cell temperature occurs, 2.02 hours. .....I .....I c:x: $ I C::: 0 z YB Y7 Y6 YS Y4 Y3 Y2 Yl 111.4 111.l 111.6 111.9 112.2 111.5 110.3 102.5 Lower El. (Zl) Xl 0 .....I .....I c:x: $ I C::: 0 z 3.485 YB 114.7 Y7 116.3 Y6 116.2 YS 116.0 Y4 116.0 Y3 115.B Y2 115.S Yl 107.9 Middle El. (Z2) Xl 3.485 7.5 111.B 112.2 112.7 112.8 112.3 113.2 112.2 112.4 112.7 114.6 113.7 112.8 110.9 111.2 106.4 107.5 X2 X3 114.7 114.8 115.6 115.9 115.7 116.2 116.3 116.S 116.l 116.S 115.S 114.8 113.9 112.9 107.1 107.9 X2 X3 112.3 116.S 115.0 112.S 112.2 111.4 110.4 107.S X4 115.0 119.9 118.S 116.3 115.7 115.l 112.0 108.3 X4 111.6 109.4 110.4 111.S 111.0 111.5 110.3 107.6 XS 114.8 116.0 115.6 115.7 115.2 115.2 112.0 109.1 XS 115.B 108.0 110.5 110.B 109.9 110.1 109.9 107.6 X6 113.9 116.8 115.1 115.S 114.6 113.6 EAST WALL 115.2 116.1 114.9 116.4 116.8 116.9 115.4 114.9 115.7 112.S 114.4 115.3 113.4 115.2 115.7 111.0 113.8 114.8 109.6. 110.4 112.1 107.6 107.4 107.1 X7 XB X9 WEST WALL 117.2 118.1 118.8 117.5 117.7 116.8 EAST WALL 117.3 118.1 118.S 118.2 118.0 117.9 116.8 117.3 117.8 118.3 117.9 117.9 112.S | Therefore "G" is the inverse of the denominator of the equation that solves for average temperature, 0.53559. | ||
* 113.2 113.8 115.8 110.4 112.4 113.1 112.7 X6 X7 X8 X9 WEST WALL 114.S 113.6 117.1 115.3 115.9 116.6 115.S 115.8 115.5 118.7 115.4 118.6 115.5 115.0 106.0 105.8 XlO Xll 116.7 116.3 117.1 118.1 118.0 118.6 118.8 119.0 119.0 Ul.8 119.0 120.8 118.4 119.4 111.4 110.9 XlO Xll 113.0 112.2 111.3 110.2 109.2 114.8 113.5 113.3 113.2 109.3 115.8 114.8 114.7 113.3 108.3 115.0 113.9 112.9 111.0 107.9 116.1 115.5 114.5 115.6 107.0 117.3 115.5 115.8 113.5 106.2 114.0 113.7 111.1 109.7 105.S 105.5 105.3 104.8 104.9 104.8 X12 X13 X14 X15 X16 115.3 115.1 114.3 112.9 111.0 119.3 118.4 117.8 116.1 111.4 118.7 117.9 116.8 116.1 110.5 118.7 118.3 117.1 115.0 110.0 119.2 118.4 118.7 118.8 107.5 119.3 117.9 118.S 120.1 105.9 118.6 117.6 117.6 109.5 105.2 111.7 114.3 104.8 106.0 104.9 X12 X13 X14 XlS X16 Figure 12: Temperature Distribution of the lower and middle subvolumes of the MCR at 2.02 hours .....I .....I c:x: $ I ::> 0 Vl .....I .....I I ::> 0 Vl ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 51 of 303 Figure 13 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 2. The initial relative humidity is 20% and decreases to approximately \_ 10% before the smoke removal fan is turned on and outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes 'in the outside air relative humidity. 50 40 I 0 5 10 15 20 25 Time (hrs) Figure 13: Relative Humidity in the Horseshoe Area for Case 2 ENERCON I 8. REFERENCES CALCULATION CONTROL SHEET CALC. ENTR-078-CALC-004 REV.O PAGE NO. 52 of 303 1. \G13.18.12.4*027, "Control Room Temperature During Station Blackout", Rev. 2. 2. E-226, "Control Building Electrical Equipment Heat Release During LOCA Condition with Off Site Power Available and also Control Building Electrical heat Release during LOCA Condition without Offsite Power (LOOP) and with EGS-EG 1 B Diesel Generator not Responding", Rev. 5. 3: EA-006M, "Door Location Plan Sheet 4," Rev. 7. 4. ES-246,-"Control Building Heatup following failure of the HVAC System", Rev. 3. 5. GOTHIC Containment Analysis Package User's Manual, version 7.2b (QA), March 2009 (SCR-2012-0214) 6. AOP-0060, "Loss of Control Building Ventilation", Rev. 009. 7. G13.18.12.3*161, "Standby Switchgear Room Temperatures following Loss of Offsite Power and Loss of HVAC", Rev. 2. 8. EB-0390, Ventilation & Air Conditioning Plan El 135' Control Building", Rev. 9. 9. 6224.302-000-038A (NED010466-A), "PGCC Design Criteria & Safety Evaluation. 10. EA-006B, "Doqr Schedule & Details", Rev. 14. 11. EA-46D, "Stairs-1&2-Plans Sects & Dets Control Bldg", Rev. 5. 12. PID-22-09B, "HVAC Control Building", Rev. 14. 13. ASHRAE Handbook Fundamentals, 1-P Edition, 2009. 14. AOP-0050, "Station Blackout", Rev 051 15. PlD-22-09C, "HVAC Control Building", Rev. 10. 16. 22A3888, GE MCR Panel Specification, RBS vendor document 0242.411-000-009. 17. G13.18.2.1-059, Rev. 4, "Control Building Heat Load Evaluation during LOCA w/ Offsite Power Available and Normal Operating Conditions 18. ENTR-078-CALC-001, "Control Building Heatup Analysis following Loss of HVAC and Simultaneous Loss of Coolant Accident", Rev. 0. 19. ENTR-078-CALC-002, "Main Control Room Heat-Up Under Loss of HVAC Conditions", Rev.a 20. G13.18.4.0*063, "Cooling Capability for the Standby Service Water System to the Control Building Air Handling Units", Rev. 0. 21. Deleted 22. G13.18.2.3-426, Rev. 0, "Standby Switchgear Room Temperature Sensitivity with Service Water Aligned to the HVK System" '23. "Handbook*of Heat Transfer Fundamentals", Rohsenow and Hartnett, McGraw-Hill, 1973. 24. "Thermophysical Properties of Matter, Vol. 3", Y.S. Toulokian, P.E. Lily, S.C Saxena, lFl/Plenun, NY, 1970. , 25. "Fundamentals of Momentum, Heat & Mass Transfer Second edition", Welty, Wicks and Wilson, John Wiley & Sons, 1969. 26. EE-027A, Rev. 16, "Arrangement Main Control Room" 27. EE-027D, Rev. 6, ArrangementControl Bldg Section and Details" 28. EA-046F, Rev. 4, "Raised Access Floor System Main Control Room El. 136'-1 5/8"" 29. ENTR-078-CALC-003, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours," Rev. 3. | The coefficient "aa" is zero. "TM" is taken to be variable "X/', making coefficient "a1" equal to one. 'TL" is taken to be variable "X2", making coefficient "a2" equal to VLNM, or 0.867. No other variables or coefficients were used in calculating this Control Variable. | ||
* 30. SOP-0058, Rev. 21, "Control Building HVAC System" 31. EA-46B, Rev. 14, "Reflected Ceiling Plans and Details. 32. PlD-22-09A, "HVAC Control Building", Rev. 17. 33. EE-065A, Rev. 7, "Lighting Plan, Control Bldg-Control Room) | The average temperature of the lower and middle subvolumes (cv4) is then average with the average temperature of the upper subvolumes (cv5) using the same equation as above. | ||
ENERCON CALCULATION CONTROL SHEET 34. ASHRAE Handbook Fundamentals, 1-P Edition, 1993. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 53 of 303 35. 0242.428-000-247, Rev. P, "Interface Control, Control Room Panels." 36. EC61975 "References for E-226 Cale. Revision." ' ( | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 44 of 303 VA: | ||
of lower and middle subvolumes (144 ft x 74 ft x 7.50443 ft x 0.9 = 71,970.5 ft3) TA: Average Temperature of lower and middle subvolumes in the lower MCR Ts: Overall average Temperature of the lower MCR VH=Total volume of the upper subvolumes (144 ft x 74 ft x 1.61057 ft x 0.9 =15,446 ft3) TH: Average Temperature of upper subvolumes Rearranging to solve for the average temperature, Ts. Therefore "G" is the of the denominator of the equation that solves for average temperature, 0.17669. | |||
The coefficient "ao" is zero. "TH" is taken to be variable "X1", _making coefficient "a/' equal to one. "TA" is taken to be variable "X2", making coefficient "a2" equal to VANH, or'4.65949. | |||
No other variables or coefficients were used in calculating this Control Variable. | |||
6.8 Blockages Blockages are added to the lower MCR volume (CV1) to model the effects on the flow patterns of the control panels and the walls surrounding the kitchen area and shift manager's office. The blockages are constructed based on the physical location of these components as shown in Reference 8.26 and 8.27 and are located coincident with the nearest x-or y-direction grid line. For example the blockage representing the panels in 1H13-U7 4 7 is located on the second grid line between subvolume 1 s34 and 1 s35, up through subvolumes 1 s50 and 1 s51. Blockages are constructed so they do not displace any volume in the MCR; a 10% reduction in the MCR free volume has already been incorporated (see Reference 8.1 ). | |||
\ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 45 'of 303 7. Results Figure 7 shows tile average transient temperature in the MCR for 24 hours for Case 1. The average temperature in the MCR increases to approximately 105 °F at approximately 1.2 hours. The temperature then decreases to approximately 103°F due to the effects of removing the ceiling tiles, which is initiated ten minutes after the average temperature of the MCR reaches 104 °F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1 C11 panels are dropped at the end of the BYS-INV02 battery life at 4 hours when the average temperature is approximately 107°F, which reduces the average temperature to approximately 103°F. The average temperature then gradually increases to 111.4°F at 24 hours. This case does not include the simple and obvious action of opening doors to the Main Control Room. 115 110 105 100 LI:" (]J .._ ::J .., 95 ro '-*******************************************************************************l********************************************************************************************************************************************-********************************************************************************************************************-**-*****-***""' | |||
*********** | |||
............. | |||
_ ...... . OJ 0.. E (!) f-90 85 80 75 0 5 10 15 20 25 Time (hrs) Figure 7: Average MCR Temperature for Case 1 | |||
( ENERCON CALCULATION CO,NTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' I PAGE NO. 46 of 303 . Figure 8 shows the maximum subvolume temperature of the lower MCR for Case 1. The maximum temperature increases to approximately 112°F before the tiles are opened which results in the maximum temperature decreasing to approximately 111°F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1C11 panels is dropped at the end of the BYS-INV02 battery life at 4 hours when the temperature is approximately 114°F; which reduces the temperature to approximately 108°F. The temperature than gradually increases to 117.8°F at 24 hours. 120 115 110 105 LI:' -100 (]) .... ::l ... ro ._ QJ 0. E 95 90 85 .................................................. | |||
,............. | |||
......... | |||
.. ...... . 80 ........................... | |||
***+*-----------------------***----***------ | |||
.................................... | |||
, ........................... | |||
.. 0 5 10 Time (hr) 15 20 Figure 8: Maximum Local MCR Temperature for Case 1 25 ENERCON I CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 47 of 303 Figure 9 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 1. The initial relative humidity is 20% and decreases to approximately 8% at 24 hours. 25 I ' I 20 | |||
** | |||
i r I I 15 >-.., 'Ci .E I I I I I J ;:, :r: Q) > :;:; ro (ii cc. 10 I ...*.... | |||
\f **------------* --5 " J . 0 0 5 10 15 20 25 Time (hrs) Figure 9: Relative Humidity in the Horseshoe Area for Case 1 ENERCON / | |||
f,etyday CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 48 of 303 Figure 10 shows the average temperature of the MCR for Case 2. The average temperature in the MCR increases to a peak value of 116.1 "F at two hours when the smoke rem'oval fan is energized. | |||
Note that the operator actions of opening door CB136-9 at one hour and staging the portable electric fan at one and a half hours are shown to have a negligible impact on the room temperature. | |||
Note also that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually | |||
-start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. Following start of the smoke removal fan, the average temperature decreases to approximately 112°F, then decreases again when the ceiling tiles are removed at two and a half hours. The'average temperature then with changes in the outdoor air temperature, and at 24 hours is 1_Q.8.6"F. | |||
120 115 90 I I 85 U-***----- | |||
) /' 80 75 0 5 10 15 .I 20 25 Time (hrs) Figure 10: Average MCA Temperature for Case 2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 49 of 303 Figure 11 shows the maximum subvolume temperature in the MCR for 24 hours for Case The maximum subvolume in the MCR reaches a peak value of 121.8°F at 2.02 hours. Ceiling tile removal further decreases the maximum subvolume temperature, and at 24 hours the maximum subvolume temperature is 116.8°F. | |||
125 120 115 -7 J A ********.,********* | |||
**************--*--***- | |||
.,_u, ... .,,,,,,,,,,_,,,,,_,. | |||
.. ,.,,.,, *.. ., ******** | |||
., .*..... 110 1-................................................................. | |||
t*****-..................................................................... | |||
, ............................................................................ | |||
. Q) .... ::;, 105 '§ 100 Q) n. E 95 85 80 75 0 5 10 15 Time (hr) Figure 11: Maximum Local MCR Temperature for Case 2 20 25 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV. 0 fKi;:t>n{e* | |||
£w:r:y P'Circr fHY1 Jar PAGE NO. 50 of 303 Figure 12 shows the temperature distribution of the lower and middle subvolumes of the lower MCR at the time the limiting local cell temperature occurs, 2.02 hours. .....I .....I c:x: $ I C::: 0 z YB Y7 Y6 YS Y4 Y3 Y2 Yl 111.4 111.l 111.6 111.9 112.2 111.5 110.3 102.5 Lower El. (Zl) Xl 0 .....I .....I c:x: $ I C::: 0 z 3.485 YB 114.7 Y7 116.3 Y6 116.2 YS 116.0 Y4 116.0 Y3 115.B Y2 115.S Yl 107.9 Middle El. (Z2) Xl 3.485 7.5 111.B 112.2 112.7 112.8 112.3 113.2 112.2 112.4 112.7 114.6 113.7 112.8 110.9 111.2 106.4 107.5 X2 X3 114.7 114.8 115.6 115.9 115.7 116.2 116.3 116.S 116.l 116.S 115.S 114.8 113.9 112.9 107.1 107.9 X2 X3 112.3 116.S 115.0 112.S 112.2 111.4 110.4 107.S X4 115.0 119.9 118.S 116.3 115.7 115.l 112.0 108.3 X4 111.6 109.4 110.4 111.S 111.0 111.5 110.3 107.6 XS 114.8 116.0 115.6 115.7 115.2 115.2 112.0 109.1 XS 115.B 108.0 110.5 110.B 109.9 110.1 109.9 107.6 X6 113.9 116.8 115.1 115.S 114.6 113.6 EAST WALL 115.2 116.1 114.9 116.4 116.8 116.9 115.4 114.9 115.7 112.S 114.4 115.3 113.4 115.2 115.7 111.0 113.8 114.8 109.6. 110.4 112.1 107.6 107.4 107.1 X7 XB X9 WEST WALL 117.2 118.1 118.8 117.5 117.7 116.8 EAST WALL 117.3 118.1 118.S 118.2 118.0 117.9 116.8 117.3 117.8 118.3 117.9 117.9 112.S | |||
* 113.2 113.8 115.8 110.4 112.4 113.1 112.7 X6 X7 X8 X9 WEST WALL 114.S 113.6 117.1 115.3 115.9 116.6 115.S 115.8 115.5 118.7 115.4 118.6 115.5 115.0 106.0 105.8 XlO Xll 116.7 116.3 117.1 118.1 118.0 118.6 118.8 119.0 119.0 Ul.8 119.0 120.8 118.4 119.4 111.4 110.9 XlO Xll 113.0 112.2 111.3 110.2 109.2 114.8 113.5 113.3 113.2 109.3 115.8 114.8 114.7 113.3 108.3 115.0 113.9 112.9 111.0 107.9 116.1 115.5 114.5 115.6 107.0 117.3 115.5 115.8 113.5 106.2 114.0 113.7 111.1 109.7 105.S 105.5 105.3 104.8 104.9 104.8 X12 X13 X14 X15 X16 115.3 115.1 114.3 112.9 111.0 119.3 118.4 117.8 116.1 111.4 118.7 117.9 116.8 116.1 110.5 118.7 118.3 117.1 115.0 110.0 119.2 118.4 118.7 118.8 107.5 119.3 117.9 118.S 120.1 105.9 118.6 117.6 117.6 109.5 105.2 111.7 114.3 104.8 106.0 104.9 X12 X13 X14 XlS X16 Figure 12: Temperature Distribution of the lower and middle subvolumes of the MCR at 2.02 hours .....I .....I c:x: $ I ::> 0 Vl .....I .....I I ::> 0 Vl ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 51 of 303 Figure 13 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 2. The initial relative humidity is 20% and decreases to approximately | |||
\_ 10% before the smoke removal fan is turned on and outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes 'in the outside air relative humidity. | |||
50 40 I 0 5 10 15 20 25 Time (hrs) Figure 13: Relative Humidity in the Horseshoe Area for Case 2 ENERCON I 8. REFERENCES CALCULATION CONTROL SHEET CALC. ENTR-078-CALC-004 REV.O PAGE NO. 52 of 303 1. \G13.18.12.4*027, "Control Room Temperature During Station Blackout", | |||
Rev. 2. 2. E-226, "Control Building Electrical Equipment Heat Release During LOCA Condition with Off Site Power Available and also Control Building Electrical heat Release during LOCA Condition without Offsite Power (LOOP) and with EGS-EG 1 B Diesel Generator not Responding", | |||
Rev. 5. 3: EA-006M, "Door Location Plan Sheet 4," Rev. 7. 4. ES-246,-"Control Building Heatup following failure of the HVAC System", | |||
Rev. 3. 5. GOTHIC Containment Analysis Package User's Manual, version 7.2b (QA), March 2009 (SCR-2012-0214) | |||
: 6. AOP-0060, "Loss of Control Building Ventilation", | |||
Rev. 009. 7. G13.18.12.3*161, "Standby Switchgear Room Temperatures following Loss of Offsite Power and Loss of HVAC", Rev. 2. 8. EB-0390, Ventilation | |||
& Air Conditioning Plan El 135' Control Building", | |||
Rev. 9. 9. 6224.302-000-038A (NED010466-A), | |||
"PGCC Design Criteria | |||
& Safety Evaluation. | |||
: 10. EA-006B, "Doqr Schedule | |||
& Details", | |||
Rev. 14. 11. EA-46D, "Stairs-1&2-Plans Sects & Dets Control Bldg", Rev. 5. 12. PID-22-09B, "HVAC Control Building", | |||
Rev. 14. 13. ASHRAE Handbook Fundamentals, 1-P Edition, 2009. 14. AOP-0050, "Station Blackout", | |||
Rev 051 15. PlD-22-09C, "HVAC Control Building", | |||
Rev. 10. 16. 22A3888, GE MCR Panel Specification, RBS vendor document 0242.411-000-009. | |||
: 17. G13.18.2.1-059, Rev. 4, "Control Building Heat Load Evaluation during LOCA w/ Offsite Power Available and Normal Operating Conditions | |||
: 18. ENTR-078-CALC-001, "Control Building Heatup Analysis following Loss of HVAC and Simultaneous Loss of Coolant Accident", | |||
Rev. 0. 19. ENTR-078-CALC-002, "Main Control Room Heat-Up Under Loss of HVAC Conditions", | |||
Rev.a 20. G13.18.4.0*063, "Cooling Capability for the Standby Service Water System to the Control Building Air Handling Units", Rev. 0. 21. Deleted 22. G13.18.2.3-426, Rev. 0, "Standby Switchgear Room Temperature Sensitivity with Service Water Aligned to the HVK System" '23. "Handbook*of Heat Transfer Fundamentals", | |||
Rohsenow and Hartnett, McGraw-Hill, 1973. 24. "Thermophysical Properties of Matter, Vol. 3", Y.S. Toulokian, P.E. Lily, S.C Saxena, lFl/Plenun, NY, 1970. , 25. "Fundamentals of Momentum, Heat & Mass Transfer Second edition", | |||
Welty, Wicks and Wilson, John Wiley & Sons, 1969. 26. EE-027A, Rev. 16, "Arrangement Main Control Room" 27. EE-027D, Rev. 6, ArrangementControl Bldg Section and Details" | |||
: 28. EA-046F, Rev. 4, "Raised Access Floor System Main Control Room El. 136'-1 5/8"" 29. ENTR-078-CALC-003, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours," Rev. 3. | |||
* 30. SOP-0058, Rev. 21, "Control Building HVAC System" 31. EA-46B, Rev. 14, "Reflected Ceiling Plans and Details. | |||
: 32. PlD-22-09A, "HVAC Control Building", | |||
Rev. 17. 33. EE-065A, Rev. 7, "Lighting Plan, Control Bldg-Control Room) | |||
ENERCON CALCULATION CONTROL SHEET 34. ASHRAE Handbook Fundamentals, 1-P Edition, 1993. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 53 of 303 35. 0242.428-000-247, Rev. P, "Interface | |||
: Control, Control Room Panels." | |||
: 36. EC61975 "References for E-226 Cale. Revision." | |||
' ( | |||
ENERCON CALCULATION CONTROL Attachment 1 | ENERCON CALCULATION CONTROL Attachment 1 | ||
* Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP 1. Purpose CALC. NO. ENTR-078-CALC-004 REV.a PAGE NO. 54 of 303 The purpose of this attachment is to analyze the 24 hour transient temperature of the MCR following a loss of HVAC with HVC-ACU1A(B) re-started and aligned to the service water system (SWP) at one hour. The model is developed from the Case 2 analysis in the body of the calculation, with changes as described. This case also assumes worst case heat loads (Normal Operation), summer conditions with a maximum design basis ambient temperature of 96°F, the effects of solar irradiance on the MCR walls and roof, and the assumption that the operators complete actions to open back panel doors in the control room at 30 minutes. | * Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP 1. Purpose CALC. NO. ENTR-078-CALC-004 REV.a PAGE NO. 54 of 303 The purpose of this attachment is to analyze the 24 hour transient temperature of the MCR following a loss of HVAC with HVC-ACU1A(B) re-started and aligned to the service water system (SWP) at one hour. The model is developed from the Case 2 analysis in the body of the calculation, with changes as described. | ||
* 2. Conclusion The results of the analysis listed in Table 1. The average temperature results are given at 1, 2, 4, and 24 hours. The maximum average and maximum cell (sub-volume) temperature is recorded, and the time it occurs is listed in parentheses. Table 1: MCR Temperature Maximum Maximum 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Tavg (°F) Cell Temp Descriotion (oF) (oF) (oF) (oF) (oF) Normal Operations \ Heatload. HVC-110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) ACU1A(B) aligned to SWP at 1 hour. If the cross-tie to the SWP system was delayed to two hours, the MCR temperature would continue to increase similar to the temperature in Case 2, but reaching a higher value because the toilet/kitchen fans, 'the portable fans, and opening the docir is not credited. 3. Input and Design Criteria 3.1. This model is developed from the Case 2 GOTHIC model in the body* of the calculation. All changes made from the Case 2 model are documented in .this attachment. 3.2. The Case 2 GOTHIC model from the body of the calculation did not model the HVC-ACU1A(B) system. The current analysis models HVC-ACU1A(B) aligned to the SWP system at one hour and determines the outlet air temper.ature and relative humidity based upon the AIRCOOL output files from Attachment 2 of Reference 8.20, which use a conservative service water temperature of 95°F and an inlet air relative humidity of 50%. This data is shown in Table 2 and 3. A control variable records the inlet air temperature which as the independent variable in a GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding HVC-ACU1A(B) outlet temperature. This control variable is also used in a separate GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding outlet relative humidity. If the return air temperature for an AHU is less than the minimum air temperature of 100°F used in the Reference 8.20 AIRCOOL data, the outlet air temperature and relative humidity is set at the outlet temperature and relative humidity corresponding to a return air temperature of 100°F. This is conservative as decreasing the return air temperature would result in a decrease iri the outlet air temperature. | This case also assumes worst case heat loads (Normal Operation), | ||
ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 55 of 303 Table 2: HVC-ACU1A(B) Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) Air Temp (°F) 100 95.21 105 95.41 110 95.60 115 95.79 120 96.05 125 99.02 130 102.02 135 105.14 140 108.48 145 111.98 150 115.68 155 119.57 160 123.63 Table 3: HVC-ACU1A(B) Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) RH{%) 100 57.9 105 66.8 110 76.85 115 88.17 120 100 ENERCON 4. Assumptions CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 56 of 303 4.1. HVC-ACU1A(B) aligned to the SWP system is assumed to be started at one hour into the event consistent with G13.18.2.3-426 (Reference 8.22). This is a conservative estimate for the amount of time it would take operators align the SWP system to HVC-ACU1A(B). No other mitigating actions are credited in this analysis. Modeling of HVC-ACU1A(B) conservatively neglects the cooler chilled water that would be present in HVC-ACU 1 A(B) at the beginning of the transient. 4.2. Control room HVAC is operating in post-LOCA alignment. As shown in Reference 8.19, this alignment adds heat loads from the charcoal filter booster fan and heaters and is therefore conservative for this Normal Operations case. 4:3. The data for HVC-ACU1A(B) is obtained from the data for an inlet relative humidity of 50%. This inlet relative humidity is used as it is the most similar to the values given in Section 4.18 of the -body of the calculation. The relative humidity in the MCR is assumed to be initially at the Environmental Design Criteria (EDC) minimum value (20%). 5. Method of Analysis The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for 24 hours following a Loss of HVAC with HVC-ACU1A(B) aligned to SWP system at one hour. GOTHIC is a general purpose thermal hydra1.11ic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). \ This model is based on the Case 2 analysis from the body of the calculation. 6. GOTHIC Input Development The main change from the Case 2 model in the body of the calculation is adding the Main Control Room HYAC subsystem and the cooling effects from HVC-ACU1A(B) being aligned to the SWP system. The cooling effect from the SWP system aligned to HVC-ACU1 is modeled based on the details given in Input 3.2. The volumes and pressure boundaries that were representative of the atmosphere (i.e. where the doors opened to, and the smoke removal fan exhausted to) are deleted or replaced with volumes and pressure boundaries that model HVC-ACU1A(B). Flow paths representing the ceiling tiles, door CB136-9, the smoke removal fan, and toilet/kitchen fans are also deleted or replaced with flow paths that model the.MGR HVAC subsystem and HVC-ACU1A(B). This was done to provide more clarity and resolution in the GOTHIC model. | summer conditions with a maximum design basis ambient temperature of 96°F, the effects of solar irradiance on the MCR walls and roof, and the assumption that the operators complete actions to open back panel doors in the control room at 30 minutes. | ||
ENERCON CALCULATION CONTROL Attachment 1 6.1 HVC-ACU1 A(B) and HVAC Modeling CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 57 of 303 The MCR HVAC [HVC-ACU1A(B)] is a subsystem of the Control Building HVAC system. MGR HVAC is designed to maintain the MCR at a 80°F and limit the relative humidity 70% and is capable of operating during normal, shutdown, loss of Offsite power, or design basis accident (e.g., LOCA) conditions. The MCR is normally maintained at a positive pressure with respect to the outside atmosphere to prevent air inleakage from outside the MGR envelope. Charcoal filter trains are used to filter the MGR air supply during a design basis accident or whenever extremely high radiation/radioactivity levels occur in the normal supply air. The MGR HVAC flow paths, dampers, design flow rates are shown on PID-22-09A (Reference 8.32), PID-22-09B (Reference 8.12), and PID-22-09C (Reference 8.15). The MCR HVAC subsystem consists of two 100% capacity redundant Air Cooling Units ACU1A/1 B) and associated filter trains, electric heaters, and The air conditioning units are started automatically when a Control Building Chilled Water Pump is started/running. In the LOCA mode of operation or a high radiation condition in the local outside air intake, dampers automatically divert supply air through thE;l charcoal filter units (see below). The operator has the option of selecting fresh air supply for the Control Building from either the local outside air intake or remote outside air intake. The system can also be manually realigned from the MGR to allow for removal of smoke or noxious gases from the MGR. Each ACU has an associated inlet and outlet damper which is interlocked with the ACU. Inlet dampers are HVC-AOD8A(B) and outlet dampers are HVC-AOD6A(B) (see PID-22-9B, Reference 8.12). These dampers automatically open when the associated ACU starts and close when the ACU stops. | * 2. Conclusion The results of the analysis listed in Table 1. The average temperature results are given at 1, 2, 4, and 24 hours. The maximum average and maximum cell (sub-volume) temperature is recorded, and the time it occurs is listed in parentheses. | ||
* In the post-LOCA alignment assumed in'this attachment (see Assumption 4.2), the cooling coils of the operating MGR air cooling unit (ACU) are initially supplied with chilled water from the Control Building Chilled Water (HVK) system. On receipt of the LOCA signal, ACU inlet isolation dampers HVC-MOV-1A and B automatically close. Control Room Filter Inlet and Filter Train Outlet dampers HVC-AOD43A(B) and HVC-AOD3A(B) open and filter fan HVC-FN1A(B) starts such that the outside air passes through a ct\arcoal filter train before mixing with the control room return air and entering the ACU downstream of MCR Recirculation Isolation Dampers HVC-AOD106 and AOD-148. _Local air intake dampers HVC-AOD19C, D, E, and F open to align the local air intake to the inlet of the charcoal filter trains. Alternatively, air intake may be aligned to the remote air intake. The remote air intake provides outside air supply directly to the inlet of the charcoal filter trains via remote air intake \ dampers HVC-MOD7A and Band HVC-AOD19A and B (see PID-22-09A, Reference 8.32). Note that upon receipt of a LOCA signal, toilet and kitchen exhaust fans (HVC-FN4 and FN5) trip and their discharge dampers (HVC-AOD51A/52A (51B/52B) automatically close. The MCR smoke removal fan (FN9) also trips' and the associated dampers (HVC-AOD108(107)) close., The HVC-ACU1A(B) flow rates and flow distribution are modeled based on Reference 8.8 and Reference 8.12. The flow rates through dampers shown on Reference 8.8 and 8.12 are localized to their appropriate subvolume based on Reference 8.8. The flow path elevation is modeled as being near the ceiling of the lower MGR volume based on Reference 8.8. The flow supplied to the equipment | Table 1: MCR Temperature Maximum Maximum 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Tavg (°F) Cell Temp Descriotion (oF) (oF) (oF) (oF) | ||
* room and corridor area is not modeled as this air is made up from outside air intakes, as shown on Figure 5 in Reference 8.17 and in Reference 8.12. Therefore, this flow does not have an effect on the calculation. The return air is modeled as drawn from the North, West, and Southwest sides of the upper plenum, per Reference 8.8. The north side return air duct draws 21000 cfm; this flow is split between subvolumes 2s177 and 2s193 in order to allow GOTHIC to run faster. The west side return air duct draws 7600 cfm from subvolume 2s136. The southwest corner return air duct draws 7600 cfm from subvolume 2s144. These return air ducts are also modeled as being near the ceiling of the upper MCR. / | (oF) Normal Operations | ||
\ Heatload. | |||
HVC-110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) ACU1A(B) aligned to SWP at 1 hour. If the cross-tie to the SWP system was delayed to two hours, the MCR temperature would continue to increase similar to the temperature in Case 2, but reaching a higher value because the toilet/kitchen fans, 'the portable fans, and opening the docir is not credited. | |||
: 3. Input and Design Criteria 3.1. This model is developed from the Case 2 GOTHIC model in the body* of the calculation. | |||
All changes made from the Case 2 model are documented in .this attachment. | |||
3.2. The Case 2 GOTHIC model from the body of the calculation did not model the HVC-ACU1A(B) system. The current analysis models HVC-ACU1A(B) aligned to the SWP system at one hour and determines the outlet air temper.ature and relative humidity based upon the AIRCOOL output files from Attachment 2 of Reference 8.20, which use a conservative service water temperature of 95°F and an inlet air relative humidity of 50%. This data is shown in Table 2 and 3. A control variable records the inlet air temperature which as the independent variable in a GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding HVC-ACU1A(B) outlet temperature. | |||
This control variable is also used in a separate GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding outlet relative humidity. | |||
If the return air temperature for an AHU is less than the minimum air temperature of 100°F used in the Reference 8.20 AIRCOOL data, the outlet air temperature and relative humidity is set at the outlet temperature and relative humidity corresponding to a return air temperature of 100°F. This is conservative as decreasing the return air temperature would result in a decrease iri the outlet air temperature. | |||
ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 55 of 303 Table 2: HVC-ACU1A(B) | |||
Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) Air Temp (°F) 100 95.21 105 95.41 110 95.60 115 95.79 120 96.05 125 99.02 130 102.02 135 105.14 140 108.48 145 111.98 150 115.68 155 119.57 160 123.63 Table 3: HVC-ACU1A(B) | |||
Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) RH{%) 100 57.9 105 66.8 110 76.85 115 88.17 120 100 ENERCON 4. Assumptions CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 56 of 303 4.1. HVC-ACU1A(B) aligned to the SWP system is assumed to be started at one hour into the event consistent with G13.18.2.3-426 (Reference 8.22). This is a conservative estimate for the amount of time it would take operators align the SWP system to HVC-ACU1A(B). | |||
No other mitigating actions are credited in this analysis. | |||
Modeling of HVC-ACU1A(B) conservatively neglects the cooler chilled water that would be present in HVC-ACU 1 A(B) at the beginning of the transient. | |||
4.2. Control room HVAC is operating in post-LOCA alignment. | |||
As shown in Reference 8.19, this alignment adds heat loads from the charcoal filter booster fan and heaters and is therefore conservative for this Normal Operations case. 4:3. The data for HVC-ACU1A(B) is obtained from the data for an inlet relative humidity of 50%. This inlet relative humidity is used as it is the most similar to the values given in Section 4.18 of the -body of the calculation. | |||
The relative humidity in the MCR is assumed to be initially at the Environmental Design Criteria (EDC) minimum value (20%). 5. Method of Analysis The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for 24 hours following a Loss of HVAC with HVC-ACU1A(B) aligned to SWP system at one hour. GOTHIC is a general purpose thermal hydra1.11ic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). \ This model is based on the Case 2 analysis from the body of the calculation. | |||
: 6. GOTHIC Input Development The main change from the Case 2 model in the body of the calculation is adding the Main Control Room HYAC subsystem and the cooling effects from HVC-ACU1A(B) being aligned to the SWP system. The cooling effect from the SWP system aligned to HVC-ACU1 is modeled based on the details given in Input 3.2. The volumes and pressure boundaries that were representative of the atmosphere (i.e. where the doors opened to, and the smoke removal fan exhausted to) are deleted or replaced with volumes and pressure boundaries that model HVC-ACU1A(B). | |||
Flow paths representing the ceiling tiles, door CB136-9, the smoke removal fan, and toilet/kitchen fans are also deleted or replaced with flow paths that model the.MGR HVAC subsystem and HVC-ACU1A(B). | |||
This was done to provide more clarity and resolution in the GOTHIC model. | |||
ENERCON CALCULATION CONTROL Attachment 1 6.1 HVC-ACU1 A(B) and HVAC Modeling CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 57 of 303 The MCR HVAC [HVC-ACU1A(B)] | |||
is a subsystem of the Control Building HVAC system. MGR HVAC is designed to maintain the MCR at a 80°F and limit the relative humidity 70% and is capable of operating during normal, shutdown, loss of Offsite power, or design basis accident (e.g., LOCA) conditions. | |||
The MCR is normally maintained at a positive pressure with respect to the outside atmosphere to prevent air inleakage from outside the MGR envelope. | |||
Charcoal filter trains are used to filter the MGR air supply during a design basis accident or whenever extremely high radiation/radioactivity levels occur in the normal supply air. The MGR HVAC flow paths, dampers, design flow rates are shown on PID-22-09A (Reference 8.32), PID-22-09B (Reference 8.12), and PID-22-09C (Reference 8.15). The MCR HVAC subsystem consists of two 100% capacity redundant Air Cooling Units ACU1A/1 B) and associated filter trains, electric | |||
: heaters, and The air conditioning units are started automatically when a Control Building Chilled Water Pump is started/running. | |||
In the LOCA mode of operation or a high radiation condition in the local outside air intake, dampers automatically divert supply air through thE;l charcoal filter units (see below). The operator has the option of selecting fresh air supply for the Control Building from either the local outside air intake or remote outside air intake. The system can also be manually realigned from the MGR to allow for removal of smoke or noxious gases from the MGR. Each ACU has an associated inlet and outlet damper which is interlocked with the ACU. Inlet dampers are HVC-AOD8A(B) and outlet dampers are HVC-AOD6A(B) | |||
(see PID-22-9B, Reference 8.12). These dampers automatically open when the associated ACU starts and close when the ACU stops. | |||
* In the post-LOCA alignment assumed in'this attachment (see Assumption 4.2), the cooling coils of the operating MGR air cooling unit (ACU) are initially supplied with chilled water from the Control Building Chilled Water (HVK) system. On receipt of the LOCA signal, ACU inlet isolation dampers HVC-MOV-1A and B automatically close. Control Room Filter Inlet and Filter Train Outlet dampers HVC-AOD43A(B) and HVC-AOD3A(B) open and filter fan HVC-FN1A(B) starts such that the outside air passes through a ct\arcoal filter train before mixing with the control room return air and entering the ACU downstream of MCR Recirculation Isolation Dampers HVC-AOD106 and AOD-148. | |||
_Local air intake dampers HVC-AOD19C, D, E, and F open to align the local air intake to the inlet of the charcoal filter trains. Alternatively, air intake may be aligned to the remote air intake. The remote air intake provides outside air supply directly to the inlet of the charcoal filter trains via remote air intake \ dampers HVC-MOD7A and Band HVC-AOD19A and B (see PID-22-09A, Reference 8.32). Note that upon receipt of a LOCA signal, toilet and kitchen exhaust fans (HVC-FN4 and FN5) trip and their discharge dampers (HVC-AOD51A/52A (51B/52B) automatically close. The MCR smoke removal fan (FN9) also trips' and the associated dampers (HVC-AOD108(107)) | |||
close., The HVC-ACU1A(B) flow rates and flow distribution are modeled based on Reference 8.8 and Reference 8.12. The flow rates through dampers shown on Reference 8.8 and 8.12 are localized to their appropriate subvolume based on Reference 8.8. The flow path elevation is modeled as being near the ceiling of the lower MGR volume based on Reference 8.8. The flow supplied to the equipment | |||
* room and corridor area is not modeled as this air is made up from outside air intakes, as shown on Figure 5 in Reference 8.17 and in Reference 8.12. Therefore, this flow does not have an effect on the calculation. | |||
The return air is modeled as drawn from the North, West, and Southwest sides of the upper plenum, per Reference 8.8. The north side return air duct draws 21000 cfm; this flow is split between subvolumes 2s177 and 2s193 in order to allow GOTHIC to run faster. The west side return air duct draws 7600 cfm from subvolume 2s136. The southwest corner return air duct draws 7600 cfm from subvolume 2s144. These return air ducts are also modeled as being near the ceiling of the upper MCR. / | |||
ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 58 of 303 The return air duct on the north side of the room is shown to have an opening of 108" x 48" (Reference 8.8). As discussed above, this flow path is split in two, so the flow paths (FP47 and FP48) that represent this return air duct are modeled based on this size, shown below. The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 58 of 303 The return air duct on the north side of the room is shown to have an opening of 108" x 48" (Reference 8.8). As discussed above, this flow path is split in two, so the flow paths (FP47 and FP48) that represent this return air duct are modeled based on this size, shown below. The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | ||
* 1 \ 9 ft x 4 ft 2 AFP47/48 =. 2 = 18 ft 4A 4*18ft2 Dh = Pw = (9 ft+ 4 ft) = 5.54 ft The return air ducts on the west and southwest sides of the room are shown to have an opening of 48" x 36" (Reference 8.8). One flow path is used to represent each of these return air ducts (FP49 and FP50). The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. AFP49/50 = 4 ft x 3 ft = 12 f t2 4A 4 | * 1 \ 9 ft x 4 ft 2 AFP47/48 | ||
=. 2 = 18 ft 4A 4*18ft2 Dh = Pw = (9 ft+ 4 ft) = 5.54 ft The return air ducts on the west and southwest sides of the room are shown to have an opening of 48" x 36" (Reference 8.8). One flow path is used to represent each of these return air ducts (FP49 and FP50). The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | |||
AFP49/50 | |||
= 4 ft x 3 ft = 12 f t2 4A 4 | |||
* 12 ft2 Dh = Pw = (2 * ;4 ft+ 2 | * 12 ft2 Dh = Pw = (2 * ;4 ft+ 2 | ||
* 3 ft) = 3.43 ft ' The size of the supply air ducts are. determined to be 18" x 18" per Reference 8.8. One flow path is used to represent each of these supply air ducts (FP9-FP46). The flow area and hydraulic diameter for the supply air ducts is calculated below. The inertia length and friction length for these flow path is arbitrarily set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. AFP9-46 = 1.5 ft X 1.5 ft = 2.25 f t2 4A 4 | * 3 ft) = 3.43 ft ' The size of the supply air ducts are. determined to be 18" x 18" per Reference 8.8. One flow path is used to represent each of these supply air ducts (FP9-FP46). | ||
The flow area and hydraulic diameter for the supply air ducts is calculated below. The inertia length and friction length for these flow path is arbitrarily set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | |||
AFP9-46 = 1.5 ft X 1.5 ft = 2.25 f t2 4A 4 | |||
* 2.25 f t2 D =-= = 15ft h Pw (2 | * 2.25 f t2 D =-= = 15ft h Pw (2 | ||
* 1.5 ft+ 2 | * 1.5 ft+ 2 | ||
* 1.5 ft)' . The momentum transport option is set to "N" (in-line momentum transport) for the flow paths that represent the supply air ducts, as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the flow. paths that represent the egg crate panels that are between the µpper and lower MCR is also set to "N" Figure 1 below shows the HVC-ACU1A(B) distribution logic applied in the GOTHIC model. The heat load from the HVC-ACU1A/B fan of 167,068 BTU/hr (46.41 BTU/s) (Reference 8.17) is added as a heater to the HVC-ACU1A(B) outlet volume (CV4). The heat load from the HVC-FN1A/B fan of 50,900 BTU/hr (14.14 BTU/s) and the HVC-FL T3AH//BH filter/heater of 78,430 BTU/hr (21.79 BTU/s) (Reference 8.17) is combined and input as a heat rate in volumetric fan 2Q. | * 1.5 ft)' . The momentum transport option is set to "N" (in-line momentum transport) for the flow paths that represent the supply air ducts, as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the flow. paths that represent the egg crate panels that are between the µpper and lower MCR is also set to "N" Figure 1 below shows the HVC-ACU1A(B) distribution logic applied in the GOTHIC model. The heat load from the HVC-ACU1A/B fan of 167,068 BTU/hr (46.41 BTU/s) (Reference 8.17) is added as a heater to the HVC-ACU1A(B) outlet volume (CV4). The heat load from the HVC-FN1A/B fan of 50,900 BTU/hr (14.14 BTU/s) and the HVC-FL T3AH//BH filter/heater of 78,430 BTU/hr (21.79 BTU/s) (Reference 8.17) is combined and input as a heat rate in volumetric fan 2Q. | ||
CALC. NO. ENTR-078-CALC-004 Attachment 1 CALCULATION CONTROL SHEET-REV.O ENERCON T = f(Im!!<) 4 Plenum 34200CFM (41-440) 2 36200CFM 1 Control Room 37200CFM (3Q-40Q) ACU1A/B Fan 1-----' v PAGE NO. 59 of 303 3 4000CFM {2Q) Return to Filter/ Heater 2000CFM (4SQ) (Out-leakage) Flow from Filter /Heater Mixed Air (Tmixil 2000CFM (1Q) Figure 1: HVC-ACU1A(B) Flow Distribution r ENERCON 7. Results CALCULATION CONTROL Attachment 1 | CALC. NO. ENTR-078-CALC-004 Attachment 1 CALCULATION CONTROL SHEET-REV.O ENERCON T = f(Im!!<) | ||
* CALC. NO. ENTR-078-CAL:C-004 REV.O PAGE NO. 60 of 303 Figures 2 and 3 below show the temperature transient in the MCR following a 24 hour Loss of HVAC scenario, with the SWP system aligned tq HVC-ACU1A(B) at one hour. Figure 2 shows the average temperature of the MCR for 24 hours. Figure 3 shows the maximum cell (sub-volume) temperature of the MCR for 24 hours. The average temperature increases to approximately 110°F before ACU1A(B) is started at one hour. Turning on HVC-ACU1A(B) results in the temperature decreasing , below 105°F and at 24 hours the temperature is 107.8°F. The maximum cell temperature follows a similar trend, with the peak value of 115.1°F occurring at 1 hour. 115 110 I 85 80 75 0 5 10 15 20 25 Time {hrs) / Figure 2: Average Temperature of the MCR for 24 hours 120 115 110 105 U:-e100 :::l ...., Ill .... (!J Q.. E 95 QJ I-90 85 80 75 ENERCON 7 ' J l' v---ii I r I ! ' I CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 61 of 303 I I 'J ............................................................................ ; ............................................................................. ; ............................................................................... ; ............................................. -......... -................... , ................................................................................ , ....... _ .... _. 0 5 10 15 20 25 Time (hrs) Figure 3: Maximum Local Temperature of the MCR for 24 hours ,/ | 4 Plenum 34200CFM (41-440) 2 36200CFM 1 Control Room 37200CFM (3Q-40Q) | ||
ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 62 of 303 Figure 4 below shows the relativity humidity in subvolume 1 s71 located in the horseshoe area of the MCR. The relative humidity is 20% at the start of the transient (cf. Assumption 4.3) and decreases to below 10% as the MCR temperature increases before HVC-ACU1 is started at one hour. The relative humidity then rapidly increases to -48% and remains below 50% for the remainder of the transient. This relative humidity is overestimated due to the modeling of the HVC-ACU1 performance, which is based on a constant inlet air relative humidity of 50%. The actual MCR absolute humidity is expected to be less than that predicted in the Case 2 and Attachment 2 cases. As shown in Figure 1 of this attachment, in this case only 2000 CFM of outside air is drawn into the MCR, whereas in the other cases the smoke removal fan, portable fan, and kitchen and toilet exhaust vans draw a combined 13,725 CFM of moist (53%-90% relative humidity) outside air into the control room. This higher intake of outside air would result in higher humidity in the MCR for these cases relative to the current case. 60 40 0 0 s 10 15 20 25 Jime (hrs) Figure 4: Relative Humidity in the Horseshoe Area for Attachment 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 63 of 303 8. GOTHIC Input File for Attachment 1 Is I I I I'' I I i'IS I s I I I I I I I I I I I I I I I I I I I I . I '144.QQ ft / | ACU1A/B Fan 1-----' v PAGE NO. 59 of 303 3 4000CFM {2Q) Return to Filter/ Heater 2000CFM (4SQ) (Out-leakage) | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.xteNertct-Ddttypft>]f!d, £v1Hytfa;. Attachment 1 PAGE NO. 64 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) (ft2) ls MCR Below 87417. 136 .135 9.115 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 HVC-ACUl Exhaus 4000. 145.5 8.67 5. DEFAULT 4 HVC-ACUl Outlet 4000. 136.135 10. 10. DEFAULT 5 F/H Outlet 4000. 145.5 8.67 5. DEFAULT 6 Stream 4 Outlet 4000. 145.5 8.67 20. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE 6 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Are* a # (%/hr) (psi a) (F) (%) BC Option Wall Option (ft2) ls 0. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr} (psia) (F) (%) BC Option Wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s , , 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT X-Direction No ding Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. ' 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. | Flow from Filter /Heater Mixed Air (Tmixil 2000CFM (1Q) Figure 1: HVC-ACU1A(B) | ||
ENERCON 15 126. 9. 16 135. 9. Y-Direction Noding Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Plane (ft) Height (ft) 1 0. 3.48513 2 3 Cell 3.48513 7.50443 Blockages 4.0193 1.61057 -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 *6 1H13-U50 7 1H13-U731 8 1H13-U732 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1Hl3-U715 13 1Hl3-U720 14 1Hl3-U721/U799 15 1H13-U748 16 1Hl3-U746 17 1H13-U744 *18 1Hl3-U742 19 1H13-U741 20 1H13-U730 21 1Hl3-U703 22 1Hl3-U701 23 1Hl3-U712 24 1Hl3-U710 25 1Hl3-U714 26 1Hl3-U711 27 1Hl3-U740/U723 28 Shift Manager East 29, Shift Manager S 30 Kitchen Wall S 31 Kitchen Wall W CALCULATION CONTROL Attachment 1 T BLK B I N BLK B I N BLK B I N BLK B I / N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 65 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages -Table 2 Volume ls Block Coo No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Xl* 9. 81. 18. 27. 36. Yl 9.25 9.25 18.5 18.5 18.5 Zl 0. 0. 0. 0. 0. 45. 18.5 0. 18.5 o,, 58.5 27.75 o. 90. 18. 5 0. 99. 18.5 0. 108. 1*8.5 o. 117. 18. 5 0. 126. 18.5 0. 135. 18.5 0. 9. 46.25 0. 18. '46. 25 0. 27. 46.25 0. 36. 46.25 o. 45. 64.75 0. 54. 46.25 0. 5 8 . 5 2 7 .'7 5 0 . 81. 37. 0. ,99. 46.25 0. 108. 46.25 0. 117. 46.25 0. 126. 46.25 0. 135. 46.25 o. 0. 9.25 0. 9. 0. 0. 45. 64.75 0. 54. 64.75 0. X2 54. 135. 18. 27. 36. 45. 54. 77.5 90. 99. 108. 117. 126. 135. 9. 18. 27. 36. 45. 54. 77 .5 81. 99. 108. 117. 126. 135. 9. 9. 54. | Flow Distribution r ENERCON 7. Results CALCULATION CONTROL Attachment 1 | ||
: 54. X-Direction Cell Face Variations Volume ls Y2 9.25 9.25 37. 37. 37. Z2 7.5044 7.5044 7.5044 7.5044 7.5044 37. 7.5044 37. 7.5044 (ft) X3 27.75 7.5044 I 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7 .. 5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 55.5 7.5044 64.75 7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 9.25 9.115 6.25 9.115 64. 75 9 .115 74. 9 .115 Y3 Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls17 ls18 ls19 ls20 ls21 ls22 ls129 ls130 ls131 ls132 lsl33 ls134 ls145 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. Drop De-ent. Factor 0 1. 1000000. 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 11. i. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 37. 37. 37. 37. | * CALC. NO. ENTR-078-CAL:C-004 REV.O PAGE NO. 60 of 303 Figures 2 and 3 below show the temperature transient in the MCR following a 24 hour Loss of HVAC scenario, with the SWP system aligned tq HVC-ACU1A(B) at one hour. Figure 2 shows the average temperature of the MCR for 24 hours. Figure 3 shows the maximum cell (sub-volume) temperature of the MCR for 24 hours. The average temperature increases to approximately 110°F before ACU1A(B) is started at one hour. Turning on HVC-ACU1A(B) results in the temperature decreasing | ||
, below 105°F and at 24 hours the temperature is 107.8°F. | |||
The maximum cell temperature follows a similar trend, with the peak value of 115.1°F occurring at 1 hour. 115 110 I 85 80 75 0 5 10 15 20 25 Time {hrs) / Figure 2: Average Temperature of the MCR for 24 hours 120 115 110 105 U:-e100 :::l ...., Ill .... (!J Q.. E 95 QJ I-90 85 80 75 ENERCON 7 ' J l' v---ii I r I ! ' I CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 61 of 303 I I 'J ............................................................................ | |||
; ............................................................................. | |||
; ............................................................................... | |||
; ............................................. | |||
-......... | |||
-................... | |||
, ................................................................................ | |||
, ....... _ .... _. 0 5 10 15 20 25 Time (hrs) Figure 3: Maximum Local Temperature of the MCR for 24 hours ,/ | |||
ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 62 of 303 Figure 4 below shows the relativity humidity in subvolume 1 s71 located in the horseshoe area of the MCR. The relative humidity is 20% at the start of the transient (cf. Assumption 4.3) and decreases to below 10% as the MCR temperature increases before HVC-ACU1 is started at one hour. The relative humidity then rapidly increases to -48% and remains below 50% for the remainder of the transient. | |||
This relative humidity is overestimated due to the modeling of the HVC-ACU1 performance, which is based on a constant inlet air relative humidity of 50%. The actual MCR absolute humidity is expected to be less than that predicted in the Case 2 and Attachment 2 cases. As shown in Figure 1 of this attachment, in this case only 2000 CFM of outside air is drawn into the MCR, whereas in the other cases the smoke removal fan, portable fan, and kitchen and toilet exhaust vans draw a combined 13,725 CFM of moist (53%-90% | |||
relative humidity) outside air into the control room. This higher intake of outside air would result in higher humidity in the MCR for these cases relative to the current case. 60 40 0 0 s 10 15 20 25 Jime (hrs) Figure 4: Relative Humidity in the Horseshoe Area for Attachment 1 | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 63 of 303 8. GOTHIC Input File for Attachment 1 | |||
Is I I I I'' I I i'IS I s I I I I I I I I I I I I I I I I I I I I . I | |||
'144.QQ ft / | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.xteNertct-Ddttypft>]f!d, | |||
£v1Hytfa;. | |||
Attachment 1 PAGE NO. 64 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) | |||
(ft) (ft2) ls MCR Below 87417. 136 .135 9.115 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 HVC-ACUl Exhaus 4000. 145.5 8.67 5. DEFAULT 4 HVC-ACUl Outlet 4000. 136.135 10. 10. DEFAULT 5 F/H Outlet 4000. 145.5 8.67 5. DEFAULT 6 Stream 4 Outlet 4000. 145.5 8.67 20. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE 6 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Are* a # (%/hr) (psi a) (F) (%) BC Option Wall Option (ft2) ls 0. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr} (psia) (F) (%) BC Option Wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s , , 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT X-Direction No ding Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. ' 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. | |||
ENERCON 15 126. 9. 16 135. 9. Y-Direction Noding Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Plane (ft) Height (ft) 1 0. 3.48513 2 3 Cell 3.48513 7.50443 Blockages 4.0193 1.61057 -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 | |||
*6 1H13-U50 7 1H13-U731 8 1H13-U732 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1Hl3-U715 13 1Hl3-U720 14 1Hl3-U721/U799 15 1H13-U748 16 1Hl3-U746 17 1H13-U744 | |||
*18 1Hl3-U742 19 1H13-U741 20 1H13-U730 21 1Hl3-U703 22 1Hl3-U701 23 1Hl3-U712 24 1Hl3-U710 25 1Hl3-U714 26 1Hl3-U711 27 1Hl3-U740/U723 28 Shift Manager East 29, Shift Manager S 30 Kitchen Wall S 31 Kitchen Wall W CALCULATION CONTROL Attachment 1 T BLK B I N BLK B I N BLK B I N BLK B I / N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 65 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages | |||
-Table 2 Volume ls Block Coo No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Xl* 9. 81. 18. 27. 36. Yl 9.25 9.25 18.5 18.5 18.5 Zl 0. 0. 0. 0. 0. 45. 18.5 0. 18.5 o,, 58.5 27.75 o. 90. 18. 5 0. 99. 18.5 0. 108. 1*8.5 o. 117. 18. 5 0. 126. 18.5 0. 135. 18.5 0. 9. 46.25 0. 18. '46. 25 0. 27. 46.25 0. 36. 46.25 o. 45. 64.75 0. 54. 46.25 0. 5 8 . 5 2 7 | |||
.'7 5 0 . 81. 37. 0. ,99. 46.25 0. 108. 46.25 0. 117. 46.25 0. 126. 46.25 0. 135. 46.25 o. 0. 9.25 0. 9. 0. 0. 45. 64.75 0. 54. 64.75 0. X2 54. 135. 18. 27. 36. 45. 54. 77.5 90. 99. 108. 117. 126. 135. 9. 18. 27. 36. 45. 54. 77 .5 81. 99. 108. 117. 126. 135. 9. 9. 54. | |||
: 54. X-Direction Cell Face Variations Volume ls Y2 9.25 9.25 37. 37. 37. Z2 7.5044 7.5044 7.5044 7.5044 7.5044 37. 7.5044 37. 7.5044 (ft) X3 27.75 7.5044 I 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7 .. 5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 55.5 7.5044 64.75 7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 9.25 9.115 6.25 9.115 64. 75 9 .115 74. 9 .115 Y3 Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls17 ls18 ls19 ls20 ls21 ls22 ls129 ls130 ls131 ls132 lsl33 ls134 ls145 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. Drop De-ent. Factor 0 1. 1000000. | |||
: 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 11. i. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 37. 37. 37. 37. | |||
: 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37 ;-37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0 *, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 66 of 303 Z3 L .) Curb Height 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37 ;-37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0 *, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 66 of 303 Z3 L .) Curb Height 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. | ||
| Line 176: | Line 625: | ||
: 0. | : 0. | ||
: 0. 0. 0. | : 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 71 of 303 j ENERCON CALCULATION CONTROL Attachment 1 ls246 ls358 ls374 31 31 31 0. 1. 0. le-006 37. le-006 0. 0. 0. Y-Direction Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 18129 lsl30 lsl31 lsl32 lsl33 lsl34 lsl35 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll lsl2 lsl3 lsl4 lsl5 lsl6 lsl37 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 lsl8 lsl9 ls34 ls35 ls50 ls51 lsl46 lsl47 lsl62 lsl63 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000. 0. 1 1. 36. 0. '1 o. le-006 o. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0. 0. 0. 0. 1. 1. 0 *. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 71 of 303 j ENERCON CALCULATION CONTROL Attachment 1 ls246 ls358 ls374 31 31 31 0. 1. 0. le-006 37. le-006 0. 0. 0. Y-Direction Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 18129 lsl30 lsl31 lsl32 lsl33 lsl34 lsl35 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll lsl2 lsl3 lsl4 lsl5 lsl6 lsl37 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 lsl8 lsl9 ls34 ls35 ls50 ls51 lsl46 lsl47 lsl62 lsl63 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. le-006 le-006 le-006 0. 0. 0. *le-006 O. 36. 0. 36. 0. le-006 o. le-006 0. le-006 0. le-006 0. le-006 o. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228. 0. 6.44228 0. 36. 0. le-006 0. le-006 0. le-006 o. le-006 o. le-006 0. le-006 0. 36. 0. 36. 0. le-006 0. le-006 O. le-006 0. le-006 o. le-006 0. le-006 O. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228 o. 6.44228 0. 6.44228 0. 36. 0. 36. 0. 36. 0. 36. 0. 36.' 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 0. 0. 0. Drop De-ent1; Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 1 1. 36. 0. '1 o. le-006 o. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0. 0. 0. 0. 1. 1. 0 *. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. le-006 le-006 le-006 0. 0. 0. *le-006 O. 36. 0. 36. 0. le-006 o. le-006 0. le-006 0. le-006 0. le-006 o. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228. | |||
: 0. 6.44228 0. 36. 0. le-006 0. le-006 0. le-006 o. le-006 o. le-006 0. le-006 0. 36. 0. 36. 0. le-006 0. le-006 O. le-006 0. le-006 o. le-006 0. le-006 O. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228 o. 6.44228 0. 6.44228 0. 36. 0. 36. 0. 36. 0. 36. 0. 36.' 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 0. 0. 0. Drop De-ent1; Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | |||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. | ||
| Line 238: | Line 689: | ||
: 36. | : 36. | ||
: 36. | : 36. | ||
: 36. 36. le-006 36. le-006 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 77 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O ls358 ls359 ls374 ls375 31 31 31 31 1. 1. 1. 1. 36. 36. 36. 36. 0. 0. 0. 0. Z-Dire'ction Cell Face Variations Volume ls Cell No. / def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 Blockage No. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 36. 36. le-006 36. le-006 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 77 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O ls358 ls359 ls374 ls375 31 31 31 31 1. 1. 1. 1. 36. 36. 36. 36. 0. 0. 0. 0. Z-Dire'ction Cell Face Variations Volume ls Cell No. / def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 Blockage No. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000. | ||
: 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. | ||
: 1. | : 1. | ||
| Line 308: | Line 760: | ||
: 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 36.. 0. 36. 0. 36. 0. 36. 0. ' 36. 0. 36. 0. 36. b .. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 51.4286 0. 51.4286 0. 51.4286 0. 51.4286 o. 51.4286 0. 51.4286 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. . 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. Cell Blockage Volume Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 No. Porosity (ft) 0 1. 1000000. 1 1. 37. 1 1. 37. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 36.. 0. 36. 0. 36. 0. 36. 0. ' 36. 0. 36. 0. 36. b .. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 51.4286 0. 51.4286 0. 51.4286 0. 51.4286 o. 51.4286 0. 51.4286 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. . 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. Cell Blockage Volume Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 No. Porosity (ft) 0 1. 1000000. | ||
1 1. 37. 1 1. 37. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1. 1. 1. 1. | |||
: 1. 1. 1. | : 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. . 1. | : 1. 1. 1. 1. 1. 1. . 1. | ||
| Line 316: | Line 769: | ||
: 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. *o. 0. 0. 0. o. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. *o. 0. 0. 0. o. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 82 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O pto.,kd., EvfNydaj. Attachment 1 PAGE NO. 83 of 303 ls149 1 1. 37. lslSO 1 1. 37. lslO 2 1. 37. lsll 2 1. 37. ls12 2 1. 37. ls13 2 1. 37. lsl4 2 1. 37. ls15 2 1. 37. ls26 2 1. 37. ls27 2 1. 37. ls28 2 1. 37. ls29 2 1. 37. ls30 2 1. 37. ls31 2 1. 37. ls138 2 1. 37. ls139 2 1. 37. ls140 2 1. 37. ls141 2 1. 37. ls142 2 1. 37. ls143 2 1. 37. ls154 2 1. 37. ls155 2 1. 37. ls156 2 1. 37. ls157 2 1. 37. ls158 2 1. 37. ls159 2 1. 37. ls34 3 1. 36. ls35 3 1. 36. ls SO 3 1. 36. ls51 3 1. 36. ls162 3 1. 36. ls163 3 1. 36. ls178 3 1. 36. ls179 3 1. 36. ls35 4 1. 36. ls36 4 1. 36. ls51 4 1. 36. ls52 4 1. 36. ls163 4 1. 36. ls164 4 1. 36. ls179 4 1. 36. ls180 4 1. 36. ls36 5 1. 36. ls37 5 1. 36. ls52 5 1. 36. ls53 5 1. 36. ls164 5 1. 36. ls165 5 1. 36. ls180 5 1. 36. ls181 ,5 1. 36. ls37 6 1. 36. ls38 6 1. 36. ls53 6 1. 36. ls54 '6 1. 36. ls165 6 1. 36. ls166 6 1. 36. ls181 6 1. 36. ls182 6 1. 36. ls38 7 1. 36. ls39 7 1. 36. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 82 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O pto.,kd., | ||
EvfNydaj. | |||
Attachment 1 PAGE NO. 83 of 303 ls149 1 1. 37. lslSO 1 1. 37. lslO 2 1. 37. lsll 2 1. 37. ls12 2 1. 37. ls13 2 1. 37. lsl4 2 1. 37. ls15 2 1. 37. ls26 2 1. 37. ls27 2 1. 37. ls28 2 1. 37. ls29 2 1. 37. ls30 2 1. 37. ls31 2 1. 37. ls138 2 1. 37. ls139 2 1. 37. ls140 2 1. 37. ls141 2 1. 37. ls142 2 1. 37. ls143 2 1. 37. ls154 2 1. 37. ls155 2 1. 37. ls156 2 1. 37. ls157 2 1. 37. ls158 2 1. 37. ls159 2 1. 37. ls34 3 1. 36. ls35 3 1. 36. ls SO 3 1. 36. ls51 3 1. 36. ls162 3 1. 36. ls163 3 1. 36. ls178 3 1. 36. ls179 3 1. 36. ls35 4 1. 36. ls36 4 1. 36. ls51 4 1. 36. ls52 4 1. 36. ls163 4 1. 36. ls164 4 1. 36. ls179 4 1. 36. ls180 4 1. 36. ls36 5 1. 36. ls37 5 1. 36. ls52 5 1. 36. ls53 5 1. 36. ls164 5 1. 36. ls165 5 1. 36. ls180 5 1. 36. ls181 ,5 1. 36. ls37 6 1. 36. ls38 6 1. 36. ls53 6 1. 36. ls54 '6 1. 36. ls165 6 1. 36. ls166 6 1. 36. ls181 6 1. 36. ls182 6 1. 36. ls38 7 1. 36. ls39 7 1. 36. | |||
ENERCON ls54 7 1. ls SS 7 1. ls166 7 1. ls167 7 1. ls182 7 1. ls183 7 1. ls39 8 1. ls40 8 1. ls41 8 1. ls SS 8 1. ls56 8 1. ls57 8 1. ls167 8 1. ls168 8 1. ls169 8 1. lsl83 8 1. ls184 8 1. lslBS 8 1. ls42 9 1. ls43 9 1. ls SB 9 1. ls59 9 1. ls170 9 1. ls171 9 1. ls186 9 1. ls187 9 1. ls43 10 1. ls44 10 1. ls59 10 1. ls60 10 1. ls171 10 1. ls172 10 1. ls187 10 1. lslBB 10 1. ls44 11 1. ls45 11 1. ls60 11 1. ls61 11 1. ls172 11 1. ls173 11 1. lslBB 11 1. ls189 11 1. ls45 12 1. ls46 12 1. ls61 12 1. ls62 12 1. ls173 12 1. lsl74 12 1. ls189 12 1. ls190 12 1. ls46 13 1. ls47 13 1. ls62 13 1. ls63 13 1. ls174 13 1. ls175 13 1. ls190 13 1. ls191 13 1. ls47 14 1. ls48 14-1. '-CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 74. 37. 61.6667 74. 37. 61. 6667 74. 37. 61.6667 74. 37. 61.6667 36. 36. | ENERCON ls54 7 1. ls SS 7 1. ls166 7 1. ls167 7 1. ls182 7 1. ls183 7 1. ls39 8 1. ls40 8 1. ls41 8 1. ls SS 8 1. ls56 8 1. ls57 8 1. ls167 8 1. ls168 8 1. ls169 8 1. lsl83 8 1. ls184 8 1. lslBS 8 1. ls42 9 1. ls43 9 1. ls SB 9 1. ls59 9 1. ls170 9 1. ls171 9 1. ls186 9 1. ls187 9 1. ls43 10 1. ls44 10 1. ls59 10 1. ls60 10 1. ls171 10 1. ls172 10 1. ls187 10 1. lslBB 10 1. ls44 11 1. ls45 11 1. ls60 11 1. ls61 11 1. ls172 11 1. ls173 11 1. lslBB 11 1. ls189 11 1. ls45 12 1. ls46 12 1. ls61 12 1. ls62 12 1. ls173 12 1. lsl74 12 1. ls189 12 1. ls190 12 1. ls46 13 1. ls47 13 1. ls62 13 1. ls63 13 1. ls174 13 1. ls175 13 1. ls190 13 1. ls191 13 1. ls47 14 1. ls48 14-1. '-CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 74. 37. 61.6667 74. 37. 61. 6667 74. 37. 61.6667 74. 37. 61.6667 36. 36. | ||
: 36. | : 36. | ||
| Line 327: | Line 782: | ||
: 36. | : 36. | ||
: 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 84 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxtclfrmtt-EWJty ptojaa Evwy day. Attachment 1 PAGE NO. 85 of 303 ls63 14 1. 36. ls64 14 1. 36. ls175 14 1. 36. ls176 14 1. 36. ls191 14 1. 36. ls192 14 1. 36. ls81 15 1. 36. -, ls82 15 1. 36. ls97 15 1. 36. ls98 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 20 1. 36. ls102 20 1. 36. ls103 20 1. 36. ls214 20 1. 36. ls215 20 1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61.6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61.6667 ls167 21 1. 185. ls168 21 1. 92.5 ls169 21 1. 154.167 ls183 21 1. 185. | : 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 84 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxtclfrmtt-EWJty ptojaa Evwy day. Attachment 1 PAGE NO. 85 of 303 ls63 14 1. 36. ls64 14 1. 36. ls175 14 1. 36. ls176 14 1. 36. ls191 14 1. 36. ls192 14 1. 36. ls81 15 1. 36. -, ls82 15 1. 36. ls97 15 1. 36. ls98 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 20 1. 36. ls102 20 1. 36. ls103 20 1. 36. ls214 20 1. 36. ls215 20 1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61.6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61.6667 ls167 21 1. 185. ls168 21 1. 92.5 ls169 21 1. 154.167 ls183 21 1. 185. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xn:tifJn<:.1-f$ff1fJ ptt>}f!<':f., f.vt:ty day. Attachment 1 PAGE NO. 86 of 303 ls184 21 1. 92.5 lsl85 21 1. 154.167 ls73 22 1. 36. ls74 22 1. 36. ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. ls108 23 1. 36. ls219 23 1. 36. ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 1. 36. ls93 24 1. 36. lsl08 24 1. 36. ls109 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1., 36. ls109 25 1. 36. lsllO 25 1. \ 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. 1\;23 8 25 1. 36 .. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. lsl7 28 1. 37. lsl29 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51. 4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ENERCON ls257 29 1. ls258 29 1. lsl02 30 1. lsll8 30 1. ls230 30 1. ls246 30 1. ls358 30 1. ls374 30 1. ls118 31 1. ls119 31 1. ls246 31 1. ls247 31 1. ls374 31 1. ls375 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 1 51.4286 51.4286 37. | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xn:tifJn<:.1-f$ff1fJ ptt>}f!<':f., | ||
: 37. 37. 37. 37. 37. 36. 36. 36. 36. 36. 36. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO' SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46 .is 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Nading Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Height (ft) 5. 3.67 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 87 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages -Table 1 Volume 2s Block, No. Cell Blockages -Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000. 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. def No. Porosity (ft) | f.vt:ty day. Attachment 1 PAGE NO. 86 of 303 ls184 21 1. 92.5 lsl85 21 1. 154.167 ls73 22 1. 36. ls74 22 1. 36. ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. ls108 23 1. 36. ls219 23 1. 36. ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 1. 36. ls93 24 1. 36. lsl08 24 1. 36. ls109 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1., 36. ls109 25 1. 36. lsllO 25 1. \ 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. 1\;23 8 25 1. 36 .. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. lsl7 28 1. 37. lsl29 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51. 4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ENERCON ls257 29 1. ls258 29 1. lsl02 30 1. lsll8 30 1. ls230 30 1. ls246 30 1. ls358 30 1. ls374 30 1. ls118 31 1. ls119 31 1. ls246 31 1. ls247 31 1. ls374 31 1. ls375 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 1 51.4286 51.4286 37. | ||
* Coeff. 0 1. 1000000. 0. Z-Direction Cell Face Variations Volume 2s Cell Blockage Area No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s Hyd. Dia. (ft) 1000000. Hyd. Dia. (ft) 1000000. Loss Coeff. 0. (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor 0. Drop De-ent, Factor 0. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Mo lee Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase, # Diff. Model (ft) (ft) No. No .. Option ls NO MIX-L. 1. 1. 1. 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR 6 \NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation # Type Phase (ft2/s2) [*lbm/s] FF (ft2/s3) [*lbm/s] FF Discrete Burn Parameters Min Min Max Burn Flame; Burn Un CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 88 of 303 . Z3 Curb (ft) 0. L Ht Curb Height Vol # ls 2s 3 4 s 6 ENERCON H2 Frac 0.07 0.07 0.07 0.07 0.07 0.07 02 Frac o.os o.os o.os o.os o.os o.os H20 Frac o.ss .o.ss o.ss o.ss o.ss o.ss Continuous Burn Parameters Vol Min H2 Min Max Vol Flow 02 H20 # (lbm/s) Frac Frac ls o. o.os o.ss 2s o. o.os o.ss 3' *o. (, o.os o.ss 4 0. o.os o.ss s 6 0. 0. o.os o.os o.ss o.ss CALCULATION CONTROL Attachment 1 Length (ft) Speed (ft/s) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Max Burn H20/H2 Frac Ratio 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. Rate Burn Burn FF Frac Opt DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR Mechanistic Burn Rate Parameters Vol # ls 2s 3 4 s 6 Min H2 Frac 0. 0. 0. 0. 0. 0. Min 02 Frac 0. 0. 0. 0. 0. 0. Max H20 Frac 1. 1. | : 37. 37. 37. 37. 37. 36. 36. 36. 36. 36. 36. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO' SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46 .is 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Nading Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Height (ft) 5. 3.67 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 87 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages | ||
-Table 1 Volume 2s Block, No. | |||
Cell Blockages | |||
-Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000. | |||
: 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. def No. Porosity (ft) | |||
* Coeff. 0 1. 1000000. | |||
: 0. Z-Direction Cell Face Variations Volume 2s Cell Blockage Area No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s Hyd. Dia. (ft) 1000000. | |||
Hyd. Dia. (ft) 1000000. | |||
Loss Coeff. 0. (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor 0. Drop De-ent, Factor 0. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Mo lee Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase, # Diff. Model (ft) (ft) No. No .. Option ls NO MIX-L. 1. 1. 1. | |||
: 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR 6 \NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation | |||
# Type Phase (ft2/s2) | |||
[*lbm/s] | |||
FF (ft2/s3) | |||
[*lbm/s] | |||
FF Discrete Burn Parameters Min Min Max Burn Flame; Burn Un CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 88 of 303 . Z3 Curb (ft) 0. L Ht Curb Height Vol # ls 2s 3 4 s 6 ENERCON H2 Frac 0.07 0.07 0.07 0.07 0.07 0.07 02 Frac o.os o.os o.os o.os o.os o.os H20 Frac o.ss .o.ss o.ss o.ss o.ss o.ss Continuous Burn Parameters Vol Min H2 Min Max Vol Flow 02 H20 # (lbm/s) Frac Frac ls o. o.os o.ss 2s o. o.os o.ss 3' *o. (, o.os o.ss 4 0. o.os o.ss s 6 0. 0. o.os o.os o.ss o.ss CALCULATION CONTROL Attachment 1 Length (ft) Speed (ft/s) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Max Burn H20/H2 Frac Ratio 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. Rate Burn Burn FF Frac Opt DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR Mechanistic Burn Rate Parameters Vol # ls 2s 3 4 s 6 Min H2 Frac 0. 0. 0. 0. 0. 0. Min 02 Frac 0. 0. 0. 0. 0. 0. Max H20 Frac 1. 1. | |||
: 1. | : 1. | ||
: 1. 1. 1: Da No .. 1. 1. 1. 1. 1. 1. Lam Burn Burn Rate Temp Limit (lbm/ft3-s FF (F) DEFAULT 3SO. DEFAULT 3SO: DEFAULT 3SO. DEFAULT 3SO. DEFAULT DEFAULT 3SO. | : 1. 1. 1: Da No .. 1. 1. 1. 1. 1. 1. Lam Burn Burn Rate Temp Limit (lbm/ft3-s FF (F) DEFAULT 3SO. DEFAULT 3SO: DEFAULT 3SO. DEFAULT 3SO. DEFAULT DEFAULT 3SO. | ||
3SO. Mechanistic Burn Unburne Propagation Parameters Burned CC Flow Flame Ignition H2 Vol H2 # Frac 0.04 ls 2s 3 4 s 6 0.04 0.04 0.04 0.04 0.04 H2 Vel Thick FF Frac FF (ft/s) FF (ft) 0.001 DEFAULT 0.164 0.001 0.001 0.001 0.001 0.001 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT 0.164 0.164 0.164 0.164 0.164 Fluid Boundary Conditions -Table 1 FF Frac 0.04 0.04 0.04 0.04 0.04 0.04 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 89 of 303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDIS EDIS EDIS Press. Temp. Flow S J ON OFF Elev. BC# De.scription (psia) lP Environment 14.7 2P HVC ACUl .Outlet 14. 7 3P Smoke Removal E 14.7 4P Inlet Air 14.7 i SP F /H Outlet 14. 7 6P HVC-ACUl Exhaus 14.7 FF (F) 96 1 96 1 1 96 Fluid Boundary Conditions Table 2 FF (lbm/s) FF P 0 Trip Trip (ft) 0 N N 136.13 4T 0 N N 136.13 6T SC N N N N NN NN 136.13 136.13 136 .13 136.13 Liq. v Stm. v Drop D Cpld Flow Heat Outlet BC# Frac. FF Frac. FF (in) FF BC# Frac. lP 0. . 03 034 NONE 2P 0. hl ST NONE 3P 4P SP .03034 .03034 | 3SO. Mechanistic Burn Unburne Propagation Parameters Burned CC Flow Flame Ignition H2 Vol H2 # Frac 0.04 ls 2s 3 4 s 6 0.04 0.04 0.04 0.04 0.04 H2 Vel Thick FF Frac FF (ft/s) FF (ft) 0.001 DEFAULT 0.164 0.001 0.001 0.001 0.001 0.001 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT 0.164 0.164 0.164 0.164 0.164 Fluid Boundary Conditions | ||
.03034 -NONE NONE NONE FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT ENERCON CALCULATION CONTROL SHEET-Attachment 1 6P hSO NONE Fluid Boundary Conditions -Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 FF' lP 1. 2P 1. 3P 1. 4P 1. SP 1. 6P 1. Fluid Boundary Conditions -Table 4 Volume Fractions Be# Gas s FF Gas 6 FF Gas 7 lP Liq FF Comp 2P 3P 4P SP 6P Flow -Table 1 F.P. # 1 2 Description Env Connection HVC-ACUl PB Vol A ls94 4 '3 4 s 6 7 8 9 Smoke Removal p 6 Steam 4 Outlet 2s184 Inlet Air 6 F/H PB S HVC-ACUlA Ex PB 3 F/H Outlet S DMP 67 1 4 10 .,DMP 67 2 11 DMP 77 1 12 DMP 77 2 13 DMP 61 1 14 DMP 61 2 lS DMP 63 1 16 DMP 63 2 17 DMP S9 1 18 DMP S9 2 19 DMP 60 1 20 DMP 60 2 21 DMP S2 1 22 DMP S2 2 23 DMP S8 1 24 DMP S8 2 2S 26 27 28 29 30 31 32 33 DMP SO DMP 76 1 DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4' 4 4 4 4 4 4 4 4 Elev Ht (ft) (ft) 136 .13 3. 3 136.13 1. 14S. s 1. lSO. s 1. lSO. s 1. 14S. s 1. 14S. s 1. 14S.S 1. 144 .2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S L' 144. 2S 1. 144.2S 1. 144.2S 1. 144. 2S 1. 144 .2S 1. 144 .2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S L 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. FF Vol Elev Ht B (ft) (ft) lP 136.13 3.3 2P 136 .13 1. 3P 136.13 1. 6 lSO. s 1. 4P 136.13 1. SP 136.13 1. 6P 136.13 1. 3 14S.S 1. ls368 144.2S 1. ls3S2 144.2S 1. ls304 144. 2S 1. ls288 144 .2S 1. ls366 144.2S 1. ls3SO 144.2S 1. ls302 144 .2S 1. ls286 144. 2S 1. ls364 144.2S 1. ls348 144.2S 1. ls300 144.2S 1. ls284 144.2S 1. ls362 144.2S 1. ls346 144.2S 1. ls298 144. 2S 1. ls282 144.2S 1. ls329 | -Table 1 FF Frac 0.04 0.04 0.04 0.04 0.04 0.04 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 89 of 303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDIS EDIS EDIS Press. Temp. Flow S J ON OFF Elev. BC# De.scription (psia) lP Environment 14.7 2P HVC ACUl .Outlet 14. 7 3P Smoke Removal E 14.7 4P Inlet Air 14.7 i SP F /H Outlet 14. 7 6P HVC-ACUl Exhaus 14.7 FF (F) 96 1 96 1 1 96 Fluid Boundary Conditions Table 2 FF (lbm/s) FF P 0 Trip Trip (ft) 0 N N 136.13 4T 0 N N 136.13 6T SC N N N N NN NN 136.13 136.13 136 .13 136.13 Liq. v Stm. v Drop D Cpld Flow Heat Outlet BC# Frac. FF Frac. FF (in) FF BC# Frac. lP 0. . 03 034 NONE 2P 0. hl ST NONE 3P 4P SP .03034 .03034 | ||
.03034 -NONE NONE NONE FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT ENERCON CALCULATION CONTROL SHEET-Attachment 1 6P hSO NONE Fluid Boundary Conditions | |||
-Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 FF' lP 1. 2P 1. 3P 1. 4P 1. SP 1. 6P 1. Fluid Boundary Conditions | |||
-Table 4 Volume Fractions Be# Gas s FF Gas 6 FF Gas 7 lP Liq FF Comp 2P 3P 4P SP 6P Flow | |||
-Table 1 F.P. # 1 2 Description Env Connection HVC-ACUl PB Vol A ls94 4 '3 4 s 6 7 8 9 Smoke Removal p 6 Steam 4 Outlet 2s184 Inlet Air 6 F/H PB S HVC-ACUlA Ex PB 3 F/H Outlet S DMP 67 1 4 10 .,DMP 67 2 11 DMP 77 1 12 DMP 77 2 13 DMP 61 1 14 DMP 61 2 lS DMP 63 1 16 DMP 63 2 17 DMP S9 1 18 DMP S9 2 19 DMP 60 1 20 DMP 60 2 21 DMP S2 1 22 DMP S2 2 23 DMP S8 1 24 DMP S8 2 2S 26 27 28 29 30 31 32 33 DMP SO DMP 76 1 DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4' 4 4 4 4 4 4 4 4 Elev Ht (ft) (ft) 136 .13 3. 3 136.13 1. 14S. s 1. lSO. s 1. lSO. s 1. 14S. s 1. 14S. s 1. 14S.S 1. 144 .2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S L' 144. 2S 1. 144.2S 1. 144.2S 1. 144. 2S 1. 144 .2S 1. 144 .2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S L 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. FF Vol Elev Ht B (ft) (ft) lP 136.13 3.3 2P 136 .13 1. 3P 136.13 1. 6 lSO. s 1. 4P 136.13 1. SP 136.13 1. 6P 136.13 1. 3 14S.S 1. ls368 144.2S 1. ls3S2 144.2S 1. ls304 144. 2S 1. ls288 144 .2S 1. ls366 144.2S 1. ls3SO 144.2S 1. ls302 144 .2S 1. ls286 144. 2S 1. ls364 144.2S 1. ls348 144.2S 1. ls300 144.2S 1. ls284 144.2S 1. ls362 144.2S 1. ls346 144.2S 1. ls298 144. 2S 1. ls282 144.2S 1. ls329 | |||
* 144. 2S 1. ls297 144.2S 1. ls281 .144.2S 1. ls327 144.2S 1. ls29S 144.2S 1. ls360 144.2S 1. ls344 144.2S 1. ls326 144.2S 1. ls294 144.2S 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 90 of 303 DEFAULT ENERCON CALCULATION CONTROL Attachment 1 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 DMP 51 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 45 1 DMP 45 2 DMP 75 1 DMP 75 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Egg Crate 1 Egg Crate 2 Egg Crate 3 Egg Crate 4 Egg Crate 5 Egg Crate 6 Egg Crate 7 Egg Crate 8 Egg Crate 9 ,, Egg Crate 10 Egg Crate 11 Egg Crate 12 Egg Crate 13 Egg Crate 14 Egg Crate 15 Egg crate 16 Egg Crate 17 Egg Crate 18 Egg Crate 19 Egg Crate 20 Egg Crate 21 Egg Crate 22 Egg Crate_23 Egg Crate 24 Egg Crate 25 Egg Crate 26 Egg Crate 27 Egg Crate 28 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area -Table 2 Hyd. Diam. (ft) # (ft2) 1 1. 2 3 4 5 6 7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 4 4 4 4 4 4 4 4 4 4 4 4 4 2sl93 2s177 2s136 2s144 ls369 ls371 ls373 ls375 ls377 ls379 ls381 ls383 ls370 ls372 ls376 ls378 ls380 ls382 ls384 ls257 ls258 ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls268 ls269 ls270 ls271 ls272 144 .25 1. 144. 25 1. 144.25 1. 144. 25 1. 144.25 1. 144. 25 1. 144 .25 1. 144.25 1. 144 .25 1. 144 .25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. ls279 144.25 1. ls357 144.25 1. ls341 144.25 1. ls293 144.25 1. ls277 144.25 1. ls355 144.25 1. ls339 144 .25 1. 151. 1. 145.24 0.001 145.24 0:001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 ls291 ls275 ls353 ls337 ls289 ls273 3 3 3 3 2s113 2sl15 2s117 2sl19 2s121 2s123 2s125 2s127 2sl14 2s116 2s120 2s122 2s124 145.24 o.oor---2s126 145.24 0.001 2s128 145.24 0.001 2sl +45.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 2s14 145.24 0.001 2s15 145.24 0.001 2s16 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. 151. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) Friction Length (ft) Relative Dep Rough-Bend ness (deg) Mom Trn Opt 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 91of303 St rat Flow Opt NONE NONE NONE NONE NONE NONE NONE 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ENERCON 1. 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2 .2*5 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 18. 18. | * 144. 2S 1. ls297 144.2S 1. ls281 .144.2S 1. ls327 144.2S 1. ls29S 144.2S 1. ls360 144.2S 1. ls344 144.2S 1. ls326 144.2S 1. ls294 144.2S 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 90 of 303 DEFAULT ENERCON CALCULATION CONTROL Attachment 1 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 DMP 51 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 45 1 DMP 45 2 DMP 75 1 DMP 75 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Egg Crate 1 Egg Crate 2 Egg Crate 3 Egg Crate 4 Egg Crate 5 Egg Crate 6 Egg Crate 7 Egg Crate 8 Egg Crate 9 ,, Egg Crate 10 Egg Crate 11 Egg Crate 12 Egg Crate 13 Egg Crate 14 Egg Crate 15 Egg crate 16 Egg Crate 17 Egg Crate 18 Egg Crate 19 Egg Crate 20 Egg Crate 21 Egg Crate 22 Egg Crate_23 Egg Crate 24 Egg Crate 25 Egg Crate 26 Egg Crate 27 Egg Crate 28 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area -Table 2 Hyd. Diam. (ft) # (ft2) 1 1. 2 3 4 5 6 7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 4 4 4 4 4 4 4 4 4 4 4 4 4 2sl93 2s177 2s136 2s144 ls369 ls371 ls373 ls375 ls377 ls379 ls381 ls383 ls370 ls372 ls376 ls378 ls380 ls382 ls384 ls257 ls258 ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls268 ls269 ls270 ls271 ls272 144 .25 1. 144. 25 1. 144.25 1. 144. 25 1. 144.25 1. 144. 25 1. 144 .25 1. 144.25 1. 144 .25 1. 144 .25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. ls279 144.25 1. ls357 144.25 1. ls341 144.25 1. ls293 144.25 1. ls277 144.25 1. ls355 144.25 1. ls339 144 .25 1. 151. 1. 145.24 0.001 145.24 0:001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 ls291 ls275 ls353 ls337 ls289 ls273 3 3 3 3 2s113 2sl15 2s117 2sl19 2s121 2s123 2s125 2s127 2sl14 2s116 2s120 2s122 2s124 145.24 o.oor---2s126 145.24 0.001 2s128 145.24 0.001 2sl +45.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 2s14 145.24 0.001 2s15 145.24 0.001 2s16 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. 151. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) Friction Length (ft) Relative Dep Rough-Bend ness (deg) Mom Trn Opt 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 91of303 St rat Flow Opt NONE NONE NONE NONE NONE NONE NONE 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ENERCON 1. 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2 .2*5 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 18. 18. | ||
: 12. | : 12. | ||
| Line 341: | Line 814: | ||
: 10. 10. 10. 10. 10. 10. 10. 10. 10. ' 10. 10. .10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. | : 10. 10. 10. 10. 10. 10. 10. 10. 10. ' 10. 10. .10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. | ||
: 10. 10. 10. 10. | : 10. 10. 10. 10. | ||
: 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 *o. 0411 0.0417 0.0417 0.0417 PAGE NO. 92 of 303 NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N ,-NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE ENERCON 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.5 2.5 2 .5. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 Flow Paths -Table 3 Flow Fwd. Rev. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.04°17 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 PAGE NO. 93 of 303 N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE Path Loss Loss Comp. Critical Flow Model OFF Exit Loss Coeff. 0. Drop Breakup Model OFF # Coeff. Coeff. Opt. 1 0.127 1000000. OFF 2 OFF 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 OFF 1000000. OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 0. 0. 0. 0. 0. 0. 0. | : 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 *o. 0411 0.0417 0.0417 0.0417 PAGE NO. 92 of 303 NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N ,-NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE ENERCON 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.5 2.5 2 .5. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 Flow Paths -Table 3 Flow Fwd. Rev. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.04°17 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 PAGE NO. 93 of 303 N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE Path Loss Loss Comp. Critical Flow Model OFF Exit Loss Coeff. 0. Drop Breakup Model OFF # Coeff. Coeff. Opt. 1 0.127 1000000. | ||
OFF 2 OFF 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 OFF 1000000. | |||
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 0. 0. 0. 0. 0. 0. 0. | |||
: 0. | : 0. | ||
: 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. | : 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OFF OFF OFF OFF OFF OFF OFF OFF I OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF CALC. NO. ENTR-078-CALC-004 ENERCON Pft).k<J .. f.WHJ CALCULATION CONTROL Attachment 1 REV.O 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 4.78 :f .78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.18 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Flow Paths -Table 4 Forwar Flow Min Path H2 # Frac 1 0.06 2 3 4 5 6 7 8 9 10 11 12 13 14 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0,06 Min Max Min H2 Frac 0.06 .02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.06 0.55 0.06 0. 55, 0. 06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OFF OFF OFF OFF OFF OFF OFF OFF I OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF CALC. NO. ENTR-078-CALC-004 ENERCON Pft).k<J | ||
.. f.WHJ CALCULATION CONTROL Attachment 1 REV.O 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 4.78 :f .78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.18 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Flow Paths -Table 4 Forwar Flow Min Path H2 # Frac 1 0.06 2 3 4 5 6 7 8 9 10 11 12 13 14 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0,06 Min Max Min H2 Frac 0.06 .02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.06 0.55 0.06 0. 55, 0. 06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | |||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Revers Min Max 02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 'OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 94 of 303 Zero Prop Flow Opt NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW 15 16 17 18 19 2a 21 22 23 24 25 26 27 28 29 3a 31 32 33 34 35 36 37 38 39 4a 41 42 43 44 45 46 47 48 49 sa 51 52 53 54 55 56 57 58 59 6a 61 62 63 64 65 66 67 68 69 7a 71 72 73 74 ENERCON a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.SS a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.SS a. as' a. 55 a.as a.SS a.as a.SS a.as a.55 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 CALCULATION CONTROL Attachment 1 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.a6 a.as a.a6. a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.SS a.55 a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s' a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 95 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW / | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Revers Min Max 02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 'OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 94 of 303 Zero Prop Flow Opt NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW 15 16 17 18 19 2a 21 22 23 24 25 26 27 28 29 3a 31 32 33 34 35 36 37 38 39 4a 41 42 43 44 45 46 47 48 49 sa 51 52 53 54 55 56 57 58 59 6a 61 62 63 64 65 66 67 68 69 7a 71 72 73 74 ENERCON a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.SS a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.SS a. as' a. 55 a.as a.SS a.as a.SS a.as a.55 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 CALCULATION CONTROL Attachment 1 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.a6 a.as a.a6. a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.SS a.55 a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s' a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 95 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW / | ||
ENERCON 75 76 77 78 79 80 81 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Thermal Conductors 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALCULATION CONTROL Attachment 1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 NO NO NO NO NO NO NO Cond Vol HT Vol HT Cond S. A. Ini t. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 96 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW # Description A Co B Co Type (ft2) T. (F) Or ls CPl-West lsl8-l 1 lsl8-l 5 1 7764.63 75. I 2s CP2-NE ls81-2 1 ls81-2 5 1 3234.14 75. I 3s CP3-SE ls89-2 1 ls89-2 5 1 3728.76 75. I 4s Floor lsl-12 11 lsl-12 12 5 10656. 76.5 I 5sJ Upper MCR ceili 2sl29-10 2sl29-8 4 10656. 87. I 6s MCR West Wall L lsl6-2 2 8 4 1312.56 85. I 7s MCR North WallL lsl-36 2 lsl-36 8 4 674.51 85. I 8s MCR East Wall L lsl13-2 ls'll3-8 4 1312. 56 85. I 9s MCR South Wall lsl28-2 lsl28-8 4 674.51 85. I 10s Ceiling Tiles ls257-10 2sl-12 11 6 10016. 78. X lls Upper MCR West 2sl-14 1 2sl-14 8 4 1248.48 88. I 12s Upper MCR North 2sl-24 1 2sl-24 8 4 641.58 88. I 13s Upper MCR East 2sl13-1 2sll3-8 4 1248.48 88. I 14s Upper MCR South 2sl28-. 1 2sl28-8 4 641. 58 88. I 15s Steel Structure 2sl-12 1 2sl-12 5 2 11756.8 81. I 16 SM Doors lsl 1 lsl 5 10 55.2 75. I 17 lHS-JBA lsl4 1 ls14 5 7 1. 75. I 18s 19s 20s 2ls 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ILAC Panels Steel ILAC 3/8 steel ILAc::)/16 DC Panels N DC Panels S lsl33-1 ls5-13*, 1 ls5-13 1 lsl7-l 1 ls32-l 1 Support Beams lsl6-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-24 1 HVAC Large_l lsl-18 1 HVAC Large_2 lsll3-1 SCA Panels_N lsl7-l 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-l 1 ls133-5 ls5-13 5 ls5-13 5 lsl7-l 5 ls32-l 5 lsl6-3 5 ls97-2 5 ls64-2 5 lsl-24 5 lsl-18 5 lsl13-5 lsl7-l 5 ls48 5 lsl8 5 ls2 5 ls98-l 5 7 8 7 7 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 lsl46-1 lsl46-5 7 ls241-1 ls241-5 7 ls153-1 lsl53-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 is55-9 5 9 173.8 15. 20. 198. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 4ls 42s 43s 44s 45 46s l" Conduit S lsl6-3 1 lsl6-3 5 lsll7-5 lsl13-5 ls3-15 5 lsl5 5 ls4-13 5 7 -19.625 l" Conduit_kitc lsll7-1 l" Conduit N wa lsll3-1 l"Conduit_W wal ls3-15 1 Security Port lsl5 1 211 Conduit ls4-13 1 7 9.42 7 39.25 7 70. 65 8 12 .5 7 34.6 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 lsll2-1 lsll2-5 7 lsl6-3 1 ls16-3 5 7 ls7-9 1 ls7-9 5 9 19.6 11. 8 6.6 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. | ENERCON 75 76 77 78 79 80 81 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Thermal Conductors 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALCULATION CONTROL Attachment 1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 NO NO NO NO NO NO NO Cond Vol HT Vol HT Cond S. A. Ini t. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 96 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW # Description A Co B Co Type (ft2) T. (F) Or ls CPl-West lsl8-l 1 lsl8-l 5 1 7764.63 75. I 2s CP2-NE ls81-2 1 ls81-2 5 1 3234.14 75. I 3s CP3-SE ls89-2 1 ls89-2 5 1 3728.76 75. I 4s Floor lsl-12 11 lsl-12 12 5 10656. 76.5 I 5sJ Upper MCR ceili 2sl29-10 2sl29-8 4 10656. 87. I 6s MCR West Wall L lsl6-2 2 8 4 1312.56 85. I 7s MCR North WallL lsl-36 2 lsl-36 8 4 674.51 85. I 8s MCR East Wall L lsl13-2 ls'll3-8 4 1312. 56 85. I 9s MCR South Wall lsl28-2 lsl28-8 4 674.51 85. I 10s Ceiling Tiles ls257-10 2sl-12 11 6 10016. 78. X lls Upper MCR West 2sl-14 1 2sl-14 8 4 1248.48 88. I 12s Upper MCR North 2sl-24 1 2sl-24 8 4 641.58 88. I 13s Upper MCR East 2sl13-1 2sll3-8 4 1248.48 88. I 14s Upper MCR South 2sl28-. 1 2sl28-8 4 641. 58 88. I 15s Steel Structure 2sl-12 1 2sl-12 5 2 11756.8 81. I 16 SM Doors lsl 1 lsl 5 10 55.2 75. I 17 lHS-JBA lsl4 1 ls14 5 7 1. 75. I 18s 19s 20s 2ls 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ILAC Panels Steel ILAC 3/8 steel ILAc::)/16 DC Panels N DC Panels S lsl33-1 ls5-13*, | ||
1 ls5-13 1 lsl7-l 1 ls32-l 1 Support Beams lsl6-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-24 1 HVAC Large_l lsl-18 1 HVAC Large_2 lsll3-1 SCA Panels_N lsl7-l 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-l 1 ls133-5 ls5-13 5 ls5-13 5 lsl7-l 5 ls32-l 5 lsl6-3 5 ls97-2 5 ls64-2 5 lsl-24 5 lsl-18 5 lsl13-5 lsl7-l 5 ls48 5 lsl8 5 ls2 5 ls98-l 5 7 8 7 7 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 lsl46-1 lsl46-5 7 ls241-1 ls241-5 7 ls153-1 lsl53-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 is55-9 5 9 173.8 15. 20. 198. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 4ls 42s 43s 44s 45 46s l" Conduit S lsl6-3 1 lsl6-3 5 lsll7-5 lsl13-5 ls3-15 5 lsl5 5 ls4-13 5 7 -19.625 l" Conduit_kitc lsll7-1 l" Conduit N wa lsll3-1 l"Conduit_W wal ls3-15 1 Security Port lsl5 1 211 Conduit ls4-13 1 7 9.42 7 39.25 7 70. 65 8 12 .5 7 34.6 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 lsll2-1 lsll2-5 7 lsl6-3 1 ls16-3 5 7 ls7-9 1 ls7-9 5 9 19.6 11. 8 6.6 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. | |||
: 75. 75. 75. 75. | : 75. 75. 75. 75. | ||
: 75. 75. 75. 75. 75. | : 75. 75. 75. 75. 75. | ||
: 75. | : 75. | ||
: 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON CALCULATION CONTROL Attachment 1 50 RMS-CAB170 ls9 1 ls9 5 9 14.7 75. 51 White boxes lslO 1 lslO 5 7 16.5 75. 52s Unistrut W ls13-3 1 ls13-3 5 7 36.8 75. 53s Unistrut)N ls33-1 1 ls33-l 5 7 10.496 75. 54s Uni strut s ls96-3 1 ls96-3 5 7 18.368 75. -Thermal Conductors -Radiation Parameters Cond Therm. Rad. Emiss. Therm. Rad. Emiss. # Side A Side A Side B Side B ls No No 2s No No 3s No No 4s No No 5s No No 6s No No 7s No No as No No 9s No No lOs No No lls No No 12s No No 13s No No 14s No No 15s No No 16 No No 17 No No 18s No No 19s No No 20s No No 21s No No 22s No No 23s No No 24s No No 25s No No 26s No No 27s No No 28s No No 29s No No 30 No No 31 No No 32 No No 33s No No 34s No No 35s No No 36s No No 37s No No 38s No No 39s No No 40s No No 4ls No No 42s No No 43s No No 44s No No 45 No No 46s No No 47s No No 48s No No 49s No No 50 No No 51 No No CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 97 of 303 I I I I I | : 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON CALCULATION CONTROL Attachment 1 50 RMS-CAB170 ls9 1 ls9 5 9 14.7 75. 51 White boxes lslO 1 lslO 5 7 16.5 75. 52s Unistrut W ls13-3 1 ls13-3 5 7 36.8 75. 53s Unistrut)N ls33-1 1 ls33-l 5 7 10.496 75. 54s Uni strut s ls96-3 1 ls96-3 5 7 18.368 75. -Thermal Conductors | ||
\ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 F.xreNMct-E¥etypto.:'1f<t. f.mytta;. Attachment 1 PAGE NO. 98 of 303 52s No No 53s No No 54s No No Heat Transfer Coefficient Types -Table 1 Heat Cnd/ Sp Nat For Type Transfer l:'lominal Cnv Cnd Cnv Cnv Cnv Rad # Option Value FF Opt Opt HTC Opt Opt Opt 1 Direct ADD MAX VERT SURF OFF OFF 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 2T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. lT 13 13 Sp Conv 1.63 OFF Heat Transfer Coefficient Types -Table 2 Min Max Convect Condensa Type Phase Liq Liq Bulk T Bulk T # Opt Fr act Fr act Model FF Model FF 1 VAP Tg-Tf Tb-Tw 2 VAP Tg-Tf Tb-Tw 3 VAP Tg-Tf Tb-Tw 4 VAP 'Tg-Tf Tb-Tw 5 j 6 VAP Tg-Tf Tb-Tw 7 VAP Tg-Tw 8 9 VAP Tg-Tw 10 -VAP Tg-Tf Tb-Tw 11 VAP Tg-Tf Tb-Tw 12 13 VAP Tg-Tw Heat Transfer Coefficient Types -Table 3 Char. Nat For Norn Minimum Char. Cond. Type Length Coef Exp Coef Exp ve*l Vel Conv HTC Height Length # (ft) FF FF FF FF (ft/s) FF (B/h-ft2-F (ft) (ft) 1 DEFAULT DEFAULT DEFAULT 2 DEFAULT DEFAULT DEFAULT 3 DEFAULT DEFAULT DEFAULT ) 4 DEFAULT DEFAULT D.EFAULT 5 J DEFAULT DEFAULT DEFAULT 6 DEFAULT DEFAULT 7 DEFAULT 8 DEFAULT 9 DEFAULT 10 DEFAULT 'DEFAULT 11 DEFAULT DEFAULT 12 DEFAULT 13 DEFAULT HTC Types -Table 4 Total Peak Initial BD Post-BD Post-BD ENERCON CALCULATION CONTROL Attachment 1 Type Const Heat # CT (Btu) 1 2 3 4 5 6 7 8 9 10 11 12 13 Thermal Conductor Type Types Time Exp (sec) XT Thick. Value Exp (B/h-f2-F) yt O.D. Exp xt Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 99 of 303 Direct FF Heat # Description Geom (in) (in) Regions (Btu/ft3-s) FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1.75 5 2 3.75 6 2 7.875 Thermal Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0. | -Radiation Parameters Cond Therm. Rad. Emiss. Therm. Rad. Emiss. # Side A Side A Side B Side B ls No No 2s No No 3s No No 4s No No 5s No No 6s No No 7s No No as No No 9s No No lOs No No lls No No 12s No No 13s No No 14s No No 15s No No 16 No No 17 No No 18s No No 19s No No 20s No No 21s No No 22s No No 23s No No 24s No No 25s No No 26s No No 27s No No 28s No No 29s No No 30 No No 31 No No 32 No No 33s No No 34s No No 35s No No 36s No No 37s No No 38s No No 39s No No 40s No No 4ls No No 42s No No 43s No No 44s No No 45 No No 46s No No 47s No No 48s No No 49s No No 50 No No 51 No No CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 97 of 303 I I I I I | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. Sub-Heat regs. Factor 1 1. 1 1 6 23 39 21 1 3 1 2 Sub-Heat regs. Factor* 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. Sub-Heat 0 .135 7T 0. . 0. 0. 1.2e-004 0. 0. 0. 0. 0. | \ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 F.xreNMct-E¥etypto.:'1f<t. | ||
f.mytta;. | |||
Attachment 1 PAGE NO. 98 of 303 52s No No 53s No No 54s No No Heat Transfer Coefficient Types -Table 1 Heat Cnd/ Sp Nat For Type Transfer l:'lominal Cnv Cnd Cnv Cnv Cnv Rad # Option Value FF Opt Opt HTC Opt Opt Opt 1 Direct ADD MAX VERT SURF OFF OFF 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 2T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. lT 13 13 Sp Conv 1.63 OFF Heat Transfer Coefficient Types -Table 2 Min Max Convect Condensa Type Phase Liq Liq Bulk T Bulk T # Opt Fr act Fr act Model FF Model FF 1 VAP Tg-Tf Tb-Tw 2 VAP Tg-Tf Tb-Tw 3 VAP Tg-Tf Tb-Tw 4 VAP 'Tg-Tf Tb-Tw 5 j 6 VAP Tg-Tf Tb-Tw 7 VAP Tg-Tw 8 9 VAP Tg-Tw 10 -VAP Tg-Tf Tb-Tw 11 VAP Tg-Tf Tb-Tw 12 13 VAP Tg-Tw Heat Transfer Coefficient Types -Table 3 Char. Nat For Norn Minimum Char. Cond. Type Length Coef Exp Coef Exp ve*l Vel Conv HTC Height Length # (ft) FF FF FF FF (ft/s) FF (B/h-ft2-F (ft) (ft) 1 DEFAULT DEFAULT DEFAULT 2 DEFAULT DEFAULT DEFAULT 3 DEFAULT DEFAULT DEFAULT ) 4 DEFAULT DEFAULT D.EFAULT 5 J DEFAULT DEFAULT DEFAULT 6 DEFAULT DEFAULT 7 DEFAULT 8 DEFAULT 9 DEFAULT 10 DEFAULT 'DEFAULT 11 DEFAULT DEFAULT 12 DEFAULT 13 DEFAULT HTC Types -Table 4 Total Peak Initial BD Post-BD Post-BD ENERCON CALCULATION CONTROL Attachment 1 Type Const Heat # CT (Btu) 1 2 3 4 5 6 7 8 9 10 11 12 13 Thermal Conductor Type Types Time Exp (sec) XT Thick. Value Exp (B/h-f2-F) yt O.D. Exp xt Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 99 of 303 Direct FF Heat # Description Geom (in) (in) Regions (Btu/ft3-s) | |||
FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1.75 5 2 3.75 6 2 7.875 Thermal Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0. | |||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. Sub-Heat regs. Factor 1 1. 1 1 6 23 39 21 1 3 1 2 Sub-Heat regs. Factor* 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. Sub-Heat 0 .135 7T 0. . 0. 0. 1.2e-004 | |||
: 0. 0. 0. 0. 0. | |||
ENERCON CALCULATION CONTROL Attachment 1 Region # 1 2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 r 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (in) (in) 0.00768 0.01536 regs. Factor 0. 0.00768 1 0. 1 0. 0.02304 0.03072 1 0.05376 0.06144 1 0.1152 0.12288 1 0.23808 0.24576 1 0.48384 0.49152 1 0.97536 0.98304 1 1.9584 1.96608 1 3.92448 3.93216 1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ENERCON CALCULATION CONTROL Attachment 1 Region # 1 2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 r 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (in) (in) 0.00768 0.01536 regs. Factor 0. 0.00768 1 0. 1 0. 0.02304 0.03072 1 0.05376 0.06144 1 0.1152 0.12288 1 0.23808 0.24576 1 0.48384 0.49152 1 0.97536 0.98304 1 1.9584 1.96608 1 3.92448 3.93216 1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. Thermal Type 5 Composite Mat. Region # 1 5 2 5 3 5 4 5 5 5 6 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 0. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0. 0.01224 0.013056 1 0. 0.025296 0.026112 1 0. 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1.625 0.034244 1 0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.998518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 0. 0. 0. 0. 0. 1. 1. 1 .. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 100 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O j £.my tia-j. Attachment 1 PAGE NO. 101 of 303 31 2 20.70052 1.96608 1 0. 32 2 22.6666 0.98304 1 0. 33 2 23.64964 0.49152 1 0. 34 2 24.14116 0.24576 1 0. 35 2 24.38692 0.12288 1 0. 36 2 24.5098 0.06144 1 0. 37 2 24. 57124 0.03072 1 0. 38 2 24.60196 0.01536 1 0. 39 2 24.61732 0.00768 1 0. Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Thick sub-Heat Region # (in) (in) regs. Factor 1 4 0. 3.5e-004 1 0. 2 4 3.5e-004 7e-004 1 0. 3 4 0.001044 0.001392 1 0. 4 4 0.002436 0.002784 1 0. 5 4 0.00522 0.005568 1 0. 6 4 0.010788 0.011136 1 0. 7 4 0.021924 0. 022272 1 0. 8 4 0.044196 0.044544 1 0. 9 4 0.08874 0.089088 1 0. 10 4 0.177828 0.111793 1 0. 11. 4 0.289621 0 .111793 1 0. 12 4 0.401414 0.067423 1 0. 13 4 0.468837 0.067423 1 0. 14 4 0.53626 0.044544 1 0. 15 4 0.580804 0.022272 l* q. 16 4 0.603076 0. 011136 1 0. 17 4 0.614212 0.005568 1 0. 18 4 0.61978 0.002784 1 0. 19 4 0.622564 0.001392 1 0. 20 4 0.623956 7e-004 1 0. 21 4 0.624652 3.5e-004 1 0. Thermal Conductor Type 7 1/8" Steel \ Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.125 1 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Thick Sub-Heat Region if (in) (in) regs. Factor 1 1 0. 0.1875 1 0. 2 1 0.1875 0.09375 1 0. 3 1 0.28125 0.09375 1 0. Thermal Conductor Type 9 1/16" Steel Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.0625 1 o. | : 0. 0. 0. 0. Thermal Type 5 Composite Mat. Region # 1 5 2 5 3 5 4 5 5 5 6 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 0. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0. 0.01224 0.013056 1 0. 0.025296 0.026112 1 0. 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1.625 0.034244 1 | ||
0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.998518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 0. 0. 0. 0. 0. 1. 1. 1 .. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 100 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O j | |||
£.my tia-j. Attachment 1 PAGE NO. 101 of 303 31 2 20.70052 1.96608 1 0. 32 2 22.6666 0.98304 1 0. 33 2 23.64964 0.49152 1 0. 34 2 24.14116 0.24576 1 0. 35 2 24.38692 0.12288 1 0. 36 2 24.5098 0.06144 1 0. 37 2 24. 57124 0.03072 1 0. 38 2 24.60196 0.01536 1 0. 39 2 24.61732 0.00768 1 0. Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Thick sub-Heat Region # (in) (in) regs. Factor 1 4 0. 3.5e-004 1 0. 2 4 3.5e-004 7e-004 1 0. 3 4 0.001044 0.001392 1 0. 4 4 0.002436 0.002784 1 0. 5 4 0.00522 0.005568 1 0. 6 4 0.010788 0.011136 1 0. 7 4 0.021924 | |||
: 0. 022272 1 0. 8 4 0.044196 0.044544 1 0. 9 4 0.08874 0.089088 1 0. 10 4 0.177828 0.111793 1 0. 11. 4 0.289621 0 .111793 1 0. 12 4 0.401414 0.067423 1 0. 13 4 0.468837 0.067423 1 0. 14 4 0.53626 0.044544 1 0. 15 4 0.580804 0.022272 l* q. 16 4 0.603076 | |||
: 0. 011136 1 0. 17 4 0.614212 0.005568 1 0. 18 4 0.61978 0.002784 1 0. 19 4 0.622564 0.001392 1 0. 20 4 0.623956 7e-004 1 0. 21 4 0.624652 3.5e-004 1 0. Thermal Conductor Type 7 1/8" Steel \ Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.125 1 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Thick Sub-Heat Region if (in) (in) regs. Factor 1 1 0. 0.1875 1 0. 2 1 0.1875 0.09375 1 0. 3 1 0.28125 0.09375 1 0. Thermal Conductor Type 9 1/16" Steel Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.0625 1 o. | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O Thermal Conductor Type 10 1/4" Steel Mat. Region # 1 1 2 1 Cooler/Heater Heater Cooler Bdry. (in) 0. 0 .125 # Description lH 2H 3H 4H SH 6H 7H BH 9H lOH llH 12H 13H 14H 15H 16H 17H lBH 19H 20H 21H 22H 23H 24H 25H 26H 27H 2BH 29H 30H 31H 32H 33H 34H 35H 36H 37H 3BH 39H 40H 41H 42H 43H 44H 45H 46H 47H 4BH Thick (in) 0.125 0.125 Vol. # lsl ls2 ls3 ls4 ls5 ls6 ls7 lsB ls9 lslO lsll ls12 lsl3 ls14 ls15 ls16 ls17 lslB ls19 ls20 ls21 ls22 ls23 ls24 ls25 ls26 ls21 ls2B ls29 ls30 ls31 ls32 ls33 ls34 ls35 ls36 ls37 ls3B ls39 ls40 ls41 .ls42 ls43 ls44 ls45 ls46 ls47 ls4B On Sub-Heat Factor 1 0. 1 o. Off Flow Trip Trip Rate # # (CFM) PAGE NO. 102 of 303 Flow Heat '.Heat Rate Rate Rate Phs Ctrlr FF (Btu/s) FF Opt Loe 1. BT VTI lsl 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O Thermal Conductor Type 10 1/4" Steel Mat. Region # 1 1 2 1 Cooler/Heater Heater Cooler Bdry. (in) 0. 0 .125 # Description lH 2H 3H 4H SH 6H 7H BH 9H lOH llH 12H 13H 14H 15H 16H 17H lBH 19H 20H 21H 22H 23H 24H 25H 26H 27H 2BH 29H 30H 31H 32H 33H 34H 35H 36H 37H 3BH 39H 40H 41H 42H 43H 44H 45H 46H 47H 4BH Thick (in) 0.125 0.125 Vol. # lsl ls2 ls3 ls4 ls5 ls6 ls7 lsB ls9 lslO lsll ls12 lsl3 ls14 ls15 ls16 ls17 lslB ls19 ls20 ls21 ls22 ls23 ls24 ls25 ls26 ls21 ls2B ls29 ls30 ls31 ls32 ls33 ls34 ls35 ls36 ls37 ls3B ls39 ls40 ls41 .ls42 ls43 ls44 ls45 ls46 ls47 ls4B On Sub-Heat Factor 1 0. 1 o. Off Flow Trip Trip Rate # # (CFM) PAGE NO. 102 of 303 Flow Heat '.Heat Rate Rate Rate Phs Ctrlr FF (Btu/s) FF Opt Loe 1. BT VTI lsl 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
| Line 387: | Line 873: | ||
: 1. 1. 1. 1. | : 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1.37 1. 8 0.038 0.12 0.038 0.1099 0.127 0.0483 0.0483 0. 07772 0.277 0.137 0 .372 0.277 0.074 0.569 0.284 0.284 0.569 0.284 0.569 0.569 0.284 0.037 PAGE NO. 108 of 303 3T VTI ls349 3T VTI ls350 3T VTI ls351 3T VTI ls352 3T VTI ls353 3T VTI ls354 3T VTI ls355 3T VTI ls356 3T VTI ls357 VTI ls358 VTI ls359 VTI ls360 VTI ls361 3T VTI ls362 3T VTI ls363 3T VTI ls364 3T VTI ls365 3T VTI ls366 3T VTI ls367 3T VTI ls368 3T VTI ls369 3T VTI ls370 3T VTI ls371 3T VTI ls372 3T VTI ls373 3T VTI ls374 3T VTI ls375 3T VTI ls376 3T VTI ls377 3T VTI ls378 3T VTI ls379 3T VTI ls380 3T VTI ls381 3T VTI ls382 3T VTI ls383 3T VTJ; ls384 VTI ls118 VTI -ls9 VTI lsl33 VTI ls134 VTI lsl35 VTI ls65 VTI ls49 VTI ls17 VTI ls113 VTI lsl28 VTI ls112 VTI ls96 VTI ls64 VTI ls48 VTI ls32 VTI ls72 VTI ls104 VTI lsl05 VTI ls87 VTI ls71 VTI ls199 VTI ls106 VTI lsl VTI ls55 409H 410H 411H 412H 413H 414H 415H 416H 417H 418H 419H 420H 421H 422H 423H 424H 425H 426H 427H 428H 429H 430H 431H 432H 433H 434H 435H 436H 437H 438H 439H 440H 441H 442H 443H 444H 445H 446H 447H 448H 449H 450H 451H 452H 453H 454H 455H 456H 457H 458H 459H 460H 461H 462H 463H 464H 465H 466H 467H 468H ENERCON OP 2 OP 3 OP 4 OP 5 OP 6 OP 7 OP 8 OP 9 OP 10 OP 11 OP 12 OP 13 OP 14 OP 15 OP 16 OP 17 OP 18 ls56 ls57 ls71 ls72 ls73 ls87 ls88 ls89 lsl83 lsl84 lsl85 lsl99 ls200 ls201 ls215 ls216 ls217 2sl . 2s2 2s3 2s4 2s5 2s6 2s7 2s8 2s9 2sl0 2sll 2sl2 2sl3 2sl4 2sl5 2sl6 2sl7 2sl8 2sl9 2s20 2s21 2s22 2s23 2s24 2s25 2s26 2s27 2s28 2s29 2s30 2s31 2s32 2s33 2s34 2s35 2s36 2s37 2s42 2s43 2s44 2s45 2s46 2s47 CALCULATION CONTROL Attachment 1 0.037 0.037 0. 037 0. 037 0. 037 0. 037 0. 037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 9.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 109 of 303 VTI ls56 VTI ls57 VTI ls71* VTI ls72 VTI ls73 VTI ls87 VTI ls88 VTI ls89 VTI lsl83 VTI lsl84 VTI lsl85 VTI lsl99 VTI ls200 VTI ls201 VTI ls215 VTI ls216 VTI ls217 VTI 2sl VTI 2s2 VTI 2s3 VTI 2s4 VTI 2s5 VTI 2s6 VTI 2s7 VTI 2s8 VTI 2s9 VTI 2sl0 VTI 2sll VTI 2sl2 VTJ 2sl3 VTI 2sl4 VTI 2sl5 VTI 2sl6 VTI 2sl7 VTI 2sl8 VTI 2sl9 VTI 2s20 VTI 2s21 VTI 2s22 VTI 2s23 VTI 2s24 VTI 2s25 VTI 2s26 VTI 2s27 VTI 2s28 VTI 2s29 VTI 2s30 VTI 2s31 VTI 2s32 VTI 2s33 VTI 2s34 VTI 2s35 VTI 2s36 VTI 2s37 VTI 2s42 VTI 2s43 VTI 2s44 VTI 2s45 VTI 2s46 VTI 2s47 469H 470H 471H 472H 473H 474H 47SH 476H 477H 478H 479H 480H 481H 482H 483H 484H 48SH 486H 487H 488H 489H 490H 491H 492H 493H 494H 49SH 496H 497H 498H 499H SOOH SOlH S02H S03H S04H SOSH S06H S07H S08H S09H SlOH SllH S12H Sl3H S14H SlSH S16H S17H Sl8H Sl9H S20H S21H S22H S23H S24H S2SH S26H S27H S28H ENER ON 2s48 2s49 2sSO 2sS1 2sS2 2sS3 2sS8 2sS9 2s60 2s61 2s64 2s6S 2s66 2s67 2s68 2s69 2s74 2s7S 2s76 2s77 2s80 2s81 2s82 2s83 2s84 2s8S , 2s90 2s91 2s92 2s93 2s94 2s9S 2s96 2s97 2s98 2s99 2slOO 2s101 2s106 2s107 2s108 2s109 2s110 2slll 2s112 2s113 2s114 2s11S 2s116 2s117 2s118 2s119 2s120 2s121 2s122 2s123 2s124 2s12S 2s126 2sl27 CALCULATION CONTROL Attachment 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 b.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 110 of 303 VTI 2s48 VTI 2s49 VTI 2sSO VTI 2sS1 VTI 2sS2 VTI 2sS3 VTI 2sS8 VTI 2sS9 VTI 2s60 VTI 2s61 VTI 2s64 VTI 2s6S VTI 2s66 VTI 2s67 VTI 2s68 VTI 2s69 VTI 2s74 VTI 2s7S VTI 2s76 VTI 2s77 VTI 2s80 VTI 2s81 VTI 2s82 VTI 2s83 VTI 2s84.' VTI 2s8S VTI 2s90 VTI 2s91 VTI 2s92 VTI 2s93 VTI 2s94 VTI 2s9S VTI 2s96 VTI 2s97 VTI 2s98 VTI 2s99 VTI 2s100 VTI 2s101 VTI 2s106 VTI 2s107 VTI 2s108 VTI 2s109 VTI 2s110 VTI 2slll VTI 2s112 VTI 2s113 VTI 2s114 VTI 2s11S VTI 2s116 VTI 2sll 7 VTI 2s118 VTI 2sl19 VTI 2s120 VTI 2s121 VTI 2s122 VTI 2s123 VTI 2s124 VTI 2s12S VTI 2s126 VTI 2s127 529H 530H 531H 532H 533H 534H 535H .536H 537H 538H 539H 540H 541H 542H 543H 544H 545H 546H 547H 548H 549H 550H 551H 552H 553H 554H 555H 556H 557H 558H 559H 560H 561H 562H 563H 564H 565H 566H 567H 568H 569H 570H 571H 572H 573H 574H 575H 576H 577H 578H 579H 580H 581H 582H 583H 584H 585H 586H 587H 588H ENERCON CALCULATION CONTROL Attachment 1 2sl28 1Hl3-P600 ls26 1Hl3-P600 2 lsl54 1Hl3-P6047614 ls42 1Hl3-P604/614 lsl70 1Hl3-P845 ls58 1Hl3-P845 2 lsl86 1Hl3-P6727694 ls43 1Hl3-P672/694 lsl71 1Hl3-P669/691 ls44 1Hl3-P669/691 lsl72 1Hl3-P623/632 ls60 1H13-P623/632 ls188 1Hl3-P629 ls29 1H13-P629 2 ls157 , 1H13-P6217628 ls45 1H13-P621/628 ls173 1H13-P651-P65 ls61 1H13-P651-5 2 ls189 1H13-P680 ls55 1Hl.3-P680_2 ls56 1H13-P680 3 ls57 1H13-P625/693 ls91 1H13-P625/693 ls219 1H13-P671 ls107 1H13-P671 2 ls235 1H13-P6427613 ls92 1H13-642/13/2 ls220 1H13-P692/670 ls108 1H13-P692/670 ls236 1H13-P610/655 ls93 1H13-P610/655.ls221 1H13-P631/618 ls109 1H13-P631/618 ls237 1H13-P607/612 ls94 1H13-P607 612 ls222 1H13-P6197634 lsllO 1Hl3-P619/634 18238 1H13-P637 lslll 1H13-P637 2 ls239 1H13-P601 1 ls73 1Hl3-P601 2 ls89 1H13-P601 3 ls201 1H13-P601 4 ls217 1C91-P622 ls18 1C91-P622 2 ls146 1C91-P623/650 ls34 1C91-P623/655 ls162 1C91-P624 ls51 1C91-P624 2 ls179 1C91-P613 ls78 1C91-P613_2 ls206 1C91-P614 ls30 1C91-P614 2 ls158 1C91-P6157P64 ls46 1C91-P615/642 ls174 1C91-P632/P63 ls72 1C91-P632/633 ls200 1C91-P630/631 ls62 1C91-P630/631 lsl90 0.02 0.095 0.095 0.569 0.569 0.294 d.294 0.853 0.853 0.853 0.853 0.474 0.474 0.237 0.237 0. 284 -0.284 0.545 0.545 0.253 0.253 0.253 0.616 0.616 0.474 0.474 0.474 0.474 0.853 0.853 0.474 0.474 0.427 0.427 0.284 0.284 0.569 0.569 0.379 0.379 0.379 0.379 0.379 0.379 0.209 0.209 0.619 0.619 0.259 0.259 0.087 0.087 0.086 0.086 1.07 1. 07 0.066 0.066 0.488 0.488 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 111 of 303 VTI 2s128 VT! ls26 VTI ls154 VT! ls42 VTI ls170 VTI ls58 VTI ls186 VTI ls43 VTI lsl 71 VT! ls44 VTI lsl72 VTI ls60 VTI ls188 VTI ls29 VTI ls157 VTI ls45 VTI ls173 VTI ls61 VTI ls189 VTI ls55 VTI ls56 VTI ls57 VTI ls91 VTI ls219 VTI ls107 VTI ls235 | : 1. 1. 1. 1. 1.37 1. 8 0.038 0.12 0.038 0.1099 0.127 0.0483 0.0483 0. 07772 0.277 0.137 0 .372 0.277 0.074 0.569 0.284 0.284 0.569 0.284 0.569 0.569 0.284 0.037 PAGE NO. 108 of 303 3T VTI ls349 3T VTI ls350 3T VTI ls351 3T VTI ls352 3T VTI ls353 3T VTI ls354 3T VTI ls355 3T VTI ls356 3T VTI ls357 VTI ls358 VTI ls359 VTI ls360 VTI ls361 3T VTI ls362 3T VTI ls363 3T VTI ls364 3T VTI ls365 3T VTI ls366 3T VTI ls367 3T VTI ls368 3T VTI ls369 3T VTI ls370 3T VTI ls371 3T VTI ls372 3T VTI ls373 3T VTI ls374 3T VTI ls375 3T VTI ls376 3T VTI ls377 3T VTI ls378 3T VTI ls379 3T VTI ls380 3T VTI ls381 3T VTI ls382 3T VTI ls383 3T VTJ; ls384 VTI ls118 VTI -ls9 VTI lsl33 VTI ls134 VTI lsl35 VTI ls65 VTI ls49 VTI ls17 VTI ls113 VTI lsl28 VTI ls112 VTI ls96 VTI ls64 VTI ls48 VTI ls32 VTI ls72 VTI ls104 VTI lsl05 VTI ls87 VTI ls71 VTI ls199 VTI ls106 VTI lsl VTI ls55 409H 410H 411H 412H 413H 414H 415H 416H 417H 418H 419H 420H 421H 422H 423H 424H 425H 426H 427H 428H 429H 430H 431H 432H 433H 434H 435H 436H 437H 438H 439H 440H 441H 442H 443H 444H 445H 446H 447H 448H 449H 450H 451H 452H 453H 454H 455H 456H 457H 458H 459H 460H 461H 462H 463H 464H 465H 466H 467H 468H ENERCON OP 2 OP 3 OP 4 OP 5 OP 6 OP 7 OP 8 OP 9 OP 10 OP 11 OP 12 OP 13 OP 14 OP 15 OP 16 OP 17 OP 18 ls56 ls57 ls71 ls72 ls73 ls87 ls88 ls89 lsl83 lsl84 lsl85 lsl99 ls200 ls201 ls215 ls216 ls217 2sl . 2s2 2s3 2s4 2s5 2s6 2s7 2s8 2s9 2sl0 2sll 2sl2 2sl3 2sl4 2sl5 2sl6 2sl7 2sl8 2sl9 2s20 2s21 2s22 2s23 2s24 2s25 2s26 2s27 2s28 2s29 2s30 2s31 2s32 2s33 2s34 2s35 2s36 2s37 2s42 2s43 2s44 2s45 2s46 2s47 CALCULATION CONTROL Attachment 1 0.037 0.037 0. 037 0. 037 0. 037 0. 037 0. 037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 9.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 109 of 303 VTI ls56 VTI ls57 VTI ls71* VTI ls72 VTI ls73 VTI ls87 VTI ls88 VTI ls89 VTI lsl83 VTI lsl84 VTI lsl85 VTI lsl99 VTI ls200 VTI ls201 VTI ls215 VTI ls216 VTI ls217 VTI 2sl VTI 2s2 VTI 2s3 VTI 2s4 VTI 2s5 VTI 2s6 VTI 2s7 VTI 2s8 VTI 2s9 VTI 2sl0 VTI 2sll VTI 2sl2 VTJ 2sl3 VTI 2sl4 VTI 2sl5 VTI 2sl6 VTI 2sl7 VTI 2sl8 VTI 2sl9 VTI 2s20 VTI 2s21 VTI 2s22 VTI 2s23 VTI 2s24 VTI 2s25 VTI 2s26 VTI 2s27 VTI 2s28 VTI 2s29 VTI 2s30 VTI 2s31 VTI 2s32 VTI 2s33 VTI 2s34 VTI 2s35 VTI 2s36 VTI 2s37 VTI 2s42 VTI 2s43 VTI 2s44 VTI 2s45 VTI 2s46 VTI 2s47 469H 470H 471H 472H 473H 474H 47SH 476H 477H 478H 479H 480H 481H 482H 483H 484H 48SH 486H 487H 488H 489H 490H 491H 492H 493H 494H 49SH 496H 497H 498H 499H SOOH SOlH S02H S03H S04H SOSH S06H S07H S08H S09H SlOH SllH S12H Sl3H S14H SlSH S16H S17H Sl8H Sl9H S20H S21H S22H S23H S24H S2SH S26H S27H S28H ENER ON 2s48 2s49 2sSO 2sS1 2sS2 2sS3 2sS8 2sS9 2s60 2s61 2s64 2s6S 2s66 2s67 2s68 2s69 2s74 2s7S 2s76 2s77 2s80 2s81 2s82 2s83 2s84 2s8S , 2s90 2s91 2s92 2s93 2s94 2s9S 2s96 2s97 2s98 2s99 2slOO 2s101 2s106 2s107 2s108 2s109 2s110 2slll 2s112 2s113 2s114 2s11S 2s116 2s117 2s118 2s119 2s120 2s121 2s122 2s123 2s124 2s12S 2s126 2sl27 CALCULATION CONTROL Attachment 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 b.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 110 of 303 VTI 2s48 VTI 2s49 VTI 2sSO VTI 2sS1 VTI 2sS2 VTI 2sS3 VTI 2sS8 VTI 2sS9 VTI 2s60 VTI 2s61 VTI 2s64 VTI 2s6S VTI 2s66 VTI 2s67 VTI 2s68 VTI 2s69 VTI 2s74 VTI 2s7S VTI 2s76 VTI 2s77 VTI 2s80 VTI 2s81 VTI 2s82 VTI 2s83 VTI 2s84.' VTI 2s8S VTI 2s90 VTI 2s91 VTI 2s92 VTI 2s93 VTI 2s94 VTI 2s9S VTI 2s96 VTI 2s97 VTI 2s98 VTI 2s99 VTI 2s100 VTI 2s101 VTI 2s106 VTI 2s107 VTI 2s108 VTI 2s109 VTI 2s110 VTI 2slll VTI 2s112 VTI 2s113 VTI 2s114 VTI 2s11S VTI 2s116 VTI 2sll 7 VTI 2s118 VTI 2sl19 VTI 2s120 VTI 2s121 VTI 2s122 VTI 2s123 VTI 2s124 VTI 2s12S VTI 2s126 VTI 2s127 529H 530H 531H 532H 533H 534H 535H .536H 537H 538H 539H 540H 541H 542H 543H 544H 545H 546H 547H 548H 549H 550H 551H 552H 553H 554H 555H 556H 557H 558H 559H 560H 561H 562H 563H 564H 565H 566H 567H 568H 569H 570H 571H 572H 573H 574H 575H 576H 577H 578H 579H 580H 581H 582H 583H 584H 585H 586H 587H 588H ENERCON CALCULATION CONTROL Attachment 1 2sl28 1Hl3-P600 ls26 1Hl3-P600 2 lsl54 1Hl3-P6047614 ls42 1Hl3-P604/614 lsl70 1Hl3-P845 ls58 1Hl3-P845 2 lsl86 1Hl3-P6727694 ls43 1Hl3-P672/694 lsl71 1Hl3-P669/691 ls44 1Hl3-P669/691 lsl72 1Hl3-P623/632 ls60 1H13-P623/632 ls188 1Hl3-P629 ls29 1H13-P629 2 ls157 , 1H13-P6217628 ls45 1H13-P621/628 ls173 1H13-P651-P65 ls61 1H13-P651-5 2 ls189 1H13-P680 ls55 1Hl.3-P680_2 ls56 1H13-P680 3 ls57 1H13-P625/693 ls91 1H13-P625/693 ls219 1H13-P671 ls107 1H13-P671 2 ls235 1H13-P6427613 ls92 1H13-642/13/2 ls220 1H13-P692/670 ls108 1H13-P692/670 ls236 1H13-P610/655 ls93 1H13-P610/655.ls221 1H13-P631/618 ls109 1H13-P631/618 ls237 1H13-P607/612 ls94 1H13-P607 612 ls222 1H13-P6197634 lsllO 1Hl3-P619/634 18238 1H13-P637 lslll 1H13-P637 2 ls239 1H13-P601 1 ls73 1Hl3-P601 2 ls89 1H13-P601 3 ls201 1H13-P601 4 ls217 1C91-P622 ls18 1C91-P622 2 ls146 1C91-P623/650 ls34 1C91-P623/655 ls162 1C91-P624 ls51 1C91-P624 2 ls179 1C91-P613 ls78 1C91-P613_2 ls206 1C91-P614 ls30 1C91-P614 2 ls158 1C91-P6157P64 ls46 1C91-P615/642 ls174 1C91-P632/P63 ls72 1C91-P632/633 ls200 1C91-P630/631 ls62 1C91-P630/631 lsl90 0.02 0.095 0.095 0.569 0.569 0.294 d.294 0.853 0.853 0.853 0.853 0.474 0.474 0.237 0.237 0. 284 -0.284 0.545 0.545 0.253 0.253 0.253 0.616 0.616 0.474 0.474 0.474 0.474 0.853 0.853 0.474 0.474 0.427 0.427 0.284 0.284 0.569 0.569 0.379 0.379 0.379 0.379 0.379 0.379 0.209 0.209 0.619 0.619 0.259 0.259 0.087 0.087 0.086 0.086 1.07 1. 07 0.066 0.066 0.488 0.488 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 111 of 303 VTI 2s128 VT! ls26 VTI ls154 VT! ls42 VTI ls170 VTI ls58 VTI ls186 VTI ls43 VTI lsl 71 VT! ls44 VTI lsl72 VTI ls60 VTI ls188 VTI ls29 VTI ls157 VTI ls45 VTI ls173 VTI ls61 VTI ls189 VTI ls55 VTI ls56 VTI ls57 VTI ls91 VTI ls219 VTI ls107 VTI ls235 | ||
* VTI ls92 VTI ls220 VTI ls108 VTI ls236 VTI ls93. VTI ls221 VTI ls109 VTI ls237 VT! ls94 VTI ls222 VTI lsllO VTI ls238 VTI lslll VTI ls239 VTI ls73 VT! ls89 VTI ls201 VTI ls217 VTI ls18 VTI ls146 VTI ls34 VT! ls162 VTI ls51 VTI ls179 VTI ls78 VTI ls206 VTI ls30 VTI lsl58 VTI ls46 VTI lsl74 VTI ls72 VTI ls200 VTI ls62 VTI lsl90 ENERCON 589H 1C91-P625 ls31 590H 1C91-P625 2 ls159 591H 1C91-P621/620 ls47 592H 1C91-P621/620 ls175 593H lc91-P608/600 ls63 594H 1C91-P608/600 ls191 595H Comm Network ls90 596H H13-P6'3o ls59 597H H13-P630 2 ls187 598H H13-P808 ls40 599H Hl3-P808 2 ls41 600H H13-P808 3 ls168 601H H13-P808 4 ls169 602H -Hl3-P821/822 ls95 603H ls223 604H H13-P841/819-ls36 605H H13-P841/819 ls52 606H H13-P841/819-ls164 607H H13-P841/819-lsl80 608H H13-P842/820-ls83* 609H H13-P842/820 ls99 610H H13-P842/820-ls211 611H H13-P842/820 ls227 612H H13-P849 ls51 613H H13-P849_2 ls179 614H H13-P850 lslOO 615H H13-P850 2 ls228 616H H13-P851 ls37 617H H13-P851 2 ls165 618H H13-P852 ls98 619H H13-P852 2 ls226 620H H13-P853 ls50 621H H13-P853 2 ls178 622H H13-P854f P844 ls81 623H H13-P854/844 ls97 624H H13-P854/844-ls209 625H H13-P854/844= ls225 626H H13-P855 ls35 627H , H13-P855 2 ls163 628H H13-P861 ls103 629H H13-P861 2 630H H13-P863 631H H13-P863 2 632H H13-P863 3 633H H13-P863_4 634H Hl3-P869 635H H13-P869_2 636H H13-P870 637H H13-P870_2 638H H13-P870_3 639H H13-P870_4 640H H13-P877 641H H13-P877_2 642H H13-P878 643H H13-P878_2 644H H13-P879 645H H13-P879_2 646H H13-P951 647H H13-P951_2 648H H13-i?952 ls231 ls38 ls54 ls166 ls182 ls84 ls212 ls70 ls86 ls198 ls214 lsl05 ls233 ls112 ls240 ls48 lsl76 ls53 ls181 lslOl CALCULATION CONTROL Attachment 1 0.103 0.103 1.354 1.354 0.971 0.971 0.279 1.564 1.564 0 .118 0 .118 0 .118 0.118 0.519 0.519 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.355 0.355 1.955 1.955 0.523 0.523 0.523 0.523 0.355 0.355 0.473 0.473 I 0.473 0.473 0.083 0.083 0.19 0.19 0.044 0.044 0.044 0.044 1. 049 1. 049 0.227 0.227 0.227 0.227 0.045 0.045 0.386 0.386 0.204 0.204 0.024 0.024 0.024 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 112 of 303 VTI ls31 VTI ls159 VTI ls47 VTI ls175 VTI ls63 VTI ls191 VTI ls90 VTI ls59 VTI ls187 VTI ls40 VTI ls41 VTI ls168 VTI ls169 VTI ls95 VTI ls223 VTI ls36 VTI ls52 VTI ls164 VTI lsl80 VTI ls83 VTI ls99 VTI ls211 VTI ls227 VTI ls51 VTI ls179 VTI lslOO VTI ls228 VTI 1s3*7 VTI ls165 VTI ls98 VTI ls226 VTI ls50 VTI ls178 VTI ls81 VTI ls97 VTI ls209 VTI ls225 VTI ls35 VTI ls163 VTI ls103 VTI ls231 VTI ls38 VTI ls54 VTI ls166 VTI ls182 VTI ls84 VTI ls212 VTI ls70 VTI ls86 VTI lsl98 VTI ls214 VTI ls105 VTI ls233 VTI ls112 VTI ls240 VTI ls48 VTI ls176 VTI ls53 VTI ls181 VTI lslOl ( | * VTI ls92 VTI ls220 VTI ls108 VTI ls236 VTI ls93. VTI ls221 VTI ls109 VTI ls237 VT! ls94 VTI ls222 VTI lsllO VTI ls238 VTI lslll VTI ls239 VTI ls73 VT! ls89 VTI ls201 VTI ls217 VTI ls18 VTI ls146 VTI ls34 VT! ls162 VTI ls51 VTI ls179 VTI ls78 VTI ls206 VTI ls30 VTI lsl58 VTI ls46 VTI lsl74 VTI ls72 VTI ls200 VTI ls62 VTI lsl90 ENERCON 589H 1C91-P625 ls31 590H 1C91-P625 2 ls159 591H 1C91-P621/620 ls47 592H 1C91-P621/620 ls175 593H lc91-P608/600 ls63 594H 1C91-P608/600 ls191 595H Comm Network ls90 596H H13-P6'3o ls59 597H H13-P630 2 ls187 598H H13-P808 ls40 599H Hl3-P808 2 ls41 600H H13-P808 3 ls168 601H H13-P808 4 ls169 602H -Hl3-P821/822 ls95 603H ls223 604H H13-P841/819-ls36 605H H13-P841/819 ls52 606H H13-P841/819-ls164 607H H13-P841/819-lsl80 608H H13-P842/820-ls83* 609H H13-P842/820 ls99 610H H13-P842/820-ls211 611H H13-P842/820 ls227 612H H13-P849 ls51 613H H13-P849_2 ls179 614H H13-P850 lslOO 615H H13-P850 2 ls228 616H H13-P851 ls37 617H H13-P851 2 ls165 618H H13-P852 ls98 619H H13-P852 2 ls226 620H H13-P853 ls50 621H H13-P853 2 ls178 622H H13-P854f P844 ls81 623H H13-P854/844 ls97 624H H13-P854/844-ls209 625H H13-P854/844= | ||
ENERCON CALCULATION CONTROL SHEET-649H 6SOH 6S1H H13-P9S2 2 ls229 H13-Y702D/7Sl ls378 H13-Y703A ls282 6S2H H13-Y703D ls281 6S3H H13-Y710B/D/3 ls380 6S4H H13-Y711A ls382 6SSH H13-Y712B/D ls379 6S6H H13-Y713B/D ls284 6S7H H13-Y714B/D ls381 6S8H H13-Y71SD/E ls28S 6S9H H13-Y717D ls283 660H H13-Y730B ls374 661H H13-Y731D ls278 662H H13-Y740A ls383 663H H13-Y743E ls276 664H H13-Y744D ls371 66SH H13-Y747A ls27S 666H H13-Y747B ls274 667H H13-Y748B/E ls369 668H H13-Y7SOE ls277 669H H13-Y7SlD ls377 670H H13-P721D ls31 671H 672H 673H 674H 67SH 676H 677H 678H 679H 680H 681H 682H 683H Samsung flats ls230 SM-Coffee Pot ls129 HU Clock Rese lsl36 FLEX Radio Printer/Copie Printer/Copie Printer Printer 2 Printer 3 ls232 lslS lsl20 ls103 l's104 lslOS Printer 4 ls106 Exit Lights ls270 Exit Lights_2 ls2S9 HVC-ACUl Fan 4 1 Volumetric Fan -Table 1 Vol Flow On Off Fan Path Trip Trip # Description # # * # lQ Inlet Air S 1 2Q F/H Outlet 8 . 1 3Q DMP 67 1 9 1 4Q DMP 67 2 10 1 SQ DMP 77 1 11 1 6Q DMP 77.2 12 1 7Q DMP 61 1 13 1 SQ DMP 61 2 14 1 9Q DMP 63 1 lS 1 lOQ DMP 63 2 16 1 llQ DMP S9 1 1 7 1 12Q DMP S9 2 18 1 13Q' DMP 60 1 19 1 14Q DMP 60 2 20 1 lSQ DMP S2 1 21 1 16Q DMP S2 2 22 1 17Q DMP SS 1 23 1 18Q DMP SS 2 24 1 19Q DMP SO 2S 1 20Q DMP 76 1 26 1 Attachment 1 Min DP (psi) DEFAULT Max l 0.024 0.34 0.3Sl 0.21S 0.828 0.12S ro. 103 0.703 0.2S O.S66 0.3Sl 0.21S 0.21S 0.12S 0.21S 0.21S 0.21S 0.3Sl 0.43 0.21S 0.21S 0.227 0.237 0.114 0.182 0.2S4 0.40S 0.40S 0.19 0.19 0.19 0.19 0.063 0.063 46.41 DP (psi) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEF'.AULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 113 of 303 VTI ls229 VTI ls378 VTI ls282 VTI ls281 VTI ls380 VTI ls382 VTI ls379 VTI ls284 VTI ls381 VTI ls28S VTI ls283 VTI ls374 VTI ls278 VTI ls383 VTI ls276 VTI ls371 VTI ls275 VTI ls274 VTI ls369 VTI ls277 VTI ls377 VTI ls31 VTI ls230 VTI ls129 VTI lsl36 VTI ls232 VTI ls15 VTI ls120 VTI ls103 VTI ls104 VTI lsl05 VTI ls106 VTI ls270 VTI ls259 VTI 4 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q 31Q 32Q 33Q 34Q 3SQ 36Q 37Q 38Q 39Q 40Q 41Q 42Q 43Q 44Q 4SQ ENERCON DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 DMP Sl 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 4S 1 DMP 4S 2 DMP 7S 1 DMP 7S 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Plenum Ex 27 28 29 30 31 32 3*3 34 3S 36 37 38 39 40 41 42 43 44 4S 46 47 48 49 so 4 CALCULATION CONTROL Attachment 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT' DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Volumetric Fan -Table 2 Vol Flow Flow Heat Fan # lQ 2Q 3Q 4Q SQ 6Q 7Q SQ 9Q lOQ 11Q 12Q 13Q 14Q lSQ 16Q 17Q 18Q 19Q 20Q 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q Flow Rate Option (CFM) Time 2000. Time 4000. Time ass. Time ass. Time 176S*. Time 176S. Time 88S. Time ass.* Time 176S. Time 176S. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 820. Time 820. Time 880. Time *1010. Time 1070. Time 200. Time 140. Time 820. Time 820. Time 880. Time 920. Time 920. Rate Heat Rate FF | ls225 626H H13-P855 ls35 627H , H13-P855 2 ls163 628H H13-P861 ls103 629H H13-P861 2 630H H13-P863 631H H13-P863 2 632H H13-P863 3 633H H13-P863_4 634H Hl3-P869 635H H13-P869_2 636H H13-P870 637H H13-P870_2 638H H13-P870_3 639H H13-P870_4 640H H13-P877 641H H13-P877_2 642H H13-P878 643H H13-P878_2 644H H13-P879 645H H13-P879_2 646H H13-P951 647H H13-P951_2 648H H13-i?952 ls231 ls38 ls54 ls166 ls182 ls84 ls212 ls70 ls86 ls198 ls214 lsl05 ls233 ls112 ls240 ls48 lsl76 ls53 ls181 lslOl CALCULATION CONTROL Attachment 1 0.103 0.103 1.354 1.354 0.971 0.971 0.279 1.564 1.564 0 .118 0 .118 0 .118 0.118 0.519 0.519 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.355 0.355 1.955 1.955 0.523 0.523 0.523 0.523 0.355 0.355 0.473 0.473 I 0.473 0.473 0.083 0.083 0.19 0.19 0.044 0.044 0.044 0.044 1. 049 1. 049 0.227 0.227 0.227 0.227 0.045 0.045 0.386 0.386 0.204 0.204 0.024 0.024 0.024 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 112 of 303 VTI ls31 VTI ls159 VTI ls47 VTI ls175 VTI ls63 VTI ls191 VTI ls90 VTI ls59 VTI ls187 VTI ls40 VTI ls41 VTI ls168 VTI ls169 VTI ls95 VTI ls223 VTI ls36 VTI ls52 VTI ls164 VTI lsl80 VTI ls83 VTI ls99 VTI ls211 VTI ls227 VTI ls51 VTI ls179 VTI lslOO VTI ls228 VTI 1s3*7 VTI ls165 VTI ls98 VTI ls226 VTI ls50 VTI ls178 VTI ls81 VTI ls97 VTI ls209 VTI ls225 VTI ls35 VTI ls163 VTI ls103 VTI ls231 VTI ls38 VTI ls54 VTI ls166 VTI ls182 VTI ls84 VTI ls212 VTI ls70 VTI ls86 VTI lsl98 VTI ls214 VTI ls105 VTI ls233 VTI ls112 VTI ls240 VTI ls48 VTI ls176 VTI ls53 VTI ls181 VTI lslOl ( | ||
ENERCON CALCULATION CONTROL SHEET-649H 6SOH 6S1H H13-P9S2 2 ls229 H13-Y702D/7Sl ls378 H13-Y703A ls282 6S2H H13-Y703D ls281 6S3H H13-Y710B/D/3 ls380 6S4H H13-Y711A ls382 6SSH H13-Y712B/D ls379 6S6H H13-Y713B/D ls284 6S7H H13-Y714B/D ls381 6S8H H13-Y71SD/E ls28S 6S9H H13-Y717D ls283 660H H13-Y730B ls374 661H H13-Y731D ls278 662H H13-Y740A ls383 663H H13-Y743E ls276 664H H13-Y744D ls371 66SH H13-Y747A ls27S 666H H13-Y747B ls274 667H H13-Y748B/E ls369 668H H13-Y7SOE ls277 669H H13-Y7SlD ls377 670H H13-P721D ls31 671H 672H 673H 674H 67SH 676H 677H 678H 679H 680H 681H 682H 683H Samsung flats ls230 SM-Coffee Pot ls129 HU Clock Rese lsl36 FLEX Radio Printer/Copie Printer/Copie Printer Printer 2 Printer 3 ls232 lslS lsl20 ls103 l's104 lslOS Printer 4 ls106 Exit Lights ls270 Exit Lights_2 ls2S9 HVC-ACUl Fan 4 1 Volumetric Fan -Table 1 Vol Flow On Off Fan Path Trip Trip | |||
# Description # # * # lQ Inlet Air S 1 2Q F/H Outlet 8 . 1 3Q DMP 67 1 9 1 4Q DMP 67 2 10 1 SQ DMP 77 1 11 1 6Q DMP 77.2 12 1 7Q DMP 61 1 13 1 SQ DMP 61 2 14 1 9Q DMP 63 1 lS 1 lOQ DMP 63 2 16 1 llQ DMP S9 1 1 7 1 12Q DMP S9 2 18 1 13Q' DMP 60 1 19 1 14Q DMP 60 2 20 1 lSQ DMP S2 1 21 1 16Q DMP S2 2 22 1 17Q DMP SS 1 23 1 18Q DMP SS 2 24 1 19Q DMP SO 2S 1 20Q DMP 76 1 26 1 Attachment 1 Min DP (psi) DEFAULT Max l 0.024 0.34 0.3Sl 0.21S 0.828 0.12S ro. 103 0.703 0.2S O.S66 0.3Sl 0.21S 0.21S 0.12S 0.21S 0.21S 0.21S 0.3Sl 0.43 0.21S 0.21S 0.227 0.237 0.114 0.182 0.2S4 0.40S 0.40S 0.19 0.19 0.19 0.19 0.063 0.063 46.41 DP (psi) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEF'.AULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 113 of 303 VTI ls229 VTI ls378 VTI ls282 VTI ls281 VTI ls380 VTI ls382 VTI ls379 VTI ls284 VTI ls381 VTI ls28S VTI ls283 VTI ls374 VTI ls278 VTI ls383 VTI ls276 VTI ls371 VTI ls275 VTI ls274 VTI ls369 VTI ls277 VTI ls377 VTI ls31 VTI ls230 VTI ls129 VTI lsl36 VTI ls232 VTI ls15 VTI ls120 VTI ls103 VTI ls104 VTI lsl05 VTI ls106 VTI ls270 VTI ls259 VTI 4 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q 31Q 32Q 33Q 34Q 3SQ 36Q 37Q 38Q 39Q 40Q 41Q 42Q 43Q 44Q 4SQ ENERCON DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 DMP Sl 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 4S 1 DMP 4S 2 DMP 7S 1 DMP 7S 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Plenum Ex 27 28 29 30 31 32 3*3 34 3S 36 37 38 39 40 41 42 43 44 4S 46 47 48 49 so 4 CALCULATION CONTROL Attachment 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT' DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Volumetric Fan -Table 2 Vol Flow Flow Heat Fan # lQ 2Q 3Q 4Q SQ 6Q 7Q SQ 9Q lOQ 11Q 12Q 13Q 14Q lSQ 16Q 17Q 18Q 19Q 20Q 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q Flow Rate Option (CFM) Time 2000. Time 4000. Time ass. Time ass. Time 176S*. Time 176S. Time 88S. Time ass.* Time 176S. Time 176S. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 820. Time 820. Time 880. Time *1010. Time 1070. Time 200. Time 140. Time 820. Time 820. Time 880. Time 920. Time 920. Rate Heat Rate FF | |||
* Option (Btu/s) Time Time 3S.92S Time Time Time Time o. Time Time Time Time j Time *,Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Heat Rate Disch FF Vol 6 3 ls368 ls3S2 ls304 ls288 ls366 ls3SO ls302 ls286 ls364 ls348 ls300 ls284 ls362 ls346 ls298 ls282 ls329 ls297 ls281 ls327 ls29S ls360 ls344 ls326 ls294 ls279 ls3S7 ls341 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 114 of 303 ENERCON CALCULATION CONTROL Attachment 1 31Q Time 1140. Time ls293 32Q Time 1140. Time ls277 33Q Time 770. Time ls355 34Q Time 770. Time ls339 35Q Time 1385. Time ls291 36Q Time 1385. Time ls275 37Q Time 770. Time ls353 38Q Time 770. Time ls337 39Q Time 1385. Time ls289 40Q Time 1385. Time ls273 41Q Time 9500. Time 3 42Q Time 9500. Time 3 43Q Time 7600. Time 3 44Q Time 7600. Time 3 45Q Time 2000. Time 6 ) Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vol Pressure Temp. Temp. Humidity Volume Comp. # (psi a) (F) F (%) Fract. Fract. def 14.7 81. 81. 20. 0. 0. ls 14.7 75. 75. 20. 0. 0. 2s 14.7 81. 81. 20. 0. 0. Initial Volume Fractions Vol Air Liq # Gas 1 Gas 2 Gas 3 Gas 4 Gas 5 Gas 6 Gas 7 Comp def 1. 0. 0. 0. b. 0. 0. 0. ls 1. 0. 0. 0. 0. .o. 0. 0. 2s 1. 0. 0. 0. 0. 0. 0. 0. Noncondensing Gases CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 115 of 303 | * Option (Btu/s) Time Time 3S.92S Time Time Time Time o. Time Time Time Time j Time *,Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Heat Rate Disch FF Vol 6 3 ls368 ls3S2 ls304 ls288 ls366 ls3SO ls302 ls286 ls364 ls348 ls300 ls284 ls362 ls346 ls298 ls282 ls329 ls297 ls281 ls327 ls29S ls360 ls344 ls326 ls294 ls279 ls3S7 ls341 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 114 of 303 ENERCON CALCULATION CONTROL Attachment 1 31Q Time 1140. Time ls293 32Q Time 1140. Time ls277 33Q Time 770. Time ls355 34Q Time 770. Time ls339 35Q Time 1385. Time ls291 36Q Time 1385. Time ls275 37Q Time 770. Time ls353 38Q Time 770. Time ls337 39Q Time 1385. Time ls289 40Q Time 1385. Time ls273 41Q Time 9500. Time 3 42Q Time 9500. Time 3 43Q Time 7600. Time 3 44Q Time 7600. Time 3 45Q Time 2000. Time 6 ) Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vol Pressure Temp. Temp. Humidity Volume Comp. # (psi a) (F) F (%) Fract. Fract. def 14.7 81. 81. 20. 0. 0. ls 14.7 75. 75. 20. 0. 0. 2s 14.7 81. 81. 20. 0. 0. Initial Volume Fractions Vol Air Liq # Gas 1 Gas 2 Gas 3 Gas 4 Gas 5 Gas 6 Gas 7 Comp def 1. 0. 0. 0. b. 0. 0. 0. ls 1. 0. 0. 0. 0. .o. 0. 0. 2s 1. 0. 0. 0. 0. 0. 0. 0. Noncondensing Gases CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 115 of 303 | ||
* Gas Description Symbol Type Mol. Lennard-Jones Parameters No. Weight Diameter e/K (Ang) (K) 1 Air Air POLY 28.97 3.617 97. Noncondensing Gases -Cp/Visc. | |||
Equations Gas Cp Equation (Required) | |||
Vise. Equation (Optional) | |||
No. Tmin Tmax Cp Tmin Tmax Viscosity (R) (R) (Btu/lbm-R) | |||
(R) (R) (lbm/ft-hr) 1 360. 2880. 0.238534-6.2006 Materials Type # Description 1 Steel 2 3 4 5 Concrete air Gypsum Board Hardboard Material Type 1 Steel Temp. | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.:<<:ellenct-frNyptoJ<<tfvl!rJdW Attachment 1 PAGE NO. 158 of 303 198 Temv cVlsl98 1. 199 Temv cVlsl99 1. 200 Temv cVls200 1. 201 Temv cVls201 1. 202 Tem\r cVls202 1. 203 Temv cVls203 1. 204 Temv cVls204 1. 205 Temv cVls205 1. 206 Temv cVls206 1. 207 Temv cVls207 1. 208 Temv cVls208 1. 209 Temv cVls209 1. 210 Temv cVls210 1. 211 Temv cVls211 1. 212 Temv cVls212 1. 213 Temv cVls213 1. 214 Temv cVls214 1. 215 Temv cVls215 1. 216 Temv cVls216 1. 217 Temv cVls217 1. 2l8 Temv cVls218 1. 219 Temv cVls219 1. 220 Temv cVls220 1. 221 Temv cVls221 1. 222 Temv cVls222 1. 223 Temv cVls223 | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.:<<:ellenct-frNyptoJ<<tfvl!rJdW Attachment 1 PAGE NO. 158 of 303 198 Temv cVlsl98 1. 199 Temv cVlsl99 1. 200 Temv cVls200 1. 201 Temv cVls201 1. 202 Tem\r cVls202 1. 203 Temv cVls203 1. 204 Temv cVls204 1. 205 Temv cVls205 1. 206 Temv cVls206 1. 207 Temv cVls207 1. 208 Temv cVls208 1. 209 Temv cVls209 1. 210 Temv cVls210 1. 211 Temv cVls211 1. 212 Temv cVls212 1. 213 Temv cVls213 1. 214 Temv cVls214 1. 215 Temv cVls215 1. 216 Temv cVls216 1. 217 Temv cVls217 1. 2l8 Temv cVls218 1. 219 Temv cVls219 1. 220 Temv cVls220 1. 221 Temv cVls221 1. 222 Temv cVls222 1. 223 Temv cVls223 | ||
* 1. 224 Temv cVls224 1. 225 Temv cVls225 1. 226 Temv cVls226 1. 227 Temv I cVls227 1. 228 Temv c.Vls228 1. 229 Temv cVls229 1. 230 Temv cVls230 1. 231 Temv cVls231 1. 232 Temv cVls232 1. 233 Temv cVls233 1. 234 Temv cVls234 1. 235 Temv cVls235 1. 236 Temv cVls236 1. 237 Temv cVls237 1. 238 Temv cVls238 1. 239 Temv cVls239 1. 240 Temv cVls240 1. 241 Temv cVls241 1. 242 Temv cVls242 1. 243 Temv cVls243 1. 244 Temv cVls244 1. 245 Temv cVls245 1. 246 Temv cVls246 1. 247 Temv cVls247 1. 248 Temv cVls248 1. 249 Temv cVls249 1. 250 Temv cVls250 1. 251 Temv cVls251 1. 252 Temv cVls252 1. '253 Temv cVls253 1. 254 Temv cVls254 1. 255 Temv cVls255 1. 256 Temv cVls256 1. | * 1. 224 Temv cVls224 1. 225 Temv cVls225 1. 226 Temv cVls226 1. 227 Temv I cVls227 1. 228 Temv c.Vls228 | ||
E.NERCON Function Components Control Variable 2C Low MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv ) 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv 36 Temv 37 Temv 38 Temv 39 Temv 40 Temv 41 Temv 42 Temv 43 Temv 44 Temv 45 Temv 46 Temv 47 Temv 48 Temv 49 Temv 50 Temv 51 Temv 52 Temv 53 Temv CALCULATION CONTROL Attachment 1 Variable Coef. location a cVlsl 1. cVls2 1. cVls3 1. cVls4 1. cVls5 1. cVls6 1. cVls7 1. cVls8 1. cVls9 1. cVlslO 1. cVlsll 1. cVls12 1. cVls13 1. cVls14 1. cVls15 1. cVls16 1. cVls17 1. cVls18 1. cVls19 1. cVls20 1. cv1s21 1. cVls22 1. cVls23 1. cVls24 L cVls25 1. cVls26 1. cVls27 1. cVls28 1. cVls29 1. cVls30 1. cVls31 1. cVls32 1. cVls33 1. cVls34 1. cVls35 1. cVls36 1. cVls37 1. cVls38 1. cVls39 1. cVls40 1. cVls41 1. cVls42 1. cVls43 1. cVls44 1. cVls45 1. cVls46 1. cVls47 1. cVls48 1. cVls49 1. cVls50 1. cVls51 1. cVls52 1. cVls53 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 159 of 303 CALC. NO. ENTR-078-CALC-004 N R ON CALCULATION CONTROL SHEET-REV. 0 f'l't?tyday. Attachment 1 PAGE NO. 160 of 303 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 ;L. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 \ 1. 63 Temv cVls63 1. / 64 Temv cVls64 '1. 65 Temv cVls65 1. 66 Temv cVls66 1. \ 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 Temv cVls76 1. 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 8.0 TEimv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 'remv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86 Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv .cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv -cVlslOO 1. 101 Temv cVlslOl 1. 102 Temv cVlsl02 1. 103 Temv cVlsl03 1. 104 Temv cVlsl04 1. 105 Temv cVlsl05 1. 106 Temv cVls106 1. 107 Temv cVlsl'07 1. 108 Temv cVlsl08 1. 109 Temv cVlsl09 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cVlsll2 1. 113 Temv cVlsll3 1. | : 1. 229 Temv cVls229 1. 230 Temv cVls230 1. 231 Temv cVls231 1. 232 Temv cVls232 1. 233 Temv cVls233 1. 234 Temv cVls234 1. 235 Temv cVls235 1. 236 Temv cVls236 1. 237 Temv cVls237 1. 238 Temv cVls238 1. 239 Temv cVls239 1. 240 Temv cVls240 1. 241 Temv cVls241 1. 242 Temv cVls242 1. 243 Temv cVls243 1. 244 Temv cVls244 1. 245 Temv cVls245 1. 246 Temv cVls246 1. 247 Temv cVls247 1. 248 Temv cVls248 1. 249 Temv cVls249 1. 250 Temv cVls250 1. 251 Temv cVls251 1. 252 Temv cVls252 1. '253 Temv cVls253 1. 254 Temv cVls254 1. 255 Temv cVls255 1. 256 Temv cVls256 1. | ||
ENERCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 127 Temv 128 Temv Function Components Control Variable 3C Middle MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv *24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Tel)IV 36 Temv 37 Temv CALCULATION CONTROL Attachment 1 cVlsl14 1. cVlsl15 1. cVlsl16 1.' cVlsl17 1. cVlsll8 1. cVlsl19 1. cVlsl20 1. cVlsl21 1. cVlsl22 1. cVlsl23 1. cVlsl24 1. cVlsl25 1. cVlsl26 1. cVls127 1. cVlsl28 1. Variable Coef. location a cVlsl29 1. cVls130 1. cVls131 1. cVlsl32 1. cVlsl33 1. cVlsl34 1. cVlsl35 1. cVlsl36 1. cVlsl38 1. cVlsl37 1. cVlsl39 1. cVls141 1. cVlsl40 1. cVlsl43 1. cVlsl42 1. cVl§l44 1. cVls145 1. cVlsl46 .1. cVlsJ:47 1. cVlsl48 1. cVlsl49 1. cVlsl50 1. cVlsl51 1. cVlsl52 1. cVlsl53 1. cVls154 1. cVlsl55 1. cVls156 1. cVls157 1. cVls158 1. cVlsl59 1. cVlsl60 1. cVlsl61 1. cVls162 1. cVlsl63 1. cVlsl64 1. cVlsl65 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 161 of 303 / '\ | E.NERCON Function Components Control Variable 2C Low MCR Avg sum Y=G*(aO+a1Xl+a2X2+ | ||
... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv ) 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv 36 Temv 37 Temv 38 Temv 39 Temv 40 Temv 41 Temv 42 Temv 43 Temv 44 Temv 45 Temv 46 Temv 47 Temv 48 Temv 49 Temv 50 Temv 51 Temv 52 Temv 53 Temv CALCULATION CONTROL Attachment 1 Variable Coef. location a cVlsl 1. cVls2 1. cVls3 1. cVls4 1. cVls5 1. cVls6 1. cVls7 1. cVls8 1. cVls9 1. cVlslO 1. cVlsll 1. cVls12 1. cVls13 1. cVls14 1. cVls15 1. cVls16 1. cVls17 1. cVls18 1. cVls19 1. cVls20 1. cv1s21 1. cVls22 1. cVls23 1. cVls24 L cVls25 1. cVls26 1. cVls27 1. cVls28 1. cVls29 1. cVls30 1. cVls31 1. cVls32 1. cVls33 1. cVls34 1. cVls35 1. cVls36 1. cVls37 1. cVls38 1. cVls39 1. cVls40 1. cVls41 1. cVls42 1. cVls43 1. cVls44 1. cVls45 1. cVls46 1. cVls47 1. cVls48 1. cVls49 1. cVls50 1. cVls51 1. cVls52 1. cVls53 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 159 of 303 CALC. NO. ENTR-078-CALC-004 N R ON CALCULATION CONTROL SHEET-REV. 0 f'l't?tyday. | |||
Attachment 1 PAGE NO. 160 of 303 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 ;L. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 \ 1. 63 Temv cVls63 1. / 64 Temv cVls64 '1. 65 Temv cVls65 1. 66 Temv cVls66 1. \ 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 Temv cVls76 1. 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 8.0 TEimv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 'remv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86 Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv .cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv -cVlslOO | |||
: 1. 101 Temv cVlslOl 1. 102 Temv cVlsl02 1. 103 Temv cVlsl03 1. 104 Temv cVlsl04 1. 105 Temv cVlsl05 1. 106 Temv cVls106 1. 107 Temv cVlsl'07 | |||
: 1. 108 Temv cVlsl08 1. 109 Temv cVlsl09 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cVlsll2 1. 113 Temv cVlsll3 1. | |||
ENERCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 127 Temv 128 Temv Function Components Control Variable 3C Middle MCR Avg sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv *24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Tel)IV 36 Temv 37 Temv CALCULATION CONTROL Attachment 1 cVlsl14 1. cVlsl15 1. cVlsl16 1.' cVlsl17 1. cVlsll8 1. cVlsl19 1. cVlsl20 1. cVlsl21 1. cVlsl22 1. cVlsl23 1. cVlsl24 1. cVlsl25 1. cVlsl26 1. cVls127 1. cVlsl28 1. Variable Coef. location a cVlsl29 1. cVls130 1. cVls131 1. cVlsl32 1. cVlsl33 1. cVlsl34 1. cVlsl35 1. cVlsl36 1. cVlsl38 1. cVlsl37 1. cVlsl39 1. cVls141 1. cVlsl40 1. cVlsl43 1. cVlsl42 1. cVl§l44 1. cVls145 1. cVlsl46 .1. cVlsJ:47 | |||
: 1. cVlsl48 1. cVlsl49 1. cVlsl50 1. cVlsl51 1. cVlsl52 1. cVlsl53 1. cVls154 1. cVlsl55 1. cVls156 1. cVls157 1. cVls158 1. cVlsl59 1. cVlsl60 1. cVlsl61 1. cVls162 1. cVlsl63 1. cVlsl64 1. cVlsl65 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 161 of 303 / '\ | |||
CALC. NO. ENTR-078-CALC-004 NER.CON CALCULATION CONTROL SHEET-REV.O f:vtrydr;y. | CALC. NO. ENTR-078-CALC-004 NER.CON CALCULATION CONTROL SHEET-REV.O f:vtrydr;y. | ||
* Attachment 1 PAGE NO. 162 of 303 38 Temv cVls166 1. 39 Temv cVls167 1. 40 Temv cVls168 1. 41 Temv cVls169 1. 42 Temv cVls170 1. 43 Temv cVls171 1. 44 Temv cVls172 1. 45 Temv cVls173 1. 46 Temv cVls174 1. 47 Temv cVlsl75 1. 48 Temv cVls176 1. 49 Temv cVls177 1. 50 Temv cVls178 1. 51 Temv cVlsl79 1. 52 Temv cV:\.sl80 1. 53 Temv cVls181 1. 54 Temv cVls182 1. 55 Temv cVls183 1. 56 Temv cVls184 1. 57 Temv cVls185 1. 58 Temv cVls186 1. 59 Temv cVls187 1. 60 Temv cVls188 1. 61 Temv cVls189 1. 62 Temv cVls190 1. 63 Temv cVls191 1. 64 Temv cVls192 1. L 65 Temv cVls193 1. 66 Temv CV1s194 1. 67 Temv cVls195 1. 68 Temv cVls196 1. 69 Temv cVls199 1. 70 Temv cVls197 1. 71 Temv cVls198 1. 72 Teniv cVls200 1. 73 Temv .cVls201 1. 74 Temv cVls202 1. 75 Temv cVls203 1. 76 Temv cVls204 1. 77 Temv c'irls205 1. 78 Temv cVls206 1. 79 Temv cVls207 1. 80 Temv cVls208 1. 81 Temv cVls209 1. 82 Temv cVls210 1. 83 Temv cVls211 1. 84 Temv cVls212 1. 85 Temv cVls213 1. 86 Temv cVls214 1. 87 Temv cVls215 1. 88 Temv cVls216 1. 89 Temv cVls217 1. 90 Temv cVls218 1. 91 Temv cVls219 1. 92 Temv cVls220 1. 93 Temv cVls221 1: 94 Temv cVls222 1. 95 Temv cVls223 1. 96 Temv cVls224 1. 97 Temv cVls225 1. | * Attachment 1 PAGE NO. 162 of 303 38 Temv cVls166 1. 39 Temv cVls167 1. 40 Temv cVls168 1. 41 Temv cVls169 1. 42 Temv cVls170 1. 43 Temv cVls171 1. 44 Temv cVls172 1. 45 Temv cVls173 1. 46 Temv cVls174 1. 47 Temv cVlsl75 1. 48 Temv cVls176 1. 49 Temv cVls177 1. 50 Temv cVls178 1. 51 Temv cVlsl79 1. 52 Temv cV:\.sl80 | ||
ENER,CON CALCULATION CONTROL SHEET-fxrel!e!U;e-E<etyp!O}<<:l f.vwy 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 4C LMCR Average sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) cVls226 cVls227 cVls228 cVls229 cVls230 cVls231 cVls233 cVls232 cVls236 cVls234 cVls235 cVls237 cVls239 cVls238 cVls240 cVls241 cVls242 cVls243 cVls244 cVls245 cVls246 cVls247 cVls248 cVls249 cVls250 cVls252 cVls251 cVls253 cVls255 cVls254 cVls256 Gothic s Variable # 1 2 Name Cvval(O) Cvval(O) Function Components Control Variable SC Stream 4 Temp sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) location cv3C cv2C Gothic s Variable # 1 Name Temv Function Components Control Variable 6C HVC-ACUl Exhaust sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) location cV6 Gothic_s Variable # 1 Name Temv location cV3 Attachment 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 53 Temv cVls181 1. 54 Temv cVls182 1. 55 Temv cVls183 1. 56 Temv cVls184 1. 57 Temv cVls185 1. 58 Temv cVls186 1. 59 Temv cVls187 1. 60 Temv cVls188 1. 61 Temv cVls189 1. 62 Temv cVls190 1. 63 Temv cVls191 1. 64 Temv cVls192 1. L 65 Temv cVls193 1. 66 Temv CV1s194 1. 67 Temv cVls195 1. 68 Temv cVls196 1. 69 Temv cVls199 1. 70 Temv cVls197 1. 71 Temv cVls198 1. 72 Teniv cVls200 1. 73 Temv .cVls201 | ||
: 1. 74 Temv cVls202 1. 75 Temv cVls203 1. 76 Temv cVls204 1. 77 Temv c'irls205 | |||
: 1. 78 Temv cVls206 1. 79 Temv cVls207 1. 80 Temv cVls208 1. 81 Temv cVls209 1. 82 Temv cVls210 1. 83 Temv cVls211 1. 84 Temv cVls212 1. 85 Temv cVls213 1. 86 Temv cVls214 1. 87 Temv cVls215 1. 88 Temv cVls216 1. 89 Temv cVls217 1. 90 Temv cVls218 1. 91 Temv cVls219 1. 92 Temv cVls220 1. 93 Temv cVls221 1: 94 Temv cVls222 1. 95 Temv cVls223 1. 96 Temv cVls224 1. 97 Temv cVls225 1. | |||
ENER,CON CALCULATION CONTROL SHEET-fxrel!e!U;e-E<etyp!O}<<:l f.vwy 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 4C LMCR Average sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) cVls226 cVls227 cVls228 cVls229 cVls230 cVls231 cVls233 cVls232 cVls236 cVls234 cVls235 cVls237 cVls239 cVls238 cVls240 cVls241 cVls242 cVls243 cVls244 cVls245 cVls246 cVls247 cVls248 cVls249 cVls250 cVls252 cVls251 cVls253 cVls255 cVls254 cVls256 Gothic s Variable | |||
# 1 2 Name Cvval(O) | |||
Cvval(O) | |||
Function Components Control Variable SC Stream 4 Temp sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) location cv3C cv2C Gothic s Variable | |||
# 1 Name Temv Function Components Control Variable 6C HVC-ACUl Exhaust sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) location cV6 Gothic_s Variable | |||
# 1 Name Temv location cV3 Attachment 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 0.867 Coef. a 1. Coef. a 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 163 of 303 ENERCON Function Components Control Variable 7C Overall Max max CALCUl-ATION CONTROL Attachment 1 Y=G*max(a0,a1Xl,a2X2, ... ,anXn) Gothic s Variable Coef. # Name location a 1 Cvval(O) cvlC 1. 2 Temv cVls257 1. 3 Temv cVls258 1. 4 Temv cVls259 1. 5 Temv cVls260 1. 6 Temv cVls261 1. 7 Temv cVls262 1. 8 Temv cVls263 1. 9 Temv 1 cVls264 1. 10 Temv cVls265 1. 11 Temv cVls266 1. 12 1Temv cVls267 1. 13 Temv cVls268 1. 14 Temv cVls269 1. 15 Temv cVls270 1. 16 Temv cVls271 1. 17 Temv cVls272 1. 18 Temv cVls273 1. 19 Temv cVls274 1. 20 Temv cVls275 1. 21 Temv cVls276 1. 22 Temv cVls277 1. 23 Temv cVls278 1. 24 Temv cVls280 1. 25 Temv cVls279 1. 26 Temv cVls281 1. 27 Temv cVls282 1. 28 Temv cVls284 1. 29 Temv cVls283 1. 30 Temv cVls286 1. 31 Temv cVls285 1. 32 Temv cVls287 h 33 Temv cVls288 1. 34 Temv cVls289 1. 35 Temv cVls290 1. 36 Temv cVls291 1. 37 Temv cVls292 1. 38 Temv cVls293 1. 39 Temv cVls294 1. 40 Temv cVls295 1. 41 Temv cVls296 1. 42 Temv cVls297 1. 43 Temv cVls298 1. 44 Temv cVls299 1. 45 Temv cVls300 1. 46 Temv cVls301 1. 47 Temv cVls302 1. 48 Temv cVls303 1. 49 Temv cVls304 1. 50 Temv cVls305 1. 51 Temv cVls306 1. 52 Temv cVls307 1. 53 Temv cVls308 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 164 of 303 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV.O f.'l!Hjti¢t. Attachment 1 PAGE NO. 165 of 303-54 Temv cVls309 1. 55 Temv cVls310 1. 56 Temv cVls311 1. 57 Temv cVls312 1. 58 Temv cVls313 1. 59 Temv cVls314 1. 60 Temv cVls315 1. 61 Temv cVls316 1. 62 Temv cVls317 1. 63 Temv cVls318 1. 64 Temv cVls319 1. 65 Temv cVls320 1. 66 Temv cVls321 1. 67 Temv cVls322 1. 68 Temv cVls323 1. 69 Temv cVls324 1. 70 Temv cVls325 1. 71 Temv cVls326 1. 72 Temv cVls327 1. 73 Temv cVls328 1. 74 Temv cVls329 1. ,75 Temv cVls330 1. 76 Temv cVls331 1. 77 Temv cVls332 1. 78 Temv cVls333 1. 79 Temv cVls334 1. 80 Temv cVls335 1. 81 .Temv cVls336 1. 82 Temv cVls337 1. 83 Temv cVls338 1. 84 Temv cVls339 1: 85 Temv cVls340 1. 86 Temv cVls341 1. 87 Temv cVls342 1. 88 Temv cVls343 1. 89 Temv cVls344 1. 90 Temv cVls345 1. 91 Temv cVls346 1. 92 Temv cVls347 1. 93 Temv cVls348 1. 94 Temv cVls349 1. 95 Temv cVls350 1. 96 Temv cVls351 1. 97 Temv cVls352 1. 98 Temv cVls353 1. 99 Temv cVls354 1. 100 Temv cVls355 1. 101 Temv cVls356 1. 102 r Temv cVls357 1. 103 Temv cVls358 1. 104 Temv cVls359 1. 105 Temv cVls360 1. 106 Temv cVls361 1. 107 Temv cVls362 1. 108 Temv cVls363 1. 109 Temv cVls364 1. 110 Temv -cVls365 1. 111 Temv cVls366 1. 112 Temv cVls367 1. 113 Temv cVls368 1. | : 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 0.867 Coef. a 1. Coef. a 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 163 of 303 ENERCON Function Components Control Variable 7C Overall Max max CALCUl-ATION CONTROL Attachment 1 Y=G*max(a0,a1Xl,a2X2, | ||
EN RCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv 129 Temv Function Components Control Variable 8C Top MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv: 36 Temv CALCULATION CONTROL Attachment 1 cVls369 1. cVls370 | ... ,anXn) Gothic s Variable Coef. # Name location a 1 Cvval(O) cvlC 1. 2 Temv cVls257 1. 3 Temv cVls258 1. 4 Temv cVls259 1. 5 Temv cVls260 1. 6 Temv cVls261 1. 7 Temv cVls262 1. 8 Temv cVls263 1. 9 Temv 1 cVls264 1. 10 Temv cVls265 1. 11 Temv cVls266 1. 12 1Temv cVls267 1. 13 Temv cVls268 1. 14 Temv cVls269 1. 15 Temv cVls270 1. 16 Temv cVls271 1. 17 Temv cVls272 1. 18 Temv cVls273 1. 19 Temv cVls274 1. 20 Temv cVls275 1. 21 Temv cVls276 1. 22 Temv cVls277 1. 23 Temv cVls278 1. 24 Temv cVls280 1. 25 Temv cVls279 1. 26 Temv cVls281 1. 27 Temv cVls282 1. 28 Temv cVls284 1. 29 Temv cVls283 1. 30 Temv cVls286 1. 31 Temv cVls285 1. 32 Temv cVls287 h 33 Temv cVls288 1. 34 Temv cVls289 1. 35 Temv cVls290 1. 36 Temv cVls291 1. 37 Temv cVls292 1. 38 Temv cVls293 1. 39 Temv cVls294 1. 40 Temv cVls295 1. 41 Temv cVls296 1. 42 Temv cVls297 1. 43 Temv cVls298 1. 44 Temv cVls299 1. 45 Temv cVls300 1. 46 Temv cVls301 1. 47 Temv cVls302 1. 48 Temv cVls303 1. 49 Temv cVls304 1. 50 Temv cVls305 1. 51 Temv cVls306 1. 52 Temv cVls307 1. 53 Temv cVls308 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 164 of 303 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV.O f.'l!Hjti¢t. | ||
* 1. cVls371 1. cVls373 1. cVls372 1. cVls375 1. cVls376 1. cVls377 1. '] cVls378 1. cVls379 1. cVls380 1. cVls381 1. cVls382 1. cVls383 1. cVls384 1. cVls374 1. Variable Coef. location a cVls257 1. cVls258 1. cVls259 1. cVls260 1. cVls261 1. cVls262 1. cVls263 1. cVls264 1. cVls265 1. cVls266 1. cVls267 1. cVls268 1. cVls269 1. cVls270 1. cVls271 1. cVls272 1. cVls273 1. cVls274 1. cVls275 1. cVls276 1. cVls277 1. cVls278 1. cVls279 1. cVls280 1. cVls281 1. cVls282 1. cVls283 1. cVls284 1. cVls285 1. cVls286 1. cVls287 1. cVls288 1. cVls289 1. \ cVls290 1. cVls291 1. cVls292 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 166 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptv_j(k,"t. f.wr:; day. Attachment 1 PAGE NO. 167 of 303 37 Temv cVls293 1. 38 Temv cVls294 1. 39 Temv cVls295 1. 40 Temv cVls296 1. 41 Temv cVls297 1. 42 Temv cVls298 1. 43 Temv cVls299 1. 44 Temv cVls300 1. 45 Temv cVls301 1. 46 Temv cVls302 1. 47 Temv cVls303 1. 48 Temv cVls304 1. 49 Temv \ cVls305 1. 50 Temv cVls306 1. 51 Temv cVls307 1. 52 Temv cVls308 1. 53 Temv cVls309 1. 54 Temv cVls310 1. 55 Temv cVls311 1. 56 Temv cVls312 1. 57 Temv cVls313 1. 58 Temv cVls314 1. 59 Temv cVls315 1. 60 Temv cVls316 1. 61 Temv cVls317 1. 62 Temv cVls318 1. 63 Temv cVls319 1. 64 Temv cVls320 1. 65 Temv cVls321 1. 66 Temv cVls322 1. 67 Temv cVls323 1. 68 Temv cVls324 1. 69 Temv cVls325 1. 70 Temv cVls326 1. 71 Temv cVls327 1. 72 Temv cVls328 1. 73 Temv cVls329 1. 74 Temv cVls330 1. 75 Temv cVls331 1. 76 Temv cVls332 1. 77 Temv cVls333 1. 78 Temv cVls334 1. 79 Temv cVls335 1. 80 Temv cVls336 1. 81 Temv cVls337 1. 82 Temv cv1-s338 1. 83 Temv cVls339 1. 84 Temv cVls340 1. 85 Temv cVls341 1. 86 Temv cVls342 1. 87 Temv cVls343 1. 88 Temv cVls344 1. 89 Temv cVls345 1. 90 Temv cVls346 1. 91 Temv cVls348 1. I 92 Temv cVls347 1. 93 Temv cVls349 1. 94 Temv cVls351 1. 95 Temv cVls350 1. 96 Temv cVls352 1. | Attachment 1 PAGE NO. 165 of 303-54 Temv cVls309 1. 55 Temv cVls310 1. 56 Temv cVls311 1. 57 Temv cVls312 1. 58 Temv cVls313 1. 59 Temv cVls314 1. 60 Temv cVls315 1. 61 Temv cVls316 1. 62 Temv cVls317 1. 63 Temv cVls318 1. 64 Temv cVls319 1. 65 Temv cVls320 1. 66 Temv cVls321 1. 67 Temv cVls322 1. 68 Temv cVls323 1. 69 Temv cVls324 1. 70 Temv cVls325 1. 71 Temv cVls326 1. 72 Temv cVls327 1. 73 Temv cVls328 1. 74 Temv cVls329 1. ,75 Temv cVls330 1. 76 Temv cVls331 1. 77 Temv cVls332 1. 78 Temv cVls333 1. 79 Temv cVls334 1. 80 Temv cVls335 1. 81 .Temv cVls336 1. 82 Temv cVls337 1. 83 Temv cVls338 1. 84 Temv cVls339 1: 85 Temv cVls340 1. 86 Temv cVls341 1. 87 Temv cVls342 1. 88 Temv cVls343 1. 89 Temv cVls344 1. 90 Temv cVls345 1. 91 Temv cVls346 1. 92 Temv cVls347 1. 93 Temv cVls348 1. 94 Temv cVls349 1. 95 Temv cVls350 1. 96 Temv cVls351 1. 97 Temv cVls352 1. 98 Temv cVls353 1. 99 Temv cVls354 1. 100 Temv cVls355 1. 101 Temv cVls356 1. 102 r Temv cVls357 1. 103 Temv cVls358 1. 104 Temv cVls359 1. 105 Temv cVls360 1. 106 Temv cVls361 1. 107 Temv cVls362 1. 108 Temv cVls363 1. 109 Temv cVls364 1. 110 Temv -cVls365 | ||
NER ON CALCULATION CONTROL Attachment 1 97 Temv 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 9C Total MCR Avg s.um cVls353 cVls354 cVls355 cVls356 cVls357 cVls358 cVls359 cVls360 cVls361 cVls362 cVls363 cVls364 cVls365 cVls366 cVls367 cVls368 cVls369 cVls370 cVls371 cVls372 cVls373 cVls374 *cvls375 cvis376 cVls377 cVls378 cVls379 cVls380 cVls381 cVls382 cVls383 cVls384 Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s Variable # 1 2 Time Time Dom 1 2 3 Name Cvval(O) cvyal(O) Domain Data DT DT Min Max 0.001 1. 0.001 10. 0.001 10. Solution Options DT Ratio le+006 1. 1. location cv8C cv4C End Print Time Int 0.01 0.01 10000. 500. 86400. 500. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 111 Temv cVls366 1. 112 Temv cVls367 1. 113 Temv cVls368 1. | ||
EN RCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv 129 Temv Function Components Control Variable 8C Top MCR Avg sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv: 36 Temv CALCULATION CONTROL Attachment 1 cVls369 1. cVls370 | |||
* 1. cVls371 1. cVls373 1. cVls372 1. cVls375 1. cVls376 1. cVls377 1. '] cVls378 1. cVls379 1. cVls380 1. cVls381 1. cVls382 1. cVls383 1. cVls384 1. cVls374 1. Variable Coef. location a cVls257 1. cVls258 1. cVls259 1. cVls260 1. cVls261 1. cVls262 1. cVls263 1. cVls264 1. cVls265 1. cVls266 1. cVls267 1. cVls268 1. cVls269 1. cVls270 1. cVls271 1. cVls272 1. cVls273 1. cVls274 1. cVls275 1. cVls276 1. cVls277 1. cVls278 1. cVls279 1. cVls280 1. cVls281 1. cVls282 1. cVls283 1. cVls284 1. cVls285 1. cVls286 1. cVls287 1. cVls288 1. cVls289 1. \ cVls290 1. cVls291 1. cVls292 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 166 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptv_j(k,"t. | |||
f.wr:; day. Attachment 1 PAGE NO. 167 of 303 37 Temv cVls293 1. 38 Temv cVls294 1. 39 Temv cVls295 1. 40 Temv cVls296 1. 41 Temv cVls297 1. 42 Temv cVls298 1. 43 Temv cVls299 1. 44 Temv cVls300 1. 45 Temv cVls301 1. 46 Temv cVls302 1. 47 Temv cVls303 1. 48 Temv cVls304 1. 49 Temv \ cVls305 1. 50 Temv cVls306 1. 51 Temv cVls307 1. 52 Temv cVls308 1. 53 Temv cVls309 1. 54 Temv cVls310 1. 55 Temv cVls311 1. 56 Temv cVls312 1. 57 Temv cVls313 1. 58 Temv cVls314 1. 59 Temv cVls315 1. 60 Temv cVls316 1. 61 Temv cVls317 1. 62 Temv cVls318 1. 63 Temv cVls319 1. 64 Temv cVls320 1. 65 Temv cVls321 1. 66 Temv cVls322 1. 67 Temv cVls323 1. 68 Temv cVls324 1. 69 Temv cVls325 1. 70 Temv cVls326 1. 71 Temv cVls327 1. 72 Temv cVls328 1. 73 Temv cVls329 1. 74 Temv cVls330 1. 75 Temv cVls331 1. 76 Temv cVls332 1. 77 Temv cVls333 1. 78 Temv cVls334 1. 79 Temv cVls335 1. 80 Temv cVls336 1. 81 Temv cVls337 1. 82 Temv cv1-s338 | |||
: 1. 83 Temv cVls339 1. 84 Temv cVls340 1. 85 Temv cVls341 1. 86 Temv cVls342 1. 87 Temv cVls343 1. 88 Temv cVls344 1. 89 Temv cVls345 1. 90 Temv cVls346 1. 91 Temv cVls348 1. I 92 Temv cVls347 1. 93 Temv cVls349 1. 94 Temv cVls351 1. 95 Temv cVls350 1. 96 Temv cVls352 1. | |||
NER ON CALCULATION CONTROL Attachment 1 97 Temv 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 9C Total MCR Avg s.um cVls353 cVls354 cVls355 cVls356 cVls357 cVls358 cVls359 cVls360 cVls361 cVls362 cVls363 cVls364 cVls365 cVls366 cVls367 cVls368 cVls369 cVls370 cVls371 cVls372 cVls373 cVls374 *cvls375 cvis376 cVls377 cVls378 cVls379 cVls380 cVls381 cVls382 cVls383 cVls384 Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) Gothic s Variable | |||
# 1 2 Time Time Dom 1 2 3 Name Cvval(O) cvyal(O) | |||
Domain Data DT DT Min Max 0.001 1. 0.001 10. 0.001 10. Solution Options DT Ratio le+006 1. 1. location cv8C cv4C End Print Time Int 0.01 0.01 10000. 500. 86400. 500. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 4.65949 Graph Int 1. 10. 100. Gas Error Relax T DEFAULT DEFAULT DEFAULT Time Solution Imp Conv Imp Iter Pres Sol Pres Conv Pres Dom Method 1 SEMI-IMP 2 SEMI-IMP 3 SEMI-IMP Run Options Option Start Time Limit 0. 0. 0. Limit 1 1 1 Method DIRECT DIRECT DIRECT Setting 0.0 Limit Limit 0. 1 0. 1 0. 1 Dump Int 0. 0. 0. Iter CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 168 of 303 Ph Chng L Flow T Scale Shutoff . DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Differ Burn Scheme Sharp FOUP 0. FOUP 0. FOUP 0. | : 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 4.65949 Graph Int 1. 10. 100. Gas Error Relax T DEFAULT DEFAULT DEFAULT Time Solution Imp Conv Imp Iter Pres Sol Pres Conv Pres Dom Method 1 SEMI-IMP 2 SEMI-IMP 3 SEMI-IMP Run Options Option Start Time Limit 0. 0. 0. Limit 1 1 1 Method DIRECT DIRECT DIRECT Setting 0.0 Limit Limit 0. 1 0. 1 0. 1 Dump Int 0. 0. 0. Iter CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 168 of 303 Ph Chng L Flow T Scale Shutoff . DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Differ Burn Scheme Sharp FOUP 0. FOUP 0. FOUP 0. | ||
ENERCON CALCULATION CONTROL Attachment 1 Restart Time Step # Restart Time Control 0 NEW Revaporization 'Fraction DEFAULT Fog Model OFF Maximum Mist Density (lbm/ft3) DEFAULT Drop Diam. From Mist (in) DEFAULT Minimum HT Coeff. (B/h-ft2-F) 0.0 Reference Pressure (psia) IGNORE Maximum Pressure (psia) DEFAULT Forced Ent. Drop Diam. (in) DEFAULT Vapor Phase Head Correction INCLUDE Kinetic Energy IGNORE Vapor Phase INCLUDE Liquid Phase INCLUDE Drop Phase INCLUDE Force Equilibrium IGNORE Drop-Liq. Conversion INCLUDE QA Logging OFF Debug Output Level 0 Restart Dump on CPU Interval (sec) 3600. Version 6.1 Formulations OFF Graphs Graph Curve Number # Title M&E Imbalance Peak and Averag Mon 1 EM 2 3 4 EE cvlC cv7C cv9C RHls71 FV4 FVl 5 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 169 of 303 0 1 2 3 4 5 6 7 TVls257 TVls274 TVls296 TVls312 TVls328 Envelope Sets Set No. Description Data Files File # 1 Name Results.txt Type TIME FV51 FV52 FV53 FV54 FV55 FV56 TAls2 FV57 TAls3 Set Type polate YES FV80 FV81 FV58 TAls2 TAlsl6 TAlsl8 No. Items Output Detail Files Level SINGLE FULL CALC. NO. ENTR-078-CALC-004 £xceHM<<-frt:ty f.vrr; ttay. CALCULATION CONTROL Attachment 2 Attachment 2: Humidity Sensitivity REV.O PAGE NO. 170 of 303 The purpose of this attachment is to analyze the Main Control Room temperature and relative humidity setting the initial relative humidity in the MCR volumes to the Environmental Design Criteria (EDC) maximum humidity of 70%. The analysis in the body of the calculation used an initial relative humidity in the MCR volumes set equal to the EDC minimum relative humidity of 20% in order to conservatively maximize the temperature in the MGR. The temperature results are shown below. 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell (oF) (oF) (oF) (oF) Tavg(°F) Temp (°F) 109.6 116.2 109.0 108.6 116.2 (2 hr) 121.8 (2.02 hr) The temperature transient is nearly identical to the transient for Case 2. The figure below shows the relative humidity in subvolume 1s71 located in the horseshoe area of the MGR. The relative humidity is at 70% at the start of the transient and decreases to below 30% before the smoke removal fan is turned on at two hours and *outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes in the outside air relative humidity. 80 70 60 :§ 50 E Relative Humidity in Horseshoe Area *****--*********-***-**--**-*-,-*-********-****-*****--*---****--***--********-*********-,*****************---*-***-***-**-**-****--***--*************-*****,-******-*-***-*****-*-----********-******-*****-*-**-***** ***-*****--*** .. -********** ....... -........... *******-********-**********-****-****-*********** .. 40 , ____________________________________ .... '.':.".". ..... '.'.: .... ::_ .. :. ___ :: _____________ ,_...., ""'""""""""""'"'""' __ 30 r-'-"::Jr __ --------1----------------------l 10 0 5 10 15 20 25 Time (hrs) | ENERCON CALCULATION CONTROL Attachment 1 Restart Time Step # Restart Time Control 0 NEW Revaporization | ||
CALC. NO. ENTR-078-CALC-004 N RCON CALCULATION CONTROL Attachment 3 REV.a PAGE NO. 171 of 303 3: ERIS Panels Heat Load Heat Load Eris Panels The following information is obtained from EC 61975 (Reference 8.36). Heat load for ERIS panels is based on typical values from 3247.850-307-001A. Fo*r ERIS panels that have been recently upgraded and installed after M96-062 is based on typical values from R859-0100 and R859-0118 (Attached on P2E under EC # 38927). H13-Y714E has-a heat load of 0 as per CR-RBS-2014-05797 and ECN 58709. The heat load of ERIS panels is shown on the table below: LOOP Conditions load 132 370.8 0 H13-Y703D 226.8 226.8' 370.8 / 370.8 370.8 370.8 0 0 370.8 370.8 H13cY713A 370.8 132 226.8 / . o. ,_,,.,_,_,,,,_,,.,. .. ,,.,,._, "'""' _.,;,_,,_,,,_,_,_,,_,.,_,,._,,._,._,,.,,,.,,,,,,. ._,__, * --*** ** 226.8 226.8 ................ ; ................................. ,. 226.8 226.8 H13-Y751D H13-P721D Total: ............................................ | 'Fraction DEFAULT Fog Model OFF Maximum Mist Density (lbm/ft3) | ||
CALC. NO. ENTR-078-CALC-004 Attachment 3 ENERCON CALCULATION CONTROL SHEET-REV. o PAGE NO. 172 of 303 The diagram below pictures the heat load distribution (all are above 7.5 feet elevation on MCR except H 13-P721 D which is mounted on the floor) of ERIS panels. Blue color represents 370.8 W (except H13-Y714E which is 0 W), brown color represents 226.8 W, yellow color represents 240 W and red color represents 132 W. * ' The 7461.6 W for normal conditions is a conservative value, and if more margin is needed we could use field measurements with conservatism (which will have a total wattage for normal conditions of 4828.6 W). This is documented on the next pages. ERIS Panels Heat Load Justification Using Field Measurements There is 29 ERIS panels on MCR (EE-027 A Rev. 16), and every panel has a chassis assembly with a 250 watt supply. Before MR96-062, each ERIS panels had a 100 W power supply. There is a 3 A fuse before every current ERIS panel (GE-944E485AA), so the design and completely bounded power of ERIS panels is 115 (the input volts of the documented ERIS panels on 3247 .. 850-307-001A is 115V)*29*3 = 10005 W (Assuming is fully resistive). All the ERIS equipment installed on MR96-062 had either a VMINEQ-250-000 or VMINEQ-250-001. Now, as per E-144 Rev. 7, on attachment L, the maximum inverter loading value for circuit 22 of VBS01 B (there is 7 ERIS top hats (4 VMINEQ-250-001 and 3 VMINEQ-250-000)) is 1208 VA, so 172.57 VA for each ERIS hat panel. On E-143 Rev. 11, the maximum inverter loading value for circuit 21 of VBS01A (there is 6 ERIS top hats (3 VMINEQ-250-001 and 3 VMINEQ-250-000) is 1035 VA, so 172.5 VA for each ERIS hat panel. The circuit 22 of VBS01 B has very slightly more loading for each ERIS hat panel than of the circuit 21 of VBS01A, because field amp measurements for VMINEQ-250-001 | DEFAULT Drop Diam. From Mist (in) DEFAULT Minimum HT Coeff. (B/h-ft2-F) 0.0 Reference Pressure (psia) IGNORE Maximum Pressure (psia) DEFAULT Forced Ent. Drop Diam. (in) DEFAULT Vapor Phase Head Correction INCLUDE Kinetic Energy IGNORE Vapor Phase INCLUDE Liquid Phase INCLUDE Drop Phase INCLUDE Force Equilibrium IGNORE Drop-Liq. | ||
* are just slightly higher. The field ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 3 PAGE NO. 173 of 303 measurements of the ERIS top hats were taken as per as per SAIC-RBS-041 letter (which is find on attachment B of E-226 Add C). The actual measured amperage of a VMINEQ-250-000 was 0.94 A (lower than the typical amps of 2.54 A used to obtain the 9352 Won E-226 Rev. 3 Add C), and the actual measured amperage of a VMINEQ-250-001 was 0.96 A (lower than the typical amps of 4.098 A used to obtain the 9352 W used on E-226 Rev. 3 Add C). The measured apparent power is then 115*0.96=110.4 VA. So the 172.5 VA given per ERIS panel on E-143 Rev. 11,.and the 172.57 VA given per ERIS panel on E-144 Rev. 7 is on the range of 55-60% higher than the measured apparent power values, giving conservatism to the field measurements. There has been recent ERIS upgrades, which has lowered the typical amps in the RIM (Remote Input Module) considerably as now the listed typical amps are 1.1 amps (and probably the actual measured amperage is lower than that). Some of this ERIS equipment was replaced on December of 2014, which is befare timeline where we are assessing risk. As we are assessing risk on early 2015, I am including these modifications on the upcoming calculations of heat load. The first phase of the ERIS upgrade project included panels H13-Y710E and H13-Y711A. These changes are documented on EC# 23837. As documented on 3.1.3.2 of the EC# 23837, a new ERIS network equipment was installed in the MCR, panel H13-P721D, and the change was incorporated on CBD-VBN02, Sh. 003 Rev. 14 (however the change has still not been incorporated on EE-027 A Rev. 16). Breaker# 1 of VBN-PNL02 was retasked to supply power from C91-P609A (It was spared in place and no longer needed) to H13-P721D. This modification resulted in a load reduction of 744 VA at 1VBN-PNL02; however, as we are adding panel by panel, a 240 VA value should be included for H13-P721 Das per R859-0100. On E-184, load supplied by breaker# 10 of 1VBN-PNL01B1 and load supplied by breaker# 20of1VBN-PNL 1A1 were never up9ated (when they should have had) after the ERIS upgrade on M96-062. Consequently, the same 100 VA (when 172.5 | Conversion INCLUDE QA Logging OFF Debug Output Level 0 Restart Dump on CPU Interval (sec) 3600. Version 6.1 Formulations OFF Graphs Graph Curve Number # Title M&E Imbalance Peak and Averag Mon 1 EM 2 3 4 EE cvlC cv7C cv9C RHls71 FV4 FVl 5 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 169 of 303 0 1 2 3 4 5 6 7 TVls257 TVls274 TVls296 TVls312 TVls328 Envelope Sets Set No. Description Data Files File # 1 Name Results.txt Type TIME FV51 FV52 FV53 FV54 FV55 FV56 TAls2 FV57 TAls3 Set Type polate YES FV80 FV81 FV58 TAls2 TAlsl6 TAlsl8 No. Items Output Detail Files Level SINGLE FULL CALC. NO. ENTR-078-CALC-004 | ||
* VA should be used after the ERIS upgrade) is used for every ERIS panel. Breaker*#10 of 1VBN-PNL01B1 supplies to 6 ERIS panels (H13-Y711A, H13-Y710E, H13-Y751D, H13-Y740A, H13-Y748B and H13-Y748E) and breaker # 20 of 1VBN-PNL01A1 supplies to 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B) as per GE-944E485AA Rev. 12. Also, on E-184 Rev. 4, H13-Y748E is not included on the breaker# 10 of 1VBN-PNL01B1 when it should be included. On EC# 23837, ERIS upgrade on panels H13-Y710E, H13-Y711A and H13-Y740A resulted on an increase of watts (when it should have resulted on a decrease of watts) on breaker# 10 of PNL0181. EC# 23837 markups incorrectly E-184 (incorporated on E-184 Rev. 4) and CBD-VBN0181 (incorporated on CBD-VBN01 Rev. 19). So the load on breaker# 10 of 1VBN-PNL0181 should be 172.6 VA on the ERIS equipment that were not replaced (H13-Y751 D, H13-Y748B and H13-Y748E) and 1.1 Amps* 120 V (the documented input voltage of the new ERIS equipment) = 132 VA for each of the ERIS replaced (H13-Y710E, H13-Y711A and H13-Y740A). This totals 396 + 517.8 = 913.8 VA for the 6 ERIS panels for breaker# 10 of 1VBN-PNL01B1. For breaker# 20 of 1VBN-PNL01A1, the loading should be 172.6 *4 = 690.4 VA for the 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B). Power supplied from breaker# 10of1VBN-PNL0181 and '-* ( | £xceHM<<-frt:ty f.vrr; ttay. CALCULATION CONTROL Attachment 2 Attachment 2: Humidity Sensitivity REV.O PAGE NO. 170 of 303 The purpose of this attachment is to analyze the Main Control Room temperature and relative humidity setting the initial relative humidity in the MCR volumes to the Environmental Design Criteria (EDC) maximum humidity of 70%. The analysis in the body of the calculation used an initial relative humidity in the MCR volumes set equal to the EDC minimum relative humidity of 20% in order to conservatively maximize the temperature in the MGR. The temperature results are shown below. 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell (oF) (oF) (oF) (oF) Tavg(°F) | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. O Attachment 3 PAGE N0.174 of 303 \ breaker# 20 of 1VBN-PNL01A1 are non-divisional and are expected to be 0 VA with loss of offsite power (LOOP). 1VBS-PNL01 B, breaker #22 is also affected by recent ERIS upgrade phase# 2. E-143 and E-144 were revised after ERIS upgrade documented on M96-062, unlike E-184. This ERIS upgrade phase# 2 is documented on EC # 38927, which upgrades H13-Y702D, H13-Y710B, H13-Y714B and H13-Y714D. EC# 38927 correctly identifies that the modification results in a load decrease of 162.4 VA; however, H13-Y710B is on pending status and has not been installed, so the load for the new ERIS equipment can't be used on H13-Y71 OB yet. So the load on breaker # 22 of 1 VBS-PNL01 B should be 172.6 VA on the ERIS equipment that were not replaced or have not been replaced (H13-Y714E, H13-Y710B, H13-Y730B and H13-Y744D) and 1.1Amps*120 = 132 VA for each of the ERIS replaced (H13-Y702D, H13-Y714B and H13-Y714D) as per R859-0118. As H13-Y714E is spare (CR-RBS-2014-05797 and ECN 58709), it should not be counted on the heat load. The load totals 396 + 690.4 = 913.8 VA for the 7 ERIS panels for breaker# 22 of 1VBS-PNL01 B. None of the ERIS panels (H13-Y715D, H13-Y715E, H13-Y713D, H13-Y703D, H13-Y731D and H13-Y743E) of breaker# 21 of PNL01A have been replaced so loading is the same documented load of 1035 VA. There are four more ERIS top hats (H13-Y713A, H13-Y710D, H13-Y712D, and H13-Y717D)supplied by RPS bus, and 2 more ERIS top hats (H13-Y751A and H13-Y712B) supplied by breaker# 2 of E22-S002PNL, which adds a heat load of 690.4 + 345.2= 1035.6 VA. Next page shows a summary of the heat loads on ERIS panels. The heat load values of ERIS panels are illustrated below under normal situations and under LOOP: | Temp (°F) 109.6 116.2 109.0 108.6 116.2 (2 hr) 121.8 (2.02 hr) The temperature transient is nearly identical to the transient for Case 2. The figure below shows the relative humidity in subvolume 1s71 located in the horseshoe area of the MGR. The relative humidity is at 70% at the start of the transient and decreases to below 30% before the smoke removal fan is turned on at two hours and *outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes in the outside air relative humidity. | ||
80 70 60 :§ 50 E Relative Humidity in Horseshoe Area *****--*********-***-**--**-*-,-*-********-****-*****--*---****--***--********-*********-,*****************---*-***-***-**-**-****--***--*************-*****,-******-*-***-*****-*-----********-******-*****-*-**-***** | |||
***-*****--*** | |||
.. -********** | |||
....... -........... | |||
*******-********-**********-****-****-*********** | |||
.. 40 , ____________________________________ | |||
.... '.':.".". | |||
..... '.'.: .... ::_ | |||
.. :. ___ :: _____________ | |||
,_...., ""'""""""""""'"'""' __ 30 r-'-"::Jr | |||
__ | |||
--------1----------------------l 10 0 5 10 15 20 25 Time (hrs) | |||
CALC. NO. ENTR-078-CALC-004 N RCON CALCULATION CONTROL Attachment 3 REV.a PAGE NO. 171 of 303 3: ERIS Panels Heat Load Heat Load Eris Panels The following information is obtained from EC 61975 (Reference 8.36). Heat load for ERIS panels is based on typical values from 3247.850-307-001A. | |||
Fo*r ERIS panels that have been recently upgraded and installed after M96-062 is based on typical values from R859-0100 and R859-0118 (Attached on P2E under EC # 38927). H13-Y714E has-a heat load of 0 as per CR-RBS-2014-05797 and ECN 58709. The heat load of ERIS panels is shown on the table below: LOOP Conditions load 132 370.8 0 H13-Y703D 226.8 226.8' 370.8 / 370.8 370.8 370.8 0 | |||
0 370.8 370.8 H13cY713A 370.8 132 226.8 / . o. ,_,,.,_,_,,,,_,,.,. | |||
.. ,,.,,._, | |||
"'""' _.,;,_,,_,,,_,_,_,,_,.,_,,._,,._,._,,.,,,.,,,,,,. | |||
._,__, * --*** | |||
** 226.8 226.8 ................ | |||
; ................................. | |||
,. 226.8 226.8 H13-Y751D H13-P721D Total: ............................................ | |||
CALC. NO. ENTR-078-CALC-004 Attachment 3 ENERCON CALCULATION CONTROL SHEET-REV. o PAGE NO. 172 of 303 The diagram below pictures the heat load distribution (all are above 7.5 feet elevation on MCR except H 13-P721 D which is mounted on the floor) of ERIS panels. Blue color represents 370.8 W (except H13-Y714E which is 0 W), brown color represents 226.8 W, yellow color represents 240 W and red color represents 132 W. * ' The 7461.6 W for normal conditions is a conservative value, and if more margin is needed we could use field measurements with conservatism (which will have a total wattage for normal conditions of 4828.6 W). This is documented on the next pages. ERIS Panels Heat Load Justification Using Field Measurements There is 29 ERIS panels on MCR (EE-027 A Rev. 16), and every panel has a chassis assembly with a 250 watt supply. Before MR96-062, each ERIS panels had a 100 W power supply. There is a 3 A fuse before every current ERIS panel (GE-944E485AA), | |||
so the design and completely bounded power of ERIS panels is 115 (the input volts of the documented ERIS panels on 3247 .. 850-307-001A is 115V)*29*3 | |||
= 10005 W (Assuming is fully resistive). | |||
All the ERIS equipment installed on MR96-062 had either a VMINEQ-250-000 or VMINEQ-250-001. | |||
Now, as per E-144 Rev. 7, on attachment L, the maximum inverter loading value for circuit 22 of VBS01 B (there is 7 ERIS top hats (4 VMINEQ-250-001 and 3 VMINEQ-250-000)) | |||
is 1208 VA, so 172.57 VA for each ERIS hat panel. On E-143 Rev. 11, the maximum inverter loading value for circuit 21 of VBS01A (there is 6 ERIS top hats (3 VMINEQ-250-001 and 3 VMINEQ-250-000) is 1035 VA, so 172.5 VA for each ERIS hat panel. The circuit 22 of VBS01 B has very slightly more loading for each ERIS hat panel than of the circuit 21 of VBS01A, because field amp measurements for VMINEQ-250-001 | |||
* are just slightly higher. The field ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 3 PAGE NO. 173 of 303 measurements of the ERIS top hats were taken as per as per SAIC-RBS-041 letter (which is find on attachment B of E-226 Add C). The actual measured amperage of a VMINEQ-250-000 was 0.94 A (lower than the typical amps of 2.54 A used to obtain the 9352 Won E-226 Rev. 3 Add C), and the actual measured amperage of a VMINEQ-250-001 was 0.96 A (lower than the typical amps of 4.098 A used to obtain the 9352 W used on E-226 Rev. 3 Add C). The measured apparent power is then 115*0.96=110.4 VA. So the 172.5 VA given per ERIS panel on E-143 Rev. 11,.and the 172.57 VA given per ERIS panel on E-144 Rev. 7 is on the range of 55-60% higher than the measured apparent power values, giving conservatism to the field measurements. | |||
There has been recent ERIS upgrades, which has lowered the typical amps in the RIM (Remote Input Module) considerably as now the listed typical amps are 1.1 amps (and probably the actual measured amperage is lower than that). Some of this ERIS equipment was replaced on December of 2014, which is befare timeline where we are assessing risk. As we are assessing risk on early 2015, I am including these modifications on the upcoming calculations of heat load. The first phase of the ERIS upgrade project included panels H13-Y710E and H13-Y711A. | |||
These changes are documented on EC# 23837. As documented on 3.1.3.2 of the EC# 23837, a new ERIS network equipment was installed in the MCR, panel H13-P721D, and the change was incorporated on CBD-VBN02, Sh. 003 Rev. 14 (however the change has still not been incorporated on EE-027 A Rev. 16). Breaker# | |||
1 of VBN-PNL02 was retasked to supply power from C91-P609A (It was spared in place and no longer needed) to H13-P721D. | |||
This modification resulted in a load reduction of 744 VA at 1VBN-PNL02; | |||
: however, as we are adding panel by panel, a 240 VA value should be included for H13-P721 Das per R859-0100. | |||
On E-184, load supplied by breaker# | |||
10 of 1VBN-PNL01B1 and load supplied by breaker# | |||
20of1VBN-PNL 1A1 were never up9ated (when they should have had) after the ERIS upgrade on M96-062. | |||
Consequently, the same 100 VA (when 172.5 | |||
* VA should be used after the ERIS upgrade) is used for every ERIS panel. Breaker*#10 of 1VBN-PNL01B1 supplies to 6 ERIS panels (H13-Y711A, H13-Y710E, H13-Y751D, H13-Y740A, H13-Y748B and H13-Y748E) and breaker # 20 of 1VBN-PNL01A1 supplies to 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B) as per GE-944E485AA Rev. 12. Also, on E-184 Rev. 4, H13-Y748E is not included on the breaker# | |||
10 of 1VBN-PNL01B1 when it should be included. | |||
On EC# 23837, ERIS upgrade on panels H13-Y710E, H13-Y711A and H13-Y740A resulted on an increase of watts (when it should have resulted on a decrease of watts) on breaker# | |||
10 of PNL0181. | |||
EC# 23837 markups incorrectly E-184 (incorporated on E-184 Rev. 4) and CBD-VBN0181 (incorporated on CBD-VBN01 Rev. 19). So the load on breaker# | |||
10 of 1VBN-PNL0181 should be 172.6 VA on the ERIS equipment that were not replaced (H13-Y751 D, H13-Y748B and H13-Y748E) and 1.1 Amps* 120 V (the documented input voltage of the new ERIS equipment) | |||
= 132 VA for each of the ERIS replaced (H13-Y710E, H13-Y711A and H13-Y740A). | |||
This totals 396 + 517.8 = 913.8 VA for the 6 ERIS panels for breaker# | |||
10 of 1VBN-PNL01B1. | |||
For breaker# | |||
20 of 1VBN-PNL01A1, the loading should be 172.6 *4 = 690.4 VA for the 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B). | |||
Power supplied from breaker# | |||
10of1VBN-PNL0181 and '-* ( | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. O Attachment 3 PAGE N0.174 of 303 \ breaker# | |||
20 of 1VBN-PNL01A1 are non-divisional and are expected to be 0 VA with loss of offsite power (LOOP). 1VBS-PNL01 B, breaker #22 is also affected by recent ERIS upgrade phase# 2. E-143 and E-144 were revised after ERIS upgrade documented on M96-062, unlike E-184. This ERIS upgrade phase# 2 is documented on EC # 38927, which upgrades H13-Y702D, H13-Y710B, H13-Y714B and H13-Y714D. | |||
EC# 38927 correctly identifies that the modification results in a load decrease of 162.4 VA; however, H13-Y710B is on pending status and has not been installed, so the load for the new ERIS equipment can't be used on H13-Y71 OB yet. So the load on breaker # 22 of 1 VBS-PNL01 B should be 172.6 VA on the ERIS equipment that were not replaced or have not been replaced (H13-Y714E, H13-Y710B, H13-Y730B and H13-Y744D) and 1.1Amps*120 | |||
= 132 VA for each of the ERIS replaced (H13-Y702D, H13-Y714B and H13-Y714D) as per R859-0118. As H13-Y714E is spare (CR-RBS-2014-05797 and ECN 58709), it should not be counted on the heat load. The load totals 396 + 690.4 = 913.8 VA for the 7 ERIS panels for breaker# | |||
22 of 1VBS-PNL01 B. None of the ERIS panels (H13-Y715D, H13-Y715E, H13-Y713D, H13-Y703D, H13-Y731D and H13-Y743E) of breaker# | |||
21 of PNL01A have been replaced so loading is the same documented load of 1035 VA. There are four more ERIS top hats (H13-Y713A, H13-Y710D, H13-Y712D, and H13-Y717D)supplied by RPS bus, and 2 more ERIS top hats (H13-Y751A and H13-Y712B) supplied by breaker# | |||
2 of E22-S002PNL, which adds a heat load of 690.4 + 345.2= 1035.6 VA. Next page shows a summary of the heat loads on ERIS panels. The heat load values of ERIS panels are illustrated below under normal situations and under LOOP: | |||
* The ERIS panels that have beeri recently upgraded and installed after M96-062 is shown: | * The ERIS panels that have beeri recently upgraded and installed after M96-062 is shown: | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 3 REV.O ERIS Panel .... *-*'-* .... ,. ***--* ***--Y702D Y703A Y703D t**-* -.. -* .. ** **--.... < * .-* .... , ... Y714B Y714D Y714E Y715D Y715E V717D .. , ...... A-1. C-4 C-1 A-5 A-2 A-4 A-7 B-7 B-8 *****<-.......... , **. , .. ,, .... , B-2 B-1 A-3 A-9 ,.,.,.,,,,..,.,.,,,,,,,,_,,,,,, C-9 C-10 C-2 .... , ..... . . .............................. . Y730B B-3 Y731D A-8 Y740A Y743E , C-7 Y747B Y748B C-5 B-5 Y748E 8-10 "'"'"""'""'"""'"""'""""""""""'"'" Y750E C-8 Y751A Y751D B-6 B-9 PAGE NO. 175 of 303 1:Jot Applicable... __ . Not Applicable ... ..... ..... . . . ............... . .. . . .. ... .. .... . ... .. Not Applicable .. | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 3 REV.O ERIS Panel .... *-*'-* .... ,. ***--* ***--Y702D Y703A Y703D t**-* -.. -* .. ** **--.... < * .-* .... , ... Y714B Y714D Y714E Y715D Y715E V717D .. , ...... | ||
EN R ON CALCULATION CONTROL Attachment 4 Attachment 4: MCR Panel Data CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 176 of 303 As discussed in Section 6.4 in the body of the calculation the control panel dimensions and locations are from Reference 8.26 and 8.27. There are three separate GOTHIC thermal conductors representing the Control panels; one for the west portion of the room, one for the northeast portion, and one for the southeast portion. The control panels were spanned over these areas as inspection of Reference 8.26 shows the panels to be relatively well distributed over these areas. The surface area exposed to air for each Control Panel section is calculated and shown in Tables 1-3 below' . ............................... ***..*...... --**--*.L--.. -**---l--.-*_J ___ ***---' -***-**--L .... -......... . | A-1. C-4 C-1 A-5 A-2 A-4 A-7 B-7 B-8 *****<-.......... | ||
, **. , .. ,, .... , B-2 B-1 A-3 A-9 ,.,.,.,,,,..,.,.,,,,,,,,_,,,,,, | |||
C-9 C-10 C-2 .... , ..... . . .............................. | |||
. Y730B B-3 Y731D A-8 Y740A Y743E , C-7 Y747B Y748B C-5 B-5 Y748E 8-10 "'"'"""'""'"""'"""'""""""""""'"'" | |||
Y750E C-8 Y751A Y751D B-6 B-9 PAGE NO. 175 of 303 1:Jot Applicable... | |||
__ . Not Applicable | |||
... ..... | |||
..... | |||
. . | |||
. ............... | |||
. .. . . .. ... .. .... . ... | |||
.. Not Applicable | |||
.. | |||
EN R ON CALCULATION CONTROL Attachment 4 Attachment 4: MCR Panel Data CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 176 of 303 As discussed in Section 6.4 in the body of the calculation the control panel dimensions and locations are from Reference 8.26 and 8.27. There are three separate GOTHIC thermal conductors representing the Control panels; one for the west portion of the room, one for the northeast | |||
: portion, and one for the southeast portion. | |||
The control panels were spanned over these areas as inspection of Reference 8.26 shows the panels to be relatively well distributed over these areas. The surface area exposed to air for each Control Panel section is calculated and shown in Tables 1-3 below' . ............................... ***..*...... | |||
--**--*.L-- | |||
.. -**---l--.-*_J | |||
___ ***---' -***-**--L | |||
.... -......... | |||
. | |||
ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 177 of 303 Table 2: Surface Area Calculation for CP2 Panel Panel Grouping Nurrber Height (ft) Width (ft) | ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 177 of 303 Table 2: Surface Area Calculation for CP2 Panel Panel Grouping Nurrber Height (ft) Width (ft) | ||
ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 178 of 303 Table 3: Surface Area Calculation for CP3 Panel Grouping [1H13-U723 [1H13-U740 ! (__., ______ " __ _ i1H13*U710 Panel Nuniler Height (ft) Width (ft) Depth (ft) !H13-P740 : **************************************** .... : i [ ........................................ ! ............................................. , ................................ .. Surfi:!.ce Area of CP3 .. 2_72_8:.Z§] Table 4 below calculates the total surface area, including the interfacial surface area and bottom surface area, of the control panels in the lower MCR volume. This surface area is used in Section 6.4 to calculate an effective thickness of the control panels. The equation used to calculate the total surface area of each panel is below. SA control Panels = 2 | ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 178 of 303 Table 3: Surface Area Calculation for CP3 Panel Grouping | ||
[1H13-U723 | |||
[1H13-U740 | |||
! (__., ______ " __ _ i1H13*U710 Panel Nuniler Height (ft) Width (ft) Depth (ft) !H13-P740 | |||
: **************************************** | |||
.... | |||
: i [ ........................................ | |||
! ............................................. | |||
, ................................ | |||
.. | |||
Surfi:!.ce Area of CP3 | |||
.. 2_72_8:.Z§] | |||
Table 4 below calculates the total surface area, including the interfacial surface area and bottom surface area, of the control panels in the lower MCR volume. This surface area is used in Section 6.4 to calculate an effective thickness of the control panels. The equation used to calculate the total surface area of each panel is below. SA control Panels = 2 | |||
* L | * L | ||
* W + 2 | * W + 2 | ||
| Line 430: | Line 1,150: | ||
* L + 2 | * L + 2 | ||
* W | * W | ||
* H ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 179 of 303 i Surface .. 2.67i 4.00i 121.33! ____ , 94.22j 94.22i 94.22J 213.00' 3.o9J 2i3.6ii! ,1 ____ _;:;;_3*;::00:ic.---=::.;.....-****_2::..1ioo1 **:**********:**1***********************************-i**********************************:******************** .. ****!****************************:****************.. . ...... .!.*--*-***-................. , .... , ................................. j******************************* ************************************:!*************************** ..... ! +**********--***--**!************-*****)***--********--*** ............... .................. 1...................... ! ; .026; *""'--*-****--'--**-*---'----**-**-Lgp_!6_s_.1_0 L____ .l E E.RCON CALCULATION CONTROL Attachment 5 Attachment 5: Additional Steel Heat Sinks CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 180 of 303 Thermal conductors representing additional steel heat sinks are added to the GOTHIC MCR models. The heat sink material was identified during a MCR walk down conducted on July 21, 2015 and consists of steel structures (cabinets, panels, supports, duct work, conduit) of various thickness. The material is described in the Main' Control Room Heat Sink Walkdown notes included at the end of this attachment. Using these notes, the conductors _representing these steel heat sinks were added to their actual subvolumes based on inspection of Reference 8.26. ' ' | * H ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 179 of 303 i Surface | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 PAGE NO. 181 of 303 Table 1: Additional MCR Heat Sinks Item No. Description S.A. (ft2) Thicknes (in) Notes 1 Doors -Fire Doors leading outside MCR* 39.0 0.1250 External, 1/8" external panels, with air interior 2 Doors -SM Office 39.0 0.1250 Assume same thickness as Item 1 3 Door to closet SM office 16.25 0.1250 Assume same thickness as Item 2 4 lHS-JBA Panel 1.0 0.1250 Assume 1/8" panel thickness 5 ILAC Panels 100.8 0.1250 1/8" thick 6 Steel nlate suooorts for ILAC nanels 15.0 0.3750 3/8" 7 Steel elate suooorts for ILAC oanels 20.0 0.1875 3/16" 8 DC Panels 396.0 0.1250 1/8" thick , 9 Suooort Bea ms 212.0 0.3750 3/8" thick 10 Cabinets 198.0 0.0625 1/16" thick 11 l&C storalle cabinets 297.5 0.0625 1/16" thick 12 HVAC Ducts (smalll 182.3 0.2500 1/4" steel estimated 13 HVAC Ducts Clarlle\ 328.0 0.2500 1/4" steel estimated 14 HVAC Ducts Clarlle\ 200.0 0.1250 1/8" steel 15 SCA Panels 201.0 0.1250 1/8" steel 16 Metal File Cabinets 88.0 0.0625 1/16" steel assumed 17 Short metal storalle cabinet 40.S 0.0625 1/16" steel assumed 18 Metal cabinets 630.0 0.0625 1/16" steel assumed H13-Y747A(B) -junctio boxes atop cable 448.0 0.1250 1/8" steel 19 soreadiM bavs 20 Kitchen ca bi nets, etc. 324.0 0.0625 1/16" steel assumed 21 Metal desks 405.0 0.0625 1/16" steel assumed 22 1" conduit 139.0 0.1250 1/8" assumed 23 Securitv oort 12.5 0.5000 / 1/8" 24 ILAC Panels 73.0 0.1250 25 2" conduits 34.6 0.1250 1/8" assumed 26 3" conduit 19.6 0.1250 1/8" assumed 27 1.5" conduit 11.8 0.1250 1/8" assumed -28 COP-1160 cabinets 6.6 0.0625 1/16" steel assumed 29 RMS CAB170 cabinets 14.7 0.0625 1/16" steel assumed 30 2 white boxes 16.5 0.1250 1/8" assumed 31 Unistrut 65.6 0.1250 1/8" assumed TOTAL SA 4536.25 *Fire door is not added as a GOTHIC thermal conductor, as this surface area would already be accounted for by the wall thermal conductors. \ \ L CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 182 of 303 Main Control Room Heat Sink Walkdown 21 July 2015 walkdown of Main Control Room by Paul Sicard for purpose of identifying heat sinks. Heat sink modeling of Gl3.18.12.4*027 was first reviewed. (same as used for ENTR-078-CALC-002). Heat sinks modelled include structural steel above ceiling tiles, H13 and C6i panels in Main Control Room, and concrete walls. Assume 1/8" thick for cabinets and metal heat sinks unless noted otherwise. ("'4500 ft2 of additional metal heat sink area identified) Doors Have two 6.5x3 metal fire doors leading out of 19.5 ft2 pef door MCR. Assume 118" steel plates with air interior. Doors Have two 5.5x3 doors to ttw Shift 19.5 ft2 per door surface. Manager office. Both inside and outside of door exposed to MCR air. Door door to closet behind SM / CRS desk. 16.25 ft2 2.5 | .. | ||
2.67i 4.00i 121.33! | |||
____ , 94.22j 94.22i 94.22J 213.00' 3.o9J 2i3.6ii! | |||
,1 ____ _;:;;_3*;::00:ic.---=::.;.....-****_2::..1ioo1 | |||
**:**********:**1***********************************-i**********************************:******************** | |||
.. ****!****************************:****************.. | |||
. ...... .!.*--*-***- | |||
................. | |||
, .... , ................................. | |||
j******************************* | |||
************************************:!*************************** | |||
..... ! +**********--***--**!************-*****)***--********--*** | |||
............. | |||
.. | |||
.................. | |||
1...................... | |||
! ; .026; *""'--*-****--'--**-*---'----**-**-Lgp_!6_s_.1_0 L____ .l E E.RCON CALCULATION CONTROL Attachment 5 Attachment 5: Additional Steel Heat Sinks CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 180 of 303 Thermal conductors representing additional steel heat sinks are added to the GOTHIC MCR models. The heat sink material was identified during a MCR walk down conducted on July 21, 2015 and consists of steel structures (cabinets, panels, supports, duct work, conduit) of various thickness. | |||
The material is described in the Main' Control Room Heat Sink Walkdown notes included at the end of this attachment. | |||
Using these notes, the conductors | |||
_representing these steel heat sinks were added to their actual subvolumes based on inspection of Reference 8.26. ' ' | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 PAGE NO. 181 of 303 Table 1: Additional MCR Heat Sinks Item No. Description S.A. (ft2) Thicknes (in) Notes 1 Doors -Fire Doors leading outside MCR* 39.0 0.1250 External, 1/8" external panels, with air interior 2 Doors -SM Office 39.0 0.1250 Assume same thickness as Item 1 3 Door to closet SM office 16.25 0.1250 Assume same thickness as Item 2 4 lHS-JBA Panel 1.0 0.1250 Assume 1/8" panel thickness 5 ILAC Panels 100.8 0.1250 1/8" thick 6 Steel nlate suooorts for ILAC nanels 15.0 0.3750 3/8" 7 Steel elate suooorts for ILAC oanels 20.0 0.1875 3/16" 8 DC Panels 396.0 0.1250 1/8" thick , 9 Suooort Bea ms 212.0 0.3750 3/8" thick 10 Cabinets 198.0 0.0625 1/16" thick 11 l&C storalle cabinets 297.5 0.0625 1/16" thick 12 HVAC Ducts (smalll 182.3 0.2500 1/4" steel estimated 13 HVAC Ducts Clarlle\ | |||
328.0 0.2500 1/4" steel estimated 14 HVAC Ducts Clarlle\ | |||
200.0 0.1250 1/8" steel 15 SCA Panels 201.0 0.1250 1/8" steel 16 Metal File Cabinets 88.0 0.0625 1/16" steel assumed 17 Short metal storalle cabinet 40.S 0.0625 1/16" steel assumed 18 Metal cabinets 630.0 0.0625 1/16" steel assumed H13-Y747A(B) | |||
-junctio boxes atop cable 448.0 0.1250 1/8" steel 19 soreadiM bavs 20 Kitchen ca bi nets, etc. 324.0 0.0625 1/16" steel assumed 21 Metal desks 405.0 0.0625 1/16" steel assumed 22 1" conduit 139.0 0.1250 1/8" assumed 23 Securitv oort 12.5 0.5000 / 1/8" 24 ILAC Panels 73.0 0.1250 25 2" conduits 34.6 0.1250 1/8" assumed 26 3" conduit 19.6 0.1250 1/8" assumed 27 1.5" conduit 11.8 0.1250 1/8" assumed -28 COP-1160 cabinets 6.6 0.0625 1/16" steel assumed 29 RMS CAB170 cabinets 14.7 0.0625 1/16" steel assumed 30 2 white boxes 16.5 0.1250 1/8" assumed 31 Unistrut 65.6 0.1250 1/8" assumed TOTAL SA 4536.25 *Fire door is not added as a GOTHIC thermal conductor, as this surface area would already be accounted for by the wall thermal conductors. | |||
\ \ L CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 182 of 303 Main Control Room Heat Sink Walkdown 21 July 2015 walkdown of Main Control Room by Paul Sicard for purpose of identifying heat sinks. Heat sink modeling of Gl3.18.12.4*027 was first reviewed. | |||
(same as used for ENTR-078-CALC-002). | |||
Heat sinks modelled include structural steel above ceiling tiles, H13 and C6i panels in Main Control Room, and concrete walls. Assume 1/8" thick for cabinets and metal heat sinks unless noted otherwise. | |||
("'4500 ft2 of additional metal heat sink area identified) | |||
Doors Have two 6.5x3 metal fire doors leading out of 19.5 ft2 pef door MCR. Assume 118" steel plates with air interior. | |||
Doors Have two 5.5x3 doors to ttw Shift 19.5 ft2 per door surface. | |||
Manager office. Both inside and outside of door exposed to MCR air. Door door to closet behind SM / CRS desk. 16.25 ft2 2.5 | |||
* 6.5 ft lHS-JBA metal oanel near SW door 1 ft2 Fire ext. Fire Ext. near door SCBA air bottles 30 "' 2' tall SCBA air bottles stored just south of CB136-10 door SW. ILAC panels 12 lighting panels on West wall. 100.8 ft2 (1/8" thick) ' 5 on S wall. \ 3 on N wall. (20 total) 16" width | * 6.5 ft lHS-JBA metal oanel near SW door 1 ft2 Fire ext. Fire Ext. near door SCBA air bottles 30 "' 2' tall SCBA air bottles stored just south of CB136-10 door SW. ILAC panels 12 lighting panels on West wall. 100.8 ft2 (1/8" thick) ' 5 on S wall. \ 3 on N wall. (20 total) 16" width | ||
* 12" heightx 10" depth. 5.6 ft2 per panel. (assume 1/8" thick) Steel plate supports steel supports mounted on walls. wall plate supports: for ILAC panels. 15 ft2 (3/8" thick) 18" wide, 6" height, 3/8" thick. A= 0.75 ft2 per panel. cantilevered supports: 20 fi:2 (3/16" effective thickness) i Also have 7" long supports, 2" high, 3" wide. Perimeter of 10". Area per support of 10"*7"=70 in2 = 0.5 ft2. Two such supports per ILAC oanel for 1.0 ft2 oer oanel. | * 12" heightx 10" depth. 5.6 ft2 per panel. (assume 1/8" thick) Steel plate supports steel supports mounted on walls. wall plate supports: | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 DC panels Support Beams Storage cabinets I&C storage cabs 2 small HVAC ducts along N wall PAGE NO. 183 of 303 Have total of 9 BYS/VBS/ENB panels on N and S 396 ft2 ,(1/8" thick) walls of MCR. 5 ft wide x 6.5 ft high x 1 ft deep. Area per panel: 44 ft2. 9 oanels: 396 ft2. 170 ft. of support beams along S wall. "'12 ft. noted on N wall. (probably missed some) 4" high, 1 3/4" wide, 3/8" steel thickness. "'14" of perimeter A = 182 ft * (14") = 212 ft2 3/8" thick 3 near NE carrier: 6 ft H x 3 ft W x 2 ft D. Area per cabinet: 66 ft2. Assume 1/16" metal. 5 near S wall, center: 6 ft H x 3 ft W x 1.5 ft depth 59.5 ft2 per cabinet Assume 1/16" metal. 18" x 42", Floor to ceiling (9.115 ft per G13.18.12.4*027 calculation) 120" perimeter. Surface area per duct: 91.15 ft2 r Appears to be 1/4" thick steel based on flanges and sunnorts. 212 ft2, 3/8" thick 198 ft2 297.5 ft2 182.3 ft2 , | for ILAC panels. 15 ft2 (3/8" thick) 18" wide, 6" height, 3/8" thick. A= 0.75 ft2 per panel. cantilevered supports: | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O 2 large HVAC ducts along N wall SCA panels metal file cabinets short metal storage cabinet metal storage cabinets H13-Y747A(B) 6 ft x 3 ft. Perimeter: 18 feet. Surface area per duct: 164 ft2. Have eleven flanges, 3" high and 3" wid,e, of 1/4" steel that goes around the ducts. This corresponds to 100 ft2 of 1/8" steel (counting both too and bottom surface area) 4 along N wall. 2 along S wall. 6.5' H x 2' W x 6" depth. Peroanel: 33.5ft2 two near NW corner by back door to SM office. 4.5' H | 20 fi:2 (3/16" effective thickness) i Also have 7" long supports, 2" high, 3" wide. Perimeter of 10". Area per support of 10"*7"=70 in2 = 0.5 ft2. Two such supports per ILAC oanel for 1.0 ft2 oer oanel. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 DC panels Support Beams Storage cabinets I&C storage cabs 2 small HVAC ducts along N wall PAGE NO. 183 of 303 Have total of 9 BYS/VBS/ENB panels on N and S 396 ft2 ,(1/8" thick) walls of MCR. 5 ft wide x 6.5 ft high x 1 ft deep. Area per panel: 44 ft2. 9 oanels: 396 ft2. 170 ft. of support beams along S wall. "'12 ft. noted on N wall. (probably missed some) 4" high, 1 3/4" wide, 3/8" steel thickness. | |||
"'14" of perimeter A = 182 ft * (14") = 212 ft2 3/8" thick 3 near NE carrier: | |||
6 ft H x 3 ft W x 2 ft D. Area per cabinet: | |||
66 ft2. Assume 1/16" metal. 5 near S wall, center: 6 ft H x 3 ft W x 1.5 ft depth 59.5 ft2 per cabinet Assume 1/16" metal. 18" x 42", Floor to ceiling (9.115 ft per G13.18.12.4*027 calculation) 120" perimeter. | |||
Surface area per duct: 91.15 ft2 r Appears to be 1/4" thick steel based on flanges and sunnorts. | |||
212 ft2, 3/8" thick 198 ft2 297.5 ft2 182.3 ft2 , | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O 2 large HVAC ducts along N wall SCA panels metal file cabinets short metal storage cabinet metal storage cabinets H13-Y747A(B) 6 ft x 3 ft. Perimeter: | |||
18 feet. Surface area per duct: 164 ft2. Have eleven flanges, 3" high and 3" wid,e, of 1/4" steel that goes around the ducts. This corresponds to 100 ft2 of 1/8" steel (counting both too and bottom surface area) 4 along N wall. 2 along S wall. 6.5' H x 2' W x 6" depth. Peroanel: | |||
33.5ft2 two near NW corner by back door to SM office. 4.5' H | |||
* 17" W | * 17" W | ||
* 3' D Per file cabinet: 44 ft2 NW corner near duct. 4 x 3 x 1.5. Area = 40.5 ft2 NE & SE.: 8: 5 x 3 x 18" (A= 49.5 ft2) 4: 6 x 3 x 18" <A = 58.5 ft2) .. and similar junction boxes that sit atop spreading bays. (are these already in H13 cabinet heat sinks?) 4 NW. 4 NE. 7 SW. 13 SE. (28 total) 3 foot depth. 1 foot height 2 foot width. Total Surface* Area: 16 ft2 oer unit. PAGE NO. 184 of 303 328 ft 2 (1/4") 200 ft2 (1/8" steel) 201 ft2 (1/8") 88 ft2 (1/16" assumed) 40.5 ft2 (1/16" assumed) 630 ft2 (1/16" thick assumed) 448 ft2 (1/8" assumed) | * 3' D Per file cabinet: | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 185 of 303 , (simolification since inside is exoosed) Kitchen Metal kitchen cabinets, stove, etc ... 324 ft2 (1/16" assumed) Appears equivalent to 4 bays of cabinets. , \ (typical bay= 2' x 7.5' x 3', for surface area of:* ' 81 ft2) Metal desks Metal desks in MCR: 405 ft2 (1/16" assumed) Appears equivalent to at least 5 bays of cabinets. 1" conduit ,,,75 ft along S wall. 139 ft2 ,,,35 ft near kitchen 150 ft N wall. 33 ft near RMS-CAB170 (W wall) 237 ft along W wall 531ftof1" Diameter Conduit. Perimeter= 3.14". Area = 531 * (3.14"/12) = 139 ft2 Security port security port on S wall of stairway: 30'x30", 12.5 ft2, (1/2" thick) 1/2" thick 5 big blue ILAC panels 20" wide by 36" high x 6" deep. 73 ft2 (1/8" thick) Wwall A= 14.6 ft2 per cabinet 2" conduits 48 ft along w wall 34.6 ft2 18 ft near 8MS-CAB 6.3" perimeter. 3" CONDUIT 16 ft along S wall 19.6 ft2. 9 ft near COP-1150 1.5" conduit (includes 1 3/4") 11.8 ft2 30 ft near W wall COP-1160 metal cabinet on W wall 6.6 ft2 8" x 12" x 5.5" A= 2.2 ft2 3 cabinets total like this. RMS-CAB170 W wall: actuallv two cabinets: 14.7 ft2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 186 of 303 36"x24"x8": A= 8.33 ft2 I 18"x24"x8": A= 6.33 ft2 2 white boxes metal 18 x 18 x 12" 16.5 ft2 near RMS-CAB A = 8.25 ft2 oer box. 1 3/4" unistrut 84'west wall 65.6 ft2. 24' north wall 42' south wall. Assume effective perimeter of 5.25" of 1/8" steel. A= 65.6 ft2 CALC. NO. ENTR-078-CALC-004 | 44 ft2 NW corner near duct. 4 x 3 x 1.5. Area = 40.5 ft2 NE & SE.: 8: 5 x 3 x 18" (A= 49.5 ft2) 4: 6 x 3 x 18" <A = 58.5 ft2) .. and similar junction boxes that sit atop spreading bays. (are these already in H13 cabinet heat sinks?) 4 NW. 4 NE. 7 SW. 13 SE. (28 total) 3 foot depth. 1 foot height 2 foot width. Total Surface* | ||
Area: 16 ft2 oer unit. PAGE NO. 184 of 303 328 ft 2 (1/4") 200 ft2 (1/8" steel) 201 ft2 (1/8") 88 ft2 (1/16" assumed) 40.5 ft2 (1/16" assumed) 630 ft2 (1/16" thick assumed) 448 ft2 (1/8" assumed) | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 185 of 303 , (simolification since inside is exoosed) | |||
Kitchen Metal kitchen cabinets, stove, etc ... 324 ft2 (1/16" assumed) | |||
Appears equivalent to 4 bays of cabinets. | |||
, \ (typical bay= 2' x 7.5' x 3', for surface area of:* ' 81 ft2) Metal desks Metal desks in MCR: 405 ft2 (1/16" assumed) | |||
Appears equivalent to at least 5 bays of cabinets. | |||
1" conduit ,,,75 ft along S wall. 139 ft2 ,,,35 ft near kitchen 150 ft N wall. 33 ft near RMS-CAB170 (W wall) 237 ft along W wall 531ftof1" Diameter Conduit. | |||
Perimeter= | |||
3.14". Area = 531 * (3.14"/12) | |||
= 139 ft2 Security port security port on S wall of stairway: | |||
30'x30", | |||
12.5 ft2, (1/2" thick) 1/2" thick 5 big blue ILAC panels 20" wide by 36" high x 6" deep. 73 ft2 (1/8" thick) Wwall A= 14.6 ft2 per cabinet 2" conduits 48 ft along w wall 34.6 ft2 18 ft near 8MS-CAB 6.3" perimeter. | |||
3" CONDUIT 16 ft along S wall 19.6 ft2. 9 ft near COP-1150 1.5" conduit (includes 1 3/4") 11.8 ft2 30 ft near W wall COP-1160 metal cabinet on W wall 6.6 ft2 8" x 12" x 5.5" A= 2.2 ft2 3 cabinets total like this. RMS-CAB170 W wall: actuallv two cabinets: | |||
14.7 ft2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 186 of 303 36"x24"x8": | |||
A= 8.33 ft2 I 18"x24"x8": | |||
A= 6.33 ft2 2 white boxes metal 18 x 18 x 12" 16.5 ft2 near RMS-CAB A = 8.25 ft2 oer box. 1 3/4" unistrut 84'west wall 65.6 ft2. 24' north wall 42' south wall. Assume effective perimeter of 5.25" of 1/8" steel. A= 65.6 ft2 CALC. NO. ENTR-078-CALC-004 | |||
* ENERCON CALCULATION CONTROL SHEET-REV. 0 | * ENERCON CALCULATION CONTROL SHEET-REV. 0 | ||
* Attachment 6 fvffydcy. PAGE NO. 187 of 303 Attachment 6: Email from Paul Sicard, dated 7 /23/2015, 10:29 AM: This is a portable electric fan, stored in closet on third floor of Service Building, on hallway that leads to the passageway to Main Control Room. Maxx Air High Velocity Ventamatic Ltd. 4 blades 24" diameter. Rating of 2800-4000 CFM. (Ops looked up on Internet while I was examining fan for any model number or information --none on fan) | * Attachment 6 | ||
fvffydcy. | |||
PAGE NO. 187 of 303 Attachment 6: Email from Paul Sicard, dated 7 /23/2015, 10:29 AM: This is a portable electric fan, stored in closet on third floor of Service Building, on hallway that leads to the passageway to Main Control Room. Maxx Air High Velocity Ventamatic Ltd. 4 blades 24" diameter. | |||
Rating of 2800-4000 CFM. (Ops looked up on Internet while I was examining fan for any model number or information | |||
--none on fan) | |||
CALC. NO. ENTR-078-CALC-004 | CALC. NO. ENTR-078-CALC-004 | ||
* CALCULATION CONTROL SHEET-ENERCON REV. 0 | * CALCULATION CONTROL SHEET-ENERCON REV. 0 | ||
* Attachment 6 .*v-rydfJ'f PAGE NO. 188 of 303 Attachment 6 {cont'd): Gasoline powered portable electric fan, stored in Fire Brigade Van. | * Attachment 6 | ||
.*v-rydfJ'f PAGE NO. 188 of 303 Attachment 6 {cont'd): Gasoline powered portable electric fan, stored in Fire Brigade Van. | |||
) ENERCON CALCULATION CONTROL Attachment 7 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 189 of 303 Attachment 7: Email from Paul Sicard, dated 11/2/2015, 5:34 PM: Drawing EA-468 shows the return air registers for the main control room, which run along the east and west walls of the MCR. -The drawing shows 18 registers along West Wall; I counted (and re-counted) only 16, with at least one noticeable gap between them. | ) ENERCON CALCULATION CONTROL Attachment 7 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 189 of 303 Attachment 7: Email from Paul Sicard, dated 11/2/2015, 5:34 PM: Drawing EA-468 shows the return air registers for the main control room, which run along the east and west walls of the MCR. -The drawing shows 18 registers along West Wall; I counted (and re-counted) only 16, with at least one noticeable gap between them. | ||
* The drawing shows 15 along East wall, 8 south of pipe chase, and 7 north of pipe chase. My walkdown observation confirmed this. The registers appear to be a plastic material with honeycombed squares (see sketch) that are about 1/2" x 1/2" square. The registers have 18 holes in one dimension and 80 in the long dimension that runs along the wall. Estimated thickness of the plastic grid the honeycomb is <1/16", probably more like 1/20". Estimated height (flow path length) through the honeycomb is also 1/2". The 80 holes in the long dimension would correspond to the 4 foot long dimension of the MCR ceiling tiles. (Note EA-468 refers to these as "Aluminum Louver Return Air Grille" in NOTE 5.) There are substantial gaps between the lower MCR volume and upper MCR volume around the ducting at the North end of Main Control Room._ For the duct in NW corner (return duct), the estimated gaps are: 2" East 4" South & West 6" North (against wall) For the ducting on East half of North wall, estimated gaps are: 6" North . 3" West & East (gap actually occurs between larger central duct and the two smaller outer ducts) O" South CALC. NO. ENTR-078-CALC-004 t"l ENERCON CALCULATION CONTROL SHEET-REV. 0 Attachment 8 ( fW'f"f fl<IJ PAGE NO. 190 of 303 Attachment 8: Honeywell Computer Equipment Heat Loads The following information is obtained from EC 61975 (Reference 8.36). Main Control Room C91 Panels C91-P642/P631/P630 The panels under consideration are Performance Monitoring System Panels (Plant Process Computers) located in the main control room. The GOTHIC calculations have loads from P642 and P631/P630 split into different grid locations. Since the panels are not labelled in the main control room, a walk down of the panels was performed to obtain the layout of the components placed on PPG Desk (P642/P630/P631). Based on information from the walkdown, Drawing GE-851E124AA sh2 and information from Bill Costinett, the following conclusion was arrived at. PANEL C91-P642 Equipment Mark/Part Number{ Wattage Reference GE* Supplies Recorders on Power Supply 8S1El24AA 144 Hl3-P680 C91-R603 287AS937POOS 9S Display CRT http:l/www.vartechsystems.com/pdf/technical/VTl 7B-Ctech.pdf C9l*K60S 287AS937P007 0 Keyboard C91-P6SS 287 AS937P028 420 Floppy Disc information obtained from ERIS Room which is similar to the one in MCR Network Switch C9S-NETSW*MCR 137.S Cisco Catalyst 37SOG Model No obtained from ERIS Room which is similar to the one in MCR laserjet includes a 10% Diversity 60SW Printing/ Sl watts ready/ 6.9 watts Printer ....... C91-RSTR-PTR 60.S Factor http:l/h71016.www7.hp.com/html/pdfs/LaserJetEnterpriseMSS1.pdf http:l/www.cnet.com/products/nortel-baystack-4SO-model-24t-switch-24-ports-Network Switch C91-NEISW-1 140 Baystack 4S0-24T managed-desktop-series/specs/ REMOVED FROM Versatec Plotter SERVICE -http:l/downloads.dell.com/Manuals/all-ERIS products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Workstation( PC) ERIS-RSTR-SDS 2SO 9010 Owner%27s%20Manual en-us.pd! ERIS Monitor ERIS-RSTR-SDS so DELL monitor Antee CPU C91-LEFMPC1 4SO http://store.antec.com/vpseries/vp4SOf.html# Honeywell RBS-D-C2960-cpu*** 1900G-PPC 273 Dell Monitor so Netgear Switch so Input from "Evaluation of PPG loads for MGR heatup" TOTAL 2120 -*Wattage based from CPU's in P612 PANEL C91-P631/P630 Equipment Mark/Part Numbers Wattage Network Switch Cisco catalyst 2960-S 137.S information obtained from ERIS R00m Which is similar to the one in MCR C9S-SDCR09 CDA-Optiplex computer 780 DC3 2SS http:l/www.dell.com/downloads/global/products/optix/en/optiplex 780 tech_guidebook en.pd! Monitor SDCR09 32 ASUS24" http:l/downloads.dell.com/Manuals/all-products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Optiplex gX240 C9S-PCA59 CDA-DC3 180 gx240 user%27s%20guide en-us.pd! Monitor flatron e23SO 28 http:lfwww.cnet.com/products/lg-flatron-e23SOv/specs/ Typer C91-P634 270 Typer information obtained from ERIS Computer Room Typer**** C91-P63S 0 Typer information obtained from ERIS Computer Room Printer++++ C9S-CP02 43 Diversity Factor included/ http:l/www.cnet.com/products/hp-color-laserjet-4600/specs/ Multiprinter C9S-CP02 8S Average wattage I http:l/manx.classiccmp.org/collections/mds-199909/cd3/printer/la40euga.pdf TOTAL 1030.S **-one of The Typers in the MGR is Idle and is not connected to the power supply unit. Hence the load on it is assumed to be O ++++ It should be noted that the Laser Jet Printers on that desk includes a 10% Diversity Factor (Obtained from the National Electric Code for intermittent loads) as the wattage reflected on the table above references the consumption while printing. Per Walkdown, three network switches were found under the desks of C91-P642/P630/P631 as opposed to one as documented in "Evaluation of PPG loads for MGR heatup". This change is reflected above and must be noted. sleep CALC. NO. ENTR-078-CALC-004 0 ENERCON CALCULATION CONTROL SHEET-REV.O Attachment 8 PAGE NO. 191 of 303 I Measured Values Nine Mile BTU/HR CALC E-184 Nine Mile Watts by Power Supply Ratings from 024 7 .810*000-Panel 252/ Comments from Entergy Panel Disconnect Load Description Current Reading Bus voltage PPCWatts BTU/HR Watts VBN-PNL02 2 C91-P608 CMS/ PPX computer equipt. (removed 800 0.26 121.4 , 32 108 NA 2400 -2400 watts w/ tape drive) VBN*PNL02 3 C91-P600 Central CPU unit 12.30 121.4 1493 5092 5119 2400 1500.2 VBN-PNL02 4 C91-P603 Large core storage 2.12 121.4 257 878 2000 1800 586.1 VBN*PNL02 5 C91*P612 Display Generator 3.50 121.4 425 1449 2048 1020 600.2 VBN*PNL02 6 C91-P620 Digital unit 4.40 121.4 534 1821 8191 2400 2400.5 490W +Wattage of Associated Blower VBN*PNL02 7 C91-P625 Digital unit 1.56 121.4 189 646 8500 2820 2491.1 l(BN-PNL02 8 C91-P621 Digital unit and SPC-BNKl 5.79 121.4 703 2397 8500 2750 2491.1 390 W +Wattage of Associated Blower VBN-PNL02 9 C91*P624 Digital unit 3.91 121.4 475 1619 8500 2400 2491.1 VBN-PNL02 10 C91*P622 Digital unit 3.16 121.4 384 1308 8500 2400 2491.1 VBN*PNL02 11 C91*P623 Digital unit 3.93 121.4 477 1627 8500 2400 2491.1 520 W +Wattage of Associated Blower VBN*PNL02 12 C91-P630/P631 PPC printers 1.05 121.4 127 435 1229 1000 360.2 1030.5 Watts in total for the two panels which includes PPC Printers and other components in the PPC table area VBN-PNL02 13 C91-P613 NSSS Analog unit 1.31 121.4 159 542 1229 912 360.2 VBN*PNL02 15 C91-P616 BOP Analog unit 0.86 121.4 104 356 850 360 249.1 VBN*PNL02 16 C91*P615 BOP Analog unit 0.98 121.4 119 406 850 360 249.1 VBN-PNL02 17 C91*P614 BOP Analog unit 1.29 121.4 157 534 850 360 249.1 VBN-PNL02 18 C91-P642 PPC Results Center Console (CRTs, KB, 4.23 121.4 514 1751 NA 1060 1060 Trend Recorders on P680) VBN*PNL02 19 H13*P680 PPC CRT's and KeyBoard 2.49 121.4 302 1031 NA 792 792 VBN*PNL02 20 C91-P632/P633 PPC computer printers 1.00 121.4 121 414 NA 810 810 VBN*PNL02 22 C91*P650 PPC BOP Digital and SWC*BNK4 4.56 121.4 554 1888 NA 2400 2400 390 W +Wattage of Associated Blower VBN*PNLOlAl 21 C91-P642 PPC Table Area NA 1488 1488 2120 Watts is the connected load VBN*PNLOlAl 22 C91-P631 Area Near PPC Desk NA 1526 1526 This row should be removed as all the connected loads associated with P631 are included in the row above (P630/P631 on row 11) VBN*PNLOlBl 33 C9l*P612 CPU's (2) NA 546 A Network Server is associated with P612 which has a load of 400W. This has to be accounted for with P612. Comments on the table above do not change any values obtained from Enercon Previously. Please look at the proposed heat load on C91 panels below. | * The drawing shows 15 along East wall, 8 south of pipe chase, and 7 north of pipe chase. My walkdown observation confirmed this. The registers appear to be a plastic material with honeycombed squares (see sketch) that are about 1/2" x 1/2" square. The registers have 18 holes in one dimension and 80 in the long dimension that runs along the wall. Estimated thickness of the plastic grid the honeycomb is <1/16", probably more like 1/20". Estimated height (flow path length) through the honeycomb is also 1/2". The 80 holes in the long dimension would correspond to the 4 foot long dimension of the MCR ceiling tiles. (Note EA-468 refers to these as "Aluminum Louver Return Air Grille" in NOTE 5.) There are substantial gaps between the lower MCR volume and upper MCR volume around the ducting at the North end of Main Control Room._ For the duct in NW corner (return duct), the estimated gaps are: 2" East 4" South & West 6" North (against wall) For the ducting on East half of North wall, estimated gaps are: 6" North . 3" West & East (gap actually occurs between larger central duct and the two smaller outer ducts) O" South CALC. NO. ENTR-078-CALC-004 t"l ENERCON CALCULATION CONTROL SHEET-REV. 0 Attachment 8 ( | ||
fW'f"f fl<IJ PAGE NO. 190 of 303 Attachment 8: Honeywell Computer Equipment Heat Loads The following information is obtained from EC 61975 (Reference 8.36). Main Control Room C91 Panels C91-P642/P631/P630 The panels under consideration are Performance Monitoring System Panels (Plant Process Computers) located in the main control room. The GOTHIC calculations have loads from P642 and P631/P630 split into different grid locations. | |||
Since the panels are not labelled in the main control room, a walk down of the panels was performed to obtain the layout of the components placed on PPG Desk (P642/P630/P631). | |||
Based on information from the walkdown, Drawing GE-851E124AA sh2 and information from Bill Costinett, the following conclusion was arrived at. PANEL C91-P642 Equipment Mark/Part Number{ Wattage Reference GE* Supplies Recorders on Power Supply 8S1El24AA 144 Hl3-P680 C91-R603 287AS937POOS 9S Display CRT http:l/www.vartechsystems.com/pdf/technical/VTl 7B-Ctech.pdf C9l*K60S 287AS937P007 0 Keyboard C91-P6SS 287 AS937P028 420 Floppy Disc information obtained from ERIS Room which is similar to the one in MCR Network Switch C9S-NETSW*MCR 137.S Cisco Catalyst 37SOG Model No obtained from ERIS Room which is similar to the one in MCR laserjet includes a 10% Diversity 60SW Printing/ | |||
Sl watts ready/ 6.9 watts Printer ....... C91-RSTR-PTR 60.S Factor http:l/h71016.www7.hp.com/html/pdfs/LaserJetEnterpriseMSS1.pdf http:l/www.cnet.com/products/nortel-baystack-4SO-model-24t-switch-24-ports-Network Switch C91-NEISW-1 140 Baystack 4S0-24T managed-desktop-series/specs/ | |||
REMOVED FROM Versatec Plotter SERVICE -http:l/downloads.dell.com/Manuals/all-ERIS products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Workstation( | |||
PC) ERIS-RSTR-SDS 2SO 9010 Owner%27s%20Manual en-us.pd! | |||
ERIS Monitor ERIS-RSTR-SDS so DELL monitor Antee CPU C91-LEFMPC1 4SO http://store.antec.com/vpseries/vp4SOf.html# | |||
Honeywell RBS-D-C2960-cpu*** 1900G-PPC 273 Dell Monitor so Netgear Switch so Input from "Evaluation of PPG loads for MGR heatup" TOTAL 2120 -*Wattage based from CPU's in P612 PANEL C91-P631/P630 Equipment Mark/Part Numbers Wattage Network Switch Cisco catalyst 2960-S 137.S information obtained from ERIS R00m Which is similar to the one in MCR C9S-SDCR09 CDA-Optiplex computer 780 DC3 2SS http:l/www.dell.com/downloads/global/products/optix/en/optiplex 780 tech_guidebook en.pd! Monitor SDCR09 32 ASUS24" http:l/downloads.dell.com/Manuals/all-products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Optiplex gX240 C9S-PCA59 CDA-DC3 180 gx240 user%27s%20guide en-us.pd! | |||
Monitor flatron e23SO 28 http:lfwww.cnet.com/products/lg-flatron-e23SOv/specs/ | |||
Typer C91-P634 270 Typer information obtained from ERIS Computer Room Typer**** | |||
C91-P63S 0 Typer information obtained from ERIS Computer Room Printer++++ | |||
C9S-CP02 43 Diversity Factor included/ | |||
http:l/www.cnet.com/products/hp-color-laserjet-4600/specs/ | |||
Multiprinter C9S-CP02 8S Average wattage I http:l/manx.classiccmp.org/collections/mds-199909/cd3/printer/la40euga.pdf TOTAL 1030.S **-one of The Typers in the MGR is Idle and is not connected to the power supply unit. Hence the load on it is assumed to be O ++++ It should be noted that the Laser Jet Printers on that desk includes a 10% Diversity Factor (Obtained from the National Electric Code for intermittent loads) as the wattage reflected on the table above references the consumption while printing. | |||
Per Walkdown, three network switches were found under the desks of C91-P642/P630/P631 as opposed to one as documented in "Evaluation of PPG loads for MGR heatup". | |||
This change is reflected above and must be noted. sleep CALC. NO. ENTR-078-CALC-004 0 ENERCON CALCULATION CONTROL SHEET-REV.O Attachment 8 | |||
PAGE NO. 191 of 303 I Measured Values Nine Mile BTU/HR CALC E-184 Nine Mile Watts by Power Supply Ratings from 024 7 .810*000-Panel 252/ Comments from Entergy Panel Disconnect Load Description Current Reading Bus voltage PPCWatts BTU/HR Watts VBN-PNL02 2 C91-P608 CMS/ PPX computer equipt. (removed 800 0.26 121.4 , 32 108 NA 2400 -2400 watts w/ tape drive) VBN*PNL02 3 C91-P600 Central CPU unit 12.30 121.4 1493 5092 5119 2400 1500.2 VBN-PNL02 4 C91-P603 Large core storage 2.12 121.4 257 878 2000 1800 586.1 VBN*PNL02 5 C91*P612 Display Generator 3.50 121.4 425 1449 2048 1020 600.2 VBN*PNL02 6 C91-P620 Digital unit 4.40 121.4 534 1821 8191 2400 2400.5 490W +Wattage of Associated Blower VBN*PNL02 7 C91-P625 Digital unit 1.56 121.4 189 646 8500 2820 2491.1 l(BN-PNL02 8 C91-P621 Digital unit and SPC-BNKl 5.79 121.4 703 2397 8500 2750 2491.1 390 W +Wattage of Associated Blower VBN-PNL02 9 C91*P624 Digital unit 3.91 121.4 475 1619 8500 2400 2491.1 VBN-PNL02 10 C91*P622 Digital unit 3.16 121.4 384 1308 8500 2400 2491.1 VBN*PNL02 11 C91*P623 Digital unit 3.93 121.4 477 1627 8500 2400 2491.1 520 W +Wattage of Associated Blower VBN*PNL02 12 C91-P630/P631 PPC printers 1.05 121.4 127 435 1229 1000 360.2 1030.5 Watts in total for the two panels which includes PPC Printers and other components in the PPC table area VBN-PNL02 13 C91-P613 NSSS Analog unit 1.31 121.4 159 542 1229 912 360.2 VBN*PNL02 15 C91-P616 BOP Analog unit 0.86 121.4 104 356 850 360 249.1 VBN*PNL02 16 C91*P615 BOP Analog unit 0.98 121.4 119 406 850 360 249.1 VBN-PNL02 17 C91*P614 BOP Analog unit 1.29 121.4 157 534 850 360 249.1 VBN-PNL02 18 C91-P642 PPC Results Center Console (CRTs, KB, 4.23 121.4 514 1751 NA 1060 1060 Trend Recorders on P680) VBN*PNL02 19 H13*P680 PPC CRT's and KeyBoard 2.49 121.4 302 1031 NA 792 792 VBN*PNL02 20 C91-P632/P633 PPC computer printers 1.00 121.4 121 414 NA 810 810 VBN*PNL02 22 C91*P650 PPC BOP Digital and SWC*BNK4 4.56 121.4 554 1888 NA 2400 2400 390 W +Wattage of Associated Blower VBN*PNLOlAl 21 C91-P642 PPC Table Area NA 1488 1488 2120 Watts is the connected load VBN*PNLOlAl 22 C91-P631 Area Near PPC Desk NA 1526 1526 This row should be removed as all the connected loads associated with P631 are included in the row above (P630/P631 on row 11) VBN*PNLOlBl 33 C9l*P612 CPU's (2) NA 546 A Network Server is associated with P612 which has a load of 400W. This has to be accounted for with P612. Comments on the table above do not change any values obtained from Enercon Previously. | |||
Please look at the proposed heat load on C91 panels below. | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 REV. 0 PAGE NO. 192 of 303 | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 REV. 0 PAGE NO. 192 of 303 | ||
* 5 of the 17 Personal Computers are accounted for in Panels P642, P631 and P630. Hence they can be removed from the Personal Computer Wattage Calculations which totals to 5*300W each = 1500 Watts | * 5 of the 17 Personal Computers are accounted for in Panels P642, P631 and P630. Hence they can be removed from the Personal Computer Wattage Calculations which totals to 5*300W each = 1500 Watts | ||
* 3 ONE Computers shown in Document "Evaluation of PPC loads for MCR heatup" as 1254 Watts are accounted for already as they are installed on panels C91-CP613A, C91-CP613B and C91-CP625. This is referenced by drawing series starting from 0247.810-000-257 to 0247.810-000-266 | * 3 ONE Computers shown in Document "Evaluation of PPC loads for MCR heatup" as 1254 Watts are accounted for already as they are installed on panels C91-CP613A, C91-CP613B and C91-CP625. This is referenced by drawing series starting from 0247.810-000-257 to 0247.810-000-266 | ||
* Document "Evaluation of PPC loads for MCR heatup" splits the load on NETWORK Switches as shown below. The necessary changes shown must be reflected to avoid double counting. Network Server = 400 Watts The network server is associated and considered as a part of C91-P612 and must be removed from this part of the calculation One network switch= 147 Watts This value is accounted for in C91-P642 and must be removed. Network switch = 50 Watts This value is accounted for in C91-P642 and must be removed. Two Network Switches at reactor Engineering This has not been accounted for with panels and Desk= 2*147 = 294 Watts must stay as is. ' | * Document "Evaluation of PPC loads for MCR heatup" splits the load on NETWORK Switches as shown below. The necessary changes shown must be reflected to avoid double counting. | ||
* On the Email is attached a document which revises the Heat 'load on ERIS Panels based on updated calculations. Also, It was established that H13-Y714E was removed per CR-RBS-2014-05797. H13-Y714E which carried a load of 370.8 watts is now marked as 0 watts. Revised document is attached. This change must be updated by Enercon on their inputs to the calcs. | Network Server = 400 Watts The network server is associated and considered as a part of C91-P612 and must be removed from this part of the calculation One network switch= 147 Watts This value is accounted for in C91-P642 and must be removed. | ||
* Document "Evaluation of PPC loads for MCR heatup" shows the removal of the following o Large Core Storage (LCS) in panel C91-P603 (GE PPD Dwg. 287A5937P003) o Magnetic Tape Drive in panel C91-P608 (GE PPD Dwg. 287A5937P008) o Moving Head Disc in panel C91-P609 (GE PPD Dwg. 287A5937P009) o Card Reader in panel C91-P638 (GE Dwg. 287A5937P011) Based on CR-RBS-2015-4282, the following Equipment were abandoned in place o Black Box to Ethernet in old ERIS B Cabinet o REPTSC o Power Plex Server in MCR o Honeywell P609 Disk Drum o C95-REPMCR2 o C95-REPMCR1 o C91-DEC-REPCM-1 o C91-DEC-REPENG1 o C95-BRMCR1 o MMS-ENV PRINTER o C95-RBSU1 L o C95-REPTSC o C95-LB05 | Network switch = 50 Watts This value is accounted for in C91-P642 and must be removed. | ||
Two Network Switches at reactor Engineering This has not been accounted for with panels and Desk= 2*147 = 294 Watts must stay as is. ' | |||
* On the Email is attached a document which revises the Heat 'load on ERIS Panels based on updated calculations. | |||
Also, It was established that H13-Y714E was removed per CR-RBS-2014-05797. H13-Y714E which carried a load of 370.8 watts is now marked as 0 watts. Revised document is attached. | |||
This change must be updated by Enercon on their inputs to the calcs. | |||
* Document "Evaluation of PPC loads for MCR heatup" shows the removal of the following o Large Core Storage (LCS) in panel C91-P603 (GE PPD Dwg. 287A5937P003) o Magnetic Tape Drive in panel C91-P608 (GE PPD Dwg. 287A5937P008) o Moving Head Disc in panel C91-P609 (GE PPD Dwg. 287A5937P009) o Card Reader in panel C91-P638 (GE Dwg. 287A5937P011) | |||
Based on CR-RBS-2015-4282, the following Equipment were abandoned in place o Black Box to Ethernet in old ERIS B Cabinet o REPTSC o Power Plex Server in MCR o Honeywell P609 Disk Drum o C95-REPMCR2 o C95-REPMCR1 o C91-DEC-REPCM-1 o C91-DEC-REPENG1 o C95-BRMCR1 o MMS-ENV PRINTER o C95-RBSU1 L o C95-REPTSC o C95-LB05 | |||
* This is actually BRMCR2 modem. SRM-Outfall-02 Abandoned in Place CR The information above must be documented. | * This is actually BRMCR2 modem. SRM-Outfall-02 Abandoned in Place CR The information above must be documented. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 . REV.O PAGE NO. 193 of 303 Information below shows the suggested rev1s1on of wattage on C91 panels base9 on walkdown, information published above and discussions with the Honeywell Expert. It was determined that the 2x multiplication factor used by Enercon previously on the measured values can be revised with a 1.15 factor which accounts for a 15% margin for aging factor. All panels except P642/P631 and P630 use measured values as inputs as they are comprised of circuit cards and are bounded by the associated power supplies. P642/P631 and P630 comprise of multiple devices on them (as shown in the first page of this document) which cannot be bounded bv the measured values. Hence connected loads are used as inputs Nine Mile Measured Numbers based on calculations by Suggested Revised Watts Values Enercon Numbers 1.15x all panels except Computer Load 2x digital panels+ l.lx others p642/p631/p630 C91-P608 C91-P600 C91-P603 C91-P612 C91-P620 C91-P625 C91-P621 C91-P624 C91-P622 C91-P623 C91-P630/P631 C91-P613 C91-P616 C91-P615 C91-P614 C91-P642 H13-P680 C91-P632/P633 C91-P650 C91-P642 C91-P631 C91-P612 C91-P612 Server) Total watts (Network 2400 1500.2 586.1 600.2 2400.5 ;. ... 360.2 360.2 249.1 249.1 249.1 1060 792 810 1488 1526 546 32 34.7 1493 1642.5 257 283.1 425 467.4 534** 127 140.2 159 174.9 104 114.8 119 130.9 157 172.3 514 564.9 302 332.5 121 133.5 1488.0 1526.0 546.0 14382.7 ' 36.8 1716.95 295.55 488.75 1030.5 182.85 119.6 136.85 180.55 2120 This load is accounted for with NSSS Panel 139.15 This load is accounted for with C91-P642 Loading above This load is shown with C91-P630/P631 loading above 546 400 11206.95 ENERCON Load Description C91 Process Computer Panels ERIS DAS Tophats Personal Computers/Work Stations Network Switch ONE Computers TOTAL CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 8 REV.O PAGE NO. 194 of 303 Numbers based on calculations by Suggested Revised Numbers Enercon 14382.7 11206.95 2660 7461.6 5100 3600 891 294 1254 0 24287.7 22562.55 IT must be noted that The ERIS DAS Tophats are located above the term cabinets at 7.5 Ft elevation v CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o ENERCON Attachment 9 PAGE NO. 195 of 303 Attachment 9: GOTHIC Input File for Case 2 I 2Q _ J_ ,5b 4 5 7 \ I \ ) | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 . REV.O PAGE NO. 193 of 303 Information below shows the suggested rev1s1on of wattage on C91 panels base9 on walkdown, information published above and discussions with the Honeywell Expert. It was determined that the 2x multiplication factor used by Enercon previously on the measured values can be revised with a 1.15 factor which accounts for a 15% margin for aging factor. All panels except P642/P631 and P630 use measured values as inputs as they are comprised of circuit cards and are bounded by the associated power supplies. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATIQN CONTROL SHEET-REV.p Attachment 9 f.xrcl!r.nt*"-fretyfHD}e<:t. f.wuy dfJY. PAGE; NO. 196 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) (ft2) ls MCR Below 87417. 136 .135 9.115 13.8296 DEFAULT 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 Atmosphere 30000. 136.135 40. 10. DEFAULT 4 Stairwell 1 8341.84 98. 66.667 20. DEFAULT 5 Smoke Removal E 10000. 142. 10. 10. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option Wall Option (ft2) ls o. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT ' Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s 0. -CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT X-Direction Nading Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. . 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading ENERCON Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37, 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Height Plane (ft) (ft) 1 o. 3.48513 2 3.48513 4.0193 3 7.50443 1.61057 I Cell Blockages -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 6 1H13-U750 7 1H13-U730 8 1H13-P808 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1H13-U715 13 1H13-U720 14 1H13-U721/U799 15 1H13-U748 16 1H13-U746 17 1H13-U744 18 1H13-U742 19 1H13-U741 20 1H13-U730 21 1H13-U703 22 1H13-U701 23 1H13-U712 24 1H13-U710 25 1H13-U714 26 1H13-U711 27 1H13-U740 28 Shift Manager E 29 Shift Manager s 30 Kitchen_S 31 Kitchen_W Cell Blockages -Table 2 Volume ls Block Coo No. Xl Yl Zl CALCULATION CONTROL Attachment 9 T BLK B I N BLK B I N BLK B I N B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I'N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N (ft) X2 Y2 Z2 X3 Y3 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 197 of 303 Curb Z3 L Height 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 lB 19 20 21 22 23 24 25 26 27 2B 29 30 31 ENERCON 9. Bl. lB. 27. 36. 45. 54. 5B.5 90. 99. lOB. 117. 126. 135. 9. lB. 27. 36. 45. 54. 9.25 0. 9.25 0. lB.5 o. lB.5 0. lB.5 o. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. 46.25 0. 46.25 0. 46.25 0. 46.25 o. 55.5 0. 46.25 0. 5B.5 27.75 0. Bl. 37. 0. 99. 46.25 0. -lOB. 46.25 0. 11 7. 46. 25 0. 126. 46.25 0. 135.' 46.25 0. 0. 9.25 0. 9. 0. 0. 54. 64.75 o. 54. 64.75 0. CALCULATION CONTROL Attachment 9 54. 135. lB. 27. 36. 45. 54. 77.5 90. 99. lOB. 117. 126. 9. lB. 27. 36. 45. 54. 77.5 Bl. 99. lOB. 117. 126. 135. 9. 9. 54. 45. 9.25 7.5044 9.25 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 lB.5 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 *7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 / 9.25 9.115 6.25 9.115 74. 9 .115 64.75 9.115 X-Direction Cell Face Variations Volume ls Cell Blockage No. No. def o lsl ls2 ls3 ls4 ls5 ls6 lsl7 lslB ls19 ls20 ls21 ls22 ls129 ls130 lsl31 ls132 ls133 ls134 ls145 ls146 ls147 ls14B lsl49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000.. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | P642/P631 and P630 comprise of multiple devices on them (as shown in the first page of this document) which cannot be bounded bv the measured values. Hence connected loads are used as inputs Nine Mile Measured Numbers based on calculations by Suggested Revised Watts Values Enercon Numbers 1.15x all panels except Computer Load 2x digital panels+ l.lx others p642/p631/p630 C91-P608 C91-P600 C91-P603 C91-P612 C91-P620 C91-P625 C91-P621 C91-P624 C91-P622 C91-P623 C91-P630/P631 C91-P613 C91-P616 C91-P615 | ||
C91-P614 C91-P642 H13-P680 C91-P632/P633 | |||
C91-P650 C91-P642 C91-P631 C91-P612 C91-P612 Server) Total watts (Network 2400 1500.2 586.1 600.2 2400.5 ;. ... 360.2 360.2 249.1 249.1 249.1 1060 792 810 1488 1526 546 32 34.7 1493 1642.5 257 283.1 425 467.4 534** 127 140.2 159 174.9 104 114.8 119 130.9 157 172.3 514 564.9 302 332.5 121 133.5 1488.0 1526.0 546.0 14382.7 ' 36.8 1716.95 295.55 488.75 1030.5 182.85 119.6 136.85 180.55 2120 This load is accounted for with NSSS Panel 139.15 This load is accounted for with C91-P642 Loading above This load is shown with C91-P630/P631 loading above 546 400 11206.95 ENERCON Load Description C91 Process Computer Panels ERIS DAS Tophats Personal Computers/Work Stations Network Switch ONE Computers TOTAL CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 8 REV.O PAGE NO. 194 of 303 Numbers based on calculations by Suggested Revised Numbers Enercon 14382.7 11206.95 2660 7461.6 5100 3600 891 294 1254 0 24287.7 22562.55 IT must be noted that The ERIS DAS Tophats are located above the term cabinets at 7.5 Ft elevation v | |||
CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o ENERCON Attachment 9 PAGE NO. 195 of 303 Attachment 9: GOTHIC Input File for Case 2 I 2Q _ J_ ,5b 4 5 7 \ I \ ) | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATIQN CONTROL SHEET-REV.p Attachment 9 f.xrcl!r.nt*"-fretyfHD}e<:t. | |||
f.wuy dfJY. PAGE; NO. 196 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) | |||
(ft2) ls MCR Below 87417. 136 .135 9.115 13.8296 DEFAULT 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 Atmosphere 30000. 136.135 40. 10. DEFAULT 4 Stairwell 1 8341.84 98. 66.667 20. DEFAULT 5 Smoke Removal E 10000. 142. 10. 10. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option Wall Option (ft2) ls o. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT ' Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s 0. -CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT X-Direction Nading Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. . 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading ENERCON Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37, 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Height Plane (ft) (ft) 1 o. 3.48513 2 3.48513 4.0193 3 7.50443 1.61057 I Cell Blockages | |||
-Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 6 1H13-U750 7 1H13-U730 8 1H13-P808 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1H13-U715 13 1H13-U720 14 1H13-U721/U799 15 1H13-U748 16 1H13-U746 17 1H13-U744 18 1H13-U742 19 1H13-U741 20 1H13-U730 21 1H13-U703 22 1H13-U701 23 1H13-U712 24 1H13-U710 25 1H13-U714 26 1H13-U711 27 1H13-U740 28 Shift Manager E 29 Shift Manager s 30 Kitchen_S 31 Kitchen_W Cell Blockages | |||
-Table 2 Volume ls Block Coo No. Xl Yl Zl CALCULATION CONTROL Attachment 9 T BLK B I N BLK B I N BLK B I N B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I'N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N (ft) X2 Y2 Z2 X3 Y3 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 197 of 303 Curb Z3 L Height 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 lB 19 20 21 22 23 24 25 26 27 2B 29 30 31 ENERCON 9. Bl. lB. 27. 36. 45. 54. 5B.5 90. 99. lOB. 117. 126. 135. 9. lB. 27. 36. 45. 54. 9.25 0. 9.25 0. lB.5 o. lB.5 0. lB.5 o. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. 46.25 0. 46.25 0. 46.25 0. 46.25 o. 55.5 0. 46.25 0. 5B.5 27.75 0. Bl. 37. 0. 99. 46.25 0. -lOB. 46.25 0. 11 7. 46. 25 0. 126. 46.25 0. 135.' 46.25 0. 0. 9.25 0. 9. 0. 0. 54. 64.75 o. 54. 64.75 0. CALCULATION CONTROL Attachment 9 54. 135. lB. 27. 36. 45. 54. 77.5 90. 99. lOB. 117. 126. | |||
: 9. lB. 27. 36. 45. 54. 77.5 Bl. 99. lOB. 117. 126. 135. 9. 9. 54. 45. 9.25 7.5044 9.25 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 lB.5 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 *7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 / 9.25 9.115 6.25 9.115 74. 9 .115 64.75 9.115 X-Direction Cell Face Variations Volume ls Cell Blockage No. No. def o lsl ls2 ls3 ls4 ls5 ls6 lsl7 lslB ls19 ls20 ls21 ls22 ls129 ls130 lsl31 ls132 ls133 ls134 ls145 ls146 ls147 ls14B lsl49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000.. | |||
: 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. | : 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. | ||
: 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. . 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. . 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
| Line 484: | Line 1,300: | ||
: 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. j 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. ci. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 203 of 303 EN R ON CALCULATION CONTROL Attachment 9 Y-Direction Cell.Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 ls129 ls130 ls131 ls132 ls133 ls134 ls135 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll *1s12 ls13 ls14 ls15 ls16 ls137 ls138 ls139 18140 ls141 ls142 ls143 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 ls18 lsl9 ls34 ls35 ls SO ls51 lsl46 ls147 ls162 lsl63 ls178 ls179 ls19 ls20 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000. 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2: 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36 .. le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 6.44228 36. 36. | : 0. 0. 0. 0. j 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. ci. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 203 of 303 EN R ON CALCULATION CONTROL Attachment 9 Y-Direction Cell.Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 ls129 ls130 ls131 ls132 ls133 ls134 ls135 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll *1s12 ls13 ls14 ls15 ls16 ls137 ls138 ls139 18140 ls141 ls142 ls143 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 ls18 lsl9 ls34 ls35 ls SO ls51 lsl46 ls147 ls162 lsl63 ls178 ls179 ls19 ls20 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000. | ||
: 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2: 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36 .. le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 6.44228 36. 36. | |||
: 36. 36. 36. 36. 36. 36 .. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 ., 0. 0. 0. 0. 0. 0. 0. 0. | : 36. 36. 36. 36. 36. 36 .. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 ., 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
| Line 570: | Line 1,387: | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. 0. 0. -0. o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 209 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O Z-Direction Cell Face Variations Volume ls Cell Blockage Ai-ea Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 ls148 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 lsl78 lsl79 ls35 ls36 No. Porosity (ft) 0 1. 1000000. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 1. 1. 1. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. 0. 0. -0. o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 209 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O Z-Direction Cell Face Variations Volume ls Cell Blockage Ai-ea Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 ls148 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 lsl78 lsl79 ls35 ls36 No. Porosity (ft) 0 1. 1000000. | ||
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 1. 1. 1. | |||
: 1. 1. 1. i: 1. 1. 1. -1. 1. 1. 1. 1. 1. | : 1. 1. 1. i: 1. 1. 1. -1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
| Line 642: | Line 1,460: | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 36. | : 1. 1. 1. 1. 1. 1. 1. 1. 36. | ||
: 36. 36. 36. 36. 36. 36. 36. | : 36. 36. 36. 36. 36. 36. 36. | ||
: 37. 37. 37. ,37. 37. 37. 51.4286 51.4286 51.4286 51.4286 51.4286 51'.4286 36. 36. 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. ( Volume Hyd. Dia. Porosity (ft) 1. 1000000. 1. 1. | : 37. 37. 37. ,37. 37. 37. 51.4286 51.4286 51.4286 51.4286 51.4286 51'.4286 | ||
: 36. 36. 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. ( Volume Hyd. Dia. Porosity (ft) 1. 1000000. | |||
: 1. 1. | |||
: 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
| Line 663: | Line 1,483: | ||
: 36. 36. 36-; 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 215 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ixre!fo11a-Ew:ty ptO}fKl £vf/ry da'f. Attachment 9 PAGE NO. 216 of 303 lsl82 7 1. 36. lsl83 7 1. 36. ls23 8 1. 74. ,ls24 8 1. 37. ls25 8 1. 61.6667 ls39 8 1. 74. ls40 8 1. 37. ls41 8 1. 61.6667 lslSl 8 1. 74. lsl52 8 1. 37. lsl53 8 1. 61.6667 lsl67 8 1. 74. lsl68 8 1. 37. lsl69 8 1. 61.6667 ls42 9 1. 36. ls43 9 1. 36. ls SB 9 1. 36. ls59 9 1. 36. lsl70 9 1. 36. lsl71 9 1. 36. lsl86 9 1. 36. lsl87 9 1. 36. ls43 10 1. 36. ls44 10 1. 36. ls59 10 1. 36. ls60 10 1. 36. lsl71 10 1. 36. lsl72 10 1. 36. lsl87 10 1. 36. lslBB 10 1. 36. ls44 11 1. 36. ls45 11 1. 36. ls60 11 1. 36. ls61 11 1. 36. lsl72 11 1. 36. lsl73 11 1. 36. lslBB 11 1. 36. lsl89 11 1. 36. ls45 12 1. 36. ls46 12 1. 36. ls61 12 1. 36. ls62 12 1. 36. lsl73 12 1. 36. lsl74 12 1. 36. lsl89 12 1. 36. lsl90 12 1. 36. ls46 13 1. 36. ls47 13 1. 36. ls62 13 1. 36. ls63 13 1. 36. lsl74 13 1. 36. lsl75 13 1. 36. lsl90 13 1. 36. lsl91 13 1. 36. ls47 14 1. 36. ls48 14 1. 36. ls63 14 1. 36. ls64 14 1. 36. lsl75 14 1. 36. lsl76 14 1. 36. | : 36. 36. 36-; 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 215 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ixre!fo11a-Ew:ty ptO}fKl £vf/ry da'f. Attachment 9 PAGE NO. 216 of 303 lsl82 7 1. 36. lsl83 7 1. 36. ls23 8 1. 74. ,ls24 8 1. 37. ls25 8 1. 61.6667 ls39 8 1. 74. ls40 8 1. 37. ls41 8 1. 61.6667 lslSl 8 1. 74. lsl52 8 1. 37. lsl53 8 1. 61.6667 lsl67 8 1. 74. lsl68 8 1. 37. lsl69 8 1. 61.6667 ls42 9 1. 36. ls43 9 1. 36. ls SB 9 1. 36. ls59 9 1. 36. lsl70 9 1. 36. lsl71 9 1. 36. lsl86 9 1. 36. lsl87 9 1. 36. ls43 10 1. 36. ls44 10 1. 36. ls59 10 1. 36. ls60 10 1. 36. lsl71 10 1. 36. lsl72 10 1. 36. lsl87 10 1. 36. lslBB 10 1. 36. ls44 11 1. 36. ls45 11 1. 36. ls60 11 1. 36. ls61 11 1. 36. lsl72 11 1. 36. lsl73 11 1. 36. lslBB 11 1. 36. lsl89 11 1. 36. ls45 12 1. 36. ls46 12 1. 36. ls61 12 1. 36. ls62 12 1. 36. lsl73 12 1. 36. lsl74 12 1. 36. lsl89 12 1. 36. lsl90 12 1. 36. ls46 13 1. 36. ls47 13 1. 36. ls62 13 1. 36. ls63 13 1. 36. lsl74 13 1. 36. lsl75 13 1. 36. lsl90 13 1. 36. lsl91 13 1. 36. ls47 14 1. 36. ls48 14 1. 36. ls63 14 1. 36. ls64 14 1. 36. lsl75 14 1. 36. lsl76 14 1. 36. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxceHence-F.vetyptt;]e<:t, fw:r:; ttay. Attachment 9 PAGE NO. 217 of 303 ls191 14 1. 36 . . ls192 14 1. 36. ls81 15 1. 36. ls82 15 1. 36. ls97 15 1. 36. 1598 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. r 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19. 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 ,20 1. 36. ls102 20 1. 36. lsl03 20 1. 36. ls214 20 1. 36. ls215 20 '1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61. 6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61. 6667 ls167 21 1. 185. ls168 21 1. 92.5 lsl69 21 1. 154.167 \' ls183 21 1. 185. ls184 21 1. 92.5 '-ls185 21 1. 154.167 ls73 22 1. 36. ls74 22 . 1. 36 . | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxceHence-F.vetyptt;]e<:t, fw:r:; ttay. Attachment 9 PAGE NO. 217 of 303 ls191 14 1. 36 . . ls192 14 1. 36. ls81 15 1. 36. ls82 15 1. 36. ls97 15 1. 36. 1598 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. r 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19. 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 ,20 1. 36. ls102 20 1. 36. lsl03 20 1. 36. ls214 20 1. 36. ls215 20 '1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61. 6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61. 6667 ls167 21 1. 185. ls168 21 1. 92.5 lsl69 21 1. 154.167 \' ls183 21 1. 185. ls184 21 1. 92.5 '-ls185 21 1. 154.167 ls73 22 1. 36. ls74 22 . 1. 36 . | ||
CALC. NO. ENTR-078-CALC-004 '* ENERCON CALCULATION CONTROL SHEET-REV.O pt()jtJ<;t, Evwy day. Attachment 9 I PAGE NO. 218 of 303 ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. lsl08 23 1. 36. ls219 23 1. 36.' ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 -1. 36. ls93 24 1. 36. lsl08 24 1. 36. lsl09 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1. 36. ls109 25 1. 36. lsllO 25 1. 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. ls238 25 1. 36. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 1. 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. ls17 28 1. 37. ls129 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51.4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ls257 29 1. 51.4286 ls258 29 1. 51.4286 lsl18 30 1. 36. ls119 30 1. 36. | CALC. NO. ENTR-078-CALC-004 | ||
