NL-24-0026, Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
Line 19: Line 19:


=Text=
=Text=
{{#Wiki_filter:3535   Colonnade       Park w ay A                                   Southern Nuclear                                                                       Birmingham         , AL   35243 205 992                                                     5000 PROPRIETARY     INFORMATION-WITHHOLD                                   UNDER     10   CFR   2.390
{{#Wiki_filter:3535 Colonnade Park w ay A Southern Nuclear Birmingham, AL 35243 205 992 5000 PROPRIETARY INFORMATION-WITHHOLD UNDER 10 CFR 2.390


April         19,   2024
April 19, 2024


Docket     Nos.:                           50-321                                                                           NL-24-0026 50-366                                                                                               10   CFR   50.90
Docket Nos.: 50-321 NL-24-0026 50-366 10 CFR 50.90


U.S.       Nuclear     Regulatory       Commission ATTN:                 Document       Control       Desk Washington,           D.     C.               20555-0001
U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D. C. 20555-0001


Edwin     I.       Hatch   Nuclear       Plant -                     Units     1 and   2 Application           to   Revise     Technical       Specifications Surveillance         Requirements           to   Increase     Safety/Relief         Valves     Setpoint
Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint


Ladies     and     Gentlemen:
Ladies and Gentlemen:


Pursuant     to   the     provisions       of Section     50.90   of Title       10   of the     Code of Federal   Regulations, Southern       Nuclear     Operating       Company       (SNC)     hereby     requests       amendments         to   renewed       facility operating       licenses     DPR-57       and   NPF-5     to     revise   the   Technical       Specifications           (TS)   for the Edwin       I.       Hatch     Nuclear     Plant   (HNP),     Units     1 and     2,     respectively.         The   proposed     changes     would revise     Surveillance         Requirement         (SR)   3.4.3.1     to   increase     the   nominal     mechanical         relief setpoints     for   all   safety/relief       valves       (S/RVs)     of the   reactor     coolant     system     (RCS)     nuclear pressure       relief   system     (NPRS). The   proposed       changes     will     reduce     the   potential     for S/RV     pilot leakage. As   a result   of the     increased       S/RV     setpoints,       a change       is   proposed       to   SR   3.1. 7. 7 to increase     the   minimum       Standby       Liquid     Control       pump   discharge       pressure       accordingly.
Pursuant to the provisions of Section 50.90 of Title 10 of the Code of Federal Regulations, Southern Nuclear Operating Company (SNC) hereby requests amendments to renewed facility operating licenses DPR-57 and NPF-5 to revise the Technical Specifications (TS) for the Edwin I. Hatch Nuclear Plant (HNP), Units 1 and 2, respectively. The proposed changes would revise Surveillance Requirement (SR) 3.4.3.1 to increase the nominal mechanical relief setpoints for all safety/relief valves (S/RVs) of the reactor coolant system (RCS) nuclear pressure relief system (NPRS). The proposed changes will reduce the potential for S/RV pilot leakage. As a result of the increased S/RV setpoints, a change is proposed to SR 3.1. 7. 7 to increase the minimum Standby Liquid Control pump discharge pressure accordingly.
to   this     letter   provides       a description         and   assessment       of the   proposed       changes. provides     the   existing     TS     pages     marked     to   show   the   proposed       changes. provides       revised     (clean)     TS     pages. Attachment           3 provides       existing     TS   Bases pages     marked     to   show   the   proposed       changes     for   information         only. Attachment         4 contains       a   GE Hitachi     Nuclear       Energy     (GEH)     proprietary         report which                                                                                                                 details     safety     analyses       performed         in support     of the   proposed       change.       Pursuant     to     10 CFR   2.390(a)(4 ),       SNC   requests     that   the proprietary         information           be withheld       from     public     disclosure.           In   accordance       with       10 CFR 2.390(b)(1 ),     an   affidavit     attesting       to   the   proprietary         nature     of the   enclosed       information         and requesting       withholding         from     public   disclosure           is   included     with   Attachment         4. Attachment           5 provides     the   same     GEH     information       with   the     proprietary       portions       removed       and     is   provided     for public     disclosure.
to this letter provides a description and assessment of the proposed changes. provides the existing TS pages marked to show the proposed changes. provides revised (clean) TS pages. Attachment 3 provides existing TS Bases pages marked to show the proposed changes for information only. Attachment 4 contains a GE Hitachi Nuclear Energy (GEH) proprietary report which details safety analyses performed in support of the proposed change. Pursuant to 10 CFR 2.390(a)(4 ), SNC requests that the proprietary information be withheld from public disclosure. In accordance with 10 CFR 2.390(b)(1 ), an affidavit attesting to the proprietary nature of the enclosed information and requesting withholding from public disclosure is included with Attachment 4. Attachment 5 provides the same GEH information with the proprietary portions removed and is provided for public disclosure.


These     changes     would       be   implemented           during     a scheduled         refueling     outage       on   each     unit. The next   Unit   2 refueling     outage       is   scheduled     for     February,     2025,     and   the   next     Unit   1 refueling outage       is   scheduled       for   February,       2026. Therefore,         to   support     the   upcoming       refueling       outages and   to   provide     adequate       time   for   outage     preparation,         SNC   requests     that   the   NRC   review       and
These changes would be implemented during a scheduled refueling outage on each unit. The next Unit 2 refueling outage is scheduled for February, 2025, and the next Unit 1 refueling outage is scheduled for February, 2026. Therefore, to support the upcoming refueling outages and to provide adequate time for outage preparation, SNC requests that the NRC review and


Attachment     4 to   this   letter   contains     Proprietary       Information     to   be   withheld     from     public disclosure     per   10 CFR   2.390. When   separated     from   Attachment       4,   this   document       is uncontrolled.
Attachment 4 to this letter contains Proprietary Information to be withheld from public disclosure per 10 CFR 2.390. When separated from Attachment 4, this document is uncontrolled.
U.S. Nuclear   Regulatory     Commission NL-24-0026 Page 2
U.S. Nuclear Regulatory Commission NL-24-0026 Page 2


approve   the   amendments       no   later than     December     13, 2024, with   implementation       prior to   startup from   the   respective     refueling   outages.
approve the amendments no later than December 13, 2024, with implementation prior to startup from the respective refueling outages.


This   letter contains     no   NRC   commitments.
This letter contains no NRC commitments.


In   accordance   with       10 CFR 50.91,     SNC   is   notifying   the   state   of Georgia   of this   license amendment       request     by transmitting     a copy   of this   letter to   the   designated     state   official.
In accordance with 10 CFR 50.91, SNC is notifying the state of Georgia of this license amendment request by transmitting a copy of this letter to the designated state official.


If you   should     have any   questions     regarding   this   submittal,     please   contact     Ryan Joyce   at 205.992.6468.
If you should have any questions regarding this submittal, please contact Ryan Joyce at 205.992.6468.


I declare                         under penalty   of perjury   that the foregoing       is   true   and   correct. Executed     on   the     19th day of April   2024.
I declare under penalty of perjury that the foregoing is true and correct. Executed on the 19th day of April 2024.


Jamie     M. Coleman Regulatory   Affairs     Director Southern     Nuclear   Operating     Company
Jamie M. Coleman Regulatory Affairs Director Southern Nuclear Operating Company


rmj/efb/cbg
rmj/efb/cbg


==Enclosure:==
==Enclosure:==
: 1) Description       and   Assessment       of the   Proposed   Changes
: 1) Description and Assessment of the Proposed Changes


Attachments:                             1) Proposed   Technical     Specification     Changes     (Mark-up)
Attachments: 1) Proposed Technical Specification Changes (Mark-up)
: 2)   Revised   Technical     Specification       Pages
: 2) Revised Technical Specification Pages
: 3)     Proposed   Technical     Specifications       Bases   Changes     (Mark-up)   -                       For Information     Only
: 3) Proposed Technical Specifications Bases Changes (Mark-up) - For Information Only
: 4)   GEH Affidavit     and     Proprietary     GEH   Report   NEDC-34126P,       Revision   0
: 4) GEH Affidavit and Proprietary GEH Report NEDC-34126P, Revision 0
: 5)   Non-Proprietary         GEH   Report   NEDO-34126,       Revision   0
: 5) Non-Proprietary GEH Report NEDO-34126, Revision 0


cc:                                         NRC   Regional   Administrator,         Region     II NRC   NRR   Project   Manager   -                       Hatch NRC Senior   Resident     Inspector   -                       Hatch Director,     Environmental       Protection     Division   -                     State of Georgia SNC   Document     Control     R-Type:   CHA02.004 Edwin             I.     Hatch       Nuclear         Plant     -                   Units         1 and     2 Application                 to   Revise       Technical               Specifications Surveillance                   Requirements                   to   Increase         Safety/Relief               Valves       Setpoint
cc: NRC Regional Administrator, Region II NRC NRR Project Manager - Hatch NRC Senior Resident Inspector - Hatch Director, Environmental Protection Division - State of Georgia SNC Document Control R-Type: CHA02.004 Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint


NL-24-0026
NL-24-0026


Enclosure                 1
Enclosure 1


Description                 and     Assessment               of the     Proposed             Changes to   NL-24-0026 Description         and   Assessment         of the   Proposed       Changes
Description and Assessment of the Proposed Changes to NL-24-0026 Description and Assessment of the Proposed Changes


1.0                                                            
1.0  


==SUMMARY==
==SUMMARY==
DESCRIPTION
DESCRIPTION


Southern       Nuclear     Operating       Company       (SNC)     proposes       to     revise     Edwin       I.     Hatch     Nuclear     Plant (HNP)     Unit     1 and   Unit   2 Technical       Specifications           (TS)   to   increase     the     nominal     mechanical         relief setpoints     for   each     unit's       11         safety/relief       valves     (S/RVs)     of the   reactor     coolant     system     (RCS) nuclear     pressure       relief   system     (NPRS)     from       1150   psig   to     1160   psig. Changes       are   proposed       to Surveillance         Requirement           (SR)   3.4.3.1       to   increase     these     setpoints.       These     changes       do   not alter the   minimum       number     of S/RVs     required     to   be   operable,       nor do they   alter   the   allowable       as-found or as-left   tolerances           as   a   percentage       of the   nominal     setpoint.     As   a result   of the   increased       S/RV setpoints,       a change       is   proposed       to   SR   3.1.7.7     to   increase     the   minimum       Standby       Liquid     Control pump   discharge       pressure     accordingly.
Southern Nuclear Operating Company (SNC) proposes to revise Edwin I. Hatch Nuclear Plant (HNP) Unit 1 and Unit 2 Technical Specifications (TS) to increase the nominal mechanical relief setpoints for each unit's 11 safety/relief valves (S/RVs) of the reactor coolant system (RCS) nuclear pressure relief system (NPRS) from 1150 psig to 1160 psig. Changes are proposed to Surveillance Requirement (SR) 3.4.3.1 to increase these setpoints. These changes do not alter the minimum number of S/RVs required to be operable, nor do they alter the allowable as-found or as-left tolerances as a percentage of the nominal setpoint. As a result of the increased S/RV setpoints, a change is proposed to SR 3.1.7.7 to increase the minimum Standby Liquid Control pump discharge pressure accordingly.


In   support     of the   proposed       changes,       GE     Hitachi     Nuclear       Energy     (GEH)     prepared       and     issued GEH     report     NEDC-34126P,           "Edwin       I.     Hatch     Nuclear     Power     Plant   Units     1 and   2 Safety/Relief Valve     Setpoint       Increase,"       Revision       0,     dated     March     2024. A   proprietary       copy   of this   report       is provided         in Attachment         4 and   a non-proprietary version                                                                                                                                                                                                                                                                                                                                       is   provided       in Attachment           5. The     results of the   evaluations           in   the     GEH     report   determined         that   the   impacts     of the   setpoint       changes     are acceptable.
In support of the proposed changes, GE Hitachi Nuclear Energy (GEH) prepared and issued GEH report NEDC-34126P, "Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Safety/Relief Valve Setpoint Increase," Revision 0, dated March 2024. A proprietary copy of this report is provided in Attachment 4 and a non-proprietary version is provided in Attachment 5. The results of the evaluations in the GEH report determined that the impacts of the setpoint changes are acceptable.


Unless     noted   otherwise,       the   information         provided     throughout         this     License   Amendment           Request (LAR)     is applicable       to   both   Unit     1 and     Unit   2. Additionally,           "setpoint"       throughout       this   LAR   refers to   the   SR   3.4.3.1       mechanical         relief   setpoint     of the   NPRS   S/RVs.
Unless noted otherwise, the information provided throughout this License Amendment Request (LAR) is applicable to both Unit 1 and Unit 2. Additionally, "setpoint" throughout this LAR refers to the SR 3.4.3.1 mechanical relief setpoint of the NPRS S/RVs.


2.0         DETAILED     DESCRIPTION
2.0 DETAILED DESCRIPTION


2.1         System       Design     and   Operation
2.1 System Design and Operation


The   ASME       Boiler     and   Pressure     Vessel     Code     requires     the   reactor     pressure     vessel       be   protected from     overpressure           during     upset   conditions         by   self-actuated         safety   valves. As   part   of the   NPRS, the   size   and   number     of S/RVs     are   selected       such   that   peak   pressure       in   the     nuclear     steam system     will     not   exceed     the   ASME     Code     limits   for the     reactor     coolant     pressure       boundary (RCPB).
The ASME Boiler and Pressure Vessel Code requires the reactor pressure vessel be protected from overpressure during upset conditions by self-actuated safety valves. As part of the NPRS, the size and number of S/RVs are selected such that peak pressure in the nuclear steam system will not exceed the ASME Code limits for the reactor coolant pressure boundary (RCPB).


The     NPRS   for   each     unit   includes         11         S/RVs,     all   of which     are   located       on   the     main   steam     lines within     the   drywell       between     the   reactor   vessel       and   the first     isolation     valve.       In   the   safety   mode   of the   S/RVs,     the   spring-loaded           pilot   valve   opens   when     steam     pressure       at the   valve     inlet   expands the     bellows     to   the   point   that   the   bellows     force     overcomes       the force       holding     the     pilot valve closed.     Opening     the   pilot valve                                                                                     allows     steam   to     pass   to   the   second     stage     operating       piston   which causes     the   second     stage     disc   to   open. This   vents     the   chamber     over   the   main   valve     disc   to   the downstream         side   of the   valve,   which     causes     a pressure       differential       to   develop       across   the   main valve     piston     and   opens     the   main   valve. This     satisfies     the   ASME     Boiler     and     Pressure     Vessel Code     requirement.           Each   S/RV   discharges         steam   through       a discharge       line to   a point   below   the minimum     water     level     in   the   suppression           pool.
The NPRS for each unit includes 11 S/RVs, all of which are located on the main steam lines within the drywell between the reactor vessel and the first isolation valve. In the safety mode of the S/RVs, the spring-loaded pilot valve opens when steam pressure at the valve inlet expands the bellows to the point that the bellows force overcomes the force holding the pilot valve closed. Opening the pilot valve allows steam to pass to the second stage operating piston which causes the second stage disc to open. This vents the chamber over the main valve disc to the downstream side of the valve, which causes a pressure differential to develop across the main valve piston and opens the main valve. This satisfies the ASME Boiler and Pressure Vessel Code requirement. Each S/RV discharges steam through a discharge line to a point below the minimum water level in the suppression pool.


The   Standby       Liquid     Control     (SLC)     System     provides     the   capability     of bringing     the   reactor,       at   any time     in   a fuel     cycle,   from   full     power   and     minimum       control       rod   inventory       (which     is   at the   peak   of the   xenon     transient)       to   a subcritical       condition       with   the   reactor       in   the   most   reactive,     xenon   free state   without     taking     credit   for   control       rod     movement.       Additionally,           the   SLC   system     provides sufficient       buffering       agent   to   maintain     the   suppression           pool     pH     at   or above     7.0   following       a   Design Basis     Loss   of Coolant     Accident         involving       fuel   damage.
The Standby Liquid Control (SLC) System provides the capability of bringing the reactor, at any time in a fuel cycle, from full power and minimum control rod inventory (which is at the peak of the xenon transient) to a subcritical condition with the reactor in the most reactive, xenon free state without taking credit for control rod movement. Additionally, the SLC system provides sufficient buffering agent to maintain the suppression pool pH at or above 7.0 following a Design Basis Loss of Coolant Accident involving fuel damage.


E-1 to   NL-24-0026 Description     and Assessment       of the   Proposed     Changes
E-1 to NL-24-0026 Description and Assessment of the Proposed Changes


The   SLC   System   consists     of a storage   tank,   two   positive   displacement       pumps,   two   relief valves (one   on   discharge     of each   pump),   two   explosive   valves   that   are   provided     in   parallel   for redundancy,       and   associated     piping   and   valves     used   to   transfer     borated water from   the   storage tank to the   reactor. The   SLC   System     is   manually     initiated   from   the   Control     Room   as   directed     by the   emergency     operating     procedures     and   provides     an     independent,     redundant     reactivity   control system   to   shut down the   reactor   in   the   unlikely   event that   the   Control       Rod     Drive System fails                                                                                                                                                           to insert   control     rods   during   scram   conditions. The   SLC   System   injects   borated water     into the reactor   core to   add   negative     reactivity   to   compensate     for the various     reactivity   effects   that   could occur   during   plant operations.
The SLC System consists of a storage tank, two positive displacement pumps, two relief valves (one on discharge of each pump), two explosive valves that are provided in parallel for redundancy, and associated piping and valves used to transfer borated water from the storage tank to the reactor. The SLC System is manually initiated from the Control Room as directed by the emergency operating procedures and provides an independent, redundant reactivity control system to shut down the reactor in the unlikely event that the Control Rod Drive System fails to insert control rods during scram conditions. The SLC System injects borated water into the reactor core to add negative reactivity to compensate for the various reactivity effects that could occur during plant operations.


2.2                                                               Current   Technical     Specifications       Requirements
2.2 Current Technical Specifications Requirements


Limiting   Condition   for Operation     (LCO)   3.4.3 for   both   units   requires   the   safety   function   of 10 of 11         S/RVs   to   be   Operable. The   requirements     of this   LCO   are applicable     only to   the   capability     of the   S/RVs   to   mechanically       open   to   relieve   excess     pressure when     the   lift setpoint     is   exceeded (safety   function).
Limiting Condition for Operation (LCO) 3.4.3 for both units requires the safety function of 10 of 11 S/RVs to be Operable. The requirements of this LCO are applicable only to the capability of the S/RVs to mechanically open to relieve excess pressure when the lift setpoint is exceeded (safety function).


SR 3.4.3.1         requires         verification           that   the     safety     function           lift   setpoints         of the   S/RVs       are     1150     +/-
SR 3.4.3.1 requires verification that the safety function lift setpoints of the S/RVs are 1150 +/-
34 .5   psig. The     safety       function         of the   S/RV       lift   settings           is   demonstrated               by   bench     testing performed             on   S/RV       pilot valves                                                                                     that     are     removed         during       shutdown             in     accordance             with     the lnservice           Testing         Program.         The     lift   setting         pressure         must     correspond             to   ambient         conditions of the   valves       at nominal         operating         temperatures               and     pressures           . The     S/RV     setpoint tolerance             is   +/- 3%     (34   .5   psig)     for   operability;             however,         the   valves       are   reset     to   a   +/- 1 %
34.5 psig. The safety function of the S/RV lift settings is demonstrated by bench testing performed on S/RV pilot valves that are removed during shutdown in accordance with the lnservice Testing Program. The lift setting pressure must correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The S/RV setpoint tolerance is +/- 3% (34.5 psig) for operability; however, the valves are reset to a +/- 1 %
tolerance during                                                                                                                                                                             the   Surveillance             to   allow     for   drift.
tolerance during the Surveillance to allow for drift.


LCO   3.1.7 for   both   units   requires   two   SLC   subsystems     to     be   operable. The   operability   of the SLC   System     is   based   on   the   conditions     of the   borated   solution     in   the   storage   tank   and   the availability     of a flow   path to the   RPV,   including   the   operability     of the   pumps   and   valves.
LCO 3.1.7 for both units requires two SLC subsystems to be operable. The operability of the SLC System is based on the conditions of the borated solution in the storage tank and the availability of a flow path to the RPV, including the operability of the pumps and valves.


SR 3.1.7.7     requires   verification     that   each   SLC   pump   develops     a flow   rate greater   than   or equal to 41.2   gpm   at   a discharge     pressure   greater   than   or equal                                                   to     1232 psig.
SR 3.1.7.7 requires verification that each SLC pump develops a flow rate greater than or equal to 41.2 gpm at a discharge pressure greater than or equal to 1232 psig.


2.3                                                                   Reason   for Proposed     Change
2.3 Reason for Proposed Change


The     NPRS   is   robust,     but S/RV   leakage   has   occurred     during   plant   operation.     Increasing     the nominal   mechanical     relief setpoints   will   increase   the   simmer   margin   (i.e., the   difference     between the   S/RV setpoints     and   the vessel     steam   dome   pressure),     thereby     potentially     reducing   S/RV pilot   leakage which     may occur   during   a typical     operating     cycle.
The NPRS is robust, but S/RV leakage has occurred during plant operation. Increasing the nominal mechanical relief setpoints will increase the simmer margin (i.e., the difference between the S/RV setpoints and the vessel steam dome pressure), thereby potentially reducing S/RV pilot leakage which may occur during a typical operating cycle.


2.4                                                                 Description     of Proposed     Change
2.4 Description of Proposed Change


The   proposed     change     revises   SR   3.4.3.1   for   both   units   to   change   the     1150 psig   setpoint   to 1160   psig. The   setpoint   tolerance(+/-                   3%   of the   setpoint value),                                                                                                                                                     currently     34.5   psig,     is   revised   to 34.8   psig.
The proposed change revises SR 3.4.3.1 for both units to change the 1150 psig setpoint to 1160 psig. The setpoint tolerance(+/- 3% of the setpoint value), currently 34.5 psig, is revised to 34.8 psig.


Additionally,       SR   3.1. 7. 7 for   both   units   is   proposed   to   be   revised   to   change   the   minimum   SLC pump   discharge     pressure   from     1232 psig   to     1251     psig.
Additionally, SR 3.1. 7. 7 for both units is proposed to be revised to change the minimum SLC pump discharge pressure from 1232 psig to 1251 psig.


Associated       changes     are   proposed   to the   Unit   1 and     Unit 2 TS   Bases. The   GEH   report     is   added as   a reference     in   the   TS   Bases for justification       of the   S/RV   safety   lift settings.
Associated changes are proposed to the Unit 1 and Unit 2 TS Bases. The GEH report is added as a reference in the TS Bases for justification of the S/RV safety lift settings.


E-2 to   NL-24-0026 Description         and   Assessment         of the   Proposed       Changes
E-2 to NL-24-0026 Description and Assessment of the Proposed Changes


3.0                                                             TECHNICAL       EVALUATION
3.0 TECHNICAL EVALUATION


On   October       7,       1996,   a   LAR for     HNP   Units     1 and   2 was     submitted       to   the     Nuclear     Regulatory Commission         (NRC)   to   increase     the   nominal     mechanical         relief   setpoints       for   all     NPRS   S/RVs   to their   current     nominal     value     of   1150   psig   (Reference           1 ). This     LAR was   subsequently         approved by the     NRC   on   March     21,     1997   (Reference         2). The   NRC   safety     evaluation     was     based     on   the evaluations       documented           in   technical       report     NEDC-32041 P,       Revision       2,     as   provided         in   the     1996 LAR. This   technical         report     provided       a detailed   justification         for an   upper   value     mechanical         S/RV relief   setpoint     as   high     as     1195   psig,   with     one   S/RV     inoperable         and   at least     50     psi   margin   to   the ASME       code     upset     limit   (1375   psig). The     1195   psig   upper   limit   (UL)   established           by   NEDC-32041 P bounds     the   current       nominal     setpoint       including       a +/-3%   drift   tolerance.
On October 7, 1996, a LAR for HNP Units 1 and 2 was submitted to the Nuclear Regulatory Commission (NRC) to increase the nominal mechanical relief setpoints for all NPRS S/RVs to their current nominal value of 1150 psig (Reference 1 ). This LAR was subsequently approved by the NRC on March 21, 1997 (Reference 2). The NRC safety evaluation was based on the evaluations documented in technical report NEDC-32041 P, Revision 2, as provided in the 1996 LAR. This technical report provided a detailed justification for an upper value mechanical S/RV relief setpoint as high as 1195 psig, with one S/RV inoperable and at least 50 psi margin to the ASME code upset limit (1375 psig). The 1195 psig upper limit (UL) established by NEDC-32041 P bounds the current nominal setpoint including a +/-3% drift tolerance.


Hatch   currently       performs       cycle-specific         analyses       that   confirm     vessel     overpressure           margin       is maintained       assuming       S/RV   opening     at the   UL of 1195   psig. The   UL value   of 1195   psig continues       to   bound   the   proposed       nominal     setpoint       plus   maximum       allowable       drift   tolerance       (1160
Hatch currently performs cycle-specific analyses that confirm vessel overpressure margin is maintained assuming S/RV opening at the UL of 1195 psig. The UL value of 1195 psig continues to bound the proposed nominal setpoint plus maximum allowable drift tolerance (1160
+   34.8     psig)   such   that   the   cycle-specific           reload     licensing       analyses       demonstrating           overpressure protection       are   unaffected         by this   change.
+ 34.8 psig) such that the cycle-specific reload licensing analyses demonstrating overpressure protection are unaffected by this change.


GEH     report     NEDC-34126P           provides       additional       evaluations       of the   following       non-cycle-specific areas     potentially       affected       by the   proposed       change:
GEH report NEDC-34126P provides additional evaluations of the following non-cycle-specific areas potentially affected by the proposed change:
* High   Pressure       System       Performance         (High   Pressure     Coolant       Injection     (HPCI)/     Reactor     Core Isolation     Cooling     (RCIC)     operation)
* High Pressure System Performance (High Pressure Coolant Injection (HPCI)/ Reactor Core Isolation Cooling (RCIC) operation)
* Emergency       Core   Cooling     System     (ECCS)/Loss         of Coolant   Accident         (LOCA)     performance
* Emergency Core Cooling System (ECCS)/Loss of Coolant Accident (LOCA) performance
* Containment           Evaluation       (Anticipated       Transients         Without     Scram     (A TWS),     Design     Basis Accident         (OBA)   LOCA,     Small     Steam     Line   Break     (SSLB)   for   Equipment       Qualification           (EQ),
* Containment Evaluation (Anticipated Transients Without Scram (A TWS), Design Basis Accident (OBA) LOCA, Small Steam Line Break (SSLB) for Equipment Qualification (EQ),
Appendix           R,       and   Station     Blackout       (SBO))
Appendix R, and Station Blackout (SBO))
* A TWS     Mitigation S/RV   discharge       piping     loads   and     Standby     Liquid     Control       (SLC)   System       performance       were     also reassessed       for the   effects     of increasing       the   nominal     S/RV   setpoint.
* A TWS Mitigation S/RV discharge piping loads and Standby Liquid Control (SLC) System performance were also reassessed for the effects of increasing the nominal S/RV setpoint.


The   following           is   a brief   description       of the   evaluations         discussed         in Attachment           4,   along   with     the assessments         of S/RV   discharge       piping     loads     and   SLC   System     performance:
The following is a brief description of the evaluations discussed in Attachment 4, along with the assessments of S/RV discharge piping loads and SLC System performance:


ECCS/LOCA         Evaluation Section       3.0   of GEH   NEDC-34126P           discusses       the   effect   of the   S/RV   setpoint change             on   the peak   cladding     temperatures         for the     HNP   ECCS     LOCA.       Hatch   Units       1 and   2 are   licensed       to   the TRACG-LOCA           best   estimate       plus   uncertainty         ECCS/LOCA       evaluation         methodology.           Using   the same   approved       TRACG-LOCA           methodology,           an   analysis     was     performed         using     representative limiting       break     locations     to   determine       the   effect   of increasing       the   S/RV   opening       setpoint       by running     the   break   spectra   for   those     break     locations.     This   analysis       determined       that   the   licensing basis     ECCS/LOCA         results     are   not   affected       by increasing       the   S/RV   opening       setpoint       nominal value   from       1150   psig   to     1160   psig.
ECCS/LOCA Evaluation Section 3.0 of GEH NEDC-34126P discusses the effect of the S/RV setpoint change on the peak cladding temperatures for the HNP ECCS LOCA. Hatch Units 1 and 2 are licensed to the TRACG-LOCA best estimate plus uncertainty ECCS/LOCA evaluation methodology. Using the same approved TRACG-LOCA methodology, an analysis was performed using representative limiting break locations to determine the effect of increasing the S/RV opening setpoint by running the break spectra for those break locations. This analysis determined that the licensing basis ECCS/LOCA results are not affected by increasing the S/RV opening setpoint nominal value from 1150 psig to 1160 psig.


High   Pressure     System       Performance Section     4.0   of GEH   NEDC-34126P           discusses       the   performance       of the     HPCI   and     RCIC   Systems with   the   increase       in   the   S/RV   setpoints.       Operation       at reactor     pressures       up to   the     UL   is within     the design     limits   for   system       piping,     pumps,     and   turbines       for the     HPCI   and     RCIC     systems.     The
High Pressure System Performance Section 4.0 of GEH NEDC-34126P discusses the performance of the HPCI and RCIC Systems with the increase in the S/RV setpoints. Operation at reactor pressures up to the UL is within the design limits for system piping, pumps, and turbines for the HPCI and RCIC systems. The


E-3 to   NL-24-0026 Description         and   Assessment         of the   Proposed       Changes
E-3 to NL-24-0026 Description and Assessment of the Proposed Changes


impacts       on   MOVs due                                                                                                                           to   the   potential     for   increased       reactor   vessel       and     system     pressure       as   a result   of the   increase       in   the   S/RV     nominal     opening       setpoint     are   evaluated           in   accordance       with the   Generic     Letter   89-10     requirements           as   part   of the   SNC   design     process.     The     HPCI   and     RCIC pumps     are   capable       of delivering       rated   system     flow   with     vessel     pressures       at the     UL value   of 1195   psig.
impacts on MOVs due to the potential for increased reactor vessel and system pressure as a result of the increase in the S/RV nominal opening setpoint are evaluated in accordance with the Generic Letter 89-10 requirements as part of the SNC design process. The HPCI and RCIC pumps are capable of delivering rated system flow with vessel pressures at the UL value of 1195 psig.


