Regulatory Guide 1.60: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
Line 1: Line 1:
{{Adams
{{Adams
| number = ML13350A358
| number = ML003740207
| issue date = 10/31/1973
| issue date = 12/31/1973
| title = Design Response Spectra for Seismic Design of Nuclear Power Plants
| title = Design Response Spectra for Seismic Design of Nuclear Power Plants
| author name =  
| author name =  
| author affiliation = US Atomic Energy Commission (AEC)
| author affiliation = NRC/RES
| addressee name =  
| addressee name =  
| addressee affiliation =  
| addressee affiliation =  
Line 10: Line 10:
| license number =  
| license number =  
| contact person =  
| contact person =  
| document report number = RG-1.060
| document report number = RG-1.60, Rev 1
| document type = Regulatory Guide
| document type = Regulatory Guide
| page count = 6
| page count = 7
}}
}}
{{#Wiki_filter:t*lAGy.
{{#Wiki_filter:Revssion I
                                                                                                                                                        December 1973 U.S. ATOMIC ENERGY COMMISSION
                                    REGULATORY                                                                                          GUIDE
                                    DIRECTORATE OF REGULATORY STANDARDS
                                                                        REGULATORY GUIDE 1.60
                                            DESIGN RESPONSE SPECTRA FOR SEISMIC DESIGN
                                                                  OF NUCLEAR POWER PLANTS


C0
==A. INTRODUCTION==
                            \oU.S.               ATOMIC ENERGY. COMMISSION:_.;:::
extensive study has been described by Newmark and filurne in references 1, 2, and 3. After reviewing these Criterion 2, "Design Bases for Protection Against                                        referenced documents, the AEC Regulatory staff has t                                                              determined as acceptable the following procedure for Natural Phenomena ' of Appendix A. "General Design defining the Design Response Spectta representing the Criteria for Nuclear Power Plants," to 10 CFR Part 50.                                           effects of the vibratory motion of the SSE, 1/2 the SSE,
                                                                                                                                                          Ociober 1973
"Uicensing of Production and Utilization Facilities:"                                            and the Operating Basis Earthquake (OBE) on sites requires, in part, that nuclear power plant structures,                                          underlain by either rock or soil deposits and covering all systems, and components important to safety be                                                  frequencies of interest. However, for unusually soft sites, designed to withstand the effects of earthquakes.                                                modification to this procedure will be required.
                ; ', rs              : DIRECTORATE OF REGULATO RY STANDARDS
                                                                                                                                              WIDE
                                                                        REGULATORY GUIDE 1.60
                                               DESIGN RESPONSE.SPECTRA FOR SEISMIC.DESIGN
                                                                  OF NUCLEAR POWER PLANTS
                SA..


==A. INTRODUCTION==
Proptsed Appendix A, "Seismic and Geologic Siting Criteria." to 10 CFR Part 100, "Reactor Site Criteria,"                                                In this procedure, the configurations of the would require, in part, that the Safe Shutdown                                                    horizontal component Design Response Spectra for each Eartlhquake (SSE) be defined by response spectra                                                  of the two mutually perpendicular horizontal axes are co, responding to the expected maximum ground shown in Figure I of this guide. These shapes agree with aiccelcrations. This guide describes a procedure those developed by Newmark, Blume. and Kapur in acceptable to the AEC Regulatory staff for defining response spectra for the seismic design of nuclear power                                          ,eference 1. In Figure I the base diagram consists of three parts: the bottom line on the left part represents plants. The Adviory Committee on Reactor Safeguards the maximum ground displacement, the bottom line on has been consulted concerning this guide and has concurred in the regulatory position.                                                             the right part represents the maximum acceleration, and the middle part depends on the maximum velocit
.extensive study.'has hlcn described by Newmiaik and Blunie in re!ferences I. 2, .and                  After ieviewing th'se Criterion 2, "Design Bases for Protection Against                              reterenced documents, tilt AE( RegtIu10toiy 'staff has Natural Phenoniena," Of 'Appendix A, "General Design                                  determined as acceptahle tile fI llowicni procedilre 1or'
          Criteria for Nuclear.Power Plants." to 10 CFR Part 50.                                defining the Design RIeslponse Spectra representing the L'.'icensing of Production and Utilization Facilities."                            effects of the vibratory 111i00 Otf thi SS[, 1./2 the SS!.',
          requires, in part, that nuclear power plant structures,                              and the Operating Basis Earthquake (0111) on sites syYStems, .,and components important to safety b'h                                    underlain by either rock or sOil deIposits d:lCoVerfinig All designed to -withstand. the' effects of earthquakes.                                 frequencies of inter.st. However, for uliustially soft site.


Proposed Appendix A, "Seistnic and Geologic Siting                                  .modification to this procedure will.he requited.
====y. The ====


Criteria,'"to :10 CFR Part .100, "Reactor Site Crinteria,i.
==B. DISCUSSION==
horizontal component Design Response Spectra in Figure I of this guide correspond to a maximum In order to approximate the intensity and thereby                                          horizontal rou'nd accehiration of 1.0 g. The maximum ground displacement is taken proportional to the estimate the maximum ground acceleration' of the maximum ground acceleration, and is set at 36 inches expected strongest ground motion (SSE) for a given site,                                          for a ground acceleration of 1.0 g. The numerical values proposed Appendix A to 10 CFR Part 100 specifies a of design displacements, velocities, and accelerations for number of required investigations. It does not. however,                                         the horizontal component Design Response Spectra are give a method for defining 1he response spectral obtained by multiplying the corresponding values of the coriesponding to the expected maximum ground                                                      maximum ground displacement and acceleration by the acceleralion.


