AEP-NRC-2013-91, Donald C. Cook, Unit 2 - Core Operating Limits Report (Colr) Cycle 21, Revision 0: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 1: Line 1:
#REDIRECT [[AEP-NRC-2013-91, Core Operating Limits Report (Colr) Cycle 21, Revision 0]]
{{Adams
| number = ML13312A007
| issue date = 11/06/2013
| title = Donald C. Cook, Unit 2 - Core Operating Limits Report (Colr) Cycle 21, Revision 0
| author name = Gebbie J P
| author affiliation = American Electric Power, Indiana Michigan Power Co
| addressee name =
| addressee affiliation = NRC/Document Control Desk, NRC/NRR
| docket = 05000316
| license number =
| contact person =
| case reference number = AEP-NRC-2013-91
| document type = Letter type:AEP, Operating Report
| page count = 18
}}
 
=Text=
{{#Wiki_filter:INDIANA MICHIGAN POWERO A unit of American Electric Power Indiana Michigan Power Cook Nuclear Plant One Cook Place Bridgman, Ml 49106 IndianaMichiganPower.com November 6, 2013 AEP-NRC-2013-91 10 CFR 50.4 Docket No.: 50-316 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Donald C. Cook Nuclear Plant Unit 2 CORE OPERATING LIMITS REPORT Indiana Michigan Power Company, the licensee for Donald C. Cook Nuclear Plant Unit 2, is submitting the Core Operating Limits Report (COLR) for Unit 2 Cycle 21 in accordance with Technical Specification
 
====5.6.5. Revision====
0 of the Unit 2 Cycle 21 COLR is provided as an enclosure to this letter.There are no new or revised commitments in this letter. Should you have any questions, please contact Mr. Michael K. Scarpello, Regulatory Affairs Manager, at (269) 466-2649.Sincerely, JolPtGbi Joel P. Gebbie Site Vice President JJV/amp
 
==Enclosure:==
 
Donald C. Cook Nuclear Plant Unit 2 Cycle 21 Core Operating Limits Report, Revision 0 c: J.T. King, MPSC S. M. Krawec, AEP Ft. Wayne, w/o enclosure MDEQ -RMD/RPS NRC Resident Inspector C. D. Pederson, NRC Region III T. J. Wengert, NRC Washington DC (Ia-ENCLOSURE TO AEP-NRC-2013-91 Donald C. Cook Nuclear Plant Unit 2 Cycle 21 Core Operating Limits Report Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 Donald C. Cook Nuclear Plant Unit 2 Cycle 21 Core Operating Limits Report Revision 0 Page 1 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report for the Donald C. Cook Nuclear Plant Unit 2 Cycle 21 has been prepared in accordance with the requirements of Technical Specification 5.6.5.The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the Nuclear Regulatory Commission (NRC) in: a. WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Methodology, July 1985 b. WCAP-8385, Power Distribution Control and Load Following Procedures
-Topical Report, September 1974 c. WCAP-10216-P-A, Rev. 1A, Relaxation of Constant Axial Offset Control/FQ Surveillance Technical Specification, February 1994 d. Plant-specific adaptation (approved by Amendment 297, dated March 31, 2011) of WCAP-16009-P-A, "Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM)," Revision 0 (Westinghouse Proprietary), approved by letter from H. N. Berkow, NRC, to J. A. Gresham, Westinghouse Electric Company, dated November 5, 2004 e. WCAP-12610-P-A, VANTAGE+ Fuel Assembly Reference Core Report, April 1995 f. WCAIP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986 g. WCAP-13749-P-A, Safety Evaluation Supporting the Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement, March 1997 h. WCAP-12610-P-A
& CENPD-404-P-A, Addendum I-A, Optimized ZIRLOTM, July 2006 (Westinghouse Proprietary)
The Technical Specifications affected by this report are listed below: 2.1.1 Reactor Core SLs [Safety Limits]3.1.1 SHUTDOWN MARGIN (SDM)3.1.3 Moderator Temperature Coefficient (MTC)3.1.5 Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNAH)3.2.3 AXIAL FLUX DIFFERENCE (AFD)3.3.1 Reactor Trip System (RTS) Instrumentation 3.4.1 RCS [Reactor Coolant System] Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits 3.9.1 Boron Concentration Page 2 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 2.0 OPERATING-LIMITS The cycle-specific parameter limits listed in Section 1.0 are presented in the following subsections.
These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5.2.1 SAFETY LIMITS 2.1.1 Reactor Core SLs (Specification 2.1.1)In Modes 1 and 2, the combination of thermal power, pressurizer pressure, and the highest loop average temperature (T.,v) shall not exceed the limits as shown in Figure 6 for 4 loop operation.
 
