ML21133A078: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:LGS UFSAR CHAPTER 2 - SITE CHARACTERISTICS 2.1 GEOGRAPHY AND DEMOGRAPHY 2.1.1 SITE LOCATION AND DESCRIPTION 2.1.1.1 Specification of Location Limerick Generating Station is located in southeastern Pennsylvania on the Schuylkill River, about 1.7 miles southeast of the limits of the Borough of Pottstown and about 20.7 miles northwest of the Philadelphia city limits. The Schuylkill River passes through the site, separating the western portion located in East Coventry Township, Chester County, from the eastern portion located in Limerick Township and Pottsgrove Township, Montgomery County, Pennsylvania. Figure 2.1-1 identifies the general location of the LGS site, and Figure 2.1-2 shows the immediate environs within 5 miles of the site.
{{#Wiki_filter:}}
The Universal Transverse Mercator coordinates of the LGS Unit 1 reactor are 4,452,582.462 meters north and 449,984.170 meters east, Zone 18T. The corresponding Greenwich coordinates for Unit 1 are 4013'26.67" north latitude and 7535'16.27" west longitude. The Unit 2 reactor is located at 4,452,528.462 meters north and 450,033.548 meters east, Zone 18T of the Transverse Mercator Coordinate System with corresponding 4013'26.64" north latitude and 7535'14.15" west longitude coordinates.
2.1.1.2 Site Area The land portion of the site consists of 595 acres, as shown in Figure 2.1-3. The property within the site boundary is owned by the licensee except as noted below. The site boundary is shown in Figure 2.1-3. The licensee owns additional property adjacent to the site on which the nuclear training center is located. This property is not considered part of the site. As shown in Figure 2.1-3, the site is traversed by several public roads, a railroad right-of-way and the Schuylkill River.
These areas, including the island in the river, are considered public passageways and not part of the site property.
The site is located in gently rolling countryside, traversed by numerous valleys containing small streams which empty into the Schuylkill River. On the eastern bank of the Schuylkill River the terrain rises from just under el 110' MSL (mean sea level) at the river, to approximately el 300' MSL toward the east, which is the highest ground on the site boundary. Two parallel streams, Possum Hollow Run and Brooke Evans Creek, cut through the site in wooded valleys, running southwest into the Schuylkill River. The grade in the area of the reactor and turbine enclosures is about el 217 feet MSL. On the western bank of the river, the terrain is relatively flat, rising only about 50 feet from the shore to the western edge of the site. One small stream flows southeastward through the site to the Schuylkill River.
The locations of principal station structures are shown in Figure 2.1-4. In addition, the Limerick Energy Information Center is located on the site property. The information center, owned and operated by the licensee, is open to the public during specified hours. Admission to the information center is controlled by the licensee.
A nuclear training center consisting of a simulator, laboratories and classrooms is located on the licensee property adjacent to the site. This facility is operated and controlled by the licensee.
CHAPTER 02                                  2.1-1                      REV. 14, SEPTEMBER 2008
 
LGS UFSAR 2.1.1.3 Boundaries for Establishing Effluent Release Limits The boundary line of the restricted area, as defined in pre-1994 10CFR20, is identical to the site boundary line shown in Figure 2.1-3. The land area within the boundary lines is owned by the licensee. Control of public passageways is discussed in Section 2.1.2.1 and 2.1.3.3.
There are no permanent residences within the restricted area.
Station effluent release points are shown in Figure 2.1-4.
2.1.2 Exclusion Area Authority And Control 2.1.2.1 Authority The exclusion area for LGS, shown in Figure 2.1-3, is defined as the area encompassed by a radius of 2500 feet from the center of each reactor unit. The property within the exclusion area is either owned or controlled by the licensee. Following fuel load, residence within the exclusion area will be prohibited in conformance with 10CFR100.
The Controlled Areas, as defined in the post-1994 10CFR20 Regulation, may be established within the Site Boundary line outside the Restricted Area. LGS has no Controlled Areas because of the Restricted Area boundary extends all the way out to the Site Boundary line.
As shown in Figure 2.1-3, the exclusion area is traversed by several public roads, a Conrail right-of-way, and the Schuylkill River. These areas, including the island in the river, are considered public passageways and not part of the site property. Arrangements for control of public access to these areas in the event of an emergency are discussed in Section 2.1.2.3.
There are no outstanding mineral rights within the exclusion area.
2.1.2.2 Control of Activities Unrelated to Plant Operation Activities unrelated to plant operation that occur within the exclusion area, aside from transit through the area, are those associated with the Limerick Energy Information Center, located approximately 1500 feet from the plant along Longview Road and Fricks Lock. About 6,000 people are expected to visit the Information Center each year. The number of visitors to the center seldom exceeds 100 at any one time. Evacuation of these people is discussed in the Emergency Plan.
2.1.2.3 Arrangements for Traffic Control on Public Passageways Arrangements have been made with the Pennsylvania State Police to control public access to the exclusion area in the event of an emergency.
Arrangements have been made with Conrail to control rail traffic through the exclusion area in the event of an emergency.
Letters of agreement between the licensee and the State Police are referenced in the Emergency Plan.
2.1.2.4 Abandonment or Relocation of Roads CHAPTER 02                                  2.1-2                    REV. 14, SEPTEMBER 2008
 
LGS UFSAR Prior to station construction, Longview Road traversed the site in a southerly direction from the juncture of Sanatoga Road and Possum Hollow Road to the railroad right-of-way on the eastern bank of the Schuylkill River. This portion of Longview Road, approximately 6000 feet, was abandoned and relocated to the eastern edge of the LGS site on a portion of roadway formerly known as Lozark Road. New sections of the roadway were constructed to realign Longview Road and Lozark Road between Keen Road and the existing paving on Longview Road South of Brook Evans Creek. Both Longview and Lozark Roads are township roads.
2.1.3 POPULATION DISTRIBUTION 2.1.3.1 Population Within 10 Miles The population distributions within 10 miles, as a function of distance and direction, for the decades 1970 through 2020 and for the year 1985 are listed in Tables 2.1-1 through 2.1-7. The 1970 and 1980 data are taken from actual census data; the other years are taken from projections (Table 2.1-15). The 1985 projections are considered to be representative of the population near the year of initial station operation, and the 2020 projections represent population near the end of station operation. These projections are based on 1980 census data. The 1980 data shows that population has decreased. A map, keyed to Tables 2.1-1 through 2.1-7, is provided in Figure 2.1-5.
The population distribution within 10 miles is based upon the number of households obtained from a 1980 meter count of PECO Energy Co.'s residential customer billing file, and upon a 1980 meter count of Metropolitan Edison Company's billing file. A factor of 2.88 persons per residential meter in PECo territory and a factor of 2.70 persons per residential meter for the Metropolitan Edison Company territory were used to convert the meter count into population.
Projected populations were determined by using county projection factors obtained from state agencies. Where information was not available to 2020, the licensee extended the available information through that year. Table 2.1-15 lists the sources of population information.
Population for the year 1985 was estimated by the licensee by interpolation of data between 1980 and 1990. Projections for the years 2010 and 2020 were made by increasing projections for the year 2000 at a rate of 20% per 10 year period.
2.1.3.2 Population Between 10 and 50 Miles Population distribution between 10 and 50 miles for the decades 1970 through 2020 and for the year 1985 are listed in Tables 2.1-8 through 2.1-14. The 1970 and 1980 data are taken from actual census data; the other years are based on projections (Table 2.1-15). A map, keyed to Tables 2.1-8 through 2.1-14, is provided in Figure 2.1-6.
Projected populations were determined by using county projection factors obtained from state agencies. Where information was not available to 2020, the licensee extended the available information through that year. Table 2.1-15 lists the sources of population information.
Population changes for 1950 through 1980 in the counties within 50 miles of the station are indicated in Table 2.1-16.
CHAPTER 02                                    2.1-3                  REV. 14, SEPTEMBER 2008
 
LGS UFSAR 2.1.3.3 Transient Population The transient population in the site area is classified as daily or seasonal. The daily transients result from the influx of employees to local business and industrial facilities. Local industries, and their location and employment, are listed in Table 2.1-17. The only industries with a significant daily transient population are Mrs. Smith's Pie Company, Sircom Knitting Company, and Crouse Company.
A 1976 creel survey of people fishing the Schuylkill River within 3.1 miles of the station showed that 96% lived within 6.2 miles of the river and thus do not comprise a transient population. These data also projected 1980 fishing pressure within 3.1 miles of the station at 8800 angler hours for the principal fishing months of May through September. The average time spent fishing was 3.5 hours from shore and 4.7 hours by boat. Less than 20% of the fishing pressure came from boats.
Based on these data and data collected in a 1980 creel survey conducted as part of the LGS preoperational program, an average of 1100 boaters per year could be expected to use the Schuylkill River within 10 miles of the station, most of which would occur below Vincent Dam (3.3 miles below the station).
2.1.3.4 Low Population Zone The LPZ established for LGS, in accordance with 10CFR100, consists of the area within a radius of 1.27 miles (2043 meters). The LPZ and the estimated population within the LPZ are shown in Figure 2.1-7. Population estimates are based on the 1980 meter count.
There are no schools, parks, hospitals, prisons, or public beaches within the LPZ. Industrial facilities within the LPZ include Occidental Chemical Corporation, Amerind-MacKessie, Inc, Mahr Printing, Inc, Structural Foam, Inc, Eastern Warehouse, Inc, and Pottstown Trap Rock Quarries, Inc. The locations of these facilities are shown in Figure 2.2-2, and the number of employees at each location is listed in Table 2.1-17.
Other facilities, located outside of the LPZ, that may require special consideration include the following:
: a.      Pottstown Memorial Medical Center, with approximately 400 patients and 840 employees. The hospital is located 1.8 miles northwest of the station.
: b.      Graterford Prison, an 1800 inmate maximum security State Prison. The prison is located approximately 8.3 miles from the station.
: c.      The Montgomery County Geriatric Center, a 600 patient care facility, is located 5.1 miles from the station.
2.1.3.5 Population Center The nearest population center, as defined in 10CFR100, is Pottstown Borough, which had a 1980 population of 22,729. The nearest boundary of the borough is 1.7 miles northwest of the station, and is outside the LPZ as defined in Section 2.1.3.4. The transient population in the immediate area does not influence the selection of the population center. The population of the borough is projected to reach 28,195 by 1983, and 46,653 by the year 2020. Based on 1980 census information, these population estimates are probably conservative. The population density in CHAPTER 02                                  2.1-4                    REV. 14, SEPTEMBER 2008
 
LGS UFSAR 1970 was estimated to be 5282 persons per square mile, and is expected to grow to 5874 by 1983 and to 9719 by 2020 based on state projections that used 1970 census information. Based on the 1980 census, the population density is estimated to be 4735 persons per square mile in 1980.
2.1.3.6 Population Density Table 2.1-18 provides a comparison of cumulative population projected for 1985, representative of the initial year of operation, with a cumulative population resulting from a uniform population density of 500 people per square mile in all directions from the plant. Table 2.1-19 provides a comparison of cumulative population projected for 2020, the assumed final year of operation, with a cumulative population resulting from a uniform population density of 1000 people per square mile.
CHAPTER 02                              2.1-5                      REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.1-1 POPULATION DISTRIBUTION 0-10 MILES (1970)
DISTANCE (MILES)
SECTOR      0-1 1-2    2-3            3-4          4-5    5-10          10-MILE TOTAL N            48  579    423            533          782    6,969              9,334 NNE          110 206    262            360          152    3,121              4,211 NE          21  74      223            322          311    2,982              3,933 ENE          25  71      276            368          180    1,839              2,759 E            18  113    318            474          376    11,995            13,294 ESE          57  131    333            290          328    14,366            15,505 SE          0  417    1,175          4,419        1,235  3,191              10,437 SSE          11  308    1,326          3,612        1,498  25,337            32,092 S            3  390    244            67          337    4,043              5,084 SSW          0  460    290            314          223    2,023              3,310 SW          55  186    163            281          266    3,191              4,142 WSW          42  205    473            397          948    1,120              3,185 W            49  59      1,190          1,192        1,896  304                4,690 WNW          7  76      3,256          11,072      3,323  8,267              26,001 NW          23  466    3,338          8,481        1,987  1,091              15,386 NNW          10  675    1,112          1,093        815    6,234              9,939 TOTAL        479 4,416  14,402        33,275      14,657 96,073            163,302 CHAPTER 02                  2.1-6                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-2 POPULATION DISTRIBUTION 0-10 MILES (1980)
DISTANCE (MILES)
SECTOR    0-1 1-2        2-3          3-4      4-5    5-10        10-MILE TOTAL N          58  682        894          397      753    3,158              5,942 NNE        46  1,088      244          478      204    2,428              4,488 NE        46  40        202          334      276    3,732              4,630 ENE        12  58        199          380      228    5,139              6,016 E          20  150        271          389      418    5,120              6,368 ESE        29  179        297          268      579    9,223            10,575 SE        6  369        141          4,844    4,055  6,830            16,245 SSE        0  190        285          2,664    1,587  20,992            25,718 S          3  343        331          164      340    3,864              5,045 SSW        12  611        308          513      268    1,848              3,560 SW        69  181        204          311      300    1,783              2,848 WSW        46  179        533          458      1,596  1,899              4,711 W          35  118        1,754        1,515    1,054  2,239              6,715 WNW        40  320        2,992        11,076    3,545  9,791            27,764 NW        20  288        1,872        6,667    1,309  4,004            14,160 NNW        35  711        1,727        1,237    1,304  6,555            11,569 TOTAL      477 5,507      12,254      31,695    17,816 88,605          156,354 CHAPTER 02                2.1-7                              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-3 POPULATION DISTRIBUTION 0-10 MILES (1985)
DISTANCE (MILES)
SECTOR        0-1          1-2          2-3            3-4          4-5          5-10          10-MILE TOTAL N            60            712          933            414          786          3,296              6,201 NNE          48            1,135        254            499          212          2,533              4,681 NE            48            42            210            349          288          3,894              4,831 ENE          12            60            207            397          237          5,359              6,272 E            21            156          282            406          436          5,341              6,642 ESE          30            186          309            279          604          9,620              11,028 SE            6            385          147            5,054        4,230        7,126              16,948 SSE          0            204          306            2,861        1,704        22,544            27,619 S            3            368          356            176          365          4,150              5,418 SSW          12            656          331            551          288          1,986              3,824 SW            74            195          220            334          322          1,913              3,058 WSW          49            192          572            492          1,714        2,041              5,060 W            37            127          1,884          1,627        1,132        2,405              7,212 WNW          42            334          3,122          11,556      3,699        10,215            28,968 NW            21            300          1,953          6,955        1,366        4,176              14,771 NNW          36            742          1,802          1,290        1,361        6,839              12,070 TOTAL        499          5,794        12,888        33,240      18,744        93,438            164,603 CHAPTER 02                                    2.1-8                                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-4 POPULATION DISTRIBUTION 0-10 MILES (1990)
DISTANCE (MILES)
SECTOR      0-1 1-2    2-3            3-4          4-5    5-10          10-MILE TOTAL N            63  741    972            431          818    3,433              6,458 NNE          50  1,182  265            519          221    2,637              4,874 NE          50  44      219            363          300    4,055              5,031 ENE          13  63      216            413          247    5,582              6,534 E            22  163    294            422          454    5,563              6,918 ESE          31  194    322            291          629    10,019            11,486 SE          6  401    153            5,263        4,406  7,423              17,652 SSE          0  218    327            3,058        1,822  24,097            29,522 S            3  393    380            188          390    4,436              5,790 SSW          13  701    354            588          307    2,123              4,086 SW          79  208    235            357          344    2,046              3,269 WSW          53  205    612            526          1,831  2,179              5,406 W            40  136    2,013          1,739        1,210  2,570              7,708 WNW          44  347    3,251          12,035      3,852  10,639            30,168 NW          22  313    2,034          7,244        1,423  4,351              15,387 NNW          38  773    1,876          1,344        1,417  7,123              12,571 TOTAL        527 6,082  13,523        34,781      19,671 98,276            172,860 CHAPTER 02                    2.1-9                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-5 POPULATION DISTRIBUTION 0-10 MILES (2000)
DISTANCE (MILES)
SECTOR    0-1 1-2      2-3            3-4        4-5    5-10        10-MILE TOTAL N          64  756      990            440        834    3,499              6,583 NNE        51  1,205    270            529        225    2,690              4,970 NE        51  45        223            370        306    4,134              5,129 ENE        13  64        220            421        252    5,691              6,661 E          22  166      300            431        463    5,672              7,054 ESE        32  198      329            297        641    10,213            11,710 SE        6  408      156            5,365      4,491  7,566            17,992 SSE        0  224      336            3,141      1,871  24,749            30,321 S          3  404      390            194        401    4,557              5,949 SSW        14  720      363            604        316    2,179              4,196 SW        81  214      241            367        353    2,102              3,358 WSW        54  211      628            540        1,881  2,239              5,553 W          41  139      2,068          1,786      1,243  2,640              7,917 WNW        45  354      3,314          12,268      3,927  10,844            30,752 NW        22  319      2,073          7,384      1,450  4,435            15,683 NNW        38  788      1,913          1,370      1,444  7,261            12,814 TOTAL      537 6,215    13,814          35,507      20,098 100,471          176,642 CHAPTER 02                    2.1-10                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-6 POPULATION DISTRIBUTION 0-10 MILES (2010)
DISTANCE (MILES)
SECTOR    0-1 1-2    2-3            3-4        4-5    5-10        10-MILE TOTAL N          77  907    1,189          528        1,001  4,199              7,901 NNE        61  1,446  324            635        271    3,227              5,964 NE        61  54      268            444        367    4,960              6,154 ENE        15  77      264            505        302    6,828              7,991 E          27  199    360            517        555    6,806              8,464 ESE        38  237    394            356        769    12,257            14,051 SE        8  490    188            6,438      5,390  9,081            21,595 SSE        0  269    403            3,769      2,245  29,703            36,389 S          4  485    469            232        481    5,468              7,139 SSW        16  864    436            725        379    2,616              5,036 SW        98  257    289            440        424    2,523              4,031 WSW        65  253    754            648        2,258  2,685              6,663 W          49  167    2,482          2,143      1,491  3,168              9,500 WNW        54  425    3,977          14,722    4,712  13,013            36,903 NW        27  383    2,488          8,861      1,740  5,323            18,822 NNW        46  945    2,295          1,644      1,733  8,714            15,377 TOTAL      646 7,458  16,580          42,607    24,118 120,571          211,980 CHAPTER 02                  2.1-11                        REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-7 POPULATION DISTRIBUTION 0-10 MILES (2020)
DISTANCE (MILES)
SECTOR    0-1 1-2      2-3            3-4        4-5    5-10        10-MILE TOTAL N          92  1,088    1,426          633        1,202  5,039              9,480 NNE        73  1,736    389            762        325    3,873              7,158 NE        73  64        322            533        441    5,952              7,385 ENE        18  92        317            606        363    8,195              9,591 E          32  239      432            620        666    8,167            10,156 ESE        46  285      473            427        923    14,708            16,862 SE        9  588      225            7,726      6,468  10,895            25,911 SSE        0  323      484            4,523      2,694  35,640            43,664 S          5  582      562            279        577    6,562              8,567 SSW        20  1,037    523            870        455    3,140              6,045 SW        117 308      347            528        509    3,027              4,836 WSW        78  303      905            777        2,709  3,226              7,998 W          59  200      2,978          2,572      1,790  3,801            11,400 WNW        64  510      4,773          17,667      5,655  15,616            44,285 NW        32  459      2,986          10,634      2,089  6,385            22,585 NNW        55  1,135    2,754          1,972      2,080  10,455            18,451 TOTAL      773 8,949    19,896          51,129      28,946 144,681          254,374 CHAPTER 02                    2.1-12                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-8 POPULATION DISTRIBUTION 10-50 MILES (1970)
DISTANCE (MILES)
SECTOR    0-10    10-20          20-30          30-40    40-50            50-MILE TOTAL N          9,334  6,253          40,245          42,944    27,908                126,684 NNE        4,211  19,178          188,605        170,433  35,189                417,616 NE        3,933  21,396          14,868          22,233    38,547                100,977 ENE        2,759  38,121          38,625          17,188    28,712                125,405 E          13,294  52,056          94,689          164,754  338,592              663,385 ESE        15,505  131,917        724,262        610,275  73,658              1,555,617 SE        10,437  90,554          1,255,972      566,597  103,147              2,026,707 SSE        32,092  24,552          250,377        25,563    21,282                353,866 S          5,084  60,017          29,018          332,241  18,248                444,608 SSW        3,310  28,071          23,849          36,668    45,361                137,259 SW        4,142  4,060          34,181          9,976    14,319                66,678 WSW        3,185  7,472          19,717          62,299    126,433              219,106 W          4,690  3,644          15,006          41,717    70,654                135,711 WNW        26,001  123,107        71,310          18,760    26,015                265,193 NW        15,386  7,797          16,911          14,553    61,969                116,616 NNW        9,939  9,816          14,500          5,792    34,883                74,930 TOTAL      163,302 628,011        2,832,135      2,141,993 1,064,917            6,830,358 CHAPTER 02                      2.1-13                            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-9 POPULATION DISTRIBUTION 10-50 MILES (1980)
DISTANCE (MILES)
SECTOR    0-10    10-20          20-30            30-40      40-50          50-MILE TOTAL N          5,942  7,884          53,061          55,728    24,830              147,445 NNE        4,488  24,323        185,370          175,555    38,751              428,487 NE        4,630  18,810        19,791          25,253    49,483              117,967 ENE        6,016  54,025        52,445          19,874    36,108              168,468 E          6,368  60,790        88,479          178,907    331,487              666,031 ESE        10,575  124,311        654,399          609,017    105,734            1,504,036 SE        16,245  84,571        1,042,915        509,968    182,225            1,835,924 SSE        25,718  24,010        260,063          31,240    22,748              363,779 S          5,045  71,662        37,832          329,479    23,712              467,730 SSW        3,560  41,678        25,473          47,226    48,771              166,708 SW        2,848  7,171          34,583          11,577    18,878                75,057 WSW        4,711  9,298          24,662          72,930    133,537              245,138 W          6,715  4,729          17,437          49,786    74,846              153,513 WNW        27,764  120,554        72,875          25,831    29,043              276,067 NW        14,160  9,026          17,164          17,026    63,480              120,856 NNW        11,569  12,706        16,031          7,502      34,491                82,299 TOTAL      156,354 675,548        2,602,580        2,166,899  1,218,124          6,819,505 CHAPTER 02                        2.1-14                                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-10 POPULATION DISTRIBUTION 10-50 MILES (1985)
DISTANCE (MILES)
SECTOR 0-10    10-20          20-30          30-40    40-50          50-MILE TOTAL N      6,201  15,786          55,411          58,654    26,896              162,948 NNE    4,681  25,699          193,709        184,827  40,999              449,915 NE    4,831  19,495          21,217          26,719    52,088              124,350 ENE    6,272  54,208          56,225          21,111    39,128              176,944 E      6,642  71,745          94,178          191,806  348,565            712,936 ESE    11,028  136,168        600,174        571,592  108,755            1,427,717 SE    16,948  84,872          948,054        500,820  186,962            1,737,656 SSE    27,619  31,051          257,792        32,345    23,407              372,214 S      5,418  78,282          39,399          343,371  24,571              491,041 SSW    3,824  43,076          27,358          49,699    50,543              174,500 SW    3,058  9,030          37,127          12,403    19,894              81,512 WSW    5,060  9,084          26,382          78,015    142,849            261,390 W      7,212  4,335          18,608          53,247    79,911              163,313 WNW    28,968  129,767        76,716          27,363    30,747              293,561 NW    14,771  4,579          18,068          17,852    66,226              121,498 NNW    12,070  13,491          16,858          7,843    36,416              86,678 TOTAL  164,603 730,668        2,487,276      2,177,667 1,277,957          6,838,171 CHAPTER 02                  2.1-15                              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-11 POPULATION DISTRIBUTION 10-50 MILES (1990)
DISTANCE (MILES)
SECTOR    0-10    10-20          20-30          30-40    40-50            50-MILE TOTAL N          6,458  16,501          57,759          61,579    28,963                171,260 NNE        4,874  26,941          202,042        193,452  43,149                470,458 NE        5,031  20,676          22,643          28,000    54,138                130,488 ENE        6,534  56,983          60,007          22,529    41,340                187,393 E          6,918  74,718          99,879          204,701  368,386              754,602 ESE        11,486  141,812        545,945        545,422  118,787              1,363,452 SE        17,652  87,619          853,199        509,471  201,709              1,669,650 SSE        29,522  33,077          255,520        35,376    24,065                377,560 S          5,790  83,674          40,942          356,138  25,115                511,659 SSW        4,086  46,044          29,239          52,309    53,205                184,883 SW        3,269  9,652          39,671          13,226    21,149                86,967 WSW        5,406  9,678          28,101          83,101    152,160              278,446 W          7,708  4,486          19,777          56,708    84,972                173,651 WNW        30,168  136,351        80,556          28,896    32,451                308,422 NW        15,387  4,929          18,974          18,681    68,972                126,943 NNW        12,571  14,243          17,682          8,183    38,340                91,019 TOTAL      172,860 767,384        2,371,936      2,217,772 1,356,901            6,886,853 CHAPTER 02                      2.1-16                            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-12 POPULATION DISTRIBUTION 10-50 MILES (2000)
DISTANCE (MILES)
SECTOR 0-10      10-20          20-30      30-40    40-50          50-MILE TOTAL N      6,583    16,837          58,743      62,871    29,786            174,820 NNE    4,970    27,473          205,566    198,282  44,225            480,516 NE    5,129    21,141          23,177      30,320    59,686            139,453 ENE    6,661    58,184          61,422      24,904    47,162            198,333 E      7,054    76,172          102,127    209,526  389,831            784,710 ESE    11,710    144,573        542,450    572,224  137,627          1,408,584 SE    17,992    89,099          844,309    550,741  224,521          1,726,662 SSE    30,321    33,947          256,615    39,309    25,600            385,792 S      5,949    85,945          42,015      368,752  26,026            528,687 SSW    4,196    47,295          30,036      54,130    55,746            191,403 SW    3,358    9,915          40,738      13,566    21,947              89,524 WSW    5,553    9,931          28,797      85,157    155,924            285,362 W      7,917    4,564          20,260      58,108    87,041            177,890 WNW    30,752    139,379        82,329      29,560    33,205            315,225 NW    15,683    5,078          19,391      19,088    70,460            129,700 NNW    12,814    14,581          18,059      8,347    39,276              93,077 TOTAL  176,642  784,114        2,376,034  2,324,885 1,448,063        7,109,738 CHAPTER 02                  2.1-17                                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-13 POPULATION DISTRIBUTION 10-50 MILES (2010)
DISTANCE (MILES)
SECTOR    0-10    10-20      20-30        30-40      40-50            50-MILE TOTAL N        7,901  20,203      70,491      75,444    35,745                209,784 NNE      5,964  32,968      246,677      237,938    53,069                576,616 NE        6,154  25,371      27,813      36,384    71,622                167,344 ENE      7,991  69,822      73,705      29,886    56,593                237,997 E        8,464  91,406      122,553      251,430    467,794              941,647 ESE      14,051  173,487    650,942      686,669    165,153              1,690,302 SE        21,595  106,916    1,013,175    660,888    269,426              2,072,000 SSE      36,389  40,734      307,940      47,173    30,722                462,958 S        7,139  103,134    50,417      442,504    31,232                634,426 SSW      5,036  56,752      36,041      64,955    66,896                229,680 SW        4,031  11,895      48,889      16,280    26,336                107,431 WSW      6,663  11,919      34,557      102,185    187,108              342,432 W        9,500  5,478      24,311      69,729    104,447              213,465 WNW      36,903  167,256    98,795      35,473    39,845                378,272 NW        18,822  6,094      23,269      22,906    84,552                155,643 NNW      15,377  17,499      21,671      10,016    47,131                111,694 TOTAL    211,980 940,934    2,851,246    2,789,860  1,737,671            8,531,691 CHAPTER 02                2.1-18                                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-14 POPULATION DISTRIBUTION 10-50 MILES (2020)
DISTANCE (MILES)
SECTOR 0-10        10-20            20-30    30-40    40-50      50-MILE TOTAL N      9,480      24,242          84,586    90,526    42,888          251,722 NNE    7,158      39,555          296,007  285,513  63,674          691,907 NE    7,385      30,441          33,371    43,654    85,939          200,790 ENE    9,591      83,778          88,441    35,859    67,908          285,577 E      10,156      109,680          147,060  301,706  561,341        1,129,943 ESE    16,862      208,176          781,112  823,984  198,173        2,028,307 SE    25,911      128,297          1,215,784 793,046  323,302        2,486,340 SSE    43,664      48,875          369,510  56,603    36,862          555,514 S      8,567      123,754          60,496    530,994  37,474          761,285 SSW    6,045      68,095          43,245    77,941    80,271          275,597 SW    4,836      14,273          58,659    19,532    31,599          128,899 WSW    7,998      14,296          41,466    122,616  224,521        410,897 W      11,400      6,573            29,168    83,668    125,325        256,134 WNW    44,285      200,700          118,545  42,560    47,807          453,897 NW    22,585      7,310            27,917    27,482    101,452        186,746 NNW    18,451      20,994          26,002    12,018    56,551          134,016 TOTAL  254,374    1,129,039        3,421,369 3,347,702 2,085,087    10,237,571 CHAPTER 02              2.1-19                                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-15 SOURCES OF PROJECTED POPULATIONS State      1970        1980      1985        1990        2000      2010      2020 Delaware      1          7          8          2          2        6        6 Maryland      1          7          8          3          3        6        6 New Jersey    1          7          8          4          4        6        6 Pennsylvania 1            7          8          5          5        6        6 Year of Estimate 1 U.S. Census                                                                1970 2 Delaware Development Office, Delaware Population Consortium                1982
: 3. Maryland Department of State Planning                                      1982 4 New Jersey Department of Labor, Division of Planning and Research,          1983 Office of Demographic and Economic Analysis 5 Pennsylvania Department of Environmental Resources                          1983 6 PECo                                                                        1984
: 7. U.S. Census                                                                1980
: 8. PECo, based on projections made by sources 2, 3, 4, and 5                  1984 CHAPTER 02                            2.1-20                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-16 BUREAU OF CENSUS POPULATIONS OF COUNTIES WITHIN 50 MILES OF THE SITE COUNTY        STATE        1950            1960      1970        1980 New Castle    DE          218,879          307,446  385,856    399,002 Cecil        MD          33,356          48,408    53,291      60,430 Burlington    NJ          135,910          224,499  323,132    362,542 Camden        NJ          300,743          392,035  456,291    471,650 Gloucester    NJ          91,727          134,840  172,681    199,917 Hunterdon    NJ          42,736          54,107    69,718      87,361 Mercer        NJ          229,781          266,392  303,968    307,863 Salem        NJ          49,508          59,711    60,346      64,676 Somerset      NJ          99,052          143,913  198,372    203,129 Warren        NJ          54,374          63,220    73,879      84,429 Berks        PA          255,740          275,414  296,382    312,509 Bucks        PA          144,620          308,567  415,056    479,211 Carbon        PA          57,558          52,889    50,573      52,285 Chester      PA          159,141          210,608  278,311    316,660 Delaware      PA          414,234          553,154  600,035    555,007 Lancaster    PA          234,717          278,359  319,693    362,346 Lebanon      PA          78,905          90,853    99,665      109,829 Lehigh        PA          198,207          227,536  255,304    273,582 Monroe        PA          33,803          39,567    45,422      69,409 Montgomery    PA          353,068          516,682  623,799    643,621 Northampton  PA          185,243          201,412  214,368    225,418 Philadelphia  PA          2,071,605        2,002,517 1,948,609  1,688,210 Schuylkill    PA          200,577          173,027  160,089    160,630 York          PA          202,737          238,336  272,603    312,963 CHAPTER 02                              2.1-21                            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-17 INDUSTRIES WITHIN 5 MILES OF THE SITE TOTAL DISTANCE NUMBER OF FROM SITE    DIRECTION COMPANY                    PRODUCT                            LOCATION                  EMPLOYEES  (MILES)    FROM SITE Montgomery County Mrs. Smith's Pie Co        Frozen Specialties                Charlotte & Water Sts        1,700      3.6          WNW Pottstown Princess Bakery            Bread and Bakery Products          113 S. Washington St          14        3.2          WNW Pottstown Lincoln Underwear Co      Knit Underwear Mills              175 S. Evans St                240      3.5          WNW Pottstown Spring City Knitting Co    Circular Knit Fabric Mills        475 N. Lewis Rd                129      2.6          ESE Royersford Pottstown Textile Co, Inc  Dresses                            420 Apple St                  36        3.2          WNW Pottstown Sunset Manufacturing Inc  Dresses                            24 Moser Rd                    300      2.0          NW Pottstown INA-Lin Dress Co          Dresses                            119 N. York St                40        3.8          WNW Pottstown Frederick Bros, Inc        Millwork                          Hanover and East Sts          14        3.7          NW Pottstown Dela Foil, Inc            Aluminum Products                  Shoemaker & Robinson Rds      10        4.3          WNW Rixie Paper Products, Inc  Paperboard Products                Quinter and H Sts              40        5.1          WNW Pottstown Peerless Publications, Inc Newspapers                        Hanover and King Sts          99        3.6          WNW Pottstown Mahr Printing              Commercial Printing                R. D. 3                        13        1.1          NNW Pottstown CHAPTER 02                                                      2.1-22                                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-17 (Cont'd)
TOTAL DISTANCE NUMBER OF FROM SITE    DIRECTION COMPANY                    PRODUCT                        LOCATION            EMPLOYEES  (MILES)    FROM SITE Smales Printery            Commercial Printing            785 N. Charlotte St      20      3.5          NW Pottstown Risson Press, Inc          Commercial Printing            244 King St              12      3.5          WNW Pottstown S.T.V., Inc                Engineering                    Robinson Rd            225      4.3          WNW Pottstown Polymeric Systems, Inc      Adhesives and Sealants          860 Cross St            34      2.6          WNW Pottstown Pottstown Roller Mills, Inc Ball and Roller Bearings        625 Ind Hwy              10      2.9          WNW Pottstown Stanley Tools, Inc          Miscellaneous                  Upper Lewis Rd          136      2.9            E Plastics Products              Limerick Twp Diamond Glass Co            Glass Containers                First Ave              780      4.0          SE Royersford Keystone Gray Iron Foundry Co                  Gray Iron Foundries            Keim and Cross Sts      60      2.6          WNW Pottstown Albright Paper & Box Co    Cardboard Conversion            Robinson Rd              8      4.3          WNW Pottstown Reading Crane &            Conveying Equipment            1200 High St            30      2.3          NW Engineering Co                                            Pottstown Morris Wheeler & Co, Inc    Fabricated Structural Steel    First Ave                80      4.1          SE Fabricating Works                                        Royersford Pottstown Metal Welding    Fabricated Plate Work          350 W. High St          45      4.4          WNW Co, Inc                                                  Pottstown Sanatoga Metal Co, Inc      Sheet Metal Work                Sanatoga                15      1.0          WNW Lower Pottsgrove Twp Superior Metal Prod Co, Inc                        Sheet Metal Work                Berks St                45      5.3          WNW Pottstown CHAPTER 02                                                    2.1-23                                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-17 (Cont'd)
TOTAL DISTANCE NUMBER OF FROM SITE    DIRECTION COMPANY                      PRODUCT                        LOCATION                EMPLOYEES  (MILES)    FROM SITE Cann and Saul Steel Co        Iron and Steel Forgings        N. 4th Ave                190      3.6          SE Royersford Mrs. Smith's Foil Co          Metal Stampings, N.E.C.        255 South St                75      3.6          WNW Pottstown American Metal Finishers, Inc Electroplating                1346 Farmington Ave        30      4.5          NW Pottstown Platers, Inc                  Electroplating                Keim and Cross Sts          12      2.6          WNW Pottstown Pottstown Plating Works      Electroplating                Washington & Laural Sts    52      3.2          WNW Pottstown Rivlin Bros                  Scrap Processing              Old Reading Pike            10      5.5          WNW Pottstown Pottstown Pipe Products, Inc  Valve and Pipe Fittings        412-42 Laurel St            44      3.2          WNW Pottstown Royersford Spring Co          Wire Springs                  Main Street & 1st Ave      29      3.7          SE Royersford B and S Specialties, Inc      Fabricated Metal Products,    Rt 20 & Levengood Rd        23      4.7          NW N.E.C.                        Pottstown Teleflex, Inc                Internal Combustion Engines,  North Wales                200      2.5            E Mechanical Division          N.E.C.                        Limerick Twp Neapco Products, Inc          Construction Machinery and    Queen and Bailer Sts      400      3.0          WNW Equipment                      Pottstown United States Axle Co        Construction Machinery and    275 Shoemaker              40      4.8          WNW Equipment                      Pottstown Pottstown Machine Co          Machine Tools                  Roland and Reading RR      80      2.3          WNW Pottstown Brusch Machine and Tool Co    Special Dyes and Tools        342 W. Ridge Pike          15      3.6            E Limerick Twp CHAPTER 02                                                      2.1-24                                      REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-17 (Cont'd)
TOTAL DISTANCE NUMBER OF FROM SITE    DIRECTION COMPANY                      PRODUCT                        LOCATION            EMPLOYEES  (MILES)    FROM SITE Chop Rite Mfg Co            Food Products Machinery        859 Cross St            22      2.7          WNW Pottstown American Machine and        Woodworking Machinery          Spring and 4th Sts    100      3.9          SE Tool Co, Inc                                              Royersford Clover Lamp Co, Inc          Lighting Equipment, N.E.C. First Ave              100      3.9          SE Royersford Dana Corp - Spicer Division  Motor Vehicle Parts and        125 S. Keim St        625      2.5          WNW Accessories                    Pottstown Tri-Rx Laboratories          Optical Instruments and Lens  701 High St            45      2.7          WNW Pottstown Power Wash, Inc              Manufacturing                  High and Berks St      20      4.7          WNW Industries, N.E.C.            Pottstown Montgomery County A & L Handles, Inc          Plastic Products              244 Shoemaker Rd        30      4.7          WNW Pottstown Amcord, Inc                  Redwood Furniture              Adam & Queen Sts      106      3.1          WNW Pottstown Gudebrod, Inc                Thread, Sewing Kits & Cord    Shoemaker Road        250      4.7          WNW Pottstown Hooker Chemical Co (PVC Div) PVC Resins and Fabricated      Firestone Boulevard    750      1.5          WNW Products                      Pottstown Pollock Research &          Special Design Machinery &    1200 High St            90      2.3          NW Design, Inc                Material Handling Equipment Pottstown Plating Works, Inc  Electroplating                Washington & Laurel    52      3.1          WNW
                                    & Finishing - Metals          Pottstown Bemiss-Jason Corp            Corrugated Paper Displays,    Railroad Avenue        20      3.4          SE Crepe Papers,                  Royersford School Supplies CHAPTER 02                                                    2.1-25                                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-17 (Cont'd)
TOTAL DISTANCE NUMBER OF FROM SITE    DIRECTION COMPANY                    PRODUCT                        LOCATION              EMPLOYEES  (MILES)    FROM SITE Dow Chemical Co            Plastic Lined Pipe            1st Avenue                  7      4.2          SE Royersford French Creek Products      Plastic Products              1st Avenue                18      3.4          SE Royersford H. E. Quay Welding          Welding Specialties            Robinson Rd                3      4.7          WNW Pottstown Snow King Frozen Foods, Inc Processing of Frozen Foods    980 Glascow St            120      4.8          WNW Pottstown Pottstown Cement Block Co  Concrete Block & Brick        W. High Street              7      5.5          WNW Pottstown Crouse Co., Inc            Fabricated Pipe and            Upper Lewis Rd            1,300    3.1          E Industrial Controls            Royersford Gretz Machine Products      Machinery                    40 Sacco Rd                13      1.4          SE Linfield, Limerick Twp Videotek, Inc              Radio - TV Transmitting, &    125 N. York St            85      3.8          WNW Detectional Equipment          Pottstown D - B Construction Co      Wood Kitchen Cabinets          1949 N. Charlotte St      41      3.6          NNW Pottstown "The Guardian"              Newspaper                      40 High St                  9      3.9          WNW Pottstown Sermetal, Inc              Inorganic Chemical Coatings    International Hq          83      2.8          E 155 S. Limerick Rd Limerick Nelson's Ice Cream Inc      Ice Cream                      651 Walnut St              35      3.8          SE Royersford Bechtel Dairies            Dairy                          617 S. Lewis Rd            52      4.8          ESE Royersford CHAPTER 02                                                    2.1-26                                      REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-17 (Cont'd)
TOTAL DISTANCE NUMBER OF FROM SITE    DIRECTION COMPANY                    PRODUCT                        LOCATION            EMPLOYEES  (MILES)    FROM SITE Columbia Boiler Co        Heating Equipment              Old Reading Pike        89      5.3          WNW of Pottstown            W. Pottsgrove Twp Roll Form, Inc            Roll Forming & Metal Fab.      Rt. 422                10      4.1            E Limerick Imperial Specialty, Inc    Screw Machine Products          1153 Sembling Ave      20      2.4          WNW Pottstown Baker Equipment Engr. Co  Comm. - Ind. Machinery          Airport Rd              41      2.4            E of Pa                                                    Ben Franklin Hwy Limerick Beechwood Co              Plastic                        1356 Farmington Ave    12      4.5          NW Pottstown A. W. Walker              Electrical Construction        826 North Lewis Rd      30      2.5            E Royersford Jacob Castings Pattern    Industrial Patterns - Alum. Old Reading Pike        70      5.4          WNW Work, Inc                & Zinc Molded Castings          Pottstown Mayer - Pollack Steel Corp Fabricated Structural Steel    S. Keim St            200      2.6          WNW Pottstown "The Mercury"              Newspaper                      Hanover & King Sts      99      3.6          WNW Pottstown Interstate Energy          Energy Research                Robinson Road          12      4.5          WNW Pottstown Pottsgrove Metal Finishers Electroplating                  533 W. High St          45      5.5          WNW Pottstown Chester County Norco Finishing, Inc      Electroplating                  238 Root Ave            14      3.7          WNW Pottstown Bard Mfg. Div. Miller Seal Precision Parts                Elliswood Rd            25      1.9          WSW (Screw Machine Parts)          Pottstown CHAPTER 02                                                    2.1-27                                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-17 (Cont'd)
TOTAL DISTANCE NUMBER O FROM SITE    DIRECTION COMPANY                      PRODUCT                        LOCATION            EMPLOYEES  (MILES)    FROM SITE Pickar Bros                  Die Cast & Plastic Molds        876 E. Schuylkill Rd    14      2.6          WNW Pottstown Meadowbrook Farms, Inc      Fluid Milk                      895 S. Keim St          53      2.7            W Pottstown Sunny Slope Dairies, Inc    Fluid Milk                      Bridge St Ext            88      3.2            S Spring City Sircom Knitting Co, Inc      Male Underwear                  475 N. Lewis St        1,000    2.6          ESE Spring City Valley Forge Flag Co, Inc    Fabricated Textile Prod        Main St                  175      3.6          SSE N.E.C.                          Spring City Weekly Advisor, Inc          Newspapers, Publishing          225 Schuylkill Rd        11      3.4          SSE c/o The Reporter            and Printing                    Spring City Tursack Printing, Inc        Commercial Printers,            R.D. 1                  32      5.3          SW Lithographic                    Spring City Taylor Industries            Cut    Stone    and    Stone    Anderson Rd            26      1.4          SSW Products Parkerford Little Lake Industries      Wood Household Furniture        Sanatoga Rd              105      0.6            W (U.S. Leisure, Inc)        East Coventry Twp Mingo Nonferrous Metals, Inc Nonferrous Foundries            N. Church St            34      3.4          SSE Spring City Allied Steel Products        Fabricated Plate Work          Rt. 724 & Wells Rd      28      1.4            S Corp of PA                                                  Parkerford Spring City Electric Mfg Co  Cast Metal Housings            Hall and Main Sts        90      3.9          SSE Spring City Brinser Mfg Co              Screw Machine Products          312 Church St            10      3.7          SSE Spring City Norco Foundry and            Valves and Pipe Fittings        216 River Rd            25      3.8          WNW Specialty Co, Inc                                          Pottstown CHAPTER 02                                                    2.1-28                                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-17 (Cont'd)
TOTAL DISTANCE NUMBER OF FROM SITE    DIRECTION COMPANY                      PRODUCT                        LOCATION            EMPLOYEES  (MILES)    FROM SITE Amerind-Mackessic, Inc        Garden Tractors                Old Schuylkill Rd      59      1.3          SSW and Equipment                  Parkerford Progressive Machine Co, Inc  Special Industrial            Pughtown Rd, R.D. 1    20      5.2          SSW Machinery, N.E.C.              Spring City Spring City Foundry          Noncurrent -                  Hall and Main Sts      100      4.0          SSE Carrying Wiring Devices        Spring City Recticon Corp                Semiconductors and            Rt 724 & Wells Rd      75      1.4          S Related Devices                Parkerford LaSalle Steel Co              Cold Finished Steel Bars      Main & Bridge Sts      81      3.5          SSE Spring City Micro-Strain, Inc            Electronic Measuring Devices  Stoney Run Rd            9      3.6          S Spring City Spring City Hoisery Mill, Inc Women's Hosiery                Pikeland Ave            12      4.2          SSE Spring City CHAPTER 02                                                    2.1-29                                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-18 COMPARATIVE CUMULATIVE POPULATIONS FOR 1985 DISTANCE (mi)                    1985                            500 PEOPLE/sq mi(1) 0-1                          499                              1,570 0-2                          6,293                            6,280 0-3                          19,181                          14,135 0-4                          52,421                          25,130 0-5                          71,165                          39,365 0-10                          164,603                          157,079 0-20                          895,271                          628,315 0-30                          3,382,547                        1,413,715 (1)
The population that would result if 500 people per square mile were uniformly distributed over the study area.
CHAPTER 02                                  2.1-30                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.1-19 COMPARATIVE CUMULATIVE POPULATIONS FOR 2020 DISTANCE (mi)                    2020                            1000 PEOPLE/sq mi(1) 0-1                          773                              3,140 0-2                          9,722                            12,560 0-3                          29,618                          28,270 0-4                          80,747                            50,260 0-5                          109,693                          78,530 0-10                          254,374                          314,159 0-20                          1,383,413                        1,256,630 0-30                          4,804,782                        2,827,430 (1)
The population that would result if 1000 people per square mile were uniformly distributed over the study area.
CHAPTER 02                                  2.1-31                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR 2.2 NEARBY INDUSTRIAL, TRANSPORTATION, AND MILITARY FACILITIES 2.2.1 LOCATIONS AND ROUTES The major transportation routes located within 5 miles of the site include the following:
: a.      U.S. Route 422, an east-west highway passing approximately 11/2 miles north of the site;
: b.      Pennsylvania Route 100, a north-south highway passing approximately 4 miles west of the site;
: c.      Pennsylvania Route 724, a southeast-northwest highway passing approximately 1 mile southwest of the site;
: d.      The Consolidated Rail Corporation (ConRail) line (formerly Reading Company) passing through the site along the east bank of the Schuylkill River. The line is comprised of two tracks, and has a rail spur serving the station; and
: e.      The ConRail line (formerly Penn Central Railroad) running north-south, and passing along the western boundary of the site.
These transportation routes are shown on Figure 2.2-1.
Oil and natural gas pipelines located within five miles of the site are shown in Figures 2.2-1 and 2.2-4 and Table 2.2-2, and are described in Section 2.2.2.3.
There is one quarry, Pottstown Trap Rock Quarry Inc, located about 0.8 miles from the site.
Operations at the quarry consist of blasting, crushing, grading, and storing lightweight rock. The location of the quarry is shown on Figure 2.2-2.
Industries located within 5 miles of the site are listed in Table 2.1-17. A further discussion is provided in Section 2.2.2.1. The locations and description of airports are provided in Section 2.2.2.5.
There are no military installations within 5 miles of the site.
2.
 
