ML043570385: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML043570385
| number = ML043570385
| issue date = 09/30/2004
| issue date = 09/30/2004
| title = NUREG/CR-6858, RELAP5 Thermal Hydraulic Analysis to Support PTS Evaluations for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants.
| title = NUREG/CR-6858, RELAP5 Thermal Hydraulic Analysis to Support PTS Evaluations for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants
| author name = Arcieri W, Beaton R, Bessette D, Fletcher C, Rubin M
| author name = Arcieri W, Beaton R, Bessette D, Fletcher C, Rubin M
| author affiliation = ISL, Inc, NRC/RES
| author affiliation = ISL, Inc, NRC/RES
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:NUREG/CR-6858 RELAP5 Thermal Hydraulic Analysis to Support PTS Evaluations for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants U.S. Nuclear U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001
{{#Wiki_filter:}}
 
NUR EG/CR-6858 RELAP5 Thermal Hydraulic Analysis to Support PTS Evaluations for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants Manuscript Completed: September 2004 Date Published:
Prepared by:
W. C. Arcieri, R. M. Beaton, C. D. Fletcher, D. E. Bessette
 
ISL, Inc.
11140 Rockville Pike Rockville, MD 20852
 
U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Michael B. Rubin, USNRC Project Manager Prepared for:
Division of Systems Analysis and Regulatory Effectiveness Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001
 
ABSTRACT As part of the Pressurized Thermal Shock Rebaseline Program, thermal hydraulic calculations were performed for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants using the RELAP5/MOD3.2.2gamma computer program. Transient sequences that are important to the risk due to a PTS event were defined as part of a risk assessment by Sandia National Laboratories.
These sequences include loss of coolant accidents (LOCA) of various sizes with and without secondary side failures and also non-break transients with primary and secondary side failure.
Operator actions are considered in many of the sequences analyzed. The results of these thermal hydraulic calculations are used as boundary conditions to the fracture mechanics analysis performed by Oak Ridge National Laboratory.
iii
 
FOREWORD The reactor pressure vessel is exposed to neutron radiation during normal operation. Over time, the vessel steel becomes progressively more brittle in the region adjacent to the core. If a vessel had a preexisting flaw of critical size and certain severe system transients occurred, this flaw could propagate rapidly through the vessel, resulting in a through-wall crack. The severe transients of concern, known as pressurized thermal shock (PTS), are characterized by rapid cooling (i.e., thermal shock) of the internal reactor pressure vessel surface that may be combined with repressurization. The simultaneous occurrence of critical-size flaws, embrittled vessel, and a severe PTS transient is a very low probability event. The current study shows that U.S.
pressurized-water reactors do not approach the levels of embrittlement to make them susceptible to PTS failure, even during extended operation well beyond the original 40-year design life.
Advancements in our understanding and knowledge of materials behavior, our ability to realistically model plant systems and operational characteristics, and our ability to better evaluate PTS transients to estimate loads on vessel walls have shown that earlier analyses, performed some 20 years ago as part of the development of the PTS rule, were overly conservative, based on the tools available at the time. Consistent with the NRCs Strategic Plan to use best-estimate analyses combined with uncertainty assessments to resolve safety-related issues, the NRCs Office of Nuclear Regulatory Research undertook a project in 1999 to develop a technical basis to support a risk-informed revision of the existing PTS Rule, set forth in Title 10, Section 50.61, of the Code of Federal Regulations (10 CFR 50.61).
Two central features of the current research approach were a focus on the use of realistic input values and models and an explicit treatment of uncertainties (using currently available uncertainty analysis tools and techniques). This approach improved significantly upon that employed in the past to establish the existing 10 CFR 50.61 embrittlement limits. The previous approach included unquantified conservatisms in many aspects of the analysis, and uncertainties were treated implicitly by incorporating them into the models.
This report is one of a series of 21 reports that provide the technical basis that the staff will consider in a potential revision of 10 CFR 50.61. The risk from PTS was determined from the integrated results of the Fifth Version of the Reactor Excursion and Leak Analysis Program (RELAP5) thermal-hydraulic analyses, fracture mechanics analyses, and probabilistic risk assessment. This report documents the application of the RELAP5 code to calculate the thermal-hydraulic response of a reactor pressure vessel for a wide spectrum of transients and accidents of possible PTS significance. The results of those calculations were used as boundary conditions in fracture mechanics analyses.
Brian W. Sheron, Director Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission v
 