*        Would require,          in     part,    that the Safe Shutdown                              In this procedure,
factors given in Table I of this guide. The displacement region lines of the Design Response Spectra are parallel Tit recorded ground accelerations and response                                            to the maximum ground displacement line and are spectlra of past earthquakes prwvide a basis for the                                              shown on the left of Figure I. The velocity region lines ralional designi of structures to resist earthquakes. The slope downward from a frequency of 0.25 cp' (control Design Response Spectra.' specified for design purposes,                                         point D) to a frequency of 2.5 cps (control point C) and can he developed statistically fromn response spectra of                                          are shown at the top. The remaining two sets of lines past strong-notion earthquakes (see reference I). An                                              between the frequencies of 2.5 cps and 33 cps (control I Sce deftintions at the end of the guide.                                                       point A). with a break at a frequency of 9 cps (control U.SAJEC REGULATORY GUIDES                                            Carimis d11rd of Published  guindesmamy,be obtained by request ..indictin Ia the US. Atcn* Energy Commission. WVahingR          o.
* the .configurali6ios of tihe Earthquake (SSE) be defined by response spectra                                        horizonial. component Design Response Spectra i'm each correspoanding 'to the expected maximum ground                                       of the two: mutually perpendicular honizontal axes are
  , acc:elerations..,This guide. describes a. piocedure                                        shown in Figure 1. of this guide. These sh lpe% agree wilh
    ...acceptable: to the 'AEC ARegulatory staff- for defining
                                                                                              'th*se developed by', Newmnz'k, Blun


====e. and Kapur in====
the diviti0011 D..    2045.
1        kplants.


Sespqnsei spectra for the seismic design of nuclear power The Adviory Committee on Reactor Safeguards bas inconsulted been concurred          the regulatoryconcerning position.this guide and has reference 1. In Figure 1 tihe ase diagram consists of three parts: the bottom. line:on he left part represents the maximum ground displacement, the bottom line on the right part represents, the maximum aceleration, and ithe middle part depends. on the maximum velocit
Itefatory      Guides we iued K
nutod eco'dht t0 the ASCnalhods      ~ to describe
                                              ~
                                            IM~tY    an~d
                                                    ~~ ~
                                                    etef safo acceptable            ~    ~  to the *puc etlebleilgcetl, So @mks mmtes            ~
                                                                              e-ipatof  ~      £,Attenon:
                                                                                                  ~ othsACfsito
                                                                                              ~ Iiomnxiini--
                                                                                                                          Regulatory Suteri


====y. Thle====
====e. Co tIIwyC====
                                    '
                                                                                                              ~ ~ of~~~ecn~e~
                                                                                                        ~ irector          ed wowur              ~e~o.Whtn ew    ts end tsugostiont2 for end should be tan? to the..sacmrtevy wn    t utions. to delieate technicue ubed by the staff m                      of the thm CoinoswAt eZlustmV asedhic Problem or Postulted ccontt. o to mOmds gusdeaw to                            Atote ntm . Chief. Public IN    MP Sitff.


==B. DISCUSSION==
-Iocantt. RegutOrV Guido owe not sublttuls fr              regultions and cowp4m with themi :.not Moaweed. Methods, and Solutins~ different from those matout at               The guidnd we aIssed on the f61otlgoaptn brood dit.,.orn he.is tn            w11 be  cemeptle  tIf    they  t cd    Ibais flo  ths fiditip    equiertO so INeismuwn of sonft~hunce Of 0 p0.915t of be~a             by the Cormnkis.on                    I. P Power      tt Asissa                            Products
horizontal component Design Response Spectra in Figure I of tids guide correspond' to a 'maximuin in o.rder. to approximate the intensity and thereby                            horiznital ground acceleration of 1.0 g. "rlie maxintum estimate, the maximum :.gr6tund' acceleriationo Of the:                                ,ground displacement. is. uiken.'propportional to the
                                                                                                  2. Researh eilM Test Iteecto.             7. Tru..mtel"nw
        .expcted strongesýt..ground 'm'tion,(SsE) for a given site,                           maximum ground accekeration. and is'set.at 36 inches
                                                                                                  3. Puet and Mevrak Faecilties            8. occuptional Medth Ptbtahed guodasmil        b ewited,     wetldceltty. as eWoprmo.looccommodem                  4. Environmatot and SitPi*t,             1. Antitrust Re 0
:      pr.oposed -Append*- A,to I0.'.CFR- Part 100. specifies. a                              for'a.ground "acceleratioin of1.tI,        0 g."Thc nunierical values number of,'required investigations. It does not, however.                              of design displacements, velocities, and accelerations for giye a -method for 'defining.. the response spectral                                  the horizont-al component Design Response Spectra are corresponding          to 'tile      expected        nmaximunt. ground              obtained by multiplying the corresponding values of the acceleration"                                                                          maximum ground displacement and acceleraliol by the factors given in Table I of this guide. Tile displacenient The recorded ground acccleratioihs and response                                region lines of the Design Response Spectra ame parallel spectra of' past. earthquakes provide a, basis for the                                to the maximum ground displacement line and are rational design of structures to resist earthquakes. The                              shown. un lhie left of Figure I. The velocity region lines Design Response Spectra,' .specified for design purposes,                              sl.ope. downward from a. frequency nf 0.25" cps (control can be developed.statistically from.response spectra of.                                point D)'to a.frequency of 2.5 cps (control point C) and past strong-motion earthquakes (see' reference I).. An                                are shown at. the 'top. The remainting two sets' of" lines between the frequencies of 2.5 cps and 33 cps (control See definitions at the end of the guide.                                           point A), with a break ata freqtuency cf 9 cps (control USAEC REGULATORY GUIDES                                      Coplw of publithed guide. may be obtained by request indicating the dwvitant desired to the US. Atomic Energy Commistion. Washinglon. 0,C.. 7D545, ReguLatory Guides ae Issued to. descibe and make arvailable to the public          Attention: Director of Regulatory Standards. Comments arml sugpltrinni lor methods aceptable w the AEC Regulatory tiaff of implemnenting specific parns of    Imnorovenmerls in these guldot *re encouraged and should ae sent to the Secretary the Coammmion's regulations, to delineate techniques used by the staff in          of the Comnmiuion, U.S.. Atomic Energy Commision, Washington. D.C. 20545.
torimamnan WM      withite Mw sottorfft$Olt or OAu~ione.                                           Mats, ink and Plans PIsmsctions      I


