Regulatory Guide 1.60: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
Line 1: Line 1:
{{Adams
{{Adams
| number = ML003740207
| number = ML13350A358
| issue date = 12/31/1973
| issue date = 10/31/1973
| title = Design Response Spectra for Seismic Design of Nuclear Power Plants
| title = Design Response Spectra for Seismic Design of Nuclear Power Plants
| author name =  
| author name =  
| author affiliation = NRC/RES
| author affiliation = US Atomic Energy Commission (AEC)
| addressee name =  
| addressee name =  
| addressee affiliation =  
| addressee affiliation =  
Line 10: Line 10:
| license number =  
| license number =  
| contact person =  
| contact person =  
| document report number = RG-1.60, Rev 1
| document report number = RG-1.060
| document type = Regulatory Guide
| document type = Regulatory Guide
| page count = 7
| page count = 6
}}
}}
{{#Wiki_filter:Revssion I
{{#Wiki_filter:t*lAGy.
                                                                                                                                                        December 1973 U.S. ATOMIC ENERGY COMMISSION
                                    REGULATORY                                                                                          GUIDE
                                    DIRECTORATE OF REGULATORY STANDARDS
                                                                        REGULATORY GUIDE 1.60
                                            DESIGN RESPONSE SPECTRA FOR SEISMIC DESIGN
                                                                  OF NUCLEAR POWER PLANTS


==A. INTRODUCTION==
C0\\oU.S. ATOMIC ENERGY. COMMISSION:_.;:::
extensive study has been described by Newmark and filurne in references 1, 2, and 3. After reviewing these Criterion 2, "Design Bases for Protection Against                                         referenced documents, the AEC Regulatory staff has t                                                              determined as acceptable the following procedure for Natural Phenomena ' of Appendix A. "General Design defining the Design Response Spectta representing the Criteria for Nuclear Power Plants," to 10 CFR Part 50.                                          effects of the vibratory motion of the SSE, 1/2 the SSE,
; ', rs
"Uicensing of Production and Utilization Facilities:"                                            and the Operating Basis Earthquake (OBE) on sites requires, in part, that nuclear power plant structures,                                          underlain by either rock or soil deposits and covering all systems, and components important to safety be                                                  frequencies of interest. However, for unusually soft sites, designed to withstand the effects of earthquakes.                                                modification to this procedure will be required.
: DIRECTORATE OF REGULATO RY STANDARDS
REGULATORY GUIDE 1.60
DESIGN RESPONSE.SPECTRA FOR SEISMIC.DESIGN
OF NUCLEAR POWER PLANTS
Ociober 1973 WIDE
SA..A
INTRODUCTION
Criterion 2, "Design Bases for Protection Against Natural Phenoniena," Of 'Appendix A, "General Design Criteria for Nuclear.Power Plants." to 10 CFR Part 50.


Proptsed Appendix A, "Seismic and Geologic Siting Criteria." to 10 CFR Part 100, "Reactor Site Criteria,"                                                In this procedure, the configurations of the would require, in part, that the Safe Shutdown                                                    horizontal component Design Response Spectra for each Eartlhquake (SSE) be defined by response spectra                                                  of the two mutually perpendicular horizontal axes are co, responding to the expected maximum ground shown in Figure I of this guide. These shapes agree with aiccelcrations. This guide describes a procedure those developed by Newmark, Blume. and Kapur in acceptable to the AEC Regulatory staff for defining response spectra for the seismic design of nuclear power                                          ,eference 1. In Figure I the base diagram consists of three parts: the bottom line on the left part represents plants. The Adviory Committee on Reactor Safeguards the maximum ground displacement, the bottom line on has been consulted concerning this guide and has concurred in the regulatory position.                                                            the right part represents the maximum acceleration, and the middle part depends on the maximum velocit
L'.'icensing of Production and Utilization Facilities."
requires, in part, that nuclear power plant structures, syYStems, .,and components important to safety b'h designed to -withstand. the' effects of earthquakes.


====y. The ====
Proposed Appendix A, "Seistnic and Geologic Siting Criteria,'"to :10 CFR Part .100, "Reactor Site Crinteria,i.
 
*
Would require, in part, that the Safe Shutdown Earthquake (SSE)
be defined by response spectra correspoanding 'to the expected maximum ground
,
acc:elerations..,This guide. describes
 
====a. piocedure====
..
.acceptable:
to the 'AEC ARegulatory staff- for defining S espqnsei spectra for the seismic design of nuclear power
1 kplants.
 
The Adviory Committee on Reactor Safeguards bas been consulted concerning this guide and has concurred in the regulatory position.
 
'


==B. DISCUSSION==
==B. DISCUSSION==
horizontal component Design Response Spectra in Figure I of this guide correspond to a maximum In order to approximate the intensity and thereby                                          horizontal rou'nd accehiration of 1.0 g. The maximum ground displacement is taken proportional to the estimate the maximum ground acceleration' of the maximum ground acceleration, and is set at 36 inches expected strongest ground motion (SSE) for a given site,                                          for a ground acceleration of 1.0 g. The numerical values proposed Appendix A to 10 CFR Part 100 specifies a of design displacements, velocities, and accelerations for number of required investigations. It does not. however,                                          the horizontal component Design Response Spectra are give a method for defining 1he response spectral obtained by multiplying the corresponding values of the coriesponding to the expected maximum ground                                                      maximum ground displacement and acceleration by the acceleralion.
in o.rder. to approximate the intensity and thereby estimate, the maximum :.gr6tund' acceleriationo Of the:
.expcted strongesýt..ground 'm'tion,(SsE) for a given site,
:
pr.oposed -Append*- A, to I 0.'.CFR- Part 100. specifies. a number of,'required investigations. It does not, however.
 
giye a -method for 'defining.. the response spectral corresponding to 'tile expected nmaximunt. ground acceleration"
The recorded ground acccleratioihs and response spectra of' past. earthquakes provide a, basis for the rational design of structures to resist earthquakes. The Design Response Spectra,' .specified for design purposes, can be developed.statistically from.response spectra of.
 
past strong-motion earthquakes (see' reference I).. An See definitions at the end of the guide.
 