vi CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii EXECUTIVE
 
==SUMMARY==
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix
 
==1.0  INTRODUCTION==
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .              1-1 1.1  Previous PTS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                  1-1 1.2  PTS Rebaseline Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                      1-2 1.3  References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            1-2 2.0  RELAP5 MODELS FOR THE OCONEE, BEAVER VALLEY AND PALISADES NUCLEAR POWER PLANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.0.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 2.1  Oconee Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 2.1.1 Oconee Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6 2.1.2 Oconee Steady State Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 2.1.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 2.2  Beaver Valley Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 2.2.1 Beaver Valley Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 2.2.2 Beaver Valley Steady State Initialization . . . . . . . . . . . . . . . . . . . . . . 2-18 2.2.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 2.3  Palisades Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 2.3.1 Palisades RELAP5 Model Description . . . . . . . . . . . . . . . . . . . . . . . 2-29 2.3.2 Steady-State Initializations for the Palisades RELAP5 Model . . . . . 2-31 2.3.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31 3.0  RELAP5/MOD3 ANALYSIS OF TRANSIENTS FOR PTS EVALUATION . . . . . . . . . 3-1 3.1  Thermal Hydraulic Results for the Dominant Oconee Transients . . . . . . . . . . 3-1 3.1.1 Primary Side Loss of Coolant Accidents from Hot Full Power . . . . . . 3-2 3.1.1.1 Case 156 - 40.64 cm [16 in] Diameter Hot Leg Break from HFP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.1.1.2 Case 160 - 14.37 cm [5.656 in] Diameter Surge Line Break from HFP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 3.1.1.3 Case 164 - 20.32 cm [8 in] Diameter Surge Line Break from HFP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 3.1.1.4 Case 172 - 10.16 cm [4 in] Diameter Cold Leg Break from HFP Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27 3.1.2 Sequences with Stuck Open Pressurizer Safety Valve that Reclose at 6,000 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35 vii
 
3.1.2.1  Case 109 - Stuck Open PSV that Recloses at 6,000 s from HFP and No Operator Actions . . . . . . . . . . . . . . . . . . . . 3-36 3.1.2.2 Case 113 - Stuck Open PSV that Recloses at 6,000 s from HFP with Operator Actions . . . . . . . . . . . . . . . . . . . . 3-44 3.1.2.3 Case 122 - Stuck Open PSV that Recloses at 6,000 s from HZP with Operator Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 3-51 3.1.2.4 Case 165 - Stuck Open PSV that Recloses at 6,000 s from HZP and No Operator Actions . . . . . . . . . . . . . . . . . . . . . . . . 3-58 3.1.3 Sequences with Stuck Open Pressurizer Safety Valve that Reclose at 3,000 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-64 3.1.3.1 Case 115 - Stuck Open PSV that Recloses at 3,000 s from HFP and No Operator Actions . . . . . . . . . . . . . . . . . . . . . . . . 3-65 3.1.3.2 Case 124 - Stuck Open PSV that Recloses at 3,000 s from HZP with Operator Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 3-73 3.1.4 Main Steam Line Breaks with Operator Actions . . . . . . . . . . . . . . . . 3-80 3.1.4.1 Case 27 - Main Steam Line Break from HFP Conditions and with Operator Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-81 3.1.4.2 Case 101 - Main Steam Line Break from HZP Conditions and with Operator Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-88 3.1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-95 3.2 Beaver Valley Transient Results of Dominant Sequences . . . . . . . . . . . . . . 3-96 3.2.1 Beaver Valley Primary Side Loss of Coolant Accidents from Hot Full Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-96 3.2.1.1 Beaver Valley Surge Line Break from Hot Full Power
                  - 20.32 cm [8.0 in] diameter (BV Case 007) . . . . . . . . . . . . . 3-97 3.2.1.2 Beaver Valley Hot Leg Break from Hot Full Power
                  - 40.64 cm [16.0 in] diameter (BV Case 009) . . . . . . . . . . . 3-107 3.2.1.3 Beaver Valley Surge Line Break from Hot Full Power
                  - 7.184 cm [2.828 in] diameter, with summer ECCS temperature and increased heat transfer (BV Case 114) . . 3-116 3.2.2 Beaver Valley Primary Side Loss of Coolant Accident at Hot Zero Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-125 3.2.2.1 Beaver Valley Surge Line Break from Hot Zero Power
                  - 10.16 cm [4.0 in] diameter (BV Case 056) . . . . . . . . . . . . 3-127 3.2.3 Beaver Valley Main Steam Line Breaks from Hot Full Power . . . . . 3-136 3.2.3.1 Beaver Valley Main Steam Line Break from Hot Full Power (BV Case 102) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-137 3.2.3.2 Beaver Valley Main Steam Line Break from Hot Full Power (BV Case 104) . . . . . . . . . . . . . . . . . . . . . . 3-147 3.2.3.3 Beaver Valley Main Steam Line Break from Hot Full Power (BV Case 108) . . . . . . . . . . . . . . . . . . . . . . . . . . 3-156 3.2.4 Beaver Valley Main Steam Line Breaks at Hot Zero Power . . . . . . 3-165 3.2.4.1 Beaver Valley Main Steam Line Break from Hot Zero Power (BV Case 103) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-166 3.2.4.2 Beaver Valley Main Steam Line Break from Hot Zero Power (BV Case 105) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-174 3.2.5 Beaver Valley Stuck Open Primary Relief Valves Which Reclose from Hot Full Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-182 viii
 
