Regulatory Guide 1.60: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 14: Line 14:
| page count = 6
| page count = 6
}}
}}
{{#Wiki_filter:t*lAGy. C0\oU.S. ATOMIC ENERGY. COMMISSION:_.;:::
{{#Wiki_filter:t*lAGy.
; ', rs : DIRECTORATE  
 
OF REGULATO RY STANDARDS REGULATORY  
C0
GUIDE 1.60 DESIGN RESPONSE.SPECTRA  
                            \oU.S.               ATOMIC ENERGY. COMMISSION:_.;:::
FOR SEISMIC.DESIGN
                                                                                                                                                          Ociober 1973
OF NUCLEAR POWER PLANTS Ociober 1973 WIDE SA..
                ; ', rs               : DIRECTORATE OF REGULATO RY STANDARDS
                                                                                                                                              WIDE
                                                                        REGULATORY GUIDE 1.60
                                              DESIGN RESPONSE.SPECTRA FOR SEISMIC.DESIGN
                                                                  OF NUCLEAR POWER PLANTS
                SA..


==A. INTRODUCTION==
==A. INTRODUCTION==
Criterion  
.extensive study.'has hlcn described by Newmiaik and Blunie in re!ferences I. 2, .and                  After ieviewing th'se Criterion 2, "Design Bases for Protection Against                             reterenced documents, tilt AE( RegtIu10toiy 'staff has Natural Phenoniena," Of 'Appendix A, "General Design                                 determined as acceptahle tile fI llowicni procedilre 1or'
2, "Design Bases for Protection Against Natural Phenoniena," Of 'Appendix A, "General Design Criteria for Nuclear.Power Plants." to 10 CFR Part 50.L'.'icensing of Production and Utilization Facilities." requires, in part, that nuclear power plant structures, syYStems, .,and components important to safety b'h designed to -withstand.
          Criteria for Nuclear.Power Plants." to 10 CFR Part 50.                               defining the Design RIeslponse Spectra representing the L'.'icensing of Production and Utilization Facilities."                             effects of the vibratory 111i00 Otf thi SS[, 1./2 the SS!.',
          requires, in part, that nuclear power plant structures,                               and the Operating Basis Earthquake (0111) on sites syYStems, .,and components important to safety b'h                                   underlain by either rock or sOil deIposits d:lCoVerfinig All designed to -withstand. the' effects of earthquakes.                                  frequencies of inter.st. However, for uliustially soft site.


the' effects of earthquakes.
Proposed Appendix A, "Seistnic and Geologic Siting                                  .modification to this procedure will.he requited.


Proposed Appendix A, "Seistnic and Geologic Siting Criteria,'"to  
Criteria,'"to :10 CFR Part .100, "Reactor Site Crinteria,i.
:10 CFR Part .100, "Reactor Site Crinteria,i.


* Would require, in part, that the Safe Shutdown Earthquake (SSE) be defined by response spectra correspoanding  
*       Would require,           in     part,   that the Safe Shutdown                             In this procedure,
'to the expected maximum ground , acc:elerations..,This guide. describes a. piocedure.. .acceptable:  
* the .configurali6ios of tihe Earthquake (SSE) be defined by response spectra                                       horizonial. component Design Response Spectra i'm each correspoanding 'to the expected maximum ground                                       of the two: mutually perpendicular honizontal axes are
to the 'AEC ARegulatory staff- for defining S espqnsei spectra for the seismic design of nuclear power 1 kplants. The Adviory Committee on Reactor Safeguards bas been consulted concerning this guide and has concurred in the regulatory position.'
  , acc:elerations..,This guide. describes a. piocedure                                       shown in Figure 1. of this guide. These sh lpe% agree wilh
    ...acceptable: to the 'AEC ARegulatory staff- for defining
                                                                                              'th*se developed by', Newmnz'k, Blun


==B. DISCUSSION==
====e. and Kapur in====
in o.rder. to approximate the intensity and thereby estimate, the maximum :.gr6tund'
1        kplants.
acceleriationo Of the:.expcted strongesýt..ground
'm'tion,(SsE)
for a given site,: pr.oposed -Append*-
A, to I 0.'.CFR- Part 100. specifies.


a number of,'required investigations.
Sespqnsei spectra for the seismic design of nuclear power The Adviory Committee on Reactor Safeguards bas inconsulted been concurred          the regulatoryconcerning position.this guide and has reference 1. In Figure 1 tihe ase diagram consists of three parts: the bottom. line:on he left part represents the maximum ground displacement, the bottom line on the right part represents, the maximum aceleration, and ithe middle part depends. on the maximum velocit


It does not, however.giye a -method for 'defining..  
====y. Thle====
the response spectral corresponding to 'tile expected nmaximunt.
                                    '