ENERCON ls246 30 1. ls247 30 1. ls374 30 1. ls375 30 1. ls102 31 1. ls118 31 1. ls230 31 "1. ls246 31 1. ls358 31 1. ls374 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (-ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction No ding Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Cell Blockages Volume 2s Block Height (ft) 5. 3.67 Table 1 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 219 of 303 ENERCON CALCULATION CONTROL Attachment 9 No. Description Cell Blockages -Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000. 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. No. Porosity (ft) Coeff. def 0 1. 1000000. 0. Z-Direction Cell Face Variations Volume 2s (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 220 of 303 Z3 L Curb Height Cell Blockage Area Hyd. Dia. Loss Drop De-ent. Curb Ht No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s (ft) Coeff. 1000000. 0. Hyd. Dia. (ft)' 1000000. North South East West Top Bottom Factor (ft) 0. 0. NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Molec Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase # Diff. Model (ft) (ft) No. No. Option ls NO MIX-L 1. 1. 1. 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation # Type Phase (ft2/s2) [*lbm/s] FF (ft2/s3) [*lbm/s] FF "" Discrete Burn Parameters Min Min Max Burn Flame Burn Un Vol H2 02 H20 Length speed Rate Burn Burn # Frac Frac Frac (ft) (ft/s) FF Frac Opt ls 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 2s 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 3 0.07 0.05 0.55 DEFAtn;.T DEFAULT DEFAULT FBR I E.NERCON CALCULATION CONTROL Attachment 9 4 5 0.07 0.07 0.05 0.05 0.55 0.55 DEFAULT DEFAULT DEFAULT DEFAULT Continuous Burn Parameters Vol Min H2 Min Max Max Burn Vol Flow 02 H20 H20/H2 Frac # (lbm/s) Frac Frac Ratio ls 0. 0.05 0.55 1000. 1. 2s 0. 0.05 0.55 1000. 1. 3 0. 0.05 0.55 1000. 1. 4 0. 0.05 0.55 1000. 1. 5 0. 0.05 0.55 1000. 1. Mechanistic Burn Rate Parameters Min Min Max Lam Burn DEFAULT FBR DEFAULT FBR Burn Vol H2 02 H20 Da Rate Temp Limit # Frac Frac Frac No. (lbm/ft3-s FF (F) ls 0. 0. 1. 1. DEFAULT 350. 2s 0. 0. 1. 1. DEFAULT 350. 3 0. 0. 1. 1. DEFAULT 350. 4 0. 0. 1. 1. DEFAULT 350. 5 0. 0. 1. 1. DEFAULT 350. Mechanistic Burn Propagation Parameters Unburne Burned CC Flow Flame Ignition Vol H2 H2 Vel Thick H2 # Frac FF Frac FF (ft/s) FF (ft) FF Frac ls 0.04 0.001 DEFAULT 0.164 0.04 *2s 0.04 0.001 DEFAULT 0.164 0.04 3 0.04 0.001 DEFAULT 0.164 0.04 4 0.04 0.001 DEFAULT 0.164 0.04 5 0.04 0.001 DEFAULT 0.164 0.04 Fluid Boundary Conditions -Table 1 Press. Temp. Flow s J ON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 221of303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDI$ EDIS OFF Elev. BC# Description (psia) FF (F) FF (lbm/s) FF p 0 Trip Trip (ft) lP Environment 14.7 96 2P HVC ACUl Outlet 14.7 1 3F Atmosphere FB 14.7 1 ___ 4p Smoke Removal E 14.7 96 Fluid Boundary Conditions -Table 2 Liq. V Stm. V Drop D Cpld BC# Frac. FF Frac. FF (in) FF BC# lP 0. h53 NONE 2P 0. . 03034 NONE 3F 4P .03034 h53 NONE NONE Fluid Boundary -Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 lP 1. 2P 1. 3F 1. 4P 1. Fluid Boundary Conditions -Table 4 Volume Fractions 0 N N 136 .13 lT 0 N N 136.13 lT 200 N N 136.13 N N 136.13 Flow Heat Outlet Frac. FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT FF ENERCON CALCULATION CONTROL Attachment 9 Liq CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 222 of 303 BC# Gas 5 FF Gas 6 FF Gas 7 FF Comp FF lP 2P 3F 4P Flow Paths -Table 1 F .P. Vol # Description A 1 'Env Connection ls94 2 Tile 1 a 2s34 3 Tile 1 b 2s68 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8 HVC-ACUl PB Atmosphere FB CB136-9 Low CB 136-9 High Outside Low Outside High Smoke Removal Smoke Removal 2s86 2s77 2s63 2s82 2s89 2s95 2s56 3 3 ls14 ls142 3 4 p 5 2s193 Smoke Removal 2 2s136 Smoke Removal 3 2s144 Fan Flow path ls14 Toilet/Kitchen ls374 Egg Crate 1 ls369 Egg Crate 2 ls371 Egg Crate 3 ls373 Egg Crate 4 ls375 Egg Crate 5 ls377 Egg Crate 6 ls379 Egg Crate 7 ls381 Egg Crate 8 ls383 Egg Crate 9 ls370 Egg Crate 10 ls372 Egg Crate 11 ls376 Egg Crate 12 ls378 Egg Crate 13 ls380 Egg Crate 14 ls382 Egg Crate 15 ls384 Egg Crate 16 ls257 Egg Crate 17 ls258 Egg Crate 18 ls259 Egg Crate 19 ls260 Egg Crate 20 ls261 Egg Crate 21 ls262 Egg Crate_22 ls263 Egg Crate 23 ls264 Egg Crate 24 ls265 Egg Crate 25 ls266 Egg Crate_26 ls267 Egg Crate 27 ls268 Egg Crate_28 ls269 Elev Ht (ft) (ft) 136.13 3.3 145.5 0.001 145.5 0.001 Vol B lP ls290 ls324 Elev Ht (ft) (ft) 136.13 3.3 145.24 0.001 145.24 0.001 145.5 0.001 ls342 145.24 0.001 145.5 0.001 ls333 145.24 0.001 145.5 0.001 ls319 145.24 0.001 145.5 0.001 ls338 145.24 0.001 145.5 0.001 ls345 145.24 0.001 145.5 0.001 ls351 145.5 0.001 136.13 1. 136.13 1. ls312 2P 3F 136.13 3.4851 4 139.62 3.5149 4 157.67 3.5 161.17 3.5 142. 1. 151. 1., 151. 151. 1. 1. 4 3 4P 5 5 5 136.13 3.4851 4 144.25 1. 5 145.24 0.001 2s113 145.24 0.001 2s115 145.24 0.001 2s117 145.24 0.001 2s119 145.24 0.001 2s121 145.24 0.001 2s123 145.24 0.001 2s125 145.24 0.001 2sl27 145.24 0.001 2s114 145.24 0.001 2s116 145.24 0.001 2s120 145.24 0.001 2s122 145.24 0.001 2s124 145.24 0.001 2s126 145.24 0.001 2s128 145.24 0.001 2sl 145.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 145.24 0.001 136.13 1. 136.13 1. 136.13 3.4851 139.62 3.5149 157.67 3.5 161.17 3 .5 136.13 1. 142. 1. 142. 1. 142. 1. 136.13 3.4851 142. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 | '* ENERCON CALCULATION CONTROL SHEET-REV.O pt()jtJ<;t, Evwy day. Attachment 9 I PAGE NO. 218 of 303 ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. lsl08 23 1. 36. ls219 23 1. 36.' ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 -1. 36. ls93 24 1. 36. lsl08 24 1. 36. lsl09 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1. 36. ls109 25 1. 36. lsllO 25 1. 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. ls238 25 1. 36. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 1. 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. ls17 28 1. 37. ls129 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51.4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ls257 29 1. 51.4286 ls258 29 1. 51.4286 lsl18 30 1. 36. ls119 30 1. 36. | ||
ENERCON ls246 30 1. ls247 30 1. ls374 30 1. ls375 30 1. ls102 31 1. ls118 31 1. ls230 31 "1. ls246 31 1. ls358 31 1. ls374 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (-ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction No ding Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Cell Blockages Volume 2s Block Height (ft) 5. 3.67 Table 1 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 219 of 303 ENERCON CALCULATION CONTROL Attachment 9 No. Description Cell Blockages | |||
-Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000. | |||
: 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. No. Porosity (ft) Coeff. def 0 1. 1000000. | |||
: 0. Z-Direction Cell Face Variations Volume 2s (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 220 of 303 Z3 L Curb Height Cell Blockage Area Hyd. Dia. Loss Drop De-ent. Curb Ht No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s (ft) Coeff. 1000000. | |||
: 0. Hyd. Dia. (ft)' 1000000. | |||
North South East West Top Bottom Factor (ft) 0. 0. NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Molec Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase # Diff. Model (ft) (ft) No. No. Option ls NO MIX-L 1. 1. 1. 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation | |||
# Type Phase (ft2/s2) | |||
[*lbm/s] | |||
FF (ft2/s3) | |||
[*lbm/s] | |||
FF "" Discrete Burn Parameters Min Min Max Burn Flame Burn Un Vol H2 02 H20 Length speed Rate Burn Burn # Frac Frac Frac (ft) (ft/s) FF Frac Opt ls 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 2s 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 3 0.07 0.05 0.55 DEFAtn;.T DEFAULT DEFAULT FBR I E.NERCON CALCULATION CONTROL Attachment 9 4 5 0.07 0.07 0.05 0.05 0.55 0.55 DEFAULT DEFAULT DEFAULT DEFAULT Continuous Burn Parameters Vol Min H2 Min Max Max Burn Vol Flow 02 H20 H20/H2 Frac # (lbm/s) Frac Frac Ratio ls 0. 0.05 0.55 1000. 1. 2s 0. 0.05 0.55 1000. 1. 3 0. 0.05 0.55 1000. 1. 4 0. 0.05 0.55 1000. 1. 5 0. 0.05 0.55 1000. 1. Mechanistic Burn Rate Parameters Min Min Max Lam Burn DEFAULT FBR DEFAULT FBR Burn Vol H2 02 H20 Da Rate Temp Limit # Frac Frac Frac No. (lbm/ft3-s FF (F) ls 0. 0. 1. 1. DEFAULT 350. 2s 0. 0. 1. 1. DEFAULT 350. 3 0. 0. 1. 1. DEFAULT 350. 4 0. 0. 1. 1. DEFAULT 350. 5 0. 0. 1. 1. DEFAULT 350. Mechanistic Burn Propagation Parameters Unburne Burned CC Flow Flame Ignition Vol H2 H2 Vel Thick H2 # Frac FF Frac FF (ft/s) FF (ft) FF Frac ls 0.04 0.001 DEFAULT 0.164 0.04 *2s 0.04 0.001 DEFAULT 0.164 0.04 3 0.04 0.001 DEFAULT 0.164 0.04 4 0.04 0.001 DEFAULT 0.164 0.04 5 0.04 0.001 DEFAULT 0.164 0.04 Fluid Boundary Conditions | |||
-Table 1 Press. Temp. Flow s J ON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 221of303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDI$ EDIS OFF Elev. BC# Description (psia) FF (F) FF (lbm/s) FF p 0 Trip Trip (ft) lP Environment 14.7 96 2P HVC ACUl Outlet 14.7 1 3F Atmosphere FB 14.7 1 ___ 4p Smoke Removal E 14.7 96 Fluid Boundary Conditions | |||
-Table 2 Liq. V Stm. V Drop D Cpld BC# Frac. FF Frac. FF (in) FF BC# lP 0. h53 NONE 2P 0. . 03034 NONE 3F 4P .03034 h53 NONE NONE Fluid Boundary | |||
-Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 lP 1. 2P 1. 3F 1. 4P 1. Fluid Boundary Conditions | |||
-Table 4 Volume Fractions 0 N N 136 .13 lT 0 N N 136.13 lT 200 N N 136.13 N N 136.13 Flow Heat Outlet Frac. FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT FF ENERCON CALCULATION CONTROL Attachment 9 Liq CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 222 of 303 BC# Gas 5 FF Gas 6 FF Gas 7 FF Comp FF lP 2P 3F 4P Flow Paths -Table 1 F .P. Vol # Description A 1 'Env Connection ls94 2 Tile 1 a 2s34 3 Tile 1 b 2s68 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8 HVC-ACUl PB Atmosphere FB CB136-9 Low CB 136-9 High Outside Low Outside High Smoke Removal Smoke Removal 2s86 2s77 2s63 2s82 2s89 2s95 2s56 3 3 ls14 ls142 3 4 p 5 2s193 Smoke Removal 2 2s136 Smoke Removal 3 2s144 Fan Flow path ls14 Toilet/Kitchen ls374 Egg Crate 1 ls369 Egg Crate 2 ls371 Egg Crate 3 ls373 Egg Crate 4 ls375 Egg Crate 5 ls377 Egg Crate 6 ls379 Egg Crate 7 ls381 Egg Crate 8 ls383 Egg Crate 9 ls370 Egg Crate 10 ls372 Egg Crate 11 ls376 Egg Crate 12 ls378 Egg Crate 13 ls380 Egg Crate 14 ls382 Egg Crate 15 ls384 Egg Crate 16 ls257 Egg Crate 17 ls258 Egg Crate 18 ls259 Egg Crate 19 ls260 Egg Crate 20 ls261 Egg Crate 21 ls262 Egg Crate_22 ls263 Egg Crate 23 ls264 Egg Crate 24 ls265 Egg Crate 25 ls266 Egg Crate_26 ls267 Egg Crate 27 ls268 Egg Crate_28 ls269 Elev Ht (ft) (ft) 136.13 3.3 145.5 0.001 145.5 0.001 Vol B lP ls290 ls324 Elev Ht (ft) (ft) 136.13 3.3 145.24 0.001 145.24 0.001 145.5 0.001 ls342 145.24 0.001 145.5 0.001 ls333 145.24 0.001 145.5 0.001 ls319 145.24 0.001 145.5 0.001 ls338 145.24 0.001 145.5 0.001 ls345 145.24 0.001 145.5 0.001 ls351 145.5 0.001 136.13 1. 136.13 1. ls312 2P 3F 136.13 3.4851 4 139.62 3.5149 4 157.67 3.5 161.17 3.5 142. 1. 151. 1., 151. 151. 1. 1. 4 3 4P 5 5 5 136.13 3.4851 4 144.25 1. 5 145.24 0.001 2s113 145.24 0.001 2s115 145.24 0.001 2s117 145.24 0.001 2s119 145.24 0.001 2s121 145.24 0.001 2s123 145.24 0.001 2s125 145.24 0.001 2sl27 145.24 0.001 2s114 145.24 0.001 2s116 145.24 0.001 2s120 145.24 0.001 2s122 145.24 0.001 2s124 145.24 0.001 2s126 145.24 0.001 2s128 145.24 0.001 2sl 145.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 145.24 0.001 136.13 1. 136.13 1. 136.13 3.4851 139.62 3.5149 157.67 3.5 161.17 3 .5 136.13 1. 142. 1. 142. 1. 142. 1. 136.13 3.4851 142. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 | |||
) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O 51 52 53 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area # (ft2) 1 1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 40. 40. 80. 80. 80. 80. 80. so. 80. 1. 1. 10.5 10.5 10.5 10.5 1. 36. 12. | ) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O 51 52 53 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area # (ft2) 1 1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 40. 40. 80. 80. 80. 80. 80. so. 80. 1. 1. 10.5 10.5 10.5 10.5 1. 36. 12. | ||
: 12. 10.5 1. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 -Table 2 Hyd. Diam. (ft) 1. 2.667 2.661 2.667 2.667 2.667 2.667 2.667 2.667 2.667 1. 1. 4.2 4.2 4.2 4.2 1. 5.54 3.43 3.43 4.2 1. 0.042 0.042 0.042 0.042 0.042 0.042 0. 042. 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 PAGE NO. 223 of 303 ls270 145.24 0.001 2s14 ls271 145.24 0.001 2s15 ls272 145.24 0.001 2s16 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) 1. 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 1. 1. 10. 10. 10. 10. 1. 10. | : 12. 10.5 1. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 -Table 2 Hyd. Diam. (ft) 1. 2.667 2.661 2.667 2.667 2.667 2.667 2.667 2.667 2.667 1. 1. 4.2 4.2 4.2 4.2 1. 5.54 3.43 3.43 4.2 1. 0.042 0.042 0.042 0.042 0.042 0.042 0. 042. 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 PAGE NO. 223 of 303 ls270 145.24 0.001 2s14 ls271 145.24 0.001 2s15 ls272 145.24 0.001 2s16 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) 1. 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 1. 1. 10. 10. 10. 10. 1. 10. | ||
| Line 673: | Line 1,508: | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. Drop Breakup Model OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF dFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF PAGE NO. 224 of 303 N NONE ENERCON Flow Paths -Table 4 Forwar Flow Min Path H2 #-Frac 1 0.06 2 0. 06 3 0.06 4 0.06 5 0.06 6 0.06 7 0.06 8 0.06 9 0.06 Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 10 0.06 0.05 11 0.06 0.05 12 0.06 0.05 13 0.06 0.05 14 0.06 0.05 15 0.06 0.05 16 0.06 0.05 17 0.06 0.05 18 0.06. 0.05 19 0.06 0.05 20 0.06 0.05 21 0.06 0.05 22 0.06 0.05 23 0.06 0.05 24 ,0.06 0.05 25 0.06 0.05 26 0.06 0.05 27 0.06 0.05 28 0.06 0.05 29 0.06 0.05 30 0.06 0.05 31 0.06 0.05 32 0.06 0.05 33 0.06 0.05 34 0.06 0.05 35 0.06 0.05 36 0.06 0.05 37 0.06 0_05 38 0.06 0.05 39 0.06 0.05 40 0.06 0.05 41 0.06 0.05 42 0.06 0.05 43 0.06 0.05 44 0.06 0.05 45 0.06 0.05 46 0.06 0.05 47 0.06 0.05 48 0.06 0.05 49 0.06 0.05 50 0. 06 I 0. 05 51 0.06 0.05 52 0.06 0.05 53 0.06 0.05 Thermal Conductors Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0:55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O Min H2 Frac 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 Revers Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0 .. 55 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0. 05 . 0. 55 0.05 0.55 Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 225 of 303 Zero Prop Flow Opt NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW Co'FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW COJ;LOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW ENERCON CALCULATION CONTROL Attachment 9 Cond # Vol HT Vol HT Cond s. A. Init. Description CPl-West CP2-NE CP3-SE Floor A Co B Co Type (ft2) T. (F) ls 2s 3s 4s 5s 6s 7s 8s 9s 10s lls 12s 13s 14s 15s 16 17 18s 19s 20s 21s 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ls18-1 1 ls18-1 5 1 7764.63 75. ls81-2 1 ls81-2 5 | : 0. 0. 0. 0. 0. 0. 0. Drop Breakup Model OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF dFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF PAGE NO. 224 of 303 N NONE ENERCON Flow Paths -Table 4 Forwar Flow Min Path H2 #-Frac 1 0.06 2 0. 06 3 0.06 4 0.06 5 0.06 6 0.06 7 0.06 8 0.06 9 0.06 Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 10 0.06 0.05 11 0.06 0.05 12 0.06 0.05 13 0.06 0.05 14 0.06 0.05 15 0.06 0.05 16 0.06 0.05 17 0.06 0.05 18 0.06. 0.05 19 0.06 0.05 20 0.06 0.05 21 0.06 0.05 22 0.06 0.05 23 0.06 0.05 24 ,0.06 0.05 25 0.06 0.05 26 0.06 0.05 27 0.06 0.05 28 0.06 0.05 29 0.06 0.05 30 0.06 0.05 31 0.06 0.05 32 0.06 0.05 33 0.06 0.05 34 0.06 0.05 35 0.06 0.05 36 0.06 0.05 37 0.06 0_05 38 0.06 0.05 39 0.06 0.05 40 0.06 0.05 41 0.06 0.05 42 0.06 0.05 43 0.06 0.05 44 0.06 0.05 45 0.06 0.05 46 0.06 0.05 47 0.06 0.05 48 0.06 0.05 49 0.06 0.05 50 0. 06 I 0. 05 51 0.06 0.05 52 0.06 0.05 53 0.06 0.05 Thermal Conductors Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0:55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O Min H2 Frac 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 Revers Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0 .. 55 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0. 05 . 0. 55 0.05 0.55 Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 225 of 303 Zero Prop Flow Opt NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW Co'FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW COJ;LOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW ENERCON CALCULATION CONTROL Attachment 9 Cond # Vol HT Vol HT Cond s. A. Init. Description CPl-West CP2-NE CP3-SE Floor A Co B Co Type (ft2) T. (F) ls 2s 3s 4s 5s 6s 7s 8s 9s 10s lls 12s 13s 14s 15s 16 17 18s 19s 20s 21s 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ls18-1 1 ls18-1 5 1 7764.63 75. ls81-2 1 ls81-2 5 | ||
* 1 3234 .14 75. ls89-2 1 ls89-2 5 1 3728.76 75. lsl-12 11 lsl-12 12 5 10656. 76.5 Upper MCR ceili MCR West Wall L MCR North WallL 2s129-10 2s129-8 4 ls16-2 2 ls16-2 8 4 lsl-36 2 lsl-36 8 4 MCR East Wall L ls113-2 ls113-8 4 MCR South Wall lsl28-2 ls128-8 4 Ceiling Tiles ls257-10 2sl-12 11 6 Upper MCR West 2sl-14 1 2sl-14 8 4 Upper MCR North 2sl-24 1 2sl-24 8 4 Upper MCR East 2s113-1 2s113-8 4 Upper MCR South 2s128-1 2s128-8 4 Steel Structure 2sl-12 1 2sl-12 5 2 SM Doors lsl 1 lsl 5 10 lHS-JBA ls14 1 lsl4 5 7 ILAC Panels ls133-1 ls133-5 7 Steel ILAC 3/8 ls5-13 1 ls5-13 5 8 Steel ILAC=3/16 ls5-13 1 ls5-13 5 7 DC Panels N ls17-1 1 ls17-1 5 7 DC Panels S ls32-1 1 Support Beams ls16-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-18 1 HVAC Large_l lsl-18 1 HVAC Large_2 ls113-1 SCA Panels N ls17-1 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-1 1 ls32-1 5 ls16-3 5 ls97-2 5 ls64-2 5 lsl-18 5 lsl-18 5 ls113-5 ls17-1 5 ls48 5 ls18 5 ls2 5 ls98-1 5 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 ls146-1 ls146-5 7 ls241-1 ls241-5 7 ls153-1 ls153-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 ls55-9 5 9 41s 1" Conduit S ls16-3 1 42s 1" Conduit kite ls117-1 43s 1" Conduit N wa ls113-1 44s l"Conduit W wal ls3-15 1 45 Security Port ls15 1 46s 2" Conduit ls4-13 1 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 50 RMS-CAB170 51 White boxes 52s Unistrut W 53s Unistrut)N *54s Unistrut s ls112-1 ls16-3 1 ls7-9 1 ls9 1 lslO 1 ls13-3 1 ls33-1 1 ls96-3 1 ls16-3 5 lsll 7-5 ls113-5 ls3-15 5 ls15 5 ls4'-13 5 ls112-5 ls16-3 5 ls7-9 5 ls9 5 lslO 5 ls13-3 5 ls33-1 5 ls96-3 5 Thermal Conductors -Radiation Parameters 7 7 7 7 8 7 7 7 9 9 7 7 7 7 10656. 87. 1312.56 85. 674.51 85. 1312.56 85. 674.51 85. 10016. 78. 1248.48 88. 641.58 88. 1248.48 88. 641. 58 88. 11756. 8 81. 55.2 75. 1. 75. 173.8 75. 15. 75. 20. 75. 198. 75. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 19.625 9.42 39.25 70.65 12.5 34.6 19.6 11.8 6.6 14.7 16.5 36.8 10.496 18.368 75. | * 1 3234 .14 75. ls89-2 1 ls89-2 5 1 3728.76 75. lsl-12 11 lsl-12 12 5 10656. 76.5 Upper MCR ceili MCR West Wall L MCR North WallL 2s129-10 2s129-8 4 ls16-2 2 ls16-2 8 4 lsl-36 2 lsl-36 8 4 MCR East Wall L ls113-2 ls113-8 4 MCR South Wall lsl28-2 ls128-8 4 Ceiling Tiles ls257-10 2sl-12 11 6 Upper MCR West 2sl-14 1 2sl-14 8 4 Upper MCR North 2sl-24 1 2sl-24 8 4 Upper MCR East 2s113-1 2s113-8 4 Upper MCR South 2s128-1 2s128-8 4 Steel Structure 2sl-12 1 2sl-12 5 2 SM Doors lsl 1 lsl 5 10 lHS-JBA ls14 1 lsl4 5 7 ILAC Panels ls133-1 ls133-5 7 Steel ILAC 3/8 ls5-13 1 ls5-13 5 8 Steel ILAC=3/16 ls5-13 1 ls5-13 5 7 DC Panels N ls17-1 1 ls17-1 5 7 DC Panels S ls32-1 1 Support Beams ls16-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-18 1 HVAC Large_l lsl-18 1 HVAC Large_2 ls113-1 SCA Panels N ls17-1 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-1 1 ls32-1 5 ls16-3 5 ls97-2 5 ls64-2 5 lsl-18 5 lsl-18 5 ls113-5 ls17-1 5 ls48 5 ls18 5 ls2 5 ls98-1 5 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 ls146-1 ls146-5 7 ls241-1 ls241-5 7 ls153-1 ls153-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 ls55-9 5 9 41s 1" Conduit S ls16-3 1 42s 1" Conduit kite ls117-1 43s 1" Conduit N wa ls113-1 44s l"Conduit W wal ls3-15 1 45 Security Port ls15 1 46s 2" Conduit ls4-13 1 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 50 RMS-CAB170 51 White boxes 52s Unistrut W 53s Unistrut)N | ||
*54s Unistrut s ls112-1 ls16-3 1 ls7-9 1 ls9 1 lslO 1 ls13-3 1 ls33-1 1 ls96-3 1 ls16-3 5 lsll 7-5 ls113-5 ls3-15 5 ls15 5 ls4'-13 5 ls112-5 ls16-3 5 ls7-9 5 ls9 5 lslO 5 ls13-3 5 ls33-1 5 ls96-3 5 Thermal Conductors | |||
-Radiation Parameters 7 7 7 7 8 7 7 7 9 9 7 7 7 7 10656. 87. 1312.56 85. 674.51 85. 1312.56 85. 674.51 85. 10016. 78. 1248.48 88. 641.58 88. 1248.48 88. 641. 58 88. 11756. 8 81. 55.2 75. 1. 75. 173.8 75. 15. 75. 20. 75. 198. 75. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 19.625 9.42 39.25 70.65 12.5 34.6 19.6 11.8 6.6 14.7 16.5 36.8 10.496 18.368 75. | |||
: 75. 75. | : 75. 75. | ||
: 75. 75. 75. 75. 75. 75. 75. 75. | : 75. 75. 75. 75. 75. 75. 75. 75. | ||
| Line 679: | Line 1,516: | ||
: 75. 75. 75. 75. 75. 75. 75. | : 75. 75. 75. 75. 75. 75. 75. | ||
: 75. | : 75. | ||
: 75. 75. 75. 75. 75. 75. 75: 75. 75. 75. 75. 75. 75. Cond Therm. Rad. Emiss. Therm. Rad. # Side A Side A Side B Emiss. Side B CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 226 of 303 Or I I I I I I I I I x I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON ls No 2s No 3s No 4s No 5s No Gs No 7s No as No 9s No 10s No lls No 12s No 13s No 14s No 15s No 16 No 17 No 18s No 19s No 20s No 2ls No 22s No 23s No 24s No 25s No 26s No 27s No 28s No 29s No 30 No 31 No 32 No 33s No 34s No 35s No 36s No 37s No 38s No 39s No 40s No 4ls No 42s No 43s No 44s No 45 No 46s No 47s No 48s No 49s No 50 No 51 No 52s No 53s No 54s No Heat Transfer Coefficient Heat Type Transfer Nominal # Option Value FF 1 Direct CALCULATION CONTROL Attachment 9 No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No Types -Table 1 end/ Sp Nat For Cnv Cnd Cnv Cnv Cnv Opt Opt HTC Opt Opt ADD MAX VERT SURF OFF CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 227 of 303 Rad Opt OFF CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET-REV.O f.xreifena-fH?typtojea £wr.1du1 Attachment 9 PAGE NO. 228 of 303 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 3T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. 2T '13 13 Sp Conv 1. 63 OFF Heat Transfer Coefficient Types -Table 2 Min Type Phase Liq # Opt Fr act 1 VAP 2 VAP 3 VAP 4 VAP 5 6 7 8 9 10 11 12 13 VAP VAP VAP VAP VAP VAP Max Liq Fr act Convect Bulk T Model Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tw Tg-Tw Tg-Tf Tg-Tf Tg-Tw FF Condensa Bulk T Model Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw FF Heat Transfer Coefficient Types -Table 3 Type # 1 2 3 4 5 6 7 8 9 10 11 12 13 HTC Type # 1 2 3 4 5 6 7 Char. Nat For Norn Minimum Char. Cond. Length (ft} Length Coef Exp (ft) FF FF Types -Table 4 Total Const Heat CT (Btu} Coef Exp Vel Vel Conv HTC Height FF FF (ft/s) FF (B/h-ft2-F (ft) Peak Time Exp (sec} XT DEFAULT. DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Initial BD Value Exp (B/h-f2-F} yt DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Post-BD Post-BD Exp Direct xt FF EN RCON 8 9 10 11 12 13 Thermal Type Conductor Types CALCULATION CONTROL SHEETi Attachment 9 Thick. O.D. Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 229 of 303 Heat # Description Geom (in) (in) Regions (Btu/ft3-s) FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural* Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1. 75 5 2 3.75 6 2 7.875 Therma1 Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0. | : 75. 75. 75. 75. 75. 75. 75: 75. 75. 75. 75. 75. 75. Cond Therm. Rad. Emiss. Therm. Rad. # Side A Side A Side B Emiss. Side B CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 226 of 303 Or I I I I I I I I I x I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON ls No 2s No 3s No 4s No 5s No Gs No 7s No as No 9s No 10s No lls No 12s No 13s No 14s No 15s No 16 No 17 No 18s No 19s No 20s No 2ls No 22s No 23s No 24s No 25s No 26s No 27s No 28s No 29s No 30 No 31 No 32 No 33s No 34s No 35s No 36s No 37s No 38s No 39s No 40s No 4ls No 42s No 43s No 44s No 45 No 46s No 47s No 48s No 49s No 50 No 51 No 52s No 53s No 54s No Heat Transfer Coefficient Heat Type Transfer Nominal # Option Value FF 1 Direct CALCULATION CONTROL Attachment 9 No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No Types -Table 1 end/ Sp Nat For Cnv Cnd Cnv Cnv Cnv Opt Opt HTC Opt Opt ADD MAX VERT SURF OFF CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 227 of 303 Rad Opt OFF CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET-REV.O f.xreifena-fH?typtojea | ||
: 0. 0. 0. 0. 0. 0. 0. 0 .--0. Sub-Heat regs. Factor 1 1. Sub-Heat regs. Factor 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 o. 2 0. 2 0. Sub-Heat Region # (in) (in) *regs. Factor 1 2 0. 0.00768 1 0. 2 2 0.00768 0.01536 1 0. 3 2 0.02304 0.03072 1 0. 4 2 0.05376 0.06144 1 0. 5 2 0 .1152 0.12288 1 0. 6 2 0.23808 0.24576 1 0. 7 2 0.48384 0.49152 1 0. 8 2 0.97536 0.98304 1 0. 1 0.135 ST 1 o. 6 0. 23 0. 39 1.2e-004 21 0. 1 0. 3 0. 1 0. 2 0. | £wr.1du1 Attachment 9 PAGE NO. 228 of 303 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 3T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. 2T '13 13 Sp Conv 1. 63 OFF Heat Transfer Coefficient Types -Table 2 Min Type Phase Liq # Opt Fr act 1 VAP 2 VAP 3 VAP 4 VAP 5 6 7 8 9 10 11 12 13 VAP VAP VAP VAP VAP VAP Max Liq Fr act Convect Bulk T Model Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tw Tg-Tw Tg-Tf Tg-Tf Tg-Tw FF Condensa Bulk T Model Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw FF Heat Transfer Coefficient Types -Table 3 Type # 1 2 3 4 5 6 7 8 9 10 11 12 13 HTC Type # 1 2 3 4 5 6 7 Char. Nat For Norn Minimum Char. Cond. Length (ft} Length Coef Exp (ft) FF FF Types -Table 4 Total Const Heat CT (Btu} Coef Exp Vel Vel Conv HTC Height FF FF (ft/s) FF (B/h-ft2-F (ft) Peak Time Exp (sec} XT DEFAULT. | ||
ENERCON CALCULATION CONTROL Attachment 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9584 1.96608 1 3.92448 3.93216 -1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 22.0416 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Thermal Conductor Type 5 Composite_l Mat. Region # 1 5 2 5 3 5 4 5 6 7 8 9 10 11 12 13* 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 o. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0.01224 0.013056 1 0.025296 0.026112 1 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1. 625 0.034244 1 1.659245 0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.098518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 20.70052 1.96608 1 22.6666 0.98304 1 23.64964 0.49152 1 24.14116 0.24576 1 24.38692 0.12288 1 24.5098 0.06144 1 24.57124 0.03072 1 24.60196 0.01536 1 24.61732 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 230 of 303 ENER Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Region # (in) 1 4 0. 2 4 3.5e-004 3 4 0.001044 4 4 0.002436 5 4 0.00522 6 4 0.010788 7 4 0.021924 8 4 0. 044196 9 4 0.08874 10 4 0.177828 11 4 0.289621 12 4 0.401414 13 4 0.468837 14 4 0.53626 15 4 0.580804 16 4 0.603076 17 4 0 .'614212 18 4 0.61978 19 4 0,622564 20 4 0.623956 21 4 0,624652 Thermal Conductor 7 Type 1/8" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Region # (in) 1 1 0. 2 1 0,1875 3 1 0.28125 Thermal Conductor Type 9 1/16" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 10 1/4" Steel Mat, Region # 1 1 2 1 Cooler/Heater Bdry. (in) 0. 0.125 CALCULATION CONTROL SHEET-** Attachment 9 Thick (in) 3.5e-004 7e-004 ' 0.001392 0.002784 0.005568 0. 011136 0.022272 0.044544 0.089088 0.111793 0 .111793 0.067423 0.067423 0.044544 0. 022272 0. 011136 0.005568 0.002784 0,001392 7e-004 3.5e-Ci04 Thick (in) 0.125 Thick (in) 0.1875 0.09375 0.09375 Thick (in) 0.0625 Thick (in) 0.125 0.125 Sub-Heat regs. Factor 1 0. 1 0. 1 0. 1 0. ---... 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. Sub-Heat regs. Factor 1 0. Sub-Heat regs. Factor 1 0. 1 0. 1 0. Sub-Heat regs, Factor 1 0. / Sub-Heat regs. Factor 1 0. 1 0. *' CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 231 of 303 ENER Heater Cooler # Description 1H 2H 3H 4H SH 6H 7H 8H 9H lOH llH 12H 13:H 14H lSH 16H 17H lSH 19H 20H 21H 22H 23H 24H 2SH 26H 27H 28H 29H 30H 31H 32H 33H 34H 3SH 36H 37H 38H 39H 40H 41H 42H 43H 44H 4SH 46H 47H 48H 49H SOH SlH S2H S3H* S4H SSH S6H S7H \_ CALC. NO. ENTR-078-CALC-004 Q N , CALCULATION CONTROL Attachment 9 REV.O Vol. # lsl ls2 ls3 ls4 lss' ls6 ls7 ls8 ls9 lslO lsll ls12 ls13 lsl4 lslS ls16 ls17 ls18 ls19 ls20. ls21 ls22 ls23 ls24 ls2S ls26 ls27 1828 ls29 ls30 ls31 ls32 ls33 ls34 ls3S ls36 ls37 ls38 ls39 ls40 ls41 ls42 ls43 ls44 ls4S ls46 ls47 'ls48 ls49 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 On Off Flow Trip Trip Rate # # (CFM) PAGE NO. 232 of 303 Flow Heat Heat Rate Rate Rate Phs Ct.rlr FF (Btu/s) FF Opt Loe 1. 6T VTI lsl 1. 6T VTI ls2 1. 6T VTI ls3 1. 1. 1. 1. 1. 1'. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Initial BD Value Exp (B/h-f2-F} | ||
yt DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Post-BD Post-BD Exp Direct xt FF EN RCON 8 9 10 11 12 13 Thermal Type Conductor Types CALCULATION CONTROL SHEETi Attachment 9 Thick. O.D. Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 229 of 303 Heat # Description Geom (in) (in) Regions (Btu/ft3-s) | |||
FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural* | |||
Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1. 75 5 2 3.75 6 2 7.875 Therma1 Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0. | |||
: 0. 0. 0. 0. 0. 0. 0. 0 .--0. Sub-Heat regs. Factor 1 1. Sub-Heat regs. Factor 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 o. 2 0. 2 0. Sub-Heat Region # (in) (in) | |||
*regs. Factor 1 2 0. 0.00768 1 0. 2 2 0.00768 0.01536 1 0. 3 2 0.02304 0.03072 1 0. 4 2 0.05376 0.06144 1 0. 5 2 0 .1152 0.12288 1 0. 6 2 0.23808 0.24576 1 0. 7 2 0.48384 0.49152 1 0. 8 2 0.97536 0.98304 1 0. 1 0.135 ST 1 o. 6 0. 23 0. 39 1.2e-004 21 0. 1 0. 3 0. 1 0. 2 0. | |||
ENERCON CALCULATION CONTROL Attachment 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9584 1.96608 1 3.92448 3.93216 -1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 22.0416 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Thermal Conductor Type 5 Composite_l Mat. Region # 1 5 2 5 3 5 4 5 6 7 8 9 10 11 12 13* 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 o. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0.01224 0.013056 1 0.025296 0.026112 1 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1. 625 0.034244 1 1.659245 0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.098518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 20.70052 1.96608 1 22.6666 0.98304 1 23.64964 0.49152 1 24.14116 0.24576 1 24.38692 0.12288 1 24.5098 0.06144 1 24.57124 0.03072 1 24.60196 0.01536 1 24.61732 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 230 of 303 ENER Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Region # (in) 1 4 0. 2 4 3.5e-004 3 4 0.001044 4 4 0.002436 5 4 0.00522 6 4 0.010788 7 4 0.021924 8 4 0. 044196 9 4 0.08874 10 4 0.177828 11 4 0.289621 12 4 0.401414 13 4 0.468837 14 4 0.53626 15 4 0.580804 16 4 0.603076 17 4 0 .'614212 18 4 0.61978 19 4 0,622564 20 4 0.623956 21 4 0,624652 Thermal Conductor 7 Type 1/8" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Region # (in) 1 1 0. 2 1 0,1875 3 1 0.28125 Thermal Conductor Type 9 1/16" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 10 1/4" Steel Mat, Region # 1 1 2 1 Cooler/Heater Bdry. (in) 0. 0.125 CALCULATION CONTROL SHEET-** | |||
Attachment 9 Thick (in) 3.5e-004 7e-004 ' 0.001392 0.002784 0.005568 | |||
: 0. 011136 0.022272 0.044544 | |||
0.089088 0.111793 0 .111793 0.067423 0.067423 0.044544 | |||
: 0. 022272 0. 011136 0.005568 0.002784 0,001392 7e-004 3.5e-Ci04 Thick (in) 0.125 Thick (in) 0.1875 0.09375 0.09375 Thick (in) 0.0625 Thick (in) 0.125 0.125 Sub-Heat regs. Factor 1 0. 1 0. 1 0. 1 0. ---... 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. Sub-Heat regs. Factor 1 0. Sub-Heat regs. Factor 1 0. 1 0. 1 0. Sub-Heat regs, Factor 1 0. / Sub-Heat regs. Factor 1 0. 1 0. *' CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 231 of 303 ENER Heater Cooler # Description 1H 2H 3H 4H SH 6H 7H 8H 9H lOH llH 12H 13:H 14H lSH 16H 17H lSH 19H 20H 21H 22H 23H 24H 2SH 26H 27H 28H 29H 30H 31H 32H 33H 34H 3SH 36H 37H 38H 39H 40H 41H 42H 43H 44H 4SH 46H 47H 48H 49H SOH SlH S2H S3H* S4H SSH S6H S7H \_ CALC. NO. ENTR-078-CALC-004 Q N , CALCULATION CONTROL Attachment 9 REV.O Vol. # lsl ls2 ls3 ls4 lss' ls6 ls7 ls8 ls9 lslO lsll ls12 ls13 lsl4 lslS ls16 ls17 ls18 ls19 ls20. ls21 ls22 ls23 ls24 ls2S ls26 ls27 1828 ls29 ls30 ls31 ls32 ls33 ls34 ls3S ls36 ls37 ls38 ls39 ls40 ls41 ls42 ls43 ls44 ls4S ls46 ls47 'ls48 ls49 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 On Off Flow Trip Trip Rate # # (CFM) PAGE NO. 232 of 303 Flow Heat Heat Rate Rate Rate Phs Ct.rlr FF (Btu/s) FF Opt Loe 1. 6T VTI lsl 1. 6T VTI ls2 1. 6T VTI ls3 1. 1. 1. 1. 1. 1'. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. | : 1. | ||
| Line 697: | Line 1,545: | ||
: 1. | : 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. PAGE NO. 234 of 303 6T VTI ls118 6T VTI ls119 6T VTI ls120 6T VTI ls121 6T VTI ls122 6T VTI ls123 6T VTI ls124 6T VTI ls125 6T VTI ls126 6T VTI ls127 6T VTI ls128 6T VTI ls129 6T VTI *ls130 6T VTI ls131 6T VTI ls132 6T VTI ls133 6T VTI ls134 6T VTI ls135 6T VTI ls136 6T VTI ls137 6T VTI ls138 6T VTI ls139 6T VTI lsl40 6T VTI ls141 6T VTI ls142 6T VTI ls143 6T VTI lsl44 6T VTI ls145 6T VTI ls146 6T VTI ls147 6T VTI ls148 6T VTI ls149 6T VTI ls150 6T VTI ls151 6T VTI ls152 6T VTI ls153 6T VTI lsl54 6T VTI ls155 6T VTI ls156 6T VTI ls157 6T VTI ls158 6T VTI lsl59 6T VTI lsl60 6T VTI ls161 6T VTI lsl62 6T VTI ls163 6T VTI ls164 6T VTI ls165 6T VTI ls166 6T VTI ls167 6T VTI ls168 6T VTI ls169 6T VTI ls170 6T VTI lsl 71 6T VTI ls172 6T VTI ls173 6T VTI ls174 6T VTI ls175 6T VTI ls176 6T VTI ls177 ENERCON 178H 179H 180H 181H 182H 183H 184H 185H 186H 187H 188H 189H 190H 191H 192H 193H 194H 195H 196H 197H 198H 199H 200H 201H 202H 203H 204H 205H 206H 207H 208H 209H 210H 211H 212H 213H 214H 215H 216H 217H 218H 219H 220H 221H 222H 223H 224H 225H 226H 227H 228H 229H 230H 231H / 232H 233H 234H 235H 236H 237H lsl78 ls179 ls180 ls181 ls182 ls183 ls184 lsl85 ls186 ls187 lsl88 ls189 ls190 ls191 lsl92 ls193 ls194 lsl95 ls196 ls197. ls198 ls199 ls200 ls201 ls202 ls203 ls204 ls205 ls206 ls207 ls208 ls209 ls210 ls211 ls212 ls213 ls214 ls215 ls216 ls217 ls218 ls219 ls220 ls221 ls222 ls223 ls224 ls225 ls226 ls227 ls228 ls229 ls230 ls231 ls232 ls233 ls234 ls235 ls236 ls237 CALCULATION CONTROL Attachment 9 CALC. NO. REV. 0 PAGE NO. 235 of 303 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. PAGE NO. 234 of 303 6T VTI ls118 6T VTI ls119 6T VTI ls120 6T VTI ls121 6T VTI ls122 6T VTI ls123 6T VTI ls124 6T VTI ls125 6T VTI ls126 6T VTI ls127 6T VTI ls128 6T VTI ls129 6T VTI *ls130 6T VTI ls131 6T VTI ls132 6T VTI ls133 6T VTI ls134 6T VTI ls135 6T VTI ls136 6T VTI ls137 6T VTI ls138 6T VTI ls139 6T VTI lsl40 6T VTI ls141 6T VTI ls142 6T VTI ls143 6T VTI lsl44 6T VTI ls145 6T VTI ls146 6T VTI ls147 6T VTI ls148 6T VTI ls149 6T VTI ls150 6T VTI ls151 6T VTI ls152 6T VTI ls153 6T VTI lsl54 6T VTI ls155 6T VTI ls156 6T VTI ls157 6T VTI ls158 6T VTI lsl59 6T VTI lsl60 6T VTI ls161 6T VTI lsl62 6T VTI ls163 6T VTI ls164 6T VTI ls165 6T VTI ls166 6T VTI ls167 6T VTI ls168 6T VTI ls169 6T VTI ls170 6T VTI lsl 71 6T VTI ls172 6T VTI ls173 6T VTI ls174 6T VTI ls175 6T VTI ls176 6T VTI ls177 ENERCON 178H 179H 180H 181H 182H 183H 184H 185H 186H 187H 188H 189H 190H 191H 192H 193H 194H 195H 196H 197H 198H 199H 200H 201H 202H 203H 204H 205H 206H 207H 208H 209H 210H 211H 212H 213H 214H 215H 216H 217H 218H 219H 220H 221H 222H 223H 224H 225H 226H 227H 228H 229H 230H 231H / 232H 233H 234H 235H 236H 237H lsl78 ls179 ls180 ls181 ls182 ls183 ls184 lsl85 ls186 ls187 lsl88 ls189 ls190 ls191 lsl92 ls193 ls194 lsl95 ls196 ls197. ls198 ls199 ls200 ls201 ls202 ls203 ls204 ls205 ls206 ls207 ls208 ls209 ls210 ls211 ls212 ls213 ls214 ls215 ls216 ls217 ls218 ls219 ls220 ls221 ls222 ls223 ls224 ls225 ls226 ls227 ls228 ls229 ls230 ls231 ls232 ls233 ls234 ls235 ls236 ls237 CALCULATION CONTROL Attachment 9 CALC. NO. | ||
REV. 0 PAGE NO. 235 of 303 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. | : 1. | ||
| Line 712: | Line 1,561: | ||
: 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.60 PAGE 236 of 303 6T VT! ls238 6T VT! ls239 6T VT! ls240 6T VT! ls241 6T vTI ls242 6T VT! ls243 6T VTI ls244 6T VT! ls245 6T VTI ls246 6T VT! ls247 6T VTI ls248 6T VTI ls249 6T VTI ls250 6T VTI ls251 6T VT! ls252 6T VT! ls253 6T VT! ls254 6T VT! ls255 6T VT! ls256 4T VT! ls257 4T VT! ls258 4T VT! ls259 4T VT! ls260 4T VT! ls261 4T VT! ls262 4T VTI ls263 4T VT! ls264 4T | : 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.60 PAGE 236 of 303 6T VT! ls238 6T VT! ls239 6T VT! ls240 6T VT! ls241 6T vTI ls242 6T VT! ls243 6T VTI ls244 6T VT! ls245 6T VTI ls246 6T VT! ls247 6T VTI ls248 6T VTI ls249 6T VTI ls250 6T VTI ls251 6T VT! ls252 6T VT! ls253 6T VT! ls254 6T VT! ls255 6T VT! ls256 4T VT! ls257 4T VT! ls258 4T VT! ls259 4T VT! ls260 4T VT! ls261 4T VT! ls262 4T VTI ls263 4T VT! ls264 4T | ||
* VT! ls265 4T VT! ls266 4T VT! *1S267 4T VTI ls268 4T VTI ls269 4T VTI ls270 4T VT! ls271 4T VT! ls272 4T VT! ls273 4T VT! ls274 4T VTI ls275 4T VT! ls276 4T VT! ls277 4T VTI ls278 4T VT! ls279 4T VT! ls280 4T VT! ls281 4T VTI ls282 4T VT! ls283 4T VT! ls284 4T VT! ls285 4T VT! ls286 4T VTI ls287 4T VTI ls288 4T VT! ls289 4T | * VT! ls265 4T VT! ls266 4T VT! *1S267 4T VTI ls268 4T VTI ls269 4T VTI ls270 4T VT! ls271 4T VT! ls272 4T VT! ls273 4T VT! ls274 4T VTI ls275 4T VT! ls276 4T VT! ls277 4T VTI ls278 4T VT! ls279 4T VT! ls280 4T VT! ls281 4T VTI ls282 4T VT! ls283 4T VT! ls284 4T VT! ls285 4T VT! ls286 4T VTI ls287 4T VTI ls288 4T VT! ls289 4T | ||
* VT! ls290 4T VT! ls291 4T VT! ls292 4T VT! ls293 VT! ls294 VT! ls295 VT! ls296 VT! ls297 298H 299H 300H 301H 302H 303H 304H 305H 306H 307H 308H 309H 310H 311H , 312H 313H 314H 315H 316H 317H 318H 319H 320H 321H 322H 323H 324H 325H 326H 327H 328H 329H 330H 331H 332H 333H 334H 335H 336H 337H 338H 339H 340H 341H 342H 343H 344H 345H 346H 347H 348H 349H 350H 351H 352H 353H 354H 355H 356H 357H ENERCON ls298 ls299 ls300 ls301 ls302 ls303 ls304 ls305 ls306 ls307 ls308 ls309 ls310 ls311 ls312 ls313 ls314 ls315 ls316 ls317 ls318 ls319 ls320 ls321 ls322 ls323 ls324 ls325 ls326 ls327 ls328 ls329 ls330 ls331 ls332 ls333 ls334 ls335 ls336 ls337 i.s338 | |||
CALC. NO. ENTR-078-CALC-004 IENERCON CALCULATION CONTROL SHEET-REV.O pto]et.l f.vtr; tia;: Attachment 9 PAGE NO. 288 of 303 1 Temv cVlsl 1. 2 Temv cVls2 1. 3 Tefuv cVls3 1. 4 Temv cVls4 1. 5 Temv cVls5 1. 6 Temv cVls6 1. 7 Temv cVls7 1. 8 Temv cVls8 1. 9 Temv cVls9 1. 10 Temv cVlslO 1. 11 Temv cVlsll 1. 12 Temv cVlsl2 1. 13 Temv cVls13 1. 14 Temv cVlsl4 1. 15 Temv cVlsl5 1. 16 Temv cVlsl6 1. 17 Temv cVlsl7 1. 18 Temv cVlsl8 1. 19 Temv cVlsl9 1. 20 Temv cVls20 1. 21 Temv cVls21 1. 22 Temv cVls22 1. ) 23 Temv cVls23 1. 24 Temv cVls24 1. 25 Temv cVls25 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1. 34 Temv cVls34 1. 35 Temv cVls35 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 1. 41 Temv cVls41 1. 42 Temv cVls42 1. 43 Temv cVls43 1. 44 Temv cVls44 1. 45 Temv cVls45 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVls49 1. 50 Temv cVls50 1. 51 Temv cVls51 1. 52 Temv cVls52 1. 53 Temv cVls53 1. ' 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 1. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. | CALC. NO. ENTR-078-CALC-004 IENERCON CALCULATION CONTROL SHEET-REV.O pto]et.l f.vtr; tia;: Attachment 9 PAGE NO. 288 of 303 1 Temv cVlsl 1. 2 Temv cVls2 1. 3 Tefuv cVls3 1. 4 Temv cVls4 1. 5 Temv cVls5 1. 6 Temv cVls6 1. 7 Temv cVls7 1. 8 Temv cVls8 1. 9 Temv cVls9 1. 10 Temv cVlslO 1. 11 Temv cVlsll 1. 12 Temv cVlsl2 1. 13 Temv cVls13 1. 14 Temv cVlsl4 1. 15 Temv cVlsl5 1. 16 Temv cVlsl6 1. 17 Temv cVlsl7 1. 18 Temv cVlsl8 1. 19 Temv cVlsl9 1. 20 Temv cVls20 1. 21 Temv cVls21 1. 22 Temv cVls22 1. ) 23 Temv cVls23 1. 24 Temv cVls24 1. 25 Temv cVls25 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1. 34 Temv cVls34 1. 35 Temv cVls35 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 1. 41 Temv cVls41 1. 42 Temv cVls42 1. 43 Temv cVls43 1. 44 Temv cVls44 1. 45 Temv cVls45 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVls49 1. 50 Temv cVls50 1. 51 Temv cVls51 1. 52 Temv cVls52 1. 53 Temv cVls53 1. ' 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 1. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptofe<;t. | |||
Ewty dµy. Attachment 9 PAGE NO. 289 of 303 61 Temv cVls61 1. 62 Temv cVls62 1. 63 Temv cVls63 1. 64 Temv cVls64 1. 65 Temv cVls65 1. 66 Temv cVls66 1. 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 Temv cVls76 1. 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 80 Temv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 Temv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 | |||
* Case 2 . (ENTR-078-CALC-004_Case 2.GTH): Normal operation with mitigating actions defined in Table 5. A design basis maximum outdoor temperature of 96°F with a diurnal temperature variation is assumed. | * Case 2 . (ENTR-078-CALC-004_Case 2.GTH): Normal operation with mitigating actions defined in Table 5. A design basis maximum outdoor temperature of 96°F with a diurnal temperature variation is assumed. | ||
* Attachment 1 Case (ENTR-078-CALC-004_Attachment 1.GTH): Normal operations with HVC-ACU1A(B) aligned per AOP-0060 to service water (SWP) at one hour. | * Attachment 1 Case (ENTR-078-CALC-004_Attachment 1.GTH): Normal operations with HVC-ACU1A(B) aligned per AOP-0060 to service water (SWP) at one hour. | ||
* Attachment 2 Case (ENTR-078-CALC-004_Attachment 2.GTH): Same as Case 2, except using the Main Control Room design basis maximum initial humidity of 70%. ,) Note that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. The second means to respond to a Loss of HVAC would be to cross-tie Service Water to provide cooling to HVC-ACU units. The effectiveness of this action is shown in the calculated temperature response of Attachment 1 to this calculation. The third means of providing Main Control Room temperature control following a loss of HVAC is to manually start the MCR smoke removal fan and remove ceiling tiles, an established and well-trained operator action per the AOP-0050, Station Blackout procedure (Reference 8.14). These actions provide forced air flow through the MCR and increase the effective air volume subject to heatup. These are the mitigating actions modeled in Cases 1 and 2 of this calculation. 2. CONCLUSION The results of the three cases are listed in Table 1 below. The average temperature results are given at 1, 2, 4, and 24 hours and the maximum cell temperature is also recorded. Note that the maximum cell temperature reported is the temperature in the lower and middle elevation subvolumes as this is where the operators and pertinent equipment reside. As shown in the table, average and maximum cell (local) temperatures reach their peak values at 2 hours in Case 2 corresponding to the key mitigating action of starting the smoke removal fan (see Table 5). The peak average. and maximum cell temperatures in the Case 1 and Attachment 1 analyses occur at 24 hours. Additional results, including MCR transient temperatures and temperature distribution, are included in Section 7. | * Attachment 2 Case (ENTR-078-CALC-004_Attachment 2.GTH): Same as Case 2, except using the Main Control Room design basis maximum initial humidity of 70%. ,) Note that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. The second means to respond to a Loss of HVAC would be to cross-tie Service Water to provide cooling to HVC-ACU units. The effectiveness of this action is shown in the calculated temperature response of Attachment 1 to this calculation. | ||
Case 1 2 Att. 1 \ ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 5 of 303 Table 1: MCR Temperatures for Cases 1, 2 and Att. 1 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell Description (Of) (of) (of) (of) Tavci (°F) Temo {°F) LOOP Heat Load. Mitigating 104.0 103.3 106.5 111.4 111.4 (24 hrs) 117.8 (24 hrs). actions based on Table 4. Normal Operation Heat ' Load. Mitigating actions 109.5 116.1 109.0 108.6 116.1 (2.0hrs) 121.8 (2.02 hrs) based on Table 5. -Normal Operation Heat Load. HVC-ACU1 to 110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) SWP at 1 hour. ( This is a standalone calculation derived from the RBS Station Blackout MCR heatup GOTHIC model of calculation G13.18.12.4-027 (Reference 8.1 ). Note that ariother, similar evaluation of the MCR temperature after loss of HVAC was completed in calculation ENTR-078-CALC-003 (Reference 8.29). This calculation (ENTR-078-CALC-004) reproduces information and the limiting case scenarios documented in the Reference 8.29 calculation. The current | The third means of providing Main Control Room temperature control following a loss of HVAC is to manually start the MCR smoke removal fan and remove ceiling tiles, an established and well-trained operator action per the AOP-0050, Station Blackout procedure (Reference 8.14). These actions provide forced air flow through the MCR and increase the effective air volume subject to heatup. These are the mitigating actions modeled in Cases 1 and 2 of this calculation. | ||
* calculation therefore provides a streamlined calculation of the Main Control Room temperature response to a loss of HVAC. Lessons learned from the development of the Reference 8.29 models, plus comments provided by independent reviewers (Numerical Applications, Inc. and MPR Associates, Inc.), are incorporated into the GOTHIC models used in this calculation. The models used in this calculation also incorporate changes to address the seven issues identified in the Reference 8.29 control room heatup models identified in CR-RBS-2015-7237. These issues and their resolution in this calculation are detailed below. 1. The heat capacity of structural steel has been corrected and verified through two independent references (Section 3.15 and Table 2). | : 2. CONCLUSION The results of the three cases are listed in Table 1 below. The average temperature results are given at 1, 2, 4, and 24 hours and the maximum cell temperature is also recorded. | ||
* 2. The value used for the density of concrete has been reviewed and verified through two independent references (Section 3.15, Table 2). 3. The control room floor modeling has been reviewed and revised, removing any credit for the aluminum honeycomb support structure and including modeling of the hardwood floor tiles (Section 3.5 and Figure 1, 2 and 3, Section 4.10). 4. _,The mesh size of the GOTHIC subdivided volumes representing the upper.and lower main __ control room regions has been increased to 16 (x-direction) and 8 (y-direction) nodes. The lower main control room subvolumes have also been increased to 3 (z-direction) nodes (Section 6.1 ). d 5. Appropriate momentum transport options are included in flow paths between subvolumes and between a subvolume and lumped volume or boundary condition (Section 6.6). 6. Solar heat affects are included in the thermal 'conductors representing the control room external walls and roof in all GOTHIC models (Section 6.3). 7. The control panels in the control room, previously modeled as passive heat sinks (thermal conductors) with initial surface temperature equal to the MCR temperature, have been revised to include an initial control panel internal heat rate equal to the electrical heat load ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 6 of 303 within the enclosure. With this approach, the initial temperature of the panel conductors is greater than 85°F; significantly above measured control panel temperatures. The internal heat rate in the control panel thermal conductors is shut off after the first time step so that' any residual heat in the panels is released to the MCR. * ' 3. INPUT AND DESIGN CRITERIA 3.1. This model is developed from the GOTHIC model in Reference 8.1. All changes made from the model in Reference 8.1 are documented in this calculation.1 All inputs from Reference 8.1 were verified for this calculation. Inputs retained from Reference 8.1 include: | Note that the maximum cell temperature reported is the temperature in the lower and middle elevation subvolumes as this is where the operators and pertinent equipment reside. As shown in the table, average and maximum cell (local) temperatures reach their peak values at 2 hours in Case 2 corresponding to the key mitigating action of starting the smoke removal fan (see Table 5). The peak average. | ||
* Dimensional Inputs for the MCR volumes (e.g. net free volume, hydraulic diameter, elevation, height) | and maximum cell temperatures in the Case 1 and Attachment 1 analyses occur at 24 hours. Additional | ||
: results, including MCR transient temperatures and temperature distribution, are included in Section 7. | |||
Case 1 2 Att. 1 \ ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 5 of 303 Table 1: MCR Temperatures for Cases 1, 2 and Att. 1 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell Description (Of) (of) (of) (of) Tavci (°F) Temo {°F) LOOP Heat Load. Mitigating 104.0 103.3 106.5 111.4 111.4 (24 hrs) 117.8 (24 hrs). actions based on Table 4. Normal Operation Heat ' Load. Mitigating actions 109.5 116.1 109.0 108.6 116.1 (2.0hrs) 121.8 (2.02 hrs) based on Table 5. -Normal Operation Heat Load. HVC-ACU1 to 110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) SWP at 1 hour. ( This is a standalone calculation derived from the RBS Station Blackout MCR heatup GOTHIC model of calculation G13.18.12.4-027 (Reference 8.1 ). Note that ariother, similar evaluation of the MCR temperature after loss of HVAC was completed in calculation ENTR-078-CALC-003 (Reference 8.29). This calculation (ENTR-078-CALC-004) reproduces information and the limiting case scenarios documented in the Reference 8.29 calculation. | |||
The current | |||
* calculation therefore provides a streamlined calculation of the Main Control Room temperature response to a loss of HVAC. Lessons learned from the development of the Reference 8.29 models, plus comments provided by independent reviewers (Numerical Applications, Inc. and MPR Associates, Inc.), are incorporated into the GOTHIC models used in this calculation. | |||
The models used in this calculation also incorporate changes to address the seven issues identified in the Reference 8.29 control room heatup models identified in CR-RBS-2015-7237. | |||
These issues and their resolution in this calculation are detailed below. 1. The heat capacity of structural steel has been corrected and verified through two independent references (Section 3.15 and Table 2). | |||
* 2. The value used for the density of concrete has been reviewed and verified through two independent references (Section 3.15, Table 2). 3. The control room floor modeling has been reviewed and revised, removing any credit for the aluminum honeycomb support structure and including modeling of the hardwood floor tiles (Section 3.5 and Figure 1, 2 and 3, Section 4.10). 4. _,The mesh size of the GOTHIC subdivided volumes representing the upper.and lower main __ control room regions has been increased to 16 (x-direction) and 8 (y-direction) nodes. The lower main control room subvolumes have also been increased to 3 (z-direction) nodes (Section 6.1 ). d 5. Appropriate momentum transport options are included in flow paths between subvolumes and between a subvolume and lumped volume or boundary condition (Section 6.6). 6. Solar heat affects are included in the thermal 'conductors representing the control room external walls and roof in all GOTHIC models (Section 6.3). 7. The control panels in the control room, previously modeled as passive heat sinks (thermal conductors) with initial surface temperature equal to the MCR temperature, have been revised to include an initial control panel internal heat rate equal to the electrical heat load ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 6 of 303 within the enclosure. | |||
With this approach, the initial temperature of the panel conductors is greater than 85°F; significantly above measured control panel temperatures. | |||
The internal heat rate in the control panel thermal conductors is shut off after the first time step so that' any residual heat in the panels is released to the MCR. * ' 3. INPUT AND DESIGN CRITERIA 3.1. This model is developed from the GOTHIC model in Reference 8.1. All changes made from the model in Reference 8.1 are documented in this calculation. | |||
1 All inputs from Reference 8.1 were verified for this calculation. | |||
Inputs retained from Reference 8.1 include: | |||
* Dimensional Inputs for the MCR volumes (e.g. net free volume, hydraulic | |||
: diameter, elevation, height) | |||
* Initial temperature in the lower MCR (CV1) volume of 75°F and the initial *temperature in the upper MCR (CV2) volume of 81°F .. | * Initial temperature in the lower MCR (CV1) volume of 75°F and the initial *temperature in the upper MCR (CV2) volume of 81°F .. | ||
* The initial relative humidity of 20% for both MCR volumes. I | * The initial relative humidity of 20% for both MCR volumes. | ||
I | |||
* Ceiling tile removal sequence. | * Ceiling tile removal sequence. | ||
* Metal heat sinks above suspended ceiling. 3.2. The electrical heat load in the . MCR for Case 1 (LOOP) i.s do'cumented in E-226 (Reference 8.2), Appendix E and EC61975 (Reference 8.36). Development of the heat load for Case 1 is described in Section 6.5. 3.3. The electrical heat load in the MGR for Case 2 and Attachment 1 (normal operations) is documented in E-226 (Reference 8.2), Appendix A and EC61975 (Reference 8.36). Development of the heat load for Case 2 and Attachment 1 is described in Section 6.5. 3.4. The sensible and latent:heat load due to each operator in the MCR is based on the total heat gain for an adult male for moderately active office work, 475 BTU/hr (Reference 8.13, Chapter 18, Table 1). 3.5. A GOTHIC thermal conductor representing the floor of the lower MCR is added to the models in this analysis that was not included in the Reference 8.1 model. The MCR floor consists of a concrete base floor and a raised floor section with removable wood panels (false floor). Longitudinal and lateral steel structures provide support and form cable raceways for routing cables to the control panels (Reference 8.8 and 8.28). The concrete / base floor of the MCR is 11 inches thick based on the thickness of the concrete conductors used in Reference 8.7. The air gap thickness of the MCR floor is one foot, *with the false floor having a thickness of 1-5/8" (Reference 8.8). Reference 8.8 shows the bottom of false floor elevation at 136' and the top of the false floor elevation at 136' -1 5(8". Figure 1 and 2 show the false floor panels. | * Metal heat sinks above suspended ceiling. | ||
CALC. NO. ENTR-078-CALC-004 F:;J ENERCON CALCULATION CONTROL SHEET REV. 0 f.vrtyda,. PAGE NO. 7 of 303 Figure 1: False Floor Picture Figure 2: Side View of False Floor Panel CALC. NO. ENTR-078-CALC-004 | 3.2. The electrical heat load in the . MCR for Case 1 (LOOP) i.s do'cumented in E-226 (Reference 8.2), Appendix E and EC61975 (Reference 8.36). Development of the heat load for Case 1 is described in Section 6.5. 3.3. The electrical heat load in the MGR for Case 2 and Attachment 1 (normal operations) is documented in E-226 (Reference 8.2), Appendix A and EC61975 (Reference 8.36). Development of the heat load for Case 2 and Attachment 1 is described in Section 6.5. 3.4. The sensible and latent:heat load due to each operator in the MCR is based on the total heat gain for an adult male for moderately active office work, 475 BTU/hr (Reference 8.13, Chapter 18, Table 1). 3.5. A GOTHIC thermal conductor representing the floor of the lower MCR is added to the models in this analysis that was not included in the Reference 8.1 model. The MCR floor consists of a concrete base floor and a raised floor section with removable wood panels (false floor). Longitudinal and lateral steel structures provide support and form cable raceways for routing cables to the control panels (Reference 8.8 and 8.28). The concrete | ||
* ENERCON ' CALCULATION CONTROL SHEET REV. 0 n<-t--Evtty0'"Jt'r:t *v ''Y'iay: PAGE NO. 8 of 303 3.6. The heat load from the Power Generation Control Complex (PGCC) raceways is modeled in the air gap of this composite conductor (see Section 6.5). The steel lateral structures that would act as heat sinks are conservatively neglected. Figure 3 shows the under floor area, including the streel structures and cables not modeled in the GOTHIC calculation that would act as heat sinks or thermal inertia for the heat load. Figure 3: Under Floor Area 3.7. A GOTHIC thermal conductor representing the concrete ceiling of the upper MCR is added to the models in this analysis. The surface area and thickness of the concrete is determined from Reference 8.7 as 10,656 ft2 and 24 inches respectively. 3.8. A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the models in this analysis. The surface area of the ceiling tiles is determined by subtracting the amount of ceiling tile surface area that is removed when the tiles are opened, from the total surface area of the ceiling shown in Reference 8.7 as 10,656 ft2. This conservatively underestimates the amount of tile surface area that would be present during the beginning of the event before the tiles are opened by operator actions. 3.9. Door CB136-9 is a 3'x7' doorway (Reference 8.10 and 8.11). Reference 8.11 shows the door on elevation 157'-8" that opens from stairwell 1 to the atmosphere (CB157-2) has the same dimensions as door CB136-9. This door is therefore modeled as a 3'x7' doorway. 3.10. The dimensions for stairwell 1 are documented in Reference 8.11. The stairwell starts at elevation 98' and goes to elevation 157'-8", with a 7' door. The length and width dimensions are shown as 21 '-8" and 8'-3". The MCR temperature response is expected to be insensitive to the dimensions of the stairway volume as it is a pass through volume from the atmosphere to the MGR. | / base floor of the MCR is 11 inches thick based on the thickness of the concrete conductors used in Reference 8.7. The air gap thickness of the MCR floor is one foot, *with the false floor having a thickness of 1-5/8" (Reference 8.8). Reference 8.8 shows the bottom of false floor elevation at 136' and the top of the false floor elevation at 136' -1 5(8". Figure 1 and 2 show the false floor panels. | ||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 9 of 303 3.11. The MCR smoke removal tan (HVC-FN9) draws 10, 125 cfm from the MCR (13,200 CFM -2850 CFM -225 CFM, per Reference 8.12). 3.12. Section 4.5.4 of the GE Specification for Main Control Room panels, specification 22A3888 (RBS vendor document 0242.411-000-009, Reference 8.16) require: Apparatus shall be suitable for continuous operation within the panels, or benchboard with a normal and abnormal maximum ambien_t air inlet temperature as specified in the BWR Equipment Environmental Interface Data Specification (A62-4270). Allowance shall be made for the temperature rise in the cubicle due to heat given off by other equipment in the same cubicle, when considering individual components the maximum temperature in a panel, or benchboard, shall not exceed 122°F (50°C) under the 3.13. Pl D-22-098 (Reference 8.12) shows an exhaust flow from the kitchen of 500 cfm, and an exhaust flow from the toilet of 300 cfm, which are modeled in Case 2. EE-027 A (Reference 8.26) shows the toilet and kitchen areas as being in the center of the MCR on east side. Therefore, the exhaust flow path for the toilet/kitchen fans is modeled in subvolume 1s374 on the up.per subvolume level in the east-center of the MyR for Case 2. ) 3.14. Door CB136-9 is modeled in the southwest corner of the lower MCR volume in subvolumes 1s14 (lower door and fan) and 1s142 (upper door) based on review of Reference 8.3 and 8.26 .. , 3.15. The properties for the materials used in the analysis are listed in Table 2 and 3 below. Values used in the calculation were validated with respect to the independent reference provided in the last column of Table 2. / 3.16. The effects of solar irradiation on the control roC>m walls and ceiling are included in this model. Solar irradiation is modeled using the "Sol-Air'' Methodology. The Sol-Air temperatures are calculated based on the methodology of Reference 8.13 using climatic data for the Baton Rouge Ryan Airport (Attachment 11 ). The sol-air temperature calculated for the roof is applied to the roof and all sides of the building. This is conservative as the sol-air temperature calculated for the* roof is the greater than for the sides of the building . . This sol-air temperature is applied as a "Sp Ambient & HTC" with the convective heat transfer coefficient of 4.0 from Assumption 4.6 applfed on the "B" side of the conductors representing the walls and roof. The effects of shading are conservatively neglected. See ' I Section 6.3 for more details. r / | CALC. NO. ENTR-078-CALC-004 F:;J ENERCON CALCULATION CONTROL SHEET REV. 0 f.vrtyda,. | ||
) CALCULATION CONTROL SHEET ENERCON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 10 of 303 Table 2: Solid Material Prop_erties Material Density Thermal Specific Reference Independent (lbm/ft3) Conductivity Heat Used in Reference (BTU/hr-ft-F) (BTU/lbm-F) -Calculation Steel 484 21.0 0.116 8.23. Sec. 2 8.13, Ch. 33, Table 28 Table 3 Concrete1 131.5 0.64 0.21 8.23. Sec. 2 8.13 Table 29 / Hardboard 55 0.068 0.32 8.13. Ch. 26, 8.24 Table4 Acoustical 18 0.029 0.19 8.13. Ch. 26, N/A2 Tile *Table 4 '-1. The density and thermal conductivity values are determined by averaging the range of values given in Reference 8.23 (119-144 lbm/ft3 density and 0.47-0.81 Btu/hr-ft-°F conductivity). These values are within the range of the values for sand and gravel or stone aggregate concretes provided in (Reference 8.13) (130 lbm/ft3 density, *o.58-1.08 Btu/hr-ft-°F conductivity, 0.19-024 Btu/lbm-F specific heat). ,_ 2. No independent reference found for Acoustical Tile. The properties of air vary with temperature more so than the solid materials used. Therefore, a temperature distribution for the properties of air is used based on Reference 8.24 shown in Table 1 3: Vafues were confirmed to be conservative and reasonable from Reference 8.25, Appendix I. Note that these air properties are only used in the gap of the composite conductor representing the floor and do not have a significant effect on the results of the calculation. | PAGE NO. 7 of 303 Figure 1: False Floor Picture Figure 2: Side View of False Floor Panel CALC. NO. ENTR-078-CALC | ||
CALC. NO*. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 11 of 303 Table 3: Air Properties Temperature (F) Density (lbm/ft3) Thermal Conductivity Specific Heat (BTU/hr-ft-F) (BTU/lbm-F) 60 0.07633 0.01433 0.2404 80 0.07350 0.01481 0.2404 100 0.0709 0.01529 0.2405 150 0.06507 0.01646 0.2406 300 0.0522 0.01985 0.2423 4. ASSUMPTIONS 4.1. Ten operators are assumed to be in the MCR during the event. This is conservative as AOP-0060 (Reference 8.6, Section 5.1.6) directs non-essential personnel to leave the control room during a Loss of HVAC. The operators, and thus the latent and sensible heat load due to each operator, are assumed to be distributed in the control room as follows: | -004 | ||
* ENERCON ' CALCULATION CONTROL SHEET REV. 0 n<-t--Evtty0'"Jt'r:t | |||
*v ''Y'iay: | |||
PAGE NO. 8 of 303 3.6. The heat load from the Power Generation Control Complex (PGCC) raceways is modeled in the air gap of this composite conductor (see Section 6.5). The steel lateral structures that would act as heat sinks are conservatively neglected. | |||
Figure 3 shows the under floor area, including the streel structures and cables not modeled in the GOTHIC calculation that would act as heat sinks or thermal inertia for the heat load. Figure 3: Under Floor Area 3.7. A GOTHIC thermal conductor representing the concrete ceiling of the upper MCR is added to the models in this analysis. The surface area and thickness of the concrete is determined from Reference 8.7 as 10,656 ft2 and 24 inches respectively. | |||
3.8. A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the models in this analysis. The surface area of the ceiling tiles is determined by subtracting the amount of ceiling tile surface area that is removed when the tiles are opened, from the total surface area of the ceiling shown in Reference 8.7 as 10,656 ft2. This conservatively underestimates the amount of tile surface area that would be present during the beginning of the event before the tiles are opened by operator actions. 3.9. Door CB136-9 is a 3'x7' doorway (Reference 8.10 and 8.11). Reference 8.11 shows the door on elevation 157'-8" that opens from stairwell 1 to the atmosphere (CB157-2) has the same dimensions as door CB136-9. | |||
This door is therefore modeled as a 3'x7' doorway. | |||
3.10. The dimensions for stairwell 1 are documented in Reference 8.11. The stairwell starts at elevation 98' and goes to elevation 157'-8", with a 7' door. The length and width dimensions are shown as 21 '-8" and 8'-3". The MCR temperature response is expected to be insensitive to the dimensions of the stairway volume as it is a pass through volume from the atmosphere to the MGR. | |||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 9 of 303 3.11. The MCR smoke removal tan (HVC-FN9) draws 10, 125 cfm from the MCR (13,200 CFM -2850 CFM -225 CFM, per Reference 8.12). 3.12. Section 4.5.4 of the GE Specification for Main Control Room panels, specification 22A3888 (RBS vendor document 0242.411-000-009, Reference 8.16) require: | |||
Apparatus shall be suitable for continuous operation within the panels, or benchboard with a normal and abnormal maximum ambien_t air inlet temperature as specified in the BWR Equipment Environmental Interface Data Specification (A62-4270). | |||
Allowance shall be made for the temperature rise in the cubicle due to heat given off by other equipment in the same cubicle, when considering individual components the maximum temperature in a panel, or benchboard, shall not exceed 122°F (50°C) under the 3.13. Pl D-22-098 (Reference 8.12) shows an exhaust flow from the kitchen of 500 cfm, and an exhaust flow from the toilet of 300 cfm, which are modeled in Case 2. EE-027 A (Reference 8.26) shows the toilet and kitchen areas as being in the center of the MCR on east side. Therefore, the exhaust flow path for the toilet/kitchen fans is modeled in subvolume 1s374 on the up.per subvolume level in the east-center of the MyR for Case 2. ) 3.14. Door CB136-9 is modeled in the southwest corner of the lower MCR volume in subvolumes 1s14 (lower door and fan) and 1s142 (upper door) based on review of Reference 8.3 and 8.26 .. , 3.15. The properties for the materials used in the analysis are listed in Table 2 and 3 below. Values used in the calculation were validated with respect to the independent reference provided in the last column of Table 2. / 3.16. The effects of solar irradiation on the control roC>m walls and ceiling are included in this model. Solar irradiation is modeled using the "Sol-Air'' | |||
Methodology. | |||
The Sol-Air temperatures are calculated based on the methodology of Reference 8.13 using climatic data for the Baton Rouge Ryan Airport (Attachment 11 ). The sol-air temperature calculated for the roof is applied to the roof and all sides of the building. | |||
This is conservative as the sol-air temperature calculated for the* roof is the greater than for the sides of the building | |||
. . This sol-air temperature is applied as a "Sp Ambient & HTC" with the convective heat transfer coefficient of 4.0 from Assumption 4.6 applfed on the "B" side of the conductors representing the walls and roof. The effects of shading are conservatively neglected. | |||
See ' I Section 6.3 for more details. | |||
r / | |||
) CALCULATION CONTROL SHEET ENERCON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 10 of 303 Table 2: Solid Material Prop_erties Material Density Thermal Specific Reference Independent (lbm/ft3) Conductivity Heat Used in Reference (BTU/hr-ft-F) | |||
(BTU/lbm-F) | |||
-Calculation Steel 484 21.0 0.116 8.23. Sec. 2 8.13, Ch. 33, Table 28 Table 3 Concrete1 131.5 0.64 0.21 8.23. Sec. 2 8.13 Table 29 / Hardboard 55 0.068 0.32 8.13. Ch. 26, 8.24 Table4 Acoustical 18 0.029 0.19 8.13. Ch. 26, N/A2 Tile *Table 4 '-1. The density and thermal conductivity values are determined by averaging the range of values given in Reference 8.23 (119-144 lbm/ft3 density and 0.47-0.81 Btu/hr-ft-°F conductivity). | |||
These values are within the range of the values for sand and gravel or stone aggregate concretes provided in (Reference 8.13) (130 lbm/ft3 density, | |||
*o.58-1.08 Btu/hr-ft-°F conductivity, 0.19-024 Btu/lbm-F specific heat). ,_ 2. No independent reference found for Acoustical Tile. The properties of air vary with temperature more so than the solid materials used. Therefore, a temperature distribution for the properties of air is used based on Reference 8.24 shown in Table 1 3: Vafues were confirmed to be conservative and reasonable from Reference 8.25, Appendix I. Note that these air properties are only used in the gap of the composite conductor representing the floor and do not have a significant effect on the results of the calculation. | |||
CALC. NO*. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 11 of 303 Table 3: Air Properties Temperature (F) Density (lbm/ft3) | |||
Thermal Conductivity Specific Heat (BTU/hr-ft-F) | |||
(BTU/lbm-F) 60 0.07633 0.01433 0.2404 80 0.07350 0.01481 0.2404 100 0.0709 0.01529 0.2405 150 0.06507 0.01646 0.2406 300 0.0522 0.01985 0.2423 4. ASSUMPTIONS 4.1. Ten operators are assumed to be in the MCR during the event. This is conservative as AOP-0060 (Reference 8.6, Section 5.1.6) directs non-essential personnel to leave the control room during a Loss of HVAC. The operators, and thus the latent and sensible heat load due to each operator, are assumed to be distributed in the control room as follows: | |||
* Five operators are located in the central horse shoe area of the MCR (subvolumes 1s55-1 s57, 1 s71-1 s73, 1s87-1 s89, 1s183-1s185, 1s199-1 s201, and 1 s215-1s217). These operators are referred to as Senior Reactor Operators (SROs) in this calculation. | * Five operators are located in the central horse shoe area of the MCR (subvolumes 1s55-1 s57, 1 s71-1 s73, 1s87-1 s89, 1s183-1s185, 1s199-1 s201, and 1 s215-1s217). These operators are referred to as Senior Reactor Operators (SROs) in this calculation. | ||
* The heat load from the remaining five operators is spread evenly across the lower and middle subvolumes of the lower MCR, based on the assumption that these operators will be continuously moving around the MCR to open up\ panel back doors, ceiling tiles etc. \ The total heat load from each operator is 475 BTU/hr (Input 3.4). This total heat load includes a sensible heat load of 250 Btu/hr/operator (Reference 8.13, Chapter 18, Table 1) with the balance (475-250 = 225 Btu/hr/operator) as latent heat. In this analysis, the total heat lo.ad per *operator is modeled as a sensible heat addition to the MCR using GOTHIC heater components. While this approach does not account for the increase in relative humidity that would' result from the latent heat addition, it does conservatively over-estimate the impact on the control room temperature by ' maximizing the sensible heat rate. 4.2. The suction flow for the smoke removal fan is from the screened intake registers located in the southwest corner (2s144), around the center of the west wall (2s136), and along the center of the north wall (2s193), all in the upper plenum (through damper HVC-DMP68/69/70, respectively). The for the smoke removal fan is assumed to be split into these three locations, weighted based on the normal flow through these registers. See Section 6.6 for more details. 4.3. The mitigating operator actions are given in Table 4 for Case 1. The mitigating operator actions are given in Table 5 for Case 2. The mitigating actions were ,, ) | * The heat load from the remaining five operators is spread evenly across the lower and middle subvolumes of the lower MCR, based on the assumption that these operators will be continuously moving around the MCR to open up\ panel back doors, ceiling tiles etc. \ The total heat load from each operator is 475 BTU/hr (Input 3.4). This total heat load includes a sensible heat load of 250 Btu/hr/operator (Reference 8.13, Chapter 18, Table 1) with the balance (475-250 | ||
= 225 Btu/hr/operator) as latent heat. In this analysis, the total heat lo.ad per *operator is modeled as a sensible heat addition to the MCR using GOTHIC heater components. | |||
While this approach does not account for the increase in relative humidity that would' result from the latent heat addition, it does conservatively over-estimate the impact on the control room temperature by ' maximizing the sensible heat rate. 4.2. The suction flow for the smoke removal fan is from the screened intake registers located in the southwest corner (2s144), | |||
around the center of the west wall (2s136), | |||
and along the center of the north wall (2s193), | |||
all in the upper plenum (through damper HVC-DMP68/69/70, respectively). | |||
The for the smoke removal fan is assumed to be split into these three locations, weighted based on the normal flow through these registers. | |||
See Section 6.6 for more details. | |||
4.3. The mitigating operator actions are given in Table 4 for Case 1. The mitigating operator actions are given in Table 5 for Case 2. The mitigating actions were ,, ) | |||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' PAGE NO. 12 of 303 | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' PAGE NO. 12 of 303 | ||
* determined based on the referenced procedural guidance, as well as operator interviews, and actual operator actions taken during the loss of HVC event that occurred on March 9, 2015. Five Operations shift managers or control room supervisors were interviewed in the development of the operator actions and timing which are being assumed within this calculation. The 104°F assumed in Case 1 for initiating ceiling tile removal is considered a conservative trigger for operators to remove MCR ceiling tiles: Removal of MCR ceiling tiles does not impact the MCR envelope, thus operators could perform this action earlier. Some operators indicated this could be initiated in a 30-60 minute time frame after a Loss of HVAC if other actions provided no MCR temperature control. GOTHIC trips are used to initiate the different mitigating actions defined in Tables 4 and 5. 4.4. As described in Table 5, Case 2 includes an operator action to open control room door CB 136-9 into the southwest well of the control building and position a portable fan in this open doorway exhausting into' the stairwell. The also open door CB157-2 to the control building roof at the top of the stairwell. This allows the MCR volume to exchange air with the stairwell and for the portable fan (and later, the smoke removal fan) to draw outside air into the MCR. The stairwell is modeled as a single lumped parameter volume, which results in the stairwell air having a uniform temperature. The free volume of the stairwell is reduced by 30% to account for the stairs in the volume. The stairs and walls in this stairwell volume are conservatively neglected as heat sinks. While this lumped volume approach limits the effectiveness of the stairwell in cooling the air that circulates into the MCR since bidirectional flow and local reduction in stairwell temperatures .. are not captured, the lumped volume does result in uniform mixing of the relatively hot MCR air with the entire stairwell volume. This ignores the stagnant air inventory that would at the lower elevations of the stairwell and thus may under estimate the temperature of the air in the stairwell that is returned to the MCR through the open door. To confirm that the lumped parameter approach is conservative for this calculation, a sensitivity calculation was performeo using-the limiting Case 2 model with a subdivided stairwell volume. The resulting MCR transient temperatures were shown to' be the same as that pre.dieted by the lumped stairwell volume. Therefore, the lumped stairwell model was retained for this analysis. 4.5. A diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere that provides makeup flow to MCR (see Section 6.2). All.cases use a maximum design basis temperature of 96 °F consistent with Reference 8.17 and FSAR Table 9.4-1. The mean daily temperature range that is applied to all cases is based on the climatic data from Attachment 11 for the month of July (Reference 8.13), as this is the most conservative month. The mean daily temperature range specified is 17°F. In each case, the outside air temperature is kept at 96°F for the initial four hours. This conservatively maintains a high outside air temperature until all mitigating actions have been implemented. Outside air temperatures would be considerably lower for much of the year. Attachment 11 shows monthly data for the Baton Rouge airport, approximately 25 miles south of RBS. 4.6. A specified convective HTC of 4 BTU/h-ft2-°F in conjunction with the sol-air temperature developed in Section 6.3 is applied to the outside surface of the thermal conductors representing the walls to the atmosphere, based_ on a typical 7.5 mph wind during summer (Reference 8.13, Chapter 26, Table 1 ). | * determined based on the referenced procedural | ||
ENERCON ,CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 13 of 303 4.7. The portable electric fan that will be staged in door CB136-9 in Case 2 has a flow rate of 2800-4000 CFM (Attachment 6). The lower bound of this value, 2800 CFM is assumed in the analysis. The fan is modeled using a GOTHIC volumetric fan component positioned in the flow path representing the lower half of door CB136-9. Any flow seepage around the sides of the fan is neglected. The flow path representing the upper half of the door remains unobstructed when the fan is running. The fan flow rate is assumed to be constant at the minimum rated flow noted above. Variations in* flow rate due to any back flow or seepage is neglected. 4.8. The heat transfer coefficient (HTC} on the "B" side of the floor thermal conductor is "Sp Ambient and HTC" with the ambient temperature set equal to the most limiting room from ENTR-078-CALC-001 (Reference 8.18) with operator actions to open doors at 4 hours. This room was determined to be DC Equipment Room 1 A. This is a conservative method for modeling th? boundary node for the floor conductor as the DC Equipment room is under a small portion of the MCR, and.all other rooms under the MCR do not experience as severe of temperature increases. The convective HTC is set to 1.63 BTU/IJ- | : guidance, as well as operator interviews, and actual operator actions taken during the loss of HVC event that occurred on March 9, 2015. Five Operations shift managers or control room supervisors were interviewed in the development of the operator actions and timing which are being assumed within this calculation. | ||
) ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 14 of 303 Page 5, Appendix F. Modeling the composite false floor as entirely wood is conservative as; wood is a less efficient heat conductor than aluminum metal. (Per Table 2, the hardwood flooring thermal conductivity is 0.068 Btu/hr-ft-°F versus 96.67 Btu/hr-ft-°F for aluminum used in Reference 8.29). Thus, modeling the false floor as all wood limits the heat transfer out of the* lower MGR volume. As discussed in Attachment 8 of Reference 8.29 (Response to NRG Question 20), a portion of the total false floor area is covered by carpeting to reduce noise C!nd enhance operator comfort (see Reference 8.35). This modification was implemented by RBS design change RBS-ER-98-0228. The GOTHIC floor conductor does\ not include this carpeting material. This is an acceptable assumption as (1) the carpet material covers only , about 1/3 of the total floor area, and (2) the effect on room temperature by omitting the aluminum composite structure was determined to more than offset the effects of including the carpet material. | The 104°F assumed in Case 1 for initiating ceiling tile removal is considered a conservative trigger for operators to remove MCR ceiling tiles: Removal of MCR ceiling tiles does not impact the MCR envelope, thus operators could perform this action earlier. | ||
* 4.11. The ceiling tiles) are modeled as acoustical tiles based on a typical material for ceiling tiles. 4.12. The initial relative humidity of the outside air is set to 53%. This is based on the initial 96°F dry bulb temperature (see Section 4.5) and 81°F wet-bulb temperature consistent with Reference 8.17 and FSAR Table 9.4-1 using a psychrometric chart (ASHRAE, Reference 8.13). The outside air absolute humidity is assumed to remain constant throughout the transient and is based on this initial relative humidity *and atmospheric pressure (14.7 psia). The relative humidity varies with changes in diurnal temperature (see Section 6.2). | Some operators indicated this could be initiated in a 30-60 minute time frame after a Loss of HVAC if other actions provided no MCR temperature control. | ||
* 4.13. The mass of the heat generating equipment inside the MGR panels is not explicitly modeled (see Section 6.4.3). The sensible heat released from the control panels and electrical equipment inside the panels is accounted for by initializing control panel thermal conductors with the non-LOOP control panel heat load to increase the conductor temperature and maximize the stored heat (see Section 6.5.2). 4.14 The roof and walls of the control building are concrete. Therefore, the solar absorptivity of the roof and walls is set to 0.6 based on the recommended value for concrete from Reference 8.13, Chapter 4, and Table 5. 4.15 Based on Reference 8.2, Appendix F, BYS-INV02 batteries provide power to the some of the components (including the computer equipment as well as some of the lighting and control panel heat load) during a LOOP (Case 1 ). Page 12 of Reference 8.2 states that these Non-safety DC loads have a 2 hour design battery life. The heat loads powered by this battery is assumed to stay on for a total of 4 hours to bound this battery life (see Section 6.5.3) and any sensible heat that would be released after the batteries have been depleted. The lighting heat load during the LOOP scenario (Case 1) is assumed to be uniformly reduced based on inspection of Reference 8.33 which shows the lights powered by different panels are evenly distributed throughout the MGR. 4.16 Lighting heat load that is not in luminous ceiling areas is assumed to be split between the lower and upper MCR-85% to the lower MCR and 15% to the upper MGR. Page 26.8 of Reference 8.34 states that the heat-to return for unventilated fixtures, such as ones not in the luminous ceiling area, is between 15 and 25%. The low end of this ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 15 of 303 range, 15%, is used for conservatism. Lights in the luminous ceiling area are assumed to have 100% of the heat load deposited into the lower MCR. 4.17 All cases are initiated assuming that the Main Control Room HVAC (HVC) system has been operating and maintaining the lower and upper MCR at the initial temperatures (75°F and 81°F per Section 3.1) with the outside air and sol-air temperatures continuously varying over each 24 hour period as described in Section 6.2 and 6.3. The cases are assumed to start at the time of peak sol-air and ambient temperature (1 :00 p.m.), thus maximizing the initial temperature in the thermal conductors representing the concrete 'walls and ceiling. 4.18 As stated in Section 3.1, the base cases use an initial MCR relative humidity value of 20%. This is the *minimum value per the Environmental Design Criteria (EDC) and this minimum value is selected to maximize the control room dry bulb transient temperature. A sensitivity case (Attachment 2) assuming an initial MCR humidity of 70%, the Environmental Design Criteria (EDC) maximum value (per Reference 8.17), is also evaluated. This value is higher than MCR humidity values recently recorded during normal operations (see table below), which averaged 58.8%. LcicatiOn,:C:(* ::: * .'.:'.: *;, ::\4;* Humidity: era>** Just inside MCR door 61.3 OSM office across MCR 59.5 By C91-P600 PPC CPU 61.2 cabinet By H13-P821 EHC Cabinet 59.0 By H13-P630 annunc. 57.5 Panel Behind H13-P808 bench board panel 56.9 By P852 02 BOP Aux relay 57 .2 pnl Between P870 and P863 panels Behind P601 panel .. *i*; ,. By P601 ,By P680 Bv P870 ) 58.5 58.7 58.8 58.5 58.9 ENERCON CALCULATION CONTROL SHEET Table 4: Mitigating actions for Case 1 Time Action 0 Loss of Control Building cooling(failure of HVC-ACU1A(B) to run due to chiller failure) Loss of Offsite Power: Div.1 and/or Div.2 Standby DG's respond successfully. < 30 min Operators attempt to restart chillers or manually start HVC-ACU1A(B). These actions are assumed to fail. 30 min Compiete actions to open back panel doors in Control Room. Operators would normally initiate steps to align SWP to provide cooling to HVC-ACU's Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited. 104°F Initiate actions to remove ceiling tiles. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 16 of 303 Basis AOP-0060 (Reference 8.6) Step 5.1.1 and Operator Interviews. AOP-0060 (Reference 8.6) AOP-0060 step 5.1.2 (Reference 8.6). and Operatqr Interviews AOP-0050 (Reference 8.14) and Operator Interviews. | GOTHIC trips are used to initiate the different mitigating actions defined in Tables 4 and 5. 4.4. As described in Table 5, Case 2 includes an operator action to open control room door CB 136-9 into the southwest well of the control building and position a portable fan in this open doorway exhausting into' the stairwell. | ||
Time 0 <30 min 30min 1 hour 1 hour 30 minutes. 2 hours ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 17 of 303 Table 5: Mitigating actions for Case 2 Action Basis Loss of Control Building cooling (failure of HVC-ACU1A(B) to run ,due to chiller failure) Offsite Power available. Toilet and Exhaust Fans remain running. / Operators attempt to restart chillers or manually start AOP-0060 (Reference 8.6) Step HVC-ACU1A(B). These actions are assumed to fail. 5.1.1 and Operator Interviews. Complete actions to open back panel doors in Control AOP-0060 (Reference 8.6) Room. Operators would normally initiate steps to align SWP to AOP-0060 step 5.1.2. (Reference provide cooling .to HVC-ACU's 8.6) and Operator Interviews Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited (See Attachment 1): | The also open door CB157-2 to the control building roof at the top of the stairwell. | ||
* Operations open Main Control Room door CB136-9 to SW Operator Interviews stairway (near elevator) and open door from stairwell to the outside A portable electric fan staged in door CB 136-9 to exhaust Operator Interviews from Main Control Room. Smoke Removal fan (HVC:-FN9) started to provide Main SOP-0058 (Reference 8.30) Control Room Ventilation. Section 5.5 and Operator " \ Interviews 2 hours 30 Initiate actions to remove ceiling tiles. AOP-0050 (Reference 8.14) minutes 5. METHOD OF ANALYSIS The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for .24 hours following a Loss of HVAC. GOTHIC is/ a general purpose thermal hydraulic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). ' \ GOTHIC models developed for this calculation are based on the model from G13.18.12.4*027 (Reference 8.1). The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference 8.29) are also used in the development of this calculation. | This allows the MCR volume to exchange air with the stairwell and for the portable fan (and later, the smoke removal fan) to draw outside air into the MCR. The stairwell is modeled as a single lumped parameter volume, which results in the stairwell air having a uniform temperature. | ||
ENERCON CALCULATION CONTROL SHEET 6. GOTHIC INPUT DEVELOPMENT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 18 of 303 The volumes, conductors, and initial conditions from Reference 8.1 that were verified to be correct and/or reasonable are retained in this model. New or revised inputs are documented in this calculation. 6.1. Control Volumes and Bot;mdary Conditions The SBO model (Reference a.1) uses a 4X x 2V x 2Z subdivision for the upper and lower MCR (Control Volume (CV) 1 and CV2). The analysis in this calculation further subdivides the lower MCR into a 16X x av x 3Z subdivision and) the upper MCR into a 16X x av x 2Z subdivision (see Figure 4). The hydraulic diameters for the cell face variations and volume *variations are set to the default values, allowing GOTHIC to calculate these parameters internally. ' The location of the first vertical subdivision in the lower MCR control volume (CV1) is adjusted so that the lower half of door CB136-9 is connected to the lower subvolumes and the upper half to the middle subvolumes. The second vertical subdivision in the lower MCR control volume is at the height of the top of the control panels (7.5 ft). Three control volumes are added"to model the atmosphere, stairwell 1 and an exhaust ' volume. The first control volume added (CV3) represents the atmosphere which provides makeup flow to the stairwell volume. This is a flow-through volume as described in Section 22.10 of the GOTHIC User's Manual (Reference a.5). Temperature in this atmosphere volume is controlled using a diurnal temperature forcing function applied to the pressure and flow boundary conditions connected to this volume, as described in Assumption 4.5. The -volume is arbitrarily set to 30,000 ft3. The flow boundary flow rate is set to 200 lbm/sec to maintain the desired conditions in the control volume. ' The second control volume added (CV4) represents stairwell 1. Door CB 136-9 opens into this stairwell on elevation 136'-1 5/a". This volume is connected to the atmosphere volume (CV3) on elevation 157'-a". The height of the stairwell is determined by subtracting the bottom elevation, 9a' as shown on Reference a.11, from the top elevation. The top elevation is assumed to be equal to the elevation at the top of stairwell 1 of 157'-a" shown on Reference a.11, plus the door height (7 ft, Input 3.9). The height of stairwell 1 is calculated below. Hstairwell = 1,64.667 ft -98 ft = 66.667 ft The volume of the stairwell is calculated based on the stairwell dimensions given in Input 3.1 O . and the height calculated above, reduced by 30% (Assumption 4.4), as shown below Vstairwell = 0.7 * (L | The free volume of the stairwell is reduced by 30% to account for the stairs in the volume. The stairs and walls in this stairwell volume are conservatively neglected as heat sinks. While this lumped volume approach limits the effectiveness of the stairwell in cooling the air that circulates into the MCR since bidirectional flow and local reduction in stairwell temperatures | ||
.. are not captured, the lumped volume does result in uniform mixing of the relatively hot MCR air with the entire stairwell volume. This ignores the stagnant air inventory that would at the lower elevations of the stairwell and thus may under estimate the temperature of the air in the stairwell that is returned to the MCR through the open door. To confirm that the lumped parameter approach is conservative for this calculation, a sensitivity calculation was performeo using-the limiting Case 2 model with a subdivided stairwell volume. The resulting MCR transient temperatures were shown to' be the same as that pre.dieted by the lumped stairwell volume. Therefore, the lumped stairwell model was retained for this analysis. | |||
4.5. A diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere that provides makeup flow to MCR (see Section 6.2). All.cases use a maximum design basis temperature of 96 °F consistent with Reference 8.17 and FSAR Table 9.4-1. The mean daily temperature range that is applied to all cases is based on the climatic data from Attachment 11 for the month of July (Reference 8.13), as this is the most conservative month. The mean daily temperature range specified is 17°F. In each case, the outside air temperature is kept at 96°F for the initial four hours. This conservatively maintains a high outside air temperature until all mitigating actions have been implemented. | |||
Outside air temperatures would be considerably lower for much of the year. Attachment 11 shows monthly data for the Baton Rouge airport, approximately 25 miles south of RBS. 4.6. A specified convective HTC of 4 BTU/h-ft2-°F in conjunction with the sol-air temperature developed in Section 6.3 is applied to the outside surface of the thermal conductors representing the walls to the atmosphere, based_ on a typical 7.5 mph wind during summer (Reference 8.13, Chapter 26, Table 1 ). | |||
ENERCON ,CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 13 of 303 4.7. The portable electric fan that will be staged in door CB136-9 in Case 2 has a flow rate of 2800-4000 CFM (Attachment 6). The lower bound of this value, 2800 CFM is assumed in the analysis. | |||
The fan is modeled using a GOTHIC volumetric fan component positioned in the flow path representing the lower half of door CB136-9. | |||
Any flow seepage around the sides of the fan is neglected. | |||
The flow path representing the upper half of the door remains unobstructed when the fan is running. | |||
The fan flow rate is assumed to be constant at the minimum rated flow noted above. Variations in* flow rate due to any back flow or seepage is neglected. | |||
4.8. The heat transfer coefficient (HTC} on the "B" side of the floor thermal conductor is "Sp Ambient and HTC" with the ambient temperature set equal to the most limiting room from ENTR-078-CALC-001 (Reference 8.18) with operator actions to open doors at 4 hours. This room was determined to be DC Equipment Room 1 A. This is a conservative method for modeling th? boundary node for the floor conductor as the DC Equipment room is under a small portion of the MCR, and.all other rooms under the MCR do not experience as severe of temperature increases. | |||
The convective HTC is set to 1.63 BTU/IJ-ft 2-°F based on heat flow upwards (Reference 8.13, Chapter 26). The initial temperature of the* thermal conductor representing the floor is set to the average of the initial temperature of DC Equipment Room 1 A (78 °F) and the initial temperature of the MC.R (75°F), or 76.5°F. 4.9. Multiple other operator actions are available as a response to a loss of control building cooling. | |||
AOP-0060 (Reference 8.6) provides instructions for use of Service Water to directly cool the control building Air Conditioning Units. This action was not credited in ttie analyses in the body of this calculation, but the time delay associated with attempting this was implicitly accounted for in development of the operator action timeline based on operator interviews. | |||
Operators are able to manually initiate ACU 1 A(B) main control room air conditioning units from the Main Control Room, overriding interlocks with the Chilled Water System. This action was taken during the March 9, 2015, loss of control building ventilation event by the Main Control Room staff. A case with HVC-ACU1 aligned to service water is evaluated in Attachment 1 to this calculation. | |||
Multiple portable fans are available at River Bend which could be used to provide control room ventilation. | |||
Attachment 6 provides a picture and information on the electric ppwered fan credited in this analysis. | |||
The River Bend fire brigade van contains a gasoline powered portable fan with a flow rate of greater than 14,000 CFM which could be staged to provide ventilation to the main control room (Fire Brigade members are trained in techniques for effective ventilation). | |||
A picture of this fan is also provided in Attachment | |||
: 6. FLEX portable fans and diesel generators are also now available on site at .. River Bend to provide ventilation as required. | |||
Thus, multiple other means of providing ventilation and cooling of the main control room are available besides those credited in this calculation. | |||
4.1 O. The floor (see also Section 3.5) is rnodeled using a composite conductor with three regions representing the false floor panels, an air gap, and concrete. | |||
The false floor is modeled as hardboard, based on pictures of the floor panels shown in Figure 1 and 2. Figure 1 and 2 show the floor is a wood composite | |||
: material, supported by an aluminum composite structure and steel supports as documented in Reference 8.9, | |||
) ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 14 of 303 Page 5, Appendix F. Modeling the composite false floor as entirely wood is conservative as; wood is a less efficient heat conductor than aluminum metal. (Per Table 2, the hardwood flooring thermal conductivity is 0.068 Btu/hr-ft-°F versus 96.67 Btu/hr-ft-°F for aluminum used in Reference 8.29). Thus, modeling the false floor as all wood limits the heat transfer out of the* lower MGR volume. As discussed in Attachment 8 of Reference 8.29 (Response to NRG Question 20), a portion of the total false floor area is covered by carpeting to reduce noise C!nd enhance operator comfort (see Reference 8.35). This modification was implemented by RBS design change RBS-ER-98-0228. | |||
The GOTHIC floor conductor does\ not include this carpeting material. | |||
This is an acceptable assumption as (1) the carpet material covers only , about 1/3 of the total floor area, and (2) the effect on room temperature by omitting the aluminum composite structure was determined to more than offset the effects of including the carpet material. | |||
* 4.11. The ceiling tiles) are modeled as acoustical tiles based on a typical material for ceiling tiles. 4.12. The initial relative humidity of the outside air is set to 53%. This is based on the initial 96°F dry bulb temperature (see Section 4.5) and 81°F wet-bulb temperature consistent with Reference 8.17 and FSAR Table 9.4-1 using a psychrometric chart (ASHRAE, Reference 8.13). The outside air absolute humidity is assumed to remain constant throughout the transient and is based on this initial relative humidity | |||
*and atmospheric pressure (14.7 psia). The relative humidity varies with changes in diurnal temperature (see Section 6.2). | |||
* 4.13. The mass of the heat generating equipment inside the MGR panels is not explicitly modeled (see Section 6.4.3). The sensible heat released from the control panels and electrical equipment inside the panels is accounted for by initializing control panel thermal conductors with the non-LOOP control panel heat load to increase the conductor temperature and maximize the stored heat (see Section 6.5.2). 4.14 The roof and walls of the control building are concrete. | |||
Therefore, the solar absorptivity of the roof and walls is set to 0.6 based on the recommended value for concrete from Reference 8.13, Chapter 4, and Table 5. 4.15 Based on Reference 8.2, Appendix F, BYS-INV02 batteries provide power to the some of the components (including the computer equipment as well as some of the lighting and control panel heat load) during a LOOP (Case 1 ). Page 12 of Reference 8.2 states that these Non-safety DC loads have a 2 hour design battery life. The heat loads powered by this battery is assumed to stay on for a total of 4 hours to bound this battery life (see Section 6.5.3) and any sensible heat that would be released after the batteries have been depleted. | |||
The lighting heat load during the LOOP scenario (Case 1) is assumed to be uniformly reduced based on inspection of Reference 8.33 which shows the lights powered by different panels are evenly distributed throughout the MGR. 4.16 Lighting heat load that is not in luminous ceiling areas is assumed to be split between the lower and upper MCR-85% to the lower MCR and 15% to the upper MGR. Page 26.8 of Reference 8.34 states that the heat-to return for unventilated | |||
: fixtures, such as ones not in the luminous ceiling area, is between 15 and 25%. The low end of this ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 15 of 303 range, 15%, is used for conservatism. | |||
Lights in the luminous ceiling area are assumed to have 100% of the heat load deposited into the lower MCR. 4.17 All cases are initiated assuming that the Main Control Room HVAC (HVC) system has been operating and maintaining the lower and upper MCR at the initial temperatures (75°F and 81°F per Section 3.1) with the outside air and sol-air temperatures continuously varying over each 24 hour period as described in Section 6.2 and 6.3. The cases are assumed to start at the time of peak sol-air and ambient temperature (1 :00 p.m.), thus maximizing the initial temperature in the thermal conductors representing the concrete | |||
'walls and ceiling. | |||
4.18 As stated in Section 3.1, the base cases use an initial MCR relative humidity value of 20%. This is the *minimum value per the Environmental Design Criteria (EDC) and this minimum value is selected to maximize the control room dry bulb transient temperature. | |||
A sensitivity case (Attachment | |||
: 2) assuming an initial MCR humidity of 70%, the Environmental Design Criteria (EDC) maximum value (per Reference 8.17), is also evaluated. | |||
This value is higher than MCR humidity values recently recorded during normal operations (see table below), which averaged 58.8%. LcicatiOn,:C:(* | |||
::: * .'.:'.: *;, | |||
::\4;* | |||
Humidity: | |||
era>** Just inside MCR door 61.3 OSM office across MCR 59.5 By C91-P600 PPC CPU 61.2 cabinet By H13-P821 EHC Cabinet 59.0 By H13-P630 annunc. 57.5 Panel Behind H13-P808 bench board panel 56.9 By P852 02 BOP Aux relay 57 .2 pnl Between P870 and P863 panels Behind P601 panel .. | |||
*i*; ,. | |||
By P601 ,By P680 Bv P870 ) 58.5 58.7 58.8 58.5 58.9 ENERCON CALCULATION CONTROL SHEET Table 4: Mitigating actions for Case 1 Time Action 0 Loss of Control Building cooling(failure of HVC-ACU1A(B) to run due to chiller failure) | |||
Loss of Offsite Power: Div.1 and/or Div.2 Standby DG's respond successfully. | |||
< 30 min Operators attempt to restart chillers or manually start HVC-ACU1A(B). | |||
These actions are assumed to fail. 30 min Compiete actions to open back panel doors in Control Room. Operators would normally initiate steps to align SWP to provide cooling to HVC-ACU's Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited. | |||
104°F Initiate actions to remove ceiling tiles. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 16 of 303 Basis AOP-0060 (Reference 8.6) Step 5.1.1 and Operator Interviews. | |||
AOP-0060 (Reference 8.6) AOP-0060 step 5.1.2 (Reference 8.6). and Operatqr Interviews AOP-0050 (Reference 8.14) and Operator Interviews. | |||
Time 0 <30 min 30min 1 hour 1 hour 30 minutes. | |||
2 hours ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 17 of 303 Table 5: Mitigating actions for Case 2 Action Basis Loss of Control Building cooling (failure of HVC-ACU1A(B) to run ,due to chiller failure) | |||
Offsite Power available. | |||
Toilet and Exhaust Fans remain running. | |||
/ Operators attempt to restart chillers or manually start AOP-0060 (Reference 8.6) Step HVC-ACU1A(B). | |||
These actions are assumed to fail. 5.1.1 and Operator Interviews. | |||
Complete actions to open back panel doors in Control AOP-0060 (Reference 8.6) Room. Operators would normally initiate steps to align SWP to AOP-0060 step 5.1.2. (Reference provide cooling .to HVC-ACU's 8.6) and Operator Interviews Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited (See Attachment 1): | |||
* Operations open Main Control Room door CB136-9 to SW Operator Interviews stairway (near elevator) and open door from stairwell to the outside A portable electric fan staged in door CB 136-9 to exhaust Operator Interviews from Main Control Room. Smoke Removal fan (HVC:-FN9) started to provide Main SOP-0058 (Reference 8.30) Control Room Ventilation. | |||
Section 5.5 and Operator | |||
" \ Interviews 2 hours 30 Initiate actions to remove ceiling tiles. AOP-0050 (Reference 8.14) minutes 5. METHOD OF ANALYSIS The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for .24 hours following a Loss of HVAC. GOTHIC is/ a general purpose thermal hydraulic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). ' \ GOTHIC models developed for this calculation are based on the model from G13.18.12.4*027 (Reference 8.1). The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference 8.29) are also used in the development of this calculation. | |||
ENERCON CALCULATION CONTROL SHEET 6. GOTHIC INPUT DEVELOPMENT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 18 of 303 The volumes, conductors, and initial conditions from Reference 8.1 that were verified to be correct and/or reasonable are retained in this model. New or revised inputs are documented in this calculation. | |||
6.1. Control Volumes and Bot;mdary Conditions The SBO model (Reference a.1) uses a 4X x 2V x 2Z subdivision for the upper and lower MCR (Control Volume (CV) 1 and CV2). The analysis in this calculation further subdivides the lower MCR into a 16X x av x 3Z subdivision and) the upper MCR into a 16X x av x 2Z subdivision (see Figure 4). The hydraulic diameters for the cell face variations and volume *variations are set to the default values, allowing GOTHIC to calculate these parameters internally. | |||
' The location of the first vertical subdivision in the lower MCR control volume (CV1) is adjusted so that the lower half of door CB136-9 is connected to the lower subvolumes and the upper half to the middle subvolumes. | |||
The second vertical subdivision in the lower MCR control volume is at the height of the top of the control panels (7.5 ft). Three control volumes are added"to model the atmosphere, stairwell 1 and an exhaust ' volume. The first control volume added (CV3) represents the atmosphere which provides makeup flow to the stairwell volume. This is a flow-through volume as described in Section 22.10 of the GOTHIC User's Manual (Reference a.5). Temperature in this atmosphere volume is controlled using a diurnal temperature forcing function applied to the pressure and flow boundary conditions connected to this volume, as described in Assumption 4.5. The -volume is arbitrarily set to 30,000 ft3. The flow boundary flow rate is set to 200 lbm/sec to maintain the desired conditions in the control volume. ' The second control volume added (CV4) represents stairwell | |||
: 1. Door CB 136-9 opens into this stairwell on elevation 136'-1 5/a". This volume is connected to the atmosphere volume (CV3) on elevation 157'-a". | |||
The height of the stairwell is determined by subtracting the bottom elevation, 9a' as shown on Reference a.11, from the top elevation. | |||
The top elevation is assumed to be equal to the elevation at the top of stairwell 1 of 157'-a" shown on Reference a.11, plus the door height (7 ft, Input 3.9). The height of stairwell 1 is calculated below. Hstairwell | |||
= 1,64.667 ft -98 ft = 66.667 ft The volume of the stairwell is calculated based on the stairwell dimensions given in Input 3.1 O . and the height calculated above, reduced by 30% (Assumption 4.4), as shown below Vstairwell | |||
= 0.7 * (L | |||
* W | * W | ||
* H) = 0.7 * (21.667 | * H) = 0.7 * (21.667 | ||
* 8.25 | * 8.25 | ||
* 66.667) = 8,341.84 ft3 The third control volume added (CV5) is the exhaust plenum for flow from the smoke removal fan. The volume is arbitrarily defined as 10,000 ft3 and a pressure boundary (5P) is connected to this volume to ensure it does not pressurize. | * 66.667) = 8,341.84 ft3 The third control volume added (CV5) is the exhaust plenum for flow from the smoke removal fan. The volume is arbitrarily defined as 10,000 ft3 and a pressure boundary (5P) is connected to this volume to ensure it does not pressurize. | ||
ENERCON CALCULATION CONTROL SHEET I I I i 144--CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 19 of 303 L --I -----------------------------------t--------------------1 I l ! I I ! I r !L ! I I I I ! I I I I ..------------1<< I k ____________ 1 I I -+-+-+-+-1---+-+-+-1-+-+-!-+-+-tt;l I l I lt IL L Figure 4: GOTHIC Lower and Upper MCA Volumes | ENERCON CALCULATION CONTROL SHEET I I I i 144--CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 19 of 303 L --I -----------------------------------t-------------------- | ||
) ENERCON CALCULATION CONTROL SHEET 6.2. Outside Air Temperature and Humidity CALC. NQ. ENTR-078-CALC-004 REV.O PAGE NO. 20 of 303 As stated in Section 4.5, a diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere which provides makeup flow to MCR using the methodology provided in Chapter 14 of ASHRAE (Reference 8.13), which is summarized by the following relationship: Tdb,h = Tdb,des -f(DR) Where Tdb,h =hourly dry bulb temperature (°F), Tdb,des = design dry bulb temperature (96°F), f= hourly daily range fraction (ASHRAE Table 6), DR = daily range of dry bulb temperature (17°F), As discussed in Section 4.5, the outside air temperature is kept at 96°F for the initial four hours. The varying outside air temperature is implemented using a GOTHIC forcing function referenced by the flow and pressure boundary conditions used to define the outside air flow through atmospheric volume. The outside air pressure is constant and assumed equal to 14.7 psia. As stated in Assumption 4.12, the outside air absolute humidity is assumed to remain constant throughout the transient such that the relative humidity varies with changes in diurnal This is accomplished in GOTHIC by specifying an appropriate steam volume fraction in the applicable outside air flow and pressure boundary conditions. The. steam volume fraction is calculated . based on the initial relative humidity (53%) and atmospheric (total) (14.7 psia). Per the GOTHIC User's Manual (Reference 8.5), steam volume fraction is defined as: where Ps =steam partial.pressure, PT= total pressure (14.7 psia). Relative humidity is defined as: where P9 = steam saturation pressure, From ASME steam tables: P9(96°F) = 0.8416 psia. °Vs Ps Vsf = Vr = Pr r *--.__ | 1 I l ! I I ! I r !L ! I I I I ! I I I I ..------------1<< | ||
ENERCON CALCULATION CONTROL SHEET Therefore, CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 21of303 Ps = (RH)(P9) = (0.53)(0.8416) = 0.44605 psia, and by substitution 0.44605 Vst =, 14.7 ='0.030343 Using the above steam volume fraction and the diurnal temperature variation, the outside air relative humidity varies with dry bulb temperature, as the air temperature decreases. | I k ____________ | ||
* 6.3. Sol-Air Temperature Methodology Solar heat loads to\ the MGR roof and walls are modeled by assigning a temperature boundary condition to the GOTHIC internal thermal conductors representing the roof and walls. The assigned temperature is the sol-air temperature. Sol-air temperature is the outdoor air temperature that, in the absence of all radiation changes gives the same rate of heat entry into the surface as would the combination of incident solar radiation, radiant energy exchange with the sky and other outdoor surroundings, and convective heat exchange with outdoor air (Reference 8.13, Chapter 18). The calculation of the sol-air temperatures follows the example in Reference 8.13, Chapter 18. The following example is a calculation for the sol-air temperatures on the exterior surface of the roof for July at a location based on Baton Rouge Ryan Airport which is approximately 25 miles south of River Bend Nuclear Station. Definitions of many of the variables in the equations below are from Reference 8.13, Chapter 14. The example given below is for the roof of the MGR at the most conservative time of 1 :00 pm, which is when the transient is assumed to start. This sol-air temperature is calculated for each hour of the day. As discussed in input 3.16, the sol-air temperature calculated for the roof is conservatively applied to all the walls of the upper and lower MCR. The maximum outside air temperature is set to the design basis maximum temperature of 96°F. The daily temperature range is set to 17°F based on the mean daily temperature range for the Baton Rouge Ryan Airport in July (Attachment 11). Note that, per Assumption 4.5, the outside air temperature is kept at 96°F for initial four hours but the sol-air temperature is varied over the entire transient. 4J = south orientation = 0° r = surface tilt from horizontal = 0° 1 :00 PM Local Standard Time (LST) = hour 13 to = 95.2°F (temperature at 1 PM based on daily temperature range) Latitude: 30.54 N (ASHRAE data from Baton Rouge Ryan Airport) Longitude: 91.15 W (-91.15) (ASHRAE data from Baton Rouge Ryan Airport) taub (Tb: 0.542 (ASHRAE data from Baton Rouge Ryan Airport) for July) , taud (Td): 1.845 (ASHRAE data from Baton Rouge Ryan Airport) for July) Calculate solar altitude, solar azimuth, surface solar azimuth, and incident angle as follows: From Chap 14, Table 2 in ASHRAE, solar position data and constants for July 21 are, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ET =-6.4 min 0 = 20.4° E0 = 420 Btu/h*ft2 PAGE NO. 22 of 303 Local standard meridian (LSM) for Central Time Zone= -90°(Reference 8.13, Chapter 14, Table 3) | 1 I I -+-+-+-+-1---+-+-+-1-+-+-!-+-+-tt;l I l I lt IL L Figure 4: GOTHIC Lower and Upper MCA Volumes | ||
* a=0.6 based on concrete (Reference 8.13 Chapter4, Table 5, Assumption 4.14) ho=4.0 BTU/hr- | ) ENERCON CALCULATION CONTROL SHEET 6.2. Outside Air Temperature and Humidity CALC. NQ. ENTR-078-CALC-004 REV.O PAGE NO. 20 of 303 As stated in Section 4.5, a diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere which provides makeup flow to MCR using the methodology provided in Chapter 14 of ASHRAE (Reference 8.13), which is summarized by the following relationship: | ||
ENERCON Et,b = Eb cos 8 = (241) cos (15.0) = 232.8 Btu/h*ft2 CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 23 of 303 Ratio Y of sky diffuse radiation on vertical surface to sky diffuse radiation on horizontal surface Y = 0.55 + 0.437 cos 8 + 0.313 cos28 = 0.55 + 0.437 cos (15.0) + 0.313 cos2(15.0) = 1.264 Diffuse irradiance Ed-Horizontal Ed= Eo exp (-T drrfld) ad= diffuse air mass exponent = 0.202 + 0.852Tb-0.007Td-0.357TbTd = 0.29387 Ed= Eo exp (-Tdrrfld) = 420 exp (-1.845(1.035°.2s3s7)] = Btu/h*ft2 Diffuse irradiance Etd-Nonvertical surfaces Et,d= Ed(Y sin(i.)+cos('E) = (70.5)(1) = 65.1 Ground reflected irradiance Er,r Et,r = (Eb sin f3 + Ed)p9(1 -cos "i..)/2 = [241 sin (75.0) + 65.1](0.2)[1 -COS. (0)]/2 = O Btu/h*ft2 Total surface irradiance Er , Et= Et.b + Ed+ E, = 232.8 + 65.1 +O = 298.0 Btuih*ft2 Sol-air temperature: te = to+ aE, /ho-EliRlho = 95.2 + (0.6)(298.0)/(4) -{1)(20)/(4) = 134.9°F I This sol-air temperature is calculated for each hour of the day and applied as a "Sp Ambient & HTC" using a GOTHIC forcing function on the walls and roof of the upper and lower MGR. 6.4. Thermal Conductors )* 6.4.1 MGR Walls The GOTHIC thermal conductors representing the concrete walls in the lower and upper MGR volumes are consolidated into North, West, South and East Walls and spanned across the subvolumes adjacent to the walls. The dimensions of the lower MGR are 144 ftx 74 ftx 9.115 ft (Reference 8.1). The dimensions of the upper MGR are 144 ft x 74 ft x 8.670 ft (Reference 8.1). The surface area for the north and south walls for the MGR is calculated below. ' SAN+S LMCR = 74 ft* 9.115 ft= 674.51 ft2 The surface area of the east and west walls for the lower MGR is calculated below. | Tdb,h = Tdb,des -f(DR) Where Tdb,h =hourly dry bulb temperature | ||
(°F), Tdb,des = design dry bulb temperature (96°F), f= hourly daily range fraction (ASHRAE Table 6), DR = daily range of dry bulb temperature (17°F), As discussed in Section 4.5, the outside air temperature is kept at 96°F for the initial four hours. The varying outside air temperature is implemented using a GOTHIC forcing function referenced by the flow and pressure boundary conditions used to define the outside air flow through atmospheric volume. The outside air pressure is constant and assumed equal to 14.7 psia. As stated in Assumption 4.12, the outside air absolute humidity is assumed to remain constant throughout the transient such that the relative humidity varies with changes in diurnal This is accomplished in GOTHIC by specifying an appropriate steam volume fraction in the applicable outside air flow and pressure boundary conditions. | |||
The. steam volume fraction is calculated | |||
. based on the initial relative humidity (53%) and atmospheric (total) | |||
(14.7 psia). Per the GOTHIC User's Manual (Reference 8.5), steam volume fraction is defined as: where Ps =steam partial.pressure, PT= total pressure (14.7 psia). Relative humidity is defined as: where P9 = steam saturation | |||
: pressure, From ASME steam tables: P9(96°F) = 0.8416 psia. °Vs Ps Vsf = Vr = Pr r *--.__ | |||
ENERCON CALCULATION CONTROL SHEET Therefore, CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 21of303 Ps = (RH)(P9) = (0.53)(0.8416) | |||
= 0.44605 psia, and by substitution 0.44605 Vst =, 14.7 ='0.030343 Using the above steam volume fraction and the diurnal temperature variation, the outside air relative humidity varies with dry bulb temperature, as the air temperature decreases. | |||
* 6.3. Sol-Air Temperature Methodology Solar heat loads to\ the MGR roof and walls are modeled by assigning a temperature boundary condition to the GOTHIC internal thermal conductors representing the roof and walls. The assigned temperature is the sol-air temperature. | |||
Sol-air temperature is the outdoor air temperature that, in the absence of all radiation changes gives the same rate of heat entry into the surface as would the combination of incident solar radiation, radiant energy exchange with the sky and other outdoor surroundings, and convective heat exchange with outdoor air (Reference 8.13, Chapter 18). The calculation of the sol-air temperatures follows the example in Reference 8.13, Chapter 18. The following example is a calculation for the sol-air temperatures on the exterior surface of the roof for July at a location based on Baton Rouge Ryan Airport which is approximately 25 miles south of River Bend Nuclear Station. | |||
Definitions of many of the variables in the equations below are from Reference 8.13, Chapter 14. The example given below is for the roof of the MGR at the most conservative time of 1 :00 pm, which is when the transient is assumed to start. This sol-air temperature is calculated for each hour of the day. As discussed in input 3.16, the sol-air temperature calculated for the roof is conservatively applied to all the walls of the upper and lower MCR. The maximum outside air temperature is set to the design basis maximum temperature of 96°F. The daily temperature range is set to 17°F based on the mean daily temperature range for the Baton Rouge Ryan Airport in July (Attachment 11). Note that, per Assumption 4.5, the outside air temperature is kept at 96°F for initial four hours but the sol-air temperature is varied over the entire transient. | |||
4J = south orientation | |||
= 0° r = surface tilt from horizontal | |||
= 0° 1 :00 PM Local Standard Time (LST) = hour 13 to = 95.2°F (temperature at 1 PM based on daily temperature range) Latitude: | |||
30.54 N (ASHRAE data from Baton Rouge Ryan Airport) | |||
Longitude: | |||
91.15 W (-91.15) | |||
(ASHRAE data from Baton Rouge Ryan Airport) taub (Tb: 0.542 (ASHRAE data from Baton Rouge Ryan Airport) for July) , taud (Td): 1.845 (ASHRAE data from Baton Rouge Ryan Airport) for July) Calculate solar altitude, solar azimuth, surface solar azimuth, and incident angle as follows: | |||
From Chap 14, Table 2 in ASHRAE, solar position data and constants for July 21 are, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ET =-6.4 min 0 = 20.4° E0 = 420 Btu/h*ft2 PAGE NO. 22 of 303 Local standard meridian (LSM) for Central Time Zone= -90°(Reference 8.13, Chapter 14, Table 3) | |||
* a=0.6 based on concrete (Reference 8.13 Chapter4, Table 5, Assumption 4.14) ho=4.0 BTU/hr-ft 2-°F based on 7.5 inph characteristic of the summer months (Table 1 in Chapter 26 of Reference 8.13, Assumption 4.6) E=1 (Chapter 18 of Reference 8.13) 11R=20 BTU/hr-ft 2 (Chapter 18 of Reference 8.13) Apparent solar time (AST) AST= LST + ET/60*+ (LON-LSM)/15 | |||
= 13 + (-6.4/60) | |||
+ [(-91.15 | |||
+90)/15] | |||
= 12.817 Hour angle H, degrees H = 15(AST-12) | |||
= 15(12.817 | |||
-12) = 12.3° Solar altitude 13 sin 13 = cos L cos o cos H + sin L sin o =cos (30.54) cos (20.4) cos (12.3) +sin (30.54) si.n (20.4) \ : 0.97 I 13 = sin-1(0.96) = 75.0° Solar azimuth cp cos cp = (sin 13 sin L-sin o)/(cos 13 cos L) .;; [(sin (75.0) sin (30.54) -sin (20.4)] /[cos (75.0) cos (30.54)] | |||
= 0.6382 cp = cos-1(0.6382) | |||
= 50.3° Surface-solar azimuth y y=cp-ljJ | |||
= 50.3-0 = 50.3° Incident angle 8 cos 8 = cos 13 cos y sin L + sin.13 cos L = cos (75.0) cos (50.3) sin (0) + sin (75.0) cos (0) = 0.966 a = cos-1(0.966) = 1 S.0° Beam normal irradiance fa Eb= Eo exp(-Tbf7ilb) m = relative air mass = 1/[sinl3 | |||
+0.50572(6.07995 13 expressed in degrees . = 1.035 \-ab = beam air mass exponent | |||
= 1.219-0.043Tb-0.151Td-0.204TbTd | |||
= 0.7131.0 Eb= 420 exp [-0.542(1.035o.11310)] | |||
= 241 Btu/h*ft2 Surface beam irradiance Er;b I \. . | |||
ENERCON Et,b = Eb cos 8 = (241) cos (15.0) = 232.8 Btu/h*ft2 CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 23 of 303 Ratio Y of sky diffuse radiation on vertical surface to sky diffuse radiation on horizontal surface Y = 0.55 + 0.437 cos 8 + 0.313 cos28 = 0.55 + 0.437 cos (15.0) + 0.313 cos2(15.0) = 1.264 Diffuse irradiance Ed-Horizontal Ed= Eo exp (-T drrfld) ad= diffuse air mass exponent | |||
= 0.202 + 0.852Tb-0.007Td-0.357TbTd | |||
= 0.29387 Ed= Eo exp (-Tdrrfld) | |||
= 420 exp (-1.845(1.035°.2s3s7)] | |||
= | |||
Btu/h*ft2 Diffuse irradiance Etd-Nonvertical surfaces Et,d= Ed(Y sin(i.)+cos('E) | |||
= (70.5)(1) | |||
= 65.1 Ground reflected irradiance Er,r Et,r = (Eb sin f3 + Ed)p9(1 -cos "i..)/2 = [241 sin (75.0) + 65.1](0.2)[1 | |||
-COS. (0)]/2 = O Btu/h*ft2 Total surface irradiance Er , Et= Et.b + Ed+ E, = 232.8 + 65.1 +O = 298.0 Btuih*ft2 Sol-air temperature: | |||
te = to+ aE, /ho-EliRlho = 95.2 + (0.6)(298.0)/(4) | |||
-{1)(20)/(4) | |||
= 134.9°F I This sol-air temperature is calculated for each hour of the day and applied as a "Sp Ambient & HTC" using a GOTHIC forcing function on the walls and roof of the upper and lower MGR. 6.4. Thermal Conductors | |||
)* 6.4.1 MGR Walls The GOTHIC thermal conductors representing the concrete walls in the lower and upper MGR volumes are consolidated into North, West, South and East Walls and spanned across the subvolumes adjacent to the walls. The dimensions of the lower MGR are 144 ftx 74 ftx 9.115 ft (Reference 8.1). The dimensions of the upper MGR are 144 ft x 74 ft x 8.670 ft (Reference 8.1). The surface area for the north and south walls for the MGR is calculated below. ' SAN+S LMCR = 74 ft* 9.115 ft= 674.51 ft2 The surface area of the east and west walls for the lower MGR is calculated below. | |||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 24 of 303 SAE+W LMCR = 144 ft* 9.115 ft= 1312.56 ft2 The surface area of the north and south walls for the upper MCR is calculated below. SAN+S UMCR = 74 ft* 8.670 ft= 641.58 ft2 The surface area of the east and west walls for the upper MCR is calculated below. SAE+W UMCR = 144 ft* 8.670 ft = 1248.48 ft2 6.4.2 MCR Floor and Ceiling As discussed in inputs 3.5 and 3.7, GOTHIC thermal conductors representing the floor of the MCR and the ceiling of the upper MCR plenum are added to the GOTHIC model. The surface area of the floor conductor is determined from the dimensions of the MCR, 144' x 74' (Reference 8.1 and 8.26). The GOTHIC thermal conductor representing the floor is spanned across the lower subvolumes of the lower MCR volume. The GOTHIC thermal conductor representing the ceiling of the upper MCR is spanned across 'the upper subvolumes of the upper MCR. | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 24 of 303 SAE+W LMCR = 144 ft* 9.115 ft= 1312.56 ft2 The surface area of the north and south walls for the upper MCR is calculated below. SAN+S UMCR = 74 ft* 8.670 ft= 641.58 ft2 The surface area of the east and west walls for the upper MCR is calculated below. SAE+W UMCR = 144 ft* 8.670 ft = 1248.48 ft2 6.4.2 MCR Floor and Ceiling As discussed in inputs 3.5 and 3.7, GOTHIC thermal conductors representing the floor of the MCR and the ceiling of the upper MCR plenum are added to the GOTHIC model. The surface area of the floor conductor is determined from the dimensions of the MCR, 144' x 74' (Reference 8.1 and 8.26). The GOTHIC thermal conductor representing the floor is spanned across the lower subvolumes of the lower MCR volume. The GOTHIC thermal conductor representing the ceiling of the upper MCR is spanned across 'the upper subvolumes of the upper MCR. | ||
* SAceiling = floor = 144 ft* 74 ft = 10,656 ft2 The thickness of the concrete walls in the lower and upper MCR volumes is increased to the actual thickness of 24 inches, as the zero heat flux boundary condition (Reference 8.1) is no longer applied. The sol-air temperature forcing function, determined in Section 6.3, is applied as the HTC on the B side for the concrete walls of the lower and upper MCR volumes, as well as to the ceiling for the Upper MCR volume. 6.4.3 Control Panels The surface area of the control panels is split into three separate GOTHIC thermal conductors: one for the west half of the room, one for the northeast quadrant and one for the southeast quadrant. The GOTHIC conductors representing these control panels are spanned over the appropriate subvolumes in the lower _and middle subvolumes of the lower MCR volume based on the height of 7.5 ft for the control panels given in Reference 8.27. The dimensions and locations of the control panels are from Reference 8.26 and 8.27. Attachment 4, Tables 1-3, shows the calculation of the surface area for each of the control panel groupings. Note that this calculation does nottake into account the interfacial surface area between panels as was done in Reference 8.1. An effective thickness is calculated to account for the metal mass present in this interfacial area, as well as on the bottom surface of the control panels. | * SAceiling | ||
* This effective thickness is determined by calculating the total metal volume based on the nominal thickness of 1/8" from Reference 8.1 and multiplying by the total surface area (including the interfacial area and bottom surface area) for the metal panels, calculated in Table 4 of Attachment 4. This product is then divided by the surface area exposed to air calculated in Attachment4(Tables1-3) of this calculation, shown below. As discussed in Assumption 4.13, the equipment mass inside of the control panels is not modeled. Initialization of these ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 25 of 303 conductors to reflect the electrical heat load in the cabinets and the resulting higher panel temperatures and stored heat is described in Section 6.5.2. 0.125 in* 20,265.1 ft2 teff = 7,764.63 ft2 + 3,234.14 ft2 + 3,728.76 ft2 = 0*172 inches 6.4.4 Additional MCR Heat Sinks Steel heat sinks of various thicknesses are also added based on the walk down notes provided in Attachment 5. The walk down notes and Reference 8.26 are used to determine the general area that the identified heat sinks are located in order to accurately model their physical location in the GOTHIC model. 6.4.5 Ceiling Tiles A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the model. The thickness of the ceiling tile conductor is set to 5/8" based on Reference 8.1, Page 29. The acoustical tile material defined in Table 2 is used for this conductor. The surface area of the ceiling tiles is calculated by subtracting the surface area of the ceiling tiles removed, from the total surface area as discussed in Input 3.8, shown below. -2 . ft2 -. 2 SAceilingTiles -10,656 ft -80 tiles* 8 -.-l -10,016 ft tie 6.4.6 Metal Work Above Ceiling The metal work above the suspended ceiling tiles is represented by a single conductor spanned over the upper MCR volume. The total surface area and thickness of this conductor are determined from Reference 8.1. 6.5. Heat Loads The MCR heat loads for each case are distributed in the actual location of the heat source. The magnitude and location of the heat loads is based on information in E-226 (Reference 8.2) and EE-027 A (Reference 8.26) as modified by EC 61.975 (Reference 8.36). All individual heat loads are modeled in GOTHIC using heater components located in the appropriate subvolume with a constant heat rate equal to the heat load. Some notes regarding the heat load distribution are provided below: | = | ||
floor = 144 ft* 74 ft = 10,656 ft2 The thickness of the concrete walls in the lower and upper MCR volumes is increased to the actual thickness of 24 inches, as the zero heat flux boundary condition (Reference 8.1) is no longer applied. | |||
The sol-air temperature forcing function, determined in Section 6.3, is applied as the HTC on the B side for the concrete walls of the lower and upper MCR volumes, as well as to the ceiling for the Upper MCR volume. 6.4.3 Control Panels The surface area of the control panels is split into three separate GOTHIC thermal conductors: | |||
one for the west half of the room, one for the northeast quadrant and one for the southeast quadrant. | |||
The GOTHIC conductors representing these control panels are spanned over the appropriate subvolumes in the lower _and middle subvolumes of the lower MCR volume based on the height of 7.5 ft for the control panels given in Reference 8.27. The dimensions and locations of the control panels are from Reference 8.26 and 8.27. Attachment 4, Tables 1-3, shows the calculation of the surface area for each of the control panel groupings. | |||
Note that this calculation does nottake into account the interfacial surface area between panels as was done in Reference 8.1. An effective thickness is calculated to account for the metal mass present in this interfacial area, as well as on the bottom surface of the control panels. | |||
* This effective thickness is determined by calculating the total metal volume based on the nominal thickness of 1/8" from Reference 8.1 and multiplying by the total surface area (including the interfacial area and bottom surface area) for the metal panels, calculated in Table 4 of Attachment | |||
: 4. This product is then divided by the surface area exposed to air calculated in Attachment4(Tables1-3) of this calculation, shown below. As discussed in Assumption 4.13, the equipment mass inside of the control panels is not modeled. | |||
Initialization of these ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 25 of 303 conductors to reflect the electrical heat load in the cabinets and the resulting higher panel temperatures and stored heat is described in Section 6.5.2. 0.125 in* 20,265.1 ft2 teff = 7,764.63 ft2 + 3,234.14 ft2 + 3,728.76 ft2 = 0*172 inches 6.4.4 Additional MCR Heat Sinks Steel heat sinks of various thicknesses are also added based on the walk down notes provided in Attachment | |||
: 5. The walk down notes and Reference 8.26 are used to determine the general area that the identified heat sinks are located in order to accurately model their physical location in the GOTHIC model. 6.4.5 Ceiling Tiles A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the model. The thickness of the ceiling tile conductor is set to 5/8" based on Reference 8.1, Page 29. The acoustical tile material defined in Table 2 is used for this conductor. | |||
The surface area of the ceiling tiles is calculated by subtracting the surface area of the ceiling tiles removed, from the total surface area as discussed in Input 3.8, shown below. -2 . ft2 -. 2 SAceilingTiles | |||
-10,656 ft -80 tiles* 8 -.-l -10,016 ft tie 6.4.6 Metal Work Above Ceiling The metal work above the suspended ceiling tiles is represented by a single conductor spanned over the upper MCR volume. The total surface area and thickness of this conductor are determined from Reference 8.1. 6.5. Heat Loads The MCR heat loads for each case are distributed in the actual location of the heat source. The magnitude and location of the heat loads is based on information in E-226 (Reference 8.2) and EE-027 A (Reference 8.26) as modified by EC 61.975 (Reference 8.36). All individual heat loads are modeled in GOTHIC using heater components located in the appropriate subvolume with a constant heat rate equal to the heat load. Some notes regarding the heat load distribution are provided below: | |||
* The lighting heat load is based on inspection of Reference 8.33 and 8.36. 15% of the lighting heat load not in the luminous ceiling areas is assigned to the upper MCR volume as described in Assumption 4.16. | * The lighting heat load is based on inspection of Reference 8.33 and 8.36. 15% of the lighting heat load not in the luminous ceiling areas is assigned to the upper MCR volume as described in Assumption 4.16. | ||
* Attachment 10 gives the heat loads in the NSSS (H13-P600 series) control panels in the control room. The heat loads of these select panels are applied in their actual location, based on Reference 8.26. The remaining heat loads from control panels are found from Reference 8.36. | * Attachment 10 gives the heat loads in the NSSS (H13-P600 series) control panels in the control room. The heat loads of these select panels are applied in their actual location, based on Reference 8.26. The remaining heat loads from control panels are found from Reference 8.36. | ||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE. NO. 26 of 303 | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE. NO. 26 of 303 | ||
* The heat load for the Honeywell computer equipment is determined from Attachment 8. The heat loads for the individual panels are located based on Reference 8.26. | * The heat load for the Honeywell computer equipment is determined from Attachment | ||
: 8. The heat loads for the individual panels are located based on Reference 8.26. | |||
* As discussed in Section 3.6, the heat load from the PGCC raceway is modeled in the air gap of the GOTHIC composite thermal conductor representing the floor. The heat load is distributed evenly across the floor. *. Heat loads from lighting panels, miscellaneous panels, the radiation monitor (RMS-CAB 170), and the kitchen were located based on Reference 8.26. | * As discussed in Section 3.6, the heat load from the PGCC raceway is modeled in the air gap of the GOTHIC composite thermal conductor representing the floor. The heat load is distributed evenly across the floor. *. Heat loads from lighting panels, miscellaneous panels, the radiation monitor (RMS-CAB 170), and the kitchen were located based on Reference 8.26. | ||
* As discussed in Assumption 4.1, five operators are assumed in be in the horseshoe area of the MCR. The remaining five operators are assumed to be implementing actions such as opening panel doors, ceilingJiles etc.; thus the heat load from these operators is spread evenly across the lower and middle subvolumes of the MCR. | * As discussed in Assumption 4.1, five operators are assumed in be in the horseshoe area of the MCR. The remaining five operators are assumed to be implementing actions such as opening panel doors, ceilingJiles etc.; thus the heat load from these operators is spread evenly across the lower and middle subvolumes of the MCR. | ||
\ 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 27 of 303 Figure 5 below shows the MCR layout from Reference 8.26 with the GOTHIC lower subvolume grid outline. Subvolume numbers at the middle and upper grid elevations are equal to these values increased by 128 (middle) and 256 (upper). The location of the vertical grid lines is shown in Figure 4. This drawing, in conjunction with Reference 8.26, is used to determine the location of heat loads as well as heat sinks from Section 6.4 and Attachment 5. ' . ' -Pi.AA I I ' I EE-027 A with GOTHIC Subvolume Grid ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-:CALC-004 REV.O PAGE NO. 28 of 303 6.5.1 Lighting The lighting heat load and distribution is determined from Reference 8.33 and Reference 8.36, summarized in Table 6 below. Table 6: Lighting Fixtures Fixture Type BG -BJ BM BU ' BV Total No. 8 79 1'33 2 3 No. of tubes 2x8=16 4x79 =316 4x133=532 2x2=4 2x3= 6 Total watts 768 15, 168 14,364 110 165 The total heat load is therefore 30,575 Watts. The luminous ceiling area in the center of the room is shown to have 75' "BJ" fixture types from Reference 8.33. The heat load from these 75 fixtures is distributed evenly between subvolumes 1s294-1s297, 1s310-1s313, 1s326-1s329, 1s342-1s345, and 1s358-1s361 (20 total subvolumes). As discussed in Assumption 4.16, the entire heat load from these lighting fixtures is assumed to be deposited into the lower MGR volume, based on these lighting fixtures being in an elevated ceiling area, and therefore not ventilated. The heat loads are distributed to each subvolume using GOTHIC heaters. The heat load per heater for these subvolumes is calculated below. . , tubes W BTU _ 75 fixtures* 4 fixture* 48 tube* 9.478e 5-/W Qcenterarea = = 0.68 BTU /s 20 subvolumes The luminous ceiling area on the south end of the MGR is shown to have 4* "BJ" fixture types, and all 8 of the "BG" fixture types from Reference 8.33. The heat load from these 12 fixtures is distributed evenly between subvolumes 1s318-1s319 and 1s334-1s335. The entire heat load from these lighting fixtures is assumed to be in the lower MGR volume, based on these *lighting fixtures being in an elevated ceiling area, and therefore not ventilated. The heat*load per heater for these subvolumes is calculated below. ( . tubes . tubes ) W BTU 4 fixtures* 4 fixture+ 8 fixtures* 2 fixture 48ti:ibe | \ 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 27 of 303 Figure 5 below shows the MCR layout from Reference 8.26 with the GOTHIC lower subvolume grid outline. | ||
* 9.478e 5-/W Qsouth area = 4 subvolumes * = 0.364 BTU /s The remaining lighting heat load is spread evenly across the remaining subvolumes (104 total). As discussed in Assumption 4.16, 85% of the heat load from lighting not in the luminous ceiling areas is assumed to be deposited into the lower MGR; the remaining 15% is input into the corresponding subvolumes in the upper plenum volume. The heat load per heater fc;>r this remaining lighting heat load is calculated below. | Subvolume numbers at the middle and upper grid elevations are equal to these values increased by 128 (middle) and 256 (upper). | ||
The location of the vertical grid lines is shown in Figure 4. This drawing, in conjunction with Reference 8.26, is used to determine the location of heat loads as well as heat sinks from Section 6.4 and Attachment | |||
: 5. ' . ' -Pi.AA I I ' I EE-027 A with GOTHIC Subvolume Grid ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-:CALC-004 REV.O PAGE NO. 28 of 303 6.5.1 Lighting The lighting heat load and distribution is determined from Reference 8.33 and Reference 8.36, summarized in Table 6 below. Table 6: Lighting Fixtures Fixture Type BG -BJ BM BU ' BV Total No. 8 79 1'33 2 3 No. of tubes 2x8=16 4x79 =316 4x133=532 2x2=4 2x3= 6 Total watts 768 15, 168 14,364 110 165 The total heat load is therefore 30,575 Watts. The luminous ceiling area in the center of the room is shown to have 75' "BJ" fixture types from Reference 8.33. The heat load from these 75 fixtures is distributed evenly between subvolumes 1s294-1s297, 1s310-1s313, 1s326-1s329, 1s342-1s345, and 1s358-1s361 (20 total subvolumes). | |||
As discussed in Assumption 4.16, the entire heat load from these lighting fixtures is assumed to be deposited into the lower MGR volume, based on these lighting fixtures being in an elevated ceiling area, and therefore not ventilated. | |||
The heat loads are distributed to each subvolume using GOTHIC heaters. | |||
The heat load per heater for these subvolumes is calculated below. . , tubes W BTU _ 75 fixtures* | |||
4 fixture* | |||
48 tube* 9.478e 5-/W Qcenterarea | |||
= = 0.68 BTU /s 20 subvolumes The luminous ceiling area on the south end of the MGR is shown to have 4* "BJ" fixture types, and all 8 of the "BG" fixture types from Reference 8.33. The heat load from these 12 fixtures is distributed evenly between subvolumes 1s318-1s319 and 1s334-1s335. | |||
The entire heat load from these lighting fixtures is assumed to be in the lower MGR volume, based on these *lighting fixtures being in an elevated ceiling area, and therefore not ventilated. | |||
The heat*load per heater for these subvolumes is calculated below. ( . tubes . tubes ) W BTU 4 fixtures* | |||
4 fixture+ | |||
8 fixtures* | |||
2 fixture 48ti:ibe | |||
* 9.478e 5-/W Qsouth area = 4 subvolumes | |||
* = 0.364 BTU /s The remaining lighting heat load is spread evenly across the remaining subvolumes (104 total). As discussed in Assumption 4.16, 85% of the heat load from lighting not in the luminous ceiling areas is assumed to be deposited into the lower MGR; the remaining 15% is input into the corresponding subvolumes in the upper plenum volume. The heat load per heater fc;>r this remaining lighting heat load is calculated below. | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 29 of 303 W + 110 W + 165 W) | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 29 of 303 W + 110 W + 165 W) | ||
* 9.478e -4 /W QMCR-lights = 1 4 b l = 0.1134 BTU /s 0 su vo umes 0.15(14,364 W + 110 W + 165 W) | * 9.478e -4 /W QMCR-lights | ||
* 9.478e -4 BTU /W . Qplenum-lights = 104 b l s = 0.02 BTU /s su vo umes For the scenario (Case 1 ), lights powered by panels 1 C5 and 1 C,6 are lost at the onset of the event. Lights powered by 1C10 and 1C11 are conservatively assumed to remain on for four hours based on them being powered by BYS-INV02 which has a battery life of 2 hours _, (See Assumption 4.15). Lights powered by 1 C9 remain on for the duration of the event as they are powered by a diesel generator (Reference 8.36). An even reduction in the lighting heat load is applied to all the lights, as discussed in Assumption 4.15. This reduction factor is shown below for the first 4 hour period, as well as the 4-24 period: 6.5.2 11889 Watts Lighting | = 1 4 b l = 0.1134 BTU /s 0 su vo umes 0.15(14,364 W + 110 W + 165 W) | ||
* Watts 5937 Watts Lighting Reduction4-24hours = 30575 Watts= 0.194 Control Panels Attachment 10 gives the hept loads for equipment inside the H13-P600 series (NSSS) control panels in the control room. The heat load for these panels is localized based on Reference 8.26. The heat load is distributed evenly among the lower and corresponding middle elevation subvolumes in the lower MCR volume. The heat load for the P600 panels given in Attachment 1 O is not reduced for the LOOP scenario. The heat load for equipment in the H13-P630 panel and the H13,.P800 (BOP) series panels are determined from Reference 8.36. The P600 panel heat loads are shown in Table 7. The P800 panel heat loads are shown in Table 8. Note that panel H13-P845 is given in Attachment 10 and Reference 8.36; 'the more conservative value from Reference 8.36 is used. Panel H 13-P680 is provided in Attachment 1 O as well as Attachment 8; the more conservative vaiu*e in Attachment 1 O is used in the analysis. The heat load for the P800 panels during a LOOP are determined from Reference 8.36 and given in Table 9. | * 9.478e -4 BTU /W . Qplenum-lights | ||
ENER ON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 30 of 303 Table 7: P600 Normal Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-PXXX {Watts) {BTU/s)* subvolume {s) subvolume {s) BTU/s P600 200 0.19 26 154 0.095 P601 1600 1.52 73,89 201,217 0.379 P604/614 1200 1.14 42 170 0.569 P607/P612 600 0.57 94 222 0.284 P61 O/P654/P652 1000 0.95 93 221 0.474 P619/P634 1200 1.14 110 238 0.569 P621/P628 600 0.57 45 173 0.284 P623/P632 1000 0.95 60 188 0.474 P625/P693 1300 1.23 91 219 0.616 P629 500 0.47 29 157 0.237 P630 3300 3.128 59 187 1.564 P631/P618 900 0.85 109 237 0.427 P637 800 0.76 111 239 0.379 P642/P613/P622 1000 0.95 92 220 0.474 P651 /P653/P655 1150 1.09 61 189 0.545 P680 800 0.76 55,56,57 N/A 0.253 P669/P691 1800 1.71 44 172 0.853 P670/P692 1800 1.71 108 236 *0.853 P671 1000 0.95 107 235 0.474 P672/P694 1800 1.71 43 171 0.853 TOTAL 23,550 22.33 | = 104 b l s = 0.02 BTU /s su vo umes For the scenario (Case 1 ), lights powered by panels 1 C5 and 1 C,6 are lost at the onset of the event. Lights powered by 1C10 and 1C11 are conservatively assumed to remain on for four hours based on them being powered by BYS-INV02 which has a battery life of 2 hours _, (See Assumption 4.15). Lights powered by 1 C9 remain on for the duration of the event as they are powered by a diesel generator (Reference 8.36). An even reduction in the lighting heat load is applied to all the lights, as discussed in Assumption 4.15. This reduction factor is shown below for the first 4 hour period, as well as the 4-24 period: 6.5.2 11889 Watts Lighting Reduction 0_4 hours = 30575 = 0.389 | ||
* Values are converted from Watts usmg a conversion factor of 9.478e-4 BTU/s/Watts Based on Reference 8.36, panels H13-P612 (400 Watts), H13-P630 (3300 Watts), H13-P634 (1000 Watts), H13-P680 (800 Watts) are powered by BYS-INV02. Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1)'. / | * Watts 5937 Watts Lighting Reduction4-24hours | ||
.ENERCON fvery.rfay CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 31 of 303 Table 8: P800 Series Control Panel N.ormal Heat Load and Distribution Panel Heat Heat Load Lower Middle Per Heater Number Load Heat Load H13-PXXX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0.474 . 40,41 168,169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 1095 1.038 95 223 0.519 P844/P854 1995 1.891 81,97 209,225 0.473 P845 620 0.588 58 186 0.294 P849 750 0.711 51 179 0.355 P850 4125 3.910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 750 0.711 50 178 *0.355 P855 176 0.167 3*5 163 0.083 P861 400 0.379 103 231 0.190 P863 185 0.175 38,54 166,182 0.044 P869 2214 2.098 84 212 1.049 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 19,806 18.77 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ) / | = 30575 Watts= 0.194 Control Panels Attachment 10 gives the hept loads for equipment inside the H13-P600 series (NSSS) control panels in the control room. The heat load for these panels is localized based on Reference 8.26. The heat load is distributed evenly among the lower and corresponding middle elevation subvolumes in the lower MCR volume. The heat load for the P600 panels given in Attachment 1 O is not reduced for the LOOP scenario. | ||
The heat load for equipment in the H13-P630 panel and the H13,.P800 (BOP) series panels are determined from Reference 8.36. The P600 panel heat loads are shown in Table 7. The P800 panel heat loads are shown in Table 8. Note that panel H13-P845 is given in Attachment 10 and Reference 8.36; 'the more conservative value from Reference 8.36 is used. Panel H 13-P680 is provided in Attachment 1 O as well as Attachment 8; the more conservative vaiu*e in Attachment 1 O is used in the analysis. | |||
The heat load for the P800 panels during a LOOP are determined from Reference 8.36 and given in Table 9. | |||
ENER ON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 30 of 303 Table 7: P600 Normal Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-PXXX | |||
{Watts) {BTU/s)* | |||
subvolume | |||
{s) subvolume | |||
{s) BTU/s P600 200 0.19 26 154 0.095 P601 1600 1.52 73,89 201,217 0.379 P604/614 1200 1.14 42 170 0.569 P607/P612 600 0.57 94 222 0.284 P61 O/P654/P652 1000 0.95 93 221 0.474 P619/P634 1200 1.14 110 238 0.569 P621/P628 600 0.57 45 173 0.284 P623/P632 1000 0.95 60 188 0.474 P625/P693 1300 1.23 91 219 0.616 P629 500 0.47 29 157 0.237 P630 3300 3.128 59 187 1.564 P631/P618 900 0.85 109 237 0.427 P637 800 0.76 111 239 0.379 P642/P613/P622 1000 0.95 92 220 0.474 P651 /P653/P655 1150 1.09 61 189 0.545 P680 800 0.76 55,56,57 N/A 0.253 P669/P691 1800 1.71 44 172 0.853 P670/P692 1800 1.71 108 236 *0.853 P671 1000 0.95 107 235 0.474 P672/P694 1800 1.71 43 171 0.853 TOTAL 23,550 22.33 | |||
* Values are converted from Watts usmg a conversion factor of 9.478e-4 BTU/s/Watts Based on Reference 8.36, panels H13-P612 (400 Watts), H13-P630 (3300 Watts), H13-P634 (1000 Watts), H13-P680 (800 Watts) are powered by BYS-INV02. | |||
Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1)'. / | |||
.ENERCON fvery.rfay CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 31 of 303 Table 8: P800 Series Control Panel N.ormal Heat Load and Distribution Panel Heat Heat Load Lower Middle Per Heater Number Load Heat Load H13-PXXX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0.474 . 40,41 168,169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 1095 1.038 95 223 0.519 P844/P854 1995 1.891 81,97 209,225 0.473 P845 620 0.588 58 186 0.294 P849 750 0.711 51 179 0.355 P850 4125 3.910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 750 0.711 50 178 *0.355 P855 176 0.167 3*5 163 0.083 P861 400 0.379 103 231 0.190 P863 185 0.175 38,54 166,182 0.044 P869 2214 2.098 84 212 1.049 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 19,806 18.77 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts | |||
) / | |||
. ' ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 32 of 303 Table 9: P800 Series Control Panel LOOP Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-P:>(XX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0:474 40,41 168, 169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 437 0.414 *95 223 0.207 P844/P854 1995 1.891 81,97 209,225 0.473 P845 0 0.000 58 186 0.000 P849 750 0.711 51 179 0.355 P850 4125 3.'910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 0 0.000 50 178 0.000 P855 176 0.167 35 163 0.083 P861 400 0.379 103 231-0.190 'P863 185 0.175 38,54 166,182 0.044 P869 1500 1.422 84 212 0.711 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 17,064 16.17 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts | . ' ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 32 of 303 Table 9: P800 Series Control Panel LOOP Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-P:>(XX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0:474 40,41 168, 169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 437 0.414 *95 223 0.207 P844/P854 1995 1.891 81,97 209,225 0.473 P845 0 0.000 58 186 0.000 P849 750 0.711 51 179 0.355 P850 4125 3.'910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 0 0.000 50 178 0.000 P855 176 0.167 35 163 0.083 P861 400 0.379 103 231-0.190 'P863 185 0.175 38,54 166,182 0.044 P869 1500 1.422 84 212 0.711 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 17,064 16.17 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts | ||
* Based on Reference 8.36, panels H13-:P850 (4125 Watts) and H13-P844/854 (1995 Watts) are powered by BYS-INV02. Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1 ). As discussed in Section 6.4, the control panels are represented in the GOTHIC model by three thermal conductors. The temperature of the panels is initially greater than the surrounding MCR ambient temperature due to the heat load from the electrical equipment inside the | * Based on Reference 8.36, panels H13-:P850 (4125 Watts) and H13-P844/854 (1995 Watts) are powered by BYS-INV02. | ||
* panels, which is modeled using heaters external to the panels. To account for the energy (heat) initially in the panel conductors and to ensure that the temperature of the control panel thermal conductors is greater than the room at the beginning of the transient, the total control panel heat load from E-226 (Reference 8.2) is input into the control panel thermal conductors for the first 0.1 seconds. The volumetric heat rate used for these control panel thermal conductors is calculated below based on the total (non-LOOP) panel heat load of 30,018 watts from Reference 8.2, or 28.45 BTU/s, and the total panel conductor volume. | Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1 ). As discussed in Section 6.4, the control panels are represented in the GOTHIC model by three thermal conductors. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 33 of 303 28.45 BTU/s Q"' Control Panels-Initial = -------------------::--:-:=-:--! 2 f 2 7 f 2) 0.172 in (7,764.6 t + 3,234.14 t + 3,728. 6 t | The temperature of the panels is initially greater than the surrounding MCR ambient temperature due to the heat load from the electrical equipment inside the | ||
* 12 inf ft .BTU = 0.133! 3 t -s For the LOOP (Case 1 ), this initial internal heat rate is also used, although the LOOP panel heat loads are lower. This, together with the assumption that the computer equipment heat loads are maintained for 4 hours (Ass1,.1mption 4.15), ensures that the total stored energy is conservatively represented by the panel conductors. 6.5.3 Equipment Heat load from computer equipment includes that from the Honeywell HS 4500 Plant Process Computer (PPC) system (C91 panels), Emergency Response Information System (ERIS) data acquisition chassis, Orbital Network Engineering (ONE) computers, computer workstations, network switch and servers, and personal computers. An initial estimate of the heat load due to the Honeywell computer was obtained by taking field measurements of current on each disconnect in the panels and multiplying by the voltage. These measurements and the resulting heat loads are included as Attachment 8. The distribution of the Honeywell computer heat loads is based on the location of the panels provided in Reference 8.26. Similar to the control panel heat loads, t.he heat load from computer panels in the same subvolume are summed and the combined heat load from these panels is distributed between the lower subvolumes and the corresponding middle subvolume. The heat loads and distribution for these Honeywell panels is shown in Table 10. Table 1 O: Honeywell Computer Panel Heat Load and Distribution Panel Number Heat Heat Load Lower Middle Per Heater Load Heat Load C91-PXXX (Watts) (BTU/s)* Subvolume subvolume BTU/s Communications 294 0.279 90 N/A 0.279 Cabinet P60S/P600/P603 2049.3 1.94 63 191 0.971 P625 217.35 0.21 31 159 0.103 P621 /P620/612 2857.3 2.71 47 175 1.354 P624 546.25 0.52 51 179 0.259 P622 441.6 0.42 18 146 0.209 P623/650/616 1305.25 1.24 34 162 0.619 P63,0/P631 1030.5 0.98 62 190 0.488 P613 182.85 0.17 94 222 0.087 P615/642 2256.85 2.14 46 174 1.070 P614 180.55 0.17 30 158 0.086 P632/P633 139.15 0.13 72 200 0.066 TOTAL 11,500.95 10.90 / *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts E.NERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 34 of 303 Figure 6 below shows the location of the individual personal computers (PCs) in the MCR (Reference 8.36). The PCs have a heat load of 300 W each per Reference 8.2, Appendix A, Page 35. Based on Attachment 8, the heat load from PCs in the southwest area near. the Honeywell panels is already accounted for using the measured loads from these panels, thus these PCs are not accounted for as an additional heat load. The subvolume locations for each of the PCs is given in Table 11. \ | * panels, which is modeled using heaters external to the panels. To account for the energy (heat) initially in the panel conductors and to ensure that the temperature of the control panel thermal conductors is greater than the room at the beginning of the transient, the total control panel heat load from E-226 (Reference 8.2) is input into the control panel thermal conductors for the first 0.1 seconds. | ||
CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET REV.O PAGE NO. 35 of 303 ENERCON 'CALCULATION CONTROL SHEET ,CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 36 of 303 Table 11: Heat Load Distribution for Personal Computers Heat Load , Heat load Heat Source (watts) General Location Subvolume (BTU/s)" PC1/2 600 Center Area 72 0.569 PC3 300 Center East Wall 104 0.284 PC4 300 Center East Wall 105 0.284 PC5/6 600 Center Area , 87 0.569 PC7 300 Center Area 71 0.284 PC8/9 600 Center Area 199 0.569 PC 10/11 600 Center Area 106 0.569 PC 12-Shift Manaaer 300 NW Corner 1 0.284 TOTAL 3600 | The volumetric heat rate used for these control panel thermal conductors is calculated below based on the total (non-LOOP) panel heat load of 30,018 watts from Reference 8.2, or 28.45 BTU/s, and the total panel conductor volume. | ||
* Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts The heat load from the ERIS system is determined in Attachment 3. Table 12 gives normal operations heat load distribution. Table 13 gives the LOOP heat load distribution after 4 hours when the BYS-INV02 batteries have been depleted. The heat load from panels in the same subvolume are summed. Table 12: Normal Heat Load Distributicm for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 358.8 0.340 378 H13-Y703A 370.8 0.351 282 H13-Y703D 226.8 0.215 281 H13-Y710B/D/E 873.6 0.828 380 H13-Y711A 132 -0.125 382 'H13-Y712B/D 741.6 0.703 379 H 13-Y713A/D 741.6 0.703 284 H13-Y714B/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y730B 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 132 0.125 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 c 0.215 '371 H13-Y747A 226.8 0.215 275 H13-Y7478 370.8 0.351 274 H13-Y748B/E 453.6 0.430 369 H13-Y750E 226.8 0.215 277 H13-Y751A 226.8 0.215 377 H13-P721 240 0.227 31 TOTAL 7461.6 7.072 CALC. NO. ENTR-078-CALC-004 EN CON CALCULATION CONTROL SHEET REV.O PAGE NO. 37 of 303 Table 13: LOOP Heat Load Distribution for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 132 0.125 378 H13-Y703A 0 0.000 282 H13-Y703D 226.8 0.215 281 -H13-Y7108/D/E 741.6 0.703 380 H13-Y711A 0 0.000 382 H13-Y712B/D 741.6 0.703 379 H13-Y713A/D '741.6 0.703 284 H13-Y7148/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y7308 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 0 0.000 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 0.215 371 H13-Y747A 0 0.000 H13-Y7478 0 0.000 274 H13-Y7488/E 0 0.000 369 H13-Y750E 0 0.000 277 H13-Y751A 226.8 0.215 377 H13-P721 0 0.000 31 TOTAL 4,950 4.692 As discussed in Assumption 4.15, the heat load from all of the computer equipment is assumed to remain on for 4 hours during the LOOP scenario (Case 1) which bounds the 2 hour design battery life as well as sensible h"eat released after the batteries have been depleted. The ERIS equipment loads shown In Table 13 are assumed to remain on for the duration of the event. 6.5.4 Remaining Heat Load The remaining heat loads include the miscellaneous panels, the lighting panels, the radiation monitor (RMS-CAB170), the kitchen, the PGCC rac_eway, operators and other miscellaneous equipment which are found from Reference 8.2 and 8.36. The heat load and distribution for these remaining heat loads is given below in Table 14 (Case 1) and Table 15 (Case 2 and Attachment 1 ). j | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 33 of 303 28.45 BTU/s Q"' Control Panels-Initial | ||
,, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 38 of 303 Table 14: Heat Load Distribution for Case 1 Heat Source Heat Load General Location Subvolume (s) Heat load (watts) (BTU/s)* See SR Os 696.1 Horseshoe area Assumption 4.1 0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 0 Ewall 118 0.00 RMS-CAB170 0 WWall 9 0.00 LAC-PNL 1 C5/ LAC-PNL 1 C6 0 Middle W wall, upper 134 0.00 LAC-PNL 1C9 39.98 Middle W wall, uooer 135 0.038 LAC-PNLC10/ LAC-PNL 1 C11 40.1 Middle W wall, uooer 133 0.038 BYS-PNL0282/ BYS-PNL02A2 116 Nwall 65 0.1099 SCl-PNL02/ SCl-PNL01 0 NWall 49 0.00 SCA-PNL 1 OA2 0 NW wall 17 0.00 SCA-PNL 1082 0 NE Wall 113 0.00 VBS-PNL018 82 SE wall 128 0.07772 ENB-PNL028/ SCM-PNL01 B 291 J SE Wall 112 0.277 VBN-PNL0181 145 SWall 96 0.137 VBN-PNL01A 1NBN-PNL02 392 SWall 64 ' 0.372 SCM-PNL01A/ENBPNL02A 312 SW Wall 48 0.296 VBS-PNL01A 78 SW Wall 32 I 0.074 Samsuna Flatscreen 0 EWall 230 0 Shift Manager Coffee Pots 0 NW Corner 129 0 HU Clock Reset Display 0 WWall 136 0 Printer/Copier 0 w*wa11 137 0 Desktop Printers 0 Horseshoe area 103-106 0 FLEX Radio Console 0 Horseshoe area 232 0 Exit Lights 36 West Wall 259,270 0.034 Emergency Lights 1296 Along MGR Walls See below 1.501 PGCC Raceway 650 Under the floor N/A 0.62 TOTAL (w/o Operators) 3,478.1 TOTAL (wl Operators) 4,870.3 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 39 of 303 Table 15: *Heat Load Distribution for Case 2 and Attachment 1 Heat Heat load Heat Source Load General Location Subvolume (s) (BTU/s)* (watts) SROs in Horseshoe Area 696.1 Horseshoe area See Assumption 4.1 *0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 1443 East wall 118 1.37 RMS-CA8170 1900.11 WWall 9 1.80 LAC-PNL 1 CS/ LAC-PNL 1 C6 125.83 Center W wall, uooer 134 0.12 LAC-PNL 1C9 39.98 Center W wall, upper 135 0.038 | = -------------------::--:-:=-:-- | ||
* LAC-PNLC10/ LAC-PNL 1C11 40.1 Center W wall, uooer 133 0.038 8YS-PNL0282/ 8YS-PNL02A2 116 Nwall ' 65 0.1099 SCl-PNL02/ SCl-PNL01 134 NWall 49 0.127 SCA-PNL 1 OA2 51 NWwall J 17 0.0483 SCA-PNL 1082 51 NE Wall 113 0.0483 V8S-PNL018 82 SE wall 128 0.0772 EN8-PNL028/ SCM-PNL01'8 291 SE Wall 112 0.277 V8N-PNL0181 145 SWall ' 96 0.137 V8N-PNL01A 1/ V8N-PNL02 392 SWall 64 0.372 SCM-PNL01A/ EN8-PNL02A 293 SW Wall 48 0.277 V8S-PNL01A 78 SW Wall 32 0.074 Samsung Flatscreen 250 EWall 230 0.237 Shift Manager Coffee Pots 120 NW Corner 129 0.114 HU Clock Reset Display 192 WWall 136 0.182 Printer/Copier 849 E/WWall 15,120 0.81 Desktop Printers 800 Horseshoe area 103-106 0.758 FLEX Radio Console 268 Horseshoe area . 232 0.254 Emergency/Exit Lights 133 Wwall 259,270 0.126 PGCC Racewav 1350 Under the floor N/A 1.28 TOTAL (w/o Operators) 9,084.0 TOTAL Cw/ Operators) 10,476.2 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts As discussed in Assumption 4.1, five operators are assumed to be working in the central horseshoe area. The heat load from the five operators is spread across 18 subvolumes in the horseshoe area. The heat load for each individual heater is calculated below. 0.66 BTU /s BTU QsRos = 18 h = 0.037--eaters s The remaining operators are assumed to be evenly distributed throughout the MCR to simulate the actions of them opening the control panel doors and the ceiling tiles. The heat load from the remaining five operators is distributed evenly over the lower and middle subvolumes of the lower MGR. | ! 2 f 2 7 f 2) 0.172 in (7,764.6 t + 3,234.14 t + 3,728. 6 t | ||
ENER'CON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 40 of 303 0.66BTU/s . BTU Qo t = = 0.00258 --pera ors 256 heaters s The heat load from the Emergency (1296 Watts) for Case 1 (Reference 8.36) is evenly distributed amqng the 44 upper elevation,subvolumes in the lower MCR that are adjacent to the MCR walls-subvolumes 257-272, 273, 288, 289, 304, 305, 320, 321, 336, 337, 352, 353, 368, 369-384. The heat load per subvolume is calculated below. BTU/s 1296 Watts* 9.478e -4 Watt QEmergency Lights-LOOP= 44 subvolumes = ,0.028 BTU /s , . The heat load from the Emergency lights (13 Watts) is added to the heat load for the Exit lights which are located in the upper subvolumes by the doors along the West wall of the lower MCR-subvolumes 259 and 270. The heat load from the PGCC raceway is modeled in the air gap in the composite floor conductor as a volumetric heat generation rate. The heat load of 650 watts from the PGCC raceway for Case 1 is divided by the surface area of the floor conductor (10,656 ft2) and the thickness of the air gap (1 ft) to determine the volumetric heat generation rate, shown bel,ow. | * 12 inf ft .BTU = 0.133! 3 t -s For the LOOP (Case 1 ), this initial internal heat rate is also used, although the LOOP panel heat loads are lower. This, together with the assumption that the computer equipment heat loads are maintained for 4 hours (Ass1,.1mption 4.15), ensures that the total stored energy is conservatively represented by the panel conductors. | ||
6.5.3 Equipment Heat load from computer equipment includes that from the Honeywell HS 4500 Plant Process Computer (PPC) system (C91 panels), | |||
Emergency Response Information System (ERIS) data acquisition | |||
: chassis, Orbital Network Engineering (ONE) computers, computer workstations, network switch and servers, and personal computers. | |||
An initial estimate of the heat load due to the Honeywell computer was obtained by taking field measurements of current on each disconnect in the panels and multiplying by the voltage. | |||
These measurements and the resulting heat loads are included as Attachment | |||
: 8. The distribution of the Honeywell computer heat loads is based on the location of the panels provided in Reference 8.26. Similar to the control panel heat loads, t.he heat load from computer panels in the same subvolume are summed and the combined heat load from these panels is distributed between the lower subvolumes and the corresponding middle subvolume. | |||
The heat loads and distribution for these Honeywell panels is shown in Table 10. Table 1 O: Honeywell Computer Panel Heat Load and Distribution Panel Number Heat Heat Load Lower Middle Per Heater Load Heat Load C91-PXXX (Watts) (BTU/s)* | |||
Subvolume subvolume BTU/s Communications 294 0.279 90 N/A 0.279 Cabinet P60S/P600/P603 2049.3 1.94 63 191 0.971 P625 217.35 0.21 31 159 0.103 P621 /P620/612 2857.3 2.71 47 175 1.354 P624 546.25 0.52 51 179 0.259 P622 441.6 0.42 18 146 0.209 P623/650/616 1305.25 1.24 34 162 0.619 P63,0/P631 1030.5 0.98 62 190 0.488 P613 182.85 0.17 94 222 0.087 P615/642 2256.85 2.14 46 174 1.070 P614 180.55 0.17 30 158 0.086 P632/P633 139.15 0.13 72 200 0.066 TOTAL 11,500.95 10.90 / *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts E.NERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 34 of 303 Figure 6 below shows the location of the individual personal computers (PCs) in the MCR (Reference 8.36). The PCs have a heat load of 300 W each per Reference 8.2, Appendix A, Page 35. Based on Attachment 8, the heat load from PCs in the southwest area near. the Honeywell panels is already accounted for using the measured loads from these panels, thus these PCs are not accounted for as an additional heat load. The subvolume locations for each of the PCs is given in Table 11. \ | |||
CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET REV.O PAGE NO. 35 of 303 ENERCON 'CALCULATION CONTROL SHEET ,CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 36 of 303 Table 11: Heat Load Distribution for Personal Computers Heat Load , Heat load Heat Source (watts) General Location Subvolume (BTU/s)" | |||
PC1/2 600 Center Area 72 0.569 PC3 300 Center East Wall 104 0.284 PC4 300 Center East Wall 105 0.284 PC5/6 600 Center Area , 87 0.569 PC7 300 Center Area 71 0.284 PC8/9 600 Center Area 199 0.569 PC 10/11 600 Center Area 106 0.569 PC 12-Shift Manaaer 300 NW Corner 1 0.284 TOTAL 3600 | |||
* Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts The heat load from the ERIS system is determined in Attachment | |||
: 3. Table 12 gives normal operations heat load distribution. | |||
Table 13 gives the LOOP heat load distribution after 4 hours when the BYS-INV02 batteries have been depleted. | |||
The heat load from panels in the same subvolume are summed. Table 12: Normal Heat Load Distributicm for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 358.8 0.340 378 H13-Y703A 370.8 0.351 282 H13-Y703D 226.8 0.215 281 H13-Y710B/D/E 873.6 0.828 380 H13-Y711A 132 -0.125 382 'H13-Y712B/D 741.6 0.703 379 H 13-Y713A/D 741.6 0.703 284 H13-Y714B/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y730B 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 132 0.125 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 c 0.215 '371 H13-Y747A 226.8 0.215 275 H13-Y7478 370.8 0.351 274 H13-Y748B/E 453.6 0.430 369 H13-Y750E 226.8 0.215 277 H13-Y751A 226.8 0.215 377 H13-P721 240 0.227 31 TOTAL 7461.6 7.072 CALC. NO. ENTR-078-CALC-004 EN CON CALCULATION CONTROL SHEET REV.O PAGE NO. 37 of 303 Table 13: LOOP Heat Load Distribution for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 132 0.125 378 H13-Y703A 0 0.000 282 H13-Y703D 226.8 0.215 281 -H13-Y7108/D/E 741.6 0.703 380 H13-Y711A 0 0.000 382 H13-Y712B/D 741.6 0.703 379 H13-Y713A/D | |||
'741.6 0.703 284 H13-Y7148/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y7308 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 0 0.000 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 0.215 371 H13-Y747A 0 0.000 H13-Y7478 0 0.000 274 H13-Y7488/E 0 0.000 369 H13-Y750E 0 0.000 277 H13-Y751A 226.8 0.215 377 H13-P721 0 0.000 31 TOTAL 4,950 4.692 As discussed in Assumption 4.15, the heat load from all of the computer equipment is assumed to remain on for 4 hours during the LOOP scenario (Case 1) which bounds the 2 hour design battery life as well as sensible h"eat released after the batteries have been depleted. | |||
The ERIS equipment loads shown In Table 13 are assumed to remain on for the duration of the event. 6.5.4 Remaining Heat Load The remaining heat loads include the miscellaneous panels, the lighting panels, the radiation monitor (RMS-CAB170), | |||
the kitchen, the PGCC rac_eway, operators and other miscellaneous equipment which are found from Reference 8.2 and 8.36. The heat load and distribution for these remaining heat loads is given below in Table 14 (Case 1) and Table 15 (Case 2 and Attachment 1 ). j | |||
,, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 38 of 303 Table 14: Heat Load Distribution for Case 1 Heat Source Heat Load General Location Subvolume (s) Heat load (watts) (BTU/s)* | |||
See SR Os 696.1 Horseshoe area Assumption 4.1 0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 0 Ewall 118 0.00 RMS-CAB170 0 WWall 9 0.00 LAC-PNL 1 C5/ LAC-PNL 1 C6 0 Middle W wall, upper 134 0.00 LAC-PNL 1C9 39.98 Middle W wall, uooer 135 0.038 LAC-PNLC10/ | |||
LAC-PNL 1 C11 40.1 Middle W wall, uooer 133 0.038 BYS-PNL0282/ | |||
BYS-PNL02A2 116 Nwall 65 0.1099 SCl-PNL02/ | |||
SCl-PNL01 0 NWall 49 0.00 SCA-PNL 1 OA2 0 NW wall 17 0.00 SCA-PNL 1082 0 NE Wall 113 0.00 VBS-PNL018 82 SE wall 128 0.07772 ENB-PNL028/ | |||
SCM-PNL01 B 291 J SE Wall 112 0.277 VBN-PNL0181 145 SWall 96 0.137 VBN-PNL01A 1NBN-PNL02 392 SWall 64 ' 0.372 SCM-PNL01A/ENBPNL02A 312 SW Wall 48 0.296 VBS-PNL01A 78 SW Wall 32 I 0.074 Samsuna Flatscreen 0 EWall 230 0 Shift Manager Coffee Pots 0 NW Corner 129 0 HU Clock Reset Display 0 WWall 136 0 Printer/Copier 0 w*wa11 137 0 Desktop Printers 0 Horseshoe area 103-106 0 FLEX Radio Console 0 Horseshoe area 232 0 Exit Lights 36 West Wall 259,270 0.034 Emergency Lights 1296 Along MGR Walls See below 1.501 PGCC Raceway 650 Under the floor N/A 0.62 TOTAL (w/o Operators) 3,478.1 TOTAL (wl Operators) 4,870.3 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 39 of 303 Table 15: *Heat Load Distribution for Case 2 and Attachment 1 Heat Heat load Heat Source Load General Location Subvolume (s) (BTU/s)* | |||
(watts) SROs in Horseshoe Area 696.1 Horseshoe area See Assumption 4.1 *0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 1443 East wall 118 1.37 RMS-CA8170 1900.11 WWall 9 1.80 LAC-PNL 1 CS/ LAC-PNL 1 C6 125.83 Center W wall, uooer 134 0.12 LAC-PNL 1C9 39.98 Center W wall, upper 135 0.038 | |||
* LAC-PNLC10/ | |||
LAC-PNL 1C11 40.1 Center W wall, uooer 133 0.038 8YS-PNL0282/ | |||
8YS-PNL02A2 116 Nwall ' 65 0.1099 SCl-PNL02/ | |||
SCl-PNL01 134 NWall 49 0.127 SCA-PNL 1 OA2 51 NWwall J 17 0.0483 SCA-PNL 1082 51 NE Wall 113 0.0483 V8S-PNL018 82 SE wall 128 0.0772 EN8-PNL028/ | |||
SCM-PNL01'8 291 SE Wall 112 0.277 V8N-PNL0181 145 SWall ' 96 0.137 V8N-PNL01A 1/ V8N-PNL02 392 SWall 64 0.372 SCM-PNL01A/ | |||
EN8-PNL02A 293 SW Wall 48 0.277 V8S-PNL01A 78 SW Wall 32 0.074 Samsung Flatscreen 250 EWall 230 0.237 Shift Manager Coffee Pots 120 NW Corner 129 0.114 HU Clock Reset Display 192 WWall 136 0.182 Printer/Copier 849 E/WWall 15,120 0.81 Desktop Printers 800 Horseshoe area 103-106 0.758 FLEX Radio Console 268 Horseshoe area . 232 0.254 Emergency/Exit Lights 133 Wwall 259,270 0.126 PGCC Racewav 1350 Under the floor N/A 1.28 TOTAL (w/o Operators) 9,084.0 TOTAL Cw/ Operators) 10,476.2 | |||
*Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts As discussed in Assumption 4.1, five operators are assumed to be working in the central horseshoe area. The heat load from the five operators is spread across 18 subvolumes in the horseshoe area. The heat load for each individual heater is calculated below. 0.66 BTU /s BTU QsRos = 18 h = 0.037--eaters s The remaining operators are assumed to be evenly distributed throughout the MCR to simulate the actions of them opening the control panel doors and the ceiling tiles. The heat load from the remaining five operators is distributed evenly over the lower and middle subvolumes of the lower MGR. | |||
ENER'CON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 40 of 303 0.66BTU/s | |||
. BTU Qo t = = 0.00258 --pera ors 256 heaters s The heat load from the Emergency (1296 Watts) for Case 1 (Reference 8.36) is evenly distributed amqng the 44 upper elevation,subvolumes in the lower MCR that are adjacent to the MCR walls-subvolumes 257-272, 273, 288, 289, 304, 305, 320, 321, 336, 337, 352, 353, 368, 369-384. | |||
The heat load per subvolume is calculated below. BTU/s 1296 Watts* 9.478e -4 Watt QEmergency Lights-LOOP= | |||
44 subvolumes | |||
= ,0.028 BTU /s , . The heat load from the Emergency lights (13 Watts) is added to the heat load for the Exit lights which are located in the upper subvolumes by the doors along the West wall of the lower MCR-subvolumes 259 and 270. The heat load from the PGCC raceway is modeled in the air gap in the composite floor conductor as a volumetric heat generation rate. The heat load of 650 watts from the PGCC raceway for Case 1 is divided by the surface area of the floor conductor (10,656 ft2) and the thickness of the air gap (1 ft) to determine the volumetric heat generation rate, shown bel,ow. | |||
* BTU/s ,,, 650 Watts* 9.478e -4 W _ BTU Q PGCC Raceway-Case 1 = 10,656 ft2 | * BTU/s ,,, 650 Watts* 9.478e -4 W _ BTU Q PGCC Raceway-Case 1 = 10,656 ft2 | ||
* 1 ft -5.8e -5 ft3 _ s The same methodology is used for the heat load for Cases 2 and Attachment 1, based on a PGCC raceway heat load of 1350 Watts. BTU/s 1350 Watts* 9.478e -4 W BTU Q"' PGCC Raceway-Case 2 &Att. 1 = 10,656 f t2 | * 1 ft -5.8e -5 ft3 _ s The same methodology is used for the heat load for Cases 2 and Attachment 1, based on a PGCC raceway heat load of 1350 Watts. BTU/s 1350 Watts* 9.478e -4 W BTU Q"' PGCC Raceway-Case 2 &Att. 1 = 10,656 f t2 | ||
* 1 ft = 1.2e -4 ft3 _ s \ 6.6. Flow Paths and Volumetric Fans Flow paths (FP) are added to model door CB136-9 that opens from the lower MCR volume to the stairwell volume (FP 13, 14, and 21 ), the door that opens from the stairwell volume to the atmosphere (FP15, FP16), and exhaust paths for the smoke removal fan (FP18, 19, 20) and the toilet/kitchen fans (FP22). The door flow paths are split and modeled as parallel flow paths to allow for counter-current flow. The flow paths are sized based on Input 3.9. The first two flow patl]s (FP13 and FP21) model the lower half of door CB136-9; one flow path for when there is no fan, and the other for when the fan is staged in the lower half of the door. The flow path without the fan (FP13) is closed using a GOTHIC door component when the staged fan starts at 1 hour and 30 minutes in Case 2 (Table 5). The other flow path (FP14) models the upper half of door CB136-9. Once the door is opened, this flow path provides the supply air for the smoke removal fan, portable fan, and toilet/kitchen fans. The height of each door flow path is 3.5 ft (half of the total height of 7 ft). The flow area and hydraulic diameter for the door paths are calculated below. ( \ '.. | * 1 ft = 1.2e -4 ft3 _ s \ 6.6. Flow Paths and Volumetric Fans Flow paths (FP) are added to model door CB136-9 that opens from the lower MCR volume to the stairwell volume (FP 13, 14, and 21 ), the door that opens from the stairwell volume to the atmosphere (FP15, FP16), and exhaust paths for the smoke removal fan (FP18, 19, 20) and the toilet/kitchen fans (FP22). The door flow paths are split and modeled as parallel flow paths to allow for counter-current flow. The flow paths are sized based on Input 3.9. The first two flow patl]s (FP13 and FP21) model the lower half of door CB136-9; one flow path for when there is no fan, and the other for when the fan is staged in the lower half of the door. The flow path without the fan (FP13) is closed using a GOTHIC door component when the staged fan starts at 1 hour and 30 minutes in Case 2 (Table 5). The other flow path (FP14) models the upper half of door CB136-9. | ||
Once the door is opened, this flow path provides the supply air for the smoke removal fan, portable fan, and toilet/kitchen fans. The height of each door flow path is 3.5 ft (half of the total height of 7 ft). The flow area and hydraulic diameter for the door paths are calculated below. ( \ '.. | |||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 41 of 303 Adoor = H | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 41 of 303 Adoor = H | ||
* W = 3.5 ft* 3 ft = 10.5 f t2 4A 4*10.5 Dh = Pw = 2 | * W = 3.5 ft* 3 ft = 10.5 f t2 4A 4*10.5 Dh = Pw = 2 | ||
* 3.5 + 3 = 4.2 ft The inertia length and friction length for this flow path are set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The flow path connection for the lower half flow paths of CB136-9 (FP13 and FP21) is connected to the lower subvolume of the MCR volume in the sbuthwest corner (subvolllme 1s14). The flow path connection for the upper half of CB136-9 (FP14) is connected to the upper subvolume of the MCR (subvolume 1 s142). The orientation of this connection is set at the bottom of the subvolume so that it can provide flow and mixing with the lower subvolumes when the staged fan flow path is open. The inputs for the toilet/kitchen flow path are arbitrarily defined with a height (ft), flow area (ft2), hydraulic diameter (ft), and inertia length (ft) of 1. The toilet and kitchen fan flow path is modeled in a subvolume near the center of east wall (1s374) based on review of Reference 8.26. The toilet/kitchen fans are only used for Case 2, when offsite power is available. Before door CB136-9 is opened, the supply air for the toilet/kitchen fans* is through the pressure boundary (FP1) which provides outside air flow at 96°F. FP1 is arbitrarily located in subvolurTie'1s94. This is conservative as the HVAC rooms which are connected to the MCR with ductwork are not expected to heat up significantly through this event, and would provide leakage at a cooler temperature. | * 3.5 + 3 = 4.2 ft The inertia length and friction length for this flow path are set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | ||
The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The flow path connection for the lower half flow paths of CB136-9 (FP13 and FP21) is connected to the lower subvolume of the MCR volume in the sbuthwest corner (subvolllme 1s14). The flow path connection for the upper half of CB136-9 (FP14) is connected to the upper subvolume of the MCR (subvolume 1 s142). The orientation of this connection is set at the bottom of the subvolume so that it can provide flow and mixing with the lower subvolumes when the staged fan flow path is open. The inputs for the toilet/kitchen flow path are arbitrarily defined with a height (ft), flow area (ft2), hydraulic diameter (ft), and inertia length (ft) of 1. The toilet and kitchen fan flow path is modeled in a subvolume near the center of east wall (1s374) based on review of Reference 8.26. The toilet/kitchen fans are only used for Case 2, when offsite power is available. | |||
Before door CB136-9 is opened, the supply air for the toilet/kitchen fans* is through the pressure boundary (FP1) which provides outside air flow at 96°F. FP1 is arbitrarily located in subvolurTie'1s94. | |||
This is conservative as the HVAC rooms which are connected to the MCR with ductwork are not expected to heat up significantly through this event, and would provide leakage at a cooler temperature. | |||
* The inputs for the smoke removal fan flow paths (FP18-20) are defined based on Reference 8.8. Reference 8.8 shows the opening for the DMP 68 and 69 to be 48" x 36". The flow area and hydraulic diameter for these dampers (FP19, 20) is calculated below. 48 in x 36 in 2 ADMP68/69 = . 2 = 12 ft m 144 ft2 ' 4 | * The inputs for the smoke removal fan flow paths (FP18-20) are defined based on Reference 8.8. Reference 8.8 shows the opening for the DMP 68 and 69 to be 48" x 36". The flow area and hydraulic diameter for these dampers (FP19, 20) is calculated below. 48 in x 36 in 2 ADMP68/69 = . 2 = 12 ft m 144 ft2 ' 4 | ||
* 12 ft2 Dh-DMP 68/69 = 48 in 36 in = 3.43 ft (2 | * 12 ft2 Dh-DMP 68/69 = 48 in 36 in = 3.43 ft (2 | ||
* 12 in/ft+ 2 | * 12 in/ft+ 2 | ||
* 12 in/ft) Reference 8.8 shows the opening for DMP 70 to be 108" x 48". The flow area and hydraulic diameter for this damper (FP18) is calculated below. 108 in x 48 in 2 ADMP70 = . 2 = 36ft m 144 ft2 4 | * 12 in/ft) Reference 8.8 shows the opening for DMP 70 to be 108" x 48". The flow area and hydraulic diameter for this damper (FP18) is calculated below. 108 in x 48 in 2 ADMP70 = . 2 = 36ft m 144 ft2 4 | ||
* 36 ft2 Dh-DMP7o = 108 in 48 in = 5.54 ft (2 | * 36 ft2 Dh-DMP7o | ||
= 108 in 48 in = 5.54 ft (2 | |||
* 12 in/ft+ 2 | * 12 in/ft+ 2 | ||
* 12 in/ft) | * 12 in/ft) | ||
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 42 of 303 *, The inertia length and friction length for these flow paths are set to 10 ft and Oft respectively, based on the insensitivity of the model to these parameters. The height is set 1.0 ft. The loss coefficient is set to zero as the flow is forced using GOTHIC volumetric fans. As described in Assumption 4.2, the flow through each of the dampers is weighted based on the total flow of 10, 125 cfm (Input 3.11) and the normal flow through the dampers, shown below. , ( 7600 cfm * ) FlowDMP6B/69 = 10,125 cfm | ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 42 of 303 *, The inertia length and friction length for these flow paths are set to 10 ft and Oft respectively, based on the insensitivity of the model to these parameters. | ||
* 7600 cfm + 7600 cfm + 21000 cfm = 2,125.7 cfm . ( , 21000 cfm * ) = 10,125 cfm | The height is set 1.0 ft. The loss coefficient is set to zero as the flow is forced using GOTHIC volumetric fans. As described in Assumption 4.2, the flow through each of the dampers is weighted based on the total flow of 10, 125 cfm (Input 3.11) and the normal flow through the dampers, shown below. , ( 7600 cfm * ) FlowDMP6B/69 | ||
* 7600 cfm + 7600 cfm + 21000 cfm = 5,873.6 cfm The flow paths representing the ceiling tiles (FP2-10) are distributed across the upper subvolumes of the lower MCR and connected to the corresponding upper MCR subvolume. The first tile flow path that opens is split into two different flow paths of equal area (40 ft2) in order to allow for cpunter current flow when the tiles are initially opened. The loss coefficient, inertia lengths and friction lengths for the tile flow paths used in Reference 8.1 are retained in this analysis as they were to be reasonable. Flow paths 23-53 are added to-model the egg crate panels shown on Reference 8.8 and 8.31. Based on Attachment 7, there are 16 registers along the-west wall, and 15 along the East wall; this is also shown in Reference 8.31. Based on Attachment 7, the egg crate panels are squares that are 1/2" x 1/2"; the registers have 18 holes in one dimension and 80 in the other ' dimension. The opening area and hydraulic diameter for each egg crate panel is: calculated below. -0.5 in x 0.5 in . 2 A Egg crate = . 2 . | = 10,125 cfm | ||
* 7600 cfm + 7600 cfm + 21000 cfm = 2,125.7 cfm . ( , 21000 cfm * ) | |||
= 10,125 cfm | |||
* 7600 cfm + 7600 cfm + 21000 cfm = 5,873.6 cfm The flow paths representing the ceiling tiles (FP2-10) are distributed across the upper subvolumes of the lower MCR and connected to the corresponding upper MCR subvolume. | |||
The first tile flow path that opens is split into two different flow paths of equal area (40 ft2) in order to allow for cpunter current flow when the tiles are initially opened. The loss coefficient, inertia lengths and friction lengths for the tile flow paths used in Reference 8.1 are retained in this analysis as they were to be reasonable. | |||
Flow paths 23-53 are added to-model the egg crate panels shown on Reference 8.8 and 8.31. Based on Attachment 7, there are 16 registers along the-west wall, and 15 along the East wall; this is also shown in Reference 8.31. Based on Attachment 7, the egg crate panels are squares that are 1/2" x 1/2"; the registers have 18 holes in one dimension and 80 in the other ' dimension. | |||
The opening area and hydraulic diameter for each egg crate panel is: calculated below. -0.5 in x 0.5 in . 2 A Egg crate = . 2 . | |||
* 80 holes | * 80 holes | ||
* 18 holes = 2.5 ft m 144 ft2 4 | * 18 holes = 2.5 ft m 144 ft2 4 | ||
| Line 830: | Line 2,187: | ||
* 12 *inff t | * 12 *inff t | ||
* 80 holes | * 80 holes | ||
* 18 holes) The. inertia length for the egg crate panel flow paths is set to 10 ft, based on the insensitivity of the model to this parameter. The friction length for the Egg Crate panels is set to 0.0417 ft based on the flow length given in Attachment 7 as 0.5 inches. The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The momentum transport option is set to "N" (in-line momentum transport) for flow paths between a subvolume and a lumped volume or a pressure boundary condition (e.g. the door flow path, smoke removal fan flow path, etc.), as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the ceiling tile and egg crate panels flow paths is also set to "N" ._ | * 18 holes) The. inertia length for the egg crate panel flow paths is set to 10 ft, based on the insensitivity of the model to this parameter. | ||
ENERCON CALCULATION CONTROL SHEET 6.7. Control Variables CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 43 of 303 GOTHIC control variables are used to record the maximum cell temperature in the lower MCR volume as well as calculate the average temperature of the MCR. A GOTHIC "max" control variable is used to record the maximum cell temperature in the lower and middle subvolumes of the lower MCR volume (cv1). A GOTHIC "max" control variable is also used to record the maximum cell temperature for the entire lower MCR volume (cv7) The average temperature of the MCR is calculated on a volume-averaged basis by numerically averaging the temperatures in the lower, middle and upper subvolumes separately using GOTHIC control variables cv2, cv3, and cv5 (sum of the temperatures in the lower, middle or upper subvolumes, divided by the number of cells-128). The average temperature of the lower two subvolumes (TA) is then calculated taking the volumetric average of the lower and middle subvolumes, using the equation below. VL: Total volume of lower subvolumes (144 ft x 74 ft x 3.48513 ft x 0.9 = 33,423.8 ft3) TL: Average Temperature of lower subvolumes TA: Average Temperature of the lower two subvolumes in the lower MCR VM=Total volume of middle subvolumes (144 ft x 74 ft x 4.0193 ft x 0.9 =38,546.7 ft3) TM: Average Temperature of middle,subvolumes Rearranging to solve for the average temperature, TA. VL TM+v-TL T -M A-Vi + 1 VM The GOTHIC "sum" Control Variable (cv4) has the following form. Where "G" and "an" are coefficients and "Xn" are variables. Therefore "G" is the inverse of the denominator of the equation that solves for average temperature, 0.53559. The coefficient "aa" is zero. "TM" is taken to be variable "X/', making coefficient "a1" equal to one. 'TL" is taken to be variable "X2", making coefficient "a2" equal to VLNM, or 0.867. No other variables or coefficients were used in calculating this Control Variable. The average temperature of the lower and middle subvolumes (cv4) is then average with the average temperature of the upper subvolumes (cv5) using the same equation as above. | The friction length for the Egg Crate panels is set to 0.0417 ft based on the flow length given in Attachment 7 as 0.5 inches. The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The momentum transport option is set to "N" (in-line momentum transport) for flow paths between a subvolume and a lumped volume or a pressure boundary condition (e.g. the door flow path, smoke removal fan flow path, etc.), as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the ceiling tile and egg crate panels flow paths is also set to "N" ._ | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 44 of 303 VA: of lower and middle subvolumes (144 ft x 74 ft x 7.50443 ft x 0.9 = 71,970.5 ft3) TA: Average Temperature of lower and middle subvolumes in the lower MCR Ts: Overall average Temperature of the lower MCR VH=Total volume of the upper subvolumes (144 ft x 74 ft x 1.61057 ft x 0.9 =15,446 ft3) TH: Average Temperature of upper subvolumes Rearranging to solve for the average temperature, Ts. Therefore "G" is the of the denominator of the equation that solves for average temperature, 0.17669. The coefficient "ao" is zero. "TH" is taken to be variable "X1", _making coefficient "a/' equal to one. "TA" is taken to be variable "X2", making coefficient "a2" equal to VANH, or'4.65949. No other variables or coefficients were used in calculating this Control Variable. 6.8 Blockages Blockages are added to the lower MCR volume (CV1) to model the effects on the flow patterns of the control panels and the walls surrounding the kitchen area and shift manager's office. The blockages are constructed based on the physical location of these components as shown in Reference 8.26 and 8.27 and are located coincident with the nearest x-or y-direction grid line. For example the blockage representing the panels in 1H13-U7 4 7 is located on the second grid line between subvolume 1 s34 and 1 s35, up through subvolumes 1 s50 and 1 s51. Blockages are constructed so they do not displace any volume in the MCR; a 10% reduction in the MCR free volume has already been incorporated (see Reference 8.1 ). | ENERCON CALCULATION CONTROL SHEET 6.7. Control Variables CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 43 of 303 GOTHIC control variables are used to record the maximum cell temperature in the lower MCR volume as well as calculate the average temperature of the MCR. A GOTHIC "max" control variable is used to record the maximum cell temperature in the lower and middle subvolumes of the lower MCR volume (cv1). A GOTHIC "max" control variable is also used to record the maximum cell temperature for the entire lower MCR volume (cv7) The average temperature of the MCR is calculated on a volume-averaged basis by numerically averaging the temperatures in the lower, middle and upper subvolumes separately using GOTHIC control variables cv2, cv3, and cv5 (sum of the temperatures in the lower, middle or upper subvolumes, divided by the number of cells-128). | ||
\ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 45 'of 303 7. Results Figure 7 shows tile average transient temperature in the MCR for 24 hours for Case 1. The average temperature in the MCR increases to approximately 105 °F at approximately 1.2 hours. The temperature then decreases to approximately 103°F due to the effects of removing the ceiling tiles, which is initiated ten minutes after the average temperature of the MCR reaches 104 °F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1 C11 panels are dropped at the end of the BYS-INV02 battery life at 4 hours when the average temperature is approximately 107°F, which reduces the average temperature to approximately 103°F. The average temperature then gradually increases to 111.4°F at 24 hours. This case does not include the simple and obvious action of opening doors to the Main Control Room. 115 110 105 100 LI:" (]J .._ ::J .., 95 ro '-*******************************************************************************l********************************************************************************************************************************************-********************************************************************************************************************-**-*****-***""' *********** ............. _ ...... . OJ 0.. E (!) f-90 85 80 75 0 5 10 15 20 25 Time (hrs) Figure 7: Average MCR Temperature for Case 1 | The average temperature of the lower two subvolumes (TA) is then calculated taking the volumetric average of the lower and middle subvolumes, using the equation below. VL: Total volume of lower subvolumes (144 ft x 74 ft x 3.48513 ft x 0.9 = 33,423.8 ft3) TL: Average Temperature of lower subvolumes TA: Average Temperature of the lower two subvolumes in the lower MCR VM=Total volume of middle subvolumes (144 ft x 74 ft x 4.0193 ft x 0.9 =38,546.7 ft3) TM: Average Temperature of middle,subvolumes Rearranging to solve for the average temperature, TA. VL TM+v-TL T -M A-Vi + 1 VM The GOTHIC "sum" Control Variable (cv4) has the following form. Where "G" and "an" are coefficients and "Xn" are variables. | ||
( ENERCON CALCULATION CO,NTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' I PAGE NO. 46 of 303 . Figure 8 shows the maximum subvolume temperature of the lower MCR for Case 1. The maximum temperature increases to approximately 112°F before the tiles are opened which results in the maximum temperature decreasing to approximately 111°F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1C11 panels is dropped at the end of the BYS-INV02 battery life at 4 hours when the temperature is approximately 114°F; which reduces the temperature to approximately 108°F. The temperature than gradually increases to 117.8°F at 24 hours. 120 115 110 105 LI:' -100 (]) .... ::l ... ro ._ QJ 0. E 95 90 85 .................................................. ,............. ......... .. ...... . 80 ........................... ***+*-----------------------***----***------.................................... , ........................... .. 0 5 10 Time (hr) 15 20 Figure 8: Maximum Local MCR Temperature for Case 1 25 ENERCON I CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 47 of 303 Figure 9 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 1. The initial relative humidity is 20% and decreases to approximately 8% at 24 hours. 25 I ' I 20 ** i r I I 15 >-.., 'Ci .E I I I I I J ;:, :r: Q) > :;:; ro (ii cc. 10 I ...*.... \f **------------* --5 " J . 0 0 5 10 15 20 25 Time (hrs) Figure 9: Relative Humidity in the Horseshoe Area for Case 1 ENERCON / f,etyday CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 48 of 303 Figure 10 shows the average temperature of the MCR for Case 2. The average temperature in the MCR increases to a peak value of 116.1 "F at two hours when the smoke rem'oval fan is energized. Note that the operator actions of opening door CB136-9 at one hour and staging the portable electric fan at one and a half hours are shown to have a negligible impact on the room temperature. Note also that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually -start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. Following start of the smoke removal fan, the average temperature decreases to approximately 112°F, then decreases again when the ceiling tiles are removed at two and a half hours. The'average temperature then with changes in the outdoor air temperature, and at 24 hours is 1_Q.8.6"F. 120 115 90 I I 85 U-***-----) /' 80 75 0 5 10 15 .I 20 25 Time (hrs) Figure 10: Average MCA Temperature for Case 2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 49 of 303 Figure 11 shows the maximum subvolume temperature in the MCR for 24 hours for Case The maximum subvolume in the MCR reaches a peak value of 121.8°F at 2.02 hours. Ceiling tile removal further decreases the maximum subvolume temperature, and at 24 hours the maximum subvolume temperature is 116.8°F. 125 120 115 -7 J A ********.,********* **************--*--***-.,_u, ... .,,,,,,,,,,_,,,,,_,. .. ,.,,.,, *.. ., ******** ., .*..... 110 1-................................................................. t*****-..................................................................... , ............................................................................ . Q) .... ::;, 105 '§ 100 Q) n. E 95 85 80 75 0 5 10 15 Time (hr) Figure 11: Maximum Local MCR Temperature for Case 2 20 25 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV. 0 fKi;:t>n{e* £w:r:y P'Circr fHY1 Jar PAGE NO. 50 of 303 Figure 12 shows the temperature distribution of the lower and middle subvolumes of the lower MCR at the time the limiting local cell temperature occurs, 2.02 hours. .....I .....I c:x: $ I C::: 0 z YB Y7 Y6 YS Y4 Y3 Y2 Yl 111.4 111.l 111.6 111.9 112.2 111.5 110.3 102.5 Lower El. (Zl) Xl 0 .....I .....I c:x: $ I C::: 0 z 3.485 YB 114.7 Y7 116.3 Y6 116.2 YS 116.0 Y4 116.0 Y3 115.B Y2 115.S Yl 107.9 Middle El. (Z2) Xl 3.485 7.5 111.B 112.2 112.7 112.8 112.3 113.2 112.2 112.4 112.7 114.6 113.7 112.8 110.9 111.2 106.4 107.5 X2 X3 114.7 114.8 115.6 115.9 115.7 116.2 116.3 116.S 116.l 116.S 115.S 114.8 113.9 112.9 107.1 107.9 X2 X3 112.3 116.S 115.0 112.S 112.2 111.4 110.4 107.S X4 115.0 119.9 118.S 116.3 115.7 115.l 112.0 108.3 X4 111.6 109.4 110.4 111.S 111.0 111.5 110.3 107.6 XS 114.8 116.0 115.6 115.7 115.2 115.2 112.0 109.1 XS 115.B 108.0 110.5 110.B 109.9 110.1 109.9 107.6 X6 113.9 116.8 115.1 115.S 114.6 113.6 EAST WALL 115.2 116.1 114.9 116.4 116.8 116.9 115.4 114.9 115.7 112.S 114.4 115.3 113.4 115.2 115.7 111.0 113.8 114.8 109.6. 110.4 112.1 107.6 107.4 107.1 X7 XB X9 WEST WALL 117.2 118.1 118.8 117.5 117.7 116.8 EAST WALL 117.3 118.1 118.S 118.2 118.0 117.9 116.8 117.3 117.8 118.3 117.9 117.9 112.S | Therefore "G" is the inverse of the denominator of the equation that solves for average temperature, 0.53559. | ||
* 113.2 113.8 115.8 110.4 112.4 113.1 112.7 X6 X7 X8 X9 WEST WALL 114.S 113.6 117.1 115.3 115.9 116.6 115.S 115.8 115.5 118.7 115.4 118.6 115.5 115.0 106.0 105.8 XlO Xll 116.7 116.3 117.1 118.1 118.0 118.6 118.8 119.0 119.0 Ul.8 119.0 120.8 118.4 119.4 111.4 110.9 XlO Xll 113.0 112.2 111.3 110.2 109.2 114.8 113.5 113.3 113.2 109.3 115.8 114.8 114.7 113.3 108.3 115.0 113.9 112.9 111.0 107.9 116.1 115.5 114.5 115.6 107.0 117.3 115.5 115.8 113.5 106.2 114.0 113.7 111.1 109.7 105.S 105.5 105.3 104.8 104.9 104.8 X12 X13 X14 X15 X16 115.3 115.1 114.3 112.9 111.0 119.3 118.4 117.8 116.1 111.4 118.7 117.9 116.8 116.1 110.5 118.7 118.3 117.1 115.0 110.0 119.2 118.4 118.7 118.8 107.5 119.3 117.9 118.S 120.1 105.9 118.6 117.6 117.6 109.5 105.2 111.7 114.3 104.8 106.0 104.9 X12 X13 X14 XlS X16 Figure 12: Temperature Distribution of the lower and middle subvolumes of the MCR at 2.02 hours .....I .....I c:x: $ I ::> 0 Vl .....I .....I I ::> 0 Vl ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 51 of 303 Figure 13 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 2. The initial relative humidity is 20% and decreases to approximately \_ 10% before the smoke removal fan is turned on and outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes 'in the outside air relative humidity. 50 40 I 0 5 10 15 20 25 Time (hrs) Figure 13: Relative Humidity in the Horseshoe Area for Case 2 ENERCON I 8. REFERENCES CALCULATION CONTROL SHEET CALC. ENTR-078-CALC-004 REV.O PAGE NO. 52 of 303 1. \G13.18.12.4*027, "Control Room Temperature During Station Blackout", Rev. 2. 2. E-226, "Control Building Electrical Equipment Heat Release During LOCA Condition with Off Site Power Available and also Control Building Electrical heat Release during LOCA Condition without Offsite Power (LOOP) and with EGS-EG 1 B Diesel Generator not Responding", Rev. 5. 3: EA-006M, "Door Location Plan Sheet 4," Rev. 7. 4. ES-246,-"Control Building Heatup following failure of the HVAC System", Rev. 3. 5. GOTHIC Containment Analysis Package User's Manual, version 7.2b (QA), March 2009 (SCR-2012-0214) 6. AOP-0060, "Loss of Control Building Ventilation", Rev. 009. 7. G13.18.12.3*161, "Standby Switchgear Room Temperatures following Loss of Offsite Power and Loss of HVAC", Rev. 2. 8. EB-0390, Ventilation & Air Conditioning Plan El 135' Control Building", Rev. 9. 9. 6224.302-000-038A (NED010466-A), "PGCC Design Criteria & Safety Evaluation. 10. EA-006B, "Doqr Schedule & Details", Rev. 14. 11. EA-46D, "Stairs-1&2-Plans Sects & Dets Control Bldg", Rev. 5. 12. PID-22-09B, "HVAC Control Building", Rev. 14. 13. ASHRAE Handbook Fundamentals, 1-P Edition, 2009. 14. AOP-0050, "Station Blackout", Rev 051 15. PlD-22-09C, "HVAC Control Building", Rev. 10. 16. 22A3888, GE MCR Panel Specification, RBS vendor document 0242.411-000-009. 17. G13.18.2.1-059, Rev. 4, "Control Building Heat Load Evaluation during LOCA w/ Offsite Power Available and Normal Operating Conditions 18. ENTR-078-CALC-001, "Control Building Heatup Analysis following Loss of HVAC and Simultaneous Loss of Coolant Accident", Rev. 0. 19. ENTR-078-CALC-002, "Main Control Room Heat-Up Under Loss of HVAC Conditions", Rev.a 20. G13.18.4.0*063, "Cooling Capability for the Standby Service Water System to the Control Building Air Handling Units", Rev. 0. 21. Deleted 22. G13.18.2.3-426, Rev. 0, "Standby Switchgear Room Temperature Sensitivity with Service Water Aligned to the HVK System" '23. "Handbook*of Heat Transfer Fundamentals", Rohsenow and Hartnett, McGraw-Hill, 1973. 24. "Thermophysical Properties of Matter, Vol. 3", Y.S. Toulokian, P.E. Lily, S.C Saxena, lFl/Plenun, NY, 1970. , 25. "Fundamentals of Momentum, Heat & Mass Transfer Second edition", Welty, Wicks and Wilson, John Wiley & Sons, 1969. 26. EE-027A, Rev. 16, "Arrangement Main Control Room" 27. EE-027D, Rev. 6, ArrangementControl Bldg Section and Details" 28. EA-046F, Rev. 4, "Raised Access Floor System Main Control Room El. 136'-1 5/8"" 29. ENTR-078-CALC-003, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours," Rev. 3. | The coefficient "aa" is zero. "TM" is taken to be variable "X/', making coefficient "a1" equal to one. 'TL" is taken to be variable "X2", making coefficient "a2" equal to VLNM, or 0.867. No other variables or coefficients were used in calculating this Control Variable. | ||
* 30. SOP-0058, Rev. 21, "Control Building HVAC System" 31. EA-46B, Rev. 14, "Reflected Ceiling Plans and Details. 32. PlD-22-09A, "HVAC Control Building", Rev. 17. 33. EE-065A, Rev. 7, "Lighting Plan, Control Bldg-Control Room) | The average temperature of the lower and middle subvolumes (cv4) is then average with the average temperature of the upper subvolumes (cv5) using the same equation as above. | ||
ENERCON CALCULATION CONTROL SHEET 34. ASHRAE Handbook Fundamentals, 1-P Edition, 1993. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 53 of 303 35. 0242.428-000-247, Rev. P, "Interface Control, Control Room Panels." 36. EC61975 "References for E-226 Cale. Revision." ' ( | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 44 of 303 VA: | ||
of lower and middle subvolumes (144 ft x 74 ft x 7.50443 ft x 0.9 = 71,970.5 ft3) TA: Average Temperature of lower and middle subvolumes in the lower MCR Ts: Overall average Temperature of the lower MCR VH=Total volume of the upper subvolumes (144 ft x 74 ft x 1.61057 ft x 0.9 =15,446 ft3) TH: Average Temperature of upper subvolumes Rearranging to solve for the average temperature, Ts. Therefore "G" is the of the denominator of the equation that solves for average temperature, 0.17669. | |||
The coefficient "ao" is zero. "TH" is taken to be variable "X1", _making coefficient "a/' equal to one. "TA" is taken to be variable "X2", making coefficient "a2" equal to VANH, or'4.65949. | |||
No other variables or coefficients were used in calculating this Control Variable. | |||
6.8 Blockages Blockages are added to the lower MCR volume (CV1) to model the effects on the flow patterns of the control panels and the walls surrounding the kitchen area and shift manager's office. The blockages are constructed based on the physical location of these components as shown in Reference 8.26 and 8.27 and are located coincident with the nearest x-or y-direction grid line. For example the blockage representing the panels in 1H13-U7 4 7 is located on the second grid line between subvolume 1 s34 and 1 s35, up through subvolumes 1 s50 and 1 s51. Blockages are constructed so they do not displace any volume in the MCR; a 10% reduction in the MCR free volume has already been incorporated (see Reference 8.1 ). | |||
\ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 45 'of 303 7. Results Figure 7 shows tile average transient temperature in the MCR for 24 hours for Case 1. The average temperature in the MCR increases to approximately 105 °F at approximately 1.2 hours. The temperature then decreases to approximately 103°F due to the effects of removing the ceiling tiles, which is initiated ten minutes after the average temperature of the MCR reaches 104 °F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1 C11 panels are dropped at the end of the BYS-INV02 battery life at 4 hours when the average temperature is approximately 107°F, which reduces the average temperature to approximately 103°F. The average temperature then gradually increases to 111.4°F at 24 hours. This case does not include the simple and obvious action of opening doors to the Main Control Room. 115 110 105 100 LI:" (]J .._ ::J .., 95 ro '-*******************************************************************************l********************************************************************************************************************************************-********************************************************************************************************************-**-*****-***""' | |||
*********** | |||
............. | |||
_ ...... . OJ 0.. E (!) f-90 85 80 75 0 5 10 15 20 25 Time (hrs) Figure 7: Average MCR Temperature for Case 1 | |||
( ENERCON CALCULATION CO,NTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' I PAGE NO. 46 of 303 . Figure 8 shows the maximum subvolume temperature of the lower MCR for Case 1. The maximum temperature increases to approximately 112°F before the tiles are opened which results in the maximum temperature decreasing to approximately 111°F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1C11 panels is dropped at the end of the BYS-INV02 battery life at 4 hours when the temperature is approximately 114°F; which reduces the temperature to approximately 108°F. The temperature than gradually increases to 117.8°F at 24 hours. 120 115 110 105 LI:' -100 (]) .... ::l ... ro ._ QJ 0. E 95 90 85 .................................................. | |||
,............. | |||
......... | |||
.. ...... . 80 ........................... | |||
***+*-----------------------***----***------ | |||
.................................... | |||
, ........................... | |||
.. 0 5 10 Time (hr) 15 20 Figure 8: Maximum Local MCR Temperature for Case 1 25 ENERCON I CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 47 of 303 Figure 9 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 1. The initial relative humidity is 20% and decreases to approximately 8% at 24 hours. 25 I ' I 20 | |||
** | |||
i r I I 15 >-.., 'Ci .E I I I I I J ;:, :r: Q) > :;:; ro (ii cc. 10 I ...*.... | |||
\f **------------* --5 " J . 0 0 5 10 15 20 25 Time (hrs) Figure 9: Relative Humidity in the Horseshoe Area for Case 1 ENERCON / | |||
f,etyday CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 48 of 303 Figure 10 shows the average temperature of the MCR for Case 2. The average temperature in the MCR increases to a peak value of 116.1 "F at two hours when the smoke rem'oval fan is energized. | |||
Note that the operator actions of opening door CB136-9 at one hour and staging the portable electric fan at one and a half hours are shown to have a negligible impact on the room temperature. | |||
Note also that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually | |||
-start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. Following start of the smoke removal fan, the average temperature decreases to approximately 112°F, then decreases again when the ceiling tiles are removed at two and a half hours. The'average temperature then with changes in the outdoor air temperature, and at 24 hours is 1_Q.8.6"F. | |||
120 115 90 I I 85 U-***----- | |||
) /' 80 75 0 5 10 15 .I 20 25 Time (hrs) Figure 10: Average MCA Temperature for Case 2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 49 of 303 Figure 11 shows the maximum subvolume temperature in the MCR for 24 hours for Case The maximum subvolume in the MCR reaches a peak value of 121.8°F at 2.02 hours. Ceiling tile removal further decreases the maximum subvolume temperature, and at 24 hours the maximum subvolume temperature is 116.8°F. | |||
125 120 115 -7 J A ********.,********* | |||
**************--*--***- | |||
.,_u, ... .,,,,,,,,,,_,,,,,_,. | |||
.. ,.,,.,, *.. ., ******** | |||
., .*..... 110 1-................................................................. | |||
t*****-..................................................................... | |||
, ............................................................................ | |||
. Q) .... ::;, 105 '§ 100 Q) n. E 95 85 80 75 0 5 10 15 Time (hr) Figure 11: Maximum Local MCR Temperature for Case 2 20 25 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV. 0 fKi;:t>n{e* | |||
£w:r:y P'Circr fHY1 Jar PAGE NO. 50 of 303 Figure 12 shows the temperature distribution of the lower and middle subvolumes of the lower MCR at the time the limiting local cell temperature occurs, 2.02 hours. .....I .....I c:x: $ I C::: 0 z YB Y7 Y6 YS Y4 Y3 Y2 Yl 111.4 111.l 111.6 111.9 112.2 111.5 110.3 102.5 Lower El. (Zl) Xl 0 .....I .....I c:x: $ I C::: 0 z 3.485 YB 114.7 Y7 116.3 Y6 116.2 YS 116.0 Y4 116.0 Y3 115.B Y2 115.S Yl 107.9 Middle El. (Z2) Xl 3.485 7.5 111.B 112.2 112.7 112.8 112.3 113.2 112.2 112.4 112.7 114.6 113.7 112.8 110.9 111.2 106.4 107.5 X2 X3 114.7 114.8 115.6 115.9 115.7 116.2 116.3 116.S 116.l 116.S 115.S 114.8 113.9 112.9 107.1 107.9 X2 X3 112.3 116.S 115.0 112.S 112.2 111.4 110.4 107.S X4 115.0 119.9 118.S 116.3 115.7 115.l 112.0 108.3 X4 111.6 109.4 110.4 111.S 111.0 111.5 110.3 107.6 XS 114.8 116.0 115.6 115.7 115.2 115.2 112.0 109.1 XS 115.B 108.0 110.5 110.B 109.9 110.1 109.9 107.6 X6 113.9 116.8 115.1 115.S 114.6 113.6 EAST WALL 115.2 116.1 114.9 116.4 116.8 116.9 115.4 114.9 115.7 112.S 114.4 115.3 113.4 115.2 115.7 111.0 113.8 114.8 109.6. 110.4 112.1 107.6 107.4 107.1 X7 XB X9 WEST WALL 117.2 118.1 118.8 117.5 117.7 116.8 EAST WALL 117.3 118.1 118.S 118.2 118.0 117.9 116.8 117.3 117.8 118.3 117.9 117.9 112.S | |||
* 113.2 113.8 115.8 110.4 112.4 113.1 112.7 X6 X7 X8 X9 WEST WALL 114.S 113.6 117.1 115.3 115.9 116.6 115.S 115.8 115.5 118.7 115.4 118.6 115.5 115.0 106.0 105.8 XlO Xll 116.7 116.3 117.1 118.1 118.0 118.6 118.8 119.0 119.0 Ul.8 119.0 120.8 118.4 119.4 111.4 110.9 XlO Xll 113.0 112.2 111.3 110.2 109.2 114.8 113.5 113.3 113.2 109.3 115.8 114.8 114.7 113.3 108.3 115.0 113.9 112.9 111.0 107.9 116.1 115.5 114.5 115.6 107.0 117.3 115.5 115.8 113.5 106.2 114.0 113.7 111.1 109.7 105.S 105.5 105.3 104.8 104.9 104.8 X12 X13 X14 X15 X16 115.3 115.1 114.3 112.9 111.0 119.3 118.4 117.8 116.1 111.4 118.7 117.9 116.8 116.1 110.5 118.7 118.3 117.1 115.0 110.0 119.2 118.4 118.7 118.8 107.5 119.3 117.9 118.S 120.1 105.9 118.6 117.6 117.6 109.5 105.2 111.7 114.3 104.8 106.0 104.9 X12 X13 X14 XlS X16 Figure 12: Temperature Distribution of the lower and middle subvolumes of the MCR at 2.02 hours .....I .....I c:x: $ I ::> 0 Vl .....I .....I I ::> 0 Vl ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 51 of 303 Figure 13 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 2. The initial relative humidity is 20% and decreases to approximately | |||
\_ 10% before the smoke removal fan is turned on and outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes 'in the outside air relative humidity. | |||
50 40 I 0 5 10 15 20 25 Time (hrs) Figure 13: Relative Humidity in the Horseshoe Area for Case 2 ENERCON I 8. REFERENCES CALCULATION CONTROL SHEET CALC. ENTR-078-CALC-004 REV.O PAGE NO. 52 of 303 1. \G13.18.12.4*027, "Control Room Temperature During Station Blackout", | |||
Rev. 2. 2. E-226, "Control Building Electrical Equipment Heat Release During LOCA Condition with Off Site Power Available and also Control Building Electrical heat Release during LOCA Condition without Offsite Power (LOOP) and with EGS-EG 1 B Diesel Generator not Responding", | |||
Rev. 5. 3: EA-006M, "Door Location Plan Sheet 4," Rev. 7. 4. ES-246,-"Control Building Heatup following failure of the HVAC System", | |||
Rev. 3. 5. GOTHIC Containment Analysis Package User's Manual, version 7.2b (QA), March 2009 (SCR-2012-0214) | |||
: 6. AOP-0060, "Loss of Control Building Ventilation", | |||
Rev. 009. 7. G13.18.12.3*161, "Standby Switchgear Room Temperatures following Loss of Offsite Power and Loss of HVAC", Rev. 2. 8. EB-0390, Ventilation | |||
& Air Conditioning Plan El 135' Control Building", | |||
Rev. 9. 9. 6224.302-000-038A (NED010466-A), | |||
"PGCC Design Criteria | |||
& Safety Evaluation. | |||
: 10. EA-006B, "Doqr Schedule | |||
& Details", | |||
Rev. 14. 11. EA-46D, "Stairs-1&2-Plans Sects & Dets Control Bldg", Rev. 5. 12. PID-22-09B, "HVAC Control Building", | |||
Rev. 14. 13. ASHRAE Handbook Fundamentals, 1-P Edition, 2009. 14. AOP-0050, "Station Blackout", | |||
Rev 051 15. PlD-22-09C, "HVAC Control Building", | |||
Rev. 10. 16. 22A3888, GE MCR Panel Specification, RBS vendor document 0242.411-000-009. | |||
: 17. G13.18.2.1-059, Rev. 4, "Control Building Heat Load Evaluation during LOCA w/ Offsite Power Available and Normal Operating Conditions | |||
: 18. ENTR-078-CALC-001, "Control Building Heatup Analysis following Loss of HVAC and Simultaneous Loss of Coolant Accident", | |||
Rev. 0. 19. ENTR-078-CALC-002, "Main Control Room Heat-Up Under Loss of HVAC Conditions", | |||
Rev.a 20. G13.18.4.0*063, "Cooling Capability for the Standby Service Water System to the Control Building Air Handling Units", Rev. 0. 21. Deleted 22. G13.18.2.3-426, Rev. 0, "Standby Switchgear Room Temperature Sensitivity with Service Water Aligned to the HVK System" '23. "Handbook*of Heat Transfer Fundamentals", | |||
Rohsenow and Hartnett, McGraw-Hill, 1973. 24. "Thermophysical Properties of Matter, Vol. 3", Y.S. Toulokian, P.E. Lily, S.C Saxena, lFl/Plenun, NY, 1970. , 25. "Fundamentals of Momentum, Heat & Mass Transfer Second edition", | |||
Welty, Wicks and Wilson, John Wiley & Sons, 1969. 26. EE-027A, Rev. 16, "Arrangement Main Control Room" 27. EE-027D, Rev. 6, ArrangementControl Bldg Section and Details" | |||
: 28. EA-046F, Rev. 4, "Raised Access Floor System Main Control Room El. 136'-1 5/8"" 29. ENTR-078-CALC-003, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours," Rev. 3. | |||
* 30. SOP-0058, Rev. 21, "Control Building HVAC System" 31. EA-46B, Rev. 14, "Reflected Ceiling Plans and Details. | |||
: 32. PlD-22-09A, "HVAC Control Building", | |||
Rev. 17. 33. EE-065A, Rev. 7, "Lighting Plan, Control Bldg-Control Room) | |||
ENERCON CALCULATION CONTROL SHEET 34. ASHRAE Handbook Fundamentals, 1-P Edition, 1993. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 53 of 303 35. 0242.428-000-247, Rev. P, "Interface | |||
: Control, Control Room Panels." | |||
: 36. EC61975 "References for E-226 Cale. Revision." | |||
' ( | |||
ENERCON CALCULATION CONTROL Attachment 1 | ENERCON CALCULATION CONTROL Attachment 1 | ||
* Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP 1. Purpose CALC. NO. ENTR-078-CALC-004 REV.a PAGE NO. 54 of 303 The purpose of this attachment is to analyze the 24 hour transient temperature of the MCR following a loss of HVAC with HVC-ACU1A(B) re-started and aligned to the service water system (SWP) at one hour. The model is developed from the Case 2 analysis in the body of the calculation, with changes as described. This case also assumes worst case heat loads (Normal Operation), summer conditions with a maximum design basis ambient temperature of 96°F, the effects of solar irradiance on the MCR walls and roof, and the assumption that the operators complete actions to open back panel doors in the control room at 30 minutes. | * Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP 1. Purpose CALC. NO. ENTR-078-CALC-004 REV.a PAGE NO. 54 of 303 The purpose of this attachment is to analyze the 24 hour transient temperature of the MCR following a loss of HVAC with HVC-ACU1A(B) re-started and aligned to the service water system (SWP) at one hour. The model is developed from the Case 2 analysis in the body of the calculation, with changes as described. | ||
* 2. Conclusion The results of the analysis listed in Table 1. The average temperature results are given at 1, 2, 4, and 24 hours. The maximum average and maximum cell (sub-volume) temperature is recorded, and the time it occurs is listed in parentheses. Table 1: MCR Temperature Maximum Maximum 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Tavg (°F) Cell Temp Descriotion (oF) (oF) (oF) (oF) (oF) Normal Operations \ Heatload. HVC-110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) ACU1A(B) aligned to SWP at 1 hour. If the cross-tie to the SWP system was delayed to two hours, the MCR temperature would continue to increase similar to the temperature in Case 2, but reaching a higher value because the toilet/kitchen fans, 'the portable fans, and opening the docir is not credited. 3. Input and Design Criteria 3.1. This model is developed from the Case 2 GOTHIC model in the body* of the calculation. All changes made from the Case 2 model are documented in .this attachment. 3.2. The Case 2 GOTHIC model from the body of the calculation did not model the HVC-ACU1A(B) system. The current analysis models HVC-ACU1A(B) aligned to the SWP system at one hour and determines the outlet air temper.ature and relative humidity based upon the AIRCOOL output files from Attachment 2 of Reference 8.20, which use a conservative service water temperature of 95°F and an inlet air relative humidity of 50%. This data is shown in Table 2 and 3. A control variable records the inlet air temperature which as the independent variable in a GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding HVC-ACU1A(B) outlet temperature. This control variable is also used in a separate GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding outlet relative humidity. If the return air temperature for an AHU is less than the minimum air temperature of 100°F used in the Reference 8.20 AIRCOOL data, the outlet air temperature and relative humidity is set at the outlet temperature and relative humidity corresponding to a return air temperature of 100°F. This is conservative as decreasing the return air temperature would result in a decrease iri the outlet air temperature. | This case also assumes worst case heat loads (Normal Operation), | ||
ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 55 of 303 Table 2: HVC-ACU1A(B) Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) Air Temp (°F) 100 95.21 105 95.41 110 95.60 115 95.79 120 96.05 125 99.02 130 102.02 135 105.14 140 108.48 145 111.98 150 115.68 155 119.57 160 123.63 Table 3: HVC-ACU1A(B) Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) RH{%) 100 57.9 105 66.8 110 76.85 115 88.17 120 100 ENERCON 4. Assumptions CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 56 of 303 4.1. HVC-ACU1A(B) aligned to the SWP system is assumed to be started at one hour into the event consistent with G13.18.2.3-426 (Reference 8.22). This is a conservative estimate for the amount of time it would take operators align the SWP system to HVC-ACU1A(B). No other mitigating actions are credited in this analysis. Modeling of HVC-ACU1A(B) conservatively neglects the cooler chilled water that would be present in HVC-ACU 1 A(B) at the beginning of the transient. 4.2. Control room HVAC is operating in post-LOCA alignment. As shown in Reference 8.19, this alignment adds heat loads from the charcoal filter booster fan and heaters and is therefore conservative for this Normal Operations case. 4:3. The data for HVC-ACU1A(B) is obtained from the data for an inlet relative humidity of 50%. This inlet relative humidity is used as it is the most similar to the values given in Section 4.18 of the -body of the calculation. The relative humidity in the MCR is assumed to be initially at the Environmental Design Criteria (EDC) minimum value (20%). 5. Method of Analysis The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for 24 hours following a Loss of HVAC with HVC-ACU1A(B) aligned to SWP system at one hour. GOTHIC is a general purpose thermal hydra1.11ic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). \ This model is based on the Case 2 analysis from the body of the calculation. 6. GOTHIC Input Development The main change from the Case 2 model in the body of the calculation is adding the Main Control Room HYAC subsystem and the cooling effects from HVC-ACU1A(B) being aligned to the SWP system. The cooling effect from the SWP system aligned to HVC-ACU1 is modeled based on the details given in Input 3.2. The volumes and pressure boundaries that were representative of the atmosphere (i.e. where the doors opened to, and the smoke removal fan exhausted to) are deleted or replaced with volumes and pressure boundaries that model HVC-ACU1A(B). Flow paths representing the ceiling tiles, door CB136-9, the smoke removal fan, and toilet/kitchen fans are also deleted or replaced with flow paths that model the.MGR HVAC subsystem and HVC-ACU1A(B). This was done to provide more clarity and resolution in the GOTHIC model. | summer conditions with a maximum design basis ambient temperature of 96°F, the effects of solar irradiance on the MCR walls and roof, and the assumption that the operators complete actions to open back panel doors in the control room at 30 minutes. | ||
ENERCON CALCULATION CONTROL Attachment 1 6.1 HVC-ACU1 A(B) and HVAC Modeling CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 57 of 303 The MCR HVAC [HVC-ACU1A(B)] is a subsystem of the Control Building HVAC system. MGR HVAC is designed to maintain the MCR at a 80°F and limit the relative humidity 70% and is capable of operating during normal, shutdown, loss of Offsite power, or design basis accident (e.g., LOCA) conditions. The MCR is normally maintained at a positive pressure with respect to the outside atmosphere to prevent air inleakage from outside the MGR envelope. Charcoal filter trains are used to filter the MGR air supply during a design basis accident or whenever extremely high radiation/radioactivity levels occur in the normal supply air. The MGR HVAC flow paths, dampers, design flow rates are shown on PID-22-09A (Reference 8.32), PID-22-09B (Reference 8.12), and PID-22-09C (Reference 8.15). The MCR HVAC subsystem consists of two 100% capacity redundant Air Cooling Units ACU1A/1 B) and associated filter trains, electric heaters, and The air conditioning units are started automatically when a Control Building Chilled Water Pump is started/running. In the LOCA mode of operation or a high radiation condition in the local outside air intake, dampers automatically divert supply air through thE;l charcoal filter units (see below). The operator has the option of selecting fresh air supply for the Control Building from either the local outside air intake or remote outside air intake. The system can also be manually realigned from the MGR to allow for removal of smoke or noxious gases from the MGR. Each ACU has an associated inlet and outlet damper which is interlocked with the ACU. Inlet dampers are HVC-AOD8A(B) and outlet dampers are HVC-AOD6A(B) (see PID-22-9B, Reference 8.12). These dampers automatically open when the associated ACU starts and close when the ACU stops. | * 2. Conclusion The results of the analysis listed in Table 1. The average temperature results are given at 1, 2, 4, and 24 hours. The maximum average and maximum cell (sub-volume) temperature is recorded, and the time it occurs is listed in parentheses. | ||
* In the post-LOCA alignment assumed in'this attachment (see Assumption 4.2), the cooling coils of the operating MGR air cooling unit (ACU) are initially supplied with chilled water from the Control Building Chilled Water (HVK) system. On receipt of the LOCA signal, ACU inlet isolation dampers HVC-MOV-1A and B automatically close. Control Room Filter Inlet and Filter Train Outlet dampers HVC-AOD43A(B) and HVC-AOD3A(B) open and filter fan HVC-FN1A(B) starts such that the outside air passes through a ct\arcoal filter train before mixing with the control room return air and entering the ACU downstream of MCR Recirculation Isolation Dampers HVC-AOD106 and AOD-148. _Local air intake dampers HVC-AOD19C, D, E, and F open to align the local air intake to the inlet of the charcoal filter trains. Alternatively, air intake may be aligned to the remote air intake. The remote air intake provides outside air supply directly to the inlet of the charcoal filter trains via remote air intake \ dampers HVC-MOD7A and Band HVC-AOD19A and B (see PID-22-09A, Reference 8.32). Note that upon receipt of a LOCA signal, toilet and kitchen exhaust fans (HVC-FN4 and FN5) trip and their discharge dampers (HVC-AOD51A/52A (51B/52B) automatically close. The MCR smoke removal fan (FN9) also trips' and the associated dampers (HVC-AOD108(107)) close., The HVC-ACU1A(B) flow rates and flow distribution are modeled based on Reference 8.8 and Reference 8.12. The flow rates through dampers shown on Reference 8.8 and 8.12 are localized to their appropriate subvolume based on Reference 8.8. The flow path elevation is modeled as being near the ceiling of the lower MGR volume based on Reference 8.8. The flow supplied to the equipment | Table 1: MCR Temperature Maximum Maximum 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Tavg (°F) Cell Temp Descriotion (oF) (oF) (oF) (oF) | ||
* room and corridor area is not modeled as this air is made up from outside air intakes, as shown on Figure 5 in Reference 8.17 and in Reference 8.12. Therefore, this flow does not have an effect on the calculation. The return air is modeled as drawn from the North, West, and Southwest sides of the upper plenum, per Reference 8.8. The north side return air duct draws 21000 cfm; this flow is split between subvolumes 2s177 and 2s193 in order to allow GOTHIC to run faster. The west side return air duct draws 7600 cfm from subvolume 2s136. The southwest corner return air duct draws 7600 cfm from subvolume 2s144. These return air ducts are also modeled as being near the ceiling of the upper MCR. / | (oF) Normal Operations | ||
\ Heatload. | |||
HVC-110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) ACU1A(B) aligned to SWP at 1 hour. If the cross-tie to the SWP system was delayed to two hours, the MCR temperature would continue to increase similar to the temperature in Case 2, but reaching a higher value because the toilet/kitchen fans, 'the portable fans, and opening the docir is not credited. | |||
: 3. Input and Design Criteria 3.1. This model is developed from the Case 2 GOTHIC model in the body* of the calculation. | |||
All changes made from the Case 2 model are documented in .this attachment. | |||
3.2. The Case 2 GOTHIC model from the body of the calculation did not model the HVC-ACU1A(B) system. The current analysis models HVC-ACU1A(B) aligned to the SWP system at one hour and determines the outlet air temper.ature and relative humidity based upon the AIRCOOL output files from Attachment 2 of Reference 8.20, which use a conservative service water temperature of 95°F and an inlet air relative humidity of 50%. This data is shown in Table 2 and 3. A control variable records the inlet air temperature which as the independent variable in a GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding HVC-ACU1A(B) outlet temperature. | |||
This control variable is also used in a separate GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding outlet relative humidity. | |||
If the return air temperature for an AHU is less than the minimum air temperature of 100°F used in the Reference 8.20 AIRCOOL data, the outlet air temperature and relative humidity is set at the outlet temperature and relative humidity corresponding to a return air temperature of 100°F. This is conservative as decreasing the return air temperature would result in a decrease iri the outlet air temperature. | |||
ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 55 of 303 Table 2: HVC-ACU1A(B) | |||
Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) Air Temp (°F) 100 95.21 105 95.41 110 95.60 115 95.79 120 96.05 125 99.02 130 102.02 135 105.14 140 108.48 145 111.98 150 115.68 155 119.57 160 123.63 Table 3: HVC-ACU1A(B) | |||
Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) RH{%) 100 57.9 105 66.8 110 76.85 115 88.17 120 100 ENERCON 4. Assumptions CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 56 of 303 4.1. HVC-ACU1A(B) aligned to the SWP system is assumed to be started at one hour into the event consistent with G13.18.2.3-426 (Reference 8.22). This is a conservative estimate for the amount of time it would take operators align the SWP system to HVC-ACU1A(B). | |||
No other mitigating actions are credited in this analysis. | |||
Modeling of HVC-ACU1A(B) conservatively neglects the cooler chilled water that would be present in HVC-ACU 1 A(B) at the beginning of the transient. | |||
4.2. Control room HVAC is operating in post-LOCA alignment. | |||
As shown in Reference 8.19, this alignment adds heat loads from the charcoal filter booster fan and heaters and is therefore conservative for this Normal Operations case. 4:3. The data for HVC-ACU1A(B) is obtained from the data for an inlet relative humidity of 50%. This inlet relative humidity is used as it is the most similar to the values given in Section 4.18 of the -body of the calculation. | |||
The relative humidity in the MCR is assumed to be initially at the Environmental Design Criteria (EDC) minimum value (20%). 5. Method of Analysis The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for 24 hours following a Loss of HVAC with HVC-ACU1A(B) aligned to SWP system at one hour. GOTHIC is a general purpose thermal hydra1.11ic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). \ This model is based on the Case 2 analysis from the body of the calculation. | |||
: 6. GOTHIC Input Development The main change from the Case 2 model in the body of the calculation is adding the Main Control Room HYAC subsystem and the cooling effects from HVC-ACU1A(B) being aligned to the SWP system. The cooling effect from the SWP system aligned to HVC-ACU1 is modeled based on the details given in Input 3.2. The volumes and pressure boundaries that were representative of the atmosphere (i.e. where the doors opened to, and the smoke removal fan exhausted to) are deleted or replaced with volumes and pressure boundaries that model HVC-ACU1A(B). | |||
Flow paths representing the ceiling tiles, door CB136-9, the smoke removal fan, and toilet/kitchen fans are also deleted or replaced with flow paths that model the.MGR HVAC subsystem and HVC-ACU1A(B). | |||
This was done to provide more clarity and resolution in the GOTHIC model. | |||
ENERCON CALCULATION CONTROL Attachment 1 6.1 HVC-ACU1 A(B) and HVAC Modeling CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 57 of 303 The MCR HVAC [HVC-ACU1A(B)] | |||
is a subsystem of the Control Building HVAC system. MGR HVAC is designed to maintain the MCR at a 80°F and limit the relative humidity 70% and is capable of operating during normal, shutdown, loss of Offsite power, or design basis accident (e.g., LOCA) conditions. | |||
The MCR is normally maintained at a positive pressure with respect to the outside atmosphere to prevent air inleakage from outside the MGR envelope. | |||
Charcoal filter trains are used to filter the MGR air supply during a design basis accident or whenever extremely high radiation/radioactivity levels occur in the normal supply air. The MGR HVAC flow paths, dampers, design flow rates are shown on PID-22-09A (Reference 8.32), PID-22-09B (Reference 8.12), and PID-22-09C (Reference 8.15). The MCR HVAC subsystem consists of two 100% capacity redundant Air Cooling Units ACU1A/1 B) and associated filter trains, electric | |||
: heaters, and The air conditioning units are started automatically when a Control Building Chilled Water Pump is started/running. | |||
In the LOCA mode of operation or a high radiation condition in the local outside air intake, dampers automatically divert supply air through thE;l charcoal filter units (see below). The operator has the option of selecting fresh air supply for the Control Building from either the local outside air intake or remote outside air intake. The system can also be manually realigned from the MGR to allow for removal of smoke or noxious gases from the MGR. Each ACU has an associated inlet and outlet damper which is interlocked with the ACU. Inlet dampers are HVC-AOD8A(B) and outlet dampers are HVC-AOD6A(B) | |||
(see PID-22-9B, Reference 8.12). These dampers automatically open when the associated ACU starts and close when the ACU stops. | |||
* In the post-LOCA alignment assumed in'this attachment (see Assumption 4.2), the cooling coils of the operating MGR air cooling unit (ACU) are initially supplied with chilled water from the Control Building Chilled Water (HVK) system. On receipt of the LOCA signal, ACU inlet isolation dampers HVC-MOV-1A and B automatically close. Control Room Filter Inlet and Filter Train Outlet dampers HVC-AOD43A(B) and HVC-AOD3A(B) open and filter fan HVC-FN1A(B) starts such that the outside air passes through a ct\arcoal filter train before mixing with the control room return air and entering the ACU downstream of MCR Recirculation Isolation Dampers HVC-AOD106 and AOD-148. | |||
_Local air intake dampers HVC-AOD19C, D, E, and F open to align the local air intake to the inlet of the charcoal filter trains. Alternatively, air intake may be aligned to the remote air intake. The remote air intake provides outside air supply directly to the inlet of the charcoal filter trains via remote air intake \ dampers HVC-MOD7A and Band HVC-AOD19A and B (see PID-22-09A, Reference 8.32). Note that upon receipt of a LOCA signal, toilet and kitchen exhaust fans (HVC-FN4 and FN5) trip and their discharge dampers (HVC-AOD51A/52A (51B/52B) automatically close. The MCR smoke removal fan (FN9) also trips' and the associated dampers (HVC-AOD108(107)) | |||
close., The HVC-ACU1A(B) flow rates and flow distribution are modeled based on Reference 8.8 and Reference 8.12. The flow rates through dampers shown on Reference 8.8 and 8.12 are localized to their appropriate subvolume based on Reference 8.8. The flow path elevation is modeled as being near the ceiling of the lower MGR volume based on Reference 8.8. The flow supplied to the equipment | |||
* room and corridor area is not modeled as this air is made up from outside air intakes, as shown on Figure 5 in Reference 8.17 and in Reference 8.12. Therefore, this flow does not have an effect on the calculation. | |||
The return air is modeled as drawn from the North, West, and Southwest sides of the upper plenum, per Reference 8.8. The north side return air duct draws 21000 cfm; this flow is split between subvolumes 2s177 and 2s193 in order to allow GOTHIC to run faster. The west side return air duct draws 7600 cfm from subvolume 2s136. The southwest corner return air duct draws 7600 cfm from subvolume 2s144. These return air ducts are also modeled as being near the ceiling of the upper MCR. / | |||
ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 58 of 303 The return air duct on the north side of the room is shown to have an opening of 108" x 48" (Reference 8.8). As discussed above, this flow path is split in two, so the flow paths (FP47 and FP48) that represent this return air duct are modeled based on this size, shown below. The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 58 of 303 The return air duct on the north side of the room is shown to have an opening of 108" x 48" (Reference 8.8). As discussed above, this flow path is split in two, so the flow paths (FP47 and FP48) that represent this return air duct are modeled based on this size, shown below. The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | ||
* 1 \ 9 ft x 4 ft 2 AFP47/48 =. 2 = 18 ft 4A 4*18ft2 Dh = Pw = (9 ft+ 4 ft) = 5.54 ft The return air ducts on the west and southwest sides of the room are shown to have an opening of 48" x 36" (Reference 8.8). One flow path is used to represent each of these return air ducts (FP49 and FP50). The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. AFP49/50 = 4 ft x 3 ft = 12 f t2 4A 4 | * 1 \ 9 ft x 4 ft 2 AFP47/48 | ||
=. 2 = 18 ft 4A 4*18ft2 Dh = Pw = (9 ft+ 4 ft) = 5.54 ft The return air ducts on the west and southwest sides of the room are shown to have an opening of 48" x 36" (Reference 8.8). One flow path is used to represent each of these return air ducts (FP49 and FP50). The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | |||
AFP49/50 | |||
= 4 ft x 3 ft = 12 f t2 4A 4 | |||
* 12 ft2 Dh = Pw = (2 * ;4 ft+ 2 | * 12 ft2 Dh = Pw = (2 * ;4 ft+ 2 | ||
* 3 ft) = 3.43 ft ' The size of the supply air ducts are. determined to be 18" x 18" per Reference 8.8. One flow path is used to represent each of these supply air ducts (FP9-FP46). The flow area and hydraulic diameter for the supply air ducts is calculated below. The inertia length and friction length for these flow path is arbitrarily set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. AFP9-46 = 1.5 ft X 1.5 ft = 2.25 f t2 4A 4 | * 3 ft) = 3.43 ft ' The size of the supply air ducts are. determined to be 18" x 18" per Reference 8.8. One flow path is used to represent each of these supply air ducts (FP9-FP46). | ||
The flow area and hydraulic diameter for the supply air ducts is calculated below. The inertia length and friction length for these flow path is arbitrarily set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. | |||
AFP9-46 = 1.5 ft X 1.5 ft = 2.25 f t2 4A 4 | |||
* 2.25 f t2 D =-= = 15ft h Pw (2 | * 2.25 f t2 D =-= = 15ft h Pw (2 | ||
* 1.5 ft+ 2 | * 1.5 ft+ 2 | ||
* 1.5 ft)' . The momentum transport option is set to "N" (in-line momentum transport) for the flow paths that represent the supply air ducts, as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the flow. paths that represent the egg crate panels that are between the µpper and lower MCR is also set to "N" Figure 1 below shows the HVC-ACU1A(B) distribution logic applied in the GOTHIC model. The heat load from the HVC-ACU1A/B fan of 167,068 BTU/hr (46.41 BTU/s) (Reference 8.17) is added as a heater to the HVC-ACU1A(B) outlet volume (CV4). The heat load from the HVC-FN1A/B fan of 50,900 BTU/hr (14.14 BTU/s) and the HVC-FL T3AH//BH filter/heater of 78,430 BTU/hr (21.79 BTU/s) (Reference 8.17) is combined and input as a heat rate in volumetric fan 2Q. | * 1.5 ft)' . The momentum transport option is set to "N" (in-line momentum transport) for the flow paths that represent the supply air ducts, as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the flow. paths that represent the egg crate panels that are between the µpper and lower MCR is also set to "N" Figure 1 below shows the HVC-ACU1A(B) distribution logic applied in the GOTHIC model. The heat load from the HVC-ACU1A/B fan of 167,068 BTU/hr (46.41 BTU/s) (Reference 8.17) is added as a heater to the HVC-ACU1A(B) outlet volume (CV4). The heat load from the HVC-FN1A/B fan of 50,900 BTU/hr (14.14 BTU/s) and the HVC-FL T3AH//BH filter/heater of 78,430 BTU/hr (21.79 BTU/s) (Reference 8.17) is combined and input as a heat rate in volumetric fan 2Q. | ||
CALC. NO. ENTR-078-CALC-004 Attachment 1 CALCULATION CONTROL SHEET-REV.O ENERCON T = f(Im!!<) 4 Plenum 34200CFM (41-440) 2 36200CFM 1 Control Room 37200CFM (3Q-40Q) ACU1A/B Fan 1-----' v PAGE NO. 59 of 303 3 4000CFM {2Q) Return to Filter/ Heater 2000CFM (4SQ) (Out-leakage) Flow from Filter /Heater Mixed Air (Tmixil 2000CFM (1Q) Figure 1: HVC-ACU1A(B) Flow Distribution r ENERCON 7. Results CALCULATION CONTROL Attachment 1 | CALC. NO. ENTR-078-CALC-004 Attachment 1 CALCULATION CONTROL SHEET-REV.O ENERCON T = f(Im!!<) | ||
* CALC. NO. ENTR-078-CAL:C-004 REV.O PAGE NO. 60 of 303 Figures 2 and 3 below show the temperature transient in the MCR following a 24 hour Loss of HVAC scenario, with the SWP system aligned tq HVC-ACU1A(B) at one hour. Figure 2 shows the average temperature of the MCR for 24 hours. Figure 3 shows the maximum cell (sub-volume) temperature of the MCR for 24 hours. The average temperature increases to approximately 110°F before ACU1A(B) is started at one hour. Turning on HVC-ACU1A(B) results in the temperature decreasing , below 105°F and at 24 hours the temperature is 107.8°F. The maximum cell temperature follows a similar trend, with the peak value of 115.1°F occurring at 1 hour. 115 110 I 85 80 75 0 5 10 15 20 25 Time {hrs) / Figure 2: Average Temperature of the MCR for 24 hours 120 115 110 105 U:-e100 :::l ...., Ill .... (!J Q.. E 95 QJ I-90 85 80 75 ENERCON 7 ' J l' v---ii I r I ! ' I CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 61 of 303 I I 'J ............................................................................ ; ............................................................................. ; ............................................................................... ; ............................................. -......... -................... , ................................................................................ , ....... _ .... _. 0 5 10 15 20 25 Time (hrs) Figure 3: Maximum Local Temperature of the MCR for 24 hours ,/ | 4 Plenum 34200CFM (41-440) 2 36200CFM 1 Control Room 37200CFM (3Q-40Q) | ||
ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 62 of 303 Figure 4 below shows the relativity humidity in subvolume 1 s71 located in the horseshoe area of the MCR. The relative humidity is 20% at the start of the transient (cf. Assumption 4.3) and decreases to below 10% as the MCR temperature increases before HVC-ACU1 is started at one hour. The relative humidity then rapidly increases to -48% and remains below 50% for the remainder of the transient. This relative humidity is overestimated due to the modeling of the HVC-ACU1 performance, which is based on a constant inlet air relative humidity of 50%. The actual MCR absolute humidity is expected to be less than that predicted in the Case 2 and Attachment 2 cases. As shown in Figure 1 of this attachment, in this case only 2000 CFM of outside air is drawn into the MCR, whereas in the other cases the smoke removal fan, portable fan, and kitchen and toilet exhaust vans draw a combined 13,725 CFM of moist (53%-90% relative humidity) outside air into the control room. This higher intake of outside air would result in higher humidity in the MCR for these cases relative to the current case. 60 40 0 0 s 10 15 20 25 Jime (hrs) Figure 4: Relative Humidity in the Horseshoe Area for Attachment 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 63 of 303 8. GOTHIC Input File for Attachment 1 Is I I I I'' I I i'IS I s I I I I I I I I I I I I I I I I I I I I . I '144.QQ ft / | ACU1A/B Fan 1-----' v PAGE NO. 59 of 303 3 4000CFM {2Q) Return to Filter/ Heater 2000CFM (4SQ) (Out-leakage) | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.xteNertct-Ddttypft>]f!d, £v1Hytfa;. Attachment 1 PAGE NO. 64 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) (ft2) ls MCR Below 87417. 136 .135 9.115 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 HVC-ACUl Exhaus 4000. 145.5 8.67 5. DEFAULT 4 HVC-ACUl Outlet 4000. 136.135 10. 10. DEFAULT 5 F/H Outlet 4000. 145.5 8.67 5. DEFAULT 6 Stream 4 Outlet 4000. 145.5 8.67 20. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE 6 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Are* a # (%/hr) (psi a) (F) (%) BC Option Wall Option (ft2) ls 0. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr} (psia) (F) (%) BC Option Wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s , , 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT X-Direction No ding Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. ' 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. | Flow from Filter /Heater Mixed Air (Tmixil 2000CFM (1Q) Figure 1: HVC-ACU1A(B) | ||
ENERCON 15 126. 9. 16 135. 9. Y-Direction Noding Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Plane (ft) Height (ft) 1 0. 3.48513 2 3 Cell 3.48513 7.50443 Blockages 4.0193 1.61057 -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 *6 1H13-U50 7 1H13-U731 8 1H13-U732 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1Hl3-U715 13 1Hl3-U720 14 1Hl3-U721/U799 15 1H13-U748 16 1Hl3-U746 17 1H13-U744 *18 1Hl3-U742 19 1H13-U741 20 1H13-U730 21 1Hl3-U703 22 1Hl3-U701 23 1Hl3-U712 24 1Hl3-U710 25 1Hl3-U714 26 1Hl3-U711 27 1Hl3-U740/U723 28 Shift Manager East 29, Shift Manager S 30 Kitchen Wall S 31 Kitchen Wall W CALCULATION CONTROL Attachment 1 T BLK B I N BLK B I N BLK B I N BLK B I / N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 65 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages -Table 2 Volume ls Block Coo No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Xl* 9. 81. 18. 27. 36. Yl 9.25 9.25 18.5 18.5 18.5 Zl 0. 0. 0. 0. 0. 45. 18.5 0. 18.5 o,, 58.5 27.75 o. 90. 18. 5 0. 99. 18.5 0. 108. 1*8.5 o. 117. 18. 5 0. 126. 18.5 0. 135. 18.5 0. 9. 46.25 0. 18. '46. 25 0. 27. 46.25 0. 36. 46.25 o. 45. 64.75 0. 54. 46.25 0. 5 8 . 5 2 7 .'7 5 0 . 81. 37. 0. ,99. 46.25 0. 108. 46.25 0. 117. 46.25 0. 126. 46.25 0. 135. 46.25 o. 0. 9.25 0. 9. 0. 0. 45. 64.75 0. 54. 64.75 0. X2 54. 135. 18. 27. 36. 45. 54. 77.5 90. 99. 108. 117. 126. 135. 9. 18. 27. 36. 45. 54. 77 .5 81. 99. 108. 117. 126. 135. 9. 9. 54. | Flow Distribution r ENERCON 7. Results CALCULATION CONTROL Attachment 1 | ||
: 54. X-Direction Cell Face Variations Volume ls Y2 9.25 9.25 37. 37. 37. Z2 7.5044 7.5044 7.5044 7.5044 7.5044 37. 7.5044 37. 7.5044 (ft) X3 27.75 7.5044 I 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7 .. 5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 55.5 7.5044 64.75 7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 9.25 9.115 6.25 9.115 64. 75 9 .115 74. 9 .115 Y3 Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls17 ls18 ls19 ls20 ls21 ls22 ls129 ls130 ls131 ls132 lsl33 ls134 ls145 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. Drop De-ent. Factor 0 1. 1000000. 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 11. i. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 37. 37. 37. 37. | * CALC. NO. ENTR-078-CAL:C-004 REV.O PAGE NO. 60 of 303 Figures 2 and 3 below show the temperature transient in the MCR following a 24 hour Loss of HVAC scenario, with the SWP system aligned tq HVC-ACU1A(B) at one hour. Figure 2 shows the average temperature of the MCR for 24 hours. Figure 3 shows the maximum cell (sub-volume) temperature of the MCR for 24 hours. The average temperature increases to approximately 110°F before ACU1A(B) is started at one hour. Turning on HVC-ACU1A(B) results in the temperature decreasing | ||
, below 105°F and at 24 hours the temperature is 107.8°F. | |||
The maximum cell temperature follows a similar trend, with the peak value of 115.1°F occurring at 1 hour. 115 110 I 85 80 75 0 5 10 15 20 25 Time {hrs) / Figure 2: Average Temperature of the MCR for 24 hours 120 115 110 105 U:-e100 :::l ...., Ill .... (!J Q.. E 95 QJ I-90 85 80 75 ENERCON 7 ' J l' v---ii I r I ! ' I CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 61 of 303 I I 'J ............................................................................ | |||
; ............................................................................. | |||
; ............................................................................... | |||
; ............................................. | |||
-......... | |||
-................... | |||
, ................................................................................ | |||
, ....... _ .... _. 0 5 10 15 20 25 Time (hrs) Figure 3: Maximum Local Temperature of the MCR for 24 hours ,/ | |||
ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 62 of 303 Figure 4 below shows the relativity humidity in subvolume 1 s71 located in the horseshoe area of the MCR. The relative humidity is 20% at the start of the transient (cf. Assumption 4.3) and decreases to below 10% as the MCR temperature increases before HVC-ACU1 is started at one hour. The relative humidity then rapidly increases to -48% and remains below 50% for the remainder of the transient. | |||
This relative humidity is overestimated due to the modeling of the HVC-ACU1 performance, which is based on a constant inlet air relative humidity of 50%. The actual MCR absolute humidity is expected to be less than that predicted in the Case 2 and Attachment 2 cases. As shown in Figure 1 of this attachment, in this case only 2000 CFM of outside air is drawn into the MCR, whereas in the other cases the smoke removal fan, portable fan, and kitchen and toilet exhaust vans draw a combined 13,725 CFM of moist (53%-90% | |||
relative humidity) outside air into the control room. This higher intake of outside air would result in higher humidity in the MCR for these cases relative to the current case. 60 40 0 0 s 10 15 20 25 Jime (hrs) Figure 4: Relative Humidity in the Horseshoe Area for Attachment 1 | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 63 of 303 8. GOTHIC Input File for Attachment 1 | |||
Is I I I I'' I I i'IS I s I I I I I I I I I I I I I I I I I I I I . I | |||
'144.QQ ft / | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.xteNertct-Ddttypft>]f!d, | |||
£v1Hytfa;. | |||
Attachment 1 PAGE NO. 64 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) | |||
(ft) (ft2) ls MCR Below 87417. 136 .135 9.115 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 HVC-ACUl Exhaus 4000. 145.5 8.67 5. DEFAULT 4 HVC-ACUl Outlet 4000. 136.135 10. 10. DEFAULT 5 F/H Outlet 4000. 145.5 8.67 5. DEFAULT 6 Stream 4 Outlet 4000. 145.5 8.67 20. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE 6 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Are* a # (%/hr) (psi a) (F) (%) BC Option Wall Option (ft2) ls 0. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr} (psia) (F) (%) BC Option Wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s , , 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT X-Direction No ding Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. ' 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. | |||
ENERCON 15 126. 9. 16 135. 9. Y-Direction Noding Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Plane (ft) Height (ft) 1 0. 3.48513 2 3 Cell 3.48513 7.50443 Blockages 4.0193 1.61057 -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 | |||
*6 1H13-U50 7 1H13-U731 8 1H13-U732 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1Hl3-U715 13 1Hl3-U720 14 1Hl3-U721/U799 15 1H13-U748 16 1Hl3-U746 17 1H13-U744 | |||
*18 1Hl3-U742 19 1H13-U741 20 1H13-U730 21 1Hl3-U703 22 1Hl3-U701 23 1Hl3-U712 24 1Hl3-U710 25 1Hl3-U714 26 1Hl3-U711 27 1Hl3-U740/U723 28 Shift Manager East 29, Shift Manager S 30 Kitchen Wall S 31 Kitchen Wall W CALCULATION CONTROL Attachment 1 T BLK B I N BLK B I N BLK B I N BLK B I / N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 65 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages | |||
-Table 2 Volume ls Block Coo No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Xl* 9. 81. 18. 27. 36. Yl 9.25 9.25 18.5 18.5 18.5 Zl 0. 0. 0. 0. 0. 45. 18.5 0. 18.5 o,, 58.5 27.75 o. 90. 18. 5 0. 99. 18.5 0. 108. 1*8.5 o. 117. 18. 5 0. 126. 18.5 0. 135. 18.5 0. 9. 46.25 0. 18. '46. 25 0. 27. 46.25 0. 36. 46.25 o. 45. 64.75 0. 54. 46.25 0. 5 8 . 5 2 7 | |||
.'7 5 0 . 81. 37. 0. ,99. 46.25 0. 108. 46.25 0. 117. 46.25 0. 126. 46.25 0. 135. 46.25 o. 0. 9.25 0. 9. 0. 0. 45. 64.75 0. 54. 64.75 0. X2 54. 135. 18. 27. 36. 45. 54. 77.5 90. 99. 108. 117. 126. 135. 9. 18. 27. 36. 45. 54. 77 .5 81. 99. 108. 117. 126. 135. 9. 9. 54. | |||
: 54. X-Direction Cell Face Variations Volume ls Y2 9.25 9.25 37. 37. 37. Z2 7.5044 7.5044 7.5044 7.5044 7.5044 37. 7.5044 37. 7.5044 (ft) X3 27.75 7.5044 I 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7 .. 5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 55.5 7.5044 64.75 7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 9.25 9.115 6.25 9.115 64. 75 9 .115 74. 9 .115 Y3 Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls17 ls18 ls19 ls20 ls21 ls22 ls129 ls130 ls131 ls132 lsl33 ls134 ls145 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. Drop De-ent. Factor 0 1. 1000000. | |||
: 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 11. i. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 37. 37. 37. 37. | |||
: 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37 ;-37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0 *, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 66 of 303 Z3 L .) Curb Height 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37 ;-37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0 *, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 66 of 303 Z3 L .) Curb Height 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. | ||
| Line 899: | Line 2,383: | ||
: 0. | : 0. | ||
: 0. 0. 0. | : 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 71 of 303 j ENERCON CALCULATION CONTROL Attachment 1 ls246 ls358 ls374 31 31 31 0. 1. 0. le-006 37. le-006 0. 0. 0. Y-Direction Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 18129 lsl30 lsl31 lsl32 lsl33 lsl34 lsl35 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll lsl2 lsl3 lsl4 lsl5 lsl6 lsl37 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 lsl8 lsl9 ls34 ls35 ls50 ls51 lsl46 lsl47 lsl62 lsl63 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000. 0. 1 1. 36. 0. '1 o. le-006 o. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0. 0. 0. 0. 1. 1. 0 *. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 71 of 303 j ENERCON CALCULATION CONTROL Attachment 1 ls246 ls358 ls374 31 31 31 0. 1. 0. le-006 37. le-006 0. 0. 0. Y-Direction Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 18129 lsl30 lsl31 lsl32 lsl33 lsl34 lsl35 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll lsl2 lsl3 lsl4 lsl5 lsl6 lsl37 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 lsl8 lsl9 ls34 ls35 ls50 ls51 lsl46 lsl47 lsl62 lsl63 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. le-006 le-006 le-006 0. 0. 0. *le-006 O. 36. 0. 36. 0. le-006 o. le-006 0. le-006 0. le-006 0. le-006 o. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228. 0. 6.44228 0. 36. 0. le-006 0. le-006 0. le-006 o. le-006 o. le-006 0. le-006 0. 36. 0. 36. 0. le-006 0. le-006 O. le-006 0. le-006 o. le-006 0. le-006 O. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228 o. 6.44228 0. 6.44228 0. 36. 0. 36. 0. 36. 0. 36. 0. 36.' 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 0. 0. 0. Drop De-ent1; Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 1 1. 36. 0. '1 o. le-006 o. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0. 0. 0. 0. 1. 1. 0 *. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. le-006 le-006 le-006 0. 0. 0. *le-006 O. 36. 0. 36. 0. le-006 o. le-006 0. le-006 0. le-006 0. le-006 o. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228. | |||
: 0. 6.44228 0. 36. 0. le-006 0. le-006 0. le-006 o. le-006 o. le-006 0. le-006 0. 36. 0. 36. 0. le-006 0. le-006 O. le-006 0. le-006 o. le-006 0. le-006 O. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228 o. 6.44228 0. 6.44228 0. 36. 0. 36. 0. 36. 0. 36. 0. 36.' 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 0. 0. 0. Drop De-ent1; Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | |||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. | ||
| Line 961: | Line 2,447: | ||
: 36. | : 36. | ||
: 36. | : 36. | ||
: 36. 36. le-006 36. le-006 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 77 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O ls358 ls359 ls374 ls375 31 31 31 31 1. 1. 1. 1. 36. 36. 36. 36. 0. 0. 0. 0. Z-Dire'ction Cell Face Variations Volume ls Cell No. / def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 Blockage No. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 36. 36. le-006 36. le-006 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 77 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O ls358 ls359 ls374 ls375 31 31 31 31 1. 1. 1. 1. 36. 36. 36. 36. 0. 0. 0. 0. Z-Dire'ction Cell Face Variations Volume ls Cell No. / def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 Blockage No. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000. | ||
: 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. | ||
: 1. | : 1. | ||
| Line 1,031: | Line 2,518: | ||
: 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 36.. 0. 36. 0. 36. 0. 36. 0. ' 36. 0. 36. 0. 36. b .. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 51.4286 0. 51.4286 0. 51.4286 0. 51.4286 o. 51.4286 0. 51.4286 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. . 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. Cell Blockage Volume Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 No. Porosity (ft) 0 1. 1000000. 1 1. 37. 1 1. 37. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 36.. 0. 36. 0. 36. 0. 36. 0. ' 36. 0. 36. 0. 36. b .. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 51.4286 0. 51.4286 0. 51.4286 0. 51.4286 o. 51.4286 0. 51.4286 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. . 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. Cell Blockage Volume Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 No. Porosity (ft) 0 1. 1000000. | ||
1 1. 37. 1 1. 37. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1. 1. 1. 1. | |||
: 1. 1. 1. | : 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. . 1. | : 1. 1. 1. 1. 1. 1. . 1. | ||
| Line 1,039: | Line 2,527: | ||
: 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. *o. 0. 0. 0. o. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. *o. 0. 0. 0. o. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 82 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O pto.,kd., EvfNydaj. Attachment 1 PAGE NO. 83 of 303 ls149 1 1. 37. lslSO 1 1. 37. lslO 2 1. 37. lsll 2 1. 37. ls12 2 1. 37. ls13 2 1. 37. lsl4 2 1. 37. ls15 2 1. 37. ls26 2 1. 37. ls27 2 1. 37. ls28 2 1. 37. ls29 2 1. 37. ls30 2 1. 37. ls31 2 1. 37. ls138 2 1. 37. ls139 2 1. 37. ls140 2 1. 37. ls141 2 1. 37. ls142 2 1. 37. ls143 2 1. 37. ls154 2 1. 37. ls155 2 1. 37. ls156 2 1. 37. ls157 2 1. 37. ls158 2 1. 37. ls159 2 1. 37. ls34 3 1. 36. ls35 3 1. 36. ls SO 3 1. 36. ls51 3 1. 36. ls162 3 1. 36. ls163 3 1. 36. ls178 3 1. 36. ls179 3 1. 36. ls35 4 1. 36. ls36 4 1. 36. ls51 4 1. 36. ls52 4 1. 36. ls163 4 1. 36. ls164 4 1. 36. ls179 4 1. 36. ls180 4 1. 36. ls36 5 1. 36. ls37 5 1. 36. ls52 5 1. 36. ls53 5 1. 36. ls164 5 1. 36. ls165 5 1. 36. ls180 5 1. 36. ls181 ,5 1. 36. ls37 6 1. 36. ls38 6 1. 36. ls53 6 1. 36. ls54 '6 1. 36. ls165 6 1. 36. ls166 6 1. 36. ls181 6 1. 36. ls182 6 1. 36. ls38 7 1. 36. ls39 7 1. 36. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 82 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O pto.,kd., | ||
EvfNydaj. | |||
Attachment 1 PAGE NO. 83 of 303 ls149 1 1. 37. lslSO 1 1. 37. lslO 2 1. 37. lsll 2 1. 37. ls12 2 1. 37. ls13 2 1. 37. lsl4 2 1. 37. ls15 2 1. 37. ls26 2 1. 37. ls27 2 1. 37. ls28 2 1. 37. ls29 2 1. 37. ls30 2 1. 37. ls31 2 1. 37. ls138 2 1. 37. ls139 2 1. 37. ls140 2 1. 37. ls141 2 1. 37. ls142 2 1. 37. ls143 2 1. 37. ls154 2 1. 37. ls155 2 1. 37. ls156 2 1. 37. ls157 2 1. 37. ls158 2 1. 37. ls159 2 1. 37. ls34 3 1. 36. ls35 3 1. 36. ls SO 3 1. 36. ls51 3 1. 36. ls162 3 1. 36. ls163 3 1. 36. ls178 3 1. 36. ls179 3 1. 36. ls35 4 1. 36. ls36 4 1. 36. ls51 4 1. 36. ls52 4 1. 36. ls163 4 1. 36. ls164 4 1. 36. ls179 4 1. 36. ls180 4 1. 36. ls36 5 1. 36. ls37 5 1. 36. ls52 5 1. 36. ls53 5 1. 36. ls164 5 1. 36. ls165 5 1. 36. ls180 5 1. 36. ls181 ,5 1. 36. ls37 6 1. 36. ls38 6 1. 36. ls53 6 1. 36. ls54 '6 1. 36. ls165 6 1. 36. ls166 6 1. 36. ls181 6 1. 36. ls182 6 1. 36. ls38 7 1. 36. ls39 7 1. 36. | |||
ENERCON ls54 7 1. ls SS 7 1. ls166 7 1. ls167 7 1. ls182 7 1. ls183 7 1. ls39 8 1. ls40 8 1. ls41 8 1. ls SS 8 1. ls56 8 1. ls57 8 1. ls167 8 1. ls168 8 1. ls169 8 1. lsl83 8 1. ls184 8 1. lslBS 8 1. ls42 9 1. ls43 9 1. ls SB 9 1. ls59 9 1. ls170 9 1. ls171 9 1. ls186 9 1. ls187 9 1. ls43 10 1. ls44 10 1. ls59 10 1. ls60 10 1. ls171 10 1. ls172 10 1. ls187 10 1. lslBB 10 1. ls44 11 1. ls45 11 1. ls60 11 1. ls61 11 1. ls172 11 1. ls173 11 1. lslBB 11 1. ls189 11 1. ls45 12 1. ls46 12 1. ls61 12 1. ls62 12 1. ls173 12 1. lsl74 12 1. ls189 12 1. ls190 12 1. ls46 13 1. ls47 13 1. ls62 13 1. ls63 13 1. ls174 13 1. ls175 13 1. ls190 13 1. ls191 13 1. ls47 14 1. ls48 14-1. '-CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 74. 37. 61.6667 74. 37. 61. 6667 74. 37. 61.6667 74. 37. 61.6667 36. 36. | ENERCON ls54 7 1. ls SS 7 1. ls166 7 1. ls167 7 1. ls182 7 1. ls183 7 1. ls39 8 1. ls40 8 1. ls41 8 1. ls SS 8 1. ls56 8 1. ls57 8 1. ls167 8 1. ls168 8 1. ls169 8 1. lsl83 8 1. ls184 8 1. lslBS 8 1. ls42 9 1. ls43 9 1. ls SB 9 1. ls59 9 1. ls170 9 1. ls171 9 1. ls186 9 1. ls187 9 1. ls43 10 1. ls44 10 1. ls59 10 1. ls60 10 1. ls171 10 1. ls172 10 1. ls187 10 1. lslBB 10 1. ls44 11 1. ls45 11 1. ls60 11 1. ls61 11 1. ls172 11 1. ls173 11 1. lslBB 11 1. ls189 11 1. ls45 12 1. ls46 12 1. ls61 12 1. ls62 12 1. ls173 12 1. lsl74 12 1. ls189 12 1. ls190 12 1. ls46 13 1. ls47 13 1. ls62 13 1. ls63 13 1. ls174 13 1. ls175 13 1. ls190 13 1. ls191 13 1. ls47 14 1. ls48 14-1. '-CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 74. 37. 61.6667 74. 37. 61. 6667 74. 37. 61.6667 74. 37. 61.6667 36. 36. | ||
: 36. | : 36. | ||
| Line 1,050: | Line 2,540: | ||
: 36. | : 36. | ||
: 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 84 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxtclfrmtt-EWJty ptojaa Evwy day. Attachment 1 PAGE NO. 85 of 303 ls63 14 1. 36. ls64 14 1. 36. ls175 14 1. 36. ls176 14 1. 36. ls191 14 1. 36. ls192 14 1. 36. ls81 15 1. 36. -, ls82 15 1. 36. ls97 15 1. 36. ls98 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 20 1. 36. ls102 20 1. 36. ls103 20 1. 36. ls214 20 1. 36. ls215 20 1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61.6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61.6667 ls167 21 1. 185. ls168 21 1. 92.5 ls169 21 1. 154.167 ls183 21 1. 185. | : 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 84 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxtclfrmtt-EWJty ptojaa Evwy day. Attachment 1 PAGE NO. 85 of 303 ls63 14 1. 36. ls64 14 1. 36. ls175 14 1. 36. ls176 14 1. 36. ls191 14 1. 36. ls192 14 1. 36. ls81 15 1. 36. -, ls82 15 1. 36. ls97 15 1. 36. ls98 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 20 1. 36. ls102 20 1. 36. ls103 20 1. 36. ls214 20 1. 36. ls215 20 1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61.6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61.6667 ls167 21 1. 185. ls168 21 1. 92.5 ls169 21 1. 154.167 ls183 21 1. 185. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xn:tifJn<:.1-f$ff1fJ ptt>}f!<':f., f.vt:ty day. Attachment 1 PAGE NO. 86 of 303 ls184 21 1. 92.5 lsl85 21 1. 154.167 ls73 22 1. 36. ls74 22 1. 36. ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. ls108 23 1. 36. ls219 23 1. 36. ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 1. 36. ls93 24 1. 36. lsl08 24 1. 36. ls109 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1., 36. ls109 25 1. 36. lsllO 25 1. \ 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. 1\;23 8 25 1. 36 .. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. lsl7 28 1. 37. lsl29 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51. 4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ENERCON ls257 29 1. ls258 29 1. lsl02 30 1. lsll8 30 1. ls230 30 1. ls246 30 1. ls358 30 1. ls374 30 1. ls118 31 1. ls119 31 1. ls246 31 1. ls247 31 1. ls374 31 1. ls375 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 1 51.4286 51.4286 37. | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xn:tifJn<:.1-f$ff1fJ ptt>}f!<':f., | ||
: 37. 37. 37. 37. 37. 36. 36. 36. 36. 36. 36. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO' SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46 .is 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Nading Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Height (ft) 5. 3.67 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 87 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages -Table 1 Volume 2s Block, No. Cell Blockages -Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000. 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. def No. Porosity (ft) | f.vt:ty day. Attachment 1 PAGE NO. 86 of 303 ls184 21 1. 92.5 lsl85 21 1. 154.167 ls73 22 1. 36. ls74 22 1. 36. ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. ls108 23 1. 36. ls219 23 1. 36. ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 1. 36. ls93 24 1. 36. lsl08 24 1. 36. ls109 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1., 36. ls109 25 1. 36. lsllO 25 1. \ 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. 1\;23 8 25 1. 36 .. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. lsl7 28 1. 37. lsl29 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51. 4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ENERCON ls257 29 1. ls258 29 1. lsl02 30 1. lsll8 30 1. ls230 30 1. ls246 30 1. ls358 30 1. ls374 30 1. ls118 31 1. ls119 31 1. ls246 31 1. ls247 31 1. ls374 31 1. ls375 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 1 51.4286 51.4286 37. | ||
* Coeff. 0 1. 1000000. 0. Z-Direction Cell Face Variations Volume 2s Cell Blockage Area No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s Hyd. Dia. (ft) 1000000. Hyd. Dia. (ft) 1000000. Loss Coeff. 0. (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor 0. Drop De-ent, Factor 0. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Mo lee Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase, # Diff. Model (ft) (ft) No. No .. Option ls NO MIX-L. 1. 1. 1. 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR 6 \NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation # Type Phase (ft2/s2) [*lbm/s] FF (ft2/s3) [*lbm/s] FF Discrete Burn Parameters Min Min Max Burn Flame; Burn Un CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 88 of 303 . Z3 Curb (ft) 0. L Ht Curb Height Vol # ls 2s 3 4 s 6 ENERCON H2 Frac 0.07 0.07 0.07 0.07 0.07 0.07 02 Frac o.os o.os o.os o.os o.os o.os H20 Frac o.ss .o.ss o.ss o.ss o.ss o.ss Continuous Burn Parameters Vol Min H2 Min Max Vol Flow 02 H20 # (lbm/s) Frac Frac ls o. o.os o.ss 2s o. o.os o.ss 3' *o. (, o.os o.ss 4 0. o.os o.ss s 6 0. 0. o.os o.os o.ss o.ss CALCULATION CONTROL Attachment 1 Length (ft) Speed (ft/s) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Max Burn H20/H2 Frac Ratio 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. Rate Burn Burn FF Frac Opt DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR Mechanistic Burn Rate Parameters Vol # ls 2s 3 4 s 6 Min H2 Frac 0. 0. 0. 0. 0. 0. Min 02 Frac 0. 0. 0. 0. 0. 0. Max H20 Frac 1. 1. | : 37. 37. 37. 37. 37. 36. 36. 36. 36. 36. 36. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO' SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46 .is 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Nading Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Height (ft) 5. 3.67 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 87 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages | ||
-Table 1 Volume 2s Block, No. | |||
Cell Blockages | |||
-Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000. | |||
: 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. def No. Porosity (ft) | |||
* Coeff. 0 1. 1000000. | |||
: 0. Z-Direction Cell Face Variations Volume 2s Cell Blockage Area No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s Hyd. Dia. (ft) 1000000. | |||
Hyd. Dia. (ft) 1000000. | |||
Loss Coeff. 0. (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor 0. Drop De-ent, Factor 0. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Mo lee Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase, # Diff. Model (ft) (ft) No. No .. Option ls NO MIX-L. 1. 1. 1. | |||
: 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR 6 \NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation | |||
# Type Phase (ft2/s2) | |||
[*lbm/s] | |||
FF (ft2/s3) | |||
[*lbm/s] | |||
FF Discrete Burn Parameters Min Min Max Burn Flame; Burn Un CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 88 of 303 . Z3 Curb (ft) 0. L Ht Curb Height Vol # ls 2s 3 4 s 6 ENERCON H2 Frac 0.07 0.07 0.07 0.07 0.07 0.07 02 Frac o.os o.os o.os o.os o.os o.os H20 Frac o.ss .o.ss o.ss o.ss o.ss o.ss Continuous Burn Parameters Vol Min H2 Min Max Vol Flow 02 H20 # (lbm/s) Frac Frac ls o. o.os o.ss 2s o. o.os o.ss 3' *o. (, o.os o.ss 4 0. o.os o.ss s 6 0. 0. o.os o.os o.ss o.ss CALCULATION CONTROL Attachment 1 Length (ft) Speed (ft/s) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Max Burn H20/H2 Frac Ratio 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. Rate Burn Burn FF Frac Opt DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR Mechanistic Burn Rate Parameters Vol # ls 2s 3 4 s 6 Min H2 Frac 0. 0. 0. 0. 0. 0. Min 02 Frac 0. 0. 0. 0. 0. 0. Max H20 Frac 1. 1. | |||
: 1. | : 1. | ||
: 1. 1. 1: Da No .. 1. 1. 1. 1. 1. 1. Lam Burn Burn Rate Temp Limit (lbm/ft3-s FF (F) DEFAULT 3SO. DEFAULT 3SO: DEFAULT 3SO. DEFAULT 3SO. DEFAULT DEFAULT 3SO. | : 1. 1. 1: Da No .. 1. 1. 1. 1. 1. 1. Lam Burn Burn Rate Temp Limit (lbm/ft3-s FF (F) DEFAULT 3SO. DEFAULT 3SO: DEFAULT 3SO. DEFAULT 3SO. DEFAULT DEFAULT 3SO. | ||
3SO. Mechanistic Burn Unburne Propagation Parameters Burned CC Flow Flame Ignition H2 Vol H2 # Frac 0.04 ls 2s 3 4 s 6 0.04 0.04 0.04 0.04 0.04 H2 Vel Thick FF Frac FF (ft/s) FF (ft) 0.001 DEFAULT 0.164 0.001 0.001 0.001 0.001 0.001 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT 0.164 0.164 0.164 0.164 0.164 Fluid Boundary Conditions -Table 1 FF Frac 0.04 0.04 0.04 0.04 0.04 0.04 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 89 of 303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDIS EDIS EDIS Press. Temp. Flow S J ON OFF Elev. BC# De.scription (psia) lP Environment 14.7 2P HVC ACUl .Outlet 14. 7 3P Smoke Removal E 14.7 4P Inlet Air 14.7 i SP F /H Outlet 14. 7 6P HVC-ACUl Exhaus 14.7 FF (F) 96 1 96 1 1 96 Fluid Boundary Conditions Table 2 FF (lbm/s) FF P 0 Trip Trip (ft) 0 N N 136.13 4T 0 N N 136.13 6T SC N N N N NN NN 136.13 136.13 136 .13 136.13 Liq. v Stm. v Drop D Cpld Flow Heat Outlet BC# Frac. FF Frac. FF (in) FF BC# Frac. lP 0. . 03 034 NONE 2P 0. hl ST NONE 3P 4P SP .03034 .03034 | 3SO. Mechanistic Burn Unburne Propagation Parameters Burned CC Flow Flame Ignition H2 Vol H2 # Frac 0.04 ls 2s 3 4 s 6 0.04 0.04 0.04 0.04 0.04 H2 Vel Thick FF Frac FF (ft/s) FF (ft) 0.001 DEFAULT 0.164 0.001 0.001 0.001 0.001 0.001 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT 0.164 0.164 0.164 0.164 0.164 Fluid Boundary Conditions | ||
.03034 -NONE NONE NONE FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT ENERCON CALCULATION CONTROL SHEET-Attachment 1 6P hSO NONE Fluid Boundary Conditions -Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 FF' lP 1. 2P 1. 3P 1. 4P 1. SP 1. 6P 1. Fluid Boundary Conditions -Table 4 Volume Fractions Be# Gas s FF Gas 6 FF Gas 7 lP Liq FF Comp 2P 3P 4P SP 6P Flow -Table 1 F.P. # 1 2 Description Env Connection HVC-ACUl PB Vol A ls94 4 '3 4 s 6 7 8 9 Smoke Removal p 6 Steam 4 Outlet 2s184 Inlet Air 6 F/H PB S HVC-ACUlA Ex PB 3 F/H Outlet S DMP 67 1 4 10 .,DMP 67 2 11 DMP 77 1 12 DMP 77 2 13 DMP 61 1 14 DMP 61 2 lS DMP 63 1 16 DMP 63 2 17 DMP S9 1 18 DMP S9 2 19 DMP 60 1 20 DMP 60 2 21 DMP S2 1 22 DMP S2 2 23 DMP S8 1 24 DMP S8 2 2S 26 27 28 29 30 31 32 33 DMP SO DMP 76 1 DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4' 4 4 4 4 4 4 4 4 Elev Ht (ft) (ft) 136 .13 3. 3 136.13 1. 14S. s 1. lSO. s 1. lSO. s 1. 14S. s 1. 14S. s 1. 14S.S 1. 144 .2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S L' 144. 2S 1. 144.2S 1. 144.2S 1. 144. 2S 1. 144 .2S 1. 144 .2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S L 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. FF Vol Elev Ht B (ft) (ft) lP 136.13 3.3 2P 136 .13 1. 3P 136.13 1. 6 lSO. s 1. 4P 136.13 1. SP 136.13 1. 6P 136.13 1. 3 14S.S 1. ls368 144.2S 1. ls3S2 144.2S 1. ls304 144. 2S 1. ls288 144 .2S 1. ls366 144.2S 1. ls3SO 144.2S 1. ls302 144 .2S 1. ls286 144. 2S 1. ls364 144.2S 1. ls348 144.2S 1. ls300 144.2S 1. ls284 144.2S 1. ls362 144.2S 1. ls346 144.2S 1. ls298 144. 2S 1. ls282 144.2S 1. ls329 | -Table 1 FF Frac 0.04 0.04 0.04 0.04 0.04 0.04 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 89 of 303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDIS EDIS EDIS Press. Temp. Flow S J ON OFF Elev. BC# De.scription (psia) lP Environment 14.7 2P HVC ACUl .Outlet 14. 7 3P Smoke Removal E 14.7 4P Inlet Air 14.7 i SP F /H Outlet 14. 7 6P HVC-ACUl Exhaus 14.7 FF (F) 96 1 96 1 1 96 Fluid Boundary Conditions Table 2 FF (lbm/s) FF P 0 Trip Trip (ft) 0 N N 136.13 4T 0 N N 136.13 6T SC N N N N NN NN 136.13 136.13 136 .13 136.13 Liq. v Stm. v Drop D Cpld Flow Heat Outlet BC# Frac. FF Frac. FF (in) FF BC# Frac. lP 0. . 03 034 NONE 2P 0. hl ST NONE 3P 4P SP .03034 .03034 | ||
.03034 -NONE NONE NONE FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT ENERCON CALCULATION CONTROL SHEET-Attachment 1 6P hSO NONE Fluid Boundary Conditions | |||
-Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 FF' lP 1. 2P 1. 3P 1. 4P 1. SP 1. 6P 1. Fluid Boundary Conditions | |||
-Table 4 Volume Fractions Be# Gas s FF Gas 6 FF Gas 7 lP Liq FF Comp 2P 3P 4P SP 6P Flow | |||
-Table 1 F.P. # 1 2 Description Env Connection HVC-ACUl PB Vol A ls94 4 '3 4 s 6 7 8 9 Smoke Removal p 6 Steam 4 Outlet 2s184 Inlet Air 6 F/H PB S HVC-ACUlA Ex PB 3 F/H Outlet S DMP 67 1 4 10 .,DMP 67 2 11 DMP 77 1 12 DMP 77 2 13 DMP 61 1 14 DMP 61 2 lS DMP 63 1 16 DMP 63 2 17 DMP S9 1 18 DMP S9 2 19 DMP 60 1 20 DMP 60 2 21 DMP S2 1 22 DMP S2 2 23 DMP S8 1 24 DMP S8 2 2S 26 27 28 29 30 31 32 33 DMP SO DMP 76 1 DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4' 4 4 4 4 4 4 4 4 Elev Ht (ft) (ft) 136 .13 3. 3 136.13 1. 14S. s 1. lSO. s 1. lSO. s 1. 14S. s 1. 14S. s 1. 14S.S 1. 144 .2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S L' 144. 2S 1. 144.2S 1. 144.2S 1. 144. 2S 1. 144 .2S 1. 144 .2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S L 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. FF Vol Elev Ht B (ft) (ft) lP 136.13 3.3 2P 136 .13 1. 3P 136.13 1. 6 lSO. s 1. 4P 136.13 1. SP 136.13 1. 6P 136.13 1. 3 14S.S 1. ls368 144.2S 1. ls3S2 144.2S 1. ls304 144. 2S 1. ls288 144 .2S 1. ls366 144.2S 1. ls3SO 144.2S 1. ls302 144 .2S 1. ls286 144. 2S 1. ls364 144.2S 1. ls348 144.2S 1. ls300 144.2S 1. ls284 144.2S 1. ls362 144.2S 1. ls346 144.2S 1. ls298 144. 2S 1. ls282 144.2S 1. ls329 | |||
* 144. 2S 1. ls297 144.2S 1. ls281 .144.2S 1. ls327 144.2S 1. ls29S 144.2S 1. ls360 144.2S 1. ls344 144.2S 1. ls326 144.2S 1. ls294 144.2S 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 90 of 303 DEFAULT ENERCON CALCULATION CONTROL Attachment 1 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 DMP 51 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 45 1 DMP 45 2 DMP 75 1 DMP 75 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Egg Crate 1 Egg Crate 2 Egg Crate 3 Egg Crate 4 Egg Crate 5 Egg Crate 6 Egg Crate 7 Egg Crate 8 Egg Crate 9 ,, Egg Crate 10 Egg Crate 11 Egg Crate 12 Egg Crate 13 Egg Crate 14 Egg Crate 15 Egg crate 16 Egg Crate 17 Egg Crate 18 Egg Crate 19 Egg Crate 20 Egg Crate 21 Egg Crate 22 Egg Crate_23 Egg Crate 24 Egg Crate 25 Egg Crate 26 Egg Crate 27 Egg Crate 28 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area -Table 2 Hyd. Diam. (ft) # (ft2) 1 1. 2 3 4 5 6 7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 4 4 4 4 4 4 4 4 4 4 4 4 4 2sl93 2s177 2s136 2s144 ls369 ls371 ls373 ls375 ls377 ls379 ls381 ls383 ls370 ls372 ls376 ls378 ls380 ls382 ls384 ls257 ls258 ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls268 ls269 ls270 ls271 ls272 144 .25 1. 144. 25 1. 144.25 1. 144. 25 1. 144.25 1. 144. 25 1. 144 .25 1. 144.25 1. 144 .25 1. 144 .25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. ls279 144.25 1. ls357 144.25 1. ls341 144.25 1. ls293 144.25 1. ls277 144.25 1. ls355 144.25 1. ls339 144 .25 1. 151. 1. 145.24 0.001 145.24 0:001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 ls291 ls275 ls353 ls337 ls289 ls273 3 3 3 3 2s113 2sl15 2s117 2sl19 2s121 2s123 2s125 2s127 2sl14 2s116 2s120 2s122 2s124 145.24 o.oor---2s126 145.24 0.001 2s128 145.24 0.001 2sl +45.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 2s14 145.24 0.001 2s15 145.24 0.001 2s16 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. 151. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) Friction Length (ft) Relative Dep Rough-Bend ness (deg) Mom Trn Opt 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 91of303 St rat Flow Opt NONE NONE NONE NONE NONE NONE NONE 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ENERCON 1. 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2 .2*5 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 18. 18. | * 144. 2S 1. ls297 144.2S 1. ls281 .144.2S 1. ls327 144.2S 1. ls29S 144.2S 1. ls360 144.2S 1. ls344 144.2S 1. ls326 144.2S 1. ls294 144.2S 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 90 of 303 DEFAULT ENERCON CALCULATION CONTROL Attachment 1 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 DMP 51 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 45 1 DMP 45 2 DMP 75 1 DMP 75 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Egg Crate 1 Egg Crate 2 Egg Crate 3 Egg Crate 4 Egg Crate 5 Egg Crate 6 Egg Crate 7 Egg Crate 8 Egg Crate 9 ,, Egg Crate 10 Egg Crate 11 Egg Crate 12 Egg Crate 13 Egg Crate 14 Egg Crate 15 Egg crate 16 Egg Crate 17 Egg Crate 18 Egg Crate 19 Egg Crate 20 Egg Crate 21 Egg Crate 22 Egg Crate_23 Egg Crate 24 Egg Crate 25 Egg Crate 26 Egg Crate 27 Egg Crate 28 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area -Table 2 Hyd. Diam. (ft) # (ft2) 1 1. 2 3 4 5 6 7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 4 4 4 4 4 4 4 4 4 4 4 4 4 2sl93 2s177 2s136 2s144 ls369 ls371 ls373 ls375 ls377 ls379 ls381 ls383 ls370 ls372 ls376 ls378 ls380 ls382 ls384 ls257 ls258 ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls268 ls269 ls270 ls271 ls272 144 .25 1. 144. 25 1. 144.25 1. 144. 25 1. 144.25 1. 144. 25 1. 144 .25 1. 144.25 1. 144 .25 1. 144 .25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. ls279 144.25 1. ls357 144.25 1. ls341 144.25 1. ls293 144.25 1. ls277 144.25 1. ls355 144.25 1. ls339 144 .25 1. 151. 1. 145.24 0.001 145.24 0:001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 ls291 ls275 ls353 ls337 ls289 ls273 3 3 3 3 2s113 2sl15 2s117 2sl19 2s121 2s123 2s125 2s127 2sl14 2s116 2s120 2s122 2s124 145.24 o.oor---2s126 145.24 0.001 2s128 145.24 0.001 2sl +45.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 2s14 145.24 0.001 2s15 145.24 0.001 2s16 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. 151. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) Friction Length (ft) Relative Dep Rough-Bend ness (deg) Mom Trn Opt 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 91of303 St rat Flow Opt NONE NONE NONE NONE NONE NONE NONE 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ENERCON 1. 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2 .2*5 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 18. 18. | ||
: 12. | : 12. | ||
| Line 1,064: | Line 2,572: | ||
: 10. 10. 10. 10. 10. 10. 10. 10. 10. ' 10. 10. .10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. | : 10. 10. 10. 10. 10. 10. 10. 10. 10. ' 10. 10. .10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. | ||
: 10. 10. 10. 10. | : 10. 10. 10. 10. | ||
: 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 *o. 0411 0.0417 0.0417 0.0417 PAGE NO. 92 of 303 NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N ,-NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE ENERCON 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.5 2.5 2 .5. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 Flow Paths -Table 3 Flow Fwd. Rev. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.04°17 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 PAGE NO. 93 of 303 N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE Path Loss Loss Comp. Critical Flow Model OFF Exit Loss Coeff. 0. Drop Breakup Model OFF # Coeff. Coeff. Opt. 1 0.127 1000000. OFF 2 OFF 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 OFF 1000000. OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 0. 0. 0. 0. 0. 0. 0. | : 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 *o. 0411 0.0417 0.0417 0.0417 PAGE NO. 92 of 303 NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N ,-NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE ENERCON 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.5 2.5 2 .5. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 Flow Paths -Table 3 Flow Fwd. Rev. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.04°17 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 PAGE NO. 93 of 303 N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE Path Loss Loss Comp. Critical Flow Model OFF Exit Loss Coeff. 0. Drop Breakup Model OFF # Coeff. Coeff. Opt. 1 0.127 1000000. | ||
OFF 2 OFF 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 OFF 1000000. | |||
OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 0. 0. 0. 0. 0. 0. 0. | |||
: 0. | : 0. | ||
: 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. | : 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OFF OFF OFF OFF OFF OFF OFF OFF I OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF CALC. NO. ENTR-078-CALC-004 ENERCON Pft).k<J .. f.WHJ CALCULATION CONTROL Attachment 1 REV.O 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 4.78 :f .78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.18 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Flow Paths -Table 4 Forwar Flow Min Path H2 # Frac 1 0.06 2 3 4 5 6 7 8 9 10 11 12 13 14 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0,06 Min Max Min H2 Frac 0.06 .02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.06 0.55 0.06 0. 55, 0. 06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OFF OFF OFF OFF OFF OFF OFF OFF I OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF CALC. NO. ENTR-078-CALC-004 ENERCON Pft).k<J | ||
.. f.WHJ CALCULATION CONTROL Attachment 1 REV.O 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 4.78 :f .78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.18 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Flow Paths -Table 4 Forwar Flow Min Path H2 # Frac 1 0.06 2 3 4 5 6 7 8 9 10 11 12 13 14 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0,06 Min Max Min H2 Frac 0.06 .02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.06 0.55 0.06 0. 55, 0. 06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | |||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Revers Min Max 02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 'OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 94 of 303 Zero Prop Flow Opt NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW 15 16 17 18 19 2a 21 22 23 24 25 26 27 28 29 3a 31 32 33 34 35 36 37 38 39 4a 41 42 43 44 45 46 47 48 49 sa 51 52 53 54 55 56 57 58 59 6a 61 62 63 64 65 66 67 68 69 7a 71 72 73 74 ENERCON a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.SS a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.SS a. as' a. 55 a.as a.SS a.as a.SS a.as a.55 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 CALCULATION CONTROL Attachment 1 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.a6 a.as a.a6. a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.SS a.55 a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s' a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 95 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW / | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Revers Min Max 02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 'OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 94 of 303 Zero Prop Flow Opt NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW 15 16 17 18 19 2a 21 22 23 24 25 26 27 28 29 3a 31 32 33 34 35 36 37 38 39 4a 41 42 43 44 45 46 47 48 49 sa 51 52 53 54 55 56 57 58 59 6a 61 62 63 64 65 66 67 68 69 7a 71 72 73 74 ENERCON a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.SS a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.SS a. as' a. 55 a.as a.SS a.as a.SS a.as a.55 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 CALCULATION CONTROL Attachment 1 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.a6 a.as a.a6. a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.SS a.55 a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s' a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 95 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW / | ||
ENERCON 75 76 77 78 79 80 81 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Thermal Conductors 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALCULATION CONTROL Attachment 1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 NO NO NO NO NO NO NO Cond Vol HT Vol HT Cond S. A. Ini t. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 96 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW # Description A Co B Co Type (ft2) T. (F) Or ls CPl-West lsl8-l 1 lsl8-l 5 1 7764.63 75. I 2s CP2-NE ls81-2 1 ls81-2 5 1 3234.14 75. I 3s CP3-SE ls89-2 1 ls89-2 5 1 3728.76 75. I 4s Floor lsl-12 11 lsl-12 12 5 10656. 76.5 I 5sJ Upper MCR ceili 2sl29-10 2sl29-8 4 10656. 87. I 6s MCR West Wall L lsl6-2 2 8 4 1312.56 85. I 7s MCR North WallL lsl-36 2 lsl-36 8 4 674.51 85. I 8s MCR East Wall L lsl13-2 ls'll3-8 4 1312. 56 85. I 9s MCR South Wall lsl28-2 lsl28-8 4 674.51 85. I 10s Ceiling Tiles ls257-10 2sl-12 11 6 10016. 78. X lls Upper MCR West 2sl-14 1 2sl-14 8 4 1248.48 88. I 12s Upper MCR North 2sl-24 1 2sl-24 8 4 641.58 88. I 13s Upper MCR East 2sl13-1 2sll3-8 4 1248.48 88. I 14s Upper MCR South 2sl28-. 1 2sl28-8 4 641. 58 88. I 15s Steel Structure 2sl-12 1 2sl-12 5 2 11756.8 81. I 16 SM Doors lsl 1 lsl 5 10 55.2 75. I 17 lHS-JBA lsl4 1 ls14 5 7 1. 75. I 18s 19s 20s 2ls 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ILAC Panels Steel ILAC 3/8 steel ILAc::)/16 DC Panels N DC Panels S lsl33-1 ls5-13*, 1 ls5-13 1 lsl7-l 1 ls32-l 1 Support Beams lsl6-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-24 1 HVAC Large_l lsl-18 1 HVAC Large_2 lsll3-1 SCA Panels_N lsl7-l 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-l 1 ls133-5 ls5-13 5 ls5-13 5 lsl7-l 5 ls32-l 5 lsl6-3 5 ls97-2 5 ls64-2 5 lsl-24 5 lsl-18 5 lsl13-5 lsl7-l 5 ls48 5 lsl8 5 ls2 5 ls98-l 5 7 8 7 7 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 lsl46-1 lsl46-5 7 ls241-1 ls241-5 7 ls153-1 lsl53-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 is55-9 5 9 173.8 15. 20. 198. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 4ls 42s 43s 44s 45 46s l" Conduit S lsl6-3 1 lsl6-3 5 lsll7-5 lsl13-5 ls3-15 5 lsl5 5 ls4-13 5 7 -19.625 l" Conduit_kitc lsll7-1 l" Conduit N wa lsll3-1 l"Conduit_W wal ls3-15 1 Security Port lsl5 1 211 Conduit ls4-13 1 7 9.42 7 39.25 7 70. 65 8 12 .5 7 34.6 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 lsll2-1 lsll2-5 7 lsl6-3 1 ls16-3 5 7 ls7-9 1 ls7-9 5 9 19.6 11. 8 6.6 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. | ENERCON 75 76 77 78 79 80 81 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Thermal Conductors 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALCULATION CONTROL Attachment 1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 NO NO NO NO NO NO NO Cond Vol HT Vol HT Cond S. A. Ini t. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 96 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW # Description A Co B Co Type (ft2) T. (F) Or ls CPl-West lsl8-l 1 lsl8-l 5 1 7764.63 75. I 2s CP2-NE ls81-2 1 ls81-2 5 1 3234.14 75. I 3s CP3-SE ls89-2 1 ls89-2 5 1 3728.76 75. I 4s Floor lsl-12 11 lsl-12 12 5 10656. 76.5 I 5sJ Upper MCR ceili 2sl29-10 2sl29-8 4 10656. 87. I 6s MCR West Wall L lsl6-2 2 8 4 1312.56 85. I 7s MCR North WallL lsl-36 2 lsl-36 8 4 674.51 85. I 8s MCR East Wall L lsl13-2 ls'll3-8 4 1312. 56 85. I 9s MCR South Wall lsl28-2 lsl28-8 4 674.51 85. I 10s Ceiling Tiles ls257-10 2sl-12 11 6 10016. 78. X lls Upper MCR West 2sl-14 1 2sl-14 8 4 1248.48 88. I 12s Upper MCR North 2sl-24 1 2sl-24 8 4 641.58 88. I 13s Upper MCR East 2sl13-1 2sll3-8 4 1248.48 88. I 14s Upper MCR South 2sl28-. 1 2sl28-8 4 641. 58 88. I 15s Steel Structure 2sl-12 1 2sl-12 5 2 11756.8 81. I 16 SM Doors lsl 1 lsl 5 10 55.2 75. I 17 lHS-JBA lsl4 1 ls14 5 7 1. 75. I 18s 19s 20s 2ls 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ILAC Panels Steel ILAC 3/8 steel ILAc::)/16 DC Panels N DC Panels S lsl33-1 ls5-13*, | ||
1 ls5-13 1 lsl7-l 1 ls32-l 1 Support Beams lsl6-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-24 1 HVAC Large_l lsl-18 1 HVAC Large_2 lsll3-1 SCA Panels_N lsl7-l 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-l 1 ls133-5 ls5-13 5 ls5-13 5 lsl7-l 5 ls32-l 5 lsl6-3 5 ls97-2 5 ls64-2 5 lsl-24 5 lsl-18 5 lsl13-5 lsl7-l 5 ls48 5 lsl8 5 ls2 5 ls98-l 5 7 8 7 7 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 lsl46-1 lsl46-5 7 ls241-1 ls241-5 7 ls153-1 lsl53-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 is55-9 5 9 173.8 15. 20. 198. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 4ls 42s 43s 44s 45 46s l" Conduit S lsl6-3 1 lsl6-3 5 lsll7-5 lsl13-5 ls3-15 5 lsl5 5 ls4-13 5 7 -19.625 l" Conduit_kitc lsll7-1 l" Conduit N wa lsll3-1 l"Conduit_W wal ls3-15 1 Security Port lsl5 1 211 Conduit ls4-13 1 7 9.42 7 39.25 7 70. 65 8 12 .5 7 34.6 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 lsll2-1 lsll2-5 7 lsl6-3 1 ls16-3 5 7 ls7-9 1 ls7-9 5 9 19.6 11. 8 6.6 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. | |||
: 75. 75. 75. 75. | : 75. 75. 75. 75. | ||
: 75. 75. 75. 75. 75. | : 75. 75. 75. 75. 75. | ||
: 75. | : 75. | ||
: 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON CALCULATION CONTROL Attachment 1 50 RMS-CAB170 ls9 1 ls9 5 9 14.7 75. 51 White boxes lslO 1 lslO 5 7 16.5 75. 52s Unistrut W ls13-3 1 ls13-3 5 7 36.8 75. 53s Unistrut)N ls33-1 1 ls33-l 5 7 10.496 75. 54s Uni strut s ls96-3 1 ls96-3 5 7 18.368 75. -Thermal Conductors -Radiation Parameters Cond Therm. Rad. Emiss. Therm. Rad. Emiss. # Side A Side A Side B Side B ls No No 2s No No 3s No No 4s No No 5s No No 6s No No 7s No No as No No 9s No No lOs No No lls No No 12s No No 13s No No 14s No No 15s No No 16 No No 17 No No 18s No No 19s No No 20s No No 21s No No 22s No No 23s No No 24s No No 25s No No 26s No No 27s No No 28s No No 29s No No 30 No No 31 No No 32 No No 33s No No 34s No No 35s No No 36s No No 37s No No 38s No No 39s No No 40s No No 4ls No No 42s No No 43s No No 44s No No 45 No No 46s No No 47s No No 48s No No 49s No No 50 No No 51 No No CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 97 of 303 I I I I I | : 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON CALCULATION CONTROL Attachment 1 50 RMS-CAB170 ls9 1 ls9 5 9 14.7 75. 51 White boxes lslO 1 lslO 5 7 16.5 75. 52s Unistrut W ls13-3 1 ls13-3 5 7 36.8 75. 53s Unistrut)N ls33-1 1 ls33-l 5 7 10.496 75. 54s Uni strut s ls96-3 1 ls96-3 5 7 18.368 75. -Thermal Conductors | ||
\ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 F.xreNMct-E¥etypto.:'1f<t. f.mytta;. Attachment 1 PAGE NO. 98 of 303 52s No No 53s No No 54s No No Heat Transfer Coefficient Types -Table 1 Heat Cnd/ Sp Nat For Type Transfer l:'lominal Cnv Cnd Cnv Cnv Cnv Rad # Option Value FF Opt Opt HTC Opt Opt Opt 1 Direct ADD MAX VERT SURF OFF OFF 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 2T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. lT 13 13 Sp Conv 1.63 OFF Heat Transfer Coefficient Types -Table 2 Min Max Convect Condensa Type Phase Liq Liq Bulk T Bulk T # Opt Fr act Fr act Model FF Model FF 1 VAP Tg-Tf Tb-Tw 2 VAP Tg-Tf Tb-Tw 3 VAP Tg-Tf Tb-Tw 4 VAP 'Tg-Tf Tb-Tw 5 j 6 VAP Tg-Tf Tb-Tw 7 VAP Tg-Tw 8 9 VAP Tg-Tw 10 -VAP Tg-Tf Tb-Tw 11 VAP Tg-Tf Tb-Tw 12 13 VAP Tg-Tw Heat Transfer Coefficient Types -Table 3 Char. Nat For Norn Minimum Char. Cond. Type Length Coef Exp Coef Exp ve*l Vel Conv HTC Height Length # (ft) FF FF FF FF (ft/s) FF (B/h-ft2-F (ft) (ft) 1 DEFAULT DEFAULT DEFAULT 2 DEFAULT DEFAULT DEFAULT 3 DEFAULT DEFAULT DEFAULT ) 4 DEFAULT DEFAULT D.EFAULT 5 J DEFAULT DEFAULT DEFAULT 6 DEFAULT DEFAULT 7 DEFAULT 8 DEFAULT 9 DEFAULT 10 DEFAULT 'DEFAULT 11 DEFAULT DEFAULT 12 DEFAULT 13 DEFAULT HTC Types -Table 4 Total Peak Initial BD Post-BD Post-BD ENERCON CALCULATION CONTROL Attachment 1 Type Const Heat # CT (Btu) 1 2 3 4 5 6 7 8 9 10 11 12 13 Thermal Conductor Type Types Time Exp (sec) XT Thick. Value Exp (B/h-f2-F) yt O.D. Exp xt Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 99 of 303 Direct FF Heat # Description Geom (in) (in) Regions (Btu/ft3-s) FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1.75 5 2 3.75 6 2 7.875 Thermal Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0. | -Radiation Parameters Cond Therm. Rad. Emiss. Therm. Rad. Emiss. # Side A Side A Side B Side B ls No No 2s No No 3s No No 4s No No 5s No No 6s No No 7s No No as No No 9s No No lOs No No lls No No 12s No No 13s No No 14s No No 15s No No 16 No No 17 No No 18s No No 19s No No 20s No No 21s No No 22s No No 23s No No 24s No No 25s No No 26s No No 27s No No 28s No No 29s No No 30 No No 31 No No 32 No No 33s No No 34s No No 35s No No 36s No No 37s No No 38s No No 39s No No 40s No No 4ls No No 42s No No 43s No No 44s No No 45 No No 46s No No 47s No No 48s No No 49s No No 50 No No 51 No No CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 97 of 303 I I I I I | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. Sub-Heat regs. Factor 1 1. 1 1 6 23 39 21 1 3 1 2 Sub-Heat regs. Factor* 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. Sub-Heat 0 .135 7T 0. . 0. 0. 1.2e-004 0. 0. 0. 0. 0. | \ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 F.xreNMct-E¥etypto.:'1f<t. | ||
f.mytta;. | |||
Attachment 1 PAGE NO. 98 of 303 52s No No 53s No No 54s No No Heat Transfer Coefficient Types -Table 1 Heat Cnd/ Sp Nat For Type Transfer l:'lominal Cnv Cnd Cnv Cnv Cnv Rad # Option Value FF Opt Opt HTC Opt Opt Opt 1 Direct ADD MAX VERT SURF OFF OFF 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 2T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. lT 13 13 Sp Conv 1.63 OFF Heat Transfer Coefficient Types -Table 2 Min Max Convect Condensa Type Phase Liq Liq Bulk T Bulk T # Opt Fr act Fr act Model FF Model FF 1 VAP Tg-Tf Tb-Tw 2 VAP Tg-Tf Tb-Tw 3 VAP Tg-Tf Tb-Tw 4 VAP 'Tg-Tf Tb-Tw 5 j 6 VAP Tg-Tf Tb-Tw 7 VAP Tg-Tw 8 9 VAP Tg-Tw 10 -VAP Tg-Tf Tb-Tw 11 VAP Tg-Tf Tb-Tw 12 13 VAP Tg-Tw Heat Transfer Coefficient Types -Table 3 Char. Nat For Norn Minimum Char. Cond. Type Length Coef Exp Coef Exp ve*l Vel Conv HTC Height Length # (ft) FF FF FF FF (ft/s) FF (B/h-ft2-F (ft) (ft) 1 DEFAULT DEFAULT DEFAULT 2 DEFAULT DEFAULT DEFAULT 3 DEFAULT DEFAULT DEFAULT ) 4 DEFAULT DEFAULT D.EFAULT 5 J DEFAULT DEFAULT DEFAULT 6 DEFAULT DEFAULT 7 DEFAULT 8 DEFAULT 9 DEFAULT 10 DEFAULT 'DEFAULT 11 DEFAULT DEFAULT 12 DEFAULT 13 DEFAULT HTC Types -Table 4 Total Peak Initial BD Post-BD Post-BD ENERCON CALCULATION CONTROL Attachment 1 Type Const Heat # CT (Btu) 1 2 3 4 5 6 7 8 9 10 11 12 13 Thermal Conductor Type Types Time Exp (sec) XT Thick. Value Exp (B/h-f2-F) yt O.D. Exp xt Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 99 of 303 Direct FF Heat # Description Geom (in) (in) Regions (Btu/ft3-s) | |||
FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1.75 5 2 3.75 6 2 7.875 Thermal Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0. | |||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. Sub-Heat regs. Factor 1 1. 1 1 6 23 39 21 1 3 1 2 Sub-Heat regs. Factor* 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. Sub-Heat 0 .135 7T 0. . 0. 0. 1.2e-004 | |||
: 0. 0. 0. 0. 0. | |||
ENERCON CALCULATION CONTROL Attachment 1 Region # 1 2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 r 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (in) (in) 0.00768 0.01536 regs. Factor 0. 0.00768 1 0. 1 0. 0.02304 0.03072 1 0.05376 0.06144 1 0.1152 0.12288 1 0.23808 0.24576 1 0.48384 0.49152 1 0.97536 0.98304 1 1.9584 1.96608 1 3.92448 3.93216 1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ENERCON CALCULATION CONTROL Attachment 1 Region # 1 2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 r 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (in) (in) 0.00768 0.01536 regs. Factor 0. 0.00768 1 0. 1 0. 0.02304 0.03072 1 0.05376 0.06144 1 0.1152 0.12288 1 0.23808 0.24576 1 0.48384 0.49152 1 0.97536 0.98304 1 1.9584 1.96608 1 3.92448 3.93216 1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. Thermal Type 5 Composite Mat. Region # 1 5 2 5 3 5 4 5 5 5 6 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 0. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0. 0.01224 0.013056 1 0. 0.025296 0.026112 1 0. 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1.625 0.034244 1 0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.998518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 0. 0. 0. 0. 0. 1. 1. 1 .. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 100 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O j £.my tia-j. Attachment 1 PAGE NO. 101 of 303 31 2 20.70052 1.96608 1 0. 32 2 22.6666 0.98304 1 0. 33 2 23.64964 0.49152 1 0. 34 2 24.14116 0.24576 1 0. 35 2 24.38692 0.12288 1 0. 36 2 24.5098 0.06144 1 0. 37 2 24. 57124 0.03072 1 0. 38 2 24.60196 0.01536 1 0. 39 2 24.61732 0.00768 1 0. Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Thick sub-Heat Region # (in) (in) regs. Factor 1 4 0. 3.5e-004 1 0. 2 4 3.5e-004 7e-004 1 0. 3 4 0.001044 0.001392 1 0. 4 4 0.002436 0.002784 1 0. 5 4 0.00522 0.005568 1 0. 6 4 0.010788 0.011136 1 0. 7 4 0.021924 0. 022272 1 0. 8 4 0.044196 0.044544 1 0. 9 4 0.08874 0.089088 1 0. 10 4 0.177828 0.111793 1 0. 11. 4 0.289621 0 .111793 1 0. 12 4 0.401414 0.067423 1 0. 13 4 0.468837 0.067423 1 0. 14 4 0.53626 0.044544 1 0. 15 4 0.580804 0.022272 l* q. 16 4 0.603076 0. 011136 1 0. 17 4 0.614212 0.005568 1 0. 18 4 0.61978 0.002784 1 0. 19 4 0.622564 0.001392 1 0. 20 4 0.623956 7e-004 1 0. 21 4 0.624652 3.5e-004 1 0. Thermal Conductor Type 7 1/8" Steel \ Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.125 1 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Thick Sub-Heat Region if (in) (in) regs. Factor 1 1 0. 0.1875 1 0. 2 1 0.1875 0.09375 1 0. 3 1 0.28125 0.09375 1 0. Thermal Conductor Type 9 1/16" Steel Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.0625 1 o. | : 0. 0. 0. 0. Thermal Type 5 Composite Mat. Region # 1 5 2 5 3 5 4 5 5 5 6 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 0. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0. 0.01224 0.013056 1 0. 0.025296 0.026112 1 0. 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1.625 0.034244 1 | ||
0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.998518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 0. 0. 0. 0. 0. 1. 1. 1 .. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 100 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O j | |||
£.my tia-j. Attachment 1 PAGE NO. 101 of 303 31 2 20.70052 1.96608 1 0. 32 2 22.6666 0.98304 1 0. 33 2 23.64964 0.49152 1 0. 34 2 24.14116 0.24576 1 0. 35 2 24.38692 0.12288 1 0. 36 2 24.5098 0.06144 1 0. 37 2 24. 57124 0.03072 1 0. 38 2 24.60196 0.01536 1 0. 39 2 24.61732 0.00768 1 0. Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Thick sub-Heat Region # (in) (in) regs. Factor 1 4 0. 3.5e-004 1 0. 2 4 3.5e-004 7e-004 1 0. 3 4 0.001044 0.001392 1 0. 4 4 0.002436 0.002784 1 0. 5 4 0.00522 0.005568 1 0. 6 4 0.010788 0.011136 1 0. 7 4 0.021924 | |||
: 0. 022272 1 0. 8 4 0.044196 0.044544 1 0. 9 4 0.08874 0.089088 1 0. 10 4 0.177828 0.111793 1 0. 11. 4 0.289621 0 .111793 1 0. 12 4 0.401414 0.067423 1 0. 13 4 0.468837 0.067423 1 0. 14 4 0.53626 0.044544 1 0. 15 4 0.580804 0.022272 l* q. 16 4 0.603076 | |||
: 0. 011136 1 0. 17 4 0.614212 0.005568 1 0. 18 4 0.61978 0.002784 1 0. 19 4 0.622564 0.001392 1 0. 20 4 0.623956 7e-004 1 0. 21 4 0.624652 3.5e-004 1 0. Thermal Conductor Type 7 1/8" Steel \ Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.125 1 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Thick Sub-Heat Region if (in) (in) regs. Factor 1 1 0. 0.1875 1 0. 2 1 0.1875 0.09375 1 0. 3 1 0.28125 0.09375 1 0. Thermal Conductor Type 9 1/16" Steel Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.0625 1 o. | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O Thermal Conductor Type 10 1/4" Steel Mat. Region # 1 1 2 1 Cooler/Heater Heater Cooler Bdry. (in) 0. 0 .125 # Description lH 2H 3H 4H SH 6H 7H BH 9H lOH llH 12H 13H 14H 15H 16H 17H lBH 19H 20H 21H 22H 23H 24H 25H 26H 27H 2BH 29H 30H 31H 32H 33H 34H 35H 36H 37H 3BH 39H 40H 41H 42H 43H 44H 45H 46H 47H 4BH Thick (in) 0.125 0.125 Vol. # lsl ls2 ls3 ls4 ls5 ls6 ls7 lsB ls9 lslO lsll ls12 lsl3 ls14 ls15 ls16 ls17 lslB ls19 ls20 ls21 ls22 ls23 ls24 ls25 ls26 ls21 ls2B ls29 ls30 ls31 ls32 ls33 ls34 ls35 ls36 ls37 ls3B ls39 ls40 ls41 .ls42 ls43 ls44 ls45 ls46 ls47 ls4B On Sub-Heat Factor 1 0. 1 o. Off Flow Trip Trip Rate # # (CFM) PAGE NO. 102 of 303 Flow Heat '.Heat Rate Rate Rate Phs Ctrlr FF (Btu/s) FF Opt Loe 1. BT VTI lsl 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O Thermal Conductor Type 10 1/4" Steel Mat. Region # 1 1 2 1 Cooler/Heater Heater Cooler Bdry. (in) 0. 0 .125 # Description lH 2H 3H 4H SH 6H 7H BH 9H lOH llH 12H 13H 14H 15H 16H 17H lBH 19H 20H 21H 22H 23H 24H 25H 26H 27H 2BH 29H 30H 31H 32H 33H 34H 35H 36H 37H 3BH 39H 40H 41H 42H 43H 44H 45H 46H 47H 4BH Thick (in) 0.125 0.125 Vol. # lsl ls2 ls3 ls4 ls5 ls6 ls7 lsB ls9 lslO lsll ls12 lsl3 ls14 ls15 ls16 ls17 lslB ls19 ls20 ls21 ls22 ls23 ls24 ls25 ls26 ls21 ls2B ls29 ls30 ls31 ls32 ls33 ls34 ls35 ls36 ls37 ls3B ls39 ls40 ls41 .ls42 ls43 ls44 ls45 ls46 ls47 ls4B On Sub-Heat Factor 1 0. 1 o. Off Flow Trip Trip Rate # # (CFM) PAGE NO. 102 of 303 Flow Heat '.Heat Rate Rate Rate Phs Ctrlr FF (Btu/s) FF Opt Loe 1. BT VTI lsl 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
| Line 1,110: | Line 2,631: | ||
: 1. 1. 1. 1. | : 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1.37 1. 8 0.038 0.12 0.038 0.1099 0.127 0.0483 0.0483 0. 07772 0.277 0.137 0 .372 0.277 0.074 0.569 0.284 0.284 0.569 0.284 0.569 0.569 0.284 0.037 PAGE NO. 108 of 303 3T VTI ls349 3T VTI ls350 3T VTI ls351 3T VTI ls352 3T VTI ls353 3T VTI ls354 3T VTI ls355 3T VTI ls356 3T VTI ls357 VTI ls358 VTI ls359 VTI ls360 VTI ls361 3T VTI ls362 3T VTI ls363 3T VTI ls364 3T VTI ls365 3T VTI ls366 3T VTI ls367 3T VTI ls368 3T VTI ls369 3T VTI ls370 3T VTI ls371 3T VTI ls372 3T VTI ls373 3T VTI ls374 3T VTI ls375 3T VTI ls376 3T VTI ls377 3T VTI ls378 3T VTI ls379 3T VTI ls380 3T VTI ls381 3T VTI ls382 3T VTI ls383 3T VTJ; ls384 VTI ls118 VTI -ls9 VTI lsl33 VTI ls134 VTI lsl35 VTI ls65 VTI ls49 VTI ls17 VTI ls113 VTI lsl28 VTI ls112 VTI ls96 VTI ls64 VTI ls48 VTI ls32 VTI ls72 VTI ls104 VTI lsl05 VTI ls87 VTI ls71 VTI ls199 VTI ls106 VTI lsl VTI ls55 409H 410H 411H 412H 413H 414H 415H 416H 417H 418H 419H 420H 421H 422H 423H 424H 425H 426H 427H 428H 429H 430H 431H 432H 433H 434H 435H 436H 437H 438H 439H 440H 441H 442H 443H 444H 445H 446H 447H 448H 449H 450H 451H 452H 453H 454H 455H 456H 457H 458H 459H 460H 461H 462H 463H 464H 465H 466H 467H 468H ENERCON OP 2 OP 3 OP 4 OP 5 OP 6 OP 7 OP 8 OP 9 OP 10 OP 11 OP 12 OP 13 OP 14 OP 15 OP 16 OP 17 OP 18 ls56 ls57 ls71 ls72 ls73 ls87 ls88 ls89 lsl83 lsl84 lsl85 lsl99 ls200 ls201 ls215 ls216 ls217 2sl . 2s2 2s3 2s4 2s5 2s6 2s7 2s8 2s9 2sl0 2sll 2sl2 2sl3 2sl4 2sl5 2sl6 2sl7 2sl8 2sl9 2s20 2s21 2s22 2s23 2s24 2s25 2s26 2s27 2s28 2s29 2s30 2s31 2s32 2s33 2s34 2s35 2s36 2s37 2s42 2s43 2s44 2s45 2s46 2s47 CALCULATION CONTROL Attachment 1 0.037 0.037 0. 037 0. 037 0. 037 0. 037 0. 037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 9.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 109 of 303 VTI ls56 VTI ls57 VTI ls71* VTI ls72 VTI ls73 VTI ls87 VTI ls88 VTI ls89 VTI lsl83 VTI lsl84 VTI lsl85 VTI lsl99 VTI ls200 VTI ls201 VTI ls215 VTI ls216 VTI ls217 VTI 2sl VTI 2s2 VTI 2s3 VTI 2s4 VTI 2s5 VTI 2s6 VTI 2s7 VTI 2s8 VTI 2s9 VTI 2sl0 VTI 2sll VTI 2sl2 VTJ 2sl3 VTI 2sl4 VTI 2sl5 VTI 2sl6 VTI 2sl7 VTI 2sl8 VTI 2sl9 VTI 2s20 VTI 2s21 VTI 2s22 VTI 2s23 VTI 2s24 VTI 2s25 VTI 2s26 VTI 2s27 VTI 2s28 VTI 2s29 VTI 2s30 VTI 2s31 VTI 2s32 VTI 2s33 VTI 2s34 VTI 2s35 VTI 2s36 VTI 2s37 VTI 2s42 VTI 2s43 VTI 2s44 VTI 2s45 VTI 2s46 VTI 2s47 469H 470H 471H 472H 473H 474H 47SH 476H 477H 478H 479H 480H 481H 482H 483H 484H 48SH 486H 487H 488H 489H 490H 491H 492H 493H 494H 49SH 496H 497H 498H 499H SOOH SOlH S02H S03H S04H SOSH S06H S07H S08H S09H SlOH SllH S12H Sl3H S14H SlSH S16H S17H Sl8H Sl9H S20H S21H S22H S23H S24H S2SH S26H S27H S28H ENER ON 2s48 2s49 2sSO 2sS1 2sS2 2sS3 2sS8 2sS9 2s60 2s61 2s64 2s6S 2s66 2s67 2s68 2s69 2s74 2s7S 2s76 2s77 2s80 2s81 2s82 2s83 2s84 2s8S , 2s90 2s91 2s92 2s93 2s94 2s9S 2s96 2s97 2s98 2s99 2slOO 2s101 2s106 2s107 2s108 2s109 2s110 2slll 2s112 2s113 2s114 2s11S 2s116 2s117 2s118 2s119 2s120 2s121 2s122 2s123 2s124 2s12S 2s126 2sl27 CALCULATION CONTROL Attachment 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 b.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 110 of 303 VTI 2s48 VTI 2s49 VTI 2sSO VTI 2sS1 VTI 2sS2 VTI 2sS3 VTI 2sS8 VTI 2sS9 VTI 2s60 VTI 2s61 VTI 2s64 VTI 2s6S VTI 2s66 VTI 2s67 VTI 2s68 VTI 2s69 VTI 2s74 VTI 2s7S VTI 2s76 VTI 2s77 VTI 2s80 VTI 2s81 VTI 2s82 VTI 2s83 VTI 2s84.' VTI 2s8S VTI 2s90 VTI 2s91 VTI 2s92 VTI 2s93 VTI 2s94 VTI 2s9S VTI 2s96 VTI 2s97 VTI 2s98 VTI 2s99 VTI 2s100 VTI 2s101 VTI 2s106 VTI 2s107 VTI 2s108 VTI 2s109 VTI 2s110 VTI 2slll VTI 2s112 VTI 2s113 VTI 2s114 VTI 2s11S VTI 2s116 VTI 2sll 7 VTI 2s118 VTI 2sl19 VTI 2s120 VTI 2s121 VTI 2s122 VTI 2s123 VTI 2s124 VTI 2s12S VTI 2s126 VTI 2s127 529H 530H 531H 532H 533H 534H 535H .536H 537H 538H 539H 540H 541H 542H 543H 544H 545H 546H 547H 548H 549H 550H 551H 552H 553H 554H 555H 556H 557H 558H 559H 560H 561H 562H 563H 564H 565H 566H 567H 568H 569H 570H 571H 572H 573H 574H 575H 576H 577H 578H 579H 580H 581H 582H 583H 584H 585H 586H 587H 588H ENERCON CALCULATION CONTROL Attachment 1 2sl28 1Hl3-P600 ls26 1Hl3-P600 2 lsl54 1Hl3-P6047614 ls42 1Hl3-P604/614 lsl70 1Hl3-P845 ls58 1Hl3-P845 2 lsl86 1Hl3-P6727694 ls43 1Hl3-P672/694 lsl71 1Hl3-P669/691 ls44 1Hl3-P669/691 lsl72 1Hl3-P623/632 ls60 1H13-P623/632 ls188 1Hl3-P629 ls29 1H13-P629 2 ls157 , 1H13-P6217628 ls45 1H13-P621/628 ls173 1H13-P651-P65 ls61 1H13-P651-5 2 ls189 1H13-P680 ls55 1Hl.3-P680_2 ls56 1H13-P680 3 ls57 1H13-P625/693 ls91 1H13-P625/693 ls219 1H13-P671 ls107 1H13-P671 2 ls235 1H13-P6427613 ls92 1H13-642/13/2 ls220 1H13-P692/670 ls108 1H13-P692/670 ls236 1H13-P610/655 ls93 1H13-P610/655.ls221 1H13-P631/618 ls109 1H13-P631/618 ls237 1H13-P607/612 ls94 1H13-P607 612 ls222 1H13-P6197634 lsllO 1Hl3-P619/634 18238 1H13-P637 lslll 1H13-P637 2 ls239 1H13-P601 1 ls73 1Hl3-P601 2 ls89 1H13-P601 3 ls201 1H13-P601 4 ls217 1C91-P622 ls18 1C91-P622 2 ls146 1C91-P623/650 ls34 1C91-P623/655 ls162 1C91-P624 ls51 1C91-P624 2 ls179 1C91-P613 ls78 1C91-P613_2 ls206 1C91-P614 ls30 1C91-P614 2 ls158 1C91-P6157P64 ls46 1C91-P615/642 ls174 1C91-P632/P63 ls72 1C91-P632/633 ls200 1C91-P630/631 ls62 1C91-P630/631 lsl90 0.02 0.095 0.095 0.569 0.569 0.294 d.294 0.853 0.853 0.853 0.853 0.474 0.474 0.237 0.237 0. 284 -0.284 0.545 0.545 0.253 0.253 0.253 0.616 0.616 0.474 0.474 0.474 0.474 0.853 0.853 0.474 0.474 0.427 0.427 0.284 0.284 0.569 0.569 0.379 0.379 0.379 0.379 0.379 0.379 0.209 0.209 0.619 0.619 0.259 0.259 0.087 0.087 0.086 0.086 1.07 1. 07 0.066 0.066 0.488 0.488 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 111 of 303 VTI 2s128 VT! ls26 VTI ls154 VT! ls42 VTI ls170 VTI ls58 VTI ls186 VTI ls43 VTI lsl 71 VT! ls44 VTI lsl72 VTI ls60 VTI ls188 VTI ls29 VTI ls157 VTI ls45 VTI ls173 VTI ls61 VTI ls189 VTI ls55 VTI ls56 VTI ls57 VTI ls91 VTI ls219 VTI ls107 VTI ls235 | : 1. 1. 1. 1. 1.37 1. 8 0.038 0.12 0.038 0.1099 0.127 0.0483 0.0483 0. 07772 0.277 0.137 0 .372 0.277 0.074 0.569 0.284 0.284 0.569 0.284 0.569 0.569 0.284 0.037 PAGE NO. 108 of 303 3T VTI ls349 3T VTI ls350 3T VTI ls351 3T VTI ls352 3T VTI ls353 3T VTI ls354 3T VTI ls355 3T VTI ls356 3T VTI ls357 VTI ls358 VTI ls359 VTI ls360 VTI ls361 3T VTI ls362 3T VTI ls363 3T VTI ls364 3T VTI ls365 3T VTI ls366 3T VTI ls367 3T VTI ls368 3T VTI ls369 3T VTI ls370 3T VTI ls371 3T VTI ls372 3T VTI ls373 3T VTI ls374 3T VTI ls375 3T VTI ls376 3T VTI ls377 3T VTI ls378 3T VTI ls379 3T VTI ls380 3T VTI ls381 3T VTI ls382 3T VTI ls383 3T VTJ; ls384 VTI ls118 VTI -ls9 VTI lsl33 VTI ls134 VTI lsl35 VTI ls65 VTI ls49 VTI ls17 VTI ls113 VTI lsl28 VTI ls112 VTI ls96 VTI ls64 VTI ls48 VTI ls32 VTI ls72 VTI ls104 VTI lsl05 VTI ls87 VTI ls71 VTI ls199 VTI ls106 VTI lsl VTI ls55 409H 410H 411H 412H 413H 414H 415H 416H 417H 418H 419H 420H 421H 422H 423H 424H 425H 426H 427H 428H 429H 430H 431H 432H 433H 434H 435H 436H 437H 438H 439H 440H 441H 442H 443H 444H 445H 446H 447H 448H 449H 450H 451H 452H 453H 454H 455H 456H 457H 458H 459H 460H 461H 462H 463H 464H 465H 466H 467H 468H ENERCON OP 2 OP 3 OP 4 OP 5 OP 6 OP 7 OP 8 OP 9 OP 10 OP 11 OP 12 OP 13 OP 14 OP 15 OP 16 OP 17 OP 18 ls56 ls57 ls71 ls72 ls73 ls87 ls88 ls89 lsl83 lsl84 lsl85 lsl99 ls200 ls201 ls215 ls216 ls217 2sl . 2s2 2s3 2s4 2s5 2s6 2s7 2s8 2s9 2sl0 2sll 2sl2 2sl3 2sl4 2sl5 2sl6 2sl7 2sl8 2sl9 2s20 2s21 2s22 2s23 2s24 2s25 2s26 2s27 2s28 2s29 2s30 2s31 2s32 2s33 2s34 2s35 2s36 2s37 2s42 2s43 2s44 2s45 2s46 2s47 CALCULATION CONTROL Attachment 1 0.037 0.037 0. 037 0. 037 0. 037 0. 037 0. 037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 9.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 109 of 303 VTI ls56 VTI ls57 VTI ls71* VTI ls72 VTI ls73 VTI ls87 VTI ls88 VTI ls89 VTI lsl83 VTI lsl84 VTI lsl85 VTI lsl99 VTI ls200 VTI ls201 VTI ls215 VTI ls216 VTI ls217 VTI 2sl VTI 2s2 VTI 2s3 VTI 2s4 VTI 2s5 VTI 2s6 VTI 2s7 VTI 2s8 VTI 2s9 VTI 2sl0 VTI 2sll VTI 2sl2 VTJ 2sl3 VTI 2sl4 VTI 2sl5 VTI 2sl6 VTI 2sl7 VTI 2sl8 VTI 2sl9 VTI 2s20 VTI 2s21 VTI 2s22 VTI 2s23 VTI 2s24 VTI 2s25 VTI 2s26 VTI 2s27 VTI 2s28 VTI 2s29 VTI 2s30 VTI 2s31 VTI 2s32 VTI 2s33 VTI 2s34 VTI 2s35 VTI 2s36 VTI 2s37 VTI 2s42 VTI 2s43 VTI 2s44 VTI 2s45 VTI 2s46 VTI 2s47 469H 470H 471H 472H 473H 474H 47SH 476H 477H 478H 479H 480H 481H 482H 483H 484H 48SH 486H 487H 488H 489H 490H 491H 492H 493H 494H 49SH 496H 497H 498H 499H SOOH SOlH S02H S03H S04H SOSH S06H S07H S08H S09H SlOH SllH S12H Sl3H S14H SlSH S16H S17H Sl8H Sl9H S20H S21H S22H S23H S24H S2SH S26H S27H S28H ENER ON 2s48 2s49 2sSO 2sS1 2sS2 2sS3 2sS8 2sS9 2s60 2s61 2s64 2s6S 2s66 2s67 2s68 2s69 2s74 2s7S 2s76 2s77 2s80 2s81 2s82 2s83 2s84 2s8S , 2s90 2s91 2s92 2s93 2s94 2s9S 2s96 2s97 2s98 2s99 2slOO 2s101 2s106 2s107 2s108 2s109 2s110 2slll 2s112 2s113 2s114 2s11S 2s116 2s117 2s118 2s119 2s120 2s121 2s122 2s123 2s124 2s12S 2s126 2sl27 CALCULATION CONTROL Attachment 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 b.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 110 of 303 VTI 2s48 VTI 2s49 VTI 2sSO VTI 2sS1 VTI 2sS2 VTI 2sS3 VTI 2sS8 VTI 2sS9 VTI 2s60 VTI 2s61 VTI 2s64 VTI 2s6S VTI 2s66 VTI 2s67 VTI 2s68 VTI 2s69 VTI 2s74 VTI 2s7S VTI 2s76 VTI 2s77 VTI 2s80 VTI 2s81 VTI 2s82 VTI 2s83 VTI 2s84.' VTI 2s8S VTI 2s90 VTI 2s91 VTI 2s92 VTI 2s93 VTI 2s94 VTI 2s9S VTI 2s96 VTI 2s97 VTI 2s98 VTI 2s99 VTI 2s100 VTI 2s101 VTI 2s106 VTI 2s107 VTI 2s108 VTI 2s109 VTI 2s110 VTI 2slll VTI 2s112 VTI 2s113 VTI 2s114 VTI 2s11S VTI 2s116 VTI 2sll 7 VTI 2s118 VTI 2sl19 VTI 2s120 VTI 2s121 VTI 2s122 VTI 2s123 VTI 2s124 VTI 2s12S VTI 2s126 VTI 2s127 529H 530H 531H 532H 533H 534H 535H .536H 537H 538H 539H 540H 541H 542H 543H 544H 545H 546H 547H 548H 549H 550H 551H 552H 553H 554H 555H 556H 557H 558H 559H 560H 561H 562H 563H 564H 565H 566H 567H 568H 569H 570H 571H 572H 573H 574H 575H 576H 577H 578H 579H 580H 581H 582H 583H 584H 585H 586H 587H 588H ENERCON CALCULATION CONTROL Attachment 1 2sl28 1Hl3-P600 ls26 1Hl3-P600 2 lsl54 1Hl3-P6047614 ls42 1Hl3-P604/614 lsl70 1Hl3-P845 ls58 1Hl3-P845 2 lsl86 1Hl3-P6727694 ls43 1Hl3-P672/694 lsl71 1Hl3-P669/691 ls44 1Hl3-P669/691 lsl72 1Hl3-P623/632 ls60 1H13-P623/632 ls188 1Hl3-P629 ls29 1H13-P629 2 ls157 , 1H13-P6217628 ls45 1H13-P621/628 ls173 1H13-P651-P65 ls61 1H13-P651-5 2 ls189 1H13-P680 ls55 1Hl.3-P680_2 ls56 1H13-P680 3 ls57 1H13-P625/693 ls91 1H13-P625/693 ls219 1H13-P671 ls107 1H13-P671 2 ls235 1H13-P6427613 ls92 1H13-642/13/2 ls220 1H13-P692/670 ls108 1H13-P692/670 ls236 1H13-P610/655 ls93 1H13-P610/655.ls221 1H13-P631/618 ls109 1H13-P631/618 ls237 1H13-P607/612 ls94 1H13-P607 612 ls222 1H13-P6197634 lsllO 1Hl3-P619/634 18238 1H13-P637 lslll 1H13-P637 2 ls239 1H13-P601 1 ls73 1Hl3-P601 2 ls89 1H13-P601 3 ls201 1H13-P601 4 ls217 1C91-P622 ls18 1C91-P622 2 ls146 1C91-P623/650 ls34 1C91-P623/655 ls162 1C91-P624 ls51 1C91-P624 2 ls179 1C91-P613 ls78 1C91-P613_2 ls206 1C91-P614 ls30 1C91-P614 2 ls158 1C91-P6157P64 ls46 1C91-P615/642 ls174 1C91-P632/P63 ls72 1C91-P632/633 ls200 1C91-P630/631 ls62 1C91-P630/631 lsl90 0.02 0.095 0.095 0.569 0.569 0.294 d.294 0.853 0.853 0.853 0.853 0.474 0.474 0.237 0.237 0. 284 -0.284 0.545 0.545 0.253 0.253 0.253 0.616 0.616 0.474 0.474 0.474 0.474 0.853 0.853 0.474 0.474 0.427 0.427 0.284 0.284 0.569 0.569 0.379 0.379 0.379 0.379 0.379 0.379 0.209 0.209 0.619 0.619 0.259 0.259 0.087 0.087 0.086 0.086 1.07 1. 07 0.066 0.066 0.488 0.488 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 111 of 303 VTI 2s128 VT! ls26 VTI ls154 VT! ls42 VTI ls170 VTI ls58 VTI ls186 VTI ls43 VTI lsl 71 VT! ls44 VTI lsl72 VTI ls60 VTI ls188 VTI ls29 VTI ls157 VTI ls45 VTI ls173 VTI ls61 VTI ls189 VTI ls55 VTI ls56 VTI ls57 VTI ls91 VTI ls219 VTI ls107 VTI ls235 | ||
* VTI ls92 VTI ls220 VTI ls108 VTI ls236 VTI ls93. VTI ls221 VTI ls109 VTI ls237 VT! ls94 VTI ls222 VTI lsllO VTI ls238 VTI lslll VTI ls239 VTI ls73 VT! ls89 VTI ls201 VTI ls217 VTI ls18 VTI ls146 VTI ls34 VT! ls162 VTI ls51 VTI ls179 VTI ls78 VTI ls206 VTI ls30 VTI lsl58 VTI ls46 VTI lsl74 VTI ls72 VTI ls200 VTI ls62 VTI lsl90 ENERCON 589H 1C91-P625 ls31 590H 1C91-P625 2 ls159 591H 1C91-P621/620 ls47 592H 1C91-P621/620 ls175 593H lc91-P608/600 ls63 594H 1C91-P608/600 ls191 595H Comm Network ls90 596H H13-P6'3o ls59 597H H13-P630 2 ls187 598H H13-P808 ls40 599H Hl3-P808 2 ls41 600H H13-P808 3 ls168 601H H13-P808 4 ls169 602H -Hl3-P821/822 ls95 603H ls223 604H H13-P841/819-ls36 605H H13-P841/819 ls52 606H H13-P841/819-ls164 607H H13-P841/819-lsl80 608H H13-P842/820-ls83* 609H H13-P842/820 ls99 610H H13-P842/820-ls211 611H H13-P842/820 ls227 612H H13-P849 ls51 613H H13-P849_2 ls179 614H H13-P850 lslOO 615H H13-P850 2 ls228 616H H13-P851 ls37 617H H13-P851 2 ls165 618H H13-P852 ls98 619H H13-P852 2 ls226 620H H13-P853 ls50 621H H13-P853 2 ls178 622H H13-P854f P844 ls81 623H H13-P854/844 ls97 624H H13-P854/844-ls209 625H H13-P854/844= ls225 626H H13-P855 ls35 627H , H13-P855 2 ls163 628H H13-P861 ls103 629H H13-P861 2 630H H13-P863 631H H13-P863 2 632H H13-P863 3 633H H13-P863_4 634H Hl3-P869 635H H13-P869_2 636H H13-P870 637H H13-P870_2 638H H13-P870_3 639H H13-P870_4 640H H13-P877 641H H13-P877_2 642H H13-P878 643H H13-P878_2 644H H13-P879 645H H13-P879_2 646H H13-P951 647H H13-P951_2 648H H13-i?952 ls231 ls38 ls54 ls166 ls182 ls84 ls212 ls70 ls86 ls198 ls214 lsl05 ls233 ls112 ls240 ls48 lsl76 ls53 ls181 lslOl CALCULATION CONTROL Attachment 1 0.103 0.103 1.354 1.354 0.971 0.971 0.279 1.564 1.564 0 .118 0 .118 0 .118 0.118 0.519 0.519 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.355 0.355 1.955 1.955 0.523 0.523 0.523 0.523 0.355 0.355 0.473 0.473 I 0.473 0.473 0.083 0.083 0.19 0.19 0.044 0.044 0.044 0.044 1. 049 1. 049 0.227 0.227 0.227 0.227 0.045 0.045 0.386 0.386 0.204 0.204 0.024 0.024 0.024 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 112 of 303 VTI ls31 VTI ls159 VTI ls47 VTI ls175 VTI ls63 VTI ls191 VTI ls90 VTI ls59 VTI ls187 VTI ls40 VTI ls41 VTI ls168 VTI ls169 VTI ls95 VTI ls223 VTI ls36 VTI ls52 VTI ls164 VTI lsl80 VTI ls83 VTI ls99 VTI ls211 VTI ls227 VTI ls51 VTI ls179 VTI lslOO VTI ls228 VTI 1s3*7 VTI ls165 VTI ls98 VTI ls226 VTI ls50 VTI ls178 VTI ls81 VTI ls97 VTI ls209 VTI ls225 VTI ls35 VTI ls163 VTI ls103 VTI ls231 VTI ls38 VTI ls54 VTI ls166 VTI ls182 VTI ls84 VTI ls212 VTI ls70 VTI ls86 VTI lsl98 VTI ls214 VTI ls105 VTI ls233 VTI ls112 VTI ls240 VTI ls48 VTI ls176 VTI ls53 VTI ls181 VTI lslOl ( | * VTI ls92 VTI ls220 VTI ls108 VTI ls236 VTI ls93. VTI ls221 VTI ls109 VTI ls237 VT! ls94 VTI ls222 VTI lsllO VTI ls238 VTI lslll VTI ls239 VTI ls73 VT! ls89 VTI ls201 VTI ls217 VTI ls18 VTI ls146 VTI ls34 VT! ls162 VTI ls51 VTI ls179 VTI ls78 VTI ls206 VTI ls30 VTI lsl58 VTI ls46 VTI lsl74 VTI ls72 VTI ls200 VTI ls62 VTI lsl90 ENERCON 589H 1C91-P625 ls31 590H 1C91-P625 2 ls159 591H 1C91-P621/620 ls47 592H 1C91-P621/620 ls175 593H lc91-P608/600 ls63 594H 1C91-P608/600 ls191 595H Comm Network ls90 596H H13-P6'3o ls59 597H H13-P630 2 ls187 598H H13-P808 ls40 599H Hl3-P808 2 ls41 600H H13-P808 3 ls168 601H H13-P808 4 ls169 602H -Hl3-P821/822 ls95 603H ls223 604H H13-P841/819-ls36 605H H13-P841/819 ls52 606H H13-P841/819-ls164 607H H13-P841/819-lsl80 608H H13-P842/820-ls83* 609H H13-P842/820 ls99 610H H13-P842/820-ls211 611H H13-P842/820 ls227 612H H13-P849 ls51 613H H13-P849_2 ls179 614H H13-P850 lslOO 615H H13-P850 2 ls228 616H H13-P851 ls37 617H H13-P851 2 ls165 618H H13-P852 ls98 619H H13-P852 2 ls226 620H H13-P853 ls50 621H H13-P853 2 ls178 622H H13-P854f P844 ls81 623H H13-P854/844 ls97 624H H13-P854/844-ls209 625H H13-P854/844= | ||
ENERCON CALCULATION CONTROL SHEET-649H 6SOH 6S1H H13-P9S2 2 ls229 H13-Y702D/7Sl ls378 H13-Y703A ls282 6S2H H13-Y703D ls281 6S3H H13-Y710B/D/3 ls380 6S4H H13-Y711A ls382 6SSH H13-Y712B/D ls379 6S6H H13-Y713B/D ls284 6S7H H13-Y714B/D ls381 6S8H H13-Y71SD/E ls28S 6S9H H13-Y717D ls283 660H H13-Y730B ls374 661H H13-Y731D ls278 662H H13-Y740A ls383 663H H13-Y743E ls276 664H H13-Y744D ls371 66SH H13-Y747A ls27S 666H H13-Y747B ls274 667H H13-Y748B/E ls369 668H H13-Y7SOE ls277 669H H13-Y7SlD ls377 670H H13-P721D ls31 671H 672H 673H 674H 67SH 676H 677H 678H 679H 680H 681H 682H 683H Samsung flats ls230 SM-Coffee Pot ls129 HU Clock Rese lsl36 FLEX Radio Printer/Copie Printer/Copie Printer Printer 2 Printer 3 ls232 lslS lsl20 ls103 l's104 lslOS Printer 4 ls106 Exit Lights ls270 Exit Lights_2 ls2S9 HVC-ACUl Fan 4 1 Volumetric Fan -Table 1 Vol Flow On Off Fan Path Trip Trip # Description # # * # lQ Inlet Air S 1 2Q F/H Outlet 8 . 1 3Q DMP 67 1 9 1 4Q DMP 67 2 10 1 SQ DMP 77 1 11 1 6Q DMP 77.2 12 1 7Q DMP 61 1 13 1 SQ DMP 61 2 14 1 9Q DMP 63 1 lS 1 lOQ DMP 63 2 16 1 llQ DMP S9 1 1 7 1 12Q DMP S9 2 18 1 13Q' DMP 60 1 19 1 14Q DMP 60 2 20 1 lSQ DMP S2 1 21 1 16Q DMP S2 2 22 1 17Q DMP SS 1 23 1 18Q DMP SS 2 24 1 19Q DMP SO 2S 1 20Q DMP 76 1 26 1 Attachment 1 Min DP (psi) DEFAULT Max l 0.024 0.34 0.3Sl 0.21S 0.828 0.12S ro. 103 0.703 0.2S O.S66 0.3Sl 0.21S 0.21S 0.12S 0.21S 0.21S 0.21S 0.3Sl 0.43 0.21S 0.21S 0.227 0.237 0.114 0.182 0.2S4 0.40S 0.40S 0.19 0.19 0.19 0.19 0.063 0.063 46.41 DP (psi) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEF'.AULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 113 of 303 VTI ls229 VTI ls378 VTI ls282 VTI ls281 VTI ls380 VTI ls382 VTI ls379 VTI ls284 VTI ls381 VTI ls28S VTI ls283 VTI ls374 VTI ls278 VTI ls383 VTI ls276 VTI ls371 VTI ls275 VTI ls274 VTI ls369 VTI ls277 VTI ls377 VTI ls31 VTI ls230 VTI ls129 VTI lsl36 VTI ls232 VTI ls15 VTI ls120 VTI ls103 VTI ls104 VTI lsl05 VTI ls106 VTI ls270 VTI ls259 VTI 4 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q 31Q 32Q 33Q 34Q 3SQ 36Q 37Q 38Q 39Q 40Q 41Q 42Q 43Q 44Q 4SQ ENERCON DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 DMP Sl 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 4S 1 DMP 4S 2 DMP 7S 1 DMP 7S 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Plenum Ex 27 28 29 30 31 32 3*3 34 3S 36 37 38 39 40 41 42 43 44 4S 46 47 48 49 so 4 CALCULATION CONTROL Attachment 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT' DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Volumetric Fan -Table 2 Vol Flow Flow Heat Fan # lQ 2Q 3Q 4Q SQ 6Q 7Q SQ 9Q lOQ 11Q 12Q 13Q 14Q lSQ 16Q 17Q 18Q 19Q 20Q 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q Flow Rate Option (CFM) Time 2000. Time 4000. Time ass. Time ass. Time 176S*. Time 176S. Time 88S. Time ass.* Time 176S. Time 176S. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 820. Time 820. Time 880. Time *1010. Time 1070. Time 200. Time 140. Time 820. Time 820. Time 880. Time 920. Time 920. Rate Heat Rate FF | ls225 626H H13-P855 ls35 627H , H13-P855 2 ls163 628H H13-P861 ls103 629H H13-P861 2 630H H13-P863 631H H13-P863 2 632H H13-P863 3 633H H13-P863_4 634H Hl3-P869 635H H13-P869_2 636H H13-P870 637H H13-P870_2 638H H13-P870_3 639H H13-P870_4 640H H13-P877 641H H13-P877_2 642H H13-P878 643H H13-P878_2 644H H13-P879 645H H13-P879_2 646H H13-P951 647H H13-P951_2 648H H13-i?952 ls231 ls38 ls54 ls166 ls182 ls84 ls212 ls70 ls86 ls198 ls214 lsl05 ls233 ls112 ls240 ls48 lsl76 ls53 ls181 lslOl CALCULATION CONTROL Attachment 1 0.103 0.103 1.354 1.354 0.971 0.971 0.279 1.564 1.564 0 .118 0 .118 0 .118 0.118 0.519 0.519 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.355 0.355 1.955 1.955 0.523 0.523 0.523 0.523 0.355 0.355 0.473 0.473 I 0.473 0.473 0.083 0.083 0.19 0.19 0.044 0.044 0.044 0.044 1. 049 1. 049 0.227 0.227 0.227 0.227 0.045 0.045 0.386 0.386 0.204 0.204 0.024 0.024 0.024 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 112 of 303 VTI ls31 VTI ls159 VTI ls47 VTI ls175 VTI ls63 VTI ls191 VTI ls90 VTI ls59 VTI ls187 VTI ls40 VTI ls41 VTI ls168 VTI ls169 VTI ls95 VTI ls223 VTI ls36 VTI ls52 VTI ls164 VTI lsl80 VTI ls83 VTI ls99 VTI ls211 VTI ls227 VTI ls51 VTI ls179 VTI lslOO VTI ls228 VTI 1s3*7 VTI ls165 VTI ls98 VTI ls226 VTI ls50 VTI ls178 VTI ls81 VTI ls97 VTI ls209 VTI ls225 VTI ls35 VTI ls163 VTI ls103 VTI ls231 VTI ls38 VTI ls54 VTI ls166 VTI ls182 VTI ls84 VTI ls212 VTI ls70 VTI ls86 VTI lsl98 VTI ls214 VTI ls105 VTI ls233 VTI ls112 VTI ls240 VTI ls48 VTI ls176 VTI ls53 VTI ls181 VTI lslOl ( | ||
ENERCON CALCULATION CONTROL SHEET-649H 6SOH 6S1H H13-P9S2 2 ls229 H13-Y702D/7Sl ls378 H13-Y703A ls282 6S2H H13-Y703D ls281 6S3H H13-Y710B/D/3 ls380 6S4H H13-Y711A ls382 6SSH H13-Y712B/D ls379 6S6H H13-Y713B/D ls284 6S7H H13-Y714B/D ls381 6S8H H13-Y71SD/E ls28S 6S9H H13-Y717D ls283 660H H13-Y730B ls374 661H H13-Y731D ls278 662H H13-Y740A ls383 663H H13-Y743E ls276 664H H13-Y744D ls371 66SH H13-Y747A ls27S 666H H13-Y747B ls274 667H H13-Y748B/E ls369 668H H13-Y7SOE ls277 669H H13-Y7SlD ls377 670H H13-P721D ls31 671H 672H 673H 674H 67SH 676H 677H 678H 679H 680H 681H 682H 683H Samsung flats ls230 SM-Coffee Pot ls129 HU Clock Rese lsl36 FLEX Radio Printer/Copie Printer/Copie Printer Printer 2 Printer 3 ls232 lslS lsl20 ls103 l's104 lslOS Printer 4 ls106 Exit Lights ls270 Exit Lights_2 ls2S9 HVC-ACUl Fan 4 1 Volumetric Fan -Table 1 Vol Flow On Off Fan Path Trip Trip | |||
# Description # # * # lQ Inlet Air S 1 2Q F/H Outlet 8 . 1 3Q DMP 67 1 9 1 4Q DMP 67 2 10 1 SQ DMP 77 1 11 1 6Q DMP 77.2 12 1 7Q DMP 61 1 13 1 SQ DMP 61 2 14 1 9Q DMP 63 1 lS 1 lOQ DMP 63 2 16 1 llQ DMP S9 1 1 7 1 12Q DMP S9 2 18 1 13Q' DMP 60 1 19 1 14Q DMP 60 2 20 1 lSQ DMP S2 1 21 1 16Q DMP S2 2 22 1 17Q DMP SS 1 23 1 18Q DMP SS 2 24 1 19Q DMP SO 2S 1 20Q DMP 76 1 26 1 Attachment 1 Min DP (psi) DEFAULT Max l 0.024 0.34 0.3Sl 0.21S 0.828 0.12S ro. 103 0.703 0.2S O.S66 0.3Sl 0.21S 0.21S 0.12S 0.21S 0.21S 0.21S 0.3Sl 0.43 0.21S 0.21S 0.227 0.237 0.114 0.182 0.2S4 0.40S 0.40S 0.19 0.19 0.19 0.19 0.063 0.063 46.41 DP (psi) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEF'.AULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 113 of 303 VTI ls229 VTI ls378 VTI ls282 VTI ls281 VTI ls380 VTI ls382 VTI ls379 VTI ls284 VTI ls381 VTI ls28S VTI ls283 VTI ls374 VTI ls278 VTI ls383 VTI ls276 VTI ls371 VTI ls275 VTI ls274 VTI ls369 VTI ls277 VTI ls377 VTI ls31 VTI ls230 VTI ls129 VTI lsl36 VTI ls232 VTI ls15 VTI ls120 VTI ls103 VTI ls104 VTI lsl05 VTI ls106 VTI ls270 VTI ls259 VTI 4 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q 31Q 32Q 33Q 34Q 3SQ 36Q 37Q 38Q 39Q 40Q 41Q 42Q 43Q 44Q 4SQ ENERCON DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 DMP Sl 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 4S 1 DMP 4S 2 DMP 7S 1 DMP 7S 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Plenum Ex 27 28 29 30 31 32 3*3 34 3S 36 37 38 39 40 41 42 43 44 4S 46 47 48 49 so 4 CALCULATION CONTROL Attachment 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT' DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Volumetric Fan -Table 2 Vol Flow Flow Heat Fan # lQ 2Q 3Q 4Q SQ 6Q 7Q SQ 9Q lOQ 11Q 12Q 13Q 14Q lSQ 16Q 17Q 18Q 19Q 20Q 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q Flow Rate Option (CFM) Time 2000. Time 4000. Time ass. Time ass. Time 176S*. Time 176S. Time 88S. Time ass.* Time 176S. Time 176S. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 820. Time 820. Time 880. Time *1010. Time 1070. Time 200. Time 140. Time 820. Time 820. Time 880. Time 920. Time 920. Rate Heat Rate FF | |||
* Option (Btu/s) Time Time 3S.92S Time Time Time Time o. Time Time Time Time j Time *,Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Heat Rate Disch FF Vol 6 3 ls368 ls3S2 ls304 ls288 ls366 ls3SO ls302 ls286 ls364 ls348 ls300 ls284 ls362 ls346 ls298 ls282 ls329 ls297 ls281 ls327 ls29S ls360 ls344 ls326 ls294 ls279 ls3S7 ls341 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 114 of 303 ENERCON CALCULATION CONTROL Attachment 1 31Q Time 1140. Time ls293 32Q Time 1140. Time ls277 33Q Time 770. Time ls355 34Q Time 770. Time ls339 35Q Time 1385. Time ls291 36Q Time 1385. Time ls275 37Q Time 770. Time ls353 38Q Time 770. Time ls337 39Q Time 1385. Time ls289 40Q Time 1385. Time ls273 41Q Time 9500. Time 3 42Q Time 9500. Time 3 43Q Time 7600. Time 3 44Q Time 7600. Time 3 45Q Time 2000. Time 6 ) Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vol Pressure Temp. Temp. Humidity Volume Comp. # (psi a) (F) F (%) Fract. Fract. def 14.7 81. 81. 20. 0. 0. ls 14.7 75. 75. 20. 0. 0. 2s 14.7 81. 81. 20. 0. 0. Initial Volume Fractions Vol Air Liq # Gas 1 Gas 2 Gas 3 Gas 4 Gas 5 Gas 6 Gas 7 Comp def 1. 0. 0. 0. b. 0. 0. 0. ls 1. 0. 0. 0. 0. .o. 0. 0. 2s 1. 0. 0. 0. 0. 0. 0. 0. Noncondensing Gases CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 115 of 303 | * Option (Btu/s) Time Time 3S.92S Time Time Time Time o. Time Time Time Time j Time *,Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Heat Rate Disch FF Vol 6 3 ls368 ls3S2 ls304 ls288 ls366 ls3SO ls302 ls286 ls364 ls348 ls300 ls284 ls362 ls346 ls298 ls282 ls329 ls297 ls281 ls327 ls29S ls360 ls344 ls326 ls294 ls279 ls3S7 ls341 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 114 of 303 ENERCON CALCULATION CONTROL Attachment 1 31Q Time 1140. Time ls293 32Q Time 1140. Time ls277 33Q Time 770. Time ls355 34Q Time 770. Time ls339 35Q Time 1385. Time ls291 36Q Time 1385. Time ls275 37Q Time 770. Time ls353 38Q Time 770. Time ls337 39Q Time 1385. Time ls289 40Q Time 1385. Time ls273 41Q Time 9500. Time 3 42Q Time 9500. Time 3 43Q Time 7600. Time 3 44Q Time 7600. Time 3 45Q Time 2000. Time 6 ) Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vol Pressure Temp. Temp. Humidity Volume Comp. # (psi a) (F) F (%) Fract. Fract. def 14.7 81. 81. 20. 0. 0. ls 14.7 75. 75. 20. 0. 0. 2s 14.7 81. 81. 20. 0. 0. Initial Volume Fractions Vol Air Liq # Gas 1 Gas 2 Gas 3 Gas 4 Gas 5 Gas 6 Gas 7 Comp def 1. 0. 0. 0. b. 0. 0. 0. ls 1. 0. 0. 0. 0. .o. 0. 0. 2s 1. 0. 0. 0. 0. 0. 0. 0. Noncondensing Gases CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 115 of 303 | ||
* Gas Description Symbol Type Mol. Lennard-Jones Parameters No. Weight Diameter e/K (Ang) (K) 1 Air Air POLY 28.97 3.617 97. Noncondensing Gases -Cp/Visc. | |||
Equations Gas Cp Equation (Required) | |||
Vise. Equation (Optional) | |||
No. Tmin Tmax Cp Tmin Tmax Viscosity (R) (R) (Btu/lbm-R) | |||
(R) (R) (lbm/ft-hr) 1 360. 2880. 0.238534-6.2006 Materials Type # Description 1 Steel 2 3 4 5 Concrete air Gypsum Board Hardboard Material Type 1 Steel Temp. | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.:<<:ellenct-frNyptoJ<<tfvl!rJdW Attachment 1 PAGE NO. 158 of 303 198 Temv cVlsl98 1. 199 Temv cVlsl99 1. 200 Temv cVls200 1. 201 Temv cVls201 1. 202 Tem\r cVls202 1. 203 Temv cVls203 1. 204 Temv cVls204 1. 205 Temv cVls205 1. 206 Temv cVls206 1. 207 Temv cVls207 1. 208 Temv cVls208 1. 209 Temv cVls209 1. 210 Temv cVls210 1. 211 Temv cVls211 1. 212 Temv cVls212 1. 213 Temv cVls213 1. 214 Temv cVls214 1. 215 Temv cVls215 1. 216 Temv cVls216 1. 217 Temv cVls217 1. 2l8 Temv cVls218 1. 219 Temv cVls219 1. 220 Temv cVls220 1. 221 Temv cVls221 1. 222 Temv cVls222 1. 223 Temv cVls223 | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.:<<:ellenct-frNyptoJ<<tfvl!rJdW Attachment 1 PAGE NO. 158 of 303 198 Temv cVlsl98 1. 199 Temv cVlsl99 1. 200 Temv cVls200 1. 201 Temv cVls201 1. 202 Tem\r cVls202 1. 203 Temv cVls203 1. 204 Temv cVls204 1. 205 Temv cVls205 1. 206 Temv cVls206 1. 207 Temv cVls207 1. 208 Temv cVls208 1. 209 Temv cVls209 1. 210 Temv cVls210 1. 211 Temv cVls211 1. 212 Temv cVls212 1. 213 Temv cVls213 1. 214 Temv cVls214 1. 215 Temv cVls215 1. 216 Temv cVls216 1. 217 Temv cVls217 1. 2l8 Temv cVls218 1. 219 Temv cVls219 1. 220 Temv cVls220 1. 221 Temv cVls221 1. 222 Temv cVls222 1. 223 Temv cVls223 | ||
* 1. 224 Temv cVls224 1. 225 Temv cVls225 1. 226 Temv cVls226 1. 227 Temv I cVls227 1. 228 Temv c.Vls228 1. 229 Temv cVls229 1. 230 Temv cVls230 1. 231 Temv cVls231 1. 232 Temv cVls232 1. 233 Temv cVls233 1. 234 Temv cVls234 1. 235 Temv cVls235 1. 236 Temv cVls236 1. 237 Temv cVls237 1. 238 Temv cVls238 1. 239 Temv cVls239 1. 240 Temv cVls240 1. 241 Temv cVls241 1. 242 Temv cVls242 1. 243 Temv cVls243 1. 244 Temv cVls244 1. 245 Temv cVls245 1. 246 Temv cVls246 1. 247 Temv cVls247 1. 248 Temv cVls248 1. 249 Temv cVls249 1. 250 Temv cVls250 1. 251 Temv cVls251 1. 252 Temv cVls252 1. '253 Temv cVls253 1. 254 Temv cVls254 1. 255 Temv cVls255 1. 256 Temv cVls256 1. | * 1. 224 Temv cVls224 1. 225 Temv cVls225 1. 226 Temv cVls226 1. 227 Temv I cVls227 1. 228 Temv c.Vls228 | ||
E.NERCON Function Components Control Variable 2C Low MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv ) 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv 36 Temv 37 Temv 38 Temv 39 Temv 40 Temv 41 Temv 42 Temv 43 Temv 44 Temv 45 Temv 46 Temv 47 Temv 48 Temv 49 Temv 50 Temv 51 Temv 52 Temv 53 Temv CALCULATION CONTROL Attachment 1 Variable Coef. location a cVlsl 1. cVls2 1. cVls3 1. cVls4 1. cVls5 1. cVls6 1. cVls7 1. cVls8 1. cVls9 1. cVlslO 1. cVlsll 1. cVls12 1. cVls13 1. cVls14 1. cVls15 1. cVls16 1. cVls17 1. cVls18 1. cVls19 1. cVls20 1. cv1s21 1. cVls22 1. cVls23 1. cVls24 L cVls25 1. cVls26 1. cVls27 1. cVls28 1. cVls29 1. cVls30 1. cVls31 1. cVls32 1. cVls33 1. cVls34 1. cVls35 1. cVls36 1. cVls37 1. cVls38 1. cVls39 1. cVls40 1. cVls41 1. cVls42 1. cVls43 1. cVls44 1. cVls45 1. cVls46 1. cVls47 1. cVls48 1. cVls49 1. cVls50 1. cVls51 1. cVls52 1. cVls53 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 159 of 303 CALC. NO. ENTR-078-CALC-004 N R ON CALCULATION CONTROL SHEET-REV. 0 f'l't?tyday. Attachment 1 PAGE NO. 160 of 303 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 ;L. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 \ 1. 63 Temv cVls63 1. / 64 Temv cVls64 '1. 65 Temv cVls65 1. 66 Temv cVls66 1. \ 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 Temv cVls76 1. 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 8.0 TEimv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 'remv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86 Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv .cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv -cVlslOO 1. 101 Temv cVlslOl 1. 102 Temv cVlsl02 1. 103 Temv cVlsl03 1. 104 Temv cVlsl04 1. 105 Temv cVlsl05 1. 106 Temv cVls106 1. 107 Temv cVlsl'07 1. 108 Temv cVlsl08 1. 109 Temv cVlsl09 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cVlsll2 1. 113 Temv cVlsll3 1. | : 1. 229 Temv cVls229 1. 230 Temv cVls230 1. 231 Temv cVls231 1. 232 Temv cVls232 1. 233 Temv cVls233 1. 234 Temv cVls234 1. 235 Temv cVls235 1. 236 Temv cVls236 1. 237 Temv cVls237 1. 238 Temv cVls238 1. 239 Temv cVls239 1. 240 Temv cVls240 1. 241 Temv cVls241 1. 242 Temv cVls242 1. 243 Temv cVls243 1. 244 Temv cVls244 1. 245 Temv cVls245 1. 246 Temv cVls246 1. 247 Temv cVls247 1. 248 Temv cVls248 1. 249 Temv cVls249 1. 250 Temv cVls250 1. 251 Temv cVls251 1. 252 Temv cVls252 1. '253 Temv cVls253 1. 254 Temv cVls254 1. 255 Temv cVls255 1. 256 Temv cVls256 1. | ||
ENERCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 127 Temv 128 Temv Function Components Control Variable 3C Middle MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv *24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Tel)IV 36 Temv 37 Temv CALCULATION CONTROL Attachment 1 cVlsl14 1. cVlsl15 1. cVlsl16 1.' cVlsl17 1. cVlsll8 1. cVlsl19 1. cVlsl20 1. cVlsl21 1. cVlsl22 1. cVlsl23 1. cVlsl24 1. cVlsl25 1. cVlsl26 1. cVls127 1. cVlsl28 1. Variable Coef. location a cVlsl29 1. cVls130 1. cVls131 1. cVlsl32 1. cVlsl33 1. cVlsl34 1. cVlsl35 1. cVlsl36 1. cVlsl38 1. cVlsl37 1. cVlsl39 1. cVls141 1. cVlsl40 1. cVlsl43 1. cVlsl42 1. cVl§l44 1. cVls145 1. cVlsl46 .1. cVlsJ:47 1. cVlsl48 1. cVlsl49 1. cVlsl50 1. cVlsl51 1. cVlsl52 1. cVlsl53 1. cVls154 1. cVlsl55 1. cVls156 1. cVls157 1. cVls158 1. cVlsl59 1. cVlsl60 1. cVlsl61 1. cVls162 1. cVlsl63 1. cVlsl64 1. cVlsl65 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 161 of 303 / '\ | E.NERCON Function Components Control Variable 2C Low MCR Avg sum Y=G*(aO+a1Xl+a2X2+ | ||
... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv ) 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv 36 Temv 37 Temv 38 Temv 39 Temv 40 Temv 41 Temv 42 Temv 43 Temv 44 Temv 45 Temv 46 Temv 47 Temv 48 Temv 49 Temv 50 Temv 51 Temv 52 Temv 53 Temv CALCULATION CONTROL Attachment 1 Variable Coef. location a cVlsl 1. cVls2 1. cVls3 1. cVls4 1. cVls5 1. cVls6 1. cVls7 1. cVls8 1. cVls9 1. cVlslO 1. cVlsll 1. cVls12 1. cVls13 1. cVls14 1. cVls15 1. cVls16 1. cVls17 1. cVls18 1. cVls19 1. cVls20 1. cv1s21 1. cVls22 1. cVls23 1. cVls24 L cVls25 1. cVls26 1. cVls27 1. cVls28 1. cVls29 1. cVls30 1. cVls31 1. cVls32 1. cVls33 1. cVls34 1. cVls35 1. cVls36 1. cVls37 1. cVls38 1. cVls39 1. cVls40 1. cVls41 1. cVls42 1. cVls43 1. cVls44 1. cVls45 1. cVls46 1. cVls47 1. cVls48 1. cVls49 1. cVls50 1. cVls51 1. cVls52 1. cVls53 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 159 of 303 CALC. NO. ENTR-078-CALC-004 N R ON CALCULATION CONTROL SHEET-REV. 0 f'l't?tyday. | |||
Attachment 1 PAGE NO. 160 of 303 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 ;L. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 \ 1. 63 Temv cVls63 1. / 64 Temv cVls64 '1. 65 Temv cVls65 1. 66 Temv cVls66 1. \ 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 Temv cVls76 1. 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 8.0 TEimv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 'remv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86 Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv .cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv -cVlslOO | |||
: 1. 101 Temv cVlslOl 1. 102 Temv cVlsl02 1. 103 Temv cVlsl03 1. 104 Temv cVlsl04 1. 105 Temv cVlsl05 1. 106 Temv cVls106 1. 107 Temv cVlsl'07 | |||
: 1. 108 Temv cVlsl08 1. 109 Temv cVlsl09 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cVlsll2 1. 113 Temv cVlsll3 1. | |||
ENERCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 127 Temv 128 Temv Function Components Control Variable 3C Middle MCR Avg sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv *24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Tel)IV 36 Temv 37 Temv CALCULATION CONTROL Attachment 1 cVlsl14 1. cVlsl15 1. cVlsl16 1.' cVlsl17 1. cVlsll8 1. cVlsl19 1. cVlsl20 1. cVlsl21 1. cVlsl22 1. cVlsl23 1. cVlsl24 1. cVlsl25 1. cVlsl26 1. cVls127 1. cVlsl28 1. Variable Coef. location a cVlsl29 1. cVls130 1. cVls131 1. cVlsl32 1. cVlsl33 1. cVlsl34 1. cVlsl35 1. cVlsl36 1. cVlsl38 1. cVlsl37 1. cVlsl39 1. cVls141 1. cVlsl40 1. cVlsl43 1. cVlsl42 1. cVl§l44 1. cVls145 1. cVlsl46 .1. cVlsJ:47 | |||
: 1. cVlsl48 1. cVlsl49 1. cVlsl50 1. cVlsl51 1. cVlsl52 1. cVlsl53 1. cVls154 1. cVlsl55 1. cVls156 1. cVls157 1. cVls158 1. cVlsl59 1. cVlsl60 1. cVlsl61 1. cVls162 1. cVlsl63 1. cVlsl64 1. cVlsl65 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 161 of 303 / '\ | |||
CALC. NO. ENTR-078-CALC-004 NER.CON CALCULATION CONTROL SHEET-REV.O f:vtrydr;y. | CALC. NO. ENTR-078-CALC-004 NER.CON CALCULATION CONTROL SHEET-REV.O f:vtrydr;y. | ||
* Attachment 1 PAGE NO. 162 of 303 38 Temv cVls166 1. 39 Temv cVls167 1. 40 Temv cVls168 1. 41 Temv cVls169 1. 42 Temv cVls170 1. 43 Temv cVls171 1. 44 Temv cVls172 1. 45 Temv cVls173 1. 46 Temv cVls174 1. 47 Temv cVlsl75 1. 48 Temv cVls176 1. 49 Temv cVls177 1. 50 Temv cVls178 1. 51 Temv cVlsl79 1. 52 Temv cV:\.sl80 1. 53 Temv cVls181 1. 54 Temv cVls182 1. 55 Temv cVls183 1. 56 Temv cVls184 1. 57 Temv cVls185 1. 58 Temv cVls186 1. 59 Temv cVls187 1. 60 Temv cVls188 1. 61 Temv cVls189 1. 62 Temv cVls190 1. 63 Temv cVls191 1. 64 Temv cVls192 1. L 65 Temv cVls193 1. 66 Temv CV1s194 1. 67 Temv cVls195 1. 68 Temv cVls196 1. 69 Temv cVls199 1. 70 Temv cVls197 1. 71 Temv cVls198 1. 72 Teniv cVls200 1. 73 Temv .cVls201 1. 74 Temv cVls202 1. 75 Temv cVls203 1. 76 Temv cVls204 1. 77 Temv c'irls205 1. 78 Temv cVls206 1. 79 Temv cVls207 1. 80 Temv cVls208 1. 81 Temv cVls209 1. 82 Temv cVls210 1. 83 Temv cVls211 1. 84 Temv cVls212 1. 85 Temv cVls213 1. 86 Temv cVls214 1. 87 Temv cVls215 1. 88 Temv cVls216 1. 89 Temv cVls217 1. 90 Temv cVls218 1. 91 Temv cVls219 1. 92 Temv cVls220 1. 93 Temv cVls221 1: 94 Temv cVls222 1. 95 Temv cVls223 1. 96 Temv cVls224 1. 97 Temv cVls225 1. | * Attachment 1 PAGE NO. 162 of 303 38 Temv cVls166 1. 39 Temv cVls167 1. 40 Temv cVls168 1. 41 Temv cVls169 1. 42 Temv cVls170 1. 43 Temv cVls171 1. 44 Temv cVls172 1. 45 Temv cVls173 1. 46 Temv cVls174 1. 47 Temv cVlsl75 1. 48 Temv cVls176 1. 49 Temv cVls177 1. 50 Temv cVls178 1. 51 Temv cVlsl79 1. 52 Temv cV:\.sl80 | ||
ENER,CON CALCULATION CONTROL SHEET-fxrel!e!U;e-E<etyp!O}<<:l f.vwy 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 4C LMCR Average sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) cVls226 cVls227 cVls228 cVls229 cVls230 cVls231 cVls233 cVls232 cVls236 cVls234 cVls235 cVls237 cVls239 cVls238 cVls240 cVls241 cVls242 cVls243 cVls244 cVls245 cVls246 cVls247 cVls248 cVls249 cVls250 cVls252 cVls251 cVls253 cVls255 cVls254 cVls256 Gothic s Variable # 1 2 Name Cvval(O) Cvval(O) Function Components Control Variable SC Stream 4 Temp sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) location cv3C cv2C Gothic s Variable # 1 Name Temv Function Components Control Variable 6C HVC-ACUl Exhaust sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) location cV6 Gothic_s Variable # 1 Name Temv location cV3 Attachment 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 53 Temv cVls181 1. 54 Temv cVls182 1. 55 Temv cVls183 1. 56 Temv cVls184 1. 57 Temv cVls185 1. 58 Temv cVls186 1. 59 Temv cVls187 1. 60 Temv cVls188 1. 61 Temv cVls189 1. 62 Temv cVls190 1. 63 Temv cVls191 1. 64 Temv cVls192 1. L 65 Temv cVls193 1. 66 Temv CV1s194 1. 67 Temv cVls195 1. 68 Temv cVls196 1. 69 Temv cVls199 1. 70 Temv cVls197 1. 71 Temv cVls198 1. 72 Teniv cVls200 1. 73 Temv .cVls201 | ||
: 1. 74 Temv cVls202 1. 75 Temv cVls203 1. 76 Temv cVls204 1. 77 Temv c'irls205 | |||
: 1. 78 Temv cVls206 1. 79 Temv cVls207 1. 80 Temv cVls208 1. 81 Temv cVls209 1. 82 Temv cVls210 1. 83 Temv cVls211 1. 84 Temv cVls212 1. 85 Temv cVls213 1. 86 Temv cVls214 1. 87 Temv cVls215 1. 88 Temv cVls216 1. 89 Temv cVls217 1. 90 Temv cVls218 1. 91 Temv cVls219 1. 92 Temv cVls220 1. 93 Temv cVls221 1: 94 Temv cVls222 1. 95 Temv cVls223 1. 96 Temv cVls224 1. 97 Temv cVls225 1. | |||
ENER,CON CALCULATION CONTROL SHEET-fxrel!e!U;e-E<etyp!O}<<:l f.vwy 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 4C LMCR Average sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) cVls226 cVls227 cVls228 cVls229 cVls230 cVls231 cVls233 cVls232 cVls236 cVls234 cVls235 cVls237 cVls239 cVls238 cVls240 cVls241 cVls242 cVls243 cVls244 cVls245 cVls246 cVls247 cVls248 cVls249 cVls250 cVls252 cVls251 cVls253 cVls255 cVls254 cVls256 Gothic s Variable | |||
# 1 2 Name Cvval(O) | |||
Cvval(O) | |||
Function Components Control Variable SC Stream 4 Temp sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) location cv3C cv2C Gothic s Variable | |||
# 1 Name Temv Function Components Control Variable 6C HVC-ACUl Exhaust sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) location cV6 Gothic_s Variable | |||
# 1 Name Temv location cV3 Attachment 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 0.867 Coef. a 1. Coef. a 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 163 of 303 ENERCON Function Components Control Variable 7C Overall Max max CALCUl-ATION CONTROL Attachment 1 Y=G*max(a0,a1Xl,a2X2, ... ,anXn) Gothic s Variable Coef. # Name location a 1 Cvval(O) cvlC 1. 2 Temv cVls257 1. 3 Temv cVls258 1. 4 Temv cVls259 1. 5 Temv cVls260 1. 6 Temv cVls261 1. 7 Temv cVls262 1. 8 Temv cVls263 1. 9 Temv 1 cVls264 1. 10 Temv cVls265 1. 11 Temv cVls266 1. 12 1Temv cVls267 1. 13 Temv cVls268 1. 14 Temv cVls269 1. 15 Temv cVls270 1. 16 Temv cVls271 1. 17 Temv cVls272 1. 18 Temv cVls273 1. 19 Temv cVls274 1. 20 Temv cVls275 1. 21 Temv cVls276 1. 22 Temv cVls277 1. 23 Temv cVls278 1. 24 Temv cVls280 1. 25 Temv cVls279 1. 26 Temv cVls281 1. 27 Temv cVls282 1. 28 Temv cVls284 1. 29 Temv cVls283 1. 30 Temv cVls286 1. 31 Temv cVls285 1. 32 Temv cVls287 h 33 Temv cVls288 1. 34 Temv cVls289 1. 35 Temv cVls290 1. 36 Temv cVls291 1. 37 Temv cVls292 1. 38 Temv cVls293 1. 39 Temv cVls294 1. 40 Temv cVls295 1. 41 Temv cVls296 1. 42 Temv cVls297 1. 43 Temv cVls298 1. 44 Temv cVls299 1. 45 Temv cVls300 1. 46 Temv cVls301 1. 47 Temv cVls302 1. 48 Temv cVls303 1. 49 Temv cVls304 1. 50 Temv cVls305 1. 51 Temv cVls306 1. 52 Temv cVls307 1. 53 Temv cVls308 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 164 of 303 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV.O f.'l!Hjti¢t. Attachment 1 PAGE NO. 165 of 303-54 Temv cVls309 1. 55 Temv cVls310 1. 56 Temv cVls311 1. 57 Temv cVls312 1. 58 Temv cVls313 1. 59 Temv cVls314 1. 60 Temv cVls315 1. 61 Temv cVls316 1. 62 Temv cVls317 1. 63 Temv cVls318 1. 64 Temv cVls319 1. 65 Temv cVls320 1. 66 Temv cVls321 1. 67 Temv cVls322 1. 68 Temv cVls323 1. 69 Temv cVls324 1. 70 Temv cVls325 1. 71 Temv cVls326 1. 72 Temv cVls327 1. 73 Temv cVls328 1. 74 Temv cVls329 1. ,75 Temv cVls330 1. 76 Temv cVls331 1. 77 Temv cVls332 1. 78 Temv cVls333 1. 79 Temv cVls334 1. 80 Temv cVls335 1. 81 .Temv cVls336 1. 82 Temv cVls337 1. 83 Temv cVls338 1. 84 Temv cVls339 1: 85 Temv cVls340 1. 86 Temv cVls341 1. 87 Temv cVls342 1. 88 Temv cVls343 1. 89 Temv cVls344 1. 90 Temv cVls345 1. 91 Temv cVls346 1. 92 Temv cVls347 1. 93 Temv cVls348 1. 94 Temv cVls349 1. 95 Temv cVls350 1. 96 Temv cVls351 1. 97 Temv cVls352 1. 98 Temv cVls353 1. 99 Temv cVls354 1. 100 Temv cVls355 1. 101 Temv cVls356 1. 102 r Temv cVls357 1. 103 Temv cVls358 1. 104 Temv cVls359 1. 105 Temv cVls360 1. 106 Temv cVls361 1. 107 Temv cVls362 1. 108 Temv cVls363 1. 109 Temv cVls364 1. 110 Temv -cVls365 1. 111 Temv cVls366 1. 112 Temv cVls367 1. 113 Temv cVls368 1. | : 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 0.867 Coef. a 1. Coef. a 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 163 of 303 ENERCON Function Components Control Variable 7C Overall Max max CALCUl-ATION CONTROL Attachment 1 Y=G*max(a0,a1Xl,a2X2, | ||
EN RCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv 129 Temv Function Components Control Variable 8C Top MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv: 36 Temv CALCULATION CONTROL Attachment 1 cVls369 1. cVls370 | ... ,anXn) Gothic s Variable Coef. # Name location a 1 Cvval(O) cvlC 1. 2 Temv cVls257 1. 3 Temv cVls258 1. 4 Temv cVls259 1. 5 Temv cVls260 1. 6 Temv cVls261 1. 7 Temv cVls262 1. 8 Temv cVls263 1. 9 Temv 1 cVls264 1. 10 Temv cVls265 1. 11 Temv cVls266 1. 12 1Temv cVls267 1. 13 Temv cVls268 1. 14 Temv cVls269 1. 15 Temv cVls270 1. 16 Temv cVls271 1. 17 Temv cVls272 1. 18 Temv cVls273 1. 19 Temv cVls274 1. 20 Temv cVls275 1. 21 Temv cVls276 1. 22 Temv cVls277 1. 23 Temv cVls278 1. 24 Temv cVls280 1. 25 Temv cVls279 1. 26 Temv cVls281 1. 27 Temv cVls282 1. 28 Temv cVls284 1. 29 Temv cVls283 1. 30 Temv cVls286 1. 31 Temv cVls285 1. 32 Temv cVls287 h 33 Temv cVls288 1. 34 Temv cVls289 1. 35 Temv cVls290 1. 36 Temv cVls291 1. 37 Temv cVls292 1. 38 Temv cVls293 1. 39 Temv cVls294 1. 40 Temv cVls295 1. 41 Temv cVls296 1. 42 Temv cVls297 1. 43 Temv cVls298 1. 44 Temv cVls299 1. 45 Temv cVls300 1. 46 Temv cVls301 1. 47 Temv cVls302 1. 48 Temv cVls303 1. 49 Temv cVls304 1. 50 Temv cVls305 1. 51 Temv cVls306 1. 52 Temv cVls307 1. 53 Temv cVls308 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 164 of 303 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV.O f.'l!Hjti¢t. | ||
* 1. cVls371 1. cVls373 1. cVls372 1. cVls375 1. cVls376 1. cVls377 1. '] cVls378 1. cVls379 1. cVls380 1. cVls381 1. cVls382 1. cVls383 1. cVls384 1. cVls374 1. Variable Coef. location a cVls257 1. cVls258 1. cVls259 1. cVls260 1. cVls261 1. cVls262 1. cVls263 1. cVls264 1. cVls265 1. cVls266 1. cVls267 1. cVls268 1. cVls269 1. cVls270 1. cVls271 1. cVls272 1. cVls273 1. cVls274 1. cVls275 1. cVls276 1. cVls277 1. cVls278 1. cVls279 1. cVls280 1. cVls281 1. cVls282 1. cVls283 1. cVls284 1. cVls285 1. cVls286 1. cVls287 1. cVls288 1. cVls289 1. \ cVls290 1. cVls291 1. cVls292 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 166 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptv_j(k,"t. f.wr:; day. Attachment 1 PAGE NO. 167 of 303 37 Temv cVls293 1. 38 Temv cVls294 1. 39 Temv cVls295 1. 40 Temv cVls296 1. 41 Temv cVls297 1. 42 Temv cVls298 1. 43 Temv cVls299 1. 44 Temv cVls300 1. 45 Temv cVls301 1. 46 Temv cVls302 1. 47 Temv cVls303 1. 48 Temv cVls304 1. 49 Temv \ cVls305 1. 50 Temv cVls306 1. 51 Temv cVls307 1. 52 Temv cVls308 1. 53 Temv cVls309 1. 54 Temv cVls310 1. 55 Temv cVls311 1. 56 Temv cVls312 1. 57 Temv cVls313 1. 58 Temv cVls314 1. 59 Temv cVls315 1. 60 Temv cVls316 1. 61 Temv cVls317 1. 62 Temv cVls318 1. 63 Temv cVls319 1. 64 Temv cVls320 1. 65 Temv cVls321 1. 66 Temv cVls322 1. 67 Temv cVls323 1. 68 Temv cVls324 1. 69 Temv cVls325 1. 70 Temv cVls326 1. 71 Temv cVls327 1. 72 Temv cVls328 1. 73 Temv cVls329 1. 74 Temv cVls330 1. 75 Temv cVls331 1. 76 Temv cVls332 1. 77 Temv cVls333 1. 78 Temv cVls334 1. 79 Temv cVls335 1. 80 Temv cVls336 1. 81 Temv cVls337 1. 82 Temv cv1-s338 1. 83 Temv cVls339 1. 84 Temv cVls340 1. 85 Temv cVls341 1. 86 Temv cVls342 1. 87 Temv cVls343 1. 88 Temv cVls344 1. 89 Temv cVls345 1. 90 Temv cVls346 1. 91 Temv cVls348 1. I 92 Temv cVls347 1. 93 Temv cVls349 1. 94 Temv cVls351 1. 95 Temv cVls350 1. 96 Temv cVls352 1. | Attachment 1 PAGE NO. 165 of 303-54 Temv cVls309 1. 55 Temv cVls310 1. 56 Temv cVls311 1. 57 Temv cVls312 1. 58 Temv cVls313 1. 59 Temv cVls314 1. 60 Temv cVls315 1. 61 Temv cVls316 1. 62 Temv cVls317 1. 63 Temv cVls318 1. 64 Temv cVls319 1. 65 Temv cVls320 1. 66 Temv cVls321 1. 67 Temv cVls322 1. 68 Temv cVls323 1. 69 Temv cVls324 1. 70 Temv cVls325 1. 71 Temv cVls326 1. 72 Temv cVls327 1. 73 Temv cVls328 1. 74 Temv cVls329 1. ,75 Temv cVls330 1. 76 Temv cVls331 1. 77 Temv cVls332 1. 78 Temv cVls333 1. 79 Temv cVls334 1. 80 Temv cVls335 1. 81 .Temv cVls336 1. 82 Temv cVls337 1. 83 Temv cVls338 1. 84 Temv cVls339 1: 85 Temv cVls340 1. 86 Temv cVls341 1. 87 Temv cVls342 1. 88 Temv cVls343 1. 89 Temv cVls344 1. 90 Temv cVls345 1. 91 Temv cVls346 1. 92 Temv cVls347 1. 93 Temv cVls348 1. 94 Temv cVls349 1. 95 Temv cVls350 1. 96 Temv cVls351 1. 97 Temv cVls352 1. 98 Temv cVls353 1. 99 Temv cVls354 1. 100 Temv cVls355 1. 101 Temv cVls356 1. 102 r Temv cVls357 1. 103 Temv cVls358 1. 104 Temv cVls359 1. 105 Temv cVls360 1. 106 Temv cVls361 1. 107 Temv cVls362 1. 108 Temv cVls363 1. 109 Temv cVls364 1. 110 Temv -cVls365 | ||
NER ON CALCULATION CONTROL Attachment 1 97 Temv 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 9C Total MCR Avg s.um cVls353 cVls354 cVls355 cVls356 cVls357 cVls358 cVls359 cVls360 cVls361 cVls362 cVls363 cVls364 cVls365 cVls366 cVls367 cVls368 cVls369 cVls370 cVls371 cVls372 cVls373 cVls374 *cvls375 cvis376 cVls377 cVls378 cVls379 cVls380 cVls381 cVls382 cVls383 cVls384 Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s Variable # 1 2 Time Time Dom 1 2 3 Name Cvval(O) cvyal(O) Domain Data DT DT Min Max 0.001 1. 0.001 10. 0.001 10. Solution Options DT Ratio le+006 1. 1. location cv8C cv4C End Print Time Int 0.01 0.01 10000. 500. 86400. 500. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 111 Temv cVls366 1. 112 Temv cVls367 1. 113 Temv cVls368 1. | ||
EN RCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv 129 Temv Function Components Control Variable 8C Top MCR Avg sum Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv: 36 Temv CALCULATION CONTROL Attachment 1 cVls369 1. cVls370 | |||
* 1. cVls371 1. cVls373 1. cVls372 1. cVls375 1. cVls376 1. cVls377 1. '] cVls378 1. cVls379 1. cVls380 1. cVls381 1. cVls382 1. cVls383 1. cVls384 1. cVls374 1. Variable Coef. location a cVls257 1. cVls258 1. cVls259 1. cVls260 1. cVls261 1. cVls262 1. cVls263 1. cVls264 1. cVls265 1. cVls266 1. cVls267 1. cVls268 1. cVls269 1. cVls270 1. cVls271 1. cVls272 1. cVls273 1. cVls274 1. cVls275 1. cVls276 1. cVls277 1. cVls278 1. cVls279 1. cVls280 1. cVls281 1. cVls282 1. cVls283 1. cVls284 1. cVls285 1. cVls286 1. cVls287 1. cVls288 1. cVls289 1. \ cVls290 1. cVls291 1. cVls292 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 166 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptv_j(k,"t. | |||
f.wr:; day. Attachment 1 PAGE NO. 167 of 303 37 Temv cVls293 1. 38 Temv cVls294 1. 39 Temv cVls295 1. 40 Temv cVls296 1. 41 Temv cVls297 1. 42 Temv cVls298 1. 43 Temv cVls299 1. 44 Temv cVls300 1. 45 Temv cVls301 1. 46 Temv cVls302 1. 47 Temv cVls303 1. 48 Temv cVls304 1. 49 Temv \ cVls305 1. 50 Temv cVls306 1. 51 Temv cVls307 1. 52 Temv cVls308 1. 53 Temv cVls309 1. 54 Temv cVls310 1. 55 Temv cVls311 1. 56 Temv cVls312 1. 57 Temv cVls313 1. 58 Temv cVls314 1. 59 Temv cVls315 1. 60 Temv cVls316 1. 61 Temv cVls317 1. 62 Temv cVls318 1. 63 Temv cVls319 1. 64 Temv cVls320 1. 65 Temv cVls321 1. 66 Temv cVls322 1. 67 Temv cVls323 1. 68 Temv cVls324 1. 69 Temv cVls325 1. 70 Temv cVls326 1. 71 Temv cVls327 1. 72 Temv cVls328 1. 73 Temv cVls329 1. 74 Temv cVls330 1. 75 Temv cVls331 1. 76 Temv cVls332 1. 77 Temv cVls333 1. 78 Temv cVls334 1. 79 Temv cVls335 1. 80 Temv cVls336 1. 81 Temv cVls337 1. 82 Temv cv1-s338 | |||
: 1. 83 Temv cVls339 1. 84 Temv cVls340 1. 85 Temv cVls341 1. 86 Temv cVls342 1. 87 Temv cVls343 1. 88 Temv cVls344 1. 89 Temv cVls345 1. 90 Temv cVls346 1. 91 Temv cVls348 1. I 92 Temv cVls347 1. 93 Temv cVls349 1. 94 Temv cVls351 1. 95 Temv cVls350 1. 96 Temv cVls352 1. | |||
NER ON CALCULATION CONTROL Attachment 1 97 Temv 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 9C Total MCR Avg s.um cVls353 cVls354 cVls355 cVls356 cVls357 cVls358 cVls359 cVls360 cVls361 cVls362 cVls363 cVls364 cVls365 cVls366 cVls367 cVls368 cVls369 cVls370 cVls371 cVls372 cVls373 cVls374 *cvls375 cvis376 cVls377 cVls378 cVls379 cVls380 cVls381 cVls382 cVls383 cVls384 Y=G*(aO+a1Xl+a2X2+ | |||
... +anXn) Gothic s Variable | |||
# 1 2 Time Time Dom 1 2 3 Name Cvval(O) cvyal(O) | |||
Domain Data DT DT Min Max 0.001 1. 0.001 10. 0.001 10. Solution Options DT Ratio le+006 1. 1. location cv8C cv4C End Print Time Int 0.01 0.01 10000. 500. 86400. 500. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 4.65949 Graph Int 1. 10. 100. Gas Error Relax T DEFAULT DEFAULT DEFAULT Time Solution Imp Conv Imp Iter Pres Sol Pres Conv Pres Dom Method 1 SEMI-IMP 2 SEMI-IMP 3 SEMI-IMP Run Options Option Start Time Limit 0. 0. 0. Limit 1 1 1 Method DIRECT DIRECT DIRECT Setting 0.0 Limit Limit 0. 1 0. 1 0. 1 Dump Int 0. 0. 0. Iter CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 168 of 303 Ph Chng L Flow T Scale Shutoff . DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Differ Burn Scheme Sharp FOUP 0. FOUP 0. FOUP 0. | : 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 4.65949 Graph Int 1. 10. 100. Gas Error Relax T DEFAULT DEFAULT DEFAULT Time Solution Imp Conv Imp Iter Pres Sol Pres Conv Pres Dom Method 1 SEMI-IMP 2 SEMI-IMP 3 SEMI-IMP Run Options Option Start Time Limit 0. 0. 0. Limit 1 1 1 Method DIRECT DIRECT DIRECT Setting 0.0 Limit Limit 0. 1 0. 1 0. 1 Dump Int 0. 0. 0. Iter CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 168 of 303 Ph Chng L Flow T Scale Shutoff . DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Differ Burn Scheme Sharp FOUP 0. FOUP 0. FOUP 0. | ||
ENERCON CALCULATION CONTROL Attachment 1 Restart Time Step # Restart Time Control 0 NEW Revaporization 'Fraction DEFAULT Fog Model OFF Maximum Mist Density (lbm/ft3) DEFAULT Drop Diam. From Mist (in) DEFAULT Minimum HT Coeff. (B/h-ft2-F) 0.0 Reference Pressure (psia) IGNORE Maximum Pressure (psia) DEFAULT Forced Ent. Drop Diam. (in) DEFAULT Vapor Phase Head Correction INCLUDE Kinetic Energy IGNORE Vapor Phase INCLUDE Liquid Phase INCLUDE Drop Phase INCLUDE Force Equilibrium IGNORE Drop-Liq. Conversion INCLUDE QA Logging OFF Debug Output Level 0 Restart Dump on CPU Interval (sec) 3600. Version 6.1 Formulations OFF Graphs Graph Curve Number # Title M&E Imbalance Peak and Averag Mon 1 EM 2 3 4 EE cvlC cv7C cv9C RHls71 FV4 FVl 5 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 169 of 303 0 1 2 3 4 5 6 7 TVls257 TVls274 TVls296 TVls312 TVls328 Envelope Sets Set No. Description Data Files File # 1 Name Results.txt Type TIME FV51 FV52 FV53 FV54 FV55 FV56 TAls2 FV57 TAls3 Set Type polate YES FV80 FV81 FV58 TAls2 TAlsl6 TAlsl8 No. Items Output Detail Files Level SINGLE FULL CALC. NO. ENTR-078-CALC-004 £xceHM<<-frt:ty f.vrr; ttay. CALCULATION CONTROL Attachment 2 Attachment 2: Humidity Sensitivity REV.O PAGE NO. 170 of 303 The purpose of this attachment is to analyze the Main Control Room temperature and relative humidity setting the initial relative humidity in the MCR volumes to the Environmental Design Criteria (EDC) maximum humidity of 70%. The analysis in the body of the calculation used an initial relative humidity in the MCR volumes set equal to the EDC minimum relative humidity of 20% in order to conservatively maximize the temperature in the MGR. The temperature results are shown below. 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell (oF) (oF) (oF) (oF) Tavg(°F) Temp (°F) 109.6 116.2 109.0 108.6 116.2 (2 hr) 121.8 (2.02 hr) The temperature transient is nearly identical to the transient for Case 2. The figure below shows the relative humidity in subvolume 1s71 located in the horseshoe area of the MGR. The relative humidity is at 70% at the start of the transient and decreases to below 30% before the smoke removal fan is turned on at two hours and *outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes in the outside air relative humidity. 80 70 60 :§ 50 E Relative Humidity in Horseshoe Area *****--*********-***-**--**-*-,-*-********-****-*****--*---****--***--********-*********-,*****************---*-***-***-**-**-****--***--*************-*****,-******-*-***-*****-*-----********-******-*****-*-**-***** ***-*****--*** .. -********** ....... -........... *******-********-**********-****-****-*********** .. 40 , ____________________________________ .... '.':.".". ..... '.'.: .... ::_ .. :. ___ :: _____________ ,_...., ""'""""""""""'"'""' __ 30 r-'-"::Jr __ --------1----------------------l 10 0 5 10 15 20 25 Time (hrs) | ENERCON CALCULATION CONTROL Attachment 1 Restart Time Step # Restart Time Control 0 NEW Revaporization | ||
CALC. NO. ENTR-078-CALC-004 N RCON CALCULATION CONTROL Attachment 3 REV.a PAGE NO. 171 of 303 3: ERIS Panels Heat Load Heat Load Eris Panels The following information is obtained from EC 61975 (Reference 8.36). Heat load for ERIS panels is based on typical values from 3247.850-307-001A. Fo*r ERIS panels that have been recently upgraded and installed after M96-062 is based on typical values from R859-0100 and R859-0118 (Attached on P2E under EC # 38927). H13-Y714E has-a heat load of 0 as per CR-RBS-2014-05797 and ECN 58709. The heat load of ERIS panels is shown on the table below: LOOP Conditions load 132 370.8 0 H13-Y703D 226.8 226.8' 370.8 / 370.8 370.8 370.8 0 0 370.8 370.8 H13cY713A 370.8 132 226.8 / . o. ,_,,.,_,_,,,,_,,.,. .. ,,.,,._, "'""' _.,;,_,,_,,,_,_,_,,_,.,_,,._,,._,._,,.,,,.,,,,,,. ._,__, * --*** ** 226.8 226.8 ................ ; ................................. ,. 226.8 226.8 H13-Y751D H13-P721D Total: ............................................ | 'Fraction DEFAULT Fog Model OFF Maximum Mist Density (lbm/ft3) | ||
CALC. NO. ENTR-078-CALC-004 Attachment 3 ENERCON CALCULATION CONTROL SHEET-REV. o PAGE NO. 172 of 303 The diagram below pictures the heat load distribution (all are above 7.5 feet elevation on MCR except H 13-P721 D which is mounted on the floor) of ERIS panels. Blue color represents 370.8 W (except H13-Y714E which is 0 W), brown color represents 226.8 W, yellow color represents 240 W and red color represents 132 W. * ' The 7461.6 W for normal conditions is a conservative value, and if more margin is needed we could use field measurements with conservatism (which will have a total wattage for normal conditions of 4828.6 W). This is documented on the next pages. ERIS Panels Heat Load Justification Using Field Measurements There is 29 ERIS panels on MCR (EE-027 A Rev. 16), and every panel has a chassis assembly with a 250 watt supply. Before MR96-062, each ERIS panels had a 100 W power supply. There is a 3 A fuse before every current ERIS panel (GE-944E485AA), so the design and completely bounded power of ERIS panels is 115 (the input volts of the documented ERIS panels on 3247 .. 850-307-001A is 115V)*29*3 = 10005 W (Assuming is fully resistive). All the ERIS equipment installed on MR96-062 had either a VMINEQ-250-000 or VMINEQ-250-001. Now, as per E-144 Rev. 7, on attachment L, the maximum inverter loading value for circuit 22 of VBS01 B (there is 7 ERIS top hats (4 VMINEQ-250-001 and 3 VMINEQ-250-000)) is 1208 VA, so 172.57 VA for each ERIS hat panel. On E-143 Rev. 11, the maximum inverter loading value for circuit 21 of VBS01A (there is 6 ERIS top hats (3 VMINEQ-250-001 and 3 VMINEQ-250-000) is 1035 VA, so 172.5 VA for each ERIS hat panel. The circuit 22 of VBS01 B has very slightly more loading for each ERIS hat panel than of the circuit 21 of VBS01A, because field amp measurements for VMINEQ-250-001 | DEFAULT Drop Diam. From Mist (in) DEFAULT Minimum HT Coeff. (B/h-ft2-F) 0.0 Reference Pressure (psia) IGNORE Maximum Pressure (psia) DEFAULT Forced Ent. Drop Diam. (in) DEFAULT Vapor Phase Head Correction INCLUDE Kinetic Energy IGNORE Vapor Phase INCLUDE Liquid Phase INCLUDE Drop Phase INCLUDE Force Equilibrium IGNORE Drop-Liq. | ||
* are just slightly higher. The field ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 3 PAGE NO. 173 of 303 measurements of the ERIS top hats were taken as per as per SAIC-RBS-041 letter (which is find on attachment B of E-226 Add C). The actual measured amperage of a VMINEQ-250-000 was 0.94 A (lower than the typical amps of 2.54 A used to obtain the 9352 Won E-226 Rev. 3 Add C), and the actual measured amperage of a VMINEQ-250-001 was 0.96 A (lower than the typical amps of 4.098 A used to obtain the 9352 W used on E-226 Rev. 3 Add C). The measured apparent power is then 115*0.96=110.4 VA. So the 172.5 VA given per ERIS panel on E-143 Rev. 11,.and the 172.57 VA given per ERIS panel on E-144 Rev. 7 is on the range of 55-60% higher than the measured apparent power values, giving conservatism to the field measurements. There has been recent ERIS upgrades, which has lowered the typical amps in the RIM (Remote Input Module) considerably as now the listed typical amps are 1.1 amps (and probably the actual measured amperage is lower than that). Some of this ERIS equipment was replaced on December of 2014, which is befare timeline where we are assessing risk. As we are assessing risk on early 2015, I am including these modifications on the upcoming calculations of heat load. The first phase of the ERIS upgrade project included panels H13-Y710E and H13-Y711A. These changes are documented on EC# 23837. As documented on 3.1.3.2 of the EC# 23837, a new ERIS network equipment was installed in the MCR, panel H13-P721D, and the change was incorporated on CBD-VBN02, Sh. 003 Rev. 14 (however the change has still not been incorporated on EE-027 A Rev. 16). Breaker# 1 of VBN-PNL02 was retasked to supply power from C91-P609A (It was spared in place and no longer needed) to H13-P721D. This modification resulted in a load reduction of 744 VA at 1VBN-PNL02; however, as we are adding panel by panel, a 240 VA value should be included for H13-P721 Das per R859-0100. On E-184, load supplied by breaker# 10 of 1VBN-PNL01B1 and load supplied by breaker# 20of1VBN-PNL 1A1 were never up9ated (when they should have had) after the ERIS upgrade on M96-062. Consequently, the same 100 VA (when 172.5 | Conversion INCLUDE QA Logging OFF Debug Output Level 0 Restart Dump on CPU Interval (sec) 3600. Version 6.1 Formulations OFF Graphs Graph Curve Number # Title M&E Imbalance Peak and Averag Mon 1 EM 2 3 4 EE cvlC cv7C cv9C RHls71 FV4 FVl 5 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 169 of 303 0 1 2 3 4 5 6 7 TVls257 TVls274 TVls296 TVls312 TVls328 Envelope Sets Set No. Description Data Files File # 1 Name Results.txt Type TIME FV51 FV52 FV53 FV54 FV55 FV56 TAls2 FV57 TAls3 Set Type polate YES FV80 FV81 FV58 TAls2 TAlsl6 TAlsl8 No. Items Output Detail Files Level SINGLE FULL CALC. NO. ENTR-078-CALC-004 | ||
* VA should be used after the ERIS upgrade) is used for every ERIS panel. Breaker*#10 of 1VBN-PNL01B1 supplies to 6 ERIS panels (H13-Y711A, H13-Y710E, H13-Y751D, H13-Y740A, H13-Y748B and H13-Y748E) and breaker # 20 of 1VBN-PNL01A1 supplies to 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B) as per GE-944E485AA Rev. 12. Also, on E-184 Rev. 4, H13-Y748E is not included on the breaker# 10 of 1VBN-PNL01B1 when it should be included. On EC# 23837, ERIS upgrade on panels H13-Y710E, H13-Y711A and H13-Y740A resulted on an increase of watts (when it should have resulted on a decrease of watts) on breaker# 10 of PNL0181. EC# 23837 markups incorrectly E-184 (incorporated on E-184 Rev. 4) and CBD-VBN0181 (incorporated on CBD-VBN01 Rev. 19). So the load on breaker# 10 of 1VBN-PNL0181 should be 172.6 VA on the ERIS equipment that were not replaced (H13-Y751 D, H13-Y748B and H13-Y748E) and 1.1 Amps* 120 V (the documented input voltage of the new ERIS equipment) = 132 VA for each of the ERIS replaced (H13-Y710E, H13-Y711A and H13-Y740A). This totals 396 + 517.8 = 913.8 VA for the 6 ERIS panels for breaker# 10 of 1VBN-PNL01B1. For breaker# 20 of 1VBN-PNL01A1, the loading should be 172.6 *4 = 690.4 VA for the 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B). Power supplied from breaker# 10of1VBN-PNL0181 and '-* ( | £xceHM<<-frt:ty f.vrr; ttay. CALCULATION CONTROL Attachment 2 Attachment 2: Humidity Sensitivity REV.O PAGE NO. 170 of 303 The purpose of this attachment is to analyze the Main Control Room temperature and relative humidity setting the initial relative humidity in the MCR volumes to the Environmental Design Criteria (EDC) maximum humidity of 70%. The analysis in the body of the calculation used an initial relative humidity in the MCR volumes set equal to the EDC minimum relative humidity of 20% in order to conservatively maximize the temperature in the MGR. The temperature results are shown below. 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell (oF) (oF) (oF) (oF) Tavg(°F) | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. O Attachment 3 PAGE N0.174 of 303 \ breaker# 20 of 1VBN-PNL01A1 are non-divisional and are expected to be 0 VA with loss of offsite power (LOOP). 1VBS-PNL01 B, breaker #22 is also affected by recent ERIS upgrade phase# 2. E-143 and E-144 were revised after ERIS upgrade documented on M96-062, unlike E-184. This ERIS upgrade phase# 2 is documented on EC # 38927, which upgrades H13-Y702D, H13-Y710B, H13-Y714B and H13-Y714D. EC# 38927 correctly identifies that the modification results in a load decrease of 162.4 VA; however, H13-Y710B is on pending status and has not been installed, so the load for the new ERIS equipment can't be used on H13-Y71 OB yet. So the load on breaker # 22 of 1 VBS-PNL01 B should be 172.6 VA on the ERIS equipment that were not replaced or have not been replaced (H13-Y714E, H13-Y710B, H13-Y730B and H13-Y744D) and 1.1Amps*120 = 132 VA for each of the ERIS replaced (H13-Y702D, H13-Y714B and H13-Y714D) as per R859-0118. As H13-Y714E is spare (CR-RBS-2014-05797 and ECN 58709), it should not be counted on the heat load. The load totals 396 + 690.4 = 913.8 VA for the 7 ERIS panels for breaker# 22 of 1VBS-PNL01 B. None of the ERIS panels (H13-Y715D, H13-Y715E, H13-Y713D, H13-Y703D, H13-Y731D and H13-Y743E) of breaker# 21 of PNL01A have been replaced so loading is the same documented load of 1035 VA. There are four more ERIS top hats (H13-Y713A, H13-Y710D, H13-Y712D, and H13-Y717D)supplied by RPS bus, and 2 more ERIS top hats (H13-Y751A and H13-Y712B) supplied by breaker# 2 of E22-S002PNL, which adds a heat load of 690.4 + 345.2= 1035.6 VA. Next page shows a summary of the heat loads on ERIS panels. The heat load values of ERIS panels are illustrated below under normal situations and under LOOP: | Temp (°F) 109.6 116.2 109.0 108.6 116.2 (2 hr) 121.8 (2.02 hr) The temperature transient is nearly identical to the transient for Case 2. The figure below shows the relative humidity in subvolume 1s71 located in the horseshoe area of the MGR. The relative humidity is at 70% at the start of the transient and decreases to below 30% before the smoke removal fan is turned on at two hours and *outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes in the outside air relative humidity. | ||
80 70 60 :§ 50 E Relative Humidity in Horseshoe Area *****--*********-***-**--**-*-,-*-********-****-*****--*---****--***--********-*********-,*****************---*-***-***-**-**-****--***--*************-*****,-******-*-***-*****-*-----********-******-*****-*-**-***** | |||
***-*****--*** | |||
.. -********** | |||
....... -........... | |||
*******-********-**********-****-****-*********** | |||
.. 40 , ____________________________________ | |||
.... '.':.".". | |||
..... '.'.: .... ::_ | |||
.. :. ___ :: _____________ | |||
,_...., ""'""""""""""'"'""' __ 30 r-'-"::Jr | |||
__ | |||
--------1----------------------l 10 0 5 10 15 20 25 Time (hrs) | |||
CALC. NO. ENTR-078-CALC-004 N RCON CALCULATION CONTROL Attachment 3 REV.a PAGE NO. 171 of 303 3: ERIS Panels Heat Load Heat Load Eris Panels The following information is obtained from EC 61975 (Reference 8.36). Heat load for ERIS panels is based on typical values from 3247.850-307-001A. | |||
Fo*r ERIS panels that have been recently upgraded and installed after M96-062 is based on typical values from R859-0100 and R859-0118 (Attached on P2E under EC # 38927). H13-Y714E has-a heat load of 0 as per CR-RBS-2014-05797 and ECN 58709. The heat load of ERIS panels is shown on the table below: LOOP Conditions load 132 370.8 0 H13-Y703D 226.8 226.8' 370.8 / 370.8 370.8 370.8 0 | |||
0 370.8 370.8 H13cY713A 370.8 132 226.8 / . o. ,_,,.,_,_,,,,_,,.,. | |||
.. ,,.,,._, | |||
"'""' _.,;,_,,_,,,_,_,_,,_,.,_,,._,,._,._,,.,,,.,,,,,,. | |||
._,__, * --*** | |||
** 226.8 226.8 ................ | |||
; ................................. | |||
,. 226.8 226.8 H13-Y751D H13-P721D Total: ............................................ | |||
CALC. NO. ENTR-078-CALC-004 Attachment 3 ENERCON CALCULATION CONTROL SHEET-REV. o PAGE NO. 172 of 303 The diagram below pictures the heat load distribution (all are above 7.5 feet elevation on MCR except H 13-P721 D which is mounted on the floor) of ERIS panels. Blue color represents 370.8 W (except H13-Y714E which is 0 W), brown color represents 226.8 W, yellow color represents 240 W and red color represents 132 W. * ' The 7461.6 W for normal conditions is a conservative value, and if more margin is needed we could use field measurements with conservatism (which will have a total wattage for normal conditions of 4828.6 W). This is documented on the next pages. ERIS Panels Heat Load Justification Using Field Measurements There is 29 ERIS panels on MCR (EE-027 A Rev. 16), and every panel has a chassis assembly with a 250 watt supply. Before MR96-062, each ERIS panels had a 100 W power supply. There is a 3 A fuse before every current ERIS panel (GE-944E485AA), | |||
so the design and completely bounded power of ERIS panels is 115 (the input volts of the documented ERIS panels on 3247 .. 850-307-001A is 115V)*29*3 | |||
= 10005 W (Assuming is fully resistive). | |||
All the ERIS equipment installed on MR96-062 had either a VMINEQ-250-000 or VMINEQ-250-001. | |||
Now, as per E-144 Rev. 7, on attachment L, the maximum inverter loading value for circuit 22 of VBS01 B (there is 7 ERIS top hats (4 VMINEQ-250-001 and 3 VMINEQ-250-000)) | |||
is 1208 VA, so 172.57 VA for each ERIS hat panel. On E-143 Rev. 11, the maximum inverter loading value for circuit 21 of VBS01A (there is 6 ERIS top hats (3 VMINEQ-250-001 and 3 VMINEQ-250-000) is 1035 VA, so 172.5 VA for each ERIS hat panel. The circuit 22 of VBS01 B has very slightly more loading for each ERIS hat panel than of the circuit 21 of VBS01A, because field amp measurements for VMINEQ-250-001 | |||
* are just slightly higher. The field ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 3 PAGE NO. 173 of 303 measurements of the ERIS top hats were taken as per as per SAIC-RBS-041 letter (which is find on attachment B of E-226 Add C). The actual measured amperage of a VMINEQ-250-000 was 0.94 A (lower than the typical amps of 2.54 A used to obtain the 9352 Won E-226 Rev. 3 Add C), and the actual measured amperage of a VMINEQ-250-001 was 0.96 A (lower than the typical amps of 4.098 A used to obtain the 9352 W used on E-226 Rev. 3 Add C). The measured apparent power is then 115*0.96=110.4 VA. So the 172.5 VA given per ERIS panel on E-143 Rev. 11,.and the 172.57 VA given per ERIS panel on E-144 Rev. 7 is on the range of 55-60% higher than the measured apparent power values, giving conservatism to the field measurements. | |||
There has been recent ERIS upgrades, which has lowered the typical amps in the RIM (Remote Input Module) considerably as now the listed typical amps are 1.1 amps (and probably the actual measured amperage is lower than that). Some of this ERIS equipment was replaced on December of 2014, which is befare timeline where we are assessing risk. As we are assessing risk on early 2015, I am including these modifications on the upcoming calculations of heat load. The first phase of the ERIS upgrade project included panels H13-Y710E and H13-Y711A. | |||
These changes are documented on EC# 23837. As documented on 3.1.3.2 of the EC# 23837, a new ERIS network equipment was installed in the MCR, panel H13-P721D, and the change was incorporated on CBD-VBN02, Sh. 003 Rev. 14 (however the change has still not been incorporated on EE-027 A Rev. 16). Breaker# | |||
1 of VBN-PNL02 was retasked to supply power from C91-P609A (It was spared in place and no longer needed) to H13-P721D. | |||
This modification resulted in a load reduction of 744 VA at 1VBN-PNL02; | |||
: however, as we are adding panel by panel, a 240 VA value should be included for H13-P721 Das per R859-0100. | |||
On E-184, load supplied by breaker# | |||
10 of 1VBN-PNL01B1 and load supplied by breaker# | |||
20of1VBN-PNL 1A1 were never up9ated (when they should have had) after the ERIS upgrade on M96-062. | |||
Consequently, the same 100 VA (when 172.5 | |||
* VA should be used after the ERIS upgrade) is used for every ERIS panel. Breaker*#10 of 1VBN-PNL01B1 supplies to 6 ERIS panels (H13-Y711A, H13-Y710E, H13-Y751D, H13-Y740A, H13-Y748B and H13-Y748E) and breaker # 20 of 1VBN-PNL01A1 supplies to 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B) as per GE-944E485AA Rev. 12. Also, on E-184 Rev. 4, H13-Y748E is not included on the breaker# | |||
10 of 1VBN-PNL01B1 when it should be included. | |||
On EC# 23837, ERIS upgrade on panels H13-Y710E, H13-Y711A and H13-Y740A resulted on an increase of watts (when it should have resulted on a decrease of watts) on breaker# | |||
10 of PNL0181. | |||
EC# 23837 markups incorrectly E-184 (incorporated on E-184 Rev. 4) and CBD-VBN0181 (incorporated on CBD-VBN01 Rev. 19). So the load on breaker# | |||
10 of 1VBN-PNL0181 should be 172.6 VA on the ERIS equipment that were not replaced (H13-Y751 D, H13-Y748B and H13-Y748E) and 1.1 Amps* 120 V (the documented input voltage of the new ERIS equipment) | |||
= 132 VA for each of the ERIS replaced (H13-Y710E, H13-Y711A and H13-Y740A). | |||
This totals 396 + 517.8 = 913.8 VA for the 6 ERIS panels for breaker# | |||
10 of 1VBN-PNL01B1. | |||
For breaker# | |||
20 of 1VBN-PNL01A1, the loading should be 172.6 *4 = 690.4 VA for the 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B). | |||
Power supplied from breaker# | |||
10of1VBN-PNL0181 and '-* ( | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. O Attachment 3 PAGE N0.174 of 303 \ breaker# | |||
20 of 1VBN-PNL01A1 are non-divisional and are expected to be 0 VA with loss of offsite power (LOOP). 1VBS-PNL01 B, breaker #22 is also affected by recent ERIS upgrade phase# 2. E-143 and E-144 were revised after ERIS upgrade documented on M96-062, unlike E-184. This ERIS upgrade phase# 2 is documented on EC # 38927, which upgrades H13-Y702D, H13-Y710B, H13-Y714B and H13-Y714D. | |||
EC# 38927 correctly identifies that the modification results in a load decrease of 162.4 VA; however, H13-Y710B is on pending status and has not been installed, so the load for the new ERIS equipment can't be used on H13-Y71 OB yet. So the load on breaker # 22 of 1 VBS-PNL01 B should be 172.6 VA on the ERIS equipment that were not replaced or have not been replaced (H13-Y714E, H13-Y710B, H13-Y730B and H13-Y744D) and 1.1Amps*120 | |||
= 132 VA for each of the ERIS replaced (H13-Y702D, H13-Y714B and H13-Y714D) as per R859-0118. As H13-Y714E is spare (CR-RBS-2014-05797 and ECN 58709), it should not be counted on the heat load. The load totals 396 + 690.4 = 913.8 VA for the 7 ERIS panels for breaker# | |||
22 of 1VBS-PNL01 B. None of the ERIS panels (H13-Y715D, H13-Y715E, H13-Y713D, H13-Y703D, H13-Y731D and H13-Y743E) of breaker# | |||
21 of PNL01A have been replaced so loading is the same documented load of 1035 VA. There are four more ERIS top hats (H13-Y713A, H13-Y710D, H13-Y712D, and H13-Y717D)supplied by RPS bus, and 2 more ERIS top hats (H13-Y751A and H13-Y712B) supplied by breaker# | |||
2 of E22-S002PNL, which adds a heat load of 690.4 + 345.2= 1035.6 VA. Next page shows a summary of the heat loads on ERIS panels. The heat load values of ERIS panels are illustrated below under normal situations and under LOOP: | |||
* The ERIS panels that have beeri recently upgraded and installed after M96-062 is shown: | * The ERIS panels that have beeri recently upgraded and installed after M96-062 is shown: | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 3 REV.O ERIS Panel .... *-*'-* .... ,. ***--* ***--Y702D Y703A Y703D t**-* -.. -* .. ** **--.... < * .-* .... , ... Y714B Y714D Y714E Y715D Y715E V717D .. , ...... A-1. C-4 C-1 A-5 A-2 A-4 A-7 B-7 B-8 *****<-.......... , **. , .. ,, .... , B-2 B-1 A-3 A-9 ,.,.,.,,,,..,.,.,,,,,,,,_,,,,,, C-9 C-10 C-2 .... , ..... . . .............................. . Y730B B-3 Y731D A-8 Y740A Y743E , C-7 Y747B Y748B C-5 B-5 Y748E 8-10 "'"'"""'""'"""'"""'""""""""""'"'" Y750E C-8 Y751A Y751D B-6 B-9 PAGE NO. 175 of 303 1:Jot Applicable... __ . Not Applicable ... ..... ..... . . . ............... . .. . . .. ... .. .... . ... .. Not Applicable .. | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 3 REV.O ERIS Panel .... *-*'-* .... ,. ***--* ***--Y702D Y703A Y703D t**-* -.. -* .. ** **--.... < * .-* .... , ... Y714B Y714D Y714E Y715D Y715E V717D .. , ...... | ||
EN R ON CALCULATION CONTROL Attachment 4 Attachment 4: MCR Panel Data CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 176 of 303 As discussed in Section 6.4 in the body of the calculation the control panel dimensions and locations are from Reference 8.26 and 8.27. There are three separate GOTHIC thermal conductors representing the Control panels; one for the west portion of the room, one for the northeast portion, and one for the southeast portion. The control panels were spanned over these areas as inspection of Reference 8.26 shows the panels to be relatively well distributed over these areas. The surface area exposed to air for each Control Panel section is calculated and shown in Tables 1-3 below' . ............................... ***..*...... --**--*.L--.. -**---l--.-*_J ___ ***---' -***-**--L .... -......... . | A-1. C-4 C-1 A-5 A-2 A-4 A-7 B-7 B-8 *****<-.......... | ||
, **. , .. ,, .... , B-2 B-1 A-3 A-9 ,.,.,.,,,,..,.,.,,,,,,,,_,,,,,, | |||
C-9 C-10 C-2 .... , ..... . . .............................. | |||
. Y730B B-3 Y731D A-8 Y740A Y743E , C-7 Y747B Y748B C-5 B-5 Y748E 8-10 "'"'"""'""'"""'"""'""""""""""'"'" | |||
Y750E C-8 Y751A Y751D B-6 B-9 PAGE NO. 175 of 303 1:Jot Applicable... | |||
__ . Not Applicable | |||
... ..... | |||
..... | |||
. . | |||
. ............... | |||
. .. . . .. ... .. .... . ... | |||
.. Not Applicable | |||
.. | |||
EN R ON CALCULATION CONTROL Attachment 4 Attachment 4: MCR Panel Data CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 176 of 303 As discussed in Section 6.4 in the body of the calculation the control panel dimensions and locations are from Reference 8.26 and 8.27. There are three separate GOTHIC thermal conductors representing the Control panels; one for the west portion of the room, one for the northeast | |||
: portion, and one for the southeast portion. | |||
The control panels were spanned over these areas as inspection of Reference 8.26 shows the panels to be relatively well distributed over these areas. The surface area exposed to air for each Control Panel section is calculated and shown in Tables 1-3 below' . ............................... ***..*...... | |||
--**--*.L-- | |||
.. -**---l--.-*_J | |||
___ ***---' -***-**--L | |||
.... -......... | |||
. | |||
ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 177 of 303 Table 2: Surface Area Calculation for CP2 Panel Panel Grouping Nurrber Height (ft) Width (ft) | ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 177 of 303 Table 2: Surface Area Calculation for CP2 Panel Panel Grouping Nurrber Height (ft) Width (ft) | ||
ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 178 of 303 Table 3: Surface Area Calculation for CP3 Panel Grouping [1H13-U723 [1H13-U740 ! (__., ______ " __ _ i1H13*U710 Panel Nuniler Height (ft) Width (ft) Depth (ft) !H13-P740 : **************************************** .... : i [ ........................................ ! ............................................. , ................................ .. Surfi:!.ce Area of CP3 .. 2_72_8:.Z§] Table 4 below calculates the total surface area, including the interfacial surface area and bottom surface area, of the control panels in the lower MCR volume. This surface area is used in Section 6.4 to calculate an effective thickness of the control panels. The equation used to calculate the total surface area of each panel is below. SA control Panels = 2 | ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 178 of 303 Table 3: Surface Area Calculation for CP3 Panel Grouping | ||
[1H13-U723 | |||
[1H13-U740 | |||
! (__., ______ " __ _ i1H13*U710 Panel Nuniler Height (ft) Width (ft) Depth (ft) !H13-P740 | |||
: **************************************** | |||
.... | |||
: i [ ........................................ | |||
! ............................................. | |||
, ................................ | |||
.. | |||
Surfi:!.ce Area of CP3 | |||
.. 2_72_8:.Z§] | |||
Table 4 below calculates the total surface area, including the interfacial surface area and bottom surface area, of the control panels in the lower MCR volume. This surface area is used in Section 6.4 to calculate an effective thickness of the control panels. The equation used to calculate the total surface area of each panel is below. SA control Panels = 2 | |||
* L | * L | ||
* W + 2 | * W + 2 | ||
| Line 1,153: | Line 2,908: | ||
* L + 2 | * L + 2 | ||
* W | * W | ||
* H ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 179 of 303 i Surface .. 2.67i 4.00i 121.33! ____ , 94.22j 94.22i 94.22J 213.00' 3.o9J 2i3.6ii! ,1 ____ _;:;;_3*;::00:ic.---=::.;.....-****_2::..1ioo1 **:**********:**1***********************************-i**********************************:******************** .. ****!****************************:****************.. . ...... .!.*--*-***-................. , .... , ................................. j******************************* ************************************:!*************************** ..... ! +**********--***--**!************-*****)***--********--*** ............... .................. 1...................... ! ; .026; *""'--*-****--'--**-*---'----**-**-Lgp_!6_s_.1_0 L____ .l E E.RCON CALCULATION CONTROL Attachment 5 Attachment 5: Additional Steel Heat Sinks CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 180 of 303 Thermal conductors representing additional steel heat sinks are added to the GOTHIC MCR models. The heat sink material was identified during a MCR walk down conducted on July 21, 2015 and consists of steel structures (cabinets, panels, supports, duct work, conduit) of various thickness. The material is described in the Main' Control Room Heat Sink Walkdown notes included at the end of this attachment. Using these notes, the conductors _representing these steel heat sinks were added to their actual subvolumes based on inspection of Reference 8.26. ' ' | * H ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 179 of 303 i Surface | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 PAGE NO. 181 of 303 Table 1: Additional MCR Heat Sinks Item No. Description S.A. (ft2) Thicknes (in) Notes 1 Doors -Fire Doors leading outside MCR* 39.0 0.1250 External, 1/8" external panels, with air interior 2 Doors -SM Office 39.0 0.1250 Assume same thickness as Item 1 3 Door to closet SM office 16.25 0.1250 Assume same thickness as Item 2 4 lHS-JBA Panel 1.0 0.1250 Assume 1/8" panel thickness 5 ILAC Panels 100.8 0.1250 1/8" thick 6 Steel nlate suooorts for ILAC nanels 15.0 0.3750 3/8" 7 Steel elate suooorts for ILAC oanels 20.0 0.1875 3/16" 8 DC Panels 396.0 0.1250 1/8" thick , 9 Suooort Bea ms 212.0 0.3750 3/8" thick 10 Cabinets 198.0 0.0625 1/16" thick 11 l&C storalle cabinets 297.5 0.0625 1/16" thick 12 HVAC Ducts (smalll 182.3 0.2500 1/4" steel estimated 13 HVAC Ducts Clarlle\ 328.0 0.2500 1/4" steel estimated 14 HVAC Ducts Clarlle\ 200.0 0.1250 1/8" steel 15 SCA Panels 201.0 0.1250 1/8" steel 16 Metal File Cabinets 88.0 0.0625 1/16" steel assumed 17 Short metal storalle cabinet 40.S 0.0625 1/16" steel assumed 18 Metal cabinets 630.0 0.0625 1/16" steel assumed H13-Y747A(B) -junctio boxes atop cable 448.0 0.1250 1/8" steel 19 soreadiM bavs 20 Kitchen ca bi nets, etc. 324.0 0.0625 1/16" steel assumed 21 Metal desks 405.0 0.0625 1/16" steel assumed 22 1" conduit 139.0 0.1250 1/8" assumed 23 Securitv oort 12.5 0.5000 / 1/8" 24 ILAC Panels 73.0 0.1250 25 2" conduits 34.6 0.1250 1/8" assumed 26 3" conduit 19.6 0.1250 1/8" assumed 27 1.5" conduit 11.8 0.1250 1/8" assumed -28 COP-1160 cabinets 6.6 0.0625 1/16" steel assumed 29 RMS CAB170 cabinets 14.7 0.0625 1/16" steel assumed 30 2 white boxes 16.5 0.1250 1/8" assumed 31 Unistrut 65.6 0.1250 1/8" assumed TOTAL SA 4536.25 *Fire door is not added as a GOTHIC thermal conductor, as this surface area would already be accounted for by the wall thermal conductors. \ \ L CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 182 of 303 Main Control Room Heat Sink Walkdown 21 July 2015 walkdown of Main Control Room by Paul Sicard for purpose of identifying heat sinks. Heat sink modeling of Gl3.18.12.4*027 was first reviewed. (same as used for ENTR-078-CALC-002). Heat sinks modelled include structural steel above ceiling tiles, H13 and C6i panels in Main Control Room, and concrete walls. Assume 1/8" thick for cabinets and metal heat sinks unless noted otherwise. ("'4500 ft2 of additional metal heat sink area identified) Doors Have two 6.5x3 metal fire doors leading out of 19.5 ft2 pef door MCR. Assume 118" steel plates with air interior. Doors Have two 5.5x3 doors to ttw Shift 19.5 ft2 per door surface. Manager office. Both inside and outside of door exposed to MCR air. Door door to closet behind SM / CRS desk. 16.25 ft2 2.5 | .. | ||
2.67i 4.00i 121.33! | |||
____ , 94.22j 94.22i 94.22J 213.00' 3.o9J 2i3.6ii! | |||
,1 ____ _;:;;_3*;::00:ic.---=::.;.....-****_2::..1ioo1 | |||
**:**********:**1***********************************-i**********************************:******************** | |||
.. ****!****************************:****************.. | |||
. ...... .!.*--*-***- | |||
................. | |||
, .... , ................................. | |||
j******************************* | |||
************************************:!*************************** | |||
..... ! +**********--***--**!************-*****)***--********--*** | |||
............. | |||
.. | |||
.................. | |||
1...................... | |||
! ; .026; *""'--*-****--'--**-*---'----**-**-Lgp_!6_s_.1_0 L____ .l E E.RCON CALCULATION CONTROL Attachment 5 Attachment 5: Additional Steel Heat Sinks CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 180 of 303 Thermal conductors representing additional steel heat sinks are added to the GOTHIC MCR models. The heat sink material was identified during a MCR walk down conducted on July 21, 2015 and consists of steel structures (cabinets, panels, supports, duct work, conduit) of various thickness. | |||
The material is described in the Main' Control Room Heat Sink Walkdown notes included at the end of this attachment. | |||
Using these notes, the conductors | |||
_representing these steel heat sinks were added to their actual subvolumes based on inspection of Reference 8.26. ' ' | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 PAGE NO. 181 of 303 Table 1: Additional MCR Heat Sinks Item No. Description S.A. (ft2) Thicknes (in) Notes 1 Doors -Fire Doors leading outside MCR* 39.0 0.1250 External, 1/8" external panels, with air interior 2 Doors -SM Office 39.0 0.1250 Assume same thickness as Item 1 3 Door to closet SM office 16.25 0.1250 Assume same thickness as Item 2 4 lHS-JBA Panel 1.0 0.1250 Assume 1/8" panel thickness 5 ILAC Panels 100.8 0.1250 1/8" thick 6 Steel nlate suooorts for ILAC nanels 15.0 0.3750 3/8" 7 Steel elate suooorts for ILAC oanels 20.0 0.1875 3/16" 8 DC Panels 396.0 0.1250 1/8" thick , 9 Suooort Bea ms 212.0 0.3750 3/8" thick 10 Cabinets 198.0 0.0625 1/16" thick 11 l&C storalle cabinets 297.5 0.0625 1/16" thick 12 HVAC Ducts (smalll 182.3 0.2500 1/4" steel estimated 13 HVAC Ducts Clarlle\ | |||
328.0 0.2500 1/4" steel estimated 14 HVAC Ducts Clarlle\ | |||
200.0 0.1250 1/8" steel 15 SCA Panels 201.0 0.1250 1/8" steel 16 Metal File Cabinets 88.0 0.0625 1/16" steel assumed 17 Short metal storalle cabinet 40.S 0.0625 1/16" steel assumed 18 Metal cabinets 630.0 0.0625 1/16" steel assumed H13-Y747A(B) | |||
-junctio boxes atop cable 448.0 0.1250 1/8" steel 19 soreadiM bavs 20 Kitchen ca bi nets, etc. 324.0 0.0625 1/16" steel assumed 21 Metal desks 405.0 0.0625 1/16" steel assumed 22 1" conduit 139.0 0.1250 1/8" assumed 23 Securitv oort 12.5 0.5000 / 1/8" 24 ILAC Panels 73.0 0.1250 25 2" conduits 34.6 0.1250 1/8" assumed 26 3" conduit 19.6 0.1250 1/8" assumed 27 1.5" conduit 11.8 0.1250 1/8" assumed -28 COP-1160 cabinets 6.6 0.0625 1/16" steel assumed 29 RMS CAB170 cabinets 14.7 0.0625 1/16" steel assumed 30 2 white boxes 16.5 0.1250 1/8" assumed 31 Unistrut 65.6 0.1250 1/8" assumed TOTAL SA 4536.25 *Fire door is not added as a GOTHIC thermal conductor, as this surface area would already be accounted for by the wall thermal conductors. | |||
\ \ L CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 182 of 303 Main Control Room Heat Sink Walkdown 21 July 2015 walkdown of Main Control Room by Paul Sicard for purpose of identifying heat sinks. Heat sink modeling of Gl3.18.12.4*027 was first reviewed. | |||
(same as used for ENTR-078-CALC-002). | |||
Heat sinks modelled include structural steel above ceiling tiles, H13 and C6i panels in Main Control Room, and concrete walls. Assume 1/8" thick for cabinets and metal heat sinks unless noted otherwise. | |||
("'4500 ft2 of additional metal heat sink area identified) | |||
Doors Have two 6.5x3 metal fire doors leading out of 19.5 ft2 pef door MCR. Assume 118" steel plates with air interior. | |||
Doors Have two 5.5x3 doors to ttw Shift 19.5 ft2 per door surface. | |||
Manager office. Both inside and outside of door exposed to MCR air. Door door to closet behind SM / CRS desk. 16.25 ft2 2.5 | |||
* 6.5 ft lHS-JBA metal oanel near SW door 1 ft2 Fire ext. Fire Ext. near door SCBA air bottles 30 "' 2' tall SCBA air bottles stored just south of CB136-10 door SW. ILAC panels 12 lighting panels on West wall. 100.8 ft2 (1/8" thick) ' 5 on S wall. \ 3 on N wall. (20 total) 16" width | * 6.5 ft lHS-JBA metal oanel near SW door 1 ft2 Fire ext. Fire Ext. near door SCBA air bottles 30 "' 2' tall SCBA air bottles stored just south of CB136-10 door SW. ILAC panels 12 lighting panels on West wall. 100.8 ft2 (1/8" thick) ' 5 on S wall. \ 3 on N wall. (20 total) 16" width | ||
* 12" heightx 10" depth. 5.6 ft2 per panel. (assume 1/8" thick) Steel plate supports steel supports mounted on walls. wall plate supports: for ILAC panels. 15 ft2 (3/8" thick) 18" wide, 6" height, 3/8" thick. A= 0.75 ft2 per panel. cantilevered supports: 20 fi:2 (3/16" effective thickness) i Also have 7" long supports, 2" high, 3" wide. Perimeter of 10". Area per support of 10"*7"=70 in2 = 0.5 ft2. Two such supports per ILAC oanel for 1.0 ft2 oer oanel. | * 12" heightx 10" depth. 5.6 ft2 per panel. (assume 1/8" thick) Steel plate supports steel supports mounted on walls. wall plate supports: | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 DC panels Support Beams Storage cabinets I&C storage cabs 2 small HVAC ducts along N wall PAGE NO. 183 of 303 Have total of 9 BYS/VBS/ENB panels on N and S 396 ft2 ,(1/8" thick) walls of MCR. 5 ft wide x 6.5 ft high x 1 ft deep. Area per panel: 44 ft2. 9 oanels: 396 ft2. 170 ft. of support beams along S wall. "'12 ft. noted on N wall. (probably missed some) 4" high, 1 3/4" wide, 3/8" steel thickness. "'14" of perimeter A = 182 ft * (14") = 212 ft2 3/8" thick 3 near NE carrier: 6 ft H x 3 ft W x 2 ft D. Area per cabinet: 66 ft2. Assume 1/16" metal. 5 near S wall, center: 6 ft H x 3 ft W x 1.5 ft depth 59.5 ft2 per cabinet Assume 1/16" metal. 18" x 42", Floor to ceiling (9.115 ft per G13.18.12.4*027 calculation) 120" perimeter. Surface area per duct: 91.15 ft2 r Appears to be 1/4" thick steel based on flanges and sunnorts. 212 ft2, 3/8" thick 198 ft2 297.5 ft2 182.3 ft2 , | for ILAC panels. 15 ft2 (3/8" thick) 18" wide, 6" height, 3/8" thick. A= 0.75 ft2 per panel. cantilevered supports: | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O 2 large HVAC ducts along N wall SCA panels metal file cabinets short metal storage cabinet metal storage cabinets H13-Y747A(B) 6 ft x 3 ft. Perimeter: 18 feet. Surface area per duct: 164 ft2. Have eleven flanges, 3" high and 3" wid,e, of 1/4" steel that goes around the ducts. This corresponds to 100 ft2 of 1/8" steel (counting both too and bottom surface area) 4 along N wall. 2 along S wall. 6.5' H x 2' W x 6" depth. Peroanel: 33.5ft2 two near NW corner by back door to SM office. 4.5' H | 20 fi:2 (3/16" effective thickness) i Also have 7" long supports, 2" high, 3" wide. Perimeter of 10". Area per support of 10"*7"=70 in2 = 0.5 ft2. Two such supports per ILAC oanel for 1.0 ft2 oer oanel. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 DC panels Support Beams Storage cabinets I&C storage cabs 2 small HVAC ducts along N wall PAGE NO. 183 of 303 Have total of 9 BYS/VBS/ENB panels on N and S 396 ft2 ,(1/8" thick) walls of MCR. 5 ft wide x 6.5 ft high x 1 ft deep. Area per panel: 44 ft2. 9 oanels: 396 ft2. 170 ft. of support beams along S wall. "'12 ft. noted on N wall. (probably missed some) 4" high, 1 3/4" wide, 3/8" steel thickness. | |||
"'14" of perimeter A = 182 ft * (14") = 212 ft2 3/8" thick 3 near NE carrier: | |||
6 ft H x 3 ft W x 2 ft D. Area per cabinet: | |||
66 ft2. Assume 1/16" metal. 5 near S wall, center: 6 ft H x 3 ft W x 1.5 ft depth 59.5 ft2 per cabinet Assume 1/16" metal. 18" x 42", Floor to ceiling (9.115 ft per G13.18.12.4*027 calculation) 120" perimeter. | |||
Surface area per duct: 91.15 ft2 r Appears to be 1/4" thick steel based on flanges and sunnorts. | |||
212 ft2, 3/8" thick 198 ft2 297.5 ft2 182.3 ft2 , | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O 2 large HVAC ducts along N wall SCA panels metal file cabinets short metal storage cabinet metal storage cabinets H13-Y747A(B) 6 ft x 3 ft. Perimeter: | |||
18 feet. Surface area per duct: 164 ft2. Have eleven flanges, 3" high and 3" wid,e, of 1/4" steel that goes around the ducts. This corresponds to 100 ft2 of 1/8" steel (counting both too and bottom surface area) 4 along N wall. 2 along S wall. 6.5' H x 2' W x 6" depth. Peroanel: | |||
33.5ft2 two near NW corner by back door to SM office. 4.5' H | |||
* 17" W | * 17" W | ||
* 3' D Per file cabinet: 44 ft2 NW corner near duct. 4 x 3 x 1.5. Area = 40.5 ft2 NE & SE.: 8: 5 x 3 x 18" (A= 49.5 ft2) 4: 6 x 3 x 18" <A = 58.5 ft2) .. and similar junction boxes that sit atop spreading bays. (are these already in H13 cabinet heat sinks?) 4 NW. 4 NE. 7 SW. 13 SE. (28 total) 3 foot depth. 1 foot height 2 foot width. Total Surface* Area: 16 ft2 oer unit. PAGE NO. 184 of 303 328 ft 2 (1/4") 200 ft2 (1/8" steel) 201 ft2 (1/8") 88 ft2 (1/16" assumed) 40.5 ft2 (1/16" assumed) 630 ft2 (1/16" thick assumed) 448 ft2 (1/8" assumed) | * 3' D Per file cabinet: | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 185 of 303 , (simolification since inside is exoosed) Kitchen Metal kitchen cabinets, stove, etc ... 324 ft2 (1/16" assumed) Appears equivalent to 4 bays of cabinets. , \ (typical bay= 2' x 7.5' x 3', for surface area of:* ' 81 ft2) Metal desks Metal desks in MCR: 405 ft2 (1/16" assumed) Appears equivalent to at least 5 bays of cabinets. 1" conduit ,,,75 ft along S wall. 139 ft2 ,,,35 ft near kitchen 150 ft N wall. 33 ft near RMS-CAB170 (W wall) 237 ft along W wall 531ftof1" Diameter Conduit. Perimeter= 3.14". Area = 531 * (3.14"/12) = 139 ft2 Security port security port on S wall of stairway: 30'x30", 12.5 ft2, (1/2" thick) 1/2" thick 5 big blue ILAC panels 20" wide by 36" high x 6" deep. 73 ft2 (1/8" thick) Wwall A= 14.6 ft2 per cabinet 2" conduits 48 ft along w wall 34.6 ft2 18 ft near 8MS-CAB 6.3" perimeter. 3" CONDUIT 16 ft along S wall 19.6 ft2. 9 ft near COP-1150 1.5" conduit (includes 1 3/4") 11.8 ft2 30 ft near W wall COP-1160 metal cabinet on W wall 6.6 ft2 8" x 12" x 5.5" A= 2.2 ft2 3 cabinets total like this. RMS-CAB170 W wall: actuallv two cabinets: 14.7 ft2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 186 of 303 36"x24"x8": A= 8.33 ft2 I 18"x24"x8": A= 6.33 ft2 2 white boxes metal 18 x 18 x 12" 16.5 ft2 near RMS-CAB A = 8.25 ft2 oer box. 1 3/4" unistrut 84'west wall 65.6 ft2. 24' north wall 42' south wall. Assume effective perimeter of 5.25" of 1/8" steel. A= 65.6 ft2 CALC. NO. ENTR-078-CALC-004 | 44 ft2 NW corner near duct. 4 x 3 x 1.5. Area = 40.5 ft2 NE & SE.: 8: 5 x 3 x 18" (A= 49.5 ft2) 4: 6 x 3 x 18" <A = 58.5 ft2) .. and similar junction boxes that sit atop spreading bays. (are these already in H13 cabinet heat sinks?) 4 NW. 4 NE. 7 SW. 13 SE. (28 total) 3 foot depth. 1 foot height 2 foot width. Total Surface* | ||
Area: 16 ft2 oer unit. PAGE NO. 184 of 303 328 ft 2 (1/4") 200 ft2 (1/8" steel) 201 ft2 (1/8") 88 ft2 (1/16" assumed) 40.5 ft2 (1/16" assumed) 630 ft2 (1/16" thick assumed) 448 ft2 (1/8" assumed) | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 185 of 303 , (simolification since inside is exoosed) | |||
Kitchen Metal kitchen cabinets, stove, etc ... 324 ft2 (1/16" assumed) | |||
Appears equivalent to 4 bays of cabinets. | |||
, \ (typical bay= 2' x 7.5' x 3', for surface area of:* ' 81 ft2) Metal desks Metal desks in MCR: 405 ft2 (1/16" assumed) | |||
Appears equivalent to at least 5 bays of cabinets. | |||
1" conduit ,,,75 ft along S wall. 139 ft2 ,,,35 ft near kitchen 150 ft N wall. 33 ft near RMS-CAB170 (W wall) 237 ft along W wall 531ftof1" Diameter Conduit. | |||
Perimeter= | |||
3.14". Area = 531 * (3.14"/12) | |||
= 139 ft2 Security port security port on S wall of stairway: | |||
30'x30", | |||
12.5 ft2, (1/2" thick) 1/2" thick 5 big blue ILAC panels 20" wide by 36" high x 6" deep. 73 ft2 (1/8" thick) Wwall A= 14.6 ft2 per cabinet 2" conduits 48 ft along w wall 34.6 ft2 18 ft near 8MS-CAB 6.3" perimeter. | |||
3" CONDUIT 16 ft along S wall 19.6 ft2. 9 ft near COP-1150 1.5" conduit (includes 1 3/4") 11.8 ft2 30 ft near W wall COP-1160 metal cabinet on W wall 6.6 ft2 8" x 12" x 5.5" A= 2.2 ft2 3 cabinets total like this. RMS-CAB170 W wall: actuallv two cabinets: | |||
14.7 ft2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 186 of 303 36"x24"x8": | |||
A= 8.33 ft2 I 18"x24"x8": | |||
A= 6.33 ft2 2 white boxes metal 18 x 18 x 12" 16.5 ft2 near RMS-CAB A = 8.25 ft2 oer box. 1 3/4" unistrut 84'west wall 65.6 ft2. 24' north wall 42' south wall. Assume effective perimeter of 5.25" of 1/8" steel. A= 65.6 ft2 CALC. NO. ENTR-078-CALC-004 | |||
* ENERCON CALCULATION CONTROL SHEET-REV. 0 | * ENERCON CALCULATION CONTROL SHEET-REV. 0 | ||
* Attachment 6 fvffydcy. PAGE NO. 187 of 303 Attachment 6: Email from Paul Sicard, dated 7 /23/2015, 10:29 AM: This is a portable electric fan, stored in closet on third floor of Service Building, on hallway that leads to the passageway to Main Control Room. Maxx Air High Velocity Ventamatic Ltd. 4 blades 24" diameter. Rating of 2800-4000 CFM. (Ops looked up on Internet while I was examining fan for any model number or information --none on fan) | * Attachment 6 | ||
fvffydcy. | |||
PAGE NO. 187 of 303 Attachment 6: Email from Paul Sicard, dated 7 /23/2015, 10:29 AM: This is a portable electric fan, stored in closet on third floor of Service Building, on hallway that leads to the passageway to Main Control Room. Maxx Air High Velocity Ventamatic Ltd. 4 blades 24" diameter. | |||
Rating of 2800-4000 CFM. (Ops looked up on Internet while I was examining fan for any model number or information | |||
--none on fan) | |||
CALC. NO. ENTR-078-CALC-004 | CALC. NO. ENTR-078-CALC-004 | ||
* CALCULATION CONTROL SHEET-ENERCON REV. 0 | * CALCULATION CONTROL SHEET-ENERCON REV. 0 | ||
* Attachment 6 .*v-rydfJ'f PAGE NO. 188 of 303 Attachment 6 {cont'd): Gasoline powered portable electric fan, stored in Fire Brigade Van. | * Attachment 6 | ||
.*v-rydfJ'f PAGE NO. 188 of 303 Attachment 6 {cont'd): Gasoline powered portable electric fan, stored in Fire Brigade Van. | |||
) ENERCON CALCULATION CONTROL Attachment 7 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 189 of 303 Attachment 7: Email from Paul Sicard, dated 11/2/2015, 5:34 PM: Drawing EA-468 shows the return air registers for the main control room, which run along the east and west walls of the MCR. -The drawing shows 18 registers along West Wall; I counted (and re-counted) only 16, with at least one noticeable gap between them. | ) ENERCON CALCULATION CONTROL Attachment 7 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 189 of 303 Attachment 7: Email from Paul Sicard, dated 11/2/2015, 5:34 PM: Drawing EA-468 shows the return air registers for the main control room, which run along the east and west walls of the MCR. -The drawing shows 18 registers along West Wall; I counted (and re-counted) only 16, with at least one noticeable gap between them. | ||
* The drawing shows 15 along East wall, 8 south of pipe chase, and 7 north of pipe chase. My walkdown observation confirmed this. The registers appear to be a plastic material with honeycombed squares (see sketch) that are about 1/2" x 1/2" square. The registers have 18 holes in one dimension and 80 in the long dimension that runs along the wall. Estimated thickness of the plastic grid the honeycomb is <1/16", probably more like 1/20". Estimated height (flow path length) through the honeycomb is also 1/2". The 80 holes in the long dimension would correspond to the 4 foot long dimension of the MCR ceiling tiles. (Note EA-468 refers to these as "Aluminum Louver Return Air Grille" in NOTE 5.) There are substantial gaps between the lower MCR volume and upper MCR volume around the ducting at the North end of Main Control Room._ For the duct in NW corner (return duct), the estimated gaps are: 2" East 4" South & West 6" North (against wall) For the ducting on East half of North wall, estimated gaps are: 6" North . 3" West & East (gap actually occurs between larger central duct and the two smaller outer ducts) O" South CALC. NO. ENTR-078-CALC-004 t"l ENERCON CALCULATION CONTROL SHEET-REV. 0 Attachment 8 ( fW'f"f fl<IJ PAGE NO. 190 of 303 Attachment 8: Honeywell Computer Equipment Heat Loads The following information is obtained from EC 61975 (Reference 8.36). Main Control Room C91 Panels C91-P642/P631/P630 The panels under consideration are Performance Monitoring System Panels (Plant Process Computers) located in the main control room. The GOTHIC calculations have loads from P642 and P631/P630 split into different grid locations. Since the panels are not labelled in the main control room, a walk down of the panels was performed to obtain the layout of the components placed on PPG Desk (P642/P630/P631). Based on information from the walkdown, Drawing GE-851E124AA sh2 and information from Bill Costinett, the following conclusion was arrived at. PANEL C91-P642 Equipment Mark/Part Number{ Wattage Reference GE* Supplies Recorders on Power Supply 8S1El24AA 144 Hl3-P680 C91-R603 287AS937POOS 9S Display CRT http:l/www.vartechsystems.com/pdf/technical/VTl 7B-Ctech.pdf C9l*K60S 287AS937P007 0 Keyboard C91-P6SS 287 AS937P028 420 Floppy Disc information obtained from ERIS Room which is similar to the one in MCR Network Switch C9S-NETSW*MCR 137.S Cisco Catalyst 37SOG Model No obtained from ERIS Room which is similar to the one in MCR laserjet includes a 10% Diversity 60SW Printing/ Sl watts ready/ 6.9 watts Printer ....... C91-RSTR-PTR 60.S Factor http:l/h71016.www7.hp.com/html/pdfs/LaserJetEnterpriseMSS1.pdf http:l/www.cnet.com/products/nortel-baystack-4SO-model-24t-switch-24-ports-Network Switch C91-NEISW-1 140 Baystack 4S0-24T managed-desktop-series/specs/ REMOVED FROM Versatec Plotter SERVICE -http:l/downloads.dell.com/Manuals/all-ERIS products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Workstation( PC) ERIS-RSTR-SDS 2SO 9010 Owner%27s%20Manual en-us.pd! ERIS Monitor ERIS-RSTR-SDS so DELL monitor Antee CPU C91-LEFMPC1 4SO http://store.antec.com/vpseries/vp4SOf.html# Honeywell RBS-D-C2960-cpu*** 1900G-PPC 273 Dell Monitor so Netgear Switch so Input from "Evaluation of PPG loads for MGR heatup" TOTAL 2120 -*Wattage based from CPU's in P612 PANEL C91-P631/P630 Equipment Mark/Part Numbers Wattage Network Switch Cisco catalyst 2960-S 137.S information obtained from ERIS R00m Which is similar to the one in MCR C9S-SDCR09 CDA-Optiplex computer 780 DC3 2SS http:l/www.dell.com/downloads/global/products/optix/en/optiplex 780 tech_guidebook en.pd! Monitor SDCR09 32 ASUS24" http:l/downloads.dell.com/Manuals/all-products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Optiplex gX240 C9S-PCA59 CDA-DC3 180 gx240 user%27s%20guide en-us.pd! Monitor flatron e23SO 28 http:lfwww.cnet.com/products/lg-flatron-e23SOv/specs/ Typer C91-P634 270 Typer information obtained from ERIS Computer Room Typer**** C91-P63S 0 Typer information obtained from ERIS Computer Room Printer++++ C9S-CP02 43 Diversity Factor included/ http:l/www.cnet.com/products/hp-color-laserjet-4600/specs/ Multiprinter C9S-CP02 8S Average wattage I http:l/manx.classiccmp.org/collections/mds-199909/cd3/printer/la40euga.pdf TOTAL 1030.S **-one of The Typers in the MGR is Idle and is not connected to the power supply unit. Hence the load on it is assumed to be O ++++ It should be noted that the Laser Jet Printers on that desk includes a 10% Diversity Factor (Obtained from the National Electric Code for intermittent loads) as the wattage reflected on the table above references the consumption while printing. Per Walkdown, three network switches were found under the desks of C91-P642/P630/P631 as opposed to one as documented in "Evaluation of PPG loads for MGR heatup". This change is reflected above and must be noted. sleep CALC. NO. ENTR-078-CALC-004 0 ENERCON CALCULATION CONTROL SHEET-REV.O Attachment 8 PAGE NO. 191 of 303 I Measured Values Nine Mile BTU/HR CALC E-184 Nine Mile Watts by Power Supply Ratings from 024 7 .810*000-Panel 252/ Comments from Entergy Panel Disconnect Load Description Current Reading Bus voltage PPCWatts BTU/HR Watts VBN-PNL02 2 C91-P608 CMS/ PPX computer equipt. (removed 800 0.26 121.4 , 32 108 NA 2400 -2400 watts w/ tape drive) VBN*PNL02 3 C91-P600 Central CPU unit 12.30 121.4 1493 5092 5119 2400 1500.2 VBN-PNL02 4 C91-P603 Large core storage 2.12 121.4 257 878 2000 1800 586.1 VBN*PNL02 5 C91*P612 Display Generator 3.50 121.4 425 1449 2048 1020 600.2 VBN*PNL02 6 C91-P620 Digital unit 4.40 121.4 534 1821 8191 2400 2400.5 490W +Wattage of Associated Blower VBN*PNL02 7 C91-P625 Digital unit 1.56 121.4 189 646 8500 2820 2491.1 l(BN-PNL02 8 C91-P621 Digital unit and SPC-BNKl 5.79 121.4 703 2397 8500 2750 2491.1 390 W +Wattage of Associated Blower VBN-PNL02 9 C91*P624 Digital unit 3.91 121.4 475 1619 8500 2400 2491.1 VBN-PNL02 10 C91*P622 Digital unit 3.16 121.4 384 1308 8500 2400 2491.1 VBN*PNL02 11 C91*P623 Digital unit 3.93 121.4 477 1627 8500 2400 2491.1 520 W +Wattage of Associated Blower VBN*PNL02 12 C91-P630/P631 PPC printers 1.05 121.4 127 435 1229 1000 360.2 1030.5 Watts in total for the two panels which includes PPC Printers and other components in the PPC table area VBN-PNL02 13 C91-P613 NSSS Analog unit 1.31 121.4 159 542 1229 912 360.2 VBN*PNL02 15 C91-P616 BOP Analog unit 0.86 121.4 104 356 850 360 249.1 VBN*PNL02 16 C91*P615 BOP Analog unit 0.98 121.4 119 406 850 360 249.1 VBN-PNL02 17 C91*P614 BOP Analog unit 1.29 121.4 157 534 850 360 249.1 VBN-PNL02 18 C91-P642 PPC Results Center Console (CRTs, KB, 4.23 121.4 514 1751 NA 1060 1060 Trend Recorders on P680) VBN*PNL02 19 H13*P680 PPC CRT's and KeyBoard 2.49 121.4 302 1031 NA 792 792 VBN*PNL02 20 C91-P632/P633 PPC computer printers 1.00 121.4 121 414 NA 810 810 VBN*PNL02 22 C91*P650 PPC BOP Digital and SWC*BNK4 4.56 121.4 554 1888 NA 2400 2400 390 W +Wattage of Associated Blower VBN*PNLOlAl 21 C91-P642 PPC Table Area NA 1488 1488 2120 Watts is the connected load VBN*PNLOlAl 22 C91-P631 Area Near PPC Desk NA 1526 1526 This row should be removed as all the connected loads associated with P631 are included in the row above (P630/P631 on row 11) VBN*PNLOlBl 33 C9l*P612 CPU's (2) NA 546 A Network Server is associated with P612 which has a load of 400W. This has to be accounted for with P612. Comments on the table above do not change any values obtained from Enercon Previously. Please look at the proposed heat load on C91 panels below. | * The drawing shows 15 along East wall, 8 south of pipe chase, and 7 north of pipe chase. My walkdown observation confirmed this. The registers appear to be a plastic material with honeycombed squares (see sketch) that are about 1/2" x 1/2" square. The registers have 18 holes in one dimension and 80 in the long dimension that runs along the wall. Estimated thickness of the plastic grid the honeycomb is <1/16", probably more like 1/20". Estimated height (flow path length) through the honeycomb is also 1/2". The 80 holes in the long dimension would correspond to the 4 foot long dimension of the MCR ceiling tiles. (Note EA-468 refers to these as "Aluminum Louver Return Air Grille" in NOTE 5.) There are substantial gaps between the lower MCR volume and upper MCR volume around the ducting at the North end of Main Control Room._ For the duct in NW corner (return duct), the estimated gaps are: 2" East 4" South & West 6" North (against wall) For the ducting on East half of North wall, estimated gaps are: 6" North . 3" West & East (gap actually occurs between larger central duct and the two smaller outer ducts) O" South CALC. NO. ENTR-078-CALC-004 t"l ENERCON CALCULATION CONTROL SHEET-REV. 0 Attachment 8 ( | ||
fW'f"f fl<IJ PAGE NO. 190 of 303 Attachment 8: Honeywell Computer Equipment Heat Loads The following information is obtained from EC 61975 (Reference 8.36). Main Control Room C91 Panels C91-P642/P631/P630 The panels under consideration are Performance Monitoring System Panels (Plant Process Computers) located in the main control room. The GOTHIC calculations have loads from P642 and P631/P630 split into different grid locations. | |||
Since the panels are not labelled in the main control room, a walk down of the panels was performed to obtain the layout of the components placed on PPG Desk (P642/P630/P631). | |||
Based on information from the walkdown, Drawing GE-851E124AA sh2 and information from Bill Costinett, the following conclusion was arrived at. PANEL C91-P642 Equipment Mark/Part Number{ Wattage Reference GE* Supplies Recorders on Power Supply 8S1El24AA 144 Hl3-P680 C91-R603 287AS937POOS 9S Display CRT http:l/www.vartechsystems.com/pdf/technical/VTl 7B-Ctech.pdf C9l*K60S 287AS937P007 0 Keyboard C91-P6SS 287 AS937P028 420 Floppy Disc information obtained from ERIS Room which is similar to the one in MCR Network Switch C9S-NETSW*MCR 137.S Cisco Catalyst 37SOG Model No obtained from ERIS Room which is similar to the one in MCR laserjet includes a 10% Diversity 60SW Printing/ | |||
Sl watts ready/ 6.9 watts Printer ....... C91-RSTR-PTR 60.S Factor http:l/h71016.www7.hp.com/html/pdfs/LaserJetEnterpriseMSS1.pdf http:l/www.cnet.com/products/nortel-baystack-4SO-model-24t-switch-24-ports-Network Switch C91-NEISW-1 140 Baystack 4S0-24T managed-desktop-series/specs/ | |||
REMOVED FROM Versatec Plotter SERVICE -http:l/downloads.dell.com/Manuals/all-ERIS products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Workstation( | |||
PC) ERIS-RSTR-SDS 2SO 9010 Owner%27s%20Manual en-us.pd! | |||
ERIS Monitor ERIS-RSTR-SDS so DELL monitor Antee CPU C91-LEFMPC1 4SO http://store.antec.com/vpseries/vp4SOf.html# | |||
Honeywell RBS-D-C2960-cpu*** 1900G-PPC 273 Dell Monitor so Netgear Switch so Input from "Evaluation of PPG loads for MGR heatup" TOTAL 2120 -*Wattage based from CPU's in P612 PANEL C91-P631/P630 Equipment Mark/Part Numbers Wattage Network Switch Cisco catalyst 2960-S 137.S information obtained from ERIS R00m Which is similar to the one in MCR C9S-SDCR09 CDA-Optiplex computer 780 DC3 2SS http:l/www.dell.com/downloads/global/products/optix/en/optiplex 780 tech_guidebook en.pd! Monitor SDCR09 32 ASUS24" http:l/downloads.dell.com/Manuals/all-products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Optiplex gX240 C9S-PCA59 CDA-DC3 180 gx240 user%27s%20guide en-us.pd! | |||
Monitor flatron e23SO 28 http:lfwww.cnet.com/products/lg-flatron-e23SOv/specs/ | |||
Typer C91-P634 270 Typer information obtained from ERIS Computer Room Typer**** | |||
C91-P63S 0 Typer information obtained from ERIS Computer Room Printer++++ | |||
C9S-CP02 43 Diversity Factor included/ | |||
http:l/www.cnet.com/products/hp-color-laserjet-4600/specs/ | |||
Multiprinter C9S-CP02 8S Average wattage I http:l/manx.classiccmp.org/collections/mds-199909/cd3/printer/la40euga.pdf TOTAL 1030.S **-one of The Typers in the MGR is Idle and is not connected to the power supply unit. Hence the load on it is assumed to be O ++++ It should be noted that the Laser Jet Printers on that desk includes a 10% Diversity Factor (Obtained from the National Electric Code for intermittent loads) as the wattage reflected on the table above references the consumption while printing. | |||
Per Walkdown, three network switches were found under the desks of C91-P642/P630/P631 as opposed to one as documented in "Evaluation of PPG loads for MGR heatup". | |||
This change is reflected above and must be noted. sleep CALC. NO. ENTR-078-CALC-004 0 ENERCON CALCULATION CONTROL SHEET-REV.O Attachment 8 | |||
PAGE NO. 191 of 303 I Measured Values Nine Mile BTU/HR CALC E-184 Nine Mile Watts by Power Supply Ratings from 024 7 .810*000-Panel 252/ Comments from Entergy Panel Disconnect Load Description Current Reading Bus voltage PPCWatts BTU/HR Watts VBN-PNL02 2 C91-P608 CMS/ PPX computer equipt. (removed 800 0.26 121.4 , 32 108 NA 2400 -2400 watts w/ tape drive) VBN*PNL02 3 C91-P600 Central CPU unit 12.30 121.4 1493 5092 5119 2400 1500.2 VBN-PNL02 4 C91-P603 Large core storage 2.12 121.4 257 878 2000 1800 586.1 VBN*PNL02 5 C91*P612 Display Generator 3.50 121.4 425 1449 2048 1020 600.2 VBN*PNL02 6 C91-P620 Digital unit 4.40 121.4 534 1821 8191 2400 2400.5 490W +Wattage of Associated Blower VBN*PNL02 7 C91-P625 Digital unit 1.56 121.4 189 646 8500 2820 2491.1 l(BN-PNL02 8 C91-P621 Digital unit and SPC-BNKl 5.79 121.4 703 2397 8500 2750 2491.1 390 W +Wattage of Associated Blower VBN-PNL02 9 C91*P624 Digital unit 3.91 121.4 475 1619 8500 2400 2491.1 VBN-PNL02 10 C91*P622 Digital unit 3.16 121.4 384 1308 8500 2400 2491.1 VBN*PNL02 11 C91*P623 Digital unit 3.93 121.4 477 1627 8500 2400 2491.1 520 W +Wattage of Associated Blower VBN*PNL02 12 C91-P630/P631 PPC printers 1.05 121.4 127 435 1229 1000 360.2 1030.5 Watts in total for the two panels which includes PPC Printers and other components in the PPC table area VBN-PNL02 13 C91-P613 NSSS Analog unit 1.31 121.4 159 542 1229 912 360.2 VBN*PNL02 15 C91-P616 BOP Analog unit 0.86 121.4 104 356 850 360 249.1 VBN*PNL02 16 C91*P615 BOP Analog unit 0.98 121.4 119 406 850 360 249.1 VBN-PNL02 17 C91*P614 BOP Analog unit 1.29 121.4 157 534 850 360 249.1 VBN-PNL02 18 C91-P642 PPC Results Center Console (CRTs, KB, 4.23 121.4 514 1751 NA 1060 1060 Trend Recorders on P680) VBN*PNL02 19 H13*P680 PPC CRT's and KeyBoard 2.49 121.4 302 1031 NA 792 792 VBN*PNL02 20 C91-P632/P633 PPC computer printers 1.00 121.4 121 414 NA 810 810 VBN*PNL02 22 C91*P650 PPC BOP Digital and SWC*BNK4 4.56 121.4 554 1888 NA 2400 2400 390 W +Wattage of Associated Blower VBN*PNLOlAl 21 C91-P642 PPC Table Area NA 1488 1488 2120 Watts is the connected load VBN*PNLOlAl 22 C91-P631 Area Near PPC Desk NA 1526 1526 This row should be removed as all the connected loads associated with P631 are included in the row above (P630/P631 on row 11) VBN*PNLOlBl 33 C9l*P612 CPU's (2) NA 546 A Network Server is associated with P612 which has a load of 400W. This has to be accounted for with P612. Comments on the table above do not change any values obtained from Enercon Previously. | |||
Please look at the proposed heat load on C91 panels below. | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 REV. 0 PAGE NO. 192 of 303 | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 REV. 0 PAGE NO. 192 of 303 | ||
* 5 of the 17 Personal Computers are accounted for in Panels P642, P631 and P630. Hence they can be removed from the Personal Computer Wattage Calculations which totals to 5*300W each = 1500 Watts | * 5 of the 17 Personal Computers are accounted for in Panels P642, P631 and P630. Hence they can be removed from the Personal Computer Wattage Calculations which totals to 5*300W each = 1500 Watts | ||
* 3 ONE Computers shown in Document "Evaluation of PPC loads for MCR heatup" as 1254 Watts are accounted for already as they are installed on panels C91-CP613A, C91-CP613B and C91-CP625. This is referenced by drawing series starting from 0247.810-000-257 to 0247.810-000-266 | * 3 ONE Computers shown in Document "Evaluation of PPC loads for MCR heatup" as 1254 Watts are accounted for already as they are installed on panels C91-CP613A, C91-CP613B and C91-CP625. This is referenced by drawing series starting from 0247.810-000-257 to 0247.810-000-266 | ||
* Document "Evaluation of PPC loads for MCR heatup" splits the load on NETWORK Switches as shown below. The necessary changes shown must be reflected to avoid double counting. Network Server = 400 Watts The network server is associated and considered as a part of C91-P612 and must be removed from this part of the calculation One network switch= 147 Watts This value is accounted for in C91-P642 and must be removed. Network switch = 50 Watts This value is accounted for in C91-P642 and must be removed. Two Network Switches at reactor Engineering This has not been accounted for with panels and Desk= 2*147 = 294 Watts must stay as is. ' | * Document "Evaluation of PPC loads for MCR heatup" splits the load on NETWORK Switches as shown below. The necessary changes shown must be reflected to avoid double counting. | ||
* On the Email is attached a document which revises the Heat 'load on ERIS Panels based on updated calculations. Also, It was established that H13-Y714E was removed per CR-RBS-2014-05797. H13-Y714E which carried a load of 370.8 watts is now marked as 0 watts. Revised document is attached. This change must be updated by Enercon on their inputs to the calcs. | Network Server = 400 Watts The network server is associated and considered as a part of C91-P612 and must be removed from this part of the calculation One network switch= 147 Watts This value is accounted for in C91-P642 and must be removed. | ||
* Document "Evaluation of PPC loads for MCR heatup" shows the removal of the following o Large Core Storage (LCS) in panel C91-P603 (GE PPD Dwg. 287A5937P003) o Magnetic Tape Drive in panel C91-P608 (GE PPD Dwg. 287A5937P008) o Moving Head Disc in panel C91-P609 (GE PPD Dwg. 287A5937P009) o Card Reader in panel C91-P638 (GE Dwg. 287A5937P011) Based on CR-RBS-2015-4282, the following Equipment were abandoned in place o Black Box to Ethernet in old ERIS B Cabinet o REPTSC o Power Plex Server in MCR o Honeywell P609 Disk Drum o C95-REPMCR2 o C95-REPMCR1 o C91-DEC-REPCM-1 o C91-DEC-REPENG1 o C95-BRMCR1 o MMS-ENV PRINTER o C95-RBSU1 L o C95-REPTSC o C95-LB05 | Network switch = 50 Watts This value is accounted for in C91-P642 and must be removed. | ||
Two Network Switches at reactor Engineering This has not been accounted for with panels and Desk= 2*147 = 294 Watts must stay as is. ' | |||
* On the Email is attached a document which revises the Heat 'load on ERIS Panels based on updated calculations. | |||
Also, It was established that H13-Y714E was removed per CR-RBS-2014-05797. H13-Y714E which carried a load of 370.8 watts is now marked as 0 watts. Revised document is attached. | |||
This change must be updated by Enercon on their inputs to the calcs. | |||
* Document "Evaluation of PPC loads for MCR heatup" shows the removal of the following o Large Core Storage (LCS) in panel C91-P603 (GE PPD Dwg. 287A5937P003) o Magnetic Tape Drive in panel C91-P608 (GE PPD Dwg. 287A5937P008) o Moving Head Disc in panel C91-P609 (GE PPD Dwg. 287A5937P009) o Card Reader in panel C91-P638 (GE Dwg. 287A5937P011) | |||
Based on CR-RBS-2015-4282, the following Equipment were abandoned in place o Black Box to Ethernet in old ERIS B Cabinet o REPTSC o Power Plex Server in MCR o Honeywell P609 Disk Drum o C95-REPMCR2 o C95-REPMCR1 o C91-DEC-REPCM-1 o C91-DEC-REPENG1 o C95-BRMCR1 o MMS-ENV PRINTER o C95-RBSU1 L o C95-REPTSC o C95-LB05 | |||
* This is actually BRMCR2 modem. SRM-Outfall-02 Abandoned in Place CR The information above must be documented. | * This is actually BRMCR2 modem. SRM-Outfall-02 Abandoned in Place CR The information above must be documented. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 . REV.O PAGE NO. 193 of 303 Information below shows the suggested rev1s1on of wattage on C91 panels base9 on walkdown, information published above and discussions with the Honeywell Expert. It was determined that the 2x multiplication factor used by Enercon previously on the measured values can be revised with a 1.15 factor which accounts for a 15% margin for aging factor. All panels except P642/P631 and P630 use measured values as inputs as they are comprised of circuit cards and are bounded by the associated power supplies. P642/P631 and P630 comprise of multiple devices on them (as shown in the first page of this document) which cannot be bounded bv the measured values. Hence connected loads are used as inputs Nine Mile Measured Numbers based on calculations by Suggested Revised Watts Values Enercon Numbers 1.15x all panels except Computer Load 2x digital panels+ l.lx others p642/p631/p630 C91-P608 C91-P600 C91-P603 C91-P612 C91-P620 C91-P625 C91-P621 C91-P624 C91-P622 C91-P623 C91-P630/P631 C91-P613 C91-P616 C91-P615 C91-P614 C91-P642 H13-P680 C91-P632/P633 C91-P650 C91-P642 C91-P631 C91-P612 C91-P612 Server) Total watts (Network 2400 1500.2 586.1 600.2 2400.5 ;. ... 360.2 360.2 249.1 249.1 249.1 1060 792 810 1488 1526 546 32 34.7 1493 1642.5 257 283.1 425 467.4 534** 127 140.2 159 174.9 104 114.8 119 130.9 157 172.3 514 564.9 302 332.5 121 133.5 1488.0 1526.0 546.0 14382.7 ' 36.8 1716.95 295.55 488.75 1030.5 182.85 119.6 136.85 180.55 2120 This load is accounted for with NSSS Panel 139.15 This load is accounted for with C91-P642 Loading above This load is shown with C91-P630/P631 loading above 546 400 11206.95 ENERCON Load Description C91 Process Computer Panels ERIS DAS Tophats Personal Computers/Work Stations Network Switch ONE Computers TOTAL CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 8 REV.O PAGE NO. 194 of 303 Numbers based on calculations by Suggested Revised Numbers Enercon 14382.7 11206.95 2660 7461.6 5100 3600 891 294 1254 0 24287.7 22562.55 IT must be noted that The ERIS DAS Tophats are located above the term cabinets at 7.5 Ft elevation v CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o ENERCON Attachment 9 PAGE NO. 195 of 303 Attachment 9: GOTHIC Input File for Case 2 I 2Q _ J_ ,5b 4 5 7 \ I \ ) | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 . REV.O PAGE NO. 193 of 303 Information below shows the suggested rev1s1on of wattage on C91 panels base9 on walkdown, information published above and discussions with the Honeywell Expert. It was determined that the 2x multiplication factor used by Enercon previously on the measured values can be revised with a 1.15 factor which accounts for a 15% margin for aging factor. All panels except P642/P631 and P630 use measured values as inputs as they are comprised of circuit cards and are bounded by the associated power supplies. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATIQN CONTROL SHEET-REV.p Attachment 9 f.xrcl!r.nt*"-fretyfHD}e<:t. f.wuy dfJY. PAGE; NO. 196 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) (ft2) ls MCR Below 87417. 136 .135 9.115 13.8296 DEFAULT 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 Atmosphere 30000. 136.135 40. 10. DEFAULT 4 Stairwell 1 8341.84 98. 66.667 20. DEFAULT 5 Smoke Removal E 10000. 142. 10. 10. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option Wall Option (ft2) ls o. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT ' Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s 0. -CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT X-Direction Nading Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. . 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading ENERCON Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37, 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Height Plane (ft) (ft) 1 o. 3.48513 2 3.48513 4.0193 3 7.50443 1.61057 I Cell Blockages -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 6 1H13-U750 7 1H13-U730 8 1H13-P808 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1H13-U715 13 1H13-U720 14 1H13-U721/U799 15 1H13-U748 16 1H13-U746 17 1H13-U744 18 1H13-U742 19 1H13-U741 20 1H13-U730 21 1H13-U703 22 1H13-U701 23 1H13-U712 24 1H13-U710 25 1H13-U714 26 1H13-U711 27 1H13-U740 28 Shift Manager E 29 Shift Manager s 30 Kitchen_S 31 Kitchen_W Cell Blockages -Table 2 Volume ls Block Coo No. Xl Yl Zl CALCULATION CONTROL Attachment 9 T BLK B I N BLK B I N BLK B I N B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I'N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N (ft) X2 Y2 Z2 X3 Y3 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 197 of 303 Curb Z3 L Height 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 lB 19 20 21 22 23 24 25 26 27 2B 29 30 31 ENERCON 9. Bl. lB. 27. 36. 45. 54. 5B.5 90. 99. lOB. 117. 126. 135. 9. lB. 27. 36. 45. 54. 9.25 0. 9.25 0. lB.5 o. lB.5 0. lB.5 o. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. 46.25 0. 46.25 0. 46.25 0. 46.25 o. 55.5 0. 46.25 0. 5B.5 27.75 0. Bl. 37. 0. 99. 46.25 0. -lOB. 46.25 0. 11 7. 46. 25 0. 126. 46.25 0. 135.' 46.25 0. 0. 9.25 0. 9. 0. 0. 54. 64.75 o. 54. 64.75 0. CALCULATION CONTROL Attachment 9 54. 135. lB. 27. 36. 45. 54. 77.5 90. 99. lOB. 117. 126. 9. lB. 27. 36. 45. 54. 77.5 Bl. 99. lOB. 117. 126. 135. 9. 9. 54. 45. 9.25 7.5044 9.25 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 lB.5 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 *7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 / 9.25 9.115 6.25 9.115 74. 9 .115 64.75 9.115 X-Direction Cell Face Variations Volume ls Cell Blockage No. No. def o lsl ls2 ls3 ls4 ls5 ls6 lsl7 lslB ls19 ls20 ls21 ls22 ls129 ls130 lsl31 ls132 ls133 ls134 ls145 ls146 ls147 ls14B lsl49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000.. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | P642/P631 and P630 comprise of multiple devices on them (as shown in the first page of this document) which cannot be bounded bv the measured values. Hence connected loads are used as inputs Nine Mile Measured Numbers based on calculations by Suggested Revised Watts Values Enercon Numbers 1.15x all panels except Computer Load 2x digital panels+ l.lx others p642/p631/p630 C91-P608 C91-P600 C91-P603 C91-P612 C91-P620 C91-P625 C91-P621 C91-P624 C91-P622 C91-P623 C91-P630/P631 C91-P613 C91-P616 C91-P615 | ||
C91-P614 C91-P642 H13-P680 C91-P632/P633 | |||
C91-P650 C91-P642 C91-P631 C91-P612 C91-P612 Server) Total watts (Network 2400 1500.2 586.1 600.2 2400.5 ;. ... 360.2 360.2 249.1 249.1 249.1 1060 792 810 1488 1526 546 32 34.7 1493 1642.5 257 283.1 425 467.4 534** 127 140.2 159 174.9 104 114.8 119 130.9 157 172.3 514 564.9 302 332.5 121 133.5 1488.0 1526.0 546.0 14382.7 ' 36.8 1716.95 295.55 488.75 1030.5 182.85 119.6 136.85 180.55 2120 This load is accounted for with NSSS Panel 139.15 This load is accounted for with C91-P642 Loading above This load is shown with C91-P630/P631 loading above 546 400 11206.95 ENERCON Load Description C91 Process Computer Panels ERIS DAS Tophats Personal Computers/Work Stations Network Switch ONE Computers TOTAL CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 8 REV.O PAGE NO. 194 of 303 Numbers based on calculations by Suggested Revised Numbers Enercon 14382.7 11206.95 2660 7461.6 5100 3600 891 294 1254 0 24287.7 22562.55 IT must be noted that The ERIS DAS Tophats are located above the term cabinets at 7.5 Ft elevation v | |||
CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o ENERCON Attachment 9 PAGE NO. 195 of 303 Attachment 9: GOTHIC Input File for Case 2 I 2Q _ J_ ,5b 4 5 7 \ I \ ) | |||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATIQN CONTROL SHEET-REV.p Attachment 9 f.xrcl!r.nt*"-fretyfHD}e<:t. | |||
f.wuy dfJY. PAGE; NO. 196 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) | |||
(ft2) ls MCR Below 87417. 136 .135 9.115 13.8296 DEFAULT 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 Atmosphere 30000. 136.135 40. 10. DEFAULT 4 Stairwell 1 8341.84 98. 66.667 20. DEFAULT 5 Smoke Removal E 10000. 142. 10. 10. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option Wall Option (ft2) ls o. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT ' Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s 0. -CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT X-Direction Nading Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. . 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading ENERCON Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37, 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Height Plane (ft) (ft) 1 o. 3.48513 2 3.48513 4.0193 3 7.50443 1.61057 I Cell Blockages | |||
-Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 6 1H13-U750 7 1H13-U730 8 1H13-P808 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1H13-U715 13 1H13-U720 14 1H13-U721/U799 15 1H13-U748 16 1H13-U746 17 1H13-U744 18 1H13-U742 19 1H13-U741 20 1H13-U730 21 1H13-U703 22 1H13-U701 23 1H13-U712 24 1H13-U710 25 1H13-U714 26 1H13-U711 27 1H13-U740 28 Shift Manager E 29 Shift Manager s 30 Kitchen_S 31 Kitchen_W Cell Blockages | |||
-Table 2 Volume ls Block Coo No. Xl Yl Zl CALCULATION CONTROL Attachment 9 T BLK B I N BLK B I N BLK B I N B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I'N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N (ft) X2 Y2 Z2 X3 Y3 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 197 of 303 Curb Z3 L Height 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 lB 19 20 21 22 23 24 25 26 27 2B 29 30 31 ENERCON 9. Bl. lB. 27. 36. 45. 54. 5B.5 90. 99. lOB. 117. 126. 135. 9. lB. 27. 36. 45. 54. 9.25 0. 9.25 0. lB.5 o. lB.5 0. lB.5 o. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. 46.25 0. 46.25 0. 46.25 0. 46.25 o. 55.5 0. 46.25 0. 5B.5 27.75 0. Bl. 37. 0. 99. 46.25 0. -lOB. 46.25 0. 11 7. 46. 25 0. 126. 46.25 0. 135.' 46.25 0. 0. 9.25 0. 9. 0. 0. 54. 64.75 o. 54. 64.75 0. CALCULATION CONTROL Attachment 9 54. 135. lB. 27. 36. 45. 54. 77.5 90. 99. lOB. 117. 126. | |||
: 9. lB. 27. 36. 45. 54. 77.5 Bl. 99. lOB. 117. 126. 135. 9. 9. 54. 45. 9.25 7.5044 9.25 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 lB.5 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 *7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 / 9.25 9.115 6.25 9.115 74. 9 .115 64.75 9.115 X-Direction Cell Face Variations Volume ls Cell Blockage No. No. def o lsl ls2 ls3 ls4 ls5 ls6 lsl7 lslB ls19 ls20 ls21 ls22 ls129 ls130 lsl31 ls132 ls133 ls134 ls145 ls146 ls147 ls14B lsl49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000.. | |||
: 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. | : 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. | ||
: 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. . 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. . 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
| Line 1,207: | Line 3,058: | ||
: 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. j 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. ci. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 203 of 303 EN R ON CALCULATION CONTROL Attachment 9 Y-Direction Cell.Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 ls129 ls130 ls131 ls132 ls133 ls134 ls135 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll *1s12 ls13 ls14 ls15 ls16 ls137 ls138 ls139 18140 ls141 ls142 ls143 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 ls18 lsl9 ls34 ls35 ls SO ls51 lsl46 ls147 ls162 lsl63 ls178 ls179 ls19 ls20 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000. 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2: 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36 .. le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 6.44228 36. 36. | : 0. 0. 0. 0. j 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. ci. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 203 of 303 EN R ON CALCULATION CONTROL Attachment 9 Y-Direction Cell.Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 ls129 ls130 ls131 ls132 ls133 ls134 ls135 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll *1s12 ls13 ls14 ls15 ls16 ls137 ls138 ls139 18140 ls141 ls142 ls143 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 ls18 lsl9 ls34 ls35 ls SO ls51 lsl46 ls147 ls162 lsl63 ls178 ls179 ls19 ls20 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000. | ||
: 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2: 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36 .. le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 6.44228 36. 36. | |||
: 36. 36. 36. 36. 36. 36 .. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 ., 0. 0. 0. 0. 0. 0. 0. 0. | : 36. 36. 36. 36. 36. 36 .. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 ., 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
| Line 1,293: | Line 3,145: | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. 0. 0. -0. o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 209 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O Z-Direction Cell Face Variations Volume ls Cell Blockage Ai-ea Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 ls148 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 lsl78 lsl79 ls35 ls36 No. Porosity (ft) 0 1. 1000000. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 1. 1. 1. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. 0. 0. -0. o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 209 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O Z-Direction Cell Face Variations Volume ls Cell Blockage Ai-ea Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 ls148 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 lsl78 lsl79 ls35 ls36 No. Porosity (ft) 0 1. 1000000. | ||
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 1. 1. 1. | |||
: 1. 1. 1. i: 1. 1. 1. -1. 1. 1. 1. 1. 1. | : 1. 1. 1. i: 1. 1. 1. -1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
| Line 1,365: | Line 3,218: | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 36. | : 1. 1. 1. 1. 1. 1. 1. 1. 36. | ||
: 36. 36. 36. 36. 36. 36. 36. | : 36. 36. 36. 36. 36. 36. 36. | ||
: 37. 37. 37. ,37. 37. 37. 51.4286 51.4286 51.4286 51.4286 51.4286 51'.4286 36. 36. 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. ( Volume Hyd. Dia. Porosity (ft) 1. 1000000. 1. 1. | : 37. 37. 37. ,37. 37. 37. 51.4286 51.4286 51.4286 51.4286 51.4286 51'.4286 | ||
: 36. 36. 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. ( Volume Hyd. Dia. Porosity (ft) 1. 1000000. | |||
: 1. 1. | |||
: 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
| Line 1,386: | Line 3,241: | ||
: 36. 36. 36-; 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 215 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ixre!fo11a-Ew:ty ptO}fKl £vf/ry da'f. Attachment 9 PAGE NO. 216 of 303 lsl82 7 1. 36. lsl83 7 1. 36. ls23 8 1. 74. ,ls24 8 1. 37. ls25 8 1. 61.6667 ls39 8 1. 74. ls40 8 1. 37. ls41 8 1. 61.6667 lslSl 8 1. 74. lsl52 8 1. 37. lsl53 8 1. 61.6667 lsl67 8 1. 74. lsl68 8 1. 37. lsl69 8 1. 61.6667 ls42 9 1. 36. ls43 9 1. 36. ls SB 9 1. 36. ls59 9 1. 36. lsl70 9 1. 36. lsl71 9 1. 36. lsl86 9 1. 36. lsl87 9 1. 36. ls43 10 1. 36. ls44 10 1. 36. ls59 10 1. 36. ls60 10 1. 36. lsl71 10 1. 36. lsl72 10 1. 36. lsl87 10 1. 36. lslBB 10 1. 36. ls44 11 1. 36. ls45 11 1. 36. ls60 11 1. 36. ls61 11 1. 36. lsl72 11 1. 36. lsl73 11 1. 36. lslBB 11 1. 36. lsl89 11 1. 36. ls45 12 1. 36. ls46 12 1. 36. ls61 12 1. 36. ls62 12 1. 36. lsl73 12 1. 36. lsl74 12 1. 36. lsl89 12 1. 36. lsl90 12 1. 36. ls46 13 1. 36. ls47 13 1. 36. ls62 13 1. 36. ls63 13 1. 36. lsl74 13 1. 36. lsl75 13 1. 36. lsl90 13 1. 36. lsl91 13 1. 36. ls47 14 1. 36. ls48 14 1. 36. ls63 14 1. 36. ls64 14 1. 36. lsl75 14 1. 36. lsl76 14 1. 36. | : 36. 36. 36-; 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 215 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ixre!fo11a-Ew:ty ptO}fKl £vf/ry da'f. Attachment 9 PAGE NO. 216 of 303 lsl82 7 1. 36. lsl83 7 1. 36. ls23 8 1. 74. ,ls24 8 1. 37. ls25 8 1. 61.6667 ls39 8 1. 74. ls40 8 1. 37. ls41 8 1. 61.6667 lslSl 8 1. 74. lsl52 8 1. 37. lsl53 8 1. 61.6667 lsl67 8 1. 74. lsl68 8 1. 37. lsl69 8 1. 61.6667 ls42 9 1. 36. ls43 9 1. 36. ls SB 9 1. 36. ls59 9 1. 36. lsl70 9 1. 36. lsl71 9 1. 36. lsl86 9 1. 36. lsl87 9 1. 36. ls43 10 1. 36. ls44 10 1. 36. ls59 10 1. 36. ls60 10 1. 36. lsl71 10 1. 36. lsl72 10 1. 36. lsl87 10 1. 36. lslBB 10 1. 36. ls44 11 1. 36. ls45 11 1. 36. ls60 11 1. 36. ls61 11 1. 36. lsl72 11 1. 36. lsl73 11 1. 36. lslBB 11 1. 36. lsl89 11 1. 36. ls45 12 1. 36. ls46 12 1. 36. ls61 12 1. 36. ls62 12 1. 36. lsl73 12 1. 36. lsl74 12 1. 36. lsl89 12 1. 36. lsl90 12 1. 36. ls46 13 1. 36. ls47 13 1. 36. ls62 13 1. 36. ls63 13 1. 36. lsl74 13 1. 36. lsl75 13 1. 36. lsl90 13 1. 36. lsl91 13 1. 36. ls47 14 1. 36. ls48 14 1. 36. ls63 14 1. 36. ls64 14 1. 36. lsl75 14 1. 36. lsl76 14 1. 36. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxceHence-F.vetyptt;]e<:t, fw:r:; ttay. Attachment 9 PAGE NO. 217 of 303 ls191 14 1. 36 . . ls192 14 1. 36. ls81 15 1. 36. ls82 15 1. 36. ls97 15 1. 36. 1598 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. r 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19. 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 ,20 1. 36. ls102 20 1. 36. lsl03 20 1. 36. ls214 20 1. 36. ls215 20 '1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61. 6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61. 6667 ls167 21 1. 185. ls168 21 1. 92.5 lsl69 21 1. 154.167 \' ls183 21 1. 185. ls184 21 1. 92.5 '-ls185 21 1. 154.167 ls73 22 1. 36. ls74 22 . 1. 36 . | CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxceHence-F.vetyptt;]e<:t, fw:r:; ttay. Attachment 9 PAGE NO. 217 of 303 ls191 14 1. 36 . . ls192 14 1. 36. ls81 15 1. 36. ls82 15 1. 36. ls97 15 1. 36. 1598 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. r 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19. 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 ,20 1. 36. ls102 20 1. 36. lsl03 20 1. 36. ls214 20 1. 36. ls215 20 '1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61. 6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61. 6667 ls167 21 1. 185. ls168 21 1. 92.5 lsl69 21 1. 154.167 \' ls183 21 1. 185. ls184 21 1. 92.5 '-ls185 21 1. 154.167 ls73 22 1. 36. ls74 22 . 1. 36 . | ||
CALC. NO. ENTR-078-CALC-004 '* ENERCON CALCULATION CONTROL SHEET-REV.O pt()jtJ<;t, Evwy day. Attachment 9 I PAGE NO. 218 of 303 ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. lsl08 23 1. 36. ls219 23 1. 36.' ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 -1. 36. ls93 24 1. 36. lsl08 24 1. 36. lsl09 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1. 36. ls109 25 1. 36. lsllO 25 1. 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. ls238 25 1. 36. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 1. 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. ls17 28 1. 37. ls129 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51.4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ls257 29 1. 51.4286 ls258 29 1. 51.4286 lsl18 30 1. 36. ls119 30 1. 36. | CALC. NO. ENTR-078-CALC-004 | ||
ENERCON ls246 30 1. ls247 30 1. ls374 30 1. ls375 30 1. ls102 31 1. ls118 31 1. ls230 31 "1. ls246 31 1. ls358 31 1. ls374 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (-ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction No ding Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Cell Blockages Volume 2s Block Height (ft) 5. 3.67 Table 1 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 219 of 303 ENERCON CALCULATION CONTROL Attachment 9 No. Description Cell Blockages -Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000. 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. No. Porosity (ft) Coeff. def 0 1. 1000000. 0. Z-Direction Cell Face Variations Volume 2s (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 220 of 303 Z3 L Curb Height Cell Blockage Area Hyd. Dia. Loss Drop De-ent. Curb Ht No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s (ft) Coeff. 1000000. 0. Hyd. Dia. (ft)' 1000000. North South East West Top Bottom Factor (ft) 0. 0. NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Molec Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase # Diff. Model (ft) (ft) No. No. Option ls NO MIX-L 1. 1. 1. 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation # Type Phase (ft2/s2) [*lbm/s] FF (ft2/s3) [*lbm/s] FF "" Discrete Burn Parameters Min Min Max Burn Flame Burn Un Vol H2 02 H20 Length speed Rate Burn Burn # Frac Frac Frac (ft) (ft/s) FF Frac Opt ls 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 2s 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 3 0.07 0.05 0.55 DEFAtn;.T DEFAULT DEFAULT FBR I E.NERCON CALCULATION CONTROL Attachment 9 4 5 0.07 0.07 0.05 0.05 0.55 0.55 DEFAULT DEFAULT DEFAULT DEFAULT Continuous Burn Parameters Vol Min H2 Min Max Max Burn Vol Flow 02 H20 H20/H2 Frac # (lbm/s) Frac Frac Ratio ls 0. 0.05 0.55 1000. 1. 2s 0. 0.05 0.55 1000. 1. 3 0. 0.05 0.55 1000. 1. 4 0. 0.05 0.55 1000. 1. 5 0. 0.05 0.55 1000. 1. Mechanistic Burn Rate Parameters Min Min Max Lam Burn DEFAULT FBR DEFAULT FBR Burn Vol H2 02 H20 Da Rate Temp Limit # Frac Frac Frac No. (lbm/ft3-s FF (F) ls 0. 0. 1. 1. DEFAULT 350. 2s 0. 0. 1. 1. DEFAULT 350. 3 0. 0. 1. 1. DEFAULT 350. 4 0. 0. 1. 1. DEFAULT 350. 5 0. 0. 1. 1. DEFAULT 350. Mechanistic Burn Propagation Parameters Unburne Burned CC Flow Flame Ignition Vol H2 H2 Vel Thick H2 # Frac FF Frac FF (ft/s) FF (ft) FF Frac ls 0.04 0.001 DEFAULT 0.164 0.04 *2s 0.04 0.001 DEFAULT 0.164 0.04 3 0.04 0.001 DEFAULT 0.164 0.04 4 0.04 0.001 DEFAULT 0.164 0.04 5 0.04 0.001 DEFAULT 0.164 0.04 Fluid Boundary Conditions -Table 1 Press. Temp. Flow s J ON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 221of303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDI$ EDIS OFF Elev. BC# Description (psia) FF (F) FF (lbm/s) FF p 0 Trip Trip (ft) lP Environment 14.7 96 2P HVC ACUl Outlet 14.7 1 3F Atmosphere FB 14.7 1 ___ 4p Smoke Removal E 14.7 96 Fluid Boundary Conditions -Table 2 Liq. V Stm. V Drop D Cpld BC# Frac. FF Frac. FF (in) FF BC# lP 0. h53 NONE 2P 0. . 03034 NONE 3F 4P .03034 h53 NONE NONE Fluid Boundary -Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 lP 1. 2P 1. 3F 1. 4P 1. Fluid Boundary Conditions -Table 4 Volume Fractions 0 N N 136 .13 lT 0 N N 136.13 lT 200 N N 136.13 N N 136.13 Flow Heat Outlet Frac. FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT FF ENERCON CALCULATION CONTROL Attachment 9 Liq CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 222 of 303 BC# Gas 5 FF Gas 6 FF Gas 7 FF Comp FF lP 2P 3F 4P Flow Paths -Table 1 F .P. Vol # Description A 1 'Env Connection ls94 2 Tile 1 a 2s34 3 Tile 1 b 2s68 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8 HVC-ACUl PB Atmosphere FB CB136-9 Low CB 136-9 High Outside Low Outside High Smoke Removal Smoke Removal 2s86 2s77 2s63 2s82 2s89 2s95 2s56 3 3 ls14 ls142 3 4 p 5 2s193 Smoke Removal 2 2s136 Smoke Removal 3 2s144 Fan Flow path ls14 Toilet/Kitchen ls374 Egg Crate 1 ls369 Egg Crate 2 ls371 Egg Crate 3 ls373 Egg Crate 4 ls375 Egg Crate 5 ls377 Egg Crate 6 ls379 Egg Crate 7 ls381 Egg Crate 8 ls383 Egg Crate 9 ls370 Egg Crate 10 ls372 Egg Crate 11 ls376 Egg Crate 12 ls378 Egg Crate 13 ls380 Egg Crate 14 ls382 Egg Crate 15 ls384 Egg Crate 16 ls257 Egg Crate 17 ls258 Egg Crate 18 ls259 Egg Crate 19 ls260 Egg Crate 20 ls261 Egg Crate 21 ls262 Egg Crate_22 ls263 Egg Crate 23 ls264 Egg Crate 24 ls265 Egg Crate 25 ls266 Egg Crate_26 ls267 Egg Crate 27 ls268 Egg Crate_28 ls269 Elev Ht (ft) (ft) 136.13 3.3 145.5 0.001 145.5 0.001 Vol B lP ls290 ls324 Elev Ht (ft) (ft) 136.13 3.3 145.24 0.001 145.24 0.001 145.5 0.001 ls342 145.24 0.001 145.5 0.001 ls333 145.24 0.001 145.5 0.001 ls319 145.24 0.001 145.5 0.001 ls338 145.24 0.001 145.5 0.001 ls345 145.24 0.001 145.5 0.001 ls351 145.5 0.001 136.13 1. 136.13 1. ls312 2P 3F 136.13 3.4851 4 139.62 3.5149 4 157.67 3.5 161.17 3.5 142. 1. 151. 1., 151. 151. 1. 1. 4 3 4P 5 5 5 136.13 3.4851 4 144.25 1. 5 145.24 0.001 2s113 145.24 0.001 2s115 145.24 0.001 2s117 145.24 0.001 2s119 145.24 0.001 2s121 145.24 0.001 2s123 145.24 0.001 2s125 145.24 0.001 2sl27 145.24 0.001 2s114 145.24 0.001 2s116 145.24 0.001 2s120 145.24 0.001 2s122 145.24 0.001 2s124 145.24 0.001 2s126 145.24 0.001 2s128 145.24 0.001 2sl 145.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 145.24 0.001 136.13 1. 136.13 1. 136.13 3.4851 139.62 3.5149 157.67 3.5 161.17 3 .5 136.13 1. 142. 1. 142. 1. 142. 1. 136.13 3.4851 142. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 | '* ENERCON CALCULATION CONTROL SHEET-REV.O pt()jtJ<;t, Evwy day. Attachment 9 I PAGE NO. 218 of 303 ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. lsl08 23 1. 36. ls219 23 1. 36.' ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 -1. 36. ls93 24 1. 36. lsl08 24 1. 36. lsl09 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1. 36. ls109 25 1. 36. lsllO 25 1. 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. ls238 25 1. 36. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 1. 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. ls17 28 1. 37. ls129 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51.4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ls257 29 1. 51.4286 ls258 29 1. 51.4286 lsl18 30 1. 36. ls119 30 1. 36. | ||
ENERCON ls246 30 1. ls247 30 1. ls374 30 1. ls375 30 1. ls102 31 1. ls118 31 1. ls230 31 "1. ls246 31 1. ls358 31 1. ls374 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (-ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction No ding Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Cell Blockages Volume 2s Block Height (ft) 5. 3.67 Table 1 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 219 of 303 ENERCON CALCULATION CONTROL Attachment 9 No. Description Cell Blockages | |||
-Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000. | |||
: 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. No. Porosity (ft) Coeff. def 0 1. 1000000. | |||
: 0. Z-Direction Cell Face Variations Volume 2s (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 220 of 303 Z3 L Curb Height Cell Blockage Area Hyd. Dia. Loss Drop De-ent. Curb Ht No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s (ft) Coeff. 1000000. | |||
: 0. Hyd. Dia. (ft)' 1000000. | |||
North South East West Top Bottom Factor (ft) 0. 0. NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Molec Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase # Diff. Model (ft) (ft) No. No. Option ls NO MIX-L 1. 1. 1. 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation | |||
# Type Phase (ft2/s2) | |||
[*lbm/s] | |||
FF (ft2/s3) | |||
[*lbm/s] | |||
FF "" Discrete Burn Parameters Min Min Max Burn Flame Burn Un Vol H2 02 H20 Length speed Rate Burn Burn # Frac Frac Frac (ft) (ft/s) FF Frac Opt ls 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 2s 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 3 0.07 0.05 0.55 DEFAtn;.T DEFAULT DEFAULT FBR I E.NERCON CALCULATION CONTROL Attachment 9 4 5 0.07 0.07 0.05 0.05 0.55 0.55 DEFAULT DEFAULT DEFAULT DEFAULT Continuous Burn Parameters Vol Min H2 Min Max Max Burn Vol Flow 02 H20 H20/H2 Frac # (lbm/s) Frac Frac Ratio ls 0. 0.05 0.55 1000. 1. 2s 0. 0.05 0.55 1000. 1. 3 0. 0.05 0.55 1000. 1. 4 0. 0.05 0.55 1000. 1. 5 0. 0.05 0.55 1000. 1. Mechanistic Burn Rate Parameters Min Min Max Lam Burn DEFAULT FBR DEFAULT FBR Burn Vol H2 02 H20 Da Rate Temp Limit # Frac Frac Frac No. (lbm/ft3-s FF (F) ls 0. 0. 1. 1. DEFAULT 350. 2s 0. 0. 1. 1. DEFAULT 350. 3 0. 0. 1. 1. DEFAULT 350. 4 0. 0. 1. 1. DEFAULT 350. 5 0. 0. 1. 1. DEFAULT 350. Mechanistic Burn Propagation Parameters Unburne Burned CC Flow Flame Ignition Vol H2 H2 Vel Thick H2 # Frac FF Frac FF (ft/s) FF (ft) FF Frac ls 0.04 0.001 DEFAULT 0.164 0.04 *2s 0.04 0.001 DEFAULT 0.164 0.04 3 0.04 0.001 DEFAULT 0.164 0.04 4 0.04 0.001 DEFAULT 0.164 0.04 5 0.04 0.001 DEFAULT 0.164 0.04 Fluid Boundary Conditions | |||
-Table 1 Press. Temp. Flow s J ON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 221of303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDI$ EDIS OFF Elev. BC# Description (psia) FF (F) FF (lbm/s) FF p 0 Trip Trip (ft) lP Environment 14.7 96 2P HVC ACUl Outlet 14.7 1 3F Atmosphere FB 14.7 1 ___ 4p Smoke Removal E 14.7 96 Fluid Boundary Conditions | |||
-Table 2 Liq. V Stm. V Drop D Cpld BC# Frac. FF Frac. FF (in) FF BC# lP 0. h53 NONE 2P 0. . 03034 NONE 3F 4P .03034 h53 NONE NONE Fluid Boundary | |||
-Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 lP 1. 2P 1. 3F 1. 4P 1. Fluid Boundary Conditions | |||
-Table 4 Volume Fractions 0 N N 136 .13 lT 0 N N 136.13 lT 200 N N 136.13 N N 136.13 Flow Heat Outlet Frac. FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT FF ENERCON CALCULATION CONTROL Attachment 9 Liq CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 222 of 303 BC# Gas 5 FF Gas 6 FF Gas 7 FF Comp FF lP 2P 3F 4P Flow Paths -Table 1 F .P. Vol # Description A 1 'Env Connection ls94 2 Tile 1 a 2s34 3 Tile 1 b 2s68 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8 HVC-ACUl PB Atmosphere FB CB136-9 Low CB 136-9 High Outside Low Outside High Smoke Removal Smoke Removal 2s86 2s77 2s63 2s82 2s89 2s95 2s56 3 3 ls14 ls142 3 4 p 5 2s193 Smoke Removal 2 2s136 Smoke Removal 3 2s144 Fan Flow path ls14 Toilet/Kitchen ls374 Egg Crate 1 ls369 Egg Crate 2 ls371 Egg Crate 3 ls373 Egg Crate 4 ls375 Egg Crate 5 ls377 Egg Crate 6 ls379 Egg Crate 7 ls381 Egg Crate 8 ls383 Egg Crate 9 ls370 Egg Crate 10 ls372 Egg Crate 11 ls376 Egg Crate 12 ls378 Egg Crate 13 ls380 Egg Crate 14 ls382 Egg Crate 15 ls384 Egg Crate 16 ls257 Egg Crate 17 ls258 Egg Crate 18 ls259 Egg Crate 19 ls260 Egg Crate 20 ls261 Egg Crate 21 ls262 Egg Crate_22 ls263 Egg Crate 23 ls264 Egg Crate 24 ls265 Egg Crate 25 ls266 Egg Crate_26 ls267 Egg Crate 27 ls268 Egg Crate_28 ls269 Elev Ht (ft) (ft) 136.13 3.3 145.5 0.001 145.5 0.001 Vol B lP ls290 ls324 Elev Ht (ft) (ft) 136.13 3.3 145.24 0.001 145.24 0.001 145.5 0.001 ls342 145.24 0.001 145.5 0.001 ls333 145.24 0.001 145.5 0.001 ls319 145.24 0.001 145.5 0.001 ls338 145.24 0.001 145.5 0.001 ls345 145.24 0.001 145.5 0.001 ls351 145.5 0.001 136.13 1. 136.13 1. ls312 2P 3F 136.13 3.4851 4 139.62 3.5149 4 157.67 3.5 161.17 3.5 142. 1. 151. 1., 151. 151. 1. 1. 4 3 4P 5 5 5 136.13 3.4851 4 144.25 1. 5 145.24 0.001 2s113 145.24 0.001 2s115 145.24 0.001 2s117 145.24 0.001 2s119 145.24 0.001 2s121 145.24 0.001 2s123 145.24 0.001 2s125 145.24 0.001 2sl27 145.24 0.001 2s114 145.24 0.001 2s116 145.24 0.001 2s120 145.24 0.001 2s122 145.24 0.001 2s124 145.24 0.001 2s126 145.24 0.001 2s128 145.24 0.001 2sl 145.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 145.24 0.001 136.13 1. 136.13 1. 136.13 3.4851 139.62 3.5149 157.67 3.5 161.17 3 .5 136.13 1. 142. 1. 142. 1. 142. 1. 136.13 3.4851 142. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 | |||
) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O 51 52 53 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area # (ft2) 1 1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 40. 40. 80. 80. 80. 80. 80. so. 80. 1. 1. 10.5 10.5 10.5 10.5 1. 36. 12. | ) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O 51 52 53 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area # (ft2) 1 1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 40. 40. 80. 80. 80. 80. 80. so. 80. 1. 1. 10.5 10.5 10.5 10.5 1. 36. 12. | ||
: 12. 10.5 1. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 -Table 2 Hyd. Diam. (ft) 1. 2.667 2.661 2.667 2.667 2.667 2.667 2.667 2.667 2.667 1. 1. 4.2 4.2 4.2 4.2 1. 5.54 3.43 3.43 4.2 1. 0.042 0.042 0.042 0.042 0.042 0.042 0. 042. 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 PAGE NO. 223 of 303 ls270 145.24 0.001 2s14 ls271 145.24 0.001 2s15 ls272 145.24 0.001 2s16 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) 1. 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 1. 1. 10. 10. 10. 10. 1. 10. | : 12. 10.5 1. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 -Table 2 Hyd. Diam. (ft) 1. 2.667 2.661 2.667 2.667 2.667 2.667 2.667 2.667 2.667 1. 1. 4.2 4.2 4.2 4.2 1. 5.54 3.43 3.43 4.2 1. 0.042 0.042 0.042 0.042 0.042 0.042 0. 042. 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 PAGE NO. 223 of 303 ls270 145.24 0.001 2s14 ls271 145.24 0.001 2s15 ls272 145.24 0.001 2s16 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) 1. 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 1. 1. 10. 10. 10. 10. 1. 10. | ||
| Line 1,396: | Line 3,266: | ||
: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | : 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. | ||
: 0. 0. 0. 0. 0. 0. 0. Drop Breakup Model OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF dFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF PAGE NO. 224 of 303 N NONE ENERCON Flow Paths -Table 4 Forwar Flow Min Path H2 #-Frac 1 0.06 2 0. 06 3 0.06 4 0.06 5 0.06 6 0.06 7 0.06 8 0.06 9 0.06 Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 10 0.06 0.05 11 0.06 0.05 12 0.06 0.05 13 0.06 0.05 14 0.06 0.05 15 0.06 0.05 16 0.06 0.05 17 0.06 0.05 18 0.06. 0.05 19 0.06 0.05 20 0.06 0.05 21 0.06 0.05 22 0.06 0.05 23 0.06 0.05 24 ,0.06 0.05 25 0.06 0.05 26 0.06 0.05 27 0.06 0.05 28 0.06 0.05 29 0.06 0.05 30 0.06 0.05 31 0.06 0.05 32 0.06 0.05 33 0.06 0.05 34 0.06 0.05 35 0.06 0.05 36 0.06 0.05 37 0.06 0_05 38 0.06 0.05 39 0.06 0.05 40 0.06 0.05 41 0.06 0.05 42 0.06 0.05 43 0.06 0.05 44 0.06 0.05 45 0.06 0.05 46 0.06 0.05 47 0.06 0.05 48 0.06 0.05 49 0.06 0.05 50 0. 06 I 0. 05 51 0.06 0.05 52 0.06 0.05 53 0.06 0.05 Thermal Conductors Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0:55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O Min H2 Frac 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 Revers Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0 .. 55 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0. 05 . 0. 55 0.05 0.55 Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 225 of 303 Zero Prop Flow Opt NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW Co'FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW COJ;LOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW ENERCON CALCULATION CONTROL Attachment 9 Cond # Vol HT Vol HT Cond s. A. Init. Description CPl-West CP2-NE CP3-SE Floor A Co B Co Type (ft2) T. (F) ls 2s 3s 4s 5s 6s 7s 8s 9s 10s lls 12s 13s 14s 15s 16 17 18s 19s 20s 21s 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ls18-1 1 ls18-1 5 1 7764.63 75. ls81-2 1 ls81-2 5 | : 0. 0. 0. 0. 0. 0. 0. Drop Breakup Model OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF dFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF PAGE NO. 224 of 303 N NONE ENERCON Flow Paths -Table 4 Forwar Flow Min Path H2 #-Frac 1 0.06 2 0. 06 3 0.06 4 0.06 5 0.06 6 0.06 7 0.06 8 0.06 9 0.06 Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 10 0.06 0.05 11 0.06 0.05 12 0.06 0.05 13 0.06 0.05 14 0.06 0.05 15 0.06 0.05 16 0.06 0.05 17 0.06 0.05 18 0.06. 0.05 19 0.06 0.05 20 0.06 0.05 21 0.06 0.05 22 0.06 0.05 23 0.06 0.05 24 ,0.06 0.05 25 0.06 0.05 26 0.06 0.05 27 0.06 0.05 28 0.06 0.05 29 0.06 0.05 30 0.06 0.05 31 0.06 0.05 32 0.06 0.05 33 0.06 0.05 34 0.06 0.05 35 0.06 0.05 36 0.06 0.05 37 0.06 0_05 38 0.06 0.05 39 0.06 0.05 40 0.06 0.05 41 0.06 0.05 42 0.06 0.05 43 0.06 0.05 44 0.06 0.05 45 0.06 0.05 46 0.06 0.05 47 0.06 0.05 48 0.06 0.05 49 0.06 0.05 50 0. 06 I 0. 05 51 0.06 0.05 52 0.06 0.05 53 0.06 0.05 Thermal Conductors Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0:55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O Min H2 Frac 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 Revers Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0 .. 55 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0. 05 . 0. 55 0.05 0.55 Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 225 of 303 Zero Prop Flow Opt NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW Co'FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW COJ;LOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW ENERCON CALCULATION CONTROL Attachment 9 Cond # Vol HT Vol HT Cond s. A. Init. Description CPl-West CP2-NE CP3-SE Floor A Co B Co Type (ft2) T. (F) ls 2s 3s 4s 5s 6s 7s 8s 9s 10s lls 12s 13s 14s 15s 16 17 18s 19s 20s 21s 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ls18-1 1 ls18-1 5 1 7764.63 75. ls81-2 1 ls81-2 5 | ||
* 1 3234 .14 75. ls89-2 1 ls89-2 5 1 3728.76 75. lsl-12 11 lsl-12 12 5 10656. 76.5 Upper MCR ceili MCR West Wall L MCR North WallL 2s129-10 2s129-8 4 ls16-2 2 ls16-2 8 4 lsl-36 2 lsl-36 8 4 MCR East Wall L ls113-2 ls113-8 4 MCR South Wall lsl28-2 ls128-8 4 Ceiling Tiles ls257-10 2sl-12 11 6 Upper MCR West 2sl-14 1 2sl-14 8 4 Upper MCR North 2sl-24 1 2sl-24 8 4 Upper MCR East 2s113-1 2s113-8 4 Upper MCR South 2s128-1 2s128-8 4 Steel Structure 2sl-12 1 2sl-12 5 2 SM Doors lsl 1 lsl 5 10 lHS-JBA ls14 1 lsl4 5 7 ILAC Panels ls133-1 ls133-5 7 Steel ILAC 3/8 ls5-13 1 ls5-13 5 8 Steel ILAC=3/16 ls5-13 1 ls5-13 5 7 DC Panels N ls17-1 1 ls17-1 5 7 DC Panels S ls32-1 1 Support Beams ls16-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-18 1 HVAC Large_l lsl-18 1 HVAC Large_2 ls113-1 SCA Panels N ls17-1 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-1 1 ls32-1 5 ls16-3 5 ls97-2 5 ls64-2 5 lsl-18 5 lsl-18 5 ls113-5 ls17-1 5 ls48 5 ls18 5 ls2 5 ls98-1 5 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 ls146-1 ls146-5 7 ls241-1 ls241-5 7 ls153-1 ls153-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 ls55-9 5 9 41s 1" Conduit S ls16-3 1 42s 1" Conduit kite ls117-1 43s 1" Conduit N wa ls113-1 44s l"Conduit W wal ls3-15 1 45 Security Port ls15 1 46s 2" Conduit ls4-13 1 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 50 RMS-CAB170 51 White boxes 52s Unistrut W 53s Unistrut)N *54s Unistrut s ls112-1 ls16-3 1 ls7-9 1 ls9 1 lslO 1 ls13-3 1 ls33-1 1 ls96-3 1 ls16-3 5 lsll 7-5 ls113-5 ls3-15 5 ls15 5 ls4'-13 5 ls112-5 ls16-3 5 ls7-9 5 ls9 5 lslO 5 ls13-3 5 ls33-1 5 ls96-3 5 Thermal Conductors -Radiation Parameters 7 7 7 7 8 7 7 7 9 9 7 7 7 7 10656. 87. 1312.56 85. 674.51 85. 1312.56 85. 674.51 85. 10016. 78. 1248.48 88. 641.58 88. 1248.48 88. 641. 58 88. 11756. 8 81. 55.2 75. 1. 75. 173.8 75. 15. 75. 20. 75. 198. 75. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 19.625 9.42 39.25 70.65 12.5 34.6 19.6 11.8 6.6 14.7 16.5 36.8 10.496 18.368 75. | * 1 3234 .14 75. ls89-2 1 ls89-2 5 1 3728.76 75. lsl-12 11 lsl-12 12 5 10656. 76.5 Upper MCR ceili MCR West Wall L MCR North WallL 2s129-10 2s129-8 4 ls16-2 2 ls16-2 8 4 lsl-36 2 lsl-36 8 4 MCR East Wall L ls113-2 ls113-8 4 MCR South Wall lsl28-2 ls128-8 4 Ceiling Tiles ls257-10 2sl-12 11 6 Upper MCR West 2sl-14 1 2sl-14 8 4 Upper MCR North 2sl-24 1 2sl-24 8 4 Upper MCR East 2s113-1 2s113-8 4 Upper MCR South 2s128-1 2s128-8 4 Steel Structure 2sl-12 1 2sl-12 5 2 SM Doors lsl 1 lsl 5 10 lHS-JBA ls14 1 lsl4 5 7 ILAC Panels ls133-1 ls133-5 7 Steel ILAC 3/8 ls5-13 1 ls5-13 5 8 Steel ILAC=3/16 ls5-13 1 ls5-13 5 7 DC Panels N ls17-1 1 ls17-1 5 7 DC Panels S ls32-1 1 Support Beams ls16-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-18 1 HVAC Large_l lsl-18 1 HVAC Large_2 ls113-1 SCA Panels N ls17-1 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-1 1 ls32-1 5 ls16-3 5 ls97-2 5 ls64-2 5 lsl-18 5 lsl-18 5 ls113-5 ls17-1 5 ls48 5 ls18 5 ls2 5 ls98-1 5 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 ls146-1 ls146-5 7 ls241-1 ls241-5 7 ls153-1 ls153-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 ls55-9 5 9 41s 1" Conduit S ls16-3 1 42s 1" Conduit kite ls117-1 43s 1" Conduit N wa ls113-1 44s l"Conduit W wal ls3-15 1 45 Security Port ls15 1 46s 2" Conduit ls4-13 1 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 50 RMS-CAB170 51 White boxes 52s Unistrut W 53s Unistrut)N | ||
*54s Unistrut s ls112-1 ls16-3 1 ls7-9 1 ls9 1 lslO 1 ls13-3 1 ls33-1 1 ls96-3 1 ls16-3 5 lsll 7-5 ls113-5 ls3-15 5 ls15 5 ls4'-13 5 ls112-5 ls16-3 5 ls7-9 5 ls9 5 lslO 5 ls13-3 5 ls33-1 5 ls96-3 5 Thermal Conductors | |||
-Radiation Parameters 7 7 7 7 8 7 7 7 9 9 7 7 7 7 10656. 87. 1312.56 85. 674.51 85. 1312.56 85. 674.51 85. 10016. 78. 1248.48 88. 641.58 88. 1248.48 88. 641. 58 88. 11756. 8 81. 55.2 75. 1. 75. 173.8 75. 15. 75. 20. 75. 198. 75. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 19.625 9.42 39.25 70.65 12.5 34.6 19.6 11.8 6.6 14.7 16.5 36.8 10.496 18.368 75. | |||
: 75. 75. | : 75. 75. | ||
: 75. 75. 75. 75. 75. 75. 75. 75. | : 75. 75. 75. 75. 75. 75. 75. 75. | ||
| Line 1,402: | Line 3,274: | ||
: 75. 75. 75. 75. 75. 75. 75. | : 75. 75. 75. 75. 75. 75. 75. | ||
: 75. | : 75. | ||
: 75. 75. 75. 75. 75. 75. 75: 75. 75. 75. 75. 75. 75. Cond Therm. Rad. Emiss. Therm. Rad. # Side A Side A Side B Emiss. Side B CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 226 of 303 Or I I I I I I I I I x I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON ls No 2s No 3s No 4s No 5s No Gs No 7s No as No 9s No 10s No lls No 12s No 13s No 14s No 15s No 16 No 17 No 18s No 19s No 20s No 2ls No 22s No 23s No 24s No 25s No 26s No 27s No 28s No 29s No 30 No 31 No 32 No 33s No 34s No 35s No 36s No 37s No 38s No 39s No 40s No 4ls No 42s No 43s No 44s No 45 No 46s No 47s No 48s No 49s No 50 No 51 No 52s No 53s No 54s No Heat Transfer Coefficient Heat Type Transfer Nominal # Option Value FF 1 Direct CALCULATION CONTROL Attachment 9 No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No Types -Table 1 end/ Sp Nat For Cnv Cnd Cnv Cnv Cnv Opt Opt HTC Opt Opt ADD MAX VERT SURF OFF CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 227 of 303 Rad Opt OFF CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET-REV.O f.xreifena-fH?typtojea £wr.1du1 Attachment 9 PAGE NO. 228 of 303 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 3T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. 2T '13 13 Sp Conv 1. 63 OFF Heat Transfer Coefficient Types -Table 2 Min Type Phase Liq # Opt Fr act 1 VAP 2 VAP 3 VAP 4 VAP 5 6 7 8 9 10 11 12 13 VAP VAP VAP VAP VAP VAP Max Liq Fr act Convect Bulk T Model Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tw Tg-Tw Tg-Tf Tg-Tf Tg-Tw FF Condensa Bulk T Model Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw FF Heat Transfer Coefficient Types -Table 3 Type # 1 2 3 4 5 6 7 8 9 10 11 12 13 HTC Type # 1 2 3 4 5 6 7 Char. Nat For Norn Minimum Char. Cond. Length (ft} Length Coef Exp (ft) FF FF Types -Table 4 Total Const Heat CT (Btu} Coef Exp Vel Vel Conv HTC Height FF FF (ft/s) FF (B/h-ft2-F (ft) Peak Time Exp (sec} XT DEFAULT. DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Initial BD Value Exp (B/h-f2-F} yt DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Post-BD Post-BD Exp Direct xt FF EN RCON 8 9 10 11 12 13 Thermal Type Conductor Types CALCULATION CONTROL SHEETi Attachment 9 Thick. O.D. Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 229 of 303 Heat # Description Geom (in) (in) Regions (Btu/ft3-s) FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural* Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1. 75 5 2 3.75 6 2 7.875 Therma1 Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0. | : 75. 75. 75. 75. 75. 75. 75: 75. 75. 75. 75. 75. 75. Cond Therm. Rad. Emiss. Therm. Rad. # Side A Side A Side B Emiss. Side B CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 226 of 303 Or I I I I I I I I I x I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON ls No 2s No 3s No 4s No 5s No Gs No 7s No as No 9s No 10s No lls No 12s No 13s No 14s No 15s No 16 No 17 No 18s No 19s No 20s No 2ls No 22s No 23s No 24s No 25s No 26s No 27s No 28s No 29s No 30 No 31 No 32 No 33s No 34s No 35s No 36s No 37s No 38s No 39s No 40s No 4ls No 42s No 43s No 44s No 45 No 46s No 47s No 48s No 49s No 50 No 51 No 52s No 53s No 54s No Heat Transfer Coefficient Heat Type Transfer Nominal # Option Value FF 1 Direct CALCULATION CONTROL Attachment 9 No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No Types -Table 1 end/ Sp Nat For Cnv Cnd Cnv Cnv Cnv Opt Opt HTC Opt Opt ADD MAX VERT SURF OFF CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 227 of 303 Rad Opt OFF CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET-REV.O f.xreifena-fH?typtojea | ||
: 0. 0. 0. 0. 0. 0. 0. 0 .--0. Sub-Heat regs. Factor 1 1. Sub-Heat regs. Factor 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 o. 2 0. 2 0. Sub-Heat Region # (in) (in) *regs. Factor 1 2 0. 0.00768 1 0. 2 2 0.00768 0.01536 1 0. 3 2 0.02304 0.03072 1 0. 4 2 0.05376 0.06144 1 0. 5 2 0 .1152 0.12288 1 0. 6 2 0.23808 0.24576 1 0. 7 2 0.48384 0.49152 1 0. 8 2 0.97536 0.98304 1 0. 1 0.135 ST 1 o. 6 0. 23 0. 39 1.2e-004 21 0. 1 0. 3 0. 1 0. 2 0. | £wr.1du1 Attachment 9 PAGE NO. 228 of 303 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 3T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. 2T '13 13 Sp Conv 1. 63 OFF Heat Transfer Coefficient Types -Table 2 Min Type Phase Liq # Opt Fr act 1 VAP 2 VAP 3 VAP 4 VAP 5 6 7 8 9 10 11 12 13 VAP VAP VAP VAP VAP VAP Max Liq Fr act Convect Bulk T Model Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tw Tg-Tw Tg-Tf Tg-Tf Tg-Tw FF Condensa Bulk T Model Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw FF Heat Transfer Coefficient Types -Table 3 Type # 1 2 3 4 5 6 7 8 9 10 11 12 13 HTC Type # 1 2 3 4 5 6 7 Char. Nat For Norn Minimum Char. Cond. Length (ft} Length Coef Exp (ft) FF FF Types -Table 4 Total Const Heat CT (Btu} Coef Exp Vel Vel Conv HTC Height FF FF (ft/s) FF (B/h-ft2-F (ft) Peak Time Exp (sec} XT DEFAULT. | ||
ENERCON CALCULATION CONTROL Attachment 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9584 1.96608 1 3.92448 3.93216 -1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 22.0416 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Thermal Conductor Type 5 Composite_l Mat. Region # 1 5 2 5 3 5 4 5 6 7 8 9 10 11 12 13* 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 o. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0.01224 0.013056 1 0.025296 0.026112 1 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1. 625 0.034244 1 1.659245 0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.098518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 20.70052 1.96608 1 22.6666 0.98304 1 23.64964 0.49152 1 24.14116 0.24576 1 24.38692 0.12288 1 24.5098 0.06144 1 24.57124 0.03072 1 24.60196 0.01536 1 24.61732 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 230 of 303 ENER Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Region # (in) 1 4 0. 2 4 3.5e-004 3 4 0.001044 4 4 0.002436 5 4 0.00522 6 4 0.010788 7 4 0.021924 8 4 0. 044196 9 4 0.08874 10 4 0.177828 11 4 0.289621 12 4 0.401414 13 4 0.468837 14 4 0.53626 15 4 0.580804 16 4 0.603076 17 4 0 .'614212 18 4 0.61978 19 4 0,622564 20 4 0.623956 21 4 0,624652 Thermal Conductor 7 Type 1/8" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Region # (in) 1 1 0. 2 1 0,1875 3 1 0.28125 Thermal Conductor Type 9 1/16" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 10 1/4" Steel Mat, Region # 1 1 2 1 Cooler/Heater Bdry. (in) 0. 0.125 CALCULATION CONTROL SHEET-** Attachment 9 Thick (in) 3.5e-004 7e-004 ' 0.001392 0.002784 0.005568 0. 011136 0.022272 0.044544 0.089088 0.111793 0 .111793 0.067423 0.067423 0.044544 0. 022272 0. 011136 0.005568 0.002784 0,001392 7e-004 3.5e-Ci04 Thick (in) 0.125 Thick (in) 0.1875 0.09375 0.09375 Thick (in) 0.0625 Thick (in) 0.125 0.125 Sub-Heat regs. Factor 1 0. 1 0. 1 0. 1 0. ---... 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. Sub-Heat regs. Factor 1 0. Sub-Heat regs. Factor 1 0. 1 0. 1 0. Sub-Heat regs, Factor 1 0. / Sub-Heat regs. Factor 1 0. 1 0. *' CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 231 of 303 ENER Heater Cooler # Description 1H 2H 3H 4H SH 6H 7H 8H 9H lOH llH 12H 13:H 14H lSH 16H 17H lSH 19H 20H 21H 22H 23H 24H 2SH 26H 27H 28H 29H 30H 31H 32H 33H 34H 3SH 36H 37H 38H 39H 40H 41H 42H 43H 44H 4SH 46H 47H 48H 49H SOH SlH S2H S3H* S4H SSH S6H S7H \_ CALC. NO. ENTR-078-CALC-004 Q N , CALCULATION CONTROL Attachment 9 REV.O Vol. # lsl ls2 ls3 ls4 lss' ls6 ls7 ls8 ls9 lslO lsll ls12 ls13 lsl4 lslS ls16 ls17 ls18 ls19 ls20. ls21 ls22 ls23 ls24 ls2S ls26 ls27 1828 ls29 ls30 ls31 ls32 ls33 ls34 ls3S ls36 ls37 ls38 ls39 ls40 ls41 ls42 ls43 ls44 ls4S ls46 ls47 'ls48 ls49 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 On Off Flow Trip Trip Rate # # (CFM) PAGE NO. 232 of 303 Flow Heat Heat Rate Rate Rate Phs Ct.rlr FF (Btu/s) FF Opt Loe 1. 6T VTI lsl 1. 6T VTI ls2 1. 6T VTI ls3 1. 1. 1. 1. 1. 1'. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Initial BD Value Exp (B/h-f2-F} | ||
yt DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Post-BD Post-BD Exp Direct xt FF EN RCON 8 9 10 11 12 13 Thermal Type Conductor Types CALCULATION CONTROL SHEETi Attachment 9 Thick. O.D. Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 229 of 303 Heat # Description Geom (in) (in) Regions (Btu/ft3-s) | |||
FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural* | |||
Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1. 75 5 2 3.75 6 2 7.875 Therma1 Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0. | |||
: 0. 0. 0. 0. 0. 0. 0. 0 .--0. Sub-Heat regs. Factor 1 1. Sub-Heat regs. Factor 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 o. 2 0. 2 0. Sub-Heat Region # (in) (in) | |||
*regs. Factor 1 2 0. 0.00768 1 0. 2 2 0.00768 0.01536 1 0. 3 2 0.02304 0.03072 1 0. 4 2 0.05376 0.06144 1 0. 5 2 0 .1152 0.12288 1 0. 6 2 0.23808 0.24576 1 0. 7 2 0.48384 0.49152 1 0. 8 2 0.97536 0.98304 1 0. 1 0.135 ST 1 o. 6 0. 23 0. 39 1.2e-004 21 0. 1 0. 3 0. 1 0. 2 0. | |||
ENERCON CALCULATION CONTROL Attachment 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9584 1.96608 1 3.92448 3.93216 -1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 22.0416 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Thermal Conductor Type 5 Composite_l Mat. Region # 1 5 2 5 3 5 4 5 6 7 8 9 10 11 12 13* 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 o. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0.01224 0.013056 1 0.025296 0.026112 1 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1. 625 0.034244 1 1.659245 0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.098518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 20.70052 1.96608 1 22.6666 0.98304 1 23.64964 0.49152 1 24.14116 0.24576 1 24.38692 0.12288 1 24.5098 0.06144 1 24.57124 0.03072 1 24.60196 0.01536 1 24.61732 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 230 of 303 ENER Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Region # (in) 1 4 0. 2 4 3.5e-004 3 4 0.001044 4 4 0.002436 5 4 0.00522 6 4 0.010788 7 4 0.021924 8 4 0. 044196 9 4 0.08874 10 4 0.177828 11 4 0.289621 12 4 0.401414 13 4 0.468837 14 4 0.53626 15 4 0.580804 16 4 0.603076 17 4 0 .'614212 18 4 0.61978 19 4 0,622564 20 4 0.623956 21 4 0,624652 Thermal Conductor 7 Type 1/8" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Region # (in) 1 1 0. 2 1 0,1875 3 1 0.28125 Thermal Conductor Type 9 1/16" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 10 1/4" Steel Mat, Region # 1 1 2 1 Cooler/Heater Bdry. (in) 0. 0.125 CALCULATION CONTROL SHEET-** | |||
Attachment 9 Thick (in) 3.5e-004 7e-004 ' 0.001392 0.002784 0.005568 | |||
: 0. 011136 0.022272 0.044544 | |||
0.089088 0.111793 0 .111793 0.067423 0.067423 0.044544 | |||
: 0. 022272 0. 011136 0.005568 0.002784 0,001392 7e-004 3.5e-Ci04 Thick (in) 0.125 Thick (in) 0.1875 0.09375 0.09375 Thick (in) 0.0625 Thick (in) 0.125 0.125 Sub-Heat regs. Factor 1 0. 1 0. 1 0. 1 0. ---... 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. Sub-Heat regs. Factor 1 0. Sub-Heat regs. Factor 1 0. 1 0. 1 0. Sub-Heat regs, Factor 1 0. / Sub-Heat regs. Factor 1 0. 1 0. *' CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 231 of 303 ENER Heater Cooler # Description 1H 2H 3H 4H SH 6H 7H 8H 9H lOH llH 12H 13:H 14H lSH 16H 17H lSH 19H 20H 21H 22H 23H 24H 2SH 26H 27H 28H 29H 30H 31H 32H 33H 34H 3SH 36H 37H 38H 39H 40H 41H 42H 43H 44H 4SH 46H 47H 48H 49H SOH SlH S2H S3H* S4H SSH S6H S7H \_ CALC. NO. ENTR-078-CALC-004 Q N , CALCULATION CONTROL Attachment 9 REV.O Vol. # lsl ls2 ls3 ls4 lss' ls6 ls7 ls8 ls9 lslO lsll ls12 ls13 lsl4 lslS ls16 ls17 ls18 ls19 ls20. ls21 ls22 ls23 ls24 ls2S ls26 ls27 1828 ls29 ls30 ls31 ls32 ls33 ls34 ls3S ls36 ls37 ls38 ls39 ls40 ls41 ls42 ls43 ls44 ls4S ls46 ls47 'ls48 ls49 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 On Off Flow Trip Trip Rate # # (CFM) PAGE NO. 232 of 303 Flow Heat Heat Rate Rate Rate Phs Ct.rlr FF (Btu/s) FF Opt Loe 1. 6T VTI lsl 1. 6T VTI ls2 1. 6T VTI ls3 1. 1. 1. 1. 1. 1'. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. | : 1. | ||
| Line 1,420: | Line 3,303: | ||
: 1. | : 1. | ||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. 1. 1. 1. PAGE NO. 234 of 303 6T VTI ls118 6T VTI ls119 6T VTI ls120 6T VTI ls121 6T VTI ls122 6T VTI ls123 6T VTI ls124 6T VTI ls125 6T VTI ls126 6T VTI ls127 6T VTI ls128 6T VTI ls129 6T VTI *ls130 6T VTI ls131 6T VTI ls132 6T VTI ls133 6T VTI ls134 6T VTI ls135 6T VTI ls136 6T VTI ls137 6T VTI ls138 6T VTI ls139 6T VTI lsl40 6T VTI ls141 6T VTI ls142 6T VTI ls143 6T VTI lsl44 6T VTI ls145 6T VTI ls146 6T VTI ls147 6T VTI ls148 6T VTI ls149 6T VTI ls150 6T VTI ls151 6T VTI ls152 6T VTI ls153 6T VTI lsl54 6T VTI ls155 6T VTI ls156 6T VTI ls157 6T VTI ls158 6T VTI lsl59 6T VTI lsl60 6T VTI ls161 6T VTI lsl62 6T VTI ls163 6T VTI ls164 6T VTI ls165 6T VTI ls166 6T VTI ls167 6T VTI ls168 6T VTI ls169 6T VTI ls170 6T VTI lsl 71 6T VTI ls172 6T VTI ls173 6T VTI ls174 6T VTI ls175 6T VTI ls176 6T VTI ls177 ENERCON 178H 179H 180H 181H 182H 183H 184H 185H 186H 187H 188H 189H 190H 191H 192H 193H 194H 195H 196H 197H 198H 199H 200H 201H 202H 203H 204H 205H 206H 207H 208H 209H 210H 211H 212H 213H 214H 215H 216H 217H 218H 219H 220H 221H 222H 223H 224H 225H 226H 227H 228H 229H 230H 231H / 232H 233H 234H 235H 236H 237H lsl78 ls179 ls180 ls181 ls182 ls183 ls184 lsl85 ls186 ls187 lsl88 ls189 ls190 ls191 lsl92 ls193 ls194 lsl95 ls196 ls197. ls198 ls199 ls200 ls201 ls202 ls203 ls204 ls205 ls206 ls207 ls208 ls209 ls210 ls211 ls212 ls213 ls214 ls215 ls216 ls217 ls218 ls219 ls220 ls221 ls222 ls223 ls224 ls225 ls226 ls227 ls228 ls229 ls230 ls231 ls232 ls233 ls234 ls235 ls236 ls237 CALCULATION CONTROL Attachment 9 CALC. NO. REV. 0 PAGE NO. 235 of 303 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. PAGE NO. 234 of 303 6T VTI ls118 6T VTI ls119 6T VTI ls120 6T VTI ls121 6T VTI ls122 6T VTI ls123 6T VTI ls124 6T VTI ls125 6T VTI ls126 6T VTI ls127 6T VTI ls128 6T VTI ls129 6T VTI *ls130 6T VTI ls131 6T VTI ls132 6T VTI ls133 6T VTI ls134 6T VTI ls135 6T VTI ls136 6T VTI ls137 6T VTI ls138 6T VTI ls139 6T VTI lsl40 6T VTI ls141 6T VTI ls142 6T VTI ls143 6T VTI lsl44 6T VTI ls145 6T VTI ls146 6T VTI ls147 6T VTI ls148 6T VTI ls149 6T VTI ls150 6T VTI ls151 6T VTI ls152 6T VTI ls153 6T VTI lsl54 6T VTI ls155 6T VTI ls156 6T VTI ls157 6T VTI ls158 6T VTI lsl59 6T VTI lsl60 6T VTI ls161 6T VTI lsl62 6T VTI ls163 6T VTI ls164 6T VTI ls165 6T VTI ls166 6T VTI ls167 6T VTI ls168 6T VTI ls169 6T VTI ls170 6T VTI lsl 71 6T VTI ls172 6T VTI ls173 6T VTI ls174 6T VTI ls175 6T VTI ls176 6T VTI ls177 ENERCON 178H 179H 180H 181H 182H 183H 184H 185H 186H 187H 188H 189H 190H 191H 192H 193H 194H 195H 196H 197H 198H 199H 200H 201H 202H 203H 204H 205H 206H 207H 208H 209H 210H 211H 212H 213H 214H 215H 216H 217H 218H 219H 220H 221H 222H 223H 224H 225H 226H 227H 228H 229H 230H 231H / 232H 233H 234H 235H 236H 237H lsl78 ls179 ls180 ls181 ls182 ls183 ls184 lsl85 ls186 ls187 lsl88 ls189 ls190 ls191 lsl92 ls193 ls194 lsl95 ls196 ls197. ls198 ls199 ls200 ls201 ls202 ls203 ls204 ls205 ls206 ls207 ls208 ls209 ls210 ls211 ls212 ls213 ls214 ls215 ls216 ls217 ls218 ls219 ls220 ls221 ls222 ls223 ls224 ls225 ls226 ls227 ls228 ls229 ls230 ls231 ls232 ls233 ls234 ls235 ls236 ls237 CALCULATION CONTROL Attachment 9 CALC. NO. | ||
REV. 0 PAGE NO. 235 of 303 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | |||
: 1. 1. 1. 1. 1. 1. 1. 1. 1. | : 1. 1. 1. 1. 1. 1. 1. 1. 1. | ||
: 1. | : 1. | ||
| Line 1,435: | Line 3,319: | ||
: 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.60 PAGE 236 of 303 6T VT! ls238 6T VT! ls239 6T VT! ls240 6T VT! ls241 6T vTI ls242 6T VT! ls243 6T VTI ls244 6T VT! ls245 6T VTI ls246 6T VT! ls247 6T VTI ls248 6T VTI ls249 6T VTI ls250 6T VTI ls251 6T VT! ls252 6T VT! ls253 6T VT! ls254 6T VT! ls255 6T VT! ls256 4T VT! ls257 4T VT! ls258 4T VT! ls259 4T VT! ls260 4T VT! ls261 4T VT! ls262 4T VTI ls263 4T VT! ls264 4T | : 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.60 PAGE 236 of 303 6T VT! ls238 6T VT! ls239 6T VT! ls240 6T VT! ls241 6T vTI ls242 6T VT! ls243 6T VTI ls244 6T VT! ls245 6T VTI ls246 6T VT! ls247 6T VTI ls248 6T VTI ls249 6T VTI ls250 6T VTI ls251 6T VT! ls252 6T VT! ls253 6T VT! ls254 6T VT! ls255 6T VT! ls256 4T VT! ls257 4T VT! ls258 4T VT! ls259 4T VT! ls260 4T VT! ls261 4T VT! ls262 4T VTI ls263 4T VT! ls264 4T | ||
* VT! ls265 4T VT! ls266 4T VT! *1S267 4T VTI ls268 4T VTI ls269 4T VTI ls270 4T VT! ls271 4T VT! ls272 4T VT! ls273 4T VT! ls274 4T VTI ls275 4T VT! ls276 4T VT! ls277 4T VTI ls278 4T VT! ls279 4T VT! ls280 4T VT! ls281 4T VTI ls282 4T VT! ls283 4T VT! ls284 4T VT! ls285 4T VT! ls286 4T VTI ls287 4T VTI ls288 4T VT! ls289 4T | * VT! ls265 4T VT! ls266 4T VT! *1S267 4T VTI ls268 4T VTI ls269 4T VTI ls270 4T VT! ls271 4T VT! ls272 4T VT! ls273 4T VT! ls274 4T VTI ls275 4T VT! ls276 4T VT! ls277 4T VTI ls278 4T VT! ls279 4T VT! ls280 4T VT! ls281 4T VTI ls282 4T VT! ls283 4T VT! ls284 4T VT! ls285 4T VT! ls286 4T VTI ls287 4T VTI ls288 4T VT! ls289 4T | ||
* VT! ls290 4T VT! ls291 4T VT! ls292 4T VT! ls293 VT! ls294 VT! ls295 VT! ls296 VT! ls297 298H 299H 300H 301H 302H 303H 304H 305H 306H 307H 308H 309H 310H 311H , 312H 313H 314H 315H 316H 317H 318H 319H 320H 321H 322H 323H 324H 325H 326H 327H 328H 329H 330H 331H 332H 333H 334H 335H 336H 337H 338H 339H 340H 341H 342H 343H 344H 345H 346H 347H 348H 349H 350H 351H 352H 353H 354H 355H 356H 357H ENERCON ls298 ls299 ls300 ls301 ls302 ls303 ls304 ls305 ls306 ls307 ls308 ls309 ls310 ls311 ls312 ls313 ls314 ls315 ls316 ls317 ls318 ls319 ls320 ls321 ls322 ls323 ls324 ls325 ls326 ls327 ls328 ls329 ls330 ls331 ls332 ls333 ls334 ls335 ls336 ls337 i.s338 | |||
CALC. NO. ENTR-078-CALC-004 IENERCON CALCULATION CONTROL SHEET-REV.O pto]et.l f.vtr; tia;: Attachment 9 PAGE NO. 288 of 303 1 Temv cVlsl 1. 2 Temv cVls2 1. 3 Tefuv cVls3 1. 4 Temv cVls4 1. 5 Temv cVls5 1. 6 Temv cVls6 1. 7 Temv cVls7 1. 8 Temv cVls8 1. 9 Temv cVls9 1. 10 Temv cVlslO 1. 11 Temv cVlsll 1. 12 Temv cVlsl2 1. 13 Temv cVls13 1. 14 Temv cVlsl4 1. 15 Temv cVlsl5 1. 16 Temv cVlsl6 1. 17 Temv cVlsl7 1. 18 Temv cVlsl8 1. 19 Temv cVlsl9 1. 20 Temv cVls20 1. 21 Temv cVls21 1. 22 Temv cVls22 1. ) 23 Temv cVls23 1. 24 Temv cVls24 1. 25 Temv cVls25 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1. 34 Temv cVls34 1. 35 Temv cVls35 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 1. 41 Temv cVls41 1. 42 Temv cVls42 1. 43 Temv cVls43 1. 44 Temv cVls44 1. 45 Temv cVls45 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVls49 1. 50 Temv cVls50 1. 51 Temv cVls51 1. 52 Temv cVls52 1. 53 Temv cVls53 1. ' 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 1. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. | CALC. NO. ENTR-078-CALC-004 IENERCON CALCULATION CONTROL SHEET-REV.O pto]et.l f.vtr; tia;: Attachment 9 PAGE NO. 288 of 303 1 Temv cVlsl 1. 2 Temv cVls2 1. 3 Tefuv cVls3 1. 4 Temv cVls4 1. 5 Temv cVls5 1. 6 Temv cVls6 1. 7 Temv cVls7 1. 8 Temv cVls8 1. 9 Temv cVls9 1. 10 Temv cVlslO 1. 11 Temv cVlsll 1. 12 Temv cVlsl2 1. 13 Temv cVls13 1. 14 Temv cVlsl4 1. 15 Temv cVlsl5 1. 16 Temv cVlsl6 1. 17 Temv cVlsl7 1. 18 Temv cVlsl8 1. 19 Temv cVlsl9 1. 20 Temv cVls20 1. 21 Temv cVls21 1. 22 Temv cVls22 1. ) 23 Temv cVls23 1. 24 Temv cVls24 1. 25 Temv cVls25 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1. 34 Temv cVls34 1. 35 Temv cVls35 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 1. 41 Temv cVls41 1. 42 Temv cVls42 1. 43 Temv cVls43 1. 44 Temv cVls44 1. 45 Temv cVls45 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVls49 1. 50 Temv cVls50 1. 51 Temv cVls51 1. 52 Temv cVls52 1. 53 Temv cVls53 1. ' 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 1. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. | ||
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptofe<;t. | |||
Ewty dµy. Attachment 9 PAGE NO. 289 of 303 61 Temv cVls61 1. 62 Temv cVls62 1. 63 Temv cVls63 1. 64 Temv cVls64 1. 65 Temv cVls65 1. 66 Temv cVls66 1. 67 Temv cVls67 1. 68 Temv cVls68 1. | |||
Revision as of 10:25, 30 June 2018
| ML16090A058 | |
| Person / Time | |
|---|---|
| Site: | River Bend |
| Issue date: | 03/24/2016 |
| From: | Entergy Operations |
| To: | Office of Nuclear Reactor Regulation |
| Shared Package | |
| ML16090A055 | List: |
| References | |
| RBG-47668, RBF1-16-0038 | |
| Download: ML16090A058 (308) | |
Text
{{#Wiki_filter:Attachment 3 to RBS-47668 Engineering Report No. ME-16-00002, Main Control Room Heat-up Analysis During Loss of HVAC Conditions for 24 hours IPl ATTACHMENT 9.1 ENGINEERING REPORT COVER SHEET & INSTRUCTIONS Engineering Report No. __ RB_S_-ME __ -1_6_-0_0_0_0_2_ Rev 0 ENTERGY NUCLEAR Engineering Report Cover Sheet Engineering Report Title: Page A of 303 Main Control Room Heat-Up Analysis During Loss of HV AC Conditions for 24 Hours Engineering Report Type: New 1:81 Revision D ' Cancelled D Superseded D Superseded by: Applicable Site(s): D IP2 D IP3 D JAF D PNPS D VY D WPO D D AN02 D EC:H D GGNS D RBS 1:81 WF3 D -*PLP D ECNo.62786 Report Origin: D Entergy [81 Vendor Vendor Document No.:ENTR-078-CALC-004 Prepared by: Quality-Related: D Yes [81 No ENERCON (Blake Holton I Guy Spilces I Chad Cramer) (See Page 1) Responsible Engineer (Print Name/Sign) Design Verified: Not Required Design Verifier (if required) (Print Name/Sign) Reviewed by: Paul Sicard (Acceptance Review) Reviewer (Print Name/Sign) Approved by: _____ E_d_D_ew_ee_s_e_,_(S_e_e_A_s_se_t_S_u_ite-'-) ____ _ Supervisor I Manager (Print Name/Sign) Date: (See Page 1) Date: -----Date: See AS Date: See AS EN-DC-147 REV 6 RBS-ME-16-00002 PAGEB r,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\'I Revislqn,>.1 ",Rec9rd.ofRevisfon
- , :* :, . . ,,:>.. . '
.. . / * *.* " * * <, '" ( 000 Initial Issue. (2/10/16) EN-DC-147 Rev 6 I' ATTACHMENT 9.5 Entergy Engineering I RBS-ME-16-00002 Report Number Quality Related: D Yes Comment Section/ Page No. Number Review Comment TECHNICAL REVIEW COMMENTS AND RESOLUTION FORM PAGEC Engineering Report Technical Review Comments and Resolutions Form .Rev. I Title: Main Control Room Heat-Up Analysis During Loss of HVAC 000 Conditions for 24 Hours Special Notes or Instructions: Response/Resolution Preparer's Accept Initials N/A N/A For all comments and resolutions, See P2E attachments 10.002-10.005 in EC 62786. N/A N/A Verified/Reviewed By: I I Date I Resolved By: I Site/Department: I I Ph. I Date: _ I EN-DC-147 Rev 6 (PURPOSE/OBJECTIVE) RBS-M E-16-00002 PAGED This engineering report documents development review of ENERCON calculation ENTR-078-CALC-004, Revision 0, "Main Control Room Heat-Up Analysis During Loss.of HVAC Conditions for 24 Hours" (Attachment 1). This calculation is a refinement and extension of a previous MCR heatup calculation, ENTR-078-CALC-003, Rev. 3 (Reference 1). The thermal-hydraulic (GOTHIC) models used in the calculation incorporate changes and refinements to address the seven issues identified in calculation ENTR-078-CALC-003, Rev. 3 as documented in CR-RBS-2015-7237. The models also incorporate the latest control room heat load and heat load distribution information developed in EC61975 (Reference 2). The calculation has been reviewed by two independent third party reviewers, MPR Associates and Numerical Applications Inc. (NAI) (Zachry Nuclear Engineering);. References
- 1. ENTR-078-CALC-003, rev. 3, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours" 2. EC61975, "References for E-226 Calculation Revision" Attachments
- 1. ENTR-078-CALC-004, Rev. 0, "Main Control Room Heat-Up Analysis During Loss of HVAC Conditions for 24 Hours" EN-DC-147 Rev 6 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION COVER SHEET REV. 0 f.'.xcl?.Ue.nce-Evety projec.t; fVP.Fy day. PAGE NO. 1 of 303 " Title: Main Control Room Heat-Up Analysis During Loss of HVAC Client: ENTG Conditions for 24 Hours Project:
ENTGRB167 -Item Cover Sheet Items Yes No 1 Does this calculation contain any open assumptions that require confirmation? (If YES, D Identify the assumptions) 2 Does this calculation serve as an "Alternate Calculation"? (If YES, Identify the design verified D calculation.) Design Verified Calculation No. 3 Does this calculation Supersede an existing Calculation? (If YES, identify the superseded D calculation.) Superseded Calculation No. Scope of Revision: N/A I Revision Impact on Results: N/A Study Calculation D Final Calculation Safety-Related D Non-Safety Related I (Print Name and Sign) 6. WU:r Date: 2/4/2016 Oriainator: for Blake Holton 6. WU>:f Date: 2/4/2016 Design Verifier: (Guv Spikes) .d)L_ Date: 2/5/2016 Accrover: (Chad Cramer) ENERCON fxceticnce ...... .f.-c>ry project. !'very do/ Revision 0 Page No. All Appendix No. Page No. Attachment 1-11 All CALC. NO. CALCULATION REV. REVISION STATUS SHEET PAGE NO. CALCULATION REVISION STATUS Date PAGE REVISION STATUS Revision 0 Page No. APPENDIX REVISION STATUS Revision No. Appendix No. 0 Description Initial Issue ' Page No. ENTR-078-CALC-004 0 2 of 303 Revision Revision No. ENERCON CALCULATION CONTROL SHEET Table of Contents CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 3 of 303 1. PURPOSE ......................................... , ............................................................................... 4 2. CONCLUSION .... : ..................... , ....................................................................................... 4 3. INPUT AND DESIGN CRITERIA ..................................................................................... 6 4. ASSUMPTIONS ...........................