3.2.5.1  Beaver Valley Stuck Open Pressurizer SRV Which Recloses from Hot Full Power (BV Case 060) . . . . . . . . . . . . . . . . . . 3-183 3.2.5.2 Beaver Valley Stuck Open Pressurizer SRV Which Recloses with Operator Control of HHSI From Hot Full Power (BV Case 126) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-192 3.2.6 Beaver Valley Stuck Open Primary Relief Valves Which Reclose from Hot Zero Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-202 3.2.6.1 Beaver Valley Stuck Open Pressurizer Safety Relief Valve Which Recloses from Hot Zero Power (BV Case 071) . . . . 3-203 3.2.6.2 Beaver Valley Stuck Open Pressurizer SRV Which Recloses from Hot Zero Power (BV Case 097) . . . . . . . . . . . . . . . . . . 3-212 3.2.6.3 Beaver Valley Stuck Open Pressurizer SRV Which Recloses From Hot Zero Power with Operator Action (BV Case 130) 3-221 3.3 Palisades Transient Results of Dominant Sequences . . . . . . . . . . . . . . . . 3-232 3.3.1 Sequences with Depressurization of the Main Steam System Caused by Stuck-Open Valves or Steam Line Breaks . . . . . . . . . . 3-232 3.3.1.1 One Stuck-Open Atmospheric Dump Valve from Hot Zero Power Condition - Palisades Case 19 . . . . . . . . . . . . . . . . . 3-233 3.3.1.2 One Stuck-Open Atmospheric Dump Valve and Failure of Both MSIVs to Close from Hot Zero Power Condition
                  - Palisades Case 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-241 3.3.1.3 Double-Ended Main Steam Line Break and Failure of Both MSIVs to Close from Hot Full Power Condition - Palisades Case 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-248 3.3.1.4 Two Stuck-Open Atmospheric Dump Valves with Operator Action and Controller Failures Leading to Maximum AFW Flow from Hot Full Power Condition - Palisades Case 55 . . . . . . 3-256 3.3.2 Sequences Initiated by Primary Coolant System Breaks with Effective Diameters of 5.08 cm [2 in] and Smaller . . . . . . . . . . . . . 3-263 3.3.2.1 5.08-cm [2-in] Diameter Pressurizer Surge Line Break from Hot Full Power Condition - Palisades Case 60 . . . . . . . . . . 3-263 3.3.2.2 Reactor Trip with One Stuck-Open Pressurizer Safety Relief Valve which Re-Closes at 6000 Seconds from Hot Zero Power Condition - Palisades Case 65 . . . . . . . . . . . . 3-272 3.3.3 Sequences Initiated by Primary Coolant System Breaks with a 10.16-cm [4-in] Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-279 3.3.3.1 10.16-cm [4-in] Diameter Cold Leg Break from Hot Full Power Condition with Winter-Season ECCS Temperatures - Palisades Case 58 . . . . . . . . . . . . . . . . . . . 3-280 3.3.3.2 10.16-cm [4-in] Diameter Cold Leg Break from Hot Full Power Condition with Summer-Season ECCS Temperatures - Palisades Case 59 . . . . . . . . . . . . . . . . . . 3-289 3.3.4 Group 4 - Sequences Initiated by Primary Coolant System Breaks with Diameters Greater Than 10.16-cm [4-in] . . . . . . . . . . . 3-304 3.3.4.1 40.64-cm [16-in] Diameter Hot Leg Break from Hot Full Power Condition - Palisades Case 40 . . . . . . . . . . . . . . . . . 3-304 ix
 
