ML20126M438: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 21: Line 21:
l Prepared for TDI Diesel Generator Owners' Group l
l Prepared for TDI Diesel Generator Owners' Group l
l May 1985 l
l May 1985 l
l DR         K E
l DR K
E


TABLE OF CONTENTS Page
TABLE OF CONTENTS Page


==1.0 INTRODUCTION==
==1.0 INTRODUCTION==
...........................................................                                                          1 2.0 INSTRUMENTATION........................................................                                                           1 3.0 PR0CEDURE..............................................................                                                           1 3.1 Cali brati on and Inst rumentati on Run-i n. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.2 Va ri abl e Speed , 0% Load Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.3 Variable Load, Operating Speed                         Tests.............................. 3 3.4 St a rt u p / Coa st d own Tes t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.5 Post Test Data Veri ficat on and Cali brati on. . . . . . . . . . . . . . . . . . . . . . . 3 4.0 RESULTS................................................................ 4 4.1 C a l i b rat i o n Dat a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.2 Va ri abl e S peed R esu l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4.3 Va ri ab l e Loa d R esu l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4.4 St a rt u p /Co a s t d own Res u l t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1 2.0 INSTRUMENTATION........................................................
1 3.0 PR0CEDURE..............................................................
1 3.1 Cali brati on and Inst rumentati on Run-i n............................ 2 3.2 Va ri abl e Speed, 0% Load Tests..................................... 3 3.3 Variable Load, Operating Speed Tests.............................. 3 3.4 St a rt u p / Coa st d own Tes t s........................................... 3 3.5 Post Test Data Veri ficat on and Cali brati on....................... 3 4.0 RESULTS................................................................
4 4.1 C a l i b rat i o n Dat a.................................................. 4 4.2 Va ri abl e S peed R esu l t s............................................ 6 4.3 Va ri ab l e Loa d R esu l t s............................................. 7 4.4 St a rt u p /Co a s t d own Res u l t s......................................... 8


==5.0 CONCLUSION==
==5.0 CONCLUSION==
S............................................................ 9 REFERENCES.................................................................. 9
S............................................................
9 REFERENCES..................................................................
9


==1.0     INTRODUCTION==
==1.0 INTRODUCTION==
 
The purpose of the torsiograph test of the emergency diesel generator was to measure the angular displacements of the forward end of the crank-shaft.
The purpose of the torsiograph test of the emergency diesel generator was to measure the angular displacements of the forward end of the crank-shaft. These displacements were then used in conjunction with a dynamic torsional analysis of the crankshaft to assess the maximum stresses in the crankshaft. Torsiograph tests were performed on diesel generators Unit 1 Division 1 (U101) and Unit 1 Division 2 (U1D2) at Perry Nuclear Power Plant.
These displacements were then used in conjunction with a dynamic torsional analysis of the crankshaft to assess the maximum stresses in the crankshaft.
Torsiograph tests were performed on diesel generators Unit 1 Division 1 (U101) and Unit 1 Division 2 (U1D2) at Perry Nuclear Power Plant.
Data were obtained during both steady-state and transient (startup and coast-down operation) conditions.
Data were obtained during both steady-state and transient (startup and coast-down operation) conditions.
2.0     INSTRUMENTATION 1
2.0 INSTRUMENTATION The instrumentation generally consisted of an tiBM Torsiograph, Signal Conditioner, Data Tape Recorder, Frequency Analyzer, Oscilloscope, Multimeter, and assorted interconnecting cables.
The instrumentation generally consisted of an tiBM Torsiograph, Signal Conditioner, Data Tape Recorder, Frequency Analyzer, Oscilloscope, Multimeter, and assorted interconnecting cables.     The specific instrumentation used is shown in Table 2.1.
The specific instrumentation used is shown in Table 2.1.
3.0     PROCEDURE The torsiograph, which was attached to the front end of the crankshaft through an adapter plate supplied by the Perry plant, was used to measure angular displacements of the crankshaft relative to its mean rotational speed. The angular displacement signal from the signal conditioner was recor-ded on magnetic tape for further analysis to determine angular displacement components for each order. Tests were conducted at several speeds under no-( load conditions, and at several loads at operating speed.       In addition, fast
3.0 PROCEDURE The torsiograph, which was attached to the front end of the crankshaft through an adapter plate supplied by the Perry plant, was used to measure angular displacements of the crankshaft relative to its mean rotational speed. The angular displacement signal from the signal conditioner was recor-ded on magnetic tape for further analysis to determine angular displacement components for each order.
! starts were performed with predetermined crankshaft positions. The torsio-l graph data was recorded continuously from startup through coastdown. The
Tests were conducted at several speeds under no-(
! spectrum analyzer was used to verify data integrity by determining harmonic components for each test condition.
load conditions, and at several loads at operating speed.
In addition, fast starts were performed with predetermined crankshaft positions.
The torsio-l graph data was recorded continuously from startup through coastdown.
The spectrum analyzer was used to verify data integrity by determining harmonic components for each test condition.
The test was carried out for each diesel engine in the following five stages:
The test was carried out for each diesel engine in the following five stages:
1
1
: 1. Calibration and instrumentation run-in.
 
: 2. Variable speed tests at 0% load.
1.
: 3. Variable load tests at rated speed.
Calibration and instrumentation run-in.
: 4. Startup and coastdown tests.
2.
: 5. Post test calibration.
Variable speed tests at 0% load.
3.1     Calibration and Instrumentation Run-in The torsiograph was mounted on the front end of the crankshaft using a rigid adapter plate. The torsiograph was connected to the signal conditioner and the signal conditioner to the instrumentation recorder with the designated cables. The signal conditioner was also connected to the spectrum analyzer and oscilloscope to monitor the torsiograph signals.
3.
Variable load tests at rated speed.
4.
Startup and coastdown tests.
5.
Post test calibration.
3.1 Calibration and Instrumentation Run-in The torsiograph was mounted on the front end of the crankshaft using a rigid adapter plate.
The torsiograph was connected to the signal conditioner and the signal conditioner to the instrumentation recorder with the designated cables.
The signal conditioner was also connected to the spectrum analyzer and oscilloscope to monitor the torsiograph signals.
The following steps were completed to calibrate the instrumentation before and after testing:
The following steps were completed to calibrate the instrumentation before and after testing:
: 1. The recording equipment and cabling was calibrated by introducing a known signal into the signal conditioner connection and recording the signal.
1.
: 2. The calibration signal was verified by playing back the calibration recording.
The recording equipment and cabling was calibrated by introducing a known signal into the signal conditioner connection and recording the signal.
: 3. A field calibration of the torsiograph was completed following the manufacturer's instructions [1]. The field calibration signal was recorded.
2.
: 4. The field calibration signal was played back for verification.
The calibration signal was verified by playing back the calibration recording.
After the calibration procedure was completed, the diesel engine was operated at no load for approximate'iy two to ten minutes while data was recor-ded. The engine was then shut down while the recorded data was examined to verify the instrumentation and recording system operation.
3.
A field calibration of the torsiograph was completed following the manufacturer's instructions [1].
The field calibration signal was recorded.
4.
The field calibration signal was played back for verification.
After the calibration procedure was completed, the diesel engine was operated at no load for approximate'iy two to ten minutes while data was recor-ded.
The engine was then shut down while the recorded data was examined to verify the instrumentation and recording system operation.
The test documentation information in Table 3.1 was logged.
The test documentation information in Table 3.1 was logged.
2
2


3.2     Variable Speed 0% Load Tests The engine was operated for two to five minutes at rated speed and no load. The speed was then adjusted using the mechanical governor to operate at speeds between 400 and 470 rpm. The engine was operated at each speed for two to ten minutes while the torsiograph output was recorded. The output speeds and tape footage were recorded (Table 3.2).
3.2 Variable Speed 0% Load Tests The engine was operated for two to five minutes at rated speed and no load. The speed was then adjusted using the mechanical governor to operate at speeds between 400 and 470 rpm. The engine was operated at each speed for two to ten minutes while the torsiograph output was recorded.
3.3     Variable Load, Operating Speed Tests The engine was brought to operating speed.         The load was adjusted successively to operate at the following load conditions for five to ten minutes:   25%, 50%, 75%, 100%. The load, current, speed, and tape footage were recorded (Table 3.3).
The output speeds and tape footage were recorded (Table 3.2).
3.4     Startup and Coastdown Tests Transient data was recorded for each engine at four different startup positions and the four coastdowns from 450 rpm. The startup and coastdown conditions monitored are the normal procedural fast starts and coastdowns in use at Perry.
3.3 Variable Load, Operating Speed Tests The engine was brought to operating speed.
The fast starts were performed with predetermined initial crankshaft positions at 180 degree intervals of crankshaft rotation to cover the full 720 degree firing cycle. The positions are described in Table 3-4. Once at the operating speed of 450 rpm the engine was allowed to coastdown. No load was applied to the engine during this test. The tape footage and run I.D.'s were recorded (Table 3.5).
The load was adjusted successively to operate at the following load conditions for five to ten minutes:
3.5     Post Test Data Verification and Calibration Selected data records were played back to verify proper measurement and recording. The calibration procedure outlined above was repeated and the signals recorded.
25%, 50%, 75%, 100%.
The load, current, speed, and tape footage were recorded (Table 3.3).
3.4 Startup and Coastdown Tests Transient data was recorded for each engine at four different startup positions and the four coastdowns from 450 rpm.
The startup and coastdown conditions monitored are the normal procedural fast starts and coastdowns in use at Perry.
The fast starts were performed with predetermined initial crankshaft positions at 180 degree intervals of crankshaft rotation to cover the full 720 degree firing cycle.
The positions are described in Table 3-4.
Once at the operating speed of 450 rpm the engine was allowed to coastdown.
No load was applied to the engine during this test.
The tape footage and run I.D.'s were recorded (Table 3.5).
3.5 Post Test Data Verification and Calibration Selected data records were played back to verify proper measurement and recording.
The calibration procedure outlined above was repeated and the signals recorded.
3
3