vellualng specilic problenr'ofa.postulated accidents, or to provide guidance to    Attention: Chief. Public Procetlings Staff.
====a. Goneref====


liegplcanl. Regulatory Guldes are not tubslltuie' for regulations and compliance with them Is not required. Methods 'end. olutlont different'from those eat out in    The guides are issued onshe following ten broad divisions:
point B). constitut; the acceleration region of the            earthquake or (2) have physical characteristics that horizontil Design Response Spectra. For frequencies            could significantly affect the spectral pattern of input higher than 33 cps. the maximumnt ground acceleration          motion, such as being underlain by poor soil depxosts.
        the.gulde will be acceptable It they provide a basis for the findings requisite to the suamnce or omlnmlnuani of a permit or Ilcense by the Commission.                  1. Pow" Reactors        *               


===6. Producst===
line repfc.ents the Design Rcptu.nw Spectra.                    the procedure described above will not appl
                                                                                                2. Research and Test Reactots *         


===7. Transpotation===
====y. In these====
                                                                                              .3. Fuels and Materials Facilitis    ..  8' Occupational Health Pwwusdsd guides will be revised periodically, in appropriate. to aecommodate          4. Environmental and Siting "            9. Antitrust Review wornmntS ead to reflect new Inforn-llon or5,swrne.              "                .    . Materials and Plant.Protection        1
        "flih vertical component Design Response    Spectra cases, the Design Response Spectra should be developed individually according to the site characteristics.


===0. General===
K
  ".orresponding to the maximum horizotd            ground a'cekreuti's of 1.0 g are shown in Figure 2 of this guid


F-
====e.     ====
  point    W. constituit:    tile  acceleration  region h  ot' the        earthquake or (2) have physical characteristics thfat horizontal I)csrgn Response Spectra. Fot frequencies                  could significanrtly afT'ct tile spectial pattern (f input Ihigher than 33 cps. the maximum ground acceleration                  motion, such as heing underlain by poor soil deposits.


line represents the Design Response Spectra.                           Ilte procedure described above will not apply. Irt these cases, ile D)esign Resixrse Spectra should be developed The vereial corrrponent I.sign Response Spectra                iitdi\idua.ly acc*i ding to thie site characteristics.
==C. REGULATORY POSITION==
The numerical values of design displacements, velocities, and accelerations in these spectra are obtained by              1. The horizontal component ground Design Response multiplying the corresponding values of the maximum            Spectra, without soil-structure interaction effects, of the hJri:,ontal ground motion (acceleration = 1.0 g and            SSE, 1/2 the SSE. or the OBE on sites underlain by rock displacement = 36 in.) by the factors given in Table II of      or by soil should be linearly scaled from Figure I1 in this guide. The displacement region lines of the Design        proportion to the maximum horizontal pound Response Spectra are parallel to the maximum ground            acceleration specified for the earthquake chosen. (Figure displacement line and are shown on the left of Figure 2.        I corresponds to a maximum horizontal ground The velocity region lines slope downward from a                 acceleration of 1.0 5 and accompanying displacement of frequency of 0.25 cps (control point D) to a frequency          36 in.) The applicable multiplication factors and control of 3.5 cpa (control point C) and are shown at the top.          points are gven in Table I. For damping ratios not The remaining two sets of lines between the frequencies        included in Figure I or Table I, a linear interpolation of 3.5 cps and 33 cps (control point A), with a break at        should be used.


.corrtesponlding to tile IllaxiuIIInIl hIri:minrlal ,rtlnd acceh'rafioi of I.0 g are slhown in Figure 2 ofih' is guid
the frcquency of 9 cpa (control point B), constitute the acceleration region of the vertical Design Response            2. The vertical component ground Design Response Spectra. It should be noted that the vertical Design            Spectra, without soil-structure interaction effects, of the Respunse Spectra values are 2/3 those of the horizontal        SSE. 1/2 the SSE, or the OBE on sites underlain by rock D'esiln Response Spectra for frequencies less than 0.25;        or by soil should be linearly scaled from Figure 22 in for frequencies lugher than 3.5, they are the same, while      proportion to the maximum horizontal grouMd the ratio varies between 2/3 and I for frequencies              acceleration specified for the earthquake chosen. (Figure between 0.25 and 3.5. For frequencies higher than 33            2 is based on a maximum hw            algm d acdcrajn cpM. the Design Response Spectra follow the maximum              of 1.0 g and accompanying displacement of 36 in.) The pound acceleration line.                                        applicable multiplication factors and control points are given in Table 11. For damping ratios not included in The horizontal and vertical component Design              Figure 2 or Table 11, a linear interpolation should be Response Spectra in Figures I and 2, respectively, of this      used.