3.3.4.2    20.32-cm [8-in] Diameter Cold Leg Break from Hot Full Power Condition with Winter-Season ECCS Temperatures - Palisades Case 62 . . . . . . . . . . . . . . . . . . 3-313 3.3.4.3 14.37-cm [5.656-in] Diameter Cold Leg Break from Hot Full Power Condition with Winter-Season ECCS Temperatures - Palisades Case 63 . . . . . . . . . . . . . . . . . . . 3-320 3.3.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-322 4.0 
 
==SUMMARY==
OF THE PTS THERMAL HYDRAULIC RESULTS . . . . . . . . . . . . . . . . .                                          4-1 4.1    Summary of the Oconee, Beaver Valley and Palisades Results . . . . . . . . . .                                  4-1 4.2    Comparison of Current Results to the Previous Study . . . . . . . . . . . . . . . . . .                          4-9 4.3    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9 Appendix A -
 
==SUMMARY==
OF OCONEE BASE CASE RESULTS . . . . . . . . . . . . . . . . . . . . . A-1 Appendix B -
 
==SUMMARY==
OF BEAVER VALLEY BASE CASE RESULTS . . . . . . . . . . . . . . . B-1 Appendix C -
 
==SUMMARY==
OF PALISADES BASE CASE RESULTS . . . . . . . . . . . . . . . . . . . C-1 x
 
Figures Figure 2.1-1    Oconee Reactor Vessel RELAP5 Nodalization . . . . . . . . . . . . . . . . . . . .                      2-11 Figure 2.1-2    Oconee Reactor Coolant System RELAP5 Nodalization . . . . . . . . . . . . .                            2-12 Figure 2.1-3    Oconee Pressurizer System Nodalization . . . . . . . . . . . . . . . . . . . . . . . .                2-13 Figure 2.1-4    Oconee Steam Generator Secondary Side Nodalization . . . . . . . . . . . . .                          2-14 Figure 2.1-5    Oconee Main Feedwater Train RELAP5 Nodalization . . . . . . . . . . . . . . .                          2-15 Figure 2.1-6    Oconee Hot Leg Pressure Response - Steady State . . . . . . . . . . . . . . . .                        2-16 Figure 2.1-7    Oconee Hot Leg Temperature Response - Steady State . . . . . . . . . . . . .                          2-16 Figure 2.2-1    Beaver Valley Reactor System Nodalization . . . . . . . . . . . . . . . . . . . . . .                  2-21 Figure 2.2-2    Beaver Valley Reactor Vessel Nodalization . . . . . . . . . . . . . . . . . . . . . . .                2-22 Figure 2.2-3    Beaver Valley 2-Dimensional Downcomer Nodalization . . . . . . . . . . . . .                          2-23 Figure 2.2-4    Beaver Valley Loop A Nodalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            2-24 Figure 2.2-5    Beaver Valley Loop B Nodalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            2-25 Figure 2.2-6    Beaver Valley Loop C Nodalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            2-26 Figure 2.2-7    Beaver Valley Secondary Side Nodalization . . . . . . . . . . . . . . . . . . . . . .                  2-27 Figure 2.2-8    Beaver Valley Cold Leg Pressure Response - Steady State . . . . . . . . . .                            