Containment           Evaluation Section       5.0   of GEH   NEDC-34126P           discusses       effects     of the   proposed       increase       in   S/RV setpoints       on   containment-related               evaluations,       which       include   ATWS,         OBA LOCA,     SSLB   for     EQ, Appendix           R,     and     SBO. The   evaluations       were     performed       with   the   same     methodologies           as the current       bases   for these     events.
Containment Evaluation Section 5.0 of GEH NEDC-34126P discusses effects of the proposed increase in S/RV setpoints on containment-related evaluations, which include ATWS, OBA LOCA, SSLB for EQ, Appendix R, and SBO. The evaluations were performed with the same methodologies as the current bases for these events.
* ATWS     -                   The   evaluation         performed       for ATWS     demonstrated         that   the   peak wetwell       pressure and   temperature         with   the   proposed     S/RV   setpoint       change     were     equal     to   or bounded       by the current     analysis     of record.
* ATWS - The evaluation performed for ATWS demonstrated that the peak wetwell pressure and temperature with the proposed S/RV setpoint change were equal to or bounded by the current analysis of record.
* OBA LOCA   -                   The   evaluation       determined       that   both   long-term       and     short-term         OBA LOCA analyses       are   unaffected         by the   proposed     S/RV   setpoint       increase     from       1150   to     1160   psig.
* OBA LOCA - The evaluation determined that both long-term and short-term OBA LOCA analyses are unaffected by the proposed S/RV setpoint increase from 1150 to 1160 psig.
* SSLB   for     EQ -                   The   SSLB     containment         analysis     demonstrated         that   the   S/RV   setpoint increase       results       in   negligible       changes       in   the   drywell     temperature         curves     for the   various break   sizes. As   such,     there     is   negligible       effect     on     HNP   Units     1 and   2   EQ   profile.
* SSLB for EQ - The SSLB containment analysis demonstrated that the S/RV setpoint increase results in negligible changes in the drywell temperature curves for the various break sizes. As such, there is negligible effect on HNP Units 1 and 2 EQ profile.
* Appendix         R -                     Hatch   Units       1 and   2 are   now   licensed     to   NFPA   805   for   fire   protection.
* Appendix R - Hatch Units 1 and 2 are now licensed to NFPA 805 for fire protection.
However,     the   deterministic       Appendix         R containment         response       evaluation       was   conservatively assessed     for   impact.     The   effect     on   the   suppression           pool   temperature         response       due   to   S/RV setpoint     increase     was   determined         to   be   negligible       and,     in   turn,   the   effect     on   containment temperature           and     pressure       are   negligible.         It was     concluded       that   there     is   negligible       effect     on the   Appendix         R containment         response     from     increasing       the     nominal     S/RV   setpoint.
However, the deterministic Appendix R containment response evaluation was conservatively assessed for impact. The effect on the suppression pool temperature response due to S/RV setpoint increase was determined to be negligible and, in turn, the effect on containment temperature and pressure are negligible. It was concluded that there is negligible effect on the Appendix R containment response from increasing the nominal S/RV setpoint.
* SBO   -                   The   station     blackout     event     is   also   an   RPV   isolation       and     non-break       event     similar     to Appendix             R.     The   applicable       discussion         and   conclusion         for Appendix         R is   also   applicable       to SBO. Thus,     there     is   negligible       effect     on   the   SBO     response     from     increasing       the   S/RV setpoint.
* SBO - The station blackout event is also an RPV isolation and non-break event similar to Appendix R. The applicable discussion and conclusion for Appendix R is also applicable to SBO. Thus, there is negligible effect on the SBO response from increasing the S/RV setpoint.


ATWS     Mitigation       Capability Section       6.0   of GEH   NEDC-34126P           discusses       the   S/RV   setpoint     increase       impacts       on ATWS acceptance         criteria     compliance       for   limiting   ATWS     events.     The   limiting     ATWS     events     of Main Steam     Isolation     Valve     Closure       (MSIVC)       and     Pressure       Regulator       Failure     Open     (PRFO)   were analyzed       to   demonstrate         compliance       with   the   following:
ATWS Mitigation Capability Section 6.0 of GEH NEDC-34126P discusses the S/RV setpoint increase impacts on ATWS acceptance criteria compliance for limiting ATWS events. The limiting ATWS events of Main Steam Isolation Valve Closure (MSIVC) and Pressure Regulator Failure Open (PRFO) were analyzed to demonstrate compliance with the following:
* ASME     Service     Level   C   Pressure       Limit     (1500     psig)
* ASME Service Level C Pressure Limit (1500 psig)
* Containment           Pressure       Design     Limit     (plant-specific,           see Attachment         4)
* Containment Pressure Design Limit (plant-specific, see Attachment 4)
* Suppression           Pool   Temperature           Design     Limit     (plant-specific,           see   Attachment         4)
* Suppression Pool Temperature Design Limit (plant-specific, see Attachment 4)
* 10   CFR   50.46     PCT   Limit   (<2200F)
* 10 CFR 50.46 PCT Limit (<2200F)
* 10   CFR   50.46     Local   Cladding       Oxidation       Thickness         Limit     (<17%)
* 10 CFR 50.46 Local Cladding Oxidation Thickness Limit (<17%)
Based       on   the   analysis       results,       all ATWS     acceptance         criteria     are   met for the   S/RV   setpoint increase     from     1150   psig   to     1160   psig.
Based on the analysis results, all ATWS acceptance criteria are met for the S/RV setpoint increase from 1150 psig to 1160 psig.


E-4 to   NL-24-0026 Description         and   Assessment         of the   Proposed       Changes
E-4 to NL-24-0026 Description and Assessment of the Proposed Changes


SLC   System     Performance
SLC System Performance


The   SLC     system       required     pump   discharge       pressure       is   based     on   the   limiting     peak   pressure     at the   SLC     injection       location       (lower     plenum     injection)     after   SLC   System       initiation     from     a   MSIV closure     event   at the   beginning     of an   operating       cycle. With     an   increase       in   S/RV   setpoints       to     1160 psig   and   a SLC   System     initiation     time     of   130.6   seconds,     the   resulting       pressure     at the   SLC System       injection       location       is     1218   psia   (1203.3       psig). SLC   System       losses   were     determined         to   be approximately         47   psi. Using   the   lower   plenum     pressure,       the     required     SLC     pump   discharge pressure     will     become       1251     psig   (1203.3       + 47). This   value     of   1251     psig     is   the     proposed SR 3.1.7.7     minimum       SLC     pump   discharge         pressure.
The SLC system required pump discharge pressure is based on the limiting peak pressure at the SLC injection location (lower plenum injection) after SLC System initiation from a MSIV closure event at the beginning of an operating cycle. With an increase in S/RV setpoints to 1160 psig and a SLC System initiation time of 130.6 seconds, the resulting pressure at the SLC System injection location is 1218 psia (1203.3 psig). SLC System losses were determined to be approximately 47 psi. Using the lower plenum pressure, the required SLC pump discharge pressure will become 1251 psig (1203.3 + 47). This value of 1251 psig is the proposed SR 3.1.7.7 minimum SLC pump discharge pressure.


The   SLC     pumps     are   positive     displacement           pumps,   which     deliver     a constant     flow     rate   regardless of discharge       pressure.       The     pump   motors     are   40     hp, which     are   adequate       for the   pressure increase.       The   system     design     pressure       is   adequate     for the   increase       in   operating       pressure.
The SLC pumps are positive displacement pumps, which deliver a constant flow rate regardless of discharge pressure. The pump motors are 40 hp, which are adequate for the pressure increase. The system design pressure is adequate for the increase in operating pressure.


The   SLC     System     pump     discharge       relief   valve     setpoint       margin       is   based     on   the   discharge pressure       during     an ATWS. NRC       Information       Notice     (IN)   2001-13       identifies     the     need     to     include     a margin     of 75     psi   to   prevent     inadvertent         actuation     of the   SLC   System     relief   valves.     This     margin accounts     for   pressure       pulsations     from   the   positive     displacement           pumps     and   tolerance       for the SLC   System     discharge         relief   valves. The   maximum         RPV   lower   plenum     pressure     without       SLC System       relief   valves       lifting     is   the   SLC   System       relief   valve     setpoint       (1400     psig)   minus   the     100   psi margin     to   prevent     inadvertent       actuation,       minus   the   SLC   System     piping     losses     (47   psi). This results       in   a maximum       RPV   lower     plenum     pressure     without       the   SLC   System       relief   valve     lifting   of 1253   psig     (1400 -                       100 -           47).
The SLC System pump discharge relief valve setpoint margin is based on the discharge pressure during an ATWS. NRC Information Notice (IN) 2001-13 identifies the need to include a margin of 75 psi to prevent inadvertent actuation of the SLC System relief valves. This margin accounts for pressure pulsations from the positive displacement pumps and tolerance for the SLC System discharge relief valves. The maximum RPV lower plenum pressure without SLC System relief valves lifting is the SLC System relief valve setpoint (1400 psig) minus the 100 psi margin to prevent inadvertent actuation, minus the SLC System piping losses (47 psi). This results in a maximum RPV lower plenum pressure without the SLC System relief valve lifting of 1253 psig (1400 - 100 - 47).


As   a result   of the     proposed       S/RV   setpoint       increase,     the   updated       peak   pressure     at the   SLC injection       location       (lower   plenum)     after   SLC     injection       is     1203.3     psig     (1218     psia). Therefore,       the additional       pressure       margin     to   relief   valve     lift   is   49.7     psi   (1253     psig   -                     1203.3     psig). This represents         an   additional       74.7     psi   (49.7     +   25)   margin     above   the   75   psi   margin       in   NRC     IN   2001-
As a result of the proposed S/RV setpoint increase, the updated peak pressure at the SLC injection location (lower plenum) after SLC injection is 1203.3 psig (1218 psia). Therefore, the additional pressure margin to relief valve lift is 49.7 psi (1253 psig - 1203.3 psig). This represents an additional 74.7 psi (49.7 + 25) margin above the 75 psi margin in NRC IN 2001-
: 13. Based     on   this     review,     the   current     SLC   System       relief   valves       and   their   associated         setpoints are   acceptable     for   the   proposed       increase       in   S/RV   setpoints.
: 13. Based on this review, the current SLC System relief valves and their associated setpoints are acceptable for the proposed increase in S/RV setpoints.


S/RV     Discharge       Line   Loads SNC   performed         an   assessment       of the   impact     of increasing       the   S/RV     nominal       setpoint     to     1160 psig   on   the   S/RV   discharge       line   loads   for   HNP   Units     1 and     2. The   updated     analyses       for   both units   demonstrated         that   the   current     configuration         of all     11       S/RV   discharge       line   piping     portions located     within     the   vent     pipes   and   torus     meet ASME     Code     requirements         for   all     load combinations.
S/RV Discharge Line Loads SNC performed an assessment of the impact of increasing the S/RV nominal setpoint to 1160 psig on the S/RV discharge line loads for HNP Units 1 and 2. The updated analyses for both units demonstrated that the current configuration of all 11 S/RV discharge line piping portions located within the vent pipes and torus meet ASME Code requirements for all load combinations.


Conclusion Evaluations         have   been     performed     which       consider     the   consequences         of the   various     transients and   accidents     with     the   increased       setpoints.     The   evaluations         also   analyze     the   impact     on   SLC and     ECCS     performance,           including         HPCI   and     RCIC. The   conclusions         of these     evaluations         have shown     no   significant       increase       in   consequences         of an   accident     with   the     increased       S/RV setpoints.
Conclusion Evaluations have been performed which consider the consequences of the various transients and accidents with the increased setpoints. The evaluations also analyze the impact on SLC and ECCS performance, including HPCI and RCIC. The conclusions of these evaluations have shown no significant increase in consequences of an accident with the increased S/RV setpoints.


E-5 to   NL-24-0026 Description         and   Assessment         of the   Proposed       Changes
E-5 to NL-24-0026 Description and Assessment of the Proposed Changes


==4.0                                                           REGULATORY               EVALUATION==
==4.0 REGULATORY EVALUATION==
4.1 Applicable Regulatory Requirements/Criteria


4.1                                                                Applicable          Regulatory        Requirements/Criteria
1 O CFR 50.36, "Technical specifications "
Regulation 10 CFR 50.36, "Technical specifications, " provides the requirements for the content required in the TS. As stated in 10 CFR 50.36, the TSs include, among other things, LCOs and SRs to assure that the necessary quality of systems and components is maintained, that facility operation will be within safety limits, and that the limiting conditions for operation will be met. As described above, the SRs are proposed to be updated to assure that the facility operation is within safety limits.


1 O CFR    50.36,      "Technical        specifications        "
ASME Boiler and Pressure Vessel Code The ASME Boiler and Pressure Vessel Code requires that each vessel designed to meet Section Ill be protected from overpressure. The code allows a peak allowable pressure of 110%
Regulation          10  CFR    50.36,      "Technical        specifications,        " provides      the    requirements        for  the  content required        in   the    TS.            As    stated      in      10  CFR    50.36,    the    TSs    include,      among      other  things,      LCOs    and SRs  to  assure      that  the    necessary        quality    of systems      and     components            is    maintained,        that  facility operation      will    be  within      safety    limits,     and  that    the    limiting    conditions      for    operation      will      be  met. As described         above,    the   SRs  are    proposed       to   be  updated      to  assure     that   the   facility      operation          is within      safety      limits.
of vessel design pressure. The NPRS SR/Vs are designed and manufactured in accordance with ASME Boiler and Pressure Vessel Code Section Ill, 1968 Edition with Addenda through 1970. The evaluations described in Section 3.0 above conclude that the proposed TS changes will continue to assure that the design requirements associated with the S/RVs and their associated functions are met.


ASME      Boiler    and    Pressure      Vessel      Code The  ASME      Boiler    and    Pressure      Vessel      Code      requires      that    each    vessel      designed      to    meet Section        Ill      be  protected      from    overpressure.          The    code    allows    a  peak  allowable        pressure      of  110%
4.2 Precedent
of vessel      design    pressure.                The    NPRS    SR/Vs    are    designed      and    manufactured              in    accordance with  ASME      Boiler    and    Pressure      Vessel      Code    Section    Ill,          1968    Edition    with    Addenda      through 1970. The  evaluations        described          in  Section      3.0  above    conclude      that  the    proposed        TS    changes will    continue      to  assure    that  the  design      requirements          associated        with    the    S/RVs    and    their associated      functions        are    met.


4.2                                                                Precedent
Reference 1 provides a previous example of a similar license amendment approved by the NRC for HNP to increase the nominal mechanical relief setpoints for all NPRS S/RVs to their current nominal value of 1150 psig. References 3 and 4 provide examples of other industry license amendments involving S/RV setpoint and setpoint tolerance changes which involve similar technical analyses to those used for the proposed HNP changes.


Reference        1 provides      a  previous      example      of a  similar      license    amendment        approved        by  the    NRC for    HNP  to    increase      the    nominal      mechanical        relief    setpoints      for  all    NPRS    S/RVs      to  their    current nominal    value    of  1150  psig.     References        3 and    4  provide    examples      of other    industry      license amendments          involving      S/RV    setpoint      and    setpoint      tolerance        changes      which      involve    similar technical        analyses      to  those      used  for  the    proposed        HNP    changes.
4.3 No Significant Hazards Consideration Determination Analysis


4.3                                                                   No  Significant        Hazards    Consideration            Determination        Analysis
Southern Nuclear Operating Company (SNC) proposes to revise Edwin I. Hatch Nuclear Plant (HNP) Unit 1 and Unit 2 Technical Specifications (TS) to increase the nominal mechanical relief setpoints for each unit 's 11 safety/relief valves (S/RVs) of the reactor coolant system (RCS) nuclear pressure relief system (NPRS) from 1150 psig to 1160 psig. Changes are proposed to Surveillance Requirement (SR) 3.4.3.1 to increase these mechanical relief setpoints. As a result of the increased S/RV setpoints, a change is proposed to SR 3.1.7.7 to increase the minimum Standby Liquid Control pump discharge pressure accordingly.


Southern        Nuclear    Operating      Company        (SNC)    proposes        to    revise    Edwin      I.      Hatch      Nuclear    Plant (HNP)      Unit    1 and    Unit  2 Technical        Specifications            (TS)  to    increase    the    nominal      mechanical        relief setpoints    for  each      unit  's     11        safety/relief        valves      (S/RVs)     of the   reactor    coolant      system      (RCS) nuclear      pressure      relief    system      (NPRS)    from      1150    psig  to    1160    psig. Changes      are    proposed        to Surveillance          Requirement          (SR)    3.4.3.1       to    increase    these      mechanical        relief    setpoints.     As    a  result of the   increased      S/RV    setpoints,        a change        is  proposed      to  SR  3.1.7.7    to    increase     the   minimum Standby      Liquid    Control      pump    discharge        pressure      accordingly.
SNC has evaluated if a significant hazards consideration is involved with the proposed amendment(s) by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:
: 1. Does the proposed amendment involve a significant increase in the probability or consequences of an accident previously evaluated?


SNC    has  evaluated        if a  significant        hazards      consideration            is    involved    with    the    proposed amendment(s)              by  focusing        on    the  three    standards        set  forth      in      10  CFR    50.92,    "Issuance      of amendment,"          as  discussed        below:
Response: No
: 1.                        Does    the    proposed      amendment          involve      a  significant        increase        in    the    probability        or consequences          of an    accident        previously        evaluated?


Response:        No
The S/RVs serve to mitigate postulated transients and accidents; the proposed changes do not alter the function or mode of operation of the S/RVs. The probability of an operable or an inoperable S/RV inadvertently opening or failing to open or close is not affected by these


The    S/RVs    serve    to   mitigate      postulated      transients        and   accidents;        the    proposed      changes      do not  alter  the  function      or mode    of operation      of the   S/RVs. The    probability        of an    operable      or an inoperable        S/RV    inadvertently          opening      or failing      to  open    or close      is    not  affected        by these
E-6 to NL-24-0026 Description and Assessment of the Proposed Changes


E-6  to   NL-24-0026 Description        and   Assessment          of the   Proposed      Changes
changes. The proposed change does not alter the safety function of the valves. The proposed TS revision involves no significant changes to the operation of any systems or components in normal or accident operating conditions and no changes to existing structures, systems, or components. Therefore, the probability of an accident is not increased. Evaluations have been performed which consider the consequences of the various transients and accidents with the increased setpoints. The evaluations also analyze the impact on ECCS performance, including HPCI and RCIC. The conclusions of these evaluations have shown no significant increase in consequences of an accident with the increased S/RV setpoints.


changes.      The    proposed       change     does   not   alter  the  safety    function      of the  valves.                The proposed      TS    revision      involves      no  significant       changes      to  the  operation      of any  systems        or components            in   normal    or  accident      operating        conditions        and    no  changes      to    existing structures,        systems,      or components.        Therefore,        the     probability       of an   accident       is    not increased.         Evaluations        have    been    performed      which      consider      the   consequences          of the various      transients        and    accidents      with    the    increased        setpoints.      The  evaluations        also    analyze the    impact    on    ECCS    performance,          including        HPCI    and    RCIC. The  conclusions        of these evaluations        have    shown      no  significant        increase        in  consequences          of an    accident     with    the increased        S/RV    setpoints.
Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.
: 2. Does the proposed amendment create the possibility of a new or different kind of accident from any accident previously evaluated?


Therefore,        the    proposed      change      does    not  involve    a  significant        increase        in  the    probability        or consequences          of an    accident        previously        evaluated.
Response: No
: 2.                          Does    the    proposed      amendment        create    the    possibility      of a  new  or different        kind  of accident from    any  accident        previously        evaluated?


Response:        No
Revising the nominal S/RV setpoint only changes when the S/RV opens in its safety mode; the operation of the S/RV and any other existing equipment is not altered. The impact on the operation and design of other systems and components has been evaluated, including ECCS and SLC. The proposed change does not affect the manner in which the NPRS is operated; therefore, there are no new failure mechanisms for the NPRS. The proposed change does not change the safety function of the valves. There is no alteration to the parameters within which the plant is normally operated. As a result, no new operating or failure modes are being introduced. Thus, these changes do not contribute to a new or different type of accident.


Revising      the    nominal    S/RV    setpoint      only  changes      when    the    S/RV    opens      in    its  safety    mode; the  operation      of the    S/RV    and    any  other    existing      equipment          is    not  altered.      The    impact    on  the operation        and    design    of other    systems      and    components          has    been    evaluated,         including ECCS    and    SLC. The    proposed      change      does    not  affect    the    manner      in  which      the    NPRS      is operated;      therefore,        there    are    no  new failure      mechanisms        for  the   NPRS. The    proposed change     does     not   change      the   safety    function      of the  valves. There      is  no  alteration        to  the parameters        within    which    the    plant    is    normally      operated.                As  a  result,      no  new  operating      or failure      modes    are    being    introduced.        Thus,      these    changes      do  not  contribute        to  a   new or different     type    of accident.
Therefore, the proposed change does not create the possibility of a new or different kind of accident from any accident previously evaluated.
: 3. Does the proposed amendment involve a significant reduction in a margin of safety?


Therefore,        the    proposed      change      does    not  create    the    possibility      of a  new  or different      kind    of accident      from    any  accident        previously        evaluated.
Response: No
: 3.                          Does    the    proposed      amendment          involve    a  significant        reduction        in    a  margin    of safety?


Response:        No
The margin of safety is established through the design of the plant structures, systems, and components, the parameters within which the plant is operated, and the establishment of the setpoints for the actuation of equipment relied upon to respond to an event. The proposed change does not modify the safety limits or setpoints at which protective actions are initiated and does not change the requirements governing operation or availability of safety equipment assumed to operate to preserve the margin of safety. The change in S/RV mechanical lift setpoint was evaluated relative to the applicable safety system settings and found to remain acceptable. The proposed changes were evaluated against peak clad temperature limits, ECCS operation, ASME Code overpressurization limits, and containment design limits. No significant reduction in the margin of safety was identified in the evaluations performed.


The    margin    of safety      is  established        through      the  design    of the    plant    structures,         systems,        and components,          the     parameters      within    which      the    plant    is    operated,        and    the  establishment          of the setpoints      for  the    actuation      of equipment        relied    upon    to    respond      to  an    event. The    proposed change     does    not  modify the        safety      limits    or setpoints        at which      protective        actions      are    initiated and    does   not   change    the    requirements          governing        operation        or availability      of safety equipment        assumed        to    operate      to    preserve      the    margin    of safety.        The  change      in  S/RV mechanical          lift  setpoint      was    evaluated        relative      to  the  applicable        safety    system      settings      and found      to    remain    acceptable.        The    proposed      changes    were    evaluated      against      peak    clad temperature          limits,      ECCS    operation,      ASME      Code    overpressurization              limits,    and    containment design      limits.      No  significant         reduction         in   the    margin     of safety   was    identified        in  the evaluations        performed.
Therefore, the proposed change does not involve a significant reduction in a margin of safety.


Therefore,        the   proposed      change      does    not  involve    a  significant        reduction        in  a  margin    of safety.
E-7 to NL-24-0026 Description and Assessment of the Proposed Changes


E-7  to    NL-24-0026 Description    and Assessment        of the  Proposed    Changes
Based on the above, SNC concludes that the proposed change presents no significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and, accordingly, a finding of "no significant hazards consideration" is justified.


Based    on  the    above,    SNC  concludes    that  the    proposed    change    presents      no  significant      hazards consideration      under  the  standards      set forth    in      10  CFR  50.92(c),      and,    accordingly,      a finding    of "no  significant      hazards    consideration"        is justified.
4.4 Conclusions


4.4                                                                Conclusions
In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.


In  conclusion,      based    on  the    considerations      discussed    above,      (1) there    is  reasonable      assurance that  the    health  and    safety  of the  public will    not  be  endangered      by  operation    in  the  proposed manner,    (2)  such  activities    will    be  conducted      in    compliance    with  the  Commission's        regulations, and    (3)  the    issuance  of the  amendment    will    not  be    inimical  to  the  common    defense    and  security or to  the  health    and  safety  of the  public.
5.0 ENVIRONMENTAL CONSIDERATION


5.0                                                              ENVIRONMENTAL        CONSIDERATION
A review has determined that the proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20, or would change an inspection or surveillance requirement. However, the proposed amendment does not involve (i) a significant hazards consideration, (ii) a significant change in the types or a significant increase in the amounts of any effluents that may be released offsite, or (iii) a significant increase in individual or cumulative occupational radiation exposure.
Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9). Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed amendment.


A  review    has  determined    that  the    proposed    amendment    would    change    a  requirement    with respect  to   installation    or  use  of a facility    component      located  within    the  restricted    area,   as  defined in      10  CFR  20,   or would    change    an    inspection      or surveillance      requirement.        However,   the proposed    amendment    does    not  involve    (i) a significant      hazards  consideration,       (ii) a significant change    in    the  types  or a significant      increase    in  the  amounts    of any  effluents    that    may  be released    offsite,   or  (iii) a significant      increase    in    individual    or cumulative                                                  occupational      radiation exposure.
==6.0 REFERENCES==
Accordingly,       the    proposed    amendment      meets  the    eligibility    criterion  for   categorical      exclusion      set forth      in      10  CFR  51.22(c)(9). Therefore,     pursuant    to     10  CFR  51.22(b),     no  environmental      impact statement    or environmental      assessment        need    be  prepared      in    connection    with  the  proposed amendment.
: 1. Letter from Georgia Power Company to NRC, "Edwin I. Hatch Nuclear Plant Request to Revise Technical Specifications: Safety/Relief Valve Setpoint Change," dated October 7, 1996 (ADAMS Accession No. ML20128M857)
: 2. Letter from NRC to Georgia Power Company, "Issuance of Amendments - Edwin I.
Hatch Nuclear Plant, Units 1 and 2 (TAC Nos. M96752 and M96753)," dated March 21, 1997 (ADAMS Accession No. ML013030262)
: 3. Letter from Entergy Nuclear Operations, Inc. to NRC, "Proposed License Amendment to Technical Specifications: Revised Technical Specification for Setpoint and Setpoint Tolerance Increases for Safety Relief Valves (SRV) and Spring Safety Valves (SSV),
and Related Changes," dated March 15, 2010 (ADAMS Accession ML100770450)
: 4. Letter from Exelon Generation Company, LLC to NRC, "License Amendment Request to Revise the Technical Specification (TS) Surveillance Requirement (SR) 3.4.4.1 to Revise the Lower Setpoint Tolerances for Safety/Relief Valves (S/RVs)," dated February 27, 2018 (ADAMS Accession ML18058A257)


==6.0                                                                REFERENCES==
E-8 Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint
: 1.                        Letter from    Georgia    Power  Company    to    NRC,  "Edwin      I.        Hatch  Nuclear  Plant  Request    to Revise  Technical      Specifications:      Safety/Relief      Valve    Setpoint  Change,"      dated  October    7, 1996  (ADAMS  Accession      No. ML20128M857)
: 2.                          Letter from      NRC  to    Georgia    Power  Company,    "Issuance    of Amendments      -                      Edwin    I.
Hatch  Nuclear    Plant,    Units    1 and    2  (TAC  Nos. M96752    and    M96753),"    dated    March    21, 1997  (ADAMS  Accession      No. ML013030262)
: 3.                          Letter from      Entergy    Nuclear    Operations,        Inc. to    NRC,  "Proposed      License  Amendment      to Technical      Specifications:        Revised  Technical      Specification      for  Setpoint    and  Setpoint Tolerance      Increases  for  Safety    Relief  Valves    (SRV)    and  Spring    Safety  Valves    (SSV),
and    Related    Changes,"      dated    March      15,  2010    (ADAMS  Accession      ML100770450)
: 4.                          Letter  from    Exelon    Generation    Company,      LLC  to    NRC,    "License  Amendment        Request  to Revise  the  Technical      Specification      (TS)  Surveillance      Requirement      (SR)  3.4.4.1    to Revise  the  Lower  Setpoint    Tolerances    for  Safety/Relief      Valves    (S/RVs),"    dated    February 27,    2018  (ADAMS  Accession        ML18058A257)
 
E-8 Edwin           I. Hatch       Nuclear         Plant       -                 Units         1 and     2 Application                 to   Revise       Technical               Specifications Surveillance                   Requirements                 to   Increase         Safety/Relief               Valves       Setpoint


NL-24-0026
NL-24-0026


Attachment                   1
Attachment 1


Proposed             Technical               Specification                     Changes           (Mark-up)
Proposed Technical Specification Changes (Mark-up)
SLC   System 3.1.7
SLC System 3.1.7


SURVEILLANCE         REQUIREMENTS                   (continued)
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                 FREQUENCY
SURVEILLANCE FREQUENCY


SR             3.1.7.7 Verify   each   pump   develops     a flow   rate ~ 41.2   gpm In   accordance at   a discharge pressure~         ~1251     psig.                 with   the INSERVICE TESTING PROGRAM
SR 3.1.7.7 Verify each pump develops a flow rate ~ 41.2 gpm In accordance at a discharge pressure~ ~1251 psig. with the INSERVICE TESTING PROGRAM


SR               3.1.7.8 Verify flow   through     one   SLC   subsystem   from     pump In   accordance   with into   reactor   pressure   vessel.                                 the   Surveillance Frequency   Control Program
SR 3.1.7.8 Verify flow through one SLC subsystem from pump In accordance with into reactor pressure vessel. the Surveillance Frequency Control Program


SR             3.1.7.9 Verify   all   heat traced     piping   between   storage   tank In   accordance   with and   pump   suction     is     unblocked.                         the   Surveillance Frequency   Control Program
SR 3.1.7.9 Verify all heat traced piping between storage tank In accordance with and pump suction is unblocked. the Surveillance Frequency Control Program


Once within 24   hours   after pump   suction piping   temperature is   restored   within the   Region   A   limits of Figure 3.1. 7-2
Once within 24 hours after pump suction piping temperature is restored within the Region A limits of Figure 3.1. 7-2


SR             3.1.7.10 Verify   sodium   pentaborate     enrichment       is           Prior to   addition   to
SR 3.1.7.10 Verify sodium pentaborate enrichment is Prior to addition to
                          ~ 60.0   atom   percent   B-10.                                   SLC   tank
~ 60.0 atom percent B-10. SLC tank


HATCH   UNIT     1                                     3.1-20                                   Amendment       No. ~
HATCH UNIT 1 3.1-20 Amendment No. ~
S/RVs 3.4.3
S/RVs 3.4.3


SURVEILLANCE             REQUIREMENTS
SURVEILLANCE REQUIREMENTS


SURVEILLANCE                                                             FREQUENCY
SURVEILLANCE FREQUENCY


SR               3.4.3.1   Verify     the   safety   function       lift   setpoints       of the   S/RVs In   accordance       with are   as follows:                                                                 the   INSERVICE TESTING Number     of                         Setpoint                               PROGRAM S/RVs                               .(Q&sect;iru
SR 3.4.3.1 Verify the safety function lift setpoints of the S/RVs In accordance with are as follows: the INSERVICE TESTING Number of Setpoint PROGRAM S/RVs.(Q&sect;iru


11                   44-W-1160 --                                                                                                 --+/- J4..a34.8
11 44-W-1160 -- --+/- J4..a34.8


Following     testing,       lift   settings     shall     be within     +/-   1 %.
Following testing, lift settings shall be within +/- 1 %.