- ....... : .........................................................................
11 5. METHOD OF ANALYSIS ............... , ................................................................................ 17 6. GOTHIC INPUT DEVELOPMENT ...... : .................................................................. , ........ 18 7. t=\ESULTS ....................................................................................................................... 45 8. REFERENCES ............................................................................................................... 52 Attachments Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP .............................................. 54 Attachment 2: Humidity Sensitivity ............................................
- ,**************************
.. 170 Attachment 3: ERIS Panels Heat Load ....................................................................................... 171 Attachment 4: MCR Panel Data ................................................................................................... 176 Attachment 5: Additional Steel Heat Sinks ................................................................................... 180 Attachment 6: Email from Paul Sicard, 7/23/2015 ........................................................................ 187 Attachment 7: Email from Paul Sicard, 11912015 ........................................................................ 189 Attachment 8: PPC Heat Load Justification .................................................................................. 190 Attachment 9: GOTHIC Input File for Case 2 ............................................................................... 195 Attachment 1 O: GE Control Panel Heat Loads ..............................................................
- ..............
299 Attachment 11: Climatic Data for Baton Rouge Airport ................................................................ 303 ENERCON CALCULATION CONTROL SHEET 1. PURPOSE CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 4 of 303 The purpose of this calculation is to determine the temperature of the River Bend Station (RBS) Main Control Room (MCR) for 24 hours following a Loss of HVAC. The GOTHIC model from Calculation* G13.18.12.4*027 (Reference 8.1) is used to develop this analysis. The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference "8.29) are also used in the development of this calculation. The four cases evaluated are listed below.
- Case 1 (ENTR-078-CALC-004_Case 1.GTH): Loss of Offsite Power (LOOP) with mitigating actions defined In Table 4. A design basis maximum.
outdoor temperature of 96°F with a diurnal temperature variation is assumed.
- Case 2 . (ENTR-078-CALC-004_Case 2.GTH): Normal operation with mitigating actions defined in Table 5. A design basis maximum outdoor temperature of 96°F with a diurnal temperature variation is assumed.
- Attachment 1 Case (ENTR-078-CALC-004_Attachment 1.GTH): Normal operations with HVC-ACU1A(B) aligned per AOP-0060 to service water (SWP) at one hour.
- Attachment 2 Case (ENTR-078-CALC-004_Attachment 2.GTH): Same as Case 2, except using the Main Control Room design basis maximum initial humidity of 70%. ,) Note that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. The second means to respond to a Loss of HVAC would be to cross-tie Service Water to provide cooling to HVC-ACU units. The effectiveness of this action is shown in the calculated temperature response of Attachment 1 to this calculation.
The third means of providing Main Control Room temperature control following a loss of HVAC is to manually start the MCR smoke removal fan and remove ceiling tiles, an established and well-trained operator action per the AOP-0050, Station Blackout procedure (Reference 8.14). These actions provide forced air flow through the MCR and increase the effective air volume subject to heatup. These are the mitigating actions modeled in Cases 1 and 2 of this calculation.
- 2. CONCLUSION The results of the three cases are listed in Table 1 below. The average temperature results are given at 1, 2, 4, and 24 hours and the maximum cell temperature is also recorded.
Note that the maximum cell temperature reported is the temperature in the lower and middle elevation subvolumes as this is where the operators and pertinent equipment reside. As shown in the table, average and maximum cell (local) temperatures reach their peak values at 2 hours in Case 2 corresponding to the key mitigating action of starting the smoke removal fan (see Table 5). The peak average. and maximum cell temperatures in the Case 1 and Attachment 1 analyses occur at 24 hours. Additional
- results, including MCR transient temperatures and temperature distribution, are included in Section 7.
Case 1 2 Att. 1 \ ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 5 of 303 Table 1: MCR Temperatures for Cases 1, 2 and Att. 1 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell Description (Of) (of) (of) (of) Tavci (°F) Temo {°F) LOOP Heat Load. Mitigating 104.0 103.3 106.5 111.4 111.4 (24 hrs) 117.8 (24 hrs). actions based on Table 4. Normal Operation Heat ' Load. Mitigating actions 109.5 116.1 109.0 108.6 116.1 (2.0hrs) 121.8 (2.02 hrs) based on Table 5. -Normal Operation Heat Load. HVC-ACU1 to 110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) SWP at 1 hour. ( This is a standalone calculation derived from the RBS Station Blackout MCR heatup GOTHIC model of calculation G13.18.12.4-027 (Reference 8.1 ). Note that ariother, similar evaluation of the MCR temperature after loss of HVAC was completed in calculation ENTR-078-CALC-003 (Reference 8.29). This calculation (ENTR-078-CALC-004) reproduces information and the limiting case scenarios documented in the Reference 8.29 calculation. The current
- calculation therefore provides a streamlined calculation of the Main Control Room temperature response to a loss of HVAC. Lessons learned from the development of the Reference 8.29 models, plus comments provided by independent reviewers (Numerical Applications, Inc. and MPR Associates, Inc.), are incorporated into the GOTHIC models used in this calculation.
The models used in this calculation also incorporate changes to address the seven issues identified in the Reference 8.29 control room heatup models identified in CR-RBS-2015-7237. These issues and their resolution in this calculation are detailed below. 1. The heat capacity of structural steel has been corrected and verified through two independent references (Section 3.15 and Table 2).
- 2. The value used for the density of concrete has been reviewed and verified through two independent references (Section 3.15, Table 2). 3. The control room floor modeling has been reviewed and revised, removing any credit for the aluminum honeycomb support structure and including modeling of the hardwood floor tiles (Section 3.5 and Figure 1, 2 and 3, Section 4.10). 4. _,The mesh size of the GOTHIC subdivided volumes representing the upper.and lower main __ control room regions has been increased to 16 (x-direction) and 8 (y-direction) nodes. The lower main control room subvolumes have also been increased to 3 (z-direction) nodes (Section 6.1 ). d 5. Appropriate momentum transport options are included in flow paths between subvolumes and between a subvolume and lumped volume or boundary condition (Section 6.6). 6. Solar heat affects are included in the thermal 'conductors representing the control room external walls and roof in all GOTHIC models (Section 6.3). 7. The control panels in the control room, previously modeled as passive heat sinks (thermal conductors) with initial surface temperature equal to the MCR temperature, have been revised to include an initial control panel internal heat rate equal to the electrical heat load ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 6 of 303 within the enclosure.
With this approach, the initial temperature of the panel conductors is greater than 85°F; significantly above measured control panel temperatures. The internal heat rate in the control panel thermal conductors is shut off after the first time step so that' any residual heat in the panels is released to the MCR. * ' 3. INPUT AND DESIGN CRITERIA 3.1. This model is developed from the GOTHIC model in Reference 8.1. All changes made from the model in Reference 8.1 are documented in this calculation. 1 All inputs from Reference 8.1 were verified for this calculation. Inputs retained from Reference 8.1 include:
- Dimensional Inputs for the MCR volumes (e.g. net free volume, hydraulic
- diameter, elevation, height)
- Initial temperature in the lower MCR (CV1) volume of 75°F and the initial *temperature in the upper MCR (CV2) volume of 81°F ..
- The initial relative humidity of 20% for both MCR volumes.
I
- Ceiling tile removal sequence.
- Metal heat sinks above suspended ceiling.
3.2. The electrical heat load in the . MCR for Case 1 (LOOP) i.s do'cumented in E-226 (Reference 8.2), Appendix E and EC61975 (Reference 8.36). Development of the heat load for Case 1 is described in Section 6.5. 3.3. The electrical heat load in the MGR for Case 2 and Attachment 1 (normal operations) is documented in E-226 (Reference 8.2), Appendix A and EC61975 (Reference 8.36). Development of the heat load for Case 2 and Attachment 1 is described in Section 6.5. 3.4. The sensible and latent:heat load due to each operator in the MCR is based on the total heat gain for an adult male for moderately active office work, 475 BTU/hr (Reference 8.13, Chapter 18, Table 1). 3.5. A GOTHIC thermal conductor representing the floor of the lower MCR is added to the models in this analysis that was not included in the Reference 8.1 model. The MCR floor consists of a concrete base floor and a raised floor section with removable wood panels (false floor). Longitudinal and lateral steel structures provide support and form cable raceways for routing cables to the control panels (Reference 8.8 and 8.28). The concrete / base floor of the MCR is 11 inches thick based on the thickness of the concrete conductors used in Reference 8.7. The air gap thickness of the MCR floor is one foot, *with the false floor having a thickness of 1-5/8" (Reference 8.8). Reference 8.8 shows the bottom of false floor elevation at 136' and the top of the false floor elevation at 136' -1 5(8". Figure 1 and 2 show the false floor panels. CALC. NO. ENTR-078-CALC-004 F:;J ENERCON CALCULATION CONTROL SHEET REV. 0 f.vrtyda,. PAGE NO. 7 of 303 Figure 1: False Floor Picture Figure 2: Side View of False Floor Panel CALC. NO. ENTR-078-CALC -004
- ENERCON ' CALCULATION CONTROL SHEET REV. 0 n<-t--Evtty0'"Jt'r:t
- v Y'iay:
PAGE NO. 8 of 303 3.6. The heat load from the Power Generation Control Complex (PGCC) raceways is modeled in the air gap of this composite conductor (see Section 6.5). The steel lateral structures that would act as heat sinks are conservatively neglected. Figure 3 shows the under floor area, including the streel structures and cables not modeled in the GOTHIC calculation that would act as heat sinks or thermal inertia for the heat load. Figure 3: Under Floor Area 3.7. A GOTHIC thermal conductor representing the concrete ceiling of the upper MCR is added to the models in this analysis. The surface area and thickness of the concrete is determined from Reference 8.7 as 10,656 ft2 and 24 inches respectively. 3.8. A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the models in this analysis. The surface area of the ceiling tiles is determined by subtracting the amount of ceiling tile surface area that is removed when the tiles are opened, from the total surface area of the ceiling shown in Reference 8.7 as 10,656 ft2. This conservatively underestimates the amount of tile surface area that would be present during the beginning of the event before the tiles are opened by operator actions. 3.9. Door CB136-9 is a 3'x7' doorway (Reference 8.10 and 8.11). Reference 8.11 shows the door on elevation 157'-8" that opens from stairwell 1 to the atmosphere (CB157-2) has the same dimensions as door CB136-9. This door is therefore modeled as a 3'x7' doorway. 3.10. The dimensions for stairwell 1 are documented in Reference 8.11. The stairwell starts at elevation 98' and goes to elevation 157'-8", with a 7' door. The length and width dimensions are shown as 21 '-8" and 8'-3". The MCR temperature response is expected to be insensitive to the dimensions of the stairway volume as it is a pass through volume from the atmosphere to the MGR. ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 9 of 303 3.11. The MCR smoke removal tan (HVC-FN9) draws 10, 125 cfm from the MCR (13,200 CFM -2850 CFM -225 CFM, per Reference 8.12). 3.12. Section 4.5.4 of the GE Specification for Main Control Room panels, specification 22A3888 (RBS vendor document 0242.411-000-009, Reference 8.16) require: Apparatus shall be suitable for continuous operation within the panels, or benchboard with a normal and abnormal maximum ambien_t air inlet temperature as specified in the BWR Equipment Environmental Interface Data Specification (A62-4270). Allowance shall be made for the temperature rise in the cubicle due to heat given off by other equipment in the same cubicle, when considering individual components the maximum temperature in a panel, or benchboard, shall not exceed 122°F (50°C) under the 3.13. Pl D-22-098 (Reference 8.12) shows an exhaust flow from the kitchen of 500 cfm, and an exhaust flow from the toilet of 300 cfm, which are modeled in Case 2. EE-027 A (Reference 8.26) shows the toilet and kitchen areas as being in the center of the MCR on east side. Therefore, the exhaust flow path for the toilet/kitchen fans is modeled in subvolume 1s374 on the up.per subvolume level in the east-center of the MyR for Case 2. ) 3.14. Door CB136-9 is modeled in the southwest corner of the lower MCR volume in subvolumes 1s14 (lower door and fan) and 1s142 (upper door) based on review of Reference 8.3 and 8.26 .. , 3.15. The properties for the materials used in the analysis are listed in Table 2 and 3 below. Values used in the calculation were validated with respect to the independent reference provided in the last column of Table 2. / 3.16. The effects of solar irradiation on the control roC>m walls and ceiling are included in this model. Solar irradiation is modeled using the "Sol-Air Methodology. The Sol-Air temperatures are calculated based on the methodology of Reference 8.13 using climatic data for the Baton Rouge Ryan Airport (Attachment 11 ). The sol-air temperature calculated for the roof is applied to the roof and all sides of the building. This is conservative as the sol-air temperature calculated for the* roof is the greater than for the sides of the building . . This sol-air temperature is applied as a "Sp Ambient & HTC" with the convective heat transfer coefficient of 4.0 from Assumption 4.6 applfed on the "B" side of the conductors representing the walls and roof. The effects of shading are conservatively neglected. See ' I Section 6.3 for more details. r / ) CALCULATION CONTROL SHEET ENERCON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 10 of 303 Table 2: Solid Material Prop_erties Material Density Thermal Specific Reference Independent (lbm/ft3) Conductivity Heat Used in Reference (BTU/hr-ft-F) (BTU/lbm-F) -Calculation Steel 484 21.0 0.116 8.23. Sec. 2 8.13, Ch. 33, Table 28 Table 3 Concrete1 131.5 0.64 0.21 8.23. Sec. 2 8.13 Table 29 / Hardboard 55 0.068 0.32 8.13. Ch. 26, 8.24 Table4 Acoustical 18 0.029 0.19 8.13. Ch. 26, N/A2 Tile *Table 4 '-1. The density and thermal conductivity values are determined by averaging the range of values given in Reference 8.23 (119-144 lbm/ft3 density and 0.47-0.81 Btu/hr-ft-°F conductivity). These values are within the range of the values for sand and gravel or stone aggregate concretes provided in (Reference 8.13) (130 lbm/ft3 density,
- o.58-1.08 Btu/hr-ft-°F conductivity, 0.19-024 Btu/lbm-F specific heat). ,_ 2. No independent reference found for Acoustical Tile. The properties of air vary with temperature more so than the solid materials used. Therefore, a temperature distribution for the properties of air is used based on Reference 8.24 shown in Table 1 3: Vafues were confirmed to be conservative and reasonable from Reference 8.25, Appendix I. Note that these air properties are only used in the gap of the composite conductor representing the floor and do not have a significant effect on the results of the calculation.
CALC. NO*. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 11 of 303 Table 3: Air Properties Temperature (F) Density (lbm/ft3) Thermal Conductivity Specific Heat (BTU/hr-ft-F) (BTU/lbm-F) 60 0.07633 0.01433 0.2404 80 0.07350 0.01481 0.2404 100 0.0709 0.01529 0.2405 150 0.06507 0.01646 0.2406 300 0.0522 0.01985 0.2423 4. ASSUMPTIONS 4.1. Ten operators are assumed to be in the MCR during the event. This is conservative as AOP-0060 (Reference 8.6, Section 5.1.6) directs non-essential personnel to leave the control room during a Loss of HVAC. The operators, and thus the latent and sensible heat load due to each operator, are assumed to be distributed in the control room as follows:
- Five operators are located in the central horse shoe area of the MCR (subvolumes 1s55-1 s57, 1 s71-1 s73, 1s87-1 s89, 1s183-1s185, 1s199-1 s201, and 1 s215-1s217). These operators are referred to as Senior Reactor Operators (SROs) in this calculation.
- The heat load from the remaining five operators is spread evenly across the lower and middle subvolumes of the lower MCR, based on the assumption that these operators will be continuously moving around the MCR to open up\ panel back doors, ceiling tiles etc. \ The total heat load from each operator is 475 BTU/hr (Input 3.4). This total heat load includes a sensible heat load of 250 Btu/hr/operator (Reference 8.13, Chapter 18, Table 1) with the balance (475-250
= 225 Btu/hr/operator) as latent heat. In this analysis, the total heat lo.ad per *operator is modeled as a sensible heat addition to the MCR using GOTHIC heater components. While this approach does not account for the increase in relative humidity that would' result from the latent heat addition, it does conservatively over-estimate the impact on the control room temperature by ' maximizing the sensible heat rate. 4.2. The suction flow for the smoke removal fan is from the screened intake registers located in the southwest corner (2s144), around the center of the west wall (2s136), and along the center of the north wall (2s193), all in the upper plenum (through damper HVC-DMP68/69/70, respectively). The for the smoke removal fan is assumed to be split into these three locations, weighted based on the normal flow through these registers. See Section 6.6 for more details. 4.3. The mitigating operator actions are given in Table 4 for Case 1. The mitigating operator actions are given in Table 5 for Case 2. The mitigating actions were ,, ) ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' PAGE NO. 12 of 303
- determined based on the referenced procedural
- guidance, as well as operator interviews, and actual operator actions taken during the loss of HVC event that occurred on March 9, 2015. Five Operations shift managers or control room supervisors were interviewed in the development of the operator actions and timing which are being assumed within this calculation.
The 104°F assumed in Case 1 for initiating ceiling tile removal is considered a conservative trigger for operators to remove MCR ceiling tiles: Removal of MCR ceiling tiles does not impact the MCR envelope, thus operators could perform this action earlier. Some operators indicated this could be initiated in a 30-60 minute time frame after a Loss of HVAC if other actions provided no MCR temperature control. GOTHIC trips are used to initiate the different mitigating actions defined in Tables 4 and 5. 4.4. As described in Table 5, Case 2 includes an operator action to open control room door CB 136-9 into the southwest well of the control building and position a portable fan in this open doorway exhausting into' the stairwell. The also open door CB157-2 to the control building roof at the top of the stairwell. This allows the MCR volume to exchange air with the stairwell and for the portable fan (and later, the smoke removal fan) to draw outside air into the MCR. The stairwell is modeled as a single lumped parameter volume, which results in the stairwell air having a uniform temperature. The free volume of the stairwell is reduced by 30% to account for the stairs in the volume. The stairs and walls in this stairwell volume are conservatively neglected as heat sinks. While this lumped volume approach limits the effectiveness of the stairwell in cooling the air that circulates into the MCR since bidirectional flow and local reduction in stairwell temperatures .. are not captured, the lumped volume does result in uniform mixing of the relatively hot MCR air with the entire stairwell volume. This ignores the stagnant air inventory that would at the lower elevations of the stairwell and thus may under estimate the temperature of the air in the stairwell that is returned to the MCR through the open door. To confirm that the lumped parameter approach is conservative for this calculation, a sensitivity calculation was performeo using-the limiting Case 2 model with a subdivided stairwell volume. The resulting MCR transient temperatures were shown to' be the same as that pre.dieted by the lumped stairwell volume. Therefore, the lumped stairwell model was retained for this analysis. 4.5. A diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere that provides makeup flow to MCR (see Section 6.2). All.cases use a maximum design basis temperature of 96 °F consistent with Reference 8.17 and FSAR Table 9.4-1. The mean daily temperature range that is applied to all cases is based on the climatic data from Attachment 11 for the month of July (Reference 8.13), as this is the most conservative month. The mean daily temperature range specified is 17°F. In each case, the outside air temperature is kept at 96°F for the initial four hours. This conservatively maintains a high outside air temperature until all mitigating actions have been implemented. Outside air temperatures would be considerably lower for much of the year. Attachment 11 shows monthly data for the Baton Rouge airport, approximately 25 miles south of RBS. 4.6. A specified convective HTC of 4 BTU/h-ft2-°F in conjunction with the sol-air temperature developed in Section 6.3 is applied to the outside surface of the thermal conductors representing the walls to the atmosphere, based_ on a typical 7.5 mph wind during summer (Reference 8.13, Chapter 26, Table 1 ). ENERCON ,CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 13 of 303 4.7. The portable electric fan that will be staged in door CB136-9 in Case 2 has a flow rate of 2800-4000 CFM (Attachment 6). The lower bound of this value, 2800 CFM is assumed in the analysis. The fan is modeled using a GOTHIC volumetric fan component positioned in the flow path representing the lower half of door CB136-9. Any flow seepage around the sides of the fan is neglected. The flow path representing the upper half of the door remains unobstructed when the fan is running. The fan flow rate is assumed to be constant at the minimum rated flow noted above. Variations in* flow rate due to any back flow or seepage is neglected. 4.8. The heat transfer coefficient (HTC} on the "B" side of the floor thermal conductor is "Sp Ambient and HTC" with the ambient temperature set equal to the most limiting room from ENTR-078-CALC-001 (Reference 8.18) with operator actions to open doors at 4 hours. This room was determined to be DC Equipment Room 1 A. This is a conservative method for modeling th? boundary node for the floor conductor as the DC Equipment room is under a small portion of the MCR, and.all other rooms under the MCR do not experience as severe of temperature increases. The convective HTC is set to 1.63 BTU/IJ-ft 2-°F based on heat flow upwards (Reference 8.13, Chapter 26). The initial temperature of the* thermal conductor representing the floor is set to the average of the initial temperature of DC Equipment Room 1 A (78 °F) and the initial temperature of the MC.R (75°F), or 76.5°F. 4.9. Multiple other operator actions are available as a response to a loss of control building cooling. AOP-0060 (Reference 8.6) provides instructions for use of Service Water to directly cool the control building Air Conditioning Units. This action was not credited in ttie analyses in the body of this calculation, but the time delay associated with attempting this was implicitly accounted for in development of the operator action timeline based on operator interviews. Operators are able to manually initiate ACU 1 A(B) main control room air conditioning units from the Main Control Room, overriding interlocks with the Chilled Water System. This action was taken during the March 9, 2015, loss of control building ventilation event by the Main Control Room staff. A case with HVC-ACU1 aligned to service water is evaluated in Attachment 1 to this calculation. Multiple portable fans are available at River Bend which could be used to provide control room ventilation. Attachment 6 provides a picture and information on the electric ppwered fan credited in this analysis. The River Bend fire brigade van contains a gasoline powered portable fan with a flow rate of greater than 14,000 CFM which could be staged to provide ventilation to the main control room (Fire Brigade members are trained in techniques for effective ventilation). A picture of this fan is also provided in Attachment
- 6. FLEX portable fans and diesel generators are also now available on site at .. River Bend to provide ventilation as required.
Thus, multiple other means of providing ventilation and cooling of the main control room are available besides those credited in this calculation. 4.1 O. The floor (see also Section 3.5) is rnodeled using a composite conductor with three regions representing the false floor panels, an air gap, and concrete. The false floor is modeled as hardboard, based on pictures of the floor panels shown in Figure 1 and 2. Figure 1 and 2 show the floor is a wood composite
- material, supported by an aluminum composite structure and steel supports as documented in Reference 8.9,
) ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 14 of 303 Page 5, Appendix F. Modeling the composite false floor as entirely wood is conservative as; wood is a less efficient heat conductor than aluminum metal. (Per Table 2, the hardwood flooring thermal conductivity is 0.068 Btu/hr-ft-°F versus 96.67 Btu/hr-ft-°F for aluminum used in Reference 8.29). Thus, modeling the false floor as all wood limits the heat transfer out of the* lower MGR volume. As discussed in Attachment 8 of Reference 8.29 (Response to NRG Question 20), a portion of the total false floor area is covered by carpeting to reduce noise C!nd enhance operator comfort (see Reference 8.35). This modification was implemented by RBS design change RBS-ER-98-0228. The GOTHIC floor conductor does\ not include this carpeting material. This is an acceptable assumption as (1) the carpet material covers only , about 1/3 of the total floor area, and (2) the effect on room temperature by omitting the aluminum composite structure was determined to more than offset the effects of including the carpet material.
- 4.11. The ceiling tiles) are modeled as acoustical tiles based on a typical material for ceiling tiles. 4.12. The initial relative humidity of the outside air is set to 53%. This is based on the initial 96°F dry bulb temperature (see Section 4.5) and 81°F wet-bulb temperature consistent with Reference 8.17 and FSAR Table 9.4-1 using a psychrometric chart (ASHRAE, Reference 8.13). The outside air absolute humidity is assumed to remain constant throughout the transient and is based on this initial relative humidity
- and atmospheric pressure (14.7 psia). The relative humidity varies with changes in diurnal temperature (see Section 6.2).
- 4.13. The mass of the heat generating equipment inside the MGR panels is not explicitly modeled (see Section 6.4.3). The sensible heat released from the control panels and electrical equipment inside the panels is accounted for by initializing control panel thermal conductors with the non-LOOP control panel heat load to increase the conductor temperature and maximize the stored heat (see Section 6.5.2). 4.14 The roof and walls of the control building are concrete.
Therefore, the solar absorptivity of the roof and walls is set to 0.6 based on the recommended value for concrete from Reference 8.13, Chapter 4, and Table 5. 4.15 Based on Reference 8.2, Appendix F, BYS-INV02 batteries provide power to the some of the components (including the computer equipment as well as some of the lighting and control panel heat load) during a LOOP (Case 1 ). Page 12 of Reference 8.2 states that these Non-safety DC loads have a 2 hour design battery life. The heat loads powered by this battery is assumed to stay on for a total of 4 hours to bound this battery life (see Section 6.5.3) and any sensible heat that would be released after the batteries have been depleted. The lighting heat load during the LOOP scenario (Case 1) is assumed to be uniformly reduced based on inspection of Reference 8.33 which shows the lights powered by different panels are evenly distributed throughout the MGR. 4.16 Lighting heat load that is not in luminous ceiling areas is assumed to be split between the lower and upper MCR-85% to the lower MCR and 15% to the upper MGR. Page 26.8 of Reference 8.34 states that the heat-to return for unventilated
- fixtures, such as ones not in the luminous ceiling area, is between 15 and 25%. The low end of this ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 15 of 303 range, 15%, is used for conservatism.
Lights in the luminous ceiling area are assumed to have 100% of the heat load deposited into the lower MCR. 4.17 All cases are initiated assuming that the Main Control Room HVAC (HVC) system has been operating and maintaining the lower and upper MCR at the initial temperatures (75°F and 81°F per Section 3.1) with the outside air and sol-air temperatures continuously varying over each 24 hour period as described in Section 6.2 and 6.3. The cases are assumed to start at the time of peak sol-air and ambient temperature (1 :00 p.m.), thus maximizing the initial temperature in the thermal conductors representing the concrete 'walls and ceiling. 4.18 As stated in Section 3.1, the base cases use an initial MCR relative humidity value of 20%. This is the *minimum value per the Environmental Design Criteria (EDC) and this minimum value is selected to maximize the control room dry bulb transient temperature. A sensitivity case (Attachment
- 2) assuming an initial MCR humidity of 70%, the Environmental Design Criteria (EDC) maximum value (per Reference 8.17), is also evaluated.
This value is higher than MCR humidity values recently recorded during normal operations (see table below), which averaged 58.8%. LcicatiOn,:C:(*
- * .'.:'.: *;,
- \4;*
Humidity: era>** Just inside MCR door 61.3 OSM office across MCR 59.5 By C91-P600 PPC CPU 61.2 cabinet By H13-P821 EHC Cabinet 59.0 By H13-P630 annunc. 57.5 Panel Behind H13-P808 bench board panel 56.9 By P852 02 BOP Aux relay 57 .2 pnl Between P870 and P863 panels Behind P601 panel ..
- i*; ,.
By P601 ,By P680 Bv P870 ) 58.5 58.7 58.8 58.5 58.9 ENERCON CALCULATION CONTROL SHEET Table 4: Mitigating actions for Case 1 Time Action 0 Loss of Control Building cooling(failure of HVC-ACU1A(B) to run due to chiller failure) Loss of Offsite Power: Div.1 and/or Div.2 Standby DG's respond successfully. < 30 min Operators attempt to restart chillers or manually start HVC-ACU1A(B). These actions are assumed to fail. 30 min Compiete actions to open back panel doors in Control Room. Operators would normally initiate steps to align SWP to provide cooling to HVC-ACU's Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited. 104°F Initiate actions to remove ceiling tiles. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 16 of 303 Basis AOP-0060 (Reference 8.6) Step 5.1.1 and Operator Interviews. AOP-0060 (Reference 8.6) AOP-0060 step 5.1.2 (Reference 8.6). and Operatqr Interviews AOP-0050 (Reference 8.14) and Operator Interviews. Time 0 <30 min 30min 1 hour 1 hour 30 minutes. 2 hours ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 17 of 303 Table 5: Mitigating actions for Case 2 Action Basis Loss of Control Building cooling (failure of HVC-ACU1A(B) to run ,due to chiller failure) Offsite Power available. Toilet and Exhaust Fans remain running. / Operators attempt to restart chillers or manually start AOP-0060 (Reference 8.6) Step HVC-ACU1A(B). These actions are assumed to fail. 5.1.1 and Operator Interviews. Complete actions to open back panel doors in Control AOP-0060 (Reference 8.6) Room. Operators would normally initiate steps to align SWP to AOP-0060 step 5.1.2. (Reference provide cooling .to HVC-ACU's 8.6) and Operator Interviews Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited (See Attachment 1):
- Operations open Main Control Room door CB136-9 to SW Operator Interviews stairway (near elevator) and open door from stairwell to the outside A portable electric fan staged in door CB 136-9 to exhaust Operator Interviews from Main Control Room. Smoke Removal fan (HVC:-FN9) started to provide Main SOP-0058 (Reference 8.30) Control Room Ventilation.
Section 5.5 and Operator " \ Interviews 2 hours 30 Initiate actions to remove ceiling tiles. AOP-0050 (Reference 8.14) minutes 5. METHOD OF ANALYSIS The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for .24 hours following a Loss of HVAC. GOTHIC is/ a general purpose thermal hydraulic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). ' \ GOTHIC models developed for this calculation are based on the model from G13.18.12.4*027 (Reference 8.1). The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference 8.29) are also used in the development of this calculation. ENERCON CALCULATION CONTROL SHEET 6. GOTHIC INPUT DEVELOPMENT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 18 of 303 The volumes, conductors, and initial conditions from Reference 8.1 that were verified to be correct and/or reasonable are retained in this model. New or revised inputs are documented in this calculation. 6.1. Control Volumes and Bot;mdary Conditions The SBO model (Reference a.1) uses a 4X x 2V x 2Z subdivision for the upper and lower MCR (Control Volume (CV) 1 and CV2). The analysis in this calculation further subdivides the lower MCR into a 16X x av x 3Z subdivision and) the upper MCR into a 16X x av x 2Z subdivision (see Figure 4). The hydraulic diameters for the cell face variations and volume *variations are set to the default values, allowing GOTHIC to calculate these parameters internally. ' The location of the first vertical subdivision in the lower MCR control volume (CV1) is adjusted so that the lower half of door CB136-9 is connected to the lower subvolumes and the upper half to the middle subvolumes. The second vertical subdivision in the lower MCR control volume is at the height of the top of the control panels (7.5 ft). Three control volumes are added"to model the atmosphere, stairwell 1 and an exhaust ' volume. The first control volume added (CV3) represents the atmosphere which provides makeup flow to the stairwell volume. This is a flow-through volume as described in Section 22.10 of the GOTHIC User's Manual (Reference a.5). Temperature in this atmosphere volume is controlled using a diurnal temperature forcing function applied to the pressure and flow boundary conditions connected to this volume, as described in Assumption 4.5. The -volume is arbitrarily set to 30,000 ft3. The flow boundary flow rate is set to 200 lbm/sec to maintain the desired conditions in the control volume. ' The second control volume added (CV4) represents stairwell
- 1. Door CB 136-9 opens into this stairwell on elevation 136'-1 5/a". This volume is connected to the atmosphere volume (CV3) on elevation 157'-a".
The height of the stairwell is determined by subtracting the bottom elevation, 9a' as shown on Reference a.11, from the top elevation. The top elevation is assumed to be equal to the elevation at the top of stairwell 1 of 157'-a" shown on Reference a.11, plus the door height (7 ft, Input 3.9). The height of stairwell 1 is calculated below. Hstairwell = 1,64.667 ft -98 ft = 66.667 ft The volume of the stairwell is calculated based on the stairwell dimensions given in Input 3.1 O . and the height calculated above, reduced by 30% (Assumption 4.4), as shown below Vstairwell = 0.7 * (L
- W
- H) = 0.7 * (21.667
- 8.25
- 66.667) = 8,341.84 ft3 The third control volume added (CV5) is the exhaust plenum for flow from the smoke removal fan. The volume is arbitrarily defined as 10,000 ft3 and a pressure boundary (5P) is connected to this volume to ensure it does not pressurize.
ENERCON CALCULATION CONTROL SHEET I I I i 144--CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 19 of 303 L --I -----------------------------------t-------------------- 1 I l ! I I ! I r !L ! I I I I ! I I I I ..------------1<< I k ____________ 1 I I -+-+-+-+-1---+-+-+-1-+-+-!-+-+-tt;l I l I lt IL L Figure 4: GOTHIC Lower and Upper MCA Volumes ) ENERCON CALCULATION CONTROL SHEET 6.2. Outside Air Temperature and Humidity CALC. NQ. ENTR-078-CALC-004 REV.O PAGE NO. 20 of 303 As stated in Section 4.5, a diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere which provides makeup flow to MCR using the methodology provided in Chapter 14 of ASHRAE (Reference 8.13), which is summarized by the following relationship: Tdb,h = Tdb,des -f(DR) Where Tdb,h =hourly dry bulb temperature (°F), Tdb,des = design dry bulb temperature (96°F), f= hourly daily range fraction (ASHRAE Table 6), DR = daily range of dry bulb temperature (17°F), As discussed in Section 4.5, the outside air temperature is kept at 96°F for the initial four hours. The varying outside air temperature is implemented using a GOTHIC forcing function referenced by the flow and pressure boundary conditions used to define the outside air flow through atmospheric volume. The outside air pressure is constant and assumed equal to 14.7 psia. As stated in Assumption 4.12, the outside air absolute humidity is assumed to remain constant throughout the transient such that the relative humidity varies with changes in diurnal This is accomplished in GOTHIC by specifying an appropriate steam volume fraction in the applicable outside air flow and pressure boundary conditions. The. steam volume fraction is calculated . based on the initial relative humidity (53%) and atmospheric (total) (14.7 psia). Per the GOTHIC User's Manual (Reference 8.5), steam volume fraction is defined as: where Ps =steam partial.pressure, PT= total pressure (14.7 psia). Relative humidity is defined as: where P9 = steam saturation
- pressure, From ASME steam tables: P9(96°F) = 0.8416 psia. °Vs Ps Vsf = Vr = Pr r *--.__
ENERCON CALCULATION CONTROL SHEET Therefore, CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 21of303 Ps = (RH)(P9) = (0.53)(0.8416) = 0.44605 psia, and by substitution 0.44605 Vst =, 14.7 ='0.030343 Using the above steam volume fraction and the diurnal temperature variation, the outside air relative humidity varies with dry bulb temperature, as the air temperature decreases.
- 6.3. Sol-Air Temperature Methodology Solar heat loads to\ the MGR roof and walls are modeled by assigning a temperature boundary condition to the GOTHIC internal thermal conductors representing the roof and walls. The assigned temperature is the sol-air temperature.
Sol-air temperature is the outdoor air temperature that, in the absence of all radiation changes gives the same rate of heat entry into the surface as would the combination of incident solar radiation, radiant energy exchange with the sky and other outdoor surroundings, and convective heat exchange with outdoor air (Reference 8.13, Chapter 18). The calculation of the sol-air temperatures follows the example in Reference 8.13, Chapter 18. The following example is a calculation for the sol-air temperatures on the exterior surface of the roof for July at a location based on Baton Rouge Ryan Airport which is approximately 25 miles south of River Bend Nuclear Station. Definitions of many of the variables in the equations below are from Reference 8.13, Chapter 14. The example given below is for the roof of the MGR at the most conservative time of 1 :00 pm, which is when the transient is assumed to start. This sol-air temperature is calculated for each hour of the day. As discussed in input 3.16, the sol-air temperature calculated for the roof is conservatively applied to all the walls of the upper and lower MCR. The maximum outside air temperature is set to the design basis maximum temperature of 96°F. The daily temperature range is set to 17°F based on the mean daily temperature range for the Baton Rouge Ryan Airport in July (Attachment 11). Note that, per Assumption 4.5, the outside air temperature is kept at 96°F for initial four hours but the sol-air temperature is varied over the entire transient. 4J = south orientation = 0° r = surface tilt from horizontal = 0° 1 :00 PM Local Standard Time (LST) = hour 13 to = 95.2°F (temperature at 1 PM based on daily temperature range) Latitude: 30.54 N (ASHRAE data from Baton Rouge Ryan Airport) Longitude: 91.15 W (-91.15) (ASHRAE data from Baton Rouge Ryan Airport) taub (Tb: 0.542 (ASHRAE data from Baton Rouge Ryan Airport) for July) , taud (Td): 1.845 (ASHRAE data from Baton Rouge Ryan Airport) for July) Calculate solar altitude, solar azimuth, surface solar azimuth, and incident angle as follows: From Chap 14, Table 2 in ASHRAE, solar position data and constants for July 21 are, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ET =-6.4 min 0 = 20.4° E0 = 420 Btu/h*ft2 PAGE NO. 22 of 303 Local standard meridian (LSM) for Central Time Zone= -90°(Reference 8.13, Chapter 14, Table 3)
- a=0.6 based on concrete (Reference 8.13 Chapter4, Table 5, Assumption 4.14) ho=4.0 BTU/hr-ft 2-°F based on 7.5 inph characteristic of the summer months (Table 1 in Chapter 26 of Reference 8.13, Assumption 4.6) E=1 (Chapter 18 of Reference 8.13) 11R=20 BTU/hr-ft 2 (Chapter 18 of Reference 8.13) Apparent solar time (AST) AST= LST + ET/60*+ (LON-LSM)/15
= 13 + (-6.4/60) + [(-91.15 +90)/15] = 12.817 Hour angle H, degrees H = 15(AST-12) = 15(12.817 -12) = 12.3° Solar altitude 13 sin 13 = cos L cos o cos H + sin L sin o =cos (30.54) cos (20.4) cos (12.3) +sin (30.54) si.n (20.4) \ : 0.97 I 13 = sin-1(0.96) = 75.0° Solar azimuth cp cos cp = (sin 13 sin L-sin o)/(cos 13 cos L) .;; [(sin (75.0) sin (30.54) -sin (20.4)] /[cos (75.0) cos (30.54)] = 0.6382 cp = cos-1(0.6382) = 50.3° Surface-solar azimuth y y=cp-ljJ = 50.3-0 = 50.3° Incident angle 8 cos 8 = cos 13 cos y sin L + sin.13 cos L = cos (75.0) cos (50.3) sin (0) + sin (75.0) cos (0) = 0.966 a = cos-1(0.966) = 1 S.0° Beam normal irradiance fa Eb= Eo exp(-Tbf7ilb) m = relative air mass = 1/[sinl3 +0.50572(6.07995 13 expressed in degrees . = 1.035 \-ab = beam air mass exponent = 1.219-0.043Tb-0.151Td-0.204TbTd = 0.7131.0 Eb= 420 exp [-0.542(1.035o.11310)] = 241 Btu/h*ft2 Surface beam irradiance Er;b I \. . ENERCON Et,b = Eb cos 8 = (241) cos (15.0) = 232.8 Btu/h*ft2 CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 23 of 303 Ratio Y of sky diffuse radiation on vertical surface to sky diffuse radiation on horizontal surface Y = 0.55 + 0.437 cos 8 + 0.313 cos28 = 0.55 + 0.437 cos (15.0) + 0.313 cos2(15.0) = 1.264 Diffuse irradiance Ed-Horizontal Ed= Eo exp (-T drrfld) ad= diffuse air mass exponent = 0.202 + 0.852Tb-0.007Td-0.357TbTd = 0.29387 Ed= Eo exp (-Tdrrfld) = 420 exp (-1.845(1.035°.2s3s7)] = Btu/h*ft2 Diffuse irradiance Etd-Nonvertical surfaces Et,d= Ed(Y sin(i.)+cos('E) = (70.5)(1) = 65.1 Ground reflected irradiance Er,r Et,r = (Eb sin f3 + Ed)p9(1 -cos "i..)/2 = [241 sin (75.0) + 65.1](0.2)[1 -COS. (0)]/2 = O Btu/h*ft2 Total surface irradiance Er , Et= Et.b + Ed+ E, = 232.8 + 65.1 +O = 298.0 Btuih*ft2 Sol-air temperature: te = to+ aE, /ho-EliRlho = 95.2 + (0.6)(298.0)/(4) -{1)(20)/(4) = 134.9°F I This sol-air temperature is calculated for each hour of the day and applied as a "Sp Ambient & HTC" using a GOTHIC forcing function on the walls and roof of the upper and lower MGR. 6.4. Thermal Conductors )* 6.4.1 MGR Walls The GOTHIC thermal conductors representing the concrete walls in the lower and upper MGR volumes are consolidated into North, West, South and East Walls and spanned across the subvolumes adjacent to the walls. The dimensions of the lower MGR are 144 ftx 74 ftx 9.115 ft (Reference 8.1). The dimensions of the upper MGR are 144 ft x 74 ft x 8.670 ft (Reference 8.1). The surface area for the north and south walls for the MGR is calculated below. ' SAN+S LMCR = 74 ft* 9.115 ft= 674.51 ft2 The surface area of the east and west walls for the lower MGR is calculated below. ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 24 of 303 SAE+W LMCR = 144 ft* 9.115 ft= 1312.56 ft2 The surface area of the north and south walls for the upper MCR is calculated below. SAN+S UMCR = 74 ft* 8.670 ft= 641.58 ft2 The surface area of the east and west walls for the upper MCR is calculated below. SAE+W UMCR = 144 ft* 8.670 ft = 1248.48 ft2 6.4.2 MCR Floor and Ceiling As discussed in inputs 3.5 and 3.7, GOTHIC thermal conductors representing the floor of the MCR and the ceiling of the upper MCR plenum are added to the GOTHIC model. The surface area of the floor conductor is determined from the dimensions of the MCR, 144' x 74' (Reference 8.1 and 8.26). The GOTHIC thermal conductor representing the floor is spanned across the lower subvolumes of the lower MCR volume. The GOTHIC thermal conductor representing the ceiling of the upper MCR is spanned across 'the upper subvolumes of the upper MCR.
- SAceiling
= floor = 144 ft* 74 ft = 10,656 ft2 The thickness of the concrete walls in the lower and upper MCR volumes is increased to the actual thickness of 24 inches, as the zero heat flux boundary condition (Reference 8.1) is no longer applied. The sol-air temperature forcing function, determined in Section 6.3, is applied as the HTC on the B side for the concrete walls of the lower and upper MCR volumes, as well as to the ceiling for the Upper MCR volume. 6.4.3 Control Panels The surface area of the control panels is split into three separate GOTHIC thermal conductors: one for the west half of the room, one for the northeast quadrant and one for the southeast quadrant. The GOTHIC conductors representing these control panels are spanned over the appropriate subvolumes in the lower _and middle subvolumes of the lower MCR volume based on the height of 7.5 ft for the control panels given in Reference 8.27. The dimensions and locations of the control panels are from Reference 8.26 and 8.27. Attachment 4, Tables 1-3, shows the calculation of the surface area for each of the control panel groupings. Note that this calculation does nottake into account the interfacial surface area between panels as was done in Reference 8.1. An effective thickness is calculated to account for the metal mass present in this interfacial area, as well as on the bottom surface of the control panels.
- This effective thickness is determined by calculating the total metal volume based on the nominal thickness of 1/8" from Reference 8.1 and multiplying by the total surface area (including the interfacial area and bottom surface area) for the metal panels, calculated in Table 4 of Attachment
- 4. This product is then divided by the surface area exposed to air calculated in Attachment4(Tables1-3) of this calculation, shown below. As discussed in Assumption 4.13, the equipment mass inside of the control panels is not modeled.
Initialization of these ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 25 of 303 conductors to reflect the electrical heat load in the cabinets and the resulting higher panel temperatures and stored heat is described in Section 6.5.2. 0.125 in* 20,265.1 ft2 teff = 7,764.63 ft2 + 3,234.14 ft2 + 3,728.76 ft2 = 0*172 inches 6.4.4 Additional MCR Heat Sinks Steel heat sinks of various thicknesses are also added based on the walk down notes provided in Attachment
- 5. The walk down notes and Reference 8.26 are used to determine the general area that the identified heat sinks are located in order to accurately model their physical location in the GOTHIC model. 6.4.5 Ceiling Tiles A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the model. The thickness of the ceiling tile conductor is set to 5/8" based on Reference 8.1, Page 29. The acoustical tile material defined in Table 2 is used for this conductor.
The surface area of the ceiling tiles is calculated by subtracting the surface area of the ceiling tiles removed, from the total surface area as discussed in Input 3.8, shown below. -2 . ft2 -. 2 SAceilingTiles -10,656 ft -80 tiles* 8 -.-l -10,016 ft tie 6.4.6 Metal Work Above Ceiling The metal work above the suspended ceiling tiles is represented by a single conductor spanned over the upper MCR volume. The total surface area and thickness of this conductor are determined from Reference 8.1. 6.5. Heat Loads The MCR heat loads for each case are distributed in the actual location of the heat source. The magnitude and location of the heat loads is based on information in E-226 (Reference 8.2) and EE-027 A (Reference 8.26) as modified by EC 61.975 (Reference 8.36). All individual heat loads are modeled in GOTHIC using heater components located in the appropriate subvolume with a constant heat rate equal to the heat load. Some notes regarding the heat load distribution are provided below:
- The lighting heat load is based on inspection of Reference 8.33 and 8.36. 15% of the lighting heat load not in the luminous ceiling areas is assigned to the upper MCR volume as described in Assumption 4.16.
- Attachment 10 gives the heat loads in the NSSS (H13-P600 series) control panels in the control room. The heat loads of these select panels are applied in their actual location, based on Reference 8.26. The remaining heat loads from control panels are found from Reference 8.36.
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE. NO. 26 of 303
- The heat load for the Honeywell computer equipment is determined from Attachment
- 8. The heat loads for the individual panels are located based on Reference 8.26.
- As discussed in Section 3.6, the heat load from the PGCC raceway is modeled in the air gap of the GOTHIC composite thermal conductor representing the floor. The heat load is distributed evenly across the floor. *. Heat loads from lighting panels, miscellaneous panels, the radiation monitor (RMS-CAB 170), and the kitchen were located based on Reference 8.26.
- As discussed in Assumption 4.1, five operators are assumed in be in the horseshoe area of the MCR. The remaining five operators are assumed to be implementing actions such as opening panel doors, ceilingJiles etc.; thus the heat load from these operators is spread evenly across the lower and middle subvolumes of the MCR.
\ 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 27 of 303 Figure 5 below shows the MCR layout from Reference 8.26 with the GOTHIC lower subvolume grid outline. Subvolume numbers at the middle and upper grid elevations are equal to these values increased by 128 (middle) and 256 (upper). The location of the vertical grid lines is shown in Figure 4. This drawing, in conjunction with Reference 8.26, is used to determine the location of heat loads as well as heat sinks from Section 6.4 and Attachment
- 5. ' . ' -Pi.AA I I ' I EE-027 A with GOTHIC Subvolume Grid ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-:CALC-004 REV.O PAGE NO. 28 of 303 6.5.1 Lighting The lighting heat load and distribution is determined from Reference 8.33 and Reference 8.36, summarized in Table 6 below. Table 6: Lighting Fixtures Fixture Type BG -BJ BM BU ' BV Total No. 8 79 1'33 2 3 No. of tubes 2x8=16 4x79 =316 4x133=532 2x2=4 2x3= 6 Total watts 768 15, 168 14,364 110 165 The total heat load is therefore 30,575 Watts. The luminous ceiling area in the center of the room is shown to have 75' "BJ" fixture types from Reference 8.33. The heat load from these 75 fixtures is distributed evenly between subvolumes 1s294-1s297, 1s310-1s313, 1s326-1s329, 1s342-1s345, and 1s358-1s361 (20 total subvolumes).
As discussed in Assumption 4.16, the entire heat load from these lighting fixtures is assumed to be deposited into the lower MGR volume, based on these lighting fixtures being in an elevated ceiling area, and therefore not ventilated. The heat loads are distributed to each subvolume using GOTHIC heaters. The heat load per heater for these subvolumes is calculated below. . , tubes W BTU _ 75 fixtures* 4 fixture* 48 tube* 9.478e 5-/W Qcenterarea = = 0.68 BTU /s 20 subvolumes The luminous ceiling area on the south end of the MGR is shown to have 4* "BJ" fixture types, and all 8 of the "BG" fixture types from Reference 8.33. The heat load from these 12 fixtures is distributed evenly between subvolumes 1s318-1s319 and 1s334-1s335. The entire heat load from these lighting fixtures is assumed to be in the lower MGR volume, based on these *lighting fixtures being in an elevated ceiling area, and therefore not ventilated. The heat*load per heater for these subvolumes is calculated below. ( . tubes . tubes ) W BTU 4 fixtures* 4 fixture+ 8 fixtures* 2 fixture 48ti:ibe
- 9.478e 5-/W Qsouth area = 4 subvolumes
- = 0.364 BTU /s The remaining lighting heat load is spread evenly across the remaining subvolumes (104 total). As discussed in Assumption 4.16, 85% of the heat load from lighting not in the luminous ceiling areas is assumed to be deposited into the lower MGR; the remaining 15% is input into the corresponding subvolumes in the upper plenum volume. The heat load per heater fc;>r this remaining lighting heat load is calculated below.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 29 of 303 W + 110 W + 165 W)
- 9.478e -4 /W QMCR-lights
= 1 4 b l = 0.1134 BTU /s 0 su vo umes 0.15(14,364 W + 110 W + 165 W)
- 9.478e -4 BTU /W . Qplenum-lights
= 104 b l s = 0.02 BTU /s su vo umes For the scenario (Case 1 ), lights powered by panels 1 C5 and 1 C,6 are lost at the onset of the event. Lights powered by 1C10 and 1C11 are conservatively assumed to remain on for four hours based on them being powered by BYS-INV02 which has a battery life of 2 hours _, (See Assumption 4.15). Lights powered by 1 C9 remain on for the duration of the event as they are powered by a diesel generator (Reference 8.36). An even reduction in the lighting heat load is applied to all the lights, as discussed in Assumption 4.15. This reduction factor is shown below for the first 4 hour period, as well as the 4-24 period: 6.5.2 11889 Watts Lighting Reduction 0_4 hours = 30575 = 0.389
- Watts 5937 Watts Lighting Reduction4-24hours
= 30575 Watts= 0.194 Control Panels Attachment 10 gives the hept loads for equipment inside the H13-P600 series (NSSS) control panels in the control room. The heat load for these panels is localized based on Reference 8.26. The heat load is distributed evenly among the lower and corresponding middle elevation subvolumes in the lower MCR volume. The heat load for the P600 panels given in Attachment 1 O is not reduced for the LOOP scenario. The heat load for equipment in the H13-P630 panel and the H13,.P800 (BOP) series panels are determined from Reference 8.36. The P600 panel heat loads are shown in Table 7. The P800 panel heat loads are shown in Table 8. Note that panel H13-P845 is given in Attachment 10 and Reference 8.36; 'the more conservative value from Reference 8.36 is used. Panel H 13-P680 is provided in Attachment 1 O as well as Attachment 8; the more conservative vaiu*e in Attachment 1 O is used in the analysis. The heat load for the P800 panels during a LOOP are determined from Reference 8.36 and given in Table 9. ENER ON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 30 of 303 Table 7: P600 Normal Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-PXXX {Watts) {BTU/s)* subvolume {s) subvolume {s) BTU/s P600 200 0.19 26 154 0.095 P601 1600 1.52 73,89 201,217 0.379 P604/614 1200 1.14 42 170 0.569 P607/P612 600 0.57 94 222 0.284 P61 O/P654/P652 1000 0.95 93 221 0.474 P619/P634 1200 1.14 110 238 0.569 P621/P628 600 0.57 45 173 0.284 P623/P632 1000 0.95 60 188 0.474 P625/P693 1300 1.23 91 219 0.616 P629 500 0.47 29 157 0.237 P630 3300 3.128 59 187 1.564 P631/P618 900 0.85 109 237 0.427 P637 800 0.76 111 239 0.379 P642/P613/P622 1000 0.95 92 220 0.474 P651 /P653/P655 1150 1.09 61 189 0.545 P680 800 0.76 55,56,57 N/A 0.253 P669/P691 1800 1.71 44 172 0.853 P670/P692 1800 1.71 108 236 *0.853 P671 1000 0.95 107 235 0.474 P672/P694 1800 1.71 43 171 0.853 TOTAL 23,550 22.33
- Values are converted from Watts usmg a conversion factor of 9.478e-4 BTU/s/Watts Based on Reference 8.36, panels H13-P612 (400 Watts), H13-P630 (3300 Watts), H13-P634 (1000 Watts), H13-P680 (800 Watts) are powered by BYS-INV02.
Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1)'. / .ENERCON fvery.rfay CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 31 of 303 Table 8: P800 Series Control Panel N.ormal Heat Load and Distribution Panel Heat Heat Load Lower Middle Per Heater Number Load Heat Load H13-PXXX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0.474 . 40,41 168,169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 1095 1.038 95 223 0.519 P844/P854 1995 1.891 81,97 209,225 0.473 P845 620 0.588 58 186 0.294 P849 750 0.711 51 179 0.355 P850 4125 3.910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 750 0.711 50 178 *0.355 P855 176 0.167 3*5 163 0.083 P861 400 0.379 103 231 0.190 P863 185 0.175 38,54 166,182 0.044 P869 2214 2.098 84 212 1.049 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 19,806 18.77 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ) / . ' ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 32 of 303 Table 9: P800 Series Control Panel LOOP Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-P:>(XX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0:474 40,41 168, 169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 437 0.414 *95 223 0.207 P844/P854 1995 1.891 81,97 209,225 0.473 P845 0 0.000 58 186 0.000 P849 750 0.711 51 179 0.355 P850 4125 3.'910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 0 0.000 50 178 0.000 P855 176 0.167 35 163 0.083 P861 400 0.379 103 231-0.190 'P863 185 0.175 38,54 166,182 0.044 P869 1500 1.422 84 212 0.711 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 17,064 16.17 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts
- Based on Reference 8.36, panels H13-:P850 (4125 Watts) and H13-P844/854 (1995 Watts) are powered by BYS-INV02.
Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1 ). As discussed in Section 6.4, the control panels are represented in the GOTHIC model by three thermal conductors. The temperature of the panels is initially greater than the surrounding MCR ambient temperature due to the heat load from the electrical equipment inside the
- panels, which is modeled using heaters external to the panels. To account for the energy (heat) initially in the panel conductors and to ensure that the temperature of the control panel thermal conductors is greater than the room at the beginning of the transient, the total control panel heat load from E-226 (Reference 8.2) is input into the control panel thermal conductors for the first 0.1 seconds.
The volumetric heat rate used for these control panel thermal conductors is calculated below based on the total (non-LOOP) panel heat load of 30,018 watts from Reference 8.2, or 28.45 BTU/s, and the total panel conductor volume. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 33 of 303 28.45 BTU/s Q"' Control Panels-Initial = -------------------::--:-:=-:-- ! 2 f 2 7 f 2) 0.172 in (7,764.6 t + 3,234.14 t + 3,728. 6 t
- 12 inf ft .BTU = 0.133! 3 t -s For the LOOP (Case 1 ), this initial internal heat rate is also used, although the LOOP panel heat loads are lower. This, together with the assumption that the computer equipment heat loads are maintained for 4 hours (Ass1,.1mption 4.15), ensures that the total stored energy is conservatively represented by the panel conductors.
6.5.3 Equipment Heat load from computer equipment includes that from the Honeywell HS 4500 Plant Process Computer (PPC) system (C91 panels), Emergency Response Information System (ERIS) data acquisition
- chassis, Orbital Network Engineering (ONE) computers, computer workstations, network switch and servers, and personal computers.
An initial estimate of the heat load due to the Honeywell computer was obtained by taking field measurements of current on each disconnect in the panels and multiplying by the voltage. These measurements and the resulting heat loads are included as Attachment
- 8. The distribution of the Honeywell computer heat loads is based on the location of the panels provided in Reference 8.26. Similar to the control panel heat loads, t.he heat load from computer panels in the same subvolume are summed and the combined heat load from these panels is distributed between the lower subvolumes and the corresponding middle subvolume.
The heat loads and distribution for these Honeywell panels is shown in Table 10. Table 1 O: Honeywell Computer Panel Heat Load and Distribution Panel Number Heat Heat Load Lower Middle Per Heater Load Heat Load C91-PXXX (Watts) (BTU/s)* Subvolume subvolume BTU/s Communications 294 0.279 90 N/A 0.279 Cabinet P60S/P600/P603 2049.3 1.94 63 191 0.971 P625 217.35 0.21 31 159 0.103 P621 /P620/612 2857.3 2.71 47 175 1.354 P624 546.25 0.52 51 179 0.259 P622 441.6 0.42 18 146 0.209 P623/650/616 1305.25 1.24 34 162 0.619 P63,0/P631 1030.5 0.98 62 190 0.488 P613 182.85 0.17 94 222 0.087 P615/642 2256.85 2.14 46 174 1.070 P614 180.55 0.17 30 158 0.086 P632/P633 139.15 0.13 72 200 0.066 TOTAL 11,500.95 10.90 / *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts E.NERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 34 of 303 Figure 6 below shows the location of the individual personal computers (PCs) in the MCR (Reference 8.36). The PCs have a heat load of 300 W each per Reference 8.2, Appendix A, Page 35. Based on Attachment 8, the heat load from PCs in the southwest area near. the Honeywell panels is already accounted for using the measured loads from these panels, thus these PCs are not accounted for as an additional heat load. The subvolume locations for each of the PCs is given in Table 11. \ CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET REV.O PAGE NO. 35 of 303 ENERCON 'CALCULATION CONTROL SHEET ,CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 36 of 303 Table 11: Heat Load Distribution for Personal Computers Heat Load , Heat load Heat Source (watts) General Location Subvolume (BTU/s)" PC1/2 600 Center Area 72 0.569 PC3 300 Center East Wall 104 0.284 PC4 300 Center East Wall 105 0.284 PC5/6 600 Center Area , 87 0.569 PC7 300 Center Area 71 0.284 PC8/9 600 Center Area 199 0.569 PC 10/11 600 Center Area 106 0.569 PC 12-Shift Manaaer 300 NW Corner 1 0.284 TOTAL 3600
- Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts The heat load from the ERIS system is determined in Attachment
- 3. Table 12 gives normal operations heat load distribution.
Table 13 gives the LOOP heat load distribution after 4 hours when the BYS-INV02 batteries have been depleted. The heat load from panels in the same subvolume are summed. Table 12: Normal Heat Load Distributicm for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 358.8 0.340 378 H13-Y703A 370.8 0.351 282 H13-Y703D 226.8 0.215 281 H13-Y710B/D/E 873.6 0.828 380 H13-Y711A 132 -0.125 382 'H13-Y712B/D 741.6 0.703 379 H 13-Y713A/D 741.6 0.703 284 H13-Y714B/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y730B 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 132 0.125 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 c 0.215 '371 H13-Y747A 226.8 0.215 275 H13-Y7478 370.8 0.351 274 H13-Y748B/E 453.6 0.430 369 H13-Y750E 226.8 0.215 277 H13-Y751A 226.8 0.215 377 H13-P721 240 0.227 31 TOTAL 7461.6 7.072 CALC. NO. ENTR-078-CALC-004 EN CON CALCULATION CONTROL SHEET REV.O PAGE NO. 37 of 303 Table 13: LOOP Heat Load Distribution for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 132 0.125 378 H13-Y703A 0 0.000 282 H13-Y703D 226.8 0.215 281 -H13-Y7108/D/E 741.6 0.703 380 H13-Y711A 0 0.000 382 H13-Y712B/D 741.6 0.703 379 H13-Y713A/D '741.6 0.703 284 H13-Y7148/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y7308 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 0 0.000 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 0.215 371 H13-Y747A 0 0.000 H13-Y7478 0 0.000 274 H13-Y7488/E 0 0.000 369 H13-Y750E 0 0.000 277 H13-Y751A 226.8 0.215 377 H13-P721 0 0.000 31 TOTAL 4,950 4.692 As discussed in Assumption 4.15, the heat load from all of the computer equipment is assumed to remain on for 4 hours during the LOOP scenario (Case 1) which bounds the 2 hour design battery life as well as sensible h"eat released after the batteries have been depleted. The ERIS equipment loads shown In Table 13 are assumed to remain on for the duration of the event. 6.5.4 Remaining Heat Load The remaining heat loads include the miscellaneous panels, the lighting panels, the radiation monitor (RMS-CAB170), the kitchen, the PGCC rac_eway, operators and other miscellaneous equipment which are found from Reference 8.2 and 8.36. The heat load and distribution for these remaining heat loads is given below in Table 14 (Case 1) and Table 15 (Case 2 and Attachment 1 ). j ,, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 38 of 303 Table 14: Heat Load Distribution for Case 1 Heat Source Heat Load General Location Subvolume (s) Heat load (watts) (BTU/s)* See SR Os 696.1 Horseshoe area Assumption 4.1 0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 0 Ewall 118 0.00 RMS-CAB170 0 WWall 9 0.00 LAC-PNL 1 C5/ LAC-PNL 1 C6 0 Middle W wall, upper 134 0.00 LAC-PNL 1C9 39.98 Middle W wall, uooer 135 0.038 LAC-PNLC10/ LAC-PNL 1 C11 40.1 Middle W wall, uooer 133 0.038 BYS-PNL0282/ BYS-PNL02A2 116 Nwall 65 0.1099 SCl-PNL02/ SCl-PNL01 0 NWall 49 0.00 SCA-PNL 1 OA2 0 NW wall 17 0.00 SCA-PNL 1082 0 NE Wall 113 0.00 VBS-PNL018 82 SE wall 128 0.07772 ENB-PNL028/ SCM-PNL01 B 291 J SE Wall 112 0.277 VBN-PNL0181 145 SWall 96 0.137 VBN-PNL01A 1NBN-PNL02 392 SWall 64 ' 0.372 SCM-PNL01A/ENBPNL02A 312 SW Wall 48 0.296 VBS-PNL01A 78 SW Wall 32 I 0.074 Samsuna Flatscreen 0 EWall 230 0 Shift Manager Coffee Pots 0 NW Corner 129 0 HU Clock Reset Display 0 WWall 136 0 Printer/Copier 0 w*wa11 137 0 Desktop Printers 0 Horseshoe area 103-106 0 FLEX Radio Console 0 Horseshoe area 232 0 Exit Lights 36 West Wall 259,270 0.034 Emergency Lights 1296 Along MGR Walls See below 1.501 PGCC Raceway 650 Under the floor N/A 0.62 TOTAL (w/o Operators) 3,478.1 TOTAL (wl Operators) 4,870.3 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 39 of 303 Table 15: *Heat Load Distribution for Case 2 and Attachment 1 Heat Heat load Heat Source Load General Location Subvolume (s) (BTU/s)* (watts) SROs in Horseshoe Area 696.1 Horseshoe area See Assumption 4.1 *0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 1443 East wall 118 1.37 RMS-CA8170 1900.11 WWall 9 1.80 LAC-PNL 1 CS/ LAC-PNL 1 C6 125.83 Center W wall, uooer 134 0.12 LAC-PNL 1C9 39.98 Center W wall, upper 135 0.038
- LAC-PNLC10/
LAC-PNL 1C11 40.1 Center W wall, uooer 133 0.038 8YS-PNL0282/ 8YS-PNL02A2 116 Nwall ' 65 0.1099 SCl-PNL02/ SCl-PNL01 134 NWall 49 0.127 SCA-PNL 1 OA2 51 NWwall J 17 0.0483 SCA-PNL 1082 51 NE Wall 113 0.0483 V8S-PNL018 82 SE wall 128 0.0772 EN8-PNL028/ SCM-PNL01'8 291 SE Wall 112 0.277 V8N-PNL0181 145 SWall ' 96 0.137 V8N-PNL01A 1/ V8N-PNL02 392 SWall 64 0.372 SCM-PNL01A/ EN8-PNL02A 293 SW Wall 48 0.277 V8S-PNL01A 78 SW Wall 32 0.074 Samsung Flatscreen 250 EWall 230 0.237 Shift Manager Coffee Pots 120 NW Corner 129 0.114 HU Clock Reset Display 192 WWall 136 0.182 Printer/Copier 849 E/WWall 15,120 0.81 Desktop Printers 800 Horseshoe area 103-106 0.758 FLEX Radio Console 268 Horseshoe area . 232 0.254 Emergency/Exit Lights 133 Wwall 259,270 0.126 PGCC Racewav 1350 Under the floor N/A 1.28 TOTAL (w/o Operators) 9,084.0 TOTAL Cw/ Operators) 10,476.2
- Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts As discussed in Assumption 4.1, five operators are assumed to be working in the central horseshoe area. The heat load from the five operators is spread across 18 subvolumes in the horseshoe area. The heat load for each individual heater is calculated below. 0.66 BTU /s BTU QsRos = 18 h = 0.037--eaters s The remaining operators are assumed to be evenly distributed throughout the MCR to simulate the actions of them opening the control panel doors and the ceiling tiles. The heat load from the remaining five operators is distributed evenly over the lower and middle subvolumes of the lower MGR.
ENER'CON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 40 of 303 0.66BTU/s . BTU Qo t = = 0.00258 --pera ors 256 heaters s The heat load from the Emergency (1296 Watts) for Case 1 (Reference 8.36) is evenly distributed amqng the 44 upper elevation,subvolumes in the lower MCR that are adjacent to the MCR walls-subvolumes 257-272, 273, 288, 289, 304, 305, 320, 321, 336, 337, 352, 353, 368, 369-384. The heat load per subvolume is calculated below. BTU/s 1296 Watts* 9.478e -4 Watt QEmergency Lights-LOOP= 44 subvolumes = ,0.028 BTU /s , . The heat load from the Emergency lights (13 Watts) is added to the heat load for the Exit lights which are located in the upper subvolumes by the doors along the West wall of the lower MCR-subvolumes 259 and 270. The heat load from the PGCC raceway is modeled in the air gap in the composite floor conductor as a volumetric heat generation rate. The heat load of 650 watts from the PGCC raceway for Case 1 is divided by the surface area of the floor conductor (10,656 ft2) and the thickness of the air gap (1 ft) to determine the volumetric heat generation rate, shown bel,ow.
- BTU/s ,,, 650 Watts* 9.478e -4 W _ BTU Q PGCC Raceway-Case 1 = 10,656 ft2
- 1 ft -5.8e -5 ft3 _ s The same methodology is used for the heat load for Cases 2 and Attachment 1, based on a PGCC raceway heat load of 1350 Watts. BTU/s 1350 Watts* 9.478e -4 W BTU Q"' PGCC Raceway-Case 2 &Att. 1 = 10,656 f t2
- 1 ft = 1.2e -4 ft3 _ s \ 6.6. Flow Paths and Volumetric Fans Flow paths (FP) are added to model door CB136-9 that opens from the lower MCR volume to the stairwell volume (FP 13, 14, and 21 ), the door that opens from the stairwell volume to the atmosphere (FP15, FP16), and exhaust paths for the smoke removal fan (FP18, 19, 20) and the toilet/kitchen fans (FP22). The door flow paths are split and modeled as parallel flow paths to allow for counter-current flow. The flow paths are sized based on Input 3.9. The first two flow patl]s (FP13 and FP21) model the lower half of door CB136-9; one flow path for when there is no fan, and the other for when the fan is staged in the lower half of the door. The flow path without the fan (FP13) is closed using a GOTHIC door component when the staged fan starts at 1 hour and 30 minutes in Case 2 (Table 5). The other flow path (FP14) models the upper half of door CB136-9.
Once the door is opened, this flow path provides the supply air for the smoke removal fan, portable fan, and toilet/kitchen fans. The height of each door flow path is 3.5 ft (half of the total height of 7 ft). The flow area and hydraulic diameter for the door paths are calculated below. ( \ '.. ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 41 of 303 Adoor = H
- W = 3.5 ft* 3 ft = 10.5 f t2 4A 4*10.5 Dh = Pw = 2
- 3.5 + 3 = 4.2 ft The inertia length and friction length for this flow path are set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters.
The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The flow path connection for the lower half flow paths of CB136-9 (FP13 and FP21) is connected to the lower subvolume of the MCR volume in the sbuthwest corner (subvolllme 1s14). The flow path connection for the upper half of CB136-9 (FP14) is connected to the upper subvolume of the MCR (subvolume 1 s142). The orientation of this connection is set at the bottom of the subvolume so that it can provide flow and mixing with the lower subvolumes when the staged fan flow path is open. The inputs for the toilet/kitchen flow path are arbitrarily defined with a height (ft), flow area (ft2), hydraulic diameter (ft), and inertia length (ft) of 1. The toilet and kitchen fan flow path is modeled in a subvolume near the center of east wall (1s374) based on review of Reference 8.26. The toilet/kitchen fans are only used for Case 2, when offsite power is available. Before door CB136-9 is opened, the supply air for the toilet/kitchen fans* is through the pressure boundary (FP1) which provides outside air flow at 96°F. FP1 is arbitrarily located in subvolurTie'1s94. This is conservative as the HVAC rooms which are connected to the MCR with ductwork are not expected to heat up significantly through this event, and would provide leakage at a cooler temperature.
- The inputs for the smoke removal fan flow paths (FP18-20) are defined based on Reference 8.8. Reference 8.8 shows the opening for the DMP 68 and 69 to be 48" x 36". The flow area and hydraulic diameter for these dampers (FP19, 20) is calculated below. 48 in x 36 in 2 ADMP68/69 = . 2 = 12 ft m 144 ft2 ' 4
- 12 ft2 Dh-DMP 68/69 = 48 in 36 in = 3.43 ft (2
- 12 in/ft+ 2
- 12 in/ft) Reference 8.8 shows the opening for DMP 70 to be 108" x 48". The flow area and hydraulic diameter for this damper (FP18) is calculated below. 108 in x 48 in 2 ADMP70 = . 2 = 36ft m 144 ft2 4
- 36 ft2 Dh-DMP7o
= 108 in 48 in = 5.54 ft (2
- 12 in/ft+ 2
- 12 in/ft)
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 42 of 303 *, The inertia length and friction length for these flow paths are set to 10 ft and Oft respectively, based on the insensitivity of the model to these parameters. The height is set 1.0 ft. The loss coefficient is set to zero as the flow is forced using GOTHIC volumetric fans. As described in Assumption 4.2, the flow through each of the dampers is weighted based on the total flow of 10, 125 cfm (Input 3.11) and the normal flow through the dampers, shown below. , ( 7600 cfm * ) FlowDMP6B/69 = 10,125 cfm
- 7600 cfm + 7600 cfm + 21000 cfm = 2,125.7 cfm . ( , 21000 cfm * )
= 10,125 cfm
- 7600 cfm + 7600 cfm + 21000 cfm = 5,873.6 cfm The flow paths representing the ceiling tiles (FP2-10) are distributed across the upper subvolumes of the lower MCR and connected to the corresponding upper MCR subvolume.
The first tile flow path that opens is split into two different flow paths of equal area (40 ft2) in order to allow for cpunter current flow when the tiles are initially opened. The loss coefficient, inertia lengths and friction lengths for the tile flow paths used in Reference 8.1 are retained in this analysis as they were to be reasonable. Flow paths 23-53 are added to-model the egg crate panels shown on Reference 8.8 and 8.31. Based on Attachment 7, there are 16 registers along the-west wall, and 15 along the East wall; this is also shown in Reference 8.31. Based on Attachment 7, the egg crate panels are squares that are 1/2" x 1/2"; the registers have 18 holes in one dimension and 80 in the other ' dimension. The opening area and hydraulic diameter for each egg crate panel is: calculated below. -0.5 in x 0.5 in . 2 A Egg crate = . 2 .
- 80 holes
- 18 holes = 2.5 ft m 144 ft2 4
- 2.5 ft2 Dh-Egg crate = O 5 * = 0.042 ft ( 4
- 12 *inff t
- 80 holes
- 18 holes) The. inertia length for the egg crate panel flow paths is set to 10 ft, based on the insensitivity of the model to this parameter.
The friction length for the Egg Crate panels is set to 0.0417 ft based on the flow length given in Attachment 7 as 0.5 inches. The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The momentum transport option is set to "N" (in-line momentum transport) for flow paths between a subvolume and a lumped volume or a pressure boundary condition (e.g. the door flow path, smoke removal fan flow path, etc.), as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the ceiling tile and egg crate panels flow paths is also set to "N" ._ ENERCON CALCULATION CONTROL SHEET 6.7. Control Variables CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 43 of 303 GOTHIC control variables are used to record the maximum cell temperature in the lower MCR volume as well as calculate the average temperature of the MCR. A GOTHIC "max" control variable is used to record the maximum cell temperature in the lower and middle subvolumes of the lower MCR volume (cv1). A GOTHIC "max" control variable is also used to record the maximum cell temperature for the entire lower MCR volume (cv7) The average temperature of the MCR is calculated on a volume-averaged basis by numerically averaging the temperatures in the lower, middle and upper subvolumes separately using GOTHIC control variables cv2, cv3, and cv5 (sum of the temperatures in the lower, middle or upper subvolumes, divided by the number of cells-128). The average temperature of the lower two subvolumes (TA) is then calculated taking the volumetric average of the lower and middle subvolumes, using the equation below. VL: Total volume of lower subvolumes (144 ft x 74 ft x 3.48513 ft x 0.9 = 33,423.8 ft3) TL: Average Temperature of lower subvolumes TA: Average Temperature of the lower two subvolumes in the lower MCR VM=Total volume of middle subvolumes (144 ft x 74 ft x 4.0193 ft x 0.9 =38,546.7 ft3) TM: Average Temperature of middle,subvolumes Rearranging to solve for the average temperature, TA. VL TM+v-TL T -M A-Vi + 1 VM The GOTHIC "sum" Control Variable (cv4) has the following form. Where "G" and "an" are coefficients and "Xn" are variables. Therefore "G" is the inverse of the denominator of the equation that solves for average temperature, 0.53559. The coefficient "aa" is zero. "TM" is taken to be variable "X/', making coefficient "a1" equal to one. 'TL" is taken to be variable "X2", making coefficient "a2" equal to VLNM, or 0.867. No other variables or coefficients were used in calculating this Control Variable. The average temperature of the lower and middle subvolumes (cv4) is then average with the average temperature of the upper subvolumes (cv5) using the same equation as above. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 44 of 303 VA: of lower and middle subvolumes (144 ft x 74 ft x 7.50443 ft x 0.9 = 71,970.5 ft3) TA: Average Temperature of lower and middle subvolumes in the lower MCR Ts: Overall average Temperature of the lower MCR VH=Total volume of the upper subvolumes (144 ft x 74 ft x 1.61057 ft x 0.9 =15,446 ft3) TH: Average Temperature of upper subvolumes Rearranging to solve for the average temperature, Ts. Therefore "G" is the of the denominator of the equation that solves for average temperature, 0.17669. The coefficient "ao" is zero. "TH" is taken to be variable "X1", _making coefficient "a/' equal to one. "TA" is taken to be variable "X2", making coefficient "a2" equal to VANH, or'4.65949. No other variables or coefficients were used in calculating this Control Variable. 6.8 Blockages Blockages are added to the lower MCR volume (CV1) to model the effects on the flow patterns of the control panels and the walls surrounding the kitchen area and shift manager's office. The blockages are constructed based on the physical location of these components as shown in Reference 8.26 and 8.27 and are located coincident with the nearest x-or y-direction grid line. For example the blockage representing the panels in 1H13-U7 4 7 is located on the second grid line between subvolume 1 s34 and 1 s35, up through subvolumes 1 s50 and 1 s51. Blockages are constructed so they do not displace any volume in the MCR; a 10% reduction in the MCR free volume has already been incorporated (see Reference 8.1 ). \ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 45 'of 303 7. Results Figure 7 shows tile average transient temperature in the MCR for 24 hours for Case 1. The average temperature in the MCR increases to approximately 105 °F at approximately 1.2 hours. The temperature then decreases to approximately 103°F due to the effects of removing the ceiling tiles, which is initiated ten minutes after the average temperature of the MCR reaches 104 °F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1 C11 panels are dropped at the end of the BYS-INV02 battery life at 4 hours when the average temperature is approximately 107°F, which reduces the average temperature to approximately 103°F. The average temperature then gradually increases to 111.4°F at 24 hours. This case does not include the simple and obvious action of opening doors to the Main Control Room. 115 110 105 100 LI:" (]J .._ ::J .., 95 ro '-*******************************************************************************l********************************************************************************************************************************************-********************************************************************************************************************-**-*****-***""'
............. _ ...... . OJ 0.. E (!) f-90 85 80 75 0 5 10 15 20 25 Time (hrs) Figure 7: Average MCR Temperature for Case 1 ( ENERCON CALCULATION CO,NTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' I PAGE NO. 46 of 303 . Figure 8 shows the maximum subvolume temperature of the lower MCR for Case 1. The maximum temperature increases to approximately 112°F before the tiles are opened which results in the maximum temperature decreasing to approximately 111°F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1C11 panels is dropped at the end of the BYS-INV02 battery life at 4 hours when the temperature is approximately 114°F; which reduces the temperature to approximately 108°F. The temperature than gradually increases to 117.8°F at 24 hours. 120 115 110 105 LI:' -100 (]) .... ::l ... ro ._ QJ 0. E 95 90 85 .................................................. ,............. ......... .. ...... . 80 ...........................
- +*-----------------------***----***------
.................................... , ........................... .. 0 5 10 Time (hr) 15 20 Figure 8: Maximum Local MCR Temperature for Case 1 25 ENERCON I CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 47 of 303 Figure 9 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 1. The initial relative humidity is 20% and decreases to approximately 8% at 24 hours. 25 I ' I 20
i r I I 15 >-.., 'Ci .E I I I I I J ;:, :r: Q) > :;:; ro (ii cc. 10 I ...*.... \f **------------* --5 " J . 0 0 5 10 15 20 25 Time (hrs) Figure 9: Relative Humidity in the Horseshoe Area for Case 1 ENERCON / f,etyday CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 48 of 303 Figure 10 shows the average temperature of the MCR for Case 2. The average temperature in the MCR increases to a peak value of 116.1 "F at two hours when the smoke rem'oval fan is energized. Note that the operator actions of opening door CB136-9 at one hour and staging the portable electric fan at one and a half hours are shown to have a negligible impact on the room temperature. Note also that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually -start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. Following start of the smoke removal fan, the average temperature decreases to approximately 112°F, then decreases again when the ceiling tiles are removed at two and a half hours. The'average temperature then with changes in the outdoor air temperature, and at 24 hours is 1_Q.8.6"F. 120 115 90 I I 85 U-***----- ) /' 80 75 0 5 10 15 .I 20 25 Time (hrs) Figure 10: Average MCA Temperature for Case 2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 49 of 303 Figure 11 shows the maximum subvolume temperature in the MCR for 24 hours for Case The maximum subvolume in the MCR reaches a peak value of 121.8°F at 2.02 hours. Ceiling tile removal further decreases the maximum subvolume temperature, and at 24 hours the maximum subvolume temperature is 116.8°F. 125 120 115 -7 J A ********.,*********
- --*--***-
.,_u, ... .,,,,,,,,,,_,,,,,_,. .. ,.,,.,, *.. ., ******** ., .*..... 110 1-................................................................. t*****-..................................................................... , ............................................................................ . Q) .... ::;, 105 '§ 100 Q) n. E 95 85 80 75 0 5 10 15 Time (hr) Figure 11: Maximum Local MCR Temperature for Case 2 20 25 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV. 0 fKi;:t>n{e* £w:r:y P'Circr fHY1 Jar PAGE NO. 50 of 303 Figure 12 shows the temperature distribution of the lower and middle subvolumes of the lower MCR at the time the limiting local cell temperature occurs, 2.02 hours. .....I .....I c:x: $ I C::: 0 z YB Y7 Y6 YS Y4 Y3 Y2 Yl 111.4 111.l 111.6 111.9 112.2 111.5 110.3 102.5 Lower El. (Zl) Xl 0 .....I .....I c:x: $ I C::: 0 z 3.485 YB 114.7 Y7 116.3 Y6 116.2 YS 116.0 Y4 116.0 Y3 115.B Y2 115.S Yl 107.9 Middle El. (Z2) Xl 3.485 7.5 111.B 112.2 112.7 112.8 112.3 113.2 112.2 112.4 112.7 114.6 113.7 112.8 110.9 111.2 106.4 107.5 X2 X3 114.7 114.8 115.6 115.9 115.7 116.2 116.3 116.S 116.l 116.S 115.S 114.8 113.9 112.9 107.1 107.9 X2 X3 112.3 116.S 115.0 112.S 112.2 111.4 110.4 107.S X4 115.0 119.9 118.S 116.3 115.7 115.l 112.0 108.3 X4 111.6 109.4 110.4 111.S 111.0 111.5 110.3 107.6 XS 114.8 116.0 115.6 115.7 115.2 115.2 112.0 109.1 XS 115.B 108.0 110.5 110.B 109.9 110.1 109.9 107.6 X6 113.9 116.8 115.1 115.S 114.6 113.6 EAST WALL 115.2 116.1 114.9 116.4 116.8 116.9 115.4 114.9 115.7 112.S 114.4 115.3 113.4 115.2 115.7 111.0 113.8 114.8 109.6. 110.4 112.1 107.6 107.4 107.1 X7 XB X9 WEST WALL 117.2 118.1 118.8 117.5 117.7 116.8 EAST WALL 117.3 118.1 118.S 118.2 118.0 117.9 116.8 117.3 117.8 118.3 117.9 117.9 112.S
- 113.2 113.8 115.8 110.4 112.4 113.1 112.7 X6 X7 X8 X9 WEST WALL 114.S 113.6 117.1 115.3 115.9 116.6 115.S 115.8 115.5 118.7 115.4 118.6 115.5 115.0 106.0 105.8 XlO Xll 116.7 116.3 117.1 118.1 118.0 118.6 118.8 119.0 119.0 Ul.8 119.0 120.8 118.4 119.4 111.4 110.9 XlO Xll 113.0 112.2 111.3 110.2 109.2 114.8 113.5 113.3 113.2 109.3 115.8 114.8 114.7 113.3 108.3 115.0 113.9 112.9 111.0 107.9 116.1 115.5 114.5 115.6 107.0 117.3 115.5 115.8 113.5 106.2 114.0 113.7 111.1 109.7 105.S 105.5 105.3 104.8 104.9 104.8 X12 X13 X14 X15 X16 115.3 115.1 114.3 112.9 111.0 119.3 118.4 117.8 116.1 111.4 118.7 117.9 116.8 116.1 110.5 118.7 118.3 117.1 115.0 110.0 119.2 118.4 118.7 118.8 107.5 119.3 117.9 118.S 120.1 105.9 118.6 117.6 117.6 109.5 105.2 111.7 114.3 104.8 106.0 104.9 X12 X13 X14 XlS X16 Figure 12: Temperature Distribution of the lower and middle subvolumes of the MCR at 2.02 hours .....I .....I c:x: $ I ::> 0 Vl .....I .....I I ::> 0 Vl ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 51 of 303 Figure 13 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 2. The initial relative humidity is 20% and decreases to approximately
\_ 10% before the smoke removal fan is turned on and outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes 'in the outside air relative humidity. 50 40 I 0 5 10 15 20 25 Time (hrs) Figure 13: Relative Humidity in the Horseshoe Area for Case 2 ENERCON I 8. REFERENCES CALCULATION CONTROL SHEET CALC. ENTR-078-CALC-004 REV.O PAGE NO. 52 of 303 1. \G13.18.12.4*027, "Control Room Temperature During Station Blackout", Rev. 2. 2. E-226, "Control Building Electrical Equipment Heat Release During LOCA Condition with Off Site Power Available and also Control Building Electrical heat Release during LOCA Condition without Offsite Power (LOOP) and with EGS-EG 1 B Diesel Generator not Responding", Rev. 5. 3: EA-006M, "Door Location Plan Sheet 4," Rev. 7. 4. ES-246,-"Control Building Heatup following failure of the HVAC System", Rev. 3. 5. GOTHIC Containment Analysis Package User's Manual, version 7.2b (QA), March 2009 (SCR-2012-0214)
- 6. AOP-0060, "Loss of Control Building Ventilation",
Rev. 009. 7. G13.18.12.3*161, "Standby Switchgear Room Temperatures following Loss of Offsite Power and Loss of HVAC", Rev. 2. 8. EB-0390, Ventilation & Air Conditioning Plan El 135' Control Building", Rev. 9. 9. 6224.302-000-038A (NED010466-A), "PGCC Design Criteria & Safety Evaluation.
- 10. EA-006B, "Doqr Schedule
& Details", Rev. 14. 11. EA-46D, "Stairs-1&2-Plans Sects & Dets Control Bldg", Rev. 5. 12. PID-22-09B, "HVAC Control Building", Rev. 14. 13. ASHRAE Handbook Fundamentals, 1-P Edition, 2009. 14. AOP-0050, "Station Blackout", Rev 051 15. PlD-22-09C, "HVAC Control Building", Rev. 10. 16. 22A3888, GE MCR Panel Specification, RBS vendor document 0242.411-000-009.
- 17. G13.18.2.1-059, Rev. 4, "Control Building Heat Load Evaluation during LOCA w/ Offsite Power Available and Normal Operating Conditions
- 18. ENTR-078-CALC-001, "Control Building Heatup Analysis following Loss of HVAC and Simultaneous Loss of Coolant Accident",
Rev. 0. 19. ENTR-078-CALC-002, "Main Control Room Heat-Up Under Loss of HVAC Conditions", Rev.a 20. G13.18.4.0*063, "Cooling Capability for the Standby Service Water System to the Control Building Air Handling Units", Rev. 0. 21. Deleted 22. G13.18.2.3-426, Rev. 0, "Standby Switchgear Room Temperature Sensitivity with Service Water Aligned to the HVK System" '23. "Handbook*of Heat Transfer Fundamentals", Rohsenow and Hartnett, McGraw-Hill, 1973. 24. "Thermophysical Properties of Matter, Vol. 3", Y.S. Toulokian, P.E. Lily, S.C Saxena, lFl/Plenun, NY, 1970. , 25. "Fundamentals of Momentum, Heat & Mass Transfer Second edition", Welty, Wicks and Wilson, John Wiley & Sons, 1969. 26. EE-027A, Rev. 16, "Arrangement Main Control Room" 27. EE-027D, Rev. 6, ArrangementControl Bldg Section and Details"
- 28. EA-046F, Rev. 4, "Raised Access Floor System Main Control Room El. 136'-1 5/8"" 29. ENTR-078-CALC-003, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours," Rev. 3.
- 30. SOP-0058, Rev. 21, "Control Building HVAC System" 31. EA-46B, Rev. 14, "Reflected Ceiling Plans and Details.
- 32. PlD-22-09A, "HVAC Control Building",
Rev. 17. 33. EE-065A, Rev. 7, "Lighting Plan, Control Bldg-Control Room) ENERCON CALCULATION CONTROL SHEET 34. ASHRAE Handbook Fundamentals, 1-P Edition, 1993. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 53 of 303 35. 0242.428-000-247, Rev. P, "Interface
- Control, Control Room Panels."
- 36. EC61975 "References for E-226 Cale. Revision."
' ( ENERCON CALCULATION CONTROL Attachment 1
- Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP 1. Purpose CALC. NO. ENTR-078-CALC-004 REV.a PAGE NO. 54 of 303 The purpose of this attachment is to analyze the 24 hour transient temperature of the MCR following a loss of HVAC with HVC-ACU1A(B) re-started and aligned to the service water system (SWP) at one hour. The model is developed from the Case 2 analysis in the body of the calculation, with changes as described.
This case also assumes worst case heat loads (Normal Operation), summer conditions with a maximum design basis ambient temperature of 96°F, the effects of solar irradiance on the MCR walls and roof, and the assumption that the operators complete actions to open back panel doors in the control room at 30 minutes.
- 2. Conclusion The results of the analysis listed in Table 1. The average temperature results are given at 1, 2, 4, and 24 hours. The maximum average and maximum cell (sub-volume) temperature is recorded, and the time it occurs is listed in parentheses.
Table 1: MCR Temperature Maximum Maximum 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Tavg (°F) Cell Temp Descriotion (oF) (oF) (oF) (oF) (oF) Normal Operations \ Heatload. HVC-110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) ACU1A(B) aligned to SWP at 1 hour. If the cross-tie to the SWP system was delayed to two hours, the MCR temperature would continue to increase similar to the temperature in Case 2, but reaching a higher value because the toilet/kitchen fans, 'the portable fans, and opening the docir is not credited.
- 3. Input and Design Criteria 3.1. This model is developed from the Case 2 GOTHIC model in the body* of the calculation.
All changes made from the Case 2 model are documented in .this attachment. 3.2. The Case 2 GOTHIC model from the body of the calculation did not model the HVC-ACU1A(B) system. The current analysis models HVC-ACU1A(B) aligned to the SWP system at one hour and determines the outlet air temper.ature and relative humidity based upon the AIRCOOL output files from Attachment 2 of Reference 8.20, which use a conservative service water temperature of 95°F and an inlet air relative humidity of 50%. This data is shown in Table 2 and 3. A control variable records the inlet air temperature which as the independent variable in a GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding HVC-ACU1A(B) outlet temperature. This control variable is also used in a separate GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding outlet relative humidity. If the return air temperature for an AHU is less than the minimum air temperature of 100°F used in the Reference 8.20 AIRCOOL data, the outlet air temperature and relative humidity is set at the outlet temperature and relative humidity corresponding to a return air temperature of 100°F. This is conservative as decreasing the return air temperature would result in a decrease iri the outlet air temperature. ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 55 of 303 Table 2: HVC-ACU1A(B) Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) Air Temp (°F) 100 95.21 105 95.41 110 95.60 115 95.79 120 96.05 125 99.02 130 102.02 135 105.14 140 108.48 145 111.98 150 115.68 155 119.57 160 123.63 Table 3: HVC-ACU1A(B) Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) RH{%) 100 57.9 105 66.8 110 76.85 115 88.17 120 100 ENERCON 4. Assumptions CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 56 of 303 4.1. HVC-ACU1A(B) aligned to the SWP system is assumed to be started at one hour into the event consistent with G13.18.2.3-426 (Reference 8.22). This is a conservative estimate for the amount of time it would take operators align the SWP system to HVC-ACU1A(B). No other mitigating actions are credited in this analysis. Modeling of HVC-ACU1A(B) conservatively neglects the cooler chilled water that would be present in HVC-ACU 1 A(B) at the beginning of the transient. 4.2. Control room HVAC is operating in post-LOCA alignment. As shown in Reference 8.19, this alignment adds heat loads from the charcoal filter booster fan and heaters and is therefore conservative for this Normal Operations case. 4:3. The data for HVC-ACU1A(B) is obtained from the data for an inlet relative humidity of 50%. This inlet relative humidity is used as it is the most similar to the values given in Section 4.18 of the -body of the calculation. The relative humidity in the MCR is assumed to be initially at the Environmental Design Criteria (EDC) minimum value (20%). 5. Method of Analysis The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for 24 hours following a Loss of HVAC with HVC-ACU1A(B) aligned to SWP system at one hour. GOTHIC is a general purpose thermal hydra1.11ic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). \ This model is based on the Case 2 analysis from the body of the calculation.
- 6. GOTHIC Input Development The main change from the Case 2 model in the body of the calculation is adding the Main Control Room HYAC subsystem and the cooling effects from HVC-ACU1A(B) being aligned to the SWP system. The cooling effect from the SWP system aligned to HVC-ACU1 is modeled based on the details given in Input 3.2. The volumes and pressure boundaries that were representative of the atmosphere (i.e. where the doors opened to, and the smoke removal fan exhausted to) are deleted or replaced with volumes and pressure boundaries that model HVC-ACU1A(B).
Flow paths representing the ceiling tiles, door CB136-9, the smoke removal fan, and toilet/kitchen fans are also deleted or replaced with flow paths that model the.MGR HVAC subsystem and HVC-ACU1A(B). This was done to provide more clarity and resolution in the GOTHIC model. ENERCON CALCULATION CONTROL Attachment 1 6.1 HVC-ACU1 A(B) and HVAC Modeling CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 57 of 303 The MCR HVAC [HVC-ACU1A(B)] is a subsystem of the Control Building HVAC system. MGR HVAC is designed to maintain the MCR at a 80°F and limit the relative humidity 70% and is capable of operating during normal, shutdown, loss of Offsite power, or design basis accident (e.g., LOCA) conditions. The MCR is normally maintained at a positive pressure with respect to the outside atmosphere to prevent air inleakage from outside the MGR envelope. Charcoal filter trains are used to filter the MGR air supply during a design basis accident or whenever extremely high radiation/radioactivity levels occur in the normal supply air. The MGR HVAC flow paths, dampers, design flow rates are shown on PID-22-09A (Reference 8.32), PID-22-09B (Reference 8.12), and PID-22-09C (Reference 8.15). The MCR HVAC subsystem consists of two 100% capacity redundant Air Cooling Units ACU1A/1 B) and associated filter trains, electric
- heaters, and The air conditioning units are started automatically when a Control Building Chilled Water Pump is started/running.
In the LOCA mode of operation or a high radiation condition in the local outside air intake, dampers automatically divert supply air through thE;l charcoal filter units (see below). The operator has the option of selecting fresh air supply for the Control Building from either the local outside air intake or remote outside air intake. The system can also be manually realigned from the MGR to allow for removal of smoke or noxious gases from the MGR. Each ACU has an associated inlet and outlet damper which is interlocked with the ACU. Inlet dampers are HVC-AOD8A(B) and outlet dampers are HVC-AOD6A(B) (see PID-22-9B, Reference 8.12). These dampers automatically open when the associated ACU starts and close when the ACU stops.
- In the post-LOCA alignment assumed in'this attachment (see Assumption 4.2), the cooling coils of the operating MGR air cooling unit (ACU) are initially supplied with chilled water from the Control Building Chilled Water (HVK) system. On receipt of the LOCA signal, ACU inlet isolation dampers HVC-MOV-1A and B automatically close. Control Room Filter Inlet and Filter Train Outlet dampers HVC-AOD43A(B) and HVC-AOD3A(B) open and filter fan HVC-FN1A(B) starts such that the outside air passes through a ct\arcoal filter train before mixing with the control room return air and entering the ACU downstream of MCR Recirculation Isolation Dampers HVC-AOD106 and AOD-148.
_Local air intake dampers HVC-AOD19C, D, E, and F open to align the local air intake to the inlet of the charcoal filter trains. Alternatively, air intake may be aligned to the remote air intake. The remote air intake provides outside air supply directly to the inlet of the charcoal filter trains via remote air intake \ dampers HVC-MOD7A and Band HVC-AOD19A and B (see PID-22-09A, Reference 8.32). Note that upon receipt of a LOCA signal, toilet and kitchen exhaust fans (HVC-FN4 and FN5) trip and their discharge dampers (HVC-AOD51A/52A (51B/52B) automatically close. The MCR smoke removal fan (FN9) also trips' and the associated dampers (HVC-AOD108(107)) close., The HVC-ACU1A(B) flow rates and flow distribution are modeled based on Reference 8.8 and Reference 8.12. The flow rates through dampers shown on Reference 8.8 and 8.12 are localized to their appropriate subvolume based on Reference 8.8. The flow path elevation is modeled as being near the ceiling of the lower MGR volume based on Reference 8.8. The flow supplied to the equipment
- room and corridor area is not modeled as this air is made up from outside air intakes, as shown on Figure 5 in Reference 8.17 and in Reference 8.12. Therefore, this flow does not have an effect on the calculation.
The return air is modeled as drawn from the North, West, and Southwest sides of the upper plenum, per Reference 8.8. The north side return air duct draws 21000 cfm; this flow is split between subvolumes 2s177 and 2s193 in order to allow GOTHIC to run faster. The west side return air duct draws 7600 cfm from subvolume 2s136. The southwest corner return air duct draws 7600 cfm from subvolume 2s144. These return air ducts are also modeled as being near the ceiling of the upper MCR. / ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 58 of 303 The return air duct on the north side of the room is shown to have an opening of 108" x 48" (Reference 8.8). As discussed above, this flow path is split in two, so the flow paths (FP47 and FP48) that represent this return air duct are modeled based on this size, shown below. The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters.
- 1 \ 9 ft x 4 ft 2 AFP47/48
=. 2 = 18 ft 4A 4*18ft2 Dh = Pw = (9 ft+ 4 ft) = 5.54 ft The return air ducts on the west and southwest sides of the room are shown to have an opening of 48" x 36" (Reference 8.8). One flow path is used to represent each of these return air ducts (FP49 and FP50). The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. AFP49/50 = 4 ft x 3 ft = 12 f t2 4A 4
- 12 ft2 Dh = Pw = (2 * ;4 ft+ 2
- 3 ft) = 3.43 ft ' The size of the supply air ducts are. determined to be 18" x 18" per Reference 8.8. One flow path is used to represent each of these supply air ducts (FP9-FP46).
The flow area and hydraulic diameter for the supply air ducts is calculated below. The inertia length and friction length for these flow path is arbitrarily set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. AFP9-46 = 1.5 ft X 1.5 ft = 2.25 f t2 4A 4
- 2.25 f t2 D =-= = 15ft h Pw (2
- 1.5 ft+ 2
- 1.5 ft)' . The momentum transport option is set to "N" (in-line momentum transport) for the flow paths that represent the supply air ducts, as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the flow. paths that represent the egg crate panels that are between the µpper and lower MCR is also set to "N" Figure 1 below shows the HVC-ACU1A(B) distribution logic applied in the GOTHIC model. The heat load from the HVC-ACU1A/B fan of 167,068 BTU/hr (46.41 BTU/s) (Reference 8.17) is added as a heater to the HVC-ACU1A(B) outlet volume (CV4). The heat load from the HVC-FN1A/B fan of 50,900 BTU/hr (14.14 BTU/s) and the HVC-FL T3AH//BH filter/heater of 78,430 BTU/hr (21.79 BTU/s) (Reference 8.17) is combined and input as a heat rate in volumetric fan 2Q.
CALC. NO. ENTR-078-CALC-004 Attachment 1 CALCULATION CONTROL SHEET-REV.O ENERCON T = f(Im!!<) 4 Plenum 34200CFM (41-440) 2 36200CFM 1 Control Room 37200CFM (3Q-40Q) ACU1A/B Fan 1-----' v PAGE NO. 59 of 303 3 4000CFM {2Q) Return to Filter/ Heater 2000CFM (4SQ) (Out-leakage) Flow from Filter /Heater Mixed Air (Tmixil 2000CFM (1Q) Figure 1: HVC-ACU1A(B) Flow Distribution r ENERCON 7. Results CALCULATION CONTROL Attachment 1
- CALC. NO. ENTR-078-CAL:C-004 REV.O PAGE NO. 60 of 303 Figures 2 and 3 below show the temperature transient in the MCR following a 24 hour Loss of HVAC scenario, with the SWP system aligned tq HVC-ACU1A(B) at one hour. Figure 2 shows the average temperature of the MCR for 24 hours. Figure 3 shows the maximum cell (sub-volume) temperature of the MCR for 24 hours. The average temperature increases to approximately 110°F before ACU1A(B) is started at one hour. Turning on HVC-ACU1A(B) results in the temperature decreasing
, below 105°F and at 24 hours the temperature is 107.8°F. The maximum cell temperature follows a similar trend, with the peak value of 115.1°F occurring at 1 hour. 115 110 I 85 80 75 0 5 10 15 20 25 Time {hrs) / Figure 2: Average Temperature of the MCR for 24 hours 120 115 110 105 U:-e100 :::l ...., Ill .... (!J Q.. E 95 QJ I-90 85 80 75 ENERCON 7 ' J l' v---ii I r I ! ' I CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 61 of 303 I I 'J ............................................................................
- .............................................................................
- ...............................................................................
- .............................................
-......... -................... , ................................................................................ , ....... _ .... _. 0 5 10 15 20 25 Time (hrs) Figure 3: Maximum Local Temperature of the MCR for 24 hours ,/ ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 62 of 303 Figure 4 below shows the relativity humidity in subvolume 1 s71 located in the horseshoe area of the MCR. The relative humidity is 20% at the start of the transient (cf. Assumption 4.3) and decreases to below 10% as the MCR temperature increases before HVC-ACU1 is started at one hour. The relative humidity then rapidly increases to -48% and remains below 50% for the remainder of the transient. This relative humidity is overestimated due to the modeling of the HVC-ACU1 performance, which is based on a constant inlet air relative humidity of 50%. The actual MCR absolute humidity is expected to be less than that predicted in the Case 2 and Attachment 2 cases. As shown in Figure 1 of this attachment, in this case only 2000 CFM of outside air is drawn into the MCR, whereas in the other cases the smoke removal fan, portable fan, and kitchen and toilet exhaust vans draw a combined 13,725 CFM of moist (53%-90% relative humidity) outside air into the control room. This higher intake of outside air would result in higher humidity in the MCR for these cases relative to the current case. 60 40 0 0 s 10 15 20 25 Jime (hrs) Figure 4: Relative Humidity in the Horseshoe Area for Attachment 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 63 of 303 8. GOTHIC Input File for Attachment 1 Is I I I I I I i'IS I s I I I I I I I I I I I I I I I I I I I I . I '144.QQ ft / CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.xteNertct-Ddttypft>]f!d, £v1Hytfa;. Attachment 1 PAGE NO. 64 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) (ft2) ls MCR Below 87417. 136 .135 9.115 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 HVC-ACUl Exhaus 4000. 145.5 8.67 5. DEFAULT 4 HVC-ACUl Outlet 4000. 136.135 10. 10. DEFAULT 5 F/H Outlet 4000. 145.5 8.67 5. DEFAULT 6 Stream 4 Outlet 4000. 145.5 8.67 20. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE 6 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Are* a # (%/hr) (psi a) (F) (%) BC Option Wall Option (ft2) ls 0. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr} (psia) (F) (%) BC Option Wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s , , 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT X-Direction No ding Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. ' 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. ENERCON 15 126. 9. 16 135. 9. Y-Direction Noding Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Plane (ft) Height (ft) 1 0. 3.48513 2 3 Cell 3.48513 7.50443 Blockages 4.0193 1.61057 -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743
- 6 1H13-U50 7 1H13-U731 8 1H13-U732 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1Hl3-U715 13 1Hl3-U720 14 1Hl3-U721/U799 15 1H13-U748 16 1Hl3-U746 17 1H13-U744
- 18 1Hl3-U742 19 1H13-U741 20 1H13-U730 21 1Hl3-U703 22 1Hl3-U701 23 1Hl3-U712 24 1Hl3-U710 25 1Hl3-U714 26 1Hl3-U711 27 1Hl3-U740/U723 28 Shift Manager East 29, Shift Manager S 30 Kitchen Wall S 31 Kitchen Wall W CALCULATION CONTROL Attachment 1 T BLK B I N BLK B I N BLK B I N BLK B I / N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 65 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages
-Table 2 Volume ls Block Coo No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Xl* 9. 81. 18. 27. 36. Yl 9.25 9.25 18.5 18.5 18.5 Zl 0. 0. 0. 0. 0. 45. 18.5 0. 18.5 o,, 58.5 27.75 o. 90. 18. 5 0. 99. 18.5 0. 108. 1*8.5 o. 117. 18. 5 0. 126. 18.5 0. 135. 18.5 0. 9. 46.25 0. 18. '46. 25 0. 27. 46.25 0. 36. 46.25 o. 45. 64.75 0. 54. 46.25 0. 5 8 . 5 2 7 .'7 5 0 . 81. 37. 0. ,99. 46.25 0. 108. 46.25 0. 117. 46.25 0. 126. 46.25 0. 135. 46.25 o. 0. 9.25 0. 9. 0. 0. 45. 64.75 0. 54. 64.75 0. X2 54. 135. 18. 27. 36. 45. 54. 77.5 90. 99. 108. 117. 126. 135. 9. 18. 27. 36. 45. 54. 77 .5 81. 99. 108. 117. 126. 135. 9. 9. 54.
- 54. X-Direction Cell Face Variations Volume ls Y2 9.25 9.25 37. 37. 37. Z2 7.5044 7.5044 7.5044 7.5044 7.5044 37. 7.5044 37. 7.5044 (ft) X3 27.75 7.5044 I 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7 .. 5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 55.5 7.5044 64.75 7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 9.25 9.115 6.25 9.115 64. 75 9 .115 74. 9 .115 Y3 Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls17 ls18 ls19 ls20 ls21 ls22 ls129 ls130 ls131 ls132 lsl33 ls134 ls145 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. Drop De-ent. Factor 0 1. 1000000.
- 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 11. i. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37 ;-37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0 *, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 66 of 303 Z3 L .) Curb Height 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
ls146 ls147 ls148 lsl49 lslSO ls9 lslO lsll ls12 ls13 ls14 lslS ls25 ls26 ls27 ls28 ls29 ls30 ls31 ls137 ls138 ls139 ls140 lsl41 lsl42 lsl43 ls153 ls154 lslSS ls156 lsl57 ls158 ls159 ls18 ls34 ls SO ls66 ls146 ls162 ls178 ls194 ls290 ls306 ls19 ls35 lsSl ls67 ls147 ls163 ls179 ls195 ls291 ls307 ls20 ls36 ls52 ls68 ls148 lsl64 ls180 ENERCON 1 1 1 1 1 2 2 2 2 2 2 *2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 '3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1.
- 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. o\. .1. 1. 0. 0. 1. 1. 1. 1. 0. o. 1. 1. 0. 0. CALCULATION CONTROL Attachment 1 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. , 0.
- 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 67 of 303 ls196 ls292 ls308 ls21 ls37 ls53 ls69 ls149 ls165 ls181 ls197 ls293 ls309 ls22 ls38 ls54 ls70 lslSO ls166 ls182 lsl98 ls294 ls310 ls39 ls40 ls SS ls56 ls167 ls168 ls183 ls184 ls26 ls42 ls58 ls74 ls154 ls170 ls186 ls202 ls298 ls314 ls27 ls43 ls59 ls75 lsl55 lsl 71 ls187 ls203 ls299 ls315 ls28 ls44 ls60 ls76 lsl56 ls172 ls188 ls204 ls300 ENERCON 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1.
- 1. 0. 0. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1.
- 1. 1. 1. 0. 0. 1.
- 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. CALCULATION CONTROL Attachment 1 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. 37. 37. 37. 37. 37. , 37. 37. 37. le-006 I le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0 .* 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. *O. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 68 of 303 ls316 ls29 ls45 ls61 ls77 lsl57 lsl73 lsl89 ls205 ls301 ls317 ls30 ls46 ls62 ls78 lsl58 lsl74 lsl90 ls206 ls302 ls318 ls31 ls47 ls63 ls79 lsl59 lsl75 lsl91 ls207 ls303 ls319 ls65 ls81 ls97 lsll3 lsl93 ls209 ls225 ls241 ls337 ls353 ls66 ls82 ls98 lsll4 lsl94 ls210 ls226 ls242 ls338 ls354 ls67 ls83 ls99 lsll5 lsl95 ls211 ls227 ls243 ls339 ENERCON 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 16 16" 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1.
- 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. . 1. 1. 1. 0. 0. 1. 1. 0. o. 1. 1. 1. 1. 0. 0 .. 1. 1. 0. 0. 1. 1. CALCULATION CONTROL Attachment 1 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 . 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 *le-006 37. 37. le-006 le-006 -37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. \ le-006 le-006 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 37. 0. le-006 O. le-006 O. 37. 0. 6.44228 0. 0. 0. 0. 0. o. 0. 0. o. o. 0. 0. o. 0. 0
- 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 'O. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 69 of 303 ls355 ls68 ls84 lslOO ls116 lsl96 ls212 ls228 ls244 ls340 ls356 ls85 lslOl ls117 ls213 ls229 ls245 ls357 ls70 ls86 ls102 ls118 ls198 ls214 ls230 ls246 ls342 ls358 ls39 ls40 ls55 ls56 ls167 ls168 ls183 ls184 ls57 ls73 ls89 lsl05 ls185 ls201 ls217 ls233 ls329 ls345 ls75 ls91 ls107 ls123 ls203 ls219 ls235 ls251 ls347 ls363 ls76 ls92 ls108 ls124 ENERCON 17 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 21 21 21 21 2i' 21 21 21 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 24 24 24 24 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. ,1. 0. 1. 1. 0. 1.
- 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. CALCULATION CONTROL Attachment 1 6.44228 37. le-006 le-006 37. 37. le-.006 le-006 37. 6.44228 6 .. 44228 37. le-006, 37. 37. le-006 37. 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37.
- 37. 37. 37. 92.5 92.5 92.5 92.5 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. a,. 0. 0. 0. 0. 0. 0. 0. 0. 0 .* 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o .. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. 0. o. o. o. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 70 of 303 1s204 1s220 1s236 1s252 1s348 1s364 1s77 1s93 1s109 1s125 1s205 1s221 1s237 1s253 1s349 1s365 1s78 1s94 1s110 1s126 1s206 1s222 1s238 1s254 1s350 1s366 1s79 1s95 1s111 1sl27 1s207 ls223 ls239 ls255 ls351. ls367 lsl ls17 ls129 ls145 ls257 ls273 lsl ls129 ls257 lslOl lsl02 ls117 ls118 ls229 ls230 1s245 1s246 ls357 1s358 ls373 18314 ls102 ls118 ls230 ENERCON CALCULATION CONTROL Attachment 1 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. i. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. ' 1. 1. 1.
- 1. 1. 1. 1. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. ' le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. 37.
- 37. 37. 37. 37. 0.324341 12.0006 0.324341 12.0006 0.324341 12.0006 1. 37. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 37. 37.' 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. le-006 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. i' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 71 of 303 j ENERCON CALCULATION CONTROL Attachment 1 ls246 ls358 ls374 31 31 31 0. 1. 0. le-006 37. le-006 0. 0. 0. Y-Direction Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 18129 lsl30 lsl31 lsl32 lsl33 lsl34 lsl35 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll lsl2 lsl3 lsl4 lsl5 lsl6 lsl37 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 lsl8 lsl9 ls34 ls35 ls50 ls51 lsl46 lsl47 lsl62 lsl63 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000.
- 0. 1 1. 36. 0. '1 o. le-006 o. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0. 0. 0. 0. 1. 1. 0 *. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. le-006 le-006 le-006 0. 0. 0. *le-006 O. 36. 0. 36. 0. le-006 o. le-006 0. le-006 0. le-006 0. le-006 o. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228.
- 0. 6.44228 0. 36. 0. le-006 0. le-006 0. le-006 o. le-006 o. le-006 0. le-006 0. 36. 0. 36. 0. le-006 0. le-006 O. le-006 0. le-006 o. le-006 0. le-006 O. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228 o. 6.44228 0. 6.44228 0. 36. 0. 36. 0. 36. 0. 36. 0. 36.' 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 0. 0. 0. Drop De-ent1; Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 72 of 303 ENERCON CALCULATION CONTROL Attachment 1 ls178 lsl79 lsl9 ls20 ls35 ls36 ls51 ls52 ls147 ls148 lsl63 ls164 . ls179 ls180 ls20 ls21 ls36 ls37 ls52 ls53 ls148 ls149 ls164 *1Sl65 ls180 ls181 ls21 ls22 ls37 ls38 ls53 ls54 ls149 ls150 ls165 lsl66 ls181 ls182 ls22 ls23 ls38 ls39 ls54 ls55 ls150 ls151 ls166 lsl67 ls182 ls183 ls39 ls40 ls41 lsl67 lsl68 ls169 ls295 ls296 ls297 ls26 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5
5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 1. 1. 1. 1. 1..-1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 1. 36. 0 .5 18. O. le-006 0.388855 13.9988 0. 5 18. o. le-006 0.388855 13.9988 1. 1. 1. 1. 12.8846 6.44228 10. 7371 36. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. o. o. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. , ; 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. \,* CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 73 of 303 ls27 ls42 ls43 ls58 ls59 lsl54 ls155 ls170 lsl71 ls186 ls187 ls27 ls28 ls43 ls44 ls59 ls60 ls155 ls156 ls171 ls172 lsl87 ls188 ls28 ls29 ls44 ls45 ls60 ls61 ls156 ls157 ls172 lsl73 ls188 ls189 ls29 ls30 ls45 ls46 ls61 ls62 ls157 ls158 ls173 ls174 ls189 ls190 ls30 ls31 ls46 ls47 ls62 ls63 lsl58 lsl59 lsl74 ls175 lsl90 ls191 ls31 ENERCON 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 14 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. _36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. -36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. o.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0; 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 74 of 303 ls32 ls47 ls48 ls63 ls64 ls159 ls160 ls175 ls176 ls191 ls192 ls65 . ls66 ls81 ls82 ls97 ls98 ls193 lsl94 ls209 ls210 ls225 ls226 ls66 ls67 ls82' ls83 ls98 ls99 ls194 ls195 ls210 ls211 ls226 ls227 ls67 is68 ls83 ls84 ls99 lslOO ls195 ls196 ls211 ls212 ls227 ls228 ls68 ls69 ls84 ls85 lslOO lslOl ls196 ls197 ls212 ls213 ls228 ls229 ls85 ENERCON 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 19 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 3,6. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
- o. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0 o' 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. o. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ./ CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 75 of 303 ls86 lslOl ls102 ls213 ls214 ls229 ls230 ls70 ls71 ls86 ls87 ls102 ls103 lsl98 ls199 ls214 ls215 ls230 ls231 ls39 ls40 ls41 ls167 ls168 ls169 ls57 ls58 ls73 ls74 ls89 ls90 ls185 ls186 ls201 ls202 ls217 ls218 ls75 ls76 ls91 ls92 ls107 ls108 ls203 ls204 ls219 ls220 ls235 ls236 ls76 ls77 ls92 ls93 lslo8* ls109 ls204 ls205 ls220 ls221 ls236 ENERC*ON CALCULATION CONTROL Attachment 1 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 22 22 . 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 5 18. o. le-006 0.388855 13.9988 0.8125 24.6024 0.623108 10.0178 0.771484 19.8127 1. 36. 1. 36. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36 . 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36'. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. i 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 76 of 303 ENERCON CALCULATION CONTROL Attachment 1 36. 36. 36. 36.
- 36. 0. 0. 0. 0. ls237 ls77 ls78 ls93 ls94 lsl09 lsllO ls205 ls206 ls221 ls222 ls237 ls238 ls78 ls79 ls94 ls95 lsllO lslll ls206 ls207 ls222 ls223 ls238 ls239 ls79 ls80 ls95 ls96 lslll lsll2 ls207 ls208 ls223 ls224 ls239 ls240 lsl ls2 lsl29 lsl30 ls257 ls258 lslOl lsl02 lsl03 ls229 ls230 ls231 ls357
- ls358 ls359 ls102* lsl03 lsll8 lsll9 ls230 ls231 ls246 ls247 24 25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. ./ 36. ro. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. o. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36.
- 36. 36. le-006 36. le-006 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 77 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O ls358 ls359 ls374 ls375 31 31 31 31 1. 1. 1. 1. 36. 36. 36. 36. 0. 0. 0. 0. Z-Dire'ction Cell Face Variations Volume ls Cell No. / def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 Blockage No. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000.
- 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37.
- 37.
- 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37.
- 37. 37. 37.
- 37. 37. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. PAGE NO. 78 of 303 Drop De-ent. Curb Ht Factor (ft) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. b. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0 .' 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0.
lsl78 lsl79 ls35 ls36 lsSl ls52 lsl63 lsl64 lsl79 lsl80 ls36 ls37 ls52 ls53 lsl64 lsl65 lsl80 lsl81 ls37 ls38 ls53 ls54 lsl65 lsl66 lsl81 lsl82 ls38 ls39 ls54 -lsSS lsl66 lsl67 lsl82 lsl83 ls39 ls40 ls41 ls SS ls56 ls57 lsl67 lsl68 isl69 lsl83 lsl84 lsl85 ls42 ls43 ls58 ls59 lsl70 lsl71 lsl86 lsl87 ls43 ls44 ls59 ls60 lsl71 lsl72 ENERCON 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 10 10 10 10 10 10 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0 *. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 74. 0. 37. 0. 61. 6667 0. 74. 0. 37. 0. 61.6667 0. 74. 0. 37. 0. 61.6667 0. 74. 0. 37. 0. 61.6667 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. -0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. O*. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. o. 0. o. 0. 0. o. 0. 0. o. o. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 79 of 303 ls187 ls188 ls44 ls45 ls60 ls61 ls172 lsl 73* ls188 ls189 ls45 ls46 ls61 ls62 ls173 lsl74 ls189 ls190 ls46 ls47 ls62 ls63 ls174 ls175 ls190 ls191 ls47 ls48 ls63 ls64 :j:s175 ls176 ls191 ls192 ls81 ls82 ls97 ls98 ls209 ls210 ls225 ls226 ls82. ls83 ls98 ls99 ls210 ls211 ls226 ls227 ls83 ls84 ls99 lslOO ls211 ls212 ls227 ls228 ls84 ls85 ENERCON 10 10 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 18 18 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. -36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. :;36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. *36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0.
- 0. 0. o. 0. 0. 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. b. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. o. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 80 of 303 ' \ \
lslOO lslOl ls212 ls213 ls228 ls229 lslOl ls102 ls229 ls230 ls86 ls87 ls102 ls103 ls214 ls215 ls230 ls231 ls39 ls40 ls41 ls55 ls56 ls57 ls73 ls74 ls89 ls90 ls201 ls202 ls217 ls218 ls91 ls107 ls108 ls219 ls220 ls235 ls236 ls92 ls93 lsl08 lsl09 ls220 ls221 ls236 ls237 ls93 ls94 ls109 lsllO ls221 ls222 ls237 ls238 ls94 ls95 lsllO lslll ENERCON 18 18 18 18 18 18 19 19 19 19 20 20 20 20 20 20 20 20 21 21 21 21 21 21 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 26 26 26 26. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36.
- 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 74. 37. 61.6667 74. 37. 61. 6667 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. )36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. I 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0 *' 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 .' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 81 of 303 ENERCON CALCULATION CONTROL Attachment 1 ls222 26 ls223 26 ls238 26 ls239 26 ls95 27 ls96 27 lslll 27 l'sll2 27 ls223 27 ls224 27 ls239 27 ls240 27 lsl 28 lsl 7 28 lsl29 '-28 lsl45 28 ls257 28 ls273 28 lsl 29 ls2 29 lsl29 29 lsl30 29 ls257 29 ls258 29 lsl02 30 lsll8 30 ls230 30 ls246 3o ls358 30 ls374 30 lsll8 31 lsll9 31 ls246 31 ls247 31 ls374 31 ls375 31 Volume Variations Volume ls 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 36.. 0. 36. 0. 36. 0. 36. 0. ' 36. 0. 36. 0. 36. b .. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 51.4286 0. 51.4286 0. 51.4286 0. 51.4286 o. 51.4286 0. 51.4286 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. . 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. Cell Blockage Volume Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 No. Porosity (ft) 0 1. 1000000.
1 1. 37. 1 1. 37. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1. . 1.
- 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37 . 37. 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. *o. 0. 0. 0. o. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 82 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O pto.,kd.,
EvfNydaj. Attachment 1 PAGE NO. 83 of 303 ls149 1 1. 37. lslSO 1 1. 37. lslO 2 1. 37. lsll 2 1. 37. ls12 2 1. 37. ls13 2 1. 37. lsl4 2 1. 37. ls15 2 1. 37. ls26 2 1. 37. ls27 2 1. 37. ls28 2 1. 37. ls29 2 1. 37. ls30 2 1. 37. ls31 2 1. 37. ls138 2 1. 37. ls139 2 1. 37. ls140 2 1. 37. ls141 2 1. 37. ls142 2 1. 37. ls143 2 1. 37. ls154 2 1. 37. ls155 2 1. 37. ls156 2 1. 37. ls157 2 1. 37. ls158 2 1. 37. ls159 2 1. 37. ls34 3 1. 36. ls35 3 1. 36. ls SO 3 1. 36. ls51 3 1. 36. ls162 3 1. 36. ls163 3 1. 36. ls178 3 1. 36. ls179 3 1. 36. ls35 4 1. 36. ls36 4 1. 36. ls51 4 1. 36. ls52 4 1. 36. ls163 4 1. 36. ls164 4 1. 36. ls179 4 1. 36. ls180 4 1. 36. ls36 5 1. 36. ls37 5 1. 36. ls52 5 1. 36. ls53 5 1. 36. ls164 5 1. 36. ls165 5 1. 36. ls180 5 1. 36. ls181 ,5 1. 36. ls37 6 1. 36. ls38 6 1. 36. ls53 6 1. 36. ls54 '6 1. 36. ls165 6 1. 36. ls166 6 1. 36. ls181 6 1. 36. ls182 6 1. 36. ls38 7 1. 36. ls39 7 1. 36. ENERCON ls54 7 1. ls SS 7 1. ls166 7 1. ls167 7 1. ls182 7 1. ls183 7 1. ls39 8 1. ls40 8 1. ls41 8 1. ls SS 8 1. ls56 8 1. ls57 8 1. ls167 8 1. ls168 8 1. ls169 8 1. lsl83 8 1. ls184 8 1. lslBS 8 1. ls42 9 1. ls43 9 1. ls SB 9 1. ls59 9 1. ls170 9 1. ls171 9 1. ls186 9 1. ls187 9 1. ls43 10 1. ls44 10 1. ls59 10 1. ls60 10 1. ls171 10 1. ls172 10 1. ls187 10 1. lslBB 10 1. ls44 11 1. ls45 11 1. ls60 11 1. ls61 11 1. ls172 11 1. ls173 11 1. lslBB 11 1. ls189 11 1. ls45 12 1. ls46 12 1. ls61 12 1. ls62 12 1. ls173 12 1. lsl74 12 1. ls189 12 1. ls190 12 1. ls46 13 1. ls47 13 1. ls62 13 1. ls63 13 1. ls174 13 1. ls175 13 1. ls190 13 1. ls191 13 1. ls47 14 1. ls48 14-1. '-CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 74. 37. 61.6667 74. 37. 61. 6667 74. 37. 61.6667 74. 37. 61.6667 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 84 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxtclfrmtt-EWJty ptojaa Evwy day. Attachment 1 PAGE NO. 85 of 303 ls63 14 1. 36. ls64 14 1. 36. ls175 14 1. 36. ls176 14 1. 36. ls191 14 1. 36. ls192 14 1. 36. ls81 15 1. 36. -, ls82 15 1. 36. ls97 15 1. 36. ls98 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 20 1. 36. ls102 20 1. 36. ls103 20 1. 36. ls214 20 1. 36. ls215 20 1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61.6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61.6667 ls167 21 1. 185. ls168 21 1. 92.5 ls169 21 1. 154.167 ls183 21 1. 185.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xn:tifJn<:.1-f$ff1fJ ptt>}f!<':f., f.vt:ty day. Attachment 1 PAGE NO. 86 of 303 ls184 21 1. 92.5 lsl85 21 1. 154.167 ls73 22 1. 36. ls74 22 1. 36. ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. ls108 23 1. 36. ls219 23 1. 36. ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 1. 36. ls93 24 1. 36. lsl08 24 1. 36. ls109 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1., 36. ls109 25 1. 36. lsllO 25 1. \ 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. 1\;23 8 25 1. 36 .. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. lsl7 28 1. 37. lsl29 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51. 4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ENERCON ls257 29 1. ls258 29 1. lsl02 30 1. lsll8 30 1. ls230 30 1. ls246 30 1. ls358 30 1. ls374 30 1. ls118 31 1. ls119 31 1. ls246 31 1. ls247 31 1. ls374 31 1. ls375 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 1 51.4286 51.4286 37.
- 37. 37. 37. 37. 37. 36. 36. 36. 36. 36. 36. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO' SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46 .is 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Nading Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Height (ft) 5. 3.67 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 87 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages
-Table 1 Volume 2s Block, No. Cell Blockages -Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000.
- 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. def No. Porosity (ft)
- Coeff. 0 1. 1000000.
- 0. Z-Direction Cell Face Variations Volume 2s Cell Blockage Area No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s Hyd. Dia. (ft) 1000000.
Hyd. Dia. (ft) 1000000. Loss Coeff. 0. (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor 0. Drop De-ent, Factor 0. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Mo lee Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase, # Diff. Model (ft) (ft) No. No .. Option ls NO MIX-L. 1. 1. 1.
- 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR 6 \NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation
- Type Phase (ft2/s2)
[*lbm/s] FF (ft2/s3) [*lbm/s] FF Discrete Burn Parameters Min Min Max Burn Flame; Burn Un CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 88 of 303 . Z3 Curb (ft) 0. L Ht Curb Height Vol # ls 2s 3 4 s 6 ENERCON H2 Frac 0.07 0.07 0.07 0.07 0.07 0.07 02 Frac o.os o.os o.os o.os o.os o.os H20 Frac o.ss .o.ss o.ss o.ss o.ss o.ss Continuous Burn Parameters Vol Min H2 Min Max Vol Flow 02 H20 # (lbm/s) Frac Frac ls o. o.os o.ss 2s o. o.os o.ss 3' *o. (, o.os o.ss 4 0. o.os o.ss s 6 0. 0. o.os o.os o.ss o.ss CALCULATION CONTROL Attachment 1 Length (ft) Speed (ft/s) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Max Burn H20/H2 Frac Ratio 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. Rate Burn Burn FF Frac Opt DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR Mechanistic Burn Rate Parameters Vol # ls 2s 3 4 s 6 Min H2 Frac 0. 0. 0. 0. 0. 0. Min 02 Frac 0. 0. 0. 0. 0. 0. Max H20 Frac 1. 1.
- 1.
- 1. 1. 1: Da No .. 1. 1. 1. 1. 1. 1. Lam Burn Burn Rate Temp Limit (lbm/ft3-s FF (F) DEFAULT 3SO. DEFAULT 3SO: DEFAULT 3SO. DEFAULT 3SO. DEFAULT DEFAULT 3SO.
3SO. Mechanistic Burn Unburne Propagation Parameters Burned CC Flow Flame Ignition H2 Vol H2 # Frac 0.04 ls 2s 3 4 s 6 0.04 0.04 0.04 0.04 0.04 H2 Vel Thick FF Frac FF (ft/s) FF (ft) 0.001 DEFAULT 0.164 0.001 0.001 0.001 0.001 0.001 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT 0.164 0.164 0.164 0.164 0.164 Fluid Boundary Conditions -Table 1 FF Frac 0.04 0.04 0.04 0.04 0.04 0.04 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 89 of 303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDIS EDIS EDIS Press. Temp. Flow S J ON OFF Elev. BC# De.scription (psia) lP Environment 14.7 2P HVC ACUl .Outlet 14. 7 3P Smoke Removal E 14.7 4P Inlet Air 14.7 i SP F /H Outlet 14. 7 6P HVC-ACUl Exhaus 14.7 FF (F) 96 1 96 1 1 96 Fluid Boundary Conditions Table 2 FF (lbm/s) FF P 0 Trip Trip (ft) 0 N N 136.13 4T 0 N N 136.13 6T SC N N N N NN NN 136.13 136.13 136 .13 136.13 Liq. v Stm. v Drop D Cpld Flow Heat Outlet BC# Frac. FF Frac. FF (in) FF BC# Frac. lP 0. . 03 034 NONE 2P 0. hl ST NONE 3P 4P SP .03034 .03034 .03034 -NONE NONE NONE FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT ENERCON CALCULATION CONTROL SHEET-Attachment 1 6P hSO NONE Fluid Boundary Conditions -Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 FF' lP 1. 2P 1. 3P 1. 4P 1. SP 1. 6P 1. Fluid Boundary Conditions -Table 4 Volume Fractions Be# Gas s FF Gas 6 FF Gas 7 lP Liq FF Comp 2P 3P 4P SP 6P Flow -Table 1 F.P. # 1 2 Description Env Connection HVC-ACUl PB Vol A ls94 4 '3 4 s 6 7 8 9 Smoke Removal p 6 Steam 4 Outlet 2s184 Inlet Air 6 F/H PB S HVC-ACUlA Ex PB 3 F/H Outlet S DMP 67 1 4 10 .,DMP 67 2 11 DMP 77 1 12 DMP 77 2 13 DMP 61 1 14 DMP 61 2 lS DMP 63 1 16 DMP 63 2 17 DMP S9 1 18 DMP S9 2 19 DMP 60 1 20 DMP 60 2 21 DMP S2 1 22 DMP S2 2 23 DMP S8 1 24 DMP S8 2 2S 26 27 28 29 30 31 32 33 DMP SO DMP 76 1 DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4' 4 4 4 4 4 4 4 4 Elev Ht (ft) (ft) 136 .13 3. 3 136.13 1. 14S. s 1. lSO. s 1. lSO. s 1. 14S. s 1. 14S. s 1. 14S.S 1. 144 .2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S L' 144. 2S 1. 144.2S 1. 144.2S 1. 144. 2S 1. 144 .2S 1. 144 .2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S L 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. FF Vol Elev Ht B (ft) (ft) lP 136.13 3.3 2P 136 .13 1. 3P 136.13 1. 6 lSO. s 1. 4P 136.13 1. SP 136.13 1. 6P 136.13 1. 3 14S.S 1. ls368 144.2S 1. ls3S2 144.2S 1. ls304 144. 2S 1. ls288 144 .2S 1. ls366 144.2S 1. ls3SO 144.2S 1. ls302 144 .2S 1. ls286 144. 2S 1. ls364 144.2S 1. ls348 144.2S 1. ls300 144.2S 1. ls284 144.2S 1. ls362 144.2S 1. ls346 144.2S 1. ls298 144. 2S 1. ls282 144.2S 1. ls329
- 144. 2S 1. ls297 144.2S 1. ls281 .144.2S 1. ls327 144.2S 1. ls29S 144.2S 1. ls360 144.2S 1. ls344 144.2S 1. ls326 144.2S 1. ls294 144.2S 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 90 of 303 DEFAULT ENERCON CALCULATION CONTROL Attachment 1 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 DMP 51 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 45 1 DMP 45 2 DMP 75 1 DMP 75 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Egg Crate 1 Egg Crate 2 Egg Crate 3 Egg Crate 4 Egg Crate 5 Egg Crate 6 Egg Crate 7 Egg Crate 8 Egg Crate 9 ,, Egg Crate 10 Egg Crate 11 Egg Crate 12 Egg Crate 13 Egg Crate 14 Egg Crate 15 Egg crate 16 Egg Crate 17 Egg Crate 18 Egg Crate 19 Egg Crate 20 Egg Crate 21 Egg Crate 22 Egg Crate_23 Egg Crate 24 Egg Crate 25 Egg Crate 26 Egg Crate 27 Egg Crate 28 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area -Table 2 Hyd. Diam. (ft) # (ft2) 1 1. 2 3 4 5 6 7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 4 4 4 4 4 4 4 4 4 4 4 4 4 2sl93 2s177 2s136 2s144 ls369 ls371 ls373 ls375 ls377 ls379 ls381 ls383 ls370 ls372 ls376 ls378 ls380 ls382 ls384 ls257 ls258 ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls268 ls269 ls270 ls271 ls272 144 .25 1. 144. 25 1. 144.25 1. 144. 25 1. 144.25 1. 144. 25 1. 144 .25 1. 144.25 1. 144 .25 1. 144 .25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. ls279 144.25 1. ls357 144.25 1. ls341 144.25 1. ls293 144.25 1. ls277 144.25 1. ls355 144.25 1. ls339 144 .25 1. 151. 1. 145.24 0.001 145.24 0:001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 ls291 ls275 ls353 ls337 ls289 ls273 3 3 3 3 2s113 2sl15 2s117 2sl19 2s121 2s123 2s125 2s127 2sl14 2s116 2s120 2s122 2s124 145.24 o.oor---2s126 145.24 0.001 2s128 145.24 0.001 2sl +45.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 2s14 145.24 0.001 2s15 145.24 0.001 2s16 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. 151. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) Friction Length (ft) Relative Dep Rough-Bend ness (deg) Mom Trn Opt 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 91of303 St rat Flow Opt NONE NONE NONE NONE NONE NONE NONE 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ENERCON 1. 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2 .2*5 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 18. 18.
- 12.
- 12. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 1. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 5.54 5.54 3.43 3.43 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 1. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
- 10. 10. 10. 10.
- 10. 10. 10. 10. 10. 10.
- 10. 10. 10. 10. 10. 10. 10. 10. 10. ' 10. 10. .10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
- 10. 10. 10. 10.
- 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 *o. 0411 0.0417 0.0417 0.0417 PAGE NO. 92 of 303 NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N ,-NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE ENERCON 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.5 2.5 2 .5. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 Flow Paths -Table 3 Flow Fwd. Rev. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.04°17 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 PAGE NO. 93 of 303 N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE Path Loss Loss Comp. Critical Flow Model OFF Exit Loss Coeff. 0. Drop Breakup Model OFF # Coeff. Coeff. Opt. 1 0.127 1000000.
OFF 2 OFF 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 OFF 1000000. OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OFF OFF OFF OFF OFF OFF OFF OFF I OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF CALC. NO. ENTR-078-CALC-004 ENERCON Pft).k<J
.. f.WHJ CALCULATION CONTROL Attachment 1 REV.O 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 4.78 :f .78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.18 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Flow Paths -Table 4 Forwar Flow Min Path H2 # Frac 1 0.06 2 3 4 5 6 7 8 9 10 11 12 13 14 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0,06 Min Max Min H2 Frac 0.06 .02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.06 0.55 0.06 0. 55, 0. 06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Revers Min Max 02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 'OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 94 of 303 Zero Prop Flow Opt NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW 15 16 17 18 19 2a 21 22 23 24 25 26 27 28 29 3a 31 32 33 34 35 36 37 38 39 4a 41 42 43 44 45 46 47 48 49 sa 51 52 53 54 55 56 57 58 59 6a 61 62 63 64 65 66 67 68 69 7a 71 72 73 74 ENERCON a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.SS a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.SS a. as' a. 55 a.as a.SS a.as a.SS a.as a.55 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 CALCULATION CONTROL Attachment 1 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.a6 a.as a.a6. a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.SS a.55 a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s' a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 95 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW /
ENERCON 75 76 77 78 79 80 81 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Thermal Conductors 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALCULATION CONTROL Attachment 1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 NO NO NO NO NO NO NO Cond Vol HT Vol HT Cond S. A. Ini t. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 96 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW # Description A Co B Co Type (ft2) T. (F) Or ls CPl-West lsl8-l 1 lsl8-l 5 1 7764.63 75. I 2s CP2-NE ls81-2 1 ls81-2 5 1 3234.14 75. I 3s CP3-SE ls89-2 1 ls89-2 5 1 3728.76 75. I 4s Floor lsl-12 11 lsl-12 12 5 10656. 76.5 I 5sJ Upper MCR ceili 2sl29-10 2sl29-8 4 10656. 87. I 6s MCR West Wall L lsl6-2 2 8 4 1312.56 85. I 7s MCR North WallL lsl-36 2 lsl-36 8 4 674.51 85. I 8s MCR East Wall L lsl13-2 ls'll3-8 4 1312. 56 85. I 9s MCR South Wall lsl28-2 lsl28-8 4 674.51 85. I 10s Ceiling Tiles ls257-10 2sl-12 11 6 10016. 78. X lls Upper MCR West 2sl-14 1 2sl-14 8 4 1248.48 88. I 12s Upper MCR North 2sl-24 1 2sl-24 8 4 641.58 88. I 13s Upper MCR East 2sl13-1 2sll3-8 4 1248.48 88. I 14s Upper MCR South 2sl28-. 1 2sl28-8 4 641. 58 88. I 15s Steel Structure 2sl-12 1 2sl-12 5 2 11756.8 81. I 16 SM Doors lsl 1 lsl 5 10 55.2 75. I 17 lHS-JBA lsl4 1 ls14 5 7 1. 75. I 18s 19s 20s 2ls 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ILAC Panels Steel ILAC 3/8 steel ILAc::)/16 DC Panels N DC Panels S lsl33-1 ls5-13*, 1 ls5-13 1 lsl7-l 1 ls32-l 1 Support Beams lsl6-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-24 1 HVAC Large_l lsl-18 1 HVAC Large_2 lsll3-1 SCA Panels_N lsl7-l 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-l 1 ls133-5 ls5-13 5 ls5-13 5 lsl7-l 5 ls32-l 5 lsl6-3 5 ls97-2 5 ls64-2 5 lsl-24 5 lsl-18 5 lsl13-5 lsl7-l 5 ls48 5 lsl8 5 ls2 5 ls98-l 5 7 8 7 7 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 lsl46-1 lsl46-5 7 ls241-1 ls241-5 7 ls153-1 lsl53-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 is55-9 5 9 173.8 15. 20. 198. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 4ls 42s 43s 44s 45 46s l" Conduit S lsl6-3 1 lsl6-3 5 lsll7-5 lsl13-5 ls3-15 5 lsl5 5 ls4-13 5 7 -19.625 l" Conduit_kitc lsll7-1 l" Conduit N wa lsll3-1 l"Conduit_W wal ls3-15 1 Security Port lsl5 1 211 Conduit ls4-13 1 7 9.42 7 39.25 7 70. 65 8 12 .5 7 34.6 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 lsll2-1 lsll2-5 7 lsl6-3 1 ls16-3 5 7 ls7-9 1 ls7-9 5 9 19.6 11. 8 6.6 75. 75. 75. 75. 75. 75. 75. 75. 75. 75.
- 75. 75. 75. 75.
- 75. 75. 75. 75. 75.
- 75.
- 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON CALCULATION CONTROL Attachment 1 50 RMS-CAB170 ls9 1 ls9 5 9 14.7 75. 51 White boxes lslO 1 lslO 5 7 16.5 75. 52s Unistrut W ls13-3 1 ls13-3 5 7 36.8 75. 53s Unistrut)N ls33-1 1 ls33-l 5 7 10.496 75. 54s Uni strut s ls96-3 1 ls96-3 5 7 18.368 75. -Thermal Conductors
-Radiation Parameters Cond Therm. Rad. Emiss. Therm. Rad. Emiss. # Side A Side A Side B Side B ls No No 2s No No 3s No No 4s No No 5s No No 6s No No 7s No No as No No 9s No No lOs No No lls No No 12s No No 13s No No 14s No No 15s No No 16 No No 17 No No 18s No No 19s No No 20s No No 21s No No 22s No No 23s No No 24s No No 25s No No 26s No No 27s No No 28s No No 29s No No 30 No No 31 No No 32 No No 33s No No 34s No No 35s No No 36s No No 37s No No 38s No No 39s No No 40s No No 4ls No No 42s No No 43s No No 44s No No 45 No No 46s No No 47s No No 48s No No 49s No No 50 No No 51 No No CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 97 of 303 I I I I I \ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 F.xreNMct-E¥etypto.:'1f<t. f.mytta;. Attachment 1 PAGE NO. 98 of 303 52s No No 53s No No 54s No No Heat Transfer Coefficient Types -Table 1 Heat Cnd/ Sp Nat For Type Transfer l:'lominal Cnv Cnd Cnv Cnv Cnv Rad # Option Value FF Opt Opt HTC Opt Opt Opt 1 Direct ADD MAX VERT SURF OFF OFF 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 2T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. lT 13 13 Sp Conv 1.63 OFF Heat Transfer Coefficient Types -Table 2 Min Max Convect Condensa Type Phase Liq Liq Bulk T Bulk T # Opt Fr act Fr act Model FF Model FF 1 VAP Tg-Tf Tb-Tw 2 VAP Tg-Tf Tb-Tw 3 VAP Tg-Tf Tb-Tw 4 VAP 'Tg-Tf Tb-Tw 5 j 6 VAP Tg-Tf Tb-Tw 7 VAP Tg-Tw 8 9 VAP Tg-Tw 10 -VAP Tg-Tf Tb-Tw 11 VAP Tg-Tf Tb-Tw 12 13 VAP Tg-Tw Heat Transfer Coefficient Types -Table 3 Char. Nat For Norn Minimum Char. Cond. Type Length Coef Exp Coef Exp ve*l Vel Conv HTC Height Length # (ft) FF FF FF FF (ft/s) FF (B/h-ft2-F (ft) (ft) 1 DEFAULT DEFAULT DEFAULT 2 DEFAULT DEFAULT DEFAULT 3 DEFAULT DEFAULT DEFAULT ) 4 DEFAULT DEFAULT D.EFAULT 5 J DEFAULT DEFAULT DEFAULT 6 DEFAULT DEFAULT 7 DEFAULT 8 DEFAULT 9 DEFAULT 10 DEFAULT 'DEFAULT 11 DEFAULT DEFAULT 12 DEFAULT 13 DEFAULT HTC Types -Table 4 Total Peak Initial BD Post-BD Post-BD ENERCON CALCULATION CONTROL Attachment 1 Type Const Heat # CT (Btu) 1 2 3 4 5 6 7 8 9 10 11 12 13 Thermal Conductor Type Types Time Exp (sec) XT Thick. Value Exp (B/h-f2-F) yt O.D. Exp xt Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 99 of 303 Direct FF Heat # Description Geom (in) (in) Regions (Btu/ft3-s) FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1.75 5 2 3.75 6 2 7.875 Thermal Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. Sub-Heat regs. Factor 1 1. 1 1 6 23 39 21 1 3 1 2 Sub-Heat regs. Factor* 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. Sub-Heat 0 .135 7T 0. . 0. 0. 1.2e-004
- 0. 0. 0. 0. 0.
ENERCON CALCULATION CONTROL Attachment 1 Region # 1 2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 r 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (in) (in) 0.00768 0.01536 regs. Factor 0. 0.00768 1 0. 1 0. 0.02304 0.03072 1 0.05376 0.06144 1 0.1152 0.12288 1 0.23808 0.24576 1 0.48384 0.49152 1 0.97536 0.98304 1 1.9584 1.96608 1 3.92448 3.93216 1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. Thermal Type 5 Composite Mat. Region # 1 5 2 5 3 5 4 5 5 5 6 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 0. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0. 0.01224 0.013056 1 0. 0.025296 0.026112 1 0. 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1.625 0.034244 1
0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.998518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 0. 0. 0. 0. 0. 1. 1. 1 .. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 100 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O j £.my tia-j. Attachment 1 PAGE NO. 101 of 303 31 2 20.70052 1.96608 1 0. 32 2 22.6666 0.98304 1 0. 33 2 23.64964 0.49152 1 0. 34 2 24.14116 0.24576 1 0. 35 2 24.38692 0.12288 1 0. 36 2 24.5098 0.06144 1 0. 37 2 24. 57124 0.03072 1 0. 38 2 24.60196 0.01536 1 0. 39 2 24.61732 0.00768 1 0. Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Thick sub-Heat Region # (in) (in) regs. Factor 1 4 0. 3.5e-004 1 0. 2 4 3.5e-004 7e-004 1 0. 3 4 0.001044 0.001392 1 0. 4 4 0.002436 0.002784 1 0. 5 4 0.00522 0.005568 1 0. 6 4 0.010788 0.011136 1 0. 7 4 0.021924
- 0. 022272 1 0. 8 4 0.044196 0.044544 1 0. 9 4 0.08874 0.089088 1 0. 10 4 0.177828 0.111793 1 0. 11. 4 0.289621 0 .111793 1 0. 12 4 0.401414 0.067423 1 0. 13 4 0.468837 0.067423 1 0. 14 4 0.53626 0.044544 1 0. 15 4 0.580804 0.022272 l* q. 16 4 0.603076
- 0. 011136 1 0. 17 4 0.614212 0.005568 1 0. 18 4 0.61978 0.002784 1 0. 19 4 0.622564 0.001392 1 0. 20 4 0.623956 7e-004 1 0. 21 4 0.624652 3.5e-004 1 0. Thermal Conductor Type 7 1/8" Steel \ Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.125 1 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Thick Sub-Heat Region if (in) (in) regs. Factor 1 1 0. 0.1875 1 0. 2 1 0.1875 0.09375 1 0. 3 1 0.28125 0.09375 1 0. Thermal Conductor Type 9 1/16" Steel Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.0625 1 o.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O Thermal Conductor Type 10 1/4" Steel Mat. Region # 1 1 2 1 Cooler/Heater Heater Cooler Bdry. (in) 0. 0 .125 # Description lH 2H 3H 4H SH 6H 7H BH 9H lOH llH 12H 13H 14H 15H 16H 17H lBH 19H 20H 21H 22H 23H 24H 25H 26H 27H 2BH 29H 30H 31H 32H 33H 34H 35H 36H 37H 3BH 39H 40H 41H 42H 43H 44H 45H 46H 47H 4BH Thick (in) 0.125 0.125 Vol. # lsl ls2 ls3 ls4 ls5 ls6 ls7 lsB ls9 lslO lsll ls12 lsl3 ls14 ls15 ls16 ls17 lslB ls19 ls20 ls21 ls22 ls23 ls24 ls25 ls26 ls21 ls2B ls29 ls30 ls31 ls32 ls33 ls34 ls35 ls36 ls37 ls3B ls39 ls40 ls41 .ls42 ls43 ls44 ls45 ls46 ls47 ls4B On Sub-Heat Factor 1 0. 1 o. Off Flow Trip Trip Rate # # (CFM) PAGE NO. 102 of 303 Flow Heat '.Heat Rate Rate Rate Phs Ctrlr FF (Btu/s) FF Opt Loe 1. BT VTI lsl 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. BT VTI ls2 BT VTI ls3 BT VTI ls4 BT VTI ls5 BT VTI ls6 BT VTI ls7 BT VTI lsB BT VTI ls9 BT VTI lslO .BT VTI lsll BT VTI ls12 BT VTI ls13 BT VTI ls14 BT VTI lsl5 BT VTI ls16 BT VTI ls17 BT VTI lslB BT VTI ls19 BT VTI ls20 BT VTI ls21 BT VTI ls22 BT VTI ls23 BT VTI ls24 BT VTI ls25 BT VTI' ls26 BT VTI ls27 BT VTI ls2B BT VTI ls29 BT VTI ls30 BT VTI ls31 BT VTI ls32 BT VTI ls33 BT VTI'. ls34 BT VTI ls35 BT VTI ls36 BT VTI ls37 BT VTI ls3B BT VTI ls39 BT VTI ls40 BT VTI ls41 BT VTI ls42 BT VTI ls43 BT VTI ls44 BT VTI ls45 BT VTI ls46 BT VTI ls47 BT VTI ls4B 49H SOH SlH S2H S3H S4H SSH S6H S7H SSH S9H 60H 61H 62H 63H 64H 6SH 66H 67H 6SH 69H 70H 71H 72H 73H 74H 7SH 76H 77H 7SH 79H SOH SlH S2H S3H S4H SSH S6H S7H SSH S9H 90H 91H 92H 93H 94H 9SH 96H 97H 9SH 99H lOOH 101H 102H 103H 104H lOSH 106H 107H lOSH NERCON ls49 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 ls SS lsS9 ls60 ls61 ls62 ls63 ls64 ls6S ls66 ls67 ls6S ls69 ls70 ls71 ls72 ls73 ls74 ls7S ls76 ls77 ls7S ls79 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 ls SS lsS9 ls90 ls91 ls92 ls93 ls94 ls9S ls96 ls97 ls9S ls99 lslOO lslOl lsl02 ls103 lsl04 lslOS ls106 ls107 lslOS CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. 1. 1. 1. 1. 1. 1. 1-. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. PAGE NO. 103 of 303 ST VTI ls49 ST VTI lsSO ST VTI lsSl ST VTI lsS2 ST VTI lsS3 ST VTI lsS4 ST VTI lsSS ST VTI lsS6 ST VTI lsS7 ST VTI lsSS ST VTI lsS9 ST VTI ls60 ST VTI ls61 ST VTI ls62 ST VTI ls63 ST VTI ls64 ST VTI ls6S ST VTI ls66 ST VTI ls67 ST VTI ls6S ST VTI ls69 ST VTI ls70 ST VTI ls71 ST VTI ls72 ST VTI ls73 ST VTI ls74 ST VTI ls7S ST VTI ls76 ST VTI ls77 ST VTI ls7S ST VTI ls79 ST VTI lsSO ST VTI lsSl ST VTI lsS2 ST VTI lsS3 ST VTI lsS4 ST VTI lsSS ST VTI lsS6 ST VTI lsS7 ST VTI lsSS ST VTI lsS9 ST VTI ls90 ST VTI ls91 ST VTI ls92 ST VTI ls93 ST VTI ls94 ST VTI ls9S ST VTI ls96 ST VTI ls97 ST VTI ls9S ST VTI ls99 ST VTI lslOO ST VTI lslOl ST VTI ls102 ST VTI ls103 ST VTI ls104 ST VTI lslOS ST VTI lsl06 ST VTI ls107 ST VTI lslOS 109H llOH lllH 112H 113H 114H llSH 116H 117H llBH 119H 120H 121H 122H 123H 124H 125H 126H 127H 12BH 129H 130H 131H 132H 133H 134H 135H 136H 137H 13BH 139H 140H 141H 142H 143H 144H 145H 146H 147H 14BH 149H lSOH lSlH 152H 153H 154H lSSH 156H 157H lSBH 159H 160H 161H 162H 163H 164H . 165H 166H 167H 16BH ENERCON (\ ls109 lsllO lslll lsl12 ls113 ls114 lsllS lsl16 lsl17 lsllB ls119 ls120 ls.121 ls122 ls123 ls124 lsl25 ls126 ls127 ls12B ls129 ls130 ls131 ls132 ls133 ls134 ls135 ls136 ls137 ls13B lsl39 ls140 lsl41 ls142 ls143 ls144 lsl45 lsl46 ls147 ls14B lsl49 lslSO lslSl ls152 ls153 ls154 lslSS ls156 ls157 lslSB ls159 ls160 ls161 ls162 lsl63 ls164 ls165 ls166 ls167 ls16B CALCULATION CONTROL Attachment 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1/ 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1 .. 1.
- 1. 1. 1. . 1. 1. 1. 1. 1. 1. BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT CALC. NO. ENTR-078-CALC-004 REV.a PAGE NO. 104 of 303 VTI lsl09 VTI lsllO VTI lslll VTI ls112 VTI ls113 VTI lsl14 VTI lsllS VTI lsl16 VTI ls117 VTI lsllB VTI lsl19 VT! ls120 VTI ls121 VTI lsl22 VTI lsl23 VTI ls124 VTI ls125 VTI lsl26 VTI ls127 VTI lsl2B VTI lsl29 VTI ls130 VTI ls131 VTI lsl32 VTI lsl33 VTI lsl34 VTI ls135 VTI ls136 VTI ls137 VTI ls13B VTI lsl39 VTI lsl40 VTI ls141 VTI ls142 VTI ls143 VTI lsl44 VTI ls145 VTI lsl46* VTI ls147 VTI ls14B VTI lsl49 VTI lslSO VTI lslSl VTI lsl52 VTI ls153 VTI ls154 VTI lslSS VTI ls156 VTI lsl57 VTI lslSB VTI ls159 VTI ls160 VTI ls161 VTI ls162 VTI ls163 VTI ls164 VTI ls165 VTI ls166 VTI ls167 VTI lsl6B 169H 170H 171H 172H 173H 174H 175H 176H 177H 17SH 179H lSOH lSlH 1S2H 1S3H 1S4H 1S5H 1S6H 1S7H \ lSSH 1S9H 190H 191H 192H 193H 194H 195H 196H 197H 19SH 199H 200H 201H 202H 203H 204H 205H 206H 207H 20SH 209H 210H 211H 212H 213H 214H 215H 216H 217H 21SH 219H 220H 221H 222H 223H 224H 225H 226H 227H 22SH ENERCON lsl69 lsl70 lsl71 lsl72 lsl73 lsl74 lsl75 lsl76 lsl77 lsl7S lsl79 lslSO lslSl lslS2 lslS3 lslS4 lslSS lslS6 lslS7 lslSS lslS9 lsl90 lsl91 lsl92 lsl93 lsl94 lsl95 lsl96 lsl97 lsl9S lsl99 ls200 ls201 ls202 ls203 ls204 ls205 ls206 ls207 ls20S ls209 ls210 ls211 ls212 ls213 ls214 ls215 ls216 ls217 ls21S ls219 ls220 ls221 ls222 ls223 ls224 ls225 ls226 ls227 ls22S CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. PAGE NO. 105 of 303 ST VTI lsl69 ST VTI lsl70 ST VTI lsl71 ST VTI lsl72 ST VTI lsl73 ST VTI lsl74 ST VTI lsl75 ST VTI lsl76 ST VTI lsl77 ST VTI lsl7S 'ST VTI lsl 79 ST VTI lslSO ST VTI lslSl ST VTI lslS2 ST VTI lslS3 ST VTI lslS4 ST VTI lslS5 ST VTI lslSfr ST VTI lslS7 ST VTI lslSS ST VTI lslS9 ST VTI lsl90 ST VTI lsl91 ST VTI lsl92 ST VTI lsl93 ST VTI lsl94 ST VTI lsl95 ST VTI lsl96 r ST VTI lsl97 ST VTI lsl9S ST VTI lsl99 ST VTI ls200 ST VTI ls201 ST VTI ls202 ST VTI ls203 ST VTI ls204 ST VTI ls205 ST VTI ls206 ST VTI ls207 ST VTI ls20S ST VTI ls209 ST VTI ls210 ST VTI ls211 ST VTI ls212 ST VTI ls213 ST VTI ls214 ST vTI ls215 ST VTI ls216 ST VTI ls217 ST VTI ls21S ST VTI ls219 ST VTI ls220 ST VTI ls221 ST VTI ls222 ST VTI ls223 ST VTI ls224 ST VTI ls225 ST VTI ls226 ST VTI ls227 ST VTI ls22S )
229H 230H 231H 232H 233H 234H 235H 236H 237H 23BH 239H 240H 241H 242H 243H 244H 245H 246H 247H 24BH 249H 250H 251H 252H 253H 254H 255H 256H 257H 25BH 259H 260H 261H 262H 263H 264H 265H 266H 267H 26BH 269H 270H 27lH 272H 273H 274H 275H 276H 277H 27BH 279H 2BOH 2B1H 2B2H 2B3H 2B4H 2BSH 2B6H 2B7H 2BBH ENERCON p ls229 ls230 ls231 ls232 ls233 ls234 ls235 ls236 ls237 ls23B ls239 ls240 ls241 ls242 ls243 ls244 ls245 ls246 ls247 ls24B ls249 16250 ls251 ls252 ls253 ls254 ls255 ls256 ls257 ls25B ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls26B ls269 ls270 ls271 ls272 ls273 ls274 ls275 ls276 ls277 , ls27B ls279 ls2BO ls2Bl ls2B2 ls2B3 ls2B4 ls2BS ls2B6 ls2B7 ls2BB CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. /1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. PAGE NO. 106 of 303 BT VTI ls229 BT VTI ls230 BT VTI ls231 BT VTI ls232 BT VTI ls233 BT VTI ls234 BT VTI ls235 BT VTI ls236 BT VTI ls237 BT VTI ls23B BT VTI ls239 BT VTI ls240 BT VTI ls241 BT VTI ls242 BT VTI ls243 BT VTI ls244 BT VT! ls245 BT VTI ls246 BT VTI ls247 BT VTI ls24B BT VTI ls249 BT VTI ls250 BT VT! ls251 BT VTI ls252 BT VTI ls253 BT VTI ls254 BT VTI ls255 BT VTI ls256 3T VTI ls257 3T VTI ls25B 3T VTI ls259 3T VTI ls260 3T VTI ls261 3T VTI ls262 3T VTI ls263 3T VT! ls264 3T VTI ls265 3T VTI ls266 3T VTI ls267_ 3T VTI ls26B VTI ls269 3T VTI ls270 3T VTI ls271 3T VTI ls272 3T VTI ls273 3T VTI ls274 3T VTI ls275 3T VTI ls276 3T VTI ls277 3T VTI ls27B 3T VTI ls279 3T VT! ls2BO 3T VTI ls2Bl 3T VTI ls2B2 3T VTI ls2B3 3T VTI ls2B4 3T VTI ls2BS 3T VTI ls2B6 3T VTI ls2B7 3T VTI ls2BB 289H 290H 291H 292H 293H 294H 295H 296H 297H 298H 299H 300H 301H 302H 303H 304H 305H 306H 307H 308H 309H 310H 311H 312H 313H 314H 315H 316H 317H 318H 319H 320H 321H 322H 323H 324H 325H 326H 327H 328H 329H 330H 331H 332H 333H 334H 335H 336H 337H 338H 339H 340H 341H 342H 343H 344H \.. 345H 346H 347H 348H ENERCON ls289 -ls290 ls291 ls292 ls293 ls294 ls295 ls296 ls297 ls298 ls299 ls300 ls301 ls302 ls303 ls304 ls305 ls306 ls307 ls308 ls309 ls310 ;ts311 ls312 ls313 ls314 ls315 ls316 ls317 ls318 ls319 ls320 ls321 ls322 ls323 ls324 ls325 ls326 ls327 ls328 ls329 1i£330 ls331 ls332 ls333 ls334 ls335 ls336 ls337 ls338 ls339 ls340 ls341 ls342 ls343 ls344 ls345 ls346 ls347 ls348 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 0.364 0.364 1.
- 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 0.364 0.364 1. 1.
- 1. 1.
- 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. PAGE NO. 107 of 303 3T VTI ls289 3T 3T VTI ls291 3T VTI ls292 3T VTI ls293 VTI ls294 VTI ls295 VTI ls296 , VTI ls297 3T VTI ls298 3T VTI ls299 VTI ls300 3T VTI ls301 3T VTI ls302 3T VTI ls303 3T VTI ls304 3T VTI ls305 3T VTI ls306 3T VTI ls307 3T VTI ls308 3T VTI ls309 VTI ls310 VTI ls311 VTI ls312 VTI ls313 3T VTI ls314 3T VTI ls315 3T VTI ls316 3T VTI ls317 VTI ls318 VTI ls319 3T VTI ls320 3T VTI ls321 3T VTI ls322 3T VTI ls323 3T VTI ls324 3T VTI ls325 VTI1ls326 VTI ls327 VTI ls328 VTI ls329 3T VTI ls330 3T VTI ls331 3T VTI ls332 3T VTI ls333 VTI ls334 VTI ls335 3T VTI ls336 3T VTI ls337 3T VTI ls338 3T VTI ls339 3T VTI ls340 3T VTI ls341 VTI ls342 VTI ls343 VTI ls344 VTI ls345 3T VTI ls346 3T VTI ls347 3T VTI ls348 349H 350H 351H 352H 353H 354H 355H 356H 357H 358H 359H 360H 361H 362H 363H 364H 365H 366H 367H 368H 369H 370H 371H 372H 373H 374H 375H _376H 377H 378H 379H 380H 381H 382H 383H 384H 385H ENER ON ls349 ls350 ls351
- ls352 ls353 ls354 ls355 ls356 ls357 ls358 ls359 ls360 ls361 ls362 ls363 ls364 ls365 ls366 ls367 ls368 ls369 ls370 ls371 ls372 ls373 ls374 ls375 ls376 ls377 ls378 ls379 ls380 ls381 ls382 ls383 ls384 Kitchen Heatl lsll8 386H Rad Monitor H ls9 387H LAC-PNLlCl0/1 lsl33 388H LAC-PNL1C5/6 ls134 389H LAC-PNL1C9 lsl35 390H BYS-PNL02B2/A ls65 391H SCI-PNL02/0l ls49 392H SCA-PNL10A2 ls17 393H SCA-PNL10B2 ls113 394H VBS-PNLOlB ls128 395H ENB-PNL02B/SC ls112 396H VBN-PNLOlBl ls96 397H VBN-PNLOlAl/V ls64 398H SCM-PNLOlA/EN ls48 399H VBS-PNLOlA ls32 400H PCl/2 ls72 401H ' PC3 ls104 402H PC4 ls105 403H PC5-6 ls87 404H PC7 ls71 405H PC 8-9 ls199 406H PC 10-11 ls106 407H PC 12-Shift M lsl 408H OP 1 ls55 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1.37 1. 8 0.038 0.12 0.038 0.1099 0.127 0.0483 0.0483 0. 07772 0.277 0.137 0 .372 0.277 0.074 0.569 0.284 0.284 0.569 0.284 0.569 0.569 0.284 0.037 PAGE NO. 108 of 303 3T VTI ls349 3T VTI ls350 3T VTI ls351 3T VTI ls352 3T VTI ls353 3T VTI ls354 3T VTI ls355 3T VTI ls356 3T VTI ls357 VTI ls358 VTI ls359 VTI ls360 VTI ls361 3T VTI ls362 3T VTI ls363 3T VTI ls364 3T VTI ls365 3T VTI ls366 3T VTI ls367 3T VTI ls368 3T VTI ls369 3T VTI ls370 3T VTI ls371 3T VTI ls372 3T VTI ls373 3T VTI ls374 3T VTI ls375 3T VTI ls376 3T VTI ls377 3T VTI ls378 3T VTI ls379 3T VTI ls380 3T VTI ls381 3T VTI ls382 3T VTI ls383 3T VTJ; ls384 VTI ls118 VTI -ls9 VTI lsl33 VTI ls134 VTI lsl35 VTI ls65 VTI ls49 VTI ls17 VTI ls113 VTI lsl28 VTI ls112 VTI ls96 VTI ls64 VTI ls48 VTI ls32 VTI ls72 VTI ls104 VTI lsl05 VTI ls87 VTI ls71 VTI ls199 VTI ls106 VTI lsl VTI ls55 409H 410H 411H 412H 413H 414H 415H 416H 417H 418H 419H 420H 421H 422H 423H 424H 425H 426H 427H 428H 429H 430H 431H 432H 433H 434H 435H 436H 437H 438H 439H 440H 441H 442H 443H 444H 445H 446H 447H 448H 449H 450H 451H 452H 453H 454H 455H 456H 457H 458H 459H 460H 461H 462H 463H 464H 465H 466H 467H 468H ENERCON OP 2 OP 3 OP 4 OP 5 OP 6 OP 7 OP 8 OP 9 OP 10 OP 11 OP 12 OP 13 OP 14 OP 15 OP 16 OP 17 OP 18 ls56 ls57 ls71 ls72 ls73 ls87 ls88 ls89 lsl83 lsl84 lsl85 lsl99 ls200 ls201 ls215 ls216 ls217 2sl . 2s2 2s3 2s4 2s5 2s6 2s7 2s8 2s9 2sl0 2sll 2sl2 2sl3 2sl4 2sl5 2sl6 2sl7 2sl8 2sl9 2s20 2s21 2s22 2s23 2s24 2s25 2s26 2s27 2s28 2s29 2s30 2s31 2s32 2s33 2s34 2s35 2s36 2s37 2s42 2s43 2s44 2s45 2s46 2s47 CALCULATION CONTROL Attachment 1 0.037 0.037 0. 037 0. 037 0. 037 0. 037 0. 037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 9.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 109 of 303 VTI ls56 VTI ls57 VTI ls71* VTI ls72 VTI ls73 VTI ls87 VTI ls88 VTI ls89 VTI lsl83 VTI lsl84 VTI lsl85 VTI lsl99 VTI ls200 VTI ls201 VTI ls215 VTI ls216 VTI ls217 VTI 2sl VTI 2s2 VTI 2s3 VTI 2s4 VTI 2s5 VTI 2s6 VTI 2s7 VTI 2s8 VTI 2s9 VTI 2sl0 VTI 2sll VTI 2sl2 VTJ 2sl3 VTI 2sl4 VTI 2sl5 VTI 2sl6 VTI 2sl7 VTI 2sl8 VTI 2sl9 VTI 2s20 VTI 2s21 VTI 2s22 VTI 2s23 VTI 2s24 VTI 2s25 VTI 2s26 VTI 2s27 VTI 2s28 VTI 2s29 VTI 2s30 VTI 2s31 VTI 2s32 VTI 2s33 VTI 2s34 VTI 2s35 VTI 2s36 VTI 2s37 VTI 2s42 VTI 2s43 VTI 2s44 VTI 2s45 VTI 2s46 VTI 2s47 469H 470H 471H 472H 473H 474H 47SH 476H 477H 478H 479H 480H 481H 482H 483H 484H 48SH 486H 487H 488H 489H 490H 491H 492H 493H 494H 49SH 496H 497H 498H 499H SOOH SOlH S02H S03H S04H SOSH S06H S07H S08H S09H SlOH SllH S12H Sl3H S14H SlSH S16H S17H Sl8H Sl9H S20H S21H S22H S23H S24H S2SH S26H S27H S28H ENER ON 2s48 2s49 2sSO 2sS1 2sS2 2sS3 2sS8 2sS9 2s60 2s61 2s64 2s6S 2s66 2s67 2s68 2s69 2s74 2s7S 2s76 2s77 2s80 2s81 2s82 2s83 2s84 2s8S , 2s90 2s91 2s92 2s93 2s94 2s9S 2s96 2s97 2s98 2s99 2slOO 2s101 2s106 2s107 2s108 2s109 2s110 2slll 2s112 2s113 2s114 2s11S 2s116 2s117 2s118 2s119 2s120 2s121 2s122 2s123 2s124 2s12S 2s126 2sl27 CALCULATION CONTROL Attachment 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 b.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 110 of 303 VTI 2s48 VTI 2s49 VTI 2sSO VTI 2sS1 VTI 2sS2 VTI 2sS3 VTI 2sS8 VTI 2sS9 VTI 2s60 VTI 2s61 VTI 2s64 VTI 2s6S VTI 2s66 VTI 2s67 VTI 2s68 VTI 2s69 VTI 2s74 VTI 2s7S VTI 2s76 VTI 2s77 VTI 2s80 VTI 2s81 VTI 2s82 VTI 2s83 VTI 2s84.' VTI 2s8S VTI 2s90 VTI 2s91 VTI 2s92 VTI 2s93 VTI 2s94 VTI 2s9S VTI 2s96 VTI 2s97 VTI 2s98 VTI 2s99 VTI 2s100 VTI 2s101 VTI 2s106 VTI 2s107 VTI 2s108 VTI 2s109 VTI 2s110 VTI 2slll VTI 2s112 VTI 2s113 VTI 2s114 VTI 2s11S VTI 2s116 VTI 2sll 7 VTI 2s118 VTI 2sl19 VTI 2s120 VTI 2s121 VTI 2s122 VTI 2s123 VTI 2s124 VTI 2s12S VTI 2s126 VTI 2s127 529H 530H 531H 532H 533H 534H 535H .536H 537H 538H 539H 540H 541H 542H 543H 544H 545H 546H 547H 548H 549H 550H 551H 552H 553H 554H 555H 556H 557H 558H 559H 560H 561H 562H 563H 564H 565H 566H 567H 568H 569H 570H 571H 572H 573H 574H 575H 576H 577H 578H 579H 580H 581H 582H 583H 584H 585H 586H 587H 588H ENERCON CALCULATION CONTROL Attachment 1 2sl28 1Hl3-P600 ls26 1Hl3-P600 2 lsl54 1Hl3-P6047614 ls42 1Hl3-P604/614 lsl70 1Hl3-P845 ls58 1Hl3-P845 2 lsl86 1Hl3-P6727694 ls43 1Hl3-P672/694 lsl71 1Hl3-P669/691 ls44 1Hl3-P669/691 lsl72 1Hl3-P623/632 ls60 1H13-P623/632 ls188 1Hl3-P629 ls29 1H13-P629 2 ls157 , 1H13-P6217628 ls45 1H13-P621/628 ls173 1H13-P651-P65 ls61 1H13-P651-5 2 ls189 1H13-P680 ls55 1Hl.3-P680_2 ls56 1H13-P680 3 ls57 1H13-P625/693 ls91 1H13-P625/693 ls219 1H13-P671 ls107 1H13-P671 2 ls235 1H13-P6427613 ls92 1H13-642/13/2 ls220 1H13-P692/670 ls108 1H13-P692/670 ls236 1H13-P610/655 ls93 1H13-P610/655.ls221 1H13-P631/618 ls109 1H13-P631/618 ls237 1H13-P607/612 ls94 1H13-P607 612 ls222 1H13-P6197634 lsllO 1Hl3-P619/634 18238 1H13-P637 lslll 1H13-P637 2 ls239 1H13-P601 1 ls73 1Hl3-P601 2 ls89 1H13-P601 3 ls201 1H13-P601 4 ls217 1C91-P622 ls18 1C91-P622 2 ls146 1C91-P623/650 ls34 1C91-P623/655 ls162 1C91-P624 ls51 1C91-P624 2 ls179 1C91-P613 ls78 1C91-P613_2 ls206 1C91-P614 ls30 1C91-P614 2 ls158 1C91-P6157P64 ls46 1C91-P615/642 ls174 1C91-P632/P63 ls72 1C91-P632/633 ls200 1C91-P630/631 ls62 1C91-P630/631 lsl90 0.02 0.095 0.095 0.569 0.569 0.294 d.294 0.853 0.853 0.853 0.853 0.474 0.474 0.237 0.237 0. 284 -0.284 0.545 0.545 0.253 0.253 0.253 0.616 0.616 0.474 0.474 0.474 0.474 0.853 0.853 0.474 0.474 0.427 0.427 0.284 0.284 0.569 0.569 0.379 0.379 0.379 0.379 0.379 0.379 0.209 0.209 0.619 0.619 0.259 0.259 0.087 0.087 0.086 0.086 1.07 1. 07 0.066 0.066 0.488 0.488 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 111 of 303 VTI 2s128 VT! ls26 VTI ls154 VT! ls42 VTI ls170 VTI ls58 VTI ls186 VTI ls43 VTI lsl 71 VT! ls44 VTI lsl72 VTI ls60 VTI ls188 VTI ls29 VTI ls157 VTI ls45 VTI ls173 VTI ls61 VTI ls189 VTI ls55 VTI ls56 VTI ls57 VTI ls91 VTI ls219 VTI ls107 VTI ls235
- VTI ls92 VTI ls220 VTI ls108 VTI ls236 VTI ls93. VTI ls221 VTI ls109 VTI ls237 VT! ls94 VTI ls222 VTI lsllO VTI ls238 VTI lslll VTI ls239 VTI ls73 VT! ls89 VTI ls201 VTI ls217 VTI ls18 VTI ls146 VTI ls34 VT! ls162 VTI ls51 VTI ls179 VTI ls78 VTI ls206 VTI ls30 VTI lsl58 VTI ls46 VTI lsl74 VTI ls72 VTI ls200 VTI ls62 VTI lsl90 ENERCON 589H 1C91-P625 ls31 590H 1C91-P625 2 ls159 591H 1C91-P621/620 ls47 592H 1C91-P621/620 ls175 593H lc91-P608/600 ls63 594H 1C91-P608/600 ls191 595H Comm Network ls90 596H H13-P6'3o ls59 597H H13-P630 2 ls187 598H H13-P808 ls40 599H Hl3-P808 2 ls41 600H H13-P808 3 ls168 601H H13-P808 4 ls169 602H -Hl3-P821/822 ls95 603H ls223 604H H13-P841/819-ls36 605H H13-P841/819 ls52 606H H13-P841/819-ls164 607H H13-P841/819-lsl80 608H H13-P842/820-ls83* 609H H13-P842/820 ls99 610H H13-P842/820-ls211 611H H13-P842/820 ls227 612H H13-P849 ls51 613H H13-P849_2 ls179 614H H13-P850 lslOO 615H H13-P850 2 ls228 616H H13-P851 ls37 617H H13-P851 2 ls165 618H H13-P852 ls98 619H H13-P852 2 ls226 620H H13-P853 ls50 621H H13-P853 2 ls178 622H H13-P854f P844 ls81 623H H13-P854/844 ls97 624H H13-P854/844-ls209 625H H13-P854/844=
ls225 626H H13-P855 ls35 627H , H13-P855 2 ls163 628H H13-P861 ls103 629H H13-P861 2 630H H13-P863 631H H13-P863 2 632H H13-P863 3 633H H13-P863_4 634H Hl3-P869 635H H13-P869_2 636H H13-P870 637H H13-P870_2 638H H13-P870_3 639H H13-P870_4 640H H13-P877 641H H13-P877_2 642H H13-P878 643H H13-P878_2 644H H13-P879 645H H13-P879_2 646H H13-P951 647H H13-P951_2 648H H13-i?952 ls231 ls38 ls54 ls166 ls182 ls84 ls212 ls70 ls86 ls198 ls214 lsl05 ls233 ls112 ls240 ls48 lsl76 ls53 ls181 lslOl CALCULATION CONTROL Attachment 1 0.103 0.103 1.354 1.354 0.971 0.971 0.279 1.564 1.564 0 .118 0 .118 0 .118 0.118 0.519 0.519 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.355 0.355 1.955 1.955 0.523 0.523 0.523 0.523 0.355 0.355 0.473 0.473 I 0.473 0.473 0.083 0.083 0.19 0.19 0.044 0.044 0.044 0.044 1. 049 1. 049 0.227 0.227 0.227 0.227 0.045 0.045 0.386 0.386 0.204 0.204 0.024 0.024 0.024 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 112 of 303 VTI ls31 VTI ls159 VTI ls47 VTI ls175 VTI ls63 VTI ls191 VTI ls90 VTI ls59 VTI ls187 VTI ls40 VTI ls41 VTI ls168 VTI ls169 VTI ls95 VTI ls223 VTI ls36 VTI ls52 VTI ls164 VTI lsl80 VTI ls83 VTI ls99 VTI ls211 VTI ls227 VTI ls51 VTI ls179 VTI lslOO VTI ls228 VTI 1s3*7 VTI ls165 VTI ls98 VTI ls226 VTI ls50 VTI ls178 VTI ls81 VTI ls97 VTI ls209 VTI ls225 VTI ls35 VTI ls163 VTI ls103 VTI ls231 VTI ls38 VTI ls54 VTI ls166 VTI ls182 VTI ls84 VTI ls212 VTI ls70 VTI ls86 VTI lsl98 VTI ls214 VTI ls105 VTI ls233 VTI ls112 VTI ls240 VTI ls48 VTI ls176 VTI ls53 VTI ls181 VTI lslOl ( ENERCON CALCULATION CONTROL SHEET-649H 6SOH 6S1H H13-P9S2 2 ls229 H13-Y702D/7Sl ls378 H13-Y703A ls282 6S2H H13-Y703D ls281 6S3H H13-Y710B/D/3 ls380 6S4H H13-Y711A ls382 6SSH H13-Y712B/D ls379 6S6H H13-Y713B/D ls284 6S7H H13-Y714B/D ls381 6S8H H13-Y71SD/E ls28S 6S9H H13-Y717D ls283 660H H13-Y730B ls374 661H H13-Y731D ls278 662H H13-Y740A ls383 663H H13-Y743E ls276 664H H13-Y744D ls371 66SH H13-Y747A ls27S 666H H13-Y747B ls274 667H H13-Y748B/E ls369 668H H13-Y7SOE ls277 669H H13-Y7SlD ls377 670H H13-P721D ls31 671H 672H 673H 674H 67SH 676H 677H 678H 679H 680H 681H 682H 683H Samsung flats ls230 SM-Coffee Pot ls129 HU Clock Rese lsl36 FLEX Radio Printer/Copie Printer/Copie Printer Printer 2 Printer 3 ls232 lslS lsl20 ls103 l's104 lslOS Printer 4 ls106 Exit Lights ls270 Exit Lights_2 ls2S9 HVC-ACUl Fan 4 1 Volumetric Fan -Table 1 Vol Flow On Off Fan Path Trip Trip
- Description # # * # lQ Inlet Air S 1 2Q F/H Outlet 8 . 1 3Q DMP 67 1 9 1 4Q DMP 67 2 10 1 SQ DMP 77 1 11 1 6Q DMP 77.2 12 1 7Q DMP 61 1 13 1 SQ DMP 61 2 14 1 9Q DMP 63 1 lS 1 lOQ DMP 63 2 16 1 llQ DMP S9 1 1 7 1 12Q DMP S9 2 18 1 13Q' DMP 60 1 19 1 14Q DMP 60 2 20 1 lSQ DMP S2 1 21 1 16Q DMP S2 2 22 1 17Q DMP SS 1 23 1 18Q DMP SS 2 24 1 19Q DMP SO 2S 1 20Q DMP 76 1 26 1 Attachment 1 Min DP (psi) DEFAULT Max l 0.024 0.34 0.3Sl 0.21S 0.828 0.12S ro. 103 0.703 0.2S O.S66 0.3Sl 0.21S 0.21S 0.12S 0.21S 0.21S 0.21S 0.3Sl 0.43 0.21S 0.21S 0.227 0.237 0.114 0.182 0.2S4 0.40S 0.40S 0.19 0.19 0.19 0.19 0.063 0.063 46.41 DP (psi) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEF'.AULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 113 of 303 VTI ls229 VTI ls378 VTI ls282 VTI ls281 VTI ls380 VTI ls382 VTI ls379 VTI ls284 VTI ls381 VTI ls28S VTI ls283 VTI ls374 VTI ls278 VTI ls383 VTI ls276 VTI ls371 VTI ls275 VTI ls274 VTI ls369 VTI ls277 VTI ls377 VTI ls31 VTI ls230 VTI ls129 VTI lsl36 VTI ls232 VTI ls15 VTI ls120 VTI ls103 VTI ls104 VTI lsl05 VTI ls106 VTI ls270 VTI ls259 VTI 4 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q 31Q 32Q 33Q 34Q 3SQ 36Q 37Q 38Q 39Q 40Q 41Q 42Q 43Q 44Q 4SQ ENERCON DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 DMP Sl 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 4S 1 DMP 4S 2 DMP 7S 1 DMP 7S 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Plenum Ex 27 28 29 30 31 32 3*3 34 3S 36 37 38 39 40 41 42 43 44 4S 46 47 48 49 so 4 CALCULATION CONTROL Attachment 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT' DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Volumetric Fan -Table 2 Vol Flow Flow Heat Fan # lQ 2Q 3Q 4Q SQ 6Q 7Q SQ 9Q lOQ 11Q 12Q 13Q 14Q lSQ 16Q 17Q 18Q 19Q 20Q 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q Flow Rate Option (CFM) Time 2000. Time 4000. Time ass. Time ass. Time 176S*. Time 176S. Time 88S. Time ass.* Time 176S. Time 176S. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 820. Time 820. Time 880. Time *1010. Time 1070. Time 200. Time 140. Time 820. Time 820. Time 880. Time 920. Time 920. Rate Heat Rate FF
- Option (Btu/s) Time Time 3S.92S Time Time Time Time o. Time Time Time Time j Time *,Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Heat Rate Disch FF Vol 6 3 ls368 ls3S2 ls304 ls288 ls366 ls3SO ls302 ls286 ls364 ls348 ls300 ls284 ls362 ls346 ls298 ls282 ls329 ls297 ls281 ls327 ls29S ls360 ls344 ls326 ls294 ls279 ls3S7 ls341 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 114 of 303 ENERCON CALCULATION CONTROL Attachment 1 31Q Time 1140. Time ls293 32Q Time 1140. Time ls277 33Q Time 770. Time ls355 34Q Time 770. Time ls339 35Q Time 1385. Time ls291 36Q Time 1385. Time ls275 37Q Time 770. Time ls353 38Q Time 770. Time ls337 39Q Time 1385. Time ls289 40Q Time 1385. Time ls273 41Q Time 9500. Time 3 42Q Time 9500. Time 3 43Q Time 7600. Time 3 44Q Time 7600. Time 3 45Q Time 2000. Time 6 ) Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vol Pressure Temp. Temp. Humidity Volume Comp. # (psi a) (F) F (%) Fract. Fract. def 14.7 81. 81. 20. 0. 0. ls 14.7 75. 75. 20. 0. 0. 2s 14.7 81. 81. 20. 0. 0. Initial Volume Fractions Vol Air Liq # Gas 1 Gas 2 Gas 3 Gas 4 Gas 5 Gas 6 Gas 7 Comp def 1. 0. 0. 0. b. 0. 0. 0. ls 1. 0. 0. 0. 0. .o. 0. 0. 2s 1. 0. 0. 0. 0. 0. 0. 0. Noncondensing Gases CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 115 of 303
- Gas Description Symbol Type Mol. Lennard-Jones Parameters No. Weight Diameter e/K (Ang) (K) 1 Air Air POLY 28.97 3.617 97. Noncondensing Gases -Cp/Visc.