==2.2 DESCRIPTION==
S 2.2.2.1 Description of Facilities Industries within 5 miles of LGS, with ten or more employees, are listed in Table 2.1-17. The number of employees, products, and locations are listed for each establishment.
The industry nearest the site is the Pottstown Trap Rock Quarry, Inc. Operations at the quarry include the detonation of explosives in the process of quarrying stone. However, the use of explosives is infrequent, and only enough explosives are brought to the quarry for one particular application. There are no explosives stored on the quarry site. The maximum quantity of explosives detonated at the quarry at any time was 11,700 pounds in 20 delays at 585 lb/delay.
Explosives are transported to the quarry by the blaster by truck via Route 422, Evergreen Road and Sanatoga Road. Other industries located within 1.3 miles of LGS include Hooker Chemical Company, Mahr Printing, Inc., Eastern Warehouses, Inc., Amerind-MacKissic, Inc., and Structural CHAPTER 02                                  2.2-1                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Foam, Inc. The location of these industries is shown on Figure 2.2-2. Occidental Chemical Corporation is the only establishment near LGS which has significant quantities of hazardous materials stored onsite.
2.2.2.2 Descriptions of Products and Materials Hazardous materials stored near LGS consist of those stored by Occidental Chemical Corporation (These are listed in Table 2.2-1). Explosives and hazardous materials may be transported on the highways and railroads. Explosives and hazardous materials are discussed in Sections 2.2.3.1.1 and 2.2.3.1.3, respectively.
2.2.2.3 Pipelines As shown in Figures 2.2-1 and 2.2-4, there is a natural gas pipeline adjacent to the site, consisting of two separate pipes, operated by the Columbia Gas Transmission Company, and an oil and gasoline pipeline operated by Atlantic Richfield Company (ARCO) within the site area. The closest distances of approach of these lines to the plant safety-related structures are:
ARCO (ft)      Columbia Gas(ft)
Reactor Enclosure, Unit 1                                        1775.0          3650.0 Reactor Enclosure, Unit 2                                        1625.0          3487.5 Diesel Generator Enclosure, Unit 1                              1837.5          3662.5 Diesel Generator Enclosure, Unit 2                              1675.0          3510.0 Spray Pond Pump Structure                                        1962.5          3600.0 Other pipelines within 5 miles of LGS are operated by Exelon Corporation, Mobil Oil, Texas Eastern Transmission Corp., Transcontinental Gas Pipe Line Corp. and UGI Corp. Pipe sizes, age, operating pressure, etc., are listed in Table 2.2-2. At the present time, there are no plans to utilize these pipelines to transport products different than those currently transported.
2.2.2.4 Waterways There is no commercial traffic on the Schuylkill River in the vicinity of the site, due to the presence of downstream dams. Some small pleasure boating does occur in warmer weather. This, however, is relatively minor.
2.2.2.5 Airports All landing fields within 10 miles of the site are listed in Table 2.2-3. These include 5 public use facilities and 10 private facilities. Four public use airports lie within 5 miles of the LGS site. The aircraft crash probability analysis from operations at airports and airways, including Pottstown Municipal and Pottstown-Limerick Airports, using the procedures of SRP section 3.5.1.6, is provided in Section 3.5.1.6.
Pottstown Municipal Airport lies about 5 miles northwest of the site, and is the only municipal airport within 5 miles. The 1968 National Airport Plan classed it as a general utility airport, one which can handle general aviation craft, except transports and jets. Pottstown Municipal Airport has no scheduled airline service, but serves a charter service, flying school, and privately owned CHAPTER 02                                  2.2-2                      REV. 13, SEPTEMBER 2006
 
LGS UFSAR aircraft. The airport runway is hard-surfaced, 2700 feet long, and has a heading of 250. A line extending from the runway to the east, along the runway's axis, would pass about 3.3 miles from the site boundary at its point of closest approach. Approximately 53 aircraft are based at the airport, and estimated movements are 16,000 annually.
The New Hanover Airport, about 5 miles north of the site, has a sod runway, 3450 feet long, at a heading of 270. The airport has no scheduled service, but serves skydiving operations and privately owned aircraft. Skydiving is the primary activity, with peak movements taking place on weekends, weather permitting. Approximately 70% of the aircraft using the airport are single-engine and 30% are twin-engine. The total number of movements is about 2500 annually.
The Sunset Landing Strip, about 5 miles northeast of the site, has a sod runway 1550 feet long, at a heading of 270. The airport has no scheduled service. Private flights are estimated at 12 per day, weather permitting.
The Pottstown-Limerick Airport, located at Limerick Center, lies about 2 miles northeast of the site. It has a hard-surfaced runway (10-28) 3412 feet long, at a heading of 280 and a sod strip (3-21) 2167 feet long. Currently, there are a total of about 30,000 aircraft movements annually, most involving runway 10-28. There are approximately 60 aircraft based at the airport, of which 40 are single-engine craft, 11 are twin-engine, and 9 are rotary-wing. Ninety-nine percent of the movements involve VFR operations. IFR approaches are presently made from the north, with an FAA-approved approach to Pottstown VOR. The present approach minimums are 649 AGL or 960 MSL. Instructions for a missed approach to runway 21 indicate a left-hand turn to the east away from the site. This facility is owned by Exelon Corporation and leased to the airport operators. The terms of the lease limit fixed-wing aircraft to a maximum weight of 13,500 pounds.
The length of the runway precludes any heavier fixed-wing aircraft from using this facility. There are currently no existing terminal navigational facilities.
The Perkiomen Valley Airport is a hard-surfaced landing strip with no scheduled airline service, but supporting a charter service, flying school, and privately owned aircraft. The runway is 3000 feet long, and has a heading of 270. About 80 aircraft are based at this airport. Movements are estimated to be 7000 for all aircraft annually.
The Pottstown VOR is located 1.3 miles east of the site. This radio range serves as a hub for several VOR airways used for commercial aircraft flights. These airways extend for 4 miles on each side of their center lines. The Pottstown VOR is the main departure route from Philadelphia International Airport for flights going north and northwest, but due to traffic patterns it is not used for arrivals. By the time these departures reach the Pottstown VOR, the flights have reached an altitude of 7000 feet. The Federal airways passing within 10 miles of the site are listed in Table 2.2-4. FAA annual flight estimates include 20,440 flights using the Pottstown VOR 320 radially, no flights along V143, and 8,395 flights along V29/V147.
In addition to the landing fields discussed above, there is a heliport at the LGS site. The landing pad is located east of the Unit 2 cooling tower, 1,250 feet from the nearest safety-related structure. The approach/takeoff flight path has a heading of 350/170, and does not pass over any safety-related structures. The approach/takeoff glide angle is no greater than 30 from vertical. The flight frequency is no more than 156 landings and 156 takeoffs per year.
CHAPTER 02                                    2.2-3                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR 2.2.2.6 Projections of Industrial Growth Industry within 5 miles of the LGS site is clustered along the Schuylkill River, adjacent to rail lines and along major transportation arteries. The construction of the Schuylkill Expressway extension and planned improvements to the Pennsylvania Route 724 are expected to spur industrial development in these areas. At the intersection of the Schuylkill Expressway with the Collegeville-Trappe Route 422 bypass, a 1000 acre industrial park is planned. This area, when fully developed could employ 16,000 persons, assuming that 80% of the land would be developed at an average employee density of 20 persons per acre. New industrial areas are also planned near Route 724 in Spring City, East Coventry Township, and west of Pottstown Landing.
Pottstown Borough, in light of 1960-1970 population trends, may have reached a point of development saturation. Therefore, no significant increase in industry is anticipated in this area.
2.2.3 EVALUATION OF POTENTIAL ACCIDENTS This section provides an evaluation of potential accidents in nearby transportation and industrial facilities, to determine what events need to be considered in the plant design. A description of design features to mitigate such events is also provided.
2.2.3.1 Determination of Design Basis Events 2.2.3.1.1 Explosions Explosions can potentially occur due to accidents on the nearby railway line, highways, or pipelines, as identified in Section 2.2.2. There are no industrial activities involving explosive storage near the site.
The evaluation of potential railway explosions has been performed in conformance with Regulatory Guide 1.91 methodology. The maximum railway explosion is taken as one corresponding to 56 tons of TNT, which is equivalent to the explosion of a boxcar containing a full load of palletized explosives or a tank car containing liquefied petroleum gas.
The frequency of boxcars, derived from a Bechtel study of hazardous materials that passed through the exclusion area during the period from March 1969 through May 1969, amounted to 1800 cars (i.e., 7200 cars per year). There were only 11 cars (i.e., 44 cars per year) that carried explosives.
The explosives are shipped in multiple boxcar shipments per train. However, no more than two carloads of explosives have been shipped at any one time. Normally, only one carload is shipped at any one time.
The safety-related structures of LGS are designed and constructed to withstand the effects of the design basis railroad explosion with no damage, and would be unaffected by any change in explosive shipment frequency.
Selection of a 56 ton maximum TNT explosion model is conservative for the reasons given below.
Information on explosives given below have been excerpted from the Bechtel Design Basis Railroad Accident Study. Additional information on the shipment of explosives through 1983 was CHAPTER 02                                  2.2-4                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR obtained from ConRail, the American Association of Railroads, and the U.S. Department of Transportation.
Fifty ton box cars have been the most common size car used for shipping high explosives in the past. However, military shippers of high explosives prefer increased usage of 70 ton cars. The use of 100 ton cars has been infrequent and generally limited to items that move in large trainload shipments, such as unfused artillery shells. Such cars are not loaded to capacity due to interior space limitations. In addition, the characteristics of commodities carried further limits the explosive power contained within the cars. For example, artillery shells normally contain only 20%
to 30% by weight of explosive.
Thus, an 80 ton load (assuming 20% weight for cases and packing) of shells would contain 24 tons of explosive. Applying a TNT equivalence factor of 1.35 (for composition B) and a 10%
muffling factor yields an explosion equivalent to 29 tons of TNT. Thus, 100 ton cars do not provide the limiting case; the LGS explosion magnitude model is adequate and conservative.
Explosive loadings consist of shells, bombs, bulk explosives, demolition blocks, etc. Demolition blocks provide the greatest concentration of explosive power in a car. Shells, bombs, etc, provide smaller concentrations of explosive power due to the heavy weight of casing (50% to 80% of the weight of the munition).
Composition C3 explosive, in the form of M5 demolition blocks, provides the greatest concentration of explosive power in a car. This explosive is more destructive than TNT, having a relative effectiveness factor of 1.34 when compared with TNT. More powerful explosives were eliminated from consideration because they are shipped in less-than-carload lots.
Military and commercial loading practices rather than accident history set the upper limit on the quantity of explosive considered. Car weight and volume capacities limit the maximum load. M5 demolition blocks are placed in boxes, loaded on pallets, and then blocked inside the rail car.
Twenty-four blocks are loaded in a box, 24 boxes are loaded on a pallet, and 56 to 68 pallets are loaded into a rail car. An aisle 20 inches wide is down the center of the car, and a 45 inch to 50 inch wide aisle connects the doors. A maximum of 44 tons of composition C3 can be placed in the car.
Forty-four tons of composition C3 is equivalent in explosive power to 59 tons of TNT. Application of a 10% muffling factor (i.e., absorption of explosive power by boxes, air space, and car structure) yields an explosion equivalent to 53 tons of TNT.
The discussion above corroborates the selection of a 56 ton TNT model as an upper limit on the design explosion. Consideration of the history of actual explosions confirms that the model is conservative. There is no evidence that an entire carload of explosives has completely detonated during the study period. There is evidence that the explosives will burn or partially detonate and scatter remaining car contents. At Tobar, Nevada and at Lewis, Indiana, some low and high order explosives occurred in the same car. Experts of the Bureau of Mines and the Army claim that the detonation of a carload is possible, but can only be assured if the explosive is detonated with the aid of blasting caps.
For the above reasons, it is considered that the maximum explosion of a rail car carrying explosives would be equal to or less than the 56 ton model used in the explosion and average reflected overpressure analysis for LGS.
CHAPTER 02                                  2.2-5                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR The peak positive reflected pressures for which the critical structural elements of the safety-related structures were analyzed are given in Table 2.2-7. Missile generation from such an explosion is also postulated and is discussed in Section 3.5.
The effects of a release of 64 tons of propane from a ruptured railroad tank car and subsequent detonation of the gaseous cloud which could occur at a distance of 1100 feet from the nearest portion of the Unit 1 reactor enclosure have also been evaluated. Such an explosion could produce a peak reflected overpressure of approximately 9 to 10 psi on the upper two-thirds of the north, west, or south walls of the reactor enclosure. Lower portions of the reactor enclosure and other safety-related structures nearby are protected from the explosion by the geometry of the topography between the river, the railroad grade, and the reactor enclosure. Such an explosion would take place at either railroad grade level or river level, due to the higher density of propane compared to air, especially after the gas has cooled during expansion from the liquid to gas phase. The shock wave of such an explosion exerts an overpressure for a duration of 2 to 10 milliseconds (Reference 2.2-15).
A structural analysis of the upper two-thirds of the reactor enclosure has demonstrated that the enclosure can sustain the load without being damaged. A statistical analysis of the probability of an LPG tank car release and explosion was also performed based on methods described in Regulatory Guide 1.91 (Rev 1). This method utilized specific information on the number of LPG shipments past the LGS site. Credit was also taken for the fact that most LPG incidents occur in industrial installations or rail yards rather than on mainline track. The result of this analysis indicates a probability of approximately 5x10-9 for an LPG tank car release and explosion within a distance that could impact the LGS facility with an overpressure of 1 psi or greater. In 1981, according to Conrail, there were 1315 movements of LPG tank cars on the rail line that passes by LGS.
Explosions can also occur on nearby highways. However, since the railway is closer to the plant and truck cargo capacity is less than that of rail cars, the effects of a railroad explosion would be more severe than an explosion occurring on the highways.
An evaluation was conducted to determine the acceptability of the transportation route for the delivery of hydrogen gas via tube trailers to the Hydrogen Water Chemistry tube trailer facility located outside the protected area of LGS. The evaluation follows the Regulatory Guide 1.91, which provides guidance for providing safe separation distances between transportation routes, that may carry potentially explosive cargo, and safety related structures. The method for determining acceptable separation distance, determines the level of risk of damage due to the potential explosion of the cargo . Regulatory Guide 1.91 provides guidance for determining an acceptable level of risk. Based on industry data and site specific characteristics, the results of the risk evaluation indicated that the exposure rate is less than the value specified by Regulatory Guide 1.91. The transportation route for hydrogen gas delivery reflects an exposure rate that is of a sufficiently low risk of damage to nearby structures.
The potential also exists for the rupture of one of several nearby pipelines and the subsequent explosion of a gas or vapor cloud. The worst case overpressure due to a pipeline accident would involve the 20 inch Columbia Gas Transmission Company pipeline carrying natural gas.
Previous evaluations (Reference 2.2-2) indicate that natural gas will not detonate in unconfined spaces. However, to evaluate potential impacts, the detonation of a natural gas cloud from a rupture of the larger of the two Columbia gas pipelines gas been postulated. A detonable gas-air mixture approximately 4 times the requirement of Regulatory Guide 1.91 (Rev 1) is conservatively used to develop the explosive pressures for structural assessment. It has the equivalent explosive CHAPTER 02                                  2.2-6                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR charge of 347 tons of TNT. Furthermore, the detonation is assumed to occur at an elevation varying from ground to 500 ft above ground to maximize the overpressures on the safety-related structures. In addition, the detonation is also assumed to occur anywhere along a line 2300 feet downwind of and parallel to the route of the natural gas pipeline. This was done to maximize the explosion overpressures on each of the safety-related structures. The peak positive reflected pressures for which the critical structural elements of the safety-related structures were analyzed are given in Table 2.2-7.
The ARCO petroleum products pipeline is assumed to carry gasoline, which has the highest volatility and explosive power of the products carried in the line. The gasoline vapor concentration from the pipeline rupture and spill is postulated to reach the explosive limit (Reference 2.2-3) and has a TNT-equivalent energy of 2.6 tons. The centroid of the explosion is assumed to be along the Possum Hollow Run streambed. The distance to a safety-related structure from the point in the streambed which allows maximum exposure is 800 ft measured from the Unit 2 reactor enclosure. The peak positive reflected pressure at the wall is 1.9 psi, and less than this value at the roof. This is the maximum overpressure from the gasoline explosion on the safety-related structures. The methodology used in calculating the overpressures in based on Reference 2.2-1.
As an example, the peak positive reflected pressure at the southwest corner of the Unit 1 diesel generator building at grade level (el 217') is computed as follows:
RG    =      Radial distance from charge = 624 ft W      =      Charge weight = 56 tons = 112,000 lb (from page 4-8 of Reference 2.2-1)
ZG    =      Scaled ground distance = R/(W)1/3
                =      624/(112,000)1/3 = 12.95 ft/lb1/3 P50    =      Peak positive incident pressure = 6.0 psi
                =      Angle of incidence = 4920' (from page 4-5 of Reference 2.2-1)
Cr    =      Reflected pressure coefficient = 2.8 Pr    =      Peak positive reflected pressure = Cr P50
                =      2.8 x 6.0 = 16.8 psi Because different locations of a wall will experience different peak positive reflected pressures, a critical element of a building wall is analyzed for the average of peak positive reflected pressures at the top and bottom of the wall element.
A low rate of leakage from the ARCO pipeline would likely be detected within one hour by the flow auditing and measurement procedures used at the pump stations along the pipeline. However, if such a leak were to occur and go undetected for a period of several hours, and if the pipeline transported gasoline (the most volatile substance carried), and if the leak were to be located in the vicinity of Possum Hollow Run, it can be anticipated that the gasoline would run into Possum Hollow Run and then flow downstream toward and into the Schuylkill River. Gasoline, with a CHAPTER 02                                    2.2-7                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR density of approximately 0.75 compared to water, would form a thin monomolecular layer on the surface of the water flowing in Possum Hollow Run. No large accumulations or pooling would occur.
The worst situation for this type of release would be on a day during which ambient temperatures remain high because the evaporation rate of gasoline is more rapid at higher temperatures. For any gasoline spill, the lighter fraction components, notably butane, evaporate rapidly, while the heavier components such as naphthene evaporate more slowly. A summertime spill of a quantity of gasoline would evaporate completely within about 24 hours, but a wintertime spill could take a week or more to evaporate completely.
If ignition were to occur, the fire would likely spread over the stream surface to all locations where the gasoline had reached, but excluding portions of the gasoline film that had become disconnected from the ignited portions by such means as flows over small waterfalls or by flows through pipes. After ignition, it can be expected that the ensuing fire could be fairly large in surface area along the creek surface, but would be of short duration. Because the gasoline is assumed to be of small initial quantity, continuous evaporation would occur, and there would be only a small amount of gasoline at any given point along the streambed due to the tendency of gasoline to form a thin surface film over water.
A double-ended rupture of the pipeline would be detected within seconds, and pumping would be terminated promptly. In the unlikely event that there was a complete rupture of the pipe and it went undetected for several hours, the severity of such an occurrence would be approximately the same as that described above for a gasoline spill where it was assumed that the contents of the pipeline between two adjacent high points of bank were spilled into Possum Hollow Run. This would amount to approximately 5000 gallons of gasoline distributed along the creek bed, with an ensuing explosion 800 feet from the plant, and a resulting overpressure of 1.9 psi.
The results of an explosion of gasoline vapor from a long-term continuous release of gasoline are assumed to be similar because gasoline released to the creek bed would be carried downstream into the Schuylkill River and would continue away from the plant.
The ARCO pipeline is an 8 inch line having a pumping capacity of about 1000 barrels per hour. A 1 hour release of gasoline would therefore amount of 42,000 gallons. The standing capacity of the creek bed (the quantity of fluid that would remain in the creek bed in pools if inflow were stopped) between the point where the pipeline crosses and its juncture with the Schuylkill River is small, so that a flow of gasoline at 42,000 gallons per hour, or 700 gallons per minute, would be expected to drain to the river quickly.
In the analysis of a gasoline spill, a point of detonation was used of 800 feet from the closest Category I structure, occurring at a wide point in the streambed where the path to the reactor complex is relatively unimpeded by terrain. The bed of Possum Hollow Run passes closer to Category I structures, as follows:
CHAPTER 02                                    2.2-8                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Unit 2 Diesel generator                    512.5 ft Unit 2 Reactor enclosure                    562.5 ft Turbine-generator building                  637.5 ft Unit 1 Diesel generator                    600.0 ft Unit 1 Reactor enclosure                    662.5 ft Possum Hollow Run, at these closer points, flows through a fairly steep-walled ravine, which would serve to deflect and significantly lessen the effects of an explosion. For this reason, the 800 ft distance selected is conservative.
Missile generation from the Columbia or the ARCO pipeline explosion would be less severe than from the railroad explosion because such a postulated explosion would take place in a cloud away from the postulated missile sources.
For the overall structural design and assessment of the critical structural elements of a safety-related structure, the highest values of the peak positive reflected pressures for walls and roofs are selected from the railroad, Columbia pipelines, and ARCO pipeline. The structural adequacy of the critical elements is evaluated against a ductility ratio of 3.0. All such safety-related structures have been determined to be fully capable of withstanding these overpressures with no adverse effects.
2.2.3.1.2 Flammable Vapor Clouds A pipeline rupture may occur in which the resulting vapor cloud burns rapidly (deflagrates) rather than detonates. Analyses that estimate the effects (radiant heat load) of such an event are discussed below for the ARCO gasoline pipeline. Other types of fires are discussed later in Section 2.2.3.1.4.
The same ARCO pipeline rupture discussed previously is assumed here. In this case, the available gasoline vapor is assumed to deflagrate. Worst case meteorological conditions were assumed, using Pasquill 'F' stability and 1 m/s wind speeds. Any other less stable category or higher wind speed would increase dilution of the gas or vapor cloud, and thus decrease the effect on the reactor enclosure. The resulting fire is calculated to produce a radiant heat load of 85 Btu/ft2-hr (Reference 2.2-5) at the Unit 2 reactor enclosure for a short time. This level would produce a slight warming of the surface concrete. By comparison, a flat surface in the sun at midday receives solar radiation at approximately 50 to 60 Btu/ft2-hr.
In analyzing deflagration of natural gas released from a rupture of the Columbia Gas Transmission Company pipeline, it is assumed that the larger of the two lines (20") ruptures at the point where the pipeline passes closest to the Unit 2 reactor (approximately 3000 feet). It is further assumed to be a double-ended rupture (complete separation of the pipe at the point of rupture).
CHAPTER 02                                2.2-9                      REV. 13, SEPTEMBER 2006
 
LGS UFSAR A portion of the cloud downwind within flammable limits is assumed to ignite and deflagrate. The radiant heat load at the Unit 2 reactor enclosure is calculated to be about 70 Btu/ft 2-hr (Reference 2.2-5) for a short time. This level would cause a slight warming of the outer layer of concrete.
2.2.3.1.3 Exposure to Hazardous Chemical Releases Exposure of control room personnel to hazardous chemical vapors could potentially result from an accident involving a chemical spill. Such spills could occur on the rail line, one of several highways close by, nearby industrial facilities, or from onsite chemical storage. A chemical is considered a potential hazard if it is stored or transported nearby in such quantities that its concentration at the control room air intake following a spill could exceed the toxic incapacitation concentration. Acceptable toxic incapacitation levels were based on compliance with the Regulatory Guide 1.78 requirement of 2 minutes for operator protective action, NUREG/CR-1741 incapacitation models (Reference 2.2-8), OSHA exposure limits, and ACGIH concentration criteria.
Potential chemical hazards were identified by first compiling a list of toxic chemicals that could pose a vapor hazard based on Regulatory Guide 1.78, NUREG-0570, and other sources.
Surveys were conducted to determine which of these are actually stored or shipped within 5 miles of the LGS site, with what frequency, and in what quantities. For the railroads, ConRail provided information on which of these are shipped. Shipment frequency and quantity for those chemicals determined to be a hazard to control room operators are indicated in Table 2.2-6. Per Regulatory Guide 1.78, chemicals shipped less than 30 times per year are disregarded. For the highways, no centralized information source exists to determine what chemicals are shipped. A manufacturers and users survey was therefore conducted to ascertain potential shippers and receivers of hazardous chemicals. Various directories were used to identify such manufacturers in Pennsylvania and the surrounding states and users in the local area. Based on geographic location, competing highways, and direct routes, those manufacturers and users who would reasonably use the three highways near the site were contacted regarding chemicals shipped or received, routes, and container sizes. An analysis was then conducted to determine which of these chemicals, if spilled, could exceed toxic incapacitation levels in the control room. These are listed in Table 2.2-6, along with container sizes.
The analysis assumed complete release of the contents of a single container or tank. In accordance with Regulatory Guide 1.78, it was assumed that after an initial puff of vapor, any remaining liquid spreads over the ground and evaporates. The methodology of Regulatory Guide 1.78 and NUREG-0570 was used to model the initial puff and subsequent plume transport and dilution to the control room air intake. The control room concentrations were determined using the following control room parameters:
: a. Control room envelope volume of 126,000 ft3, as defined in Section 6.4.2.1.
: b. 2100 cfm of incoming/outgoing air, based on the design outside air flow rate supplied by the normal control room HVAC system, as described in Sections 6.4.3.1 and 9.4.1.1.
: c. Air intake 36.5 meters above ground, as indicated in drawing M-124 and Figure 6.4-2.
: d. Inleakage rate of 0.25 air changes per hour, during isolation, as discussed in Section 6.4.2.3.
CHAPTER 02                                  2.2-10                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR
: e.      40 seconds time delay in the duct-work between the detectors at the control room intake plenum and the isolation valve at the entry into the control room air space, based on the air velocity in the duct during normal operation.
The consequences of an accidental release of phosgene gas, a combustion product of vinyl chloride, resulting from a fire in conjunction with an accident involving spillage of vinyl chloride were also evaluated. The phosgene concentration in the control room was calculated using the models of NUREG-0570 and the heat rise models of J.A. Briggs (Reference 2.2-9).
Chemicals stored onsite include carbon dioxide, nitrogen, and sulfuric acid, in quantities and at locations listed on Table 2 2-5.
As a result of the analyses, six potentially hazardous chemicals requiring monitoring were identified, as listed in Table 2.2-6. A brief description of each chemical and its effects on humans and laboratory animals are presented below:
Ammonia, NH3 Ammonia is a colorless gas with sharp, intensely irritating odor. It has an odor threshold of 46.8 ppm for humans (Reference 2.2-13). Complaint levels of 20-25 ppm were first observed. Human effects such as eye irritation, sometimes with lacrimation, nose, throat, and chest irritation (coughing, edema of lungs), were found at concentrations up to 700 ppm, depending on exposure time (References 2.2-10, 2.2-11 & 2.2-12). The chemical then becomes lethal starting at 2,000 ppm concentration even for exposures at very short duration (Reference 2.2-10).
Chlorine, Cl2 Chlorine in its gaseous form is greenish-yellow in color. It has a disagreeable, suffocating and irritating odor readily detectable at 3-5 ppm. Its effects on humans depend on the concentration.
Irritant effects to eyes, nose, throat and/or face were noted at low concentrations. Effects on the upper and lower respiratory tracts and pulmonary edema were reported on exposures at high concentrations. It becomes highly dangerous to be exposed for 30 minutes at 40-60 ppm, fatal at concentrations of 833 ppm if breathed for 30-60 minutes, and rapidly fatal after a few breaths at 1,000 ppm (Reference 2.2-10). There were reports on effects of concentrations around 5 ppm causing respiratory complaints, corrosion of teeth, inflammation of mucous membranes of nose, and increased tuberculosis susceptibility (Reference 2.2-14).
Ethylene Oxide, C2H4O Ethylene Oxide, a suspected carcinogen, is a colorless gas, sickening and nauseating at moderate concentrations and irritating at high concentrations. Humans exposed even to low concentrations showed delayed nausea and vomiting and at continued exposure, numbing of the olfactory sense. Inhalation at high concentrations resulted in general anesthetic effects as well as coughing, vomiting, and irritation of eyes and respiratory passages leading to emphysema, bronchitis and pulmonary edema (Reference 2.2-10). The lowest toxic concentration in humans through inhalation is 12,500 ppm for 10 minutes with only irritant effects observed (Reference 2.2-12). Odor threshold is 50 ppm for this chemical (Reference 2.2-13).
Formaldehyde, HCHO CHAPTER 02                                    2.2-11                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Formaldehyde, a suspected carcinogen, is detectable by most people at levels below 1 ppm (References 2.2-11 and 2.2-14) and at 0.8 ppm (Reference 2.2-13). Humans experienced irritant effects on the eyes, nose, throat, and upper respiratory tract at concentration ranges of less than 1 ppm to 12 ppm. At high concentrations, a severe respiratory tract irritation which lead to death was reported on humans (Reference 2.2-14). Inhalation study on rats and mice showed that formaldehyde has a carcinogenic effect on rats. Rats developed nasal cavity squamous cell carcinomas after 12-24 months of exposure to 15 ppm, with deaths occurring during this period.
Fatalities on rats were also observed at exposures to 81 ppm concentration (Reference 2.2-14).
Vinyl Chloride, CH2 CHCl Vinyl chloride is a colorless, toxic, highly flammable gas at room temperature and atmospheric pressure, with a pleasant, sweet odor at high concentrations (Reference 2.2-10). Evidence has shown it to be a carcinogen to persons exposed over extended periods of time (Reference 2.2-10). Exposure through inhalation at 200 ppm for 14 years showed occurrence of tumors on humans, carcinogenic effects at 500 ppm for 5 years (Reference 2.2-12). At concentrations above 1,000 ppm, vinyl chloride was reported to slowly affect a mild disturbance in humans such as drowsiness, blurred vision, staggering gait, and tingling and numbness in the hands and feet (Reference 2.2-10). The odor threshold for this chemical is 260 ppm (Reference 2.2-13).
Phosgene, COCl2 Phosgene is a colorless, nonflammable, highly toxic gas at ordinary temperature and pressure, with a musty hay-like odor detectable at 0.5-2 ppm. It is a strong lung irritant and causes damage to the alveoli of the lungs. Inhalation of phosgene produces catching of breath, choking, immediate coughing, tightness of the chest, lacrimation, difficulty and pain in breathing, and cyanosis (Reference 2.2-10). Humans experience throat irritation at 3 ppm, immediate eye irritation at 4 ppm and coughing at 4.8 ppm. Brief exposure at 50 ppm may be rapidly fatal (Reference 2.2-11).
To ensure adequate protection of control room personnel, control room operators will be trained and periodically tested on their ability to put on breathing apparatus within 2 minutes after initiation of the toxic chemical alarm. Subsequently, the operators will manually isolate the control room as described in Section 6.4.3.2.3. If chlorine is detected with the control room HVAC System in the normal operating mode, automatic isolation of the control room will occur as described in Section 6.4.3.2.1.
If chlorine is detected with the control room HVAC system initially in the radiation isolation mode (as described in Section 6.4.3.2.2) because of testing or as required by the Action statement of the associated Technical Specifications Limiting Condition of Operation, the chlorine detectors would sense the presence of chlorine and initiate an automatic isolation of the control room outside air intakes, thus overriding the radiation isolation mode. However, the logic of the isolation signals with the control room HVAC system initially in the radiation isolation mode is such that a single failure of the chlorine detection system could allow the filtered outside air intake to remain open and thus the control room HVAC system would remain in the radiation isolation mode. Under these circumstances, once the chlorine has been detected and alarmed in the control room, manual action can be taken to realign the system to the chlorine isolation mode. Analysis of this event assumes that the system remains in the radiation isolation mode with 525 cfm of outside air being mixed with recirculated control room air for a total of 3,000 cfm being passed through the charcoal adsorber filter trains, and that the filter has no effect on removal of chlorine. The results CHAPTER 02                                  2.2-12                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR of the analysis indicate that, with the control room HVAC system in the radiation isolation mode, the necessity for automatic chlorine isolation is not required to satisfy General Design Criterion (GDC) 19 of 10CFR50 of Appendix A, and that the control room operators would have sufficient time to don breathing apparatus after an alarm is sounded in the control room (as shown in Table 2.2-6).
Once it is confirmed that the isolation is not the result of elevated chlorine or toxic gas concentrations, the operators may remove their breathing apparatus. This action is based upon an evaluation of the chlorine and toxic gas accidents with the control room in the chlorine isolation mode prior to the chlorine or toxic gas accident. This evaluation determined that the control room operator would have sufficient time (more than 2 minutes) to don breathing apparatus after odor detection of the toxic substance.
The LGS toxic chemical analysis complies with the intent of Regulatory Guide 1.78. The analysis goes beyond the methodologies outlined in this guide in the following areas:
: a.      In addition to the chemicals listed on table C-1 of Regulatory Guide 1.78, other chemicals were investigated to determine if potential hazards existed. A total of 153 chemicals were evaluated.
: b.      The models of NUREG-0570 were used to determine the concentrations of hazardous chemicals in the control room.
: c.      The more stringent TLV levels were initially used instead of the Regulatory Guide 1.78 table C-1 toxicity limits to determine which chemicals were potentially hazardous. Table C-2 of Regulatory Guide 1.78 was not used to determine which chemicals were hazardous.
: d.      Potentially hazardous chemicals were re-evaluated using the incapacitation models of NUREG/CR-1741 (Reference 2.2-8) to determine if control room operations would be incapacitated. This analysis is an amplification of Position C.4 of Regulatory Guide 1.78.
2.2.3.1.4 Fires In addition to the flammable vapor clouds discussed earlier, fire hazards may also exist due to a burning tank car on the railroad, a fire subsequent to a ruptured pipeline, or a nearby forest/brush fire. Potential adverse effects of such fires are radiant heat load on plant structures and smoke generation.
To estimate the effects of a railroad fire, an accident is hypothesized in which a railroad tank car derails, ruptures, and releases a cargo of 62 tons of liquified propane. A 62 ton car is typically the largest size used for propane, and from a fire standpoint liquified propane represents one of the most severe materials transported by rail. The site of the hypothetical derailment is the closest point of approach to the Unit 1 reactor enclosure, about 600 feet. The tank car propane is assumed to be released into the drainage ditch alongside the eastern side of the right-of-way, where it pools and is subsequently ignited. The vapor pressure of liquid propane is sufficiently high at ambient conditions that there will be an adequate supply of gaseous propane for ignition, after which the fire is self-propagating. The fire duration is assumed to be 20 minutes, based on experience with this material.
CHAPTER 02                                  2.2-13                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Assuming 19,600 Btu per pound of propane and 62 tons being consumed in 20 minutes, the radiant heat load on the reactor enclosure may be calculated using the relationship (Reference 2.2-5):
D = (FQ/12.57K)1/2                                            (EQ. 2.2-1) where:
D = distance, feet F = fraction of heat that is radiant Q = heat release, Btu/hr K = radiation load, Btu/ft2-hr The result of this calculation indicates a radiant heat load of approximately 500 Btu/ft2-hr for 20 minutes at the Unit 1 reactor enclosure. This compares to a solar heat load for a flat surface at midday of 50-60 Btu/ft2-hr. The smoke effects of such a fire would be negligible. This accident represents the worst case radiant heat event. Other possible fires that result in more severe smoke generation are described below.
Rupture of the ARCO pipeline at Possum Hollow Run while carrying diesel fuel or home heating oil, which represents the worst case from a smoke generation standpoint, results in the release of approximately 5000 gallons (120 barrels) distributed over the streambed downstream toward the Schuylkill River. An open burning pool of oil produces 1.5-10 kilograms per second of particulates (smoke) for each 1000 barrels per hour of fuel consumed (Reference 2.2-5). The 5000 gallons is assumed to be completely burned in a short time (about 10 minutes). Assuming an average burn release of about 5 kilograms of particulates per second over the 600 meter length from the streambed pipeline crossing to the first downstream bridge, concentrations of particulates at the reactor enclosure are approximately 2.60 grams of particulates per cubic meter. The radiant heat effects of such a fire are negligible.
A brush and forest fire in the vicinity of the LGS site releases 210 kilograms of particulates per hectare (Reference 2.2-7). Assuming a normal fire rate of 40 acres per hour along the southeast bank of Possum Hollow Run, the smoke concentration at the reactor enclosure, 800 feet from the fire center, is approximately 0.6 grams per cubic meter.
The design provisions available if smoke reaches the control room ventilation are described in Section 2.2.3.2.
2.2.3.1.5 Collisions with the Intake Structure The Schuylkill River is not used as a navigable waterway for anything other than small recreational boats. Moreover, the ultimate heat sink is the spray pond, so that damage to the intake structure does not impair safe shutdown capability.
CHAPTER 02                                    2.2-14                REV. 13, SEPTEMBER 2006
 
LGS UFSAR 2.2.3.1.6 Liquid Spills Petroleum floating on the Schuylkill River surface could approach the intake structure due to a spill upstream. The intake is under water, so oil is excluded from entry into the intake line. The severest possible condition occurs at the design low water condition, with the water surface at 104' MSL. The water intake is still submerged 1 foot at this level. As noted above, the intake structure is not safety-related.
2.2.3.2 Effects of Design Basis Events From the foregoing discussion, the following design basis events are identified, along with their potential effects:
: a.      Railroad, Columbia natural gas pipeline, and ARCO pipeline explosion -
overpressurization and missile generation
: b.      Toxic chemical spill - hazardous control room concentrations
: c.      Propane tank car fire - radiant heat load on structures
: d.      ARCO pipeline fire - smoke in control room The following design provisions or considerations account for these events:
: a.      Railroad, Columbia natural gas pipeline, and ARCO pipeline explosion
: 1.      Blast - safety-related structures are designed to withstand the resulting overpressurization due to an explosion as discussed in Section 2.2.3.1.1.
: 2.      Missiles - safety-related structures are designed to withstand the impact of blast-generated missiles, as identified and discussed in Section 3.5.
: b.      Toxic Chemical Spill
: 1.      Control Room - detection and isolation capability is provided for the 6 chemicals identified as constituting a hazard, as discussed in Section 6.4.
: 2.      Diesel Generators - The manufacturer of the emergency diesel generators has determined that the chemicals identified in Tables 2.2-5 and 2.2-6, when present in concentrations and for time spans calculated using the methodology described in Section 2.2.3.1.3, would have no adverse effects on diesel generator operation.
: c.      Propane tank car fire - the radiant heat load from such a fire is evaluated as having no adverse effect on safety-related structures. The bulk of the heat load would be absorbed by the precast panels on the face of the structures, which do not serve a safety function.
: d.      ARCO pipeline fire - smoke detectors in the control room intake alarm, and the operator can manually isolate the control room ventilation system, as discussed in Section 9.4.1.
CHAPTER 02                                    2.2-15                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR 2.
 
