ML080710412: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Duke                                                   JAMES R.MORRIS, VICE PRESIDENT Energ                                                 Duke Energy Carolinas,LLC Carolinas                                             Catawba Nuclear Station / CN01 VP 4800 Concord Road York, SC 29745 803-831-4251 803-831-3221 fax March 3,   2008 U.S. Nuclear Regulatory Commission ATTENTION:   Document Control Desk Washington, D.C. 20555-0001
{{#Wiki_filter:Duke JAMES R. MORRIS, VICE PRESIDENT Energ Duke Energy Carolinas, LLC Carolinas Catawba Nuclear Station / CN01 VP 4800 Concord Road York, SC 29745 803-831-4251 803-831-3221 fax March 3, 2008 U.S. Nuclear Regulatory Commission ATTENTION:
Document Control Desk Washington, D.C. 20555-0001


==Subject:==
==Subject:==
Line 24: Line 25:
This letter and attached COLR do not contain any new commitments.
This letter and attached COLR do not contain any new commitments.
Please direct any questions or concerns to Marc Sawicki at (803) 831-5191.
Please direct any questions or concerns to Marc Sawicki at (803) 831-5191.
Sincerely, James R. Morris Attachments 4orADD www. duke-energy.corn
Sincerely, James R. Morris Attachments 4orADD www. duke-energy. corn


U. S. Nuclear Regulatory Commission March 3, 2008 Page 2 xc:   (w/att)
U.
Victor M. McCree (Acting), Region II Administrator U.S. Nuclear Regulatory Commission Sam Nunn Atlanta Federal Center, 23 T85 61 Forsyth St., SW Atlanta, GA 30303-8931 J. F. Stang, Jr., Senior Project Manager (CNS & MNS)
S.
U.S. Nuclear Regulatory Commission 11555 Rockville Pike Mail Stop 8 G9A Rockville, MD 20852-2738 A. T. Sabisch Senior Resident Inspector U.S. Nuclear Regulatory Commission Catawba Nuclear Station
Nuclear Regulatory Commission March 3, 2008 Page 2 xc:
(w/att)
Victor M. McCree (Acting),
Region II Administrator U.S. Nuclear Regulatory Commission Sam Nunn Atlanta Federal Center, 23 T85 61 Forsyth St.,
SW Atlanta, GA 30303-8931 J.
F.
Stang, Jr., Senior Project Manager (CNS & MNS)
U.S. Nuclear Regulatory Commission 11555 Rockville Pike Mail Stop 8 G9A Rockville, MD 20852-2738 A.
T. Sabisch Senior Resident Inspector U.S. Nuclear Regulatory Commission Catawba Nuclear Station


I; CNEI-0400-149 Page 1 of 32 Revision 1 Catawba Unit 2 Cycle 16 Core Operating Limits Report Revision 1 February 2008 Duke Power Company Date Prepared By:
I; CNEI-0400-149 Page 1 of 32 Revision 1 Catawba Unit 2 Cycle 16 Core Operating Limits Report Revision 1 February 2008 Duke Power Company Date Prepared By:
1~4 Checked By:                                            a/2I aozL?
Checked By:
Checked By:                                            g:42   Lev aI Approved By:
Checked By:
QA Condition 1 The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.
Approved By:
1~4 a/2I aozL?
g:42 Lev a I QA Condition 1 The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.


.I I, CNEI-0400-149 Page 2 of 32 Revision 1 INSPECTION OF ENGINEERING INSTRUCTIONS Inspection Waived By:         keA~                              Date: 2"za"   cj (Sponsor)           0I CATAWBA Inspection Waived MCE (Mechanical& Civil)               le-     Inspected By/Date:
. I I,
RES (Electrical Only)                 L       Inspected By/Date:
CNEI-0400-149 Page 2 of 32 Revision 1 INSPECTION OF ENGINEERING INSTRUCTIONS keA~
RES (Reactor)                         L&. Inspected By/Date:
Inspection Waived By:
MOD                                   P"'     Inspected By/Date:
Date:
Other (                 )             I]     Inspected By/Date:
2"za" cj (Sponsor) 0I CATAWBA Inspection Waived MCE (Mechanical& Civil) le-Inspected By/Date:
OCONEE Inspection Waived MCE (Mechanical & Civil)               0       Inspected By/Date:
RES (Electrical Only)
RES (Electrical Only).                 0       Inspected By/Date:
L Inspected By/Date:
RES (Reactor)                         0       Inspected By/Date:
RES (Reactor)
MOD                                   U       Inspected By/Date:
L&.
Other ( _)                             U     Inspected By/Date:
Inspected By/Date:
MCGUIRE Inspection Waived MCE (Mechanical & Civil)               0       Inspected By/Date:
MOD P"'
RES (Electrical Only)                   _      Inspected By/Date:
Inspected By/Date:
RES (Reactor)                         0       Inspected By/Date:
Other (  
MOD                                     2     Inspected By/Date:
)
Other( _-                                     Inspected By/Date:
I]
Inspected By/Date:
OCONEE Inspection Waived MCE (Mechanical & Civil) 0 Inspected By/Date:
RES (Electrical Only).
0 Inspected By/Date:
RES (Reactor) 0 Inspected By/Date:
MOD U
Inspected By/Date:
Other ( _)
U Inspected By/Date:
MCGUIRE Inspection Waived MCE (Mechanical & Civil) 0 Inspected By/Date:
RES (Electrical Only)
Inspected By/Date:
RES (Reactor) 0 Inspected By/Date:
MOD 2
Inspected By/Date:
Other( _-
Inspected By/Date:


1<
1<
Line 56: Line 84:
TheCatawba Unit 2 Cycle 16 COLR will cease to. be effective during No MODE between Cycle 16 and 17.
TheCatawba Unit 2 Cycle 16 COLR will cease to. be effective during No MODE between Cycle 16 and 17.
Data files to be Implemented No data files are transmitted as part of this document.
Data files to be Implemented No data files are transmitted as part of this document.
* V.
CNEI-0400-149 Page 4 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report REVISION LOG Revision            Effective Date                COLR 0                September 2007            C2C16 COLR rev. 0 1              February 2008.            C2C16 COLR rev. 1 Insertion/Deletion Instructions Remove                                              Insert pages 1- 32, of rev 0                                pages 1- 32 of rev 1


CNEI-0400-149 Page 5 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report 1.0   Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference this report are listed below:
V.
TS                                                                                         COLR j
CNEI-0400-149 Page 4 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report REVISION LOG Revision 0
COLR Section                 Technical Specifications                       CQLR Parameter         Section.     Page 2.1.1           Reactor Core Safety Limits                 I RCS Temperature and Pressure     2.1           9
1 Effective Date September 2007 February 2008.
        ".....-.-.--.-.                                          ISafety Limits 3.1.1             Shutdown Margin                               Shutdown Margin                 2.2           9 3.1.3 .           Moderator Temperature Coefficient             MTC           ""2.3                           11 3.1.4         1 Rod Group Alignment Limits                     Shutdown Margin                 2.2 "        9 3.1.5             Shutdown Bank Insertion Limit                 Shutdown Margin                 2.2 Rod Insertion Limits.           2.4         11
COLR C2C16 COLR rev. 0 C2C16 COLR rev. 1 Insertion/Deletion Instructions Remove Insert pages 1-32, of rev 0 pages 1-32 of rev 1
    .3.1.6             Control Bank Insertion Limit                 Shutdown Margin .                2.2           9
 
_____Rod                                             Insertion Limits         , 2.5_ _      15 3.1.8.       i PhysicsTestsExceptions ..                       Shutdown Margin           _      2.2           9 3.2.1             Heat Flux Hot ChannelFactor                                                   26.           15 AFD                               2.8     . 21 OTAT                           .2.9         24
CNEI-0400-149 Page 5 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference this report are listed below:
                                                              -      Penalty Factors                   2.6         15 3.2.2             Nuclear Enthalpy Rise Hot Channel             FAH                               2.7         20 Factor __          _        _Penalty                 Factors               1 2.7           20 3.2.3             Axial Flux Difference                         AFD                               2.8 _      21 3.3.1             Reactor Trip System Instrumentation       1:OTAT                               2.9         24
TS COLR COLR Section Technical Specifications j
___              ._                iOPAT                               2.9         24
CQLR Parameter Section.
    -3.3.9-           Boron Dilution Mitigation System             Reactor Makeup Water Flow Rate   2.10         26 3.4.1           RCS Pressure, Temperature and Flow RCS Pressure, Temperature and               2.11         26
Page 2.1.1 Reactor Core Safety Limits I RCS Temperature and Pressure 2.1 9
                  -   limits.for DNB                         .Flow 3.5.1             Accumulators                         -        Max and Min Boron Cone.         2.12         26 3.5.4           Refueling Water Storage Tank                   Max and Min Boron. Conc.         2.13         26.
ISafety Limits 3.1.1 Shutdown Margin Shutdown Margin 2.2 9
    -3.715 .           Spent Fuel Pool Boron Concentration           Mi-n-Boron Concentration         2.14     .i 28 3.9.1             Refueling Operations - Boron               i Mm Boron Concentration           2.15         28 Concentration           "                    _                __i 5.6.5         iCore Operating Limits Report                     Analytical Methods               i.1         6 (COLR)                                       _      _      _        _  _
3.1.3.
Moderator Temperature Coefficient MTC  
""2.3 11 3.1.4 1 Rod Group Alignment Limits Shutdown Margin 2.2 9
3.1.5 Shutdown Bank Insertion Limit Shutdown Margin 2.2 Rod Insertion Limits.
2.4 11
.3.1.6 Control Bank Insertion Limit Shutdown Margin 2.2 9
_____Rod Insertion Limits 2.5_
15 3.1.8.
i PhysicsTestsExceptions..
Shutdown Margin 2.2 9
3.2.1 Heat Flux Hot ChannelFactor
: 26.
15 AFD 2.8 21 OTAT  
.2.9 24 Penalty Factors 2.6 15 3.2.2 Nuclear Enthalpy Rise Hot Channel FAH 2.7 20 Factor
_Penalty Factors 1
2.7 20 3.2.3 Axial Flux Difference AFD 2.8 21 3.3.1 Reactor Trip System Instrumentation 1: OTAT 2.9 24 iOPAT 2.9 24
-3.3.9-Boron Dilution Mitigation System Reactor Makeup Water Flow Rate 2.10 26 3.4.1 RCS Pressure, Temperature and Flow RCS Pressure, Temperature and 2.11 26
- limits.for DNB  
.Flow 3.5.1 Accumulators Max and Min Boron Cone.
2.12 26 3.5.4 Refueling Water Storage Tank Max and Min Boron. Conc.
2.13 26.
-3.715.
Spent Fuel Pool Boron Concentration Mi-n-Boron Concentration 2.14  
.i 28 3.9.1 Refueling Operations - Boron i Mm Boron Concentration 2.15 28 Concentration
__i 5.6.5 iCore Operating Limits Report Analytical Methods i.1 6
(COLR)
The Selected License Commitments that reference"this report are listed below:
The Selected License Commitments that reference"this report are listed below:
SLC,                                                                       Pcon COLR Section           Selected Licensing Commitment                     -COLR Parameter         Section       Page 16.7-9.3         Standby Shutdown System                   Standby Makeup Pump Water         2.16         29 S . .......                 Supply         "
: SLC, COLR Pcon Section Selected Licensing Commitment  
16.9-11         Boration Systems - Borated Water       . Borated.Water Volume and Conc. 2.17         29 iSource - Shutdown.               .        for BAT/RWST                             *__
-COLR Parameter Section Page 16.7-9.3 Standby Shutdown System Standby Makeup Pump Water 2.16 29 S........
16.9-12,         Boration Systems - Borated Water       I Borated Water Volume and Conc.     2.18         30
Supply 16.9-11 Boration Systems - Borated Water  
_   Source - Operating                       for BAT/RWST
. Borated.Water Volume and Conc.
2.17 29 i Source - Shutdown.
for BAT/RWST 16.9-12, Boration Systems - Borated Water I Borated Water Volume and Conc.
2.18 30
_ Source - Operating for BAT/RWST