Equations Gas Cp Equation (Required) Vise. Equation (Optional) No. Tmin Tmax Cp Tmin Tmax Viscosity (R) (R) (Btu/lbm-R) (R) (R) (lbm/ft-hr) 1 360. 2880. 0.238534-6.2006 Materials Type # Description 1 Steel 2 3 4 5 Concrete air Gypsum Board Hardboard Material Type 1 Steel Temp. (F) 80. Density (lbm/ft3) 484. Material Type 2 Gap NO NO NO NO NO Cond. Sp. Heat (Btu/hr-ft-F) (Btu/lbm-F)
- 21. 0.116 CALC. NO. ENTR-078-CALC-004 ENER CALCULATION CONTROL SHEET-REV. O Attachm'ent 1 Concrete Temp. Density Cond. Sp. Heat (F) *(lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F)
- 80. 131.5 0 .,64 0.21 Material Type 3 air Temp. Density Cond. Sp. Heat (F) (lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F)
- 60. 0.07633 0.01433 0.2404 80. 0.0735 0.01481 0.2404 100. 0.0709 0.01529 0.2405 150. 0.06507 0.01646 0.2406 300. 0.0522 0.01985 0.2423 Material Type 4 Gypsum Board Temp. Density Cond. Sp. Heat (F) (lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F) 100. 18. 0.029 0.19 Material Type 5 Hardboard Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F) 100 .. 55. 0.068 0,32 Component Trips Trip # 1 Sense Sensor Sensor Var. Set Description Var. 1 Loe. 2 Loe. Limit Point HVC-ACUl on TIME UPPER 3600. Forcing Function Tables FF# Description Ind. Var. Dep. Var. Points 0 Constant 0 lT DC Equipment Ro Ind. Var. Dep. Var. 4320 2T Sol-Air Roof Ind. Var. Dep. Var. 25 3T Lighting HL Ind. Var. Dep. Var. 2 4T HVC-ACUl cv6C Dep. Var. 14 ST RH cv6C Dep. Var. 9 6T Outside Temp Ind. Var. 1Dep. Var. 22 7T Initial Panels Ind. Var. Dep. Var. 4 BT Operators Ind. Var. Dep. Var. 2 Function lT DC Equipment Room lA ', Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 87. 0.001 87.00038 0.00201921 87.0007 20.32555 90.35686 42.22733 92.2407 67.02823 93.73955 93.45625 94.96387 120.9645 95.973 140.9645 96.59493 160.9645 97.14751 180.9645 97.64407 200.9645 98.0937 220. 9645 98.50375 240.9645 98.87981 Delay Time 0. PAGE NO. 116 of 303 Rset Cond Cond Trip Trip Type . AND C\ CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV.O Attachment 1 " f.xrcJitna-Evtty f.wq day. PAGE NO. 117 of 303, 99.22573 280.9645 99.54478 300.9645 99.84009 320.9645 100 .1145 340 .'9645 100.3705 360.9645 100.6103 380. 9645 100.8357 400.9645 101.0482 420.9645 101.2492 440. 9645 101.4396 460.9645 101.6204 48.0. 9645 101.7923 500.9645 101.9562 520.9645 102.1124 540.9645 102,2616 560.9645 102.4042 580.9645 102.5406 ' 600. 9645 102.6713 620.9645 102.7966 640.9645 102.9168 660:9645 103.0323 680.9645 103 .1433 700.9645 103.2502 720.9645 103.3531 740.9645 103.4073 760.9645 103.4745 7801. 9645 103.5492 800.9645 103.6276 820.9645 103.7074 840.9645 103. 7871 860.9645' 103.866 880.9645 103.9436 900.9645 104.0198 920.9645 104.0943 940.9645 104.1673 960.9645 104.2388 980.9645 104.3087 1000.965 104.3773 1020.965 i04.4445 1040.964 104.5105 1060.964 104.5753* 1080.964 104.6391 1100. 964 104.7018 1120.964 104.7635 1140.964 104.8244 1160.964 104.8844 1180.964 104.9436 1200.964 105.0021 1220.964 105.0598 1240.964 105.117 1260.964 105.1734 1280.964 105.2293 1300. 964 105.2847 1320.964 105.3395 1340.964 105.3938 1360.964 105.4477 1380.964 105.5011 1400. 964 105.554 1420.964 105.6065 1440. 964 105.6587 1460.964 105.7104 1480. 964 105.7618 1500.964 105.8128 1520.964 105.8634 1540.964 105.9138 1560.964 105.9638 1580.964 106.0135 1600. 964 106.0629 1620.964 106 .112 1640.964 106.1608 1660.964 106.2093 1680. 964 106.2575 1700.964 106.3055 1720.964 106.3532 1740.964 106.4006 1760.964 106.4478 1780.964 106.4947 1800.964 106.5414 1820.964 106.5879 1840. 964 106.6341 1860.964 106.68 1880.964 106.7258 1900. 964 106.7713 1920.964 106. 81.66 1940.964 106.8616 1960.964 106.9064 1980.964 106.9511 2000.964 106.9955 2020.964 107.0396 2040.964 107.0836 2060.965 107.1274 2080. 965 107.1709 21*00. 965 1'07 .2143 2120.965 107.2574 2140.965 107.3004 2160. 965 107.3431 2180.965 107.3857 2200.965 107.428 2220.965 107.4702 2240.965 107.5121 2260.965 107.5539 2280.965 107.5955 2300.965 107.6368 2320.965 107.678 2340.965 107. 719 2360.965 107.7599 2380.965 107.8005 2400.965 107.8409 2420.965 107.8812 2440.965 107.9213 2460.965 107.9612 2480.965 108.0009 2500. 965 108.0405 2520.965 108.0799 2540. 965 108 .1191 2560.965 108.1581 2580.965 108.197 2600.965 108.2357 2620.965 108.2742 2640.965 108.3125 I CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 rxu:Jff!ntf,-£vety f.wryday. Attachment 1 PAGE NO. 118 of 303 2660.965 108.3507 2680.965 108.3887 2700.965 108.4266 212*0. 965 108.4642 2740.965 108.5017 2760.965 108.5391 2780.965 108.5763 2800.965 108.6133 \ 2820*. 965 108.6502 2840.965 108.6869 2860.965 108.7234 2880.965 108.7598 2900.965 108.7961 2920.965 108.8321 2940.965 108.868 2960.965 108.9038 2980.965 108.9394 3000.965 108.9749 3020.965 109.0102 13040.965
- 109.0454 3060.965 109.0804 3080.965 109 .1153 3100.965 109.15 3120.965 109.1845 3140.965 109.219 3160. 965 109.2533 3180.965 109.2874 3200.965 109.3214 3220.965 109.3552 3240.965 109.3889 3260.965 109.4225 3280.965 109.4559 3300.965 109.4892 3320.965 109.5224 3340.965 109.5554 3360.965 109.5883 3380.965 109.621 3400.965 109.6536 3420.965 109.6861 3440.965 109. 7184 3460.965 109.7506 3480.965 109.7827 3500.965 109.8146 3520.965 109.8464 3540.965 109.8781 3560.965 109.9096 3580.965 109.941 3600.965 109.9723 3622.914 110.0054 3643.743 110.0373 3669.863 110.0777 3692.669 110 .1131 3721.841 110.1582 3741.841 110 .1889 3761.841 110.2193 3781. 841 110.f!495 3801.841 110.2796 3821. 841 110. 3096 3841. 841 110.3394 3861.841 110. 3691 3881.841 110.3987 3901.841 3921.841 110.4575 3941. 841 110.4867 3961.841 110.5158 3981. 841 110.5448 4001. 841 110.5737 4021. 841 110. 6024 4041. 841 110. 6311 4061. 841 110. 6596 4081.841 110.688 4101. 84 110. 7163 4121.84 110.7445 4141.84 110.7726 4161.84 110.8006 4181. 84 110. 8284 4201. 84 110.8562 4221. 84 110.8839 4241.84 110. 9114 4261. 84 110.9388 4281.84 110.9662 4301.84 1.10.9934 4321.84 111.0205 4341. 84 111.0475 4361. 84 111. 0744 4381. 84 111.1012 4401. 84 111.128 4421.84 111.1546 4441.84 111.1811 4461. 84 111.2075 4481.84 111.2338 4501. 84 111. 26 4521.84 111.2861 4541.84 111.3121 4561.84 111.338 4581.84 111.3638 4601. 84 111.3895 4621. 84 111.4151 4641. 84 111.4406 4661. 84 111.466 4681.84 111.4914 4701.84 111. 5166 4721.84 111.5417 4741. 84 111. 5668 4761. 84 111.5917 4781.84 111. 6166 ,4801.84 111.6413 4821.*84 111. 666 4841.84 111. 6906 4861. 84 111. 7151 4881.84 111.7395 4901. 84 111. 7638 4921.84 111. 788 4941. 84 111. 8122 4961.84 111.8362 4981.84 111.8602 5001.84 111. 884 5021. 84 111. 9078 5041. 84 111. 9315 5061.84 111. 9551 CALC. NO. ENTR-078-CALC-004 NER ON CALCULATION CONTROL SHEET-REV. 0 f.wth!t1c;;:N-£i1ttyptt;:}t:<t t.fay. Attachment 1 PAGE NO. 119 of 303 5081.84 111. 9786 5101. 84 112. 0021 5121.84 112. 0254 5141.84 112. 0487 5161.84 112. 0719 5181.84 112. 095 5201.84 112 .118 5221.84 112 .141 5241.84 112.1638 5261. 84 112.1866 5281.84 112.2093 5301.84 112.2319 5321.84 112.2544 5341!. 84 112'.2769 5361. 84 112.2992 5381.84 112.3215 5401. 84 112.3437 5421. 84 112.3659 5441.84 112.3879 5461. 84 112.4099 5481.84 112.4318 5501.84 112.4536 5521.84 112 .4754 5541. 84 112 .4971 5561.84 112. 5187 5581. 84-112.5402 5601.84 112.5616 5621.84 112. 583 5641.84 112. 6043 5661. 84 112. 6255 5681. 84 112. 6467 5701. 84 112 .6677 5721.81' 112.6888 5741.84 112.7097 5761.84 112. 7305 5781. 84 112. 7513 5801.84 112. 7721 5821. 84 112.7927 5841. 84 112. 8133 5861.84 112.8338 5881. 84,: 112.8542 5901 .. 84 112.8746 5921.84 112. 8949 5941. 84 112.9151 5961.84 112. 9353 5981. 84 112.9554 6001. 84 112.9754 6021. 84 112.9954 6041.84 113.0153 6061. 84 113. 0351 6081.84 113.0549 GlOl.84 113.0745 6121.84 113. 0942 6141.84 113 .*V37 6161.84 113 .1332 6181.84 113.1527 6201. 84 113.172 6221.84 113.1914 6241.84 113.2106 6261. 84 113. 2298 6281. 84 113.2489 6301.84 113.2679 6321.84 113.2869 6341.84 113.3059 6361.84 113 .3247 6381.'84 113.3435 6401.84 113.3623 6421.84 113.381 6441.84 113.3996 6461. 84 113.4182 6481.84 113.4367 6501. 84 113.4551 6521.84 113 .4735 6541. 84 113.4918 6561.84 113.5101 6581.84 113.5283 6601. 84 113.5464 6621. 84 113.5645 6641. 84 113. 5826 6661.84 113.6005 6681. 84 113.6185 6701. 84 113. 6363 6721.84 113. 6541 6741. 84 113. 6719 6761.84 113. 6896 6781.84 113. 7072 6801.84 113. 7248 6821. 84 113.7423 6841. 84 113. 7598 6861.84 113.7772 6881.84 113. 7946 v 6901. 84 113. 8119 6921.84 113.8291 6941 :84 113. 8464 6961.84 113. 8635 6981. 84 113.8806 7001.84 113.8976 7021. 84 113.9146 7041,84 113. 9316 7061. 84 113. 9485 7081.84 113. 9653 7101. 84 113.9821 7121. 84 113. 9988 7141.84 114. 0'155 7161. 84 114. 0321 7181. 84 114. 0487 7201. 84 114. 0652 7221. 84 114.0817 7241. 84 114.0982 7261.84 114 .1145 7281. 84 114.1309 7301.84 114 .1472 7321.84 114.1634 7341. 84 114.1796 7361.84 114.1957 7381.84 114.2118 7401.84 114.2279 7421. 84 114.2438 7441. 84 114.2598 7461. 84 114.2757
/ CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV.O Attachment 1 PAGE NO. 120 of 303 7481.84 114.2915 7501. 84 114.3074 7521. 84 114.3231 7541. 84 114. 3388 7561. 84 114.3545 7581. 84 114.3701 7601. 84 114.3857 7621.84 1:1,.4.40:1,.2 7641.84 114.4167 7661. 84 114.4321 76.81. 84 114.4475 7701. 84 114.4629 7721.84 114.4782 7741. 84 114.4935 7761.84 114. 5087 7781. 84 114.5238 7801. 84 114. 539 7821.84 114. 5541 7841. 84 114. 5691 7861.84 114. 5841 7881.84 114.5991 7901. 84 114. 614 7921.84 114.6289 7941. 84 114.6437 7961.84 114.6585 7981.84 114.6732 8001.84 114.688 8021. 84 114.7026 8041. 84 114. 7172 8061. 84 114 .. 7318 8081. 84 114. 7464 8101. 84 114. 7609 8121.84 114. 7753 8141. 84 114.7898 8161.84 114. 8041 8181.84 114.8185 82.01. 841 114. 8328 8221. 841 114. 847 8241.841 114.8613 8261.841 114. 8755 8281. 841 114.8896 8301. 841 114. 9037 8321. 841 114.9178 8341.841 114. 9318 8361. 841 114.9458 8381.841 J 8401.841 114.9737 8421.841 8441.841 115.0014 8461.841 115. 0152 8481.841 115. 029 8501. 841 115. 0427 8521.841 115. 0564 8541.841 115. 0701 8561.841 115. 0837 8581. 841 115. 0973 8601.841 115 .1108 8621.841 115 .1243 8641. 841 115.1378 8661. 841 115.1512 8681. 841 115 .1646 8701.841 115.178 8721. 841 115 .1913 8741. 841 115.2046 8761. 841 115.2179 8781. 841 115.2311 8801. 841 115. 2443 8821.841 115.2575 8841. 841 115. 2706 8861.841 115.2837 8881.841 115.2968 8901.841 115.3098 ) 8921. 841 115.3228 8941.841 115.3358 8961.841 115.3487 8981.841 115. 3616 9001.841 9021. 841 115.3873 9041. 841 115.4001 9061.841 115 .4128 9081. 841 115.4256 9101. 841 115 .4383 9121.841 115.4509 9141. 841 115 .4636 9161.841 115 .4762 9181.841 115 .4887 9201. 841 115.5013 9221. 841 115. 5138 9241.841 115.5263 .9261. 841 115. 5387 9281.841 115 .5511 9301.841 115.5635 9321.841 115.5758 9341.841 115. 5882 9361. 841 115.6005 9381. 841 115.6127 9401. 841 115. 625 9421.841 115.6372 9441.841 115. 6493 9461.841 115.6615 9481. 841 115. 6736 9501. 841 115.6857 9521. 841 115.6977 9541.841 115. 7097 9561.841 115.7217 9581. 841 115. 7337 9601.841 115.7457 9621. 841 115.7576 954*1. 841 115.7694 9661.841 115. 7813 9681.841 115.7931 9701. 841 115. 8049 9721.841 115. 8167 9741. 841 115. 8284 9761.841 115. 8401 9781.841 115. 8518 9801. 841 115. 8635 9821.841 115. 8751 9841.841 115. 8867 115. 8983 I CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O Attachment 1 PAGE NO. 121 of 303 9881.841 115.9098 990:)..841 115. 9214 9921.841 115.9328 9941.841 115. 9443 9961.841 115.9558 9981.841 115. 9672 10001. 84 115.9786 10021'.94 115.9899 10041.84 116.0013 10061.84 116.0126 10081.84 116. 0238 10101.84 116. 0351 10121.84 116. 0463 10141.84 116.0575 10161.84 116.0687 10181. 84 116.0799 10201.84 116. 091 10221.84 116.1021 10241.84 116 .1132 10261. 84 116.1243 10281.84 116 .1353 10301.84 116.1463 10321.84 116.1573 10341. 84 116.1682 10361.84 116 .1/92 ,10381. 84 116.1901 10401.84 116.201 10421.84 116 .2118 10441.84 116.2227 10461.84 116.2335 10481.84 116.2443 10501. 84 116.255 10521.84 116.2658 10541. 84. 116.2765 10561.84 116 .2872 10581. 84 116.2979 10601.84 116.3085 10621. 84 116.3191 10641.84 116 .3297 10661. 84 116.3403 10681.84 116.3509 10701.84 116.3614 10721.84 116.3719 10741. 84 1.16.3824 10761.84 116. 3929 10781.84 116.4033 10801.84 116 .4138 10821. 84 116.4242 10841.84 116 .4345 10861.84 116.4449 10881.84 116 .4552 10901.84 116.4655 10921.84 116 .4758 10941.84 116.4861 10961.84 116 .4964 10981. 84 116. 5066 11001.84 116.5168 11021. 84 116. 527 *" 11041. 84 116.5371 11061.84 116. 5473 11081. 84 116. 5574 11101. 84 116. 5675 11121. 84 116.5776 11141. 84 116. 5876 11161. 84 116.5977 11181. 84 116.6077 11201. 84 116.6177 11221. 84 116. 6277 11241. 84 116.6376 11261. 84 116. 6476 11281.84 116.6575 11301. 84 116. 6674 11321. 84 116.6773 11341. 84 116. 6871 11361.84 116. 697 11381. 84 116. 7068 11401.84 116. 7166 11421.84 116. 7264 11441.84 116.7361 11461. 84 116. 7459 11481. 84 116.7556 11501. 84 116.7653 11521. 84 116. 775 11541. 84 116.7847 11561.84 116. 7943 11581. 84 116.8039 11601.84 116.8135 11621. 84 116.8231 11641.84 116.8327 11661. 84 116.8423 11681. 84 116.8518 11701. 84 116.8613 11721.84 116.8708 11741. 84 116.8803 11761.84 116.8898 11781. 84 116.8992 11801. 84 116.9086 11821. 84 116.918 11841.84 116. 9274 11861. 84 116.9368 11881. 84 116.9462 11901. 84 116.9555 11921. 84 116. 9648 11941. 84 116.9741 11961. 84 116. 9834 11981. 84 116.9927 12001.84 117.0019 12021.84 117. 0111 _/ 12041.84 117.0204 12061.84 117. 0296 12081. 84 117.0387 12101.84 117.0479 12121.84 117. 0571 12141.84 117.0662 12161.84 117. 0753 12181.84 117.0844 12201.84 117.0935 12221.84 117.1025 12241.84 117.1116 12261. 84 .117.1206 EN RCON CALCULATION CONTROL Attachment 1 12281.84 117.1296 12301.84 117.1386 12321. 84 117.1476 12341.84 117.1566 12361. 84 117.1656 12381.84 117.1745 12401.84 117.1834 12421. 84 117.1923 12441.84 117.2012 12461. 84 117.2101 12481.84 117.2189 12501. 84 117.2278 12521.84 117.2366 12541. 84 117.2454 12561.84 117.2542 12581.84 117 .263 12601.84 117.2717 12621.84 117 .2805 12641.84 117.2892 12661. 84 117.2979 12681.84 117. 3066 12701.84 117.3153 12721. 84 117.324 12741. 84 117.3327 12761. 84 117.3413 12781.84 117.3499 12801. 84 117 .3586 12821.84 117.3672 12841.84 117.3757 12861. 84 117.3843 12881.84 117.3929 12901.84 117.4014 12921.84 117.4099 12941. 84 117.4184 12961.84 117.4269 12981. 84 117 .4354 13001.84 117.4439 13021. 84 117.4524 13041.84 117.4608 13061. 84 117.4692 13081.84 117.4777 13101. 84 117.4861 13121.84 117.4944 13141. 84 117.5028 13161.-84 117 .5112 13181. 84 117.5195 13201.84 117.5279 13221.84 117.5362 13241. 84 117 .5445 13261. 84 117.5528 13281.84 117 .5611 13301. 84 117.5693 13321.84 117.5776 13341.84 117.5858 13361. 84 117.594 13381. 84 117.6022 13401.84 117. 6105 13421.84 117. 6186 13441.84 117.6268 13461.84 117.635 13481. 84 1:h. 6431 13501.84 117.6513 13521. 84 ,117.6594 13541. 84 117.6675 13561.84 117.6756 13581.84 117.6837 13601.84 117.6917 13621.84 117 .,6998 13641.84 117.7078 13661.84 117.7159 13681.84 117.7239 13701.84 117. 7319 13721. 84 117.7399 13741. 84 117.7479 13761.84 117.7559 13781.84 117.7638 13801.84 117.7718 13821.84 117 .7797 13841.84 117.7877 13861.84 117.7956 13881.84* 117.8035 13901. 84 117.8114 13921.84 117 .. 8192 13941. 84 117.8271 13961.84 '117.835 13981.84 117.8428 14001.84 117.8506 14021.84 117.8584 14041.84 117.8663 14061. 84 117.8741 14081.84 117.8818 14101.84 117.8896 14121.84 117.8974 14141. 84 117.9051 14.161. 84 117.9129 14181. 84 117.9206 14201.84 117.9283 14221.84 J,17.936 14241.84 117 .9437 14261. 84 117. 9514 14281.84 117.9591 14301.84 118.0034 14321.84 118.0351 14341.84 118.0585 14361.84 118. 0765 14381.84 118. 0911 14401.84 118.1033 14423.79 118 .1139 14444.62 118 .1204 14470.74 118 .1124 14493.55 118. 0415 14522.72 117. 9446 14542.72 117. 895 14562.72 117.8595 14582.72 117.8355 14602.72 117.8201 14622.72 117. 8111 14642.72 117.8066 14662.72 117.8054 14682.72 117.8067 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 122 of 303 /' 14702.72 14742.72 14782.72 14822.72 14862. 72 14902.72 14942.72
14982.72 15022.72 15062.72 15102.72 15142.72 15182.72 15222.72 15262. 72 15302. 72 15342.72 15382. 72 15422.72 15462.72 15502.72 15542.72 15582.72 15622. 72 15662. 72 15702. 72 15742.72 15782.72
15822.72 15862. 72 15902'. 72 15942. 72 15982. 72 16022.72 16062.72 '16102. 72 16142.72 16182.72 16222.72
16262.72 16302 .. 72 16342. 72 16382.72 16422. 72 16462.72 16502.72 16542.72 16582.72 16622.72 16662.72 16702.72
16742.72
16782.72 16822.72 16862.72 16902.72 16942.72 16982.72 17022.72 17062.72 NERCO 117.8098 117.8195 117.8323 117.8466 117. 8616 117.877 117.8923 117.9075 117.9225 117.9372 117. 9517 117. 966 117. 9801 117.9939 118.0076 118. 0211 118. 0345 118.0478 118.061 118. 074 118.087 118.0998 118 .1126 118.1254 118.138 118.1506 118.1632 118.1881 118.2005 118.2128 118.2252 118.2374 113;2497 118.2619 118.274 118.2862 118. 2982 CALCULATION CONTROL Attachment 1 14722.72 117.8142 14762.72 117. 8256 14802. 72 . 117. 8393 14842.72 117. 8541 14882 ,.72 117.8693 14922. 72 117. 8846 1:1962.72 117.8999 15002. 72 117. 915 15042.72 117.9299 15082.72 117. 9445 15122.72 117. 9589 15162.72 117. 973 15202.72 117.987 15242.72 118. 0008 15282. 72 118.0144 15322.72 118. 0279 15362. 72 118. 0412 15402.72 118.0544 15442.72 --'.118. 0675 15482.72 118. 0805 15522.72 118. 0934 15562.72 118 .1062 15602. 72 118 .119 15642.72 .118.1317 15682.72 118 .1443 15722.72 118.1569 15762.72 118 .1694 15802.72 118.1819 15842.72 118.1943 15882.72 118.2067 15922.72 118 .219 15962.72 118.2313 16002.72 118.2436 16042.72 118 .2558 16082.72 118.2679 16122.72
- 118.2801 16162.72 118 .2922 162102. 72 118. 3043 118.3103
' 16:;?42. 72 118.3163 118.3223 16282. 72 118.3284 118.3344 16322. 72 118 .3403 118.3463 16362.72 118.3523 118.3583 16402.72 118. 3642 118.3702 16442.72 118.3761 118.3821 16482.72 118. 388 118.3939 16522.72 118. 3999 118.4058 16562.72 118.4117 118.4176 16602.72 118.4235 118 .4294 16642.72 118 .4352 118.4411 16682 .. 72 118.447 118.4529 16722. 72 118 .4587 118.4646 16762.72 118 .4704 118.4762 1680'2. 72 118 .4821 118.4879 16842.72 118 .4931 118 .4995 16882.72 118 .. 5053 118 .5111 16922.72 118.5169 118.5227 16962'. 72 118.5285 118.5343 17002.72 118.5401 118\5458 17042.72 118 .5516 118.5573 17082.72 118. 5631 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 123 of 303 17102.72 17142. 72 17182.72 17222. 72 17262.72 17302.72 17342.72 17382.72 17422.72 17462.72 17502.72 17542.72 17582.72 17622.72 17662.72
17702.72 17742.72
17782.72 17822.72 17862.72 17902.72 17942. 72 17982.72 18022.72 18062.72 18102. 72 18142.72 18182.72 18222,72 18262.72 18302. 72 *18342. 72 18382. 72 18422.72 18462.72 18502.72
18542.72 18582.72 18622.72 18662.72 18702.72 18742.72 18782.72 18822.72 18862.72 18902. 72 18942.72 18982. 72. 19022.72 19062.72 19102. 72 19142. 72 19182.72 19222. 72 19262. 72 19302. 72 19342. 72 19382.72 19422.72 19462.72 J N RCON CALCULATION CONTROL Attachment 1 118. 5688 17122. 72 118.5746 118.5803 17162. 72 118.586 118.5918 17202.72 118.5975 118. 6032 17242.72 118. 6089 118.6146 17282.72 1118. 6203 118'.626 17322.72 118.6317 118.6373 17362.72 118 .,643 118.6487 17402.72 118. 6544 118. 66 17442.72 118.6657 118.6713 17482.72 118. 677 118.6826 17522.72 118.6882 118.6938 17562.72 118. 6995 118.7051 17602.72 118. 7107 118. 7163 17642. 72 118. 7219 118. 7'275 17682.72 118. 7331 118.7387 i7722.72 118. 7443 118.7498 17762.72 il8. 7554 118. 761' 17802.72 118. 7665 118. 7721 17842.72 118.7777 118. 7832 17882.72 118. 7887 118. 7943 17922.72 118. 7998 118.8053 17962.72 118. 8109 118.8164 18002.72 118. 8219 118.8274 18042.72 118. !)329 118.8384 18082.72 118.8439 118.8494 18122.72 118. 8549 118. 8604 18162.72 118. 8659 118 .8713 18202.72 118,8768 118.8823 18242.72 118. 8877 118.8932 18282.72 118. 8986 118. 9041 18322. 72 118. 9095 118. 9149 18362.72 118. 9204 118.9258 18402.72 118. 9312 118.9367 18442.72 118. 9421 118.9475 18482.72 118.9529 118.9583 18522.72 118.9637 118.9691 18562.72 118.9745 118.9799 18602.72 118. 9852 118.9906 18642. 72 118. 996 119 .0014 18682.72 119. 0067 119 .0121 18722.72 119. 0174 119. 0228 18762.72 119. 0281 119. 0335 18802.72 119.0388 119.0442 18842.72 119. 0495 119. 0548 18882. 72 119. 0601 119.0655 18922.72 119. 0708 119. 0761 18962.72 119.0814 119.0867 19002.72 119. 092 119. 0973 ' 19042. 72 119.1026 119 .1079 19082.72 11.9.1132 119 .1184 19122.72 119 .1237 119.129 19162.72 119 .1343 119.1395 19202.72 1119 .1448 119.1501 19242.72 1.19.1553 119.1606 19282.72 119' 1658 119 .171 19322.72 119.1763 119 .1815 19362.72 119 .1868 119.192 19402.72 119.1972 119.2024 19442.72 119.2076 119.2129 19482.72 119. 2181 CALC. NO. ENTR-078-CALC-004 REV.a ' PAGE NO. 124 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxtf!HenC{S.-fvNyptt;J<<t. f.wryffa,: Attachment 1 PAGE NO. 125 of 303 19502.72 119.2233 19522. 72 119.2285 19542.72 119 .2337 19562. 72 119.2389 19582. 72 119 .2441 19602. 72 119.2493 19622.72 119 .2544 19642. 72 119.2596 19662.72 119.2648 19682.72 119.27 19702.72 119. 2751 19722.72 119.2803 19742.72 119. 2855 19762. 72 119. 2906 19782.72 119.2958 19802.72 119.3009 19822.72 119 .3061 19842.72 119.3112 19862.72 119.3164 19882. 72 119.3215 19902.72 119 .3267 19922. 72 119.3318 19942.72 119 .3369 19962. 72 119.342 19982.72 119. 3472 20002. 72 119. 3523 20022.72 119. 3574 20042.72 119.3625 20062.72 119. 3676 20082. 72 119.3727 20102.72 119. 3778 20122.72 119.3829 20142.72 119.388 20162. 72 119.3931 r-20182. 72 119.3982 20202.72 119 .4033 20222.72 119.4084 20242.72 119.4135 20262. 72 119.41,86 20282.72 119.4236 20302.72 119.4287 20322.72 119 .4338 20342.72 119.4388 20362.72 119.4439 20382.72 119 .449 20402.72 119.454 20422.72 119 .4591 20442.72 119.4641 20462.72-119 .4692 20482.72 119.4742 20502.72 119 .4792 20522.72 119.4843 20542.72 119.4893 20562. 72 119.4943 20582.72 119.4994 20602. 72 119.5044 20622. 72 119. 5094 20642. 72 119.5144 20662.72 119. 5195 20682. 72 119.5245 20702.72 119.5295 20722.72 119.5345 20742.72 119.5395 20762.72 119.5445 20782.72 119.5495 20802.72 119.5545 20822. 72 119. 5595 20842.72 119.5645 20862. 72 119. 5695 20882.72 119.5744 20902.72 119. 5794 20922. 72 119.5844 20942.72 119. 5894 20962. 72 119 .5944 20982.72 119. 5993 I 21002.72 119. 6043 21022.72 119. 6093 21042. 72 119. 6142 21062.72 119. 6192 21082. 72 119. 6241 21102. 72 119. 6291 21122. 72 119. 634 21142. 72 119.639 21162. 72 119. 6439 21182. 72 119. 6489 21202.72 119. 6538 21222.72 119. 6587 21242.72 119.6637 21262.72 119. 6686 21282.72 119.6735 21302.72 119. 6785 21322. 72 119.6834 21342.72 119. 6883 21362.72 119.6932 21382.72 119. 6981 21402.72 119.703 21422.72 119.708 21442.72 119. 7129 21462.72 119.7178 21482.72 119.7227 21502.72 119. 7276 21522. 72 119. 7325 21542.72 119. 7374 21562. 72 119.7423 21582.72 119. 7471 21602. 72 119. 752 21622.72 119. 7569 21642.72 119.7618 21662.72 119. 7667 21682.72 119. 7716 21702.72 119. 7764 2,1722. 72 119. 7813 21742.72 119. 7862 21762.72 119. 791 21782.72 119. 7959 21802.72 119. 8008 21822.72 119.8056 21842.72 119. 8105 21862.72 119. 8153 21882.72 119. 8202 ( CALC. NO. E ER ON CALCULATION CONTROL SHEET-REV.O ptOJ<<<'.l f.vt?tyday. Attachment 1 PAGE NO. 126 of 303 21902.72 119. 825 21922.72 119. 8299 21942.72 119. 8347 21962. 72 119.8396 21982.72 119 .8444 22002. 72 119.8492 22022.72 119. 8541 22042. 72 119.8589 22062.72 119.8637 22082.72 119.8686 22102.72 119.8734 22122.72 119.8782 22142.72 119.883 22162. 72 119.8878 22182.72 119.8926 22202. 72 119.8975 22222.72 119.9023 22242. 72 119 .9071 22262.72 119 .9119 22282.72 119.9167 22302.72 119. 9215 22322.72 --119. 9263 \ \ 22342.72 119 .9311 22362.72 119.9359 22382.72 119. 9407 22402.72 119. 9455 22422.72 119. 9502 22442.72 119. 955 22462.72 119. 9598 22482.72 119.9646 22502.72 119. 9694 22522.72 119. 9741 22542.72 119. 9789 22562.72 119.9837 22582.72 119 .'9885., 22602.72 .9932 22622.72 119. 998 22642.72 120.0028 ' 22662. 72 120.0075 22682.72 120.0123 22702.72 120.017 22722.72 120.0218 22742.72 120.0265 22762. 72 120.0313 22782.72 120.036 22802.72 120.0408 22822.72 120.0455 22842. 72 120.0503 22862.72 120.055 22882.72 120.0597 22902.72 120.0645 22922.72 120.0692 22942.72 120.0739 22962. 72 120.0787 22982.72 120.0834 23002.72 120.0881 23022.72 120.0928 23042.72 120.0975 23062.72 120.1023 23082.72 120.107 23102. 72 120.1117 23122. 72 120 .1164 23142.72 \120 .1211 23162. 72 120.1258 23182.72 120.1305 23202. 72 120.1352 23222.72 120.1399 23242.72 120.1446 23262.72 120.1493 23282.72 120.154 23302.72 120.1587 23322.72 120.1634 23342.72 120 .. 1681 23362.72 120.1728 23382.72 120.1775 23402.72 120.1821 23422.72 120.1868 23442.72 120.1915 23462.72 120.1962 23482. 72 120.2008 23502.72 120.2055 23522.72 120.2102 23542.72 120.2149 2356.2. 72 120.2195 23582.72 120.2242 23602.72 120.2289 23622.72 120.2335 23642. 7,2 120.2382 23662.72 120.2428 23682. 72 120.2475 23702. 72 120.2521 23722.72 120.2568 23742.72 120.2614 23762.72 120.2661 23782.72 120.2707 23802.72 120.2754 23822.72 120.28 23842.72 120.2847 23862.72 120.2893 23882.72 120.2939 ) 23902.72 120.2986 23922.72 120.3032 23942.72 120.3078 23962.72 12.0.3125 23982.72 120.3171 24002.72 120.3217 24022:12 120.3263 24042.72 120.3309 24062.72 120.3356 24082.72 120.3402 24102.72 120.3448 24122.72 120.3494 24142.72 i20.354 24162.72 120.3586 24182.72 120.3632 24202.72 120.3678 24222.72 120.3725 24242.72 120 .3771 24262.72 120.3817 24282. 72 120.3863 CALC. NO. ENTR-078-CALC-004 NERCON CALCULATION CONTROL SHEET-REV. 0 r.xreli£111Cf-F.1:ttf'Jf}fO)f!<.t, F.wryriay. Attachment 1 PAGE NO. 127 of 303 24302.72 120.3908 24322. 72 120.3954 24342.72 120.4 24362.72 120.4046 f 24382.72 120.4092 24402. 72 120.4138 24422.72 120.4184 24442.72 120.423 24462.72 120.4276 24482.72 120.4321 24502.72 120.4367 24522.72 120.4413 24542.72 120.4459 24562.72 120.4504 24582.72 120.455 24602.72 120.4596 24622.72 120.4641 24642.72 120.4687 24662.72 120.4733 24682.72 120 .4778 24702.72 120.4824 24722.72 120.487 24742.72 120.4915 24762.72 120.4961 24782.72 120.5006 24802.72 120.5052 24822.72 120 .:5097 24842. 72 120.5143 24862.72 120.5188 24882.72 120.5234 24902.72 120.5279 24922.72 120.5324 24942.72 120.537 24962.72 120.5415 24982.72 120.5461 25002.72 120.5506 25022.72 120.5551 25042.72 120.5597 25062.72 120.5642 25082.72 120.5687 25102.72 120.5733 25122.72 120.5778 25142.72 120.5823 25162.72 120.5869 25182.72 120.5914 25202.72 120.596 25222.72 120. 6005 . 25242.72 120.605 25262.72 120.6096 25282.72 120.6141 25302.72 120.6186 25322.72 120.6232 25342.72 120.6277 25362.72 120.6322 25382.72 120.6367 25402.72 120.6413 25422.72 120.6458 25442.72 120.6503 25462.72 120.6548 25482.72 120.6594 25502.72 120.6639 25522.72 120.6684 25542.72 120. 6729 25562.72 120.6775 25582.72 120.682 25602.72 120.6865 25622.72 120.691 25642.72 120.6955 25662.72 120.7 25682.72' 120.7045 25702.72 120.7091 25722.72 120.7136 25742.72 120. 7181 25762.72 120.7226 25782.72 120. 7271 25802.72 120.7316 25822.72 120.7361 25842.72 120.7406 25862.72 120.7451 25882.72 120.7496 25902.72 120.7541 25922.72 120.7586 25942.72 120.7631 25962.72 120.7676 25982.72 120.7721 26002.72 120.7766 26022.72 120.781 26042.72 120.7855 26062.72 120.79 26082.72 120.7945 26102.72 120.799 26122.72 120.8035 26142.72 120.8079 26162.72 120.8124 26182.72 120.8169 26202.72 120.8214 26222.72 120.8258 26242.72 120.8303 26262.72 120.8348 26282.72 120.8392 26302.72 120.8437 26322.72 120.8482 26342.72 120.8526 26362.72 120. 8571 26382.72 120.8616 26402.72 120.866 26422.72 120.8705 26442.72 120.8749 26462.72 120.8794 26482.72 120.8839 26502.72 120.8883. 26522.72 120.8928 26542. 72 120.8972 26562.72 120.9017 26582.72 120.9061 26602.72 120.9106 26622.72 120.915 26642.72 120.9194 26662.72 120.9239 26682.72 120.9283 CALC. NO. ENTR-078-CALC-004 E.N RCON CALCULATION CONTROL SHEET-REV.O F.xfeHem:.(-f.vety ttO}&;t F.vt;q day Attachment 1 PAGE NO. 128 of 303 26702. 72 120.9328 26722.72 120.9372 26742.72 120.9417 26762.72 120.9461 26782.72 120.9505 26802.72 120.955 26822.72 120.9594 26842.72 120.9638 26862. 72 120. 9682 26882.72 120.9727 26902.72 120.9771 26922.72 120.9815 26942.72 120.986 26962.72 120.9904 26982.72 120.9948 27002.72 120.9992 27022.72 121. 0036 27042. 72 121.0081 27062.72 121.0125 27082.72 121.0169 27102. 72 121.0213 27122. 72 121.0257 27142. 72 121. 0301 27162. 72 121.0346 27182. 72 121.039 27202. 72 121.0434 27222. 72 121.0478 27242. 72 121.0522 27262.72 121.0!;;66 27282.72 121.061 27302.72 121.0654 27322. 72 121.0698 27342.72 121.0742 27362. 72 121.0786 27382.72 121.083 27402.72 121.0874 27422.72 121.0918 27442.72 121.0962 27462.72 121.1006 27482.72 121.105 27502.72 121.1094 27522. 72 121.1138 27542.72 121.1182 27562.72 121.1225 27582.72 121.1269 27602.72 121.1313 27622.72 121.1357 27642.72 121.1401 27662. 72 121.1445 27682.72 121.1489 27702. 72 121.1532 27722. 72' 121.1576 27742. 72 121.162 27762.72 121.1664 27782.72 121.1708 27802.72 121.1751 27822.72 121.1795 27842.72 121.1839 ' 27862.72 121.1882 27882. 72 121.1926 27902.72 121.197 27922.72 121.2014 27942.72 121. 2057 27962.72 121.2101 21982.72 121. 2145 28002. 72 121.218,8 28022.72 121. 2232 28042.72 121.2276 28062.72 121.2319 28082. 72 121.2363 28102.72 121.2406 28122. 72 121.245 28142.72 121. 2494 28162.72 121.2537 28182.72 121.2581 28202.72 121.2624 28222.72 121. 2668 28242. 72 121.2711 28262.72 121.2755 28282. 72 121.2798 28302.72 121.2842 28322.72 121.2885 28342.72 121.2929 28362. 72 121.2972 28382.72 121.3016 28402.72 121.3059 28422.72 121.3103 28442. 72 121.3146 28462°. 72 121. 319 28482.72 121.3233 28502.72 121.3276 28522.72 121.332 28542.72 121.3363 28562.72 121.3407 28582.72 121. 345 28602. 72 121.3493 28622. 72 121.3537 28642. 72 121.358 28662.72 121. 3623 28_682. 72 121.3667 28702.72 121.371 28722. 72 121.3753 28742. 72 121.3796 28762.72 121.384 28782.72 121.3883 28802.72 121.3926 28822. 72 121.3969 28842. 72 121.4013 28862.72 121.4056 28882.72 121.4099 28902.72 121.4142 28922.72 121.4186 28942.72 121.4229 28962.72 121.4272 28982.72 121.4315 29002.72 121.4358 29022.72 121.4401 29042.72 121.4445 29062.72 121.4488 29082.72 121.4531 ENERCON CALCULATION CONTROL Attachment 1 29102.72 121.4574 29122.72 121.4617 29142.72 121.466 29162.72 121.4703 29182.72 121.4746 29202. 72 121.4789 29222.72 121.4832 29242.72 121.4875 29262.72 121.4918 29282. 72 121.4961 29302.72 121.5004 29322.72 121. 5047 29342.72 121. 509 29362.72 121.5133 29382.72 121. 5176 29402.72 121.5219 29422.72 121.5262 29442.72 121.5305 29462.72 121.5348 29482.72 121.5391 29502.12 121. 5433 29522.72 121.5476 29542.72 121.5519 29562.72 121. 5562 29582.72 121.5605 29602.72 121.5648 29622. 72 121. 569 29642. 72 121. 5733 29662.72 121.5776 29682.72 121. 5819 29702. 72 121.5862 29722.72 121. 5904 29742.72 121.5947 29762.72 121. 599 29782.72 121.6033 29802.72 121.6076 29822. 72 121. 6118 29842.72 121.6161 29862.72 121.6204 29882.72 121.6246 29902.72 121.6289 29922.72 121. 6332 29942.72 121.6375 29962.72 121.6417 29982.72 121. 646 30002.72 121. 6503 30022.72 121. 6545 30042.72 121,6588 30062.72 121.6631 30082.72 121.6673 30102.72 121.6716 30122.72 121. 6758 30142. 72 121.61)01 30162.72 121. 6844 30182. 72 121.6886 30202.72 121. 6929 30222.72 121.6972 30242.72 121.7014 30262.72 121.7057 30282.72 121.7099 30302.72 121. 7142 30322.72 121. 7184 30342.72 121.7227 30362.72 121. 7269 30382.72 121.7312 30402.72 121.7354 30422.72 121.7397 30442.72 121.7439 30462.72 121.7482 30482.72 121.7524 30502.72 121.7567 30522.72 121.7609 30542.72 121.7652 30562.72 121.7694 30582.72 121,7737 30602.72 121.7779 30622.72 141. 7821 30642.72 121. 7864 30662.72 121.7906 30682.72 121.7949 30702.72 121.7991 30722.72 121.8033 30742.72 121. 8076 30762. 72 121. 8118 30782.72 121.816 30802.72 121. 8203 30822.72 121. 8245 30842.72 121. 8288 30862.72 121.833 30882. 72 121.8372 30902.72 121.8414 30922.72 121.8457 30942. 72 121.8499 30962.72 121. 8541 30982.72 121.8584 31002.72 121. 8626 31022.72 121.8668 31042.72 121. 871 31062. 72 121.8753 31082.72 121. 8795 31102. 72 121.8837 31122.72 121.8879 31142. 72 121.8922 31162.72 121. 8964 31182. 72 121.9006 31202.72 121.9048 . 31222. 72 121.909 31242.72 121. 9133 31262.72 121. 9175 31282.72 121. 9217 31302.72 121.9259 31322.72 121. 9301 31342. 72 121.9343 31362.72 121.9385 31382.72 121. 9428 31402.72 121. 947 31422.72 121.9512 31442.72 121. 9554 31462.72 121.9596 31482.72 121. 9638 CALC. NO. ENTR-078-CALC-004 REV.O RAGE NO. 129 of 303 :__ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptt;jf.<1, f.'l!?f';day. Attachment 1 PAGE NO. 130 of 303 31502.72 121.968 31522.72 121. 9722 31542.72 121.9764 31562.72 121.9806 31582'. 72 121.9848 31602.72 121.989 31622.72 121.9932 31642.72 121.9975 31662. 72 122.0017 31682. 72 '122. 0059 31702.72 122.0101 31722.72 122.0143 31742.72 122.0185 31762.72 122.0227 31782.72 122.0269 31802. 72 122. 0311 31822.72 122.0352 31842.72 122.0394 31862.72 122.0436 31882.72 122.0478 31902.72 122.052 31922.72 122.0562 31942.72 122.0604 31962. 72 122.0646 31982.72 122.0688 32002. 72 122.073 32022. 72 122. 0772 32042. 72 122.0814 32062. 72 122.0856 32082. 72 122.0897 ' \ 32102.72 122.0939 32122.72 122.0981 32142.72 122.1023 32162.72 122.1065 32182. 72 122.1107 32202. 72 122 .1149 32222.72 122 .119 32242.72 122.1232 32262.72 122.1274 32282.72 122.1316 32302.72 122.1358 32322. 72 122.1399 / 32342. 72 122.1441 32362.72 122.1483 32382. 72 122.1525 32402.72 122.1566 32422. 72 122.1608 32442.72 122.165 32462. 72 122.1692 32482. 72 122.1733 32502. 72 122.1775 32522. 72 122.1817 32542.72 122.1859 32562.72 122.19 32584.72 122.1942 32602.72 122.1984 32622.72 122.2025 32642.72 122.2067 32662.72 122.2109 32682.72 122.215 32702.72 122.2192 32722.72 122.2234 32742.72 122.2275 32762.72 122.2317 32782.71 122.2359 32802. 71 122.24 32822.71 122.2442 32842. 71 122.2484 32862. 71 122.2525 32882. 71 122.2567 32902. 71 122.2608 32922. 71 122.265 32942. 71 122.2692, 32962. 71 122.2733 32982.71 122.2775 33002. 71 122.28l6 33022.71 122.2858 33042. 71 122 .,289Q 33062. 71 122.2941 33082.71 122.2983 33102.71 122.3024 33122.71 122.3066 33142. 71 122.3107 33162.71 122. 3149 33182.71 122.319 33202.71 122.3232 33222.71 122.3273 33242; 71 122.3315 33262.71 122.3356 33282. 71 122.3398 33302.71 122.3439 33322. 71 122.3481 33342.71 122.3522 33362. 71 122.3564 33382.71 122.3605 33402.71 122.3646 33422.71 122.3688 33442. 71 122.3729 33462.71 122.3771 33482. 71 122.3812 33502.71 122.3854 33522. 71 122.3895 33542. 71 122.3936 33562. 71 122.3978 33582. 71 122.4019 33602.71 122.4061 33622.71 122.4102 33642. 71 122.4143 33662. 71 122.4185 33682. 71 122.4226 33702. 71 122.4267 33722. 71 122.4309 33742.71 122.435 33762. 71 122.4391 33782.71 122.4433 33802. 71 122.4474 33822.71 122.4515 33842. 71 122.4557 33862.71 122.4598 33882. 71 122.4639 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 Exttl!enCf!-fvety pfoject. £wry day. Attachment 1 PAGE NO. 131 of 303 33902. 71 122.4681 33922.71 122.4722 33942.71 122.4763 33962. 71 122.4804 33982. 71 122.4846 34002.71 122.4887 34022. 71 122.4928 34042.71 122.4969 34062.71 122.50ll 34082. 71 -122.5052 34102.71 122.5093 34122.71 122.5134 34142.71 122.5176 34162.71 122.5217 34182. 71 . 122.5258 34202.71 122.5299 34222.71 122.534 34242. 71 122.5382 34262.71 122.5423 34282. 71 122.5464 34302.71 122.5505 34322.71 122.5546 34342.71 122.5588 34362.71 122.5629 34382.71 122.567 34402. 71 122.5711 34422.71 122.5752 34442.71 122.5793 34462.71 122.5834 34482.71 122.5876 34502.71 122.5917 34522.71 122.5958 34542.71 122.5999 34562. 71 122.604 34582.71 122.6081 34602. 71 122.6122 34622.71 122.6163 34642.71 122.6204 34662.71 122.6245 34682. 71 122.6286 34702.71 122.6328 34722.71 122.6369 34742.71 122.641 34762. 71 122.6451 34782.71 122.6492 34802. 71 122.6533 34822. 71 122.6574 34842.71 122.6615 34862.71 122.6656 34882. 71 122.6697 34902.71 122.6738 34922. 71 122.6779 34942. 71 122.682 34962. 71 122.6861 34982.71 122.6902 35002. 71 122.6943 35022.71 122.6984 35042. 71 122.7025 35062.71 122.7066 35082.71 122.7107 35102.71 122. 7148 35122. 71 122.7189 35142.71 122.723 35162.71 122. 7271 35182.71 122.7311 35202. 71 122.7352 35222. 71 122.7393 35242.71 122.7434 35262.71 122.7475 35282. 71 122.7516 35302.71 122.7557 35322.71 122.7598 35342.71 122.7639 35362. 71 122.768 35382.71 122. 7721 *35402. 71 122.7761 35422.71 122.7802 35442. 71 122.7843 35462.71 122.7884 35482. 71 122.7925 35502.71 122.7966 35522.71 122.8007 35542*.71 122.8047 35562.71 122.8088 35582.71 122.8129 35602. 71 122.817 35622.71 122.82ll 35642. 71 122.8252 35662.71 122.8292 35682. 71 122.8333 35702.71 122.8374 35722. 71 122.8415 35742. 71 122.8456 35762. 71 122.8496 35782.71 122.8537 35802. 71 122.8578 35822.71 122.8619 35842. 71 122.8659 35862.71 122.87 35882. 71 122.8741 } 3590*2. 71 122.8782 35922. 71 122.8822 35942. 71 122.8863 35962. 71 122.8904 35982.71 122.8945 36002. 71 122.8985 36022.71 122.9026 36042. 71 122.9067 36062.71 122.9108 36082. 71 122.9148 36102.71 122. 9189 36122. 71 122.923 36142.71 122.927 36162. 71 122. 93ll 36182.71 122.9352 36202. 71 122.9392 36222.71 122.9433 36242.71 122.9474 36262.71 122.9514 36282. 71 122.9555 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 ptojea. f.wry day. Attachment 1 PAGE NO. 132 of 303 36302. 71 122.9596 36322.71 122.9636 36342. 71 122.9677 36362. 71 122.9718 36382.71 122.9758 36402. 71 122.9799 36422.71 122.9839 '36442. 71 122.988 36462.71 122.9921 36482. 71 122.9961 36502.71 123.0002 36522.71 123.0042 36542.71 123.0083 36562.71 123.0124 36582.71 123.0164 36602. 71 123.0205 36622.71 123.0245 36642.71 123.0286 36662.71 123.0327 36682. 71 123.0367 36702.71 123.0408 36722.71 123.0448 36742.71 123.0489 36762.71 123.0529 36782.71 123.057 36802. 71 123.061 36822.71 123.0651 36842.71 123.0691 36862.71 123.0732 36882.71 123. 0772 36902.71 123.0813 36922.71 123.0853 36942. 71 123.0894 36962. 71 123.0934
- 36982.71 123.0975 37002.71 123.1015 37022.71 123.1056 37042.71 123.1096 37062.71 123.1137 37082.71 123.1177 37102. 71 123.1218 37122. 71 123.1258 37142. 71 123.1299 37162.71 123.1339 37182. 71 123.138 37202.71 123.142 37222.71 123.146 37242.71 123.1501 37262.71 123 .. 1541 37282. 71 123.1582 37302. 71 123.1622 37322. 71 123.1663 37342.71 123.1703 37362.71 123.1743 37382.71 123.1784 37402. 71 123.1824 37422.71 123.1865 37442.71 123.1905 37462.71 123.1945 37482. 71 123.1986 37502.71 123.2026 37522.71 123.2066 37542.71 123.2107 37562.71 123.2147 37582.71 123.2188 37602. 71 123.2228 37622.71 123.2268 37642.71 123.2309 37662.71 123.2349 37682. 71 123.2389 37702.71 123.243 37722.71 123.247 37742.71 123.251 37762.71 123.255 37782.71 123.2591 37802.71 123.2631 37822.71 123.2671 37842.71 123.2712 37862.71 123.2752 37882.71 123.2792 37902.71 123.2832 37922.71 123.2873 37942. 71 123.2913 37962. 71 123.2953 37982.71 123.2994 38002. 71 123.3034 38022.71 123.3074 38042. 71 123.3114 38062.71 123.3155 38082. 71 123.3195 38102.71 123.3235 38122.71 123.3275 38142.71 123.3316 38162. 71 123.3356 38182.71 123.3396 38202.71 123.3436 38222.71 123.3476 38242.71 123.3517 38262.71 123.3557 38282. 71 123.3597 38302. 71 123.3637 38322. 71 123.3677 38342. 71 123.3718 38362.71 123.3758 38382. 71 123.3798 38402. 71 123.3838 38422. 71 123.3878 38442.71 123.3918 38462.71 123.3959 38482. 71 123.3999 38502.71 123.4039 38522.71 123.4079 38542.71 123 .4119 38562.71 123.4159 38582.71 123.42 38602. 71 123.424 38622.71 123.428 38642.71 123.432 38662.71 123.436 38682.71 123.44 ENERCON CALCULATION CONTROL Attachment 1 38702.71 123.444 38722.71 123.448 38742. 71 123.452 38762.71 123.4561 38782.71 123.4601 38802. 71 123.4641 38822.71 123.4681 38842.71 123.4721 38862.71 123.4761 38882. 71 123.4801 38902.71 123.4841 38922. 71 123.4881 38942. 71 123.4921 38962. 71 123.4961 38982. 71 123.5001 39002. 71 123.5041 39022. 71 123.5081 39042. 71 123.5121 39062.71 123.5162 39082. 71 123.5202 39102. 71 123.5242 39122.71 123.5282 39142. 71 123.5322 39162.71 123.5362 39182.71 123.5402 39202.71 123.5442 39222. 71 123.5482 39242. 71 123.5522 39262. 71 123.5562 39282.71 123.5602 39302.71 123.5642 39322.71 123.5682 39342. 71 123.5722 39362. 71 123.5762 39382. 71 123.5802 39402. 71 123.5842 39422. 71 123.5882 39442. 71 123.5921 39462. 71 123.5961 39482. 71 123.6001 39502. 71 123.6041 39522. 71 123.6081 39542. 71 123.6121 39562. 71 123.6161 39582.71 123.6201 39602. 71 123.6241 39622. 71 123.6281 3,96.42.
71 123.6321 39662.71 123.6361 39682. 71 123.6401 39702. 71 123.6441 39722. 71 123.648 39742.71 123.652 39762. 71 123.656 39782. 71 123.66 39802. 71 123.664 39822. 71 123.668 39842. 71 123.672 39862. 71 123.676 39882. 71 123.68 39902. 71 123.6839 39922. 71 123.6879 39942.71 123.6919 39962. 71 123.6959 39982.71 123.6999 40002.71 123.7039 40022. 71 123.7079 40042. 71 123. 7118 40062.71 123.7158 40082. 71 123. 7198 40102.71 123.7238 40122. 71 123. 7278 40142.71 123.7318 40162. 71 123.7357 40182.71 123.7397 40202.71 123.7437 40222. 71 123. 7477 40242. 71 123.7517 40262. 71 123.7556 40282. 71 123.7596 40302. 71 123.7636 40322.71 123.7676 40342. 71 123. 7716 40362. 71 123.7755 40382. 71 123. 7795 40402. 71 123.7835 40422.71 123.7875 40442.71 123.7914 40462. 71 123.7954 40482. 71 123.7994 40502. 71 123.8034 40522. 71 123.8074 40542. 71 123.8113 40562.71 123.8153 40582. 71 123.8193 40602. 71 123.8232 40622. 71 123.8272 40642.71 123.8312 40662.71 123.8352 40682.71 123.8391 40702.71 123.8431 40722.71 123.8471 40742. 71 123.8511 40762.71 123.855 40782.71 123.859 40802.71 123.863 40822. 71 123.8669 ,40842. 71 123.8709 40862.71 123.8749 40882. 71 123.8788 40902.71 123.8828 40922. 71 123.8868 40942.71 123.8907 40962. 71, 123.8947 40982.71 123.8987 41002. 71 123.9026 41022.71* 123.9066 41042. 71 123.9106 41062.71 123.9145 41082. 71 123.9185 \. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 133 of 303 CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET-REV.O '-' f.xreHerw.rt-F.vety pto}ea, f.vtlty d()'f. Attachment 1 PAGE NO. 134 of 303 41102. 71 123.9225 41122. 71 123.9264 41142. 71 123.9304 41162. 71 123.9344 41182. 71 123.9383 41202. 71 123.9423 41222.71 123.9462 41242.71 123.9502 41262.71 123.9542 41282.71 123.9581 41302.71 123.9621 41322. 71 123.966 41342.71 123.97 41362. 71 123.974 41382.71 123.9779 41402. 71 123.9819 41422.71 123.9858 41442. 71 123.9898 41462.71 123.9938 41482. 71 123.9977 41502. 71 124.0017 41522. 71 124.0056 41542. 71 124.0096 41562. 71 124. 0135 41582.71 124.0175 41602. 71 124.0215 41622.71 124.0254 41642.71 124.0294 41662.71 124.0333 41682.71 124.0373 41702.71 124.0412 41722.71 124.0452 41742.71 124.0491 41762.71 124.0531 41782.71 124.057 41802.71 124.061 41822.71 124.0649 41842.71 124.0689 41862.71 124. 0728 41882.71 124.0768 41902.71 124.0807 41922. 71 124.0847 41942. 71 124.0886 41962. 71 124.0926 41982.71 124.0965 42002. 71 124.1005 42022.71 124.1044 42042. 71 124.1084 42062.71 124.1123 42082. 71 124 .1163 42102.71 124.1202 42122. 71 124.1242 42142. 71 124.1281 42162. 71 124.1321 42182.71 124.136 42202. 71 124.14 42222.71 124.1439 42242. 71 124.1478 42262.71 124.1518 42282.71 124.1557 42302.71 124.1597 42322. 71 124.1636 42342.71 124.1676 42362.71 124.1715 42382.71 124.1754 42402. 71 124.1794 42422.71 124.1833 42442.71 124.1873 42462.71 124.1912 42482. 71 124.1951 42502. 71 124.1991 42522. 71 124.203 42542.71 124.207 42562.71 124.2109 42582.71 124.2148 42602.71 124.2188 42622.71 124.2227 42642. 71 124.2267 42662.71 124.2306 42682.71 124.2345 42702. 71 124.2385 42722. 71 124.2424 42742.71 124.2463 42762. 71 124.2503 42782.71 124.2542 42802. 71 124.2581 42822. 71 124.2621 42842. 71 124.266 42862.71 124.2699 42882. 71 124.2739 42902. 71 124.2778 42922. 71 124.2817 42942.71 124.2857 42962. 71 124.2896 42982.71 124.2935 43002. 71 124.2975 43022.71 124.3014 43042. 71 124.3053 43062.71 124.3093 43082. 71 124.3132 43102.71 124.3171 43122. 71 124.321 43142.71 124.325 43162. 71 124.3289 43182.71 124.3328 43202. 71 124.3368 43222.71 124.3407 43242.71 124.3446 43262.71 124.3485 43282. 71 124.3525 43302.71 124.3564 . 43322. 71 124.3603 43342. 71 124.3642 43362. 71 124.3682 43382.71 124.3721 43402. 71 124.376 43422. 71 124.3799 43442. 71 124.3839 43462. 71 124.3878 43482. 71 124.3917 EN R 43502.71 124.3956 43542.71 124.4035 43582.71 124.4113 43622. 71 124.4192 43;662. 71 124.427 43702.71 124.4348 43742.71 124.4427 43782.71 124.4505 43822.71 124.4584 43862.71 124.4662 43902.71 124.474 43942.71 124.4819 43982.71 124.4897 44022.71 124.4975 44062.71 124.5053 44102.71 124.5132 44142.71 124.521 44182.71 124.5288 44222.71 124.5366 44262.71 124.5445 44302.71 124.5523 44342.71 124.5601 44382. 71 124.5679 44422.71 124.5757 44462.71 124.5836 44502.71 124.5914 44542. 71 124.5992 44582.71 124.607 44622.71 124.6148 44662.71 124.6226 44702.71 124.6304 44742.71 124.6382 44782.71 124.646 44822.71 124.6538 44862.71 12'4. 6616 44902.71 124.6694 44942.71 124.6772 44982.71 124.685 45022.71 124.6928 45062.71 124.7006 45:).02.71 124.7084 45142.71 124. 7162 45182.71 124.724 45222.71 124.7318 45262.71 124.7396 45302.71 124.7474 45342. 71 124.7552 45382.71 124.763 45422. 71 124. 7708 45462. 71 124.7785 45502. 71 ; 124.7863 45542.71 124.7941 45582.71 124.8019 45622.71 124.8097 45662.71 45702.71 124.8252 45742.71 124.833 45782.71 124.8408 45822.71 124.8485 45862.71 124.8563 ON CALCULATION CONTROL Attachment 1 43522.71 124.3996
- 43562.71 124.4074 43602.71 124.4152 43642. 71 124.4231 43682. 71 124.4309 43722. 71 124.4388 43762. 71 124.4466 43802.71 124.4544 43842.71 124.4623 43882.71 124.4701 43922.71 124.4779 43962.71 124.4858 44002. 71 124.4936 44042.71 124.5014 44082. 71 124.5093 44122.71 124. 5171 44162.71 124.5249 44202.71 124.5327 44242.71 124.5406 44282.71 124.5484 44322.71 124.5562 44362.71 124.564 44402.71 124. 5718 44442.71 124.5797 44482.71 124.5875 44522.71 124.5953 44562.71 124.6031 44602. 71 124.6109 44642.71 124.6187 44682. 71 124.6265 44722. 71 124.6343 44762.71 124.6421 44802.71 124.6499 44842.71 124.6577 44882. 71 124.6655 44922.71 124.6733 44962. 71 124.6811 45002.71 124.6889 45042. 71 124. 6967 45082. 71 124.7045 45122. 71 124.7123 45162. 71 124.7201 45202.71 124. 7279 45242. 71 124.73.57 45282. 71 124.7435 45322. 71 124.7513 45362. 71 124.7591 45402. 71 124.7669 45442.71 124.7746 45482. 71 124.7824 45522. 71 124.7902 45562.71 124.798 45602.71 124.8058 45642.71 124. 8135 45682.71 124.8213 45722.71 124.8291 45762. 71 124.8369 45802.71 124.8447 45842.71 124.8524 45882.71 124.8602 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 135 of 303 '-
ENER ON CALCULATION CONTROL Attachment 1 45902.71 124.8641 45922.71 124.868 45942.71 124. 8718 45962. 71 124.8757 45982.71 124.8796 46002.71 124.8835 46022.71 124.8874 46042.71 124.8913 46062.71 124.8951 46082. 71 124.899 46102.71 124.9029 46122. 71 124.9068 46142.71 124.9107 46162. 71 124.9146 46182.71 124.9184 46202. 71 124.9223 46222.71 124.9262 46242. 71 124.9301 46262.71 124.934 46282. 71 124.9378 46302.71 124.9417 46322. 71 124.9456 46342.71 124.9495 46362. 71 124.9534 46382.71 124.9572 46402.71 124. 9611 46422. 71 124.965 46442. 71 124.9689 46462. 71 124.9727 46482. 71 124.9766 46502.71 124.9805 46522.71 124.9844 46542.71 124.9882 46562.71 124.9921 46582.71 124.996 46602. 71 124.9999 46622. 71 125.0037 46642. 71 125.0076 46662.71 125. 0115 46682. 71 125.0154 46702.71 125.0192 46722. 71 125.0231 46742.71 125.027 46762. 71 125.0309 46782.71 125.0347 46802. 71 125.0386 46822.71 125. 0425 46842. 71 125.0463 46862.71 125. 05*02 46882. 71 125.0541 46902.71 125.058 46922. 71 125.0618 46942. 71 125.0657 46962.71 125.0696 46982.71 125.0734 47002.71 125.0773 47022.71 125.0812 47042. 71 125.085 47062.71 125.0889* 47082. 71 125.0928 47102. 71 125. 0966 47122. 71 125.1005 47142. 71 125.1044 47162. 71 125.1082 47182. 71 125 .1121 47202. 71 125.116 47222.71 125 .1198 47242. 71 125.1237 47262.71 125.1276 47282.71 125.1314 47302.71 125.1353 47322. 71 125.1392 47342.71 125.143 47362.71 125.1469 47382.71 125.1507 47402. 71 125.1546 47422.71 125.1585 47442. 71 125.1623 47462.71 125.1662 47482. 71 125.1701 47502. 71-125.1739 47522. 71 125.1778 47542.71 125.1816 47562. 71 125.1855 47582.71 125.1894 47602. 71 125.1932 47622.71 125.1971 47642. 71 125.2009 47662.71 125.2048 47682.71 125.2087 47702.71 125.2125 47722. 71 125.2164 47742.71 125.2202 47762. 71 125.2241 47782.71 125.228 47802. 71 125.2318 47822.71 125.2357 47842. 71 125.2395 47862.71 125.2434 47882.71 125.2472 47902.71 125.2511 4_7922. 71 125.2549 47942.71 125.2588 47962. 71 125.2627 47982.71 125.2665 48002. 71 125.2704 48022.71 125.2742 48042. 71 125.2781 48062.71 125.2819 48082. 71 125.2858 48102.71 125.2896 48122. 71 125.2935 48142.71 125.2973 48162. 71 125.3012 48182.71 125.305 48202.71 -125.3089 48222.71 125.3127 48242. 71 125.3166 48262.71 125.3204 48282. 71 125.3243 / CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 136 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.:<<tNf!not.-f.vf!tJPff)]ffct. £V!!qday. Attachment 1 PAGE NO. 137 of 303 48302.71 125.3281 48322. 71 125.332 48342.71 125.3358 48362. 71 125.3397 48382.71 125.3435 48402. 71 125.3474 48422.71 125.3512 48442. 71 125.3551 48462.71 125.3589 48482. 71 125.3628 48502. 71' 125.3666 48522. 71 125.3705 48542.71 125.3743 48562. 71 125.3782 48582.71 125.382 48602.71 125.3859 48622.71 125.3897 48642. 71 125.3935 48662.71 125.3974 48682.71 125.4012 48702.71 125.4051 48722.71 125.4089 48742.71 125.4128 48762. 71 125.4166 48782.71 125.4205 48802. 71 125.4243 48822. 7,1 125.4281 48842. 71 125.432 48862.71 125.4358 48882.71 125.4397 48902.71 125.4435 48922.71 125.4473 48942.71 125.4512 48962.71 125.455 48982.71 125.4589 49002.71 125.4627 49022.71 125.4666 49042.71 125.4704 49062. 71 125.4742 49082.71 125.4781 49102.71 125.4819 49122.71 125 .4857 49142.71 125.4896 49162.71 125.4934 49182.71 125.4973 49202. 71 125. 5011 49222.71 125.5049 49242.71 125.5088 49262.71 125.5126 49282.71 125.5164 49302. 71 125.5203 49322.71 125.5241 \ 49342.71 125.528 71 125.5318 49382. 71 125.5356 49402. 71 125.5395 49422.71 125.5433 49442.71 125. 5471 49462.71 125.551 49482. 71 125.5548 49502.71 125.5586 49522.71 125.5625 49542.71 125.5663 49562.71 125.5701 49582.71 125.574 49602.71 125.5778 49622. 71 125.5816 49642.71 125.5854 49662.71 125.5893 49682.71 125.5931 49702.71 125.5969 49722. 71 125.6008 49742.71 125.6046 49762.71 125.6084 49782.71 125.6123 49802. 71 125.6161 49822.71 125.6199 49842.71 125.6237 49862.71 125.6276 49882. 71 125.6314 49902.71 125.6352 49922.71 125.6391 49942.71 125.6429 49962. 71 125.6467 49982.71 125.6505 50002. 71 125.6544 50022.71 125.6582 50042. 71 125.662 50062.71 125.6658 50082. 71 125.6697 50102.71 125.6735 50122.71 125.6773 50142.71 125.6811 50162. 71 125.685 50182.71 125.6888 50202.71 125.6926 50222.71 125.6964 50242.71 125.7002 50262.71 125.7041 50282. 71 125.7079 50302.71 125.7117 50322. 71 125. 7155 50342. 71 125. 7194 50362. 71 125.7232 50382.71 125.727 50402. 71 125.7308 50422.71 125.7346 50442.71 125.7385 50462.71 125.7423 50482. 71 125.7461 50502.71 125.7499 50522. 71 125.7537 50542. 71 125.7576 50562. 71 125.7614 50582.71 125.7652 50602. 71 125.769 50622. 71 ' 125.7728 50642. 71 125.7766 50662.71 125.7805 50682. 71 125.7843 ENERCON CALCULATION CONTROL Attachment 1 50702.71 -125. 7881 50722. 71 125.7919 50742. 71 125.7957 50762.71 125.7996 50782. 71 125.8034 50802. 71 125.8072 50822. 71 125.811 50842. 71 125.8148 50862.71 125.8186 50882. 71 125.8224 50902.71 125.8263 50922. 71 125.8301 50942.71 125. 8339 50962. 71 125.8377 50982.71 125.8415 51002.71 125.8453 51022.71 125.8491 51042. 71 125.8529 51062. 71 125.8568 51082.71
- 125.8606 51102. 71 125.8644 51122. 71 125.8682 51142. 71 125.872 51162. 71 125.8758 51182. 71 125.8796 51202. 71 125.8834 51222. 71 125.8872 51242. 71 125.891 51262.71 125.8949 51282. 71 125.8987 51302. 71 125.9025 51322. 71 125.9063 51342. 71 125.9101 51362. 71 125.9139 51382.71 125.9177 51402. 71 125.9215 51422.71 125.9253 51442. 71 125:9291 51462.71 125.9329 51482.71 125.9367 51502. 71 125.9405 51522.71 125.9444 51542. 71 125.9482 51562.71 125.952 51582. 71 125.9558 51602. 71 125.9596 51622. 71 125.9634 51642.71 125. 9672 51662. 71 125. 971 51682. 71 125.9748 51702. 71 125.9786 51722. 71 125.9824 51742. 71 125.9862 51762. 71 125.99 51782.71 125.9938 51802. 71 125.9976 51822.71 126.0014 51842. 71 126.0052 51862.71 126.009 51882. 71 51902.71 126.0166 51922. 71 126.0204 51942.71 126.0242 51962. 71 126.028 51982.71 126.0318 52002. 71 126.0356 52022. 71 126.0394 52042. 71 126.0432 52062. 71 126.047 52082. 71 126.0508 52102. 71 126.0546 52122. 71 126.0584 52142. 71 126.0622 52162. 71 126.066 52182. 71 126.0698 52202. 71 126.0736 52222. 71 126.0774 52242.71 126.0812 52262. 71 126.085 52282.71 126.0888 52302. 71 126.0926 52322.71 126 !0964 52342. 71 126.1002 52362.71 126.1039 52382. 71 126.1077 52402.71 126.1115 52422.71 126 .1153 52442.71 126 .1191 52462. 71 126.1229 52482. 71 126 .1267 -52502. 71 126.1305 52522. 71 126.1343 52542.71 126.1381 52562.71 126.1419 52582.71 126.1457 52602. 71 126.1495 52622. 71 126.1532 52642.71 126.157 52662.71 126.1608 52682. 71 126.1646 52702. 71 126.1684 52722. 71 126.1722 52742.71 126.176 52762. 71 126.1798 52782.71 126.1836 52802. 71 126.1874 52822. 71 126.1911 52842. 71 126.1949 52862. 71 126.1987 52882. 71 126.2025 52902. 71 126.2063 52922.71 52942. 71 126.2139 52962.71 126.2177 52982. 71 126.2214 53002.71 126.2252 53022. 71 126.229 53042. 71 126.2328 53062. 71 126.2366 53082. 71 126.2404 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 138 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0
£wytfay. Attachment 1 PAGE NO. 139 of 303 53102.71 126.2441 53122. 71 126.2479 53142. 71 126.2517 53162. 71 126.2555 53182.71 126.2593 53202. 71 126.2631 53222.71 126.2669 53242. 71 126.2706 5):262. 71 126.2744 53282. 71 126.2782 53302. 71 126.282 53322. 71 126.2858 53342. 71 126.2895 53362. 71 126.2933 !i3382. 71 126.2971 53402. 71 126.3009 53422.71 126.3047 53442. 71 126.3084 53462.71 126.3122 53482. 71 126.316 53502. 71 126.3198 53522.71 126.3236 53542. 71 126.3273 53562. 71 126.3311 53582. 71 126.3349 53602. 71 126.3387 j 53622. 71 126.3425 53642. 71 126.3462 53662.71 126.35 53682. 71 126.3538 53702. 71 126.3576 53722. 71 126. 3613 53742. 71 126.3651 53762. 71 126.3689 53782. 71 126.3727 53802. 71 126.3764 53822. 71 126.3802 538-\12. 71 126.384 53862. 71 126.3878 53882. 71 126.3915 53902. 71 126.3953 53922. 71 126.3991 53942. 71 126.4029 53962. 71 126.4066 53982. 71 126.4104 54002. 71 126.4142 54022. 71 126.418 54042. 71 126.4217 54062. 71, 126.4255 54082.71 126.4293 54102. 71 126.433 54122.71 126.4368 54142. 71 126.4406 54162. 71 126.4444 54182. 71 126.4481 54202. 71 126.4519 54222. 71 126.4557 54242. 71 126.4594 54262. 71 126.4632 54282. 71 126.467 54302. 71 126.4707 54322. 71 126.4745 54342. 71 126.4783 54362.71 126.4821 54382.71 126.4858 54402. 71 126.4896 54422. 71 126.4934 54442. 71 126 .4971 54462. 71 126.5009 54482. 71 126.5047 54502. 71 126.5084 54522.71 126.5122 54542. 71 126.516 54562. 71 126.5197 54582.71 126.5235 54602.71 126.5273 54622.71 126.531 54642.71 126.5348 54662. 71 126.5385 54682. 71 126.5423 54702.71 126.5461 54722. 71 126.5498 54742. 71 126.5536 54762. 71 126.5574 54782. 71 126.5611 54802. 71 126.5649 54822.71 126.5686 54842.71 126. 5724 54862. 71 126.5762 54882. 71 126.5799 54902.71 126.5837 54922. 71 126.5875 54942. 71 126.5912 54962. 71 126.595 54982. 71 126.5987 55002.71 126.6025 55022.71 126.6063 55042. 71 126.61 55062. 71 126.6138 55082. 71 126.6175 55102. 71 126.6213 55122. 71 126.6251 55142.71 126.6288 55162. 71 126.6326 55182. 71 126.6363 55202. 71 126.6401 55222. 71 126.6438 55242. 71 126.6476 55262. 71 126.6514 55282. 71 126.6551 55302. 71 126.6589 55322. 71 126.6626 55342. 71 126.6664 55362. 71 126.6701 55382. 71 126.6739 55402. 71 126.6777 55422. 71 126.6814 55442.71 126.6852 55462. 71 126.6889 55482. 71 126.6927 NER 55502.71 126.6964 55542.71 126.7039 55582.71 126.7114 55622.71 126. 7189 55662.71 126.7264 55702.71 126. 7339 55742.71 126.7414 55782.71 126.7489 55822.71 126.7564 55862.71 126.7639 55902.71 126. 7714 55942.71 126.7789 55982.71 126.7864 56022.71 126.7939 56062.71 126.8014 56102.71 126.8089 56142.71 126.8164 5E;182.71 126.8239 56222. 71 126.8314 56262. 71 126.8389 56302. 71 126.8464 56342. 71 126.8538 56382.71 126.8613 56422.71 126.8688 56462.71 126.8763 56502.71 126.8838 56542.71 126.8913 56582.71 126.8987 56622.71 126.9062 56662.71 126. 9137 56702.71 126.9212 56742.71 126.9286 56782.71 126.9361 56822.71 126.9436 56862. 71 126.9511 56902. 71 126.9585 56942. 71 126.966 56982.71 126.9735 57022.71 126.9809 57062.71 126.9884 ' 57102. 71 126.9959 57142. 71 121.9033 57182. 71 127.0108 57222.71 127.0183 57262. 71 127.0257 57302.71 127.0332 57342.71 127.0407 57382.71 127.0481 57422.71 127.0556 57462. 71 127.063 57502.71 127.0705 57542.71 127.078 57582.71 127.0854 57622.71 127.0929 57662. 71 127.1003 57702. 71 127.1078 57742. 71 127 .1152 57782. 71 127.1227 57822.71 127.1301 57862.71 127.1376 ON CALCULATION CONTROL Attachment 1 55522. 71 126.7002 55562. 71 126.7077 55602. 71 126. 7152 55642. 71 126.7227 55682.71 126.7362 55722. 71 126.7377 55762. 71 126.7452 55802. 71 126.7527 55842. 71 126.7602 55882. 71 126.7677 55922. 71 126.7752 55962. 71 126.7827 56002. 71 126.7902 56042. 71 ,126. 7977 56082. 71 126.8052 56122. 71 126.8127 56162. 71 126.8201 56202.71 i26.8276 56242. 71 126.8351 56282. 71 126.8426 56322. 71 126.8501 56362. 71 126.8576 56402. 71 126.8651 56442. 71 126.8726 56482. 71 126.88 56522. 71 126.8875 56562. 71 126.895 56602. 71 126.9025 56642. 71 126.91 56682. 71 126.9174 56722. 71 126.9249 56762. 71 126.9324 56802. 71 126.9399 56842. 71 126.9473 56882. 71 126.9548 56922. 71 126.9623 56962. 71 126.9697 57002.71 126.9772 57042. 71 126.9847 57082. 71 126.9921 57122. 71 126 ... 9996 57162. 71 127. 0071 57202. 71 127.0145 57242. 71 127.022 57282. 71 127.0295 57322. 71 127.0369 57362. 71 127.0444 57402. 71 127.0519 57442.71 127. 0593 57482. 71 127.0668 57522. 71 127.0742 57562. 71 127.0817 57602. 71 127.0891 57642.71 127.0966 57682. 71 127.104 57722. 71 127 .1115 57762. 71 1.27.1189 57802. 71 127.1264 57842. 71 127.1338 57882. 71 127.1413 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 140 of 303 EN 57902.71 127.145 57942.71 127.1525 57982.71 127.1599 58022.71 127.1673 58062.71 127.1748 58102.71 127.1822 58142.71 127.1897 58182.71 127.1971 58222.71 127.2046 58262.71 127.212 58302. 71 127.2194 58342. 71 127.2269 58382. 71 127.2343 58422.71 127.2417 58462.71 127.2492 58502.71 127.2566 58542.71 127.264 58582.71 127.2715 58622.71 127.2789 58662.71 127.2863 58702.71 i27.'2937 58742. 71 .127.3012 { 58782.71 127.3086 58822.71 127.316 58862.71 127.3234 58902.71 127.3309 58942.71 127.3383 58982.71 127.3457 59022. 71 127.3531 59062.71 127.3605 59102.71 127.368 59142.71 127.3754 59182.71 127.3828 59222.71 127.3902 59262.71 127.3976 59302. 71 127.405 59342. 71 127.4124 59382. 71 127.4198 59422.71 127.4272 59462. 71 127.4347 59502.71 127.4421 59542.71 127.4495 59582.71 127.4569 .59622. 71 127.4643 59662.71 127.4717 59702.71 127.4791 59742.71 127.4865 59782.71 127.4939 59822.71 127.5013 59862.71 127.5087 59902.71 127.5161 59942.71 127.5235 59982.71 127.5309 60022.71 127.5383 60062.71 127.5456 60102.71 127.553 60142.71 127. 5604 I 60182.71 127.5678 60222.71 127.5752 60262.71 127.5826 CALCULATION CONTROL Attachment 1 57922.71 127.1487 57962. 71 127.1562 58002. 71 127.1636 58042.71 127.1711 58082.71 121.1785 58122.71 127.186 58162. 71 127.1934 58202.71 127.2008 58242. 71 127.2083 58282. 71 127.2157 58322. 71 127.2231 58362. 71 127.2306 58402. 71 127.238 58442. 71 127.2454 58482. 71 127.2529 58522.71 127.2603 58562.71 127.2677 58602. 71 127.2752 58642.71 127.2826 58682. 71 127.29 58722.71 127.2974 58762.71 127.3049 58802.71 127.3123 58842.71 127.3197 58882.71 127. 3271 58922. 71 127.3346 58962.71 127.342 59002.71 127.3494 59042.71 127.3568 59082. 71 *, 127 .3642 59122. 71 127.3717 59162. 71 127 .3791' 59202.71 127.3865 59242.71 127.3939 59282. 71 127.4013 59322.71 127.4087 59362. 71 127.4161 59402.71 127.4235 59442. 71 :J-27.4309 59482. 71 127.4384 59522. 71 127.44.58 59562.71 127.4532 59602. 71 127.4606 59642. 71 127.468 59682. 71 127.4754 59722.71 127.4828 59762. 71 127.4902 59802.71 127.4976 59842. 71 127.505 59882. 71 127.5124 59922. 71 127.5198 59962. 71 127.5272 60002.71 127.5346 60042. 71 127.542 60082.71 127.5493 60122.71 1'27. 5567 60162. 71 127.5641 60202. 71 127.5715 60242.71 127.5789 60282.71 127.5863 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 141 of 303 J ) ENERCON CALCULATION CONTROL Attachment 1 60302. 71 127.59 60322. 71 127.5937 60342. 71 127.5974 60362. 7-1:-127.6011 60382.71 127.6048 60402. 71 127.6085 60422. 71 127.6121 60442. 71 127.6158 60462. 71 127.6195 60482. 71 127.6232 60502.71 127.6269 60522.71 127.6306 60542.71 127.6343 60562. 71 127.638 60582.71 127.6417 60602. 71 127.6454 60622. 71 127.649 60642. 71 127.6527 60662.71 127.6564 60682. 71 127.6601 60702.71 127.6638 60722. 71 127.6675 60742.71 127. 6712 60762. 71 127.6749 60782.71 127.6786 60802. 71 127.6822 60822. 71 ., 127.6859 60842. 71 127.6896 60862. 71 127.6933 60882. 71 127.697 60902.71 127.7007 60922.71 127.7044 60942. 71 127.708 60962.71 127.7117 60982. 71 127.7154 61002.71 127. 7191 61022.71 127.7228 61042.71 127.7265 61062.71 127.7301 61082. 71 127.7338 61102. 71 127.7375 61122. 71 127.7412 61142. 71 127.7449 61162. 71 127.7486 61182. 71 127.7522 61202.71 127.7559 61222.71 127.7596 61242.71 127.7633 61262.71 127.767 61282. 71 127.7707 61302. 71 127.7743 61322.71 127.778 61342. 71 127.7817 61362.71 127.7854 61382.71 127.7891 61402. 71 127.7927 61422.71 127.7964 61442.71 127.8001 61462.71 127.8038 61482. 71 127.8075 61502.71 127. 8111 61522. 71 127.8148 61542.71 127.8185 61562. 71 127.8222 61582.71 127.8258 61602. 71 127.8295 61622.71 127.8332 61642. 71 127.8369 61662.71 127*. 8406 61682. 71 127.8442 61702. 71 127.8479 61722.71 127.8516 61742.71 127.8553 61762.71 127.8589 61782.71 127.8626 61802. 71 127.8663 61822.71 127.87 61842.71 127.8736 61862.71 127. 8773 61882.71 127.881 61902.11 127.8847 61922. 71 127.8883 61942. 71 127.892 61962. 71 127.8957 61982. 71 127.8993 62002. 71 127.903 62022.71 127.9067 62042. 71 127.9104 62062. 71 127.914 62082. 71 127. 9177 62102. 71 127.9214 62122. 71 127.925 62142. 71 127.9287 62162. 71 127.9324 62182. 71 121'. 9361 62202. 71 127.9397 62222. 71 127.9434 62242.71 127. 9471 62262.71 127.9507 62282. 71 127.9544 62302.71 127.9581 62322. 71 127.9617 62342.71 127.9654 62362. 71 127.9691 62382.71 127. 9727 62402.71 127.9764 62422.71 127.9801 62442. 71 127.9837 62462.71 127.9874 62482. 71 127.9911 62502.71 127.9947 62522. 71 127.9984 62542. 71 128.0021 62562.71 128.0057 62582.71 128.0094 62602. 71 128.0131 62622.71 J,28.0167 62642.71 128.0204 62662.71 128.0241 62682.71 128.0277 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 142 of 303 ENERCON CALCULATION CONTROL Attachment 1 62702.71 128.0314 62722.71 128.035 62742.71 128.0387 62762. 71 128.0424 62782.71 128.046 62802. 71 128.0497 62822.71 128.0534 62842. 71 128.057 62862.71 128.0607 62882. 71 128.0643 62902.71 128.068 62922. 71 128.0717 62942. 71 128.0753 62962. 71 128.079 62982. 71 128.0827 63002.71 128.0863 63022. 71 128.09 63042. 71 128.0936 63062. 71 128.0973 63082. 71 128.101 63102.71 128.1046 63122.71 128.1083 63142. 71 128 .1119 63162. 71 128 .1156 63182.71 128 .1192 63202. 71 128.1229 63222. 71 128.1266 63242.71 128.1302 63262.71 128.1339 63282. 71 128.1375 63302.71 128.1412 63322. 71 128.1448 63342.71 128.1485 63362. 71 128.1521 63382.71 128.1558 63402. 71 128.1595 63422.71 128.1631 63442. 71 128.1668 63462.71 128.1704 63482. 71 128.1741 63502.71 128.1777 63522. 71 128.1814 63542.71 128.185 63562. 71 128.1887 63582.71 128.1923 63602. 71 128.196 63622. 71 128.1996 63642. 71 128.2033 63662. 71 128.207 63682. 71 128.2106 63702. 71 128.2142 63722. 71 128.2179 63742.71 128.2216 63762. 71 128.2252 63782. 71 128.2289 63802. 71 128.2325 63822. 71 128 .2362 . 63842. 71 128.2398 63862. 71 128.2435 63882. 71 128 .2471 63902. 71 120:2507 I 63922. 71 128.2544 63942. 71 128.2581 63962. 71 128.2617 63982.71 128.2654 64002. 71 128.269 64022. 71 128.2726 64042.71 128.2763 64062.71 128.2799 64082. 71 128.2836 64102.71 128.2872 64122. 71 128.2909 64142. 71 128.2945 64162. 71 128.2982 64182.71 128.3018 64202. 71 128.3055 64222.71 128.3091 64242.71 128.3127 64262.71 128.3164 64282. 71 128.32 64302.71 128.3237 64322. 71 128.3273 64342.71 128.331 64362. 71 128.3346 64382.71 128.3383 64402. 71 128.3419 64422.71 128.3455 64442. 71 128.3492 64462.71 128.3528 64482. 71 128.3565 64502.71 128.3601 64522. 71 128.3638 64542. 71 128.3674 64562. 71 128.371 64582.71 128 .3747 64602. 71 128.3783 64622.71 128.3819 64642. 71 :).28. 3856 64662.71 128.3892 64682. 71 128.3929 64702.71 128.3965 64722. 71 128.4001 64742.71 128.4038 64762. 71 128.4074 64782. 71 128.4111 64802. 71 128.4147 64822.71 128.4183 64842. 71 128.422 64862.71 128.4256 64882. 71 128.4292 64902. 71 128.4329 64922.71 128.4365 64942. 71 128.4402 64962. 71 128.4438 64982.71 128.4474 65002.71 128.4511 65022.71 128.4547 65042.71 128.4583 65062.71 128.462 65082.71 128.4656 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 143 of 303 ENERCON CALCULATION CONTROL Attachment 1 65102.71 128.4692 65122.71 128 .4729 65142.71 128.4765 65162.71 128.4801 65182.71 128.4838 65202.71 128 .4874 65222.71 128.491 65242.71 128.4947 65262.71 128.4983 65282.71 128.5019 65302.71 128.5056 65322. 71 128.5092 65342.71 128. 5.128 65362. 71 128.51q4 65382. 71 128.5201 65402. 71 128.5237 65422.71 128.5273 65442.71 128.531 65462.71 128.5346 65482. 71 128.5382 65502.71 128.5419 65522.71 128.5455 65542.72 128.5491 65562.72 128.5527 65582.72 128.5564 65602.72 128.56 65622. 72 128.5636 65642.72 128.5673 65662. 72 128.5709 65682.72 128.5745 65702. 72 128.5781 65722.72 128.5818 65742.72 128.5854 65762.72 128.589 65782.72 128.5927 65802.72 128.5963 65822.72 128.5999 65842.72 128.6035 65862.72 128.6071 65882.72 128.6108 65902.72 128.6144 65922.72 128.618 65942. 72 128.6216 65962.72 128.6253 65982. 72 128.6289 66002.72 128.6325 66022.72 128.6361 66042. 72 128.6398 66062.72 128.6434 66082. 72 128.647 66102.72 128.6506 66122.72 128.6543 66142.72 128.6579 66162. 72 128.6615 66182.72 128.6651 66202.72 128.6687 66222.72 128.6723 66242.72 128.676 66262.72 128.6796 66282.72 128.6832 66302. 72 128.6868 66322.72 128.6904 66342. 72 128.6941 66362.72 128.6977 66382. 72 128.7013 66402. 72 128.7049 66422.72 128.7085 66442. 72 128.7122 66462.72 128. 7158 66482. 72 128. 7194 66502.72 128.723 66522.72 128.7266 66542.72 128.7302 66562.72 128.7339 66582.72 128.7375 66602.72 128. 7411 66622.72 128.7447 66642.72 128.7483 66662. 72 128.7519 66682.72 128.7555 66702. 72 128.7592 66722.72 128.7628 66742. 72 128.7664 66762.72 128.77 66782.72 128.7736 66802.72 128. 7772 66822.72 128.7808 66842. 72 128.7845 66862.72 128.7881 66882. 72 128.7917 66902.72 128.7953 66922. 72 128.7989 66942.72 128.8025 66962.72 128.8061 66982.72 128.8097 67002.72 128.8133 67022. 72 128.817 67042.72 128.8206 67062. 72 128.8242 67082.72 128.8278 67102.72 128.8314 67122.72 128.835 67142. 72 128.8386 67162. 72 128.8422 67182. 72 128.8458 67202. 72 128.8494 67222.72 128.853 67242.72 128.8567 67262. 72 128.8603 67282.72 128.8639 67302.72 128.8675 67322.72 128. 8711 67342.72 128.8747 67362.72 128.8783 67382. 72 128.8819 67402.72 128.8855 67422. 72 128.8891 67442.72 128.8927 67462.72 128.8963 67482.72 128.8999 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 144 of 303 CALC. NO. ENTR-078-CALC-004 EN ER CON CALCULATION CONTROL SHEET-REV.O ptf)j<<t... f.vP.ty tf(}'J. Attachment 1 PAGE NO. 145 of 303 67502.72 128.9035 67522. 72 128. 9071 67542. 72, 128.9107 67562.72 128.9143 67582.72 128.918 67602. 72 128.9216 67622.72 128.9252 67642. 72 128:9288 67662.72 128.9324 67682. 72 128.936 67702. 72. 128.9396 67722. 72 128.9432 67742.72 128.9468 67762. 72 128.9504 67782.72 128.954 67802.72 128.9576 67822.72 128.9612 67842. 72 128.9648 67862.72 128.9684 67882. 72 128.972 67902.72 128.9756 67922.72 128.9792 67942.72 128.9828 67962.72 128.9864 67982.72 128.99 68002.72 128.9936 68022.72 128.9972 68042.72 129.0008 68062.72 129.0043 68082.72 129. 0079 *, 68102.72 129. 0116 68122.72 129.0152 68142. 72 129.0187 68162.72 129.0223 68182.72 129.0259 68202.72 129.0295 68222.72 129.0331 68242.72 129.0367 68262.72 129.0403 68282.72 129. 0439 68302. 72, 129.0475 68322.72 129.0511 68342. 72 129.0547 68362.72 129. 05.83 68382.72 129.0619 68402.72 129.0655 68422.72 129.0691 68442.72 129.0727 68462.72 129.0762 68482.72 129.0798 68502.72 12'9. 0834 68522.72 129.087 68542.72 129.0906 68562.72 129.0942 68582.72 129.0978 68602.72 129.1014 68622. 72 129.105 68642. 72 129.1086 68662.72 129 .1122 68682.72 129 .1158 68702.72 129 .1193 68722.72 129.1229 68742.72 129.1265 68762.72 129.1301 68782. 72 129.1337 68802.72 129.1373 68822.72 129.1409 68842. 72 129.1445 68862.72 129.1481 68882.72 129.1516 68902.72 129.1552 68922.72 129.1588 68942.72 129.1624 68962. 72 129.166 68982.72 129.1696 69002.72 129.1732 69022.72 129.1767 69042.72 129.1803 69062.72 129.1839 69082. 72 129.1875 69102.72 129.1911 6.9122. 72 129.1947 69142.72 129.1982 69162.72 129.2018 69182.72 129.2054 69202.72 129.209 69222.72 129.2126 69242. 72 129.2162 69262.72 129.2197 69282.72 129.2233 69302.72 129.2269 69322. 72 129.2305 69342.72 129.2341 69362.72 129.2377 69382.72 129.2412 69402.72 129.2448 69422.72 129.2484 69442.72 129.252 69462 .. 72 129.2556 69482.72 129.2591 69502.72 129.2627 69522.72 129.2663 69542.72 129.2699 69562. 72 129.2735 69582. 72 129.277 69602.72 129.2806 69622.72 129.2842 69642.72 129.2878 69662.72 129.2913 69682.72 129.2949 69702.72 129.2985 69722.72 129.3021 69742.72 129.3056 69762.72 129.3092 69782.72 129.3128 69802.72 129.3164 69822.72 129.3199 69842.72 129.3235 69862.72 129.3271 69882.72 129.3307 ENERCON CALCULATION CONTROL Attachment 1 69902.72 129.3342 69922.72 129.3378 69942.72 129.3414 69962.72 129.345 69982.72 129.3485 70002. 72 129.3521 70022.72 129.3557 70042.72 129.3593 70062'. 72 129.3628 70082.72 129.3664 70102.72 129.37 70122.72 129.3736 70142.72 129. 3771 70162. 72 129.3807 70182.72 129.3843 70202.72 129.3878 70222.72 129.3914 70242. 72 129.395 70262.72 129.3985 70282.72 129.4021 70302.72 129.4057 70322.72 129 .4093 70342.72 129.4128 70362.72 129.4164 70382.72 129.42 70402.72 129.4235 70422.72 129.4271 70442.72 129.4307 70462.72 129.4342 70482.72 129.4378 70502.72 129.4414 70522.72 129.4449 70542.72 129.4485 70562. 72 129.4521 70582. 72 129*.4556 70-602. 72 129.4592 70622.72 129.4628 70642.72 129.4663 70662. 72 129.4699 70682.72 129.4734 70702.72 129.477 70722.72
- 129.4806 70742. 72 129.4841 70762. 72 129.4877 70782.72 129.4913 70802.72 129.4948 70822.72 129.4984 70842.72 1;29.502 70862.72 129.5055 70882.72 129.5091 70902.72 129.5126 70922.72 129.5162 70942.72 129.5198 70962.72 129.5233 70982.72 71002. 72 129.5304 71022.72 129.534 71042. 72 129.5376 71062.72 129.5411 71082. 72 129. 5447 71102. 72 129.5482 71122. 72 129.5518 71142. 72 129.5554 71162. 72 129.5589 71182. 72 129.5625 71202. 72 129.566 71222.72 129.5696 71242.72 129.5732 71262.72 129.5767 71282. 72 129.5803 71302.72 129.5838 71322. 72 129.5874 71342. 72 129.5909 71362. 72 129.5945 71382 .. 72 129.5981 71402.72 129.6016 71422. 72 129.6052 I 71442. 72 129.6087 71462. 72 129.6123 71482. 72 129.6158 71502.72 129.6194 71522.72 129.6229 71542. 72 129.6265 71562. 72 129.63 71582. 72 129.6336 71602. 72 129.6371 71622. 72 129.6407 71642. 72 129.6442 71662.72 129.6478 71682.72 129.6514 71702. 72 129. 6549 71722. 72 129.6584 71742. 72 129.662 71762. 72 129.6656 71782.72 129.6691 71802. 72 129.6727 71822. 72 129.6762 71842. 72 129.6797 71862. 72 129.6833 71882. 72 129.6869 71902. 72 129.6904 71922. 72 129.694 71942.72 129. 69,75 71962.72 129.701 71982.72 129.7046 72002.72 129.7081 72022.72 129. 7117 72042.72 129. 7152 72062.72 129. 7188 72082.72 129.7223 72102.72 129.7259 72122.72 129.7294 v 72142. 72 129.733 72162.72 I 129.7365 72182. 72 129.7401 72202. 72 129.7436 72222.72 129. 7471 72242.72 129.7507 72262. 72 129. 75412 72282. 72 129.7578 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 146 of 303 ENERCON CALCULATION CONTROL Attachment 1 72302.72 129.7613 72322.72 129.7649 72342.72 129.7684 72362.72 129.772 72382. 72 129.7755 72402.72 129.7791 72422.72 129.7826 72442.72 129.7861 72462.72 129.7897 72482.72 129.7932 72502.72 129.7968 72522.72 129.8003 72542. 72 129.8038 72562.72 129.8074 72582.72 129.8109 72602. 72 129.8145 72622.72 129.818 72642. 72 129.8215 72662.72 129.8251 72682. 72 129.8286 72702.72 129.8322 72722.72 129.8357 72742.72 129.8392 72762. 72 129.8428 72782.72 129.8463 72802. 72 129.8499 72822.72 129.8534 72842. 72 129.8569 72862.72 129.8605 72882.72 129.864 72902.72 129.8675 72922. 72 129.8711 72942. 72 129.8746 72962. 72 129.8781 72982 .. 72 129.8817 73002.72 129.8852 73022.72 129.8887 73042. 72 129.8923 73062.72 129.8958 73082. 72 129.8994 73102. 72 129.9029 73122.72 129.9064 73142.72 129.91 73162. 72 129.9135 73182. 72 129.917 73202. 72 129.9206 73222.72 129.9241 73242.72 129.9276 73262.72 129.9312 73282.72 129. 9"347 73302.72 129.9382 73322.72 129:9417 73342.72 129.9453 73362.72 129.9488 73382.72 129.9523 73402.72 129.9559 73422.72 129.9594 73442.72 129.9629 73462.72 129.9665 73482.72 129.97 73502.72 129.9735 73522. 72 129. 9771 73542.72 129.9806 73562. 72 129.9841 73582.72 129.9876 73602. 72 129.9912 73622.72 129.9947 73642. 72 129.9982 73662.72 130.0017 73682.72 130.0053 73702.72 130.0088 73722. 72 130.0123 73742.72 130.0159 73762.72 130.0194 73782.72 130. 0229 73802.72 130.0264 73822. 72 130.03 73842.72 130.0335 73862.72 130.037 73882. 72 130.0405 73902.72 130.0441 73922.72 130.0476 73942.72 130.0511 73962.72 130.0546 73982.72 130.0581 74002. 72 130.0617 74022.72 130.0652 74042. 72 130.0687 74062.72 130.0722 74082. 72 130.0757 74102.72 130.0793 74122.72 130.0828 74142.72 130.0863 74162. 72 130.0898 74182.72 130.0934 74202. V2 130.0969 74222.72 130 .1004 74242. 72 130.1039 74262.72 130.1074 74282. 72 130.1109 74302.72 130.1145 74322.72 130.118 74342.72 130.1215 74362. 72 130.125 74382.72 130.1285 74402. 72 130.1321 74422.72 130.1356 74:442.72 130.1391 74462.72 130.1426 74482. 72 130.1461 74502.72 130.1496 74522. 72 130.1532 74542.72 130.1567 74562.72 130.1602 74582.72 130.1637 74602.72 130.1672
- 74622. 72 130.1707 74642. 72 130.1743 74662. 72 130.1778 74682.72 130.1813 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 147 of 303 ENERCON CALCULATION CONTROL Attachment 1 74702.72 130.1848 74722.72 130.1883 74742.72 130.1918 74762.72 130.1953 74782.72 130.1989 74802.72 130.2024 74322.72 130.2059 74842.72 130.2094 74862.72 130.2129 74882.72 130 .2164 74902.72 130.2199 74922.72 130.2234 74942.72 130.2269 74962. 72 130.2305 74982.72 130.234 75002.72 130.2375 75022.72 130.241 75042.72 130.2445 75062.72 130.248 75082.72 130.2515 75102.72 130.255 75122. 72 130.2585 75142.72 130.262 75162. 72 130,2655 75182.72 130.269 75202. 72 130.2726 75222.72 130.2761 75242.72 130.2796 75262.72 130.2831 75282.72 130. 2866 75302. 72 130.2901 75322.72 130.2936 75342.72 130.2971 75362.72 130 .3006 75382.72 130.3041 75402.72 130 .3076 75422.72 130 .3111 75442.72 130.3146 75462. 72 130.3181 75482.72 130.3216 75502.72 130.3251 75522.72 130.3286 75542. 72 130.3321 75562.72 130.3356 75582.72 130.3391 75602.72
'130 .3427 75622.72 130.3461 75642. 72 130.3497 75662.72 130.3531 75682. 72 130.3567 75702.72 130.3602 75722. 72 130. 3636 75742.72 130.3672 75762.72 130.3707 757821. 72 130.3742 75802.72 130.3777 75822.72 130.3811 75842.72 130.3846 75862.72 130.3882 75882.72 130 .3916 75902.72 130.3951 75922.72 130.3987 75942. 72 . 130 .4021 75962.72 130 .4056 75982.72 130.4091 76002.72 130.4126 76022.72 130.4161 76042.72 130.4196 76062.72 130.4231 76082.72 130.4266 76102.72 130.4301 76122.72 130.4336 76142.72 130.4371 76162.72 130.4406 76182.72 130.4441 76202. 72 130.4476 76222.72 130.4511 76242.72 130.4546 '76262. 72 130.4581 76282.72 130.4616 76302.72 130.4651 76322.72 130.4686 76342. 72 130.472 76362.72 130.4755 76382.72 130.479 76402.72 130 .4825 76422.72 130.486 76442.72 130 .4895 76462.72 130.493 76482.72 130 .4965 76502.72 130.5 76522.72 130.5035 76542.72 130.5069 76562.72 130.5104 76582.72 130.5139 76602.72 130.5174 76622.72 130.5209 76642.72 130.5244 76662.72 130.5279 76682.72 130.5314 76!702.72 130.53,49 76722. 72 130.5383 76742.72 130.5418 76762. 72 130.5453 76782.72 130.5488 76802. 72 130.5523 76822. 72 130.5558 76842. 72 130.5593 76862.72 130.5627 76882.72 130.5662 76902. 72 130.5697 76922.72 130.5732 76942.72 130.5767 76962.72 130.5802 76982.72 130.5836 77002.72 130.5871 77022.72 130.5906 77042.72 130.5941 77062.72 130.5976 77082. 72 130.6011 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 148 of 303 EN R 77102. 72 130.6046 77142.72 130.6115 77182. 72 130.6185 77222.72 130.6254 77262. 72 130.6324 77302.72 130.6394 77342.72 77382.72 130.6533 77422.72 130.6602 77462.72 130.6672 77502.72 130.6741 77542.72 130.6811 77582.72 130.688 77622. 72 130.695 77662.72 130.7019 77702. 72 130.7089 72 130. 7158 77782.72 130.7228 77822.72 130.7297 77862. 72 130. 7367 77902.72 130. 7436. 77942.72 130. 7505 77982.72 130.7575 78022.72 130. 7644 78062. 72 130. 7714 78102.72 130.7783 78142.72 130. 7852 78182.72 130.7922 78222.72 130.7991 78262.72 130.806 78302.72 130.813 78342.72 130.8199 78382.72 130.8268 78422.72 78462.72 130.8407 78502.72 130.8476 78542.72 130. 8545 78582.72 130.8614 78622.72 130.8683 78662.72 130.8753 78702.72 130.8822 78742.72 130.8891 78782.72 130.896 78822.72 130.9029 78862.72 130.9098 78902.72 130.9167 78942.72 130.9237 78982.72 130.9306 79022.72' 130.9375 79062. 72 130.9444 79102.72 130.9513 79142.72 130.9582 79182.72 130.9651 79222.72 130.972 79262.72 130. 9789 79302.72 130.9858 79342.72 130.9927 79382.72 130.9995 ,79422. 72 131.0064 79462.72 131. 0133 ON CALCULATION CONTROL Attachment 1 77122.72 130.608 77162.72 130.615 77202.72 130.6219 77242. 72 130.6289 77282. 72 130.6359 77322.72 130.6428 77362. 72 130.6498 77402.72 130.6567 77442.72 130.6637 77482.72 130.6707 77522.72 130.6776 77562.72 130.6846 77602.72 130.6915 77642.72 139. 6985 77682.72 130. 7054 77722.72 130. 7124 77762.72 130. 7193 77802.72 130.7262 77842. 72 130.7332 77882.72 130.7401 77922.72 130.7471 77962.72 130.754 78002.72 130.761 78042.72 130.7679 78082.72 130.7748 78122.72 130. 7818 78162.72 130.7887 78202.72 130.7956 78242.72 130.8026 782'82. 72 130.8095 7.8322. 72 130.8164 78362.72 130.8233 78402.72 130. 8303 78442.72 130.8372 78482.72 130.8441 78522.72 130:851 78562.72 130.858 78602.72 130.8649 78642. 72 130. 8718 78682 .72 130.8787 78722.72 130.8857 78762.72 130. 8926 78802.72 130.8995 78842.72 130.9064 78882.72 130.9133 78922.72 130.9202 78962.72 130.9271 79002.72 130.934 79042.72 130.9409 79082.72 130.9478 79122.72 130.9547 79162.72 130.9616 79202.72 130.9685 79242.72 130.9754' 79282.72 130.9823 179322. 72 130.9892 79362. 72 130. 9961 79402. 72 131. 003 79442.72 131. 0099 79482.72 131.0168 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 149 of 303 L CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 f.xrclience-F.vetyptc]e<.t. Evtt:;tfay. Attachment 1 PAGE NO. 150 of 303 79502.72 131.0202 79522.72 131. 0237 79542.72 131. 0271 79562.72 131. 0305 79582.72 131.034 79602.72 -.131.0374 79622.72 131.0409 79642.72 131. 0443 79662.72 131.0477 79682.72 131. 0512 79702.72 131.0546 79722.72 131. 0581 79742.72 131. 0615 79762.72 131.0649 79782.72 131.0684 79802.72 131. 0718 79822.72 131. 0753 79842. 72 131.0787 79862.72 131. 0821 79882. 72 131.0856 79902.72 131. 089 79922.72 131.0924 79942.72 131. 0959 79962.72 131.0993 79982. 72 131.1027 80002.72 131.1062 80022. 72 131.1096 80042.72 131.1131 80062.72 131.1165 80082. 72 131.1199 80102.72 131.1234 80122. 72 131.1268 80142.72 131.1302 80162.72 131.1337 80182.72 131.1371 80202.72 131.1405 80222.72 131.144 80242.72 80262. 72 131.1508 80282. 72 131.1543 80302.72 131.1577 80322. 72 131.1611 80342.72 131.1646 80362.72 131.168 80382.72 131.1714 80402.72 131.1749 80422. 72 131.1783 80442.72 131.1817 80462. 72 131.1851 80482. 72 131.1886 80502. 72 131.192 80522. 72 131.1954 80542.12 131.1989 ' 80562. 72, 131.2023 80582.72 131.2057 80602.72 131.2*092 80622.72 131. 2126 80642.72 131. 216 80662.72 131.2194 80682.72 131.2229 80702.72 131.2263 80722.72 131. 2297 '80742. 72 131.2332 80762. 72 131'.2366 80782.72 131.24 80802. 72 131.2434 80822.72 131.2469 80842.72 131.2503 80862.72 131.2537 80882.72 131.2571 80902.72 131.2606 80922.72 131.264 80942.72 131.2674 80962.72 131.2708 80982.72 131.2743 81002.72 131.2777 81022.72 131.2811 81042.72 131.2845 81062. 72 131.288 81082.72 131.2914 81102. 72 131. 2948 81122. 72 131.2982 81142.72 131.3017 81162. 72 131. 3051 81182.72 131.3085 81202.72 131. 3119 81222.72 131. 3154 81242. 72 131. 3188 81262.72 131. 3222 81282.72 131. 3256 81302. 72 131. 329 81322.72 131.3325 81342. 72 131.3359 81362. 72 131.3393 81382.72 131.3427 81402. 72 131.3461 81422.72 131.3496 81442.72 131.353 81462.72 131.3564 81482. 72 131.3598 81502.72 131.3633 81522.72 131.3667 81542.72 131.3701 81562.72 131.3735 81582.72 131.3769 81602.72 131.3803 81622.72 131.3838 81642.72 131. 3872 81662. 72 131.3906 81682.72 131. 394 81702.72 131.3974 81722. 72 131.4008 81742.72 131.4043 81762.72 131.4077 81782. 72 131.4111 81802.72 131.4145 81822.72 131.4179 81842.72 131.4213 81862.72 131.4248 81882.72 131.4282 CALC. NO. ENTR-078-CALC-004 E N E R c 0 N . CALCULATION CONTROL SHEET-f.x<ellonte-F.vetypff)jt¢1.£WQNf(1'f Attachment 1 REV.O PAGE NO. 151 of 303 81902. 72 131.4316 81922.72 131.435 81942.72 131.4384 81962.72 131.4418 81982. 72 131.4453 82002.72 131.4487 82022.72 131.4521 82042.72 131.4555 82062.72 131.4589 82082. 72 131.4623 82102.72 131.4657 82122.72 131.4691 82142.72 131.4726 82162.72 131.476 82182.72 131.4794 82202.72 131.4828 82222.72 131.4862 82242.72 131.4896 82262.72 131.493 82282.72 131.4964-82302.72 131.4998 82322.72 131. 5033 82342.72 131. 5067 82362.72 131. 5101 82382.72 131. 5135 82402. 72 131. 5169 82422.72 131. 5203 82442. 72 131. 5237 82462.72. 131. 5271 82482. 72 131.5305 82502.72 131.534 82522. 72 131.5374 82542.72 131.5408 82562.72 131.5442 82582.72 131.5476 82602.72 131.551 82622. 72 131.5544 82642. 72 131. 5578 82662. 72 131. 5612 82682.72 131. 5646 82702. 72 131. 5!58 82722.72 131. 5714 82742.72 131.5748 82762.72 131.5782 82782.72 131. 5816 82802. 72 131.5851 82822.72 131.5885 82842.72 131.5919 82862.72 131.5953 82882. 72 131.5987 82902.72 131.6021 82922.72 131.6055 82942. 72 131.6089 82962.72 131.6123 82982. 72 131. 6157 83002.72 131.6191 83022. 72 131.6225 83042.72 131.6259 83062. 72 131.6293 83082.72 131. 6327 83102. 72 131.6361 83122. 72 131.6395 83142. 72 131.6429 83162.72 131.6463 83182.72 131. 6497 83202. 72 131.6531 83222. 72 131. 6565 83242.72 131.6599 83262.72 131.6633 83282.72 131.6667 83302.72 131.6701 83322.72 131.6735 83342. 72 131. 6769 83362.72 131.6803 83382.72 131.6837 83402. 72 131.6871 83422. 72 131. 6905 83442.72 131. 6939 83462. 72 131. 6973 83482.72 131.7007 83502.72 131.7041 83522.72 131.7075 83542. 72 131. 7109 83562.72 131. 7143 83582. 72 131.7177 83602. 72 131. 7211 83622.72 131.7245 83642.72 131.7279 83662.72 131. 7313 83682. 72 131. 7347 83702. 72 > 131.7381 83722.72 131. 7415 83742 .. 72 131.7449 83762.72 131.7482 83782. 72 131. 7516 83802. 72 131.755 83822. 72 131.7584 83842.72 131. 7618 83862.72 131.7652 83882. 72 131. 7686 83902.72 131.772 83922. 72 131. 7754 83942. 72 131.7788 83962.72 131.7822 83982.72 131. 7856 84002.72 131. 789 84022.72 131.7924 84042.72 131.7958 84062.72 131.7991 84082.72 131.8025 84102.72 131.8059 84122.72 131.8093 84142. 72 131. 8127 84162.72 131.8161 84182.72 131. 8195 84202.72 131.8229 84222. 72 131. 8263 84242.72 131.8297 84262.72 131. 8331 84282.72 131.8364 ENERCON CALCULATION CONTROL Attachment 1 84302.72 131.8398 84322. 72 131. 8432 84342.72 131.8466 84362.72 131.85 84382.72 131.8534 84402. 72 131.8568 84422.72 131.8602 84442. 72 131.8635 84462.72 131. 8669 84482.72 131.8703 84502.72 131.8737 84522.72 131. 8771 84542.72 131.8805 84562. 72 131.8839 84582.72 131.8873 84602.72 131. 8906 84622.72 131. 894 , 84642.72 131. 8974 84662.72 131. 9008 84682.72 131.9042 84702.72 131.9076 84722.72 131.9109 84742. 72 131.9143 84762.72 131. 9177 84782.72 131. 9211 84802.72 131.9245 84822.72 131.9279 84842.72 131.9312 84862.72 131. 9346 84882.72 131. 938 84902.72 131. 9414 84922.72 131. 9448 84942. 72 131. 9482 84962. 72 131. 9515 84982.72 131. 9549 85002. 72 131. 9583 85022.72 131. 9617 85042.72 131.9651 85062.72 131. 9684 85082.72 131.9718 85102.72 131. 9752 85122.72 131.9786 85142.72 131.982 85162.72 131. 9853 85182.72 131.9887 85202.72 131. 9921 85222.72 131. 9955 85242.72 131. 9989 85262.72 132.0022 85282.72 132.0056 85302.72 132.009 85322.72 132.0124 85342.72 132.0157 85362. 72 132.0191 85382.72 132.0225 85402.72 132. 0259 85422.72 132.0293 85442.72 132. 0326 85462.72 132.036 85482.72 132.0394 85502.72 132.0428 85522.72 132.0461 85542.72 132.0495 85562.72 132.0529 85582.72 132.0563 85602.72 132.0596 85622.72 132.063 85642.72 132.0664 85662.72 132.0697 85682.72 132.0731 85702.72 132.0765 85722. 72, 132.0799 85742.72 132.0832 85762.72 132.0866 85782.72 132.09 85802. 72 132.0934 85822.72 132.0967 85842.72. 132.1001 85862.72 132.1035 85882.72 132 .1068 85902.72 132 .1102 85922.72 132.1136 85942. 72 132 .117 .85962. 72 132.1203 85982.72 132.1237 86002. 72 132 .1271 86022.72 132.1304 86042. 72 132.1338 86062.72 132.1372 86082.72 132.1405 86102.72 132.1439 86122. 72 132.1473 86142.72 132.1507 86162.72 132 .154 86182'. 72 132.1574 86202.72 132.1608 86222. 72 132.1641 86242.72 132.1675 86262.72 132.1709 86282.72 132.1742 86302.72 132.1776 86322. 72 132.181 86342. 72 132.1843 86362. 72 132.1877 86382.72 132.1911 86400. 132.194 Function 2T Sol-Air Roof. Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 152 of 303 ENER ON CALCULATION CONTROL Attachment 1 0. 7200. 14400. 21600. 28800. 36000. 4320,0. 50400. 57600. 64800. 72000. 79200. 86400. Function 3T Lighting HL Ind. Var'.: Dep. Var.: 134.85 125 .11 104.33 89.37 85.97 83.25 81.04 79.85 79. 87.64 112. 78 130.66 134. 85 3600. 131.73 10800. 115.44 18000. 93.22 25200. 87.5 32400. 84.44 39600. 82.06 46800. 80.36 54000. 79.34 61200. 79.34 68400. 100.37 75600. 123.12 82800. 134.46 Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 0.1134 1000000. 0.1134 Function 4T HVC-ACUl Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 70. 95.21 100. 95.21 105. 95.41 110. 95.6 115. 95.79 120. 96. 05 125. c 99. 02 130. 102.02 135. 105.14 140. 108.48 145. 111. 98 150. 115. 68 155. 119. 57 160. 123.63 Function ST RH Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 70. 50. 100. 57.9 105. 66.8 110. 76.85 115. 88.17 120. 100. 125. 100. 130. 100. 150. 100. Function 6T Outside Temp Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. 'Ind. Var. Dep. Var. 0. 96. 14400. 96. 18000. 96. 21600. 94.98 25200. 93.62 28800. 91.92 32400. 89.37 36000. 87.5 39600. 85. 97* 43200. 84.44 46800. 83.25 50400. 82.06 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 153 of 303 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL Attachment 1 REV.O 54000. Bl.04 57600. B0.36 61200': 79.BS 64BOO. 79.34 6B400. 79. 72000. 79.34 75600. B0.53 79200. B3.42 B2BOO. B6.65 B6400. B9.54 Function 7T Initial Panels Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 0.11 Function BT Operators Ind. Var.: Dep. Var.: 1. 0.1 1. 0. 1000000.
- 0. Ind. Var. Dep. Var. Ind. Var. Dep. Var. 1000000.
0.0025B 0. 0.0025B Control Variables CV i::unc. Initial Coeff. # Description Form Value G lC Max Cell Temp max 0. 1. 2C Low MCR Avg sum 0. 0.007Bl 3C Middle MCR Av sum 0. 0.007Bl 4C LMCR Average sum 0. 0.53559 SC Stream 4 Temp sum 0. 1. 6C HVC-ACUl Exha sum 0. 1. 0 7C Overall Max max 0. 1. BC Top MCR Avg sum 0. 0.007Bl 9C Total MCR Avg sum 0. 0.17669 Function Components Control Variable lC Max Cell Temp max Y=G*max(a0,a1Xl,a2X2, ... ,anXn) Gothic s Variable Coef. # Name location a 1 Temv cVls4 1. 2 Temv cVlsB 1. 3 Temv cVls3 1. 4 Temv cVls7 1. 5 Temv cVls2 1. 6 Temv cVls6 1. 7 Temv cVlsl 1. B Temv cVlsS 1. 9 Temv cVls12 1. 10 Temv cVls16 1. 11 Temv cVlsll 1. 12 Temv cVlslS 1. 13 Temv cVlslO 1. 14 Temv cVls14 1. 15 Temv cVls9 1. 16 Temv cVls13 1. 17 Temv cVls17 1. PAGE NO. 154 of 303 Coeff. Upd. Int. ao Min Max Mult. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 o. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. °"- CALC. NO. ENTR-978-CALC-004 \ ERC N CALCULATION CONTROL SHEET-REV.O pu;]e<;t, £wty fitJ<;. Attachment 1 PAGE NO. 155 of 303 18 Temv cVls18 1. 19 Temv cVls19 1. 20 Temv cVls20 1. 21 Temv cVls21 1. 22 Temv cVls22 1. 23 Temv cVls23 1. 24 Temv cVls24 1. 2S Temv cVls2S 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1, 34 Temv cVls34 1. 3S Temv cVls3S 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 l. 41 Temv cVls41 1. 42 Temv cVls42 1. 43 Temv cVls43 1. 44 Temv cVls44 1. 4S Temv cVls4S 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVJ.s49 1. so Temv \ cVlsSO 1. Sl Temv cVlsSl 1. S2 Temv cVlsS2 1. S3 Temv cVlsS3 1. S4 Temv cVlsS4 1. SS Temv cVlsSS 1. S6 Temv cVlsS6 1. S7 Temv cVlsS7 1. S8 Temv cVlsS8 1. S9 Temv cVlsS9 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 1. 63 Temv cVls63 1. 64 Temv cVls64 1. 6S Temv cVls6S 1. 66 Temv cVls66 1. 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv. cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. ,7_4 Temv cVls74 1. 7S Temv cVls7S 1. 76 Temv cVls76 1. 77 Temv cVls77 1. CALC. NO. ENTR-078-CALC-004 EN RC.ON CALCULATION CONTROL SHEET-REV.O vtoJtt,t. Ewr1 da1 Attachment 1 PAGE NO. 156 of 303 78 Temv cVls78 l .' 79 Temv cVls79 1. 80 Temv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 Temv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86. Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 'i'emv cVls95 1. 96 Temv cVls96 1. 97 Temv cV1897 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv cVlslOO 1. 101 Temv I cVlslOl 1. 102 Temv cVls102 1. 103 Temv cVls103 1. 104 Temv cVlsl04 1. 105 Temv -cVls105 1. 106 Temv cVls106 1. 107 Temv cVls107 1. \.' 108 Temv cVls108 1. 109 Temv cVlsl09 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cVls112 1. 113 Temv cVls113 1. 114 Temv cVls114 1. 115 Temv cVlsl15 1. 116 Temv cVls116 1. 117 Temv cVls117 1. 118 Temv cVls118 1. 119 Temv cVls119 1. 120 Temv cVls120 1. 121 Temv cVls121 L 122 Temv cVls122 1. 123 Temv c;Vls123
- 1. 124 Temv cVlsl24 1. 125 Temv cVls125 1. 126 Temv cVls126 1. 127 Temv 1 cVls127 1. 128 Temv cVls128 1. 129 Temv cVls129 1. 130 Temv cVls130 1. 131 Temv cVls131 1. 132 Temv. cVls132 1. 133 Temv .cVls133
- 1. 134 Temv cVls134 1. 135 Temv cVls135 1. 136 Temv cVls136 1. 137 Temv cVls137 r.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 ptojttt. f;vtfJ d(Jj. Attachment 1 PAGE NO. 157 of 303. 138 Temv cVls138 1. 139 Temv cVls139 1. 140 Temv cVls140 1. 141 Temv cVls141 1. 142 Temv cVls142 1. J.43 Temv cVls143 1. 144 Temv cVls144 1. 145 Temv cVls145 1. 146 Temv cVls146 1. 147 Temv cVls147 1. 148 Temv cVls148 1. 149 Temv cVls149 1. 150 Temv , cVls150 1. 151 Temv cVls151 1. 152 Temv cVls152 1. 153 Temv cVls153 1. 154 Temv cVls154 1. 155 Temv cVls155 1. 156 Temv cVls156 1. 157 Temv cvis157 1. 158 Temv cVls158 1. 159 Temv cVls159 1. 160 Temv cVls160 1. 161 Temv cVls161 1. 162 Temv -CV1s162
- 1. 163 Temv cVls163 1. 164 Temv cVls164 . 1. 165 Temv cVls165 1. 166 Temv cVls166 1. 167 Temv cVls167 1. 168 Temv cVls168 1. 169 Temv cVls169 1. 170 Temv cVls170 1. 171 Temv cVls171 1. 172 Temv cVls172 1. 173 Temv cVls173 1. 174 Temv cVls174 1. 175 Temv cVls175 1. 176 Temv cVls176 1. 177 Temv cVls177 1. 178 Temv cVls178 1. 179 Temv cVls179 1. 180 Temv cVls180 1. 181 Temv cVls181 1. 182 Temv cVls182 1. 183 Temv cVls183 1. 184 Temv cVls185 1. 185 Temv cVls184 1. 186 Temv cVls186 1. 187 Ternv cVls187 1. 188 Temv cVls188 1. 189 Temv cVls189 1. 190 Temv {Vls190 1. 191 Temv cVls191 1. 192 Temv cVls192 1. 193 Temv cVls193 1. 194 Temv cVls194 1. 195 Temv cVls195 1. 196 Temv cVls196 1. 197 Temv cVls197 1.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.:<<:ellenct-frNyptoJ<<tfvl!rJdW Attachment 1 PAGE NO. 158 of 303 198 Temv cVlsl98 1. 199 Temv cVlsl99 1. 200 Temv cVls200 1. 201 Temv cVls201 1. 202 Tem\r cVls202 1. 203 Temv cVls203 1. 204 Temv cVls204 1. 205 Temv cVls205 1. 206 Temv cVls206 1. 207 Temv cVls207 1. 208 Temv cVls208 1. 209 Temv cVls209 1. 210 Temv cVls210 1. 211 Temv cVls211 1. 212 Temv cVls212 1. 213 Temv cVls213 1. 214 Temv cVls214 1. 215 Temv cVls215 1. 216 Temv cVls216 1. 217 Temv cVls217 1. 2l8 Temv cVls218 1. 219 Temv cVls219 1. 220 Temv cVls220 1. 221 Temv cVls221 1. 222 Temv cVls222 1. 223 Temv cVls223
- 1. 224 Temv cVls224 1. 225 Temv cVls225 1. 226 Temv cVls226 1. 227 Temv I cVls227 1. 228 Temv c.Vls228
- 1. 229 Temv cVls229 1. 230 Temv cVls230 1. 231 Temv cVls231 1. 232 Temv cVls232 1. 233 Temv cVls233 1. 234 Temv cVls234 1. 235 Temv cVls235 1. 236 Temv cVls236 1. 237 Temv cVls237 1. 238 Temv cVls238 1. 239 Temv cVls239 1. 240 Temv cVls240 1. 241 Temv cVls241 1. 242 Temv cVls242 1. 243 Temv cVls243 1. 244 Temv cVls244 1. 245 Temv cVls245 1. 246 Temv cVls246 1. 247 Temv cVls247 1. 248 Temv cVls248 1. 249 Temv cVls249 1. 250 Temv cVls250 1. 251 Temv cVls251 1. 252 Temv cVls252 1. '253 Temv cVls253 1. 254 Temv cVls254 1. 255 Temv cVls255 1. 256 Temv cVls256 1.
E.NERCON Function Components Control Variable 2C Low MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv ) 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv 36 Temv 37 Temv 38 Temv 39 Temv 40 Temv 41 Temv 42 Temv 43 Temv 44 Temv 45 Temv 46 Temv 47 Temv 48 Temv 49 Temv 50 Temv 51 Temv 52 Temv 53 Temv CALCULATION CONTROL Attachment 1 Variable Coef. location a cVlsl 1. cVls2 1. cVls3 1. cVls4 1. cVls5 1. cVls6 1. cVls7 1. cVls8 1. cVls9 1. cVlslO 1. cVlsll 1. cVls12 1. cVls13 1. cVls14 1. cVls15 1. cVls16 1. cVls17 1. cVls18 1. cVls19 1. cVls20 1. cv1s21 1. cVls22 1. cVls23 1. cVls24 L cVls25 1. cVls26 1. cVls27 1. cVls28 1. cVls29 1. cVls30 1. cVls31 1. cVls32 1. cVls33 1. cVls34 1. cVls35 1. cVls36 1. cVls37 1. cVls38 1. cVls39 1. cVls40 1. cVls41 1. cVls42 1. cVls43 1. cVls44 1. cVls45 1. cVls46 1. cVls47 1. cVls48 1. cVls49 1. cVls50 1. cVls51 1. cVls52 1. cVls53 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 159 of 303 CALC. NO. ENTR-078-CALC-004 N R ON CALCULATION CONTROL SHEET-REV. 0 f'l't?tyday. Attachment 1 PAGE NO. 160 of 303 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 ;L. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 \ 1. 63 Temv cVls63 1. / 64 Temv cVls64 '1. 65 Temv cVls65 1. 66 Temv cVls66 1. \ 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 Temv cVls76 1. 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 8.0 TEimv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 'remv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86 Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv .cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv -cVlslOO
- 1. 101 Temv cVlslOl 1. 102 Temv cVlsl02 1. 103 Temv cVlsl03 1. 104 Temv cVlsl04 1. 105 Temv cVlsl05 1. 106 Temv cVls106 1. 107 Temv cVlsl'07
- 1. 108 Temv cVlsl08 1. 109 Temv cVlsl09 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cVlsll2 1. 113 Temv cVlsll3 1.
ENERCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 127 Temv 128 Temv Function Components Control Variable 3C Middle MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv *24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Tel)IV 36 Temv 37 Temv CALCULATION CONTROL Attachment 1 cVlsl14 1. cVlsl15 1. cVlsl16 1.' cVlsl17 1. cVlsll8 1. cVlsl19 1. cVlsl20 1. cVlsl21 1. cVlsl22 1. cVlsl23 1. cVlsl24 1. cVlsl25 1. cVlsl26 1. cVls127 1. cVlsl28 1. Variable Coef. location a cVlsl29 1. cVls130 1. cVls131 1. cVlsl32 1. cVlsl33 1. cVlsl34 1. cVlsl35 1. cVlsl36 1. cVlsl38 1. cVlsl37 1. cVlsl39 1. cVls141 1. cVlsl40 1. cVlsl43 1. cVlsl42 1. cVl§l44 1. cVls145 1. cVlsl46 .1. cVlsJ:47
- 1. cVlsl48 1. cVlsl49 1. cVlsl50 1. cVlsl51 1. cVlsl52 1. cVlsl53 1. cVls154 1. cVlsl55 1. cVls156 1. cVls157 1. cVls158 1. cVlsl59 1. cVlsl60 1. cVlsl61 1. cVls162 1. cVlsl63 1. cVlsl64 1. cVlsl65 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 161 of 303 / '\
CALC. NO. ENTR-078-CALC-004 NER.CON CALCULATION CONTROL SHEET-REV.O f:vtrydr;y.
- Attachment 1 PAGE NO. 162 of 303 38 Temv cVls166 1. 39 Temv cVls167 1. 40 Temv cVls168 1. 41 Temv cVls169 1. 42 Temv cVls170 1. 43 Temv cVls171 1. 44 Temv cVls172 1. 45 Temv cVls173 1. 46 Temv cVls174 1. 47 Temv cVlsl75 1. 48 Temv cVls176 1. 49 Temv cVls177 1. 50 Temv cVls178 1. 51 Temv cVlsl79 1. 52 Temv cV:\.sl80
- 1. 53 Temv cVls181 1. 54 Temv cVls182 1. 55 Temv cVls183 1. 56 Temv cVls184 1. 57 Temv cVls185 1. 58 Temv cVls186 1. 59 Temv cVls187 1. 60 Temv cVls188 1. 61 Temv cVls189 1. 62 Temv cVls190 1. 63 Temv cVls191 1. 64 Temv cVls192 1. L 65 Temv cVls193 1. 66 Temv CV1s194 1. 67 Temv cVls195 1. 68 Temv cVls196 1. 69 Temv cVls199 1. 70 Temv cVls197 1. 71 Temv cVls198 1. 72 Teniv cVls200 1. 73 Temv .cVls201
- 1. 74 Temv cVls202 1. 75 Temv cVls203 1. 76 Temv cVls204 1. 77 Temv c'irls205
- 1. 78 Temv cVls206 1. 79 Temv cVls207 1. 80 Temv cVls208 1. 81 Temv cVls209 1. 82 Temv cVls210 1. 83 Temv cVls211 1. 84 Temv cVls212 1. 85 Temv cVls213 1. 86 Temv cVls214 1. 87 Temv cVls215 1. 88 Temv cVls216 1. 89 Temv cVls217 1. 90 Temv cVls218 1. 91 Temv cVls219 1. 92 Temv cVls220 1. 93 Temv cVls221 1: 94 Temv cVls222 1. 95 Temv cVls223 1. 96 Temv cVls224 1. 97 Temv cVls225 1.
ENER,CON CALCULATION CONTROL SHEET-fxrel!e!U;e-E<etyp!O}<<:l f.vwy 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 4C LMCR Average sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) cVls226 cVls227 cVls228 cVls229 cVls230 cVls231 cVls233 cVls232 cVls236 cVls234 cVls235 cVls237 cVls239 cVls238 cVls240 cVls241 cVls242 cVls243 cVls244 cVls245 cVls246 cVls247 cVls248 cVls249 cVls250 cVls252 cVls251 cVls253 cVls255 cVls254 cVls256 Gothic s Variable
- 1 2 Name Cvval(O)
Cvval(O) Function Components Control Variable SC Stream 4 Temp sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) location cv3C cv2C Gothic s Variable
- 1 Name Temv Function Components Control Variable 6C HVC-ACUl Exhaust sum Y=G*(aO+a1Xl+a2X2+
... +anXn) location cV6 Gothic_s Variable
- 1 Name Temv location cV3 Attachment 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 0.867 Coef. a 1. Coef. a 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 163 of 303 ENERCON Function Components Control Variable 7C Overall Max max CALCUl-ATION CONTROL Attachment 1 Y=G*max(a0,a1Xl,a2X2,
... ,anXn) Gothic s Variable Coef. # Name location a 1 Cvval(O) cvlC 1. 2 Temv cVls257 1. 3 Temv cVls258 1. 4 Temv cVls259 1. 5 Temv cVls260 1. 6 Temv cVls261 1. 7 Temv cVls262 1. 8 Temv cVls263 1. 9 Temv 1 cVls264 1. 10 Temv cVls265 1. 11 Temv cVls266 1. 12 1Temv cVls267 1. 13 Temv cVls268 1. 14 Temv cVls269 1. 15 Temv cVls270 1. 16 Temv cVls271 1. 17 Temv cVls272 1. 18 Temv cVls273 1. 19 Temv cVls274 1. 20 Temv cVls275 1. 21 Temv cVls276 1. 22 Temv cVls277 1. 23 Temv cVls278 1. 24 Temv cVls280 1. 25 Temv cVls279 1. 26 Temv cVls281 1. 27 Temv cVls282 1. 28 Temv cVls284 1. 29 Temv cVls283 1. 30 Temv cVls286 1. 31 Temv cVls285 1. 32 Temv cVls287 h 33 Temv cVls288 1. 34 Temv cVls289 1. 35 Temv cVls290 1. 36 Temv cVls291 1. 37 Temv cVls292 1. 38 Temv cVls293 1. 39 Temv cVls294 1. 40 Temv cVls295 1. 41 Temv cVls296 1. 42 Temv cVls297 1. 43 Temv cVls298 1. 44 Temv cVls299 1. 45 Temv cVls300 1. 46 Temv cVls301 1. 47 Temv cVls302 1. 48 Temv cVls303 1. 49 Temv cVls304 1. 50 Temv cVls305 1. 51 Temv cVls306 1. 52 Temv cVls307 1. 53 Temv cVls308 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 164 of 303 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV.O f.'l!Hjti¢t. Attachment 1 PAGE NO. 165 of 303-54 Temv cVls309 1. 55 Temv cVls310 1. 56 Temv cVls311 1. 57 Temv cVls312 1. 58 Temv cVls313 1. 59 Temv cVls314 1. 60 Temv cVls315 1. 61 Temv cVls316 1. 62 Temv cVls317 1. 63 Temv cVls318 1. 64 Temv cVls319 1. 65 Temv cVls320 1. 66 Temv cVls321 1. 67 Temv cVls322 1. 68 Temv cVls323 1. 69 Temv cVls324 1. 70 Temv cVls325 1. 71 Temv cVls326 1. 72 Temv cVls327 1. 73 Temv cVls328 1. 74 Temv cVls329 1. ,75 Temv cVls330 1. 76 Temv cVls331 1. 77 Temv cVls332 1. 78 Temv cVls333 1. 79 Temv cVls334 1. 80 Temv cVls335 1. 81 .Temv cVls336 1. 82 Temv cVls337 1. 83 Temv cVls338 1. 84 Temv cVls339 1: 85 Temv cVls340 1. 86 Temv cVls341 1. 87 Temv cVls342 1. 88 Temv cVls343 1. 89 Temv cVls344 1. 90 Temv cVls345 1. 91 Temv cVls346 1. 92 Temv cVls347 1. 93 Temv cVls348 1. 94 Temv cVls349 1. 95 Temv cVls350 1. 96 Temv cVls351 1. 97 Temv cVls352 1. 98 Temv cVls353 1. 99 Temv cVls354 1. 100 Temv cVls355 1. 101 Temv cVls356 1. 102 r Temv cVls357 1. 103 Temv cVls358 1. 104 Temv cVls359 1. 105 Temv cVls360 1. 106 Temv cVls361 1. 107 Temv cVls362 1. 108 Temv cVls363 1. 109 Temv cVls364 1. 110 Temv -cVls365
- 1. 111 Temv cVls366 1. 112 Temv cVls367 1. 113 Temv cVls368 1.
EN RCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv 129 Temv Function Components Control Variable 8C Top MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv: 36 Temv CALCULATION CONTROL Attachment 1 cVls369 1. cVls370
- 1. cVls371 1. cVls373 1. cVls372 1. cVls375 1. cVls376 1. cVls377 1. '] cVls378 1. cVls379 1. cVls380 1. cVls381 1. cVls382 1. cVls383 1. cVls384 1. cVls374 1. Variable Coef. location a cVls257 1. cVls258 1. cVls259 1. cVls260 1. cVls261 1. cVls262 1. cVls263 1. cVls264 1. cVls265 1. cVls266 1. cVls267 1. cVls268 1. cVls269 1. cVls270 1. cVls271 1. cVls272 1. cVls273 1. cVls274 1. cVls275 1. cVls276 1. cVls277 1. cVls278 1. cVls279 1. cVls280 1. cVls281 1. cVls282 1. cVls283 1. cVls284 1. cVls285 1. cVls286 1. cVls287 1. cVls288 1. cVls289 1. \ cVls290 1. cVls291 1. cVls292 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 166 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptv_j(k,"t.
f.wr:; day. Attachment 1 PAGE NO. 167 of 303 37 Temv cVls293 1. 38 Temv cVls294 1. 39 Temv cVls295 1. 40 Temv cVls296 1. 41 Temv cVls297 1. 42 Temv cVls298 1. 43 Temv cVls299 1. 44 Temv cVls300 1. 45 Temv cVls301 1. 46 Temv cVls302 1. 47 Temv cVls303 1. 48 Temv cVls304 1. 49 Temv \ cVls305 1. 50 Temv cVls306 1. 51 Temv cVls307 1. 52 Temv cVls308 1. 53 Temv cVls309 1. 54 Temv cVls310 1. 55 Temv cVls311 1. 56 Temv cVls312 1. 57 Temv cVls313 1. 58 Temv cVls314 1. 59 Temv cVls315 1. 60 Temv cVls316 1. 61 Temv cVls317 1. 62 Temv cVls318 1. 63 Temv cVls319 1. 64 Temv cVls320 1. 65 Temv cVls321 1. 66 Temv cVls322 1. 67 Temv cVls323 1. 68 Temv cVls324 1. 69 Temv cVls325 1. 70 Temv cVls326 1. 71 Temv cVls327 1. 72 Temv cVls328 1. 73 Temv cVls329 1. 74 Temv cVls330 1. 75 Temv cVls331 1. 76 Temv cVls332 1. 77 Temv cVls333 1. 78 Temv cVls334 1. 79 Temv cVls335 1. 80 Temv cVls336 1. 81 Temv cVls337 1. 82 Temv cv1-s338
- 1. 83 Temv cVls339 1. 84 Temv cVls340 1. 85 Temv cVls341 1. 86 Temv cVls342 1. 87 Temv cVls343 1. 88 Temv cVls344 1. 89 Temv cVls345 1. 90 Temv cVls346 1. 91 Temv cVls348 1. I 92 Temv cVls347 1. 93 Temv cVls349 1. 94 Temv cVls351 1. 95 Temv cVls350 1. 96 Temv cVls352 1.
NER ON CALCULATION CONTROL Attachment 1 97 Temv 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 9C Total MCR Avg s.um cVls353 cVls354 cVls355 cVls356 cVls357 cVls358 cVls359 cVls360 cVls361 cVls362 cVls363 cVls364 cVls365 cVls366 cVls367 cVls368 cVls369 cVls370 cVls371 cVls372 cVls373 cVls374 *cvls375 cvis376 cVls377 cVls378 cVls379 cVls380 cVls381 cVls382 cVls383 cVls384 Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s Variable
- 1 2 Time Time Dom 1 2 3 Name Cvval(O) cvyal(O)
Domain Data DT DT Min Max 0.001 1. 0.001 10. 0.001 10. Solution Options DT Ratio le+006 1. 1. location cv8C cv4C End Print Time Int 0.01 0.01 10000. 500. 86400. 500. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 4.65949 Graph Int 1. 10. 100. Gas Error Relax T DEFAULT DEFAULT DEFAULT Time Solution Imp Conv Imp Iter Pres Sol Pres Conv Pres Dom Method 1 SEMI-IMP 2 SEMI-IMP 3 SEMI-IMP Run Options Option Start Time Limit 0. 0. 0. Limit 1 1 1 Method DIRECT DIRECT DIRECT Setting 0.0 Limit Limit 0. 1 0. 1 0. 1 Dump Int 0. 0. 0. Iter CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 168 of 303 Ph Chng L Flow T Scale Shutoff . DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Differ Burn Scheme Sharp FOUP 0. FOUP 0. FOUP 0.
ENERCON CALCULATION CONTROL Attachment 1 Restart Time Step # Restart Time Control 0 NEW Revaporization 'Fraction DEFAULT Fog Model OFF Maximum Mist Density (lbm/ft3) DEFAULT Drop Diam. From Mist (in) DEFAULT Minimum HT Coeff. (B/h-ft2-F) 0.0 Reference Pressure (psia) IGNORE Maximum Pressure (psia) DEFAULT Forced Ent. Drop Diam. (in) DEFAULT Vapor Phase Head Correction INCLUDE Kinetic Energy IGNORE Vapor Phase INCLUDE Liquid Phase INCLUDE Drop Phase INCLUDE Force Equilibrium IGNORE Drop-Liq. Conversion INCLUDE QA Logging OFF Debug Output Level 0 Restart Dump on CPU Interval (sec) 3600. Version 6.1 Formulations OFF Graphs Graph Curve Number # Title M&E Imbalance Peak and Averag Mon 1 EM 2 3 4 EE cvlC cv7C cv9C RHls71 FV4 FVl 5 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 169 of 303 0 1 2 3 4 5 6 7 TVls257 TVls274 TVls296 TVls312 TVls328 Envelope Sets Set No. Description Data Files File # 1 Name Results.txt Type TIME FV51 FV52 FV53 FV54 FV55 FV56 TAls2 FV57 TAls3 Set Type polate YES FV80 FV81 FV58 TAls2 TAlsl6 TAlsl8 No. Items Output Detail Files Level SINGLE FULL CALC. NO. ENTR-078-CALC-004 £xceHM<<-frt:ty f.vrr; ttay. CALCULATION CONTROL Attachment 2 Attachment 2: Humidity Sensitivity REV.O PAGE NO. 170 of 303 The purpose of this attachment is to analyze the Main Control Room temperature and relative humidity setting the initial relative humidity in the MCR volumes to the Environmental Design Criteria (EDC) maximum humidity of 70%. The analysis in the body of the calculation used an initial relative humidity in the MCR volumes set equal to the EDC minimum relative humidity of 20% in order to conservatively maximize the temperature in the MGR. The temperature results are shown below. 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell (oF) (oF) (oF) (oF) Tavg(°F) Temp (°F) 109.6 116.2 109.0 108.6 116.2 (2 hr) 121.8 (2.02 hr) The temperature transient is nearly identical to the transient for Case 2. The figure below shows the relative humidity in subvolume 1s71 located in the horseshoe area of the MGR. The relative humidity is at 70% at the start of the transient and decreases to below 30% before the smoke removal fan is turned on at two hours and *outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes in the outside air relative humidity. 80 70 60 :§ 50 E Relative Humidity in Horseshoe Area *****--*********-***-**--**-*-,-*-********-****-*****--*---****--***--********-*********-,*****************---*-***-***-**-**-****--***--*************-*****,-******-*-***-*****-*-----********-******-*****-*-**-*****
- -*****--***
.. -********** ....... -...........
- -********-**********-****-****-***********
.. 40 , ____________________________________ .... '.':.".". ..... '.'.: .... ::_ .. :. ___ :: _____________ ,_...., ""'""""""""""'"'""' __ 30 r-'-"::Jr __
1----------------------l 10 0 5 10 15 20 25 Time (hrs)
CALC. NO. ENTR-078-CALC-004 N RCON CALCULATION CONTROL Attachment 3 REV.a PAGE NO. 171 of 303 3: ERIS Panels Heat Load Heat Load Eris Panels The following information is obtained from EC 61975 (Reference 8.36). Heat load for ERIS panels is based on typical values from 3247.850-307-001A. Fo*r ERIS panels that have been recently upgraded and installed after M96-062 is based on typical values from R859-0100 and R859-0118 (Attached on P2E under EC # 38927). H13-Y714E has-a heat load of 0 as per CR-RBS-2014-05797 and ECN 58709. The heat load of ERIS panels is shown on the table below: LOOP Conditions load 132 370.8 0 H13-Y703D 226.8 226.8' 370.8 / 370.8 370.8 370.8 0 0 370.8 370.8 H13cY713A 370.8 132 226.8 / . o. ,_,,.,_,_,,,,_,,.,. .. ,,.,,._, "'""' _.,;,_,,_,,,_,_,_,,_,.,_,,._,,._,._,,.,,,.,,,,,,. ._,__, * --***
- 226.8 226.8 ................
- .................................
,. 226.8 226.8 H13-Y751D H13-P721D Total: ............................................ CALC. NO. ENTR-078-CALC-004 Attachment 3 ENERCON CALCULATION CONTROL SHEET-REV. o PAGE NO. 172 of 303 The diagram below pictures the heat load distribution (all are above 7.5 feet elevation on MCR except H 13-P721 D which is mounted on the floor) of ERIS panels. Blue color represents 370.8 W (except H13-Y714E which is 0 W), brown color represents 226.8 W, yellow color represents 240 W and red color represents 132 W. * ' The 7461.6 W for normal conditions is a conservative value, and if more margin is needed we could use field measurements with conservatism (which will have a total wattage for normal conditions of 4828.6 W). This is documented on the next pages. ERIS Panels Heat Load Justification Using Field Measurements There is 29 ERIS panels on MCR (EE-027 A Rev. 16), and every panel has a chassis assembly with a 250 watt supply. Before MR96-062, each ERIS panels had a 100 W power supply. There is a 3 A fuse before every current ERIS panel (GE-944E485AA), so the design and completely bounded power of ERIS panels is 115 (the input volts of the documented ERIS panels on 3247 .. 850-307-001A is 115V)*29*3 = 10005 W (Assuming is fully resistive). All the ERIS equipment installed on MR96-062 had either a VMINEQ-250-000 or VMINEQ-250-001. Now, as per E-144 Rev. 7, on attachment L, the maximum inverter loading value for circuit 22 of VBS01 B (there is 7 ERIS top hats (4 VMINEQ-250-001 and 3 VMINEQ-250-000)) is 1208 VA, so 172.57 VA for each ERIS hat panel. On E-143 Rev. 11, the maximum inverter loading value for circuit 21 of VBS01A (there is 6 ERIS top hats (3 VMINEQ-250-001 and 3 VMINEQ-250-000) is 1035 VA, so 172.5 VA for each ERIS hat panel. The circuit 22 of VBS01 B has very slightly more loading for each ERIS hat panel than of the circuit 21 of VBS01A, because field amp measurements for VMINEQ-250-001
- are just slightly higher. The field ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 3 PAGE NO. 173 of 303 measurements of the ERIS top hats were taken as per as per SAIC-RBS-041 letter (which is find on attachment B of E-226 Add C). The actual measured amperage of a VMINEQ-250-000 was 0.94 A (lower than the typical amps of 2.54 A used to obtain the 9352 Won E-226 Rev. 3 Add C), and the actual measured amperage of a VMINEQ-250-001 was 0.96 A (lower than the typical amps of 4.098 A used to obtain the 9352 W used on E-226 Rev. 3 Add C). The measured apparent power is then 115*0.96=110.4 VA. So the 172.5 VA given per ERIS panel on E-143 Rev. 11,.and the 172.57 VA given per ERIS panel on E-144 Rev. 7 is on the range of 55-60% higher than the measured apparent power values, giving conservatism to the field measurements.
There has been recent ERIS upgrades, which has lowered the typical amps in the RIM (Remote Input Module) considerably as now the listed typical amps are 1.1 amps (and probably the actual measured amperage is lower than that). Some of this ERIS equipment was replaced on December of 2014, which is befare timeline where we are assessing risk. As we are assessing risk on early 2015, I am including these modifications on the upcoming calculations of heat load. The first phase of the ERIS upgrade project included panels H13-Y710E and H13-Y711A. These changes are documented on EC# 23837. As documented on 3.1.3.2 of the EC# 23837, a new ERIS network equipment was installed in the MCR, panel H13-P721D, and the change was incorporated on CBD-VBN02, Sh. 003 Rev. 14 (however the change has still not been incorporated on EE-027 A Rev. 16). Breaker# 1 of VBN-PNL02 was retasked to supply power from C91-P609A (It was spared in place and no longer needed) to H13-P721D. This modification resulted in a load reduction of 744 VA at 1VBN-PNL02;
- however, as we are adding panel by panel, a 240 VA value should be included for H13-P721 Das per R859-0100.
On E-184, load supplied by breaker# 10 of 1VBN-PNL01B1 and load supplied by breaker# 20of1VBN-PNL 1A1 were never up9ated (when they should have had) after the ERIS upgrade on M96-062. Consequently, the same 100 VA (when 172.5
- VA should be used after the ERIS upgrade) is used for every ERIS panel. Breaker*#10 of 1VBN-PNL01B1 supplies to 6 ERIS panels (H13-Y711A, H13-Y710E, H13-Y751D, H13-Y740A, H13-Y748B and H13-Y748E) and breaker # 20 of 1VBN-PNL01A1 supplies to 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B) as per GE-944E485AA Rev. 12. Also, on E-184 Rev. 4, H13-Y748E is not included on the breaker#
10 of 1VBN-PNL01B1 when it should be included. On EC# 23837, ERIS upgrade on panels H13-Y710E, H13-Y711A and H13-Y740A resulted on an increase of watts (when it should have resulted on a decrease of watts) on breaker# 10 of PNL0181. EC# 23837 markups incorrectly E-184 (incorporated on E-184 Rev. 4) and CBD-VBN0181 (incorporated on CBD-VBN01 Rev. 19). So the load on breaker# 10 of 1VBN-PNL0181 should be 172.6 VA on the ERIS equipment that were not replaced (H13-Y751 D, H13-Y748B and H13-Y748E) and 1.1 Amps* 120 V (the documented input voltage of the new ERIS equipment) = 132 VA for each of the ERIS replaced (H13-Y710E, H13-Y711A and H13-Y740A). This totals 396 + 517.8 = 913.8 VA for the 6 ERIS panels for breaker# 10 of 1VBN-PNL01B1. For breaker# 20 of 1VBN-PNL01A1, the loading should be 172.6 *4 = 690.4 VA for the 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B). Power supplied from breaker# 10of1VBN-PNL0181 and '-* ( CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. O Attachment 3 PAGE N0.174 of 303 \ breaker# 20 of 1VBN-PNL01A1 are non-divisional and are expected to be 0 VA with loss of offsite power (LOOP). 1VBS-PNL01 B, breaker #22 is also affected by recent ERIS upgrade phase# 2. E-143 and E-144 were revised after ERIS upgrade documented on M96-062, unlike E-184. This ERIS upgrade phase# 2 is documented on EC # 38927, which upgrades H13-Y702D, H13-Y710B, H13-Y714B and H13-Y714D. EC# 38927 correctly identifies that the modification results in a load decrease of 162.4 VA; however, H13-Y710B is on pending status and has not been installed, so the load for the new ERIS equipment can't be used on H13-Y71 OB yet. So the load on breaker # 22 of 1 VBS-PNL01 B should be 172.6 VA on the ERIS equipment that were not replaced or have not been replaced (H13-Y714E, H13-Y710B, H13-Y730B and H13-Y744D) and 1.1Amps*120 = 132 VA for each of the ERIS replaced (H13-Y702D, H13-Y714B and H13-Y714D) as per R859-0118. As H13-Y714E is spare (CR-RBS-2014-05797 and ECN 58709), it should not be counted on the heat load. The load totals 396 + 690.4 = 913.8 VA for the 7 ERIS panels for breaker# 22 of 1VBS-PNL01 B. None of the ERIS panels (H13-Y715D, H13-Y715E, H13-Y713D, H13-Y703D, H13-Y731D and H13-Y743E) of breaker# 21 of PNL01A have been replaced so loading is the same documented load of 1035 VA. There are four more ERIS top hats (H13-Y713A, H13-Y710D, H13-Y712D, and H13-Y717D)supplied by RPS bus, and 2 more ERIS top hats (H13-Y751A and H13-Y712B) supplied by breaker# 2 of E22-S002PNL, which adds a heat load of 690.4 + 345.2= 1035.6 VA. Next page shows a summary of the heat loads on ERIS panels. The heat load values of ERIS panels are illustrated below under normal situations and under LOOP:
- The ERIS panels that have beeri recently upgraded and installed after M96-062 is shown:
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 3 REV.O ERIS Panel .... *-*'-* .... ,. ***--* ***--Y702D Y703A Y703D t**-* -.. -* .. ** **--.... < * .-* .... , ... Y714B Y714D Y714E Y715D Y715E V717D .. , ...... A-1. C-4 C-1 A-5 A-2 A-4 A-7 B-7 B-8 *****<-.......... , **. , .. ,, .... , B-2 B-1 A-3 A-9 ,.,.,.,,,,..,.,.,,,,,,,,_,,,,,, C-9 C-10 C-2 .... , ..... . . .............................. . Y730B B-3 Y731D A-8 Y740A Y743E , C-7 Y747B Y748B C-5 B-5 Y748E 8-10 "'"'"""'""'"""'"""'""""""""""'"'" Y750E C-8 Y751A Y751D B-6 B-9 PAGE NO. 175 of 303 1:Jot Applicable... __ . Not Applicable ... ..... ..... . . . ............... . .. . . .. ... .. .... . ... .. Not Applicable .. EN R ON CALCULATION CONTROL Attachment 4 Attachment 4: MCR Panel Data CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 176 of 303 As discussed in Section 6.4 in the body of the calculation the control panel dimensions and locations are from Reference 8.26 and 8.27. There are three separate GOTHIC thermal conductors representing the Control panels; one for the west portion of the room, one for the northeast
- portion, and one for the southeast portion.
The control panels were spanned over these areas as inspection of Reference 8.26 shows the panels to be relatively well distributed over these areas. The surface area exposed to air for each Control Panel section is calculated and shown in Tables 1-3 below' . ............................... ***..*...... --**--*.L-- .. -**---l--.-*_J ___ ***---' -***-**--L .... -......... . ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 177 of 303 Table 2: Surface Area Calculation for CP2 Panel Panel Grouping Nurrber Height (ft) Width (ft) ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 178 of 303 Table 3: Surface Area Calculation for CP3 Panel Grouping [1H13-U723 [1H13-U740 ! (__., ______ " __ _ i1H13*U710 Panel Nuniler Height (ft) Width (ft) Depth (ft) !H13-P740
- ****************************************
....
- i [ ........................................
! ............................................. , ................................ .. Surfi:!.ce Area of CP3 .. 2_72_8:.Z§] Table 4 below calculates the total surface area, including the interfacial surface area and bottom surface area, of the control panels in the lower MCR volume. This surface area is used in Section 6.4 to calculate an effective thickness of the control panels. The equation used to calculate the total surface area of each panel is below. SA control Panels = 2
- L
- W + 2
- H
- L + 2
- W
- H ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 179 of 303 i Surface
.. 2.67i 4.00i 121.33! ____ , 94.22j 94.22i 94.22J 213.00' 3.o9J 2i3.6ii! ,1 ____ _;:;;_3*;::00:ic.---=::.;.....-****_2::..1ioo1
- 1***********************************-i**********************************:********************
.. ****!****************************:****************.. . ...... .!.*--*-***- ................. , .... , ................................. j*******************************
- !***************************
..... ! +**********--***--**!************-*****)***--********--*** ............. .. .................. 1...................... ! ; .026; *""'--*-****--'--**-*---'----**-**-Lgp_!6_s_.1_0 L____ .l E E.RCON CALCULATION CONTROL Attachment 5 Attachment 5: Additional Steel Heat Sinks CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 180 of 303 Thermal conductors representing additional steel heat sinks are added to the GOTHIC MCR models. The heat sink material was identified during a MCR walk down conducted on July 21, 2015 and consists of steel structures (cabinets, panels, supports, duct work, conduit) of various thickness. The material is described in the Main' Control Room Heat Sink Walkdown notes included at the end of this attachment. Using these notes, the conductors _representing these steel heat sinks were added to their actual subvolumes based on inspection of Reference 8.26. ' ' CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 PAGE NO. 181 of 303 Table 1: Additional MCR Heat Sinks Item No. Description S.A. (ft2) Thicknes (in) Notes 1 Doors -Fire Doors leading outside MCR* 39.0 0.1250 External, 1/8" external panels, with air interior 2 Doors -SM Office 39.0 0.1250 Assume same thickness as Item 1 3 Door to closet SM office 16.25 0.1250 Assume same thickness as Item 2 4 lHS-JBA Panel 1.0 0.1250 Assume 1/8" panel thickness 5 ILAC Panels 100.8 0.1250 1/8" thick 6 Steel nlate suooorts for ILAC nanels 15.0 0.3750 3/8" 7 Steel elate suooorts for ILAC oanels 20.0 0.1875 3/16" 8 DC Panels 396.0 0.1250 1/8" thick , 9 Suooort Bea ms 212.0 0.3750 3/8" thick 10 Cabinets 198.0 0.0625 1/16" thick 11 l&C storalle cabinets 297.5 0.0625 1/16" thick 12 HVAC Ducts (smalll 182.3 0.2500 1/4" steel estimated 13 HVAC Ducts Clarlle\ 328.0 0.2500 1/4" steel estimated 14 HVAC Ducts Clarlle\ 200.0 0.1250 1/8" steel 15 SCA Panels 201.0 0.1250 1/8" steel 16 Metal File Cabinets 88.0 0.0625 1/16" steel assumed 17 Short metal storalle cabinet 40.S 0.0625 1/16" steel assumed 18 Metal cabinets 630.0 0.0625 1/16" steel assumed H13-Y747A(B) -junctio boxes atop cable 448.0 0.1250 1/8" steel 19 soreadiM bavs 20 Kitchen ca bi nets, etc. 324.0 0.0625 1/16" steel assumed 21 Metal desks 405.0 0.0625 1/16" steel assumed 22 1" conduit 139.0 0.1250 1/8" assumed 23 Securitv oort 12.5 0.5000 / 1/8" 24 ILAC Panels 73.0 0.1250 25 2" conduits 34.6 0.1250 1/8" assumed 26 3" conduit 19.6 0.1250 1/8" assumed 27 1.5" conduit 11.8 0.1250 1/8" assumed -28 COP-1160 cabinets 6.6 0.0625 1/16" steel assumed 29 RMS CAB170 cabinets 14.7 0.0625 1/16" steel assumed 30 2 white boxes 16.5 0.1250 1/8" assumed 31 Unistrut 65.6 0.1250 1/8" assumed TOTAL SA 4536.25 *Fire door is not added as a GOTHIC thermal conductor, as this surface area would already be accounted for by the wall thermal conductors. \ \ L CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 182 of 303 Main Control Room Heat Sink Walkdown 21 July 2015 walkdown of Main Control Room by Paul Sicard for purpose of identifying heat sinks. Heat sink modeling of Gl3.18.12.4*027 was first reviewed. (same as used for ENTR-078-CALC-002). Heat sinks modelled include structural steel above ceiling tiles, H13 and C6i panels in Main Control Room, and concrete walls. Assume 1/8" thick for cabinets and metal heat sinks unless noted otherwise. ("'4500 ft2 of additional metal heat sink area identified) Doors Have two 6.5x3 metal fire doors leading out of 19.5 ft2 pef door MCR. Assume 118" steel plates with air interior. Doors Have two 5.5x3 doors to ttw Shift 19.5 ft2 per door surface. Manager office. Both inside and outside of door exposed to MCR air. Door door to closet behind SM / CRS desk. 16.25 ft2 2.5
- 6.5 ft lHS-JBA metal oanel near SW door 1 ft2 Fire ext. Fire Ext. near door SCBA air bottles 30 "' 2' tall SCBA air bottles stored just south of CB136-10 door SW. ILAC panels 12 lighting panels on West wall. 100.8 ft2 (1/8" thick) ' 5 on S wall. \ 3 on N wall. (20 total) 16" width
- 12" heightx 10" depth. 5.6 ft2 per panel. (assume 1/8" thick) Steel plate supports steel supports mounted on walls. wall plate supports:
for ILAC panels. 15 ft2 (3/8" thick) 18" wide, 6" height, 3/8" thick. A= 0.75 ft2 per panel. cantilevered supports: 20 fi:2 (3/16" effective thickness) i Also have 7" long supports, 2" high, 3" wide. Perimeter of 10". Area per support of 10"*7"=70 in2 = 0.5 ft2. Two such supports per ILAC oanel for 1.0 ft2 oer oanel. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 DC panels Support Beams Storage cabinets I&C storage cabs 2 small HVAC ducts along N wall PAGE NO. 183 of 303 Have total of 9 BYS/VBS/ENB panels on N and S 396 ft2 ,(1/8" thick) walls of MCR. 5 ft wide x 6.5 ft high x 1 ft deep. Area per panel: 44 ft2. 9 oanels: 396 ft2. 170 ft. of support beams along S wall. "'12 ft. noted on N wall. (probably missed some) 4" high, 1 3/4" wide, 3/8" steel thickness. "'14" of perimeter A = 182 ft * (14") = 212 ft2 3/8" thick 3 near NE carrier: 6 ft H x 3 ft W x 2 ft D. Area per cabinet: 66 ft2. Assume 1/16" metal. 5 near S wall, center: 6 ft H x 3 ft W x 1.5 ft depth 59.5 ft2 per cabinet Assume 1/16" metal. 18" x 42", Floor to ceiling (9.115 ft per G13.18.12.4*027 calculation) 120" perimeter. Surface area per duct: 91.15 ft2 r Appears to be 1/4" thick steel based on flanges and sunnorts. 212 ft2, 3/8" thick 198 ft2 297.5 ft2 182.3 ft2 , CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O 2 large HVAC ducts along N wall SCA panels metal file cabinets short metal storage cabinet metal storage cabinets H13-Y747A(B) 6 ft x 3 ft. Perimeter: 18 feet. Surface area per duct: 164 ft2. Have eleven flanges, 3" high and 3" wid,e, of 1/4" steel that goes around the ducts. This corresponds to 100 ft2 of 1/8" steel (counting both too and bottom surface area) 4 along N wall. 2 along S wall. 6.5' H x 2' W x 6" depth. Peroanel: 33.5ft2 two near NW corner by back door to SM office. 4.5' H
- 17" W
- 3' D Per file cabinet:
44 ft2 NW corner near duct. 4 x 3 x 1.5. Area = 40.5 ft2 NE & SE.: 8: 5 x 3 x 18" (A= 49.5 ft2) 4: 6 x 3 x 18" <A = 58.5 ft2) .. and similar junction boxes that sit atop spreading bays. (are these already in H13 cabinet heat sinks?) 4 NW. 4 NE. 7 SW. 13 SE. (28 total) 3 foot depth. 1 foot height 2 foot width. Total Surface* Area: 16 ft2 oer unit. PAGE NO. 184 of 303 328 ft 2 (1/4") 200 ft2 (1/8" steel) 201 ft2 (1/8") 88 ft2 (1/16" assumed) 40.5 ft2 (1/16" assumed) 630 ft2 (1/16" thick assumed) 448 ft2 (1/8" assumed) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 185 of 303 , (simolification since inside is exoosed) Kitchen Metal kitchen cabinets, stove, etc ... 324 ft2 (1/16" assumed) Appears equivalent to 4 bays of cabinets. , \ (typical bay= 2' x 7.5' x 3', for surface area of:* ' 81 ft2) Metal desks Metal desks in MCR: 405 ft2 (1/16" assumed) Appears equivalent to at least 5 bays of cabinets. 1" conduit ,,,75 ft along S wall. 139 ft2 ,,,35 ft near kitchen 150 ft N wall. 33 ft near RMS-CAB170 (W wall) 237 ft along W wall 531ftof1" Diameter Conduit. Perimeter= 3.14". Area = 531 * (3.14"/12) = 139 ft2 Security port security port on S wall of stairway: 30'x30", 12.5 ft2, (1/2" thick) 1/2" thick 5 big blue ILAC panels 20" wide by 36" high x 6" deep. 73 ft2 (1/8" thick) Wwall A= 14.6 ft2 per cabinet 2" conduits 48 ft along w wall 34.6 ft2 18 ft near 8MS-CAB 6.3" perimeter. 3" CONDUIT 16 ft along S wall 19.6 ft2. 9 ft near COP-1150 1.5" conduit (includes 1 3/4") 11.8 ft2 30 ft near W wall COP-1160 metal cabinet on W wall 6.6 ft2 8" x 12" x 5.5" A= 2.2 ft2 3 cabinets total like this. RMS-CAB170 W wall: actuallv two cabinets: 14.7 ft2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 186 of 303 36"x24"x8": A= 8.33 ft2 I 18"x24"x8": A= 6.33 ft2 2 white boxes metal 18 x 18 x 12" 16.5 ft2 near RMS-CAB A = 8.25 ft2 oer box. 1 3/4" unistrut 84'west wall 65.6 ft2. 24' north wall 42' south wall. Assume effective perimeter of 5.25" of 1/8" steel. A= 65.6 ft2 CALC. NO. ENTR-078-CALC-004
- ENERCON CALCULATION CONTROL SHEET-REV. 0
- Attachment 6
fvffydcy. PAGE NO. 187 of 303 Attachment 6: Email from Paul Sicard, dated 7 /23/2015, 10:29 AM: This is a portable electric fan, stored in closet on third floor of Service Building, on hallway that leads to the passageway to Main Control Room. Maxx Air High Velocity Ventamatic Ltd. 4 blades 24" diameter. Rating of 2800-4000 CFM. (Ops looked up on Internet while I was examining fan for any model number or information --none on fan) CALC. NO. ENTR-078-CALC-004
- CALCULATION CONTROL SHEET-ENERCON REV. 0
- Attachment 6
.*v-rydfJ'f PAGE NO. 188 of 303 Attachment 6 {cont'd): Gasoline powered portable electric fan, stored in Fire Brigade Van. ) ENERCON CALCULATION CONTROL Attachment 7 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 189 of 303 Attachment 7: Email from Paul Sicard, dated 11/2/2015, 5:34 PM: Drawing EA-468 shows the return air registers for the main control room, which run along the east and west walls of the MCR. -The drawing shows 18 registers along West Wall; I counted (and re-counted) only 16, with at least one noticeable gap between them.
- The drawing shows 15 along East wall, 8 south of pipe chase, and 7 north of pipe chase. My walkdown observation confirmed this. The registers appear to be a plastic material with honeycombed squares (see sketch) that are about 1/2" x 1/2" square. The registers have 18 holes in one dimension and 80 in the long dimension that runs along the wall. Estimated thickness of the plastic grid the honeycomb is <1/16", probably more like 1/20". Estimated height (flow path length) through the honeycomb is also 1/2". The 80 holes in the long dimension would correspond to the 4 foot long dimension of the MCR ceiling tiles. (Note EA-468 refers to these as "Aluminum Louver Return Air Grille" in NOTE 5.) There are substantial gaps between the lower MCR volume and upper MCR volume around the ducting at the North end of Main Control Room._ For the duct in NW corner (return duct), the estimated gaps are: 2" East 4" South & West 6" North (against wall) For the ducting on East half of North wall, estimated gaps are: 6" North . 3" West & East (gap actually occurs between larger central duct and the two smaller outer ducts) O" South CALC. NO. ENTR-078-CALC-004 t"l ENERCON CALCULATION CONTROL SHEET-REV. 0 Attachment 8 (
fW'f"f fl<IJ PAGE NO. 190 of 303 Attachment 8: Honeywell Computer Equipment Heat Loads The following information is obtained from EC 61975 (Reference 8.36). Main Control Room C91 Panels C91-P642/P631/P630 The panels under consideration are Performance Monitoring System Panels (Plant Process Computers) located in the main control room. The GOTHIC calculations have loads from P642 and P631/P630 split into different grid locations. Since the panels are not labelled in the main control room, a walk down of the panels was performed to obtain the layout of the components placed on PPG Desk (P642/P630/P631). Based on information from the walkdown, Drawing GE-851E124AA sh2 and information from Bill Costinett, the following conclusion was arrived at. PANEL C91-P642 Equipment Mark/Part Number{ Wattage Reference GE* Supplies Recorders on Power Supply 8S1El24AA 144 Hl3-P680 C91-R603 287AS937POOS 9S Display CRT http:l/www.vartechsystems.com/pdf/technical/VTl 7B-Ctech.pdf C9l*K60S 287AS937P007 0 Keyboard C91-P6SS 287 AS937P028 420 Floppy Disc information obtained from ERIS Room which is similar to the one in MCR Network Switch C9S-NETSW*MCR 137.S Cisco Catalyst 37SOG Model No obtained from ERIS Room which is similar to the one in MCR laserjet includes a 10% Diversity 60SW Printing/ Sl watts ready/ 6.9 watts Printer ....... C91-RSTR-PTR 60.S Factor http:l/h71016.www7.hp.com/html/pdfs/LaserJetEnterpriseMSS1.pdf http:l/www.cnet.com/products/nortel-baystack-4SO-model-24t-switch-24-ports-Network Switch C91-NEISW-1 140 Baystack 4S0-24T managed-desktop-series/specs/ REMOVED FROM Versatec Plotter SERVICE -http:l/downloads.dell.com/Manuals/all-ERIS products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Workstation( PC) ERIS-RSTR-SDS 2SO 9010 Owner%27s%20Manual en-us.pd! ERIS Monitor ERIS-RSTR-SDS so DELL monitor Antee CPU C91-LEFMPC1 4SO http://store.antec.com/vpseries/vp4SOf.html# Honeywell RBS-D-C2960-cpu*** 1900G-PPC 273 Dell Monitor so Netgear Switch so Input from "Evaluation of PPG loads for MGR heatup" TOTAL 2120 -*Wattage based from CPU's in P612 PANEL C91-P631/P630 Equipment Mark/Part Numbers Wattage Network Switch Cisco catalyst 2960-S 137.S information obtained from ERIS R00m Which is similar to the one in MCR C9S-SDCR09 CDA-Optiplex computer 780 DC3 2SS http:l/www.dell.com/downloads/global/products/optix/en/optiplex 780 tech_guidebook en.pd! Monitor SDCR09 32 ASUS24" http:l/downloads.dell.com/Manuals/all-products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Optiplex gX240 C9S-PCA59 CDA-DC3 180 gx240 user%27s%20guide en-us.pd! Monitor flatron e23SO 28 http:lfwww.cnet.com/products/lg-flatron-e23SOv/specs/ Typer C91-P634 270 Typer information obtained from ERIS Computer Room Typer**** C91-P63S 0 Typer information obtained from ERIS Computer Room Printer++++ C9S-CP02 43 Diversity Factor included/ http:l/www.cnet.com/products/hp-color-laserjet-4600/specs/ Multiprinter C9S-CP02 8S Average wattage I http:l/manx.classiccmp.org/collections/mds-199909/cd3/printer/la40euga.pdf TOTAL 1030.S **-one of The Typers in the MGR is Idle and is not connected to the power supply unit. Hence the load on it is assumed to be O ++++ It should be noted that the Laser Jet Printers on that desk includes a 10% Diversity Factor (Obtained from the National Electric Code for intermittent loads) as the wattage reflected on the table above references the consumption while printing. Per Walkdown, three network switches were found under the desks of C91-P642/P630/P631 as opposed to one as documented in "Evaluation of PPG loads for MGR heatup". This change is reflected above and must be noted. sleep CALC. NO. ENTR-078-CALC-004 0 ENERCON CALCULATION CONTROL SHEET-REV.O Attachment 8 PAGE NO. 191 of 303 I Measured Values Nine Mile BTU/HR CALC E-184 Nine Mile Watts by Power Supply Ratings from 024 7 .810*000-Panel 252/ Comments from Entergy Panel Disconnect Load Description Current Reading Bus voltage PPCWatts BTU/HR Watts VBN-PNL02 2 C91-P608 CMS/ PPX computer equipt. (removed 800 0.26 121.4 , 32 108 NA 2400 -2400 watts w/ tape drive) VBN*PNL02 3 C91-P600 Central CPU unit 12.30 121.4 1493 5092 5119 2400 1500.2 VBN-PNL02 4 C91-P603 Large core storage 2.12 121.4 257 878 2000 1800 586.1 VBN*PNL02 5 C91*P612 Display Generator 3.50 121.4 425 1449 2048 1020 600.2 VBN*PNL02 6 C91-P620 Digital unit 4.40 121.4 534 1821 8191 2400 2400.5 490W +Wattage of Associated Blower VBN*PNL02 7 C91-P625 Digital unit 1.56 121.4 189 646 8500 2820 2491.1 l(BN-PNL02 8 C91-P621 Digital unit and SPC-BNKl 5.79 121.4 703 2397 8500 2750 2491.1 390 W +Wattage of Associated Blower VBN-PNL02 9 C91*P624 Digital unit 3.91 121.4 475 1619 8500 2400 2491.1 VBN-PNL02 10 C91*P622 Digital unit 3.16 121.4 384 1308 8500 2400 2491.1 VBN*PNL02 11 C91*P623 Digital unit 3.93 121.4 477 1627 8500 2400 2491.1 520 W +Wattage of Associated Blower VBN*PNL02 12 C91-P630/P631 PPC printers 1.05 121.4 127 435 1229 1000 360.2 1030.5 Watts in total for the two panels which includes PPC Printers and other components in the PPC table area VBN-PNL02 13 C91-P613 NSSS Analog unit 1.31 121.4 159 542 1229 912 360.2 VBN*PNL02 15 C91-P616 BOP Analog unit 0.86 121.4 104 356 850 360 249.1 VBN*PNL02 16 C91*P615 BOP Analog unit 0.98 121.4 119 406 850 360 249.1 VBN-PNL02 17 C91*P614 BOP Analog unit 1.29 121.4 157 534 850 360 249.1 VBN-PNL02 18 C91-P642 PPC Results Center Console (CRTs, KB, 4.23 121.4 514 1751 NA 1060 1060 Trend Recorders on P680) VBN*PNL02 19 H13*P680 PPC CRT's and KeyBoard 2.49 121.4 302 1031 NA 792 792 VBN*PNL02 20 C91-P632/P633 PPC computer printers 1.00 121.4 121 414 NA 810 810 VBN*PNL02 22 C91*P650 PPC BOP Digital and SWC*BNK4 4.56 121.4 554 1888 NA 2400 2400 390 W +Wattage of Associated Blower VBN*PNLOlAl 21 C91-P642 PPC Table Area NA 1488 1488 2120 Watts is the connected load VBN*PNLOlAl 22 C91-P631 Area Near PPC Desk NA 1526 1526 This row should be removed as all the connected loads associated with P631 are included in the row above (P630/P631 on row 11) VBN*PNLOlBl 33 C9l*P612 CPU's (2) NA 546 A Network Server is associated with P612 which has a load of 400W. This has to be accounted for with P612. Comments on the table above do not change any values obtained from Enercon Previously. Please look at the proposed heat load on C91 panels below. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 REV. 0 PAGE NO. 192 of 303
- 5 of the 17 Personal Computers are accounted for in Panels P642, P631 and P630. Hence they can be removed from the Personal Computer Wattage Calculations which totals to 5*300W each = 1500 Watts
- 3 ONE Computers shown in Document "Evaluation of PPC loads for MCR heatup" as 1254 Watts are accounted for already as they are installed on panels C91-CP613A, C91-CP613B and C91-CP625. This is referenced by drawing series starting from 0247.810-000-257 to 0247.810-000-266
- Document "Evaluation of PPC loads for MCR heatup" splits the load on NETWORK Switches as shown below. The necessary changes shown must be reflected to avoid double counting.
Network Server = 400 Watts The network server is associated and considered as a part of C91-P612 and must be removed from this part of the calculation One network switch= 147 Watts This value is accounted for in C91-P642 and must be removed. Network switch = 50 Watts This value is accounted for in C91-P642 and must be removed. Two Network Switches at reactor Engineering This has not been accounted for with panels and Desk= 2*147 = 294 Watts must stay as is. '
- On the Email is attached a document which revises the Heat 'load on ERIS Panels based on updated calculations.
Also, It was established that H13-Y714E was removed per CR-RBS-2014-05797. H13-Y714E which carried a load of 370.8 watts is now marked as 0 watts. Revised document is attached. This change must be updated by Enercon on their inputs to the calcs.
- Document "Evaluation of PPC loads for MCR heatup" shows the removal of the following o Large Core Storage (LCS) in panel C91-P603 (GE PPD Dwg. 287A5937P003) o Magnetic Tape Drive in panel C91-P608 (GE PPD Dwg. 287A5937P008) o Moving Head Disc in panel C91-P609 (GE PPD Dwg. 287A5937P009) o Card Reader in panel C91-P638 (GE Dwg. 287A5937P011)
Based on CR-RBS-2015-4282, the following Equipment were abandoned in place o Black Box to Ethernet in old ERIS B Cabinet o REPTSC o Power Plex Server in MCR o Honeywell P609 Disk Drum o C95-REPMCR2 o C95-REPMCR1 o C91-DEC-REPCM-1 o C91-DEC-REPENG1 o C95-BRMCR1 o MMS-ENV PRINTER o C95-RBSU1 L o C95-REPTSC o C95-LB05
- This is actually BRMCR2 modem. SRM-Outfall-02 Abandoned in Place CR The information above must be documented.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 . REV.O PAGE NO. 193 of 303 Information below shows the suggested rev1s1on of wattage on C91 panels base9 on walkdown, information published above and discussions with the Honeywell Expert. It was determined that the 2x multiplication factor used by Enercon previously on the measured values can be revised with a 1.15 factor which accounts for a 15% margin for aging factor. All panels except P642/P631 and P630 use measured values as inputs as they are comprised of circuit cards and are bounded by the associated power supplies. P642/P631 and P630 comprise of multiple devices on them (as shown in the first page of this document) which cannot be bounded bv the measured values. Hence connected loads are used as inputs Nine Mile Measured Numbers based on calculations by Suggested Revised Watts Values Enercon Numbers 1.15x all panels except Computer Load 2x digital panels+ l.lx others p642/p631/p630 C91-P608 C91-P600 C91-P603 C91-P612 C91-P620 C91-P625 C91-P621 C91-P624 C91-P622 C91-P623 C91-P630/P631 C91-P613 C91-P616 C91-P615
C91-P614 C91-P642 H13-P680 C91-P632/P633
C91-P650 C91-P642 C91-P631 C91-P612 C91-P612 Server) Total watts (Network 2400 1500.2 586.1 600.2 2400.5 ;. ... 360.2 360.2 249.1 249.1 249.1 1060 792 810 1488 1526 546 32 34.7 1493 1642.5 257 283.1 425 467.4 534** 127 140.2 159 174.9 104 114.8 119 130.9 157 172.3 514 564.9 302 332.5 121 133.5 1488.0 1526.0 546.0 14382.7 ' 36.8 1716.95 295.55 488.75 1030.5 182.85 119.6 136.85 180.55 2120 This load is accounted for with NSSS Panel 139.15 This load is accounted for with C91-P642 Loading above This load is shown with C91-P630/P631 loading above 546 400 11206.95 ENERCON Load Description C91 Process Computer Panels ERIS DAS Tophats Personal Computers/Work Stations Network Switch ONE Computers TOTAL CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 8 REV.O PAGE NO. 194 of 303 Numbers based on calculations by Suggested Revised Numbers Enercon 14382.7 11206.95 2660 7461.6 5100 3600 891 294 1254 0 24287.7 22562.55 IT must be noted that The ERIS DAS Tophats are located above the term cabinets at 7.5 Ft elevation v CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o ENERCON Attachment 9 PAGE NO. 195 of 303 Attachment 9: GOTHIC Input File for Case 2 I 2Q _ J_ ,5b 4 5 7 \ I \ ) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATIQN CONTROL SHEET-REV.p Attachment 9 f.xrcl!r.nt*"-fretyfHD}e<:t. f.wuy dfJY. PAGE; NO. 196 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) (ft2) ls MCR Below 87417. 136 .135 9.115 13.8296 DEFAULT 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 Atmosphere 30000. 136.135 40. 10. DEFAULT 4 Stairwell 1 8341.84 98. 66.667 20. DEFAULT 5 Smoke Removal E 10000. 142. 10. 10. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option Wall Option (ft2) ls o. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT ' Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s 0. -CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT X-Direction Nading Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. . 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading ENERCON Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37, 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Height Plane (ft) (ft) 1 o. 3.48513 2 3.48513 4.0193 3 7.50443 1.61057 I Cell Blockages -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 6 1H13-U750 7 1H13-U730 8 1H13-P808 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1H13-U715 13 1H13-U720 14 1H13-U721/U799 15 1H13-U748 16 1H13-U746 17 1H13-U744 18 1H13-U742 19 1H13-U741 20 1H13-U730 21 1H13-U703 22 1H13-U701 23 1H13-U712 24 1H13-U710 25 1H13-U714 26 1H13-U711 27 1H13-U740 28 Shift Manager E 29 Shift Manager s 30 Kitchen_S 31 Kitchen_W Cell Blockages -Table 2 Volume ls Block Coo No. Xl Yl Zl CALCULATION CONTROL Attachment 9 T BLK B I N BLK B I N BLK B I N B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I'N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N (ft) X2 Y2 Z2 X3 Y3 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 197 of 303 Curb Z3 L Height 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 lB 19 20 21 22 23 24 25 26 27 2B 29 30 31 ENERCON 9. Bl. lB. 27. 36. 45. 54. 5B.5 90. 99. lOB. 117. 126. 135. 9. lB. 27. 36. 45. 54. 9.25 0. 9.25 0. lB.5 o. lB.5 0. lB.5 o. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. 46.25 0. 46.25 0. 46.25 0. 46.25 o. 55.5 0. 46.25 0. 5B.5 27.75 0. Bl. 37. 0. 99. 46.25 0. -lOB. 46.25 0. 11 7. 46. 25 0. 126. 46.25 0. 135.' 46.25 0. 0. 9.25 0. 9. 0. 0. 54. 64.75 o. 54. 64.75 0. CALCULATION CONTROL Attachment 9 54. 135. lB. 27. 36. 45. 54. 77.5 90. 99. lOB. 117. 126.
- 9. lB. 27. 36. 45. 54. 77.5 Bl. 99. lOB. 117. 126. 135. 9. 9. 54. 45. 9.25 7.5044 9.25 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 lB.5 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 *7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 / 9.25 9.115 6.25 9.115 74. 9 .115 64.75 9.115 X-Direction Cell Face Variations Volume ls Cell Blockage No. No. def o lsl ls2 ls3 ls4 ls5 ls6 lsl7 lslB ls19 ls20 ls21 ls22 ls129 ls130 lsl31 ls132 ls133 ls134 ls145 ls146 ls147 ls14B lsl49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000..
- 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. . 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. . 0. 0. 0. Drop De-ent. Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 198 of 303 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
lsl50 ls9 lslO lsll lsl2 lsl3 lsl4 lsl5 ls25 ls26 ls27 ls28 ls29 ls30 ls31 lsl37 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl53 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 lsl8 ls34 ls50 ls66 lsl46 lsl62 lsl78 lsl94 ls290 ls306 lsl9 ls35 ls51 ls67 lsl47 lsl63 lsl79 lsl95 ls291 ls307 ls20 ls36 ls52 ls68 ls148 ,1s164 lsl80 lsl96 ls292 ls308 ls21 ENERCON 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 I 3 3 3 3 3 4 4 4 *4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. CALCULATION CONTROL Attachment 9 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. 0. 0. 0. 0. 0. 0. 0 *. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. p. 0. 0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0 '. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 199 of 303 ls37 ls53 ls69 ls149 ls165 ls181 ls197 ls293 ls309 ls22 ls38 ls54 ls70 ls150 ls166 ls182 lsl98 ls294 ls310 ls23 ls24 ls39 ls40 ls151 ls152 ls167 ls168 ls26 ls42 ls58 ls74 lsl54 lsl70 ls186 ls202 ls298 ls314 ls27 ls43 ls59 ls75 ls155 ls171 ls187 ls203 ls299 ls315 ls28 ls44 ls60 ls76 ls156 ls172 ls188 ls204 ls300 ls316 ls29 ls45 ls61 ENERCON 6 6 6 6 6 6 6. 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9-9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 12 12 12 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. I 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1.
- 1. 0. 0. 1. 1. 1. 1. 0. 0. CALCULATION CONTROL Attachment 9 le-006 0. le-006 0. 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 6.44228 o. 6.44228 0. 37. 0. le-006 o. le-006 o. 37. 0. 37. 0. le-006 0. le-006 o. 37. 0. 6.44228 0. 6.44228 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 *O. 6.44228 0. 37. 0. le-006 o. le-006 0. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. *o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o .. ci. CALC.' NO. ENTR-078-CALC-004 REV.O PAGE NO. 200 of 303 ls77 ls157 ls173 ls189 ls205 ls301 ls317 ls30 ls46 ls62 ls78 lsl58 ls174 ls190 ls206 ls302 ls318 ls31 ls47 ls63 ls79 ls159 ls175 l*s191 ls207 ls303 ls319 ls65 ls81 ls97 ls113 ls193 ls209 ls225 ls241 ls337 ls353 ls66 ls82 ls98 ls114 ls194 ls210 ls226 ls242 ls338 ls354 ls67 ls83 ls99 lsl15 ls195 ls211 ls227 ls243 ls339 ls355 ls68 ls84 lslOO ENER 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 18 18 18 ON 1. 1. 0. 0. 1. 1. 1. 1. /0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1.
- 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. CALCULATION CONTROL Attachment 9 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 6.44228 0. 6 .44228 0.' 37. 0. le-006 o. le-006 o. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 0. 6.44228 '0. 37. 0. le-006 0. le-006 0. 37. 0. 37. o. le-006 O. le-006 O. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 o. le-006 0. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 o. le-006 0. 37. 0. 37. 0. le-006 . o. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 201 of 303 ENERCON 18116 lsl96 ls212 ls228 ls244 ls340 ls356 ls85 lslOl lsll 7 ls213 ls229 ls245 ls357 ls70 ls86 lsl02 ls118 lsl98 ls214 ls230 ls246 ls342 ls358 ls39 ls40 ls55 ls56 lsl67 lsl68 lsl83 lsl84 ls57 ls73 ls89 lsl05 lsl85 ls201 ls217 . ls233 ls329 ls345 ls75 ls91 lsl23 ls203 ls219 ls235 ls251 ls347 ls363 ls7§ ls92 lsl08 ls124* ls204 ls220 ls236 ls252 18 18 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20* 20 20 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22' 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 1. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1.
- 1. 0. 0. 1.
- 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1.
- 1. 0. 0. 1.
- 1. Ii. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. CALCULATION CONTROL Attachment 9 37. 0. 37. 0. , le-006 O. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 o. 37. 0. 37. 0. le-006 o. 37. 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 37. 0. 37. 0. le-006 o. le-006 O. 37. 0. 6.44228 0. 6.44228 0. 37. 0. 37. 0. 37. 0. 37. 0. 92.5 0. 92 .5 '0. 92.5 0. 92.5 0. 37. 0. l'e-006 0. le-006 0. 37. 0. 37. 0. le-006 0. le-006 0. 37.. 0. 6.44228 0. 6.44228 0. 37. 0. .le-006 o. le-006 O. 37. 0. 37. 0. le-006 0. le-006 o. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 o. le-006 o. 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 0. o. 0.
- 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. -0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 202 of 303 ls348 ls364 ls77 ls93 ls109 ls125 ls205 ls221 ls237 ls253 ls349 ls365 ls78 ls94 lsllO ls126 ls206 ls222 ls238 ls254 ls350 ls366 ls79 ls95 lslll ls127 ls207 ls223 ls239 ls255 ls351 ls367 lsl lsl7 lsl29 ls145 ls257 ls273 lsl ls129 ls257 ls102 ls118 ls230 ls246 ls358 ls374 lslOl lsl02 ls117 ls118 ls229 ls230 ls245 ls246 ls357 ls358 ls373 ls374 ENER 24 24 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 29 29 29 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 ON CALCULATION CONTROL Attachment 9 1. 1. 1. 0. 0. 1. 1. 0.
- 0. 1.
- 1. 1 .. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 6.44228 6.44228 37 .* le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-0,06 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. 37. 37. 37. 37. 1. 37. 0.324341 12.0006 0.324341 12.0006 0.324341 12.0006 1. 37. 0. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. le-006 37. le-006 37. le-006 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. ,37. 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. j 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. ci. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 203 of 303 EN R ON CALCULATION CONTROL Attachment 9 Y-Direction Cell.Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 ls129 ls130 ls131 ls132 ls133 ls134 ls135 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll *1s12 ls13 ls14 ls15 ls16 ls137 ls138 ls139 18140 ls141 ls142 ls143 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 ls18 lsl9 ls34 ls35 ls SO ls51 lsl46 ls147 ls162 lsl63 ls178 ls179 ls19 ls20 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000.
- 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2: 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36 .. le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 6.44228 36. 36.
- 36. 36. 36. 36. 36. 36 .. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 ., 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. \ : Drop De-ent. Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0.
- 0. 0. CALC .. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 204 of 303 ls35 ls36 ls51 ls52 lsl47 ls148 ls163 ls164 ls179 ls180 ls20 ls21 ls36 ls37 ls52 ls53 ls148 ls149 lsl64 ls165 ls180 ls181 1s21* ls22 ls37 ls38 ls53 ls54 ls149 lsl50 ls165 ls166 ls181 lsl82 ls22 ls23 ls38 ls39 ls54 ls55 ls150 ls151 ls166 ls167 ls182 ls183 ls23 ls24 ls25 ls151 ls152 ls153 ls279 ls280 ls281 ls26 ls27 ls42 ls43 ls58 EN,ERCON CALCULATION CONTROL Attachment 9 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 1. 36. 0. 5 18. o. le-006 0.388855 13.9988 0 .5 18. 0. le-006 0.388855 13.9988 1. 12.8846 1. 1. 1. 1. 1.
- 1. 1. 6.44228 10.7371 36. 36. 36.
- 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. '* . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 205 of 303 ls59 lsl54 lslSS lsl70 lsl 71 lsl86 lsl87 ls27 ls28 ls43 ls44 ls59 ls60 IslSS lsl56 lsl71 lsl72 lsl87 lsl88 ls28 ls29 ls44 ls45 ls60 ls61 lsl56 lsl57 lsl72 lsl73 lsl88 lsl89 ls29 ls30 ls45 ls46 ls61 ls62 lsl57 lsl58 lsl73 lsl74 lsl89 lsl90 ls30 ls31 , ls46 ls47 ls62 ls63 lsl58 lsl59 lsl74 lsl75 lsl90 lsl91 ls31 ls32 ls47 ls48 ls63 NERC N 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 i3 13 13 13 13 13 13 13 13 14 14 14 14 14 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. i. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 3'6. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36: 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. ' 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. o. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 206 of 303 ls64 ls159 ls160 18175 ls176 ls191 ls192 ls65 ls66 ls81 ls82 ls97 ls98 ls193 ls194 ls209 ls210 ls225 ls226 ls66 1802 ls83 ls98 ls99 ls194 lsl95 ---, ls210 ls211 ls226 ls227 ls67 ls68 ls83 ls84 ls99 lslOO lsl95 ls196 ls211 1Jl212 ls227 ls228 ls68 ls69 ls84 ls85 lslOO lslOl ls196 lsl97 ls212 ls213 ls228 ls229 ls85 ls86 lslOl ls102 ls213 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 ERCON 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36.
- 36. 36.
- 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36( 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 207 of 303 ls214 ls229 ls230 ls70 ls71 ls86 ls87 lsl02 lsl03 lsl98 lsl99 ls214 ls215 ls230 ls231 ls39 ls40 ls41 lsl67 lsl68 lsl69 ls57 ls58 ls73 ls74 ls89 ls90 lsl85 lsl86 ls201 ls202 ls217 ls218 ls75 ls76 ls91 ls92 lsl07 lsl08 ls203 ls204 ls219 ls220 ls235 ls236 ls76 ls77. ls92 ls93 lsl08 lsl09 ls204 ls205 ls220 ls221 ls236 ls237 ls77 ls78 ls93 ENERCON CALCULATION CONTROL Attachment 9 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22 22 / 22 23 23 23 23 23 2:3' 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.5 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 18. O. le-006 0.388855 13.9988 0.8125 24.6024 0.623108 10.0178 0.771484 19.8127 1. 36. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1.
- 1. 1.
- 1.
- 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36. 36. 36. 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0; 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. '0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. Q. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O.' 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 208 of 303 \
ls94 lsl09 lsllO ls205 ls206 ls221 ls222 ls237 ls238 ls78 is79 ls94 ls95 lsllO lslll ls206 ls207 ls222 ls223 ls238 ls239 ls79 ls80 ls95 ls96 lslll lsll2 ls207 ls208 ls223 ls224 ls239 ls240 lsl ls2 lsl29 lsl30 ls257 ls258 lsl02 lsl03 lsll8 lsll9 ls230 ls231 ls246 ls247 ls358 ls359 ls374 ls375 ,lslOl lsl02 lsl03 ls229 ls230 ls231 ls357 ls358 ls359 ENERCON 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 0. 1. 1. 1. 1. 1. '1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1. 0. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36.
- 36. le-006 36. le-006 36. le-006 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. le-006 36. 36. le-006 36. 36. le-006 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. 0. 0. -0. o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 209 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O Z-Direction Cell Face Variations Volume ls Cell Blockage Ai-ea Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 ls148 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 lsl78 lsl79 ls35 ls36 No. Porosity (ft) 0 1. 1000000.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 1. 1. 1.
- 1. 1. 1. i: 1. 1. 1. -1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37.
- 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 3'J. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37.
- 37. 37. 37.
- 37. 37. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. Loss Coeff. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. PAGE NO. 210 of 303 Drop De-ent. Curb Ht Factor (ft) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
ls51 ls52 ls163 ls164 ls179 lsl80 ls36 ls37 ls52 ls53 ls164 ls165 ls180 ls181 ls37 ls38 ls53 ls54 lsl65 ls166 lsl81 ls182 ls38 ls39 ls54 ls55 ls166 ls167 ls182 ls183 ls23 ls24 ls25 ls39 ls40 ls41 ls151 ls152 lsl53 ls167 ls168 ls169 ls42 ls43 ls58 ls59 ls170 ls171 ls186 ls187 ls43 ls44 ls59 ls60 ls171 ls172 ls187 ls188 ls44. ls45 ENERCON 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 11 11 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ' 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 74. 37. 61. 6667 74. 37. 61.6667 74. 37. 61. 6667 74. 37. 61.6667 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36.
- 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o,. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. *o. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 211 of 303 ls60 ls61 ls172 ls173 ls188 ls189 ls45 ls46 ls61* ls62 ls173 ls174 ls189 ls190 ls46 ls47 ls62 ls63 ls174 lsl75 ls190 ls191 ls47 ls48 ls63 ls64 ls175 ls176 ls191 ls192 ls Bl ls82 ls97 ls98 ls209 ls210 ls225 ls226 ls82 ls83 ls98 ls99 ls210 ls211 ls226 ls227 ls83 ls84 ls99 lslOO ls211 ls212 ls227 ls228 ls84 ls85 lslOO lslOl ls212 ls213 ENER 11 11 11 11 11 11 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 18 18 18 18 18 18 ON 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 9 36 .. 36. 36. 36. 36. '36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. I 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 :' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 212 of 303 r ENERCON ls228 ls229 lslOl ls102 ls229 ls230 ls86 ls87 lsl02 lsl03 ls214 ls215 ls230 ls231 ls39 ls40 ls41 ls55 ls56 ls57 ls73 ls74 ls89 ls90 ls201 ls202 ls217 ls218 ls91 ls92 lsl07 lsl08 ls219 ls220 ls235 ls236 ls92 ls93 ls108 ls109 ls220 ls221 ls236 ls237 ls93 ls94 ls109 lsllO ls221 18 18 19 19 19 19 20 20 20 20 20 20 20 20 21 21 21 . 21 21 21 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 24 24 24 24 24 24' 24 24 25 25 25 25 25 ls222 25 ls237 ) 25 ls238
- 25 ls94 26 ls95 lsllO lslll ls222 ls223 ls238 ls239 26 26 26 26 26 26 26 1. 1*. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. .1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 74. 37. 61.6667 74 . 37. 61.6667 36. 36. 36.
- 36. 36. 36. 36. 36.' 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. ,o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. / CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 213 of 303 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0. 0. 0. 0. 0. 0. 0. 0. 0. Q. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.' ' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. o.
ENERCON CALCULATION CONTROL Attachment 9 --.,. ls95 ls96 lslll lsll2 ls223 ls224 ls239 ls240 lsl lsl7 :J,sl29 lsl45 ls257 ls273 _J lsl 27 27 27 27 27 27 27 27 28. 28 28 28 28 28 29 29 29 29 ls2 lsl29 lsl30 ls257 ls258 lsll8 lsll9 ls246 ls247 ls374 ls375 lsl02 lsll8 ls230 ls246 ls358 ls374 -29 29 30 30 30 30 30 30 31 31 31 31 31 31 Volume Variations Volume ls Cell Blockage No. No. def O ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 lsl49 lsl50 lslO lsll 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 36.
- 36. 36. 36. 36. 36. 36. 36.
- 37. 37. 37. ,37. 37. 37. 51.4286 51.4286 51.4286 51.4286 51.4286 51'.4286
- 36. 36. 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. ( Volume Hyd. Dia. Porosity (ft) 1. 1000000.
- 1. 1.
- 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. ; 0. 0. 0. 0.
- 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. g. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0 . 0. 0. 0. o. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 214 of 303 ENERCON ls12 2 1. lsl3 2 1. ls14 2 1. lslS 2 1. ls26 2 1. ls27 2 1. ls28 2 1. ls29 2 1. ls30 2 1. ls31 2 1. ls138 2 1. ls139 2 1. ls140 2 1. ls141 2 1. ls142 2 1. ls143 2 1. lsl54 2 1. lslSS 2 1. ls156 2 1. ls157 2 1. ls158 2 1. ls159 2 1. ls34 3 1. ls35 3 1. ls SO 3 1. lsSl 3 1. ls162 3 1. ls163 3 1. ls178 3 1. ls179 3 1. ls35 4 1. ls36 4 1. lsSl 4 1. ls52 4 1. lsl63 4 1. ls164 4 1. lsl79 4 1. ls180 4 1. ls36 5 1. ls37 5 1. ls52 5 1. ls53 5 1. ls164 5 1.' ls165 5 1. lsl80 5 1. ls181 5 1. ls37 6 1. ls38 6 1. ls53 6 1. ls54 6 1. ls165 6 1. ls166 6 1. ls181 6 1. ls182 6 1. ls38 7 1. ls39 7 1. ls54 7 1. ls SS 7 1. ls166 7* 1. ls167 7 1. CALCULATION CONTROL Attachment 9 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37.
- 37. 37. 37. 37. I 37. 37. 37. 37. 37.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36.
- 36. 36. 36.
- 36. 36. 36-; 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 215 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ixre!fo11a-Ew:ty ptO}fKl £vf/ry da'f. Attachment 9 PAGE NO. 216 of 303 lsl82 7 1. 36. lsl83 7 1. 36. ls23 8 1. 74. ,ls24 8 1. 37. ls25 8 1. 61.6667 ls39 8 1. 74. ls40 8 1. 37. ls41 8 1. 61.6667 lslSl 8 1. 74. lsl52 8 1. 37. lsl53 8 1. 61.6667 lsl67 8 1. 74. lsl68 8 1. 37. lsl69 8 1. 61.6667 ls42 9 1. 36. ls43 9 1. 36. ls SB 9 1. 36. ls59 9 1. 36. lsl70 9 1. 36. lsl71 9 1. 36. lsl86 9 1. 36. lsl87 9 1. 36. ls43 10 1. 36. ls44 10 1. 36. ls59 10 1. 36. ls60 10 1. 36. lsl71 10 1. 36. lsl72 10 1. 36. lsl87 10 1. 36. lslBB 10 1. 36. ls44 11 1. 36. ls45 11 1. 36. ls60 11 1. 36. ls61 11 1. 36. lsl72 11 1. 36. lsl73 11 1. 36. lslBB 11 1. 36. lsl89 11 1. 36. ls45 12 1. 36. ls46 12 1. 36. ls61 12 1. 36. ls62 12 1. 36. lsl73 12 1. 36. lsl74 12 1. 36. lsl89 12 1. 36. lsl90 12 1. 36. ls46 13 1. 36. ls47 13 1. 36. ls62 13 1. 36. ls63 13 1. 36. lsl74 13 1. 36. lsl75 13 1. 36. lsl90 13 1. 36. lsl91 13 1. 36. ls47 14 1. 36. ls48 14 1. 36. ls63 14 1. 36. ls64 14 1. 36. lsl75 14 1. 36. lsl76 14 1. 36.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxceHence-F.vetyptt;]e<:t, fw:r:; ttay. Attachment 9 PAGE NO. 217 of 303 ls191 14 1. 36 . . ls192 14 1. 36. ls81 15 1. 36. ls82 15 1. 36. ls97 15 1. 36. 1598 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. r 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19. 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 ,20 1. 36. ls102 20 1. 36. lsl03 20 1. 36. ls214 20 1. 36. ls215 20 '1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61. 6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61. 6667 ls167 21 1. 185. ls168 21 1. 92.5 lsl69 21 1. 154.167 \' ls183 21 1. 185. ls184 21 1. 92.5 '-ls185 21 1. 154.167 ls73 22 1. 36. ls74 22 . 1. 36 . CALC. NO. ENTR-078-CALC-004 '* ENERCON CALCULATION CONTROL SHEET-REV.O pt()jtJ<;t, Evwy day. Attachment 9 I PAGE NO. 218 of 303 ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. lsl08 23 1. 36. ls219 23 1. 36.' ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 -1. 36. ls93 24 1. 36. lsl08 24 1. 36. lsl09 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1. 36. ls109 25 1. 36. lsllO 25 1. 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. ls238 25 1. 36. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 1. 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. ls17 28 1. 37. ls129 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51.4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ls257 29 1. 51.4286 ls258 29 1. 51.4286 lsl18 30 1. 36. ls119 30 1. 36. ENERCON ls246 30 1. ls247 30 1. ls374 30 1. ls375 30 1. ls102 31 1. ls118 31 1. ls230 31 "1. ls246 31 1. ls358 31 1. ls374 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (-ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction No ding Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Cell Blockages Volume 2s Block Height (ft) 5. 3.67 Table 1 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 219 of 303 ENERCON CALCULATION CONTROL Attachment 9 No. Description Cell Blockages -Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000.
- 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. No. Porosity (ft) Coeff. def 0 1. 1000000.
- 0. Z-Direction Cell Face Variations Volume 2s (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 220 of 303 Z3 L Curb Height Cell Blockage Area Hyd. Dia. Loss Drop De-ent. Curb Ht No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s (ft) Coeff. 1000000.
- 0. Hyd. Dia. (ft)' 1000000.
North South East West Top Bottom Factor (ft) 0. 0. NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Molec Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase # Diff. Model (ft) (ft) No. No. Option ls NO MIX-L 1. 1. 1. 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation
- Type Phase (ft2/s2)
[*lbm/s] FF (ft2/s3) [*lbm/s] FF "" Discrete Burn Parameters Min Min Max Burn Flame Burn Un Vol H2 02 H20 Length speed Rate Burn Burn # Frac Frac Frac (ft) (ft/s) FF Frac Opt ls 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 2s 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 3 0.07 0.05 0.55 DEFAtn;.T DEFAULT DEFAULT FBR I E.NERCON CALCULATION CONTROL Attachment 9 4 5 0.07 0.07 0.05 0.05 0.55 0.55 DEFAULT DEFAULT DEFAULT DEFAULT Continuous Burn Parameters Vol Min H2 Min Max Max Burn Vol Flow 02 H20 H20/H2 Frac # (lbm/s) Frac Frac Ratio ls 0. 0.05 0.55 1000. 1. 2s 0. 0.05 0.55 1000. 1. 3 0. 0.05 0.55 1000. 1. 4 0. 0.05 0.55 1000. 1. 5 0. 0.05 0.55 1000. 1. Mechanistic Burn Rate Parameters Min Min Max Lam Burn DEFAULT FBR DEFAULT FBR Burn Vol H2 02 H20 Da Rate Temp Limit # Frac Frac Frac No. (lbm/ft3-s FF (F) ls 0. 0. 1. 1. DEFAULT 350. 2s 0. 0. 1. 1. DEFAULT 350. 3 0. 0. 1. 1. DEFAULT 350. 4 0. 0. 1. 1. DEFAULT 350. 5 0. 0. 1. 1. DEFAULT 350. Mechanistic Burn Propagation Parameters Unburne Burned CC Flow Flame Ignition Vol H2 H2 Vel Thick H2 # Frac FF Frac FF (ft/s) FF (ft) FF Frac ls 0.04 0.001 DEFAULT 0.164 0.04 *2s 0.04 0.001 DEFAULT 0.164 0.04 3 0.04 0.001 DEFAULT 0.164 0.04 4 0.04 0.001 DEFAULT 0.164 0.04 5 0.04 0.001 DEFAULT 0.164 0.04 Fluid Boundary Conditions -Table 1 Press. Temp. Flow s J ON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 221of303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDI$ EDIS OFF Elev. BC# Description (psia) FF (F) FF (lbm/s) FF p 0 Trip Trip (ft) lP Environment 14.7 96 2P HVC ACUl Outlet 14.7 1 3F Atmosphere FB 14.7 1 ___ 4p Smoke Removal E 14.7 96 Fluid Boundary Conditions -Table 2 Liq. V Stm. V Drop D Cpld BC# Frac. FF Frac. FF (in) FF BC# lP 0. h53 NONE 2P 0. . 03034 NONE 3F 4P .03034 h53 NONE NONE Fluid Boundary -Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 lP 1. 2P 1. 3F 1. 4P 1. Fluid Boundary Conditions -Table 4 Volume Fractions 0 N N 136 .13 lT 0 N N 136.13 lT 200 N N 136.13 N N 136.13 Flow Heat Outlet Frac. FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT FF ENERCON CALCULATION CONTROL Attachment 9 Liq CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 222 of 303 BC# Gas 5 FF Gas 6 FF Gas 7 FF Comp FF lP 2P 3F 4P Flow Paths -Table 1 F .P. Vol # Description A 1 'Env Connection ls94 2 Tile 1 a 2s34 3 Tile 1 b 2s68 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8 HVC-ACUl PB Atmosphere FB CB136-9 Low CB 136-9 High Outside Low Outside High Smoke Removal Smoke Removal 2s86 2s77 2s63 2s82 2s89 2s95 2s56 3 3 ls14 ls142 3 4 p 5 2s193 Smoke Removal 2 2s136 Smoke Removal 3 2s144 Fan Flow path ls14 Toilet/Kitchen ls374 Egg Crate 1 ls369 Egg Crate 2 ls371 Egg Crate 3 ls373 Egg Crate 4 ls375 Egg Crate 5 ls377 Egg Crate 6 ls379 Egg Crate 7 ls381 Egg Crate 8 ls383 Egg Crate 9 ls370 Egg Crate 10 ls372 Egg Crate 11 ls376 Egg Crate 12 ls378 Egg Crate 13 ls380 Egg Crate 14 ls382 Egg Crate 15 ls384 Egg Crate 16 ls257 Egg Crate 17 ls258 Egg Crate 18 ls259 Egg Crate 19 ls260 Egg Crate 20 ls261 Egg Crate 21 ls262 Egg Crate_22 ls263 Egg Crate 23 ls264 Egg Crate 24 ls265 Egg Crate 25 ls266 Egg Crate_26 ls267 Egg Crate 27 ls268 Egg Crate_28 ls269 Elev Ht (ft) (ft) 136.13 3.3 145.5 0.001 145.5 0.001 Vol B lP ls290 ls324 Elev Ht (ft) (ft) 136.13 3.3 145.24 0.001 145.24 0.001 145.5 0.001 ls342 145.24 0.001 145.5 0.001 ls333 145.24 0.001 145.5 0.001 ls319 145.24 0.001 145.5 0.001 ls338 145.24 0.001 145.5 0.001 ls345 145.24 0.001 145.5 0.001 ls351 145.5 0.001 136.13 1. 136.13 1. ls312 2P 3F 136.13 3.4851 4 139.62 3.5149 4 157.67 3.5 161.17 3.5 142. 1. 151. 1., 151. 151. 1. 1. 4 3 4P 5 5 5 136.13 3.4851 4 144.25 1. 5 145.24 0.001 2s113 145.24 0.001 2s115 145.24 0.001 2s117 145.24 0.001 2s119 145.24 0.001 2s121 145.24 0.001 2s123 145.24 0.001 2s125 145.24 0.001 2sl27 145.24 0.001 2s114 145.24 0.001 2s116 145.24 0.001 2s120 145.24 0.001 2s122 145.24 0.001 2s124 145.24 0.001 2s126 145.24 0.001 2s128 145.24 0.001 2sl 145.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 145.24 0.001 136.13 1. 136.13 1. 136.13 3.4851 139.62 3.5149 157.67 3.5 161.17 3 .5 136.13 1. 142. 1. 142. 1. 142. 1. 136.13 3.4851 142. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 ) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O 51 52 53 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area # (ft2) 1 1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 40. 40. 80. 80. 80. 80. 80. so. 80. 1. 1. 10.5 10.5 10.5 10.5 1. 36. 12.
- 12. 10.5 1. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 -Table 2 Hyd. Diam. (ft) 1. 2.667 2.661 2.667 2.667 2.667 2.667 2.667 2.667 2.667 1. 1. 4.2 4.2 4.2 4.2 1. 5.54 3.43 3.43 4.2 1. 0.042 0.042 0.042 0.042 0.042 0.042 0. 042. 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 PAGE NO. 223 of 303 ls270 145.24 0.001 2s14 ls271 145.24 0.001 2s15 ls272 145.24 0.001 2s16 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) 1. 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 1. 1. 10. 10. 10. 10. 1. 10.
- 10.
- 10. 10. 1. 10. 10.
- 10. 10. 10. 10. 10. 10. 10. 10 .. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
- 10. 10. 10. 10. 10. 10. Friction Relative Dep Length Rough-Bend (ft) ness (deg) 0. 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0. o. 0. 0. Mom Strat Trn Flow Opt Opt N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE NONE NONE N NONE N NONE 0. NONE 0. NONE 0. 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE 53 Flow Flow Path # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 CALC. NO. ENTR-078-CALC-004 ENERC'ON CALCULATION CONTROL Attachment 9 REV.O 2.5 0.042 Paths -Table 3 Fwd. Rev. Loss Coeff. 0.127 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2 .-78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 Loss Coeff. 0.127 2.837 2.837 2. 837 2.837 2.837 2.837 2.837 2.837 2.837 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2. 78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 10. q.0417 Critical Exit Comp. Opt. OFF OFF OFF OFF Flow Loss Model Coeff. OFF 0. OFF 0. OFF 0. OFF 0. OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. Drop Breakup Model OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF dFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF PAGE NO. 224 of 303 N NONE ENERCON Flow Paths -Table 4 Forwar Flow Min Path H2 #-Frac 1 0.06 2 0. 06 3 0.06 4 0.06 5 0.06 6 0.06 7 0.06 8 0.06 9 0.06 Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 10 0.06 0.05 11 0.06 0.05 12 0.06 0.05 13 0.06 0.05 14 0.06 0.05 15 0.06 0.05 16 0.06 0.05 17 0.06 0.05 18 0.06. 0.05 19 0.06 0.05 20 0.06 0.05 21 0.06 0.05 22 0.06 0.05 23 0.06 0.05 24 ,0.06 0.05 25 0.06 0.05 26 0.06 0.05 27 0.06 0.05 28 0.06 0.05 29 0.06 0.05 30 0.06 0.05 31 0.06 0.05 32 0.06 0.05 33 0.06 0.05 34 0.06 0.05 35 0.06 0.05 36 0.06 0.05 37 0.06 0_05 38 0.06 0.05 39 0.06 0.05 40 0.06 0.05 41 0.06 0.05 42 0.06 0.05 43 0.06 0.05 44 0.06 0.05 45 0.06 0.05 46 0.06 0.05 47 0.06 0.05 48 0.06 0.05 49 0.06 0.05 50 0. 06 I 0. 05 51 0.06 0.05 52 0.06 0.05 53 0.06 0.05 Thermal Conductors Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0:55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O Min H2 Frac 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 Revers Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0 .. 55 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0. 05 . 0. 55 0.05 0.55 Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 225 of 303 Zero Prop Flow Opt NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW Co'FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW COJ;LOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW ENERCON CALCULATION CONTROL Attachment 9 Cond # Vol HT Vol HT Cond s. A. Init. Description CPl-West CP2-NE CP3-SE Floor A Co B Co Type (ft2) T. (F) ls 2s 3s 4s 5s 6s 7s 8s 9s 10s lls 12s 13s 14s 15s 16 17 18s 19s 20s 21s 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ls18-1 1 ls18-1 5 1 7764.63 75. ls81-2 1 ls81-2 5
- 1 3234 .14 75. ls89-2 1 ls89-2 5 1 3728.76 75. lsl-12 11 lsl-12 12 5 10656. 76.5 Upper MCR ceili MCR West Wall L MCR North WallL 2s129-10 2s129-8 4 ls16-2 2 ls16-2 8 4 lsl-36 2 lsl-36 8 4 MCR East Wall L ls113-2 ls113-8 4 MCR South Wall lsl28-2 ls128-8 4 Ceiling Tiles ls257-10 2sl-12 11 6 Upper MCR West 2sl-14 1 2sl-14 8 4 Upper MCR North 2sl-24 1 2sl-24 8 4 Upper MCR East 2s113-1 2s113-8 4 Upper MCR South 2s128-1 2s128-8 4 Steel Structure 2sl-12 1 2sl-12 5 2 SM Doors lsl 1 lsl 5 10 lHS-JBA ls14 1 lsl4 5 7 ILAC Panels ls133-1 ls133-5 7 Steel ILAC 3/8 ls5-13 1 ls5-13 5 8 Steel ILAC=3/16 ls5-13 1 ls5-13 5 7 DC Panels N ls17-1 1 ls17-1 5 7 DC Panels S ls32-1 1 Support Beams ls16-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-18 1 HVAC Large_l lsl-18 1 HVAC Large_2 ls113-1 SCA Panels N ls17-1 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-1 1 ls32-1 5 ls16-3 5 ls97-2 5 ls64-2 5 lsl-18 5 lsl-18 5 ls113-5 ls17-1 5 ls48 5 ls18 5 ls2 5 ls98-1 5 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 ls146-1 ls146-5 7 ls241-1 ls241-5 7 ls153-1 ls153-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 ls55-9 5 9 41s 1" Conduit S ls16-3 1 42s 1" Conduit kite ls117-1 43s 1" Conduit N wa ls113-1 44s l"Conduit W wal ls3-15 1 45 Security Port ls15 1 46s 2" Conduit ls4-13 1 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 50 RMS-CAB170 51 White boxes 52s Unistrut W 53s Unistrut)N
- 54s Unistrut s ls112-1 ls16-3 1 ls7-9 1 ls9 1 lslO 1 ls13-3 1 ls33-1 1 ls96-3 1 ls16-3 5 lsll 7-5 ls113-5 ls3-15 5 ls15 5 ls4'-13 5 ls112-5 ls16-3 5 ls7-9 5 ls9 5 lslO 5 ls13-3 5 ls33-1 5 ls96-3 5 Thermal Conductors
-Radiation Parameters 7 7 7 7 8 7 7 7 9 9 7 7 7 7 10656. 87. 1312.56 85. 674.51 85. 1312.56 85. 674.51 85. 10016. 78. 1248.48 88. 641.58 88. 1248.48 88. 641. 58 88. 11756. 8 81. 55.2 75. 1. 75. 173.8 75. 15. 75. 20. 75. 198. 75. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 19.625 9.42 39.25 70.65 12.5 34.6 19.6 11.8 6.6 14.7 16.5 36.8 10.496 18.368 75.
- 75. 75.
- 75. 75. 75. 75. 75. 75. 75. 75.
- 75.
- 75. 75. 75. 75. 75. 75. 75.
- 75.
- 75. 75. 75. 75. 75. 75. 75: 75. 75. 75. 75. 75. 75. Cond Therm. Rad. Emiss. Therm. Rad. # Side A Side A Side B Emiss. Side B CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 226 of 303 Or I I I I I I I I I x I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON ls No 2s No 3s No 4s No 5s No Gs No 7s No as No 9s No 10s No lls No 12s No 13s No 14s No 15s No 16 No 17 No 18s No 19s No 20s No 2ls No 22s No 23s No 24s No 25s No 26s No 27s No 28s No 29s No 30 No 31 No 32 No 33s No 34s No 35s No 36s No 37s No 38s No 39s No 40s No 4ls No 42s No 43s No 44s No 45 No 46s No 47s No 48s No 49s No 50 No 51 No 52s No 53s No 54s No Heat Transfer Coefficient Heat Type Transfer Nominal # Option Value FF 1 Direct CALCULATION CONTROL Attachment 9 No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No Types -Table 1 end/ Sp Nat For Cnv Cnd Cnv Cnv Cnv Opt Opt HTC Opt Opt ADD MAX VERT SURF OFF CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 227 of 303 Rad Opt OFF CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET-REV.O f.xreifena-fH?typtojea
£wr.1du1 Attachment 9 PAGE NO. 228 of 303 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 3T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. 2T '13 13 Sp Conv 1. 63 OFF Heat Transfer Coefficient Types -Table 2 Min Type Phase Liq # Opt Fr act 1 VAP 2 VAP 3 VAP 4 VAP 5 6 7 8 9 10 11 12 13 VAP VAP VAP VAP VAP VAP Max Liq Fr act Convect Bulk T Model Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tw Tg-Tw Tg-Tf Tg-Tf Tg-Tw FF Condensa Bulk T Model Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw FF Heat Transfer Coefficient Types -Table 3 Type # 1 2 3 4 5 6 7 8 9 10 11 12 13 HTC Type # 1 2 3 4 5 6 7 Char. Nat For Norn Minimum Char. Cond. Length (ft} Length Coef Exp (ft) FF FF Types -Table 4 Total Const Heat CT (Btu} Coef Exp Vel Vel Conv HTC Height FF FF (ft/s) FF (B/h-ft2-F (ft) Peak Time Exp (sec} XT DEFAULT. DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Initial BD Value Exp (B/h-f2-F} yt DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Post-BD Post-BD Exp Direct xt FF EN RCON 8 9 10 11 12 13 Thermal Type Conductor Types CALCULATION CONTROL SHEETi Attachment 9 Thick. O.D. Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 229 of 303 Heat # Description Geom (in) (in) Regions (Btu/ft3-s) FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural* Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1. 75 5 2 3.75 6 2 7.875 Therma1 Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0.
- 0. 0. 0. 0. 0. 0. 0. 0 .--0. Sub-Heat regs. Factor 1 1. Sub-Heat regs. Factor 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 o. 2 0. 2 0. Sub-Heat Region # (in) (in)
- regs. Factor 1 2 0. 0.00768 1 0. 2 2 0.00768 0.01536 1 0. 3 2 0.02304 0.03072 1 0. 4 2 0.05376 0.06144 1 0. 5 2 0 .1152 0.12288 1 0. 6 2 0.23808 0.24576 1 0. 7 2 0.48384 0.49152 1 0. 8 2 0.97536 0.98304 1 0. 1 0.135 ST 1 o. 6 0. 23 0. 39 1.2e-004 21 0. 1 0. 3 0. 1 0. 2 0.
ENERCON CALCULATION CONTROL Attachment 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9584 1.96608 1 3.92448 3.93216 -1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 22.0416 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Thermal Conductor Type 5 Composite_l Mat. Region # 1 5 2 5 3 5 4 5 6 7 8 9 10 11 12 13* 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 o. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0.01224 0.013056 1 0.025296 0.026112 1 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1. 625 0.034244 1 1.659245 0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.098518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 20.70052 1.96608 1 22.6666 0.98304 1 23.64964 0.49152 1 24.14116 0.24576 1 24.38692 0.12288 1 24.5098 0.06144 1 24.57124 0.03072 1 24.60196 0.01536 1 24.61732 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 230 of 303 ENER Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Region # (in) 1 4 0. 2 4 3.5e-004 3 4 0.001044 4 4 0.002436 5 4 0.00522 6 4 0.010788 7 4 0.021924 8 4 0. 044196 9 4 0.08874 10 4 0.177828 11 4 0.289621 12 4 0.401414 13 4 0.468837 14 4 0.53626 15 4 0.580804 16 4 0.603076 17 4 0 .'614212 18 4 0.61978 19 4 0,622564 20 4 0.623956 21 4 0,624652 Thermal Conductor 7 Type 1/8" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Region # (in) 1 1 0. 2 1 0,1875 3 1 0.28125 Thermal Conductor Type 9 1/16" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 10 1/4" Steel Mat, Region # 1 1 2 1 Cooler/Heater Bdry. (in) 0. 0.125 CALCULATION CONTROL SHEET-** Attachment 9 Thick (in) 3.5e-004 7e-004 ' 0.001392 0.002784 0.005568
- 0. 011136 0.022272 0.044544
0.089088 0.111793 0 .111793 0.067423 0.067423 0.044544
- 0. 022272 0. 011136 0.005568 0.002784 0,001392 7e-004 3.5e-Ci04 Thick (in) 0.125 Thick (in) 0.1875 0.09375 0.09375 Thick (in) 0.0625 Thick (in) 0.125 0.125 Sub-Heat regs. Factor 1 0. 1 0. 1 0. 1 0. ---... 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. Sub-Heat regs. Factor 1 0. Sub-Heat regs. Factor 1 0. 1 0. 1 0. Sub-Heat regs, Factor 1 0. / Sub-Heat regs. Factor 1 0. 1 0. *' CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 231 of 303 ENER Heater Cooler # Description 1H 2H 3H 4H SH 6H 7H 8H 9H lOH llH 12H 13:H 14H lSH 16H 17H lSH 19H 20H 21H 22H 23H 24H 2SH 26H 27H 28H 29H 30H 31H 32H 33H 34H 3SH 36H 37H 38H 39H 40H 41H 42H 43H 44H 4SH 46H 47H 48H 49H SOH SlH S2H S3H* S4H SSH S6H S7H \_ CALC. NO. ENTR-078-CALC-004 Q N , CALCULATION CONTROL Attachment 9 REV.O Vol. # lsl ls2 ls3 ls4 lss' ls6 ls7 ls8 ls9 lslO lsll ls12 ls13 lsl4 lslS ls16 ls17 ls18 ls19 ls20. ls21 ls22 ls23 ls24 ls2S ls26 ls27 1828 ls29 ls30 ls31 ls32 ls33 ls34 ls3S ls36 ls37 ls38 ls39 ls40 ls41 ls42 ls43 ls44 ls4S ls46 ls47 'ls48 ls49 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 On Off Flow Trip Trip Rate # # (CFM) PAGE NO. 232 of 303 Flow Heat Heat Rate Rate Rate Phs Ct.rlr FF (Btu/s) FF Opt Loe 1. 6T VTI lsl 1. 6T VTI ls2 1. 6T VTI ls3 1. 1. 1. 1. 1. 1'. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 6T VTI ls4 6T VTI lsS 6T VTI ls6 6T VTI ls7 6T VTI ls8 6T VTI ls9 6T VTI lslO 6T VTI lsll 6T VTI lsl2 6T VTI ls13 6T VTI ls14 6T VTI ls'is 6T VTI ls16 6T VTI lsl7 6T VTI ls18 6T VTI lsl9 6T VTI ls20 6T VTI ls21 6T VTI ls22 6T VTI ls23 6T VTI ls24 6T VTI ls2S 6T VT! ls26 6T VTI ls27 6T VTI ls28 6T VTI ls29 6T VTI ls30 6T VTI ls31 6T VTI ls32 6T VTI ls33 6T VTI ls34 6T VTI ls3S 6T VTI ls36 6T VTI ls37 6T VTI ls38 6T VTI ls39 6T vTI ls40 6T VTI ls41 6T VTI ls42 6T VTI ls43 6T VTI ls44 6T VTI ls4S 6T VTI ls46 6T VTI ls47 6T VTI ls48 6T VTI ls49 6T VTI lsSO 6T VTI lsSl 6T VTI lsS2 6T VT! lsS3 6T VTI lsS4 6T VTI lsSS 6T VTI lsS6 6T VTI lsS7 58H 59H GOH 61H 62H 63H 64H 65H 66H 67H 68H 69H 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H lOOH 101H 102H 103H 104H lOSH 106H 107H 108H 109H 110H 111H 112H 113H 114H 115H 116H 117H ENERCON ls58 ls59 ls60 ls61 ls62 ls63 ls64 ls65 ls66 ls67 ls68 ls69 ls70 ls71 ls72 ls73 ls74 ls75 ls76 ls77 ls78 ls79 ls80 ls81 ls82 ls83 ls84 ls85 ls86 ls87 ls88 ls89 ls90 ls91 ls92 ls93 ls94 ls95 ls96 ls97 ls98 ls99 lslOO lslOl lsl02 ls103 lsl04 lslOS ls106 lsl07 ls108 ls109 lsllO ls111 ls112 ls113 lsll4 lsl15 ls116 ls117 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV. 0 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. PAGE NO. 233 of 303 6T VTI ls58 6T VTI ls59 6T VTI ls60 6T VTI ls61 6T VTI ls62 6T VTI ls63 6T VTI ls64 6T VTI ls65 6T VTI ls66 6T VTI ls67 6T VTI ls68 6T VTI ls69 6T VTI ls70 6T VTI ls71 6T VTI ls72 6T VTI ls73 6T VTI ls74 6T VTI ls75 6T VTI ls76 6T VTI ls77 6T VTI ls78 6T VTI ls79 6T VTI ls80 6T VTI ls81 6T VTI ls82 6T VTI ls83 6T VTI ls84 6T VTI ls85 6T VTI ls86 6T VTI ls87 6T VTI ls88 6T VTI ls89 6T VTI ls90 6T VTI ls91 6T VTI ls92 6T VTI ls93 6T VTI ls94 6T VTI ls95 6T VTI ls96 6T VTI ls97 6T VTI ls98 6T VTI ls99 6T VTI lslOO 6T VTI lslOl, 6T VTI ls102 6T VTI ls103 6T VTI ls104 6T VTI lslOS 6T VTI ls106 6T VTI ls107 6T VTI ls108 6T VTI ls109 6T 1VTI lsllO 6T VTI lslll 6T VTI ls112 6T VTI ls113 6T VTI ls114 6T VTI lsllS 6T VTI ls116 6T VTI ls117 118H 119H 120H 121H 122H 123H 124H 125H 126H 127H 128H 129H 130H 131H 132H 133H 134H 135H 136H 137H 138H 139H 140H 141H 142H 143H 144H 145H 146H 147H 148H 149H 150H 151H 152H 153H 154H 155H 156H 157H 158H 159H 160H 161H 162H 163H 164H 165H 166H 167H 168H 169H 170H 171H 172H 173H 174H 175H 176H 177H ENERCON lsl18 lsl19 ls120 ls121 ls122 lsl23 ls124 ls125 ls126 ls127 lsl28 ls129 ls130 ls131 lsl32 ls133 ls134 ls135 ls136 lsl37 lsl38 ls139 ls140 ls141 ls142 ls143 ls144 ls145 ls146 ls147 ls148 ls149 lslSO ls151 ls152 ls153 ls154 ls155 ls156 ls157 lsl58 ls159 ls160 ls161 ls162 ls163 lsl64 ls165 ls166 ls167 ls168 ls169 ls170 lsl71 ls172 ls173 ls174 lsl75 lsl76 ls177 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O .1. 1. 1. 1: 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1.
- 1. 1.
- 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. PAGE NO. 234 of 303 6T VTI ls118 6T VTI ls119 6T VTI ls120 6T VTI ls121 6T VTI ls122 6T VTI ls123 6T VTI ls124 6T VTI ls125 6T VTI ls126 6T VTI ls127 6T VTI ls128 6T VTI ls129 6T VTI *ls130 6T VTI ls131 6T VTI ls132 6T VTI ls133 6T VTI ls134 6T VTI ls135 6T VTI ls136 6T VTI ls137 6T VTI ls138 6T VTI ls139 6T VTI lsl40 6T VTI ls141 6T VTI ls142 6T VTI ls143 6T VTI lsl44 6T VTI ls145 6T VTI ls146 6T VTI ls147 6T VTI ls148 6T VTI ls149 6T VTI ls150 6T VTI ls151 6T VTI ls152 6T VTI ls153 6T VTI lsl54 6T VTI ls155 6T VTI ls156 6T VTI ls157 6T VTI ls158 6T VTI lsl59 6T VTI lsl60 6T VTI ls161 6T VTI lsl62 6T VTI ls163 6T VTI ls164 6T VTI ls165 6T VTI ls166 6T VTI ls167 6T VTI ls168 6T VTI ls169 6T VTI ls170 6T VTI lsl 71 6T VTI ls172 6T VTI ls173 6T VTI ls174 6T VTI ls175 6T VTI ls176 6T VTI ls177 ENERCON 178H 179H 180H 181H 182H 183H 184H 185H 186H 187H 188H 189H 190H 191H 192H 193H 194H 195H 196H 197H 198H 199H 200H 201H 202H 203H 204H 205H 206H 207H 208H 209H 210H 211H 212H 213H 214H 215H 216H 217H 218H 219H 220H 221H 222H 223H 224H 225H 226H 227H 228H 229H 230H 231H / 232H 233H 234H 235H 236H 237H lsl78 ls179 ls180 ls181 ls182 ls183 ls184 lsl85 ls186 ls187 lsl88 ls189 ls190 ls191 lsl92 ls193 ls194 lsl95 ls196 ls197. ls198 ls199 ls200 ls201 ls202 ls203 ls204 ls205 ls206 ls207 ls208 ls209 ls210 ls211 ls212 ls213 ls214 ls215 ls216 ls217 ls218 ls219 ls220 ls221 ls222 ls223 ls224 ls225 ls226 ls227 ls228 ls229 ls230 ls231 ls232 ls233 ls234 ls235 ls236 ls237 CALCULATION CONTROL Attachment 9 CALC. NO.
REV. 0 PAGE NO. 235 of 303 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 6T VTI ls178 6T VTI ls179 6T VTI ls180 6T VTI ls181 6T VTI ls182 6T VTI ls183 6T VTI ls184 6T VTI ls185 6T VTI ls186 6T VTI ls187 6T VTI ls188 6T VTI ls189 6T VTI ls190 6T VTI ls191 6T VTI lsl92 6T VTI ls193 6T VTI ls194 6T VTI lsl95 6T VTI ls196 6T VTI ls197 6T VTI ls198 6T VTI ls199 6T VTI ls200 6T VTI ls201 6T VTI ls202 6T VTI ls203 6T VTI ls204 6T VTI ls205 6T VTI ls206 6T VTI ls207 6T VTI ls208 6T VTI ls209 6T VTI ls210 6T VTI ls211 6T VTI ls212 6T VTI ls213 6T VTI ls214 6T VTI ls215 6T-VTI ls216 6T VTI ls217 6T VTI ls218 6T VTI ls219 6T VTI ls220 6T VTI ls221 6T VTI ls222 6T VTI ls223 6T VTI ls224 6T VTI ls225 6T VTI ls226 6T VTI ls227 6T VTI ls228 6T VTI ls229 6T VTI ls230 6T VTI ls231 6T VTI ls232 6T VTI ls233 6T VTI ls234 6T VTI ls235 6T VTI ls236 6T VTI ls237 /
238H 239H 240H 241H 242H 243H 244H 245H 246H 247H 248H 249H 250H 251H 252H 253H 254H 255H 256H 257H 258H 259H 260H 261H 262H 263H 264H 265H 266H 267H 268H 269H 270H 271H 272H 273H 274H 275H 276H 277H 278H 279H 280H 281H 282H 283H 284H 285H 286H 287H 288H 289H 290H 291H 292H 293H 294H 295H 296H 297H ENE. c N ls238 ls239 ls240 ls241 ls242 ls243 ls245 ls246 ls247 ls248 ls249 ls250 ls251 ls252 ls253 ls254 ls255 ls256 ls257 ls258 ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls268 ls269 ls270 *1s271 ls272 ls273 ls274 ls275 ls276 ls277 *ls278 ls279 ls280 ls281 ls282 ls283 ls284 ls285 ls286 ls287 ls288 ls289 ls290 ls291' ls292 ls293 ls294 ls295 ls296 ls297 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O / 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. ,1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.60 PAGE 236 of 303 6T VT! ls238 6T VT! ls239 6T VT! ls240 6T VT! ls241 6T vTI ls242 6T VT! ls243 6T VTI ls244 6T VT! ls245 6T VTI ls246 6T VT! ls247 6T VTI ls248 6T VTI ls249 6T VTI ls250 6T VTI ls251 6T VT! ls252 6T VT! ls253 6T VT! ls254 6T VT! ls255 6T VT! ls256 4T VT! ls257 4T VT! ls258 4T VT! ls259 4T VT! ls260 4T VT! ls261 4T VT! ls262 4T VTI ls263 4T VT! ls264 4T
- VT! ls265 4T VT! ls266 4T VT! *1S267 4T VTI ls268 4T VTI ls269 4T VTI ls270 4T VT! ls271 4T VT! ls272 4T VT! ls273 4T VT! ls274 4T VTI ls275 4T VT! ls276 4T VT! ls277 4T VTI ls278 4T VT! ls279 4T VT! ls280 4T VT! ls281 4T VTI ls282 4T VT! ls283 4T VT! ls284 4T VT! ls285 4T VT! ls286 4T VTI ls287 4T VTI ls288 4T VT! ls289 4T
- VT! ls290 4T VT! ls291 4T VT! ls292 4T VT! ls293 VT! ls294 VT! ls295 VT! ls296 VT! ls297 298H 299H 300H 301H 302H 303H 304H 305H 306H 307H 308H 309H 310H 311H , 312H 313H 314H 315H 316H 317H 318H 319H 320H 321H 322H 323H 324H 325H 326H 327H 328H 329H 330H 331H 332H 333H 334H 335H 336H 337H 338H 339H 340H 341H 342H 343H 344H 345H 346H 347H 348H 349H 350H 351H 352H 353H 354H 355H 356H 357H ENERCON ls298 ls299 ls300 ls301 ls302 ls303 ls304 ls305 ls306 ls307 ls308 ls309 ls310 ls311 ls312 ls313 ls314 ls315 ls316 ls317 ls318 ls319 ls320 ls321 ls322 ls323 ls324 ls325 ls326 ls327 ls328 ls329 ls330 ls331 ls332 ls333 ls334 ls335 ls336 ls337 i.s338 ls339 ls340 ls341 ls342 ls343 ls344 ls345 ls346 ls347 ls348 ls349 ls350 ls351 ls352 ls353 ls354 ls355 ls356 ls357 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 0.364 0.364 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 0.364 0.364 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.90 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. PAGE NO. 237 of 303 4T VTI ls298 4T VTI ls299 4T VTI ls300 4T VTI ls301 .._ 4T VTI ls302 4T VTI ls303 4T VTI ls304 4T VTI ls305 4T VTI ls306 4T VTI ls307 4T VTI ls308 4T VTI ls309 VTI ls310 VTI ls311 VTI ls312 VTI ls313 4T VTI ls314 4T VTI ls315 4T VTI ls316 4T VTI ls317 VTI ls318 VTI ls319 4T VTI ls320 4T VTI ls321 4T VTI ls322 4T VTI ls323 4T VTI ls324 4T VTI ls325 VTI ls326 VTI ls327 VTI ls328 VTI ls329 4T VTI ls330 4T VTI ls331 4T VTI ls332 4T VTI ls333 VTI ls334 VTI ls335 4T VTI ls336 4T VTI ls337 4T VTI ls338 4T . VTI ls339 4T VTI ls340 4T VTI ls341 VTI ls342 VTI ls343 VTI ls344 VTI ls345 4T VTI ls346 4T VTI ls347 4T VTI ls348 4T VTI ls349. 4T VTI ls350 4T VTI ls351 4T VTI ls352 4T VTI ls353 4T VTI ls354 4T VTI ls355 4T VTI ls356 4T VTI ls357 358H 359H 360H 361H 362H 363H 364H 365H 366H 367H 368H 369H 370H 371H 372H 373H 374H 375H 376H 377H 378H 379H 380H 381H 382H 383H 384H ENERCON ls358 ls359 ls360 ls361 ls362 ls363 ls364 ls365 ls366 ls367 ls368 ls369 ls370 ls371 ls372 ls373 ls374 ls375 ls376 ls377 ls378 ls379 ls380 ls381 ls382 ls383 ls384 385H Kitchen Heatl ls118 386H Rad Monitor H ls9 387H LAC-PNLlCl0/1 ls133 388H LAC-PNL1C5/6
-ls134 389H LAC-PNL1C9 ls135 390H BYS-PNL02B2/A ls65 391H SCI-PNL02/01 ls49 392H SCA-PNL10A2 ls17 393H SCA-PNL10B2 ls113 394H VBS-PNLOlB ls128 395H ENB-PNL02B/SC ls112 396H VBN-PNLOlBl ls96 397H VBN-PNLOlAl/V ls64 398H SCM-PNLOlA/EN ls48 399H VBS-PNLOlA ls32 400H PCl/2 ls72 401H PC3 ls104 402H PC4 ls105 403H PC5-6 ls87 404H PC 7 ls71 405H PC 8-9 ls199 406H 407H 408H 409H 410H 411H 412H 413H 414H 415H 416H 417H PCl0-11 ls106 PC 12-Shift M lsl Op_l ls55 Op_2 ls56 Op_3 ls57 Op_4 ls71 Op_5 ls72 OP 6 ls73 OP 7 OP 8 OP 9 OP 10 ls87 ls88 ls89 ls199 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV. 0 0.68 0.68 0.68 0.68 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.37 1.8 0.038 0.12 0.038 0.1099 0.127 0.0483 0.0483 0.07772 0.277 0 .137 0.372 0.277 0.074 0.569 0.284 0.284 0.569 0.284 0.569 0.569 0.284 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 PAGE NO. 238 of 303 VTI ls358 VTI ls359 VTI ls360 VTI ls361 4T VTI ls362 4T VTI ls363 4T VTI ls364 4T VT! ls365 4T VTI ls366 4T VTI ls367 4T VTI ls368 4T VTI ls369 4T VTI ls370 4T VTI ls371 4T VTI ls372 4T VTI ls373 4T VTI ls374 4T VTI ls375 4T VTI ls3'!6 4T VTI ls377 4T VTI ls378 4T VTI ls379 4T VTI ls380 4T VTI ls381 4T VT! ls382 4T VTI ls383 4T VTI ls384 VTI lsl18 VTI ls9 .VTI ls133 VT! ls134 VTI ls135 VTI ls65 VTI ls49 VTI ls17 VTI lsl13 VTI ls128 VTI lsl12 VTI ls96 *vTI ls64 VT! ls48 VTI ls32 VTI ls72 VT! ls104 VTI ls105 VTI ls87 VTI ls71 VTI ls199 VTI ls106 VTI lsl VTI ls55 VTI ls56 VTI ls57 VTI ls71 VTI ls72 VTI ls73 VTI ls87 VTI ls88 VTI ls89 VTI ls199 418H 419H 420H 421H 422H 423H 424H 425H 426H 427H 428H 429H 430H 431H 432H . 433H 434H 435H 436H 437H 438H 439H 440H 441H 442H 443H 444H 445H 446H 447H 448H 449H 450H 451H 452H 453H 454H 455H 456H 457H 458H 459H 460H 461H 462H 463H 464H 465H 466H 467H 468H 469H 470H 471H 472H 473H 474H 475H 476H 477H IENERCON OP 11 OP 12 OP 13 OP 14 OP 15 OP 16 OP 17 OP 18 ls200 ls201 ls215 ls216 ls217 ls183 ls184 ls185 2sl 2s2 2s3 2s4 2s5 2s6 2s7 2s8 2s9 2s10 2sll 2sl2 2s13 2sl4 2s15 2s16 2s17 2s18 2s19 2s20 2s21 2s22 2s23 2s24 2s25 2s26 2s27 2s28 2s29 2s3_0 2s31 2s32 2s33 2s34 2s35 2s36 2s37 2s42 2s43 2s44 2s45 2s46 2s47 2s48 2s49 2s50 2s51 2s52 2s53 2s58 2s59 2s60 CALCULATION CONTROL Attachment 9 0. 037 0.037 0. 037 0. 037 0.037 0.037 0.037 0.037 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 239 of 303 VTI ls200 VTI ls201 VTI ls215 VTI ls216 VTI ls217 VTI ls183 VTI ls184 VTI ls185 . VTI 2sl VTI 2s2 VTI 2s3 VTI 2s4 VTI 2s5 VTI 2s6 VTI 2s7 VTI 2s8 VTI 2s9 VTI 2s10 VTI 2sll VTI 2s12 VTI 2sl3 VTI 2s14 VTI 2s15 VTI 2s16 VTI 2s17 VTI 2s18 VTI 2s19 VTI 2s20 VTI 2s21 VTI 2s22 VTI 2s23 VTI 2s24 VTI 2s25 VTI 2s26 VTI 2s27 VTI 2s28 VTI 2s29 VTI 2s30 VTI 2s31 VTI 2s32 VTI 2s33 VTI 2s34 VTI 2s35 VTI 2s36 VTI 2s37 VTI 2s42 VTI 2s43 VTI 2s44 VTI 2s45 VTI 2s46 VTI 2s47 VTI 2s48 VTI 2s49 VTI 2s50 VTI 2s51 VTI 2s52 VTI 2s53 VTI 2s58 VTI 2s59 VTI 2s60 478H 479H 480H 481H 482H 483H 484H 48SH 486H 487H 488H 489H 490H 491H 492H 493H 494H 49SH 496H 497H 498H 499H SOOH SOlH S02H S03H S04H SOSH S06H S07H SOSH S09H SlOH SllH Sl2H S13H S14H SlSH S16H S17H S18H S19H S20H .'?21H S22H S23H S24H S2SH S26H S27H S28H S29H S30H S31H S32H S33H S34H S3SH S36H S37H ENERCON 2s61 2s64 2s6S 2s66 2s67 2s68 2s69 2s74 2s7S 2s76 2s77 2s80 2s81 2s82 2s83 2s84 2s8S 2s90 2s91 2s92 2s93 2s94 2s9S 2s96 2s97 2s98 2s99 2s100 2s101 2s106 2s107 2s108 2s109 2s110 2slll 2s112 2s113 2s114 2s11S 2s116 2s117 2s118 2s119 2sl20 2s121 2s122 2s123 2s124 2s12S 2s126 2s127 2s128 1H13-P601_1 ls73 1H13_P601_2 ls89 1H13-P601_3 ls201 1H13-P601_4 ls217 1C91-P622 ls18 1C91-P622 2 ls146 1C91-P623/P6S ls34 1C91-P623/6SO ls162 CALCULATION CONTROL Attachment 9 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.38 0.38 0.38 0.38 0.209 0.209 0.619 0.619 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 240 of 303 VTI 2s61 VTI 2s64 VTI 2s6S VTI 2s66 VTI 2s67 VTI 2s68 VTI 2s69 VTI 2s74 VTI 2s7S VTI 2s76 VTI 2s77 VTI 2s80 VTI 2s81 VTI 2s82 VTI 2s83 VTI 2s84 VTI 2s8S VTI 2s90 VTI 2s91 VTI 2s92 VTI 2s93 VTI 2s94 VTI 2s9S VTI 2s96 VTI 2s97 VTI 2s98 VTI 2s99 VTI 2s100 VTI 2s101 VTI 2s106 VTI 2s107 VTI 2s108 VTI 2s109 VTI 2s110 VTI 2slll VTI. 2s112 VTI 2s113 VTI 2s114 VTI 2s11S VTI 2s116 VTI 2s117 VTI 2s118 . VTI 2s119 VTI 2s120 VTI 2s121 VTI 2s122 VT:t 2s123 VTI 2s124 VTI 2s12S VTI 2s126 VTI 2s127 VTI 2s128 VTI ls73 VTI ls89 VTI ls201 VTI ls217 VTI ls18 VTI ls146 VTI ls34 VTI ls162 538H 539H 540H 541H ' 542H 543H 544H 545H 546H 547H 548H 549H 550H 551H 552H 553H 554H 555H 556H 557H 558H 559H 560H 561H 562H 563H 564H 565H 566H 567H 568H 569H 570H 571H 572H 573H 574H 575H 576H 577H 578H 579H 580H 581H 582H 583H 584H 585H 586H 587H 588H 589H 590H 591H 592H 593H 594H 595H 596H 597H ENERCON CALCULATION CONTROL Attachment 9 1C91-P624 ls51 1C91-P624_2 lsl79 1C91-P613 ls94 1C91-P613_2 ls222 1C91-P614 ls30 1C91-P614 2 lsl58 1C91-P615/P64 ls46 1C91-P615/642 lsl74 1C91-P632/P63 ls72 1C91-P632/633 ls200 1C91-P630/631 ls62 1C91-P630/631 lsl90 1C91-P625 ls31 1C9l_p625_2 lsl59 1C91-P621/620 ls47 1C91-P621/612 lsl75 ' 1C91-P608/600 ls63 lsl91 Comm Network ls90 1Hl3-P600 ls26 1Hl3-P600 2 lsl54 1Hl3-P604/P61 ls42 1Hl3P604/614 lsl70 1Hl3-P672/P69 ls43 1Hl3P672/694 lsl71 1Hl3-P669/P69 ls44 1Hl3P669/691_ lsl72 1Hl3-P623/P63 ls60 1Hl3P623/632_ lsl88 1Hl3-P629 ls29 1Hl3-P629 2 lsl57 1Hl3-P621/P62 ls45 lsl73 1Hl3-P651-P65 ls61 1Hl3P651-5 2 lsl89 1Hl3-P680 ls56 1Hl3-P680 2 ls55 1Hl3-P680 3 ls57 1Hl3-P625/P69 ls91 1Hl3P625/693 ls219 1Hl3-P671 lsl07 1Hl3-P671 2 ls235 1Hl3-P642/613 ls92 1Hl3-P642/13/ ls220 1Hl3-P692/670 lsl08 1Hl3-P670/692 ls236 1Hl3/P610/652 ls93 1Hl3-P654/2/l ls221 1Hl3-P631/P61 lsl09 1Hl3-P631/618 ls237 1Hl3-P607/P61 ls94 1Hl3-P607/612 ls222 1Hl3-P619/P63 lsllO 1Hl3-P619/634 ls238 1Hl3-P637 lslll 1Hl3-P637_2 ls239 1Hl3-P630 ls59 1Hl3-P630_2 lsl87 Hl3-P808 ls40 Hl3-P808_2 lsl69 0.259 0.259 0.087 0.087 0.086 0.086 1.07 1.07 0.066 0.066 0.488 0.488 0.103 0.103 1.354 1.354 0. 971 0.971 0.279 0.095 0.095 0.569 0.569 0.853 0.853 0.853 0.853 0 .474 0 .474 0.237 0.237 0.284 0.284 0.545 0.545 0.253 0.253 0.253 0.616 0.616 0.474 0.474 0.474 0.474 0.853 0.853 0.474 0.474 0.427 0.427 0.284 0.284 0.569 0.569 0.379 0.379 1.564 1.564 0 .118 0 .118 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 241of303 VT! ls51 VT! lsl79 VTI ls94 VTI ls222 VT! ls30 VT! lsl58 VTI ls46 VT! lsl74 VT! ls72 VT! ls200 VT! ls62 VT! lsl90 VT! ls31 VT! lsl59 VT! ls47 VT! lsl75 VT! ls63 VT! lsl91 VT! ls90 VT! ls26 VT! lsl54 VTI ls42 VT! lsl70 VT! ls43 VT! lsl 71 VT! ls44 VT! lsl72 VT! ls60 VT! lsl88 VT! ls29 VT! lsl57 VT! ls45 VT! lsl73 VT! ls61 VT! lsl89 VT! ls56 VTI ls55 VT! ls57 VT! ls91 VT! ls219 VT! lsl07 VT! ls235 VTI ls92 VT! ls220 VT! lsl08 VT! ls236 VT! ls93 VT! ls221 VTI lsl09 VT! ls237 VT! ls94 VT! ls222 VT! lsllO VT! ls238 VT! lslll VT! ls239 VT! ls59 VT! lsl87 VT! ls40 VT! lsl69 / 598H 599H 600H 601H 602H 603H 604H 605H 606H 607H 608H 609H 610H 611H 612H 613H 614H 615H 616H 617H 618H 619H 620H 621H 622H 623H 624H 625H 626H 627H 628H 629H 630H 631H 632H 633H 634H 635H 636H 637H 638H 639H 640H 641H 642H 643H 644H 645H 646H 647H 648H 649H 650H 651H 652H' 653H 654H 655H 656H 657H ENERCON Hl3-P808_3 lsl68 Hl3-P808 4 ls41 1Hl3-P82l/822 ls95 P821/822 2 ls223 Hl3-P84lf819 ls36 Hl3-P841/819_ ls52 Hl3-P841/819 lsl64 Hl3-P841/819-lsl80 Hl3-P842/820-ls83 Hl3-P842/820 ls99 Hl3-P842/820= ls211 Hl3-P842/820_ ls227 1Hl3-P845 ls58 1Hl3-P845 2 lsl86 Hl3-P849 ls51 Hl3-P849 2 lsl79 Hl3-P850 lslOO Hl3-P850 2 ls228 Hl3-P851 ls37 Hl3-P851 2 lsl65 Hl3-P852 ls98 Hl3-P852 2 ls226 Hl3-P853 ls50 Hl3-P853 2 lsl78 Hl3-P854f844 ls81 Hl3-P854 2 ls97 Hl3-P854 3 ls209 Hl3-P854 4 1S225 Hl3-P855 ls35 Hl3-P855 2 lsl63 Hl3-P861 lsl03 Hl3-P861_2 ls231 Hl3-P863 ls38 Hl3-P863 2 ls54 Hl3-P863 3 lsl66 Hl3-P863 4 lsl82 Hl3-P869 ls84 Hl3-P869 2 ls212 Hl3-P870 ls70 Hl3-P870 2 ls86 Hl3-P870 3 lsl98 Hl3-P870 4 ls214 Hl3-P877 lsl05 Hl3-P877 2 ls233 Hl3-P878 lsll2 Hl3-P878 2 ls240 Hl3-P879 ls48 Hl3-P879 2 lsl76 Hl3-P952 lslOl Hl3-P952 2 ls229 Hl3-P951 ls53 Hl3-P951 2 lsl81 Hl3-Y702D/751 ls378 Hl3-Y703A ls282 Hl3-Y703D ls281 Hl3-Y710B/D/E ls380 Hl3-Y711A ls382 Hl3-Y712B/D ls379 Hl3-Y713A//D ls284 Hl3-Y714B/D ls381 CALCULATION CONTROL Attachment 9 0.118 0.118 0.519 0.519 0.283 b-.283 0.283 0.283 0.283 0.283 0.283 0.283 0.294 0.294 0.355 0.355 1.955 1.955 0.523 0.523 0.523 0.523 0.355 0.355 0.473 0.473 0.473 0.473 0.083 0.083 0.19 0.19 0.044 0.044 0.044 0.044 1.049 1.049 0.227 0.227 0.227 0.227 0.045 0.045 0.386 0.386 0.204 0.204 0.024 0.024 0.024 0.024 0.34 0 .351 0.215 0.828 0.125 0.703 0.703 0.25 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 242 of 303 VTI lsl68 VTI ls41 VTI ls95 VTI ls223 VTI ls36 VTI ls52 VTI lsl64 VTI lsl80 VTI ls83 VTI ls99 VTI ls211 VTI ls227 VTI ls58 VTI lsl86 VTI ls51 VTI lsl79 VTI lslOO VTI ls228 VTI ls37 VTI lsl65 VTI ls98 VTI ls226 VTI ls50 VTI lsl78 VTI ls81 VTI ls97 VTI ls209 VTI ls225 VTI ls35 VTI lsl63 VTI lsl03 VTI ls231 VTI ls38 VTI ls54 VTI lsl66 VTI lsl82 VTI ls84 VTI ls212 VTI ls70 VTI ls86 VTI lsl91,l VTI ls214 VTI lslp5 VTI ls233 VTI lsll2 VTI ls240 VTI ls48 VTI lsl76 VTI lslOl VTI ls229 VTI ls53 VTI lsl81 VTI ls378 VTI ls282 VTI ls281 VTI ls380 VTI ls382 VTI ls379 VTI ls284 VTI 1s381 \ { ENERCON CALCULATION CONTROL SHEET-6S8H 6S9H 660H 661H 662H 663H 664H 66SH 666H 667H 668H 669H 670H 671H 672H 673H 674H 67SH 676H 677H 678H 679H 680H 681H 682H Hl3-Y71SD/E Hl3-Y717D Hl3-Y730B Hl3-Y740A Hl3-Y743E Hl3-Y744D Hl3-Y747A Hl3-Y747B Hl3-Y748B/E Hl3-Y7SOE Hl3-Y7SlD Hl3-P721D ls28S ls283 ls374 ls278 ls383 ls276 ls371 ls27S ls274 ls369 ls277 ls377 ls31 Samsung Flats ls230 SM-Coffee Pot lsl29 HU Clock Rese lsl36 FLEX Radio ls232 Printer/Copie lslS Printer/Copie lsl20 Printer 1 lsl03 Printer 2 lsl04 Printer 3 lslos' Printer 4 lsl06 Exit Light ls270 Exit Light_2 ls2S9 Volumetric Fan -Table 1 Vol Flow On Off Fan Path Trip Trip
- Description # # # lQ Staged Fan 21 12 2Q Smoke Exhaust 18 13 3Q Toilet/Kitchen 22 4Q Smoke Exhaust 2 19 13 SQ Smoke Exhuast 20 13 Volumetric Fan -Table 2 Attachment 9 ' Min DP (psi) DEFAULT Max O.S66 0.3Sl 0.21S 0.21S 0.12S 0.21S 0.21S 0.215, 0.3Sl 0.43 0.21S 0.21S 0.227 0.237 0.114 0.182 b.2S4 0.40S 0.40S 0.19 0.19 0.19 0.19 0.063 0.063 DP (psi) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Vol Flow Flow Heat Heat Fan # lQ 2Q 3Q 4Q SQ Flow Rate Option (CFM) Time 2800. Time Time Time Time S873.6 800. 212S.7 212S.7 Valves & Doors Rate Heat Rate FF Option (Btu/s) Time Time Time Time Time Rate Disch FF Vol 4 s s s s Valve Flow Open Close Valve Path Trip Trip Type Disch. Vol. 2s34 2s68 2s86 2s77 2s63 2s82 2s89 2s9S 2sS6 # Description # # # # lD 2D 3D 4D SD 6D 7D 8D 9D lOD Group 1 Tiles 2 Group 1 Tile 2 3 Group 2 Tiles 4 Group 3 Tiles S Group 4 Tiles 6 Group S Tiles 7 Group 6 Tiles 8 Group 7 Tiles 9 Group 8 Tiles 10 CB136-9 Low 13 3 3 4 s 6 7 8 9 10 14 12 s s 1 1 1 1 1 1 1 4 4 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 243 of 303 VTI ls28S VTI ls283 VTI ls374 VTI ls278 VTI ls383 VTI ls276 VTI ls371 VTI ls27S VTI ls274 VTI ls369 VTI ls277 VTI ls377 VTI ls31 VTI ls230 VTI lsl29 VTI lsl36 VTI ls232 VTI lslS VTI lsl20 VTI lsl03 VTI lsl04 VTI lslOS VTI lsl06 VTI ls270 VTI ls2S9 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 llD 12D 13D 14D CB136-9 High 14 Pressure Bounda 1 Outside Low 15 Outside High 16 Valve/Door Types Valve Stem Type Valve Travel # Option Curve 1 QUICK OPEN 0 2 QUICK OPEN 0 3 QUICK CLOSE 0 4 QUICK OPEN 0 5 QUICK OPEN 0 14 14 14 Loss Coeff. Curve 0 0 0 0 0 Volume Initial Conditions Total Vapor Liquid Vol Pressure Temp. Temp. # (psi a) (F) F def 14.7 81. 81. ls 14.7 75. 75. 2s 14.7 81. 81. Initial Volume Fractions Vol Air # Gas 1 Gas 2 Gas 3 Gas def 1. 0. 0. 0. ls 1. 0. 0. 0. 2s 1. 0. 0. 0. Noncondensing Gases 14 Flow Area (ft2) 80. 1. 1. 21. 40. 4 3 4 4 Relative Liquid Humidity Volume (%-) Fract. 20. 0. 20. 0. 20. 0. 4 Gas 5 Gas 6 0. 0. 0. 0. 0. 0. Liq. Comp. Fract. 0. 0. 0. Liq Gas 7 Comp 0. 0. 0. 0. o, 0. REV. 0 PAGE NO. 244 of 303 Gas Description
- symbol Type Mol. Lennard-Jones Parameters No. Weight Diameter e/K (Ang) (K) 1 Air Air POLY 28.97 3.617 97. Noncondensing Gases -Cp/Visc.