.extensive study.'has hlcn described by Newmiaik and Blunie in re!ferences I. 2, .and After ieviewing th'se reterenced documents, tilt AE(
RegtIu10toiy 'staff has determined as acceptahle tile fI llowicni procedilre 1or'
defining the Design RIeslponse Spectra representing the effects of the vibratory 111i00 Otf thi SS[, 1./2 the SS!.',
and the Operating Basis Earthquake (0111)
on sites underlain by either rock or sOil deIposits d:l CoVerfinig All frequencies of inter.st. However, for uliustially soft site.
 
.modification to this procedure will.he requited.
 
In this procedure,
* the .configurali6ios of tihe horizonial. component Design Response Spectra i'm each of the two: mutually perpendicular honizontal axes are shown in Figure 1. of this guide. These sh lpe% agree wilh
'th*se developed by', Newmnz'k, Blune. and Kapur in reference 1. In Figure 1 tihe ase diagram consists of three parts: the bottom. line:on he left part represents the maximum ground displacement, the bottom line on the right part represents, the maximum a celeration, and ithe middle part depends. on the maximum velocity. Thle horizontal component Design Response Spectra in Figure I of tids guide correspond' to a 'maximuin horiznital ground acceleration of 1 .0 g. "rlie maxintum
,ground displacement. is. uiken.'propportional to the maximum ground accekeration. and is'set.at 36 inches for'a.ground "acceleratioin of1.tI,
0 g."Thc nunierical values of design displacements, velocities, and accelerations for the horizont-al component Design Response Spectra are obtained by multiplying the corresponding values of the maximum ground displacement and acceleraliol by the factors given in Table I of this guide. Tile displacenient region lines of the Design Response Spectra ame parallel to the maximum ground displacement line and are shown. un lhie left of Figure I. The velocity region lines sl.ope. downward from a. frequency nf 0.25" cps (control point D)'to a. frequency of 2.5 cps (control point C) and are shown at. the 'top. The remainting two sets' of" lines between the frequencies of 2.5 cps and 33 cps (control point A), with a break ata freqtuency cf 9 cps (control USAEC REGULATORY GUIDES
Coplw of publithed guide. may be obtained by request indicating the dwvitant desired to the US. Atomic Energy Commistion. Washinglon. 0,C.. 7D545, ReguLatory Guides ae Issued to. descibe and make arvailable to the public Attention: Director of Regulatory Standards. Comments arml sugpltrinni lor methods aceptable w the AEC Regulatory tiaff of implemnenting specific parns of Imnorovenmerls in these guldot *re encouraged and should ae sent to the Secretary the Coammmion's regulations, to delineate techniques used by the staff in of the Comnmiuion, U.S.. Atomic Energy Commision, Washington. D.C. 20545.
 
vellualng specilic problenr'ofa.postulated accidents, or to provide guidance to Attention: Chief. Public Procetlings Staff.
 
liegplcanl.
 
Regulatory Guldes are not tubslltuie' for regulations and compliance with them Is not required. Methods 'end. olutlont different'from those eat out in The guides are issued on she following ten broad divisions:
the.gulde will be acceptable It they provide a basis for the findings requisite to the suamnce or omlnmlnuani of a permit or Ilcense by the Commission.
 
1. Pow" Reactors
*
 
===6. Producst===
2. Research and Test Reactots
*
 
===7. Transpotation===
.3. Fuels and Materials Facilitis
..
8' Occupational Health Pwwus dsd guides will be revised periodically, in appropriat
 
====e. to aecommodate ====
4. Environmental and Siting
"
9. Antitrust Review wornmntS ead to reflect new Inforn-llon or5,swrne.
 
"
.
. Materials and Plan


factors given in Table I of this guide. The displacement region lines of the Design Response Spectra are parallel Tit recorded ground accelerations and response                                            to the maximum ground displacement line and are spectlra of past earthquakes prwvide a basis for the                                              shown on the left of Figure I. The velocity region lines ralional designi of structures to resist earthquakes. The slope downward from a frequency of 0.25 cp' (control Design Response Spectra.' specified for design purposes,                                          point D) to a frequency of 2.5 cps (control point C) and can he developed statistically fromn response spectra of                                          are shown at the top. The remaining two sets of lines past strong-notion earthquakes (see reference I). An                                              between the frequencies of 2.5 cps and 33 cps (control I Sce deftintions at the end of the guide.                                                      point A). with a break at a frequency of 9 cps (control U.SAJEC REGULATORY GUIDES                                            Carimis d11rd of Published  guindesmamy,be obtained by request ..indictin Ia the US. Atcn* Energy Commission. WVahingR          o.
====t. Protection ====
1


the diviti0011 D..    2045.
===0. General===


Itefatory      Guides we iued K
F-
nutod eco'dht t0 the ASCnalhods      ~ to describe
point W. constituit:
                                              ~
tile acceleration region h
                                            IM~tY    an~d
ot' the horizontal I)csrgn Response Spectra. Fot frequencies Ihigher than 33 cps. the maximum ground acceleration line represents the Design Response Spectra.
                                                    ~~ ~
                                                    etef safo acceptable            ~    ~  to the *puc etlebleilgcetl, So @mks mmtes            ~
                                                                              e-ipatof  ~      £,Attenon:
                                                                                                  ~ othsACfsito
                                                                                              ~ Iiomnxiini--
                                                                                                                          Regulatory Suteri