ground acceleration" The recorded ground acccleratioihs and response spectra of' past. earthquakes provide a, basis for the rational design of structures to resist earthquakes.
==B. DISCUSSION==
horizontal component Design Response Spectra in Figure I of tids guide correspond' to a 'maximuin in o.rder. to approximate the intensity and thereby                            horiznital ground acceleration of 1.0 g. "rlie maxintum estimate, the maximum :.gr6tund' acceleriationo Of the:                                ,ground displacement. is. uiken.'propportional to the
        .expcted strongesýt..ground 'm'tion,(SsE) for a given site,                            maximum ground accekeration. and is'set.at 36 inches
:      pr.oposed -Append*- A,to I0.'.CFR- Part 100. specifies. a                              for'a.ground "acceleratioin of1.tI,        0 g."Thc nunierical values number of,'required investigations. It does not, however.                              of design displacements, velocities, and accelerations for giye a -method for 'defining.. the response spectral                                  the horizont-al component Design Response Spectra are corresponding          to 'tile      expected        nmaximunt. ground              obtained by multiplying the corresponding values of the acceleration"                                                                         maximum ground displacement and acceleraliol by the factors given in Table I of this guide. Tile displacenient The recorded ground acccleratioihs and response                               region lines of the Design Response Spectra ame parallel spectra of' past. earthquakes provide a, basis for the                                 to the maximum ground displacement line and are rational design of structures to resist earthquakes. The                              shown. un lhie left of Figure I. The velocity region lines Design Response Spectra,' .specified for design purposes,                              sl.ope. downward from a. frequency nf 0.25" cps (control can be developed.statistically from.response spectra of.                                point D)'to a.frequency of 2.5 cps (control point C) and past strong-motion earthquakes (see' reference I).. An                                are shown at. the 'top. The remainting two sets' of" lines between the frequencies of 2.5 cps and 33 cps (control See definitions at the end of the guide.                                            point A), with a break ata freqtuency cf 9 cps (control USAEC REGULATORY GUIDES                                      Coplw of publithed guide. may be obtained by request indicating the dwvitant desired to the US. Atomic Energy Commistion. Washinglon. 0,C.. 7D545, ReguLatory Guides ae Issued to. descibe and make arvailable to the public          Attention: Director of Regulatory Standards. Comments arml sugpltrinni lor methods aceptable w the AEC Regulatory tiaff of implemnenting specific parns of    Imnorovenmerls in these guldot *re encouraged and should ae sent to the Secretary the Coammmion's regulations, to delineate techniques used by the staff in          of the Comnmiuion, U.S.. Atomic Energy Commision, Washington. D.C. 20545.


The Design Response Spectra,' .specified for design purposes, can be developed.statistically from.response spectra of.past strong-motion earthquakes (see' reference I).. An See definitions at the end of the guide..extensive study.'has hlcn described by Newmiaik and Blunie in re!ferences I. 2, .and After ieviewing th'se reterenced documents, tilt AE( RegtIu10toiy
vellualng specilic problenr'ofa.postulated accidents, or to provide guidance to    Attention: Chief. Public Procetlings Staff.
'staff has determined as acceptahle tile fI llowicni procedilre
1or'defining the Design RIeslponse Spectra representing the effects of the vibratory
111i00 Otf thi SS[, 1./2 the SS!.', and the Operating Basis Earthquake
(0111) on sites underlain by either rock or sOil deIposits d:l CoVerfinig All frequencies of inter.st.


However, for uliustially soft site..modification to this procedure will.he requited.In this procedure,
liegplcanl. Regulatory Guldes are not tubslltuie' for regulations and compliance with them Is not required. Methods 'end. olutlont different'from those eat out in    The guides are issued onshe following ten broad divisions:
* the .configurali6ios of tihe horizonial.
        the.gulde will be acceptable It they provide a basis for the findings requisite to the suamnce or omlnmlnuani of a permit or Ilcense by the Commission.                   1. Pow" Reactors        *               


component Design Response Spectra i'm each of the two: mutually perpendicular honizontal axes are shown in Figure 1. of this guide. These sh lpe% agree wilhdeveloped by', Newmnz'k, Blune. and Kapur in reference
===6. Producst===
1. In Figure 1 tihe ase diagram consists of three parts: the bottom. line:on he left part represents the maximum ground displacement, the bottom line on the right part represents, the maximum a celeration, and ithe middle part depends. on the maximum velocity.
                                                                                                2. Research and Test Reactots *         


Thle horizontal component Design Response Spectra in Figure I of tids guide correspond'
===7. Transpotation===
to a 'maximuin horiznital ground acceleration of 1 .0 g. "rlie maxintum ,ground displacement.
                                                                                              .3. Fuels and Materials Facilitis    ..  8' Occupational Health Pwwusdsd guides will be revised periodically, in appropriate. to aecommodate          4. Environmental and Siting "             9. Antitrust Review wornmntS ead to reflect new Inforn-llon or5,swrne.             "                .    . Materials and Plant.Protection        1


is. uiken.'propportional to the maximum ground accekeration.
===0. General===


and is'set.at
F-
36 inches for'a.ground "acceleratioin of1.tI, 0 g."Thc nunierical values of design displacements, velocities, and accelerations for the horizont-al component Design Response Spectra are obtained by multiplying the corresponding values of the maximum ground displacement and acceleraliol by the factors given in Table I of this guide. Tile displacenient region lines of the Design Response Spectra ame parallel to the maximum ground displacement line and are shown. un lhie left of Figure I. The velocity region lines sl.ope. downward from a. frequency nf 0.25" cps (control point D)'to a. frequency of 2.5 cps (control point C) and are shown at. the 'top. The remainting two sets' of" lines between the frequencies of 2.5 cps and 33 cps (control point A), with a break ata freqtuency cf 9 cps (control USAEC REGULATORY
  point    W. constituit:    tile  acceleration  region h  ot' the       earthquake or (2) have physical characteristics thfat horizontal I)csrgn Response Spectra. Fot frequencies                  could significanrtly afT'ct tile spectial pattern (f input Ihigher than 33 cps. the maximum ground acceleration                  motion, such as heing underlain by poor soil deposits.
GUIDES Coplw of publithed guide. may be obtained by request indicating the dwvitant desired to the US. Atomic Energy Commistion.


Washinglon.
line represents the Design Response Spectra.                          Ilte procedure described above will not apply. Irt these cases, ile D)esign Resixrse Spectra should be developed The vereial corrrponent I.sign Response Spectra                iitdi\idua.ly acc*i ding to thie site characteristics.