HATCH     UNIT     1                                             3.4-6                                       Amendment           No. ~
HATCH UNIT 1 3.4-6 Amendment No. ~
SLC   System 3.1.7
SLC System 3.1.7


SURVEILLANCE             REQUIREMENTS                       (continued)
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                         FREQUENCY
SURVEILLANCE FREQUENCY


SR             3.1.7.6     Verify     each   SLC   subsystem       manual     and   power         In   accordance       with operated       valve     in   the flow     path   that     is   not   locked, the   Surveillance sealed,     or otherwise       secured         in     position     is   in   the Frequency       Control correct     position,       or can     be   aligned     to   the   correct Program position.
SR 3.1.7.6 Verify each SLC subsystem manual and power In accordance with operated valve in the flow path that is not locked, the Surveillance sealed, or otherwise secured in position is in the Frequency Control correct position, or can be aligned to the correct Program position.


SR             3.1.7.7     Verify     each     pump   develops       a flow   rate ~ 41.2     gpm   In   accordance at   a discharge     pressure~           ~1251     psig.                 with   the INSERVICE TESTING PROGRAM
SR 3.1.7.7 Verify each pump develops a flow rate ~ 41.2 gpm In accordance at a discharge pressure~ ~1251 psig. with the INSERVICE TESTING PROGRAM


SR             3.1.7.8     Verify   flow   through       one   SLC   subsystem       from     pump In   accordance       with into   reactor     pressure     vessel.                                   the   Surveillance Frequency       Control Program
SR 3.1.7.8 Verify flow through one SLC subsystem from pump In accordance with into reactor pressure vessel. the Surveillance Frequency Control Program


SR             3.1.7.9     Verify     all   heat traced       piping     between     storage     tank In   accordance       with and   pump     suction       is     unblocked.                           the   Surveillance Frequency       Control Program
SR 3.1.7.9 Verify all heat traced piping between storage tank In accordance with and pump suction is unblocked. the Surveillance Frequency Control Program


Once   within 24   hours   after pump     suction piping   temperature is   restored     within the     Region     A   limits of Figure   3.1. 7-2
Once within 24 hours after pump suction piping temperature is restored within the Region A limits of Figure 3.1. 7-2


SR             3.1.7.10     Verify     sodium     pentaborate       enrichment         is           Prior to   addition       to
SR 3.1.7.10 Verify sodium pentaborate enrichment is Prior to addition to
                                ~ 60.0   atom     percent     B-10.                                     SLC   tank
~ 60.0 atom percent B-10. SLC tank


HATCH     UNIT   2                                           3.1-19                                     Amendment           No. ~
HATCH UNIT 2 3.1-19 Amendment No. ~
S/RVs 3.4.3
S/RVs 3.4.3


SURVEILLANCE             REQUIREMENTS
SURVEILLANCE REQUIREMENTS


SURVEILLANCE                                                             FREQUENCY
SURVEILLANCE FREQUENCY


SR               3.4.3.1   Verify     the   safety   function       lift   setpoints       of the   S/RVs In   accordance       with are   as follows:                                                                 the   INSERVICE TESTING Number     of                         Setpoint                               PROGRAM S/RVs                               .(Q&sect;iru
SR 3.4.3.1 Verify the safety function lift setpoints of the S/RVs In accordance with are as follows: the INSERVICE TESTING Number of Setpoint PROGRAM S/RVs.(Q&sect;iru


11                   44-W-1160 --                                                                                                 --+/- J4..a34.8
11 44-W-1160 -- --+/- J4..a34.8


Following     testing,       lift   settings     shall     be within     +/-   1 %.
Following testing, lift settings shall be within +/- 1 %.


HATCH     UNIT   2                                               3.4-6                                       Amendment           No. ~
HATCH UNIT 2 3.4-6 Amendment No. ~
Edwin           I. Hatch       Nuclear         Plant       -                 Units         1 and     2 Application                 to   Revise       Technical               Specifications Surveillance                   Requirements                 to   Increase         Safety/Relief               Valves       Setpoint
Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint


NL-24-0026
NL-24-0026


Attachment                   2
Attachment 2


Revised         Technical               Specification                       Pages SLC   System 3.1.7
Revised Technical Specification Pages SLC System 3.1.7


SURVEILLANCE         REQUIREMENTS                   (continued)
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                 FREQUENCY
SURVEILLANCE FREQUENCY


SR             3.1.7.7 Verify   each   pump   develops     a flow   rate ~ 41.2   gpm   In   accordance at   a discharge   pressure~     1251     psig.                     with   the INSERVICE TESTING PROGRAM
SR 3.1.7.7 Verify each pump develops a flow rate ~ 41.2 gpm In accordance at a discharge pressure~ 1251 psig. with the INSERVICE TESTING PROGRAM


SR               3.1.7.8 Verify flow   through     one   SLC   subsystem   from     pump In   accordance   with into   reactor   pressure   vessel.                                 the   Surveillance Frequency   Control Program
SR 3.1.7.8 Verify flow through one SLC subsystem from pump In accordance with into reactor pressure vessel. the Surveillance Frequency Control Program


SR             3.1.7.9 Verify   all   heat traced     piping   between   storage   tank In   accordance   with and   pump   suction     is     unblocked.                           the   Surveillance Frequency   Control Program
SR 3.1.7.9 Verify all heat traced piping between storage tank In accordance with and pump suction is unblocked. the Surveillance Frequency Control Program


Once within 24   hours   after pump   suction piping   temperature is   restored   within the   Region   A   limits of Figure 3.1. 7-2
Once within 24 hours after pump suction piping temperature is restored within the Region A limits of Figure 3.1. 7-2


SR             3.1.7.10 Verify   sodium   pentaborate     enrichment       is             Prior to   addition   to
SR 3.1.7.10 Verify sodium pentaborate enrichment is Prior to addition to
                          ~ 60.0   atom   percent   B-10.                                     SLC   tank
~ 60.0 atom percent B-10. SLC tank


HATCH   UNIT     1                                     3.1-20                                   Amendment       No.
HATCH UNIT 1 3.1-20 Amendment No.
S/RVs 3.4.3
S/RVs 3.4.3


SURVEILLANCE             REQUIREMENTS
SURVEILLANCE REQUIREMENTS


SURVEILLANCE                                                   FREQUENCY
SURVEILLANCE FREQUENCY


SR               3.4.3.1 Verify     the   safety   function       lift   setpoints       of the   S/RVs In   accordance       with are   as follows:                                                       the   INSERVICE TESTING Number     of                     Setpoint                         PROGRAM S/RVs                           .(Q&sect;iru
SR 3.4.3.1 Verify the safety function lift setpoints of the S/RVs In accordance with are as follows: the INSERVICE TESTING Number of Setpoint PROGRAM S/RVs.(Q&sect;iru


11                       1160 +/- 34.8
11 1160 +/- 34.8


Following     testing,       lift   settings     shall     be within     +/-   1 %.
Following testing, lift settings shall be within +/- 1 %.


HATCH     UNIT     1                                     3.4-6                                       Amendment           No.
HATCH UNIT 1 3.4-6 Amendment No.
SLC   System 3.1.7
SLC System 3.1.7


SURVEILLANCE             REQUIREMENTS                       (continued)
SURVEILLANCE REQUIREMENTS (continued)
SURVEILLANCE                                                         FREQUENCY
SURVEILLANCE FREQUENCY


SR             3.1.7.6     Verify     each   SLC   subsystem       manual     and   power         In   accordance       with operated       valve     in   the flow     path   that     is   not   locked, the   Surveillance sealed,     or otherwise       secured         in     position     is   in   the Frequency       Control correct     position,       or can     be   aligned     to   the   correct Program position.
SR 3.1.7.6 Verify each SLC subsystem manual and power In accordance with operated valve in the flow path that is not locked, the Surveillance sealed, or otherwise secured in position is in the Frequency Control correct position, or can be aligned to the correct Program position.


SR             3.1.7.7     Verify     each     pump   develops       a flow   rate ~ 41.2     gpm   In   accordance at   a discharge     pressure~       1251     psig.                       with   the INSERVICE TESTING PROGRAM
SR 3.1.7.7 Verify each pump develops a flow rate ~ 41.2 gpm In accordance at a discharge pressure~ 1251 psig. with the INSERVICE TESTING PROGRAM


SR             3.1.7.8     Verify   flow   through       one   SLC   subsystem       from     pump In   accordance       with into   reactor     pressure     vessel.                                 the   Surveillance Frequency       Control Program
SR 3.1.7.8 Verify flow through one SLC subsystem from pump In accordance with into reactor pressure vessel. the Surveillance Frequency Control Program


SR             3.1.7.9     Verify     all   heat traced       piping     between     storage     tank In   accordance       with and   pump     suction       is     unblocked.                           the   Surveillance Frequency       Control Program
SR 3.1.7.9 Verify all heat traced piping between storage tank In accordance with and pump suction is unblocked. the Surveillance Frequency Control Program


Once   within 24   hours   after pump     suction piping   temperature is   restored     within the     Region     A   limits of Figure   3.1. 7-2
Once within 24 hours after pump suction piping temperature is restored within the Region A limits of Figure 3.1. 7-2


SR             3.1.7.10     Verify     sodium     pentaborate       enrichment         is           Prior to   addition       to
SR 3.1.7.10 Verify sodium pentaborate enrichment is Prior to addition to
                                ~ 60.0   atom     percent     B-10.                                     SLC   tank
~ 60.0 atom percent B-10. SLC tank


HATCH     UNIT   2                                           3.1-19                                           Amendment           No.
HATCH UNIT 2 3.1-19 Amendment No.
S/RVs 3.4.3
S/RVs 3.4.3


SURVEILLANCE             REQUIREMENTS
SURVEILLANCE REQUIREMENTS


SURVEILLANCE                                                   FREQUENCY
SURVEILLANCE FREQUENCY


SR               3.4.3.1 Verify     the   safety   function       lift   setpoints       of the   S/RVs In   accordance       with are   as follows:                                                     the   INSERVICE TESTING Number     of                     Setpoint                         PROGRAM S/RVs                           .(Q&sect;iru
SR 3.4.3.1 Verify the safety function lift setpoints of the S/RVs In accordance with are as follows: the INSERVICE TESTING Number of Setpoint PROGRAM S/RVs.(Q&sect;iru


11                       1160 +/- 34.8
11 1160 +/- 34.8


Following     testing,       lift   settings     shall     be within     +/-   1 %.
Following testing, lift settings shall be within +/- 1 %.


HATCH     UNIT   2                                       3.4-6                                       Amendment           No.
HATCH UNIT 2 3.4-6 Amendment No.
Edwin           I. Hatch       Nuclear         Plant       -                 Units         1 and     2 Application                 to   Revise       Technical               Specifications Surveillance                   Requirements                 to   Increase         Safety/Relief               Valves       Setpoint
Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint


NL-24-0026
NL-24-0026


Attachment                 3
Attachment 3


Proposed             Technical               Specifications                       Bases       Changes           (Mark-up)           -                   For Information                 Only S/RVs B 3.4.3
Proposed Technical Specifications Bases Changes (Mark-up) - For Information Only S/RVs B 3.4.3


BASES               (continued)
BASES (continued)


ACTIONS                                 A.1         and   A.2
ACTIONS A.1 and A.2


With     1 SR/V   inoperable,     no   action     is   required,     because     an   analysis demonstrated     that the   remaining       10   SR/Vs   are capable   of providing the   necessary   overpressure       protection.               (See     Ref. 5.)
With 1 SR/V inoperable, no action is required, because an analysis demonstrated that the remaining 10 SR/Vs are capable of providing the necessary overpressure protection. (See Ref. 5.)


With   two   or more S/RVs   inoperable,     a transient     may   result   in   the violation     of the ASME     Code   limit on   reactor   pressure.               The   plant   must be   brought   to   a MODE     in   which     the   LCO   does   not apply.               To   achieve this   status,   the   plant   must   be   brought   to   MODE   3 within       12   hours   and to   MODE   4 within                                         36   hours.             The   allowed   Completion     Times   are reasonable,       based   on   operating     experience,     to   reach   required     plant conditions     from   full   power conditions       in   an   orderly   manner   and without challenging     plant   systems.
With two or more S/RVs inoperable, a transient may result in the violation of the ASME Code limit on reactor pressure. The plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.


SURVEILLANCE                             SR               3.4.3.1 REQUIREMENTS This   Surveillance       requires   that the   S/RVs   will   open   at the   pressures assumed       in   the   safety   analysis   of Reference   45 .         The   demonstration       of the   S/RV safety   lift settings   must   be   performed     during   shutdown,     since this   is   a bench   test,   to   be   done   in     accordance   with   the   INSERVICE TESTING       PROGRAM.               The   lift setting     pressure   shall   correspond     to ambient   conditions     of the valves     at   nominal   operating     temperatures and   pressures.               The   S/RV   setpoint     is   +/- 3% for   OPERABILITY; however,   the valves     are   reset to   +/- 1 % during the Surveillance       to   allow for drift.
SURVEILLANCE SR 3.4.3.1 REQUIREMENTS This Surveillance requires that the S/RVs will open at the pressures assumed in the safety analysis of Reference 45. The demonstration of the S/RV safety lift settings must be performed during shutdown, since this is a bench test, to be done in accordance with the INSERVICE TESTING PROGRAM. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The S/RV setpoint is +/- 3% for OPERABILITY; however, the valves are reset to +/- 1 % during the Surveillance to allow for drift.


The     Frequency   of this   SR   is     in   accordance     with   the   INSERVICE TESTING       PROGRAM.
The Frequency of this SR is in accordance with the INSERVICE TESTING PROGRAM.


REFERENCES                               1.                                                                                             FSAR, Appendix       M.
REFERENCES 1. FSAR, Appendix M.
: 2.                                                                                         Unit 2   FSAR, Chapter       15.
: 2. Unit 2 FSAR, Chapter 15.
: 3.                                                                                             NRC   No. 93-102,   "Final     Policy Statement       on   Technical Specification       Improvements,"     July   23,     1993.
: 3. NRC No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
: 4.                                                                                             NEDC-32041 P,     "Safety   Review for   Edwin   I.     Hatch   Nuclear Power   Plant   Units   1 and   2 Updated   Safety/Relief     Valve Performance     Requirements,"       April     1996.
: 4. NEDC-32041 P, "Safety Review for Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Updated Safety/Relief Valve Performance Requirements," April 1996.


(continued)
(continued)


HATCH   UNIT     1                                                   B3.4-12                                                     REVISION             %
HATCH UNIT 1 B3.4-12 REVISION %
S/RVs B 3.4.3
S/RVs B 3.4.3


BASES               (continued)
BASES (continued)


REFERENCES                                                               5.                   GEH   Report   NEDC-34126P,       Rev. 0,     "Edwin     I.       Hatch   Nuclear (continued)                                                                     Power   Plant   Units   1 and 2   Safety/Relief     Valve   Setpoint Increase,"   March   2024.
REFERENCES 5. GEH Report NEDC-34126P, Rev. 0, "Edwin I. Hatch Nuclear (continued) Power Plant Units 1 and 2 Safety/Relief Valve Setpoint Increase," March 2024.


HATCH   UNIT     1                                                                                                       B 3.4-12a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   REVISION     XXX ECCS -         Operating B 3.5.1 BASES
HATCH UNIT 1 B 3.4-12a REVISION XXX ECCS - Operating B 3.5.1 BASES


BACKGROUND                           is   provided   from   the   CST   and   the   suppression     pool.               Pump   suction for
BACKGROUND is provided from the CST and the suppression pool. Pump suction for
( continued)                     HPCI   is   normally   aligned   to the   CST   source   to   minimize     injection   of suppression       pool water   into the     RPV.               However,   if the   CST water supply   is   low,   or if the   suppression       pool   level   is   high,   an   automatic transfer   to the   suppression       pool water   source   ensures     a water supply for continuous     operation     of the   HPCI System.               The   steam   supply   to the     HPCI turbine     is   piped from   a main   steam     line upstream     of the associated     inboard   main   steam     isolation   valve.
( continued) HPCI is normally aligned to the CST source to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or if the suppression pool level is high, an automatic transfer to the suppression pool water source ensures a water supply for continuous operation of the HPCI System. The steam supply to the HPCI turbine is piped from a main steam line upstream of the associated inboard main steam isolation valve.


The     HPCI   System     is designed     to   provide   core   cooling   for   a wide range   of reactor   pressures     ( 150 psig to 448&sect;...1195 psig).               Upon receipt   of an   initiation     signal,   the     HPCI turbine     stop   valve   and   turbine control   valve   open   simultaneously       and   the turbine     accelerates     to   a specified     speed.             As the     HPCI flow     increases,   the turbine   governor valve     is   automatically       adjusted     to   maintain     design flow.                 Exhaust steam   from   the   HPCI   turbine     is   discharged     to the suppression       pool.           A full flow   test   line   is   provided     to   route water from     and   to the   CST to allow testing   of the   HPCI System     during   normal   operation   without injecting   water     into the   RPV.
The HPCI System is designed to provide core cooling for a wide range of reactor pressures ( 150 psig to 448&sect;...1195 psig). Upon receipt of an initiation signal, the HPCI turbine stop valve and turbine control valve open simultaneously and the turbine accelerates to a specified speed. As the HPCI flow increases, the turbine governor valve is automatically adjusted to maintain design flow. Exhaust steam from the HPCI turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the HPCI System during normal operation without injecting water into the RPV.


The     ECCS   pumps   are   provided   with   minimum   flow   bypass   lines, which     discharge   to the   suppression       pool.             The   valves     in   these     lines automatically       open   to   prevent   pump   damage   due to   overheating     when other   discharge     line valves   are closed.               To   ensure   rapid   delivery   of water   to the   RPV   and   to   minimize   water     hammer   effects,   all     ECCS pump   discharge     lines   are filled   with   water.               The   LPCI   and   CS   System discharge     lines are   kept full   of water     using   a "keep fill"     system   Uockey pump   system).             The     HPCI   System     is   normally   aligned   to the   CST.
The ECCS pumps are provided with minimum flow bypass lines, which discharge to the suppression pool. The valves in these lines automatically open to prevent pump damage due to overheating when other discharge line valves are closed. To ensure rapid delivery of water to the RPV and to minimize water hammer effects, all ECCS pump discharge lines are filled with water. The LPCI and CS System discharge lines are kept full of water using a "keep fill" system Uockey pump system). The HPCI System is normally aligned to the CST.
The   height   of water   in   the   CST   is   sufficient     to   maintain     the   piping full of water up                                                                                                                     to the first     isolation   valve.             The   relative   height   of the feedwater       line connection   for     HPCI   is     such that the water   in the feedwater       lines   keeps   the   remaining     portion   of the   HPCI   discharge line full   of water.               Therefore,       HPCI   does   not require   a "keep   fill" system.
The height of water in the CST is sufficient to maintain the piping full of water up to the first isolation valve. The relative height of the feedwater line connection for HPCI is such that the water in the feedwater lines keeps the remaining portion of the HPCI discharge line full of water. Therefore, HPCI does not require a "keep fill" system.


The ADS   (Ref. 4)   consists   of 7 of the       11         S/RVs.                 It is   designed     to provide   depressurization       of the   RCS   during   a small   break   LOCA   if HPCI fails   or is   unable   to   maintain   required   water     level   in   the   RPV.
The ADS (Ref. 4) consists of 7 of the 11 S/RVs. It is designed to provide depressurization of the RCS during a small break LOCA if HPCI fails or is unable to maintain required water level in the RPV.
ADS     operation     reduces   the     RPV pressure   to within   the   operating pressure     range   of the   low pressure       ECCS subsystems     (CS   and LPCI),   so that these   subsystems     can   provide   coolant   inventory makeup.                 Each of the   S/RVs   used for automatic   depressurization         is equipped   with     one air accumulator     and   associated     inlet check valves.
ADS operation reduces the RPV pressure to within the operating pressure range of the low pressure ECCS subsystems (CS and LPCI), so that these subsystems can provide coolant inventory makeup. Each of the S/RVs used for automatic depressurization is equipped with one air accumulator and associated inlet check valves.
The   accumulator     provides   the   pneumatic   power   to   actuate   the   valves.
The accumulator provides the pneumatic power to actuate the valves.


(continued)
(continued)


HATCH   UNIT     1                                               B 3.5-3                                                 REVISION G RCIC System B 3.5.3
HATCH UNIT 1 B 3.5-3 REVISION G RCIC System B 3.5.3


B 3.5                       EMERGENCY     CORE   COOLING   SYSTEMS     (ECCS),     RPV WATER     INVENTORY CONTROL,     AND   REACTOR     CORE     ISOLATION   COOLING     (RCIC)   SYSTEM
B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS), RPV WATER INVENTORY CONTROL, AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM


B 3.5.3                           RCIC System
B 3.5.3 RCIC System


BASES
BASES


BACKGROUND                         The     RCIC   System     is   not part of the     ECCS;   however,   the   RCIC System     is   included   with   the   ECCS   section     because   of their   similar functions.
BACKGROUND The RCIC System is not part of the ECCS; however, the RCIC System is included with the ECCS section because of their similar functions.


The   RCIC   System     is   designed   to   operate   either   automatically     or manually   following     reactor   pressure   vessel   (RPV)   isolation accompanied         by a   loss of coolant   flow from   the feedwater     system   to provide   adequate     core   cooling   and   control   of the   RPV water     level.
The RCIC System is designed to operate either automatically or manually following reactor pressure vessel (RPV) isolation accompanied by a loss of coolant flow from the feedwater system to provide adequate core cooling and control of the RPV water level.
Under   these   conditions,     the   High   Pressure     Coolant     Injection   (HPCI) and   RCIC   systems     perform   similar functions.                 The   RCIC   System design     requirements     ensure that     the   criteria   of Reference     1 are satisfied.
Under these conditions, the High Pressure Coolant Injection (HPCI) and RCIC systems perform similar functions. The RCIC System design requirements ensure that the criteria of Reference 1 are satisfied.


The     RCIC   System     (Ref. 2)   consists   of a steam   driven   turbine     pump unit,   piping,   and   valves   to   provide   steam   to the turbine,     as well     as piping   and   valves   to transfer   water   from   the   suction   source   to   the   core via   the feedwater     system   line, where   the   coolant     is   distributed   within the   RPV through     the feedwater     sparger.               Suction   piping   is   provided from   the   condensate     storage   tank   (CST)   and   the   suppression       pool.
The RCIC System (Ref. 2) consists of a steam driven turbine pump unit, piping, and valves to provide steam to the turbine, as well as piping and valves to transfer water from the suction source to the core via the feedwater system line, where the coolant is distributed within the RPV through the feedwater sparger. Suction piping is provided from the condensate storage tank (CST) and the suppression pool.
Pump   suction   is   normally   aligned   to the   CST to   minimize     injection   of suppression       pool water   into the     RPV.               However,   if the   CST water supply   is   low,   or the   suppression     pool   level   is   high,   an   automatic transfer   to the   suppression       pool water   source   ensures     a water supply for continuous     operation     of the   RCIC   System.               The   steam   supply   to the turbine       is   piped from   a main   steam     line   upstream     of the associated     inboard   main   steam     line   isolation   valve.
Pump suction is normally aligned to the CST to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or the suppression pool level is high, an automatic transfer to the suppression pool water source ensures a water supply for continuous operation of the RCIC System. The steam supply to the turbine is piped from a main steam line upstream of the associated inboard main steam line isolation valve.


The   RCIC   System     is   designed   to   provide   core   cooling for   a wide range   of reactor   pressures     ( 150 psig to 448a-1195     psig).               Upon receipt   of an   initiation     signal,   the     RCIC turbine   accelerates       to   a specified     speed. As the   RCIC flow   increases,   the   turbine     control   valve is   automatically       adjusted   to   maintain   design   flow.               Exhaust   steam   from the   RCIC turbine     is   discharged     to the   suppression       pool.             A full   flow test   line is   provided     to   route water   from     and   to the   CST   to   allow testing   of the   RCIC   System   during   normal   operation   without     injecting water     into the     RPV.
The RCIC System is designed to provide core cooling for a wide range of reactor pressures ( 150 psig to 448a-1195 psig). Upon receipt of an initiation signal, the RCIC turbine accelerates to a specified speed. As the RCIC flow increases, the turbine control valve is automatically adjusted to maintain design flow. Exhaust steam from the RCIC turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the RCIC System during normal operation without injecting water into the RPV.


The   RCIC   pump   is   provided   with   a minimum   flow   bypass   line, which discharges     to the   suppression     pool.             The   valve   in   this     line automatically       opens   to   prevent   pump   damage   due to   overheating
The RCIC pump is provided with a minimum flow bypass line, which discharges to the suppression pool. The valve in this line automatically opens to prevent pump damage due to overheating


(continued)
(continued)


HATCH   UNIT     1                                           B 3.5-26                                             REVISION               W S/RVs B 3.4.3
HATCH UNIT 1 B 3.5-26 REVISION W S/RVs B 3.4.3


BASES
BASES


APPLICABILITY                                 from     the     core     until     such     time     that   the     Residual         Heat     Removal         (RHR)
APPLICABILITY from the core until such time that the Residual Heat Removal (RHR)
(continued)                           System         is   capable         of dissipating           the   core     heat.
(continued) System is capable of dissipating the core heat.


In   MODE     4,   decay       heat     is   low   enough       for   the   RHR     System       to     provide adequate           cooling,         and     reactor       pressure is                                                                                                                                               low   enough       that   the overpressure               limit       is   unlikely       to   be   approached               by   assumed operational             transients           or accidents.                           In   MODE       5,     the     reactor       vessel head       is   unbolted         or removed         and   the     reactor         is   at atmospheric pressure.                   The   S/RV   function             is   not   needed       during       these       conditions.
In MODE 4, decay heat is low enough for the RHR System to provide adequate cooling, and reactor pressure is low enough that the overpressure limit is unlikely to be approached by assumed operational transients or accidents. In MODE 5, the reactor vessel head is unbolted or removed and the reactor is at atmospheric pressure. The S/RV function is not needed during these conditions.


ACTIONS                                       A.1       and   A.2
ACTIONS A.1 and A.2


With         1   S/RV       inoperable,             no   action         is   required,         because         an   analysis demonstrated               that   the     remaining             10   SR/Vs       are   capable         of providing the     necessary           overpressure               protection.                     (See     Reference         4.)
With 1 S/RV inoperable, no action is required, because an analysis demonstrated that the remaining 10 SR/Vs are capable of providing the necessary overpressure protection. (See Reference 4.)


With     two     or more     S/RVs       inoperable,             a transient         may     result         in   the violation         of the   ASME       Code       limit     on   reactor       pressure.                   The     plant     must be   brought       to   a   MODE         in   which       the   LCO     does     not   apply.               To   achieve this     status,       the     plant     must     be   brought       to   MODE       3 within           12   hours     and to   MODE       4 within         36   hours.     The     allowed         Completion           Times       are reasonable,               based       on   operating           experience,           to   reach       required         plant conditions         from     full     power     conditions               in   an   orderly       manner       and   without challenging             plant     systems.
With two or more S/RVs inoperable, a transient may result in the violation of the ASME Code limit on reactor pressure. The plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours and to MODE 4 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.