==2.4 REFERENCES==
 
2.2-1      Department of the Army, Navy, and Air Force, "Structures to Resist the Effects of Accidental Explosions", TM5-1300, (June 1969).
2.2-2      NRC, "Safety Evaluation Report - Hartsville Nuclear Plants", Dockets STN 50-518 through STN 50-521 (April 1976).
2.2-3      N.I. Sax, "Dangerous Properties of Industrial Materials", 4th Ed., Van Nostrand Reinhold, New York (1975).
2.2-4      M.G. Zabetakis, "Safety with Cryogenic Fluids", (March 1967).
2.2-5      American Petroleum Institute, "Guide for Pressure Relief and Depressuring Systems", API RP521, (September 1969).
2.2-6      American Conference of Governmental Industrial Hygienists, "TLV's, Threshold Limit Values for Chemical Substances and Physical Agents in the Workroom Environment with Intended Changes for 1978".
2.2-7      EPA, "Compilation of Emission Factors", AP 42, 3rd Ed., (July 1979).
2.2-8      NUREG/CR-1741, "Models for the Estimation of Incapacitation Times Following Exposures to Toxic Gases or Vapors", Gordon J. Smith, David E. Bennet, Sandia National Laboratories, (December 1980).
2.2-9      D.H. Slade, "Meteorology and Atomic Energy 1968, U.S. Atomic Energy Commission", (July 1968).
2.2-10      Breaker, Mossman and Siegel, "Effects of Exposure to Toxic Gases - First Aid and Medical Treatment", 2nd Ed.
2.2-11      G.D. Clayton, F.E. Clayton, "Patty's Industrial Hygiene and Toxicology", Vol 2A, 2B, 2C, Third Edition.
2.2-12      U.S. Department of Health and Human Services, "1979 Registry of Toxic Effects of Chemical Substances", Vol 1 & 2, (September 1980).
2.2-13      DOT, "Coast Guard CHRIS Hazardous Chemical Data", (October 1978).
2.2-14      American Conference of Government Industrial Hygienists, Inc., "Documentation of the Threshold Limit Value", 4th Ed., (1980).
2.2-15      E.B. Vanta et al, "Detonability of Some Natural Gas - Air Mixtures", Armed Forces Armament laboratory, Air Force Systems Command, TR AFATL-TR-74-80, (April 1974).
CHAPTER 02                            2.2-16                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.2-1 HOOKER CHEMICAL COMPANY RELIEF ELEVATION            VALVE  STORAGE MAXIMUM        OF TANKS          CAPACITY TEMPERATURE CHEMICAL          QUANTITY          (feet)            (psig) AND PRESSURE Vinyl chloride  3,000,000 lb          12              100  30 psig-ambient Butadiene        500,000 lb          12              100  20 psig-ambient Tri-fluro-                        Portable chloro-enthylene  2,000 lb        cylinder            375  68 psig-ambient Tri-fluro-chlor-ethylene    1,000 lb      In process          None  Ambient Formaldehyde      50 Drums      Warehouse              --  Ambient Methanol          10 Drums      Warehouse              --  Ambient Nitrogen        139,000 SCF            3              350  -325F Tolmene          13,000 gal.          12              (100)  Ambient-vent Gasoline          52,000 ga.l    Underground            --  Ambient vent Styrene          50,000 gal.          12              (100)  Ambient-vent Vinyl acetate    25,000 gal.          12              (100)  Ambient-vent Tri-chloro-Ethylene          25,000 gal.          12              (100)  Ambient-vent Vinyl pyridine    10,000 gal.          8                --  40F CHAPTER 02                                  2.2-17                                      REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.2-2 PIPELINES WITHIN 5 MILES OF THE SITE Columbia Gas                          Columbia Gas Transmission                          Transmission                                                                          Texas Eastern      Transcontinental Pipeline                          Co No. 1278                          Co No. 1010      Atlantic Richfield Co Mobil Oil          UGI Corp                  Transmission Corp  Gas Pipe Line Corp    PECo            PECo Size (in)                          14                                    20                8                    8                  12                        2 lines,            6                      12              6/8 each 20 in Operating                          1000 max(1)                          1200 max(1)      1200 max(1)          1440(1)            150 max.(1)                650(1)              750(1)                100 max(1)      20 max(1)
Pressure (psig)
Age (years)                        31                                    13                11                    33                26                        38                  29                    Original        Original main            main installed      installed in 1929,        in 1930, sections        sections replaced as    replaced necessary      as necessary Depth of                          3 min                                3 min            3 min                2 min              2 min                      3 min              2 min                  3 min          3 min Burial (ft)
Fluid                              Natural gas                          Natural gas      Refined hydrocarbons  Gasoline and      Natural gas                Natural gas        Natural gas            Natural gas    Natural gas Carried                                                                                                          fuel oil Isolation                          1. South of                          1. South of      1. Each side of      1. Each side of    1. Gate Station            1. Each side of    1. Pottstown gate      1. Kenilworth  1. Pottstown, Valves                              Schuylkill                            Schuylkill        Schuylkill          Schuylkill        located at                Schuylkill River    station in            800 ft          west of River near                            River near        River crossing      River              tie-in to                  crossing near      western                west of        Beech St.
Parkerford(2)                        Parkerford(@)      near Royersford(3)  crossing(2)        Columbia Gas              Royersford(3)      Pottstown near        Keim St. on    on High line south of                                  Keim St. and          Schuylkill      St.(4)
Royersford,                                    Conrail Railroad      Rd.(4)
PA(4)                                          tracks(4)
: 2. Each side of                      2. One mile      2. Approximately      2. Limerick        2. North Coventry          2. Near Eagle, PA,  2. West Vincent        2. East        2. Lower Schuylkill                            southeast of      8 miles north of    Township at        Township near              approximately      Township near          Coventry        Pottsgrove River crossing                        Feqleysville      LGS site(2)          Grebe Road,        Route 100,                11 miles SW        Hollow Rd.            Township        Township (line divides                        at intersection                        approximately      approximately              of LGS site(3)      approximately          1600 ft        100 ft into two 10                          of Houck Rd and                        4-1/2 miles NE    4 miles west                                  7 miles south          south of        east of inch lines                            Swamp Pike(2)                          of LGS site(2)    of LGS site(4)                                of LGS site(2)        Vaughn Rd.      Brown St.
for river                                                                                                                                                              on Schuylkill  on Route crossing)(4)                                                                                                                                                          Rd.(4)          422(4)
: 3. One mile                                                                                                                3. Near Lansdale,                          3. Parkerford,  3. Lower southeast of                                                                                                                PA, approximately                          100 ft east    Pottsgrove Feqleysville                                                                                                                15 miles east of                          of Anderson    west of at intersection                                                                                                            LGS site(3)                                Rd. on          Rupert Rd.
of Houck Rd                                                                                                                                                            Schuylkill      on Route and Swamp (2)                                                                                                                                                          Rd.(4)          422(4)
: 4. Parkerford,  4. Limerick 1600 ft east    Township of Bethel      west of Rd. on          Penn Rd.
Schuylkill      on Route Rd.(4)          422(4)
: 5. Spring City  5. Limerick south of        Township Park Ave. on    east of Schuylkill      Neiffer Rd.(4)          Rd. on Route 422(4)
: 6. Limerick Township south of Route 422 on Lewis Rd.(4)
(1)
Pipeline is not used for storage at pressure higher than that shown.
(2)
Valve is manually operated gate valve.
(3)
Valve is manually operated ball valve.
(4)
Valve is manually operated plug valve.
CHAPTER 02                                                                                                        2.2-18                                                                              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.2-3 AIRPORTS WITHIN 10 MILES OF THE SITE (1)
APPROXIMATE DISTANCE                                      RUNWAY AIRPORT                          FROM SITE (mi)          TYPE                    SURFACE/SERVICE    LONGEST RUNWAY (ft)
Pottstown-Limerick                      2                Public use              Hard surface/lights 3412 Pottstown Municipal                    5                Public use              Hard surface/lights  2700 New Hanover                            5                Public use              Soft surface        3450 Perkiomen Valley                      8.5              Public use              Hard surface/lights 2900 Sunset Landing Strip                    5                Public use              Soft surface        1550 Godshall                                8                Private                  Soft surface        2000 Kings                                  8                Private                  Soft surface        1700 Yarrow                                  9                Private                  Soft surface        1800 Kunda                                  8.5              Private                  Soft surface        1300 Malickson                              7                Private                  Soft surface        1800 Kolb                                    5                Private                  Soft surface        1500 Gingrich                              4.5              Private                  Soft surface        1600 Emery                                  2                Private                  Soft surface        1300 Dimascio                              5.5              Private                  Soft surface        1300 Hansen                                7.5              Private                  Soft surface        1800 (1) Source: VFR Terminal Area Chart for Philadelphia, PA, January 1, 1980 CHAPTER 02                                                                  2.2-19                                        REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.2-4 AIRWAYS WITHIN 10 MILES OF THE SITE(1)
CENTERLINE                                        MAGNETIC RADIAL DESIGNATION          DISTANCE FROM SITE        FLIGHT DIRECTION FROM VOR V143                Approx. 1 mi              East                  095 (Pottstown VOR) to south                  West                  269 (Pottstown VOR)
V29/V147            Approx. 1.3 mi            North                  354 (Pottstown VOR) to east                    South                  205 (Pottstown VOR)
V210                Approx. 8 mi              West                  265 (Yardley VOR) to south V276                Approx. 10 mi              Northwest              294 (Yardley VOR) to northeast (1)
Source: VFR Terminal Area Chart for Philadelphia, PA, Jan. 1, 1980 CHAPTER 02                          2.2-20                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.2-5 ONSITE CHEMICAL STORAGE Stored Volume Chemical        (Standard cubic feet)    Number of Tanks  Location Carbon Dioxide            0                    1        Turbine Enclosure el 239' (Common)
(Abandoned in Place)
Carbon Dioxide        47,100                  2        Turbine Enclosure el 217' (Unit 1 and Unit 2)
Nitrogen              539,150                  2        West of Radwaste Enclosure el 218' (Common)
Sulfuric Acid  1,337 (10,000 gallons)          2        Adjacent to Cooling Towers (Unit 1 and Unit 2)
Sulfuric Acid    535 (4,000 gallons)            1        Water Treatment Building (Common)
CHAPTER 02                      2.2-21                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR LGS UFSAR Table 2.2-6 POTENTIALLY HAZARDOUS CHEMICALS REQUIRING MONITORING MAXIMUM CALCULATED CONCENTRATION MONITOR            (No Control Room            MONITOR SETPOINT                  Isolation)            DELAY          INCAPACITATION                                SHIPMENT                    FREQUENCY CHEMICAL                (ppm)                        (ppm)              (sec)              TIME(min)              MODEL            MODE                        (Carloads/yr.) AMOUNT Ammonia                  25              1145                            262            5.7                              A            Rail                        500-1000      54 tons/carload Chlorine(3)              0.4              799.6(3)(4)                    <5              2.53(3)(4)                      A            Storage/Rail                500-1000      74 tons/carload 244.1(6)                                        3.55(6)
Ethylene Oxide          50              780.8                          262            9.6                              B            Rail                        500-1000      75 tons/carload Formaldehyde            5                44.19                          262            10.68                            A            Rail                        30-99          87 tons/carload Vinyl Chloride          10              25980/1271(4)                  262            13.93/92.05(4)                  D            Storage/Rail                500-1000      92 tons/carload Phosgene                0.4              63.14/17.46                    262            17.2/11.33(4)                    B            (2)                        --            --
(1)
Rail shipments are average weights. No additional chemical hazards were identified when the maximum weight of 90 tons/carload was considered.
(2)
Phosgene is a combustion product of vinyl chloride.
(3)
For chlorine, data presented are based on automatic isolation of control room and in leakage at ground level (except as noted in Note 6).
(4)
First value is for storage/second value is for railroad.
(5)
Incapacitation model types are taken from NUREG/CR-1741.
(6)
Values in parentheses are for railroad release of chlorine with the control room HVAC System operating in the Radiation Isolation mode with an elevated air intake.
CHAPTER 02                                                                              2.2-22                                                                      REV. 16, SEPTEMBER 2012
 
LGS UFSAR Table 2.2-7
 
==SUMMARY==
OF PEAK POSITIVE REFLECTED PRESSURES RESULTING FROM RAILROAD AND NATURAL GAS PIPELINE EXPLOSION NATURAL GAS PIPELINE EXPLOSION REGULATORY                REGULATORY                        4X                        4X                                      PRESSURES USED PRESSURE        GUIDE 1.19 (REV 1)        GUIDE 1.19 (REV 1)      REGULATORY GUIDE            REGULATORY GUIDE              RAILROAD            IN STRUCTURAL (PSI)            SURFACE BURST                AIR BURST              SURFACE BURST                  AIR BURST                EXPLOSION            ASSESSMENT EXT.                      EXT.                      EXT.                      EXT.                    EXT.                EXT.
BLDG.            ROOF        WALL        ROOF        WALL        ROOF        WALL        ROOF          WALL          ROOF      WALL        ROOF      WALL Diesel Generator          1.9          5.8          3.5          8.3          4.0          13.0          2.5          16.0          5.7      16.4        6.7      16.4 Reactor .2          5.8          2.8          8.3          2.6          13.0          5.2          16.0          5.3      16.1        5.4      16.1 Control Structure          1.6          5.0          2.8          6.9          3.3          11.0          4.7          14.0          3.3      10.0        4.9      14.0 Spray Pond Pumphouse          0.8          2.5          1.2          3.3          1.8          5.0          1.4          6.0          2.1        4.7        3.0      6.0 CHAPTER 02                                                            2.2-23                                                      REV. 13, SEPTEMBER 2006
 
LGS UFSAR 2.3 METEOROLOGY 2.3.1 REGIONAL CLIMATOLOGY The regional climatology in the vicinity of the LGS site has been analyzed using long-term data from the nearby NWS stations at the Philadelphia and Allentown, Pennsylvania airports. These data are available in several summarized forms (References 2.3.1-1 through 2.3.1-4) from the National Climatic Center. The LGS site is located about midway between Philadelphia and Allentown with respect to both elevation above MSL and geographic location. Though Reading, Pennsylvania is the NWS station closest to the site, it was removed from service in 1969. Climatic summaries from Philadelphia and Allentown indicate that some extremes of record have occurred since 1969, which would not be included in any Reading summaries.
Hourly meteorological data from Pottstown-Limerick Airport is used to review the Site Meteorological Tower data consistency on a daily basis.
2.3.1.1 General Climate 2.3.1.1.1 Air Masses and Synoptic Features The general climate of the LGS site is best described as humid continental. The region is dominated by continental air masses in winter, and by alternating continental and maritime tropical air masses in the summer. The site is near the track of most eastwardly moving low pressure systems which are brought from the interior of the U.S. by the prevailing westerlies. This generally produces a change in the prevailing weather system every three or four days. Coastal storms from the Atlantic Ocean can affect the site, causing heavy rains and severe flooding in the most extreme instances.
2.3.1.1.2 General Airflow The prevailing winds in the region of the LGS site are from the west. Table 2.3.1-1 compares the long-term annual wind distributions from Philadelphia and Allentown. While there are slight differences, the overall flow patterns are similar. Seasonal variations are evident, with the prevailing wind at both stations shifting to the WSW and SW in the summer months and to the WNW and NW during the winter. Annual average wind speeds are between 9 mph and 10 mph at both stations, but the frequency of measured calms (8%) is much larger at Allentown.
2.3.1.1.3 Temperature Temperatures in the region of the LGS site rarely exceed 100F or drop below 0F. Mean monthly temperatures from Philadelphia and Allentown are given in Table 2.3.1-2. The average temperatures at Allentown are approximately 3F cooler than Philadelphia, but at times the difference may be as great as 10F or 15F. This difference can be attributed almost entirely to local differences at the two NWS stations. Temperatures at Allentown are measured at el 391' MSL, while those at Philadelphia are obtained at el 9' MSL, near the modifying influence of the Delaware Bay. Temperatures in the vicinity of the site should fall somewhere between those at Allentown and Philadelphia.
2.3.1.1.4 Relative Humidity CHAPTER 02                                  2.3-1                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR Mean morning and afternoon values of relative humidity from Philadelphia and Allentown are summarized by month in Table 2.3.1-3. The 7:00 am and 1:00 pm values from each station were selected as being representative of typical morning and afternoon conditions, respectively. As the table indicates, both stations recorded the highest morning values in September and the lowest afternoon values in April. Though Allentown indicates consistently higher values of relative humidity, the differences are small.
2.3.1.1.5 Precipitation The LGS site receives a moderate amount of precipitation, which is well distributed throughout the year. The precipitation distributions at Philadelphia and Allentown are summarized in Tables 2.3.1-4 and 2.3.1-5, respectively. Both stations indicate slightly more precipitation during the summer months. The only significant difference between the two locations is in the mean annual accumulation of snow and sleet, with Allentown receiving approximately 11 inches more per year.
This is not unexpected considering the greater elevation and the inland location of Allentown.
2.3.1.1.6 Relationship Between Synoptic and Local Scale Meteorology The LGS site is situated in an inland region of rolling terrain where one would expect little local modification of synoptic scale weather systems. There are no large bodies of water near the site, and the Schuylkill River is much too small to significantly affect the local conditions. There is a slight channeling effect at low elevations in the river valley.
2.3.1.2 Regional Meteorological Conditions for Design and Operating Bases 2.3.1.2.1 Seasonal and Annual Frequencies of Severe Weather Phenomenon 2.3.1.2.1.1 Hurricanes Hurricanes are relatively rare at an inland site such as LGS. These storms usually affect the inland regions of the mid-Atlantic states while moving in a path parallel to the coastline, or after coming ashore in the southern states. In the period from 1901 through 1963, only two hurricanes came ashore in the mid-Atlantic coastal region extending from Virginia to New Jersey. There have been 14 hurricanes and tropical storms that have affected the LGS region between 1963 and 1980 (Reference 2.3.1-22). The primary effect from these storms was increased precipitation that occurred after these storms moved inland and began to dissipate. A summary of the peak winds and precipitation totals in the LGS region from these storms is shown in Table 2.3.1-9. The maximum wind speed resulting from a tropical storm in the region was a fastest mile value of 38 mph recorded at Philadelphia during tropical storm Doria (1971). During the 13 year period from 1955 through 1967, Pautz (Reference 2.3.1-6) reports 69 storms in Pennsylvania where surface winds exceeded 74 mph. There were no wind speeds in the site vicinity in excess of 74 mph between 1967 and 1980. The fastest mile of wind recorded at the regional NWS stations was 57 mph at Philadelphia on June 23, 1969. The highest hourly average wind speed recorded at the LGS site since the beginning of the meteorological monitoring program in 1972 was 50 mph on December 2, 1974 at the 270 foot level on Tower 1. While 74 mph is the wind speed criteria used to designate a hurricane, this total reflects winds resulting from both tropical and extratropical storms.
The potentially heavy rains which can result from a hurricane or a decaying tropical storm as it moves inland are a more serious consideration than strong winds in the LGS area. Doria also CHAPTER 02                                  2.3-2                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR produced a 24 hour precipitation total of 4.77 inches. The maximum precipitation measured onsite during 24 hours from a tropical storm was 5.57 inches during the dissipation stage of Hurricane Agnes (1972). Hurricane Agnes caused severe flooding in June of 1972, leaving 8 inches of rain over most of central and southern Pennsylvania. As much as 19 inches of rain fell during hurricane Agnes in western Schuylkill County, approximately 40 miles northwest of the site.
2.3.1.2.1.2 Tornadoes Summaries prepared by Pearson (Reference 2.3.1-7) indicate that there were 75 tornadoes within a 50 mile radius of the LGS site in the period 1950 through 1976. This data base has since been updated, indicating that 10 additional tornadoes occurred in the 1 latitude-longitude square surrounding the site in the period 1977-1981. The tornado occurring closest to the LGS site during this period was approximately 13 nautical miles WNW on September 5, 1979. There is also an unconfirmed report (Reference 2.3.1-23) of a small tornado touching down in the immediate Pottstown, Pennsylvania vicinity on May 20, 1982. The most severe occurred on March 22, 1955, 17 miles south of the site. This tornado had a path area of 1.2 square miles, with peak winds estimated to be in excess of 150 mph. The tornado reported closest to the site occurred on June 8, 1961, approximately 6 miles to the east. Peak winds from this storm were estimated to be in excess of 110 mph.
Using the statistical methods of Thom (Reference 2.3.1-8), the tornado probability has been computed for the LGS site. This analysis has been based on 32 years (1950-1981) of data from the National Severe Storms Forecast Center, during which 37 tornadoes were reported in the 1 latitude-longitude square surrounding the site. This produces an annual frequency of 1.16 tornadoes per year.
This data base contains information on all tornadoes that have been reported since 1950, and includes information such as latitude and longitude of the tornado starting and stopping points, path width, path length, and tornado intensity. Of these tornadoes, 32 had measured path lengths and widths, which produce a mean path area of 0.342 square miles. Using Thom's formula, this produces a strike probability for any point within the 1 square of once every 9179 years.
2.3.1.2.1.3 Thunderstorms and Lightning Thunderstorms are a seasonal phenomenon in the region of the LGS site. Philadelphia and Allentown report 27 and 32 thunderstorm days per year respectively, with 90% of these occurring between the months of April and September. The monthly distribution of thunderstorm days is shown in Table 2.3.1-6. Direct observation of lightning strikes is not a routine function at any of the standard observing stations. However, Uman (Reference 2.3.1-9) has developed a statistic which indicates that the number of lightning flashes (cloud to ground) per square mile per year is equal to between 0.05 and 0.8 times the number of thunderstorm days per year. A conservative estimate of the number of lightning strikes per year in the square mile containing the LGS site is 26.
2.3.1.2.1.4 Hail Hail storms are a relatively rare phenomenon in the LGS site area. Pautz (Reference 2.3.1-6) reports that there were 57 occurrences of hail in the state of Pennsylvania in the 13 year period from 1955 through 1967. This converts to approximately four hail storms per year. However, hail frequency is not uniform throughout the state. Baldwin (Reference 2.3.1-10) and Changnon (Reference 2.3.1-11) both report an annual frequency of one to two hail storms per year in the CHAPTER 02                                  2.3-3                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR eastern region of the state. Changnon indicates that these storms are most likely to occur in the late spring.
Storm data (Reference 2.3.1-12) from the period 1972 through 1976 indicate there were thirteen hail storms in Montgomery and the surrounding counties. An examination of severe weather reports in Reference 2.3.1-24 shows that in the period 1977 through mid-1982 the average number of hail storms has remained at about two storms per year. However, there is a considerable amount of variation from year to year. In 1977, there were six hail storms in the LGS region, while none were reported in 1981. The most severe of these occurred in Schuylkill County on July 29, 1974, where egg-sized hail was reported.
2.3.1.2.1.5 Ice Storms and Freezing Rain A survey by Bennett (Reference 2.3.1-13) indicates that ice or freezing rain may occur up to three to four times per year in the LGS site region. An analysis of local climatic data from the Philadelphia (Reference 2.3.1-1) and Allentown (Reference 2.3.1-2) NWS stations for a later five year (1977-1981) period shows that freezing rain occurs approximately two days per year in Philadelphia and five days per year at Allentown. Considering the more inland and northerly location of Allentown as compared to Philadelphia, this difference is not unexpected. The fact that the LGS site is also inland and about midway between the two NWS offices in terms of latitude makes the previous estimate of three to four storms per year reasonable. However, glaze accumulations greater than 0.25 inches would be expected only once per year. In the 5 year period from 1972 through 1976, eight cases of freezing rain were reported in the site area.
The NWS stations also make observations of another type of frozen precipitation known as ice pellets. However, unlike freezing rain, ice pellets are frozen before reaching the ground and do not form a glaze, but rather bounce on impact in a way similar to hailstones. The Philadelphia and Allentown NWS stations averaged 7 and 8 days per year respectively when ice pellets were observed during the 5 year (1977-1981) period. However, many of these were isolated observations in conjunction with other types of precipitation and could not categorically be called ice storms.
2.3.1.2.1.6 High Air Pollution Potential Episodes of limited atmospheric dispersion in the U.S. have been studied by Holzworth (Reference 2.3.1-14) in terms of urban and area source problems. Holzworth has estimated a total of 25 forecast days of high potential for air pollution in a 5 year period in the vicinity of the site. Using a pressure gradient technique to define stagnating conditions, Korshover (Reference 2.3.1-15) found 175 stagnation days in the vicinity of the site during the 40 year period from 1936 through 1975. This converts to 4.4 stagnation days per year, which agrees well with Holzworth's estimate.
Subsequent work by Korshover (Reference 2.3.1-25) has identified 31 additional stagnation days in the period 1976-1981. This also results in an average of 4.4 days per year, which is consistent with Korshover's earlier analysis.
2.3.1.2.2 Maximum Snow Load The weight on the ground of the 100 year mean recurrence interval snowpack at the LGS site is 25 psf. This value was obtained from estimates by the American National Standards Institute (Reference 2.3.1-16) which are based on the work of Thom (Reference 2.3.1-17). The extreme CHAPTER 02                                  2.3-4                      REV. 19, SEPTEMBER 2018
 
LGS UFSAR snow load may be estimated by adding the weight of the 48 hour probable maximum winter precipitation (assumed to occur as snow) to the weight of the 100 year snowpack. From the work of Riedel et al (Reference 2.3.1-18) the 48 hour probable maximum winter precipitation is estimated to have a water equivalent of 15.0 inches, which has a ground force of 78 psf.
Therefore, the extreme snow load on the ground at the LGS site is estimated to be 103 psf.
It should be emphasized that this estimate is unrealistically conservative and is presented only for structure design purposes. The 48 hour probable maximum precipitation is based upon theoretical considerations, not measured values. The assumption that the entire amount falls as snow leads to an estimate of 150 inches of snow in 48 hours, using the standard 10:1 conversion ratio. This is more than double the maximum annual snow accumulation at the Philadelphia, Reading, or Allentown NWS stations in the past 40 years of record. The snowstorm of March 19, 1958 through March 21, 1958, is generally regarded as the worst snowstorm on record for snow load accumulation in the LGS area. This was due to the large snow accumulations and the extremely high water content (20% by volume) of the snow (Reference 2.3.1-19). The maximum water content measured in the site area during this storm was 4.43 inches at Coatesville, Pennsylvania.
2.3.1.2.3 Meteorological Design Basis for the Ultimate Heat Sink The design basis meteorology for the UHS (spray pond) is discussed in Section 9.2.6.
2.3.1.2.4 Design Basis Tornado The design basis tornado parameters at the LGS site are presented in Table 2.3.1-7. These parameters were finalized prior to the issuance of Regulatory Guide 1.76 (Reference 2.3.1-20) and are not identical to those listed in the guide for Region I, however they are considered to be equivalently conservative. While the translational speed listed is lower than that of the guide, the rotational speed is higher, and the sum of the two is the same as that of the guide. The lower value of rate of pressure drop is conservative since it implies a longer duration of the pressure load, resulting in a larger dynamic load factor. A value for radius of maximum rotational speed is not specified since it is not required in designing structures to withstand the design basis tornado.
The rotational wind speed of 300 mph used in the analysis of plant design adequacy for tornado resistance (Section 3.3.2.1) was determined from Figure 2.3.1-1. For the LGS reactor enclosure, the design basis tornado (300 mph rotational wind speed plus 60 mph translational velocity) imposes an average wind loading of 220 mph, as determined from the area under the curve of the middle graph of Figure 2.3.1-2. Therefore, 300 mph is taken as a conservative wind speed applied uniformly over the entire structure surface, as shown in Figure 2.3.1-2. Because this rotational wind speed is higher than the value listed in Regulatory Guide 1.76, the analysis is conservative compared to an analysis using the Regulatory Guide 1.76 parameters.
2.3.1.2.5 Fastest Mile of Wind The 100 year recurrence interval fastest mile of wind to be expected at the LGS site is 82 mph.
This value is obtained from the work of Thom (Reference 2.3.1-21), and is valid 30 feet above the ground. Table 2.3.1-8 shows the vertical distribution of the fastest mile of wind, computed using the common power law, in the form:
b z
Uz  U  30                                                          (EQ. 2.3-1) 30 CHAPTER 02                                    2.3-5                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR where:
Uz      =      wind speed at height z U30    =      wind speed at 30 feet b      =      stability dependent exponent Thom indicates that a value for b of 1/7 is appropriate for high wind speeds in rolling rural terrain such as that at LGS.
The design basis wind velocity and associated parameters are discussed in Section 3.3.1.1.
2.3.2 LOCAL METEOROLOGY Local meteorological data have been collected at the LGS site since January 1972. The analysis of this local meteorology has been based upon five years of site data collected at Weather Station No. 1, from January, 1972 through December, 1976. This is the primary onsite meteorological installation, and is located on high ground (base el 250' MSL) approximately 3000 feet NNW of the reactor-turbine enclosure.
A second meteorological tower, installed at Weather Station No. 2, is located in the Schuylkill River Valley (base el 121' MSL) approximately 3000 feet SSW of Tower 1, to allow comparison of the meteorological conditions in the shallow river valley with those on the adjacent hill. One year of data from April, 1972 through March, 1973 has been selected for this comparison, as it represents the best 1 year cycle of concurrent data recovery between Weather Stations No. 1 and 2.
In addition, two years of data were obtained between January, 1975 and December, 1976 from a light wind sensor on the Satellite Meteorological Tower. This tower is located on the east side of the valley floor in a position to detect any downslope or drainage flow. The exact locations of all weather stations and instruments used in the analyses are shown in Figures 2.3.3-1 and 2.3.3-2.
Data recovery from all instruments for each of the time periods summarized in the analyses is shown in Table 2.3.2-1.
2.3.2.1        Normal and Extreme Values of The Meteorological Parameters (MES was one of the meteorological consultants for licensee during the preoperational phase, 1970-1983. The reference to MES as the meteorological consultant for the licensee is considered historical information.)
2.3.2.1.1 Wind Direction and Speed The wind measurements at LGS are unique in terms of both the locations and elevations of the sensors. The middle-level and upper-level sensors on Tower 2, at Weather Station No. 2, are located at the same elevations above mean sea level as the lower and middle level sensors on Tower 1, at Weather Station No. 1, though their elevations above grade differ. As can be seen in Figure 2.3.3-2, the 159 foot level on Tower 2 and the 30 foot level on Tower 1 are both located el 280' MSL. For the purposes of this analysis, this MSL height has been designated as "level one".
The 304 foot level on Tower 2 and the 175 foot level on Tower 1 are both located el 425' MSL.
This elevation has been designated as "level two" in the subsequent analysis.
CHAPTER 02                                  2.3-6                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR Distributions of wind speed and direction by atmospheric stability class are listed in Reference 2.3.2-23. Wind directions have been grouped into 22.5 sectors. Atmospheric stability has been classified using both the Brookhaven turbulence classes of Singer and Smith (Reference 2.3.2-1) and the Pasquill stability classes as defined by the lapse rate criteria in Regulatory Guide 1.23 (Reference 2.3.2-2). Joint frequency distributions of wind speed and direction by atmospheric stability class are provided in Reference 2.3.2-23. Two copies of this report were transmitted to the NRC by letter from E.J. Bradley (PECo) to D.G. Eisenhut (NRC) dated July 27, 1981. An hour-by-hour listing of hourly averaged parameters on magnetic tape was transmitted to the NRC by letter from J.S. Kemper (PECo) to D.G. Eisenhut (NRC), dated August 7, 1981.
2.3.2.1.1.1 Five Year Climatology of Wind Direction and Speed Annual wind direction distributions from all levels at Tower 1 are summarized for the 5 year period, January 1972 to December 1976 in Table 2.3.2-2. The distribution is essentially the same at all levels, with the WNW and NW sectors being predominant. Wind directions are more or less evenly distributed among the remaining sectors. Seasonal variations at Tower 1 are small, but a slight increase in the frequency of south winds is evident at all levels during the summer months.
Monthly average wind speeds from Tower 1 are summarized in Table 2.3.2-3. The highest monthly average wind speeds occur in early spring, while lower speeds predominate during the summer months. The higher wind speeds measured at Tower 1 usually occur with wind directions from the predominant sectors. The maximum hourly average wind speed measured during the 5 year period was 50 mph on December 2, 1974. This was the result of a low pressure system moving up the Atlantic coast.
MES is the meteorological consultant for the licensee. MES chart reading procedures state that wind speed shall be read as an hourly average. In the case of calm winds, this would be an hourly average of 0 mph.
During the 5 year period (1972-1976) of record, chart reading procedures for wind directions during calm hours changed. Calm hours during the period 1972-1975 were assigned a direction of 777, indicating the trace was uninterpretable. However, examination of the charts from this period indicated that in most cases a direction could be obtained, and that despite the limitations of such a procedure, it was preferable to an arbitrary assignment of direction for a given calm hour. Accordingly, the chart reading procedures were changed, and beginning January 1, 1976, a direction was read for each calm hour.
When calm hours were entered into the joint frequency distributions, those calm hours with uninterpretable directions were distributed uniformly among the directional sectors. Those calm hours with valid directions were put into the sector indicated by that direction. All calm hours were arbitrarily classified as stable and were entered into Class F in the lapse rate distributions.
Tables 2.3.2-27 through 2.3.2-33 contain distributions of calm hours from Tower 1, Tower 2, and the Satellite Tower. In each case the distribution of calm hours which were included in the Class F, 0-3 mph category of each wind rose are compared with the distribution of calms according to the Regulatory Guide 1.111 technique.
Because calm hours were arbitrarily placed in Class F in the earlier wind roses, it was possible for a calm hour with a missing delta temperature to be entered into the distribution. For this reason, the total number of calms in the Regulatory Guide 1.111 type distribution does not match the earlier totals.
CHAPTER 02                                  2.3-7                      REV. 19, SEPTEMBER 2018
 
LGS UFSAR Regulatory Guide 1.111 states that calms should be defined as hourly average wind speeds below the starting speed of the vane or anemometer. The starting threshold of the Bendix six-bladed Aerovane is 1.8 mph. However, it is a well-known fact that once a propeller is set in motion, it can operate at speeds below the starting threshold. Unpublished tests conducted by Brookhaven National Laboratory at the New York University wind tunnel during the 1950s showed that the stopping threshold of the six-bladed Aerovane was roughly 1 ft/sec (0.7 mph) lower than the starting threshold. This indicates that hourly averages of 1 mph are possible.
In addition, MES chart readers are trained to distinguish a calm wind trace from a 1 mph trace based on an analysis of both the speed and direction traces. Figure 2.3.2-6 shows typical light wind speed traces, and an example of the differentiation between calm and 1 mph wind speeds.
The hours ending at 6 am and 7 am are calm wind traces, evidenced not only by a 0 mph wind speed, but also by a "boxy" directional trace. However, during the hour ending at 8 am and continuing into the following hour, both the speed and direction traces have become active, with speeds fluctuating between 0 mph and 2 mph. Both of these hours would be read as 1 mph.
The primary reason that calm hours were included in a 0-3 mph wind rose grouping rather than a separate class was to provide compatibility with MES dispersion models. However, it should be noted that Regulatory Guide 1.111 does not specifically say that calms should be assigned "as a separate wind speed class."
2.3.2.1.1.2 The Effect of Terrain on Wind Direction and Wind Speed In order to assess the influence of the Schuylkill River Valley on the low level wind flow, a 1 year comparison was made between wind measurements at Tower 1, located above the river valley, and Tower 2, located on the valley floor. Wind data from the Satellite Tower were also included in this comparison when appropriate. Though the satellite wind data are from a time period not concurrent with the other towers, these data do provide further insight into the valley circulation and are therefore included.
Annual wind direction distributions from Towers 1 and 2 for the period April, 1972 through March, 1973 are shown in Tables 2.3.2-4 and 2.3.2-5. The 1 year wind direction distribution at Tower 1 is very similar to the 5 year distribution previously presented in Table 2.3.2-2. The wind direction distribution at Tower 2 is somewhat more complex, with the distribution at the 30 foot level showing a preference for those directional sectors parallel to the river valley. Table 2.3.2-6 compares the wind direction distributions from Tower 1 and 2 along the equivalent mean sea level heights, "level one" and "level two." The directional distributions on each of these levels are nearly identical, indicating that winds at the middle and upper levels on Tower 2 are not affected by the underlying valley terrain.
A comparison of the wind direction distributions from the 30 foot sensors on Towers 1 and 2 for the 1 year period is shown in Table 2.3.2-7. The 2 year satellite tower wind distribution is also included for comparison. An increase in the wind directions centered about the NNW and SSE sectors, the orientation of the Schuylkill River Valley, is evident when the 30 foot directional distributions from Tower 2 and the Satellite Tower are compared with the low level directional distribution at Tower 1, situated above the river valley. This effect is most prevalent during low wind speed and stable atmospheric conditions during the summer months.
CHAPTER 02                                  2.3-8                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR A comparison of monthly average wind speeds from Tower 1, Tower 2, and the satellite tower is shown in Table 2.3.2-8. Average speeds at Tower 1 are very similar to the 5 year wind speed record summarized in Table 2.3.2-3. Higher average winds occur in the spring, and lower wind speeds predominate in the summer months. A comparison of monthly average wind speeds along level one and level two shows that small differences exist between towers along each level, but they are usually less than 1 mph. It should be noted that there is a preference for lower wind speeds at the low level sensors located in the river valley. Both Tower 2's 30 foot and the Satellite Tower's 30 foot wind speeds are significantly lower than the 30 foot wind speeds measured above the valley at Tower 1. This is reflected in the comparison of monthly average wind speeds shown in Table 2.3.2-8, as well as in the percentage of calm hours. The Tower 2's 30 foot sensor reported 21.5% calm, comparing well with the more sensitive Satellite Tower anemometer which reported 17.5% calm. In contrast the 30 foot sensor on Tower 1 above the river valley reported only 8.1% calm.
This comparison of low level wind speeds, along with the previously discussed comparison of low level wind directions, clearly indicates that the wind measurements obtained on the satellite tower are similar to those obtained at the 30 foot level on Tower 2, and that the satellite tower is representative of the low level wind flow in the Schuylkill River Valley.
2.3.2.1.1.3 Wind Direction Persistence Wind direction persistence at the LGS site has been analyzed using a technique which determines the number of consecutive hours the wind direction remains in the same 22.5 sector.
This analysis is performed with a sliding technique, using each hour as the starting point in determining persistence. The results, which appear in Reference 2.3.2-23, were derived by tabulating the number of times the wind direction, at each level, remains in the same sector for periods of 6, 12, 24, 36, and 48 hours.
The 5 year annual summary of Tower 1 wind direction persistence indicates that the highest frequency of persistent winds occurs in the predominate (WNW) sector. Examination of the monthly distributions indicates that the most persistent winds occurred during the months of June and August.
Wind direction persistence during the 1 year period of concurrent data from Towers 1 and 2 is also summarized in Reference 2.3.2-23. Comparison of the annual distributions between the two towers shows that wind directions were more persistent at Tower 2 than at Tower 1. The 30 foot distribution at Tower 2 shows the most persistent winds in the NW and NNW sectors, which parallel the river valley.
The monthly summaries for this 1 year period indicate that the most persistent winds occurred during January, not during the summer as one might expect.                  Examination of hourly meteorological data and synoptic charts indicates that these winds were caused by a strong gradient flow from a slow-moving low pressure system rather than any micrometeorological phenomenon.
2.3.2.1.1.4 Climatological Representativeness of the LGS Wind Data In order to assess the representativeness of the LGS wind data, the 5 year Tower 1, 270 foot wind distribution has been compared with distributions from the Philadelphia and Allentown NWS stations, and from the PBAPS Meteorological Tower. While the Philadelphia and Allentown data CHAPTER 02                                    2.3-9                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR are not derived from the exact same time as the LGS data, they are the most concurrent summaries available from the National Climatic Center.
The distance and directional orientations of these stations from the LGS site are listed below.
Station                  Distance and Orientation from LGS Philadelphia                  31 miles SE Allentown                      31 miles N PBAPS                          48 miles SW The annual wind direction distributions from Philadelphia (Reference 2.3.2-3), Allentown (Reference 2.3.2-4), and PBAPS are compared with LGS in Figures 2.3.2-1 through 2.3.2-3.
These comparisons indicate that both Philadelphia and Allentown have a larger frequency of winds from the SW direction than LGS. The predominant winds at Philadelphia and Allentown are from the SW and WSW respectively, as compared to a predominant WNW wind at LGS. These distributions are similar in all nonpredominant sectors.
The comparison between the LGS 270 foot and PBAPS 320 foot distributions shows a much closer agreement. This is to be expected since PBAPS is the only station of those compared with a sufficient sensor elevation to be free of local effects.
Due to the large discrepancy in sensor elevation and surface roughness between LGS and the NWS stations, PBAPS is the only site with which meaningful wind speed comparisons can be made. A comparison of these two locations in Table 2.3.2-9 shows that the wind speed frequency distributions are almost identical. The LGS 270 foot sensor has a mean wind speed of 10.4 mph, compared to 10.6 mph at the PBAPS 320 foot sensor.
An evaluation of the climatological representativeness of the time period in which the site data was obtained may be made from a comparison of the concurrent short-term data from the NWS stations with their long-term records. Ten year wind directional distributions from Philadelphia (Reference 2.3.2-5) and Allentown (Reference 2.3.2-6) are compared with the short-term records from each station in Figures 2.3.2-4 and 2.3.2-5. The long-term and short-term records at Allentown are essentially identical. However, some differences are evident in the long-term and short-term Philadelphia comparison.
Several changes in both sensor elevation and location were made at Philadelphia between 1951 and 1960, which could account for some of the differences in the directional distributions.
2.3.2.1.2 Atmospheric Stability 2.3.2.1.2.1 Stability Class Breakdowns Monthly and annual summaries of atmospheric stability have been incorporated into the wind roses previously discussed in Section 2.3.2.1.1. Annual breakdowns of atmospheric stability classes for the 5 year record at Tower 1, and the 1 year comparison of Towers 1 and 2 are summarized in Tables 2.3.2-12 and 2.3.2-13.
CHAPTER 02                                  2.3-10                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR The Brookhaven turbulence classes have been determined using the method of Singer and Smith (Reference 2.3.2-1), which is based upon the short-term fluctuations of the Aerovane wind direction trace. The uppermost Aerovane on each tower, the 270 foot sensor on Tower 1, and the 304 foot sensor on Tower 2 were used to determine the turbulence class. The specific criteria used to define each turbulence class are given in Table 2.3.2-14. The Pasquill stability classes were determined using the temperature lapse rate criteria of Regulatory Guide 1.23 (Reference 2.3.2-2). Lapse rates were measured over the full height interval and between the middle and low levels of each tower.
In the 5 year record at Tower 1, there are distinct differences between the two stability classification systems. The Brookhaven system classifies over 55% of the hours as unstable, compared to approximately 12% unstable, as determined by delta temperature measurements over the full tower height. The lapse rate system predicts approximately 27% more neutral hours and 19% more stable hours than the Brookhaven system. When lapse rates over the lower portion of Tower 1 are used, the number of unstable hours (according to the NRC system) increases slightly, primarily at the expense of neutral hours. The frequency of stable hours as determined by lapse rate criteria remains about the same, regardless of which height interval on the tower is used.
When the stability class breakdowns from Towers 1 and 2 are compared for the April, 1972 through March, 1973 period, the same basic differences between the Brookhaven and NRC systems are evident. There are also significant differences between the two towers within each classification system.
When the Brookhaven stability breakdowns from the two towers are compared in Table 2.3.2-12, Tower 2 reports approximately 10% more unstable hours. This can be attributed primarily to the fact that the 304 foot Aerovane on Tower 2 is located 95 feet lower in reference to surrounding terrain than the 270 foot sensor on Tower 1, and is subject to increased turbulence due to surface friction.
A difference between Towers 1 and 2 is also seen in Table 2.3.2-13 when the Pasquill stability classes are contrasted. Regardless of which height interval is considered, Tower 2 categorizes over 65% of the hours as stable. This is an increase of approximately 15% as compared to Tower 1 for the same time period.
2.3.2.1.2.2 Temperature Inversion Persistence Monthly and annual summaries of temperature inversion persistence at the LGS site are provided in Reference 2.3.2-23. A temperature lapse rate of greater than 0C/100m has been used to define inversion conditions. Strong inversions with a lapse rate greater than 1.5C/100m (Pasquill classes F and G) have also been tabulated.
The most persistent inversion during the five years of measurements at Tower 1 occurred from 2100 August 24, 1974 through 0800 August 26, 1974. This inversion lasted for 36 consecutive hours, and was associated with a large high pressure system which descended from Canada.
Winds at the site during this time were variable coming from the SW through NNE direction. The second most persistent inversion lasted 29 hours, and was associated with a Canadian high pressure system which moved through the site area on July 16, 1974 and July 17, 1974.
CHAPTER 02                                2.3-11                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR The most persistent inversions found during the 5 year record usually occurred between the months of August and December.
A comparison of inversion persistence at Towers 1 and 2 for the period April, 1972 through March, 1973 shows that the inversions in the river valley at Tower 2 are more persistent. This comparison also shows that the more persistent inversions occur in the latter half of the year. In 1972 they were confined primarily to the period August through October.
2.3.2.1.2.3 Monthly Mixing Heights No measurements of mixing height have been made at the LGS site. The nearest NWS upper air station is at Kennedy Airport in New York City. The use of Kennedy data at LGS would be unrealistic. Therefore, in the absence of measurements, the mean seasonal morning and afternoon mixing heights reported by Holzworth (Reference 2.3.2-7) are shown in Table 2.3.2-15.
These data have been extracted from the plots in the Holzworth report, and are the best approximations available for mixing heights at LGS.
2.3.2.1.3 Temperature Ambient dry-bulb temperatures at the LGS site have been summarized in Table 2.3.2-16 and in Reference 2.3.2-23.
The monthly means and extremes of temperature recorded at Weather Station No. 1 are shown in Table 2.3.2-16. The maximum hourly temperature measured at the site was 96.2F on August 28, 1973. The minimum observed temperature was 0.7F on January 16, 1972.
2.3.2.1.3.1 Climatological Representativeness of LGS Temperature Data Monthly mean temperatures from LGS are compared with the concurrent and long-term records from the Philadelphia and Allentown NWS stations in Tables 2.3.2-17 and 2.3.2-18. Both comparisons indicate that 1972 through 1976 was a normal period in terms of temperature. Both NWS stations show little deviation from the long-term record. Temperatures at Allentown are usually slightly cooler than those at Philadelphia, while temperatures at LGS usually fall in between the values from the two NWS stations.
2.3.2.1.4 Precipitation Precipitation from the LGS site has been summarized in Table 2.3.2-19 and in Reference 2.3.2-23.
As Table 2.3.2-19 indicates, the monthly variation of precipitation at the site is small. The annual mean precipitation measured during the 5 years of record was 59.57 inches. The maximum hourly precipitation (2.25 inches) was recorded during hurricane Agnes in June, 1972. The maximum monthly total (14.23 inches) was in November, 1972, as a result of several moderate rainfalls.
Wind roses, by precipitation rate class, indicate a predominately east to northeasterly flow at the site during precipitation hours. This does not vary seasonally or by precipitation rate class.
Precipitation rate distributions and precipitation intensity versus duration summaries in Reference 2.3.2-23 indicate that the majority of the precipitation at the site has an intensity of 0.05 in/hr.
CHAPTER 02                                  2.3-12                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR However, hourly totals exceeding 1 inch were recorded nine times during the 5 year record; and continuous rainfalls of >0.10 in/hr have been observed for up to 12 hours.
2.3.2.1.4.1 Climatological Representativeness of LGS Precipitation Data Monthly average precipitation values from LGS are compared with the concurrent and long-term records from the Philadelphia and Allentown NWS stations in Tables 2.3.2-20 and 2.3.2-21.
These comparisons indicate that even though the 1972 through 1976 period was characterized by abnormally high precipitation amounts, significantly higher precipitation totals were recorded at the site when compared to the NWS stations.
2.3.2.1.5 Humidity Relative and absolute humidity, dew point temperature, and wet-bulb temperature from Weather Station No. 1 are summarized in Reference 2.3.2-23.
The annual frequency distribution of relative humidity shown in Reference 2.3.2-23 is skewed toward the higher humidities, with the 90% through 100% grouping containing approximately 30%
of the total hours. A seasonal trend is evident in the monthly frequency distributions of relative humidity shown in Reference 2.3.2-23, as conditions of high relative humidity (90% through 100%)
are more common in the summer and fall months.
The annual frequency distribution of absolute humidity from Weather Station No. 1 is shown in Reference 2.3.2-23. Absolute humidity is expressed in grams of water vapor per cubic meter of air. The maximum frequency is in the 3.01-4.00 g/m3 category, but the values are quite evenly distributed. There is also a large seasonal variation in absolute humidity as Reference 2.3.2-23 shows. This is expected as the ability of dry air to hold water vapor is temperature-dependent.
The annual frequency distribution of dew point temperatures from the site is shown in Reference 2.3.2-23. The largest frequency of hours occurs in the 60.0F to 64.9F category, but the distribution is quite even between 20F and 65F. The seasonal trend in dew point temperatures is self-evident.
Cumulative frequency distributions of wet-bulb temperature from the site are given for the annual and monthly cases in Reference 2.3.2-23. Due to the unusually long period of record at the site (5 years), the cumulative frequency distributions of wet-bulb temperature have been computed using onsite data rather than the Philadelphia or Allentown NWS data.
2.3.2.1.5.1 Climatological Representativeness of Humidity Data Because of its sensitivity to changes in temperature and elevation, relative humidity data from site to site are difficult to compare. Some idea of the climatological representativeness of the LGS data can be seen in Table 2.3.2-22, where mean morning (7 am) and afternoon (1 pm) values of relative humidity from Philadelphia, Allentown, and LGS are compared. As the table shows, in most months the mean values from the three sites are within a few percent of each other. LGS and Allentown are the most similar, with Philadelphia usually a few percent lower, especially in the morning.
Another indication of the climatological representativeness of the LGS relative humidity data can be seen from the summaries of daily average relative humidity given in Section 9.2.6.
CHAPTER 02                                2.3-13                      REV. 19, SEPTEMBER 2018
 