4.0     RESULTS
4.0 RESULTS
  . 4.1     Calibration Data The pre and post test static calibration data are shown in Tables 4.1 and 4.2. The torsiograph sensitivity was calculated as follows:
. 4.1 Calibration Data The pre and post test static calibration data are shown in Tables 4.1 and 4.2.
Teac
The torsiograph sensitivity was calculated as follows:
* Output,V) Amp. Range mV/V)
Teac Amp. Range mV/V)
Setu ng,     1W Torsiograph Sensitivity,                 =
Output,V)
degree         (Input, degrees)( Tape Deck )
Setu ng, 1W Torsiograph Sensitivity,
Gain, V   /V in The multiplication factors used in data reduction were calculated as
=
follows:
degree (Input, degrees)(
Vibration           (TapeDeck*)[ Amp.         Range mV/V) 10Vpk Amplitude      =    Ogtput,Vpk Setting, (degrees-pk)       Torstograph          gyjy       Tape Deck (Sensitivity, degree)(Gain,Vout / Vin) mV/V where Amp. Range Setting = 20 10 Vpk Tape Deck Range Setting = 0.1 Vout / Vin             Ch. 1 0.2 V out / Vin     Ch. 2 Unit 1 - Division 1
Tape Deck
;            From Table 4.1 for Channel 1, t
)
Torsiograph Sensitivity = (I'424)                   = 4.747         i Oi14%
Gain, V
(.1) (6)                 degree For out put in VRMS (as in spectral plots) multiply by /2.
/Vin The multiplication factors used in data reduction were calculated as follows:
Vibration (TapeDeck*)[ Amp. Range mV/V)
Ogtput,Vpk
: Setting, 10Vpk Amplitude
=
Torstograph Tape Deck (degrees-pk) gyjy (Sensitivity, degree)(Gain,V
/ Vin) out mV/V where Amp. Range Setting = 20 10 Vpk Tape Deck Range Setting = 0.1 Vout / Vin Ch. 1 0.2 V
/ Vin Ch. 2 out Unit 1 - Division 1 From Table 4.1 for Channel 1, t
Torsiograph Sensitivity = (I'424)
= 4.747 i Oi14%
(.1) (6) degree For out put in VRMS (as in spectral plots) multiply by /2.
4
4


and for Channel 2, Torsiograph Sensitivity = II*             = 4.753       1 0.14%
and for Channel 2, Torsiograph Sensitivity = II*
d   e The sensitivities for the post test calibration were found to be 4.750 and mV/V 4.730                           f r channels 1 and 2 respectively.
= 4.753 1 0.14%
d e
The sensitivities for the post test calibration were found to be 4.750 and mV/V 4.730 f r channels 1 and 2 respectively.
dem Multiplication factors for time domain response:
dem Multiplication factors for time domain response:
Ch 1.
Ch 1.
Input, degrees-pk = (Output, Vpk)   (4.213 degrees-pk)
Input, degrees-pk = (Output, Vpk)
(4.213 degrees-pk)
Ch 2.
Ch 2.
Input, degrees-pk = (Output, Vpk)   (2.104 degrees-pk) and for frequency domain response:
Input, degrees-pk = (Output, Vpk)
(2.104 degrees-pk) and for frequency domain response:
Ch 1.
Ch 1.
Input, degrees-pk = (Output, VRMS) ( 5.958 degrees-pk)
Input, degrees-pk = (Output, VRMS) ( 5.958 degrees-pk)
RMS Ch 2.
RMS Ch 2.
Input, degrees-pk = (Output, VRMS)   (2.975 d*9"*es-pk) y RMS Unit 1 - Division 2 From Table 4.1 for Channel 1, TorsiographSensitivity=([0               = 4.750 dg e      0.2%
Input, degrees-pk = (Output, VRMS)
and for Channel 2, 5
(2.975 d*9"*es-pk) y RMS Unit 1 - Division 2 From Table 4.1 for Channel 1, TorsiographSensitivity=([0
= 4.750 0.2%
dg e and for Channel 2, 5


Torsiograph Sensitivity = II*             = 4.730 ee ! 0.2%
Torsiograph Sensitivity = II*
The sensitivities for the post test calibration were found to be 4.747 and 4.727   d ree    for channels 1 and 2 respectively.
= 4.730 ee ! 0.2%
Multiplication factors for time domain response:
d The sensitivities for the post test calibration were found to be 4.747 and 4.727 for channels 1 and 2 respectively.
d ree Multiplication factors for time domain response:
Ch 1.
Ch 1.
Input, degrees-pk = (Output, Vpk) (4.211 degrees-pk)
Input, degrees-pk = (Output, Vpk) (4.211 degrees-pk)
Line 99: Line 150:
Input, degrees-pk = (Output, Vpk) (2.114 degres-pk) and for frequency domain response:
Input, degrees-pk = (Output, Vpk) (2.114 degres-pk) and for frequency domain response:
Ch 1.
Ch 1.
Input, degrees-pk = (Output, VRMS) (5.955       WD RMS Ch 2.
Input, degrees-pk = (Output, VRMS) (5.955 WD RMS Ch 2.
Input, degrees-pk = (Output, VRMS) (2.990 degrees-pk)
Input, degrees-pk = (Output, VRMS) (2.990 degrees-pk)
RMS 4.2     Variable Speed Results The variable speed test was performed to determine the frequency of the first mode of the crankshaft torsional system.       The results of this test are shown in Table 4.3. Figures 4.1 and 4.2 show that the 4th order critical speed is reached at about 436 rpm for each crankshaft.           Thus, the first natural frequency is 29.1 Hz.       This is in good agreement with the Holzer calculation of 29.2 Hz made by Delaval [2].
RMS 4.2 Variable Speed Results The variable speed test was performed to determine the frequency of the first mode of the crankshaft torsional system.
The results of this test are shown in Table 4.3.
Figures 4.1 and 4.2 show that the 4th order critical speed is reached at about 436 rpm for each crankshaft.
Thus, the first natural frequency is 29.1 Hz.
This is in good agreement with the Holzer calculation of 29.2 Hz made by Delaval [2].
6
6


The amplitude of nominal shear stress may be estimated from the ampli-tude of free-end vibration by assuming that the shaft is vibrating in its first mode. Under these conditions, the nominal shear stress in the number 8 crankpin journal and the number 9 main journal is 8596 psi per degree of free-                   ,
The amplitude of nominal shear stress may be estimated from the ampli-tude of free-end vibration by assuming that the shaft is vibrating in its first mode.
end vibration [2]. Thus, the maximum amplitude of nominal shear stress during                     ,___
Under these conditions, the nominal shear stress in the number 8 crankpin journal and the number 9 main journal is 8596 psi per degree of free-end vibration [2]. Thus, the maximum amplitude of nominal shear stress during the variable speed test was 2923 psi for each crankshaft.
the variable speed test was 2923 psi for each crankshaft.
4.3 Variable Load Results The variable load test at rated speed was performed to determine the
4.3     Variable Load Results The variable load test at rated speed was performed to determine the                       ~
~
amplitude of vibration and estimate the nominal shear stress as a function of load. The results of this test are shown in Table 4.4.                   Figures 4.3 and 4.4       -
amplitude of vibration and estimate the nominal shear stress as a function of load.
show that the amplitude of vibration increases with load to a maximum of 0.54 degrees at 7000 kW.                   The figures also show the response of the other major orders.                                                                                         (
The results of this test are shown in Table 4.4.
The amplitude of nominal Ghear stress may be estimated from the ampli-                 ,
Figures 4.3 and 4.4 show that the amplitude of vibration increases with load to a maximum of 0.54 degrees at 7000 kW.
tude of f ree-end vibration by assuming that the shaft is vibrating in its first mode. Under these conditions, the nominal shear stress in the number 8 crankpin journal and the number 9 main journal is 8596 psi per degree of free-end vibration [2].                 Thus, the amplitude of nominal shear stress at full load is as follows:
The figures also show the response of the other major orders.
Diesel Generator                                       Nominal Torsional Stress at Full Load (7000 kW)
(
Single Order   Combined Order Unit 1 - Division 1                                           ?891 psi       4659 psi Unit 1 - Division 2                                           2020 psi       4642 psi DEMA [3] allowable                                           S000 psi       7000 psi
The amplitude of nominal Ghear stress may be estimated from the ampli-tude of f ree-end vibration by assuming that the shaft is vibrating in its first mode.
>                                                            7 v
Under these conditions, the nominal shear stress in the number 8 crankpin journal and the number 9 main journal is 8596 psi per degree of free-end vibration [2].
h.. _
Thus, the amplitude of nominal shear stress at full load is as follows:
Diesel Generator Nominal Torsional Stress at Full Load (7000 kW)
Single Order Combined Order Unit 1 - Division 1
?891 psi 4659 psi Unit 1 - Division 2 2020 psi 4642 psi DEMA [3] allowable S000 psi 7000 psi 7
v h..


4.4       Startup/Coastdown Results Coastdown For the coastdowns monitored, the response of the crankshaft was found to be repeatable in both shape and magnitude. The maximum peak-to-peak ampli-tude recorded was found to be 0.96 degrees and occurs at the 8th order critical speed of approximately 218 rpm.                                           The approximate length for a coastdown is 80 seconds.
4.4 Startup/Coastdown Results Coastdown For the coastdowns monitored, the response of the crankshaft was found to be repeatable in both shape and magnitude. The maximum peak-to-peak ampli-tude recorded was found to be 0.96 degrees and occurs at the 8th order critical speed of approximately 218 rpm.
An analytical model to predict the stress as a function of time during coastdown at each shaft section as well as the free-end rotational vibration was performed for the crankshaft at Perry. The analysis was performed using a cold compression curve with a peak pressure of 450 psi. It was found that with a damping of 1.5 percent of critical modal damping in each mode, the maximum peak to peak response was 0.93 degrees which is in good agreement with that measured in the torsiograph test.
The approximate length for a coastdown is 80 seconds.
The maximum amplitude of nominal stress was found to be 3970 psi and occurred between cylinders No. 7 and No. 8 based on the analysis.                                               A comparison of the predicted and measured free-end amplitude time histories is shown in Figure 4-5.                                           The good comparison of dynamic features is readily apparent in these plots. The time occurrence of some features are shifted due to the assumed linear change of angular velocity with time in the analysis.
An analytical model to predict the stress as a function of time during coastdown at each shaft section as well as the free-end rotational vibration was performed for the crankshaft at Perry. The analysis was performed using a cold compression curve with a peak pressure of 450 psi.
Startup The maximum peak-to-peak response for each of the four conditions tested in each engine is shown in Table 4.5                                         The mean maximum peak-to-peak response is 1.89 degrees for Unit 1 Division 1 and 1.84 degrees for Unit 1 Division 2.       For each engine the maximum peak-to-peak response for each condition tested varied within 9% of the mean maximum peak-to-peak response (except for the one start that had a poor quality signal). The duration of a fast start was found to be 6 seconds.
It was found that with a damping of 1.5 percent of critical modal damping in each mode, the maximum peak to peak response was 0.93 degrees which is in good agreement with that measured in the torsiograph test.
The maximum amplitude of nominal stress was found to be 3970 psi and occurred between cylinders No. 7 and No. 8 based on the analysis.
A comparison of the predicted and measured free-end amplitude time histories is shown in Figure 4-5.
The good comparison of dynamic features is readily apparent in these plots. The time occurrence of some features are shifted due to the assumed linear change of angular velocity with time in the analysis.
Startup The maximum peak-to-peak response for each of the four conditions tested in each engine is shown in Table 4.5 The mean maximum peak-to-peak response is 1.89 degrees for Unit 1 Division 1 and 1.84 degrees for Unit 1 Division 2.
For each engine the maximum peak-to-peak response for each condition tested varied within 9% of the mean maximum peak-to-peak response (except for the one start that had a poor quality signal). The duration of a fast start was found to be 6 seconds.
8
8


The analytical model was used to determine the stresses in the crank-shaft during startup for each of the four conditions tested. The analysis was performed using pressure-time data recorded during a fast start at another plant (Ref. (4)], and using damping of 2.5 percent of critical modal damping
The analytical model was used to determine the stresses in the crank-shaft during startup for each of the four conditions tested. The analysis was performed using pressure-time data recorded during a fast start at another plant (Ref. (4)], and using damping of 2.5 percent of critical modal damping
                                                                                    ~"
~"
in each mode. The analysis confirms that the effect of initial crankshaft position on the maximum peak-to-peak response is small.
in each mode.
The analysis confirms that the effect of initial crankshaft position on the maximum peak-to-peak response is small.
The analysis indicates that the maximum amplitude of nominal stress for a typical fast start is 7650 psi and occurs between cylinders No. 7 and No.
The analysis indicates that the maximum amplitude of nominal stress for a typical fast start is 7650 psi and occurs between cylinders No. 7 and No.
: 8. A comparison of the predicted and measured free-end amplitude time         -
8.
histories for a typical fast-start is shown in Figure 4-6.                         -
A comparison of the predicted and measured free-end amplitude time histories for a typical fast-start is shown in Figure 4-6.
l
l


