ML17309A622: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:CATEGORY1.REUULATQZNFQRMATZONDZSTRZBUTZON'+OEM(RZDS)ACCESSIONNBR:9710230092DOC.DATE:97/10/20'NOTARIZED:YESFACIL:50-244RobertEmmetGinnaNuclearyPlant,Un1t1<RochesterAUTH.NAMEAUTHORAFFILIATIONMECREDY,R.C.RochesterGas6ElectricCorp.RECIP.NAMERECIPIENTAFFILIATION,VISSINGFG.S.DOCKET'G05000244+~PC'
{{#Wiki_filter:CATEGORY1.REUULATQZNFQRMATZON DZSTRZBUTZON
'+OEM(RZDS)ACCESSION NBR:9710230092 DOC.DATE:
97/10/20'NOTARIZED:
YESFACIL:50-244 RobertEmmetGinnaNuclearyPlant,Un1t1<Rochester AUTH.NAMEAUTHORAFFILIATION MECREDY,R.C.
Rochester Gas6ElectricCorp.RECIP.NAME RECIPIENT AFFILIATION, VISSINGFG.S.
DOCKET'G05000244+~PC'


==SUBJECT:==
==SUBJECT:==
Forwardsnon-proprietary&proprietaryresponseto970905RAIrestructuralevaluation,ofproposedmodofplantspentfuelstoragepool,dtd970331.Proprietaryresponsewithheld,Cper10CFR2.790.ADISTRIBUTIONCODE:AP01DCOPIESRECEIVED:LTRENCLSIZE:TITLE:ProprietaryReviewDistribution-PreOperatingLicense6OperatingRNOTES:LicenseExpdateinaccordancewithlOCFR2,2.109(9/19/72).05000244ERECIPIENTIDCODE/NAMEPDl-1LAVISSINGFG.COPIESLTTRENCL1111RECIPIENTIDCODE/NAMEPD1-1PDCOPIESLTTRENCL110EXTERNAL:NRCPDR11OGC/HDS31)43oaf10D0NOTETOALL"RIDS"RECIPIENTSzPLEASEHELPUSTOREDUCEWASTE.TOHAVEYOURNAMEORORGANIZATIONREMOVEDFROMDISTRIBUTIONLISTSORREDUCETHENUMBEROFCOPIESRECEIVEDBYYOUORYOURORGANIZATION,CONTACTTHEDOCUMENTCONTROLDESK(DCD)ONEXTENSION415-2083TOTALNUMBEROFCOPIESREQUIRED:LTTR6ENCL sI+tN ANnROCHESTERGASANDELECTRICCORPORATION~89EASTAVENUE,ROCHESTER,N.YId6rI9-000IAREACODE716546-2~00ROBERTC.MECREDYVicePresidentNvcteorOperationsOctober201997U.S.NuclearRegulatoryCommissionDocumentControlDeskAttn:GuyS.VissingProjectDirectorateI-1Washington,D.C.20555
Forwardsnon-proprietary
&proprietary responseto970905RAIrestructural evaluation, ofproposedmodofplantspentfuelstoragepool,dtd970331.Proprietary responsewithheld, Cper10CFR2.790.
ADISTRIBUTION CODE:AP01DCOPIESRECEIVED:LTR ENCLSIZE:TITLE:Proprietary ReviewDistribution
-PreOperating License6Operating RNOTES:License Expdateinaccordance withlOCFR2,2.109(9/19/72).
05000244ERECIPIENT IDCODE/NAME PDl-1LAVISSINGFG.COPIESLTTRENCL1111RECIPIENT IDCODE/NAME PD1-1PDCOPIESLTTRENCL110EXTERNAL:
NRCPDR11OGC/HDS31)43oaf10D0NOTETOALL"RIDS"RECIPIENTSz PLEASEHELPUSTOREDUCEWASTE.TOHAVEYOURNAMEORORGANIZATION REMOVEDFROMDISTRIBUTION LISTSORREDUCETHENUMBEROFCOPIESRECEIVEDBYYOUORYOURORGANIZATION, CONTACTTHEDOCUMENTCONTROLDESK(DCD)ONEXTENSION 415-2083TOTALNUMBEROFCOPIESREQUIRED:
LTTR6ENCL sI+tN ANnROCHESTER GASANDELECTRICCORPORATION
~89EASTAVENUE, ROCHESTER, N.YId6rI9-000I AREACODE716546-2~00ROBERTC.MECREDYVicePresident NvcteorOperations October201997U.S.NuclearRegulatory Commission DocumentControlDeskAttn:GuyS.VissingProjectDirectorate I-1Washington, D.C.20555


==Subject:==
==Subject:==
ResponsetoRequestforAdditionalInformation-SpentFuelPool(SFP)Modifications-StructuralDesignConsiderations(TACNo.M95759)R.E.GinnaNuclearPowerPlantDocketNo.50-244Ref.(1):LetterfromG.S.Vissing(NRC)toR.C.Mecredy(RG&E),
ResponsetoRequestforAdditional Information
-SpentFuelPool(SFP)Modifications
-Structural DesignConsiderations (TACNo.M95759)R.E.GinnaNuclearPowerPlantDocketNo.50-244Ref.(1):LetterfromG.S.Vissing(NRC)toR.C.Mecredy(RG&E),


==Subject:==
==Subject:==
RequestforAdditionalInformation-SpentFuelPoolModifications-StructuralDesignConsiderations(TACNo.M95759),datedSeptember5,1997.
RequestforAdditional Information
-SpentFuelPoolModifications
-Structural DesignConsiderations (TACNo.M95759),datedSeptember 5,1997.


==DearMr.Vissing:==
==DearMr.Vissing:==
ByReference1,theNRCstaffrequestedadditionalinformationregardingtheproposedModificationoftheGinnaSpentFuelStoragePooldatedMarch31,1997.ThequestionswererelatedtotheStructuralEvaluationoftheproposedModification.EnclosedareresponsestothequestionssubmittedbytheNRCstaffwz.careph'reprovidedintwoseparatedocuments:aNon-ProprietaryandaFRAMATOMEProprietary.TheNon-Proprietarydocumentcontains'nsalltheresponsesbutomitsthefollowinginformationwhichisconsideredFRAMATOMEProprietary:(a)selecteddatainresponsetoNRCQuestionNo.4.b,and(b)electronicfileswithinputdataotheANSYScodeaslistedinresponsestoNRCQuestionsNo.2.eand10.ThedocumententitledFRAMATOMEProprietaryisaduplicateofNon-Proprietaryversionexceptthatproprietarydatahasbeenaddedtothatdocument.TheFRAMATOMEProprietarydatainthatdocument97102300'tt2'tt71020PDRADQCK05000244P'DR Mr.G.S.VissingOctober20,1997issupportedbyanaffidavitsignedbyFRAMATOMETECHNOLOGIES,INC..Accordingly,itisrespectfullyrequestedthatthedocumententitled"FRAMATOMEProprietary"bewithheldfrompublicdisclosureinaccordancewith10CFR2.790oftheCommission'sregulations.Verrulyyours,RobertC.MecredyJPOc:Mr.GuyS.Vissing(MailStop14B2)SeniorProjectManagerProjectDirectorateI-1Washington,D.C.20555U.S.NuclearRegulatoryCommissionRegionI475AllendaleRoadKingofPrussia,PA19406GinnaSeniorResidentInspectorMr.PaulD.EddyStateofNewYorkDepartmentofPublicService3EmpireStatePlaza,TenthFloorAlbany,NY12223-1350 A.MynameisJamesH.Taylor.IamManagerofLicensingServicesforFramatome.Technologies,Inc.(FTQ.FramatomeCogemaFuelsisadministrativelyresponsibletoFramatomeTechnologies,Inc.Therefore,IamauthorizedtoexecutethisAffidavit.B.IamfamiliarwiththecriteriaappliedbyFTItodeterminewhethercertaininformationofFTIisproprietaryandIamfamiliarwiththeproceduresestablishedwithinFTItoensuretheproperapplicationofthesecriteria.C.IndeterminingwhetheranFTIdocumentistobeclassifiedasproprietaryinformation,aninitialdeterminationismadebytheUnitManager,whoisresponsiblefororiginatingthedocument,astowhetheritfallswithinthecriteriasetforthinParagraphDhereof.Iftheinformationfallswithinanyoneofthesecriteria,itisclassifiedasproprietarybytheoriginatingUnitManager.ThisinitialdeterminationisreviewedbythecognizantSectionManager.Ifthedocumentisdesignatedasproprietary,itisreviewedagainbyLicensingpersonnelandothermanagementwithinFTIasdesignatedbytheManagerofLicensingServicestoassurethattheregulatoryrequirementsof10CFRSection2.790aremet.D.Thefollowinginformationisprovidedtodemonstratethattheprovisionsof10CFRSection2.790oftheCommission'sregulationshavebeenconsidered:TheinformationhasbeenheldinconfidencebyFTI.Copiesofthedocumentareclearlyidentifiedasproprietary.Inaddition,wheneverFTItransmitstheinformationtoacustomer,customer'sagent,potentialcustomerorregulatoryagency,thetransmittalrequeststherecipienttoholdtheinformationasproprietary.Also,inordertostrictlylimitanypotentialoractualcustomer'suseofproprietaryinformation,thesubstanceofthefollowingprovisionisincludedinallagreementsenteredintobyFTI,andanequivalentversionoftheproprietaryprovisionisincludedinallofFTI'sproposals:  
ByReference 1,theNRCstaffrequested additional information regarding theproposedModification oftheGinnaSpentFuelStoragePooldatedMarch31,1997.Thequestions wererelatedtotheStructural Evaluation oftheproposedModification.
~Q+~~~~(Cont'd.)"AnyproprietaryinformationconcerningCompany'soritsSupplier'sproductsormanufacturingprocesseswhichissodesignatedbyCompanyoritsSuppliersanddisclosedtoPurchaserincidenttotheperformanceofsuchcontractshallremainthepropertyofCompanyoritsSuppliersandisdisclosedinconfidence,andPurchasershallnotpublishorotherwisediscloseittootherswithoutthewrittenapprovalofCompany,andnorights,impliedorotherwise,aregrantedtoproduceorhaveproducedanyproductsortopracticeorcausetobepracticedanymanufacturingprocessescoveredthereby,Notwithstandingtheabove,PurchasermayprovidetheNRCoranyotherregulatoryagencywithanysuchproprietaryinformationastheNRCorsuchotheragencymayrequire;provided,however,thatPurchasershallfirstgiveCompanywrittennoticeofsuchproposeddisclosureandCompanyshallhavetherighttoamendsuchproprietaryinformationsoastomakeitnon-proprietary.IntheeventthatCompanycannotamendsuchproprietaryinformation,Purchasershall,priortodisclosingsuchinformation,useitsbesteffortstoobtainacommitmentfromNRCorsuchotheragencytohavesuchinformationwithheldfrompublicinspection.Companyshallbegiventherighttoparticipateinpursuitofsuchconfidentialtreatment."  
Enclosedareresponses tothequestions submitted bytheNRCstaffwz.careph'reprovidedintwoseparatedocuments:
~~~~I~'C(Cont'd.)ThefollowingcriteriaarecustomarilyappliedbyFTIinarationaldecisionprocesstodeterminewhethertheinformationshouldbeclassifiedasproprietary.Informationmaybeclassifiedasproprietaryifoneormoreofthefollowingcriteriaaremet:a.Informationrevealscostorpriceinformation,commercialstrategies,productioncapabilities,orbudgetlevelsofFTI,itscustomersorsuppliers.b.TheinformationrevealsdataormaterialconcerningFTIresearchordevelopmentplansorprogramsofpresentorpotentialcompetitiveadvantagetoFTI.c.Theuseoftheinformationbyacompetitorwoulddecreasehisexpenditures,intimeorresources,indesigning,producingormarketingasimilarproduct.d.Theinformationconsistsoftestdataorothersimilardataconcerningaprocess,methodorcomponent,theapplicationofwhichresultsinacompetitiveadvantagetoFTI.e.Theinformationrevealsspecialaspectsofaprocess,method,componentorthelike,theexclusiveuseofwhichresultsinacompetitiveadvantagetoFTI.f.Theinformationcontainsideasforwhichpatentprotectionmaybesought.Thedocument(s)listedonExhibit"A",whichisattachedheretoandmadeaparthereof,hasbeenevaluatedinaccordancewithnormalFTIprocedureswithrespecttoclassificationandhasbeenfoundtocontaininformationwhichfallswithinoneor
aNon-Proprietary andaFRAMATOME Proprietary.
~~~0~(Cont'd.)moreofthecriteriaenumeratedabove.Exhibit"B",whichisattachedheretoandmadeaparthereof,specificallyidentifiesthecriteriaapplicabletothedocument(s)listedinExhibit"A".Thedocument(s)listedinExhibit"A",whichhasbeenmadeavailabletotheUnitedStatesNuclearRegulatoryCommissionwasmadeavailableinconfidencewitharequestthatthedocument(s)andtheinformationcontainedthereinbewithheldfrompublicdisclosure.(iv)TheinformationisnotavailableintheopenliteratureandtothebestofourknowledgeisnotknownbyCombustionEngineering,EXXON,GeneralElectric,WestinghouseorothercurrentorpotentialdomesticorforeigncompetitorsofFramatomeTechnologies,Inc.(v)SpecificinformationwithregardtowhetherpublicdisclosureoftheinformationislikelytocauseharmtothecompetitivepositionofFTI,takingintoaccountthevalueoftheinformationtoFTI;theamountofeffortormoneyexpendedbyFTIdevelopingtheinformation;andtheeaseordifficultywithwhichtheinformationcouldbeproperlyduplicatedbyothersisgiveninExhibit"B".E.Ihavepersonallyreviewedthedocument(s)listedonExhibit"A"andhavefoundthatitisconsideredproprietarybyFTIbecauseitcontainsinformationwhichfallswithinoneormoreofthecriteriaenumeratedinParagraphD,anditisinformationwhichiscustomarilyheldinconfidenceandprotectedasproprietaryinformationbyFTI.Thisreportcomprisesinformation (Cont'd.)utilizedbyFTIinitsbusinesswhichaffordFTIanopportunitytoobtainacompetitiveadvantageoverthosewhomaywishto'knoworusetheinformationcontainedinthedocument(s).JAMESH.TAYLORStateofVirginia)CityofLynchburg)SS.LynchburgJamesH.Taylor,beingdulysworn,onhisoathdeposesandsaysthatheisthepersonwhosubscribedhisnametotheforegoingstatement,andthatthemattersandfactssetforthinthestatementaretrue.JAMESH.TAYLRIL'f"Subscribedandswornbeforemethis++dayofgal1997.NotaryPublicinandfortheCityofLynchburg,StateofVirginia.MyCommissionExpires>8lI99'7  
TheNon-Proprietary documentcontains'nsalltheresponses butomitsthefollowing information whichisconsidered FRAMATOME Proprietary:
.)l'/gIifrffrJh'I 97i0230092U.S.NRCG.S.VissingA-1October20,1997TnriinRnRochesterGas8'cElectricGinnaspentfuelstoragererackstructuralqualificationisperformedusingstateofthearttechniques.Toeasethelicensingprocess,themajorityofanalyticalmethods,computerprogramuseandverificationarethesameasthemethodsusedinthecurrentlicensingdocuments.Theindividualitemsarediscussedduringtheresponseprocess.Theidealizationoftherackusingbeamrepresentation,theconsiderationofhydrodynamicmasses,andtheseismicanalysismethodsarethesameas1985licensingbasis(References3.23and3.24oftheLicensingReport).ThecomputerprogramANSYS,version5.2,wasusedforthemajorityofstructuralanalysiscalculations.Since1970,thisprogramhasbeenusedextensivelyinthenuclear,chemical,building,andelectronicindustriesthroughouttheworld.Extensiveuseledtoahighdegreeofreliabilityinobtainedcomputerresults,andhasbeenextensivelybenchmarkedbyindustry.ANSYShasbeenandcontinuestobeverifiedbyalargevolumeofusers.AtFramatomeCogemaFuels,itisbenchmarkedtohandcalculationsandtoverificationproblemsprovidedbyits"developer,SwansonAnalysisSystems,Inc.ANSYShasbeenusedinmanyof10CFR50licensinganalysesincludingseismic,timehistory,andgappedstructuralanalyses.AtFramatomeCogemaFuelsthestructuralanalysispersonnelhasextensiveexperienceinthefiniteelementmethodsandanalysistosolvecomplexproblems.Thisexperienceandexpertiseservestominimizemodelinginstabilitiestypicallyassociatedwithlargenon-lineardynamicproblems.ForthemodelsandanalysesreportedintheGinnaspentfuelstorageracklicensingreport,noinstabilitiesexisted.Thebehaviorofspentfuelstorageracksiscomplex,andsomesimplificationoftheactualbehaviorisappropriatewhencreatingamathematicalmodelforuseinafiniteelementanalysis.Throughoutthestructuralanalysistheresultsarecheckedagainstthesimplifiedhandcalculationmethods.Inaddition,theresultshavebeencomparedagainstrecentlyNRC-licensedspentfuelstoragerackstoverifythevalidityoftheanalysisresultsandtoconfirmthedesignoftheracks.Conservativestructuralanalysismethodsareusedthroughoutthestructuralanalysis.Conservatismsinclude:envelopingseismictimehistories,'additionalsafetyfactorsontheseismictimehistories,safetyfactorsonloadsanddisplacements,conservativefrictionfactors,andmaximumfuelweightandloadingintherack,assumedconcurrentimpactofallfuelassemblies.TheresultssummarizedinSection3.5.3.3showlargedesignmarginsforallrackhardwareperASME,AISCandACIcodeallowables.Additionalmarginsexistwhichareintegraltothecodesthemselves.TheresultingmarginsshowtherobustnessoftheGinnaspentfuelstoragesystemdesign.  
(a)selecteddatainresponsetoNRCQuestionNo.4.b,and(b)electronic fileswithinputdataotheANSYScodeaslistedinresponses toNRCQuestions No.2.eand10.ThedocumententitledFRAMATOME Proprietary isaduplicate ofNon-Proprietary versionexceptthatproprietary datahasbeenaddedtothatdocument.
TheFRAMATOME Proprietary datainthatdocument97102300'tt2
'tt71020PDRADQCK05000244P'DR Mr.G.S.VissingOctober20,1997issupported byanaffidavit signedbyFRAMATOME TECHNOLOGIES, INC..Accordingly, itisrespectfully requested thatthedocumententitled"FRAMATOME Proprietary" bewithheldfrompublicdisclosure inaccordance with10CFR2.790oftheCommission's regulations.
Verrulyyours,RobertC.MecredyJPOc:Mr.GuyS.Vissing(MailStop14B2)SeniorProjectManagerProjectDirectorate I-1Washington, D.C.20555U.S.NuclearRegulatory Commission RegionI475Allendale RoadKingofPrussia,PA19406GinnaSeniorResidentInspector Mr.PaulD.EddyStateofNewYorkDepartment ofPublicService3EmpireStatePlaza,TenthFloorAlbany,NY12223-1350 A.MynameisJamesH.Taylor.IamManagerofLicensing ServicesforFramatome.
Technologies, Inc.(FTQ.Framatome CogemaFuelsisadministratively responsible toFramatome Technologies, Inc.Therefore, Iamauthorized toexecutethisAffidavit.
B.IamfamiliarwiththecriteriaappliedbyFTItodetermine whethercertaininformation ofFTIisproprietary andIamfamiliarwiththeprocedures established withinFTItoensuretheproperapplication ofthesecriteria.
C.Indetermining whetheranFTIdocumentistobeclassified asproprietary information, aninitialdetermination ismadebytheUnitManager,whoisresponsible fororiginating thedocument, astowhetheritfallswithinthecriteriasetforthinParagraph Dhereof.Iftheinformation fallswithinanyoneofthesecriteria, itisclassified asproprietary bytheoriginating UnitManager.Thisinitialdetermination isreviewedbythecognizant SectionManager.Ifthedocumentisdesignated asproprietary, itisreviewedagainbyLicensing personnel andothermanagement withinFTIasdesignated bytheManagerofLicensing Servicestoassurethattheregulatory requirements of10CFRSection2.790aremet.D.Thefollowing information isprovidedtodemonstrate thattheprovisions of10CFRSection2.790oftheCommission's regulations havebeenconsidered:
Theinformation hasbeenheldinconfidence byFTI.Copiesofthedocumentareclearlyidentified asproprietary.
Inaddition, wheneverFTItransmits theinformation toacustomer, customer's agent,potential customerorregulatory agency,thetransmittal requeststherecipient toholdtheinformation asproprietary.
Also,inordertostrictlylimitanypotential oractualcustomer's useofproprietary information, thesubstance ofthefollowing provision isincludedinallagreements enteredintobyFTI,andanequivalent versionoftheproprietary provision isincludedinallofFTI'sproposals:  
~Q+~~~~(Cont'd.)
"Anyproprietary information concerning Company's oritsSupplier's productsormanufacturing processes whichissodesignated byCompanyoritsSuppliers anddisclosed toPurchaser incidenttotheperformance ofsuchcontractshallremainthepropertyofCompanyoritsSuppliers andisdisclosed inconfidence, andPurchaser shallnotpublishorotherwise discloseittootherswithoutthewrittenapprovalofCompany,andnorights,impliedorotherwise, aregrantedtoproduceorhaveproducedanyproductsortopracticeorcausetobepracticed anymanufacturing processes coveredthereby,Notwithstanding theabove,Purchaser mayprovidetheNRCoranyotherregulatory agencywithanysuchproprietary information astheNRCorsuchotheragencymayrequire;provided, however,thatPurchaser shallfirstgiveCompanywrittennoticeofsuchproposeddisclosure andCompanyshallhavetherighttoamendsuchproprietary information soastomakeitnon-proprietary.
IntheeventthatCompanycannotamendsuchproprietary information, Purchaser shall,priortodisclosing suchinformation, useitsbesteffortstoobtainacommitment fromNRCorsuchotheragencytohavesuchinformation withheldfrompublicinspection.
Companyshallbegiventherighttoparticipate inpursuitofsuchconfidential treatment."  
~~~~I~'C(Cont'd.)
Thefollowing criteriaarecustomarily appliedbyFTIinarationaldecisionprocesstodetermine whethertheinformation shouldbeclassified asproprietary.
Information maybeclassified asproprietary ifoneormoreofthefollowing criteriaaremet:a.Information revealscostorpriceinformation, commercial strategies, production capabilities, orbudgetlevelsofFTI,itscustomers orsuppliers.
b.Theinformation revealsdataormaterialconcerning FTIresearchordevelopment plansorprogramsofpresentorpotential competitive advantage toFTI.c.Theuseoftheinformation byacompetitor woulddecreasehisexpenditures, intimeorresources, indesigning, producing ormarketing asimilarproduct.d.Theinformation consistsoftestdataorothersimilardataconcerning aprocess,methodorcomponent, theapplication ofwhichresultsinacompetitive advantage toFTI.e.Theinformation revealsspecialaspectsofaprocess,method,component orthelike,theexclusive useofwhichresultsinacompetitive advantage toFTI.f.Theinformation containsideasforwhichpatentprotection maybesought.Thedocument(s) listedonExhibit"A",whichisattachedheretoandmadeaparthereof,hasbeenevaluated inaccordance withnormalFTIprocedures withrespecttoclassification andhasbeenfoundtocontaininformation whichfallswithinoneor
~~~0~(Cont'd.)
moreofthecriteriaenumerated above.Exhibit"B",whichisattachedheretoandmadeaparthereof,specifically identifies thecriteriaapplicable tothedocument(s) listedinExhibit"A".Thedocument(s) listedinExhibit"A",whichhasbeenmadeavailable totheUnitedStatesNuclearRegulatory Commission wasmadeavailable inconfidence witharequestthatthedocument(s) andtheinformation contained thereinbewithheldfrompublicdisclosure.
(iv)Theinformation isnotavailable intheopenliterature andtothebestofourknowledge isnotknownbyCombustion Engineering, EXXON,GeneralElectric, Westinghouse orothercurrentorpotential domesticorforeigncompetitors ofFramatome Technologies, Inc.(v)Specificinformation withregardtowhetherpublicdisclosure oftheinformation islikelytocauseharmtothecompetitive positionofFTI,takingintoaccountthevalueoftheinformation toFTI;theamountofeffortormoneyexpendedbyFTIdeveloping theinformation; andtheeaseordifficulty withwhichtheinformation couldbeproperlyduplicated byothersisgiveninExhibit"B".E.Ihavepersonally reviewedthedocument(s) listedonExhibit"A"andhavefoundthatitisconsidered proprietary byFTIbecauseitcontainsinformation whichfallswithinoneormoreofthecriteria enumerated inParagraph D,anditisinformation whichiscustomarily heldinconfidence andprotected asproprietary information byFTI.Thisreportcomprises information (Cont'd.)
utilizedbyFTIinitsbusinesswhichaffordFTIanopportunity toobtainacompetitive advantage overthosewhomaywishto'knoworusetheinformation contained inthedocument(s).
JAMESH.TAYLORStateofVirginia)
CityofLynchburg)
SS.Lynchburg JamesH.Taylor,beingdulysworn,onhisoathdeposesandsaysthatheisthepersonwhosubscribed hisnametotheforegoing statement, andthatthemattersandfactssetforthinthestatement aretrue.JAMESH.TAYLRIL'f"Subscribed andswornbeforemethis++dayofgal1997.NotaryPublicinandfortheCityofLynchburg, StateofVirginia.
MyCommission Expires>8lI99'7  
.)l'/gIifrffrJh'I 97i0230092 U.S.NRCG.S.VissingA-1October20,1997TnriinRnRochester Gas8'cElectricGinnaspentfuelstoragererackstructural qualification isperformed usingstateofthearttechniques.
Toeasethelicensing process,themajorityofanalytical methods,computerprogramuseandverification arethesameasthemethodsusedinthecurrentlicensing documents.
Theindividual itemsarediscussed duringtheresponseprocess.Theidealization oftherackusingbeamrepresentation, theconsideration ofhydrodynamic masses,andtheseismicanalysismethodsarethesameas1985licensing basis(References 3.23and3.24oftheLicensing Report).ThecomputerprogramANSYS,version5.2,wasusedforthemajorityofstructural analysiscalculations.
Since1970,thisprogramhasbeenusedextensively inthenuclear,chemical,
: building, andelectronic industries throughout theworld.Extensive useledtoahighdegreeofreliability inobtainedcomputerresults,andhasbeenextensively benchmarked byindustry.
ANSYShasbeenandcontinues tobeverifiedbyalargevolumeofusers.AtFramatome CogemaFuels,itisbenchmarked tohandcalculations andtoverification problemsprovidedbyits"developer, SwansonAnalysisSystems,Inc.ANSYShasbeenusedinmanyof10CFR50licensing analysesincluding seismic,timehistory,andgappedstructural analyses.
AtFramatome CogemaFuelsthestructural analysispersonnel hasextensive experience inthefiniteelementmethodsandanalysistosolvecomplexproblems.
Thisexperience andexpertise servestominimizemodelinginstabilities typically associated withlargenon-linear dynamicproblems.
ForthemodelsandanalysesreportedintheGinnaspentfuelstorageracklicensing report,noinstabilities existed.Thebehaviorofspentfuelstorageracksiscomplex,andsomesimplification oftheactualbehaviorisappropriate whencreatingamathematical modelforuseinafiniteelementanalysis.
Throughout thestructural analysistheresultsarecheckedagainstthesimplified handcalculation methods.Inaddition, theresultshavebeencomparedagainstrecentlyNRC-licensed spentfuelstoragerackstoverifythevalidityoftheanalysisresultsandtoconfirmthedesignoftheracks.Conservative structural analysismethodsareusedthroughout thestructural analysis.
Conservatisms include:enveloping seismictimehistories,
'additional safetyfactorsontheseismictimehistories, safetyfactorsonloadsanddisplacements, conservative frictionfactors,andmaximumfuelweightandloadingintherack,assumedconcurrent impactofallfuelassemblies.
Theresultssummarized inSection3.5.3.3showlargedesignmarginsforallrackhardwareperASME,AISCandACIcodeallowables.
Additional marginsexistwhichareintegraltothecodesthemselves.
Theresulting marginsshowtherobustness oftheGinnaspentfuelstoragesystemdesign.  


U.S.NRCG.S.VissingA-2October20,1997~Rf~r~n~:(continuessequentiallythereferencenumbersintheLicensingReport)3.44ApplicationforAmendmenttoFacilityOperatingLicense,RevisedSpentFuelPoolStorageRequirements,RochesterGasandElectricCorporation,R.E.GinnaNuclearPowerPlant,DocketNo.50-244,LetterdatedMarch31,1997,fromRGBtoUSNRC.3.45Scavuzzo-1979,"DynamicFluidStructureCouplingofRectangularModulesinRectangularPools,"R.J.Scavuzzo,etal.,ASMEPublicationPVP-39,1979,pp.77-87.3.46Radke-1978,"ExperimentalStudyofImmersedRectangularSolidsinRectangularCavities,"EdwardF.Radke,ProjectforMasterofScienceDegree,TheUniversityofAkron,Ohio,1978.
U.S.NRCG.S.VissingA-2October20,1997~Rf~r~n~:
U.S.NRCG.S.VissingA-3October20,19978'ithrespecttothesinglesafeshutdownearthquake(SSE)artificialtimehistoryusedforstressanalysisasmentionedonpage75oftheReference,providethefollowing:a)Acomparisonbetweentheresponsespectrum(RS)oftheartificialtimehistoryandthelicensingbasisdesignRSinthefinalsafetyanalysisreport(FSAR).b)Demonstratetheadequacyoftheartificialtimehistoryincludingademonstrationoftheextentofconformancetoatargetpowerspectraldensity(PSD)functionoftheartificialtiInehistoryinaccordancewithguidanceprovidedinStandardReviewPlan(SRP)Section3.7.I.c)IftheRSoftheartificialtiInehistorydoesnotenvelopethelicensingbasisdesignRSintheFSAR,ivhatisthebasisforusingitintheanalysis?~R~~nAtotaloffoursets(X,Y,andZcomponents)oftimehistoriesweregenerated,suchthattheaverageofallfourtimehistories,whenmultipliedbyafactorof1.10,envelopedthedesignresponsespectrum.Asingletimehistorysetwasthenchosen(SSE1forSSEconditions)andanadditionalfactorof1.20wasappliedtotheresultingloadsanddisplacementstoenvelopetheloadsanddisplacementsfromallfourtimehistorysets.a)Acomparisonofthefuelpoolsafeshutdownearthquake(SSE)responsespectraandtheresponsespectrageneratedfromtheSSE1timehistoryusedintheseismicanalysisisprovidedinFiguresNRCQ1a.1,NRCQ1a.2andNRCQla.3.NUREG-800,SRP3.7.1,SectionII.1.bstates"Eachcalculatedspectrumoftheartificialtimehistoryisconsideredtoenvelopthedesignresponsespectrumwhennomorethanfivepointsfallbelow,andnomorethan10percentbelow,thedesignresponsespectrum."Forthiscomparison,the10%belowcurveisalsoplottedinFiguresNRCQla.1,NRCQla.2andNRCQla.3.Thecomparisonshows:East-West(X)Spectra2frequenciesbelowdesignRSbutwithin10%thresholdNorth-South(Y)Spectra2frequenciesbelowdesignRSbutwithin10%thresholdVertical(Z)Spectra1frequencybelowdesignRSbutwithin10%thresholdTherefore,thiscomparisonshowsthattheselectedseismictimehistoriesmeettherequirementsofSRP3.7.1.
(continues sequentially thereference numbersintheLicensing Report)3.44Application forAmendment toFacilityOperating License,RevisedSpentFuelPoolStorageRequirements, Rochester GasandElectricCorporation, R.E.GinnaNuclearPowerPlant,DocketNo.50-244,LetterdatedMarch31,1997,fromRGBtoUSNRC.3.45Scavuzzo-1979, "DynamicFluidStructure CouplingofRectangular ModulesinRectangular Pools,"R.J.Scavuzzo, etal.,ASMEPublication PVP-39,1979,pp.77-87.3.46Radke-1978, "Experimental StudyofImmersedRectangular SolidsinRectangular Cavities,"
U.S.NRCG.S.VissingA-4October20,1997b)Thetargetpowerspectraldensity(PSD)oftheSSEtimehistoryisplottedinFiguresNRCQlb.1,NRCQlb.2andNRCQlb.3.StandardReviewPlanSRP3.7.1,AppendixA,specifiestheminimumPSDrequirements.Thoseminimaarealsoplottedonthesamefiguresforcomparison.ThecomparisonshowsthatalloftheartificialtimehistoriesusedintheanalysismeettheminimumPSDrequirementsoftheSRP3.7.1.c)TheartificialtimehistoryenvelopesthespentfuelpooldesignresponsespectraandmeetstherequirementsofSRP3.7.1.
EdwardF.Radke,ProjectforMasterofScienceDegree,TheUniversity ofAkron,Ohio,1978.
U.S.NRCG.S.VissingA-5October20,1997inInFrIK1-Hrimn5C0~~880IIIIJIIIIIIYIIIIIJJIIIYIIIIIIIIIIIIIIIIIIIIIIIJIIIJIIIIIIIIIJIII'YIsIIIJI~FIPIJs~~~I~~I~~II~J~~~~~IIIIIIII~IIIIIIIIIIIII~J~JJ~I~~I~II~IIIII~II~~1II~I~I~I~IIIJIIIIIIII~~~~~~II~~~IYI~~~~~~~~~IJIIIIIIII~VI~I~'~III~JIsjsI~'sIIIIIIIIIIIIIII~I~IIIII~I~I~I~I~I~IIIIIIIIIII~~I~I~~'YY~I~I~IIIIIIIII~IIIIIIIIIII~~II~~~~~~~~~~~~~~IIJ~II~s'I~IsIIIJJI1).JI~IIIIIIIIIIIY1IIIIIJI~I~IIIIIIIIIIIIII~IIIJ~~J~I~I~I~I~I~I~III~'Ih1~11IIII~IIIYIIIIIJIIIIIIIIJIIII~~~IIIJIPI~~I~~~III4~~IISYshs'I~~~~~~~~~I~~~I~~~I~s~~~JJJJ~~~~III~~I~I~~I~~~I~I~~~I~I~~~II~~I~~I~~I~ll~JI~~III~~IhSI~~I~II~~III~~III~~I~%II~~~~'+s~I~~IQIII~~~IIlhIIisIIIIIIIIII~II~I~II~I~II~I~II~I~II~I~~III~I~II~I~IIIIII~IIIIII~JJ~~~~~~~~~~III~~~~~II~~II1II~~~IIIIIIIIIII~~~IIIIIIIII1~~IIIIIIIIIIII~1'1IIIIIIIIIIII~JIIIIIIIIII~~~IIIIIIIIIIIII~~~IIIIIIIII~sJI~I~I~I~IIIIIIII~IJJ~~~~I~II~I~I~IIII~IIIIIIIIIIIlllsllI~IIIIIIIIIII~I~I~I~I~I~I~I~I~I~I~I~~IIIII]lssllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~~~JLI~~I~~II~I~~~I~I~II~~I~~I~s~~I10NaturalFrequencyf(Hz)1QO A-6U.S.NRCG.S.VissingirR12October20,1997DinVIntFrINNAK1-HrimnIY5CD~~88D0x0.10.1IIIIIIIIIIIIIIIIIIJ~~~~~~~~~~IIII~I~I~IIII~I~JJIII~I~JI~~IIII~1~~~~~~I~I~I~II~J~I~I~I~~~~~~~~~~~~IIIII~~I~I~II~I~II~I~II~~~~JII~~~III~~~I~~~I~II~~~~I~I~~J~~~~~~II.M..q.III~I~I~~~~~I'~~~~~~JII~IIIsrIIISIII~I~~II~I~~~~~~~I~~~I~~~~~111~~~~~I~~~I~~I~~IJ~1$II'IIIIIII~~II~II~I~IIIIr~~I1I1~~~I~II~II~II~II~I~J~I~)I~IIIII1IIII~AIIL.I1AI1IIIIIIIIIII~~IIIIIIIII11I~~I~~I~~IIIIAI~~~~~~~~~I~~~~I~~I~~II~~~~~~I~~~~I1~J1~~IIIIIIIIIIIII~AIIIIIII~I~I~I~~II~~II~~II~IAIIIIIII~III~I~I~I~I~~~~I~~~I~I~~~~II~~~~III~~~IIIIIIII~~~~~~'I~~I~I~~I~I~I~I~I~I~II~~II~~~~I~II's~~~~~~g~~~~I~~III~sIIsIIsIIs~~A~I~A~I~~~~~~~~I~III~II~IIIlrI~Is~IIIIIIIII'I111'4~~~~I~~I~II~~~~~~~~IrIIa~r~'I~~~~~~~~~~~~~~~~I~~~II~III~I~~~~s~II~~~~I~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~~I~~~~~~~~~~~IlrIJ~~IIrIrIJlI~~~~~~~~IIIIIIII~~~I~III~III~~~~~III~~I~I~I~~~I~~~110NaturalFrequencyf(HzjI~I~~~~~III~~I~~~~'~I1III~~~I~~IIIIII~~I~I~~~~~~I~~~I~I~I~I~L~~I~I~~~I~~~I~~~I~III~~~~~IIII~~~~III~~I~~~~IIIIIIIIIIII~~IIIIlllm,'II~~I~~~I~~~I~~~I~I~I~~~~I~~~I~~~I~~~~~IIIIIII~~'II~~~11~~I~~~III~II~IA~~I~I~~~II~~II~~II~IA~I~II~I~~I~~~~I~~~~~~I~(IIIIII~I~~~~~~~I~~~I~I~I~~~I~~~I~~~II~~IIII300 0l A-7U.S.NRCG.S.VissingFirNR1a.3inIntFrIOctober20,19971-Vrcl0)8G0~~(5L8CfVX50.10.1~~~I~~t~~I~I~~~~~~~I~~~I~~~t~~~~~~I~~I~~I~~~~~~J~~~~~~I~~~~~~~'I~~~~~~I~~I~~I~IA~IJ~~A~~IIIIIIIIIIJ~AIII~~~J~IIII~A~IIIIIIIIIJIIIIIYIIIIIIIIIIIIJIIIIIIIYIIIIII'~~~IIIIIIIIIIII'IIIIII~~~~~~~~~~~~~~~~IA~~~~~~~~~I~~~~IIIAJI~~~~~~J~~I~I~IIhII~~~~~I'~~~~~~~~~~~~~~II~~~I'~~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~I~~~I'I~~~~~J~~~~~'I~~~~A~t~~~~~~~~I~~'~~~~~~~~'~~~~~~~~~~~I~~I~~I~~I~~~~A~AJ~~~~t~~Al~~~~III~~~~~~~~~I~~I~~~~II1IIIII~~~~YI~~I~III~~~IIIIIIIIII~~II~IJ~~~~I~~~I~I~I~~I~~~IIIA~I~~~III~I~I~~~II~~Al~~~~~~~~~~~~~~~~~~~~I~III~~~rIIIII~~~~~~~~~A~~1~~r4Iff~fI~I1flfft1t~I~I~~I~~I~IIf1fff1~I~Vff~1II~~~I~~~~I~~I~ltl~JI'eAf>>~~~I~I~I~~~~~~~~t~~~~~~~~~f~~~~~~~~~~~~~~~~~~~~~~A~~~~~~~I~~~~~~~~~~~~~~~~~~~~1Y~~~~t~~~I~I~A~~~~~~~~~~~~~~~~~~~~~~~~~~~~Y~I~I~I~~~II~I~AJ~~~~~~I~I~~I~IIIIII1J'1II~I~IYIIYII~~~~~~Y1~~~~~~~~~~~~"'Ljv&#x17d;gpss~t~tt'p'jifI~~II~II~II~II~~~I~JIhlJ'~~I~~~10NaturalFrequencyf(Hz)~~~~~~~A~~~~~~~~A~~~~~~~~'~~~~~~~~~J~I~~~~~~~~~~1Y~~~~~~~~II~~~~I~~A~~~~~~IIII~~~~~~~~~~~~~~~~~~11~~~I~I~I~~~I~~~I~I~I~~1~III~I~~I~~~I~~~f1~~~~~~~~~~~~~~~~~I~~~~II1~~~~~~~~~~~~~I~~I~~~~II~~~~~~II~I~I~I~~II~~~~IIIIlffflfff1f(flII~~I~~I~I~IIIII~~~~100  
U.S.NRCG.S.VissingA-3October20,19978'ithrespecttothesinglesafeshutdownearthquake (SSE)artificial timehistoryusedforstressanalysisasmentioned onpage75oftheReference, providethefollowing:
a)Acomparison betweentheresponsespectrum(RS)oftheartificial timehistoryandthelicensing basisdesignRSinthefinalsafetyanalysisreport(FSAR).b)Demonstrate theadequacyoftheartificial timehistoryincluding ademonstration oftheextentofconformance toatargetpowerspectraldensity(PSD)functionoftheartificial tiInehistoryinaccordance withguidanceprovidedinStandardReviewPlan(SRP)Section3.7.I.c)IftheRSoftheartificial tiInehistorydoesnotenvelopethelicensing basisdesignRSintheFSAR,ivhatisthebasisforusingitintheanalysis?
~R~~nAtotaloffoursets(X,Y,andZcomponents) oftimehistories weregenerated, suchthattheaverageofallfourtimehistories, whenmultiplied byafactorof1.10,enveloped thedesignresponsespectrum.
Asingletimehistorysetwasthenchosen(SSE1forSSEconditions) andanadditional factorof1.20wasappliedtotheresulting loadsanddisplacements toenvelopetheloadsanddisplacements fromallfourtimehistorysets.a)Acomparison ofthefuelpoolsafeshutdownearthquake (SSE)responsespectraandtheresponsespectragenerated fromtheSSE1timehistoryusedintheseismicanalysisisprovidedinFiguresNRCQ1a.1, NRCQ1a.2andNRCQla.3.
NUREG-800, SRP3.7.1,SectionII.1.bstates"Eachcalculated spectrumoftheartificial timehistoryisconsidered toenvelopthedesignresponsespectrumwhennomorethanfivepointsfallbelow,andnomorethan10percentbelow,thedesignresponsespectrum."
Forthiscomparison, the10%belowcurveisalsoplottedinFiguresNRCQla.1, NRCQla.2andNRCQla.3.
Thecomparison shows:East-West (X)Spectra 2frequencies belowdesignRSbutwithin10%threshold North-South (Y)Spectra2frequencies belowdesignRSbutwithin10%threshold Vertical(Z)Spectra1frequency belowdesignRSbutwithin10%threshold Therefore, thiscomparison showsthattheselectedseismictimehistories meettherequirements ofSRP3.7.1.
U.S.NRCG.S.VissingA-4October20,1997b)Thetargetpowerspectraldensity(PSD)oftheSSEtimehistoryisplottedinFiguresNRCQlb.1, NRCQlb.2andNRCQlb.3.
StandardReviewPlanSRP3.7.1,AppendixA,specifies theminimumPSDrequirements.
Thoseminimaarealsoplottedonthesamefiguresforcomparison.
Thecomparison showsthatalloftheartificial timehistories usedintheanalysismeettheminimumPSDrequirements oftheSRP3.7.1.c)Theartificial timehistoryenvelopes thespentfuelpooldesignresponsespectraandmeetstherequirements ofSRP3.7.1.
U.S.NRCG.S.VissingA-5October20,1997inInFrIK1-Hrimn5C0~~880IIIIJIIIIIIYIIIIIJJIIIYIIIIIIIIIIIIIIIIIIIIIIIJIIIJIIIIIIIIIJIII'YIsIIIJI~FIPIJs~~~I~~I~~II~J~~~~~IIIIIIII~IIIIIIIIIIIII~J~JJ~I~~I~II~IIIII~II~~1II~I~I~I~IIIJIIIIIIII~~~~~~II~~~IYI~~~~~~~~~IJIIIIIIII~VI~I~'~III~JIsjsI~'sIIIIIIIIIIIIIII~I~IIIII~I~I~I~I~I~IIIIIIIIIII~~I~I~~'YY~I~I~IIIIIIIII~IIIIIIIIIII~~II~~~~~~~~~~~~~~IIJ~II~s'I~IsIIIJJI1).JI~IIIIIIIIIIIY1IIIIIJI~I~IIIIIIIIIIIIII~IIIJ~~J~I~I~I~I~I~I~III~'Ih1~11IIII~IIIYIIIIIJIIIIIIIIJIIII~~~IIIJIPI~~I~~~III4~~IISYshs'I~~~~~~~~~I~~~I~~~I~s~~~JJJJ~~~~III~~I~I~~I~~~I~I~~~I~I~~~II~~I~~I~~I~ll~JI~~III~~IhSI~~I~II~~III~~III~~I~%II~~~~'+s~I~~IQIII~~~IIlhIIisIIIIIIIIII~II~I~II~I~II~I~II~I~II~I~~III~I~II~I~IIIIII~IIIIII~JJ~~~~~~~~~~III~~~~~II~~II1II~~~IIIIIIIIIII~~~IIIIIIIII1~~IIIIIIIIIIII~1'1IIIIIIIIIIII~JIIIIIIIIII~~~IIIIIIIIIIIII~~~IIIIIIIII~sJI~I~I~I~IIIIIIII~IJJ~~~~I~II~I~I~IIII~IIIIIIIIIIIlllsllI~IIIIIIIIIII~I~I~I~I~I~I~I~I~I~I~I~~IIIII]lssllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~~~JLI~~I~~II~I~~~I~I~II~~I~~I~s~~I10NaturalFrequency f(Hz)1QO A-6U.S.NRCG.S.VissingirR12October20,1997DinVIntFrINNAK1-HrimnIY5CD~~88D0x0.10.1IIIIIIIIIIIIIIIIIIJ~~~~~~~~~~IIII~I~I~IIII~I~JJIII~I~JI~~IIII~1~~~~~~I~I~I~II~J~I~I~I~~~~~~~~~~~~IIIII~~I~I~II~I~II~I~II~~~~JII~~~III~~~I~~~I~II~~~~I~I~~J~~~~~~II.M..q.III~I~I~~~~~I'~~~~~~JII~IIIsrIIISIII~I~~II~I~~~~~~~I~~~I~~~~~111~~~~~I~~~I~~I~~IJ~1$II'IIIIIII~~II~II~I~IIIIr~~I1I1~~~I~II~II~II~II~I~J~I~)I~IIIII1IIII~AIIL.I1AI1IIIIIIIIIII~~IIIIIIIII11I~~I~~I~~IIIIAI~~~~~~~~~I~~~~I~~I~~II~~~~~~I~~~~I1~J1~~IIIIIIIIIIIII~AIIIIIII~I~I~I~~II~~II~~II~IAIIIIIII~III~I~I~I~I~~~~I~~~I~I~~~~II~~~~III~~~IIIIIIII~~~~~~'I~~I~I~~I~I~I~I~I~I~II~~II~~~~I~II's~~~~~~g~~~~I~~III~sIIsIIsIIs~~A~I~A~I~~~~~~~~I~III~II~IIIlrI~Is~IIIIIIIII'I111'4~~~~I~~I~II~~~~~~~~IrIIa~r~'I~~~~~~~~~~~~~~~~I~~~II~III~I~~~~s~II~~~~I~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~~I~~~~~~~~~~~IlrIJ~~IIrIrIJlI~~~~~~~~IIIIIIII~~~I~III~III~~~~~III~~I~I~I~~~I~~~110NaturalFrequency f(HzjI~I~~~~~III~~I~~~~'~I1III~~~I~~IIIIII~~I~I~~~~~~I~~~I~I~I~I~L~~I~I~~~I~~~I~~~I~III~~~~~IIII~~~~III~~I~~~~IIIIIIIIIIII~~IIIIlllm,'II
~~I~~~I~~~I~~~I~I~I~~~~I~~~I~~~I~~~~~IIIIIII~~'II~~~11~~I~~~III~II~IA~~I~I~~~II~~II~~II~IA~I~II~I~~I~~~~I~~~~~~I~(IIIIII~I~~~~~~~I~~~I~I~I~~~I~~~I~~~II~~IIII300 0l A-7U.S.NRCG.S.VissingFirNR1a.3inIntFrIOctober20,19971-Vrcl0)8G0~~(5L8CfVX50.10.1~~~I~~t~~I~I~~~~~~~I~~~I~~~t~~~~~~I~~I~~I~~~~~~J~~~~~~I~~~~~~~'I~~~~~~I~~I~~I~IA~IJ~~A~~IIIIIIIIIIJ~AIII~~~J~IIII~A~IIIIIIIIIJIIIIIYIIIIIIIIIIIIJIIIIIIIYIIIIII'~~~IIIIIIIIIIII'IIIIII~~~~~~~~~~~~~~~~IA~~~~~~~~~I~~~~IIIAJI~~~~~~J~~I~I~IIhII~~~~~I'~~~~~~~~~~~~~~II~~~I'~~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~I~~~I'I~~~~~J~~~~~'I~~~~A~t~~~~~~~~I~~'~~~~~~~~'~~~~~~~~~~~I~~I~~I~~I~~~~A~AJ~~~~t~~Al~~~~III~~~~~~~~~I~~I~~~~II1IIIII~~~~YI~~I~III~~~IIIIIIIIII~~II~IJ~~~~I~~~I~I~I~~I~~~IIIA~I~~~III~I~I~~~II~~Al~~~~~~~~~~~~~~~~~~~~I~III~~~rIIIII~~~~~~~~~A~~1~~r4Iff~fI~I1flfft1t~I~I~~I~~I~IIf1fff1~I~Vff~1II~~~I~~~~I~~I~ltl~JI'eAf>>~~~I~I~I~~~~~~~~t~~~~~~~~~f~~~~~~~~~~~~~~~~~~~~~~A~~~~~~~I~~~~~~~~~~~~~~~~~~~~1Y~~~~t~~~I~I~A~~~~~~~~~~~~~~~~~~~~~~~~~~~~Y~I~I~I~~~II~I~AJ~~~~~~I~I~~I~IIIIII1J'1II~I~IYIIYII~~~~~~Y1~~~~~~~~~~~~"'Ljv&#x17d;gpss~t~tt'p'jifI~~II~II~II~II~~~I~JIhlJ'~~I~~~10NaturalFrequency f(Hz)~~~~~~~A~~~~~~~~A~~~~~~~~'~~~~~~~~~J~I~~~~~~~~~~1Y~~~~~~~~II~~~~I~~A~~~~~~IIII~~~~~~~~~~~~~~~~~~11~~~I~I~I~~~I~~~I~I~I~~1~III~I~~I~~~I~~~f1~~~~~~~~~~~~~~~~~I~~~~II1~~~~~~~~~~~~~I~~I~~~~II~~~~~~II~I~I~I~~II~~~~IIIIlffflfff1f(flII~~I~~I~I~IIIII~~~~100  