LGS UFSAR In this analysis, two and one-half years (January 1972 through June 1974) of LGS daily average relative humidity data were compared with the concurrent and long-term (34 years) records from Philadelphia. These daily average relative humidity data are summarized in the frequency distribution in Table 2.3.2-23. This table shows that LGS has a higher frequency of days in the 90% through 100% range, and that the concurrent data are representative of long-term conditions at the site. A comparison of frequency distributions of hourly relative humidity values between LGS and Philadelphia is shown in Table 2.3.2-24. This comparison also indicates that LGS has a larger frequency of high relative humidity values.
2.3.2.1.6 Fog No measurements of natural fog or visibility have been made at the site. However, an approximation of the fog and visibility characteristics of the site can be obtained from the Philadelphia and Allentown National Weather Service data. Table 2.3.2-25 compares the mean number of days with heavy fog at these two stations. Heavy fog is defined as fog causing visibility to decrease to 1/4 mile or less.
This comparison shows surprisingly little difference between the two sites, with Philadelphia averaging 25 days of heavy fog per year, compared to 29 for Allentown. It is reasonable to assume that a similar frequency of heavy fog would be found at LGS.
2.3.2.2 Potential Influence of the Plant and Its Facilities on Local Meteorology A recent EPRI study by Laurmann (Reference 2.3.2-8) has concluded that although quantitative predictions of the meteorological effects resulting from power plant operation cannot be made, evidence and theory indicate that plants of conventional size (up to 4000 MWe) rarely produce noticeable weather changes. The minor effects on the local meteorology which might occur may be divided into two distinct categories: those attributable to the turbulent wakes associated with the plant structures, and those attributable to the waste heat dissipation system.
2.3.2.2.1 Turbulent Wake Effects From Plant Structures As part of the technical support for the tall stack regulations in the 1977 Clean Air Act Amendments, the EPA has published a comprehensive review and literature search (Reference 2.3.2-9) on the aerodynamic effects caused by building structures. The consensus of this review is that a structure produces a cavity of increased turbulence on its leeward side, 1.5 building heights deep and persist for approximately five building heights downwind. Based upon these criteria, it is estimated that the turbine-reactor enclosure complex produces a turbulent wake on its leeward side, extending 300 feet vertically and persisting 1000 feet downwind.
Halitsky (Reference 2.3.2-10) has shown through wind tunnel tests that the turbulent effects produced by rounded structures are not as large or severe as those produced by sharp-edged buildings. This is consistent with the results of a combined wind tunnel/field measurement study conducted by Smith and Mirabella (Reference 2.3.2-11) on the cooling tower induced wake at the SMUD Rancho Seco Plant. Their results indicate that the cooling towers produce a turbulent wake only when wind speeds exceed 2 m/sec. They estimate that the wake would be 1.5 structure heights deep, and would persist for 2-3 tower diameters downwind. According to these criteria, the maximum wake produced by two LGS cooling towers would be a turbulent region extending 750 feet vertically and persisting 3400 feet downwind.
2.3.2.2.1.1 Effect of the Turbulent Wake on the Gaseous Reactor Effluent CHAPTER 02                                    2.3-14                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR The primary effect of the structurally induced wakes on the reactor effluent is to bring the effluent plume to the ground more quickly, and to increase the dispersion rate. These factors are accounted for in the diffusion calculations presented in Sections 2.3.4 and 2.3.5.
2.3.2.2.1.2 Effect of the Turbulent Wake on the Meteorological Measurements at Tower 1 The turbulent wake produced by the turbine-reactor enclosure complex is not large enough to affect Tower 1. However, Tower 1 is only 2200 feet from the cooling towers, and is in their turbulent wake during a small percentage of the time. The wake is not expected to have any effect upon mean wind directions or speeds at Tower 1. However, when wind directions are between 135 and 165, turbulence class readings may be shifted toward a more unstable classification. The 5 year turbulence class wind rose provided in Reference 2.3.2-23 shows that wind speeds >2 m/sec with directions between 135 and 165 occur during 5.3% of the time.
However, over half (3.0%) of these hours are already classified as unstable due to natural turbulence. (Note: the 5 year data set represents a period prior to any cooling tower construction).
Thus only 2.3% of the total hours might be changed from a stable or neutral to a more unstable classification.
2.3.2.2.2 Potential Effects of the Waste Heat Dissipation System on the Local Meteorology 2.3.2.2.2.1 Natural Draft Cooling Towers During the early 1970s a large number of publications appeared in open literature speculating upon the atmospheric effects attributable to natural draft cooling towers. As Carson (Reference 2.3.2-12) has pointed out, all too often these studies have predicted atmospheric effects that do not in fact occur. Recently, data from field studies have become available. These studies indicate that while the potential for some minor atmospheric effects resulting from cooling tower operation does exist, the magnitude of these effects is much less than that indicated by earlier theoretical evaluations.
2.3.2.2.2.1.1 Ambient Temperature Operation of the cooling towers has no effect on the ambient temperatures in the LGS area. Field studies reported by Kramer et al (Reference 2.3.2-13) and Brennan et al (Reference 2.3.2-14) have shown that the cooling tower plumes rise to heights well above the tower tops. Therefore, the cooling towers should have no measurable effects upon the mean surface temperature.
2.3.2.2.2.1.2 Relative Humidity Observational studies have shown that no changes in the ground level relative humidity should be expected as a result of natural draft cooling tower operation. In a study of a 2000 MW, 8 tower complex in England, Spurr (Reference 2.3.2-15) found no differences in the ground level relative humidity upwind or downwind of the plant.
2.3.2.2.2.1.3 Fog The cooling tower induced environmental effect most often mentioned is ground level fogging.
Observations at natural draft cooling tower installations both in the U.S. (Reference 2.3.2-13) and in Europe (Reference 2.3.2-15) indicate that the visible plume rarely, if ever, intersects the ground surface causing fog. Hosler (Reference 2.3.2-16) reports one observation of the visible cooling tower plume intersecting the ground at the Keystone plant in western Pennsylvania. However, the cooling towers at Keystone are much shorter than those at LGS, making them more susceptible CHAPTER 02                                  2.3-15                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR to downwash and subsequent fog problems. The added tower height at LGS, along with a larger exit diameter, should ensure a sufficient rise to prevent downwashing.
2.3.2.2.2.1.4 Solar Radiation The cooling towers do have the potential to cause slight decreases in the amount of solar radiation received at the site due to plume shadowing. Seeman (Reference 2.3.2-17) has conducted a study at a 1500 MW fossil fuel plant in Europe, and found that a 35% reduction in total radiation (total radiation = solar radiation + whole sky radiation) is possible at the point of maximum shadowing by a visible plume on a clear day. On a cloudy day, the maximum shadowing effect is a 20% reduction in total radiation for short periods of time. Due to the variability in wind direction, the plume moves horizontally and does not remain over any one point for long periods of time, thus giving the same effect as a passing small cumulus cloud. However, Ryznar (Reference 2.3.2-18) has measured increases in solar radiation due to the reflection from the side of the visible plume.
An empirical method for providing climatological estimates of visible plume rise and persistence has been described by Brennen et al (Reference 2.3.2-14). This technique uses one year of Philadelphia International Airport upper air soundings as input and shows that the majority of the long plumes conducive to shadowing occur on days when natural clouds are already present, and (during the winter) when agricultural considerations are minor.
The updraft of heat and water vapor in a natural draft cooling tower can, under the proper conditions, produces cumulus clouds or augments already existing cloud decks.                  This phenomenon has been documented by both Smith (Reference 2.3.2-19) and Spurr (Reference 2.3.2-15); but it can be expected to occur only when conditions favor natural cloud formation.
2.3.2.2.2.1.5 Precipitation Modification Observations of precipitation falling from natural draft plumes are very limited. Kramer et al (Reference 2.3.2-20) have documented one observation of light rain falling from a natural draft plume, and several observations of light snowfall. Though it may be possible for a cooling tower to modify the precipitation pattern immediately downwind of the tower, it would not significantly alter the total precipitation in the region, as the water vapor emissions from the towers are small compared to natural fluxes (Reference 2.3.2-12).
During the winter of 1975-1976, Kramer et al (Reference 2.3.2-21) observed light snow from several different cooling towers on ten separate days. This effect was found only during stable atmospheric conditions, with temperatures below 10F at the height of the plume centerline. In the one year summary of Philadelphia upper air soundings on 22 days, for short periods, the temperature criteria necessary for snowfall were met. This should not be interpreted as a prediction of snowfall frequency. There are several other variables such as atmospheric stability, blowdown water chemistry, drift eliminator condition, and condensation nuclei availability which play a role in snowfall formation. The height to which the plume rises is such that in most cases the snow crystals would sublimate before reaching the ground. There is also a strong likelihood that downslope motion to the east would tend to prevent any depth of cloud development with westerly flow.
Additional precipitation may also come from the cooling tower in the form of drift droplets, though the amounts are very small. Drift deposition at LGS has been evaluated using the model of CHAPTER 02                                    2.3-16                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR Hosler, Pena, and Pena (Reference 2.3.2-22). This model indicates that most of the drift deposited from the towers will be in the form of liquid drops, with the amount deposited decreasing with distance from the towers. The annual precipitation increase has been evaluated at the site boundary in each sector. The maximum annual increase in precipitation was 0.253 inches at the ESE site boundary. This is less than 1% of the annual total of natural precipitation reported in Section 2.3.2.1.
2.3.2.2.2.1.6 Atmospheric Stability In addition to the wake-induced turbulence discussed in Section 2.3.2.2.1, there will also be increased turbulence in the visible cooling tower plume itself directly downwind of an evaporating plume. If the gaseous reactor effluent were entrained into the cooling tower plume, the only effect would be increased rise and dispersion of the effluent, and therefore lower ground level concentrations.
2.3.2.2.2.2 Emergency Spray Pond The UHS at LGS is a spray pond. During routine operations this pond will not be heated, and water temperatures will fluctuate in response to ambient meteorological conditions in the same manner as any natural pond of the same size. This should produce no adverse impact to the local meteorology.
2.3.2.3 Topography The topography of the LGS site is described in Section 2.1.1. The topography of the region surrounding the site, out to a distance of 50 miles, is summarized in Table 2.3.2-26 which lists the offsite terrain elevation (in feet above MSL) versus distance from a point midway between the LGS vents. The value listed is the maximum elevation on or outside the site boundary which occurs within each of the sixteen 22.5 sectors at the distance listed.
These terrain elevations were obtained from USGS maps.
2.3.3 ONSITE METEOROLOGICAL MEASUREMENTS PROGRAM The onsite meteorological measurements program at the LGS site began on December 10, 1970 with preliminary wind measurements taken from a six-bladed Aerovane located 30 feet above grade on a temporary pole. Wind speed and direction data were continuously collected at the temporary pole until December 28, 1971 when it was removed from service. Prior to the sensor removal, the onsite meteorological measurements program was expanded on December 10, 1971 with the installation of Weather Station No. 1 near the temporary pole location. The main tower (Tower 1) extending about 281 feet above grade (el 250' MSL) was erected on high ground, NW of the reactor locations. Wind speed, wind direction, and temperature from three elevations are continuously recorded. Instrument elevations are listed in Table 2.3.3-1. Additional onsite measurements of horizontal and vertical wind direction fluctuations, relative humidity, barometric pressure, and precipitation complete the observation at Weather Station No. 1.
In order to evaluate the effects of the shallow Schuylkill River Valley, the onsite meteorological measurements program was again expanded on December 28, 1971 with the installation of a second weather station. Weather Station No. 2 is located across the Schuylkill River from the main tower and is onsite in an open field having a base elevation close to that of the valley floor.
CHAPTER 02                                  2.3-17                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR Tower 2 at this location, extends 314 feet above grade (el 121' MSL). Wind speed, wind direction, and temperature from three elevations are continuously recorded. Tower 2 was established to provide supplementary site data on the temperature profile in the valley during the preoperational period. This tower was instrumented at MSL elevations coincident with those of Tower 1 in order to compare meteorological conditions over the valley with those over the adjacent low hills. The locations and relationships between the various wind and temperature instruments are shown in Figures 2.3.3-1 and 2.3.3-2.
The overlapping arrangement of the facilities, which allows a comparison of wind and temperature measurements from each tower at two corresponding levels, produces a complete picture of wind flow and lapse rates from the valley bottom to a point about 270 feet above the higher terrain.
To determine the typical flow over the river and adjacent low terrain, a satellite to Weather Station No. 1 was established and data collection began on November 20, 1974. The sensors are located 32 feet above grade (el 106' MSL) and are capable of continuously measuring wind speed and wind direction.
In 1983, the complete system was upgraded to comply with the criteria of Regulatory Guide 1.23 (Rev 1) and NUREG-0654. Data from each of the meteorological locations is transmitted to the control room where it is logged by a data-logger. The data is also transmitted to the TSC as input to the RMMS (Section 11.5.6).
2.3.3.1 Preoperational Meteorological Measurement System (1970-1983)
This meteorological system was used to obtain measurements as described in Table 2.3.3-1.
2.3.3.1.1 Measurements and Instrumentation 2.3.3.1.1.1 Siting As shown in Figures 2.3.3-1 and 2.3.3-2, the main meteorological weather tower (Tower 1) located at Weather Station No. 1 is a 280 foot tower situated approximately 3000 feet NW of the LGS structure vents. Tower 1 is also located approximately 2000 feet NNW of the center of the Unit 1 cooling tower location and approximately 2400 feet NW of the center of the Unit 2 cooling tower location. Grade elevation at Weather Station No. 1 is el 250' MSL.
The wind instruments on Tower 1 are mounted on retractable booms extending upwind 10'-0" west of the tower. Each face of the triangular tower is 3'-6" wide. The temperature sensors are located in aspirators and are 2'-0" inches from the tower. Weather Station No. 1 has a base surface made of yardstone. The relative humidity sensor is located in a standard U.S. Weather Bureau-type shelter 5 feet above grade and the surface beneath the instrument shelter is wood.
Meteorological weather tower (Tower 2) located at Weather Station No. 2 is a 310 foot tower situated approximately 2100 feet west of the LGS structure vents. Tower 2 is also located approximately 1950 feet WSW of the center of the Unit 1 cooling tower location, and approximately 2600 feet WSW of the center of the Unit 2 cooling tower location.
The wind instruments on Tower 2 are mounted on retractable booms extending upwind 10'-0" WNW of the tower. Each face of the triangular tower is 3'-6" inches wide. The temperature CHAPTER 02                                2.3-18                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR sensors are located in aspirators and are 2'-0" from the tower. Tower 2 has a base surface made of yardstone.
2.3.3.1.1.2 Instrumentation and Performance Specifications The instrumentation systems installed on the LGS site were designed to meet the NRC requirements at the time of installation and they generally meet those of Regulatory Guide 1.23.
Any deviations from Regulatory Guide 1.23 are described in the following subsections.
The manufacturers' specifications and accuracies for the sensors and associated equipment are given in Table 2.3.3-2. Deviation from paragraph C4 of Regulatory Guide 1.23 regarding the system accuracies is discussed and justified in the following sections on each type of measurement.
2.3.3.1.1.3 Wind speed The Bendix Aerovane Wind Transmitter, Model 120, measures wind speed by means of a six-bladed rotor coupled to the armature of a tachometer magneto located in the nose of the instrument.
The output voltage is directly proportional to the impeller rotation speed and, therefore, is a function of wind speed. This Aerovane system is used on Towers 1 and 2 at LGS.
As shown on Table 2.3.3-2, some of the instruments do not meet the required starting speeds.
This presents no problem because real calm conditions with absolutely no air motion are extremely rare at most sites. Measured calms can be far more frequent, depending on the threshold speed of the instrument used.
At LGS, the number of calm hours recorded on the six-bladed Aerovane is shown in Table 2.3.3-3. All levels of both Towers 1 and 2 are instrumented with these six-bladed sensors. The 175 foot instrument at Tower 1 is at the elevation representative of vent releases. With only 1.7%
calm hours, a more sensitive instrument could not produce any significant improvement. The 30 foot level of Tower 2 does have a high percentage of calm hours due to its valley location. With this in mind, light wind instruments meeting the recommendations of Regulatory Guide 1.23 were installed in the valley on the satellite tower. As shown in Table 2.3.3-3, the light wind sensor also produces a large (17.5%) number of calm hours. Experience with both types of instruments indicates that the continued durability and accuracy of the six-bladed Aerovane far outweighs the advantage of the slightly lower threshold speed offered by the light wind instruments. Regulatory Guide 1.23 also specified 90% data recovery, which is considered equally important.
The satellite tower uses a Bendix-Friez 3-cup anemometer, P/N 2416914, to determine wind speed. The 3-cup anemometer has cone-shaped cups formed of 0.010 inch thickness aluminum.
The cup wheel is attached to a stainless steel shaft which rotates, via coupling, the tachometer generator. The output voltage is directly proportional to the speed of rotation and, therefore, is a function of wind speed.
2.3.3.1.1.4 Wind Direction CHAPTER 02                                  2.3-19                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR The Bendix Aerovane Wind Transmitter, Model 120, measures wind direction by coupling a streamlined vane to a type 1HG synchro. This synchro electrically transmits the position of the vane and, therefore, the wind direction to the recorder.
The satellite tower uses a Bendix-Friez Wind Vane, P/N 2416970, to determine wind direction.
This wind vane is very light and sensitive having a low moment of inertia. Changes in azimuth angle are transmitted, via coupling, to a synchro. The signal output from this synchro is directly proportional to the angular position of the vane and, therefore, wind direction is transmitted to a synchro in the recorder.
2.3.3.1.1.5 Temperature The ambient temperature-measuring system uses Leeds and Northrup 100 ohm copper thermohm sensors (resistance thermometers). These thermohms are accurate to +/-0.2F across the range of -10F to 110F. The detectors use four lead wires, two of which are connected to a constant current source and the other two lead wires are connected, via electronic amplifiers to an analog recorder. Contained in the constant current loop is the copper measuring coil, whose resistance varies with temperature, causing the voltage drop across the coil to change proportionally. This voltage drop is then sensed by the measuring loop of a null balance potentiometer having a scale calibrated in degrees fahrenheit.
2.3.3.1.1.6 Temperature Difference The temperature difference sensors at the site are identical to the ambient temperature sensors, except for the selection of matched sets. These sets have an accuracy of +/-0.1F across a -12F to 12F temperature difference range. The reference thermohm (el 26') is connected (opposite in polarity) to both upper elevation thermohms. The two voltage drops (one from each set) are algebraically added, and the resulting output is equivalent to the temperature difference reading.
Both the ambient temperature and delta temperature sensors are located in a Teledyne/Geotech aspirated thermal radiation shield, Model 327. This is to ensure the measurement of ambient temperature and temperature gradients substantially independent of solar, atmospheric, and terrestrial thermal radiation.
2.3.3.1.1.7 Relative Humidity The Bendix Hygrothermograph, Model 594, is used at and around the site to determine both relative humidity and ambient air temperature.
The relative humidity portion of the instrument consists of a hair-type humidity-responsive element, a lever system, and a cylindrical chart. The accuracy of the humidity unit is +/-5% which includes the temperature effects to which the instrument may be subjected.
The temperature-responsive unit consists of a Bourdon tube, a lever system and a cylindrical chart (same cylinder used for humidity). The accuracy of the hygrothermograph temperature unit is +/-1F.
Regulatory Guide 1.23 suggests that at sites where there may be an increase in atmospheric moisture content (i.e., cooling towers) dew point or humidity should be measured on the tower.
The results of published field studies (References 2.3.3-1 through 2.3.3-4) prove conclusively that CHAPTER 02                                  2.3-20                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR the only changes in atmospheric moisture characteristics which may be experienced from cooling tower operation would occur at the plume elevation, not at the ground level. The results of approximately 400 flight test observations indicate that the cooling tower plumes would rise clear of the ground and have no effect on the low level moisture characteristics. For dew point or humidity measurements to have any relevance to cooling tower effects, they must be obtained at elevations ranging from approximately 1000 feet to 5000 feet above ground, which is not possible on a continuous basis. Since there is little or no potential for fogging or icing conditions resulting from the cooling towers, there is no need for a dew point measurement at the 10 meter level on the tower.
2.3.3.1.2 Calibration and Maintenance Procedures 2.3.3.1.2.1 Calibration All sensors and related equipment are calibrated according to written procedures designed to ensure adherence to Regulatory Guide 1.23 guidelines for accuracy. Calibrations occur at least every six months, with component checks and adjustments performed when required.
All meters and other equipment used in calibrations are, in turn, calibrated at scheduled intervals.
All instruments used in calibrations are traceable to the NBS.
2.3.3.1.2.2 Maintenance Inspection and maintenance of all equipment is accomplished in accordance with procedures in the instrument manufacturer's manuals. This inspection occurs at least once a week by qualified technicians capable of performing the maintenance, if required. The results of the inspections and maintenance performed are kept in a log at the site. The information contained in this log is also transmitted to the environmental engineering section and meteorological consultant.
In the event that the required maintenance could effect the instruments calibration, another calibration is performed prior to returning the instrument to service.
2.3.3.1.2.3 Data Output and Recording Systems All meteorological outputs, at this time, are recorded by analog systems. The charts from these systems are sent on a weekly basis to the meteorological consultant, MES located in Amityville, New York, for inspection to detect discrepancies or evidence of malfunction and data analysis.
The analog recording systems for the weather towers are enclosed in a structure with thermostatically controlled temperature.
2.3.3.1.3 Data Analysis Procedures 2.3.3.1.3.1 Data Quality Control All data are subject to a quality check by MES. These analog charts are inspected for the following items:
: a.      Verification of log sheets versus actual charts received CHAPTER 02                                  2.3-21                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR
: b.      Time continuity
: c.      Instrument malfunction
: d.      Inking problems
: e.      Directional switching problems
: f.      Negative speeds
: g.      Missing data An evaluation of system performance is made monthly. The percentage of data recovery for LGS weather station instrumentation is shown from 1972 through 1976 in Section 2.3.2.
2.3.3.1.3.2 Data Reduction All readings that are taken from the strip-charts represent hourly averages (except where noted).
Data are reduced into the different categories as follows:
Wind
: a.      Wind speed: hourly average speed. Negative speeds are recorded as read.
: b.      Wind direction: hourly average direction
: c.      Span: The span is read from the same portion used to obtain the average direction. Span is defined as the width of the direction trace excluding any abnormal spikes. Maximum span read is 360.
: d.      Gustiness: The gustiness is read from the same portion of the chart used to obtain the average direction. Gustiness and its characteristics are described in Reference 2.3.3-5.
Temperature and Humidity
: a.      Hygrothermographs: All relative humidity and temperature readings taken from a hygrothermograph are instantaneous readings on the hour.
: b.      Ambient temperature: Recorded on a strip-chart; hourly average temperature manually recorded.
: c.      Delta temperature: Recorded on a strip-chart; hourly average temperature manually recorded.
2.3.3.1.3.3 Analyses The hourly data obtained (as described) have been compiled into the series of summary tables described in Section 2.3.2. These data are used as inputs to the computation of the X/Q estimates described in Sections 2.3.4 and 2.3.5.
CHAPTER 02                                  2.3-22                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR 2.3.3.2 Operational Meteorological Measurement System (1983)
The meteorological measurement system has been upgraded to comply with Regulatory Guide 1.23 (Second Proposed Rev 1). The meteorological monitoring system at LGS complies with the criteria in Regulatory Guides 1.101, 1.97, and 1.21 and NUREG-0654 (Rev 1). The signals from the sensors are digitized and transmitted to the control room and the TSC. Meteorological data can be reviewed at the EOF through the EPDS computer. The satellite tower has been retired from service. Data from this tower was redundant to data already being obtained at the 30' level on Tower 2. The satellite tower is not part of the operational meteorological measurement system. Table 2.3.3-6 is a list of the meteorological measurements made by the system.
2.3.3.2.1 Measurements and Instrumentation 2.3.3.2.1.1 Siting As shown in Figures 2.3.3-1 and 2.3.3-2, Tower 1 located at Weather Station No. 1 is a 280 foot tower situated approximately 3000 feet NW of the LGS structure vents. Tower 1 is also located approximately 2000 feet NNW of the center of the Unit 1 cooling tower location and approximately 2400 feet NW of the center of the Unit 2 cooling tower location. Grade elevation at Weather Station No. 1 is el 250' MSL.
The wind instruments on Tower 1 are mounted on retractable booms extending upwind 10'-0" west of the tower. Each face of the triangular tower is 3'-6" wide. The temperature sensors are located in aspirators and are 2'-0" from the tower. Weather Station No. 1 has a base surface made of yardstone. A dew point sensor is located on the temperature aspirator at the el 26'.
Tower 2 located at Weather Station No. 2 is a 310 foot tower situated approximately 2100 feet west of the LGS structure vents. Tower 2 is also located approximately 1950 feet WSW of the center of the Unit 1 cooling tower location, and approximately 2600 feet WSW of the center of the Unit 2 cooling tower location.
The wind instruments on Tower 2 are mounted on retractable booms extending upwind 10'-0" WNW of the tower. Each face of the triangular tower is 3'-6" wide. The temperature sensors are located in aspirators and are 2'-0" inches from the tower. The dew point sensor is located on the temperature aspirator at el 26'. Tower 2 has a base surface made of yardstone.
There are two (2) areas were the operational monitoring system does not meet the criteria of Regulatory Guide 1.23. One instance is in the proximity of Tower 1 to the two natural draft cooling towers. The other is the proximity of Tower 2 to multiple transmission poles.
The proposed Revision 1 of Regulatory Guide 1.23 states that the tower:
        "should be located in an area where natural or manmade obstructions....would have little or no influence on the meteorological measurements. The tower should be at least 10 obstruction heights away from the obstruction (Reference 2.3.3-8)."
A review of the Regulatory Guide 1.23 siting criteria shows that they are not applicable to the site for several reasons.
: a.      The reference quoted as supporting the 10 obstruction heights criteria (Reference 2.3.3-6) did not explicitly specify 10 heights, but rather said that 5 to 10 building heights should separate meteorological sensors and adjacent buildings. Hilficker CHAPTER 02                                    2.3-23                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR went on to qualify his criteria as being applicable "most directly to cubicle obstructions", which the natural draft cooling towers clearly are not.
: b. Strict application of the 10 obstruction height criteria would mean that, for any plant with a natural draft cooling tower, the meteorological tower would have to be located approximately 1 mile away from the immediate plant vicinity. For the site with local terrain effects (e.g. hills, river valley), this would provide data that would be of questionable representativeness. In addition, placing the tower at this distance would put it beyond the site boundary and control of plant security.
: c. It is a well-known fact that the downwind influence of the wake caused by a hyperbolic natural draft cooling towers is a function of the tower diameter, not the tower height. This was shown by Smith and Mirabella (Reference 2.3.2-11) with wind tunnel tests at the SMUD Rancho Seco Plant and field studies at the TVA Paradise Plant. They concluded that, when wind speeds exceeded 2 m/sec, the cooling tower wake could extend to a downwind distance of 2 to 3 tower diameters, with a vertical extent of up to 1.5 tower heights. The 2 to 3 tower diameter criteria has also been confirmed by McLaren (Reference 2.3.3-7).
Based on these criteria, Section 2.3.2.2.1 states that "the maximum wake produced by two LGS cooling towers would be a turbulent region extending 750 feet vertically and persisting 3400 feet downwind."
This is a conservative estimate based on the maximum width of a two cooling tower complex rather than the individual tower dimensions.
Because the LGS cooling towers are located less than 2000 feet from Tower 1, there may be times when the meteorological tower is in the cooling tower wake.
How often the meteorological tower might be in the cooling tower wake and how this will affect the ability of the plant to meet the objectives of Regulatory Guides 1.101, 1.97, and 1.21 is discussed below.
: 1.      Frequency of Wake Effects Tower 1 is in a location that is predominantly upwind of the cooling tower complex. Winds must come from directions between 135 and 165 and be in excess of 2 m/sec for the meteorological tower to experience possible wake effects. At the 30 foot level of Tower 1, this would be 4.56% of the total hours, and at the 175 foot level, 6.64%.
: 2.      Consequences of Wake Effects If the meteorological tower is in the cooling tower wake, the only real consequence is that the increased turbulence may cause the atmosphere to appear to be one class more unstable within the wake region. This was found during wind tunnel tests of the AEP Mountaineer Plant (Reference 2.3.3-8) as well as in the Rancho Seco field tests conducted by Start et al.
(Reference 2.3.3-9).
In the Rancho Seco field tests, a meteorological tower was located approximately 660 feet from the cooling tower complex, with wind instruments at heights of 4, 16, and 46 meters. A statistical study was CHAPTER 02                                2.3-24                      REV. 19, SEPTEMBER 2018
 