==5.0     CONCLUSION==
==5.0 CONCLUSION==
S The following conclusions are made:                                       .
S The following conclusions are made:
the first natural frequency of the torsional system for each engine was found to be approximately 29.1 Hz, and is in good agreement with Delaval Holzer calculations (2]. Thus the 4th order critical speed is 436 rpm.
the first natural frequency of the torsional system for each e
e    for both Unit I diesel generators, the stresses in the crank-shaft are below DEMA's [3] allowables for both single order and combined order response at full load (7000 kW) for steady-state operation, e   The coastdown transient response is repeatable and has a maximum peak-to-peak amplitude of approximately 0.96 degrees, which produces a maximum amplitude of nominal stress of 3970 psi.
engine was found to be approximately 29.1 Hz, and is in good agreement with Delaval Holzer calculations (2]. Thus the 4th order critical speed is 436 rpm.
A typical startup transient response produces a maximum peak-to-peak response of 1.86 degrees.       Such a startup has a maximum amplitude of nominal stress of 7650 psi. This stress amplitude exists for only a few cycles on each startup.           ,
for both Unit I diesel generators, the stresses in the crank-e shaft are below DEMA's [3] allowables for both single order and combined order response at full load (7000 kW) for steady-state operation, e
e   The results of the torsiograph test indicate that the crankshafts are adequate for their intended service at Perry nuclear Power Plant.
The coastdown transient response is repeatable and has a maximum peak-to-peak amplitude of approximately 0.96 degrees, which produces a maximum amplitude of nominal stress of 3970 psi.
References
A typical startup transient response produces a maximum peak-e to-peak response of 1.86 degrees.
: 1.     HBM Operating Manual for Rotary Vibration Transducer, 160.03-1.0-1.0e.
Such a startup has a maximum amplitude of nominal stress of 7650 psi. This stress amplitude exists for only a few cycles on each startup.
e The results of the torsiograph test indicate that the crankshafts are adequate for their intended service at Perry nuclear Power Plant.
References 1.
HBM Operating Manual for Rotary Vibration Transducer, 160.03-1.0-1.0e.
9 l
9 l
: 2. Yang, Roland, " Torsional and Lateral Critical Speed, Engine Numbers 75051/54 Delaval-Enterprise Engine Model DSRV-16-4, 7000 kW/9734 BHP at 450 RPM for Cleveland Electric Illuminating     Co.," Delaval Engine &
 
2.
Yang, Roland, " Torsional and Lateral Critical Speed, Engine Numbers 75051/54 Delaval-Enterprise Engine Model DSRV-16-4, 7000 kW/9734 BHP at 450 RPM for Cleveland Electric Illuminating Co.,"
Delaval Engine &
Compressor Division, Oakland, California.
Compressor Division, Oakland, California.
: 3. Standard Practices for low and Medium Speed Stationary Diesel and Gas Engines, Diesel Engine Manufacturers Association, 6th ed.,1972, e
3.
: 4. " Evaluation of Transient Conditions on Emergency Diesel Generator Crankshafts at San Onofre Nuclear Generating Station Unit 1," FaAA 84-   '
Standard Practices for low and Medium Speed Stationary Diesel and Gas Engines, Diesel Engine Manufacturers Association, 6th ed.,1972, e
12-14, Revision 1.0, April 1985.
4.
" Evaluation of Transient Conditions on Emergency Diesel Generator Crankshafts at San Onofre Nuclear Generating Station Unit 1," FaAA 84-12-14, Revision 1.0, April 1985.
6 e
6 e
6 6
6 6
e 10
e 10


Table 2.1: EQUIPMENT LIST Equipment           Equipment         Model     Serial   FaAA l Manufacturer       Description           No.         No. ID No.
Table 2.1: EQUIPMENT LIST Equipment Equipment Model Serial FaAA l
HBM         Rotary Vibration         BD 5       701     n/a Transducer HBM           SKHz Carrier       KWS 7073   72984     n/a Frequency Amp.
Manufacturer Description No.
Teac           Cassette Data         MR-30     116404   00138 Recorder B&K Precision     Sweep / Function       3020   89-11576   00119 Generator B&K Precision   Dual Trace 40MHz       1540P   11400731   00118 Oscilloscope Hewlett Packard     Dual Channel         3582A     LO39823 FFT Analyzer HBM         cable (connect           n/a       n/a     n/a transducer to amplifier) n/a         cable (connect           n/a       n/a     n/a amplifier to tape deck) n/a         cable (connect           n/a       n/a     n/a tape deck monitor to Spectrum analyzer or oscilloscope)
No.
Fluke       Digital Multimeter       8060A     8396137   00128 Hewlett Packard     Dual Channel         5423A   2040A00345 00124 FFT Analyzer Hewlett Packard         Plotter           7225B   1206A01534 00122 11
ID No.
HBM Rotary Vibration BD 5 701 n/a Transducer HBM SKHz Carrier KWS 7073 72984 n/a Frequency Amp.
Teac Cassette Data MR-30 116404 00138 Recorder B&K Precision Sweep / Function 3020 89-11576 00119 Generator B&K Precision Dual Trace 40MHz 1540P 11400731 00118 Oscilloscope Hewlett Packard Dual Channel 3582A LO39823 FFT Analyzer HBM cable (connect n/a n/a n/a transducer to amplifier) n/a cable (connect n/a n/a n/a amplifier to tape deck) n/a cable (connect n/a n/a n/a tape deck monitor to Spectrum analyzer or oscilloscope)
Fluke Digital Multimeter 8060A 8396137 00128 Hewlett Packard Dual Channel 5423A 2040A00345 00124 FFT Analyzer Hewlett Packard Plotter 7225B 1206A01534 00122 11


l                               Table 3.1: TORSIOGRAPH TEST DOCUMENTATION Job Name:           Perry Torsiograph Test                           Date:
l Table 3.1: TORSIOGRAPH TEST DOCUMENTATION Job Name:
Job Number:         QRCEI                                         Div. 1:   3/27/85 Location:           Perry Nuclear Power Plant                     Div. 2:   3/28/85 Cleveland Electric Illuminating Co.
Perry Torsiograph Test Date:
Job Number:
QRCEI Div. 1:
3/27/85 Location:
Perry Nuclear Power Plant Div. 2:
3/28/85 Cleveland Electric Illuminating Co.
Engine
Engine


== Description:==
== Description:==
 
Unit 1, Div. 1 Unit 1, Civ. 2 Transamerica Delaval Inc.
Unit 1, Div. 1                                   Unit 1, Civ. 2 Transamerica Delaval Inc.             Transamerica Delaval Inc.
Transamerica Delaval Inc.
DSRV-16-4                                             DSRV-16-4 Serial No. 75051                               Serial No. 75052 Notes:
DSRV-16-4 DSRV-16-4 Serial No. 75051 Serial No. 75052 Notes:
Test Personnel:
Test Personnel:
Steve Riess           FaAA Paul Johnston         FaAA Tony Pusateri         CEI Mark Hickman         CEI 12
Steve Riess FaAA Paul Johnston FaAA Tony Pusateri CEI Mark Hickman CEI 12


                                                                                                                        \
\\
Table 3.2: TORSIOGRAPH VARIABLE SPEED TEST
Table 3.2: TORSIOGRAPH VARIABLE SPEED TEST Test Personnel:
!      Test Personnel:                           Steve Riess, FaAA                         Date:
Steve Riess, FaAA Date:
Paul Johnston, Fa'                       Div. 1:   3/27/85 Tony Pusateri, C'                         Div. 2:   3/28/85   '
~~)N Paul Johnston, Fa' Div. 1:
                                                                                                                    ~~)N Mark Hickman, Ci Unit 1 - Division 1 f
3/27/85 Tony Pusateri, C' Div. 2:
g Tape I.D.                           itage       Test Speed (RPM)           ~~)
3/28/85 Mark Hickman, Ci Unit 1 - Division 1 f
                                                                            .44                 400
g Tape I.D.
                                                                          -161                 410 a-175                 420
itage Test Speed (RPM)
                                                                        <9-190                 430                 k QRCEl-1                     .93-204                 435 TORSIOGRAPH                   207-216                   440 TEST                       222-230                   450 242-250                   460 262-271                   470 278-289                   425 Unit 1 - Division 2 Tape I.D.                 Tape Footage         Tape Speed (RPM)
~~)
ORCEI-2                     177-186                 400 TORSIOGRAPH                   192-200                 410 TEST                       204-210                 420 215-233                 425 226-232                 430 236-242                 435 245-253                 440 255-265                 445 268-275                 450 278-287                 460 304-312                 470 13 w.._.
.44 400
-161 410 a-175 420
<9-190 430 k
QRCEl-1
.93-204 435 TORSIOGRAPH 207-216 440 TEST 222-230 450 242-250 460 262-271 470 278-289 425 Unit 1 - Division 2 Tape I.D.
Tape Footage Tape Speed (RPM)
ORCEI-2 177-186 400 TORSIOGRAPH 192-200 410 TEST 204-210 420 215-233 425 226-232 430 236-242 435 245-253 440 255-265 445 268-275 450 278-287 460 304-312 470 13 w.._.


                                                                                                                  <r Table 3.3: TORSIOGRAPH VARIABLE LOAD TEST Test Personnel:                   Steve Riess, FaAA                               Date:
<r Table 3.3: TORSIOGRAPH VARIABLE LOAD TEST Test Personnel:
Paul Johnston, FaAA                           Div. 1: 3/27/85 Tony Pusateri, CEI                           Div. 2: 3/28/85 Mark Hickman, CEI Test Speed:                       450 rpm Unit 1 - Division 1 Tape I.D.         Tape Footage       Load (kW)
Steve Riess, FaAA Date:
ORCEI-1             410-418           1750 (25%)                   ,
Paul Johnston, FaAA Div. 1:
Torsiograph                                                              'd Test               427-435           3500 (50%)
3/27/85 Tony Pusateri, CEI Div. 2:
s 442-448           5250 (75%)
3/28/85 Mark Hickman, CEI Test Speed:
460-510         7000 (100%)
450 rpm Unit 1 - Division 1 Tape I.D.
Unit 1 - Division 2 Tape I.D.         Tape Footage       load (kW)
Tape Footage Load (kW)
QRCEI-2             361-369           1750 (25%)
ORCEI-1 410-418 1750 (25%)
l                                         Torsiograph Test             379-387           3500 (50%)
'd Torsiograph Test 427-435 3500 (50%)
397-405           5250 (75%)
s 442-448 5250 (75%)
423-432         7000 (100%)
460-510 7000 (100%)
Unit 1 - Division 2 Tape I.D.
Tape Footage load (kW)
QRCEI-2 361-369 1750 (25%)
l Torsiograph Test 379-387 3500 (50%)
397-405 5250 (75%)
423-432 7000 (100%)
14 I
14 I
I 1     -
I 1