A-8U.S.NRCG.S.VissingFireNROctober20,1997P9marinFrINAE1-Hrizn1X1000'~~pp'IIIII~JIJ~J~~~'PPhP~hh'IPP''h~~~LhJhIJJ\LL~J~~~IOO1IrrlLLI~~I~~YY~~~~~~~e'~~~II~YJ'YrYLJ~~~~I'1I~~~YJIIYII~~I~~~~~~I4JI'~~~~~PaIJLYYJY~~~I'Y~~~~~~~~~~~~~P~~~~Y1~~~~'a~~'F~~~~FIIYY4~JaeI~II~I~~~II~~~~~II~~~~I~~I~s~~\~~~P~'h~~'P'Ih~~'~~~I''PF11aII~JaJl~J~~~~~~~~~~~11~~~~~~~~~~~~'I~~VQlOCUC~~DrD0100.1I1'I~~~')'FIFFFeCLCLlFs~~~4~~~~dI~~~~~~~~~~CCrI'''~~PPhJYY~~~p'IP4IalIeIIJI~~~~~~~~~~~~~~~~~~~~~~~~~~~~CC'4ddJ~~~rI'~~~~~I~I~~~~~~~~~~~~CX>IJJLJJ~~~rYYp'a'~~~~4C~ehL~JhJJ~LdLJdLJJJIL~~~~~~I~JIe~~~~~~II~II~JII~JIJJ~~~~~I~II~~III~~~+Ir----r~~I~~~~I~II~~I~~~~~~Ipp'Ip'I'I~p~'hP~'I~PrYYYY1~YrY'YY'YY~rr~~J~JJ~I~~~h~J~~~IJ~~~~~PPrJII~~1~~~~II~~''111I~~'h'I''I~J~'I'a~~JJ~~~~~'h'h'~~~~,JeII~I~~JJ~~~1YY11YY1~JJ~~~~~p~'ah'I~~IIh~J~I~~~~I~~~~I~JJ~I~~~~~~~~~II~~I~~~~~~~~~~C)LJJJ~IJJJ~~~~~~Y11h~p~'a\~IY~~p~~YFYII~~~I~~~~~~Y1YF11~~~~~~~~~~~~~I~~~~~~~~~~pI'II~~p'I'II''r~Y~11Y~'Y'11P'Ihe~'~I~JI~I~~~~~~pp'I'hIa~~~~~I~4h~Ja~~I~I~~II~II~~~~JJlJJ~~~~I~~~~II~~II~II~~IICC))t)~LLJJI,lJJYrrr4~~~~~1YF1'I1YF11IJ~~~~~~~~~~~~~~~IIII~J~~~~~~~~~~~J~~~~~~~~~~~~~~~CLJJJJ~~~F11JICCLII~YIPI'he'~ehI~~J~~~~lI~I~~J~JJ~~~~~~~I~J~~~~~~~~~lIII~JJlJJ~~~~~~~~FFrYhYYY~~~~~~~~'~~~~~~~~~I~~~1rYY'1'Y1~IYI10F11~I~~I~~~'II~~~~~~IP'IP'I'I~PI~I~~'h'ePP~'h~~~~~~~~~~~~~I~~~~~~II~~~~II~II~~I~~~~~~~~~hhJhJJ~h~0.010.1I~~~~~~~~~~~I~~~I~~~~~~~~~~~~~I~~~~~~~~~~I~~~~~~~~~~~~~~~~I~~I~~~~~~I~~~~~~~~~~~~~~~~30100Frequency(Hz)
A-8U.S.NRCG.S.VissingFireNROctober20,1997P9marinFrINAE1-Hrizn1X1000'~~pp'IIIII~JIJ~J~~~'PPhP~hh'IPP''h~~~LhJhIJJ\LL~J~~~IOO1IrrlLLI~~I~~YY~~~~~~~e'~~~II~YJ'YrYLJ~~~~I'1I~~~YJIIYII~~I~~~~~~I4JI'~~~~~PaIJLYYJY~~~I'Y~~~~~~~~~~~~~P~~~~Y1~~~~'a~~'F~~~~FIIYY4~JaeI~II~I~~~II~~~~~II~~~~I~~I~s~~\~~~P~'h~~'P'Ih~~'~~~I''PF11aII~JaJl~J~~~~~~~~~~~11~~~~~~~~~~~~'I~~VQlOCUC~~DrD0100.1I1'I~~~')'FIFFFeCLCLlFs~~~4~~~~dI~~~~~~~~~~CCrI'''~~PPhJYY~~~p'IP4IalIeIIJI~~~~~~~~~~~~~~~~~~~~~~~~~~~~CC'4ddJ~~~rI'~~~~~I~I~~~~~~~~~~~~CX>IJJLJJ~~~rYYp'a'~~~~4C~ehL~JhJJ~LdLJdLJJJIL~~~~~~I~JIe~~~~~~II~II~JII~JIJJ~~~~~I~II~~III~~~+Ir----r~~I~~~~I~II~~I~~~~~~Ipp'Ip'I'I~p~'hP~'I~PrYYYY1~YrY'YY'YY~rr~~J~JJ~I~~~h~J~~~IJ~~~~~PPrJII~~1~~~~II~~''111I~~'h'I''I~J~'I'a~~JJ~~~~~'h'h'~~~~,JeII~I~~JJ~~~1YY11YY1~JJ~~~~~p~'ah'I~~IIh~J~I~~~~I~~~~I~JJ~I~~~~~~~~~II~~I~~~~~~~~~~C)LJJJ~IJJJ~~~~~~Y11h~p~'a\~IY~~p~~YFYII~~~I~~~~~~Y1YF11~~~~~~~~~~~~~I~~~~~~~~~~pI'II~~p'I'II''r~Y~11Y~'Y'11P'Ihe~'~I~JI~I~~~~~~pp'I'hIa~~~~~I~4h~Ja~~I~I~~II~II~~~~JJlJJ~~~~I~~~~II~~II~II~~IICC))t)~LLJJI,lJJYrrr4~~~~~1YF1'I1YF11IJ~~~~~~~~~~~~~~~IIII~J~~~~~~~~~~~J~~~~~~~~~~~~~~~CLJJJJ~~~F11JICCLII~YIPI'he'~ehI~~J~~~~lI~I~~J~JJ~~~~~~~I~J~~~~~~~~~lIII~JJlJJ~~~~~~~~FFrYhYYY~~~~~~~~'~~~~~~~~~I~~~1rYY'1'Y1~IYI10F11~I~~I~~~'II~~~~~~IP'IP'I'I~PI~I~~'h'ePP~'h~~~~~~~~~~~~~I~~~~~~II~~~~II~II~~I~~~~~~~~~hhJhJJ~h~0.010.1I~~~~~~~~~~~I~~~I~~~~~~~~~~~~~I~~~~~~~~~~I~~~~~~~~~~~~~~~~I~~I~~~~~~I~~~~~~~~~~~~~~~~30100Frequency (Hz)
IrUf A-9U.S.NRCG.S.VissingFiurNR12PDmarinFrIOctober20,1997<1-HrimntY1000:'~P~~~~~P~~~~~~'1I~I~~~PPP'I'I~~~~~J1AJ~AA~'VA'II~~A~~JJ~~A~1A~~~~~~~r~CY~d~ld~~~~~~~~~~~~I"r-Irr~~~~~~~~~~~~~~P~~P~~~~~~~lIIII~1~1J~~~~~~~~J~~~~~~11I11I~~I~~~~~~~~~~~11I11~~~~I~~~~I~~'~'~~~~~~~~~~~~~~~~~~~~~~1I~~''~~~~''~~~~~~II~~~~~~~~~~~II~lI~~~I~I~~~~~~11I1~~~I~I~~IIII~I~I~~I~~~~~~~AA~hAJA~~~~~~~~I"rYY~'VY1JlJlJJ~JA~~~~~~~~~~~~II'YY1YYI~~I~I~~~~~~~~~~PIA~''\I~~IIII~~~~~~~I~~~III~~~~~~I~~41JJ~JJYJYA'I'I11'1IA'~~~~~~~~~~~~~~~~~~~~~~~~h~I~~~~~P~~P100.:IPP'1'~~P~~P~~'h'h''hAI~~~P~~P'IY~~~~~4~~J1AA~AA~~~~'1JlAA~JA~~~~~~~~'~~P~~~~1~lA~~Jl~ld~~~~~~~~II~IAJJllII1~AJ~~~~~~JJIJJ~~~I~I~~~~~~'VY~'V'V~~~~~~~~~~~~lI~lI~~~~~~~~~~~II~WC-r-r~~~~~~~~I~~~~~l~JJIIIIIIYII~IIJP1III~'~~I~~~~~II~~~~I~~~P~~I~~I~~~I~~I~~~~~~~~~~~~~~P~~P~hh~~h10CU1Q(0tL~~PPIP~~rr'vY~YrYY1'I'I~~~~~P~P'I'I~~4~~JA~I~~~~I~~~~P'Ih~~~~~~~~h~IJA~~~JI~~~~~~~~~~~~~~~~~~I~~~~I~~JJ~~JJ~~~~~I~~I~~~I~~~~~I~~~~~I~4.~..~.............~~~~I~'"C'C)))')')'~t'4JJIJJ~~~I~~I~~rr'\'v1'v'vCr0Y1YY~~~~A~~JA~~~~~~~~h~'II~~II~~~J~JJI~~II~~~~~~114~JA~AJ~I~~~~~~~~~~~~~~~~~~~~~~~CC)))))))1IAAIJJJlJlJJIJJ~~~~~~rYYY1Y'I~~PP~'1'I'''~I~P~~''~P~~I~'VY'VY1~1111I'1C~~1~1~~~~Ih~~~~~~~'''~~~~1JP~~~I~~I~r~CYCY1I~CI~~~I~~~~~~~~~~'I~~~~~~~~I~~~~~~~~~II~~~~~~I~~~~~I~I~~~~~III~~~~JII~~~~~~~~~~~~l~~CII~~I~)~~~~~)I~I~~~"~~~cI~~~~I~~~~~'II~1'1I~1I~~~~~~~~~~~~~~~~~~h''~~'~~~I~~~II~J~~~~~~~~~I~~I~~~~~~~~A~~~~~~~~~~~~~~~~~~~~~~~~I~~I~~III~~~~~~~~))[))AI~~~IJII1~~I~~~~~~~~~~~~Y11I11~~I~~~~~~~~~~~~~~Y11I11I~I~II~I~'~~~~1I11~~~~~~~~I~~~~~~~~P~~~I~~~~~~~1~~1~~~~~~~~~~~~~~~~I~~I~~~~~~~~~~~~I~~~~I~~~~~~C))'C)CC~~'1~1I~~I.~lI~~~~~~Y~tY~~P~~~~~~~~~II'II'~~~~~~~P~PP~~~YhIJJAAAJJ'VYhI'VYI'hII~~~~~~~~~~1~~~~~~~~~~IC1lII0.1~~~II11'1~rr'VY1Y1~~~~~~I~~~~,~~~~PPhA'~~~~~~~~~~~~~~~~~I~~~~~~I~~~~A~~~AJ~J~~~~~~~~~~~I~~~~~~~~~~I~~~~~~~~~~1~fA~I~~~~~II~~~~~~~~~~~~III~~IA~I~I~~~~~~~~I~~~~~~~~~~~~~II~~~~~~~~~~~~~I~~~~~~~~~~~~0.010.11l0100~~~~~A~~JJJ~~~J~~IAAA~Frequency(Hz)
IrUf A-9U.S.NRCG.S.VissingFiurNR12PDmarinFrIOctober20,1997<1-HrimntY1000:'~P~~~~~P~~~~~~'1I~I~~~PPP'I'I~~~~~J1AJ~AA~'VA'II~~A~~JJ~~A~1A~~~~~~~r~CY~d~ld~~~~~~~~~~~~I"r-Irr~~~~~~~~~~~~~~P~~P~~~~~~~lIIII~1~1J~~~~~~~~J~~~~~~11I11I~~I~~~~~~~~~~~11I11~~~~I~~~~I~~'~'~~~~~~~~~~~~~~~~~~~~~~1I~~''~~~~''~~~~~~II~~~~~~~~~~~II~lI~~~I~I~~~~~~11I1~~~I~I~~IIII~I~I~~I~~~~~~~AA~hAJA~~~~~~~~I"rYY~'VY1JlJlJJ~JA~~~~~~~~~~~~II'YY1YYI~~I~I~~~~~~~~~~PIA~''\I~~IIII~~~~~~~I~~~III~~~~~~I~~41JJ~JJYJYA'I'I11'1IA'~~~~~~~~~~~~~~~~~~~~~~~~h~I~~~~~P~~P100.:IPP'1'~~P~~P~~'h'h''hAI~~~P~~P'IY~~~~~4~~J1AA~AA~~~~'1JlAA~JA~~~~~~~~'~~P~~~~1~lA~~Jl~ld~~~~~~~~II~IAJJllII1~AJ~~~~~~JJIJJ~~~I~I~~~~~~'VY~'V'V~~~~~~~~~~~~lI~lI~~~~~~~~~~~II~WC-r-r~~~~~~~~I~~~~~l~JJIIIIIIYII~IIJP1III~'~~I~~~~~II~~~~I~~~P~~I~~I~~~I~~I~~~~~~~~~~~~~~P~~P~hh~~h10CU1Q(0tL~~PPIP~~rr'vY~YrYY1'I'I~~~~~P~P'I'I~~4~~JA~I~~~~I~~~~P'Ih~~~~~~~~h~IJA~~~JI~~~~~~~~~~~~~~~~~~I~~~~I~~JJ~~JJ~~~~~I~~I~~~I~~~~~I~~~~~I~4.~..~.............~~~~I~'"C'C)))')')'~t'4JJIJJ~~~I~~I~~rr'\'v1'v'vCr0Y1YY~~~~A~~JA~~~~~~~~h~'II~~II~~~J~JJI~~II~~~~~~114~JA~AJ~I~~~~~~~~~~~~~~~~~~~~~~~CC)))))))1IAAIJJJlJlJJIJJ~~~~~~rYYY1Y'I~~PP~'1'I'''~I~P~~''~P~~I~'VY'VY1~1111I'1C~~1~1~~~~Ih~~~~~~~'''~~~~1JP~~~I~~I~r~CYCY1I~CI~~~I~~~~~~~~~~'I~~~~~~~~I~~~~~~~~~II~~~~~~I~~~~~I~I~~~~~III~~~~JII~~~~~~~~~~~~l~~CII~~I~)~~~~~)I~I~~~"~~~cI~~~~I~~~~~'II~1'1I~1I~~~~~~~~~~~~~~~~~~h''~~'~~~I~~~II~J~~~~~~~~~I~~I~~~~~~~~A~~~~~~~~~~~~~~~~~~~~~~~~I~~I~~III~~~~~~~~))[))AI~~~IJII1~~I~~~~~~~~~~~~Y11I11~~I~~~~~~~~~~~~~~Y11I11I~I~II~I~'~~~~1I11~~~~~~~~I~~~~~~~~P~~~I~~~~~~~1~~1~~~~~~~~~~~~~~~~I~~I~~~~~~~~~~~~I~~~~I~~~~~~C))'C)CC~~'1~1I~~I.~lI~~~~~~Y~tY~~P~~~~~~~~~II'II'~~~~~~~P~PP~~~YhIJJAAAJJ'VYhI'VYI'hII~~~~~~~~~~1~~~~~~~~~~IC1lII0.1~~~II11'1~rr'VY1Y1~~~~~~I~~~~,~~~~PPhA'~~~~~~~~~~~~~~~~~I~~~~~~I~~~~A~~~AJ~J~~~~~~~~~~~I~~~~~~~~~~I~~~~~~~~~~1~fA~I~~~~~II~~~~~~~~~~~~III~~IA~I~I~~~~~~~~I~~~~~~~~~~~~~II~~~~~~~~~~~~~I~~~~~~~~~~~~0.010.11l0100~~~~~A~~JJJ~~~J~~IAAA~Frequency (Hz)
A-10U.S.NRCG.S.VissingFirR13October20,1997PDmrinFrINNAK1-VerticalZ10010P)Q1Nt:0.1Q(6Q0.010.0010.1II'III'111~~~~~~~~~~fIY~~~~II'II~~~~~~~4~~r~~~~J~A~~4~~~IsrO'Y~JA~~~~~Irr1YYI~II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4~~yJ~~J1JJI~V(r%QPAtAI~~AJJssPAhhA~<YJthtrttht~P~~~~~~~~'I~~~~~'I~~~~~~JtAII~11~II~~~A~~~~JJ~~~~~~~h~tAA~~~~~~IAIYI~~~~~~~~P~tPI'YIIYII"r-IIr""""~~~~~pY1YY1'h~~~~IJJ~~I~~~~~A~Ih~~~~~~~~JJ~JA~~~~I~~~~~~~~4JJ~AJ~~1II~~~~1~I11I\~I~~~~~1~I~~~~~1II~~~~~~Ir1YA~~Y~~~I1YYIAA~~~~~~1YY~~~~~~~~'h~~~~~~~~~~~~~t\~~~~t~~~~~'I~~t~I~~~~'~'~~~I~~t~~t~tt~$~I~I~~~~~~II~~II1~I~~~~~~I~IIISI~~~~1~~~~~~~~~~I~~~I1~~~~~4Af1151'I11~~~~~~~~~~~~I~~~~~PPh'h'PPhh~I''IdJeff~~I~~~JJ~AA~~IIAA~~II~~Y'Y~~~~~I~~~~~IAJJI~I~~~I~~~I~~~~~~~~~~~~~~~~~~rP'I'h'Yr1Y1YYYY'IY1YY~~'I'h~htrAAJA~AA~~~~~~~~~~~~~~~~~~~~~~~~~~~~P~h'h~hh~~~~~~~~~JJ~JJ~IIII11C~~~~~~CC1~~I~~CrI~II~~~CCCC11~~~~~~~~~IIIIsr~~AA~~A~AII~~I~~I~I~~~~~)C$~I~I~~~I~~~~I~~~~~))~~~11C~~\~~~~~~P~~~~~~It~tIA~~~~~~~~~~\IIhI~~~~~~~~~~~~~~~~~I~~~~~~~CCCCC11I1I~A~I~I~YIII~s~~s~~~~~~~CIIC1IIII11II'~'~~~~1~~~~~~ff~~~~I'I'~~P~~~~~~~~I'~Pt~~I~I~~~~~~~~I~~II~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~~~~~~~I~~~I~~~~~I~~~)II1~~~~~~I~~'~~~~~~~~~~III~~II~~)C~I~~~I)C))I''AAAAJAY~~1I~I~~~~'~~YY~~~~YYY~~~~~~I~S'h~'t~I~II~~I~~~~~~~~~~~~~I~~~~~~I~~I~I~~~~~~~~sC1I.I.ZP.ICAYI'r~~~~s~~~I~~~h~~~~CCAdAAI'~~~~~~~~~~A~AA~~s~~~~~~~1~~~~I~~~~)C)))A~AAI~~~~Y~YYYY~YYA~AA~~~~~~~~~~J~~~~~~~~~~~~AJ~~~~~~~~~~~~~~~~~~~~~~~~~)AJIJAJA~AJ~~~~~YY~YYh\Ah~~~~~'IY~YYII~~I~hh~~~~AII~~~~~~~~~~~~sI~~~~~~~~~~I110100Frequency(Hz)
A-10U.S.NRCG.S.VissingFirR13October20,1997PDmrinFrINNAK1-Vertical Z10010P)Q1Nt:0.1Q(6Q0.010.0010.1II'III'111~~~~~~~~~~fIY~~~~II'II~~~~~~~4~~r~~~~J~A~~4~~~IsrO'Y~JA~~~~~Irr1YYI~II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4~~yJ~~J1JJI~V(r%QPAtAI~~AJJssPAhh A~<YJthtrttht~P~~~~~~~~'I~~~~~'I~~~~~~JtAII~11~II~~~A~~~~JJ~~~~~~~h~tAA~~~~~~IAIYI~~~~~~~~P~tPI'YIIYII"r-IIr""""~~~~~pY1YY1'h~~~~IJJ~~I~~~~~A~Ih~~~~~~~~JJ~JA~~~~I~~~~~~~~4JJ~AJ~~1II~~~~1~I11I\~I~~~~~1~I~~~~~1II~~~~~~Ir1YA~~Y~~~I1YYIAA~~~~~~1YY~~~~~~~~'h~~~~~~~~~~~~~t\~~~~t~~~~~'I~~t~I~~~~'~'~~~I~~t~~t~tt~$~I~I~~~~~~II~~II1~I~~~~~~I~IIISI~~~~1~~~~~~~~~~I~~~I1~~~~~4Af1151'I11~~~~~~~~~~~~I~~~~~PPh'h'PPhh~I''IdJeff~~I~~~JJ~AA~~IIAA~~II~~Y'Y~~~~~I~~~~~IAJJI~I~~~I~~~I~~~~~~~~~~~~~~~~~~rP'I'h'Yr1Y1YYYY'IY1YY~~'I'h~htrAAJA~AA~~~~~~~~~~~~~~~~~~~~~~~~~~~~P~h'h~hh~~~~~~~~~JJ~JJ~IIII11C~~~~~~CC1~~I~~CrI~II~~~CCCC11~~~~~~~~~IIIIsr~~AA~~A~AII~~I~~I~I~~~~~)C$~I~I~~~I~~~~I~~~~~))~~~11C~~\~~~~~~P~~~~~~It~tIA~~~~~~~~~~\IIhI~~~~~~~~~~~~~~~~~I~~~~~~~CCCCC11I1I~A~I~I~YIII~s~~s~~~~~~~CIIC1IIII11II'~'~~~~1~~~~~~ff~~~~I'I'~~P~~~~~~~~I'~Pt~~I~I~~~~~~~~I~~II~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~~~~~~~I~~~I~~~~~I~~~)II1~~~~~~I~~'~~~~~~~~~~III~~II~~)C~I~~~I)C))I''AAAAJAY~~1I~I~~~~'~~YY~~~~YYY~~~~~~I~S'h~'t~I~II~~I~~~~~~~~~~~~~I~~~~~~I~~I~I~~~~~~~~sC1I.I.ZP.ICAYI'r~~~~s~~~I~~~h~~~~CCAdAAI'~~~~~~~~~~A~AA~~s~~~~~~~1~~~~I~~~~)C)))A~AAI~~~~Y~YYYY~YYA~AA~~~~~~~~~~J~~~~~~~~~~~~AJ~~~~~~~~~~~~~~~~~~~~~~~~~)AJIJAJA~AJ~~~~~YY~YYh\Ah~~~~~'IY~YYII~~I~hh~~~~AII~~~~~~~~~~~~sI~~~~~~~~~~I110100Frequency (Hz)
U.S.NRCG.S.VissingA-11October20,19978'ithrespecttothedynamicfliiid-stnictureinteractionanalysesusingthecomputercode,ANSYS,inthe
U.S.NRCG.S.VissingA-11October20,19978'ithrespecttothedynamicfliiid-stnicture interaction analysesusingthecomputercode,ANSYS,inthe


==Reference:==
==Reference:==
a)Erplainhowthesimplestickmodeliisedinthedynamicanalysescanaccuratelyandrealisticallyrepresenttheactualhighlycomplicatednonlinearhydrodynamicfluid-rackstnictureinteractionsandbehaviorofthefiielassembliesandthebox-typerackslnicture.b)Providetheresultsofanyexistingexperimentalstiidythatverifiesthecorrectoradequatesimulationofthefluidcouplingutilizedinthenumericanalysesforthefiielasseinblies,racksandwalls.Ifthereisnosuchexperimentalstudyavailable,provideindetailtechnicaljustificationsonhowthecurrenlleveloftheANSYScodeverificationisadequateforengineeringapplicationsandshouldbeacceptedwithoutfiirtherexperimentalverificationworkc)Provideinatabularformthematerialproperliesincludingthesliffiiess(k)usedforthesimplifiedcomputerstnicturalmodelsshowninFigures3.5-31and3.5-32ontheReference,andthetechnicalbasisfortheconclusionthaithepropertiesusedintheanalysesarerealisticandequivalenttothepropertiesoftheactualrackstnicture.d)Indicatewhetheryouhadanynuinericalconvergencyand!orstabilityproblem(s)duringthenonlinear,dynainicsingle-andmulli-rackanalysesusingtheANSYScode.Iftherewereany,howdidyouovercometheproblem?e)SubmittheANSYSinputdatainASCIIfortheModelI(3-DSingleRackPlateModel)andtheModel2(3-DSingleRackBeamModel)analyseswithcompleteinformation(i.e.,artificialtiinehistoryinputmotions,loadingconditions,boundaryconditions,materialproperlies,loadingsteps,etc.)ona3.5-inchdiskette.~R~~na)Thebehaviorofspentfuelstorageracksiscomplex,andsomesimplificationoftheactualbehaviorisappropriatewhencreatingamathematicalmodelforuseinafiniteelementanalysis.Onehastoassesstheaspectsofthestructuralbehaviorwhichareimportanttosimulationwhileconsideringtheenduse.
 