0,C.. 7D545, ReguLatory Guides ae Issued to. descibe and make arvailable to the public Attention:  
.corrtesponlding to tile IllaxiuIIInIl hIri:minrlal ,rtlnd acceh'rafioi of I.0 g are slhown in Figure 2 ofih' is guid
Director of Regulatory Standards.
 
Comments arml sugpltrinni lor methods aceptable w the AEC Regulatory tiaff of implemnenting specific parns of Imnorovenmerls in these guldot encouraged and should ae sent to the Secretary the Coammmion's regulations, to delineate techniques used by the staff in of the Comnmiuion, U.S.. Atomic Energy Commision, Washington.
 
D.C. 20545.vellualng specilic problenr'ofa.postulated accidents, or to provide guidance to Attention:
Chief. Public Procetlings Staff.liegplcanl.
 
Regulatory Guldes are not tubslltuie'
for regulations and compliance with them Is not required.
 
Methods 'end. olutlont different'from those eat out in The guides are issued on she following ten broad divisions:
the.gulde will be acceptable It they provide a basis for the findings requisite to the suamnce or omlnmlnuani of a permit or Ilcense by the Commission.
 
1. Pow" Reactors
* 6. Producst 2. Research and Test Reactots *
 
===7. Transpotation===
.3. Fuels and Materials Facilitis
.. 8' Occupational Health Pwwus dsd guides will be revised periodically, in appropriate.


to aecommodate
====e.     ====
4. Environmental and Siting " 9. Antitrust Review wornmntS ead to reflect new Inforn-llon or5,swrne. " ..Materials and Plan


====t. Protection ====
==C. REGULATORY POSITION==
10. General F-point W. constituit:
The nuneltici al vlues of design displacements. veloci ics.
tile acceleration region h ot' the horizontal I)csrgn Response Spectra. Fot frequencies Ihigher than 33 cps. the maximum ground acceleration line represents the Design Response Spectra.The vereial corrrponent I.sign Response Spectra.corrtesponlding to tile IllaxiuIIInIl hIri:minrlal ,rtlnd acceh'rafioi of I.0 g are slhown in Figure 2 of ih' is guide.The nuneltici al vlues of design displacements.


veloci ics.and acceleratiotis inl these spetra are obtained by antrltiivying tile conrespol.Jing values of" the lrlaxitIniun lihri:mital gr.u mIud moriott (acceleration  
and acceleratiotis inl these spetra are obtained by                     I . Tlie horizontal comtponrent ground 1elsign Response antrltiivying tile conrespol.Jing values of" the lrlaxitIniun         Spectra. without soil-structn tre irtteractiorn effects, of the lihri:mital gr.u   mIud moriott (acceleration = 1.0 g and             SSIE, 112 the SSE, Otrthe OBE on sites underlain by rock displacemotw t = 3(N in.) hy the tactors given in Table II of         or by soil should he linearly scaled from Figure 12 in lhi, guide. T"he displacentrertt reliunt lines of tlle Design         propOrtiOrr to tire rnt:ixiruittn              lt horizortmal ground Re-sponse Spectr;t :are parallel to the mnaxirritimum ground           acceleration specilied for tIre ear thlquake closen. i Figure diisplacemtne     line and are sMiomin on the left of Figure 2.         I coitrespt;Ids to a tntaxinulti horimrilal ground velocity region lines slope downward f'rom a vhe                                                            acceler;tiont ofI 1.t) aind ,,ccomtlpanlyitig displacerternI of I'requency t' 0.25 cps (CIICtttil pohlt DI) to :1 fleqtuency           36 irt.l The applicable multiplicatiot fI'ctors ald corttrol oIf 3.5 cps (control point C) and are shown at the top.                 points are given ill Table I. For darmping ratios tot Titi reniahitnn twIO sets of lines bet weeni thie frequencies         inchludd itt Fi.mrc I or Tible I. atline:tr interpolation of"3.5 cps and 3,3 cps Icontrol poini A). withI a break at             should be used.
= 1.0 g and displacemotw t = 3(N in.) hy the tactors given in Table II of lhi, guide. T"he displacentrertt reliunt lines of tlle Design Re-sponse Spectr;t :are parallel to the mnaxirritimum ground diisplacemtne line and are sMiomin on the left of Figure 2.vhe velocity region lines slope downward f'rom a I'requency t' 0.25 cps (CIICttti l pohlt DI) to :1 fleqtuency oIf 3.5 cps (control point C) and are shown at the top.Titi reniahitnn twIO sets of lines bet weeni th ie frequencies of" 3.5 cps and 3,3 cps Icontrol poini A). withI a break at tile I'reqtlellcv ot Q cps (conitmll point 13). contllitute tIle accelera.li n tetioti o)f' tihe veefical Design Response Spectra. It shliold be noted tltt tre vertical Design Response Spectra values are 2/3 tl.,)se of the horizontal Design Resp-nqt e Spectra for frequencies less than 0.25: I'm Ifrequencies higher tli:m 3.5. tiley are tIle wlhile the ratio varies between 2/3 arid I I'Mr frceuiencies between 0.25 and 3.5. For frequencies higher thtan 33 cps. the Design Response Spectra ftollow tile rrraxirnrnl giound :acceleration lirte.The horizontal antd vertical comnponent Design Respomn:e Spectra irt Figures 1 and 2. respectively, of this guide cirrespond to a tixitimuri horizontal ground acceleratiin of I 1.) e. FFr sites with different values specit'ied b'or the design earthquake.


