ML17207A876: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
| Line 17: | Line 17: | ||
=Text= | =Text= | ||
{{#Wiki_filter: | {{#Wiki_filter:REACTORCOOLANTSYSTEMASYMMETRIC LOCALOADEVALUATION ST.LUCIEUNIT1-DOCKETNO.50-335)farch3,1980 SUI&fARY, InMay1975theNRCStaffwasinformedbyapressurized waterreactorlicenseethatloadsresulting fromahypothetical ruptureofthereactorcoolantcoldlegpipeintheimmediate vicinityofthereactorpressurevessel(RPV)mayhavebeenunderestimated. | ||
InNovember1975theStaffagreedthattheseloadsshouldbeconsidered andevaluated on,agenericbasis.IFloridaPower&Light'sresponsetotheStaff'sletterofNovember26,1975indicated thatthesupportsystemdesignincorporated thereactionforcesassociated withthelargearbitrary reactorcoolantpiperuptures, andthatfurther,ithadbeenshowntoacceptably accommodate theadditional loadsassociated withdifferential pxessures withinthereactorcavityas,showninAppendix3HoftheFinalSafetyAnalysisReport.TheStaffrequested thatfurtherinternalasymmetric load(IAL)evaluations beconducted. | |||
l. | FP&LsletterofFebruary9,1976documents theCompany's commitments toevaluatethereactorvesselsupportcapability forthelimit-ingbreak,acommitment whichisrestatedinSupplement 2totheUnit1SafetyEvaluation Report(SER),datedHarch1,1976.InSeptember 1977FP&Ltransmitted totheNRCareportassessing themarginindesignofthevesselsupportswhentheinternalasymmetric loadsareaddedtoallpreviousloads.Thereportconcluded thatthesupportswouldadequately withstand alltheloadings. | ||
2.0METHODOPANALYSIS2.1ReactorVesselSuortsThe. | However,sincetheanalysisdidnotaccountforgapsbetweenthevesselandthecorebarrel,andalsothevesselandthesupportstructures, ananalysiswasinitiated atthesametimetoaccountfortheseeffects.TheStaff'sletterofFebruary16,1978requested thattheevaulations conducted todatebeexpandedinscopetoincludeanassessment ofthereactorpressurevessel,fuelassemblies andinternals, controlelementassemblies, primarycoolantpipingandattachedECCSpiping,allprimarysystemsupports, andthebiological andsecondary shieldwallsforaspectrumofbreaksintheprimarysystem.FP&LsMarch1978responsestatedthatitsAugust1977reportwasfullyresponsive totheStaff'sSERrequirement, thattheSt.Lucie1designwasacceptable andthatthelargeinstantaneous pipebreaksbeingpostulated weieoverlyconservative. | ||
mR.SX(T)2.Bnmg(R.+R)t(v)=<5+2Rjm-(--s'v.2g)f-whereRiandRaretheinnerandouterpiperadii,t0isthepipethz.ckness, | TheresponsewentontosaythatFP&Lwouldpursueadditional analysesoncetheStaffapprovedtheanalytical methodsusedintheAugust1977report.Thisreplynotwith-standing, FP&Lbeingsympathetic withtheStaff'sdesiretoassessanypotential risktopublichealthandsafetyfrompostulated events,expandedtheanalysisreferredtoabove,toalsoassesstheadditional itemsidentified bytheStaff. | ||
2.1. | Thisreportdiscusses theresultsofthisexpandedanalysis. | ||
TheSTRUDL- | Thecombina-tionofthrust,external, andinternalasymmetric loadsresulting fromtheinletpipecircumferential breakpresentthelargestloadtothevesselsupportsamongthosethatwouldensuefromanyofthedesignbasisbreakslistedinAppendix3EIofthePSAR.Theresultsconfirmthatthevesselsupportswilladequately withstand alltheloadsresulting fromthepostulated circumferential breakinthevesselinletpipe.Thecoldlegguillotine breakinthecavityisthebeakwhichresultsinthelargestloadingofthevesselsupports. | ||
There-forethevesselsupportsareclearlyadequateforallotherbreaklocations. | |||
Thisreaffirms theconclusions oftheAugust1977report.Resultsalsoshowthatallsupportsfortheprimarysystemareadequateforallbreaklocations, thatthestressesintheintactprimarypipingaridattachedlinesaresufficiently lowtoensureperformance ofintendedfunc-tions,andthatthebiological shieldwallperformsitsintendedfunction. | |||
Thesecondary shieldwallisdesignedforpostulated primarysystemruptureswithinthesteamgenerator subcompartments. | |||
Theanalysesoftheadequacyoffuelassemblies internals, andcontrolelementassemblies isinprogress. | |||
ResultsareexpectedinJulyof1980.TheStaff,atameetinginJanuary1980,furtherrequested thatseismicloadsbeseparately identified. | |||
Allresultspresented herein,aswellastheAugust1977xeport,includetheSRSScombination ofLOCAandseismicloads,consistent withtherequirement ofHUREG-0484. | |||
Porthosecombinations designseismicloadshavebeenusedandareherebyattachedforusebytheStaff.Inallcases,designseismicloadsareconsiderably higherthancalculated peakseismicloads.Qualitatively, thesmalldisplacements observedforthevesselandcorebarrelfortheworstbreakanalyzed, stronglysuggeststhattheanalysesnowinprogressofthefuel/internals andCED>fswillindicateacceptable results.Itmustalsobenotedthatsincethesubmittal oftheAugust1977reporttotheStaff,additional workhasbeenreported, tosupportPP&Lscontention thatthetypesofinstantaneous pipebreaksbeingpostulated bytheStaffareexcessively conservative. | |||
l.0INTRODUCTION Duringapostulated lossofcoolantaccidentintheformofacircumferential piperuptureattheinletnozzleofthereactorpressurevessel,adecompression ofthereactorpressurevesseloccursoverashortperiodoftime.Decompression wavesoriginated. | |||
atthepostulated breaktravelaroundtheinletplenumandpropa-gatedownwardalongthedowncomer annulus.Thefinitetimerequiredbythedecompression disturbances totravelaboutthevesselcausesatransient pxessuredifferential fieldtobecreatedacrossthecoresupportbarrel(CSB)andthevesselinnersurface.Thisfieldimposesatransient asymmetric loadingonthecore-support-barrel aswellasthevesselitself.Sincethepostulated pipebreakislocatedwithinthebiological shieldwall,theblowdownfluidflash-ingintothereactorcavityalsocausesatransient pressurization actingonthevessel.Thisexternalpressurization isalsoasymmetric. | |||
Theinternalasymmetric loading(IAL)andtheexternalasymmetric loadingactinthesamedirection forbreaksoccurring inthecoldlegpiping.Forbreaksinthehotlegs,theinternalasymmetric loadis.virtually absentinthehorizontal direction, hencethetwoloadsareadditiveintheverticaldirection only.Theseloadingsaretransmitted tothereactorvesselsupportsystem.Theresultant reactionforcesatthesupportinterfaces mustbeconsidered intheevaluation oftheadequacyofthesuppoxtsystemtogetherwiththethrustloadresulting fromthebreak,otheroperating loads,andpostulated seismicloads.Theseismicloadsandnormaloperating loads,aswellastheEALhavebeenpreviously analyzedinAppendix3HoftheFinalSafetyAnalysisReport.BreaksoutsidecavitycanresultinIALimposedonthereactorpressurevesselandinternals, andinEALonthe-reactorcoolantpumpandsteamgenerators. | |||
Forthebreaksoutsidethecavity,theadequacyoftheprimarysystemsupportsisassessedforfullbreaksatappropriate prima~systemlocations. | |||
Thecavitybreaksaredetermining breaksfortheassess-.mentoftheadequacyofpipingattachedtotheprimarysystempiping.Thecircumferential piperuptureattheinletnozzleofthereactorpressurevesselisdetermined tobethedesignbasisbreakfortheevaluation ofthevesselsupportadequacy. | |||
Abreakattheoutletnozzlewouldnotproduceahorizontal asymmetric pressureloadingtothevessel.Consistent withtheFinalSafetyAnalysisReport,a4.0sq.ft.coldlegguillotine breakattheinletnozzleischosenfortheanalysesofthevesselsupportadequacy. | |||
2.0METHODOPANALYSIS2.1ReactorVesselSuortsThe.adequacyofthereactorvesselsupportsisevaluated bydetermining theloadsactingonthepximarysystemwhichresultfromapostulated breakattheinletcoldlegnozzle;theresponseoftheprimarysystemtotheapplication oftheseloads;andthereactionforcesgenerated bythis=response atthereactorvesselsupports. | |||
Theloadsactingontheprimarysystemconsistofnormalplusseismicloads,thethrustload,externalasymmetric loads,andinternalasymmetric loads.Thelatterthreearecombinedintruetimehistoryfashion,addedtothenormalloadsreactions, thenthexesul-tantreactionloadsatthesupportsarecombinedwithdesignreactionloadsresulting fromthepostulated seismic(SSE)eventsbySRSStechniques, toobtaintheoverallreactionloadateachofthesupports. | |||
Designseismicloadsareprovidedforeachprimarysystemsupportinthethreeorthogonal direc-.tionsinTable1.Itshouldbeemphasized thatcomputedpeakseismicloadsareingeneralsubstantially lessthanthedesignseismicloads;thusproviding anelementofconservatism inthisanalysis. | |||
Table2givesasamplecomparison ofcalculated anddesignseismicloadsatrepresentative locations. | |||