U.S.NRCG.S.VissingA-12October20,1997Theracksareveryrigidstructuresandtheirnaturalfrequenciesaremuchgreaterthanthepredominantseismicinputforcingfrequencies.Hence,therackstructuremotioncanbedescribedbya3-Dbeamelement(sixdegrees-of-freedom,threetranslationalandthreerotational).Themathematicalmodels(3-Dsinglerackandwholepoolmulti-rack)usedtoperformdynamicanalysesofthefuelstoragerackstructuresimulatedthethree-dimensionalcharacteristicsoftherackmodulesinacomprehensivemanner.Thesemodelsincludedfeaturestoallowforslidingandtippingoftheracksandtorepresentthehydrodynamiccouplingwhichcanoccurbetweenfuelassembliesandrackcells,betweenracks,andbetweentheracksandthereinforcedconcretewalls.Thegapelementswereincorporatedtoaccountforimpactbetweenthefuelassemblyandtherack.Todetectanyimpactbetweenracksand/oranyimpactbetweentheracksandthepoolwall,additionalgapelementswereintroducedintothe3D-wholepoolmodelofthesinglerackThesupportlegsweremodeledascompression-onlygapelementswhichconsideredthelocalverticalflexibilityoftherack-supportinterface.Frictionelementswereusedatthebottomofthesupportlegs.Thespentfuelstorageracksarefree-standingstructures.Theyareconstructedofasimpletubestructureassembledinahoneycombpattern.Undergivenseismicexcitationtheybehavesimilartoaveryrigidstructure.Thebeamrepresentationgivesadequatesimulationforseismicloadings.Asdiscussedinthereport,forthermalandotherconditions,thecompleterackwasidealizedusingplateelements.Thespentfuelstorageracksseemlikeacomplexstructure.However,whencomparedtoother10CFR50licenseapplications,likereactorvesselinternals,steamgeneratorinternals,containmentbuilding,whichallareanalyzedusingbeamrepresentation,thespentfuelstoragerackitselfisaverysimpleassemblyofsquaretubestructures.Also,thebeamrepresentationisconsistentwiththe1985licensingbasis,NRCSERdatedNovember14,1984(Reference3.24oftheLicensingReport).Also,thisapproachisconcurrentwithrecentlylicensedspentfuelstorageracks,namely,ZionStationUnits1and2,DocketNos.50-295and50-304;HaddamNeckPlant,Docket50-213;andPilgrimNuclearPowerStation,Docket50-293.Insummary,themethodologyusedforthemathematicalmodeloftherackstructuresisconsistentwithindustrypractice.
a)Erplainhowthesimplestickmodeliisedinthedynamicanalysescanaccurately andrealistically represent theactualhighlycomplicated nonlinear hydrodynamic fluid-rack stnicture interactions andbehaviorofthefiielassemblies andthebox-typerackslnicture.
A-13U.S.NRCG.S.Vissingb)October20,1997TheexperimentalverificationofthefluidcouplingsimulationisprovidedinAppendixNRCQ2-Atothisquestion.TheresultsshowverygoodagreementbetweentheANSYSresultsandtheexperimentaltestresults.ThevalidationoftheANSYSVersion5.2isinconformancewiththeprovisionoftheFramatomeTechnologiesInc.,QualityAssuranceProgram,Doc.No.56-1201212(Section7.2oftheLicensingReport).ThevalidationmeetstherequirementsofthesubsectionII.4.cofSRPSection3.8.4andsubsectionII.4.eofSRPSection3.8.1.SRP3.8.1statescomputerprogramvalidationshouldmeetanyofthefollowingproceduresorcriteria:(i)Thecomputerprogramisarecognizedprograminthepublicdomain,andhashadsufficienthistoryofusetojustifyitsapplicabilityandvaliditywithoutfurther.demonstration.(ii)Thecomputerprogramsolutiontoaseriesoftestproblemshasbeendemonstratedtobesubstantiallyidenticaltothoseobtainedbyasimilarandindependentlywrittenandrecognizedprograminthepublicdomain.Thetestproblemsshouldbedemonstratedtobesimilartoorwithintherangeofapplicabilityoftheproblemsanalyzedbythepublicdomaincomputerprogram.(iii)Thecomputerprogramsolutiontoaseriesoftestproblemshasbeendemonstratedtobesubstantiallyidenticaltothoseobtainedfromclassicalsolutionsorfromacceptedexperimentaltestsortoanalyticalresultspublishedintechnicalliterature.Thetestproblemshouldbedemonstratedtobesimilartoorwithintherangeofapplicabilityoftheclassicalproblemsanalyzedtojustifyacceptanceoftheprogram.ANSYSisawidelyusedandacceptedcomputerprograminthepublicdomain.ThevalidationofthefluidcouplingelementusingclassicalequationswaspresentedtotheNRCStaffduringameetingonAugust25,1997.TheexperimentalverificationisprovidedinAppendixNRCQ2-Atothisquestion.ThecomputerprogramvalidationrequirementsoftheSRP3.8.4andSRP3.8.1aremet.c)Thematerialpropertiesusedinthe3-DSingleRackand3-DWholePoolRackmodelaregiveninTables3.4-2through3.4-8oftheLicensingReport.ThematerialpropertiesforthestructuralmaterialarefromtheASMECode,whichisreferencedinthereport.Therackstiffnessesaregeneratedinternallyinthecomputerprogramfromcross-sectionpropertiesandareprovidedinthefollowingsummary.Therackstiffness,intermsofcross-sectionproperties,isprovidedinSection3.5.3.1.1.1,startinginpage136oftheLicensingReport.Thestiffnesspropertiesaredevelopedusingclassicalappliedmechanicsequations.Theseismicanalysisresultsarenotsensitivetotherackstiffness,andthisisdemonstratedinSection3.5.2.7.
b)Providetheresultsofanyexistingexperimental stiidythatverifiesthecorrectoradequatesimulation ofthefluidcouplingutilizedinthenumericanalysesforthefiielasseinblies, racksandwalls.Ifthereisnosuchexperimental studyavailable, provideindetailtechnicaljustifications onhowthecurrenlleveloftheANSYScodeverification isadequateforengineering applications andshouldbeacceptedwithoutfiirtherexperimental verification workc)Provideinatabularformthematerialproperlies including thesliffiiess (k)usedforthesimplified computerstnictural modelsshowninFigures3.5-31and3.5-32ontheReference, andthetechnical basisfortheconclusion thaithepropertiesusedintheanalysesarerealistic andequivalenttotheproperties oftheactualrackstnicture.
U.S.NRCG.S.VissingFuelCellImpactStiffnesssummary:Type1(ExistingU.S.Tool2DieRacks):Type2andType4(NewATEARacks)Type3(NewATEARacks)4,449lb/in7,036lb/in6,595lb/inOctober20,1997Thefollowingaxialstiffnesses(AE/L)arecalculatedinternallyinANSYS,butaregivenforinformationpurposes.AllpagereferencesarefromtheGinnaLicensingReport.ConsolidatedFuelCanisterStructuralProperties:E=27.87E6psiA=3.6681in',a=9.3920inL=159ink,~=1.65E6lb/in(kforA,fr)E(Zircaloy)=12.0E6psiA=7.1419mL=159ink=5.39ESlb/inFuelAssemblyStructuralProperties:
d)Indicatewhetheryouhadanynuinerical convergency and!orstability problem(s) duringthenonlinear, dynainicsingle-andmulli-rack analysesusingtheANSYScode.Iftherewereany,howdidyouovercometheproblem?e)SubmittheANSYSinputdatainASCIIfortheModelI(3-DSingleRackPlateModel)andtheModel2(3-DSingleRackBeamModel)analyseswithcompleteinformation (i.e.,artificial tiinehistoryinputmotions,loadingconditions, boundaryconditions, materialproperlies, loadingsteps,etc.)ona3.5-inchdiskette.
U.S.NRCG.S.VissingOctober20,1997SupportPadStructuralProperties(krepresentsindividualsupportpad)E=27.87E6psiL=10.0in(forRackTypes1,4),andL=19.60in(forRackTypes2,3)LegsofType1Rack:k=3.75E81b/inLegsofRack7(2A):k=5.69E7lb/inLegsofRack8(2B):k=7.54E7Ib/inLegsofRack9(3C):k=3.84E7lb/inLegsofRack10(3A):k=5.69E7lb/inLegsofRack11(3E):k=5.69E7lb/inLegsofRack12(3D):k=3.84E7lb/inLegsofRack13(3B):k=5.23E7lb/inLegsofType4Rack:k=2.91E71b/inA=134.5in~A=40.0in~A=53.0IA=27.0inA=40.0inA=40.0in~A=27.0in~A=36.8in'x=144.0in4Ix=211.0in'x=217.0in'x=144.0in'x=190.0in'y=144.0inIy=211.0in'y=217.0in'y=144.0in'y=190.0in'A=10.45in'x=32.9in4Iy=86.5in'x=1372.6in'y=1274.6in'x=211.0inIy=211.0in'x=290.0in'y=290.0in' U.S.NRCG.S.VissingA-16October20,1997Type1(Existing)RackStructuralProperties:E=27.87E6psiA=420.3in'=159ink=7.37E7lb/inType2RackStructuralProperties:E=27.87E6psiL=158.5inRack7:Rack8:A=113.9in'=1295ink=2.00E7lb/ink=2.28E7lb/inType3RackStructuralProperties:E=27.87E6psiL=162inRack9:Rack10:Rack11:Rack12:Rack13:A=66.2in~A=92.7in~A=84.8in'=66.2in~A=82.1in'=1.14E7lb/ink=1.59E7lb/ink=1.46E7lb/ink=1.14E7lb/ink=1.41E7lb/inType4RackStructuralProperties:E=27.87E06psiL=158.5inRackType4:A=25.9ink=4.55E6lb/in U.S.NRCG.S.VissingA-17October20,1997d)Therewerenoconvergencyorstabilityproblemsforeitherthesingle-ormulti-rackmodelrunsduringthenonlinear,dynamicanalyses.Allloadcasesranforthefulltimehistoryandobtainedaconvergedsolution,usingthesamebasicANSYSprogramparameters.TheANSYSsolverusestheimplicitintegrationschemewhich,uponconvergence,producesarepeatable,stablesolutionwithinprescribed(program-chosendefaults)tolerancelimits.e)TheANSYSinputdataintheASCIIformareprovidedintheenclosed3.5-inchcomputerdiskette.NotethattheseinputdataareproprietaryinformationandshouldbeusedonlyfortheGinnalicensingeffort.ThesedataareforusewithANSYSVersion5.2.Alldataareself-explanatoryandanexperiencedANSYSusershouldbeabletouseiteasily.Ifyouencounteranyproblem,FRAMATOMEcanassisttheNRCStaffatitsLynchburgoffices.DiskFilesInclude:DiskANSYSInputFiles,FileS3DR8PL.TXT3-DSingleRackPlateModelFileS3DR8SC.TXT3-DSingleRackDynamicModelThe3-DSingleRackPlateModel(Model1)wasusedforthestaticstress,thermal,andthebaseplatestressanalysis,aspresentedinthedetaileddescriptionsofModel1inSection3.5.2.3ofthereport.Themodelwasnotusedwithanytimehistoryinput.Theloadingconditions,boundaryconditions,materialproperties,andloadingstepsarepartoftheseinputfiles.Thetimehistoryinput(SSE1)isincludedwiththeinputforModel2.
~R~~na)Thebehaviorofspentfuelstorageracksiscomplex,andsomesimplification oftheactualbehaviorisappropriate whencreatingamathematical modelforuseinafiniteelementanalysis.
U.S.NRCG.S.VissingA-18October20,1997AppendixNRCQ2-A"ExperimentalVerificationofANSYSHydrodynamicMassCouplingandDynamicBehaviorofImmersedRectangularSolidsinRectangularCavities1.ObjectiveAnANSYSnumericalstudywasmadetodemonstratethecorrelationbetweenanANSYSmodelutilizinghydrodynamicallycoupledrectangulartubecontainedwithinalaterallyexcitedrectangularcontainer,orcavity,andtheexperimentalresultsreportedinReferences3.45and3.46.Asingledegree-of-freedom(DOF)oscillatormodel(Ref.3.45),usedforestimatingcertainsystem'sparametersisalsocomparedtotheANSYSresults.2.ExperimentSetupFigureA1ExperimentSetupAccelerarnetersPlexiglassWallsAnexperimentalset-up,reportedinReferences3.45and3.46,isshowninFigureA1.Arectangularsteeltubewithasolidbottomisenclosedinalongrectangularplexiglasscontainerrigidlyconnectedtoasolidbaseplate.Thebaseplateissupportedwithfoursteelconsolesactingasspringsforthelaterallyimposedbaseplatemotionviaelectromagneticactuator.Theplexiglasscontainerisadditionallyreinforcedwithaseparaterectangularplexiglassplatefixedtothebaseplate(Fig.A1,leftupper4"x4"SteelTubecorner).SteelSprings(2)SteelSupportSprings(4)-WaterLevelOverlaplngTeflonSealsShakerConcreteBlackThesteeltubebottomplateisconnectedtothebaseplateviatwoelongatedsteelplatesactingasconsoles.Theseverticalsteelplatesactasspringsforthetube'slaterallyinducedmotion.Atthetopandbottomtubeelevations,teflonsealsareintroducedinordertominimizeeventualverticalmeanflowalongtubewalls.Theseal'slocationsalsodefinewatercolumnheight.Apairofaccelerometersisusedtopickupaccelerationtimehistoriesforboththetubeandtherigidplexiglasscontainer.Theshaker'sfrequencyrangedfrom5to35Hz,toobtainadequatedatapoints.Theamplitude  
Onehastoassesstheaspectsofthestructural behaviorwhichareimportant tosimulation whileconsidering theenduse.
U.S.NRCG.S.VissingA-12October20,1997Theracksareveryrigidstructures andtheirnaturalfrequencies aremuchgreaterthanthepredominant seismicinputforcingfrequencies.
Hence,therackstructure motioncanbedescribed bya3-Dbeamelement(sixdegrees-of-freedom, threetranslational andthreerotational).
Themathematical models(3-Dsinglerackandwholepoolmulti-rack) usedtoperformdynamicanalysesofthefuelstoragerackstructure simulated thethree-dimensional characteristics oftherackmodulesinacomprehensive manner.Thesemodelsincludedfeaturestoallowforslidingandtippingoftheracksandtorepresent thehydrodynamic couplingwhichcanoccurbetweenfuelassemblies andrackcells,betweenracks,andbetweentheracksandthereinforced concretewalls.Thegapelementswereincorporated toaccountforimpactbetweenthefuelassemblyandtherack.Todetectanyimpactbetweenracksand/oranyimpactbetweentheracksandthepoolwall,additional gapelementswereintroduced intothe3D-wholepoolmodelofthesinglerackThesupportlegsweremodeledascompression-only gapelementswhichconsidered thelocalverticalflexibility oftherack-support interface.
Frictionelementswereusedatthebottomofthesupportlegs.Thespentfuelstorageracksarefree-standing structures.
Theyareconstructed ofasimpletubestructure assembled inahoneycomb pattern.Undergivenseismicexcitation theybehavesimilartoaveryrigidstructure.
Thebeamrepresentation givesadequatesimulation forseismicloadings.
Asdiscussed inthereport,forthermalandotherconditions, thecompleterackwasidealized usingplateelements.
Thespentfuelstorageracksseemlikeacomplexstructure.
However,whencomparedtoother10CFR50licenseapplications, likereactorvesselinternals, steamgenerator internals, containment
: building, whichallareanalyzedusingbeamrepresentation, thespentfuelstoragerackitselfisaverysimpleassemblyofsquaretubestructures.
Also,thebeamrepresentation isconsistent withthe1985licensing basis,NRCSERdatedNovember14,1984(Reference 3.24oftheLicensing Report).Also,thisapproachisconcurrent withrecentlylicensedspentfuelstorageracks,namely,ZionStationUnits1and2,DocketNos.50-295and50-304;HaddamNeckPlant,Docket50-213;andPilgrimNuclearPowerStation,Docket50-293.Insummary,themethodology usedforthemathematical modeloftherackstructures isconsistent withindustrypractice.
A-13U.S.NRCG.S.Vissingb)October20,1997Theexperimental verification ofthefluidcouplingsimulation isprovidedinAppendixNRCQ2-Atothisquestion.
Theresultsshowverygoodagreement betweentheANSYSresultsandtheexperimental testresults.Thevalidation oftheANSYSVersion5.2isinconformance withtheprovision oftheFramatome Technologies Inc.,QualityAssurance Program,Doc.No.56-1201212 (Section7.2oftheLicensing Report).Thevalidation meetstherequirements ofthesubsection II.4.cofSRPSection3.8.4andsubsection II.4.eofSRPSection3.8.1.SRP3.8.1statescomputerprogramvalidation shouldmeetanyofthefollowing procedures orcriteria:
(i)Thecomputerprogramisarecognized programinthepublicdomain,andhashadsufficient historyofusetojustifyitsapplicability andvaliditywithoutfurther.demonstration.
(ii)Thecomputerprogramsolutiontoaseriesoftestproblemshasbeendemonstrated tobesubstantially identical tothoseobtainedbyasimilarandindependently writtenandrecognized programinthepublicdomain.Thetestproblemsshouldbedemonstrated tobesimilartoorwithintherangeofapplicability oftheproblemsanalyzedbythepublicdomaincomputerprogram.(iii)Thecomputerprogramsolutiontoaseriesoftestproblemshasbeendemonstrated tobesubstantially identical tothoseobtainedfromclassical solutions orfromacceptedexperimental testsortoanalytical resultspublished intechnical literature.
Thetestproblemshouldbedemonstrated tobesimilartoorwithintherangeofapplicability oftheclassical problemsanalyzedtojustifyacceptance oftheprogram.ANSYSisawidelyusedandacceptedcomputerprograminthepublicdomain.Thevalidation ofthefluidcouplingelementusingclassical equations waspresented totheNRCStaffduringameetingonAugust25,1997.Theexperimental verification isprovidedinAppendixNRCQ2-Atothisquestion.
Thecomputerprogramvalidation requirements oftheSRP3.8.4andSRP3.8.1aremet.c)Thematerialproperties usedinthe3-DSingleRackand3-DWholePoolRackmodelaregiveninTables3.4-2through3.4-8oftheLicensing Report.Thematerialproperties forthestructural materialarefromtheASMECode,whichisreferenced inthereport.Therackstiffnesses aregenerated internally inthecomputerprogramfromcross-section properties andareprovidedinthefollowing summary.Therackstiffness, intermsofcross-section properties, isprovidedinSection3.5.3.1.1.1, startinginpage136oftheLicensing Report.Thestiffness properties aredeveloped usingclassical appliedmechanics equations.
Theseismicanalysisresultsarenotsensitive totherackstiffness, andthisisdemonstrated inSection3.5.2.7.
U.S.NRCG.S.VissingFuelCellImpactStiffness summary:Type1(Existing U.S.Tool2DieRacks):Type2andType4(NewATEARacks)Type3(NewATEARacks)4,449lb/in7,036lb/in6,595lb/inOctober20,1997Thefollowing axialstiffnesses (AE/L)arecalculated internally inANSYS,butaregivenforinformation purposes.
Allpagereferences arefromtheGinnaLicensing Report.Consolidated FuelCanisterStructural Properties:
E=27.87E6psiA=3.6681in',a=9.3920inL=159ink,~=1.65E6lb/in(kforA,fr)E(Zircaloy)
=12.0E6psiA=7.1419mL=159ink=5.39ESlb/inFuelAssemblyStructural Properties:
U.S.NRCG.S.VissingOctober20,1997SupportPadStructural Properties (krepresents individual supportpad)E=27.87E6psiL=10.0in(forRackTypes1,4),andL=19.60in(forRackTypes2,3)LegsofType1Rack:k=3.75E81b/inLegsofRack7(2A):k=5.69E7lb/inLegsofRack8(2B):k=7.54E7Ib/inLegsofRack9(3C):k=3.84E7lb/inLegsofRack10(3A):k=5.69E7lb/inLegsofRack11(3E):k=5.69E7lb/inLegsofRack12(3D):k=3.84E7lb/inLegsofRack13(3B):k=5.23E7lb/inLegsofType4Rack:k=2.91E71b/inA=134.5in~A=40.0in~A=53.0IA=27.0inA=40.0inA=40.0in~A=27.0in~A=36.8in'x=144.0in4Ix=211.0in'x=217.0in'x=144.0in'x=190.0in'y=144.0inIy=211.0in'y=217.0in'y=144.0in'y=190.0in'A=10.45in'x=
32.9in4Iy=86.5in'x=1372.6in'y=1274.6in'x=211.0inIy=211.0in'x
=290.0in'y=290.0in' U.S.NRCG.S.VissingA-16October20,1997Type1(Existing)
RackStructural Properties:
E=27.87E6psiA=420.3in'=159ink=7.37E7lb/inType2RackStructural Properties:
E=27.87E6psiL=158.5inRack7:Rack8:A=113.9in'=1295ink=2.00E7lb/ink=2.28E7lb/inType3RackStructural Properties:
E=27.87E6psiL=162inRack9:Rack10:Rack11:Rack12:Rack13:A=66.2in~A=92.7in~A=84.8in'=66.2in~A=82.1in'=1.14E7lb/ink=1.59E7lb/ink=1.46E7lb/ink=1.14E7lb/ink=1.41E7lb/inType4RackStructural Properties:
E=27.87E06psiL=158.5inRackType4:A=25.9ink=4.55E6lb/in U.S.NRCG.S.VissingA-17October20,1997d)Therewerenoconvergency orstability problemsforeitherthesingle-ormulti-rack modelrunsduringthenonlinear, dynamicanalyses.
Allloadcasesranforthefulltimehistoryandobtainedaconverged
: solution, usingthesamebasicANSYSprogramparameters.
TheANSYSsolverusestheimplicitintegration schemewhich,uponconvergence, producesarepeatable, stablesolutionwithinprescribed (program-chosen defaults) tolerance limits.e)TheANSYSinputdataintheASCIIformareprovidedintheenclosed3.5-inchcomputerdiskette.
Notethattheseinputdataareproprietary information andshouldbeusedonlyfortheGinnalicensing effort.ThesedataareforusewithANSYSVersion5.2.Alldataareself-explanatory andanexperienced ANSYSusershouldbeabletouseiteasily.Ifyouencounter anyproblem,FRAMATOME canassisttheNRCStaffatitsLynchburg offices.DiskFilesInclude:DiskANSYSInputFiles,FileS3DR8PL.TXT3-DSingleRackPlateModelFileS3DR8SC.TXT3-DSingleRackDynamicModelThe3-DSingleRackPlateModel(Model1)wasusedforthestaticstress,thermal,andthebaseplatestressanalysis, aspresented inthedetaileddescriptions ofModel1inSection3.5.2.3ofthereport.Themodelwasnotusedwithanytimehistoryinput.Theloadingconditions, boundaryconditions, materialproperties, andloadingstepsarepartoftheseinputfiles.Thetimehistoryinput(SSE1)isincludedwiththeinputforModel2.
U.S.NRCG.S.VissingA-18October20,1997AppendixNRCQ2-A"Experimental Verification ofANSYSHydrodynamic MassCouplingandDynamicBehaviorofImmersedRectangular SolidsinRectangular Cavities1.Objective AnANSYSnumerical studywasmadetodemonstrate thecorrelation betweenanANSYSmodelutilizing hydrodynamically coupledrectangular tubecontained withinalaterally excitedrectangular container, orcavity,andtheexperimental resultsreportedinReferences 3.45and3.46.Asingledegree-of-freedom (DOF)oscillator model(Ref.3.45),usedforestimating certainsystem'sparameters isalsocomparedtotheANSYSresults.2.Experiment SetupFigureA1Experiment SetupAccelerarneters Plexiglass WallsAnexperimental set-up,reportedinReferences 3.45and3.46,isshowninFigureA1.Arectangular steeltubewithasolidbottomisenclosedinalongrectangular plexiglass container rigidlyconnected toasolidbaseplate.Thebaseplateissupported withfoursteelconsolesactingasspringsforthelaterally imposedbaseplatemotionviaelectromagnetic actuator.
Theplexiglass container isadditionally reinforced withaseparaterectangular plexiglass platefixedtothebaseplate(Fig.A1,leftupper4"x4"SteelTubecorner).SteelSprings(2)SteelSupportSprings(4)-WaterLevelOverlaplng TeflonSealsShakerConcreteBlackThesteeltubebottomplateisconnected tothebaseplateviatwoelongated steelplatesactingasconsoles.
Theseverticalsteelplatesactasspringsforthetube'slaterally inducedmotion.Atthetopandbottomtubeelevations, teflonsealsareintroduced inordertominimizeeventualverticalmeanflowalongtubewalls.Theseal'slocations alsodefinewatercolumnheight.Apairofaccelerometers isusedtopickupacceleration timehistories forboththetubeandtherigidplexiglass container.
Theshaker'sfrequency rangedfrom5to35Hz,toobtainadequatedatapoints.Theamplitude  
.
.
U.S.NRCG.S.VissingA-19October20,1997responseratioismeasuredforeachexcitationfrequency.TheresultsareplottedforselectedpointsinFigureA4.3.ANSYSModelDescriptionThesystemshowninFig.A1ismodeledinANSYSasaseriesoftwoverticallyconnectedbeams,withtheupperonebeinghydrodynamicallycoupledtotheenvelopingplexiglasscontainer,asshowninFigureA2.FigureA2ANSYSModelBeamPlexi-WallsAddedWeightLumpedattheTubeBottomSpringBeamHyd.-DynamicCouplingElem.BasePlateInputMotionThebottombeamrepresentsapairofverticalsteelstrips,whiletheupperbeamrepresentsthesteeltube.ANSYS3Delement"BEAM4"(Ref.3.40)isusedforbothbeams,whilehydrodynamiccouplingismodeledwithANSYS"FLUID38"elementsatthetubebeamtop,middleandbottomlocations.Additionalweightplacedinthetube(Ref.3.46)islumpedatitsbottom.Forcedinputharmonicmotionisappliedtobothspringbeambottom(baseplate)andplexiglasscontainerwalls.Modelpropertiesareobtainedasfollows:SteelTubeTubeenvelopemass:m,=V,(pg=0.0174ib-s~/in(weight=m,g=(0.0174)(386.4)=6.72lb),where,V,=4(aht)=24in'thematerialtubeenvelopevolume),a=4.0in(tubesidewidth),h=8.0in(tubeheight),t=3/16"=0.1875in(tubewallthickness)andp,=72.46x10'b-s/in'tubewalldensity,steel,roomtemperature).FromRef.3.46,totaltubeweightis15lb,whichincludesadditionalweighttogetherwithboltsandnutsconnectingtubebasetosteelsprings.Itisassumedthatalladditionalmassisconcentratedatthebottomofthetube;i.e.,itislumpedatthebottomtubebeamnode.Thislumpedmassincludestubebottomplate.
U.S.NRCG.S.VissingA-19October20,1997responseratioismeasuredforeachexcitation frequency.
U.S.NRCG.S.VissingA-20October20,1997Lumpedmass(tubebottom):mb=(totalweight)/g-(tubeenvelopemass)=15.0/386.4-0.0174=0.0214lb-s'/inorweight=(0.0214)(386.4)=8.28lbTubecrosssection:A,=4(at)=3in'ubecrosssectionmomentofinertia:I,=2[at/12+(at)(a/2)]=8.0in'teelSpringEquivalentspringbeamconsistsoftwoverticalsteelstrips,each4"long,1"wideand3/32"thick.Bendingoccursabouttheweakaxis.Eqv.Springcrosssection:A,=2(ct,)=2(1")(0.0938")=0.1875in~Eqv.Springcrosssect.momentofinertia:I,=2[t'c/12]=2[0.09383(1")/12]=1.373x10"in4Eqv.Springlateralstiffness:k=12I,E/L=772.3lb/in,forbothbeamendsclamped,where:E=30MSI(steelelasticmodulus@roomtemperature)andL=4"(equivalentspringbeamlength).ItissuggestedinRef.3.46thatwhileexcited,thetuberemainspracticallyparalleltotheplexiglasscontainerwalls.IntheANSYSmodel,thiseffectisachievedbyimposingrotationalconstraintatthecommonbeamsnode.FluidMassesHydrodynamicmass,Ref.3.45:M=(16/3)phb'/w=0.0908Ib-s/in,wherep=9.345x10'b-s'/in'waterdensityroomtemperature),b=(a+w)/2=(4+0.5)/2=2.25in(watercolumncenterlinewidth,(Fig.A3)),andw=0.5in(tube-to-wallgap).Displacedfluidmass,Ref.3.45:M,=(2b-w)'p=0.01196lb-s'/inFluidmassbasedoncontainervolume,Ref.3.45:M,=(2b+w)'p=0.01869Ib-s'/inFigureA3WaterColumnDimensionsTheeffectofhydrodynamicfluidcouplingisdiscretizedas1/2atthetubebeammid-heightand1/4atitstopandbottom(Fig.A2).ANSYSfluidcouplingelement"FLUID38"(Ref.3.40)isusedwithKEYOPT(3)=2forconcentricarbitrarycylinders(i.e.,rectangular)andKEYOPT(6)=2forlocalelementcoordinatesystem'slateralaxesorientedinglobalXandZdirections.2b U.S.NRCG.S.VissingA-21October20,1997BoundaryConditionsBoundaryconditionsareshowninFig.A2.AllDOFsofthespringbeambottomnodearefixed(clampedcondition)excepttheX-displacementcomponent,whichisprescribedassinusoidalmotion.Thesamealsoappliesforthethreewallnodesconnectinghydrodynamicelementstothetubebeam.Duetothefactthatthetuberemainspracticallyparalleltothecontainerwalls,thetubebeambottomnodeispreventedfromrotationaboutlateralZ-axis(spring'sbeambendingaxis).Tomatchthemeasurednaturalfrequencyinwater,springbeamstiffnessisadjustedask=(2mf,)[m+M]=(2n9.2)[0.0388+0.0908]=433.1lb/in.StructuralDampingAtimehistoryanalysisapproachisusedtoobtainthesystem'sresponseamplituderatio.Thesystemisexcitedtoasinusoidalexcitationatselectednodesandresponseamplitude,ornodaldisplacementresponseasafunctionoftimeisobtainedforselectedpointsofthesystem.Theconnectingnodebetweenthespringandthetubebeamsischosen,sinceitsmotionsufficientlydescribesbehaviorofthesystemanditcouldalsobecomparedagainstasingleDOFtheoreticalmodel.Rayleighdampingisusedforcomparisonpurposes.InadditiontothestiffnessmatrixmultiplierP,themassmatrixmultipliernissimultaneouslyusedtoprovidemoreuniformdampingoveradesiredrangeoffrequencies.Thesemultipliersareobtainedasasolutionofthesystemoftwosimultaneouslinearequations:(;=o',/(2(o)+Pio;/2,whereio,.=2mf;[s']Bychoosingknownpairsofnaturalfrequencieswiththeirassociateddampingratiovalues(Ref.3.45),f,=15.3Hzand(,=0.053,inair;f~=9.2Hzand(2=0.062inwater,theRayleighdampingmultipliersareu=5.456andP=5.122x10'.4.ResultsTheexperiment(inwater)datapointsareobtainedfromRef.3.46.Notethattheaccuracyoftheircoordinatesinamplituderesponseplot(Fig.A4)mightbeinsufficient,duetothesmallscaleoftheoriginalexperimentcurveprovidedinRef.3.45.However,theirtrendissufficienttovalidatetheANSYSmodel'scomparison.Inthetimehistorymethod,a3seconddisplacementtimehistoryiscreatedforeachselectedexcitationfrequency,andappliedattheselectednodesofthesystem.Theamplitudeforalltime-historiesisunity,i.e.,1.0in.ANSYSresultsarealsocomparedagainstsingleDOFoscillatormodel(equation24inRef.3.45,labeledas"Theory"inFig.A4),withthetotaltubemasslumpedatthetopofthespringbeam.FigureA4showsgoodcomparisonbetweentheANSYSandtheoreticalresponseratiopredictions.Aminordiscrepancybetweenthesemodelsandtheexperimentisinpartduetoasensitivityofmeasuringequipment,assuggestedinRef.3.46.
TheresultsareplottedforselectedpointsinFigureA4.3.ANSYSModelDescription ThesystemshowninFig.A1ismodeledinANSYSasaseriesoftwovertically connected beams,withtheupperonebeinghydrodynamically coupledtotheenveloping plexiglass container, asshowninFigureA2.FigureA2ANSYSModelBeamPlexi-Walls AddedWeightLumpedattheTubeBottomSpringBeamHyd.-Dynamic CouplingElem.BasePlateInputMotionThebottombeamrepresents apairofverticalsteelstrips,whiletheupperbeamrepresents thesteeltube.ANSYS3Delement"BEAM4"(Ref.3.40)isusedforbothbeams,whilehydrodynamic couplingismodeledwithANSYS"FLUID38" elementsatthetubebeamtop,middleandbottomlocations.
U.S.NRCG.S.VissingA-22October20,1997Conclusions1)ItisconcludedthatANSYShydrodynamicelementFLUID38canbeusedtorepresentfluid-structureinteractionofrectangularprismaticcontainerswithgoodcorrelationwithboththeoryandtestresults.ThereisagoodagreementbetweenANSYSresultsandexperimentaltestdatafordynamicfluid-structureinteractionproblems.ThisverifiesthecapacityofANSYStoperformseismictime-historyanalysesofsubmergedspentfuelstorageracksinpools.2)Useofbeamstickmodelandlumpedmassesisarealisticrepresentationoffuelandracktypestructuresforuseintime-historydrivendynamicanalyses.
Additional weightplacedinthetube(Ref.3.46)islumpedatitsbottom.Forcedinputharmonicmotionisappliedtobothspringbeambottom(baseplate)andplexiglass container walls.Modelproperties areobtainedasfollows:SteelTubeTubeenvelopemass:m,=V,(pg=0.0174ib-s~/in(weight=m,g=(0.0174)(386.4)
U.S.NRCG.S.VissingI<'igureA4ComparisonofResultsA-23October20,19972oCLCD~1.5CDCL1CU&#x17d;00IIIIIIIIIIIIIAmplitudeResponseRatioII-Theory,'IIIExperimentalResLilts--rIIIII1IIIIIIIIIIIIoIIIIIIIIIOIIIIIIANSVSTimeHistoryIIIIII12051015ExcitationFrequency[Hz]
=6.72lb),where,V,=4(aht)=24in'thematerialtubeenvelopevolume),a=4.0in(tubesidewidth),h=8.0in(tubeheight),t=3/16"=0.1875in(tubewallthickness) andp,=72.46x10'b-s
U.S.NRCG.S.VissingA-24October20,1997N8'ithrespecttothedynamicfluidcouplingelement(FLUID38oftheANSYScode)usedintheanalysis:a)ItisourunderstandingthattheelementFLUID38wasdevelopedforafluidflowstudyinaninfinitelylongrigidcylindricalpipe.Explainhowthiselementcanbeapplicableforyour3-Dfluid-rack(single-andmultiple-rack)interactionanalysis.b)IftheANSYSinput(realconstantsP2,Al,L,I",DXDZ,PXWZM2,MI,MHXMHZ,CXCZ)andmaterialproperties(DENS))wereusedfortheFLUID38element,providethevaluesandtechnicalbasisfortheconclusionthatthosevaluesarerealistic.c)OneoftheassumptionsforthePLUID38elementofANSYScodeisthatthelumpedoptionisnotavailablewiththiselement.Didyouusethelu>npedoptionforthefluidmass?Ifnot,howdoyoutreatthefluidmass?Explain.~Ryan)b)TheANSYSFLUID38elementisthedynamicfluidcouplingelement.Thiselementisagenericelementtorepresentadynamiccouplingbetweentwopointsofastructure.Thepointsrepresentthecenterlineofconcentriccylinders.Thecylindersmightbecircularorhaveanarbitrarycross-section.Thedefaultvaluesareforacylindervibratinginacylinder.However,whenoneusesKEYOPT(3)=2itcanbeanarbitrarycrosssection.Thisoptionisusedinthesingle-rackandmulti-rackinteractionanalysis.Thedynamicfiuidcouplingusedisbasedonarectangularbodyvibratinginfluidcontainedinanannuluscreatedbyarectangularouterbody.ThefluidcouplingvaluesarebasedontheSingh-1990(Reference3.38oftheLicensingReport)paper.Thederivationoffluid'ynamicvaluesareexperimentallyverifiedbyScavuzzo-1979,"DynamicFluidStructureCouplingofRectangularModulesinRectangularPools"(Reference3.45).IntheANSYSFLUID38elementinputifKEYOPT(3)=0isused,itrepresentstheconcentriccylinders,andforthatcaseR2,R1,etc.,constantsarerequired.InourcaseKEYOPT(3)=2forarbitrarycrosssectionswasused.MMM~,andM>>termsofthefluidcouple-massmatrixwerealsoinput.Tables3.5-10and3.5-11oftheLicensingReportprovidethemassmatrixtermsMM~M~andM>>usedinthefluidstructureinteractionanalysis.c)Thelumpedmassoption(LUMPM,ON)isnotavailableforANSYSFLUID38element.Wedidnotuselumpmassesforthiselement.Thedynamicfiuidcouplingishydrodynamicmassbasedonpotentialtheory,Singh-1990(Reference3.38).Section3.5.2.5discussestheuseandcalculationofhydrodynamicfluidmass.
/in'tubewalldensity,steel,roomtemperature).
U.S.NRCG.S.VissingA-25October20,19978'ithrespecttot'eanalyticalsimulationoftherattlingfuelassemblyimpactingagainstthecell:a)Howdidyoucalculatethemagnitudeofthelargestimpactforceandthelocationoftheimpactinthefuelassemblyandthecellwall?b)c)Howdidyoudetermineandanalyzethefidelassemblyandcellwallintegrity?Discusstheconsiderationsgiventotheeffectsofthefluidbetweenthefuelassemblyandcellwallduringtheinteractions.d)Provideavailableexperimentalstudiesthatverifythereasonablenessofthenumericalsimulationadoptedtorepresentthefuelassemblyandthecellwallinteraction.~R~~na)"Impactsbetweentherackandfuelassemblylumpedmasseswereaccountedforbytheuseofgapelements,asshowninFigure3.5-41oftheLicensingReport.Theimpactforcesarecalculatedfromtheseismictime-historyanalysis.Gappedspringelementsareemployedtotracktheimpactforces.Thepeakforcesonthesegappedelementsrepresenttheimpactforce.Theimpactforcesbetweenthefuelassembliesandthecellwallwereobtainedusingtheminimumandmaximumresultssummaryobtainedthroughthepost-processingcapabilityofANSYS.Thepost-processingusedwasPOST26,whichcanextractrequesteddatafromatime-historyanalysis,inordertoproducetablesofresultitemsversustime.Thereal-timefuel/rackimpactloadsweretabulatedinPOST26forthesumofboththetopandmiddleracknodesthroughouttheentiretime-history.Therealtimemaximumimpactloadwasthusobtainedforallthefuelassembliesinanyparticularrack.Theassumptionthatallfuelassembliesactinunisonisconservative.Therefore,themaximumcombinedfueVrackimpactloadwasthendividedbythenumberoffuelassembliesintheracktoobtainamaximumfueVrackimpactloadperfuelassembly.Thesummaryoftheresultingfuel-to-rackimpactloadsforeachrackandforeachloadcaseistabulatedinTables3.5-46through3.5-57oftheLicensingReport.
FromRef.3.46,totaltubeweightis15lb,whichincludesadditional weighttogetherwithboltsandnutsconnecting tubebasetosteelsprings.Itisassumedthatalladditional massisconcentrated atthebottomofthetube;i.e.,itislumpedatthebottomtubebeamnode.Thislumpedmassincludestubebottomplate.
e A-26October20,1997U.S.NRCG.S.Vissingb)Thecellwallintegrityisdeterminedbystressanalysis.Section3.5;2.2.2.4.discussesthestressanalysis.Table3.5-58providestheresultsofthecellwallstressanalysisandshowscomparisonofactualimpactloadagainsttheallowableload.TheANSYSfiniteelementanalysiswasusedtocalculatestressesinthefuelrack-cellwallduetoimpactloadingoffuelassemblies.ThemaximumallowablefuelrackloadwasdefinedasonewhichwouldreachthemaximumstressintensitybasedonthestresslimitspecifiedintheASMECodeSectionIII,SubsectionNF.Thecalculationgaveanallowableloadpercellof2290.0poundsfortheOBEconditionand2900.0poundsfortheSSEcondition.Theseallowableloadsaremuchlowerthantheloadvaluerequiredtoensurethefuelassemblyintegrity.Theelasticloadlimitsofthefuelassemblyspacergridstestedrangefrom[b,c,d].Thefuelassemblystructuralintegrityisassured,ifthespacergridimpactloadsarelowerthanthespacergridelasticloadlimit.ThehighestimpactloadvalueobtainedfromtheOBEanalysisis908poundsandfromtheSSEanalysisis1600pounds.Thesecalculationsconfirmthelocalrackcellwallintegrityandthefuelassemblyintegrityforthemaximumfueltorackcellwallimpactloads.c)Thefluidbetweenthefuelassemblyandthecellwallwasconsideredintheseismicanalysis.Thetheoryofcylindervibratinginthefluid(Reference3.38oftheLicensingReport)isutilizedinthehydrodynamicmasscalculations.Thefuelassemblycontaining179individualfuelrods,16guidetubesandoneinstrumenttubewasutilizedinthecalculation.Section3.5.2.5.1providesthedetailedfuelassemblyhydrodynamiccalculationsforW-Standard,W-OFAandExxonfuelassemblies.d)Section3.5.3.1.1.3discussesthenumericalsimulationbetweenthefuelassemblyandthecellwall.Thisisaclassicengineeringmechanicsproblem.Noexperimentalstudiesarerequiredforthegeneralstructuralproblem.NoknownexperimentalstudyexistsatFramatomeCogemaFuels.AlltheexperimentsperformedbyBabcock&Wilcoxareforfuelimpactingarigidsurfaceorimpactingotherfuelassemblies.
U.S.NRCG.S.VissingA-20October20,1997Lumpedmass(tubebottom):mb=(totalweight)/g-(tubeenvelopemass)=15.0/386.4
U.S.NRCG.S.VissinginA-27October20,1997Provideacompletedeformationshapewithmagnitudesofthedeformationsoftherackfion>thebottomtothetopforthesingle-rackSSLanalysiswhenthemaxhnumdisplacementattheracktopcorneroccurs.ReelsThesingle-rack3-Dmodelwasusedforparametricstudiesonly.Thedisplacementsandloadswereobtainedfromthewhole-poolmulti-rackmodel.AsummaryofallthemaximumabsolutehorizontaldisplacementsisprovidedinresponsetoNRCQuestion&#xb9;7.Areviewofthosedisplacementsshowsthatthemaximumdisplacementforanyrack,forallloadingconditions,occursatRack&#xb9;7,duringLoadCase&#xb9;1.Thesummaryofthosemaximumdisplacementsareprovidedinthetablebelow.Therefore,thedescriptionofthemaximumabsolutedisplacementsforRack&#xb9;7areprovidedfortherackbottom,middle,andtopfourcorners.TableNRCQ5.1Max.RackHorizontalcrisp.Top-LC&#xb9;1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;1-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.257602-0.286803-0.290004-0.251905-0.384406-0.357107-0.591908-0.551609-0.5863010-0.5308011-0.5228012-0.4918013-0.50680MaxX0.332800.262400.186400.191400.241400.271900.416100.556600.567000.440600.573500.571400.45750MinY-0.42080-0.36870-0.26200-0.25300-0.19250-0.24400-0.27550-0.32230-0.33660-0.28250-0.29340-0.33350-0.37800MaxY0.282600.269700.193000.175900.191400.205200.169600.206000.193500.140300.165600.144400.10220 U.S.NRCG.S.VissingA-28October20,1997RackCornerNodalDisplacementsatRack'sTop,Middle,andBaseforRack&#xb9;7(inches)~r~nrTopSouth-WestSouth-EastNorth-WestNorth-EastRackCenter-0.52334-0.52334-0.66054-0.66054-0.59194~Y-0.177140.01878-0.177140.01878-0.07918~7-0.077940.19580-0.077860.195880.05897~r~nrMidSouth-WestSouth-EastNorth-WestNorth-EastRackCenter~5(-0.26183-0.26183-0.39891-0.39891-0.33037~Y-0.177080.01867-0.177080.01867-0.07920MZ-0.076390.19417,-0.076060.194490.05905~i~rBaseSouth-WestSouth-EastNorth-WestNorth-EastRackCenter~X-0.00563-0.00589-0.14242-0.14266-0.07427~Y-0.175870.01925-0.176220.01925-0.07840MZ-0.070590.18817-0.069570.189180.05930 IU..S.NRCG.S.VissingA-29October20,1997Providethelargestmagnitudeofthehydrodynamicpressuredistributionalongtheheightoftherackduringthefluidandrackinteractionforeachcaseofthe3-Dsingle-andmulti-rackanalyses.~Resense:Thesingle3-Drackmodelwasusedforparametricstudies.Theloads,includingthehydrodynamicloads,anddisplacementswereallobtainedsolelywiththemulti-rackwhole-poolmodel.Therefore,therequestedhydrodynamicpressuredistributionisprovidedforthewhole-poolmulti-rackmodel.Thehydrodynamicpressuredistributionsaretabulatedforeachrackthatinterfaceswiththespentfuelpoolwalls.Thereal-timesummationofhydrodynamicloadsforthebottom,middle,andtopofeachrackwasusedtoprovideanaveragehydrodynamicpressurefortheentireheightoftherack.Also,areal-timesummationofhydrodynamicloadswasobtainedforalltheracksfacingeachofthefourwalls.Thereal-timeaveragedwallpressureforeachofthefourwallswasthendetermined,andisprovidedinthefollowingtables.ThetablesNRCQ6.1thruNRCQ6.12areforeachoftheLoadCases1thru12.
-0.0174=0.0214lb-s'/inorweight=(0.0214)(386.4)
U.S.NRCG.S.VissingA-30October20,1997TableNRCQ6.1Max.RackSeismicHydroPressures-LC&#xb9;1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;1-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-2.4972.853-2.6932.956EastSideR7-EWRl1-EWR12-EWR13-EWJSouthSideRl-SWR3-SWRS-SWRj-SWRl1-SW-3.0523.935-3.7865.008-7.64310.077-4.1764.995-5.4183.758-15.16211.255-18.33415.081-3.3222.726-3.2202.477NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-5.3253.671-18.28213.105-10.4528.595-5.7754.522-2.5242.001'umofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.3971.564SUM-EW-2.3833.144SUM-SW-8.7096.782SUM-NW-8.0236.051Note:Theabovereportedpressuresareontheperimeterracks.
=8.28lbTubecrosssection:A,=4(at)=3in'ubecrosssectionmomentofinertia:I,=2[at/12+(at)(a/2)]=8.0in'teelSpringEquivalent springbeamconsistsoftwoverticalsteelstrips,each4"long,1"wideand3/32"thick.Bendingoccursabouttheweakaxis.Eqv.Springcrosssection:A,=2(ct,)=2(1")(0.0938")
U.S.NRCG.S.VissingA-31October20,1997TableNRCQ6.2Max.RackSeismicHydroPressures-LC&#xb9;2GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;2-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.5382.322-2.6832.478EastSideRj-EWR11-EWR12-EWR13-EW-3.3993.937-3.5144.294-6.8018.846-3.8084.191SouthSideRl-SWR3-SWRS-SWRj-SWR11-SW-3.9943.166-11.90110.363-16.99714.018-3.2092.633-3.2522.489NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.1593.021-14.29312.220-9.6357.681-5.4234.571-2.4412.121SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.4051.288SUM-EW-2.3162.789SUM-SW-7.4616.320SUM-NW-6.8355.746Note:Theabovereportedpressuresareontheperimeterracks.
=0.1875in~Eqv.Springcrosssect.momentofinertia:I,=2[t'c/12]
U.S.NRCG.S.VissingA-32October20,1997TableNRCQ6.3Max.RackSeismicHydroPressures-LC&#xb9;3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;3-ConsolidatedFuel-SSE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-1.0761.058-1.1361.165EastSideR7-EWRl1-EWR13-EW-3.4343.065-8.0857.052-4.1443.297SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-2.8193.758-7.2329.212-9.79911.062-2.0642.120-2.1132.302NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.0873.713-9.41211.433-5.9217.043-3.2873.491-1.5391.679SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.5730.594SUM-EW-2.5982.140SUM-SW-4.4415.411SUM-NW-4.4385.224Note:Theabovereportedpressuresareontheperimeterracks.  
=2[0.09383(1")/12]
=1.373x10" in4Eqv.Springlateralstiffness:
k=12I,E/L=772.3lb/in,forbothbeamendsclamped,where:E=30MSI(steel elasticmodulus@room temperature) andL=4"(equivalent springbeamlength).Itissuggested inRef.3.46thatwhileexcited,thetuberemainspractically paralleltotheplexiglass container walls.IntheANSYSmodel,thiseffectisachievedbyimposingrotational constraint atthecommonbeamsnode.FluidMassesHydrodynamic mass,Ref.3.45:M=(16/3)phb'/w=0.0908Ib-s/in,wherep=9.345x10'b-s'/in'water densityroomtemperature),
b=(a+w)/2=(4+0.5)/2
=2.25in(watercolumncenterline width,(Fig.A3)),
andw=0.5in(tube-to-wall gap).Displaced fluidmass,Ref.3.45:M,=(2b-w)'p=0.01196lb-s'/inFluidmassbasedoncontainer volume,Ref.3.45:M,=(2b+w)'p=0.01869Ib-s'/inFigureA3WaterColumnDimensions Theeffectofhydrodynamic fluidcouplingisdiscretized as1/2atthetubebeammid-height and1/4atitstopandbottom(Fig.A2).
ANSYSfluidcouplingelement"FLUID38" (Ref.3.40)isusedwithKEYOPT(3)
=2forconcentric arbitrary cylinders (i.e.,rectangular) andKEYOPT(6)
=2forlocalelementcoordinate system'slateralaxesorientedinglobalXandZdirections.
2b U.S.NRCG.S.VissingA-21October20,1997BoundaryConditions Boundaryconditions areshowninFig.A2.AllDOFsofthespringbeambottomnodearefixed(clampedcondition) excepttheX-displacement component, whichisprescribed assinusoidal motion.Thesamealsoappliesforthethreewallnodesconnecting hydrodynamic elementstothetubebeam.Duetothefactthatthetuberemainspractically paralleltothecontainer walls,thetubebeambottomnodeisprevented fromrotationaboutlateralZ-axis(spring's beambendingaxis).Tomatchthemeasurednaturalfrequency inwater,springbeamstiffness isadjustedask=(2mf,)[m+M]=(2n9.2)[0.0388+0.0908]=433.1lb/in.Structural DampingAtimehistoryanalysisapproachisusedtoobtainthesystem'sresponseamplitude ratio.Thesystemisexcitedtoasinusoidal excitation atselectednodesandresponseamplitude, ornodaldisplacement responseasafunctionoftimeisobtainedforselectedpointsofthesystem.Theconnecting nodebetweenthespringandthetubebeamsischosen,sinceitsmotionsufficiently describes behaviorofthesystemanditcouldalsobecomparedagainstasingleDOFtheoretical model.Rayleighdampingisusedforcomparison purposes.
Inadditiontothestiffness matrixmultiplier P,themassmatrixmultiplier nissimultaneously usedtoprovidemoreuniformdampingoveradesiredrangeoffrequencies.
Thesemultipliers areobtainedasasolutionofthesystemoftwosimultaneous linearequations:
(;=o',/(2(o)+
Pio;/2,whereio,.=2mf;
[s']Bychoosingknownpairsofnaturalfrequencies withtheirassociated dampingratiovalues(Ref.3.45),f,=15.3Hzand(,
=0.053,inair;f~=9.2Hzand(2=0.062 inwater,theRayleigh dampingmultipliers areu=5.456andP=5.122x10'.
4.ResultsTheexperiment (inwater)datapointsareobtainedfromRef.3.46.Notethattheaccuracyoftheircoordinates inamplitude responseplot(Fig.A4)mightbeinsufficient, duetothesmallscaleoftheoriginalexperiment curveprovidedinRef.3.45.However,theirtrendissufficient tovalidatetheANSYSmodel'scomparison.
Inthetimehistorymethod,a3seconddisplacement timehistoryiscreatedforeachselectedexcitation frequency, andappliedattheselectednodesofthesystem.Theamplitude foralltime-histories isunity,i.e.,1.0in.ANSYSresultsarealsocomparedagainstsingleDOFoscillator model(equation 24inRef.3.45,labeledas"Theory"inFig.A4),withthetotaltubemasslumpedatthetopofthespringbeam.FigureA4showsgoodcomparison betweentheANSYSandtheoretical responseratiopredictions.
Aminordiscrepancy betweenthesemodelsandtheexperiment isinpartduetoasensitivity ofmeasuring equipment, assuggested inRef.3.46.
U.S.NRCG.S.VissingA-22October20,1997Conclusions 1)Itisconcluded thatANSYShydrodynamic elementFLUID38canbeusedtorepresent fluid-structure interaction ofrectangular prismatic containers withgoodcorrelation withboththeoryandtestresults.Thereisagoodagreement betweenANSYSresultsandexperimental testdatafordynamicfluid-structure interaction problems.
ThisverifiesthecapacityofANSYStoperformseismictime-history analysesofsubmerged spentfuelstorageracksinpools.2)Useofbeamstickmodelandlumpedmassesisarealistic representation offuelandracktypestructures foruseintime-history drivendynamicanalyses.
U.S.NRCG.S.VissingI<'igureA4Comparison ofResultsA-23October20,19972oCLCD~1.5CDCL1CU&#x17d;00IIIIIIIIIIIIIAmplitude ResponseRatioII-Theory,'IIIExperimental ResLilts--rIIIII1IIIIIIIIIIIIoIIIIIIIIIOIIIIIIANSVSTimeHistoryIIIIII12051015Excitation Frequency
[Hz]
U.S.NRCG.S.VissingA-24October20,1997N8'ithrespecttothedynamicfluidcouplingelement(FLUID38oftheANSYScode)usedintheanalysis:
a)Itisourunderstanding thattheelementFLUID38wasdeveloped forafluidflow studyinaninfinitely longrigidcylindrical pipe.Explainhowthiselementcanbeapplicable foryour3-Dfluid-rack (single-andmultiple-rack) interaction analysis.
b)IftheANSYSinput(realconstants P2,Al,L,I",DXDZ,PXWZM2,MI,MHXMHZ,CXCZ)andmaterialproperties (DENS))wereusedfortheFLUID38element,providethevaluesandtechnical basisfortheconclusion thatthosevaluesarerealistic.
c)Oneoftheassumptions forthePLUID38elementofANSYScodeisthatthelumpedoptionisnotavailable withthiselement.Didyouusethelu>npedoptionforthefluidmass?Ifnot,howdoyoutreatthefluidmass?Explain.~Ryan)b)TheANSYSFLUID38elementisthedynamicfluidcouplingelement.Thiselementisagenericelementtorepresent adynamiccouplingbetweentwopointsofastructure.
Thepointsrepresent thecenterline ofconcentric cylinders.
Thecylinders mightbecircularorhaveanarbitrary cross-section.
Thedefaultvaluesareforacylindervibrating inacylinder.
However,whenoneusesKEYOPT(3)
=2itcanbeanarbitrary crosssection.Thisoptionisusedinthesingle-rack andmulti-rack interaction analysis.
Thedynamicfiuidcouplingusedisbasedonarectangular bodyvibrating influidcontained inanannuluscreatedbyarectangular outerbody.ThefluidcouplingvaluesarebasedontheSingh-1990 (Reference 3.38oftheLicensing Report)paper.Thederivation offluid'ynamic valuesareexperimentally verifiedbyScavuzzo-1979, "DynamicFluidStructure CouplingofRectangular ModulesinRectangular Pools"(Reference 3.45).IntheANSYSFLUID38elementinputifKEYOPT(3)
=0isused,itrepresents theconcentric cylinders, andforthatcaseR2,R1,etc.,constants arerequired.
InourcaseKEYOPT(3)
=2forarbitrary crosssectionswasused.MMM~,andM>>termsofthefluidcouple-mass matrixwerealsoinput.Tables3.5-10and3.5-11oftheLicensing ReportprovidethemassmatrixtermsMM~M~andM>>usedinthefluidstructure interaction analysis.
c)Thelumpedmassoption(LUMPM,ON)isnotavailable forANSYSFLUID38element.Wedidnotuselumpmassesforthiselement.Thedynamicfiuidcouplingishydrodynamic massbasedonpotential theory,Singh-1990 (Reference 3.38).Section3.5.2.5discusses theuseandcalculation ofhydrodynamic fluidmass.
U.S.NRCG.S.VissingA-25October20,19978'ithrespecttot'eanalytical simulation oftherattlingfuelassemblyimpacting againstthecell:a)Howdidyoucalculate themagnitude ofthelargestimpactforceandthelocationoftheimpactinthefuelassemblyandthecellwall?b)c)Howdidyoudetermine andanalyzethefidelassemblyandcellwallintegrity?
Discusstheconsiderations giventotheeffectsofthefluidbetweenthefuelassemblyandcellwallduringtheinteractions.
d)Provideavailable experimental studiesthatverifythereasonableness ofthenumerical simulation adoptedtorepresent thefuelassemblyandthecellwallinteraction.
~R~~na)"Impactsbetweentherackandfuelassemblylumpedmasseswereaccounted forbytheuseofgapelements, asshowninFigure3.5-41oftheLicensing Report.Theimpactforcesarecalculated fromtheseismictime-history analysis.
Gappedspringelementsareemployedtotracktheimpactforces.Thepeakforcesonthesegappedelementsrepresent theimpactforce.Theimpactforcesbetweenthefuelassemblies andthecellwallwereobtainedusingtheminimumandmaximumresultssummaryobtainedthroughthepost-processing capability ofANSYS.Thepost-processing usedwasPOST26,whichcanextractrequested datafromatime-history
: analysis, inordertoproducetablesofresultitemsversustime.Thereal-time fuel/rack impactloadsweretabulated inPOST26forthesumofboththetopandmiddleracknodesthroughout theentiretime-history.
Therealtimemaximumimpactloadwasthusobtainedforallthefuelassemblies inanyparticular rack.Theassumption thatallfuelassemblies actinunisonisconservative.
Therefore, themaximumcombinedfueVrackimpactloadwasthendividedbythenumberoffuelassemblies intheracktoobtainamaximumfueVrackimpactloadperfuelassembly.
Thesummaryoftheresulting fuel-to-rack impactloadsforeachrackandforeachloadcaseistabulated inTables3.5-46through3.5-57oftheLicensing Report.
e A-26October20,1997U.S.NRCG.S.Vissingb)Thecellwallintegrity isdetermined bystressanalysis.
Section3.5;2.2.2.4.discusses thestressanalysis.
Table3.5-58providestheresultsofthecellwallstressanalysisandshowscomparison ofactualimpactloadagainsttheallowable load.TheANSYSfiniteelementanalysiswasusedtocalculate stressesinthefuelrack-cell wallduetoimpactloadingoffuelassemblies.
Themaximumallowable fuelrackloadwasdefinedasonewhichwouldreachthemaximumstressintensity basedonthestresslimitspecified intheASMECodeSectionIII,Subsection NF.Thecalculation gaveanallowable loadpercellof2290.0poundsfortheOBEcondition and2900.0poundsfortheSSEcondition.
Theseallowable loadsaremuchlowerthantheloadvaluerequiredtoensurethefuelassemblyintegrity.
Theelasticloadlimitsofthefuelassemblyspacergridstestedrangefrom[b,c,d].Thefuelassemblystructural integrity isassured,ifthespacergridimpactloadsarelowerthanthespacergridelasticloadlimit.ThehighestimpactloadvalueobtainedfromtheOBEanalysisis908poundsandfromtheSSEanalysisis1600pounds.Thesecalculations confirmthelocalrackcellwallintegrity andthefuelassemblyintegrity forthemaximumfueltorackcellwallimpactloads.c)Thefluidbetweenthefuelassemblyandthecellwallwasconsidered intheseismicanalysis.
Thetheoryofcylindervibrating inthefluid(Reference 3.38oftheLicensing Report)isutilizedinthehydrodynamic masscalculations.
Thefuelassemblycontaining 179individual fuelrods,16guidetubesandoneinstrument tubewasutilizedinthecalculation.
Section3.5.2.5.1 providesthedetailedfuelassemblyhydrodynamic calculations forW-Standard, W-OFAandExxonfuelassemblies.
d)Section3.5.3.1.1.3 discusses thenumerical simulation betweenthefuelassemblyandthecellwall.Thisisaclassicengineering mechanics problem.Noexperimental studiesarerequiredforthegeneralstructural problem.Noknownexperimental studyexistsatFramatome CogemaFuels.Alltheexperiments performed byBabcock&Wilcoxareforfuelimpacting arigidsurfaceorimpacting otherfuelassemblies.
U.S.NRCG.S.VissinginA-27October20,1997Provideacompletedeformation shapewithmagnitudes ofthedeformations oftherackfion>thebottomtothetopforthesingle-rack SSLanalysiswhenthemaxhnumdisplacement attheracktopcorneroccurs.ReelsThesingle-rack 3-Dmodelwasusedforparametric studiesonly.Thedisplacements andloadswereobtainedfromthewhole-pool multi-rack model.Asummaryofallthemaximumabsolutehorizontal displacements isprovidedinresponsetoNRCQuestion&#xb9;7.Areviewofthosedisplacements showsthatthemaximumdisplacement foranyrack,forallloadingconditions, occursatRack&#xb9;7,duringLoadCase&#xb9;1.Thesummaryofthosemaximumdisplacements areprovidedinthetablebelow.Therefore, thedescription ofthemaximumabsolutedisplacements forRack&#xb9;7areprovidedfortherackbottom,middle,andtopfourcorners.TableNRCQ5.1Max.RackHorizontal crisp.Top-LC&#xb9;1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;1-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.257602-0.286803-0.290004-0.251905-0.384406-0.357107-0.591908-0.551609-0.5863010-0.5308011-0.5228012-0.4918013-0.50680MaxX0.332800.262400.186400.191400.241400.271900.416100.556600.567000.440600.573500.571400.45750MinY-0.42080-0.36870-0.26200-0.25300-0.19250-0.24400-0.27550-0.32230-0.33660-0.28250-0.29340-0.33350-0.37800MaxY0.282600.269700.193000.175900.191400.205200.169600.206000.193500.140300.165600.144400.10220 U.S.NRCG.S.VissingA-28October20,1997RackCornerNodalDisplacements atRack'sTop,Middle,andBaseforRack&#xb9;7(inches)~r~nrTopSouth-West South-East North-West North-East RackCenter-0.52334-0.52334-0.66054-0.66054-0.59194~Y-0.177140.01878-0.177140.01878-0.07918~7-0.077940.19580-0.077860.195880.05897~r~nrMidSouth-West South-East North-West North-East RackCenter~5(-0.26183-0.26183-0.39891-0.39891-0.33037~Y-0.177080.01867-0.177080.01867-0.07920MZ-0.076390.19417,-0.076060.194490.05905~i~rBaseSouth-West South-East North-West North-East RackCenter~X-0.00563-0.00589-0.14242-0.14266-0.07427~Y-0.175870.01925-0.176220.01925-0.07840MZ-0.070590.18817-0.069570.189180.05930 IU..S.NRCG.S.VissingA-29October20,1997Providethelargestmagnitude ofthehydrodynamic pressuredistribution alongtheheightoftherackduringthefluidandrackinteraction foreachcaseofthe3-Dsingle-andmulti-rack analyses.
~Resense:Thesingle3-Drackmodelwasusedforparametric studies.Theloads,including thehydrodynamic loads,anddisplacements wereallobtainedsolelywiththemulti-rack whole-pool model.Therefore, therequested hydrodynamic pressuredistribution isprovidedforthewhole-poolmulti-rack model.Thehydrodynamic pressuredistributions aretabulated foreachrackthatinterfaces withthespentfuelpoolwalls.Thereal-time summation ofhydrodynamic loadsforthebottom,middle,andtopofeachrackwasusedtoprovideanaveragehydrodynamic pressurefortheentireheightoftherack.Also,areal-time summation ofhydrodynamic loadswasobtainedforalltheracksfacingeachofthefourwalls.Thereal-time averagedwallpressureforeachofthefourwallswasthendetermined, andisprovidedinthefollowing tables.ThetablesNRCQ6.1thruNRCQ6.12areforeachoftheLoadCases1thru12.
U.S.NRCG.S.VissingA-30October20,1997TableNRCQ6.1Max.RackSeismicHydroPressures
-LC&#xb9;1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;1-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-2.4972.853-2.6932.956EastSideR7-EWRl1-EWR12-EWR13-EWJSouthSideRl-SWR3-SWRS-SWRj-SWRl1-SW-3.0523.935-3.7865.008-7.64310.077-4.1764.995-5.4183.758-15.16211.255-18.33415.081-3.3222.726-3.2202.477NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-5.3253.671-18.28213.105-10.4528.595-5.7754.522-2.5242.001'umofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.3971.564SUM-EW-2.3833.144SUM-SW-8.7096.782SUM-NW-8.0236.051Note:Theabovereportedpressures areontheperimeter racks.
U.S.NRCG.S.VissingA-31October20,1997TableNRCQ6.2Max.RackSeismicHydroPressures
-LC&#xb9;2GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;2-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.5382.322-2.6832.478EastSideRj-EWR11-EWR12-EWR13-EW-3.3993.937-3.5144.294-6.8018.846-3.8084.191SouthSideRl-SWR3-SWRS-SWRj-SWR11-SW-3.9943.166-11.90110.363-16.99714.018-3.2092.633-3.2522.489NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.1593.021-14.29312.220-9.6357.681-5.4234.571-2.4412.121SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.4051.288SUM-EW-2.3162.789SUM-SW-7.4616.320SUM-NW-6.8355.746Note:Theabovereportedpressures areontheperimeter racks.
U.S.NRCG.S.VissingA-32October20,1997TableNRCQ6.3Max.RackSeismicHydroPressures
-LC&#xb9;3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;3-Consolidated Fuel-SSE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-1.0761.058-1.1361.165EastSideR7-EWRl1-EWR13-EW-3.4343.065-8.0857.052-4.1443.297SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-2.8193.758-7.2329.212-9.79911.062-2.0642.120-2.1132.302NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.0873.713-9.41211.433-5.9217.043-3.2873.491-1.5391.679SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.5730.594SUM-EW-2.5982.140SUM-SW-4.4415.411SUM-NW-4.4385.224Note:Theabovereportedpressures areontheperimeter racks.
 