SURVEILLANCE                                   SR             3.4.3.1 REQUIREMENTS This Surveillance                   requires         that     the   S/RVs       will     open       at the     pressures assumed             in   the     safety       analysis         of Reference         45   .         The     demonstration               of the     S/RV     safety       lift   settings         must     be   performed           during       shutdown,           since this       is   a   bench       test,     to   be   done       in   accordance           with     the     INSERVICE TESTING           PROGRAM.                     The     lift   setting         pressure         shall     correspond           to ambient         conditions           of the   valves         at   nominal       operating         temperatures and     pressures.                   The   S/RV     setpoint         is+/- 3%   for   OPERABILITY; however,         the   valves       are     reset   to   +/-     1 %     during     the   Surveillance             to   allow for   drift.
SURVEILLANCE SR 3.4.3.1 REQUIREMENTS This Surveillance requires that the S/RVs will open at the pressures assumed in the safety analysis of Reference 45. The demonstration of the S/RV safety lift settings must be performed during shutdown, since this is a bench test, to be done in accordance with the INSERVICE TESTING PROGRAM. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The S/RV setpoint is+/- 3% for OPERABILITY; however, the valves are reset to +/- 1 % during the Surveillance to allow for drift.


The     Frequency         of this     SR   is     in   accordance             with     the     INSERVICE TESTING           PROGRAM.
The Frequency of this SR is in accordance with the INSERVICE TESTING PROGRAM.


(continued)
(continued)


HATCH       UNIT     2                                                         B3.4-12                                                             REVISION           400 S/RVs B 3.4.3
HATCH UNIT 2 B3.4-12 REVISION 400 S/RVs B 3.4.3


BASES   (continued)
BASES (continued)


REFERENCES                                                             1.                                                                                             FSAR,   Supplement       SA.
REFERENCES 1. FSAR, Supplement SA.
: 2.                                                                                                 FSAR,   Section       15.
: 2. FSAR, Section 15.
: 3.                                                                                             NRC   No. 93-102,   "Final     Policy Statement     on   Technical Specification       Improvements,"     July   23,     1993.
: 3. NRC No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
: 4.                                                                                             NEDC-32041 P,     "Safety   Review   for   Edwin   I.     Hatch   Nuclear Power   Plant Units   1 and   2 Updated   Safety/Relief     Valve Performance     Requirements,"       April     1996.
: 4. NEDC-32041 P, "Safety Review for Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Updated Safety/Relief Valve Performance Requirements," April 1996.
: 5.                                                                                                 GEH   Report   NEDC-34126P,       Rev. 0,     "Edwin     I.       Hatch   Nuclear Power   Plant   Units   1 and 2   Safety/Relief     Valve   Setpoint Increase,"   March   2024.
: 5. GEH Report NEDC-34126P, Rev. 0, "Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Safety/Relief Valve Setpoint Increase," March 2024.


HATCH   UNIT   2                                                                                                         B3.4-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             REVISION ++ I ECCS -           Operating B 3.5.1 BASES
HATCH UNIT 2 B3.4-13 REVISION ++ I ECCS - Operating B 3.5.1 BASES


BACKGROUND                           via   the feedwater     system     line, where   the   coolant     is   distributed   within (continued)                   the   RPV through   the feedwater     sparger.               Suction   piping for the   system is   provided   from   the   CST   and the   suppression       pool.               Pump suction   for HPCI   is   normally   aligned   to   the   CST   source   to   minimize     injection   of suppression       pool water   into the     RPV.               However,   if the   CST water supply     is   low,   or if the   suppression       pool   level   is   high,   an   automatic transfer   to the   suppression       pool water   source   ensures     a water supply for continuous     operation     of the   HPCI System.               The   steam   supply   to the     HPCI turbine     is   piped from   a main   steam     line upstream     of the associated     inboard   main   steam     isolation   valve.
BACKGROUND via the feedwater system line, where the coolant is distributed within (continued) the RPV through the feedwater sparger. Suction piping for the system is provided from the CST and the suppression pool. Pump suction for HPCI is normally aligned to the CST source to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or if the suppression pool level is high, an automatic transfer to the suppression pool water source ensures a water supply for continuous operation of the HPCI System. The steam supply to the HPCI turbine is piped from a main steam line upstream of the associated inboard main steam isolation valve.


The     HPCI   System     is designed     to   provide   core   cooling   for   a wide range   of reactor   pressures     (162   psid   to ~1210               psid, vessel     to     pump suction).                 Upon   receipt   of an     initiation     signal, the   HPCI turbine     stop valve   and   turbine     control   valve   open   simultaneously       and   the turbine accelerates     to   a specified     speed.               As   the   HPCI flow   increases,   the turbine   governor   valve   is   automatically     adjusted     to   maintain   design   flow.
The HPCI System is designed to provide core cooling for a wide range of reactor pressures (162 psid to ~1210 psid, vessel to pump suction). Upon receipt of an initiation signal, the HPCI turbine stop valve and turbine control valve open simultaneously and the turbine accelerates to a specified speed. As the HPCI flow increases, the turbine governor valve is automatically adjusted to maintain design flow.
Exhaust   steam from   the     HPCI turbine     is   discharged     to the   suppression pool.             A   full flow   test   line is   provided   to   route water   from     and   to the   CST to   allow testing   of the   HPCI   System   during   normal   operation   without injecting   water     into the     RPV.
Exhaust steam from the HPCI turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the HPCI System during normal operation without injecting water into the RPV.


The     ECCS   pumps   are   provided   with   minimum   flow   bypass   lines, which     discharge   to the   suppression       pool.             The valves     in   these     lines automatically       open   to   prevent   pump   damage   due to   overheating     when other   discharge     line valves   are closed.               To   ensure   rapid   delivery   of water   to the   RPV and   to   minimize   water     hammer   effects,   all     ECCS pump   discharge     lines   are   filled   with   water.               The   LPCI   and   CS   System discharge     lines are   kept full   of water     using   a "keep   fill"   system   Uockey pump   system).             The     HPCI   System     is   normally   aligned   to the   CST.
The ECCS pumps are provided with minimum flow bypass lines, which discharge to the suppression pool. The valves in these lines automatically open to prevent pump damage due to overheating when other discharge line valves are closed. To ensure rapid delivery of water to the RPV and to minimize water hammer effects, all ECCS pump discharge lines are filled with water. The LPCI and CS System discharge lines are kept full of water using a "keep fill" system Uockey pump system). The HPCI System is normally aligned to the CST.
The   height   of water   in   the   CST   is   sufficient to                                                                                                                                                                     maintain   the   piping full of water     up to the first     isolation   valve.             The   relative   height   of the feedwater       line connection   for     HPCI   is     such that the water   in the feedwater     lines   keeps   the   remaining     portion   of the   HPCI   discharge line full   of water.               Therefore,       HPCI   does   not   require   a "keep   fill" system.
The height of water in the CST is sufficient to maintain the piping full of water up to the first isolation valve. The relative height of the feedwater line connection for HPCI is such that the water in the feedwater lines keeps the remaining portion of the HPCI discharge line full of water. Therefore, HPCI does not require a "keep fill" system.


The ADS   (Ref. 4)   consists   of 7 of the     11         S/RVs.                 It is   designed     to provide   depressurization       of the   RCS   during   a small   break   LOCA   if HPCI fails   or is   unable   to   maintain   required   water     level   in   the   RPV.
The ADS (Ref. 4) consists of 7 of the 11 S/RVs. It is designed to provide depressurization of the RCS during a small break LOCA if HPCI fails or is unable to maintain required water level in the RPV.
ADS     operation     reduces   the     RPV pressure   to within   the   operating pressure     range   of the   low pressure       ECCS subsystems     (CS   and LPCI),   so that these     subsystems     can   provide   coolant     inventory makeup.                 Each of the   S/RVs   used for automatic   depressurization         is equipped   with     one air accumulator     and   associated     inlet check valves.
ADS operation reduces the RPV pressure to within the operating pressure range of the low pressure ECCS subsystems (CS and LPCI), so that these subsystems can provide coolant inventory makeup. Each of the S/RVs used for automatic depressurization is equipped with one air accumulator and associated inlet check valves.
The   accumulator     provides   the   pneumatic   power   to   actuate   the   valves.
The accumulator provides the pneumatic power to actuate the valves.


(continued)
(continued)


HATCH   UNIT   2                                                 B 3.5-3                                             REVISION         444 RCIC System B 3.5.3
HATCH UNIT 2 B 3.5-3 REVISION 444 RCIC System B 3.5.3


B 3.5                           EMERGENCY     CORE   COOLING   SYSTEMS     (ECCS),     RPV WATER     INVENTORY CONTROL,     AND   REACTOR     CORE     ISOLATION   COOLING     (RCIC)   SYSTEM
B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS), RPV WATER INVENTORY CONTROL, AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM


B 3.5.3                           RCIC System
B 3.5.3 RCIC System


BASES
BASES


BACKGROUND                         The     RCIC   System     is   not part of the     ECCS;   however,   the   RCIC System     is   included   with   the   ECCS   section     because   of their similar functions.
BACKGROUND The RCIC System is not part of the ECCS; however, the RCIC System is included with the ECCS section because of their similar functions.


The   RCIC   System     is   designed   to   operate   either   automatically     or manually   following     reactor   pressure   vessel   (RPV)   isolation accompanied         by a   loss of coolant flow from   the feedwater     system   to provide   adequate     core   cooling   and   control   of the   RPV water     level.
The RCIC System is designed to operate either automatically or manually following reactor pressure vessel (RPV) isolation accompanied by a loss of coolant flow from the feedwater system to provide adequate core cooling and control of the RPV water level.
Under   these   conditions,     the   High   Pressure   Coolant     Injection   (HPCI) and     RCIC   systems     perform   similar functions.                 The   RCIC   System design     requirements     ensure that     the   criteria   of Reference     1 are satisfied.
Under these conditions, the High Pressure Coolant Injection (HPCI) and RCIC systems perform similar functions. The RCIC System design requirements ensure that the criteria of Reference 1 are satisfied.


The   RCIC   System     (Ref. 2)   consists   of a steam   driven   turbine     pump unit,   piping,   and   valves   to   provide   steam   to the turbine,     as well     as piping   and   valves   to transfer   water   from   the   suction   source   to   the   core via   the   feedwater     system   line, where   the   coolant     is   distributed   within the   RPV through     the feedwater     sparger.               Suction   piping   is   provided from   the   condensate     storage   tank   (CST)   and   the   suppression       pool.
The RCIC System (Ref. 2) consists of a steam driven turbine pump unit, piping, and valves to provide steam to the turbine, as well as piping and valves to transfer water from the suction source to the core via the feedwater system line, where the coolant is distributed within the RPV through the feedwater sparger. Suction piping is provided from the condensate storage tank (CST) and the suppression pool.
Pump   suction   is   normally   aligned   to the   CST to   minimize     injection   of suppression       pool water   into the     RPV.               However,   if the   CST water supply   is   low,   or the   suppression     pool   level   is   high,   an   automatic transfer   to the   suppression       pool water   source   ensures     a water supply for continuous     operation     of the   RCIC   System.               The   steam   supply   to the turbine       is   piped   from   a main   steam     line upstream   of the associated       inboard   main   steam     line   isolation   valve.
Pump suction is normally aligned to the CST to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or the suppression pool level is high, an automatic transfer to the suppression pool water source ensures a water supply for continuous operation of the RCIC System. The steam supply to the turbine is piped from a main steam line upstream of the associated inboard main steam line isolation valve.


The   RCIC   System     is   designed   to   provide   core   cooling   for   a wide range   of reactor   pressures     ( 150 psig to 4--=t-a4-1195 psig).               Upon receipt   of an   initiation     signal,   the   RCIC turbine   accelerates       to   a specified     speed.             As the     RCIC flow   increases,   the   turbine     control valve     is   automatically       adjusted     to   maintain     design flow.                 Exhaust steam   from   the   RCIC turbine     is   discharged     to the   suppression       pool.             A full   flow   test   line   is   provided     to   route water   from   and   to the   CST to allow testing   of the   RCIC   System   during   normal   operation   without injecting   water     into the   RPV.
The RCIC System is designed to provide core cooling for a wide range of reactor pressures ( 150 psig to 4--=t-a4-1195 psig). Upon receipt of an initiation signal, the RCIC turbine accelerates to a specified speed. As the RCIC flow increases, the turbine control valve is automatically adjusted to maintain design flow. Exhaust steam from the RCIC turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the RCIC System during normal operation without injecting water into the RPV.


The     RCIC   pump   is   provided   with   a minimum   flow   bypass   line, which discharges     to the   suppression     pool.             The   valve   in   this     line automatically       opens   to   prevent   pump   damage   due to   overheating
The RCIC pump is provided with a minimum flow bypass line, which discharges to the suppression pool. The valve in this line automatically opens to prevent pump damage due to overheating


(continued)
(continued)


HATCH   UNIT   2                                             B 3.5-28                                           REVISION             ~
HATCH UNIT 2 B 3.5-28 REVISION ~
Edwin           I. Hatch       Nuclear         Plant       -                 Units         1 and     2 Application                 to   Revise       Technical               Specifications Surveillance                   Requirements                 to   Increase         Safety/Relief               Valves       Setpoint
Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint


NL-24-0026
NL-24-0026


Attachment                 5
Attachment 5


Non-Proprietary                           GEH   Report         NEDO-34126,     Revision               0
Non-Proprietary GEH Report NEDO-34126, Revision 0
* HITACHI                                                         GIE       Hita,chi Nuclear Energy
* HITACHI GIE Hita,chi Nuclear Energy


NEDO-34126 Revision       0 March     2024
NEDO-34126 Revision 0 March 2024


Non-Proprietary             Information
Non-Proprietary Information


Edwin           I. Hatch       Nuclear           Power         Plant       Units           1 and     2 Safety/Relief               Valve         Setpoint           Increase
Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Safety/Relief Valve Setpoint Increase


Copyright   &#xa9; 2024   GE-Hitachi     Nuclear     Energy   Americas     LLC All Rights Resen;ed
Copyright &#xa9; 2024 GE-Hitachi Nuclear Energy Americas LLC All Rights Resen;ed


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NEDO-34126         Revision     0 Non-Proprietary           Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information


INFORMATION             NOTICE This           is         a       non-proprietary             version           of the           document         NEDC-34126P         ,       Revision             0,     which         has           the proprietary                   information                     removed.                                             Portions                 of           the                 document                   that                 have               been                 removed                       are indicated   by an open   and closed   bracket     as shown here       ((                                                                                                                                                                                                       )).
INFORMATION NOTICE This is a non-proprietary version of the document NEDC-34126P, Revision 0, which has the proprietary information removed. Portions of the document that have been removed are indicated by an open and closed bracket as shown here (( )).


IMPORTANT         NOTICE     REGARDING CONTENTS         OF   THIS   REPORT Please     Read   Carefully The         design ,       engineering     ,         and         other       information       contained                 in       this         document             are       in         accordance with       the       contract       between         Southern     Nuclear           Company         and     GEH ,     and   nothing         contained       in     this document     shall   be   construed       as     changing     the   contract. The   use     of this   information     by   anyone     for any     purpose         other       than       that         for     which         it       is       intended   ,     is     not       authorized     ;     and     with     respect         to         any unauthorized         use ,     GEH     makes       no     representation           or   warranty   ,     and     assumes       no       liability         as       to       the completeness     , accuracy   , or usefulness     of the information       contained   in this   document.
IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT Please Read Carefully The design, engineering, and other information contained in this document are in accordance with the contract between Southern Nuclear Company and GEH, and nothing contained in this document shall be construed as changing the contract. The use of this information by anyone for any purpose other than that for which it is intended, is not authorized ; and with respect to any unauthorized use, GEH makes no representation or warranty, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document.


11
11


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


Revision       Summary
Revision Summary


Revision                                             Required         Changes     to   Achieve       Revision 0                 Initial   release.
Revision Required Changes to Achieve Revision 0 Initial release.


111
111


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


Table     of Contents
Table of Contents


Section                                                                                                                                                                                                                     Page
Section Page
: 1. 0                                                                     Introduction       ....... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     .......   . 1
: 1. 0 Introduction......................................................................................................................... 1


1.1                                                                         Purpose     ............................................................................................................................                             1 2.0                                                                     Analysis     Approach       ..............................................................................................................                   2 2 .1                                                                           Discussion     of Analyses .......... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... . ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ......... 2 3.0                                                                   TRACG   LOCA   Evaluation       .................................................................................................                 3 4.0                                                                     High   Pressure     System   Performance       ...................................................................................             .4 4.1                                                                       Effect   of Higher     SRV   Setpoints   on HPCI   and RCIC   Performance ................................. 4 4.2                                                                     HPCI   and RCIC   Performance       for Loss-of-Feedwater         Events ......................................... 5 4.3                                                                       HPCI   Performance       for LOCA   Events   .... . ...... ..     ...... ..     ..... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ......... 5 5.0                                                                       Containment     Evaluation   ......................................................................................................                   6 5 .1                                                                             Objective     and   Scope ........................................................................................................                       6 5 .2                                                                       Design   Inputs   and Assumptions       .... . ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ......... 6 5.3                                                                     Analysis     Method ..............................................................................................................                         6 5.4                                                                   Analysis     Results     ..............................................................................................................                         6 5.4.1                                     ATWS ..........................................................................................................................                             6 5.4.2                                   DBA   LOCA .................................................................................................................                           7 5.4.3                                         SSLB   for EQ ..... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ......... 7 5.4.4                                     Appendix     R ..................................................................................................................                           7 5.4.5                                         SBO   .............................................................................................................................                             8 6.0                                                                     ATWS     Mitigation     Capability     .... . ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ...... ..     ....... 12 6.1                                                                         Objective     and   Scope ......................................................................................................                             12 6.2                                                                     Design   Inputs   and Assumptions     ....................................................................................                       12 6.3                                                                     Analysis     Method ............................................................................................................                                 12 6.4                                                                   Analysis     Results     ............................................................................................................                                 13 6.4.1                                     Vessel   Pressure .........................................................................                       ..     ...... ..     ...... ..     ...... ..     ....... 13 6.4.2                                       Suppression     Pool Temperature       and Containment     Pressure .......................................         13 6.4.3                                     PCT   and Cladding     Oxidation     ....................................................................................                       13 6.4.4                                     Additional     ATWS   Results .........................................................................................                           13 6.4.5                                       Summary   of Results ...................................................................................................                             13
1.1 Purpose............................................................................................................................ 1 2.0 Analysis Approach.............................................................................................................. 2 2.1 Discussion of Analyses.................................................................................................... 2 3.0 TRACG LOCA Evaluation................................................................................................. 3 4.0 High Pressure System Performance....................................................................................4 4.1 Effect of Higher SRV Setpoints on HPCI and RCIC Performance................................. 4 4.2 HPCI and RCIC Performance for Loss-of-Feedwater Events......................................... 5 4.3 HPCI Performance for LOCA Events............................................................................. 5 5.0 Containment Evaluation...................................................................................................... 6 5.1 Objective and Scope........................................................................................................ 6 5.2 Design Inputs and Assumptions...................................................................................... 6 5.3 Analysis Method.............................................................................................................. 6 5.4 Analysis Results.............................................................................................................. 6 5.4.1 ATWS.......................................................................................................................... 6 5.4.2 DBA LOCA................................................................................................................. 7 5.4.3 SSLB for EQ................................................................................................................ 7 5.4.4 Appendix R.................................................................................................................. 7 5.4.5 SBO............................................................................................................................. 8 6.0 ATWS Mitigation Capability............................................................................................ 12 6.1 Objective and Scope...................................................................................................... 12 6.2 Design Inputs and Assumptions.................................................................................... 12 6.3 Analysis Method............................................................................................................ 12 6.4 Analysis Results............................................................................................................ 13 6.4.1 Vessel Pressure.......................................................................................................... 13 6.4.2 Suppression Pool Temperature and Containment Pressure....................................... 13 6.4.3 PCT and Cladding Oxidation.................................................................................... 13 6.4.4 Additional ATWS Results......................................................................................... 13 6.4.5 Summary of Results................................................................................................... 13


lV
lV


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


Table     of Contents
Table of Contents


Section                                                                                                                                                                                                 Page
Section Page
: 7. 0                                                                     Conclusions       .......................................................................................................................                             16
: 7. 0 Conclusions....................................................................................................................... 16
: 8. 0                                                                     References       .........................................................................................................................                           1 7
: 8. 0 References......................................................................................................................... 1 7


V
V


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


List   of Tables
List of Tables


Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Page
Table Page


Table     5-1                                               ATWS     Input     Comparison ........................................                     ..     ......   ..     ......   ..     ......   ..     ......   ..     ......   ..     ......   ..     ...... ....... 9 Table     5-2                                             ATWS     Containment         Results       (MSIVC-EOC)   .......................................................................                                   10 Table     5-3                                                   SSLB   Containment         Results ..................................................................................................                                                   10 Table     6-1                                                 Summary     of Additional       ATWS     Analysis       Results ................................................................                               15 Table     6-2                                             ATWS     Analysis       Results       and   Criteria ...................................................................................                                           15
Table 5-1 ATWS Input Comparison....................................................................................................... 9 Table 5-2 ATWS Containment Results (MSIVC-EOC)....................................................................... 10 Table 5-3 SSLB Containment Results.................................................................................................. 10 Table 6-1 Summary of Additional ATWS Analysis Results................................................................ 15 Table 6-2 ATWS Analysis Results and Criteria................................................................................... 15


List   of Figures
List of Figures


Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Page
Figure Page


Figure       5-1                                             SSLB   DW Temperature           for   EQ   ..........................................................................................                                         11
Figure 5-1 SSLB DW Temperature for EQ.......................................................................................... 11


Vl
Vl


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


Acronyms         and   Abbreviations
Acronyms and Abbreviations


Short   Form                                                 Description
Short Form Description


ANS                     American     Nuclear         Society
ANS American Nuclear Society


ASME                     American         Society     of Mechanical         Engineers
ASME American Society of Mechanical Engineers


ATWS                     Anticipated         Transient       Without       Scram
ATWS Anticipated Transient Without Scram


BOC                     Beginning       of Cycle
BOC Beginning of Cycle


CST                     Condensate         Storage     Tank
CST Condensate Storage Tank


DBA                     Design     Basis   Accident
DBA Design Basis Accident


DIR                     Design     Input   Request
DIR Design Input Request


DW                       Dry   Well
DW Dry Well


ECCS                     Emergency         Core   Cooling       System
ECCS Emergency Core Cooling System


EHC                     Electro-Hydraulic             Control
EHC Electro-Hydraulic Control


EOC                     End   of Cycle
EOC End of Cycle


EQ                       Equipment         Qualification
EQ Equipment Qualification


GEH                     GE-Hitachi       Nuclear     Energy     Americas         LLC
GEH GE-Hitachi Nuclear Energy Americas LLC


HCTL                     Heat   Capacity     Temperature         Limits
HCTL Heat Capacity Temperature Limits


HNP                     Hatch Nuclear       Plant
HNP Hatch Nuclear Plant


HPCI                     High   Pressure       Coolant     Injection
HPCI High Pressure Coolant Injection


LHGR                     Linear   Heat   Generation       Rate
LHGR Linear Heat Generation Rate


LLS                     Low-Low-Set
LLS Low-Low-Set


LOCA                     Loss-of-Coolant           Accident
LOCA Loss-of-Coolant Accident


MSIV                     Main     Steam   Isolation     Valve
MSIV Main Steam Isolation Valve


MSIVC                   Main     Steam   Isolation     Valve     Closure
MSIVC Main Steam Isolation Valve Closure


NFI                     New   Fuel   Introduction
NFI New Fuel Introduction


NPSH                     Net   Positive       Suction   Head
NPSH Net Positive Suction Head


NRC                     Nuclear       Regulatory       Commission
NRC Nuclear Regulatory Commission


PCT                     Peak   Cladding     Temperature
PCT Peak Cladding Temperature


Vll
Vll


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


Short   Form                                                           Description
Short Form Description


PRFO                         Pressure         Regulator           Failure       Open
PRFO Pressure Regulator Failure Open


ps1g                         Pounds       per   square       inch     gauge
ps1g Pounds per square inch gauge


PUSAR                       Power     Uprate         Safety     Analysis         Report
PUSAR Power Uprate Safety Analysis Report


RCIC                         Reactor         Core     Isolation         Cooling
RCIC Reactor Core Isolation Cooling


rpm                         Revolutions           per   Minute
rpm Revolutions per Minute


RPV                         Reactor         Pressure       Vessel
RPV Reactor Pressure Vessel


SBO                         Station       Black       Out
SBO Station Black Out


SLCS                         Standby       Liquid       Control System
SLCS Standby Liquid Control System


SRV                         Safety   / Relief   Valve
SRV Safety / Relief Valve


SSLB                         Small     Steam     Line     Break
SSLB Small Steam Line Break


Ul                           Unit         1
Ul Unit 1


U2                           Unit2
U2 Unit2


WW                           Wet   Well
WW Wet Well


vm
vm


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NEDO-34126           Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information


1.0                                                                     Introduction 1.1                                                                     Purpose The   purpose     of this     evaluation       is   to     address     an   increase     of the     safety   relief   valve     (SRV)     opening setpoint       nominal         value         from           1150     psig         to             1160     psig         to       provide           operational         margin         and     reduce potential               leakage.                               Upon           successful             evaluation   ,         the           Hatch         Nuclear             Plant             (HNP)           can         use             this document     to   support   a license   amendment   request     for increasing     the nominal     setpoint.
1.0 Introduction 1.1 Purpose The purpose of this evaluation is to address an increase of the safety relief valve (SRV) opening setpoint nominal value from 1150 psig to 1160 psig to provide operational margin and reduce potential leakage. Upon successful evaluation, the Hatch Nuclear Plant (HNP) can use this document to support a license amendment request for increasing the nominal setpoint.


1
1


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NEDO-34126           Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information


2.0                                                                     Analysis       Approach 2.1                                                                       Discussion       of Analyses In             order             to               address           the             increase         of       the             SRV             opemng           setpoints,           the             following           evaluations             are required.
2.0 Analysis Approach 2.1 Discussion of Analyses In order to address the increase of the SRV opemng setpoints, the following evaluations are required.
* Loss of Coolant Accident (LOCA)
* Loss of Coolant Accident (LOCA)
* High Pressure System Performance
* High Pressure System Performance
* Containment Performance
* Containment Performance
* Anticipated Transients Without Scram (ATWS)
* Anticipated Transients Without Scram (ATWS)
Upon           successfully         addressing         these         areas         for           the         new           setpoint,         HNP           can       use           this           document         to support a license amendment request for increasing the nominal setpoint.
Upon successfully addressing these areas for the new setpoint, HNP can use this document to support a license amendment request for increasing the nominal setpoint.


2
2


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NEDO-34126           Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information


3.0                                                                   TRACG     LOCA     Evaluation Increasing         the       SRV       opening       setpoint       nominal       value         from           1150   psig       to           1160   psig     was       analyzed for         the         HNP         Emergency             Core         Cooling           System         (ECCS)           Loss         of Coolant         Accident           (LOCA)           to determine             its           effect           on         the           analysis           of   record           in         Reference                   1.             The           same         method             as           listed         in Reference             1   was         followed           for       this         analysis         with         the       input         change       documented         in     Reference             2.
3.0 TRACG LOCA Evaluation Increasing the SRV opening setpoint nominal value from 1150 psig to 1160 psig was analyzed for the HNP Emergency Core Cooling System (ECCS) Loss of Coolant Accident (LOCA) to determine its effect on the analysis of record in Reference 1. The same method as listed in Reference 1 was followed for this analysis with the input change documented in Reference 2.
The           analysis           was           done         by         selecting         representative                 limiting         break           locations           in         Reference               1       to determine           the         effect       of increasing           the           SRV         opening         setpoint         by       running           the       break           spectra           for those break     locations.       ((
The analysis was done by selecting representative limiting break locations in Reference 1 to determine the effect of increasing the SRV opening setpoint by running the break spectra for those break locations. ((


                                                                                                                                            ))   The   licensing   basis results reported       in   Reference       1   are     not       affected     by     increasing         the       SRV       opening       setpoint     nominal       value from       1150 psig   to       1160 psig   and , therefore   , remain   valid   for HNP.
)) The licensing basis results reported in Reference 1 are not affected by increasing the SRV opening setpoint nominal value from 1150 psig to 1160 psig and, therefore, remain valid for HNP.