===2.2 REACTIVITY===
 
CONTROL 2.2.1 SHUTDOWN MARGIN (SDM) (Specification 3.1.1)Shutdown margin shall be greater than or equal to 1.3% Ak/k for Tavg > 200OF Shutdown margin shall be greater than or equal to 1.0% Ak/k for Tavg < 200*F 2.2.2 Moderator Temperature Coefficient (MTC) (Specification 3.1.3)a. The MTC limits are: The BOL/ARO-MTC shall be less positive or equal to the value given in Figure 1.The EOL/ARO/RTP-MTC shall be less negative or equal to -4.1 OE-4 Ak/kTF.This limit is based on a Tavg program with HFP vessel Tavg of 571.0 to 576.0 OF Where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for Rated Thermal Power HFP stands for Hot Full Thermal Power Page 3 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 b. The MTC Surveillance limit is: The 300 ppm/ARO/RTP-MTC should be less negative or equal to -3.20E-4 Ak/k/*F at a HFP vessel Tsvg of 571.0 to 576.0 'F c. The Revised Predicted near-EOL 300 ppm MTC shall be calculated using Figure 7 and the following algorithm:
Revised Predicted MTC = Predicted MTC + AFD Correction
+ Predicted Correction*
* Predicted Correction is -0.30E-4 Ak/k/0 F.If the Revised Predicted MTC is less negative than the Surveillance Requirement (SR)3.1.3.2 limit (COLR 2.2.2.b) and all of the benchmark data contained in the surveillance procedure are met, then a MTC measurement in accordance with SR 3.1.3.2 is not required.d. The MTC Surveillance limit is: The 60 ppm/ARO/RTP-MTC should be less negative or equal to -3.90E-4 Akl/k/F at a HFP vessel T.vg of 571.0 to 576.0 *F 2.2.3 Shutdown Bank Insertion Limits (Specification 3.1.5)The shutdown rods shall be withdrawn to at least 228 steps.2.2.4 Control Bank Insertion Limits (Specifications 3.1.6)a. The control rod banks shall be limited in physical insertion as shown in Figure 2.b. Successive Control Banks shall overlap by 100 steps. The sequence for Control Bank withdrawal shall be Control Bank A, Control Bank B, Control Bank C, and Control Bank D.2.3 POWER DISTRIBUTION LIMITS 2.3.1 AXIAL FLUX DIFFERENCE (AFD) (Specification 3.2.3)a. The Allowable Operation Limits are provided in Figure 3.b. The AFD target band is +5% for a cycle average accumulated bumup>0.0 MWD/MTU [Megawatt Days/Metric Ton Uranium].Page 4 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 2.3.2 Heat Flux Hot Channel Factor (FQ(Z)) (Specification 3.2.1)F. (Z) <&#xfd; CFQ *K(Z)P Frc(Z) < 2
* CFQ
* K(Z)CFQ, F" (Z) <!5 *K(Z)P FV (Z) :5 2
* CFQ
* K(Z)for P>0.5 for P:5 0.5 for P > 0.5 for P<0.5 THERMAL POWER Where: P = RATED THERMAL POWER a. CFQ = 2.335 b. K(Z) is provided in Figure 4 c. is the measured hot channel factor including a 3% manufacturing tolerance uncertainty and a 5% measurement uncertainty.
: d. W(Z) is provided in Table 1 for +5% AFD target band.e. Fw,(Z) = Fc (Z) x w(z) x Fp The W(z) values are generated assuming that they will be used for a full power surveillance.
When a part power surveillance is performed, the W(z) values should be multiplied by the factor l/P, when P is > 0.5. When P is _ 0.5, the W(z) values should be multiplied by the factor 1/(0.5), or 2.0. This is consistent with the adjustment in the FQ(z) limit at part power conditions.
Page 5 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 f For Cycle 21, Fp = 1.02 for all butmups associated with Note 2a of SR 3.2.1.2, except as shown in the table below. When no penalty is required, Fp = 1.00.Cycle Burnup Penalty Factor (MWD/MTU)
FQ(z)0 1.0452 150 1.0452 317 1.0467 484 1.0480 651 1.0488 818 1.0489 986 1.0483 1153 1.0470 1320 1.0448 1487 1.0419 1654 1.0386 1821 1.0361 1988 1.0339 2155 1.0318 2322 1.0301 2490 1.0285 2657 1.0268 2824 1.0249 2991 1.0227 3158 1.0203 3325 1.0200 8004 1.0200 8171 1.0202 8338 1.0200 The bumup range only covers where Fp adequate for intermediate cycle bumups.exceeds 1.02.Linear interpolation is 2.3.3 Nuclear Enthalpy Rise Hot Channel Factor (FNAB) (Specification 3.2.2)FNAl< CFAH * (1 + PFAm *(l-P))Page 6 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 THERMAL POWER Where: P = RATED THERMAL POWER a. CFH= 1.61 b. PFA = 0.3 c. FeA is the measured Enthalpy Rise Hot Channel Factor including a 4% measurement uncertainty.
 
===2.4 INSTRUMENTATION===
 
====2.4.1 Reactor====
Trip System (RTS) Instrumentation (Specification 3.3.1)The Overtemperature AT and Overpower AT setpoints are as shown in Figure 5.2.5 REACTOR COOLANT SYSTEM 2.5.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits (Specification 3.4.1)a. Pressurizer Pressure shall be > 2172.4 psig +b. RCS T,.g shall be < 580.1 &deg;F +c. RCS Total Flow Rate shall be >_ 366,400 gpm 2.6 REFUELING OPERATIONS
 