U.S.NRCG.S.VissingA-33October20,1997TableNRCQ6.4Max.RackSideSeismicHydroPressures
-LCII4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase84-Unconsolidated Fuel-SSE-Mu=0.5MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.4962.716-2.6933.450EastSideR7-EWRl1-EWR12-EWR13-EW-2.8333.557-3.6354.561-8.23210.163-4.4125.273SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-4.8124.002-13.17111.270-18.10415.125-3.2342.738-3.1432.562NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.9003.999-16.62613.171-10.2898.305-5.7174.574-2.5162.100SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.3971.649SUM-EW-2.4443.044SUM-SW-7.8906.804SUM-NW-7.3456.082Note:Theabovereportedpressures areontheperimeter racks.  


U.S.NRCG.S.VissingA-33October20,1997TableNRCQ6.4Max.RackSideSeismicHydroPressures-LCII4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase84-UnconsolidatedFuel-SSE-Mu=0.5MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.4962.716-2.6933.450EastSideR7-EWRl1-EWR12-EWR13-EW-2.8333.557-3.6354.561-8.23210.163-4.4125.273SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-4.8124.002-13.17111.270-18.10415.125-3.2342.738-3.1432.562NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.9003.999-16.62613.171-10.2898.305-5.7174.574-2.5162.100SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.3971.649SUM-EW-2.4443.044SUM-SW-7.8906.804SUM-NW-7.3456.082Note:Theabovereportedpressuresareontheperimeterracks.  
U.S.NRCG.S.VissingA-34October20,1997TableNRCQ6.5Max.RackSeismicHydroPressures
-LC&#xb9;5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;5-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-2.4722.545-2.8862.509EastSideR7-EWRl1-EWR12-EWR13-EW-3.6132.986-3.3972.998-8.0746.885-4.1463.585SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-4.9764.245-14.17411.671-19.04015.898-3.2442.753-3.1902.722NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.2063.657-15.83813.773-11.0108.848-5.7304.647-2.5982.032SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.4391.232SUM-EW-2.5292.120SUM-SW-8.3277.067SUM-NW-7.5796.289Note:Theabovereportedpressures areontheperimeter racks.  


U.S.NRCG.S.VissingA-34October20,1997TableNRCQ6.5Max.RackSeismicHydroPressures-LC&#xb9;5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-2.4722.545-2.8862.509EastSideR7-EWRl1-EWR12-EWR13-EW-3.6132.986-3.3972.998-8.0746.885-4.1463.585SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-4.9764.245-14.17411.671-19.04015.898-3.2442.753-3.1902.722NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.2063.657-15.83813.773-11.0108.848-5.7304.647-2.5982.032SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.4391.232SUM-EW-2.5292.120SUM-SW-8.3277.067SUM-NW-7.5796.289Note:Theabovereportedpressuresareontheperimeterracks.  
U.S.NRCG.S.VissingA-35October20,1997TableNRCQ6.6Max.RackSeismicHydroPressures
-LCP6GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseA'6-Consolidated Fuel-SSE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackMin.Press.(psi)Max.Press.(psi)WestSideRl-WWR2-WW-1.5061.348-1.4711.416EastSideR7-EWRl1-EWR12-EWR13-EW-3.2612.409-3.9983.217-7.7096.599-3.7983.236SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-3.1403.605-7.7339.405-10.03611.641-2.0062.053-2.1662.111NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.0253.625-9.82111.752-6.0907.459-3.3233.438-1.5561.628SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.7980.735SUM-EW-2.4642.025SUM-SW-4.7055.519SUM-NW-4.4725.300Note:Theabovereportedpressures areontheperimeter racks.  


U.S.NRCG.S.VissingA-35October20,1997TableNRCQ6.6Max.RackSeismicHydroPressures-LCP6GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseA'6-ConsolidatedFuel-SSE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackMin.Press.(psi)Max.Press.(psi)WestSideRl-WWR2-WW-1.5061.348-1.4711.416EastSideR7-EWRl1-EWR12-EWR13-EW-3.2612.409-3.9983.217-7.7096.599-3.7983.236SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-3.1403.605-7.7339.405-10.03611.641-2.0062.053-2.1662.111NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.0253.625-9.82111.752-6.0907.459-3.3233.438-1.5561.628SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.7980.735SUM-EW-2.4642.025SUM-SW-4.7055.519SUM-NW-4.4725.300Note:Theabovereportedpressuresareontheperimeterracks.  
U.S.NRCG.S.VissingA-36October20,1997TableNRCQ6.7Max.RackSeismicHydroPressures
-LCP7GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseP7-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.6693.256-2.8922.950EastSideR7-EWRl1-EWR12-EWR13-EW-3.0893.847-3.3113.281-6.6947.194-3.2813.099SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-4.1743.541-12.36910.802-17.68114.806-3.0882.660-2.8962.522NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.5123.821-16.34313.617-10.2528.157-5.4704.614-2.3742.129SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.4521.661SUM-EW-2.1572.288SUM-SW-7.7046.603SUM-NW-7.3325.982Note:Theabovereportedpressures areontheperimeter racks.  


U.S.NRCG.S.VissingA-36October20,1997TableNRCQ6.7Max.RackSeismicHydroPressures-LCP7GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseP7-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.6693.256-2.8922.950EastSideR7-EWRl1-EWR12-EWR13-EW-3.0893.847-3.3113.281-6.6947.194-3.2813.099SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-4.1743.541-12.36910.802-17.68114.806-3.0882.660-2.8962.522NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.5123.821-16.34313.617-10.2528.157-5.4704.614-2.3742.129SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-1.4521.661SUM-EW-2.1572.288SUM-SW-7.7046.603SUM-NW-7.3325.982Note:Theabovereportedpressuresareontheperimeterracks.  
U.S.NRCG.S.VissingA-37October20,1997TableNRCQ6.8Max.RackSeismicHydroPressures
-LCIISGINNA3DWholePoolModel-WithPerimeter RacksLoadCaseP8-Consolidated Fuel-OBE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-0.610-0.712Max.Press.(psi)0.5650.616EastSideR7-EWR11-EWR12-EWR13-EW-1.122-1.710-3.812-1.7011.3171.7753.8691.849SouthSideRl-SWR3-SWRS-SWR7-SWR11-SW-1.787-4.039-4.853-0.909-0.8951.7564.7285.3930.9280.895NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-1.7761..756-5.0435.911-3.0193.327-1.4121.448-0.6710.701SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.3560.311SUM-EW-1.0261.149SUM-SW-2.3892.668SUM-NW-2.2912.546Note:Theabovereportedpressures areontheperimeter racks.  


U.S.NRCG.S.VissingA-37October20,1997TableNRCQ6.8Max.RackSeismicHydroPressures-LCIISGINNA3DWholePoolModel-WithPerimeterRacksLoadCaseP8-ConsolidatedFuel-OBE-Mu=0.8MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-0.610-0.712Max.Press.(psi)0.5650.616EastSideR7-EWR11-EWR12-EWR13-EW-1.122-1.710-3.812-1.7011.3171.7753.8691.849SouthSideRl-SWR3-SWRS-SWR7-SWR11-SW-1.787-4.039-4.853-0.909-0.8951.7564.7285.3930.9280.895NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-1.7761..756-5.0435.911-3.0193.327-1.4121.448-0.6710.701SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.3560.311SUM-EW-1.0261.149SUM-SW-2.3892.668SUM-NW-2.2912.546Note:Theabovereportedpressuresareontheperimeterracks.  
U.S.NRCG.S.VissingA-38October20,1997TableNRCQ6.9Max.RackSeismicHydroPressures
-LCP9GINNA3DWholePoolModel-WithPerimeter RacksLoadCase89-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-1.165-1.271Max.Press.(psi)1.2011.198EastSideRj-EWRl1-EWR12-EWR13-EW-1.176-1.073-2.231-1.3491.3441.3642.6321.243SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-1.987-5.749-7.889-1.247-1.2411.9895.8317.2101.4051.072NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-2.070-7.087-4.472-2.099-0.9831.6766.8343.7171.4530.986SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.6560.636SUM-EW-0.7240.871'UM-SW-3.4633.296SUM-NW-3.2062.817Note:Theabovereportedpressures areontheperimeter racks.  


U.S.NRCG.S.VissingA-38October20,1997TableNRCQ6.9Max.RackSeismicHydroPressures-LCP9GINNA3DWholePoolModel-WithPerimeterRacksLoadCase89-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-1.165-1.271Max.Press.(psi)1.2011.198EastSideRj-EWRl1-EWR12-EWR13-EW-1.176-1.073-2.231-1.3491.3441.3642.6321.243SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-1.987-5.749-7.889-1.247-1.2411.9895.8317.2101.4051.072NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-2.070-7.087-4.472-2.099-0.9831.6766.8343.7171.4530.986SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.6560.636SUM-EW-0.7240.871'UM-SW-3.4633.296SUM-NW-3.2062.817Note:Theabovereportedpressuresareontheperimeterracks.  
U.S.NRCG.S.VissingA-39October20,1997TableNRCQ6.10Max.RackSeismicHydroPressures
-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;10-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-0.9190.908-1.1490.950EastSideRj-EWRl1-EWR12-EWR13-EW-1.1081.294-1.1631.449-2.3982.540-1.2371.369SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-1.8541.911-5.4745.362-7.4076.794-1.3440.962-1.2510.997NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-1.9571.522-6.7236.387-4.1723.581-2.2652.203-1.0211.169SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.5500.500SUM-EW-0.7400.828SUM-SW-3.3123.047SUM-NW-3.0642.681Note:Theabovereportedpressures areontheperimeter racks.  


U.S.NRCG.S.VissingA-39October20,1997TableNRCQ6.10Max.RackSeismicHydroPressures-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;10-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-0.9190.908-1.1490.950EastSideRj-EWRl1-EWR12-EWR13-EW-1.1081.294-1.1631.449-2.3982.540-1.2371.369SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-1.8541.911-5.4745.362-7.4076.794-1.3440.962-1.2510.997NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-1.9571.522-6.7236.387-4.1723.581-2.2652.203-1.0211.169SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.5500.500SUM-EW-0.7400.828SUM-SW-3.3123.047SUM-NW-3.0642.681Note:Theabovereportedpressuresareontheperimeterracks.  
U.S.NRCG.S.VissingA-40October20,1997TableNRCQ6.11Max.RackSeismicHydroPressures
-LCP11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase011-MixedFuel-SSE-Mu=MixedMaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-1.595-1.649Max.Press.(psi)2.038.2.091EastSideR7-EWRl1-EWR12-EWR13-EW-1.7731.560-2.5732.054-6.0485.603-3.2902.499SouthSideRl-SWR3-SWRS-SWRj-SWRl1-SW-3.1792.417-8.1056.179-6.9506.892-1.4581.411-2.096'1.857NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.3442.535-11.2188.439"-5.2354.926-2.6362.160-1.8411.375SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.8591.110SUM-EW-1.7701.435SUM-SW-4.2273.473SUM-NW-4.5613.617Note:Theabovereportedpressures areontheperimeter racks.
U.S.NRCG.S.VissingA-41October20,1997TableNRCQ6.12Max.RackSeismicHydroPressures
-LC&#xb9;12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedMaximumRackPressures DuetoSeismicLoadingRack,WestSideRl-WWR2-WWMin.Press.(p>>)-0.427-0.329'-Max.Press.(psi)0.4530.385EastSideR7-EWRl1-EWR12-EWR13-EW-0.727-1.437-2.964-1.3430.6831.3782.3541.223SouthSideRl-SWR3-SWRS-SWR7-SWR11-SW-0.884-4.968-6.250-0.876-0.8830.8453.8474.7850.8011.030NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-0.7370.608-3.9483.091-3.3492.345-1.2201.017-0.4970.517SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.2030.225SUM-EW-0.8360.736SUM-SW-2.6791.955SUM-NW-1.8931.369Note:Theabovereportedpressures areontheperimeter racks.
U.S.NRCG.S.VissingA-42October20,1997Provideasummaryofthepeakresponseresults(i.e.,maximumabsolutedisplaceInents atthetopandbottomoftherack,magnitudes ofthebending,shearandaxialstresseswiththeirlocations, maximumpedestalhorizontal andverticalloads,impactloads,etc)ofthesingle-andmulti-rack SSEanalysesinatabularform.~RNLnn;The3-Dsingle-rack dynamicmodelandthe3-Dwholepoolmulti-rack dynamicanalysismodels,andtheirintendeduses,aredescribed inSections3.5(page73oftheLicensing Report)andSection3.5.2.3(pages107to109oftheLicensing Report).Aspresented, the3-Dsingle-rack dynamicmodelwasusedforvarioussensitivity studies.Thedisplacements, loads,andassociated stressesareobtainedfromthe3-Dwholepoolmulti-rack dynamicmathematical model.Therefore, thefollowing resultsarepresented forthemulti-rack modelonly.Thedisplacements providedintheLicensing Reportwererelativedisplacements
-betweentheracksandsurrounding racks,orbetweentheperimeter racksandthespentfuelpoolwall.Themaximumabsolutedisplacements atthetopandbottomoftheracksaretabulated intheattachedTablesNRCQ7.1throughNRCQ7.24, forallloadcases.Therackmaximumforces(bendingandshear),moments(bendingandtorsion)arereportedinSection3.5.3.1.8.1, Tables3.5-67through3.5-90inatabularform.Therackmaximumbending,axialandshearstressesarereportedinSection3.5.3.1.2.7.
Themaximumpedestalhorizontal andverticalloadsarereportedinSection3.5.3.1.5, Tables3.5-22through3.5-45inatabularform.ThemaximumfueltorackimpactloadsarereportedinSection3.5.3.1.6, Tables3.5-46through3.5-57inatabularform.
U.S.NRCG.S.VissingA-43October20,1997TableNRCQ7.1Max.RackHorizontal Disp.Top-LC&#xb9;1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;1-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.257602-0.286803-0.290004-0.251905-0.384406-0.357107-0.591908-0.551609-0.5863010-0.5308011-0.5228012-0.4918013-0.50680MaxX0.332800.262400.186400.191400.241400.271900.416100.556600.567000.440600.573500.571400.45750MinY-0.42080-0.36870-0.26200-0.25300-0.19250-0.24400-0.27550-0.32230-0.33660-0.28250-0.29340-0.33350-0.37800MaxY0.282600.269700.193000.175900.191400.205200.169600.206000.193500.140300.165600.144400.10220TableNRCQ7.2Max.RackHorizontal Disp.Base-LC&#xb9;1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;1-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.037242-0.083733-0.043964-0.045335-0.045236'0.050747-0.081948-0.066229-0.0484510-0.0712211-0.0668612-0.0700913-0.04091MaxX0.060380.043580.027110.024330.029990.025060.033180.067870.070660.031510.066030.057130.08492MinY-0.07127-0.05174-0.05670-0.05314-0.03317-0.04841-0.11520-0.13520-0.13020-0.09588-0.15610-0.13950-0.13190MaxY0.045800.050010.032540.031300.037330.039960.014110.013750.009620.009880.007440.011990.00621


U.S.NRCG.S.VissingA-40October20,1997TableNRCQ6.11Max.RackSeismicHydroPressures-LCP11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase011-MixedFuel-SSE-Mu=MixedMaximumRackPressuresDuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-1.595-1.649Max.Press.(psi)2.038.2.091EastSideR7-EWRl1-EWR12-EWR13-EW-1.7731.560-2.5732.054-6.0485.603-3.2902.499SouthSideRl-SWR3-SWRS-SWRj-SWRl1-SW-3.1792.417-8.1056.179-6.9506.892-1.4581.411-2.096'1.857NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.3442.535-11.2188.439"-5.2354.926-2.6362.160-1.8411.375SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.8591.110SUM-EW-1.7701.435SUM-SW-4.2273.473SUM-NW-4.5613.617Note:Theabovereportedpressuresareontheperimeterracks.
U.S.NRCG.S.VissingA-44October20,1997TableNRCQ7.3Max.RackHorizontal Disp.Top-LC&#xb9;2GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;2-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))Rack12345678910111213MinX-0.20310-0.20330-0.17020-0.16100-0.16430-0.17680-0.36910-0.31460-0.39740-0.22680*-0.46800-0.47080-0.27060MaxX0.242600.201000.146900.169800.137400.177600.140200.178300.186500.246600.138500.114500.15340MinY-0.23770-0.19230-0.24880-0.25310-0.28210-0.30480-0.35310-0.37400-0.38660-0.30850-0.28450-0.26690-0.34380MaxY0.263500.264300.144000.141200.156700.173700.137000.174300.139900.131400.117000.157100.09970TableNRCQ7.4Max.RackHorizontal Disp.@Base-LC&#xb9;2GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;2-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.076002-0.090613-0.039904-0.055355-0.056336-0.073677-0.264508-0.233709-0.3163010-0.1447011-0.4071012-0.4170013-0.18190MaxX0.063550.068180.035480.075450.028400.080710.077820.097390.104900.174400.073030.052880.08832MinY-0.16120-0.10310-0.17800-0.18220-0.20670-0.23090-0.23310-0.23790-0.23890-0.17410-0.16430-0.12700-0.21120MaxY0.177800.190000.061310.065460.053550.076780.013800.015960.008230.007300.038250.058330.02261
U.S.NRCG.S.VissingA-41October20,1997TableNRCQ6.12Max.RackSeismicHydroPressures-LC&#xb9;12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedMaximumRackPressuresDuetoSeismicLoadingRack,WestSideRl-WWR2-WWMin.Press.(p>>)-0.427-0.329'-Max.Press.(psi)0.4530.385EastSideR7-EWRl1-EWR12-EWR13-EW-0.727-1.437-2.964-1.3430.6831.3782.3541.223SouthSideRl-SWR3-SWRS-SWR7-SWR11-SW-0.884-4.968-6.250-0.876-0.8830.8453.8474.7850.8011.030NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-0.7370.608-3.9483.091-3.3492.345-1.2201.017-0.4970.517SumofRealTimeRackPressures(psi)AveragedforEachSideSUM-WW-0.2030.225SUM-EW-0.8360.736SUM-SW-2.6791.955SUM-NW-1.8931.369Note:Theabovereportedpressuresareontheperimeterracks.
U.S.NRCG.S.VissingA-42October20,1997Provideasummaryofthepeakresponseresults(i.e.,maximumabsolutedisplaceInentsatthetopandbottomoftherack,magnitudesofthebending,shearandaxialstresseswiththeirlocations,maximumpedestalhorizontalandverticalloads,impactloads,etc)ofthesingle-andmulti-rackSSEanalysesinatabularform.~RNLnn;The3-Dsingle-rackdynamicmodelandthe3-Dwholepoolmulti-rackdynamicanalysismodels,andtheirintendeduses,aredescribedinSections3.5(page73oftheLicensingReport)andSection3.5.2.3(pages107to109oftheLicensingReport).Aspresented,the3-Dsingle-rackdynamicmodelwasusedforvarioussensitivitystudies.Thedisplacements,loads,andassociatedstressesareobtainedfromthe3-Dwholepoolmulti-rackdynamicmathematicalmodel.Therefore,thefollowingresultsarepresentedforthemulti-rackmodelonly.ThedisplacementsprovidedintheLicensingReportwererelativedisplacements-betweentheracksandsurroundingracks,orbetweentheperimeterracksandthespentfuelpoolwall.ThemaximumabsolutedisplacementsatthetopandbottomoftheracksaretabulatedintheattachedTablesNRCQ7.1throughNRCQ7.24,forallloadcases.Therackmaximumforces(bendingandshear),moments(bendingandtorsion)arereportedinSection3.5.3.1.8.1,Tables3.5-67through3.5-90inatabularform.Therackmaximumbending,axialandshearstressesarereportedinSection3.5.3.1.2.7.ThemaximumpedestalhorizontalandverticalloadsarereportedinSection3.5.3.1.5,Tables3.5-22through3.5-45inatabularform.ThemaximumfueltorackimpactloadsarereportedinSection3.5.3.1.6,Tables3.5-46through3.5-57inatabularform.
U.S.NRCG.S.VissingA-43October20,1997TableNRCQ7.1Max.RackHorizontalDisp.Top-LC&#xb9;1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;1-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.257602-0.286803-0.290004-0.251905-0.384406-0.357107-0.591908-0.551609-0.5863010-0.5308011-0.5228012-0.4918013-0.50680MaxX0.332800.262400.186400.191400.241400.271900.416100.556600.567000.440600.573500.571400.45750MinY-0.42080-0.36870-0.26200-0.25300-0.19250-0.24400-0.27550-0.32230-0.33660-0.28250-0.29340-0.33350-0.37800MaxY0.282600.269700.193000.175900.191400.205200.169600.206000.193500.140300.165600.144400.10220TableNRCQ7.2Max.RackHorizontalDisp.Base-LC&#xb9;1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;1-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.037242-0.083733-0.043964-0.045335-0.045236'0.050747-0.081948-0.066229-0.0484510-0.0712211-0.0668612-0.0700913-0.04091MaxX0.060380.043580.027110.024330.029990.025060.033180.067870.070660.031510.066030.057130.08492MinY-0.07127-0.05174-0.05670-0.05314-0.03317-0.04841-0.11520-0.13520-0.13020-0.09588-0.15610-0.13950-0.13190MaxY0.045800.050010.032540.031300.037330.039960.014110.013750.009620.009880.007440.011990.00621