Thefollowing subsections describethemethodology employedtoevaluateeachofthethrust,externalasymmetric andinternalasymmetric loads.Inherentintheeyaulation oftheseloadsisthedetemination ofthetime.requiredtoopenupthebreaktotheareabeinganalyzed. | |||
2.1.1BreakOpeningTimeandThrustLoadsTheSt.Lucieplantprimarycoolantpiping'in thevicinityofthevesselisrestrained fromunlimited motionfollowing completeseverance intheportionwithinthecavitybyrestraints intheprimaryshieldwallpenetrations andwireropesaroundthereactorcoolantpumps.Thisrestraining systemhasbeenprevious-lydescribed intheFSAR,Following anarbitrarily assumedinstantaneous severance ofthepipeatthenozzle,thetwoendsofthebrokenpipeseparateundertheactionofthethrustimposedbytheinstantaneous tensionreleasefollowedbytheblowdownoftheescap-ingfluid,andformacombinedbreakareawhichvarieswithtimeasgiveninthefollowing equation: | |||
mR.SX(T)2.Bnmg(R.+R)t(v)=<5+2Rjm-(--s'v.2g)f-whereRiandRaretheinnerandouterpiperadii,t0isthepipethz.ckness, xistheaxialsepanation ofthetwoendswhichvarie'swithtime7,andg=cos2R.i(2)whereinyistheradialseparation ofthetwobrokenendswhichalsovarieswithtime.Thisequationissolvediniterative fashiontogetherwiththeequationforthecombinedtensionreleaseandblowdownforce,givenbelowV(T)2F(x)P(v)A+p(x)A(v)-dlpdlg(3)toyieldthecorrectforcingfunctionandbreakareaasafunctionoftime.Inequation(3),Pandpdarethepressureandfluiddensityinthe3xscharge leg,respectively, Aisthecross-sectional areaofthepipe,VthebloBdownvelocity, andA(7)isdefinedin(1)above.Themotionofthepipingsystemundertheapplication oftheforcegivenby(3),iscomputedbymodelling the'ischarge leg,thepump,andthecrossoverlegwithanel@to-plastic finiteelementcomputerprogram,PLAST-considering thesteamgenerator andthevesseltoremainmotionless. | |||
Resultsoftheanalysesindicatethat-atleast18msec.arenecessary forthepipeendstoseparatetheoverallareaof4.0sq.ft.refermdtointheFSAR.Thisanalysisalsoindicates thatasaresultofplasticrotationatthepump,itispossibleforthepipeendstoseparatefurther,toamaximumareaof7.78sq.ft.Thetimerequiredforthisareatobeachieved, however,wouldbeinexcessof25msec.ThelongertimerequiredforopeningthelargerbreakinsuresthattheIALresult-ingfromthetwobreaksarevirtually identical. | |||
Thelargerbreakdoeshoweverresultinalargerexternal horizontal asymmetric load(external verticalasym-metricloadsarevirtually identical forthetwobreaks).Sincethe4.0sq.ft.breakhadbeenone'fthedesignbasisbreaksintheFSAR,allanalysesusedthatbreakarea.However,consideration isgiventowhetherthesystemiscapableofaccommodat-ingthelargerbreak.Asdiscussed inthesubsequent section,thesystemisinfactadequateforthelargestofthebreaks.2.1.2ExternalAsymmetric PressureLoads(ReactorCavity)Thereactorsubcompartment analysisforSt.LucieUnit81hadbeenperfoimed forstipulated LOCAconditions including a4.0sq.ft.coldlegguillotine break,andtheresultshadbeensubmitted totheNRC.intheFSARandapprovedbytheNRCduringthecourseoftheoperating licensereview.Theresultsforthe4.0sq.ft.coldlegguillotine break,asreportedinReference 2,havebeendirectlyusedin'thepresentstudy.Thisresults.inconservatism oftheanalysissincethecavityresponsehadbeen,predicated onabreakopeningtimeof10msec,whereas18msec.isneededtoachievethissizebreak.Thepeakexternalasymmetric forcesacrossthereactorvessel,thatwouldresultfromthelarger7.78sq..ft..break,wouldbeapproximately 40percentlarger.Thisispredicated onaratioof1.39betweenpeakandaverageenergyflowtothecavityresulting froma7.78sq.ft.anda4.0sq.ft.coldlegbreakrespectively. | |||
Intheoriginalanalysis, however,twoelementsofconservatism hadbeenintroduced. | |||
First,themassandenergyreleaseshadbeenincreased by10percentandsecond,allinsulation hadbeenassumedtoreamininplaceinthereactorcavityandventareasforthepurposesofvolumeandventareacalculations inthemathematical model.Theinsulation intheuppercavityreacheswouldbecrushedagainstthevesseluponcavitypressurization, resulting inanincreased volumeofapproximately 15-20percent.Hence,realistic modelingoftheinsulation | |||
: behavior, coupledwithremovalofthe10percentconservatism inthemassandenergyreleasewouldresultinapre-dictedexternalasymmetric pressureloadandcavitypressureloadfroma7.78sq.ft.breakwhichisonly15to20percenthigherthanthoseconservatively pre-dicted. | |||
2.1.3InternalAsymmetric PressuxeLoadsThemodelusedtodetermine thepressurefieldateverypointintheprimarysystemfollowing thepostu-latedprimarysystembreaks,fromwhichtheinternalasymmetric forcesonthevesselandcoresupportbarrelarededuced,isshowninFigurel.TheRELAP-4-thexmalhydraulic codeisusedtocompute3/thethermodynamic properties inthemodelvolumesandjunctions. | |||
ResultsoftheRELAP-4modelhavebeencomparedtoresults achieved. | |||
bymodelling thesystemwithWHAM-6-fortheperiodoftimeduxingwhichthelattercanbeappliedwithconfidence, whichisalsotheperiodoftimeofinterest., | |||
Figure2showsthemodelemployedforWHAM-6.AsimilarWHAMmodelandassumptions initsuse,hadbeenp~viously submitted totheStaffintheAugust1977report.Theresultsofthetwomodelsaxeingoodagreement, withRELAP-4predicting alargerpressuredifferential acrossthecoresupportbarrel.Resultsoftheinternalasymmetric loadsanalysisindicatethatthepeakforcesacrossthecoresupportbarrelandthevesselarevirtually insensitive tothebreakarea,butextremely sensitive tobeakopeningtimes.Forinstance, achangeinaxeafrom1sq.ft.requiring 8msec.toopentoapproximately 9.81sq.ft.(complete double-ended areabreak)withanopeningtime.of36msec.,onlyresultsina2to3percentincreaseinpeakinternalasymmetxic loads,whereasadecreaseinopeningtimefrom36msec.to1msec.forthefullbreakbringsaboutathreefold increaseininternalasymmetric load.2.1.,4VesselandPrimarySystemStructural ModelAnon-linear elastictimehistorydynamicanalysisofthree-dimensional mathematical modelofthereactorcoolantsystemincluding detailsofthereactorinternals, pressurevessel,supports, andpipingwasperformed forthepostulated pipebreaktoprovidereactorvesselsupportreaction,forces. | |||
Thestructural modelemployedisshowninFigures3(a)and3(b).Thismodelisthree-dimensional andhas981totalstaticdegreesoffxeedomand77mass.degreesoffreedom.Thereactorvesselandallinternalcomponents aremo'delled atinternalandsupportinterfaces. | |||
TheSTRUDL-computercodegenerates thecondensed 5/stiffness matrixusedinthedynamic'analysis fromthephysicaldefinition ofthestructure. | |||
Hydrodynamic effects,including bothvirtualmassandannulareffectsareaccounted forinthecouplingbetweentheRPVandtheCSB,andbetweentheCSBandthecoreshroud.Thehydrodyamic (added)massmatrixisevaluated usingtheADifASS-code..Thedyanmicanalysistodetermine thesystyyresponsewasperformed usingthecomputercodeDAGS-andDFORCE-.Thereactorpressurevesselsupportsystemisdescribed intheFSAR.Themodelling ofthesteelportionofthesupportisidentical tothatdescribed intheFSARinAppendix3H.Thebasicmodelofthebiological shieldwallisalsoidentical. | |||
However,amorerefine(analysisisemployedforthelatter,utilizing aNASTRAN-nonlinear solutionprocedure employing quadrilateral andtriangular planestressconcretecrackingfiniteelements, insteadoftheSTARDYNEmethodofsolutiondescribed inAppendix3HoftheFSAR.2.2ReactorCoolantPiinConnected PinandOtherRCSSuorts2.2.1SteamGenerator SupportsOutsidethereactorcavity,breakshavebeenassumedatappropriate locations. | |||
TheRCSsupportsmostaffectedarethelowersteamgenerator supports. | |||
Theprimarysystemmodelisanalyzedonanelasticbasisforbothhotlegandcoldlegbreaks,thehotlegbreakatthesteamgenerator inletbeingthedetermining eventfortheSteamGenerator support.Thisanalysisisastaticanalysiswhichemploysthecompu(p)code51EC-21(HareIslandpipingflexibility code)-.BothLOCAanddes'ignseismicloadsareincludedintheanalysis. | |||
2.2.2ECCSandOtherConnected PipingTheanalysisofthestressesgenerated intheECCSlinesandotherlinesattachedtotheprimaxyloopinvolvedatwostepprocess.First,thetimehistories ofthedis-placements aregenerated ateachnozzleattaching saidpipingtotheprimaryloop.The"worst"timehistory,irrespective ofthelocationatwhichisoccursis appliedtothelinewhichbyconfiguration andotherloading(normalandseismic)wouldresultinthehigheststresses. | |||
ThestressesinducedbyLOCAmotionsforthisparticular configuration areadded-topreviously computednormalandseismic(SRSS)stresses. | |||