CNEI-0400-149 Page 6 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC are as follows.
CNEI-0400-149 Page 6 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC are as follows.
Line 81: Line 136:
: 2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, "(W Proprietary).
: 2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, "(W Proprietary).
Revision 0 Report Date: August 1985
Revision 0 Report Date: August 1985
: 3. WCAP-10266-P-A, "THE 198.1 VERSION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", (W Proprietary).
: 3.
WCAP-10266-P-A, "THE 198.1 VERSION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", (W Proprietary).
Revision 2 Report Date: March 1987 Not Used for C2C16
Revision 2 Report Date: March 1987 Not Used for C2C16
: 4. WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis,'" (W. Proprietary).
: 4.
WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis,'" (W. Proprietary).
Revision: Volume I (Revision 2) and Volumes 2-5 (Revision 1)
Revision: Volume I (Revision 2) and Volumes 2-5 (Revision 1)
ReportDate: March 1998
ReportDate: March 1998
: 5. BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).
: 5.
BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).
Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996.
Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996.
Revision 3 SER Date: June 15, 1994.
Revision 3 SER Date: June 15, 1994.
Line 94: Line 152:
: 6. DPC-NE-3000PA, 'Thermal-Hydraulic Transient.Analysis Methodology," (DPC Proprietary).
: 6. DPC-NE-3000PA, 'Thermal-Hydraulic Transient.Analysis Methodology," (DPC Proprietary).
Revision 3 SER Date:. September 24, 2003
Revision 3 SER Date:. September 24, 2003
: 7. DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).
: 7.
DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).
Revision 0 Report Date: November 15, 1991, republished December 2000
Revision 0 Report Date: November 15, 1991, republished December 2000
: 8. DPC-NE-3002A, "UFSAR Chapter 15 System Transient Analysis Methodology".
: 8.
DPC-NE-3002A, "UFSAR Chapter 15 System Transient Analysis Methodology".
Revision 4 SER Date: April 6, 2001
Revision 4 SER Date: April 6, 2001
: 9. DPC-NE-2004P-A, 1"Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).
: 9. DPC-NE-2004P-A, 1"Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).
Line 123: Line 183:
2.1 Reactor Core Safety Limits (TS 2.1.1)
2.1 Reactor Core Safety Limits (TS 2.1.1)
The Reactor Core Safety Limits are shown in Figure 1.
The Reactor Core Safety Limits are shown in Figure 1.
2.2 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8) 2.2.1   For TS 3.1.1, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2with Keff < 1.0 and in modes 3 and4.
2.2 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8) 2.2.1 For TS 3.1.1, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2with Keff < 1.0 and in modes 3 and4.
2.2.2   For TS 3.1.1, shutdown margin shall be greater than or equal to 1.0% AK/K in mode 5.
2.2.2 For TS 3.1.1, shutdown margin shall be greater than or equal to 1.0% AK/K in mode 5.
2.2.3   For TS 3.1.4, shutdown margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2.
2.2.3 For TS 3.1.4, shutdown margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2.
2.2.4   For TS 3.1.5, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.
2.2.4 For TS 3.1.5, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.
2.2.5   For TS 3.1.6, shutdown.margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2 with Keff > 1.0.
2.2.5 For TS 3.1.6, shutdown.margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2 with Keff > 1.0.
2.2.6* For TS 3.1.8, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2 during Physics Testing.
2.2.6*
For TS 3.1.8, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2 during Physics Testing.


CNEI-0400-149 Page 10 of 32 Revision I Catawba.2 Cycle 16 Core Operating Limits Report Figure 1 Reactor Core Safety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660                                   '_'
CNEI-0400-149 Page 10 of 32 Revision I Catawba.2 Cycle 16 Core Operating Limits Report Figure 1 Reactor Core Safety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 650 6000 630 02280 psia (9 620 610 600 590 ACCEPTABLE OPERATION 580 I
650                                                                                 .
0.0 0.2 0.4 0.6 0.8 1.0.
02280                                 psia (9 620     6000    .                  ..                                ___
1.2 Fraction of Rated Thermal Power '
610                                                       _____
630 600                                                     _____
590                                                                   _____
ACCEPTABLE OPERATION 580                         I                                   _ _      _      _
0.0     0.2         0.4           0.6         0.8           1.0.             1.2 Fraction of Rated Thermal Power '


CNEI-0400-149 Page II of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.3 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.3.1   The Moderator Temperature Coefficient (MTC) Limits are:
CNEI-0400-149 Page II of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.3 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.3.1 The Moderator Temperature Coefficient (MTC) Limits are:
The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than 0.7E-04 AK/K/&deg;F.
The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than 0.7E-04 AK/K/&deg;F.
The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AK/K/IF lower MTC limit.
The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AK/K/IF lower MTC limit.
2.3.2   The 300 ppm MTC Surveillance Limit is:
2.3.2 The 300 ppm MTC Surveillance Limit is:
The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/&deg;F.
The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/&deg;F.
2.3.3   The 60 PPM MTC Surveillance Limit is:
2.3.3 The 60 PPM MTC Surveillance Limit is:
The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to
The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to
            -4.125E-04 AK/KI 0F.
-4.125E-04 AK/KI0F.
Where:         BOC = Beginning of Cycle (bumup corresponding to most positive MTC)
Where:
EOC = End of Cycle ARO =   All Rods Out HZP =   Hot Zero Thermal Power RTP =   Rated Thermal Power PPM -   Parts per million (Boron) 2.4 Shutdown Bank Insertion Limit (TS 3.1.5) 2.4.1   Each shutdown bank shall be withdrawn to at least 222 steps except under the special conditions listed-below. Shutdown banks are withdrawn in sequence and with no overlap.
BOC = Beginning of Cycle (bumup corresponding to most positive MTC)
EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Thermal Power RTP = Rated Thermal Power PPM - Parts per million (Boron) 2.4 Shutdown Bank Insertion Limit (TS 3.1.5) 2.4.1 Each shutdown bank shall be withdrawn to at least 222 steps except under the special conditions listed-below. Shutdown banks are withdrawn in sequence and with no overlap.
Special conditions Shutdown Banks C, D, and E can be inserted to 212 steps withdrawn individually with the following restrictions.
Special conditions Shutdown Banks C, D, and E can be inserted to 212 steps withdrawn individually with the following restrictions.
* The cycle average burnup must be between 100.5 and 102.5 EFPD
The cycle average burnup must be between 100.5 and 102.5 EFPD Steady state operation near 100%FP prior to entering special conditions
* Steady state operation near 100%FP prior to entering special conditions


CNEI-0400-149 Page 12 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 0.9 -
CNEI-0400-149 Page 12 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 W
Unacceptable Operation 0.8   -
W Z
0.7 W
W Q.*
0.6 0       -
0.9 -
W      0.5 --
0.8 -
Q.*
0.7 0.6 -
Z  C? 0.4   -             Acceptable Operation 0.3 W
Unacceptable Operation 0
0.2-0.1 0.0                 I                       I 0     10   20     30     40     50 60     70     80     90     100 Percent.of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
C?
0.5 --
0.4 -
0.3 0.2-0.1 Acceptable Operation 0.0 I
I 0
10 20 30 40 50 60 70 80 90 100 Percent.of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
Refer to the Unit 2 ROD manual for details.
Refer to the Unit 2 ROD manual for details.


CNEI-0400-149 Page 13 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 3 Control Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn (Maximum = 231)         (29.6%, 231)                                           (80.0%, 231) 231 220                                                 'Fully Withdrawn.
CNEI-0400-149 Page 13 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 3 Control Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn (Maximum = 231)
(29.6%, 231)
(80.0%, 231) 231 220 200 180 160 140.
"* 120 100
.2 80 60 40
'Fully Withdrawn.
(Minimum =222)'
(Minimum =222)'
200 Control Bank B 180 160    (0%, 163)(10,6)-
Control Bank B (0%, 163)(10,6)-
140.
Control Bank C Control Bank D (0%, 47)
Control Bank C
(300, 0)
"* 120 100
(30%, 0) 20 0
.2  80                                                                      Control Bank D
0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can becalculated by:
  ,  60 40      (0%, 47)           (300, 0) 20 (30%, 0) 0 0           10       20         30         40         50       60       70       80         90     100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can becalculated by:
Bank CD RIL= 2.3(P)-69 {30< P51O0}0.
Bank CD RIL= 2.3(P)-69 {30< P51O0}0.
Bank CC RIL 2.3(P)+ 47 {0:< P* 80}
Bank CC RIL 2.3(P)+ 47 {0:< P* 80}
Bank CB RIL =2.3(P)+ 163 .{0 < P* 29.6}
Bank CB RIL =2.3(P)+ 163.{0 < P* 29.6}
where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.
Refer to the Unit 2 ROD manual for details.
Refer to the Unit 2 ROD manual for details.
Anytime the shutdown banks are inserted below 222 steps withdrawn control bank D insertion is limited to 200 steps withdrawn (see Section 2.4.1 special conditions)
Anytime the shutdown banks are inserted below 222 steps withdrawn control bank D insertion is limited to 200 steps withdrawn (see Section 2.4.1 special conditions)


CNEI-0400-149 Page 14 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 1 Control Bank Withdrawal Steps and Sequence Fully Withdrawn at 222 Steps                       Fully Withdrawn at 223 Steps Control Control Control Control                  Control       Control'    Control   Control Bank A Bank B Bank C Bank D                      Bank A      Bank B      Bank C    Bank D 0 Start       0           0         0         0 Start           0         0       0 116     0 Start       0         0           116         0 Start         0        0 222 Stop     106           0         0         223 Stop         ' 07         0       0 222        116      0 Start      0           223             116     0 Start     0 222    222 Stop      106        0            223       223 Stop       107       0 222      222          116    .0 Start
CNEI-0400-149 Page 14 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 1 Control Bank Withdrawal Steps and Sequence Fully Withdrawn at 222 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0
* 223           223         116   0 Start 222      222      222 Stop      106          223           223   223 Stop     107 Fully Withdrawn at 225 Steps Fully Withdrawn at 224 Steps Control Control Control Control                  Control     Control     Control   Control BankA, BankB BankC BanklD                        Bank A       Bank B     Bank C   Bank D, 0 Start.      0           0         0         0 Start           0         0       0 116     0 Start       0         0           116,        0 Start         0       0 224 Stop       108.         0         0        225 Stop'          109        0        0 224       116     -0 Start       0            225            116      0 Start    0 224     224 Stop       108
0 0
* 0            225        225 Stop        109      0
116 0 Start 0
.. 224       224       " 1.16     0 Start        225            225        116    0 Start 224       224     224 Stop.     108           225            225    225 Stop      109 Fully Withdrawn at 226 Steps                      Fully Withdrawn at 227 Steps Control Control . Control Control                Control Control          Control  Control Bank A       Bank B Bank C Bank D                 Bank A       Bank B. Bank C       Bank D 0 Start       0           0         0         0 Start           0           0       0 116     0Start        0.*       0           116         0 Start         0       0 226 Stop      110          0         0         227 Stop           111 ' . 0       0 226        116      0 Start      0            227             116     0 Start     0 22 226    226 Stop      110        0            227           7 Stop     111       0 226      226          116      0 Start        227           227         116   0 Start 226      226      226 Stop      110          227           .227   227 Stop     IlI Fully Withdrawn at 228 Steps                      Fully Withdrawn at229 Steps Control Control Control Control                   Control Control          Control  Control Bank A Bank'B          Bank C Bank D            BankAX       Bank B     Bank C   Bank D 0 Start       0           0          0          0 Start            0        "0         0 116     0 Start       0         0            116        0 Start        0        0 228 Stop      112'.        0          01        229 Stop           113.       0       0 228        116. .      Start      0            229             116'     0 Start     0 228    228 Stop      112        *0            229       229 Stop       113       0 228      228          116. 0 Start        229           229         116   0 Start 228      228    . 228 Stop      112          229     .. 229       229 Stop,   113 Fully Withdrawn at 230 Steps                      Fully Withdrawn at 231 Steps Control
0 222 Stop 106 0
* Control Control Control               Control      Control    Control  Control Bank A Bank B Bank C Bank D                      Bank A       Bank B     Bank C   Bank D 0 Start       0           0         0         0 Start           0         0       0 116     0 Start       0'        0           116         0 Start         0        0 230 Stop     114           0         0         231 Stop          115        0       0 230        116       0 Start       0           231             116     0 Start     0 230    230 Stop      114        0            231'       231 Stop       115       0 230      230          116    ,OStart          231           231         116   0 Start 230      230      230 Stop      114          231           231 , 231 Stop     1.15,
0 222 116 0 Start 0
222 222 Stop 106 0
222 222 116  
.0 Start 222 222 222 Stop 106 Fully Withdrawn at 224 Steps Control Control Control Control
: BankA, BankB BankC BanklD Fully Withdrawn at 223 Steps Control Control' Control Control Bank A Bank B Bank C Bank D 0 Start 0
0 0
116 0 Start 0
0 223 Stop  
' 07 0
0 223 116 0 Start 0
223 223 Stop 107 0
* 223 223 116 0 Start 223 223 223 Stop 107 Fully Withdrawn at 225 Steps Control Control Control Control Bank A Bank B Bank C Bank D, 0 Start 0
0 0
: 116, 0 Start 0
0 225 Stop' 109 0
0 225 116 0 Start 0
225 225 Stop 109 0
225 225 116 0 Start 225 225 225 Stop 109 Fully Withdrawn at 227 Steps Control Control Control Control Bank A Bank B.
Bank C Bank D 0 Start.
0 0
0 116 0 Start 0
0 224 Stop 108.
0 0
224 116  
-0 Start 0
224 224 Stop 108 0
.. 224 224  
" 1.16 0 Start 224 224 224 Stop.
108 Fully Withdrawn at 226 Steps Control Control. Control Control Bank A Bank B Bank C Bank D 0 Start 0
0 0
116 0Start 0.*
0 226 Stop 110 0
0 226 116 0 Start 0
226 226 Stop 110 0
226 226 116 0 Start 226 226 226 Stop 110 Fully Withdrawn at 228 Steps Control Control Control Control Bank A Bank'B Bank C Bank D 0 Start 0
0 0
116 0 Start 0
0 228 Stop 112'.
0 01 228 116.
Start 0
228 228 Stop 112
*0 228 228 116.
0 Start 228 228
. 228 Stop 112 0 Start 0
0 0
116 0 Start 0
0 227 Stop 111 '
0 0
227 116 0 Start 0
227 2 2 7 Stop 111 0
227 227 116 0 Start 227  
.227 227 Stop IlI Fully Withdrawn at229 Steps Control Control Control Control BankAX Bank B Bank C Bank D 0 Start 0  
"0 0
116 0 Start 0
0 229 Stop 113.
0 0
229 116' 0 Start 0
229 229 Stop 113 0
229 229 116 0 Start 229 229 229 Stop, 113 Fully Withdrawn at 230 Steps Control
* Control Control Control Bank A Bank B Bank C Bank D 0 Start 0
0 0
116 0 Start 0'
0 230 Stop 114 0
0 230 116 0 Start 0
230 230 Stop 114 0
230 230 116  
,O Start 230 230 230 Stop 114 Fully Withdrawn at 231 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0
0 0
116 0 Start 0
0 231 Stop 115 0
0 231 116 0 Start 0
231' 231 Stop 115 0
231 231 116 0 Start 231 231,
231 Stop 1.15,