3
3


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NEDO-34126           Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information


4.0                                                                     High   Pressure       System     Performance High                           Pressure                             Coolant                           Injection                             (HPCI)                             and                         Reactor                             Core                         Isolation                             Cooling                             (RCIC) performance                 were               evaluated                 for               SRV             setpoint                 drift               to                 the             upper               limit             value             of           1195           psig.
4.0 High Pressure System Performance High Pressure Coolant Injection (HPCI) and Reactor Core Isolation Cooling (RCIC) performance were evaluated for SRV setpoint drift to the upper limit value of 1195 psig.
Operation       at   the     upper       limit   provides       a   greater     challenge       to     the     HPCI       and   RCIC     piping   ,   pumps   ,
Operation at the upper limit provides a greater challenge to the HPCI and RCIC piping, pumps,
and     turbines       than       SRV s     at     the     new       nominal         setpoints.                         These       evaluations         assure       satisfaction         of performance       requirements         for     operation       at both   the   upper     limit   and     at   the   new   nominal       setpoints because     operation   at the upper     limit bounds     operation   at the proposed   nominal     setpoints.
and turbines than SRV s at the new nominal setpoints. These evaluations assure satisfaction of performance requirements for operation at both the upper limit and at the new nominal setpoints because operation at the upper limit bounds operation at the proposed nominal setpoints.
Both   HPCI     and   RCIC     systems     are   important     in mitigating       actual   reactor   vessel     isolation     and   loss of feedwater           events ,       even       though         HPCI         and       RCIC         systems         may       not       be       modelled           explicitly         in design-basis     LOCA   analyses.
Both HPCI and RCIC systems are important in mitigating actual reactor vessel isolation and loss of feedwater events, even though HPCI and RCIC systems may not be modelled explicitly in design-basis LOCA analyses.
4.1                                                                       Effect     of Higher     SRV   Setpoints       on HPCI     and   RCIC     Performance Analyses       indicate     that     operation       at   reactor     pressures       up       to     the   upper     limit     is   within     design     limits for           system             piping   ,         pumps   ,           and           turbines                 for           the           HPCI             and           RCIC             systems.               Southern           Nuclear Operating               Company               should           verify               compliance             with           Nuclear               Regulatory               Commission                 (NRC)
4.1 Effect of Higher SRV Setpoints on HPCI and RCIC Performance Analyses indicate that operation at reactor pressures up to the upper limit is within design limits for system piping, pumps, and turbines for the HPCI and RCIC systems. Southern Nuclear Operating Company should verify compliance with Nuclear Regulatory Commission (NRC)
Generic     Letter     89-10     (Reference       3) requirements           for   valves     in   each   of these     systems.                 The   HPCI and     RCIC     pumps       are     capable     of delivering     rated     system       flow     with   vessel     pressures         at     the   upper limit     value       of 1195     psig.                     Based       on     the     HPCI       and     RCIC     pump       performance           curves ,     the     turbine speed   required         to     deliver     rated       flow       for     each   of these     systems     with   reactor     pressure         at   the   upper limit   are     ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         )).
Generic Letter 89-10 (Reference 3) requirements for valves in each of these systems. The HPCI and RCIC pumps are capable of delivering rated system flow with vessel pressures at the upper limit value of 1195 psig. Based on the HPCI and RCIC pump performance curves, the turbine speed required to deliver rated flow for each of these systems with reactor pressure at the upper limit are (( )).
At       each         SRV       opening         pressure   ,       system       pressure           greater         than     rated         is       required             to         deliver       rated system               flow             during             steady-state               operation.                                   Therefore   ,           the           margins                 to             the               125%         mechanical overspeed                 trip               for             the               HPCI               and             RCIC               turbines                 are             reduced.               Additionally     ,             the             high             vessel pressures       have     the     potential         to     reduce       the   margin       to     the     overspeed       trips     at   the     initial     speed   peak during       the     startup     of the     HPCI       and     RCIC       systems.                       During       a   HPCI       and     RCIC       start ,     the     turbine governor   valves       are momentarily         full     open   and   therefore   , the   rate     at which     the   speed   increases     is temporarily                     uncontrolled.                       Eventually   ,               when                 hydraulic                   pressures                     enable                   the                   turbine                   control systems             to           take           over         the         transient   ,         the           governor         valve           closes             to           control           turbine           speeds           at         the demanded                   flows.               When               a             steady-state                 condition                 is             reached   ,             the               final               turbine               speed               is               that indicated     above , which   is within   the   turbine   speed   limits   of each system.
At each SRV opening pressure, system pressure greater than rated is required to deliver rated system flow during steady-state operation. Therefore, the margins to the 125% mechanical overspeed trip for the HPCI and RCIC turbines are reduced. Additionally, the high vessel pressures have the potential to reduce the margin to the overspeed trips at the initial speed peak during the startup of the HPCI and RCIC systems. During a HPCI and RCIC start, the turbine governor valves are momentarily full open and therefore, the rate at which the speed increases is temporarily uncontrolled. Eventually, when hydraulic pressures enable the turbine control systems to take over the transient, the governor valve closes to control turbine speeds at the demanded flows. When a steady-state condition is reached, the final turbine speed is that indicated above, which is within the turbine speed limits of each system.
The   potential         concern       during     the     startup     transient       is     system     availability.                   If the     HPCI       and   RCIC turbines             do         trip         during         the         startup   ,     manual           actions           are       required             to       reset         the       turbine           trips.                         For HPCI   , the   turbine   can be reset   in the control room.               For RCIC   , the   turbine   must   be reset   locally.
The potential concern during the startup transient is system availability. If the HPCI and RCIC turbines do trip during the startup, manual actions are required to reset the turbine trips. For HPCI, the turbine can be reset in the control room. For RCIC, the turbine must be reset locally.
The           above           considerations               assume           that           HPCI             and         RCIC           would           initiate             and           operate           when           the reactor     pressure     is   conservatively         at   the   upper     limit.                 The   conclusions     in   the   Low   Low   Set   (LLS) discussion       documented       in   Reference       5 remain     unchanged         as   noted     below.                   HPCI       and   RCIC   will perform satisfactorily                                                                                                                                                                       at a higher   speed.
The above considerations assume that HPCI and RCIC would initiate and operate when the reactor pressure is conservatively at the upper limit. The conclusions in the Low Low Set (LLS) discussion documented in Reference 5 remain unchanged as noted below. HPCI and RCIC will perform satisfactorily at a higher speed.
Regarding       LLS   valve     operation,                                                                                                                                                                                         the   increased       SRV   opening   pressures     will     only   affect   the   timing of the     first     SRV     actuation.                     Once     the     logic     is   initiated,                                                                                                                                                                   the     opening       and     closing     setpoints     of pre-selected     SRVs   are   automatically     reset     to   lower   values   by   the   LLS     logic.                 This   logic   is   unaffected 4
Regarding LLS valve operation, the increased SRV opening pressures will only affect the timing of the first SRV actuation. Once the logic is initiated, the opening and closing setpoints of pre-selected SRVs are automatically reset to lower values by the LLS logic. This logic is unaffected 4


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


by     the       setpoint         tolerance           change       because         the       logic       acts       on   the     relief     mode       of the       SRV       actuation and not   on the   safety   mode     of operation.
by the setpoint tolerance change because the logic acts on the relief mode of the SRV actuation and not on the safety mode of operation.
4.2                                                                   HPCI     and   RCIC     Performance           for   Loss-of-Feedwater               Events For     loss-of-feedwater                 events       that       do     not     isolate         the     reactor,         vessel       pressure           is     maintained           by     the turbine             bypass             valves               at         the           Electro-Hydraulic                         Control               (EHC)             pressure                 setpoint.               With           vessel pressures             at     the     EHC     pressure           setpoint       which         is     lower       than       the       SRV       setpoints,           HPCI         and     RCIC operation         is   not   affected       by   an   increase       in   SRV     opening       pressures.         For   MSIV       closure       events,       the SRVs             will             actuate                 at         the           upper             limit           prior                 to             the           reactor             water               level           reaching                 Level                 2.             The subsequent             SRV     actuations         will     be     controlled         by     the     LLS       functions.           Therefore,         vessel       pressures will   be within     the   HPCI     and RCIC     design     pressure     range       at the   time   of HPCI     or RCIC     initiation.
4.2 HPCI and RCIC Performance for Loss-of-Feedwater Events For loss-of-feedwater events that do not isolate the reactor, vessel pressure is maintained by the turbine bypass valves at the Electro-Hydraulic Control (EHC) pressure setpoint. With vessel pressures at the EHC pressure setpoint which is lower than the SRV setpoints, HPCI and RCIC operation is not affected by an increase in SRV opening pressures. For MSIV closure events, the SRVs will actuate at the upper limit prior to the reactor water level reaching Level 2. The subsequent SRV actuations will be controlled by the LLS functions. Therefore, vessel pressures will be within the HPCI and RCIC design pressure range at the time of HPCI or RCIC initiation.
4.3                                                                     HPCI     Performance             for   LOCA     Events The             conclusions                   in           the             Low             Low               Set           (LLS)               discussion                   documented                   in           Reference                     5         remam unchanged           as noted     below.       HPCI     and   RCIC   will   perform       satisfactorily             at   a higher       speed.
4.3 HPCI Performance for LOCA Events The conclusions in the Low Low Set (LLS) discussion documented in Reference 5 remam unchanged as noted below. HPCI and RCIC will perform satisfactorily at a higher speed.
Regarding           LLS   valve       operation,         the   increased         SRV     opening       pressures         will     only     affect     the   timing of the     first       SRV       actuation.                         Once       the       logic       is   initiated,           the     opening         and     closing         setpoints         of pre-selected         SRVs     are     automatically           reset       to     lower     values     by   the   LLS       logic.                   This     logic     is   unaffected by     the       setpoint         tolerance           change       because         the       logic       acts       on   the     relief     mode       of the       SRV       actuation and not   on the   safety   mode     of operation.
Regarding LLS valve operation, the increased SRV opening pressures will only affect the timing of the first SRV actuation. Once the logic is initiated, the opening and closing setpoints of pre-selected SRVs are automatically reset to lower values by the LLS logic. This logic is unaffected by the setpoint tolerance change because the logic acts on the relief mode of the SRV actuation and not on the safety mode of operation.
((
((


                                      ))
))
The                 discussions                         above                   demonstrate                         that                 SRV                 setpoint                     drift                 up                   to                 the               upper                   limit                 has                 an insignificant           effect     on HPCI     and RCIC   performance.
The discussions above demonstrate that SRV setpoint drift up to the upper limit has an insignificant effect on HPCI and RCIC performance.


5
5


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NEDO-34126           Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information


5.0                                                                     Containment         Evaluation 5.1                                                                       Objective       and   Scope The     purpose         is       to       assess       the       effect     of increasing       HNP       Safety     Relief     Valve       (SRV)       setpoint         from 1150 psig   to       1160 psig   on the containment-related         evaluations   , which   include     the following.
5.0 Containment Evaluation 5.1 Objective and Scope The purpose is to assess the effect of increasing HNP Safety Relief Valve (SRV) setpoint from 1150 psig to 1160 psig on the containment-related evaluations, which include the following.
: 1.                         Anticipated     Transients     Without     Scram (ATWS)
: 1. Anticipated Transients Without Scram (ATWS)
: 2.                           Design   Basis Accident     (DBA)   Loss-of-Coolant       Accident     (LOCA)
: 2. Design Basis Accident (DBA) Loss-of-Coolant Accident (LOCA)
: 3.                             Small   Steam Line   Break   (SSLB)     for Equipment     Qualification     (EQ)
: 3. Small Steam Line Break (SSLB) for Equipment Qualification (EQ)
: 4.                           Appendix     R
: 4. Appendix R
: 5.                             Station Blackout     (SBO) 5.2                                                                     Design     Inputs     and   Assumptions The   design   inputs   that   are necessary       to   perform   ATWS   , DBA LOCA ,   SSLB   for EQ , Appendix     R and   SBO are   defined in Reference     2.
: 5. Station Blackout (SBO) 5.2 Design Inputs and Assumptions The design inputs that are necessary to perform ATWS, DBA LOCA, SSLB for EQ, Appendix R and SBO are defined in Reference 2.
Consistent     with   Reference       7, ATWS     analysis     is   separately     performed       for   HNP   Unit       1 and Unit   2 because           the         two       units         have         different         heat       balance         parameters             (e.g. ,       core         flow   ,       steam         flow         and feedwater           temperature)             and       heat         capacity         temperature             limit         (HCTL)           curves.                             The         same         inputs and                 assumptions                         as                 Reference                     7                 are                 applicable                     for                 SRV               setpoint                 increase                 with                 the               input clarification         in     Table         5-1.                       Consistent       with       Reference           7,     the       same       Main       Steam       Isolation         Valve Closure                       (MSIVC)                     event                   with                     the                     exposure                   of           End                 of             Cycle                     (EOC)                         is                     analyzed.                                                   The ODYN / STEMP           analyses           in         Reference             6       provides             the         inputs             for         ATWS             containment             analysis based   on SHEX.
Consistent with Reference 7, ATWS analysis is separately performed for HNP Unit 1 and Unit 2 because the two units have different heat balance parameters (e.g., core flow, steam flow and feedwater temperature) and heat capacity temperature limit (HCTL) curves. The same inputs and assumptions as Reference 7 are applicable for SRV setpoint increase with the input clarification in Table 5-1. Consistent with Reference 7, the same Main Steam Isolation Valve Closure (MSIVC) event with the exposure of End of Cycle (EOC) is analyzed. The ODYN / STEMP analyses in Reference 6 provides the inputs for ATWS containment analysis based on SHEX.
The     analyses       for   DBA   LOCA     and   Appendix       R   in   Reference       8   are     also   performed       separately         for HNP       Units             1   and       2.         The         same       inputs         and       assumptions             as         Reference           8     are       applicable           for         SRV setpoint   increase.
The analyses for DBA LOCA and Appendix R in Reference 8 are also performed separately for HNP Units 1 and 2. The same inputs and assumptions as Reference 8 are applicable for SRV setpoint increase.
In   Reference         8,     SSLB       for       EQ       and     SBO       analysis       are   performed         based       on     the       combined       limiting input     parameters             for     HNP     Units           1 and       2.         The       same       inputs       and       assumptions           as       Reference           8     are applicable     for   SRV setpoint   increase.
In Reference 8, SSLB for EQ and SBO analysis are performed based on the combined limiting input parameters for HNP Units 1 and 2. The same inputs and assumptions as Reference 8 are applicable for SRV setpoint increase.
5.3                                                                       Analysis       Method Consistent     with   Reference       7,   the     same     ODYN ,     STEMP     and     SHEX   methods       are   used     for   ATWS analysis.                 Consistent               with               Reference                   8,             the               same                 SHEX             method                 is             used                 for                 SSLB               for               EQ analyses.       Engineering         evaluation         is     used       for     assessing         the       effects       on   DBA     LOCA   ,   Appendix         R and   SBO.
5.3 Analysis Method Consistent with Reference 7, the same ODYN, STEMP and SHEX methods are used for ATWS analysis. Consistent with Reference 8, the same SHEX method is used for SSLB for EQ analyses. Engineering evaluation is used for assessing the effects on DBA LOCA, Appendix R and SBO.
5.4                                                                     Analysis       Results 5.4.1                                                                       ATWS The   containment     responses       for ATWS     are   summarized     in Table   5-2.
5.4 Analysis Results 5.4.1 ATWS The containment responses for ATWS are summarized in Table 5-2.
((
((
                                                                                            ))     As     shown     in   Table       5-2 ,   there     is   no     WW   pressure change         due       to         SRV       setpoint       increase           to           1160 psig     while         the       suppression         pool       temperatures             are
)) As shown in Table 5-2, there is no WW pressure change due to SRV setpoint increase to 1160 psig while the suppression pool temperatures are


6
6


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


reduced         by         l.3       &deg;F     and         l.5       &deg;F     for     Unit           1   and     Unit       2 ,   respectively.                             Therefore       ,     the       existing       ATWS containment                       analysis                 based                 on             SHEX               in           Reference                       7           remains                   applicable                     for               SRV               setpoint increase       from       1150 psig     to       1160 psig.
reduced by l.3 &deg;F and l.5 &deg;F for Unit 1 and Unit 2, respectively. Therefore, the existing ATWS containment analysis based on SHEX in Reference 7 remains applicable for SRV setpoint increase from 1150 psig to 1160 psig.
5.4.2                                                                 DBA   LOCA For DBA   LOCA     ,   ((
5.4.2 DBA LOCA For DBA LOCA, ((
                                                                                                                                                                                                                      )).
)).
Therefore       ,           long-term               DBA           LOCA               analysis               in           Reference                     8           is           not             affected               by           SRV             setpoint increase       from       1150 to       1160 psig.
Therefore, long-term DBA LOCA analysis in Reference 8 is not affected by SRV setpoint increase from 1150 to 1160 psig.
For       short-term           LOCA           load ,     allowing             for       the       3%       drift       tolerance       ,     the       new         setpoint           (1160       psig       +
For short-term LOCA load, allowing for the 3% drift tolerance, the new setpoint (1160 psig +
3%           =             1194.8           psig)             is         still           lower             than           the         Upper             Limit           value             (1195             psig)             that           is         used           in         the analysis           in       Reference                   5.                           Therefore         ,       SRV         setpoint             increase                 to             1160       psig         has         no         effect           on       the short-term       LOCA     load   in Reference           5.
3% = 1194.8 psig) is still lower than the Upper Limit value (1195 psig) that is used in the analysis in Reference 5. Therefore, SRV setpoint increase to 1160 psig has no effect on the short-term LOCA load in Reference 5.
5.4.3                                                                         SSLB     for   EQ The   peak       dry   well     (DW)   temperature                 for     the     SSLB     EQ     cases       are   summarized           in   Table       5-3.                 The peak     values       from     Reference             8 are     also   included         for   purpose       of comparison.                     As   seen   in   the   table     ,
5.4.3 SSLB for EQ The peak dry well (DW) temperature for the SSLB EQ cases are summarized in Table 5-3. The peak values from Reference 8 are also included for purpose of comparison. As seen in the table,
the       changes         on     the     peak       values           are     insignificant               (approximately                     -1 &deg; F).     The       changes         on     the     DW temperature           during       the   entire     event     are   also   insignificant           ( approximately           + 1 &deg;F / -1 &deg;F).
the changes on the peak values are insignificant (approximately -1 &deg; F). The changes on the DW temperature during the entire event are also insignificant ( approximately + 1 &deg;F / -1 &deg;F).
The     DW   temperature             time     histories           and     EQ     envelope         are   plotted       in   Figure         5-1.     The     similar       DW temperature                       responses                           as               Reference                         8             Figure                     D-1                   are                 observed.                                             Therefore         ,               SRV               setpoint increase       from       1150 psig     to       1160 psig   has   negligible           effect     on HNP   Units         1 and   2 EQ profile.
The DW temperature time histories and EQ envelope are plotted in Figure 5-1. The similar DW temperature responses as Reference 8 Figure D-1 are observed. Therefore, SRV setpoint increase from 1150 psig to 1160 psig has negligible effect on HNP Units 1 and 2 EQ profile.
5.4.4                                                                     Appendix       R It       should         be     noted           that         an     NRC           safety         evaluation             was         issued           that       transitioned               the         existing             fire protection                   program                   (Appendix                   R)                 to               a           risk-informed             ,           performance-based                           program                 based                 on NFPA       805   , in accordance       with         10 CFR   50.48(c).
5.4.4 Appendix R It should be noted that an NRC safety evaluation was issued that transitioned the existing fire protection program (Appendix R) to a risk-informed, performance-based program based on NFPA 805, in accordance with 10 CFR 50.48(c).
5.4.4.1                                                                   RPV   Inventory       Response Appendix             R     is     a   RPV       isolation         and non-break                                                                                         event   ,   in   which         SRV     is     actuated         and     cycled       after MSIVC       occurs.                 Increasing         the     SRV   setpoints         to       1160 psig   will       ((
5.4.4.1 RPV Inventory Response Appendix R is a RPV isolation and non-break event, in which SRV is actuated and cycled after MSIVC occurs. Increasing the SRV setpoints to 1160 psig will ((


                                                                                                                  ))     in   comparison             to       the     case     with       SRVs       at   the current     setpoint       of 1150 psig.               However       , the   change         ((
)) in comparison to the case with SRVs at the current setpoint of 1150 psig. However, the change ((
                                                                                                                                      ))     for   the     cases   without         spurious         SRV operation             (i.e.   ,     Cases           1 through           3     in     the       Hatch       power       uprate         safety         analysis         report         (PUSAR)           in Reference             10) with     the   following       reasons.
)) for the cases without spurious SRV operation (i.e., Cases 1 through 3 in the Hatch power uprate safety analysis report (PUSAR) in Reference 10) with the following reasons.
: 1)                           ((
: 1) ((
                                                ))   by   SRV   setpoint       increase         to       1160 psig.
)) by SRV setpoint increase to 1160 psig.
: 2)                   After             first         SRV         actuation               at           1160       psig   ,       subsequent                 SRV         actuations               are         on       low-low-set logic   , which     remains       unaffected       by   SRV   setpoint     increase       to       1160 psig.
: 2) After first SRV actuation at 1160 psig, subsequent SRV actuations are on low-low-set logic, which remains unaffected by SRV setpoint increase to 1160 psig.


7
7


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


For   Cases     4   and   5 in the   Hatch     PUSAR     , the   SRV   setpoint       increase         to       1160 psig         ((
For Cases 4 and 5 in the Hatch PUSAR, the SRV setpoint increase to 1160 psig ((
                                                                    ))     because         of spurious           SRV     operation         at   event       initiation           (i.e.   , no SRV   actuation       at     1160 psig).
)) because of spurious SRV operation at event initiation (i.e., no SRV actuation at 1160 psig).
5.4.4.2                 Containment         Response
5.4.4.2 Containment Response
((
((


                                                        ))               As   discussed       in   Section       5.4.4.1     ,   ((
)) As discussed in Section 5.4.4.1, ((
                              ))       for     Cases         1 through           3   (Hatch       PUSAR)         without         spurious         SRV     operation.                       Thus   ,
)) for Cases 1 through 3 (Hatch PUSAR) without spurious SRV operation. Thus,
the                 effect                 on               the                 suppression                       pool                 temperature                       response                       due                   to                 SRV                 setpoint                   increase                       1s negligible         , and   in tum   , the   effect     on containment           temperature           and pressure         are negligible.
the effect on the suppression pool temperature response due to SRV setpoint increase 1s negligible, and in tum, the effect on containment temperature and pressure are negligible.
As   discussed       in   Section     5.4.4.1     , the     SRV   setpoint     increase           ((
As discussed in Section 5.4.4.1, the SRV setpoint increase ((
                          ))           for       Cases           4       and         5       (Hatch         PUSAR)           because           of spurious             SRV       operation             at     event initiation.                   Therefore       , the   containment         response         is not affected.
)) for Cases 4 and 5 (Hatch PUSAR) because of spurious SRV operation at event initiation. Therefore, the containment response is not affected.
It   is     concluded         that     the   Appendix           R     containment           response         in   Reference             8 remains           applicable           for SRV   setpoint     increase         to       1160 psig.
It is concluded that the Appendix R containment response in Reference 8 remains applicable for SRV setpoint increase to 1160 psig.
5.4.5                                                                     SBO SBO       is     also       a   RPV     isolation           and     non-break           event       similar         to     Appendix               R.                     For       SBO ,   there       is     no SRV       spurious           operation.                         After         first       actuation             at       1160     psig   ,                   subsequent             SRV       actuations             are       on low-low-set               logic         to       maintain           vessel         pressure           until         the       end     of 4     hour         SBO       coping         period.                           The applicable                 discussion                 and         conclusion                 for         Appendix                 R         in         Section             5.4.4           are           also           applicable                 for SBO.
5.4.5 SBO SBO is also a RPV isolation and non-break event similar to Appendix R. For SBO, there is no SRV spurious operation. After first actuation at 1160 psig, subsequent SRV actuations are on low-low-set logic to maintain vessel pressure until the end of 4 hour SBO coping period. The applicable discussion and conclusion for Appendix R in Section 5.4.4 are also applicable for SBO.


8
8


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                   Revision     0 Non-Proprietary           Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


Table   5-1                                               ATWS   Input   Comparison
Table 5-1 ATWS Input Comparison


Parameters                                                                                                                                                                                                                                                                                                                                                                       ATWS-SHEX ATWS-STEMP Initial     Suppression     Pool Volume     (ft3 )                                                                           86420(1)                                     85112 (Ul)C2) 86420 (U2)C2)
Parameters ATWS-SHEX ATWS-STEMP Initial Suppression Pool Volume (ft3 ) 86420(1) 85112 (Ul)C2) 86420 (U2)C2)


86652   (Ul )C 3) 88045 (U2)C3)
86652 (Ul )C 3) 88045 (U2)C3)
Initial   DW and WW Airspace   Volume     (ft3 )                                                                                                                                                                       262110   (Ul) 262110   (Ul) 259066     (U2)                                     259066   (U2)
Initial DW and WW Airspace Volume (ft3 ) 262110 (Ul) 262110 (Ul) 259066 (U2) 259066 (U2)
Initial   Condensate       Storage Tank   (CST) (lbm)C4 )                                                                             4125000                                       3875755     (Ul) 3471968     (U2)
Initial Condensate Storage Tank (CST) (lbm)C4 ) 4125000 3875755 (Ul) 3471968 (U2)
Initial     Condensate       Storage Tank   (CST)   (ft3)                                                                           66845(5 )                                       62803   (Ul) 56260   (U2)
Initial Condensate Storage Tank (CST) (ft3) 66845(5 ) 62803 (Ul) 56260 (U2)
Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   7 9 (1)                       ATWS       is     a   special     event   in   which     nominal       assumptions       can be   used     such     as         1979 ANS       5.1 nominal       decay   heat     that     is     used     in   Reference         7.         Consistent     with     Reference         7,       the     minimum suppression         pool       volume           for     Unit       2       is     used         as       nominal         value         for     both       units,       which         is       still conservative     (i.e.,   86420   ft 3     is   less than   86652     ft 3     (Ul)       and               88045     ft 3       (U2)).
Reference 7 9 (1) ATWS is a special event in which nominal assumptions can be used such as 1979 ANS 5.1 nominal decay heat that is used in Reference 7. Consistent with Reference 7, the minimum suppression pool volume for Unit 2 is used as nominal value for both units, which is still conservative (i.e., 86420 ft 3 is less than 86652 ft 3 (Ul) and 88045 ft 3 (U2)).
(2)                       Minimum   volume     at low water     level.
(2) Minimum volume at low water level.
(3)                     Nominal   volume     that is based   on average   of maximum   volume     and minimum     volume.
(3) Nominal volume that is based on average of maximum volume and minimum volume.
(4)                       Based   on     14.7 psia   and     120&deg;F water   temperature.
(4) Based on 14.7 psia and 120&deg;F water temperature.
(5)                     For       ATWS             event,           the           CST         inventory             usage             at         the           end         of   4       hours           is           approximately               2%.
(5) For ATWS event, the CST inventory usage at the end of 4 hours is approximately 2%.
Therefore,         use       of 66845         ft 3         in     the       analysis       has       no       effect       on       the     values         that       are     reported         in Table   5-2.
Therefore, use of 66845 ft 3 in the analysis has no effect on the values that are reported in Table 5-2.


9
9


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                   Revision     0 Non-Proprietary           Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


Table     5-2                                           ATWS     Containment       Results     (MSIVC-EOC)
Table 5-2 ATWS Containment Results (MSIVC-EOC)


Parameter                                                                                                                                                                                                                                                                                                                         HNP   Unit     1                                                                                                                                                                                                                                                                                                                                                                                                                                                       HNP   Unit   2
Parameter HNP Unit 1 HNP Unit 2


Reference       7                                                                                             SRV   Setpoint                                                                                             Reference       7                                                                                                         SRV   Setpoint
Reference 7 SRV Setpoint Reference 7 SRV Setpoint


Peak   Wetwell Airspace       Pressure                                                                                                                                                                                                                 4.8                                                                                                                                                                                                                                                                                                     4.8                                                                                                                                                                                                                                                                                                               9.0                                                                                                                                                                                                                                                                                                                 8.9 (psig)
Peak Wetwell Airspace Pressure 4.8 4.8 9.0 8.9 (psig)


Peak   Suppression                                                                                                                         213.6@                                                                                                                                                   212.3@                                                                                                                                                   215.3@                                                                                                                                                           213.8@
Peak Suppression 213.6@ 212.3@ 215.3@ 213.8@
Pool   Temperature                                                                                                                                                                                                   2875   sec                                                                                                                                                                         2869     sec                                                                                                                                                                                             2911     sec                                                                                                                                                                                                         2931     sec (OF)
Pool Temperature 2875 sec 2869 sec 2911 sec 2931 sec (OF)


W etwell   Pressure When   Peak Suppression     Pool                                                                                                                                                                                                 2.4                                                                                                                                                                                                                                                                           2.4                                                                                                                                                                                                                                                                                                                   5.3                                                                                                                                                                                                                                                                                                                                 5.3 Temperature Occurs     (psig)
W etwell Pressure When Peak Suppression Pool 2.4 2.4 5.3 5.3 Temperature Occurs (psig)


Table   5-3                                                   SSLB   Containment       Results
Table 5-3 SSLB Containment Results


PeakDW                                                                                                                                                                                               Time   of Peak                                                                                                         PeakDW                                                                                                           Time   of Peak Plant                                                                                                                                                                         Case                                                                                                                                                               Temperature                                                                                                                         Temperature                                                                                 Temperature                                     Temperature Airspace                                                                                                                                                           DW                       Airspace                                                                                                                                                                       Shell                                                                                                                                                   DW                       Shell
PeakDW Time of Peak PeakDW Time of Peak Plant Case Temperature Temperature Temperature Temperature Airspace DW Airspace Shell DW Shell


(OF)                                                                                                                                                                         (sec)                                                                                                                                                               (OF)                                                                                                                                     (sec)
(OF) (sec) (OF) (sec)
Reference       8 0.01     ft 2     break                                                                                                                                                                                         289                                                                                                                                                                                                                                                                                                                                             1800                                                                                                                                                                                                                                                                                                     255                                                                                                                                                                                                                                                   1980 HNP       1 &2                                           0.10   ft 2     break                                                                                                                                                                                   324                                                                                                                                                                                                                                                                                                                                                                     595                                                                                                                                                                                                                                                                                                                                               271                                                                                                                                                                                                                                                       600 0.50   ft 2     break                                                                                                                                                                                                   328                                                                                                                                                                                                                                                                                                                                     276                                                                                                                                                                                                                                                                                           276                                                                                                                                                                                                                                                 579 SRV   Setpoint   Increase 0.01     ft 2     break                                                                                                                                                                                         289                                                                                                                                                                                                                                                                                                                                             1770                                                                                                                                                                                                                                                                                                     255                                                                                                                                                                                                                                                                 1975 HNP       1 &2                                           0.10   ft 2     break                                                                                                                                                                                           324                                                                                                                                                                                                                                                                                                                                                                     595                                                                                                                                                                                                                                                                                             270                                                                                                                                                                                                                                                 597 0.50   ft 2     break                                                                                                                                                                                           327                                                                                                                                                                                                                                                                                                                                   276                                                                                                                                                                                                                                                                                           276                                                                                                                                                                                                                                                           578
Reference 8 0.01 ft 2 break 289 1800 255 1980 HNP 1 &2 0.10 ft 2 break 324 595 271 600 0.50 ft 2 break 328 276 276 579 SRV Setpoint Increase 0.01 ft 2 break 289 1770 255 1975 HNP 1 &2 0.10 ft 2 break 324 595 270 597 0.50 ft 2 break 327 276 276 578


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


((
((


                                                                                                                                                                                        ))
))
Figure       5-1                               SSLB   DW Temperature           for   EQ   1
Figure 5-1 SSLB DW Temperature for EQ 1


1   For   0.5 ft2 break,     one   case up   to     1 day and   one   case up   to     180 days   are performed.
1 For 0.5 ft2 break, one case up to 1 day and one case up to 180 days are performed.