Ile Design Response Spectra should be linearly sacled Ifrom Fiigures I mrid 2 iti proportion to the specifled tmaximtumn horizmontal ground acceleration.
tile I'reqtlellcv ot Q cps (conitmll point 13). contllitute tIle accelera.li n tetioti o)f' tihe veefical Design Response              2. The vertical c nmttment ground Design Resporrse Spectra. It shliold be noted tltt tre vertical Design                 Spectta. without soil-stiructure interaction effects, of1 tite Response Spectra values are 2/3 tl.,)se of the horizontal              SSE, 1/2 tite SSI.E, or the OWI" on sites underlain by rock Design Resp-nqte Spectra for frequencies less than 0.25:              or hr soil should lie line:irlv scaled fronni Figure 22 ill I'm Ifrequencies higher tli:m 3.5. tiley are tIle s*me. wlhile        proportion         to tlt        illraXilliLlin horizontal grouind the ratio varies between 2/3 arid I I'Mr frceuiencies                  acceletafion specified for tile earthlquake chosen. (Figure between 0.25 and 3.5. For frequencies higher thtan 33                  " is based on a maxitimum /iri-'iial Sround acceleraiion cps. the Design Response Spectra ftollow tile rrraxirnrnl              of 1.0 g and accomtpanying displacement of 3R in.) The giound :acceleration lirte.                                            applicable muliiplication I'actors arnd control points are given ill Table II. For dalmping ratios riot incltded irt The horizontal antd vertical comnponent Design                    Figure 2 or Table II, a linear irierpolatiin shiould be Respomn:e Spectra irt Figures 1 and 2. respectively, of this            used.


For sites that ( are relat ivelv close to tile epicenter of :ai expected earthquake or (2) have physical characteristics thfat could significanrtly afT'ct tile spectial pattern (f input motion, such as heing underlain by poor soil deposits.Ilte procedure described above will not apply. Irt these cases, ile D)esign Resixrse Spectra should be developed iitdi\idua.ly ding to thie site characteristics.
guide cirrespond to a tixitimuri horizontal ground acceleratiin of I 1.) e. FFr sites with different                            2Tlhis does nor apply to sites which It) ar relalively clno taccelen*:tior% values specit'ied b'or the design earthquake.


C. REGULATORY
to Ire epicenter ot an expecled eanrthquakc or (21 which have Ile Design Response Spectra should be linearly sacled                physic.il characteristics thil could significantly affect tite Ifrom Fiigures I mrid 2 iti proportion to the specifled                spectral     riombinatioin o1" input molion. The D)esign Rcsponse tmaximtumn horizmontal ground acceleration. For sites that            Spectra for such sites irould tie developed on a case-by-case
POSITION I .Tlie horizontal comtponrent ground 1elsign Response Spectra. without soil-structn tre irtteractiorn effects, of the SSIE, 112 the SSE, Otr the OBE on sites underlain by rock or by soil should he linearly scaled from Figure 12 in propOrtiOrr to tire rnt:ixiruittn lt horizortmal ground acceleration specilied for tIre ear thlquake closen. i Figure I coitrespt;Ids to a tntaxinulti horimrilal ground acceler;tiont ofI 1.t) aind ,,ccomtlpanlyitig displacerternI
  ( I* are relat ivelv close to tile epicenter of :ai expected          1srsis.
of 36 irt.l The applicable multiplicatiot fI'ctors ald corttrol points are given ill Table I. For darmping ratios tot inchludd itt Fi.mrc I or Tible I. at line:tr interpolation should be used.2. The vertical c nmttment ground Design Resporrse Spectta. without soil-stiructure interaction effects, of1 tite SSE, 1/2 tite SSI.E, or the OWI" on sites underlain by rock or hr soil should lie line:irlv scaled fronni Figure 22 ill proportion to tlt illraXilliLlin horizontal grouind acceletafion specified for tile earthlquake chosen. (Figure" is based on a maxitimum
/iri-'iial Sround acceleraiion of 1 .0 g and accomtpanying displacement of 3R in.) The applicable muliiplication I'actors arnd control points are given ill Table II. For dalmping ratios riot incltded irt Figure 2 or Table II, a linear irierpolatiin shiould be used.2Tlhis does nor a pply to sites which It ) ar relalively clno to Ire epicenter ot an expecled eanrthquakc or (21 which have physic.il characteristics thil could significantly affect tite spectral riombinatioin o1" input molion. The D)esign Rcsponse Spectra for such sites irould tie developed on a case-by-case
1srsis.I .0.-2 DEFINITIONS
Response Spectrum means a rlot 'l f lite maxi1mum response (acceleration.


velocity, or displacement)
I .0.-2
Of a family of idealized sinoe-degree.of.fiecdomn damped oscillators as a function of natural irequencies (or periods) of the oscillators to a specified vibratory nmotion input a( their supports.


When obtained from a recorded earthquake record, the response spectruin lends to be irregular.
DEFINITIONS
Response Spectrum means a rlot              f'l lite maxi1mum          relationship obtained by analyzing, evaluating. and response (acceleration. velocity, or displacement) Of a                statistically combining a number of individual icspi-mse family of idealized sinoe-degree.of.fiecdomn damped                    spectra derived from the records of siguificamit past oscillators as a function of natural irequencies (or                  eart hquakes.


with a mlnihet of peaks and valleys.Design ,,soonse Spectrum is a relatively smototh relationship obtained by analyzing, evaluating.
periods) of the oscillators to a specified vibratory nmotion input a( their supports. When obtained from a                  Maximum (peak) Ground Acceleration specified for a recorded earthquake record, the response spectruin                    given sito means that value of the acceleiatioa      which lends to be irregular. with a mlnihet of peaks and                     corecslx)nd-s to zero period in the design response spectra valleys.                                                               for that site. At zero period lie d&sign response sp-.clra acceleration is identical for all damping "alues and is equal to the maximum (peak) ground acceleration Design     ,,soonse Spectrum       is a   relatively   smototh       specified for that site.