====2.6.1 Boron====
Concentration (Specification 3.9.1)The boron concentration of all filled portions of the Reactor Coolant System, the refueling canal and the refueling cavity shall be greater than or equal to 2400 ppmn.+ These are Safety Analysis values. With readability allowance, the corresponding values are. 577.8&deg;F for T.., and 2200 psig for Pressurizer Pressure.++ This concentration bounds the condition of KIff < 0.95 which includes a 1% Ak/k conservative allowance for uncertainties.
The boron concentration of 2400 ppm includes a 50 ppm conservative allowance for uncertainties.
Page 7 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 1 MODERATOR TEMPERATURE COEFFICIENT (MTC) LIMITS 1.0 0.5 LL Cb'aI C:)V-x 0"-0.0-0.5 UNACCEPTABLE OPERATION ACCEPTABLE OPERATION]
0 10 20 30 40 50 60 70 80 90 100-1.0 Percent Rated Thermal Power Page 8 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0'D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 25][(52.9%, 228) _10step Ove0ap 20.0 BANK C L(100%1, 189)1?175 150 _ _0~Z 125 (0o%, 128 -/__CI-o FBANK D&#xfd;o. 100 0 0 50 25 0 (0%,0 20 3040 50 60 70 8090 100 o1 POWER (% of Rated Thermal Power)Page 9 of 16 D. C. COOK UNIT 2 CYCLE 21.Revision 0 FIGURE 3 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (RTP)100 0 0 0.E V0.90 BO 70 60 60 40 30 20 10 0 FLUX DIFFERENCE (DELTA-I)Page 10 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 4 K(Z) -NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 12 1.0 0 GA 02o (o.0, 1.o) (8.425, 1.0o _____( 2,0,0.954) 0 4 6 CORE HEIGHT (Fr)a 10 12 Page 11 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 5 (Page 1 of 2)Reactor Trip System Instrumentation Trip Setpoints Overtemperature AT Trip Setpoint OvertemperatureAT<
AT 0 [K -I' L +r 2 sJ (T-T') + K3 (P-P) -f 1 (Al)]Where: AT = Measured RCS AT, IF ATo = Indicated AT at RATED THERMAL POWER, OF T = Average temperature, IF TV = Nominal T.,, at RATED THERMAL POWER, (5 576.0-F)P = Pressurizer Pressure, psig P&#xfd; = Nominal RCS operating pressure (2235 psig)1 +TSI = The function generated by the lead-lag controller for Tav, dynamic 1 + rS]compensation
* = Time constants utilized in the lead-lag controller for T.,g T1 > 28 sees. r 2< 4 secs.S = Laplace transform operator, see"1 K, < 1.19*K 2  > 0.01331/0 F K3 ? 0.00058/psig f, (Al) = -3.5 {33% + (qt -qb)} when q, -qb < -33% RTP 0% of RTP when -33% RTP < q, -qb < 6% RTP+1.0 {(qt -qb) -6%} when qt -qb > 6% RTP where q% and qb are percent RATED THERMAL POWER in the upper and lower halves of the core respectively, and q, + qb is total THERMAL POWER in percent RATED THERMAL POWER.* This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.Page 1.2 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 5 (Page 2 of 2)Overpower AT Trip Setpoint Overpower AT < AT. o[k -[r T T -K6 (T -T") 42 (AI)]Where: AT Measured RCS AT, OF AT. = Indicated AT at RATED THERMAL POWER, OF T = Average temperature, OF T" = Nominal T., at RATED THERMAL POWER, (5 576.0 OF)K 4  < 1.16*Ks > 0.02/&deg;F for increasing average temperature; K5 = 0 for decreasing average temperature K6 > 0.001 97/&deg;F for T greater than T" ; K6=0 for T less than or equal to T"-rS -The function generated by the rate lag controller for T.ng dynamic compensation 1 + rS 19 3  Time constant utilized in the rate lag controller for T3 ? 10 sees.S = Laplace transform operator, seej f 2 (AI) = 0.0* This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.Page 13 of 16 A C. COOK UNIT 2 CYCLE 21 Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 6 Reactor Core Safety Limits 660 I I I I I F--T I I I I-0Z, 0o i ~UNACCE :ABLE 640 2400 F SIA--''640-630 225 F 1&#xfd;620 610 -\ -600 590 "- INN ACCEY 'ABLE 580 --OEMim, 570---550 0 0.2 0.4 0.6 0.8 I 1.2 PRESSURE (psia)1775 2000 2100 2250 2400 UNIT 2 Power (fraction of rated thermal power)DESCRIPTION OF SAFETY LIMITS Power Tavg Power Tavg Power Tavg Power Tavg (frac) ('F) (frac) ('F) (frac) ('F) (frac) (' F)0.00 615.4 0.98 583.8 1.02 580.9 1.2 558.1 0.00 631.8 0.86 605.8 0.96 597.5 1.2 568.5 0.00 639.1 0.82 614.0 0.96 601.6 1.2 5T3.1 0.00 649.2 0.72 628.6 0.98 605.2 1.2 580.4 0.00 659.0 0.62 642.0 1.1 599.0 1.2 588.1 Reactor Core Safety Limits Page 14 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 7 Unit 2 Cycle 21 Predicted HFP ARO 300 PPM MTC Versus Burnup-2.36E-04-2.38E-04-2.40E-04-2.42E-04 0 0 E 0 a -2.44E-04 a 6 E o. -2.46E-04-2.48E-04 N-2.52E-04-2.54E-04 16,000 17,000 18,000 19,000 20,000 Cycle Bumup (MWD/MTU)Burnup (MWDIMTU)