. 11 .
. 11 CNEI-0400-149 Page 15 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 2.5 Control Bank Insertion Limits (TS 3.1.6) 2.5.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.
CNEI-0400-149 Page 15 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 2.5 Control Bank Insertion Limits (TS 3.1.6) 2.5.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.
2.6 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.6.1 FQ(X,YZ) steady-state limits are defined by the following relationships:
2.6 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.6.1 FQ(X,YZ) steady-state limits are defined by the following relationships:
F rP*K(Z)/P.
F rP*K(Z)/P.             for P > 0.5 F RTP *K(Z)/0.5         for P < 0.5 where, P = (Thermal Power)/(Rated Power)
for P > 0.5 F RTP *K(Z)/0.5 for P < 0.5
Note: The measured FQ(X,Y,Z). shall be increased by 3% .to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.6.5 and 2.6.6.
: where, P = (Thermal Power)/(Rated Power)
2.6.2   F-QR    2.60 x K(BU) 2.6.3   K(Z) is the normalized FQ(X,Y,Z) as a function of core height.           K(Z) for Westinghouse RFA fuel is provided in Figure 4.
Note: The measured FQ(X,Y,Z). shall be increased by 3%.to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.6.5 and 2.6.6.
2.6.4   K(BU) is the normalized FQ(X,Y,Z) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 at all burnups.
2.6.2 F R 2.60 x K(BU)
-Q 2.6.3 K(Z) is the normalized FQ(X,Y,Z) as a function of core height.
K(Z) for Westinghouse RFA fuel is provided in Figure 4.
2.6.4 K(BU) is the normalized FQ(X,Y,Z) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 at all burnups.
The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:
The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:
FQ(X,Y,Z)     MQ(X,Y,Z) 2.6.5   [FQ(X,Y,Z)]OP         UMT
FQ(X,Y,Z)
MQ(X,Y,Z) 2.6.5
[FQ(X,Y,Z)]OP UMT
* MT
* MT
* TILT where:
* TILT where:
[Q .(X,Y,Z)]&deg;P       Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Y,Z) LOCA limitis not exceeded for operation within.the.AFD, RIL, and QPTR limits.
[Q.(X,Y,Z)]&deg;P Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Y,Z) LOCA limitis not exceeded for operation within.the.AFD, RIL, and QPTR limits.


CNEI-0400-149 Page 16 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report F   OP QF (X,Y,Z)]   includes allowances for calculational and measuremenV uncertainties.
CNEI-0400-149 Page 16 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report F
                    =
OP QF (X,Y,Z)] includes allowances for calculational and measuremenV uncertainties.
F(,YZ            Design power distribution for FQ. FQD.(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions and in
F(,YZ
                        .Appendix Table A-4 for power escalation testing during initial M(X,Y,Z)  =
=
startup operation.
M(X,Y,Z)
=
Design power distribution for FQ. FQD.(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions and in
.Appendix Table A-4 for power escalation testing during initial startup operation.
Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is. provided in..
Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is. provided in..
Appendix Table A-I for normal operating conditions and in
Appendix Table A-I for normal operating conditions and in
                        .Appendix Table A-4 for power escalation testing during..initial startup operation.
.Appendix Table A-4 for power escalation testing during..initial startup operation.
UMT =       Total Peak Measurement Uncertainty. (UMT = 1.05)
UMT =
MT "     Engineering Hot Channel Factor. (MT = 1.03)
Total Peak Measurement Uncertainty. (UMT = 1.05)
TILT       Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035)
MT "
Engineering Hot Channel Factor. (MT = 1.03)
TILT Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.6.6
[FPQ(X,Y,Z)I RS =
FIQ (X,YZ)
FIQ (X,YZ)
* Mc(X,Y,Z) 2.6.6 [FPQ(X,Y,Z)I RS  =
* Mc(X,Y,Z)
UMT
UMT
* MT
* MT
* TILT where:
* TILT where:
[-F&#xfd;(X,Y,Z)]RPS     Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Yz) Centerline Fuel Melt (CFM) limit is not exceeded for operation within the.AFD, RIL, and QPTR limits. [F6(X,Y,Z)]RPS1includes allowances for calculational and measurement uncertainties.
[-F&#xfd;(X,Y,Z)]RPS Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Yz) Centerline Fuel Melt (CFM) limit is not exceeded for operation within the.AFD, RIL, and QPTR limits. [F6(X,Y,Z)]RPS1includes allowances for calculational and measurement uncertainties.
FQ(X,Y,Z)=      Design power distributions for-FQ. FQ(XY,Z) is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operations.
Design power distributions for-FQ. FQ(XY,Z) is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operations.
Mc(X,Y,Z) =       Margin remaining to the CFM limit in core location X,Y,Z from the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions and in Appendix Table A-5 for power escalation testing during initial startup operations.
FQ(X,Y,Z)=
Mc(X,Y,Z) =
Margin remaining to the CFM limit in core location X,Y,Z from the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions and in Appendix Table A-5 for power escalation testing during initial startup operations.


CNEI-0400- 149 Page 17 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report UMT       Measurement Uncertainty (UMT = 1.05)
CNEI-0400- 149 Page 17 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report UMT Measurement Uncertainty (UMT = 1.05)
MT       Engineering Hot Channel Factor (MT = 1.03)
MT Engineering Hot Channel Factor (MT = 1.03)
TILT       Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.6.7 KSLOPE = 0.0725 where:
TILT Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.6.7 KSLOPE = 0.0725 where:
KSLOPE = the adjustment to the K1 value from OTAT trip setpoint required to L
KSLOPE = the adjustment to the K1 value from OTAT trip setpoint required to k
k        RPS compensate for each 1%. that Ff (X,Y,Z) exceeds [FQ (X,Y,Z)J       .
L RPS compensate for each 1%. that Ff (X,Y,Z) exceeds [F Q (X,Y,Z)J 2.6.8 FQ(X,Y,Z) Penalty Factors. for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.
2.6.8 FQ(X,Y,Z) Penalty Factors. for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.


CNEI-0400-149 Page 18 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(X,Y,Z) as a Function of Core Height for RFA Fuel 1.200 (0.0, 1.00)           .(4.0, 1.00)                           * .      (12.0, 0.9615) 1.000 (4.0, 0.9615) 0.800 No.6oo0 0.400 Core Height (ft)       K(Z)
CNEI-0400-149 Page 18 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(X,Y,Z) as a Function of Core Height for RFA Fuel 1.200 1.000 0.800 No.6oo0 0.400 (0.0, 1.00)  
                        .0.0       1.0000 0.200 -            < 4.0         1.0000
.(4.0, 1.00)
                      > 4.0     . 0.9615 12.0       0-9615 0.000 0.0                 2.0           4.0               6.0           8.0 10.0             12.0 Core Height (ft)
(12.0, 0.9615)
(4.0, 0.9615)
Core Height (ft)
K(Z)
.0.0 1.0000
< 4.0 1.0000
> 4.0.
0.9615 12.0 0-9615 0.200 -
0.000 0.0 2.0 4.0 6.0 Core Height (ft) 8.0 10.0 12.0


CNEI-0400-149 Page 19 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 2
CNEI-0400-149 Page 19 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 2
                  -FQ(X,Y,Z) and FtH(X,Y) Penalty Factors For Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2 Burnup                   FQ(X,Y,Z)                FAH(X,Y)
-FQ(X,Y,Z) and FtH(X,Y) Penalty Factors For Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2 Burnup (EFPD) 4 12 25 50 75 100 125.
(EFPD)              Penalty Factor(%)        Penalty Factor (%)
150 175 200 225 250 275 300 325 350 375 400 425 447 456 471 486 FQ(X,Y,Z)
4                      2.00                     2.00 12                      2.00                     2.00 25                      2.00                     2.00 50                      2.00                      2.00 75                      2.00                     2.00 100 2.00                     2.00 125.                      2.10                      2.00 150                      2.00                     2.00 175                      2.00                     2.00 200                      2.00                     2.00 225              -9      2.00                     2.00 250                      2.00                     2.00 275                      2.00                     2.00 300                      2.00                     2.00 325                      2.00                     2.00 350                      2.00                     2.00 375                      2.00                     2.00 400                      2.00                     2.00 425                      2.00                     2.00 447                      2.00                     2.00 456                      2.00                     2.00 471                      2.00                     2.00 486                      2.00                     2.00 Note: Linear interpolation is adequate for intermediate cycle bumups.
Penalty Factor(%)
2.00 2.00 2.00 2.00 2.00 2.00 2.10 2.00 2.00 2.00
-9 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 FAH(X,Y)
Penalty Factor (%)
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Note: Linear interpolation is adequate for intermediate cycle bumups.
All cycle burnups outside therange of thetable shall use a 2%
All cycle burnups outside therange of thetable shall use a 2%
      -penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.
-penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.