Thedetermining breakforECCSlineevalua-tionisthecoldlegnozzlebreakinthecavity.2.2.3ReactorCoolantPipingThestructural modelfortheprimarysystemisalsoutilizedtodetermine thestressconditions intheintactportionofthereactorcoolantloop.3.0RESULTSOFTHEANALYSES3.1VesselSuortsTheloadscalculated foreachreactorvesselsupportbythemethodoutlinedinSection2.1.4arereportedinTable3forthebreakchosenfortheanalysis; i.e.,the4.0sq.ft.coldlegbreakattheinletnozzle;forarangeofreactorvesselsupportstiffnesses. | |||
Thisrangecoversthepossiblevaluesoftheoverallstiffness oftheindividual'actor vesselsupports, therealvaluebeingsomewhere betweenthetwoextremes. | |||
Itisnotpossibletoquantifythestiffness valuemoreprecisely sincethemodelling oftheboundarycondition representing embeddedsteelinthebiological shieldissubjecttovariation. | |||
Inthesupportanalyseshowever,thehigherloadsresulting fromtheuseofthehigheststiffness, havebeenutilized. | |||
Thisinsuresagainthattheabsolutemaximumloadpersupportiscomputed. | |||
Inreality,lowervaluesareexpected. | |||
Thecapability ofthereactorvesselsupportsisgiveninFigure4andTable4respectively fortheRPVsupportpadcapability andtheweakestlinkinthesteelsupport/biolo-gicalshieldstructure. | |||
Sincethecapability ofthesupportsexceedthemaximumloadscomputedforthegivenbreak,itisconcluded thattheexist-ingsupportsystemisadequateforthatbreak.AsstatedinSection2.1,itispossiblethat,asaconsequence ofthebrokendischarge linerotationaboutthepump,alargerbreakareacouldformwithinthecavity,uptoamaximumof7.78sq.ft.Thislargerbreakarea,requiring aproportion-atelylongertimetoopen,hasvirtually noeffectonthrustandinternalasymmetric loads,butwouldincreasethehorizontal externalasymmetric loadbyapproximately 15-20percentoverthat usedintheanalysis, asexplained inSection2.1.2.TheEALrepresents approximately 40percentoftheoverallload.Hence,a20percentincreaseinthisloadwouldresultinlessthana10percentincreaseintheoverallloading.FromTable4andFigure4,itcanbeseenthatthisincreasewouldbeaccommodated bythemarginsexistinginthesupportsystem.Itistherefore concluded thatthereactor'essel supportscanwithstand thelargestbreakinthecoldlegpipingwithinthecavity.SincecoldlegbreaksoutsidethecavitydonotproduceEALloadsandsincethe'IALisvirtually unaffected bytheareaofthebreakasexplained inSection2.1.3,itisalsoconclu-dedthatthereactorvesselsupportsarecapableofwithstanding anyloadresulting frompostulated rupturesoutsidethecavity.Adetailedanalysisofthereactorloadsresulting fromhotlegbreakswithinthecavityhasnotbeenperformed. | |||
Themasonsareasfollows:thestiffness ofthehotleg,pipecombinedwiththesteamgenerator restraining action,resultsinabreakareawithinthecavitywhichissmallerthanthecoldlegbreakarea,henceresulting EALwouldbelowerthancalculated forthecoldlegbreak;althoughthethrustforceinitially wouldbelarger,theIALwouldnotbecolinearwiththrustandEAL,butwouldinfactbeapproximately orthogonal tothem.Theresultant horizontal loadsonthevesselsupportstherefore, wouldclearlybesmaller.Forinstance, thereactions atreactorvesselsupports, duetoahotlegbreakhavebeencomparedtothereactions duetoacoldlegbreakforthrustandsubcompartment pressureonly.Horizontal HotLeBreak(Kis)Horizontal ColdLeBreak(Kis)ColdLegSptHotLegSpt427032703275Althoughtheloadonthecoldlegsupportismoresevereforahot.legbreakthanforacoldlegbreak,whentheeffectsofinternalasymmetric loads-are added,thecoldlegbreakwillgovern.Verticalloadswouldbeofthesame'order ofthoseexperienced asaresultofcoldlegbreaks,andthecapacityofthesupportsystemtoaccommodate verticalloadsissignificantly higherthanitshorizontal capability. | |||
Henceclearlythereactorvesselsupportsystemisalsocapableofwithstanding theeffectsofpostulated hotlegbreaksinsideandoutsidethereactorcavity. | |||
Asimilarconclusion hadbeen,reachedinourAugust1977report.Differences inmaximumloadsreportedhereinfromthosereportedintheAugust1977reportaretwofold.TheAugust1977reportdidnotconsiderinternalgapsorgapsbetween'he supportpadsandthesupportstructure. | |||
TheAugust1977reportconsidered therefore thatallloadedsupportswouldbeloadedsimultaneously andsharetheloadequally.Theagreement oftheoverallloading.betweenthepresentandtheAugust1977results,confirmthattheapproachtakenin1977toassesstheloadswasnotunreasonable. | |||
3.2OtherRCSSuortsTheonlysupportsontheprimarysystem,otherthanthevesselsupports, arethesteamgenerator supports. | |||
Resultsoftheanalysesoftheloadsimposedonthesesupportsfrombothhotandcoldlegbreaksinthesystemincombination withseismicloads,indicated thatnoneofthedesignloadshavebeenexceed-ed,withexception oftheloadsonthefourholdownboltsatthevesselendofthesteamgenerator slidingbaseandtheslidingbaseitself.ThecomputedanddesignloadsareshowninTable5.Individual examination oftheslidingbase,thebolts,andboltanchorages howeverindicates thatallcanacceptably withstand theappliedloads.Itistherefore conclu-dedthattheexistingsupportsdesignisadeq'uate. | |||
3.3ReactorCoolantPiinTable6reportstheelastically calculated piperupture-andseismicloadsonintactreactorcoolantpipingassociated withthebrokenloopfortheworstbreak,whichisthecoldleg.guillotine breakatthevesselsafeend.Examination ofthistablerevealsthatallloadsfallwithintheallowable loadswiththeexception oftheloadattheRCPdischarge nozzle,whichexceedtheallowable byabout,l3percent,onanelasticbasis.Sincethisanalysis~ispredicated ona4.0sq.ft.coldlegbreak,bythearguments presented inSection3.1,consideration ofthelargestbreakthatcouldoccuratthevesselsafeend;i.e.,7.78sq.ft.,requiresthatanincreaseinloadoflessthan10percentbeexaminedtoassessthea'dequacy ofthecoolantpiping.Suchanincrease'can bereadilyaccommodated attheRCPsuctionandRVoutletnozzles.TheRCPdischarge wouldbemoreoverstressed (onanelasticbasis)andtheRVinletwouldbeveryslightlyoverstressed. | |||
Sinceonlythefluidretaining integrity ofthiscoolantpipingneedstobemaintained duringthepostulated LOCA,ananalysisconducted onanelasto-plastic basiswouldconcludethatthis integrity wouldbemaintained atthosenozzles.Sincetheamountofoverstressing calculated onanelasticbasisisrelatively small,aplasticanalysiswasnotconsidered necessary. | |||
Duringtheperformance ofthisparticular'analysis itwascalculated thatthesnubbersonthereactorcoolantpumpsareoverstressed. | |||
Thesesnubbe~arenotneededfortheseevents.Howevertheirfailurecouldaffecttheresults.Hence,theanalysiswasrepeatedbytakingnoaccountofthesnubbers. | |||
ResultsarealsoreportedinTable6~Ascanbeclearlyseen,theeffectofthepresenceorabsenceofthesnubbersisnegligible. | |||
3.4ECCSandConnected PiinThestressescomputedfromtheanalysisdescribed inSection2.2.2arewithin10percentoftheallowable, andhenceitisconcluded thattheECCSpipingandotherpipingconnected totheprimaryloop,isnotadversely affectedbythepostulated event.Table7comparesthepeakcomputedstresses, whichincludenomalandseismicloadstotheallowable stresses. | |||
Themarginexistingbetweenpeakstressescalculated onanelasticbasisandstressesthatwouldbeallowedwithinanelasto-plastic analysisfurtherindicates thatthisattachedpipingwouldbeabletowithstand theimposedloadsfromthe7.78sq.ft.largercoldlegguillotine break.3.5SeismicLoads,PursuanttotheStaff'srequestattheJanuary16,1980meeting,Table1providesthedesignseismicloadsatthevarioussupportpointsintheReactorCoolantSystem.3.6ControlElementAssemblies AlthoughtheanalysisoftheControlElementDrivesresponsetopostulated LOCAeventsisinprogress, butwillnotbecomple-teduntilJuly1980,i'tisgermanetopointoutthattheCEAsarenotneededforbreaks'intheRCSwhichexceed0.5sq.ft.Theassumption ofacompleteguillotine willresultinbreakslargerthan0.5sq.ft. | |||
==4.0CONCLUSION== | ==4.0CONCLUSION== | ||
Eventhoughsomeanalyseshavenotyetbeencompleted, | |||
Eventhoughsomeanalyseshavenotyetbeencompleted, resultsobtainedtodatedemonstrate thattheexistingdesignhassignifi-cantcapabi/jtyl)o accommodate thepostulated events.Additional informatio~ | |||
whichhasbecomeavailable sincetheAugust1977report,andwhichreinforces ourcontention, statedinthatreport,demonstrates thatsucheventsareofanacceptably lowprobability andcannothappeninthemannerpostulated forthisanalysis. | |||
Theforegoing reaffirms ourconclusion thatthedesignofSt.LucieUnitlisacceptable. | |||
==5.0REFERENCES== | ==5.0REFERENCES== | ||
-"PLAST-AnElasto- | |||