MTC (pcm/&deg;F) MTC (Aklk/F)16000 -23.800 -2.3800E-04 17000 -24.202 -2.4202E-04 18000 -24.564 -2.4564E-04 19000 -24.921 -2.4921 E-04 20000 -25.290 -2.5290E-04 Page 15 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 TABLE 1 D. C. Cook Unit 2 Cycle 21 W(Z) Function 2 020 I 1.0000 1 1.000 1.0000 I .O000 I 1,0000 I 10000 I 1.0000 I 1.C000I 1,000D 1 1.0000 1 1.0000 I 1.0000 I ;.0000I 1.000 1.MO00.0]00 I I',I 1.1139 1.1 1.14 a 1.10 1 1.1104 1 1.1134 1 1.1100 I 1.10U5 1 1.1071 1.1051 1.1068 1.2093 1.11"4 1.1239 1.13M ,1373 1 1,14441 1.1480 1.1504 9 0.60 1.1147 1.1111 1.1(377 1.1051 1.1035 1.1030 1.1035 1.1074 1.1127 1.1181 1.1234 11.129D 1,13419 1.14101 1.1448 1.14a,5 1 0 1.80 1.1 127 1.m1(04 1.1063 1.1040 1.1026 1.1022 1.1029 1.1065 1.1114 1.116M 1.1211 1.120 t.1012 1.13M8 1.1400 1.1415 11 ?00 1 121M 1 1(711 .10W1 MU 12 1173 1 111711 1 i(131 1 It1 1A 11007 1 1 1311 1.1170 1 1V" 3. 1 2M 11114 1 1MM 1 1357 12 2.20 1.1073 1.1055 1.107 1.1024 1.1017 1.1015 1.102 1.1043 1.1075 1.110 1.1142 1.1177 1.1217 1.125e 1.1280 1.1291 13 2.40 1-1041 1.1121 1.1020 1.1013 1.1008 1.1009 1.1012 1.1027 1.1049 1.1073 1.1099 1.1127 1.1150 1.1191 1.1210 1.1210 14 2.60 1.100 1.13 1.100D I.0-9M 1.0991 1.090 1,1001 1-1008 1-1019 1.1034 1.1051 1.1072 1.1005 1.1118 1.1132 1.1138 1.0 2.80 1.0907 1.0M7 1.09-7 1.MIMI 1.0984 1.0080 1.0887 1-C087 1.007 1.069 1.1001 1.1013 ;.102 1.10I42 1.1049 1.1002 1& 300 I 0M2 13 1M 008Q1 I100 10MI I OW 0071 10071 1(04 1 11964 1 f942 1I n41 110040 1. n083 1I011M 1I11 1MB I M 17 3.20 1.0181 1.0G86 1.09-10 1.0939 1.0948 1.0052 1.0951 1.0938 1.0120 1.0007 1.0899 1.0803 !,08M 1.008 1.0077 1.0874 Is 3.40 1-0804 1.0W0 1.0904 1-0919 1.0920 1.0932 1.0M2 11910 1.0387 1.0972 1.0867 1.080 1.0870 1.0072 1.0870 1.0309 Is 3.80 1.0857 1.0078 1.0890 1.0013 1.00.2 10923 1.8917 ISM99 1.0M8 1.0055 1.0864 1.0@M 1,0=2 1.0953 1.956 1.0970 F 26 S.60 1.0004 1.06W3 1.0004 LOS0I1D 1.025 1.0024 1.0815 1.C.68I 1.0301 1.0648 1.0672 1.0818- 1.0981 1.1038 1.1003 1.1074 21 4.00 1.0880 1.069 1.0014 1.0029 1.0021 1.0020 1.0017 1.188 1.0805 ll 1.0 804 1.00" 84OV *.IOU2 1.1111 1.1148 1.1161 22 4.1 1.0181 1.0M60 1.0920 1.003 1.0934 1.0031 1.0M2 1.1.82 1.083 1.0880 1.0931 1.1002 ',.1005 1,1181 1.1223 1.1241 23 4.40 1.0802 1.0012 1.0921 1.0Q92 1.0032 1.M 3 1.0925 1.108 1.002 1.0M2 1.0078 1.1055 ,.1152 1.1244 1.1200 1.1310 24 4.90 1.0911 1.0915 1.0V2 1 1-0025 1.0928 1020 1.0928 1.006 1021 1.0929 1.0903 1.1022 1.1103 1.1204 1.1300 1.1349 1.1372 23 4"4 1.0818 1.0017 1.0018 1.0*10 1.0921 1.0023 1.0025 1.0032 1.0903 1.0897 1.1062 1.114 1.240 1.1347 1.1400D 1.142 29 5.00 1.002 1.0010 1.0012 1.0011 1.001, 1.0015 1.0M3 1.1.0 1,0074 1.1027 1.100 1.1114 1.18? 1.38 1.1441 1.146a 27 8.2 1.0024 1.0013 1.0004 1.08W0 1.0890 1.090 1.0912 1.CQ44 1.0801 1.1M5 1.1128 1.1215 1.30 1.1415 1.1472 1,1498 28 SAO0 1.0022 1.0800 1.0892 1.0805 1.0893 1.0M8 1.000 1.0945 1.1004 1.107n 1.1161 1.1238 1.1337 1,1434 1.1491 1.1517 29 5.60 1.C0010 1.0e90 1.0877 1.0887 1.0005 1.0071 1.0887 1.0941 1.1011 1.1888 1.1108 1.1252 S,1346 1,1440 1.1498 1,1524 30 S.AO 1.0013 L.06M 1.0003 1.0848 1.0844 1.0851 1.0880 1.002 1.1012 1.10IM 1.1173 LI1M8 ;,1340 1.1435 1.1482 1,1518 01 C.00 1.0011 1.0077 .1.0847 1.0&W7 1.002-0 10028 1.00.48 I.C017 1.1008 1.1001 1.1171 .1.1250 1.1331 1.1417 1.1473 1.1408 32 8.20 1.003 1.000 1.0929 1.0.11A 1.0724 1.0709 1.0 I 020189 1.0802 1.108 1.1159 1.1224 1.1300. 1.12a7 1.1440 1.1484 33 6.A I.0891 1.0)047 1.0807 1.0780 1,0708 1.0772 1.0794 1.C'74 1.0972 1,1000 1.1138 1.1205 1.20 1,1340. 1.1390 1.1410 U4 6.90 I .0872 1.0W0 1,0785 1.0758 1.0743 10740 1.0707 1.087 1.0W4 1.102= 1.1101 110 .21 119 .30 110 30 6.80 1 CUM5 I.M3 1.0759 1.0779 1.0713 1.07715 1,0735 1.V012 I,0UM 1.087 1.1053 1.1110 1. 1104 1.1223 1.12W0 1.1294 34 7.00 1.0012 1.07"7 1.0721 1.004 1.0870 1.0081 1.0700 1.0776 ,W 1,0088 1040 1.1010 LI10N 1.1123 1.1103 1.120 1.24a 37 7.20 1-0786 1.037 1.0881 3.0853 1.0044 10047 1.000 1.-752 7.08 1.083 1.10 1.100 S.112; 1.1181 1.1225 1.1245 3$ 7." 1,0820 1.070 1.0094 LOW65 1.0030 1.0632 1.05W0 1.0707 1.GM9 1.0083 1,1048 1.1089 ;.1118 1,1155 1.1191 1. 1207 3S 7.90 1.0853 1.078 1.0729 2.068 1,0588 1.06090 1.0897 1L801 1.092 1.1808 1.106 1.1005 1,1112 1.1138 1.11M7 1.118ea 40 1.80 1.068(3 1.0W4 1.07-1 2.0733 107 15 1.0119 1.0144 1.800 1,0814 1.1021 1.17 IM 08 Maw 1LIM 1.1121 1.1144 1.1203 4t 6.00 COMO0 1.0055 1.0007 1.0774 1.0750 10700 1.0703 1.0080 1.09e5 1.1031 1.106 1.1004 1.1006 1.1005 1.1112 1.112 A7 M.70 119w7 1.19wm 1.1114 1.1111 1.21708 1(81 1(163 1(010 100( 11113n 5 1 1125 11(17( 1,104 i1(1114 1.1(171 1.1001 43 6.40 1.0944 1.0807 .1.0872 1.084 1.0.3 1.08a9 1.08 1.1920 1.090D 1.1033 1.1051 1.1051 1.1038 1.1028 1.1033 1.1038 SAD.0 1.0957 1.0927 1.0000 LOW88 1.0871 1.0874 1.0888 U.040 1.084 1.10125 1.10n2 1102 1.099 1.098 1.398 1.090 45 a.g0 1.0M65 1.0944 1.0923 1-0909 1.0902 1.0904 1.0915 1-1955 1.009 1.1018 1.1022 1.1013 1.0992 1.0970 1.3974 1.0972 40 0.60 1.0970 1.0007 1.004 1.0930 1Et34 1.%72 1.0943. 1.CQ60 1.000.4 1.1011 1.1019 1.1019 t.1014 1.02 1104 111 Al 91 I09f 19311 1107 ( .0 1318 101 105 1411 300 111 11 1113 1. 1 11(111 4111 1.101a 43 9.40 1M~ 21 1.0809 11.0974 1.098 2.08 1.0994M 1.1002 1.1011 1.1032 1.10511 1.1006eT1.1070 1.1083 1.1086 1.01 HIM9 .19 49 1 9.so 1 1.1 07 1 1. il7 1.1009 1 1.1013 1 1.1020 1 1.1029 1 1.1042 I1.1073 1 1.1H03 1 1.1122 1 1.1131 1 1.1133 1.1127 1.1124 1 1.1127 1.1129 I:1 .144t2 1142 1 1A4 .0 I.~ 1.14)(F7 1.1107 I! ',173 1.187I 1.11170 1 1. 1171 D D 1.1074 I1.10C 1.1000 1 1.1073 1 1.1000 1 1.1139 I..1211,8 1.1212I1.11 1.1210 1.1251 1.127Q 1.1303 84& 100 I 1.1218 1 1.110 1 1.1168 1_ 11151 1.1145 1.1150 1 1.1167 1.1224 I-1.122 1 1.1320 1.1334 I I I 1.12311 1 1.2921 1.1302 I I Top and bottom 10% of core excluded Page 16 of 16}}