CNEI-0400- 149 Page 20 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.7 Nuclear Enthalpy Rise Hot Channel Factor - FAH(X,Y) (TS 3.2.2)
CNEI-0400- 149 Page 20 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.7 Nuclear Enthalpy Rise Hot Channel Factor - FAH(X,Y) (TS 3.2.2)
The FAH steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.
The FAH steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.
2.7.1   [FkH (X,y)]LCO= MARP (X,Y)*             1.0+ RR     (1.0 - P where:
2.7.1
[FkH (X,y)]LCO= MARP (X,Y)*
1.0+ RR (1.0 - P where:
[FkL (X, y)]LCO is defined as the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.
[FkL (X, y)]LCO is defined as the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.
MARP(X,Y) =             Cycle-specific operating limit Maximum Allowable Radial Peaks.: MARP(X,Y) radial peaking limits are provided in Table 3.
MARP(X,Y) =
                =     Thermal Power Rated Thermal Power RRH =Thermal Power reduction required-to compensate for each 1% that the measured radial peak, FL (X,Y), exceeds the limit.
Cycle-specific operating limit Maximum Allowable Radial Peaks.: MARP(X,Y) radial peaking limits are provided in Table 3.
=
Thermal Power Rated Thermal Power RRH =Thermal Power reduction required-to compensate for each 1% that the measured radial peak, FL (X,Y), exceeds the limit.
(RRH =3.34, 0.0 < P < 1.0)
(RRH =3.34, 0.0 < P < 1.0)
The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.
The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.
SSURV       FL (X, Y)
SSURV FL (X, Y)
* Ma,, (X, Y) 2.7.2   [F6Ll (X,Y)]         =         UMR
* Ma,, (X, Y) 2.7.2
* TTILT where:
[F6Ll (X,Y)]  
I   SURV
=
[FL (X,Y) I             Cycle dependent maximum allowable design peaking factor that ensures that the FAH(X,Y) limit is not exceeded for operation within the AFD, RIL, and QPTR limits.
T UMR
FL[ (X,y)SU'v includes allowances for calculational and measurement uncertainty.              D ""
* TILT where:
in FA r (X,Y)=       Design power distribution for FAH" FAH (X,Y) is provided Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.
I SURV
[FL (X,Y) I Cycle dependent maximum allowable design peaking factor that ensures that the FAH(X,Y) limit is not exceeded for operation within the AFD, RIL, and QPTR limits.
FL [ (X,y)SU'v includes allowances for calculational and FA r (X,Y)=
measurement uncertainty.
D ""
Design power distribution for FAH" FAH (X,Y) is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.


CNEI-0400-149 Page 21 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report MAH(XY) =Themargin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.
CNEI-0400-149 Page 21 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report MAH(XY) =Themargin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.
MAH(X,Y) is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.
MAH(X,Y) is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.
UMR       Uncertainty value for measured radial peaks. UMIR.is set to 1.0 since a factor of 1.04 is implicitly included. in the variable MAH(XY).
UMR Uncertainty value for measured radial peaks. UMIR.is set to 1.0 since a factor of 1.04 is implicitly included. in the variable MAH(XY).
TILT =Peaking penalty that accounts for allowable quadrant power
TILT =Peaking penalty that accounts for allowable quadrant power
                              *tilt ratio of 1.02. (TILT= 1.035) 2.7.3 RRH = 3.34 where:
* tilt ratio of 1.02. (TILT= 1.035) 2.7.3 RRH = 3.34 where:
RRH     Thermal Power reduction required to compensate for each 1% that the measured radial peak, FA (X,Y) exceeds its limit. (0 < P < 1.0) 2.7.4 TRH = 0.04 where:
RRH Thermal Power reduction required to compensate for each 1% that the measured radial peak, FA (X,Y) exceeds its limit. (0 < P < 1.0) 2.7.4 TRH = 0.04 where:
TRH=     Reduction in OTAT K1 setpoint required to compensate for each 1% that the measured radial peak, FAH(X,Y) exceeds its limit.
TRH=
2.7.5 F&H(X,Y) Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.          .
Reduction in OTAT K1 setpoint required to compensate for each 1% that the measured radial peak, FAH(X,Y) exceeds its limit.
2.8 Axial Flux Difference - AFD (TS 3.2.3) 2.8.1 The Axial Flux Difference (AFD).Limits are provided in Figure 5.
2.7.5 F&H(X,Y) Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.
2.8 Axial Flux Difference - AFD (TS 3.2.3) 2.8.1 The Axial Flux Difference (AFD).Limits are provided in Figure 5.


CNEI-0400-149 Page 22 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)
CNEI-0400-149 Page 22 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)
RFA Fuel MARPs 100% Full Power Core Height                                                   Axial Peak (ft) 1.05   1.1     1.2     1.3     1.4     1.5
RFA Fuel MARPs 100% Full Power Axial Peak Core Height (ft) 1.05 1.1 1.2 1.3 1.4 1.5
* 1.6         1.7     1.8     1.9   2.1. 3.0       3.25 0.12 1.8092 1.8553  1.9489  1.9953:  1.9741  2.1073    2.0498    2.009  1.9333  1.8625 1L778  1.3151    1.2461 1.20  1.8102 *1.854 1.9401 .1.9953   1.9741 .2.1073    2.0191  1.9775  1.9009  1.8306 1.7852 1.3007    1.2235 2.4C  1.8093 1.8525  1.9312  1.9779  1.9741  2.0735    1.9953. 1.9519  1.876  1.8054  1.732 1,4633    1.4616 3.6C  1.8098 1.8514  1.9204  1.9641  1.9741  2.0495    1.9656  1.9258' 1.8524  1.7855 1.6996 1.4675    1.3874 1.9741 4.8C  1.8097 1.8514  1.9058  1.9449          2.0059    1.9441  1.9233  1.8538  1.7836 1.6714 1.2987    1.2579 6.00  1.8097 1.8514 .1:8921  1.9212  .1.9455  1.9336    1.8798  1.8625. 1.8024  1.7472 1.6705 1.3293    1.2602 7.2C  1.807 1.8438  1,8716    1.893  1.8872  1.8723    1.8094  -1.7866  1.7332  1.6812 1.5982 1.2871    1.2195 8.4C  1.8073 1.8319  1.8452"  1.8571  1.8156  1.795    1.7359  1.7089  1.6544 .1.601  1.5127 1.2182    1.1578 9.6C  1.8072 1.8102  1.8093  1.7913  1.7375  1.71.82  1.6572   1.6347   1.5808 1.5301 1.4444 1.1431    1.0914 10.8C  1.798 1.7868  1.7611  1.7163  1.6538  1.6315    1.5743  1.5573  1.5088  1.4624 1.3832 1.1009    .1.047 11.40  1.7892 1.7652  1.725  1.6645  1.6057  1.5826    1.5289  1.5098 "1.4637  1.4218 1.3458  1.067- "1.0142
* 1.6 1.7 1.8 1.9 2.1.
3.0 3.25 0.12 1.20 2.4C 3.6C 4.8C 6.00 7.2C 8.4C 9.6C 10.8C 11.40 1.8092 1.8553 1.9489 1.9953:
1.8102  
*1.854 1.9401  
.1.9953 1.8093 1.8525 1.9312 1.9779 1.8098 1.8514 1.9204 1.9641 1.8097 1.8514 1.9058 1.9449 1.8097 1.8514
.1:8921 1.9212 1.807 1.8438 1,8716 1.893 1.8073 1.8319 1.8452" 1.8571 1.8072 1.8102 1.8093 1.7913 1.798 1.7868 1.7611 1.7163 1.7892 1.7652 1.725 1.6645 1.9741 1.9741 1.9741 1.9741 1.9741
.1.9455 1.8872 1.8156 1.7375
: 1. 6538 1.6057 2.1073
.2.1073 2.0735 2.0495 2.0059 1.9336 1.8723 1.795 1.71.82 1.6315 1.5826 2.0498 2.009 1.9333 1.8625 1L778 2.0191 1.9775 1.9009 1.8306 1.7852 1.9953.
1.9519 1.876 1.8054 1.732 1.9656 1.9258' 1.8524 1.7855 1.6996 1.9441 1.9233 1.8538 1.7836 1.6714 1.8798 1.8625.
1.8024 1.7472 1.6705 1.8094
-1.7866 1.7332 1.6812 1.5982 1.7359 1.7089 1.6544
.1.601 1.5127 1.6572 1.6347 1.5808 1.5301 1.4444 1.5743 1.5573 1.5088 1.4624 1.3832 1.5289 1.5098 "1.4637 1.4218 1.3458 1.3151 1.2461 1.3007 1.2235 1,4633 1.4616 1.4675 1.3874 1.2987 1.2579 1.3293 1.2602 1.2871 1.2195 1.2182 1.1578 1.1431 1.0914 1.1009
.1.047 1.067- "1.0142


CNEI-0400-149 Page 23 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits 0
CNEI-0400-149 Page 23 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits 0
  .0
.0
  -t=
-t=
F-
F-
        -50     -40     -30   -20       -10       0       10       20 30 40     50 Axial Flux Difference (% Delta I)
-50  
-40  
-30  
-20  
-10 0
10 20 30 40 50 Axial Flux Difference (% Delta I)
NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 2 ROD manual for operational AFD limits.
NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 2 ROD manual for operational AFD limits.


CNEI-0400-149 Page 24 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9   Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.9.1     Overtemperature AT Setpoint Parameter Values Parameter                                   Nominal Value Nominal Tavg at RTP                                                   T'< 590.8 OF Nominal RCS Operating Pressure                                         P' = 2235 psig Overtemperature AT reactor trip setpoint                               KI = 1.1953 Overtemperature AT reactor trip heatup setpoint                       K2 = 0.03163/&deg;F' penalty coefficient Overtemperature AT reactor trip depressurization                     K3 = 0.001414/psi setpoint penalty coefficient Time constants utilized in the.lead-lag compensator                   T1 = 8 sec.
CNEI-0400-149 Page 24 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.9.1 Overtemperature AT Setpoint Parameter Values Parameter Nominal Value Nominal Tavg at RTP Nominal RCS Operating Pressure Overtemperature AT reactor trip setpoint Overtemperature AT reactor trip heatup setpoint penalty coefficient Overtemperature AT reactor trip depressurization setpoint penalty coefficient Time constants utilized in the. lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constants utilized in the. lead-lag compensator for-Tavg Time constant utilized in the measured Tavg lag compensator f(AI) "positive" breakpoint fl(AI). "negative" breakpoint fl(AI) "positive' slope fl(AI) '.'negative" slope T'< 590.8 OF P' = 2235 psig KI = 1.1953 K2 = 0.03163/&deg;F' K3 = 0.001414/psi T1 = 8 sec.
for AT                                                                 T2 = 3 sec.
T2 = 3 sec.
Time constant utilized in the lag compensator for AT                   T3 = 0 sec.
T3 = 0 sec.
Time constants utilized in the. lead-lag compensator                   '4 = 22 sec.
'4 = 22 sec.
for-Tavg
'C5 = 4 sec.
                                                                                'C5 = 4 sec.
'6 =0 sec.
Time constant utilized in the measured Tavg lag                       '6 =0 sec.
- 3.0 %AI
compensator f(AI) "positive" breakpoint                                             -  3.0 %AI fl(AI). "negative" breakpoint                                           =N/A      "
=N/A
fl(AI) "positive' slope                                                 -  L525 %AT0/ %AI fl(AI) '.'negative" slope                                                 =N/A*
- L525 %AT0/ %AI
The fl(AI) negative breakpoints and slopes for OTATare less restrictive than the OPAT f2 (AI) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits the OPAT f2(AI).limits will result in a reactor trip before the OTAT fl(AI) limits are reached.. This makes implementation of an OTAT fl(AI) negative breakpoint and slope unnecessary.
=N/A*
The fl(AI) negative breakpoints and slopes for OTATare less restrictive than the OPAT f2(AI) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits the OPAT f2(AI).limits will result in a reactor trip before the OTAT fl(AI) limits are reached.. This makes implementation of an OTAT fl(AI) negative breakpoint and slope unnecessary.