U.S.NRCG.S.VissingA-44October20,1997TableNRCQ7.3Max.RackHorizontalDisp.Top-LC&#xb9;2GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;2-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))Rack12345678910111213MinX-0.20310-0.20330-0.17020-0.16100-0.16430-0.17680-0.36910-0.31460-0.39740-0.22680*-0.46800-0.47080-0.27060MaxX0.242600.201000.146900.169800.137400.177600.140200.178300.186500.246600.138500.114500.15340MinY-0.23770-0.19230-0.24880-0.25310-0.28210-0.30480-0.35310-0.37400-0.38660-0.30850-0.28450-0.26690-0.34380MaxY0.263500.264300.144000.141200.156700.173700.137000.174300.139900.131400.117000.157100.09970TableNRCQ7.4Max.RackHorizontalDisp.@Base-LC&#xb9;2GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;2-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.076002-0.090613-0.039904-0.055355-0.056336-0.073677-0.264508-0.233709-0.3163010-0.1447011-0.4071012-0.4170013-0.18190MaxX0.063550.068180.035480.075450.028400.080710.077820.097390.104900.174400.073030.052880.08832MinY-0.16120-0.10310-0.17800-0.18220-0.20670-0.23090-0.23310-0.23790-0.23890-0.17410-0.16430-0.12700-0.21120MaxY0.177800.190000.061310.065460.053550.076780.013800.015960.008230.007300.038250.058330.02261
U.S.NRCG.S.VissingA-45October20,1997TableNRCQ7.5Max.RackHorizontal Disp.@Top-LC&#xb9;3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;3-Consolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.282502-0.242403-0.156604-0.192405-0.184406-0.197307-0.272008-0.327209-0.3927010-0.2534011-0.4099012-0.4360013-0.32440MaxX0.347400.283500.166300.193100.172100.199300.291900.356800.361800.256200.471200.440500.30230MinY-0.34790-0.30640-0.22950-0.21630-0.21540-0.24260-0.21980-0.29730-0.31500-0.23730-0.28000-0.25880-0.32240MaxY0.330300.295400.189700.196700.215100.264200.241100.248600.235600.206600.169500.199300.15130TableNRCQ7.6Max.RackHorizontal Disp.@Base-LC&#xb9;3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;3-Consolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.029632-0.030713-0.022154-0.025935-0.021526-0.024607-0.045098-0.042959-0.0716610-0.0323911-0.0944412-0.0661313-0.04723MaxX0.081000.028420.024410.023770.023630.023220.056020.065510.030300.052430.026200.043150.05821MinY-0.06999-0.06237-0.04722-0.04187-0.03840-0.03077-0.04370-0.08174-0.09566-0.04473-0.08570-0.06909-0.07137MaxY0.054010.045880.029900.032270.033030.047590.027140.037140.021310.026350.016010.037570.02015


U.S.NRCG.S.VissingA-45October20,1997TableNRCQ7.5Max.RackHorizontalDisp.@Top-LC&#xb9;3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;3-ConsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.282502-0.242403-0.156604-0.192405-0.184406-0.197307-0.272008-0.327209-0.3927010-0.2534011-0.4099012-0.4360013-0.32440MaxX0.347400.283500.166300.193100.172100.199300.291900.356800.361800.256200.471200.440500.30230MinY-0.34790-0.30640-0.22950-0.21630-0.21540-0.24260-0.21980-0.29730-0.31500-0.23730-0.28000-0.25880-0.32240MaxY0.330300.295400.189700.196700.215100.264200.241100.248600.235600.206600.169500.199300.15130TableNRCQ7.6Max.RackHorizontalDisp.@Base-LC&#xb9;3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;3-ConsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.029632-0.030713-0.022154-0.025935-0.021526-0.024607-0.045098-0.042959-0.0716610-0.0323911-0.0944412-0.0661313-0.04723MaxX0.081000.028420.024410.023770.023630.023220.056020.065510.030300.052430.026200.043150.05821MinY-0.06999-0.06237-0.04722-0.04187-0.03840-0.03077-0.04370-0.08174-0.09566-0.04473-0.08570-0.06909-0.07137MaxY0.054010.045880.029900.032270.033030.047590.027140.037140.021310.026350.016010.037570.02015
U.S.NRCG.S.VissingA-46October20,1997TableNRCQ7.7Max.RackHorizontal Disp.Top-LC&#xb9;4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;4-Unconsolidated Fuel-SSE-Mu=0.5MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.291402-0.243703-0.284404-0.249705-0.377506-0.344007-0.575908-0.533509-0.5766010-0.5270011-0.5252012-0.4917013-0.49680MaxX0.295700.258300.176200.193000.258000.289400.441300.592200.580200.442800.585400.581700.48470MinY-0.40560-0.35330-0.24460-0.24040-0.18660-0.22980-0.25950-0.30110-0.31510-0.27800-0.29130-0.31280-0.30700MaxY0.276900.257800.164000.164200.175000.200100.164100.206900.195800.139200.146800.142900.14850TableNRCQ7.8Max.RackHorizontal Disp.@Base-LC&#xb9;4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;4-Unconsolidated Fuel-SSE-Mu=0.5MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.064482-0.048693-0.030824-0.023375-0.050386-0.035237-0.068548-0.052199-0.0312810-0.0735111-0.0471412-0.0544113-0.04132'MaxX0.039430.044970.027870.026940.025190.041080.041040.088990.091480.039120.078100.069370.11050MinY-0.08053-0.05841-0.05235-0.04774-0.03337-0.06152-0.10440-0.11510-0.09633-0.10520-0.10090-0.10640-0.06561MaxY0.032500.055600.034240.033570.038600.044400.013760.015680.008520.008690.013620.008400.01893


U.S.NRCG.S.VissingA-46October20,1997TableNRCQ7.7Max.RackHorizontalDisp.Top-LC&#xb9;4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;4-UnconsolidatedFuel-SSE-Mu=0.5MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.291402-0.243703-0.284404-0.249705-0.377506-0.344007-0.575908-0.533509-0.5766010-0.5270011-0.5252012-0.4917013-0.49680MaxX0.295700.258300.176200.193000.258000.289400.441300.592200.580200.442800.585400.581700.48470MinY-0.40560-0.35330-0.24460-0.24040-0.18660-0.22980-0.25950-0.30110-0.31510-0.27800-0.29130-0.31280-0.30700MaxY0.276900.257800.164000.164200.175000.200100.164100.206900.195800.139200.146800.142900.14850TableNRCQ7.8Max.RackHorizontalDisp.@Base-LC&#xb9;4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;4-UnconsolidatedFuel-SSE-Mu=0.5MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.064482-0.048693-0.030824-0.023375-0.050386-0.035237-0.068548-0.052199-0.0312810-0.0735111-0.0471412-0.0544113-0.04132'MaxX0.039430.044970.027870.026940.025190.041080.041040.088990.091480.039120.078100.069370.11050MinY-0.08053-0.05841-0.05235-0.04774-0.03337-0.06152-0.10440-0.11510-0.09633-0.10520-0.10090-0.10640-0.06561MaxY0.032500.055600.034240.033570.038600.044400.013760.015680.008520.008690.013620.008400.01893
U.S.NRCG.S.VissingA-47October20,1997TableNRCQ7.9Max.RackHorizontal Disp.@Top-LC&#xb9;5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;5-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.189902-0.202603-0.213804-0.178705-0.292706-0.253007-0.560108-0.512509-0.5243010-0.4608011-0.5294012-0.4879013-0.48880MaxX0.173800.237000.174600.203500.209900.234500.323400.473700.484800.385200.466700.478700.40670MinY-0.31140-0.25600-0.20670-0.20880-0.19080-0.22940-0.24590-0.29380-0.31760-0.28720-0.30500-0.33800-0.33210MaxY0.320500.333700.222200.211700.184300.213100.172400.223300.222300.160000.130700.134400.15320TableNRCQ7.10Max.RackHorizontal Disp.@Base-LC&#xb9;5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;5-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.035802-0.030483-0.037554-0.028515-0.037596-0.025477-0.062498-0.072559-0.0449910-0.0465611-0.0516112-0.0554913-0.04446MaxX0.046270.037780.024010.028600.027260.041160.053450.073960.061420.044980.076970.088940:08146MinY-0.07851-0.03985-0.03321-0.03982-0.03663-0.04466-0.06886-0.07892-0.11320-0.09735-0.12170-0.12510-0.10460MaxY0.083930.080680.043790.035190.042510.051610.013930.015290.021850.009440.007300.008200.00609 U.S.NRCG.S.VissingA-48October20,1997TableNRCQ7.11Max.RackHorizontal Disp.Top-LC&#xb9;6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;6-Consolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.230502-0.250703-0.166504-0.186905-0.145706-0.160207-0.281908-0.369509-0.3916010-0.2921011-0.3814012-0.3564013-0.37140MaxX0.326700.297600.242400.209700.191000.187800.296200.365000.361500.274300.487700.420700:30730MinY-0.31260-0.27540-0.22420-0.21230-0.21370-0.23410-0.21080-0.28280-0.30990-0.24680-0.28570-0.29250-0.33660MaxY0.358800.323100.195500.185100.201600.246500.234200.241200.237800.192200.156300.186000.14670TableNRCQ7.12Max.RackHorizontal Disp.@Base-LC&#xb9;6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;6-Consolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.029002-0.038873-0.022504-0.023945-0.019346-0.019977-0.034528-0.037699-0.0620410-0.0269111-0.0806912-0.0660613-0.04278MaxX0.047170.033770.032530.028600.024180.024650.053120.086310.051490.061890.045020.042470.05559MinY-0.05076-0.04990-0.04870-0.04665-0.04324-0.03789-0.03707-0.07240-0.06606-0.04530-0.07084-0.05413-0.07601MaxY0.103300.073820.031160.031410.034160.044830.027090.034870.026120.025900.009690.012960.01875 U.S.NRCG.S.VissingA-49October20,1997TableNRCQ7.13Max.RackHorizontal Disp.@Top-LC07GINNA3DWholePoolModel-WithPerimeter RacksLoadCase87-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))'ackMinX1-0.168002-0.190303-0.141404-0.153305-0.131706-0.138507-0.208408-0.254009-0.2807010-0.1943011-0.3857012-0.5453013-0.24120MaxX0.144300.196000.155200.148500.154700.136500.265400.268100.227200.230800.207600.131200.19910MinY-0.20100-0.13870-0.15140-0.17600-0.19070-0.24190-0.33540-0.37390-0.41170-0.29410-0.32050-0.30840-0.31250MaxY0.317900.295300.191600.169900.159100.193200.131500.178700.143900.141000.118400.145600.13130TableNRCQ7.14Max.RackHorizontal Disp.@Base-LCP7GINNA3DWholePoolModel-WithPerimeter RacksLoadCase87-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.059062-0.064823-0.030774-0.044025-0.038206-0.055577-0.094018-0.146909-0.1789010-0.1112011-0.2986012-0.4784013-0.15870MaxXMinY0.05380-0.119800.08367-0.056760.03802-0.069220.03961-0.099450.05111-0.128200.04126-0.189500.20160-0.214900.19920-0.245500.15780-0.247400.16080-0.158600.12690-0.228600.07696-0.212900.13330-0.20260MaxY0.249000.211500.117600.091400.07477'0.107700.013960.028730.007800.010010.010350.021050.03134 U.S.NRCG.S.VissingA-50October20,1997TableNRCQ7.15Max.RackHorizontal Disp.ITop-LC&#xb9;8GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;8-Consolidated Fuel-OBE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.113702-0.113303-0.077824-0.079655-0.066916-0.070557-0.139508-0.142609-0.1775010-0.1134011-0.2143012-0.2346013-0.17900MaxX0.126300.121200.094540.080750.077640.069130.112300.129300.155800.110800.215000.210000.14510MinY-0.18140-0.16620-0.10110-0.09862-0.10910-0.13020-0.13890-0.18670-0.17680-0.16160-0.17720-0.16030-0.20540MaxY0.193300.166700.097260.093880.100900.120300.119000.130400.137400.095460.087280.100500.07412TableNRCQ7.16Max.RackHorizontal Disp.@Base-LC&#xb9;8GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;8-Consolidated Fuel-OBE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.018402-0.013553-0.010434-0.010165-0.007276-0.007167-0.020678-0.020899-0.0294010-0.0162111-0.0316612-0.0322213-0.02951MaxX0.012740.011800.009240.010540.009800.010150.016750.019440.019720.015720.037010.031830.01986MinY-0.02858-0.02813-0.01734-0.01771-0.02037-0.02334-0.01500-0.02212-0.01614-0.01618-0.02075-0.02836-0.02110MaxY0.032170'.027440.016670.014870.018450.020990.014850.016550.012910.'010840.008470.004460.00904 U.S.NRCG.S.VissingA-51October20,1997TableNRCQ7.17Max.RackHorizontal Disp.@Top-LC&#xb9;9GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;9-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.106702-0.096043-0.082254-0.070365-0.070506-0.067637-0.100508-0.124509-0.1678010-0.1071011-0.1420012-0.1578013-0.19130MaxX0.101600.099860.074800.072430.072500.070340.157000.148900.139500.102400.128800.106600.07786MinY-0.19560-0.16950-0.10910-0.10590-0.08731-0.10830-0.10310-0.11810-0.09962-0.08660-0.11780-0.09529-0.12740MaxY0.137400.162000.076030.079390.087640.098340.089770.099640.114600.085300.070940.097440.05970TableNRCQ7.18Max.RackHorizontal Disp.Base-LC&#xb9;9GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;9-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.02387'-0.015303-0.018894-0.008855-0.006556-0.008207-0.006598-0.030919-0.0930510-0.0202511-0.0741612-0.1155013-0.11360MaxX0.013970.026300.006890.013030.013520.023310.070380.053740.057860.039150.061330.049830.02916MinY-0.11270-0.07639-0.03814-0.03253-0.01651-0.03289-0.01164-0.03022-0.01004-0.00683-0.04825-0.01237-0.02082MaxY0.055020.095510.016850.016290.020840.022850.014200.012790.030930.020480.006550.022290.00730


U.S.NRCG.S.VissingA-47October20,1997TableNRCQ7.9Max.RackHorizontalDisp.@Top-LC&#xb9;5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.189902-0.202603-0.213804-0.178705-0.292706-0.253007-0.560108-0.512509-0.5243010-0.4608011-0.5294012-0.4879013-0.48880MaxX0.173800.237000.174600.203500.209900.234500.323400.473700.484800.385200.466700.478700.40670MinY-0.31140-0.25600-0.20670-0.20880-0.19080-0.22940-0.24590-0.29380-0.31760-0.28720-0.30500-0.33800-0.33210MaxY0.320500.333700.222200.211700.184300.213100.172400.223300.222300.160000.130700.134400.15320TableNRCQ7.10Max.RackHorizontalDisp.@Base-LC&#xb9;5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.035802-0.030483-0.037554-0.028515-0.037596-0.025477-0.062498-0.072559-0.0449910-0.0465611-0.0516112-0.0554913-0.04446MaxX0.046270.037780.024010.028600.027260.041160.053450.073960.061420.044980.076970.088940:08146MinY-0.07851-0.03985-0.03321-0.03982-0.03663-0.04466-0.06886-0.07892-0.11320-0.09735-0.12170-0.12510-0.10460MaxY0.083930.080680.043790.035190.042510.051610.013930.015290.021850.009440.007300.008200.00609 U.S.NRCG.S.VissingA-48October20,1997TableNRCQ7.11Max.RackHorizontalDisp.Top-LC&#xb9;6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;6-ConsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.230502-0.250703-0.166504-0.186905-0.145706-0.160207-0.281908-0.369509-0.3916010-0.2921011-0.3814012-0.3564013-0.37140MaxX0.326700.297600.242400.209700.191000.187800.296200.365000.361500.274300.487700.420700:30730MinY-0.31260-0.27540-0.22420-0.21230-0.21370-0.23410-0.21080-0.28280-0.30990-0.24680-0.28570-0.29250-0.33660MaxY0.358800.323100.195500.185100.201600.246500.234200.241200.237800.192200.156300.186000.14670TableNRCQ7.12Max.RackHorizontalDisp.@Base-LC&#xb9;6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;6-ConsolidatedFuel-SSE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.029002-0.038873-0.022504-0.023945-0.019346-0.019977-0.034528-0.037699-0.0620410-0.0269111-0.0806912-0.0660613-0.04278MaxX0.047170.033770.032530.028600.024180.024650.053120.086310.051490.061890.045020.042470.05559MinY-0.05076-0.04990-0.04870-0.04665-0.04324-0.03789-0.03707-0.07240-0.06606-0.04530-0.07084-0.05413-0.07601MaxY0.103300.073820.031160.031410.034160.044830.027090.034870.026120.025900.009690.012960.01875 U.S.NRCG.S.VissingA-49October20,1997TableNRCQ7.13Max.RackHorizontalDisp.@Top-LC07GINNA3DWholePoolModel-WithPerimeterRacksLoadCase87-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))'ackMinX1-0.168002-0.190303-0.141404-0.153305-0.131706-0.138507-0.208408-0.254009-0.2807010-0.1943011-0.3857012-0.5453013-0.24120MaxX0.144300.196000.155200.148500.154700.136500.265400.268100.227200.230800.207600.131200.19910MinY-0.20100-0.13870-0.15140-0.17600-0.19070-0.24190-0.33540-0.37390-0.41170-0.29410-0.32050-0.30840-0.31250MaxY0.317900.295300.191600.169900.159100.193200.131500.178700.143900.141000.118400.145600.13130TableNRCQ7.14Max.RackHorizontalDisp.@Base-LCP7GINNA3DWholePoolModel-WithPerimeterRacksLoadCase87-UnconsolidatedFuel-SSE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.059062-0.064823-0.030774-0.044025-0.038206-0.055577-0.094018-0.146909-0.1789010-0.1112011-0.2986012-0.4784013-0.15870MaxXMinY0.05380-0.119800.08367-0.056760.03802-0.069220.03961-0.099450.05111-0.128200.04126-0.189500.20160-0.214900.19920-0.245500.15780-0.247400.16080-0.158600.12690-0.228600.07696-0.212900.13330-0.20260MaxY0.249000.211500.117600.091400.07477'0.107700.013960.028730.007800.010010.010350.021050.03134 U.S.NRCG.S.VissingA-50October20,1997TableNRCQ7.15Max.RackHorizontalDisp.ITop-LC&#xb9;8GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;8-ConsolidatedFuel-OBE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.113702-0.113303-0.077824-0.079655-0.066916-0.070557-0.139508-0.142609-0.1775010-0.1134011-0.2143012-0.2346013-0.17900MaxX0.126300.121200.094540.080750.077640.069130.112300.129300.155800.110800.215000.210000.14510MinY-0.18140-0.16620-0.10110-0.09862-0.10910-0.13020-0.13890-0.18670-0.17680-0.16160-0.17720-0.16030-0.20540MaxY0.193300.166700.097260.093880.100900.120300.119000.130400.137400.095460.087280.100500.07412TableNRCQ7.16Max.RackHorizontalDisp.@Base-LC&#xb9;8GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;8-ConsolidatedFuel-OBE-Mu=0.8MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.018402-0.013553-0.010434-0.010165-0.007276-0.007167-0.020678-0.020899-0.0294010-0.0162111-0.0316612-0.0322213-0.02951MaxX0.012740.011800.009240.010540.009800.010150.016750.019440.019720.015720.037010.031830.01986MinY-0.02858-0.02813-0.01734-0.01771-0.02037-0.02334-0.01500-0.02212-0.01614-0.01618-0.02075-0.02836-0.02110MaxY0.032170'.027440.016670.014870.018450.020990.014850.016550.012910.'010840.008470.004460.00904 U.S.NRCG.S.VissingA-51October20,1997TableNRCQ7.17Max.RackHorizontalDisp.@Top-LC&#xb9;9GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;9-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.106702-0.096043-0.082254-0.070365-0.070506-0.067637-0.100508-0.124509-0.1678010-0.1071011-0.1420012-0.1578013-0.19130MaxX0.101600.099860.074800.072430.072500.070340.157000.148900.139500.102400.128800.106600.07786MinY-0.19560-0.16950-0.10910-0.10590-0.08731-0.10830-0.10310-0.11810-0.09962-0.08660-0.11780-0.09529-0.12740MaxY0.137400.162000.076030.079390.087640.098340.089770.099640.114600.085300.070940.097440.05970TableNRCQ7.18Max.RackHorizontalDisp.Base-LC&#xb9;9GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;9-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.02387'-0.015303-0.018894-0.008855-0.006556-0.008207-0.006598-0.030919-0.0930510-0.0202511-0.0741612-0.1155013-0.11360MaxX0.013970.026300.006890.013030.013520.023310.070380.053740.057860.039150.061330.049830.02916MinY-0.11270-0.07639-0.03814-0.03253-0.01651-0.03289-0.01164-0.03022-0.01004-0.00683-0.04825-0.01237-0.02082MaxY0.055020.095510.016850.016290.020840.022850.014200.012790.030930.020480.006550.022290.00730
U.S.NRCG.S.VissingA-52October20,1997TableNRCQ7.19Max.RackHorizontal Disp.Top-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;10-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.142002-0.115403-0.078234-0.084965-0.080166-0.082747-0.110708-0.116209-0.1787010-0.1448011-0.1190012-0.2009013-0.20950MaxX0.136800.133400.094380.109600.083580.094610.168900.167800.152500.093600.176100.093200.07103MinY-0.17300-0.17490-0.11040-0.10800-0.10670-0.10430-0.10380-0.13110-0.14890-0.10690-0.10420-0.12120-0.13520MaxY0.099020.112700.086760.080370.093040.110000.090890.10390'.104300.084820.073830.092070.07252TableNRCQ7.20Max.RackHorizontal Disp.@Base-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase&#xb9;10-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.030952-0.023853-0.012504-0.013445-0.013036-0.009797-0.009218-0.009839-0.0885110-0.0655011-0.0386912-0.1599013-0.14080MaxX0.030060.038860.010110.014010.011950.011940.078500.074070.071620.029480.091760.040290.01560MinY-0.09498-0.07780-0.02894-0.02704-0.03653-0.01566-0.02239-0.03278-0.02074-0.02159-0.03615-0.02132-0.02246MaxY0.023110.021930.016210.015550.016360.033230.010610.013210.014590.017490.007600.013120.01026


U.S.NRCG.S.VissingA-52October20,1997TableNRCQ7.19Max.RackHorizontalDisp.Top-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;10-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.142002-0.115403-0.078234-0.084965-0.080166-0.082747-0.110708-0.116209-0.1787010-0.1448011-0.1190012-0.2009013-0.20950MaxX0.136800.133400.094380.109600.083580.094610.168900.167800.152500.093600.176100.093200.07103MinY-0.17300-0.17490-0.11040-0.10800-0.10670-0.10430-0.10380-0.13110-0.14890-0.10690-0.10420-0.12120-0.13520MaxY0.099020.112700.086760.080370.093040.110000.090890.10390'.104300.084820.073830.092070.07252TableNRCQ7.20Max.RackHorizontalDisp.@Base-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;10-UnconsolidatedFuel-OBE-Mu=0.2MaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.030952-0.023853-0.012504-0.013445-0.013036-0.009797-0.009218-0.009839-0.0885110-0.0655011-0.0386912-0.1599013-0.14080MaxX0.030060.038860.010110.014010.011950.011940.078500.074070.071620.029480.091760.040290.01560MinY-0.09498-0.07780-0.02894-0.02704-0.03653-0.01566-0.02239-0.03278-0.02074-0.02159-0.03615-0.02132-0.02246MaxY0.023110.021930.016210.015550.016360.033230.010610.013210.014590.017490.007600.013120.01026
U.S.NRCG.S.VissingA-53October20,1997TableNRCQ7.21Max.RackHorizontal Disp.@Top-LC&#xb9;11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedMaximumRackHorizontal Displacements (XandY-(in))Rack,MinX1-0.059482-0.074773-0.197504-0.118305-0.042676.-0.133007-0.377308-0.317109-0.4374010-0.2429011,-0.3821012-0.4511013-0.37550MaxX0.193900.202900.025480.150000.220400.183900.141600.211200.341400.200000.371100.373200.32950MinY-0.27610-0.20820-0.11660-0.14470-0.17710-0.16050-0.07047-0.18530-0.25770-0.15430-0.20210-0.25110-0.28790MaxY0.177100.219400.153000.123600.069500.158500.217000.146500.144500.123300.124900.129600.11450TableNRCQ7.22Max.RackHorizontal Disp.Base-LC&#xb9;11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedMaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.014452-0.015733-0.038144-0.014845-0.014656-0.018007-0.031938-0.113309-0.0373310-0.0329711-0.0654112-0.0815713-0.03724MaxX0.059820.045290.003700.018150.022870.022620.052430.002740.055490.080810.025040.031350.06029MinY-0.15590-0.10070-0.03602-0.03315-0.03013-0.03820-0.01931-0.09398-0.10420-0.06981-0.06771-0.06574-0.08769MaxY0.011500.031210.030540.021770.024010.032200.032620.034850.020300.041400.016110.005410.01894


U.S.NRCG.S.VissingA-53October20,1997TableNRCQ7.21Max.RackHorizontalDisp.@Top-LC&#xb9;11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedMaximumRackHorizontalDisplacements(XandY-(in))Rack,MinX1-0.059482-0.074773-0.197504-0.118305-0.042676.-0.133007-0.377308-0.317109-0.4374010-0.2429011,-0.3821012-0.4511013-0.37550MaxX0.193900.202900.025480.150000.220400.183900.141600.211200.341400.200000.371100.373200.32950MinY-0.27610-0.20820-0.11660-0.14470-0.17710-0.16050-0.07047-0.18530-0.25770-0.15430-0.20210-0.25110-0.28790MaxY0.177100.219400.153000.123600.069500.158500.217000.146500.144500.123300.124900.129600.11450TableNRCQ7.22Max.RackHorizontalDisp.Base-LC&#xb9;11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedMaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.014452-0.015733-0.038144-0.014845-0.014656-0.018007-0.031938-0.113309-0.0373310-0.0329711-0.0654112-0.0815713-0.03724MaxX0.059820.045290.003700.018150.022870.022620.052430.002740.055490.080810.025040.031350.06029MinY-0.15590-0.10070-0.03602-0.03315-0.03013-0.03820-0.01931-0.09398-0.10420-0.06981-0.06771-0.06574-0.08769MaxY0.011500.031210.030540.021770.024010.032200.032620.034850.020300.041400.016110.005410.01894
U.S.NRCG.S.VissingA-54October20,1997TableNRCQ7.23Max.RackHorizontal Disp.@Top-LC&#xb9;12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedMaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.128002-0.027623-0.037874-0.034075-0.100006-0.106107-0.074968-0.122209-0.1364010-0.0771811-0.1844012-0.2211013-0.14960MaxX-0.050990.026080.039150.03728-0.00996-0.006850.102400.120100.167300.093920.186600.158800.11520MinY-0.13840-0.09272-0.05966-0.04433~-0.02910-0.04246-0.04333-0.10590-0.11620-0.10030-0.12090-0.22060-0.16270MaxY0.035720.024210.046530.045760.085730.093430.079830.075940.071650.048850.06964-0.015580.06942TableNRCQ7.24Max.RackHorizontal Disp.Base-LC&#xb9;12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedMaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.010672-0.016133-0.004734-0.008275-0.011206-0.011987-0.004698-0.020379-0.0262910-0.0068611-0.0317312-0.0241313-0.02462MaxX0.000320.013110.005670.009500.003750.003190.070920.016500.018970.040840.019170.036700.01230MinY-0.02250-0.08309-0.01409-0.01946-0.00882-0.01166-0.00503-0.01667-0.02377-0.04963-0.01639-0.06873-0.01833MaxY0.011460.012420.009580.013290.019350.018120.039170.010720.006200.005550.00689-0.001890.00719


U.S.NRCG.S.VissingA-54October20,1997TableNRCQ7.23Max.RackHorizontalDisp.@Top-LC&#xb9;12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedMaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.128002-0.027623-0.037874-0.034075-0.100006-0.106107-0.074968-0.122209-0.1364010-0.0771811-0.1844012-0.2211013-0.14960MaxX-0.050990.026080.039150.03728-0.00996-0.006850.102400.120100.167300.093920.186600.158800.11520MinY-0.13840-0.09272-0.05966-0.04433~-0.02910-0.04246-0.04333-0.10590-0.11620-0.10030-0.12090-0.22060-0.16270MaxY0.035720.024210.046530.045760.085730.093430.079830.075940.071650.048850.06964-0.015580.06942TableNRCQ7.24Max.RackHorizontalDisp.Base-LC&#xb9;12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedMaximumRackHorizontalDisplacements(XandY-(in))RackMinX1-0.010672-0.016133-0.004734-0.008275-0.011206-0.011987-0.004698-0.020379-0.0262910-0.0068611-0.0317312-0.0241313-0.02462MaxX0.000320.013110.005670.009500.003750.003190.070920.016500.018970.040840.019170.036700.01230MinY-0.02250-0.08309-0.01409-0.01946-0.00882-0.01166-0.00503-0.01667-0.02377-0.04963-0.01639-0.06873-0.01833MaxY0.011460.012420.009580.013290.019350.018120.039170.010720.006200.005550.00689-0.001890.00719
U.S.NRCG.S.VissingA-55October20,1997Ifthereisanimpactbetweenarackandareinforced concretespentfuelpool(SFP)wall:a)Providethemagnitude ofthehydrodynamic pressureusedintheSFPconcretewallanalysis.
b)Providethetemperature profileswithmagnitudes usedfortheSFPslabandwallsanalyses.
c)Providethecalculated safetymarginsforthefourwallsandtheslabwithrespecttothebendingandshearstrengthevaluations.
d)IftheANSYScodewasusedfortheanalysesoftheSFPwallsandslab,provideatechnical explanation onhowtheeffectsofreinforcement andconcretecrackingisJ'eflected inthecomputermodelingsimulations.
Submitthecompleteinputincluding theANSYSmodelwithallboundaryandloadingconditions usedfortheSFPanalysesofthewallsandslabona3.5-inchdiskette.
~RienThegapsbetweentheracksandbetweentheracksandthewallsaredesignedsuchthatforanyoftheseismic(OBEandSSE)events,theracksdonotimpactthespentfuelpoolwall.ThisistrueforbothresidentU.S.ToolandDieracksandalsoforthenewATEAracks.Thisisdiscussed inSection3.1,"Scope,"Section3.2.2,"Acceptance Criteria,"
andSection3.5.3.5,"Conclusion,"
oftheLicensing Report.ITheresultsofallthe3-Dwhole-pool multi-rack modelrunsdemonstrated thattherewerenotanyrack-to-pool wallimpacts(noranyrack-to-rack impacts)fromanyoftheanalyses.
Further,asstatedinSection3.5.3.1.14 onpage279oftheLicensing Report,therewerenoimpactsafterthecumulative efFectsof5OBE'splus1SSE.Theminimumracktopoolwallgapsexistingafterthecumulative efFectsof5OBE'splus1SSEwereasfollows:WestWall:EastWall:SouthWall:NorthWall:9.434in2.686in4.516in1.184inTheabovenumbersweretakendirectlyfromTables3.5-137and3.5-138onpage282oftheLicensing Report.
U.S.NRCG.S.VissingA-56October20,1997Indicatewhethertherewererack-to-pool wallandlorrack-to-rackimpacts fromthemulti-rack analysis.
~RyanThegapsbetweentheracksandbetweentheracksandthewallsaredesignedsuchthatforalloftheseismic(OBEandSSE)events,theracksdonotimpactthespentfuelwallnortheracksimpactanyotherracks.ThisistrueforbothresidentU.S.ToolandDieracksandalsoforthenewATEAracks.Thisisdiscussed inSection3.1,"Scope,"Section3.2.2,"Acceptance Criteria,"
andSection3.5.3.5,"Conclusion,"
oftheLicensing Report.Insummary,therewereneitheranyrack-to-rack noranyrack-to-pool wallimpactsfromanyoftheanalyses.
Further,asstatedinSection3.5.3.1.14 onpage279oftheLicensing Report,therewerenoimpactsafterthecumulative e6ectsof5OBE'splus1SSE.
U.S.NRCG.S.VissingA-57October20,1997SubmittheANSYSinputdataona3.5-inchdiskettefortheweldanalysis, thefuellrackirnpact analysisandtherackthermalstressanalysisasmentionedin theReference.
~Rq~n~g:Thelistingofthecomputerinputdataisprovidedona3.5-inchcomputerdisketteinASCIIformat.TheseinputarefortheANSYSVersion5.2.Thesedataareproprietary.
Theweldstressanalysisisdiscussed inSection3.5.3.1.3.
Theweldstressanalysiswasperformed usingclassical equations.
ThecomputerprogramANSYSwasnotused.TheDiskFilesInclude:DiskANSYSInputFiles,FileFUELLOAD.
TXTFuelRackImpactModelFileS3DPR8TO.
TXTRackThermalStressModel U.S.NRCG.S.VissingA-58October20,1997Discussthequalityassurance andinspection programstoprecludeinstallation ofanyirregular ordistorted rackstructure andtoconfirmtheactualfiielrackgapconfigurations withrespecttothegapsassumedin theANSYSanalysesafterinstallation oftheracks.ggg~n,:TheQualityAssurance procedures arediscussed inSection7.0oftheLicensing Report.Section7.2.13discusses theprocedures fortheHandling, Storage,andShipping.
Section7.2.14discusses theprocedures forInspection, Tests,andOperating Status.Thissectionalsodiscusses installation andtesting.Thefollowing QA/QCactionswillassurethatthefuelracksareproperlyfabricated andinstalled:
Dimensional inspections oftheracks,byATEAQualitypersonnel, willoccurduringtherackfabrication.
ASourceInspection willbeperformed byFTIQConthefuelstoragerackspriortoshipmentfromATEAinaccordance withaninspection planpreparedbyFTI.Thisinspection willverifythattheracksmeetdrawingrequirements, andwillcheckforwarpageanddistortion.
a)Theresultsoftheinspections willbedocumented onaninspection report.b)Non-conforming conditions willbepresented toATEAforcorrective action,inaccordance withtheATEAQAProgram.FTIwillfollow-up onthedisposition oftheATEAnon-conformance rep'ortsand,ifrequired, reinspect thefuelrackassemblies.
RGBQAwillperformsurveillance oftheinspection andpreparation forshipmentactivities toprovideadditional assurance thattheracksarefabricated asrequired.
2.Following shipmenttoGinnaandpriortoinstalling thefuelracks,areceiptinspection willbeperformed tocheckforshippingdamage.3.Theinstallation ofthefuelrackswillbeinaccordance withtheRG&E-approved FTISafety-Related QAProgram.ATraveler/Installation Procedure andinstallation drawingswillbeusedtoinstalltheracks.TheTraveler/Procedure willprovidedetailedinstruction tosequencetheinstallation andprovidedocumentation (measurements, verifications, sign-offs forstepcompletion, etc.)toshowthattheracksareproperlyinstalled.
TheTraveler/Procedure willincludein-process QCHOLDpointstoverifycriticalinstallation stepsandmeasurements andallowforRGBHOLDpoints.Theseprocedures willbepreparedbythecognizant FTIEngineering organization, inaccordance withtheFTIQAProgram,approvedbyFTIQA,andprovidedtoRGEforconcurrence.
5.Personnel willbetrainedandcertified, asrequiredbytheFTIQAProgram.The


U.S.NRCG.S.VissingA-55October20,1997Ifthereisanimpactbetweenarackandareinforcedconcretespentfuelpool(SFP)wall:a)ProvidethemagnitudeofthehydrodynamicpressureusedintheSFPconcretewallanalysis.b)ProvidethetemperatureprofileswithmagnitudesusedfortheSFPslabandwallsanalyses.c)Providethecalculatedsafetymarginsforthefourwallsandtheslabwithrespecttothebendingandshearstrengthevaluations.d)IftheANSYScodewasusedfortheanalysesoftheSFPwallsandslab,provideatechnicalexplanationonhowtheeffectsofreinforcementandconcretecrackingisJ'eflectedinthecomputermodelingsimulations.SubmitthecompleteinputincludingtheANSYSmodelwithallboundaryandloadingconditionsusedfortheSFPanalysesofthewallsandslabona3.5-inchdiskette.~RienThegapsbetweentheracksandbetweentheracksandthewallsaredesignedsuchthatforanyoftheseismic(OBEandSSE)events,theracksdonotimpactthespentfuelpoolwall.ThisistrueforbothresidentU.S.ToolandDieracksandalsoforthenewATEAracks.ThisisdiscussedinSection3.1,"Scope,"Section3.2.2,"AcceptanceCriteria,"andSection3.5.3.5,"Conclusion,"oftheLicensingReport.ITheresultsofallthe3-Dwhole-poolmulti-rackmodelrunsdemonstratedthattherewerenotanyrack-to-poolwallimpacts(noranyrack-to-rackimpacts)fromanyoftheanalyses.Further,asstatedinSection3.5.3.1.14onpage279oftheLicensingReport,therewerenoimpactsafterthecumulativeefFectsof5OBE'splus1SSE.TheminimumracktopoolwallgapsexistingafterthecumulativeefFectsof5OBE'splus1SSEwereasfollows:WestWall:EastWall:SouthWall:NorthWall:9.434in2.686in4.516in1.184inTheabovenumbersweretakendirectlyfromTables3.5-137and3.5-138onpage282oftheLicensingReport.
U.S.NRCG.S.VissingA-59October20,19975.Personnel willbetrainedandcertified, asrequiredbytheFTIQAProgram.Theinstallation crewwillreceivemock-uptraining, pre-jobbriefings, andothertask-specific
U.S.NRCG.S.VissingA-56October20,1997Indicatewhethertherewererack-to-poolwallandlorrack-to-rackimpactsfromthemulti-rackanalysis.~RyanThegapsbetweentheracksandbetweentheracksandthewallsaredesignedsuchthatforalloftheseismic(OBEandSSE)events,theracksdonotimpactthespentfuelwallnortheracksimpactanyotherracks.ThisistrueforbothresidentU.S.ToolandDieracksandalsoforthenewATEAracks.ThisisdiscussedinSection3.1,"Scope,"Section3.2.2,"AcceptanceCriteria,"andSection3.5.3.5,"Conclusion,"oftheLicensingReport.Insummary,therewereneitheranyrack-to-racknoranyrack-to-poolwallimpactsfromanyoftheanalyses.Further,asstatedinSection3.5.3.1.14onpage279oftheLicensingReport,therewerenoimpactsafterthecumulativee6ectsof5OBE'splus1SSE.
: training, asrequiredtosupportthetask.6.FTIQA/QCwillperformafinalinspection anddetailedreviewoftheinstallation procedure andsupporting documentation atthecompletion ofthetasktoverifythattheworkwasdoneinaccordance withtheapplicable procedure(s) andtheFTIQAProgram.In-process andfinalinspection willbeperformed inaccordance withapprovedinstallation procedures anddrawings.
U.S.NRCG.S.VissingA-57October20,1997SubmittheANSYSinputdataona3.5-inchdiskettefortheweldanalysis,thefuellrackirnpactanalysisandtherackthermalstressanalysisasmentionedintheReference.~Rq~n~g:Thelistingofthecomputerinputdataisprovidedona3.5-inchcomputerdisketteinASCIIformat.TheseinputarefortheANSYSVersion5.2.Thesedataareproprietary.TheweldstressanalysisisdiscussedinSection3.5.3.1.3.Theweldstressanalysiswasperformedusingclassicalequations.ThecomputerprogramANSYSwasnotused.TheDiskFilesInclude:DiskANSYSInputFiles,FileFUELLOAD.TXTFuelRackImpactModelFileS3DPR8TO.TXTRackThermalStressModel U.S.NRCG.S.VissingA-58October20,1997DiscussthequalityassuranceandinspectionprogramstoprecludeinstallationofanyirregularordistortedrackstructureandtoconfirmtheactualfiielrackgapconfigurationswithrespecttothegapsassumedintheANSYSanalysesafterinstallationoftheracks.ggg~n,:TheQualityAssuranceproceduresarediscussedinSection7.0oftheLicensingReport.Section7.2.13discussestheproceduresfortheHandling,Storage,andShipping.Section7.2.14discussestheproceduresforInspection,Tests,andOperatingStatus.Thissectionalsodiscussesinstallationandtesting.ThefollowingQA/QCactionswillassurethatthefuelracksareproperlyfabricatedandinstalled:Dimensionalinspectionsoftheracks,byATEAQualitypersonnel,willoccurduringtherackfabrication.ASourceInspectionwillbeperformedbyFTIQConthefuelstoragerackspriortoshipmentfromATEAinaccordancewithaninspectionplanpreparedbyFTI.Thisinspectionwillverifythattheracksmeetdrawingrequirements,andwillcheckforwarpageanddistortion.a)Theresultsoftheinspectionswillbedocumentedonaninspectionreport.b)Non-conformingconditionswillbepresentedtoATEAforcorrectiveaction,inaccordancewiththeATEAQAProgram.FTIwillfollow-uponthedispositionoftheATEAnon-conformancerep'ortsand,ifrequired,reinspectthefuelrackassemblies.RGBQAwillperformsurveillanceoftheinspectionandpreparationforshipmentactivitiestoprovideadditionalassurancethattheracksarefabricatedasrequired.2.FollowingshipmenttoGinnaandpriortoinstallingthefuelracks,areceiptinspectionwillbeperformedtocheckforshippingdamage.3.TheinstallationofthefuelrackswillbeinaccordancewiththeRG&E-approvedFTISafety-RelatedQAProgram.ATraveler/InstallationProcedureandinstallationdrawingswillbeusedtoinstalltheracks.TheTraveler/Procedurewillprovidedetailedinstructiontosequencetheinstallationandprovidedocumentation(measurements,verifications,sign-offsforstepcompletion,etc.)toshowthattheracksareproperlyinstalled.TheTraveler/Procedurewillincludein-processQCHOLDpointstoverifycriticalinstallationstepsandmeasurementsandallowforRGBHOLDpoints.TheseprocedureswillbepreparedbythecognizantFTIEngineeringorganization,inaccordancewiththeFTIQAProgram,approvedbyFTIQA,andprovidedtoRGEforconcurrence.5.Personnelwillbetrainedandcertified,asrequiredbytheFTIQAProgram.The
Lackofdistortion andgapconfiguration willbearequirement oftheinstallation process.Specificdetailsthataddressdistortion, irregularities, andgapconfiguration inaccordance withtheStructural Evaluation intheLicensing Reportwillbedeveloped andapprovedpriortoinstallation oftheracks.8.Allinstallation activities willbesubjecttooversight andassessment byRGBQA,inadditiontoFTIoversight activity.  