2-28 Figure 2.2-9    Beaver Valley Cold Leg Temperature Response - Steady State . . . . . . .                              2-28 Figure 2.3-1    Palisades Reactor Vessel Nodalization . . . . . . . . . . . . . . . . . . . . . . . . . .              2-33 Figure 2.3-2    Palisades Coolant Loops Nodalization . . . . . . . . . . . . . . . . . . . . . . . . . . .            2-34 Figure 2.3-3    Palisades Main Steam System Nodalization . . . . . . . . . . . . . . . . . . . . . .                  2-35 Figure 2.3-4    Palisades Cold Leg Pressure Response - Steady State . . . . . . . . . . . . .                          2-36 Figure 2.3-5    Palisades Cold Leg Temperature Response - Steady State . . . . . . . . . .                            2-36 Figure 3.1.1-1  Reactor Coolant System Pressure - Oconee Case 156 . . . . . . . . . . . . . . . 3-5 Figure 3.1.1-2  Avg Reactor Vessel Downcomer Temperature - Oconee Case 156 . . . . . 3-5 Figure 3.1.1-3  Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Figure 3.1.1-4  Pressurizer Level - Oconee Case 156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6 Figure 3.1.1-5  Break Flowrate - Oconee Case 156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Figure 3.1.1-6  Total High Pressure Injection Flowrate - Oconee Case 156 . . . . . . . . . . . 3-7 Figure 3.1.1-7  Core Flood Tank Discharge - Oconee Case 156 . . . . . . . . . . . . . . . . . . . 3-8 Figure 3.1.1-8  Total Low Pressure Injection Flowrate - Oconee Case 156 . . . . . . . . . . . . 3-8 Figure 3.1.1-9  Hot Leg Flow in the A and B Loops - Oconee Case 156 . . . . . . . . . . . . . . 3-9 Figure 3.1.1-10 System Energy Balance - Oconee Case 156 . . . . . . . . . . . . . . . . . . . . . . . 3-9 Figure 3.1.1-11 HPI and LPI Injection Temperature - Oconee Case 156 . . . . . . . . . . . . . 3-10 Figure 3.1.1-12 Steam Generator Secondary Pressure - Oconee Case 156 . . . . . . . . . . 3-10 Figure 3.1.1-13 Steam Generator Secondary Startup Level - Oconee Case 156 . . . . . . 3-11 Figure 3.1.1-14 Reactor Coolant System Pressure - Oconee Case 160 . . . . . . . . . . . . . . 3-13 Figure 3.1.1-15 Avg Reactor Vessel Downcomer Temperature - Oconee Case 160 . . . . 3-13 Figure 3.1.1-16 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 Figure 3.1.1-17 Pressurizer Level - Oconee Case 160 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 Figure 3.1.1-18 Break Flowrate - Oconee Case 160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 Figure 3.1.1-19 Total High Pressure Injection Flowrate - Oconee Case 160 . . . . . . . . . . 3-15 Figure 3.1.1-20 Core Flood Tank Discharge - Oconee Case 160 . . . . . . . . . . . . . . . . . . 3-16 Figure 3.1.1-21 Total Low Pressure Injection Flowrate - Oconee Case 160 . . . . . . . . . . . 3-16 Figure 3.1.1-22 Hot Leg Flow in the A and B Loops - Oconee Case 160 . . . . . . . . . . . . . 3-17 Figure 3.1.1-23 System Energy Balance - Oconee Case 160 . . . . . . . . . . . . . . . . . . . . . . 3-17 xi
 