CNEI-0400-149 Page 25 of 32 Revisionl1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9.2       Overpower AT Setpoint Parameter Values Parameter                       Nominal Value Nominal Tavg at RTP                                 T" < 590.8 'F Overpower AT reactor trip setpoint                  K4 = 1.0.819 Overpower AT reactor trip penalty                  .K5   0.02 / 'F for increasing Tavg K 5 = 0.00 / 'F for decreasing Tavg.
CNEI-0400-149 Page 25 of 32 Revisionl1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9.2 Overpower AT Setpoint Parameter Values Parameter Nominal Tavg at RTP Overpower AT reactor trip setpoint Overpower AT reactor trip penalty Overpower AT reactor trip heatup setpoint penalty coefficient Time, constants utilized in the lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constant utilized in the measured Tavg lag compensator Time constant utilized in the rate-lag controller for Tavg f2(AI) "positive" breakpoint f2(AI) "negative'! breakpoint f2(AI) "positive" slope f2(AI) "negative" slope Nominal Value T" < 590.8 'F K4 = 1.0.819
Overpower AT reactor trip heatup setpoint          K 6 = 0.001291/OF for T > T" penalty coefficient                                K6 = 0.0 i&deg;F for T < T" Time, constants utilized in the lead-lag            -1     8 sec.
.K5 0.02 / 'F for increasing Tavg K 5 = 0.00 / 'F for decreasing Tavg.
compensator for AT                                      = 3 sec.
K6 = 0.001291/OF for T > T" K6 = 0.0 i&deg;F for T < T"
Time constant utilized in the lag                      3= 0 sec.
-1 8 sec.
compensator for AT Time constant utilized in the measured Tavg        -6= 0 sec.
= 3 sec.
lag compensator Time constant utilized in the rate-lag                7: 10 sec.
3= 0 sec.
controller for Tavg f 2(AI) "positive" breakpoint                        = 35.0 %AI f 2(AI) "negative'! breakpoint                      =-35.0 %AI f 2(AI) "positive" slope                            - 7.0 %ATO %AI f 2(AI) "negative" slope                            - 7.0 %AT/ %AI
-6= 0 sec.
7: 10 sec.
= 35.0 %AI
=-35.0 %AI
- 7.0 %ATO %AI
- 7.0 %AT/ %AI


i &#xfd; &#xfd;' j CNEI-0400- 149 Page 26 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.10 Boron Dilution Mitigation System (TS 3.3.9) 2.10.1 Reactor Makeup Water Pump flow rate limits:
i &#xfd;  
Applicable Mode             Limit Mode 3               < 150 gpm Mode 4 or 5             < 70 gpm 2.11 RCS Pressure, Temperature and Flow Limits for DNB         (TS 3.4.1)
&#xfd;' j CNEI-0400- 149 Page 26 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.10 Boron Dilution Mitigation System (TS 3.3.9) 2.10.1 Reactor Makeup Water Pump flow rate limits:
Applicable Mode Limit Mode 3  
< 150 gpm Mode 4 or 5  
< 70 gpm 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)
The RCS pressure, temperature and flow limits for DNB are shown in Table 4.
The RCS pressure, temperature and flow limits for DNB are shown in Table 4.
2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure
2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure
                    >1000 psi:
>1000 psi:
Parameter                                   Limit Cold Leg Accumulator minimum boron concentration.               2,500 ppm Cold Leg Accumulator maximum boron concentration.               3,075 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:
Parameter Limit Cold Leg Accumulator minimum boron concentration.
Parameter                                   Limit Refueling Water Storage Tank minimum boron                       2,700 ppm concentration.
2,500 ppm Cold Leg Accumulator maximum boron concentration.
Refueling Water Storage Tank maximum boron                       3,075 ppm concentration.
3,075 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:
Parameter Limit Refueling Water Storage Tank minimum boron 2,700 ppm concentration.
Refueling Water Storage Tank maximum boron 3,075 ppm concentration.


CNEI-0400-149 Page 27 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable PARAMETER                   INDICATION   CHANNELS,       LIMITS
CNEI-0400-149 Page 27 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable PARAMETER INDICATION
: 1. Indicated RCS Average Temperature     meter               4     < 589.6 'F meter               3.     < 589.3 OF computer             4     < 590.1 OF computer             3     < 589.9 &deg;F
: CHANNELS, LIMITS
: 2. Indicated Pressurizer Pressure       meter               4     > 2219,8 psig meter               3     > 2222.1 psig computer             4     > 2215.8 psig computer             3     > 2217.5 psig
: 1. Indicated RCS Average Temperature meter 4  
: 3. RCS Total Flow Rate                                               > 390,000 gpm
< 589.6 'F meter
: 3.  
< 589.3 OF computer 4  
< 590.1 OF computer 3  
< 589.9 &deg;F
: 2. Indicated Pressurizer Pressure meter 4  
> 2219,8 psig meter 3  
> 2222.1 psig computer 4  
> 2215.8 psig computer 3  
> 2217.5 psig
: 3. RCS Total Flow Rate  
> 390,000 gpm


*, II *'
II CNEI-0400-149 Page 28 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS 3.7.15) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.
CNEI-0400-149 Page 28 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS 3.7.15) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.
Parameter Limit Spent fuel pool minimum boron concentration.
Parameter                                   Limit Spent fuel pool minimum boron concentration.                     . 2,700 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1. Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling. canal, and refueling cavity for mode6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <
. 2,700 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1. Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling. canal, and refueling cavity for mode6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <
0.95.
0.95.
Parameter                                   Limit Minimum Boron concentration of the Reactor Coolant                 2,700 ppm System, the refueling canal, and the refueling cavity.
Parameter Limit Minimum Boron concentration of the Reactor Coolant System, the refueling canal, and the refueling cavity.
2,700 ppm


CNEI-0400-149 Page 29 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.16 Standby Shutdown System - Standby Makeup Pump Water Supply - (SLC-16.7-9.3) 2.16.1 Minimum boron concentration limit for the spent fuel pool. Applicable for modes 1, 2, and 3.
CNEI-0400-149 Page 29 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.16 Standby Shutdown System - Standby Makeup Pump Water Supply - (SLC-16.7-9.3) 2.16.1 Minimum boron concentration limit for the spent fuel pool. Applicable for modes 1, 2, and 3.
Parameter                                   Limit Spent fuel pool minimum boron concentration for                   2,700 ppm surveillance SLC-16.7-9.3.
Parameter Limit Spent fuel pool minimum boron concentration for surveillance SLC-16.7-9.3.
2.17 Borated Water Source     -Shutdown     (SLC i6.9-11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Mode 4 with any RCS cold leg temperature < 2100F, and Modes 5 and 6.
2,700 ppm 2.17 Borated Water Source -Shutdown (SLC i6.9-11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Mode 4 with any RCS cold leg temperature < 2100F, and Modes 5 and 6.
Parameter                                 Limit Boric Acid Tank minimum boron concentration                 7,000 ppm Volume of 7,000 ppm boric acid solution required           2000 gallons to maintain SDM at 68 0F Boric Acid Tank Minimum Shutdown Volume                   13,086 gallons (14.9%)
Parameter Boric Acid Tank minimum boron concentration Volume of 7,000 ppm boric acid solution required to maintain SDM at 680F Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)
(Includes the additional volumes listed in SLC 16.9-11)
Limit 7,000 ppm 2000 gallons 13,086 gallons (14.9%)
NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.
NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.
Refueling Water Storage Tank minimum boron                 2,700 ppm concentration Volur'me of 2,700 ppm boric acid solution required         7,000 gallons to maintain SDM at 68 T Refueling Water Storage Tank Minimum                     48,500 gallons Shutdown Volume (Includes the additional                       (8.7%)
Refueling Water Storage Tank minimum boron concentration Volur'me of 2,700 ppm boric acid solution required to maintain SDM at 68 T Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11) 2,700 ppm 7,000 gallons 48,500 gallons (8.7%)
volumes listed in SLC 16.9-11)


0 ,
0 CNEI-0400-149 Page 30 of 32 Revision I Catawba 2 Cycle 16 Core.Operating Limits Report 2.18 Borated Water Source - Operating (SLC 16.9-12) 2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Modes 1, 2, and 3 and Mode 4 with all RCS cold leg temperatures > 210 0F.
CNEI-0400-149 Page 30 of 32 Revision I Catawba 2 Cycle 16 Core.Operating Limits Report 2.18 Borated Water Source - Operating       (SLC 16.9-12) 2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Modes 1, 2, and 3 and Mode 4 with all RCS cold leg temperatures > 210 0 F.
Parameter Boric Acid Tank minimum boron concentration Volume of 7,000 ppm boric acid solution required to maintain SDM at 210'F Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)
Parameter                               Limit Boric Acid Tank minimum boron concentration                 7,000 ppm Volume of 7,000 ppm boric acid solution required         13,500 gallons to maintain SDM at 210'F Boric Acid Tank Minimum Shutdown Volume                   25,200 gallons (Includes the additional volumes listed in SLC               (45.80%)
Limit 7,000 ppm 13,500 gallons 25,200 gallons (45.80%)
16.9-12)
NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.
NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.
Refueling Water Storage Tank minimum boron                 2,700 ppm concentration Volume of 2,700 ppm boric acid solution required         57,107 gallons to maintain SDM at 210'F Refueling Water Storage Tank Minimum                     98,607 gallons.
Refueling Water Storage Tank minimum boron concentration Volume of 2,700 ppm boric acid solution required to maintain SDM at 210'F Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12) 2,700 ppm 57,107 gallons 98,607 gallons.
Shutdown Volume (Includes the additional                     (22.0%)
(22.0%)
volumes listed in SLC 16.9-12)


0 p1 CNEI-0400-149 Page 31 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus Primary Coolant Boron Concentration (Valid When Cycle Burnup is > 450 EFPD)
0 p 1 CNEI-0400-149 Page 31 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus Primary Coolant Boron Concentration (Valid When Cycle Burnup is > 450 EFPD)
This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12 50.0
This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12 50.0
                                                                      ..- .R C S B o ro n                           ....
.R C S B o ro n Concentration BAT Level 40.0 i "
Concentration BAT Level 40.0                                                   i "             (ppm)           (%level) 0 < 300             43.0 300o< 500           40.0 35.0       -''    ,1,..                                              500<700 37.0
(ppm)
      *"30.0                         *;"
(%level) 0 < 300 43.0 300o< 500 40.0 35.0 500<700 37.0
700 < 1000            30.0 1000 <.1300           14.9
,1,..
                                  '#                      '1300<2700                               9.8 25.0                                                                   > 2700             9.8
700 < 1000 30.0
Unacceptable
*"30.0 1000 <.1300 14.9
    " 20.0           Operation                             Acceptable Operation 15.0                                                     i 10.0                                                                                                         :Ai&#xfd; "k    A..ON 0.0           -    --
'1300<2700 9.8 25.0  
0    200         400     600     800   1000   1200   . 1400 1600   1800     2000   2200   2400   2600 Primary Coolant Boron Concentration (ppmb)
> 2700 9.8 Unacceptable
" 20.0 Operation Acceptable Operation 15.0 i
10.0
: Ai&#xfd; A.. ON "k
0.0 0
200 400 600 800 1000 1200  
. 1400 1600 1800 2000 2200 2400 2600 Primary Coolant Boron Concentration (ppmb)


CNEI-0400-149 Page 32 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Appendix A Power Distribution Monitoring Factors Appendix A contains power dis.tribution monitoring factors used in Technical Specification Surveillance. Due to the size of the monitoring factor data, Appendix A is-controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Reactor and Electrical Systems Engineering Section controls this information via computer fl~es and should be contacted if there is a*need to access, this information.
CNEI-0400-149 Page 32 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Appendix A Power Distribution Monitoring Factors Appendix A contains power dis.tribution monitoring factors used in Technical Specification Surveillance. Due to the size of the monitoring factor data, Appendix A is-controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Reactor and Electrical Systems Engineering Section controls this information via computer fl~es and should be contacted if there is a*need to access, this information.
Appendix A is included in the COLR copy transmitted to the NRC.}}
Appendix A is included in the COLR copy transmitted to the NRC.}}

Latest revision as of 17:46, 14 January 2025

Core Operating Limits Report (Colr), Cycle 16, Revision 1
ML080710412
Person / Time
Site: Catawba Duke Energy icon.png
Issue date: 03/03/2008
From: Morris J
Duke Energy Carolinas, Duke Power Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
CNEI-0400-149, Rev 1
Download: ML080710412 (34)


Text

Duke JAMES R. MORRIS, VICE PRESIDENT Energ Duke Energy Carolinas, LLC Carolinas Catawba Nuclear Station / CN01 VP 4800 Concord Road York, SC 29745 803-831-4251 803-831-3221 fax March 3, 2008 U.S. Nuclear Regulatory Commission ATTENTION:

Document Control Desk Washington, D.C. 20555-0001

Subject:

Duke Power Company LLC d/b/a Duke Energy Carolinas, LLC.

Catawba Nuclear Station Unit 2 Docket No.: 50-414 Core Operating Limits Report (COLR)

Catawba Unit 2 Cycle 16, Revision 1 Attached, pursuant to Catawba Technical Specification 5.6.5, is an information copy of revision 1 of the Core Operating Limits Report for Catawba Unit 2 Cycle 16.

This letter and attached COLR do not contain any new commitments.

Please direct any questions or concerns to Marc Sawicki at (803) 831-5191.