Equations Gas Cp Equation (Required) Vise. Equation (Optional) No. Tmin Tmax Cp Tmin Tmax Viscosity (R) (R) (Btu/lbm-R) (R) (R) (lbm/ft-hr) 1 360. 2880. 0.238534-6.2006 Materials Type # Description 1 Steel 2 3 4 5 Concrete air Gypsum Tile Hardboard Material Type 1 Steel Temp. (F) 80. Density (lbm/ft3) 484. Material Type 2 Concrete Gap NO NO NO NO NO Cond. Sp. Heat (Btu/hr-ft-F) (Btu/lbm-F)
- 21. 0.116 \
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET* Attachment 9 REV.O PAGE NO. 245 of 303 Temp. Density Cond. Sp. Heat (F) ,(lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F)
- 80. 131.5 0.64 0.21 Material Type 3 air Temp. Density Cond. Sp. Heat (F) (lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F)
- 60. 0. 07633* 0.01433 0.2404 80. 0.0735 0.01481 0.2404 100. 0.0709 0.01529 0.2405 150. 0.06507 0.01646 0.2406 300. 0.0522 0.01985 0.2423 Material Type 4 Gypsum Tile Temp. Density Cond. Sp. Heat (F) (lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F) 100. 18. 0.029 0.19 Material Type 5 Hardboard Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F) 100. 55. 0.068 0.32 Component Trips Trip Sense Sensor Sensor Var. Set Delay Rs et Cond Cond # Description Var. 1 Loe. 2 Loe. Limit Point Time Trip Trip Type 1 Shed I TIME UPPER 1800. 0. AND 2 Tile Start TIME UPPER 8400. 0. AND 3 Tile 1/8 TIME UPPER o. 600. 2 AND 4 Tile 2/8 TIME UPPER 0. " 1200. 2 AND 5 Tile 3/8 TIME UPPER 0. 1800. 2\ AND 6 Tile 4/8 TIME UPPER 0. 2400. 2 AND 7 Tile 5/8 TIME UPPER 0. 3000. 2 AND 8 Tile 6/){ TIME UPPER 0. 3600. 2 AND 9 Tile ,7/8 TIME UPPER 0. 4200. 2 AND 10 Tile 8/8 TIME UPPER 0. 4800. 2 AND 11 fresh air s TIME UPPER le+006 0. AND 12 Stage fan TIME UPPER 5400. o. AND 13 Smoke.Remov TIME UPPER 7200. 0. AND 14 Open Doors TIME UPPER 3600. 0. AND 15 Kitchen CONT 4C UPPER 96. 0. AND Forcing Function Tables FF# Description Ind. Var. Dep. var. Points 0 Constant 0 lT Outside Temp Ind. Var. Dep. Var. 2T DC Equipment
- RO Ind. Var. Dep. Va,r. 4320 3T Sol-Air Roof Ind. Var. Dep. Var. 25 4T Lighting HL Ind. Var. Dep. Var. 2 ST Initial Panels Ind. Var. Dep. Var. 4 6T Operators Ind. Var. Dep. Var. 2 7T Time Ind. Var. Dep. Var. 3 function
/'\ I ON CALCULATION CONTROL Attachment 9 lT Outside Temp Ind. Var.: Dep. Var.: Ind. var. Dep. Var. Ind. Var. Dep. Var. o. 96.7 14400. 96.7 18000. 96.7 21600. 94.98 25200. 93.62 28800. 91.92 "32400. 89.37 36000. 87.5 39600. 85.97 43200. 84.44 46800. 83.25 50400. 82.06 54000. 81.04 57600. 80.36 61200. 79.85 64800. 79.34 68400. 79. 72000. 79.34 75600. 80.53 79200. 83.42 82800. 86.65 86400. 89.54 Function 2T DC Equipment Room lA Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 87. 0.001 87.00038 0.00201921 87.0007 20.32555 90.35686 42.22733 92.2407 67.02823 93.73955 93.45625 94.96387 120.9645
- 95. 973 . 140.9645 96.59493 160.9645 97.14751 180.9645 97.64407 200.9645 98.0937 220.9645 98.50375 240.9645 98.87981 I 260.9645 99.22573 280.9645 99.54478 300.9645 99.84009 320.9645 100.1145 340.9645 100.3705 360.9645 100.6103 380.9645 100.8357 400.9645 101. 0482 420.9645 101.2492 440.9645 101.4396 460.9645 101. 6204 480.9645 101.7923 500.9645 101.9562 520.9645 102 .1124 540.9645 102.2616 560.9645 102.4042 580.9645 102.5406 600.9645 102.6713 620.9645 102.7966 640.9645 102.9168 660.9645 103.0323 680.9645 103.1433 700.9645 103.2502 720. 9645 103.3531 740.9645 103.4073 760.9645 103.4745 780.9645 103.5492 800.9645 103.6276 820.9645 103.7074 840.9645 103. 7871 860.9645 103.866 880.9645 103.9436 900.9645 104.0198 920.9645 104.0943 940.9645 104.1673 960.9645 104.2388 980.9645 104.3087 1000.965 104.3773 1020.965 104.4445 1040.964 104.51'.05 1060.964 104.5753 1080.964 104.6391 1100.964 104.7018 1120.964 104.7635 1140.964 104.8244 1160. 964 104.8844 1180.964 104.9436 1200.964 105.0021 1220.964 105.0598 1240.964 105.117 1260. 964 105.1734 1280.964 105.2293 1300.964 105.2847 1320.964 105.3395 1340. 964 105.3938 1360.964 105.4477 1380.964 105.5011 1400.964 105.554 1420. 964 105.6065 1440.964 105.6587 CALC. NO. ENTR-078-CALC-004 REV. 0 PAql; NO. 246 of 303 ENERCON CALCULATION CONTROL Attachment 9 1460.964 105. 7104 1480.964 105.7618 1500.964 105.8128 1520.964 105.8634 1540.964 105.9138 1560.964 105.9638 1580.964 106.0135 1600.964 106.0629 1620. 964 106.112 1640.964 106.1608 1660.964 106.2093 1680.964 106.2575 1700.964 106.3055 1720.964 106.3532 1740.964 106.4006
-1760. 964 106.4478 1780.964 106.4947 1800.964 106. 5414 1820.964 106.5879 1840.964 106.6341 1860.964 106.68 1880.964 106.7258 1900.964 106. 7713 1920.964 106.8166 1940.964 106.8616 1960.964 106.9064 1980.964 106.9511 2000.964 106.9955 2020.964 107.0396 2040.964 107.0836 2060.965 107.1274 2080.965 107.1709 2100.965 107.2143 2120.965 107.2574 2140.965 107.3004 2160.965 107.3431 2180. 965 107.3857 2200.965 107.428 2220.965 107.4702 2240.965 107.5121 2260.965 107.5539 2280-. 965 107.5955 2300.965 107.6368 2320.965 107.678 2340.965 107. 719 2360.965 107.7599 2380.965 107.8005 2400.965 107.8409 2420. 9.65 107.8812 2440.965 107. 9213 2460.965 107.9612 2480.965 108.0009 2500.965 108.0405 2520.965 108.0799 2540.965 ':fo8 .1191 2560.965 108.1581 2580.965 108.197 2600.965 108.2357 2620.965 108.2742 2640.965 108.3125 2660.965 108.3507 2680.965 108.3887 2700.965 108.4266 2720.965 108.4642 2740.965 108.5017 2760.965 108.5391 2780.965 108.5763 2800.965 108.6133 2820.965 108.6502 2840.965 108.6869 2860.965 108.7234 2880.965 108.7598 2900.965 108.7961 2920.965 108.8321 2940.965 108.868 2960.965 108.9038 2980.965 108.9394 3,000.965 108.9749 3020.965 109.0102 3040.965 109.0454 3060.965 109.0804 3080.965 109.1153 3100.965 109.15 3120.965 109.1845 3140.965 109.219 3160.965 109.2533 3180.965 109.2874 3200.965 109.3214 3220.965 109.3552 3240.965 109.3889 3260.965 109.4225 3280.965 109.4559 3300.965 109.4892 3320.965 109.5224 3340.965 109.5554 3360.965 109.5883 3380.965 109.621 3400.965 109.6536 3420.965 109.6861 3440.965 109. 7184 3460.965 -109. 7506 3480.965 109.7827 3500.965 109.8146 3520.965 109.8464 3540.965 109.8781 3560.965 109.9096 3580.965 109.941 3600.965 3622.914 110.0054 3643.743 110.0373 3669.863 110. 0777 3692.669 110.1131 3721.841 110.1582 3741.841 110 .1889 3761. 841 110.2193 3781.841 110. 2495 3801.841 110.2796 3821. 841 110.3096 3841.841 110.3394 3861. 841 110.3691 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 247 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 f.xtieHenc¢-Evt:-.ty ptO:j(f(t. F.v&zy daJ: Attachment 9 PAGE NO. 248 of 303 3881.841 110.3987 3901. 841 110.4282 3921.841 110.4575 3941.841 110.4867 3961. 841 110.5158 3981.841 110.5448 4001. 841 110.!i737 4021. 841 110.6024 4041.841 110.6311 4061.841 110. 6596 4081.841 110.688 4101.84 110. 7163 4121.84 110.7445 4141.84 110. 7726 4161.84 110.8006 4181.84 110. 8284 4201.84 110.8562 4221.84 110. 8839 4241.84 110.9114 4261. 84 110.9388 4281.84 110.9662 4301. 84 110. 9934 4321.84 111.0205 4341. 84 111.0475 4361 .. 84 111.0744 4381. 84 111.1012 4401.84 111.128 4421. 84 111.1546 4441.84 111.1811 4461. 84 111. 2075 4481.84 111.2338 4501. 84 111.26 4521.84 111.2861 4541.84 111. 3121 4561.84 111.338 4581. 84 111. 3638 4601. 84 111.3895 4621. 84 111. 4151 4641.84 111.4406 4661. 84 111.466 4681. 84 111.4914 4701.84 111. 5166 4721.84 111. 5417 4741.84 111. 5668 4761.84 111. 5917 4781.84 111. 6166 4801. 84 111. 6413 4821. 84 111. 666 4841.84 111;. 6906 4861. 84 111. 7151 4881.84 111.7395 4901. 84 111.7638 4921. 84 111. 788 4941. 84 111.8122 4961. 84 111. 8362 4981. 84 111. 0602 5001. 84 111.884 5021. 84 111.9078 5041. 84 111. 9315 5061. 84 111. 9551 5081.84 111.9786 5101. 84 112.0021 5121.84 11.2. 0254 5141.84 112. 0487 5161.84 112 .0719 5181. 84 112. 095 5201.84 112 .118 5221. 84 112 .141 5241.84 112.1638 5261. 84 112 .1866 5281.84 112.2093 5301.84 112.2319 5321.84 112.2544 5341. 84 112.2769 5361. 84 112.2992 5381.84 112 .3215 5401. 84 112.3437 5421.84 112.3659 5441.84 112.3879 5461. 84 112.4099 5481.84 112.4318 5501. 84 112.4536 5521.84 112.4754 5541. 84 112 .4971 5561. 84 112.5187 5581. 84 112.5402 5601. 84 112.5616 5621.84 112.583 5641.84 112.6043 5661. 84 112.6255 5681. 84 112.6467 5701. 84 112.6677 5721. 84 112.6888 5741.84 112.7097 5761. 84 112.7305 5781.84 112. 7513 5801. 84 112. 7721 5821. 84 112.7927 5841. 84 112. 8133 5861. 84 112. 8338 5881. 84 112.8542 5901. 84 112.8746 5921.84 112. 8949 5941. 84 112. 9151 5961.84 112. 9353 5981. 84 112.9554 6001 .. 84 112.9754 6021. 84 112.9954 6041. 84 113.0153 6061. 84 113. 0351 6081.84 113. 0549 6101.84 113.0745 6121.84 113.0942 6141.84 113 .1137 6161.84 113.1332 6181.84 113.1527 6201.84 113.172 6221. 84 113.1914 6241.84 113.2106 6261.84 113. 2298 CALC. NO. ENTR-078-CALC-004 Attachment 9 ENERCON CALCULATION CONTROL SHEET-REV. o
- PAGE NO. 249 of 303 6281. 84 113.2489 6301.84 113.2679 6321.84 113.2869 6341.84 113.3059 6361.84 113.3247 6381. 84 113 .3435, 6401. 84 113.3623 6421.84 113 .381 6441. 84 113 .399,6 6461. 84 113 .4182 6481. 84 113 .436'7 6501. 84 113 .4551 6521.84 113 .4735 6541. 84 113 .4918 6561.84 113.5101 6581. 84 113. 5283 6601. 84 113.5464 6621. 84 113.5645 6641.84 113.5826 6661.84 113.6005 6681.84 113.6185 6701.84 113. 6363 6721.84 113. 6541 6741.84 113 .6719 6761.84 113.6896 6781. 84 113.7072 6801. 84 113. 7248 682l.84 113. 7423 6841.84 113.7598 6861. 84 113; 7772 6881. 84 113. 7946 6901. 84 113.8119 6921. 84 113. 8291 6941. 84 113. 8464 6961. 84 113 .8635 6981. 84 113.8806 7001. 84 113. 8976 7021. 84 113.9146 7041. 84 113. 9316 7061. 84 113. 9485 7081.84 113.9653 7101. 84 113.9821 7121. 84 113. 9988 7141.84 114.0155 7161. 84 114.0321 7181. 84 114. 0487 7201.84 114. 0652 7221. 84 114.0817 7241.84 114.0982 7261. 84 114 .1145 7281.84 114 .1309 7301. 84 114 .1472 7321.84 114 .1634 7341. 84 114.1796 7361.84 114.1957 7381.84 114.2118 7401. 84 114.2279 7421. 84 114.2438 7441.84 114.2598 7461. 84 114.2757 7481.84 114.2915 7501.84 114.3074 7521.84 114.3231 7541. 84 114.3388 7561.84 114.3545 7581.84 114 .3701 7601.84 114.3857 7621.84 114.4012 7641. 84 114 .4167 7661.84 114.4321 7681. 84 114 .4475 7701. 84 114.4629 7721.84 114.4782 7741. 84 114.4935 7761. 84 114. 5087 7781. 84 114.5238 7801. 84 114. 539 7821. 84 114.5541 7841. 84 114.5691 7861. 84 114.5841 7881. 84 114.5991 7901.84 114.614 '7921.84 114. 6289 7941. 84 114. 6437 7961. 84 114. 6585 7981. 84 114.6732 8001. 84 114.688 8021. 84 114. 7026 8041. 84 114.7172 8061. 84 114.7318 8081. 84 114.7464 8101. 84 114.7609 8121.84 114. 7753, 8141. 84 114.7898 8161.84 114.8041 8181. 84 114.8185 8201. 841 114*. 8328 8221.841 114.847 8241. 841 114.8613 8261. 841 114.8755 8281. 841 114.8896 8301.841 114.9037 8321. 841 114.9178 8341.841 114.9318 8361. 841 114.9458 8381. 841 114.9598 8401. 841 114. 9737 8421.841 114.9876 8441. 841 115.0014 8461.841 115.0152 8481. 841 115. 029 8501.841 115. 0427 8521. 841 115. 0564 8541.841 115. 07_01 8561. 841 115.0837 8581.841 115. 0973 8601. 841 115 .1108 8621.841 115.1243 8641.841 115.1378 8661.841 115.1512 CALC. NO. ENTR-078-CALC-004 ENERCON CALC4LATION CONTROL SHEET-REV.O f.xttJHenef!,-£vf!typt4_k<t
... £vtuytJay. Attachment 9 PAGE NO. 250 of 303 8681.841 115 .1646 8701. 841 115.178 ..J 8721.841 115.1913 8741. 841 115.2046 8761.841 115.2179 8781. 841 115.2311 8801.841 115.2443 8821. 841 115 .2575 8841. 841 115. 2706 8861.841 115.2837 8881.841 115.2968 8901'. 841 115.3098 8921.841 115.3228 8941.841 115.3358 8961.841 115.3487 8981.841 115.3616 9001.841 115.3744 9021.841 115.3873 9041.841 115.4001 9061.841 115.4128 9081.841 115.4256 9101. 841 115.4383 9121.841 115 .4509 9141.841 115 .4636 9161.841 115 .4764 9181. 841 115.4887 9201. 841 115 .5013 9221.841 115. 5138 9241.841 115.5263 9261. 841 115. 5387 9281.841 115 .5511 9301.841 115. 5635 9321.841 115.5758 9341. 841 115.5882 9361.841 115. 6005 9381. 841 115.6127 9401.841 115. 625 9421. 841 115.6372 9441.841 115. 6493 9461.841 115. 6615 9481.841 115.6736 9501.841 115.6857 9521. 841 115.6977 9541.841 115.7097 9561.841 115. 7217 9581.841 115.7337 9601.841 115. 7457 9621.841 115.7576 9641.841 115.7694 9661.841 115.7813 9681. 841 115. 7931 9701. 841 115. 8049 9721.841 115.8167 9741. 841 115. 8284 9761. 841 115. 8.401 . 9781. 841 115.8518 9801. 841 115.8635 9821. 841* 115. 8751 9841.841 115. 8867 9861.841 115. 8983 9881.841 115. 9098 9901.841 115. 9214 9921.841 115. 9328 9941.841 115. 9443 9961.841 115. 9558 9981.841 115.9672 10001.84 115. 9786 10021. 84 115. 9899 10041.84 116.0013 10061. 84 116.0126 10081. 84 116. 0238 10101. 84 116.0351 10121.84 116. 0463 10141. 84 116.0575 10161.84 116.0687 10181.84 116.0799 10201.84 116'. 091 10221.84 116.1021 10241.84 116 .1132 10261.84 116.1243 10281.84 116 .1353 10301.84 116.1463 10321. 84 116.1573 10341.84 116.1682 10361. 84 116.1792 10381. 84 116.1901 10401. 84 116.201 10421.84 116 .2118 10441. 84 116.2227 10461.84 116.2335 10481. 84 116.2443 10501.84 116.255 10521. 84 116. 2658 10541.84 116.2765 10561. 84 116 .2872 10581.84 116.2979 10601. 84 116.3085 10621.84 -116. 3191 10641. 84 116.3297 10661.84 116.3403 10681. 84 116.3509 10701. 84 116.3614 10721.84 116.3719 10741. 84' 116. 3824 10761.84 116 .3929 10781.84 116 .4033 10801.84 116 .4138 10821.84 116. 4242 10841.84 116 .4345 10861.84 116.4449 10881.84 116.4552 10901.84 116.4655 10921.84 116 .4758 10941.84 116.4861 10961. 84 116 .4964 10981. 84 116.5066 11001.84 116.5168 11021. 84 116.527 11041.84 116.5371 11061.84 116. 5473 ,/ ENERCON CALCULATION CONTROL Attachment 9 11081. 84 116.5574 11101. 84 116. 5675 11121. 84 116.5776 11141. 84 116. 5876 11161. 84 116.5977 11181. 84 116. 6077 '-' 11201. 84 116.6177 11221. 84 116.6277 11241.84 116.6376 11261. 84 116.6476 11281. 84 116.6575 11301. 84 116.6674 11321.84 116. 6773 11341.84 116. 6871 11361. 84 116.697 11381. 84 116. 7068 11401.84 116. 7166 11421.84 116. 7264 11441.84 116.7361 11461. 84 116. 7459 11481.84 116.7556 11501. 84 116. 7653 11521. 84 116. 775 11541.84 116.7847 11561.84 116.7943 11581. 84 116.8039 11601. 84 116 .8135 11621.84 116.8231 11641. 84 116.8327 11661. 84 . 116. 8423 11681. 84 116.8518 11701. 84 116. 8613 11721.84 116.8708 11741. 84 116. 8803 11761. 84 116.8898 11781. 84 116. 8992 11801.84 116.9086 11821. 84 116. 918 11841.84 116.9274 11861. 84 116. 9368 11881.84 116.9462 11901. 84 116. 9555 11921.84 116.9648 11941. 84 116. 9741 11961.84 116.9834 11981. 84 116. 9927 12001. 84 117.0019 12021. 84 117. 0111 12041. 84 117.0204 12061. 84 117.0296 12081. 84 117.0387 12101. 84 117.0479 12121.84 117.0571 12141.84 117.0662 12161. 84 117.0753 12181.84 117.0844 12201.84 117. 0935 12221.84 117.1025 12241.84 117 .1116 12261.84 117 .12:06 12281.84 117.1296 12301. 84 117.1386 12321.84 117.1476 12341.84 117.1566 12361.84 117.1656 12381. 84 117.1745 12401.84 117.1834 12421.84 117 .1923 12441.84 117.2012 12461. 84 117.2101 12481.84 117.2189 12501. 84 117.2278 12521.84 117.2366 12541. 84 117 .2454 12561.84 117.2542 12581. 84 117.263 12601.84 117.2717 12621. 84 117.2805 12641.84 117.2892 12661. 84 117.2979 12681.84 117.3066 12701. 84 117.3153 12721.84 117.324 12741. 84 117.3327 12761.84 117.3413 12781.84 117.3499 12801. 84 117.3586 12821. 84 117.3672 12841.84 117.3757 12861. 84 117.3843 12881.84 117.3929 12901. 84 117.4014 12921.84 117.4099 12941. 84 117.4184 12961.84 117.4269 12981. 84 117 .4354 13001.84 117.4439 13021.84 117 .4524 13041.84 117.4608 13061.84 117.4692 13081.84 117.4777 13101.84 117.4861 13121.84 117.4944 13141. 84 117. 5028 13161.84 117.5112 13181.84 117. 5195 13201.84 117.5279 13221.84 117. 5362 13241.84 117.5445 13261.84 117. 5528 13281. 84 117.5611 13301.84 117.5693 13321.84 117.5776 13341.84 117. 5858 13361. 84 117.594 13381.84 117.6022 13401.84 117.6105 13421.84 117.6186 13441.84 117.6268 13461. 84 117.635 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 251 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 F.xreJt(!ntt-faf!typtf)jt!(;t... f.wr1ttay. Attachment 9 PAGE NO. 252 of 303 13481.84 117.6431 13501.84 117.6513 13521.84 117.6594 13541. 84 117.6675 13561.84 117.6756 13581. 84 117.6837 13601.84 117. 691 7 13621. 84 117.6998 13641. 84 117.7078 13661. 84 117. 7159 13681. 84 117.7239 13701. 84 117.7319 13721. 84 117.7399 13741.84 117. 7479 13761. 84 117.7559 13781.84 117. 7638 13801. 84 117. 7718 13821.84 117.7797 13841.84 117.7877 13861. 84 117.7956 13881. 84 117.8035 13901.84 117. 8114 13921.84 117.8192 13941.84 117.8271 13961.84 117. 835 13981.84 117.8428 14001.84 117. 8506 14021. 84 117. 8584 14041.84 117.8663 14061. 84 117.8741 14081.84 117. 8818 14101. 84 117.8896 14121.84 117.8974 14141.84 117. 9051 14161.84 117.9129 14181.84 117.9206 14201.84 117.9283 14221.84 117.936 14241. 84 117 .9437 14261. 84 117.9514 14281.84 117.9591 14301.84 118. 0034 14321.84 118. 0351 14341.84 118. 0585 14361.84 118.0765 14381.84 118.0911 14401.84 118 .1033 14423.79 118.1139 14444.62 118.1204 14470.74 118.1124 14493.55 118. 0415 14522. 72 117 .9446 14542.72 117.895 14562.72 117.8595 14582.72 117. 8355 14602. 72 117.8201 14622.72 117 .8111 14642.72 117.8066 14662. 72 117.8054 14682.72 117.8067 14702.72 117. 8098 14722. 72 117.8142 14742.72 117. 8195 14762.72 117.8256 14782.72 117. 8323 14802. 72 117.8393 14822.72 117.8466 14842.72 117. 8541 14862.72 117.8616 14882. 72 117.8693 14902.72 117.877 14922.72 117.8846 14942. 72 117.8923 14962.72 117.8999 14982.72 117.9075 15002. 72 117. 915 15022.72 117.9225 15042.72 117.9299 15062.72 117.9372 15082.72 117. 9445 15102.72 117.9517 15122. 72 117. 9589 15142.72 117.966 15162.72 117.973 15182.72 117.9801 15202.72 117.987 15222.72 117.9939 15242.72 118.0008 15262.72 118.0076 15282.72 118.0144 15302.72 118. 0211 15322.72 118. 0279 15342.72 118. 0345 15362.72 118. 0412 15382.72 118. 0478 15402.72 118. 0544 15422.72 118. 061 15442.72 118. 0675 15462.72 118. 074 15482. 72 118.0805 15502.72 118. 087 15522.72 118. 0934 15542.72 118.0998 15562.72 118 .1062 15582.72 118 .1126 15602. 72 118 .119 15622.72 118.1254 15642.72 118.1317 15662. 72 118.138 15682.72 118 .1443 15702.72 118.1506 15722. 72 118 .1569 15742.72 118.1632 15762.72 118 .1694 15782.72 118.1757 15802.72 118.1819 15822.72 118.1881 15842.72 118 .1943 15862.72 118.2005 15882.72 118 .2067 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.xteH<!!lf:(-frf!<'"Jl>fD)ff<t. !.V!N";/ti{ly. Attachment 9 PAGE NO. 253 of 303 15902.72 118.2128 15922.72 118 .219 15942. 72 118 .2252 15962. 72 118.2313 15982. 72 118.2374 16002. 72 118.2436 16022.72 118.2497 16042. 72 118 .2558 '-16062.72 118.2619 16082. 72 118.2679 16102.72 118.274 16122.72 118.2801 16142.72 118.2862 16162.72 118 .2922 16182.72 118.2982 16202.72 118.3043 16222.72 118.3103 16242.72 118. 3163 16262. 72 118.3223 16282.72 118. 3284 16302. 72 -118 .3344 16322.72 118.3403 16342. 72 118.3463 16362. 72 118.3523 16382.72 118.3583 16402. 72 118.3642 16422.72 118.3702 16442. 72 118:3761 16462.72 118.3821 16482. 72 118.388 16502.72 118. 16522. 72 118.3999 16542.72 118.4058 16562.72 118 .4117 16582.72 118.4176 16602. 72 118.4235 16622.72 118.4294 16642.72 118.4352 16662. 72 118 .4411 16682.72 118 .447 16702.72 118.4529 16722.72 118 .4587 16742. 72 118.4646 16762.72 118 .4704 16782. 72 118.4762 16802.72 118 .4821 16822. 72 118 .4879 16842.72 118 .4937 16862. 72 118. 4995 16882.72 118. 5053 16902.72 118 .5111 16922. 72 118. 5169 16942.72 118. 5227 16962.72 118. 5285 16982.72 118.5343 17002.72 118. 5401 17022.72 118.5458 17042.72 118. 5516 17062.72 118.5573 17082.72 118. 56pl 17102. 72 118.5688 17122. 72 118. 5746 17142. 72 118.5803 17162. 72 118. 586 17182. 72 118.5918 17202.72 118. 5975 17222.72 118. 6032 17242.72 118.6089 17262.72 118.6146 17282.72 118. 6203 17302.72 118.626 17322.72 118.6317 17342.72 118.6373 17362.72 118. 643 17382. 72 118.6487 17402.72 118.6544 17422. 72 118.66 17442.72 118.6657 17462. 72 118 .6713 17482.72 118. 677 17502.72 118.6826 17522.72 118. 6882 17542.72 118.6938 17562.72 118.6995 17582.72 118. 7051 17602.72 118. 7107 17622. 72 118. 7163 17642.72 -118.7219 17662.72 118. 7275 17682.72 118. 7331 17702. 72 118.7387 17722. 72 118. 7443 17742. 72 118.7498 17762.72 118. 7554 17782.72 118.761 17802.72 118. 7665 17822.72 118.7721 17842.72 118. 7777 17862.72 118.7832 17882.72 118. 7887 17902.72 118.7943 17922.72 118. 7998 17942.72 118.8053 17962.72 118.8109 17982.72 118.8164 18002.72 118.8219 18022.72 118.8274 18042.72 118. 8329 18062. 72 118.8384 18082.72 118. 8439 18102.72 118. 8494 18122.72 118. 8549 18142. 72 118.8604 18162. 72 118. 8659 18182. 72 118. 8713 18202.72 118. 8768 18222.72 118. 8823 18242.72 118.8877 18262. 72 118. 8932 18282.72 118. 8986 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptt;}<<,t. fWtJ dr:rj. Attachment 9 PAGE NO. 254 of 303 18302.72 118. 9041 18322.72 118. 9095 18342.72 118. 9149 18362. 72 118. 9204 18382.72 118.9258 18402.72 118. 9312 18422.72 118.9367 18442.72 118. 9421 18462.72 118. 9475 18482.72 118.9529 18502.72 118. 9583 18522.72 118.9637 18542.72 118.9691 18562.72 118.9745 18582.72 118.9799 18602. 72 118.9852 18622.72 118. 9906 18642.72 118.996 18662.72 119. 0014 18682.72 119. 0067 18702.72 119. 0121 18722.72 119.0174 18742.72 119.0228 18762.72 119. 0281 18782.72 119.0335 18802.72 119.0388 18822.72 119. 0442 18842. 72 119. 0495 18862.72 119. 0548 18882.72 119.0601 18902.72 119. 0655 18922.72 119. 0708 18942.72 119. 0761 18962.72 119. 0814 18982.72 119. 0867 19002.72 119. 092 19022.72 119. 0973 19042.72 119.1026 19062.72 119 .1079 19082.72 119 .1132 19102.72 119 .1184 19122.72 119.1237 19142.72 119 .129 19162.72 119.1343 19182.72 119 .1395 19202.72 119.1448 19222.72 119.1501 19242.72 119.1553 19262.72 119 .1606 19282.72 119.1658 19302.72 119.171 ' 19322. 72 119.1763 19342.72 119 .1815 19362.72 119.1868 19382.72 119.192 19402.72 119.1972 19422.72 119.2024 19442 .*72 119.2076 19462.72 119.2129 19482.72 119 .21*01 19502.72 119.2233 19522.72 119.2285 19542.72 119.2337 19562.72 119.2389 19582.72 119 .2441 19602.72 119.2493 19622.72 119 .2544 19642.72 119.2596 19662.72 119 .2648 19682.72 119.27 19702.72 119 .2751 19722. 72 119.2803 19742.72 119 .2855 19762.72 119.2906 19782.72 119.2958 19802.72 119 .3009 19822. 72 119. 3061 19842. 72 119.3112 19862.72 119. 3164 19882. 72 119.3215 19902.72 119. 3267 19922.72 119 .3318 19942.72 119. 3369 19962. 72 119.342 19982.72 119 .3472 20002. 72 119.3523 20022.72 119.3574 20042.72 119.3625 20062.72 119. 3676 20082.72 119.3727 20102.72 119. 3778 20122.72 119.3829 20142.72 119.388 20162.72 119.3931 20182.72 119. 3982 20202. 72 119.4033 20222.72 119.4084 20242.72 119.4135 20262 .'72 119.4186 20282.72 119.4236 20302.72 119.4287 20322.72 119.4338 20342.72 119.4388 20362.72 119.4439 20382.72 119 .449 20402.72 119.454 20422.72 119 .4591 20442.72 119 .4641 20462.72 119 .4692 20482.72 119 .4742 20502.72 119 .4792 20522.72 119 .4843 20542.72 119 .4893 20562. 72 119 .4943 20582.72 119.4994 20602. 72 119.5044 20622.72 119.5094 20642.72 119. 5144 20662.72 119. 5195 20682. 72 119. 5245 ,, CALC. NO. ENTR-078-CALC-004 EN R 0 CALCULATION CONTROL SHEET-REV.O ptc,/e<;t. i¥"!N/tl<Ff. Attachment 9 PAGE NO. 255 of 303 r 20702.72 119.5295 20722. 72 119. 5345 20742.72 119. 5395 20762.72 119. 5445 20782.72 119. 5495 20802.72 119. 5545 20822.72 119. 5595 20842.72 119. 5645 20862.72 119.5695 20882. 72 119. 5744 20902.72 119.5794 20922.72 119.5844 20942. 72 119.5894 20962. 72 119.5944 20982. 72 119.5993 21002.72 119. 6043 21022. 72 119.6093 21042.72 119. 6142 21062.72 119.6192 21082. 72 ,119. 6241 21102. 72 119.6291 21122. 72 119. 634 21142. 72 119. 639 21162. 72 119. 6439 21182. 72 119. 6.;189 21202. 72 119. 6538 21222.72 119.6587 21242.72 119.6637 21262.72 119.6686 21282. 72 119. 6735 21302.72 119. 6785 21322.72 119. 6834 21342.72 119. 6883 21362.72 119. 6932 21382. 72 119. 6981 21402.72 119. 703* 21422.72 119. 708 21442.72 119. 7129 21462.72 119.7178 21482.72 119. 7227 21502.72 119. 7276 21522.72 119. 7325 21542.72 119.7374 21562.72 119. 7423 21582. 72 119. 7471 21602.72 119.752 21622.72 119.7569 21642.72 119. 7618 21662.72 119.7667 21682.72 119. 7716 21702.72 119.7764 21722.72 119. 7813 21742.72 119.7862 21762.72 119. 791 21782.72 119.7959 21802.72 119. 8008 21822.72 119.8056* 21842.72 119.8105 21862.72 119.8153 21882.72 119. 8202 21902. 72 119.825 21922. 72 119. 8299 21942. 72 119. 8347 21962. 72 119. 8396 21982. 72 119.8444 22002. 72 119. 8492 22022.72 1119. 8541 22042.72 119. 8589 22062.72 119.8637 22082.72 119. 8686 22102.72 119. 8734 22122.72 119. 8782 22142. 72 119. 883 22162.72 119. 8878 22182.72 119.8926 22202.72 119. 8975 22222. 72 119. 9023 22242.72 119. 9071 22262.72 119 .9119 22282. 72 119. 9167 22302. 72 119. 9215 22322.72 119. 9263 22342.72 119 .9311 22362.72 119. 9359 22382.72 119.9407 22402.72 119. 9455 22422.72 119.9502 22442.72 119. 955 22462.72 119. 9598 22482.72 119. 9646 22502. 72 119. 9694 22522.72 119. 9741 22542.72 119. 9789 22562.72 119.9837 22582.72 119.9885 22602. 72 119. 9932 22622.72 119.998 22642. 72 120.0028 22662.72 120.0075 22682.72 '120. 0123 22702.72 120.017 22722.72 120.0218 22742.72 120.0265 22762. 72 120.0313 22782.72 120.036 22802. 72 120.0408 22822.72 120.0455 22842.72 120.0503 22862.72 120.055 22882.72 120.0597 22902.72 120/. 0645 22922.72 120.0692 22942.72 120.0739 22962.72 120.0787 22982.72 120.0834 23002.72 120.0881 23022. 72 120.0928 23042.72 120.0975 23062.72 120.1023 23082.72 120.107 \ CALC. NO. ENTR-078-CALC-004 EN R 0 CALCULATION CONTROL SHEET-REV.O ivttq day. Attachment 9 PAGE NO. 256 of 303 / 23102.72 120.1117 23122. 72 120 .1164 23142.72 120 .1211 23162.72 120.1258 23182.72 120.1305 23202.72 120 .1352 23222.72 120.1399 '23242 .12 120.1446 23262.72 120.1493 23282.72 120.154 23302.72 120.1587 23322.72 120.1634 23342. 72 120.1681 23362.72 120.1728 23382.72 120.1775 23402.72 120.1821 23422.72 120.1868 23442.72 120.1915 23462.72 120.1962 23482.72 120.2008 23502.72 120.2055 23522.72 120.2102 23542.72 120.2149 23562.72 120.2195 23582.72 120.2242 23602.72 120.2289 23622. 72 120.2335 23642.72 120.2382 23662.72 120.2428 23682. 72 120.2475 23702. 72 120.2521 23722.72 120.2568 23742.72 120.2614 23762.7'2, 120.2661 23782.72 120.2707 23802.72 120.2754 23822.72 120.28 23842.72 120.2847 23862.72 120.2893 23882.72 120.2939 23902.72 120.2986 23922.72 120.3032 23942.72 120.3078 23962. 72 120.3125 23982.72 120.3171 24002.72 120.3217 24022.72 120.3263 24042.72 120.3309 24062.72 120.3356 24082.72 120.3402 24102.72 120.3448 24122.72 120.3494 24142.72 120.354 24162.72 120.3586 24182.72 120.3632 24202.72 120.3678 24222. 72 120.3725 24242.72 120 .3771 24262. 72 120.3817 24282. 72 120.3863 24302.72 120.3908 24322.72 120.3954 24342.72 120.4 24362.72 120.4046 24382.72 120.4092 24402.72 120.4138 24422.72 120.4184 24442. 72 120 .423 24462. 72 120.4276 24482.72 120.4321 24502. 72 120.4367 24522.72 120.4413 24542. 72 120.4459 24562.72 120.4504 24582. 72 120.455 24602.72 120.4596 24622.72 120.4641 24642. 72 120.4687 24662. 72 120:4733 '24682. 72 120 .4778 24702.72 120 .4824 24722. 72 120.41?7 24742.72 120 .4915 24762.72 120 .4961 24782.72 120.5006 24802. 72 120.5052 24822.72 120.5097 24842.72 120.5143 24862. 72 120.5188 24882.72 120.5234 24902.72 120.5279 24922.72 120.5324 24942. 72 120.537 24962.72 120. 5415 24982.72 120.5461 25002.72 120.5506 25022.72 120.5551 25042.72 120.5597 25062.72 120.5642 25082.72 120.5687 25102. 72 120.5733 25122.72 120.5778 25142.72 12,0. 5823 25162. 72 1120.5869 25182.72 120.5914 25202. 72 120.596 25222.72 120.6005 25242.72 120.605 25262.72 120.6096 25282.72 120.6141 25302.72 120.6186 25322.72 120.6232 25342.72 120.6277 25362. 72 120.6322 25382.72 120.6367 25402.72 120.6413 25422.72 120.6458 25442. 72 120.6503 25462.72 120.6548 25482.72 120.6594 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV. 0 ptojea EWty fir:; Attachment 9 PAGE NO. 257 of 303 25502.72 120.6639 25522.72 120.6684 25542.72 120.6729 25562. 72 120.6775 25582. 72 120.682 25602.72 120.6865 25622. 72 120.691 25642. 72 120.6955 25662.72 120.7 25682.72 120.7045 25702.72 120.7091 25722.72 120. 7136 25742.72 120. 7181 25762.72 120.7226 25782.72 120. 7271 25802.72 120.7316 25822.72 120.7361 25842. 72 120.7406 25862.72 120.7451 25882. 72 120. 7496 25902.72 120.7541 25922. 72 120.7586 25942.72 120.7631 25962. 72 120.7676 25982.72 120. 7721 26002. 72 120.7766 26022.72 120.781 26042. 72 120.7855 26062.72 120.79 26082. 72 120.7945 26102.72 120.799 26122.72 120.8035 26142.72 120.8079 26162.72 120.8124 26182.72 120.8169 26202.72 120.8214 26222.72 120.8258 26242'. 72 120.8303 26262.72 120.8348 26282.72 120.8392 26302.72 120.8437 26322.72 120.8482 26342.72 120.8526 26362. 72 120. 8571 26382.72 120.8616 26402.72 120.866 26422.72 120.8705 26442. 72 120.8749 26462.72 120.8794 26482. 72 120.8839 26502.72 120.8883 26522. 72 120.8928 26542.72 120.8972 26562.72 120.9017 26582.72 120.9061 26602.72 120.9106 ' 26622.72 120.915 26642.72 120.9194 26662.72 120.9239 26682.72 120.9283 26702. 72 120.9328 26722. 72 120.9372 26742.72 120.9417 26762.72 120.9461 26782. 72 120.9505 26802. 72 120.955 26822. 72 120.9594 26842. 72 120.9638 26862.72 120.9682 26882.72 120. 9727 26902.72 120.9771 26922. 72 120.9815 26942.72 120.986 26962. 72 120.9904 26982.72 120.9948 27002. 72 120.9992 27022.72 121.0036 27042. 72 121.0081 27062.72 121.0125 27082.72 121. 0169 27102.72 121.0213 27122. 72 121. 0257 27142.72 121.0301 27162. 72 121. 0346 27182. 72 121. 039 27202.72 121.0434 -27222.72 121.0478 27242. 72 121.0522 27262.72 121.0566 27282. 72 121.061 27302.72 121.0654 27322.72 121.0698 27342.72 121.0742 27362.72 121. 0786 27382.72 121. 083 27402.72 121.0874 27422.72 121.0918 27442. 72 121.0962 27462.72 121.1006 27482.72 121.105 27502.72 121.1094 27522.72 121.1138 27542.72 \ 121.1182 27562. 72 121.1225 27582.72 121.1269 27602. 72 121.1313 27622. 72 121.1357 27642.72 121.1401 27662. 72 121.1445 27682.72 121.1489 \ 27702.72 121.1532 27722. 72 121.1576 27742.72 121.162 27762. 72 121.1664 27782.72 121.1708 27802.72 121.1751 27822.72 121.1795 27842.72 121.1839 27862.72 121.1882 27882.72 121.1926 CALC. NO. ENTR-078-CALC-004 EN E.RCON CALCULATION CONTROL SHEET-REV. 0 F.xi:dlence-£vetyp1()}ea Ewry!tey Attachment 9 PAGE NO. 258 of 303 27902.72 121.197 27922.72 121.2014 27942.72 121.2057 27962. 72 121. 2101 27982.72 121.2145 28002.72 121.2188 28022.72 121. 2232 28042.72 121.2276 28062.72 121. 2319 28082. 72 121.2363 28102.72 121.2406 28122.72 121. 245 28142.72 121.2494 28162.72 121.2537 28182.72 121.2581 28202.72 121.2624 28222.72 121.2668 28242.72 121.2711 28262.72 121.2755 28282.72 121.2798 28302.72 121 .. 2842 28322. 72 121. 2885 28342.72 121. 2929 28362. 72 121. 2972 28382.72 121.3016 28402. 72 121.3059 28422.72 121. 3103 28442. 72 121. 3146 28462. 72 121. 319 28482. 72 121.3233 28502.72 121.3276 28522.72 121.332 28542.72 121. 3363 28562. 72 121.3407 28582.72 121.345 28602.72 121. 3493 28622.72 121.3537 28642.72 121. 358 28662.72 121. 3623 28682.72 121. 3667 28702.72 121.371 28722.72 121.3753 28742.72 121.3796 28762.72 121. 384 28782.72 121.3883 28802.72 121.3926 28822.72 121.3969 28842.72 121.4013 28862.72 121.4056 28882.72 121.4099 28902.72. 121.4142 28922.72 121.4186 28942.72 121.4229 28962.72 121.4272 28982.72 121.4315 29002.72 121.4358 29022.72 121.4401 29042. 72 121.4445 29062.72 121.4488 29082.72 121.4531 29102. 72 121.4574 29122. 72 121.4617 29142. 72 121.466 29162. 72 121.4703 29182.72 121.4746 29202. 72 121.4789 29222.72 121.4832 29242.72 121.4875 29262.72 121.4918 29282.72 121. 4961 29302.72 121. 5004 29322.72 121.5047 29342.72 121. 509 29362.72 121. 5133 29382.72 121. 5176 29402.72 121.5219 29422.72 121.5262 29442.72 121. 5305 29462.72 121.5348 29482.72 121. 5391 29502.72 121. 5433 29522.72 121.5476 29542.72 121.5519 29562.72 121.5562 29582.72 121.5605 29602.72 121. 5648 29622.72 121. 569 29642.72 121.5733 29662.72 121. 5776 29682.72 121.5819 29702.72 121. 5862 29722. 72 121. 5904 29742. 72 121.5947 29762.72 121. 599 29782. 72 121.6033 29802.72 121. 6076 29822.72 121. 6118 29842. 72 121. 6161 29862. 72 121.6204 29882. 72 121. 6246 29902. 72 121.6289 29922.72 121. 6332 29942.72 121.6375 29962.72 121 .. 6417 29982.72 121.646 30002. 72 121. 6503 30022.72 121.6545 3004;2.72 121. 6588 30062.72 121.6631 30082.72 121. 6673 30102.72 121. 6716 30122.72 121.6758 30142.72 121.6801 30162. 72 121. 6844 30182.72 121.6886 30202. 72 121. 6929 30222.72 121.6972 30242.72 121. 7014 30262.72 121.7057 30282.72 121. 7099 CALC. NO. ENTR-078-CALC-004 NERCO CALCULATION CONTROL SHEET-REV. 0 PfOJY!i.":l f.vttydiJy. Attachment 9 PAGE NO. 259 of 303 *, 30302.72 121. 7142 30322.72 121.7184 30342.72 121.7227 30362. 72 121.7269 30382.72 121.7;312 30402.72 121.7354 I 30422.72 121. 7397 30442.72 121.7439 30462. 72 121.7482 30482.72 121.7524 30502.72 121. 7567 30522.72 121.7609 30542.72 121.7652 30562.72 121. 7694 30582.72 121.7737 30602.72 121. 7779 30622.72 121. 7821 30642.72 121. 7864 30662.72 121.7906 30682.72 121. 7949 30702.72 121.7991 30722.72 121.8033 30742.72 121.8076 30762.72 121. 8118 30782.72 121.816 30802.72 121. 8203 30822.72 121. 8245 30842. 7'2. 121. 8288 30862.72 121.833 30882. 72 121. 8372 30902.72 121.8414 30922.72 121.8457 30942.72 121. 8499 30962.72 121. 8541 30982.72 121.8584 31002.72 121.8626 31022.72 121.8668 31042.72 121. 871 31062.72 i21,8753 31082.72 121. 8795 31102. 72 121.8837 31122. 72 121.8879 31142. 72 121. 8922 31162. 72 121.8964 31182. 72 121.9006 31202.72 121. 9048 31222.72 121.909 31242.72 121.9133 31262.72 121.9175 31282.72 121. 9217 31302.72 121.9259 31322.72 ,121.9301 31342.72 121.9343 31362.72 121.9385 31382.72 12l.9428 31402.72 121.947 31422.72 121.9512 31442.72 '* 31462.72 121. 9596 31482.72 121.9638 31502. 72 121. 968 ; 31522. 72 121.9722 31542.72 121.9764 31562.72 121. 9806 31582.72 121.9848 31602.72 121.989 31622.72 121.9932 31642.72 121. 9975 31662.72 122.0017 31682. 72 122.0059 31702.72 122.0101 31722.72 122.0143 31742.72 122.0185 31762.72 122.0227 31782.72 122.0269 31802.72 122. 0311 31822.72 122.0352 31842. 72 122.0394 31862. 72 122.0436 31882. 72 122.0478 31902.72 122.052 31922. 72 122.0562 31942.72 122.0604 31962. 72 122.0646 31982.72 122.0688 32002.72 122.073 32022.72 122.0772 32042.72 12,2. 0814 32062.72 122.0856 32082.72 122.0897 32102.72 122.0939 32122.72 122.0981 32142.72 122.1023 32162.72 122.1065 32182.72 122 .1107 32202.72 122.1149 32,222. 72 122 .119. 32242.72 122.1232 32262.72 122.1274 32282.72 122.1316 32302.72 122 .1358 32322. 72 122.1399 32342.72 122.1441 32362.72 122.1483 32382. 72 122.1525 32402.72 122.1566 32422.72 122.1608 32442.72 122.165 32462.72 1-,22 .1692 32482.72 122.1733 32502.72 122.1775 32522.72 122.1817 32542.72 122.1859 32562. 72 122.19 32582.72 122.1942 32602. 72 122.1984 32622.72 i22.2025 32642.72 122.2067 32662.72 1'22.2109 32682. 72 122.215 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xu:H&.r1ct-£vl?typtf)]i!<l. £vf!fyday. Attachment 9 PAGE NO. 260 of 303 32702.72 122.2192 32722.72 122.2234 32742.72 122.2275 32762.72 122.2317 32782.71 122.2359 32802.71 122.24 32822.71 122.2442 -32842. 71 122.2484 32862.71 122.2525 32882.71 122.2567 32902.71 122.2608 32922.71 122.265 32942.71 122.2692 32962.71 122.2733 32982.71 122.2775 33002.71 122.2816 33022. 71 122.2858 33042. 71 122.2899 33062.71 122.2941 33082. 71 122:-2983 33102.71 122.3024 33122.71 122.3066 33142.71 122.3107 33162.71 122.3149 33182.71 122.319 33202. 71 122.3232 33222.71 122.3273 '33242. 71 122.3315 33262.71 122.3356 33282.71 122.3398 33302.71 122.3439 33322. 71 122.3481 33342.71 122.3522 33362. 71 122.3564 33382.71 122.3605 33402.71 122.3646 33422.71 122.3688 33442. 71 122.3729 33462.71 122.3771 33482. 71 122.3812 33502. 71 122.3854 33522. 71 '122 .3895 33542. 71 122.3936 33562.71 122.3978 33582.71 122.4019 33602.71 122.4061 33622.71 122.4102 33642.71 122 .4143 33662.71 122.4185 33682. 71 122.4226 33702.71 122.4267 33722. 71 122.4309 33742. 71 122.435 33762. 71 122.4391 33782. 71 122.4433 33802. 71 122.4474 33822.71 122.4515 33842.71 122.4557 33862.71 122.4598 33882. 71 122.4639 33902.71 122.4681 33922.71 122.4722 33942.71 122.4763 33962. 71 122.4804 33982.71 122.4846 34002.71 122.4887 34022. 71 122.4928 34042.71 122.4969 34062. 71 122.5011 34082. 71 122.5052 34102.71 122.5093 34122.71 122.5134 34142.71 122.5176 34162.71 122.5217 34182.71 122.5258 34202. 71 122.5299 34222.71 122.534 34242. 71 122.5382 34262.71 122.5423 34282. 71 122.5464 34302.71 122.5505 34322.71 122.5546 34342.71 122.5588 34362.71 122.5629 34382. 71 122.567 34402.71 122. 5711 34422.71 122.5752 34442.71 122.5793 34462.71 122.5834 34482.71 122.5876 34502.71 122.5917 34522.71
- 122.5958 34542.71 122.5999 34562.71 122.604 34582.71 122.6081 34602. 71 122.6122 34622.71 122.6163 34642.71 122.6204 34662.71 122.6245 34682. 71 122.6286 34702.71 122.6328 34722. 71 122.6369 34742. 71 122.641 34762.71 122.6451 34782.71 122.6492 34802. 71 122.6533 34822.71 122.6574 34842. 71 122.6615 34862.71 122.6656 34882. 71 122.6697 34902.71 122.6738 34922. 71 122.6779 34942.71 122.682 34962. 71 122.6861 34982.71 122.6902 35002. 71 122.6943 35022.71 122.6984 35042. 71 122.7025 35062.71 122.7066 35082. 71 122. 7107 CALC. NO.
E RCON CALCULATION CONTROL SHEET-REV. 0 ptoje<.:,. fwq ttn Attachment 9 PAGE NO. 261 of 303 35102.71 122. 7148 35122.71 122. 7189 35142. 71 122.723 35162.71 122. 7271 35182.71 122.7311 35202. 71 122.7352 35222.71 122.7393 '1 35242. 71 122.7434 35262.71 122.7475 35282. 71 122.7516 35302.71 122.7557 35322. 71 122.7598 35342.71 122.7639 35362. 71 122.768 35382.71 122.7721 35402. 71-122.7761 ' 35422. 71 122.7802 35442.71 122.7843 35462.71 122.7884 35482. 71 122.7925 3'5502. 71 122.7966 35522. 71 122.8007 35542.71 122.8047 35562. 71 122.8088 35582. 71 122.8129 35602. 71 122.817 35622. 71 122.8211 35642. 71 122.8252 35662. 71 122.8292 J 35682,71 122.8333 35702. 71 122.8374 35722. 71, 122.8415 35742. 71 122.8456 35762. 71 122.8496 35782.71 122.8537 ,35802. 71 122.8578 35822.71 122.8619 35842. 71 122.8659 35862.71 122.87 35882. 71 122.8741 35902.71 122,8782 35922. 71 122.8822 35942. 71 122.8863 35962. 71 122.8904 35982.71 122.8945 36002.71 122.8985 36022. 71 122.9026 36042.71 122.9067 36062. 71 122.9108 36082.71 122.9148 36102. 71 122.9189 36122. 71 122.923 36142. 71 122.927 36162. 71 122.9311 36182. 71 122.9352 36202. 71 122.9392 36222. 71 122.9433 36242. 71 122.9474 36262. 71 122.9514 36282. 71 122.9555 36302. 71 122.9596 36322. 71 122.9636 36342. 71 122.9677 36362. 71 122. 9718 36382. 71 122.9758 36402. 71 122.9799 36422. 71 122.9839 36442. 71 122.988 36462.71 122.9921 36482. 71 122.9961 36502.71 123.0002 36522. 71 123.0042 36542.71 123.0083 36562. 71 123.0124 36582.71 123.0164 36602. 71 123.0205 36622.71 123.0245 36642. 71 123.0286 36662.71 123,0327 36682.71 123.0367 36702. 71 123.0408 36722.71 123.0448 36742. 71 123.0489 36762.71-123.0529 36782. 71 123.057 36802.71 123.061 36822. 71 123.0651 36842. 71 123.0691 36862. 71 123.0732 36882. 71 123.0772 36902. 71 123.0813 36922. 71 123.0853 36942. 71 123.0894 36962.71 123.0934 36982. 71 123.0975 37002.71 123.1015 37022. 71 123.1056 37042. 71 123.1096 37062. 7I 123 .1137 37082.71 123 .1177 37102. 71 123.1218 37122. 71 123.1258 37142. 71 123.1299 37162. 71 123 .1339 37182. 71 123.138 37202. 71 123.142 37222. 71 123.146 37242. 71 123.1501 37262. 71 123.1541 37282. 71 123.1582 37302. 71 123.1622 37322. 71 123.1663 37342.71 123 .-1703 37362. 71 123.1743 37382.71 123.1784 37402. 71 123.1824 37422.71 123.1865 37442. 71 123.1905 37462.71 123.1945 37482. 71 123.1986 '-- ENERCON CALCULATION CONTROL Attachment 9 37502.71 123.2026 37522.71 123.2066 37542.71 123.2107 37562.71 123.2147 37582.71 123.2188 37602.71 123.2228 37622.71 123.2268 37642. 71 123.2309 37662.71 123.2349 37682. 71 123.2389 37702.71 123.243 37722. 71 123.247 I 37742.71 123.251 37762. 71 123.255 37782.71 123.2591 37802. 71 123.2631 37822.71 123.2671 37842. 71 123. 2712 37862.71 123.2752 37882. 71 123.2792 37902.71 123.2832 37922. 71 123.2873 37942. 71 123.2913 37962.71 123.2953 37982.71 123.2994 38002.71 123.3034 38022. 71 123.3074 38042. 71 123.3114 38062.71 123.3155 38082. 71 123.3195 38102.71 123.3235 38122. 71 123.3275 38142. 71 123.3316 38162.71 123.3356 38182.71 123.3396 38202.71 123.3436 38222.71 123.3476 38242.71 123.3517 38262.71 123.3557 38282.71 123.3597 38302. 71 123.3637 38322.71 123.3677 38342.71 i23.3718 38362.71 123.3758 38382.71 123.3798 38402.71 123.3838 38422.71 123.3878 38442.71 123.3918 38462. 71 123 .3959 38482.71 123.3999 38502.71 123.4039 38522.71 123.4079 38542.71 123 .4119 38562. 71 123.4159 38582.71 123.42 38602. 71 123.424 38622.71 123.428 38642. 71 123.432 38662.71 123.436 38682. 71 123.44 38702.71 123.444 -38722. 71 123.448 38742. 71 123.452 38762. 71 123.4561 38782. 71 123.4601 38802. 71 123.4641 38822.71 123.4681 38842. 71 123.4721 38862.71 123.4761 38882. 71 123.4801 38902.71 123.4841 38922. 71 123.4881 38942. 71 123.4921 38962. 71 123.4961 38982.71 123.5001 39002. 71 123.5041 39022.71 123.5081 39042. 71 123.5121 39062. 71 123.5162 39082. 71 123.5202 39102.71 123.5242 39122.71 123.5282 39142. 71 123.5322 39162. 71 123.5362 39182. 71 . 123.5402 39202. 71 123.5442 39222.71 123.5482 39242. 71 123.5522 39262. 71 123.5562 39282. 71 123.5602 39302. 71 123.5642 39322. 71 123.5682 39342. 71 1'23. 5722 39362. 71 123.5762 39382. 71 123.5802 39402. 71 123.5842 39422. 71 123.5882 39442. 71 123.5921 39462. 71 123.5961 39482. 71 123.6001 39502. 71 123.6041 39522.71 123.6081 39542. 71. 123.6121 39562. 71 123.6161 39582.71 123.6201 39602.71 123.6241 39622.71 123.6281 39642.71 123.6321 39662.71 123.6361 39682.71 123.6401 39702.71 123.6441 39722. 71 i23.648 39742. 71 123.652 39762. 71 123.656 39782.71 123.66 39802. 71 123.664 39822. 71 123.668 39842. 71 123.672 39862.71 123.676 39882. 71 123.68 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 262 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xi:ell*m:e-£vety
- ptojeet, f.wq tl<'J. Attachment 9 PAGE NO. 263 of 303 39902.71 123.6839 39922. 71 123.6879 39942.71 123.6919 39962.71 123.6959 39982.71 123.6999 40002. 71 123.7039 40022.71 123.7079 40042. 71 123. 7118 40062.71 123. 7158 40082. 71 123. 7198 40102.71 123.7238 40122. 71 40142.71 123.7318 40162.71 123.7357 40182.71 123 .. 7397 40202. 71 123.7437 40222. 71 123.7477 40242. 71 123.7517 40262. 71 123.7556 40282. 71 123.7596 40302. 71 123.7636 40322.71 123.7676 40342. 71 123. 7716 40362.71 123.7755 40382. 71 123.7795 40402.71 123.7835 40422.71 123.7875 40442.71 123.7914 40462. 71 123.7954 40482.71 123.7994 40502.71 123.8034 40522.71 123.8074 40542. 71 123.8113 40562.71 123.8153 40582.71 123.8193 40602.71 123.8232 40622.71 123.8272 40642.71 123.8312 40662.71 123.8352 40682.71 123 .-8391 ,40702. 71 123.8431 40722. 71 123. 8471 40742.71 123.8511 40762. 71 123.855 40782. 71 123.859 40802. 71 123.863 40822.71 123.8669 40842.71 123.8709 40862. 71 123.8749 40882. 71 123.8788 40902.71 123.8828 40922. 71 123.8868 40942.71 123.8907 40962. 71 123.8947 40982.71 123.8987 41002.71 123.9026 41022. 71 123.9066 41042.71 123.9106 41062.71 123.9145 41082.71 123.9185 41102. 71 123.9225 41122.71 123.9264 41142. 71 123.9304 41162. 71 123.9344 41182. 71 123.9383 41202.71 123.9423 41222.71 123.9462 41242.71 123.9502 41262.71 123.9542 41282.71 123.9581 41302. 71 123.9621 41322.71 123.966 41342.71 123.97 41362. 71 123.974 41382.71 123.9779 41402. 71 123.9819 41422.71 123.9858 41442.71 123.9898 41462.71 123.9938 41482. 71 123.9977 41502.71 124.0017 41522.71 124.0056 41542.71 124. 0096 41562.71 124. 0135 41582.71 124.0175 41602.71 124.0215 41622.71 124.0254 41642.71 124.0294 41662.71 124.0333 41682.71 124.0373 41702.71 124.0412 41722.71 124.0452 41742. 71 124.0491 41762.71 124.0531 41782.71 124.057 41802.71 124.061 41822.71 124.0649 41842.71 124.0689 41862.71 124.0728 41882.71 124.0768 41902.71 124.0807 41922.71 124.0847 41942.71 124.0886 41962.71 124.0926 41982.71 124.0965 42002.71 124.1005
/ 42022.71 124.1044 42042.71 124.1084 42062.71 124 .1123 42082.71 124 .1163 42102.71 124.1202 42122.71 124.1242 42142.71 124.1281 42162.71 124.1321 42182.71 124.136 42202.71 124.14 42222.71 124.1439 42242. 71 124.1478 42262.71 124.1518 42282. 71 124.1557 CALC. NO. ENTR-078-CALC-004 EN RC N CALCULATION CONTROL SHEET-REV.O F.wcydey; Attachment 9 PAGE NO. 264 of 303 42302.71 124.1597 42322. 71 124.1636 42342.71 124.1676 42362.71 124.1715 42382.71 124.1754 42402.71 124.1794 42422.71 124.1833 42442.71 124.1873 42462.71 124.1912 42482.71 124.1951 42502.71 124.1991 42522.71 124.203 42542.71 124.207 42562.71 124.2109 42582.71 124.2148 42602. 71 124.2188 42622.71 124.2227 42642. 71 124.2267 42662.71 124.2306 42682.71 124.2345 42702.71 124.2385 42722. 71 124.2424 42742.71 124.2463 42762.71 124.2503 142782. 71 124.2542 42802.71 124.2581 42822.71 124.2621 42842. 71 124.266 42862.71 124.2699 42882. 71 124.2739 42902.71 124.2778 42922. 71 124.2817 42942. 71 124.2857 42962. 71 124.2896 42982.71 124.2935 43002.71 124.2975 43022. 71 124.3014 43042. 71 124.3053 43062.71 124.3093 43082.71 124.3132 43102.71 124.3171 43122.71 124.321 43.142. 71 124.325 43162.71 124.3289 43182. 71 124.3328 43202.71 124.3368 43222.71 124.3407 43242:71 124.3446 43262.71 124.3485 43282.71 124.3525 43302.71 124.3564
- 43322. 71 124.3603 43342.71 124.3642 43362.7U.
124.3682 43382.71 124.3721 43402.71 124.376 43422.71 124.3799 43442.71 124.3839 43462.71 124.3878 43482. 71 124.3917. 43502.71 124.3956 43522.71 124.3996 43542.71 124.4035 43562.71 124.4074 435821* 71 124 .4113 43602.71 124.4152 43622.71 124.4192 43642.71 124 .4231 43662.71 124.427 43682. 71 124.4309 43702.71 124.4348 43722.71 124.4388 43742.71 124.4427 43762. 71 124.4466 43782.71 124.4505 43802. 71 124.4544 43822. 71 124.4584 43842. 71 124.4623. 43862.71 124.4662 43882. 71 124.4701 43902.71 124.474 43922. 71 124.4779 43942. 71 124.4819 43962. 71 124.4858 43982.71 124.4897 44002. 71 124.4936 44022.71 124.4975 44042. 71 124.5014 44062.71 124.5053 44082. 71 124.5093 44102.71 124.5132 44122. 71 124. 5171 44142.71 124.521 44162. 71 124.5249 44182.71 124.5288 44202. 71 124.5327 44222.71 124.5366 44242. 71 124.5406 44262.71 124.5445 44282. 71 124.5484 44302.71 124.5523 44322. 71 124.5562 44342.71 124.5601 44362. 71 124.564 44382.71 124.5679 44402.71 124.5718 44422.71 124.5757 44442.71 124.5797 44462.71 124.5836 44482. 71 124.5875 44502.71 124.5914 44522. 71 124.5953 44542.71 124.5992 44562.71 124.6031 44582.71 124.607 44602. 71 124.6109 44622.71 124.6148 44642. 71 124.6187 44662. 71 124.6226 44682. 71 124.6265 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptt;jt<;t, f.WNy dt;y. Attachment 9 PAGE NO. 265 of 303 44702.71 124.6304 44722. 71 124.6343 44742.71 124.6382 44762. 71 124.6421 44782.71 124.646 44802. 71 124,6499 44822.71 124.6538 44842. 71 124.6577 44862.71 124.6616 44882. 71 124.6655 44902. 71 124.6694 44922. 71 124'.6733 44942.71 124.6772 44962.71 124. 6811 44982. 71 124.685 45002.71 124.6889 45022.71 124.6928 45042.71 124.6967 45062.71 124.7006 45082.71 124.7045 45102.71 124.7084 45122. 71 124. 7123 45142.71 124. 7162 45162. 71 124.7201 45182.71 124.724 45202. 71 124.7279 45222.71 124.7318 45242.71 124.7357 45262.71 124.7396 45282. 71 124.7435 45302.71 124.7474 45322. 71 124.7513 45342. 71 124.7552 45362. 71 124.7591 45382. 71 124.763 45402.71 124.7669 45422. 71 124. 7708 45442:. 71 124.7746 45462. 71 124.7785 4548i. 71 124.7824 45502.71 124.7863 45522.71 124.7902 45542.71 124.7941 45562.71 124.798 45582.71 124.8019 45602. 71 124.8058* 45622.71 124.8097 45642.71 124.8135 45662.71 124.8174 45682.71 124.8213 45702.71 124.8252 45722.71 124.8291 45742.71 124.833 45762. 71 124.8369 45782.71 124.8408 45802. 71 124.8447 45822. 71 124.8485 45842. 71 124.8524 45862. 71 124.8563 45882.71 124.8602 45902. 71 124.8641 45922. 71 124.868 45942. 71 124. 8718 45962. 71 124.8757 45982. 71 124.8796 46002. 71 124 .. 8835 46022. 71 124.8874 46042. 71 124.8913 46062. 71 124.8951 46082. 71 124.899 46102. 71 124.9029 46122. 71 124.9068 46142. 71 124.9107 46162.71 124.9146 46182. 71 124.9184 46202 .. 71 124.9223 46222.71 124.9262 46242. 71 124.9301 46262.71 124.934 46282. 71 124.9378 46302.71 124.9417 46322 *171 124.9456 46342.71 124.9495 46362. 71 124.9534 46382.71 124.9572 46402. 71 124. 9611 46422.71 124.965 464'42. 71 124.9689 46462.71 124.9727 46482. 71 124.9766 46502.71 124.9805 46522. 71 124.9844 46542.71 124.9882 46562. 71 124.9921 46582.71 124.996 46602. 71 124.9999 46622.71 125.0037 46642. 71 125.0076 46662.71 125. 0115 46682.71 125.0154 46702. 71 125.0192 46722. 71 125.0231 46742. 71 125.027 46762. 71 125.0309 46782. 71 46802. 71 125.0386 46822. 71 125. 0425 46842. 71 125.0463 46862. 71 125.0502 46882. 71 125.0541 46902. 71 125.058 46922. 71 125.0618 46942.71 125.0657 46962. 71 125.0696 46982. 71 125.0734 47002. 71 125.0773 47022.71 125.0812 47042. 71 125.085 47062. 71 125.0889 47082. 71 125.0928 ./ v CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 txa;l!erK?.-frfN"JPfD}t<:t. F.'lff'JtirJi. Attachment 9 PAGE NO. 266 of 303 47102. 71 125. 0966 47122. 71 125.1005 47142. 71 125.1044 47162. 71 125.1082 .. 47182. 71 125 .1121 47202. 71 125 .116 ' 47222.71 125 .1198 47242.71 125.1237 47262.71 125.1276 '47282. 71 125.1314 47302.71 125.1353 47322. 71 125.1392 47342. 71 125 .143 47362. 71 125 .1469 47382.71 125.1507 47402. 71 125.1546 47422.71 125.1585 47442. 71 125.1623 47462.71 125.1662 47482. 71 125.1701 47502.71 125.1739 47522. 71 125.1778 47542.71 125 .. 1816 47562. 71 125.1855 47'582. 71 125.1894 47602. 71 125.1932 47622.71 125 .1971 47642. 71 125.2009 47662.71 125.2048 47682. 71 125.2087 47702.71 125.2125 47722. 71 125.2164 47742.71 125.2202 47762. 71 125.2241 47782.71 125.228 47802. 71 125.2318 47822. 71 125.2357 47842.71 125.2395 47862.71 125.2434 47882. 71 125.2472 47902.71 125.2511 47922.71 125.2549 47942.71 125.2588 47962. 71 125.2627 47982.71 125.2665 48002. 71 125.2704 48022.71 125.2742 48042. 71 125.2781 48062.71 125.2819 48082. 71 125.2858 48102. 71 125.2896 48122. 71 125.2935 48142.71 125.2973 48162. 71 125.3012 48182. 71 125.305 48202. 71 125.3089 48222.71 125.3127 48242. 71 125.3166 48262.71 125.3204 48282. 71 125.3243 48302.71 125.3281 48322. 71 125.332 48342.71 125.3358 48362. 71 125.3397 48382. 71 125.3435 48402. 71 125.3474 48422.71 125.3512 48442. 71 125.3551 48462.71 125.3589 48482. 71 125.3628 48502.71 125.3666 48522. 71 125.3705 48542.71 125.3743 48562. 71 125.3782 48582.71 125.382 48602. 71 125.3859 48622.71 125.3897 48642. 71 125.3935 48662.71 125.3974 48682. 71 125.4012 48702.71 125.4051 48722. 71 125.4089 48742.71 125.4128 48762. 71 125.4166 48782.71 125.4205 48802. 71 125.4243 48822. 71 125.4281 48842. 71 125.432 48862.71 125.4358 48882. 71 125.4397 48902.71 125.4435 48922. 71 125.4473 48942. 71 125.4512 48962. 71 125.455 48982. 71 125.4589 49002. 71 125.4627 49022. 71 125.4666 49042. 71 125.4704 49062.71 125.4742 49082.71 125.4781 49102.71 125.4819 49122. 71 125.4857 49142.71 125.4896 49162. 71 125.4934 49182.71 125.4973 49202. 71 125.5011 49222. 71 125.5049 49242. 71 125.5088 49262.71 125.5126 4928i. 71 125.5164 49302. 71 125.5203 49322. 71 125.5241 49342.71 125:529 49362. 71 125.5318 49382.71 125.5356 49402. 71 125.5395 49422.71 125.5433 49442. 71 125.5471 49462.71 125.551 49482. 71 125.5548 CALC. NO. ENTR-078-CALC-004 -ENERCON CALCULATION CONTROL SHEET-REV.O .. lf'Kt. £'.-Pr"/<iay. Attachment 9 PAGE NO. 267 of 303 49502.71 125.5586 49522. 71 125.5625 49542.71 125.5663 49562. 71 125.5701 49582.71 125.574 49602. 71 125.5778 49622.71 125.5816 49642. 71 125.5854 49662.71 125.5893 49682. 71 125.5931 49702.7_1 125.5969 49722. 71 125.6008 49742.71 125.6046 49762. 71 125.6084 49782.71 125.6123 49802.71 125.6161 49822.71 125.6199 49842.71 125.6237 49862.71 125.6276 49882. 71 125.6314 49902.71 125.6352 49922. 71 125.6391 49942.71 125.6429 49962. 71 125.6467 49982. 71 125.6505 50002.7;1 125.6544 50022.71 125.6582 50042.71 125.662 50062.71 125.6658 50082. 71 125.6697 50102.71 125.6735 50122. 71 125.6773 50142.71 125.6811 50162. 71 125.685 50182.71 125.6888 50202. 71 125.6926 50222.71 125.6964 50242. 71 125.7002 50262.71 125.7041 50282.71 125.7079 50302.71 125.7117 50322. 71 125. 7155 50342. 71 125. 7194 50362.71 125.7232 50382. 71 125.727 50402.71 125.7308 50422. 71 125.7346 50442.71 125.7385 50462.71 125.7423 50482.71 125.7461 50502.71 125.7499 50522. 71 125.7537 50542. 71 125.7576 50562. 71 125.7614 50582.71 125.7652 50602. 71 125.769 50622.71 125. 7728 50642.71 125. 7766 50662.71 125. 7805 50682.71 125.7843 50702.71 125.7881 50722. 71 125.7919 50742.71 125.7957 50762. 71 125.7996 50782.71 125.8034 50802. 71 125.8072 50822.71 125. 811 50842.71 125.8148 50862.71 125.8186 50882.71 125.8224 50902.71 125.8263 50922. 71 125.8301 50942.71 125.8339 50962. 71 125.8377 50982.71 125.8415 51002. 71 125.8453 51022.71 125.8491 51042.71 125.8529 51062.71 125.8568 51082.71 125.8606 51102. 71 125.8644 51122. 71 125.8682 51142. 71 125. 872 51162. 71 125.8758 51182. 71 125.8796 51202. 71 125.8834 51222. 71 125.8872 51242.71 125.891 51262.71 125.8949 51282.71 125.8987 51302.71 125.9025 51322. 71 125 .,9063 51342. 71 125.9101 51362. 71 125.9139 51382. 71 125.9177 51402. 71 125.9215 51422.71 125.9253 51442. 71 125.9291 51462. 71 125.9329 51482. 71 125.9367 51502.71 125.9405 51522.71 125.9444 51542.71 125.9482 51562.71 125.952 51582.71 125.9558 51602. 71 125.9596 51622.71 125.9634 51642. 71 125.9672 51662. 71 125. 971 51682. 71 ,125.9748 51702.71 125.9786 51722.71 125.9824 51742.71 125.9862 51762. 71 125.99 51782.71 125.9938 51802. 71 125.9976 51822.71 126. 0014 51842. 71 126.0052 51862.71 126.009 51882. 71 126.0128 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.myd.:;. Attachment 9 PAGE NO. 268 of 303 51902.71 126.0166 51922. 71 126.0204 51942.71 126.0242 51962. 71 126.028 51982.71 l:;l6.0318 52002. 71 126.0356 520.22. 71 126.0394 52042.71 126.0432 52062.71 126.047 52082.71 126.0508 52102.71 126.0546 52122. 71 126.0584 52142.71 126.0622 52162.71 126.066 52182.71 126.0698 52202. 71 126.0736 52222.71 126.0774 52242. 71 126.0812 52262. 71 126.085 52282. 71 126.0888 52302.71 126.0926 52322.71 126.0964 52342.71 126.1002 52362.71 126.1039 52382. 71 126.1077 52402.71 126 .1115 52422.71 126 .1153 52442. 71 126 .1191 52462.71 126.1229 52482.71 126.1267 52502.71 126.1305 52522. 71 126.1343 52542.71 126.1381 52562.71 126.1419 52582.71 126.1457 52602.71 126 .1495 52622.71 126.1532 52642.71 126.157 52662.71 126.1608 52682. 71 126.1646 52702.71 126.1684 52722. 71 126.1722 52742.71 126.176 52762. 71 126.1798 52782.71 126.1836 52802. 71 126.1874 52822.71 126.1911 52842. 71 126.1949 52862.71 126.1987 52882. 71 126,.2025 52902.71 126.2063 52922. 71 126.2101 52942.71 126.2139 52962. 71 126.2177 52982.71 126.2214 53002. 71 126.2252 53022.71 126.229 53042. 71 126.2328 53062.71 126.2366 53082. 71 126.2404 53102.71 126.2441 53122. 71 126.2479 53142.71 126.2517 53162. 71 126.2555 53182. 71 126.2593 53202. 71 126.2631 53222.71 126.2669 53242. 71 126.2706 53262.71 126.2744 53282.71 126.2782 53302.71 126.282 53322. 71 126.2858 53342. 71 126.2895 53362. 71 126.2933 53382.71 126.2971 53402. 71 126.3009 53422.71 126.3047 53442.71 126.3084 53462. 71 126.3122 53482.71 126.316 53502. 71 126.3198 53522. 71 126.3236 53542. 71 126.3273 53562.71 126.3311 53582. 71 126.3349 53602.71 126.3387 53622. 71 126.3425 53642.71 126.3462 53662. 71 126.35 53682. 71 126.3538 53702.71 126.3576 53722.71 126.3613 53742.71 126.3651 53762. 71 126.3689 53782.71 ._.126.3727 53802. 71 126.3764 53822.71 126.3802 53842. 71 126.384 53862.71 126.3878 53882. 71 126.3915 53902.71 126.3953 53922. 71 126.3991 53942.71 126.4029 53962. 71 ' 126.4066 \ 53982.71 126.4104 54002. 71 126.4142 54022.71 126.418 54042. 71 126.4217 54062. 71 126.4255 54082. 71 126.4293 54102.71 126.433 54122. 71 126.4368 54142. 71 126.4406 54162. 71 126.4444 54182.71 126.4481 54202. 71 126,.4519 54222.71 126.4557 54242. 71 126.4594 54262.71 126.4632 54282. 71 126.467 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O £wry day. Attachment 9 PAGE NO. 269 of 303 54302.71 126.4707 54322. 71 126.4745 54342. 71 126.4783 54362.71 126.4{l21 54382.71 126.4858 54402.71 126 .4896 54422.71 126.4934 54442.71 126.4971 54462.71 126.5009 54482. 71 *126.5047 54502. 71 126.5084 54522.71 126.5122 54542.71 126.516 54562. 71 126.5197 54582.71 126.5235 54602. 71 126.5273 54622.71 126.531 54642. 71 126.5348 54662.71 126.5385 54682. 71 126.5423 71 126.5461 54722.71 126.5498 54742. 71 126.5536 54762. 71 126.5574 54782.71 126.5611 54802. 71 126.5649 54822.71 126.5686 54842. 71 126.5724 54862.71 126.5762 54882. 71 126.5799 54902.71 12"6.5837 54922. 71 126.5875 54942.71 126.5912 54962. 71 126.595 54982.71 126.5987 55002. 71 126.6025 55022.71 126.6063 55042. 71 126.61 55062.71 126.6138 55082. 71 126.6175 55102.71 126.6213 55122. 71 126.6251 55142.71 126.6288 55162. 71 126.6326 55182.71 126.6363 55202. 71 126.6401 55222.71 126.6438 55242. 71 126.6476 55262.71 126.6514 55282. 71 126.6551 55302.71 126.6589 55322. 71 126.6626 55342.71 126.6664 55362. 71 126.6701 55382.71 126.6739 55402. 71 126.6777 55422.71 126.6814 55442. 71 126.6852 55462.71 126.6889 55482. 71 126.6927 55502.71 126.6964 55522. 71 126.7002 55542.71 126.7039 55562.71 126. 7,077 55582.71 126. 7114 55602. 71 126. 7152 55622.71 126. 7189 55642. 71 126. 7227 55662.71 126. 7264 55682.71 126.7302 55702.71 126.7339 55722. 71 126. 7377 55742.71 126.7414 55762. 71 126.7452 55782.71 126.7489 55802. 71 126.7527 55822.71 126.7564 55842.71 126.7602 55862.71 126.7639 55882. 71 126.7677 55902. 71 126. 7714 55922. 71 126. 7752 55942. 71 126.7789 55962. 71 126.7827 55982. 71 126.7864 56002.71 126.7902 56022. 71 126.7939 56042.71 126.7977 56062. 71 126.8014 56082.71 126.8052 56102. 71 126.8089 56122.71 126.8127 56142.71 126.8164 56162.71 126.8201 56182. 71 126.8239 56202. 71 126.8276 56222. 71 126.8314 56242.71 126.8351 56262. 71 126.8389 56282. 71 126.8426 56302. 71 126.8464 56322.71 126.8501 56342. 71 126.8538 56362. 71 126.8576 56382. 71 126.8613 56402. 71 126.8651 56422. 71 126.8688 56442. 71 126.8726 56462. 71 126.8763 56482. 71 126.88 56502. 71 126.8838 56522. 71 126.8875 56542. 71 126.8913 56562. 71 126.895 56582. 71 126.8987 56602. 71 126.9025 56622. 71 126.9062 56642. 71 126.91 56662. 71 126.9137 56682. 71 126.9174 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xaNena-f.vetyptt;jt;<;t.. Attachment 9 PAGE NO. 270 of 303 56702.71 126.9212 56722.71 126.9249 56742.71 126.9286 56762. 71 126.9324 56782.71 126.9361 56802. 71 126.9399 56822.71 126.9436 56842. 71 126.9473 56862.71 126.9511 56882. 71 126.9548 56902.71 126.9585 56922.71 126.9623 56942. 71 126.966 56962.71 126.9697 56982.71 126.9735 57002.71 126.9772 57022.71 126.9809 57042.71 126.9847 57062. 71 126.9884 57082. 71 126.9921 57102. 71 126.9959 57122. 71 126. 9996 57142. 71 127.0033 57162. 71 127. 0071 57182. 71 127.0108 57202. 71 127. 0145 57222. 71 127.0183 57242. 71 127.022 57262.71 127.0257 57282. 71 127.0295 57302. 71 127.0332 57322.71 127.0369 57342. 71 127.0407 57362.71 127.0444 57382. 71 127. 0481' 57402. 71 127.0519 57422.71 127.0556 57442. 71 127.0593 57462. 71 127.063 57482. 71 127.0668 57502.71 127.0705 57522. 71 127.0742 57542.71 127.078 57562. 71 127.0817 57582.71 127.0854 57602. 71 127.0891 57622. 71 127.0929 57642. 71 127.0966 57662.71 127.1003 57682. 71 127.104 57702.71 127.1078 57722. 71 127.1115 57742. 71 127 .1152 57762. 71 127 .1189 57782. 71 127.1227 57802.71 127.1264 57822.71 127.1301 57842.71 127.1338 57862.71 127.1376 57882.71 127.1413 57902.71 127.145 57922.71 127.1487 57942.71 127.1525 57962.71 127.1562 57982.71 127.1599 58002. 71 127.1636 58022.71 127.1673 58042. 71 127.1711 58062.71 127.1748 58082. 71 127.1785 58102.71 127.1822 58122. 71 127.186 58142.71 127.1897 58162. 71 127.1934 58182. 71 127.1971 58202. 71 127.2008 58222.71 127.2046 58242.71 127.2083 58262. 71 127.212 58282. 71 127.2157 58302. 71 127.2194 58322.71 127.2231 58342. 71 127.2269 58362. 71 127.2306 58382. 71 127.2343 58402.71 127.238 58422.71 127.2417 58442.71 127.2454 58462. 71 127.2492 58482. 71 127.2529 58502.71 127.2566 58522. 71 127.2603 58542. 71 127.264 58562. 71 127.2677 58582.71 127 .2715 58602. 71 127.2752 58622.71 127.2789 58642. 71 127.2826 58662.71 127.2863 58682. 71 127.29 58702.71 127.2937 58722. 71 127.2974 58742. 71 127.3012 58762. 71 127.3049 58782.71 127.3086 58802. 71 127.3123 58822. 71 127.316 58842. 71 127.3197 58862. 71 127.3234 58882. 71 127.3271 58902.71 127.3309 58922. 71 127.3346 58942.71 127.3383 58962. 71 127.342 58982.71 127.3457 59002. 71 127.3494 59022.71 127.3531 59042. 71 127.3568 59062.71 127.3605 59082. 71 127.3642 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.vtty<!W. Attachment 9 PAGE NO. 271 of 303 59102.71 127.368 59122.71 127 .3717 59142.71 127.3754 59162. 71 127.3791 59182.71 127.3828 59202. 71 127.3865 59222. 71 127.3902 59242. 71 127.3939 59262.71 127.3976 59282. 71 127.4013 59302. 71 127.405 59322.71 127.4087 59342. 71 127.4124 59362.71 127 .4161 59382. 71 127.4198 59402. 71 127.4235 59422. 71 127.4272 59442. 71 127.4309 59462. 71 127.4347 59482. 71 127.4384 59502.71 127.4421 59522. 71 127.4458 59542.71 127.4495 59562. 71 127.4532 59582.71 127.4569 59602. 71 127 .4606 59622. 71 127.4643 59642.71 127.468 59662.71 127.4717 59682.71 127.4754 59702.71 127.4791 59722. 71 127.4828 59742. 71 127.4865 59762. 71 127.4902 59782.71 127.4939 59802. 71 1;27.4976 59822.71 127.5013 59842. 71 127.505 59862.71 127.5087 59882. 71 127.5124 59902.71 127.5161 59922. 71 127.5198 59942. 71 127.5235 59962. 71 127. 5272 59982. 71 127.5309 60002. 71 127.5346 60022. 71 127.5383 60042. 71 127.542 60062.71 127.5456 60082. 71 127.5493 60102.71 127.553 60122. 71 127.5567 60142.71 127.5604 60162. 71 127.5641 60182.71 127.5678 60202. 71 127. 5715 60222. 71 127.5752 60242. 71 127.5789 60262.71 127.5826 60282. 71 127.5863 60302. 71 127.59 60322. 71 127.5937 60342. 71 127.5974 60362. 71 127. 6011 60382. 71 127.6048 60402. 71 127.6085 60422. 71 127.6121 60442.71 127.6158 60462. 71 127.6195 60482.71 127.6232 60502.71 127.6269 60522. 71 127.6306 60542. 71 127.6343 60562. 71 127.638 60582. 71 127.6417 60602. 71 127.6454 60622. 71 127.649 60642. 71 127.6527 60662. 71 127.6564 60682. 71 127.6601 60702. 71 127.6638 60722. 71 127.6675 60742.71 127. 6712 60762.71 127.6749 60782.71 127.6786 60802. 71 127.6822 60822. 71 127.6859 60842. 71 127.6896 60862.71 127.6933 60882. 71 127.697 60902.71 127.7007 60922. 71 127.7044 60942. 71 127.708 60962. 71 127. 7117 60982. 71 127.7154 61002. 71 127. 7191 61022. 71 127.7228 61042.71 127.7265 61062. 71 127.7301 61082. 71 127.7338 61102. 71 127.7375 61122. 71 127.7412 61142. 71 127.7449 61162. 71 127.7486 61182. 71 127.7522 61202. 71 127.7559 61222. 71 127.7596 61242. 71 127.7633 61262. 71 127.767 61282. 71 127.7707 61302. 71 127.7743 61322. 71 127.778 61342. 71 127.7817 61362. 71 127.7854 61382. 71 127.7891 61402. 71 127.7927 61422.71 127.7964 61442. 71 127.8001 61462.71 127.8038 61482. 71 127.8075 ENERCON CALCULATION CONTROL Attachment 9 61502.71 127. 8111 61522. 71 127.8148 61542.71 127.8185 61562.71 127.8222 61582. 71 127.8258 61602.71 127.8295 61622. 71 127.8332 61642.71 127.8369 61662. 71 127.8406 61682.71 127.8442 61702.71 127.8479 61722.71 127.8516 61742.71 127.8553 61762.71 127.8589 61782. 71 127.8626 61802. 71 127.8663 61822. 71 127.87 61842.71 127.8736 61862. 71 127.8773 61882.71 127.881 61902. 71 127.8847 61922.71 127.8883 61942.71 127.892 61962. 71 127.8957 6198,2. 71 127.8993 62002. 71 127.903 62022. 71 127.9067 62042. 71 127.9104 62062. 71 127.914 62082.71 127.9177 62102.71 127.9214 62122. 71 127.925 62142. 71 127.9287 62162. 71 127.9324 -62182:11 127.9361 62202.71 127.9397 62222.71 127.9434 62242. 71 127. 9471 62262. 71 127.9507 62282. 71 127.9544 62302.71 127.9581 62322. 71 127.9617 62342. 71 127.9654 62362. 71 127.9691 62382.71 127. 9727 62402. 71 127.9764 62422.71 127.9801 62442. 71 127.9837 62462.71 127.9874 62482.71 127.9911 62502 .. 71 127.9947 62522. 71 127.9984 62542.71 128.0021 62562. 71 128.0057 62582. 71 128.0094 62602. 71 128. 0131 62622. 71 128.0167 62642. 71 128.0204 62662. 71 128.0241 62682. 71 128.0277 62702.71 128.0314 62722. 71 128.035 62742.71 _128. 0387 62762.71 128.0424 62782.71 128.046 62802.71 128.0497 62822. 71 128.0534 62842. 71 128.057 62862. 71 128.0607 62882. 71 128.0643 62902. 71 128.068 62922. 71 128.0717 62942.71 128.0753 62962. 71 128.079 62982.71 128.0827 63002.71 128.0863 63022. 71 128.09 63042.71 128.0936 63062.71 128.0973 63082.71 128.101 63102.71 128.1046 63122.71 128.1083 63142.71 128.1119 63162. 71 128.1156 63182.71 128.1192 63202. 71 128.1229 63222. 71 128.1266 63242. 71 128.1302 63262.71 128.1339 63282. 71 128.1375 63302.71 128.1412 63322. 71 128.1448 63342. 71 128.1485 63362. 71 128.1521 63382.71 128.1558 63402. 71 128.1595 63422.71 128.1631 63442.71 128.1668 63462. 71 128.1704 63482. 71 128.1741 63502.71 128.1777 63522. 71 128.1814 \ \ 63542. 71 128.185 63562. 71 128.1887 63582. 71 128,1923 63602. 71 128.196 63622.7i 128.1996 63642.71 128.2033 63662.71 128.207 63682.71 128.2106 63702.71 128.2142 63722. 71 128.2179 63742.71 128.2216 63762. 71 128.2252 63782.71 128.2289 63802.71 128.2325 63822.71 128.2362 63842. 71 128.2398 63862. 71 128.2435 63882.71 128 .2471 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO,. 272 of 303 CALC. NO. ENTR-078-CALC-004 N R ON CALCULATION CONTROL SHEET-REV. 0 Attachment 9 PAGE NO. 273 of 303 63902.71 128.2507 63922.71 128.2544 63942. 71 128.2581 63962.71 128.2617 63982. 71 128.2654 64002. 71 128.269 64022.71 i28.2726 64042. 71 128.2763 64062.71 128.2799 64082. 71 128.2836 64102.71 128.2872 64122. 71 128.2909 64142.71 128.2945 64162. 71 128.2982 64182. 71 128.3018 64202. 71 128.3055 64222.71 128.3091 64242. 71 128.3127 64262.71 128.3164 64282.71 128-.32 64302.71 128.3237 64322.71 128.3273 64342.71 128.331 64362. 71 128.3346 64382.71 128.3383 64402. 71 128.3419. 64422 .-71 128.3455 64442. 71 128.3492 ' 64462. 71' 128.3528 64482. 71 128.3565 64502.71 128.3601 64522. 71 128.3638 64542.71 128.3674 64562. 71 128.371 64582.71 128.3747 64602. 71 128.3783 / 64622. 71 128.3819 64642.71 128. 3'856 64662.71 128.3892 64682. 71 128.3929 64702. 71 --128.3965 64722. 71 128.4001 64742.71 128.4038 64762. 71 128.4074 64782.71 128 .4111 64802. 71 128.4147 64822. 71 128.4183 64842. 71 128.422 64862.71 128.4256 64882.71 128.4292 64902.71 128.4329 64922.71 128.4365 64942. 71 128.4402 64962. 71 128.4438 64982.71 128.4474 65002.71 128.4511 65022.71 128.4547 65042. 71 128.4583 65062.71 128.462 65082. 71 128.4656 65102.71 128.4692 65122. 71 128.4729 65142.71 128.4765 65163. 71 128.4801 65182. 71 128.4838 65202. 71 128 .4874 65222.71 128.491 65242. 71 128.4947 65262.71 128.4983 65282. 71 128.5019 65302.71 128.5056 65322. 71 128.5092 65342.71 128.5128 65362. 71 128.5164 65382.71 128.5201 65402.71 128.5237 65422.71 128.5273 65442. 71 128.531 65462.71 128.5346 6548-2. 71 128.5382 65502.71 128.5419 65522. 71 128.5455 65542.72 128.5491 65562.72 128.5527 65582.72 128.5564 65602.72 128.56 65622.72 128.5636 65642. 72 128.5673 65662. 72 128.5709 65682. 72 128.5745 65702.72 128.5781 65722. 72 128.5818 65742. 72 128.5854 65762.72 128.589 65782.72 128.5927 65802.72 128.5963 65822. 72 128.5999 65842.72 128.6035 65862.72 128.6071 65882.72 128.6108 65902.72 128.6144 65922. 72 128.618 65942. 72 128.6216 65962. 72 128.6253 65982.72 128.6289 66002.72 128.6325 66022.72 128.6361 66042. 72 128.6398 66062.72 128.6434 66082. 72 128.647 66102.72 128.6506 66122.72 128.6543 66142.72 128. 6579 66162.72 128.6615 66182.72 128.6651 66202.72 128.6687 66222.72 128.6723 66242.72 128.676 66262.72 128. 6796 66282.72 128.6832 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fwr;da1 Attachment 9 PAGE NO. 274 of 303 66302.72 128.6868 66322. 72 128.6904 66342.72 128.6941 66362.72 128.6977 66382.72 128.7013 66402. 72 128.7049 66422.72 128.7085 66442.72 128.7122 66462. 72 128. 7158 66482.72 128 .. 7194 66502.72 128.723 66522.72 128.7266 66542.72 128.7302 66562.72 128.7339 66582.72 128.7375 66602.72 128. 7411 66622.72 128.7447 66642.72 128.7483 66662.72 128.7519 66682.72 128. 7_555 66702.72 128.7592 66722. 72 128.7628 66742.72 128.7664 66762.72 128.77 66782.72 128.7736 66802.72 128. 7772 66822.72 128.7808 66842.72 128.7845 66862.72 128.7881 66882.72 128.7917 66902.72 128.7953 66922.72 128.7989 66942. 72 128.8025 66962.72 128.8061 66.982. 72 128.8097 67002.72 128.8133 67022.72 128.817 67042.72 128.8206 67062.72 128.8242 67082. 72 128.8278 67102. 72 128.8314 67122.72 128.835 67142.72 128.8386 67162. 72 128.8422 67182.72 128.8458 67202. 72 128.8494 67222.72 128.853 67242.72 128.8567 67262.72 128.8603 67282.72 128.8639 67302. 72 128.8675 67322.72 128-. 8711 67342.72 128.8747 67362.72 128.8783 67382. 72 128.8819 67402.72 128.8855 67422.72 128.8891 67442.72 128.8927 67462. 72 128.8963 67482.72 128.8999 67502.72 128.9035 67522.72 128.9071 67542.72 128.9107 67562.72 128.9143 67582.72 128.918 67602.72 128.9216 67622. 72 128.9252 67642.72 128.9288 67662.72 128.9324 67682.72 128.936 67702.72 128.9396 67722.72 128.9432 67742.72 128.9468 67762.72 128.9504 67782.72 128.954 67802.72 128.9576 67822.72 128.9612 67842.72 128.9648 67862. 72 128.9684 67882. 72 128. 972 67902.72 128.9756 67922.72 128.9792 67942.72 128.9828 67962.72 128.9864 67982.72 128.99 68002.72 128.9936 68022.72 128.9972 68042. 72 129 .*0008 68062.72 129.0043 68082.72 129.0079 68102.72 129. 0116 68122.72 129.0152 68142.72 129.0187 68162.72 129.0223 68182. 72 129.0259 68202.72 129.0295 68222.72 129.0331 68242.72 129.0367 68262. 72 129.0403 68282.72 129.0439 68302.72 129.0475 68322. 72 129. 0511 68342.72 129.0547 68362.72 129.0583 68382.72 129.0619 68402.72 129.0655 68422.72 129.0691 68442. 72 129.0727 68462.72 129.0762 68482.72 129.0798 68502.72 129.0834 68522. 72 129.087 68542.72 129.0906 68562.72 129.0942 68582.72 129.0978 68602. 72 129.1014 68622.72 129.105 68642.72 129.1086 68662.72 129 .1122 68682.72 129.1158 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.veydr;y. Attachment 9 PAGE NO. 275 of 303 68702.72 129 .1193 68722.72 129.1229 68742.72 129.1265 68762.72 129.1301 !)8782.72 129.1337 68802.72 129.1373 68822.72 129.1409 68842.72 129.1445 68862.72 129.1481 68882. 72 129.1516 68902.72 129.1552 68922. 72 129.1588 68942.72 129.1624 68962.72 129.166 68982.72 129.1696 69002.72 129.1732 69022.72 129.1767 (69042.72 129.1803 69062. 72 129.1839 69082.72 129.1875 69102.72 129.1911 69122.72 129.1947 69142. 72 129.1982 69162.72 129.2018 69182. 72 129.2054 69202.72 129.209 69222.72 129.2126 69242.72 129.2162 69262.72 129.2197 69282.72 129.2233 69302.72 129.2269 69322. 72 129.2305 69342.72 129.2341 69362.72 129.2377 69382.72 129.2412 69402. 72 129.2448 69422. 72 129.2484 69442.72 129.252 69462. 72 129.2556 69482.72 129.2591 69502.72 129.2627 69522.72 129.2663 69542. 72 129.2699 69562. 72 129.2735 69582. 72 129.277 69602.72 129.2806 69622. 72 129.2842 69642.72 129.2878 69662.72 129.2913 69682.72 129.2949 69702.72 129.2985 69722.72 129.3021 69742. 72 129.3056 69762.72 129.3092 69782.72 129.3128 69802. 72 129.3164 69822.72 129.3199 69842.72 129.3235 69862.72 129.3271 69882. 72 129.3307 69902. 72 129.3342 69922.72 129.3378 69942. 72 129.3414 69962. 72 129.345 69982. 72 129.3485 70002.72 129.3521 70022.72 129.3557 70042.72 129.3593 70062.72 129.3628 70082.72 129.3664 70102.72 129.37 70122.72 129.3736 70142. 72 129. 3771 70162.72 129.3807 70182.72 129.3843 70202.72 129.3878 70222.72 129.3914 70242.72 129.395 70262.72 129.3985 70282.72 129.4021 70302. 72 129.4057 70322. 72 129.4093 70342. 72 129.4128 70362. 72 129.4164 70382.72 129.42 70402.72 129 .4235 70422. 72 129.4271 70442. 72 129.4307 70462.72 129.4342 70482.72 129.4378 70502. 72 129.4414 70522.72 129.4449 70542.72 129.4485 70562.72 129.4521 70582.72 129.4556 70602.72 129.4592 70622.72 129 .4628 70642.72 129.4663 70662.72 129 .4699 70682. 72 129.4734 70702.72 129.477 70722. 72 129.4806 70742.72 129 .4841 70762.72 129.4877 70782.72 129.4913 70802.72 129.4948 70822. 72 129.4984 70842. 72 129.502 70862.72 129.5055 70882.72 129.5091 70902.72 129.5126 70922.72 129.5162 70942.72 129.5198 70962.72 129.5233 70982.72 129.5269 71002. 72 129.5304 71022. 72 129.534 71042. 72 129.5376 71062. 72 129.5411 71082. 72 129.5447 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REv.*o Attachment 9 PAGE NO. 276 of 303 71102. 72 129.5482 71122. 72 129.5518 71142. 72 129. 5554 . 71162. 72 129.5589 71182. 72 129.5625 71202.72 129.566 _, 71222. 72 129.5696 71242.72 129.5732 71262. 72 129.5767 71282. 72 129.5803 71302.72 129.5838 71322. 72 129.5874 71342.72 129.5909 71362.72 129.5945 71382. 72 129.5981 71402. 72 129.6016 71422.72 129.6052 71442.72 129.6087 71462.72 129.6123 71482. 72 :).29.6158 71502. 72 129.6194 71522.72 129.6229 71542.72 129.6265 71562. 72 129.63 71582. 72 129.6336 71602. 72 129.6371 71622.72 129.6407 71642 .. 72 129.6442 71662. 72 129.6478 71682. 72 129.6514 71702.72 129.6549 71722.72 129.6584 71742.72 129.662 71762.72 129.6656 71782.72 129.6691 71802. 72 129. 6727 71822.72 129.6762 71842. 72 129.6797 71862. 72 129.6833 -71882. 72 129.6869 71902. 72 129.6904 71922.72 129.694 71942.72 129.6975 71962.72 129.701 71982. 72 129.7046 72002.72 129.7081 72022.72 129.7117 72042. 72 129.7152 72062.72 129. 7188 72082.72
- 129.7223 72102.72 129. 7259 72122. 72 129.7294 72142.72 129.733 72162. 72 129.7365 72182.72 129.7401 72202. 72 129.7436 72222.72 129. 7471 72242.72 129.7507 72262.72 129.7542 72282. 72 129.7578 72302.72 129.7613 72322.72 129.7649 72342.72 129.7684 72362.72 129.772 72382.72 129.7755 72402.72 129.7791 72422.72 129.7826 72442.72 129.7861 72462.72 129.7897 72482. 72 129.7932 72502.72 129.7968 72522. 72 129.8003 72542. 72 129.8038 72562. 72 129.8074 72582.72 129.8109 72602.72 129.8145 72622. 72 129.818 72642. 72 129.8215 72662.72 129.8251 72682. 72 129.8286 72702.72 129.8322 72722. 72 129.8357 72742. 72 129.8392 72762. 72 129.8428 72782.72 129.8463 72802. 72 129.8499 72822. 72 129.8534 72842.72 129.8569 72862.72 129.8605 72882. 72 129.864 72902. 72 129.8675 72922. 72 129.8711 72942.72 129.8746 72962. 72 129.8781 72982.72 129.8817 73002.72 129.8852 73022. 72 129.8887 73042. 72 129.8923 73062.72 73082. 72 129.8994 73102.72 129.9029 73122.72 129.9064 73142.72 129.91 73162. 72 129.9135 73182.72 129.917 73202. 72 129. 9206 73222.72 129.9241 73242.72 129.9276 73262.72 129.9312 73282.72 129.9347 73302.72 129.9382 73322. 72 129.9417 73342.72 129.9453 73362. 72 129.9488 73392:12 129.9523 73402.72 129. 9'559 73422.72 129.9594 73442. 72 129.9629 73462.72 129.9665 73482. 72 129.97 CALC. NO. ENTR-078-CALC-004 EN R ON CALCULATION CONTROL SHEET-REV.O Pf t>f f.vpty tkt; Attachment 9 PAGE NO. 277 of 303 73502.72 129.9735 73522.72 129. 9771 73542.72 129.9806 73562.72 129.9841 73582.72 129.9876 73602.72 129.9912 I 73622.72 129.9947 73642.72 129.9982 73662.72 130.0017 73682.72 130. 0053 73702.72 130.0088 73722. 72 130. 0123 73742.72 130.0159 73762.72 130.0194 73782.72 130.0229 73802. 72 130. 0264 73822.72 130. 03 73842.72 130.0335
-73862. 72 130.037 *73882.72 130.0405 73902.72 130.0441 73922.72 130.0476 73942.72 130. 0511 73962.72 130.0546 73982.72 130.0581 .74002. 72 130.0617 74022.72 130.0652 74042.72 130.0687 74062 ._72 130.0722 74082.72 130.0757 74102.72 130.0793 74122.72 130.0828 74142.72 130. 0863 74162.72 130.0898 '74182. 72 130.0934 7420.2. 72 130.0969 [ 74222.72 130.1004 74242.72 130.1039 74262.72 130.1074 74282.72 130.1109 74302.72 130 .1145 74322.72 130.118 74342.72 130.1215 74362.72 130.125 74382.72 130.1285 74402.72 130:1321 74422.72 130.1356 74442. 72 130.1391 74462. 72 130.1426 74482. 72 130.1461 74502.72 130 .1496 74522.72 130.1532 74542.72 130.1567 74562.72 130.1602 74582.72 130 .1637 74602. 72 130.1672 74622.72 130.1707 74642.72 130.1743 74662.72 130.1778 74682. 72 130.1813 74702.72 130 .1848 74722.72 130.1883 74742.72 130.1918 74762.72 130.1953 74782.72 130.1989 74802.72 r30.2024 74822.72 130.2059 74842.72 130.2094 74862.72 130.2129 74882. 72 130.2164 74902.72 130.2199 74922.72 130.2234 74942.72 130.2269 74962.72 130 .2305 74982.72 130.234 75002.72 130 .2375 75022.72 130 .241 75042.72 130 .2445 75062.72 130.248 75082.72 130.2515 75102,72 130.255 75122.72 130 .2585 75142.72 130.262 75162.72 130 .2655 75182.72 130.269 75202.72 130 .2726 75222.72 130.2761 75242.72 130.2796 75262.72 130.2831 75282.72 130.2866 75302.72 130.2901 75322.72 130.2936 75342. 72 130.2971 75362. 72 130.3006 75382.72 130.3041 75402.72 130.3076 75422.72 130.3111 75442.72 130.3146 75462.72 130.3181 75482.72 130.3216 75502.72 130.3251 75522.72 130.3286 75542.72 130.3321 75562.72 130.3356 75582.72 130.3391 75602.72 130.3427 7'5622. 72 130.3461 75642.72 130.3497 75662.72 130.3531 75682.72 130.3567 75702.72 130.3602 75722. 72 130.3636 75742.72 130.3672 75762.72 130.3707 75782.72 130.3742 75802.72 130.3777 75822.72 130.3811 75842. 72 130.3846 75862.72 130.3882 175882. 72 130.3916 CALC. NO. ENTR-078-CALC-004 EN CALCULATION CONTROL SHEET-Attachment 9 REV.O PAGE NO. 278 of 303 75902.72 130.3951 75922.72 130.3987 75942.72 130.4021 75962.72 130 .4056 75982.72 130.4091 76002.72 130.4126 76022.72 130.4161 76042. 72 130.4196 76062.72 130.4231 76082.72 130.4266 76102.72 130.4301 76122.72 130.4336 76142.72 130 .4371 76162.72 130.4406 76182.72 130.4441 76202.72 130.4476 76222.72 130.4511 76242.72 130.4546 76262.72 130.4581 76282.72 130 .4616 76302.72 130.4651 76322.72 130.4686 76342.7.2 130.472 76362.72 130.4755 76382.72 130.479 76402. 72 130.4825 76422.72 130.486 76442.72 130.4895 76462.72 130.493 76482.72 130.4965 76502.72 130.5 76522.72 130.5035 76542.72 130.5069 76562.72 130.5104 76582.72 130.5139 76602.72 130.5174 76622.72 130.5209 76642.72 130.5244 76662.72 130.5279 76682. 72 130.5314 76702.72 130.5349 76722.72 130.5383 76742.72 130.5418 76762.72 130.5453 76782.72
- 130.5488 76802. 72 130.5523 76822.72 130.5558 76842.72 130.5593 76862.72 130.5627 76882.72 130.5662 76902.72 130.5697 76922.72 130.5732 76942.72 130.5767 76962.72 130.5802 76982.72 130.5836 77002. 72 130.5871 77022.72 130.5906 77042.72 130.5941 77062.72 130.5976 77082.72 130.6011 77102. 72 130.6046 77122. 72 130.608 77142. 72 130. 6115 77162. 72 130.615 77182. 72 130.6185 77202.72 130.6219 77222.72 130.6254 77242.72 130.6289 77262.72 130.6324 77282.72 130.6359 77302.72 130.6394 77322.72 130. 6428 77342.72 130.6463 77362.72 130.6498 77382.72 130.6533 77402.72 130.6567 77422.72 130.6602 77442.72 130.6637 77462.72 130.6672 77482. 72 130.6707 77502.72 130.6741 77522.72 130.6776 77542.72 130.6811 77562.72 130.6846 77582.72 130.688 77602.72 130.6915 77622.72 130.695 77642.72 130.6985 77662.72 130.7019 77682.72 130. 7054 77702. 72 130.7089 77722.72 130.7124 77742.72 130. 7158 77762.72 130.7193 77782.72 130.7228 77802.72 130.7262 77822.72 130.7297 77842.72 130.7332 77862.72 130.7367 77882. 72 130.7401 77902.72 130.7436 77922. 72 130. 7471 77942. 72 130.7505 77962.72 130.754 77982.72 130.7575 78002.72 130.761 78022.72 130.7644 78042.72 130.7679 78062.72 130. 7714 78082.72 130.7748 78102.72 130.7783 78122.72 130.7818 78142.72 130.7852 78162.72 130.7887 78182.72 130.7922 78202.72 130.7956 78222.72 130.7991 78242.72 130.8026 78262.72 130.806 78282.72 130.8095 ENERCON CALCULATION CONTROL Attachment 9 78302.72 130.813 78322.72 130.8164 78342.72 130.8199 78362.72 130.8233 78382.72 130.8268 78402. 72 130.8303 78422.72 130.8337 78442.72 130.8372 78462.72 130. 8407 78482.72 130.8441 78502.72 130.8476 78522.72 130.851 78542.72 130.8545 78562.72 130.858 78582.72 130.8614 78602.72 130.8649 78622.72 130.8683 78642.72 130.8718 78662.72 130. 8753 78682.72 130.8787 78702.72 130.8822 78722.72 130. 8857 78742.72 130.8891 78762.72 130.8926 78782.72 130.896 78802.72 130.8995 78822.72 130. 9029 78842.72 130.9064 78862.72 130. 9098 78882.72 130.9133 78902.72 130. 9167 78922. 72 130.9202 78942.72 130.9237 78962.72 130. 9271 78982.72 130.9306 79002.72 130.934 79022.72 130.9375 79042. 72 130.9409 79062.72 130. 9444 79082.72 130.9478 79102.72 130.9513 79122. 72 130.9547 79142.72 130.9582 79162.72 130.9616 79182.72 130.9651 79202.72 130.9685 79222.72 130. 972 79242.72 130.9754 79262.72 130.9789 79282. 72 130.9823 79302.72 130.9858 79322.72 130.9892 79342.72 130.9927 79362. 72 130.9961 79382.72 130.9995 79402. 72 131.003 79422.72 131.0064 79442.72 131.0099 79462.72 131.0133 79482. 72 131. 0168 79502.72 131.0202 79522.72 131.0237 79542.72 131. 0271 79562.72 131.0305 79582.72 131.034 79602.72 131.0374 79622.72 131. 0409 79642.72 131.0443 79662.72 131.0477 79682.72 131.0512 79702.721 131. 0546 79722.72 131.0581 79742.72 131.0615 79762.72 131.0649 79782.72 131.0684 79802. 72 131.0718 79822.72 131. 0753 79842.72 131.0787 79862.72 131. 0821 79882.72 131.0856 79902.72 131. 089 79922.72 131.0924 79942. 72 131.0959 79962.72 131.0993 79982.72 131.1027 80002.72 131.1062 80022.72 131.1096 80042.72 131.1131 80062.72 131.1165 80082.72 131.1199 80102.72 131.1234 80122.72 131.1268 80142.72 131.1302 80162.72 131.1337 80182.72 131.1371 80202.72 131.1405 80222.72 131.144 80242.72 131.1474 80262.72 131.1508 80282. 72 131.1543 80302.72 131.1577 80322.72 131.1611 80342.72 131.1646 80362. 72 131.168 80382.72 131.1714 80402.72 131.1749 80422.72 131.1783 80442.72 131.1817 80462.72 131.1851 80482. 72 131.1886 80502.72 131.192 80522.72 131.1954 80542.72 131.1989 80562.72 131.2023' 80582.72 131.2057 80602. 72 131.2092 80622.72 131.2126 80642.72 131.216 80662.72 131. 2194 80682.72 131.2229 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 279 of 303 /
ENER 80702.72 131.2263 80742.72 131.2332 80782.72 131.24 80822.72 131.2469 80862.72 131.2537 80902.72 131.2606 80942.72 131.2674 80982.72 131.2743 81022. 72. 131.2811 81062.72 131.288 81102.72 131.2948 81142. 72 '131. 3017 81182. 72 131.3085 81222.72 131. 3154 81262.72 131. 3222 81302. 72 131.329 81342. 72 131.3359 81382. 72 131.3427 81422.72 131. 3496 81462.72 131. 3564 81502. 72 131.3633 81542.72 131.3701 81582.72 131.3769 8f622.72 131.3838 81662.72 131.3906 81702.72 131.3974 81742.72 131.4043 81782.72 131.4111 81822. 72 131.4179 81862.72 131.4248 81902.72 131.4316 81942.72 131.4384 81982.72 131.4453 82022.72 131.4521 82062.72 131.4589 82102.72 131 :4657 82142.72 131.4726 82182.72 131.4794 82222.72 131.4862 82262.72 131.493 82302.72 131. 4998 82342.72 131.5067 82382.72 131. 5135 82422.72 131. 5203 ON CALCULATION CONTROL Attachment 9 80722. 72 131.2297 80762.72 131.2366 80802.72 131.2434 80842.72 131.2503 80882. 72 131.2571 80922.72 131.264 80962.72 131.2708 81002.72 131. 2777 81042.72 131.2845 81082. 72 131.2914 81122. 72 131.2982 81162. 72 131. 3051 81202.72 131.-3119 81242.72 131. 3188 81282.72 131.3256 81322.72 131.3325 81362. 72 131.3393 81402.72 131.3461 81442.72 131. 353 81482.72 131.3598 81522.72 131.3667 81562. 72 131.3735 81602. 72 131.3803 81642.72 131. 3872 81682.72 131. 394 81722.72 131.4008 81762.72 131.4077 81802.72 131'.4145 81842.72 131.4213 81882.72 131.4282 81922.72 131.435 81962.72 131.4418 82002.72 131.4487 82042.72 131.4555 ' ' 82082.72 131.4623 82122.72 131.4691 82162.72 131.476 82202.72 131.4828 82242.72 131.4896 82282.72 131.4964 82322.72 131.5033 82362.72 131. 5101 82402.72 131. 5169 82442. 72 131. 5237 824.62.72 131. 5271 82482.72 131.5305 82502.72 131. 534 82522.72 131.5374 82542.72 131.5408 82562. 72 131.5442 82582.72 131.5476 82602. 72 131. 551 82622.72 131. 5544 82642. 72 131. 5578 82662.72 131.5612 82682.72 131. 5646 82702.72 131. 568 82722.72 131.5714 82742.72 131.5748 82762.72 131.5782 82782.72 131.5816 82802.72 131. 5851 82822.72 131.5885 82842. 72 131. 5919 82862.72 131.5953 82882.72 131. 5987 82902.72 131.6021 82922.72 131.6055 82942.72 131.6089 82962.72 131.6123 82982. 72 131.6157 83002. 72 131.6191 83022.72 131.6225 83042. 72 131.6259 83062.72 131. 6293 83082. 72 131.6327 '\ CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 280 of 303 CALC. NO. ENTR-078-CALC-004 EN R QN CALCULATION CONTROL SHEET-REV.O ptt;j{f<..t, Ev&:! dt;y Attachment 9 PAGE NO. 281 of 303 83102.72 131 .. 6361 83122.72 131.6395 83142.72 131. 6429 83162.72 131. 6463 72 131. 6497 83202.72 131.6531 83222.72 131.6565 83242.72 131. 6599 83262.72 131.6633 83282.72 131. 6667 83302.72 131.6701 83322.72 131. 6735 83342.72 131.6769 83362.72 131.6803 83382.72 131. 6837 83402.72 131. 6871 83422.72 131. 6905 83442.72 131.6939 I 83462.72 131.6973 83482.72 131.7007 _) 83502.72 131.7041 83522.72 131.7075 83542.72 131. 7109 83562. 72 131.7143 83582.72 131.7177 72 131. 7211 83622.72 131. 7245 83642.72 131. 7279 83662.72 131. 7313 . 83682.72 131. 7347 83702.72 131.7381 83722. 72 131. 7415. 83742.72 131.7449 83762.72 131.7482 83782.72 131.7516 83802.72 131.755 83822.72 131.7584 83842. 72 131.7618 83862.72 131.7652 83882.72 131.7686 83902.72 131.772 83922.72 ' 131. 7754 83942.72 131.7788 83962. 72 131. 7822 83982.72 131.7856 84002.72 131. 789 84022. 72 ;131.7924 84042. 72 131.7958 84062.72 131. (991 84082.72 131. 8025 84102.72 131.8059 84122.72 131.8093 84142.72 131.8127 84162.72 131.8161 84182.72 131. 8195 84202.72 131. 8229 84222.72 131. 8263 84242.72 131.8297 84262.72 131.8331 84282.72 131.8364 84302.72 131.8398 84322.72 131. 8432 84342.72 131.8466 84362.72 131. 85 84382.72 131.8534 84402.72 131.8568 84422.72 131. 8602 84442.72 131. 8635 84462.72 131.8669 84482.72 131.8703 84502.72 131.8737 84522.72 131. 8771 84542.72 131. 8805 84562.72 131.8839 84582.72 131.8873 84602.72 131.8906 84622.72 131. 894 84642.72 131.8974 84662.72 131.9008 84682.72 131. 9042 84702.72 131.9076 84722. 72 131. 9109 84742.72 131.9143 84762,72 131. 9177 84782.72 131.9211 84802.72 131.9245 131.9279 84842.72 131.9312 84862.72 131. 9346 84882.72 131.938 84902. 72 131. 9414 84922.72 131. 9448 84942.72 131. 9482 84962.72 131. 9515 84982.72 131. 9549 85002.72 131. 9583 85022.72 131.9617 85042.72 131.9651 85062.72 131.9684 85082.72 131.9718 85102.72 131. 9752 85122.72 131.9786 85142.72 131.982 85162. 72 131. 9853 85182.72 131.9887 85202.72 131.9921 85222.72 131.9955 85242. 72 131.9989 85262.72 132.0022 85282.72 132.0056 85302.72 132.009 85322.72 132.0124 85342.72 132.0157 85362.72 132.0191 85382.72 132.0225 85402.72 132.0259 85422.72 132.0293 85442.72 132.0326 85462.72 132.036 85482.72 132. 0394 ENERCON CALCULATION CONTROL Attachment 9 85502.72 132.0428 85542.72 132.0495 85582.72 132. 0563 85622.72 132.063 85662.72 132.0697 85702.72 132.0765 85742.72 132. 0832 85782.72 132.09 85822.72 132.0967 85862.72 132.1035 95*902. 72 132 .1102 85942.72 132.117 85982.72 132.1237 86022.72 132.1304 86062.72 132.1372 86102.72 132.1439 86142.72 132.1507 86182.72 132.1574 86222. 72 132.1641 86262.72 132.1709 86302.72 132.1776 86342.72 132.1843 86382.72 132 .1911 Function 3T Sol-Air Roof Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. 0. 134.85 7200. 125 .11 14400. 104.33 21600. 89.37 28800. 85.97 36000. 83.25 43200. 81.04 50400. 79.85 57600. 79. 64800. 87.64 72000. 112.78 79200. 130.66 86400. 134.85 Function 4T Lighting HL Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. 0. 0 .1134 Function ST Initial Panels Ind. Var.: Dep. Var.: Ind. Var. 0. 0.11 Dep. Var. 1. 0. 85522.72 132.0461 85562.72 132.0529 85602.72 132.0596 85642.72 132.0664 85682.72 132.0731 85722.72 132. o:z99 85762.72 132.0866 85802. 72 132.0934 85842.72 132.1001 85882. 72 '132.1068 85922. 72 132.1136 .85962.72 132.1203 86002.72 132 .1271 86042. 72 132 .1338 86082.72 132.1405 86122.72 132.1473 86162.72 132.154 86202. 72 132 .1608 86242.72 132.1675 86282.72 132.1742 86322.72 132.181 86362.72 132.1877 86400. 132.194 Ind. Var. Dep. Var. 3600. 131.73 10800. 115.44 18000. 93.22 25200. 87.5 32400. 84.44 39600. 82.06 46800. 80.36 54000. 79.34 61200. 79.34 68400. 100.37 75600. 123.12 82800. 134 .46 Ind. Var. Dep. Var. 1000000. 0 .1134 Ind. Var. Dep. Var. 0 .1 1. 1000000.
- o. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 282 of 303 ' ,
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O Function 6T Operators Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. 0. 0.00258 Function 7T Time Ind. Var.: Dep. Var.: Ind. Var. 0. 86400. Dep. Var. 0. 86400. Control Variables Ind. Var. Dep. Var. 1000000. 0.00258 Ind. Var. 1800. Dep. Var. 1800. CV Fune. Initial Coeff. # Description Form Value G lC MaxCell T 1 max 0. 1. 2C Low MCR Avg sum 0. 0.00781 3C Middle MCR Av sum 0. 0.00781 4C MCR Avg_l sum 0. 0.53559 SC Upper MCR Avg sum 0. 0.00781 6C Total MCR Avg sum 0. 0.17669 7C Ovrall Max max 0. 1. Function Components Control Variable lC MaxCell T 1 max Y=G*max(a0,a1Xl,a2X2, ... ,anxn) Gothic s Variable Coef. # Name location a 1 Temv cVls4 1. 2 Temv cVls8 1. 3 Temv cVls3 1. 4 Temv cVls7 1. 5 Temv cVls2 1. 6 Temv cVls6 1. 7 Temv cVlsl 1. 8 Temv cVls5 L 9 Temv cVls12 1. 10 Temv cVls16 1. 11 Temv cVlsll 1. 12 Temv cV1s15 1. 13 Temv cVlslO 1. 14 Temv cVls14 1. 15 Temv cVls9 1. 16 Temv cVls13 1. 17 Temv cVls17 1. 18 Temv cVls18 1. 19 Temv cVls19 1. 20 Temv I cVls20 1. 21 Temv " cVls21 1. 22 Temv cVls22 1. 23 Temv cVls23 1. 24 Temv cVls24 1. PAGE NO. 283 of 303 Coeff. Upd. Int. ao Min Max Mult. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O Exu;l!entt-Evety ptv}ect. f.vt?ty Attachment 9 PAGE NO. 284 of 303 25 Temv cVls25 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1. 34 Temv cVls34 1. 35 Temv cVls35 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 1. 41 Temv cVls41 1. 42 Temv cVls42 1. \ 43 Temv cVls43 1. 44 Temv cVis44 1. 45 Temv cVls45 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVls49 1. 50 Temv cVls50 1. 51 Temv cVls51 1. 52 Temv cVls52 1. 53 Temv cVls53 1. 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 1. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 1. 63 Temv ,: cVls63 1. 64 Temv cVls64 1. 65 Temv cVls65 1. 66 Temv cVls66 1. 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 cVls76 .J 1. Temv 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 80 Temv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 Temv cVls83 1. 84 Temv cVls84 1. [,, CALC. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.,"<felferta,,,,,,,£,d;ty ptt;}Cd. £vt;1y dt;t; Attachment 9 PAGE NO. 285 of 303 85 Temv cVls85 1. 86 Temv 'cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90
- Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv cVlslOO 1. 101 Temv cVlslOl 1. 102 Temv cVls102 1. 103 Temv cVlsl03 1. 104 Temv cVls104 1. 105 Temv cVlsl05 1. _/ 106 Temv cVls106 1. 107 Temv cVls107 1. 108 Temv cVls108 1. 109 Temv cVlsl09 1. 110 Temv cVls110 1. 111 Temv cVlslll 1. 112 Tetnv cVls112 1. 113 Temv cVls113 1. 114 Temv cVls114 1. 115 Temv cVlsll5 1. 116 Temv cVls116 1. 117 Temv cVls117 1. 118 Temv cVls118 1. 119 Temv cVls119 1. 120 Temv cVls120 1. 121 Temv cVls121 1. 122 Temv cVls122 1. 123 Temv cVls123 1. 124 Temv cVlsl24 1. 125 Temv cVlsl25 1. 126 Temv cVls126'
- 1. 127 Temv cVls127 1. 128 Temv cVls128 1. 129 Temv cVls129 1. 130 Temv cVls130 1. 131 Teinv cVls131 1. 132 Temv cVls132 1. 133 Temv cVls133 1. 134 Temv cVls134 1. 135 Temv cVlsl35 1. 136 Temv cVls136 1. 137 Temv cVls137 1. 138 Temv cVls138 1. 139 Temv cVls139 1. 140 Temv cVls140 1. 141 Temv cVls141 1. 142 Temv cVls142 1. 143 Temv cVls143 1. 144 Temv cVls144 1.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 f.W?ryday. Attachment 9 PAGE NO. 286 of 303 '.) 145 Temv cVls145 1. 146 Temv cVls146 1. 147 Temv cVls147 1. 148 Temv cVls148 1. 149 Temv cVls149 1. 150 Temv cVls150 1. 151 Temv cVls151 1. '-152 Temv cVls152 1. 153 Temv cVlsl53 1. 154 Temv cVlsl54 1. 155 Temv cVls155 1. 156 Temv cVls156 1. 157 .Temv cVls157 1. 158 Temv cVlsl58 1. 159 Temv cVlsl59 1. 160 Temv cVlsl60 1. 161 Temv cVls161 1. 162 Temv cVls162 1. 163 Temv cVls163 1. 164 Temv cVls164 1. 165 Temv
- 1. 166 Temv cVls166 1. 167 Temv cVls167 1. 168 Temv cVls168 1. 169 Temv cVls169 1. 170 Temv cVls170 1. 171 Temv cVls171 1. 172 Temv cVls172 1. 173 Temv cVls173 1. 174 Temv cVls174 1. 175 Temv cVls175 1. 176 Temv cVls176 1. 177 Temv cVls177 1. 178 Temv cVls178 1. 179 Temv cVls179 1. 180 Temv cVls180 1. 181 Temv cVls181 1. 182 Temv cVls182 1. 183 Temv cVls183 1-: 184 Temv cVls185 1. 185 Temv cVls184 1. 186 Temv cVls186 1. *187 Temv cVls187 1. 188 Temv cVls188 1. 189 Temv cVls189 1. 190 Temv cVls190 1. 191 Temv cVls191 1. 192 Temv cVls192 1. 193 Temv cVls193 1. 194 Temv cVls194 1. 195 Temv cVlsl95 1. 196 Temv cVls196 1. 197 Temv cVls197 1. 198 Temv cVls198 1. 199 Temv cVls199 1. 200 Temv cVls200 1. 201 Temv cVls201 1. 202 Temv cVls202 1. 203 Temv cVls203 1. 204 Temv cVls204 1.
ENERCON Exrclfen-ct-Evc:ypfo}e<.L f.vetytftJ-t 205 Temv 206 Temv 207 Temv 208 Temv 209 Temv 210 Temv 211 Temv 212 Temv 213 Temv 214 Temv 215 Temv 216 Temv 217 Temv 218 Temv 219 Temv 220 Temv 221 Temv 222 Temv 223 Temv 224 Temv 225 Temv 226 Temv 227 Temv 228 Temv 229 Temv 230 Temv 231 Temv 232 Temv 233 Temv 234 Temv 235 Temv 236 Temv 237 Temv 238 TemvJ 239 Temv 240 Temv 241 Temv 242 Temv 243 Temv 244 Temv 245 Temv 246 Temv 247 Temv 248 Temv 249 Temv 250 Temv 251 Temv 252 Temv 253 Temv 254 Temv 255 Temv 256 Temv Function Components Control Variable 2C Low MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn} CALCULATION CONTROL SHEET-Attachment 9 cVls205 1. cVls206 1. cVls207 1. cVls208 1. cVls209 1. cVls210 1. cVls211 1. cVls212 1. cVls213 1. cVls214 1. cVls215 1. cVls216 1. cVls217 1. cVls218 1. cVls219 1. cVls220 1. cVls221 1. cVls222 1. cVls223 1. cVls224 1. cVls225 1. cVls226 1. cVls227 1. cVls228 1. cVls229 1. cVls230 1. cVls231 1. cVls232 1. cVls233 1. cVls234 1. cVls235 1. cVls236 1. cVls237 1. cVls238 1. cVls239 1. cVls240 1. cVls241 1. cVls242 1. cVls243 1. cVls244 1. cVls245 1. cVls246 1. cVls248 1. cVls247 1. cVls249 1. cVls250 1. cVls251 1. cVls252 1. cVls253 1. cVls254 1. cVls255 1. cVls256 1. Gothic_s Variable Coef. a # Name location CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 287 of 303 ', ' CALC. NO. ENTR-078-CALC-004 IENERCON CALCULATION CONTROL SHEET-REV.O pto]et.l f.vtr; tia;: Attachment 9 PAGE NO. 288 of 303 1 Temv cVlsl 1. 2 Temv cVls2 1. 3 Tefuv cVls3 1. 4 Temv cVls4 1. 5 Temv cVls5 1. 6 Temv cVls6 1. 7 Temv cVls7 1. 8 Temv cVls8 1. 9 Temv cVls9 1. 10 Temv cVlslO 1. 11 Temv cVlsll 1. 12 Temv cVlsl2 1. 13 Temv cVls13 1. 14 Temv cVlsl4 1. 15 Temv cVlsl5 1. 16 Temv cVlsl6 1. 17 Temv cVlsl7 1. 18 Temv cVlsl8 1. 19 Temv cVlsl9 1. 20 Temv cVls20 1. 21 Temv cVls21 1. 22 Temv cVls22 1. ) 23 Temv cVls23 1. 24 Temv cVls24 1. 25 Temv cVls25 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1. 34 Temv cVls34 1. 35 Temv cVls35 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 1. 41 Temv cVls41 1. 42 Temv cVls42 1. 43 Temv cVls43 1. 44 Temv cVls44 1. 45 Temv cVls45 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVls49 1. 50 Temv cVls50 1. 51 Temv cVls51 1. 52 Temv cVls52 1. 53 Temv cVls53 1. ' 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 1. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptofe<;t. Ewty dµy. Attachment 9 PAGE NO. 289 of 303 61 Temv cVls61 1. 62 Temv cVls62 1. 63 Temv cVls63 1. 64 Temv cVls64 1. 65 Temv cVls65 1. 66 Temv cVls66 1. 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 Temv cVls76 1. 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 80 Temv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 Temv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86 Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv 'cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv cVlslOO 1. 101 Temv cVlslOl 1. 102 Temv cVls102 1. 103 1Temv cVls103 1. 104 Temv cVls104 1. 105 Temv cVls105 1. 106 Temv cVls106 1. 107 Temv cVls107 1. 108 Temv cVls108 1. 109 Temv cVls109 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cV:Ls112
- 1. 113 Temv cVls113 1. 114 Temv cVls114 1. 115 Temv cVls115 1. 116 Temv cVls116 1. ( 117 Temv cVls117 1. 118 Temv cVls118 1. 119 Temv cVls119 1. 120 Temv cVls120 1.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 f.,'<!tJ/if!fl-t.f!.--i¥f!lJ/}ft)j('J<t f.vtJ;ydaJ Attachment 9 PAGE NO. 290 of 303 121 Temv cVls121 1. 122 Temv cVls122 1. 123 Temv cVls123 1. 124 Temv cVls124 1. 125 Temv cVls125 1. 126 Temv cVls126 1. 127 Temv cVls127 1. 128 Temv cVls128 1. Function Components Control Variable 3C Upper MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s Variable Coef. # Name location a 1 Temv cVls129 1. 2 Temv cVls130 1. 3 Temv cVls131 1. 4 Temv cVls132 1. 5 Temv cVls133 1. 6 Temv cVls134 1. 7 Temv cVls135 1. 8 Temv cVlsl36 1. 9 Temv cVls138 1. /' 10 Temv cVls137 1. 11 Temv cVls139 1. 12 Temv cVls141 1. 13 Temv cVls140 1. 14 Temv cVls143 1. 15 Temv cVls142 1. 16 Temv cVls144 1. 17 Temv cVls145 1. 18 Temv cVls146 1. 19 Temv cVls147 1. 20 Temv cVls148 1. 21 Temv cVls149 1. 22 Temv cVls150 1. 23 Temv cVls151 1. 24 Temv cVlsl52 1. 25 Temv cVls153 1. 26 Temv c'vls154
- 1. 27 Temv cVls155 1. 28 Temv cVls156 1. 29 Temv cVls157 1. 30 Temv cVlsl58 1. 31 Temv cVls159 1,. 32 Temv cVls160 1. 33 Temv _ cVls161 1. 34 Temv cVls162 1. 35 Temv cVls163 1. 36 Temv cVls164 1. 37 Temv cVls165 1. 38 Temv cVls166 1. 39 Temv cVls167 1. 40 Temv cVls168 1. 41 Temv cVls169 1. 42 Temv cVls170 1. 43 Temv ZcVlsl 71 1. 44 Temv' cVls172 1.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xtt:Nl!fJ(.'ii!,--Evety P!OJia,. F.V!?f';/ tJay. Attachment 9 PAGE NO. 291 of 303 45 Temv cVlsl73 1. 46 Temv cVlsl74 1. 47 Temv cVlsl75 1. 48 Temv cVlsl76 1. 49 Temv cVlsl77 1. 50 Temv cVlsl78 1. 51 Temv cVlsl79 1. 52 Temv cVlsl80.
- 1. 53 Temv cVlsl81 1. 54 Temv cVlsl82 1. 55 Temv cVlsl83 1. 56 Temv cVlsl84 1. 57 Temv cVlsl85 1. 58 Temv cVlsl86 1. 59 Temv cVlsl87 1. 60 Temv cVlsl88 1. 61 Temv cVlsl89 1. 6,2 Temv cVlsl90 1. 63 Temv cVlsl91 1. 64 Temv cVlsl92 1. 65 Temv cVls193 ,i. 66 Temv cVlsl94 1. 67 Temv cVlsl95 1. 68 Temv cVlsl96 1. 69 Temv cVlsl99 1. 70 Temv cVlsl97 1. 71 Temv cVlsl.98
- 1. 72 Temv cVls200 1. 73 Temv cVls201 1. 74 Temv cVls202 1. 75 Temv cVls203 1. 76 Temv cVls204 1. 77 Temv cVls205 1. 78 Temv cVls206 1. 79 Temv cVls207 1. 80 Temv cVls208 1. 81 Temv cVls209 1. 82 Temv cVls210 1. 83 Temv cVls211 1. 84 Temv cVls212 1. 85 Temv cVls213 ' 1. 86 Temv cVls214 1. 87 Temv cVls215 1. 88 Temv cVls216 1. 89 Temv cVls217 1. 90 Temv cVls218 1. 91 Temv cVls219 1. . 92 Temv cVls220 1. 93 Temv cVls221 1. 94 Temv cVls222 1. 95 Temv cVls223 1. 96 Temv cVls224 1. 97 Temv cVls225 i.. 98 Temv cVls226 1. 99 Temv cVls227 1. 100 Temv cVls228 1. 101 Temv cVls229 1. 102 Temv cVls230 1. 103 Temv cVls231 1. 104 Temv cVls233 1.
,-' ENERCON 105' Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv .113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Te:mv 128 Temv Function Components Control Variable 4C MCR Avg_l sum Y=G*(aO+alXl+a2X2+ ... +anXn) CALCULATION CONTROL Attachment 9 cVls232 1. cVls236 1. cVls234 1. cVls235 1. cVls237 1. cVls239 1. cVls238 1. cVls240 1. cVls241 1. cVls242 1. cVls243 1. cVls244 1. cVls245 1. cVls246 1. cVls247 1. cVls248 1. cVls249 1. cVls250 1. cVls252 1. cVls251 1. cVls253 1. cVls255 1. cVls254 1. cVls256 1. Gothic s Variable Coef. a # 1 2 Name Cvval(O) Cvval(O) Function Components Control Variable SC Upper MCR Avg sum Y=G*(aO+alXl+a2X2+ ... +anXn) location cv3C cv2C Gothic s Variable
- Name location 1 Temv cVls257 2 Temv cVls258 3 Temv cVls259 4 Temv cVls260 5 Temv cVls261 6 Temv cVls262 7 Temv cVls263 8 Temv cVls264 9 Temv cVls265 10 Temv cVls266 11 Temv cVls267 12 Temv cVls268 13 Temv cVls269 14 Temv cVls270 15 Temv cVls271 16 Temv cVls272 17 Temv cVls273 18 Temv cVls274 1. 0.867 Coef. a 1. 1. 1. 1. 1. 1. 1. 1. 1: 1. 1. 1. 1. 1. 1. 1. 1.
- 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 292 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptoj(;o.
F.vt:ty tfa; Attachment 9 PAGE NO. 293 of 303 19 Temv cVls275 1. 20 Temv cVls276 1. 21 Temv qVls277 1. 22 Temv cVls278 1. 23 Temv cVls279 1. 24 Temv cVls280 1. 25 Temv cVls281 1. 26 Temv cVls282 1. 27 Temv cVls283 1. 28 Temv cVls284 1. 29 Temv cVls285 1. 30 Temv cVls286 1. 31 Temv cVls287 1. 32 Temv cVls288 1. 33 Temv cVls289 1. 34 Temv cVls290 1. 35 Temv cVls291 1. 36 Temv cVls292 1. 37 Temv cVls293 1. 38 Temv cVls294 1. 39 Temv cVls295 1. 40 Temv cVls296 1. 41 Temv cVls297 1. 42 Temv cVls298 1. 43 Temv cVls299 1. 44 Temv cVls300 1. 45 Temv cVls301 1. 46 Temv cVls302 1. 47 Temv cVls303 1. 48 Temv cVls304 1. 49 Temv cVls305 1. 50 Temv cVls306 1. 51 Temv cVls307 1. 52 Temv cVls308 1. 53 Temv cVls309 1. 54 Temv cVls310 1. 55 Temv cVls311 1. 56 Temv cVls312 1. 57 Temv cVls313 1. 58 Temv cVls314 1. 59 Temv cVls315 1. 60 Temv cVls316 1. 61 Temv cVls317 1. 62 Temv cVls318 1. 63 Temv cVls319 1. 64 Temv cVls320 1. 65 Temv cVls321 1. 66 Temv cVls322 1. 67 Temv cVls323 1. 68 Temv cVls324 1. 69 Temv cVls325 1. 70 Temv cVls326 1. 71 Temv cVls327 1. 72 Temv cVls328 1. 73 Temv cVls329 1. 74 Temv cVls330.
- 1. 75 Temv cVls331 1. 76 Temv cVls332 1. 77 Temv cVls333 1. 78 Temv cVls334 1.
ENERCON 79 Temv 80 Temv 81 Temv 82 Temv 83 Temv 84 Temv 85 Temv 86 Temv 87 Temv 88 Temv 89 Temv 90 Temv 91 Temv 92 Temv 93 Temv 94 Temv 95 Temv 96 Temv 97 Temv 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 6C Total MCR Avg sum Y=G*(aO+alXl+a2X2+ ... +anXn) Gothic s # Name 1-Cvval(O) 2 Cvval(O) CALCULATION CONTROL Attachment 9 cVls335 1. cVls336 1. cVls337 1. cVls338 1. cVls339 1. cVls340 1. cVls341 1. cVls342 1. cVls343 1. cVls344 1. cVls345 1. cVls346 1. cVls347 1. cVls348 1. cVls349 1. cVls350 1. cVls351 1. cVls352 1. cVls353 1. cVls354 1. cVls355 1. cVls356 1. cVls357 1. cVls358 1. cVls359 1. cVls360 1. cVls361 1. cVls362 1. cVls363 1. cVls364 1. cVls365 1. cVls366 1. cVls367 1. cVls368 1. cVls369 1. cVls370 1. cVls371 1. cVls372 1. cVls373 1. cVls374 1. cVls375 1. cVls376 1. cVls377 1. cVls378 1. cVls379 1. cVls380 1. cVls381 1. cVls382 1. cVls383 1. cVls384 1. Variable Coef. location a cv5C 1. ) cv4C 4.65949 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 294 of 303 '-. ENERCON Function Components Control Variable 7C Ovrall Max max CALCULATION CONTROL Attachment 9 ... ,anXn) Gothic s Variable Coef. # Name location a 1 Cvval(O) cvlC 1. 2 Temv cVls257 1. 3 Temv cVls258 1. 4 Temv cVls259 1. 5 Temv cVls260 1. 6 Temv cVls261 1. 7 Temv cVls262 1. 8 Temv cVls263 1. 9 Temv cVls264 1. 10 Temv cVls265 1. 11 Temv cVls266 1. 12 Temv cVls267 1. 13 Temv cVls268 1. 14 Temv cVls269 1. 15 Temv cVls270 1. 16 Temv cVls271 1. 17 Temv cVls272 1. 18 Temv cVls273 1. 19 Temv cVls274 1. 20 Temv cVls275 1. 21 Temv cVls276 1. 22 Temv cVls277 1. 23 Temv cVls278 1. 24 Temv cVls279 1. 25 Temv cVls280 1. 26 Temv cVls281 1. 27 Temv cVls282 1. 28 Temv cVls283 1. 29 Temv cVls284 1. 30 Temv cVls285 1. 31 Temv cVls286 1. 32 Temv cVls287 1. 33 Temv cVls288 1. 34 Temv cVls289 1. 35 Temv cVls290 1. 36 Temv cVls291 1. 37 Temv cVls292 1. 38 Temv cVls293 1. 39 Temv cVls294 1. 40 Temv cVls295 1. 41 Temv cVls296 1. 42 Temv cVls297 1. 43 Temv cVls298 1. 44 Temv cVls299 1. 45 Temv cVls300 1. 46 Temv cVls301 1. 47 Temv cVls302 1. 48 Temv cVls303 1. 49 Temv cVls304 1. 50 Temv cVls305 1. 51 Temv cVls306 1. 52 Temv cVls307 1. \ CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 295 of 303 ""- CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 Attachment 9 Cxr pto}c<l f.wq tJr;y. PAGE NO. 296 of 303 53 Temv cVls308 1. 54 Temv cVls309 1. 55 Temv cVls310 1. 56 Temv cVls311 1. 57 Temv cVls312 1. 58 Temv cVls313 1. 59 Temv cVls314 1. 60 Temv cVls315 1. 61 Temv cVls316 1. 62 Temv cVls317 1. 63 Temv cVls318 1. 64 Temv cVls319 1. 65 Temv cVls320 1. 66 Temv cVls321 1. 67 Temv cVls322 1. 68 Temv cVls323 1. 69 Temv cVls324 1. 70 Temv cVls325 1. 71 Temv cVls326 1. 72 Temv cVls327 1. 73 Temv cVls328 1. 74 Temv cVls329 1. 75 Temv cVls330 1. 76 Temv cVls331 1. 77 Temv cVls332 1. *79 Temv cVls333 1. 79 Temv cVls334 1. 80 Temv cVls335 1. 81 Temv cVls336 1. 82 Temv cVls337 1. 83 Temv cVls338 1. 84 Temv cVls339 1. 85 Temv cVls340 1. 86 Temv cVls341 1. 87 Temv cVls342 1. 88 Temv cVls343 1. 89 Temv
- 1. 90 Temv cVls345 1. 91 Temv cVls346 1. 92 Temv cVls347 1. 93 Temv cVls348 1. 94 Temv cVls349 1. 95 Temv cVls350 1. 96 Temv cVls351 1. 97 Temv cVls352 1. 98 Temv cVls353 1. 99 Temv cVls354 1. 100 Temv cVls355 1. 101 Temv cVls356 1. 102 Temv cVls357 1. 103 Temv cVls358 1. 104 Temv cVls359 1. 105 Temv cVls360 1. 106 Temv cVls361 1. 107 Temv cVls362 1. 108 Temv cVls363 1. 109 Temv cVls364 1. 11*0 Temv cVls365 1. 111 Temv cVls366 1. 112 Temv cVls367 1.
ENERCON CALCULATION CONTROL Attachment 9 113 Temv cVls368 1. 114 Temv cVls369 1. 115 Temv cVls370 1. 116 Temv cVls371 1. 117 Temv cVls372 1. 118 Temv cVls373 1. 119 Temv cVls374 1. 120 Temv cVls375 1. 121 Temv cVls376 1. 122 Temv cVls377 1. 123 Temv cVls378 1. 124 Temv cVls379 1. 125 Temv cVls380 1. 126 Temv cVls381 1. 127 Temv cVls382 1. 128 Temv cVls383 1. 129 Temv cVls384 1. Time Domain Data Time DT I)T DT End Print Graph Gas Error Dom Min Max Ratio Time Int Int Relax T 1 0.001 1. le+006 0.01 0.01 1. DEFAULT 2 0.001 10. 1. 7200. 500. 10. DEFAULT 3 0.001 10. 1. 86400. 500. 100. DEFAULT Solution Options Time Solution Imp Conv Dom Method Limit Imp Iter Pres Sol Pres Conv Pres 1 SEMI-IMP
- 0. 2 SEMI-IMP
- 0. 3 SEMI-IMP
- 0. Run Options Option Start Time Restart Time Step # Restart Time Control Revaporization Fraction Fog Model Limit 1 1 1 Maximum Mist Density (lbm/ft3)
Drop Diam. From Mist (in) Minimum HT Coeff. (B/h-ft2-F) Reference Pressure (psia) Maximum Pressdre (psia) Method Limit DIRECT 0. DIRECT 0. DIRECT 0. Setting 0.0 0 NEW DEFAULT OFF DEFAULT DEFAULT 0.0 IGNORE DEFAULT Forced Ent. Drop Diam. (in) Vapor Phase Head Correction Kinetic Energy DEFAULT Vapor Phase Liquid Phase Drop Phase Force Equilibrium Drop-Liq. Conversion QA Logging Debug Output Level Restart Dump on CPU Interval (sec) Version 6.1 Formulations Graphs Graph # Title Mon 1 2 INCLUDE IGNORE INCLUDE INCLUDE INCLUDE IGNORE INCLUDE OFF 0 3600. OFF Curve Number 3 Limit 1 1 1 4 Dump Int 0. 0. 0. Iter 5 I .J CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 297 of 303 Ph Chng L Flow T Scale Shutoff DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Differ Burn Scheme Sharp FOUP 0. FOUP 0. FOUP 0. ENERCON 0 M&E Imbalance 1 Peak and Averag 2 3 4 5 6 7 Envelope Sets Set No. Description Data Files File # Name Type 1 Results.txt TIME CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV. 0 PAGE NO. 298 of 303 EM EE cvlC cv6C cv7C RH1s71 RH1s14 RH1s30 RH1sl42 TA1s17 TA1s2 TA1s18 TA1s33 cvSC cv2C cv3C cv4C cv6C FVl FV23 FV24 FV18 FV4 FVl FV22 FV14 FV18 FV19 FV20 FV22 Set No. Type Items Inter-Output Detail pol ate Files Level YES SINGLE FULL f HITACHI TITLE SHEET ENTR-078-CALC-004 Rev. 0 Attachment 10 Page 299 of 303 DOCUMENT TITLE: RIVER BEND STATION NSSS CONTROL ROOM PANEL HEAT LOAD ESTIMATES TYPE: REPORT MPL NO: H13-Pxxx / I -DENOTES CHANGE CURRENT REVISION REV. PREPARED BY ECO# RELEASE DATE 0 CF CANHAM EC0-0020354 11/12/2015 GEH PROPRIETARY INFORMATION CLASS II (INTERNAL) THIS DOCUMENT CONTAINS INFORMATION THAT IS THE PROPERTY OF GE-HITACHI NUCLEAR ENERGY AMERICAS LLC (GEH). IT IS FURNISHED TO YOU IN CONFIDENCE AND TRUST. INFORMATION CONTAINED HEREIN SHALL NOT BE REPRODUCEQ, DISCLOSED TO OTHERS OR USED FOR ANY PURPOSES OTHER THAN THOSE DESIGNATED BY GEH. HOWEVER, THIS DOES
- NOT ALTER IN ANY WAY THE RIGHTS AND OBLIGATIONS DEFINED BY APPLICABLE CONTRACTS.
. . ORIGINATOR CF CANHAM COPYRIGHT 2015 GE-HITACHI NUCLEAR ENERGY AMERICAS LLC ALL RIGHTS RESERVED ORIGINAL DOCUMENT ISSUE ' DATE APPR9VAL DATE* 11/12/2015 PA NICHOLS 11/12/2015 AUTHENTICATION DATE 11/12/2015 HI HI ENTR-078-CALC-004 Rev.O Attachment 10 Page 300 of 303 River Bend Station personnel have requested GE Hitachi Nuclear Energy (GEH) to provide estimates of the heat loads (heat dissipation) generated by the individual NSSS control room panels supplied by GEH as part of their original supply and mounted on the Power Generation Control Center (PGCC) panel modules within the River Bend Station control room. These panels are the series including \ H13-P845. Balance of Plant panels (H13-P800 series, except for H13-P845) and computer panels (C91/C95-Pxxx) are not included as we have no information regarding heat loads (dissipation) of those individual panels. The control room panel locations are shown on GEH drawing 866E411. Engineering judgment was utilized to support this effort. Consequently, these estimates are neither bounding nor verified by measurements or calculations th01,Jgh they were peer checked for reasonableness. It must be noted and understood that the estimates provided below are derived from estimates provided to another BWR-6 and AE in the mid-1970s during the design and construction of that plant for their use in helping them determine the total heat load for their control room HVAC components. In addition, the GEH general heat load document that was applied and transmitted to the River Bend plant during plant design and construction, 22A1591 (A62-4190), originated from the GEH BWR-6 standard plant document, 22A2740B (A62-4190), for that size reactor plant. Sir:ice River Bend and the other plant are both BWR-6 designs, the designs of the actual control room . panels are very similar. The control room PGCC layout regarding panel location is very different for bcith plants. However, the layout difference does not impact the individual panel heat loads, only the distribution of those heat loads within the control room. In an attempt to determine similarity in design between both plants' NSSS (H13-P600 series plus H13-P845) panels, the panel assembly drawings for both plants were reviewed. This review was only a visual assessment to determine a qualitative level of similarity between the two designs regarding component layout, component types and quantities. Assembly parts lists were not reviewed and no detailed device comparisons were made. The purpose of the review was to assist in the determination that the heat load estimates generated for the other plant's control room could reasonably be applied to the River Bend control room for the same panel numbers. In some cases, the estimates applied to River Bend have been modified from those developed for the other plant. Any differences in the estimates are shown as an increase or decrease to the heat load estimate and as affected by either greater or fewer components installed in the River Bend panel assembly as compared to the other plant's panel assembly and are summarized in the Comments column of the table below. Some of the panel assembly drawings reviewed to determine similarity had unincorporated Engineering Change Notices attached to the revision. The changes were assumed to be trivial with regard to impact on heat loads. ECNs of this nature were normally issued to document some minor change to the HITACHI ENTR-078-CALC-004 Rev. 0 Attachment 1 O Page 301 of 303 assembly configuration at the time of completion of installation and Wpically would not have documented major changes in design. The heat loads for the other plant's NSSS panels listed below were prepared in response to a request to the GE Project Office from that plant's AE to clarify the control room heat loads being used by the that plant's AE as part of their sizing calculations input for control room envelope heating and cooling . These heat load estimates were derived by GEH using a process used at that time. The technical details of the process employed are unknown, but they are assumed to be have been deemed reasonably accurate and sufficiently justified at the time they were originally prepared by GEH. Table 1 -Heat Load Estimates PANEL NUMBER HEAT LOAD -WATTS HEAT LOAD -WATTS COMMENTS H13-PXXX (ESTIMATE) (ESTIMATE) Other BWR-6 RIVER BEND P600 400 200 Fewer recorders P601 1600 1600 P604 600 600 P607 Not Listed 200 P610 200 200 P612 800 400 About Yz GEMAC instrumentation and relays P613 400 400 P614 800 600 Less GEMAC instrumentation P618 600 500 About 28 fewer relays P619 200 200 P621 500 200 Relays only. Less than Yz the components as in 618/629,therefore reduced the estimate. P622 200 200 P623 200 200 Same as P'622 P625 500 500 P628 400 400 P629 600 500 About 28 fewer relays P630 Not Listed Not available Manufactured by Ronan Engineering P631 200 400 Same as P628 P632 800 800 HITACHI PANEL NUMBER HEAT LOAD -WATTS H13-PXXX (ESTIMATE) Other BWR-6 P634 1000 P637 800 P642 400 P651 1000 , P652 200 P653 800 I P654 Panel design added after estimate prepared P655 Panel design added after estimate prepared P680 800 P669-P672 1000 P691-P694 800 P845 600 HEAT LOAD -WATTS (ESTIMATE) RIVER BEND 1000 800 ' 400 400 400 350 400 400 800 1000 800 600 j ENTR-078-CALC-004 Rev. 0 Attachment 10 Page 302 of 303 COMMENTS. Measured input current to P651 @ 3 amps in our BWR-6 RC&IS Development System, thus at 120 VAC power is about 360 watts. Rounded up to 400. Same as P651 Measured input current to P653 @ 3 amps in our BWR-6 RC&IS Development System, thus at 120 VAC power is about 312 watts. Rounded up to 350. Similar to P642 Similar to P654 I 2009 ASHRAE Handbook -Fundamentals (IP) Attachment 11-Page 303 of 303 © 2009 ASH RAE, Inc. BATON ROUGE RYAN ARPT, LA, USA WMO#: 722317 Lat: 30.54N Long: 91.15W Elev: 75 StdP: 14.66 Time Zone: -6.00 (NAC) Period: 82-06 WBAN: 13970 Coldest Heating DB Humidification DP/MCDB and HR Coldest month WS/MCDB MCWS/PCWD 99.6% 99% 0.4% 1% to99.6% DB Month 99.6% 99% DP HR MCDB DP HR MCDB WS MCDB ws MCDB MCWS PCWD 27.6 31.1 13.5 11.0 35.0 18.9 14.2 39.4 21.5 62.3 19.6 59.9 5.0 0 Hottest Coolin DB/MCWB Eva oration WB/MCDB MCWS/PCWD 0.4% 1% 2% 0.4% 1% 2% to0.4% DB Month DB MCWB DB MCWB DB MCWB WB MCDB WB MCDB WB MCDB MCWS PCWD 7 17.0 94.2 77.5 92.8 77.2 91.3 76.8 80.3 89.0 79.6 88.1 78.8 87.1 7.3 260 Dehumidification DP/MCDB and HR Enthal Hours 0.4% 1% 2% 0.4% 2% Bto4& DP HR MCDB DP HR MCDB DP HR MCDB Enth MCDB Enth Enth MCDB 55/69 78.2 147.1 83.8 77.4 142.9 83.1 76.7 139.5 82.6 43.9 89.0 43.0 88.1 42.3 87.1 692 Extreme Annual WS Extreme Extreme Annual DB Max Mean Standard deviation n=5 ears ears ears n=50 ears 1% 2.5% 5% WB Min Max Min Max Min Max Min Max Max Min Max 18.7 16.8 15.2 85.1 20.8 96.7 5.8 2.6 16.6 98.5 13.2 100.0 9.9 101.5 5.7 103.3 Annual I Jan I Feb I Mar I Aor I Mav I Jun I Jul I Auq I Seo I Oct I Nov I Dec Tavg 67.9 51.6 54.8 61.0 67.3 75.0 80.1 82.1 82.0 77.8 68.8 60.0 52.9 Sd 9.93 9.35 8.49 7.11 4.97 3.28 2.43 2.93 5.13 7.24 8.81 10.31 Temperatures, HDD50 274 102 51 15 1 0 0 0 0 0 1 17 87 Degree-Days HDD65 1610 429 302 177 59 2 0 0 0 2 46 199 394 and CDD50 6790 150 186 356 521 776 902 996 992 835 584 316 176 Degree-Hours CDD65 2653 13 17 53 129 313 452 531 527 386 165 48 19 CDH74 24400 37 65 317 975 2800 4356 5452 5338 3459 1263 276 62 CD HBO 9772 1 3 31 206 981 1883 2434 2442 1421 341 27 2 ,, , !EDx, .,;' '!: +:f&wtt&Uh '{> ,:; ' -ti!@&&,,,,,v ?';'%?+1' 0 4N#M1i%%*Hfr<<'>J1iij 0.4% DB 78.3 79.4 83.3 87.8 92.1 94.9 95.7 96.6 94.9 89.9 83.0, 78.9 Monthly Design MCWB 68.5 67.8 69.3 70.5 75.4 76.5 78.3 78.0 76.0 74.5 71.6 70.3 Dry Bulb 2% DB 74.1 75.9 80.2 84.6 89.8 92.8 93.6 94.3 92.0 86.5 80.2 75.6 and MCWB 65.9 65.6 67.6 70.7 74.5 76.3 78.0 78.0 75.8 72.8 70.2 68.4 Mean Coincident DB 71.0 72.9 77.8 82.4 87.8 91.1 92.1 92.7 90.1 83.9 77.3 72.8 Wet Bulb 5% 64.9 64.9 66.2 69.8 73.7 76.2 77.8 77.7 75.4 71.6 68.5 67.1 MCWB Temperatures DB 67.6 69.9 74.9 79.9 85.7 89.3 90.5 90.9 88.0 81.2 74.5 69.4 10% 62.4 62.7 65.2 68.3 72.7 76.0 77.5 77.3 74.9 70.3 67.8 64.5 MCWB Wfr'.l, *"'" -,aw w mw& ,_ ae*,,.,, } *,**$-f@NSM&+:t#A -iHWi 41<& 'iL:<::zxMJ 0.4% WB 70.7 71.4 73.1 75.7 79.4 80.4 81.9 81.3 80.2 77.5 74.8 72.8 Monthly Design MCDB 75.0 75.0 79.0 81.8 87.2 89.0 90.4 90.7 88.4 84.2 78.8 76.2 Wet Bulb 2% WB 68.7 69.1 71.2 73.7 77.8 79.4 80.4 80.2 78.8 76.1 73.0 70.5 and MCDB 72.5 73.4 76.2 79.8 85.4 87.7 89.0 89.2 86.3 82.2 76.8 74.1 Mean Coincident WB 66.3 67.0 69.6 72.5 76.4 78.4 79.6 79.4 77.9 74.8 71.2 68.4 Dry Bulb 5% 71.2 78.6 88.1 80.4 71.6 MCDB 69.9 74.5 83.5 86.5 88.0 85.5 75.4 Temperatures WB 63.3 64.6 67.8 71.1 75.1 77.7 78.7 78.6 77.0 73.1 69.3 65.4 10% 66.4 68.8 73.1 77.1 85.6 87.0 78.3 68.9 MCDB 81.8 86.9 84.3 73.6 ,,_., ,,,, ,* < '<'*' ,' '*""* ,, ,,y,, MDBR 19.5 19.3 20.4 20.8 19.4 17.8 17.0 17.7 18.9 21.2 21.1 19.8 Mean Daily 5%DB MCDBR 20.7 20.7 20.9 20.4 20.1 19.8 18.6 19.6 20.5 21.5 21.0 19.8 Temperature MCWBR 14.0 12.2 10.5 8.8 7.3 6.7 6.3 6.3 7.4 9.6 12.1 13.3 Range MCDBR 18.1 17.1 17.4 16.7 17.2 17.1 17.2 17.8 17.0 16.8 18.0 17.4 5%WB 14.1 12.2 10.9 8.9 7.1 7.0 6.8 6.5 7.0 8.8 12.7 13.7 MCWBR I v u,;*#r S'.Vi' X?t ., : .,;p;;m4wsw1;a2 w* H'f J,: *WAT':\ uo'* * ' @i 'i f\1iWrL:==:J -+> ?Jdk&h* &&#;!, *A .y;mw;1rn*+& taub 0.357 0.377 Clear Sky taud 2.347 2.243 Solar 275 279 lrradiance Ebn,noon Edh,noon 35 41 coon Cooling degree-days base n'F, 'F*day Lat CDHn Cooling degree-hours base n'F, 'F-hour Long DB Dry bulb temperature, °F MCDB DP Dew point temperature, °F MCDBR Ebn,noon } Clear sky beam normal and diffuse hori-MCDP Edh,noon ] zontal irradiances at solar rioon, Btu/h/112 MCWB Elev Elevation, ft MCWBR Enth Enthalpy, Btu/lb MCWS HDDn Heating degree-days base n'F, °F-day MDBR Hours B/4 & 55/69 Number of hours between B a.m. PCWD and 4 p.m with DB between 55 and 69 °F HR Humidity ratio, grains of moisture per lb of dry air 0.394 2.210 282 45 Latitude,* Longitude,
- 0.414 2.164 279 48 0.451 0.510 2.083 1.920 268 251 52 61 Mean coincident dry bulb temperature,
'F Mean coincident dry bulb temp. range, 'F Mean coincident dew point temperature, 'F Mean coincident wet bulb temperature, 'F Mean coincident wet bulb temp. range, 'F Mean coincident wind speed, mph Mean dry bulb temp. range, 'F Prevailing coincident wind direction,
- , O = North, 90 = East 0.542 0.525 0.457 0.379 0.357 0.347 1.845 1.888 2.096 2.374 2.411 2.433 243 246 259 276 274 273 66 62 49 36 32 31 Period Years used to calculate the design conditions Sd Standard deviation of daily average temperature,
'F StdP Standard pressure at station elevation, psi taub Clear sky optical depth for beam irradiance taud Clear sky optical depth for diffuse irradiance Tavg Average temperature, 'F Time Zone Hours ahead or behind UTC, and time zone code WB Wet bulb temperature, 'F WBAN Weather Bureau Army Navy number WMO# World Meteorological Organization number WS Wind speed, mph Attachment 3 to RBS-47668 Engineering Report No. ME-16-00002, Main Control Room Heat-up Analysis During Loss of HVAC Conditions for 24 hours IPl ATTACHMENT 9.1 ENGINEERING REPORT COVER SHEET & INSTRUCTIONS Engineering Report No. __ RB_S_-ME __ -1_6_-0_0_0_0_2_ Rev 0 ENTERGY NUCLEAR Engineering Report Cover Sheet Engineering Report Title: Page A of 303 Main Control Room Heat-Up Analysis During Loss of HV AC Conditions for 24 Hours Engineering Report Type: New 1:81 Revision D ' Cancelled D Superseded D Superseded by: Applicable Site(s): D IP2 D IP3 D JAF D PNPS D VY D WPO D D AN02 D EC:H D GGNS D RBS 1:81 WF3 D -*PLP D ECNo.62786 Report Origin: D Entergy [81 Vendor Vendor Document No.:ENTR-078-CALC-004 Prepared by: Quality-Related: D Yes [81 No ENERCON (Blake Holton I Guy Spilces I Chad Cramer) (See Page 1) Responsible Engineer (Print Name/Sign) Design Verified: Not Required Design Verifier (if required) (Print Name/Sign) Reviewed by: Paul Sicard (Acceptance Review) Reviewer (Print Name/Sign) Approved by: _____ E_d_D_ew_ee_s_e_,_(S_e_e_A_s_se_t_S_u_ite-'-) ____ _ Supervisor I Manager (Print Name/Sign) Date: (See Page 1) Date: -----Date: See AS Date: See AS EN-DC-147 REV 6 RBS-ME-16-00002 PAGEB r,!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!i!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\'I Revislqn,>.1 ",Rec9rd.ofRevisfon
- , :* :, . . ,,:>.. . '
.. . / * *.* " * * <, '" ( 000 Initial Issue. (2/10/16) EN-DC-147 Rev 6 I' ATTACHMENT 9.5 Entergy Engineering I RBS-ME-16-00002 Report Number Quality Related: D Yes Comment Section/ Page No. Number Review Comment TECHNICAL REVIEW COMMENTS AND RESOLUTION FORM PAGEC Engineering Report Technical Review Comments and Resolutions Form .Rev. I Title: Main Control Room Heat-Up Analysis During Loss of HVAC 000 Conditions for 24 Hours Special Notes or Instructions: Response/Resolution Preparer's Accept Initials N/A N/A For all comments and resolutions, See P2E attachments 10.002-10.005 in EC 62786. N/A N/A Verified/Reviewed By: I I Date I Resolved By: I Site/Department: I I Ph. I Date: _ I EN-DC-147 Rev 6 (PURPOSE/OBJECTIVE) RBS-M E-16-00002 PAGED This engineering report documents development review of ENERCON calculation ENTR-078-CALC-004, Revision 0, "Main Control Room Heat-Up Analysis During Loss.of HVAC Conditions for 24 Hours" (Attachment 1). This calculation is a refinement and extension of a previous MCR heatup calculation, ENTR-078-CALC-003, Rev. 3 (Reference 1). The thermal-hydraulic (GOTHIC) models used in the calculation incorporate changes and refinements to address the seven issues identified in calculation ENTR-078-CALC-003, Rev. 3 as documented in CR-RBS-2015-7237. The models also incorporate the latest control room heat load and heat load distribution information developed in EC61975 (Reference 2). The calculation has been reviewed by two independent third party reviewers, MPR Associates and Numerical Applications Inc. (NAI) (Zachry Nuclear Engineering);. References
- 1. ENTR-078-CALC-003, rev. 3, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours" 2. EC61975, "References for E-226 Calculation Revision" Attachments
- 1. ENTR-078-CALC-004, Rev. 0, "Main Control Room Heat-Up Analysis During Loss of HVAC Conditions for 24 Hours" EN-DC-147 Rev 6 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION COVER SHEET REV. 0 f.'.xcl?.Ue.nce-Evety projec.t; fVP.Fy day. PAGE NO. 1 of 303 " Title: Main Control Room Heat-Up Analysis During Loss of HVAC Client: ENTG Conditions for 24 Hours Project:
ENTGRB167 -Item Cover Sheet Items Yes No 1 Does this calculation contain any open assumptions that require confirmation? (If YES, D Identify the assumptions) 2 Does this calculation serve as an "Alternate Calculation"? (If YES, Identify the design verified D calculation.) Design Verified Calculation No. 3 Does this calculation Supersede an existing Calculation? (If YES, identify the superseded D calculation.) Superseded Calculation No. Scope of Revision: N/A I Revision Impact on Results: N/A Study Calculation D Final Calculation Safety-Related D Non-Safety Related I (Print Name and Sign) 6. WU:r Date: 2/4/2016 Oriainator: for Blake Holton 6. WU>:f Date: 2/4/2016 Design Verifier: (Guv Spikes) .d)L_ Date: 2/5/2016 Accrover: (Chad Cramer) ENERCON fxceticnce ...... .f.-c>ry project. !'very do/ Revision 0 Page No. All Appendix No. Page No. Attachment 1-11 All CALC. NO. CALCULATION REV. REVISION STATUS SHEET PAGE NO. CALCULATION REVISION STATUS Date PAGE REVISION STATUS Revision 0 Page No. APPENDIX REVISION STATUS Revision No. Appendix No. 0 Description Initial Issue ' Page No. ENTR-078-CALC-004 0 2 of 303 Revision Revision No. ENERCON CALCULATION CONTROL SHEET Table of Contents CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 3 of 303 1. PURPOSE ......................................... , ............................................................................... 4 2. CONCLUSION .... : ..................... , ....................................................................................... 4 3. INPUT AND DESIGN CRITERIA ..................................................................................... 6 4. ASSUMPTIONS ...........................
- ....... : .........................................................................
11 5. METHOD OF ANALYSIS ............... , ................................................................................ 17 6. GOTHIC INPUT DEVELOPMENT ...... : .................................................................. , ........ 18 7. t=\ESULTS ....................................................................................................................... 45 8. REFERENCES ............................................................................................................... 52 Attachments Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP .............................................. 54 Attachment 2: Humidity Sensitivity ............................................
- ,**************************
.. 170 Attachment 3: ERIS Panels Heat Load ....................................................................................... 171 Attachment 4: MCR Panel Data ................................................................................................... 176 Attachment 5: Additional Steel Heat Sinks ................................................................................... 180 Attachment 6: Email from Paul Sicard, 7/23/2015 ........................................................................ 187 Attachment 7: Email from Paul Sicard, 11912015 ........................................................................ 189 Attachment 8: PPC Heat Load Justification .................................................................................. 190 Attachment 9: GOTHIC Input File for Case 2 ............................................................................... 195 Attachment 1 O: GE Control Panel Heat Loads ..............................................................
- ..............
299 Attachment 11: Climatic Data for Baton Rouge Airport ................................................................ 303 ENERCON CALCULATION CONTROL SHEET 1. PURPOSE CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 4 of 303 The purpose of this calculation is to determine the temperature of the River Bend Station (RBS) Main Control Room (MCR) for 24 hours following a Loss of HVAC. The GOTHIC model from Calculation* G13.18.12.4*027 (Reference 8.1) is used to develop this analysis. The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference "8.29) are also used in the development of this calculation. The four cases evaluated are listed below.
- Case 1 (ENTR-078-CALC-004_Case 1.GTH): Loss of Offsite Power (LOOP) with mitigating actions defined In Table 4. A design basis maximum.
outdoor temperature of 96°F with a diurnal temperature variation is assumed.
- Case 2 . (ENTR-078-CALC-004_Case 2.GTH): Normal operation with mitigating actions defined in Table 5. A design basis maximum outdoor temperature of 96°F with a diurnal temperature variation is assumed.
- Attachment 1 Case (ENTR-078-CALC-004_Attachment 1.GTH): Normal operations with HVC-ACU1A(B) aligned per AOP-0060 to service water (SWP) at one hour.
- Attachment 2 Case (ENTR-078-CALC-004_Attachment 2.GTH): Same as Case 2, except using the Main Control Room design basis maximum initial humidity of 70%. ,) Note that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. The second means to respond to a Loss of HVAC would be to cross-tie Service Water to provide cooling to HVC-ACU units. The effectiveness of this action is shown in the calculated temperature response of Attachment 1 to this calculation.
The third means of providing Main Control Room temperature control following a loss of HVAC is to manually start the MCR smoke removal fan and remove ceiling tiles, an established and well-trained operator action per the AOP-0050, Station Blackout procedure (Reference 8.14). These actions provide forced air flow through the MCR and increase the effective air volume subject to heatup. These are the mitigating actions modeled in Cases 1 and 2 of this calculation.
- 2. CONCLUSION The results of the three cases are listed in Table 1 below. The average temperature results are given at 1, 2, 4, and 24 hours and the maximum cell temperature is also recorded.
Note that the maximum cell temperature reported is the temperature in the lower and middle elevation subvolumes as this is where the operators and pertinent equipment reside. As shown in the table, average and maximum cell (local) temperatures reach their peak values at 2 hours in Case 2 corresponding to the key mitigating action of starting the smoke removal fan (see Table 5). The peak average. and maximum cell temperatures in the Case 1 and Attachment 1 analyses occur at 24 hours. Additional
- results, including MCR transient temperatures and temperature distribution, are included in Section 7.
Case 1 2 Att. 1 \ ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 5 of 303 Table 1: MCR Temperatures for Cases 1, 2 and Att. 1 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell Description (Of) (of) (of) (of) Tavci (°F) Temo {°F) LOOP Heat Load. Mitigating 104.0 103.3 106.5 111.4 111.4 (24 hrs) 117.8 (24 hrs). actions based on Table 4. Normal Operation Heat ' Load. Mitigating actions 109.5 116.1 109.0 108.6 116.1 (2.0hrs) 121.8 (2.02 hrs) based on Table 5. -Normal Operation Heat Load. HVC-ACU1 to 110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) SWP at 1 hour. ( This is a standalone calculation derived from the RBS Station Blackout MCR heatup GOTHIC model of calculation G13.18.12.4-027 (Reference 8.1 ). Note that ariother, similar evaluation of the MCR temperature after loss of HVAC was completed in calculation ENTR-078-CALC-003 (Reference 8.29). This calculation (ENTR-078-CALC-004) reproduces information and the limiting case scenarios documented in the Reference 8.29 calculation. The current
- calculation therefore provides a streamlined calculation of the Main Control Room temperature response to a loss of HVAC. Lessons learned from the development of the Reference 8.29 models, plus comments provided by independent reviewers (Numerical Applications, Inc. and MPR Associates, Inc.), are incorporated into the GOTHIC models used in this calculation.
The models used in this calculation also incorporate changes to address the seven issues identified in the Reference 8.29 control room heatup models identified in CR-RBS-2015-7237. These issues and their resolution in this calculation are detailed below. 1. The heat capacity of structural steel has been corrected and verified through two independent references (Section 3.15 and Table 2).
- 2. The value used for the density of concrete has been reviewed and verified through two independent references (Section 3.15, Table 2). 3. The control room floor modeling has been reviewed and revised, removing any credit for the aluminum honeycomb support structure and including modeling of the hardwood floor tiles (Section 3.5 and Figure 1, 2 and 3, Section 4.10). 4. _,The mesh size of the GOTHIC subdivided volumes representing the upper.and lower main __ control room regions has been increased to 16 (x-direction) and 8 (y-direction) nodes. The lower main control room subvolumes have also been increased to 3 (z-direction) nodes (Section 6.1 ). d 5. Appropriate momentum transport options are included in flow paths between subvolumes and between a subvolume and lumped volume or boundary condition (Section 6.6). 6. Solar heat affects are included in the thermal 'conductors representing the control room external walls and roof in all GOTHIC models (Section 6.3). 7. The control panels in the control room, previously modeled as passive heat sinks (thermal conductors) with initial surface temperature equal to the MCR temperature, have been revised to include an initial control panel internal heat rate equal to the electrical heat load ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 6 of 303 within the enclosure.
With this approach, the initial temperature of the panel conductors is greater than 85°F; significantly above measured control panel temperatures. The internal heat rate in the control panel thermal conductors is shut off after the first time step so that' any residual heat in the panels is released to the MCR. * ' 3. INPUT AND DESIGN CRITERIA 3.1. This model is developed from the GOTHIC model in Reference 8.1. All changes made from the model in Reference 8.1 are documented in this calculation. 1 All inputs from Reference 8.1 were verified for this calculation. Inputs retained from Reference 8.1 include:
- Dimensional Inputs for the MCR volumes (e.g. net free volume, hydraulic
- diameter, elevation, height)
- Initial temperature in the lower MCR (CV1) volume of 75°F and the initial *temperature in the upper MCR (CV2) volume of 81°F ..
- The initial relative humidity of 20% for both MCR volumes.
I
- Ceiling tile removal sequence.
- Metal heat sinks above suspended ceiling.
3.2. The electrical heat load in the . MCR for Case 1 (LOOP) i.s do'cumented in E-226 (Reference 8.2), Appendix E and EC61975 (Reference 8.36). Development of the heat load for Case 1 is described in Section 6.5. 3.3. The electrical heat load in the MGR for Case 2 and Attachment 1 (normal operations) is documented in E-226 (Reference 8.2), Appendix A and EC61975 (Reference 8.36). Development of the heat load for Case 2 and Attachment 1 is described in Section 6.5. 3.4. The sensible and latent:heat load due to each operator in the MCR is based on the total heat gain for an adult male for moderately active office work, 475 BTU/hr (Reference 8.13, Chapter 18, Table 1). 3.5. A GOTHIC thermal conductor representing the floor of the lower MCR is added to the models in this analysis that was not included in the Reference 8.1 model. The MCR floor consists of a concrete base floor and a raised floor section with removable wood panels (false floor). Longitudinal and lateral steel structures provide support and form cable raceways for routing cables to the control panels (Reference 8.8 and 8.28). The concrete / base floor of the MCR is 11 inches thick based on the thickness of the concrete conductors used in Reference 8.7. The air gap thickness of the MCR floor is one foot, *with the false floor having a thickness of 1-5/8" (Reference 8.8). Reference 8.8 shows the bottom of false floor elevation at 136' and the top of the false floor elevation at 136' -1 5(8". Figure 1 and 2 show the false floor panels. CALC. NO. ENTR-078-CALC-004 F:;J ENERCON CALCULATION CONTROL SHEET REV. 0 f.vrtyda,. PAGE NO. 7 of 303 Figure 1: False Floor Picture Figure 2: Side View of False Floor Panel CALC. NO. ENTR-078-CALC -004
- ENERCON ' CALCULATION CONTROL SHEET REV. 0 n<-t--Evtty0'"Jt'r:t
- v Y'iay:
PAGE NO. 8 of 303 3.6. The heat load from the Power Generation Control Complex (PGCC) raceways is modeled in the air gap of this composite conductor (see Section 6.5). The steel lateral structures that would act as heat sinks are conservatively neglected. Figure 3 shows the under floor area, including the streel structures and cables not modeled in the GOTHIC calculation that would act as heat sinks or thermal inertia for the heat load. Figure 3: Under Floor Area 3.7. A GOTHIC thermal conductor representing the concrete ceiling of the upper MCR is added to the models in this analysis. The surface area and thickness of the concrete is determined from Reference 8.7 as 10,656 ft2 and 24 inches respectively. 3.8. A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the models in this analysis. The surface area of the ceiling tiles is determined by subtracting the amount of ceiling tile surface area that is removed when the tiles are opened, from the total surface area of the ceiling shown in Reference 8.7 as 10,656 ft2. This conservatively underestimates the amount of tile surface area that would be present during the beginning of the event before the tiles are opened by operator actions. 3.9. Door CB136-9 is a 3'x7' doorway (Reference 8.10 and 8.11). Reference 8.11 shows the door on elevation 157'-8" that opens from stairwell 1 to the atmosphere (CB157-2) has the same dimensions as door CB136-9. This door is therefore modeled as a 3'x7' doorway. 3.10. The dimensions for stairwell 1 are documented in Reference 8.11. The stairwell starts at elevation 98' and goes to elevation 157'-8", with a 7' door. The length and width dimensions are shown as 21 '-8" and 8'-3". The MCR temperature response is expected to be insensitive to the dimensions of the stairway volume as it is a pass through volume from the atmosphere to the MGR. ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 9 of 303 3.11. The MCR smoke removal tan (HVC-FN9) draws 10, 125 cfm from the MCR (13,200 CFM -2850 CFM -225 CFM, per Reference 8.12). 3.12. Section 4.5.4 of the GE Specification for Main Control Room panels, specification 22A3888 (RBS vendor document 0242.411-000-009, Reference 8.16) require: Apparatus shall be suitable for continuous operation within the panels, or benchboard with a normal and abnormal maximum ambien_t air inlet temperature as specified in the BWR Equipment Environmental Interface Data Specification (A62-4270). Allowance shall be made for the temperature rise in the cubicle due to heat given off by other equipment in the same cubicle, when considering individual components the maximum temperature in a panel, or benchboard, shall not exceed 122°F (50°C) under the 3.13. Pl D-22-098 (Reference 8.12) shows an exhaust flow from the kitchen of 500 cfm, and an exhaust flow from the toilet of 300 cfm, which are modeled in Case 2. EE-027 A (Reference 8.26) shows the toilet and kitchen areas as being in the center of the MCR on east side. Therefore, the exhaust flow path for the toilet/kitchen fans is modeled in subvolume 1s374 on the up.per subvolume level in the east-center of the MyR for Case 2. ) 3.14. Door CB136-9 is modeled in the southwest corner of the lower MCR volume in subvolumes 1s14 (lower door and fan) and 1s142 (upper door) based on review of Reference 8.3 and 8.26 .. , 3.15. The properties for the materials used in the analysis are listed in Table 2 and 3 below. Values used in the calculation were validated with respect to the independent reference provided in the last column of Table 2. / 3.16. The effects of solar irradiation on the control roC>m walls and ceiling are included in this model. Solar irradiation is modeled using the "Sol-Air Methodology. The Sol-Air temperatures are calculated based on the methodology of Reference 8.13 using climatic data for the Baton Rouge Ryan Airport (Attachment 11 ). The sol-air temperature calculated for the roof is applied to the roof and all sides of the building. This is conservative as the sol-air temperature calculated for the* roof is the greater than for the sides of the building . . This sol-air temperature is applied as a "Sp Ambient & HTC" with the convective heat transfer coefficient of 4.0 from Assumption 4.6 applfed on the "B" side of the conductors representing the walls and roof. The effects of shading are conservatively neglected. See ' I Section 6.3 for more details. r / ) CALCULATION CONTROL SHEET ENERCON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 10 of 303 Table 2: Solid Material Prop_erties Material Density Thermal Specific Reference Independent (lbm/ft3) Conductivity Heat Used in Reference (BTU/hr-ft-F) (BTU/lbm-F) -Calculation Steel 484 21.0 0.116 8.23. Sec. 2 8.13, Ch. 33, Table 28 Table 3 Concrete1 131.5 0.64 0.21 8.23. Sec. 2 8.13 Table 29 / Hardboard 55 0.068 0.32 8.13. Ch. 26, 8.24 Table4 Acoustical 18 0.029 0.19 8.13. Ch. 26, N/A2 Tile *Table 4 '-1. The density and thermal conductivity values are determined by averaging the range of values given in Reference 8.23 (119-144 lbm/ft3 density and 0.47-0.81 Btu/hr-ft-°F conductivity). These values are within the range of the values for sand and gravel or stone aggregate concretes provided in (Reference 8.13) (130 lbm/ft3 density,
- o.58-1.08 Btu/hr-ft-°F conductivity, 0.19-024 Btu/lbm-F specific heat). ,_ 2. No independent reference found for Acoustical Tile. The properties of air vary with temperature more so than the solid materials used. Therefore, a temperature distribution for the properties of air is used based on Reference 8.24 shown in Table 1 3: Vafues were confirmed to be conservative and reasonable from Reference 8.25, Appendix I. Note that these air properties are only used in the gap of the composite conductor representing the floor and do not have a significant effect on the results of the calculation.
CALC. NO*. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 11 of 303 Table 3: Air Properties Temperature (F) Density (lbm/ft3) Thermal Conductivity Specific Heat (BTU/hr-ft-F) (BTU/lbm-F) 60 0.07633 0.01433 0.2404 80 0.07350 0.01481 0.2404 100 0.0709 0.01529 0.2405 150 0.06507 0.01646 0.2406 300 0.0522 0.01985 0.2423 4. ASSUMPTIONS 4.1. Ten operators are assumed to be in the MCR during the event. This is conservative as AOP-0060 (Reference 8.6, Section 5.1.6) directs non-essential personnel to leave the control room during a Loss of HVAC. The operators, and thus the latent and sensible heat load due to each operator, are assumed to be distributed in the control room as follows:
- Five operators are located in the central horse shoe area of the MCR (subvolumes 1s55-1 s57, 1 s71-1 s73, 1s87-1 s89, 1s183-1s185, 1s199-1 s201, and 1 s215-1s217). These operators are referred to as Senior Reactor Operators (SROs) in this calculation.
- The heat load from the remaining five operators is spread evenly across the lower and middle subvolumes of the lower MCR, based on the assumption that these operators will be continuously moving around the MCR to open up\ panel back doors, ceiling tiles etc. \ The total heat load from each operator is 475 BTU/hr (Input 3.4). This total heat load includes a sensible heat load of 250 Btu/hr/operator (Reference 8.13, Chapter 18, Table 1) with the balance (475-250
= 225 Btu/hr/operator) as latent heat. In this analysis, the total heat lo.ad per *operator is modeled as a sensible heat addition to the MCR using GOTHIC heater components. While this approach does not account for the increase in relative humidity that would' result from the latent heat addition, it does conservatively over-estimate the impact on the control room temperature by ' maximizing the sensible heat rate. 4.2. The suction flow for the smoke removal fan is from the screened intake registers located in the southwest corner (2s144), around the center of the west wall (2s136), and along the center of the north wall (2s193), all in the upper plenum (through damper HVC-DMP68/69/70, respectively). The for the smoke removal fan is assumed to be split into these three locations, weighted based on the normal flow through these registers. See Section 6.6 for more details. 4.3. The mitigating operator actions are given in Table 4 for Case 1. The mitigating operator actions are given in Table 5 for Case 2. The mitigating actions were ,, ) ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' PAGE NO. 12 of 303
- determined based on the referenced procedural
- guidance, as well as operator interviews, and actual operator actions taken during the loss of HVC event that occurred on March 9, 2015. Five Operations shift managers or control room supervisors were interviewed in the development of the operator actions and timing which are being assumed within this calculation.
The 104°F assumed in Case 1 for initiating ceiling tile removal is considered a conservative trigger for operators to remove MCR ceiling tiles: Removal of MCR ceiling tiles does not impact the MCR envelope, thus operators could perform this action earlier. Some operators indicated this could be initiated in a 30-60 minute time frame after a Loss of HVAC if other actions provided no MCR temperature control. GOTHIC trips are used to initiate the different mitigating actions defined in Tables 4 and 5. 4.4. As described in Table 5, Case 2 includes an operator action to open control room door CB 136-9 into the southwest well of the control building and position a portable fan in this open doorway exhausting into' the stairwell. The also open door CB157-2 to the control building roof at the top of the stairwell. This allows the MCR volume to exchange air with the stairwell and for the portable fan (and later, the smoke removal fan) to draw outside air into the MCR. The stairwell is modeled as a single lumped parameter volume, which results in the stairwell air having a uniform temperature. The free volume of the stairwell is reduced by 30% to account for the stairs in the volume. The stairs and walls in this stairwell volume are conservatively neglected as heat sinks. While this lumped volume approach limits the effectiveness of the stairwell in cooling the air that circulates into the MCR since bidirectional flow and local reduction in stairwell temperatures .. are not captured, the lumped volume does result in uniform mixing of the relatively hot MCR air with the entire stairwell volume. This ignores the stagnant air inventory that would at the lower elevations of the stairwell and thus may under estimate the temperature of the air in the stairwell that is returned to the MCR through the open door. To confirm that the lumped parameter approach is conservative for this calculation, a sensitivity calculation was performeo using-the limiting Case 2 model with a subdivided stairwell volume. The resulting MCR transient temperatures were shown to' be the same as that pre.dieted by the lumped stairwell volume. Therefore, the lumped stairwell model was retained for this analysis. 4.5. A diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere that provides makeup flow to MCR (see Section 6.2). All.cases use a maximum design basis temperature of 96 °F consistent with Reference 8.17 and FSAR Table 9.4-1. The mean daily temperature range that is applied to all cases is based on the climatic data from Attachment 11 for the month of July (Reference 8.13), as this is the most conservative month. The mean daily temperature range specified is 17°F. In each case, the outside air temperature is kept at 96°F for the initial four hours. This conservatively maintains a high outside air temperature until all mitigating actions have been implemented. Outside air temperatures would be considerably lower for much of the year. Attachment 11 shows monthly data for the Baton Rouge airport, approximately 25 miles south of RBS. 4.6. A specified convective HTC of 4 BTU/h-ft2-°F in conjunction with the sol-air temperature developed in Section 6.3 is applied to the outside surface of the thermal conductors representing the walls to the atmosphere, based_ on a typical 7.5 mph wind during summer (Reference 8.13, Chapter 26, Table 1 ). ENERCON ,CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 13 of 303 4.7. The portable electric fan that will be staged in door CB136-9 in Case 2 has a flow rate of 2800-4000 CFM (Attachment 6). The lower bound of this value, 2800 CFM is assumed in the analysis. The fan is modeled using a GOTHIC volumetric fan component positioned in the flow path representing the lower half of door CB136-9. Any flow seepage around the sides of the fan is neglected. The flow path representing the upper half of the door remains unobstructed when the fan is running. The fan flow rate is assumed to be constant at the minimum rated flow noted above. Variations in* flow rate due to any back flow or seepage is neglected. 4.8. The heat transfer coefficient (HTC} on the "B" side of the floor thermal conductor is "Sp Ambient and HTC" with the ambient temperature set equal to the most limiting room from ENTR-078-CALC-001 (Reference 8.18) with operator actions to open doors at 4 hours. This room was determined to be DC Equipment Room 1 A. This is a conservative method for modeling th? boundary node for the floor conductor as the DC Equipment room is under a small portion of the MCR, and.all other rooms under the MCR do not experience as severe of temperature increases. The convective HTC is set to 1.63 BTU/IJ-ft 2-°F based on heat flow upwards (Reference 8.13, Chapter 26). The initial temperature of the* thermal conductor representing the floor is set to the average of the initial temperature of DC Equipment Room 1 A (78 °F) and the initial temperature of the MC.R (75°F), or 76.5°F. 4.9. Multiple other operator actions are available as a response to a loss of control building cooling. AOP-0060 (Reference 8.6) provides instructions for use of Service Water to directly cool the control building Air Conditioning Units. This action was not credited in ttie analyses in the body of this calculation, but the time delay associated with attempting this was implicitly accounted for in development of the operator action timeline based on operator interviews. Operators are able to manually initiate ACU 1 A(B) main control room air conditioning units from the Main Control Room, overriding interlocks with the Chilled Water System. This action was taken during the March 9, 2015, loss of control building ventilation event by the Main Control Room staff. A case with HVC-ACU1 aligned to service water is evaluated in Attachment 1 to this calculation. Multiple portable fans are available at River Bend which could be used to provide control room ventilation. Attachment 6 provides a picture and information on the electric ppwered fan credited in this analysis. The River Bend fire brigade van contains a gasoline powered portable fan with a flow rate of greater than 14,000 CFM which could be staged to provide ventilation to the main control room (Fire Brigade members are trained in techniques for effective ventilation). A picture of this fan is also provided in Attachment
- 6. FLEX portable fans and diesel generators are also now available on site at .. River Bend to provide ventilation as required.
Thus, multiple other means of providing ventilation and cooling of the main control room are available besides those credited in this calculation. 4.1 O. The floor (see also Section 3.5) is rnodeled using a composite conductor with three regions representing the false floor panels, an air gap, and concrete. The false floor is modeled as hardboard, based on pictures of the floor panels shown in Figure 1 and 2. Figure 1 and 2 show the floor is a wood composite
- material, supported by an aluminum composite structure and steel supports as documented in Reference 8.9,
) ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 14 of 303 Page 5, Appendix F. Modeling the composite false floor as entirely wood is conservative as; wood is a less efficient heat conductor than aluminum metal. (Per Table 2, the hardwood flooring thermal conductivity is 0.068 Btu/hr-ft-°F versus 96.67 Btu/hr-ft-°F for aluminum used in Reference 8.29). Thus, modeling the false floor as all wood limits the heat transfer out of the* lower MGR volume. As discussed in Attachment 8 of Reference 8.29 (Response to NRG Question 20), a portion of the total false floor area is covered by carpeting to reduce noise C!nd enhance operator comfort (see Reference 8.35). This modification was implemented by RBS design change RBS-ER-98-0228. The GOTHIC floor conductor does\ not include this carpeting material. This is an acceptable assumption as (1) the carpet material covers only , about 1/3 of the total floor area, and (2) the effect on room temperature by omitting the aluminum composite structure was determined to more than offset the effects of including the carpet material.
- 4.11. The ceiling tiles) are modeled as acoustical tiles based on a typical material for ceiling tiles. 4.12. The initial relative humidity of the outside air is set to 53%. This is based on the initial 96°F dry bulb temperature (see Section 4.5) and 81°F wet-bulb temperature consistent with Reference 8.17 and FSAR Table 9.4-1 using a psychrometric chart (ASHRAE, Reference 8.13). The outside air absolute humidity is assumed to remain constant throughout the transient and is based on this initial relative humidity
- and atmospheric pressure (14.7 psia). The relative humidity varies with changes in diurnal temperature (see Section 6.2).
- 4.13. The mass of the heat generating equipment inside the MGR panels is not explicitly modeled (see Section 6.4.3). The sensible heat released from the control panels and electrical equipment inside the panels is accounted for by initializing control panel thermal conductors with the non-LOOP control panel heat load to increase the conductor temperature and maximize the stored heat (see Section 6.5.2). 4.14 The roof and walls of the control building are concrete.
Therefore, the solar absorptivity of the roof and walls is set to 0.6 based on the recommended value for concrete from Reference 8.13, Chapter 4, and Table 5. 4.15 Based on Reference 8.2, Appendix F, BYS-INV02 batteries provide power to the some of the components (including the computer equipment as well as some of the lighting and control panel heat load) during a LOOP (Case 1 ). Page 12 of Reference 8.2 states that these Non-safety DC loads have a 2 hour design battery life. The heat loads powered by this battery is assumed to stay on for a total of 4 hours to bound this battery life (see Section 6.5.3) and any sensible heat that would be released after the batteries have been depleted. The lighting heat load during the LOOP scenario (Case 1) is assumed to be uniformly reduced based on inspection of Reference 8.33 which shows the lights powered by different panels are evenly distributed throughout the MGR. 4.16 Lighting heat load that is not in luminous ceiling areas is assumed to be split between the lower and upper MCR-85% to the lower MCR and 15% to the upper MGR. Page 26.8 of Reference 8.34 states that the heat-to return for unventilated
- fixtures, such as ones not in the luminous ceiling area, is between 15 and 25%. The low end of this ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 15 of 303 range, 15%, is used for conservatism.
Lights in the luminous ceiling area are assumed to have 100% of the heat load deposited into the lower MCR. 4.17 All cases are initiated assuming that the Main Control Room HVAC (HVC) system has been operating and maintaining the lower and upper MCR at the initial temperatures (75°F and 81°F per Section 3.1) with the outside air and sol-air temperatures continuously varying over each 24 hour period as described in Section 6.2 and 6.3. The cases are assumed to start at the time of peak sol-air and ambient temperature (1 :00 p.m.), thus maximizing the initial temperature in the thermal conductors representing the concrete 'walls and ceiling. 4.18 As stated in Section 3.1, the base cases use an initial MCR relative humidity value of 20%. This is the *minimum value per the Environmental Design Criteria (EDC) and this minimum value is selected to maximize the control room dry bulb transient temperature. A sensitivity case (Attachment
- 2) assuming an initial MCR humidity of 70%, the Environmental Design Criteria (EDC) maximum value (per Reference 8.17), is also evaluated.
This value is higher than MCR humidity values recently recorded during normal operations (see table below), which averaged 58.8%. LcicatiOn,:C:(*
- * .'.:'.: *;,
- \4;*
Humidity: era>** Just inside MCR door 61.3 OSM office across MCR 59.5 By C91-P600 PPC CPU 61.2 cabinet By H13-P821 EHC Cabinet 59.0 By H13-P630 annunc. 57.5 Panel Behind H13-P808 bench board panel 56.9 By P852 02 BOP Aux relay 57 .2 pnl Between P870 and P863 panels Behind P601 panel ..
- i*; ,.
By P601 ,By P680 Bv P870 ) 58.5 58.7 58.8 58.5 58.9 ENERCON CALCULATION CONTROL SHEET Table 4: Mitigating actions for Case 1 Time Action 0 Loss of Control Building cooling(failure of HVC-ACU1A(B) to run due to chiller failure) Loss of Offsite Power: Div.1 and/or Div.2 Standby DG's respond successfully. < 30 min Operators attempt to restart chillers or manually start HVC-ACU1A(B). These actions are assumed to fail. 30 min Compiete actions to open back panel doors in Control Room. Operators would normally initiate steps to align SWP to provide cooling to HVC-ACU's Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited. 104°F Initiate actions to remove ceiling tiles. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 16 of 303 Basis AOP-0060 (Reference 8.6) Step 5.1.1 and Operator Interviews. AOP-0060 (Reference 8.6) AOP-0060 step 5.1.2 (Reference 8.6). and Operatqr Interviews AOP-0050 (Reference 8.14) and Operator Interviews. Time 0 <30 min 30min 1 hour 1 hour 30 minutes. 2 hours ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 17 of 303 Table 5: Mitigating actions for Case 2 Action Basis Loss of Control Building cooling (failure of HVC-ACU1A(B) to run ,due to chiller failure) Offsite Power available. Toilet and Exhaust Fans remain running. / Operators attempt to restart chillers or manually start AOP-0060 (Reference 8.6) Step HVC-ACU1A(B). These actions are assumed to fail. 5.1.1 and Operator Interviews. Complete actions to open back panel doors in Control AOP-0060 (Reference 8.6) Room. Operators would normally initiate steps to align SWP to AOP-0060 step 5.1.2. (Reference provide cooling .to HVC-ACU's 8.6) and Operator Interviews Operators would start this action at some MCR temperature below the TS limit (e.g., 100F). This action is not credited (See Attachment 1):
- Operations open Main Control Room door CB136-9 to SW Operator Interviews stairway (near elevator) and open door from stairwell to the outside A portable electric fan staged in door CB 136-9 to exhaust Operator Interviews from Main Control Room. Smoke Removal fan (HVC:-FN9) started to provide Main SOP-0058 (Reference 8.30) Control Room Ventilation.
Section 5.5 and Operator " \ Interviews 2 hours 30 Initiate actions to remove ceiling tiles. AOP-0050 (Reference 8.14) minutes 5. METHOD OF ANALYSIS The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for .24 hours following a Loss of HVAC. GOTHIC is/ a general purpose thermal hydraulic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). ' \ GOTHIC models developed for this calculation are based on the model from G13.18.12.4*027 (Reference 8.1). The GOTHIC models from calculation ENTR-078-CALC-003, Rev. 3 (Reference 8.29) are also used in the development of this calculation. ENERCON CALCULATION CONTROL SHEET 6. GOTHIC INPUT DEVELOPMENT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 18 of 303 The volumes, conductors, and initial conditions from Reference 8.1 that were verified to be correct and/or reasonable are retained in this model. New or revised inputs are documented in this calculation. 6.1. Control Volumes and Bot;mdary Conditions The SBO model (Reference a.1) uses a 4X x 2V x 2Z subdivision for the upper and lower MCR (Control Volume (CV) 1 and CV2). The analysis in this calculation further subdivides the lower MCR into a 16X x av x 3Z subdivision and) the upper MCR into a 16X x av x 2Z subdivision (see Figure 4). The hydraulic diameters for the cell face variations and volume *variations are set to the default values, allowing GOTHIC to calculate these parameters internally. ' The location of the first vertical subdivision in the lower MCR control volume (CV1) is adjusted so that the lower half of door CB136-9 is connected to the lower subvolumes and the upper half to the middle subvolumes. The second vertical subdivision in the lower MCR control volume is at the height of the top of the control panels (7.5 ft). Three control volumes are added"to model the atmosphere, stairwell 1 and an exhaust ' volume. The first control volume added (CV3) represents the atmosphere which provides makeup flow to the stairwell volume. This is a flow-through volume as described in Section 22.10 of the GOTHIC User's Manual (Reference a.5). Temperature in this atmosphere volume is controlled using a diurnal temperature forcing function applied to the pressure and flow boundary conditions connected to this volume, as described in Assumption 4.5. The -volume is arbitrarily set to 30,000 ft3. The flow boundary flow rate is set to 200 lbm/sec to maintain the desired conditions in the control volume. ' The second control volume added (CV4) represents stairwell
- 1. Door CB 136-9 opens into this stairwell on elevation 136'-1 5/a". This volume is connected to the atmosphere volume (CV3) on elevation 157'-a".
The height of the stairwell is determined by subtracting the bottom elevation, 9a' as shown on Reference a.11, from the top elevation. The top elevation is assumed to be equal to the elevation at the top of stairwell 1 of 157'-a" shown on Reference a.11, plus the door height (7 ft, Input 3.9). The height of stairwell 1 is calculated below. Hstairwell = 1,64.667 ft -98 ft = 66.667 ft The volume of the stairwell is calculated based on the stairwell dimensions given in Input 3.1 O . and the height calculated above, reduced by 30% (Assumption 4.4), as shown below Vstairwell = 0.7 * (L
- W
- H) = 0.7 * (21.667
- 8.25
- 66.667) = 8,341.84 ft3 The third control volume added (CV5) is the exhaust plenum for flow from the smoke removal fan. The volume is arbitrarily defined as 10,000 ft3 and a pressure boundary (5P) is connected to this volume to ensure it does not pressurize.
ENERCON CALCULATION CONTROL SHEET I I I i 144--CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 19 of 303 L --I -----------------------------------t-------------------- 1 I l ! I I ! I r !L ! I I I I ! I I I I ..------------1<< I k ____________ 1 I I -+-+-+-+-1---+-+-+-1-+-+-!-+-+-tt;l I l I lt IL L Figure 4: GOTHIC Lower and Upper MCA Volumes ) ENERCON CALCULATION CONTROL SHEET 6.2. Outside Air Temperature and Humidity CALC. NQ. ENTR-078-CALC-004 REV.O PAGE NO. 20 of 303 As stated in Section 4.5, a diurnal temperature variation is applied to the GOTHIC control volume representing the atmosphere which provides makeup flow to MCR using the methodology provided in Chapter 14 of ASHRAE (Reference 8.13), which is summarized by the following relationship: Tdb,h = Tdb,des -f(DR) Where Tdb,h =hourly dry bulb temperature (°F), Tdb,des = design dry bulb temperature (96°F), f= hourly daily range fraction (ASHRAE Table 6), DR = daily range of dry bulb temperature (17°F), As discussed in Section 4.5, the outside air temperature is kept at 96°F for the initial four hours. The varying outside air temperature is implemented using a GOTHIC forcing function referenced by the flow and pressure boundary conditions used to define the outside air flow through atmospheric volume. The outside air pressure is constant and assumed equal to 14.7 psia. As stated in Assumption 4.12, the outside air absolute humidity is assumed to remain constant throughout the transient such that the relative humidity varies with changes in diurnal This is accomplished in GOTHIC by specifying an appropriate steam volume fraction in the applicable outside air flow and pressure boundary conditions. The. steam volume fraction is calculated . based on the initial relative humidity (53%) and atmospheric (total) (14.7 psia). Per the GOTHIC User's Manual (Reference 8.5), steam volume fraction is defined as: where Ps =steam partial.pressure, PT= total pressure (14.7 psia). Relative humidity is defined as: where P9 = steam saturation
- pressure, From ASME steam tables: P9(96°F) = 0.8416 psia. °Vs Ps Vsf = Vr = Pr r *--.__
ENERCON CALCULATION CONTROL SHEET Therefore, CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 21of303 Ps = (RH)(P9) = (0.53)(0.8416) = 0.44605 psia, and by substitution 0.44605 Vst =, 14.7 ='0.030343 Using the above steam volume fraction and the diurnal temperature variation, the outside air relative humidity varies with dry bulb temperature, as the air temperature decreases.
- 6.3. Sol-Air Temperature Methodology Solar heat loads to\ the MGR roof and walls are modeled by assigning a temperature boundary condition to the GOTHIC internal thermal conductors representing the roof and walls. The assigned temperature is the sol-air temperature.
Sol-air temperature is the outdoor air temperature that, in the absence of all radiation changes gives the same rate of heat entry into the surface as would the combination of incident solar radiation, radiant energy exchange with the sky and other outdoor surroundings, and convective heat exchange with outdoor air (Reference 8.13, Chapter 18). The calculation of the sol-air temperatures follows the example in Reference 8.13, Chapter 18. The following example is a calculation for the sol-air temperatures on the exterior surface of the roof for July at a location based on Baton Rouge Ryan Airport which is approximately 25 miles south of River Bend Nuclear Station. Definitions of many of the variables in the equations below are from Reference 8.13, Chapter 14. The example given below is for the roof of the MGR at the most conservative time of 1 :00 pm, which is when the transient is assumed to start. This sol-air temperature is calculated for each hour of the day. As discussed in input 3.16, the sol-air temperature calculated for the roof is conservatively applied to all the walls of the upper and lower MCR. The maximum outside air temperature is set to the design basis maximum temperature of 96°F. The daily temperature range is set to 17°F based on the mean daily temperature range for the Baton Rouge Ryan Airport in July (Attachment 11). Note that, per Assumption 4.5, the outside air temperature is kept at 96°F for initial four hours but the sol-air temperature is varied over the entire transient. 4J = south orientation = 0° r = surface tilt from horizontal = 0° 1 :00 PM Local Standard Time (LST) = hour 13 to = 95.2°F (temperature at 1 PM based on daily temperature range) Latitude: 30.54 N (ASHRAE data from Baton Rouge Ryan Airport) Longitude: 91.15 W (-91.15) (ASHRAE data from Baton Rouge Ryan Airport) taub (Tb: 0.542 (ASHRAE data from Baton Rouge Ryan Airport) for July) , taud (Td): 1.845 (ASHRAE data from Baton Rouge Ryan Airport) for July) Calculate solar altitude, solar azimuth, surface solar azimuth, and incident angle as follows: From Chap 14, Table 2 in ASHRAE, solar position data and constants for July 21 are, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ET =-6.4 min 0 = 20.4° E0 = 420 Btu/h*ft2 PAGE NO. 22 of 303 Local standard meridian (LSM) for Central Time Zone= -90°(Reference 8.13, Chapter 14, Table 3)
- a=0.6 based on concrete (Reference 8.13 Chapter4, Table 5, Assumption 4.14) ho=4.0 BTU/hr-ft 2-°F based on 7.5 inph characteristic of the summer months (Table 1 in Chapter 26 of Reference 8.13, Assumption 4.6) E=1 (Chapter 18 of Reference 8.13) 11R=20 BTU/hr-ft 2 (Chapter 18 of Reference 8.13) Apparent solar time (AST) AST= LST + ET/60*+ (LON-LSM)/15
= 13 + (-6.4/60) + [(-91.15 +90)/15] = 12.817 Hour angle H, degrees H = 15(AST-12) = 15(12.817 -12) = 12.3° Solar altitude 13 sin 13 = cos L cos o cos H + sin L sin o =cos (30.54) cos (20.4) cos (12.3) +sin (30.54) si.n (20.4) \ : 0.97 I 13 = sin-1(0.96) = 75.0° Solar azimuth cp cos cp = (sin 13 sin L-sin o)/(cos 13 cos L) .;; [(sin (75.0) sin (30.54) -sin (20.4)] /[cos (75.0) cos (30.54)] = 0.6382 cp = cos-1(0.6382) = 50.3° Surface-solar azimuth y y=cp-ljJ = 50.3-0 = 50.3° Incident angle 8 cos 8 = cos 13 cos y sin L + sin.13 cos L = cos (75.0) cos (50.3) sin (0) + sin (75.0) cos (0) = 0.966 a = cos-1(0.966) = 1 S.0° Beam normal irradiance fa Eb= Eo exp(-Tbf7ilb) m = relative air mass = 1/[sinl3 +0.50572(6.07995 13 expressed in degrees . = 1.035 \-ab = beam air mass exponent = 1.219-0.043Tb-0.151Td-0.204TbTd = 0.7131.0 Eb= 420 exp [-0.542(1.035o.11310)] = 241 Btu/h*ft2 Surface beam irradiance Er;b I \. . ENERCON Et,b = Eb cos 8 = (241) cos (15.0) = 232.8 Btu/h*ft2 CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 23 of 303 Ratio Y of sky diffuse radiation on vertical surface to sky diffuse radiation on horizontal surface Y = 0.55 + 0.437 cos 8 + 0.313 cos28 = 0.55 + 0.437 cos (15.0) + 0.313 cos2(15.0) = 1.264 Diffuse irradiance Ed-Horizontal Ed= Eo exp (-T drrfld) ad= diffuse air mass exponent = 0.202 + 0.852Tb-0.007Td-0.357TbTd = 0.29387 Ed= Eo exp (-Tdrrfld) = 420 exp (-1.845(1.035°.2s3s7)] = Btu/h*ft2 Diffuse irradiance Etd-Nonvertical surfaces Et,d= Ed(Y sin(i.)+cos('E) = (70.5)(1) = 65.1 Ground reflected irradiance Er,r Et,r = (Eb sin f3 + Ed)p9(1 -cos "i..)/2 = [241 sin (75.0) + 65.1](0.2)[1 -COS. (0)]/2 = O Btu/h*ft2 Total surface irradiance Er , Et= Et.b + Ed+ E, = 232.8 + 65.1 +O = 298.0 Btuih*ft2 Sol-air temperature: te = to+ aE, /ho-EliRlho = 95.2 + (0.6)(298.0)/(4) -{1)(20)/(4) = 134.9°F I This sol-air temperature is calculated for each hour of the day and applied as a "Sp Ambient & HTC" using a GOTHIC forcing function on the walls and roof of the upper and lower MGR. 6.4. Thermal Conductors )* 6.4.1 MGR Walls The GOTHIC thermal conductors representing the concrete walls in the lower and upper MGR volumes are consolidated into North, West, South and East Walls and spanned across the subvolumes adjacent to the walls. The dimensions of the lower MGR are 144 ftx 74 ftx 9.115 ft (Reference 8.1). The dimensions of the upper MGR are 144 ft x 74 ft x 8.670 ft (Reference 8.1). The surface area for the north and south walls for the MGR is calculated below. ' SAN+S LMCR = 74 ft* 9.115 ft= 674.51 ft2 The surface area of the east and west walls for the lower MGR is calculated below. ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 24 of 303 SAE+W LMCR = 144 ft* 9.115 ft= 1312.56 ft2 The surface area of the north and south walls for the upper MCR is calculated below. SAN+S UMCR = 74 ft* 8.670 ft= 641.58 ft2 The surface area of the east and west walls for the upper MCR is calculated below. SAE+W UMCR = 144 ft* 8.670 ft = 1248.48 ft2 6.4.2 MCR Floor and Ceiling As discussed in inputs 3.5 and 3.7, GOTHIC thermal conductors representing the floor of the MCR and the ceiling of the upper MCR plenum are added to the GOTHIC model. The surface area of the floor conductor is determined from the dimensions of the MCR, 144' x 74' (Reference 8.1 and 8.26). The GOTHIC thermal conductor representing the floor is spanned across the lower subvolumes of the lower MCR volume. The GOTHIC thermal conductor representing the ceiling of the upper MCR is spanned across 'the upper subvolumes of the upper MCR.
- SAceiling
= floor = 144 ft* 74 ft = 10,656 ft2 The thickness of the concrete walls in the lower and upper MCR volumes is increased to the actual thickness of 24 inches, as the zero heat flux boundary condition (Reference 8.1) is no longer applied. The sol-air temperature forcing function, determined in Section 6.3, is applied as the HTC on the B side for the concrete walls of the lower and upper MCR volumes, as well as to the ceiling for the Upper MCR volume. 6.4.3 Control Panels The surface area of the control panels is split into three separate GOTHIC thermal conductors: one for the west half of the room, one for the northeast quadrant and one for the southeast quadrant. The GOTHIC conductors representing these control panels are spanned over the appropriate subvolumes in the lower _and middle subvolumes of the lower MCR volume based on the height of 7.5 ft for the control panels given in Reference 8.27. The dimensions and locations of the control panels are from Reference 8.26 and 8.27. Attachment 4, Tables 1-3, shows the calculation of the surface area for each of the control panel groupings. Note that this calculation does nottake into account the interfacial surface area between panels as was done in Reference 8.1. An effective thickness is calculated to account for the metal mass present in this interfacial area, as well as on the bottom surface of the control panels.
- This effective thickness is determined by calculating the total metal volume based on the nominal thickness of 1/8" from Reference 8.1 and multiplying by the total surface area (including the interfacial area and bottom surface area) for the metal panels, calculated in Table 4 of Attachment
- 4. This product is then divided by the surface area exposed to air calculated in Attachment4(Tables1-3) of this calculation, shown below. As discussed in Assumption 4.13, the equipment mass inside of the control panels is not modeled.
Initialization of these ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 25 of 303 conductors to reflect the electrical heat load in the cabinets and the resulting higher panel temperatures and stored heat is described in Section 6.5.2. 0.125 in* 20,265.1 ft2 teff = 7,764.63 ft2 + 3,234.14 ft2 + 3,728.76 ft2 = 0*172 inches 6.4.4 Additional MCR Heat Sinks Steel heat sinks of various thicknesses are also added based on the walk down notes provided in Attachment
- 5. The walk down notes and Reference 8.26 are used to determine the general area that the identified heat sinks are located in order to accurately model their physical location in the GOTHIC model. 6.4.5 Ceiling Tiles A GOTHIC thermal conductor representing the ceiling tiles between the upper and lower MCR is added to the model. The thickness of the ceiling tile conductor is set to 5/8" based on Reference 8.1, Page 29. The acoustical tile material defined in Table 2 is used for this conductor.
The surface area of the ceiling tiles is calculated by subtracting the surface area of the ceiling tiles removed, from the total surface area as discussed in Input 3.8, shown below. -2 . ft2 -. 2 SAceilingTiles -10,656 ft -80 tiles* 8 -.-l -10,016 ft tie 6.4.6 Metal Work Above Ceiling The metal work above the suspended ceiling tiles is represented by a single conductor spanned over the upper MCR volume. The total surface area and thickness of this conductor are determined from Reference 8.1. 6.5. Heat Loads The MCR heat loads for each case are distributed in the actual location of the heat source. The magnitude and location of the heat loads is based on information in E-226 (Reference 8.2) and EE-027 A (Reference 8.26) as modified by EC 61.975 (Reference 8.36). All individual heat loads are modeled in GOTHIC using heater components located in the appropriate subvolume with a constant heat rate equal to the heat load. Some notes regarding the heat load distribution are provided below:
- The lighting heat load is based on inspection of Reference 8.33 and 8.36. 15% of the lighting heat load not in the luminous ceiling areas is assigned to the upper MCR volume as described in Assumption 4.16.
- Attachment 10 gives the heat loads in the NSSS (H13-P600 series) control panels in the control room. The heat loads of these select panels are applied in their actual location, based on Reference 8.26. The remaining heat loads from control panels are found from Reference 8.36.
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE. NO. 26 of 303
- The heat load for the Honeywell computer equipment is determined from Attachment
- 8. The heat loads for the individual panels are located based on Reference 8.26.
- As discussed in Section 3.6, the heat load from the PGCC raceway is modeled in the air gap of the GOTHIC composite thermal conductor representing the floor. The heat load is distributed evenly across the floor. *. Heat loads from lighting panels, miscellaneous panels, the radiation monitor (RMS-CAB 170), and the kitchen were located based on Reference 8.26.
- As discussed in Assumption 4.1, five operators are assumed in be in the horseshoe area of the MCR. The remaining five operators are assumed to be implementing actions such as opening panel doors, ceilingJiles etc.; thus the heat load from these operators is spread evenly across the lower and middle subvolumes of the MCR.
\ 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 27 of 303 Figure 5 below shows the MCR layout from Reference 8.26 with the GOTHIC lower subvolume grid outline. Subvolume numbers at the middle and upper grid elevations are equal to these values increased by 128 (middle) and 256 (upper). The location of the vertical grid lines is shown in Figure 4. This drawing, in conjunction with Reference 8.26, is used to determine the location of heat loads as well as heat sinks from Section 6.4 and Attachment
- 5. ' . ' -Pi.AA I I ' I EE-027 A with GOTHIC Subvolume Grid ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-:CALC-004 REV.O PAGE NO. 28 of 303 6.5.1 Lighting The lighting heat load and distribution is determined from Reference 8.33 and Reference 8.36, summarized in Table 6 below. Table 6: Lighting Fixtures Fixture Type BG -BJ BM BU ' BV Total No. 8 79 1'33 2 3 No. of tubes 2x8=16 4x79 =316 4x133=532 2x2=4 2x3= 6 Total watts 768 15, 168 14,364 110 165 The total heat load is therefore 30,575 Watts. The luminous ceiling area in the center of the room is shown to have 75' "BJ" fixture types from Reference 8.33. The heat load from these 75 fixtures is distributed evenly between subvolumes 1s294-1s297, 1s310-1s313, 1s326-1s329, 1s342-1s345, and 1s358-1s361 (20 total subvolumes).
As discussed in Assumption 4.16, the entire heat load from these lighting fixtures is assumed to be deposited into the lower MGR volume, based on these lighting fixtures being in an elevated ceiling area, and therefore not ventilated. The heat loads are distributed to each subvolume using GOTHIC heaters. The heat load per heater for these subvolumes is calculated below. . , tubes W BTU _ 75 fixtures* 4 fixture* 48 tube* 9.478e 5-/W Qcenterarea = = 0.68 BTU /s 20 subvolumes The luminous ceiling area on the south end of the MGR is shown to have 4* "BJ" fixture types, and all 8 of the "BG" fixture types from Reference 8.33. The heat load from these 12 fixtures is distributed evenly between subvolumes 1s318-1s319 and 1s334-1s335. The entire heat load from these lighting fixtures is assumed to be in the lower MGR volume, based on these *lighting fixtures being in an elevated ceiling area, and therefore not ventilated. The heat*load per heater for these subvolumes is calculated below. ( . tubes . tubes ) W BTU 4 fixtures* 4 fixture+ 8 fixtures* 2 fixture 48ti:ibe
- 9.478e 5-/W Qsouth area = 4 subvolumes
- = 0.364 BTU /s The remaining lighting heat load is spread evenly across the remaining subvolumes (104 total). As discussed in Assumption 4.16, 85% of the heat load from lighting not in the luminous ceiling areas is assumed to be deposited into the lower MGR; the remaining 15% is input into the corresponding subvolumes in the upper plenum volume. The heat load per heater fc;>r this remaining lighting heat load is calculated below.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 29 of 303 W + 110 W + 165 W)
- 9.478e -4 /W QMCR-lights
= 1 4 b l = 0.1134 BTU /s 0 su vo umes 0.15(14,364 W + 110 W + 165 W)
- 9.478e -4 BTU /W . Qplenum-lights
= 104 b l s = 0.02 BTU /s su vo umes For the scenario (Case 1 ), lights powered by panels 1 C5 and 1 C,6 are lost at the onset of the event. Lights powered by 1C10 and 1C11 are conservatively assumed to remain on for four hours based on them being powered by BYS-INV02 which has a battery life of 2 hours _, (See Assumption 4.15). Lights powered by 1 C9 remain on for the duration of the event as they are powered by a diesel generator (Reference 8.36). An even reduction in the lighting heat load is applied to all the lights, as discussed in Assumption 4.15. This reduction factor is shown below for the first 4 hour period, as well as the 4-24 period: 6.5.2 11889 Watts Lighting Reduction 0_4 hours = 30575 = 0.389
- Watts 5937 Watts Lighting Reduction4-24hours
= 30575 Watts= 0.194 Control Panels Attachment 10 gives the hept loads for equipment inside the H13-P600 series (NSSS) control panels in the control room. The heat load for these panels is localized based on Reference 8.26. The heat load is distributed evenly among the lower and corresponding middle elevation subvolumes in the lower MCR volume. The heat load for the P600 panels given in Attachment 1 O is not reduced for the LOOP scenario. The heat load for equipment in the H13-P630 panel and the H13,.P800 (BOP) series panels are determined from Reference 8.36. The P600 panel heat loads are shown in Table 7. The P800 panel heat loads are shown in Table 8. Note that panel H13-P845 is given in Attachment 10 and Reference 8.36; 'the more conservative value from Reference 8.36 is used. Panel H 13-P680 is provided in Attachment 1 O as well as Attachment 8; the more conservative vaiu*e in Attachment 1 O is used in the analysis. The heat load for the P800 panels during a LOOP are determined from Reference 8.36 and given in Table 9. ENER ON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 30 of 303 Table 7: P600 Normal Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-PXXX {Watts) {BTU/s)* subvolume {s) subvolume {s) BTU/s P600 200 0.19 26 154 0.095 P601 1600 1.52 73,89 201,217 0.379 P604/614 1200 1.14 42 170 0.569 P607/P612 600 0.57 94 222 0.284 P61 O/P654/P652 1000 0.95 93 221 0.474 P619/P634 1200 1.14 110 238 0.569 P621/P628 600 0.57 45 173 0.284 P623/P632 1000 0.95 60 188 0.474 P625/P693 1300 1.23 91 219 0.616 P629 500 0.47 29 157 0.237 P630 3300 3.128 59 187 1.564 P631/P618 900 0.85 109 237 0.427 P637 800 0.76 111 239 0.379 P642/P613/P622 1000 0.95 92 220 0.474 P651 /P653/P655 1150 1.09 61 189 0.545 P680 800 0.76 55,56,57 N/A 0.253 P669/P691 1800 1.71 44 172 0.853 P670/P692 1800 1.71 108 236 *0.853 P671 1000 0.95 107 235 0.474 P672/P694 1800 1.71 43 171 0.853 TOTAL 23,550 22.33
- Values are converted from Watts usmg a conversion factor of 9.478e-4 BTU/s/Watts Based on Reference 8.36, panels H13-P612 (400 Watts), H13-P630 (3300 Watts), H13-P634 (1000 Watts), H13-P680 (800 Watts) are powered by BYS-INV02.
Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1)'. / .ENERCON fvery.rfay CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 31 of 303 Table 8: P800 Series Control Panel N.ormal Heat Load and Distribution Panel Heat Heat Load Lower Middle Per Heater Number Load Heat Load H13-PXXX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0.474 . 40,41 168,169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 1095 1.038 95 223 0.519 P844/P854 1995 1.891 81,97 209,225 0.473 P845 620 0.588 58 186 0.294 P849 750 0.711 51 179 0.355 P850 4125 3.910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 750 0.711 50 178 *0.355 P855 176 0.167 3*5 163 0.083 P861 400 0.379 103 231 0.190 P863 185 0.175 38,54 166,182 0.044 P869 2214 2.098 84 212 1.049 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 19,806 18.77 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ) / . ' ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 32 of 303 Table 9: P800 Series Control Panel LOOP Heat Load and Distribution Panel Number Heat Load Heat Load Lower Middle Per Heater Heat Load H13-P:>(XX (Watts) (BTU/s) Subvolume subvolume BTU/s P808 500 0:474 40,41 168, 169 0.118 P819/P841 1195 1.133 36,52 164,180 0.283 P820/P842 1195 1.133 83,99 211,227 0.283 P821/P822 437 0.414 *95 223 0.207 P844/P854 1995 1.891 81,97 209,225 0.473 P845 0 0.000 58 186 0.000 P849 750 0.711 51 179 0.355 P850 4125 3.'910 100 228 1.955 P851 1104 1.046 37 165 0.523 P852 1104 1.046 98 226 0.523 P853 0 0.000 50 178 0.000 P855 176 0.167 35 163 0.083 P861 400 0.379 103 231-0.190 'P863 185 0.175 38,54 166,182 0.044 P869 1500 1.422 84 212 0.711 P870 957 0.907 70,86 198,214 0.227 P877 96 0.091 105 233 0.045 P878 815 0.772 112 240 0.386 P879 430 0.408 48 176 0.204 P951 50 0.047 53 181 0.024 P952 50 0.047 101 229 0.024 TOTAL 17,064 16.17 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts
- Based on Reference 8.36, panels H13-:P850 (4125 Watts) and H13-P844/854 (1995 Watts) are powered by BYS-INV02.
Based on Assumption 4.15 these loads are assumed to remain on for four hours, before being dropped for the LOOP scenario (Case 1 ). As discussed in Section 6.4, the control panels are represented in the GOTHIC model by three thermal conductors. The temperature of the panels is initially greater than the surrounding MCR ambient temperature due to the heat load from the electrical equipment inside the
- panels, which is modeled using heaters external to the panels. To account for the energy (heat) initially in the panel conductors and to ensure that the temperature of the control panel thermal conductors is greater than the room at the beginning of the transient, the total control panel heat load from E-226 (Reference 8.2) is input into the control panel thermal conductors for the first 0.1 seconds.
The volumetric heat rate used for these control panel thermal conductors is calculated below based on the total (non-LOOP) panel heat load of 30,018 watts from Reference 8.2, or 28.45 BTU/s, and the total panel conductor volume. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 33 of 303 28.45 BTU/s Q"' Control Panels-Initial = -------------------::--:-:=-:-- ! 2 f 2 7 f 2) 0.172 in (7,764.6 t + 3,234.14 t + 3,728. 6 t
- 12 inf ft .BTU = 0.133! 3 t -s For the LOOP (Case 1 ), this initial internal heat rate is also used, although the LOOP panel heat loads are lower. This, together with the assumption that the computer equipment heat loads are maintained for 4 hours (Ass1,.1mption 4.15), ensures that the total stored energy is conservatively represented by the panel conductors.
6.5.3 Equipment Heat load from computer equipment includes that from the Honeywell HS 4500 Plant Process Computer (PPC) system (C91 panels), Emergency Response Information System (ERIS) data acquisition
- chassis, Orbital Network Engineering (ONE) computers, computer workstations, network switch and servers, and personal computers.
An initial estimate of the heat load due to the Honeywell computer was obtained by taking field measurements of current on each disconnect in the panels and multiplying by the voltage. These measurements and the resulting heat loads are included as Attachment
- 8. The distribution of the Honeywell computer heat loads is based on the location of the panels provided in Reference 8.26. Similar to the control panel heat loads, t.he heat load from computer panels in the same subvolume are summed and the combined heat load from these panels is distributed between the lower subvolumes and the corresponding middle subvolume.
The heat loads and distribution for these Honeywell panels is shown in Table 10. Table 1 O: Honeywell Computer Panel Heat Load and Distribution Panel Number Heat Heat Load Lower Middle Per Heater Load Heat Load C91-PXXX (Watts) (BTU/s)* Subvolume subvolume BTU/s Communications 294 0.279 90 N/A 0.279 Cabinet P60S/P600/P603 2049.3 1.94 63 191 0.971 P625 217.35 0.21 31 159 0.103 P621 /P620/612 2857.3 2.71 47 175 1.354 P624 546.25 0.52 51 179 0.259 P622 441.6 0.42 18 146 0.209 P623/650/616 1305.25 1.24 34 162 0.619 P63,0/P631 1030.5 0.98 62 190 0.488 P613 182.85 0.17 94 222 0.087 P615/642 2256.85 2.14 46 174 1.070 P614 180.55 0.17 30 158 0.086 P632/P633 139.15 0.13 72 200 0.066 TOTAL 11,500.95 10.90 / *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts E.NERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 34 of 303 Figure 6 below shows the location of the individual personal computers (PCs) in the MCR (Reference 8.36). The PCs have a heat load of 300 W each per Reference 8.2, Appendix A, Page 35. Based on Attachment 8, the heat load from PCs in the southwest area near. the Honeywell panels is already accounted for using the measured loads from these panels, thus these PCs are not accounted for as an additional heat load. The subvolume locations for each of the PCs is given in Table 11. \ CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET REV.O PAGE NO. 35 of 303 ENERCON 'CALCULATION CONTROL SHEET ,CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 36 of 303 Table 11: Heat Load Distribution for Personal Computers Heat Load , Heat load Heat Source (watts) General Location Subvolume (BTU/s)" PC1/2 600 Center Area 72 0.569 PC3 300 Center East Wall 104 0.284 PC4 300 Center East Wall 105 0.284 PC5/6 600 Center Area , 87 0.569 PC7 300 Center Area 71 0.284 PC8/9 600 Center Area 199 0.569 PC 10/11 600 Center Area 106 0.569 PC 12-Shift Manaaer 300 NW Corner 1 0.284 TOTAL 3600
- Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts The heat load from the ERIS system is determined in Attachment
- 3. Table 12 gives normal operations heat load distribution.
Table 13 gives the LOOP heat load distribution after 4 hours when the BYS-INV02 batteries have been depleted. The heat load from panels in the same subvolume are summed. Table 12: Normal Heat Load Distributicm for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 358.8 0.340 378 H13-Y703A 370.8 0.351 282 H13-Y703D 226.8 0.215 281 H13-Y710B/D/E 873.6 0.828 380 H13-Y711A 132 -0.125 382 'H13-Y712B/D 741.6 0.703 379 H 13-Y713A/D 741.6 0.703 284 H13-Y714B/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y730B 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 132 0.125 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 c 0.215 '371 H13-Y747A 226.8 0.215 275 H13-Y7478 370.8 0.351 274 H13-Y748B/E 453.6 0.430 369 H13-Y750E 226.8 0.215 277 H13-Y751A 226.8 0.215 377 H13-P721 240 0.227 31 TOTAL 7461.6 7.072 CALC. NO. ENTR-078-CALC-004 EN CON CALCULATION CONTROL SHEET REV.O PAGE NO. 37 of 303 Table 13: LOOP Heat Load Distribution for ERIS ERIS Panel Heat Load Heat Load Subvolume (Watts) (BTU/s) H13-Y702D/751 D 132 0.125 378 H13-Y703A 0 0.000 282 H13-Y703D 226.8 0.215 281 -H13-Y7108/D/E 741.6 0.703 380 H13-Y711A 0 0.000 382 H13-Y712B/D 741.6 0.703 379 H13-Y713A/D '741.6 0.703 284 H13-Y7148/D 264 0.250 381 H13-Y715D/E 597.6 0.566 285 H13-Y717D 370.8 0.351 283 H13-Y7308 226.8 0.215 374 H13-Y731D 226.8 0.215 278 H13-Y740A 0 0.000 383 H13-Y743E 226.8 0.215 276 H13-Y744D 226.8 0.215 371 H13-Y747A 0 0.000 H13-Y7478 0 0.000 274 H13-Y7488/E 0 0.000 369 H13-Y750E 0 0.000 277 H13-Y751A 226.8 0.215 377 H13-P721 0 0.000 31 TOTAL 4,950 4.692 As discussed in Assumption 4.15, the heat load from all of the computer equipment is assumed to remain on for 4 hours during the LOOP scenario (Case 1) which bounds the 2 hour design battery life as well as sensible h"eat released after the batteries have been depleted. The ERIS equipment loads shown In Table 13 are assumed to remain on for the duration of the event. 6.5.4 Remaining Heat Load The remaining heat loads include the miscellaneous panels, the lighting panels, the radiation monitor (RMS-CAB170), the kitchen, the PGCC rac_eway, operators and other miscellaneous equipment which are found from Reference 8.2 and 8.36. The heat load and distribution for these remaining heat loads is given below in Table 14 (Case 1) and Table 15 (Case 2 and Attachment 1 ). j ,, ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 38 of 303 Table 14: Heat Load Distribution for Case 1 Heat Source Heat Load General Location Subvolume (s) Heat load (watts) (BTU/s)* See SR Os 696.1 Horseshoe area Assumption 4.1 0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 0 Ewall 118 0.00 RMS-CAB170 0 WWall 9 0.00 LAC-PNL 1 C5/ LAC-PNL 1 C6 0 Middle W wall, upper 134 0.00 LAC-PNL 1C9 39.98 Middle W wall, uooer 135 0.038 LAC-PNLC10/ LAC-PNL 1 C11 40.1 Middle W wall, uooer 133 0.038 BYS-PNL0282/ BYS-PNL02A2 116 Nwall 65 0.1099 SCl-PNL02/ SCl-PNL01 0 NWall 49 0.00 SCA-PNL 1 OA2 0 NW wall 17 0.00 SCA-PNL 1082 0 NE Wall 113 0.00 VBS-PNL018 82 SE wall 128 0.07772 ENB-PNL028/ SCM-PNL01 B 291 J SE Wall 112 0.277 VBN-PNL0181 145 SWall 96 0.137 VBN-PNL01A 1NBN-PNL02 392 SWall 64 ' 0.372 SCM-PNL01A/ENBPNL02A 312 SW Wall 48 0.296 VBS-PNL01A 78 SW Wall 32 I 0.074 Samsuna Flatscreen 0 EWall 230 0 Shift Manager Coffee Pots 0 NW Corner 129 0 HU Clock Reset Display 0 WWall 136 0 Printer/Copier 0 w*wa11 137 0 Desktop Printers 0 Horseshoe area 103-106 0 FLEX Radio Console 0 Horseshoe area 232 0 Exit Lights 36 West Wall 259,270 0.034 Emergency Lights 1296 Along MGR Walls See below 1.501 PGCC Raceway 650 Under the floor N/A 0.62 TOTAL (w/o Operators) 3,478.1 TOTAL (wl Operators) 4,870.3 *Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 39 of 303 Table 15: *Heat Load Distribution for Case 2 and Attachment 1 Heat Heat load Heat Source Load General Location Subvolume (s) (BTU/s)* (watts) SROs in Horseshoe Area 696.1 Horseshoe area See Assumption 4.1 *0.66 Lower/Middle Remaining Operator Heat Load 696.1 subvolumes 1-256 0.66 Kitchen 1443 East wall 118 1.37 RMS-CA8170 1900.11 WWall 9 1.80 LAC-PNL 1 CS/ LAC-PNL 1 C6 125.83 Center W wall, uooer 134 0.12 LAC-PNL 1C9 39.98 Center W wall, upper 135 0.038
- LAC-PNLC10/
LAC-PNL 1C11 40.1 Center W wall, uooer 133 0.038 8YS-PNL0282/ 8YS-PNL02A2 116 Nwall ' 65 0.1099 SCl-PNL02/ SCl-PNL01 134 NWall 49 0.127 SCA-PNL 1 OA2 51 NWwall J 17 0.0483 SCA-PNL 1082 51 NE Wall 113 0.0483 V8S-PNL018 82 SE wall 128 0.0772 EN8-PNL028/ SCM-PNL01'8 291 SE Wall 112 0.277 V8N-PNL0181 145 SWall ' 96 0.137 V8N-PNL01A 1/ V8N-PNL02 392 SWall 64 0.372 SCM-PNL01A/ EN8-PNL02A 293 SW Wall 48 0.277 V8S-PNL01A 78 SW Wall 32 0.074 Samsung Flatscreen 250 EWall 230 0.237 Shift Manager Coffee Pots 120 NW Corner 129 0.114 HU Clock Reset Display 192 WWall 136 0.182 Printer/Copier 849 E/WWall 15,120 0.81 Desktop Printers 800 Horseshoe area 103-106 0.758 FLEX Radio Console 268 Horseshoe area . 232 0.254 Emergency/Exit Lights 133 Wwall 259,270 0.126 PGCC Racewav 1350 Under the floor N/A 1.28 TOTAL (w/o Operators) 9,084.0 TOTAL Cw/ Operators) 10,476.2
- Values are converted from Watts using a conversion factor of 9.478e-4 BTU/s/Watts As discussed in Assumption 4.1, five operators are assumed to be working in the central horseshoe area. The heat load from the five operators is spread across 18 subvolumes in the horseshoe area. The heat load for each individual heater is calculated below. 0.66 BTU /s BTU QsRos = 18 h = 0.037--eaters s The remaining operators are assumed to be evenly distributed throughout the MCR to simulate the actions of them opening the control panel doors and the ceiling tiles. The heat load from the remaining five operators is distributed evenly over the lower and middle subvolumes of the lower MGR.
ENER'CON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 40 of 303 0.66BTU/s . BTU Qo t = = 0.00258 --pera ors 256 heaters s The heat load from the Emergency (1296 Watts) for Case 1 (Reference 8.36) is evenly distributed amqng the 44 upper elevation,subvolumes in the lower MCR that are adjacent to the MCR walls-subvolumes 257-272, 273, 288, 289, 304, 305, 320, 321, 336, 337, 352, 353, 368, 369-384. The heat load per subvolume is calculated below. BTU/s 1296 Watts* 9.478e -4 Watt QEmergency Lights-LOOP= 44 subvolumes = ,0.028 BTU /s , . The heat load from the Emergency lights (13 Watts) is added to the heat load for the Exit lights which are located in the upper subvolumes by the doors along the West wall of the lower MCR-subvolumes 259 and 270. The heat load from the PGCC raceway is modeled in the air gap in the composite floor conductor as a volumetric heat generation rate. The heat load of 650 watts from the PGCC raceway for Case 1 is divided by the surface area of the floor conductor (10,656 ft2) and the thickness of the air gap (1 ft) to determine the volumetric heat generation rate, shown bel,ow.
- BTU/s ,,, 650 Watts* 9.478e -4 W _ BTU Q PGCC Raceway-Case 1 = 10,656 ft2
- 1 ft -5.8e -5 ft3 _ s The same methodology is used for the heat load for Cases 2 and Attachment 1, based on a PGCC raceway heat load of 1350 Watts. BTU/s 1350 Watts* 9.478e -4 W BTU Q"' PGCC Raceway-Case 2 &Att. 1 = 10,656 f t2
- 1 ft = 1.2e -4 ft3 _ s \ 6.6. Flow Paths and Volumetric Fans Flow paths (FP) are added to model door CB136-9 that opens from the lower MCR volume to the stairwell volume (FP 13, 14, and 21 ), the door that opens from the stairwell volume to the atmosphere (FP15, FP16), and exhaust paths for the smoke removal fan (FP18, 19, 20) and the toilet/kitchen fans (FP22). The door flow paths are split and modeled as parallel flow paths to allow for counter-current flow. The flow paths are sized based on Input 3.9. The first two flow patl]s (FP13 and FP21) model the lower half of door CB136-9; one flow path for when there is no fan, and the other for when the fan is staged in the lower half of the door. The flow path without the fan (FP13) is closed using a GOTHIC door component when the staged fan starts at 1 hour and 30 minutes in Case 2 (Table 5). The other flow path (FP14) models the upper half of door CB136-9.
Once the door is opened, this flow path provides the supply air for the smoke removal fan, portable fan, and toilet/kitchen fans. The height of each door flow path is 3.5 ft (half of the total height of 7 ft). The flow area and hydraulic diameter for the door paths are calculated below. ( \ '.. ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 41 of 303 Adoor = H
- W = 3.5 ft* 3 ft = 10.5 f t2 4A 4*10.5 Dh = Pw = 2
- 3.5 + 3 = 4.2 ft The inertia length and friction length for this flow path are set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters.
The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The flow path connection for the lower half flow paths of CB136-9 (FP13 and FP21) is connected to the lower subvolume of the MCR volume in the sbuthwest corner (subvolllme 1s14). The flow path connection for the upper half of CB136-9 (FP14) is connected to the upper subvolume of the MCR (subvolume 1 s142). The orientation of this connection is set at the bottom of the subvolume so that it can provide flow and mixing with the lower subvolumes when the staged fan flow path is open. The inputs for the toilet/kitchen flow path are arbitrarily defined with a height (ft), flow area (ft2), hydraulic diameter (ft), and inertia length (ft) of 1. The toilet and kitchen fan flow path is modeled in a subvolume near the center of east wall (1s374) based on review of Reference 8.26. The toilet/kitchen fans are only used for Case 2, when offsite power is available. Before door CB136-9 is opened, the supply air for the toilet/kitchen fans* is through the pressure boundary (FP1) which provides outside air flow at 96°F. FP1 is arbitrarily located in subvolurTie'1s94. This is conservative as the HVAC rooms which are connected to the MCR with ductwork are not expected to heat up significantly through this event, and would provide leakage at a cooler temperature.
- The inputs for the smoke removal fan flow paths (FP18-20) are defined based on Reference 8.8. Reference 8.8 shows the opening for the DMP 68 and 69 to be 48" x 36". The flow area and hydraulic diameter for these dampers (FP19, 20) is calculated below. 48 in x 36 in 2 ADMP68/69 = . 2 = 12 ft m 144 ft2 ' 4
- 12 ft2 Dh-DMP 68/69 = 48 in 36 in = 3.43 ft (2
- 12 in/ft+ 2
- 12 in/ft) Reference 8.8 shows the opening for DMP 70 to be 108" x 48". The flow area and hydraulic diameter for this damper (FP18) is calculated below. 108 in x 48 in 2 ADMP70 = . 2 = 36ft m 144 ft2 4
- 36 ft2 Dh-DMP7o
= 108 in 48 in = 5.54 ft (2
- 12 in/ft+ 2
- 12 in/ft)
ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 42 of 303 *, The inertia length and friction length for these flow paths are set to 10 ft and Oft respectively, based on the insensitivity of the model to these parameters. The height is set 1.0 ft. The loss coefficient is set to zero as the flow is forced using GOTHIC volumetric fans. As described in Assumption 4.2, the flow through each of the dampers is weighted based on the total flow of 10, 125 cfm (Input 3.11) and the normal flow through the dampers, shown below. , ( 7600 cfm * ) FlowDMP6B/69 = 10,125 cfm
- 7600 cfm + 7600 cfm + 21000 cfm = 2,125.7 cfm . ( , 21000 cfm * )
= 10,125 cfm
- 7600 cfm + 7600 cfm + 21000 cfm = 5,873.6 cfm The flow paths representing the ceiling tiles (FP2-10) are distributed across the upper subvolumes of the lower MCR and connected to the corresponding upper MCR subvolume.
The first tile flow path that opens is split into two different flow paths of equal area (40 ft2) in order to allow for cpunter current flow when the tiles are initially opened. The loss coefficient, inertia lengths and friction lengths for the tile flow paths used in Reference 8.1 are retained in this analysis as they were to be reasonable. Flow paths 23-53 are added to-model the egg crate panels shown on Reference 8.8 and 8.31. Based on Attachment 7, there are 16 registers along the-west wall, and 15 along the East wall; this is also shown in Reference 8.31. Based on Attachment 7, the egg crate panels are squares that are 1/2" x 1/2"; the registers have 18 holes in one dimension and 80 in the other ' dimension. The opening area and hydraulic diameter for each egg crate panel is: calculated below. -0.5 in x 0.5 in . 2 A Egg crate = . 2 .
- 80 holes
- 18 holes = 2.5 ft m 144 ft2 4
- 2.5 ft2 Dh-Egg crate = O 5 * = 0.042 ft ( 4
- 12 *inff t
- 80 holes
- 18 holes) The. inertia length for the egg crate panel flow paths is set to 10 ft, based on the insensitivity of the model to this parameter.
The friction length for the Egg Crate panels is set to 0.0417 ft based on the flow length given in Attachment 7 as 0.5 inches. The forward and reverse loss coefficients are set to 2.78 as recommended by the GOTHIC user's manual (Reference 8.5). The momentum transport option is set to "N" (in-line momentum transport) for flow paths between a subvolume and a lumped volume or a pressure boundary condition (e.g. the door flow path, smoke removal fan flow path, etc.), as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the ceiling tile and egg crate panels flow paths is also set to "N" ._ ENERCON CALCULATION CONTROL SHEET 6.7. Control Variables CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 43 of 303 GOTHIC control variables are used to record the maximum cell temperature in the lower MCR volume as well as calculate the average temperature of the MCR. A GOTHIC "max" control variable is used to record the maximum cell temperature in the lower and middle subvolumes of the lower MCR volume (cv1). A GOTHIC "max" control variable is also used to record the maximum cell temperature for the entire lower MCR volume (cv7) The average temperature of the MCR is calculated on a volume-averaged basis by numerically averaging the temperatures in the lower, middle and upper subvolumes separately using GOTHIC control variables cv2, cv3, and cv5 (sum of the temperatures in the lower, middle or upper subvolumes, divided by the number of cells-128). The average temperature of the lower two subvolumes (TA) is then calculated taking the volumetric average of the lower and middle subvolumes, using the equation below. VL: Total volume of lower subvolumes (144 ft x 74 ft x 3.48513 ft x 0.9 = 33,423.8 ft3) TL: Average Temperature of lower subvolumes TA: Average Temperature of the lower two subvolumes in the lower MCR VM=Total volume of middle subvolumes (144 ft x 74 ft x 4.0193 ft x 0.9 =38,546.7 ft3) TM: Average Temperature of middle,subvolumes Rearranging to solve for the average temperature, TA. VL TM+v-TL T -M A-Vi + 1 VM The GOTHIC "sum" Control Variable (cv4) has the following form. Where "G" and "an" are coefficients and "Xn" are variables. Therefore "G" is the inverse of the denominator of the equation that solves for average temperature, 0.53559. The coefficient "aa" is zero. "TM" is taken to be variable "X/', making coefficient "a1" equal to one. 'TL" is taken to be variable "X2", making coefficient "a2" equal to VLNM, or 0.867. No other variables or coefficients were used in calculating this Control Variable. The average temperature of the lower and middle subvolumes (cv4) is then average with the average temperature of the upper subvolumes (cv5) using the same equation as above. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 44 of 303 VA: of lower and middle subvolumes (144 ft x 74 ft x 7.50443 ft x 0.9 = 71,970.5 ft3) TA: Average Temperature of lower and middle subvolumes in the lower MCR Ts: Overall average Temperature of the lower MCR VH=Total volume of the upper subvolumes (144 ft x 74 ft x 1.61057 ft x 0.9 =15,446 ft3) TH: Average Temperature of upper subvolumes Rearranging to solve for the average temperature, Ts. Therefore "G" is the of the denominator of the equation that solves for average temperature, 0.17669. The coefficient "ao" is zero. "TH" is taken to be variable "X1", _making coefficient "a/' equal to one. "TA" is taken to be variable "X2", making coefficient "a2" equal to VANH, or'4.65949. No other variables or coefficients were used in calculating this Control Variable. 6.8 Blockages Blockages are added to the lower MCR volume (CV1) to model the effects on the flow patterns of the control panels and the walls surrounding the kitchen area and shift manager's office. The blockages are constructed based on the physical location of these components as shown in Reference 8.26 and 8.27 and are located coincident with the nearest x-or y-direction grid line. For example the blockage representing the panels in 1H13-U7 4 7 is located on the second grid line between subvolume 1 s34 and 1 s35, up through subvolumes 1 s50 and 1 s51. Blockages are constructed so they do not displace any volume in the MCR; a 10% reduction in the MCR free volume has already been incorporated (see Reference 8.1 ). \ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 45 'of 303 7. Results Figure 7 shows tile average transient temperature in the MCR for 24 hours for Case 1. The average temperature in the MCR increases to approximately 105 °F at approximately 1.2 hours. The temperature then decreases to approximately 103°F due to the effects of removing the ceiling tiles, which is initiated ten minutes after the average temperature of the MCR reaches 104 °F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1 C11 panels are dropped at the end of the BYS-INV02 battery life at 4 hours when the average temperature is approximately 107°F, which reduces the average temperature to approximately 103°F. The average temperature then gradually increases to 111.4°F at 24 hours. This case does not include the simple and obvious action of opening doors to the Main Control Room. 115 110 105 100 LI:" (]J .._ ::J .., 95 ro '-*******************************************************************************l********************************************************************************************************************************************-********************************************************************************************************************-**-*****-***""'
............. _ ...... . OJ 0.. E (!) f-90 85 80 75 0 5 10 15 20 25 Time (hrs) Figure 7: Average MCR Temperature for Case 1 ( ENERCON CALCULATION CO,NTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O ' I PAGE NO. 46 of 303 . Figure 8 shows the maximum subvolume temperature of the lower MCR for Case 1. The maximum temperature increases to approximately 112°F before the tiles are opened which results in the maximum temperature decreasing to approximately 111°F. The computer equipment heat load, control panels detailed in Section 6.5.2 and the lighting heat load from the 1C10 and 1C11 panels is dropped at the end of the BYS-INV02 battery life at 4 hours when the temperature is approximately 114°F; which reduces the temperature to approximately 108°F. The temperature than gradually increases to 117.8°F at 24 hours. 120 115 110 105 LI:' -100 (]) .... ::l ... ro ._ QJ 0. E 95 90 85 .................................................. ,............. ......... .. ...... . 80 ...........................
- +*-----------------------***----***------
.................................... , ........................... .. 0 5 10 Time (hr) 15 20 Figure 8: Maximum Local MCR Temperature for Case 1 25 ENERCON I CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 47 of 303 Figure 9 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 1. The initial relative humidity is 20% and decreases to approximately 8% at 24 hours. 25 I ' I 20
i r I I 15 >-.., 'Ci .E I I I I I J ;:, :r: Q) > :;:; ro (ii cc. 10 I ...*.... \f **------------* --5 " J . 0 0 5 10 15 20 25 Time (hrs) Figure 9: Relative Humidity in the Horseshoe Area for Case 1 ENERCON / f,etyday CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 48 of 303 Figure 10 shows the average temperature of the MCR for Case 2. The average temperature in the MCR increases to a peak value of 116.1 "F at two hours when the smoke rem'oval fan is energized. Note that the operator actions of opening door CB136-9 at one hour and staging the portable electric fan at one and a half hours are shown to have a negligible impact on the room temperature. Note also that the first operator response to a Loss of HVAC for the Main Control Room would be, per River Bend Station (RBS) procedure AOP-0060 (Reference 8.6), to manually -start a HVC-ACU1A(B) air conditioning unit from the MCR control boards, as was done during the March 9, 2015, event documented in CR-RBS-2015-1829 and -1830. Following start of the smoke removal fan, the average temperature decreases to approximately 112°F, then decreases again when the ceiling tiles are removed at two and a half hours. The'average temperature then with changes in the outdoor air temperature, and at 24 hours is 1_Q.8.6"F. 120 115 90 I I 85 U-***----- ) /' 80 75 0 5 10 15 .I 20 25 Time (hrs) Figure 10: Average MCA Temperature for Case 2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV.O PAGE NO. 49 of 303 Figure 11 shows the maximum subvolume temperature in the MCR for 24 hours for Case The maximum subvolume in the MCR reaches a peak value of 121.8°F at 2.02 hours. Ceiling tile removal further decreases the maximum subvolume temperature, and at 24 hours the maximum subvolume temperature is 116.8°F. 125 120 115 -7 J A ********.,*********
- --*--***-
.,_u, ... .,,,,,,,,,,_,,,,,_,. .. ,.,,.,, *.. ., ******** ., .*..... 110 1-................................................................. t*****-..................................................................... , ............................................................................ . Q) .... ::;, 105 '§ 100 Q) n. E 95 85 80 75 0 5 10 15 Time (hr) Figure 11: Maximum Local MCR Temperature for Case 2 20 25 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET REV. 0 fKi;:t>n{e* £w:r:y P'Circr fHY1 Jar PAGE NO. 50 of 303 Figure 12 shows the temperature distribution of the lower and middle subvolumes of the lower MCR at the time the limiting local cell temperature occurs, 2.02 hours. .....I .....I c:x: $ I C::: 0 z YB Y7 Y6 YS Y4 Y3 Y2 Yl 111.4 111.l 111.6 111.9 112.2 111.5 110.3 102.5 Lower El. (Zl) Xl 0 .....I .....I c:x: $ I C::: 0 z 3.485 YB 114.7 Y7 116.3 Y6 116.2 YS 116.0 Y4 116.0 Y3 115.B Y2 115.S Yl 107.9 Middle El. (Z2) Xl 3.485 7.5 111.B 112.2 112.7 112.8 112.3 113.2 112.2 112.4 112.7 114.6 113.7 112.8 110.9 111.2 106.4 107.5 X2 X3 114.7 114.8 115.6 115.9 115.7 116.2 116.3 116.S 116.l 116.S 115.S 114.8 113.9 112.9 107.1 107.9 X2 X3 112.3 116.S 115.0 112.S 112.2 111.4 110.4 107.S X4 115.0 119.9 118.S 116.3 115.7 115.l 112.0 108.3 X4 111.6 109.4 110.4 111.S 111.0 111.5 110.3 107.6 XS 114.8 116.0 115.6 115.7 115.2 115.2 112.0 109.1 XS 115.B 108.0 110.5 110.B 109.9 110.1 109.9 107.6 X6 113.9 116.8 115.1 115.S 114.6 113.6 EAST WALL 115.2 116.1 114.9 116.4 116.8 116.9 115.4 114.9 115.7 112.S 114.4 115.3 113.4 115.2 115.7 111.0 113.8 114.8 109.6. 110.4 112.1 107.6 107.4 107.1 X7 XB X9 WEST WALL 117.2 118.1 118.8 117.5 117.7 116.8 EAST WALL 117.3 118.1 118.S 118.2 118.0 117.9 116.8 117.3 117.8 118.3 117.9 117.9 112.S
- 113.2 113.8 115.8 110.4 112.4 113.1 112.7 X6 X7 X8 X9 WEST WALL 114.S 113.6 117.1 115.3 115.9 116.6 115.S 115.8 115.5 118.7 115.4 118.6 115.5 115.0 106.0 105.8 XlO Xll 116.7 116.3 117.1 118.1 118.0 118.6 118.8 119.0 119.0 Ul.8 119.0 120.8 118.4 119.4 111.4 110.9 XlO Xll 113.0 112.2 111.3 110.2 109.2 114.8 113.5 113.3 113.2 109.3 115.8 114.8 114.7 113.3 108.3 115.0 113.9 112.9 111.0 107.9 116.1 115.5 114.5 115.6 107.0 117.3 115.5 115.8 113.5 106.2 114.0 113.7 111.1 109.7 105.S 105.5 105.3 104.8 104.9 104.8 X12 X13 X14 X15 X16 115.3 115.1 114.3 112.9 111.0 119.3 118.4 117.8 116.1 111.4 118.7 117.9 116.8 116.1 110.5 118.7 118.3 117.1 115.0 110.0 119.2 118.4 118.7 118.8 107.5 119.3 117.9 118.S 120.1 105.9 118.6 117.6 117.6 109.5 105.2 111.7 114.3 104.8 106.0 104.9 X12 X13 X14 XlS X16 Figure 12: Temperature Distribution of the lower and middle subvolumes of the MCR at 2.02 hours .....I .....I c:x: $ I ::> 0 Vl .....I .....I I ::> 0 Vl ENERCON CALCULATION CONTROL SHEET CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 51 of 303 Figure 13 below shows the relative humidity of subvolume 1 s71 located in the horseshoe area of the MCR for Case 2. The initial relative humidity is 20% and decreases to approximately
\_ 10% before the smoke removal fan is turned on and outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes 'in the outside air relative humidity. 50 40 I 0 5 10 15 20 25 Time (hrs) Figure 13: Relative Humidity in the Horseshoe Area for Case 2 ENERCON I 8. REFERENCES CALCULATION CONTROL SHEET CALC. ENTR-078-CALC-004 REV.O PAGE NO. 52 of 303 1. \G13.18.12.4*027, "Control Room Temperature During Station Blackout", Rev. 2. 2. E-226, "Control Building Electrical Equipment Heat Release During LOCA Condition with Off Site Power Available and also Control Building Electrical heat Release during LOCA Condition without Offsite Power (LOOP) and with EGS-EG 1 B Diesel Generator not Responding", Rev. 5. 3: EA-006M, "Door Location Plan Sheet 4," Rev. 7. 4. ES-246,-"Control Building Heatup following failure of the HVAC System", Rev. 3. 5. GOTHIC Containment Analysis Package User's Manual, version 7.2b (QA), March 2009 (SCR-2012-0214)
- 6. AOP-0060, "Loss of Control Building Ventilation",
Rev. 009. 7. G13.18.12.3*161, "Standby Switchgear Room Temperatures following Loss of Offsite Power and Loss of HVAC", Rev. 2. 8. EB-0390, Ventilation & Air Conditioning Plan El 135' Control Building", Rev. 9. 9. 6224.302-000-038A (NED010466-A), "PGCC Design Criteria & Safety Evaluation.
- 10. EA-006B, "Doqr Schedule
& Details", Rev. 14. 11. EA-46D, "Stairs-1&2-Plans Sects & Dets Control Bldg", Rev. 5. 12. PID-22-09B, "HVAC Control Building", Rev. 14. 13. ASHRAE Handbook Fundamentals, 1-P Edition, 2009. 14. AOP-0050, "Station Blackout", Rev 051 15. PlD-22-09C, "HVAC Control Building", Rev. 10. 16. 22A3888, GE MCR Panel Specification, RBS vendor document 0242.411-000-009.
- 17. G13.18.2.1-059, Rev. 4, "Control Building Heat Load Evaluation during LOCA w/ Offsite Power Available and Normal Operating Conditions
- 18. ENTR-078-CALC-001, "Control Building Heatup Analysis following Loss of HVAC and Simultaneous Loss of Coolant Accident",
Rev. 0. 19. ENTR-078-CALC-002, "Main Control Room Heat-Up Under Loss of HVAC Conditions", Rev.a 20. G13.18.4.0*063, "Cooling Capability for the Standby Service Water System to the Control Building Air Handling Units", Rev. 0. 21. Deleted 22. G13.18.2.3-426, Rev. 0, "Standby Switchgear Room Temperature Sensitivity with Service Water Aligned to the HVK System" '23. "Handbook*of Heat Transfer Fundamentals", Rohsenow and Hartnett, McGraw-Hill, 1973. 24. "Thermophysical Properties of Matter, Vol. 3", Y.S. Toulokian, P.E. Lily, S.C Saxena, lFl/Plenun, NY, 1970. , 25. "Fundamentals of Momentum, Heat & Mass Transfer Second edition", Welty, Wicks and Wilson, John Wiley & Sons, 1969. 26. EE-027A, Rev. 16, "Arrangement Main Control Room" 27. EE-027D, Rev. 6, ArrangementControl Bldg Section and Details"
- 28. EA-046F, Rev. 4, "Raised Access Floor System Main Control Room El. 136'-1 5/8"" 29. ENTR-078-CALC-003, "Main Control Room Heat-Up Under Loss of HVAC Conditions for 24 Hours," Rev. 3.
- 30. SOP-0058, Rev. 21, "Control Building HVAC System" 31. EA-46B, Rev. 14, "Reflected Ceiling Plans and Details.
- 32. PlD-22-09A, "HVAC Control Building",
Rev. 17. 33. EE-065A, Rev. 7, "Lighting Plan, Control Bldg-Control Room) ENERCON CALCULATION CONTROL SHEET 34. ASHRAE Handbook Fundamentals, 1-P Edition, 1993. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 53 of 303 35. 0242.428-000-247, Rev. P, "Interface
- Control, Control Room Panels."
- 36. EC61975 "References for E-226 Cale. Revision."
' ( ENERCON CALCULATION CONTROL Attachment 1
- Attachment 1: MCR Temperature with HVC-ACU1 aligned to SWP 1. Purpose CALC. NO. ENTR-078-CALC-004 REV.a PAGE NO. 54 of 303 The purpose of this attachment is to analyze the 24 hour transient temperature of the MCR following a loss of HVAC with HVC-ACU1A(B) re-started and aligned to the service water system (SWP) at one hour. The model is developed from the Case 2 analysis in the body of the calculation, with changes as described.
This case also assumes worst case heat loads (Normal Operation), summer conditions with a maximum design basis ambient temperature of 96°F, the effects of solar irradiance on the MCR walls and roof, and the assumption that the operators complete actions to open back panel doors in the control room at 30 minutes.
- 2. Conclusion The results of the analysis listed in Table 1. The average temperature results are given at 1, 2, 4, and 24 hours. The maximum average and maximum cell (sub-volume) temperature is recorded, and the time it occurs is listed in parentheses.
Table 1: MCR Temperature Maximum Maximum 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Tavg (°F) Cell Temp Descriotion (oF) (oF) (oF) (oF) (oF) Normal Operations \ Heatload. HVC-110.0 105.0 106.1 107.8 110.0 (1 hr) 115.1 (1 hr) ACU1A(B) aligned to SWP at 1 hour. If the cross-tie to the SWP system was delayed to two hours, the MCR temperature would continue to increase similar to the temperature in Case 2, but reaching a higher value because the toilet/kitchen fans, 'the portable fans, and opening the docir is not credited.
- 3. Input and Design Criteria 3.1. This model is developed from the Case 2 GOTHIC model in the body* of the calculation.
All changes made from the Case 2 model are documented in .this attachment. 3.2. The Case 2 GOTHIC model from the body of the calculation did not model the HVC-ACU1A(B) system. The current analysis models HVC-ACU1A(B) aligned to the SWP system at one hour and determines the outlet air temper.ature and relative humidity based upon the AIRCOOL output files from Attachment 2 of Reference 8.20, which use a conservative service water temperature of 95°F and an inlet air relative humidity of 50%. This data is shown in Table 2 and 3. A control variable records the inlet air temperature which as the independent variable in a GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding HVC-ACU1A(B) outlet temperature. This control variable is also used in a separate GOTHIC forcing function referenced by the cooling coil pressure boundary condition which provides the ventilation flow at the corresponding outlet relative humidity. If the return air temperature for an AHU is less than the minimum air temperature of 100°F used in the Reference 8.20 AIRCOOL data, the outlet air temperature and relative humidity is set at the outlet temperature and relative humidity corresponding to a return air temperature of 100°F. This is conservative as decreasing the return air temperature would result in a decrease iri the outlet air temperature. ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 55 of 303 Table 2: HVC-ACU1A(B) Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) Air Temp (°F) 100 95.21 105 95.41 110 95.60 115 95.79 120 96.05 125 99.02 130 102.02 135 105.14 140 108.48 145 111.98 150 115.68 155 119.57 160 123.63 Table 3: HVC-ACU1A(B) Outlet Air Temperatures Inlet Air ACU1A/B Outlet Temp (°F) RH{%) 100 57.9 105 66.8 110 76.85 115 88.17 120 100 ENERCON 4. Assumptions CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 56 of 303 4.1. HVC-ACU1A(B) aligned to the SWP system is assumed to be started at one hour into the event consistent with G13.18.2.3-426 (Reference 8.22). This is a conservative estimate for the amount of time it would take operators align the SWP system to HVC-ACU1A(B). No other mitigating actions are credited in this analysis. Modeling of HVC-ACU1A(B) conservatively neglects the cooler chilled water that would be present in HVC-ACU 1 A(B) at the beginning of the transient. 4.2. Control room HVAC is operating in post-LOCA alignment. As shown in Reference 8.19, this alignment adds heat loads from the charcoal filter booster fan and heaters and is therefore conservative for this Normal Operations case. 4:3. The data for HVC-ACU1A(B) is obtained from the data for an inlet relative humidity of 50%. This inlet relative humidity is used as it is the most similar to the values given in Section 4.18 of the -body of the calculation. The relative humidity in the MCR is assumed to be initially at the Environmental Design Criteria (EDC) minimum value (20%). 5. Method of Analysis The EPRI GOTHIC 7.2b computer program (SCR-2012-0214) is used to analyze the transient thermal hydraulic conditions of the MCR for 24 hours following a Loss of HVAC with HVC-ACU1A(B) aligned to SWP system at one hour. GOTHIC is a general purpose thermal hydra1.11ic computer program for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings (Reference 8.5). \ This model is based on the Case 2 analysis from the body of the calculation.
- 6. GOTHIC Input Development The main change from the Case 2 model in the body of the calculation is adding the Main Control Room HYAC subsystem and the cooling effects from HVC-ACU1A(B) being aligned to the SWP system. The cooling effect from the SWP system aligned to HVC-ACU1 is modeled based on the details given in Input 3.2. The volumes and pressure boundaries that were representative of the atmosphere (i.e. where the doors opened to, and the smoke removal fan exhausted to) are deleted or replaced with volumes and pressure boundaries that model HVC-ACU1A(B).
Flow paths representing the ceiling tiles, door CB136-9, the smoke removal fan, and toilet/kitchen fans are also deleted or replaced with flow paths that model the.MGR HVAC subsystem and HVC-ACU1A(B). This was done to provide more clarity and resolution in the GOTHIC model. ENERCON CALCULATION CONTROL Attachment 1 6.1 HVC-ACU1 A(B) and HVAC Modeling CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 57 of 303 The MCR HVAC [HVC-ACU1A(B)] is a subsystem of the Control Building HVAC system. MGR HVAC is designed to maintain the MCR at a 80°F and limit the relative humidity 70% and is capable of operating during normal, shutdown, loss of Offsite power, or design basis accident (e.g., LOCA) conditions. The MCR is normally maintained at a positive pressure with respect to the outside atmosphere to prevent air inleakage from outside the MGR envelope. Charcoal filter trains are used to filter the MGR air supply during a design basis accident or whenever extremely high radiation/radioactivity levels occur in the normal supply air. The MGR HVAC flow paths, dampers, design flow rates are shown on PID-22-09A (Reference 8.32), PID-22-09B (Reference 8.12), and PID-22-09C (Reference 8.15). The MCR HVAC subsystem consists of two 100% capacity redundant Air Cooling Units ACU1A/1 B) and associated filter trains, electric
- heaters, and The air conditioning units are started automatically when a Control Building Chilled Water Pump is started/running.
In the LOCA mode of operation or a high radiation condition in the local outside air intake, dampers automatically divert supply air through thE;l charcoal filter units (see below). The operator has the option of selecting fresh air supply for the Control Building from either the local outside air intake or remote outside air intake. The system can also be manually realigned from the MGR to allow for removal of smoke or noxious gases from the MGR. Each ACU has an associated inlet and outlet damper which is interlocked with the ACU. Inlet dampers are HVC-AOD8A(B) and outlet dampers are HVC-AOD6A(B) (see PID-22-9B, Reference 8.12). These dampers automatically open when the associated ACU starts and close when the ACU stops.
- In the post-LOCA alignment assumed in'this attachment (see Assumption 4.2), the cooling coils of the operating MGR air cooling unit (ACU) are initially supplied with chilled water from the Control Building Chilled Water (HVK) system. On receipt of the LOCA signal, ACU inlet isolation dampers HVC-MOV-1A and B automatically close. Control Room Filter Inlet and Filter Train Outlet dampers HVC-AOD43A(B) and HVC-AOD3A(B) open and filter fan HVC-FN1A(B) starts such that the outside air passes through a ct\arcoal filter train before mixing with the control room return air and entering the ACU downstream of MCR Recirculation Isolation Dampers HVC-AOD106 and AOD-148.
_Local air intake dampers HVC-AOD19C, D, E, and F open to align the local air intake to the inlet of the charcoal filter trains. Alternatively, air intake may be aligned to the remote air intake. The remote air intake provides outside air supply directly to the inlet of the charcoal filter trains via remote air intake \ dampers HVC-MOD7A and Band HVC-AOD19A and B (see PID-22-09A, Reference 8.32). Note that upon receipt of a LOCA signal, toilet and kitchen exhaust fans (HVC-FN4 and FN5) trip and their discharge dampers (HVC-AOD51A/52A (51B/52B) automatically close. The MCR smoke removal fan (FN9) also trips' and the associated dampers (HVC-AOD108(107)) close., The HVC-ACU1A(B) flow rates and flow distribution are modeled based on Reference 8.8 and Reference 8.12. The flow rates through dampers shown on Reference 8.8 and 8.12 are localized to their appropriate subvolume based on Reference 8.8. The flow path elevation is modeled as being near the ceiling of the lower MGR volume based on Reference 8.8. The flow supplied to the equipment
- room and corridor area is not modeled as this air is made up from outside air intakes, as shown on Figure 5 in Reference 8.17 and in Reference 8.12. Therefore, this flow does not have an effect on the calculation.
The return air is modeled as drawn from the North, West, and Southwest sides of the upper plenum, per Reference 8.8. The north side return air duct draws 21000 cfm; this flow is split between subvolumes 2s177 and 2s193 in order to allow GOTHIC to run faster. The west side return air duct draws 7600 cfm from subvolume 2s136. The southwest corner return air duct draws 7600 cfm from subvolume 2s144. These return air ducts are also modeled as being near the ceiling of the upper MCR. / ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 58 of 303 The return air duct on the north side of the room is shown to have an opening of 108" x 48" (Reference 8.8). As discussed above, this flow path is split in two, so the flow paths (FP47 and FP48) that represent this return air duct are modeled based on this size, shown below. The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters.
- 1 \ 9 ft x 4 ft 2 AFP47/48
=. 2 = 18 ft 4A 4*18ft2 Dh = Pw = (9 ft+ 4 ft) = 5.54 ft The return air ducts on the west and southwest sides of the room are shown to have an opening of 48" x 36" (Reference 8.8). One flow path is used to represent each of these return air ducts (FP49 and FP50). The inertia length and friction length for these flow path is set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. AFP49/50 = 4 ft x 3 ft = 12 f t2 4A 4
- 12 ft2 Dh = Pw = (2 * ;4 ft+ 2
- 3 ft) = 3.43 ft ' The size of the supply air ducts are. determined to be 18" x 18" per Reference 8.8. One flow path is used to represent each of these supply air ducts (FP9-FP46).
The flow area and hydraulic diameter for the supply air ducts is calculated below. The inertia length and friction length for these flow path is arbitrarily set to 10 ft and 0 ft respectively, based on the insensitivity of the model to these parameters. AFP9-46 = 1.5 ft X 1.5 ft = 2.25 f t2 4A 4
- 2.25 f t2 D =-= = 15ft h Pw (2
- 1.5 ft+ 2
- 1.5 ft)' . The momentum transport option is set to "N" (in-line momentum transport) for the flow paths that represent the supply air ducts, as recommended by Section 11.1.3 of the GOTHIC user's manual (Reference 8.5). The momentum transport option for the flow. paths that represent the egg crate panels that are between the µpper and lower MCR is also set to "N" Figure 1 below shows the HVC-ACU1A(B) distribution logic applied in the GOTHIC model. The heat load from the HVC-ACU1A/B fan of 167,068 BTU/hr (46.41 BTU/s) (Reference 8.17) is added as a heater to the HVC-ACU1A(B) outlet volume (CV4). The heat load from the HVC-FN1A/B fan of 50,900 BTU/hr (14.14 BTU/s) and the HVC-FL T3AH//BH filter/heater of 78,430 BTU/hr (21.79 BTU/s) (Reference 8.17) is combined and input as a heat rate in volumetric fan 2Q.
CALC. NO. ENTR-078-CALC-004 Attachment 1 CALCULATION CONTROL SHEET-REV.O ENERCON T = f(Im!!<) 4 Plenum 34200CFM (41-440) 2 36200CFM 1 Control Room 37200CFM (3Q-40Q) ACU1A/B Fan 1-----' v PAGE NO. 59 of 303 3 4000CFM {2Q) Return to Filter/ Heater 2000CFM (4SQ) (Out-leakage) Flow from Filter /Heater Mixed Air (Tmixil 2000CFM (1Q) Figure 1: HVC-ACU1A(B) Flow Distribution r ENERCON 7. Results CALCULATION CONTROL Attachment 1
- CALC. NO. ENTR-078-CAL:C-004 REV.O PAGE NO. 60 of 303 Figures 2 and 3 below show the temperature transient in the MCR following a 24 hour Loss of HVAC scenario, with the SWP system aligned tq HVC-ACU1A(B) at one hour. Figure 2 shows the average temperature of the MCR for 24 hours. Figure 3 shows the maximum cell (sub-volume) temperature of the MCR for 24 hours. The average temperature increases to approximately 110°F before ACU1A(B) is started at one hour. Turning on HVC-ACU1A(B) results in the temperature decreasing
, below 105°F and at 24 hours the temperature is 107.8°F. The maximum cell temperature follows a similar trend, with the peak value of 115.1°F occurring at 1 hour. 115 110 I 85 80 75 0 5 10 15 20 25 Time {hrs) / Figure 2: Average Temperature of the MCR for 24 hours 120 115 110 105 U:-e100 :::l ...., Ill .... (!J Q.. E 95 QJ I-90 85 80 75 ENERCON 7 ' J l' v---ii I r I ! ' I CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 61 of 303 I I 'J ............................................................................
- .............................................................................
- ...............................................................................
- .............................................
-......... -................... , ................................................................................ , ....... _ .... _. 0 5 10 15 20 25 Time (hrs) Figure 3: Maximum Local Temperature of the MCR for 24 hours ,/ ENERCON CALCULATION CONTROL Attachment 1 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 62 of 303 Figure 4 below shows the relativity humidity in subvolume 1 s71 located in the horseshoe area of the MCR. The relative humidity is 20% at the start of the transient (cf. Assumption 4.3) and decreases to below 10% as the MCR temperature increases before HVC-ACU1 is started at one hour. The relative humidity then rapidly increases to -48% and remains below 50% for the remainder of the transient. This relative humidity is overestimated due to the modeling of the HVC-ACU1 performance, which is based on a constant inlet air relative humidity of 50%. The actual MCR absolute humidity is expected to be less than that predicted in the Case 2 and Attachment 2 cases. As shown in Figure 1 of this attachment, in this case only 2000 CFM of outside air is drawn into the MCR, whereas in the other cases the smoke removal fan, portable fan, and kitchen and toilet exhaust vans draw a combined 13,725 CFM of moist (53%-90% relative humidity) outside air into the control room. This higher intake of outside air would result in higher humidity in the MCR for these cases relative to the current case. 60 40 0 0 s 10 15 20 25 Jime (hrs) Figure 4: Relative Humidity in the Horseshoe Area for Attachment 1 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. o Attachment 1 PAGE NO. 63 of 303 8. GOTHIC Input File for Attachment 1 Is I I I I I I i'IS I s I I I I I I I I I I I I I I I I I I I I . I '144.QQ ft / CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.xteNertct-Ddttypft>]f!d, £v1Hytfa;. Attachment 1 PAGE NO. 64 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) (ft2) ls MCR Below 87417. 136 .135 9.115 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 HVC-ACUl Exhaus 4000. 145.5 8.67 5. DEFAULT 4 HVC-ACUl Outlet 4000. 136.135 10. 10. DEFAULT 5 F/H Outlet 4000. 145.5 8.67 5. DEFAULT 6 Stream 4 Outlet 4000. 145.5 8.67 20. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE 6 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Are* a # (%/hr) (psi a) (F) (%) BC Option Wall Option (ft2) ls 0. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr} (psia) (F) (%) BC Option Wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s , , 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT X-Direction No ding Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. ' 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. ENERCON 15 126. 9. 16 135. 9. Y-Direction Noding Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Plane (ft) Height (ft) 1 0. 3.48513 2 3 Cell 3.48513 7.50443 Blockages 4.0193 1.61057 -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743
- 6 1H13-U50 7 1H13-U731 8 1H13-U732 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1Hl3-U715 13 1Hl3-U720 14 1Hl3-U721/U799 15 1H13-U748 16 1Hl3-U746 17 1H13-U744
- 18 1Hl3-U742 19 1H13-U741 20 1H13-U730 21 1Hl3-U703 22 1Hl3-U701 23 1Hl3-U712 24 1Hl3-U710 25 1Hl3-U714 26 1Hl3-U711 27 1Hl3-U740/U723 28 Shift Manager East 29, Shift Manager S 30 Kitchen Wall S 31 Kitchen Wall W CALCULATION CONTROL Attachment 1 T BLK B I N BLK B I N BLK B I N BLK B I / N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 65 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages
-Table 2 Volume ls Block Coo No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Xl* 9. 81. 18. 27. 36. Yl 9.25 9.25 18.5 18.5 18.5 Zl 0. 0. 0. 0. 0. 45. 18.5 0. 18.5 o,, 58.5 27.75 o. 90. 18. 5 0. 99. 18.5 0. 108. 1*8.5 o. 117. 18. 5 0. 126. 18.5 0. 135. 18.5 0. 9. 46.25 0. 18. '46. 25 0. 27. 46.25 0. 36. 46.25 o. 45. 64.75 0. 54. 46.25 0. 5 8 . 5 2 7 .'7 5 0 . 81. 37. 0. ,99. 46.25 0. 108. 46.25 0. 117. 46.25 0. 126. 46.25 0. 135. 46.25 o. 0. 9.25 0. 9. 0. 0. 45. 64.75 0. 54. 64.75 0. X2 54. 135. 18. 27. 36. 45. 54. 77.5 90. 99. 108. 117. 126. 135. 9. 18. 27. 36. 45. 54. 77 .5 81. 99. 108. 117. 126. 135. 9. 9. 54.