and statistically combining a number of individual icspi-mse spectra derived from the records of siguificamit past eart hquakes.Maximum (peak) Ground Acceleration specified for a given sito means that value of the acceleiatioa which corecslx)nd-s to zero period in the design response spectra for that site. At zero period lie d&sign response sp-.clra acceleration is identical for all damping "alues and is equal to the maximum (peak) ground acceleration specified for that sit
TABLE I
                                    HORIZONTAL DESIGN RESPONSE SPECTRA
                    RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
                                                    FOR CONTROL POINTS
                          SPercent                  Amplification Factors for Control Points of                       Acceleration'  2              Displacement'
                          Critical                                                                  2 Damping        A(33 cls)        B(9 cps)    C(2.5 cps)      D(0.25 cps)
                            0.5              1.0          4.96          5.95          3.20
                            2.0              1.0          3.54          4.25          2.50
                            5.0              1.0          2.61          3.13          2.05
                            7.0              1.0          2.27          2.72          I .88
                            10.0              1.0          1.90          2.28          1.70
                          'Maximum    ,sound displacement is taken proportional to maximum ground acceleration, and is 36 in. for ground acceleration of 1.0 gravity.


====e. TABLE I HORIZONTAL ====
2Acoeleration and displacement amplification factors are taken from recommendations given in reference I.
DESIGN RESPONSE SPECTRA RELATIVE VALUES OF SPECTRUM AMPLIFICATION
FACTORS FOR CONTROL POINTS SPercent Amplification Factors for Control Points of Acceleration'
2 Displacement'
2 Critical Damping A(33 cls) B(9 cps) C(2.5 cps) D(0.25 cps)0.5 1.0 4.96 5.95 3.20 2.0 1.0 3.54 4.25 2.50 5.0 1.0 2.61 3.13 2.05 7.0 1.0 2.27 2.72 I .88 10.0 1.0 1.90 2.28 1.70'Maximum ,sound displacement is taken proportional to maximum ground acceleration, and is 36 in. for ground acceleration of 1.0 gravity.2Acoeleration and displacement amplification factors are taken from recommendations given in reference I.1.60-3 TA13LE II VERTICAL DESIGN RESPONSE SPECTRA RELATIVE VALUES OF SPECTRUM AMPLIFICATION
FACTORS FOR CONTROL POINTS Percnt Ariplificaiion Factors for Control Points of Criticr'l D spllccmnt
2 Dampring A(33 8(9 cp) C(3.5 cps) D (0.2 5 c1 o.g I .A) 4,%o 5.95.0 1.0 3.54 4.2. I.07 5.0 1.0 2.(11 3.13 1. 37 7.0 I .0 2.27 2.72 I.25 10.0 1.0 I.90 2.2S SMaximum ground displawcement Ik.n proportional to na \imumn gpund acckleraion and is 36 in. fIor cround accelcration tit 1.0 gr.vity.2 Accelera tion amplificalion lactots tilc I ical design rep'.nse slctra are equal 1o iho1c oS f O'h ril(ontia design reslidnwc pretra. %%hercdis displaceient amplification faitorq are 2/3 those hori/tnral dcsign rekponc:rpccira.


Thcsc~. ratiois belwccn tie arnplifiwation f'aciors ofl the t.o dcsicn rc.pons spectra are in agrceenln with those recommetnded in re.l'cretw I, REFERENCES
1.60-3
1. Newmark, N. W.. John A. Blume. and Kanwar K.Kapur. "Design Responsc Spectra for Nuclear Power Plants," ASCE Structural Engineering Nleeting.


San Francisco.
TA13LE II
                                    VERTICAL DESIGN RESPONSE SPECTRA
                RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
                                                  FOR CONTROL POINTS
                            Percnt                  Ariplificaiion Factors for Control Points of Ac'*icra.On                      D spllccmnt    2 Criticr'l Dampring          A(33 :n*)      8(9 cp)        C(3.5 cps)        D (0.2 5 c1 o.g              I .A)          4,%o          5.95
                                    .0            1.0            3.54          4.2.                I.07
                                5.0              1.0            2.(11          3.13                1.37
                                7.0              I .0          2.27          2.72                I.25
                                10.0              1.0            I.90          2.2S
                              SMaximum ground displawcement ik* Ik.n proportional to na \imumn gpund acckleraion and is 36 in. fIor cround accelcration tit 1.0 gr.vity.


April 2. N. N1. Newmark Consulting Engineering Services. "A Study of' Vertical and Horizontal Earthquake Spectra.*'  
2 Accelera tion amplificalion lactots *or tilc            I ical design rep'.nse slctra are equal 1o iho1c O'h      f oS    ril(ontia design reslidnwc pretra. %%hercdis displaceient amplification faitorq are 2/3 those *f" hori/tnral dcsign rekponc
Urbana. Illinois.
                      :rpccira. Thcsc~. ratiois belwccn tie arnplifiwation f'aciors ofl the t.o dcsicn rc.pons spectra are in agrceenln with those recommetnded in re.l'cretw            I,
                                                            REFERENCES
1. Newmark, N. W.. John A. Blume. and Kanwar K.                              Spectra.*' Urbana. Illinois. USAEC Corntra.c No.


USAEC Corntra.c No.AT(4'?-5)-26o7.
Kapur. "Design Responsc Spectra for Nuclear Power                        AT(4'?-5)-26o7. WASI.1 255. April 1073.