Sincerely, James R. Morris Attachments 4orADD www. duke-energy. corn

U.

S.

Nuclear Regulatory Commission March 3, 2008 Page 2 xc:

(w/att)

Victor M. McCree (Acting),

Region II Administrator U.S. Nuclear Regulatory Commission Sam Nunn Atlanta Federal Center, 23 T85 61 Forsyth St.,

SW Atlanta, GA 30303-8931 J.

F.

Stang, Jr., Senior Project Manager (CNS & MNS)

U.S. Nuclear Regulatory Commission 11555 Rockville Pike Mail Stop 8 G9A Rockville, MD 20852-2738 A.

T. Sabisch Senior Resident Inspector U.S. Nuclear Regulatory Commission Catawba Nuclear Station

I; CNEI-0400-149 Page 1 of 32 Revision 1 Catawba Unit 2 Cycle 16 Core Operating Limits Report Revision 1 February 2008 Duke Power Company Date Prepared By:

Checked By:

Checked By:

Approved By:

1~4 a/2I aozL?

g:42 Lev a I QA Condition 1 The information presented in this report has been prepared and issued in accordance with Catawba Technical Specification 5.6.5.

. I I,

CNEI-0400-149 Page 2 of 32 Revision 1 INSPECTION OF ENGINEERING INSTRUCTIONS keA~

Inspection Waived By:

Date:

2"za" cj (Sponsor) 0I CATAWBA Inspection Waived MCE (Mechanical& Civil) le-Inspected By/Date:

RES (Electrical Only)

L Inspected By/Date:

RES (Reactor)

L&.

Inspected By/Date:

MOD P"'

Inspected By/Date:

Other (

)

I]

Inspected By/Date:

OCONEE Inspection Waived MCE (Mechanical & Civil) 0 Inspected By/Date:

RES (Electrical Only).

0 Inspected By/Date:

RES (Reactor) 0 Inspected By/Date:

MOD U

Inspected By/Date:

Other ( _)

U Inspected By/Date:

MCGUIRE Inspection Waived MCE (Mechanical & Civil) 0 Inspected By/Date:

RES (Electrical Only)

Inspected By/Date:

RES (Reactor) 0 Inspected By/Date:

MOD 2

Inspected By/Date:

Other( _-

Inspected By/Date:

1<

CNEI-0400-149 Page 3 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Implementation Instructions for Revision 1 Revision Description and PIP Tracking Revision I of the Catawba Unit 2 Cycle 16 COLR contains limits-specific to the reload core and was revised to include limits specific for completion of the RCCA movement test prior to 2/27/2008. Revision 1 was initiated by PIP #C-08-00765.

Implementation Schedule Revision 1 maybecome effective immediately but must become effective prior to 2/27/2008.

TheCatawba Unit 2 Cycle 16 COLR will cease to. be effective during No MODE between Cycle 16 and 17.

Data files to be Implemented No data files are transmitted as part of this document.

V.

CNEI-0400-149 Page 4 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report REVISION LOG Revision 0

1 Effective Date September 2007 February 2008.

COLR C2C16 COLR rev. 0 C2C16 COLR rev. 1 Insertion/Deletion Instructions Remove Insert pages 1-32, of rev 0 pages 1-32 of rev 1

CNEI-0400-149 Page 5 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report 1.0 Core Operating Limits Report This Core Operating Limits Report (COLR) has been prepared in accordance with the requirements of Technical Specification 5.6.5. The Technical Specifications that reference this report are listed below:

TS COLR COLR Section Technical Specifications j

CQLR Parameter Section.

Page 2.1.1 Reactor Core Safety Limits I RCS Temperature and Pressure 2.1 9

ISafety Limits 3.1.1 Shutdown Margin Shutdown Margin 2.2 9

3.1.3.

Moderator Temperature Coefficient MTC

""2.3 11 3.1.4 1 Rod Group Alignment Limits Shutdown Margin 2.2 9

3.1.5 Shutdown Bank Insertion Limit Shutdown Margin 2.2 Rod Insertion Limits.

2.4 11

.3.1.6 Control Bank Insertion Limit Shutdown Margin 2.2 9

_____Rod Insertion Limits 2.5_

15 3.1.8.

i PhysicsTestsExceptions..

Shutdown Margin 2.2 9

3.2.1 Heat Flux Hot ChannelFactor

26.

15 AFD 2.8 21 OTAT

.2.9 24 Penalty Factors 2.6 15 3.2.2 Nuclear Enthalpy Rise Hot Channel FAH 2.7 20 Factor

_Penalty Factors 1

2.7 20 3.2.3 Axial Flux Difference AFD 2.8 21 3.3.1 Reactor Trip System Instrumentation 1: OTAT 2.9 24 iOPAT 2.9 24

-3.3.9-Boron Dilution Mitigation System Reactor Makeup Water Flow Rate 2.10 26 3.4.1 RCS Pressure, Temperature and Flow RCS Pressure, Temperature and 2.11 26

- limits.for DNB

.Flow 3.5.1 Accumulators Max and Min Boron Cone.

2.12 26 3.5.4 Refueling Water Storage Tank Max and Min Boron. Conc.

2.13 26.

-3.715.

Spent Fuel Pool Boron Concentration Mi-n-Boron Concentration 2.14

.i 28 3.9.1 Refueling Operations - Boron i Mm Boron Concentration 2.15 28 Concentration

__i 5.6.5 iCore Operating Limits Report Analytical Methods i.1 6

(COLR)

The Selected License Commitments that reference"this report are listed below:

SLC, COLR Pcon Section Selected Licensing Commitment

-COLR Parameter Section Page 16.7-9.3 Standby Shutdown System Standby Makeup Pump Water 2.16 29 S........

Supply 16.9-11 Boration Systems - Borated Water

. Borated.Water Volume and Conc.

2.17 29 i Source - Shutdown.

for BAT/RWST 16.9-12, Boration Systems - Borated Water I Borated Water Volume and Conc.

2.18 30

_ Source - Operating for BAT/RWST

CNEI-0400-149 Page 6 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods The analytical methods used to determine core operating limits for parameters identified in Technical Specifications and previously reviewed and approved by the NRC are as follows.

1. WCAP79272-P-A, "WESTINGHOUSE RELOAD SAFETY EVALUATION METHODOLOGY," (W-Proprietary).

Revision 0 Report Date: July 1985 Not Used for C2C16

2. WCAP-10054-P-A, "Westinghouse Small Break ECCS Evaluation Model using the NOTRUMP Code, "(W Proprietary).

Revision 0 Report Date: August 1985

3.

WCAP-10266-P-A, "THE 198.1 VERSION OF WESTINGHOUSE EVALUATION MODEL USING BASH CODE", (W Proprietary).

Revision 2 Report Date: March 1987 Not Used for C2C16

4.

WCAP-12945-P-A, Volume 1 and Volumes 2-5, "Code Qualification Document for Best-Estimate Loss of Coolant Analysis,'" (W. Proprietary).

Revision: Volume I (Revision 2) and Volumes 2-5 (Revision 1)

ReportDate: March 1998

5.

BAW-10168P-A, "B&W Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants," (B&W Proprietary).

Revision 1 SER Date: January 22, 1991 Revision 2 SER Dates: August 22, 1996 and November 26, 1996.

Revision 3 SER Date: June 15, 1994.

Not Used for C2C16

CNEI-0400-149 Page 7 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods (continued)

6. DPC-NE-3000PA, 'Thermal-Hydraulic Transient.Analysis Methodology," (DPC Proprietary).

Revision 3 SER Date:. September 24, 2003

7.

DPC-NE-3001PA, "Multidimensional Reactor Transients and Safety Analysis Physics Parameter Methodology," (DPC Proprietary).

Revision 0 Report Date: November 15, 1991, republished December 2000

8.

DPC-NE-3002A, "UFSAR Chapter 15 System Transient Analysis Methodology".

Revision 4 SER Date: April 6, 2001

9. DPC-NE-2004P-A, 1"Duke Power Company McGuire and Catawba Nuclear Stations Core Thermal-Hydraulic Methodology using VIPRE-01," (DPC Proprietary).

Revision 1 SER Date: February 20, 1997

10. DPC-NE-2005P-A, "Thermal Hydraulic Statistical Core Design Methodology," (DPC Proprietary).

Revision 3 SER Date: September 16, 2002

11. DPC-NE-2008P-A, "Fuel Mechanical Reload Analysis Methodology Using TACO3," (DPC Proprietary).

Revision 0 SER Date: April 3, 1995 Not Used for. C2C16.

12. DPC-NE-2009-P-A, "Westinghouse Fuel Transition Report," (DPC Proprietary).

Revision 2 SER Date: December 18, 2002

13. DPC-NIE-1004A, "Nuclear Design Methodology Using CASMO-3/SIMULATE-3P.".

Revision I SER Date: April 26, 1996 Not Used for C2C16

CNEI-0400-149 Page 8 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 1.1 Analytical Methods (continued)

14. DPC-NF-2010A, "Duke Power Company McGuire Nuclear Station Catawba Nuclear Station Nuclear Physics Methodology for Reload Design."

Revision 2 SER Date: June 24, 2003

15. DPC-NE-201 IPA, "Duke Power Company NuclearDesign Methodology for Core Operating Limits of Westinghouse Reactors;" (DPC Proprietary).

Revision 1..

SER Date: October 1, 2002.

16. DPC-NE-1005-P-A, "Nuclear Design Methodology Using CASMO-4 / SIMULATE-3 MOX", (DPC Proprietary).

Revision 0 SER Date: August 20; 2004

17. BAW-1023 1P-A, "COPERNIC Fuel Rod Design Computer Code" (Framatome ANP Proprietary)

Revision 1 SER Date: January 14, 2004 Not Used for C2C16

CNEI-0400-149 Page 9 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.0 Operating Limits The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using NRC approved methodologies specified in Section 1.1.

2.1 Reactor Core Safety Limits (TS 2.1.1)

The Reactor Core Safety Limits are shown in Figure 1.

2.2 Shutdown Margin - SDM (TS 3.1.1, TS 3.1.4, TS 3.1.5, TS 3.1.6, TS 3.1.8) 2.2.1 For TS 3.1.1, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2with Keff < 1.0 and in modes 3 and4.

2.2.2 For TS 3.1.1, shutdown margin shall be greater than or equal to 1.0% AK/K in mode 5.

2.2.3 For TS 3.1.4, shutdown margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2.

2.2.4 For TS 3.1.5, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 1 and mode 2 with any control bank not fully inserted.

2.2.5 For TS 3.1.6, shutdown.margin shall be greater than or equal to 1.3% AK/K in mode I and mode 2 with Keff > 1.0.

2.2.6*

For TS 3.1.8, shutdown margin shall be greater than or equal to 1.3% AK/K in mode 2 during Physics Testing.

CNEI-0400-149 Page 10 of 32 Revision I Catawba.2 Cycle 16 Core Operating Limits Report Figure 1 Reactor Core Safety Limits Four Loops in Operation 670 DO NOT OPERATE IN THIS AREA 660 650 6000 630 02280 psia (9 620 610 600 590 ACCEPTABLE OPERATION 580 I

0.0 0.2 0.4 0.6 0.8 1.0.

1.2 Fraction of Rated Thermal Power '

CNEI-0400-149 Page II of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.3 Moderator Temperature Coefficient - MTC (TS 3.1.3) 2.3.1 The Moderator Temperature Coefficient (MTC) Limits are:

The MTC shall be less positive than the upper limits shown in Figure 2. The BOC, ARO, HZP MTC shall be less positive than 0.7E-04 AK/K/°F.

The EOC, ARO, RTP MTC shall be less negative than the -4.3E-04 AK/K/IF lower MTC limit.

2.3.2 The 300 ppm MTC Surveillance Limit is:

The measured 300 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to -3.65E-04 AK/K/°F.

2.3.3 The 60 PPM MTC Surveillance Limit is:

The 60 PPM ARO, equilibrium RTP MTC shall be less negative than or equal to

-4.125E-04 AK/KI0F.

Where:

BOC = Beginning of Cycle (bumup corresponding to most positive MTC)

EOC = End of Cycle ARO = All Rods Out HZP = Hot Zero Thermal Power RTP = Rated Thermal Power PPM - Parts per million (Boron) 2.4 Shutdown Bank Insertion Limit (TS 3.1.5) 2.4.1 Each shutdown bank shall be withdrawn to at least 222 steps except under the special conditions listed-below. Shutdown banks are withdrawn in sequence and with no overlap.