U.S.NRCG.S.VissingA-59October20,19975.Personnelwillbetrainedandcertified,asrequiredbytheFTIQAProgram.Theinstallationcrewwillreceivemock-uptraining,pre-jobbriefings,andothertask-specifictraining,asrequiredtosupportthetask.6.FTIQA/QCwillperformafinalinspectionanddetailedreviewoftheinstallationprocedureandsupportingdocumentationatthecompletionofthetasktoverifythattheworkwasdoneinaccordancewiththeapplicableprocedure(s)andtheFTIQAProgram.In-processandfinalinspectionwillbeperformedinaccordancewithapprovedinstallationproceduresanddrawings.Lackofdistortionandgapconfigurationwillbearequirementoftheinstallationprocess.Specificdetailsthataddressdistortion,irregularities,andgapconfigurationinaccordancewiththeStructuralEvaluationintheLicensingReportwillbedevelopedandapprovedpriortoinstallationoftheracks.8.AllinstallationactivitieswillbesubjecttooversightandassessmentbyRGBQA,inadditiontoFTIoversightactivity.  
U.S.NRCG.S.VissingA-60October20,1997Providethelocations oftheleakchasesystemswithrespecttothelocations oftheracksandpedestals.
Reels/TheATEADrawingdescribed belowprovidesthelocationofleakchasesandalsothelocationofracksupportpads.Thereference drawingprovidessupportpadlocations forboththeresidentspentfuelstorageracksandthenewATEAracks.ATEADrawingNo.SA20.001.00000, Sheet2of2,RevisionD(Framatome Technology DrawingNo.02-1186074F-03).
Title,"Rochester Gas2ElectricCo.,R.E.GinnaNuclearPowerStationNo1,GeneralArrangement SupportPadsLocation."
U.S.NRCG.S.VissingA-61October20,1997Describethemethodofleakdetection intheSFPpoolstnIcture.
Ho>vareleaksmonitored?
Isthereanyexistingleakage?~R~nTheleakdetection systemconsistsofagridofrectangular indentations intheconcretebehindthesteelliner,locatedinthefioorofthespentfuelpitandrefueling canal.Theywereformedduringtheinitialconstruction ofthepit.Thegridisarrangedsuchthatanyleakageischanneled toacollection chamber,whichisperiodically checkedanddrainedofanycollected boratedwater,whichundergoes treatment.
Therehasbeenahistoryofleakagefromthespentfuelpit/refueling canalarea,andRG&Ebelievesithasbeendetermined thatthesourceoftheleakageisintherefueling canal.RG&Eistakingmeasurestostopthisleakageandwillmonitortheleakageagainatournextscheduled refueling outage(therefueling canalisnormallyemptyduringnormalplantoperations.)


U.S.NRCG.S.VissingA-60October20,1997Providethelocationsoftheleakchasesystemswithrespecttothelocationsoftheracksandpedestals.Reels/TheATEADrawingdescribedbelowprovidesthelocationofleakchasesandalsothelocationofracksupportpads.ThereferencedrawingprovidessupportpadlocationsforboththeresidentspentfuelstorageracksandthenewATEAracks.ATEADrawingNo.SA20.001.00000,Sheet2of2,RevisionD(FramatomeTechnologyDrawingNo.02-1186074F-03).Title,"RochesterGas2ElectricCo.,R.E.GinnaNuclearPowerStationNo1,GeneralArrangementSupportPadsLocation."
U.S.NRCG.S.VissingA-62October20,1997utin14Indicatewhetherornotyouareplanningtoplaceanoverheadplatformontherackspermanently orastemporarystorage duringtheinstallation oftheracks.~RLnne:Thereisnoplantoplaceanoverheadplatformontherackseitherpermanently orastemporary storageduringrackinstallation.  
U.S.NRCG.S.VissingA-61October20,1997DescribethemethodofleakdetectionintheSFPpoolstnIcture.Ho>vareleaksmonitored?Isthereanyexistingleakage?~R~nTheleakdetectionsystemconsistsofagridofrectangularindentationsintheconcretebehindthesteelliner,locatedinthefioorofthespentfuelpitandrefuelingcanal.Theywereformedduringtheinitialconstructionofthepit.Thegridisarrangedsuchthatanyleakageischanneledtoacollectionchamber,whichisperiodicallycheckedanddrainedofanycollectedboratedwater,whichundergoestreatment.Therehasbeenahistoryofleakagefromthespentfuelpit/refuelingcanalarea,andRG&Ebelievesithasbeendeterminedthatthesourceoftheleakageisintherefuelingcanal.RG&Eistakingmeasurestostopthisleakageandwillmonitortheleakageagainatournextscheduledrefuelingoutage(therefuelingcanalisnormallyemptyduringnormalplantoperations.)


U.S.NRCG.S.VissingA-62October20,1997utin14Indicatewhetherornotyouareplanningtoplaceanoverheadplatformontherackspermanentlyorastemporarystorageduringtheinstallationoftheracks.~RLnne:Thereisnoplantoplaceanoverheadplatformontherackseitherpermanentlyorastemporarystorageduringrackinstallation.  
n0U.S.NRCG.S.VissingA-63October20,1997'0'astherackdesigncontrolled mainlybytheresultsofthesingle-rack analysis?
Ifyes,wasthereanyphysicalrackdesignchangenecessitated bytheresultsofthemulti-rack analysis?
Asapplicable, describethechange(s).


n0U.S.NRCG.S.VissingA-63October20,1997'0'astherackdesigncontrolledmainlybytheresultsofthesingle-rackanalysis?Ifyes,wasthereanyphysicalrackdesignchangenecessitatedbytheresultsofthemulti-rackanalysis?Asapplicable,describethechange(s).Response:The3-Dsingle-rackdynamicanalysismodeland3-Dwhole-poolmulti-rackdynamicanalysismodelsandtheirintendedusearedescribedinSection3.5(page72oftheLicensingReport)andSection3.5.2.3(pages106to109oftheLicensingReport).Asdescribed,the3-Dsingle-rackdynamicmathematicalmodelisusedforvarioussensitivitystudies.Theloads,displacements,andassociatedstressesareobtainedfromthe3-Dwhole-poolmulti-rackdynamicmathematicalmodel.Thelengthandlocationoftabs,theweldsize,theweldsizeofsupportlegs,etc.,aredesignedfromtheloadingsandstressesfromthe3-Dwhole-poolmulti-rackdynamicanalysis.Thegapsbetweentheracksandthegapsbetweentherackandthewallaredesignedtoprecludeanyimpactfromtheresultsofthe3-Dwhole-poolmulti-rackdynamicanalysis.Thesingle-rackmodelwasusedforparametricstudies.Thewhole-poolmulti-rackmodelwasusedfortheloadsanddisplacements.Therefore,therackdesignwasnotcontrolledbytheresultsofthesingle-rackanalysis.Therewereseveralitemsthatweremodifiedbasedontheresultsofthemulti-rackanalysis.Thoseitemsareasfollows:a)Rackbaseplateweldswereadjustedtoensureadequatedesignmargins.b)Rackinter-connectingtabsandassociatedweldswereadjustedtoensureadequatedesignmargins.
===Response===
0 U.S.NRCG.S.VissingA-64October20,1997Describetheplanandprocedureforthepost-operatingbasisearthquakeinspectionoffuelrackgapconfigurations.~R~Lnn,RG&Ehasseismicinstrumentationlocatedinthesub-basementoftheIntermediateBuilding.Thatinstrumentationwillactivateandrecordvariousdataoftheevent,thepurposeofwhichistodetermineifanOperatingBasisEarthquakehasoccurred.ThatdataisprocessedbywayoftheTechnicalEngineeringGuidelinesTEG2.0,"ResponseSpectrumCalculation,"andTEG2.1,"SSEandOBEExceedanceDetermination".Uponprocessingofthedata,andifanOperatingBaseEarthquakehadoccurred,adetailedstructuralengineeringinspectionwouldbeconductedtodetermineifanystructuraldamagedidoccur.Althoughinspectionofthegapsisnotspecificallyidentifiedasarequirementofthisinspection,thespentfuelpitandtheconditionofthe'spentfuelracks/fuelassemblieswouldreceiveclosescrutiny.TheseinspectionswouldbeperformedbyProfessionalEngineersexperiencedinseismicanalyses/designandalsotrainedasSeismicCapabilityEngineers,perrequirementsoftheSeismicQualificationUser'sGroup(SQUG)GenericImplementationProgram.}}
The3-Dsingle-rack dynamicanalysismodeland3-Dwhole-pool multi-rack dynamicanalysismodelsandtheirintendedusearedescribed inSection3.5(page72oftheLicensing Report)andSection3.5.2.3(pages106to109oftheLicensing Report).Asdescribed, the3-Dsingle-rack dynamicmathematical modelisusedforvarioussensitivity studies.Theloads,displacements, andassociated stressesareobtainedfromthe3-Dwhole-pool multi-rack dynamicmathematical model.Thelengthandlocationoftabs,theweldsize,theweldsizeofsupportlegs,etc.,aredesignedfromtheloadingsandstressesfromthe3-Dwhole-pool multi-rack dynamicanalysis.
Thegapsbetweentheracksandthegapsbetweentherackandthewallaredesignedtoprecludeanyimpactfromtheresultsofthe3-Dwhole-pool multi-rack dynamicanalysis.
Thesingle-rack modelwasusedforparametric studies.Thewhole-pool multi-rack modelwasusedfortheloadsanddisplacements.
Therefore, therackdesignwasnotcontrolled bytheresultsofthesingle-rack analysis.
Therewereseveralitemsthatweremodifiedbasedontheresultsofthemulti-rack analysis.
Thoseitemsareasfollows:a)Rackbaseplateweldswereadjustedtoensureadequatedesignmargins.b)Rackinter-connecting tabsandassociated weldswereadjustedtoensureadequatedesignmargins.
0 U.S.NRCG.S.VissingA-64October20,1997Describetheplanandprocedure forthepost-operating basisearthquake inspection offuelrackgapconfigurations.
~R~Lnn,RG&Ehasseismicinstrumentation locatedinthesub-basement oftheIntermediate Building.
Thatinstrumentation willactivateandrecordvariousdataoftheevent,thepurposeofwhichistodetermine ifanOperating BasisEarthquake hasoccurred.
Thatdataisprocessed bywayoftheTechnical Engineering Guidelines TEG2.0,"Response SpectrumCalculation,"
andTEG2.1,"SSEandOBEExceedance Determination".
Uponprocessing ofthedata,andifanOperating BaseEarthquake hadoccurred, adetailedstructural engineering inspection wouldbeconducted todetermine ifanystructural damagedidoccur.Althoughinspection ofthegapsisnotspecifically identified asarequirement ofthisinspection, thespentfuelpitandthecondition ofthe'spentfuelracks/fuel assemblies wouldreceiveclosescrutiny.
Theseinspections wouldbeperformed byProfessional Engineers experienced inseismicanalyses/design andalsotrainedasSeismicCapability Engineers, perrequirements oftheSeismicQualification User'sGroup(SQUG)GenericImplementation Program.}}

Revision as of 10:02, 29 June 2018

Forwards non-proprietary & Proprietary Response to 970905 RAI Re Structural Evaluation of Proposed Mod of Plant Spent Fuel Storage Pool,Dtd 970331.Proprietary Response Withheld, Per 10CFR2.790
ML17309A622
Person / Time
Site: Ginna Constellation icon.png
Issue date: 10/20/1997
From: MECREDY R C
ROCHESTER GAS & ELECTRIC CORP.
To: VISSING G S
NRC (Affiliation Not Assigned), NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML17264B076 List:
References
NUDOCS 9710230092
Download: ML17309A622 (101)


Text

CATEGORY1.REUULATQZNFQRMATZON DZSTRZBUTZON

'+OEM(RZDS)ACCESSION NBR:9710230092 DOC.DATE:

97/10/20'NOTARIZED:

YESFACIL:50-244 RobertEmmetGinnaNuclearyPlant,Un1t1<Rochester AUTH.NAMEAUTHORAFFILIATION MECREDY,R.C.

Rochester Gas6ElectricCorp.RECIP.NAME RECIPIENT AFFILIATION, VISSINGFG.S.

DOCKET'G05000244+~PC'

SUBJECT:

Forwardsnon-proprietary

&proprietary responseto970905RAIrestructural evaluation, ofproposedmodofplantspentfuelstoragepool,dtd970331.Proprietary responsewithheld, Cper10CFR2.790.

ADISTRIBUTION CODE:AP01DCOPIESRECEIVED:LTR ENCLSIZE:TITLE:Proprietary ReviewDistribution

-PreOperating License6Operating RNOTES:License Expdateinaccordance withlOCFR2,2.109(9/19/72).

05000244ERECIPIENT IDCODE/NAME PDl-1LAVISSINGFG.COPIESLTTRENCL1111RECIPIENT IDCODE/NAME PD1-1PDCOPIESLTTRENCL110EXTERNAL:

NRCPDR11OGC/HDS31)43oaf10D0NOTETOALL"RIDS"RECIPIENTSz PLEASEHELPUSTOREDUCEWASTE.TOHAVEYOURNAMEORORGANIZATION REMOVEDFROMDISTRIBUTION LISTSORREDUCETHENUMBEROFCOPIESRECEIVEDBYYOUORYOURORGANIZATION, CONTACTTHEDOCUMENTCONTROLDESK(DCD)ONEXTENSION 415-2083TOTALNUMBEROFCOPIESREQUIRED:

LTTR6ENCL sI+tN ANnROCHESTER GASANDELECTRICCORPORATION

~89EASTAVENUE, ROCHESTER, N.YId6rI9-000I AREACODE716546-2~00ROBERTC.MECREDYVicePresident NvcteorOperations October201997U.S.NuclearRegulatory Commission DocumentControlDeskAttn:GuyS.VissingProjectDirectorate I-1Washington, D.C.20555

Subject:

ResponsetoRequestforAdditional Information

-SpentFuelPool(SFP)Modifications

-Structural DesignConsiderations (TACNo.M95759)R.E.GinnaNuclearPowerPlantDocketNo.50-244Ref.(1):LetterfromG.S.Vissing(NRC)toR.C.Mecredy(RG&E),

Subject:

RequestforAdditional Information

-SpentFuelPoolModifications

-Structural DesignConsiderations (TACNo.M95759),datedSeptember 5,1997.

DearMr.Vissing:

ByReference 1,theNRCstaffrequested additional information regarding theproposedModification oftheGinnaSpentFuelStoragePooldatedMarch31,1997.Thequestions wererelatedtotheStructural Evaluation oftheproposedModification.

Enclosedareresponses tothequestions submitted bytheNRCstaffwz.careph'reprovidedintwoseparatedocuments:

aNon-Proprietary andaFRAMATOME Proprietary.

TheNon-Proprietary documentcontains'nsalltheresponses butomitsthefollowing information whichisconsidered FRAMATOME Proprietary:

(a)selecteddatainresponsetoNRCQuestionNo.4.b,and(b)electronic fileswithinputdataotheANSYScodeaslistedinresponses toNRCQuestions No.2.eand10.ThedocumententitledFRAMATOME Proprietary isaduplicate ofNon-Proprietary versionexceptthatproprietary datahasbeenaddedtothatdocument.

TheFRAMATOME Proprietary datainthatdocument97102300'tt2

'tt71020PDRADQCK05000244P'DR Mr.G.S.VissingOctober20,1997issupported byanaffidavit signedbyFRAMATOME TECHNOLOGIES, INC..Accordingly, itisrespectfully requested thatthedocumententitled"FRAMATOME Proprietary" bewithheldfrompublicdisclosure inaccordance with10CFR2.790oftheCommission's regulations.

Verrulyyours,RobertC.MecredyJPOc:Mr.GuyS.Vissing(MailStop14B2)SeniorProjectManagerProjectDirectorate I-1Washington, D.C.20555U.S.NuclearRegulatory Commission RegionI475Allendale RoadKingofPrussia,PA19406GinnaSeniorResidentInspector Mr.PaulD.EddyStateofNewYorkDepartment ofPublicService3EmpireStatePlaza,TenthFloorAlbany,NY12223-1350 A.MynameisJamesH.Taylor.IamManagerofLicensing ServicesforFramatome.

Technologies, Inc.(FTQ.Framatome CogemaFuelsisadministratively responsible toFramatome Technologies, Inc.Therefore, Iamauthorized toexecutethisAffidavit.

B.IamfamiliarwiththecriteriaappliedbyFTItodetermine whethercertaininformation ofFTIisproprietary andIamfamiliarwiththeprocedures established withinFTItoensuretheproperapplication ofthesecriteria.

C.Indetermining whetheranFTIdocumentistobeclassified asproprietary information, aninitialdetermination ismadebytheUnitManager,whoisresponsible fororiginating thedocument, astowhetheritfallswithinthecriteriasetforthinParagraph Dhereof.Iftheinformation fallswithinanyoneofthesecriteria, itisclassified asproprietary bytheoriginating UnitManager.Thisinitialdetermination isreviewedbythecognizant SectionManager.Ifthedocumentisdesignated asproprietary, itisreviewedagainbyLicensing personnel andothermanagement withinFTIasdesignated bytheManagerofLicensing Servicestoassurethattheregulatory requirements of10CFRSection2.790aremet.D.Thefollowing information isprovidedtodemonstrate thattheprovisions of10CFRSection2.790oftheCommission's regulations havebeenconsidered:

Theinformation hasbeenheldinconfidence byFTI.Copiesofthedocumentareclearlyidentified asproprietary.

Inaddition, wheneverFTItransmits theinformation toacustomer, customer's agent,potential customerorregulatory agency,thetransmittal requeststherecipient toholdtheinformation asproprietary.

Also,inordertostrictlylimitanypotential oractualcustomer's useofproprietary information, thesubstance ofthefollowing provision isincludedinallagreements enteredintobyFTI,andanequivalent versionoftheproprietary provision isincludedinallofFTI'sproposals:

~Q+~~~~(Cont'd.)

"Anyproprietary information concerning Company's oritsSupplier's productsormanufacturing processes whichissodesignated byCompanyoritsSuppliers anddisclosed toPurchaser incidenttotheperformance ofsuchcontractshallremainthepropertyofCompanyoritsSuppliers andisdisclosed inconfidence, andPurchaser shallnotpublishorotherwise discloseittootherswithoutthewrittenapprovalofCompany,andnorights,impliedorotherwise, aregrantedtoproduceorhaveproducedanyproductsortopracticeorcausetobepracticed anymanufacturing processes coveredthereby,Notwithstanding theabove,Purchaser mayprovidetheNRCoranyotherregulatory agencywithanysuchproprietary information astheNRCorsuchotheragencymayrequire;provided, however,thatPurchaser shallfirstgiveCompanywrittennoticeofsuchproposeddisclosure andCompanyshallhavetherighttoamendsuchproprietary information soastomakeitnon-proprietary.

IntheeventthatCompanycannotamendsuchproprietary information, Purchaser shall,priortodisclosing suchinformation, useitsbesteffortstoobtainacommitment fromNRCorsuchotheragencytohavesuchinformation withheldfrompublicinspection.

Companyshallbegiventherighttoparticipate inpursuitofsuchconfidential treatment."

~~~~I~'C(Cont'd.)

Thefollowing criteriaarecustomarily appliedbyFTIinarationaldecisionprocesstodetermine whethertheinformation shouldbeclassified asproprietary.

Information maybeclassified asproprietary ifoneormoreofthefollowing criteriaaremet:a.Information revealscostorpriceinformation, commercial strategies, production capabilities, orbudgetlevelsofFTI,itscustomers orsuppliers.

b.Theinformation revealsdataormaterialconcerning FTIresearchordevelopment plansorprogramsofpresentorpotential competitive advantage toFTI.c.Theuseoftheinformation byacompetitor woulddecreasehisexpenditures, intimeorresources, indesigning, producing ormarketing asimilarproduct.d.Theinformation consistsoftestdataorothersimilardataconcerning aprocess,methodorcomponent, theapplication ofwhichresultsinacompetitive advantage toFTI.e.Theinformation revealsspecialaspectsofaprocess,method,component orthelike,theexclusive useofwhichresultsinacompetitive advantage toFTI.f.Theinformation containsideasforwhichpatentprotection maybesought.Thedocument(s) listedonExhibit"A",whichisattachedheretoandmadeaparthereof,hasbeenevaluated inaccordance withnormalFTIprocedures withrespecttoclassification andhasbeenfoundtocontaininformation whichfallswithinoneor

~~~0~(Cont'd.)

moreofthecriteriaenumerated above.Exhibit"B",whichisattachedheretoandmadeaparthereof,specifically identifies thecriteriaapplicable tothedocument(s) listedinExhibit"A".Thedocument(s) listedinExhibit"A",whichhasbeenmadeavailable totheUnitedStatesNuclearRegulatory Commission wasmadeavailable inconfidence witharequestthatthedocument(s) andtheinformation contained thereinbewithheldfrompublicdisclosure.

(iv)Theinformation isnotavailable intheopenliterature andtothebestofourknowledge isnotknownbyCombustion Engineering, EXXON,GeneralElectric, Westinghouse orothercurrentorpotential domesticorforeigncompetitors ofFramatome Technologies, Inc.(v)Specificinformation withregardtowhetherpublicdisclosure oftheinformation islikelytocauseharmtothecompetitive positionofFTI,takingintoaccountthevalueoftheinformation toFTI;theamountofeffortormoneyexpendedbyFTIdeveloping theinformation; andtheeaseordifficulty withwhichtheinformation couldbeproperlyduplicated byothersisgiveninExhibit"B".E.Ihavepersonally reviewedthedocument(s) listedonExhibit"A"andhavefoundthatitisconsidered proprietary byFTIbecauseitcontainsinformation whichfallswithinoneormoreofthecriteria enumerated inParagraph D,anditisinformation whichiscustomarily heldinconfidence andprotected asproprietary information byFTI.Thisreportcomprises information (Cont'd.)

utilizedbyFTIinitsbusinesswhichaffordFTIanopportunity toobtainacompetitive advantage overthosewhomaywishto'knoworusetheinformation contained inthedocument(s).

JAMESH.TAYLORStateofVirginia)

CityofLynchburg)

SS.Lynchburg JamesH.Taylor,beingdulysworn,onhisoathdeposesandsaysthatheisthepersonwhosubscribed hisnametotheforegoing statement, andthatthemattersandfactssetforthinthestatement aretrue.JAMESH.TAYLRIL'f"Subscribed andswornbeforemethis++dayofgal1997.NotaryPublicinandfortheCityofLynchburg, StateofVirginia.

MyCommission Expires>8lI99'7

.)l'/gIifrffrJh'I 97i0230092 U.S.NRCG.S.VissingA-1October20,1997TnriinRnRochester Gas8'cElectricGinnaspentfuelstoragererackstructural qualification isperformed usingstateofthearttechniques.

Toeasethelicensing process,themajorityofanalytical methods,computerprogramuseandverification arethesameasthemethodsusedinthecurrentlicensing documents.

Theindividual itemsarediscussed duringtheresponseprocess.Theidealization oftherackusingbeamrepresentation, theconsideration ofhydrodynamic masses,andtheseismicanalysismethodsarethesameas1985licensing basis(References 3.23and3.24oftheLicensing Report).ThecomputerprogramANSYS,version5.2,wasusedforthemajorityofstructural analysiscalculations.

Since1970,thisprogramhasbeenusedextensively inthenuclear,chemical,

building, andelectronic industries throughout theworld.Extensive useledtoahighdegreeofreliability inobtainedcomputerresults,andhasbeenextensively benchmarked byindustry.

ANSYShasbeenandcontinues tobeverifiedbyalargevolumeofusers.AtFramatome CogemaFuels,itisbenchmarked tohandcalculations andtoverification problemsprovidedbyits"developer, SwansonAnalysisSystems,Inc.ANSYShasbeenusedinmanyof10CFR50licensing analysesincluding seismic,timehistory,andgappedstructural analyses.

AtFramatome CogemaFuelsthestructural analysispersonnel hasextensive experience inthefiniteelementmethodsandanalysistosolvecomplexproblems.

Thisexperience andexpertise servestominimizemodelinginstabilities typically associated withlargenon-linear dynamicproblems.

ForthemodelsandanalysesreportedintheGinnaspentfuelstorageracklicensing report,noinstabilities existed.Thebehaviorofspentfuelstorageracksiscomplex,andsomesimplification oftheactualbehaviorisappropriate whencreatingamathematical modelforuseinafiniteelementanalysis.

Throughout thestructural analysistheresultsarecheckedagainstthesimplified handcalculation methods.Inaddition, theresultshavebeencomparedagainstrecentlyNRC-licensed spentfuelstoragerackstoverifythevalidityoftheanalysisresultsandtoconfirmthedesignoftheracks.Conservative structural analysismethodsareusedthroughout thestructural analysis.

Conservatisms include:enveloping seismictimehistories,

'additional safetyfactorsontheseismictimehistories, safetyfactorsonloadsanddisplacements, conservative frictionfactors,andmaximumfuelweightandloadingintherack,assumedconcurrent impactofallfuelassemblies.

Theresultssummarized inSection3.5.3.3showlargedesignmarginsforallrackhardwareperASME,AISCandACIcodeallowables.

Additional marginsexistwhichareintegraltothecodesthemselves.

Theresulting marginsshowtherobustness oftheGinnaspentfuelstoragesystemdesign.

U.S.NRCG.S.VissingA-2October20,1997~Rf~r~n~:

(continues sequentially thereference numbersintheLicensing Report)3.44Application forAmendment toFacilityOperating License,RevisedSpentFuelPoolStorageRequirements, Rochester GasandElectricCorporation, R.E.GinnaNuclearPowerPlant,DocketNo.50-244,LetterdatedMarch31,1997,fromRGBtoUSNRC.3.45Scavuzzo-1979, "DynamicFluidStructure CouplingofRectangular ModulesinRectangular Pools,"R.J.Scavuzzo, etal.,ASMEPublication PVP-39,1979,pp.77-87.3.46Radke-1978, "Experimental StudyofImmersedRectangular SolidsinRectangular Cavities,"

EdwardF.Radke,ProjectforMasterofScienceDegree,TheUniversity ofAkron,Ohio,1978.

U.S.NRCG.S.VissingA-3October20,19978'ithrespecttothesinglesafeshutdownearthquake (SSE)artificial timehistoryusedforstressanalysisasmentioned onpage75oftheReference, providethefollowing:

a)Acomparison betweentheresponsespectrum(RS)oftheartificial timehistoryandthelicensing basisdesignRSinthefinalsafetyanalysisreport(FSAR).b)Demonstrate theadequacyoftheartificial timehistoryincluding ademonstration oftheextentofconformance toatargetpowerspectraldensity(PSD)functionoftheartificial tiInehistoryinaccordance withguidanceprovidedinStandardReviewPlan(SRP)Section3.7.I.c)IftheRSoftheartificial tiInehistorydoesnotenvelopethelicensing basisdesignRSintheFSAR,ivhatisthebasisforusingitintheanalysis?

~R~~nAtotaloffoursets(X,Y,andZcomponents) oftimehistories weregenerated, suchthattheaverageofallfourtimehistories, whenmultiplied byafactorof1.10,enveloped thedesignresponsespectrum.

Asingletimehistorysetwasthenchosen(SSE1forSSEconditions) andanadditional factorof1.20wasappliedtotheresulting loadsanddisplacements toenvelopetheloadsanddisplacements fromallfourtimehistorysets.a)Acomparison ofthefuelpoolsafeshutdownearthquake (SSE)responsespectraandtheresponsespectragenerated fromtheSSE1timehistoryusedintheseismicanalysisisprovidedinFiguresNRCQ1a.1, NRCQ1a.2andNRCQla.3.

NUREG-800, SRP3.7.1,SectionII.1.bstates"Eachcalculated spectrumoftheartificial timehistoryisconsidered toenvelopthedesignresponsespectrumwhennomorethanfivepointsfallbelow,andnomorethan10percentbelow,thedesignresponsespectrum."

Forthiscomparison, the10%belowcurveisalsoplottedinFiguresNRCQla.1, NRCQla.2andNRCQla.3.

Thecomparison shows:East-West (X)Spectra 2frequencies belowdesignRSbutwithin10%threshold North-South (Y)Spectra2frequencies belowdesignRSbutwithin10%threshold Vertical(Z)Spectra1frequency belowdesignRSbutwithin10%threshold Therefore, thiscomparison showsthattheselectedseismictimehistories meettherequirements ofSRP3.7.1.

U.S.NRCG.S.VissingA-4October20,1997b)Thetargetpowerspectraldensity(PSD)oftheSSEtimehistoryisplottedinFiguresNRCQlb.1, NRCQlb.2andNRCQlb.3.

StandardReviewPlanSRP3.7.1,AppendixA,specifies theminimumPSDrequirements.

Thoseminimaarealsoplottedonthesamefiguresforcomparison.

Thecomparison showsthatalloftheartificial timehistories usedintheanalysismeettheminimumPSDrequirements oftheSRP3.7.1.c)Theartificial timehistoryenvelopes thespentfuelpooldesignresponsespectraandmeetstherequirements ofSRP3.7.1.

U.S.NRCG.S.VissingA-5October20,1997inInFrIK1-Hrimn5C0~~880IIIIJIIIIIIYIIIIIJJIIIYIIIIIIIIIIIIIIIIIIIIIIIJIIIJIIIIIIIIIJIII'YIsIIIJI~FIPIJs~~~I~~I~~II~J~~~~~IIIIIIII~IIIIIIIIIIIII~J~JJ~I~~I~II~IIIII~II~~1II~I~I~I~IIIJIIIIIIII~~~~~~II~~~IYI~~~~~~~~~IJIIIIIIII~VI~I~'~III~JIsjsI~'sIIIIIIIIIIIIIII~I~IIIII~I~I~I~I~I~IIIIIIIIIII~~I~I~~'YY~I~I~IIIIIIIII~IIIIIIIIIII~~II~~~~~~~~~~~~~~IIJ~II~s'I~IsIIIJJI1).JI~IIIIIIIIIIIY1IIIIIJI~I~IIIIIIIIIIIIII~IIIJ~~J~I~I~I~I~I~I~III~'Ih1~11IIII~IIIYIIIIIJIIIIIIIIJIIII~~~IIIJIPI~~I~~~III4~~IISYshs'I~~~~~~~~~I~~~I~~~I~s~~~JJJJ~~~~III~~I~I~~I~~~I~I~~~I~I~~~II~~I~~I~~I~ll~JI~~III~~IhSI~~I~II~~III~~III~~I~%II~~~~'+s~I~~IQIII~~~IIlhIIisIIIIIIIIII~II~I~II~I~II~I~II~I~II~I~~III~I~II~I~IIIIII~IIIIII~JJ~~~~~~~~~~III~~~~~II~~II1II~~~IIIIIIIIIII~~~IIIIIIIII1~~IIIIIIIIIIII~1'1IIIIIIIIIIII~JIIIIIIIIII~~~IIIIIIIIIIIII~~~IIIIIIIII~sJI~I~I~I~IIIIIIII~IJJ~~~~I~II~I~I~IIII~IIIIIIIIIIIlllsllI~IIIIIIIIIII~I~I~I~I~I~I~I~I~I~I~I~~IIIII]lssllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~~~JLI~~I~~II~I~~~I~I~II~~I~~I~s~~I10NaturalFrequency f(Hz)1QO A-6U.S.NRCG.S.VissingirR12October20,1997DinVIntFrINNAK1-HrimnIY5CD~~88D0x0.10.1IIIIIIIIIIIIIIIIIIJ~~~~~~~~~~IIII~I~I~IIII~I~JJIII~I~JI~~IIII~1~~~~~~I~I~I~II~J~I~I~I~~~~~~~~~~~~IIIII~~I~I~II~I~II~I~II~~~~JII~~~III~~~I~~~I~II~~~~I~I~~J~~~~~~II.M..q.III~I~I~~~~~I'~~~~~~JII~IIIsrIIISIII~I~~II~I~~~~~~~I~~~I~~~~~111~~~~~I~~~I~~I~~IJ~1$II'IIIIIII~~II~II~I~IIIIr~~I1I1~~~I~II~II~II~II~I~J~I~)I~IIIII1IIII~AIIL.I1AI1IIIIIIIIIII~~IIIIIIIII11I~~I~~I~~IIIIAI~~~~~~~~~I~~~~I~~I~~II~~~~~~I~~~~I1~J1~~IIIIIIIIIIIII~AIIIIIII~I~I~I~~II~~II~~II~IAIIIIIII~III~I~I~I~I~~~~I~~~I~I~~~~II~~~~III~~~IIIIIIII~~~~~~'I~~I~I~~I~I~I~I~I~I~II~~II~~~~I~II's~~~~~~g~~~~I~~III~sIIsIIsIIs~~A~I~A~I~~~~~~~~I~III~II~IIIlrI~Is~IIIIIIIII'I111'4~~~~I~~I~II~~~~~~~~IrIIa~r~'I~~~~~~~~~~~~~~~~I~~~II~III~I~~~~s~II~~~~I~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~~I~~~~~~~~~~~IlrIJ~~IIrIrIJlI~~~~~~~~IIIIIIII~~~I~III~III~~~~~III~~I~I~I~~~I~~~110NaturalFrequency f(HzjI~I~~~~~III~~I~~~~'~I1III~~~I~~IIIIII~~I~I~~~~~~I~~~I~I~I~I~L~~I~I~~~I~~~I~~~I~III~~~~~IIII~~~~III~~I~~~~IIIIIIIIIIII~~IIIIlllm,'II

~~I~~~I~~~I~~~I~I~I~~~~I~~~I~~~I~~~~~IIIIIII~~'II~~~11~~I~~~III~II~IA~~I~I~~~II~~II~~II~IA~I~II~I~~I~~~~I~~~~~~I~(IIIIII~I~~~~~~~I~~~I~I~I~~~I~~~I~~~II~~IIII300 0l A-7U.S.NRCG.S.VissingFirNR1a.3inIntFrIOctober20,19971-Vrcl0)8G0~~(5L8CfVX50.10.1~~~I~~t~~I~I~~~~~~~I~~~I~~~t~~~~~~I~~I~~I~~~~~~J~~~~~~I~~~~~~~'I~~~~~~I~~I~~I~IA~IJ~~A~~IIIIIIIIIIJ~AIII~~~J~IIII~A~IIIIIIIIIJIIIIIYIIIIIIIIIIIIJIIIIIIIYIIIIII'~~~IIIIIIIIIIII'IIIIII~~~~~~~~~~~~~~~~IA~~~~~~~~~I~~~~IIIAJI~~~~~~J~~I~I~IIhII~~~~~I'~~~~~~~~~~~~~~II~~~I'~~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~I~~~I'I~~~~~J~~~~~'I~~~~A~t~~~~~~~~I~~'~~~~~~~~'~~~~~~~~~~~I~~I~~I~~I~~~~A~AJ~~~~t~~Al~~~~III~~~~~~~~~I~~I~~~~II1IIIII~~~~YI~~I~III~~~IIIIIIIIII~~II~IJ~~~~I~~~I~I~I~~I~~~IIIA~I~~~III~I~I~~~II~~Al~~~~~~~~~~~~~~~~~~~~I~III~~~rIIIII~~~~~~~~~A~~1~~r4Iff~fI~I1flfft1t~I~I~~I~~I~IIf1fff1~I~Vff~1II~~~I~~~~I~~I~ltl~JI'eAf>>~~~I~I~I~~~~~~~~t~~~~~~~~~f~~~~~~~~~~~~~~~~~~~~~~A~~~~~~~I~~~~~~~~~~~~~~~~~~~~1Y~~~~t~~~I~I~A~~~~~~~~~~~~~~~~~~~~~~~~~~~~Y~I~I~I~~~II~I~AJ~~~~~~I~I~~I~IIIIII1J'1II~I~IYIIYII~~~~~~Y1~~~~~~~~~~~~"'LjvŽgpss~t~tt'p'jifI~~II~II~II~II~~~I~JIhlJ'~~I~~~10NaturalFrequency f(Hz)~~~~~~~A~~~~~~~~A~~~~~~~~'~~~~~~~~~J~I~~~~~~~~~~1Y~~~~~~~~II~~~~I~~A~~~~~~IIII~~~~~~~~~~~~~~~~~~11~~~I~I~I~~~I~~~I~I~I~~1~III~I~~I~~~I~~~f1~~~~~~~~~~~~~~~~~I~~~~II1~~~~~~~~~~~~~I~~I~~~~II~~~~~~II~I~I~I~~II~~~~IIIIlffflfff1f(flII~~I~~I~I~IIIII~~~~100