11
11


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NEDO-34126           Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information


6.0                                                                     ATWS                           Mitigation         Capability 6.1                                                                       Objective       and   Scope The         purpose           of   this           evaluation           is           to           assess           the         effect         of   increasing             HNP           Safety         Relief         Valve (SRV)           Setpoint           from               1150       psig             to               1160       psig         on         HNP         Anticipated             Transients           Without           Scram (ATWS)     transients.                     The   assessment     includes       any   potential       effect   of HNP     SRV   setpoint   increase on   key     ATWS       parameters         in     comparison       with       the       corresponding         ATWS         acceptance         criteria       for limiting   ATWS     events.
6.0 ATWS Mitigation Capability 6.1 Objective and Scope The purpose of this evaluation is to assess the effect of increasing HNP Safety Relief Valve (SRV) Setpoint from 1150 psig to 1160 psig on HNP Anticipated Transients Without Scram (ATWS) transients. The assessment includes any potential effect of HNP SRV setpoint increase on key ATWS parameters in comparison with the corresponding ATWS acceptance criteria for limiting ATWS events.
6.2                                                                     Design     Inputs     and   Assumptions The         design         inputs         that         are       necessary               to         perform           the         A TWS         safety         analysis           are         defined         in         the customer       approved     Design     Input   Request       (DIR)   (Reference         9).                 Because     HNP   Unit       1 and Unit     2 have   unique   heat balance   parameters         ((
6.2 Design Inputs and Assumptions The design inputs that are necessary to perform the A TWS safety analysis are defined in the customer approved Design Input Request (DIR) (Reference 9). Because HNP Unit 1 and Unit 2 have unique heat balance parameters ((
                                    ))               as           shown         in         Reference             9 ,           the         ATWS             evaluations             are         performed           based           on         a combination     of operating     conditions       from   Units       1 and 2   that   are   considered     bounding       for   ATWS (unlike       the     ATWS         containment         results         shown       in       Section       5.4     where         there         are       separate         analyses for both units).               Therefore   , the   analysis results     are applicable     to   Units       1 and 2.
)) as shown in Reference 9, the ATWS evaluations are performed based on a combination of operating conditions from Units 1 and 2 that are considered bounding for ATWS (unlike the ATWS containment results shown in Section 5.4 where there are separate analyses for both units). Therefore, the analysis results are applicable to Units 1 and 2.
The                   assumptions                   used               in                     the                   HNP                     GNF3                 New                   Fuel                 Introduction                       (NFI)                   ATWS                     analysis (Reference                   11)             based               on             assumptions                 allowed               in             ATWS                 analysis               procedures               if     related                 are applicable     to   this   analysis.               No   additional     assumptions       are made   in this   analysis.
The assumptions used in the HNP GNF3 New Fuel Introduction (NFI) ATWS analysis (Reference 11) based on assumptions allowed in ATWS analysis procedures if related are applicable to this analysis. No additional assumptions are made in this analysis.
6.3                                                                       Analysis       Method The       limiting     licensing         basis       ATWS         events       are       analyzed         to       confirm       the     A TWS     responses           to       the increase       of SRV       opening       setpoint         from           1150   psig       to           1160   psig     meet       the       corresponding         ATWS acceptance             criteria           listed         below.                               The           limiting           ATWS             events         of   Main           Steam         Isolation           Valve Closure     (MSIVC)       and   Pressure     Regulator     Failure     Open   -                     Maximum       Steam   Demand     (PRFO)     are analyzed at                                                                                                                                                                             Beginning     of Cycle   (BOC)   and End   of Cycle   (EOC)   conditions.
6.3 Analysis Method The limiting licensing basis ATWS events are analyzed to confirm the A TWS responses to the increase of SRV opening setpoint from 1150 psig to 1160 psig meet the corresponding ATWS acceptance criteria listed below. The limiting ATWS events of Main Steam Isolation Valve Closure (MSIVC) and Pressure Regulator Failure Open - Maximum Steam Demand (PRFO) are analyzed at Beginning of Cycle (BOC) and End of Cycle (EOC) conditions.
The             limiting             ATWS                 events               are             evaluated                 at           rated           power                 to               demonstrate                 compliance                   to               the following.
The limiting ATWS events are evaluated at rated power to demonstrate compliance to the following.
: 1.                           ASME     Service   Level   C Pressure   Limit   (1500   psig)
: 1. ASME Service Level C Pressure Limit (1500 psig)
: 2.                           Containment     Pressure   Design   Limit     ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ))
: 2. Containment Pressure Design Limit (( ))
: 3.                           Suppression     Pool Temperature     Design   Limit     ((
: 3. Suppression Pool Temperature Design Limit ((
                                                                                                                                                                                          ))
))
: 4.                               10CFR50.46   Peak   Cladding   Temperature       (PCT) Limit   (<2200 &deg;F)
: 4. 10CFR50.46 Peak Cladding Temperature (PCT) Limit (<2200 &deg;F)
: 5.                               10CFR50.46   Fuel Local   Cladding     Oxidation     Thickness     Limit   (<   17%)
: 5. 10CFR50.46 Fuel Local Cladding Oxidation Thickness Limit (< 17%)
The                 effects                 on             peak               vessel               pressure   ,             peak                 suppression                   pool                 temperature     ,               and               containment pressure                   are             explicitly                 analyzed               in             the             ATWS                 analysis.                                     The             PCT               and               fuel               local             cladding oxidation           are   justified               for         compliance         with         the       corresponding             acceptance           criteria         based         on       the large margins     and historical     PCT results     for   other plants     as   discussed   in Reference     4.
The effects on peak vessel pressure, peak suppression pool temperature, and containment pressure are explicitly analyzed in the ATWS analysis. The PCT and fuel local cladding oxidation are justified for compliance with the corresponding acceptance criteria based on the large margins and historical PCT results for other plants as discussed in Reference 4.
GNF3   fuel   design   cycle-independent         analyses     show   that an   ODYN peak   HNP NPSH     suppression pool                   temperature                 limit                     of           217.0 &deg;F                   for                 both                 Units                   will                   ensure                   that                   the                   SHEX                 results                   of Reference     7 remain   valid.
GNF3 fuel design cycle-independent analyses show that an ODYN peak HNP NPSH suppression pool temperature limit of 217.0 &deg;F for both Units will ensure that the SHEX results of Reference 7 remain valid.


12
12


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


6.4                                                                     Analysis       Results 6.4.1                                                                     Vessel       Pressure
6.4 Analysis Results 6.4.1 Vessel Pressure
((
((


                                                                                            ))
))
6.4.2                                                                       Suppression         Pool   Temperature           and   Containment         Pressure
6.4.2 Suppression Pool Temperature and Containment Pressure
((
((


                                                          ))                           Furthermore     ,     large       margins         exist       relative           to         the         suppression         pool temperature     and containment     pressure     design   limits.                 See Table   6-2   for   associated   margins.
)) Furthermore, large margins exist relative to the suppression pool temperature and containment pressure design limits. See Table 6-2 for associated margins.
6.4.3                                                                   PCT   and   Cladding       Oxidation The   increase     in   SRV   setpoints   has     a no   effect   on the peak   cladding   temperature     result.                       ((
6.4.3 PCT and Cladding Oxidation The increase in SRV setpoints has a no effect on the peak cladding temperature result. ((


                                                                ))                 Furthermore     , significant margin                                                                                                                                                                                                                         exists   relative     to     the   PCT   limit per Reference     4.               There   are no     cladding   oxidation     thickness     concerns       ((
)) Furthermore, significant margin exists relative to the PCT limit per Reference 4. There are no cladding oxidation thickness concerns ((
                                              )) .                   Therefore   ,     the       PCT       and     local       cladding       oxidation         thickness         acceptance criteria         are       still     met       for       the     increase       of SRV       opening       setpoint         from           1150     psig       to           1160     psig       for HNP   Units       1 and 2.
)). Therefore, the PCT and local cladding oxidation thickness acceptance criteria are still met for the increase of SRV opening setpoint from 1150 psig to 1160 psig for HNP Units 1 and 2.
6.4.4                                                                     Additional         A TWS                         Results Table     6-1     provides     an additional   summary     of detailed   ATWS   results.
6.4.4 Additional A TWS Results Table 6-1 provides an additional summary of detailed ATWS results.
6.4.5                                                                   Summary       of Results The   limiting   ATWS     analysis   results   in comparison   with   the corresponding       acceptance     criteria     are shown   in Table     6-2.                 Based     on   the   analysis   results   ,   all ATWS       acceptance       criteria     are   met     for   the increase         of   SRV         opening         setpoint           from             1150     psig           to             1160     psig           for       HNP       Units             1     and         2.                             The ATWS     analysis   results     are   applicable       to   mixed   cores   of GNF2     and   GNF3   , as   well     as   full   cores   of GNF3.
6.4.5 Summary of Results The limiting ATWS analysis results in comparison with the corresponding acceptance criteria are shown in Table 6-2. Based on the analysis results, all ATWS acceptance criteria are met for the increase of SRV opening setpoint from 1150 psig to 1160 psig for HNP Units 1 and 2. The ATWS analysis results are applicable to mixed cores of GNF2 and GNF3, as well as full cores of GNF3.
Therefore   ,             the               increase               of       HNP                 SRV             setpoint                 from                     1150           psig                   to                     1160           psig                 is               acceptable regarding     ATWS     acceptance     criteria   compliance.
Therefore, the increase of HNP SRV setpoint from 1150 psig to 1160 psig is acceptable regarding ATWS acceptance criteria compliance.


13
13


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


The   limiting   peak pressure       ((
The limiting peak pressure ((
                                                                                                                  ))       is     1218 psia   from   MSIVC     at BOC     case   with       SLCS   initiation       time   of 130.6   sec.                   These     results       are   provided       to     support     further assessment     of the   SLCS   discharge   pressure.
)) is 1218 psia from MSIVC at BOC case with SLCS initiation time of 130.6 sec. These results are provided to support further assessment of the SLCS discharge pressure.


14
14


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NED0-34126                     Revision       0 Non-Proprietary             Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information


Table     6-1                                               Summary       of Additional         ATWS     Analysis         Results
Table 6-1 Summary of Additional ATWS Analysis Results


Initiating                                             Exposure                                                           Neutron                                                       Peak   Heat                                                                                           Dome                                                                                                         Pressure Peak                                                                                                                                                                                                                                                                                                                                                                                     Peak                                                                                         PeakRPV Peak   Pool Event                                                                                                                                                                                                                                                                                         Flux(%)                                                                                   Flux(%)                                                                                                           Pressure                                                                                                                   (psig) Temperature (psig)                                                                                                                                                                                                                                       {&deg;F)
Initiating Exposure Neutron Peak Heat Dome Pressure Peak Peak PeakRPV Peak Pool Event Flux(%) Flux(%) Pressure (psig) Temperature (psig) {&deg;F)


BOC                                                                                                                                                                                 350                                                                                                                                                                                             159                                                                                                                                                                                                                                 1438                                                                                                                                                                                               ((
BOC 350 159 1438 ((
PRPO EOC                                                                                                                                                                                     426                                                                                                                                                                                             164                                                                                                                                                                                                                               1410
PRPO EOC 426 164 1410


BOC                                                                                                                                                                                 252                                                                                                                                                                                               140                                                                                                                                                                                                                                 1412 MSIVC EOC                                                                                                                                                                                     300                                                                                                                                                                                             146                                                                                                                                                                                                                                 1402 ))
BOC 252 140 1412 MSIVC EOC 300 146 1402 ))


Table   6-2                                           ATWS     Analysis         Results       and   Criteria
Table 6-2 ATWS Analysis Results and Criteria


GNF3     NFI                                                                                                                                                                                                             Acceptance Item                                                                                                                                               Parameter                                                                                                                                                             Unit                                                             Result     1                                                                                                                   Result   2                                                                                                                                   Limit         Criteria Met?
GNF3 NFI Acceptance Item Parameter Unit Result 1 Result 2 Limit Criteria Met?


1                                                         Peak   Vessel     Bottom                                                                                                                                                 ps1g                                                                                   ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1500 Yes Pressure 2                                                           Peak     Suppression         Pool                                                                                                                                                                       op                                                                                                                                                                                                                                                                                                         217                                                                                                       Yes Temperature
1 Peak Vessel Bottom ps1g (( 1500 Yes Pressure 2 Peak Suppression Pool op 217 Yes Temperature


3                                                           Peak   Containment                                                                                                                                                                                               ps1g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               56 Yes Pressure 4                                                           Peak   Cladding                                                                                                                                                                                         op                                                                                                                                                                                                                                                                                                     2200                                                                                                         Yes Temperature
3 Peak Containment ps1g 56 Yes Pressure 4 Peak Cladding op 2200 Yes Temperature


5                                                             Cladding       Oxidation                                                                                                                                                             %                                                                                                                                                                                                                                                                                                                                                                                       ))                                                                                                                                                                                                 17 Yes Thickness
5 Cladding Oxidation % )) 17 Yes Thickness
: 1.                                                   ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ))
: 1. (( ))
: 2.                                                   ((                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ))
: 2. (( ))


15
15


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NEDO-34126               Revision         0 Non-Proprietary                 Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information


7.0                                                                     Conclusions As         was       noted         above ,       the         following           evaluations           were       performed               to         address         the       increase         of the SRV   opening   setpoints.
7.0 Conclusions As was noted above, the following evaluations were performed to address the increase of the SRV opening setpoints.
* Loss   of Coolant   Accident     (LOCA)
* Loss of Coolant Accident (LOCA)
* High   Pressure     System Performance
* High Pressure System Performance
* Containment       Performance
* Containment Performance
* Anticipated     Transients     Without     Scram   (ATWS)
* Anticipated Transients Without Scram (ATWS)
All     evaluations       have     shown     that     the   increased       setpoint     of 1160 psig     yield     adequate     performance results.             Given           this         information     ,         HNP           can       use           this           document             to           support             a         license           amendment request     for increasing     the nominal     setpoint.
All evaluations have shown that the increased setpoint of 1160 psig yield adequate performance results. Given this information, HNP can use this document to support a license amendment request for increasing the nominal setpoint.
It         should         be         noted           that         Southern         Nuclear             Operating             Company           should         verify           compliance           with NRC     Generic   Letter 89-10                                                                                                                                 (Reference     3) requirements         for valves   in HPCI   and RCIC.
It should be noted that Southern Nuclear Operating Company should verify compliance with NRC Generic Letter 89-10 (Reference 3) requirements for valves in HPCI and RCIC.


16
16


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified NEDO-34126               Revision           0 Non-Proprietary                   Information
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information


8.0                                                                   References
8.0 References
: 1.                                                               GEH     Report     004N6160       Revision           1,   GE     Hitachi     Nuclear       Energy   ,   "Edwin     I.     Hatch   Nuclear Plant Units       1 and 2 , TRACG-LOCA       Loss-of-Coolant       Accident   Analysis     ,"   October   2019.
: 1. GEH Report 004N6160 Revision 1, GE Hitachi Nuclear Energy, "Edwin I. Hatch Nuclear Plant Units 1 and 2, TRACG-LOCA Loss-of-Coolant Accident Analysis," October 2019.
: 2.                                                                     SNC     Letter   NMP-ES-050-F0l                   ,   RER   Number     :   SNC1512291         Sequence     No.:       2 ,   Letter       from David         Sanford         (SNC)           to         Jarrod         Miller         (GNF-A)   ,     "Hatch             SRV         Setpoint         Increase           -                 DBR-0075058   and DBR-0075139     ," July   28   , 2023.
: 2. SNC Letter NMP-ES-050-F0l, RER Number : SNC1512291 Sequence No.: 2, Letter from David Sanford (SNC) to Jarrod Miller (GNF-A), "Hatch SRV Setpoint Increase - DBR-0075058 and DBR-0075139," July 28, 2023.
: 3.                                                       NRC                         GL                     89-10 ,                 "Safety-Related                         Motor                     Operated                     Valve                     Testing                       and                     Surveillance   ,"
: 3. NRC GL 89-10, "Safety-Related Motor Operated Valve Testing and Surveillance,"
June   28   ,   1989.
June 28, 1989.
: 4.                                                           NEDC-33879P         ,                           Revision                                 2 ,                         "GNF3                                   Generic                               Compliance                               with                           NEDE-24011-P-A (GESTAR   II) ," March   2018.
: 4. NEDC-33879P, Revision 2, "GNF3 Generic Compliance with NEDE-24011-P-A (GESTAR II)," March 2018.
: 5.                                                           NEDC-32041P       , Revision   2 , GE                 Nuclear                     Energy   ,                 "Safety                     Review                       for                 Edwin               I.                   Hatch Nuclear                             Power                           Plant                         Units                             1                       and                         2                       Updated                               Safety                       Relief                         Valve                           Performance Requirements     ," April       1996.
: 5. NEDC-32041P, Revision 2, GE Nuclear Energy, "Safety Review for Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Updated Safety Relief Valve Performance Requirements," April 1996.
: 6.                                                                   GEH   Report     008N0745   , Revision     0, "Hatch   Nuclear     Plant     SRV   Setpoint   Increase   -ATWS Analysis     ," November     2023.
: 6. GEH Report 008N0745, Revision 0, "Hatch Nuclear Plant SRV Setpoint Increase -ATWS Analysis," November 2023.
: 7.                                                               GEH       Report         0000-0106-1182       ,     Revision           0,     "Edwin       I.       Hatch       Units           1   and       2     Ultimate         Heat Sink             Temperature                   Increase                     to                   97 &deg;F             Impact                 on           Anticipated                   Transients                 Without                 Scram (ATWS)   Event   Containment     Analysis   ," August   2011.
: 7. GEH Report 0000-0106-1182, Revision 0, "Edwin I. Hatch Units 1 and 2 Ultimate Heat Sink Temperature Increase to 97 &deg;F Impact on Anticipated Transients Without Scram (ATWS) Event Containment Analysis," August 2011.
: 8.                                                                   GEH     Report       004N8577     ,   Revision         0,   "Edwin       I.       Hatch     Nuclear         Power     Plant     Units           1 and     2 Containment   Analyses       for   GNF3 New   Fuel   Introduction     ," November       2018.
: 8. GEH Report 004N8577, Revision 0, "Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Containment Analyses for GNF3 New Fuel Introduction," November 2018.
: 9.                                                                     SNC     Letter   NMP-ES-050-F0l                   ,   Letter       from     David       Sanford       (SNC)       to     Jarrod     Miller     (GEH)   ,
: 9. SNC Letter NMP-ES-050-F0l, Letter from David Sanford (SNC) to Jarrod Miller (GEH),
            "Hatch     SRV   Setpoint   Increase   -                   DBR-0075302     ," August   7, 2023.
"Hatch SRV Setpoint Increase - DBR-0075302," August 7, 2023.
: 10.                                   NEDC-32749P       , Revision     0,   "Extended   Power   Uprate     Safety Analysis     Report     for   E.I. Hatch Plant Units       1 and 2 ," July     1997.
: 10. NEDC-32749P, Revision 0, "Extended Power Uprate Safety Analysis Report for E.I. Hatch Plant Units 1 and 2," July 1997.
: 11.                                     004N6886   ,           Revision               0,           "GNF3               Fuel             Design             Cycle-Independent                   Analyses                 for           Edwin           I.
: 11. 004N6886, Revision 0, "GNF3 Fuel Design Cycle-Independent Analyses for Edwin I.
Hatch Nuclear     Plant Units       1 and 2 ," November       2018.
Hatch Nuclear Plant Units 1 and 2," November 2018.


17
17


NEDO-34126                           Rev   0                     Public                       Release   Date   Mar 21,   2024                       Status   Verified}}
NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified}}

Revision as of 17:31, 4 October 2024

Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint
ML24110A098
Person / Time
Site: Hatch  Southern Nuclear icon.png
Issue date: 04/19/2024
From: Coleman J
Southern Nuclear Operating Co
To:
Office of Nuclear Reactor Regulation, Document Control Desk
Shared Package
ML24110A096 List:
References
NL-24-0026
Download: ML24110A098 (1)


Text

3535 Colonnade Park w ay A Southern Nuclear Birmingham, AL 35243 205 992 5000 PROPRIETARY INFORMATION-WITHHOLD UNDER 10 CFR 2.390

April 19, 2024

Docket Nos.: 50-321 NL-24-0026 50-366 10 CFR 50.90

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D. C. 20555-0001

Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint

Ladies and Gentlemen:

Pursuant to the provisions of Section 50.90 of Title 10 of the Code of Federal Regulations, Southern Nuclear Operating Company (SNC) hereby requests amendments to renewed facility operating licenses DPR-57 and NPF-5 to revise the Technical Specifications (TS) for the Edwin I. Hatch Nuclear Plant (HNP), Units 1 and 2, respectively. The proposed changes would revise Surveillance Requirement (SR) 3.4.3.1 to increase the nominal mechanical relief setpoints for all safety/relief valves (S/RVs) of the reactor coolant system (RCS) nuclear pressure relief system (NPRS). The proposed changes will reduce the potential for S/RV pilot leakage. As a result of the increased S/RV setpoints, a change is proposed to SR 3.1. 7. 7 to increase the minimum Standby Liquid Control pump discharge pressure accordingly.

to this letter provides a description and assessment of the proposed changes. provides the existing TS pages marked to show the proposed changes. provides revised (clean) TS pages. Attachment 3 provides existing TS Bases pages marked to show the proposed changes for information only. Attachment 4 contains a GE Hitachi Nuclear Energy (GEH) proprietary report which details safety analyses performed in support of the proposed change. Pursuant to 10 CFR 2.390(a)(4 ), SNC requests that the proprietary information be withheld from public disclosure. In accordance with 10 CFR 2.390(b)(1 ), an affidavit attesting to the proprietary nature of the enclosed information and requesting withholding from public disclosure is included with Attachment 4. Attachment 5 provides the same GEH information with the proprietary portions removed and is provided for public disclosure.

These changes would be implemented during a scheduled refueling outage on each unit. The next Unit 2 refueling outage is scheduled for February, 2025, and the next Unit 1 refueling outage is scheduled for February, 2026. Therefore, to support the upcoming refueling outages and to provide adequate time for outage preparation, SNC requests that the NRC review and

Attachment 4 to this letter contains Proprietary Information to be withheld from public disclosure per 10 CFR 2.390. When separated from Attachment 4, this document is uncontrolled.

U.S. Nuclear Regulatory Commission NL-24-0026 Page 2

approve the amendments no later than December 13, 2024, with implementation prior to startup from the respective refueling outages.

This letter contains no NRC commitments.

In accordance with 10 CFR 50.91, SNC is notifying the state of Georgia of this license amendment request by transmitting a copy of this letter to the designated state official.

If you should have any questions regarding this submittal, please contact Ryan Joyce at 205.992.6468.

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 19th day of April 2024.

Jamie M. Coleman Regulatory Affairs Director Southern Nuclear Operating Company

rmj/efb/cbg

Enclosure:

1) Description and Assessment of the Proposed Changes

Attachments: 1) Proposed Technical Specification Changes (Mark-up)

2) Revised Technical Specification Pages
3) Proposed Technical Specifications Bases Changes (Mark-up) - For Information Only
4) GEH Affidavit and Proprietary GEH Report NEDC-34126P, Revision 0
5) Non-Proprietary GEH Report NEDO-34126, Revision 0

cc: NRC Regional Administrator, Region II NRC NRR Project Manager - Hatch NRC Senior Resident Inspector - Hatch Director, Environmental Protection Division - State of Georgia SNC Document Control R-Type: CHA02.004 Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint

NL-24-0026

Enclosure 1

Description and Assessment of the Proposed Changes to NL-24-0026 Description and Assessment of the Proposed Changes

1.0

SUMMARY

DESCRIPTION

Southern Nuclear Operating Company (SNC) proposes to revise Edwin I. Hatch Nuclear Plant (HNP) Unit 1 and Unit 2 Technical Specifications (TS) to increase the nominal mechanical relief setpoints for each unit's 11 safety/relief valves (S/RVs) of the reactor coolant system (RCS) nuclear pressure relief system (NPRS) from 1150 psig to 1160 psig. Changes are proposed to Surveillance Requirement (SR) 3.4.3.1 to increase these setpoints. These changes do not alter the minimum number of S/RVs required to be operable, nor do they alter the allowable as-found or as-left tolerances as a percentage of the nominal setpoint. As a result of the increased S/RV setpoints, a change is proposed to SR 3.1.7.7 to increase the minimum Standby Liquid Control pump discharge pressure accordingly.

In support of the proposed changes, GE Hitachi Nuclear Energy (GEH) prepared and issued GEH report NEDC-34126P, "Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Safety/Relief Valve Setpoint Increase," Revision 0, dated March 2024. A proprietary copy of this report is provided in Attachment 4 and a non-proprietary version is provided in Attachment 5. The results of the evaluations in the GEH report determined that the impacts of the setpoint changes are acceptable.

Unless noted otherwise, the information provided throughout this License Amendment Request (LAR) is applicable to both Unit 1 and Unit 2. Additionally, "setpoint" throughout this LAR refers to the SR 3.4.3.1 mechanical relief setpoint of the NPRS S/RVs.

2.0 DETAILED DESCRIPTION

2.1 System Design and Operation

The ASME Boiler and Pressure Vessel Code requires the reactor pressure vessel be protected from overpressure during upset conditions by self-actuated safety valves. As part of the NPRS, the size and number of S/RVs are selected such that peak pressure in the nuclear steam system will not exceed the ASME Code limits for the reactor coolant pressure boundary (RCPB).

The NPRS for each unit includes 11 S/RVs, all of which are located on the main steam lines within the drywell between the reactor vessel and the first isolation valve. In the safety mode of the S/RVs, the spring-loaded pilot valve opens when steam pressure at the valve inlet expands the bellows to the point that the bellows force overcomes the force holding the pilot valve closed. Opening the pilot valve allows steam to pass to the second stage operating piston which causes the second stage disc to open. This vents the chamber over the main valve disc to the downstream side of the valve, which causes a pressure differential to develop across the main valve piston and opens the main valve. This satisfies the ASME Boiler and Pressure Vessel Code requirement. Each S/RV discharges steam through a discharge line to a point below the minimum water level in the suppression pool.

The Standby Liquid Control (SLC) System provides the capability of bringing the reactor, at any time in a fuel cycle, from full power and minimum control rod inventory (which is at the peak of the xenon transient) to a subcritical condition with the reactor in the most reactive, xenon free state without taking credit for control rod movement. Additionally, the SLC system provides sufficient buffering agent to maintain the suppression pool pH at or above 7.0 following a Design Basis Loss of Coolant Accident involving fuel damage.

E-1 to NL-24-0026 Description and Assessment of the Proposed Changes

The SLC System consists of a storage tank, two positive displacement pumps, two relief valves (one on discharge of each pump), two explosive valves that are provided in parallel for redundancy, and associated piping and valves used to transfer borated water from the storage tank to the reactor. The SLC System is manually initiated from the Control Room as directed by the emergency operating procedures and provides an independent, redundant reactivity control system to shut down the reactor in the unlikely event that the Control Rod Drive System fails to insert control rods during scram conditions. The SLC System injects borated water into the reactor core to add negative reactivity to compensate for the various reactivity effects that could occur during plant operations.

2.2 Current Technical Specifications Requirements

Limiting Condition for Operation (LCO) 3.4.3 for both units requires the safety function of 10 of 11 S/RVs to be Operable. The requirements of this LCO are applicable only to the capability of the S/RVs to mechanically open to relieve excess pressure when the lift setpoint is exceeded (safety function).

SR 3.4.3.1 requires verification that the safety function lift setpoints of the S/RVs are 1150 +/-

34.5 psig. The safety function of the S/RV lift settings is demonstrated by bench testing performed on S/RV pilot valves that are removed during shutdown in accordance with the lnservice Testing Program. The lift setting pressure must correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The S/RV setpoint tolerance is +/- 3% (34.5 psig) for operability; however, the valves are reset to a +/- 1 %

tolerance during the Surveillance to allow for drift.

LCO 3.1.7 for both units requires two SLC subsystems to be operable. The operability of the SLC System is based on the conditions of the borated solution in the storage tank and the availability of a flow path to the RPV, including the operability of the pumps and valves.

SR 3.1.7.7 requires verification that each SLC pump develops a flow rate greater than or equal to 41.2 gpm at a discharge pressure greater than or equal to 1232 psig.

2.3 Reason for Proposed Change

The NPRS is robust, but S/RV leakage has occurred during plant operation. Increasing the nominal mechanical relief setpoints will increase the simmer margin (i.e., the difference between the S/RV setpoints and the vessel steam dome pressure), thereby potentially reducing S/RV pilot leakage which may occur during a typical operating cycle.