====e. Co tIIwyC====
The vereial corrrponent I.sign Response Spectra
                                                                                                              ~ ~ of~~~ecn~e~
.corrtesponlding to tile IllaxiuIIInIl hIri:minrlal
                                                                                                        ~ irector          ed wowur              ~e~o.Whtn ew    ts end tsugostiont2 for end should be tan? to the..sacmrtevy wn    t utions. to delieate technicue ubed by the staff m                      of the thm CoinoswAt eZlustmV asedhic Problem or Postulted ccontt. o to mOmds gusdeaw to                            Atote ntm . Chief. Public IN    MP Sitff.
,rtlnd acceh'rafioi of I.0 g are slhown in Figure 2 of ih' is guide.


-Iocantt. RegutOrV Guido owe not sublttuls fr              regultions and cowp4m with themi :.not Moaweed. Methods, and Solutins~ different from those matout at                The guidnd we aIssed on the f61otlgoaptn brood dit.,.orn he.is tn            w11 be  cemeptle  tIf    they  t cd    Ibais flo  ths fiditip    equiertO so INeismuwn of sonft~hunce Of 0 p0.915t of be~a            by the Cormnkis.on                    I. P Power      tt Asissa                            Products
The nuneltici al vlues of design displacements. veloci ics.
                                                                                                  2. Researh eilM Test Iteecto.              7. Tru..mtel"nw
                                                                                                  3. Puet and Mevrak Faecilties            8. occuptional Medth Ptbtahed guodasmil        b ewited,      wetldceltty. as eWoprmo.looccommodem                  4. Environmatot and SitPi*t,            1. Antitrust Re 0
torimamnan WM      withite Mw sottorfft$Olt or OAu~ione.                                           Mats, ink and Plans PIsmsctions      I


====a. Goneref====
and acceleratiotis inl these spetra are obtained by antrltiivying tile conrespol.Jing values of" the lrlaxitIniun lihri:mital gr.u mIud moriott (acceleration
= 1.0 g and displacemotw t = 3(N in.) hy the tactors given in Table II of lhi, guide. T"he displacentrertt reliunt lines of tlle Design Re-sponse Spectr;t :are parallel to the mnaxirritimum ground diisplacemtne line and are sMiomin on the left of Figure 2.


point B). constitut; the acceleration region of the            earthquake or (2) have physical characteristics that horizontil Design Response Spectra. For frequencies            could significantly affect the spectral pattern of input higher than 33 cps. the maximumnt ground acceleration          motion, such as being underlain by poor soil depxosts.
vhe velocity region lines slope downward f'rom a I'requency t' 0.25 cps (CIICttti l pohlt DI) to :1 fleqtuency oIf 3.5 cps (control point C) and are shown at the top.


line repfc.ents the Design Rcptu.nw Spectra.                   the procedure described above will not appl
Titi reniahitnn twIO sets of lines bet weeni th ie frequencies of" 3.5 cps and 3,3 cps Icontrol poini A). withI a break at tile I'reqtlellcv ot Q cps (conitmll point 13). contllitute tIle accelera.li n tetioti o)f' tihe veefical Design Response Spectra. It shliold be noted tltt tre vertical Design Response Spectra values are 2/3 tl.,)se of the horizontal Design Resp-nqt e Spectra for frequencies less than 0.25:
I'm Ifrequencies higher tli:m 3.5. tiley are tIle s*me. wlhile the ratio varies between 2/3 arid I I'Mr frceuiencies between 0.25 and 3.5. For frequencies higher thtan 33 cps. the Design Response Spectra ftollow tile rrraxirnrnl giound :acceleration lirte.


====y. In these====
The horizontal antd vertical comnponent Design Respomn:e Spectra irt Figures 1 and 2. respectively, of this guide cirrespond to a tixitimuri horizontal ground acceleratiin of I 1.) e.
        "flih vertical component Design Response    Spectra cases, the Design Response Spectra should be developed individually according to the site characteristics.


K
FFr sites with different taccelen*:tior% values specit'ied b'or the design earthquake.
  ".orresponding to the maximum horizotd            ground a'cekreuti's of 1.0 g are shown in Figure 2 of this guid


====e.     ====
Ile Design Response Spectra should be linearly sacled Ifrom Fiigures I mrid 2 iti proportion to the specifled tmaximtumn horizmontal ground acceleratio
 
====n. For sites that====
( I* are relat ivelv close to tile epicenter of :ai expected earthquake or (2)
have physical characteristics thfat could significanrtly afT'ct tile spectial pattern (f input motion, such as heing underlain by poor soil deposits.
 
Ilte procedure described above will not apply. Irt these cases, ile D)esign Resixrse Spectra should be developed iitdi\\idua.ly acc*i ding to thie site characteristics.