- 54. X-Direction Cell Face Variations Volume ls Y2 9.25 9.25 37. 37. 37. Z2 7.5044 7.5044 7.5044 7.5044 7.5044 37. 7.5044 37. 7.5044 (ft) X3 27.75 7.5044 I 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7 .. 5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 55.5 7.5044 64.75 7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 9.25 9.115 6.25 9.115 64. 75 9 .115 74. 9 .115 Y3 Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls17 ls18 ls19 ls20 ls21 ls22 ls129 ls130 ls131 ls132 lsl33 ls134 ls145 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. Drop De-ent. Factor 0 1. 1000000.
- 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 11. i. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37 ;-37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0 *, 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 66 of 303 Z3 L .) Curb Height 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
ls146 ls147 ls148 lsl49 lslSO ls9 lslO lsll ls12 ls13 ls14 lslS ls25 ls26 ls27 ls28 ls29 ls30 ls31 ls137 ls138 ls139 ls140 lsl41 lsl42 lsl43 ls153 ls154 lslSS ls156 lsl57 ls158 ls159 ls18 ls34 ls SO ls66 ls146 ls162 ls178 ls194 ls290 ls306 ls19 ls35 lsSl ls67 ls147 ls163 ls179 ls195 ls291 ls307 ls20 ls36 ls52 ls68 ls148 lsl64 ls180 ENERCON 1 1 1 1 1 2 2 2 2 2 2 *2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 '3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1.
- 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. o\. .1. 1. 0. 0. 1. 1. 1. 1. 0. o. 1. 1. 0. 0. CALCULATION CONTROL Attachment 1 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. , 0.
- 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 67 of 303 ls196 ls292 ls308 ls21 ls37 ls53 ls69 ls149 ls165 ls181 ls197 ls293 ls309 ls22 ls38 ls54 ls70 lslSO ls166 ls182 lsl98 ls294 ls310 ls39 ls40 ls SS ls56 ls167 ls168 ls183 ls184 ls26 ls42 ls58 ls74 ls154 ls170 ls186 ls202 ls298 ls314 ls27 ls43 ls59 ls75 lsl55 lsl 71 ls187 ls203 ls299 ls315 ls28 ls44 ls60 ls76 lsl56 ls172 ls188 ls204 ls300 ENERCON 5 5 5 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1.
- 1. 0. 0. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1.
- 1. 1. 1. 0. 0. 1.
- 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. CALCULATION CONTROL Attachment 1 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. 37. 37. 37. 37. 37. , 37. 37. 37. le-006 I le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0 .* 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. *O. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 68 of 303 ls316 ls29 ls45 ls61 ls77 lsl57 lsl73 lsl89 ls205 ls301 ls317 ls30 ls46 ls62 ls78 lsl58 lsl74 lsl90 ls206 ls302 ls318 ls31 ls47 ls63 ls79 lsl59 lsl75 lsl91 ls207 ls303 ls319 ls65 ls81 ls97 lsll3 lsl93 ls209 ls225 ls241 ls337 ls353 ls66 ls82 ls98 lsll4 lsl94 ls210 ls226 ls242 ls338 ls354 ls67 ls83 ls99 lsll5 lsl95 ls211 ls227 ls243 ls339 ENERCON 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 16 16" 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1.
- 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. . 1. 1. 1. 0. 0. 1. 1. 0. o. 1. 1. 1. 1. 0. 0 .. 1. 1. 0. 0. 1. 1. CALCULATION CONTROL Attachment 1 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 . 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 *le-006 37. 37. le-006 le-006 -37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. \ le-006 le-006 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 37. 0. le-006 O. le-006 O. 37. 0. 6.44228 0. 0. 0. 0. 0. o. 0. 0. o. o. 0. 0. o. 0. 0
- 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 'O. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 69 of 303 ls355 ls68 ls84 lslOO ls116 lsl96 ls212 ls228 ls244 ls340 ls356 ls85 lslOl ls117 ls213 ls229 ls245 ls357 ls70 ls86 ls102 ls118 ls198 ls214 ls230 ls246 ls342 ls358 ls39 ls40 ls55 ls56 ls167 ls168 ls183 ls184 ls57 ls73 ls89 lsl05 ls185 ls201 ls217 ls233 ls329 ls345 ls75 ls91 ls107 ls123 ls203 ls219 ls235 ls251 ls347 ls363 ls76 ls92 ls108 ls124 ENERCON 17 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 21 21 21 21 2i' 21 21 21 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 24 24 24 24 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. ,1. 0. 1. 1. 0. 1.
- 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. CALCULATION CONTROL Attachment 1 6.44228 37. le-006 le-006 37. 37. le-.006 le-006 37. 6.44228 6 .. 44228 37. le-006, 37. 37. le-006 37. 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37.
- 37. 37. 37. 92.5 92.5 92.5 92.5 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. a,. 0. 0. 0. 0. 0. 0. 0. 0. 0 .* 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o .. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. 0. o. o. o. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 70 of 303 1s204 1s220 1s236 1s252 1s348 1s364 1s77 1s93 1s109 1s125 1s205 1s221 1s237 1s253 1s349 1s365 1s78 1s94 1s110 1s126 1s206 1s222 1s238 1s254 1s350 1s366 1s79 1s95 1s111 1sl27 1s207 ls223 ls239 ls255 ls351. ls367 lsl ls17 ls129 ls145 ls257 ls273 lsl ls129 ls257 lslOl lsl02 ls117 ls118 ls229 ls230 1s245 1s246 ls357 1s358 ls373 18314 ls102 ls118 ls230 ENERCON CALCULATION CONTROL Attachment 1 24 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 29 29 29 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. i. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. ' 1. 1. 1.
- 1. 1. 1. 1. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. ' le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. 37.
- 37. 37. 37. 37. 0.324341 12.0006 0.324341 12.0006 0.324341 12.0006 1. 37. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 37. 37.' 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. le-006 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. i' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 71 of 303 j ENERCON CALCULATION CONTROL Attachment 1 ls246 ls358 ls374 31 31 31 0. 1. 0. le-006 37. le-006 0. 0. 0. Y-Direction Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 18129 lsl30 lsl31 lsl32 lsl33 lsl34 lsl35 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll lsl2 lsl3 lsl4 lsl5 lsl6 lsl37 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 lsl8 lsl9 ls34 ls35 ls50 ls51 lsl46 lsl47 lsl62 lsl63 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000.
- 0. 1 1. 36. 0. '1 o. le-006 o. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 0. 0. 0. 0. 1. 1. 0 *. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. le-006 le-006 le-006 0. 0. 0. *le-006 O. 36. 0. 36. 0. le-006 o. le-006 0. le-006 0. le-006 0. le-006 o. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228.
- 0. 6.44228 0. 36. 0. le-006 0. le-006 0. le-006 o. le-006 o. le-006 0. le-006 0. 36. 0. 36. 0. le-006 0. le-006 O. le-006 0. le-006 o. le-006 0. le-006 O. 36. 0. 6.44228 0. 6.44228 0. 6.44228 0. 6.44228 o. 6.44228 0. 6.44228 0. 36. 0. 36. 0. 36. 0. 36. 0. 36.' 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 0. 0. 0. Drop De-ent1; Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 72 of 303 ENERCON CALCULATION CONTROL Attachment 1 ls178 lsl79 lsl9 ls20 ls35 ls36 ls51 ls52 ls147 ls148 lsl63 ls164 . ls179 ls180 ls20 ls21 ls36 ls37 ls52 ls53 ls148 ls149 ls164 *1Sl65 ls180 ls181 ls21 ls22 ls37 ls38 ls53 ls54 ls149 ls150 ls165 lsl66 ls181 ls182 ls22 ls23 ls38 ls39 ls54 ls55 ls150 ls151 ls166 lsl67 ls182 ls183 ls39 ls40 ls41 lsl67 lsl68 ls169 ls295 ls296 ls297 ls26 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5
5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 1. 1. 1. 1. 1..-1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 1. 36. 0 .5 18. O. le-006 0.388855 13.9988 0. 5 18. o. le-006 0.388855 13.9988 1. 1. 1. 1. 12.8846 6.44228 10. 7371 36. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. o. o. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. , ; 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. \,* CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 73 of 303 ls27 ls42 ls43 ls58 ls59 lsl54 ls155 ls170 lsl71 ls186 ls187 ls27 ls28 ls43 ls44 ls59 ls60 ls155 ls156 ls171 ls172 lsl87 ls188 ls28 ls29 ls44 ls45 ls60 ls61 ls156 ls157 ls172 lsl73 ls188 ls189 ls29 ls30 ls45 ls46 ls61 ls62 ls157 ls158 ls173 ls174 ls189 ls190 ls30 ls31 ls46 ls47 ls62 ls63 lsl58 lsl59 lsl74 ls175 lsl90 ls191 ls31 ENERCON 9 9 9 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 14 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. _36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. -36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. o.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0; 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 74 of 303 ls32 ls47 ls48 ls63 ls64 ls159 ls160 ls175 ls176 ls191 ls192 ls65 . ls66 ls81 ls82 ls97 ls98 ls193 lsl94 ls209 ls210 ls225 ls226 ls66 ls67 ls82' ls83 ls98 ls99 ls194 ls195 ls210 ls211 ls226 ls227 ls67 is68 ls83 ls84 ls99 lslOO ls195 ls196 ls211 ls212 ls227 ls228 ls68 ls69 ls84 ls85 lslOO lslOl ls196 ls197 ls212 ls213 ls228 ls229 ls85 ENERCON 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 19 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 3,6. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
- o. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0 o' 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. o. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. ./ CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 75 of 303 ls86 lslOl ls102 ls213 ls214 ls229 ls230 ls70 ls71 ls86 ls87 ls102 ls103 lsl98 ls199 ls214 ls215 ls230 ls231 ls39 ls40 ls41 ls167 ls168 ls169 ls57 ls58 ls73 ls74 ls89 ls90 ls185 ls186 ls201 ls202 ls217 ls218 ls75 ls76 ls91 ls92 ls107 ls108 ls203 ls204 ls219 ls220 ls235 ls236 ls76 ls77 ls92 ls93 lslo8* ls109 ls204 ls205 ls220 ls221 ls236 ENERC*ON CALCULATION CONTROL Attachment 1 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 22 22 . 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 5 18. o. le-006 0.388855 13.9988 0.8125 24.6024 0.623108 10.0178 0.771484 19.8127 1. 36. 1. 36. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36 . 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36'. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. i 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 76 of 303 ENERCON CALCULATION CONTROL Attachment 1 36. 36. 36. 36.
- 36. 0. 0. 0. 0. ls237 ls77 ls78 ls93 ls94 lsl09 lsllO ls205 ls206 ls221 ls222 ls237 ls238 ls78 ls79 ls94 ls95 lsllO lslll ls206 ls207 ls222 ls223 ls238 ls239 ls79 ls80 ls95 ls96 lslll lsll2 ls207 ls208 ls223 ls224 ls239 ls240 lsl ls2 lsl29 lsl30 ls257 ls258 lslOl lsl02 lsl03 ls229 ls230 ls231 ls357
- ls358 ls359 ls102* lsl03 lsll8 lsll9 ls230 ls231 ls246 ls247 24 25 25 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 0. 1. 1. 0. 1. 1. 0. 1. 1. 0. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. ./ 36. ro. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. o. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36.
- 36. 36. le-006 36. le-006 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. le-006 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 77 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O ls358 ls359 ls374 ls375 31 31 31 31 1. 1. 1. 1. 36. 36. 36. 36. 0. 0. 0. 0. Z-Dire'ction Cell Face Variations Volume ls Cell No. / def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 Blockage No. 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000.
- 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37.
- 37.
- 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37.
- 37. 37. 37.
- 37. 37. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. PAGE NO. 78 of 303 Drop De-ent. Curb Ht Factor (ft) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. b. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0 .' 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0.
lsl78 lsl79 ls35 ls36 lsSl ls52 lsl63 lsl64 lsl79 lsl80 ls36 ls37 ls52 ls53 lsl64 lsl65 lsl80 lsl81 ls37 ls38 ls53 ls54 lsl65 lsl66 lsl81 lsl82 ls38 ls39 ls54 -lsSS lsl66 lsl67 lsl82 lsl83 ls39 ls40 ls41 ls SS ls56 ls57 lsl67 lsl68 isl69 lsl83 lsl84 lsl85 ls42 ls43 ls58 ls59 lsl70 lsl71 lsl86 lsl87 ls43 ls44 ls59 ls60 lsl71 lsl72 ENERCON 3 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 10 10 10 10 10 10 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0 *. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 74. 0. 37. 0. 61. 6667 0. 74. 0. 37. 0. 61.6667 0. 74. 0. 37. 0. 61.6667 0. 74. 0. 37. 0. 61.6667 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. -0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. O*. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. o. 0. o. 0. 0. o. 0. 0. o. o. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 79 of 303 ls187 ls188 ls44 ls45 ls60 ls61 ls172 lsl 73* ls188 ls189 ls45 ls46 ls61 ls62 ls173 lsl74 ls189 ls190 ls46 ls47 ls62 ls63 ls174 ls175 ls190 ls191 ls47 ls48 ls63 ls64 :j:s175 ls176 ls191 ls192 ls81 ls82 ls97 ls98 ls209 ls210 ls225 ls226 ls82. ls83 ls98 ls99 ls210 ls211 ls226 ls227 ls83 ls84 ls99 lslOO ls211 ls212 ls227 ls228 ls84 ls85 ENERCON 10 10 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 18 18 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. -36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. :;36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. *36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0.
- 0. 0. o. 0. 0. 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. b. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. o. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 80 of 303 ' \ \
lslOO lslOl ls212 ls213 ls228 ls229 lslOl ls102 ls229 ls230 ls86 ls87 ls102 ls103 ls214 ls215 ls230 ls231 ls39 ls40 ls41 ls55 ls56 ls57 ls73 ls74 ls89 ls90 ls201 ls202 ls217 ls218 ls91 ls107 ls108 ls219 ls220 ls235 ls236 ls92 ls93 lsl08 lsl09 ls220 ls221 ls236 ls237 ls93 ls94 ls109 lsllO ls221 ls222 ls237 ls238 ls94 ls95 lsllO lslll ENERCON 18 18 18 18 18 18 19 19 19 19 20 20 20 20 20 20 20 20 21 21 21 21 21 21 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 25 25 25 25 25 25 25 25 26 26 26 26. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 1 36.
- 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 74. 37. 61.6667 74. 37. 61. 6667 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. )36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. I 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0 *' 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 .' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 81 of 303 ENERCON CALCULATION CONTROL Attachment 1 ls222 26 ls223 26 ls238 26 ls239 26 ls95 27 ls96 27 lslll 27 l'sll2 27 ls223 27 ls224 27 ls239 27 ls240 27 lsl 28 lsl 7 28 lsl29 '-28 lsl45 28 ls257 28 ls273 28 lsl 29 ls2 29 lsl29 29 lsl30 29 ls257 29 ls258 29 lsl02 30 lsll8 30 ls230 30 ls246 3o ls358 30 ls374 30 lsll8 31 lsll9 31 ls246 31 ls247 31 ls374 31 ls375 31 Volume Variations Volume ls 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 36.. 0. 36. 0. 36. 0. 36. 0. ' 36. 0. 36. 0. 36. b .. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 51.4286 0. 51.4286 0. 51.4286 0. 51.4286 o. 51.4286 0. 51.4286 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. . 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. 36. 0. Cell Blockage Volume Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 No. Porosity (ft) 0 1. 1000000.
1 1. 37. 1 1. 37. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1. . 1.
- 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37 . 37. 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0.
- 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. *o. 0. 0. 0. o. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 82 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O pto.,kd.,
EvfNydaj. Attachment 1 PAGE NO. 83 of 303 ls149 1 1. 37. lslSO 1 1. 37. lslO 2 1. 37. lsll 2 1. 37. ls12 2 1. 37. ls13 2 1. 37. lsl4 2 1. 37. ls15 2 1. 37. ls26 2 1. 37. ls27 2 1. 37. ls28 2 1. 37. ls29 2 1. 37. ls30 2 1. 37. ls31 2 1. 37. ls138 2 1. 37. ls139 2 1. 37. ls140 2 1. 37. ls141 2 1. 37. ls142 2 1. 37. ls143 2 1. 37. ls154 2 1. 37. ls155 2 1. 37. ls156 2 1. 37. ls157 2 1. 37. ls158 2 1. 37. ls159 2 1. 37. ls34 3 1. 36. ls35 3 1. 36. ls SO 3 1. 36. ls51 3 1. 36. ls162 3 1. 36. ls163 3 1. 36. ls178 3 1. 36. ls179 3 1. 36. ls35 4 1. 36. ls36 4 1. 36. ls51 4 1. 36. ls52 4 1. 36. ls163 4 1. 36. ls164 4 1. 36. ls179 4 1. 36. ls180 4 1. 36. ls36 5 1. 36. ls37 5 1. 36. ls52 5 1. 36. ls53 5 1. 36. ls164 5 1. 36. ls165 5 1. 36. ls180 5 1. 36. ls181 ,5 1. 36. ls37 6 1. 36. ls38 6 1. 36. ls53 6 1. 36. ls54 '6 1. 36. ls165 6 1. 36. ls166 6 1. 36. ls181 6 1. 36. ls182 6 1. 36. ls38 7 1. 36. ls39 7 1. 36. ENERCON ls54 7 1. ls SS 7 1. ls166 7 1. ls167 7 1. ls182 7 1. ls183 7 1. ls39 8 1. ls40 8 1. ls41 8 1. ls SS 8 1. ls56 8 1. ls57 8 1. ls167 8 1. ls168 8 1. ls169 8 1. lsl83 8 1. ls184 8 1. lslBS 8 1. ls42 9 1. ls43 9 1. ls SB 9 1. ls59 9 1. ls170 9 1. ls171 9 1. ls186 9 1. ls187 9 1. ls43 10 1. ls44 10 1. ls59 10 1. ls60 10 1. ls171 10 1. ls172 10 1. ls187 10 1. lslBB 10 1. ls44 11 1. ls45 11 1. ls60 11 1. ls61 11 1. ls172 11 1. ls173 11 1. lslBB 11 1. ls189 11 1. ls45 12 1. ls46 12 1. ls61 12 1. ls62 12 1. ls173 12 1. lsl74 12 1. ls189 12 1. ls190 12 1. ls46 13 1. ls47 13 1. ls62 13 1. ls63 13 1. ls174 13 1. ls175 13 1. ls190 13 1. ls191 13 1. ls47 14 1. ls48 14-1. '-CALCULATION CONTROL Attachment 1 36. 36. 36. 36. 36. 74. 37. 61.6667 74. 37. 61. 6667 74. 37. 61.6667 74. 37. 61.6667 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 84 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxtclfrmtt-EWJty ptojaa Evwy day. Attachment 1 PAGE NO. 85 of 303 ls63 14 1. 36. ls64 14 1. 36. ls175 14 1. 36. ls176 14 1. 36. ls191 14 1. 36. ls192 14 1. 36. ls81 15 1. 36. -, ls82 15 1. 36. ls97 15 1. 36. ls98 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 20 1. 36. ls102 20 1. 36. ls103 20 1. 36. ls214 20 1. 36. ls215 20 1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61.6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61.6667 ls167 21 1. 185. ls168 21 1. 92.5 ls169 21 1. 154.167 ls183 21 1. 185.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xn:tifJn<:.1-f$ff1fJ ptt>}f!<':f., f.vt:ty day. Attachment 1 PAGE NO. 86 of 303 ls184 21 1. 92.5 lsl85 21 1. 154.167 ls73 22 1. 36. ls74 22 1. 36. ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. ls108 23 1. 36. ls219 23 1. 36. ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 1. 36. ls93 24 1. 36. lsl08 24 1. 36. ls109 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1., 36. ls109 25 1. 36. lsllO 25 1. \ 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. 1\;23 8 25 1. 36 .. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. lsl7 28 1. 37. lsl29 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51. 4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ENERCON ls257 29 1. ls258 29 1. lsl02 30 1. lsll8 30 1. ls230 30 1. ls246 30 1. ls358 30 1. ls374 30 1. ls118 31 1. ls119 31 1. ls246 31 1. ls247 31 1. ls374 31 1. ls375 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 1 51.4286 51.4286 37.
- 37. 37. 37. 37. 37. 36. 36. 36. 36. 36. 36. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO' SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46 .is 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Nading Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Height (ft) 5. 3.67 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 87 of 303 ENERCON CALCULATION CONTROL Attachment 1 Cell Blockages
-Table 1 Volume 2s Block, No. Cell Blockages -Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000.
- 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. def No. Porosity (ft)
- Coeff. 0 1. 1000000.
- 0. Z-Direction Cell Face Variations Volume 2s Cell Blockage Area No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s Hyd. Dia. (ft) 1000000.
Hyd. Dia. (ft) 1000000. Loss Coeff. 0. (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor 0. Drop De-ent, Factor 0. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Mo lee Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase, # Diff. Model (ft) (ft) No. No .. Option ls NO MIX-L. 1. 1. 1.
- 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR 6 \NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation
- Type Phase (ft2/s2)
[*lbm/s] FF (ft2/s3) [*lbm/s] FF Discrete Burn Parameters Min Min Max Burn Flame; Burn Un CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 88 of 303 . Z3 Curb (ft) 0. L Ht Curb Height Vol # ls 2s 3 4 s 6 ENERCON H2 Frac 0.07 0.07 0.07 0.07 0.07 0.07 02 Frac o.os o.os o.os o.os o.os o.os H20 Frac o.ss .o.ss o.ss o.ss o.ss o.ss Continuous Burn Parameters Vol Min H2 Min Max Vol Flow 02 H20 # (lbm/s) Frac Frac ls o. o.os o.ss 2s o. o.os o.ss 3' *o. (, o.os o.ss 4 0. o.os o.ss s 6 0. 0. o.os o.os o.ss o.ss CALCULATION CONTROL Attachment 1 Length (ft) Speed (ft/s) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Max Burn H20/H2 Frac Ratio 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. 1000. 1. Rate Burn Burn FF Frac Opt DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR DEFAULT FBR Mechanistic Burn Rate Parameters Vol # ls 2s 3 4 s 6 Min H2 Frac 0. 0. 0. 0. 0. 0. Min 02 Frac 0. 0. 0. 0. 0. 0. Max H20 Frac 1. 1.
- 1.
- 1. 1. 1: Da No .. 1. 1. 1. 1. 1. 1. Lam Burn Burn Rate Temp Limit (lbm/ft3-s FF (F) DEFAULT 3SO. DEFAULT 3SO: DEFAULT 3SO. DEFAULT 3SO. DEFAULT DEFAULT 3SO.
3SO. Mechanistic Burn Unburne Propagation Parameters Burned CC Flow Flame Ignition H2 Vol H2 # Frac 0.04 ls 2s 3 4 s 6 0.04 0.04 0.04 0.04 0.04 H2 Vel Thick FF Frac FF (ft/s) FF (ft) 0.001 DEFAULT 0.164 0.001 0.001 0.001 0.001 0.001 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT 0.164 0.164 0.164 0.164 0.164 Fluid Boundary Conditions -Table 1 FF Frac 0.04 0.04 0.04 0.04 0.04 0.04 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 89 of 303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDIS EDIS EDIS Press. Temp. Flow S J ON OFF Elev. BC# De.scription (psia) lP Environment 14.7 2P HVC ACUl .Outlet 14. 7 3P Smoke Removal E 14.7 4P Inlet Air 14.7 i SP F /H Outlet 14. 7 6P HVC-ACUl Exhaus 14.7 FF (F) 96 1 96 1 1 96 Fluid Boundary Conditions Table 2 FF (lbm/s) FF P 0 Trip Trip (ft) 0 N N 136.13 4T 0 N N 136.13 6T SC N N N N NN NN 136.13 136.13 136 .13 136.13 Liq. v Stm. v Drop D Cpld Flow Heat Outlet BC# Frac. FF Frac. FF (in) FF BC# Frac. lP 0. . 03 034 NONE 2P 0. hl ST NONE 3P 4P SP .03034 .03034 .03034 -NONE NONE NONE FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT ENERCON CALCULATION CONTROL SHEET-Attachment 1 6P hSO NONE Fluid Boundary Conditions -Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 FF' lP 1. 2P 1. 3P 1. 4P 1. SP 1. 6P 1. Fluid Boundary Conditions -Table 4 Volume Fractions Be# Gas s FF Gas 6 FF Gas 7 lP Liq FF Comp 2P 3P 4P SP 6P Flow -Table 1 F.P. # 1 2 Description Env Connection HVC-ACUl PB Vol A ls94 4 '3 4 s 6 7 8 9 Smoke Removal p 6 Steam 4 Outlet 2s184 Inlet Air 6 F/H PB S HVC-ACUlA Ex PB 3 F/H Outlet S DMP 67 1 4 10 .,DMP 67 2 11 DMP 77 1 12 DMP 77 2 13 DMP 61 1 14 DMP 61 2 lS DMP 63 1 16 DMP 63 2 17 DMP S9 1 18 DMP S9 2 19 DMP 60 1 20 DMP 60 2 21 DMP S2 1 22 DMP S2 2 23 DMP S8 1 24 DMP S8 2 2S 26 27 28 29 30 31 32 33 DMP SO DMP 76 1 DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4' 4 4 4 4 4 4 4 4 Elev Ht (ft) (ft) 136 .13 3. 3 136.13 1. 14S. s 1. lSO. s 1. lSO. s 1. 14S. s 1. 14S. s 1. 14S.S 1. 144 .2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. 144. 2S 1. 144. 2S 1. 144. 2S L' 144. 2S 1. 144.2S 1. 144.2S 1. 144. 2S 1. 144 .2S 1. 144 .2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S 1. 144.2S L 144. 2S 1. 144. 2S 1. 144. 2S 1. 144.2S 1. FF Vol Elev Ht B (ft) (ft) lP 136.13 3.3 2P 136 .13 1. 3P 136.13 1. 6 lSO. s 1. 4P 136.13 1. SP 136.13 1. 6P 136.13 1. 3 14S.S 1. ls368 144.2S 1. ls3S2 144.2S 1. ls304 144. 2S 1. ls288 144 .2S 1. ls366 144.2S 1. ls3SO 144.2S 1. ls302 144 .2S 1. ls286 144. 2S 1. ls364 144.2S 1. ls348 144.2S 1. ls300 144.2S 1. ls284 144.2S 1. ls362 144.2S 1. ls346 144.2S 1. ls298 144. 2S 1. ls282 144.2S 1. ls329
- 144. 2S 1. ls297 144.2S 1. ls281 .144.2S 1. ls327 144.2S 1. ls29S 144.2S 1. ls360 144.2S 1. ls344 144.2S 1. ls326 144.2S 1. ls294 144.2S 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 90 of 303 DEFAULT ENERCON CALCULATION CONTROL Attachment 1 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 DMP 51 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 45 1 DMP 45 2 DMP 75 1 DMP 75 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Egg Crate 1 Egg Crate 2 Egg Crate 3 Egg Crate 4 Egg Crate 5 Egg Crate 6 Egg Crate 7 Egg Crate 8 Egg Crate 9 ,, Egg Crate 10 Egg Crate 11 Egg Crate 12 Egg Crate 13 Egg Crate 14 Egg Crate 15 Egg crate 16 Egg Crate 17 Egg Crate 18 Egg Crate 19 Egg Crate 20 Egg Crate 21 Egg Crate 22 Egg Crate_23 Egg Crate 24 Egg Crate 25 Egg Crate 26 Egg Crate 27 Egg Crate 28 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area -Table 2 Hyd. Diam. (ft) # (ft2) 1 1. 2 3 4 5 6 7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 4 4 4 4 4 4 4 4 4 4 4 4 4 2sl93 2s177 2s136 2s144 ls369 ls371 ls373 ls375 ls377 ls379 ls381 ls383 ls370 ls372 ls376 ls378 ls380 ls382 ls384 ls257 ls258 ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls268 ls269 ls270 ls271 ls272 144 .25 1. 144. 25 1. 144.25 1. 144. 25 1. 144.25 1. 144. 25 1. 144 .25 1. 144.25 1. 144 .25 1. 144 .25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. ls279 144.25 1. ls357 144.25 1. ls341 144.25 1. ls293 144.25 1. ls277 144.25 1. ls355 144.25 1. ls339 144 .25 1. 151. 1. 145.24 0.001 145.24 0:001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 145.24 0.001 ls291 ls275 ls353 ls337 ls289 ls273 3 3 3 3 2s113 2sl15 2s117 2sl19 2s121 2s123 2s125 2s127 2sl14 2s116 2s120 2s122 2s124 145.24 o.oor---2s126 145.24 0.001 2s128 145.24 0.001 2sl +45.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 2s14 145.24 0.001 2s15 145.24 0.001 2s16 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 144.25 1. 151. 1. 151. 1. 151. 1. 151. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) Friction Length (ft) Relative Dep Rough-Bend ness (deg) Mom Trn Opt 1. 0. 1. 0. 1. 1. 1. 0. 1. 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 91of303 St rat Flow Opt NONE NONE NONE NONE NONE NONE NONE 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 ENERCON 1. 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2 .2*5 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 18. 18.
- 12.
- 12. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 1. 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 5.54 5.54 3.43 3.43 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 1. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
- 10. 10. 10. 10.
- 10. 10. 10. 10. 10. 10.
- 10. 10. 10. 10. 10. 10. 10. 10. 10. ' 10. 10. .10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
- 10. 10. 10. 10.
- 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 *o. 0411 0.0417 0.0417 0.0417 PAGE NO. 92 of 303 NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N ,-NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE ENERCON 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.5 2.5 2 .5. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 Flow Paths -Table 3 Flow Fwd. Rev. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.04°17 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 PAGE NO. 93 of 303 N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE Path Loss Loss Comp. Critical Flow Model OFF Exit Loss Coeff. 0. Drop Breakup Model OFF # Coeff. Coeff. Opt. 1 0.127 1000000.
OFF 2 OFF 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 OFF 1000000. OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. OFF OFF OFF OFF OFF OFF OFF OFF I OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF CALC. NO. ENTR-078-CALC-004 ENERCON Pft).k<J
.. f.WHJ CALCULATION CONTROL Attachment 1 REV.O 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 4.78 :f .78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.18 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Flow Paths -Table 4 Forwar Flow Min Path H2 # Frac 1 0.06 2 3 4 5 6 7 8 9 10 11 12 13 14 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0,06 Min Max Min H2 Frac 0.06 .02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.06 0.55 0.06 0. 55, 0. 06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0.55 0.06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Revers Min Max 02 H20 Frac Frac 0.05 0.55 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 'OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 94 of 303 Zero Prop Flow Opt NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW 15 16 17 18 19 2a 21 22 23 24 25 26 27 28 29 3a 31 32 33 34 35 36 37 38 39 4a 41 42 43 44 45 46 47 48 49 sa 51 52 53 54 55 56 57 58 59 6a 61 62 63 64 65 66 67 68 69 7a 71 72 73 74 ENERCON a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.SS a.55 a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.SS a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.55 a.as a.SS a. as' a. 55 a.as a.SS a.as a.SS a.as a.55 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 CALCULATION CONTROL Attachment 1 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.a6 a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.as a.a6 a.as a.a6. a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.a6 a.as a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.SS a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.55 a.55 a.SS a.55 a.SS a.55 a.SS a.SS a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.55 a.55 a.55 a.55 a.55 a.SS a.55 a.55 a.SS a.55 a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s' a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s a.s NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 95 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW /
ENERCON 75 76 77 78 79 80 81 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Thermal Conductors 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALCULATION CONTROL Attachment 1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.5 0.5 0.5 0.5 0.5 0.5 0.5 NO NO NO NO NO NO NO Cond Vol HT Vol HT Cond S. A. Ini t. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 96 of 303 CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW # Description A Co B Co Type (ft2) T. (F) Or ls CPl-West lsl8-l 1 lsl8-l 5 1 7764.63 75. I 2s CP2-NE ls81-2 1 ls81-2 5 1 3234.14 75. I 3s CP3-SE ls89-2 1 ls89-2 5 1 3728.76 75. I 4s Floor lsl-12 11 lsl-12 12 5 10656. 76.5 I 5sJ Upper MCR ceili 2sl29-10 2sl29-8 4 10656. 87. I 6s MCR West Wall L lsl6-2 2 8 4 1312.56 85. I 7s MCR North WallL lsl-36 2 lsl-36 8 4 674.51 85. I 8s MCR East Wall L lsl13-2 ls'll3-8 4 1312. 56 85. I 9s MCR South Wall lsl28-2 lsl28-8 4 674.51 85. I 10s Ceiling Tiles ls257-10 2sl-12 11 6 10016. 78. X lls Upper MCR West 2sl-14 1 2sl-14 8 4 1248.48 88. I 12s Upper MCR North 2sl-24 1 2sl-24 8 4 641.58 88. I 13s Upper MCR East 2sl13-1 2sll3-8 4 1248.48 88. I 14s Upper MCR South 2sl28-. 1 2sl28-8 4 641. 58 88. I 15s Steel Structure 2sl-12 1 2sl-12 5 2 11756.8 81. I 16 SM Doors lsl 1 lsl 5 10 55.2 75. I 17 lHS-JBA lsl4 1 ls14 5 7 1. 75. I 18s 19s 20s 2ls 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ILAC Panels Steel ILAC 3/8 steel ILAc::)/16 DC Panels N DC Panels S lsl33-1 ls5-13*, 1 ls5-13 1 lsl7-l 1 ls32-l 1 Support Beams lsl6-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-24 1 HVAC Large_l lsl-18 1 HVAC Large_2 lsll3-1 SCA Panels_N lsl7-l 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-l 1 ls133-5 ls5-13 5 ls5-13 5 lsl7-l 5 ls32-l 5 lsl6-3 5 ls97-2 5 ls64-2 5 lsl-24 5 lsl-18 5 lsl13-5 lsl7-l 5 ls48 5 lsl8 5 ls2 5 ls98-l 5 7 8 7 7 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 lsl46-1 lsl46-5 7 ls241-1 ls241-5 7 ls153-1 lsl53-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 is55-9 5 9 173.8 15. 20. 198. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 4ls 42s 43s 44s 45 46s l" Conduit S lsl6-3 1 lsl6-3 5 lsll7-5 lsl13-5 ls3-15 5 lsl5 5 ls4-13 5 7 -19.625 l" Conduit_kitc lsll7-1 l" Conduit N wa lsll3-1 l"Conduit_W wal ls3-15 1 Security Port lsl5 1 211 Conduit ls4-13 1 7 9.42 7 39.25 7 70. 65 8 12 .5 7 34.6 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 lsll2-1 lsll2-5 7 lsl6-3 1 ls16-3 5 7 ls7-9 1 ls7-9 5 9 19.6 11. 8 6.6 75. 75. 75. 75. 75. 75. 75. 75. 75. 75.
- 75. 75. 75. 75.
- 75. 75. 75. 75. 75.
- 75.
- 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON CALCULATION CONTROL Attachment 1 50 RMS-CAB170 ls9 1 ls9 5 9 14.7 75. 51 White boxes lslO 1 lslO 5 7 16.5 75. 52s Unistrut W ls13-3 1 ls13-3 5 7 36.8 75. 53s Unistrut)N ls33-1 1 ls33-l 5 7 10.496 75. 54s Uni strut s ls96-3 1 ls96-3 5 7 18.368 75. -Thermal Conductors
-Radiation Parameters Cond Therm. Rad. Emiss. Therm. Rad. Emiss. # Side A Side A Side B Side B ls No No 2s No No 3s No No 4s No No 5s No No 6s No No 7s No No as No No 9s No No lOs No No lls No No 12s No No 13s No No 14s No No 15s No No 16 No No 17 No No 18s No No 19s No No 20s No No 21s No No 22s No No 23s No No 24s No No 25s No No 26s No No 27s No No 28s No No 29s No No 30 No No 31 No No 32 No No 33s No No 34s No No 35s No No 36s No No 37s No No 38s No No 39s No No 40s No No 4ls No No 42s No No 43s No No 44s No No 45 No No 46s No No 47s No No 48s No No 49s No No 50 No No 51 No No CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 97 of 303 I I I I I \ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 F.xreNMct-E¥etypto.:'1f<t. f.mytta;. Attachment 1 PAGE NO. 98 of 303 52s No No 53s No No 54s No No Heat Transfer Coefficient Types -Table 1 Heat Cnd/ Sp Nat For Type Transfer l:'lominal Cnv Cnd Cnv Cnv Cnv Rad # Option Value FF Opt Opt HTC Opt Opt Opt 1 Direct ADD MAX VERT SURF OFF OFF 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 2T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. lT 13 13 Sp Conv 1.63 OFF Heat Transfer Coefficient Types -Table 2 Min Max Convect Condensa Type Phase Liq Liq Bulk T Bulk T # Opt Fr act Fr act Model FF Model FF 1 VAP Tg-Tf Tb-Tw 2 VAP Tg-Tf Tb-Tw 3 VAP Tg-Tf Tb-Tw 4 VAP 'Tg-Tf Tb-Tw 5 j 6 VAP Tg-Tf Tb-Tw 7 VAP Tg-Tw 8 9 VAP Tg-Tw 10 -VAP Tg-Tf Tb-Tw 11 VAP Tg-Tf Tb-Tw 12 13 VAP Tg-Tw Heat Transfer Coefficient Types -Table 3 Char. Nat For Norn Minimum Char. Cond. Type Length Coef Exp Coef Exp ve*l Vel Conv HTC Height Length # (ft) FF FF FF FF (ft/s) FF (B/h-ft2-F (ft) (ft) 1 DEFAULT DEFAULT DEFAULT 2 DEFAULT DEFAULT DEFAULT 3 DEFAULT DEFAULT DEFAULT ) 4 DEFAULT DEFAULT D.EFAULT 5 J DEFAULT DEFAULT DEFAULT 6 DEFAULT DEFAULT 7 DEFAULT 8 DEFAULT 9 DEFAULT 10 DEFAULT 'DEFAULT 11 DEFAULT DEFAULT 12 DEFAULT 13 DEFAULT HTC Types -Table 4 Total Peak Initial BD Post-BD Post-BD ENERCON CALCULATION CONTROL Attachment 1 Type Const Heat # CT (Btu) 1 2 3 4 5 6 7 8 9 10 11 12 13 Thermal Conductor Type Types Time Exp (sec) XT Thick. Value Exp (B/h-f2-F) yt O.D. Exp xt Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 99 of 303 Direct FF Heat # Description Geom (in) (in) Regions (Btu/ft3-s) FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1.75 5 2 3.75 6 2 7.875 Thermal Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. Sub-Heat regs. Factor 1 1. 1 1 6 23 39 21 1 3 1 2 Sub-Heat regs. Factor* 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 0. 2 0. 2 0. Sub-Heat 0 .135 7T 0. . 0. 0. 1.2e-004
- 0. 0. 0. 0. 0.
ENERCON CALCULATION CONTROL Attachment 1 Region # 1 2 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 r 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (in) (in) 0.00768 0.01536 regs. Factor 0. 0.00768 1 0. 1 0. 0.02304 0.03072 1 0.05376 0.06144 1 0.1152 0.12288 1 0.23808 0.24576 1 0.48384 0.49152 1 0.97536 0.98304 1 1.9584 1.96608 1 3.92448 3.93216 1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. Thermal Type 5 Composite Mat. Region # 1 5 2 5 3 5 4 5 5 5 6 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 0. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0. 0.01224 0.013056 1 0. 0.025296 0.026112 1 0. 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1.625 0.034244 1
0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.998518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 0. 0. 0. 0. 0. 1. 1. 1 .. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 100 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O j £.my tia-j. Attachment 1 PAGE NO. 101 of 303 31 2 20.70052 1.96608 1 0. 32 2 22.6666 0.98304 1 0. 33 2 23.64964 0.49152 1 0. 34 2 24.14116 0.24576 1 0. 35 2 24.38692 0.12288 1 0. 36 2 24.5098 0.06144 1 0. 37 2 24. 57124 0.03072 1 0. 38 2 24.60196 0.01536 1 0. 39 2 24.61732 0.00768 1 0. Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Thick sub-Heat Region # (in) (in) regs. Factor 1 4 0. 3.5e-004 1 0. 2 4 3.5e-004 7e-004 1 0. 3 4 0.001044 0.001392 1 0. 4 4 0.002436 0.002784 1 0. 5 4 0.00522 0.005568 1 0. 6 4 0.010788 0.011136 1 0. 7 4 0.021924
- 0. 022272 1 0. 8 4 0.044196 0.044544 1 0. 9 4 0.08874 0.089088 1 0. 10 4 0.177828 0.111793 1 0. 11. 4 0.289621 0 .111793 1 0. 12 4 0.401414 0.067423 1 0. 13 4 0.468837 0.067423 1 0. 14 4 0.53626 0.044544 1 0. 15 4 0.580804 0.022272 l* q. 16 4 0.603076
- 0. 011136 1 0. 17 4 0.614212 0.005568 1 0. 18 4 0.61978 0.002784 1 0. 19 4 0.622564 0.001392 1 0. 20 4 0.623956 7e-004 1 0. 21 4 0.624652 3.5e-004 1 0. Thermal Conductor Type 7 1/8" Steel \ Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.125 1 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Thick Sub-Heat Region if (in) (in) regs. Factor 1 1 0. 0.1875 1 0. 2 1 0.1875 0.09375 1 0. 3 1 0.28125 0.09375 1 0. Thermal Conductor Type 9 1/16" Steel Mat. Bdry. Thick Sub-Heat Region # (in) (in) regs. Factor 1 1 0. 0.0625 1 o.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 1 REV.O Thermal Conductor Type 10 1/4" Steel Mat. Region # 1 1 2 1 Cooler/Heater Heater Cooler Bdry. (in) 0. 0 .125 # Description lH 2H 3H 4H SH 6H 7H BH 9H lOH llH 12H 13H 14H 15H 16H 17H lBH 19H 20H 21H 22H 23H 24H 25H 26H 27H 2BH 29H 30H 31H 32H 33H 34H 35H 36H 37H 3BH 39H 40H 41H 42H 43H 44H 45H 46H 47H 4BH Thick (in) 0.125 0.125 Vol. # lsl ls2 ls3 ls4 ls5 ls6 ls7 lsB ls9 lslO lsll ls12 lsl3 ls14 ls15 ls16 ls17 lslB ls19 ls20 ls21 ls22 ls23 ls24 ls25 ls26 ls21 ls2B ls29 ls30 ls31 ls32 ls33 ls34 ls35 ls36 ls37 ls3B ls39 ls40 ls41 .ls42 ls43 ls44 ls45 ls46 ls47 ls4B On Sub-Heat Factor 1 0. 1 o. Off Flow Trip Trip Rate # # (CFM) PAGE NO. 102 of 303 Flow Heat '.Heat Rate Rate Rate Phs Ctrlr FF (Btu/s) FF Opt Loe 1. BT VTI lsl 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. BT VTI ls2 BT VTI ls3 BT VTI ls4 BT VTI ls5 BT VTI ls6 BT VTI ls7 BT VTI lsB BT VTI ls9 BT VTI lslO .BT VTI lsll BT VTI ls12 BT VTI ls13 BT VTI ls14 BT VTI lsl5 BT VTI ls16 BT VTI ls17 BT VTI lslB BT VTI ls19 BT VTI ls20 BT VTI ls21 BT VTI ls22 BT VTI ls23 BT VTI ls24 BT VTI ls25 BT VTI' ls26 BT VTI ls27 BT VTI ls2B BT VTI ls29 BT VTI ls30 BT VTI ls31 BT VTI ls32 BT VTI ls33 BT VTI'. ls34 BT VTI ls35 BT VTI ls36 BT VTI ls37 BT VTI ls3B BT VTI ls39 BT VTI ls40 BT VTI ls41 BT VTI ls42 BT VTI ls43 BT VTI ls44 BT VTI ls45 BT VTI ls46 BT VTI ls47 BT VTI ls4B 49H SOH SlH S2H S3H S4H SSH S6H S7H SSH S9H 60H 61H 62H 63H 64H 6SH 66H 67H 6SH 69H 70H 71H 72H 73H 74H 7SH 76H 77H 7SH 79H SOH SlH S2H S3H S4H SSH S6H S7H SSH S9H 90H 91H 92H 93H 94H 9SH 96H 97H 9SH 99H lOOH 101H 102H 103H 104H lOSH 106H 107H lOSH NERCON ls49 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 ls SS lsS9 ls60 ls61 ls62 ls63 ls64 ls6S ls66 ls67 ls6S ls69 ls70 ls71 ls72 ls73 ls74 ls7S ls76 ls77 ls7S ls79 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 ls SS lsS9 ls90 ls91 ls92 ls93 ls94 ls9S ls96 ls97 ls9S ls99 lslOO lslOl lsl02 ls103 lsl04 lslOS ls106 ls107 lslOS CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. 1. 1. 1. 1. 1. 1. 1-. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. PAGE NO. 103 of 303 ST VTI ls49 ST VTI lsSO ST VTI lsSl ST VTI lsS2 ST VTI lsS3 ST VTI lsS4 ST VTI lsSS ST VTI lsS6 ST VTI lsS7 ST VTI lsSS ST VTI lsS9 ST VTI ls60 ST VTI ls61 ST VTI ls62 ST VTI ls63 ST VTI ls64 ST VTI ls6S ST VTI ls66 ST VTI ls67 ST VTI ls6S ST VTI ls69 ST VTI ls70 ST VTI ls71 ST VTI ls72 ST VTI ls73 ST VTI ls74 ST VTI ls7S ST VTI ls76 ST VTI ls77 ST VTI ls7S ST VTI ls79 ST VTI lsSO ST VTI lsSl ST VTI lsS2 ST VTI lsS3 ST VTI lsS4 ST VTI lsSS ST VTI lsS6 ST VTI lsS7 ST VTI lsSS ST VTI lsS9 ST VTI ls90 ST VTI ls91 ST VTI ls92 ST VTI ls93 ST VTI ls94 ST VTI ls9S ST VTI ls96 ST VTI ls97 ST VTI ls9S ST VTI ls99 ST VTI lslOO ST VTI lslOl ST VTI ls102 ST VTI ls103 ST VTI ls104 ST VTI lslOS ST VTI lsl06 ST VTI ls107 ST VTI lslOS 109H llOH lllH 112H 113H 114H llSH 116H 117H llBH 119H 120H 121H 122H 123H 124H 125H 126H 127H 12BH 129H 130H 131H 132H 133H 134H 135H 136H 137H 13BH 139H 140H 141H 142H 143H 144H 145H 146H 147H 14BH 149H lSOH lSlH 152H 153H 154H lSSH 156H 157H lSBH 159H 160H 161H 162H 163H 164H . 165H 166H 167H 16BH ENERCON (\ ls109 lsllO lslll lsl12 ls113 ls114 lsllS lsl16 lsl17 lsllB ls119 ls120 ls.121 ls122 ls123 ls124 lsl25 ls126 ls127 ls12B ls129 ls130 ls131 ls132 ls133 ls134 ls135 ls136 ls137 ls13B lsl39 ls140 lsl41 ls142 ls143 ls144 lsl45 lsl46 ls147 ls14B lsl49 lslSO lslSl ls152 ls153 ls154 lslSS ls156 ls157 lslSB ls159 ls160 ls161 ls162 lsl63 ls164 ls165 ls166 ls167 ls16B CALCULATION CONTROL Attachment 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1/ 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1 .. 1.
- 1. 1. 1. . 1. 1. 1. 1. 1. 1. BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT BT CALC. NO. ENTR-078-CALC-004 REV.a PAGE NO. 104 of 303 VTI lsl09 VTI lsllO VTI lslll VTI ls112 VTI ls113 VTI lsl14 VTI lsllS VTI lsl16 VTI ls117 VTI lsllB VTI lsl19 VT! ls120 VTI ls121 VTI lsl22 VTI lsl23 VTI ls124 VTI ls125 VTI lsl26 VTI ls127 VTI lsl2B VTI lsl29 VTI ls130 VTI ls131 VTI lsl32 VTI lsl33 VTI lsl34 VTI ls135 VTI ls136 VTI ls137 VTI ls13B VTI lsl39 VTI lsl40 VTI ls141 VTI ls142 VTI ls143 VTI lsl44 VTI ls145 VTI lsl46* VTI ls147 VTI ls14B VTI lsl49 VTI lslSO VTI lslSl VTI lsl52 VTI ls153 VTI ls154 VTI lslSS VTI ls156 VTI lsl57 VTI lslSB VTI ls159 VTI ls160 VTI ls161 VTI ls162 VTI ls163 VTI ls164 VTI ls165 VTI ls166 VTI ls167 VTI lsl6B 169H 170H 171H 172H 173H 174H 175H 176H 177H 17SH 179H lSOH lSlH 1S2H 1S3H 1S4H 1S5H 1S6H 1S7H \ lSSH 1S9H 190H 191H 192H 193H 194H 195H 196H 197H 19SH 199H 200H 201H 202H 203H 204H 205H 206H 207H 20SH 209H 210H 211H 212H 213H 214H 215H 216H 217H 21SH 219H 220H 221H 222H 223H 224H 225H 226H 227H 22SH ENERCON lsl69 lsl70 lsl71 lsl72 lsl73 lsl74 lsl75 lsl76 lsl77 lsl7S lsl79 lslSO lslSl lslS2 lslS3 lslS4 lslSS lslS6 lslS7 lslSS lslS9 lsl90 lsl91 lsl92 lsl93 lsl94 lsl95 lsl96 lsl97 lsl9S lsl99 ls200 ls201 ls202 ls203 ls204 ls205 ls206 ls207 ls20S ls209 ls210 ls211 ls212 ls213 ls214 ls215 ls216 ls217 ls21S ls219 ls220 ls221 ls222 ls223 ls224 ls225 ls226 ls227 ls22S CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. PAGE NO. 105 of 303 ST VTI lsl69 ST VTI lsl70 ST VTI lsl71 ST VTI lsl72 ST VTI lsl73 ST VTI lsl74 ST VTI lsl75 ST VTI lsl76 ST VTI lsl77 ST VTI lsl7S 'ST VTI lsl 79 ST VTI lslSO ST VTI lslSl ST VTI lslS2 ST VTI lslS3 ST VTI lslS4 ST VTI lslS5 ST VTI lslSfr ST VTI lslS7 ST VTI lslSS ST VTI lslS9 ST VTI lsl90 ST VTI lsl91 ST VTI lsl92 ST VTI lsl93 ST VTI lsl94 ST VTI lsl95 ST VTI lsl96 r ST VTI lsl97 ST VTI lsl9S ST VTI lsl99 ST VTI ls200 ST VTI ls201 ST VTI ls202 ST VTI ls203 ST VTI ls204 ST VTI ls205 ST VTI ls206 ST VTI ls207 ST VTI ls20S ST VTI ls209 ST VTI ls210 ST VTI ls211 ST VTI ls212 ST VTI ls213 ST VTI ls214 ST vTI ls215 ST VTI ls216 ST VTI ls217 ST VTI ls21S ST VTI ls219 ST VTI ls220 ST VTI ls221 ST VTI ls222 ST VTI ls223 ST VTI ls224 ST VTI ls225 ST VTI ls226 ST VTI ls227 ST VTI ls22S )
229H 230H 231H 232H 233H 234H 235H 236H 237H 23BH 239H 240H 241H 242H 243H 244H 245H 246H 247H 24BH 249H 250H 251H 252H 253H 254H 255H 256H 257H 25BH 259H 260H 261H 262H 263H 264H 265H 266H 267H 26BH 269H 270H 27lH 272H 273H 274H 275H 276H 277H 27BH 279H 2BOH 2B1H 2B2H 2B3H 2B4H 2BSH 2B6H 2B7H 2BBH ENERCON p ls229 ls230 ls231 ls232 ls233 ls234 ls235 ls236 ls237 ls23B ls239 ls240 ls241 ls242 ls243 ls244 ls245 ls246 ls247 ls24B ls249 16250 ls251 ls252 ls253 ls254 ls255 ls256 ls257 ls25B ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls26B ls269 ls270 ls271 ls272 ls273 ls274 ls275 ls276 ls277 , ls27B ls279 ls2BO ls2Bl ls2B2 ls2B3 ls2B4 ls2BS ls2B6 ls2B7 ls2BB CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. /1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. PAGE NO. 106 of 303 BT VTI ls229 BT VTI ls230 BT VTI ls231 BT VTI ls232 BT VTI ls233 BT VTI ls234 BT VTI ls235 BT VTI ls236 BT VTI ls237 BT VTI ls23B BT VTI ls239 BT VTI ls240 BT VTI ls241 BT VTI ls242 BT VTI ls243 BT VTI ls244 BT VT! ls245 BT VTI ls246 BT VTI ls247 BT VTI ls24B BT VTI ls249 BT VTI ls250 BT VT! ls251 BT VTI ls252 BT VTI ls253 BT VTI ls254 BT VTI ls255 BT VTI ls256 3T VTI ls257 3T VTI ls25B 3T VTI ls259 3T VTI ls260 3T VTI ls261 3T VTI ls262 3T VTI ls263 3T VT! ls264 3T VTI ls265 3T VTI ls266 3T VTI ls267_ 3T VTI ls26B VTI ls269 3T VTI ls270 3T VTI ls271 3T VTI ls272 3T VTI ls273 3T VTI ls274 3T VTI ls275 3T VTI ls276 3T VTI ls277 3T VTI ls27B 3T VTI ls279 3T VT! ls2BO 3T VTI ls2Bl 3T VTI ls2B2 3T VTI ls2B3 3T VTI ls2B4 3T VTI ls2BS 3T VTI ls2B6 3T VTI ls2B7 3T VTI ls2BB 289H 290H 291H 292H 293H 294H 295H 296H 297H 298H 299H 300H 301H 302H 303H 304H 305H 306H 307H 308H 309H 310H 311H 312H 313H 314H 315H 316H 317H 318H 319H 320H 321H 322H 323H 324H 325H 326H 327H 328H 329H 330H 331H 332H 333H 334H 335H 336H 337H 338H 339H 340H 341H 342H 343H 344H \.. 345H 346H 347H 348H ENERCON ls289 -ls290 ls291 ls292 ls293 ls294 ls295 ls296 ls297 ls298 ls299 ls300 ls301 ls302 ls303 ls304 ls305 ls306 ls307 ls308 ls309 ls310 ;ts311 ls312 ls313 ls314 ls315 ls316 ls317 ls318 ls319 ls320 ls321 ls322 ls323 ls324 ls325 ls326 ls327 ls328 ls329 1i£330 ls331 ls332 ls333 ls334 ls335 ls336 ls337 ls338 ls339 ls340 ls341 ls342 ls343 ls344 ls345 ls346 ls347 ls348 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 0.364 0.364 1.
- 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 0.364 0.364 1. 1.
- 1. 1.
- 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. PAGE NO. 107 of 303 3T VTI ls289 3T 3T VTI ls291 3T VTI ls292 3T VTI ls293 VTI ls294 VTI ls295 VTI ls296 , VTI ls297 3T VTI ls298 3T VTI ls299 VTI ls300 3T VTI ls301 3T VTI ls302 3T VTI ls303 3T VTI ls304 3T VTI ls305 3T VTI ls306 3T VTI ls307 3T VTI ls308 3T VTI ls309 VTI ls310 VTI ls311 VTI ls312 VTI ls313 3T VTI ls314 3T VTI ls315 3T VTI ls316 3T VTI ls317 VTI ls318 VTI ls319 3T VTI ls320 3T VTI ls321 3T VTI ls322 3T VTI ls323 3T VTI ls324 3T VTI ls325 VTI1ls326 VTI ls327 VTI ls328 VTI ls329 3T VTI ls330 3T VTI ls331 3T VTI ls332 3T VTI ls333 VTI ls334 VTI ls335 3T VTI ls336 3T VTI ls337 3T VTI ls338 3T VTI ls339 3T VTI ls340 3T VTI ls341 VTI ls342 VTI ls343 VTI ls344 VTI ls345 3T VTI ls346 3T VTI ls347 3T VTI ls348 349H 350H 351H 352H 353H 354H 355H 356H 357H 358H 359H 360H 361H 362H 363H 364H 365H 366H 367H 368H 369H 370H 371H 372H 373H 374H 375H _376H 377H 378H 379H 380H 381H 382H 383H 384H 385H ENER ON ls349 ls350 ls351
- ls352 ls353 ls354 ls355 ls356 ls357 ls358 ls359 ls360 ls361 ls362 ls363 ls364 ls365 ls366 ls367 ls368 ls369 ls370 ls371 ls372 ls373 ls374 ls375 ls376 ls377 ls378 ls379 ls380 ls381 ls382 ls383 ls384 Kitchen Heatl lsll8 386H Rad Monitor H ls9 387H LAC-PNLlCl0/1 lsl33 388H LAC-PNL1C5/6 ls134 389H LAC-PNL1C9 lsl35 390H BYS-PNL02B2/A ls65 391H SCI-PNL02/0l ls49 392H SCA-PNL10A2 ls17 393H SCA-PNL10B2 ls113 394H VBS-PNLOlB ls128 395H ENB-PNL02B/SC ls112 396H VBN-PNLOlBl ls96 397H VBN-PNLOlAl/V ls64 398H SCM-PNLOlA/EN ls48 399H VBS-PNLOlA ls32 400H PCl/2 ls72 401H ' PC3 ls104 402H PC4 ls105 403H PC5-6 ls87 404H PC7 ls71 405H PC 8-9 ls199 406H PC 10-11 ls106 407H PC 12-Shift M lsl 408H OP 1 ls55 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 1 REV.O 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1.37 1. 8 0.038 0.12 0.038 0.1099 0.127 0.0483 0.0483 0. 07772 0.277 0.137 0 .372 0.277 0.074 0.569 0.284 0.284 0.569 0.284 0.569 0.569 0.284 0.037 PAGE NO. 108 of 303 3T VTI ls349 3T VTI ls350 3T VTI ls351 3T VTI ls352 3T VTI ls353 3T VTI ls354 3T VTI ls355 3T VTI ls356 3T VTI ls357 VTI ls358 VTI ls359 VTI ls360 VTI ls361 3T VTI ls362 3T VTI ls363 3T VTI ls364 3T VTI ls365 3T VTI ls366 3T VTI ls367 3T VTI ls368 3T VTI ls369 3T VTI ls370 3T VTI ls371 3T VTI ls372 3T VTI ls373 3T VTI ls374 3T VTI ls375 3T VTI ls376 3T VTI ls377 3T VTI ls378 3T VTI ls379 3T VTI ls380 3T VTI ls381 3T VTI ls382 3T VTI ls383 3T VTJ; ls384 VTI ls118 VTI -ls9 VTI lsl33 VTI ls134 VTI lsl35 VTI ls65 VTI ls49 VTI ls17 VTI ls113 VTI lsl28 VTI ls112 VTI ls96 VTI ls64 VTI ls48 VTI ls32 VTI ls72 VTI ls104 VTI lsl05 VTI ls87 VTI ls71 VTI ls199 VTI ls106 VTI lsl VTI ls55 409H 410H 411H 412H 413H 414H 415H 416H 417H 418H 419H 420H 421H 422H 423H 424H 425H 426H 427H 428H 429H 430H 431H 432H 433H 434H 435H 436H 437H 438H 439H 440H 441H 442H 443H 444H 445H 446H 447H 448H 449H 450H 451H 452H 453H 454H 455H 456H 457H 458H 459H 460H 461H 462H 463H 464H 465H 466H 467H 468H ENERCON OP 2 OP 3 OP 4 OP 5 OP 6 OP 7 OP 8 OP 9 OP 10 OP 11 OP 12 OP 13 OP 14 OP 15 OP 16 OP 17 OP 18 ls56 ls57 ls71 ls72 ls73 ls87 ls88 ls89 lsl83 lsl84 lsl85 lsl99 ls200 ls201 ls215 ls216 ls217 2sl . 2s2 2s3 2s4 2s5 2s6 2s7 2s8 2s9 2sl0 2sll 2sl2 2sl3 2sl4 2sl5 2sl6 2sl7 2sl8 2sl9 2s20 2s21 2s22 2s23 2s24 2s25 2s26 2s27 2s28 2s29 2s30 2s31 2s32 2s33 2s34 2s35 2s36 2s37 2s42 2s43 2s44 2s45 2s46 2s47 CALCULATION CONTROL Attachment 1 0.037 0.037 0. 037 0. 037 0. 037 0. 037 0. 037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 9.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 109 of 303 VTI ls56 VTI ls57 VTI ls71* VTI ls72 VTI ls73 VTI ls87 VTI ls88 VTI ls89 VTI lsl83 VTI lsl84 VTI lsl85 VTI lsl99 VTI ls200 VTI ls201 VTI ls215 VTI ls216 VTI ls217 VTI 2sl VTI 2s2 VTI 2s3 VTI 2s4 VTI 2s5 VTI 2s6 VTI 2s7 VTI 2s8 VTI 2s9 VTI 2sl0 VTI 2sll VTI 2sl2 VTJ 2sl3 VTI 2sl4 VTI 2sl5 VTI 2sl6 VTI 2sl7 VTI 2sl8 VTI 2sl9 VTI 2s20 VTI 2s21 VTI 2s22 VTI 2s23 VTI 2s24 VTI 2s25 VTI 2s26 VTI 2s27 VTI 2s28 VTI 2s29 VTI 2s30 VTI 2s31 VTI 2s32 VTI 2s33 VTI 2s34 VTI 2s35 VTI 2s36 VTI 2s37 VTI 2s42 VTI 2s43 VTI 2s44 VTI 2s45 VTI 2s46 VTI 2s47 469H 470H 471H 472H 473H 474H 47SH 476H 477H 478H 479H 480H 481H 482H 483H 484H 48SH 486H 487H 488H 489H 490H 491H 492H 493H 494H 49SH 496H 497H 498H 499H SOOH SOlH S02H S03H S04H SOSH S06H S07H S08H S09H SlOH SllH S12H Sl3H S14H SlSH S16H S17H Sl8H Sl9H S20H S21H S22H S23H S24H S2SH S26H S27H S28H ENER ON 2s48 2s49 2sSO 2sS1 2sS2 2sS3 2sS8 2sS9 2s60 2s61 2s64 2s6S 2s66 2s67 2s68 2s69 2s74 2s7S 2s76 2s77 2s80 2s81 2s82 2s83 2s84 2s8S , 2s90 2s91 2s92 2s93 2s94 2s9S 2s96 2s97 2s98 2s99 2slOO 2s101 2s106 2s107 2s108 2s109 2s110 2slll 2s112 2s113 2s114 2s11S 2s116 2s117 2s118 2s119 2s120 2s121 2s122 2s123 2s124 2s12S 2s126 2sl27 CALCULATION CONTROL Attachment 1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 b.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 110 of 303 VTI 2s48 VTI 2s49 VTI 2sSO VTI 2sS1 VTI 2sS2 VTI 2sS3 VTI 2sS8 VTI 2sS9 VTI 2s60 VTI 2s61 VTI 2s64 VTI 2s6S VTI 2s66 VTI 2s67 VTI 2s68 VTI 2s69 VTI 2s74 VTI 2s7S VTI 2s76 VTI 2s77 VTI 2s80 VTI 2s81 VTI 2s82 VTI 2s83 VTI 2s84.' VTI 2s8S VTI 2s90 VTI 2s91 VTI 2s92 VTI 2s93 VTI 2s94 VTI 2s9S VTI 2s96 VTI 2s97 VTI 2s98 VTI 2s99 VTI 2s100 VTI 2s101 VTI 2s106 VTI 2s107 VTI 2s108 VTI 2s109 VTI 2s110 VTI 2slll VTI 2s112 VTI 2s113 VTI 2s114 VTI 2s11S VTI 2s116 VTI 2sll 7 VTI 2s118 VTI 2sl19 VTI 2s120 VTI 2s121 VTI 2s122 VTI 2s123 VTI 2s124 VTI 2s12S VTI 2s126 VTI 2s127 529H 530H 531H 532H 533H 534H 535H .536H 537H 538H 539H 540H 541H 542H 543H 544H 545H 546H 547H 548H 549H 550H 551H 552H 553H 554H 555H 556H 557H 558H 559H 560H 561H 562H 563H 564H 565H 566H 567H 568H 569H 570H 571H 572H 573H 574H 575H 576H 577H 578H 579H 580H 581H 582H 583H 584H 585H 586H 587H 588H ENERCON CALCULATION CONTROL Attachment 1 2sl28 1Hl3-P600 ls26 1Hl3-P600 2 lsl54 1Hl3-P6047614 ls42 1Hl3-P604/614 lsl70 1Hl3-P845 ls58 1Hl3-P845 2 lsl86 1Hl3-P6727694 ls43 1Hl3-P672/694 lsl71 1Hl3-P669/691 ls44 1Hl3-P669/691 lsl72 1Hl3-P623/632 ls60 1H13-P623/632 ls188 1Hl3-P629 ls29 1H13-P629 2 ls157 , 1H13-P6217628 ls45 1H13-P621/628 ls173 1H13-P651-P65 ls61 1H13-P651-5 2 ls189 1H13-P680 ls55 1Hl.3-P680_2 ls56 1H13-P680 3 ls57 1H13-P625/693 ls91 1H13-P625/693 ls219 1H13-P671 ls107 1H13-P671 2 ls235 1H13-P6427613 ls92 1H13-642/13/2 ls220 1H13-P692/670 ls108 1H13-P692/670 ls236 1H13-P610/655 ls93 1H13-P610/655.ls221 1H13-P631/618 ls109 1H13-P631/618 ls237 1H13-P607/612 ls94 1H13-P607 612 ls222 1H13-P6197634 lsllO 1Hl3-P619/634 18238 1H13-P637 lslll 1H13-P637 2 ls239 1H13-P601 1 ls73 1Hl3-P601 2 ls89 1H13-P601 3 ls201 1H13-P601 4 ls217 1C91-P622 ls18 1C91-P622 2 ls146 1C91-P623/650 ls34 1C91-P623/655 ls162 1C91-P624 ls51 1C91-P624 2 ls179 1C91-P613 ls78 1C91-P613_2 ls206 1C91-P614 ls30 1C91-P614 2 ls158 1C91-P6157P64 ls46 1C91-P615/642 ls174 1C91-P632/P63 ls72 1C91-P632/633 ls200 1C91-P630/631 ls62 1C91-P630/631 lsl90 0.02 0.095 0.095 0.569 0.569 0.294 d.294 0.853 0.853 0.853 0.853 0.474 0.474 0.237 0.237 0. 284 -0.284 0.545 0.545 0.253 0.253 0.253 0.616 0.616 0.474 0.474 0.474 0.474 0.853 0.853 0.474 0.474 0.427 0.427 0.284 0.284 0.569 0.569 0.379 0.379 0.379 0.379 0.379 0.379 0.209 0.209 0.619 0.619 0.259 0.259 0.087 0.087 0.086 0.086 1.07 1. 07 0.066 0.066 0.488 0.488 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 111 of 303 VTI 2s128 VT! ls26 VTI ls154 VT! ls42 VTI ls170 VTI ls58 VTI ls186 VTI ls43 VTI lsl 71 VT! ls44 VTI lsl72 VTI ls60 VTI ls188 VTI ls29 VTI ls157 VTI ls45 VTI ls173 VTI ls61 VTI ls189 VTI ls55 VTI ls56 VTI ls57 VTI ls91 VTI ls219 VTI ls107 VTI ls235
- VTI ls92 VTI ls220 VTI ls108 VTI ls236 VTI ls93. VTI ls221 VTI ls109 VTI ls237 VT! ls94 VTI ls222 VTI lsllO VTI ls238 VTI lslll VTI ls239 VTI ls73 VT! ls89 VTI ls201 VTI ls217 VTI ls18 VTI ls146 VTI ls34 VT! ls162 VTI ls51 VTI ls179 VTI ls78 VTI ls206 VTI ls30 VTI lsl58 VTI ls46 VTI lsl74 VTI ls72 VTI ls200 VTI ls62 VTI lsl90 ENERCON 589H 1C91-P625 ls31 590H 1C91-P625 2 ls159 591H 1C91-P621/620 ls47 592H 1C91-P621/620 ls175 593H lc91-P608/600 ls63 594H 1C91-P608/600 ls191 595H Comm Network ls90 596H H13-P6'3o ls59 597H H13-P630 2 ls187 598H H13-P808 ls40 599H Hl3-P808 2 ls41 600H H13-P808 3 ls168 601H H13-P808 4 ls169 602H -Hl3-P821/822 ls95 603H ls223 604H H13-P841/819-ls36 605H H13-P841/819 ls52 606H H13-P841/819-ls164 607H H13-P841/819-lsl80 608H H13-P842/820-ls83* 609H H13-P842/820 ls99 610H H13-P842/820-ls211 611H H13-P842/820 ls227 612H H13-P849 ls51 613H H13-P849_2 ls179 614H H13-P850 lslOO 615H H13-P850 2 ls228 616H H13-P851 ls37 617H H13-P851 2 ls165 618H H13-P852 ls98 619H H13-P852 2 ls226 620H H13-P853 ls50 621H H13-P853 2 ls178 622H H13-P854f P844 ls81 623H H13-P854/844 ls97 624H H13-P854/844-ls209 625H H13-P854/844=
ls225 626H H13-P855 ls35 627H , H13-P855 2 ls163 628H H13-P861 ls103 629H H13-P861 2 630H H13-P863 631H H13-P863 2 632H H13-P863 3 633H H13-P863_4 634H Hl3-P869 635H H13-P869_2 636H H13-P870 637H H13-P870_2 638H H13-P870_3 639H H13-P870_4 640H H13-P877 641H H13-P877_2 642H H13-P878 643H H13-P878_2 644H H13-P879 645H H13-P879_2 646H H13-P951 647H H13-P951_2 648H H13-i?952 ls231 ls38 ls54 ls166 ls182 ls84 ls212 ls70 ls86 ls198 ls214 lsl05 ls233 ls112 ls240 ls48 lsl76 ls53 ls181 lslOl CALCULATION CONTROL Attachment 1 0.103 0.103 1.354 1.354 0.971 0.971 0.279 1.564 1.564 0 .118 0 .118 0 .118 0.118 0.519 0.519 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.355 0.355 1.955 1.955 0.523 0.523 0.523 0.523 0.355 0.355 0.473 0.473 I 0.473 0.473 0.083 0.083 0.19 0.19 0.044 0.044 0.044 0.044 1. 049 1. 049 0.227 0.227 0.227 0.227 0.045 0.045 0.386 0.386 0.204 0.204 0.024 0.024 0.024 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 112 of 303 VTI ls31 VTI ls159 VTI ls47 VTI ls175 VTI ls63 VTI ls191 VTI ls90 VTI ls59 VTI ls187 VTI ls40 VTI ls41 VTI ls168 VTI ls169 VTI ls95 VTI ls223 VTI ls36 VTI ls52 VTI ls164 VTI lsl80 VTI ls83 VTI ls99 VTI ls211 VTI ls227 VTI ls51 VTI ls179 VTI lslOO VTI ls228 VTI 1s3*7 VTI ls165 VTI ls98 VTI ls226 VTI ls50 VTI ls178 VTI ls81 VTI ls97 VTI ls209 VTI ls225 VTI ls35 VTI ls163 VTI ls103 VTI ls231 VTI ls38 VTI ls54 VTI ls166 VTI ls182 VTI ls84 VTI ls212 VTI ls70 VTI ls86 VTI lsl98 VTI ls214 VTI ls105 VTI ls233 VTI ls112 VTI ls240 VTI ls48 VTI ls176 VTI ls53 VTI ls181 VTI lslOl ( ENERCON CALCULATION CONTROL SHEET-649H 6SOH 6S1H H13-P9S2 2 ls229 H13-Y702D/7Sl ls378 H13-Y703A ls282 6S2H H13-Y703D ls281 6S3H H13-Y710B/D/3 ls380 6S4H H13-Y711A ls382 6SSH H13-Y712B/D ls379 6S6H H13-Y713B/D ls284 6S7H H13-Y714B/D ls381 6S8H H13-Y71SD/E ls28S 6S9H H13-Y717D ls283 660H H13-Y730B ls374 661H H13-Y731D ls278 662H H13-Y740A ls383 663H H13-Y743E ls276 664H H13-Y744D ls371 66SH H13-Y747A ls27S 666H H13-Y747B ls274 667H H13-Y748B/E ls369 668H H13-Y7SOE ls277 669H H13-Y7SlD ls377 670H H13-P721D ls31 671H 672H 673H 674H 67SH 676H 677H 678H 679H 680H 681H 682H 683H Samsung flats ls230 SM-Coffee Pot ls129 HU Clock Rese lsl36 FLEX Radio Printer/Copie Printer/Copie Printer Printer 2 Printer 3 ls232 lslS lsl20 ls103 l's104 lslOS Printer 4 ls106 Exit Lights ls270 Exit Lights_2 ls2S9 HVC-ACUl Fan 4 1 Volumetric Fan -Table 1 Vol Flow On Off Fan Path Trip Trip
- Description # # * # lQ Inlet Air S 1 2Q F/H Outlet 8 . 1 3Q DMP 67 1 9 1 4Q DMP 67 2 10 1 SQ DMP 77 1 11 1 6Q DMP 77.2 12 1 7Q DMP 61 1 13 1 SQ DMP 61 2 14 1 9Q DMP 63 1 lS 1 lOQ DMP 63 2 16 1 llQ DMP S9 1 1 7 1 12Q DMP S9 2 18 1 13Q' DMP 60 1 19 1 14Q DMP 60 2 20 1 lSQ DMP S2 1 21 1 16Q DMP S2 2 22 1 17Q DMP SS 1 23 1 18Q DMP SS 2 24 1 19Q DMP SO 2S 1 20Q DMP 76 1 26 1 Attachment 1 Min DP (psi) DEFAULT Max l 0.024 0.34 0.3Sl 0.21S 0.828 0.12S ro. 103 0.703 0.2S O.S66 0.3Sl 0.21S 0.21S 0.12S 0.21S 0.21S 0.21S 0.3Sl 0.43 0.21S 0.21S 0.227 0.237 0.114 0.182 0.2S4 0.40S 0.40S 0.19 0.19 0.19 0.19 0.063 0.063 46.41 DP (psi) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEF'.AULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 113 of 303 VTI ls229 VTI ls378 VTI ls282 VTI ls281 VTI ls380 VTI ls382 VTI ls379 VTI ls284 VTI ls381 VTI ls28S VTI ls283 VTI ls374 VTI ls278 VTI ls383 VTI ls276 VTI ls371 VTI ls275 VTI ls274 VTI ls369 VTI ls277 VTI ls377 VTI ls31 VTI ls230 VTI ls129 VTI lsl36 VTI ls232 VTI ls15 VTI ls120 VTI ls103 VTI ls104 VTI lsl05 VTI ls106 VTI ls270 VTI ls259 VTI 4 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q 31Q 32Q 33Q 34Q 3SQ 36Q 37Q 38Q 39Q 40Q 41Q 42Q 43Q 44Q 4SQ ENERCON DMP 76 2 DMP 48 DMP 37 DMP 47 1 DMP 47 2 DMP 47 3 DMP Sl 1 DMP Sl 2 DMP 46 1 DMP 46 2 DMP 31 1 DMP 31 2 DMP 4S 1 DMP 4S 2 DMP 7S 1 DMP 7S 2 DMP 44 DMP 74 1 DMP 74 2 DMP 74 3 DMP 70 1 DMP 70 2 DMP 69 DMP 68 Plenum Ex 27 28 29 30 31 32 3*3 34 3S 36 37 38 39 40 41 42 43 44 4S 46 47 48 49 so 4 CALCULATION CONTROL Attachment 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT' DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Volumetric Fan -Table 2 Vol Flow Flow Heat Fan # lQ 2Q 3Q 4Q SQ 6Q 7Q SQ 9Q lOQ 11Q 12Q 13Q 14Q lSQ 16Q 17Q 18Q 19Q 20Q 21Q 22Q 23Q 24Q 2SQ 26Q 27Q 28Q 29Q 30Q Flow Rate Option (CFM) Time 2000. Time 4000. Time ass. Time ass. Time 176S*. Time 176S. Time 88S. Time ass.* Time 176S. Time 176S. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 63S. Time 63S. Time 9SO. Time 9SO. Time 820. Time 820. Time 880. Time *1010. Time 1070. Time 200. Time 140. Time 820. Time 820. Time 880. Time 920. Time 920. Rate Heat Rate FF
- Option (Btu/s) Time Time 3S.92S Time Time Time Time o. Time Time Time Time j Time *,Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Heat Rate Disch FF Vol 6 3 ls368 ls3S2 ls304 ls288 ls366 ls3SO ls302 ls286 ls364 ls348 ls300 ls284 ls362 ls346 ls298 ls282 ls329 ls297 ls281 ls327 ls29S ls360 ls344 ls326 ls294 ls279 ls3S7 ls341 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 114 of 303 ENERCON CALCULATION CONTROL Attachment 1 31Q Time 1140. Time ls293 32Q Time 1140. Time ls277 33Q Time 770. Time ls355 34Q Time 770. Time ls339 35Q Time 1385. Time ls291 36Q Time 1385. Time ls275 37Q Time 770. Time ls353 38Q Time 770. Time ls337 39Q Time 1385. Time ls289 40Q Time 1385. Time ls273 41Q Time 9500. Time 3 42Q Time 9500. Time 3 43Q Time 7600. Time 3 44Q Time 7600. Time 3 45Q Time 2000. Time 6 ) Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vol Pressure Temp. Temp. Humidity Volume Comp. # (psi a) (F) F (%) Fract. Fract. def 14.7 81. 81. 20. 0. 0. ls 14.7 75. 75. 20. 0. 0. 2s 14.7 81. 81. 20. 0. 0. Initial Volume Fractions Vol Air Liq # Gas 1 Gas 2 Gas 3 Gas 4 Gas 5 Gas 6 Gas 7 Comp def 1. 0. 0. 0. b. 0. 0. 0. ls 1. 0. 0. 0. 0. .o. 0. 0. 2s 1. 0. 0. 0. 0. 0. 0. 0. Noncondensing Gases CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 115 of 303
- Gas Description Symbol Type Mol. Lennard-Jones Parameters No. Weight Diameter e/K (Ang) (K) 1 Air Air POLY 28.97 3.617 97. Noncondensing Gases -Cp/Visc.
Equations Gas Cp Equation (Required) Vise. Equation (Optional) No. Tmin Tmax Cp Tmin Tmax Viscosity (R) (R) (Btu/lbm-R) (R) (R) (lbm/ft-hr) 1 360. 2880. 0.238534-6.2006 Materials Type # Description 1 Steel 2 3 4 5 Concrete air Gypsum Board Hardboard Material Type 1 Steel Temp. (F) 80. Density (lbm/ft3) 484. Material Type 2 Gap NO NO NO NO NO Cond. Sp. Heat (Btu/hr-ft-F) (Btu/lbm-F)
- 21. 0.116 CALC. NO. ENTR-078-CALC-004 ENER CALCULATION CONTROL SHEET-REV. O Attachm'ent 1 Concrete Temp. Density Cond. Sp. Heat (F) *(lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F)
- 80. 131.5 0 .,64 0.21 Material Type 3 air Temp. Density Cond. Sp. Heat (F) (lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F)
- 60. 0.07633 0.01433 0.2404 80. 0.0735 0.01481 0.2404 100. 0.0709 0.01529 0.2405 150. 0.06507 0.01646 0.2406 300. 0.0522 0.01985 0.2423 Material Type 4 Gypsum Board Temp. Density Cond. Sp. Heat (F) (lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F) 100. 18. 0.029 0.19 Material Type 5 Hardboard Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F) 100 .. 55. 0.068 0,32 Component Trips Trip # 1 Sense Sensor Sensor Var. Set Description Var. 1 Loe. 2 Loe. Limit Point HVC-ACUl on TIME UPPER 3600. Forcing Function Tables FF# Description Ind. Var. Dep. Var. Points 0 Constant 0 lT DC Equipment Ro Ind. Var. Dep. Var. 4320 2T Sol-Air Roof Ind. Var. Dep. Var. 25 3T Lighting HL Ind. Var. Dep. Var. 2 4T HVC-ACUl cv6C Dep. Var. 14 ST RH cv6C Dep. Var. 9 6T Outside Temp Ind. Var. 1Dep. Var. 22 7T Initial Panels Ind. Var. Dep. Var. 4 BT Operators Ind. Var. Dep. Var. 2 Function lT DC Equipment Room lA ', Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 87. 0.001 87.00038 0.00201921 87.0007 20.32555 90.35686 42.22733 92.2407 67.02823 93.73955 93.45625 94.96387 120.9645 95.973 140.9645 96.59493 160.9645 97.14751 180.9645 97.64407 200.9645 98.0937 220. 9645 98.50375 240.9645 98.87981 Delay Time 0. PAGE NO. 116 of 303 Rset Cond Cond Trip Trip Type . AND C\ CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV.O Attachment 1 " f.xrcJitna-Evtty f.wq day. PAGE NO. 117 of 303, 99.22573 280.9645 99.54478 300.9645 99.84009 320.9645 100 .1145 340 .'9645 100.3705 360.9645 100.6103 380. 9645 100.8357 400.9645 101.0482 420.9645 101.2492 440. 9645 101.4396 460.9645 101.6204 48.0. 9645 101.7923 500.9645 101.9562 520.9645 102.1124 540.9645 102,2616 560.9645 102.4042 580.9645 102.5406 ' 600. 9645 102.6713 620.9645 102.7966 640.9645 102.9168 660:9645 103.0323 680.9645 103 .1433 700.9645 103.2502 720.9645 103.3531 740.9645 103.4073 760.9645 103.4745 7801. 9645 103.5492 800.9645 103.6276 820.9645 103.7074 840.9645 103. 7871 860.9645' 103.866 880.9645 103.9436 900.9645 104.0198 920.9645 104.0943 940.9645 104.1673 960.9645 104.2388 980.9645 104.3087 1000.965 104.3773 1020.965 i04.4445 1040.964 104.5105 1060.964 104.5753* 1080.964 104.6391 1100. 964 104.7018 1120.964 104.7635 1140.964 104.8244 1160.964 104.8844 1180.964 104.9436 1200.964 105.0021 1220.964 105.0598 1240.964 105.117 1260.964 105.1734 1280.964 105.2293 1300. 964 105.2847 1320.964 105.3395 1340.964 105.3938 1360.964 105.4477 1380.964 105.5011 1400. 964 105.554 1420.964 105.6065 1440. 964 105.6587 1460.964 105.7104 1480. 964 105.7618 1500.964 105.8128 1520.964 105.8634 1540.964 105.9138 1560.964 105.9638 1580.964 106.0135 1600. 964 106.0629 1620.964 106 .112 1640.964 106.1608 1660.964 106.2093 1680. 964 106.2575 1700.964 106.3055 1720.964 106.3532 1740.964 106.4006 1760.964 106.4478 1780.964 106.4947 1800.964 106.5414 1820.964 106.5879 1840. 964 106.6341 1860.964 106.68 1880.964 106.7258 1900. 964 106.7713 1920.964 106. 81.66 1940.964 106.8616 1960.964 106.9064 1980.964 106.9511 2000.964 106.9955 2020.964 107.0396 2040.964 107.0836 2060.965 107.1274 2080. 965 107.1709 21*00. 965 1'07 .2143 2120.965 107.2574 2140.965 107.3004 2160. 965 107.3431 2180.965 107.3857 2200.965 107.428 2220.965 107.4702 2240.965 107.5121 2260.965 107.5539 2280.965 107.5955 2300.965 107.6368 2320.965 107.678 2340.965 107. 719 2360.965 107.7599 2380.965 107.8005 2400.965 107.8409 2420.965 107.8812 2440.965 107.9213 2460.965 107.9612 2480.965 108.0009 2500. 965 108.0405 2520.965 108.0799 2540. 965 108 .1191 2560.965 108.1581 2580.965 108.197 2600.965 108.2357 2620.965 108.2742 2640.965 108.3125 I CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 rxu:Jff!ntf,-£vety f.wryday. Attachment 1 PAGE NO. 118 of 303 2660.965 108.3507 2680.965 108.3887 2700.965 108.4266 212*0. 965 108.4642 2740.965 108.5017 2760.965 108.5391 2780.965 108.5763 2800.965 108.6133 \ 2820*. 965 108.6502 2840.965 108.6869 2860.965 108.7234 2880.965 108.7598 2900.965 108.7961 2920.965 108.8321 2940.965 108.868 2960.965 108.9038 2980.965 108.9394 3000.965 108.9749 3020.965 109.0102 13040.965
- 109.0454 3060.965 109.0804 3080.965 109 .1153 3100.965 109.15 3120.965 109.1845 3140.965 109.219 3160. 965 109.2533 3180.965 109.2874 3200.965 109.3214 3220.965 109.3552 3240.965 109.3889 3260.965 109.4225 3280.965 109.4559 3300.965 109.4892 3320.965 109.5224 3340.965 109.5554 3360.965 109.5883 3380.965 109.621 3400.965 109.6536 3420.965 109.6861 3440.965 109. 7184 3460.965 109.7506 3480.965 109.7827 3500.965 109.8146 3520.965 109.8464 3540.965 109.8781 3560.965 109.9096 3580.965 109.941 3600.965 109.9723 3622.914 110.0054 3643.743 110.0373 3669.863 110.0777 3692.669 110 .1131 3721.841 110.1582 3741.841 110 .1889 3761.841 110.2193 3781. 841 110.f!495 3801.841 110.2796 3821. 841 110. 3096 3841. 841 110.3394 3861.841 110. 3691 3881.841 110.3987 3901.841 3921.841 110.4575 3941. 841 110.4867 3961.841 110.5158 3981. 841 110.5448 4001. 841 110.5737 4021. 841 110. 6024 4041. 841 110. 6311 4061. 841 110. 6596 4081.841 110.688 4101. 84 110. 7163 4121.84 110.7445 4141.84 110.7726 4161.84 110.8006 4181. 84 110. 8284 4201. 84 110.8562 4221. 84 110.8839 4241.84 110. 9114 4261. 84 110.9388 4281.84 110.9662 4301.84 1.10.9934 4321.84 111.0205 4341. 84 111.0475 4361. 84 111. 0744 4381. 84 111.1012 4401. 84 111.128 4421.84 111.1546 4441.84 111.1811 4461. 84 111.2075 4481.84 111.2338 4501. 84 111. 26 4521.84 111.2861 4541.84 111.3121 4561.84 111.338 4581.84 111.3638 4601. 84 111.3895 4621. 84 111.4151 4641. 84 111.4406 4661. 84 111.466 4681.84 111.4914 4701.84 111. 5166 4721.84 111.5417 4741. 84 111. 5668 4761. 84 111.5917 4781.84 111. 6166 ,4801.84 111.6413 4821.*84 111. 666 4841.84 111. 6906 4861. 84 111. 7151 4881.84 111.7395 4901. 84 111. 7638 4921.84 111. 788 4941. 84 111. 8122 4961.84 111.8362 4981.84 111.8602 5001.84 111. 884 5021. 84 111. 9078 5041. 84 111. 9315 5061.84 111. 9551 CALC. NO. ENTR-078-CALC-004 NER ON CALCULATION CONTROL SHEET-REV. 0 f.wth!t1c;;:N-£i1ttyptt;:}t:<t t.fay. Attachment 1 PAGE NO. 119 of 303 5081.84 111. 9786 5101. 84 112. 0021 5121.84 112. 0254 5141.84 112. 0487 5161.84 112. 0719 5181.84 112. 095 5201.84 112 .118 5221.84 112 .141 5241.84 112.1638 5261. 84 112.1866 5281.84 112.2093 5301.84 112.2319 5321.84 112.2544 5341!. 84 112'.2769 5361. 84 112.2992 5381.84 112.3215 5401. 84 112.3437 5421. 84 112.3659 5441.84 112.3879 5461. 84 112.4099 5481.84 112.4318 5501.84 112.4536 5521.84 112 .4754 5541. 84 112 .4971 5561.84 112. 5187 5581. 84-112.5402 5601.84 112.5616 5621.84 112. 583 5641.84 112. 6043 5661. 84 112. 6255 5681. 84 112. 6467 5701. 84 112 .6677 5721.81' 112.6888 5741.84 112.7097 5761.84 112. 7305 5781. 84 112. 7513 5801.84 112. 7721 5821. 84 112.7927 5841. 84 112. 8133 5861.84 112.8338 5881. 84,: 112.8542 5901 .. 84 112.8746 5921.84 112. 8949 5941. 84 112.9151 5961.84 112. 9353 5981. 84 112.9554 6001. 84 112.9754 6021. 84 112.9954 6041.84 113.0153 6061. 84 113. 0351 6081.84 113.0549 GlOl.84 113.0745 6121.84 113. 0942 6141.84 113 .*V37 6161.84 113 .1332 6181.84 113.1527 6201. 84 113.172 6221.84 113.1914 6241.84 113.2106 6261. 84 113. 2298 6281. 84 113.2489 6301.84 113.2679 6321.84 113.2869 6341.84 113.3059 6361.84 113 .3247 6381.'84 113.3435 6401.84 113.3623 6421.84 113.381 6441.84 113.3996 6461. 84 113.4182 6481.84 113.4367 6501. 84 113.4551 6521.84 113 .4735 6541. 84 113.4918 6561.84 113.5101 6581.84 113.5283 6601. 84 113.5464 6621. 84 113.5645 6641. 84 113. 5826 6661.84 113.6005 6681. 84 113.6185 6701. 84 113. 6363 6721.84 113. 6541 6741. 84 113. 6719 6761.84 113. 6896 6781.84 113. 7072 6801.84 113. 7248 6821. 84 113.7423 6841. 84 113. 7598 6861.84 113.7772 6881.84 113. 7946 v 6901. 84 113. 8119 6921.84 113.8291 6941 :84 113. 8464 6961.84 113. 8635 6981. 84 113.8806 7001.84 113.8976 7021. 84 113.9146 7041,84 113. 9316 7061. 84 113. 9485 7081.84 113. 9653 7101. 84 113.9821 7121. 84 113. 9988 7141.84 114. 0'155 7161. 84 114. 0321 7181. 84 114. 0487 7201. 84 114. 0652 7221. 84 114.0817 7241. 84 114.0982 7261.84 114 .1145 7281. 84 114.1309 7301.84 114 .1472 7321.84 114.1634 7341. 84 114.1796 7361.84 114.1957 7381.84 114.2118 7401.84 114.2279 7421. 84 114.2438 7441. 84 114.2598 7461. 84 114.2757
/ CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV.O Attachment 1 PAGE NO. 120 of 303 7481.84 114.2915 7501. 84 114.3074 7521. 84 114.3231 7541. 84 114. 3388 7561. 84 114.3545 7581. 84 114.3701 7601. 84 114.3857 7621.84 1:1,.4.40:1,.2 7641.84 114.4167 7661. 84 114.4321 76.81. 84 114.4475 7701. 84 114.4629 7721.84 114.4782 7741. 84 114.4935 7761.84 114. 5087 7781. 84 114.5238 7801. 84 114. 539 7821.84 114. 5541 7841. 84 114. 5691 7861.84 114. 5841 7881.84 114.5991 7901. 84 114. 614 7921.84 114.6289 7941. 84 114.6437 7961.84 114.6585 7981.84 114.6732 8001.84 114.688 8021. 84 114.7026 8041. 84 114. 7172 8061. 84 114 .. 7318 8081. 84 114. 7464 8101. 84 114. 7609 8121.84 114. 7753 8141. 84 114.7898 8161.84 114. 8041 8181.84 114.8185 82.01. 841 114. 8328 8221. 841 114. 847 8241.841 114.8613 8261.841 114. 8755 8281. 841 114.8896 8301. 841 114. 9037 8321. 841 114.9178 8341.841 114. 9318 8361. 841 114.9458 8381.841 J 8401.841 114.9737 8421.841 8441.841 115.0014 8461.841 115. 0152 8481.841 115. 029 8501. 841 115. 0427 8521.841 115. 0564 8541.841 115. 0701 8561.841 115. 0837 8581. 841 115. 0973 8601.841 115 .1108 8621.841 115 .1243 8641. 841 115.1378 8661. 841 115.1512 8681. 841 115 .1646 8701.841 115.178 8721. 841 115 .1913 8741. 841 115.2046 8761. 841 115.2179 8781. 841 115.2311 8801. 841 115. 2443 8821.841 115.2575 8841. 841 115. 2706 8861.841 115.2837 8881.841 115.2968 8901.841 115.3098 ) 8921. 841 115.3228 8941.841 115.3358 8961.841 115.3487 8981.841 115. 3616 9001.841 9021. 841 115.3873 9041. 841 115.4001 9061.841 115 .4128 9081. 841 115.4256 9101. 841 115 .4383 9121.841 115.4509 9141. 841 115 .4636 9161.841 115 .4762 9181.841 115 .4887 9201. 841 115.5013 9221. 841 115. 5138 9241.841 115.5263 .9261. 841 115. 5387 9281.841 115 .5511 9301.841 115.5635 9321.841 115.5758 9341.841 115. 5882 9361. 841 115.6005 9381. 841 115.6127 9401. 841 115. 625 9421.841 115.6372 9441.841 115. 6493 9461.841 115.6615 9481. 841 115. 6736 9501. 841 115.6857 9521. 841 115.6977 9541.841 115. 7097 9561.841 115.7217 9581. 841 115. 7337 9601.841 115.7457 9621. 841 115.7576 954*1. 841 115.7694 9661.841 115. 7813 9681.841 115.7931 9701. 841 115. 8049 9721.841 115. 8167 9741. 841 115. 8284 9761.841 115. 8401 9781.841 115. 8518 9801. 841 115. 8635 9821.841 115. 8751 9841.841 115. 8867 115. 8983 I CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O Attachment 1 PAGE NO. 121 of 303 9881.841 115.9098 990:)..841 115. 9214 9921.841 115.9328 9941.841 115. 9443 9961.841 115.9558 9981.841 115. 9672 10001. 84 115.9786 10021'.94 115.9899 10041.84 116.0013 10061.84 116.0126 10081.84 116. 0238 10101.84 116. 0351 10121.84 116. 0463 10141.84 116.0575 10161.84 116.0687 10181. 84 116.0799 10201.84 116. 091 10221.84 116.1021 10241.84 116 .1132 10261. 84 116.1243 10281.84 116 .1353 10301.84 116.1463 10321.84 116.1573 10341. 84 116.1682 10361.84 116 .1/92 ,10381. 84 116.1901 10401.84 116.201 10421.84 116 .2118 10441.84 116.2227 10461.84 116.2335 10481.84 116.2443 10501. 84 116.255 10521.84 116.2658 10541. 84. 116.2765 10561.84 116 .2872 10581. 84 116.2979 10601.84 116.3085 10621. 84 116.3191 10641.84 116 .3297 10661. 84 116.3403 10681.84 116.3509 10701.84 116.3614 10721.84 116.3719 10741. 84 1.16.3824 10761.84 116. 3929 10781.84 116.4033 10801.84 116 .4138 10821. 84 116.4242 10841.84 116 .4345 10861.84 116.4449 10881.84 116 .4552 10901.84 116.4655 10921.84 116 .4758 10941.84 116.4861 10961.84 116 .4964 10981. 84 116. 5066 11001.84 116.5168 11021. 84 116. 527 *" 11041. 84 116.5371 11061.84 116. 5473 11081. 84 116. 5574 11101. 84 116. 5675 11121. 84 116.5776 11141. 84 116. 5876 11161. 84 116.5977 11181. 84 116.6077 11201. 84 116.6177 11221. 84 116. 6277 11241. 84 116.6376 11261. 84 116. 6476 11281.84 116.6575 11301. 84 116. 6674 11321. 84 116.6773 11341. 84 116. 6871 11361.84 116. 697 11381. 84 116. 7068 11401.84 116. 7166 11421.84 116. 7264 11441.84 116.7361 11461. 84 116. 7459 11481. 84 116.7556 11501. 84 116.7653 11521. 84 116. 775 11541. 84 116.7847 11561.84 116. 7943 11581. 84 116.8039 11601.84 116.8135 11621. 84 116.8231 11641.84 116.8327 11661. 84 116.8423 11681. 84 116.8518 11701. 84 116.8613 11721.84 116.8708 11741. 84 116.8803 11761.84 116.8898 11781. 84 116.8992 11801. 84 116.9086 11821. 84 116.918 11841.84 116. 9274 11861. 84 116.9368 11881. 84 116.9462 11901. 84 116.9555 11921. 84 116. 9648 11941. 84 116.9741 11961. 84 116. 9834 11981. 84 116.9927 12001.84 117.0019 12021.84 117. 0111 _/ 12041.84 117.0204 12061.84 117. 0296 12081. 84 117.0387 12101.84 117.0479 12121.84 117. 0571 12141.84 117.0662 12161.84 117. 0753 12181.84 117.0844 12201.84 117.0935 12221.84 117.1025 12241.84 117.1116 12261. 84 .117.1206 EN RCON CALCULATION CONTROL Attachment 1 12281.84 117.1296 12301.84 117.1386 12321. 84 117.1476 12341.84 117.1566 12361. 84 117.1656 12381.84 117.1745 12401.84 117.1834 12421. 84 117.1923 12441.84 117.2012 12461. 84 117.2101 12481.84 117.2189 12501. 84 117.2278 12521.84 117.2366 12541. 84 117.2454 12561.84 117.2542 12581.84 117 .263 12601.84 117.2717 12621.84 117 .2805 12641.84 117.2892 12661. 84 117.2979 12681.84 117. 3066 12701.84 117.3153 12721. 84 117.324 12741. 84 117.3327 12761. 84 117.3413 12781.84 117.3499 12801. 84 117 .3586 12821.84 117.3672 12841.84 117.3757 12861. 84 117.3843 12881.84 117.3929 12901.84 117.4014 12921.84 117.4099 12941. 84 117.4184 12961.84 117.4269 12981. 84 117 .4354 13001.84 117.4439 13021. 84 117.4524 13041.84 117.4608 13061. 84 117.4692 13081.84 117.4777 13101. 84 117.4861 13121.84 117.4944 13141. 84 117.5028 13161.-84 117 .5112 13181. 84 117.5195 13201.84 117.5279 13221.84 117.5362 13241. 84 117 .5445 13261. 84 117.5528 13281.84 117 .5611 13301. 84 117.5693 13321.84 117.5776 13341.84 117.5858 13361. 84 117.594 13381. 84 117.6022 13401.84 117. 6105 13421.84 117. 6186 13441.84 117.6268 13461.84 117.635 13481. 84 1:h. 6431 13501.84 117.6513 13521. 84 ,117.6594 13541. 84 117.6675 13561.84 117.6756 13581.84 117.6837 13601.84 117.6917 13621.84 117 .,6998 13641.84 117.7078 13661.84 117.7159 13681.84 117.7239 13701.84 117. 7319 13721. 84 117.7399 13741. 84 117.7479 13761.84 117.7559 13781.84 117.7638 13801.84 117.7718 13821.84 117 .7797 13841.84 117.7877 13861.84 117.7956 13881.84* 117.8035 13901. 84 117.8114 13921.84 117 .. 8192 13941. 84 117.8271 13961.84 '117.835 13981.84 117.8428 14001.84 117.8506 14021.84 117.8584 14041.84 117.8663 14061. 84 117.8741 14081.84 117.8818 14101.84 117.8896 14121.84 117.8974 14141. 84 117.9051 14.161. 84 117.9129 14181. 84 117.9206 14201.84 117.9283 14221.84 J,17.936 14241.84 117 .9437 14261. 84 117. 9514 14281.84 117.9591 14301.84 118.0034 14321.84 118.0351 14341.84 118.0585 14361.84 118. 0765 14381.84 118. 0911 14401.84 118.1033 14423.79 118 .1139 14444.62 118 .1204 14470.74 118 .1124 14493.55 118. 0415 14522.72 117. 9446 14542.72 117. 895 14562.72 117.8595 14582.72 117.8355 14602.72 117.8201 14622.72 117. 8111 14642.72 117.8066 14662.72 117.8054 14682.72 117.8067 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 122 of 303 /' 14702.72 14742.72 14782.72 14822.72 14862. 72 14902.72 14942.72
14982.72 15022.72 15062.72 15102.72 15142.72 15182.72 15222.72 15262. 72 15302. 72 15342.72 15382. 72 15422.72 15462.72 15502.72 15542.72 15582.72 15622. 72 15662. 72 15702. 72 15742.72 15782.72
15822.72 15862. 72 15902'. 72 15942. 72 15982. 72 16022.72 16062.72 '16102. 72 16142.72 16182.72 16222.72
16262.72 16302 .. 72 16342. 72 16382.72 16422. 72 16462.72 16502.72 16542.72 16582.72 16622.72 16662.72 16702.72
16742.72
16782.72 16822.72 16862.72 16902.72 16942.72 16982.72 17022.72 17062.72 NERCO 117.8098 117.8195 117.8323 117.8466 117. 8616 117.877 117.8923 117.9075 117.9225 117.9372 117. 9517 117. 966 117. 9801 117.9939 118.0076 118. 0211 118. 0345 118.0478 118.061 118. 074 118.087 118.0998 118 .1126 118.1254 118.138 118.1506 118.1632 118.1881 118.2005 118.2128 118.2252 118.2374 113;2497 118.2619 118.274 118.2862 118. 2982 CALCULATION CONTROL Attachment 1 14722.72 117.8142 14762.72 117. 8256 14802. 72 . 117. 8393 14842.72 117. 8541 14882 ,.72 117.8693 14922. 72 117. 8846 1:1962.72 117.8999 15002. 72 117. 915 15042.72 117.9299 15082.72 117. 9445 15122.72 117. 9589 15162.72 117. 973 15202.72 117.987 15242.72 118. 0008 15282. 72 118.0144 15322.72 118. 0279 15362. 72 118. 0412 15402.72 118.0544 15442.72 --'.118. 0675 15482.72 118. 0805 15522.72 118. 0934 15562.72 118 .1062 15602. 72 118 .119 15642.72 .118.1317 15682.72 118 .1443 15722.72 118.1569 15762.72 118 .1694 15802.72 118.1819 15842.72 118.1943 15882.72 118.2067 15922.72 118 .219 15962.72 118.2313 16002.72 118.2436 16042.72 118 .2558 16082.72 118.2679 16122.72
- 118.2801 16162.72 118 .2922 162102. 72 118. 3043 118.3103
' 16:;?42. 72 118.3163 118.3223 16282. 72 118.3284 118.3344 16322. 72 118 .3403 118.3463 16362.72 118.3523 118.3583 16402.72 118. 3642 118.3702 16442.72 118.3761 118.3821 16482.72 118. 388 118.3939 16522.72 118. 3999 118.4058 16562.72 118.4117 118.4176 16602.72 118.4235 118 .4294 16642.72 118 .4352 118.4411 16682 .. 72 118.447 118.4529 16722. 72 118 .4587 118.4646 16762.72 118 .4704 118.4762 1680'2. 72 118 .4821 118.4879 16842.72 118 .4931 118 .4995 16882.72 118 .. 5053 118 .5111 16922.72 118.5169 118.5227 16962'. 72 118.5285 118.5343 17002.72 118.5401 118\5458 17042.72 118 .5516 118.5573 17082.72 118. 5631 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 123 of 303 17102.72 17142. 72 17182.72 17222. 72 17262.72 17302.72 17342.72 17382.72 17422.72 17462.72 17502.72 17542.72 17582.72 17622.72 17662.72
17702.72 17742.72
17782.72 17822.72 17862.72 17902.72 17942. 72 17982.72 18022.72 18062.72 18102. 72 18142.72 18182.72 18222,72 18262.72 18302. 72 *18342. 72 18382. 72 18422.72 18462.72 18502.72
18542.72 18582.72 18622.72 18662.72 18702.72 18742.72 18782.72 18822.72 18862.72 18902. 72 18942.72 18982. 72. 19022.72 19062.72 19102. 72 19142. 72 19182.72 19222. 72 19262. 72 19302. 72 19342. 72 19382.72 19422.72 19462.72 J N RCON CALCULATION CONTROL Attachment 1 118. 5688 17122. 72 118.5746 118.5803 17162. 72 118.586 118.5918 17202.72 118.5975 118. 6032 17242.72 118. 6089 118.6146 17282.72 1118. 6203 118'.626 17322.72 118.6317 118.6373 17362.72 118 .,643 118.6487 17402.72 118. 6544 118. 66 17442.72 118.6657 118.6713 17482.72 118. 677 118.6826 17522.72 118.6882 118.6938 17562.72 118. 6995 118.7051 17602.72 118. 7107 118. 7163 17642. 72 118. 7219 118. 7'275 17682.72 118. 7331 118.7387 i7722.72 118. 7443 118.7498 17762.72 il8. 7554 118. 761' 17802.72 118. 7665 118. 7721 17842.72 118.7777 118. 7832 17882.72 118. 7887 118. 7943 17922.72 118. 7998 118.8053 17962.72 118. 8109 118.8164 18002.72 118. 8219 118.8274 18042.72 118. !)329 118.8384 18082.72 118.8439 118.8494 18122.72 118. 8549 118. 8604 18162.72 118. 8659 118 .8713 18202.72 118,8768 118.8823 18242.72 118. 8877 118.8932 18282.72 118. 8986 118. 9041 18322. 72 118. 9095 118. 9149 18362.72 118. 9204 118.9258 18402.72 118. 9312 118.9367 18442.72 118. 9421 118.9475 18482.72 118.9529 118.9583 18522.72 118.9637 118.9691 18562.72 118.9745 118.9799 18602.72 118. 9852 118.9906 18642. 72 118. 996 119 .0014 18682.72 119. 0067 119 .0121 18722.72 119. 0174 119. 0228 18762.72 119. 0281 119. 0335 18802.72 119.0388 119.0442 18842.72 119. 0495 119. 0548 18882. 72 119. 0601 119.0655 18922.72 119. 0708 119. 0761 18962.72 119.0814 119.0867 19002.72 119. 092 119. 0973 ' 19042. 72 119.1026 119 .1079 19082.72 11.9.1132 119 .1184 19122.72 119 .1237 119.129 19162.72 119 .1343 119.1395 19202.72 1119 .1448 119.1501 19242.72 1.19.1553 119.1606 19282.72 119' 1658 119 .171 19322.72 119.1763 119 .1815 19362.72 119 .1868 119.192 19402.72 119.1972 119.2024 19442.72 119.2076 119.2129 19482.72 119. 2181 CALC. NO. ENTR-078-CALC-004 REV.a ' PAGE NO. 124 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxtf!HenC{S.-fvNyptt;J<<t. f.wryffa,: Attachment 1 PAGE NO. 125 of 303 19502.72 119.2233 19522. 72 119.2285 19542.72 119 .2337 19562. 72 119.2389 19582. 72 119 .2441 19602. 72 119.2493 19622.72 119 .2544 19642. 72 119.2596 19662.72 119.2648 19682.72 119.27 19702.72 119. 2751 19722.72 119.2803 19742.72 119. 2855 19762. 72 119. 2906 19782.72 119.2958 19802.72 119.3009 19822.72 119 .3061 19842.72 119.3112 19862.72 119.3164 19882. 72 119.3215 19902.72 119 .3267 19922. 72 119.3318 19942.72 119 .3369 19962. 72 119.342 19982.72 119. 3472 20002. 72 119. 3523 20022.72 119. 3574 20042.72 119.3625 20062.72 119. 3676 20082. 72 119.3727 20102.72 119. 3778 20122.72 119.3829 20142.72 119.388 20162. 72 119.3931 r-20182. 72 119.3982 20202.72 119 .4033 20222.72 119.4084 20242.72 119.4135 20262. 72 119.41,86 20282.72 119.4236 20302.72 119.4287 20322.72 119 .4338 20342.72 119.4388 20362.72 119.4439 20382.72 119 .449 20402.72 119.454 20422.72 119 .4591 20442.72 119.4641 20462.72-119 .4692 20482.72 119.4742 20502.72 119 .4792 20522.72 119.4843 20542.72 119.4893 20562. 72 119.4943 20582.72 119.4994 20602. 72 119.5044 20622. 72 119. 5094 20642. 72 119.5144 20662.72 119. 5195 20682. 72 119.5245 20702.72 119.5295 20722.72 119.5345 20742.72 119.5395 20762.72 119.5445 20782.72 119.5495 20802.72 119.5545 20822. 72 119. 5595 20842.72 119.5645 20862. 72 119. 5695 20882.72 119.5744 20902.72 119. 5794 20922. 72 119.5844 20942.72 119. 5894 20962. 72 119 .5944 20982.72 119. 5993 I 21002.72 119. 6043 21022.72 119. 6093 21042. 72 119. 6142 21062.72 119. 6192 21082. 72 119. 6241 21102. 72 119. 6291 21122. 72 119. 634 21142. 72 119.639 21162. 72 119. 6439 21182. 72 119. 6489 21202.72 119. 6538 21222.72 119. 6587 21242.72 119.6637 21262.72 119. 6686 21282.72 119.6735 21302.72 119. 6785 21322. 72 119.6834 21342.72 119. 6883 21362.72 119.6932 21382.72 119. 6981 21402.72 119.703 21422.72 119.708 21442.72 119. 7129 21462.72 119.7178 21482.72 119.7227 21502.72 119. 7276 21522. 72 119. 7325 21542.72 119. 7374 21562. 72 119.7423 21582.72 119. 7471 21602. 72 119. 752 21622.72 119. 7569 21642.72 119.7618 21662.72 119. 7667 21682.72 119. 7716 21702.72 119. 7764 2,1722. 72 119. 7813 21742.72 119. 7862 21762.72 119. 791 21782.72 119. 7959 21802.72 119. 8008 21822.72 119.8056 21842.72 119. 8105 21862.72 119. 8153 21882.72 119. 8202 ( CALC. NO. E ER ON CALCULATION CONTROL SHEET-REV.O ptOJ<<<'.l f.vt?tyday. Attachment 1 PAGE NO. 126 of 303 21902.72 119. 825 21922.72 119. 8299 21942.72 119. 8347 21962. 72 119.8396 21982.72 119 .8444 22002. 72 119.8492 22022.72 119. 8541 22042. 72 119.8589 22062.72 119.8637 22082.72 119.8686 22102.72 119.8734 22122.72 119.8782 22142.72 119.883 22162. 72 119.8878 22182.72 119.8926 22202. 72 119.8975 22222.72 119.9023 22242. 72 119 .9071 22262.72 119 .9119 22282.72 119.9167 22302.72 119. 9215 22322.72 --119. 9263 \ \ 22342.72 119 .9311 22362.72 119.9359 22382.72 119. 9407 22402.72 119. 9455 22422.72 119. 9502 22442.72 119. 955 22462.72 119. 9598 22482.72 119.9646 22502.72 119. 9694 22522.72 119. 9741 22542.72 119. 9789 22562.72 119.9837 22582.72 119 .'9885., 22602.72 .9932 22622.72 119. 998 22642.72 120.0028 ' 22662. 72 120.0075 22682.72 120.0123 22702.72 120.017 22722.72 120.0218 22742.72 120.0265 22762. 72 120.0313 22782.72 120.036 22802.72 120.0408 22822.72 120.0455 22842. 72 120.0503 22862.72 120.055 22882.72 120.0597 22902.72 120.0645 22922.72 120.0692 22942.72 120.0739 22962. 72 120.0787 22982.72 120.0834 23002.72 120.0881 23022.72 120.0928 23042.72 120.0975 23062.72 120.1023 23082.72 120.107 23102. 72 120.1117 23122. 72 120 .1164 23142.72 \120 .1211 23162. 72 120.1258 23182.72 120.1305 23202. 72 120.1352 23222.72 120.1399 23242.72 120.1446 23262.72 120.1493 23282.72 120.154 23302.72 120.1587 23322.72 120.1634 23342.72 120 .. 1681 23362.72 120.1728 23382.72 120.1775 23402.72 120.1821 23422.72 120.1868 23442.72 120.1915 23462.72 120.1962 23482. 72 120.2008 23502.72 120.2055 23522.72 120.2102 23542.72 120.2149 2356.2. 72 120.2195 23582.72 120.2242 23602.72 120.2289 23622.72 120.2335 23642. 7,2 120.2382 23662.72 120.2428 23682. 72 120.2475 23702. 72 120.2521 23722.72 120.2568 23742.72 120.2614 23762.72 120.2661 23782.72 120.2707 23802.72 120.2754 23822.72 120.28 23842.72 120.2847 23862.72 120.2893 23882.72 120.2939 ) 23902.72 120.2986 23922.72 120.3032 23942.72 120.3078 23962.72 12.0.3125 23982.72 120.3171 24002.72 120.3217 24022:12 120.3263 24042.72 120.3309 24062.72 120.3356 24082.72 120.3402 24102.72 120.3448 24122.72 120.3494 24142.72 i20.354 24162.72 120.3586 24182.72 120.3632 24202.72 120.3678 24222.72 120.3725 24242.72 120 .3771 24262.72 120.3817 24282. 72 120.3863 CALC. NO. ENTR-078-CALC-004 NERCON CALCULATION CONTROL SHEET-REV. 0 r.xreli£111Cf-F.1:ttf'Jf}fO)f!<.t, F.wryriay. Attachment 1 PAGE NO. 127 of 303 24302.72 120.3908 24322. 72 120.3954 24342.72 120.4 24362.72 120.4046 f 24382.72 120.4092 24402. 72 120.4138 24422.72 120.4184 24442.72 120.423 24462.72 120.4276 24482.72 120.4321 24502.72 120.4367 24522.72 120.4413 24542.72 120.4459 24562.72 120.4504 24582.72 120.455 24602.72 120.4596 24622.72 120.4641 24642.72 120.4687 24662.72 120.4733 24682.72 120 .4778 24702.72 120.4824 24722.72 120.487 24742.72 120.4915 24762.72 120.4961 24782.72 120.5006 24802.72 120.5052 24822.72 120 .:5097 24842. 72 120.5143 24862.72 120.5188 24882.72 120.5234 24902.72 120.5279 24922.72 120.5324 24942.72 120.537 24962.72 120.5415 24982.72 120.5461 25002.72 120.5506 25022.72 120.5551 25042.72 120.5597 25062.72 120.5642 25082.72 120.5687 25102.72 120.5733 25122.72 120.5778 25142.72 120.5823 25162.72 120.5869 25182.72 120.5914 25202.72 120.596 25222.72 120. 6005 . 25242.72 120.605 25262.72 120.6096 25282.72 120.6141 25302.72 120.6186 25322.72 120.6232 25342.72 120.6277 25362.72 120.6322 25382.72 120.6367 25402.72 120.6413 25422.72 120.6458 25442.72 120.6503 25462.72 120.6548 25482.72 120.6594 25502.72 120.6639 25522.72 120.6684 25542.72 120. 6729 25562.72 120.6775 25582.72 120.682 25602.72 120.6865 25622.72 120.691 25642.72 120.6955 25662.72 120.7 25682.72' 120.7045 25702.72 120.7091 25722.72 120.7136 25742.72 120. 7181 25762.72 120.7226 25782.72 120. 7271 25802.72 120.7316 25822.72 120.7361 25842.72 120.7406 25862.72 120.7451 25882.72 120.7496 25902.72 120.7541 25922.72 120.7586 25942.72 120.7631 25962.72 120.7676 25982.72 120.7721 26002.72 120.7766 26022.72 120.781 26042.72 120.7855 26062.72 120.79 26082.72 120.7945 26102.72 120.799 26122.72 120.8035 26142.72 120.8079 26162.72 120.8124 26182.72 120.8169 26202.72 120.8214 26222.72 120.8258 26242.72 120.8303 26262.72 120.8348 26282.72 120.8392 26302.72 120.8437 26322.72 120.8482 26342.72 120.8526 26362.72 120. 8571 26382.72 120.8616 26402.72 120.866 26422.72 120.8705 26442.72 120.8749 26462.72 120.8794 26482.72 120.8839 26502.72 120.8883. 26522.72 120.8928 26542. 72 120.8972 26562.72 120.9017 26582.72 120.9061 26602.72 120.9106 26622.72 120.915 26642.72 120.9194 26662.72 120.9239 26682.72 120.9283 CALC. NO. ENTR-078-CALC-004 E.N RCON CALCULATION CONTROL SHEET-REV.O F.xfeHem:.(-f.vety ttO}&;t F.vt;q day Attachment 1 PAGE NO. 128 of 303 26702. 72 120.9328 26722.72 120.9372 26742.72 120.9417 26762.72 120.9461 26782.72 120.9505 26802.72 120.955 26822.72 120.9594 26842.72 120.9638 26862. 72 120. 9682 26882.72 120.9727 26902.72 120.9771 26922.72 120.9815 26942.72 120.986 26962.72 120.9904 26982.72 120.9948 27002.72 120.9992 27022.72 121. 0036 27042. 72 121.0081 27062.72 121.0125 27082.72 121.0169 27102. 72 121.0213 27122. 72 121.0257 27142. 72 121. 0301 27162. 72 121.0346 27182. 72 121.039 27202. 72 121.0434 27222. 72 121.0478 27242. 72 121.0522 27262.72 121.0!;;66 27282.72 121.061 27302.72 121.0654 27322. 72 121.0698 27342.72 121.0742 27362. 72 121.0786 27382.72 121.083 27402.72 121.0874 27422.72 121.0918 27442.72 121.0962 27462.72 121.1006 27482.72 121.105 27502.72 121.1094 27522. 72 121.1138 27542.72 121.1182 27562.72 121.1225 27582.72 121.1269 27602.72 121.1313 27622.72 121.1357 27642.72 121.1401 27662. 72 121.1445 27682.72 121.1489 27702. 72 121.1532 27722. 72' 121.1576 27742. 72 121.162 27762.72 121.1664 27782.72 121.1708 27802.72 121.1751 27822.72 121.1795 27842.72 121.1839 ' 27862.72 121.1882 27882. 72 121.1926 27902.72 121.197 27922.72 121.2014 27942.72 121. 2057 27962.72 121.2101 21982.72 121. 2145 28002. 72 121.218,8 28022.72 121. 2232 28042.72 121.2276 28062.72 121.2319 28082. 72 121.2363 28102.72 121.2406 28122. 72 121.245 28142.72 121. 2494 28162.72 121.2537 28182.72 121.2581 28202.72 121.2624 28222.72 121. 2668 28242. 72 121.2711 28262.72 121.2755 28282. 72 121.2798 28302.72 121.2842 28322.72 121.2885 28342.72 121.2929 28362. 72 121.2972 28382.72 121.3016 28402.72 121.3059 28422.72 121.3103 28442. 72 121.3146 28462°. 72 121. 319 28482.72 121.3233 28502.72 121.3276 28522.72 121.332 28542.72 121.3363 28562.72 121.3407 28582.72 121. 345 28602. 72 121.3493 28622. 72 121.3537 28642. 72 121.358 28662.72 121. 3623 28_682. 72 121.3667 28702.72 121.371 28722. 72 121.3753 28742. 72 121.3796 28762.72 121.384 28782.72 121.3883 28802.72 121.3926 28822. 72 121.3969 28842. 72 121.4013 28862.72 121.4056 28882.72 121.4099 28902.72 121.4142 28922.72 121.4186 28942.72 121.4229 28962.72 121.4272 28982.72 121.4315 29002.72 121.4358 29022.72 121.4401 29042.72 121.4445 29062.72 121.4488 29082.72 121.4531 ENERCON CALCULATION CONTROL Attachment 1 29102.72 121.4574 29122.72 121.4617 29142.72 121.466 29162.72 121.4703 29182.72 121.4746 29202. 72 121.4789 29222.72 121.4832 29242.72 121.4875 29262.72 121.4918 29282. 72 121.4961 29302.72 121.5004 29322.72 121. 5047 29342.72 121. 509 29362.72 121.5133 29382.72 121. 5176 29402.72 121.5219 29422.72 121.5262 29442.72 121.5305 29462.72 121.5348 29482.72 121.5391 29502.12 121. 5433 29522.72 121.5476 29542.72 121.5519 29562.72 121. 5562 29582.72 121.5605 29602.72 121.5648 29622. 72 121. 569 29642. 72 121. 5733 29662.72 121.5776 29682.72 121. 5819 29702. 72 121.5862 29722.72 121. 5904 29742.72 121.5947 29762.72 121. 599 29782.72 121.6033 29802.72 121.6076 29822. 72 121. 6118 29842.72 121.6161 29862.72 121.6204 29882.72 121.6246 29902.72 121.6289 29922.72 121. 6332 29942.72 121.6375 29962.72 121.6417 29982.72 121. 646 30002.72 121. 6503 30022.72 121. 6545 30042.72 121,6588 30062.72 121.6631 30082.72 121.6673 30102.72 121.6716 30122.72 121. 6758 30142. 72 121.61)01 30162.72 121. 6844 30182. 72 121.6886 30202.72 121. 6929 30222.72 121.6972 30242.72 121.7014 30262.72 121.7057 30282.72 121.7099 30302.72 121. 7142 30322.72 121. 7184 30342.72 121.7227 30362.72 121. 7269 30382.72 121.7312 30402.72 121.7354 30422.72 121.7397 30442.72 121.7439 30462.72 121.7482 30482.72 121.7524 30502.72 121.7567 30522.72 121.7609 30542.72 121.7652 30562.72 121.7694 30582.72 121,7737 30602.72 121.7779 30622.72 141. 7821 30642.72 121. 7864 30662.72 121.7906 30682.72 121.7949 30702.72 121.7991 30722.72 121.8033 30742.72 121. 8076 30762. 72 121. 8118 30782.72 121.816 30802.72 121. 8203 30822.72 121. 8245 30842.72 121. 8288 30862.72 121.833 30882. 72 121.8372 30902.72 121.8414 30922.72 121.8457 30942. 72 121.8499 30962.72 121. 8541 30982.72 121.8584 31002.72 121. 8626 31022.72 121.8668 31042.72 121. 871 31062. 72 121.8753 31082.72 121. 8795 31102. 72 121.8837 31122.72 121.8879 31142. 72 121.8922 31162.72 121. 8964 31182. 72 121.9006 31202.72 121.9048 . 31222. 72 121.909 31242.72 121. 9133 31262.72 121. 9175 31282.72 121. 9217 31302.72 121.9259 31322.72 121. 9301 31342. 72 121.9343 31362.72 121.9385 31382.72 121. 9428 31402.72 121. 947 31422.72 121.9512 31442.72 121. 9554 31462.72 121.9596 31482.72 121. 9638 CALC. NO. ENTR-078-CALC-004 REV.O RAGE NO. 129 of 303 :__ CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptt;jf.<1, f.'l!?f';day. Attachment 1 PAGE NO. 130 of 303 31502.72 121.968 31522.72 121. 9722 31542.72 121.9764 31562.72 121.9806 31582'. 72 121.9848 31602.72 121.989 31622.72 121.9932 31642.72 121.9975 31662. 72 122.0017 31682. 72 '122. 0059 31702.72 122.0101 31722.72 122.0143 31742.72 122.0185 31762.72 122.0227 31782.72 122.0269 31802. 72 122. 0311 31822.72 122.0352 31842.72 122.0394 31862.72 122.0436 31882.72 122.0478 31902.72 122.052 31922.72 122.0562 31942.72 122.0604 31962. 72 122.0646 31982.72 122.0688 32002. 72 122.073 32022. 72 122. 0772 32042. 72 122.0814 32062. 72 122.0856 32082. 72 122.0897 ' \ 32102.72 122.0939 32122.72 122.0981 32142.72 122.1023 32162.72 122.1065 32182. 72 122.1107 32202. 72 122 .1149 32222.72 122 .119 32242.72 122.1232 32262.72 122.1274 32282.72 122.1316 32302.72 122.1358 32322. 72 122.1399 / 32342. 72 122.1441 32362.72 122.1483 32382. 72 122.1525 32402.72 122.1566 32422. 72 122.1608 32442.72 122.165 32462. 72 122.1692 32482. 72 122.1733 32502. 72 122.1775 32522. 72 122.1817 32542.72 122.1859 32562.72 122.19 32584.72 122.1942 32602.72 122.1984 32622.72 122.2025 32642.72 122.2067 32662.72 122.2109 32682.72 122.215 32702.72 122.2192 32722.72 122.2234 32742.72 122.2275 32762.72 122.2317 32782.71 122.2359 32802. 71 122.24 32822.71 122.2442 32842. 71 122.2484 32862. 71 122.2525 32882. 71 122.2567 32902. 71 122.2608 32922. 71 122.265 32942. 71 122.2692, 32962. 71 122.2733 32982.71 122.2775 33002. 71 122.28l6 33022.71 122.2858 33042. 71 122 .,289Q 33062. 71 122.2941 33082.71 122.2983 33102.71 122.3024 33122.71 122.3066 33142. 71 122.3107 33162.71 122. 3149 33182.71 122.319 33202.71 122.3232 33222.71 122.3273 33242; 71 122.3315 33262.71 122.3356 33282. 71 122.3398 33302.71 122.3439 33322. 71 122.3481 33342.71 122.3522 33362. 71 122.3564 33382.71 122.3605 33402.71 122.3646 33422.71 122.3688 33442. 71 122.3729 33462.71 122.3771 33482. 71 122.3812 33502.71 122.3854 33522. 71 122.3895 33542. 71 122.3936 33562. 71 122.3978 33582. 71 122.4019 33602.71 122.4061 33622.71 122.4102 33642. 71 122.4143 33662. 71 122.4185 33682. 71 122.4226 33702. 71 122.4267 33722. 71 122.4309 33742.71 122.435 33762. 71 122.4391 33782.71 122.4433 33802. 71 122.4474 33822.71 122.4515 33842. 71 122.4557 33862.71 122.4598 33882. 71 122.4639 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 Exttl!enCf!-fvety pfoject. £wry day. Attachment 1 PAGE NO. 131 of 303 33902. 71 122.4681 33922.71 122.4722 33942.71 122.4763 33962. 71 122.4804 33982. 71 122.4846 34002.71 122.4887 34022. 71 122.4928 34042.71 122.4969 34062.71 122.50ll 34082. 71 -122.5052 34102.71 122.5093 34122.71 122.5134 34142.71 122.5176 34162.71 122.5217 34182. 71 . 122.5258 34202.71 122.5299 34222.71 122.534 34242. 71 122.5382 34262.71 122.5423 34282. 71 122.5464 34302.71 122.5505 34322.71 122.5546 34342.71 122.5588 34362.71 122.5629 34382.71 122.567 34402. 71 122.5711 34422.71 122.5752 34442.71 122.5793 34462.71 122.5834 34482.71 122.5876 34502.71 122.5917 34522.71 122.5958 34542.71 122.5999 34562. 71 122.604 34582.71 122.6081 34602. 71 122.6122 34622.71 122.6163 34642.71 122.6204 34662.71 122.6245 34682. 71 122.6286 34702.71 122.6328 34722.71 122.6369 34742.71 122.641 34762. 71 122.6451 34782.71 122.6492 34802. 71 122.6533 34822. 71 122.6574 34842.71 122.6615 34862.71 122.6656 34882. 71 122.6697 34902.71 122.6738 34922. 71 122.6779 34942. 71 122.682 34962. 71 122.6861 34982.71 122.6902 35002. 71 122.6943 35022.71 122.6984 35042. 71 122.7025 35062.71 122.7066 35082.71 122.7107 35102.71 122. 7148 35122. 71 122.7189 35142.71 122.723 35162.71 122. 7271 35182.71 122.7311 35202. 71 122.7352 35222. 71 122.7393 35242.71 122.7434 35262.71 122.7475 35282. 71 122.7516 35302.71 122.7557 35322.71 122.7598 35342.71 122.7639 35362. 71 122.768 35382.71 122. 7721 *35402. 71 122.7761 35422.71 122.7802 35442. 71 122.7843 35462.71 122.7884 35482. 71 122.7925 35502.71 122.7966 35522.71 122.8007 35542*.71 122.8047 35562.71 122.8088 35582.71 122.8129 35602. 71 122.817 35622.71 122.82ll 35642. 71 122.8252 35662.71 122.8292 35682. 71 122.8333 35702.71 122.8374 35722. 71 122.8415 35742. 71 122.8456 35762. 71 122.8496 35782.71 122.8537 35802. 71 122.8578 35822.71 122.8619 35842. 71 122.8659 35862.71 122.87 35882. 71 122.8741 } 3590*2. 71 122.8782 35922. 71 122.8822 35942. 71 122.8863 35962. 71 122.8904 35982.71 122.8945 36002. 71 122.8985 36022.71 122.9026 36042. 71 122.9067 36062.71 122.9108 36082. 71 122.9148 36102.71 122. 9189 36122. 71 122.923 36142.71 122.927 36162. 71 122. 93ll 36182.71 122.9352 36202. 71 122.9392 36222.71 122.9433 36242.71 122.9474 36262.71 122.9514 36282. 71 122.9555 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 ptojea. f.wry day. Attachment 1 PAGE NO. 132 of 303 36302. 71 122.9596 36322.71 122.9636 36342. 71 122.9677 36362. 71 122.9718 36382.71 122.9758 36402. 71 122.9799 36422.71 122.9839 '36442. 71 122.988 36462.71 122.9921 36482. 71 122.9961 36502.71 123.0002 36522.71 123.0042 36542.71 123.0083 36562.71 123.0124 36582.71 123.0164 36602. 71 123.0205 36622.71 123.0245 36642.71 123.0286 36662.71 123.0327 36682. 71 123.0367 36702.71 123.0408 36722.71 123.0448 36742.71 123.0489 36762.71 123.0529 36782.71 123.057 36802. 71 123.061 36822.71 123.0651 36842.71 123.0691 36862.71 123.0732 36882.71 123. 0772 36902.71 123.0813 36922.71 123.0853 36942. 71 123.0894 36962. 71 123.0934
- 36982.71 123.0975 37002.71 123.1015 37022.71 123.1056 37042.71 123.1096 37062.71 123.1137 37082.71 123.1177 37102. 71 123.1218 37122. 71 123.1258 37142. 71 123.1299 37162.71 123.1339 37182. 71 123.138 37202.71 123.142 37222.71 123.146 37242.71 123.1501 37262.71 123 .. 1541 37282. 71 123.1582 37302. 71 123.1622 37322. 71 123.1663 37342.71 123.1703 37362.71 123.1743 37382.71 123.1784 37402. 71 123.1824 37422.71 123.1865 37442.71 123.1905 37462.71 123.1945 37482. 71 123.1986 37502.71 123.2026 37522.71 123.2066 37542.71 123.2107 37562.71 123.2147 37582.71 123.2188 37602. 71 123.2228 37622.71 123.2268 37642.71 123.2309 37662.71 123.2349 37682. 71 123.2389 37702.71 123.243 37722.71 123.247 37742.71 123.251 37762.71 123.255 37782.71 123.2591 37802.71 123.2631 37822.71 123.2671 37842.71 123.2712 37862.71 123.2752 37882.71 123.2792 37902.71 123.2832 37922.71 123.2873 37942. 71 123.2913 37962. 71 123.2953 37982.71 123.2994 38002. 71 123.3034 38022.71 123.3074 38042. 71 123.3114 38062.71 123.3155 38082. 71 123.3195 38102.71 123.3235 38122.71 123.3275 38142.71 123.3316 38162. 71 123.3356 38182.71 123.3396 38202.71 123.3436 38222.71 123.3476 38242.71 123.3517 38262.71 123.3557 38282. 71 123.3597 38302. 71 123.3637 38322. 71 123.3677 38342. 71 123.3718 38362.71 123.3758 38382. 71 123.3798 38402. 71 123.3838 38422. 71 123.3878 38442.71 123.3918 38462.71 123.3959 38482. 71 123.3999 38502.71 123.4039 38522.71 123.4079 38542.71 123 .4119 38562.71 123.4159 38582.71 123.42 38602. 71 123.424 38622.71 123.428 38642.71 123.432 38662.71 123.436 38682.71 123.44 ENERCON CALCULATION CONTROL Attachment 1 38702.71 123.444 38722.71 123.448 38742. 71 123.452 38762.71 123.4561 38782.71 123.4601 38802. 71 123.4641 38822.71 123.4681 38842.71 123.4721 38862.71 123.4761 38882. 71 123.4801 38902.71 123.4841 38922. 71 123.4881 38942. 71 123.4921 38962. 71 123.4961 38982. 71 123.5001 39002. 71 123.5041 39022. 71 123.5081 39042. 71 123.5121 39062.71 123.5162 39082. 71 123.5202 39102. 71 123.5242 39122.71 123.5282 39142. 71 123.5322 39162.71 123.5362 39182.71 123.5402 39202.71 123.5442 39222. 71 123.5482 39242. 71 123.5522 39262. 71 123.5562 39282.71 123.5602 39302.71 123.5642 39322.71 123.5682 39342. 71 123.5722 39362. 71 123.5762 39382. 71 123.5802 39402. 71 123.5842 39422. 71 123.5882 39442. 71 123.5921 39462. 71 123.5961 39482. 71 123.6001 39502. 71 123.6041 39522. 71 123.6081 39542. 71 123.6121 39562. 71 123.6161 39582.71 123.6201 39602. 71 123.6241 39622. 71 123.6281 3,96.42.
71 123.6321 39662.71 123.6361 39682. 71 123.6401 39702. 71 123.6441 39722. 71 123.648 39742.71 123.652 39762. 71 123.656 39782. 71 123.66 39802. 71 123.664 39822. 71 123.668 39842. 71 123.672 39862. 71 123.676 39882. 71 123.68 39902. 71 123.6839 39922. 71 123.6879 39942.71 123.6919 39962. 71 123.6959 39982.71 123.6999 40002.71 123.7039 40022. 71 123.7079 40042. 71 123. 7118 40062.71 123.7158 40082. 71 123. 7198 40102.71 123.7238 40122. 71 123. 7278 40142.71 123.7318 40162. 71 123.7357 40182.71 123.7397 40202.71 123.7437 40222. 71 123. 7477 40242. 71 123.7517 40262. 71 123.7556 40282. 71 123.7596 40302. 71 123.7636 40322.71 123.7676 40342. 71 123. 7716 40362. 71 123.7755 40382. 71 123. 7795 40402. 71 123.7835 40422.71 123.7875 40442.71 123.7914 40462. 71 123.7954 40482. 71 123.7994 40502. 71 123.8034 40522. 71 123.8074 40542. 71 123.8113 40562.71 123.8153 40582. 71 123.8193 40602. 71 123.8232 40622. 71 123.8272 40642.71 123.8312 40662.71 123.8352 40682.71 123.8391 40702.71 123.8431 40722.71 123.8471 40742. 71 123.8511 40762.71 123.855 40782.71 123.859 40802.71 123.863 40822. 71 123.8669 ,40842. 71 123.8709 40862.71 123.8749 40882. 71 123.8788 40902.71 123.8828 40922. 71 123.8868 40942.71 123.8907 40962. 71, 123.8947 40982.71 123.8987 41002. 71 123.9026 41022.71* 123.9066 41042. 71 123.9106 41062.71 123.9145 41082. 71 123.9185 \. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 133 of 303 CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET-REV.O '-' f.xreHerw.rt-F.vety pto}ea, f.vtlty d()'f. Attachment 1 PAGE NO. 134 of 303 41102. 71 123.9225 41122. 71 123.9264 41142. 71 123.9304 41162. 71 123.9344 41182. 71 123.9383 41202. 71 123.9423 41222.71 123.9462 41242.71 123.9502 41262.71 123.9542 41282.71 123.9581 41302.71 123.9621 41322. 71 123.966 41342.71 123.97 41362. 71 123.974 41382.71 123.9779 41402. 71 123.9819 41422.71 123.9858 41442. 71 123.9898 41462.71 123.9938 41482. 71 123.9977 41502. 71 124.0017 41522. 71 124.0056 41542. 71 124.0096 41562. 71 124. 0135 41582.71 124.0175 41602. 71 124.0215 41622.71 124.0254 41642.71 124.0294 41662.71 124.0333 41682.71 124.0373 41702.71 124.0412 41722.71 124.0452 41742.71 124.0491 41762.71 124.0531 41782.71 124.057 41802.71 124.061 41822.71 124.0649 41842.71 124.0689 41862.71 124. 0728 41882.71 124.0768 41902.71 124.0807 41922. 71 124.0847 41942. 71 124.0886 41962. 71 124.0926 41982.71 124.0965 42002. 71 124.1005 42022.71 124.1044 42042. 71 124.1084 42062.71 124.1123 42082. 71 124 .1163 42102.71 124.1202 42122. 71 124.1242 42142. 71 124.1281 42162. 71 124.1321 42182.71 124.136 42202. 71 124.14 42222.71 124.1439 42242. 71 124.1478 42262.71 124.1518 42282.71 124.1557 42302.71 124.1597 42322. 71 124.1636 42342.71 124.1676 42362.71 124.1715 42382.71 124.1754 42402. 71 124.1794 42422.71 124.1833 42442.71 124.1873 42462.71 124.1912 42482. 71 124.1951 42502. 71 124.1991 42522. 71 124.203 42542.71 124.207 42562.71 124.2109 42582.71 124.2148 42602.71 124.2188 42622.71 124.2227 42642. 71 124.2267 42662.71 124.2306 42682.71 124.2345 42702. 71 124.2385 42722. 71 124.2424 42742.71 124.2463 42762. 71 124.2503 42782.71 124.2542 42802. 71 124.2581 42822. 71 124.2621 42842. 71 124.266 42862.71 124.2699 42882. 71 124.2739 42902. 71 124.2778 42922. 71 124.2817 42942.71 124.2857 42962. 71 124.2896 42982.71 124.2935 43002. 71 124.2975 43022.71 124.3014 43042. 71 124.3053 43062.71 124.3093 43082. 71 124.3132 43102.71 124.3171 43122. 71 124.321 43142.71 124.325 43162. 71 124.3289 43182.71 124.3328 43202. 71 124.3368 43222.71 124.3407 43242.71 124.3446 43262.71 124.3485 43282. 71 124.3525 43302.71 124.3564 . 43322. 71 124.3603 43342. 71 124.3642 43362. 71 124.3682 43382.71 124.3721 43402. 71 124.376 43422. 71 124.3799 43442. 71 124.3839 43462. 71 124.3878 43482. 71 124.3917 EN R 43502.71 124.3956 43542.71 124.4035 43582.71 124.4113 43622. 71 124.4192 43;662. 71 124.427 43702.71 124.4348 43742.71 124.4427 43782.71 124.4505 43822.71 124.4584 43862.71 124.4662 43902.71 124.474 43942.71 124.4819 43982.71 124.4897 44022.71 124.4975 44062.71 124.5053 44102.71 124.5132 44142.71 124.521 44182.71 124.5288 44222.71 124.5366 44262.71 124.5445 44302.71 124.5523 44342.71 124.5601 44382. 71 124.5679 44422.71 124.5757 44462.71 124.5836 44502.71 124.5914 44542. 71 124.5992 44582.71 124.607 44622.71 124.6148 44662.71 124.6226 44702.71 124.6304 44742.71 124.6382 44782.71 124.646 44822.71 124.6538 44862.71 12'4. 6616 44902.71 124.6694 44942.71 124.6772 44982.71 124.685 45022.71 124.6928 45062.71 124.7006 45:).02.71 124.7084 45142.71 124. 7162 45182.71 124.724 45222.71 124.7318 45262.71 124.7396 45302.71 124.7474 45342. 71 124.7552 45382.71 124.763 45422. 71 124. 7708 45462. 71 124.7785 45502. 71 ; 124.7863 45542.71 124.7941 45582.71 124.8019 45622.71 124.8097 45662.71 45702.71 124.8252 45742.71 124.833 45782.71 124.8408 45822.71 124.8485 45862.71 124.8563 ON CALCULATION CONTROL Attachment 1 43522.71 124.3996
- 43562.71 124.4074 43602.71 124.4152 43642. 71 124.4231 43682. 71 124.4309 43722. 71 124.4388 43762. 71 124.4466 43802.71 124.4544 43842.71 124.4623 43882.71 124.4701 43922.71 124.4779 43962.71 124.4858 44002. 71 124.4936 44042.71 124.5014 44082. 71 124.5093 44122.71 124. 5171 44162.71 124.5249 44202.71 124.5327 44242.71 124.5406 44282.71 124.5484 44322.71 124.5562 44362.71 124.564 44402.71 124. 5718 44442.71 124.5797 44482.71 124.5875 44522.71 124.5953 44562.71 124.6031 44602. 71 124.6109 44642.71 124.6187 44682. 71 124.6265 44722. 71 124.6343 44762.71 124.6421 44802.71 124.6499 44842.71 124.6577 44882. 71 124.6655 44922.71 124.6733 44962. 71 124.6811 45002.71 124.6889 45042. 71 124. 6967 45082. 71 124.7045 45122. 71 124.7123 45162. 71 124.7201 45202.71 124. 7279 45242. 71 124.73.57 45282. 71 124.7435 45322. 71 124.7513 45362. 71 124.7591 45402. 71 124.7669 45442.71 124.7746 45482. 71 124.7824 45522. 71 124.7902 45562.71 124.798 45602.71 124.8058 45642.71 124. 8135 45682.71 124.8213 45722.71 124.8291 45762. 71 124.8369 45802.71 124.8447 45842.71 124.8524 45882.71 124.8602 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 135 of 303 '-
ENER ON CALCULATION CONTROL Attachment 1 45902.71 124.8641 45922.71 124.868 45942.71 124. 8718 45962. 71 124.8757 45982.71 124.8796 46002.71 124.8835 46022.71 124.8874 46042.71 124.8913 46062.71 124.8951 46082. 71 124.899 46102.71 124.9029 46122. 71 124.9068 46142.71 124.9107 46162. 71 124.9146 46182.71 124.9184 46202. 71 124.9223 46222.71 124.9262 46242. 71 124.9301 46262.71 124.934 46282. 71 124.9378 46302.71 124.9417 46322. 71 124.9456 46342.71 124.9495 46362. 71 124.9534 46382.71 124.9572 46402.71 124. 9611 46422. 71 124.965 46442. 71 124.9689 46462. 71 124.9727 46482. 71 124.9766 46502.71 124.9805 46522.71 124.9844 46542.71 124.9882 46562.71 124.9921 46582.71 124.996 46602. 71 124.9999 46622. 71 125.0037 46642. 71 125.0076 46662.71 125. 0115 46682. 71 125.0154 46702.71 125.0192 46722. 71 125.0231 46742.71 125.027 46762. 71 125.0309 46782.71 125.0347 46802. 71 125.0386 46822.71 125. 0425 46842. 71 125.0463 46862.71 125. 05*02 46882. 71 125.0541 46902.71 125.058 46922. 71 125.0618 46942. 71 125.0657 46962.71 125.0696 46982.71 125.0734 47002.71 125.0773 47022.71 125.0812 47042. 71 125.085 47062.71 125.0889* 47082. 71 125.0928 47102. 71 125. 0966 47122. 71 125.1005 47142. 71 125.1044 47162. 71 125.1082 47182. 71 125 .1121 47202. 71 125.116 47222.71 125 .1198 47242. 71 125.1237 47262.71 125.1276 47282.71 125.1314 47302.71 125.1353 47322. 71 125.1392 47342.71 125.143 47362.71 125.1469 47382.71 125.1507 47402. 71 125.1546 47422.71 125.1585 47442. 71 125.1623 47462.71 125.1662 47482. 71 125.1701 47502. 71-125.1739 47522. 71 125.1778 47542.71 125.1816 47562. 71 125.1855 47582.71 125.1894 47602. 71 125.1932 47622.71 125.1971 47642. 71 125.2009 47662.71 125.2048 47682.71 125.2087 47702.71 125.2125 47722. 71 125.2164 47742.71 125.2202 47762. 71 125.2241 47782.71 125.228 47802. 71 125.2318 47822.71 125.2357 47842. 71 125.2395 47862.71 125.2434 47882.71 125.2472 47902.71 125.2511 4_7922. 71 125.2549 47942.71 125.2588 47962. 71 125.2627 47982.71 125.2665 48002. 71 125.2704 48022.71 125.2742 48042. 71 125.2781 48062.71 125.2819 48082. 71 125.2858 48102.71 125.2896 48122. 71 125.2935 48142.71 125.2973 48162. 71 125.3012 48182.71 125.305 48202.71 -125.3089 48222.71 125.3127 48242. 71 125.3166 48262.71 125.3204 48282. 71 125.3243 / CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 136 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.:<<tNf!not.-f.vf!tJPff)]ffct. £V!!qday. Attachment 1 PAGE NO. 137 of 303 48302.71 125.3281 48322. 71 125.332 48342.71 125.3358 48362. 71 125.3397 48382.71 125.3435 48402. 71 125.3474 48422.71 125.3512 48442. 71 125.3551 48462.71 125.3589 48482. 71 125.3628 48502. 71' 125.3666 48522. 71 125.3705 48542.71 125.3743 48562. 71 125.3782 48582.71 125.382 48602.71 125.3859 48622.71 125.3897 48642. 71 125.3935 48662.71 125.3974 48682.71 125.4012 48702.71 125.4051 48722.71 125.4089 48742.71 125.4128 48762. 71 125.4166 48782.71 125.4205 48802. 71 125.4243 48822. 7,1 125.4281 48842. 71 125.432 48862.71 125.4358 48882.71 125.4397 48902.71 125.4435 48922.71 125.4473 48942.71 125.4512 48962.71 125.455 48982.71 125.4589 49002.71 125.4627 49022.71 125.4666 49042.71 125.4704 49062. 71 125.4742 49082.71 125.4781 49102.71 125.4819 49122.71 125 .4857 49142.71 125.4896 49162.71 125.4934 49182.71 125.4973 49202. 71 125. 5011 49222.71 125.5049 49242.71 125.5088 49262.71 125.5126 49282.71 125.5164 49302. 71 125.5203 49322.71 125.5241 \ 49342.71 125.528 71 125.5318 49382. 71 125.5356 49402. 71 125.5395 49422.71 125.5433 49442.71 125. 5471 49462.71 125.551 49482. 71 125.5548 49502.71 125.5586 49522.71 125.5625 49542.71 125.5663 49562.71 125.5701 49582.71 125.574 49602.71 125.5778 49622. 71 125.5816 49642.71 125.5854 49662.71 125.5893 49682.71 125.5931 49702.71 125.5969 49722. 71 125.6008 49742.71 125.6046 49762.71 125.6084 49782.71 125.6123 49802. 71 125.6161 49822.71 125.6199 49842.71 125.6237 49862.71 125.6276 49882. 71 125.6314 49902.71 125.6352 49922.71 125.6391 49942.71 125.6429 49962. 71 125.6467 49982.71 125.6505 50002. 71 125.6544 50022.71 125.6582 50042. 71 125.662 50062.71 125.6658 50082. 71 125.6697 50102.71 125.6735 50122.71 125.6773 50142.71 125.6811 50162. 71 125.685 50182.71 125.6888 50202.71 125.6926 50222.71 125.6964 50242.71 125.7002 50262.71 125.7041 50282. 71 125.7079 50302.71 125.7117 50322. 71 125. 7155 50342. 71 125. 7194 50362. 71 125.7232 50382.71 125.727 50402. 71 125.7308 50422.71 125.7346 50442.71 125.7385 50462.71 125.7423 50482. 71 125.7461 50502.71 125.7499 50522. 71 125.7537 50542. 71 125.7576 50562. 71 125.7614 50582.71 125.7652 50602. 71 125.769 50622. 71 ' 125.7728 50642. 71 125.7766 50662.71 125.7805 50682. 71 125.7843 ENERCON CALCULATION CONTROL Attachment 1 50702.71 -125. 7881 50722. 71 125.7919 50742. 71 125.7957 50762.71 125.7996 50782. 71 125.8034 50802. 71 125.8072 50822. 71 125.811 50842. 71 125.8148 50862.71 125.8186 50882. 71 125.8224 50902.71 125.8263 50922. 71 125.8301 50942.71 125. 8339 50962. 71 125.8377 50982.71 125.8415 51002.71 125.8453 51022.71 125.8491 51042. 71 125.8529 51062. 71 125.8568 51082.71
- 125.8606 51102. 71 125.8644 51122. 71 125.8682 51142. 71 125.872 51162. 71 125.8758 51182. 71 125.8796 51202. 71 125.8834 51222. 71 125.8872 51242. 71 125.891 51262.71 125.8949 51282. 71 125.8987 51302. 71 125.9025 51322. 71 125.9063 51342. 71 125.9101 51362. 71 125.9139 51382.71 125.9177 51402. 71 125.9215 51422.71 125.9253 51442. 71 125:9291 51462.71 125.9329 51482.71 125.9367 51502. 71 125.9405 51522.71 125.9444 51542. 71 125.9482 51562.71 125.952 51582. 71 125.9558 51602. 71 125.9596 51622. 71 125.9634 51642.71 125. 9672 51662. 71 125. 971 51682. 71 125.9748 51702. 71 125.9786 51722. 71 125.9824 51742. 71 125.9862 51762. 71 125.99 51782.71 125.9938 51802. 71 125.9976 51822.71 126.0014 51842. 71 126.0052 51862.71 126.009 51882. 71 51902.71 126.0166 51922. 71 126.0204 51942.71 126.0242 51962. 71 126.028 51982.71 126.0318 52002. 71 126.0356 52022. 71 126.0394 52042. 71 126.0432 52062. 71 126.047 52082. 71 126.0508 52102. 71 126.0546 52122. 71 126.0584 52142. 71 126.0622 52162. 71 126.066 52182. 71 126.0698 52202. 71 126.0736 52222. 71 126.0774 52242.71 126.0812 52262. 71 126.085 52282.71 126.0888 52302. 71 126.0926 52322.71 126 !0964 52342. 71 126.1002 52362.71 126.1039 52382. 71 126.1077 52402.71 126.1115 52422.71 126 .1153 52442.71 126 .1191 52462. 71 126.1229 52482. 71 126 .1267 -52502. 71 126.1305 52522. 71 126.1343 52542.71 126.1381 52562.71 126.1419 52582.71 126.1457 52602. 71 126.1495 52622. 71 126.1532 52642.71 126.157 52662.71 126.1608 52682. 71 126.1646 52702. 71 126.1684 52722. 71 126.1722 52742.71 126.176 52762. 71 126.1798 52782.71 126.1836 52802. 71 126.1874 52822. 71 126.1911 52842. 71 126.1949 52862. 71 126.1987 52882. 71 126.2025 52902. 71 126.2063 52922.71 52942. 71 126.2139 52962.71 126.2177 52982. 71 126.2214 53002.71 126.2252 53022. 71 126.229 53042. 71 126.2328 53062. 71 126.2366 53082. 71 126.2404 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 138 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0
£wytfay. Attachment 1 PAGE NO. 139 of 303 53102.71 126.2441 53122. 71 126.2479 53142. 71 126.2517 53162. 71 126.2555 53182.71 126.2593 53202. 71 126.2631 53222.71 126.2669 53242. 71 126.2706 5):262. 71 126.2744 53282. 71 126.2782 53302. 71 126.282 53322. 71 126.2858 53342. 71 126.2895 53362. 71 126.2933 !i3382. 71 126.2971 53402. 71 126.3009 53422.71 126.3047 53442. 71 126.3084 53462.71 126.3122 53482. 71 126.316 53502. 71 126.3198 53522.71 126.3236 53542. 71 126.3273 53562. 71 126.3311 53582. 71 126.3349 53602. 71 126.3387 j 53622. 71 126.3425 53642. 71 126.3462 53662.71 126.35 53682. 71 126.3538 53702. 71 126.3576 53722. 71 126. 3613 53742. 71 126.3651 53762. 71 126.3689 53782. 71 126.3727 53802. 71 126.3764 53822. 71 126.3802 538-\12. 71 126.384 53862. 71 126.3878 53882. 71 126.3915 53902. 71 126.3953 53922. 71 126.3991 53942. 71 126.4029 53962. 71 126.4066 53982. 71 126.4104 54002. 71 126.4142 54022. 71 126.418 54042. 71 126.4217 54062. 71, 126.4255 54082.71 126.4293 54102. 71 126.433 54122.71 126.4368 54142. 71 126.4406 54162. 71 126.4444 54182. 71 126.4481 54202. 71 126.4519 54222. 71 126.4557 54242. 71 126.4594 54262. 71 126.4632 54282. 71 126.467 54302. 71 126.4707 54322. 71 126.4745 54342. 71 126.4783 54362.71 126.4821 54382.71 126.4858 54402. 71 126.4896 54422. 71 126.4934 54442. 71 126 .4971 54462. 71 126.5009 54482. 71 126.5047 54502. 71 126.5084 54522.71 126.5122 54542. 71 126.516 54562. 71 126.5197 54582.71 126.5235 54602.71 126.5273 54622.71 126.531 54642.71 126.5348 54662. 71 126.5385 54682. 71 126.5423 54702.71 126.5461 54722. 71 126.5498 54742. 71 126.5536 54762. 71 126.5574 54782. 71 126.5611 54802. 71 126.5649 54822.71 126.5686 54842.71 126. 5724 54862. 71 126.5762 54882. 71 126.5799 54902.71 126.5837 54922. 71 126.5875 54942. 71 126.5912 54962. 71 126.595 54982. 71 126.5987 55002.71 126.6025 55022.71 126.6063 55042. 71 126.61 55062. 71 126.6138 55082. 71 126.6175 55102. 71 126.6213 55122. 71 126.6251 55142.71 126.6288 55162. 71 126.6326 55182. 71 126.6363 55202. 71 126.6401 55222. 71 126.6438 55242. 71 126.6476 55262. 71 126.6514 55282. 71 126.6551 55302. 71 126.6589 55322. 71 126.6626 55342. 71 126.6664 55362. 71 126.6701 55382. 71 126.6739 55402. 71 126.6777 55422. 71 126.6814 55442.71 126.6852 55462. 71 126.6889 55482. 71 126.6927 NER 55502.71 126.6964 55542.71 126.7039 55582.71 126.7114 55622.71 126. 7189 55662.71 126.7264 55702.71 126. 7339 55742.71 126.7414 55782.71 126.7489 55822.71 126.7564 55862.71 126.7639 55902.71 126. 7714 55942.71 126.7789 55982.71 126.7864 56022.71 126.7939 56062.71 126.8014 56102.71 126.8089 56142.71 126.8164 5E;182.71 126.8239 56222. 71 126.8314 56262. 71 126.8389 56302. 71 126.8464 56342. 71 126.8538 56382.71 126.8613 56422.71 126.8688 56462.71 126.8763 56502.71 126.8838 56542.71 126.8913 56582.71 126.8987 56622.71 126.9062 56662.71 126. 9137 56702.71 126.9212 56742.71 126.9286 56782.71 126.9361 56822.71 126.9436 56862. 71 126.9511 56902. 71 126.9585 56942. 71 126.966 56982.71 126.9735 57022.71 126.9809 57062.71 126.9884 ' 57102. 71 126.9959 57142. 71 121.9033 57182. 71 127.0108 57222.71 127.0183 57262. 71 127.0257 57302.71 127.0332 57342.71 127.0407 57382.71 127.0481 57422.71 127.0556 57462. 71 127.063 57502.71 127.0705 57542.71 127.078 57582.71 127.0854 57622.71 127.0929 57662. 71 127.1003 57702. 71 127.1078 57742. 71 127 .1152 57782. 71 127.1227 57822.71 127.1301 57862.71 127.1376 ON CALCULATION CONTROL Attachment 1 55522. 71 126.7002 55562. 71 126.7077 55602. 71 126. 7152 55642. 71 126.7227 55682.71 126.7362 55722. 71 126.7377 55762. 71 126.7452 55802. 71 126.7527 55842. 71 126.7602 55882. 71 126.7677 55922. 71 126.7752 55962. 71 126.7827 56002. 71 126.7902 56042. 71 ,126. 7977 56082. 71 126.8052 56122. 71 126.8127 56162. 71 126.8201 56202.71 i26.8276 56242. 71 126.8351 56282. 71 126.8426 56322. 71 126.8501 56362. 71 126.8576 56402. 71 126.8651 56442. 71 126.8726 56482. 71 126.88 56522. 71 126.8875 56562. 71 126.895 56602. 71 126.9025 56642. 71 126.91 56682. 71 126.9174 56722. 71 126.9249 56762. 71 126.9324 56802. 71 126.9399 56842. 71 126.9473 56882. 71 126.9548 56922. 71 126.9623 56962. 71 126.9697 57002.71 126.9772 57042. 71 126.9847 57082. 71 126.9921 57122. 71 126 ... 9996 57162. 71 127. 0071 57202. 71 127.0145 57242. 71 127.022 57282. 71 127.0295 57322. 71 127.0369 57362. 71 127.0444 57402. 71 127.0519 57442.71 127. 0593 57482. 71 127.0668 57522. 71 127.0742 57562. 71 127.0817 57602. 71 127.0891 57642.71 127.0966 57682. 71 127.104 57722. 71 127 .1115 57762. 71 1.27.1189 57802. 71 127.1264 57842. 71 127.1338 57882. 71 127.1413 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 140 of 303 EN 57902.71 127.145 57942.71 127.1525 57982.71 127.1599 58022.71 127.1673 58062.71 127.1748 58102.71 127.1822 58142.71 127.1897 58182.71 127.1971 58222.71 127.2046 58262.71 127.212 58302. 71 127.2194 58342. 71 127.2269 58382. 71 127.2343 58422.71 127.2417 58462.71 127.2492 58502.71 127.2566 58542.71 127.264 58582.71 127.2715 58622.71 127.2789 58662.71 127.2863 58702.71 i27.'2937 58742. 71 .127.3012 { 58782.71 127.3086 58822.71 127.316 58862.71 127.3234 58902.71 127.3309 58942.71 127.3383 58982.71 127.3457 59022. 71 127.3531 59062.71 127.3605 59102.71 127.368 59142.71 127.3754 59182.71 127.3828 59222.71 127.3902 59262.71 127.3976 59302. 71 127.405 59342. 71 127.4124 59382. 71 127.4198 59422.71 127.4272 59462. 71 127.4347 59502.71 127.4421 59542.71 127.4495 59582.71 127.4569 .59622. 71 127.4643 59662.71 127.4717 59702.71 127.4791 59742.71 127.4865 59782.71 127.4939 59822.71 127.5013 59862.71 127.5087 59902.71 127.5161 59942.71 127.5235 59982.71 127.5309 60022.71 127.5383 60062.71 127.5456 60102.71 127.553 60142.71 127. 5604 I 60182.71 127.5678 60222.71 127.5752 60262.71 127.5826 CALCULATION CONTROL Attachment 1 57922.71 127.1487 57962. 71 127.1562 58002. 71 127.1636 58042.71 127.1711 58082.71 121.1785 58122.71 127.186 58162. 71 127.1934 58202.71 127.2008 58242. 71 127.2083 58282. 71 127.2157 58322. 71 127.2231 58362. 71 127.2306 58402. 71 127.238 58442. 71 127.2454 58482. 71 127.2529 58522.71 127.2603 58562.71 127.2677 58602. 71 127.2752 58642.71 127.2826 58682. 71 127.29 58722.71 127.2974 58762.71 127.3049 58802.71 127.3123 58842.71 127.3197 58882.71 127. 3271 58922. 71 127.3346 58962.71 127.342 59002.71 127.3494 59042.71 127.3568 59082. 71 *, 127 .3642 59122. 71 127.3717 59162. 71 127 .3791' 59202.71 127.3865 59242.71 127.3939 59282. 71 127.4013 59322.71 127.4087 59362. 71 127.4161 59402.71 127.4235 59442. 71 :J-27.4309 59482. 71 127.4384 59522. 71 127.44.58 59562.71 127.4532 59602. 71 127.4606 59642. 71 127.468 59682. 71 127.4754 59722.71 127.4828 59762. 71 127.4902 59802.71 127.4976 59842. 71 127.505 59882. 71 127.5124 59922. 71 127.5198 59962. 71 127.5272 60002.71 127.5346 60042. 71 127.542 60082.71 127.5493 60122.71 1'27. 5567 60162. 71 127.5641 60202. 71 127.5715 60242.71 127.5789 60282.71 127.5863 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 141 of 303 J ) ENERCON CALCULATION CONTROL Attachment 1 60302. 71 127.59 60322. 71 127.5937 60342. 71 127.5974 60362. 7-1:-127.6011 60382.71 127.6048 60402. 71 127.6085 60422. 71 127.6121 60442. 71 127.6158 60462. 71 127.6195 60482. 71 127.6232 60502.71 127.6269 60522.71 127.6306 60542.71 127.6343 60562. 71 127.638 60582.71 127.6417 60602. 71 127.6454 60622. 71 127.649 60642. 71 127.6527 60662.71 127.6564 60682. 71 127.6601 60702.71 127.6638 60722. 71 127.6675 60742.71 127. 6712 60762. 71 127.6749 60782.71 127.6786 60802. 71 127.6822 60822. 71 ., 127.6859 60842. 71 127.6896 60862. 71 127.6933 60882. 71 127.697 60902.71 127.7007 60922.71 127.7044 60942. 71 127.708 60962.71 127.7117 60982. 71 127.7154 61002.71 127. 7191 61022.71 127.7228 61042.71 127.7265 61062.71 127.7301 61082. 71 127.7338 61102. 71 127.7375 61122. 71 127.7412 61142. 71 127.7449 61162. 71 127.7486 61182. 71 127.7522 61202.71 127.7559 61222.71 127.7596 61242.71 127.7633 61262.71 127.767 61282. 71 127.7707 61302. 71 127.7743 61322.71 127.778 61342. 71 127.7817 61362.71 127.7854 61382.71 127.7891 61402. 71 127.7927 61422.71 127.7964 61442.71 127.8001 61462.71 127.8038 61482. 71 127.8075 61502.71 127. 8111 61522. 71 127.8148 61542.71 127.8185 61562. 71 127.8222 61582.71 127.8258 61602. 71 127.8295 61622.71 127.8332 61642. 71 127.8369 61662.71 127*. 8406 61682. 71 127.8442 61702. 71 127.8479 61722.71 127.8516 61742.71 127.8553 61762.71 127.8589 61782.71 127.8626 61802. 71 127.8663 61822.71 127.87 61842.71 127.8736 61862.71 127. 8773 61882.71 127.881 61902.11 127.8847 61922. 71 127.8883 61942. 71 127.892 61962. 71 127.8957 61982. 71 127.8993 62002. 71 127.903 62022.71 127.9067 62042. 71 127.9104 62062. 71 127.914 62082. 71 127. 9177 62102. 71 127.9214 62122. 71 127.925 62142. 71 127.9287 62162. 71 127.9324 62182. 71 121'. 9361 62202. 71 127.9397 62222. 71 127.9434 62242.71 127. 9471 62262.71 127.9507 62282. 71 127.9544 62302.71 127.9581 62322. 71 127.9617 62342.71 127.9654 62362. 71 127.9691 62382.71 127. 9727 62402.71 127.9764 62422.71 127.9801 62442. 71 127.9837 62462.71 127.9874 62482. 71 127.9911 62502.71 127.9947 62522. 71 127.9984 62542. 71 128.0021 62562.71 128.0057 62582.71 128.0094 62602. 71 128.0131 62622.71 J,28.0167 62642.71 128.0204 62662.71 128.0241 62682.71 128.0277 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 142 of 303 ENERCON CALCULATION CONTROL Attachment 1 62702.71 128.0314 62722.71 128.035 62742.71 128.0387 62762. 71 128.0424 62782.71 128.046 62802. 71 128.0497 62822.71 128.0534 62842. 71 128.057 62862.71 128.0607 62882. 71 128.0643 62902.71 128.068 62922. 71 128.0717 62942. 71 128.0753 62962. 71 128.079 62982. 71 128.0827 63002.71 128.0863 63022. 71 128.09 63042. 71 128.0936 63062. 71 128.0973 63082. 71 128.101 63102.71 128.1046 63122.71 128.1083 63142. 71 128 .1119 63162. 71 128 .1156 63182.71 128 .1192 63202. 71 128.1229 63222. 71 128.1266 63242.71 128.1302 63262.71 128.1339 63282. 71 128.1375 63302.71 128.1412 63322. 71 128.1448 63342.71 128.1485 63362. 71 128.1521 63382.71 128.1558 63402. 71 128.1595 63422.71 128.1631 63442. 71 128.1668 63462.71 128.1704 63482. 71 128.1741 63502.71 128.1777 63522. 71 128.1814 63542.71 128.185 63562. 71 128.1887 63582.71 128.1923 63602. 71 128.196 63622. 71 128.1996 63642. 71 128.2033 63662. 71 128.207 63682. 71 128.2106 63702. 71 128.2142 63722. 71 128.2179 63742.71 128.2216 63762. 71 128.2252 63782. 71 128.2289 63802. 71 128.2325 63822. 71 128 .2362 . 63842. 71 128.2398 63862. 71 128.2435 63882. 71 128 .2471 63902. 71 120:2507 I 63922. 71 128.2544 63942. 71 128.2581 63962. 71 128.2617 63982.71 128.2654 64002. 71 128.269 64022. 71 128.2726 64042.71 128.2763 64062.71 128.2799 64082. 71 128.2836 64102.71 128.2872 64122. 71 128.2909 64142. 71 128.2945 64162. 71 128.2982 64182.71 128.3018 64202. 71 128.3055 64222.71 128.3091 64242.71 128.3127 64262.71 128.3164 64282. 71 128.32 64302.71 128.3237 64322. 71 128.3273 64342.71 128.331 64362. 71 128.3346 64382.71 128.3383 64402. 71 128.3419 64422.71 128.3455 64442. 71 128.3492 64462.71 128.3528 64482. 71 128.3565 64502.71 128.3601 64522. 71 128.3638 64542. 71 128.3674 64562. 71 128.371 64582.71 128 .3747 64602. 71 128.3783 64622.71 128.3819 64642. 71 :).28. 3856 64662.71 128.3892 64682. 71 128.3929 64702.71 128.3965 64722. 71 128.4001 64742.71 128.4038 64762. 71 128.4074 64782. 71 128.4111 64802. 71 128.4147 64822.71 128.4183 64842. 71 128.422 64862.71 128.4256 64882. 71 128.4292 64902. 71 128.4329 64922.71 128.4365 64942. 71 128.4402 64962. 71 128.4438 64982.71 128.4474 65002.71 128.4511 65022.71 128.4547 65042.71 128.4583 65062.71 128.462 65082.71 128.4656 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 143 of 303 ENERCON CALCULATION CONTROL Attachment 1 65102.71 128.4692 65122.71 128 .4729 65142.71 128.4765 65162.71 128.4801 65182.71 128.4838 65202.71 128 .4874 65222.71 128.491 65242.71 128.4947 65262.71 128.4983 65282.71 128.5019 65302.71 128.5056 65322. 71 128.5092 65342.71 128. 5.128 65362. 71 128.51q4 65382. 71 128.5201 65402. 71 128.5237 65422.71 128.5273 65442.71 128.531 65462.71 128.5346 65482. 71 128.5382 65502.71 128.5419 65522.71 128.5455 65542.72 128.5491 65562.72 128.5527 65582.72 128.5564 65602.72 128.56 65622. 72 128.5636 65642.72 128.5673 65662. 72 128.5709 65682.72 128.5745 65702. 72 128.5781 65722.72 128.5818 65742.72 128.5854 65762.72 128.589 65782.72 128.5927 65802.72 128.5963 65822.72 128.5999 65842.72 128.6035 65862.72 128.6071 65882.72 128.6108 65902.72 128.6144 65922.72 128.618 65942. 72 128.6216 65962.72 128.6253 65982. 72 128.6289 66002.72 128.6325 66022.72 128.6361 66042. 72 128.6398 66062.72 128.6434 66082. 72 128.647 66102.72 128.6506 66122.72 128.6543 66142.72 128.6579 66162. 72 128.6615 66182.72 128.6651 66202.72 128.6687 66222.72 128.6723 66242.72 128.676 66262.72 128.6796 66282.72 128.6832 66302. 72 128.6868 66322.72 128.6904 66342. 72 128.6941 66362.72 128.6977 66382. 72 128.7013 66402. 72 128.7049 66422.72 128.7085 66442. 72 128.7122 66462.72 128. 7158 66482. 72 128. 7194 66502.72 128.723 66522.72 128.7266 66542.72 128.7302 66562.72 128.7339 66582.72 128.7375 66602.72 128. 7411 66622.72 128.7447 66642.72 128.7483 66662. 72 128.7519 66682.72 128.7555 66702. 72 128.7592 66722.72 128.7628 66742. 72 128.7664 66762.72 128.77 66782.72 128.7736 66802.72 128. 7772 66822.72 128.7808 66842. 72 128.7845 66862.72 128.7881 66882. 72 128.7917 66902.72 128.7953 66922. 72 128.7989 66942.72 128.8025 66962.72 128.8061 66982.72 128.8097 67002.72 128.8133 67022. 72 128.817 67042.72 128.8206 67062. 72 128.8242 67082.72 128.8278 67102.72 128.8314 67122.72 128.835 67142. 72 128.8386 67162. 72 128.8422 67182. 72 128.8458 67202. 72 128.8494 67222.72 128.853 67242.72 128.8567 67262. 72 128.8603 67282.72 128.8639 67302.72 128.8675 67322.72 128. 8711 67342.72 128.8747 67362.72 128.8783 67382. 72 128.8819 67402.72 128.8855 67422. 72 128.8891 67442.72 128.8927 67462.72 128.8963 67482.72 128.8999 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 144 of 303 CALC. NO. ENTR-078-CALC-004 EN ER CON CALCULATION CONTROL SHEET-REV.O ptf)j<<t... f.vP.ty tf(}'J. Attachment 1 PAGE NO. 145 of 303 67502.72 128.9035 67522. 72 128. 9071 67542. 72, 128.9107 67562.72 128.9143 67582.72 128.918 67602. 72 128.9216 67622.72 128.9252 67642. 72 128:9288 67662.72 128.9324 67682. 72 128.936 67702. 72. 128.9396 67722. 72 128.9432 67742.72 128.9468 67762. 72 128.9504 67782.72 128.954 67802.72 128.9576 67822.72 128.9612 67842. 72 128.9648 67862.72 128.9684 67882. 72 128.972 67902.72 128.9756 67922.72 128.9792 67942.72 128.9828 67962.72 128.9864 67982.72 128.99 68002.72 128.9936 68022.72 128.9972 68042.72 129.0008 68062.72 129.0043 68082.72 129. 0079 *, 68102.72 129. 0116 68122.72 129.0152 68142. 72 129.0187 68162.72 129.0223 68182.72 129.0259 68202.72 129.0295 68222.72 129.0331 68242.72 129.0367 68262.72 129.0403 68282.72 129. 0439 68302. 72, 129.0475 68322.72 129.0511 68342. 72 129.0547 68362.72 129. 05.83 68382.72 129.0619 68402.72 129.0655 68422.72 129.0691 68442.72 129.0727 68462.72 129.0762 68482.72 129.0798 68502.72 12'9. 0834 68522.72 129.087 68542.72 129.0906 68562.72 129.0942 68582.72 129.0978 68602.72 129.1014 68622. 72 129.105 68642. 72 129.1086 68662.72 129 .1122 68682.72 129 .1158 68702.72 129 .1193 68722.72 129.1229 68742.72 129.1265 68762.72 129.1301 68782. 72 129.1337 68802.72 129.1373 68822.72 129.1409 68842. 72 129.1445 68862.72 129.1481 68882.72 129.1516 68902.72 129.1552 68922.72 129.1588 68942.72 129.1624 68962. 72 129.166 68982.72 129.1696 69002.72 129.1732 69022.72 129.1767 69042.72 129.1803 69062.72 129.1839 69082. 72 129.1875 69102.72 129.1911 6.9122. 72 129.1947 69142.72 129.1982 69162.72 129.2018 69182.72 129.2054 69202.72 129.209 69222.72 129.2126 69242. 72 129.2162 69262.72 129.2197 69282.72 129.2233 69302.72 129.2269 69322. 72 129.2305 69342.72 129.2341 69362.72 129.2377 69382.72 129.2412 69402.72 129.2448 69422.72 129.2484 69442.72 129.252 69462 .. 72 129.2556 69482.72 129.2591 69502.72 129.2627 69522.72 129.2663 69542.72 129.2699 69562. 72 129.2735 69582. 72 129.277 69602.72 129.2806 69622.72 129.2842 69642.72 129.2878 69662.72 129.2913 69682.72 129.2949 69702.72 129.2985 69722.72 129.3021 69742.72 129.3056 69762.72 129.3092 69782.72 129.3128 69802.72 129.3164 69822.72 129.3199 69842.72 129.3235 69862.72 129.3271 69882.72 129.3307 ENERCON CALCULATION CONTROL Attachment 1 69902.72 129.3342 69922.72 129.3378 69942.72 129.3414 69962.72 129.345 69982.72 129.3485 70002. 72 129.3521 70022.72 129.3557 70042.72 129.3593 70062'. 72 129.3628 70082.72 129.3664 70102.72 129.37 70122.72 129.3736 70142.72 129. 3771 70162. 72 129.3807 70182.72 129.3843 70202.72 129.3878 70222.72 129.3914 70242. 72 129.395 70262.72 129.3985 70282.72 129.4021 70302.72 129.4057 70322.72 129 .4093 70342.72 129.4128 70362.72 129.4164 70382.72 129.42 70402.72 129.4235 70422.72 129.4271 70442.72 129.4307 70462.72 129.4342 70482.72 129.4378 70502.72 129.4414 70522.72 129.4449 70542.72 129.4485 70562. 72 129.4521 70582. 72 129*.4556 70-602. 72 129.4592 70622.72 129.4628 70642.72 129.4663 70662. 72 129.4699 70682.72 129.4734 70702.72 129.477 70722.72
- 129.4806 70742. 72 129.4841 70762. 72 129.4877 70782.72 129.4913 70802.72 129.4948 70822.72 129.4984 70842.72 1;29.502 70862.72 129.5055 70882.72 129.5091 70902.72 129.5126 70922.72 129.5162 70942.72 129.5198 70962.72 129.5233 70982.72 71002. 72 129.5304 71022.72 129.534 71042. 72 129.5376 71062.72 129.5411 71082. 72 129. 5447 71102. 72 129.5482 71122. 72 129.5518 71142. 72 129.5554 71162. 72 129.5589 71182. 72 129.5625 71202. 72 129.566 71222.72 129.5696 71242.72 129.5732 71262.72 129.5767 71282. 72 129.5803 71302.72 129.5838 71322. 72 129.5874 71342. 72 129.5909 71362. 72 129.5945 71382 .. 72 129.5981 71402.72 129.6016 71422. 72 129.6052 I 71442. 72 129.6087 71462. 72 129.6123 71482. 72 129.6158 71502.72 129.6194 71522.72 129.6229 71542. 72 129.6265 71562. 72 129.63 71582. 72 129.6336 71602. 72 129.6371 71622. 72 129.6407 71642. 72 129.6442 71662.72 129.6478 71682.72 129.6514 71702. 72 129. 6549 71722. 72 129.6584 71742. 72 129.662 71762. 72 129.6656 71782.72 129.6691 71802. 72 129.6727 71822. 72 129.6762 71842. 72 129.6797 71862. 72 129.6833 71882. 72 129.6869 71902. 72 129.6904 71922. 72 129.694 71942.72 129. 69,75 71962.72 129.701 71982.72 129.7046 72002.72 129.7081 72022.72 129. 7117 72042.72 129. 7152 72062.72 129. 7188 72082.72 129.7223 72102.72 129.7259 72122.72 129.7294 v 72142. 72 129.733 72162.72 I 129.7365 72182. 72 129.7401 72202. 72 129.7436 72222.72 129. 7471 72242.72 129.7507 72262. 72 129. 75412 72282. 72 129.7578 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 146 of 303 ENERCON CALCULATION CONTROL Attachment 1 72302.72 129.7613 72322.72 129.7649 72342.72 129.7684 72362.72 129.772 72382. 72 129.7755 72402.72 129.7791 72422.72 129.7826 72442.72 129.7861 72462.72 129.7897 72482.72 129.7932 72502.72 129.7968 72522.72 129.8003 72542. 72 129.8038 72562.72 129.8074 72582.72 129.8109 72602. 72 129.8145 72622.72 129.818 72642. 72 129.8215 72662.72 129.8251 72682. 72 129.8286 72702.72 129.8322 72722.72 129.8357 72742.72 129.8392 72762. 72 129.8428 72782.72 129.8463 72802. 72 129.8499 72822.72 129.8534 72842. 72 129.8569 72862.72 129.8605 72882.72 129.864 72902.72 129.8675 72922. 72 129.8711 72942. 72 129.8746 72962. 72 129.8781 72982 .. 72 129.8817 73002.72 129.8852 73022.72 129.8887 73042. 72 129.8923 73062.72 129.8958 73082. 72 129.8994 73102. 72 129.9029 73122.72 129.9064 73142.72 129.91 73162. 72 129.9135 73182. 72 129.917 73202. 72 129.9206 73222.72 129.9241 73242.72 129.9276 73262.72 129.9312 73282.72 129. 9"347 73302.72 129.9382 73322.72 129:9417 73342.72 129.9453 73362.72 129.9488 73382.72 129.9523 73402.72 129.9559 73422.72 129.9594 73442.72 129.9629 73462.72 129.9665 73482.72 129.97 73502.72 129.9735 73522. 72 129. 9771 73542.72 129.9806 73562. 72 129.9841 73582.72 129.9876 73602. 72 129.9912 73622.72 129.9947 73642. 72 129.9982 73662.72 130.0017 73682.72 130.0053 73702.72 130.0088 73722. 72 130.0123 73742.72 130.0159 73762.72 130.0194 73782.72 130. 0229 73802.72 130.0264 73822. 72 130.03 73842.72 130.0335 73862.72 130.037 73882. 72 130.0405 73902.72 130.0441 73922.72 130.0476 73942.72 130.0511 73962.72 130.0546 73982.72 130.0581 74002. 72 130.0617 74022.72 130.0652 74042. 72 130.0687 74062.72 130.0722 74082. 72 130.0757 74102.72 130.0793 74122.72 130.0828 74142.72 130.0863 74162. 72 130.0898 74182.72 130.0934 74202. V2 130.0969 74222.72 130 .1004 74242. 72 130.1039 74262.72 130.1074 74282. 72 130.1109 74302.72 130.1145 74322.72 130.118 74342.72 130.1215 74362. 72 130.125 74382.72 130.1285 74402. 72 130.1321 74422.72 130.1356 74:442.72 130.1391 74462.72 130.1426 74482. 72 130.1461 74502.72 130.1496 74522. 72 130.1532 74542.72 130.1567 74562.72 130.1602 74582.72 130.1637 74602.72 130.1672
- 74622. 72 130.1707 74642. 72 130.1743 74662. 72 130.1778 74682.72 130.1813 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 147 of 303 ENERCON CALCULATION CONTROL Attachment 1 74702.72 130.1848 74722.72 130.1883 74742.72 130.1918 74762.72 130.1953 74782.72 130.1989 74802.72 130.2024 74322.72 130.2059 74842.72 130.2094 74862.72 130.2129 74882.72 130 .2164 74902.72 130.2199 74922.72 130.2234 74942.72 130.2269 74962. 72 130.2305 74982.72 130.234 75002.72 130.2375 75022.72 130.241 75042.72 130.2445 75062.72 130.248 75082.72 130.2515 75102.72 130.255 75122. 72 130.2585 75142.72 130.262 75162. 72 130,2655 75182.72 130.269 75202. 72 130.2726 75222.72 130.2761 75242.72 130.2796 75262.72 130.2831 75282.72 130. 2866 75302. 72 130.2901 75322.72 130.2936 75342.72 130.2971 75362.72 130 .3006 75382.72 130.3041 75402.72 130 .3076 75422.72 130 .3111 75442.72 130.3146 75462. 72 130.3181 75482.72 130.3216 75502.72 130.3251 75522.72 130.3286 75542. 72 130.3321 75562.72 130.3356 75582.72 130.3391 75602.72
'130 .3427 75622.72 130.3461 75642. 72 130.3497 75662.72 130.3531 75682. 72 130.3567 75702.72 130.3602 75722. 72 130. 3636 75742.72 130.3672 75762.72 130.3707 757821. 72 130.3742 75802.72 130.3777 75822.72 130.3811 75842.72 130.3846 75862.72 130.3882 75882.72 130 .3916 75902.72 130.3951 75922.72 130.3987 75942. 72 . 130 .4021 75962.72 130 .4056 75982.72 130.4091 76002.72 130.4126 76022.72 130.4161 76042.72 130.4196 76062.72 130.4231 76082.72 130.4266 76102.72 130.4301 76122.72 130.4336 76142.72 130.4371 76162.72 130.4406 76182.72 130.4441 76202. 72 130.4476 76222.72 130.4511 76242.72 130.4546 '76262. 72 130.4581 76282.72 130.4616 76302.72 130.4651 76322.72 130.4686 76342. 72 130.472 76362.72 130.4755 76382.72 130.479 76402.72 130 .4825 76422.72 130.486 76442.72 130 .4895 76462.72 130.493 76482.72 130 .4965 76502.72 130.5 76522.72 130.5035 76542.72 130.5069 76562.72 130.5104 76582.72 130.5139 76602.72 130.5174 76622.72 130.5209 76642.72 130.5244 76662.72 130.5279 76682.72 130.5314 76!702.72 130.53,49 76722. 72 130.5383 76742.72 130.5418 76762. 72 130.5453 76782.72 130.5488 76802. 72 130.5523 76822. 72 130.5558 76842. 72 130.5593 76862.72 130.5627 76882.72 130.5662 76902. 72 130.5697 76922.72 130.5732 76942.72 130.5767 76962.72 130.5802 76982.72 130.5836 77002.72 130.5871 77022.72 130.5906 77042.72 130.5941 77062.72 130.5976 77082. 72 130.6011 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 148 of 303 EN R 77102. 72 130.6046 77142.72 130.6115 77182. 72 130.6185 77222.72 130.6254 77262. 72 130.6324 77302.72 130.6394 77342.72 77382.72 130.6533 77422.72 130.6602 77462.72 130.6672 77502.72 130.6741 77542.72 130.6811 77582.72 130.688 77622. 72 130.695 77662.72 130.7019 77702. 72 130.7089 72 130. 7158 77782.72 130.7228 77822.72 130.7297 77862. 72 130. 7367 77902.72 130. 7436. 77942.72 130. 7505 77982.72 130.7575 78022.72 130. 7644 78062. 72 130. 7714 78102.72 130.7783 78142.72 130. 7852 78182.72 130.7922 78222.72 130.7991 78262.72 130.806 78302.72 130.813 78342.72 130.8199 78382.72 130.8268 78422.72 78462.72 130.8407 78502.72 130.8476 78542.72 130. 8545 78582.72 130.8614 78622.72 130.8683 78662.72 130.8753 78702.72 130.8822 78742.72 130.8891 78782.72 130.896 78822.72 130.9029 78862.72 130.9098 78902.72 130.9167 78942.72 130.9237 78982.72 130.9306 79022.72' 130.9375 79062. 72 130.9444 79102.72 130.9513 79142.72 130.9582 79182.72 130.9651 79222.72 130.972 79262.72 130. 9789 79302.72 130.9858 79342.72 130.9927 79382.72 130.9995 ,79422. 72 131.0064 79462.72 131. 0133 ON CALCULATION CONTROL Attachment 1 77122.72 130.608 77162.72 130.615 77202.72 130.6219 77242. 72 130.6289 77282. 72 130.6359 77322.72 130.6428 77362. 72 130.6498 77402.72 130.6567 77442.72 130.6637 77482.72 130.6707 77522.72 130.6776 77562.72 130.6846 77602.72 130.6915 77642.72 139. 6985 77682.72 130. 7054 77722.72 130. 7124 77762.72 130. 7193 77802.72 130.7262 77842. 72 130.7332 77882.72 130.7401 77922.72 130.7471 77962.72 130.754 78002.72 130.761 78042.72 130.7679 78082.72 130.7748 78122.72 130. 7818 78162.72 130.7887 78202.72 130.7956 78242.72 130.8026 782'82. 72 130.8095 7.8322. 72 130.8164 78362.72 130.8233 78402.72 130. 8303 78442.72 130.8372 78482.72 130.8441 78522.72 130:851 78562.72 130.858 78602.72 130.8649 78642. 72 130. 8718 78682 .72 130.8787 78722.72 130.8857 78762.72 130. 8926 78802.72 130.8995 78842.72 130.9064 78882.72 130.9133 78922.72 130.9202 78962.72 130.9271 79002.72 130.934 79042.72 130.9409 79082.72 130.9478 79122.72 130.9547 79162.72 130.9616 79202.72 130.9685 79242.72 130.9754' 79282.72 130.9823 179322. 72 130.9892 79362. 72 130. 9961 79402. 72 131. 003 79442.72 131. 0099 79482.72 131.0168 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 149 of 303 L CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 f.xrclience-F.vetyptc]e<.t. Evtt:;tfay. Attachment 1 PAGE NO. 150 of 303 79502.72 131.0202 79522.72 131. 0237 79542.72 131. 0271 79562.72 131. 0305 79582.72 131.034 79602.72 -.131.0374 79622.72 131.0409 79642.72 131. 0443 79662.72 131.0477 79682.72 131. 0512 79702.72 131.0546 79722.72 131. 0581 79742.72 131. 0615 79762.72 131.0649 79782.72 131.0684 79802.72 131. 0718 79822.72 131. 0753 79842. 72 131.0787 79862.72 131. 0821 79882. 72 131.0856 79902.72 131. 089 79922.72 131.0924 79942.72 131. 0959 79962.72 131.0993 79982. 72 131.1027 80002.72 131.1062 80022. 72 131.1096 80042.72 131.1131 80062.72 131.1165 80082. 72 131.1199 80102.72 131.1234 80122. 72 131.1268 80142.72 131.1302 80162.72 131.1337 80182.72 131.1371 80202.72 131.1405 80222.72 131.144 80242.72 80262. 72 131.1508 80282. 72 131.1543 80302.72 131.1577 80322. 72 131.1611 80342.72 131.1646 80362.72 131.168 80382.72 131.1714 80402.72 131.1749 80422. 72 131.1783 80442.72 131.1817 80462. 72 131.1851 80482. 72 131.1886 80502. 72 131.192 80522. 72 131.1954 80542.12 131.1989 ' 80562. 72, 131.2023 80582.72 131.2057 80602.72 131.2*092 80622.72 131. 2126 80642.72 131. 216 80662.72 131.2194 80682.72 131.2229 80702.72 131.2263 80722.72 131. 2297 '80742. 72 131.2332 80762. 72 131'.2366 80782.72 131.24 80802. 72 131.2434 80822.72 131.2469 80842.72 131.2503 80862.72 131.2537 80882.72 131.2571 80902.72 131.2606 80922.72 131.264 80942.72 131.2674 80962.72 131.2708 80982.72 131.2743 81002.72 131.2777 81022.72 131.2811 81042.72 131.2845 81062. 72 131.288 81082.72 131.2914 81102. 72 131. 2948 81122. 72 131.2982 81142.72 131.3017 81162. 72 131. 3051 81182.72 131.3085 81202.72 131. 3119 81222.72 131. 3154 81242. 72 131. 3188 81262.72 131. 3222 81282.72 131. 3256 81302. 72 131. 329 81322.72 131.3325 81342. 72 131.3359 81362. 72 131.3393 81382.72 131.3427 81402. 72 131.3461 81422.72 131.3496 81442.72 131.353 81462.72 131.3564 81482. 72 131.3598 81502.72 131.3633 81522.72 131.3667 81542.72 131.3701 81562.72 131.3735 81582.72 131.3769 81602.72 131.3803 81622.72 131.3838 81642.72 131. 3872 81662. 72 131.3906 81682.72 131. 394 81702.72 131.3974 81722. 72 131.4008 81742.72 131.4043 81762.72 131.4077 81782. 72 131.4111 81802.72 131.4145 81822.72 131.4179 81842.72 131.4213 81862.72 131.4248 81882.72 131.4282 CALC. NO. ENTR-078-CALC-004 E N E R c 0 N . CALCULATION CONTROL SHEET-f.x<ellonte-F.vetypff)jt¢1.£WQNf(1'f Attachment 1 REV.O PAGE NO. 151 of 303 81902. 72 131.4316 81922.72 131.435 81942.72 131.4384 81962.72 131.4418 81982. 72 131.4453 82002.72 131.4487 82022.72 131.4521 82042.72 131.4555 82062.72 131.4589 82082. 72 131.4623 82102.72 131.4657 82122.72 131.4691 82142.72 131.4726 82162.72 131.476 82182.72 131.4794 82202.72 131.4828 82222.72 131.4862 82242.72 131.4896 82262.72 131.493 82282.72 131.4964-82302.72 131.4998 82322.72 131. 5033 82342.72 131. 5067 82362.72 131. 5101 82382.72 131. 5135 82402. 72 131. 5169 82422.72 131. 5203 82442. 72 131. 5237 82462.72. 131. 5271 82482. 72 131.5305 82502.72 131.534 82522. 72 131.5374 82542.72 131.5408 82562.72 131.5442 82582.72 131.5476 82602.72 131.551 82622. 72 131.5544 82642. 72 131. 5578 82662. 72 131. 5612 82682.72 131. 5646 82702. 72 131. 5!58 82722.72 131. 5714 82742.72 131.5748 82762.72 131.5782 82782.72 131. 5816 82802. 72 131.5851 82822.72 131.5885 82842.72 131.5919 82862.72 131.5953 82882. 72 131.5987 82902.72 131.6021 82922.72 131.6055 82942. 72 131.6089 82962.72 131.6123 82982. 72 131. 6157 83002.72 131.6191 83022. 72 131.6225 83042.72 131.6259 83062. 72 131.6293 83082.72 131. 6327 83102. 72 131.6361 83122. 72 131.6395 83142. 72 131.6429 83162.72 131.6463 83182.72 131. 6497 83202. 72 131.6531 83222. 72 131. 6565 83242.72 131.6599 83262.72 131.6633 83282.72 131.6667 83302.72 131.6701 83322.72 131.6735 83342. 72 131. 6769 83362.72 131.6803 83382.72 131.6837 83402. 72 131.6871 83422. 72 131. 6905 83442.72 131. 6939 83462. 72 131. 6973 83482.72 131.7007 83502.72 131.7041 83522.72 131.7075 83542. 72 131. 7109 83562.72 131. 7143 83582. 72 131.7177 83602. 72 131. 7211 83622.72 131.7245 83642.72 131.7279 83662.72 131. 7313 83682. 72 131. 7347 83702. 72 > 131.7381 83722.72 131. 7415 83742 .. 72 131.7449 83762.72 131.7482 83782. 72 131. 7516 83802. 72 131.755 83822. 72 131.7584 83842.72 131. 7618 83862.72 131.7652 83882. 72 131. 7686 83902.72 131.772 83922. 72 131. 7754 83942. 72 131.7788 83962.72 131.7822 83982.72 131. 7856 84002.72 131. 789 84022.72 131.7924 84042.72 131.7958 84062.72 131.7991 84082.72 131.8025 84102.72 131.8059 84122.72 131.8093 84142. 72 131. 8127 84162.72 131.8161 84182.72 131. 8195 84202.72 131.8229 84222. 72 131. 8263 84242.72 131.8297 84262.72 131. 8331 84282.72 131.8364 ENERCON CALCULATION CONTROL Attachment 1 84302.72 131.8398 84322. 72 131. 8432 84342.72 131.8466 84362.72 131.85 84382.72 131.8534 84402. 72 131.8568 84422.72 131.8602 84442. 72 131.8635 84462.72 131. 8669 84482.72 131.8703 84502.72 131.8737 84522.72 131. 8771 84542.72 131.8805 84562. 72 131.8839 84582.72 131.8873 84602.72 131. 8906 84622.72 131. 894 , 84642.72 131. 8974 84662.72 131. 9008 84682.72 131.9042 84702.72 131.9076 84722.72 131.9109 84742. 72 131.9143 84762.72 131. 9177 84782.72 131. 9211 84802.72 131.9245 84822.72 131.9279 84842.72 131.9312 84862.72 131. 9346 84882.72 131. 938 84902.72 131. 9414 84922.72 131. 9448 84942. 72 131. 9482 84962. 72 131. 9515 84982.72 131. 9549 85002. 72 131. 9583 85022.72 131. 9617 85042.72 131.9651 85062.72 131. 9684 85082.72 131.9718 85102.72 131. 9752 85122.72 131.9786 85142.72 131.982 85162.72 131. 9853 85182.72 131.9887 85202.72 131. 9921 85222.72 131. 9955 85242.72 131. 9989 85262.72 132.0022 85282.72 132.0056 85302.72 132.009 85322.72 132.0124 85342.72 132.0157 85362. 72 132.0191 85382.72 132.0225 85402.72 132. 0259 85422.72 132.0293 85442.72 132. 0326 85462.72 132.036 85482.72 132.0394 85502.72 132.0428 85522.72 132.0461 85542.72 132.0495 85562.72 132.0529 85582.72 132.0563 85602.72 132.0596 85622.72 132.063 85642.72 132.0664 85662.72 132.0697 85682.72 132.0731 85702.72 132.0765 85722. 72, 132.0799 85742.72 132.0832 85762.72 132.0866 85782.72 132.09 85802. 72 132.0934 85822.72 132.0967 85842.72. 132.1001 85862.72 132.1035 85882.72 132 .1068 85902.72 132 .1102 85922.72 132.1136 85942. 72 132 .117 .85962. 72 132.1203 85982.72 132.1237 86002. 72 132 .1271 86022.72 132.1304 86042. 72 132.1338 86062.72 132.1372 86082.72 132.1405 86102.72 132.1439 86122. 72 132.1473 86142.72 132.1507 86162.72 132 .154 86182'. 72 132.1574 86202.72 132.1608 86222. 72 132.1641 86242.72 132.1675 86262.72 132.1709 86282.72 132.1742 86302.72 132.1776 86322. 72 132.181 86342. 72 132.1843 86362. 72 132.1877 86382.72 132.1911 86400. 132.194 Function 2T Sol-Air Roof. Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 152 of 303 ENER ON CALCULATION CONTROL Attachment 1 0. 7200. 14400. 21600. 28800. 36000. 4320,0. 50400. 57600. 64800. 72000. 79200. 86400. Function 3T Lighting HL Ind. Var'.: Dep. Var.: 134.85 125 .11 104.33 89.37 85.97 83.25 81.04 79.85 79. 87.64 112. 78 130.66 134. 85 3600. 131.73 10800. 115.44 18000. 93.22 25200. 87.5 32400. 84.44 39600. 82.06 46800. 80.36 54000. 79.34 61200. 79.34 68400. 100.37 75600. 123.12 82800. 134.46 Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 0.1134 1000000. 0.1134 Function 4T HVC-ACUl Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 70. 95.21 100. 95.21 105. 95.41 110. 95.6 115. 95.79 120. 96. 05 125. c 99. 02 130. 102.02 135. 105.14 140. 108.48 145. 111. 98 150. 115. 68 155. 119. 57 160. 123.63 Function ST RH Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 70. 50. 100. 57.9 105. 66.8 110. 76.85 115. 88.17 120. 100. 125. 100. 130. 100. 150. 100. Function 6T Outside Temp Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. 'Ind. Var. Dep. Var. 0. 96. 14400. 96. 18000. 96. 21600. 94.98 25200. 93.62 28800. 91.92 32400. 89.37 36000. 87.5 39600. 85. 97* 43200. 84.44 46800. 83.25 50400. 82.06 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 153 of 303 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL Attachment 1 REV.O 54000. Bl.04 57600. B0.36 61200': 79.BS 64BOO. 79.34 6B400. 79. 72000. 79.34 75600. B0.53 79200. B3.42 B2BOO. B6.65 B6400. B9.54 Function 7T Initial Panels Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 0.11 Function BT Operators Ind. Var.: Dep. Var.: 1. 0.1 1. 0. 1000000.
- 0. Ind. Var. Dep. Var. Ind. Var. Dep. Var. 1000000.
0.0025B 0. 0.0025B Control Variables CV i::unc. Initial Coeff. # Description Form Value G lC Max Cell Temp max 0. 1. 2C Low MCR Avg sum 0. 0.007Bl 3C Middle MCR Av sum 0. 0.007Bl 4C LMCR Average sum 0. 0.53559 SC Stream 4 Temp sum 0. 1. 6C HVC-ACUl Exha sum 0. 1. 0 7C Overall Max max 0. 1. BC Top MCR Avg sum 0. 0.007Bl 9C Total MCR Avg sum 0. 0.17669 Function Components Control Variable lC Max Cell Temp max Y=G*max(a0,a1Xl,a2X2, ... ,anXn) Gothic s Variable Coef. # Name location a 1 Temv cVls4 1. 2 Temv cVlsB 1. 3 Temv cVls3 1. 4 Temv cVls7 1. 5 Temv cVls2 1. 6 Temv cVls6 1. 7 Temv cVlsl 1. B Temv cVlsS 1. 9 Temv cVls12 1. 10 Temv cVls16 1. 11 Temv cVlsll 1. 12 Temv cVlslS 1. 13 Temv cVlslO 1. 14 Temv cVls14 1. 15 Temv cVls9 1. 16 Temv cVls13 1. 17 Temv cVls17 1. PAGE NO. 154 of 303 Coeff. Upd. Int. ao Min Max Mult. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 o. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. °"- CALC. NO. ENTR-978-CALC-004 \ ERC N CALCULATION CONTROL SHEET-REV.O pu;]e<;t, £wty fitJ<;. Attachment 1 PAGE NO. 155 of 303 18 Temv cVls18 1. 19 Temv cVls19 1. 20 Temv cVls20 1. 21 Temv cVls21 1. 22 Temv cVls22 1. 23 Temv cVls23 1. 24 Temv cVls24 1. 2S Temv cVls2S 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1, 34 Temv cVls34 1. 3S Temv cVls3S 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 l. 41 Temv cVls41 1. 42 Temv cVls42 1. 43 Temv cVls43 1. 44 Temv cVls44 1. 4S Temv cVls4S 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVJ.s49 1. so Temv \ cVlsSO 1. Sl Temv cVlsSl 1. S2 Temv cVlsS2 1. S3 Temv cVlsS3 1. S4 Temv cVlsS4 1. SS Temv cVlsSS 1. S6 Temv cVlsS6 1. S7 Temv cVlsS7 1. S8 Temv cVlsS8 1. S9 Temv cVlsS9 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 1. 63 Temv cVls63 1. 64 Temv cVls64 1. 6S Temv cVls6S 1. 66 Temv cVls66 1. 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv. cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. ,7_4 Temv cVls74 1. 7S Temv cVls7S 1. 76 Temv cVls76 1. 77 Temv cVls77 1. CALC. NO. ENTR-078-CALC-004 EN RC.ON CALCULATION CONTROL SHEET-REV.O vtoJtt,t. Ewr1 da1 Attachment 1 PAGE NO. 156 of 303 78 Temv cVls78 l .' 79 Temv cVls79 1. 80 Temv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 Temv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86. Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 'i'emv cVls95 1. 96 Temv cVls96 1. 97 Temv cV1897 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv cVlslOO 1. 101 Temv I cVlslOl 1. 102 Temv cVls102 1. 103 Temv cVls103 1. 104 Temv cVlsl04 1. 105 Temv -cVls105 1. 106 Temv cVls106 1. 107 Temv cVls107 1. \.' 108 Temv cVls108 1. 109 Temv cVlsl09 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cVls112 1. 113 Temv cVls113 1. 114 Temv cVls114 1. 115 Temv cVlsl15 1. 116 Temv cVls116 1. 117 Temv cVls117 1. 118 Temv cVls118 1. 119 Temv cVls119 1. 120 Temv cVls120 1. 121 Temv cVls121 L 122 Temv cVls122 1. 123 Temv c;Vls123
- 1. 124 Temv cVlsl24 1. 125 Temv cVls125 1. 126 Temv cVls126 1. 127 Temv 1 cVls127 1. 128 Temv cVls128 1. 129 Temv cVls129 1. 130 Temv cVls130 1. 131 Temv cVls131 1. 132 Temv. cVls132 1. 133 Temv .cVls133
- 1. 134 Temv cVls134 1. 135 Temv cVls135 1. 136 Temv cVls136 1. 137 Temv cVls137 r.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 ptojttt. f;vtfJ d(Jj. Attachment 1 PAGE NO. 157 of 303. 138 Temv cVls138 1. 139 Temv cVls139 1. 140 Temv cVls140 1. 141 Temv cVls141 1. 142 Temv cVls142 1. J.43 Temv cVls143 1. 144 Temv cVls144 1. 145 Temv cVls145 1. 146 Temv cVls146 1. 147 Temv cVls147 1. 148 Temv cVls148 1. 149 Temv cVls149 1. 150 Temv , cVls150 1. 151 Temv cVls151 1. 152 Temv cVls152 1. 153 Temv cVls153 1. 154 Temv cVls154 1. 155 Temv cVls155 1. 156 Temv cVls156 1. 157 Temv cvis157 1. 158 Temv cVls158 1. 159 Temv cVls159 1. 160 Temv cVls160 1. 161 Temv cVls161 1. 162 Temv -CV1s162
- 1. 163 Temv cVls163 1. 164 Temv cVls164 . 1. 165 Temv cVls165 1. 166 Temv cVls166 1. 167 Temv cVls167 1. 168 Temv cVls168 1. 169 Temv cVls169 1. 170 Temv cVls170 1. 171 Temv cVls171 1. 172 Temv cVls172 1. 173 Temv cVls173 1. 174 Temv cVls174 1. 175 Temv cVls175 1. 176 Temv cVls176 1. 177 Temv cVls177 1. 178 Temv cVls178 1. 179 Temv cVls179 1. 180 Temv cVls180 1. 181 Temv cVls181 1. 182 Temv cVls182 1. 183 Temv cVls183 1. 184 Temv cVls185 1. 185 Temv cVls184 1. 186 Temv cVls186 1. 187 Ternv cVls187 1. 188 Temv cVls188 1. 189 Temv cVls189 1. 190 Temv {Vls190 1. 191 Temv cVls191 1. 192 Temv cVls192 1. 193 Temv cVls193 1. 194 Temv cVls194 1. 195 Temv cVls195 1. 196 Temv cVls196 1. 197 Temv cVls197 1.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.:<<:ellenct-frNyptoJ<<tfvl!rJdW Attachment 1 PAGE NO. 158 of 303 198 Temv cVlsl98 1. 199 Temv cVlsl99 1. 200 Temv cVls200 1. 201 Temv cVls201 1. 202 Tem\r cVls202 1. 203 Temv cVls203 1. 204 Temv cVls204 1. 205 Temv cVls205 1. 206 Temv cVls206 1. 207 Temv cVls207 1. 208 Temv cVls208 1. 209 Temv cVls209 1. 210 Temv cVls210 1. 211 Temv cVls211 1. 212 Temv cVls212 1. 213 Temv cVls213 1. 214 Temv cVls214 1. 215 Temv cVls215 1. 216 Temv cVls216 1. 217 Temv cVls217 1. 2l8 Temv cVls218 1. 219 Temv cVls219 1. 220 Temv cVls220 1. 221 Temv cVls221 1. 222 Temv cVls222 1. 223 Temv cVls223
- 1. 224 Temv cVls224 1. 225 Temv cVls225 1. 226 Temv cVls226 1. 227 Temv I cVls227 1. 228 Temv c.Vls228
- 1. 229 Temv cVls229 1. 230 Temv cVls230 1. 231 Temv cVls231 1. 232 Temv cVls232 1. 233 Temv cVls233 1. 234 Temv cVls234 1. 235 Temv cVls235 1. 236 Temv cVls236 1. 237 Temv cVls237 1. 238 Temv cVls238 1. 239 Temv cVls239 1. 240 Temv cVls240 1. 241 Temv cVls241 1. 242 Temv cVls242 1. 243 Temv cVls243 1. 244 Temv cVls244 1. 245 Temv cVls245 1. 246 Temv cVls246 1. 247 Temv cVls247 1. 248 Temv cVls248 1. 249 Temv cVls249 1. 250 Temv cVls250 1. 251 Temv cVls251 1. 252 Temv cVls252 1. '253 Temv cVls253 1. 254 Temv cVls254 1. 255 Temv cVls255 1. 256 Temv cVls256 1.
E.NERCON Function Components Control Variable 2C Low MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv ) 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv 36 Temv 37 Temv 38 Temv 39 Temv 40 Temv 41 Temv 42 Temv 43 Temv 44 Temv 45 Temv 46 Temv 47 Temv 48 Temv 49 Temv 50 Temv 51 Temv 52 Temv 53 Temv CALCULATION CONTROL Attachment 1 Variable Coef. location a cVlsl 1. cVls2 1. cVls3 1. cVls4 1. cVls5 1. cVls6 1. cVls7 1. cVls8 1. cVls9 1. cVlslO 1. cVlsll 1. cVls12 1. cVls13 1. cVls14 1. cVls15 1. cVls16 1. cVls17 1. cVls18 1. cVls19 1. cVls20 1. cv1s21 1. cVls22 1. cVls23 1. cVls24 L cVls25 1. cVls26 1. cVls27 1. cVls28 1. cVls29 1. cVls30 1. cVls31 1. cVls32 1. cVls33 1. cVls34 1. cVls35 1. cVls36 1. cVls37 1. cVls38 1. cVls39 1. cVls40 1. cVls41 1. cVls42 1. cVls43 1. cVls44 1. cVls45 1. cVls46 1. cVls47 1. cVls48 1. cVls49 1. cVls50 1. cVls51 1. cVls52 1. cVls53 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 159 of 303 CALC. NO. ENTR-078-CALC-004 N R ON CALCULATION CONTROL SHEET-REV. 0 f'l't?tyday. Attachment 1 PAGE NO. 160 of 303 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 ;L. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 \ 1. 63 Temv cVls63 1. / 64 Temv cVls64 '1. 65 Temv cVls65 1. 66 Temv cVls66 1. \ 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 Temv cVls76 1. 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 8.0 TEimv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 'remv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86 Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv .cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv -cVlslOO
- 1. 101 Temv cVlslOl 1. 102 Temv cVlsl02 1. 103 Temv cVlsl03 1. 104 Temv cVlsl04 1. 105 Temv cVlsl05 1. 106 Temv cVls106 1. 107 Temv cVlsl'07
- 1. 108 Temv cVlsl08 1. 109 Temv cVlsl09 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cVlsll2 1. 113 Temv cVlsll3 1.
ENERCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 127 Temv 128 Temv Function Components Control Variable 3C Middle MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv *24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Tel)IV 36 Temv 37 Temv CALCULATION CONTROL Attachment 1 cVlsl14 1. cVlsl15 1. cVlsl16 1.' cVlsl17 1. cVlsll8 1. cVlsl19 1. cVlsl20 1. cVlsl21 1. cVlsl22 1. cVlsl23 1. cVlsl24 1. cVlsl25 1. cVlsl26 1. cVls127 1. cVlsl28 1. Variable Coef. location a cVlsl29 1. cVls130 1. cVls131 1. cVlsl32 1. cVlsl33 1. cVlsl34 1. cVlsl35 1. cVlsl36 1. cVlsl38 1. cVlsl37 1. cVlsl39 1. cVls141 1. cVlsl40 1. cVlsl43 1. cVlsl42 1. cVl§l44 1. cVls145 1. cVlsl46 .1. cVlsJ:47
- 1. cVlsl48 1. cVlsl49 1. cVlsl50 1. cVlsl51 1. cVlsl52 1. cVlsl53 1. cVls154 1. cVlsl55 1. cVls156 1. cVls157 1. cVls158 1. cVlsl59 1. cVlsl60 1. cVlsl61 1. cVls162 1. cVlsl63 1. cVlsl64 1. cVlsl65 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 161 of 303 / '\
CALC. NO. ENTR-078-CALC-004 NER.CON CALCULATION CONTROL SHEET-REV.O f:vtrydr;y.
- Attachment 1 PAGE NO. 162 of 303 38 Temv cVls166 1. 39 Temv cVls167 1. 40 Temv cVls168 1. 41 Temv cVls169 1. 42 Temv cVls170 1. 43 Temv cVls171 1. 44 Temv cVls172 1. 45 Temv cVls173 1. 46 Temv cVls174 1. 47 Temv cVlsl75 1. 48 Temv cVls176 1. 49 Temv cVls177 1. 50 Temv cVls178 1. 51 Temv cVlsl79 1. 52 Temv cV:\.sl80
- 1. 53 Temv cVls181 1. 54 Temv cVls182 1. 55 Temv cVls183 1. 56 Temv cVls184 1. 57 Temv cVls185 1. 58 Temv cVls186 1. 59 Temv cVls187 1. 60 Temv cVls188 1. 61 Temv cVls189 1. 62 Temv cVls190 1. 63 Temv cVls191 1. 64 Temv cVls192 1. L 65 Temv cVls193 1. 66 Temv CV1s194 1. 67 Temv cVls195 1. 68 Temv cVls196 1. 69 Temv cVls199 1. 70 Temv cVls197 1. 71 Temv cVls198 1. 72 Teniv cVls200 1. 73 Temv .cVls201
- 1. 74 Temv cVls202 1. 75 Temv cVls203 1. 76 Temv cVls204 1. 77 Temv c'irls205
- 1. 78 Temv cVls206 1. 79 Temv cVls207 1. 80 Temv cVls208 1. 81 Temv cVls209 1. 82 Temv cVls210 1. 83 Temv cVls211 1. 84 Temv cVls212 1. 85 Temv cVls213 1. 86 Temv cVls214 1. 87 Temv cVls215 1. 88 Temv cVls216 1. 89 Temv cVls217 1. 90 Temv cVls218 1. 91 Temv cVls219 1. 92 Temv cVls220 1. 93 Temv cVls221 1: 94 Temv cVls222 1. 95 Temv cVls223 1. 96 Temv cVls224 1. 97 Temv cVls225 1.
ENER,CON CALCULATION CONTROL SHEET-fxrel!e!U;e-E<etyp!O}<<:l f.vwy 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 4C LMCR Average sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) cVls226 cVls227 cVls228 cVls229 cVls230 cVls231 cVls233 cVls232 cVls236 cVls234 cVls235 cVls237 cVls239 cVls238 cVls240 cVls241 cVls242 cVls243 cVls244 cVls245 cVls246 cVls247 cVls248 cVls249 cVls250 cVls252 cVls251 cVls253 cVls255 cVls254 cVls256 Gothic s Variable
- 1 2 Name Cvval(O)
Cvval(O) Function Components Control Variable SC Stream 4 Temp sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) location cv3C cv2C Gothic s Variable
- 1 Name Temv Function Components Control Variable 6C HVC-ACUl Exhaust sum Y=G*(aO+a1Xl+a2X2+
... +anXn) location cV6 Gothic_s Variable
- 1 Name Temv location cV3 Attachment 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 0.867 Coef. a 1. Coef. a 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 163 of 303 ENERCON Function Components Control Variable 7C Overall Max max CALCUl-ATION CONTROL Attachment 1 Y=G*max(a0,a1Xl,a2X2,
... ,anXn) Gothic s Variable Coef. # Name location a 1 Cvval(O) cvlC 1. 2 Temv cVls257 1. 3 Temv cVls258 1. 4 Temv cVls259 1. 5 Temv cVls260 1. 6 Temv cVls261 1. 7 Temv cVls262 1. 8 Temv cVls263 1. 9 Temv 1 cVls264 1. 10 Temv cVls265 1. 11 Temv cVls266 1. 12 1Temv cVls267 1. 13 Temv cVls268 1. 14 Temv cVls269 1. 15 Temv cVls270 1. 16 Temv cVls271 1. 17 Temv cVls272 1. 18 Temv cVls273 1. 19 Temv cVls274 1. 20 Temv cVls275 1. 21 Temv cVls276 1. 22 Temv cVls277 1. 23 Temv cVls278 1. 24 Temv cVls280 1. 25 Temv cVls279 1. 26 Temv cVls281 1. 27 Temv cVls282 1. 28 Temv cVls284 1. 29 Temv cVls283 1. 30 Temv cVls286 1. 31 Temv cVls285 1. 32 Temv cVls287 h 33 Temv cVls288 1. 34 Temv cVls289 1. 35 Temv cVls290 1. 36 Temv cVls291 1. 37 Temv cVls292 1. 38 Temv cVls293 1. 39 Temv cVls294 1. 40 Temv cVls295 1. 41 Temv cVls296 1. 42 Temv cVls297 1. 43 Temv cVls298 1. 44 Temv cVls299 1. 45 Temv cVls300 1. 46 Temv cVls301 1. 47 Temv cVls302 1. 48 Temv cVls303 1. 49 Temv cVls304 1. 50 Temv cVls305 1. 51 Temv cVls306 1. 52 Temv cVls307 1. 53 Temv cVls308 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 164 of 303 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV.O f.'l!Hjti¢t. Attachment 1 PAGE NO. 165 of 303-54 Temv cVls309 1. 55 Temv cVls310 1. 56 Temv cVls311 1. 57 Temv cVls312 1. 58 Temv cVls313 1. 59 Temv cVls314 1. 60 Temv cVls315 1. 61 Temv cVls316 1. 62 Temv cVls317 1. 63 Temv cVls318 1. 64 Temv cVls319 1. 65 Temv cVls320 1. 66 Temv cVls321 1. 67 Temv cVls322 1. 68 Temv cVls323 1. 69 Temv cVls324 1. 70 Temv cVls325 1. 71 Temv cVls326 1. 72 Temv cVls327 1. 73 Temv cVls328 1. 74 Temv cVls329 1. ,75 Temv cVls330 1. 76 Temv cVls331 1. 77 Temv cVls332 1. 78 Temv cVls333 1. 79 Temv cVls334 1. 80 Temv cVls335 1. 81 .Temv cVls336 1. 82 Temv cVls337 1. 83 Temv cVls338 1. 84 Temv cVls339 1: 85 Temv cVls340 1. 86 Temv cVls341 1. 87 Temv cVls342 1. 88 Temv cVls343 1. 89 Temv cVls344 1. 90 Temv cVls345 1. 91 Temv cVls346 1. 92 Temv cVls347 1. 93 Temv cVls348 1. 94 Temv cVls349 1. 95 Temv cVls350 1. 96 Temv cVls351 1. 97 Temv cVls352 1. 98 Temv cVls353 1. 99 Temv cVls354 1. 100 Temv cVls355 1. 101 Temv cVls356 1. 102 r Temv cVls357 1. 103 Temv cVls358 1. 104 Temv cVls359 1. 105 Temv cVls360 1. 106 Temv cVls361 1. 107 Temv cVls362 1. 108 Temv cVls363 1. 109 Temv cVls364 1. 110 Temv -cVls365
- 1. 111 Temv cVls366 1. 112 Temv cVls367 1. 113 Temv cVls368 1.
EN RCON 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv 129 Temv Function Components Control Variable 8C Top MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s # Name 1 Temv 2 Temv 3 Temv 4 Temv 5 Temv 6 Temv 7 Temv 8 Temv 9 Temv 10 Temv 11 Temv 12 Temv 13 Temv 14 Temv 15 Temv 16 Temv 17 Temv 18 Temv 19 Temv 20 Temv 21 Temv 22 Temv 23 Temv 24 Temv 25 Temv 26 Temv 27 Temv 28 Temv 29 Temv 30 Temv 31 Temv 32 Temv 33 Temv 34 Temv 35 Temv: 36 Temv CALCULATION CONTROL Attachment 1 cVls369 1. cVls370
- 1. cVls371 1. cVls373 1. cVls372 1. cVls375 1. cVls376 1. cVls377 1. '] cVls378 1. cVls379 1. cVls380 1. cVls381 1. cVls382 1. cVls383 1. cVls384 1. cVls374 1. Variable Coef. location a cVls257 1. cVls258 1. cVls259 1. cVls260 1. cVls261 1. cVls262 1. cVls263 1. cVls264 1. cVls265 1. cVls266 1. cVls267 1. cVls268 1. cVls269 1. cVls270 1. cVls271 1. cVls272 1. cVls273 1. cVls274 1. cVls275 1. cVls276 1. cVls277 1. cVls278 1. cVls279 1. cVls280 1. cVls281 1. cVls282 1. cVls283 1. cVls284 1. cVls285 1. cVls286 1. cVls287 1. cVls288 1. cVls289 1. \ cVls290 1. cVls291 1. cVls292 1. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 166 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptv_j(k,"t.
f.wr:; day. Attachment 1 PAGE NO. 167 of 303 37 Temv cVls293 1. 38 Temv cVls294 1. 39 Temv cVls295 1. 40 Temv cVls296 1. 41 Temv cVls297 1. 42 Temv cVls298 1. 43 Temv cVls299 1. 44 Temv cVls300 1. 45 Temv cVls301 1. 46 Temv cVls302 1. 47 Temv cVls303 1. 48 Temv cVls304 1. 49 Temv \ cVls305 1. 50 Temv cVls306 1. 51 Temv cVls307 1. 52 Temv cVls308 1. 53 Temv cVls309 1. 54 Temv cVls310 1. 55 Temv cVls311 1. 56 Temv cVls312 1. 57 Temv cVls313 1. 58 Temv cVls314 1. 59 Temv cVls315 1. 60 Temv cVls316 1. 61 Temv cVls317 1. 62 Temv cVls318 1. 63 Temv cVls319 1. 64 Temv cVls320 1. 65 Temv cVls321 1. 66 Temv cVls322 1. 67 Temv cVls323 1. 68 Temv cVls324 1. 69 Temv cVls325 1. 70 Temv cVls326 1. 71 Temv cVls327 1. 72 Temv cVls328 1. 73 Temv cVls329 1. 74 Temv cVls330 1. 75 Temv cVls331 1. 76 Temv cVls332 1. 77 Temv cVls333 1. 78 Temv cVls334 1. 79 Temv cVls335 1. 80 Temv cVls336 1. 81 Temv cVls337 1. 82 Temv cv1-s338
- 1. 83 Temv cVls339 1. 84 Temv cVls340 1. 85 Temv cVls341 1. 86 Temv cVls342 1. 87 Temv cVls343 1. 88 Temv cVls344 1. 89 Temv cVls345 1. 90 Temv cVls346 1. 91 Temv cVls348 1. I 92 Temv cVls347 1. 93 Temv cVls349 1. 94 Temv cVls351 1. 95 Temv cVls350 1. 96 Temv cVls352 1.
NER ON CALCULATION CONTROL Attachment 1 97 Temv 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 9C Total MCR Avg s.um cVls353 cVls354 cVls355 cVls356 cVls357 cVls358 cVls359 cVls360 cVls361 cVls362 cVls363 cVls364 cVls365 cVls366 cVls367 cVls368 cVls369 cVls370 cVls371 cVls372 cVls373 cVls374 *cvls375 cvis376 cVls377 cVls378 cVls379 cVls380 cVls381 cVls382 cVls383 cVls384 Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s Variable
- 1 2 Time Time Dom 1 2 3 Name Cvval(O) cvyal(O)
Domain Data DT DT Min Max 0.001 1. 0.001 10. 0.001 10. Solution Options DT Ratio le+006 1. 1. location cv8C cv4C End Print Time Int 0.01 0.01 10000. 500. 86400. 500. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1. 1. Coef. a 1. 4.65949 Graph Int 1. 10. 100. Gas Error Relax T DEFAULT DEFAULT DEFAULT Time Solution Imp Conv Imp Iter Pres Sol Pres Conv Pres Dom Method 1 SEMI-IMP 2 SEMI-IMP 3 SEMI-IMP Run Options Option Start Time Limit 0. 0. 0. Limit 1 1 1 Method DIRECT DIRECT DIRECT Setting 0.0 Limit Limit 0. 1 0. 1 0. 1 Dump Int 0. 0. 0. Iter CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 168 of 303 Ph Chng L Flow T Scale Shutoff . DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Differ Burn Scheme Sharp FOUP 0. FOUP 0. FOUP 0.
ENERCON CALCULATION CONTROL Attachment 1 Restart Time Step # Restart Time Control 0 NEW Revaporization 'Fraction DEFAULT Fog Model OFF Maximum Mist Density (lbm/ft3) DEFAULT Drop Diam. From Mist (in) DEFAULT Minimum HT Coeff. (B/h-ft2-F) 0.0 Reference Pressure (psia) IGNORE Maximum Pressure (psia) DEFAULT Forced Ent. Drop Diam. (in) DEFAULT Vapor Phase Head Correction INCLUDE Kinetic Energy IGNORE Vapor Phase INCLUDE Liquid Phase INCLUDE Drop Phase INCLUDE Force Equilibrium IGNORE Drop-Liq. Conversion INCLUDE QA Logging OFF Debug Output Level 0 Restart Dump on CPU Interval (sec) 3600. Version 6.1 Formulations OFF Graphs Graph Curve Number # Title M&E Imbalance Peak and Averag Mon 1 EM 2 3 4 EE cvlC cv7C cv9C RHls71 FV4 FVl 5 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 169 of 303 0 1 2 3 4 5 6 7 TVls257 TVls274 TVls296 TVls312 TVls328 Envelope Sets Set No. Description Data Files File # 1 Name Results.txt Type TIME FV51 FV52 FV53 FV54 FV55 FV56 TAls2 FV57 TAls3 Set Type polate YES FV80 FV81 FV58 TAls2 TAlsl6 TAlsl8 No. Items Output Detail Files Level SINGLE FULL CALC. NO. ENTR-078-CALC-004 £xceHM<<-frt:ty f.vrr; ttay. CALCULATION CONTROL Attachment 2 Attachment 2: Humidity Sensitivity REV.O PAGE NO. 170 of 303 The purpose of this attachment is to analyze the Main Control Room temperature and relative humidity setting the initial relative humidity in the MCR volumes to the Environmental Design Criteria (EDC) maximum humidity of 70%. The analysis in the body of the calculation used an initial relative humidity in the MCR volumes set equal to the EDC minimum relative humidity of 20% in order to conservatively maximize the temperature in the MGR. The temperature results are shown below. 1 hr Tavg 2 hr Tavg 4 hr Tavg 24 hr Tavg Maximum Maximum Cell (oF) (oF) (oF) (oF) Tavg(°F) Temp (°F) 109.6 116.2 109.0 108.6 116.2 (2 hr) 121.8 (2.02 hr) The temperature transient is nearly identical to the transient for Case 2. The figure below shows the relative humidity in subvolume 1s71 located in the horseshoe area of the MGR. The relative humidity is at 70% at the start of the transient and decreases to below 30% before the smoke removal fan is turned on at two hours and *outside air is drawn in. This outside air causes the relative humidity to fluctuate between approximately 35% and 45% due to changes in the outside air relative humidity. 80 70 60 :§ 50 E Relative Humidity in Horseshoe Area *****--*********-***-**--**-*-,-*-********-****-*****--*---****--***--********-*********-,*****************---*-***-***-**-**-****--***--*************-*****,-******-*-***-*****-*-----********-******-*****-*-**-*****
- -*****--***
.. -********** ....... -...........
- -********-**********-****-****-***********
.. 40 , ____________________________________ .... '.':.".". ..... '.'.: .... ::_ .. :. ___ :: _____________ ,_...., ""'""""""""""'"'""' __ 30 r-'-"::Jr __
1----------------------l 10 0 5 10 15 20 25 Time (hrs)
CALC. NO. ENTR-078-CALC-004 N RCON CALCULATION CONTROL Attachment 3 REV.a PAGE NO. 171 of 303 3: ERIS Panels Heat Load Heat Load Eris Panels The following information is obtained from EC 61975 (Reference 8.36). Heat load for ERIS panels is based on typical values from 3247.850-307-001A. Fo*r ERIS panels that have been recently upgraded and installed after M96-062 is based on typical values from R859-0100 and R859-0118 (Attached on P2E under EC # 38927). H13-Y714E has-a heat load of 0 as per CR-RBS-2014-05797 and ECN 58709. The heat load of ERIS panels is shown on the table below: LOOP Conditions load 132 370.8 0 H13-Y703D 226.8 226.8' 370.8 / 370.8 370.8 370.8 0 0 370.8 370.8 H13cY713A 370.8 132 226.8 / . o. ,_,,.,_,_,,,,_,,.,. .. ,,.,,._, "'""' _.,;,_,,_,,,_,_,_,,_,.,_,,._,,._,._,,.,,,.,,,,,,. ._,__, * --***
- 226.8 226.8 ................
- .................................
,. 226.8 226.8 H13-Y751D H13-P721D Total: ............................................ CALC. NO. ENTR-078-CALC-004 Attachment 3 ENERCON CALCULATION CONTROL SHEET-REV. o PAGE NO. 172 of 303 The diagram below pictures the heat load distribution (all are above 7.5 feet elevation on MCR except H 13-P721 D which is mounted on the floor) of ERIS panels. Blue color represents 370.8 W (except H13-Y714E which is 0 W), brown color represents 226.8 W, yellow color represents 240 W and red color represents 132 W. * ' The 7461.6 W for normal conditions is a conservative value, and if more margin is needed we could use field measurements with conservatism (which will have a total wattage for normal conditions of 4828.6 W). This is documented on the next pages. ERIS Panels Heat Load Justification Using Field Measurements There is 29 ERIS panels on MCR (EE-027 A Rev. 16), and every panel has a chassis assembly with a 250 watt supply. Before MR96-062, each ERIS panels had a 100 W power supply. There is a 3 A fuse before every current ERIS panel (GE-944E485AA), so the design and completely bounded power of ERIS panels is 115 (the input volts of the documented ERIS panels on 3247 .. 850-307-001A is 115V)*29*3 = 10005 W (Assuming is fully resistive). All the ERIS equipment installed on MR96-062 had either a VMINEQ-250-000 or VMINEQ-250-001. Now, as per E-144 Rev. 7, on attachment L, the maximum inverter loading value for circuit 22 of VBS01 B (there is 7 ERIS top hats (4 VMINEQ-250-001 and 3 VMINEQ-250-000)) is 1208 VA, so 172.57 VA for each ERIS hat panel. On E-143 Rev. 11, the maximum inverter loading value for circuit 21 of VBS01A (there is 6 ERIS top hats (3 VMINEQ-250-001 and 3 VMINEQ-250-000) is 1035 VA, so 172.5 VA for each ERIS hat panel. The circuit 22 of VBS01 B has very slightly more loading for each ERIS hat panel than of the circuit 21 of VBS01A, because field amp measurements for VMINEQ-250-001
- are just slightly higher. The field ENERCON CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o Attachment 3 PAGE NO. 173 of 303 measurements of the ERIS top hats were taken as per as per SAIC-RBS-041 letter (which is find on attachment B of E-226 Add C). The actual measured amperage of a VMINEQ-250-000 was 0.94 A (lower than the typical amps of 2.54 A used to obtain the 9352 Won E-226 Rev. 3 Add C), and the actual measured amperage of a VMINEQ-250-001 was 0.96 A (lower than the typical amps of 4.098 A used to obtain the 9352 W used on E-226 Rev. 3 Add C). The measured apparent power is then 115*0.96=110.4 VA. So the 172.5 VA given per ERIS panel on E-143 Rev. 11,.and the 172.57 VA given per ERIS panel on E-144 Rev. 7 is on the range of 55-60% higher than the measured apparent power values, giving conservatism to the field measurements.
There has been recent ERIS upgrades, which has lowered the typical amps in the RIM (Remote Input Module) considerably as now the listed typical amps are 1.1 amps (and probably the actual measured amperage is lower than that). Some of this ERIS equipment was replaced on December of 2014, which is befare timeline where we are assessing risk. As we are assessing risk on early 2015, I am including these modifications on the upcoming calculations of heat load. The first phase of the ERIS upgrade project included panels H13-Y710E and H13-Y711A. These changes are documented on EC# 23837. As documented on 3.1.3.2 of the EC# 23837, a new ERIS network equipment was installed in the MCR, panel H13-P721D, and the change was incorporated on CBD-VBN02, Sh. 003 Rev. 14 (however the change has still not been incorporated on EE-027 A Rev. 16). Breaker# 1 of VBN-PNL02 was retasked to supply power from C91-P609A (It was spared in place and no longer needed) to H13-P721D. This modification resulted in a load reduction of 744 VA at 1VBN-PNL02;
- however, as we are adding panel by panel, a 240 VA value should be included for H13-P721 Das per R859-0100.
On E-184, load supplied by breaker# 10 of 1VBN-PNL01B1 and load supplied by breaker# 20of1VBN-PNL 1A1 were never up9ated (when they should have had) after the ERIS upgrade on M96-062. Consequently, the same 100 VA (when 172.5
- VA should be used after the ERIS upgrade) is used for every ERIS panel. Breaker*#10 of 1VBN-PNL01B1 supplies to 6 ERIS panels (H13-Y711A, H13-Y710E, H13-Y751D, H13-Y740A, H13-Y748B and H13-Y748E) and breaker # 20 of 1VBN-PNL01A1 supplies to 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B) as per GE-944E485AA Rev. 12. Also, on E-184 Rev. 4, H13-Y748E is not included on the breaker#
10 of 1VBN-PNL01B1 when it should be included. On EC# 23837, ERIS upgrade on panels H13-Y710E, H13-Y711A and H13-Y740A resulted on an increase of watts (when it should have resulted on a decrease of watts) on breaker# 10 of PNL0181. EC# 23837 markups incorrectly E-184 (incorporated on E-184 Rev. 4) and CBD-VBN0181 (incorporated on CBD-VBN01 Rev. 19). So the load on breaker# 10 of 1VBN-PNL0181 should be 172.6 VA on the ERIS equipment that were not replaced (H13-Y751 D, H13-Y748B and H13-Y748E) and 1.1 Amps* 120 V (the documented input voltage of the new ERIS equipment) = 132 VA for each of the ERIS replaced (H13-Y710E, H13-Y711A and H13-Y740A). This totals 396 + 517.8 = 913.8 VA for the 6 ERIS panels for breaker# 10 of 1VBN-PNL01B1. For breaker# 20 of 1VBN-PNL01A1, the loading should be 172.6 *4 = 690.4 VA for the 4 ERIS panels (H13-Y703A, H13-Y750E, H13-Y747A and H13-Y747B). Power supplied from breaker# 10of1VBN-PNL0181 and '-* ( CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. O Attachment 3 PAGE N0.174 of 303 \ breaker# 20 of 1VBN-PNL01A1 are non-divisional and are expected to be 0 VA with loss of offsite power (LOOP). 1VBS-PNL01 B, breaker #22 is also affected by recent ERIS upgrade phase# 2. E-143 and E-144 were revised after ERIS upgrade documented on M96-062, unlike E-184. This ERIS upgrade phase# 2 is documented on EC # 38927, which upgrades H13-Y702D, H13-Y710B, H13-Y714B and H13-Y714D. EC# 38927 correctly identifies that the modification results in a load decrease of 162.4 VA; however, H13-Y710B is on pending status and has not been installed, so the load for the new ERIS equipment can't be used on H13-Y71 OB yet. So the load on breaker # 22 of 1 VBS-PNL01 B should be 172.6 VA on the ERIS equipment that were not replaced or have not been replaced (H13-Y714E, H13-Y710B, H13-Y730B and H13-Y744D) and 1.1Amps*120 = 132 VA for each of the ERIS replaced (H13-Y702D, H13-Y714B and H13-Y714D) as per R859-0118. As H13-Y714E is spare (CR-RBS-2014-05797 and ECN 58709), it should not be counted on the heat load. The load totals 396 + 690.4 = 913.8 VA for the 7 ERIS panels for breaker# 22 of 1VBS-PNL01 B. None of the ERIS panels (H13-Y715D, H13-Y715E, H13-Y713D, H13-Y703D, H13-Y731D and H13-Y743E) of breaker# 21 of PNL01A have been replaced so loading is the same documented load of 1035 VA. There are four more ERIS top hats (H13-Y713A, H13-Y710D, H13-Y712D, and H13-Y717D)supplied by RPS bus, and 2 more ERIS top hats (H13-Y751A and H13-Y712B) supplied by breaker# 2 of E22-S002PNL, which adds a heat load of 690.4 + 345.2= 1035.6 VA. Next page shows a summary of the heat loads on ERIS panels. The heat load values of ERIS panels are illustrated below under normal situations and under LOOP:
- The ERIS panels that have beeri recently upgraded and installed after M96-062 is shown:
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 3 REV.O ERIS Panel .... *-*'-* .... ,. ***--* ***--Y702D Y703A Y703D t**-* -.. -* .. ** **--.... < * .-* .... , ... Y714B Y714D Y714E Y715D Y715E V717D .. , ...... A-1. C-4 C-1 A-5 A-2 A-4 A-7 B-7 B-8 *****<-.......... , **. , .. ,, .... , B-2 B-1 A-3 A-9 ,.,.,.,,,,..,.,.,,,,,,,,_,,,,,, C-9 C-10 C-2 .... , ..... . . .............................. . Y730B B-3 Y731D A-8 Y740A Y743E , C-7 Y747B Y748B C-5 B-5 Y748E 8-10 "'"'"""'""'"""'"""'""""""""""'"'" Y750E C-8 Y751A Y751D B-6 B-9 PAGE NO. 175 of 303 1:Jot Applicable... __ . Not Applicable ... ..... ..... . . . ............... . .. . . .. ... .. .... . ... .. Not Applicable .. EN R ON CALCULATION CONTROL Attachment 4 Attachment 4: MCR Panel Data CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 176 of 303 As discussed in Section 6.4 in the body of the calculation the control panel dimensions and locations are from Reference 8.26 and 8.27. There are three separate GOTHIC thermal conductors representing the Control panels; one for the west portion of the room, one for the northeast
- portion, and one for the southeast portion.
The control panels were spanned over these areas as inspection of Reference 8.26 shows the panels to be relatively well distributed over these areas. The surface area exposed to air for each Control Panel section is calculated and shown in Tables 1-3 below' . ............................... ***..*...... --**--*.L-- .. -**---l--.-*_J ___ ***---' -***-**--L .... -......... . ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 177 of 303 Table 2: Surface Area Calculation for CP2 Panel Panel Grouping Nurrber Height (ft) Width (ft) ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 178 of 303 Table 3: Surface Area Calculation for CP3 Panel Grouping [1H13-U723 [1H13-U740 ! (__., ______ " __ _ i1H13*U710 Panel Nuniler Height (ft) Width (ft) Depth (ft) !H13-P740
- ****************************************
....
- i [ ........................................
! ............................................. , ................................ .. Surfi:!.ce Area of CP3 .. 2_72_8:.Z§] Table 4 below calculates the total surface area, including the interfacial surface area and bottom surface area, of the control panels in the lower MCR volume. This surface area is used in Section 6.4 to calculate an effective thickness of the control panels. The equation used to calculate the total surface area of each panel is below. SA control Panels = 2
- L
- W + 2
- H
- L + 2
- W
- H ENERCON CALCULATION CONTROL Attachment 4 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 179 of 303 i Surface
.. 2.67i 4.00i 121.33! ____ , 94.22j 94.22i 94.22J 213.00' 3.o9J 2i3.6ii! ,1 ____ _;:;;_3*;::00:ic.---=::.;.....-****_2::..1ioo1
- 1***********************************-i**********************************:********************
.. ****!****************************:****************.. . ...... .!.*--*-***- ................. , .... , ................................. j*******************************
- !***************************
..... ! +**********--***--**!************-*****)***--********--*** ............. .. .................. 1...................... ! ; .026; *""'--*-****--'--**-*---'----**-**-Lgp_!6_s_.1_0 L____ .l E E.RCON CALCULATION CONTROL Attachment 5 Attachment 5: Additional Steel Heat Sinks CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 180 of 303 Thermal conductors representing additional steel heat sinks are added to the GOTHIC MCR models. The heat sink material was identified during a MCR walk down conducted on July 21, 2015 and consists of steel structures (cabinets, panels, supports, duct work, conduit) of various thickness. The material is described in the Main' Control Room Heat Sink Walkdown notes included at the end of this attachment. Using these notes, the conductors _representing these steel heat sinks were added to their actual subvolumes based on inspection of Reference 8.26. ' ' CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 PAGE NO. 181 of 303 Table 1: Additional MCR Heat Sinks Item No. Description S.A. (ft2) Thicknes (in) Notes 1 Doors -Fire Doors leading outside MCR* 39.0 0.1250 External, 1/8" external panels, with air interior 2 Doors -SM Office 39.0 0.1250 Assume same thickness as Item 1 3 Door to closet SM office 16.25 0.1250 Assume same thickness as Item 2 4 lHS-JBA Panel 1.0 0.1250 Assume 1/8" panel thickness 5 ILAC Panels 100.8 0.1250 1/8" thick 6 Steel nlate suooorts for ILAC nanels 15.0 0.3750 3/8" 7 Steel elate suooorts for ILAC oanels 20.0 0.1875 3/16" 8 DC Panels 396.0 0.1250 1/8" thick , 9 Suooort Bea ms 212.0 0.3750 3/8" thick 10 Cabinets 198.0 0.0625 1/16" thick 11 l&C storalle cabinets 297.5 0.0625 1/16" thick 12 HVAC Ducts (smalll 182.3 0.2500 1/4" steel estimated 13 HVAC Ducts Clarlle\ 328.0 0.2500 1/4" steel estimated 14 HVAC Ducts Clarlle\ 200.0 0.1250 1/8" steel 15 SCA Panels 201.0 0.1250 1/8" steel 16 Metal File Cabinets 88.0 0.0625 1/16" steel assumed 17 Short metal storalle cabinet 40.S 0.0625 1/16" steel assumed 18 Metal cabinets 630.0 0.0625 1/16" steel assumed H13-Y747A(B) -junctio boxes atop cable 448.0 0.1250 1/8" steel 19 soreadiM bavs 20 Kitchen ca bi nets, etc. 324.0 0.0625 1/16" steel assumed 21 Metal desks 405.0 0.0625 1/16" steel assumed 22 1" conduit 139.0 0.1250 1/8" assumed 23 Securitv oort 12.5 0.5000 / 1/8" 24 ILAC Panels 73.0 0.1250 25 2" conduits 34.6 0.1250 1/8" assumed 26 3" conduit 19.6 0.1250 1/8" assumed 27 1.5" conduit 11.8 0.1250 1/8" assumed -28 COP-1160 cabinets 6.6 0.0625 1/16" steel assumed 29 RMS CAB170 cabinets 14.7 0.0625 1/16" steel assumed 30 2 white boxes 16.5 0.1250 1/8" assumed 31 Unistrut 65.6 0.1250 1/8" assumed TOTAL SA 4536.25 *Fire door is not added as a GOTHIC thermal conductor, as this surface area would already be accounted for by the wall thermal conductors. \ \ L CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 182 of 303 Main Control Room Heat Sink Walkdown 21 July 2015 walkdown of Main Control Room by Paul Sicard for purpose of identifying heat sinks. Heat sink modeling of Gl3.18.12.4*027 was first reviewed. (same as used for ENTR-078-CALC-002). Heat sinks modelled include structural steel above ceiling tiles, H13 and C6i panels in Main Control Room, and concrete walls. Assume 1/8" thick for cabinets and metal heat sinks unless noted otherwise. ("'4500 ft2 of additional metal heat sink area identified) Doors Have two 6.5x3 metal fire doors leading out of 19.5 ft2 pef door MCR. Assume 118" steel plates with air interior. Doors Have two 5.5x3 doors to ttw Shift 19.5 ft2 per door surface. Manager office. Both inside and outside of door exposed to MCR air. Door door to closet behind SM / CRS desk. 16.25 ft2 2.5
- 6.5 ft lHS-JBA metal oanel near SW door 1 ft2 Fire ext. Fire Ext. near door SCBA air bottles 30 "' 2' tall SCBA air bottles stored just south of CB136-10 door SW. ILAC panels 12 lighting panels on West wall. 100.8 ft2 (1/8" thick) ' 5 on S wall. \ 3 on N wall. (20 total) 16" width
- 12" heightx 10" depth. 5.6 ft2 per panel. (assume 1/8" thick) Steel plate supports steel supports mounted on walls. wall plate supports:
for ILAC panels. 15 ft2 (3/8" thick) 18" wide, 6" height, 3/8" thick. A= 0.75 ft2 per panel. cantilevered supports: 20 fi:2 (3/16" effective thickness) i Also have 7" long supports, 2" high, 3" wide. Perimeter of 10". Area per support of 10"*7"=70 in2 = 0.5 ft2. Two such supports per ILAC oanel for 1.0 ft2 oer oanel. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV. 0 DC panels Support Beams Storage cabinets I&C storage cabs 2 small HVAC ducts along N wall PAGE NO. 183 of 303 Have total of 9 BYS/VBS/ENB panels on N and S 396 ft2 ,(1/8" thick) walls of MCR. 5 ft wide x 6.5 ft high x 1 ft deep. Area per panel: 44 ft2. 9 oanels: 396 ft2. 170 ft. of support beams along S wall. "'12 ft. noted on N wall. (probably missed some) 4" high, 1 3/4" wide, 3/8" steel thickness. "'14" of perimeter A = 182 ft * (14") = 212 ft2 3/8" thick 3 near NE carrier: 6 ft H x 3 ft W x 2 ft D. Area per cabinet: 66 ft2. Assume 1/16" metal. 5 near S wall, center: 6 ft H x 3 ft W x 1.5 ft depth 59.5 ft2 per cabinet Assume 1/16" metal. 18" x 42", Floor to ceiling (9.115 ft per G13.18.12.4*027 calculation) 120" perimeter. Surface area per duct: 91.15 ft2 r Appears to be 1/4" thick steel based on flanges and sunnorts. 212 ft2, 3/8" thick 198 ft2 297.5 ft2 182.3 ft2 , CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O 2 large HVAC ducts along N wall SCA panels metal file cabinets short metal storage cabinet metal storage cabinets H13-Y747A(B) 6 ft x 3 ft. Perimeter: 18 feet. Surface area per duct: 164 ft2. Have eleven flanges, 3" high and 3" wid,e, of 1/4" steel that goes around the ducts. This corresponds to 100 ft2 of 1/8" steel (counting both too and bottom surface area) 4 along N wall. 2 along S wall. 6.5' H x 2' W x 6" depth. Peroanel: 33.5ft2 two near NW corner by back door to SM office. 4.5' H
- 17" W
- 3' D Per file cabinet:
44 ft2 NW corner near duct. 4 x 3 x 1.5. Area = 40.5 ft2 NE & SE.: 8: 5 x 3 x 18" (A= 49.5 ft2) 4: 6 x 3 x 18" <A = 58.5 ft2) .. and similar junction boxes that sit atop spreading bays. (are these already in H13 cabinet heat sinks?) 4 NW. 4 NE. 7 SW. 13 SE. (28 total) 3 foot depth. 1 foot height 2 foot width. Total Surface* Area: 16 ft2 oer unit. PAGE NO. 184 of 303 328 ft 2 (1/4") 200 ft2 (1/8" steel) 201 ft2 (1/8") 88 ft2 (1/16" assumed) 40.5 ft2 (1/16" assumed) 630 ft2 (1/16" thick assumed) 448 ft2 (1/8" assumed) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 185 of 303 , (simolification since inside is exoosed) Kitchen Metal kitchen cabinets, stove, etc ... 324 ft2 (1/16" assumed) Appears equivalent to 4 bays of cabinets. , \ (typical bay= 2' x 7.5' x 3', for surface area of:* ' 81 ft2) Metal desks Metal desks in MCR: 405 ft2 (1/16" assumed) Appears equivalent to at least 5 bays of cabinets. 1" conduit ,,,75 ft along S wall. 139 ft2 ,,,35 ft near kitchen 150 ft N wall. 33 ft near RMS-CAB170 (W wall) 237 ft along W wall 531ftof1" Diameter Conduit. Perimeter= 3.14". Area = 531 * (3.14"/12) = 139 ft2 Security port security port on S wall of stairway: 30'x30", 12.5 ft2, (1/2" thick) 1/2" thick 5 big blue ILAC panels 20" wide by 36" high x 6" deep. 73 ft2 (1/8" thick) Wwall A= 14.6 ft2 per cabinet 2" conduits 48 ft along w wall 34.6 ft2 18 ft near 8MS-CAB 6.3" perimeter. 3" CONDUIT 16 ft along S wall 19.6 ft2. 9 ft near COP-1150 1.5" conduit (includes 1 3/4") 11.8 ft2 30 ft near W wall COP-1160 metal cabinet on W wall 6.6 ft2 8" x 12" x 5.5" A= 2.2 ft2 3 cabinets total like this. RMS-CAB170 W wall: actuallv two cabinets: 14.7 ft2 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 5 REV.O PAGE NO. 186 of 303 36"x24"x8": A= 8.33 ft2 I 18"x24"x8": A= 6.33 ft2 2 white boxes metal 18 x 18 x 12" 16.5 ft2 near RMS-CAB A = 8.25 ft2 oer box. 1 3/4" unistrut 84'west wall 65.6 ft2. 24' north wall 42' south wall. Assume effective perimeter of 5.25" of 1/8" steel. A= 65.6 ft2 CALC. NO. ENTR-078-CALC-004
- ENERCON CALCULATION CONTROL SHEET-REV. 0
- Attachment 6
fvffydcy. PAGE NO. 187 of 303 Attachment 6: Email from Paul Sicard, dated 7 /23/2015, 10:29 AM: This is a portable electric fan, stored in closet on third floor of Service Building, on hallway that leads to the passageway to Main Control Room. Maxx Air High Velocity Ventamatic Ltd. 4 blades 24" diameter. Rating of 2800-4000 CFM. (Ops looked up on Internet while I was examining fan for any model number or information --none on fan) CALC. NO. ENTR-078-CALC-004
- CALCULATION CONTROL SHEET-ENERCON REV. 0
- Attachment 6
.*v-rydfJ'f PAGE NO. 188 of 303 Attachment 6 {cont'd): Gasoline powered portable electric fan, stored in Fire Brigade Van. ) ENERCON CALCULATION CONTROL Attachment 7 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 189 of 303 Attachment 7: Email from Paul Sicard, dated 11/2/2015, 5:34 PM: Drawing EA-468 shows the return air registers for the main control room, which run along the east and west walls of the MCR. -The drawing shows 18 registers along West Wall; I counted (and re-counted) only 16, with at least one noticeable gap between them.
- The drawing shows 15 along East wall, 8 south of pipe chase, and 7 north of pipe chase. My walkdown observation confirmed this. The registers appear to be a plastic material with honeycombed squares (see sketch) that are about 1/2" x 1/2" square. The registers have 18 holes in one dimension and 80 in the long dimension that runs along the wall. Estimated thickness of the plastic grid the honeycomb is <1/16", probably more like 1/20". Estimated height (flow path length) through the honeycomb is also 1/2". The 80 holes in the long dimension would correspond to the 4 foot long dimension of the MCR ceiling tiles. (Note EA-468 refers to these as "Aluminum Louver Return Air Grille" in NOTE 5.) There are substantial gaps between the lower MCR volume and upper MCR volume around the ducting at the North end of Main Control Room._ For the duct in NW corner (return duct), the estimated gaps are: 2" East 4" South & West 6" North (against wall) For the ducting on East half of North wall, estimated gaps are: 6" North . 3" West & East (gap actually occurs between larger central duct and the two smaller outer ducts) O" South CALC. NO. ENTR-078-CALC-004 t"l ENERCON CALCULATION CONTROL SHEET-REV. 0 Attachment 8 (
fW'f"f fl<IJ PAGE NO. 190 of 303 Attachment 8: Honeywell Computer Equipment Heat Loads The following information is obtained from EC 61975 (Reference 8.36). Main Control Room C91 Panels C91-P642/P631/P630 The panels under consideration are Performance Monitoring System Panels (Plant Process Computers) located in the main control room. The GOTHIC calculations have loads from P642 and P631/P630 split into different grid locations. Since the panels are not labelled in the main control room, a walk down of the panels was performed to obtain the layout of the components placed on PPG Desk (P642/P630/P631). Based on information from the walkdown, Drawing GE-851E124AA sh2 and information from Bill Costinett, the following conclusion was arrived at. PANEL C91-P642 Equipment Mark/Part Number{ Wattage Reference GE* Supplies Recorders on Power Supply 8S1El24AA 144 Hl3-P680 C91-R603 287AS937POOS 9S Display CRT http:l/www.vartechsystems.com/pdf/technical/VTl 7B-Ctech.pdf C9l*K60S 287AS937P007 0 Keyboard C91-P6SS 287 AS937P028 420 Floppy Disc information obtained from ERIS Room which is similar to the one in MCR Network Switch C9S-NETSW*MCR 137.S Cisco Catalyst 37SOG Model No obtained from ERIS Room which is similar to the one in MCR laserjet includes a 10% Diversity 60SW Printing/ Sl watts ready/ 6.9 watts Printer ....... C91-RSTR-PTR 60.S Factor http:l/h71016.www7.hp.com/html/pdfs/LaserJetEnterpriseMSS1.pdf http:l/www.cnet.com/products/nortel-baystack-4SO-model-24t-switch-24-ports-Network Switch C91-NEISW-1 140 Baystack 4S0-24T managed-desktop-series/specs/ REMOVED FROM Versatec Plotter SERVICE -http:l/downloads.dell.com/Manuals/all-ERIS products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Workstation( PC) ERIS-RSTR-SDS 2SO 9010 Owner%27s%20Manual en-us.pd! ERIS Monitor ERIS-RSTR-SDS so DELL monitor Antee CPU C91-LEFMPC1 4SO http://store.antec.com/vpseries/vp4SOf.html# Honeywell RBS-D-C2960-cpu*** 1900G-PPC 273 Dell Monitor so Netgear Switch so Input from "Evaluation of PPG loads for MGR heatup" TOTAL 2120 -*Wattage based from CPU's in P612 PANEL C91-P631/P630 Equipment Mark/Part Numbers Wattage Network Switch Cisco catalyst 2960-S 137.S information obtained from ERIS R00m Which is similar to the one in MCR C9S-SDCR09 CDA-Optiplex computer 780 DC3 2SS http:l/www.dell.com/downloads/global/products/optix/en/optiplex 780 tech_guidebook en.pd! Monitor SDCR09 32 ASUS24" http:l/downloads.dell.com/Manuals/all-products/esuprt_desktop/esuprt_optiplex_desktop/optiplex-Optiplex gX240 C9S-PCA59 CDA-DC3 180 gx240 user%27s%20guide en-us.pd! Monitor flatron e23SO 28 http:lfwww.cnet.com/products/lg-flatron-e23SOv/specs/ Typer C91-P634 270 Typer information obtained from ERIS Computer Room Typer**** C91-P63S 0 Typer information obtained from ERIS Computer Room Printer++++ C9S-CP02 43 Diversity Factor included/ http:l/www.cnet.com/products/hp-color-laserjet-4600/specs/ Multiprinter C9S-CP02 8S Average wattage I http:l/manx.classiccmp.org/collections/mds-199909/cd3/printer/la40euga.pdf TOTAL 1030.S **-one of The Typers in the MGR is Idle and is not connected to the power supply unit. Hence the load on it is assumed to be O ++++ It should be noted that the Laser Jet Printers on that desk includes a 10% Diversity Factor (Obtained from the National Electric Code for intermittent loads) as the wattage reflected on the table above references the consumption while printing. Per Walkdown, three network switches were found under the desks of C91-P642/P630/P631 as opposed to one as documented in "Evaluation of PPG loads for MGR heatup". This change is reflected above and must be noted. sleep CALC. NO. ENTR-078-CALC-004 0 ENERCON CALCULATION CONTROL SHEET-REV.O Attachment 8 PAGE NO. 191 of 303 I Measured Values Nine Mile BTU/HR CALC E-184 Nine Mile Watts by Power Supply Ratings from 024 7 .810*000-Panel 252/ Comments from Entergy Panel Disconnect Load Description Current Reading Bus voltage PPCWatts BTU/HR Watts VBN-PNL02 2 C91-P608 CMS/ PPX computer equipt. (removed 800 0.26 121.4 , 32 108 NA 2400 -2400 watts w/ tape drive) VBN*PNL02 3 C91-P600 Central CPU unit 12.30 121.4 1493 5092 5119 2400 1500.2 VBN-PNL02 4 C91-P603 Large core storage 2.12 121.4 257 878 2000 1800 586.1 VBN*PNL02 5 C91*P612 Display Generator 3.50 121.4 425 1449 2048 1020 600.2 VBN*PNL02 6 C91-P620 Digital unit 4.40 121.4 534 1821 8191 2400 2400.5 490W +Wattage of Associated Blower VBN*PNL02 7 C91-P625 Digital unit 1.56 121.4 189 646 8500 2820 2491.1 l(BN-PNL02 8 C91-P621 Digital unit and SPC-BNKl 5.79 121.4 703 2397 8500 2750 2491.1 390 W +Wattage of Associated Blower VBN-PNL02 9 C91*P624 Digital unit 3.91 121.4 475 1619 8500 2400 2491.1 VBN-PNL02 10 C91*P622 Digital unit 3.16 121.4 384 1308 8500 2400 2491.1 VBN*PNL02 11 C91*P623 Digital unit 3.93 121.4 477 1627 8500 2400 2491.1 520 W +Wattage of Associated Blower VBN*PNL02 12 C91-P630/P631 PPC printers 1.05 121.4 127 435 1229 1000 360.2 1030.5 Watts in total for the two panels which includes PPC Printers and other components in the PPC table area VBN-PNL02 13 C91-P613 NSSS Analog unit 1.31 121.4 159 542 1229 912 360.2 VBN*PNL02 15 C91-P616 BOP Analog unit 0.86 121.4 104 356 850 360 249.1 VBN*PNL02 16 C91*P615 BOP Analog unit 0.98 121.4 119 406 850 360 249.1 VBN-PNL02 17 C91*P614 BOP Analog unit 1.29 121.4 157 534 850 360 249.1 VBN-PNL02 18 C91-P642 PPC Results Center Console (CRTs, KB, 4.23 121.4 514 1751 NA 1060 1060 Trend Recorders on P680) VBN*PNL02 19 H13*P680 PPC CRT's and KeyBoard 2.49 121.4 302 1031 NA 792 792 VBN*PNL02 20 C91-P632/P633 PPC computer printers 1.00 121.4 121 414 NA 810 810 VBN*PNL02 22 C91*P650 PPC BOP Digital and SWC*BNK4 4.56 121.4 554 1888 NA 2400 2400 390 W +Wattage of Associated Blower VBN*PNLOlAl 21 C91-P642 PPC Table Area NA 1488 1488 2120 Watts is the connected load VBN*PNLOlAl 22 C91-P631 Area Near PPC Desk NA 1526 1526 This row should be removed as all the connected loads associated with P631 are included in the row above (P630/P631 on row 11) VBN*PNLOlBl 33 C9l*P612 CPU's (2) NA 546 A Network Server is associated with P612 which has a load of 400W. This has to be accounted for with P612. Comments on the table above do not change any values obtained from Enercon Previously. Please look at the proposed heat load on C91 panels below. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 REV. 0 PAGE NO. 192 of 303
- 5 of the 17 Personal Computers are accounted for in Panels P642, P631 and P630. Hence they can be removed from the Personal Computer Wattage Calculations which totals to 5*300W each = 1500 Watts
- 3 ONE Computers shown in Document "Evaluation of PPC loads for MCR heatup" as 1254 Watts are accounted for already as they are installed on panels C91-CP613A, C91-CP613B and C91-CP625. This is referenced by drawing series starting from 0247.810-000-257 to 0247.810-000-266
- Document "Evaluation of PPC loads for MCR heatup" splits the load on NETWORK Switches as shown below. The necessary changes shown must be reflected to avoid double counting.
Network Server = 400 Watts The network server is associated and considered as a part of C91-P612 and must be removed from this part of the calculation One network switch= 147 Watts This value is accounted for in C91-P642 and must be removed. Network switch = 50 Watts This value is accounted for in C91-P642 and must be removed. Two Network Switches at reactor Engineering This has not been accounted for with panels and Desk= 2*147 = 294 Watts must stay as is. '
- On the Email is attached a document which revises the Heat 'load on ERIS Panels based on updated calculations.
Also, It was established that H13-Y714E was removed per CR-RBS-2014-05797. H13-Y714E which carried a load of 370.8 watts is now marked as 0 watts. Revised document is attached. This change must be updated by Enercon on their inputs to the calcs.