LGS UFSAR conducted comparing turbulence data (sigma theta) from those hours when the meteorological tower was experiencing uninterrupted flow. The results showed the expected increase in turbulence in the cooling tower wake, but found significant increases only at the 16 meter level. No significant effects were found at the 46 meter level, indicating that the turbulent effect decreases with elevation due to the hyperbolic shape of the cooling towers.
Of the 4.56% of this time when wake effects were possible at the 30 foot level of Tower 1, 3.23% are already unstable, indicating that a significant shift in stability from stable to neutral or neutral to unstable might be possible only 1.33% of the time. At the 175 foot level, only 2.73% of the hours might undergo such a stability change. However, a change at this level seems less likely based on the Rancho Seco results.
: 3.      Implications for Regulatory Guide 1.101 and 1.97 Objectives The primary emphasis of these two guides for meteorology is to provide data for emergency response purposes. The cooling tower wake will have no effect on the average wind direction and speed, and therefore no effect on estimates of the airborne effluent trajectory or speed. The possible shift of stability class may affect the modeled effluent concentrations, but because of the small frequency of occurrence and the uncertainty associated with other model input parameters, this is a minor consideration.
: 4.      Implications for Regulatory Guide 1.21 Objectives For the routine 10CFR50, Appendix I X/Q calculations required by Regulatory Guide 1.21, the cooling tower wake should have no appreciable effect on the calculated concentrations. These calculations will be based on data from the 175 foot level of Tower 1 and will use the sector average version of the Gaussian plume model with joint frequency distributions of wind and stability data as meteorological input. Because almost no effect is expected from the wake at the 175 foot level, this will not affect the calculated concentrations. However, even if wake effects were present, it is unlikely they would cause noticeable differences in this type of calculation.
: d. Two transmission line poles are located approximately 239 feet and 310 feet in proximity to the Tower 2. The transmission line poles are 105 feet in height. To comply with the regulatory guide Tower 2 would need to be 1050 feet away from the poles. An evaluation on the disturbance of meteorological conditions at the effective Tower 2 sensor heights was performed. The evaluation concluded the following:
* Wind speed at the 30 foot elevation would be impacted. An estimated 8% decrease from the -12 to 042 degree sectors and 15% from the 098 to 128 degree sectors. Applying this wind reduction to the ten (10) year speed averages, the reduction would affect the measurements by 4.99%
and 2.11 %, respectively. Wind speed data from the 30 foot elevation is not used for Emergency Plan or Offsite Dose Calculations.
CHAPTER 02                              2.3-25                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR
* Wind direction at the 30 foot elevation would show an undetermined increase in the turbulence factor. Wind direction data from the 30 foot elevation is not used for Emergency Plan or Offsite Dose Calculations.
* No impact to temperature at the 30, 159, or 304 foot elevations.
* No impact to the wind speed at the 159 or 304 foot elevations.
* Negligible or no impact to wind direction and the wind turbulence factors at the 159 and 304 foot elevations.
The preceding discussions have shown that, while cooling tower wake effects at Tower 1 are possible, the frequency of occurrence is extremely low and should not interfere with the functions and objectives described in Regulatory Guides 1.101, 1.97, and 1.21. The obstruction height question should also be weighed against the other siting criteria of Regulatory Guide 1.23.
Specifically, Regulatory Guide 1.23 also states that the primary meteorological tower should be representative of the meteorological characteristics of the region of effluent release, should not be located in a prevailing downwind direction of the heat dissipation system, and should be at a base elevation close to the finished plant grade.
It is concluded that the present Tower 1 location represents the best possible compromise of the siting criteria. Tower 1 is upwind of the plant, at a location close to plant grade, and representative of dispersion conditions on the plateau on which the plant is built.
In addition, Tower 2's siting with the additional transmission pole obstructions is acceptable, given the fact there is negligible to no impact to the meteorological conditions as observed on the required instrumentation in use by the Emergency Plan and Offsite Dose Calculation Manual.
2.3.3.2.1.2 Instrumentation and Performance Specifications The instrumentation systems installed on the LGS site were designed to meet the requirements of Regulatory Guide 1.23 (proposed Rev 1).
The accuracies for the sensors and associated equipment are given in Table 2.3.3-7.
2.3.3.2.1.3 through 2.3.3.2.1.9 DELETED 2.3.3.2.1.10 Data Communication and Display Data from Tower 1 and from Tower 2 will be logged by a data-logger in the control room and input to the PMS in the TSC. Towers 1 and 2 interface to the control room by means of independent communication lines.
Data from this system will be presented to the control room on a CRT display. Data from this system will be presented to the EOF through the EPDS system. The meteorological data is also used by the Class A model for accident dose assessment.
2.3.3.2.2 Calibration and Maintenance Procedures CHAPTER 02                                  2.3-26                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR Calibration and data collection of the meteorological system are controlled by procedures that are responsive to the appropriate portions of the Quality Assurance Program described in Section 17.2.
2.3.3.2.2.1 Calibration All sensors and related equipment are calibrated according to written procedures designed to ensure adherence to Regulatory Guide 1.23 (proposed Rev 1) guidelines for accuracy.
Calibrations occur according to the requirements of the ODCM, with component checks and adjustments performed when required.
All meters and other equipment used in calibrations are, in turn, calibrated at scheduled intervals.
All instruments used in calibrations are traceable to the NIST.
2.3.3.2.2.2 Maintenance Inspection and maintenance of equipment is accomplished in accordance with station procedures and meteorological vendor procedures. The maintenance of the system is documented in the site work process and vendor reports.
In the event that the required maintenance could effect the instruments calibration, another calibration is performed prior to returning the instrument to service.
2.3.3.2.2.3 Data Output and Recording Systems All meteorological outputs are recorded by an on site data-logger and the PMS system. The data from the systems are sent on a weekly basis to a meteorological consultant, for inspection to detect discrepancies or evidence of malfunction and data analysis.
The data-logger and PMS Computer systems for the weather towers are enclosed in a structure with thermostatically controlled temperature.
2.3.3.2.3 Data Analysis Procedures 2.3.3.2.3.1 Data Quality Control The consultant prepares a meteorological data summary, formatted as joint frequency distribution tables of wind speed and wind direction, to satisfy NRC reporting requirements per Regulatory Guide 1.21.
All data are subject to a quality check by the consultant. Digital data is reviewed to detect any malfunctions.
An evaluation of system performance is made monthly to ensure that data recovery is satisfactory.
2.3.3.2.3.2 Data Reduction Analog chart samples are reduced and compared with the corresponding digital data to ensure both systems are functioning properly.
Temperature and Dew Point (Data Logger)
: a.      Dew Point: hourly average dew point temperature.
CHAPTER 02                                  2.3-27                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR
: b.      Ambient temperature: hourly average temperature.
: c.      Delta temperature: hourly average temperature.
: d.      Precipitation: each discrete step represents 0.01 inches of liquid water. The number of steps are added to obtain the total precipitation for the hour.
2.3.3.3 Offsite Meteorological Monitoring Locations The LGS meteorological data from the preoperational period have been compared with offsite data from the Philadelphia and Allentown, Pennsylvania NWS stations and with the data from PBAPS. Whenever possible LGS parameters were compared with concurrent data from the regional stations to assess their similarity, as well as with the longer term records from the regional stations to assess the climatological representativeness of the time period during which the LGS site data were obtained.
The following are brief descriptions of the offsite measurement locations:
2.3.3.3.1 Philadelphia The Philadelphia NWS station is presently located at the Philadelphia International Airport, approximately 31 miles SE of the LGS site. The airport is located on the southern edge of the city, bordered on its SE side by the Delaware River. The area is relatively flat, with no appreciable terrain roughness to influence the data.
The Philadelphia NWS meteorological sensors have been moved several times during the period of record used in the long-term comparisons. In 1960, the NWS established standard elevations for all meteorological sensors, and the instrument locations have remained unchanged since that time. A complete history of the sensor locations at the Philadelphia NWS station is shown in Table 2.3.3-4.
2.3.3.3.2 Allentown The Allentown NWS station is located approximately 31 miles north of the LGS site at the Lehigh Valley International Airport. The station is 5 miles NE of the city of Allentown in the Lehigh River Valley.
The river valley is surrounded by rolling terrain and numerous small streams, but there are also some larger terrain features in the area. Blue Mountain is a ridge located 12 miles north of Allentown, ranging between 1000-1800 feet high. South Mountain, ranging between 500-1000 feet high, is located on the southern edge of Allentown. However, neither of these two mountains is close enough to the Allentown NWS station to have any direct effect on the local meteorology.
The Allentown NWS meteorological sensors have been moved between various elevations and locations during the period of record used in the long-term comparisons, but were moved to the standard NWS elevations in 1965, and have remained unchanged since that time. The complete history of the sensor locations and elevations is shown in Table 2.3.3-5.
2.3.3.3.3 Peach Bottom Atomic Power Station CHAPTER 02                                  2.3-28                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR Weather Station No. 2 at the PBAPS is located approximately 48 miles southeast of the LGS site.
The PBAPS is located in the Susquehanna River Valley, but Weather Station No. 2 is a 320 foot tower situated on a hill overlooking the valley. The 320 foot wind sensor at Weather Station No. 2 is at an elevation comparable to the upper-level LGS wind sensors, and therefore provides a useful check of the representativeness of the meteorology.
2.3.4 SHORT-TERM (ACCIDENT) DIFFUSION ESTIMATES 2.3.4.1 Objective Estimates of atmospheric diffusion (X/Q) are made at the exclusion area boundary (731 m) and the outer boundary of the LPZ (2043 m). These estimates are made for periods of 2, 8, and 16 hours, and for 3 and 26 days following a postulated accident. The NRC recommended section-dependent model (PAVAN) in Reference 2.3.4-1 is used.
2.3.4.2 Calculations 2.3.4.2.1 Calculation of X/Q values at the EAB and LPZ XlQ values at the EAB and LPZ were calculated in accordance with Regulatory Guide 1.145. For ground-level releases, calculation for the 2 hours following the accident were based on the following equations:
/Q =            1                                            (2.3-2)
U10 (yz + A/2)
        /Q =            1                                    (2.3-3)
U10 (3yz )
        /Q =            1                                    (2.3-4)
U10 yz where:
/Q    is relative concentration, in sec/m3.
is 3.14159.
U10    is wind speed at 10 meters above plant grade, in m/sec.
y      is lateral plume spread, in m, a function of atmospheric stability and distance.
z      is vertical plume spread, in m, a function of atmospheric stability and distance.
y      is lateral plume spread with meander and building wake effects (in meters), a function of atmospheric stability, wind speed, and distance [for distances of 800 m or less, y = My, where M is determined from Reg. Guide 1.145 Fig. 3; for distances greater then 800 m, y = (M-1) y 800m +y].
A      is the smallest vertical-plane cross-sectional area of the reactor building, in m2.
(Other structures or a directional consideration may be justified when appropriate.)
Plume meander is only considered during neutral (D) or stable (E, F, or G) atmospheric CHAPTER 02                                  2.3-29                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR stability conditions. For such, the higher of the values resulting from Equations 2.3-2 and 2.3-3 is compared to the value of Equation 2.3-4 for meander, and the lower value is selected. For all other conditions (stability classes A, B, or C), meander is not considered and the highest XlQ value of equations 2.3-2 and 2.3-3 is selected.
The XlQ values calculated at the EAB based on meteorological data representing a 1hour average are assumed to apply for the entire 2-hour period.
2.3.4.2.2        Determination of Max Sector and Overall 5% Site XlQ Values 2.3.4.2.2.1      Maximum Sector XlQ To determine the maximum sector XlQ value at the EAB, a cumulative frequency probability distribution (probabilities of a given XlQ value being exceeded in that sector during the total time) is constructed for each of the 16 sectors using the XlQ values calculated for each hour of data. This probability is then plotted versus the XlQ values and a smooth curve is drawn to form an upper bound of the computed points. For each of the 16 curves, the XlQ value that is exceeded 0.5 percent of the total hours is selected and designated as the sector XlQ value. The highest of the 16 sector XlQ values is the maximum sector XlQ.
Determination of the LPZ maximum sector XlQ is based on a logarithmic interpolation between the 2-hour sector XlQ and the annual average XlQ for the same sector. For each time period, the highest of these 16 sector XlQ values is identified as the maximum sector XlQ value.
The maximum sector XlQ values will, in most cases, occur in the same sector. If they do not occur in the same sector, all 16 sets of values will be used in dose assessment requiring time-integrated concentration considerations. The set that results in the highest time-integrated dose within a sector is considered the maximum sector XlQ.
2.3.4.2.2.2      5% Overall Site XlQ The 5% overall site XlQ value for the EAB and LPZ is determined by constructing an overall cumulative probability distribution for all directions. XlQ versus the probability of being exceeded is then plotted and an upper bound curve is drawn. From this curve, the 2-hour XlQ value that is exceeded 5% of the time is found. The 5% overall site XlQ at the LPZ for intermediate time periods is determined by logarithmic interpolation of the maximum of the 16 annual average XlQ values and the 5% 2-hour XlQ values.
2.3.4.2.3 Meteorological Input Meteorological data from LGS Weather Station No. 1 taken from January, 1996 through December, 2000, is used in the diffusion calculations. Joint stability class and wind occurrence distributions are computed based on using wind speed and direction from the 30 foot level and temperature difference from the 266-26 foot height interval. The lapse rate, wind speed, and wind direction categories are consistent with the recommendations of Regulatory Guide 1.23 (Reference 2.3.4-3).
The meteorological database was prepared for use in PAVAN by transforming the five years (i.e., 1996-2000) of hourly meteorological tower data observations into a joint wind speed-wind direction-stability class occurrence frequency distribution as shown in Table CHAPTER 02                                    2.3-30                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR 2.3.4-1. In accordance with Regulatory Guide 1.145 (Reference 2.3.4-2), atmospheric stability class was determined by vertical temperature difference between the release height and the 10-m level, and wind direction was distributed into 16 - 22.5o sectors.
Seven (7) wind speed categories were defined according to Regulatory Guide 1.23 (Reference 2.3.4-3) with the first category identified as "calm. " The higher of the starting speeds of the wind vane and anemometer (i.e., 0.50 mph) was used as the threshold for calm winds, per Regulatory Guide 1.145, Section 1.1. A midpoint was also assumed between each of the Regulatory Guide 1.23 wind speed categories, Nos. 2-6, as to be inclusive of all wind speeds. The wind speed categories have therefore been defined as follows:
Category No.            Regulatory Guide          PAVAN-Assumed 1.23 Speed Interval        Speed Interval (mph)
(mph) 1 (Calm)                    0 to < 1                  0 to <0.50 2                      1 to 3                >=0.50 to <3.5 3                      4 to 7                  >=3.5 to <7.5 4                      8 to 12                >=7.5 to <12.5 5                      13 to 18                >=12.5 to <18.5 6                      19 to 24                >=18.5 to <24 7                        > 24                      >= 24 In the equations shown in Section 2.3.4.2.1, it should be noted that wind speed appears as a factor in the denominator. This causes obvious difficulties in making calculations for periods of calm. The procedures used by PAVAN to assign a direction to each calm period according to the directional distribution for the lowest wind-speed class. This is done separately for the calms in each stability class.
2.3.4.2.4 Building Wake Correction A building wake correction of 5851 m2 is equal to the Reactor Enclosure's combined vertical cross sectional area. A correction value of 2500 m2 is used for one Reactor Enclosure 2.3.4.2.5      Short-Term X/Q Modeling Results Atmospheric diffusion estimates developed for use in evaluating accidents are summarized in Table 2.3.4-4 for the above-mentioned periods following the accident. This table includes estimates for the maximum sector and overall 5% site X/Q.
2.3.5 LONG-TERM (ROUTINE) DIFFUSION ESTIMATES Radionuclides will be routinely emitted to the atmosphere from three locations at LGS. The source vents include the Turbine Enclosure, Unit 1 Reactor Enclosure, and Unit 2 Reactor Enclosure. Diffusion estimates may be based on a single source originating from one point located midway between the three vent locations or based on each individual location independently.
Estimates of annual average X/Q are performed for receptor locations out to 50 miles in each directional sector. These historical values are presented in Table 2.3.5-1.
CHAPTER 02                                  2.3-31                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR 2.3.5.1 Meteorological Input Meteorological data taken at Tower No. 1 from January 1972 through December 1976 are used in calculating the long term diffusion estimates.
Routine releases from LGS will be released through the two reactor enclosure vents and the turbine enclosure vent. These vents are all located at an elevation (el 416' MSL) only 9 ft below the 175 ft instrumentation level at Weather Station No. 1. Winds from the 175 ft level were used to calculate the annual X/Q values shown in Table 2.3.5-1. The maximum value of 6.291x10-7 is found at the site boundary (762 m) in the ESE sector. The spacing in this portion of the calculational grid is sufficiently dense to assure that the maximum offsite X/Q value has been calculated.
Distributions of wind speed and direction are computed for 22.5 sectors using the wind speed groups suggested in Regulatory Guide 1.23 (Reference 2.3.5-2). The 5 year 175 foot wind distribution used as input for the diffusion calculations is provided in Reference 2.3.2-23.
All calm hours have been distributed equally among the 16 directional sectors. With the exception of the 0-3 mph and 24+ mph groups, the median speed from each wind speed grouping is used.
A speed of 1.61 mph (0.72 m/sec) is used as the median for the 0-3 mph group resulting from the guidance in Regulatory Guide 1.111 (Reference 2.3.5-3) that calm hours be assigned a speed of 0.1 m/sec, if the sensor does not conform with the minimum starting speed criteria of Regulatory Guide 1.23. A speed of 27 mph is used to represent the 24+ mph group.
The diffusion model utilized is described in Section 2.3.5.3.
2.3.5.2 Plume Rise The volumetric flow rate from the LGS reactor enclosure vents will not vary seasonally. However, the volumetric flow rate from the turbine enclosure vent will vary from a summer maximum of 307 m3/sec to a winter minimum of 147 m3/sec, with an annual average of 216 m3/sec. To calculate plume rise, one set of composite vent parameters was derived by appropriately weighing the diameter and exit velocity of each vent according to its volumetric flow rate. The individual vent parameters along with the derived composite vent parameters used in the plume rise calculations are listed in Table 2.3.5-2.
The Briggs (Reference 2.3.5-7) momentum plume rise equations, in the form expressed by Sagendorf and Goll (Reference 2.3.5-8), are used.
2.3.5.3 Diffusion Model The sector average version of the Gaussian plume equation, as expressed in Regulatory Guide 1.111 is used for all X/Q calculations. The basic equation is as follows:
e(h  zcorr)/z 2
X                360f 3  1                  1 Q          2  2            CA 2 2 xue( z    2
                                                        )
(EQ.2.3.-3)
CHAPTER 02                                  2.3-32                      REV. 19, SEPTEMBER 2018
 
LGS UFSAR where:
X        =      Concentration at receptor point (curies/meter3)
Q        =      Emission rate (curies/sec) - assumed to be 1 curie/sec for these calculations
                =      Sector width - assumed to be 22.5 for these calculations x        =      Distance of receptor point (meters) ue      =      Effective wind speed applicable to stack height, h, (meters/sec) h        =      Effective stack height from Briggs equations (meters) z      =      Vertical standard deviation of the plume at distance, x, (meters) x      =      Lateral standard deviation of the plume at distance, x, (meters) f        =      Frequency of occurrence of wind speed and stability combination (dimensionless)
Zcorr    =      The terrain correction CA      =      The area of an obstacle (A) times a shape factor to take account of the details of the flow around the obstacle.
360      =      Number of degrees in a circle .
                =      3.14 2.3.5.3.1 Source Configuration The entrainment functions of Regulatory Guide 1.111 are used to determine the portion of the effluent plume entrained into the turbine-reactor enclosure wake. However, the effective height of the entrained portion of the plume is never allowed to decrease below 10 meters. Therefore, the building wake term (CA) was set equal to zero, in accordance with the guidance in Regulatory Guide 1.111 that this term be used only when the effective plume height is equal to zero.
2.3.5.3.2 Terrain Corrections Individual terrain corrections are applied at each receptor. In order to model the LGS vents in the most realistic manner possible, terrain heights relative to the normal elevation of the Schuylkill River (33.5 m MSL) are used, and are allowed to decrease with distance within the first 1000 m.
With the exception of those receptor points within the first 1000 m, the terrain correction applied to any particular receptor is the highest terrain between the source and a point up to, but not including, the next downwind receptor. These corrections are subtracted from the calculated effective plume height. A minimum effective height of 10 m is assumed when the terrain elevation exceeds the calculated plume height. The actual terrain elevations in each direction sector are given in Section 2.3.2.
2.3.5.3.3 Atmospheric Stability CHAPTER 02                                  2.3-33                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR Atmospheric stability classes are determined using the Brookhaven Turbulence Class system developed by Singer and Smith (Reference 2.3.5-5). This system, which has been previously defined in Table 2.3.2-14, is based upon the short-term fluctuations of the wind direction trace.
The long-term diffusion estimates for LGS were based upon the Smith-Singer vertical dispersion parameters and the Brookhaven Turbulence Class system because this system is more appropriate for the release and terrain characteristics of the LGS site than the Regulatory Guide 1.111 parameters.
A. Vertical Dispersion Curves Regulatory Guide 1.111 specifies that the Pasquill-Gifford or P-G dispersion coefficients be used for long-term dispersion estimates. However, there are several sound reasons for using the Brookhaven (Smith-Singer) coefficients instead:
: 1.      Surface Roughness The P-G dispersion coefficients were developed primarily from the Prairie Grass diffusion experiments at O'Neill, Nebraska. The Prairie Grass data were collected in extremely flat, smooth terrain with a roughness length, zo, of 3 cm. In contrast, the Brookhaven coefficients were developed in an area of scrub pines and oaks, with a roughness length of 1 meter. The LGS region, characterized by a combination of buildings, open fields and trees, is much more similar to Brookhaven than to O'Neill, Nebraska.
: 2.      Release Elevation The Prairie Grass experiments consisted of a series of ground level SO2 releases, with concentrations measured at downwind distances of up to 800 meters.
Extrapolation of these curves to distances beyond one kilometer is based on limited observations. The Brookhaven dispersion coefficients, on the other hand, are based on both elevated and low level releases. The standard curves published by Smith (Reference 2.3.5-10) in the ASME Guide were derived from plumes released at 108 meters and tracked for more than 50 km. In addition, a second set of unpublished dispersion coefficients were developed from low level releases, as shown in Section 2.3.5.3.4.
The entrainment coefficients from Regulatory Guide 1.111 specify that the LGS plume will be elevated 84% of the time. In these cases, the standard Brookhaven coefficients were used. For the remaining 16% of the time, the low level coefficients were used.
The 1977 AMS workshop on stability classification schemes and sigma curves (Reference 2.3.5-9) clearly supported the use of the Brookhaven curves in preference to the P-G curves where elevated sources in rolling terrain are involved:
                      "For elevated sources, the "Brookhaven" curves (M.E. Smith, 1968) are an appropriate choice when z is less than the effective source height. These curves are based on average concentration measurements from a passive source at an elevation of 108 m.
They differ from the Pasquill-Gifford and Turner curves both CHAPTER 02                                2.3-34                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR because the measurement site was surrounded by a much rougher surface, mostly forests, from which Zo equals approximately 1 m."
: 3.      Averaging Time The Prairie Grass project consisted of short duration field experiments, with the P-G horizontal coefficient representing 3 minute averages, and the vertical coefficients 10 minute averages. In contrast, all of the Brookhaven data from which the dispersion curves were derived were hourly averages.
: 4.      Validation While model validation is a somewhat nebulous and controversial area, attempts have been made to verify the appropriateness of the more commonly used dispersion coefficients with field data. A recent study by Weil (Reference 2.3.5-11) at the coal-fired Dickerson power plant in Maryland found that when using the Gaussian plume model with the Brookhaven dispersion coefficients, predicted concentrations were within a factor of two during 73% of the cases analyzed.
Conversely, the P-G coefficients at times resulted in orders of magnitude disagreement between predicted and measured concentrations.
The Dickerson Plant releases a buoyant plume from stacks approximately 400 feet tall, so the analogy with LGS is not clear-cut. However, the results indicate that the Brookhaven curves are preferable.
B. Stability Class Determination Because the Brookhaven dispersion coefficients are used in the LGS analysis, it is reasonable and consistent to use the Brookhaven stability classification system as well.
The two were developed together and are part of a cohesive system.
Furthermore, although the classification system based on delta temperature is recommended by NRC, the T method has been criticized by the scientific community. It seems clear that the system produces an inordinately high percentage of neutral hours, and several recent workshops and publications have recommended that the system be changed. Several of these suggestions are worth reiterating:
: 1.      Weber et al (Reference 2.3.5-12) conducted a regression analysis comparing several stability classification schemes with vertical dispersion data from the Prairie Grass, Green Glow, and National Reactor Testing Station experiments. The results from this study showed that during unstable conditions, delta temperature did not correlate at all with the measured concentrations. In stable conditions, delta temperature compared favorably with the other stability classification systems, but the authors cautioned that a strict correlation should only be found for delta temperature measured in the surface layer (<10 meters) and that there was no reason to expect correlation at higher levels.
: 2.      AMS Workshop - At the 1977 AMS workshop on stability classification schemes and sigma curves, there were lengthy discussions of the various methods available to classify stability. The workshop recommended that the standard deviation of the horizontal wind direction fluctuations, sigma theta, be used to estimate horizontal diffusion rates, and that dimensionless ratios of temperature lapse rate and wind speed be used to specify vertical turbulence. The workshop also said that there is CHAPTER 02                                  2.3-35                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR little physical justification for the current practice of estimating vertical diffusion based on temperature lapse rate data alone.
It seems contradictory that the NRC has referenced the report from this workshop in the proposed Revision 1 of Regulatory Guide 1.23, yet ignored some of these fundamental recommendations.
: 3.      Gifford (Reference 2.3.5-13), in a memo to the ACRS regarding the proposed Revision 1 of Regulatory Guide 1.23, reiterates his objection to the use of delta temperature. Gifford states:
                        "My main objection (a long-standing one) to the draft is that it continues to recommend the so-called T method (or  method) as the primary means of determining y and z (p 6, lines 12 & 13).
The problems involved, and limitations of this methodology are clearly set out in the American Meteorological Society workshop report on the subject, reference 1 in the proposed revision. This reference (Bulletin AMS 58 , p 1306) states "There is little physical justification for the currently widespread practice of approximating S'" (the stability factor) "by -  alone....in stable conditions the effects of topography....may equally invalidate -  and S' as determinants of z". The reference goes on to stress problems of determining z in other types of conditions (i.e. unstable, daytime) and stresses the poor state of our observational knowledge at present. Finally, problems of the  method (p 1309) are discussed in detail, pointing out the desirability of a more physically based indicator such as the bulk Richardson number S'; and also the problem of measuring /Z in a meaningfully shallow layer with present requirements for siting the upper temperature sensor (60 m) is pointed out."
Clearly, the T method is not entirely palatable to the scientific community, and there is little doubt that the Brookhaven system is at least as good an indicator of stability. Particularly for the LGS site and source elevations, the Brookhaven system offers some distinct advantages. The Brookhaven classes are based on the "gustiness" or short-term fluctuations of wind direction trace averaged over an hour and are a physical representation of the horizontal turbulence of the wind flow. In addition, the Brookhaven system determines the atmospheric stability in the region of the actual effluent release, which was another of the AMS workshop recommendations.
Regulatory Guide 1.111 states that wind speeds representative of the vent release elevation should be used for long-term dispersion estimates. Accordingly, wind data from the 175 ft level of Tower 1 were used for the LGS annual X/Q calculations. This instrument is within 9' MSL of the LGS vent elevation. For the elevation portion of the mixed mode release, wind speeds were not corrected for source elevation. However, for the low level portion of the mixed mode release, speeds were adjusted by standard power law techniques to the 10 meter level.
Figure 2.3.5-1 shows a comparison of the annual X/Q values from Table 2.3.5-1, which were computed using Brookhaven dispersion coefficients. These values represented by the dashed line are from a similar calculation with T stability and the P-G dispersion coefficients of Regulatory Guide 1.111. The comparison shows that the Brookhaven coefficients were more sensitive to terrain elevation because the lower portion of the mixed code release is set at 10 CHAPTER 02                                    2.3-36                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR meters in the BNL model, as compared to a ground level release in the Regulatory Guide 1.111 model. Otherwise, the values are quite similar.
2.3.5.3.4 Dispersion Coefficients Expressions for calculation of the vertical dispersion coefficients, z. for each turbulence class, have been defined by Singer and Smith (Reference 2.3.5-6) and are as follows:
Very Unstable            Unstable  Neutral        Stable z      Source          0.40x.907                0.33x.859  0.22x.776      0.06x.709 Higher Than 50 Meters z      Source          0.29x.907              0.25x.859  0.19x.776      0.08x.709 Lower Than 50 Meters where:
z      =      Vertical dispersion coefficient, meters x        =      Distance downwind, meters The  curves were originally derived for the BNL site, where the terrain is slightly flatter than LGS, but the vegetation and small-scale roughness are quite similar. These expressions for the turbulent diffusion parameters are generally accepted, and have been recommended by Hanna et al (Reference 2.3.5-9) as the preferred system for elevated releases. The entrainment coefficients of Regulatory Guide 1.111, combined with the Tower 1, 175 foot wind speed distribution, indicate that the LGS plume is classified as elevated 84% of the time.
2.3.5.3.5 Recirculation Correction Factors Regulatory Guide 1.111 specifies that the local meteorology be examined to determine the extent of the temporal and spacial variations in the local circulation, and their effect upon the long-term diffusion estimates. Comparisons between Towers 1 and 2 in Section 2.3.2 indicate that there is little variation in the local meteorology surrounding the LGS site. The Schuylkill River Valley is too shallow to have a major effect on the local circulation. The only significant difference between the two towers is that wind speeds are slightly lower near the valley floor.
Previous submittals (References 2.3.5-1 and 2.3.5-4) summarizing wind recirculation effects at PBAPS (located approximately 48 miles SW of LGS) have shown, through a puff-trajectory analysis, that the reactor effluent rarely returns to the site area. Based upon these two studies, it has been concluded that recirculation correction factors are not warranted at LGS.
2.
 
==3.6 REFERENCES==
 
CHAPTER 02                                    2.3-37                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR 2.3.1-1    U.S. Department of Commerce, "Local Climatological Data and Comparative Data-Philadelphia, PA.", published annually by the Environmental Data Service, NOAA.
2.3.1-2    U.S. Department of Commerce, "Local Climatological Data and Comparative Data-Allentown, PA.", published annually by the Environmental Data Service, NOAA.
2.3.1-3    U.S. Department of Commerce, "Star Programs-Philadelphia, PA.", Job Nos.
51361, 50884, 50963, 52217, available from the Environmental Data Service, NOAA.
2.3.1-4    U.S. Department of Commerce, "Star Programs-Allentown, PA.", Job Nos. 15347, 51936, available from the Environmental Data Service, NOAA.
2.3.1-5    G.W. Cry, "Tropical Cyclones of the North Atlantic Ocean", Weather Bureau Technical Paper No. 55, U.S. Department of Commerce, (1965).
2.3.1-6    M.E. Pautz, "Severe Local Storm Occurrences 1955-1967", ESSA Technical Memorandum WBTM FCST 12, U.S. Department of Commerce, (1969).
2.3.1-7    A.D. Pearson, "Tornado Frequency and Tornado Plot Programs", available from the National Severe Storm Forecast Center, Kansas City, MO.
2.3.1-8    H.C.S. Thom, "Tornado Probabilities", Monthly Weather Review, Vol. 91, pp.
730-736, (1963).
2.3.1-9    M.A. Uman, "Understanding Lightning", Bek, Tech Publication, Carnegie, PA, (1971).
2.3.1-10  J.L. Baldwin, "Climates of the United States", U.S. Department of Commerce, Environmental Data Service, pp. 33, 82, (1973).
2.3.1-11  S.A. Changnon, "The Scales of Hail, J. Appl. Meteor", Vol. 16, No. 6, pp. 626-648, (1977).
2.3.1-12  U.S. Department of Commerce, "Storm Data-Pennsylvania", published monthly by the Environmental Data Service, NOAA.
2.3.1-13  I. Bennett, "Glaze-Its Meteorology and Climatology, Geographical Distribution, and Economic Effects", Technical Report EP-105, U.S. Army Quartermaster Research and Engineering Command, Natick, MA, (1959).
2.3.1-14  G.C. Holzworth, "Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout the Contiguous United States", EPA, Office of Air Programs, Publication No. AP-101, (1972).
2.3.1-15  J. Korshover, "Climatology of Stagnation Anticyclones East of the Rocky Mountains, 1936-1975", NOAA Environmental Research Laboratory Technical Memo ERL ARL-55, (1976).
CHAPTER 02                            2.3-38                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR 2.3.1-16  American National Standards Institute, "Building Code Requirements for Minimum Design Loads in Buildings and Other Structures", ANSI A 58.1-1972.
2.3.1-17  H.C.S. Thom, "Distribution of Maximum Annual Water Equivalent of Snow on the Ground", Monthly Weather Review, Vol. 94, No. 4, pp. 265-271, (1966).
2.3.1-18  J.T. Riedel et al, "Seasonal Variation of the Probable Maximum Precipitation East of the 105th Meridian for Areas of 10 to 1,000 Square Miles and Durations of 6, 12, 24, and 48 Hours", Hydrometeorological Report No. 33, U.S. Weather Bureau, (1956).
2.3.1-19  U.S. Department of Commerce, "Climatological Data- Pennsylvania", Vol. LXIII, No. 3, (March 1958).
2.3.1-20  USNRC, Regulatory Guide 1.76, "Design Basis Tornado for Nuclear Power Plants", (1974) 2.3.1-21  H.C.S. Thom, "New Distribution of Extreme Winds in the United States", Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, pp.
1781-1807, (1968) 2.3.1-22  G.W. Cry, "Tropical Cyclones of the North Atlantic Ocean", 1871-1980, available from National Climatic Center, Asheville, NC, (July 1981).
2.3.1-23  U.S. Department of Commerce, "Storm Data", Vol. 24, No. 5, May 1982, available from National Climatic Center, Asheville, NC.
2.3.1-24  U.S. Department of Commerce, "Storm Data", Vol. 19-24, available from National Climatic Center, Asheville, NC.
2.3.1-25  J. Korshover, "Personal Communication", (August 18, 1982).
2.3.2-1    I.A. Singer and M.E. Smith, "Relation of Gustiness to Other Meteorological Parameters", Journal of Meteorology Vol 10, pp.121-126, (1953).
2.3.2-2    USNRC, Regulatory Guide 1.23, "Onsite Meteorological Programs", (1972).
2.3.2-3    U.S. Department of Commerce, "Star Program - Philadelphia, Pa., 1971-1975",
Job No. 13739, NOAA Environmental Data Service, National Climatic Center, Ashville, NC.
2.3.2-4    U.S. Department of Commerce, "Star Program - Allentown, Pa., 1973", Job No.
15347, NOAA Environmental Data Service, National Climatic Center, Ashville, NC.
2.3.2-5    U.S. Department of Commerce, "Decennial Census of United States Climate, Summary of Hourly Observations, Philadelphia, Pa., 1951-1960", NOAA Environmental Data Service, National Climatic Center, Ashville, NC.
CHAPTER 02                            2.3-39                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR 2.3.2-6    U.S. Department of Commerce, "Star Program, Allentown, Pa., 1964-1973", Job No. 14737, NOAA Environmental Data Services, National Climatic Center, Ashville, NC.
2.3.2-7    G.C. Holzworth, "Mixing Heights, Windspeeds, and Potential for Urban Air Pollution Throughout the Contiguous United States", EPA, Office of Air Programs, (1972).
2.3.2-8    J. Laurmann, "Modification of Local Weather by Power Plant Operation", EPRI Report BA-886-SR, TPS76-660, (August 1978).
2.3.2-9    EPA, "Technical Support Document for Determination of Good Engineering Practice Stack Height", Office of Air Quality Planning and Standards, (July 31, 1978 Draft).
2.3.2-10  J. Halitsky, "Gas Diffusion Near Buildings", Meteorology and Atomic Energy -
1968, D.H. Slade (ED), Chapter 5-5, (1968).
2.3.2-11  J.B. Smith and V.A. Mirabella, "Meteorological Effects of Cooling Towers at the SMUD Site", Appendix 3C, Rancho Seco Nuclear Generating Station Unit No. 1 Environmental Report, SMUD, (June 1971).
2.3.2-12  J.E. Carson, "Atmospheric Impacts of Evaporative Cooling Systems", Argonne National Laboratory Report ANL/ES-53, (October 1976).
2.3.2-13  M.L. Kramer et al, "Cooling Towers and the Environment", Journal APCA, Vol. 26, No. 8, pp. 582-584, (1976).
2.3.2-14  P.T. Brennan, D.E. Seymour, M.J. Butler, M.L. Kramer, M.E. Smith, and T.T.
Frankenberg, "The Observed Rise of Visible Plumes from Hyperbolic Natural Draft Cooling Towers", Atmospheric Environment, Vol. 10, pp. 425-431, (1976).
2.3.2-15  G. Spurr, "Meteorology and Cooling Tower Operation", Atmospheric Environment, Vol. 8, pp. 321-324, (1974).
2.3.2-16  C.L. Hosler, "Wet Cooling Tower Behavior in Cooling Towers", by the American Institute of Chemical Engineering, pp. 27-32, (1972).
2.3.2-17  J. Seeman, et al, "Effects Produits sur l'Agriculture par les Tours de Refroidissement dans l'Environment des centrales Nucleaires", Department Etudes Generales - Programmes, Sites-Environment, Paris, France, (October 20, 1976).
2.3.2-18  E. Ryznar, "An Observation of Cooling Tower Plume Effects on Total Solar Radiation", Atmospheric Environment, Vol. 12, pp. 1223-1224, (1978).
2.3.2-19  M.E. Smith, "Cooling Tower and the Environment", brochure available from AEP Service Corporation, Environmental Engineering Division, Canton, OH, (1974).
2.3.2-20  M.L. Kramer and D.E. Seymour, "John E. Amos Cooling Tower Flight Program Data, December 1975 - March 1976", available AEP Service Corporation, Environmental Engineering Division, Canton, OH, (1976).
CHAPTER 02                            2.3-40                    REV. 19, SEPTEMBER 2018
 
LGS UFSAR 2.3.2-21  M.L. Kramer et al, "Snowfall Observations From Natural Draft Cooling Tower Plumes", Science, Vol. 193, pp. 1239-1241, (1976).
2.3.2-22  C.L. Hosler, et al, "Determination of Salt Deposition Rates From Draft From Evaporative Cooling Towers", Journal of Engineering for Power, Vol. 96, pp.
283-291, (1974).
2.3.2-23  PECo, "Micrometeorological Data and Analysis for the Limerick Generating Station Environmental Report - Operating License Stage, and Final Safety Analysis Report Submittals, Section 2.3.2", (Data period, January 1972 - December 1976) 2.3.3-1    P.T. Brennan, et al, "The Observed Rise of Visible Plumes from Natural Draft Hyperbolic Cooling Towers", Atmospheric Environment, Vol. 10, pp. 425-531, (1976).
2.3.3-2    P.T. Brennan, et al, "Behavior of Visible Plumes from Hyperbolic Cooling Towers",
Proceedings of the American Power Conference, Vol. 38, pp. 732-739, (1976).
2.3.3-3    M.L. Kramer, "Cooling Towers and the Environment", Journal of the Air Pollution Control Association, Vol. 26, pp. 582-584, (1976).
2.3.3-4    M.L. Kramer, "Snowfall Observations from Natural Draft Cooling Tower Plumes",
Science, Vol. 193, pp. 1239-1241, (1976).
2.3.3-5    I.A. Singer and M.E. Smith, "Relation of Gustiness To Other Meteorological Parameters", Journal of Meteorology, Vol. 10, pp. 121-126, (1953).
2.3.3-6    C. Hilfiker, "Exposure of Instruments", chapter in Air Pollution Meteorology, EPA Air Pollution Training Institute, Research Triangle Park, North Carolina (September 1975).
2.3.3-7    T.I. McLaren, "Personal Communication", (June 22, 1977).
2.3.3-8    T.I. McLaren, "A Wind Tunnel Study of Air Flow Patterns Over Coal Piles Near the AEP Power Plant, New Haven, West Virginia", Report by Weather Dynamics Division, Mt. Auburn Research Associates, Inc., (February 28, 1975).
2.3.3-9    G.E. Start, et al, "Rancho Seco Building Wake Effects on Atmospheric Diffusion",
NOAA Technical Memo ERL ARL-69, (November 1977).
2.3.4-1    Atmospheric Dispersion Code System for Evaluating Accidental Radioactivity Releases from Nuclear Power Stations, PAVAN, Version 2, Oak Ridge National Laboratory, U. S. Nuclear Regulatory Commission, December 1997.
2.3.4-2    NRC, Regulatory Guide 1.145, Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants (Revision 1),
November 1982.
2.3.4-3    NRC, Regulatory Guide 1.23, "Onsite Meteorological Programs", (1972).
2.3.4-4    No longer used.
CHAPTER 02                              2.3-41                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR 2.3.4-5    No longer used.
2.3.4-6    No longer used.
2.3.4-7    No longer used.
2.3.4-8    No longer used.
2.3.5-1    PECo, "Unit 2 Vent Plume Behavior Peach Bottom Atomic Power Station", March 1974.
2.3.5-2    NRC, Regulatory Guide 1.23, "Onsite Meteorological Programs", (1972).
2.3.5-3    NRC, Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors", (1977).
2.3.5-4    PECo, "Enclosure B of the Information Requested in Enclosure 2 to the Letter from R.C. DeYoung to E.G. Bauer dated February 19, 1976", (submitted November 30, 1976).
2.3.5-5    I.A. Singer, and Smith, M.E., "Relation of Gustiness to Other Meteorological Parameters", Journal of Meteorology, Vol. 10, pp. 121-126, (1953).
2.3.5-6    I.A. Singer, and Smith, M.E., "Atmospheric Dispersion at Brookhaven National Laboratory", International Journal of Air and Water Pollution, Vol. 10, pp. 125-135, (1966).
2.3.5-7    G.A. Briggs, "Plume Rise, AEC Critical Review Series, TID-25075", (1969).
2.3.5-8    J. Sagendorf and J. Goll, "XOQDOQ - Program for the Meteorological Evaluation of Routine Effluent Releases At Nuclear Power Stations", NUREG-0324, (September 1977).
2.3.5-9    S.R. Hanna et al, "Meeting Review - AMS Workshop on Stability Classification Schemes and Sigma Curves - Summary of Recommendations", Bulletin of AMS, Volume 58, pp. 1305-1309, (1977).
2.3.5-10  M.E. Smith, Ed., "Recommended Guide for the Prediction of the Dispersion of Airborne Effluents", ASME, (1968).
2.3.5-11  J.C. Weil, and A.F. Jepsen, "Evaluation of the Gaussian Plume Model at the Dickerson Power Plant", Atmospheric Environment, Vol. 11, pp. 901-910, (1977).
2.3.5-12  A.H. Weber et al, "Turbulence Classification Schemes for Stable and Unstable Conditions", in preprints of the First Joint Conference on Applications of Air Pollution Meteorology, AMS, pp. 96-102, (November 1977).
2.3.5-13  F.A. Gifford, "Memo to Advisory Committee on Reactor Safeguards Regarding the Proposed Revision 1 of Regulatory Guide 1.23", (May 26, 1980).
CHAPTER 02                            2.3-42                  REV. 19, SEPTEMBER 2018
 
LGS UFSAR CHAPTER 02 2.3-43    REV. 19, SEPTEMBER 2018
 
LGS UFSAR Table 2.3.1-1 COMPARISON OF ANNUAL WIND DIRECTION FREQUENCY DISTRIBUTION (%)
DIRECTION              PHILADELPHIA                ALLENTOWN (1967-1974)                (1964-1974)
NNE                        2.9                      2.0 NE                        3.4                      4.7 ENE                        5.8                      2.5 E                          6.2                      6.3 ESE                        3.2                      2.8 SE                        3.2                      2.0 SSE                        3.6                      1.6 S                          7.0                      4.9 SSW                        5.0                      3.6 SW                        11.8                      7.7 WSW                        7.6                      10.6 W                        10.8                      12.3 WNW                        8.7                      8.5 NW                        7.1                      7.3 NNW                        5.2                      5.1 N                          8.1                      5.1 Calm                            .5                      8.3 Average Wind                    9.9                      9.1 Speed (mph)
CHAPTER 02                    2.3-44            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.1-2 MEAN MONTHLY TEMPERATURE COMPARISON (F)
PHILADELPHIA                    ALLENTOWN (1874-1976)                  (1944-1976)
JAN                  33.0                            27.8 FEB                  33.8                            29.7 MAR                  41.7                            38.4 APR                  52.2                            49.6 MAY                  63.0                            59.7 JUNE                71.9                            69.2 JUL                  76.6                            73.9 AUG                  74.7                            71.8 SEP                  68.4                            64.5 OCT                  57.5                            53.8 NOV                  46.2                            42.3 DEC                  36.1                            31.2 ANNUAL              54.6                            51.0 TEMPERATURE EXTREMES (F)
Philadelphia        106            Aug 1908(1)
                      -11          Feb 1934(1)
Allentown            105            Jul 1966
                    -12            Jan 1961 (1)
Extreme value recorded in the local area, but not at the official measurement site CHAPTER 02                              2.3-45                      REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.1-3 COMPARISON OF MEAN MORNING AND AFTERNOON RELATIVE HUMIDITY (%)
PERIOD OF RECORD: PHILADELPHIA 1960-1976 ALLENTOWN 1951-1976 MORNING                          AFTERNOON (7 am)                            (1 pm)
Philadelphia        Allentown    Philadelphia        Allentown JAN            74                  77            60                62 FEB            71                  76            57                59 MAR            71                  76            53                55 APR            69                  76            48                51 MAY            75                  78            53                53 JUN            78                  80            55                54 JUL            79                  82            54                52 AUG            81                  87            54                55 SEP            83                  89            56                57 OCT            81                  87            53                55 NOV            76                  83            55                60 DEC            74                  80            60                64 ANNUAL          76                  81            55                56 CHAPTER 02                    2.3-46              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.1-4 DISTRIBUTION OF PRECIPITATION PHILADELPHIA INTERNATIONAL AIRPORT PERIOD OF RECORD: 1872-1976 TOTAL PRECIPITATION 1943-1976 SNOWFALL TOTAL PRECIPITATION                              SNOW AND SLEET (inches of water)                                (inches)
Mean                Maximum                  Mean              Maximum JAN                  3.17                    6.06                  5.4              19.7 FEB                  3.10                    5.43                  6.1              18.4 MAR                  3.51                    6.27                  3.8              13.4 APR                  3.28                    6.68                  0.2                4.3 MAY                  3.35                    7.41                    T(1)                T(1)
JUN                  3.65                    7.88                  0.0                0.0 JUL                  4.10                    8.33                  0.0                0.0 AUG                  4.48                    9.70                  0.0                0.0 SEP                  3.40                    8.78                  0.0                0.0 OCT                  2.80                    5.21                    T(1)                T(1)
NOV                  3.07                    9.06                  0.7                8.8 DEC                  3.19                    7.23                  4.2              18.8 ANNUAL      41.10                            -                  20.4                  -
Greatest Rainfall -    Monthly: 12.10, Aug., 1911(2) 24 Hours: 5.89, Aug., 1898(2)
Greatest Snowfall -    Monthly: 31.5, Feb., 1899(2) 24 Hours: 21.0, Dec., 1909(2)
(1)
T = Trace of precipitation (2)
Extreme value recorded in the local area, but not at the official measurement site CHAPTER 02                                2.3-47                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.1-5 DISTRIBUTION OF PRECIPITATION ALLENTOWN AIRPORT PERIOD OF RECORD: 1944-1976 TOTAL PRECIPITATION                        SNOW AND SLEET (inches of water)                            (inches)
Mean              Maximum              Mean              Maximum JAN                        3.19                6.16                7.7              24.1 FEB                        2.94                5.44                8.6              22.4 MAR                        3.66                7.21                6.1              30.5 APR                        3.84                10.09                0.4                3.1 MAY                        3.86                7.88                T(1)              T(1)
JUN                        3.69                8.58                0.0                0.0 JUL                        4.30                10.42                0.0                0.0 AUG                        4.28                12.10                0.0                0.0 SEP                        4.03                7.69                0.0                0.0 OCT                        2.74                6.84                T(1)              1.4 NOV                        3.66                9.69                1.4                7.8 DEC                        3.71                7.89                7.4              28.4 ANNUAL                    43.90                  -                31.6                -
Greatest Rainfall -    Monthly: 12.10, Aug, 1955 24 Hours: 4.79, Aug, 1955 Greatest Snowfall -    Monthly: 43.2, Jan, 1925(2) 24 Hours: 17.5, Mar, 1958 (1)
T = Trace of precipitation (2)
Extreme value obtained in the local area, but not at the official measurement site CHAPTER 02                                2.3-48                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.1-6 MEAN NUMBER OF THUNDERSTORM DAYS PER YEAR IN THE LGS VICINITY PERIOD OF RECORD: PHILADELPHIA 1941-1981 ALLENTOWN 1944-1981 PHILADELPHIA        ALLENTOWN JAN                      <1/2                <1/2 FEB                      <1/2                <1/2 MAR                      1                  1 APR                      2                  2 MAY                      4                  4 JUN                      5                  6 JU                        6                  7 AUG                      5                  6 SEP                      2                  3 OCT                      1                  1 NOV                      1                  1 DEC                      <1/2                <1/2 ANNUAL                  27                32 CHAPTER 02                  2.3-49            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.1-7 LGS DESIGN BASIS TORNADO PARAMETERS Maximum Wind Speed                                      360 mph Rotational Speed                                        300 mph Translation Speed                                        60 mph Pressure Drop                                            3 psi Rate of Pressure Drop                                    1 psi/sec CHAPTER 02                        2.3-50            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.1-8 LGS VERTICAL PROFILE OF THE 100 YEAR RECURRENCE INTERVAL FASTEST MILE OF WIND HEIGHT ABOVE GROUND                      FASTEST MILE (feet)                                (mph) 30                                    82 100                                    97 200(1)                                108 300                                  114 400                                  119 500(2)                                123 (1)
Approximate height of reactor enclosure (2)
Approximate height of cooling towers CHAPTER 02                              2.3-51            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.1-9
 