TABLE1ST.LUCIE1NORMALANDSEISMICSUPPORTLOADS(X106LB.) | -"PLAST-AnElasto-Plastic ComputerProgramforStressAnalysisof3-DPipingSystemsandComponents SubjecttoDynamicForces",submitted totheNRCasETR-1001-EbascoTopicalReport.-St.LucieUnitNo.1FSAR,DocketNo.50-335,Amendment 44.*2/-"RELAP4-AComputerProgramforTransient ThermalHydraulic Analysis3/ofNuclearReactorsandRelated,Systems", | ||
User'sManual,ANCR-NUREG-1335. | |||
-Fabic,S.,ComputexProgramWHAMforCalculating | |||
: Pressure, Velocity4/andForceTransients inLiquidFilledPipingNetwork", | |||
KaiserEngineering ReportNo.67-49-R,November1967.-"ICESSTRUDLII-TheStructural DesignLanguageEngineers User'sManual",MITPress,Cambridge, Massachusetts, 1968.-"ADMASS-AComputerCodeforFluidStructure Interaction UsingtheFinite6/ElementTechnique", | |||
EbascoServices, Incorporated, 1979.-"DAGS-CENPD168,Revision1-DesignBasisPipeBreaks",September 1976.-"DFORCE-DesignBasisPipeBreaks",September 1976.-"MSC/NASTRAN | |||
-User'sManual",McNealSchwandler Corporation, LosAngeles,California. | |||
-"WCAP9570Class3-Mechanistic FractureEvaluation ofReactorCoolant10/PipeContaining aPostulated Circumferential ThruWallCrack",byPalusamy, S.S.,andA.J.Hartmann, October1979.-Ayers,D.J.andT.J.Griesbach, | |||
'-'Opening andE~tension ofCircumferential CracksinaPipeSubjected toDynamicLoads",FifthInternational Conference ofStructural Mechanics inReactorTechnology, Berlin,Germany,1979.-Griffin,J.H.,"MEC-21-APipingFlexibility AnalysisProgram", | |||
TID-4500(31stedition), | |||
LA-2924,UC-38,July14,1964. | |||
TABLE1ST.LUCIE1NORMALANDSEISMICSUPPORTLOADS(X106LB.) | |||
CONDITION LOADH1V1NV10.GGG4195.0281.155i.360IIOAMALOPEIIATING THEGMAL+DEADDEADVIEIGHTV(EIGHT.005.032ODESEISMICSY.002.335-.G44-.04G.011.064DBESEISSIICSY.005.6701.288-.092IfNAV1V$tVHZV2NV2.G64a.195-.091.72Gk.2151.226.017.001.253+.355-.264-.3802.452035.003.507+.710-.528.761ivtI$$ACIOIIV$$$($$Vt(OIIIA(ACIIO(N V3NV3Z11Z12Y1Y2Y3Y4xNYx.19500.300.3001.3001.3000a.376.741%.215.367000.3151.009.3200S.30000.016-.057.086-.0540.0791.139-.019-.060.G2300-.019.155.417.1520.270-.349.743S.19541970.060-.07105802.278-.00600.033-.1'14.173-.1080-.038~120.50G00-.039211.835.3050.540.6SS.746S.390S.3940.121.143.1160Y$$($YI.vhVf$(fANC(N(AAION LOW(N$V(YOA1$YI($($N Table2Comparison ofPeakCalculated andDesignSeismic(DBE)LoadsatRepresentative Locations Design(Kips)Horizontal VerticalCalculated (Kips)Horizontal VerticalColdLegSptHotLegSptl,2937622,455.1,268522.6515.0354.6429.4 Table3St.LucieUnitfi'1RVSUPPORTIfAXABSREACTIONS (KIPS)-LOCA+SEISMIC(SRSS)4FTCLGBREAKATNOZZLElAOR2ALOCATIONS 8'1ASPPTRVSPPTSTIFFNESS VALUESK='4.62x10lb/in6K~59.71x10lb/in6K=77.54x10lb/in6-K=75.83x10lb/in6VerticalHorizontal 1397150223171587ulBSPPTVerticalHorizontal 2800533122515473-HotLegSPPTVerticalHorizontal 3458749330487777ForLOCA+Nopreactions, addthesevaluestotheverticalresults:~21ASPPT710~K81BSPPT726.KHotLegSPPT1157K+Forbreakatnozzle1Bor2B,theloadsonthecoldlegsupportswouldbereversed Table4St,Lucie1ReactorPressureVesselSupportCapacitySteelsupportstructure | |||
-horizontal 8400kips*(concrete islimiting) | |||
Steelsupportstructure | |||
-verticaldownward12000kipsReactorCavityWallReactorCavityWallReactorSupportPadsReactorSupportPadshorizontal verticalhorizontal vertical".13000kips*~notlimitingSeeFigure4SeeFigure4Loadonindividual girder*<Allowable resultant asymmetric mechanical loadtransmitted alonggirderstoconcrete, basedonrebarmeanaxialstress'being withinyield. | |||
TABLE5STEAMGENERATOR LOWERSUPPORTCALCULATEDANDDESIGNLOADSIREFERTOTABLE1FORSYMBOLS)SUPPORTZ11Z12FRONTY1SIDEY2BACKY3SIDEY4X-STOPZ1Z2CLGUILLNO.1+DBEIRSS)727806-406.9-756.5-605.0-300.178194301HLGUILLNO.2+DBEIRSS)42-2487.7-1176.4+1249.0-1175.9-5194.92784040DESIGNLOADLOCA+DBE3,600-1,868"-1,770-1I737-,691-1,7345,648,301-1,5741,800IKANDFT-KIPS)9gSTEAMGENERATOR/ | |||
SLIDINGBASESUPPORTSKIRTINTERFACE | |||
.FxFyFz'xMzIHLGUILL)LOCA5205-3582M609RSSLOCA5DBE5205-35826.8418.34614SLIDINGBASEDESIGNLOADS5653-2,471.011.032.024.01003"ANEGATIVESIGNMEANSTENSION Table6St.LucieUnitIIlReactorCoolantSystemReactorPressureVesselandReactorCoolantPumpNozzleLoadsDuetoa4ftReactorVessel1AInletNozzle-Guillotine BreakPIPERUPTURERSSMOMENT(In-Kis)NozzleRCPDischarge RCPSuctionRVInletRVOutletRCPSnubber109,30050,50071,75050,150RCPSnubberNotAc~tin109,60054,55071,91050,170SeismicMoment(In-Kis)5,9107,2565,2722,535Allowable Moment(In-Kis)96,81078,96578,965279,340 Table7St.LucieUnitNo.1Connected PipingStressesCalculated vs.Allowable 4.0sq.ft.CLGInletBreakDesignPoint(RefertoFiure5)Calculated Stress(Eu.10ASME)Allowable Stress3X5639,07075,152*75,030*41,83543,47547,69033,43020,17148,60048,60048,60048,60048,60048,60048,60048,600Functionability andintegrity areassuredifLevelB(upsetconditions) limitsoftheASMEBoilerandPressureVesselCode,SectionIII,Division1arenotexceeded. | |||
Functionability isimportant atpoints5and6wherethevalveis.Atpoints2and3,theselimitsareexceeded. | |||
However,LevelD(faultedlimits)arenotexceededatthesetwopoints.LevelDlimitsareusedtodemonstrate thatintegrity ismaintained. | |||
Equation(9)atthosetwopointswouldyield45,043psi.and44,479psirespectively withanallowable of48,600psi. | |||
FIGURE1RELAP4510DELFORST.LUCIEPR)MARYCOOLANTSYSTEM3')3256004591160305731$131458839615168123377462634862eoo91063951123241Z1314153116175419204$414245462122255123472448QS3,265973500>>378551767S4948476152(A1)8081536335(81)717043424140Q6955S6S7Qoo'(a2)98VAt.VB74734645(82)Q72 FIGURE2ST.LUCIE1RCS-V/HAM/6MODELFORIALpssQssQss107741060721087110410310111312102811482020187538658eo8583~84891091107069>>5757677g1148P8178821Q117018192013'4261828270,0,0,800477946Qs20101681512191631495157956261962'00996766242598Qss003542224303844,7746230~3932Qss3340(A1)(81)41Qss4552oo5358604269614I76075747338041554962=56P1P14P10~~Xo>>904072120697167118~83070Pso211220~BRGAKP5(A2)P18(82) | FIGURE1RELAP4510DELFORST.LUCIEPR)MARYCOOLANTSYSTEM3')3256004591160305731$131458839615168123377462634862eoo91063951123241Z1314153116175419204$414245462122255123472448QS3,265973500>>378551767S4948476152(A1)8081536335(81)717043424140Q6955S6S7Qoo'(a2)98VAt.VB74734645(82)Q72 FIGURE2ST.LUCIE1RCS-V/HAM/6MODELFORIALpssQssQss107741060721087110410310111312102811482020187538658eo8583~84891091107069>>5757677g1148P8178821Q117018192013'4261828270,0,0,800477946Qs20101681512191631495157956261962'00996766242598Qss003542224303844,7746230~3932Qss3340(A1)(81)41Qss4552oo5358604269614I76075747338041554962=56P1P14P10~~Xo>>904072120697167118~83070Pso211220~BRGAKP5(A2)P18(82) | ||
FIGUPESAST. | FIGUPESAST.LUCIE1REDUCEDMODELOFREACTORINTERPeALS UGS38'A18:AZ'2.16HX-DIRIS//TOOUTLETNOZZLES'" | ||
.FIGURE4ST.LUCIE1.-: | 28I10'926'4,',22',FUEL'CORESHROUD.CSB20,A13HLEGENDA~AXIALGAPH=HORIZONTAL GAP//=PRELOADED COUPLING=GAPCOUPLING=COLINEARCONNECTOR | ||
FIXED"-~45,''- | 'SEEFIGURE3bFORDETAILSOFREACTORVESSELSANDPIPING v1'FIGURE38STLUCIE1REDUCEDMODELOFREACTORCOOLANTSYSTEMTOS.G.NO.1'rrro99189999REACTORVESSELHOTLEGTOS.G.NO.29909INTERNALS | ||
'SEEFIGURE3aFORDETAILSOFINTERNALS) 9905rr~ro9914o9913oLUMPEDMASS0POINTOFAPPLIEDFORCE | |||
.FIGURE4ST.LUCIE1.-:REACTORPRESSUREVESSELSUPPORTPADCAPABILITY IhC'K-10HOTLEGSUPPORT,='4.0SO.FT.CLG'COMPUTED MAXLOADSi(LOCA+SEISMIC+Mop)IQA(HOTLEGSUPPORTQB!VNBROl<EN COLDLEGSUPPORTBROI<ENCOLDLEGSUPPORTQA~l'0Z'I0'40:~ICOLDLEGSUPPORTSp.1;2.3'.4:5I6:7.,8,9,10..1112;13:14,15,-16 Rqx10(K)VERTICALLOAD. | |||
FIXED"-~45,''-37x3536DISPLACEMENTS SPECIFIED 302942432883027274510314511'l2FlGURE5':24-FIXEDSAFETYINJECTlQNLINE1-8-1(PREVIOUS 972)FLGRIDAPORFB8LIGHTOOMPANYSTLUCIENO.113141517~O2120182322t | |||
'<'s~I}} | '<'s~I}} | ||
Revision as of 17:23, 29 June 2018
| ML17207A876 | |
| Person / Time | |
|---|---|
| Site: | Saint Lucie |
| Issue date: | 03/03/1980 |
| From: | FLORIDA POWER & LIGHT CO. |
| To: | |
| Shared Package | |
| ML17207A875 | List: |
| References | |
| NUDOCS 8003110528 | |
| Download: ML17207A876 (29) | |
Text
REACTORCOOLANTSYSTEMASYMMETRIC LOCALOADEVALUATION ST.LUCIEUNIT1-DOCKETNO.50-335)farch3,1980 SUI&fARY, InMay1975theNRCStaffwasinformedbyapressurized waterreactorlicenseethatloadsresulting fromahypothetical ruptureofthereactorcoolantcoldlegpipeintheimmediate vicinityofthereactorpressurevessel(RPV)mayhavebeenunderestimated.