P Table 3-4: PREDETERMINED INITIAL CRANKSHAFT POSITIONS FOR STARTUP TESTS Crankshaft Rotation Run I.D.                                               w.r.t.1 LB TDC Firing (degrees) 1 LB TDC firing                                                     0*
P Table 3-4: PREDETERMINED INITIAL CRANKSHAFT POSITIONS FOR STARTUP TESTS Crankshaft Rotation Run I.D.
7 LB TDC firing                                                   180 8 LB TDC firing                                                   360*           '
w.r.t.1 LB TDC Firing (degrees) 1 LB TDC firing 0*
l 2 LB TDC firing                                                   540*           i l
7 LB TDC firing 180 8 LB TDC firing 360*
l 2 LB TDC firing 540*
i l
(
(
15
15


i l
i l
l Table 3.5: STARTUP AW COASTDOW TESTS
l Table 3.5: STARTUP AW COASTDOW TESTS Test Personnel:
,      Test Personnel:                                                         Steve Riess, FaAA                                                                                                                                                                         Date:
Steve Riess, FaAA Date:
Paul Johnston, FaAA                                                                                                                                                                       Div. 1: 3/27/85 Tony Pusateri, CEI                                                                                                                                                                         Div. 2: 3/28/85 Mark Hickman, CEI l
Paul Johnston, FaAA Div. 1:
Unit 1 - Division 1                                                                                                                                                                                                                                                                                               '
3/27/85 Tony Pusateri, CEI Div. 2:
Tape ID                                                                                                                                                                   Tape Footage                                                     Startup/Coastdown ID                                 1 555-566                                                       Cylinder ILB TDC Firing QRCEI-1                                                                                                                                                                     566-581                                                       Cylinder 7LB TDC Firing Torsiograph Test                                                                                                                                                                     581-595                                                       Cylinder 8LB TDC Firing 595-611                                                       Cylinder 2LB TDC Firing Unit 1 - Division 2 Tape ID                                                                                                                                                                   Tape Footage                                                     Startup/Coastdown ID QRCEI-2                                                                                                                                                                     469-485                                                       Cylinder ILB TDC Firing Torsiograph Test                                                                                                                                                                     485-500                                                       Cylinder 2LB TDC Firing 500-517                                                       Cylinder 7LB TDC Firing 517-534                                                       Cylinder 8tB TDC Firing 16
3/28/85 Mark Hickman, CEI l
Unit 1 - Division 1 Tape ID Tape Footage Startup/Coastdown ID 1
555-566 Cylinder ILB TDC Firing QRCEI-1 566-581 Cylinder 7LB TDC Firing Torsiograph Test 581-595 Cylinder 8LB TDC Firing 595-611 Cylinder 2LB TDC Firing Unit 1 - Division 2 Tape ID Tape Footage Startup/Coastdown ID QRCEI-2 469-485 Cylinder ILB TDC Firing Torsiograph Test 485-500 Cylinder 2LB TDC Firing 500-517 Cylinder 7LB TDC Firing 517-534 Cylinder 8tB TDC Firing 16


Table 4.1: PRE TEST STATIC CALIBRATION Unit 1 - Division 1 Static           Voltage Output                                                             Teac Range Setting HBM Signal Cond. Setting Input                                                                   (Vdc)                   (V/V)           (mV/V)                                                           UB (degrees)       Ch. 1*                                                               Ch. 2*     Ch. 1     Ch. 2     T6 V                                                           (V )
Table 4.1: PRE TEST STATIC CALIBRATION Unit 1 - Division 1 Static Voltage Output Teac Range Setting HBM Signal Cond. Setting Input (Vdc)
0         .005                                                                 .009         .1       .1         20                                                             5
(V/V)
    +3         .719                                                                 .726         .1       .1         20                                                             5 0         .005                                                                 .010         .1       .1         20                                                             5
(mV/V)
    -3         .705                                                                 .700         .1       .1         20                                                             5 0         .003                                                                 .008         .1       .1         20                                                             5
UB (degrees)
    +3         .719                                                                 .726         .1       .1         20                                                             5 0         .004                                                                 .010         .1       .1         20                                                             5
Ch. 1*
    -3         .705                                                                 .700         .1       .1         20                                                             5 0         .002                                                                 .008         .1       .1         20                                                             5 Unit 1 - Division 2 Static           Voltage Output                                                             Teac Range Setting HBM Signal Cond. Setting Input                                                                   (Vdc)                   (V/V)           (mV/V)                                                           UB (degrees)       Ch. 1*                                                               Ch. 2*   Ch. 1       Ch. 2     f6 T                                                           (V )
Ch. 2*
0         .004                                                                 .008       .1         .1         20                                                             5
Ch. 1 Ch. 2 T6 V (V )
    +3         .722                                                                 721       .1         .1         20                                                             5 0         .009                                                                 .013       .1         .1         20                                                             5
0
    -3         .703                                                                 .698       .1         .1         20                                                             5 0         .006                                                                 .009       .1         .1         20                                                             5
.005
    +3         .722                                                                 .721       .1         .1         20                                                             C 0         .009                                                                 .010       .1         .1         20                                                             5
.009
    -3         .704                                                                 .697       .1         .1         20                                                             5 0         .006                                                               .009       .1         .1         20                                                             5
.1
* t .002 Vdc 17
.1 20 5
+3
.719
.726
.1
.1 20 5
0
.005
.010
.1
.1 20 5
-3
.705
.700
.1
.1 20 5
0
.003
.008
.1
.1 20 5
+3
.719
.726
.1
.1 20 5
0
.004
.010
.1
.1 20 5
-3
.705
.700
.1
.1 20 5
0
.002
.008
.1
.1 20 5
Unit 1 - Division 2 Static Voltage Output Teac Range Setting HBM Signal Cond. Setting Input (Vdc)
(V/V)
(mV/V)
UB (degrees)
Ch. 1*
Ch. 2*
Ch. 1 Ch. 2 f6 T (V )
0
.004
.008
.1
.1 20 5
+3
.722 721
.1
.1 20 5
0
.009
.013
.1
.1 20 5
-3
.703
.698
.1
.1 20 5
0
.006
.009
.1
.1 20 5
+3
.722
.721
.1
.1 20 C
0
.009
.010
.1
.1 20 5
-3
.704
.697
.1
.1 20 5
0
.006
.009
.1
.1 20 5
* t.002 Vdc 17


i Table 4.2: POST TEST STATIC CALIBRATION l Unit 1 - Division 1                                                                                                                                                                                                 l l   Static                                                         Voltage Output                                                                                       Teac Range Setting HBM Signal Cond. Setting Input                                                                                           (Vdc)                                                                     (V/V)           (mV/V)       Ug (degrees)                                                     Ch. 1*                                                                                   Ch. 2*           Ch. 1       Ch. 2     ITT       (V )
i Table 4.2: POST TEST STATIC CALIBRATION l
0                                                         .011                                                                                     .018             .1         .1         20           5
Unit 1 - Division 1 l
      +3                                                         .727                                                                                       .730           .1         .1         20           5 0                                                         .012                                                                                       .020           .1         .1         20         5
l Static Voltage Output Teac Range Setting HBM Signal Cond. Setting Input (Vdc)
      -3                                                         .698                                                                                     .639             .1         .1         20           5 0                                                         .011                                                                                       .019           .1         .1         20           5
(V/V)
      +3                                                         .727                                                                                       .730           .1         .1         20           5 0                                                         .015                                                                                       .021           .1         .1         20           5
(mV/V)
      -3                                                         .697                                                                                       .689           .1         .1         20           5 0                                                         .012                                                                                       .019           .1         .1         20           5 Unit 1 - Division 2 Static                                                         Voltage Output                                                                                       Teac Range Setting HBM Signal Cond. Setting Input                                                                                           (Vdc)                                                                     (V/V)           (mV/V)       UB (degrees)                                                       Ch. 1*                                                                                   Ch. 2*         Ch. 1       Ch. 2     10 V       (V )
Ug (degrees)
0                                                         .014                                                                                       .022           .1         .1         20           5
Ch. 1*
      +3                                                         .729                                                                                       .733           .1         .1         20           5 0                                                         .015                                                                                       .022           .1         .1         20           5
Ch. 2*
      -3                                                         .695                                                                                       .685           .1         .1         20           5 0                                                         .014                                                                                       .021           .1         .1         20           5
Ch. 1 Ch. 2 ITT (V )
      +3                                                         .730                                                                                       .734           .1         .1         20           5 0                                                         .016                                                                                       .024           .1         .1         20           5
0
      -3                                                         .695                                                                                       .686           .1         .1       20           5 0                                                         .013                                                                                       .020           .1         .1         20           5
.011
* t .002 Vdc 18
.018
.1
.1 20 5
+3
.727
.730
.1
.1 20 5
0
.012
.020
.1
.1 20 5
-3
.698
.639
.1
.1 20 5
0
.011
.019
.1
.1 20 5
+3
.727
.730
.1
.1 20 5
0
.015
.021
.1
.1 20 5
-3
.697
.689
.1
.1 20 5
0
.012
.019
.1
.1 20 5
Unit 1 - Division 2 Static Voltage Output Teac Range Setting HBM Signal Cond. Setting Input (Vdc)
(V/V)
(mV/V)
UB (degrees)
Ch. 1*
Ch. 2*
Ch. 1 Ch. 2 10 V (V )
0
.014
.022
.1
.1 20 5
+3
.729
.733
.1
.1 20 5
0
.015
.022
.1
.1 20 5
-3
.695
.685
.1
.1 20 5
0
.014
.021
.1
.1 20 5
+3
.730
.734
.1
.1 20 5
0
.016
.024
.1
.1 20 5
-3
.695
.686
.1
.1 20 5
0
.013
.020
.1
.1 20 5
* t.002 Vdc 18


Table 4.3: VARIABLE SPEED RESPONSE Unit 1 - Division 1 Amplitude of free-end vibration (mil 11 degrees) for given speed (rpm)
Table 4.3: VARIABLE SPEED RESPONSE Unit 1 - Division 1 Amplitude of free-end vibration (mil 11 degrees) for given speed (rpm)
Order                                                                                   403                                                         412     423     428   434                     438   443   454   463   474   ,
Order 403 412 423 428 434 438 443 454 463 474 0.5 6
0.5                                                                                                       6                                         11       9       6         10                 13   11   11     9   12 1.0                                                                                                         2                                         2       2       2                   1         0     1     1     1     1 1.5                                                                                             39                                                 40     40       40         40                   40   40   41   41   41 2.0                                                                                                         6                                         7       8       8                   9         11   12   13   14   16 2.5                                                                                               55                                                 56     57       58           58                 59   60   62   64   65 3.0                                                                                                         2                                         2       2       3                     2         2     1     2     2     3 3.5                                                                                               39                                                 42     46       49           52                 56   61   74   93   130 4.0                                                                                               37                                                 55     99     153   240                     211   140   80   57   43 4.5                                                                                               68                                                 43     31       27           23                 20   19   15   13   10 5.0                                                                                                         2                                       2       2       2           22                 2     2     2     2     2 5.5                                                                                                         9                                         8       7       6                   6         5     5     4     4     5 6.0                                                                                                         4                                       5       6       7                     8         7     5     3     3     3 Total                                                                                     170                                                       170     210     260   340                     290   240   230   230   240 Unit 1 - Division 2 Amplitude of free-end vibration (mil 11 degrees) for given speed (rpm)
11 9
Order                                                       400                                                         410                           420   425     431           435               439   445   451   460   470 0.5                                                                           5                                                           6           4       4       5                         5     5     7     6     6     5 1.0                                                                             1                                                           1           1       1       2                         2     2     2     2     3     3 1.5                                                                 38                                                           39                   39     38     38                     38       39   39   39   39   40 2.0                                                                           6                                                           6           7       8       8                         9   11   12   12   14   15 2.5                                                                   57                                                           59                   60     60     60                     61       62   64   64   66   68 3.0                                                                             3                                                           3           4       4       4                         3     3     4     4     5     5 3.5                                                                   36                                                         40                   43     45     48                     51     56   61   66   81   107 4.0                                                                   26                                                           40                   66     96     151           232             186   122   89   48     43 4.5                                                                   91                                                           50                   34     29     25                     22     20     18   16   13   10 5.0                                                                             2                                                             1         1       1       1                         2     2     2     2     2     2 5.5                                                                   10                                                                   8           7       7       7                         6     5     5     4     4     4 6.0                                                                             5                                                           5         5       6       7                         8     6     4     4     3     3 Total                                                         185                                                         165                         160   200     255           340             270   235   215   205   230 19
6 10 13 11 11 9
12 1.0 2
2 2
2 1
0 1
1 1
1 1.5 39 40 40 40 40 40 40 41 41 41 2.0 6
7 8
8 9
11 12 13 14 16 2.5 55 56 57 58 58 59 60 62 64 65 3.0 2
2 2
3 2
2 1
2 2
3 3.5 39 42 46 49 52 56 61 74 93 130 4.0 37 55 99 153 240 211 140 80 57 43 4.5 68 43 31 27 23 20 19 15 13 10 5.0 2
2 2
2 22 2
2 2
2 2
5.5 9
8 7
6 6
5 5
4 4
5 6.0 4
5 6
7 8
7 5
3 3
3 Total 170 170 210 260 340 290 240 230 230 240 Unit 1 - Division 2 Amplitude of free-end vibration (mil 11 degrees) for given speed (rpm)
Order 400 410 420 425 431 435 439 445 451 460 470 0.5 5
6 4
4 5
5 5
7 6
6 5
1.0 1
1 1
1 2
2 2
2 2
3 3
1.5 38 39 39 38 38 38 39 39 39 39 40 2.0 6
6 7
8 8
9 11 12 12 14 15 2.5 57 59 60 60 60 61 62 64 64 66 68 3.0 3
3 4
4 4
3 3
4 4
5 5
3.5 36 40 43 45 48 51 56 61 66 81 107 4.0 26 40 66 96 151 232 186 122 89 48 43 4.5 91 50 34 29 25 22 20 18 16 13 10 5.0 2
1 1
1 1
2 2
2 2
2 2
5.5 10 8
7 7
7 6
5 5
4 4
4 6.0 5
5 5
6 7
8 6
4 4
3 3
Total 185 165 160 200 255 340 270 235 215 205 230 19