==SUMMARY==
OF HURRICANES AND TROPICAL STORMS AFFECTING THE LGS VICINITY BETWEEN 1963 AND 1981 Philadelphia NWS                  Allentown NWS                LGS Site Maximum 24 Hour            10 m 24 Hour          Fastest Mile of  24 Hour        Fastest Mile Precip.        Hourly Wind Storm                      Precip. Total          Wind        Precip. Total      of Wind    Total            Speed Name      Dates    Status      (in)              (mph)          (in)            (mph)      (in)            (mph)
Betsy  9/12/65    TD          .08                20            .10              17 9/13/65    ET          .37                15            .33              14 Alma    6/12/66    H          T                  24            .00              16 6/13/66    TS          T                  20            .00              15 6/14/66    ET          T                  24            .35              17 Abby    6/10/68    TD          .00                22              T                21                LGS 6/11/68    TD          T                  10              T                10          Meteorological 6/12/68    TD          3.05                16            .95              13            Monitoring 6/13/68    TD          T                  17            .03              16              Program Not Yet Operational Candy    6/25/68    TD          T                  12            .09              16 6/26/68    ET          .11                24            .16              16 6/27/68      -        .38                24            .23              17 Gerda    9/8/69      H          .29                19            .64              10 Alma    5/26/70    TD          1.02                17            .36              14 Doria  8/26/71    TS          .02                15            .07              16 8/27/71    TS          4.77                18            3.12              17 8/28/71    TS          1.78                38            1.45              25 Agnes    6/21/72    TS          .92                30            .60              20      2.39              14 6/22/72    TS          2.35                34            3.23              25      5.57              22 6/23/72      -        .19                17            .53              21        .41              12 Eloise  9/23/75    H          1.94                12            2.75              17      2.35                7 9/24/75    ET          2.04                18            1.57              17      MSG                10 Belle  8/9/76      H          .51                22            .83              21        .79              15 8/10/76    TS          1.17                30            .10              20        .87              16 Claudette 7/29/79    TD          .01                14            1.64              9        .20                7 CHAPTER 02                                        2.3-52                                                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.1-9 (Contd)
Philadelphia NWS                    Allentown NWS                  LGS Site Maximum 24 Hour          10 m 24 Hour Precip. Fastest Mile of 24 Hour Precip. Fastest Mile Precip.      Hourly Wind Storm                                    Total              Wind            Total            of Wind    Total          Speed Name        Dates            Status      (in)              (mph)            (in)            (mph)      (in)          (mph)
David          9/5/79              TS        .82                28              .00                9      3.00              19 9/6/79              TS        1.32                33              .88                20      2.85              23 9/7/79              ET        .00                16              2.00              28        .02              10 Frederic      9/14/79            TS        .61                27              .49                25        .78              14 Bret          7/1/81              TD        .49                18              .01                17      1.14              14 7/2/81              -        .03                14              .05                23        .25              14 Legend:    TD  = Tropical Depression TS  = Tropical Storm H  = Hurricane ET  = Extratropical Stage T  =  Trace of Precipitation MSG =  Missing Data CHAPTER 02                                                      2.3-53                                                        REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-1 LGS PERCENT DATA RECOVERY FOR METEOROLOGICAL SENSORS WEATHER STATION NO. 1                  PERCENT DATA RECOVERY Instrument                    1/72 - 12/76    4/72 - 3/73 1/75 - 12/76 30 ft wind speed                  95.3            97.7          -
30 ft wind direction              93.7            97.7          -
175 ft wind speed                93.2            96.6          -
175 ft wind direction            92.6            93.8          -
270 ft wind speed                98.1            98.9          -
270 ft wind direction            98.1            99.2          -
Satellite wind speed              -              -            70.2 Satellite wind direction          -              -            82.5 Bivane azimuth                    61.4            -            -
Bivane elevation                  53.2            -            -
266-26 ft delta temperature      90.5            99.4          -
171-26 ft delta temperature      90.4            99.4          -
26 ft temperature                90.8            99.4          -
5 ft temperature                  91.8            -            -
Hygrothermograph temperature      97.6            -            -
Building temperature              92.0            -            -
Relative humidity                94.6            -            -
Precipitation                    91.9            -            -
Barograph                        93.5            -              -
PERCENT DATA WEATHER STATION NO. 2                  RECOVERY Instrument                              4/72 - 3/73 30 ft wind speed                          96.4 159 ft wind direction                      97.5 159 ft wind speed                          97.1 159 ft wind direction                      93.0 304 ft wind speed                          97.8 304 ft wind direction                      99.0 300 26 ft delta temperature                93.2 171-26 ft delta temperature                44.5 26 ft temperature                          69.4 CHAPTER 02                            2.3-54                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-2 LGS COMPARISON OF ANNUAL WIND DIRECTION FREQUENCY DISTRIBUTIONS (%)
WEATHER STATION NO. 1 PERIOD OF RECORD: JANUARY 1972 - DECEMBER 1976 DIRECTIONAL SECTOR          30 ft              175 ft            270 ft NNE            3.5                3.5              3.4 NE              3.7                3.1              3.4 ENE            5.5                4.1              4.2 E              7.6                6.1              5.6 ESE            4.5                3.7              3.6 SE              4.3                3.6              3.6 SSE            4.8                4.6              4.3 S              6.9                7.4              7.2 SSW            6.0                7.0              7.0 SW              4.7                5.0              5.7 WSW            5.1                5.1              5.4 W              8.4                8.3              9.5 WNW            14.8                16.6              16.1 NW              10.7                12.0              11.2 NNW            5.2                5.1              5.2 N              4.4                4.6              4.7 CHAPTER 02                    2.3-55            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-3 LGS MONTHLY AVERAGE WIND SPEEDS (mph)
WEATHER STATION NO. 1 PERIOD OF RECORD: JANUARY 1972 - DECEMBER 1976 WEATHER STATION NO. 1 30 ft              175 ft            270 ft JAN              6.6                9.4                11.1 FEB              8.0                10.7              12.3 MAR              8.5                11.4              12.9 APR              7.2                11.0              12.3 MAY              6.0                9.0                9.9 JUN              5.1                7.8                9.1 JUL              4.5                7.1                8.0 AUG              4.0                6.8                7.5 SEP              4.6                7.8                9.0 OCT              5.3                8.8                9.9 NOV              6.4                10.3              11.4 DEC              6.3                9.8                11.7 ANNUAL            6.0                9.1                10.4 ANNUAL % CALM    9.9                1.7                1.2 CHAPTER 02                    2.3-56              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-4 LGS COMPARISON OF ANNUAL WIND DIRECTION FREQUENCY DISTRIBUTIONS (%)
WEATHER STATION NO. 1 PERIOD OF RECORD: APRIL 1972 - MARCH 1973 DIRECTION SECTOR      30 ft              175 ft            270 ft NNE          4.5                4.9                4.7 NE          3.8                3.3                3.9 ENE          7.0                5.0                5.4 E            8.7                7.4                6.9 ESE          5.1                4.1                4.4 SE          3.5                3.0                3.3 SSE          5.0                4.7                4.4 S            6.8                7.7                8.1 SSW          5.7                6.8                6.6 SW          3.6                4.0                4.7 WSW          4.6                4.7                4.9 W            7.6                6.8                8.1 WNW          13.7                14.3              13.1 NW          8.4                10.3              8.8 NNW          6.4                6.9                6.9 N            5.5                6.1                5.9 CHAPTER 02                2.3-57              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-5 LGS COMPARISON OF ANNUAL WIND DIRECTION FREQUENCY DISTRIBUTIONS (%)
WEATHER STATION NO. 2 PERIOD OF RECORD: APRIL 1972 - MARCH 1973 DIRECTIONAL SECTOR        30 ft              159 ft            304 ft NNE          4.3                4.4                4.5 NE            2.2                2.7                3.1 ENE          4.8                5.0                5.5 E            5.9                7.3                6.1 ESE          5.8                5.4                4.4 SE            4.6                4.8                3.5 SSE          10.3                6.7                5.0 S            7.9                6.7                7.5 SSW          4.3                5.6                6.1 SW            2.1                2.9                4.0 WSW          3.2                4.4                4.7 W            4.8                7.4                6.9 WNW          10.7                10.9              12.7 NW            11.5                11.0              11.6 NNW          11.2                8.8                8.3 N            6.3                6.2                6.1 CHAPTER 02                  2.3-58              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-6 LGS COMPARISON OF ANNUAL WIND DIRECTION FREQUENCY DISTRIBUTIONS (%)
FROM EQUIVALENT MSL HEIGHTS PERIOD OF RECORD: APRIL 1972 - MARCH 1973 Level One (425 ft MSL)            Level Two (520 ft MSL)
Directional Tower 1            Tower 2        Tower 1            Tower 2 Sector    30 ft              159 ft          175 ft            304 ft NNE      4.5                4.4            4.9                4.5 NE        3.8                2.7            3.3                3.1 ENE      7.0                5.0            5.0                5.5 E        8.7                7.3            7.4                6.1 ESE      5.1                5.4            4.1                4.4 SE        3.5                4.8            3.0                3.5 SSE      5.0                6.7            4.7                5.0 S        6.8                6.7            7.7                7.5 SSW      5.7                5.6            6.8                6.1 SW        3.6                2.9            4.0                4.0 WSW      4.6                4.4            4.7                4.7 W        7.6                7.4            6.8                6.9 WNW      13.7              10.9            14.3              12.7 NW        8.4                11.0            10.3              11.6 NNW      6.4                8.8            6.9                8.3 N        5.5                6.2            6.1                6.1 CHAPTER 02                      2.3-59              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-7 LGS COMPARISON OF ANNUAL WIND DIRECTION FREQUENCY DISTRIBUTIONS (%)
LOW LEVEL SENSORS PERIODS OF RECORD:
TOWER 1      APRIL 1972 - MARCH 1973 TOWER 2      APRIL 1972 - MARCH 1973 SATELLITE JANUARY 1975 - DECEMBER 1976 Percent Differences Satellite Directional        Tower 1        Tower 2              Tower    Tower 2          Satellite Sector              30 ft            30 ft              32 ft    Tower 1          Tower 1 NNE                  4.5              4.3                1.9      -0.2            -2.6 NE                    3.8              2.2                1.7      -1.6            -2.1 ENE                  7.0              4.8                2.8      -2.2            -4.2 E                    8.7              5.9                8.8      -2.8            +0.1 ESE                  5.1              5.8                6.7      +0.7            +1.6 l SE                    3.5              4.6                6.6      +1.1 l          +3.1 l SSE                  5.0            10.3                8.2      +5.3 l          +3.2 l S                    6.8              7.9                7.5      +1.1            +0.7 SSW                  5.7              4.3                3.1      -1.4            -2.6 SW                    3.6              2.1                2.1      -1.5            -1.5 WSW                  4.6              3.2                3.1      -1.4            -1.5 W                    7.6              4.8                5.3      -2.8            -2.3 WNW                  13.7            10.7              11.6      -3.0            -2.1 NW                    8.4            11.5              15.5      +3.1            +7.1 NNW                  6.4            11.2              10.0      +4.8 l          +3.6 N                    5.5              6.3                5.0      +0.8            -0.5 Bracketed sectors indicate increased flow in the river valley.
CHAPTER 02                                2.3-60                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-8 LGS COMPARISON OF MONTHLY AVERAGE WIND SPEEDS (mph)
PERIODS OF RECORD:
TOWER 1      APRIL 1972 - MARCH 1973 TOWER 2      APRIL 1972 - MARCH 1973 SATELLITE JANUARY 1975 - DECEMBER 1976 Tower 1                        Tower 2          Satellite Tower 30 ft    175 ft    270 ft        30 ft  159 ft  304 ft      32 ft JAN          6.8      10.6      11.5          5.2    7.6    10.9          6.0 FEB          8.8      11.3      13.0          6.0    6.5      9.9          5.1 MAR          7.5        9.8      12.0          6.8    9.1    11.2          6.8 APR          6.7      10.2      11.1          5.3    7.7    10.0          6.8 MAY          5.7        9.0        9.5          4.1    6.0      8.7          4.0 JUN          5.8        9.0      10.0          4.0    6.1      9.0          3.2 JUL          4.4        6.5        7.6          3.0    4.3      6.8          2.6 AUG          4.8        6.8        8.0          3.2    4.6      7.2          3.1 SE            4.6        7.8        8.7          3.4    5.5      7.8          3.5 OCT          5.7        9.0      10.4          4.3    6.8      9.5          3.3 NOV          6.6        9.9      11.5          5.2    7.2    10.3          3.4 DEC          6.0        9.7      11.2          4.3    7.7      9.3          4.7 ANNUAL        6.0        9.1      10.3          4.5    6.5      9.2          4.7 ANNUAL        8.1        2.0        .9          21.5    9.0      1.9        17.5
% CALM CHAPTER 02                          2.3-61                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-9 COMPARISON OF WIND SPEED FREQUENCY DISTRIBUTIONS (%)
Wind Speed Group (mph)                Mean Wind Site            0-3    4-7    8-12      13-18    19-23      24+    Speed (mph)
LGS Tower 1 270 ft level 1/72 - 12/76    9.8    25.6  33.8      21.2    5.8        3.7    10.4 PBAPS Tower 2 320 ft level 1/72 - 12/76    11.0    22.1  33.0      24.3    6.5        3.1    10.6 CHAPTER 02                        2.3-62              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-10 LGS ANNUAL FREQUENCY DISTRIBUTION OF BROOKHAVEN TURBULENCE CLASSES WEATHER STATION NO. 1 PERIOD OF RECORD: JANUARY 1972 - DECEMBER 1976 Turbulence Class            Percent Frequency I                              0.0 II                              55.4 III                            2.6 IV                              12.7 V                              29.3 CHAPTER 02                    2.3-63                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-11 LGS ANNUAL FREQUENCY DISTRIBUTION OF PASQUILL STABILITY CLASSES BY NRC LAPSE RATE CRITERIA WEATHER STATION NO. 1 PERIOD OF RECORD: JANUARY 1972 - DECEMBER 1976 PASQUILL STABILITY CLASS                              PERCENT FREQUENCY 266-26 ft                    171-26 ft interval                    interval A                                  2.2                          8.4 B                                  3.4                          4.4 C                                  6.2                          6.0 D                                  39.6                        31.2 E                                  32.5                        30.2 F                                  12.1                        13.4 G                                  4.0                          6.4 CHAPTER 02                      2.3-64                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-12 LGS ANNUAL FREQUENCY DISTRIBUTION OF BROOKHAVEN TURBULENCE CLASSES PERIOD OF RECORD: APRIL 1972 - MARCH 1973 Percent Frequency Turbulence Class                  Tower 1                        Tower 2 I                                0.0                            0.0 II                              44.8                          54.0 III                              3.3                            3.7 IV                              14.6                          13.6 V                              37.3                          28.6 CHAPTER 02                    2.3-65                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-13 LGS ANNUAL FREQUENCY DISTRIBUTION OF PASQUILL STABILITY CLASSES BY NRC LAPSE RATE CRITERIA PERIOD OF RECORD: APRIL 1972 - MARCH 1973 Pasquill Stability Class                          Percent Frequency 266-26 ft        171-26 ft          300-26 ft        155-26 ft interval          interval            interval          interval A                0.6              4.2                0.2              2.4 B                1.3              3.4                0.2              1.1 C                4.6              6.3                0.7              3.1 D              45.6              34.6                33.6              28.0 E              33.0              33.0                42.6              41.5 F              11.0              12.4                15.4              14.3 G                4.1              6.1                7.2              9.6 CHAPTER 02                      2.3-66                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-14 BROOKHAVEN NATIONAL LABORATORY TURBULENCE CLASSIFICATION Brookhaven National Turbulence                    Laboratory Class                      Classification(1)          Description of Wind Trace I - Extremely                        A                  Fluctuations of the wind Unstable                                            direction during the course of 1 hour exceed 90 degrees.
II - Unstable                        B1                  Fluctuations are confined to a lower limit of 15 and an upper limit of 45.
III - Very                            B2                  Trace is similar to I and Unstable                                            II, but the upper and lower limits are 90 and 45.
IV - Neutral                          C                  The lower limit of the fluctuations is 15, and no upper limit is imposed. The case is distinguished by an unbroken solid core, through which a straight line can be drawn for the entire hour, without touching "open space" on the chart.
V - Stable                            D                  The trace approximates a line, and short-term fluctuations do not exceed
: 15. Direction may vary gradually over a wide angle during the hour.
(1)
Reference 2.3.3-5.
CHAPTER 02                                2.3-67                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-15 LGS MEAN MORNING AND AFTERNOON MIXING HEIGHTS (meters) am                    pm Spring          700                    1800 Summer          550                    1800 Fall            700                    1400 Winter          800                    1000 Annual          650                    1500 CHAPTER 02            2.3-68            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-16 LGS TEMPERATURE MEANS AND EXTREMES (F)
WEATHER STATION NO. 1 PERIOD OF RECORD: JANUARY 1972 - DECEMBER 1976 MONTHLY            MONTHLY          MONTHLY MEAN                MAXIMUM          MINIMUM JAN            31.6                67.9              0.7 FEB            30.2                67.2              3.4 MAR            40.8                75.5              11.6 APR            51.2                91.5              21.4 MAY            60.3                88.0              31.1 JUN            69.0                91.1              40.1 JUL            73.2                90.9              51.0 AUG            72.2                96.2              45.1 SEP            64.5                91.6              36.0 OCT            53.4                85.2              25.0 NOV            44.5                80.3              11.8 DEC            34.5                65.9              5.9 ANNUAL          51.8                96.2              0.7 CHAPTER 02                  2.3-69              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-17 COMPARISON OF MONTHLY MEAN TEMPERATURES (F)
LGS VERSUS PHILADELPHIA LGS(1)                            Philadelphia 1972-1976                1972-1976          1937-1976 JAN                        31.6                        34.3                33.0 FEB                        30.2                        34.9                33.8 MAR                        40.8                        43.7                41.7 APR                        51.2                        52.8                52.2 MAY                        60.3                        63.1                63.0 JUN                        69.0                        72.2                71.9 JUL                        73.2                        76.8                76.6 AUG                        72.2                        76.7                74.7 SEP                        64.5                        68.4                68.4 OCT                        53.4                        56.1                57.5 NOV                        44.5                        46.5                46.2 DEC                        34.5                        37.0                36.1 ANNUAL                    51.8                        55.2                54.6 (1)
Tower 1 26 foot temperature CHAPTER 02                          2.3-70                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-18 COMPARISON OF MONTHLY MEAN TEMPERATURES (F)
LGS VERSUS ALLENTOWN LGS(1)              Allentown, Pennsylvania 1972-1976        1972-1976      1937-1976 JAN                        31.6                29.6            28.7 FEB                        30.2                31.0            29.7 MAR                        40.8                40.2            38.4 APR                        51.2                49.5            49.6 MAY                        60.3                59.8            59.7 JUN                        69.0                69.3            69.2 JUL                        73.2                73.7            73.9 AUG                        72.2                72.5            71.8 SEP                        64.5                63.6            64.5 OCT                        53.4                52.1            53.8 NOV                        44.5                43.0            42.3 DEC                        34.5                33.0            31.2 ANNUAL                    51.8                51.4            51.0 (1)
Tower 1 26 foot temperature CHAPTER 02                          2.3-71              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-19 LGS MONTHLY PRECIPITATION DISTRIBUTION (inches)
WEATHER STATION NO. 1 PERIOD OF RECORD: JANUARY 1972 - DECEMBER 1976 MAXIMUM 5 YEAR TOTAL        MEAN(1)            MONTH              HOUR JAN              18.09              4.19              6.11              1.22 FEB              15.34              3.07              4.39                .45 MAR              23.45              4.89              6.39                .86 APR              25.75              5.54              8.74                .55 MAY              28.35              5.74              7.63              1.19 JUN              38.13              7.78              12.40              2.25 JUL              16.16              4.01              7.66              1.90 AUG              16.94              3.69              6.29              1.50 SEP              25.09              5.39              6.91              1.17 OCT              18.91              4.26              6.53                .55 NOV              18.93              4.13              14.23              .50 DEC              28.72              6.64              10.10              .65 ANNUAL          273.86              59.57              -                  -
(1)
Mean values are obtained through a weighting procedure which discounts missing hours.
CHAPTER 02                            2.3-72                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-20 COMPARISON OF MONTHLY MEAN PRECIPITATION (inches)
LGS VERSUS PHILADELPHIA LGS                              Philadelphia 1972-1976                1972-1976          1937-1976 JAN        4.19                        3.54                3.17 FEB        3.07                        2.95                3.10 MAR        4.89                        3.64                3.51 APR        5.54                        3.71                3.28 MAY        5.74                        4.16                3.35 JUN        7.78                        5.82                3.65 JUL        4.01                        3.49                4.10 AUG        3.69                        2.80                4.48 SEP        5.39                        3.77                3.40 OCT        4.26                        3.08                2.80 NOV        4.13                        2.79                3.07 DEC        6.64                        4.02                3.19 ANNUAL      59.57                      43.77              41.10 CHAPTER 02                  2.3-73                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-21 COMPARISON OF MONTHLY MEAN PRECIPITATION (inches)
LGS VERSUS ALLENTOWN LGS                          Allentown, Pennsylvania 1972-1976              1972-1976            1937-1976 JAN        4.19                        4.05                3.19 FEB        3.07                        2.93                2.94 MAR        4.89                        3.54                3.66 APR        5.54                        3.67                3.84 MAY        5.74                        4.59                3.86 JUN        7.78                        5.38                3.69 JUL        4.01                        3.85                4.30 AUG        3.69                        4.67                4.28 SEP        5.39                        5.26                4.03 OCT        4.26                        3.56                2.74 NOV        4.13                        3.45                3.66 DEC        6.64                        4.59                3.71 ANNUAL      59.57                      49.53                43.90 CHAPTER 02                    2.3-74                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-22 COMPARISON OF MEAN MORNING AND AFTERNOON RELATIVE HUMIDITY (%)
PERIOD OF RECORD:
LGS                1972-1976 PHILADELPHIA        1960-1976 ALLENTOWN          1951-1976 Morning (7 AM)                        Afternoon (1 PM)
LGS    Philadelphia  Allentown        LGS  Philadelphia    Allentown JAN      79          74            77            63        60            62 FEB      76          71            76            56        57            59 MAR      74          71            76            54        53            55 APR      74          69            76            51        48            51 MAY      80          75            78            56        53            53 JUN      85          78            80            60        55            54 JUL      82          79            82            55        54            52 AUG      84          81            87            54        54            55 SEP      89          83            89            59        56            57 OCT      88          81            87            56        53            55 NOV      82          76            83            56        55            60 DEC      78          74            80            61        60            64 ANNUAL    81          76            81            57        55            56 CHAPTER 02                          2.3-75            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-23 COMPARISON OF FREQUENCY DISTRIBUTIONS OF DAILY AVERAGE RELATIVE HUMIDITY VALUES Relative Humidity (%)                    Frequency of Occurrence (%)
LGS                                Philadelphia (1/72-6/74)            (1/72-6/74)          (1/41-12/74) 90-100                12.3                        7.9                  6.3 80-89                17.7                        17.3                  15.7 70-79                29.4                        22.9                  24.7 60-69                20.1                        23.7                  26.2 50-59                14.7                        17.5                  18.5
  <50                  4.8                        10.7                  8.6 CHAPTER 02                        2.3-76                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-24 COMPARISON OF ANNUAL FREQUENCY DISTRIBUTIONS OF HOURLY RELATIVE HUMIDITY VALUES Relative Humidity (%)                  Frequency of Occurrence (%)
LGS Weather Station No.1          Philadelphia (1972-1976)                (1951-1960) 90-100                                    29.4                      16.7 80-89                                      11.4                      15.4 70-79                                      11.6                      14.8 50-69                                      30.0                      31.3 30-49                                      16.8                      19.9
  <30                                        0.7                      1.9 CHAPTER 02                      2.3-77                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-25 MEAN NUMBER OF DAYS WITH HEAVY FOG(1)
Philadelphia                Allentown (1940-1976)                (1943-1976)
JAN                            3                          3 FEB                            3                          3 MAR                            2                          3 APR                            1                          2 MAY                            1                          2 JUN                            1                          1 JUL                            1                          1 AUG                            1                          2 SEP                            2                          3 OCT                            4                          3 NOV                            3                          3 DEC                            3                          3 ANNUAL                          25                          29 (1)
Heavy fog is defined by visibility of 1/4 mile or less.
CHAPTER 02                                2.3-78            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-26 OFFSITE ELEVATION VERSUS DISTANCE FROM LGS VENTS OFFSITE ELEVATION (IN FEET ABOVE MSL) VS DISTANCE (FT) FROM LGS VENTS (PA. COORD. N 331,844,E 2,603,786.5)
FOR EACH OF SIXTEEN 22.5 DEGREE SECTORS. MAXIMUM ELEVATION ACROSS EACH SECTOR IS LISTED. THE LAST COLUMN LISTS THE HIGHEST ELEVATION FOR ALL DIRECTIONS.
DISTANCE                                                                                              DISTANCE          DISTANCE FROM                                                                                                  FROM              FROM SOURCE                                                                                                SOURCE            SOURCE IN FEET    N  NNE  NE    ENE  E    ESE  SE  SSE  S    SSW SW      WSW W      WNW  NW    NNW  ALL IN MILES          IN METERS 2500                          285  190  150      110  130                          150        285  0.473            762.000 2600          270  270  290  290  200  140      110  130                    125  150        290  0.492            792.480 2700          265  280  290  290  210  130      110  130                    130  150        290  0.511            822.960 2800          260  275  290  290  200  150      110  130          160    155 130  150        290  0.530            853.440 2900      235 260  270  295  290  195  155      120  130  160    170    155 140  150  220  295  0.549            883.920 3000      230 255  270  295  290  190  170      130  130  165    175    160 140  150  250  295  0.568            914.400 3100      230 250  265  300  290  200  180      130  130  165    175    160 150  190  250  300  0.587            944.880 3200      235 250  260  300  240  200  190      130  130  170    180    160 150  200  250  300  0.606            975.360 3300      240 250  255  300  250  200  195  160  130  130  175    180    160 150  200  250  300  0.625            1005.840 3400      240 250  250  300  260  200  210  200  130  130  185    180    160 160  200  250  300  0.644            1036.320 3500      240 250  250  295  270  205  210  205  130  130  185    185    160 170  145  250  295  0.663            1066.800 3600      240 250  250  300  290  210  215  210  130  130  190    190    160 160  145  245  300  0.682            1097.280 3700      240 250  250  305  295  225  220  210  130  130  190    190    165 160  150  240  305  0.701            1127.760 3800      235 250  250  310  290  235  230  210  130  130  190    190    165 160  155  235  310  0.720            1158.240 3900      230 250  255  310  290  240  235  210  130  140  190    185    165 160  160  230  310  0.739            1188.720 4000      215 250  260  310  290  250  230  210  130  145  190    190    170 160  160  215  310  0.758            1219.200 4100      220 250  260  310  290  250  230  205  130  150  195    190    170 160  160  205  310  0.777            1249.680 4200      225 250  260  310  285  250  230  200  130  155  195    190    170 160  170  195  310  0.795            1280.160 4300      230 250  260  310  285  250  230  190  130  160  195    195    170 170  155  180  310  0.814            1310.640 4400      220 250  250  310  260  250  220  190  110  150  180    200    170 170  120  170  310  0.833            1341.120 4600      230 260  260  310  260  250  220  190  110  150  180    200    180 160  110  150  310  0.871            1402.080 4800      230 260  260  300  250  250  210  190  110  150  200    200    180 170  110  180  300  0.909            1463.040 5000      240 260  270  290  260  250  200  200  110  160  210    200    180 170  115  190  290  0.947            1524.000 5200      240 260  270  290  260  250  200  210  110  175  210    200    180 170  120  200  290  0.985            1584.960 5400      240 260  270  280  260  250  200  220  120  200  210    200    190 170  120  210  280  1.023            1645.920 5600      240 270  270  280  265  250  200  220  120  200  220    200    200 170  130  220  280  1.061            1706.880 5800      250 280  270  280  265  250  200  230  130  200  230    200    200 130  135  230  280  1.099            1767.840 6000      250 280  270  280  265  250  200  220  140  200  230    200    200 130  140  250  280  1.136            1828.800 6200      260 290  280  280  270  250  200  190  140  200  240    200    200 130  230  270  290  1.174            1889.760 6400      250 300  300  280  270  250  200  180  130  180  240    200    210 140  230  260  300  1.212            1950.720 CHAPTER 02                                            2.3-79                                              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-26 (Contd)
OFFSITE ELEVATION VERSUS DISTANCE FROM LGS VENTS DISTANCE                                                                                  DISTANCE      DISTANCE FROM                                                                                      FROM          FROM SOURCE                                                                                    SOURCE        SOURCE IN FEET    N  NNE NE  ENE E  ESE SE  SSE  S    SSW SW      WSW W      WNW NW  NNW ALL IN MILES      IN METERS 6600      240 300 300 260 270 240 190 160  140  200  240    200    200 150 235 250 300  1.250        2011.680 6800      240 280 310 250 270 240 160 160  140  220  240    200    200 150 230 230 310  1.288        2072.640 7000      220 270 320 250 270 250 160 160  150  220  250    200    200 150 225 230 320  1.326        2133.600 7200      200 270 320 250 280 250 200 160  150  240  250    250    210 160 190 220 320  1.364        2194.560 7400      230 260 320 260 280 260 200 160  150  240  240    250    210 160 175 240 320  1.402        2255.520 7600      240 260 310 260 280 260 200 160  150  240  240    250    220 170 185 260 310  1.439        2316.480 7800      240 260 310 260 280 260 200 160  150  240  230    250    230 170 200 260 310  1.477        2377.440 8000      250 270 300 280 280 250 200 160  150  240  230    260    230 180 220 260 300  1.515        2438.400 8200      250 279 300 280 280 240 200 170  150  220  230    260    220 190 200 260 300  1.553        2499.360 8400      250 279 300 280 280 240 200 170  150  200  220    260    210 200 190 260 300  1.591        2560.320 8600      250 260 300 290 280 240 200 170  150  175  220    260    220 200 190 260 300  1.629        2621.280 8800      240 260 300 290 280 250 130 170  150  150  220    260    230 210 200 240 300  1.667        2682.240 9000      230 260 300 300 280 250 130 180  150  125  220    260    230 200 200 240 300  1.705        2743.200 9200      230 260 300 300 280 230 140 180  130  150  220    260    230 200 190 240 300  1.742        2804.160 9400      250 255 300 300 280 250 140 180  120  175  210    250    230 180 175 270 300  1.780        2865.120 9600      270 240 300 300 280 250 140 190  120  200  230    250    220 170 165 280 300  1.818        2926.080 9800      270 210 300 300 290 250 140 180  150  240  230    250    150 170 160 280 300  1.856        2987.040 10000      270 200 300 300 290 240 140 180  150  240  230    250    200 160 190 260 300  1.894        3048.000 10200      260 210 300 300 290 240 150 180  150  250  230    240    210 140 210 240 300  1.932        3108.960 10400      260 220 300 300 290 250 160 170  150  260  230    250    230 150 200 260 300  1.970        3169.920 10600      260 225 300 310 290 250 160 170  170  260  240    250    230 140 200 240 310  2.008        3230.880 10800      260 240 300 320 300 260 180 170  190  260  240    250    240 140 200 220 320  2.046        3291.840 11000      260 240 320 320 300 260 180 160  200  260  240    250    250 130 200 240 320  2.083        3352.800 11200      260 250 320 320 300 260 170 150  200  260  240    250    240 150 200 240 320  2.121        3413.760 11400      270 240 320 320 300 260 180 190  200  260  240    250    240 160 200 220 320  2.159        3474.719 11600      270 240 310 320 300 270 200 210  200  260  250    250    240 170 200 240 320  2.197        3535.680 11800      270 240 300 320 300 270 210 230  200  280  270    250    240 180 200 260 320  2.235        3596.640 12000      280 260 300 320 300 270 220 230  210  280  270    250    250 180 200 280 320  2.273        3657.600 12200      290 300 290 320 320 270 210 210  230  280  270    250    250 180 200 280 320  2.311        3718.560 12400      300 310 300 330 320 270 210 230  230  280  260    250    250 180 200 280 330  2.349        3779.520 CHAPTER 02                                      2.3-80                                        REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-26 (Contd)
OFFSITE ELEVATION VERSUS DISTANCE FROM LGS VENTS DISTANCE                                                                                    DISTANCE      DISTANCE FROM                                                                                        FROM          FROM SOURCE                                                                                      SOURCE        SOURCE IN FEET    N  NNE NE  ENE E  ESE  SE  SSE  S    SSW SW        WSW W      WNW NW  NNW ALL IN MILES      IN METERS 12600      300 320 300 330 320 270  210 250  240  280    260    250    240 180 210 260 330  2.386        3840.479 12800      320 340 290 340 320 260  210 290  250  280    260    260    250 180 220 280 340  2.424        3901.439 13000      320 380 300 340 320 260  210 300  260  280    260    260    250 180 230 260 380  2.462        3962.400 13200      310 400 360 350 320 260  220 320  260  280    280    264    250 200 230 240 400  2.500        4023.360 13400      310 410 380 350 320 260  240 330  250  300    290    250    250 210 240 260 410  2.538        4084.320 13600      310 440 400 360 320 266  230 340  250  300    300    250    260 220 240 260 440  2.576        4145.277 13800      310 480 400 360 320 266  230 340  250  300    300    250    260 220 240 280 480  2.614        4206.238 14000      320 500 400 350 320 266  220 350  260  300    300    250    260 210 235 290 500  2.652        4267.199 14200      330 500 400 350 300 266  210 350  270  300    300    260    270 210 230 290 500  2.689        4328.156 14400      330 490 400 350 300 266  210 330  280  300    300    270    280 210 230 300 490  2.727        4389.117 14600      320 480 400 350 300 250  240 330  300  300    290    260    280 210 230 320 480  2.765        4450.078 14800      340 460 400 350 300 220  240 330  300  300    290    280    280 210 220 340 460  2.803        4511.039 15000      360 440 400 350 300 240  230 310  300  300    290    280    290 210 230 380 440  2.841        4571.996 15200      400 430 400 350 300 240  230 290  300  300    290    300    290 210 230 400 430  2.879        4632.957 15400      420 400 400 350 300 230  230 290  300  300    290    300    290 210 220 420 420  2.917        4693.918 15600    440  390 400 350 300  240 220 290    300  300  290    300    280  210 220 440 440  2.955        4754.879 15800    440  370 400 350 300  250 200 280    300  300  290    300    280  210 225 420 440  2.993        4815.836 16000    460  350 400 350 300  250 200 300    300  320  280    300    270  210 230 420 460  3.030        4876.797 16200    480  370 400 350 320  250 200 300    300  340  270    300    270  220 220 400 480  3.068        4937.758 16400    480  390 400 360 320  250 210 280    300  340  260    300    270  240 230 440 480  3.106        4998.719 16600    500  390 400 360 300  250 210 290    300  340  270    300    270  250 250 480 500  3.144        5059.676 16800    500  400 400 360 300  250 210 290    300  320  280    300    270  250 260 420 500  3.182        5120.637 17000    520  400 400 360 300  250 210 290    300  330  290    320    270  250 280 390 520  3.220        5181.598 17200    540  400 400 360 300  240 210 300    300  330  300    330    270  250 280 420 540  3.258        5242.559 17400    550  400 400 360 300  240 210 300    300  330  300    340    280  240 280 440 550  3.296        5303.520 17600    560  400 380 360 290  230 210 290    300  330  300    360    290  220 280 460 560  3.333        5364.477 17800    560  400 380 360 290  240 210 300    300  320  280    390    310  220 280 460 560  3.371        5425.438 18000    520  400 400 360 290  240 210 310    300  300  290    400    320  200 280 460 520  3.409        5486.398 18200    500  400 400 360 290  230 210 300    290  360  310    424    320  210 260 480 500  3.447        5547.359 18400    500  440 400 360 280  220 210 290    280  350  330    400    320  210 260 480 500  3.485        5608.316 18600    480  460 400 360 290  210 230 280    300  370  340    400    310  220 260 460 480  3.523        5669.277 18800    480  500 400 360 290  240 240 270    300  370  350    390    300  220 260 460 500  3.561        5730.238 19000    480  530 400 360 290  240 240 270    300  370  350    380    290  220 260 480 530  3.599        5791.199 19200    480  540 400 350 290  240 240 270    310  370  350    370    300  210 260 480 540  3.636        5852.156 19400    480  540 400 350 300  240 230 260    320  380  350    360    300  210 280 460 540  3.674        5913.117 CHAPTER 02                                      2.3-81                                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-26 (Contd)
OFFSITE ELEVATION VERSUS DISTANCE FROM LGS VENTS DISTANCE                                                                                    DISTANCE      DISTANCE FROM                                                                                        FROM          FROM SOURCE                                                                                      SOURCE        SOURCE IN FEET    N  NNE NE  ENE E  ESE  SE  SSE  S    SSW SW        WSW W      WNW NW  NNW ALL IN MILES      IN METERS 19600    460 520 420 350 300  230 220 250    320  400  350    350    290  210 300 480 520  3.712        5974.078 19800    460 540 460 350 300  240 240 250    330  420  360    360    290  210 320 460 540  3.750        6035.039 20000    440 560 480 350 290  250 240 250    340  440  360    380    310  210 340 460 560  3.788        6095.996 20200    440 560 500 360 280  250 240 260    350  460  370    396    320  210 360 480 560  3.826        6156.957 20400    420 540 500 360 270  260 240 260    350  480  400    350    310  210 370 480 540  3.864        6217.918 20600    420 510 500 360 260  265 230 250    360  490  430    340    310  210 390 520 520  3.902        6278.879 20800    420 465 480 360 300  270 230 240    360  450  430    330    320  210 400 520 520  3.940        6339.836 21000    400 420 480 400 290  270 230 240    350  440  440    360    340  210 420 540 540  3.977        6400.797 21200    380 400 440 400 290  270 230 250    360  400  440    380    350  210 430 540 540  4.015        6461.758 21400    380 380 440 400 300  270 240 250    360  400  400    400    360  200 440 540 540  4.053        6522.719 21600    360 400 440 400 300  270 230 260    360  380  450    400    370  200 440 520 520  4.091        6583.676 21800    360 400 440 400 300  280 220 270    360  320  440    400    380  190 440 500 500  4.129        6644.637 22000    360 390 420 400 300  280 210 270    350  350  440    400    390  180 460 480 480  4.167        6705.598 22200    360 370 400 400 300  280 200 270    350  340  440    400    430  200 460 470 470  4.205        6766.559 22400    360 350 400 400 300  280 190 270    350  380  440    400    470  200 480 470 480  4.243        6827.516 22600    340 340 380 400 300  280 200 270    350  380  440    400    500  200 480 460 510  4.280        6888.477 22800    360 340 380 400 300  290 170 260    350  400  440    400    515  200 480 440 515  4.318        6949.438 23000    360 340 360 400 300  295 200 260    350  420  450    400    500  200 500 440 500  4.356        7010.398 23200    360 340 360 400 280  300 200 260    340  420  460    400    500  190 500 440 500  4.394        7071.359 23400    360 340 400 400 260  300 200 280    356  440  460    350    490  190 500 470 500  4.432        7132.316 23600    350 340 400 400 280  300 200 290    350  440  460    350    490  180 500 490 500  4.470        7193.277 23800    360 330 400 400 280  300 200 310    350  440  460    350    480  190 520 490 520  4.508        7254.238 24000    360 320 400 400 280  300 210 320    350  440  460    350    460  200 520 510 520  4.546        7315.199 24200    360 340 400 400 300  300 210 330    350  440  490    330    440  200 540 520 540  4.583        7376.156 24400    360 320 400 400 300  300 210 340    350  400  500    330    430  200 540 540 540  4.621        7437.117 24600    340 300 400 400 300  320 210 370    350  380  507    350    430  210 540 540 540  4.659        7498.078 24800    340 300 400 420 300  320 220 380    350  360  490    370    420  210 540 540 540  4.697        7559.039 25000    340 300 400 420 300  340 220 390    350  340  480    390    400  210 540 540 540  4.735        7619.996 25200    340 300 380 420 300  340 220 400    350  340  470    410    380  210 540 540 540  4.773        7680.957 25400    320 300 380 420 300  340 220 390    350  340  470    430    370  210 540 540 540  4.811        7741.918 25600    310 300 360 420 300  340 230 390    350  340  470    460    380  210 540 540 540  4.849        7802.879 25800    300 300 340 420 300  340 240 390    330  330  470    470    390  210 520 530 530  4.887        7863.836 26000    300 280 340 460 320  340 240 390    320  330  480    485    400  210 520 530 530  4.924        7924.797 26200    280 260 340 480 340  340 250 370    300  320  490    500    420  240 500 520 520  4.962        7985.758 26400    280 250 340 500 360  340 260 360    290  310  500    500    430  240 480 510 510  5.000        8046.719 CHAPTER 02                                      2.3-82                                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-26 (Contd)
OFFSITE ELEVATION VERSUS DISTANCE FROM LGS VENTS DISTANCE                                                                                    DISTANCE      DISTANCE FROM                                                                                        FROM          FROM SOURCE                                                                                      SOURCE        SOURCE IN FEET  N  NNE NE  ENE E  ESE  SE  SSE  S    SSW SW        WSW W      WNW NW  NNW ALL IN MILES      IN METERS 26900    300 260 360 500 360  320 260 320    270  300  500    540    430  240 460 470 540  5.095        8199.117 27400    320 300 380 480 360  340 270 300    260  280  480    550    450  240 520 440 550  5.190        8351.516 27900    340 300 400 520 360  320 270 300    260  270  450    620    450  240 400 440 620  5.284        8503.918 28400    320 310 440 540 360  320 270 270    280  280  410    640    470  240 380 440 640  5.379        8656.316 28900    280 310 440 540 280  300 280 260    290  270  440    720    510  240 360 440 720  5.474        8808.719 29400    300 280 400 520 310  300 290 290    290  300  450    750    535  320 320 440 750  5.568        8961.117 29900    300 280 310 520 320  300 290 260    300  400  450    800    520  360 320 440 800  5.663        9113.516 30400    300 280 310 540 310  300 290 260    260  500  450    800    520  380 360 460 800  5.758        9265.918 30900    300 280 310 480 310  300 300 260    290  600  400    750    530  380 360 540 750  5.852        9418.316 31400    300 300 300 380 290  300 290 320    270  600  400    750    530  420 360 580 750  5.947        9570.719 31900    300 300 320 350 280  300 280 290    300  660  530    700    590  440 400 600 700  6.042        9723.117 32400    320 300 300 400 280  290 280 260    350  670  610    700    680  460 420 570 700  6.137        9875.516 32900    320 320 320 380 300  280 280 240    350  680  600    700    710  480 440 530 710  6.231        10027.918 33400    320 340 320 310 280  260 280 230    350  654  650    760    700  480 460 530 764  6.326        10180.316 33900    320 340 300 330 270  260 280 260    350  660  660    740    730  440 480 540 740  6.421        10332.719 34400    320 320 260 330 270  260 300 280    350  670  640    750    780  440 460 560 780  6.515        10485.117 34900    330 340 220 320 260  270 300 260    350  670  620    750    780  440 440 510 780  6.610        10637.516 35400    340 360 260 300 250  250 300 240    350  650  600    750    790  460 360 490 790  6.705        10789.918 35900    340 360 300 280 240  240 300 220    496  640  600    750    790  400 340 510 790  6.799        10942.316 36400    340 360 320 250 270  220 300 220    400  600  606    750    780  400 440 560 780  6.894        11094.719 36900    340 380 360 240 240  200 310 240    350  590  650    700    780  320 520 570 780  6.989        11247.117 37400    330 400 380 220 220  200 320 250    350  580  680    670    770  320 500 580 770  7.084        11399.516 37900    330 420 380 260 200  200 300 240    300  560  660    670    780  320 460 600 780  7.178        11551.918 38400    340 440 360 280 270  200 340 220    350  540  650    700    790  320 460 580 790  7.273        11704.316 38900    340 460 340 300 260  200 360 240    350  560  630    700    790  320 440 510 790  7.368        11856.719 39400    350 460 360 380 270  200 370 250    350  590  640    700    790  320 440 560 790  7.462        12009.117 39900    370 480 380 460 260  200 380 270    400  590  650    700    770  320 380 580 770  7.557        12161.516 40400    390 480 400 500 250  200 380 300    360  600  690    700    760  320 340 580 760  7.652        12313.918 40900    400 500 420 500 260  200 370 370    360  600  700    700    750  320 360 560 750  7.746        12466.316 41400    420 500 440 440 250  190 360 440    380  590  719    750    770  320 380 580 770  7.841        12618.719 41900    500 500 440 420 250  180 370 480    420  580  700    750    810  340 400 640 810  7.936        12771.117 42400    510 560 380 380 250  180 380 480    400  573  680    800    860  360 420 700 860  8.031        12923.516 42900    520 580 380 340 260  190 360 533    533  590  690    800    890  340 480 740 890  8.125        13075.918 43400    560 550 400 340 270  200 360 400    480  580  690    850    910  360 540 820 910  8.220        13228.316 43900    530 410 410 340 260  220 350 320    320  570  690    850    920  340 580 800 920  8.315        13380.719 CHAPTER 02                                      2.3-83                                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-26 (Contd)
OFFSITE ELEVATION VERSUS DISTANCE FROM LGS VENTS DISTANCE                                                                                          DISTANCE      DISTANCE FROM                                                                                              FROM          FROM SOURCE                                                                                            SOURCE        SOURCE IN FEET  N    NNE  NE  ENE E  ESE  SE  SSE  S    SSW SW        WSW W      WNW  NW  NNW  ALL IN MILES      IN METERS 44400    390  380  380 340 290  230 340 310    400  550  650    850    900  340  600  780  900  8.409        13533.117 44900    350  400  300 340 300  240 320 320    400  600  640    850    912  340  660  820  912  8.504        13685.516 45400    350  400  300 340 300  240 270 350    430  620  650    750    890  340  680  690  890  8.599        13837.918 45900    410  400  360 340 300  250 270 370    460  647  640    700    890  340  720  700  890  8.693        13990.316 46400    480  440  360 340 290  250 260 250    440  625  650    700    940  340  820  760  940  8.788        14142.719 46900    560  400  360 360 280  250 230 350    480  590  750    700    990  340  940  900  990  8.883        14295.117 47400    490  460  340 340 300  250 230 380    490  590  760    700    1002 340  1020 1040 1040  8.978        14447.516 47900    460  500  380 340 300  240 230 380    470  550  770    600    990  380  900  980  990  9.072        14599.918 48400    500  600  400 340 300  280 190 420    480  550  810    600    980  420  920  860  980  9.167        14752.316 48900    560  620  440 380 320  360 160 460    490  570  800    600    910  420  1080 840  1080  9.262        14904.715 49400    580  620  440 380 320  400 170 450    527  600  740    600    920  420  1020 760  1020  9.356        15057.117 49900    580  620  440 380 320  400 200 480    520  690  700    600    920  380  900  740  920  9.451        15209.516 50400    620  620  440 360 300  400 210 460    490  740  720    590    900  440  930  700  930  9.546        15361.918 50900    650  620  440 340 320  450 200 500    480  720  750    620    880  440  820  680  880  9.640        15514.316 51400    690  620  440 360 340  450 200 550    470  660  840    633    860  440  720  700  860  9.735        15666.715 51900    720  620  440 340 340  450 200 530    514  620  830    648    840  540  620  720  840  9.830        15819.117 52400    700  640  440 320 340  450 200 500    480  560  800    680    780  600  780  800  800  9.925        15971.516 52800    640  640  440 340 320  450 200 510    480  562  760    720    770  640  780  820  820  10.000      16093.438 79200    650  400  500 300 300  200 400 500    500  500  500    500    600  500  400  700  700  15.000      24140.156 105600    773  500  500 600 464  300 500 250    250  500  500    1000  500  500  1000 600  1000  20.001      32186.875 132000    500  1000 500 500 385  300 300 250    250  500  750    1000  547  500  500  500  1000  25.001      40233.594 158400    500  500  500 500 375  300 50  50    250  500  500    500    500  1000 500  600  1000  30.001      48280.313 184800    500  500  800 500 300  120 50  50    250  450  750    500    900  500  1500 1500 1500  35.001      56327.035 211200    1000 500  900 500 230  50  50  100    50  350  500    500    1000 1500 1000 1000 1500  40.001      64373.754 237600    1000 696  800 300 213  50  150 140    50  350  500    500    900  1300 1000 1500 1500  45.001      72420.438 264000    1591 1500 700 500 108  50  150 100    50  300  500    700    800  1500 1600 1500 1600 50.002        80467.188 CHAPTER 02                                        2.3-84                                              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-27 LGS JOINT FREQUENCY DISTRIBUTION OF CALM HOURS 1972-1976 WEATHER STATION NO. 1 30 FT LEVEL Regulatory Guide 1.111 Technique Directional                                        Stability Class Sector              Class F    A      B          C            D      E    F    G NNE                  247      0.04  0.19      0.41          13.76  42.01 52.40  32.45 NE                    242      0.04  0.19      0.41          16.46  44.96 61.76  45.20 ENE                  261      0.05  0.38      0.36          28.69  66.82 82.35  70.70 E                    273      0.04  0.14      0.63          29.40  98.51 155.33 93.89 ESE                  240      0.03  0.05      0.50          13.41  66.33 86.71  47.52 SE                    240      0.01  0.19      0.54          13.76  74.93 77.36  41.73 SSE                  244      0.05  0.38      1.04          21.29  71.00 61.76  16.23 S                    254      0.10  0.47      1.49          27.52  88.93 79.23  15.07 SSW                  241      0.10  0.28      1.13          21.05  62.64 40.55  20.86 SW                    265      0.08  0.33      0.99          12.35  57.24 49.91  17.39 WSW                  235      0.09  0.66      1.40          14.94  55.27 47.41  32.45 W                    242      0.12  0.76      0.99          18.58  82.79 94.82  83.45 WNW                  249      0.06  0.38      0.81          17.76  88.19 146.60 125.18 NW                    247      0.05  0.24      0.45          12.82  74.44 126.60 88.01 NNW                  240      0.05  0.24      0.32          12.82  54.78 54.90  47.52 N                    254      0.07  0.14      0.54          15.41  47.17 54.27  38.25 Total                3974        1      5          12          290    1076  1272  816 Source: MES CHAPTER 02                                            2.3-85                              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-28 LGS JOINT FREQUENCY DISTRIBUTION OF CALM HOURS 1972-1976 WEATHER STATION NO. 1 175 FT LEVEL Regulatory Guide 1.111 Technique Directional                                      Stability Class Sector              Class F  A      B          C            D            E    F    G NNE                  39    0.09  0.11      0.24          5.54        7.92 5.81  3.40 NE                    40    0.09  0.27      0.15          3.69        8.44 6.37  1.59 ENE                  38    0.09  0.16      0.12          7.46      11.19 4.87  2.72 E                    43    0.04  0.11      0.15          8.31      17.56 10.11 5.21 ESE                  44    0.09  0.00      0.24          4.85      11.02 5.62  2.04 SE                    43    0.13  0.16      0.15          3.77        7.75 9.18  8.61 SSE                  42    0.17  0.27      0.36          6.62      11.02 10.49 4.08 S                    48    0.09  0.32      0.74          10.62      17.73 13.11 8.38 SSW                  48    0.57  0.48      0.59          8.15      16.87 10.30 6.80 SW                    42    0.30  0.32      0.44          4.54      13.26 9.74  7.93 WSW                  41    0.17  0.37      0.41          6.23      11.36 11.24 6.57 W                    39    0.43  0.48      0.38          5.77      18.25 20.98 11.56 WNW                  43    0.13  0.16      0.47          5.46      18.08 21.73 17.90 NW                    40    0.09  0.32      0.18          4.08      17.90 15.92 12.69 NNW                  38    0.22  0.05      0.18          4.46      10.50 12.17 3.85 N                    45    0.30  0.43      0.21          5.46      10.16 9.37  5.67 Total                673      3      4          5            95          209  177  109 Source: MES CHAPTER 02                                          2.3-86                                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-29 LGS JOINT FREQUENCY DISTRIBUTION OF CALM HOURS 1972-1976 WEATHER STATION NO. 1 270 FT LEVEL Regulatory Guide 1.111 Technique Directional                                      Stability Class Sector              Class F  A      B          C            D            E    F    G NNE                  34    0.16  0.07      0.22          4.06        6.93 7.40  2.89 NE                    33    0.05  0.09      0.13          3.04        8.26 3.70  3.37 ENE                  28    0.05  0.16      0.16          5.45        8.26 5.88  3.85 E                    35    0.07  0.12      0.16          6.40        8.59 8.27  4.58 ESE                  26    0.05  0.09      0.19          4.44        6.44 3.70  1.45 SE                    35    0.07  0.12      0.22          3.17        5.78 8.05  3.13 SSE                  29    0.09  0.05      0.35          4.69        7.59 5.22  2.89 S                    28    0.09  0.28      0.62          6.85      11.23 10.44 7.23 SSW                  32    0.30  0.16      0.62          5.45      11.56 9.36  7.23 SW                    30    0.23  0.14      0.43          4.69        8.75 10.66 6.75 WSW                  31    0.16  0.09      0.43          3.93        8.26 11.53 8.19 W                    32    0.26  0.21      0.38          4.25      12.55 14.36 5.78 WNW                  32    0.12  0.09      0.32          4.56      12.22 12.62 8.91 NW                    27    0.14  0.16      0.22          3.99      10.73 11.97 9.15 NNW                  31    0.07  0.07      0.24          3.42        6.11 5.66  6.02 N                    27    0.09  0.09      0.32          3.61        7.76 7.18  4.58 Total                490      2      2          5            72          141  136  86 Source: MES CHAPTER 02                                          2.3-87                              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-30 LGS JOINT FREQUENCY DISTRIBUTION OF CALM HOURS 4/72-3/73 WEATHER STATION NO. 2 30 FT LEVEL Regulatory Guide 1.111 Technique Directional                                      Stability Class Sector              Class F  A      B          C            D          E    F      G NNE                  113    0.00  0.00      0.00          2.39        18.22  0.00  3.55 NE                    113    0.00  0.00      0.00          0.30        5.20  3.56  0.00 ENE                  113    0.00  0.00      0.00          2.17        19.70  3.56  0.00 E                    113    0.00  0.00      0.00          5.09        29.37  1.78  0.00 ESE                  113    0.00  0.00      0.00          3.66        45.73 19.58  10.64 SE                    113    0.00  0.00      0.00          1.57        37.55 33.83  39.02 SSE                  113    0.00  0.00      0.00          3.96        81.42 215.42 205.72 S                    113    0.00  0.00      0.00          4.04        45.36 67.65  31.92 SSW                  113    0.00  0.00      0.00          2.69        18.59 24.93  10.64 SW                    113    0.00  0.00      0.00          0.37        5.58  3.56  0.00 WSW                  113    0.00  0.00      0.00          1.94        12.27  8.90  3.55 W                    113    0.00  0.00      0.00          3.89        27.51 30.27  10.64 WNW                  113    0.00  0.00      0.00          3.22        45.73 51.63  14.19 NW                    112    0.00  0.00      0.00          1.12        30.86 56.97  35.47 NNW                  112    0.00  0.00      0.00          3.14        52.05 138.87 78.03 N                    112    0.00  0.00      0.00          3.44        30.86 28.49  10.64 Total                1805      0      0          0            43          506  689    454 Source: MES CHAPTER 02                                          2.3-88                                  REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-31 LGS JOINT FREQUENCY DISTRIBUTION OF CALM HOURS 4/72-3/73 WEATHER STATION NO. 2 159 FT LEVEL Regulatory Guide 1.111 Technique Directional                                      Stability Class Sector              Class F  A      B          C            D          E    F    G NNE                  45    0.00  0.00      0.00          0.82        8.08 7.77  6.01 NE                    45    0.00  0.00      0.00          0.44        6.97 4.78  1.72 ENE                  45    0.00  0.00      0.00          1.53        9.47 6.57  2.58 E                    45    0.00  0.00      0.00          1.64        15.88 7.77  5.15 ESE                  45    0.00  0.00      0.00          1.64        22.29 27.49 12.03 SE                    45    0.00  0.00      0.00          1.26        16.72 20.92 13.74 SSE                  45    0.00  0.00      0.00          1.64        16.16 25.10 27.49 S                    45    0.00  0.00      0.00          1.31        13.93 17.93 12.03 SSW                  45    0.00  0.00      0.00          1.26        9.20 11.95 12.89 SW                    45    0.00  0.00      0.00          0.22        6.69 12.55 5.15 WSW                  44    0.00  0.00      0.00          0.87        6.69 14.94 7.73 W                    44    0.00  0.00      0.00          1.80        10.87 28.69 13.74 WNW                  44    0.00  0.00      0.00          1.04        12.54 22.11 22.33 NW                    44    0.00  0.00      0.00          0.49        13.65 21.52 28.35 NNW                  44    0.00  0.00      0.00          1.31        13.37 20.92 16.32 N                    44    0.00  0.00      0.00          1.75        14.49 8.97  7.73 Total                714      0      0          0            19          197  260  195 Source: MES CHAPTER 02                                          2.3-89                                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-32 LGS JOINT FREQUENCY DISTRIBUTION OF CALM HOURS 4/72-3/73 WEATHER STATION NO. 2 304 FT LEVEL Regulatory Guide 1.111 Technique Directional                                      Stability Class Sector              Class F  A      B          C            D          E  F      G NNE                  11    0.00  0.00      0.00          0.41        3.88 1.15  1.07 NE                    11    0.00  0.00      0.00          0.23        2.26 1.73  0.53 ENE                  11    0.00  0.00      0.00          0.52        5.17 2.31  1.33 E                    11    0.00  0.00      0.00          0.52        4.68 1.15  1.07 ESE                  11    0.00  0.00      0.00          0.52        7.11 2.60  0.80 SE                    11    0.00  0.00      0.00          0.36        2.75 2.31  1.87 SSE                  10    0.00  0.00      0.00          0.67        5.01 6.35  1.33 S                    10    0.00  0.00      0.00          0.59        5.65 4.91  3.47 SSW                  10    0.00  0.00      0.00          0.23        3.55 2.89  0.80 SW                    10    0.00  0.00      0.00          0.10        1.78 2.60  1.33 WSW                  10    0.00  0.00      0.00          0.39        1.78 2.02  2.67 W                    10    0.00  0.00      0.00          0.62        3.55 4.62  3.73 WNW                  10    0.00  0.00      0.00          0.49        5.01 5.48  4.27 NW                    10    0.00  0.00      0.00          0.13        3.88 10.10 4.00 NNW                  10    0.00  0.00      0.00          0.52        3.72 4.91  1.60 N                    10    0.00  0.00      0.00          0.70        3.23 2.89  2.13 Total                161      0      0          0            7          63  58    32 Source: MES CHAPTER 02                                          2.3-90                              REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.2-33 LGS JOINT FREQUENCY DISTRIBUTION OF CALM HOURS 1/75-12/76 SATELLITE TOWER 32 FT LEVEL Regulatory Guide 1.111 Technique Directional                                      Stability Class Sector              Class F  A      B          C            D          E    F    G NNE                    95    0.00  0.00      0.19          4.00        9.07 6.55  7.28 NE                    92    0.00  0.00      0.00          3.77      11.08 2.62  4.85 ENE                    95    0.00  0.00      0.00          7.30      11.59 7.86  12.13 E                    129    0.00  0.00      0.00          16.48      69.52 32.73 14.56 ESE                  182    0.00  0.00      0.38          8.00      86.15 70.70 41.26 SE                    183    0.00  0.00      0.19          8.47      97.74 75.94 19.42 SSE                  149    0.00  0.00      0.95          10.59      86.15 57.94 9.71 S                      93    0.00  0.91      2.08          11.06      44.33 57.61 4.85 SSW                    78    0.00  0.91      1.32          5.53      13.10 14.14 0.00 SW                    78    0.00  0.23      0.00          3.18        9.57 5.24  2.43 WSW                    78    0.00  0.69      1.51          4.94      16.63 2.62  2.43 W                      80    0.00  1.60      2.46          6.71      39.80 2.62  7.28 WNW                  116    0.00  1.14      1.51          6.94      53.91 15.71 19.42 NW                    120    0.00  0.91      1.14          7.53      70.03 23.57 24.27 NNW                  143    0.00  0.91      1.70          9.42      68.52 61.54 33.98 N                    106    0.00  0.69      0.57          7.06      41.82 51.06 12.13 Total                1817      0      8          14          121        729  508  216 Source: MES CHAPTER 02                                          2.3-91                                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.3-1 INSTRUMENT ELEVATIONS PREOPERATIONAL METEOROLOGICAL MEASUREMENT SYSTEM (1970-1983)
WEATHER STATION NO. 1        WEATHER STATION NO. 2 Tower 1                      Tower 2 Grade                                            el 250'                      el 121' Wind speed and wind direction                  el 280'(30')                  el 151'(30')
el 425'(175')(5)              el 280'(159')
el 520'(270')                el 425'(304')(5)
Horizontal and vertical wind                el 400'(150')(2) fluctuation Temperature                                    el 255'(5')(4)                el 126'(5')(4) el 256'(6')                  el 147'(26')
el 276'(26')
Temperature Difference                      el 421' - el 276'            el 276' - el 126' (171'-26')                    (155'-26')
el 516' - el 276'            el 421' - el 126' (266'-26')                    (300'-26')
Relative humidity                              el 255'(5')
Rain gauge                                      el 255'(5')
Satellite Tower Grade                    el 106' Wind speed and          el 138'(32')(3) wind direction (1)
All elevations refer to MSL. The number in parentheses after the elevation above MSL refers to the height of the sensor above grade.
(2)
This location is for a bivane used for special studies (removed from service March 7, 1977). All other wind instruments on Tower 1 and Tower 2 are six-blade Aerovanes.
(3)
Bendix Wind Vane; 3-cup anemometer and wind vane (4)
Ambient temperature in the control structure (5)
Structure vent release elevation CHAPTER 02                                  2.3-92                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.3-2 PREOPERATIONAL METEOROLOGICAL MEASUREMENT SYSTEM (1970-1983)
SENSOR AND SYSTEM SPECIFICATIONS AND ACCURACIES MANUFACTURER/          COMPONENT                SYSTEM(1)  REGULATORY            COMMENTS/
PARAMETER      COMPONENT          MODEL NO.              ACCURACY                  ACCURACY    GUIDE 1.23            SPECIFICATIONS Aerovane wind  Impeller          Bendix/120            +/-0.5 mph(0-10 mph)        -          -                    Starting speed of 1.8 mph speed Generator          Bendix/141            +/- 1 mph(>10 mph)          -          -                    Stopping speed of 0.7 mph Recorder          -                      (2)                                                        2 element recorder Combination of above components                                    +/-0.5 mph    +/-0.5 mph accuracy/
starting speed 1 mph Aerovane wind  Wind vane and      Bendix/120            +2 direction Recorder          Bendix/14              (2)                                                        2 element recorder Combination of above components          +/-2                      +/-5 Satellite      3-cup anemometer Bendix/2416914          +/-0.5 mph(0.5-50 mph)                                        Starting speed <0.5 mph wind speed Recorder          Bendix/141            (2)                      -            -                    2 element recorder Combination of above components                                    +/-0.5 mph    +/-0.5 mph accuracy/
starting speed
                                                                                              <1 mph Satellite      Wind vane          Bendix/2416970        +/-2                      -            -
wind direction Recorder          Bendix/141            (2)                      -            -                  2 element recorder Combination of above components                                    +/-2          +/-5 CHAPTER 02                                                    2.3-93                                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.3-2 (Cont'd)
MANUFACTURER/ COMPONENT                    SYSTEM(1)      REGULATORY      COMMENTS/
PARAMETER            COMPONENT          MODEL NO. ACCURACY                      ACCURACY      GUIDE 1.23      SPECIFICATIONS Temperature          Sensor            L&N/8197      +/-0.2F                        -              -              40F-120F, 1 ma +/-0.03%
(ambient)
Constant current  L&N/445372    (2)                          -              -              6 points, 10 seconds/
power source                                                                                  point Recorder          Speedomax W  +/-0.36F                      -              -                Dual range recorder Combination of above components                                +/-0.41F        +/-0.5C          +/-.0.9F = +/-0.5C
(+/-0.9F)
Temperature          Sensor            L&N/8197      +/-0.1F                                                      Matched pairs +/-0.07F (difference)
Constant current  L&N/445372    (2)                          -              -                40F-120F,1 ma +/-.0.03%
power source Recorder          L&N/Speedomax W +/-0.072F                    -              -                6 points, 10 seconds/
point Combination of above components                                +/-0.12F        +/-0.1C          +/-0.18F = +/-0.1C
(+/-0.18F)
Relative            Humidity sensor    Bendix/594    3% 20-80%                    3% 20-80%      +/-0.5C dew      +/-1.07% RH +/-0.5C Humidity                                              5% > 80%                      5% > 80% point                  dew point @ 21C Temperature        Bendix/594    +/-1F                          +/-1F          -
sensor (1) Square root of the sum of the squares (2) Negligible Error CHAPTER 02                                                  2.3-94                                            REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.3-3 LGS PERCENT OF HOURS WITH CALM WINDS PERIOD OF RECORD    Tower 1      1972-1976 Tower 2      1972-1976 Satellite    1975-1976 SENSOR Tower 1                                    30 ft (el 280' MSL)  9.9 175 ft (el 425' MSL)  1.7 270 ft (el 520' MSL)  1.2 Tower 2                                    30 ft (el 151' MSL)  22.9 159 ft (el 280' MSL)  6.2 304 ft (el 425' MSL)  1.9 Satellite                                  32 ft (el 138' MSL)  17.5 CHAPTER 02                                2.3-95                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.3-4 STATION LOCATIONS - PHILADELPHIA ELEVATION ABOVE SEA LEVEL                                                                  GROUND                                                                          SEA LEVEL Airline Distance Wind Instruments                                        Telepsychrometer Ground at Occupied From                                                                          Longitude North Tipping Bucket 8" Rain Gauge Extreme                                                                      Weighing Rain Latitude North                                                                                        Psychrometer and Direction From                                                                                                                                                                                                              Hygro-Occupied To                                                                          Temperature Site                                                                                                                                                              Pyrometer Previous Location                                                                                            Thermometers                                                Rain Gauge      Gauge                                Thermometer Location                                                                                                                                                                                                                                                                                                                              Remarks CITY Philadelphia Board of      12/23/70            9/21/71            -                        39 57'                  75 09'              -                  -                      -              -                  -                      -                    -              -                    -            -
Trade                                                                                                                                                                                                                                                                                                                                No record of elevations.
505 Chestnut Street Chamber of Commerce        9/21/71              2/01/82            0.3 mi E                39 57'                  75 09'              23                a122                  -              b98                -                      -                    -              c91                  -            -              a - About 129 feet to 8/4/75 Building, 133 S 2nd St.                                                                                                                                                                                                                                                                                                              b - 102 feet to 8/4/75.
c - Elev. prior to 8/4/75 unknown.
Mutual Life Ins Building  2/01/82              4/01/84            0.7 mi W                3957'                  75 09'              40                107                    -              54                -                      -                    -              z106                -            -              z - Approximate 10th & Chestnut Sts.
Post Office Building      4/01/84              12/17/34          0.1 mi E                39 57'                  75 09'              39                175                    169            168              -                      %114                -              167                  -            -              % - Added 1/27/14.
9th & Chestnut Sts.                                                                                                                                          d184                  d117          d116                                                                          d114                                              d - Effective 2/1/04.
e190                  e124          e123                                                                                                                              e - Effective 1/27/14.
f182                                                                                                                                                                    f - Effective 7/23/24.
g341                                                                                                                                                                    g - Moved 1000 feet South to Edison Building 2/2/28 h367                                                                                                                                                                        .
h - Effective 10/27/28.
New Customhouse            12/17/34            12/31/54          0.6 mi E                39 57'                  75 09'              26                1367                  175            174                -                      166                  j166            166                  -            -              i - Remained on Edison 2nd & Chestnut Sts.                                                                                                                                                                                                                                                                                                                        Building.
K                                                                              K                                                                                      j - Added 1/1/43.
m148                                                                            m132                                                                                    K - Moved to SW Airport 1/1/43.
m - Added 0.2 mi. West on Bourse Building 7/1/45.
New Customhouse            1/01/55              5/15/59            -                        -                                              26                -                      175            -                  -                      n160                n160            166                  -            -                Cooperative Station.
2nd & Chestnut Sts.                                                                                                                                                                                                                                                                                                                    n - Added 5/1/55.
CHAPTER 02                                                                                                            2.3-96                                                                                                                                                                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.3-4 (Contd)
STATION LOCATIONS - PHILADELPHIA ELEVATION ABOVE SEA LEVEL                                                                  GROUND                                                                          SEA LEVEL Airline Distance Wind Instruments                                        Telepsychrometer Ground at Occupied From                                                                            Longitude North Tipping Bucket 8" Rain Gauge Extreme                                                                      Weighing Rain Latitude North                                                                                        Psychrometer and Direction From                                                                                                                                                                                                              Hygro-Occupied To Location Previous Location                                                  Temperature Site                          Thermometers                                                Rain Gauge      Gauge                                Thermometer      Pyrometer Remarks Bourse Building 4th      3/01/55              5/01/55            0.2 mi W                39 57'                  75 09'              -                  -                      -              -                  -                      -                    133            -                    -            -
Street below Market PECo Building            5/15/59              10/19/73            0.7 mi W                39 57'                  75 10'              35                -                      155            -                  -                      -                    -              -                    -            -
10th & Chestnut Sts.
Federal Office Building  12/03/73            Present            -                        39 57'                  75 09'              35                186                    178            -                  -                      -                    178            -                    -            -
600 Arch Street AIRPORT Administration Building  6/20/40              6/22/45            -                        39 53'                  75 14'              13                a58                    6              5                  -                      -                    b3              3                    -            -              a - 57 feet through 1942.
Southwest Airport #                                                                                                                                                                                                                                                                                                                  b - Installed 1/1/43.
                                                                                                                                                                                                                                                                                                                                      # - Name changed to Internal Airport 4/1/48.
Administration Building  6/23/45              11/30/45            18 mi NE                40 05'                  75 01'              100                51                    6              5                  -                      -                    -              4                    -            -
N. Philadelphia Airport Administration Building  12/01/45            12/22/54            18 mi SW                39 53'                  75 14'              13                58                    6              5                  -                      -                    3              3                    -            -              * - Changed to roof exposure 10/4/54.
International Airport                                                                                                                                                                *22            *22                                                                                                                              WB design wind equipment installed 5/17/49.
New Terminal Building    12/23/54            5/09/55            7/8 mi SW                39 53'                  75 15'              13                120                    67            66                -                      -                    64              64                  -            -
International Airport New Terminal Building    5/09/55              12/31/59            0.2 mi N                39 53'                  75 15'              13                120                    7              66                7                      3                    4              3                    -            -
International Airport New Terminal Building    1/01/60              Present            -                        39 53'                  75 15'              5                  20                    d4            d55                -                      e64                  e64            -                        c4        -              c - Commissioned 300 feet International Airport                                                                                                                                                                                                                                                                                                                      South of telepsychrometer site.
d - Removed prior to December 1968.
e - 4 feet to 7/13/70 CHAPTER 02                                                                                                            2.3-97                                                                                                                                                                    REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.3-5 STATION LOCATIONS - ALLENTOWN ELEVATION ABOVE SEA LEVEL                                                                  GROUND                                                                          SEA LEVEL Airline Distance Wind Instruments                                        Telepsychrometer Ground at Occupied From                                                                        Longitude North Tipping Bucket 8" Rain Gauge Extreme                                                                      Weighing Rain Latitude North                                                                                        Psychrometer and Direction From                                                                                                                                                                                                            Hygro-Occupied To                                                                        Temperature Site                                                                                                                                                              Pyrometer Previous Location                                                                                          Thermometers                                                Rain Gauge      Gauge                                Thermometer Location                                                                                                                                                                                                                                                                                                                            Remarks COMPARATIVE Allentown-Bethlehem          11/02/11          6/01/65            -                        40 36'              75 28'                254                -                      4              -                  -                      -                    -              -                    3            -                Precipitation records Gas Company 3rd & Union Airport Old Administrative Building  4/06/38            10/13/50          -                        40 39'              75 26'                381                57                    5              4                  -                      -                    a5              3                    -            -              CAA station to 12/13/43, Allentown-Bethlehem                                                                                                                                                                                                                                                                                                                  then Weather Bureau.
Easton Airport                                                                                                                                                                                                                                                                                                                      a - Added 12/13/43.
4.5 miles NNE of Post Office New Administration Building At Allentown-Bethlehem        10/13/50          12/01/65          1300 FT                  40 39'              75 26'                376                69                    6              5                  -                      -                    4              3                    -            -
Easton Airport                                                      SSW New Administration Building  12/01/65          Present            (1)                      40 39'              75 26'                387                b20                    c6            c5                -                      e5                  4              3                    b4            -              (1) Office not moved d5              d3                                                b - 1650 feet previously used sensors.
c - Standby status.
d - Relocated 5/8/73.
e - Added 5/3/77.
CHAPTER 02                                                                                                                                    2.3-98                                                                                                                                          REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.3-6 INSTRUMENT ELEVATIONS(1)
OPERATIONAL METEOROLOGICAL MEASUREMENT SYSTEM (1983)
WEATHER STATION NO. 1        WEATHER STATION NO. 2 Tower 1                        Tower 2 Grade                                          el 250'                      el 121' Wind speed, wind direction                  el 280'(30')                  el 151'(30')
and sigma theta                            el 425'(175')(2)              el 280'(159')
el 425'(304')(2)
Wind speed and wind                        el 520'(270')
direction (Aerovane)
Temperature                                el 276'(26')                  el 147'(26')
Temperature Difference                    el 421' - el 276'              el 276' - el 147' (171'-26')                    (155'-26')
el 516' - el 276'              el 421' - el 147' (266'-26')                    (300'-26')
Dew point                                  el 276'(26')                  el 147' (26')
Rain gauge                                    el 255'(5')
(1)
All elevations refer to MSL. The number in parentheses after the elevation above MSL refers to the height of the sensor above grade.
(2)
Structure vent release elevation CHAPTER 02                                2.3-99                REV. 13, SEPTEMBER 2006
 