Revision as of 22:55, 7 February 2019

Donald C. Cook, Unit 2 - Core Operating Limits Report (Colr) Cycle 21, Revision 0
ML13312A007
Person / Time
Site:  American Electric Power icon.png
Issue date: 11/06/2013
From: Gebbie J P
American Electric Power, Indiana Michigan Power Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
AEP-NRC-2013-91
Download: ML13312A007 (18)


Text

INDIANA MICHIGAN POWERO A unit of American Electric Power Indiana Michigan Power Cook Nuclear Plant One Cook Place Bridgman, Ml 49106 IndianaMichiganPower.com November 6, 2013 AEP-NRC-2013-91 10 CFR 50.4 Docket No.: 50-316 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Donald C. Cook Nuclear Plant Unit 2 CORE OPERATING LIMITS REPORT Indiana Michigan Power Company, the licensee for Donald C. Cook Nuclear Plant Unit 2, is submitting the Core Operating Limits Report (COLR) for Unit 2 Cycle 21 in accordance with Technical Specification

5.6.5. Revision

0 of the Unit 2 Cycle 21 COLR is provided as an enclosure to this letter.There are no new or revised commitments in this letter. Should you have any questions, please contact Mr. Michael K. Scarpello, Regulatory Affairs Manager, at (269) 466-2649.Sincerely, JolPtGbi Joel P. Gebbie Site Vice President JJV/amp

Enclosure:

Donald C. Cook Nuclear Plant Unit 2 Cycle 21 Core Operating Limits Report, Revision 0 c: J.T. King, MPSC S. M. Krawec, AEP Ft. Wayne, w/o enclosure MDEQ -RMD/RPS NRC Resident Inspector C. D. Pederson, NRC Region III T. J. Wengert, NRC Washington DC (Ia-ENCLOSURE TO AEP-NRC-2013-91 Donald C. Cook Nuclear Plant Unit 2 Cycle 21 Core Operating Limits Report Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 Donald C. Cook Nuclear Plant Unit 2 Cycle 21 Core Operating Limits Report Revision 0 Page 1 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report for the Donald C. Cook Nuclear Plant Unit 2 Cycle 21 has been prepared in accordance with the requirements of Technical Specification 5.6.5.The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the Nuclear Regulatory Commission (NRC) in: a. WCAP-9272-P-A, Westinghouse Reload Safety Evaluation Methodology, July 1985 b. WCAP-8385, Power Distribution Control and Load Following Procedures

-Topical Report, September 1974 c. WCAP-10216-P-A, Rev. 1A, Relaxation of Constant Axial Offset Control/FQ Surveillance Technical Specification, February 1994 d. Plant-specific adaptation (approved by Amendment 297, dated March 31, 2011) of WCAP-16009-P-A, "Realistic Large Break LOCA Evaluation Methodology Using the Automated Statistical Treatment of Uncertainty Method (ASTRUM)," Revision 0 (Westinghouse Proprietary), approved by letter from H. N. Berkow, NRC, to J. A. Gresham, Westinghouse Electric Company, dated November 5, 2004 e. WCAP-12610-P-A, VANTAGE+ Fuel Assembly Reference Core Report, April 1995 f. WCAIP-8745-P-A, Design Bases for the Thermal Overpower AT and Thermal Overtemperature AT Trip Functions, September 1986 g. WCAP-13749-P-A, Safety Evaluation Supporting the Conditional Exemption of the Most Negative EOL Moderator Temperature Coefficient Measurement, March 1997 h. WCAP-12610-P-A

& CENPD-404-P-A, Addendum I-A, Optimized ZIRLOTM, July 2006 (Westinghouse Proprietary)

The Technical Specifications affected by this report are listed below: 2.1.1 Reactor Core SLs [Safety Limits]3.1.1 SHUTDOWN MARGIN (SDM)3.1.3 Moderator Temperature Coefficient (MTC)3.1.5 Shutdown Bank Insertion Limits 3.1.6 Control Bank Insertion Limits 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNAH)3.2.3 AXIAL FLUX DIFFERENCE (AFD)3.3.1 Reactor Trip System (RTS) Instrumentation 3.4.1 RCS [Reactor Coolant System] Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits 3.9.1 Boron Concentration Page 2 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 2.0 OPERATING-LIMITS The cycle-specific parameter limits listed in Section 1.0 are presented in the following subsections.

These limits have been developed using the NRC-approved methodologies specified in Technical Specification 5.6.5.2.1 SAFETY LIMITS 2.1.1 Reactor Core SLs (Specification 2.1.1)In Modes 1 and 2, the combination of thermal power, pressurizer pressure, and the highest loop average temperature (T.,v) shall not exceed the limits as shown in Figure 6 for 4 loop operation.

2.2 REACTIVITY

CONTROL 2.2.1 SHUTDOWN MARGIN (SDM) (Specification 3.1.1)Shutdown margin shall be greater than or equal to 1.3% Ak/k for Tavg > 200OF Shutdown margin shall be greater than or equal to 1.0% Ak/k for Tavg < 200*F 2.2.2 Moderator Temperature Coefficient (MTC) (Specification 3.1.3)a. The MTC limits are: The BOL/ARO-MTC shall be less positive or equal to the value given in Figure 1.The EOL/ARO/RTP-MTC shall be less negative or equal to -4.1 OE-4 Ak/kTF.This limit is based on a Tavg program with HFP vessel Tavg of 571.0 to 576.0 OF Where: ARO stands for All Rods Out BOL stands for Beginning of Cycle Life EOL stands for End of Cycle Life RTP stands for Rated Thermal Power HFP stands for Hot Full Thermal Power Page 3 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 b. The MTC Surveillance limit is: The 300 ppm/ARO/RTP-MTC should be less negative or equal to -3.20E-4 Ak/k/*F at a HFP vessel Tsvg of 571.0 to 576.0 'F c. The Revised Predicted near-EOL 300 ppm MTC shall be calculated using Figure 7 and the following algorithm:

Revised Predicted MTC = Predicted MTC + AFD Correction

+ Predicted Correction*

  • Predicted Correction is -0.30E-4 Ak/k/0 F.If the Revised Predicted MTC is less negative than the Surveillance Requirement (SR)3.1.3.2 limit (COLR 2.2.2.b) and all of the benchmark data contained in the surveillance procedure are met, then a MTC measurement in accordance with SR 3.1.3.2 is not required.d. The MTC Surveillance limit is: The 60 ppm/ARO/RTP-MTC should be less negative or equal to -3.90E-4 Akl/k/F at a HFP vessel T.vg of 571.0 to 576.0 *F 2.2.3 Shutdown Bank Insertion Limits (Specification 3.1.5)The shutdown rods shall be withdrawn to at least 228 steps.2.2.4 Control Bank Insertion Limits (Specifications 3.1.6)a. The control rod banks shall be limited in physical insertion as shown in Figure 2.b. Successive Control Banks shall overlap by 100 steps. The sequence for Control Bank withdrawal shall be Control Bank A, Control Bank B, Control Bank C, and Control Bank D.2.3 POWER DISTRIBUTION LIMITS 2.3.1 AXIAL FLUX DIFFERENCE (AFD) (Specification 3.2.3)a. The Allowable Operation Limits are provided in Figure 3.b. The AFD target band is +5% for a cycle average accumulated bumup>0.0 MWD/MTU [Megawatt Days/Metric Ton Uranium].Page 4 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 2.3.2 Heat Flux Hot Channel Factor (FQ(Z)) (Specification 3.2.1)F. (Z) <ý CFQ *K(Z)P Frc(Z) < 2
  • CFQ
  • K(Z)CFQ, F" (Z) <!5 *K(Z)P FV (Z) :5 2
  • CFQ
  • K(Z)for P>0.5 for P:5 0.5 for P > 0.5 for P<0.5 THERMAL POWER Where: P = RATED THERMAL POWER a. CFQ = 2.335 b. K(Z) is provided in Figure 4 c. is the measured hot channel factor including a 3% manufacturing tolerance uncertainty and a 5% measurement uncertainty.
d. W(Z) is provided in Table 1 for +5% AFD target band.e. Fw,(Z) = Fc (Z) x w(z) x Fp The W(z) values are generated assuming that they will be used for a full power surveillance.

When a part power surveillance is performed, the W(z) values should be multiplied by the factor l/P, when P is > 0.5. When P is _ 0.5, the W(z) values should be multiplied by the factor 1/(0.5), or 2.0. This is consistent with the adjustment in the FQ(z) limit at part power conditions.

Page 5 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 f For Cycle 21, Fp = 1.02 for all butmups associated with Note 2a of SR 3.2.1.2, except as shown in the table below. When no penalty is required, Fp = 1.00.Cycle Burnup Penalty Factor (MWD/MTU)

FQ(z)0 1.0452 150 1.0452 317 1.0467 484 1.0480 651 1.0488 818 1.0489 986 1.0483 1153 1.0470 1320 1.0448 1487 1.0419 1654 1.0386 1821 1.0361 1988 1.0339 2155 1.0318 2322 1.0301 2490 1.0285 2657 1.0268 2824 1.0249 2991 1.0227 3158 1.0203 3325 1.0200 8004 1.0200 8171 1.0202 8338 1.0200 The bumup range only covers where Fp adequate for intermediate cycle bumups.exceeds 1.02.Linear interpolation is 2.3.3 Nuclear Enthalpy Rise Hot Channel Factor (FNAB) (Specification 3.2.2)FNAl< CFAH * (1 + PFAm *(l-P))Page 6 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 THERMAL POWER Where: P = RATED THERMAL POWER a. CFH= 1.61 b. PFA = 0.3 c. FeA is the measured Enthalpy Rise Hot Channel Factor including a 4% measurement uncertainty.

2.4 INSTRUMENTATION

2.4.1 Reactor

Trip System (RTS) Instrumentation (Specification 3.3.1)The Overtemperature AT and Overpower AT setpoints are as shown in Figure 5.2.5 REACTOR COOLANT SYSTEM 2.5.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits (Specification 3.4.1)a. Pressurizer Pressure shall be > 2172.4 psig +b. RCS T,.g shall be < 580.1 °F +c. RCS Total Flow Rate shall be >_ 366,400 gpm 2.6 REFUELING OPERATIONS

2.6.1 Boron

Concentration (Specification 3.9.1)The boron concentration of all filled portions of the Reactor Coolant System, the refueling canal and the refueling cavity shall be greater than or equal to 2400 ppmn.+ These are Safety Analysis values. With readability allowance, the corresponding values are. 577.8°F for T.., and 2200 psig for Pressurizer Pressure.++ This concentration bounds the condition of KIff < 0.95 which includes a 1% Ak/k conservative allowance for uncertainties.

The boron concentration of 2400 ppm includes a 50 ppm conservative allowance for uncertainties.

Page 7 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 1 MODERATOR TEMPERATURE COEFFICIENT (MTC) LIMITS 1.0 0.5 LL Cb'aI C:)V-x 0"-0.0-0.5 UNACCEPTABLE OPERATION ACCEPTABLE OPERATION]

0 10 20 30 40 50 60 70 80 90 100-1.0 Percent Rated Thermal Power Page 8 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0'D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 2 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 25][(52.9%, 228) _10step Ove0ap 20.0 BANK C L(100%1, 189)1?175 150 _ _0~Z 125 (0o%, 128 -/__CI-o FBANK Dýo. 100 0 0 50 25 0 (0%,0 20 3040 50 60 70 8090 100 o1 POWER (% of Rated Thermal Power)Page 9 of 16 D. C. COOK UNIT 2 CYCLE 21.Revision 0 FIGURE 3 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER (RTP)100 0 0 0.E V0.90 BO 70 60 60 40 30 20 10 0 FLUX DIFFERENCE (DELTA-I)Page 10 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 4 K(Z) -NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 12 1.0 0 GA 02o (o.0, 1.o) (8.425, 1.0o _____( 2,0,0.954) 0 4 6 CORE HEIGHT (Fr)a 10 12 Page 11 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 5 (Page 1 of 2)Reactor Trip System Instrumentation Trip Setpoints Overtemperature AT Trip Setpoint OvertemperatureAT<

AT 0 [K -I' L +r 2 sJ (T-T') + K3 (P-P) -f 1 (Al)]Where: AT = Measured RCS AT, IF ATo = Indicated AT at RATED THERMAL POWER, OF T = Average temperature, IF TV = Nominal T.,, at RATED THERMAL POWER, (5 576.0-F)P = Pressurizer Pressure, psig Pý = Nominal RCS operating pressure (2235 psig)1 +TSI = The function generated by the lead-lag controller for Tav, dynamic 1 + rS]compensation