Special conditions Shutdown Banks C, D, and E can be inserted to 212 steps withdrawn individually with the following restrictions.

The cycle average burnup must be between 100.5 and 102.5 EFPD Steady state operation near 100%FP prior to entering special conditions

CNEI-0400-149 Page 12 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 2 Moderator Temperature Coefficient Upper Limit Versus Power Level 1.0 W

W Z

W Q.*

0.9 -

0.8 -

0.7 0.6 -

Unacceptable Operation 0

C?

0.5 --

0.4 -

0.3 0.2-0.1 Acceptable Operation 0.0 I

I 0

10 20 30 40 50 60 70 80 90 100 Percent.of Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.

Refer to the Unit 2 ROD manual for details.

CNEI-0400-149 Page 13 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 3 Control Bank Insertion Limits Versus Percent Rated Thermal Power Fully Withdrawn (Maximum = 231)

(29.6%, 231)

(80.0%, 231) 231 220 200 180 160 140.

"* 120 100

.2 80 60 40

'Fully Withdrawn.

(Minimum =222)'

Control Bank B (0%, 163)(10,6)-

Control Bank C Control Bank D (0%, 47)

(300, 0)

(30%, 0) 20 0

0 10 20 30 40 50 60 70 80 90 100 Percent of Rated Thermal Power The Rod Insertion Limits (RIL) for Control Bank D (CD), Control Bank C (CC), and Control Bank B (CB) can becalculated by:

Bank CD RIL= 2.3(P)-69 {30< P51O0}0.

Bank CC RIL 2.3(P)+ 47 {0:< P* 80}

Bank CB RIL =2.3(P)+ 163.{0 < P* 29.6}

where P = %Rated Thermal Power NOTE: Compliance with Technical Specification 3.1.3 may require rod withdrawal limits.

Refer to the Unit 2 ROD manual for details.

Anytime the shutdown banks are inserted below 222 steps withdrawn control bank D insertion is limited to 200 steps withdrawn (see Section 2.4.1 special conditions)

CNEI-0400-149 Page 14 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 1 Control Bank Withdrawal Steps and Sequence Fully Withdrawn at 222 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0

116 0 Start 0

0 222 Stop 106 0

0 222 116 0 Start 0

222 222 Stop 106 0

222 222 116

.0 Start 222 222 222 Stop 106 Fully Withdrawn at 224 Steps Control Control Control Control

BankA, BankB BankC BanklD Fully Withdrawn at 223 Steps Control Control' Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0

116 0 Start 0

0 223 Stop

' 07 0

0 223 116 0 Start 0

223 223 Stop 107 0

  • 223 223 116 0 Start 223 223 223 Stop 107 Fully Withdrawn at 225 Steps Control Control Control Control Bank A Bank B Bank C Bank D, 0 Start 0

0 0

116, 0 Start 0

0 225 Stop' 109 0

0 225 116 0 Start 0

225 225 Stop 109 0

225 225 116 0 Start 225 225 225 Stop 109 Fully Withdrawn at 227 Steps Control Control Control Control Bank A Bank B.

Bank C Bank D 0 Start.

0 0

0 116 0 Start 0

0 224 Stop 108.

0 0

224 116

-0 Start 0

224 224 Stop 108 0

.. 224 224

" 1.16 0 Start 224 224 224 Stop.

108 Fully Withdrawn at 226 Steps Control Control. Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0

116 0Start 0.*

0 226 Stop 110 0

0 226 116 0 Start 0

226 226 Stop 110 0

226 226 116 0 Start 226 226 226 Stop 110 Fully Withdrawn at 228 Steps Control Control Control Control Bank A Bank'B Bank C Bank D 0 Start 0

0 0

116 0 Start 0

0 228 Stop 112'.

0 01 228 116.

Start 0

228 228 Stop 112

  • 0 228 228 116.

0 Start 228 228

. 228 Stop 112 0 Start 0

0 0

116 0 Start 0

0 227 Stop 111 '

0 0

227 116 0 Start 0

227 2 2 7 Stop 111 0

227 227 116 0 Start 227

.227 227 Stop IlI Fully Withdrawn at229 Steps Control Control Control Control BankAX Bank B Bank C Bank D 0 Start 0

"0 0

116 0 Start 0

0 229 Stop 113.

0 0

229 116' 0 Start 0

229 229 Stop 113 0

229 229 116 0 Start 229 229 229 Stop, 113 Fully Withdrawn at 230 Steps Control

  • Control Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0

116 0 Start 0'

0 230 Stop 114 0

0 230 116 0 Start 0

230 230 Stop 114 0

230 230 116

,O Start 230 230 230 Stop 114 Fully Withdrawn at 231 Steps Control Control Control Control Bank A Bank B Bank C Bank D 0 Start 0

0 0

116 0 Start 0

0 231 Stop 115 0

0 231 116 0 Start 0

231' 231 Stop 115 0

231 231 116 0 Start 231 231,

231 Stop 1.15,

. 11 CNEI-0400-149 Page 15 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report 2.5 Control Bank Insertion Limits (TS 3.1.6) 2.5.1 Control banks shall be within the insertion, sequence, and overlap limits shown in Figure 3. Specific control bank withdrawal and overlap limits as a function of the fully withdrawn position are shown in Table 1.

2.6 Heat Flux Hot Channel Factor - FQ(X,Y,Z) (TS 3.2.1) 2.6.1 FQ(X,YZ) steady-state limits are defined by the following relationships:

F rP*K(Z)/P.

for P > 0.5 F RTP *K(Z)/0.5 for P < 0.5

where, P = (Thermal Power)/(Rated Power)

Note: The measured FQ(X,Y,Z). shall be increased by 3%.to account for manufacturing tolerances and 5% to account for measurement uncertainty when comparing against the LCO limits. The manufacturing tolerance and measurement uncertainty are implicitly included in the FQ surveillance limits as defined in COLR Sections 2.6.5 and 2.6.6.

2.6.2 F R 2.60 x K(BU)

-Q 2.6.3 K(Z) is the normalized FQ(X,Y,Z) as a function of core height.

K(Z) for Westinghouse RFA fuel is provided in Figure 4.

2.6.4 K(BU) is the normalized FQ(X,Y,Z) as a function of burnup. K(BU) for Westinghouse RFA fuel is 1.0 at all burnups.

The following parameters are required for core monitoring per the Surveillance Requirements of Technical Specification 3.2.1:

FQ(X,Y,Z)

MQ(X,Y,Z) 2.6.5

[FQ(X,Y,Z)]OP UMT

  • TILT where:

[Q.(X,Y,Z)]°P Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Y,Z) LOCA limitis not exceeded for operation within.the.AFD, RIL, and QPTR limits.

CNEI-0400-149 Page 16 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report F

OP QF (X,Y,Z)] includes allowances for calculational and measuremenV uncertainties.

F(,YZ

=

M(X,Y,Z)

=

Design power distribution for FQ. FQD.(X,Y,Z) is provided in Appendix Table A-I for normal operating conditions and in

.Appendix Table A-4 for power escalation testing during initial startup operation.

Margin remaining in core location X,Y,Z to the LOCA limit in the transient power distribution. MQ(X,Y,Z) is. provided in..

Appendix Table A-I for normal operating conditions and in

.Appendix Table A-4 for power escalation testing during..initial startup operation.

UMT =

Total Peak Measurement Uncertainty. (UMT = 1.05)

MT "

Engineering Hot Channel Factor. (MT = 1.03)

TILT Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.6.6

[FPQ(X,Y,Z)I RS =

FIQ (X,YZ)

  • Mc(X,Y,Z)

UMT

  • TILT where:

[-Fý(X,Y,Z)]RPS Cycle dependent maximum allowable design peaking factor that ensures that the FQ(X,Yz) Centerline Fuel Melt (CFM) limit is not exceeded for operation within the.AFD, RIL, and QPTR limits. [F6(X,Y,Z)]RPS1includes allowances for calculational and measurement uncertainties.

Design power distributions for-FQ. FQ(XY,Z) is provided in Appendix Table A-1 for normal operating conditions and in Appendix Table A-4 for power escalation testing during initial startup operations.

FQ(X,Y,Z)=

Mc(X,Y,Z) =

Margin remaining to the CFM limit in core location X,Y,Z from the transient power distribution. Mc(X,Y,Z) is provided in Appendix Table A-2 for normal operating conditions and in Appendix Table A-5 for power escalation testing during initial startup operations.

CNEI-0400- 149 Page 17 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report UMT Measurement Uncertainty (UMT = 1.05)

MT Engineering Hot Channel Factor (MT = 1.03)

TILT Peaking penalty that accounts for allowable quadrant power tilt ratio of 1.02. (TILT = 1.035) 2.6.7 KSLOPE = 0.0725 where:

KSLOPE = the adjustment to the K1 value from OTAT trip setpoint required to k

L RPS compensate for each 1%. that Ff (X,Y,Z) exceeds [F Q (X,Y,Z)J 2.6.8 FQ(X,Y,Z) Penalty Factors. for Technical Specification Surveillances 3.2.1.2 and 3.2.1.3 are provided in Table 2.

CNEI-0400-149 Page 18 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Figure 4 K(Z), Normalized FQ(X,Y,Z) as a Function of Core Height for RFA Fuel 1.200 1.000 0.800 No.6oo0 0.400 (0.0, 1.00)

.(4.0, 1.00)

(12.0, 0.9615)

(4.0, 0.9615)

Core Height (ft)

K(Z)

.0.0 1.0000

< 4.0 1.0000

> 4.0.

0.9615 12.0 0-9615 0.200 -

0.000 0.0 2.0 4.0 6.0 Core Height (ft) 8.0 10.0 12.0

CNEI-0400-149 Page 19 of 32 Revision I Catawba 2 Cycle 16 Core Operating Limits Report Table 2

-FQ(X,Y,Z) and FtH(X,Y) Penalty Factors For Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2 Burnup (EFPD) 4 12 25 50 75 100 125.

150 175 200 225 250 275 300 325 350 375 400 425 447 456 471 486 FQ(X,Y,Z)

Penalty Factor(%)

2.00 2.00 2.00 2.00 2.00 2.00 2.10 2.00 2.00 2.00

-9 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 FAH(X,Y)

Penalty Factor (%)

2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Note: Linear interpolation is adequate for intermediate cycle bumups.

All cycle burnups outside therange of thetable shall use a 2%

-penalty factor for both FQ(X,Y,Z) and FAH(X,Y) for compliance with the Tech Spec Surveillances 3.2.1.2, 3.2.1.3 and 3.2.2.2.

CNEI-0400- 149 Page 20 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.7 Nuclear Enthalpy Rise Hot Channel Factor - FAH(X,Y) (TS 3.2.2)

The FAH steady-state limits referred to in Technical Specification 3.2.2 are defined by the following relationship.

2.7.1

[FkH (X,y)]LCO= MARP (X,Y)*

1.0+ RR (1.0 - P where:

[FkL (X, y)]LCO is defined as the steady-state, maximum allowed radial peak and includes allowances for calculation/measurement uncertainty.

MARP(X,Y) =

Cycle-specific operating limit Maximum Allowable Radial Peaks.: MARP(X,Y) radial peaking limits are provided in Table 3.

=

Thermal Power Rated Thermal Power RRH =Thermal Power reduction required-to compensate for each 1% that the measured radial peak, FL (X,Y), exceeds the limit.

(RRH =3.34, 0.0 < P < 1.0)

The following parameters are required for core monitoring per the Surveillance requirements of Technical Specification 3.2.2.

SSURV FL (X, Y)

  • Ma,, (X, Y) 2.7.2

[F6Ll (X,Y)]

=

T UMR

  • TILT where:

I SURV

[FL (X,Y) I Cycle dependent maximum allowable design peaking factor that ensures that the FAH(X,Y) limit is not exceeded for operation within the AFD, RIL, and QPTR limits.

FL [ (X,y)SU'v includes allowances for calculational and FA r (X,Y)=

measurement uncertainty.

D ""

Design power distribution for FAH" FAH (X,Y) is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.

CNEI-0400-149 Page 21 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report MAH(XY) =Themargin remaining in core location X,Y relative to the Operational DNB limits in the transient power distribution.

MAH(X,Y) is provided in Appendix Table A-3 for normal operation and in Appendix Table A-6 for power escalation testing during initial startup operation.