==C. REGULATORY POSITION==
==C. REGULATORY POSITION==
The numerical values of design displacements, velocities, and accelerations in these spectra are obtained by              1. The horizontal component ground Design Response multiplying the corresponding values of the maximum            Spectra, without soil-structure interaction effects, of the hJri:,ontal ground motion (acceleration = 1.0 g and            SSE, 1/2 the SSE. or the OBE on sites underlain by rock displacement = 36 in.) by the factors given in Table II of      or by soil should be linearly scaled from Figure I1 in this guide. The displacement region lines of the Design        proportion to the maximum horizontal pound Response Spectra are parallel to the maximum ground            acceleration specified for the earthquake chosen. (Figure displacement line and are shown on the left of Figure 2.        I corresponds to a maximum horizontal ground The velocity region lines slope downward from a                acceleration of 1.0 5 and accompanying displacement of frequency of 0.25 cps (control point D) to a frequency          36 in.) The applicable multiplication factors and control of 3.5 cpa (control point C) and are shown at the top.          points are gven in Table I. For damping ratios not The remaining two sets of lines between the frequencies        included in Figure I or Table I, a linear interpolation of 3.5 cps and 33 cps (control point A), with a break at        should be used.
I .
Tlie horizontal comtponrent ground 1elsign Response Spectra. without soil-structn tre irtteractiorn effects, of the SSIE, 112 the SSE, Otr the OBE on sites underlain by rock or by soil should he linearly scaled from Figure 12 in propOrtiOrr to tire rnt:ixiruittn lt horizortmal ground acceleration specilied for tIre ear thlquake close
 
====n. i Figure I ====
coitrespt;Ids to a tntaxinulti horimrilal ground acceler;tiont ofI 1.t)
aind ,,ccomtlpanlyitig displacerternI of
36 irt.l The applicable multiplicatiot fI'ctors ald corttrol points are given ill Table I. For darmping ratios tot inchludd itt Fi.mrc I or Tible I. at line:tr interpolation should be used.
 
2.
 
The vertical c nmttment ground Design Resporrse Spectta. without soil-stiructure interaction effects, of1 tite SSE, 1/2 tite SSI.E, or the OWI" on sites underlain by rock or hr soil should lie line:irlv scaled fronni Figure 22 ill proportion to tlt illraXilliLlin horizontal grouind acceletafion specified for tile earthlquake chosen. (Figure
" is based on a maxitimum /iri-'iial Sround acceleraiion of 1 .0 g and accomtpanying displacement of 3R in.) The applicable muliiplication I'actors arnd control points are given ill Table II. For dalmping ratios riot incltded irt Figure 2 or Table II, a linear irierpolatiin shiould be used.


the frcquency of 9 cpa (control point B), constitute the acceleration region of the vertical Design Response            2. The vertical component ground Design Response Spectra. It should be noted that the vertical Design            Spectra, without soil-structure interaction effects, of the Respunse Spectra values are 2/3 those of the horizontal        SSE. 1/2 the SSE, or the OBE on sites underlain by rock D'esiln Response Spectra for frequencies less than 0.25;        or by soil should be linearly scaled from Figure 22 in for frequencies lugher than 3.5, they are the same, while      proportion to the maximum horizontal grouMd the ratio varies between 2/3 and I for frequencies              acceleration specified for the earthquake chosen. (Figure between 0.25 and 3.5. For frequencies higher than 33            2 is based on a maximum hw            algm d acdcrajn cpM. the Design Response Spectra follow the maximum              of 1.0 g and accompanying displacement of 36 in.) The pound acceleration line.                                        applicable multiplication factors and control points are given in Table 11. For damping ratios not included in The horizontal and vertical component Design              Figure 2 or Table 11, a linear interpolation should be Response Spectra in Figures I and 2, respectively, of this      used.
2Tlhis does nor a pply to sites which It ) ar relalively clno to Ire epicenter ot an expecled eanrthquakc or (21 which have physic.il characteristics thil could significantly affect tite spectral riombinatioin o1" input molion. The D)esign Rcsponse Spectra for such sites irould tie developed on a case-by-case
1srsis.


guide correspond to a maximum horizontal ground acceleration of 1.0         .* For sites with different acceleration values specified for the design earthquake,            'This does not apply to sites which (1) an relatively com the Design Response Spectra should be linearly scaled          to the epcenter of an expected earthquake of (2) which haie from Figures I and 2 in proportion to the specified              physical characteristlca that couMd nifcantly affect the spectral ,rmbinatia of input motion. The Desip Respuotn maximum horizontal pound acceleration. For sites that            Spectra for such sites should be developed on a cam-by-cam (I) are relatively close to the epicenter of an expected
I .0.-2
                                                          1.60.2


DEFINITIONS
DEFINITIONS
                                                              I    relationship obtained by analyzing. evaluating, and Respone Spectrum mcans a plot of the maximum                        statistically combining a number of individual response response (acceleration. velocity. or displacemnct) of a              spectra derived from the records of significant past family of idealized single-depee-of-fieekrcn damped                  earthquakes.
Response Spectrum means a rlot
'l f
lite maxi1mum response (acceleration. velocity, or displacement) Of a family of idealized sinoe-degree.of.fiecdomn damped oscillators as a function of natural irequencies (or periods) of the oscillators to a specified vibratory nmotion input a( their supports. When obtained from a recorded earthquake record, the response spectruin lends to be irregular. with a mlnihet of peaks and valleys.
 
Design
,,soonse Spectrum is a relatively smototh relationship obtained by analyzing, evaluating. and statistically combining a number of individual icspi-mse spectra derived from the records of siguificamit past eart hquakes.


oscillators as a function of natural frequencies (oi periods) of the oscillators to a specified vibratory                  Maximum (peak) Ground Accderatio specified for a motion input at their supports. When obtained from a                  given site means that value of the acceleration which recorded earthquake record, the. response spectrurr                  corresponds to zero period in the design resporse spectra tends to be irregular, with a number of peaks ane                    for that site. At zero period the design response spectra valleys.                                                             acceleration is identical for all damping values and is equal to the maximum (peak) gpound acceleration Spectrum is a relatively smoot) I                specified for that site.
Maximum (peak) Ground Acceleration specified for a given sito means that value of the acceleiatioa which corecslx)nd-s to zero period in the design response spectra for that site. At zero period lie d&sign response sp-.clra acceleration is identical for all damping "alues and is equal to the maximum (peak)  
ground acceleration specified for that site.