WASI.1 255. April 1073.3, John A. Blume & Associates, "Recommendations for Shape of Earthquake Response Spectra," San Francisco.
Plants," ASCE Structural Engineering Nleeting. San Francisco. April 19*73.                                               3,   John A. Blume & Associates, "Recommendations for Shape of Earthquake Response Spectra," San
2. N. N1. Newmark Consulting Engineering Services. "A                        Francisco. California. USAEC Contract No.


California.
Study of' Vertical and Horizontal Earthquake                              AT(49-5.)-301 1. WASH-1254. February 19.73.


USAEC Contract No.AT(49-5.)-301
a8
1. WASH-1254.
                                                                  1.60-4


February 19.73.a8 1.60-4
1000
1000 500 200 100>: /\ -,. U S20- -5 5 1110 0.1 0.2 0.5 1 2 5 10 20 50 100 FREQUENCY.
    500
    200
    100
>:   U          *      /\     -,.                                 *
  S20-                                                                 -
                    5         5
                                                1110
        0.1   0.2     0.5   1     2         5       10   20       50   100
                                    FREQUENCY. cps a    FIGURE I. HORIZONTAL DESIGN RESPONSE SPECTRA
                GROUND ACCELERATION
                                                      -SCALED  TO ig HORIZONTAL


cps FIGURE I. HORIZONTAL
1000
DESIGN RESPONSE SPECTRA -SCALED TO ig HORIZONTAL
          0.'     50                     .5
GROUND ACCELERATION
  100
a
          CC
1000 100 0.' 50 .5 CC 100 50 2i 20 GR UN AC EL RAIO , ',FREQUENC,L
  100
cps ___FIGURE 2. VERTICAL DESIGN RESPONSE SPECTRA-SCALED  
    50
TO lg HORIZONTAL
      20
GRCUND ACCELERATION
    2i
00}}
                  * ',FREQUENC,L cps___
              , .*/
                GR UN AC EL RAIO
                                                                      00
    FIGURE 2. VERTICAL DESIGN RESPONSE SPECTRA-SCALED TO lg HORIZONTAL
                GRCUND ACCELERATION}}


{{RG-Nav}}
{{RG-Nav}}

Revision as of 10:13, 4 November 2019

Design Response Spectra for Seismic Design of Nuclear Power Plants
ML13350A358
Person / Time
Issue date: 10/31/1973
From:
US Atomic Energy Commission (AEC)
To:
References
RG-1.060
Download: ML13350A358 (6)


t*lAGy.

C0

\oU.S. ATOMIC ENERGY. COMMISSION:_.;:::

Ociober 1973

', rs
DIRECTORATE OF REGULATO RY STANDARDS

WIDE

REGULATORY GUIDE 1.60

DESIGN RESPONSE.SPECTRA FOR SEISMIC.DESIGN

OF NUCLEAR POWER PLANTS

SA..

A. INTRODUCTION

.extensive study.'has hlcn described by Newmiaik and Blunie in re!ferences I. 2, .and After ieviewing th'se Criterion 2, "Design Bases for Protection Against reterenced documents, tilt AE( RegtIu10toiy 'staff has Natural Phenoniena," Of 'Appendix A, "General Design determined as acceptahle tile fI llowicni procedilre 1or'

Criteria for Nuclear.Power Plants." to 10 CFR Part 50. defining the Design RIeslponse Spectra representing the L'.'icensing of Production and Utilization Facilities." effects of the vibratory 111i00 Otf thi SS[, 1./2 the SS!.',

requires, in part, that nuclear power plant structures, and the Operating Basis Earthquake (0111) on sites syYStems, .,and components important to safety b'h underlain by either rock or sOil deIposits d:lCoVerfinig All designed to -withstand. the' effects of earthquakes. frequencies of inter.st. However, for uliustially soft site.

Proposed Appendix A, "Seistnic and Geologic Siting .modification to this procedure will.he requited.

Criteria,'"to :10 CFR Part .100, "Reactor Site Crinteria,i.

  • Would require, in part, that the Safe Shutdown In this procedure,
  • the .configurali6ios of tihe Earthquake (SSE) be defined by response spectra horizonial. component Design Response Spectra i'm each correspoanding 'to the expected maximum ground of the two: mutually perpendicular honizontal axes are

, acc:elerations..,This guide. describes a. piocedure shown in Figure 1. of this guide. These sh lpe% agree wilh

...acceptable: to the 'AEC ARegulatory staff- for defining

'th*se developed by', Newmnz'k, Blun

e. and Kapur in

1 kplants.

Sespqnsei spectra for the seismic design of nuclear power The Adviory Committee on Reactor Safeguards bas inconsulted been concurred the regulatoryconcerning position.this guide and has reference 1. In Figure 1 tihe ase diagram consists of three parts: the bottom. line:on he left part represents the maximum ground displacement, the bottom line on the right part represents, the maximum aceleration, and ithe middle part depends. on the maximum velocit

y. Thle

'

B. DISCUSSION

horizontal component Design Response Spectra in Figure I of tids guide correspond' to a 'maximuin in o.rder. to approximate the intensity and thereby horiznital ground acceleration of 1.0 g. "rlie maxintum estimate, the maximum :.gr6tund' acceleriationo Of the: ,ground displacement. is. uiken.'propportional to the