UMR Uncertainty value for measured radial peaks. UMIR.is set to 1.0 since a factor of 1.04 is implicitly included. in the variable MAH(XY).

TILT =Peaking penalty that accounts for allowable quadrant power

  • tilt ratio of 1.02. (TILT= 1.035) 2.7.3 RRH = 3.34 where:

RRH Thermal Power reduction required to compensate for each 1% that the measured radial peak, FA (X,Y) exceeds its limit. (0 < P < 1.0) 2.7.4 TRH = 0.04 where:

TRH=

Reduction in OTAT K1 setpoint required to compensate for each 1% that the measured radial peak, FAH(X,Y) exceeds its limit.

2.7.5 F&H(X,Y) Penalty Factors for Technical Specification Surveillance 3.2.2.2 are provided in Table 2.

2.8 Axial Flux Difference - AFD (TS 3.2.3) 2.8.1 The Axial Flux Difference (AFD).Limits are provided in Figure 5.

CNEI-0400-149 Page 22 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 3 Maximum Allowable Radial Peaks (MARPS)

RFA Fuel MARPs 100% Full Power Axial Peak Core Height (ft) 1.05 1.1 1.2 1.3 1.4 1.5

  • 1.6 1.7 1.8 1.9 2.1.

3.0 3.25 0.12 1.20 2.4C 3.6C 4.8C 6.00 7.2C 8.4C 9.6C 10.8C 11.40 1.8092 1.8553 1.9489 1.9953:

1.8102

  • 1.854 1.9401

.1.9953 1.8093 1.8525 1.9312 1.9779 1.8098 1.8514 1.9204 1.9641 1.8097 1.8514 1.9058 1.9449 1.8097 1.8514

.1:8921 1.9212 1.807 1.8438 1,8716 1.893 1.8073 1.8319 1.8452" 1.8571 1.8072 1.8102 1.8093 1.7913 1.798 1.7868 1.7611 1.7163 1.7892 1.7652 1.725 1.6645 1.9741 1.9741 1.9741 1.9741 1.9741

.1.9455 1.8872 1.8156 1.7375

1. 6538 1.6057 2.1073

.2.1073 2.0735 2.0495 2.0059 1.9336 1.8723 1.795 1.71.82 1.6315 1.5826 2.0498 2.009 1.9333 1.8625 1L778 2.0191 1.9775 1.9009 1.8306 1.7852 1.9953.

1.9519 1.876 1.8054 1.732 1.9656 1.9258' 1.8524 1.7855 1.6996 1.9441 1.9233 1.8538 1.7836 1.6714 1.8798 1.8625.

1.8024 1.7472 1.6705 1.8094

-1.7866 1.7332 1.6812 1.5982 1.7359 1.7089 1.6544

.1.601 1.5127 1.6572 1.6347 1.5808 1.5301 1.4444 1.5743 1.5573 1.5088 1.4624 1.3832 1.5289 1.5098 "1.4637 1.4218 1.3458 1.3151 1.2461 1.3007 1.2235 1,4633 1.4616 1.4675 1.3874 1.2987 1.2579 1.3293 1.2602 1.2871 1.2195 1.2182 1.1578 1.1431 1.0914 1.1009

.1.047 1.067- "1.0142

CNEI-0400-149 Page 23 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Figure 5 Percent of Rated Thermal Power Versus Percent Axial Flux Difference Limits 0

.0

-t=

F-

-50

-40

-30

-20

-10 0

10 20 30 40 50 Axial Flux Difference (% Delta I)

NOTE: Compliance with Technical Specification 3.2.1 may require more restrictive AFD limits. Refer to the Unit 2 ROD manual for operational AFD limits.

CNEI-0400-149 Page 24 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9 Reactor Trip System Instrumentation Setpoints (TS 3.3.1) Table 3.3.1-1 2.9.1 Overtemperature AT Setpoint Parameter Values Parameter Nominal Value Nominal Tavg at RTP Nominal RCS Operating Pressure Overtemperature AT reactor trip setpoint Overtemperature AT reactor trip heatup setpoint penalty coefficient Overtemperature AT reactor trip depressurization setpoint penalty coefficient Time constants utilized in the. lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constants utilized in the. lead-lag compensator for-Tavg Time constant utilized in the measured Tavg lag compensator f(AI) "positive" breakpoint fl(AI). "negative" breakpoint fl(AI) "positive' slope fl(AI) '.'negative" slope T'< 590.8 OF P' = 2235 psig KI = 1.1953 K2 = 0.03163/°F' K3 = 0.001414/psi T1 = 8 sec.

T2 = 3 sec.

T3 = 0 sec.

'4 = 22 sec.

'C5 = 4 sec.

'6 =0 sec.

- 3.0 %AI

=N/A

- L525 %AT0/ %AI

=N/A*

The fl(AI) negative breakpoints and slopes for OTATare less restrictive than the OPAT f2(AI) negative breakpoint and slope. Therefore, during a transient which challenges the negative imbalance limits the OPAT f2(AI).limits will result in a reactor trip before the OTAT fl(AI) limits are reached.. This makes implementation of an OTAT fl(AI) negative breakpoint and slope unnecessary.

CNEI-0400-149 Page 25 of 32 Revisionl1 Catawba 2 Cycle 16 Core Operating Limits Report 2.9.2 Overpower AT Setpoint Parameter Values Parameter Nominal Tavg at RTP Overpower AT reactor trip setpoint Overpower AT reactor trip penalty Overpower AT reactor trip heatup setpoint penalty coefficient Time, constants utilized in the lead-lag compensator for AT Time constant utilized in the lag compensator for AT Time constant utilized in the measured Tavg lag compensator Time constant utilized in the rate-lag controller for Tavg f2(AI) "positive" breakpoint f2(AI) "negative'! breakpoint f2(AI) "positive" slope f2(AI) "negative" slope Nominal Value T" < 590.8 'F K4 = 1.0.819

.K5 0.02 / 'F for increasing Tavg K 5 = 0.00 / 'F for decreasing Tavg.

K6 = 0.001291/OF for T > T" K6 = 0.0 i°F for T < T"

-1 8 sec.

= 3 sec.

3= 0 sec.

-6= 0 sec.

7: 10 sec.

= 35.0 %AI

=-35.0 %AI

- 7.0 %ATO %AI

- 7.0 %AT/ %AI

i ý

ý' j CNEI-0400- 149 Page 26 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.10 Boron Dilution Mitigation System (TS 3.3.9) 2.10.1 Reactor Makeup Water Pump flow rate limits:

Applicable Mode Limit Mode 3

< 150 gpm Mode 4 or 5

< 70 gpm 2.11 RCS Pressure, Temperature and Flow Limits for DNB (TS 3.4.1)

The RCS pressure, temperature and flow limits for DNB are shown in Table 4.

2.12 Accumulators (TS 3.5.1) 2.12.1 Boron concentration limits during modes 1 and 2, and mode 3 with RCS pressure

>1000 psi:

Parameter Limit Cold Leg Accumulator minimum boron concentration.

2,500 ppm Cold Leg Accumulator maximum boron concentration.

3,075 ppm 2.13 Refueling Water Storage Tank - RWST (TS 3.5.4) 2.13.1 Boron concentration limits during modes 1, 2, 3, and 4:

Parameter Limit Refueling Water Storage Tank minimum boron 2,700 ppm concentration.

Refueling Water Storage Tank maximum boron 3,075 ppm concentration.

CNEI-0400-149 Page 27 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Table 4 Reactor Coolant System DNB Parameters No. Operable PARAMETER INDICATION

CHANNELS, LIMITS
1. Indicated RCS Average Temperature meter 4

< 589.6 'F meter

3.

< 589.3 OF computer 4

< 590.1 OF computer 3

< 589.9 °F

2. Indicated Pressurizer Pressure meter 4

> 2219,8 psig meter 3

> 2222.1 psig computer 4

> 2215.8 psig computer 3

> 2217.5 psig

3. RCS Total Flow Rate

> 390,000 gpm

II CNEI-0400-149 Page 28 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.14 Spent Fuel Pool Boron Concentration (TS 3.7.15) 2.14.1 Minimum boron concentration limit for the spent fuel pool. Applicable when fuel assemblies are stored in the spent fuel pool.

Parameter Limit Spent fuel pool minimum boron concentration.

. 2,700 ppm 2.15 Refueling Operations - Boron Concentration (TS 3.9.1) 2.15.1. Minimum boron concentration limit for the filled portions of the Reactor Coolant System, refueling. canal, and refueling cavity for mode6 conditions. The minimum boron concentration limit and plant refueling procedures ensure that the Keff of the core will remain within the mode 6 reactivity requirement of Keff <

0.95.

Parameter Limit Minimum Boron concentration of the Reactor Coolant System, the refueling canal, and the refueling cavity.

2,700 ppm

CNEI-0400-149 Page 29 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report 2.16 Standby Shutdown System - Standby Makeup Pump Water Supply - (SLC-16.7-9.3) 2.16.1 Minimum boron concentration limit for the spent fuel pool. Applicable for modes 1, 2, and 3.

Parameter Limit Spent fuel pool minimum boron concentration for surveillance SLC-16.7-9.3.

2,700 ppm 2.17 Borated Water Source -Shutdown (SLC i6.9-11) 2.17.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Mode 4 with any RCS cold leg temperature < 2100F, and Modes 5 and 6.

Parameter Boric Acid Tank minimum boron concentration Volume of 7,000 ppm boric acid solution required to maintain SDM at 680F Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11)

Limit 7,000 ppm 2000 gallons 13,086 gallons (14.9%)

NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.

Refueling Water Storage Tank minimum boron concentration Volur'me of 2,700 ppm boric acid solution required to maintain SDM at 68 T Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-11) 2,700 ppm 7,000 gallons 48,500 gallons (8.7%)

0 CNEI-0400-149 Page 30 of 32 Revision I Catawba 2 Cycle 16 Core.Operating Limits Report 2.18 Borated Water Source - Operating (SLC 16.9-12) 2.18.1 Volume and boron concentrations for the Boric Acid Tank (BAT) and the Refueling Water Storage Tank (RWST) during Modes 1, 2, and 3 and Mode 4 with all RCS cold leg temperatures > 210 0F.

Parameter Boric Acid Tank minimum boron concentration Volume of 7,000 ppm boric acid solution required to maintain SDM at 210'F Boric Acid Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12)

Limit 7,000 ppm 13,500 gallons 25,200 gallons (45.80%)

NOTE: When cycle burnup is > 450 EFPD, Figure 6 may be used to determine the required Boric Acid Tank Minimum Level.

Refueling Water Storage Tank minimum boron concentration Volume of 2,700 ppm boric acid solution required to maintain SDM at 210'F Refueling Water Storage Tank Minimum Shutdown Volume (Includes the additional volumes listed in SLC 16.9-12) 2,700 ppm 57,107 gallons 98,607 gallons.

(22.0%)

0 p 1 CNEI-0400-149 Page 31 of 32 Revision 1 Catawba 2 Cycle 16.Core Operating Limits Report Figure 6 Boric Acid Storage Tank Indicated Level Versus Primary Coolant Boron Concentration (Valid When Cycle Burnup is > 450 EFPD)

This figure includes additional volumes listed in SLC 16.9-11 and 16.9-12 50.0

.R C S B o ro n Concentration BAT Level 40.0 i "

(ppm)

(%level) 0 < 300 43.0 300o< 500 40.0 35.0 500<700 37.0

,1,..

700 < 1000 30.0

  • "30.0 1000 <.1300 14.9

'1300<2700 9.8 25.0

> 2700 9.8 Unacceptable

" 20.0 Operation Acceptable Operation 15.0 i

10.0

Aiý A.. ON "k

0.0 0

200 400 600 800 1000 1200

. 1400 1600 1800 2000 2200 2400 2600 Primary Coolant Boron Concentration (ppmb)

CNEI-0400-149 Page 32 of 32 Revision 1 Catawba 2 Cycle 16 Core Operating Limits Report Appendix A Power Distribution Monitoring Factors Appendix A contains power dis.tribution monitoring factors used in Technical Specification Surveillance. Due to the size of the monitoring factor data, Appendix A is-controlled electronically within Duke and is not included in the Duke internal copies of the COLR. The Catawba Reactor and Electrical Systems Engineering Section controls this information via computer fl~es and should be contacted if there is a*need to access, this information.

Appendix A is included in the COLR copy transmitted to the NRC.