InNovember1975theStaffagreedthattheseloadsshouldbeconsidered andevaluated on,agenericbasis.IFloridaPower&Light'sresponsetotheStaff'sletterofNovember26,1975indicated thatthesupportsystemdesignincorporated thereactionforcesassociated withthelargearbitrary reactorcoolantpiperuptures, andthatfurther,ithadbeenshowntoacceptably accommodate theadditional loadsassociated withdifferential pxessures withinthereactorcavityas,showninAppendix3HoftheFinalSafetyAnalysisReport.TheStaffrequested thatfurtherinternalasymmetric load(IAL)evaluations beconducted.
FP&LsletterofFebruary9,1976documents theCompany's commitments toevaluatethereactorvesselsupportcapability forthelimit-ingbreak,acommitment whichisrestatedinSupplement 2totheUnit1SafetyEvaluation Report(SER),datedHarch1,1976.InSeptember 1977FP&Ltransmitted totheNRCareportassessing themarginindesignofthevesselsupportswhentheinternalasymmetric loadsareaddedtoallpreviousloads.Thereportconcluded thatthesupportswouldadequately withstand alltheloadings.
However,sincetheanalysisdidnotaccountforgapsbetweenthevesselandthecorebarrel,andalsothevesselandthesupportstructures, ananalysiswasinitiated atthesametimetoaccountfortheseeffects.TheStaff'sletterofFebruary16,1978requested thattheevaulations conducted todatebeexpandedinscopetoincludeanassessment ofthereactorpressurevessel,fuelassemblies andinternals, controlelementassemblies, primarycoolantpipingandattachedECCSpiping,allprimarysystemsupports, andthebiological andsecondary shieldwallsforaspectrumofbreaksintheprimarysystem.FP&LsMarch1978responsestatedthatitsAugust1977reportwasfullyresponsive totheStaff'sSERrequirement, thattheSt.Lucie1designwasacceptable andthatthelargeinstantaneous pipebreaksbeingpostulated weieoverlyconservative.
TheresponsewentontosaythatFP&Lwouldpursueadditional analysesoncetheStaffapprovedtheanalytical methodsusedintheAugust1977report.Thisreplynotwith-standing, FP&Lbeingsympathetic withtheStaff'sdesiretoassessanypotential risktopublichealthandsafetyfrompostulated events,expandedtheanalysisreferredtoabove,toalsoassesstheadditional itemsidentified bytheStaff.
Thisreportdiscusses theresultsofthisexpandedanalysis.
Thecombina-tionofthrust,external, andinternalasymmetric loadsresulting fromtheinletpipecircumferential breakpresentthelargestloadtothevesselsupportsamongthosethatwouldensuefromanyofthedesignbasisbreakslistedinAppendix3EIofthePSAR.Theresultsconfirmthatthevesselsupportswilladequately withstand alltheloadsresulting fromthepostulated circumferential breakinthevesselinletpipe.Thecoldlegguillotine breakinthecavityisthebeakwhichresultsinthelargestloadingofthevesselsupports.
There-forethevesselsupportsareclearlyadequateforallotherbreaklocations.
Thisreaffirms theconclusions oftheAugust1977report.Resultsalsoshowthatallsupportsfortheprimarysystemareadequateforallbreaklocations, thatthestressesintheintactprimarypipingaridattachedlinesaresufficiently lowtoensureperformance ofintendedfunc-tions,andthatthebiological shieldwallperformsitsintendedfunction.
Thesecondary shieldwallisdesignedforpostulated primarysystemruptureswithinthesteamgenerator subcompartments.
Theanalysesoftheadequacyoffuelassemblies internals, andcontrolelementassemblies isinprogress.
ResultsareexpectedinJulyof1980.TheStaff,atameetinginJanuary1980,furtherrequested thatseismicloadsbeseparately identified.
Allresultspresented herein,aswellastheAugust1977xeport,includetheSRSScombination ofLOCAandseismicloads,consistent withtherequirement ofHUREG-0484.
Porthosecombinations designseismicloadshavebeenusedandareherebyattachedforusebytheStaff.Inallcases,designseismicloadsareconsiderably higherthancalculated peakseismicloads.Qualitatively, thesmalldisplacements observedforthevesselandcorebarrelfortheworstbreakanalyzed, stronglysuggeststhattheanalysesnowinprogressofthefuel/internals andCED>fswillindicateacceptable results.Itmustalsobenotedthatsincethesubmittal oftheAugust1977reporttotheStaff,additional workhasbeenreported, tosupportPP&Lscontention thatthetypesofinstantaneous pipebreaksbeingpostulated bytheStaffareexcessively conservative.
l.0INTRODUCTION Duringapostulated lossofcoolantaccidentintheformofacircumferential piperuptureattheinletnozzleofthereactorpressurevessel,adecompression ofthereactorpressurevesseloccursoverashortperiodoftime.Decompression wavesoriginated.
atthepostulated breaktravelaroundtheinletplenumandpropa-gatedownwardalongthedowncomer annulus.Thefinitetimerequiredbythedecompression disturbances totravelaboutthevesselcausesatransient pxessuredifferential fieldtobecreatedacrossthecoresupportbarrel(CSB)andthevesselinnersurface.Thisfieldimposesatransient asymmetric loadingonthecore-support-barrel aswellasthevesselitself.Sincethepostulated pipebreakislocatedwithinthebiological shieldwall,theblowdownfluidflash-ingintothereactorcavityalsocausesatransient pressurization actingonthevessel.Thisexternalpressurization isalsoasymmetric.
Theinternalasymmetric loading(IAL)andtheexternalasymmetric loadingactinthesamedirection forbreaksoccurring inthecoldlegpiping.Forbreaksinthehotlegs,theinternalasymmetric loadis.virtually absentinthehorizontal direction, hencethetwoloadsareadditiveintheverticaldirection only.Theseloadingsaretransmitted tothereactorvesselsupportsystem.Theresultant reactionforcesatthesupportinterfaces mustbeconsidered intheevaluation oftheadequacyofthesuppoxtsystemtogetherwiththethrustloadresulting fromthebreak,otheroperating loads,andpostulated seismicloads.Theseismicloadsandnormaloperating loads,aswellastheEALhavebeenpreviously analyzedinAppendix3HoftheFinalSafetyAnalysisReport.BreaksoutsidecavitycanresultinIALimposedonthereactorpressurevesselandinternals, andinEALonthe-reactorcoolantpumpandsteamgenerators.
Forthebreaksoutsidethecavity,theadequacyoftheprimarysystemsupportsisassessedforfullbreaksatappropriate prima~systemlocations.
Thecavitybreaksaredetermining breaksfortheassess-.mentoftheadequacyofpipingattachedtotheprimarysystempiping.Thecircumferential piperuptureattheinletnozzleofthereactorpressurevesselisdetermined tobethedesignbasisbreakfortheevaluation ofthevesselsupportadequacy.
Abreakattheoutletnozzlewouldnotproduceahorizontal asymmetric pressureloadingtothevessel.Consistent withtheFinalSafetyAnalysisReport,a4.0sq.ft.coldlegguillotine breakattheinletnozzleischosenfortheanalysesofthevesselsupportadequacy.
2.0METHODOPANALYSIS2.1ReactorVesselSuortsThe.adequacyofthereactorvesselsupportsisevaluated bydetermining theloadsactingonthepximarysystemwhichresultfromapostulated breakattheinletcoldlegnozzle;theresponseoftheprimarysystemtotheapplication oftheseloads;andthereactionforcesgenerated bythis=response atthereactorvesselsupports.
Theloadsactingontheprimarysystemconsistofnormalplusseismicloads,thethrustload,externalasymmetric loads,andinternalasymmetric loads.Thelatterthreearecombinedintruetimehistoryfashion,addedtothenormalloadsreactions, thenthexesul-tantreactionloadsatthesupportsarecombinedwithdesignreactionloadsresulting fromthepostulated seismic(SSE)eventsbySRSStechniques, toobtaintheoverallreactionloadateachofthesupports.