LGS UFSAR Table 2.3.3-7 OPERATIONAL METEOROLOGICAL MEASUREMENT SYSTEM (1983)
SENSOR AND SYSTEM SPECIFICATIONS AND ACCURACIES SYSTEM(1)          REGULATORY GUIDE 1.23 PARAMETER                  ACCURACY          PROPOSED REV. 1        COMMENTS/SPECIFICATIONS Wind speed                                                            Starting speed of 0.5 mph
                                              +/-0.5 mph accuracy      System accuracy valid for speeds
                            +/-0.5 mph                                    < 25 mph speed <25 mph Wind direction              +/-5                +/-5 Distance constant of 1.5 m Standard deviation of wind Damping ratio of 0.4 direction (Sigma theta) 15 min of 5 sec sampled data Temperature (ambient)                                                  100 ohm, platinum RTD
                                                                      -30F to 120F
                                                +/-0.5C
                            +/-0.9F                                    Data Logger
                                                +/-0.9F Temperature (Difference)                                              100 ohm, platinum RTD
                                                                      -10F to 20F
                                                +/-0.15C
(+/-0.27F)
(+/-0.27F)              Data Logger per 50m interval per 50m interval CHAPTER 02                                  2.3-100                        REV. 15, SEPTEMBER 2010
 
LGS UFSAR Table 2.3.3-7 (Contd)
OPERATIONAL METEOROLOGICAL MEASUREMENT SYSTEM (1983)
SENSOR AND SYSTEM SPECIFICATIONS AND ACCURACIES SYSTEM(1)            REGULATORY GUIDE 1.23 PARAMETER                      ACCURACY              PROPOSED REV. 1          COMMENTS/SPECIFICATIONS Dew point                                                                      Lithium-Chloride
                                                                                  -30F to 120F
                                                        +/-1.5C                  Data Logger
                                  +/-2.7F
(+/-2.7F)
Tipping bucket, with heater Precipitation Each tip = .01 inch
                                  +/-10% of accumulated  +/-10% of accumulated catch Data Logger catch (1)
Square root of the sum of the squares CHAPTER 02                                          2.3-101                          REV. 15, SEPTEMBER 2010
 