Table 4.4: VARIABLE LOAD RESPONSE Unit 1-Division 1 Amplitude of free-end vibration (mil 11 degrees) for given load (kw)
Table 4.4: VARIABLE LOAD RESPONSE Unit 1-Division 1 Amplitude of free-end vibration (mil 11 degrees) for given load (kw)
Order                                                                                                   0                         1750             3500     5250         7000 0.5                                                                                             22                                   55             95       72           93 1.0                                                                                                   2                             4               5         5         5 1.5                                                                                           43                                   67             103     137         181 ,
Order 0
2.0                                                                                             12                                   9               6         4         1 2.5                                                                                           64                                   89             130     173         220 3.0                                                                                                     2                             2               2           5         8 3.5                                                                                             72                                   94             133     173         201 4.0                                                                                             94                                   85             95       92         130 4.5                                                                                             16                                   18             27       38           26 5.0                                                                                                     2                             3               3         4         5
1750 3500 5250 7000 0.5 22 55 95 72 93 1.0 2
5.5                                                                                                     5                             6               9       12           14 6.0                                                                                                     3                             5               7         9         10 Total                                                                                   225                                         273             368     417         542 Unit 1 - Division 2 Amplitude of free-end vibration (millidegrees) for given load (kw)
4 5
Order                                                                                                           0                   1750           3500     5250       7K 0.5                                                                                                           7                       6           13           34       55 1.0                                                                                                             3                       3             3             3       1 1.5                                                                                                     41                           64             98       138         184 2.0                                                                                                     11                             8             5             5       7 2.5                                                                                                     68                           96           138       185         235 3.0                                                                                                             4                       7             8             7       4 3.5                                                                                                     69                           93           129       172         205 4.0                                                                                                     88                           69             80       133         141 4.5                                                                                                     15                           19             29           41       52 5.0                                                                                                             1                       1             1             2       1 5.5                                                                                                             5                       6           10           12     14 6.0                                                                                                             4                       6             8           11     12 Total                                                                                             215                                 240           330       445         540 20
5 5
1.5 43 67 103 137 181 2.0 12 9
6 4
1 2.5 64 89 130 173 220 3.0 2
2 2
5 8
3.5 72 94 133 173 201 4.0 94 85 95 92 130 4.5 16 18 27 38 26 5.0 2
3 3
4 5
5.5 5
6 9
12 14 6.0 3
5 7
9 10 Total 225 273 368 417 542 Unit 1 - Division 2 Amplitude of free-end vibration (millidegrees) for given load (kw)
Order 0
1750 3500 5250 7K 0.5 7
6 13 34 55 1.0 3
3 3
3 1
1.5 41 64 98 138 184 2.0 11 8
5 5
7 2.5 68 96 138 185 235 3.0 4
7 8
7 4
3.5 69 93 129 172 205 4.0 88 69 80 133 141 4.5 15 19 29 41 52 5.0 1
1 1
2 1
5.5 5
6 10 12 14 6.0 4
6 8
11 12 Total 215 240 330 445 540 20


Table 4.5: STARTUP RESPONSE Maximum Peak-to-Peak Free-End Vibration Fast Start ID                             (degrees)                     ,___
Table 4.5: STARTUP RESPONSE Maximum Peak-to-Peak Free-End Vibration Fast Start ID (degrees)
Unit 1                   Unit 1 Division 1               Division 2       <    -
Unit 1 Unit 1 Division 1 Division 2 1 LB TDC Firing 2.39*
1 LB TDC Firing                             2.39*                     1.90 7 LB TDC Firing                             1.80                     1.68 8 LB TDC Firing                               1.61                     1.76 2 LB TDC Firing                             1.75                     2.00       t
1.90 7 LB TDC Firing 1.80 1.68 8 LB TDC Firing 1.61 1.76 2 LB TDC Firing 1.75 2.00 t
* Torsiograph data for this test was determined from a noisy signal.
* Torsiograph data for this test was determined from a noisy signal.
k-l 21
k -
l 21


                            )lll)!                   I l'                   lIllllllll1 0
)lll)!
8
I l'
                .                -  -    -                              4 d
lIllllllll1 08 4
z                                 ;                                          n H                O                                                           e 0                         ee
d n
    ,                e                                            '      7                         ed s 1                                                   4                         ro en9                                                                                   .fm so2 np                                                                           1ft os e pose :y                                                                         n oei r
z O
s sr c
e H
    ,      n ore re e n                                             '
0 ee e
0 6
7 ed s 1 4
i ef sr i gs p                                                                4                 vet s reroeq d u                                                                  i di e d D/
ro en9
r r         f r                                                                          ,isi n la  o2     / l                C         .                                      1 p g
.fm so2 np 1ft os os e p e :y n
t h1           a                                                  0)               t6n ot - r u                                                        5 4 m i9i T43t                                                                 p               n5t a                                                     r           U8a r
r oei s sr c 0
emAN                                                               (
i ef n e r n
fsb D               oii E                         v es 0E                 sss 4P                 nei or 4S                 ptt ssf E               e         a N               rrh I                       as G             de ehe 0N                 esh 4
6 sr or e e i gs r d u 4
3 E                 p sl t
vet p
                                                            -                                          ag lii enn bmm aou
s q
                                                              .                              ins 0                   r         s
i di er e
      ,                                                                '    2                   afa 4               Vo           ,
oe D/
en
d
                                                                                                    . do 1 ui
,i n r
                                                                                                    - tt 4ia 0                         l r epb
r r
      ,                                                                ' 1 rmi
f si o2 C
                                                              -              4 i
1 p la
F uAv g*
/
_          0 0
g l
6           5                 4   3   2                             O4 0             0               O   O     0 3$ .8P<oE>c O2" wwEE EO W             b y$eTi~
t h1 0) t6n a
l     l     flll
ot - r 5 m i9i u
T43t 4 p U8a n5t a
r r
emAN
(
fsb D
oii v
E es 0E sss 4P nei or 4S ptt ssf E
e a
N rrh I
as G
de ehe 0N esh 3 E p
t 4
sl ag enn lii bmm aou ins 0
r s
2 afa 4
Vo en
. do 1 ui
- tt 4ia 0
l r epb
' 1 rmi 4
uAv g*
i F
00 6
5 4
3 2
O4 0
0 O
O 0
3$.8P<oE> O2" wwEE EO W b
c y$eTi~
l l
flll


0.6           i       i       i         i         i           i     i e Total response S, 0.5   -
0.6 i
3                                                A 3-1/2 order response
i i
* Natural frequency: 29.0 Hz g
i i
9 g 0.4   -
i i
e O
e Total response S, 0.5 3
2
A 3-1/2 order response Natural frequency: 29.0 Hz
* O.3   -
*g 9
m m
g 0.4 e>
II' E
O2
E                                                                 _
* O.3 m
O 0.2 "  -                                                          -
m II' E
1      m               _
E O 0.2 1
O               -        -
m O
3 b
3b
_a M
_a M
l     $ O.1 4:                                     ^   ^
l
                                      -      1             -
$ O.1 4:
i lk I       '        '        '          '          '      '
^
0 400     410       420     430       440       450       460     470   460 in ENGINE SPEED (rpm)
^
S t
i 1
  !t              Figure 4-2. Variable speed response of Unit 1. Division 2.
lk I
* Amplitude of nominal shear stress is 8596 psi / degree of free-end
0 400 410 420 430 440 450 460 470 460 ENGINE SPEED (rpm) in S
  -                vibration, assuming the shaft is vibrating in its first mode.
t!
Figure 4-2.
Variable speed response of Unit 1. Division 2.
t
* Amplitude of nominal shear stress is 8596 psi / degree of free-end vibration, assuming the shaft is vibrating in its first mode.


0.6         ,          ,        ,        ,        ,        ,          ,        i e Total response g
0.6 i
e Total response g
a 4th order response
a 4th order response
      .g 0.5   -                                                                                    _
.g 0.5 A 3-1/2 order response w
w          A 3-1/2 order response 2
29 t-y 0.4 e>
9 t-y 0.4   -                                                                                    _
O2y 0.3 W
e O
W E
2 y 0.3   -                                                                                  -
E b 0.2 5
W W
3 0.1 x 1
E E
0 O
b 0.2   -                                                                                  -
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 GENERATOR LOAD (kw)
5 3
0.1 x                               -                  --
      *      . 1 0
O    1,000       2,000     3,000   4,000     5,000     6,000     7,000     8,000   9,000
,                                            GENERATOR LOAD (kw)
S T
S T
$                      Figure 4-3. Variable load response of Unit 1, Division 1.                           '
Figure 4-3.
;
Variable load response of Unit 1, Division 1.
* Amplitude of nominal shear stress is 8596 psi / degree of free-end
* Amplitude of nominal shear stress is 8596 psi / degree of free-end vibration, assuming the shaft is vibrating in its first mode.
-                          vibration, assuming the shaft is vibrating in its first mode.