====e.     ====
guide correspond to a maximum horizontal ground acceleration of 1.0          .* For sites with different acceleration values specified for the design earthquake,            'This does not apply to sites which (1) an relatively com the Design Response Spectra should be linearly scaled          to the epcenter of an expected earthquake of (2) which haie from Figures I and 2 in proportion to the specified              physical characteristlca that couMd nifcantly affect the spectral ,rmbinatia of input motion. The Desip Respuotn maximum horizontal pound acceleration. For sites that            Spectra for such sites should be developed on a cam-by-cam (I) are relatively close to the epicenter of an expected
                                                          1.60.2


==C. REGULATORY POSITION==
DEFINITIONS
The nuneltici al vlues of design displacements. veloci ics.
                                                              I    relationship obtained by analyzing. evaluating, and Respone Spectrum mcans a plot of the maximum                        statistically combining a number of individual response response (acceleration. velocity. or displacemnct) of a              spectra derived from the records of significant past family of idealized single-depee-of-fieekrcn damped                  earthquakes.


and acceleratiotis inl these spetra are obtained by                    I . Tlie horizontal comtponrent ground 1elsign Response antrltiivying tile conrespol.Jing values of" the lrlaxitIniun          Spectra. without soil-structn tre irtteractiorn effects, of the lihri:mital gr.u  mIud moriott (acceleration = 1.0 g and              SSIE, 112 the SSE, Otrthe OBE on sites underlain by rock displacemotw t = 3(N in.) hy the tactors given in Table II of         or by soil should he linearly scaled from Figure 12 in lhi, guide. T"he displacentrertt reliunt lines of tlle Design          propOrtiOrr to tire rnt:ixiruittn              lt horizortmal ground Re-sponse Spectr;t :are parallel to the mnaxirritimum ground          acceleration specilied for tIre ear thlquake closen. i Figure diisplacemtne    line and are sMiomin on the left of Figure 2.        I coitrespt;Ids to a tntaxinulti horimrilal ground velocity region lines slope downward f'rom a vhe                                                            acceler;tiont ofI 1.t) aind ,,ccomtlpanlyitig displacerternI of I'requency t' 0.25 cps (CIICtttil pohlt DI) to :1 fleqtuency            36 irt.l The applicable multiplicatiot fI'ctors ald corttrol oIf 3.5 cps (control point C) and are shown at the top.                points are given ill Table I. For darmping ratios tot Titi reniahitnn twIO sets of lines bet weeni thie frequencies          inchludd itt Fi.mrc I or Tible I. atline:tr interpolation of"3.5 cps and 3,3 cps Icontrol poini A). withI a break at            should be used.
oscillators as a function of natural frequencies (oi periods) of the oscillators to a specified vibratory                  Maximum (peak) Ground Accderatio specified for a motion input at their supports. When obtained from a                  given site means that value of the acceleration which recorded earthquake record, the. response spectrurr                  corresponds to zero period in the design resporse spectra tends to be irregular, with a number of peaks ane                    for that site. At zero period the design response spectra valleys.                                                              acceleration is identical for all damping values and is equal to the maximum (peak) gpound acceleration Spectrum is a relatively smoot) I               specified for that site.


tile I'reqtlellcv ot Q cps (conitmll point 13). contllitute tIle accelera.li n tetioti o)f' tihe veefical Design Response              2. The vertical c nmttment ground Design Resporrse Spectra. It shliold be noted tltt tre vertical Design                  Spectta. without soil-stiructure interaction effects, of1 tite Response Spectra values are 2/3 tl.,)se of the horizontal              SSE, 1/2 tite SSI.E, or the OWI" on sites underlain by rock Design Resp-nqte Spectra for frequencies less than 0.25:              or hr soil should lie line:irlv scaled fronni Figure 22 ill I'm Ifrequencies higher tli:m 3.5. tiley are tIle s*me. wlhile        proportion        to tlt        illraXilliLlin horizontal grouind the ratio varies between 2/3 arid I I'Mr frceuiencies                  acceletafion specified for tile earthlquake chosen. (Figure between 0.25 and 3.5. For frequencies higher thtan 33                  " is based on a maxitimum /iri-'iial Sround acceleraiion cps. the Design Response Spectra ftollow tile rrraxirnrnl              of 1.0 g and accomtpanying displacement of 3R in.) The giound :acceleration lirte.                                           applicable muliiplication I'actors arnd control points are given ill Table II. For dalmping ratios riot incltded irt The horizontal antd vertical comnponent Design                    Figure 2 or Table II, a linear irierpolatiin shiould be Respomn:e Spectra irt Figures 1 and 2. respectively, of this            used.
Design Resp..
                                                                TABLE I
                                  HORIZONTAL DESIGN RESPONSE SPECTRA
                    RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
                                                  FOR CONTROL POINTS
                                                Aenplificton Factors for Control Points of                      Acmalation" '                 OiqImnment''
                          Omanw0n        A(33 qxl        B(9 qx)      C42.5 cpd        W)(0.2S qchI
                            0.5            1.0          4.96          5.95            3.20
                            2.0            1.0           3.54          4.25           2.50
                            S.0            1.0          2.61          3.13            2.05
                            7.0             1.0          2.27          2.72            1A88
                            10.0            1.0           1.90          2.28            1.70
                          Maximum gound disyacament is taken proportional to matmwm ground accelciation, and Is 36 In. for pround acceleration of 1.0 gravity.