A-8U.S.NRCG.S.VissingFireNROctober20,1997P9marinFrINAE1-Hrizn1X1000'~~pp'IIIII~JIJ~J~~~'PPhP~hh'IPPh~~~LhJhIJJ\LL~J~~~IOO1IrrlLLI~~I~~YY~~~~~~~e'~~~II~YJ'YrYLJ~~~~I'1I~~~YJIIYII~~I~~~~~~I4JI'~~~~~PaIJLYYJY~~~I'Y~~~~~~~~~~~~~P~~~~Y1~~~~'a~~'F~~~~FIIYY4~JaeI~II~I~~~II~~~~~II~~~~I~~I~s~~\~~~P~'h~~'P'Ih~~'~~~IPF11aII~JaJl~J~~~~~~~~~~~11~~~~~~~~~~~~'I~~VQlOCUC~~DrD0100.1I1'I~~~')'FIFFFeCLCLlFs~~~4~~~~dI~~~~~~~~~~CCrI'~~PPhJYY~~~p'IP4IalIeIIJI~~~~~~~~~~~~~~~~~~~~~~~~~~~~CC'4ddJ~~~rI'~~~~~I~I~~~~~~~~~~~~CX>IJJLJJ~~~rYYp'a'~~~~4C~ehL~JhJJ~LdLJdLJJJIL~~~~~~I~JIe~~~~~~II~II~JII~JIJJ~~~~~I~II~~III~~~+Ir----r~~I~~~~I~II~~I~~~~~~Ipp'Ip'I'I~p~'hP~'I~PrYYYY1~YrY'YY'YY~rr~~J~JJ~I~~~h~J~~~IJ~~~~~PPrJII~~1~~~~II~~111I~~'h'II~J~'I'a~~JJ~~~~~'h'h'~~~~,JeII~I~~JJ~~~1YY11YY1~JJ~~~~~p~'ah'I~~IIh~J~I~~~~I~~~~I~JJ~I~~~~~~~~~II~~I~~~~~~~~~~C)LJJJ~IJJJ~~~~~~Y11h~p~'a\~IY~~p~~YFYII~~~I~~~~~~Y1YF11~~~~~~~~~~~~~I~~~~~~~~~~pI'II~~p'I'IIr~Y~11Y~'Y'11P'Ihe~'~I~JI~I~~~~~~pp'I'hIa~~~~~I~4h~Ja~~I~I~~II~II~~~~JJlJJ~~~~I~~~~II~~II~II~~IICC))t)~LLJJI,lJJYrrr4~~~~~1YF1'I1YF11IJ~~~~~~~~~~~~~~~IIII~J~~~~~~~~~~~J~~~~~~~~~~~~~~~CLJJJJ~~~F11JICCLII~YIPI'he'~ehI~~J~~~~lI~I~~J~JJ~~~~~~~I~J~~~~~~~~~lIII~JJlJJ~~~~~~~~FFrYhYYY~~~~~~~~'~~~~~~~~~I~~~1rYY'1'Y1~IYI10F11~I~~I~~~'II~~~~~~IP'IP'I'I~PI~I~~'h'ePP~'h~~~~~~~~~~~~~I~~~~~~II~~~~II~II~~I~~~~~~~~~hhJhJJ~h~0.010.1I~~~~~~~~~~~I~~~I~~~~~~~~~~~~~I~~~~~~~~~~I~~~~~~~~~~~~~~~~I~~I~~~~~~I~~~~~~~~~~~~~~~~30100Frequency (Hz)

IrUf A-9U.S.NRCG.S.VissingFiurNR12PDmarinFrIOctober20,1997<1-HrimntY1000:'~P~~~~~P~~~~~~'1I~I~~~PPP'I'I~~~~~J1AJ~AA~'VA'II~~A~~JJ~~A~1A~~~~~~~r~CY~d~ld~~~~~~~~~~~~I"r-Irr~~~~~~~~~~~~~~P~~P~~~~~~~lIIII~1~1J~~~~~~~~J~~~~~~11I11I~~I~~~~~~~~~~~11I11~~~~I~~~~I~~'~'~~~~~~~~~~~~~~~~~~~~~~1I~~~~~~~~~~~~II~~~~~~~~~~~II~lI~~~I~I~~~~~~11I1~~~I~I~~IIII~I~I~~I~~~~~~~AA~hAJA~~~~~~~~I"rYY~'VY1JlJlJJ~JA~~~~~~~~~~~~II'YY1YYI~~I~I~~~~~~~~~~PIA~\I~~IIII~~~~~~~I~~~III~~~~~~I~~41JJ~JJYJYA'I'I11'1IA'~~~~~~~~~~~~~~~~~~~~~~~~h~I~~~~~P~~P100.:IPP'1'~~P~~P~~'h'hhAI~~~P~~P'IY~~~~~4~~J1AA~AA~~~~'1JlAA~JA~~~~~~~~'~~P~~~~1~lA~~Jl~ld~~~~~~~~II~IAJJllII1~AJ~~~~~~JJIJJ~~~I~I~~~~~~'VY~'V'V~~~~~~~~~~~~lI~lI~~~~~~~~~~~II~WC-r-r~~~~~~~~I~~~~~l~JJIIIIIIYII~IIJP1III~'~~I~~~~~II~~~~I~~~P~~I~~I~~~I~~I~~~~~~~~~~~~~~P~~P~hh~~h10CU1Q(0tL~~PPIP~~rr'vY~YrYY1'I'I~~~~~P~P'I'I~~4~~JA~I~~~~I~~~~P'Ih~~~~~~~~h~IJA~~~JI~~~~~~~~~~~~~~~~~~I~~~~I~~JJ~~JJ~~~~~I~~I~~~I~~~~~I~~~~~I~4.~..~.............~~~~I~'"C'C)))')')'~t'4JJIJJ~~~I~~I~~rr'\'v1'v'vCr0Y1YY~~~~A~~JA~~~~~~~~h~'II~~II~~~J~JJI~~II~~~~~~114~JA~AJ~I~~~~~~~~~~~~~~~~~~~~~~~CC)))))))1IAAIJJJlJlJJIJJ~~~~~~rYYY1Y'I~~PP~'1'I~I~P~~~P~~I~'VY'VY1~1111I'1C~~1~1~~~~Ih~~~~~~~~~~~1JP~~~I~~I~r~CYCY1I~CI~~~I~~~~~~~~~~'I~~~~~~~~I~~~~~~~~~II~~~~~~I~~~~~I~I~~~~~III~~~~JII~~~~~~~~~~~~l~~CII~~I~)~~~~~)I~I~~~"~~~cI~~~~I~~~~~'II~1'1I~1I~~~~~~~~~~~~~~~~~~h~~'~~~I~~~II~J~~~~~~~~~I~~I~~~~~~~~A~~~~~~~~~~~~~~~~~~~~~~~~I~~I~~III~~~~~~~~))[))AI~~~IJII1~~I~~~~~~~~~~~~Y11I11~~I~~~~~~~~~~~~~~Y11I11I~I~II~I~'~~~~1I11~~~~~~~~I~~~~~~~~P~~~I~~~~~~~1~~1~~~~~~~~~~~~~~~~I~~I~~~~~~~~~~~~I~~~~I~~~~~~C))'C)CC~~'1~1I~~I.~lI~~~~~~Y~tY~~P~~~~~~~~~II'II'~~~~~~~P~PP~~~YhIJJAAAJJ'VYhI'VYI'hII~~~~~~~~~~1~~~~~~~~~~IC1lII0.1~~~II11'1~rr'VY1Y1~~~~~~I~~~~,~~~~PPhA'~~~~~~~~~~~~~~~~~I~~~~~~I~~~~A~~~AJ~J~~~~~~~~~~~I~~~~~~~~~~I~~~~~~~~~~1~fA~I~~~~~II~~~~~~~~~~~~III~~IA~I~I~~~~~~~~I~~~~~~~~~~~~~II~~~~~~~~~~~~~I~~~~~~~~~~~~0.010.11l0100~~~~~A~~JJJ~~~J~~IAAA~Frequency (Hz)

A-10U.S.NRCG.S.VissingFirR13October20,1997PDmrinFrINNAK1-Vertical Z10010P)Q1Nt:0.1Q(6Q0.010.0010.1II'III'111~~~~~~~~~~fIY~~~~II'II~~~~~~~4~~r~~~~J~A~~4~~~IsrO'Y~JA~~~~~Irr1YYI~II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~4~~yJ~~J1JJI~V(r%QPAtAI~~AJJssPAhh A~<YJthtrttht~P~~~~~~~~'I~~~~~'I~~~~~~JtAII~11~II~~~A~~~~JJ~~~~~~~h~tAA~~~~~~IAIYI~~~~~~~~P~tPI'YIIYII"r-IIr""""~~~~~pY1YY1'h~~~~IJJ~~I~~~~~A~Ih~~~~~~~~JJ~JA~~~~I~~~~~~~~4JJ~AJ~~1II~~~~1~I11I\~I~~~~~1~I~~~~~1II~~~~~~Ir1YA~~Y~~~I1YYIAA~~~~~~1YY~~~~~~~~'h~~~~~~~~~~~~~t\~~~~t~~~~~'I~~t~I~~~~'~'~~~I~~t~~t~tt~$~I~I~~~~~~II~~II1~I~~~~~~I~IIISI~~~~1~~~~~~~~~~I~~~I1~~~~~4Af1151'I11~~~~~~~~~~~~I~~~~~PPh'h'PPhh~IIdJeff~~I~~~JJ~AA~~IIAA~~II~~Y'Y~~~~~I~~~~~IAJJI~I~~~I~~~I~~~~~~~~~~~~~~~~~~rP'I'h'Yr1Y1YYYY'IY1YY~~'I'h~htrAAJA~AA~~~~~~~~~~~~~~~~~~~~~~~~~~~~P~h'h~hh~~~~~~~~~JJ~JJ~IIII11C~~~~~~CC1~~I~~CrI~II~~~CCCC11~~~~~~~~~IIIIsr~~AA~~A~AII~~I~~I~I~~~~~)C$~I~I~~~I~~~~I~~~~~))~~~11C~~\~~~~~~P~~~~~~It~tIA~~~~~~~~~~\IIhI~~~~~~~~~~~~~~~~~I~~~~~~~CCCCC11I1I~A~I~I~YIII~s~~s~~~~~~~CIIC1IIII11II'~'~~~~1~~~~~~ff~~~~I'I'~~P~~~~~~~~I'~Pt~~I~I~~~~~~~~I~~II~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~~~~~~~I~~~I~~~~~I~~~)II1~~~~~~I~~'~~~~~~~~~~III~~II~~)C~I~~~I)C))IAAAAJAY~~1I~I~~~~'~~YY~~~~YYY~~~~~~I~S'h~'t~I~II~~I~~~~~~~~~~~~~I~~~~~~I~~I~I~~~~~~~~sC1I.I.ZP.ICAYI'r~~~~s~~~I~~~h~~~~CCAdAAI'~~~~~~~~~~A~AA~~s~~~~~~~1~~~~I~~~~)C)))A~AAI~~~~Y~YYYY~YYA~AA~~~~~~~~~~J~~~~~~~~~~~~AJ~~~~~~~~~~~~~~~~~~~~~~~~~)AJIJAJA~AJ~~~~~YY~YYh\Ah~~~~~'IY~YYII~~I~hh~~~~AII~~~~~~~~~~~~sI~~~~~~~~~~I110100Frequency (Hz)

U.S.NRCG.S.VissingA-11October20,19978'ithrespecttothedynamicfliiid-stnicture interaction analysesusingthecomputercode,ANSYS,inthe

Reference:

a)Erplainhowthesimplestickmodeliisedinthedynamicanalysescanaccurately andrealistically represent theactualhighlycomplicated nonlinear hydrodynamic fluid-rack stnicture interactions andbehaviorofthefiielassemblies andthebox-typerackslnicture.

b)Providetheresultsofanyexistingexperimental stiidythatverifiesthecorrectoradequatesimulation ofthefluidcouplingutilizedinthenumericanalysesforthefiielasseinblies, racksandwalls.Ifthereisnosuchexperimental studyavailable, provideindetailtechnicaljustifications onhowthecurrenlleveloftheANSYScodeverification isadequateforengineering applications andshouldbeacceptedwithoutfiirtherexperimental verification workc)Provideinatabularformthematerialproperlies including thesliffiiess (k)usedforthesimplified computerstnictural modelsshowninFigures3.5-31and3.5-32ontheReference, andthetechnical basisfortheconclusion thaithepropertiesusedintheanalysesarerealistic andequivalenttotheproperties oftheactualrackstnicture.

d)Indicatewhetheryouhadanynuinerical convergency and!orstability problem(s) duringthenonlinear, dynainicsingle-andmulli-rack analysesusingtheANSYScode.Iftherewereany,howdidyouovercometheproblem?e)SubmittheANSYSinputdatainASCIIfortheModelI(3-DSingleRackPlateModel)andtheModel2(3-DSingleRackBeamModel)analyseswithcompleteinformation (i.e.,artificial tiinehistoryinputmotions,loadingconditions, boundaryconditions, materialproperlies, loadingsteps,etc.)ona3.5-inchdiskette.

~R~~na)Thebehaviorofspentfuelstorageracksiscomplex,andsomesimplification oftheactualbehaviorisappropriate whencreatingamathematical modelforuseinafiniteelementanalysis.

Onehastoassesstheaspectsofthestructural behaviorwhichareimportant tosimulation whileconsidering theenduse.

U.S.NRCG.S.VissingA-12October20,1997Theracksareveryrigidstructures andtheirnaturalfrequencies aremuchgreaterthanthepredominant seismicinputforcingfrequencies.

Hence,therackstructure motioncanbedescribed bya3-Dbeamelement(sixdegrees-of-freedom, threetranslational andthreerotational).

Themathematical models(3-Dsinglerackandwholepoolmulti-rack) usedtoperformdynamicanalysesofthefuelstoragerackstructure simulated thethree-dimensional characteristics oftherackmodulesinacomprehensive manner.Thesemodelsincludedfeaturestoallowforslidingandtippingoftheracksandtorepresent thehydrodynamic couplingwhichcanoccurbetweenfuelassemblies andrackcells,betweenracks,andbetweentheracksandthereinforced concretewalls.Thegapelementswereincorporated toaccountforimpactbetweenthefuelassemblyandtherack.Todetectanyimpactbetweenracksand/oranyimpactbetweentheracksandthepoolwall,additional gapelementswereintroduced intothe3D-wholepoolmodelofthesinglerackThesupportlegsweremodeledascompression-only gapelementswhichconsidered thelocalverticalflexibility oftherack-support interface.

Frictionelementswereusedatthebottomofthesupportlegs.Thespentfuelstorageracksarefree-standing structures.

Theyareconstructed ofasimpletubestructure assembled inahoneycomb pattern.Undergivenseismicexcitation theybehavesimilartoaveryrigidstructure.

Thebeamrepresentation givesadequatesimulation forseismicloadings.

Asdiscussed inthereport,forthermalandotherconditions, thecompleterackwasidealized usingplateelements.

Thespentfuelstorageracksseemlikeacomplexstructure.

However,whencomparedtoother10CFR50licenseapplications, likereactorvesselinternals, steamgenerator internals, containment

building, whichallareanalyzedusingbeamrepresentation, thespentfuelstoragerackitselfisaverysimpleassemblyofsquaretubestructures.

Also,thebeamrepresentation isconsistent withthe1985licensing basis,NRCSERdatedNovember14,1984(Reference 3.24oftheLicensing Report).Also,thisapproachisconcurrent withrecentlylicensedspentfuelstorageracks,namely,ZionStationUnits1and2,DocketNos.50-295and50-304;HaddamNeckPlant,Docket50-213;andPilgrimNuclearPowerStation,Docket50-293.Insummary,themethodology usedforthemathematical modeloftherackstructures isconsistent withindustrypractice.

A-13U.S.NRCG.S.Vissingb)October20,1997Theexperimental verification ofthefluidcouplingsimulation isprovidedinAppendixNRCQ2-Atothisquestion.

Theresultsshowverygoodagreement betweentheANSYSresultsandtheexperimental testresults.Thevalidation oftheANSYSVersion5.2isinconformance withtheprovision oftheFramatome Technologies Inc.,QualityAssurance Program,Doc.No.56-1201212 (Section7.2oftheLicensing Report).Thevalidation meetstherequirements ofthesubsection II.4.cofSRPSection3.8.4andsubsection II.4.eofSRPSection3.8.1.SRP3.8.1statescomputerprogramvalidation shouldmeetanyofthefollowing procedures orcriteria:

(i)Thecomputerprogramisarecognized programinthepublicdomain,andhashadsufficient historyofusetojustifyitsapplicability andvaliditywithoutfurther.demonstration.

(ii)Thecomputerprogramsolutiontoaseriesoftestproblemshasbeendemonstrated tobesubstantially identical tothoseobtainedbyasimilarandindependently writtenandrecognized programinthepublicdomain.Thetestproblemsshouldbedemonstrated tobesimilartoorwithintherangeofapplicability oftheproblemsanalyzedbythepublicdomaincomputerprogram.(iii)Thecomputerprogramsolutiontoaseriesoftestproblemshasbeendemonstrated tobesubstantially identical tothoseobtainedfromclassical solutions orfromacceptedexperimental testsortoanalytical resultspublished intechnical literature.

Thetestproblemshouldbedemonstrated tobesimilartoorwithintherangeofapplicability oftheclassical problemsanalyzedtojustifyacceptance oftheprogram.ANSYSisawidelyusedandacceptedcomputerprograminthepublicdomain.Thevalidation ofthefluidcouplingelementusingclassical equations waspresented totheNRCStaffduringameetingonAugust25,1997.Theexperimental verification isprovidedinAppendixNRCQ2-Atothisquestion.

Thecomputerprogramvalidation requirements oftheSRP3.8.4andSRP3.8.1aremet.c)Thematerialproperties usedinthe3-DSingleRackand3-DWholePoolRackmodelaregiveninTables3.4-2through3.4-8oftheLicensing Report.Thematerialproperties forthestructural materialarefromtheASMECode,whichisreferenced inthereport.Therackstiffnesses aregenerated internally inthecomputerprogramfromcross-section properties andareprovidedinthefollowing summary.Therackstiffness, intermsofcross-section properties, isprovidedinSection3.5.3.1.1.1, startinginpage136oftheLicensing Report.Thestiffness properties aredeveloped usingclassical appliedmechanics equations.

Theseismicanalysisresultsarenotsensitive totherackstiffness, andthisisdemonstrated inSection3.5.2.7.

U.S.NRCG.S.VissingFuelCellImpactStiffness summary:Type1(Existing U.S.Tool2DieRacks):Type2andType4(NewATEARacks)Type3(NewATEARacks)4,449lb/in7,036lb/in6,595lb/inOctober20,1997Thefollowing axialstiffnesses (AE/L)arecalculated internally inANSYS,butaregivenforinformation purposes.

Allpagereferences arefromtheGinnaLicensing Report.Consolidated FuelCanisterStructural Properties:

E=27.87E6psiA=3.6681in',a=9.3920inL=159ink,~=1.65E6lb/in(kforA,fr)E(Zircaloy)

=12.0E6psiA=7.1419mL=159ink=5.39ESlb/inFuelAssemblyStructural Properties:

U.S.NRCG.S.VissingOctober20,1997SupportPadStructural Properties (krepresents individual supportpad)E=27.87E6psiL=10.0in(forRackTypes1,4),andL=19.60in(forRackTypes2,3)LegsofType1Rack:k=3.75E81b/inLegsofRack7(2A):k=5.69E7lb/inLegsofRack8(2B):k=7.54E7Ib/inLegsofRack9(3C):k=3.84E7lb/inLegsofRack10(3A):k=5.69E7lb/inLegsofRack11(3E):k=5.69E7lb/inLegsofRack12(3D):k=3.84E7lb/inLegsofRack13(3B):k=5.23E7lb/inLegsofType4Rack:k=2.91E71b/inA=134.5in~A=40.0in~A=53.0IA=27.0inA=40.0inA=40.0in~A=27.0in~A=36.8in'x=144.0in4Ix=211.0in'x=217.0in'x=144.0in'x=190.0in'y=144.0inIy=211.0in'y=217.0in'y=144.0in'y=190.0in'A=10.45in'x=

32.9in4Iy=86.5in'x=1372.6in'y=1274.6in'x=211.0inIy=211.0in'x

=290.0in'y=290.0in' U.S.NRCG.S.VissingA-16October20,1997Type1(Existing)

RackStructural Properties:

E=27.87E6psiA=420.3in'=159ink=7.37E7lb/inType2RackStructural Properties:

E=27.87E6psiL=158.5inRack7:Rack8:A=113.9in'=1295ink=2.00E7lb/ink=2.28E7lb/inType3RackStructural Properties:

E=27.87E6psiL=162inRack9:Rack10:Rack11:Rack12:Rack13:A=66.2in~A=92.7in~A=84.8in'=66.2in~A=82.1in'=1.14E7lb/ink=1.59E7lb/ink=1.46E7lb/ink=1.14E7lb/ink=1.41E7lb/inType4RackStructural Properties:

E=27.87E06psiL=158.5inRackType4:A=25.9ink=4.55E6lb/in U.S.NRCG.S.VissingA-17October20,1997d)Therewerenoconvergency orstability problemsforeitherthesingle-ormulti-rack modelrunsduringthenonlinear, dynamicanalyses.

Allloadcasesranforthefulltimehistoryandobtainedaconverged

solution, usingthesamebasicANSYSprogramparameters.

TheANSYSsolverusestheimplicitintegration schemewhich,uponconvergence, producesarepeatable, stablesolutionwithinprescribed (program-chosen defaults) tolerance limits.e)TheANSYSinputdataintheASCIIformareprovidedintheenclosed3.5-inchcomputerdiskette.

Notethattheseinputdataareproprietary information andshouldbeusedonlyfortheGinnalicensing effort.ThesedataareforusewithANSYSVersion5.2.Alldataareself-explanatory andanexperienced ANSYSusershouldbeabletouseiteasily.Ifyouencounter anyproblem,FRAMATOME canassisttheNRCStaffatitsLynchburg offices.DiskFilesInclude:DiskANSYSInputFiles,FileS3DR8PL.TXT3-DSingleRackPlateModelFileS3DR8SC.TXT3-DSingleRackDynamicModelThe3-DSingleRackPlateModel(Model1)wasusedforthestaticstress,thermal,andthebaseplatestressanalysis, aspresented inthedetaileddescriptions ofModel1inSection3.5.2.3ofthereport.Themodelwasnotusedwithanytimehistoryinput.Theloadingconditions, boundaryconditions, materialproperties, andloadingstepsarepartoftheseinputfiles.Thetimehistoryinput(SSE1)isincludedwiththeinputforModel2.

U.S.NRCG.S.VissingA-18October20,1997AppendixNRCQ2-A"Experimental Verification ofANSYSHydrodynamic MassCouplingandDynamicBehaviorofImmersedRectangular SolidsinRectangular Cavities1.Objective AnANSYSnumerical studywasmadetodemonstrate thecorrelation betweenanANSYSmodelutilizing hydrodynamically coupledrectangular tubecontained withinalaterally excitedrectangular container, orcavity,andtheexperimental resultsreportedinReferences 3.45and3.46.Asingledegree-of-freedom (DOF)oscillator model(Ref.3.45),usedforestimating certainsystem'sparameters isalsocomparedtotheANSYSresults.2.Experiment SetupFigureA1Experiment SetupAccelerarneters Plexiglass WallsAnexperimental set-up,reportedinReferences 3.45and3.46,isshowninFigureA1.Arectangular steeltubewithasolidbottomisenclosedinalongrectangular plexiglass container rigidlyconnected toasolidbaseplate.Thebaseplateissupported withfoursteelconsolesactingasspringsforthelaterally imposedbaseplatemotionviaelectromagnetic actuator.

Theplexiglass container isadditionally reinforced withaseparaterectangular plexiglass platefixedtothebaseplate(Fig.A1,leftupper4"x4"SteelTubecorner).SteelSprings(2)SteelSupportSprings(4)-WaterLevelOverlaplng TeflonSealsShakerConcreteBlackThesteeltubebottomplateisconnected tothebaseplateviatwoelongated steelplatesactingasconsoles.

Theseverticalsteelplatesactasspringsforthetube'slaterally inducedmotion.Atthetopandbottomtubeelevations, teflonsealsareintroduced inordertominimizeeventualverticalmeanflowalongtubewalls.Theseal'slocations alsodefinewatercolumnheight.Apairofaccelerometers isusedtopickupacceleration timehistories forboththetubeandtherigidplexiglass container.

Theshaker'sfrequency rangedfrom5to35Hz,toobtainadequatedatapoints.Theamplitude

.

U.S.NRCG.S.VissingA-19October20,1997responseratioismeasuredforeachexcitation frequency.

TheresultsareplottedforselectedpointsinFigureA4.3.ANSYSModelDescription ThesystemshowninFig.A1ismodeledinANSYSasaseriesoftwovertically connected beams,withtheupperonebeinghydrodynamically coupledtotheenveloping plexiglass container, asshowninFigureA2.FigureA2ANSYSModelBeamPlexi-Walls AddedWeightLumpedattheTubeBottomSpringBeamHyd.-Dynamic CouplingElem.BasePlateInputMotionThebottombeamrepresents apairofverticalsteelstrips,whiletheupperbeamrepresents thesteeltube.ANSYS3Delement"BEAM4"(Ref.3.40)isusedforbothbeams,whilehydrodynamic couplingismodeledwithANSYS"FLUID38" elementsatthetubebeamtop,middleandbottomlocations.

Additional weightplacedinthetube(Ref.3.46)islumpedatitsbottom.Forcedinputharmonicmotionisappliedtobothspringbeambottom(baseplate)andplexiglass container walls.Modelproperties areobtainedasfollows:SteelTubeTubeenvelopemass:m,=V,(pg=0.0174ib-s~/in(weight=m,g=(0.0174)(386.4)

=6.72lb),where,V,=4(aht)=24in'thematerialtubeenvelopevolume),a=4.0in(tubesidewidth),h=8.0in(tubeheight),t=3/16"=0.1875in(tubewallthickness) andp,=72.46x10'b-s

/in'tubewalldensity,steel,roomtemperature).

FromRef.3.46,totaltubeweightis15lb,whichincludesadditional weighttogetherwithboltsandnutsconnecting tubebasetosteelsprings.Itisassumedthatalladditional massisconcentrated atthebottomofthetube;i.e.,itislumpedatthebottomtubebeamnode.Thislumpedmassincludestubebottomplate.

U.S.NRCG.S.VissingA-20October20,1997Lumpedmass(tubebottom):mb=(totalweight)/g-(tubeenvelopemass)=15.0/386.4

-0.0174=0.0214lb-s'/inorweight=(0.0214)(386.4)

=8.28lbTubecrosssection:A,=4(at)=3in'ubecrosssectionmomentofinertia:I,=2[at/12+(at)(a/2)]=8.0in'teelSpringEquivalent springbeamconsistsoftwoverticalsteelstrips,each4"long,1"wideand3/32"thick.Bendingoccursabouttheweakaxis.Eqv.Springcrosssection:A,=2(ct,)=2(1")(0.0938")

=0.1875in~Eqv.Springcrosssect.momentofinertia:I,=2[t'c/12]

=2[0.09383(1")/12]

=1.373x10" in4Eqv.Springlateralstiffness:

k=12I,E/L=772.3lb/in,forbothbeamendsclamped,where:E=30MSI(steel elasticmodulus@room temperature) andL=4"(equivalent springbeamlength).Itissuggested inRef.3.46thatwhileexcited,thetuberemainspractically paralleltotheplexiglass container walls.IntheANSYSmodel,thiseffectisachievedbyimposingrotational constraint atthecommonbeamsnode.FluidMassesHydrodynamic mass,Ref.3.45:M=(16/3)phb'/w=0.0908Ib-s/in,wherep=9.345x10'b-s'/in'water densityroomtemperature),

b=(a+w)/2=(4+0.5)/2

=2.25in(watercolumncenterline width,(Fig.A3)),

andw=0.5in(tube-to-wall gap).Displaced fluidmass,Ref.3.45:M,=(2b-w)'p=0.01196lb-s'/inFluidmassbasedoncontainer volume,Ref.3.45:M,=(2b+w)'p=0.01869Ib-s'/inFigureA3WaterColumnDimensions Theeffectofhydrodynamic fluidcouplingisdiscretized as1/2atthetubebeammid-height and1/4atitstopandbottom(Fig.A2).

ANSYSfluidcouplingelement"FLUID38" (Ref.3.40)isusedwithKEYOPT(3)

=2forconcentric arbitrary cylinders (i.e.,rectangular) andKEYOPT(6)

=2forlocalelementcoordinate system'slateralaxesorientedinglobalXandZdirections.

2b U.S.NRCG.S.VissingA-21October20,1997BoundaryConditions Boundaryconditions areshowninFig.A2.AllDOFsofthespringbeambottomnodearefixed(clampedcondition) excepttheX-displacement component, whichisprescribed assinusoidal motion.Thesamealsoappliesforthethreewallnodesconnecting hydrodynamic elementstothetubebeam.Duetothefactthatthetuberemainspractically paralleltothecontainer walls,thetubebeambottomnodeisprevented fromrotationaboutlateralZ-axis(spring's beambendingaxis).Tomatchthemeasurednaturalfrequency inwater,springbeamstiffness isadjustedask=(2mf,)[m+M]=(2n9.2)[0.0388+0.0908]=433.1lb/in.Structural DampingAtimehistoryanalysisapproachisusedtoobtainthesystem'sresponseamplitude ratio.Thesystemisexcitedtoasinusoidal excitation atselectednodesandresponseamplitude, ornodaldisplacement responseasafunctionoftimeisobtainedforselectedpointsofthesystem.Theconnecting nodebetweenthespringandthetubebeamsischosen,sinceitsmotionsufficiently describes behaviorofthesystemanditcouldalsobecomparedagainstasingleDOFtheoretical model.Rayleighdampingisusedforcomparison purposes.

Inadditiontothestiffness matrixmultiplier P,themassmatrixmultiplier nissimultaneously usedtoprovidemoreuniformdampingoveradesiredrangeoffrequencies.

Thesemultipliers areobtainedasasolutionofthesystemoftwosimultaneous linearequations:

(;=o',/(2(o)+

Pio;/2,whereio,.=2mf;

[s']Bychoosingknownpairsofnaturalfrequencies withtheirassociated dampingratiovalues(Ref.3.45),f,=15.3Hzand(,

=0.053,inair;f~=9.2Hzand(2=0.062 inwater,theRayleigh dampingmultipliers areu=5.456andP=5.122x10'.

4.ResultsTheexperiment (inwater)datapointsareobtainedfromRef.3.46.Notethattheaccuracyoftheircoordinates inamplitude responseplot(Fig.A4)mightbeinsufficient, duetothesmallscaleoftheoriginalexperiment curveprovidedinRef.3.45.However,theirtrendissufficient tovalidatetheANSYSmodel'scomparison.

Inthetimehistorymethod,a3seconddisplacement timehistoryiscreatedforeachselectedexcitation frequency, andappliedattheselectednodesofthesystem.Theamplitude foralltime-histories isunity,i.e.,1.0in.ANSYSresultsarealsocomparedagainstsingleDOFoscillator model(equation 24inRef.3.45,labeledas"Theory"inFig.A4),withthetotaltubemasslumpedatthetopofthespringbeam.FigureA4showsgoodcomparison betweentheANSYSandtheoretical responseratiopredictions.

Aminordiscrepancy betweenthesemodelsandtheexperiment isinpartduetoasensitivity ofmeasuring equipment, assuggested inRef.3.46.

U.S.NRCG.S.VissingA-22October20,1997Conclusions 1)Itisconcluded thatANSYShydrodynamic elementFLUID38canbeusedtorepresent fluid-structure interaction ofrectangular prismatic containers withgoodcorrelation withboththeoryandtestresults.Thereisagoodagreement betweenANSYSresultsandexperimental testdatafordynamicfluid-structure interaction problems.

ThisverifiesthecapacityofANSYStoperformseismictime-history analysesofsubmerged spentfuelstorageracksinpools.2)Useofbeamstickmodelandlumpedmassesisarealistic representation offuelandracktypestructures foruseintime-history drivendynamicanalyses.

U.S.NRCG.S.VissingI<'igureA4Comparison ofResultsA-23October20,19972oCLCD~1.5CDCL1CUŽ00IIIIIIIIIIIIIAmplitude ResponseRatioII-Theory,'IIIExperimental ResLilts--rIIIII1IIIIIIIIIIIIoIIIIIIIIIOIIIIIIANSVSTimeHistoryIIIIII12051015Excitation Frequency

[Hz]

U.S.NRCG.S.VissingA-24October20,1997N8'ithrespecttothedynamicfluidcouplingelement(FLUID38oftheANSYScode)usedintheanalysis:

a)Itisourunderstanding thattheelementFLUID38wasdeveloped forafluidflow studyinaninfinitely longrigidcylindrical pipe.Explainhowthiselementcanbeapplicable foryour3-Dfluid-rack (single-andmultiple-rack) interaction analysis.

b)IftheANSYSinput(realconstants P2,Al,L,I",DXDZ,PXWZM2,MI,MHXMHZ,CXCZ)andmaterialproperties (DENS))wereusedfortheFLUID38element,providethevaluesandtechnical basisfortheconclusion thatthosevaluesarerealistic.

c)Oneoftheassumptions forthePLUID38elementofANSYScodeisthatthelumpedoptionisnotavailable withthiselement.Didyouusethelu>npedoptionforthefluidmass?Ifnot,howdoyoutreatthefluidmass?Explain.~Ryan)b)TheANSYSFLUID38elementisthedynamicfluidcouplingelement.Thiselementisagenericelementtorepresent adynamiccouplingbetweentwopointsofastructure.

Thepointsrepresent thecenterline ofconcentric cylinders.

Thecylinders mightbecircularorhaveanarbitrary cross-section.

Thedefaultvaluesareforacylindervibrating inacylinder.

However,whenoneusesKEYOPT(3)

=2itcanbeanarbitrary crosssection.Thisoptionisusedinthesingle-rack andmulti-rack interaction analysis.

Thedynamicfiuidcouplingusedisbasedonarectangular bodyvibrating influidcontained inanannuluscreatedbyarectangular outerbody.ThefluidcouplingvaluesarebasedontheSingh-1990 (Reference 3.38oftheLicensing Report)paper.Thederivation offluid'ynamic valuesareexperimentally verifiedbyScavuzzo-1979, "DynamicFluidStructure CouplingofRectangular ModulesinRectangular Pools"(Reference 3.45).IntheANSYSFLUID38elementinputifKEYOPT(3)

=0isused,itrepresents theconcentric cylinders, andforthatcaseR2,R1,etc.,constants arerequired.

InourcaseKEYOPT(3)

=2forarbitrary crosssectionswasused.MMM~,andM>>termsofthefluidcouple-mass matrixwerealsoinput.Tables3.5-10and3.5-11oftheLicensing ReportprovidethemassmatrixtermsMM~M~andM>>usedinthefluidstructure interaction analysis.

c)Thelumpedmassoption(LUMPM,ON)isnotavailable forANSYSFLUID38element.Wedidnotuselumpmassesforthiselement.Thedynamicfiuidcouplingishydrodynamic massbasedonpotential theory,Singh-1990 (Reference 3.38).Section3.5.2.5discusses theuseandcalculation ofhydrodynamic fluidmass.

U.S.NRCG.S.VissingA-25October20,19978'ithrespecttot'eanalytical simulation oftherattlingfuelassemblyimpacting againstthecell:a)Howdidyoucalculate themagnitude ofthelargestimpactforceandthelocationoftheimpactinthefuelassemblyandthecellwall?b)c)Howdidyoudetermine andanalyzethefidelassemblyandcellwallintegrity?

Discusstheconsiderations giventotheeffectsofthefluidbetweenthefuelassemblyandcellwallduringtheinteractions.

d)Provideavailable experimental studiesthatverifythereasonableness ofthenumerical simulation adoptedtorepresent thefuelassemblyandthecellwallinteraction.

~R~~na)"Impactsbetweentherackandfuelassemblylumpedmasseswereaccounted forbytheuseofgapelements, asshowninFigure3.5-41oftheLicensing Report.Theimpactforcesarecalculated fromtheseismictime-history analysis.

Gappedspringelementsareemployedtotracktheimpactforces.Thepeakforcesonthesegappedelementsrepresent theimpactforce.Theimpactforcesbetweenthefuelassemblies andthecellwallwereobtainedusingtheminimumandmaximumresultssummaryobtainedthroughthepost-processing capability ofANSYS.Thepost-processing usedwasPOST26,whichcanextractrequested datafromatime-history

analysis, inordertoproducetablesofresultitemsversustime.Thereal-time fuel/rack impactloadsweretabulated inPOST26forthesumofboththetopandmiddleracknodesthroughout theentiretime-history.

Therealtimemaximumimpactloadwasthusobtainedforallthefuelassemblies inanyparticular rack.Theassumption thatallfuelassemblies actinunisonisconservative.

Therefore, themaximumcombinedfueVrackimpactloadwasthendividedbythenumberoffuelassemblies intheracktoobtainamaximumfueVrackimpactloadperfuelassembly.

Thesummaryoftheresulting fuel-to-rack impactloadsforeachrackandforeachloadcaseistabulated inTables3.5-46through3.5-57oftheLicensing Report.

e A-26October20,1997U.S.NRCG.S.Vissingb)Thecellwallintegrity isdetermined bystressanalysis.

Section3.5;2.2.2.4.discusses thestressanalysis.

Table3.5-58providestheresultsofthecellwallstressanalysisandshowscomparison ofactualimpactloadagainsttheallowable load.TheANSYSfiniteelementanalysiswasusedtocalculate stressesinthefuelrack-cell wallduetoimpactloadingoffuelassemblies.

Themaximumallowable fuelrackloadwasdefinedasonewhichwouldreachthemaximumstressintensity basedonthestresslimitspecified intheASMECodeSectionIII,Subsection NF.Thecalculation gaveanallowable loadpercellof2290.0poundsfortheOBEcondition and2900.0poundsfortheSSEcondition.

Theseallowable loadsaremuchlowerthantheloadvaluerequiredtoensurethefuelassemblyintegrity.

Theelasticloadlimitsofthefuelassemblyspacergridstestedrangefrom[b,c,d].Thefuelassemblystructural integrity isassured,ifthespacergridimpactloadsarelowerthanthespacergridelasticloadlimit.ThehighestimpactloadvalueobtainedfromtheOBEanalysisis908poundsandfromtheSSEanalysisis1600pounds.Thesecalculations confirmthelocalrackcellwallintegrity andthefuelassemblyintegrity forthemaximumfueltorackcellwallimpactloads.c)Thefluidbetweenthefuelassemblyandthecellwallwasconsidered intheseismicanalysis.

Thetheoryofcylindervibrating inthefluid(Reference 3.38oftheLicensing Report)isutilizedinthehydrodynamic masscalculations.

Thefuelassemblycontaining 179individual fuelrods,16guidetubesandoneinstrument tubewasutilizedinthecalculation.

Section3.5.2.5.1 providesthedetailedfuelassemblyhydrodynamic calculations forW-Standard, W-OFAandExxonfuelassemblies.

d)Section3.5.3.1.1.3 discusses thenumerical simulation betweenthefuelassemblyandthecellwall.Thisisaclassicengineering mechanics problem.Noexperimental studiesarerequiredforthegeneralstructural problem.Noknownexperimental studyexistsatFramatome CogemaFuels.Alltheexperiments performed byBabcock&Wilcoxareforfuelimpacting arigidsurfaceorimpacting otherfuelassemblies.

U.S.NRCG.S.VissinginA-27October20,1997Provideacompletedeformation shapewithmagnitudes ofthedeformations oftherackfion>thebottomtothetopforthesingle-rack SSLanalysiswhenthemaxhnumdisplacement attheracktopcorneroccurs.ReelsThesingle-rack 3-Dmodelwasusedforparametric studiesonly.Thedisplacements andloadswereobtainedfromthewhole-pool multi-rack model.Asummaryofallthemaximumabsolutehorizontal displacements isprovidedinresponsetoNRCQuestion¹7.Areviewofthosedisplacements showsthatthemaximumdisplacement foranyrack,forallloadingconditions, occursatRack¹7,duringLoadCase¹1.Thesummaryofthosemaximumdisplacements areprovidedinthetablebelow.Therefore, thedescription ofthemaximumabsolutedisplacements forRack¹7areprovidedfortherackbottom,middle,andtopfourcorners.TableNRCQ5.1Max.RackHorizontal crisp.Top-LC¹1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹1-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.257602-0.286803-0.290004-0.251905-0.384406-0.357107-0.591908-0.551609-0.5863010-0.5308011-0.5228012-0.4918013-0.50680MaxX0.332800.262400.186400.191400.241400.271900.416100.556600.567000.440600.573500.571400.45750MinY-0.42080-0.36870-0.26200-0.25300-0.19250-0.24400-0.27550-0.32230-0.33660-0.28250-0.29340-0.33350-0.37800MaxY0.282600.269700.193000.175900.191400.205200.169600.206000.193500.140300.165600.144400.10220 U.S.NRCG.S.VissingA-28October20,1997RackCornerNodalDisplacements atRack'sTop,Middle,andBaseforRack¹7(inches)~r~nrTopSouth-West South-East North-West North-East RackCenter-0.52334-0.52334-0.66054-0.66054-0.59194~Y-0.177140.01878-0.177140.01878-0.07918~7-0.077940.19580-0.077860.195880.05897~r~nrMidSouth-West South-East North-West North-East RackCenter~5(-0.26183-0.26183-0.39891-0.39891-0.33037~Y-0.177080.01867-0.177080.01867-0.07920MZ-0.076390.19417,-0.076060.194490.05905~i~rBaseSouth-West South-East North-West North-East RackCenter~X-0.00563-0.00589-0.14242-0.14266-0.07427~Y-0.175870.01925-0.176220.01925-0.07840MZ-0.070590.18817-0.069570.189180.05930 IU..S.NRCG.S.VissingA-29October20,1997Providethelargestmagnitude ofthehydrodynamic pressuredistribution alongtheheightoftherackduringthefluidandrackinteraction foreachcaseofthe3-Dsingle-andmulti-rack analyses.