  • = Time constants utilized in the lead-lag controller for T.,g T1 > 28 sees. r 2< 4 secs.S = Laplace transform operator, see"1 K, < 1.19*K 2 > 0.01331/0 F K3 ? 0.00058/psig f, (Al) = -3.5 {33% + (qt -qb)} when q, -qb < -33% RTP 0% of RTP when -33% RTP < q, -qb < 6% RTP+1.0 {(qt -qb) -6%} when qt -qb > 6% RTP where q% and qb are percent RATED THERMAL POWER in the upper and lower halves of the core respectively, and q, + qb is total THERMAL POWER in percent RATED THERMAL POWER.* This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.Page 1.2 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 5 (Page 2 of 2)Overpower AT Trip Setpoint Overpower AT < AT. o[k -[r T T -K6 (T -T") 42 (AI)]Where: AT Measured RCS AT, OF AT. = Indicated AT at RATED THERMAL POWER, OF T = Average temperature, OF T" = Nominal T., at RATED THERMAL POWER, (5 576.0 OF)K 4 < 1.16*Ks > 0.02/°F for increasing average temperature; K5 = 0 for decreasing average temperature K6 > 0.001 97/°F for T greater than T" ; K6=0 for T less than or equal to T"-rS -The function generated by the rate lag controller for T.ng dynamic compensation 1 + rS 19 3 Time constant utilized in the rate lag controller for T3 ? 10 sees.S = Laplace transform operator, seej f 2 (AI) = 0.0* This is a Safety Analysis value. Refer to Technical Requirements Manual for nominal value of this coefficient used in programming the trip setpoint.Page 13 of 16 A C. COOK UNIT 2 CYCLE 21 Revision 0 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 6 Reactor Core Safety Limits 660 I I I I I F--T I I I I-0Z, 0o i ~UNACCE :ABLE 640 2400 F SIA--640-630 225 F 1ý620 610 -\ -600 590 "- INN ACCEY 'ABLE 580 --OEMim, 570---550 0 0.2 0.4 0.6 0.8 I 1.2 PRESSURE (psia)1775 2000 2100 2250 2400 UNIT 2 Power (fraction of rated thermal power)DESCRIPTION OF SAFETY LIMITS Power Tavg Power Tavg Power Tavg Power Tavg (frac) ('F) (frac) ('F) (frac) ('F) (frac) (' F)0.00 615.4 0.98 583.8 1.02 580.9 1.2 558.1 0.00 631.8 0.86 605.8 0.96 597.5 1.2 568.5 0.00 639.1 0.82 614.0 0.96 601.6 1.2 5T3.1 0.00 649.2 0.72 628.6 0.98 605.2 1.2 580.4 0.00 659.0 0.62 642.0 1.1 599.0 1.2 588.1 Reactor Core Safety Limits Page 14 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 FIGURE 7 Unit 2 Cycle 21 Predicted HFP ARO 300 PPM MTC Versus Burnup-2.36E-04-2.38E-04-2.40E-04-2.42E-04 0 0 E 0 a -2.44E-04 a 6 E o. -2.46E-04-2.48E-04 N-2.52E-04-2.54E-04 16,000 17,000 18,000 19,000 20,000 Cycle Bumup (MWD/MTU)Burnup (MWDIMTU)