Design Resp..
TABLE I
                                                                TABLE I
HORIZONTAL DESIGN RESPONSE SPECTRA
                                  HORIZONTAL DESIGN RESPONSE SPECTRA
RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
                    RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
FOR CONTROL POINTS
                                                  FOR CONTROL POINTS
SPercent Amplification Factors for Control Points of Acceleration'  
                                                Aenplificton Factors for Control Points of                       Acmalation" '                OiqImnment''
2 Displacement'  
                          Omanw0n        A(33 qxl        B(9 qx)     C42.5 cpd        W)(0.2S qchI
2 Critical Damping A(33 cls)
                            0.5             1.0           4.96           5.95           3.20
B(9 cps)  
                            2.0             1.0           3.54           4.25           2.50
C(2.5 cps)  
                            S.0             1.0           2.61           3.13           2.05
D(0.25 cps)
                            7.0             1.0           2.27           2.72           1A88
0.5  
                            10.0             1.0           1.90           2.28           1.70
1.0  
                          Maximum gound disyacament is taken proportional to matmwm ground accelciation, and Is 36 In. for pround acceleration of 1.0 gravity.
4.96  
5.95  
3.20
2.0  
1.0  
3.54  
4.25  
2.50
5.0  
1.0  
2.61  
3.13  
2.05
7.0  
1.0  
2.27  
2.72 I .88
10.0  
1.0  
1.90  
2.28  
1.70
'Maximum  
,sound displacement is taken proportional to maximum ground acceleration, and is 36 in. for ground acceleration of 1.0 gravity.


sAbotimtion and displacement anplifkztion factor are taken from gecoiunmastions Stan in teforence 1.
2Acoeleration and displacement amplification factors are taken from recommendations given in reference I.


1.60-3
1.60-3


TA13LE II
VERTICAL DESIGN RESPONSE SPECTRA
VERTICAL DESIGN RESPONSE SPECTRA
                    RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS
                                              FOR CONTROL POINTS
FOR CONTROL POINTS
                              Perosnt            Amplrification Fcitors for Control Points Critlcal                  Acooeratioo' 2                               s ai Daf*ping      A(33 cps)     8(9 cps)     C13.5 cm)     D(0.25 cps)
Percnt Ariplificaiion Factors for Control Points of Criticr'l Ac'*icr
                                  0.5           1.0          4.96          5.67'          2.13
 
                                  2.0          1.0          3.54          4.05          1.67
====a. On D spllccmnt ====
                                  5.0            .0           2.61          2.98          1.37
2 Dampring A(33 :n*)  
                                  7.0          1.0           2.27          2.59          1.25
8(9 cp)  
                                10.0          1.0            1.90          2.17          1.13
C(3.5 cps)  
                            'Maximum ground dispilacbment is taken proportional to maximum gound acceleration and is 36 in. ftw ground acceleration of 1.0 gravity.
D (0.2 5 c1 o.g I .A)
4,%o
5.95
.0  
1.0  
3.54
4.2.


s Acceleration amplhllation factors for the vcfti'al design response spectra arc equal to those for horizontal design re.sponse spcctra at a given frequency. whereas dixplacement ampltfcation f'actms are 2/3 those rot hod znnlal design response spectra. These ratios between the amplification factor for the two desia response spectra are In agreement with thou recommended n rceference I.
I.07
5.0
1.0
2.(11
3.13
1. 37
7.0
I .0
2.27
2.72 I.25
10.0
1.0
I.90
2.2S
SMaximum ground displawcement ik* Ik.n proportional to na \\imumn gpund acckleraion and is 36 in. fIor cround accelcration tit 1.0 gr.vity.


3Tbew values were changed to nake thb tabl consittsnt with the dis.
2 Accelera tion amplificalion lactots *or tilc I ical design rep'.nse slctra are equal 1o iho1c oS
f O'h ril(ontia design reslidnwc pretra. %%hercdis displaceient amplification faitorq are 2/3 those *f" hori/tnral dcsign rekponc
:rpccira. Thcsc~. ratiois belwccn tie arnplifiwation f'aciors ofl the t.o dcsicn rc.pons spectra are in agrceenln with those recommetnded in re.l'cretw I,
REFERENCES
1. Newmark, N. W.. John A. Blume. and Kanwar K.


cussim of vertical cnmponents in Section B of this guide.
Kapur. "Design Responsc Spectra for Nuclear Power Plants," ASCE Structural Engineering Nleeting. San Francisco. April 19*73.


REFERENCES
2.
I. Newnark. N. M.. John A. Blume. and Kanwar K.
 
N. N1. Newmark Consulting Engineering Services. "A
Study of' Vertical and Horizontal Earthquake Spectra.*' Urbana. Illinois. USAEC Corntra.c No.


Kapur, "Design Response Spectra for Nuclear Power Spectra," Urbana, Illinois, USAEC Contract No.
AT(4'?-5)-26o7. WASI.1 255. April 1073.


AT(49-$)-2667, WASH-1 255, April 197
3, John A. Blume & Associates, "Recommendations for Shape of Earthquake Response Spectra," San Francisco.


===3.    K===
California.
  Plants," ASCE Structural Engineering Meeting, Sin Francisco. April 1973.                                          3. John A. Blume & Associates, "Recommendations for Shape of Earthquake Response Spectra," San
2. N. M. Newmark Consulting Engineering Services, "A                    Francisco, California, USAEC Contract No.