guide cirrespond to a tixitimuri horizontal ground acceleratiin of I 1.) e. FFr sites with different                            2Tlhis does nor apply to sites which It) ar relalively clno taccelen*:tior% values specit'ied b'or the design earthquake.
sAbotimtion and displacement anplifkztion factor are taken from gecoiunmastions Stan in teforence 1.


to Ire epicenter ot an expecled eanrthquakc or (21 which have Ile Design Response Spectra should be linearly sacled                physic.il characteristics thil could significantly affect tite Ifrom Fiigures I mrid 2 iti proportion to the specifled                spectral      riombinatioin o1" input molion. The D)esign Rcsponse tmaximtumn horizmontal ground acceleration. For sites that            Spectra for such sites irould tie developed on a case-by-case
1.60-3
  ( I* are relat ivelv close to tile epicenter of :ai expected          1srsis.


I .0.-2
VERTICAL DESIGN RESPONSE SPECTRA
                    RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
                                              FOR CONTROL POINTS
                              Perosnt            Amplrification Fcitors for Control Points Critlcal                  Acooeratioo' 2                              s ai Daf*ping      A(33 cps)      8(9 cps)      C13.5 cm)      D(0.25 cps)
                                  0.5          1.0          4.96          5.67'          2.13
                                  2.0          1.0          3.54          4.05          1.67
                                  5.0            .0          2.61          2.98          1.37
                                  7.0          1.0           2.27          2.59          1.25
                                10.0          1.0            1.90          2.17          1.13
                            'Maximum ground dispilacbment is taken proportional to maximum gound acceleration and is 36 in. ftw ground acceleration of 1.0 gravity.


DEFINITIONS
s Acceleration amplhllation factors for the vcfti'al design response spectra arc equal to those for horizontal design re.sponse spcctra at a given frequency. whereas dixplacement ampltfcation f'actms are 2/3 those rot hod znnlal design response spectra. These ratios between the amplification factor for the two desia response spectra are In agreement with thou recommended n rceference I.
Response Spectrum means a rlot              f'l lite maxi1mum          relationship obtained by analyzing, evaluating. and response (acceleration. velocity, or displacement) Of a                statistically combining a number of individual icspi-mse family of idealized sinoe-degree.of.fiecdomn damped                    spectra derived from the records of siguificamit past oscillators as a function of natural irequencies (or                  eart hquakes.


periods) of the oscillators to a specified vibratory nmotion input a( their supports. When obtained from a                  Maximum (peak) Ground Acceleration specified for a recorded earthquake record, the response spectruin                    given sito means that value of the acceleiatioa      which lends to be irregular. with a mlnihet of peaks and                    corecslx)nd-s to zero period in the design response spectra valleys.                                                                for that site. At zero period lie d&sign response sp-.clra acceleration is identical for all damping "alues and is equal to the maximum (peak) ground acceleration Design    ,,soonse Spectrum      is a  relatively    smototh        specified for that site.
3Tbew values were changed to nake thb tabl consittsnt with the dis.


TABLE I
cussim of vertical cnmponents in Section B of this guide.
                                    HORIZONTAL DESIGN RESPONSE SPECTRA
                    RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
                                                    FOR CONTROL POINTS
                          SPercent                  Amplification Factors for Control Points of                       Acceleration'  2              Displacement'
                          Critical                                                                  2 Damping        A(33 cls)        B(9 cps)    C(2.5 cps)      D(0.25 cps)
                            0.5              1.0          4.96          5.95          3.20
                            2.0              1.0          3.54          4.25          2.50
                            5.0              1.0          2.61          3.13          2.05
                            7.0              1.0          2.27          2.72          I .88
                            10.0              1.0          1.90          2.28          1.70
                          'Maximum    ,sound displacement is taken proportional to maximum ground acceleration, and is 36 in. for ground acceleration of 1.0 gravity.


2Acoeleration and displacement amplification factors are taken from recommendations given in reference I.
REFERENCES
I. Newnark. N. M.. John A. Blume. and Kanwar K.


1.60-3
Kapur, "Design Response Spectra for Nuclear Power Spectra," Urbana, Illinois, USAEC Contract No.


TA13LE II
AT(49-$)-2667, WASH-1 255, April 197
                                    VERTICAL DESIGN RESPONSE SPECTRA
                RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
                                                  FOR CONTROL POINTS
                            Percnt                  Ariplificaiion Factors for Control Points of Ac'*icra.On                      D spllccmnt    2 Criticr'l Dampring          A(33 :n*)       8(9 cp)        C(3.5 cps)        D (0.2 5 c1 o.g              I .A)          4,%o          5.95
                                    .0            1.0            3.54          4.2.                I.07
                                5.0              1.0            2.(11          3.13                1.37
                                7.0              I .0          2.27          2.72                I.25
                                10.0              1.0            I.90          2.2S
                              SMaximum ground displawcement ik* Ik.n proportional to na \imumn gpund acckleraion and is 36 in. fIor cround accelcration tit 1.0 gr.vity.