.expcted strongesýt..ground 'm'tion,(SsE) for a given site, maximum ground accekeration. and is'set.at 36 inches

pr.oposed -Append*- A,to I0.'.CFR- Part 100. specifies. a for'a.ground "acceleratioin of1.tI, 0 g."Thc nunierical values number of,'required investigations. It does not, however. of design displacements, velocities, and accelerations for giye a -method for 'defining.. the response spectral the horizont-al component Design Response Spectra are corresponding to 'tile expected nmaximunt. ground obtained by multiplying the corresponding values of the acceleration" maximum ground displacement and acceleraliol by the factors given in Table I of this guide. Tile displacenient The recorded ground acccleratioihs and response region lines of the Design Response Spectra ame parallel spectra of' past. earthquakes provide a, basis for the to the maximum ground displacement line and are rational design of structures to resist earthquakes. The shown. un lhie left of Figure I. The velocity region lines Design Response Spectra,' .specified for design purposes, sl.ope. downward from a. frequency nf 0.25" cps (control can be developed.statistically from.response spectra of. point D)'to a.frequency of 2.5 cps (control point C) and past strong-motion earthquakes (see' reference I).. An are shown at. the 'top. The remainting two sets' of" lines between the frequencies of 2.5 cps and 33 cps (control See definitions at the end of the guide. point A), with a break ata freqtuency cf 9 cps (control USAEC REGULATORY GUIDES Coplw of publithed guide. may be obtained by request indicating the dwvitant desired to the US. Atomic Energy Commistion. Washinglon. 0,C.. 7D545, ReguLatory Guides ae Issued to. descibe and make arvailable to the public Attention: Director of Regulatory Standards. Comments arml sugpltrinni lor methods aceptable w the AEC Regulatory tiaff of implemnenting specific parns of Imnorovenmerls in these guldot *re encouraged and should ae sent to the Secretary the Coammmion's regulations, to delineate techniques used by the staff in of the Comnmiuion, U.S.. Atomic Energy Commision, Washington. D.C. 20545.

vellualng specilic problenr'ofa.postulated accidents, or to provide guidance to Attention: Chief. Public Procetlings Staff.

liegplcanl. Regulatory Guldes are not tubslltuie' for regulations and compliance with them Is not required. Methods 'end. olutlont different'from those eat out in The guides are issued onshe following ten broad divisions:

the.gulde will be acceptable It they provide a basis for the findings requisite to the suamnce or omlnmlnuani of a permit or Ilcense by the Commission. 1. Pow" Reactors *

6. Producst

2. Research and Test Reactots *

7. Transpotation

.3. Fuels and Materials Facilitis .. 8' Occupational Health Pwwusdsd guides will be revised periodically, in appropriate. to aecommodate 4. Environmental and Siting " 9. Antitrust Review wornmntS ead to reflect new Inforn-llon or5,swrne. " . . Materials and Plant.Protection 1

0. General

F-

point W. constituit: tile acceleration region h ot' the earthquake or (2) have physical characteristics thfat horizontal I)csrgn Response Spectra. Fot frequencies could significanrtly afT'ct tile spectial pattern (f input Ihigher than 33 cps. the maximum ground acceleration motion, such as heing underlain by poor soil deposits.

line represents the Design Response Spectra. Ilte procedure described above will not apply. Irt these cases, ile D)esign Resixrse Spectra should be developed The vereial corrrponent I.sign Response Spectra iitdi\idua.ly acc*i ding to thie site characteristics.

.corrtesponlding to tile IllaxiuIIInIl hIri:minrlal ,rtlnd acceh'rafioi of I.0 g are slhown in Figure 2 ofih' is guid

e.

C. REGULATORY POSITION

The nuneltici al vlues of design displacements. veloci ics.

and acceleratiotis inl these spetra are obtained by I . Tlie horizontal comtponrent ground 1elsign Response antrltiivying tile conrespol.Jing values of" the lrlaxitIniun Spectra. without soil-structn tre irtteractiorn effects, of the lihri:mital gr.u mIud moriott (acceleration = 1.0 g and SSIE, 112 the SSE, Otrthe OBE on sites underlain by rock displacemotw t = 3(N in.) hy the tactors given in Table II of or by soil should he linearly scaled from Figure 12 in lhi, guide. T"he displacentrertt reliunt lines of tlle Design propOrtiOrr to tire rnt:ixiruittn lt horizortmal ground Re-sponse Spectr;t :are parallel to the mnaxirritimum ground acceleration specilied for tIre ear thlquake closen. i Figure diisplacemtne line and are sMiomin on the left of Figure 2. I coitrespt;Ids to a tntaxinulti horimrilal ground velocity region lines slope downward f'rom a vhe acceler;tiont ofI 1.t) aind ,,ccomtlpanlyitig displacerternI of I'requency t' 0.25 cps (CIICtttil pohlt DI) to :1 fleqtuency 36 irt.l The applicable multiplicatiot fI'ctors ald corttrol oIf 3.5 cps (control point C) and are shown at the top. points are given ill Table I. For darmping ratios tot Titi reniahitnn twIO sets of lines bet weeni thie frequencies inchludd itt Fi.mrc I or Tible I. atline:tr interpolation of"3.5 cps and 3,3 cps Icontrol poini A). withI a break at should be used.

tile I'reqtlellcv ot Q cps (conitmll point 13). contllitute tIle accelera.li n tetioti o)f' tihe veefical Design Response 2. The vertical c nmttment ground Design Resporrse Spectra. It shliold be noted tltt tre vertical Design Spectta. without soil-stiructure interaction effects, of1 tite Response Spectra values are 2/3 tl.,)se of the horizontal SSE, 1/2 tite SSI.E, or the OWI" on sites underlain by rock Design Resp-nqte Spectra for frequencies less than 0.25: or hr soil should lie line:irlv scaled fronni Figure 22 ill I'm Ifrequencies higher tli:m 3.5. tiley are tIle s*me. wlhile proportion to tlt illraXilliLlin horizontal grouind the ratio varies between 2/3 arid I I'Mr frceuiencies acceletafion specified for tile earthlquake chosen. (Figure between 0.25 and 3.5. For frequencies higher thtan 33 " is based on a maxitimum /iri-'iial Sround acceleraiion cps. the Design Response Spectra ftollow tile rrraxirnrnl of 1.0 g and accomtpanying displacement of 3R in.) The giound :acceleration lirte. applicable muliiplication I'actors arnd control points are given ill Table II. For dalmping ratios riot incltded irt The horizontal antd vertical comnponent Design Figure 2 or Table II, a linear irierpolatiin shiould be Respomn:e Spectra irt Figures 1 and 2. respectively, of this used.