Study of Vertical SW- Horizontal Earthquake                          AT(49-$)-301 I. WASH-1254. February 1973.
USAEC
Contract No.


1.604
AT(49-5.)-301 1. WASH-1254. February 19.73.


0.1    02      0.s    1      2        5    10    2D      50    100
a8
                              FRr WUENCY. cps FIGURE 1. HORIZONTAL DESIGN RESPONSE SPECTRA - SCALED TO 1g HORIZONTAL
1.60-4
          GROUND ACCELERATION


1000X
1000
500
500
                                          010e
200
              4p I5
100
  0.1   0D2    0.     1     2         5     10     20       50   100
>:
                              FREOUENCY. cp, FIGURE 2. VERTICAL DESIGN RESPONSE SPECTRA   - SCALED TO ig HORIZONTAL
*
            GROUND ACCELERATION
/\\
 
-,.
UNITED STATES            SFIRSTCLASS MAIL
U
NUCLEAR REGULATORY COMMISSION      POSTAGE III FES PAID
*
      WASHINGTON, D.C. 20555            u
S20-
-
5
5
1110
0.1  
0.2
0.5
1  
2  
5  
10  
20  
50  
100
FREQUENCY. cps FIGURE I. HORIZONTAL DESIGN RESPONSE SPECTRA -SCALED  
TO ig HORIZONTAL
GROUND ACCELERATION
a


====s. Nc WASH D C====
1000
                                    Pf RMI1 No L
100
          OFFICIAL BUSINESS
0.'
    PENALTY FOR PRIVATE USE. $300}}
50
.5 CC
100
50
2i
20
GR
UN
AC
EL RAIO
, * .*/ ',FREQUENC,L cps ___
FIGURE 2. VERTICAL DESIGN RESPONSE SPECTRA-SCALED TO lg HORIZONTAL
GRCUND ACCELERATION
00}}


{{RG-Nav}}
{{RG-Nav}}

Revision as of 00:17, 11 January 2025

Design Response Spectra for Seismic Design of Nuclear Power Plants
ML13350A358
Person / Time
Issue date: 10/31/1973
From:
US Atomic Energy Commission (AEC)
To:
References
RG-1.060
Download: ML13350A358 (6)


t*lAGy.

C0\\oU.S. ATOMIC ENERGY. COMMISSION:_.;:::

', rs
DIRECTORATE OF REGULATO RY STANDARDS

REGULATORY GUIDE 1.60

DESIGN RESPONSE.SPECTRA FOR SEISMIC.DESIGN

OF NUCLEAR POWER PLANTS

Ociober 1973 WIDE

SA..A

INTRODUCTION

Criterion 2, "Design Bases for Protection Against Natural Phenoniena," Of 'Appendix A, "General Design Criteria for Nuclear.Power Plants." to 10 CFR Part 50.

L'.'icensing of Production and Utilization Facilities."

requires, in part, that nuclear power plant structures, syYStems, .,and components important to safety b'h designed to -withstand. the' effects of earthquakes.

Proposed Appendix A, "Seistnic and Geologic Siting Criteria,'"to :10 CFR Part .100, "Reactor Site Crinteria,i.

Would require, in part, that the Safe Shutdown Earthquake (SSE)

be defined by response spectra correspoanding 'to the expected maximum ground

,

acc:elerations..,This guide. describes

a. piocedure

..

.acceptable:

to the 'AEC ARegulatory staff- for defining S espqnsei spectra for the seismic design of nuclear power

1 kplants.

The Adviory Committee on Reactor Safeguards bas been consulted concerning this guide and has concurred in the regulatory position.

'

B. DISCUSSION

in o.rder. to approximate the intensity and thereby estimate, the maximum :.gr6tund' acceleriationo Of the:

.expcted strongesýt..ground 'm'tion,(SsE) for a given site,

pr.oposed -Append*- A, to I 0.'.CFR- Part 100. specifies. a number of,'required investigations. It does not, however.

giye a -method for 'defining.. the response spectral corresponding to 'tile expected nmaximunt. ground acceleration"

The recorded ground acccleratioihs and response spectra of' past. earthquakes provide a, basis for the rational design of structures to resist earthquakes. The Design Response Spectra,' .specified for design purposes, can be developed.statistically from.response spectra of.

past strong-motion earthquakes (see' reference I).. An See definitions at the end of the guide.

.extensive study.'has hlcn described by Newmiaik and Blunie in re!ferences I. 2, .and After ieviewing th'se reterenced documents, tilt AE(

RegtIu10toiy 'staff has determined as acceptahle tile fI llowicni procedilre 1or'

defining the Design RIeslponse Spectra representing the effects of the vibratory 111i00 Otf thi SS[, 1./2 the SS!.',

and the Operating Basis Earthquake (0111)

on sites underlain by either rock or sOil deIposits d:l CoVerfinig All frequencies of inter.st. However, for uliustially soft site.

.modification to this procedure will.he requited.