2 Accelera tion amplificalion lactots *or tilc            I ical design rep'.nse slctra are equal 1o iho1c O'h      f oS   ril(ontia design reslidnwc pretra. %%hercdis displaceient amplification faitorq are 2/3 those *f" hori/tnral dcsign rekponc
===3.     K===
                      :rpccira. Thcsc~. ratiois belwccn tie arnplifiwation f'aciors ofl the t.o dcsicn rc.pons spectra are in agrceenln with those recommetnded in re.l'cretw            I,
   Plants," ASCE Structural Engineering Meeting, Sin Francisco. April 1973.                                         3. John A. Blume & Associates, "Recommendations for Shape of Earthquake Response Spectra," San
                                                            REFERENCES
2. N. M. Newmark Consulting Engineering Services, "A                    Francisco, California, USAEC Contract No.
1. Newmark, N. W.. John A. Blume. and Kanwar K.                              Spectra.*' Urbana. Illinois. USAEC Corntra.c No.


Kapur. "Design Responsc Spectra for Nuclear Power                        AT(4'?-5)-26o7. WASI.1 255. April 1073.
Study of Vertical SW- Horizontal Earthquake                          AT(49-$)-301 I. WASH-1254. February 1973.


Plants," ASCE Structural Engineering Nleeting. San Francisco. April 19*73.                                              3,  John A. Blume & Associates, "Recommendations for Shape of Earthquake Response Spectra," San
1.604
2. N. N1. Newmark Consulting Engineering Services. "A                        Francisco. California. USAEC Contract No.


Study of' Vertical and Horizontal Earthquake                              AT(49-5.)-301 1. WASH-1254. February 19.73.
0.1    02      0.s    1      2        5   10    2D      50    100
                              FRr WUENCY. cps FIGURE 1. HORIZONTAL DESIGN RESPONSE SPECTRA - SCALED TO 1g HORIZONTAL
          GROUND ACCELERATION


a8
1000X
                                                                  1.60-4
500
                                          010e
              4p I5
  0.1   0D2    0.     1      2          5      10    20      50    100
                              FREOUENCY. cp, FIGURE 2. VERTICAL DESIGN RESPONSE SPECTRA    - SCALED TO ig HORIZONTAL
            GROUND ACCELERATION


1000
UNITED STATES            SFIRSTCLASS MAIL
     500
NUCLEAR REGULATORY COMMISSION     POSTAGE III FES PAID
    200
      WASHINGTON, D.C. 20555            u
    100
>:    U          *      /\    -,.                                 *
  S20-                                                                  -
                    5        5
                                                1110
        0.1  0.2    0.5    1      2        5        10    20      50    100
                                    FREQUENCY. cps a    FIGURE I. HORIZONTAL DESIGN RESPONSE SPECTRA
                GROUND ACCELERATION
                                                      -SCALED  TO ig HORIZONTAL


1000
====s. Nc WASH D C====
          0.'      50                    .5
                                    Pf RMI1 No L
  100
           OFFICIAL BUSINESS
           CC
     PENALTY FOR PRIVATE USE. $300}}
  100
    50
      20
     2i
                  * ',FREQUENC,L cps___
              , .*/
                GR  UN AC EL RAIO
                                                                      00
    FIGURE 2. VERTICAL DESIGN RESPONSE SPECTRA-SCALED TO lg HORIZONTAL
                GRCUND ACCELERATION}}


{{RG-Nav}}
{{RG-Nav}}

Revision as of 10:16, 28 March 2020

Design Response Spectra for Seismic Design of Nuclear Power Plants
ML003740207
Person / Time
Issue date: 12/31/1973
From:
Office of Nuclear Regulatory Research
To:
References
RG-1.60, Rev 1
Download: ML003740207 (7)


Revssion I

December 1973 U.S. ATOMIC ENERGY COMMISSION

REGULATORY GUIDE

DIRECTORATE OF REGULATORY STANDARDS

REGULATORY GUIDE 1.60

DESIGN RESPONSE SPECTRA FOR SEISMIC DESIGN

OF NUCLEAR POWER PLANTS

A. INTRODUCTION

extensive study has been described by Newmark and filurne in references 1, 2, and 3. After reviewing these Criterion 2, "Design Bases for Protection Against referenced documents, the AEC Regulatory staff has t determined as acceptable the following procedure for Natural Phenomena ' of Appendix A. "General Design defining the Design Response Spectta representing the Criteria for Nuclear Power Plants," to 10 CFR Part 50. effects of the vibratory motion of the SSE, 1/2 the SSE,

"Uicensing of Production and Utilization Facilities:" and the Operating Basis Earthquake (OBE) on sites requires, in part, that nuclear power plant structures, underlain by either rock or soil deposits and covering all systems, and components important to safety be frequencies of interest. However, for unusually soft sites, designed to withstand the effects of earthquakes. modification to this procedure will be required.

Proptsed Appendix A, "Seismic and Geologic Siting Criteria." to 10 CFR Part 100, "Reactor Site Criteria," In this procedure, the configurations of the would require, in part, that the Safe Shutdown horizontal component Design Response Spectra for each Eartlhquake (SSE) be defined by response spectra of the two mutually perpendicular horizontal axes are co, responding to the expected maximum ground shown in Figure I of this guide. These shapes agree with aiccelcrations. This guide describes a procedure those developed by Newmark, Blume. and Kapur in acceptable to the AEC Regulatory staff for defining response spectra for the seismic design of nuclear power ,eference 1. In Figure I the base diagram consists of three parts: the bottom line on the left part represents plants. The Adviory Committee on Reactor Safeguards the maximum ground displacement, the bottom line on has been consulted concerning this guide and has concurred in the regulatory position. the right part represents the maximum acceleration, and the middle part depends on the maximum velocit

y. The

B. DISCUSSION

horizontal component Design Response Spectra in Figure I of this guide correspond to a maximum In order to approximate the intensity and thereby horizontal rou'nd accehiration of 1.0 g. The maximum ground displacement is taken proportional to the estimate the maximum ground acceleration' of the maximum ground acceleration, and is set at 36 inches expected strongest ground motion (SSE) for a given site, for a ground acceleration of 1.0 g. The numerical values proposed Appendix A to 10 CFR Part 100 specifies a of design displacements, velocities, and accelerations for number of required investigations. It does not. however, the horizontal component Design Response Spectra are give a method for defining 1he response spectral obtained by multiplying the corresponding values of the coriesponding to the expected maximum ground maximum ground displacement and acceleration by the acceleralion.