Designseismicloadsareprovidedforeachprimarysystemsupportinthethreeorthogonal direc-.tionsinTable1.Itshouldbeemphasized thatcomputedpeakseismicloadsareingeneralsubstantially lessthanthedesignseismicloads;thusproviding anelementofconservatism inthisanalysis.
Table2givesasamplecomparison ofcalculated anddesignseismicloadsatrepresentative locations.
Thefollowing subsections describethemethodology employedtoevaluateeachofthethrust,externalasymmetric andinternalasymmetric loads.Inherentintheeyaulation oftheseloadsisthedetemination ofthetime.requiredtoopenupthebreaktotheareabeinganalyzed.
2.1.1BreakOpeningTimeandThrustLoadsTheSt.Lucieplantprimarycoolantpiping'in thevicinityofthevesselisrestrained fromunlimited motionfollowing completeseverance intheportionwithinthecavitybyrestraints intheprimaryshieldwallpenetrations andwireropesaroundthereactorcoolantpumps.Thisrestraining systemhasbeenprevious-lydescribed intheFSAR,Following anarbitrarily assumedinstantaneous severance ofthepipeatthenozzle,thetwoendsofthebrokenpipeseparateundertheactionofthethrustimposedbytheinstantaneous tensionreleasefollowedbytheblowdownoftheescap-ingfluid,andformacombinedbreakareawhichvarieswithtimeasgiveninthefollowing equation:
mR.SX(T)2.Bnmg(R.+R)t(v)=<5+2Rjm-(--s'v.2g)f-whereRiandRaretheinnerandouterpiperadii,t0isthepipethz.ckness, xistheaxialsepanation ofthetwoendswhichvarie'swithtime7,andg=cos2R.i(2)whereinyistheradialseparation ofthetwobrokenendswhichalsovarieswithtime.Thisequationissolvediniterative fashiontogetherwiththeequationforthecombinedtensionreleaseandblowdownforce,givenbelowV(T)2F(x)P(v)A+p(x)A(v)-dlpdlg(3)toyieldthecorrectforcingfunctionandbreakareaasafunctionoftime.Inequation(3),Pandpdarethepressureandfluiddensityinthe3xscharge leg,respectively, Aisthecross-sectional areaofthepipe,VthebloBdownvelocity, andA(7)isdefinedin(1)above.Themotionofthepipingsystemundertheapplication oftheforcegivenby(3),iscomputedbymodelling the'ischarge leg,thepump,andthecrossoverlegwithanel@to-plastic finiteelementcomputerprogram,PLAST-considering thesteamgenerator andthevesseltoremainmotionless.
Resultsoftheanalysesindicatethat-atleast18msec.arenecessary forthepipeendstoseparatetheoverallareaof4.0sq.ft.refermdtointheFSAR.Thisanalysisalsoindicates thatasaresultofplasticrotationatthepump,itispossibleforthepipeendstoseparatefurther,toamaximumareaof7.78sq.ft.Thetimerequiredforthisareatobeachieved, however,wouldbeinexcessof25msec.ThelongertimerequiredforopeningthelargerbreakinsuresthattheIALresult-ingfromthetwobreaksarevirtually identical.
Thelargerbreakdoeshoweverresultinalargerexternal horizontal asymmetric load(external verticalasym-metricloadsarevirtually identical forthetwobreaks).Sincethe4.0sq.ft.breakhadbeenone'fthedesignbasisbreaksintheFSAR,allanalysesusedthatbreakarea.However,consideration isgiventowhetherthesystemiscapableofaccommodat-ingthelargerbreak.Asdiscussed inthesubsequent section,thesystemisinfactadequateforthelargestofthebreaks.2.1.2ExternalAsymmetric PressureLoads(ReactorCavity)Thereactorsubcompartment analysisforSt.LucieUnit81hadbeenperfoimed forstipulated LOCAconditions including a4.0sq.ft.coldlegguillotine break,andtheresultshadbeensubmitted totheNRC.intheFSARandapprovedbytheNRCduringthecourseoftheoperating licensereview.Theresultsforthe4.0sq.ft.coldlegguillotine break,asreportedinReference 2,havebeendirectlyusedin'thepresentstudy.Thisresults.inconservatism oftheanalysissincethecavityresponsehadbeen,predicated onabreakopeningtimeof10msec,whereas18msec.isneededtoachievethissizebreak.Thepeakexternalasymmetric forcesacrossthereactorvessel,thatwouldresultfromthelarger7.78sq..ft..break,wouldbeapproximately 40percentlarger.Thisispredicated onaratioof1.39betweenpeakandaverageenergyflowtothecavityresulting froma7.78sq.ft.anda4.0sq.ft.coldlegbreakrespectively.
Intheoriginalanalysis, however,twoelementsofconservatism hadbeenintroduced.
First,themassandenergyreleaseshadbeenincreased by10percentandsecond,allinsulation hadbeenassumedtoreamininplaceinthereactorcavityandventareasforthepurposesofvolumeandventareacalculations inthemathematical model.Theinsulation intheuppercavityreacheswouldbecrushedagainstthevesseluponcavitypressurization, resulting inanincreased volumeofapproximately 15-20percent.Hence,realistic modelingoftheinsulation
- behavior, coupledwithremovalofthe10percentconservatism inthemassandenergyreleasewouldresultinapre-dictedexternalasymmetric pressureloadandcavitypressureloadfroma7.78sq.ft.breakwhichisonly15to20percenthigherthanthoseconservatively pre-dicted.
2.1.3InternalAsymmetric PressuxeLoadsThemodelusedtodetermine thepressurefieldateverypointintheprimarysystemfollowing thepostu-latedprimarysystembreaks,fromwhichtheinternalasymmetric forcesonthevesselandcoresupportbarrelarededuced,isshowninFigurel.TheRELAP-4-thexmalhydraulic codeisusedtocompute3/thethermodynamic properties inthemodelvolumesandjunctions.
ResultsoftheRELAP-4modelhavebeencomparedtoresults achieved.
bymodelling thesystemwithWHAM-6-fortheperiodoftimeduxingwhichthelattercanbeappliedwithconfidence, whichisalsotheperiodoftimeofinterest.,
Figure2showsthemodelemployedforWHAM-6.AsimilarWHAMmodelandassumptions initsuse,hadbeenp~viously submitted totheStaffintheAugust1977report.Theresultsofthetwomodelsaxeingoodagreement, withRELAP-4predicting alargerpressuredifferential acrossthecoresupportbarrel.Resultsoftheinternalasymmetric loadsanalysisindicatethatthepeakforcesacrossthecoresupportbarrelandthevesselarevirtually insensitive tothebreakarea,butextremely sensitive tobeakopeningtimes.Forinstance, achangeinaxeafrom1sq.ft.requiring 8msec.toopentoapproximately 9.81sq.ft.(complete double-ended areabreak)withanopeningtime.of36msec.,onlyresultsina2to3percentincreaseinpeakinternalasymmetxic loads,whereasadecreaseinopeningtimefrom36msec.to1msec.forthefullbreakbringsaboutathreefold increaseininternalasymmetric load.2.1.,4VesselandPrimarySystemStructural ModelAnon-linear elastictimehistorydynamicanalysisofthree-dimensional mathematical modelofthereactorcoolantsystemincluding detailsofthereactorinternals, pressurevessel,supports, andpipingwasperformed forthepostulated pipebreaktoprovidereactorvesselsupportreaction,forces.
Thestructural modelemployedisshowninFigures3(a)and3(b).Thismodelisthree-dimensional andhas981totalstaticdegreesoffxeedomand77mass.degreesoffreedom.Thereactorvesselandallinternalcomponents aremo'delled atinternalandsupportinterfaces.
TheSTRUDL-computercodegenerates thecondensed 5/stiffness matrixusedinthedynamic'analysis fromthephysicaldefinition ofthestructure.
Hydrodynamic effects,including bothvirtualmassandannulareffectsareaccounted forinthecouplingbetweentheRPVandtheCSB,andbetweentheCSBandthecoreshroud.Thehydrodyamic (added)massmatrixisevaluated usingtheADifASS-code..Thedyanmicanalysistodetermine thesystyyresponsewasperformed usingthecomputercodeDAGS-andDFORCE-.Thereactorpressurevesselsupportsystemisdescribed intheFSAR.Themodelling ofthesteelportionofthesupportisidentical tothatdescribed intheFSARinAppendix3H.Thebasicmodelofthebiological shieldwallisalsoidentical.
However,amorerefine(analysisisemployedforthelatter,utilizing aNASTRAN-nonlinear solutionprocedure employing quadrilateral andtriangular planestressconcretecrackingfiniteelements, insteadoftheSTARDYNEmethodofsolutiondescribed inAppendix3HoftheFSAR.2.2ReactorCoolantPiinConnected PinandOtherRCSSuorts2.2.1SteamGenerator SupportsOutsidethereactorcavity,breakshavebeenassumedatappropriate locations.
TheRCSsupportsmostaffectedarethelowersteamgenerator supports.
Theprimarysystemmodelisanalyzedonanelasticbasisforbothhotlegandcoldlegbreaks,thehotlegbreakatthesteamgenerator inletbeingthedetermining eventfortheSteamGenerator support.Thisanalysisisastaticanalysiswhichemploysthecompu(p)code51EC-21(HareIslandpipingflexibility code)-.BothLOCAanddes'ignseismicloadsareincludedintheanalysis.
2.2.2ECCSandOtherConnected PipingTheanalysisofthestressesgenerated intheECCSlinesandotherlinesattachedtotheprimaxyloopinvolvedatwostepprocess.First,thetimehistories ofthedis-placements aregenerated ateachnozzleattaching saidpipingtotheprimaryloop.The"worst"timehistory,irrespective ofthelocationatwhichisoccursis appliedtothelinewhichbyconfiguration andotherloading(normalandseismic)wouldresultinthehigheststresses.