In this procedure,

  • the .configurali6ios of tihe horizonial. component Design Response Spectra i'm each of the two: mutually perpendicular honizontal axes are shown in Figure 1. of this guide. These sh lpe% agree wilh

'th*se developed by', Newmnz'k, Blune. and Kapur in reference 1. In Figure 1 tihe ase diagram consists of three parts: the bottom. line:on he left part represents the maximum ground displacement, the bottom line on the right part represents, the maximum a celeration, and ithe middle part depends. on the maximum velocity. Thle horizontal component Design Response Spectra in Figure I of tids guide correspond' to a 'maximuin horiznital ground acceleration of 1 .0 g. "rlie maxintum

,ground displacement. is. uiken.'propportional to the maximum ground accekeration. and is'set.at 36 inches for'a.ground "acceleratioin of1.tI,

0 g."Thc nunierical values of design displacements, velocities, and accelerations for the horizont-al component Design Response Spectra are obtained by multiplying the corresponding values of the maximum ground displacement and acceleraliol by the factors given in Table I of this guide. Tile displacenient region lines of the Design Response Spectra ame parallel to the maximum ground displacement line and are shown. un lhie left of Figure I. The velocity region lines sl.ope. downward from a. frequency nf 0.25" cps (control point D)'to a. frequency of 2.5 cps (control point C) and are shown at. the 'top. The remainting two sets' of" lines between the frequencies of 2.5 cps and 33 cps (control point A), with a break ata freqtuency cf 9 cps (control USAEC REGULATORY GUIDES

Coplw of publithed guide. may be obtained by request indicating the dwvitant desired to the US. Atomic Energy Commistion. Washinglon. 0,C.. 7D545, ReguLatory Guides ae Issued to. descibe and make arvailable to the public Attention: Director of Regulatory Standards. Comments arml sugpltrinni lor methods aceptable w the AEC Regulatory tiaff of implemnenting specific parns of Imnorovenmerls in these guldot *re encouraged and should ae sent to the Secretary the Coammmion's regulations, to delineate techniques used by the staff in of the Comnmiuion, U.S.. Atomic Energy Commision, Washington. D.C. 20545.

vellualng specilic problenr'ofa.postulated accidents, or to provide guidance to Attention: Chief. Public Procetlings Staff.

liegplcanl.

Regulatory Guldes are not tubslltuie' for regulations and compliance with them Is not required. Methods 'end. olutlont different'from those eat out in The guides are issued on she following ten broad divisions:

the.gulde will be acceptable It they provide a basis for the findings requisite to the suamnce or omlnmlnuani of a permit or Ilcense by the Commission.

1. Pow" Reactors

6. Producst

2. Research and Test Reactots

7. Transpotation

.3. Fuels and Materials Facilitis

..

8' Occupational Health Pwwus dsd guides will be revised periodically, in appropriat

e. to aecommodate

4. Environmental and Siting

"

9. Antitrust Review wornmntS ead to reflect new Inforn-llon or5,swrne.

"

.

. Materials and Plan

t. Protection

1

0. General

F-

point W. constituit:

tile acceleration region h

ot' the horizontal I)csrgn Response Spectra. Fot frequencies Ihigher than 33 cps. the maximum ground acceleration line represents the Design Response Spectra.

The vereial corrrponent I.sign Response Spectra

.corrtesponlding to tile IllaxiuIIInIl hIri:minrlal

,rtlnd acceh'rafioi of I.0 g are slhown in Figure 2 of ih' is guide.

The nuneltici al vlues of design displacements. veloci ics.

and acceleratiotis inl these spetra are obtained by antrltiivying tile conrespol.Jing values of" the lrlaxitIniun lihri:mital gr.u mIud moriott (acceleration

= 1.0 g and displacemotw t = 3(N in.) hy the tactors given in Table II of lhi, guide. T"he displacentrertt reliunt lines of tlle Design Re-sponse Spectr;t :are parallel to the mnaxirritimum ground diisplacemtne line and are sMiomin on the left of Figure 2.

vhe velocity region lines slope downward f'rom a I'requency t' 0.25 cps (CIICttti l pohlt DI) to :1 fleqtuency oIf 3.5 cps (control point C) and are shown at the top.

Titi reniahitnn twIO sets of lines bet weeni th ie frequencies of" 3.5 cps and 3,3 cps Icontrol poini A). withI a break at tile I'reqtlellcv ot Q cps (conitmll point 13). contllitute tIle accelera.li n tetioti o)f' tihe veefical Design Response Spectra. It shliold be noted tltt tre vertical Design Response Spectra values are 2/3 tl.,)se of the horizontal Design Resp-nqt e Spectra for frequencies less than 0.25:

I'm Ifrequencies higher tli:m 3.5. tiley are tIle s*me. wlhile the ratio varies between 2/3 arid I I'Mr frceuiencies between 0.25 and 3.5. For frequencies higher thtan 33 cps. the Design Response Spectra ftollow tile rrraxirnrnl giound :acceleration lirte.

The horizontal antd vertical comnponent Design Respomn:e Spectra irt Figures 1 and 2. respectively, of this guide cirrespond to a tixitimuri horizontal ground acceleratiin of I 1.) e.

FFr sites with different taccelen*:tior% values specit'ied b'or the design earthquake.

Ile Design Response Spectra should be linearly sacled Ifrom Fiigures I mrid 2 iti proportion to the specifled tmaximtumn horizmontal ground acceleratio

n. For sites that

( I* are relat ivelv close to tile epicenter of :ai expected earthquake or (2)

have physical characteristics thfat could significanrtly afT'ct tile spectial pattern (f input motion, such as heing underlain by poor soil deposits.

Ilte procedure described above will not apply. Irt these cases, ile D)esign Resixrse Spectra should be developed iitdi\\idua.ly acc*i ding to thie site characteristics.

C. REGULATORY POSITION

I .

Tlie horizontal comtponrent ground 1elsign Response Spectra. without soil-structn tre irtteractiorn effects, of the SSIE, 112 the SSE, Otr the OBE on sites underlain by rock or by soil should he linearly scaled from Figure 12 in propOrtiOrr to tire rnt:ixiruittn lt horizortmal ground acceleration specilied for tIre ear thlquake close

n. i Figure I

coitrespt;Ids to a tntaxinulti horimrilal ground acceler;tiont ofI 1.t)

aind ,,ccomtlpanlyitig displacerternI of

36 irt.l The applicable multiplicatiot fI'ctors ald corttrol points are given ill Table I. For darmping ratios tot inchludd itt Fi.mrc I or Tible I. at line:tr interpolation should be used.