~Resense:Thesingle3-Drackmodelwasusedforparametric studies.Theloads,including thehydrodynamic loads,anddisplacements wereallobtainedsolelywiththemulti-rack whole-pool model.Therefore, therequested hydrodynamic pressuredistribution isprovidedforthewhole-poolmulti-rack model.Thehydrodynamic pressuredistributions aretabulated foreachrackthatinterfaces withthespentfuelpoolwalls.Thereal-time summation ofhydrodynamic loadsforthebottom,middle,andtopofeachrackwasusedtoprovideanaveragehydrodynamic pressurefortheentireheightoftherack.Also,areal-time summation ofhydrodynamic loadswasobtainedforalltheracksfacingeachofthefourwalls.Thereal-time averagedwallpressureforeachofthefourwallswasthendetermined, andisprovidedinthefollowing tables.ThetablesNRCQ6.1thruNRCQ6.12areforeachoftheLoadCases1thru12.

U.S.NRCG.S.VissingA-30October20,1997TableNRCQ6.1Max.RackSeismicHydroPressures

-LC¹1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹1-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-2.4972.853-2.6932.956EastSideR7-EWRl1-EWR12-EWR13-EWJSouthSideRl-SWR3-SWRS-SWRj-SWRl1-SW-3.0523.935-3.7865.008-7.64310.077-4.1764.995-5.4183.758-15.16211.255-18.33415.081-3.3222.726-3.2202.477NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-5.3253.671-18.28213.105-10.4528.595-5.7754.522-2.5242.001'umofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.3971.564SUM-EW-2.3833.144SUM-SW-8.7096.782SUM-NW-8.0236.051Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-31October20,1997TableNRCQ6.2Max.RackSeismicHydroPressures

-LC¹2GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹2-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.5382.322-2.6832.478EastSideRj-EWR11-EWR12-EWR13-EW-3.3993.937-3.5144.294-6.8018.846-3.8084.191SouthSideRl-SWR3-SWRS-SWRj-SWR11-SW-3.9943.166-11.90110.363-16.99714.018-3.2092.633-3.2522.489NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.1593.021-14.29312.220-9.6357.681-5.4234.571-2.4412.121SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.4051.288SUM-EW-2.3162.789SUM-SW-7.4616.320SUM-NW-6.8355.746Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-32October20,1997TableNRCQ6.3Max.RackSeismicHydroPressures

-LC¹3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹3-Consolidated Fuel-SSE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-1.0761.058-1.1361.165EastSideR7-EWRl1-EWR13-EW-3.4343.065-8.0857.052-4.1443.297SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-2.8193.758-7.2329.212-9.79911.062-2.0642.120-2.1132.302NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.0873.713-9.41211.433-5.9217.043-3.2873.491-1.5391.679SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.5730.594SUM-EW-2.5982.140SUM-SW-4.4415.411SUM-NW-4.4385.224Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-33October20,1997TableNRCQ6.4Max.RackSideSeismicHydroPressures

-LCII4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase84-Unconsolidated Fuel-SSE-Mu=0.5MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.4962.716-2.6933.450EastSideR7-EWRl1-EWR12-EWR13-EW-2.8333.557-3.6354.561-8.23210.163-4.4125.273SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-4.8124.002-13.17111.270-18.10415.125-3.2342.738-3.1432.562NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.9003.999-16.62613.171-10.2898.305-5.7174.574-2.5162.100SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.3971.649SUM-EW-2.4443.044SUM-SW-7.8906.804SUM-NW-7.3456.082Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-34October20,1997TableNRCQ6.5Max.RackSeismicHydroPressures

-LC¹5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-2.4722.545-2.8862.509EastSideR7-EWRl1-EWR12-EWR13-EW-3.6132.986-3.3972.998-8.0746.885-4.1463.585SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-4.9764.245-14.17411.671-19.04015.898-3.2442.753-3.1902.722NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.2063.657-15.83813.773-11.0108.848-5.7304.647-2.5982.032SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.4391.232SUM-EW-2.5292.120SUM-SW-8.3277.067SUM-NW-7.5796.289Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-35October20,1997TableNRCQ6.6Max.RackSeismicHydroPressures

-LCP6GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseA'6-Consolidated Fuel-SSE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackMin.Press.(psi)Max.Press.(psi)WestSideRl-WWR2-WW-1.5061.348-1.4711.416EastSideR7-EWRl1-EWR12-EWR13-EW-3.2612.409-3.9983.217-7.7096.599-3.7983.236SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-3.1403.605-7.7339.405-10.03611.641-2.0062.053-2.1662.111NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.0253.625-9.82111.752-6.0907.459-3.3233.438-1.5561.628SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.7980.735SUM-EW-2.4642.025SUM-SW-4.7055.519SUM-NW-4.4725.300Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-36October20,1997TableNRCQ6.7Max.RackSeismicHydroPressures

-LCP7GINNA3DWholePoolModel-WithPerimeter RacksLoadCaseP7-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(p>>)-2.6693.256-2.8922.950EastSideR7-EWRl1-EWR12-EWR13-EW-3.0893.847-3.3113.281-6.6947.194-3.2813.099SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-4.1743.541-12.36910.802-17.68114.806-3.0882.660-2.8962.522NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-4.5123.821-16.34313.617-10.2528.157-5.4704.614-2.3742.129SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-1.4521.661SUM-EW-2.1572.288SUM-SW-7.7046.603SUM-NW-7.3325.982Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-37October20,1997TableNRCQ6.8Max.RackSeismicHydroPressures

-LCIISGINNA3DWholePoolModel-WithPerimeter RacksLoadCaseP8-Consolidated Fuel-OBE-Mu=0.8MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-0.610-0.712Max.Press.(psi)0.5650.616EastSideR7-EWR11-EWR12-EWR13-EW-1.122-1.710-3.812-1.7011.3171.7753.8691.849SouthSideRl-SWR3-SWRS-SWR7-SWR11-SW-1.787-4.039-4.853-0.909-0.8951.7564.7285.3930.9280.895NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-1.7761..756-5.0435.911-3.0193.327-1.4121.448-0.6710.701SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.3560.311SUM-EW-1.0261.149SUM-SW-2.3892.668SUM-NW-2.2912.546Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-38October20,1997TableNRCQ6.9Max.RackSeismicHydroPressures

-LCP9GINNA3DWholePoolModel-WithPerimeter RacksLoadCase89-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-1.165-1.271Max.Press.(psi)1.2011.198EastSideRj-EWRl1-EWR12-EWR13-EW-1.176-1.073-2.231-1.3491.3441.3642.6321.243SouthSideRl-SWR3-SWR5-SWR7-SWRl1-SW-1.987-5.749-7.889-1.247-1.2411.9895.8317.2101.4051.072NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-2.070-7.087-4.472-2.099-0.9831.6766.8343.7171.4530.986SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.6560.636SUM-EW-0.7240.871'UM-SW-3.4633.296SUM-NW-3.2062.817Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-39October20,1997TableNRCQ6.10Max.RackSeismicHydroPressures

-LC¹10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹10-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Max.Press.Press.(psi)(psi)-0.9190.908-1.1490.950EastSideRj-EWRl1-EWR12-EWR13-EW-1.1081.294-1.1631.449-2.3982.540-1.2371.369SouthSideRl-SWR3-SWRS-SWR7-SWRl1-SW-1.8541.911-5.4745.362-7.4076.794-1.3440.962-1.2510.997NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-1.9571.522-6.7236.387-4.1723.581-2.2652.203-1.0211.169SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.5500.500SUM-EW-0.7400.828SUM-SW-3.3123.047SUM-NW-3.0642.681Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-40October20,1997TableNRCQ6.11Max.RackSeismicHydroPressures

-LCP11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase011-MixedFuel-SSE-Mu=MixedMaximumRackPressures DuetoSeismicLoadingRackWestSideRl-WWR2-WWMin.Press.(psi)-1.595-1.649Max.Press.(psi)2.038.2.091EastSideR7-EWRl1-EWR12-EWR13-EW-1.7731.560-2.5732.054-6.0485.603-3.2902.499SouthSideRl-SWR3-SWRS-SWRj-SWRl1-SW-3.1792.417-8.1056.179-6.9506.892-1.4581.411-2.096'1.857NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-3.3442.535-11.2188.439"-5.2354.926-2.6362.160-1.8411.375SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.8591.110SUM-EW-1.7701.435SUM-SW-4.2273.473SUM-NW-4.5613.617Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-41October20,1997TableNRCQ6.12Max.RackSeismicHydroPressures

-LC¹12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹12-MixedFuel-OBE-Mu=MixedMaximumRackPressures DuetoSeismicLoadingRack,WestSideRl-WWR2-WWMin.Press.(p>>)-0.427-0.329'-Max.Press.(psi)0.4530.385EastSideR7-EWRl1-EWR12-EWR13-EW-0.727-1.437-2.964-1.3430.6831.3782.3541.223SouthSideRl-SWR3-SWRS-SWR7-SWR11-SW-0.884-4.968-6.250-0.876-0.8830.8453.8474.7850.8011.030NorthSideR2-NWR4-NWR6-NWR10-NWR13-NW-0.7370.608-3.9483.091-3.3492.345-1.2201.017-0.4970.517SumofRealTimeRackPressures (psi)AveragedforEachSideSUM-WW-0.2030.225SUM-EW-0.8360.736SUM-SW-2.6791.955SUM-NW-1.8931.369Note:Theabovereportedpressures areontheperimeter racks.

U.S.NRCG.S.VissingA-42October20,1997Provideasummaryofthepeakresponseresults(i.e.,maximumabsolutedisplaceInents atthetopandbottomoftherack,magnitudes ofthebending,shearandaxialstresseswiththeirlocations, maximumpedestalhorizontal andverticalloads,impactloads,etc)ofthesingle-andmulti-rack SSEanalysesinatabularform.~RNLnn;The3-Dsingle-rack dynamicmodelandthe3-Dwholepoolmulti-rack dynamicanalysismodels,andtheirintendeduses,aredescribed inSections3.5(page73oftheLicensing Report)andSection3.5.2.3(pages107to109oftheLicensing Report).Aspresented, the3-Dsingle-rack dynamicmodelwasusedforvarioussensitivity studies.Thedisplacements, loads,andassociated stressesareobtainedfromthe3-Dwholepoolmulti-rack dynamicmathematical model.Therefore, thefollowing resultsarepresented forthemulti-rack modelonly.Thedisplacements providedintheLicensing Reportwererelativedisplacements

-betweentheracksandsurrounding racks,orbetweentheperimeter racksandthespentfuelpoolwall.Themaximumabsolutedisplacements atthetopandbottomoftheracksaretabulated intheattachedTablesNRCQ7.1throughNRCQ7.24, forallloadcases.Therackmaximumforces(bendingandshear),moments(bendingandtorsion)arereportedinSection3.5.3.1.8.1, Tables3.5-67through3.5-90inatabularform.Therackmaximumbending,axialandshearstressesarereportedinSection3.5.3.1.2.7.

Themaximumpedestalhorizontal andverticalloadsarereportedinSection3.5.3.1.5, Tables3.5-22through3.5-45inatabularform.ThemaximumfueltorackimpactloadsarereportedinSection3.5.3.1.6, Tables3.5-46through3.5-57inatabularform.

U.S.NRCG.S.VissingA-43October20,1997TableNRCQ7.1Max.RackHorizontal Disp.Top-LC¹1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹1-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.257602-0.286803-0.290004-0.251905-0.384406-0.357107-0.591908-0.551609-0.5863010-0.5308011-0.5228012-0.4918013-0.50680MaxX0.332800.262400.186400.191400.241400.271900.416100.556600.567000.440600.573500.571400.45750MinY-0.42080-0.36870-0.26200-0.25300-0.19250-0.24400-0.27550-0.32230-0.33660-0.28250-0.29340-0.33350-0.37800MaxY0.282600.269700.193000.175900.191400.205200.169600.206000.193500.140300.165600.144400.10220TableNRCQ7.2Max.RackHorizontal Disp.Base-LC¹1GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹1-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.037242-0.083733-0.043964-0.045335-0.045236'0.050747-0.081948-0.066229-0.0484510-0.0712211-0.0668612-0.0700913-0.04091MaxX0.060380.043580.027110.024330.029990.025060.033180.067870.070660.031510.066030.057130.08492MinY-0.07127-0.05174-0.05670-0.05314-0.03317-0.04841-0.11520-0.13520-0.13020-0.09588-0.15610-0.13950-0.13190MaxY0.045800.050010.032540.031300.037330.039960.014110.013750.009620.009880.007440.011990.00621

U.S.NRCG.S.VissingA-44October20,1997TableNRCQ7.3Max.RackHorizontal Disp.Top-LC¹2GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹2-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))Rack12345678910111213MinX-0.20310-0.20330-0.17020-0.16100-0.16430-0.17680-0.36910-0.31460-0.39740-0.22680*-0.46800-0.47080-0.27060MaxX0.242600.201000.146900.169800.137400.177600.140200.178300.186500.246600.138500.114500.15340MinY-0.23770-0.19230-0.24880-0.25310-0.28210-0.30480-0.35310-0.37400-0.38660-0.30850-0.28450-0.26690-0.34380MaxY0.263500.264300.144000.141200.156700.173700.137000.174300.139900.131400.117000.157100.09970TableNRCQ7.4Max.RackHorizontal Disp.@Base-LC¹2GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹2-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.076002-0.090613-0.039904-0.055355-0.056336-0.073677-0.264508-0.233709-0.3163010-0.1447011-0.4071012-0.4170013-0.18190MaxX0.063550.068180.035480.075450.028400.080710.077820.097390.104900.174400.073030.052880.08832MinY-0.16120-0.10310-0.17800-0.18220-0.20670-0.23090-0.23310-0.23790-0.23890-0.17410-0.16430-0.12700-0.21120MaxY0.177800.190000.061310.065460.053550.076780.013800.015960.008230.007300.038250.058330.02261

U.S.NRCG.S.VissingA-45October20,1997TableNRCQ7.5Max.RackHorizontal Disp.@Top-LC¹3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹3-Consolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.282502-0.242403-0.156604-0.192405-0.184406-0.197307-0.272008-0.327209-0.3927010-0.2534011-0.4099012-0.4360013-0.32440MaxX0.347400.283500.166300.193100.172100.199300.291900.356800.361800.256200.471200.440500.30230MinY-0.34790-0.30640-0.22950-0.21630-0.21540-0.24260-0.21980-0.29730-0.31500-0.23730-0.28000-0.25880-0.32240MaxY0.330300.295400.189700.196700.215100.264200.241100.248600.235600.206600.169500.199300.15130TableNRCQ7.6Max.RackHorizontal Disp.@Base-LC¹3GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹3-Consolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.029632-0.030713-0.022154-0.025935-0.021526-0.024607-0.045098-0.042959-0.0716610-0.0323911-0.0944412-0.0661313-0.04723MaxX0.081000.028420.024410.023770.023630.023220.056020.065510.030300.052430.026200.043150.05821MinY-0.06999-0.06237-0.04722-0.04187-0.03840-0.03077-0.04370-0.08174-0.09566-0.04473-0.08570-0.06909-0.07137MaxY0.054010.045880.029900.032270.033030.047590.027140.037140.021310.026350.016010.037570.02015

U.S.NRCG.S.VissingA-46October20,1997TableNRCQ7.7Max.RackHorizontal Disp.Top-LC¹4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹4-Unconsolidated Fuel-SSE-Mu=0.5MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.291402-0.243703-0.284404-0.249705-0.377506-0.344007-0.575908-0.533509-0.5766010-0.5270011-0.5252012-0.4917013-0.49680MaxX0.295700.258300.176200.193000.258000.289400.441300.592200.580200.442800.585400.581700.48470MinY-0.40560-0.35330-0.24460-0.24040-0.18660-0.22980-0.25950-0.30110-0.31510-0.27800-0.29130-0.31280-0.30700MaxY0.276900.257800.164000.164200.175000.200100.164100.206900.195800.139200.146800.142900.14850TableNRCQ7.8Max.RackHorizontal Disp.@Base-LC¹4GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹4-Unconsolidated Fuel-SSE-Mu=0.5MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.064482-0.048693-0.030824-0.023375-0.050386-0.035237-0.068548-0.052199-0.0312810-0.0735111-0.0471412-0.0544113-0.04132'MaxX0.039430.044970.027870.026940.025190.041080.041040.088990.091480.039120.078100.069370.11050MinY-0.08053-0.05841-0.05235-0.04774-0.03337-0.06152-0.10440-0.11510-0.09633-0.10520-0.10090-0.10640-0.06561MaxY0.032500.055600.034240.033570.038600.044400.013760.015680.008520.008690.013620.008400.01893

U.S.NRCG.S.VissingA-47October20,1997TableNRCQ7.9Max.RackHorizontal Disp.@Top-LC¹5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.189902-0.202603-0.213804-0.178705-0.292706-0.253007-0.560108-0.512509-0.5243010-0.4608011-0.5294012-0.4879013-0.48880MaxX0.173800.237000.174600.203500.209900.234500.323400.473700.484800.385200.466700.478700.40670MinY-0.31140-0.25600-0.20670-0.20880-0.19080-0.22940-0.24590-0.29380-0.31760-0.28720-0.30500-0.33800-0.33210MaxY0.320500.333700.222200.211700.184300.213100.172400.223300.222300.160000.130700.134400.15320TableNRCQ7.10Max.RackHorizontal Disp.@Base-LC¹5GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹5-Unconsolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.035802-0.030483-0.037554-0.028515-0.037596-0.025477-0.062498-0.072559-0.0449910-0.0465611-0.0516112-0.0554913-0.04446MaxX0.046270.037780.024010.028600.027260.041160.053450.073960.061420.044980.076970.088940:08146MinY-0.07851-0.03985-0.03321-0.03982-0.03663-0.04466-0.06886-0.07892-0.11320-0.09735-0.12170-0.12510-0.10460MaxY0.083930.080680.043790.035190.042510.051610.013930.015290.021850.009440.007300.008200.00609 U.S.NRCG.S.VissingA-48October20,1997TableNRCQ7.11Max.RackHorizontal Disp.Top-LC¹6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹6-Consolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.230502-0.250703-0.166504-0.186905-0.145706-0.160207-0.281908-0.369509-0.3916010-0.2921011-0.3814012-0.3564013-0.37140MaxX0.326700.297600.242400.209700.191000.187800.296200.365000.361500.274300.487700.420700:30730MinY-0.31260-0.27540-0.22420-0.21230-0.21370-0.23410-0.21080-0.28280-0.30990-0.24680-0.28570-0.29250-0.33660MaxY0.358800.323100.195500.185100.201600.246500.234200.241200.237800.192200.156300.186000.14670TableNRCQ7.12Max.RackHorizontal Disp.@Base-LC¹6GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹6-Consolidated Fuel-SSE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.029002-0.038873-0.022504-0.023945-0.019346-0.019977-0.034528-0.037699-0.0620410-0.0269111-0.0806912-0.0660613-0.04278MaxX0.047170.033770.032530.028600.024180.024650.053120.086310.051490.061890.045020.042470.05559MinY-0.05076-0.04990-0.04870-0.04665-0.04324-0.03789-0.03707-0.07240-0.06606-0.04530-0.07084-0.05413-0.07601MaxY0.103300.073820.031160.031410.034160.044830.027090.034870.026120.025900.009690.012960.01875 U.S.NRCG.S.VissingA-49October20,1997TableNRCQ7.13Max.RackHorizontal Disp.@Top-LC07GINNA3DWholePoolModel-WithPerimeter RacksLoadCase87-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))'ackMinX1-0.168002-0.190303-0.141404-0.153305-0.131706-0.138507-0.208408-0.254009-0.2807010-0.1943011-0.3857012-0.5453013-0.24120MaxX0.144300.196000.155200.148500.154700.136500.265400.268100.227200.230800.207600.131200.19910MinY-0.20100-0.13870-0.15140-0.17600-0.19070-0.24190-0.33540-0.37390-0.41170-0.29410-0.32050-0.30840-0.31250MaxY0.317900.295300.191600.169900.159100.193200.131500.178700.143900.141000.118400.145600.13130TableNRCQ7.14Max.RackHorizontal Disp.@Base-LCP7GINNA3DWholePoolModel-WithPerimeter RacksLoadCase87-Unconsolidated Fuel-SSE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.059062-0.064823-0.030774-0.044025-0.038206-0.055577-0.094018-0.146909-0.1789010-0.1112011-0.2986012-0.4784013-0.15870MaxXMinY0.05380-0.119800.08367-0.056760.03802-0.069220.03961-0.099450.05111-0.128200.04126-0.189500.20160-0.214900.19920-0.245500.15780-0.247400.16080-0.158600.12690-0.228600.07696-0.212900.13330-0.20260MaxY0.249000.211500.117600.091400.07477'0.107700.013960.028730.007800.010010.010350.021050.03134 U.S.NRCG.S.VissingA-50October20,1997TableNRCQ7.15Max.RackHorizontal Disp.ITop-LC¹8GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹8-Consolidated Fuel-OBE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.113702-0.113303-0.077824-0.079655-0.066916-0.070557-0.139508-0.142609-0.1775010-0.1134011-0.2143012-0.2346013-0.17900MaxX0.126300.121200.094540.080750.077640.069130.112300.129300.155800.110800.215000.210000.14510MinY-0.18140-0.16620-0.10110-0.09862-0.10910-0.13020-0.13890-0.18670-0.17680-0.16160-0.17720-0.16030-0.20540MaxY0.193300.166700.097260.093880.100900.120300.119000.130400.137400.095460.087280.100500.07412TableNRCQ7.16Max.RackHorizontal Disp.@Base-LC¹8GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹8-Consolidated Fuel-OBE-Mu=0.8MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.018402-0.013553-0.010434-0.010165-0.007276-0.007167-0.020678-0.020899-0.0294010-0.0162111-0.0316612-0.0322213-0.02951MaxX0.012740.011800.009240.010540.009800.010150.016750.019440.019720.015720.037010.031830.01986MinY-0.02858-0.02813-0.01734-0.01771-0.02037-0.02334-0.01500-0.02212-0.01614-0.01618-0.02075-0.02836-0.02110MaxY0.032170'.027440.016670.014870.018450.020990.014850.016550.012910.'010840.008470.004460.00904 U.S.NRCG.S.VissingA-51October20,1997TableNRCQ7.17Max.RackHorizontal Disp.@Top-LC¹9GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹9-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.106702-0.096043-0.082254-0.070365-0.070506-0.067637-0.100508-0.124509-0.1678010-0.1071011-0.1420012-0.1578013-0.19130MaxX0.101600.099860.074800.072430.072500.070340.157000.148900.139500.102400.128800.106600.07786MinY-0.19560-0.16950-0.10910-0.10590-0.08731-0.10830-0.10310-0.11810-0.09962-0.08660-0.11780-0.09529-0.12740MaxY0.137400.162000.076030.079390.087640.098340.089770.099640.114600.085300.070940.097440.05970TableNRCQ7.18Max.RackHorizontal Disp.Base-LC¹9GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹9-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.02387'-0.015303-0.018894-0.008855-0.006556-0.008207-0.006598-0.030919-0.0930510-0.0202511-0.0741612-0.1155013-0.11360MaxX0.013970.026300.006890.013030.013520.023310.070380.053740.057860.039150.061330.049830.02916MinY-0.11270-0.07639-0.03814-0.03253-0.01651-0.03289-0.01164-0.03022-0.01004-0.00683-0.04825-0.01237-0.02082MaxY0.055020.095510.016850.016290.020840.022850.014200.012790.030930.020480.006550.022290.00730

U.S.NRCG.S.VissingA-52October20,1997TableNRCQ7.19Max.RackHorizontal Disp.Top-LC¹10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹10-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.142002-0.115403-0.078234-0.084965-0.080166-0.082747-0.110708-0.116209-0.1787010-0.1448011-0.1190012-0.2009013-0.20950MaxX0.136800.133400.094380.109600.083580.094610.168900.167800.152500.093600.176100.093200.07103MinY-0.17300-0.17490-0.11040-0.10800-0.10670-0.10430-0.10380-0.13110-0.14890-0.10690-0.10420-0.12120-0.13520MaxY0.099020.112700.086760.080370.093040.110000.090890.10390'.104300.084820.073830.092070.07252TableNRCQ7.20Max.RackHorizontal Disp.@Base-LC¹10GINNA3DWholePoolModel-WithoutPerimeter RacksLoadCase¹10-Unconsolidated Fuel-OBE-Mu=0.2MaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.030952-0.023853-0.012504-0.013445-0.013036-0.009797-0.009218-0.009839-0.0885110-0.0655011-0.0386912-0.1599013-0.14080MaxX0.030060.038860.010110.014010.011950.011940.078500.074070.071620.029480.091760.040290.01560MinY-0.09498-0.07780-0.02894-0.02704-0.03653-0.01566-0.02239-0.03278-0.02074-0.02159-0.03615-0.02132-0.02246MaxY0.023110.021930.016210.015550.016360.033230.010610.013210.014590.017490.007600.013120.01026

U.S.NRCG.S.VissingA-53October20,1997TableNRCQ7.21Max.RackHorizontal Disp.@Top-LC¹11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹11-MixedFuel-SSE-Mu=MixedMaximumRackHorizontal Displacements (XandY-(in))Rack,MinX1-0.059482-0.074773-0.197504-0.118305-0.042676.-0.133007-0.377308-0.317109-0.4374010-0.2429011,-0.3821012-0.4511013-0.37550MaxX0.193900.202900.025480.150000.220400.183900.141600.211200.341400.200000.371100.373200.32950MinY-0.27610-0.20820-0.11660-0.14470-0.17710-0.16050-0.07047-0.18530-0.25770-0.15430-0.20210-0.25110-0.28790MaxY0.177100.219400.153000.123600.069500.158500.217000.146500.144500.123300.124900.129600.11450TableNRCQ7.22Max.RackHorizontal Disp.Base-LC¹11GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹11-MixedFuel-SSE-Mu=MixedMaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.014452-0.015733-0.038144-0.014845-0.014656-0.018007-0.031938-0.113309-0.0373310-0.0329711-0.0654112-0.0815713-0.03724MaxX0.059820.045290.003700.018150.022870.022620.052430.002740.055490.080810.025040.031350.06029MinY-0.15590-0.10070-0.03602-0.03315-0.03013-0.03820-0.01931-0.09398-0.10420-0.06981-0.06771-0.06574-0.08769MaxY0.011500.031210.030540.021770.024010.032200.032620.034850.020300.041400.016110.005410.01894

U.S.NRCG.S.VissingA-54October20,1997TableNRCQ7.23Max.RackHorizontal Disp.@Top-LC¹12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹12-MixedFuel-OBE-Mu=MixedMaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.128002-0.027623-0.037874-0.034075-0.100006-0.106107-0.074968-0.122209-0.1364010-0.0771811-0.1844012-0.2211013-0.14960MaxX-0.050990.026080.039150.03728-0.00996-0.006850.102400.120100.167300.093920.186600.158800.11520MinY-0.13840-0.09272-0.05966-0.04433~-0.02910-0.04246-0.04333-0.10590-0.11620-0.10030-0.12090-0.22060-0.16270MaxY0.035720.024210.046530.045760.085730.093430.079830.075940.071650.048850.06964-0.015580.06942TableNRCQ7.24Max.RackHorizontal Disp.Base-LC¹12GINNA3DWholePoolModel-WithPerimeter RacksLoadCase¹12-MixedFuel-OBE-Mu=MixedMaximumRackHorizontal Displacements (XandY-(in))RackMinX1-0.010672-0.016133-0.004734-0.008275-0.011206-0.011987-0.004698-0.020379-0.0262910-0.0068611-0.0317312-0.0241313-0.02462MaxX0.000320.013110.005670.009500.003750.003190.070920.016500.018970.040840.019170.036700.01230MinY-0.02250-0.08309-0.01409-0.01946-0.00882-0.01166-0.00503-0.01667-0.02377-0.04963-0.01639-0.06873-0.01833MaxY0.011460.012420.009580.013290.019350.018120.039170.010720.006200.005550.00689-0.001890.00719

U.S.NRCG.S.VissingA-55October20,1997Ifthereisanimpactbetweenarackandareinforced concretespentfuelpool(SFP)wall:a)Providethemagnitude ofthehydrodynamic pressureusedintheSFPconcretewallanalysis.

b)Providethetemperature profileswithmagnitudes usedfortheSFPslabandwallsanalyses.

c)Providethecalculated safetymarginsforthefourwallsandtheslabwithrespecttothebendingandshearstrengthevaluations.

d)IftheANSYScodewasusedfortheanalysesoftheSFPwallsandslab,provideatechnical explanation onhowtheeffectsofreinforcement andconcretecrackingisJ'eflected inthecomputermodelingsimulations.

Submitthecompleteinputincluding theANSYSmodelwithallboundaryandloadingconditions usedfortheSFPanalysesofthewallsandslabona3.5-inchdiskette.

~RienThegapsbetweentheracksandbetweentheracksandthewallsaredesignedsuchthatforanyoftheseismic(OBEandSSE)events,theracksdonotimpactthespentfuelpoolwall.ThisistrueforbothresidentU.S.ToolandDieracksandalsoforthenewATEAracks.Thisisdiscussed inSection3.1,"Scope,"Section3.2.2,"Acceptance Criteria,"

andSection3.5.3.5,"Conclusion,"

oftheLicensing Report.ITheresultsofallthe3-Dwhole-pool multi-rack modelrunsdemonstrated thattherewerenotanyrack-to-pool wallimpacts(noranyrack-to-rack impacts)fromanyoftheanalyses.

Further,asstatedinSection3.5.3.1.14 onpage279oftheLicensing Report,therewerenoimpactsafterthecumulative efFectsof5OBE'splus1SSE.Theminimumracktopoolwallgapsexistingafterthecumulative efFectsof5OBE'splus1SSEwereasfollows:WestWall:EastWall:SouthWall:NorthWall:9.434in2.686in4.516in1.184inTheabovenumbersweretakendirectlyfromTables3.5-137and3.5-138onpage282oftheLicensing Report.

U.S.NRCG.S.VissingA-56October20,1997Indicatewhethertherewererack-to-pool wallandlorrack-to-rackimpacts fromthemulti-rack analysis.

~RyanThegapsbetweentheracksandbetweentheracksandthewallsaredesignedsuchthatforalloftheseismic(OBEandSSE)events,theracksdonotimpactthespentfuelwallnortheracksimpactanyotherracks.ThisistrueforbothresidentU.S.ToolandDieracksandalsoforthenewATEAracks.Thisisdiscussed inSection3.1,"Scope,"Section3.2.2,"Acceptance Criteria,"

andSection3.5.3.5,"Conclusion,"

oftheLicensing Report.Insummary,therewereneitheranyrack-to-rack noranyrack-to-pool wallimpactsfromanyoftheanalyses.

Further,asstatedinSection3.5.3.1.14 onpage279oftheLicensing Report,therewerenoimpactsafterthecumulative e6ectsof5OBE'splus1SSE.

U.S.NRCG.S.VissingA-57October20,1997SubmittheANSYSinputdataona3.5-inchdiskettefortheweldanalysis, thefuellrackirnpact analysisandtherackthermalstressanalysisasmentionedin theReference.

~Rq~n~g:Thelistingofthecomputerinputdataisprovidedona3.5-inchcomputerdisketteinASCIIformat.TheseinputarefortheANSYSVersion5.2.Thesedataareproprietary.

Theweldstressanalysisisdiscussed inSection3.5.3.1.3.

Theweldstressanalysiswasperformed usingclassical equations.

ThecomputerprogramANSYSwasnotused.TheDiskFilesInclude:DiskANSYSInputFiles,FileFUELLOAD.

TXTFuelRackImpactModelFileS3DPR8TO.

TXTRackThermalStressModel U.S.NRCG.S.VissingA-58October20,1997Discussthequalityassurance andinspection programstoprecludeinstallation ofanyirregular ordistorted rackstructure andtoconfirmtheactualfiielrackgapconfigurations withrespecttothegapsassumedin theANSYSanalysesafterinstallation oftheracks.ggg~n,:TheQualityAssurance procedures arediscussed inSection7.0oftheLicensing Report.Section7.2.13discusses theprocedures fortheHandling, Storage,andShipping.

Section7.2.14discusses theprocedures forInspection, Tests,andOperating Status.Thissectionalsodiscusses installation andtesting.Thefollowing QA/QCactionswillassurethatthefuelracksareproperlyfabricated andinstalled:

Dimensional inspections oftheracks,byATEAQualitypersonnel, willoccurduringtherackfabrication.

ASourceInspection willbeperformed byFTIQConthefuelstoragerackspriortoshipmentfromATEAinaccordance withaninspection planpreparedbyFTI.Thisinspection willverifythattheracksmeetdrawingrequirements, andwillcheckforwarpageanddistortion.

a)Theresultsoftheinspections willbedocumented onaninspection report.b)Non-conforming conditions willbepresented toATEAforcorrective action,inaccordance withtheATEAQAProgram.FTIwillfollow-up onthedisposition oftheATEAnon-conformance rep'ortsand,ifrequired, reinspect thefuelrackassemblies.

RGBQAwillperformsurveillance oftheinspection andpreparation forshipmentactivities toprovideadditional assurance thattheracksarefabricated asrequired.

2.Following shipmenttoGinnaandpriortoinstalling thefuelracks,areceiptinspection willbeperformed tocheckforshippingdamage.3.Theinstallation ofthefuelrackswillbeinaccordance withtheRG&E-approved FTISafety-Related QAProgram.ATraveler/Installation Procedure andinstallation drawingswillbeusedtoinstalltheracks.TheTraveler/Procedure willprovidedetailedinstruction tosequencetheinstallation andprovidedocumentation (measurements, verifications, sign-offs forstepcompletion, etc.)toshowthattheracksareproperlyinstalled.

TheTraveler/Procedure willincludein-process QCHOLDpointstoverifycriticalinstallation stepsandmeasurements andallowforRGBHOLDpoints.Theseprocedures willbepreparedbythecognizant FTIEngineering organization, inaccordance withtheFTIQAProgram,approvedbyFTIQA,andprovidedtoRGEforconcurrence.

5.Personnel willbetrainedandcertified, asrequiredbytheFTIQAProgram.The

U.S.NRCG.S.VissingA-59October20,19975.Personnel willbetrainedandcertified, asrequiredbytheFTIQAProgram.Theinstallation crewwillreceivemock-uptraining, pre-jobbriefings, andothertask-specific

training, asrequiredtosupportthetask.6.FTIQA/QCwillperformafinalinspection anddetailedreviewoftheinstallation procedure andsupporting documentation atthecompletion ofthetasktoverifythattheworkwasdoneinaccordance withtheapplicable procedure(s) andtheFTIQAProgram.In-process andfinalinspection willbeperformed inaccordance withapprovedinstallation procedures anddrawings.

Lackofdistortion andgapconfiguration willbearequirement oftheinstallation process.Specificdetailsthataddressdistortion, irregularities, andgapconfiguration inaccordance withtheStructural Evaluation intheLicensing Reportwillbedeveloped andapprovedpriortoinstallation oftheracks.8.Allinstallation activities willbesubjecttooversight andassessment byRGBQA,inadditiontoFTIoversight activity.

U.S.NRCG.S.VissingA-60October20,1997Providethelocations oftheleakchasesystemswithrespecttothelocations oftheracksandpedestals.

Reels/TheATEADrawingdescribed belowprovidesthelocationofleakchasesandalsothelocationofracksupportpads.Thereference drawingprovidessupportpadlocations forboththeresidentspentfuelstorageracksandthenewATEAracks.ATEADrawingNo.SA20.001.00000, Sheet2of2,RevisionD(Framatome Technology DrawingNo.02-1186074F-03).

Title,"Rochester Gas2ElectricCo.,R.E.GinnaNuclearPowerStationNo1,GeneralArrangement SupportPadsLocation."

U.S.NRCG.S.VissingA-61October20,1997Describethemethodofleakdetection intheSFPpoolstnIcture.

Ho>vareleaksmonitored?

Isthereanyexistingleakage?~R~nTheleakdetection systemconsistsofagridofrectangular indentations intheconcretebehindthesteelliner,locatedinthefioorofthespentfuelpitandrefueling canal.Theywereformedduringtheinitialconstruction ofthepit.Thegridisarrangedsuchthatanyleakageischanneled toacollection chamber,whichisperiodically checkedanddrainedofanycollected boratedwater,whichundergoes treatment.

Therehasbeenahistoryofleakagefromthespentfuelpit/refueling canalarea,andRG&Ebelievesithasbeendetermined thatthesourceoftheleakageisintherefueling canal.RG&Eistakingmeasurestostopthisleakageandwillmonitortheleakageagainatournextscheduled refueling outage(therefueling canalisnormallyemptyduringnormalplantoperations.)

U.S.NRCG.S.VissingA-62October20,1997utin14Indicatewhetherornotyouareplanningtoplaceanoverheadplatformontherackspermanently orastemporarystorage duringtheinstallation oftheracks.~RLnne:Thereisnoplantoplaceanoverheadplatformontherackseitherpermanently orastemporary storageduringrackinstallation.

n0U.S.NRCG.S.VissingA-63October20,1997'0'astherackdesigncontrolled mainlybytheresultsofthesingle-rack analysis?

Ifyes,wasthereanyphysicalrackdesignchangenecessitated bytheresultsofthemulti-rack analysis?

Asapplicable, describethechange(s).

Response

The3-Dsingle-rack dynamicanalysismodeland3-Dwhole-pool multi-rack dynamicanalysismodelsandtheirintendedusearedescribed inSection3.5(page72oftheLicensing Report)andSection3.5.2.3(pages106to109oftheLicensing Report).Asdescribed, the3-Dsingle-rack dynamicmathematical modelisusedforvarioussensitivity studies.Theloads,displacements, andassociated stressesareobtainedfromthe3-Dwhole-pool multi-rack dynamicmathematical model.Thelengthandlocationoftabs,theweldsize,theweldsizeofsupportlegs,etc.,aredesignedfromtheloadingsandstressesfromthe3-Dwhole-pool multi-rack dynamicanalysis.

Thegapsbetweentheracksandthegapsbetweentherackandthewallaredesignedtoprecludeanyimpactfromtheresultsofthe3-Dwhole-pool multi-rack dynamicanalysis.

Thesingle-rack modelwasusedforparametric studies.Thewhole-pool multi-rack modelwasusedfortheloadsanddisplacements.

Therefore, therackdesignwasnotcontrolled bytheresultsofthesingle-rack analysis.

Therewereseveralitemsthatweremodifiedbasedontheresultsofthemulti-rack analysis.

Thoseitemsareasfollows:a)Rackbaseplateweldswereadjustedtoensureadequatedesignmargins.b)Rackinter-connecting tabsandassociated weldswereadjustedtoensureadequatedesignmargins.

0 U.S.NRCG.S.VissingA-64October20,1997Describetheplanandprocedure forthepost-operating basisearthquake inspection offuelrackgapconfigurations.

~R~Lnn,RG&Ehasseismicinstrumentation locatedinthesub-basement oftheIntermediate Building.

Thatinstrumentation willactivateandrecordvariousdataoftheevent,thepurposeofwhichistodetermine ifanOperating BasisEarthquake hasoccurred.

Thatdataisprocessed bywayoftheTechnical Engineering Guidelines TEG2.0,"Response SpectrumCalculation,"

andTEG2.1,"SSEandOBEExceedance Determination".

Uponprocessing ofthedata,andifanOperating BaseEarthquake hadoccurred, adetailedstructural engineering inspection wouldbeconducted todetermine ifanystructural damagedidoccur.Althoughinspection ofthegapsisnotspecifically identified asarequirement ofthisinspection, thespentfuelpitandthecondition ofthe'spentfuelracks/fuel assemblies wouldreceiveclosescrutiny.

Theseinspections wouldbeperformed byProfessional Engineers experienced inseismicanalyses/design andalsotrainedasSeismicCapability Engineers, perrequirements oftheSeismicQualification User'sGroup(SQUG)GenericImplementation Program.