ThestressesinducedbyLOCAmotionsforthisparticular configuration areadded-topreviously computednormalandseismic(SRSS)stresses.
Thedetermining breakforECCSlineevalua-tionisthecoldlegnozzlebreakinthecavity.2.2.3ReactorCoolantPipingThestructural modelfortheprimarysystemisalsoutilizedtodetermine thestressconditions intheintactportionofthereactorcoolantloop.3.0RESULTSOFTHEANALYSES3.1VesselSuortsTheloadscalculated foreachreactorvesselsupportbythemethodoutlinedinSection2.1.4arereportedinTable3forthebreakchosenfortheanalysis; i.e.,the4.0sq.ft.coldlegbreakattheinletnozzle;forarangeofreactorvesselsupportstiffnesses.
Thisrangecoversthepossiblevaluesoftheoverallstiffness oftheindividual'actor vesselsupports, therealvaluebeingsomewhere betweenthetwoextremes.
Itisnotpossibletoquantifythestiffness valuemoreprecisely sincethemodelling oftheboundarycondition representing embeddedsteelinthebiological shieldissubjecttovariation.
Inthesupportanalyseshowever,thehigherloadsresulting fromtheuseofthehigheststiffness, havebeenutilized.
Thisinsuresagainthattheabsolutemaximumloadpersupportiscomputed.
Inreality,lowervaluesareexpected.
Thecapability ofthereactorvesselsupportsisgiveninFigure4andTable4respectively fortheRPVsupportpadcapability andtheweakestlinkinthesteelsupport/biolo-gicalshieldstructure.
Sincethecapability ofthesupportsexceedthemaximumloadscomputedforthegivenbreak,itisconcluded thattheexist-ingsupportsystemisadequateforthatbreak.AsstatedinSection2.1,itispossiblethat,asaconsequence ofthebrokendischarge linerotationaboutthepump,alargerbreakareacouldformwithinthecavity,uptoamaximumof7.78sq.ft.Thislargerbreakarea,requiring aproportion-atelylongertimetoopen,hasvirtually noeffectonthrustandinternalasymmetric loads,butwouldincreasethehorizontal externalasymmetric loadbyapproximately 15-20percentoverthat usedintheanalysis, asexplained inSection2.1.2.TheEALrepresents approximately 40percentoftheoverallload.Hence,a20percentincreaseinthisloadwouldresultinlessthana10percentincreaseintheoverallloading.FromTable4andFigure4,itcanbeseenthatthisincreasewouldbeaccommodated bythemarginsexistinginthesupportsystem.Itistherefore concluded thatthereactor'essel supportscanwithstand thelargestbreakinthecoldlegpipingwithinthecavity.SincecoldlegbreaksoutsidethecavitydonotproduceEALloadsandsincethe'IALisvirtually unaffected bytheareaofthebreakasexplained inSection2.1.3,itisalsoconclu-dedthatthereactorvesselsupportsarecapableofwithstanding anyloadresulting frompostulated rupturesoutsidethecavity.Adetailedanalysisofthereactorloadsresulting fromhotlegbreakswithinthecavityhasnotbeenperformed.
Themasonsareasfollows:thestiffness ofthehotleg,pipecombinedwiththesteamgenerator restraining action,resultsinabreakareawithinthecavitywhichissmallerthanthecoldlegbreakarea,henceresulting EALwouldbelowerthancalculated forthecoldlegbreak;althoughthethrustforceinitially wouldbelarger,theIALwouldnotbecolinearwiththrustandEAL,butwouldinfactbeapproximately orthogonal tothem.Theresultant horizontal loadsonthevesselsupportstherefore, wouldclearlybesmaller.Forinstance, thereactions atreactorvesselsupports, duetoahotlegbreakhavebeencomparedtothereactions duetoacoldlegbreakforthrustandsubcompartment pressureonly.Horizontal HotLeBreak(Kis)Horizontal ColdLeBreak(Kis)ColdLegSptHotLegSpt427032703275Althoughtheloadonthecoldlegsupportismoresevereforahot.legbreakthanforacoldlegbreak,whentheeffectsofinternalasymmetric loads-are added,thecoldlegbreakwillgovern.Verticalloadswouldbeofthesame'order ofthoseexperienced asaresultofcoldlegbreaks,andthecapacityofthesupportsystemtoaccommodate verticalloadsissignificantly higherthanitshorizontal capability.
Henceclearlythereactorvesselsupportsystemisalsocapableofwithstanding theeffectsofpostulated hotlegbreaksinsideandoutsidethereactorcavity.
Asimilarconclusion hadbeen,reachedinourAugust1977report.Differences inmaximumloadsreportedhereinfromthosereportedintheAugust1977reportaretwofold.TheAugust1977reportdidnotconsiderinternalgapsorgapsbetween'he supportpadsandthesupportstructure.
TheAugust1977reportconsidered therefore thatallloadedsupportswouldbeloadedsimultaneously andsharetheloadequally.Theagreement oftheoverallloading.betweenthepresentandtheAugust1977results,confirmthattheapproachtakenin1977toassesstheloadswasnotunreasonable.
3.2OtherRCSSuortsTheonlysupportsontheprimarysystem,otherthanthevesselsupports, arethesteamgenerator supports.
Resultsoftheanalysesoftheloadsimposedonthesesupportsfrombothhotandcoldlegbreaksinthesystemincombination withseismicloads,indicated thatnoneofthedesignloadshavebeenexceed-ed,withexception oftheloadsonthefourholdownboltsatthevesselendofthesteamgenerator slidingbaseandtheslidingbaseitself.ThecomputedanddesignloadsareshowninTable5.Individual examination oftheslidingbase,thebolts,andboltanchorages howeverindicates thatallcanacceptably withstand theappliedloads.Itistherefore conclu-dedthattheexistingsupportsdesignisadeq'uate.
3.3ReactorCoolantPiinTable6reportstheelastically calculated piperupture-andseismicloadsonintactreactorcoolantpipingassociated withthebrokenloopfortheworstbreak,whichisthecoldleg.guillotine breakatthevesselsafeend.Examination ofthistablerevealsthatallloadsfallwithintheallowable loadswiththeexception oftheloadattheRCPdischarge nozzle,whichexceedtheallowable byabout,l3percent,onanelasticbasis.Sincethisanalysis~ispredicated ona4.0sq.ft.coldlegbreak,bythearguments presented inSection3.1,consideration ofthelargestbreakthatcouldoccuratthevesselsafeend;i.e.,7.78sq.ft.,requiresthatanincreaseinloadoflessthan10percentbeexaminedtoassessthea'dequacy ofthecoolantpiping.Suchanincrease'can bereadilyaccommodated attheRCPsuctionandRVoutletnozzles.TheRCPdischarge wouldbemoreoverstressed (onanelasticbasis)andtheRVinletwouldbeveryslightlyoverstressed.
Sinceonlythefluidretaining integrity ofthiscoolantpipingneedstobemaintained duringthepostulated LOCA,ananalysisconducted onanelasto-plastic basiswouldconcludethatthis integrity wouldbemaintained atthosenozzles.Sincetheamountofoverstressing calculated onanelasticbasisisrelatively small,aplasticanalysiswasnotconsidered necessary.
Duringtheperformance ofthisparticular'analysis itwascalculated thatthesnubbersonthereactorcoolantpumpsareoverstressed.
Thesesnubbe~arenotneededfortheseevents.Howevertheirfailurecouldaffecttheresults.Hence,theanalysiswasrepeatedbytakingnoaccountofthesnubbers.
ResultsarealsoreportedinTable6~Ascanbeclearlyseen,theeffectofthepresenceorabsenceofthesnubbersisnegligible.
3.4ECCSandConnected PiinThestressescomputedfromtheanalysisdescribed inSection2.2.2arewithin10percentoftheallowable, andhenceitisconcluded thattheECCSpipingandotherpipingconnected totheprimaryloop,isnotadversely affectedbythepostulated event.Table7comparesthepeakcomputedstresses, whichincludenomalandseismicloadstotheallowable stresses.
Themarginexistingbetweenpeakstressescalculated onanelasticbasisandstressesthatwouldbeallowedwithinanelasto-plastic analysisfurtherindicates thatthisattachedpipingwouldbeabletowithstand theimposedloadsfromthe7.78sq.ft.largercoldlegguillotine break.3.5SeismicLoads,PursuanttotheStaff'srequestattheJanuary16,1980meeting,Table1providesthedesignseismicloadsatthevarioussupportpointsintheReactorCoolantSystem.3.6ControlElementAssemblies AlthoughtheanalysisoftheControlElementDrivesresponsetopostulated LOCAeventsisinprogress, butwillnotbecomple-teduntilJuly1980,i'tisgermanetopointoutthattheCEAsarenotneededforbreaks'intheRCSwhichexceed0.5sq.ft.Theassumption ofacompleteguillotine willresultinbreakslargerthan0.5sq.ft.
4.0CONCLUSION
Eventhoughsomeanalyseshavenotyetbeencompleted, resultsobtainedtodatedemonstrate thattheexistingdesignhassignifi-cantcapabi/jtyl)o accommodate thepostulated events.Additional informatio~
whichhasbecomeavailable sincetheAugust1977report,andwhichreinforces ourcontention, statedinthatreport,demonstrates thatsucheventsareofanacceptably lowprobability andcannothappeninthemannerpostulated forthisanalysis.
Theforegoing reaffirms ourconclusion thatthedesignofSt.LucieUnitlisacceptable.