l 0
l 00 0,
0
9 0
                  .           -      -      -      -              0, 9
00, d
i 8
ne-.
ee ed ro 0
fm 0
=
0,
.ft i
2os 7
r nei oef i r sgs 0
iet 0
vdi i/
0, Din 6)
,si p
w 1
g k
6n t9i
(
=
i5t 0
D n8a 0
U r
A 0, O sb i
fii 5
L o
v s
R ess sei O
nr 0T ott psf 0 A s
a 0, R erh i
4E ras N
e dh e E
ash G
o t
e 0
ll ag s
0 enn e n 0,
lii s o np 3
bmm aou o s i ns
. pe r
s
. sr afa
. e Vo
. r 0
r p
e 0
en s rd
.d o er 0,
4ui e,d o
2 tt r
4ia
.o2 l r
/
epb
.h1 rmi t
143 0
uAv g*
0 i
. mA 0,
F i
1 b
O
,a 8
4 3
2 1
O 0
0 0
0 0
i 0,              d 8                n e
O 0
ee ed 0                ro 0                fm i                                            =          '
33 *getfe5 a*W Et $ wOgg:
0,            .ft 2os 7                    r nei oef i r sgs 0            iet 0            vdi
4
                                                              '                i/
,:T Yt -
0,          Din
lll lll l
: 6)              ,si p
I
w      1        g k            6n
(        t9i i5t
                                                  =                0 D 0 A          U n8a r
i sb 0, O        fii 5  L        o s v R        ess sei O         nr 0T          ott psf i
                                                              '    0  A 0, R        s      a erh 4E          ras N              e dh e E        ash G        o      t e                                          0          ll ag s                                          0
      ,              e n s o 0,          enn lii np                                            3            bmm aou
                . opes                                                          i ns r      s
                . sr                                                              afa
                . e r er                                          0           Vo        ,
p                                                  0                en
        ,        s rd  ero                                      '
0,            .d o e
                ,d                                                  2 4ui tt r                                                          4ia
                .o2    /
l r epb
                .h1  t 0
rmi uAv 143                                                              g*
0            i i
                . mA                                            '
0,          F 1
                    .          -      -  b            ,a          O 8              ,          4      3      2        1          O 0              ,.          0      0      O        0 33 *getfe5 -
a*W Et $ wOgg:           4
                                                                          ,:T Yt -
lll                   lll     l     I                           .


l l
l l
l 8                       9                         t                                                                                   t I                       i                         t                                                                                   I                                                 ,
l 8
            ''                                                I 1                                                  t                                                                                   l                                                 l t                       i                         I                                                                                   t                                                 l l                       t                         t                                                                                   t i Le   i
9 t
: a.                      t                       I                         f                                                                                   f f                       I                         I                                                                                   I I                       f                         I                                                                                 I
t I
            **                      f                       f                         f                                                                                   I t                       i                         I                                                                                   t
i t
            ,,                        1                       I                         I                                                                                   t I                       I                         t                                                                                   I i                       i                         i                                                                                   i I           ll I                       f                         9                                                                                   I I                       I                         I                                                                                   t i                       e                         i                                                                                   i 1                       e                         i                                                                                   i t                   ,
I 1
i                         t                                                                                   ,
I t
i                   a                       e                         i                                                                                   s T IME   (S E C 0 N D $1 Figure 4-5. Comparison of predicted and measured free-end amplitudes during a typical coastdown.
l l
,i D
t i
I t
l l
t t
t i Le i
t I
f f
a.
f I
I I
I f
I I
f f
f I
t i
I t
1 I
I t
I I
t I
i i
i i
I ll I
f 9
I I
I I
t i
e i
i 1
e i
i t
i t
i a
e i
s T IME (S E C 0 N D $1 Figure 4-5.
Comparison of predicted and measured free-end amplitudes during a typical coastdown.
,i D>>
f OB Ut f
f OB Ut f
b I
b I
.a
.a


l l                         l                              1 1                         I                             I 1                         I                             I I                         l                             I i   _
l l
l                        i                               I FREE-END AMPL1TUDE (DECREES)
1 1
                  ^
I I
                        ,          d,M $     I l       l       hMk l           h' f ,h l
1 I
  ","l,"?ol7l,1,l^             wNj     ~r                        I" ;" '             '
I I
                                                                                          'Y   l y' ' FIlIlgU                                      ]'iYl
l I
_i   _
i l
l                        I                             I I                         I                             I I                         I                             I
i I
                          -2   -
FREE-END AMPL1TUDE d,M $
l                         l                             l l                         l                             l 2    _
l l hMk l h' f,h l I
l                        I                             I I                         l                             I I                         I                             i 1   -
(DECREES)
1                         I                             I (DEGREES)
","l,"?ol7l,1,l^
ANALYTICAL MODEL
wNj y' ' FIlIlgU I" ;" '
                        ,              k         fg , f     l                                   }
' ' Y l ]'iYl
2 LB TDC FIRING l"   r>
^
Jgig     l     ll     >i             :      -l g                         g                             g
~r
                          -i   -              1                         I                             I I                         l                             1
_i l
                        -2   _
I I
l                        I                             I I                 I                         I                             I I                 I                         f                             l 2                 3                         4                             5 TIME. (S E C 0 N D S)
I I
Figure 4-6. Comparison of predicted and measured free-end amplitudes.
I I
I I
-2 l
l l
l l
l l
I I
2 I
l I
I I
i 1
1 I
I (DEGREES) k fg f l
}
ANALYTICAL MODEL l"
r > Jgig l
ll
-l
>i 2 LB TDC FIRING g
g g
-i 1
I I
I l
1
-2 l
I I
I I
I I
I I
f l
2 3
4 5
i TIME. (S E C 0 N D S)
Figure 4-6.
Comparison of predicted and measured free-end amplitudes.
FaAA-85-4-1
FaAA-85-4-1
_ _ _ _}}
_ _ _ _}}

Latest revision as of 17:54, 12 December 2024

Torsiograph Tests of Emergency Diesel Generators,Divs 1 & 2,at Perry Nuclear Power Plant-Unit 1
ML20126M438
Person / Time
Site: Perry FirstEnergy icon.png
Issue date: 05/31/1985
From:
FAILURE ANALYSIS ASSOCIATES, INC.
To:
Shared Package
ML20126M432 List:
References
FAAA-85-4-1, NUDOCS 8506200333
Download: ML20126M438 (29)


Text

FaAA-85-4-1 QRCEI TORSIOGRAPH TESTS OF EERGENCY DIESEL GENERATORS, DIVISIONS 1 AND 2.,

AT PERRY NUCLEAR POER PLANT--UNIT 1 Prepared by Failure Analysis Associates l

l Prepared for TDI Diesel Generator Owners' Group l

l May 1985 l

l DR K

E

TABLE OF CONTENTS Page

1.0 INTRODUCTION

1 2.0 INSTRUMENTATION........................................................

1 3.0 PR0CEDURE..............................................................

1 3.1 Cali brati on and Inst rumentati on Run-i n............................ 2 3.2 Va ri abl e Speed, 0% Load Tests..................................... 3 3.3 Variable Load, Operating Speed Tests.............................. 3 3.4 St a rt u p / Coa st d own Tes t s........................................... 3 3.5 Post Test Data Veri ficat on and Cali brati on....................... 3 4.0 RESULTS................................................................

4 4.1 C a l i b rat i o n Dat a.................................................. 4 4.2 Va ri abl e S peed R esu l t s............................................ 6 4.3 Va ri ab l e Loa d R esu l t s............................................. 7 4.4 St a rt u p /Co a s t d own Res u l t s......................................... 8

5.0 CONCLUSION

S............................................................

9 REFERENCES..................................................................

9

1.0 INTRODUCTION

The purpose of the torsiograph test of the emergency diesel generator was to measure the angular displacements of the forward end of the crank-shaft.

These displacements were then used in conjunction with a dynamic torsional analysis of the crankshaft to assess the maximum stresses in the crankshaft.

Torsiograph tests were performed on diesel generators Unit 1 Division 1 (U101) and Unit 1 Division 2 (U1D2) at Perry Nuclear Power Plant.

Data were obtained during both steady-state and transient (startup and coast-down operation) conditions.

2.0 INSTRUMENTATION The instrumentation generally consisted of an tiBM Torsiograph, Signal Conditioner, Data Tape Recorder, Frequency Analyzer, Oscilloscope, Multimeter, and assorted interconnecting cables.

The specific instrumentation used is shown in Table 2.1.

3.0 PROCEDURE The torsiograph, which was attached to the front end of the crankshaft through an adapter plate supplied by the Perry plant, was used to measure angular displacements of the crankshaft relative to its mean rotational speed. The angular displacement signal from the signal conditioner was recor-ded on magnetic tape for further analysis to determine angular displacement components for each order.

Tests were conducted at several speeds under no-(

load conditions, and at several loads at operating speed.

In addition, fast starts were performed with predetermined crankshaft positions.

The torsio-l graph data was recorded continuously from startup through coastdown.

The spectrum analyzer was used to verify data integrity by determining harmonic components for each test condition.

The test was carried out for each diesel engine in the following five stages:

1

1.

Calibration and instrumentation run-in.

2.

Variable speed tests at 0% load.

3.

Variable load tests at rated speed.

4.

Startup and coastdown tests.

5.

Post test calibration.

3.1 Calibration and Instrumentation Run-in The torsiograph was mounted on the front end of the crankshaft using a rigid adapter plate.

The torsiograph was connected to the signal conditioner and the signal conditioner to the instrumentation recorder with the designated cables.

The signal conditioner was also connected to the spectrum analyzer and oscilloscope to monitor the torsiograph signals.

The following steps were completed to calibrate the instrumentation before and after testing:

1.

The recording equipment and cabling was calibrated by introducing a known signal into the signal conditioner connection and recording the signal.

2.

The calibration signal was verified by playing back the calibration recording.

3.

A field calibration of the torsiograph was completed following the manufacturer's instructions [1].

The field calibration signal was recorded.

4.

The field calibration signal was played back for verification.

After the calibration procedure was completed, the diesel engine was operated at no load for approximate'iy two to ten minutes while data was recor-ded.

The engine was then shut down while the recorded data was examined to verify the instrumentation and recording system operation.

The test documentation information in Table 3.1 was logged.

2

3.2 Variable Speed 0% Load Tests The engine was operated for two to five minutes at rated speed and no load. The speed was then adjusted using the mechanical governor to operate at speeds between 400 and 470 rpm. The engine was operated at each speed for two to ten minutes while the torsiograph output was recorded.

The output speeds and tape footage were recorded (Table 3.2).

3.3 Variable Load, Operating Speed Tests The engine was brought to operating speed.

The load was adjusted successively to operate at the following load conditions for five to ten minutes:

25%, 50%, 75%, 100%.

The load, current, speed, and tape footage were recorded (Table 3.3).

3.4 Startup and Coastdown Tests Transient data was recorded for each engine at four different startup positions and the four coastdowns from 450 rpm.

The startup and coastdown conditions monitored are the normal procedural fast starts and coastdowns in use at Perry.

The fast starts were performed with predetermined initial crankshaft positions at 180 degree intervals of crankshaft rotation to cover the full 720 degree firing cycle.

The positions are described in Table 3-4.

Once at the operating speed of 450 rpm the engine was allowed to coastdown.

No load was applied to the engine during this test.

The tape footage and run I.D.'s were recorded (Table 3.5).

3.5 Post Test Data Verification and Calibration Selected data records were played back to verify proper measurement and recording.

The calibration procedure outlined above was repeated and the signals recorded.

3

4.0 RESULTS

. 4.1 Calibration Data The pre and post test static calibration data are shown in Tables 4.1 and 4.2.

The torsiograph sensitivity was calculated as follows:

Teac Amp. Range mV/V)

Output,V)

Setu ng, 1W Torsiograph Sensitivity,

=

degree (Input, degrees)(

Tape Deck

)

Gain, V

/Vin The multiplication factors used in data reduction were calculated as follows:

Vibration (TapeDeck*)[ Amp. Range mV/V)

Ogtput,Vpk

Setting, 10Vpk Amplitude

=

Torstograph Tape Deck (degrees-pk) gyjy (Sensitivity, degree)(Gain,V

/ Vin) out mV/V where Amp. Range Setting = 20 10 Vpk Tape Deck Range Setting = 0.1 Vout / Vin Ch. 1 0.2 V

/ Vin Ch. 2 out Unit 1 - Division 1 From Table 4.1 for Channel 1, t

Torsiograph Sensitivity = (I'424)

= 4.747 i Oi14%

(.1) (6) degree For out put in VRMS (as in spectral plots) multiply by /2.