2.4 Description of Proposed Change

The proposed change revises SR 3.4.3.1 for both units to change the 1150 psig setpoint to 1160 psig. The setpoint tolerance(+/- 3% of the setpoint value), currently 34.5 psig, is revised to 34.8 psig.

Additionally, SR 3.1. 7. 7 for both units is proposed to be revised to change the minimum SLC pump discharge pressure from 1232 psig to 1251 psig.

Associated changes are proposed to the Unit 1 and Unit 2 TS Bases. The GEH report is added as a reference in the TS Bases for justification of the S/RV safety lift settings.

E-2 to NL-24-0026 Description and Assessment of the Proposed Changes

3.0 TECHNICAL EVALUATION

On October 7, 1996, a LAR for HNP Units 1 and 2 was submitted to the Nuclear Regulatory Commission (NRC) to increase the nominal mechanical relief setpoints for all NPRS S/RVs to their current nominal value of 1150 psig (Reference 1 ). This LAR was subsequently approved by the NRC on March 21, 1997 (Reference 2). The NRC safety evaluation was based on the evaluations documented in technical report NEDC-32041 P, Revision 2, as provided in the 1996 LAR. This technical report provided a detailed justification for an upper value mechanical S/RV relief setpoint as high as 1195 psig, with one S/RV inoperable and at least 50 psi margin to the ASME code upset limit (1375 psig). The 1195 psig upper limit (UL) established by NEDC-32041 P bounds the current nominal setpoint including a +/-3% drift tolerance.

Hatch currently performs cycle-specific analyses that confirm vessel overpressure margin is maintained assuming S/RV opening at the UL of 1195 psig. The UL value of 1195 psig continues to bound the proposed nominal setpoint plus maximum allowable drift tolerance (1160

+ 34.8 psig) such that the cycle-specific reload licensing analyses demonstrating overpressure protection are unaffected by this change.

GEH report NEDC-34126P provides additional evaluations of the following non-cycle-specific areas potentially affected by the proposed change:

  • Containment Evaluation (Anticipated Transients Without Scram (A TWS), Design Basis Accident (OBA) LOCA, Small Steam Line Break (SSLB) for Equipment Qualification (EQ),

Appendix R, and Station Blackout (SBO))

  • A TWS Mitigation S/RV discharge piping loads and Standby Liquid Control (SLC) System performance were also reassessed for the effects of increasing the nominal S/RV setpoint.

The following is a brief description of the evaluations discussed in Attachment 4, along with the assessments of S/RV discharge piping loads and SLC System performance:

ECCS/LOCA Evaluation Section 3.0 of GEH NEDC-34126P discusses the effect of the S/RV setpoint change on the peak cladding temperatures for the HNP ECCS LOCA. Hatch Units 1 and 2 are licensed to the TRACG-LOCA best estimate plus uncertainty ECCS/LOCA evaluation methodology. Using the same approved TRACG-LOCA methodology, an analysis was performed using representative limiting break locations to determine the effect of increasing the S/RV opening setpoint by running the break spectra for those break locations. This analysis determined that the licensing basis ECCS/LOCA results are not affected by increasing the S/RV opening setpoint nominal value from 1150 psig to 1160 psig.

High Pressure System Performance Section 4.0 of GEH NEDC-34126P discusses the performance of the HPCI and RCIC Systems with the increase in the S/RV setpoints. Operation at reactor pressures up to the UL is within the design limits for system piping, pumps, and turbines for the HPCI and RCIC systems. The

E-3 to NL-24-0026 Description and Assessment of the Proposed Changes

impacts on MOVs due to the potential for increased reactor vessel and system pressure as a result of the increase in the S/RV nominal opening setpoint are evaluated in accordance with the Generic Letter 89-10 requirements as part of the SNC design process. The HPCI and RCIC pumps are capable of delivering rated system flow with vessel pressures at the UL value of 1195 psig.

Containment Evaluation Section 5.0 of GEH NEDC-34126P discusses effects of the proposed increase in S/RV setpoints on containment-related evaluations, which include ATWS, OBA LOCA, SSLB for EQ, Appendix R, and SBO. The evaluations were performed with the same methodologies as the current bases for these events.

  • ATWS - The evaluation performed for ATWS demonstrated that the peak wetwell pressure and temperature with the proposed S/RV setpoint change were equal to or bounded by the current analysis of record.
  • OBA LOCA - The evaluation determined that both long-term and short-term OBA LOCA analyses are unaffected by the proposed S/RV setpoint increase from 1150 to 1160 psig.
  • SSLB for EQ - The SSLB containment analysis demonstrated that the S/RV setpoint increase results in negligible changes in the drywell temperature curves for the various break sizes. As such, there is negligible effect on HNP Units 1 and 2 EQ profile.
  • Appendix R - Hatch Units 1 and 2 are now licensed to NFPA 805 for fire protection.

However, the deterministic Appendix R containment response evaluation was conservatively assessed for impact. The effect on the suppression pool temperature response due to S/RV setpoint increase was determined to be negligible and, in turn, the effect on containment temperature and pressure are negligible. It was concluded that there is negligible effect on the Appendix R containment response from increasing the nominal S/RV setpoint.

  • SBO - The station blackout event is also an RPV isolation and non-break event similar to Appendix R. The applicable discussion and conclusion for Appendix R is also applicable to SBO. Thus, there is negligible effect on the SBO response from increasing the S/RV setpoint.

ATWS Mitigation Capability Section 6.0 of GEH NEDC-34126P discusses the S/RV setpoint increase impacts on ATWS acceptance criteria compliance for limiting ATWS events. The limiting ATWS events of Main Steam Isolation Valve Closure (MSIVC) and Pressure Regulator Failure Open (PRFO) were analyzed to demonstrate compliance with the following:

  • ASME Service Level C Pressure Limit (1500 psig)
  • Containment Pressure Design Limit (plant-specific, see Attachment 4)
  • Suppression Pool Temperature Design Limit (plant-specific, see Attachment 4)
  • 10 CFR 50.46 Local Cladding Oxidation Thickness Limit (<17%)

Based on the analysis results, all ATWS acceptance criteria are met for the S/RV setpoint increase from 1150 psig to 1160 psig.

E-4 to NL-24-0026 Description and Assessment of the Proposed Changes

SLC System Performance

The SLC system required pump discharge pressure is based on the limiting peak pressure at the SLC injection location (lower plenum injection) after SLC System initiation from a MSIV closure event at the beginning of an operating cycle. With an increase in S/RV setpoints to 1160 psig and a SLC System initiation time of 130.6 seconds, the resulting pressure at the SLC System injection location is 1218 psia (1203.3 psig). SLC System losses were determined to be approximately 47 psi. Using the lower plenum pressure, the required SLC pump discharge pressure will become 1251 psig (1203.3 + 47). This value of 1251 psig is the proposed SR 3.1.7.7 minimum SLC pump discharge pressure.

The SLC pumps are positive displacement pumps, which deliver a constant flow rate regardless of discharge pressure. The pump motors are 40 hp, which are adequate for the pressure increase. The system design pressure is adequate for the increase in operating pressure.

The SLC System pump discharge relief valve setpoint margin is based on the discharge pressure during an ATWS. NRC Information Notice (IN) 2001-13 identifies the need to include a margin of 75 psi to prevent inadvertent actuation of the SLC System relief valves. This margin accounts for pressure pulsations from the positive displacement pumps and tolerance for the SLC System discharge relief valves. The maximum RPV lower plenum pressure without SLC System relief valves lifting is the SLC System relief valve setpoint (1400 psig) minus the 100 psi margin to prevent inadvertent actuation, minus the SLC System piping losses (47 psi). This results in a maximum RPV lower plenum pressure without the SLC System relief valve lifting of 1253 psig (1400 - 100 - 47).

As a result of the proposed S/RV setpoint increase, the updated peak pressure at the SLC injection location (lower plenum) after SLC injection is 1203.3 psig (1218 psia). Therefore, the additional pressure margin to relief valve lift is 49.7 psi (1253 psig - 1203.3 psig). This represents an additional 74.7 psi (49.7 + 25) margin above the 75 psi margin in NRC IN 2001-

13. Based on this review, the current SLC System relief valves and their associated setpoints are acceptable for the proposed increase in S/RV setpoints.

S/RV Discharge Line Loads SNC performed an assessment of the impact of increasing the S/RV nominal setpoint to 1160 psig on the S/RV discharge line loads for HNP Units 1 and 2. The updated analyses for both units demonstrated that the current configuration of all 11 S/RV discharge line piping portions located within the vent pipes and torus meet ASME Code requirements for all load combinations.

Conclusion Evaluations have been performed which consider the consequences of the various transients and accidents with the increased setpoints. The evaluations also analyze the impact on SLC and ECCS performance, including HPCI and RCIC. The conclusions of these evaluations have shown no significant increase in consequences of an accident with the increased S/RV setpoints.

E-5 to NL-24-0026 Description and Assessment of the Proposed Changes

4.0 REGULATORY EVALUATION

4.1 Applicable Regulatory Requirements/Criteria

1 O CFR 50.36, "Technical specifications "

Regulation 10 CFR 50.36, "Technical specifications, " provides the requirements for the content required in the TS. As stated in 10 CFR 50.36, the TSs include, among other things, LCOs and SRs to assure that the necessary quality of systems and components is maintained, that facility operation will be within safety limits, and that the limiting conditions for operation will be met. As described above, the SRs are proposed to be updated to assure that the facility operation is within safety limits.

ASME Boiler and Pressure Vessel Code The ASME Boiler and Pressure Vessel Code requires that each vessel designed to meet Section Ill be protected from overpressure. The code allows a peak allowable pressure of 110%

of vessel design pressure. The NPRS SR/Vs are designed and manufactured in accordance with ASME Boiler and Pressure Vessel Code Section Ill, 1968 Edition with Addenda through 1970. The evaluations described in Section 3.0 above conclude that the proposed TS changes will continue to assure that the design requirements associated with the S/RVs and their associated functions are met.

4.2 Precedent

Reference 1 provides a previous example of a similar license amendment approved by the NRC for HNP to increase the nominal mechanical relief setpoints for all NPRS S/RVs to their current nominal value of 1150 psig. References 3 and 4 provide examples of other industry license amendments involving S/RV setpoint and setpoint tolerance changes which involve similar technical analyses to those used for the proposed HNP changes.

4.3 No Significant Hazards Consideration Determination Analysis

Southern Nuclear Operating Company (SNC) proposes to revise Edwin I. Hatch Nuclear Plant (HNP) Unit 1 and Unit 2 Technical Specifications (TS) to increase the nominal mechanical relief setpoints for each unit 's 11 safety/relief valves (S/RVs) of the reactor coolant system (RCS) nuclear pressure relief system (NPRS) from 1150 psig to 1160 psig. Changes are proposed to Surveillance Requirement (SR) 3.4.3.1 to increase these mechanical relief setpoints. As a result of the increased S/RV setpoints, a change is proposed to SR 3.1.7.7 to increase the minimum Standby Liquid Control pump discharge pressure accordingly.

SNC has evaluated if a significant hazards consideration is involved with the proposed amendment(s) by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:

1. Does the proposed amendment involve a significant increase in the probability or consequences of an accident previously evaluated?

Response: No

The S/RVs serve to mitigate postulated transients and accidents; the proposed changes do not alter the function or mode of operation of the S/RVs. The probability of an operable or an inoperable S/RV inadvertently opening or failing to open or close is not affected by these

E-6 to NL-24-0026 Description and Assessment of the Proposed Changes

changes. The proposed change does not alter the safety function of the valves. The proposed TS revision involves no significant changes to the operation of any systems or components in normal or accident operating conditions and no changes to existing structures, systems, or components. Therefore, the probability of an accident is not increased. Evaluations have been performed which consider the consequences of the various transients and accidents with the increased setpoints. The evaluations also analyze the impact on ECCS performance, including HPCI and RCIC. The conclusions of these evaluations have shown no significant increase in consequences of an accident with the increased S/RV setpoints.

Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Does the proposed amendment create the possibility of a new or different kind of accident from any accident previously evaluated?

Response: No

Revising the nominal S/RV setpoint only changes when the S/RV opens in its safety mode; the operation of the S/RV and any other existing equipment is not altered. The impact on the operation and design of other systems and components has been evaluated, including ECCS and SLC. The proposed change does not affect the manner in which the NPRS is operated; therefore, there are no new failure mechanisms for the NPRS. The proposed change does not change the safety function of the valves. There is no alteration to the parameters within which the plant is normally operated. As a result, no new operating or failure modes are being introduced. Thus, these changes do not contribute to a new or different type of accident.

Therefore, the proposed change does not create the possibility of a new or different kind of accident from any accident previously evaluated.

3. Does the proposed amendment involve a significant reduction in a margin of safety?

Response: No

The margin of safety is established through the design of the plant structures, systems, and components, the parameters within which the plant is operated, and the establishment of the setpoints for the actuation of equipment relied upon to respond to an event. The proposed change does not modify the safety limits or setpoints at which protective actions are initiated and does not change the requirements governing operation or availability of safety equipment assumed to operate to preserve the margin of safety. The change in S/RV mechanical lift setpoint was evaluated relative to the applicable safety system settings and found to remain acceptable. The proposed changes were evaluated against peak clad temperature limits, ECCS operation, ASME Code overpressurization limits, and containment design limits. No significant reduction in the margin of safety was identified in the evaluations performed.

Therefore, the proposed change does not involve a significant reduction in a margin of safety.

E-7 to NL-24-0026 Description and Assessment of the Proposed Changes

Based on the above, SNC concludes that the proposed change presents no significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and, accordingly, a finding of "no significant hazards consideration" is justified.

4.4 Conclusions

In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.

5.0 ENVIRONMENTAL CONSIDERATION

A review has determined that the proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20, or would change an inspection or surveillance requirement. However, the proposed amendment does not involve (i) a significant hazards consideration, (ii) a significant change in the types or a significant increase in the amounts of any effluents that may be released offsite, or (iii) a significant increase in individual or cumulative occupational radiation exposure.

Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c)(9). Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed amendment.

6.0 REFERENCES

1. Letter from Georgia Power Company to NRC, "Edwin I. Hatch Nuclear Plant Request to Revise Technical Specifications: Safety/Relief Valve Setpoint Change," dated October 7, 1996 (ADAMS Accession No. ML20128M857)
2. Letter from NRC to Georgia Power Company, "Issuance of Amendments - Edwin I.

Hatch Nuclear Plant, Units 1 and 2 (TAC Nos. M96752 and M96753)," dated March 21, 1997 (ADAMS Accession No. ML013030262)

3. Letter from Entergy Nuclear Operations, Inc. to NRC, "Proposed License Amendment to Technical Specifications: Revised Technical Specification for Setpoint and Setpoint Tolerance Increases for Safety Relief Valves (SRV) and Spring Safety Valves (SSV),

and Related Changes," dated March 15, 2010 (ADAMS Accession ML100770450)

4. Letter from Exelon Generation Company, LLC to NRC, "License Amendment Request to Revise the Technical Specification (TS) Surveillance Requirement (SR) 3.4.4.1 to Revise the Lower Setpoint Tolerances for Safety/Relief Valves (S/RVs)," dated February 27, 2018 (ADAMS Accession ML18058A257)

E-8 Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint

NL-24-0026

Attachment 1

Proposed Technical Specification Changes (Mark-up)

SLC System 3.1.7

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.1.7.7 Verify each pump develops a flow rate ~ 41.2 gpm In accordance at a discharge pressure~ ~1251 psig. with the INSERVICE TESTING PROGRAM

SR 3.1.7.8 Verify flow through one SLC subsystem from pump In accordance with into reactor pressure vessel. the Surveillance Frequency Control Program

SR 3.1.7.9 Verify all heat traced piping between storage tank In accordance with and pump suction is unblocked. the Surveillance Frequency Control Program

Once within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after pump suction piping temperature is restored within the Region A limits of Figure 3.1. 7-2

SR 3.1.7.10 Verify sodium pentaborate enrichment is Prior to addition to

~ 60.0 atom percent B-10. SLC tank

HATCH UNIT 1 3.1-20 Amendment No. ~

S/RVs 3.4.3

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.4.3.1 Verify the safety function lift setpoints of the S/RVs In accordance with are as follows: the INSERVICE TESTING Number of Setpoint PROGRAM S/RVs.(Q§iru

11 44-W-1160 -- --+/- J4..a34.8

Following testing, lift settings shall be within +/- 1 %.

HATCH UNIT 1 3.4-6 Amendment No. ~

SLC System 3.1.7

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.1.7.6 Verify each SLC subsystem manual and power In accordance with operated valve in the flow path that is not locked, the Surveillance sealed, or otherwise secured in position is in the Frequency Control correct position, or can be aligned to the correct Program position.

SR 3.1.7.7 Verify each pump develops a flow rate ~ 41.2 gpm In accordance at a discharge pressure~ ~1251 psig. with the INSERVICE TESTING PROGRAM

SR 3.1.7.8 Verify flow through one SLC subsystem from pump In accordance with into reactor pressure vessel. the Surveillance Frequency Control Program

SR 3.1.7.9 Verify all heat traced piping between storage tank In accordance with and pump suction is unblocked. the Surveillance Frequency Control Program

Once within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after pump suction piping temperature is restored within the Region A limits of Figure 3.1. 7-2

SR 3.1.7.10 Verify sodium pentaborate enrichment is Prior to addition to

~ 60.0 atom percent B-10. SLC tank

HATCH UNIT 2 3.1-19 Amendment No. ~

S/RVs 3.4.3

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.4.3.1 Verify the safety function lift setpoints of the S/RVs In accordance with are as follows: the INSERVICE TESTING Number of Setpoint PROGRAM S/RVs.(Q§iru

11 44-W-1160 -- --+/- J4..a34.8

Following testing, lift settings shall be within +/- 1 %.

HATCH UNIT 2 3.4-6 Amendment No. ~

Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint

NL-24-0026

Attachment 2

Revised Technical Specification Pages SLC System 3.1.7

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.1.7.7 Verify each pump develops a flow rate ~ 41.2 gpm In accordance at a discharge pressure~ 1251 psig. with the INSERVICE TESTING PROGRAM

SR 3.1.7.8 Verify flow through one SLC subsystem from pump In accordance with into reactor pressure vessel. the Surveillance Frequency Control Program

SR 3.1.7.9 Verify all heat traced piping between storage tank In accordance with and pump suction is unblocked. the Surveillance Frequency Control Program

Once within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after pump suction piping temperature is restored within the Region A limits of Figure 3.1. 7-2

SR 3.1.7.10 Verify sodium pentaborate enrichment is Prior to addition to

~ 60.0 atom percent B-10. SLC tank

HATCH UNIT 1 3.1-20 Amendment No.

S/RVs 3.4.3

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.4.3.1 Verify the safety function lift setpoints of the S/RVs In accordance with are as follows: the INSERVICE TESTING Number of Setpoint PROGRAM S/RVs.(Q§iru

11 1160 +/- 34.8

Following testing, lift settings shall be within +/- 1 %.

HATCH UNIT 1 3.4-6 Amendment No.

SLC System 3.1.7

SURVEILLANCE REQUIREMENTS (continued)

SURVEILLANCE FREQUENCY

SR 3.1.7.6 Verify each SLC subsystem manual and power In accordance with operated valve in the flow path that is not locked, the Surveillance sealed, or otherwise secured in position is in the Frequency Control correct position, or can be aligned to the correct Program position.

SR 3.1.7.7 Verify each pump develops a flow rate ~ 41.2 gpm In accordance at a discharge pressure~ 1251 psig. with the INSERVICE TESTING PROGRAM

SR 3.1.7.8 Verify flow through one SLC subsystem from pump In accordance with into reactor pressure vessel. the Surveillance Frequency Control Program

SR 3.1.7.9 Verify all heat traced piping between storage tank In accordance with and pump suction is unblocked. the Surveillance Frequency Control Program

Once within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after pump suction piping temperature is restored within the Region A limits of Figure 3.1. 7-2

SR 3.1.7.10 Verify sodium pentaborate enrichment is Prior to addition to

~ 60.0 atom percent B-10. SLC tank

HATCH UNIT 2 3.1-19 Amendment No.

S/RVs 3.4.3

SURVEILLANCE REQUIREMENTS

SURVEILLANCE FREQUENCY

SR 3.4.3.1 Verify the safety function lift setpoints of the S/RVs In accordance with are as follows: the INSERVICE TESTING Number of Setpoint PROGRAM S/RVs.(Q§iru

11 1160 +/- 34.8

Following testing, lift settings shall be within +/- 1 %.

HATCH UNIT 2 3.4-6 Amendment No.

Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint

NL-24-0026

Attachment 3

Proposed Technical Specifications Bases Changes (Mark-up) - For Information Only S/RVs B 3.4.3

BASES (continued)

ACTIONS A.1 and A.2

With 1 SR/V inoperable, no action is required, because an analysis demonstrated that the remaining 10 SR/Vs are capable of providing the necessary overpressure protection. (See Ref. 5.)

With two or more S/RVs inoperable, a transient may result in the violation of the ASME Code limit on reactor pressure. The plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and to MODE 4 within 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />. The allowed Completion Times are reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE SR 3.4.3.1 REQUIREMENTS This Surveillance requires that the S/RVs will open at the pressures assumed in the safety analysis of Reference 45. The demonstration of the S/RV safety lift settings must be performed during shutdown, since this is a bench test, to be done in accordance with the INSERVICE TESTING PROGRAM. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The S/RV setpoint is +/- 3% for OPERABILITY; however, the valves are reset to +/- 1 % during the Surveillance to allow for drift.

The Frequency of this SR is in accordance with the INSERVICE TESTING PROGRAM.

REFERENCES 1. FSAR, Appendix M.

2. Unit 2 FSAR, Chapter 15.
3. NRC No.93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
4. NEDC-32041 P, "Safety Review for Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Updated Safety/Relief Valve Performance Requirements," April 1996.

(continued)

HATCH UNIT 1 B3.4-12 REVISION %

S/RVs B 3.4.3

BASES (continued)

REFERENCES 5. GEH Report NEDC-34126P, Rev. 0, "Edwin I. Hatch Nuclear (continued) Power Plant Units 1 and 2 Safety/Relief Valve Setpoint Increase," March 2024.

HATCH UNIT 1 B 3.4-12a REVISION XXX ECCS - Operating B 3.5.1 BASES

BACKGROUND is provided from the CST and the suppression pool. Pump suction for

( continued) HPCI is normally aligned to the CST source to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or if the suppression pool level is high, an automatic transfer to the suppression pool water source ensures a water supply for continuous operation of the HPCI System. The steam supply to the HPCI turbine is piped from a main steam line upstream of the associated inboard main steam isolation valve.

The HPCI System is designed to provide core cooling for a wide range of reactor pressures ( 150 psig to 448§...1195 psig). Upon receipt of an initiation signal, the HPCI turbine stop valve and turbine control valve open simultaneously and the turbine accelerates to a specified speed. As the HPCI flow increases, the turbine governor valve is automatically adjusted to maintain design flow. Exhaust steam from the HPCI turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the HPCI System during normal operation without injecting water into the RPV.

The ECCS pumps are provided with minimum flow bypass lines, which discharge to the suppression pool. The valves in these lines automatically open to prevent pump damage due to overheating when other discharge line valves are closed. To ensure rapid delivery of water to the RPV and to minimize water hammer effects, all ECCS pump discharge lines are filled with water. The LPCI and CS System discharge lines are kept full of water using a "keep fill" system Uockey pump system). The HPCI System is normally aligned to the CST.

The height of water in the CST is sufficient to maintain the piping full of water up to the first isolation valve. The relative height of the feedwater line connection for HPCI is such that the water in the feedwater lines keeps the remaining portion of the HPCI discharge line full of water. Therefore, HPCI does not require a "keep fill" system.

The ADS (Ref. 4) consists of 7 of the 11 S/RVs. It is designed to provide depressurization of the RCS during a small break LOCA if HPCI fails or is unable to maintain required water level in the RPV.

ADS operation reduces the RPV pressure to within the operating pressure range of the low pressure ECCS subsystems (CS and LPCI), so that these subsystems can provide coolant inventory makeup. Each of the S/RVs used for automatic depressurization is equipped with one air accumulator and associated inlet check valves.

The accumulator provides the pneumatic power to actuate the valves.

(continued)

HATCH UNIT 1 B 3.5-3 REVISION G RCIC System B 3.5.3

B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS), RPV WATER INVENTORY CONTROL, AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM

B 3.5.3 RCIC System

BASES

BACKGROUND The RCIC System is not part of the ECCS; however, the RCIC System is included with the ECCS section because of their similar functions.

The RCIC System is designed to operate either automatically or manually following reactor pressure vessel (RPV) isolation accompanied by a loss of coolant flow from the feedwater system to provide adequate core cooling and control of the RPV water level.

Under these conditions, the High Pressure Coolant Injection (HPCI) and RCIC systems perform similar functions. The RCIC System design requirements ensure that the criteria of Reference 1 are satisfied.

The RCIC System (Ref. 2) consists of a steam driven turbine pump unit, piping, and valves to provide steam to the turbine, as well as piping and valves to transfer water from the suction source to the core via the feedwater system line, where the coolant is distributed within the RPV through the feedwater sparger. Suction piping is provided from the condensate storage tank (CST) and the suppression pool.

Pump suction is normally aligned to the CST to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or the suppression pool level is high, an automatic transfer to the suppression pool water source ensures a water supply for continuous operation of the RCIC System. The steam supply to the turbine is piped from a main steam line upstream of the associated inboard main steam line isolation valve.

The RCIC System is designed to provide core cooling for a wide range of reactor pressures ( 150 psig to 448a-1195 psig). Upon receipt of an initiation signal, the RCIC turbine accelerates to a specified speed. As the RCIC flow increases, the turbine control valve is automatically adjusted to maintain design flow. Exhaust steam from the RCIC turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the RCIC System during normal operation without injecting water into the RPV.

The RCIC pump is provided with a minimum flow bypass line, which discharges to the suppression pool. The valve in this line automatically opens to prevent pump damage due to overheating

(continued)

HATCH UNIT 1 B 3.5-26 REVISION W S/RVs B 3.4.3

BASES

APPLICABILITY from the core until such time that the Residual Heat Removal (RHR)

(continued) System is capable of dissipating the core heat.

In MODE 4, decay heat is low enough for the RHR System to provide adequate cooling, and reactor pressure is low enough that the overpressure limit is unlikely to be approached by assumed operational transients or accidents. In MODE 5, the reactor vessel head is unbolted or removed and the reactor is at atmospheric pressure. The S/RV function is not needed during these conditions.

ACTIONS A.1 and A.2

With 1 S/RV inoperable, no action is required, because an analysis demonstrated that the remaining 10 SR/Vs are capable of providing the necessary overpressure protection. (See Reference 4.)

With two or more S/RVs inoperable, a transient may result in the violation of the ASME Code limit on reactor pressure. The plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and to MODE 4 within 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />. The allowed Completion Times are reasonable, based on operating experience, to reach required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE SR 3.4.3.1 REQUIREMENTS This Surveillance requires that the S/RVs will open at the pressures assumed in the safety analysis of Reference 45. The demonstration of the S/RV safety lift settings must be performed during shutdown, since this is a bench test, to be done in accordance with the INSERVICE TESTING PROGRAM. The lift setting pressure shall correspond to ambient conditions of the valves at nominal operating temperatures and pressures. The S/RV setpoint is+/- 3% for OPERABILITY; however, the valves are reset to +/- 1 % during the Surveillance to allow for drift.

The Frequency of this SR is in accordance with the INSERVICE TESTING PROGRAM.

(continued)

HATCH UNIT 2 B3.4-12 REVISION 400 S/RVs B 3.4.3

BASES (continued)

REFERENCES 1. FSAR, Supplement SA.

2. FSAR, Section 15.
3. NRC No.93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
4. NEDC-32041 P, "Safety Review for Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Updated Safety/Relief Valve Performance Requirements," April 1996.
5. GEH Report NEDC-34126P, Rev. 0, "Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Safety/Relief Valve Setpoint Increase," March 2024.

HATCH UNIT 2 B3.4-13 REVISION ++ I ECCS - Operating B 3.5.1 BASES

BACKGROUND via the feedwater system line, where the coolant is distributed within (continued) the RPV through the feedwater sparger. Suction piping for the system is provided from the CST and the suppression pool. Pump suction for HPCI is normally aligned to the CST source to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or if the suppression pool level is high, an automatic transfer to the suppression pool water source ensures a water supply for continuous operation of the HPCI System. The steam supply to the HPCI turbine is piped from a main steam line upstream of the associated inboard main steam isolation valve.

The HPCI System is designed to provide core cooling for a wide range of reactor pressures (162 psid to ~1210 psid, vessel to pump suction). Upon receipt of an initiation signal, the HPCI turbine stop valve and turbine control valve open simultaneously and the turbine accelerates to a specified speed. As the HPCI flow increases, the turbine governor valve is automatically adjusted to maintain design flow.

Exhaust steam from the HPCI turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the HPCI System during normal operation without injecting water into the RPV.

The ECCS pumps are provided with minimum flow bypass lines, which discharge to the suppression pool. The valves in these lines automatically open to prevent pump damage due to overheating when other discharge line valves are closed. To ensure rapid delivery of water to the RPV and to minimize water hammer effects, all ECCS pump discharge lines are filled with water. The LPCI and CS System discharge lines are kept full of water using a "keep fill" system Uockey pump system). The HPCI System is normally aligned to the CST.