5.0REFERENCES
-"PLAST-AnElasto-Plastic ComputerProgramforStressAnalysisof3-DPipingSystemsandComponents SubjecttoDynamicForces",submitted totheNRCasETR-1001-EbascoTopicalReport.-St.LucieUnitNo.1FSAR,DocketNo.50-335,Amendment 44.*2/-"RELAP4-AComputerProgramforTransient ThermalHydraulic Analysis3/ofNuclearReactorsandRelated,Systems",
User'sManual,ANCR-NUREG-1335.
-Fabic,S.,ComputexProgramWHAMforCalculating
- Pressure, Velocity4/andForceTransients inLiquidFilledPipingNetwork",
KaiserEngineering ReportNo.67-49-R,November1967.-"ICESSTRUDLII-TheStructural DesignLanguageEngineers User'sManual",MITPress,Cambridge, Massachusetts, 1968.-"ADMASS-AComputerCodeforFluidStructure Interaction UsingtheFinite6/ElementTechnique",
EbascoServices, Incorporated, 1979.-"DAGS-CENPD168,Revision1-DesignBasisPipeBreaks",September 1976.-"DFORCE-DesignBasisPipeBreaks",September 1976.-"MSC/NASTRAN
-User'sManual",McNealSchwandler Corporation, LosAngeles,California.
-"WCAP9570Class3-Mechanistic FractureEvaluation ofReactorCoolant10/PipeContaining aPostulated Circumferential ThruWallCrack",byPalusamy, S.S.,andA.J.Hartmann, October1979.-Ayers,D.J.andT.J.Griesbach,
'-'Opening andE~tension ofCircumferential CracksinaPipeSubjected toDynamicLoads",FifthInternational Conference ofStructural Mechanics inReactorTechnology, Berlin,Germany,1979.-Griffin,J.H.,"MEC-21-APipingFlexibility AnalysisProgram",
TID-4500(31stedition),
LA-2924,UC-38,July14,1964.
TABLE1ST.LUCIE1NORMALANDSEISMICSUPPORTLOADS(X106LB.)
CONDITION LOADH1V1NV10.GGG4195.0281.155i.360IIOAMALOPEIIATING THEGMAL+DEADDEADVIEIGHTV(EIGHT.005.032ODESEISMICSY.002.335-.G44-.04G.011.064DBESEISSIICSY.005.6701.288-.092IfNAV1V$tVHZV2NV2.G64a.195-.091.72Gk.2151.226.017.001.253+.355-.264-.3802.452035.003.507+.710-.528.761ivtI$$ACIOIIV$$$($$Vt(OIIIA(ACIIO(N V3NV3Z11Z12Y1Y2Y3Y4xNYx.19500.300.3001.3001.3000a.376.741%.215.367000.3151.009.3200S.30000.016-.057.086-.0540.0791.139-.019-.060.G2300-.019.155.417.1520.270-.349.743S.19541970.060-.07105802.278-.00600.033-.1'14.173-.1080-.038~120.50G00-.039211.835.3050.540.6SS.746S.390S.3940.121.143.1160Y$$($YI.vhVf$(fANC(N(AAION LOW(N$V(YOA1$YI($($N Table2Comparison ofPeakCalculated andDesignSeismic(DBE)LoadsatRepresentative Locations Design(Kips)Horizontal VerticalCalculated (Kips)Horizontal VerticalColdLegSptHotLegSptl,2937622,455.1,268522.6515.0354.6429.4 Table3St.LucieUnitfi'1RVSUPPORTIfAXABSREACTIONS (KIPS)-LOCA+SEISMIC(SRSS)4FTCLGBREAKATNOZZLElAOR2ALOCATIONS 8'1ASPPTRVSPPTSTIFFNESS VALUESK='4.62x10lb/in6K~59.71x10lb/in6K=77.54x10lb/in6-K=75.83x10lb/in6VerticalHorizontal 1397150223171587ulBSPPTVerticalHorizontal 2800533122515473-HotLegSPPTVerticalHorizontal 3458749330487777ForLOCA+Nopreactions, addthesevaluestotheverticalresults:~21ASPPT710~K81BSPPT726.KHotLegSPPT1157K+Forbreakatnozzle1Bor2B,theloadsonthecoldlegsupportswouldbereversed Table4St,Lucie1ReactorPressureVesselSupportCapacitySteelsupportstructure
-horizontal 8400kips*(concrete islimiting)
Steelsupportstructure
-verticaldownward12000kipsReactorCavityWallReactorCavityWallReactorSupportPadsReactorSupportPadshorizontal verticalhorizontal vertical".13000kips*~notlimitingSeeFigure4SeeFigure4Loadonindividual girder*<Allowable resultant asymmetric mechanical loadtransmitted alonggirderstoconcrete, basedonrebarmeanaxialstress'being withinyield.
TABLE5STEAMGENERATOR LOWERSUPPORTCALCULATEDANDDESIGNLOADSIREFERTOTABLE1FORSYMBOLS)SUPPORTZ11Z12FRONTY1SIDEY2BACKY3SIDEY4X-STOPZ1Z2CLGUILLNO.1+DBEIRSS)727806-406.9-756.5-605.0-300.178194301HLGUILLNO.2+DBEIRSS)42-2487.7-1176.4+1249.0-1175.9-5194.92784040DESIGNLOADLOCA+DBE3,600-1,868"-1,770-1I737-,691-1,7345,648,301-1,5741,800IKANDFT-KIPS)9gSTEAMGENERATOR/
SLIDINGBASESUPPORTSKIRTINTERFACE
.FxFyFz'xMzIHLGUILL)LOCA5205-3582M609RSSLOCA5DBE5205-35826.8418.34614SLIDINGBASEDESIGNLOADS5653-2,471.011.032.024.01003"ANEGATIVESIGNMEANSTENSION Table6St.LucieUnitIIlReactorCoolantSystemReactorPressureVesselandReactorCoolantPumpNozzleLoadsDuetoa4ftReactorVessel1AInletNozzle-Guillotine BreakPIPERUPTURERSSMOMENT(In-Kis)NozzleRCPDischarge RCPSuctionRVInletRVOutletRCPSnubber109,30050,50071,75050,150RCPSnubberNotAc~tin109,60054,55071,91050,170SeismicMoment(In-Kis)5,9107,2565,2722,535Allowable Moment(In-Kis)96,81078,96578,965279,340 Table7St.LucieUnitNo.1Connected PipingStressesCalculated vs.Allowable 4.0sq.ft.CLGInletBreakDesignPoint(RefertoFiure5)Calculated Stress(Eu.10ASME)Allowable Stress3X5639,07075,152*75,030*41,83543,47547,69033,43020,17148,60048,60048,60048,60048,60048,60048,60048,600Functionability andintegrity areassuredifLevelB(upsetconditions) limitsoftheASMEBoilerandPressureVesselCode,SectionIII,Division1arenotexceeded.
Functionability isimportant atpoints5and6wherethevalveis.Atpoints2and3,theselimitsareexceeded.
However,LevelD(faultedlimits)arenotexceededatthesetwopoints.LevelDlimitsareusedtodemonstrate thatintegrity ismaintained.
Equation(9)atthosetwopointswouldyield45,043psi.and44,479psirespectively withanallowable of48,600psi.
FIGURE1RELAP4510DELFORST.LUCIEPR)MARYCOOLANTSYSTEM3')3256004591160305731$131458839615168123377462634862eoo91063951123241Z1314153116175419204$414245462122255123472448QS3,265973500>>378551767S4948476152(A1)8081536335(81)717043424140Q6955S6S7Qoo'(a2)98VAt.VB74734645(82)Q72 FIGURE2ST.LUCIE1RCS-V/HAM/6MODELFORIALpssQssQss107741060721087110410310111312102811482020187538658eo8583~84891091107069>>5757677g1148P8178821Q117018192013'4261828270,0,0,800477946Qs20101681512191631495157956261962'00996766242598Qss003542224303844,7746230~3932Qss3340(A1)(81)41Qss4552oo5358604269614I76075747338041554962=56P1P14P10~~Xo>>904072120697167118~83070Pso211220~BRGAKP5(A2)P18(82)
FIGUPESAST.LUCIE1REDUCEDMODELOFREACTORINTERPeALS UGS38'A18:AZ'2.16HX-DIRIS//TOOUTLETNOZZLES'"
28I10'926'4,',22',FUEL'CORESHROUD.CSB20,A13HLEGENDA~AXIALGAPH=HORIZONTAL GAP//=PRELOADED COUPLING=GAPCOUPLING=COLINEARCONNECTOR
'SEEFIGURE3bFORDETAILSOFREACTORVESSELSANDPIPING v1'FIGURE38STLUCIE1REDUCEDMODELOFREACTORCOOLANTSYSTEMTOS.G.NO.1'rrro99189999REACTORVESSELHOTLEGTOS.G.NO.29909INTERNALS
'SEEFIGURE3aFORDETAILSOFINTERNALS) 9905rr~ro9914o9913oLUMPEDMASS0POINTOFAPPLIEDFORCE
.FIGURE4ST.LUCIE1.-:REACTORPRESSUREVESSELSUPPORTPADCAPABILITY IhC'K-10HOTLEGSUPPORT,='4.0SO.FT.CLG'COMPUTED MAXLOADSi(LOCA+SEISMIC+Mop)IQA(HOTLEGSUPPORTQB!VNBROl<EN COLDLEGSUPPORTBROI<ENCOLDLEGSUPPORTQA~l'0Z'I0'40:~ICOLDLEGSUPPORTSp.1;2.3'.4:5I6:7.,8,9,10..1112;13:14,15,-16 Rqx10(K)VERTICALLOAD.
FIXED"-~45,-37x3536DISPLACEMENTS SPECIFIED 302942432883027274510314511'l2FlGURE5':24-FIXEDSAFETYINJECTlQNLINE1-8-1(PREVIOUS 972)FLGRIDAPORFB8LIGHTOOMPANYSTLUCIENO.113141517~O2120182322t
'<'s~I