LGS UFSAR Table 2.3.4-1 Joint Frequency Distribution (Number of Observations) 1996 - 2000 30 Ft Level Wind Direction Category Wind Speed Category(1)            N              NNE        NE            ENE        E        ESE              SE        SSE              S          SSW        SW      WSW      W      WNW      NW      NNW      Calms          Total 1 (Calm)                                                                                                                                                                                                                  0            0 2                            5              5        7              1            1          1          1            0              0            0      3      14    23        7      8        6                        82 3                          85              54        34              16            4          10          8            7              42            94    177      212    214      189      80      56                      1282 4                          27              13        4              9            6          9          8            10              71          124      69      125    165      253    190      60                      1143 1 (A) 5                            0              0        0              4            8          0          0            0              7            16      6      11    67      139      59      17                      334 6                            0              0        0              0            0          0          0            0              2            1      0        0      5      12      8        4                        32 7                            0              0        0              0            0          0          0            0              0            0      0        0      1        0      0        0                        1 Subtotal                      117              72        45              30          19          20          17            17            122          235      255      362    475      600    345      143          0          2874 1 (Calm)                                                                                                                                                                                                                  0            0 2                            7              4        8              6            4          2          1            0              3            2      10      12    22      12      5        0                        98 3                          50              32        27              29          19          16          6            17              37            76      73      82    93      108      68      40                      773 4                          25              11        10              17          24          14          3            6              29            54      20      38    94      124    133      44                      646 2 (B) 5                            1              2        0              1            5          2          0            0              6            4      0        2    36      85      50      21                      215 6                            0              0        0              0            0          0          0            0              0            1      0        0      7        4      5        4                        21 7                            0              0        0              0            0          0          0            0              0            0      0        0      4        0      0        0                        4 Subtotal                        83              49        45              53          52          34          10            23              75          137      103      134    256      333    261      109          0          1757 1 (Calm)                                                                                                                                                                                                                  0            0 2                            6              7        13              11            6          4          5            8              8            13      22      26    26      21      11      10                      197 3                          52              43        34              60          49          16          34            23              47            82      84      93    124      132      81      35                      989 4                          24              9        11              37          47          13          4            9              36            59      23      37    88      168    176      55                      796 3 (C) 5                            1              0        0              3            1          1          1            3              12            3      2        1    39      131    124      22                      344 6                            0              0        0              0            0          0          0            0              1            1      0        0      8      12      30        3                        55 7                            0              0        0              0            0          0          0            0              0            0      0        0      0        1      1        0                        2 Subtotal                        83              59        58            111          103          34          44            43            104          158      131      157    285      465    423      125          0          2383 1 (Calm)                                                                                                                                                                                                                  0            0 2                        204              207      303            243          177        130          119            96            123          146      156      194    195      210    193      154                      2850 3                        379              288      508            801          480        280          226          326            443          416      288      315    502      668    582      345                      6847 4                        200              116      146            331          362        115          61          171            293          175      53      87    516    1008    820      419                      4873 4 (D) 5                          22              2        18              29          82          8          8            18              32            37      5      17    226      526    559      128                      1717 6                            0              0        0              2            1          1          0            1              0            1      0        0    24      39    114      12                      195 7                            0              0        0              0            1          0          0            0              0            0      0        0      1        1      5        0                        8 Subtotal                      805              613      975            1406        1103        534          414          612            891          775      502      613  1464    2452    2273    1058          0        16490 1 (Calm)                                                                                                                                                                                                                  1            1 2                        235              238      265            259          185        146          112          142            193          285      377      402    461      464    352      236                      4352 3                        202              183      190            317          234        137          206          250            487          416      295      280    560      846    514      256                      5373 4                          44              24        10              31          88          53          31            67            104            88      30      25    133      265    223      83                      1299 5 (E) 5                            5              1        2              3          12          9          13            31              8            6      5        3    20      56      54      12                      240 6                            0              0        0              0            0          0          3            5              1            0      0        1      1        5      5        0                        21 7                            0              0        0              1            0          0          2            0              0            0      0        0      0        0      0        0                        3 Subtotal                      486              446      467            611          519        345          367          495            793          795      707      711  1175    1636    1148      587          1        11289 1 (Calm)                                                                                                                                                                                                                  0            0 2                        170              185      179            174          123          91          64            66              73          126      215      294    445      450    353      199                      3207 3                          16              36        21              32          38          25          11            19              47          116      71      37    110      192      97      22                      890 4                            0              1        0              0            0          1          1            0              2            0      3        0      0        7      0        1                        16 6 (F) 5                            1              0        0              0            0          1          1            0              0            0      0        0      0        2      10        0                        15 6                            2              3        0              0            0          0          0            0              0            0      0        0      0        0      2        2                        9 7                            0              0        0              0            0          0          0            1              0            0      0        0      0        0      0        0                        1 Subtotal                      189              225      200            206          161        118          77            86            122          242      289      331    555      651    462      224          0          4138 1 (Calm)                                                                                                                                                                                                                  1            1 2                        266              208      240            150          115          53          43            39              72            65    133      164    423      512    351      320                      3154 3                            4              6        2              17          16          7          12            12              16            13      17      24    65      91      27        9                      338 4                            0              0        0              1            6          1          1            7              10            6      4        2    22      14      4        3                        81 7 (G) 5                            0              0        0              0            0          0          0            0              1            2      0        0      3      12      0        0                        18 6                            0              0        0              0            0          0          0            0              0            0      0        0      0        1      0        0                        1 7                            0              0        0              0            0          0          0            0              0            0      0        0      0        0      0        0                        0 Subtotal                      270              214      242            168          137          61          56            58              99            86    154      190    513      630    382      332          1          3593 Total                    2033            1678      2032            2585        2094        1146          985          1334            2206        2428    2141    2498  4723    6767    5294    2578          2        42524 Notes: (1) Wind Speed Categories defined as follows:
Category          Wind Speed (mph)            Category    Wind Speed (mph)    Category    Wind Speed (mph)        Category      Wind Speed (mph) 1 (Calm)                <0.5                    3          >=3.5 to <7.5        5          >=12.5 to <18.5          7                >=24 2              >=0.5 to <3.5                4        >=7.5 to <12.5        6          >=18.5 to <24 CHAPTER 02                                                                                                                              2.3-102                                                                                  REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-1 (Contd)
Wind Direction Category Wind Speed Category(1)              1    2    3    4    5    6    7    8          9            10  11  12    13    14    15  16 Calm        Total 1 (Calm)                                                                                                                            0.00        0.00 2                      0.01 0.01 0.02 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.01 0.03  0.05  0.02  0.02 0.01                    0.19 3                      0.20 0.13 0.08 0.04 0.01 0.02 0.02 0.02      0.10          0.22 0.42 0.50  0.50  0.44  0.19 0.13                    3.01 4                      0.06 0.03 0.01 0.02 0.01 0.02 0.02 0.02      0.17          0.29 0.16 0.29  0.39  0.59  0.45 0.14                    2.69 1 (A) 5                      0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00      0.02          0.04 0.01 0.03  0.16  0.33  0.14 0.04                    0.79 6                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.01  0.03  0.02 0.01                    0.08 7                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.00  0.00  0.00 0.00                    0.00 Subtotal                  0.28 0.17 0.11 0.07 0.04 0.05 0.04 0.04      0.29          0.55 0.60 0.85  1.12  1.41  0.81 0.34        0.00        6.76 1 (Calm)                                                                                                                            0.00        0.00 2                      0.02 0.01 0.02 0.01 0.01 0.00 0.00 0.00      0.01          0.00 0.02 0.03  0.05  0.03  0.01 0.00                    0.23 3                      0.12 0.08 0.06 0.07 0.04 0.04 0.01 0.04      0.09          0.18 0.17 0.19  0.22  0.25  0.16 0.09                    1.82 4                      0.06 0.03 0.02 0.04 0.06 0.03 0.01 0.01      0.07          0.13 0.05 0.09  0.22  0.29  0.31 0.10                    1.52 2 (B) 5                      0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00      0.01          0.01 0.00 0.00  0.08  0.20  0.12 0.05                    0.51 6                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.02  0.01  0.01 0.01                    0.05 7                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.01  0.00  0.00 0.00                    0.01 Subtotal                  0.20 0.12 0.11 0.12 0.12 0.08 0.02 0.05      0.18          0.32 0.24 0.32  0.60  0.78  0.61 0.26        0.00        4.13 1 (Calm)                                                                                                                            0.00        0.00 2                      0.01 0.02 0.03 0.03 0.01 0.01 0.01 0.02      0.02          0.03 0.05 0.06  0.06  0.05  0.03 0.02                    0.46 3                      0.12 0.10 0.08 0.14 0.12 0.04 0.08 0.05      0.11          0.19 0.20 0.22  0.29  0.31  0.19 0.08                    2.33 4                      0.06 0.02 0.03 0.09 0.11 0.03 0.01 0.02      0.08          0.14 0.05 0.09  0.21  0.40  0.41 0.13                    1.87 3 (C) 5                      0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01      0.03          0.01 0.00 0.00  0.09  0.31  0.29 0.05                    0.81 6                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.02  0.03  0.07 0.01                    0.13 7                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.00  0.00  0.00 0.00                    0.00 Subtotal                  0.20 0.14 0.14 0.26 0.24 0.08 0.10 0.10      0.24          0.37 0.31 0.37  0.67  1.09  0.99 0.29        0.00        5.60 1 (Calm)                                                                                                                            0.00        0.00 2                      0.48 0.49 0.71 0.57 0.42 0.31 0.28 0.23      0.29          0.34 0.37 0.46  0.46  0.49  0.45 0.36                    6.70 3                      0.89 0.68 1.19 1.88 1.13 0.66 0.53 0.77      1.04          0.98 0.68 0.74  1.18  1.57  1.37 0.81                  16.10 4                      0.47 0.27 0.34 0.78 0.85 0.27 0.14 0.40      0.69          0.41 0.12 0.20  1.21  2.37  1.93 0.99                  11.46 4 (D) 5                      0.05 0.00 0.04 0.07 0.19 0.02 0.02 0.04      0.08          0.09 0.01 0.04  0.53  1.24  1.31 0.30                    4.04 6                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.06  0.09  0.27 0.03                    0.46 7                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.00  0.00  0.01 0.00                    0.02 Subtotal                  1.89 1.44 2.29 3.31 2.59 1.26 0.97 1.44      2.10          1.82 1.18 1.44  3.44  5.77  5.35 2.49        0.00      38.78 1 (Calm)                                                                                                                            0.00        0.00 2                      0.55 0.56 0.62 0.61 0.44 0.34 0.26 0.33      0.45          0.67 0.89 0.95  1.08  1.09  0.83 0.55        0.00      10.23 3                      0.48 0.43 0.45 0.75 0.55 0.32 0.48 0.59      1.15          0.98 0.69 0.66  1.32  1.99  1.21 0.60                  12.64 4                      0.10 0.06 0.02 0.07 0.21 0.12 0.07 0.16      0.24          0.21 0.07 0.06  0.31  0.62  0.52 0.20                    3.05 5 (E) 5                      0.01 0.00 0.00 0.01 0.03 0.02 0.03 0.07      0.02          0.01 0.01 0.01  0.05  0.13  0.13 0.03                    0.56 6                      0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01      0.00          0.00 0.00 0.00  0.00  0.01  0.01 0.00                    0.05 7                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.00  0.00  0.00 0.00                    0.01 Subtotal                  1.14 1.05 1.10 1.44 1.22 0.81 0.86 1.16      1.86          1.87 1.66 1.67  2.76  3.85  2.70 1.38        0.00      26.55 1 (Calm)                                                                                                                            0.00        0.00 2                      0.40 0.44 0.42 0.41 0.29 0.21 0.15 0.16      0.17          0.30 0.51 0.69  1.05  1.06  0.83 0.47                    7.54 3                      0.04 0.08 0.05 0.08 0.09 0.06 0.03 0.04      0.11          0.27 0.17 0.09  0.26  0.45  0.23 0.05                    2.09 4                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.01 0.00  0.00  0.02  0.00 0.00                    0.04 6 (F) 5                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.00  0.00  0.02 0.00                    0.04 6                      0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.00  0.00  0.00 0.00                    0.02 7                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.00  0.00  0.00 0.00                    0.00 Subtotal                  0.44 0.53 0.47 0.48 0.38 0.28 0.18 0.20      0.29          0.57 0.68 0.78  1.31  1.53  1.09 0.53        0.00        9.73 1 (Calm)                                                                                                                            0.00        0.00 2                      0.63 0.49 0.56 0.35 0.27 0.12 0.10 0.09      0.17          0.15 0.31 0.39  0.99  1.20  0.83 0.75                    7.42 3                      0.01 0.01 0.00 0.04 0.04 0.02 0.03 0.03      0.04          0.03 0.04 0.06  0.15  0.21  0.06 0.02                    0.79 4                      0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02      0.02          0.01 0.01 0.00  0.05  0.03  0.01 0.01                    0.19 7 (G) 5                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.01  0.03  0.00 0.00                    0.04 6                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.00  0.00  0.00 0.00                    0.00 7                      0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00      0.00          0.00 0.00 0.00  0.00  0.00  0.00 0.00                    0.00 Subtotal                  0.63 0.50 0.57 0.40 0.32 0.14 0.13 0.14      0.23          0.20 0.36 0.45  1.21  1.48  0.90 0.78        0.00        8.45 Total                    4.78 3.95 4.78 6.08 4.92 2.69 2.32 3.14      5.19          5.71 5.03 5.87 11.11 15.91 12.45 6.06        0.00    100.00 Notes: (1) Wind Speed Categories defined as follows:
Category                Wind Speed (mph) 1 (Calm)                        <0.5 2                      >=0.5 to <3.5 3                      >=3.5 to <7.5 4                      >=7.5 to <12.5 5                      >=12.5 to <18.5 6                      >=18.5 to <24 7                          >=24 CHAPTER 02                                                                  2.3-103                                                            REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 LAPSE RATE WIND DISTRIBUTIONS(1)(2)
SPEED RANGES (mph)                  LE=1.0 0-3            4-7          8-12            13-18          19-23      24+      ALL SPEEDS DIRECTION      SUM      %    SUM        %  SUM      %      SUM      %    SUM      %  SUM      %  SUM        %
22.5            3      0.0      3      0.0  0      0.0      2        0.0    0      0.0  0      0.0  8      0.0 45.0            1      0.0      0      0.0  0      0.0      1        0.0    0      0.0  0      0.0  2      0.0 67.5            1      0.0      3      0.0  0      0.0      0        0.0    0      0.0  0      0.0  4      0.0 90.0            2      0.0      4      0.0  6      0.0      0        0.0    0      0.0  0      0.0  12      0.1 112.5            2      0.0      1      0.0  1      0.0      0        0.0    0      0.0  0      0.0  4      0.0 135.0            0      0.0      2      0.0  4      0.0      0        0.0    0      0.0  0      0.0  6      0.0 157.5            4      0.0      2      0.0  3      0.0      3        0.0    0      0.0  0      0.0  12      0.1 180.0            5      0.0      4      0.0  13      0.1      3        0.0    0      0.0  0      0.0  25      0.1 202.5            5      0.0      9      0.0  16      0.1      2        0.0    0      0.0  0      0.0  32      0.1 225.0            2      0.0      8      0.0  5      0.0      0        0.0    0      0.0  0      0.0  15      0.1 247.5            2      0.0      15      0.1  1      0.0      1        0.0    0      0.0  0      0.0  19      0.1 270.0            3      0.0      12      0.1  17      0.1      6        0.0  1      0.0  0      0.0  39      0.2 292.5            3      0.0      11      0.0  33      0.1      15        0.1  0      0.0  0      0.0  62      0.3 315.0            1      0.0      9      0.0  14      0.1      13        0.1  5      0.0  0      0.0  42      0.2 337.5            1      0.0      3      0.0  9      0.0      10        0.0  0      0.0  0      0.0  23      0.1 360.0            1      0.0      3      0.0  5      0.0      3        0.0  0      0.0  0      0.0  12      0.1 36/0.0          89/ 0.2    127/0.5          59/ 0.2          6/0.0      0/0.0      317/ 1.5 Mean wind speed: 9.0 Number of uninterpretable hours: 1 CHAPTER 02                                                2.3-104                                      REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 (Cont'd)
SPEED RANGES (mph)                    -1:S/-1.7 0-3            4-7        8-12              13-18              19-23                24+        ALL SPEEDS DIRECTION      SUM      %    SUM      %  SUM        %      SUM        %      SUM        %        SUM        %    SUM        %
22.5            0      0.0      7    0.0  5      0.0      1        0.0        0        0.0      0        0.0    13        0.1 45.0            3      0.0      2    0.0  1      0.0      0        0.0        0        0.0      0        0.0      6        0.0 67.5            6      0.0      6    0.0  5      0.0      0        0.0        0        0.0      0        0.0    17        0.1 90.0            2      0.0      6    0.0  5      0.0      2        0.0        0        0.0      0        0.0    15        0.1 112.5            1      0.0      5    0.0  5      0.0      2        0.0        0        0.0      0        0.0    13        0.1 135.0            2      0.0      3    0.0  5      0.0      0        0.0        0        0.0      0        0.0    10        0.0 157.5            5      0.0    14    0.1  13      0.1      0        0.0        0        0.0      0        0.0    32        0.1 180.0            9      0.0    15    0.1  12      0.1      2        0.0        0        0.0      0.      0.0    38        0.2 202.5            1      0.0    15    0.1  12      0.1      4        0.0        0        0.0      0        0.0    32        0.1 225.0            2      0.0    15    0.1  15      0.1      0        0.0        0        0.0      0        0.0    32        0.1 247.5          10      0.0    23    0.1  21      0.1      7        0.0        0        0.0      0        0.0    61        0.3 270.0          11      0.0    31    0.1  34      0.1      9        0.0        2        0.0      0        0.0    87        0.4 292.5            3      0.0    41    0.2  53      0.2      40        0.2      12        0.1      1        0.0    150        0.7 315.0            4      0.0    18    0.1  34      0.1      35        0.2        5        0.0      0        0.0    96        0.4 337.5            3      0.0      7    0.0  15      0.1      14        0.1        1        0.0      0        0.0    40        0.2 360.0            1      0.0    11    0.0  13      0.1      5        0.0        0        0.0      0        0.0    30        0.1 63/ 0.0        219/0.9      248/ 1.1          121/ 0.5            20/0.1              1/0.0          672/3.0 Mean wind speed: 9.0 Number of uninterpretable hours: 1 CHAPTER 02                                                2.3-105                                                    REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 (Cont'd)
SPEEDS RANGES (mph) 0-3            4-7          8-12              13-18              19-23          24+          ALL SPEEDS DIRECTION      SUM      %    SUM        % SUM        %      SUM        %      SUM        %  SUM        %    SUM      %
22.5            6    0.0    17      0.1  13        0.1      2        0.0      0        0.0  0        0.0    38      0.1 45.0            5    0.0    17      0.1  3        0.0      1        0.0      0        0.0  0        0.0    26      0.1 67.5            7    0.0    23      0.1  9        0.0      0        0.0      0        0.0  0        0.0    39      0.2 90.0            7    0.0    26      0.1  21        0.1      6        0.0      1        0.0  0        0.0    61      0.3 112.5            8    0.0    16      0.1  10        0.0      0        0.0      0        0.0  0        0.0    34      0.1 135.0            8    0.0    13      0.1  9        0.0      2        0.0      0        0.0  0        0.0    32      0.1 157.5          14    0.1    16      0.1  16        0.1      2        0.0      0        0.0  0        0.0    48      0.2 180.0          20    0.1    50      0.2  39        0.2      1        0.0      0        0.0  0        0.0    110      0.5 202.5          19    0.1    36      0.2  64        0.3      15        0.1      0        0.0  0        0.0    134      0.6 225.0          16    0.1    23      0.1  31        0.1      11        0.0      0        0.0  0        0.0    81      0.4 247.5          22    0.1    36      0.2  37        0.2      7        0.0      0        0.0  0        0.0    102      0.4 270.0          16    0.1    48      0.2  48        0.2      25        0.1      1        0.0  2        0.0    140      0.6 292.5          11    0.0    46      0.2  84        0.4      89        0.4      24        0.1  1        0.0    255      1.1 315.0            8    0.0    30      0.1  53        0.2      74        0.3      16        0.1  0        0.0    181      0.8 337.5            3    0.0    20      0.1  32        0.1      19        0.1      5        0.1  0        0.0    79      0.3 360.0          11    0.0    30      0.1  53        0.2      74        0.3      16        0.1  0        0.0    181      0.8 181/ 0.8        432/1.9      500/2.2            260/ 1.0            47/ 0.2      3/ 0.0          1423/6.2 Mean wind speed: 8.8 Number of uninterpretable hours: 2 CHAPTER 02                                                2.3-106                                              REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 (Cont'd)
SPEED RANGES (mph)                      -1:S/-0.5 0-3              4-7        8-12              13-18              19-23                24+          ALL SPEEDS DIRECTION    SUM        %    SUM      %  SUM      %      SUM        %      SUM        %      SUM          %    SUM        %
22.5            73      0.3    190    0.8  75      0.3        27      0.1      1        0.0        0        0.0    366      1.6 45.0          84      0.4    187    0.8  93      0.4        6      0.0      2        0.0        0        0.0    372      1.6 67.5          157      0.7    333    1.5 168      0.7        41      0.2      3        0.0        1        0.0    703      3.1 90.0          169      0.7    429    1.9 210      0.9        40      0.2      1        0.0        0        0.0    849      4.7 112.5          77      0.3    192    0.8 106      0.5        9      0.0      1        0.0        0        0.0    385      1.7 135.0          75      0.3    153    0.7  53      0.2        8      0.0      0        0.0        0        0.0    289      1.3 157.5          105      0.5    200    0.9  60      0.3        7      0.0      2        0.0        0        0.0    374      1.6 180.0          147      0.6    256    1.1 130      0.6        15      0.1      3        0.0        0        0.0    551      2.4 202.5          112      0.5    211    0.9 143      0.6        58      0.3      5        0.0        0        0.0    522      2.3 225.0          59      0.3    119    0.5  74      0.3        18      0.1      2        0.0        1        0.0    273      1.2 247.5          85      0.4    164    0.7 119      0.5        39      0.2      4        0.0        1        0.0    412      1.8 270.0          106      0.5    226    1.0 227      1.0      154      0.7      60        0.3        25        0.1    798      3.5 292.5          105      0.5    306    1.3 449      2.0      360      1.6    109        0.5        28        0.1  1357      5.9 315.0          64      0.3    147    0.6 290      1.3      283      1.2      63        0.3        4        0.0    851      3.7 337.5          78      0.3    127    0.6 205      0.9        94      0.4      11        0.0        1        0.0    516      .3 360.0          85      0.4    208    0.9 113      0.5        24      0.1      1        0.0        0        0.0    431      1.9 1581/7.0        3448/15.0    2515/11.0          1183/ 5.2          268/1.1              61/ 0.2        9056/ 39.6 Mean wind speed: 7.9 Number of uninterpretable hours: 10 CHAPTER 02                                                2.3-107                                                      REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 (Cont'd)
SPEED RANGES (mph)                -0.4/1.5 0-3              4-7          8-12                13-18          19-23          24+      ALL SPEEDS DIRECTION      SUM        %      SUM      %  SUM        %        SUM        %  SUM        %  SUM      %  SUM        %
22.5              105      0.5      90      0.4  14        0.1        4        0.0  0        0.0  0      0.0  213      0.9 45.0              115      0.5      86      0.4  11        0.0        0        0.0  0        0.0  1      0.0  213      0.9 67.5              175      0.8    105      0.5  25        0.1        6        0.0  6        0.0  5      0.0  322      1.4 90.0              260      1.1    196      0.9  50        0.2        15        0.1  0        0.0  0      0.0  521      2.3 112.5              168      0.7    142      0.6  27        0.1        9        0.0  0        0.0  0      0.0  346      1.5 135.0              175      0.8    142      0.6  16        0.1        8        0.0  0        0.0  0      0.0  341      1.5 157.5              179      0.8    159      0.7  22        0.1        7        0.0  3        0.0  0      0.0  370      1.6 180.0              218      1.0    237      1.0  68        0.3        7        0.0  1        0.0  0      0.0  531      2.3 202.5              149      0.7    149      0.7  66        0.3        19        0.1  1        0.0  0      0.0  384      1.7 225.0              133      0.6    119      0.5  44        0.2        19        0.1  2        0.0  0      0.0  317      1.4 247.5              129      0.6    115      0.5  32        0.1        3        0.0  1        0.0  0      0.0  280      1.2 270.0              194      0.9    184      0.8  60        0.3        19        0.1  6        0.0  1      0.0  464      2.0 292.5              251      1.1    419      1.8 200        0.9        48        0.2  21        0.1  0      0.0  939      4.1 315.0              212      0.9    315      1.4 134        0.6        38        0.2  8        0.0  0      0.0  707      3.1 337.5              152      0.7    145      0.6  67        0.3        13        0.1  0        0.0  0      0.0  377      1.7 360.0              126      0.6    140      0.6  40        0.2        3        0.0  0        0.0  0      0.0  309      1.4 2741/12.3        2743/12.0      876/3.9              218/0.9        49/0.1        7/0.0        6634/29.0 Mean wind speed: 5.0 Number of uninterpretable hours: 21 CHAPTER 02                                              2.3-108                                        REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 (Cont'd)
SPEED RANGES (mph)                1:6/4.0 0-3          4-7                8-12                13-18          19-23          24+      ALL SPEEDS DIRECTION        SUM        %      SUM        %  SUM        %        SUM        %  SUM        %  SUM      %    SUM      %
22.5            217      1.0      19        0.1  2        0.0        0        0.0  0        0.0  0        0.0  238      1.0 45.0            217      1.0      18        0.1  0        0.0        0        0.0  0        0.0  0        0.0  235      1.0 67.5            238      1.0      15        0.1  0        0.0        0        0.0  0        0.0  0        0.0  253      1.1 90.0            313      1.4      25        0.1  3        0.0        0        0.0  0        0.0  0        0.0  341      1.5 112.5            245      1.1      27        0.1  1        0.0        0        0.0  0        0.0  0        0.0  273      1.2 135.0            226      1.0      22        0.1  0        0.0        1        0.0  0        0.0  0        0.0  249      1.1 157.5            220      1.0      23        0.1  0        0.0        1        0.0  0        0.0  0        0.0  244      1.1 180.0            233      1.0      11        0.0  5        0.0        0        0.0  0        0.0  0        0.0  249      1.1 202.5            197      0.9      18        0.1  0        0.0        0        0.0  0        0.0  0        0.0  215      0.9 225.0            206      0.9      10        0.0  2        0.0        0        0.0  0        0.0  0        0.0  218      1.0 247.5            209      0.9      12        0.1  1        0.0        0        0.0  0        0.0  0        0.0  222      1.0 270.0            242      1.1      27        0.1  2        0.0        0        0.0  0        0.0  0        0.0  271      1.2 292.5            318      1.4      74        0.3  7        0.0        1        0.0  0        0.0  0        0.0  400      1.8 315.0            286      1.3      69        0.3  1        0.0        0        0.0  0        0.0  0        0.0  356      1.6 337.5            214      0.9      26        0.1  3        0.0        0        0.0  1        0.0  0        0.0  244      1.1 360.0            214      0.9      28        0.1  0        0.0        0        0.0  0        0.0  0        0.0  242      1.1 3795/16.8          424/ 1.8      27/ 0.0              3/ 0.0          1/ 0.0        0/ 0.0      4250/ 18.8 Mean wind speed: 1.7 Number of uninterpretable hours: 8 CHAPTER 02                                              2.3-109                                          REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 (Cont'd)
SPEED RANGES (mph)              GT. 4.0 0-3              4-7            8-12              13-18        19-23          24+        ALL SPEEDS DIRECTION        SUM        %      SUM        %  SUM        %      SUM        %  SUM      %  SUM      %  SUM        %
22.5            15      0.1      1        0.0  0        0.0        0        0.0  0        0.0  0        0.0  16      0.1 45.0            24      0.1      1        0.0  0        0.0        0        0.0  0        0.0  0        0.0  25      0.1 67.5            40      0.2      4        0.0  0        0.0        0        0.0  0        0.0  0        0.0  44      0.2 90.0            41      0.2      2        0.0  0        0.0        0        0.0  0        0.0  0        0.0  43      0.2 112.5            25      0.1      1        0.0  0        0.0        0        0.0  0        0.0  0        0.0  26      0.1 135.0            23      0.1      0        0.0  0        0.0        0        0.0  0        0.0  0        0.0  23      0.1 157.5            11      0.0      1        0.0  0        0.0        0        0.0  0        0.0  0        0.0  12      0.1 188.0              8      0.0      3        0.0  0        0.0        0        0.0  0        0.0  0        0.0  11      0.0 205.5              7      0.0      1        0.0  0        0.0        0        0.0  0        0.0  0        0.0  8      0.0 225.0              8      0.0      1        0.0  0        0.0        0        0.0  0        0.0  0        0.0  9      0.0 247.5            17      0.1      1        0.0  0        0.0        0        0.0  0        0.0  0        0.0  18      0.1 270.0            44      0.2      5        0.0  0        0.0        0        0.0  0        0.0  0        0.0  49      0.2 292.5            65      0.3      10        0.0  3        0.0        0        0.0  0        0.0  0        0.0  78      0.3 315.0            43      0.2      10        0.0  0        0.0        0        0.0  0        0.0  0        0.0  53      0.2 337.5            26      0.1      0        0.0  0        0.0        0        0.0  0        0.0  0        0.0  26      0.1 360.0            21      0.1      0        0.0  0        0.0        0        0.0  0        0.0  0        0.0  21      0.1 418/ 1.8          41/ 0.0        3/ 0.0              0/ 0.0        0/ 0.0        0/ 0.0        462/ 1.9 Mean wind speed: 2.1 Number of uninterpretable hours: 4 CHAPTER 02                                              2.3-110                                      REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 (Cont'd)
SPEED RANGES (mph)                  ALL STABILITIES 0-3                4-7            8-12                13-18          19-23            24+      ALL SPEEDS DIRECTION        SUM        %        SUM        %  SUM        %        SUM        %  SUM      %    SUM        %  SUM          %
22.5            419        1.8      327      1.4 109.      0.5        36        0.2  1.      0.0    0        0.0  892        3.9 45.0            449        2.0      311      1.4 108        0.5        8        0.0  2        0.0    1        0.0  879        3.9 67.5            624        2.7      489      2.1 207        0.9        47        0.2  9        0.0    6        0.0 1382        6.1 90.0            794        3.5      688      3.0 295        1.3        63        0.3  2        0.0    0        0.0 1842        8.1 112.5            526        2.3      384      1.7 150        0.7        20        0.1  1        0.0    0        0.0 1081        4.7 135.0            509        2.2      335      1.5  87        0.4        19        0.1  0        0.0    0        0.0  950        4.2 157.5            538        2.4      415      1.8 114        0.5        20        0.1  5        0.0    0        0.0 1092        4.8 180.0            640        2.8      576      2.5 267        1.2        28        0.1  4        0.0    0        0.0 1515        6.6 202.5            490        2.1      439      1.9 301        1.3        98        0.4  6        0.0    0        0.0 1334        6.1 225.0            426        1.9      295      1.3 171        0.7        48        0.2  4        0.0    1        0.0  945        4.1 247.5            474        2.1      366      1.6 211        0.9        57        0.2  5        0.0    1        0.0 1114        4.9 270.0            616        2.7      533      2.3 388        1.7      213        0.9  70      0.3    28        0.1 1848        8.1 292.5            756        3.3      907      4.0 829        3.6      553        2.4 166      0.7    30        0.1 3241      14.1 315.0            618        2.7      598      2.3 526        2.3      443        1.9  97      0.4    4        0.0 2286      10.0 337.5            477        2.1      328      1.4 331        1.5      150        0.7  18      0.1    1        0.0 1305        5.7 360.0            459        2.0      405      1.8 202        0.9        41        0.2  1        0.0    0        0.0 1103        4.9 8815/38.6            7396/32.3    4296/18.9            1844/ 8.0      391/ 1.5          72/ 0.3    22814/100.2 Mean wind speed: 5.9 Total number of uninterpretable hours: 47 Total number of calm hours: 2570, Percent: 11.3 CHAPTER 02                                              2.3-111                                              REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 (Cont'd)
SPEED RANGES (mph)                  DIRECTION vs. SPEED 0-3            4-7          8-12                  13-18          19-23          24+      ALL SPEEDS DIRECTION SUM        %  SUM        %  SUM        %        SUM          %  SUM        %    SUM        %  SUM        %
22.5    431      1.8 334      1.4 113        0.5        37        0.5  2        0.0    0        0.0  917      3.8 45.0    459      1.9 334      1.4 113        0.5        8        0.0  2        0.0    1        0.0  917      3.8 67.5    642      2.6 507      2.1 211        0.9        47        0.2  9        0.0    6        0.0 1422      5.9 90.0    838      3.5 713      2.9 306        1.3        63        0.3  2        0.0    0        0.0 1922      7.9 112.5    556      2.3 413      1.7 160        0.7        20        0.1  2        0.0    0        0.0 1150      4.7 135.0    547      2.3 370      1.5  94        0.4        19        0.1  0        0.0    0        0.0 1030      4.2 157.5    563      2.3 442      1.8 122        0.5        21        0.1  5        0.0    0        0.0 1153      4.8 180.0    699      2.9 646      2.7 280        1.2        28        0.1  4        0.0    0        0.0 1657      6.8 202.5    549      2.3 490      2.0 326        1.3        98        0.4  6.      0.0    0        0.0 1469      6.1 225.0    481      2.1 346      1.4 182        0.8        49        0.2  5        0.0    1        0.0 1064      4.4 247.5    520      2.1 420      1.7 231        1.0        57        0.2  5        0.0    1        0.1 1234      5.1 270.0    663      2.7 594      2.5 417        1.7      217        0.9  71        0.3  28        0.1 1990      8.2 292.5    813      3.4 968      4.0 851        3.5      564        2.3  171      0.7  31        0.0 3398      14.0 315.0    673      2.8 647      2.7 545        2.2      468        1.9  101      0.4    6        0.0 2440      10.1 337.5    495      2.0 337      1.4 335        1.4      152        0.6  18        0.1    1        0.0 1336      5.5 360.0    471      1.9 415      1.7 206        0.8        42        0.2  1        0.0    0        0.0 1135      4.7 9400/38.8      7976/32.9    4492/18.7            1890/ 7.8      403/ 1.5        75/ .2      24234/ 87.4 CHAPTER 02                              2.3-112                                            REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-2 (Cont'd)
Mean wind speed: 5.8 Total number of uninterpretable hours: 55 Total number of calm hours: 2570, Percent: 10.6 Missing speeds: 1364        Percent: 5.6 Missing directions: 1586 Percent: 6.5 (1) Period of data: 1/72 - 12/74, data taken at 30 ft level (2) The information in this Table is for historical purposes only CHAPTER 02                                                        2.3-113                          REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-3 LGS EFFECTIVE PROBABILITY LEVELS(1)(2)
SECTOR                                  CONSERVATIVE (5%)            REALISTIC (50%)
SSW                                              8.0                      80.0 SW                                                8.1                      81.0 WSW                                              5.2                      52.0 W                                                3.9                      39.0 WNW                                              6.6                      66.0 NW                                                7.5                      75.0 NNW                                              6.5                      65.0 N                                                4.7                      47.0 NNE                                              5.3                      53.0 NE                                                7.5                      75.0 ENE                                              6.4                      64.0 E                                                3.9                      39.0 ESE                                              2.2                      22.0 SE                                                3.1                      31.0 SSE                                              5.5                      55.0 S                                                6.4                      64.0 (1)
Calculated using 1972-1974 Tower 1 30 ft lapse rate wind distribution (2)
Information in this Table is for historical purposes only CHAPTER 02                                                2.3-114                                REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.4-4
 
==SUMMARY==
OF THE NORTH AND SOUTH STACKS MAXIMUM SECTOR AND 5% OVERALL SITE LIMIT X/Q VALUES AT THE EAB AND LPZ FOR REGULATORY POST-ACCIENT TIME PERIODS RELEASE LOCATION          X/Q PARAMETER 0-2 hour            2-8 hour      8-24 hour      1-4 day          4-30 day (sec/m3)
EAB (731 m)
Direction-Specific Max    3.18E-04 (ESE)    1.76E-04 (ESE) 1.31E-04 (ESE) 6.89E-05 (ESE)    2.74E-05 (ESE)
North and South Stacks*
Site Limit            2.79E-04            1.58E-04      1.19E-04      6.39E-05          2.63E-05 LPZ (2043 m)
Direction-Specific Max    1.15E-04 (ESE)    5.79E-05 (ESE) 4.10E-05 (ESE) 1.95E-05 (ESE)    6.68E-06 (ESE)
North and South Stacks*
Site Limit            1.01E-04            5.18E-05      3.71E-05      1.81E-05          6.41E-06
* The same PAVAN results apply to the North and South Stacks individually.
CHAPTER 02                                                    2.3-115                                        REV. 14, SEPTEMBER 2008
 
LGS UFSAR TABLE 2.3.4-5 LGS STABILITY AND WIND SPEED DISTRIBUTIONS(1) 1972-1974                                      1972-1976 Stability      Freq. (%)      Mean Speed (mph)                  Freq. (%)    Mean Speed (mph)
A                  1.4                  9.0                        2.2              8.3 B                  2.9                  9.0                        3.4              9.1 C                  6.2                  8.8                        6.2              9.0 D                39.7                  7.9                      38.1              8.0 E                29.1                  5.0                      29.7              5.1 F                18.6                  1.7                      18.3              1.7 G                  2.0                  2.1                        2.1              2.0 (1)
Information in this Table is for historical purposes only.
CHAPTER 02                                          2.3-116                                  REV. 14, SEPTEMBER 2008
 
LGS UFSAR Table 2.3.5-1 HISTORICAL ANNUAL X/Q - UNCORRECTED SECTOR BEARING (DEGREES)
DISTANCE          NNE            NE              ENE              E                ESE              SE              SSE              S METERS        22.5            45.0            67.5            90.0              112.5          135.0            157.5            180.0 762.00                                                        3.609x10-7        6.291x10-7      4.214x10-7                        1.411x10-7 793.00      3.001x10-7      2.111x10-7      2.220x10-7      3.486x10-7        6.110x10-7      3.979x10-7                        1.367x10-7 800.00      2.972x10-7      2.091x10-7      2.197x10-7      3.449x10-7        6.050x10-7      3.941x10-7                        1.358x10-7 854.00      2.713x10-7      1.959x10-7      2.035x10-7      3.182x10-7        5.613x10-7      3.708x10-7                        1.286x10-7 884.00      2.611x10-7      1.874x10-7      1.963x10-7      3.047x10-7        5.366x10-7      3.593x10-7                        1.270x10-7 900.00      2.528x10-7      1.836x10-7      1.920x10-7      2.978x10-7        5.205x10-7      3.578x10-7                        1.272x10-7 1000.00      2.226x10-7      1.583x10-7      1.697x10-7      2.442x10-7        4.644x10-7      3.251x10-7                        1.149x10-7 1006.00      2.211x10-7      1.572x10-7      1.708x10-7      2.589x10-7        4.884x10-7      3.394x10-7        1.267x10-7      1.142x10-7 1200.00      1.780x10-7      1.276x10-7      1.344x10-7      2.034x10-7        3.914x10-7      2.679x10-7        1.096x10-7      9.466x10-8 1400.00      1.469x10-7      1.050x10-7      1.078x10-7      1.630x10-7        3.153x10-7      2.136x10-7        8.917x10-8      7.913x10-8 1600.00      1.242x10-7      8.692x10-8      8.841x10-8      1.335x10-7        2.594x10-7      1.773x10-7        7.569x10-8      6.704x10-8 1800.00      1.059x10-7      7.457x10-8      7.379x10-8      1.114x10-7        2.173x10-7      1.484x10-7        6.360x10-8      5.802x10-8 2000.00      9.004x10-8      6.419x10-8      6.254x10-8      9.436x10-8        1.847x10-7      1.262x10-7        5.420x10-8      5.063x10-8 2200.00      7.750x10-8      5.531x10-8      5.373x10-8      8.098x10-8        1.599x10-7      1.086x10-7        4.674x10-8      4.417x10-8 2400.00      6.746x10-8      4.832x10-8      4.674x10-8      7.031x10-8        1.391x10-7      9.447x10-8        4.073x10-8      3.886x10-8 2600.00      5.934x10-8      4.278x10-8      4.114x10-8      6.169x10-8        1.221x10-7      8.298x10-8        3.581x10-8      3.444x10-8 2800.00      5.273x10-8      3.839x10-8      3.663x10-8      5.465x10-8        1.082x10-7      7.350x10-8        3.175x10-8      3.073x10-8 3000.00      4.730x10-8      3.491x10-8      3.300x10-8      4.888x10-8        9.659x10-8      6.559x10-8        2.835x10-8      2.760x10-8 3200.00      4.284x10-8      3.217x10-8      3.098x10-8      4.454x10-8        8.689x10-8      5.893x10-8        2.548x10-8      2.551x10-8 3400.00      3.916x10-8      3.002x10-8      2.881x10-8      4.072x10-8        7.935x10-8      5.327x10-8        2.304x10-8      2.311x10-8 3600.00      3.726x10-8      2.836x10-8      2.892x10-8      4.063x10-8        7.255x10-8      4.844x10-8        2.094x10-8      2.133x10-8 3800.00      6.847x10-8      2.709x10-8      3.056x10-8      3.857x10-8        6.682x10-8      4.429x10-8        2.119x10-8      1.991x10-8 4000.00      2.659x10-7      7.774x10-8      3.873x10-8      3.699x10-8        6.200x10-8      4.089x10-8        3.021x10-8      1.838x10-8 4300.00      2.378x10-7      7.581x10-8      3.852x10-8      3.532x10-8        5.617x10-8      3.646x10-8        2.982x10-8      1.889x10-8 4600.00      2.141x10-7      7.371x10-8      3.840x10-8      3.427x10-8        5.169x10-8      3.291x10-8        2.962x10-8      1.788x10-8 4900.00      1.938x10-7      7.149x10-8      3.828x10-8      3.365x10-8        4.826x10-8      3.006x10-8        2.950x10-8      1.718x10-8 5200.00      1.764x10-7      6.919x10-8      3.812x10-8      3.331x10-8        4.565x10-8      2.780x10-8        2.942x10-8      1.671x10-8 5500.00      1.653x10-7      6.685x10-8      3.788x10-8      3.315x10-8        4.368x10-8      2.600x10-8        2.931x10-8      1.642x10-8 5800.00      1.516x10-7      1.244x10-7      3.757x10-8      3.309x10-8        4.219x10-8      2.458x10-8        2.917x10-8      2.574x10-8 6100.00      1.395x10-7      1.228x10-7      3.718x10-8      3.308x10-8        4.107x10-8      2.346x10-8        2.899x10-8      3.282x10-8 6400.00      1.289x10-7      1.136x10-7      5.750x10-8      3.307x10-8        4.372x10-8      2.260x10-8        2.875x10-8      3.239x10-8 6700.00      1.195x10-7      1.055x10-7      5.546x10-8      3.306x10-8        4.738x10-8      2.193x10-8        2.846x10-8      3.190x10-8 7000.00      1.111x10-7      9.824x10-8      5.348x10-8      3.301x10-8        5.183x10-8      2.142x10-8        2.812x10-8      3.138x10-8 7300.00      1.036x10-7      9.173x10-8      6.226x10-8      3.292x10-8        6.287x10-8      2.103x10-8        3.778x10-8      3.081x10-8 7600.00      9.691x10-8      8.588x10-8      5.944x10-8      3.279x10-8        7.550x10-8      2.074x10-8        4.380x10-8      3.022x10-8 Note: Data calculated in Table 2.3.5-1 is based on three sources (Turbine Enclosure vent, Units 1 and 2 Reactor Enclosure vents) treated as a single source originating from one point located midway between the three locations.
CHAPTER 02                                                              2.3-117                                                        REV. 18, SEPTEMBER 2016
 
LGS UFSAR Table 2.3.5-1 (Cont'd)
SECTOR BEARING (DEGREES)
DISTANCE    NNE        NE        ENE            E                  ESE        SE        SSE          S METERS  22.5      45.0      67.5          90.0                112.5      135.0      157.5        180.0 7900.00 9.085x10-8 8.059x10-8 7.968x10-8    4.906x10-8        7.400x10-8 2.419x10-8 4.223x10-8  2.961x10-8 8200.00 8.537x10-8 7.579x10-8 7.494x10-8    4.803x10-8        7.248x10-8 2.633x10-8 4.071x10-8  2.898x10-8 8500.00 8.039x10-8 7.143x10-8 7.167x10-8    4.698x10-8        7.094x10-8 2.622x10-8 3.925x10-8  2.834x10-8 8800.00 7.585x10-8 6.745x10-8 6.763x10-8    4.593x10-8        6.939x10-8 6.262x10-8 3.785x10-8  5.850x10-8 12073.00 4.454x10-8 3.982x10-8 3.974x10-8    3.512x10-8        8.582x10-8 4.758x10-8 3.519x10-8  3.509x10-8 16098.00 2.734x10-8 2.453x10-8 2.442x10-8    2.542x10-8        5.403x10-8 3.275x10-8 2.162x10-8  2.156x10-8 24146.00 1.370x10-8 1.234x10-8 1.225x10-8    1.477x10-8        2.770x10-8 1.884x10-8 1.085x10-8  1.081x10-8 32195.00 8.381x10-9 7.558x10-9 7.495x10-9    1.080x10-8        1.711x10-8 1.272x10-8 6.639x10-9  6.617x10-9 40244.00 5.720x10-9 5.164x10-9 5.118x10-9    7.409x10-9        1.174x10-8 8.693x10-9 4.534x10-9  4.518x10-9 48293.00 4.186x10-9 3.782x10-9 3.747x10-9    5.439x10-9        8.624x10-9 6.365x10-9 3.319x10-9  3.307x10-9 56342.00 3.214x10-9 2.908x10-9 2.878x10-9    4.185x10-9        6.638x10-9 4.890x10-9 2.549x10-9  2.540x10-9 64390.00 2.557x10-9 2.314x10-9 2.290x10-9    3.334x10-9        5.289x10-9 3.891x10-9 2.028x10-9  2.021x10-9 72439.00 2.089x10-9 1.891x10-9 1.871x10-9    2.728x10-9        4.328x10-9 3.181x10-9 1.658x10-9  1.652x10-9 80488.00 1.744x10-9 1.579x10-9 1.562x10-9    2.279x10-9        3.616x10-9 2.656x10-9 1.384x10-9  1.379x10-9 CHAPTER 02                                      2.3-118                                            REV. 18, SEPTEMBER 2016
 
LGS UFSAR Table 2.3.5-1 (Cont'd)
SECTOR BEARING (DEGREES)
DISTANCE  SSW        SW        WSW            W                WNW        NW        NNW          N METERS  202.5      225.0      247.5          270.0              292.5      315.0      337.5        360.0 762.00 1.125x10-7                                                        1.213x10-7 793.00 1.090x10-7                                            1.173x10-7 1.175x10-7 800.00 1.082x10-7                                            1.164x10-7 1.166x10-7 854.00 1.024x10-7            1.259x10-7    1.797x10-7        1.109x10-7 1.103x10-7 884.00 9.924x10-8 9.285x10-8 1.246x10-7    1.743x10-7        1.092x10-7 1.069x10-7 1.572x10-7  2.680x10-9 900.00 9.762x10-8 9.255x10-8 1.242x10-7    1.726x10-7        1.075x10-7 1.051x10-7 1.628x10-7  2.614x10-7 1000.00 8.815x10-8 8.505x10-8 1.128x10-7    1.564x10-7        9.830x10-8 1.007x10-7 1.447x10-7  2.378x10-7 1006.00 8.904x10-8 8.664x10-8 1.142x10-7    1.575x10-7        1.004x10-7 1.001x10-7 1.437x10-7  2.362x10-7 1200.00 7.555x10-8 7.203x10-8 9.601x10-8    1.326x10-7        8.233x10-8 8.161x10-8 1.162x10-7  1.923x10-7 1400.00 6.391x10-8 6.084x10-8 7.992x10-8    1.139x10-7        6.808x10-8 6.720x10-8 9.513x10-8  1.585x10-7 1600.00 5.497x10-8 5.249x10-8 6.746x10-8    1.004x10-7        5.711x10-8 5.619x10-8 7.920x10-8  1.340x10-7 1800.00 4.661x10-8 4.491x10-8 5.765x10-8    8.764x10-8        4.853x10-8 4.860x10-8 6.797x10-8  1.144x10-7 2000.00 4.140x10-8 3.879x10-8 5.259x10-8    7.606x10-8        4.173x10-8 4.166x10-8 5.803x10-8  9.798x10-8 2200.00 3.577x10-8 3.353x10-8 4.558x10-8    6.833x10-8        3.624x10-8 3.603x10-8 5.011x10-8  8.479x10-8 2400.00 3.122x10-8 2.927x10-8 4.019x10-8    6.013x10-8        3.226x10-8 3.148x10-8 4.372x10-8  7.408x10-8 2600.00 2.748x10-8 2.578x10-8 3.543x10-8    5.332x10-8        2.860x10-8 2.774x10-8 3.849x10-8  6.527x10-8 2800.00 2.439x10-8 2.288x10-8 3.148x10-8    4.760x10-8        2.541x10-8 2.464x10-8 3.438x10-8  5.826x10-8 3000.00 2.201x10-8 2.046x10-8 2.818x10-8    4.276x10-8        2.273x10-8 2.204x10-8 3.080x10-8  5.212x10-8 3200.00 1.980x10-8 1.841x10-8 2.538x10-8    3.917x10-8        2.046x10-8 1.984x10-8 2.782x10-8  4.695x10-8 3400.00 1.825x10-8 1.691x10-8 2.302x10-8    3.557x10-8        1.852x10-8 1.797x10-8 2.534x10-8  4.259x10-8 3600.00 1.673x10-8 1.545x10-8 2.100x10-8    3.247x10-8        1.685x10-8 1.637x10-8 2.328x10-8  4.088x10-8 3800.00 1.545x10-8 1.422x10-8 1.928x10-8    2.981x10-8        1.541x10-8 1.500x10-8 2.156x10-8  4.162x10-8 4000.00 1.546x10-8 1.441x10-8 1.790x10-8    2.785x10-8        1.424x10-8 1.391x10-8 2.082x10-8  3.974x10-8 4300.00 1.445x10-8 1.344x10-8 1.683x10-8    2.732x10-8        1.266x10-8 1.248x10-8 5.400x10-8  5.744x10-8 4600.00 1.644x10-8 1.277x10-8 1.741x10-8    2.554x10-8        1.139x10-8 1.137x10-8 1.250x10-7  1.981x10-7 4900.00 2.085x10-8 1.233x10-8 2.016x10-8    2.424x10-8        1.112x10-8 1.298x10-8 1.574x10-7  2.298x10-7 5200.00 2.091x10-8 1.206x10-8 5.689x10-8    3.050x10-8        1.047x10-8 1.274x10-8 1.443x10-7  2.087x10-7 5500.00 3.165x10-8 2.185x10-8 7.434x10-8    3.019x10-8        9.991x10-9 1.266x10-8 1.328x10-9  1.905x10-7 5800.00 7.095x10-8 2.487x10-8 7.062x10-8    2.998x10-8        9.656x10-9 2.788x10-8 1.226x10-7  1.746x10-7 6100.00 8.894x10-8 5.539x10-8 6.712x10-8    2.983x10-8        9.432x10-9 5.957x10-8 1.239x10-7  1.607x10-7 6400.00 8.250x10-8 6.102x10-8 6.382x10-8    5.895x10-8        9.295x10-9 8.396x10-8 1.145x10-7  1.485x10-7 6700.00 7.675x10-8 5.743x10-8 6.072x10-8    1.320x10-7        9.225x10-9 9.620x10-8 1.062x10-7  1.376x10-7 7000.00 7.161x10-8 5.723x10-8 5.781x10-8    1.227x10-7        9.204x10-9 9.624x10-8 9.875x10-8  1.280x10-7 7300.00 6.698x10-8 6.264x10-8 5.508x10-8    1.145x10-7        9.220x10-9 8.979x10-8 9.212x10-8  1.194x10-7 7600.00 6.281x10-8 5.861x10-8 6.745x10-8    1.071x10-7        9.261x10-9 8.400x10-8 8.616x10-8  1.116x10-7 7900.00 5.903x10-8 5.497x10-8 6.879x10-8    1.004x10-7        9.318x10-9 7.877x10-8 8.079x10-8  1.047x10-7 8200.00 5.559x10-8 5.167x10-8 6.569x10-8    9.434x10-8        9.384x10-9 7.404x10-8 7.593x10-8  9.835x10-8 8500.00 5.245x10-8 4.867x10-8 6.187x10-8    8.885x10-8        9.453x10-9 6.974x10-8 7.151x10-8  9.261x10-8 8800.00 5.135x10-8 4.610x10-8 5.839x10-8    8.386x10-8        5.645x10-9 6.582x10-8 6.749x10-8  8.738x10-8 12073.00 3.019x10-8 2.710x10-8 3.431x10-8    4.927x10-8        3.489x10-9 3.874x10-8 3.968x10-8  5.131x10-8 CHAPTER 02                                      2.3-119                                            REV. 18, SEPTEMBER 2016
 
LGS UFSAR Table 2.3.5-1 (Cont'd)
SECTOR BEARING (DEGREES)
DISTANCE      SSW          SW            WSW            W                WNW        NW          NNW          N METERS      202.5        225.0        247.5          270.0            292.5      315.0        337.5        360.0 16098.00    1.855x10-8    1.665x10-8    2.108x10-8    3.027x10-8        2.145x10-9 2.383x10-8  2.439x10-8    3.150x10-8 24146.00    9.310x10-9    8.355x10-9    1.057x10-8    1.518x10-8        1.077x10-9 1.197x10-8  1.224x10-8    1.579x10-8 32195.00    5.698x10-9    5.114x10-9    6.470x10-9    9.290x10-9        6.596x10-9 7.331x10-9  7.490x10-9    9.654x10-9 40244.00    3.892x10-9    3.492x10-9    4.418x10-9    6.343x10-9        4.506x10-9 5.009x10-9  5.115x10-9    6.589x10-9 48293.00    2.850x10-9    2.557x10-9    3.234x10-9    4.644x10-9        3.300x10-9 3.669x10-9  3.745x10-9    4.822x10-9 56342.00    2.189x10-9    1.964x10-9    2.484x10-9    3.567x10-9        2.536x10-9 2.819x10-9  2.877x10-9    3.703x10-9 64390.00    1.742x10-9    1.563x10-9    1.977x10-9    2.838x10-9        2.018x10-9 2.244x10-9  2.289x10-9    2.945x10-9 72439.00    1.424x10-9    1.277x10-9    1.616x10-9    2.319x10-9        1.650x10-9 1.835x10-9  1.871x10-9    2.407x10-9 80488.00    1.189x10-9    1.066x10-9    1.349x10-9    1.936x10-9        1.378x10-9 1.532x10-9  1.562x10-9    2.009x10-9 CHAPTER 02                                              2.3-120                                              REV. 18, SEPTEMBER 2016
 
LGS UFSAR Table 2.3.5-2 LGS VENT PARAMETERS PARAMETER                    REACTOR ENCLOSURE VENT          TURBINE ENCLOSURE VENT    COMPOSITE VENT Vent diameter (m)                        3.4                            5.3                      4.7 Exit velocity (m/sec)                  11.9                            9.7                    10.4 Volumetric flow rate (m3/sec)          110.5                            216.4                  181.0 CHAPTER 02                                    2.3-121                              REV. 13, SEPTEMBER 2006}}

Revision as of 08:59, 29 November 2024