factors given in Table I of this guide. The displacement region lines of the Design Response Spectra are parallel Tit recorded ground accelerations and response to the maximum ground displacement line and are spectlra of past earthquakes prwvide a basis for the shown on the left of Figure I. The velocity region lines ralional designi of structures to resist earthquakes. The slope downward from a frequency of 0.25 cp' (control Design Response Spectra.' specified for design purposes, point D) to a frequency of 2.5 cps (control point C) and can he developed statistically fromn response spectra of are shown at the top. The remaining two sets of lines past strong-notion earthquakes (see reference I). An between the frequencies of 2.5 cps and 33 cps (control I Sce deftintions at the end of the guide. point A). with a break at a frequency of 9 cps (control U.SAJEC REGULATORY GUIDES Carimis d11rd of Published guindesmamy,be obtained by request ..indictin Ia the US. Atcn* Energy Commission. WVahingR o.

the diviti0011 D.. 2045.

Itefatory Guides we iued K

nutod eco'dht t0 the ASCnalhods ~ to describe

~

IM~tY an~d

~~ ~

etef safo acceptable ~ ~ to the *puc etlebleilgcetl, So @mks mmtes ~

e-ipatof ~ £,Attenon:

~ othsACfsito

~ Iiomnxiini--

Regulatory Suteri

e. Co tIIwyC

~ ~ of~~~ecn~e~

~ irector ed wowur ~e~o.Whtn ew ts end tsugostiont2 for end should be tan? to the..sacmrtevy wn t utions. to delieate technicue ubed by the staff m of the thm CoinoswAt eZlustmV asedhic Problem or Postulted ccontt. o to mOmds gusdeaw to Atote ntm . Chief. Public IN MP Sitff.

-Iocantt. RegutOrV Guido owe not sublttuls fr regultions and cowp4m with themi :.not Moaweed. Methods, and Solutins~ different from those matout at The guidnd we aIssed on the f61otlgoaptn brood dit.,.orn he.is tn w11 be cemeptle tIf they t cd Ibais flo ths fiditip equiertO so INeismuwn of sonft~hunce Of 0 p0.915t of be~a by the Cormnkis.on I. P Power tt Asissa Products

2. Researh eilM Test Iteecto. 7. Tru..mtel"nw

3. Puet and Mevrak Faecilties 8. occuptional Medth Ptbtahed guodasmil b ewited, wetldceltty. as eWoprmo.looccommodem 4. Environmatot and SitPi*t, 1. Antitrust Re 0

torimamnan WM withite Mw sottorfft$Olt or OAu~ione. Mats, ink and Plans PIsmsctions I

a. Goneref

point B). constitut; the acceleration region of the earthquake or (2) have physical characteristics that horizontil Design Response Spectra. For frequencies could significantly affect the spectral pattern of input higher than 33 cps. the maximumnt ground acceleration motion, such as being underlain by poor soil depxosts.

line repfc.ents the Design Rcptu.nw Spectra. the procedure described above will not appl

y. In these

"flih vertical component Design Response Spectra cases, the Design Response Spectra should be developed individually according to the site characteristics.

K

".orresponding to the maximum horizotd ground a'cekreuti's of 1.0 g are shown in Figure 2 of this guid

e.

C. REGULATORY POSITION

The numerical values of design displacements, velocities, and accelerations in these spectra are obtained by 1. The horizontal component ground Design Response multiplying the corresponding values of the maximum Spectra, without soil-structure interaction effects, of the hJri:,ontal ground motion (acceleration = 1.0 g and SSE, 1/2 the SSE. or the OBE on sites underlain by rock displacement = 36 in.) by the factors given in Table II of or by soil should be linearly scaled from Figure I1 in this guide. The displacement region lines of the Design proportion to the maximum horizontal pound Response Spectra are parallel to the maximum ground acceleration specified for the earthquake chosen. (Figure displacement line and are shown on the left of Figure 2. I corresponds to a maximum horizontal ground The velocity region lines slope downward from a acceleration of 1.0 5 and accompanying displacement of frequency of 0.25 cps (control point D) to a frequency 36 in.) The applicable multiplication factors and control of 3.5 cpa (control point C) and are shown at the top. points are gven in Table I. For damping ratios not The remaining two sets of lines between the frequencies included in Figure I or Table I, a linear interpolation of 3.5 cps and 33 cps (control point A), with a break at should be used.