guide cirrespond to a tixitimuri horizontal ground acceleratiin of I 1.) e. FFr sites with different 2Tlhis does nor apply to sites which It) ar relalively clno taccelen*:tior% values specit'ied b'or the design earthquake.

to Ire epicenter ot an expecled eanrthquakc or (21 which have Ile Design Response Spectra should be linearly sacled physic.il characteristics thil could significantly affect tite Ifrom Fiigures I mrid 2 iti proportion to the specifled spectral riombinatioin o1" input molion. The D)esign Rcsponse tmaximtumn horizmontal ground acceleration. For sites that Spectra for such sites irould tie developed on a case-by-case

( I* are relat ivelv close to tile epicenter of :ai expected 1srsis.

I .0.-2

DEFINITIONS

Response Spectrum means a rlot f'l lite maxi1mum relationship obtained by analyzing, evaluating. and response (acceleration. velocity, or displacement) Of a statistically combining a number of individual icspi-mse family of idealized sinoe-degree.of.fiecdomn damped spectra derived from the records of siguificamit past oscillators as a function of natural irequencies (or eart hquakes.

periods) of the oscillators to a specified vibratory nmotion input a( their supports. When obtained from a Maximum (peak) Ground Acceleration specified for a recorded earthquake record, the response spectruin given sito means that value of the acceleiatioa which lends to be irregular. with a mlnihet of peaks and corecslx)nd-s to zero period in the design response spectra valleys. for that site. At zero period lie d&sign response sp-.clra acceleration is identical for all damping "alues and is equal to the maximum (peak) ground acceleration Design ,,soonse Spectrum is a relatively smototh specified for that site.

TABLE I

HORIZONTAL DESIGN RESPONSE SPECTRA

RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS

FOR CONTROL POINTS

SPercent Amplification Factors for Control Points of Acceleration' 2 Displacement'

Critical 2 Damping A(33 cls) B(9 cps) C(2.5 cps) D(0.25 cps)

0.5 1.0 4.96 5.95 3.20

2.0 1.0 3.54 4.25 2.50

5.0 1.0 2.61 3.13 2.05

7.0 1.0 2.27 2.72 I .88

10.0 1.0 1.90 2.28 1.70

'Maximum ,sound displacement is taken proportional to maximum ground acceleration, and is 36 in. for ground acceleration of 1.0 gravity.

2Acoeleration and displacement amplification factors are taken from recommendations given in reference I.

1.60-3

TA13LE II

VERTICAL DESIGN RESPONSE SPECTRA

RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS

FOR CONTROL POINTS

Percnt Ariplificaiion Factors for Control Points of Ac'*icra.On D spllccmnt 2 Criticr'l Dampring A(33 :n*) 8(9 cp) C(3.5 cps) D (0.2 5 c1 o.g I .A) 4,%o 5.95

.0 1.0 3.54 4.2. I.07

5.0 1.0 2.(11 3.13 1.37

7.0 I .0 2.27 2.72 I.25

10.0 1.0 I.90 2.2S

SMaximum ground displawcement ik* Ik.n proportional to na \imumn gpund acckleraion and is 36 in. fIor cround accelcration tit 1.0 gr.vity.

2 Accelera tion amplificalion lactots *or tilc I ical design rep'.nse slctra are equal 1o iho1c O'h f oS ril(ontia design reslidnwc pretra. %%hercdis displaceient amplification faitorq are 2/3 those *f" hori/tnral dcsign rekponc

rpccira. Thcsc~. ratiois belwccn tie arnplifiwation f'aciors ofl the t.o dcsicn rc.pons spectra are in agrceenln with those recommetnded in re.l'cretw I,

REFERENCES

1. Newmark, N. W.. John A. Blume. and Kanwar K. Spectra.*' Urbana. Illinois. USAEC Corntra.c No.

Kapur. "Design Responsc Spectra for Nuclear Power AT(4'?-5)-26o7. WASI.1 255. April 1073.

Plants," ASCE Structural Engineering Nleeting. San Francisco. April 19*73. 3, John A. Blume & Associates, "Recommendations for Shape of Earthquake Response Spectra," San

2. N. N1. Newmark Consulting Engineering Services. "A Francisco. California. USAEC Contract No.

Study of' Vertical and Horizontal Earthquake AT(49-5.)-301 1. WASH-1254. February 19.73.

a8

1.60-4

1000

500

200

100

>: U * /\ -,. *

S20- -

5 5

1110

0.1 0.2 0.5 1 2 5 10 20 50 100

FREQUENCY. cps a FIGURE I. HORIZONTAL DESIGN RESPONSE SPECTRA

GROUND ACCELERATION

-SCALED TO ig HORIZONTAL

1000

0.' 50 .5

100

CC

100

50

20

2i

  • ',FREQUENC,L cps___

, .*/

GR UN AC EL RAIO

00

FIGURE 2. VERTICAL DESIGN RESPONSE SPECTRA-SCALED TO lg HORIZONTAL

GRCUND ACCELERATION