2.

The vertical c nmttment ground Design Resporrse Spectta. without soil-stiructure interaction effects, of1 tite SSE, 1/2 tite SSI.E, or the OWI" on sites underlain by rock or hr soil should lie line:irlv scaled fronni Figure 22 ill proportion to tlt illraXilliLlin horizontal grouind acceletafion specified for tile earthlquake chosen. (Figure

" is based on a maxitimum /iri-'iial Sround acceleraiion of 1 .0 g and accomtpanying displacement of 3R in.) The applicable muliiplication I'actors arnd control points are given ill Table II. For dalmping ratios riot incltded irt Figure 2 or Table II, a linear irierpolatiin shiould be used.

2Tlhis does nor a pply to sites which It ) ar relalively clno to Ire epicenter ot an expecled eanrthquakc or (21 which have physic.il characteristics thil could significantly affect tite spectral riombinatioin o1" input molion. The D)esign Rcsponse Spectra for such sites irould tie developed on a case-by-case

1srsis.

I .0.-2

DEFINITIONS

Response Spectrum means a rlot

'l f

lite maxi1mum response (acceleration. velocity, or displacement) Of a family of idealized sinoe-degree.of.fiecdomn damped oscillators as a function of natural irequencies (or periods) of the oscillators to a specified vibratory nmotion input a( their supports. When obtained from a recorded earthquake record, the response spectruin lends to be irregular. with a mlnihet of peaks and valleys.

Design

,,soonse Spectrum is a relatively smototh relationship obtained by analyzing, evaluating. and statistically combining a number of individual icspi-mse spectra derived from the records of siguificamit past eart hquakes.

Maximum (peak) Ground Acceleration specified for a given sito means that value of the acceleiatioa which corecslx)nd-s to zero period in the design response spectra for that site. At zero period lie d&sign response sp-.clra acceleration is identical for all damping "alues and is equal to the maximum (peak)

ground acceleration specified for that site.

TABLE I

HORIZONTAL DESIGN RESPONSE SPECTRA

RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS

FOR CONTROL POINTS

SPercent Amplification Factors for Control Points of Acceleration'

2 Displacement'

2 Critical Damping A(33 cls)

B(9 cps)

C(2.5 cps)

D(0.25 cps)

0.5

1.0

4.96

5.95

3.20

2.0

1.0

3.54

4.25

2.50

5.0

1.0

2.61

3.13

2.05

7.0

1.0

2.27

2.72 I .88

10.0

1.0

1.90

2.28

1.70

'Maximum

,sound displacement is taken proportional to maximum ground acceleration, and is 36 in. for ground acceleration of 1.0 gravity.

2Acoeleration and displacement amplification factors are taken from recommendations given in reference I.

1.60-3

TA13LE II

VERTICAL DESIGN RESPONSE SPECTRA

RELATIVE VALUES OF SPECTRUM AMPLIFICATION FACTORS

FOR CONTROL POINTS

Percnt Ariplificaiion Factors for Control Points of Criticr'l Ac'*icr

a. On D spllccmnt

2 Dampring A(33 :n*)

8(9 cp)

C(3.5 cps)

D (0.2 5 c1 o.g I .A)

4,%o

5.95

.0

1.0

3.54

4.2.

I.07

5.0

1.0

2.(11

3.13

1. 37

7.0

I .0

2.27

2.72 I.25

10.0

1.0

I.90

2.2S

SMaximum ground displawcement ik* Ik.n proportional to na \\imumn gpund acckleraion and is 36 in. fIor cround accelcration tit 1.0 gr.vity.

2 Accelera tion amplificalion lactots *or tilc I ical design rep'.nse slctra are equal 1o iho1c oS

f O'h ril(ontia design reslidnwc pretra. %%hercdis displaceient amplification faitorq are 2/3 those *f" hori/tnral dcsign rekponc

rpccira. Thcsc~. ratiois belwccn tie arnplifiwation f'aciors ofl the t.o dcsicn rc.pons spectra are in agrceenln with those recommetnded in re.l'cretw I,

REFERENCES

1. Newmark, N. W.. John A. Blume. and Kanwar K.

Kapur. "Design Responsc Spectra for Nuclear Power Plants," ASCE Structural Engineering Nleeting. San Francisco. April 19*73.

2.

N. N1. Newmark Consulting Engineering Services. "A

Study of' Vertical and Horizontal Earthquake Spectra.*' Urbana. Illinois. USAEC Corntra.c No.

AT(4'?-5)-26o7. WASI.1 255. April 1073.

3, John A. Blume & Associates, "Recommendations for Shape of Earthquake Response Spectra," San Francisco.

California.

USAEC

Contract No.

AT(49-5.)-301 1. WASH-1254. February 19.73.

a8

1.60-4

1000

500

200

100

>:

/\\

-,.

U

S20-

-

5

5

1110

0.1

0.2

0.5

1

2

5

10

20

50

100

FREQUENCY. cps FIGURE I. HORIZONTAL DESIGN RESPONSE SPECTRA -SCALED

TO ig HORIZONTAL

GROUND ACCELERATION

a

1000

100

0.'

50

.5 CC

100

50

2i

20

GR

UN

AC

EL RAIO

, * .*/ ',FREQUENC,L cps ___

FIGURE 2. VERTICAL DESIGN RESPONSE SPECTRA-SCALED TO lg HORIZONTAL

GRCUND ACCELERATION

00