- Document "Evaluation of PPC loads for MCR heatup" shows the removal of the following o Large Core Storage (LCS) in panel C91-P603 (GE PPD Dwg. 287A5937P003) o Magnetic Tape Drive in panel C91-P608 (GE PPD Dwg. 287A5937P008) o Moving Head Disc in panel C91-P609 (GE PPD Dwg. 287A5937P009) o Card Reader in panel C91-P638 (GE Dwg. 287A5937P011)
Based on CR-RBS-2015-4282, the following Equipment were abandoned in place o Black Box to Ethernet in old ERIS B Cabinet o REPTSC o Power Plex Server in MCR o Honeywell P609 Disk Drum o C95-REPMCR2 o C95-REPMCR1 o C91-DEC-REPCM-1 o C91-DEC-REPENG1 o C95-BRMCR1 o MMS-ENV PRINTER o C95-RBSU1 L o C95-REPTSC o C95-LB05
- This is actually BRMCR2 modem. SRM-Outfall-02 Abandoned in Place CR The information above must be documented.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 8 . REV.O PAGE NO. 193 of 303 Information below shows the suggested rev1s1on of wattage on C91 panels base9 on walkdown, information published above and discussions with the Honeywell Expert. It was determined that the 2x multiplication factor used by Enercon previously on the measured values can be revised with a 1.15 factor which accounts for a 15% margin for aging factor. All panels except P642/P631 and P630 use measured values as inputs as they are comprised of circuit cards and are bounded by the associated power supplies. P642/P631 and P630 comprise of multiple devices on them (as shown in the first page of this document) which cannot be bounded bv the measured values. Hence connected loads are used as inputs Nine Mile Measured Numbers based on calculations by Suggested Revised Watts Values Enercon Numbers 1.15x all panels except Computer Load 2x digital panels+ l.lx others p642/p631/p630 C91-P608 C91-P600 C91-P603 C91-P612 C91-P620 C91-P625 C91-P621 C91-P624 C91-P622 C91-P623 C91-P630/P631 C91-P613 C91-P616 C91-P615
C91-P614 C91-P642 H13-P680 C91-P632/P633
C91-P650 C91-P642 C91-P631 C91-P612 C91-P612 Server) Total watts (Network 2400 1500.2 586.1 600.2 2400.5 ;. ... 360.2 360.2 249.1 249.1 249.1 1060 792 810 1488 1526 546 32 34.7 1493 1642.5 257 283.1 425 467.4 534** 127 140.2 159 174.9 104 114.8 119 130.9 157 172.3 514 564.9 302 332.5 121 133.5 1488.0 1526.0 546.0 14382.7 ' 36.8 1716.95 295.55 488.75 1030.5 182.85 119.6 136.85 180.55 2120 This load is accounted for with NSSS Panel 139.15 This load is accounted for with C91-P642 Loading above This load is shown with C91-P630/P631 loading above 546 400 11206.95 ENERCON Load Description C91 Process Computer Panels ERIS DAS Tophats Personal Computers/Work Stations Network Switch ONE Computers TOTAL CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 8 REV.O PAGE NO. 194 of 303 Numbers based on calculations by Suggested Revised Numbers Enercon 14382.7 11206.95 2660 7461.6 5100 3600 891 294 1254 0 24287.7 22562.55 IT must be noted that The ERIS DAS Tophats are located above the term cabinets at 7.5 Ft elevation v CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL SHEET-REV. o ENERCON Attachment 9 PAGE NO. 195 of 303 Attachment 9: GOTHIC Input File for Case 2 I 2Q _ J_ ,5b 4 5 7 \ I \ ) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATIQN CONTROL SHEET-REV.p Attachment 9 f.xrcl!r.nt*"-fretyfHD}e<:t. f.wuy dfJY. PAGE; NO. 196 of 303 Control Volumes Vol Vol Elev Ht Hyd. D. L/V IA # Description (ft3) (ft) (ft) (ft) (ft2) ls MCR Below 87417. 136 .135 9.115 13.8296 DEFAULT 2s MCR Above 83149. 145.5 8.67 13.9276 DEFAULT 3 Atmosphere 30000. 136.135 40. 10. DEFAULT 4 Stairwell 1 8341.84 98. 66.667 20. DEFAULT 5 Smoke Removal E 10000. 142. 10. 10. DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Gas Burn # Damper Mult Opt Tracking Opt ls 1. DEFAULT LOCAL ON NONE 2s 1. DEFAULT LOCAL ON NONE 3 1. DEFAULT LOCAL ON NONE 4 1. DEFAULT LOCAL ON NONE 5 1. DEFAULT LOCAL ON NONE Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option Wall Option (ft2) ls o. CNST T UNIFORM DEFAULT 2s 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT ' Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid /Src Model Rep Subvol Area # (%/hr) (psia) (F) (%) BC Option wall Option (ft2) fL/D ls 0. CNST T UNIFORM DEFAULT 2s 0. -CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT X-Direction Nading Volume ls Cell Distance Width Plane (ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. . 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction Nading ENERCON Volume ls Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37, 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume ls Cell Distance Height Plane (ft) (ft) 1 o. 3.48513 2 3.48513 4.0193 3 7.50443 1.61057 I Cell Blockages -Table 1 Volume ls Block No. Description 1 NW Panels 2 SW Panels 3 1H13-U747 4 1H13-U745 5 1H13-U743 6 1H13-U750 7 1H13-U730 8 1H13-P808 9 1H13-U704 10 1H13-U717 11 1H13-U713 12 1H13-U715 13 1H13-U720 14 1H13-U721/U799 15 1H13-U748 16 1H13-U746 17 1H13-U744 18 1H13-U742 19 1H13-U741 20 1H13-U730 21 1H13-U703 22 1H13-U701 23 1H13-U712 24 1H13-U710 25 1H13-U714 26 1H13-U711 27 1H13-U740 28 Shift Manager E 29 Shift Manager s 30 Kitchen_S 31 Kitchen_W Cell Blockages -Table 2 Volume ls Block Coo No. Xl Yl Zl CALCULATION CONTROL Attachment 9 T BLK B I N BLK B I N BLK B I N B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I'N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N BLK B I N (ft) X2 Y2 Z2 X3 Y3 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 197 of 303 Curb Z3 L Height 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 lB 19 20 21 22 23 24 25 26 27 2B 29 30 31 ENERCON 9. Bl. lB. 27. 36. 45. 54. 5B.5 90. 99. lOB. 117. 126. 135. 9. lB. 27. 36. 45. 54. 9.25 0. 9.25 0. lB.5 o. lB.5 0. lB.5 o. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. lB.5 0. 46.25 0. 46.25 0. 46.25 0. 46.25 o. 55.5 0. 46.25 0. 5B.5 27.75 0. Bl. 37. 0. 99. 46.25 0. -lOB. 46.25 0. 11 7. 46. 25 0. 126. 46.25 0. 135.' 46.25 0. 0. 9.25 0. 9. 0. 0. 54. 64.75 o. 54. 64.75 0. CALCULATION CONTROL Attachment 9 54. 135. lB. 27. 36. 45. 54. 77.5 90. 99. lOB. 117. 126.
- 9. lB. 27. 36. 45. 54. 77.5 Bl. 99. lOB. 117. 126. 135. 9. 9. 54. 45. 9.25 7.5044 9.25 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 lB.5 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 37. 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 *7.5044 27.75 5. 55.5 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 64.75 7.5044 / 9.25 9.115 6.25 9.115 74. 9 .115 64.75 9.115 X-Direction Cell Face Variations Volume ls Cell Blockage No. No. def o lsl ls2 ls3 ls4 ls5 ls6 lsl7 lslB ls19 ls20 ls21 ls22 ls129 ls130 lsl31 ls132 ls133 ls134 ls145 ls146 ls147 ls14B lsl49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Area Hyd. Dia. Loss Porosity (ft) Coeff. 1. 1000000..
- 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. . 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. . 0. 0. 0. Drop De-ent. Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 198 of 303 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
lsl50 ls9 lslO lsll lsl2 lsl3 lsl4 lsl5 ls25 ls26 ls27 ls28 ls29 ls30 ls31 lsl37 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl53 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 lsl8 ls34 ls50 ls66 lsl46 lsl62 lsl78 lsl94 ls290 ls306 lsl9 ls35 ls51 ls67 lsl47 lsl63 lsl79 lsl95 ls291 ls307 ls20 ls36 ls52 ls68 ls148 ,1s164 lsl80 lsl96 ls292 ls308 ls21 ENERCON 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 I 3 3 3 3 3 4 4 4 *4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. CALCULATION CONTROL Attachment 9 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. 0. 0. 0. 0. 0. 0. 0 *. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. p. 0. 0. 0. -0. 0. 0. 0. 0. 0. 0. 0. 0. 0 '. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 199 of 303 ls37 ls53 ls69 ls149 ls165 ls181 ls197 ls293 ls309 ls22 ls38 ls54 ls70 ls150 ls166 ls182 lsl98 ls294 ls310 ls23 ls24 ls39 ls40 ls151 ls152 ls167 ls168 ls26 ls42 ls58 ls74 lsl54 lsl70 ls186 ls202 ls298 ls314 ls27 ls43 ls59 ls75 ls155 ls171 ls187 ls203 ls299 ls315 ls28 ls44 ls60 ls76 ls156 ls172 ls188 ls204 ls300 ls316 ls29 ls45 ls61 ENERCON 6 6 6 6 6 6 6. 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9-9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 12 12 12 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. I 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1.
- 1. 0. 0. 1. 1. 1. 1. 0. 0. CALCULATION CONTROL Attachment 9 le-006 0. le-006 0. 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 6.44228 o. 6.44228 0. 37. 0. le-006 o. le-006 o. 37. 0. 37. 0. le-006 0. le-006 o. 37. 0. 6.44228 0. 6.44228 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 *O. 6.44228 0. 37. 0. le-006 o. le-006 0. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. *o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o .. ci. CALC.' NO. ENTR-078-CALC-004 REV.O PAGE NO. 200 of 303 ls77 ls157 ls173 ls189 ls205 ls301 ls317 ls30 ls46 ls62 ls78 lsl58 ls174 ls190 ls206 ls302 ls318 ls31 ls47 ls63 ls79 ls159 ls175 l*s191 ls207 ls303 ls319 ls65 ls81 ls97 ls113 ls193 ls209 ls225 ls241 ls337 ls353 ls66 ls82 ls98 ls114 ls194 ls210 ls226 ls242 ls338 ls354 ls67 ls83 ls99 lsl15 ls195 ls211 ls227 ls243 ls339 ls355 ls68 ls84 lslOO ENER 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 18 18 18 ON 1. 1. 0. 0. 1. 1. 1. 1. /0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1.
- 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. CALCULATION CONTROL Attachment 9 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 6.44228 0. 6 .44228 0.' 37. 0. le-006 o. le-006 o. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 0. 6.44228 '0. 37. 0. le-006 0. le-006 0. 37. 0. 37. o. le-006 O. le-006 O. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 o. le-006 0. 37. 0. 37. 0. le-006 o. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 o. le-006 0. 37. 0. 37. 0. le-006 . o. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 201 of 303 ENERCON 18116 lsl96 ls212 ls228 ls244 ls340 ls356 ls85 lslOl lsll 7 ls213 ls229 ls245 ls357 ls70 ls86 lsl02 ls118 lsl98 ls214 ls230 ls246 ls342 ls358 ls39 ls40 ls55 ls56 lsl67 lsl68 lsl83 lsl84 ls57 ls73 ls89 lsl05 lsl85 ls201 ls217 . ls233 ls329 ls345 ls75 ls91 lsl23 ls203 ls219 ls235 ls251 ls347 ls363 ls7§ ls92 lsl08 ls124* ls204 ls220 ls236 ls252 18 18 18 18 18 18 18 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20* 20 20 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22' 23 23 23 23 23 23 23 23 23 23 24 24 24 24 24 24 24 24 1. 1. 0. 0. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1.
- 1. 0. 0. 1.
- 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 1.
- 1. 0. 0. 1.
- 1. Ii. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. CALCULATION CONTROL Attachment 9 37. 0. 37. 0. , le-006 O. le-006 0. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 o. 37. 0. 37. 0. le-006 o. 37. 0. 6.44228 0. 37. 0. le-006 0. le-006 0. 37. 0. 37. 0. le-006 o. le-006 O. 37. 0. 6.44228 0. 6.44228 0. 37. 0. 37. 0. 37. 0. 37. 0. 92.5 0. 92 .5 '0. 92.5 0. 92.5 0. 37. 0. l'e-006 0. le-006 0. 37. 0. 37. 0. le-006 0. le-006 0. 37.. 0. 6.44228 0. 6.44228 0. 37. 0. .le-006 o. le-006 O. 37. 0. 37. 0. le-006 0. le-006 o. 37. 0. 6.44228 0. 6.44228 0. 37. 0. le-006 o. le-006 o. 37. 0. 37. 0. le-006 0. le-006 0. 37. 0. 0. o. 0.
- 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. -0. 0. 0. 0. 0. 0. 0 . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 202 of 303 ls348 ls364 ls77 ls93 ls109 ls125 ls205 ls221 ls237 ls253 ls349 ls365 ls78 ls94 lsllO ls126 ls206 ls222 ls238 ls254 ls350 ls366 ls79 ls95 lslll ls127 ls207 ls223 ls239 ls255 ls351 ls367 lsl lsl7 lsl29 ls145 ls257 ls273 lsl ls129 ls257 ls102 ls118 ls230 ls246 ls358 ls374 lslOl lsl02 ls117 ls118 ls229 ls230 ls245 ls246 ls357 ls358 ls373 ls374 ENER 24 24 25 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 29 29 29 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 ON CALCULATION CONTROL Attachment 9 1. 1. 1. 0. 0. 1. 1. 0.
- 0. 1.
- 1. 1 .. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 6.44228 6.44228 37 .* le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-0,06 37. 6.44228 6.44228 37. le-006 le-006 37. 37. le-006 le-006 37. 6.44228 6.44228 37. 37. 37. 37. 37. 1. 37. 0.324341 12.0006 0.324341 12.0006 0.324341 12.0006 1. 37. 0. 1. 0. 1. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. le-006 37. le-006 37. le-006 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. ,37. 37. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. j 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. ci. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 203 of 303 EN R ON CALCULATION CONTROL Attachment 9 Y-Direction Cell.Face Variations Volume ls Cell No. def lsl ls2 ls3 ls4 ls5 ls6 ls7 ls129 ls130 ls131 ls132 ls133 ls134 ls135 ls258 ls259 ls260 ls261 ls262 ls9 lslO lsll *1s12 ls13 ls14 ls15 ls16 ls137 ls138 ls139 18140 ls141 ls142 ls143 lsl44 ls266 ls267 ls268 ls269 ls270 ls271 ls18 lsl9 ls34 ls35 ls SO ls51 lsl46 ls147 ls162 lsl63 ls178 ls179 ls19 ls20 Blockage Area Hyd. Dia. Loss No. Porosity (ft) Coeff. 0 1. 1000000.
- 0. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2: 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 1. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36 .. le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 36. le-006 le-006 le-006 le-006 le-006 le-006 36. 6.44228 6.44228 6.44228 6.44228 6.44228 6.44228 36. 36.
- 36. 36. 36. 36. 36. 36 .. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 ., 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. \ : Drop De-ent. Factor 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0.
- 0. 0. CALC .. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 204 of 303 ls35 ls36 ls51 ls52 lsl47 ls148 ls163 ls164 ls179 ls180 ls20 ls21 ls36 ls37 ls52 ls53 ls148 ls149 lsl64 ls165 ls180 ls181 1s21* ls22 ls37 ls38 ls53 ls54 ls149 lsl50 ls165 ls166 ls181 lsl82 ls22 ls23 ls38 ls39 ls54 ls55 ls150 ls151 ls166 ls167 ls182 ls183 ls23 ls24 ls25 ls151 ls152 ls153 ls279 ls280 ls281 ls26 ls27 ls42 ls43 ls58 EN,ERCON CALCULATION CONTROL Attachment 9 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 9 9 9 9 9 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 1. 36. 0. 5 18. o. le-006 0.388855 13.9988 0 .5 18. 0. le-006 0.388855 13.9988 1. 12.8846 1. 1. 1. 1. 1.
- 1. 1. 6.44228 10.7371 36. 36. 36.
- 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. '* . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 205 of 303 ls59 lsl54 lslSS lsl70 lsl 71 lsl86 lsl87 ls27 ls28 ls43 ls44 ls59 ls60 IslSS lsl56 lsl71 lsl72 lsl87 lsl88 ls28 ls29 ls44 ls45 ls60 ls61 lsl56 lsl57 lsl72 lsl73 lsl88 lsl89 ls29 ls30 ls45 ls46 ls61 ls62 lsl57 lsl58 lsl73 lsl74 lsl89 lsl90 ls30 ls31 , ls46 ls47 ls62 ls63 lsl58 lsl59 lsl74 lsl75 lsl90 lsl91 ls31 ls32 ls47 ls48 ls63 NERC N 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 i3 13 13 13 13 13 13 13 13 14 14 14 14 14 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. i. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 3'6. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36: 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. ' 0. 0. 0.' 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. o. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 206 of 303 ls64 ls159 ls160 18175 ls176 ls191 ls192 ls65 ls66 ls81 ls82 ls97 ls98 ls193 ls194 ls209 ls210 ls225 ls226 ls66 1802 ls83 ls98 ls99 ls194 lsl95 ---, ls210 ls211 ls226 ls227 ls67 ls68 ls83 ls84 ls99 lslOO lsl95 ls196 ls211 1Jl212 ls227 ls228 ls68 ls69 ls84 ls85 lslOO lslOl ls196 lsl97 ls212 ls213 ls228 ls229 ls85 ls86 lslOl ls102 ls213 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 ERCON 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36.
- 36. 36.
- 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36( 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 207 of 303 ls214 ls229 ls230 ls70 ls71 ls86 ls87 lsl02 lsl03 lsl98 lsl99 ls214 ls215 ls230 ls231 ls39 ls40 ls41 lsl67 lsl68 lsl69 ls57 ls58 ls73 ls74 ls89 ls90 lsl85 lsl86 ls201 ls202 ls217 ls218 ls75 ls76 ls91 ls92 lsl07 lsl08 ls203 ls204 ls219 ls220 ls235 ls236 ls76 ls77. ls92 ls93 lsl08 lsl09 ls204 ls205 ls220 ls221 ls236 ls237 ls77 ls78 ls93 ENERCON CALCULATION CONTROL Attachment 9 19 19 19 20 20 20 20 20 20 20 20 20 20 20 20 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22 22 / 22 23 23 23 23 23 2:3' 23 23 23 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 25 25 25 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.5 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 18. O. le-006 0.388855 13.9988 0.8125 24.6024 0.623108 10.0178 0.771484 19.8127 1. 36. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1.
- 1. 1.
- 1.
- 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 36. 36. 36. 36.
- 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0; 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. '0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. Q. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. O.' 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 208 of 303 \
ls94 lsl09 lsllO ls205 ls206 ls221 ls222 ls237 ls238 ls78 is79 ls94 ls95 lsllO lslll ls206 ls207 ls222 ls223 ls238 ls239 ls79 ls80 ls95 ls96 lslll lsll2 ls207 ls208 ls223 ls224 ls239 ls240 lsl ls2 lsl29 lsl30 ls257 ls258 lsl02 lsl03 lsll8 lsll9 ls230 ls231 ls246 ls247 ls358 ls359 ls374 ls375 ,lslOl lsl02 lsl03 ls229 ls230 ls231 ls357 ls358 ls359 ENERCON 25 25 25 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 28 28 28 28 28 28 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 0. 1. 0. 1. 1. 1. 1. 1. '1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 1. 1. 0. 1. 1. 0. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36.
- 36. le-006 36. le-006 36. le-006 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. le-006 36. 36. le-006 36. 36. le-006 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. o. 0. 0. 0. -0. o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 209 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O Z-Direction Cell Face Variations Volume ls Cell Blockage Ai-ea Hyd. Dia. No. def ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 ls148 lsl49 lsl50 lslO lsll lsl2 lsl3 lsl4 lsl5 ls26 ls27 ls28 ls29 ls30 ls31 lsl38 lsl39 lsl40 lsl41 lsl42 lsl43 lsl54 lsl55 lsl56 lsl57 lsl58 lsl59 ls34 ls35 ls SO ls51 lsl62 lsl63 lsl78 lsl79 ls35 ls36 No. Porosity (ft) 0 1. 1000000.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 1. 1. 1.
- 1. 1. 1. i: 1. 1. 1. -1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37.
- 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 3'J. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37.
- 37. 37. 37.
- 37. 37. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. Loss Coeff. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. PAGE NO. 210 of 303 Drop De-ent. Curb Ht Factor (ft) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0.
ls51 ls52 ls163 ls164 ls179 lsl80 ls36 ls37 ls52 ls53 ls164 ls165 ls180 ls181 ls37 ls38 ls53 ls54 lsl65 ls166 lsl81 ls182 ls38 ls39 ls54 ls55 ls166 ls167 ls182 ls183 ls23 ls24 ls25 ls39 ls40 ls41 ls151 ls152 lsl53 ls167 ls168 ls169 ls42 ls43 ls58 ls59 ls170 ls171 ls186 ls187 ls43 ls44 ls59 ls60 ls171 ls172 ls187 ls188 ls44. ls45 ENERCON 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 11 11 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. ' 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 74. 37. 61. 6667 74. 37. 61.6667 74. 37. 61. 6667 74. 37. 61.6667 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36.
- 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 *. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0.
- 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o,. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. *o. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 211 of 303 ls60 ls61 ls172 ls173 ls188 ls189 ls45 ls46 ls61* ls62 ls173 ls174 ls189 ls190 ls46 ls47 ls62 ls63 ls174 lsl75 ls190 ls191 ls47 ls48 ls63 ls64 ls175 ls176 ls191 ls192 ls Bl ls82 ls97 ls98 ls209 ls210 ls225 ls226 ls82 ls83 ls98 ls99 ls210 ls211 ls226 ls227 ls83 ls84 ls99 lslOO ls211 ls212 ls227 ls228 ls84 ls85 lslOO lslOl ls212 ls213 ENER 11 11 11 11 11 11 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 18 18 18 18 18 18 ON 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. CALCULATION CONTROL Attachment 9 36 .. 36. 36. 36. 36. '36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. I 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0 :' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 212 of 303 r ENERCON ls228 ls229 lslOl ls102 ls229 ls230 ls86 ls87 lsl02 lsl03 ls214 ls215 ls230 ls231 ls39 ls40 ls41 ls55 ls56 ls57 ls73 ls74 ls89 ls90 ls201 ls202 ls217 ls218 ls91 ls92 lsl07 lsl08 ls219 ls220 ls235 ls236 ls92 ls93 ls108 ls109 ls220 ls221 ls236 ls237 ls93 ls94 ls109 lsllO ls221 18 18 19 19 19 19 20 20 20 20 20 20 20 20 21 21 21 . 21 21 21 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 23 24 24 24 24 24 24' 24 24 25 25 25 25 25 ls222 25 ls237 ) 25 ls238
- 25 ls94 26 ls95 lsllO lslll ls222 ls223 ls238 ls239 26 26 26 26 26 26 26 1. 1*. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1. .1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 74. 37. 61.6667 74 . 37. 61.6667 36. 36. 36.
- 36. 36. 36. 36. 36.' 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36. 36. 36. 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. ,o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. / CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 213 of 303 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. .0. 0. 0. 0. 0. 0. 0. 0. 0. Q. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0.' ' 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. o.
ENERCON CALCULATION CONTROL Attachment 9 --.,. ls95 ls96 lslll lsll2 ls223 ls224 ls239 ls240 lsl lsl7 :J,sl29 lsl45 ls257 ls273 _J lsl 27 27 27 27 27 27 27 27 28. 28 28 28 28 28 29 29 29 29 ls2 lsl29 lsl30 ls257 ls258 lsll8 lsll9 ls246 ls247 ls374 ls375 lsl02 lsll8 ls230 ls246 ls358 ls374 -29 29 30 30 30 30 30 30 31 31 31 31 31 31 Volume Variations Volume ls Cell Blockage No. No. def O ls2 ls3 ls4 ls5 ls6 lsl8 lsl9 ls20 ls21 ls22 lsl30 lsl31 lsl32 lsl33 lsl34 lsl46 lsl47 lsl48 lsl49 lsl50 lslO lsll 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 36.
- 36. 36. 36. 36. 36. 36. 36.
- 37. 37. 37. ,37. 37. 37. 51.4286 51.4286 51.4286 51.4286 51.4286 51'.4286
- 36. 36. 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. ( Volume Hyd. Dia. Porosity (ft) 1. 1000000.
- 1. 1.
- 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 37.
- 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37. 37. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. ; 0. 0. 0. 0.
- 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. . 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. o. 0. 0. 0. 0. g. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0 . 0. 0. 0. o. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 214 of 303 ENERCON ls12 2 1. lsl3 2 1. ls14 2 1. lslS 2 1. ls26 2 1. ls27 2 1. ls28 2 1. ls29 2 1. ls30 2 1. ls31 2 1. ls138 2 1. ls139 2 1. ls140 2 1. ls141 2 1. ls142 2 1. ls143 2 1. lsl54 2 1. lslSS 2 1. ls156 2 1. ls157 2 1. ls158 2 1. ls159 2 1. ls34 3 1. ls35 3 1. ls SO 3 1. lsSl 3 1. ls162 3 1. ls163 3 1. ls178 3 1. ls179 3 1. ls35 4 1. ls36 4 1. lsSl 4 1. ls52 4 1. lsl63 4 1. ls164 4 1. lsl79 4 1. ls180 4 1. ls36 5 1. ls37 5 1. ls52 5 1. ls53 5 1. ls164 5 1.' ls165 5 1. lsl80 5 1. ls181 5 1. ls37 6 1. ls38 6 1. ls53 6 1. ls54 6 1. ls165 6 1. ls166 6 1. ls181 6 1. ls182 6 1. ls38 7 1. ls39 7 1. ls54 7 1. ls SS 7 1. ls166 7* 1. ls167 7 1. CALCULATION CONTROL Attachment 9 37. 37. 37. 37. 37. 37. 37. 37. 37.
- 37. 37. 37. 37.
- 37. 37. 37. 37. I 37. 37. 37. 37. 37.
- 36.
- 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36.
- 36.
- 36.
- 36. 36. 36.
- 36. 36. 36-; 36. 36. 36. 36. 36. 36. 36. 36. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 215 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ixre!fo11a-Ew:ty ptO}fKl £vf/ry da'f. Attachment 9 PAGE NO. 216 of 303 lsl82 7 1. 36. lsl83 7 1. 36. ls23 8 1. 74. ,ls24 8 1. 37. ls25 8 1. 61.6667 ls39 8 1. 74. ls40 8 1. 37. ls41 8 1. 61.6667 lslSl 8 1. 74. lsl52 8 1. 37. lsl53 8 1. 61.6667 lsl67 8 1. 74. lsl68 8 1. 37. lsl69 8 1. 61.6667 ls42 9 1. 36. ls43 9 1. 36. ls SB 9 1. 36. ls59 9 1. 36. lsl70 9 1. 36. lsl71 9 1. 36. lsl86 9 1. 36. lsl87 9 1. 36. ls43 10 1. 36. ls44 10 1. 36. ls59 10 1. 36. ls60 10 1. 36. lsl71 10 1. 36. lsl72 10 1. 36. lsl87 10 1. 36. lslBB 10 1. 36. ls44 11 1. 36. ls45 11 1. 36. ls60 11 1. 36. ls61 11 1. 36. lsl72 11 1. 36. lsl73 11 1. 36. lslBB 11 1. 36. lsl89 11 1. 36. ls45 12 1. 36. ls46 12 1. 36. ls61 12 1. 36. ls62 12 1. 36. lsl73 12 1. 36. lsl74 12 1. 36. lsl89 12 1. 36. lsl90 12 1. 36. ls46 13 1. 36. ls47 13 1. 36. ls62 13 1. 36. ls63 13 1. 36. lsl74 13 1. 36. lsl75 13 1. 36. lsl90 13 1. 36. lsl91 13 1. 36. ls47 14 1. 36. ls48 14 1. 36. ls63 14 1. 36. ls64 14 1. 36. lsl75 14 1. 36. lsl76 14 1. 36.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fxceHence-F.vetyptt;]e<:t, fw:r:; ttay. Attachment 9 PAGE NO. 217 of 303 ls191 14 1. 36 . . ls192 14 1. 36. ls81 15 1. 36. ls82 15 1. 36. ls97 15 1. 36. 1598 15 1. 36. ls209 15 1. 36. ls210 15 1. 36. ls225 15 1. r 36. ls226 15 1. 36. ls82 16 1. 36. ls83 16 1. 36. ls98 16 1. 36. ls99 16 1. 36. ls210 16 1. 36. ls211 16 1. 36. ls226 16 1. 36. ls227 16 1. 36. ls83 17 1. 36. ls84 17 1. 36. ls99 17 1. 36. lslOO 17 1. 36. ls211 17 1. 36. ls212 17 1. 36. ls227 17 1. 36. ls228 17 1. 36. ls84 18 1. 36. ls85 18 1. 36. lslOO 18 1. 36. lslOl 18 1. 36. ls212 18 1. 36. ls213 18 1. 36. ls228 18 1. 36. ls229 18 1. 36. lslOl 19 1. 36. ls102 19 1. 36. ls229 19. 1. 36. ls230 19 1. 36. ls86 20 1. 36. ls87 ,20 1. 36. ls102 20 1. 36. lsl03 20 1. 36. ls214 20 1. 36. ls215 20 '1. 36. ls230 20 1. 36. ls231 20 1. 36. ls39 21 1. 74. ls40 21 1. 37. ls41 21 1. 61. 6667 ls55 21 1. 74. ls56 21 1. 37. ls57 21 1. 61. 6667 ls167 21 1. 185. ls168 21 1. 92.5 lsl69 21 1. 154.167 \' ls183 21 1. 185. ls184 21 1. 92.5 '-ls185 21 1. 154.167 ls73 22 1. 36. ls74 22 . 1. 36 . CALC. NO. ENTR-078-CALC-004 '* ENERCON CALCULATION CONTROL SHEET-REV.O pt()jtJ<;t, Evwy day. Attachment 9 I PAGE NO. 218 of 303 ls89 22 1. 36. ls90 22 1. 36. ls201 22 1. 36. ls202 22 1. 36. ls217 22 1. 36. ls218 22 1. 36. ls91 23 1. 36. ls92 23 1. 36. ls107 23 1. 36. lsl08 23 1. 36. ls219 23 1. 36.' ls220 23 1. 36. ls235 23 1. 36. ls236 23 1. 36. ls92 24 -1. 36. ls93 24 1. 36. lsl08 24 1. 36. lsl09 24 1. 36. ls220 24 1. 36. ls221 24 1. 36. ls236 24 1. 36. ls237 24 1. 36. ls93 25 1. 36. ls94 25 1. 36. ls109 25 1. 36. lsllO 25 1. 36. ls221 25 1. 36. ls222 25 1. 36. ls237 25 1. 36. ls238 25 1. 36. ls94 26 1. 36. ls95 26 1. 36. lsllO 26 1. 36. lslll 26 1. 36. ls222 26 1. 36. ls223 26 1. 36. ls238 26 1. 36. ls239 26 1. 36. ls95 27 1. 36. ls96 27 1. 36. lslll 27 1. 36. ls112 27 1. 36. ls223 27 1. 36. ls224 27 1. 36. ls239 27 1. 36. ls240 27 1. 36. lsl 28 1. 37. ls17 28 1. 37. ls129 28 1. 37. ls145 28 1. 37. ls257 28 1. 37. ls273 28 1. 37. lsl 29 1. 51.4286 ls2 29 1. 51.4286 ls129 29 1. 51.4286 ls130 29 1. 51.4286 ls257 29 1. 51.4286 ls258 29 1. 51.4286 lsl18 30 1. 36. ls119 30 1. 36. ENERCON ls246 30 1. ls247 30 1. ls374 30 1. ls375 30 1. ls102 31 1. ls118 31 1. ls230 31 "1. ls246 31 1. ls358 31 1. ls374 31 1. Boundary Slip Conditions Volume ls CALCULATION CONTROL Attachment 9 36. 36. 36. 36. 37. 37. 37. 37. 37. 37. North South East West Top Bottom NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP X-Direction Nading Volume 2s Cell Distance Width Plane (-ft) (ft) 1 0. 9. 2 9. 9. 3 18. 9. 4 27. 9. 5 36. 9. 6 45. 9. 7 54. 9. 8 63. 9. 9 72. 9. 10 81. 9. 11 90. 9. 12 99. 9. 13 108. 9. 14 117. 9. 15 126. 9. 16 135. 9. Y-Direction No ding Volume 2s Cell Distance Depth Plane (ft) (ft) 1 0. 9.25 2 9.25 9.25 3 18.5 9.25 4 27.75 9.25 5 37. 9.25 6 46.25 9.25 7 55.5 9.25 8 64.75 9.25 Z-Direction Noding Volume 2s Cell Distance Plane (ft) 1 0. 2 5. Cell Blockages Volume 2s Block Height (ft) 5. 3.67 Table 1 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 219 of 303 ENERCON CALCULATION CONTROL Attachment 9 No. Description Cell Blockages -Table 2 Volume 2s Block Coo No. Xl Yl Zl T X2 X-Direction Cell Face Variations Volume 2s Y2 Cell Blockage Area Hyd. Dia. Loss Z2 No. def No. Porosity (ft) Coeff. 0 1. 1000000.
- 0. Y-Direction Cell Face Variations Volume 2s Cell Blockage Area Hyd. Dia. Loss No. No. Porosity (ft) Coeff. def 0 1. 1000000.
- 0. Z-Direction Cell Face Variations Volume 2s (ft) X3 Y3 Drop De-ent. Factor 0. Drop De-ent. Factor o. CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 220 of 303 Z3 L Curb Height Cell Blockage Area Hyd. Dia. Loss Drop De-ent. Curb Ht No. No. Porosity def 0 1. Volume Variations Volume 2s Cell Blockage Volume No. No. Porosity def 0 0.9 Boundary Slip Conditions Volume 2s (ft) Coeff. 1000000.
- 0. Hyd. Dia. (ft)' 1000000.
North South East West Top Bottom Factor (ft) 0. 0. NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP NO SLIP Turbulence Parameters Liquid Vapor Liquid Vapor Vol Molec Turb. Mix.L. Mix.L Pr/Sc Pr/Sc Phase # Diff. Model (ft) (ft) No. No. Option ls NO MIX-L 1. 1. 1. 1. VAPOR 2s NO MIX-L 1. 1. 1. 1. VAPOR 3 NO NO 1. 1. VAPOR 4 NO NO 1. 1. VAPOR 5 NO NO 1. 1. VAPOR Turbulence Sources Vol Kinetic Energy Dissipation
- Type Phase (ft2/s2)
[*lbm/s] FF (ft2/s3) [*lbm/s] FF "" Discrete Burn Parameters Min Min Max Burn Flame Burn Un Vol H2 02 H20 Length speed Rate Burn Burn # Frac Frac Frac (ft) (ft/s) FF Frac Opt ls 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 2s 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 3 0.07 0.05 0.55 DEFAtn;.T DEFAULT DEFAULT FBR I E.NERCON CALCULATION CONTROL Attachment 9 4 5 0.07 0.07 0.05 0.05 0.55 0.55 DEFAULT DEFAULT DEFAULT DEFAULT Continuous Burn Parameters Vol Min H2 Min Max Max Burn Vol Flow 02 H20 H20/H2 Frac # (lbm/s) Frac Frac Ratio ls 0. 0.05 0.55 1000. 1. 2s 0. 0.05 0.55 1000. 1. 3 0. 0.05 0.55 1000. 1. 4 0. 0.05 0.55 1000. 1. 5 0. 0.05 0.55 1000. 1. Mechanistic Burn Rate Parameters Min Min Max Lam Burn DEFAULT FBR DEFAULT FBR Burn Vol H2 02 H20 Da Rate Temp Limit # Frac Frac Frac No. (lbm/ft3-s FF (F) ls 0. 0. 1. 1. DEFAULT 350. 2s 0. 0. 1. 1. DEFAULT 350. 3 0. 0. 1. 1. DEFAULT 350. 4 0. 0. 1. 1. DEFAULT 350. 5 0. 0. 1. 1. DEFAULT 350. Mechanistic Burn Propagation Parameters Unburne Burned CC Flow Flame Ignition Vol H2 H2 Vel Thick H2 # Frac FF Frac FF (ft/s) FF (ft) FF Frac ls 0.04 0.001 DEFAULT 0.164 0.04 *2s 0.04 0.001 DEFAULT 0.164 0.04 3 0.04 0.001 DEFAULT 0.164 0.04 4 0.04 0.001 DEFAULT 0.164 0.04 5 0.04 0.001 DEFAULT 0.164 0.04 Fluid Boundary Conditions -Table 1 Press. Temp. Flow s J ON CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 221of303 Turb Turb Burn Burn FF Opt FF EDIS EDIS EDIS EDI$ EDIS OFF Elev. BC# Description (psia) FF (F) FF (lbm/s) FF p 0 Trip Trip (ft) lP Environment 14.7 96 2P HVC ACUl Outlet 14.7 1 3F Atmosphere FB 14.7 1 ___ 4p Smoke Removal E 14.7 96 Fluid Boundary Conditions -Table 2 Liq. V Stm. V Drop D Cpld BC# Frac. FF Frac. FF (in) FF BC# lP 0. h53 NONE 2P 0. . 03034 NONE 3F 4P .03034 h53 NONE NONE Fluid Boundary -Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 lP 1. 2P 1. 3F 1. 4P 1. Fluid Boundary Conditions -Table 4 Volume Fractions 0 N N 136 .13 lT 0 N N 136.13 lT 200 N N 136.13 N N 136.13 Flow Heat Outlet Frac. FF (Btu/s) FF Quality FF DEFAULT DEFAULT DEFAULT DEFAULT FF ENERCON CALCULATION CONTROL Attachment 9 Liq CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 222 of 303 BC# Gas 5 FF Gas 6 FF Gas 7 FF Comp FF lP 2P 3F 4P Flow Paths -Table 1 F .P. Vol # Description A 1 'Env Connection ls94 2 Tile 1 a 2s34 3 Tile 1 b 2s68 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8 HVC-ACUl PB Atmosphere FB CB136-9 Low CB 136-9 High Outside Low Outside High Smoke Removal Smoke Removal 2s86 2s77 2s63 2s82 2s89 2s95 2s56 3 3 ls14 ls142 3 4 p 5 2s193 Smoke Removal 2 2s136 Smoke Removal 3 2s144 Fan Flow path ls14 Toilet/Kitchen ls374 Egg Crate 1 ls369 Egg Crate 2 ls371 Egg Crate 3 ls373 Egg Crate 4 ls375 Egg Crate 5 ls377 Egg Crate 6 ls379 Egg Crate 7 ls381 Egg Crate 8 ls383 Egg Crate 9 ls370 Egg Crate 10 ls372 Egg Crate 11 ls376 Egg Crate 12 ls378 Egg Crate 13 ls380 Egg Crate 14 ls382 Egg Crate 15 ls384 Egg Crate 16 ls257 Egg Crate 17 ls258 Egg Crate 18 ls259 Egg Crate 19 ls260 Egg Crate 20 ls261 Egg Crate 21 ls262 Egg Crate_22 ls263 Egg Crate 23 ls264 Egg Crate 24 ls265 Egg Crate 25 ls266 Egg Crate_26 ls267 Egg Crate 27 ls268 Egg Crate_28 ls269 Elev Ht (ft) (ft) 136.13 3.3 145.5 0.001 145.5 0.001 Vol B lP ls290 ls324 Elev Ht (ft) (ft) 136.13 3.3 145.24 0.001 145.24 0.001 145.5 0.001 ls342 145.24 0.001 145.5 0.001 ls333 145.24 0.001 145.5 0.001 ls319 145.24 0.001 145.5 0.001 ls338 145.24 0.001 145.5 0.001 ls345 145.24 0.001 145.5 0.001 ls351 145.5 0.001 136.13 1. 136.13 1. ls312 2P 3F 136.13 3.4851 4 139.62 3.5149 4 157.67 3.5 161.17 3.5 142. 1. 151. 1., 151. 151. 1. 1. 4 3 4P 5 5 5 136.13 3.4851 4 144.25 1. 5 145.24 0.001 2s113 145.24 0.001 2s115 145.24 0.001 2s117 145.24 0.001 2s119 145.24 0.001 2s121 145.24 0.001 2s123 145.24 0.001 2s125 145.24 0.001 2sl27 145.24 0.001 2s114 145.24 0.001 2s116 145.24 0.001 2s120 145.24 0.001 2s122 145.24 0.001 2s124 145.24 0.001 2s126 145.24 0.001 2s128 145.24 0.001 2sl 145.24 0.001 2s2 145.24 0.001 2s3 145.24 0.001 2s4 145.24 0.001 2s5 145.24 0.001 2s6 145.24 0.001 2s7 145.24 0.001 2s8 145.24 0.001 2s9 145.24 0.001 2s10 145.24 0.001 2sll 145.24 0.001 2s12 145.24 0.001 2s13 145.24 0.001 145.24 0.001 136.13 1. 136.13 1. 136.13 3.4851 139.62 3.5149 157.67 3.5 161.17 3 .5 136.13 1. 142. 1. 142. 1. 142. 1. 136.13 3.4851 142. 1. 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 145.5 0.001 ) CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O 51 52 53 Egg Crate 29 Egg Crate 30 Egg Crate 31 Flow Paths Flow Flow Path Area # (ft2) 1 1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 40. 40. 80. 80. 80. 80. 80. so. 80. 1. 1. 10.5 10.5 10.5 10.5 1. 36. 12.
- 12. 10.5 1. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 -Table 2 Hyd. Diam. (ft) 1. 2.667 2.661 2.667 2.667 2.667 2.667 2.667 2.667 2.667 1. 1. 4.2 4.2 4.2 4.2 1. 5.54 3.43 3.43 4.2 1. 0.042 0.042 0.042 0.042 0.042 0.042 0. 042. 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 PAGE NO. 223 of 303 ls270 145.24 0.001 2s14 ls271 145.24 0.001 2s15 ls272 145.24 0.001 2s16 145.5 0.001 145.5 0.001 145.5 0.001 Inertia Length (ft) 1. 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 4.558 1. 1. 10. 10. 10. 10. 1. 10.
- 10.
- 10. 10. 1. 10. 10.
- 10. 10. 10. 10. 10. 10. 10. 10 .. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.
- 10. 10. 10. 10. 10. 10. Friction Relative Dep Length Rough-Bend (ft) ness (deg) 0. 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0. o. 0. 0. Mom Strat Trn Flow Opt Opt N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE NONE NONE N NONE N NONE 0. NONE 0. NONE 0. 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 0.0417 NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE N NONE 53 Flow Flow Path # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 CALC. NO. ENTR-078-CALC-004 ENERC'ON CALCULATION CONTROL Attachment 9 REV.O 2.5 0.042 Paths -Table 3 Fwd. Rev. Loss Coeff. 0.127 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.837 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2 .-78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 Loss Coeff. 0.127 2.837 2.837 2. 837 2.837 2.837 2.837 2.837 2.837 2.837 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2. 78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 2.78 10. q.0417 Critical Exit Comp. Opt. OFF OFF OFF OFF Flow Loss Model Coeff. OFF 0. OFF 0. OFF 0. OFF 0. OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF 0. o. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
- 0. 0. 0. 0. 0. 0. 0. Drop Breakup Model OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF dFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF PAGE NO. 224 of 303 N NONE ENERCON Flow Paths -Table 4 Forwar Flow Min Path H2 #-Frac 1 0.06 2 0. 06 3 0.06 4 0.06 5 0.06 6 0.06 7 0.06 8 0.06 9 0.06 Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 10 0.06 0.05 11 0.06 0.05 12 0.06 0.05 13 0.06 0.05 14 0.06 0.05 15 0.06 0.05 16 0.06 0.05 17 0.06 0.05 18 0.06. 0.05 19 0.06 0.05 20 0.06 0.05 21 0.06 0.05 22 0.06 0.05 23 0.06 0.05 24 ,0.06 0.05 25 0.06 0.05 26 0.06 0.05 27 0.06 0.05 28 0.06 0.05 29 0.06 0.05 30 0.06 0.05 31 0.06 0.05 32 0.06 0.05 33 0.06 0.05 34 0.06 0.05 35 0.06 0.05 36 0.06 0.05 37 0.06 0_05 38 0.06 0.05 39 0.06 0.05 40 0.06 0.05 41 0.06 0.05 42 0.06 0.05 43 0.06 0.05 44 0.06 0.05 45 0.06 0.05 46 0.06 0.05 47 0.06 0.05 48 0.06 0.05 49 0.06 0.05 50 0. 06 I 0. 05 51 0.06 0.05 52 0.06 0.05 53 0.06 0.05 Thermal Conductors Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0:55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O Min H2 Frac 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 Revers Min 02 Frac 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 -Max H20 Frac 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0 .. 55 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0.05 0.55 0. 05 . 0. 55 0.05 0.55 Burn Time Frac 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 Prop With PAGE NO. 225 of 303 Zero Prop Flow Opt NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO CO FLOW NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO NO CO FLOW CO FLOW CO FLOW Co'FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW COJ;LOW CO FLOW CO FLOW CO FLOW CO FLOW CO FLOW ENERCON CALCULATION CONTROL Attachment 9 Cond # Vol HT Vol HT Cond s. A. Init. Description CPl-West CP2-NE CP3-SE Floor A Co B Co Type (ft2) T. (F) ls 2s 3s 4s 5s 6s 7s 8s 9s 10s lls 12s 13s 14s 15s 16 17 18s 19s 20s 21s 22s 23s 24s 25s 26s 27s 28s 29s 30 31 32 33s ls18-1 1 ls18-1 5 1 7764.63 75. ls81-2 1 ls81-2 5
- 1 3234 .14 75. ls89-2 1 ls89-2 5 1 3728.76 75. lsl-12 11 lsl-12 12 5 10656. 76.5 Upper MCR ceili MCR West Wall L MCR North WallL 2s129-10 2s129-8 4 ls16-2 2 ls16-2 8 4 lsl-36 2 lsl-36 8 4 MCR East Wall L ls113-2 ls113-8 4 MCR South Wall lsl28-2 ls128-8 4 Ceiling Tiles ls257-10 2sl-12 11 6 Upper MCR West 2sl-14 1 2sl-14 8 4 Upper MCR North 2sl-24 1 2sl-24 8 4 Upper MCR East 2s113-1 2s113-8 4 Upper MCR South 2s128-1 2s128-8 4 Steel Structure 2sl-12 1 2sl-12 5 2 SM Doors lsl 1 lsl 5 10 lHS-JBA ls14 1 lsl4 5 7 ILAC Panels ls133-1 ls133-5 7 Steel ILAC 3/8 ls5-13 1 ls5-13 5 8 Steel ILAC=3/16 ls5-13 1 ls5-13 5 7 DC Panels N ls17-1 1 ls17-1 5 7 DC Panels S ls32-1 1 Support Beams ls16-3 1 Storage Cabinet ls97-2 1 I&C Storage Cab ls64-2 1 HVAC Ducts Smal lsl-18 1 HVAC Large_l lsl-18 1 HVAC Large_2 ls113-1 SCA Panels N ls17-1 1 SCA Panels S ls48 1 Metal File cabi lsl8 1 Short Metal Cab ls2 1 Metal cab NE ls98-1 1 ls32-1 5 ls16-3 5 ls97-2 5 ls64-2 5 lsl-18 5 lsl-18 5 ls113-5 ls17-1 5 ls48 5 ls18 5 ls2 5 ls98-1 5 7 8 9 9 10 10 7 7 7 9 9 9 34s Metal cab SE 35s June box NW 36s June box NE 37s June box SW 38s JUnC box SE 39s Kitchen 40s Metal Desks lslll-1 lslll-5 9 ls146-1 ls146-5 7 ls241-1 ls241-5 7 ls153-1 ls153-5 7 ls249-1 ls249-5 7 ls246-1 ls246-5 9 ls55-9 1 ls55-9 5 9 41s 1" Conduit S ls16-3 1 42s 1" Conduit kite ls117-1 43s 1" Conduit N wa ls113-1 44s l"Conduit W wal ls3-15 1 45 Security Port ls15 1 46s 2" Conduit ls4-13 1 47s 3" Conduit 48s 1.5" Conduit 49s COP-1160 50 RMS-CAB170 51 White boxes 52s Unistrut W 53s Unistrut)N
- 54s Unistrut s ls112-1 ls16-3 1 ls7-9 1 ls9 1 lslO 1 ls13-3 1 ls33-1 1 ls96-3 1 ls16-3 5 lsll 7-5 ls113-5 ls3-15 5 ls15 5 ls4'-13 5 ls112-5 ls16-3 5 ls7-9 5 ls9 5 lslO 5 ls13-3 5 ls33-1 5 ls96-3 5 Thermal Conductors
-Radiation Parameters 7 7 7 7 8 7 7 7 9 9 7 7 7 7 10656. 87. 1312.56 85. 674.51 85. 1312.56 85. 674.51 85. 10016. 78. 1248.48 88. 641.58 88. 1248.48 88. 641. 58 88. 11756. 8 81. 55.2 75. 1. 75. 173.8 75. 15. 75. 20. 75. 198. 75. 198. 212. 198. 297.5 183.3 328. 200. 134. 67. 88.5 40.5 396. 234. 64. 64. 112. 208. 324. 405. 19.625 9.42 39.25 70.65 12.5 34.6 19.6 11.8 6.6 14.7 16.5 36.8 10.496 18.368 75.
- 75. 75.
- 75. 75. 75. 75. 75. 75. 75. 75.
- 75.
- 75. 75. 75. 75. 75. 75. 75.
- 75.
- 75. 75. 75. 75. 75. 75. 75: 75. 75. 75. 75. 75. 75. Cond Therm. Rad. Emiss. Therm. Rad. # Side A Side A Side B Emiss. Side B CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 226 of 303 Or I I I I I I I I I x I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ENERCON ls No 2s No 3s No 4s No 5s No Gs No 7s No as No 9s No 10s No lls No 12s No 13s No 14s No 15s No 16 No 17 No 18s No 19s No 20s No 2ls No 22s No 23s No 24s No 25s No 26s No 27s No 28s No 29s No 30 No 31 No 32 No 33s No 34s No 35s No 36s No 37s No 38s No 39s No 40s No 4ls No 42s No 43s No 44s No 45 No 46s No 47s No 48s No 49s No 50 No 51 No 52s No 53s No 54s No Heat Transfer Coefficient Heat Type Transfer Nominal # Option Value FF 1 Direct CALCULATION CONTROL Attachment 9 No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No No Types -Table 1 end/ Sp Nat For Cnv Cnd Cnv Cnv Cnv Opt Opt HTC Opt Opt ADD MAX VERT SURF OFF CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 227 of 303 Rad Opt OFF CALC. NO. ENTR-078-CALC-004 ENER ON CALCULATION CONTROL SHEET-REV.O f.xreifena-fH?typtojea
£wr.1du1 Attachment 9 PAGE NO. 228 of 303 2 Direct ADD MAX VERT SURF OFF OFF 3 Direct ADD MAX VERT SURF OFF OFF 4 Direct ADD MAX VERT SURF OFF OFF 5 Sp Heat 0. 6 Direct ADD MAX 7 OFF OFF ON 7 Sp Conv 2. OFF 8 Sp Ambie 1. 3T 9 9 Sp Conv 4. OFF 10 Direct ADD MAX FACE DOWN OFF OFF 11 Direct ADD MAX FACE UP OFF OFF 12 Sp Ambie 1. 2T '13 13 Sp Conv 1. 63 OFF Heat Transfer Coefficient Types -Table 2 Min Type Phase Liq # Opt Fr act 1 VAP 2 VAP 3 VAP 4 VAP 5 6 7 8 9 10 11 12 13 VAP VAP VAP VAP VAP VAP Max Liq Fr act Convect Bulk T Model Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tf Tg-Tw Tg-Tw Tg-Tf Tg-Tf Tg-Tw FF Condensa Bulk T Model Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw Tb-Tw FF Heat Transfer Coefficient Types -Table 3 Type # 1 2 3 4 5 6 7 8 9 10 11 12 13 HTC Type # 1 2 3 4 5 6 7 Char. Nat For Norn Minimum Char. Cond. Length (ft} Length Coef Exp (ft) FF FF Types -Table 4 Total Const Heat CT (Btu} Coef Exp Vel Vel Conv HTC Height FF FF (ft/s) FF (B/h-ft2-F (ft) Peak Time Exp (sec} XT DEFAULT. DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Initial BD Value Exp (B/h-f2-F} yt DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Post-BD Post-BD Exp Direct xt FF EN RCON 8 9 10 11 12 13 Thermal Type Conductor Types CALCULATION CONTROL SHEETi Attachment 9 Thick. O.D. Heat CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 229 of 303 Heat # Description Geom (in) (in) Regions (Btu/ft3-s) FF 1 Steel Panels WALL 0.172 2 Structural Stee WALL 0.229 3 Concrete WALL 12. 4 Concrete-24 in WALL 24. 5 Composite WALL 24.625 6 Ceiling Tiles WALL 0.625 7 1/8" Steel WALL 0.125 8 3/8" Steel WALL 0.375 9 1/16" Steel WALL 0.0625 10 1/4" Steel WALL 0.25 Thermal Conductor Type 1 Steel Panels Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 2 Structural* Steel Mat. Bdry. Region # (in) 1 1 0. Thermal Conductor Type 3 Concrete Mat. Bdry. Region # (in) 1 2 0. 2 2 0.25 3 2 0.75 4 2 1. 75 5 2 3.75 6 2 7.875 Therma1 Conductor Type 4 Concrete-24 in Mat. Bdry. Thick (in) 0.172 Thick (in) 0.229 Thick (in) 0.25 0.5 1. 2. 4.125 4.125 Thick 0.
- 0. 0. 0. 0. 0. 0. 0. 0 .--0. Sub-Heat regs. Factor 1 1. Sub-Heat regs. Factor 4 0. Sub-Heat regs. Factor 2 0. 2 0. 2 0. 2 o. 2 0. 2 0. Sub-Heat Region # (in) (in)
- regs. Factor 1 2 0. 0.00768 1 0. 2 2 0.00768 0.01536 1 0. 3 2 0.02304 0.03072 1 0. 4 2 0.05376 0.06144 1 0. 5 2 0 .1152 0.12288 1 0. 6 2 0.23808 0.24576 1 0. 7 2 0.48384 0.49152 1 0. 8 2 0.97536 0.98304 1 0. 1 0.135 ST 1 o. 6 0. 23 0. 39 1.2e-004 21 0. 1 0. 3 0. 1 0. 2 0.
ENERCON CALCULATION CONTROL Attachment 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9584 1.96608 1 3.92448 3.93216 -1 7.85664 4.03584 1 11.89248 4.03584 1 15.92832 2.0736 1 18.00192 2.0736 1 20.07552 1.96608 1 22.0416 0.98304 1 23.02464 0.49152 1 23.51616 0.24576 1 23.76192 0.12288 1 23.8848 0.06144 1 23.94624 0.03072 1 23.97696 0.01536 1 23.99232 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. Thermal Conductor Type 5 Composite_l Mat. Region # 1 5 2 5 3 5 4 5 6 7 8 9 10 11 12 13* 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 Bdry. Thick Sub-Heat (in) (in) regs. Factor 0. 8.2e-004 1 0. 8.2e-004 0.001632 1 o. 0.002448 0.003264 1 0. 0.005712 0.006528 1 0.01224 0.013056 1 0.025296 0.026112 1 0.051408 0.052224 1 0.103632 0.104448 1 0.20808 0.208896 1 0.416976 0.604012 1 1.020988 0.604012 1 1. 625 0.034244 1 1.659245 0.068488 1 1.727734 0.136977 1 1.864711 0.273955 1 2.138667 0.547911 1 2.686579 1.095824 1 3.782403 2.191647 1 5.97405 1.912738 1 7.886787 1.912738 1 9.799525 1.136902 1 10.93643 1.136903 1 12.07333 0.788150 1 12.86148 0.394075 1 13.25555 0.197037 1 13.45259 0.098518 1 13.55111 0.049259 1 13.60037 0.024629 1 13.625 3.53776 1 17.16276 3.53776 1 20.70052 1.96608 1 22.6666 0.98304 1 23.64964 0.49152 1 24.14116 0.24576 1 24.38692 0.12288 1 24.5098 0.06144 1 24.57124 0.03072 1 24.60196 0.01536 1 24.61732 0.00768 1 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 230 of 303 ENER Thermal Conductor Type 6 Ceiling Tiles Mat. Bdry. Region # (in) 1 4 0. 2 4 3.5e-004 3 4 0.001044 4 4 0.002436 5 4 0.00522 6 4 0.010788 7 4 0.021924 8 4 0. 044196 9 4 0.08874 10 4 0.177828 11 4 0.289621 12 4 0.401414 13 4 0.468837 14 4 0.53626 15 4 0.580804 16 4 0.603076 17 4 0 .'614212 18 4 0.61978 19 4 0,622564 20 4 0.623956 21 4 0,624652 Thermal Conductor 7 Type 1/8" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 8 3/8" Steel Mat. Bdry. Region # (in) 1 1 0. 2 1 0,1875 3 1 0.28125 Thermal Conductor Type 9 1/16" Steel Mat. Region # 1 1 Bdry. (in) 0. Thermal Conductor Type 10 1/4" Steel Mat, Region # 1 1 2 1 Cooler/Heater Bdry. (in) 0. 0.125 CALCULATION CONTROL SHEET-** Attachment 9 Thick (in) 3.5e-004 7e-004 ' 0.001392 0.002784 0.005568
- 0. 011136 0.022272 0.044544
0.089088 0.111793 0 .111793 0.067423 0.067423 0.044544
- 0. 022272 0. 011136 0.005568 0.002784 0,001392 7e-004 3.5e-Ci04 Thick (in) 0.125 Thick (in) 0.1875 0.09375 0.09375 Thick (in) 0.0625 Thick (in) 0.125 0.125 Sub-Heat regs. Factor 1 0. 1 0. 1 0. 1 0. ---... 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. 1 0. Sub-Heat regs. Factor 1 0. Sub-Heat regs. Factor 1 0. 1 0. 1 0. Sub-Heat regs, Factor 1 0. / Sub-Heat regs. Factor 1 0. 1 0. *' CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 231 of 303 ENER Heater Cooler # Description 1H 2H 3H 4H SH 6H 7H 8H 9H lOH llH 12H 13:H 14H lSH 16H 17H lSH 19H 20H 21H 22H 23H 24H 2SH 26H 27H 28H 29H 30H 31H 32H 33H 34H 3SH 36H 37H 38H 39H 40H 41H 42H 43H 44H 4SH 46H 47H 48H 49H SOH SlH S2H S3H* S4H SSH S6H S7H \_ CALC. NO. ENTR-078-CALC-004 Q N , CALCULATION CONTROL Attachment 9 REV.O Vol. # lsl ls2 ls3 ls4 lss' ls6 ls7 ls8 ls9 lslO lsll ls12 ls13 lsl4 lslS ls16 ls17 ls18 ls19 ls20. ls21 ls22 ls23 ls24 ls2S ls26 ls27 1828 ls29 ls30 ls31 ls32 ls33 ls34 ls3S ls36 ls37 ls38 ls39 ls40 ls41 ls42 ls43 ls44 ls4S ls46 ls47 'ls48 ls49 ls SO lsSl lsS2 lsS3 lsS4 ls SS lsS6 lsS7 On Off Flow Trip Trip Rate # # (CFM) PAGE NO. 232 of 303 Flow Heat Heat Rate Rate Rate Phs Ct.rlr FF (Btu/s) FF Opt Loe 1. 6T VTI lsl 1. 6T VTI ls2 1. 6T VTI ls3 1. 1. 1. 1. 1. 1'. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.' 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 6T VTI ls4 6T VTI lsS 6T VTI ls6 6T VTI ls7 6T VTI ls8 6T VTI ls9 6T VTI lslO 6T VTI lsll 6T VTI lsl2 6T VTI ls13 6T VTI ls14 6T VTI ls'is 6T VTI ls16 6T VTI lsl7 6T VTI ls18 6T VTI lsl9 6T VTI ls20 6T VTI ls21 6T VTI ls22 6T VTI ls23 6T VTI ls24 6T VTI ls2S 6T VT! ls26 6T VTI ls27 6T VTI ls28 6T VTI ls29 6T VTI ls30 6T VTI ls31 6T VTI ls32 6T VTI ls33 6T VTI ls34 6T VTI ls3S 6T VTI ls36 6T VTI ls37 6T VTI ls38 6T VTI ls39 6T vTI ls40 6T VTI ls41 6T VTI ls42 6T VTI ls43 6T VTI ls44 6T VTI ls4S 6T VTI ls46 6T VTI ls47 6T VTI ls48 6T VTI ls49 6T VTI lsSO 6T VTI lsSl 6T VTI lsS2 6T VT! lsS3 6T VTI lsS4 6T VTI lsSS 6T VTI lsS6 6T VTI lsS7 58H 59H GOH 61H 62H 63H 64H 65H 66H 67H 68H 69H 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 80H 81H 82H 83H 84H 85H 86H 87H 88H 89H 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H lOOH 101H 102H 103H 104H lOSH 106H 107H 108H 109H 110H 111H 112H 113H 114H 115H 116H 117H ENERCON ls58 ls59 ls60 ls61 ls62 ls63 ls64 ls65 ls66 ls67 ls68 ls69 ls70 ls71 ls72 ls73 ls74 ls75 ls76 ls77 ls78 ls79 ls80 ls81 ls82 ls83 ls84 ls85 ls86 ls87 ls88 ls89 ls90 ls91 ls92 ls93 ls94 ls95 ls96 ls97 ls98 ls99 lslOO lslOl lsl02 ls103 lsl04 lslOS ls106 lsl07 ls108 ls109 lsllO ls111 ls112 ls113 lsll4 lsl15 ls116 ls117 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV. 0 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. PAGE NO. 233 of 303 6T VTI ls58 6T VTI ls59 6T VTI ls60 6T VTI ls61 6T VTI ls62 6T VTI ls63 6T VTI ls64 6T VTI ls65 6T VTI ls66 6T VTI ls67 6T VTI ls68 6T VTI ls69 6T VTI ls70 6T VTI ls71 6T VTI ls72 6T VTI ls73 6T VTI ls74 6T VTI ls75 6T VTI ls76 6T VTI ls77 6T VTI ls78 6T VTI ls79 6T VTI ls80 6T VTI ls81 6T VTI ls82 6T VTI ls83 6T VTI ls84 6T VTI ls85 6T VTI ls86 6T VTI ls87 6T VTI ls88 6T VTI ls89 6T VTI ls90 6T VTI ls91 6T VTI ls92 6T VTI ls93 6T VTI ls94 6T VTI ls95 6T VTI ls96 6T VTI ls97 6T VTI ls98 6T VTI ls99 6T VTI lslOO 6T VTI lslOl, 6T VTI ls102 6T VTI ls103 6T VTI ls104 6T VTI lslOS 6T VTI ls106 6T VTI ls107 6T VTI ls108 6T VTI ls109 6T 1VTI lsllO 6T VTI lslll 6T VTI ls112 6T VTI ls113 6T VTI ls114 6T VTI lsllS 6T VTI ls116 6T VTI ls117 118H 119H 120H 121H 122H 123H 124H 125H 126H 127H 128H 129H 130H 131H 132H 133H 134H 135H 136H 137H 138H 139H 140H 141H 142H 143H 144H 145H 146H 147H 148H 149H 150H 151H 152H 153H 154H 155H 156H 157H 158H 159H 160H 161H 162H 163H 164H 165H 166H 167H 168H 169H 170H 171H 172H 173H 174H 175H 176H 177H ENERCON lsl18 lsl19 ls120 ls121 ls122 lsl23 ls124 ls125 ls126 ls127 lsl28 ls129 ls130 ls131 lsl32 ls133 ls134 ls135 ls136 lsl37 lsl38 ls139 ls140 ls141 ls142 ls143 ls144 ls145 ls146 ls147 ls148 ls149 lslSO ls151 ls152 ls153 ls154 ls155 ls156 ls157 lsl58 ls159 ls160 ls161 ls162 ls163 lsl64 ls165 ls166 ls167 ls168 ls169 ls170 lsl71 ls172 ls173 ls174 lsl75 lsl76 ls177 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O .1. 1. 1. 1: 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1.
- 1. 1. 1.
- 1. 1.
- 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. PAGE NO. 234 of 303 6T VTI ls118 6T VTI ls119 6T VTI ls120 6T VTI ls121 6T VTI ls122 6T VTI ls123 6T VTI ls124 6T VTI ls125 6T VTI ls126 6T VTI ls127 6T VTI ls128 6T VTI ls129 6T VTI *ls130 6T VTI ls131 6T VTI ls132 6T VTI ls133 6T VTI ls134 6T VTI ls135 6T VTI ls136 6T VTI ls137 6T VTI ls138 6T VTI ls139 6T VTI lsl40 6T VTI ls141 6T VTI ls142 6T VTI ls143 6T VTI lsl44 6T VTI ls145 6T VTI ls146 6T VTI ls147 6T VTI ls148 6T VTI ls149 6T VTI ls150 6T VTI ls151 6T VTI ls152 6T VTI ls153 6T VTI lsl54 6T VTI ls155 6T VTI ls156 6T VTI ls157 6T VTI ls158 6T VTI lsl59 6T VTI lsl60 6T VTI ls161 6T VTI lsl62 6T VTI ls163 6T VTI ls164 6T VTI ls165 6T VTI ls166 6T VTI ls167 6T VTI ls168 6T VTI ls169 6T VTI ls170 6T VTI lsl 71 6T VTI ls172 6T VTI ls173 6T VTI ls174 6T VTI ls175 6T VTI ls176 6T VTI ls177 ENERCON 178H 179H 180H 181H 182H 183H 184H 185H 186H 187H 188H 189H 190H 191H 192H 193H 194H 195H 196H 197H 198H 199H 200H 201H 202H 203H 204H 205H 206H 207H 208H 209H 210H 211H 212H 213H 214H 215H 216H 217H 218H 219H 220H 221H 222H 223H 224H 225H 226H 227H 228H 229H 230H 231H / 232H 233H 234H 235H 236H 237H lsl78 ls179 ls180 ls181 ls182 ls183 ls184 lsl85 ls186 ls187 lsl88 ls189 ls190 ls191 lsl92 ls193 ls194 lsl95 ls196 ls197. ls198 ls199 ls200 ls201 ls202 ls203 ls204 ls205 ls206 ls207 ls208 ls209 ls210 ls211 ls212 ls213 ls214 ls215 ls216 ls217 ls218 ls219 ls220 ls221 ls222 ls223 ls224 ls225 ls226 ls227 ls228 ls229 ls230 ls231 ls232 ls233 ls234 ls235 ls236 ls237 CALCULATION CONTROL Attachment 9 CALC. NO.
REV. 0 PAGE NO. 235 of 303 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 6T VTI ls178 6T VTI ls179 6T VTI ls180 6T VTI ls181 6T VTI ls182 6T VTI ls183 6T VTI ls184 6T VTI ls185 6T VTI ls186 6T VTI ls187 6T VTI ls188 6T VTI ls189 6T VTI ls190 6T VTI ls191 6T VTI lsl92 6T VTI ls193 6T VTI ls194 6T VTI lsl95 6T VTI ls196 6T VTI ls197 6T VTI ls198 6T VTI ls199 6T VTI ls200 6T VTI ls201 6T VTI ls202 6T VTI ls203 6T VTI ls204 6T VTI ls205 6T VTI ls206 6T VTI ls207 6T VTI ls208 6T VTI ls209 6T VTI ls210 6T VTI ls211 6T VTI ls212 6T VTI ls213 6T VTI ls214 6T VTI ls215 6T-VTI ls216 6T VTI ls217 6T VTI ls218 6T VTI ls219 6T VTI ls220 6T VTI ls221 6T VTI ls222 6T VTI ls223 6T VTI ls224 6T VTI ls225 6T VTI ls226 6T VTI ls227 6T VTI ls228 6T VTI ls229 6T VTI ls230 6T VTI ls231 6T VTI ls232 6T VTI ls233 6T VTI ls234 6T VTI ls235 6T VTI ls236 6T VTI ls237 /
238H 239H 240H 241H 242H 243H 244H 245H 246H 247H 248H 249H 250H 251H 252H 253H 254H 255H 256H 257H 258H 259H 260H 261H 262H 263H 264H 265H 266H 267H 268H 269H 270H 271H 272H 273H 274H 275H 276H 277H 278H 279H 280H 281H 282H 283H 284H 285H 286H 287H 288H 289H 290H 291H 292H 293H 294H 295H 296H 297H ENE. c N ls238 ls239 ls240 ls241 ls242 ls243 ls245 ls246 ls247 ls248 ls249 ls250 ls251 ls252 ls253 ls254 ls255 ls256 ls257 ls258 ls259 ls260 ls261 ls262 ls263 ls264 ls265 ls266 ls267 ls268 ls269 ls270 *1s271 ls272 ls273 ls274 ls275 ls276 ls277 *ls278 ls279 ls280 ls281 ls282 ls283 ls284 ls285 ls286 ls287 ls288 ls289 ls290 ls291' ls292 ls293 ls294 ls295 ls296 ls297 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O / 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
- 1.
- 1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 1.
- 1. 1. 1. 1. 1.
- 1. ,1. 1. 1.
- 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.60 PAGE 236 of 303 6T VT! ls238 6T VT! ls239 6T VT! ls240 6T VT! ls241 6T vTI ls242 6T VT! ls243 6T VTI ls244 6T VT! ls245 6T VTI ls246 6T VT! ls247 6T VTI ls248 6T VTI ls249 6T VTI ls250 6T VTI ls251 6T VT! ls252 6T VT! ls253 6T VT! ls254 6T VT! ls255 6T VT! ls256 4T VT! ls257 4T VT! ls258 4T VT! ls259 4T VT! ls260 4T VT! ls261 4T VT! ls262 4T VTI ls263 4T VT! ls264 4T
- VT! ls265 4T VT! ls266 4T VT! *1S267 4T VTI ls268 4T VTI ls269 4T VTI ls270 4T VT! ls271 4T VT! ls272 4T VT! ls273 4T VT! ls274 4T VTI ls275 4T VT! ls276 4T VT! ls277 4T VTI ls278 4T VT! ls279 4T VT! ls280 4T VT! ls281 4T VTI ls282 4T VT! ls283 4T VT! ls284 4T VT! ls285 4T VT! ls286 4T VTI ls287 4T VTI ls288 4T VT! ls289 4T
- VT! ls290 4T VT! ls291 4T VT! ls292 4T VT! ls293 VT! ls294 VT! ls295 VT! ls296 VT! ls297 298H 299H 300H 301H 302H 303H 304H 305H 306H 307H 308H 309H 310H 311H , 312H 313H 314H 315H 316H 317H 318H 319H 320H 321H 322H 323H 324H 325H 326H 327H 328H 329H 330H 331H 332H 333H 334H 335H 336H 337H 338H 339H 340H 341H 342H 343H 344H 345H 346H 347H 348H 349H 350H 351H 352H 353H 354H 355H 356H 357H ENERCON ls298 ls299 ls300 ls301 ls302 ls303 ls304 ls305 ls306 ls307 ls308 ls309 ls310 ls311 ls312 ls313 ls314 ls315 ls316 ls317 ls318 ls319 ls320 ls321 ls322 ls323 ls324 ls325 ls326 ls327 ls328 ls329 ls330 ls331 ls332 ls333 ls334 ls335 ls336 ls337 i.s338 ls339 ls340 ls341 ls342 ls343 ls344 ls345 ls346 ls347 ls348 ls349 ls350 ls351 ls352 ls353 ls354 ls355 ls356 ls357 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV.O 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 0.364 0.364 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.68 1. 1. 1. 1. 0.364 0.364 1. 1. 1. 1. 1. 1. 0.68 0.68 0.68 0.90 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. PAGE NO. 237 of 303 4T VTI ls298 4T VTI ls299 4T VTI ls300 4T VTI ls301 .._ 4T VTI ls302 4T VTI ls303 4T VTI ls304 4T VTI ls305 4T VTI ls306 4T VTI ls307 4T VTI ls308 4T VTI ls309 VTI ls310 VTI ls311 VTI ls312 VTI ls313 4T VTI ls314 4T VTI ls315 4T VTI ls316 4T VTI ls317 VTI ls318 VTI ls319 4T VTI ls320 4T VTI ls321 4T VTI ls322 4T VTI ls323 4T VTI ls324 4T VTI ls325 VTI ls326 VTI ls327 VTI ls328 VTI ls329 4T VTI ls330 4T VTI ls331 4T VTI ls332 4T VTI ls333 VTI ls334 VTI ls335 4T VTI ls336 4T VTI ls337 4T VTI ls338 4T . VTI ls339 4T VTI ls340 4T VTI ls341 VTI ls342 VTI ls343 VTI ls344 VTI ls345 4T VTI ls346 4T VTI ls347 4T VTI ls348 4T VTI ls349. 4T VTI ls350 4T VTI ls351 4T VTI ls352 4T VTI ls353 4T VTI ls354 4T VTI ls355 4T VTI ls356 4T VTI ls357 358H 359H 360H 361H 362H 363H 364H 365H 366H 367H 368H 369H 370H 371H 372H 373H 374H 375H 376H 377H 378H 379H 380H 381H 382H 383H 384H ENERCON ls358 ls359 ls360 ls361 ls362 ls363 ls364 ls365 ls366 ls367 ls368 ls369 ls370 ls371 ls372 ls373 ls374 ls375 ls376 ls377 ls378 ls379 ls380 ls381 ls382 ls383 ls384 385H Kitchen Heatl ls118 386H Rad Monitor H ls9 387H LAC-PNLlCl0/1 ls133 388H LAC-PNL1C5/6
-ls134 389H LAC-PNL1C9 ls135 390H BYS-PNL02B2/A ls65 391H SCI-PNL02/01 ls49 392H SCA-PNL10A2 ls17 393H SCA-PNL10B2 ls113 394H VBS-PNLOlB ls128 395H ENB-PNL02B/SC ls112 396H VBN-PNLOlBl ls96 397H VBN-PNLOlAl/V ls64 398H SCM-PNLOlA/EN ls48 399H VBS-PNLOlA ls32 400H PCl/2 ls72 401H PC3 ls104 402H PC4 ls105 403H PC5-6 ls87 404H PC 7 ls71 405H PC 8-9 ls199 406H 407H 408H 409H 410H 411H 412H 413H 414H 415H 416H 417H PCl0-11 ls106 PC 12-Shift M lsl Op_l ls55 Op_2 ls56 Op_3 ls57 Op_4 ls71 Op_5 ls72 OP 6 ls73 OP 7 OP 8 OP 9 OP 10 ls87 ls88 ls89 ls199 CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV. 0 0.68 0.68 0.68 0.68 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.37 1.8 0.038 0.12 0.038 0.1099 0.127 0.0483 0.0483 0.07772 0.277 0 .137 0.372 0.277 0.074 0.569 0.284 0.284 0.569 0.284 0.569 0.569 0.284 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 PAGE NO. 238 of 303 VTI ls358 VTI ls359 VTI ls360 VTI ls361 4T VTI ls362 4T VTI ls363 4T VTI ls364 4T VT! ls365 4T VTI ls366 4T VTI ls367 4T VTI ls368 4T VTI ls369 4T VTI ls370 4T VTI ls371 4T VTI ls372 4T VTI ls373 4T VTI ls374 4T VTI ls375 4T VTI ls3'!6 4T VTI ls377 4T VTI ls378 4T VTI ls379 4T VTI ls380 4T VTI ls381 4T VT! ls382 4T VTI ls383 4T VTI ls384 VTI lsl18 VTI ls9 .VTI ls133 VT! ls134 VTI ls135 VTI ls65 VTI ls49 VTI ls17 VTI lsl13 VTI ls128 VTI lsl12 VTI ls96 *vTI ls64 VT! ls48 VTI ls32 VTI ls72 VT! ls104 VTI ls105 VTI ls87 VTI ls71 VTI ls199 VTI ls106 VTI lsl VTI ls55 VTI ls56 VTI ls57 VTI ls71 VTI ls72 VTI ls73 VTI ls87 VTI ls88 VTI ls89 VTI ls199 418H 419H 420H 421H 422H 423H 424H 425H 426H 427H 428H 429H 430H 431H 432H . 433H 434H 435H 436H 437H 438H 439H 440H 441H 442H 443H 444H 445H 446H 447H 448H 449H 450H 451H 452H 453H 454H 455H 456H 457H 458H 459H 460H 461H 462H 463H 464H 465H 466H 467H 468H 469H 470H 471H 472H 473H 474H 475H 476H 477H IENERCON OP 11 OP 12 OP 13 OP 14 OP 15 OP 16 OP 17 OP 18 ls200 ls201 ls215 ls216 ls217 ls183 ls184 ls185 2sl 2s2 2s3 2s4 2s5 2s6 2s7 2s8 2s9 2s10 2sll 2sl2 2s13 2sl4 2s15 2s16 2s17 2s18 2s19 2s20 2s21 2s22 2s23 2s24 2s25 2s26 2s27 2s28 2s29 2s3_0 2s31 2s32 2s33 2s34 2s35 2s36 2s37 2s42 2s43 2s44 2s45 2s46 2s47 2s48 2s49 2s50 2s51 2s52 2s53 2s58 2s59 2s60 CALCULATION CONTROL Attachment 9 0. 037 0.037 0. 037 0. 037 0.037 0.037 0.037 0.037 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 239 of 303 VTI ls200 VTI ls201 VTI ls215 VTI ls216 VTI ls217 VTI ls183 VTI ls184 VTI ls185 . VTI 2sl VTI 2s2 VTI 2s3 VTI 2s4 VTI 2s5 VTI 2s6 VTI 2s7 VTI 2s8 VTI 2s9 VTI 2s10 VTI 2sll VTI 2s12 VTI 2sl3 VTI 2s14 VTI 2s15 VTI 2s16 VTI 2s17 VTI 2s18 VTI 2s19 VTI 2s20 VTI 2s21 VTI 2s22 VTI 2s23 VTI 2s24 VTI 2s25 VTI 2s26 VTI 2s27 VTI 2s28 VTI 2s29 VTI 2s30 VTI 2s31 VTI 2s32 VTI 2s33 VTI 2s34 VTI 2s35 VTI 2s36 VTI 2s37 VTI 2s42 VTI 2s43 VTI 2s44 VTI 2s45 VTI 2s46 VTI 2s47 VTI 2s48 VTI 2s49 VTI 2s50 VTI 2s51 VTI 2s52 VTI 2s53 VTI 2s58 VTI 2s59 VTI 2s60 478H 479H 480H 481H 482H 483H 484H 48SH 486H 487H 488H 489H 490H 491H 492H 493H 494H 49SH 496H 497H 498H 499H SOOH SOlH S02H S03H S04H SOSH S06H S07H SOSH S09H SlOH SllH Sl2H S13H S14H SlSH S16H S17H S18H S19H S20H .'?21H S22H S23H S24H S2SH S26H S27H S28H S29H S30H S31H S32H S33H S34H S3SH S36H S37H ENERCON 2s61 2s64 2s6S 2s66 2s67 2s68 2s69 2s74 2s7S 2s76 2s77 2s80 2s81 2s82 2s83 2s84 2s8S 2s90 2s91 2s92 2s93 2s94 2s9S 2s96 2s97 2s98 2s99 2s100 2s101 2s106 2s107 2s108 2s109 2s110 2slll 2s112 2s113 2s114 2s11S 2s116 2s117 2s118 2s119 2sl20 2s121 2s122 2s123 2s124 2s12S 2s126 2s127 2s128 1H13-P601_1 ls73 1H13_P601_2 ls89 1H13-P601_3 ls201 1H13-P601_4 ls217 1C91-P622 ls18 1C91-P622 2 ls146 1C91-P623/P6S ls34 1C91-P623/6SO ls162 CALCULATION CONTROL Attachment 9 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.38 0.38 0.38 0.38 0.209 0.209 0.619 0.619 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 240 of 303 VTI 2s61 VTI 2s64 VTI 2s6S VTI 2s66 VTI 2s67 VTI 2s68 VTI 2s69 VTI 2s74 VTI 2s7S VTI 2s76 VTI 2s77 VTI 2s80 VTI 2s81 VTI 2s82 VTI 2s83 VTI 2s84 VTI 2s8S VTI 2s90 VTI 2s91 VTI 2s92 VTI 2s93 VTI 2s94 VTI 2s9S VTI 2s96 VTI 2s97 VTI 2s98 VTI 2s99 VTI 2s100 VTI 2s101 VTI 2s106 VTI 2s107 VTI 2s108 VTI 2s109 VTI 2s110 VTI 2slll VTI. 2s112 VTI 2s113 VTI 2s114 VTI 2s11S VTI 2s116 VTI 2s117 VTI 2s118 . VTI 2s119 VTI 2s120 VTI 2s121 VTI 2s122 VT:t 2s123 VTI 2s124 VTI 2s12S VTI 2s126 VTI 2s127 VTI 2s128 VTI ls73 VTI ls89 VTI ls201 VTI ls217 VTI ls18 VTI ls146 VTI ls34 VTI ls162 538H 539H 540H 541H ' 542H 543H 544H 545H 546H 547H 548H 549H 550H 551H 552H 553H 554H 555H 556H 557H 558H 559H 560H 561H 562H 563H 564H 565H 566H 567H 568H 569H 570H 571H 572H 573H 574H 575H 576H 577H 578H 579H 580H 581H 582H 583H 584H 585H 586H 587H 588H 589H 590H 591H 592H 593H 594H 595H 596H 597H ENERCON CALCULATION CONTROL Attachment 9 1C91-P624 ls51 1C91-P624_2 lsl79 1C91-P613 ls94 1C91-P613_2 ls222 1C91-P614 ls30 1C91-P614 2 lsl58 1C91-P615/P64 ls46 1C91-P615/642 lsl74 1C91-P632/P63 ls72 1C91-P632/633 ls200 1C91-P630/631 ls62 1C91-P630/631 lsl90 1C91-P625 ls31 1C9l_p625_2 lsl59 1C91-P621/620 ls47 1C91-P621/612 lsl75 ' 1C91-P608/600 ls63 lsl91 Comm Network ls90 1Hl3-P600 ls26 1Hl3-P600 2 lsl54 1Hl3-P604/P61 ls42 1Hl3P604/614 lsl70 1Hl3-P672/P69 ls43 1Hl3P672/694 lsl71 1Hl3-P669/P69 ls44 1Hl3P669/691_ lsl72 1Hl3-P623/P63 ls60 1Hl3P623/632_ lsl88 1Hl3-P629 ls29 1Hl3-P629 2 lsl57 1Hl3-P621/P62 ls45 lsl73 1Hl3-P651-P65 ls61 1Hl3P651-5 2 lsl89 1Hl3-P680 ls56 1Hl3-P680 2 ls55 1Hl3-P680 3 ls57 1Hl3-P625/P69 ls91 1Hl3P625/693 ls219 1Hl3-P671 lsl07 1Hl3-P671 2 ls235 1Hl3-P642/613 ls92 1Hl3-P642/13/ ls220 1Hl3-P692/670 lsl08 1Hl3-P670/692 ls236 1Hl3/P610/652 ls93 1Hl3-P654/2/l ls221 1Hl3-P631/P61 lsl09 1Hl3-P631/618 ls237 1Hl3-P607/P61 ls94 1Hl3-P607/612 ls222 1Hl3-P619/P63 lsllO 1Hl3-P619/634 ls238 1Hl3-P637 lslll 1Hl3-P637_2 ls239 1Hl3-P630 ls59 1Hl3-P630_2 lsl87 Hl3-P808 ls40 Hl3-P808_2 lsl69 0.259 0.259 0.087 0.087 0.086 0.086 1.07 1.07 0.066 0.066 0.488 0.488 0.103 0.103 1.354 1.354 0. 971 0.971 0.279 0.095 0.095 0.569 0.569 0.853 0.853 0.853 0.853 0 .474 0 .474 0.237 0.237 0.284 0.284 0.545 0.545 0.253 0.253 0.253 0.616 0.616 0.474 0.474 0.474 0.474 0.853 0.853 0.474 0.474 0.427 0.427 0.284 0.284 0.569 0.569 0.379 0.379 1.564 1.564 0 .118 0 .118 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 241of303 VT! ls51 VT! lsl79 VTI ls94 VTI ls222 VT! ls30 VT! lsl58 VTI ls46 VT! lsl74 VT! ls72 VT! ls200 VT! ls62 VT! lsl90 VT! ls31 VT! lsl59 VT! ls47 VT! lsl75 VT! ls63 VT! lsl91 VT! ls90 VT! ls26 VT! lsl54 VTI ls42 VT! lsl70 VT! ls43 VT! lsl 71 VT! ls44 VT! lsl72 VT! ls60 VT! lsl88 VT! ls29 VT! lsl57 VT! ls45 VT! lsl73 VT! ls61 VT! lsl89 VT! ls56 VTI ls55 VT! ls57 VT! ls91 VT! ls219 VT! lsl07 VT! ls235 VTI ls92 VT! ls220 VT! lsl08 VT! ls236 VT! ls93 VT! ls221 VTI lsl09 VT! ls237 VT! ls94 VT! ls222 VT! lsllO VT! ls238 VT! lslll VT! ls239 VT! ls59 VT! lsl87 VT! ls40 VT! lsl69 / 598H 599H 600H 601H 602H 603H 604H 605H 606H 607H 608H 609H 610H 611H 612H 613H 614H 615H 616H 617H 618H 619H 620H 621H 622H 623H 624H 625H 626H 627H 628H 629H 630H 631H 632H 633H 634H 635H 636H 637H 638H 639H 640H 641H 642H 643H 644H 645H 646H 647H 648H 649H 650H 651H 652H' 653H 654H 655H 656H 657H ENERCON Hl3-P808_3 lsl68 Hl3-P808 4 ls41 1Hl3-P82l/822 ls95 P821/822 2 ls223 Hl3-P84lf819 ls36 Hl3-P841/819_ ls52 Hl3-P841/819 lsl64 Hl3-P841/819-lsl80 Hl3-P842/820-ls83 Hl3-P842/820 ls99 Hl3-P842/820= ls211 Hl3-P842/820_ ls227 1Hl3-P845 ls58 1Hl3-P845 2 lsl86 Hl3-P849 ls51 Hl3-P849 2 lsl79 Hl3-P850 lslOO Hl3-P850 2 ls228 Hl3-P851 ls37 Hl3-P851 2 lsl65 Hl3-P852 ls98 Hl3-P852 2 ls226 Hl3-P853 ls50 Hl3-P853 2 lsl78 Hl3-P854f844 ls81 Hl3-P854 2 ls97 Hl3-P854 3 ls209 Hl3-P854 4 1S225 Hl3-P855 ls35 Hl3-P855 2 lsl63 Hl3-P861 lsl03 Hl3-P861_2 ls231 Hl3-P863 ls38 Hl3-P863 2 ls54 Hl3-P863 3 lsl66 Hl3-P863 4 lsl82 Hl3-P869 ls84 Hl3-P869 2 ls212 Hl3-P870 ls70 Hl3-P870 2 ls86 Hl3-P870 3 lsl98 Hl3-P870 4 ls214 Hl3-P877 lsl05 Hl3-P877 2 ls233 Hl3-P878 lsll2 Hl3-P878 2 ls240 Hl3-P879 ls48 Hl3-P879 2 lsl76 Hl3-P952 lslOl Hl3-P952 2 ls229 Hl3-P951 ls53 Hl3-P951 2 lsl81 Hl3-Y702D/751 ls378 Hl3-Y703A ls282 Hl3-Y703D ls281 Hl3-Y710B/D/E ls380 Hl3-Y711A ls382 Hl3-Y712B/D ls379 Hl3-Y713A//D ls284 Hl3-Y714B/D ls381 CALCULATION CONTROL Attachment 9 0.118 0.118 0.519 0.519 0.283 b-.283 0.283 0.283 0.283 0.283 0.283 0.283 0.294 0.294 0.355 0.355 1.955 1.955 0.523 0.523 0.523 0.523 0.355 0.355 0.473 0.473 0.473 0.473 0.083 0.083 0.19 0.19 0.044 0.044 0.044 0.044 1.049 1.049 0.227 0.227 0.227 0.227 0.045 0.045 0.386 0.386 0.204 0.204 0.024 0.024 0.024 0.024 0.34 0 .351 0.215 0.828 0.125 0.703 0.703 0.25 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 242 of 303 VTI lsl68 VTI ls41 VTI ls95 VTI ls223 VTI ls36 VTI ls52 VTI lsl64 VTI lsl80 VTI ls83 VTI ls99 VTI ls211 VTI ls227 VTI ls58 VTI lsl86 VTI ls51 VTI lsl79 VTI lslOO VTI ls228 VTI ls37 VTI lsl65 VTI ls98 VTI ls226 VTI ls50 VTI lsl78 VTI ls81 VTI ls97 VTI ls209 VTI ls225 VTI ls35 VTI lsl63 VTI lsl03 VTI ls231 VTI ls38 VTI ls54 VTI lsl66 VTI lsl82 VTI ls84 VTI ls212 VTI ls70 VTI ls86 VTI lsl91,l VTI ls214 VTI lslp5 VTI ls233 VTI lsll2 VTI ls240 VTI ls48 VTI lsl76 VTI lslOl VTI ls229 VTI ls53 VTI lsl81 VTI ls378 VTI ls282 VTI ls281 VTI ls380 VTI ls382 VTI ls379 VTI ls284 VTI 1s381 \ { ENERCON CALCULATION CONTROL SHEET-6S8H 6S9H 660H 661H 662H 663H 664H 66SH 666H 667H 668H 669H 670H 671H 672H 673H 674H 67SH 676H 677H 678H 679H 680H 681H 682H Hl3-Y71SD/E Hl3-Y717D Hl3-Y730B Hl3-Y740A Hl3-Y743E Hl3-Y744D Hl3-Y747A Hl3-Y747B Hl3-Y748B/E Hl3-Y7SOE Hl3-Y7SlD Hl3-P721D ls28S ls283 ls374 ls278 ls383 ls276 ls371 ls27S ls274 ls369 ls277 ls377 ls31 Samsung Flats ls230 SM-Coffee Pot lsl29 HU Clock Rese lsl36 FLEX Radio ls232 Printer/Copie lslS Printer/Copie lsl20 Printer 1 lsl03 Printer 2 lsl04 Printer 3 lslos' Printer 4 lsl06 Exit Light ls270 Exit Light_2 ls2S9 Volumetric Fan -Table 1 Vol Flow On Off Fan Path Trip Trip
- Description # # # lQ Staged Fan 21 12 2Q Smoke Exhaust 18 13 3Q Toilet/Kitchen 22 4Q Smoke Exhaust 2 19 13 SQ Smoke Exhuast 20 13 Volumetric Fan -Table 2 Attachment 9 ' Min DP (psi) DEFAULT Max O.S66 0.3Sl 0.21S 0.21S 0.12S 0.21S 0.21S 0.215, 0.3Sl 0.43 0.21S 0.21S 0.227 0.237 0.114 0.182 b.2S4 0.40S 0.40S 0.19 0.19 0.19 0.19 0.063 0.063 DP (psi) DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Vol Flow Flow Heat Heat Fan # lQ 2Q 3Q 4Q SQ Flow Rate Option (CFM) Time 2800. Time Time Time Time S873.6 800. 212S.7 212S.7 Valves & Doors Rate Heat Rate FF Option (Btu/s) Time Time Time Time Time Rate Disch FF Vol 4 s s s s Valve Flow Open Close Valve Path Trip Trip Type Disch. Vol. 2s34 2s68 2s86 2s77 2s63 2s82 2s89 2s9S 2sS6 # Description # # # # lD 2D 3D 4D SD 6D 7D 8D 9D lOD Group 1 Tiles 2 Group 1 Tile 2 3 Group 2 Tiles 4 Group 3 Tiles S Group 4 Tiles 6 Group S Tiles 7 Group 6 Tiles 8 Group 7 Tiles 9 Group 8 Tiles 10 CB136-9 Low 13 3 3 4 s 6 7 8 9 10 14 12 s s 1 1 1 1 1 1 1 4 4 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 243 of 303 VTI ls28S VTI ls283 VTI ls374 VTI ls278 VTI ls383 VTI ls276 VTI ls371 VTI ls27S VTI ls274 VTI ls369 VTI ls277 VTI ls377 VTI ls31 VTI ls230 VTI lsl29 VTI lsl36 VTI ls232 VTI lslS VTI lsl20 VTI lsl03 VTI lsl04 VTI lslOS VTI lsl06 VTI ls270 VTI ls2S9 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 llD 12D 13D 14D CB136-9 High 14 Pressure Bounda 1 Outside Low 15 Outside High 16 Valve/Door Types Valve Stem Type Valve Travel # Option Curve 1 QUICK OPEN 0 2 QUICK OPEN 0 3 QUICK CLOSE 0 4 QUICK OPEN 0 5 QUICK OPEN 0 14 14 14 Loss Coeff. Curve 0 0 0 0 0 Volume Initial Conditions Total Vapor Liquid Vol Pressure Temp. Temp. # (psi a) (F) F def 14.7 81. 81. ls 14.7 75. 75. 2s 14.7 81. 81. Initial Volume Fractions Vol Air # Gas 1 Gas 2 Gas 3 Gas def 1. 0. 0. 0. ls 1. 0. 0. 0. 2s 1. 0. 0. 0. Noncondensing Gases 14 Flow Area (ft2) 80. 1. 1. 21. 40. 4 3 4 4 Relative Liquid Humidity Volume (%-) Fract. 20. 0. 20. 0. 20. 0. 4 Gas 5 Gas 6 0. 0. 0. 0. 0. 0. Liq. Comp. Fract. 0. 0. 0. Liq Gas 7 Comp 0. 0. 0. 0. o, 0. REV. 0 PAGE NO. 244 of 303 Gas Description
- symbol Type Mol. Lennard-Jones Parameters No. Weight Diameter e/K (Ang) (K) 1 Air Air POLY 28.97 3.617 97. Noncondensing Gases -Cp/Visc.
Equations Gas Cp Equation (Required) Vise. Equation (Optional) No. Tmin Tmax Cp Tmin Tmax Viscosity (R) (R) (Btu/lbm-R) (R) (R) (lbm/ft-hr) 1 360. 2880. 0.238534-6.2006 Materials Type # Description 1 Steel 2 3 4 5 Concrete air Gypsum Tile Hardboard Material Type 1 Steel Temp. (F) 80. Density (lbm/ft3) 484. Material Type 2 Concrete Gap NO NO NO NO NO Cond. Sp. Heat (Btu/hr-ft-F) (Btu/lbm-F)
- 21. 0.116 \
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET* Attachment 9 REV.O PAGE NO. 245 of 303 Temp. Density Cond. Sp. Heat (F) ,(lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F)
- 80. 131.5 0.64 0.21 Material Type 3 air Temp. Density Cond. Sp. Heat (F) (lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F)
- 60. 0. 07633* 0.01433 0.2404 80. 0.0735 0.01481 0.2404 100. 0.0709 0.01529 0.2405 150. 0.06507 0.01646 0.2406 300. 0.0522 0.01985 0.2423 Material Type 4 Gypsum Tile Temp. Density Cond. Sp. Heat (F) (lbm/ft3)
(Btu/hr-ft-F) (Btu/lbm-F) 100. 18. 0.029 0.19 Material Type 5 Hardboard Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F) 100. 55. 0.068 0.32 Component Trips Trip Sense Sensor Sensor Var. Set Delay Rs et Cond Cond # Description Var. 1 Loe. 2 Loe. Limit Point Time Trip Trip Type 1 Shed I TIME UPPER 1800. 0. AND 2 Tile Start TIME UPPER 8400. 0. AND 3 Tile 1/8 TIME UPPER o. 600. 2 AND 4 Tile 2/8 TIME UPPER 0. " 1200. 2 AND 5 Tile 3/8 TIME UPPER 0. 1800. 2\ AND 6 Tile 4/8 TIME UPPER 0. 2400. 2 AND 7 Tile 5/8 TIME UPPER 0. 3000. 2 AND 8 Tile 6/){ TIME UPPER 0. 3600. 2 AND 9 Tile ,7/8 TIME UPPER 0. 4200. 2 AND 10 Tile 8/8 TIME UPPER 0. 4800. 2 AND 11 fresh air s TIME UPPER le+006 0. AND 12 Stage fan TIME UPPER 5400. o. AND 13 Smoke.Remov TIME UPPER 7200. 0. AND 14 Open Doors TIME UPPER 3600. 0. AND 15 Kitchen CONT 4C UPPER 96. 0. AND Forcing Function Tables FF# Description Ind. Var. Dep. var. Points 0 Constant 0 lT Outside Temp Ind. Var. Dep. Var. 2T DC Equipment
- RO Ind. Var. Dep. Va,r. 4320 3T Sol-Air Roof Ind. Var. Dep. Var. 25 4T Lighting HL Ind. Var. Dep. Var. 2 ST Initial Panels Ind. Var. Dep. Var. 4 6T Operators Ind. Var. Dep. Var. 2 7T Time Ind. Var. Dep. Var. 3 function
/'\ I ON CALCULATION CONTROL Attachment 9 lT Outside Temp Ind. Var.: Dep. Var.: Ind. var. Dep. Var. Ind. Var. Dep. Var. o. 96.7 14400. 96.7 18000. 96.7 21600. 94.98 25200. 93.62 28800. 91.92 "32400. 89.37 36000. 87.5 39600. 85.97 43200. 84.44 46800. 83.25 50400. 82.06 54000. 81.04 57600. 80.36 61200. 79.85 64800. 79.34 68400. 79. 72000. 79.34 75600. 80.53 79200. 83.42 82800. 86.65 86400. 89.54 Function 2T DC Equipment Room lA Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. Ind. Var. Dep. Var. 0. 87. 0.001 87.00038 0.00201921 87.0007 20.32555 90.35686 42.22733 92.2407 67.02823 93.73955 93.45625 94.96387 120.9645
- 95. 973 . 140.9645 96.59493 160.9645 97.14751 180.9645 97.64407 200.9645 98.0937 220.9645 98.50375 240.9645 98.87981 I 260.9645 99.22573 280.9645 99.54478 300.9645 99.84009 320.9645 100.1145 340.9645 100.3705 360.9645 100.6103 380.9645 100.8357 400.9645 101. 0482 420.9645 101.2492 440.9645 101.4396 460.9645 101. 6204 480.9645 101.7923 500.9645 101.9562 520.9645 102 .1124 540.9645 102.2616 560.9645 102.4042 580.9645 102.5406 600.9645 102.6713 620.9645 102.7966 640.9645 102.9168 660.9645 103.0323 680.9645 103.1433 700.9645 103.2502 720. 9645 103.3531 740.9645 103.4073 760.9645 103.4745 780.9645 103.5492 800.9645 103.6276 820.9645 103.7074 840.9645 103. 7871 860.9645 103.866 880.9645 103.9436 900.9645 104.0198 920.9645 104.0943 940.9645 104.1673 960.9645 104.2388 980.9645 104.3087 1000.965 104.3773 1020.965 104.4445 1040.964 104.51'.05 1060.964 104.5753 1080.964 104.6391 1100.964 104.7018 1120.964 104.7635 1140.964 104.8244 1160. 964 104.8844 1180.964 104.9436 1200.964 105.0021 1220.964 105.0598 1240.964 105.117 1260. 964 105.1734 1280.964 105.2293 1300.964 105.2847 1320.964 105.3395 1340. 964 105.3938 1360.964 105.4477 1380.964 105.5011 1400.964 105.554 1420. 964 105.6065 1440.964 105.6587 CALC. NO. ENTR-078-CALC-004 REV. 0 PAql; NO. 246 of 303 ENERCON CALCULATION CONTROL Attachment 9 1460.964 105. 7104 1480.964 105.7618 1500.964 105.8128 1520.964 105.8634 1540.964 105.9138 1560.964 105.9638 1580.964 106.0135 1600.964 106.0629 1620. 964 106.112 1640.964 106.1608 1660.964 106.2093 1680.964 106.2575 1700.964 106.3055 1720.964 106.3532 1740.964 106.4006
-1760. 964 106.4478 1780.964 106.4947 1800.964 106. 5414 1820.964 106.5879 1840.964 106.6341 1860.964 106.68 1880.964 106.7258 1900.964 106. 7713 1920.964 106.8166 1940.964 106.8616 1960.964 106.9064 1980.964 106.9511 2000.964 106.9955 2020.964 107.0396 2040.964 107.0836 2060.965 107.1274 2080.965 107.1709 2100.965 107.2143 2120.965 107.2574 2140.965 107.3004 2160.965 107.3431 2180. 965 107.3857 2200.965 107.428 2220.965 107.4702 2240.965 107.5121 2260.965 107.5539 2280-. 965 107.5955 2300.965 107.6368 2320.965 107.678 2340.965 107. 719 2360.965 107.7599 2380.965 107.8005 2400.965 107.8409 2420. 9.65 107.8812 2440.965 107. 9213 2460.965 107.9612 2480.965 108.0009 2500.965 108.0405 2520.965 108.0799 2540.965 ':fo8 .1191 2560.965 108.1581 2580.965 108.197 2600.965 108.2357 2620.965 108.2742 2640.965 108.3125 2660.965 108.3507 2680.965 108.3887 2700.965 108.4266 2720.965 108.4642 2740.965 108.5017 2760.965 108.5391 2780.965 108.5763 2800.965 108.6133 2820.965 108.6502 2840.965 108.6869 2860.965 108.7234 2880.965 108.7598 2900.965 108.7961 2920.965 108.8321 2940.965 108.868 2960.965 108.9038 2980.965 108.9394 3,000.965 108.9749 3020.965 109.0102 3040.965 109.0454 3060.965 109.0804 3080.965 109.1153 3100.965 109.15 3120.965 109.1845 3140.965 109.219 3160.965 109.2533 3180.965 109.2874 3200.965 109.3214 3220.965 109.3552 3240.965 109.3889 3260.965 109.4225 3280.965 109.4559 3300.965 109.4892 3320.965 109.5224 3340.965 109.5554 3360.965 109.5883 3380.965 109.621 3400.965 109.6536 3420.965 109.6861 3440.965 109. 7184 3460.965 -109. 7506 3480.965 109.7827 3500.965 109.8146 3520.965 109.8464 3540.965 109.8781 3560.965 109.9096 3580.965 109.941 3600.965 3622.914 110.0054 3643.743 110.0373 3669.863 110. 0777 3692.669 110.1131 3721.841 110.1582 3741.841 110 .1889 3761. 841 110.2193 3781.841 110. 2495 3801.841 110.2796 3821. 841 110.3096 3841.841 110.3394 3861. 841 110.3691 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 247 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 f.xtieHenc¢-Evt:-.ty ptO:j(f(t. F.v&zy daJ: Attachment 9 PAGE NO. 248 of 303 3881.841 110.3987 3901. 841 110.4282 3921.841 110.4575 3941.841 110.4867 3961. 841 110.5158 3981.841 110.5448 4001. 841 110.!i737 4021. 841 110.6024 4041.841 110.6311 4061.841 110. 6596 4081.841 110.688 4101.84 110. 7163 4121.84 110.7445 4141.84 110. 7726 4161.84 110.8006 4181.84 110. 8284 4201.84 110.8562 4221.84 110. 8839 4241.84 110.9114 4261. 84 110.9388 4281.84 110.9662 4301. 84 110. 9934 4321.84 111.0205 4341. 84 111.0475 4361 .. 84 111.0744 4381. 84 111.1012 4401.84 111.128 4421. 84 111.1546 4441.84 111.1811 4461. 84 111. 2075 4481.84 111.2338 4501. 84 111.26 4521.84 111.2861 4541.84 111. 3121 4561.84 111.338 4581. 84 111. 3638 4601. 84 111.3895 4621. 84 111. 4151 4641.84 111.4406 4661. 84 111.466 4681. 84 111.4914 4701.84 111. 5166 4721.84 111. 5417 4741.84 111. 5668 4761.84 111. 5917 4781.84 111. 6166 4801. 84 111. 6413 4821. 84 111. 666 4841.84 111;. 6906 4861. 84 111. 7151 4881.84 111.7395 4901. 84 111.7638 4921. 84 111. 788 4941. 84 111.8122 4961. 84 111. 8362 4981. 84 111. 0602 5001. 84 111.884 5021. 84 111.9078 5041. 84 111. 9315 5061. 84 111. 9551 5081.84 111.9786 5101. 84 112.0021 5121.84 11.2. 0254 5141.84 112. 0487 5161.84 112 .0719 5181. 84 112. 095 5201.84 112 .118 5221. 84 112 .141 5241.84 112.1638 5261. 84 112 .1866 5281.84 112.2093 5301.84 112.2319 5321.84 112.2544 5341. 84 112.2769 5361. 84 112.2992 5381.84 112 .3215 5401. 84 112.3437 5421.84 112.3659 5441.84 112.3879 5461. 84 112.4099 5481.84 112.4318 5501. 84 112.4536 5521.84 112.4754 5541. 84 112 .4971 5561. 84 112.5187 5581. 84 112.5402 5601. 84 112.5616 5621.84 112.583 5641.84 112.6043 5661. 84 112.6255 5681. 84 112.6467 5701. 84 112.6677 5721. 84 112.6888 5741.84 112.7097 5761. 84 112.7305 5781.84 112. 7513 5801. 84 112. 7721 5821. 84 112.7927 5841. 84 112. 8133 5861. 84 112. 8338 5881. 84 112.8542 5901. 84 112.8746 5921.84 112. 8949 5941. 84 112. 9151 5961.84 112. 9353 5981. 84 112.9554 6001 .. 84 112.9754 6021. 84 112.9954 6041. 84 113.0153 6061. 84 113. 0351 6081.84 113. 0549 6101.84 113.0745 6121.84 113.0942 6141.84 113 .1137 6161.84 113.1332 6181.84 113.1527 6201.84 113.172 6221. 84 113.1914 6241.84 113.2106 6261.84 113. 2298 CALC. NO. ENTR-078-CALC-004 Attachment 9 ENERCON CALCULATION CONTROL SHEET-REV. o
- PAGE NO. 249 of 303 6281. 84 113.2489 6301.84 113.2679 6321.84 113.2869 6341.84 113.3059 6361.84 113.3247 6381. 84 113 .3435, 6401. 84 113.3623 6421.84 113 .381 6441. 84 113 .399,6 6461. 84 113 .4182 6481. 84 113 .436'7 6501. 84 113 .4551 6521.84 113 .4735 6541. 84 113 .4918 6561.84 113.5101 6581. 84 113. 5283 6601. 84 113.5464 6621. 84 113.5645 6641.84 113.5826 6661.84 113.6005 6681.84 113.6185 6701.84 113. 6363 6721.84 113. 6541 6741.84 113 .6719 6761.84 113.6896 6781. 84 113.7072 6801. 84 113. 7248 682l.84 113. 7423 6841.84 113.7598 6861. 84 113; 7772 6881. 84 113. 7946 6901. 84 113.8119 6921. 84 113. 8291 6941. 84 113. 8464 6961. 84 113 .8635 6981. 84 113.8806 7001. 84 113. 8976 7021. 84 113.9146 7041. 84 113. 9316 7061. 84 113. 9485 7081.84 113.9653 7101. 84 113.9821 7121. 84 113. 9988 7141.84 114.0155 7161. 84 114.0321 7181. 84 114. 0487 7201.84 114. 0652 7221. 84 114.0817 7241.84 114.0982 7261. 84 114 .1145 7281.84 114 .1309 7301. 84 114 .1472 7321.84 114 .1634 7341. 84 114.1796 7361.84 114.1957 7381.84 114.2118 7401. 84 114.2279 7421. 84 114.2438 7441.84 114.2598 7461. 84 114.2757 7481.84 114.2915 7501.84 114.3074 7521.84 114.3231 7541. 84 114.3388 7561.84 114.3545 7581.84 114 .3701 7601.84 114.3857 7621.84 114.4012 7641. 84 114 .4167 7661.84 114.4321 7681. 84 114 .4475 7701. 84 114.4629 7721.84 114.4782 7741. 84 114.4935 7761. 84 114. 5087 7781. 84 114.5238 7801. 84 114. 539 7821. 84 114.5541 7841. 84 114.5691 7861. 84 114.5841 7881. 84 114.5991 7901.84 114.614 '7921.84 114. 6289 7941. 84 114. 6437 7961. 84 114. 6585 7981. 84 114.6732 8001. 84 114.688 8021. 84 114. 7026 8041. 84 114.7172 8061. 84 114.7318 8081. 84 114.7464 8101. 84 114.7609 8121.84 114. 7753, 8141. 84 114.7898 8161.84 114.8041 8181. 84 114.8185 8201. 841 114*. 8328 8221.841 114.847 8241. 841 114.8613 8261. 841 114.8755 8281. 841 114.8896 8301.841 114.9037 8321. 841 114.9178 8341.841 114.9318 8361. 841 114.9458 8381. 841 114.9598 8401. 841 114. 9737 8421.841 114.9876 8441. 841 115.0014 8461.841 115.0152 8481. 841 115. 029 8501.841 115. 0427 8521. 841 115. 0564 8541.841 115. 07_01 8561. 841 115.0837 8581.841 115. 0973 8601. 841 115 .1108 8621.841 115.1243 8641.841 115.1378 8661.841 115.1512 CALC. NO. ENTR-078-CALC-004 ENERCON CALC4LATION CONTROL SHEET-REV.O f.xttJHenef!,-£vf!typt4_k<t
... £vtuytJay. Attachment 9 PAGE NO. 250 of 303 8681.841 115 .1646 8701. 841 115.178 ..J 8721.841 115.1913 8741. 841 115.2046 8761.841 115.2179 8781. 841 115.2311 8801.841 115.2443 8821. 841 115 .2575 8841. 841 115. 2706 8861.841 115.2837 8881.841 115.2968 8901'. 841 115.3098 8921.841 115.3228 8941.841 115.3358 8961.841 115.3487 8981.841 115.3616 9001.841 115.3744 9021.841 115.3873 9041.841 115.4001 9061.841 115.4128 9081.841 115.4256 9101. 841 115.4383 9121.841 115 .4509 9141.841 115 .4636 9161.841 115 .4764 9181. 841 115.4887 9201. 841 115 .5013 9221.841 115. 5138 9241.841 115.5263 9261. 841 115. 5387 9281.841 115 .5511 9301.841 115. 5635 9321.841 115.5758 9341. 841 115.5882 9361.841 115. 6005 9381. 841 115.6127 9401.841 115. 625 9421. 841 115.6372 9441.841 115. 6493 9461.841 115. 6615 9481.841 115.6736 9501.841 115.6857 9521. 841 115.6977 9541.841 115.7097 9561.841 115. 7217 9581.841 115.7337 9601.841 115. 7457 9621.841 115.7576 9641.841 115.7694 9661.841 115.7813 9681. 841 115. 7931 9701. 841 115. 8049 9721.841 115.8167 9741. 841 115. 8284 9761. 841 115. 8.401 . 9781. 841 115.8518 9801. 841 115.8635 9821. 841* 115. 8751 9841.841 115. 8867 9861.841 115. 8983 9881.841 115. 9098 9901.841 115. 9214 9921.841 115. 9328 9941.841 115. 9443 9961.841 115. 9558 9981.841 115.9672 10001.84 115. 9786 10021. 84 115. 9899 10041.84 116.0013 10061. 84 116.0126 10081. 84 116. 0238 10101. 84 116.0351 10121.84 116. 0463 10141. 84 116.0575 10161.84 116.0687 10181.84 116.0799 10201.84 116'. 091 10221.84 116.1021 10241.84 116 .1132 10261.84 116.1243 10281.84 116 .1353 10301.84 116.1463 10321. 84 116.1573 10341.84 116.1682 10361. 84 116.1792 10381. 84 116.1901 10401. 84 116.201 10421.84 116 .2118 10441. 84 116.2227 10461.84 116.2335 10481. 84 116.2443 10501.84 116.255 10521. 84 116. 2658 10541.84 116.2765 10561. 84 116 .2872 10581.84 116.2979 10601. 84 116.3085 10621.84 -116. 3191 10641. 84 116.3297 10661.84 116.3403 10681. 84 116.3509 10701. 84 116.3614 10721.84 116.3719 10741. 84' 116. 3824 10761.84 116 .3929 10781.84 116 .4033 10801.84 116 .4138 10821.84 116. 4242 10841.84 116 .4345 10861.84 116.4449 10881.84 116.4552 10901.84 116.4655 10921.84 116 .4758 10941.84 116.4861 10961. 84 116 .4964 10981. 84 116.5066 11001.84 116.5168 11021. 84 116.527 11041.84 116.5371 11061.84 116. 5473 ,/ ENERCON CALCULATION CONTROL Attachment 9 11081. 84 116.5574 11101. 84 116. 5675 11121. 84 116.5776 11141. 84 116. 5876 11161. 84 116.5977 11181. 84 116. 6077 '-' 11201. 84 116.6177 11221. 84 116.6277 11241.84 116.6376 11261. 84 116.6476 11281. 84 116.6575 11301. 84 116.6674 11321.84 116. 6773 11341.84 116. 6871 11361. 84 116.697 11381. 84 116. 7068 11401.84 116. 7166 11421.84 116. 7264 11441.84 116.7361 11461. 84 116. 7459 11481.84 116.7556 11501. 84 116. 7653 11521. 84 116. 775 11541.84 116.7847 11561.84 116.7943 11581. 84 116.8039 11601. 84 116 .8135 11621.84 116.8231 11641. 84 116.8327 11661. 84 . 116. 8423 11681. 84 116.8518 11701. 84 116. 8613 11721.84 116.8708 11741. 84 116. 8803 11761. 84 116.8898 11781. 84 116. 8992 11801.84 116.9086 11821. 84 116. 918 11841.84 116.9274 11861. 84 116. 9368 11881.84 116.9462 11901. 84 116. 9555 11921.84 116.9648 11941. 84 116. 9741 11961.84 116.9834 11981. 84 116. 9927 12001. 84 117.0019 12021. 84 117. 0111 12041. 84 117.0204 12061. 84 117.0296 12081. 84 117.0387 12101. 84 117.0479 12121.84 117.0571 12141.84 117.0662 12161. 84 117.0753 12181.84 117.0844 12201.84 117. 0935 12221.84 117.1025 12241.84 117 .1116 12261.84 117 .12:06 12281.84 117.1296 12301. 84 117.1386 12321.84 117.1476 12341.84 117.1566 12361.84 117.1656 12381. 84 117.1745 12401.84 117.1834 12421.84 117 .1923 12441.84 117.2012 12461. 84 117.2101 12481.84 117.2189 12501. 84 117.2278 12521.84 117.2366 12541. 84 117 .2454 12561.84 117.2542 12581. 84 117.263 12601.84 117.2717 12621. 84 117.2805 12641.84 117.2892 12661. 84 117.2979 12681.84 117.3066 12701. 84 117.3153 12721.84 117.324 12741. 84 117.3327 12761.84 117.3413 12781.84 117.3499 12801. 84 117.3586 12821. 84 117.3672 12841.84 117.3757 12861. 84 117.3843 12881.84 117.3929 12901. 84 117.4014 12921.84 117.4099 12941. 84 117.4184 12961.84 117.4269 12981. 84 117 .4354 13001.84 117.4439 13021.84 117 .4524 13041.84 117.4608 13061.84 117.4692 13081.84 117.4777 13101.84 117.4861 13121.84 117.4944 13141. 84 117. 5028 13161.84 117.5112 13181.84 117. 5195 13201.84 117.5279 13221.84 117. 5362 13241.84 117.5445 13261.84 117. 5528 13281. 84 117.5611 13301.84 117.5693 13321.84 117.5776 13341.84 117. 5858 13361. 84 117.594 13381.84 117.6022 13401.84 117.6105 13421.84 117.6186 13441.84 117.6268 13461. 84 117.635 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 251 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 F.xreJt(!ntt-faf!typtf)jt!(;t... f.wr1ttay. Attachment 9 PAGE NO. 252 of 303 13481.84 117.6431 13501.84 117.6513 13521.84 117.6594 13541. 84 117.6675 13561.84 117.6756 13581. 84 117.6837 13601.84 117. 691 7 13621. 84 117.6998 13641. 84 117.7078 13661. 84 117. 7159 13681. 84 117.7239 13701. 84 117.7319 13721. 84 117.7399 13741.84 117. 7479 13761. 84 117.7559 13781.84 117. 7638 13801. 84 117. 7718 13821.84 117.7797 13841.84 117.7877 13861. 84 117.7956 13881. 84 117.8035 13901.84 117. 8114 13921.84 117.8192 13941.84 117.8271 13961.84 117. 835 13981.84 117.8428 14001.84 117. 8506 14021. 84 117. 8584 14041.84 117.8663 14061. 84 117.8741 14081.84 117. 8818 14101. 84 117.8896 14121.84 117.8974 14141.84 117. 9051 14161.84 117.9129 14181.84 117.9206 14201.84 117.9283 14221.84 117.936 14241. 84 117 .9437 14261. 84 117.9514 14281.84 117.9591 14301.84 118. 0034 14321.84 118. 0351 14341.84 118. 0585 14361.84 118.0765 14381.84 118.0911 14401.84 118 .1033 14423.79 118.1139 14444.62 118.1204 14470.74 118.1124 14493.55 118. 0415 14522. 72 117 .9446 14542.72 117.895 14562.72 117.8595 14582.72 117. 8355 14602. 72 117.8201 14622.72 117 .8111 14642.72 117.8066 14662. 72 117.8054 14682.72 117.8067 14702.72 117. 8098 14722. 72 117.8142 14742.72 117. 8195 14762.72 117.8256 14782.72 117. 8323 14802. 72 117.8393 14822.72 117.8466 14842.72 117. 8541 14862.72 117.8616 14882. 72 117.8693 14902.72 117.877 14922.72 117.8846 14942. 72 117.8923 14962.72 117.8999 14982.72 117.9075 15002. 72 117. 915 15022.72 117.9225 15042.72 117.9299 15062.72 117.9372 15082.72 117. 9445 15102.72 117.9517 15122. 72 117. 9589 15142.72 117.966 15162.72 117.973 15182.72 117.9801 15202.72 117.987 15222.72 117.9939 15242.72 118.0008 15262.72 118.0076 15282.72 118.0144 15302.72 118. 0211 15322.72 118. 0279 15342.72 118. 0345 15362.72 118. 0412 15382.72 118. 0478 15402.72 118. 0544 15422.72 118. 061 15442.72 118. 0675 15462.72 118. 074 15482. 72 118.0805 15502.72 118. 087 15522.72 118. 0934 15542.72 118.0998 15562.72 118 .1062 15582.72 118 .1126 15602. 72 118 .119 15622.72 118.1254 15642.72 118.1317 15662. 72 118.138 15682.72 118 .1443 15702.72 118.1506 15722. 72 118 .1569 15742.72 118.1632 15762.72 118 .1694 15782.72 118.1757 15802.72 118.1819 15822.72 118.1881 15842.72 118 .1943 15862.72 118.2005 15882.72 118 .2067 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.xteH<!!lf:(-frf!<'"Jl>fD)ff<t. !.V!N";/ti{ly. Attachment 9 PAGE NO. 253 of 303 15902.72 118.2128 15922.72 118 .219 15942. 72 118 .2252 15962. 72 118.2313 15982. 72 118.2374 16002. 72 118.2436 16022.72 118.2497 16042. 72 118 .2558 '-16062.72 118.2619 16082. 72 118.2679 16102.72 118.274 16122.72 118.2801 16142.72 118.2862 16162.72 118 .2922 16182.72 118.2982 16202.72 118.3043 16222.72 118.3103 16242.72 118. 3163 16262. 72 118.3223 16282.72 118. 3284 16302. 72 -118 .3344 16322.72 118.3403 16342. 72 118.3463 16362. 72 118.3523 16382.72 118.3583 16402. 72 118.3642 16422.72 118.3702 16442. 72 118:3761 16462.72 118.3821 16482. 72 118.388 16502.72 118. 16522. 72 118.3999 16542.72 118.4058 16562.72 118 .4117 16582.72 118.4176 16602. 72 118.4235 16622.72 118.4294 16642.72 118.4352 16662. 72 118 .4411 16682.72 118 .447 16702.72 118.4529 16722.72 118 .4587 16742. 72 118.4646 16762.72 118 .4704 16782. 72 118.4762 16802.72 118 .4821 16822. 72 118 .4879 16842.72 118 .4937 16862. 72 118. 4995 16882.72 118. 5053 16902.72 118 .5111 16922. 72 118. 5169 16942.72 118. 5227 16962.72 118. 5285 16982.72 118.5343 17002.72 118. 5401 17022.72 118.5458 17042.72 118. 5516 17062.72 118.5573 17082.72 118. 56pl 17102. 72 118.5688 17122. 72 118. 5746 17142. 72 118.5803 17162. 72 118. 586 17182. 72 118.5918 17202.72 118. 5975 17222.72 118. 6032 17242.72 118.6089 17262.72 118.6146 17282.72 118. 6203 17302.72 118.626 17322.72 118.6317 17342.72 118.6373 17362.72 118. 643 17382. 72 118.6487 17402.72 118.6544 17422. 72 118.66 17442.72 118.6657 17462. 72 118 .6713 17482.72 118. 677 17502.72 118.6826 17522.72 118. 6882 17542.72 118.6938 17562.72 118.6995 17582.72 118. 7051 17602.72 118. 7107 17622. 72 118. 7163 17642.72 -118.7219 17662.72 118. 7275 17682.72 118. 7331 17702. 72 118.7387 17722. 72 118. 7443 17742. 72 118.7498 17762.72 118. 7554 17782.72 118.761 17802.72 118. 7665 17822.72 118.7721 17842.72 118. 7777 17862.72 118.7832 17882.72 118. 7887 17902.72 118.7943 17922.72 118. 7998 17942.72 118.8053 17962.72 118.8109 17982.72 118.8164 18002.72 118.8219 18022.72 118.8274 18042.72 118. 8329 18062. 72 118.8384 18082.72 118. 8439 18102.72 118. 8494 18122.72 118. 8549 18142. 72 118.8604 18162. 72 118. 8659 18182. 72 118. 8713 18202.72 118. 8768 18222.72 118. 8823 18242.72 118.8877 18262. 72 118. 8932 18282.72 118. 8986 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptt;}<<,t. fWtJ dr:rj. Attachment 9 PAGE NO. 254 of 303 18302.72 118. 9041 18322.72 118. 9095 18342.72 118. 9149 18362. 72 118. 9204 18382.72 118.9258 18402.72 118. 9312 18422.72 118.9367 18442.72 118. 9421 18462.72 118. 9475 18482.72 118.9529 18502.72 118. 9583 18522.72 118.9637 18542.72 118.9691 18562.72 118.9745 18582.72 118.9799 18602. 72 118.9852 18622.72 118. 9906 18642.72 118.996 18662.72 119. 0014 18682.72 119. 0067 18702.72 119. 0121 18722.72 119.0174 18742.72 119.0228 18762.72 119. 0281 18782.72 119.0335 18802.72 119.0388 18822.72 119. 0442 18842. 72 119. 0495 18862.72 119. 0548 18882.72 119.0601 18902.72 119. 0655 18922.72 119. 0708 18942.72 119. 0761 18962.72 119. 0814 18982.72 119. 0867 19002.72 119. 092 19022.72 119. 0973 19042.72 119.1026 19062.72 119 .1079 19082.72 119 .1132 19102.72 119 .1184 19122.72 119.1237 19142.72 119 .129 19162.72 119.1343 19182.72 119 .1395 19202.72 119.1448 19222.72 119.1501 19242.72 119.1553 19262.72 119 .1606 19282.72 119.1658 19302.72 119.171 ' 19322. 72 119.1763 19342.72 119 .1815 19362.72 119.1868 19382.72 119.192 19402.72 119.1972 19422.72 119.2024 19442 .*72 119.2076 19462.72 119.2129 19482.72 119 .21*01 19502.72 119.2233 19522.72 119.2285 19542.72 119.2337 19562.72 119.2389 19582.72 119 .2441 19602.72 119.2493 19622.72 119 .2544 19642.72 119.2596 19662.72 119 .2648 19682.72 119.27 19702.72 119 .2751 19722. 72 119.2803 19742.72 119 .2855 19762.72 119.2906 19782.72 119.2958 19802.72 119 .3009 19822. 72 119. 3061 19842. 72 119.3112 19862.72 119. 3164 19882. 72 119.3215 19902.72 119. 3267 19922.72 119 .3318 19942.72 119. 3369 19962. 72 119.342 19982.72 119 .3472 20002. 72 119.3523 20022.72 119.3574 20042.72 119.3625 20062.72 119. 3676 20082.72 119.3727 20102.72 119. 3778 20122.72 119.3829 20142.72 119.388 20162.72 119.3931 20182.72 119. 3982 20202. 72 119.4033 20222.72 119.4084 20242.72 119.4135 20262 .'72 119.4186 20282.72 119.4236 20302.72 119.4287 20322.72 119.4338 20342.72 119.4388 20362.72 119.4439 20382.72 119 .449 20402.72 119.454 20422.72 119 .4591 20442.72 119 .4641 20462.72 119 .4692 20482.72 119 .4742 20502.72 119 .4792 20522.72 119 .4843 20542.72 119 .4893 20562. 72 119 .4943 20582.72 119.4994 20602. 72 119.5044 20622.72 119.5094 20642.72 119. 5144 20662.72 119. 5195 20682. 72 119. 5245 ,, CALC. NO. ENTR-078-CALC-004 EN R 0 CALCULATION CONTROL SHEET-REV.O ptc,/e<;t. i¥"!N/tl<Ff. Attachment 9 PAGE NO. 255 of 303 r 20702.72 119.5295 20722. 72 119. 5345 20742.72 119. 5395 20762.72 119. 5445 20782.72 119. 5495 20802.72 119. 5545 20822.72 119. 5595 20842.72 119. 5645 20862.72 119.5695 20882. 72 119. 5744 20902.72 119.5794 20922.72 119.5844 20942. 72 119.5894 20962. 72 119.5944 20982. 72 119.5993 21002.72 119. 6043 21022. 72 119.6093 21042.72 119. 6142 21062.72 119.6192 21082. 72 ,119. 6241 21102. 72 119.6291 21122. 72 119. 634 21142. 72 119. 639 21162. 72 119. 6439 21182. 72 119. 6.;189 21202. 72 119. 6538 21222.72 119.6587 21242.72 119.6637 21262.72 119.6686 21282. 72 119. 6735 21302.72 119. 6785 21322.72 119. 6834 21342.72 119. 6883 21362.72 119. 6932 21382. 72 119. 6981 21402.72 119. 703* 21422.72 119. 708 21442.72 119. 7129 21462.72 119.7178 21482.72 119. 7227 21502.72 119. 7276 21522.72 119. 7325 21542.72 119.7374 21562.72 119. 7423 21582. 72 119. 7471 21602.72 119.752 21622.72 119.7569 21642.72 119. 7618 21662.72 119.7667 21682.72 119. 7716 21702.72 119.7764 21722.72 119. 7813 21742.72 119.7862 21762.72 119. 791 21782.72 119.7959 21802.72 119. 8008 21822.72 119.8056* 21842.72 119.8105 21862.72 119.8153 21882.72 119. 8202 21902. 72 119.825 21922. 72 119. 8299 21942. 72 119. 8347 21962. 72 119. 8396 21982. 72 119.8444 22002. 72 119. 8492 22022.72 1119. 8541 22042.72 119. 8589 22062.72 119.8637 22082.72 119. 8686 22102.72 119. 8734 22122.72 119. 8782 22142. 72 119. 883 22162.72 119. 8878 22182.72 119.8926 22202.72 119. 8975 22222. 72 119. 9023 22242.72 119. 9071 22262.72 119 .9119 22282. 72 119. 9167 22302. 72 119. 9215 22322.72 119. 9263 22342.72 119 .9311 22362.72 119. 9359 22382.72 119.9407 22402.72 119. 9455 22422.72 119.9502 22442.72 119. 955 22462.72 119. 9598 22482.72 119. 9646 22502. 72 119. 9694 22522.72 119. 9741 22542.72 119. 9789 22562.72 119.9837 22582.72 119.9885 22602. 72 119. 9932 22622.72 119.998 22642. 72 120.0028 22662.72 120.0075 22682.72 '120. 0123 22702.72 120.017 22722.72 120.0218 22742.72 120.0265 22762. 72 120.0313 22782.72 120.036 22802. 72 120.0408 22822.72 120.0455 22842.72 120.0503 22862.72 120.055 22882.72 120.0597 22902.72 120/. 0645 22922.72 120.0692 22942.72 120.0739 22962.72 120.0787 22982.72 120.0834 23002.72 120.0881 23022. 72 120.0928 23042.72 120.0975 23062.72 120.1023 23082.72 120.107 \ CALC. NO. ENTR-078-CALC-004 EN R 0 CALCULATION CONTROL SHEET-REV.O ivttq day. Attachment 9 PAGE NO. 256 of 303 / 23102.72 120.1117 23122. 72 120 .1164 23142.72 120 .1211 23162.72 120.1258 23182.72 120.1305 23202.72 120 .1352 23222.72 120.1399 '23242 .12 120.1446 23262.72 120.1493 23282.72 120.154 23302.72 120.1587 23322.72 120.1634 23342. 72 120.1681 23362.72 120.1728 23382.72 120.1775 23402.72 120.1821 23422.72 120.1868 23442.72 120.1915 23462.72 120.1962 23482.72 120.2008 23502.72 120.2055 23522.72 120.2102 23542.72 120.2149 23562.72 120.2195 23582.72 120.2242 23602.72 120.2289 23622. 72 120.2335 23642.72 120.2382 23662.72 120.2428 23682. 72 120.2475 23702. 72 120.2521 23722.72 120.2568 23742.72 120.2614 23762.7'2, 120.2661 23782.72 120.2707 23802.72 120.2754 23822.72 120.28 23842.72 120.2847 23862.72 120.2893 23882.72 120.2939 23902.72 120.2986 23922.72 120.3032 23942.72 120.3078 23962. 72 120.3125 23982.72 120.3171 24002.72 120.3217 24022.72 120.3263 24042.72 120.3309 24062.72 120.3356 24082.72 120.3402 24102.72 120.3448 24122.72 120.3494 24142.72 120.354 24162.72 120.3586 24182.72 120.3632 24202.72 120.3678 24222. 72 120.3725 24242.72 120 .3771 24262. 72 120.3817 24282. 72 120.3863 24302.72 120.3908 24322.72 120.3954 24342.72 120.4 24362.72 120.4046 24382.72 120.4092 24402.72 120.4138 24422.72 120.4184 24442. 72 120 .423 24462. 72 120.4276 24482.72 120.4321 24502. 72 120.4367 24522.72 120.4413 24542. 72 120.4459 24562.72 120.4504 24582. 72 120.455 24602.72 120.4596 24622.72 120.4641 24642. 72 120.4687 24662. 72 120:4733 '24682. 72 120 .4778 24702.72 120 .4824 24722. 72 120.41?7 24742.72 120 .4915 24762.72 120 .4961 24782.72 120.5006 24802. 72 120.5052 24822.72 120.5097 24842.72 120.5143 24862. 72 120.5188 24882.72 120.5234 24902.72 120.5279 24922.72 120.5324 24942. 72 120.537 24962.72 120. 5415 24982.72 120.5461 25002.72 120.5506 25022.72 120.5551 25042.72 120.5597 25062.72 120.5642 25082.72 120.5687 25102. 72 120.5733 25122.72 120.5778 25142.72 12,0. 5823 25162. 72 1120.5869 25182.72 120.5914 25202. 72 120.596 25222.72 120.6005 25242.72 120.605 25262.72 120.6096 25282.72 120.6141 25302.72 120.6186 25322.72 120.6232 25342.72 120.6277 25362. 72 120.6322 25382.72 120.6367 25402.72 120.6413 25422.72 120.6458 25442. 72 120.6503 25462.72 120.6548 25482.72 120.6594 CALC. NO. ENTR-078-CALC-004 EN RCON CALCULATION CONTROL SHEET-REV. 0 ptojea EWty fir:; Attachment 9 PAGE NO. 257 of 303 25502.72 120.6639 25522.72 120.6684 25542.72 120.6729 25562. 72 120.6775 25582. 72 120.682 25602.72 120.6865 25622. 72 120.691 25642. 72 120.6955 25662.72 120.7 25682.72 120.7045 25702.72 120.7091 25722.72 120. 7136 25742.72 120. 7181 25762.72 120.7226 25782.72 120. 7271 25802.72 120.7316 25822.72 120.7361 25842. 72 120.7406 25862.72 120.7451 25882. 72 120. 7496 25902.72 120.7541 25922. 72 120.7586 25942.72 120.7631 25962. 72 120.7676 25982.72 120. 7721 26002. 72 120.7766 26022.72 120.781 26042. 72 120.7855 26062.72 120.79 26082. 72 120.7945 26102.72 120.799 26122.72 120.8035 26142.72 120.8079 26162.72 120.8124 26182.72 120.8169 26202.72 120.8214 26222.72 120.8258 26242'. 72 120.8303 26262.72 120.8348 26282.72 120.8392 26302.72 120.8437 26322.72 120.8482 26342.72 120.8526 26362. 72 120. 8571 26382.72 120.8616 26402.72 120.866 26422.72 120.8705 26442. 72 120.8749 26462.72 120.8794 26482. 72 120.8839 26502.72 120.8883 26522. 72 120.8928 26542.72 120.8972 26562.72 120.9017 26582.72 120.9061 26602.72 120.9106 ' 26622.72 120.915 26642.72 120.9194 26662.72 120.9239 26682.72 120.9283 26702. 72 120.9328 26722. 72 120.9372 26742.72 120.9417 26762.72 120.9461 26782. 72 120.9505 26802. 72 120.955 26822. 72 120.9594 26842. 72 120.9638 26862.72 120.9682 26882.72 120. 9727 26902.72 120.9771 26922. 72 120.9815 26942.72 120.986 26962. 72 120.9904 26982.72 120.9948 27002. 72 120.9992 27022.72 121.0036 27042. 72 121.0081 27062.72 121.0125 27082.72 121. 0169 27102.72 121.0213 27122. 72 121. 0257 27142.72 121.0301 27162. 72 121. 0346 27182. 72 121. 039 27202.72 121.0434 -27222.72 121.0478 27242. 72 121.0522 27262.72 121.0566 27282. 72 121.061 27302.72 121.0654 27322.72 121.0698 27342.72 121.0742 27362.72 121. 0786 27382.72 121. 083 27402.72 121.0874 27422.72 121.0918 27442. 72 121.0962 27462.72 121.1006 27482.72 121.105 27502.72 121.1094 27522.72 121.1138 27542.72 \ 121.1182 27562. 72 121.1225 27582.72 121.1269 27602. 72 121.1313 27622. 72 121.1357 27642.72 121.1401 27662. 72 121.1445 27682.72 121.1489 \ 27702.72 121.1532 27722. 72 121.1576 27742.72 121.162 27762. 72 121.1664 27782.72 121.1708 27802.72 121.1751 27822.72 121.1795 27842.72 121.1839 27862.72 121.1882 27882.72 121.1926 CALC. NO. ENTR-078-CALC-004 EN E.RCON CALCULATION CONTROL SHEET-REV. 0 F.xi:dlence-£vetyp1()}ea Ewry!tey Attachment 9 PAGE NO. 258 of 303 27902.72 121.197 27922.72 121.2014 27942.72 121.2057 27962. 72 121. 2101 27982.72 121.2145 28002.72 121.2188 28022.72 121. 2232 28042.72 121.2276 28062.72 121. 2319 28082. 72 121.2363 28102.72 121.2406 28122.72 121. 245 28142.72 121.2494 28162.72 121.2537 28182.72 121.2581 28202.72 121.2624 28222.72 121.2668 28242.72 121.2711 28262.72 121.2755 28282.72 121.2798 28302.72 121 .. 2842 28322. 72 121. 2885 28342.72 121. 2929 28362. 72 121. 2972 28382.72 121.3016 28402. 72 121.3059 28422.72 121. 3103 28442. 72 121. 3146 28462. 72 121. 319 28482. 72 121.3233 28502.72 121.3276 28522.72 121.332 28542.72 121. 3363 28562. 72 121.3407 28582.72 121.345 28602.72 121. 3493 28622.72 121.3537 28642.72 121. 358 28662.72 121. 3623 28682.72 121. 3667 28702.72 121.371 28722.72 121.3753 28742.72 121.3796 28762.72 121. 384 28782.72 121.3883 28802.72 121.3926 28822.72 121.3969 28842.72 121.4013 28862.72 121.4056 28882.72 121.4099 28902.72. 121.4142 28922.72 121.4186 28942.72 121.4229 28962.72 121.4272 28982.72 121.4315 29002.72 121.4358 29022.72 121.4401 29042. 72 121.4445 29062.72 121.4488 29082.72 121.4531 29102. 72 121.4574 29122. 72 121.4617 29142. 72 121.466 29162. 72 121.4703 29182.72 121.4746 29202. 72 121.4789 29222.72 121.4832 29242.72 121.4875 29262.72 121.4918 29282.72 121. 4961 29302.72 121. 5004 29322.72 121.5047 29342.72 121. 509 29362.72 121. 5133 29382.72 121. 5176 29402.72 121.5219 29422.72 121.5262 29442.72 121. 5305 29462.72 121.5348 29482.72 121. 5391 29502.72 121. 5433 29522.72 121.5476 29542.72 121.5519 29562.72 121.5562 29582.72 121.5605 29602.72 121. 5648 29622.72 121. 569 29642.72 121.5733 29662.72 121. 5776 29682.72 121.5819 29702.72 121. 5862 29722. 72 121. 5904 29742. 72 121.5947 29762.72 121. 599 29782. 72 121.6033 29802.72 121. 6076 29822.72 121. 6118 29842. 72 121. 6161 29862. 72 121.6204 29882. 72 121. 6246 29902. 72 121.6289 29922.72 121. 6332 29942.72 121.6375 29962.72 121 .. 6417 29982.72 121.646 30002. 72 121. 6503 30022.72 121.6545 3004;2.72 121. 6588 30062.72 121.6631 30082.72 121. 6673 30102.72 121. 6716 30122.72 121.6758 30142.72 121.6801 30162. 72 121. 6844 30182.72 121.6886 30202. 72 121. 6929 30222.72 121.6972 30242.72 121. 7014 30262.72 121.7057 30282.72 121. 7099 CALC. NO. ENTR-078-CALC-004 NERCO CALCULATION CONTROL SHEET-REV. 0 PfOJY!i.":l f.vttydiJy. Attachment 9 PAGE NO. 259 of 303 *, 30302.72 121. 7142 30322.72 121.7184 30342.72 121.7227 30362. 72 121.7269 30382.72 121.7;312 30402.72 121.7354 I 30422.72 121. 7397 30442.72 121.7439 30462. 72 121.7482 30482.72 121.7524 30502.72 121. 7567 30522.72 121.7609 30542.72 121.7652 30562.72 121. 7694 30582.72 121.7737 30602.72 121. 7779 30622.72 121. 7821 30642.72 121. 7864 30662.72 121.7906 30682.72 121. 7949 30702.72 121.7991 30722.72 121.8033 30742.72 121.8076 30762.72 121. 8118 30782.72 121.816 30802.72 121. 8203 30822.72 121. 8245 30842. 7'2. 121. 8288 30862.72 121.833 30882. 72 121. 8372 30902.72 121.8414 30922.72 121.8457 30942.72 121. 8499 30962.72 121. 8541 30982.72 121.8584 31002.72 121.8626 31022.72 121.8668 31042.72 121. 871 31062.72 i21,8753 31082.72 121. 8795 31102. 72 121.8837 31122. 72 121.8879 31142. 72 121. 8922 31162. 72 121.8964 31182. 72 121.9006 31202.72 121. 9048 31222.72 121.909 31242.72 121.9133 31262.72 121.9175 31282.72 121. 9217 31302.72 121.9259 31322.72 ,121.9301 31342.72 121.9343 31362.72 121.9385 31382.72 12l.9428 31402.72 121.947 31422.72 121.9512 31442.72 '* 31462.72 121. 9596 31482.72 121.9638 31502. 72 121. 968 ; 31522. 72 121.9722 31542.72 121.9764 31562.72 121. 9806 31582.72 121.9848 31602.72 121.989 31622.72 121.9932 31642.72 121. 9975 31662.72 122.0017 31682. 72 122.0059 31702.72 122.0101 31722.72 122.0143 31742.72 122.0185 31762.72 122.0227 31782.72 122.0269 31802.72 122. 0311 31822.72 122.0352 31842. 72 122.0394 31862. 72 122.0436 31882. 72 122.0478 31902.72 122.052 31922. 72 122.0562 31942.72 122.0604 31962. 72 122.0646 31982.72 122.0688 32002.72 122.073 32022.72 122.0772 32042.72 12,2. 0814 32062.72 122.0856 32082.72 122.0897 32102.72 122.0939 32122.72 122.0981 32142.72 122.1023 32162.72 122.1065 32182.72 122 .1107 32202.72 122.1149 32,222. 72 122 .119. 32242.72 122.1232 32262.72 122.1274 32282.72 122.1316 32302.72 122 .1358 32322. 72 122.1399 32342.72 122.1441 32362.72 122.1483 32382. 72 122.1525 32402.72 122.1566 32422.72 122.1608 32442.72 122.165 32462.72 1-,22 .1692 32482.72 122.1733 32502.72 122.1775 32522.72 122.1817 32542.72 122.1859 32562. 72 122.19 32582.72 122.1942 32602. 72 122.1984 32622.72 i22.2025 32642.72 122.2067 32662.72 1'22.2109 32682. 72 122.215 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xu:H&.r1ct-£vl?typtf)]i!<l. £vf!fyday. Attachment 9 PAGE NO. 260 of 303 32702.72 122.2192 32722.72 122.2234 32742.72 122.2275 32762.72 122.2317 32782.71 122.2359 32802.71 122.24 32822.71 122.2442 -32842. 71 122.2484 32862.71 122.2525 32882.71 122.2567 32902.71 122.2608 32922.71 122.265 32942.71 122.2692 32962.71 122.2733 32982.71 122.2775 33002.71 122.2816 33022. 71 122.2858 33042. 71 122.2899 33062.71 122.2941 33082. 71 122:-2983 33102.71 122.3024 33122.71 122.3066 33142.71 122.3107 33162.71 122.3149 33182.71 122.319 33202. 71 122.3232 33222.71 122.3273 '33242. 71 122.3315 33262.71 122.3356 33282.71 122.3398 33302.71 122.3439 33322. 71 122.3481 33342.71 122.3522 33362. 71 122.3564 33382.71 122.3605 33402.71 122.3646 33422.71 122.3688 33442. 71 122.3729 33462.71 122.3771 33482. 71 122.3812 33502. 71 122.3854 33522. 71 '122 .3895 33542. 71 122.3936 33562.71 122.3978 33582.71 122.4019 33602.71 122.4061 33622.71 122.4102 33642.71 122 .4143 33662.71 122.4185 33682. 71 122.4226 33702.71 122.4267 33722. 71 122.4309 33742. 71 122.435 33762. 71 122.4391 33782. 71 122.4433 33802. 71 122.4474 33822.71 122.4515 33842.71 122.4557 33862.71 122.4598 33882. 71 122.4639 33902.71 122.4681 33922.71 122.4722 33942.71 122.4763 33962. 71 122.4804 33982.71 122.4846 34002.71 122.4887 34022. 71 122.4928 34042.71 122.4969 34062. 71 122.5011 34082. 71 122.5052 34102.71 122.5093 34122.71 122.5134 34142.71 122.5176 34162.71 122.5217 34182.71 122.5258 34202. 71 122.5299 34222.71 122.534 34242. 71 122.5382 34262.71 122.5423 34282. 71 122.5464 34302.71 122.5505 34322.71 122.5546 34342.71 122.5588 34362.71 122.5629 34382. 71 122.567 34402.71 122. 5711 34422.71 122.5752 34442.71 122.5793 34462.71 122.5834 34482.71 122.5876 34502.71 122.5917 34522.71
- 122.5958 34542.71 122.5999 34562.71 122.604 34582.71 122.6081 34602. 71 122.6122 34622.71 122.6163 34642.71 122.6204 34662.71 122.6245 34682. 71 122.6286 34702.71 122.6328 34722. 71 122.6369 34742. 71 122.641 34762.71 122.6451 34782.71 122.6492 34802. 71 122.6533 34822.71 122.6574 34842. 71 122.6615 34862.71 122.6656 34882. 71 122.6697 34902.71 122.6738 34922. 71 122.6779 34942.71 122.682 34962. 71 122.6861 34982.71 122.6902 35002. 71 122.6943 35022.71 122.6984 35042. 71 122.7025 35062.71 122.7066 35082. 71 122. 7107 CALC. NO.
E RCON CALCULATION CONTROL SHEET-REV. 0 ptoje<.:,. fwq ttn Attachment 9 PAGE NO. 261 of 303 35102.71 122. 7148 35122.71 122. 7189 35142. 71 122.723 35162.71 122. 7271 35182.71 122.7311 35202. 71 122.7352 35222.71 122.7393 '1 35242. 71 122.7434 35262.71 122.7475 35282. 71 122.7516 35302.71 122.7557 35322. 71 122.7598 35342.71 122.7639 35362. 71 122.768 35382.71 122.7721 35402. 71-122.7761 ' 35422. 71 122.7802 35442.71 122.7843 35462.71 122.7884 35482. 71 122.7925 3'5502. 71 122.7966 35522. 71 122.8007 35542.71 122.8047 35562. 71 122.8088 35582. 71 122.8129 35602. 71 122.817 35622. 71 122.8211 35642. 71 122.8252 35662. 71 122.8292 J 35682,71 122.8333 35702. 71 122.8374 35722. 71, 122.8415 35742. 71 122.8456 35762. 71 122.8496 35782.71 122.8537 ,35802. 71 122.8578 35822.71 122.8619 35842. 71 122.8659 35862.71 122.87 35882. 71 122.8741 35902.71 122,8782 35922. 71 122.8822 35942. 71 122.8863 35962. 71 122.8904 35982.71 122.8945 36002.71 122.8985 36022. 71 122.9026 36042.71 122.9067 36062. 71 122.9108 36082.71 122.9148 36102. 71 122.9189 36122. 71 122.923 36142. 71 122.927 36162. 71 122.9311 36182. 71 122.9352 36202. 71 122.9392 36222. 71 122.9433 36242. 71 122.9474 36262. 71 122.9514 36282. 71 122.9555 36302. 71 122.9596 36322. 71 122.9636 36342. 71 122.9677 36362. 71 122. 9718 36382. 71 122.9758 36402. 71 122.9799 36422. 71 122.9839 36442. 71 122.988 36462.71 122.9921 36482. 71 122.9961 36502.71 123.0002 36522. 71 123.0042 36542.71 123.0083 36562. 71 123.0124 36582.71 123.0164 36602. 71 123.0205 36622.71 123.0245 36642. 71 123.0286 36662.71 123,0327 36682.71 123.0367 36702. 71 123.0408 36722.71 123.0448 36742. 71 123.0489 36762.71-123.0529 36782. 71 123.057 36802.71 123.061 36822. 71 123.0651 36842. 71 123.0691 36862. 71 123.0732 36882. 71 123.0772 36902. 71 123.0813 36922. 71 123.0853 36942. 71 123.0894 36962.71 123.0934 36982. 71 123.0975 37002.71 123.1015 37022. 71 123.1056 37042. 71 123.1096 37062. 7I 123 .1137 37082.71 123 .1177 37102. 71 123.1218 37122. 71 123.1258 37142. 71 123.1299 37162. 71 123 .1339 37182. 71 123.138 37202. 71 123.142 37222. 71 123.146 37242. 71 123.1501 37262. 71 123.1541 37282. 71 123.1582 37302. 71 123.1622 37322. 71 123.1663 37342.71 123 .-1703 37362. 71 123.1743 37382.71 123.1784 37402. 71 123.1824 37422.71 123.1865 37442. 71 123.1905 37462.71 123.1945 37482. 71 123.1986 '-- ENERCON CALCULATION CONTROL Attachment 9 37502.71 123.2026 37522.71 123.2066 37542.71 123.2107 37562.71 123.2147 37582.71 123.2188 37602.71 123.2228 37622.71 123.2268 37642. 71 123.2309 37662.71 123.2349 37682. 71 123.2389 37702.71 123.243 37722. 71 123.247 I 37742.71 123.251 37762. 71 123.255 37782.71 123.2591 37802. 71 123.2631 37822.71 123.2671 37842. 71 123. 2712 37862.71 123.2752 37882. 71 123.2792 37902.71 123.2832 37922. 71 123.2873 37942. 71 123.2913 37962.71 123.2953 37982.71 123.2994 38002.71 123.3034 38022. 71 123.3074 38042. 71 123.3114 38062.71 123.3155 38082. 71 123.3195 38102.71 123.3235 38122. 71 123.3275 38142. 71 123.3316 38162.71 123.3356 38182.71 123.3396 38202.71 123.3436 38222.71 123.3476 38242.71 123.3517 38262.71 123.3557 38282.71 123.3597 38302. 71 123.3637 38322.71 123.3677 38342.71 i23.3718 38362.71 123.3758 38382.71 123.3798 38402.71 123.3838 38422.71 123.3878 38442.71 123.3918 38462. 71 123 .3959 38482.71 123.3999 38502.71 123.4039 38522.71 123.4079 38542.71 123 .4119 38562. 71 123.4159 38582.71 123.42 38602. 71 123.424 38622.71 123.428 38642. 71 123.432 38662.71 123.436 38682. 71 123.44 38702.71 123.444 -38722. 71 123.448 38742. 71 123.452 38762. 71 123.4561 38782. 71 123.4601 38802. 71 123.4641 38822.71 123.4681 38842. 71 123.4721 38862.71 123.4761 38882. 71 123.4801 38902.71 123.4841 38922. 71 123.4881 38942. 71 123.4921 38962. 71 123.4961 38982.71 123.5001 39002. 71 123.5041 39022.71 123.5081 39042. 71 123.5121 39062. 71 123.5162 39082. 71 123.5202 39102.71 123.5242 39122.71 123.5282 39142. 71 123.5322 39162. 71 123.5362 39182. 71 . 123.5402 39202. 71 123.5442 39222.71 123.5482 39242. 71 123.5522 39262. 71 123.5562 39282. 71 123.5602 39302. 71 123.5642 39322. 71 123.5682 39342. 71 1'23. 5722 39362. 71 123.5762 39382. 71 123.5802 39402. 71 123.5842 39422. 71 123.5882 39442. 71 123.5921 39462. 71 123.5961 39482. 71 123.6001 39502. 71 123.6041 39522.71 123.6081 39542. 71. 123.6121 39562. 71 123.6161 39582.71 123.6201 39602.71 123.6241 39622.71 123.6281 39642.71 123.6321 39662.71 123.6361 39682.71 123.6401 39702.71 123.6441 39722. 71 i23.648 39742. 71 123.652 39762. 71 123.656 39782.71 123.66 39802. 71 123.664 39822. 71 123.668 39842. 71 123.672 39862.71 123.676 39882. 71 123.68 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 262 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xi:ell*m:e-£vety
- ptojeet, f.wq tl<'J. Attachment 9 PAGE NO. 263 of 303 39902.71 123.6839 39922. 71 123.6879 39942.71 123.6919 39962.71 123.6959 39982.71 123.6999 40002. 71 123.7039 40022.71 123.7079 40042. 71 123. 7118 40062.71 123. 7158 40082. 71 123. 7198 40102.71 123.7238 40122. 71 40142.71 123.7318 40162.71 123.7357 40182.71 123 .. 7397 40202. 71 123.7437 40222. 71 123.7477 40242. 71 123.7517 40262. 71 123.7556 40282. 71 123.7596 40302. 71 123.7636 40322.71 123.7676 40342. 71 123. 7716 40362.71 123.7755 40382. 71 123.7795 40402.71 123.7835 40422.71 123.7875 40442.71 123.7914 40462. 71 123.7954 40482.71 123.7994 40502.71 123.8034 40522.71 123.8074 40542. 71 123.8113 40562.71 123.8153 40582.71 123.8193 40602.71 123.8232 40622.71 123.8272 40642.71 123.8312 40662.71 123.8352 40682.71 123 .-8391 ,40702. 71 123.8431 40722. 71 123. 8471 40742.71 123.8511 40762. 71 123.855 40782. 71 123.859 40802. 71 123.863 40822.71 123.8669 40842.71 123.8709 40862. 71 123.8749 40882. 71 123.8788 40902.71 123.8828 40922. 71 123.8868 40942.71 123.8907 40962. 71 123.8947 40982.71 123.8987 41002.71 123.9026 41022. 71 123.9066 41042.71 123.9106 41062.71 123.9145 41082.71 123.9185 41102. 71 123.9225 41122.71 123.9264 41142. 71 123.9304 41162. 71 123.9344 41182. 71 123.9383 41202.71 123.9423 41222.71 123.9462 41242.71 123.9502 41262.71 123.9542 41282.71 123.9581 41302. 71 123.9621 41322.71 123.966 41342.71 123.97 41362. 71 123.974 41382.71 123.9779 41402. 71 123.9819 41422.71 123.9858 41442.71 123.9898 41462.71 123.9938 41482. 71 123.9977 41502.71 124.0017 41522.71 124.0056 41542.71 124. 0096 41562.71 124. 0135 41582.71 124.0175 41602.71 124.0215 41622.71 124.0254 41642.71 124.0294 41662.71 124.0333 41682.71 124.0373 41702.71 124.0412 41722.71 124.0452 41742. 71 124.0491 41762.71 124.0531 41782.71 124.057 41802.71 124.061 41822.71 124.0649 41842.71 124.0689 41862.71 124.0728 41882.71 124.0768 41902.71 124.0807 41922.71 124.0847 41942.71 124.0886 41962.71 124.0926 41982.71 124.0965 42002.71 124.1005
/ 42022.71 124.1044 42042.71 124.1084 42062.71 124 .1123 42082.71 124 .1163 42102.71 124.1202 42122.71 124.1242 42142.71 124.1281 42162.71 124.1321 42182.71 124.136 42202.71 124.14 42222.71 124.1439 42242. 71 124.1478 42262.71 124.1518 42282. 71 124.1557 CALC. NO. ENTR-078-CALC-004 EN RC N CALCULATION CONTROL SHEET-REV.O F.wcydey; Attachment 9 PAGE NO. 264 of 303 42302.71 124.1597 42322. 71 124.1636 42342.71 124.1676 42362.71 124.1715 42382.71 124.1754 42402.71 124.1794 42422.71 124.1833 42442.71 124.1873 42462.71 124.1912 42482.71 124.1951 42502.71 124.1991 42522.71 124.203 42542.71 124.207 42562.71 124.2109 42582.71 124.2148 42602. 71 124.2188 42622.71 124.2227 42642. 71 124.2267 42662.71 124.2306 42682.71 124.2345 42702.71 124.2385 42722. 71 124.2424 42742.71 124.2463 42762.71 124.2503 142782. 71 124.2542 42802.71 124.2581 42822.71 124.2621 42842. 71 124.266 42862.71 124.2699 42882. 71 124.2739 42902.71 124.2778 42922. 71 124.2817 42942. 71 124.2857 42962. 71 124.2896 42982.71 124.2935 43002.71 124.2975 43022. 71 124.3014 43042. 71 124.3053 43062.71 124.3093 43082.71 124.3132 43102.71 124.3171 43122.71 124.321 43.142. 71 124.325 43162.71 124.3289 43182. 71 124.3328 43202.71 124.3368 43222.71 124.3407 43242:71 124.3446 43262.71 124.3485 43282.71 124.3525 43302.71 124.3564
- 43322. 71 124.3603 43342.71 124.3642 43362.7U.
124.3682 43382.71 124.3721 43402.71 124.376 43422.71 124.3799 43442.71 124.3839 43462.71 124.3878 43482. 71 124.3917. 43502.71 124.3956 43522.71 124.3996 43542.71 124.4035 43562.71 124.4074 435821* 71 124 .4113 43602.71 124.4152 43622.71 124.4192 43642.71 124 .4231 43662.71 124.427 43682. 71 124.4309 43702.71 124.4348 43722.71 124.4388 43742.71 124.4427 43762. 71 124.4466 43782.71 124.4505 43802. 71 124.4544 43822. 71 124.4584 43842. 71 124.4623. 43862.71 124.4662 43882. 71 124.4701 43902.71 124.474 43922. 71 124.4779 43942. 71 124.4819 43962. 71 124.4858 43982.71 124.4897 44002. 71 124.4936 44022.71 124.4975 44042. 71 124.5014 44062.71 124.5053 44082. 71 124.5093 44102.71 124.5132 44122. 71 124. 5171 44142.71 124.521 44162. 71 124.5249 44182.71 124.5288 44202. 71 124.5327 44222.71 124.5366 44242. 71 124.5406 44262.71 124.5445 44282. 71 124.5484 44302.71 124.5523 44322. 71 124.5562 44342.71 124.5601 44362. 71 124.564 44382.71 124.5679 44402.71 124.5718 44422.71 124.5757 44442.71 124.5797 44462.71 124.5836 44482. 71 124.5875 44502.71 124.5914 44522. 71 124.5953 44542.71 124.5992 44562.71 124.6031 44582.71 124.607 44602. 71 124.6109 44622.71 124.6148 44642. 71 124.6187 44662. 71 124.6226 44682. 71 124.6265 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptt;jt<;t, f.WNy dt;y. Attachment 9 PAGE NO. 265 of 303 44702.71 124.6304 44722. 71 124.6343 44742.71 124.6382 44762. 71 124.6421 44782.71 124.646 44802. 71 124,6499 44822.71 124.6538 44842. 71 124.6577 44862.71 124.6616 44882. 71 124.6655 44902. 71 124.6694 44922. 71 124'.6733 44942.71 124.6772 44962.71 124. 6811 44982. 71 124.685 45002.71 124.6889 45022.71 124.6928 45042.71 124.6967 45062.71 124.7006 45082.71 124.7045 45102.71 124.7084 45122. 71 124. 7123 45142.71 124. 7162 45162. 71 124.7201 45182.71 124.724 45202. 71 124.7279 45222.71 124.7318 45242.71 124.7357 45262.71 124.7396 45282. 71 124.7435 45302.71 124.7474 45322. 71 124.7513 45342. 71 124.7552 45362. 71 124.7591 45382. 71 124.763 45402.71 124.7669 45422. 71 124. 7708 45442:. 71 124.7746 45462. 71 124.7785 4548i. 71 124.7824 45502.71 124.7863 45522.71 124.7902 45542.71 124.7941 45562.71 124.798 45582.71 124.8019 45602. 71 124.8058* 45622.71 124.8097 45642.71 124.8135 45662.71 124.8174 45682.71 124.8213 45702.71 124.8252 45722.71 124.8291 45742.71 124.833 45762. 71 124.8369 45782.71 124.8408 45802. 71 124.8447 45822. 71 124.8485 45842. 71 124.8524 45862. 71 124.8563 45882.71 124.8602 45902. 71 124.8641 45922. 71 124.868 45942. 71 124. 8718 45962. 71 124.8757 45982. 71 124.8796 46002. 71 124 .. 8835 46022. 71 124.8874 46042. 71 124.8913 46062. 71 124.8951 46082. 71 124.899 46102. 71 124.9029 46122. 71 124.9068 46142. 71 124.9107 46162.71 124.9146 46182. 71 124.9184 46202 .. 71 124.9223 46222.71 124.9262 46242. 71 124.9301 46262.71 124.934 46282. 71 124.9378 46302.71 124.9417 46322 *171 124.9456 46342.71 124.9495 46362. 71 124.9534 46382.71 124.9572 46402. 71 124. 9611 46422.71 124.965 464'42. 71 124.9689 46462.71 124.9727 46482. 71 124.9766 46502.71 124.9805 46522. 71 124.9844 46542.71 124.9882 46562. 71 124.9921 46582.71 124.996 46602. 71 124.9999 46622.71 125.0037 46642. 71 125.0076 46662.71 125. 0115 46682.71 125.0154 46702. 71 125.0192 46722. 71 125.0231 46742. 71 125.027 46762. 71 125.0309 46782. 71 46802. 71 125.0386 46822. 71 125. 0425 46842. 71 125.0463 46862. 71 125.0502 46882. 71 125.0541 46902. 71 125.058 46922. 71 125.0618 46942.71 125.0657 46962. 71 125.0696 46982. 71 125.0734 47002. 71 125.0773 47022.71 125.0812 47042. 71 125.085 47062. 71 125.0889 47082. 71 125.0928 ./ v CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 txa;l!erK?.-frfN"JPfD}t<:t. F.'lff'JtirJi. Attachment 9 PAGE NO. 266 of 303 47102. 71 125. 0966 47122. 71 125.1005 47142. 71 125.1044 47162. 71 125.1082 .. 47182. 71 125 .1121 47202. 71 125 .116 ' 47222.71 125 .1198 47242.71 125.1237 47262.71 125.1276 '47282. 71 125.1314 47302.71 125.1353 47322. 71 125.1392 47342. 71 125 .143 47362. 71 125 .1469 47382.71 125.1507 47402. 71 125.1546 47422.71 125.1585 47442. 71 125.1623 47462.71 125.1662 47482. 71 125.1701 47502.71 125.1739 47522. 71 125.1778 47542.71 125 .. 1816 47562. 71 125.1855 47'582. 71 125.1894 47602. 71 125.1932 47622.71 125 .1971 47642. 71 125.2009 47662.71 125.2048 47682. 71 125.2087 47702.71 125.2125 47722. 71 125.2164 47742.71 125.2202 47762. 71 125.2241 47782.71 125.228 47802. 71 125.2318 47822. 71 125.2357 47842.71 125.2395 47862.71 125.2434 47882. 71 125.2472 47902.71 125.2511 47922.71 125.2549 47942.71 125.2588 47962. 71 125.2627 47982.71 125.2665 48002. 71 125.2704 48022.71 125.2742 48042. 71 125.2781 48062.71 125.2819 48082. 71 125.2858 48102. 71 125.2896 48122. 71 125.2935 48142.71 125.2973 48162. 71 125.3012 48182. 71 125.305 48202. 71 125.3089 48222.71 125.3127 48242. 71 125.3166 48262.71 125.3204 48282. 71 125.3243 48302.71 125.3281 48322. 71 125.332 48342.71 125.3358 48362. 71 125.3397 48382. 71 125.3435 48402. 71 125.3474 48422.71 125.3512 48442. 71 125.3551 48462.71 125.3589 48482. 71 125.3628 48502.71 125.3666 48522. 71 125.3705 48542.71 125.3743 48562. 71 125.3782 48582.71 125.382 48602. 71 125.3859 48622.71 125.3897 48642. 71 125.3935 48662.71 125.3974 48682. 71 125.4012 48702.71 125.4051 48722. 71 125.4089 48742.71 125.4128 48762. 71 125.4166 48782.71 125.4205 48802. 71 125.4243 48822. 71 125.4281 48842. 71 125.432 48862.71 125.4358 48882. 71 125.4397 48902.71 125.4435 48922. 71 125.4473 48942. 71 125.4512 48962. 71 125.455 48982. 71 125.4589 49002. 71 125.4627 49022. 71 125.4666 49042. 71 125.4704 49062.71 125.4742 49082.71 125.4781 49102.71 125.4819 49122. 71 125.4857 49142.71 125.4896 49162. 71 125.4934 49182.71 125.4973 49202. 71 125.5011 49222. 71 125.5049 49242. 71 125.5088 49262.71 125.5126 4928i. 71 125.5164 49302. 71 125.5203 49322. 71 125.5241 49342.71 125:529 49362. 71 125.5318 49382.71 125.5356 49402. 71 125.5395 49422.71 125.5433 49442. 71 125.5471 49462.71 125.551 49482. 71 125.5548 CALC. NO. ENTR-078-CALC-004 -ENERCON CALCULATION CONTROL SHEET-REV.O .. lf'Kt. £'.-Pr"/<iay. Attachment 9 PAGE NO. 267 of 303 49502.71 125.5586 49522. 71 125.5625 49542.71 125.5663 49562. 71 125.5701 49582.71 125.574 49602. 71 125.5778 49622.71 125.5816 49642. 71 125.5854 49662.71 125.5893 49682. 71 125.5931 49702.7_1 125.5969 49722. 71 125.6008 49742.71 125.6046 49762. 71 125.6084 49782.71 125.6123 49802.71 125.6161 49822.71 125.6199 49842.71 125.6237 49862.71 125.6276 49882. 71 125.6314 49902.71 125.6352 49922. 71 125.6391 49942.71 125.6429 49962. 71 125.6467 49982. 71 125.6505 50002.7;1 125.6544 50022.71 125.6582 50042.71 125.662 50062.71 125.6658 50082. 71 125.6697 50102.71 125.6735 50122. 71 125.6773 50142.71 125.6811 50162. 71 125.685 50182.71 125.6888 50202. 71 125.6926 50222.71 125.6964 50242. 71 125.7002 50262.71 125.7041 50282.71 125.7079 50302.71 125.7117 50322. 71 125. 7155 50342. 71 125. 7194 50362.71 125.7232 50382. 71 125.727 50402.71 125.7308 50422. 71 125.7346 50442.71 125.7385 50462.71 125.7423 50482.71 125.7461 50502.71 125.7499 50522. 71 125.7537 50542. 71 125.7576 50562. 71 125.7614 50582.71 125.7652 50602. 71 125.769 50622.71 125. 7728 50642.71 125. 7766 50662.71 125. 7805 50682.71 125.7843 50702.71 125.7881 50722. 71 125.7919 50742.71 125.7957 50762. 71 125.7996 50782.71 125.8034 50802. 71 125.8072 50822.71 125. 811 50842.71 125.8148 50862.71 125.8186 50882.71 125.8224 50902.71 125.8263 50922. 71 125.8301 50942.71 125.8339 50962. 71 125.8377 50982.71 125.8415 51002. 71 125.8453 51022.71 125.8491 51042.71 125.8529 51062.71 125.8568 51082.71 125.8606 51102. 71 125.8644 51122. 71 125.8682 51142. 71 125. 872 51162. 71 125.8758 51182. 71 125.8796 51202. 71 125.8834 51222. 71 125.8872 51242.71 125.891 51262.71 125.8949 51282.71 125.8987 51302.71 125.9025 51322. 71 125 .,9063 51342. 71 125.9101 51362. 71 125.9139 51382. 71 125.9177 51402. 71 125.9215 51422.71 125.9253 51442. 71 125.9291 51462. 71 125.9329 51482. 71 125.9367 51502.71 125.9405 51522.71 125.9444 51542.71 125.9482 51562.71 125.952 51582.71 125.9558 51602. 71 125.9596 51622.71 125.9634 51642. 71 125.9672 51662. 71 125. 971 51682. 71 ,125.9748 51702.71 125.9786 51722.71 125.9824 51742.71 125.9862 51762. 71 125.99 51782.71 125.9938 51802. 71 125.9976 51822.71 126. 0014 51842. 71 126.0052 51862.71 126.009 51882. 71 126.0128 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.myd.:;. Attachment 9 PAGE NO. 268 of 303 51902.71 126.0166 51922. 71 126.0204 51942.71 126.0242 51962. 71 126.028 51982.71 l:;l6.0318 52002. 71 126.0356 520.22. 71 126.0394 52042.71 126.0432 52062.71 126.047 52082.71 126.0508 52102.71 126.0546 52122. 71 126.0584 52142.71 126.0622 52162.71 126.066 52182.71 126.0698 52202. 71 126.0736 52222.71 126.0774 52242. 71 126.0812 52262. 71 126.085 52282. 71 126.0888 52302.71 126.0926 52322.71 126.0964 52342.71 126.1002 52362.71 126.1039 52382. 71 126.1077 52402.71 126 .1115 52422.71 126 .1153 52442. 71 126 .1191 52462.71 126.1229 52482.71 126.1267 52502.71 126.1305 52522. 71 126.1343 52542.71 126.1381 52562.71 126.1419 52582.71 126.1457 52602.71 126 .1495 52622.71 126.1532 52642.71 126.157 52662.71 126.1608 52682. 71 126.1646 52702.71 126.1684 52722. 71 126.1722 52742.71 126.176 52762. 71 126.1798 52782.71 126.1836 52802. 71 126.1874 52822.71 126.1911 52842. 71 126.1949 52862.71 126.1987 52882. 71 126,.2025 52902.71 126.2063 52922. 71 126.2101 52942.71 126.2139 52962. 71 126.2177 52982.71 126.2214 53002. 71 126.2252 53022.71 126.229 53042. 71 126.2328 53062.71 126.2366 53082. 71 126.2404 53102.71 126.2441 53122. 71 126.2479 53142.71 126.2517 53162. 71 126.2555 53182. 71 126.2593 53202. 71 126.2631 53222.71 126.2669 53242. 71 126.2706 53262.71 126.2744 53282.71 126.2782 53302.71 126.282 53322. 71 126.2858 53342. 71 126.2895 53362. 71 126.2933 53382.71 126.2971 53402. 71 126.3009 53422.71 126.3047 53442.71 126.3084 53462. 71 126.3122 53482.71 126.316 53502. 71 126.3198 53522. 71 126.3236 53542. 71 126.3273 53562.71 126.3311 53582. 71 126.3349 53602.71 126.3387 53622. 71 126.3425 53642.71 126.3462 53662. 71 126.35 53682. 71 126.3538 53702.71 126.3576 53722.71 126.3613 53742.71 126.3651 53762. 71 126.3689 53782.71 ._.126.3727 53802. 71 126.3764 53822.71 126.3802 53842. 71 126.384 53862.71 126.3878 53882. 71 126.3915 53902.71 126.3953 53922. 71 126.3991 53942.71 126.4029 53962. 71 ' 126.4066 \ 53982.71 126.4104 54002. 71 126.4142 54022.71 126.418 54042. 71 126.4217 54062. 71 126.4255 54082. 71 126.4293 54102.71 126.433 54122. 71 126.4368 54142. 71 126.4406 54162. 71 126.4444 54182.71 126.4481 54202. 71 126,.4519 54222.71 126.4557 54242. 71 126.4594 54262.71 126.4632 54282. 71 126.467 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O £wry day. Attachment 9 PAGE NO. 269 of 303 54302.71 126.4707 54322. 71 126.4745 54342. 71 126.4783 54362.71 126.4{l21 54382.71 126.4858 54402.71 126 .4896 54422.71 126.4934 54442.71 126.4971 54462.71 126.5009 54482. 71 *126.5047 54502. 71 126.5084 54522.71 126.5122 54542.71 126.516 54562. 71 126.5197 54582.71 126.5235 54602. 71 126.5273 54622.71 126.531 54642. 71 126.5348 54662.71 126.5385 54682. 71 126.5423 71 126.5461 54722.71 126.5498 54742. 71 126.5536 54762. 71 126.5574 54782.71 126.5611 54802. 71 126.5649 54822.71 126.5686 54842. 71 126.5724 54862.71 126.5762 54882. 71 126.5799 54902.71 12"6.5837 54922. 71 126.5875 54942.71 126.5912 54962. 71 126.595 54982.71 126.5987 55002. 71 126.6025 55022.71 126.6063 55042. 71 126.61 55062.71 126.6138 55082. 71 126.6175 55102.71 126.6213 55122. 71 126.6251 55142.71 126.6288 55162. 71 126.6326 55182.71 126.6363 55202. 71 126.6401 55222.71 126.6438 55242. 71 126.6476 55262.71 126.6514 55282. 71 126.6551 55302.71 126.6589 55322. 71 126.6626 55342.71 126.6664 55362. 71 126.6701 55382.71 126.6739 55402. 71 126.6777 55422.71 126.6814 55442. 71 126.6852 55462.71 126.6889 55482. 71 126.6927 55502.71 126.6964 55522. 71 126.7002 55542.71 126.7039 55562.71 126. 7,077 55582.71 126. 7114 55602. 71 126. 7152 55622.71 126. 7189 55642. 71 126. 7227 55662.71 126. 7264 55682.71 126.7302 55702.71 126.7339 55722. 71 126. 7377 55742.71 126.7414 55762. 71 126.7452 55782.71 126.7489 55802. 71 126.7527 55822.71 126.7564 55842.71 126.7602 55862.71 126.7639 55882. 71 126.7677 55902. 71 126. 7714 55922. 71 126. 7752 55942. 71 126.7789 55962. 71 126.7827 55982. 71 126.7864 56002.71 126.7902 56022. 71 126.7939 56042.71 126.7977 56062. 71 126.8014 56082.71 126.8052 56102. 71 126.8089 56122.71 126.8127 56142.71 126.8164 56162.71 126.8201 56182. 71 126.8239 56202. 71 126.8276 56222. 71 126.8314 56242.71 126.8351 56262. 71 126.8389 56282. 71 126.8426 56302. 71 126.8464 56322.71 126.8501 56342. 71 126.8538 56362. 71 126.8576 56382. 71 126.8613 56402. 71 126.8651 56422. 71 126.8688 56442. 71 126.8726 56462. 71 126.8763 56482. 71 126.88 56502. 71 126.8838 56522. 71 126.8875 56542. 71 126.8913 56562. 71 126.895 56582. 71 126.8987 56602. 71 126.9025 56622. 71 126.9062 56642. 71 126.91 56662. 71 126.9137 56682. 71 126.9174 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xaNena-f.vetyptt;jt;<;t.. Attachment 9 PAGE NO. 270 of 303 56702.71 126.9212 56722.71 126.9249 56742.71 126.9286 56762. 71 126.9324 56782.71 126.9361 56802. 71 126.9399 56822.71 126.9436 56842. 71 126.9473 56862.71 126.9511 56882. 71 126.9548 56902.71 126.9585 56922.71 126.9623 56942. 71 126.966 56962.71 126.9697 56982.71 126.9735 57002.71 126.9772 57022.71 126.9809 57042.71 126.9847 57062. 71 126.9884 57082. 71 126.9921 57102. 71 126.9959 57122. 71 126. 9996 57142. 71 127.0033 57162. 71 127. 0071 57182. 71 127.0108 57202. 71 127. 0145 57222. 71 127.0183 57242. 71 127.022 57262.71 127.0257 57282. 71 127.0295 57302. 71 127.0332 57322.71 127.0369 57342. 71 127.0407 57362.71 127.0444 57382. 71 127. 0481' 57402. 71 127.0519 57422.71 127.0556 57442. 71 127.0593 57462. 71 127.063 57482. 71 127.0668 57502.71 127.0705 57522. 71 127.0742 57542.71 127.078 57562. 71 127.0817 57582.71 127.0854 57602. 71 127.0891 57622. 71 127.0929 57642. 71 127.0966 57662.71 127.1003 57682. 71 127.104 57702.71 127.1078 57722. 71 127.1115 57742. 71 127 .1152 57762. 71 127 .1189 57782. 71 127.1227 57802.71 127.1264 57822.71 127.1301 57842.71 127.1338 57862.71 127.1376 57882.71 127.1413 57902.71 127.145 57922.71 127.1487 57942.71 127.1525 57962.71 127.1562 57982.71 127.1599 58002. 71 127.1636 58022.71 127.1673 58042. 71 127.1711 58062.71 127.1748 58082. 71 127.1785 58102.71 127.1822 58122. 71 127.186 58142.71 127.1897 58162. 71 127.1934 58182. 71 127.1971 58202. 71 127.2008 58222.71 127.2046 58242.71 127.2083 58262. 71 127.212 58282. 71 127.2157 58302. 71 127.2194 58322.71 127.2231 58342. 71 127.2269 58362. 71 127.2306 58382. 71 127.2343 58402.71 127.238 58422.71 127.2417 58442.71 127.2454 58462. 71 127.2492 58482. 71 127.2529 58502.71 127.2566 58522. 71 127.2603 58542. 71 127.264 58562. 71 127.2677 58582.71 127 .2715 58602. 71 127.2752 58622.71 127.2789 58642. 71 127.2826 58662.71 127.2863 58682. 71 127.29 58702.71 127.2937 58722. 71 127.2974 58742. 71 127.3012 58762. 71 127.3049 58782.71 127.3086 58802. 71 127.3123 58822. 71 127.316 58842. 71 127.3197 58862. 71 127.3234 58882. 71 127.3271 58902.71 127.3309 58922. 71 127.3346 58942.71 127.3383 58962. 71 127.342 58982.71 127.3457 59002. 71 127.3494 59022.71 127.3531 59042. 71 127.3568 59062.71 127.3605 59082. 71 127.3642 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.vtty<!W. Attachment 9 PAGE NO. 271 of 303 59102.71 127.368 59122.71 127 .3717 59142.71 127.3754 59162. 71 127.3791 59182.71 127.3828 59202. 71 127.3865 59222. 71 127.3902 59242. 71 127.3939 59262.71 127.3976 59282. 71 127.4013 59302. 71 127.405 59322.71 127.4087 59342. 71 127.4124 59362.71 127 .4161 59382. 71 127.4198 59402. 71 127.4235 59422. 71 127.4272 59442. 71 127.4309 59462. 71 127.4347 59482. 71 127.4384 59502.71 127.4421 59522. 71 127.4458 59542.71 127.4495 59562. 71 127.4532 59582.71 127.4569 59602. 71 127 .4606 59622. 71 127.4643 59642.71 127.468 59662.71 127.4717 59682.71 127.4754 59702.71 127.4791 59722. 71 127.4828 59742. 71 127.4865 59762. 71 127.4902 59782.71 127.4939 59802. 71 1;27.4976 59822.71 127.5013 59842. 71 127.505 59862.71 127.5087 59882. 71 127.5124 59902.71 127.5161 59922. 71 127.5198 59942. 71 127.5235 59962. 71 127. 5272 59982. 71 127.5309 60002. 71 127.5346 60022. 71 127.5383 60042. 71 127.542 60062.71 127.5456 60082. 71 127.5493 60102.71 127.553 60122. 71 127.5567 60142.71 127.5604 60162. 71 127.5641 60182.71 127.5678 60202. 71 127. 5715 60222. 71 127.5752 60242. 71 127.5789 60262.71 127.5826 60282. 71 127.5863 60302. 71 127.59 60322. 71 127.5937 60342. 71 127.5974 60362. 71 127. 6011 60382. 71 127.6048 60402. 71 127.6085 60422. 71 127.6121 60442.71 127.6158 60462. 71 127.6195 60482.71 127.6232 60502.71 127.6269 60522. 71 127.6306 60542. 71 127.6343 60562. 71 127.638 60582. 71 127.6417 60602. 71 127.6454 60622. 71 127.649 60642. 71 127.6527 60662. 71 127.6564 60682. 71 127.6601 60702. 71 127.6638 60722. 71 127.6675 60742.71 127. 6712 60762.71 127.6749 60782.71 127.6786 60802. 71 127.6822 60822. 71 127.6859 60842. 71 127.6896 60862.71 127.6933 60882. 71 127.697 60902.71 127.7007 60922. 71 127.7044 60942. 71 127.708 60962. 71 127. 7117 60982. 71 127.7154 61002. 71 127. 7191 61022. 71 127.7228 61042.71 127.7265 61062. 71 127.7301 61082. 71 127.7338 61102. 71 127.7375 61122. 71 127.7412 61142. 71 127.7449 61162. 71 127.7486 61182. 71 127.7522 61202. 71 127.7559 61222. 71 127.7596 61242. 71 127.7633 61262. 71 127.767 61282. 71 127.7707 61302. 71 127.7743 61322. 71 127.778 61342. 71 127.7817 61362. 71 127.7854 61382. 71 127.7891 61402. 71 127.7927 61422.71 127.7964 61442. 71 127.8001 61462.71 127.8038 61482. 71 127.8075 ENERCON CALCULATION CONTROL Attachment 9 61502.71 127. 8111 61522. 71 127.8148 61542.71 127.8185 61562.71 127.8222 61582. 71 127.8258 61602.71 127.8295 61622. 71 127.8332 61642.71 127.8369 61662. 71 127.8406 61682.71 127.8442 61702.71 127.8479 61722.71 127.8516 61742.71 127.8553 61762.71 127.8589 61782. 71 127.8626 61802. 71 127.8663 61822. 71 127.87 61842.71 127.8736 61862. 71 127.8773 61882.71 127.881 61902. 71 127.8847 61922.71 127.8883 61942.71 127.892 61962. 71 127.8957 6198,2. 71 127.8993 62002. 71 127.903 62022. 71 127.9067 62042. 71 127.9104 62062. 71 127.914 62082.71 127.9177 62102.71 127.9214 62122. 71 127.925 62142. 71 127.9287 62162. 71 127.9324 -62182:11 127.9361 62202.71 127.9397 62222.71 127.9434 62242. 71 127. 9471 62262. 71 127.9507 62282. 71 127.9544 62302.71 127.9581 62322. 71 127.9617 62342. 71 127.9654 62362. 71 127.9691 62382.71 127. 9727 62402. 71 127.9764 62422.71 127.9801 62442. 71 127.9837 62462.71 127.9874 62482.71 127.9911 62502 .. 71 127.9947 62522. 71 127.9984 62542.71 128.0021 62562. 71 128.0057 62582. 71 128.0094 62602. 71 128. 0131 62622. 71 128.0167 62642. 71 128.0204 62662. 71 128.0241 62682. 71 128.0277 62702.71 128.0314 62722. 71 128.035 62742.71 _128. 0387 62762.71 128.0424 62782.71 128.046 62802.71 128.0497 62822. 71 128.0534 62842. 71 128.057 62862. 71 128.0607 62882. 71 128.0643 62902. 71 128.068 62922. 71 128.0717 62942.71 128.0753 62962. 71 128.079 62982.71 128.0827 63002.71 128.0863 63022. 71 128.09 63042.71 128.0936 63062.71 128.0973 63082.71 128.101 63102.71 128.1046 63122.71 128.1083 63142.71 128.1119 63162. 71 128.1156 63182.71 128.1192 63202. 71 128.1229 63222. 71 128.1266 63242. 71 128.1302 63262.71 128.1339 63282. 71 128.1375 63302.71 128.1412 63322. 71 128.1448 63342. 71 128.1485 63362. 71 128.1521 63382.71 128.1558 63402. 71 128.1595 63422.71 128.1631 63442.71 128.1668 63462. 71 128.1704 63482. 71 128.1741 63502.71 128.1777 63522. 71 128.1814 \ \ 63542. 71 128.185 63562. 71 128.1887 63582. 71 128,1923 63602. 71 128.196 63622.7i 128.1996 63642.71 128.2033 63662.71 128.207 63682.71 128.2106 63702.71 128.2142 63722. 71 128.2179 63742.71 128.2216 63762. 71 128.2252 63782.71 128.2289 63802.71 128.2325 63822.71 128.2362 63842. 71 128.2398 63862. 71 128.2435 63882.71 128 .2471 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO,. 272 of 303 CALC. NO. ENTR-078-CALC-004 N R ON CALCULATION CONTROL SHEET-REV. 0 Attachment 9 PAGE NO. 273 of 303 63902.71 128.2507 63922.71 128.2544 63942. 71 128.2581 63962.71 128.2617 63982. 71 128.2654 64002. 71 128.269 64022.71 i28.2726 64042. 71 128.2763 64062.71 128.2799 64082. 71 128.2836 64102.71 128.2872 64122. 71 128.2909 64142.71 128.2945 64162. 71 128.2982 64182. 71 128.3018 64202. 71 128.3055 64222.71 128.3091 64242. 71 128.3127 64262.71 128.3164 64282.71 128-.32 64302.71 128.3237 64322.71 128.3273 64342.71 128.331 64362. 71 128.3346 64382.71 128.3383 64402. 71 128.3419. 64422 .-71 128.3455 64442. 71 128.3492 ' 64462. 71' 128.3528 64482. 71 128.3565 64502.71 128.3601 64522. 71 128.3638 64542.71 128.3674 64562. 71 128.371 64582.71 128.3747 64602. 71 128.3783 / 64622. 71 128.3819 64642.71 128. 3'856 64662.71 128.3892 64682. 71 128.3929 64702. 71 --128.3965 64722. 71 128.4001 64742.71 128.4038 64762. 71 128.4074 64782.71 128 .4111 64802. 71 128.4147 64822. 71 128.4183 64842. 71 128.422 64862.71 128.4256 64882.71 128.4292 64902.71 128.4329 64922.71 128.4365 64942. 71 128.4402 64962. 71 128.4438 64982.71 128.4474 65002.71 128.4511 65022.71 128.4547 65042. 71 128.4583 65062.71 128.462 65082. 71 128.4656 65102.71 128.4692 65122. 71 128.4729 65142.71 128.4765 65163. 71 128.4801 65182. 71 128.4838 65202. 71 128 .4874 65222.71 128.491 65242. 71 128.4947 65262.71 128.4983 65282. 71 128.5019 65302.71 128.5056 65322. 71 128.5092 65342.71 128.5128 65362. 71 128.5164 65382.71 128.5201 65402.71 128.5237 65422.71 128.5273 65442. 71 128.531 65462.71 128.5346 6548-2. 71 128.5382 65502.71 128.5419 65522. 71 128.5455 65542.72 128.5491 65562.72 128.5527 65582.72 128.5564 65602.72 128.56 65622.72 128.5636 65642. 72 128.5673 65662. 72 128.5709 65682. 72 128.5745 65702.72 128.5781 65722. 72 128.5818 65742. 72 128.5854 65762.72 128.589 65782.72 128.5927 65802.72 128.5963 65822. 72 128.5999 65842.72 128.6035 65862.72 128.6071 65882.72 128.6108 65902.72 128.6144 65922. 72 128.618 65942. 72 128.6216 65962. 72 128.6253 65982.72 128.6289 66002.72 128.6325 66022.72 128.6361 66042. 72 128.6398 66062.72 128.6434 66082. 72 128.647 66102.72 128.6506 66122.72 128.6543 66142.72 128. 6579 66162.72 128.6615 66182.72 128.6651 66202.72 128.6687 66222.72 128.6723 66242.72 128.676 66262.72 128. 6796 66282.72 128.6832 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O fwr;da1 Attachment 9 PAGE NO. 274 of 303 66302.72 128.6868 66322. 72 128.6904 66342.72 128.6941 66362.72 128.6977 66382.72 128.7013 66402. 72 128.7049 66422.72 128.7085 66442.72 128.7122 66462. 72 128. 7158 66482.72 128 .. 7194 66502.72 128.723 66522.72 128.7266 66542.72 128.7302 66562.72 128.7339 66582.72 128.7375 66602.72 128. 7411 66622.72 128.7447 66642.72 128.7483 66662.72 128.7519 66682.72 128. 7_555 66702.72 128.7592 66722. 72 128.7628 66742.72 128.7664 66762.72 128.77 66782.72 128.7736 66802.72 128. 7772 66822.72 128.7808 66842.72 128.7845 66862.72 128.7881 66882.72 128.7917 66902.72 128.7953 66922.72 128.7989 66942. 72 128.8025 66962.72 128.8061 66.982. 72 128.8097 67002.72 128.8133 67022.72 128.817 67042.72 128.8206 67062.72 128.8242 67082. 72 128.8278 67102. 72 128.8314 67122.72 128.835 67142.72 128.8386 67162. 72 128.8422 67182.72 128.8458 67202. 72 128.8494 67222.72 128.853 67242.72 128.8567 67262.72 128.8603 67282.72 128.8639 67302. 72 128.8675 67322.72 128-. 8711 67342.72 128.8747 67362.72 128.8783 67382. 72 128.8819 67402.72 128.8855 67422.72 128.8891 67442.72 128.8927 67462. 72 128.8963 67482.72 128.8999 67502.72 128.9035 67522.72 128.9071 67542.72 128.9107 67562.72 128.9143 67582.72 128.918 67602.72 128.9216 67622. 72 128.9252 67642.72 128.9288 67662.72 128.9324 67682.72 128.936 67702.72 128.9396 67722.72 128.9432 67742.72 128.9468 67762.72 128.9504 67782.72 128.954 67802.72 128.9576 67822.72 128.9612 67842.72 128.9648 67862. 72 128.9684 67882. 72 128. 972 67902.72 128.9756 67922.72 128.9792 67942.72 128.9828 67962.72 128.9864 67982.72 128.99 68002.72 128.9936 68022.72 128.9972 68042. 72 129 .*0008 68062.72 129.0043 68082.72 129.0079 68102.72 129. 0116 68122.72 129.0152 68142.72 129.0187 68162.72 129.0223 68182. 72 129.0259 68202.72 129.0295 68222.72 129.0331 68242.72 129.0367 68262. 72 129.0403 68282.72 129.0439 68302.72 129.0475 68322. 72 129. 0511 68342.72 129.0547 68362.72 129.0583 68382.72 129.0619 68402.72 129.0655 68422.72 129.0691 68442. 72 129.0727 68462.72 129.0762 68482.72 129.0798 68502.72 129.0834 68522. 72 129.087 68542.72 129.0906 68562.72 129.0942 68582.72 129.0978 68602. 72 129.1014 68622.72 129.105 68642.72 129.1086 68662.72 129 .1122 68682.72 129.1158 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.veydr;y. Attachment 9 PAGE NO. 275 of 303 68702.72 129 .1193 68722.72 129.1229 68742.72 129.1265 68762.72 129.1301 !)8782.72 129.1337 68802.72 129.1373 68822.72 129.1409 68842.72 129.1445 68862.72 129.1481 68882. 72 129.1516 68902.72 129.1552 68922. 72 129.1588 68942.72 129.1624 68962.72 129.166 68982.72 129.1696 69002.72 129.1732 69022.72 129.1767 (69042.72 129.1803 69062. 72 129.1839 69082.72 129.1875 69102.72 129.1911 69122.72 129.1947 69142. 72 129.1982 69162.72 129.2018 69182. 72 129.2054 69202.72 129.209 69222.72 129.2126 69242.72 129.2162 69262.72 129.2197 69282.72 129.2233 69302.72 129.2269 69322. 72 129.2305 69342.72 129.2341 69362.72 129.2377 69382.72 129.2412 69402. 72 129.2448 69422. 72 129.2484 69442.72 129.252 69462. 72 129.2556 69482.72 129.2591 69502.72 129.2627 69522.72 129.2663 69542. 72 129.2699 69562. 72 129.2735 69582. 72 129.277 69602.72 129.2806 69622. 72 129.2842 69642.72 129.2878 69662.72 129.2913 69682.72 129.2949 69702.72 129.2985 69722.72 129.3021 69742. 72 129.3056 69762.72 129.3092 69782.72 129.3128 69802. 72 129.3164 69822.72 129.3199 69842.72 129.3235 69862.72 129.3271 69882. 72 129.3307 69902. 72 129.3342 69922.72 129.3378 69942. 72 129.3414 69962. 72 129.345 69982. 72 129.3485 70002.72 129.3521 70022.72 129.3557 70042.72 129.3593 70062.72 129.3628 70082.72 129.3664 70102.72 129.37 70122.72 129.3736 70142. 72 129. 3771 70162.72 129.3807 70182.72 129.3843 70202.72 129.3878 70222.72 129.3914 70242.72 129.395 70262.72 129.3985 70282.72 129.4021 70302. 72 129.4057 70322. 72 129.4093 70342. 72 129.4128 70362. 72 129.4164 70382.72 129.42 70402.72 129 .4235 70422. 72 129.4271 70442. 72 129.4307 70462.72 129.4342 70482.72 129.4378 70502. 72 129.4414 70522.72 129.4449 70542.72 129.4485 70562.72 129.4521 70582.72 129.4556 70602.72 129.4592 70622.72 129 .4628 70642.72 129.4663 70662.72 129 .4699 70682. 72 129.4734 70702.72 129.477 70722. 72 129.4806 70742.72 129 .4841 70762.72 129.4877 70782.72 129.4913 70802.72 129.4948 70822. 72 129.4984 70842. 72 129.502 70862.72 129.5055 70882.72 129.5091 70902.72 129.5126 70922.72 129.5162 70942.72 129.5198 70962.72 129.5233 70982.72 129.5269 71002. 72 129.5304 71022. 72 129.534 71042. 72 129.5376 71062. 72 129.5411 71082. 72 129.5447 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REv.*o Attachment 9 PAGE NO. 276 of 303 71102. 72 129.5482 71122. 72 129.5518 71142. 72 129. 5554 . 71162. 72 129.5589 71182. 72 129.5625 71202.72 129.566 _, 71222. 72 129.5696 71242.72 129.5732 71262. 72 129.5767 71282. 72 129.5803 71302.72 129.5838 71322. 72 129.5874 71342.72 129.5909 71362.72 129.5945 71382. 72 129.5981 71402. 72 129.6016 71422.72 129.6052 71442.72 129.6087 71462.72 129.6123 71482. 72 :).29.6158 71502. 72 129.6194 71522.72 129.6229 71542.72 129.6265 71562. 72 129.63 71582. 72 129.6336 71602. 72 129.6371 71622.72 129.6407 71642 .. 72 129.6442 71662. 72 129.6478 71682. 72 129.6514 71702.72 129.6549 71722.72 129.6584 71742.72 129.662 71762.72 129.6656 71782.72 129.6691 71802. 72 129. 6727 71822.72 129.6762 71842. 72 129.6797 71862. 72 129.6833 -71882. 72 129.6869 71902. 72 129.6904 71922.72 129.694 71942.72 129.6975 71962.72 129.701 71982. 72 129.7046 72002.72 129.7081 72022.72 129.7117 72042. 72 129.7152 72062.72 129. 7188 72082.72
- 129.7223 72102.72 129. 7259 72122. 72 129.7294 72142.72 129.733 72162. 72 129.7365 72182.72 129.7401 72202. 72 129.7436 72222.72 129. 7471 72242.72 129.7507 72262.72 129.7542 72282. 72 129.7578 72302.72 129.7613 72322.72 129.7649 72342.72 129.7684 72362.72 129.772 72382.72 129.7755 72402.72 129.7791 72422.72 129.7826 72442.72 129.7861 72462.72 129.7897 72482. 72 129.7932 72502.72 129.7968 72522. 72 129.8003 72542. 72 129.8038 72562. 72 129.8074 72582.72 129.8109 72602.72 129.8145 72622. 72 129.818 72642. 72 129.8215 72662.72 129.8251 72682. 72 129.8286 72702.72 129.8322 72722. 72 129.8357 72742. 72 129.8392 72762. 72 129.8428 72782.72 129.8463 72802. 72 129.8499 72822. 72 129.8534 72842.72 129.8569 72862.72 129.8605 72882. 72 129.864 72902. 72 129.8675 72922. 72 129.8711 72942.72 129.8746 72962. 72 129.8781 72982.72 129.8817 73002.72 129.8852 73022. 72 129.8887 73042. 72 129.8923 73062.72 73082. 72 129.8994 73102.72 129.9029 73122.72 129.9064 73142.72 129.91 73162. 72 129.9135 73182.72 129.917 73202. 72 129. 9206 73222.72 129.9241 73242.72 129.9276 73262.72 129.9312 73282.72 129.9347 73302.72 129.9382 73322. 72 129.9417 73342.72 129.9453 73362. 72 129.9488 73392:12 129.9523 73402.72 129. 9'559 73422.72 129.9594 73442. 72 129.9629 73462.72 129.9665 73482. 72 129.97 CALC. NO. ENTR-078-CALC-004 EN R ON CALCULATION CONTROL SHEET-REV.O Pf t>f f.vpty tkt; Attachment 9 PAGE NO. 277 of 303 73502.72 129.9735 73522.72 129. 9771 73542.72 129.9806 73562.72 129.9841 73582.72 129.9876 73602.72 129.9912 I 73622.72 129.9947 73642.72 129.9982 73662.72 130.0017 73682.72 130. 0053 73702.72 130.0088 73722. 72 130. 0123 73742.72 130.0159 73762.72 130.0194 73782.72 130.0229 73802. 72 130. 0264 73822.72 130. 03 73842.72 130.0335
-73862. 72 130.037 *73882.72 130.0405 73902.72 130.0441 73922.72 130.0476 73942.72 130. 0511 73962.72 130.0546 73982.72 130.0581 .74002. 72 130.0617 74022.72 130.0652 74042.72 130.0687 74062 ._72 130.0722 74082.72 130.0757 74102.72 130.0793 74122.72 130.0828 74142.72 130. 0863 74162.72 130.0898 '74182. 72 130.0934 7420.2. 72 130.0969 [ 74222.72 130.1004 74242.72 130.1039 74262.72 130.1074 74282.72 130.1109 74302.72 130 .1145 74322.72 130.118 74342.72 130.1215 74362.72 130.125 74382.72 130.1285 74402.72 130:1321 74422.72 130.1356 74442. 72 130.1391 74462. 72 130.1426 74482. 72 130.1461 74502.72 130 .1496 74522.72 130.1532 74542.72 130.1567 74562.72 130.1602 74582.72 130 .1637 74602. 72 130.1672 74622.72 130.1707 74642.72 130.1743 74662.72 130.1778 74682. 72 130.1813 74702.72 130 .1848 74722.72 130.1883 74742.72 130.1918 74762.72 130.1953 74782.72 130.1989 74802.72 r30.2024 74822.72 130.2059 74842.72 130.2094 74862.72 130.2129 74882. 72 130.2164 74902.72 130.2199 74922.72 130.2234 74942.72 130.2269 74962.72 130 .2305 74982.72 130.234 75002.72 130 .2375 75022.72 130 .241 75042.72 130 .2445 75062.72 130.248 75082.72 130.2515 75102,72 130.255 75122.72 130 .2585 75142.72 130.262 75162.72 130 .2655 75182.72 130.269 75202.72 130 .2726 75222.72 130.2761 75242.72 130.2796 75262.72 130.2831 75282.72 130.2866 75302.72 130.2901 75322.72 130.2936 75342. 72 130.2971 75362. 72 130.3006 75382.72 130.3041 75402.72 130.3076 75422.72 130.3111 75442.72 130.3146 75462.72 130.3181 75482.72 130.3216 75502.72 130.3251 75522.72 130.3286 75542.72 130.3321 75562.72 130.3356 75582.72 130.3391 75602.72 130.3427 7'5622. 72 130.3461 75642.72 130.3497 75662.72 130.3531 75682.72 130.3567 75702.72 130.3602 75722. 72 130.3636 75742.72 130.3672 75762.72 130.3707 75782.72 130.3742 75802.72 130.3777 75822.72 130.3811 75842. 72 130.3846 75862.72 130.3882 175882. 72 130.3916 CALC. NO. ENTR-078-CALC-004 EN CALCULATION CONTROL SHEET-Attachment 9 REV.O PAGE NO. 278 of 303 75902.72 130.3951 75922.72 130.3987 75942.72 130.4021 75962.72 130 .4056 75982.72 130.4091 76002.72 130.4126 76022.72 130.4161 76042. 72 130.4196 76062.72 130.4231 76082.72 130.4266 76102.72 130.4301 76122.72 130.4336 76142.72 130 .4371 76162.72 130.4406 76182.72 130.4441 76202.72 130.4476 76222.72 130.4511 76242.72 130.4546 76262.72 130.4581 76282.72 130 .4616 76302.72 130.4651 76322.72 130.4686 76342.7.2 130.472 76362.72 130.4755 76382.72 130.479 76402. 72 130.4825 76422.72 130.486 76442.72 130.4895 76462.72 130.493 76482.72 130.4965 76502.72 130.5 76522.72 130.5035 76542.72 130.5069 76562.72 130.5104 76582.72 130.5139 76602.72 130.5174 76622.72 130.5209 76642.72 130.5244 76662.72 130.5279 76682. 72 130.5314 76702.72 130.5349 76722.72 130.5383 76742.72 130.5418 76762.72 130.5453 76782.72
- 130.5488 76802. 72 130.5523 76822.72 130.5558 76842.72 130.5593 76862.72 130.5627 76882.72 130.5662 76902.72 130.5697 76922.72 130.5732 76942.72 130.5767 76962.72 130.5802 76982.72 130.5836 77002. 72 130.5871 77022.72 130.5906 77042.72 130.5941 77062.72 130.5976 77082.72 130.6011 77102. 72 130.6046 77122. 72 130.608 77142. 72 130. 6115 77162. 72 130.615 77182. 72 130.6185 77202.72 130.6219 77222.72 130.6254 77242.72 130.6289 77262.72 130.6324 77282.72 130.6359 77302.72 130.6394 77322.72 130. 6428 77342.72 130.6463 77362.72 130.6498 77382.72 130.6533 77402.72 130.6567 77422.72 130.6602 77442.72 130.6637 77462.72 130.6672 77482. 72 130.6707 77502.72 130.6741 77522.72 130.6776 77542.72 130.6811 77562.72 130.6846 77582.72 130.688 77602.72 130.6915 77622.72 130.695 77642.72 130.6985 77662.72 130.7019 77682.72 130. 7054 77702. 72 130.7089 77722.72 130.7124 77742.72 130. 7158 77762.72 130.7193 77782.72 130.7228 77802.72 130.7262 77822.72 130.7297 77842.72 130.7332 77862.72 130.7367 77882. 72 130.7401 77902.72 130.7436 77922. 72 130. 7471 77942. 72 130.7505 77962.72 130.754 77982.72 130.7575 78002.72 130.761 78022.72 130.7644 78042.72 130.7679 78062.72 130. 7714 78082.72 130.7748 78102.72 130.7783 78122.72 130.7818 78142.72 130.7852 78162.72 130.7887 78182.72 130.7922 78202.72 130.7956 78222.72 130.7991 78242.72 130.8026 78262.72 130.806 78282.72 130.8095 ENERCON CALCULATION CONTROL Attachment 9 78302.72 130.813 78322.72 130.8164 78342.72 130.8199 78362.72 130.8233 78382.72 130.8268 78402. 72 130.8303 78422.72 130.8337 78442.72 130.8372 78462.72 130. 8407 78482.72 130.8441 78502.72 130.8476 78522.72 130.851 78542.72 130.8545 78562.72 130.858 78582.72 130.8614 78602.72 130.8649 78622.72 130.8683 78642.72 130.8718 78662.72 130. 8753 78682.72 130.8787 78702.72 130.8822 78722.72 130. 8857 78742.72 130.8891 78762.72 130.8926 78782.72 130.896 78802.72 130.8995 78822.72 130. 9029 78842.72 130.9064 78862.72 130. 9098 78882.72 130.9133 78902.72 130. 9167 78922. 72 130.9202 78942.72 130.9237 78962.72 130. 9271 78982.72 130.9306 79002.72 130.934 79022.72 130.9375 79042. 72 130.9409 79062.72 130. 9444 79082.72 130.9478 79102.72 130.9513 79122. 72 130.9547 79142.72 130.9582 79162.72 130.9616 79182.72 130.9651 79202.72 130.9685 79222.72 130. 972 79242.72 130.9754 79262.72 130.9789 79282. 72 130.9823 79302.72 130.9858 79322.72 130.9892 79342.72 130.9927 79362. 72 130.9961 79382.72 130.9995 79402. 72 131.003 79422.72 131.0064 79442.72 131.0099 79462.72 131.0133 79482. 72 131. 0168 79502.72 131.0202 79522.72 131.0237 79542.72 131. 0271 79562.72 131.0305 79582.72 131.034 79602.72 131.0374 79622.72 131. 0409 79642.72 131.0443 79662.72 131.0477 79682.72 131.0512 79702.721 131. 0546 79722.72 131.0581 79742.72 131.0615 79762.72 131.0649 79782.72 131.0684 79802. 72 131.0718 79822.72 131. 0753 79842.72 131.0787 79862.72 131. 0821 79882.72 131.0856 79902.72 131. 089 79922.72 131.0924 79942. 72 131.0959 79962.72 131.0993 79982.72 131.1027 80002.72 131.1062 80022.72 131.1096 80042.72 131.1131 80062.72 131.1165 80082.72 131.1199 80102.72 131.1234 80122.72 131.1268 80142.72 131.1302 80162.72 131.1337 80182.72 131.1371 80202.72 131.1405 80222.72 131.144 80242.72 131.1474 80262.72 131.1508 80282. 72 131.1543 80302.72 131.1577 80322.72 131.1611 80342.72 131.1646 80362. 72 131.168 80382.72 131.1714 80402.72 131.1749 80422.72 131.1783 80442.72 131.1817 80462.72 131.1851 80482. 72 131.1886 80502.72 131.192 80522.72 131.1954 80542.72 131.1989 80562.72 131.2023' 80582.72 131.2057 80602. 72 131.2092 80622.72 131.2126 80642.72 131.216 80662.72 131. 2194 80682.72 131.2229 CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 279 of 303 /
ENER 80702.72 131.2263 80742.72 131.2332 80782.72 131.24 80822.72 131.2469 80862.72 131.2537 80902.72 131.2606 80942.72 131.2674 80982.72 131.2743 81022. 72. 131.2811 81062.72 131.288 81102.72 131.2948 81142. 72 '131. 3017 81182. 72 131.3085 81222.72 131. 3154 81262.72 131. 3222 81302. 72 131.329 81342. 72 131.3359 81382. 72 131.3427 81422.72 131. 3496 81462.72 131. 3564 81502. 72 131.3633 81542.72 131.3701 81582.72 131.3769 8f622.72 131.3838 81662.72 131.3906 81702.72 131.3974 81742.72 131.4043 81782.72 131.4111 81822. 72 131.4179 81862.72 131.4248 81902.72 131.4316 81942.72 131.4384 81982.72 131.4453 82022.72 131.4521 82062.72 131.4589 82102.72 131 :4657 82142.72 131.4726 82182.72 131.4794 82222.72 131.4862 82262.72 131.493 82302.72 131. 4998 82342.72 131.5067 82382.72 131. 5135 82422.72 131. 5203 ON CALCULATION CONTROL Attachment 9 80722. 72 131.2297 80762.72 131.2366 80802.72 131.2434 80842.72 131.2503 80882. 72 131.2571 80922.72 131.264 80962.72 131.2708 81002.72 131. 2777 81042.72 131.2845 81082. 72 131.2914 81122. 72 131.2982 81162. 72 131. 3051 81202.72 131.-3119 81242.72 131. 3188 81282.72 131.3256 81322.72 131.3325 81362. 72 131.3393 81402.72 131.3461 81442.72 131. 353 81482.72 131.3598 81522.72 131.3667 81562. 72 131.3735 81602. 72 131.3803 81642.72 131. 3872 81682.72 131. 394 81722.72 131.4008 81762.72 131.4077 81802.72 131'.4145 81842.72 131.4213 81882.72 131.4282 81922.72 131.435 81962.72 131.4418 82002.72 131.4487 82042.72 131.4555 ' ' 82082.72 131.4623 82122.72 131.4691 82162.72 131.476 82202.72 131.4828 82242.72 131.4896 82282.72 131.4964 82322.72 131.5033 82362.72 131. 5101 82402.72 131. 5169 82442. 72 131. 5237 824.62.72 131. 5271 82482.72 131.5305 82502.72 131. 534 82522.72 131.5374 82542.72 131.5408 82562. 72 131.5442 82582.72 131.5476 82602. 72 131. 551 82622.72 131. 5544 82642. 72 131. 5578 82662.72 131.5612 82682.72 131. 5646 82702.72 131. 568 82722.72 131.5714 82742.72 131.5748 82762.72 131.5782 82782.72 131.5816 82802.72 131. 5851 82822.72 131.5885 82842. 72 131. 5919 82862.72 131.5953 82882.72 131. 5987 82902.72 131.6021 82922.72 131.6055 82942.72 131.6089 82962.72 131.6123 82982. 72 131.6157 83002. 72 131.6191 83022.72 131.6225 83042. 72 131.6259 83062.72 131. 6293 83082. 72 131.6327 '\ CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 280 of 303 CALC. NO. ENTR-078-CALC-004 EN R QN CALCULATION CONTROL SHEET-REV.O ptt;j{f<..t, Ev&:! dt;y Attachment 9 PAGE NO. 281 of 303 83102.72 131 .. 6361 83122.72 131.6395 83142.72 131. 6429 83162.72 131. 6463 72 131. 6497 83202.72 131.6531 83222.72 131.6565 83242.72 131. 6599 83262.72 131.6633 83282.72 131. 6667 83302.72 131.6701 83322.72 131. 6735 83342.72 131.6769 83362.72 131.6803 83382.72 131. 6837 83402.72 131. 6871 83422.72 131. 6905 83442.72 131.6939 I 83462.72 131.6973 83482.72 131.7007 _) 83502.72 131.7041 83522.72 131.7075 83542.72 131. 7109 83562. 72 131.7143 83582.72 131.7177 72 131. 7211 83622.72 131. 7245 83642.72 131. 7279 83662.72 131. 7313 . 83682.72 131. 7347 83702.72 131.7381 83722. 72 131. 7415. 83742.72 131.7449 83762.72 131.7482 83782.72 131.7516 83802.72 131.755 83822.72 131.7584 83842. 72 131.7618 83862.72 131.7652 83882.72 131.7686 83902.72 131.772 83922.72 ' 131. 7754 83942.72 131.7788 83962. 72 131. 7822 83982.72 131.7856 84002.72 131. 789 84022. 72 ;131.7924 84042. 72 131.7958 84062.72 131. (991 84082.72 131. 8025 84102.72 131.8059 84122.72 131.8093 84142.72 131.8127 84162.72 131.8161 84182.72 131. 8195 84202.72 131. 8229 84222.72 131. 8263 84242.72 131.8297 84262.72 131.8331 84282.72 131.8364 84302.72 131.8398 84322.72 131. 8432 84342.72 131.8466 84362.72 131. 85 84382.72 131.8534 84402.72 131.8568 84422.72 131. 8602 84442.72 131. 8635 84462.72 131.8669 84482.72 131.8703 84502.72 131.8737 84522.72 131. 8771 84542.72 131. 8805 84562.72 131.8839 84582.72 131.8873 84602.72 131.8906 84622.72 131. 894 84642.72 131.8974 84662.72 131.9008 84682.72 131. 9042 84702.72 131.9076 84722. 72 131. 9109 84742.72 131.9143 84762,72 131. 9177 84782.72 131.9211 84802.72 131.9245 131.9279 84842.72 131.9312 84862.72 131. 9346 84882.72 131.938 84902. 72 131. 9414 84922.72 131. 9448 84942.72 131. 9482 84962.72 131. 9515 84982.72 131. 9549 85002.72 131. 9583 85022.72 131.9617 85042.72 131.9651 85062.72 131.9684 85082.72 131.9718 85102.72 131. 9752 85122.72 131.9786 85142.72 131.982 85162. 72 131. 9853 85182.72 131.9887 85202.72 131.9921 85222.72 131.9955 85242. 72 131.9989 85262.72 132.0022 85282.72 132.0056 85302.72 132.009 85322.72 132.0124 85342.72 132.0157 85362.72 132.0191 85382.72 132.0225 85402.72 132.0259 85422.72 132.0293 85442.72 132.0326 85462.72 132.036 85482.72 132. 0394 ENERCON CALCULATION CONTROL Attachment 9 85502.72 132.0428 85542.72 132.0495 85582.72 132. 0563 85622.72 132.063 85662.72 132.0697 85702.72 132.0765 85742.72 132. 0832 85782.72 132.09 85822.72 132.0967 85862.72 132.1035 95*902. 72 132 .1102 85942.72 132.117 85982.72 132.1237 86022.72 132.1304 86062.72 132.1372 86102.72 132.1439 86142.72 132.1507 86182.72 132.1574 86222. 72 132.1641 86262.72 132.1709 86302.72 132.1776 86342.72 132.1843 86382.72 132 .1911 Function 3T Sol-Air Roof Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. 0. 134.85 7200. 125 .11 14400. 104.33 21600. 89.37 28800. 85.97 36000. 83.25 43200. 81.04 50400. 79.85 57600. 79. 64800. 87.64 72000. 112.78 79200. 130.66 86400. 134.85 Function 4T Lighting HL Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. 0. 0 .1134 Function ST Initial Panels Ind. Var.: Dep. Var.: Ind. Var. 0. 0.11 Dep. Var. 1. 0. 85522.72 132.0461 85562.72 132.0529 85602.72 132.0596 85642.72 132.0664 85682.72 132.0731 85722.72 132. o:z99 85762.72 132.0866 85802. 72 132.0934 85842.72 132.1001 85882. 72 '132.1068 85922. 72 132.1136 .85962.72 132.1203 86002.72 132 .1271 86042. 72 132 .1338 86082.72 132.1405 86122.72 132.1473 86162.72 132.154 86202. 72 132 .1608 86242.72 132.1675 86282.72 132.1742 86322.72 132.181 86362.72 132.1877 86400. 132.194 Ind. Var. Dep. Var. 3600. 131.73 10800. 115.44 18000. 93.22 25200. 87.5 32400. 84.44 39600. 82.06 46800. 80.36 54000. 79.34 61200. 79.34 68400. 100.37 75600. 123.12 82800. 134 .46 Ind. Var. Dep. Var. 1000000. 0 .1134 Ind. Var. Dep. Var. 0 .1 1. 1000000.
- o. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 282 of 303 ' ,
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL Attachment 9 REV.O Function 6T Operators Ind. Var.: Dep. Var.: Ind. Var. Dep. Var. 0. 0.00258 Function 7T Time Ind. Var.: Dep. Var.: Ind. Var. 0. 86400. Dep. Var. 0. 86400. Control Variables Ind. Var. Dep. Var. 1000000. 0.00258 Ind. Var. 1800. Dep. Var. 1800. CV Fune. Initial Coeff. # Description Form Value G lC MaxCell T 1 max 0. 1. 2C Low MCR Avg sum 0. 0.00781 3C Middle MCR Av sum 0. 0.00781 4C MCR Avg_l sum 0. 0.53559 SC Upper MCR Avg sum 0. 0.00781 6C Total MCR Avg sum 0. 0.17669 7C Ovrall Max max 0. 1. Function Components Control Variable lC MaxCell T 1 max Y=G*max(a0,a1Xl,a2X2, ... ,anxn) Gothic s Variable Coef. # Name location a 1 Temv cVls4 1. 2 Temv cVls8 1. 3 Temv cVls3 1. 4 Temv cVls7 1. 5 Temv cVls2 1. 6 Temv cVls6 1. 7 Temv cVlsl 1. 8 Temv cVls5 L 9 Temv cVls12 1. 10 Temv cVls16 1. 11 Temv cVlsll 1. 12 Temv cV1s15 1. 13 Temv cVlslO 1. 14 Temv cVls14 1. 15 Temv cVls9 1. 16 Temv cVls13 1. 17 Temv cVls17 1. 18 Temv cVls18 1. 19 Temv cVls19 1. 20 Temv I cVls20 1. 21 Temv " cVls21 1. 22 Temv cVls22 1. 23 Temv cVls23 1. 24 Temv cVls24 1. PAGE NO. 283 of 303 Coeff. Upd. Int. ao Min Max Mult. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. 0. -le+03 le+032 0. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O Exu;l!entt-Evety ptv}ect. f.vt?ty Attachment 9 PAGE NO. 284 of 303 25 Temv cVls25 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1. 34 Temv cVls34 1. 35 Temv cVls35 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 1. 41 Temv cVls41 1. 42 Temv cVls42 1. \ 43 Temv cVls43 1. 44 Temv cVis44 1. 45 Temv cVls45 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVls49 1. 50 Temv cVls50 1. 51 Temv cVls51 1. 52 Temv cVls52 1. 53 Temv cVls53 1. 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 1. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. 61 Temv cVls61 1. 62 Temv cVls62 1. 63 Temv ,: cVls63 1. 64 Temv cVls64 1. 65 Temv cVls65 1. 66 Temv cVls66 1. 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 cVls76 .J 1. Temv 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 80 Temv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 Temv cVls83 1. 84 Temv cVls84 1. [,, CALC. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O f.,"<felferta,,,,,,,£,d;ty ptt;}Cd. £vt;1y dt;t; Attachment 9 PAGE NO. 285 of 303 85 Temv cVls85 1. 86 Temv 'cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90
- Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv cVlslOO 1. 101 Temv cVlslOl 1. 102 Temv cVls102 1. 103 Temv cVlsl03 1. 104 Temv cVls104 1. 105 Temv cVlsl05 1. _/ 106 Temv cVls106 1. 107 Temv cVls107 1. 108 Temv cVls108 1. 109 Temv cVlsl09 1. 110 Temv cVls110 1. 111 Temv cVlslll 1. 112 Tetnv cVls112 1. 113 Temv cVls113 1. 114 Temv cVls114 1. 115 Temv cVlsll5 1. 116 Temv cVls116 1. 117 Temv cVls117 1. 118 Temv cVls118 1. 119 Temv cVls119 1. 120 Temv cVls120 1. 121 Temv cVls121 1. 122 Temv cVls122 1. 123 Temv cVls123 1. 124 Temv cVlsl24 1. 125 Temv cVlsl25 1. 126 Temv cVls126'
- 1. 127 Temv cVls127 1. 128 Temv cVls128 1. 129 Temv cVls129 1. 130 Temv cVls130 1. 131 Teinv cVls131 1. 132 Temv cVls132 1. 133 Temv cVls133 1. 134 Temv cVls134 1. 135 Temv cVlsl35 1. 136 Temv cVls136 1. 137 Temv cVls137 1. 138 Temv cVls138 1. 139 Temv cVls139 1. 140 Temv cVls140 1. 141 Temv cVls141 1. 142 Temv cVls142 1. 143 Temv cVls143 1. 144 Temv cVls144 1.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 f.W?ryday. Attachment 9 PAGE NO. 286 of 303 '.) 145 Temv cVls145 1. 146 Temv cVls146 1. 147 Temv cVls147 1. 148 Temv cVls148 1. 149 Temv cVls149 1. 150 Temv cVls150 1. 151 Temv cVls151 1. '-152 Temv cVls152 1. 153 Temv cVlsl53 1. 154 Temv cVlsl54 1. 155 Temv cVls155 1. 156 Temv cVls156 1. 157 .Temv cVls157 1. 158 Temv cVlsl58 1. 159 Temv cVlsl59 1. 160 Temv cVlsl60 1. 161 Temv cVls161 1. 162 Temv cVls162 1. 163 Temv cVls163 1. 164 Temv cVls164 1. 165 Temv
- 1. 166 Temv cVls166 1. 167 Temv cVls167 1. 168 Temv cVls168 1. 169 Temv cVls169 1. 170 Temv cVls170 1. 171 Temv cVls171 1. 172 Temv cVls172 1. 173 Temv cVls173 1. 174 Temv cVls174 1. 175 Temv cVls175 1. 176 Temv cVls176 1. 177 Temv cVls177 1. 178 Temv cVls178 1. 179 Temv cVls179 1. 180 Temv cVls180 1. 181 Temv cVls181 1. 182 Temv cVls182 1. 183 Temv cVls183 1-: 184 Temv cVls185 1. 185 Temv cVls184 1. 186 Temv cVls186 1. *187 Temv cVls187 1. 188 Temv cVls188 1. 189 Temv cVls189 1. 190 Temv cVls190 1. 191 Temv cVls191 1. 192 Temv cVls192 1. 193 Temv cVls193 1. 194 Temv cVls194 1. 195 Temv cVlsl95 1. 196 Temv cVls196 1. 197 Temv cVls197 1. 198 Temv cVls198 1. 199 Temv cVls199 1. 200 Temv cVls200 1. 201 Temv cVls201 1. 202 Temv cVls202 1. 203 Temv cVls203 1. 204 Temv cVls204 1.
ENERCON Exrclfen-ct-Evc:ypfo}e<.L f.vetytftJ-t 205 Temv 206 Temv 207 Temv 208 Temv 209 Temv 210 Temv 211 Temv 212 Temv 213 Temv 214 Temv 215 Temv 216 Temv 217 Temv 218 Temv 219 Temv 220 Temv 221 Temv 222 Temv 223 Temv 224 Temv 225 Temv 226 Temv 227 Temv 228 Temv 229 Temv 230 Temv 231 Temv 232 Temv 233 Temv 234 Temv 235 Temv 236 Temv 237 Temv 238 TemvJ 239 Temv 240 Temv 241 Temv 242 Temv 243 Temv 244 Temv 245 Temv 246 Temv 247 Temv 248 Temv 249 Temv 250 Temv 251 Temv 252 Temv 253 Temv 254 Temv 255 Temv 256 Temv Function Components Control Variable 2C Low MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn} CALCULATION CONTROL SHEET-Attachment 9 cVls205 1. cVls206 1. cVls207 1. cVls208 1. cVls209 1. cVls210 1. cVls211 1. cVls212 1. cVls213 1. cVls214 1. cVls215 1. cVls216 1. cVls217 1. cVls218 1. cVls219 1. cVls220 1. cVls221 1. cVls222 1. cVls223 1. cVls224 1. cVls225 1. cVls226 1. cVls227 1. cVls228 1. cVls229 1. cVls230 1. cVls231 1. cVls232 1. cVls233 1. cVls234 1. cVls235 1. cVls236 1. cVls237 1. cVls238 1. cVls239 1. cVls240 1. cVls241 1. cVls242 1. cVls243 1. cVls244 1. cVls245 1. cVls246 1. cVls248 1. cVls247 1. cVls249 1. cVls250 1. cVls251 1. cVls252 1. cVls253 1. cVls254 1. cVls255 1. cVls256 1. Gothic_s Variable Coef. a # Name location CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 287 of 303 ', ' CALC. NO. ENTR-078-CALC-004 IENERCON CALCULATION CONTROL SHEET-REV.O pto]et.l f.vtr; tia;: Attachment 9 PAGE NO. 288 of 303 1 Temv cVlsl 1. 2 Temv cVls2 1. 3 Tefuv cVls3 1. 4 Temv cVls4 1. 5 Temv cVls5 1. 6 Temv cVls6 1. 7 Temv cVls7 1. 8 Temv cVls8 1. 9 Temv cVls9 1. 10 Temv cVlslO 1. 11 Temv cVlsll 1. 12 Temv cVlsl2 1. 13 Temv cVls13 1. 14 Temv cVlsl4 1. 15 Temv cVlsl5 1. 16 Temv cVlsl6 1. 17 Temv cVlsl7 1. 18 Temv cVlsl8 1. 19 Temv cVlsl9 1. 20 Temv cVls20 1. 21 Temv cVls21 1. 22 Temv cVls22 1. ) 23 Temv cVls23 1. 24 Temv cVls24 1. 25 Temv cVls25 1. 26 Temv cVls26 1. 27 Temv cVls27 1. 28 Temv cVls28 1. 29 Temv cVls29 1. 30 Temv cVls30 1. 31 Temv cVls31 1. 32 Temv cVls32 1. 33 Temv cVls33 1. 34 Temv cVls34 1. 35 Temv cVls35 1. 36 Temv cVls36 1. 37 Temv cVls37 1. 38 Temv cVls38 1. 39 Temv cVls39 1. 40 Temv cVls40 1. 41 Temv cVls41 1. 42 Temv cVls42 1. 43 Temv cVls43 1. 44 Temv cVls44 1. 45 Temv cVls45 1. 46 Temv cVls46 1. 47 Temv cVls47 1. 48 Temv cVls48 1. 49 Temv cVls49 1. 50 Temv cVls50 1. 51 Temv cVls51 1. 52 Temv cVls52 1. 53 Temv cVls53 1. ' 54 Temv cVls54 1. 55 Temv cVls55 1. 56 Temv cVls56 1. 57 Temv cVls57 1. 58 Temv cVls58 1. 59 Temv cVls59 1. 60 Temv cVls60 1. CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptofe<;t. Ewty dµy. Attachment 9 PAGE NO. 289 of 303 61 Temv cVls61 1. 62 Temv cVls62 1. 63 Temv cVls63 1. 64 Temv cVls64 1. 65 Temv cVls65 1. 66 Temv cVls66 1. 67 Temv cVls67 1. 68 Temv cVls68 1. 69 Temv cVls69 1. 70 Temv cVls70 1. 71 Temv cVls71 1. 72 Temv cVls72 1. 73 Temv cVls73 1. 74 Temv cVls74 1. 75 Temv cVls75 1. 76 Temv cVls76 1. 77 Temv cVls77 1. 78 Temv cVls78 1. 79 Temv cVls79 1. 80 Temv cVls80 1. 81 Temv cVls81 1. 82 Temv cVls82 1. 83 Temv cVls83 1. 84 Temv cVls84 1. 85 Temv cVls85 1. 86 Temv cVls86 1. 87 Temv cVls87 1. 88 Temv cVls88 1. 89 Temv cVls89 1. 90 Temv cVls90 1. 91 Temv cVls91 1. 92 Temv cVls92 1. 93 Temv cVls93 1. 94 Temv cVls94 1. 95 Temv cVls95 1. 96 Temv cVls96 1. 97 Temv 'cVls97 1. 98 Temv cVls98 1. 99 Temv cVls99 1. 100 Temv cVlslOO 1. 101 Temv cVlslOl 1. 102 Temv cVls102 1. 103 1Temv cVls103 1. 104 Temv cVls104 1. 105 Temv cVls105 1. 106 Temv cVls106 1. 107 Temv cVls107 1. 108 Temv cVls108 1. 109 Temv cVls109 1. 110 Temv cVlsllO 1. 111 Temv cVlslll 1. 112 Temv cV:Ls112
- 1. 113 Temv cVls113 1. 114 Temv cVls114 1. 115 Temv cVls115 1. 116 Temv cVls116 1. ( 117 Temv cVls117 1. 118 Temv cVls118 1. 119 Temv cVls119 1. 120 Temv cVls120 1.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 f.,'<!tJ/if!fl-t.f!.--i¥f!lJ/}ft)j('J<t f.vtJ;ydaJ Attachment 9 PAGE NO. 290 of 303 121 Temv cVls121 1. 122 Temv cVls122 1. 123 Temv cVls123 1. 124 Temv cVls124 1. 125 Temv cVls125 1. 126 Temv cVls126 1. 127 Temv cVls127 1. 128 Temv cVls128 1. Function Components Control Variable 3C Upper MCR Avg sum Y=G*(aO+a1Xl+a2X2+ ... +anXn) Gothic s Variable Coef. # Name location a 1 Temv cVls129 1. 2 Temv cVls130 1. 3 Temv cVls131 1. 4 Temv cVls132 1. 5 Temv cVls133 1. 6 Temv cVls134 1. 7 Temv cVls135 1. 8 Temv cVlsl36 1. 9 Temv cVls138 1. /' 10 Temv cVls137 1. 11 Temv cVls139 1. 12 Temv cVls141 1. 13 Temv cVls140 1. 14 Temv cVls143 1. 15 Temv cVls142 1. 16 Temv cVls144 1. 17 Temv cVls145 1. 18 Temv cVls146 1. 19 Temv cVls147 1. 20 Temv cVls148 1. 21 Temv cVls149 1. 22 Temv cVls150 1. 23 Temv cVls151 1. 24 Temv cVlsl52 1. 25 Temv cVls153 1. 26 Temv c'vls154
- 1. 27 Temv cVls155 1. 28 Temv cVls156 1. 29 Temv cVls157 1. 30 Temv cVlsl58 1. 31 Temv cVls159 1,. 32 Temv cVls160 1. 33 Temv _ cVls161 1. 34 Temv cVls162 1. 35 Temv cVls163 1. 36 Temv cVls164 1. 37 Temv cVls165 1. 38 Temv cVls166 1. 39 Temv cVls167 1. 40 Temv cVls168 1. 41 Temv cVls169 1. 42 Temv cVls170 1. 43 Temv ZcVlsl 71 1. 44 Temv' cVls172 1.
CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O F.xtt:Nl!fJ(.'ii!,--Evety P!OJia,. F.V!?f';/ tJay. Attachment 9 PAGE NO. 291 of 303 45 Temv cVlsl73 1. 46 Temv cVlsl74 1. 47 Temv cVlsl75 1. 48 Temv cVlsl76 1. 49 Temv cVlsl77 1. 50 Temv cVlsl78 1. 51 Temv cVlsl79 1. 52 Temv cVlsl80.
- 1. 53 Temv cVlsl81 1. 54 Temv cVlsl82 1. 55 Temv cVlsl83 1. 56 Temv cVlsl84 1. 57 Temv cVlsl85 1. 58 Temv cVlsl86 1. 59 Temv cVlsl87 1. 60 Temv cVlsl88 1. 61 Temv cVlsl89 1. 6,2 Temv cVlsl90 1. 63 Temv cVlsl91 1. 64 Temv cVlsl92 1. 65 Temv cVls193 ,i. 66 Temv cVlsl94 1. 67 Temv cVlsl95 1. 68 Temv cVlsl96 1. 69 Temv cVlsl99 1. 70 Temv cVlsl97 1. 71 Temv cVlsl.98
- 1. 72 Temv cVls200 1. 73 Temv cVls201 1. 74 Temv cVls202 1. 75 Temv cVls203 1. 76 Temv cVls204 1. 77 Temv cVls205 1. 78 Temv cVls206 1. 79 Temv cVls207 1. 80 Temv cVls208 1. 81 Temv cVls209 1. 82 Temv cVls210 1. 83 Temv cVls211 1. 84 Temv cVls212 1. 85 Temv cVls213 ' 1. 86 Temv cVls214 1. 87 Temv cVls215 1. 88 Temv cVls216 1. 89 Temv cVls217 1. 90 Temv cVls218 1. 91 Temv cVls219 1. . 92 Temv cVls220 1. 93 Temv cVls221 1. 94 Temv cVls222 1. 95 Temv cVls223 1. 96 Temv cVls224 1. 97 Temv cVls225 i.. 98 Temv cVls226 1. 99 Temv cVls227 1. 100 Temv cVls228 1. 101 Temv cVls229 1. 102 Temv cVls230 1. 103 Temv cVls231 1. 104 Temv cVls233 1.
,-' ENERCON 105' Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv .113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Te:mv 128 Temv Function Components Control Variable 4C MCR Avg_l sum Y=G*(aO+alXl+a2X2+ ... +anXn) CALCULATION CONTROL Attachment 9 cVls232 1. cVls236 1. cVls234 1. cVls235 1. cVls237 1. cVls239 1. cVls238 1. cVls240 1. cVls241 1. cVls242 1. cVls243 1. cVls244 1. cVls245 1. cVls246 1. cVls247 1. cVls248 1. cVls249 1. cVls250 1. cVls252 1. cVls251 1. cVls253 1. cVls255 1. cVls254 1. cVls256 1. Gothic s Variable Coef. a # 1 2 Name Cvval(O) Cvval(O) Function Components Control Variable SC Upper MCR Avg sum Y=G*(aO+alXl+a2X2+ ... +anXn) location cv3C cv2C Gothic s Variable
- Name location 1 Temv cVls257 2 Temv cVls258 3 Temv cVls259 4 Temv cVls260 5 Temv cVls261 6 Temv cVls262 7 Temv cVls263 8 Temv cVls264 9 Temv cVls265 10 Temv cVls266 11 Temv cVls267 12 Temv cVls268 13 Temv cVls269 14 Temv cVls270 15 Temv cVls271 16 Temv cVls272 17 Temv cVls273 18 Temv cVls274 1. 0.867 Coef. a 1. 1. 1. 1. 1. 1. 1. 1. 1: 1. 1. 1. 1. 1. 1. 1. 1.
- 1. CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 292 of 303 CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV.O ptoj(;o.
F.vt:ty tfa; Attachment 9 PAGE NO. 293 of 303 19 Temv cVls275 1. 20 Temv cVls276 1. 21 Temv qVls277 1. 22 Temv cVls278 1. 23 Temv cVls279 1. 24 Temv cVls280 1. 25 Temv cVls281 1. 26 Temv cVls282 1. 27 Temv cVls283 1. 28 Temv cVls284 1. 29 Temv cVls285 1. 30 Temv cVls286 1. 31 Temv cVls287 1. 32 Temv cVls288 1. 33 Temv cVls289 1. 34 Temv cVls290 1. 35 Temv cVls291 1. 36 Temv cVls292 1. 37 Temv cVls293 1. 38 Temv cVls294 1. 39 Temv cVls295 1. 40 Temv cVls296 1. 41 Temv cVls297 1. 42 Temv cVls298 1. 43 Temv cVls299 1. 44 Temv cVls300 1. 45 Temv cVls301 1. 46 Temv cVls302 1. 47 Temv cVls303 1. 48 Temv cVls304 1. 49 Temv cVls305 1. 50 Temv cVls306 1. 51 Temv cVls307 1. 52 Temv cVls308 1. 53 Temv cVls309 1. 54 Temv cVls310 1. 55 Temv cVls311 1. 56 Temv cVls312 1. 57 Temv cVls313 1. 58 Temv cVls314 1. 59 Temv cVls315 1. 60 Temv cVls316 1. 61 Temv cVls317 1. 62 Temv cVls318 1. 63 Temv cVls319 1. 64 Temv cVls320 1. 65 Temv cVls321 1. 66 Temv cVls322 1. 67 Temv cVls323 1. 68 Temv cVls324 1. 69 Temv cVls325 1. 70 Temv cVls326 1. 71 Temv cVls327 1. 72 Temv cVls328 1. 73 Temv cVls329 1. 74 Temv cVls330.
- 1. 75 Temv cVls331 1. 76 Temv cVls332 1. 77 Temv cVls333 1. 78 Temv cVls334 1.
ENERCON 79 Temv 80 Temv 81 Temv 82 Temv 83 Temv 84 Temv 85 Temv 86 Temv 87 Temv 88 Temv 89 Temv 90 Temv 91 Temv 92 Temv 93 Temv 94 Temv 95 Temv 96 Temv 97 Temv 98 Temv 99 Temv 100 Temv 101 Temv 102 Temv 103 Temv 104 Temv 105 Temv 106 Temv 107 Temv 108 Temv 109 Temv 110 Temv 111 Temv 112 Temv 113 Temv 114 Temv 115 Temv 116 Temv 117 Temv 118 Temv 119 Temv 120 Temv 121 Temv 122 Temv 123 Temv 124 Temv 125 Temv 126 Temv 127 Temv 128 Temv Function Components Control Variable 6C Total MCR Avg sum Y=G*(aO+alXl+a2X2+ ... +anXn) Gothic s # Name 1-Cvval(O) 2 Cvval(O) CALCULATION CONTROL Attachment 9 cVls335 1. cVls336 1. cVls337 1. cVls338 1. cVls339 1. cVls340 1. cVls341 1. cVls342 1. cVls343 1. cVls344 1. cVls345 1. cVls346 1. cVls347 1. cVls348 1. cVls349 1. cVls350 1. cVls351 1. cVls352 1. cVls353 1. cVls354 1. cVls355 1. cVls356 1. cVls357 1. cVls358 1. cVls359 1. cVls360 1. cVls361 1. cVls362 1. cVls363 1. cVls364 1. cVls365 1. cVls366 1. cVls367 1. cVls368 1. cVls369 1. cVls370 1. cVls371 1. cVls372 1. cVls373 1. cVls374 1. cVls375 1. cVls376 1. cVls377 1. cVls378 1. cVls379 1. cVls380 1. cVls381 1. cVls382 1. cVls383 1. cVls384 1. Variable Coef. location a cv5C 1. ) cv4C 4.65949 CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 294 of 303 '-. ENERCON Function Components Control Variable 7C Ovrall Max max CALCULATION CONTROL Attachment 9 ... ,anXn) Gothic s Variable Coef. # Name location a 1 Cvval(O) cvlC 1. 2 Temv cVls257 1. 3 Temv cVls258 1. 4 Temv cVls259 1. 5 Temv cVls260 1. 6 Temv cVls261 1. 7 Temv cVls262 1. 8 Temv cVls263 1. 9 Temv cVls264 1. 10 Temv cVls265 1. 11 Temv cVls266 1. 12 Temv cVls267 1. 13 Temv cVls268 1. 14 Temv cVls269 1. 15 Temv cVls270 1. 16 Temv cVls271 1. 17 Temv cVls272 1. 18 Temv cVls273 1. 19 Temv cVls274 1. 20 Temv cVls275 1. 21 Temv cVls276 1. 22 Temv cVls277 1. 23 Temv cVls278 1. 24 Temv cVls279 1. 25 Temv cVls280 1. 26 Temv cVls281 1. 27 Temv cVls282 1. 28 Temv cVls283 1. 29 Temv cVls284 1. 30 Temv cVls285 1. 31 Temv cVls286 1. 32 Temv cVls287 1. 33 Temv cVls288 1. 34 Temv cVls289 1. 35 Temv cVls290 1. 36 Temv cVls291 1. 37 Temv cVls292 1. 38 Temv cVls293 1. 39 Temv cVls294 1. 40 Temv cVls295 1. 41 Temv cVls296 1. 42 Temv cVls297 1. 43 Temv cVls298 1. 44 Temv cVls299 1. 45 Temv cVls300 1. 46 Temv cVls301 1. 47 Temv cVls302 1. 48 Temv cVls303 1. 49 Temv cVls304 1. 50 Temv cVls305 1. 51 Temv cVls306 1. 52 Temv cVls307 1. \ CALC. NO. ENTR-078-CALC-004 REV.O PAGE NO. 295 of 303 ""- CALC. NO. ENTR-078-CALC-004 ENERCON CALCULATION CONTROL SHEET-REV. 0 Attachment 9 Cxr pto}c<l f.wq tJr;y. PAGE NO. 296 of 303 53 Temv cVls308 1. 54 Temv cVls309 1. 55 Temv cVls310 1. 56 Temv cVls311 1. 57 Temv cVls312 1. 58 Temv cVls313 1. 59 Temv cVls314 1. 60 Temv cVls315 1. 61 Temv cVls316 1. 62 Temv cVls317 1. 63 Temv cVls318 1. 64 Temv cVls319 1. 65 Temv cVls320 1. 66 Temv cVls321 1. 67 Temv cVls322 1. 68 Temv cVls323 1. 69 Temv cVls324 1. 70 Temv cVls325 1. 71 Temv cVls326 1. 72 Temv cVls327 1. 73 Temv cVls328 1. 74 Temv cVls329 1. 75 Temv cVls330 1. 76 Temv cVls331 1. 77 Temv cVls332 1. *79 Temv cVls333 1. 79 Temv cVls334 1. 80 Temv cVls335 1. 81 Temv cVls336 1. 82 Temv cVls337 1. 83 Temv cVls338 1. 84 Temv cVls339 1. 85 Temv cVls340 1. 86 Temv cVls341 1. 87 Temv cVls342 1. 88 Temv cVls343 1. 89 Temv
- 1. 90 Temv cVls345 1. 91 Temv cVls346 1. 92 Temv cVls347 1. 93 Temv cVls348 1. 94 Temv cVls349 1. 95 Temv cVls350 1. 96 Temv cVls351 1. 97 Temv cVls352 1. 98 Temv cVls353 1. 99 Temv cVls354 1. 100 Temv cVls355 1. 101 Temv cVls356 1. 102 Temv cVls357 1. 103 Temv cVls358 1. 104 Temv cVls359 1. 105 Temv cVls360 1. 106 Temv cVls361 1. 107 Temv cVls362 1. 108 Temv cVls363 1. 109 Temv cVls364 1. 11*0 Temv cVls365 1. 111 Temv cVls366 1. 112 Temv cVls367 1.
ENERCON CALCULATION CONTROL Attachment 9 113 Temv cVls368 1. 114 Temv cVls369 1. 115 Temv cVls370 1. 116 Temv cVls371 1. 117 Temv cVls372 1. 118 Temv cVls373 1. 119 Temv cVls374 1. 120 Temv cVls375 1. 121 Temv cVls376 1. 122 Temv cVls377 1. 123 Temv cVls378 1. 124 Temv cVls379 1. 125 Temv cVls380 1. 126 Temv cVls381 1. 127 Temv cVls382 1. 128 Temv cVls383 1. 129 Temv cVls384 1. Time Domain Data Time DT I)T DT End Print Graph Gas Error Dom Min Max Ratio Time Int Int Relax T 1 0.001 1. le+006 0.01 0.01 1. DEFAULT 2 0.001 10. 1. 7200. 500. 10. DEFAULT 3 0.001 10. 1. 86400. 500. 100. DEFAULT Solution Options Time Solution Imp Conv Dom Method Limit Imp Iter Pres Sol Pres Conv Pres 1 SEMI-IMP
- 0. 2 SEMI-IMP
- 0. 3 SEMI-IMP
- 0. Run Options Option Start Time Restart Time Step # Restart Time Control Revaporization Fraction Fog Model Limit 1 1 1 Maximum Mist Density (lbm/ft3)
Drop Diam. From Mist (in) Minimum HT Coeff. (B/h-ft2-F) Reference Pressure (psia) Maximum Pressdre (psia) Method Limit DIRECT 0. DIRECT 0. DIRECT 0. Setting 0.0 0 NEW DEFAULT OFF DEFAULT DEFAULT 0.0 IGNORE DEFAULT Forced Ent. Drop Diam. (in) Vapor Phase Head Correction Kinetic Energy DEFAULT Vapor Phase Liquid Phase Drop Phase Force Equilibrium Drop-Liq. Conversion QA Logging Debug Output Level Restart Dump on CPU Interval (sec) Version 6.1 Formulations Graphs Graph # Title Mon 1 2 INCLUDE IGNORE INCLUDE INCLUDE INCLUDE IGNORE INCLUDE OFF 0 3600. OFF Curve Number 3 Limit 1 1 1 4 Dump Int 0. 0. 0. Iter 5 I .J CALC. NO. ENTR-078-CALC-004 REV. 0 PAGE NO. 297 of 303 Ph Chng L Flow T Scale Shutoff DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT DEFAULT Differ Burn Scheme Sharp FOUP 0. FOUP 0. FOUP 0. ENERCON 0 M&E Imbalance 1 Peak and Averag 2 3 4 5 6 7 Envelope Sets Set No. Description Data Files File # Name Type 1 Results.txt TIME CALC. NO. ENTR-078-CALC-004 CALCULATION CONTROL Attachment 9 REV. 0 PAGE NO. 298 of 303 EM EE cvlC cv6C cv7C RH1s71 RH1s14 RH1s30 RH1sl42 TA1s17 TA1s2 TA1s18 TA1s33 cvSC cv2C cv3C cv4C cv6C FVl FV23 FV24 FV18 FV4 FVl FV22 FV14 FV18 FV19 FV20 FV22 Set No. Type Items Inter-Output Detail pol ate Files Level YES SINGLE FULL f HITACHI TITLE SHEET ENTR-078-CALC-004 Rev. 0 Attachment 10 Page 299 of 303 DOCUMENT TITLE: RIVER BEND STATION NSSS CONTROL ROOM PANEL HEAT LOAD ESTIMATES TYPE: REPORT MPL NO: H13-Pxxx / I -DENOTES CHANGE CURRENT REVISION REV. PREPARED BY ECO# RELEASE DATE 0 CF CANHAM EC0-0020354 11/12/2015 GEH PROPRIETARY INFORMATION CLASS II (INTERNAL) THIS DOCUMENT CONTAINS INFORMATION THAT IS THE PROPERTY OF GE-HITACHI NUCLEAR ENERGY AMERICAS LLC (GEH). IT IS FURNISHED TO YOU IN CONFIDENCE AND TRUST. INFORMATION CONTAINED HEREIN SHALL NOT BE REPRODUCEQ, DISCLOSED TO OTHERS OR USED FOR ANY PURPOSES OTHER THAN THOSE DESIGNATED BY GEH. HOWEVER, THIS DOES
- NOT ALTER IN ANY WAY THE RIGHTS AND OBLIGATIONS DEFINED BY APPLICABLE CONTRACTS.
. . ORIGINATOR CF CANHAM COPYRIGHT 2015 GE-HITACHI NUCLEAR ENERGY AMERICAS LLC ALL RIGHTS RESERVED ORIGINAL DOCUMENT ISSUE ' DATE APPR9VAL DATE* 11/12/2015 PA NICHOLS 11/12/2015 AUTHENTICATION DATE 11/12/2015 HI HI ENTR-078-CALC-004 Rev.O Attachment 10 Page 300 of 303 River Bend Station personnel have requested GE Hitachi Nuclear Energy (GEH) to provide estimates of the heat loads (heat dissipation) generated by the individual NSSS control room panels supplied by GEH as part of their original supply and mounted on the Power Generation Control Center (PGCC) panel modules within the River Bend Station control room. These panels are the series including \ H13-P845. Balance of Plant panels (H13-P800 series, except for H13-P845) and computer panels (C91/C95-Pxxx) are not included as we have no information regarding heat loads (dissipation) of those individual panels. The control room panel locations are shown on GEH drawing 866E411. Engineering judgment was utilized to support this effort. Consequently, these estimates are neither bounding nor verified by measurements or calculations th01,Jgh they were peer checked for reasonableness. It must be noted and understood that the estimates provided below are derived from estimates provided to another BWR-6 and AE in the mid-1970s during the design and construction of that plant for their use in helping them determine the total heat load for their control room HVAC components. In addition, the GEH general heat load document that was applied and transmitted to the River Bend plant during plant design and construction, 22A1591 (A62-4190), originated from the GEH BWR-6 standard plant document, 22A2740B (A62-4190), for that size reactor plant. Sir:ice River Bend and the other plant are both BWR-6 designs, the designs of the actual control room . panels are very similar. The control room PGCC layout regarding panel location is very different for bcith plants. However, the layout difference does not impact the individual panel heat loads, only the distribution of those heat loads within the control room. In an attempt to determine similarity in design between both plants' NSSS (H13-P600 series plus H13-P845) panels, the panel assembly drawings for both plants were reviewed. This review was only a visual assessment to determine a qualitative level of similarity between the two designs regarding component layout, component types and quantities. Assembly parts lists were not reviewed and no detailed device comparisons were made. The purpose of the review was to assist in the determination that the heat load estimates generated for the other plant's control room could reasonably be applied to the River Bend control room for the same panel numbers. In some cases, the estimates applied to River Bend have been modified from those developed for the other plant. Any differences in the estimates are shown as an increase or decrease to the heat load estimate and as affected by either greater or fewer components installed in the River Bend panel assembly as compared to the other plant's panel assembly and are summarized in the Comments column of the table below. Some of the panel assembly drawings reviewed to determine similarity had unincorporated Engineering Change Notices attached to the revision. The changes were assumed to be trivial with regard to impact on heat loads. ECNs of this nature were normally issued to document some minor change to the HITACHI ENTR-078-CALC-004 Rev. 0 Attachment 1 O Page 301 of 303 assembly configuration at the time of completion of installation and Wpically would not have documented major changes in design. The heat loads for the other plant's NSSS panels listed below were prepared in response to a request to the GE Project Office from that plant's AE to clarify the control room heat loads being used by the that plant's AE as part of their sizing calculations input for control room envelope heating and cooling . These heat load estimates were derived by GEH using a process used at that time. The technical details of the process employed are unknown, but they are assumed to be have been deemed reasonably accurate and sufficiently justified at the time they were originally prepared by GEH. Table 1 -Heat Load Estimates PANEL NUMBER HEAT LOAD -WATTS HEAT LOAD -WATTS COMMENTS H13-PXXX (ESTIMATE) (ESTIMATE) Other BWR-6 RIVER BEND P600 400 200 Fewer recorders P601 1600 1600 P604 600 600 P607 Not Listed 200 P610 200 200 P612 800 400 About Yz GEMAC instrumentation and relays P613 400 400 P614 800 600 Less GEMAC instrumentation P618 600 500 About 28 fewer relays P619 200 200 P621 500 200 Relays only. Less than Yz the components as in 618/629,therefore reduced the estimate. P622 200 200 P623 200 200 Same as P'622 P625 500 500 P628 400 400 P629 600 500 About 28 fewer relays P630 Not Listed Not available Manufactured by Ronan Engineering P631 200 400 Same as P628 P632 800 800 HITACHI PANEL NUMBER HEAT LOAD -WATTS H13-PXXX (ESTIMATE) Other BWR-6 P634 1000 P637 800 P642 400 P651 1000 , P652 200 P653 800 I P654 Panel design added after estimate prepared P655 Panel design added after estimate prepared P680 800 P669-P672 1000 P691-P694 800 P845 600 HEAT LOAD -WATTS (ESTIMATE) RIVER BEND 1000 800 ' 400 400 400 350 400 400 800 1000 800 600 j ENTR-078-CALC-004 Rev. 0 Attachment 10 Page 302 of 303 COMMENTS. Measured input current to P651 @ 3 amps in our BWR-6 RC&IS Development System, thus at 120 VAC power is about 360 watts. Rounded up to 400. Same as P651 Measured input current to P653 @ 3 amps in our BWR-6 RC&IS Development System, thus at 120 VAC power is about 312 watts. Rounded up to 350. Similar to P642 Similar to P654 I 2009 ASHRAE Handbook -Fundamentals (IP) Attachment 11-Page 303 of 303 © 2009 ASH RAE, Inc. BATON ROUGE RYAN ARPT, LA, USA WMO#: 722317 Lat: 30.54N Long: 91.15W Elev: 75 StdP: 14.66 Time Zone: -6.00 (NAC) Period: 82-06 WBAN: 13970 Coldest Heating DB Humidification DP/MCDB and HR Coldest month WS/MCDB MCWS/PCWD 99.6% 99% 0.4% 1% to99.6% DB Month 99.6% 99% DP HR MCDB DP HR MCDB WS MCDB ws MCDB MCWS PCWD 27.6 31.1 13.5 11.0 35.0 18.9 14.2 39.4 21.5 62.3 19.6 59.9 5.0 0 Hottest Coolin DB/MCWB Eva oration WB/MCDB MCWS/PCWD 0.4% 1% 2% 0.4% 1% 2% to0.4% DB Month DB MCWB DB MCWB DB MCWB WB MCDB WB MCDB WB MCDB MCWS PCWD 7 17.0 94.2 77.5 92.8 77.2 91.3 76.8 80.3 89.0 79.6 88.1 78.8 87.1 7.3 260 Dehumidification DP/MCDB and HR Enthal Hours 0.4% 1% 2% 0.4% 2% Bto4& DP HR MCDB DP HR MCDB DP HR MCDB Enth MCDB Enth Enth MCDB 55/69 78.2 147.1 83.8 77.4 142.9 83.1 76.7 139.5 82.6 43.9 89.0 43.0 88.1 42.3 87.1 692 Extreme Annual WS Extreme Extreme Annual DB Max Mean Standard deviation n=5 ears ears ears n=50 ears 1% 2.5% 5% WB Min Max Min Max Min Max Min Max Max Min Max 18.7 16.8 15.2 85.1 20.8 96.7 5.8 2.6 16.6 98.5 13.2 100.0 9.9 101.5 5.7 103.3 Annual I Jan I Feb I Mar I Aor I Mav I Jun I Jul I Auq I Seo I Oct I Nov I Dec Tavg 67.9 51.6 54.8 61.0 67.3 75.0 80.1 82.1 82.0 77.8 68.8 60.0 52.9 Sd 9.93 9.35 8.49 7.11 4.97 3.28 2.43 2.93 5.13 7.24 8.81 10.31 Temperatures, HDD50 274 102 51 15 1 0 0 0 0 0 1 17 87 Degree-Days HDD65 1610 429 302 177 59 2 0 0 0 2 46 199 394 and CDD50 6790 150 186 356 521 776 902 996 992 835 584 316 176 Degree-Hours CDD65 2653 13 17 53 129 313 452 531 527 386 165 48 19 CDH74 24400 37 65 317 975 2800 4356 5452 5338 3459 1263 276 62 CD HBO 9772 1 3 31 206 981 1883 2434 2442 1421 341 27 2 ,, , !EDx, .,;' '!: +:f&wtt&Uh '{> ,:; ' -ti!@&&,,,,,v ?';'%?+1' 0 4N#M1i%%*Hfr<<'>J1iij 0.4% DB 78.3 79.4 83.3 87.8 92.1 94.9 95.7 96.6 94.9 89.9 83.0, 78.9 Monthly Design MCWB 68.5 67.8 69.3 70.5 75.4 76.5 78.3 78.0 76.0 74.5 71.6 70.3 Dry Bulb 2% DB 74.1 75.9 80.2 84.6 89.8 92.8 93.6 94.3 92.0 86.5 80.2 75.6 and MCWB 65.9 65.6 67.6 70.7 74.5 76.3 78.0 78.0 75.8 72.8 70.2 68.4 Mean Coincident DB 71.0 72.9 77.8 82.4 87.8 91.1 92.1 92.7 90.1 83.9 77.3 72.8 Wet Bulb 5% 64.9 64.9 66.2 69.8 73.7 76.2 77.8 77.7 75.4 71.6 68.5 67.1 MCWB Temperatures DB 67.6 69.9 74.9 79.9 85.7 89.3 90.5 90.9 88.0 81.2 74.5 69.4 10% 62.4 62.7 65.2 68.3 72.7 76.0 77.5 77.3 74.9 70.3 67.8 64.5 MCWB Wfr'.l, *"'" -,aw w mw& ,_ ae*,,.,, } *,**$-f@NSM&+:t#A -iHWi 41<& 'iL:<::zxMJ 0.4% WB 70.7 71.4 73.1 75.7 79.4 80.4 81.9 81.3 80.2 77.5 74.8 72.8 Monthly Design MCDB 75.0 75.0 79.0 81.8 87.2 89.0 90.4 90.7 88.4 84.2 78.8 76.2 Wet Bulb 2% WB 68.7 69.1 71.2 73.7 77.8 79.4 80.4 80.2 78.8 76.1 73.0 70.5 and MCDB 72.5 73.4 76.2 79.8 85.4 87.7 89.0 89.2 86.3 82.2 76.8 74.1 Mean Coincident WB 66.3 67.0 69.6 72.5 76.4 78.4 79.6 79.4 77.9 74.8 71.2 68.4 Dry Bulb 5% 71.2 78.6 88.1 80.4 71.6 MCDB 69.9 74.5 83.5 86.5 88.0 85.5 75.4 Temperatures WB 63.3 64.6 67.8 71.1 75.1 77.7 78.7 78.6 77.0 73.1 69.3 65.4 10% 66.4 68.8 73.1 77.1 85.6 87.0 78.3 68.9 MCDB 81.8 86.9 84.3 73.6 ,,_., ,,,, ,* < '<'*' ,' '*""* ,, ,,y,, MDBR 19.5 19.3 20.4 20.8 19.4 17.8 17.0 17.7 18.9 21.2 21.1 19.8 Mean Daily 5%DB MCDBR 20.7 20.7 20.9 20.4 20.1 19.8 18.6 19.6 20.5 21.5 21.0 19.8 Temperature MCWBR 14.0 12.2 10.5 8.8 7.3 6.7 6.3 6.3 7.4 9.6 12.1 13.3 Range MCDBR 18.1 17.1 17.4 16.7 17.2 17.1 17.2 17.8 17.0 16.8 18.0 17.4 5%WB 14.1 12.2 10.9 8.9 7.1 7.0 6.8 6.5 7.0 8.8 12.7 13.7 MCWBR I v u,;*#r S'.Vi' X?t ., : .,;p;;m4wsw1;a2 w* H'f J,: *WAT':\ uo'* * ' @i 'i f\1iWrL:==:J -+> ?Jdk&h* &&#;!, *A .y;mw;1rn*+& taub 0.357 0.377 Clear Sky taud 2.347 2.243 Solar 275 279 lrradiance Ebn,noon Edh,noon 35 41 coon Cooling degree-days base n'F, 'F*day Lat CDHn Cooling degree-hours base n'F, 'F-hour Long DB Dry bulb temperature, °F MCDB DP Dew point temperature, °F MCDBR Ebn,noon } Clear sky beam normal and diffuse hori-MCDP Edh,noon ] zontal irradiances at solar rioon, Btu/h/112 MCWB Elev Elevation, ft MCWBR Enth Enthalpy, Btu/lb MCWS HDDn Heating degree-days base n'F, °F-day MDBR Hours B/4 & 55/69 Number of hours between B a.m. PCWD and 4 p.m with DB between 55 and 69 °F HR Humidity ratio, grains of moisture per lb of dry air 0.394 2.210 282 45 Latitude,* Longitude,
- 0.414 2.164 279 48 0.451 0.510 2.083 1.920 268 251 52 61 Mean coincident dry bulb temperature,
'F Mean coincident dry bulb temp. range, 'F Mean coincident dew point temperature, 'F Mean coincident wet bulb temperature, 'F Mean coincident wet bulb temp. range, 'F Mean coincident wind speed, mph Mean dry bulb temp. range, 'F Prevailing coincident wind direction,
- , O = North, 90 = East 0.542 0.525 0.457 0.379 0.357 0.347 1.845 1.888 2.096 2.374 2.411 2.433 243 246 259 276 274 273 66 62 49 36 32 31 Period Years used to calculate the design conditions Sd Standard deviation of daily average temperature,
'F StdP Standard pressure at station elevation, psi taub Clear sky optical depth for beam irradiance taud Clear sky optical depth for diffuse irradiance Tavg Average temperature, 'F Time Zone Hours ahead or behind UTC, and time zone code WB Wet bulb temperature, 'F WBAN Weather Bureau Army Navy number WMO# World Meteorological Organization number WS Wind speed, mph}}