4

and for Channel 2, Torsiograph Sensitivity = II*

= 4.753 1 0.14%

d e

The sensitivities for the post test calibration were found to be 4.750 and mV/V 4.730 f r channels 1 and 2 respectively.

dem Multiplication factors for time domain response:

Ch 1.

Input, degrees-pk = (Output, Vpk)

(4.213 degrees-pk)

Ch 2.

Input, degrees-pk = (Output, Vpk)

(2.104 degrees-pk) and for frequency domain response:

Ch 1.

Input, degrees-pk = (Output, VRMS) ( 5.958 degrees-pk)

RMS Ch 2.

Input, degrees-pk = (Output, VRMS)

(2.975 d*9"*es-pk) y RMS Unit 1 - Division 2 From Table 4.1 for Channel 1, TorsiographSensitivity=([0

= 4.750 0.2%

dg e and for Channel 2, 5

Torsiograph Sensitivity = II*

= 4.730 ee ! 0.2%

d The sensitivities for the post test calibration were found to be 4.747 and 4.727 for channels 1 and 2 respectively.

d ree Multiplication factors for time domain response:

Ch 1.

Input, degrees-pk = (Output, Vpk) (4.211 degrees-pk)

Ch 2.

Input, degrees-pk = (Output, Vpk) (2.114 degres-pk) and for frequency domain response:

Ch 1.

Input, degrees-pk = (Output, VRMS) (5.955 WD RMS Ch 2.

Input, degrees-pk = (Output, VRMS) (2.990 degrees-pk)

RMS 4.2 Variable Speed Results The variable speed test was performed to determine the frequency of the first mode of the crankshaft torsional system.

The results of this test are shown in Table 4.3.

Figures 4.1 and 4.2 show that the 4th order critical speed is reached at about 436 rpm for each crankshaft.

Thus, the first natural frequency is 29.1 Hz.

This is in good agreement with the Holzer calculation of 29.2 Hz made by Delaval [2].

6

The amplitude of nominal shear stress may be estimated from the ampli-tude of free-end vibration by assuming that the shaft is vibrating in its first mode.

Under these conditions, the nominal shear stress in the number 8 crankpin journal and the number 9 main journal is 8596 psi per degree of free-end vibration [2]. Thus, the maximum amplitude of nominal shear stress during the variable speed test was 2923 psi for each crankshaft.

4.3 Variable Load Results The variable load test at rated speed was performed to determine the

~

amplitude of vibration and estimate the nominal shear stress as a function of load.

The results of this test are shown in Table 4.4.

Figures 4.3 and 4.4 show that the amplitude of vibration increases with load to a maximum of 0.54 degrees at 7000 kW.

The figures also show the response of the other major orders.

(

The amplitude of nominal Ghear stress may be estimated from the ampli-tude of f ree-end vibration by assuming that the shaft is vibrating in its first mode.

Under these conditions, the nominal shear stress in the number 8 crankpin journal and the number 9 main journal is 8596 psi per degree of free-end vibration [2].

Thus, the amplitude of nominal shear stress at full load is as follows:

Diesel Generator Nominal Torsional Stress at Full Load (7000 kW)

Single Order Combined Order Unit 1 - Division 1

?891 psi 4659 psi Unit 1 - Division 2 2020 psi 4642 psi DEMA [3] allowable S000 psi 7000 psi 7

v h..

4.4 Startup/Coastdown Results Coastdown For the coastdowns monitored, the response of the crankshaft was found to be repeatable in both shape and magnitude. The maximum peak-to-peak ampli-tude recorded was found to be 0.96 degrees and occurs at the 8th order critical speed of approximately 218 rpm.

The approximate length for a coastdown is 80 seconds.

An analytical model to predict the stress as a function of time during coastdown at each shaft section as well as the free-end rotational vibration was performed for the crankshaft at Perry. The analysis was performed using a cold compression curve with a peak pressure of 450 psi.

It was found that with a damping of 1.5 percent of critical modal damping in each mode, the maximum peak to peak response was 0.93 degrees which is in good agreement with that measured in the torsiograph test.

The maximum amplitude of nominal stress was found to be 3970 psi and occurred between cylinders No. 7 and No. 8 based on the analysis.

A comparison of the predicted and measured free-end amplitude time histories is shown in Figure 4-5.

The good comparison of dynamic features is readily apparent in these plots. The time occurrence of some features are shifted due to the assumed linear change of angular velocity with time in the analysis.

Startup The maximum peak-to-peak response for each of the four conditions tested in each engine is shown in Table 4.5 The mean maximum peak-to-peak response is 1.89 degrees for Unit 1 Division 1 and 1.84 degrees for Unit 1 Division 2.

For each engine the maximum peak-to-peak response for each condition tested varied within 9% of the mean maximum peak-to-peak response (except for the one start that had a poor quality signal). The duration of a fast start was found to be 6 seconds.

8

The analytical model was used to determine the stresses in the crank-shaft during startup for each of the four conditions tested. The analysis was performed using pressure-time data recorded during a fast start at another plant (Ref. (4)], and using damping of 2.5 percent of critical modal damping

~"

in each mode.

The analysis confirms that the effect of initial crankshaft position on the maximum peak-to-peak response is small.

The analysis indicates that the maximum amplitude of nominal stress for a typical fast start is 7650 psi and occurs between cylinders No. 7 and No.

8.

A comparison of the predicted and measured free-end amplitude time histories for a typical fast-start is shown in Figure 4-6.

l

5.0 CONCLUSION

S The following conclusions are made:

the first natural frequency of the torsional system for each e

engine was found to be approximately 29.1 Hz, and is in good agreement with Delaval Holzer calculations (2]. Thus the 4th order critical speed is 436 rpm.

for both Unit I diesel generators, the stresses in the crank-e shaft are below DEMA's [3] allowables for both single order and combined order response at full load (7000 kW) for steady-state operation, e

The coastdown transient response is repeatable and has a maximum peak-to-peak amplitude of approximately 0.96 degrees, which produces a maximum amplitude of nominal stress of 3970 psi.

A typical startup transient response produces a maximum peak-e to-peak response of 1.86 degrees.

Such a startup has a maximum amplitude of nominal stress of 7650 psi. This stress amplitude exists for only a few cycles on each startup.

e The results of the torsiograph test indicate that the crankshafts are adequate for their intended service at Perry nuclear Power Plant.

References 1.

HBM Operating Manual for Rotary Vibration Transducer, 160.03-1.0-1.0e.

9 l

2.

Yang, Roland, " Torsional and Lateral Critical Speed, Engine Numbers 75051/54 Delaval-Enterprise Engine Model DSRV-16-4, 7000 kW/9734 BHP at 450 RPM for Cleveland Electric Illuminating Co.,"

Delaval Engine &

Compressor Division, Oakland, California.

3.

Standard Practices for low and Medium Speed Stationary Diesel and Gas Engines, Diesel Engine Manufacturers Association, 6th ed.,1972, e

4.

" Evaluation of Transient Conditions on Emergency Diesel Generator Crankshafts at San Onofre Nuclear Generating Station Unit 1," FaAA 84-12-14, Revision 1.0, April 1985.

6 e

6 6

e 10

Table 2.1: EQUIPMENT LIST Equipment Equipment Model Serial FaAA l

Manufacturer Description No.

No.

ID No.

HBM Rotary Vibration BD 5 701 n/a Transducer HBM SKHz Carrier KWS 7073 72984 n/a Frequency Amp.

Teac Cassette Data MR-30 116404 00138 Recorder B&K Precision Sweep / Function 3020 89-11576 00119 Generator B&K Precision Dual Trace 40MHz 1540P 11400731 00118 Oscilloscope Hewlett Packard Dual Channel 3582A LO39823 FFT Analyzer HBM cable (connect n/a n/a n/a transducer to amplifier) n/a cable (connect n/a n/a n/a amplifier to tape deck) n/a cable (connect n/a n/a n/a tape deck monitor to Spectrum analyzer or oscilloscope)

Fluke Digital Multimeter 8060A 8396137 00128 Hewlett Packard Dual Channel 5423A 2040A00345 00124 FFT Analyzer Hewlett Packard Plotter 7225B 1206A01534 00122 11

l Table 3.1: TORSIOGRAPH TEST DOCUMENTATION Job Name:

Perry Torsiograph Test Date:

Job Number:

QRCEI Div. 1:

3/27/85 Location:

Perry Nuclear Power Plant Div. 2:

3/28/85 Cleveland Electric Illuminating Co.

Engine

Description:

Unit 1, Div. 1 Unit 1, Civ. 2 Transamerica Delaval Inc.

Transamerica Delaval Inc.

DSRV-16-4 DSRV-16-4 Serial No. 75051 Serial No. 75052 Notes:

Test Personnel:

Steve Riess FaAA Paul Johnston FaAA Tony Pusateri CEI Mark Hickman CEI 12

\\

Table 3.2: TORSIOGRAPH VARIABLE SPEED TEST Test Personnel:

Steve Riess, FaAA Date:

~~)N Paul Johnston, Fa' Div. 1:

3/27/85 Tony Pusateri, C' Div. 2:

3/28/85 Mark Hickman, Ci Unit 1 - Division 1 f

g Tape I.D.

itage Test Speed (RPM)

~~)

.44 400

-161 410 a-175 420

<9-190 430 k

QRCEl-1

.93-204 435 TORSIOGRAPH 207-216 440 TEST 222-230 450 242-250 460 262-271 470 278-289 425 Unit 1 - Division 2 Tape I.D.

Tape Footage Tape Speed (RPM)

ORCEI-2 177-186 400 TORSIOGRAPH 192-200 410 TEST 204-210 420 215-233 425 226-232 430 236-242 435 245-253 440 255-265 445 268-275 450 278-287 460 304-312 470 13 w.._.

<r Table 3.3: TORSIOGRAPH VARIABLE LOAD TEST Test Personnel:

Steve Riess, FaAA Date:

Paul Johnston, FaAA Div. 1:

3/27/85 Tony Pusateri, CEI Div. 2:

3/28/85 Mark Hickman, CEI Test Speed:

450 rpm Unit 1 - Division 1 Tape I.D.

Tape Footage Load (kW)

ORCEI-1 410-418 1750 (25%)

'd Torsiograph Test 427-435 3500 (50%)

s 442-448 5250 (75%)

460-510 7000 (100%)

Unit 1 - Division 2 Tape I.D.