The height of water in the CST is sufficient to maintain the piping full of water up to the first isolation valve. The relative height of the feedwater line connection for HPCI is such that the water in the feedwater lines keeps the remaining portion of the HPCI discharge line full of water. Therefore, HPCI does not require a "keep fill" system.

The ADS (Ref. 4) consists of 7 of the 11 S/RVs. It is designed to provide depressurization of the RCS during a small break LOCA if HPCI fails or is unable to maintain required water level in the RPV.

ADS operation reduces the RPV pressure to within the operating pressure range of the low pressure ECCS subsystems (CS and LPCI), so that these subsystems can provide coolant inventory makeup. Each of the S/RVs used for automatic depressurization is equipped with one air accumulator and associated inlet check valves.

The accumulator provides the pneumatic power to actuate the valves.

(continued)

HATCH UNIT 2 B 3.5-3 REVISION 444 RCIC System B 3.5.3

B 3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS), RPV WATER INVENTORY CONTROL, AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM

B 3.5.3 RCIC System

BASES

BACKGROUND The RCIC System is not part of the ECCS; however, the RCIC System is included with the ECCS section because of their similar functions.

The RCIC System is designed to operate either automatically or manually following reactor pressure vessel (RPV) isolation accompanied by a loss of coolant flow from the feedwater system to provide adequate core cooling and control of the RPV water level.

Under these conditions, the High Pressure Coolant Injection (HPCI) and RCIC systems perform similar functions. The RCIC System design requirements ensure that the criteria of Reference 1 are satisfied.

The RCIC System (Ref. 2) consists of a steam driven turbine pump unit, piping, and valves to provide steam to the turbine, as well as piping and valves to transfer water from the suction source to the core via the feedwater system line, where the coolant is distributed within the RPV through the feedwater sparger. Suction piping is provided from the condensate storage tank (CST) and the suppression pool.

Pump suction is normally aligned to the CST to minimize injection of suppression pool water into the RPV. However, if the CST water supply is low, or the suppression pool level is high, an automatic transfer to the suppression pool water source ensures a water supply for continuous operation of the RCIC System. The steam supply to the turbine is piped from a main steam line upstream of the associated inboard main steam line isolation valve.

The RCIC System is designed to provide core cooling for a wide range of reactor pressures ( 150 psig to 4--=t-a4-1195 psig). Upon receipt of an initiation signal, the RCIC turbine accelerates to a specified speed. As the RCIC flow increases, the turbine control valve is automatically adjusted to maintain design flow. Exhaust steam from the RCIC turbine is discharged to the suppression pool. A full flow test line is provided to route water from and to the CST to allow testing of the RCIC System during normal operation without injecting water into the RPV.

The RCIC pump is provided with a minimum flow bypass line, which discharges to the suppression pool. The valve in this line automatically opens to prevent pump damage due to overheating

(continued)

HATCH UNIT 2 B 3.5-28 REVISION ~

Edwin I. Hatch Nuclear Plant - Units 1 and 2 Application to Revise Technical Specifications Surveillance Requirements to Increase Safety/Relief Valves Setpoint

NL-24-0026

Attachment 5

Non-Proprietary GEH Report NEDO-34126, Revision 0

  • HITACHI GIE Hita,chi Nuclear Energy

NEDO-34126 Revision 0 March 2024

Non-Proprietary Information

Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Safety/Relief Valve Setpoint Increase

Copyright © 2024 GE-Hitachi Nuclear Energy Americas LLC All Rights Resen;ed

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information

INFORMATION NOTICE This is a non-proprietary version of the document NEDC-34126P, Revision 0, which has the proprietary information removed. Portions of the document that have been removed are indicated by an open and closed bracket as shown here (( )).

IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT Please Read Carefully The design, engineering, and other information contained in this document are in accordance with the contract between Southern Nuclear Company and GEH, and nothing contained in this document shall be construed as changing the contract. The use of this information by anyone for any purpose other than that for which it is intended, is not authorized ; and with respect to any unauthorized use, GEH makes no representation or warranty, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document.

11

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

Revision Summary

Revision Required Changes to Achieve Revision 0 Initial release.

111

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

Table of Contents

Section Page

1. 0 Introduction......................................................................................................................... 1

1.1 Purpose............................................................................................................................ 1 2.0 Analysis Approach.............................................................................................................. 2 2.1 Discussion of Analyses.................................................................................................... 2 3.0 TRACG LOCA Evaluation................................................................................................. 3 4.0 High Pressure System Performance....................................................................................4 4.1 Effect of Higher SRV Setpoints on HPCI and RCIC Performance................................. 4 4.2 HPCI and RCIC Performance for Loss-of-Feedwater Events......................................... 5 4.3 HPCI Performance for LOCA Events............................................................................. 5 5.0 Containment Evaluation...................................................................................................... 6 5.1 Objective and Scope........................................................................................................ 6 5.2 Design Inputs and Assumptions...................................................................................... 6 5.3 Analysis Method.............................................................................................................. 6 5.4 Analysis Results.............................................................................................................. 6 5.4.1 ATWS.......................................................................................................................... 6 5.4.2 DBA LOCA................................................................................................................. 7 5.4.3 SSLB for EQ................................................................................................................ 7 5.4.4 Appendix R.................................................................................................................. 7 5.4.5 SBO............................................................................................................................. 8 6.0 ATWS Mitigation Capability............................................................................................ 12 6.1 Objective and Scope...................................................................................................... 12 6.2 Design Inputs and Assumptions.................................................................................... 12 6.3 Analysis Method............................................................................................................ 12 6.4 Analysis Results............................................................................................................ 13 6.4.1 Vessel Pressure.......................................................................................................... 13 6.4.2 Suppression Pool Temperature and Containment Pressure....................................... 13 6.4.3 PCT and Cladding Oxidation.................................................................................... 13 6.4.4 Additional ATWS Results......................................................................................... 13 6.4.5 Summary of Results................................................................................................... 13

lV

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

Table of Contents

Section Page

7. 0 Conclusions....................................................................................................................... 16
8. 0 References......................................................................................................................... 1 7

V

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

List of Tables

Table Page

Table 5-1 ATWS Input Comparison....................................................................................................... 9 Table 5-2 ATWS Containment Results (MSIVC-EOC)....................................................................... 10 Table 5-3 SSLB Containment Results.................................................................................................. 10 Table 6-1 Summary of Additional ATWS Analysis Results................................................................ 15 Table 6-2 ATWS Analysis Results and Criteria................................................................................... 15

List of Figures

Figure Page

Figure 5-1 SSLB DW Temperature for EQ.......................................................................................... 11

Vl

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

Acronyms and Abbreviations

Short Form Description

ANS American Nuclear Society

ASME American Society of Mechanical Engineers

ATWS Anticipated Transient Without Scram

BOC Beginning of Cycle

CST Condensate Storage Tank

DBA Design Basis Accident

DIR Design Input Request

DW Dry Well

ECCS Emergency Core Cooling System

EHC Electro-Hydraulic Control

EOC End of Cycle

EQ Equipment Qualification

GEH GE-Hitachi Nuclear Energy Americas LLC

HCTL Heat Capacity Temperature Limits

HNP Hatch Nuclear Plant

HPCI High Pressure Coolant Injection

LHGR Linear Heat Generation Rate

LLS Low-Low-Set

LOCA Loss-of-Coolant Accident

MSIV Main Steam Isolation Valve

MSIVC Main Steam Isolation Valve Closure

NFI New Fuel Introduction

NPSH Net Positive Suction Head

NRC Nuclear Regulatory Commission

PCT Peak Cladding Temperature

Vll

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

Short Form Description

PRFO Pressure Regulator Failure Open

ps1g Pounds per square inch gauge

PUSAR Power Uprate Safety Analysis Report

RCIC Reactor Core Isolation Cooling

rpm Revolutions per Minute

RPV Reactor Pressure Vessel

SBO Station Black Out

SLCS Standby Liquid Control System

SRV Safety / Relief Valve

SSLB Small Steam Line Break

Ul Unit 1

U2 Unit2

WW Wet Well

vm

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information

1.0 Introduction 1.1 Purpose The purpose of this evaluation is to address an increase of the safety relief valve (SRV) opening setpoint nominal value from 1150 psig to 1160 psig to provide operational margin and reduce potential leakage. Upon successful evaluation, the Hatch Nuclear Plant (HNP) can use this document to support a license amendment request for increasing the nominal setpoint.

1

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information

2.0 Analysis Approach 2.1 Discussion of Analyses In order to address the increase of the SRV opemng setpoints, the following evaluations are required.

  • Loss of Coolant Accident (LOCA)
  • High Pressure System Performance
  • Containment Performance

Upon successfully addressing these areas for the new setpoint, HNP can use this document to support a license amendment request for increasing the nominal setpoint.

2

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information

3.0 TRACG LOCA Evaluation Increasing the SRV opening setpoint nominal value from 1150 psig to 1160 psig was analyzed for the HNP Emergency Core Cooling System (ECCS) Loss of Coolant Accident (LOCA) to determine its effect on the analysis of record in Reference 1. The same method as listed in Reference 1 was followed for this analysis with the input change documented in Reference 2.

The analysis was done by selecting representative limiting break locations in Reference 1 to determine the effect of increasing the SRV opening setpoint by running the break spectra for those break locations. ((

)) The licensing basis results reported in Reference 1 are not affected by increasing the SRV opening setpoint nominal value from 1150 psig to 1160 psig and, therefore, remain valid for HNP.

3

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information

4.0 High Pressure System Performance High Pressure Coolant Injection (HPCI) and Reactor Core Isolation Cooling (RCIC) performance were evaluated for SRV setpoint drift to the upper limit value of 1195 psig.

Operation at the upper limit provides a greater challenge to the HPCI and RCIC piping, pumps,

and turbines than SRV s at the new nominal setpoints. These evaluations assure satisfaction of performance requirements for operation at both the upper limit and at the new nominal setpoints because operation at the upper limit bounds operation at the proposed nominal setpoints.

Both HPCI and RCIC systems are important in mitigating actual reactor vessel isolation and loss of feedwater events, even though HPCI and RCIC systems may not be modelled explicitly in design-basis LOCA analyses.

4.1 Effect of Higher SRV Setpoints on HPCI and RCIC Performance Analyses indicate that operation at reactor pressures up to the upper limit is within design limits for system piping, pumps, and turbines for the HPCI and RCIC systems. Southern Nuclear Operating Company should verify compliance with Nuclear Regulatory Commission (NRC)

Generic Letter 89-10 (Reference 3) requirements for valves in each of these systems. The HPCI and RCIC pumps are capable of delivering rated system flow with vessel pressures at the upper limit value of 1195 psig. Based on the HPCI and RCIC pump performance curves, the turbine speed required to deliver rated flow for each of these systems with reactor pressure at the upper limit are (( )).

At each SRV opening pressure, system pressure greater than rated is required to deliver rated system flow during steady-state operation. Therefore, the margins to the 125% mechanical overspeed trip for the HPCI and RCIC turbines are reduced. Additionally, the high vessel pressures have the potential to reduce the margin to the overspeed trips at the initial speed peak during the startup of the HPCI and RCIC systems. During a HPCI and RCIC start, the turbine governor valves are momentarily full open and therefore, the rate at which the speed increases is temporarily uncontrolled. Eventually, when hydraulic pressures enable the turbine control systems to take over the transient, the governor valve closes to control turbine speeds at the demanded flows. When a steady-state condition is reached, the final turbine speed is that indicated above, which is within the turbine speed limits of each system.

The potential concern during the startup transient is system availability. If the HPCI and RCIC turbines do trip during the startup, manual actions are required to reset the turbine trips. For HPCI, the turbine can be reset in the control room. For RCIC, the turbine must be reset locally.

The above considerations assume that HPCI and RCIC would initiate and operate when the reactor pressure is conservatively at the upper limit. The conclusions in the Low Low Set (LLS) discussion documented in Reference 5 remain unchanged as noted below. HPCI and RCIC will perform satisfactorily at a higher speed.

Regarding LLS valve operation, the increased SRV opening pressures will only affect the timing of the first SRV actuation. Once the logic is initiated, the opening and closing setpoints of pre-selected SRVs are automatically reset to lower values by the LLS logic. This logic is unaffected 4

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

by the setpoint tolerance change because the logic acts on the relief mode of the SRV actuation and not on the safety mode of operation.

4.2 HPCI and RCIC Performance for Loss-of-Feedwater Events For loss-of-feedwater events that do not isolate the reactor, vessel pressure is maintained by the turbine bypass valves at the Electro-Hydraulic Control (EHC) pressure setpoint. With vessel pressures at the EHC pressure setpoint which is lower than the SRV setpoints, HPCI and RCIC operation is not affected by an increase in SRV opening pressures. For MSIV closure events, the SRVs will actuate at the upper limit prior to the reactor water level reaching Level 2. The subsequent SRV actuations will be controlled by the LLS functions. Therefore, vessel pressures will be within the HPCI and RCIC design pressure range at the time of HPCI or RCIC initiation.

4.3 HPCI Performance for LOCA Events The conclusions in the Low Low Set (LLS) discussion documented in Reference 5 remam unchanged as noted below. HPCI and RCIC will perform satisfactorily at a higher speed.

Regarding LLS valve operation, the increased SRV opening pressures will only affect the timing of the first SRV actuation. Once the logic is initiated, the opening and closing setpoints of pre-selected SRVs are automatically reset to lower values by the LLS logic. This logic is unaffected by the setpoint tolerance change because the logic acts on the relief mode of the SRV actuation and not on the safety mode of operation.

((

))

The discussions above demonstrate that SRV setpoint drift up to the upper limit has an insignificant effect on HPCI and RCIC performance.

5

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information

5.0 Containment Evaluation 5.1 Objective and Scope The purpose is to assess the effect of increasing HNP Safety Relief Valve (SRV) setpoint from 1150 psig to 1160 psig on the containment-related evaluations, which include the following.

1. Anticipated Transients Without Scram (ATWS)
2. Design Basis Accident (DBA) Loss-of-Coolant Accident (LOCA)
3. Small Steam Line Break (SSLB) for Equipment Qualification (EQ)
4. Appendix R
5. Station Blackout (SBO) 5.2 Design Inputs and Assumptions The design inputs that are necessary to perform ATWS, DBA LOCA, SSLB for EQ, Appendix R and SBO are defined in Reference 2.

Consistent with Reference 7, ATWS analysis is separately performed for HNP Unit 1 and Unit 2 because the two units have different heat balance parameters (e.g., core flow, steam flow and feedwater temperature) and heat capacity temperature limit (HCTL) curves. The same inputs and assumptions as Reference 7 are applicable for SRV setpoint increase with the input clarification in Table 5-1. Consistent with Reference 7, the same Main Steam Isolation Valve Closure (MSIVC) event with the exposure of End of Cycle (EOC) is analyzed. The ODYN / STEMP analyses in Reference 6 provides the inputs for ATWS containment analysis based on SHEX.

The analyses for DBA LOCA and Appendix R in Reference 8 are also performed separately for HNP Units 1 and 2. The same inputs and assumptions as Reference 8 are applicable for SRV setpoint increase.

In Reference 8, SSLB for EQ and SBO analysis are performed based on the combined limiting input parameters for HNP Units 1 and 2. The same inputs and assumptions as Reference 8 are applicable for SRV setpoint increase.

5.3 Analysis Method Consistent with Reference 7, the same ODYN, STEMP and SHEX methods are used for ATWS analysis. Consistent with Reference 8, the same SHEX method is used for SSLB for EQ analyses. Engineering evaluation is used for assessing the effects on DBA LOCA, Appendix R and SBO.

5.4 Analysis Results 5.4.1 ATWS The containment responses for ATWS are summarized in Table 5-2.

((

)) As shown in Table 5-2, there is no WW pressure change due to SRV setpoint increase to 1160 psig while the suppression pool temperatures are

6

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

reduced by l.3 °F and l.5 °F for Unit 1 and Unit 2, respectively. Therefore, the existing ATWS containment analysis based on SHEX in Reference 7 remains applicable for SRV setpoint increase from 1150 psig to 1160 psig.

5.4.2 DBA LOCA For DBA LOCA, ((

)).

Therefore, long-term DBA LOCA analysis in Reference 8 is not affected by SRV setpoint increase from 1150 to 1160 psig.

For short-term LOCA load, allowing for the 3% drift tolerance, the new setpoint (1160 psig +

3% = 1194.8 psig) is still lower than the Upper Limit value (1195 psig) that is used in the analysis in Reference 5. Therefore, SRV setpoint increase to 1160 psig has no effect on the short-term LOCA load in Reference 5.

5.4.3 SSLB for EQ The peak dry well (DW) temperature for the SSLB EQ cases are summarized in Table 5-3. The peak values from Reference 8 are also included for purpose of comparison. As seen in the table,

the changes on the peak values are insignificant (approximately -1 ° F). The changes on the DW temperature during the entire event are also insignificant ( approximately + 1 °F / -1 °F).

The DW temperature time histories and EQ envelope are plotted in Figure 5-1. The similar DW temperature responses as Reference 8 Figure D-1 are observed. Therefore, SRV setpoint increase from 1150 psig to 1160 psig has negligible effect on HNP Units 1 and 2 EQ profile.

5.4.4 Appendix R It should be noted that an NRC safety evaluation was issued that transitioned the existing fire protection program (Appendix R) to a risk-informed, performance-based program based on NFPA 805, in accordance with 10 CFR 50.48(c).

5.4.4.1 RPV Inventory Response Appendix R is a RPV isolation and non-break event, in which SRV is actuated and cycled after MSIVC occurs. Increasing the SRV setpoints to 1160 psig will ((

)) in comparison to the case with SRVs at the current setpoint of 1150 psig. However, the change ((

)) for the cases without spurious SRV operation (i.e., Cases 1 through 3 in the Hatch power uprate safety analysis report (PUSAR) in Reference 10) with the following reasons.

1) ((

)) by SRV setpoint increase to 1160 psig.

2) After first SRV actuation at 1160 psig, subsequent SRV actuations are on low-low-set logic, which remains unaffected by SRV setpoint increase to 1160 psig.

7

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

For Cases 4 and 5 in the Hatch PUSAR, the SRV setpoint increase to 1160 psig ((

)) because of spurious SRV operation at event initiation (i.e., no SRV actuation at 1160 psig).

5.4.4.2 Containment Response

((

)) As discussed in Section 5.4.4.1, ((

)) for Cases 1 through 3 (Hatch PUSAR) without spurious SRV operation. Thus,

the effect on the suppression pool temperature response due to SRV setpoint increase 1s negligible, and in tum, the effect on containment temperature and pressure are negligible.

As discussed in Section 5.4.4.1, the SRV setpoint increase ((

)) for Cases 4 and 5 (Hatch PUSAR) because of spurious SRV operation at event initiation. Therefore, the containment response is not affected.

It is concluded that the Appendix R containment response in Reference 8 remains applicable for SRV setpoint increase to 1160 psig.

5.4.5 SBO SBO is also a RPV isolation and non-break event similar to Appendix R. For SBO, there is no SRV spurious operation. After first actuation at 1160 psig, subsequent SRV actuations are on low-low-set logic to maintain vessel pressure until the end of 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> SBO coping period. The applicable discussion and conclusion for Appendix R in Section 5.4.4 are also applicable for SBO.

8

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

Table 5-1 ATWS Input Comparison

Parameters ATWS-SHEX ATWS-STEMP Initial Suppression Pool Volume (ft3 ) 86420(1) 85112 (Ul)C2) 86420 (U2)C2)

86652 (Ul )C 3) 88045 (U2)C3)

Initial DW and WW Airspace Volume (ft3 ) 262110 (Ul) 262110 (Ul) 259066 (U2) 259066 (U2)

Initial Condensate Storage Tank (CST) (lbm)C4 ) 4125000 3875755 (Ul) 3471968 (U2)

Initial Condensate Storage Tank (CST) (ft3) 66845(5 ) 62803 (Ul) 56260 (U2)

Reference 7 9 (1) ATWS is a special event in which nominal assumptions can be used such as 1979 ANS 5.1 nominal decay heat that is used in Reference 7. Consistent with Reference 7, the minimum suppression pool volume for Unit 2 is used as nominal value for both units, which is still conservative (i.e., 86420 ft 3 is less than 86652 ft 3 (Ul) and 88045 ft 3 (U2)).

(2) Minimum volume at low water level.

(3) Nominal volume that is based on average of maximum volume and minimum volume.

(4) Based on 14.7 psia and 120°F water temperature.

(5) For ATWS event, the CST inventory usage at the end of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> is approximately 2%.

Therefore, use of 66845 ft 3 in the analysis has no effect on the values that are reported in Table 5-2.

9

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

Table 5-2 ATWS Containment Results (MSIVC-EOC)

Parameter HNP Unit 1 HNP Unit 2

Reference 7 SRV Setpoint Reference 7 SRV Setpoint

Peak Wetwell Airspace Pressure 4.8 4.8 9.0 8.9 (psig)

Peak Suppression 213.6@ 212.3@ 215.3@ 213.8@

Pool Temperature 2875 sec 2869 sec 2911 sec 2931 sec (OF)

W etwell Pressure When Peak Suppression Pool 2.4 2.4 5.3 5.3 Temperature Occurs (psig)

Table 5-3 SSLB Containment Results

PeakDW Time of Peak PeakDW Time of Peak Plant Case Temperature Temperature Temperature Temperature Airspace DW Airspace Shell DW Shell

(OF) (sec) (OF) (sec)

Reference 8 0.01 ft 2 break 289 1800 255 1980 HNP 1 &2 0.10 ft 2 break 324 595 271 600 0.50 ft 2 break 328 276 276 579 SRV Setpoint Increase 0.01 ft 2 break 289 1770 255 1975 HNP 1 &2 0.10 ft 2 break 324 595 270 597 0.50 ft 2 break 327 276 276 578

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

((

))

Figure 5-1 SSLB DW Temperature for EQ 1

1 For 0.5 ft2 break, one case up to 1 day and one case up to 180 days are performed.

11

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information

6.0 ATWS Mitigation Capability 6.1 Objective and Scope The purpose of this evaluation is to assess the effect of increasing HNP Safety Relief Valve (SRV) Setpoint from 1150 psig to 1160 psig on HNP Anticipated Transients Without Scram (ATWS) transients. The assessment includes any potential effect of HNP SRV setpoint increase on key ATWS parameters in comparison with the corresponding ATWS acceptance criteria for limiting ATWS events.

6.2 Design Inputs and Assumptions The design inputs that are necessary to perform the A TWS safety analysis are defined in the customer approved Design Input Request (DIR) (Reference 9). Because HNP Unit 1 and Unit 2 have unique heat balance parameters ((

)) as shown in Reference 9, the ATWS evaluations are performed based on a combination of operating conditions from Units 1 and 2 that are considered bounding for ATWS (unlike the ATWS containment results shown in Section 5.4 where there are separate analyses for both units). Therefore, the analysis results are applicable to Units 1 and 2.

The assumptions used in the HNP GNF3 New Fuel Introduction (NFI) ATWS analysis (Reference 11) based on assumptions allowed in ATWS analysis procedures if related are applicable to this analysis. No additional assumptions are made in this analysis.

6.3 Analysis Method The limiting licensing basis ATWS events are analyzed to confirm the A TWS responses to the increase of SRV opening setpoint from 1150 psig to 1160 psig meet the corresponding ATWS acceptance criteria listed below. The limiting ATWS events of Main Steam Isolation Valve Closure (MSIVC) and Pressure Regulator Failure Open - Maximum Steam Demand (PRFO) are analyzed at Beginning of Cycle (BOC) and End of Cycle (EOC) conditions.

The limiting ATWS events are evaluated at rated power to demonstrate compliance to the following.

1. ASME Service Level C Pressure Limit (1500 psig)
2. Containment Pressure Design Limit (( ))
3. Suppression Pool Temperature Design Limit ((

))

4. 10CFR50.46 Peak Cladding Temperature (PCT) Limit (<2200 °F)
5. 10CFR50.46 Fuel Local Cladding Oxidation Thickness Limit (< 17%)

The effects on peak vessel pressure, peak suppression pool temperature, and containment pressure are explicitly analyzed in the ATWS analysis. The PCT and fuel local cladding oxidation are justified for compliance with the corresponding acceptance criteria based on the large margins and historical PCT results for other plants as discussed in Reference 4.

GNF3 fuel design cycle-independent analyses show that an ODYN peak HNP NPSH suppression pool temperature limit of 217.0 °F for both Units will ensure that the SHEX results of Reference 7 remain valid.

12

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

6.4 Analysis Results 6.4.1 Vessel Pressure

((

))

6.4.2 Suppression Pool Temperature and Containment Pressure

((

)) Furthermore, large margins exist relative to the suppression pool temperature and containment pressure design limits. See Table 6-2 for associated margins.

6.4.3 PCT and Cladding Oxidation The increase in SRV setpoints has a no effect on the peak cladding temperature result. ((

)) Furthermore, significant margin exists relative to the PCT limit per Reference 4. There are no cladding oxidation thickness concerns ((

)). Therefore, the PCT and local cladding oxidation thickness acceptance criteria are still met for the increase of SRV opening setpoint from 1150 psig to 1160 psig for HNP Units 1 and 2.

6.4.4 Additional A TWS Results Table 6-1 provides an additional summary of detailed ATWS results.

6.4.5 Summary of Results The limiting ATWS analysis results in comparison with the corresponding acceptance criteria are shown in Table 6-2. Based on the analysis results, all ATWS acceptance criteria are met for the increase of SRV opening setpoint from 1150 psig to 1160 psig for HNP Units 1 and 2. The ATWS analysis results are applicable to mixed cores of GNF2 and GNF3, as well as full cores of GNF3.

Therefore, the increase of HNP SRV setpoint from 1150 psig to 1160 psig is acceptable regarding ATWS acceptance criteria compliance.

13

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

The limiting peak pressure ((

)) is 1218 psia from MSIVC at BOC case with SLCS initiation time of 130.6 sec. These results are provided to support further assessment of the SLCS discharge pressure.

14

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NED0-34126 Revision 0 Non-Proprietary Information

Table 6-1 Summary of Additional ATWS Analysis Results

Initiating Exposure Neutron Peak Heat Dome Pressure Peak Peak PeakRPV Peak Pool Event Flux(%) Flux(%) Pressure (psig) Temperature (psig) {°F)

BOC 350 159 1438 ((

PRPO EOC 426 164 1410

BOC 252 140 1412 MSIVC EOC 300 146 1402 ))

Table 6-2 ATWS Analysis Results and Criteria

GNF3 NFI Acceptance Item Parameter Unit Result 1 Result 2 Limit Criteria Met?

1 Peak Vessel Bottom ps1g (( 1500 Yes Pressure 2 Peak Suppression Pool op 217 Yes Temperature

3 Peak Containment ps1g 56 Yes Pressure 4 Peak Cladding op 2200 Yes Temperature

5 Cladding Oxidation % )) 17 Yes Thickness

1. (( ))
2. (( ))

15

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information

7.0 Conclusions As was noted above, the following evaluations were performed to address the increase of the SRV opening setpoints.

  • Loss of Coolant Accident (LOCA)
  • High Pressure System Performance
  • Containment Performance

All evaluations have shown that the increased setpoint of 1160 psig yield adequate performance results. Given this information, HNP can use this document to support a license amendment request for increasing the nominal setpoint.

It should be noted that Southern Nuclear Operating Company should verify compliance with NRC Generic Letter 89-10 (Reference 3) requirements for valves in HPCI and RCIC.

16

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified NEDO-34126 Revision 0 Non-Proprietary Information

8.0 References

1. GEH Report 004N6160 Revision 1, GE Hitachi Nuclear Energy, "Edwin I. Hatch Nuclear Plant Units 1 and 2, TRACG-LOCA Loss-of-Coolant Accident Analysis," October 2019.
2. SNC Letter NMP-ES-050-F0l, RER Number : SNC1512291 Sequence No.: 2, Letter from David Sanford (SNC) to Jarrod Miller (GNF-A), "Hatch SRV Setpoint Increase - DBR-0075058 and DBR-0075139," July 28, 2023.
3. NRC GL 89-10, "Safety-Related Motor Operated Valve Testing and Surveillance,"

June 28, 1989.

4. NEDC-33879P, Revision 2, "GNF3 Generic Compliance with NEDE-24011-P-A (GESTAR II)," March 2018.
5. NEDC-32041P, Revision 2, GE Nuclear Energy, "Safety Review for Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Updated Safety Relief Valve Performance Requirements," April 1996.
6. GEH Report 008N0745, Revision 0, "Hatch Nuclear Plant SRV Setpoint Increase -ATWS Analysis," November 2023.
7. GEH Report 0000-0106-1182, Revision 0, "Edwin I. Hatch Units 1 and 2 Ultimate Heat Sink Temperature Increase to 97 °F Impact on Anticipated Transients Without Scram (ATWS) Event Containment Analysis," August 2011.
8. GEH Report 004N8577, Revision 0, "Edwin I. Hatch Nuclear Power Plant Units 1 and 2 Containment Analyses for GNF3 New Fuel Introduction," November 2018.
9. SNC Letter NMP-ES-050-F0l, Letter from David Sanford (SNC) to Jarrod Miller (GEH),

"Hatch SRV Setpoint Increase - DBR-0075302," August 7, 2023.

10. NEDC-32749P, Revision 0, "Extended Power Uprate Safety Analysis Report for E.I. Hatch Plant Units 1 and 2," July 1997.
11. 004N6886, Revision 0, "GNF3 Fuel Design Cycle-Independent Analyses for Edwin I.

Hatch Nuclear Plant Units 1 and 2," November 2018.

17

NEDO-34126 Rev 0 Public Release Date Mar 21, 2024 Status Verified