the frcquency of 9 cpa (control point B), constitute the acceleration region of the vertical Design Response 2. The vertical component ground Design Response Spectra. It should be noted that the vertical Design Spectra, without soil-structure interaction effects, of the Respunse Spectra values are 2/3 those of the horizontal SSE. 1/2 the SSE, or the OBE on sites underlain by rock D'esiln Response Spectra for frequencies less than 0.25; or by soil should be linearly scaled from Figure 22 in for frequencies lugher than 3.5, they are the same, while proportion to the maximum horizontal grouMd the ratio varies between 2/3 and I for frequencies acceleration specified for the earthquake chosen. (Figure between 0.25 and 3.5. For frequencies higher than 33 2 is based on a maximum hw algm d acdcrajn cpM. the Design Response Spectra follow the maximum of 1.0 g and accompanying displacement of 36 in.) The pound acceleration line. applicable multiplication factors and control points are given in Table 11. For damping ratios not included in The horizontal and vertical component Design Figure 2 or Table 11, a linear interpolation should be Response Spectra in Figures I and 2, respectively, of this used.

guide correspond to a maximum horizontal ground acceleration of 1.0 .* For sites with different acceleration values specified for the design earthquake, 'This does not apply to sites which (1) an relatively com the Design Response Spectra should be linearly scaled to the epcenter of an expected earthquake of (2) which haie from Figures I and 2 in proportion to the specified physical characteristlca that couMd nifcantly affect the spectral ,rmbinatia of input motion. The Desip Respuotn maximum horizontal pound acceleration. For sites that Spectra for such sites should be developed on a cam-by-cam (I) are relatively close to the epicenter of an expected

1.60.2

DEFINITIONS

I relationship obtained by analyzing. evaluating, and Respone Spectrum mcans a plot of the maximum statistically combining a number of individual response response (acceleration. velocity. or displacemnct) of a spectra derived from the records of significant past family of idealized single-depee-of-fieekrcn damped earthquakes.

oscillators as a function of natural frequencies (oi periods) of the oscillators to a specified vibratory Maximum (peak) Ground Accderatio specified for a motion input at their supports. When obtained from a given site means that value of the acceleration which recorded earthquake record, the. response spectrurr corresponds to zero period in the design resporse spectra tends to be irregular, with a number of peaks ane for that site. At zero period the design response spectra valleys. acceleration is identical for all damping values and is equal to the maximum (peak) gpound acceleration Spectrum is a relatively smoot) I specified for that site.

Design Resp..

TABLE I

HORIZONTAL DESIGN RESPONSE SPECTRA

RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS

FOR CONTROL POINTS

Aenplificton Factors for Control Points of Acmalation" ' OiqImnment

Omanw0n A(33 qxl B(9 qx) C42.5 cpd W)(0.2S qchI

0.5 1.0 4.96 5.95 3.20

2.0 1.0 3.54 4.25 2.50

S.0 1.0 2.61 3.13 2.05

7.0 1.0 2.27 2.72 1A88

10.0 1.0 1.90 2.28 1.70

Maximum gound disyacament is taken proportional to matmwm ground accelciation, and Is 36 In. for pround acceleration of 1.0 gravity.

sAbotimtion and displacement anplifkztion factor are taken from gecoiunmastions Stan in teforence 1.

1.60-3

VERTICAL DESIGN RESPONSE SPECTRA

RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS

FOR CONTROL POINTS

Perosnt Amplrification Fcitors for Control Points Critlcal Acooeratioo' 2 s ai Daf*ping A(33 cps) 8(9 cps) C13.5 cm) D(0.25 cps)

0.5 1.0 4.96 5.67' 2.13

2.0 1.0 3.54 4.05 1.67

5.0 .0 2.61 2.98 1.37

7.0 1.0 2.27 2.59 1.25

10.0 1.0 1.90 2.17 1.13

'Maximum ground dispilacbment is taken proportional to maximum gound acceleration and is 36 in. ftw ground acceleration of 1.0 gravity.

s Acceleration amplhllation factors for the vcfti'al design response spectra arc equal to those for horizontal design re.sponse spcctra at a given frequency. whereas dixplacement ampltfcation f'actms are 2/3 those rot hod znnlal design response spectra. These ratios between the amplification factor for the two desia response spectra are In agreement with thou recommended n rceference I.

3Tbew values were changed to nake thb tabl consittsnt with the dis.

cussim of vertical cnmponents in Section B of this guide.

REFERENCES

I. Newnark. N. M.. John A. Blume. and Kanwar K.

Kapur, "Design Response Spectra for Nuclear Power Spectra," Urbana, Illinois, USAEC Contract No.

AT(49-$)-2667, WASH-1 255, April 197

3. K

Plants," ASCE Structural Engineering Meeting, Sin Francisco. April 1973. 3. John A. Blume & Associates, "Recommendations for Shape of Earthquake Response Spectra," San

2. N. M. Newmark Consulting Engineering Services, "A Francisco, California, USAEC Contract No.

Study of Vertical SW- Horizontal Earthquake AT(49-$)-301 I. WASH-1254. February 1973.

1.604

0.1 02 0.s 1 2 5 10 2D 50 100

FRr WUENCY. cps FIGURE 1. HORIZONTAL DESIGN RESPONSE SPECTRA - SCALED TO 1g HORIZONTAL

GROUND ACCELERATION

1000X

500

010e

4p I5

0.1 0D2 0. 1 2 5 10 20 50 100

FREOUENCY. cp, FIGURE 2. VERTICAL DESIGN RESPONSE SPECTRA - SCALED TO ig HORIZONTAL

GROUND ACCELERATION

UNITED STATES SFIRSTCLASS MAIL

NUCLEAR REGULATORY COMMISSION POSTAGE III FES PAID

WASHINGTON, D.C. 20555 u

s. Nc WASH D C

Pf RMI1 No L

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE. $300