Tape Footage load (kW)

QRCEI-2 361-369 1750 (25%)

l Torsiograph Test 379-387 3500 (50%)

397-405 5250 (75%)

423-432 7000 (100%)

14 I

I 1

P Table 3-4: PREDETERMINED INITIAL CRANKSHAFT POSITIONS FOR STARTUP TESTS Crankshaft Rotation Run I.D.

w.r.t.1 LB TDC Firing (degrees) 1 LB TDC firing 0*

7 LB TDC firing 180 8 LB TDC firing 360*

l 2 LB TDC firing 540*

i l

(

15

i l

l Table 3.5: STARTUP AW COASTDOW TESTS Test Personnel:

Steve Riess, FaAA Date:

Paul Johnston, FaAA Div. 1:

3/27/85 Tony Pusateri, CEI Div. 2:

3/28/85 Mark Hickman, CEI l

Unit 1 - Division 1 Tape ID Tape Footage Startup/Coastdown ID 1

555-566 Cylinder ILB TDC Firing QRCEI-1 566-581 Cylinder 7LB TDC Firing Torsiograph Test 581-595 Cylinder 8LB TDC Firing 595-611 Cylinder 2LB TDC Firing Unit 1 - Division 2 Tape ID Tape Footage Startup/Coastdown ID QRCEI-2 469-485 Cylinder ILB TDC Firing Torsiograph Test 485-500 Cylinder 2LB TDC Firing 500-517 Cylinder 7LB TDC Firing 517-534 Cylinder 8tB TDC Firing 16

Table 4.1: PRE TEST STATIC CALIBRATION Unit 1 - Division 1 Static Voltage Output Teac Range Setting HBM Signal Cond. Setting Input (Vdc)

(V/V)

(mV/V)

UB (degrees)

Ch. 1*

Ch. 2*

Ch. 1 Ch. 2 T6 V (V )

0

.005

.009

.1

.1 20 5

+3

.719

.726

.1

.1 20 5

0

.005

.010

.1

.1 20 5

-3

.705

.700

.1

.1 20 5

0

.003

.008

.1

.1 20 5

+3

.719

.726

.1

.1 20 5

0

.004

.010

.1

.1 20 5

-3

.705

.700

.1

.1 20 5

0

.002

.008

.1

.1 20 5

Unit 1 - Division 2 Static Voltage Output Teac Range Setting HBM Signal Cond. Setting Input (Vdc)

(V/V)

(mV/V)

UB (degrees)

Ch. 1*

Ch. 2*

Ch. 1 Ch. 2 f6 T (V )

0

.004

.008

.1

.1 20 5

+3

.722 721

.1

.1 20 5

0

.009

.013

.1

.1 20 5

-3

.703

.698

.1

.1 20 5

0

.006

.009

.1

.1 20 5

+3

.722

.721

.1

.1 20 C

0

.009

.010

.1

.1 20 5

-3

.704

.697

.1

.1 20 5

0

.006

.009

.1

.1 20 5

  • t.002 Vdc 17

i Table 4.2: POST TEST STATIC CALIBRATION l

Unit 1 - Division 1 l

l Static Voltage Output Teac Range Setting HBM Signal Cond. Setting Input (Vdc)

(V/V)

(mV/V)

Ug (degrees)

Ch. 1*

Ch. 2*

Ch. 1 Ch. 2 ITT (V )

0

.011

.018

.1

.1 20 5

+3

.727

.730

.1

.1 20 5

0

.012

.020

.1

.1 20 5

-3

.698

.639

.1

.1 20 5

0

.011

.019

.1

.1 20 5

+3

.727

.730

.1

.1 20 5

0

.015

.021

.1

.1 20 5

-3

.697

.689

.1

.1 20 5

0

.012

.019

.1

.1 20 5

Unit 1 - Division 2 Static Voltage Output Teac Range Setting HBM Signal Cond. Setting Input (Vdc)

(V/V)

(mV/V)

UB (degrees)

Ch. 1*

Ch. 2*

Ch. 1 Ch. 2 10 V (V )

0

.014

.022

.1

.1 20 5

+3

.729

.733

.1

.1 20 5

0

.015

.022

.1

.1 20 5

-3

.695

.685

.1

.1 20 5

0

.014

.021

.1

.1 20 5

+3

.730

.734

.1

.1 20 5

0

.016

.024

.1

.1 20 5

-3

.695

.686

.1

.1 20 5

0

.013

.020

.1

.1 20 5

  • t.002 Vdc 18

Table 4.3: VARIABLE SPEED RESPONSE Unit 1 - Division 1 Amplitude of free-end vibration (mil 11 degrees) for given speed (rpm)

Order 403 412 423 428 434 438 443 454 463 474 0.5 6

11 9

6 10 13 11 11 9

12 1.0 2

2 2

2 1

0 1

1 1

1 1.5 39 40 40 40 40 40 40 41 41 41 2.0 6

7 8

8 9

11 12 13 14 16 2.5 55 56 57 58 58 59 60 62 64 65 3.0 2

2 2

3 2

2 1

2 2

3 3.5 39 42 46 49 52 56 61 74 93 130 4.0 37 55 99 153 240 211 140 80 57 43 4.5 68 43 31 27 23 20 19 15 13 10 5.0 2

2 2

2 22 2

2 2

2 2

5.5 9

8 7

6 6

5 5

4 4

5 6.0 4

5 6

7 8

7 5

3 3

3 Total 170 170 210 260 340 290 240 230 230 240 Unit 1 - Division 2 Amplitude of free-end vibration (mil 11 degrees) for given speed (rpm)

Order 400 410 420 425 431 435 439 445 451 460 470 0.5 5

6 4

4 5

5 5

7 6

6 5

1.0 1

1 1

1 2

2 2

2 2

3 3

1.5 38 39 39 38 38 38 39 39 39 39 40 2.0 6

6 7

8 8

9 11 12 12 14 15 2.5 57 59 60 60 60 61 62 64 64 66 68 3.0 3

3 4

4 4

3 3

4 4

5 5

3.5 36 40 43 45 48 51 56 61 66 81 107 4.0 26 40 66 96 151 232 186 122 89 48 43 4.5 91 50 34 29 25 22 20 18 16 13 10 5.0 2

1 1

1 1

2 2

2 2

2 2

5.5 10 8

7 7

7 6

5 5

4 4

4 6.0 5

5 5

6 7

8 6

4 4

3 3

Total 185 165 160 200 255 340 270 235 215 205 230 19

Table 4.4: VARIABLE LOAD RESPONSE Unit 1-Division 1 Amplitude of free-end vibration (mil 11 degrees) for given load (kw)

Order 0

1750 3500 5250 7000 0.5 22 55 95 72 93 1.0 2

4 5

5 5

1.5 43 67 103 137 181 2.0 12 9

6 4

1 2.5 64 89 130 173 220 3.0 2

2 2

5 8

3.5 72 94 133 173 201 4.0 94 85 95 92 130 4.5 16 18 27 38 26 5.0 2

3 3

4 5

5.5 5

6 9

12 14 6.0 3

5 7

9 10 Total 225 273 368 417 542 Unit 1 - Division 2 Amplitude of free-end vibration (millidegrees) for given load (kw)

Order 0

1750 3500 5250 7K 0.5 7

6 13 34 55 1.0 3

3 3

3 1

1.5 41 64 98 138 184 2.0 11 8

5 5

7 2.5 68 96 138 185 235 3.0 4

7 8

7 4

3.5 69 93 129 172 205 4.0 88 69 80 133 141 4.5 15 19 29 41 52 5.0 1

1 1

2 1

5.5 5

6 10 12 14 6.0 4

6 8

11 12 Total 215 240 330 445 540 20

Table 4.5: STARTUP RESPONSE Maximum Peak-to-Peak Free-End Vibration Fast Start ID (degrees)

Unit 1 Unit 1 Division 1 Division 2 1 LB TDC Firing 2.39*

1.90 7 LB TDC Firing 1.80 1.68 8 LB TDC Firing 1.61 1.76 2 LB TDC Firing 1.75 2.00 t

  • Torsiograph data for this test was determined from a noisy signal.

k -

l 21

)lll)!

I l'

lIllllllll1 08 4

d n

z O

e H

0 ee e

7 ed s 1 4

ro en9

.fm so2 np 1ft os os e p e :y n

r oei s sr c 0

i ef n e r n

6 sr or e e i gs r d u 4

vet p

s q

i di er e

oe D/

d

,i n r

r r

f si o2 C

1 p la

/

g l

t h1 0) t6n a

ot - r 5 m i9i u

T43t 4 p U8a n5t a

r r

emAN

(

fsb D

oii v

E es 0E sss 4P nei or 4S ptt ssf E

e a

N rrh I

as G

de ehe 0N esh 3 E p

t 4

sl ag enn lii bmm aou ins 0

r s

2 afa 4

Vo en

. do 1 ui

- tt 4ia 0

l r epb

' 1 rmi 4

uAv g*

i F

00 6

5 4

3 2

O4 0

0 O

O 0

3$.8P<oE> O2" wwEE EO W b

c y$eTi~

l l

flll

0.6 i

i i

i i

i i

e Total response S, 0.5 3

A 3-1/2 order response Natural frequency: 29.0 Hz

  • g 9

g 0.4 e>

O2

  • O.3 m

m II' E

E O 0.2 1

m O

3b

_a M

l

$ O.1 4:

^

^

i 1

lk I

0 400 410 420 430 440 450 460 470 460 ENGINE SPEED (rpm) in S

t!

Figure 4-2.

Variable speed response of Unit 1. Division 2.

t

  • Amplitude of nominal shear stress is 8596 psi / degree of free-end vibration, assuming the shaft is vibrating in its first mode.

0.6 i

e Total response g

a 4th order response

.g 0.5 A 3-1/2 order response w

29 t-y 0.4 e>

O2y 0.3 W

W E

E b 0.2 5

3 0.1 x 1

0 O

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 GENERATOR LOAD (kw)

S T

Figure 4-3.

Variable load response of Unit 1, Division 1.

  • Amplitude of nominal shear stress is 8596 psi / degree of free-end vibration, assuming the shaft is vibrating in its first mode.

l 00 0,

9 0

00, d

i 8

ne-.

ee ed ro 0

fm 0

=

0,

.ft i

2os 7

r nei oef i r sgs 0

iet 0

vdi i/

0, Din 6)

,si p

w 1

g k

6n t9i

(

=

i5t 0

D n8a 0

U r

A 0, O sb i

fii 5

L o

v s

R ess sei O

nr 0T ott psf 0 A s

a 0, R erh i

4E ras N

e dh e E

ash G

o t

e 0

ll ag s

0 enn e n 0,

lii s o np 3

bmm aou o s i ns

. pe r

s

. sr afa

. e Vo

. r 0

r p

e 0

en s rd

.d o er 0,

4ui e,d o

2 tt r

4ia

.o2 l r

/

epb

.h1 rmi t

143 0

uAv g*

0 i

. mA 0,

F i

1 b

O

,a 8

4 3

2 1

O 0

0 0

O 0

33 *getfe5 a*W Et $ wOgg:

4

,:T Yt -

lll lll l

I

l l

l 8

9 t

t I

i t

I 1

I t

l l

t i

I t

l l

t t

t i Le i

t I

f f

a.

f I

I I

I f

I I

f f

f I

t i

I t

1 I

I t

I I

t I

i i

i i

I ll I

f 9

I I

I I

t i

e i

i 1

e i

i t

i t

i a

e i

s T IME (S E C 0 N D $1 Figure 4-5.

Comparison of predicted and measured free-end amplitudes during a typical coastdown.

,i D>>

f OB Ut f

b I

.a

l l

1 1

I I

1 I

I I

l I

i l

i I

FREE-END AMPL1TUDE d,M $

l l hMk l h' f,h l I

(DECREES)

","l,"?ol7l,1,l^

wNj y' ' FIlIlgU I" ;" '

' ' Y l ]'iYl

^

~r

_i l

I I

I I

I I

I I

-2 l

l l

l l

l l

I I

2 I

l I

I I

i 1

1 I

I (DEGREES) k fg f l

}

ANALYTICAL MODEL l"

r > Jgig l

ll

-l

>i 2 LB TDC FIRING g

g g

-i 1

I I

I l

1

-2 l

I I

I I

I I

I I

f l

2 3

4 5

i TIME. (S E C 0 N D S)

Figure 4-6.

Comparison of predicted and measured free-end amplitudes.

FaAA-85-4-1

_ _ _ _