MTC (pcm/°F) MTC (Aklk/F)16000 -23.800 -2.3800E-04 17000 -24.202 -2.4202E-04 18000 -24.564 -2.4564E-04 19000 -24.921 -2.4921 E-04 20000 -25.290 -2.5290E-04 Page 15 of 16 D. C. COOK UNIT 2 CYCLE 21 Revision 0 TABLE 1 D. C. Cook Unit 2 Cycle 21 W(Z) Function 2 020 I 1.0000 1 1.000 1.0000 I .O000 I 1,0000 I 10000 I 1.0000 I 1.C000I 1,000D 1 1.0000 1 1.0000 I 1.0000 I ;.0000I 1.000 1.MO00.0]00 I I',I 1.1139 1.1 1.14 a 1.10 1 1.1104 1 1.1134 1 1.1100 I 1.10U5 1 1.1071 1.1051 1.1068 1.2093 1.11"4 1.1239 1.13M ,1373 1 1,14441 1.1480 1.1504 9 0.60 1.1147 1.1111 1.1(377 1.1051 1.1035 1.1030 1.1035 1.1074 1.1127 1.1181 1.1234 11.129D 1,13419 1.14101 1.1448 1.14a,5 1 0 1.80 1.1 127 1.m1(04 1.1063 1.1040 1.1026 1.1022 1.1029 1.1065 1.1114 1.116M 1.1211 1.120 t.1012 1.13M8 1.1400 1.1415 11 ?00 1 121M 1 1(711 .10W1 MU 12 1173 1 111711 1 i(131 1 It1 1A 11007 1 1 1311 1.1170 1 1V" 3. 1 2M 11114 1 1MM 1 1357 12 2.20 1.1073 1.1055 1.107 1.1024 1.1017 1.1015 1.102 1.1043 1.1075 1.110 1.1142 1.1177 1.1217 1.125e 1.1280 1.1291 13 2.40 1-1041 1.1121 1.1020 1.1013 1.1008 1.1009 1.1012 1.1027 1.1049 1.1073 1.1099 1.1127 1.1150 1.1191 1.1210 1.1210 14 2.60 1.100 1.13 1.100D I.0-9M 1.0991 1.090 1,1001 1-1008 1-1019 1.1034 1.1051 1.1072 1.1005 1.1118 1.1132 1.1138 1.0 2.80 1.0907 1.0M7 1.09-7 1.MIMI 1.0984 1.0080 1.0887 1-C087 1.007 1.069 1.1001 1.1013 ;.102 1.10I42 1.1049 1.1002 1& 300 I 0M2 13 1M 008Q1 I100 10MI I OW 0071 10071 1(04 1 11964 1 f942 1I n41 110040 1. n083 1I011M 1I11 1MB I M 17 3.20 1.0181 1.0G86 1.09-10 1.0939 1.0948 1.0052 1.0951 1.0938 1.0120 1.0007 1.0899 1.0803 !,08M 1.008 1.0077 1.0874 Is 3.40 1-0804 1.0W0 1.0904 1-0919 1.0920 1.0932 1.0M2 11910 1.0387 1.0972 1.0867 1.080 1.0870 1.0072 1.0870 1.0309 Is 3.80 1.0857 1.0078 1.0890 1.0013 1.00.2 10923 1.8917 ISM99 1.0M8 1.0055 1.0864 1.0@M 1,0=2 1.0953 1.956 1.0970 F 26 S.60 1.0004 1.06W3 1.0004 LOS0I1D 1.025 1.0024 1.0815 1.C.68I 1.0301 1.0648 1.0672 1.0818- 1.0981 1.1038 1.1003 1.1074 21 4.00 1.0880 1.069 1.0014 1.0029 1.0021 1.0020 1.0017 1.188 1.0805 ll 1.0 804 1.00" 84OV *.IOU2 1.1111 1.1148 1.1161 22 4.1 1.0181 1.0M60 1.0920 1.003 1.0934 1.0031 1.0M2 1.1.82 1.083 1.0880 1.0931 1.1002 ',.1005 1,1181 1.1223 1.1241 23 4.40 1.0802 1.0012 1.0921 1.0Q92 1.0032 1.M 3 1.0925 1.108 1.002 1.0M2 1.0078 1.1055 ,.1152 1.1244 1.1200 1.1310 24 4.90 1.0911 1.0915 1.0V2 1 1-0025 1.0928 1020 1.0928 1.006 1021 1.0929 1.0903 1.1022 1.1103 1.1204 1.1300 1.1349 1.1372 23 4"4 1.0818 1.0017 1.0018 1.0*10 1.0921 1.0023 1.0025 1.0032 1.0903 1.0897 1.1062 1.114 1.240 1.1347 1.1400D 1.142 29 5.00 1.002 1.0010 1.0012 1.0011 1.001, 1.0015 1.0M3 1.1.0 1,0074 1.1027 1.100 1.1114 1.18? 1.38 1.1441 1.146a 27 8.2 1.0024 1.0013 1.0004 1.08W0 1.0890 1.090 1.0912 1.CQ44 1.0801 1.1M5 1.1128 1.1215 1.30 1.1415 1.1472 1,1498 28 SAO0 1.0022 1.0800 1.0892 1.0805 1.0893 1.0M8 1.000 1.0945 1.1004 1.107n 1.1161 1.1238 1.1337 1,1434 1.1491 1.1517 29 5.60 1.C0010 1.0e90 1.0877 1.0887 1.0005 1.0071 1.0887 1.0941 1.1011 1.1888 1.1108 1.1252 S,1346 1,1440 1.1498 1,1524 30 S.AO 1.0013 L.06M 1.0003 1.0848 1.0844 1.0851 1.0880 1.002 1.1012 1.10IM 1.1173 LI1M8 ;,1340 1.1435 1.1482 1,1518 01 C.00 1.0011 1.0077 .1.0847 1.0&W7 1.002-0 10028 1.00.48 I.C017 1.1008 1.1001 1.1171 .1.1250 1.1331 1.1417 1.1473 1.1408 32 8.20 1.003 1.000 1.0929 1.0.11A 1.0724 1.0709 1.0 I 020189 1.0802 1.108 1.1159 1.1224 1.1300. 1.12a7 1.1440 1.1484 33 6.A I.0891 1.0)047 1.0807 1.0780 1,0708 1.0772 1.0794 1.C'74 1.0972 1,1000 1.1138 1.1205 1.20 1,1340. 1.1390 1.1410 U4 6.90 I .0872 1.0W0 1,0785 1.0758 1.0743 10740 1.0707 1.087 1.0W4 1.102= 1.1101 110 .21 119 .30 110 30 6.80 1 CUM5 I.M3 1.0759 1.0779 1.0713 1.07715 1,0735 1.V012 I,0UM 1.087 1.1053 1.1110 1. 1104 1.1223 1.12W0 1.1294 34 7.00 1.0012 1.07"7 1.0721 1.004 1.0870 1.0081 1.0700 1.0776 ,W 1,0088 1040 1.1010 LI10N 1.1123 1.1103 1.120 1.24a 37 7.20 1-0786 1.037 1.0881 3.0853 1.0044 10047 1.000 1.-752 7.08 1.083 1.10 1.100 S.112; 1.1181 1.1225 1.1245 3$ 7." 1,0820 1.070 1.0094 LOW65 1.0030 1.0632 1.05W0 1.0707 1.GM9 1.0083 1,1048 1.1089 ;.1118 1,1155 1.1191 1. 1207 3S 7.90 1.0853 1.078 1.0729 2.068 1,0588 1.06090 1.0897 1L801 1.092 1.1808 1.106 1.1005 1,1112 1.1138 1.11M7 1.118ea 40 1.80 1.068(3 1.0W4 1.07-1 2.0733 107 15 1.0119 1.0144 1.800 1,0814 1.1021 1.17 IM 08 Maw 1LIM 1.1121 1.1144 1.1203 4t 6.00 COMO0 1.0055 1.0007 1.0774 1.0750 10700 1.0703 1.0080 1.09e5 1.1031 1.106 1.1004 1.1006 1.1005 1.1112 1.112 A7 M.70 119w7 1.19wm 1.1114 1.1111 1.21708 1(81 1(163 1(010 100( 11113n 5 1 1125 11(17( 1,104 i1(1114 1.1(171 1.1001 43 6.40 1.0944 1.0807 .1.0872 1.084 1.0.3 1.08a9 1.08 1.1920 1.090D 1.1033 1.1051 1.1051 1.1038 1.1028 1.1033 1.1038 SAD.0 1.0957 1.0927 1.0000 LOW88 1.0871 1.0874 1.0888 U.040 1.084 1.10125 1.10n2 1102 1.099 1.098 1.398 1.090 45 a.g0 1.0M65 1.0944 1.0923 1-0909 1.0902 1.0904 1.0915 1-1955 1.009 1.1018 1.1022 1.1013 1.0992 1.0970 1.3974 1.0972 40 0.60 1.0970 1.0007 1.004 1.0930 1Et34 1.%72 1.0943. 1.CQ60 1.000.4 1.1011 1.1019 1.1019 t.1014 1.02 1104 111 Al 91 I09f 19311 1107 ( .0 1318 101 105 1411 300 111 11 1113 1. 1 11(111 4111 1.101a 43 9.40 1M~ 21 1.0809 11.0974 1.098 2.08 1.0994M 1.1002 1.1011 1.1032 1.10511 1.1006eT1.1070 1.1083 1.1086 1.01 HIM9 .19 49 1 9.so 1 1.1 07 1 1. il7 1.1009 1 1.1013 1 1.1020 1 1.1029 1 1.1042 I1.1073 1 1.1H03 1 1.1122 1 1.1131 1 1.1133 1.1127 1.1124 1 1.1127 1.1129 I:1 .144t2 1142 1 1A4 .0 I.~ 1.14)(F7 1.1107 I! ',173 1.187I 1.11170 1 1. 1171 D D 1.1074 I1.10C 1.1000 1 1.1073 1 1.1000 1 1.1139 I..1211,8 1.1212I1.11 1.1210 1.1251 1.127Q 1.1303 84& 100 I 1.1218 1 1.110 1 1.1168 1_ 11151 1.1145 1.1150 1 1.1167 1.1224 I-1.122 1 1.1320 1.1334 I I I 1.12311 1 1.2921 1.1302 I I Top and bottom 10% of core excluded Page 16 of 16