Figure 3.1.1-24 HPI and LPI Injection Temperature - Oconee Case 160 . . . . . . . . . . . . .                        3-18 Figure 3.1.1-25 Steam Generator Secondary Pressure - Oconee Case 160 . . . . . . . . . .                              3-18 Figure 3.1.1-26 Steam Generator Secondary Startup Level - Oconee Case 160 . . . . . . .                              3-19 Figure 3.1.1-27 Reactor Coolant System Pressure - Oconee Case 164 . . . . . . . . . . . . . .                        3-21 Figure 3.1.1-28 Avg Reactor Vessel Downcomer Temperature - Oconee Case 164 . . . .                                    3-21 Figure 3.1.1-29 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 Figure 3.1.1-30 Pressurizer Level - Oconee Case 164 . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-22 Figure 3.1.1-31 Break Flowrate - Oconee Case 164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-23 Figure 3.1.1-32 Total High Pressure Injection Flowrate - Oconee Case 164 . . . . . . . . . .                          3-23 Figure 3.1.1-33 Core Flood Tank Discharge - Oconee Case 164 . . . . . . . . . . . . . . . . . . .                    3-24 Figure 3.1.1-34 Total Low Pressure Injection Flowrate - Oconee Case 164 . . . . . . . . . . .                        3-24 Figure 3.1.1-35 Hot Leg Flow in the A and B Loops - Oconee Case 164 . . . . . . . . . . . . .                        3-25 Figure 3.1.1-36 System Energy Balance - Oconee Case 164 . . . . . . . . . . . . . . . . . . . . . .                  3-25 Figure 3.1.1-37 HPI and LPI Injection Temperature - Oconee Case 164 . . . . . . . . . . . . .                        3-26 Figure 3.1.1-38 Steam Generator Secondary Pressure - Oconee Case 164 . . . . . . . . . .                              3-26 Figure 3.1.1-39 Steam Generator Secondary Startup Level - Oconee Case 164 . . . . . .                                3-27 Figure 3.1.1-40 Reactor Coolant System Pressure - Oconee Case 172 . . . . . . . . . . . . . .                        3-29 Figure 3.1.1-41 Avg Reactor Vessel Downcomer Temperature - Oconee Case 172 . . . .                                    3-29 Figure 3.1.1-42 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30 Figure 3.1.1-43 Pressurizer Level - Oconee Case 172 . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-30 Figure 3.1.1-44 Break Flowrate - Oconee Case 172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-31 Figure 3.1.1-45 Total High Pressure Injection Flowrate - Oconee Case 172 . . . . . . . . . .                          3-31 Figure 3.1.1-46 Core Flood Tank Discharge - Oconee Case 172 . . . . . . . . . . . . . . . . . . .                    3-32 Figure 3.1.1-47 Total Low Pressure Injection Flowrate - Oconee Case 172 . . . . . . . . . . .                        3-32 Figure 3.1.1-48 Hot Leg Flow in the A and B Loops - Oconee Case 172 . . . . . . . . . . . . .                        3-33 Figure 3.1.1-49 System Energy Balance - Oconee Case 172 . . . . . . . . . . . . . . . . . . . . . .                  3-33 Figure 3.1.1-50 HPI and LPI Injection Temperature - Oconee Case 172 . . . . . . . . . . . . .                        3-34 Figure 3.1.1-51 Steam Generator Secondary Pressure - Oconee Case 172 . . . . . . . . . .                              3-34 Figure 3.1.1-52 Steam Generator Secondary Startup Level - Oconee Case 172 . . . . . . .                              3-35 Figure 3.1.2-1  Reactor Coolant System Pressure - Oconee Case 109 . . . . . . . . . . . . . .                        3-38 Figure 3.1.2-2  Avg Reactor Vessel Downcomer Temperature - Oconee Case 109 . . . .                                    3-39 Figure 3.1.2-3  Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39 Figure 3.1.2-4  Pressurizer Level - Oconee Case 109 . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-40 Figure 3.1.2-5  Flowrate through the Stuck Open PSV and PORV - Oconee Case 109 .                                      3-40 Figure 3.1.2-6  Total High Pressure Injection Flowrate - Oconee Case 109 . . . . . . . . . .                          3-41 Figure 3.1.2-7  Core Flood Tank Discharge - Oconee Case 109 . . . . . . . . . . . . . . . . . . .                    3-41 Figure 3.1.2-8  Hot Leg Flow in the A and B Loops - Oconee Case 109 . . . . . . . . . . . . .                        3-42 Figure 3.1.2-9  System Energy Balance - Oconee Case 109 . . . . . . . . . . . . . . . . . . . . . .                  3-42 Figure 3.1.2-10 Steam Generator Secondary Pressure - Oconee Case 109 . . . . . . . . . .                              3-43 Figure 3.1.2-11 Steam Generator Secondary Startup Level - Oconee Case 109 . . . . . . .                              3-43 Figure 3.1.2-12 Reactor Coolant System Pressure - Oconee Case 113 . . . . . . . . . . . . . .                        3-45 Figure 3.1.2-13 Avg Reactor Vessel Downcomer Temperature - Oconee Case 113 . . . .                                    3-46 Figure 3.1.2-14 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-46 Figure 3.1.2-15 Pressurizer Level - Oconee Case 113 . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-47 Figure 3.1.2-16 Flowrate through the Stuck Open PSV and PORV - Oconee Case 113 .                                      3-47 xii
 
Figure 3.1.2-17 Total High Pressure Injection Flowrate - Oconee Case 113 . . . . . . . . . .                          3-48 Figure 3.1.2-18 Core Flood Tank Discharge - Oconee Case 113 . . . . . . . . . . . . . . . . . . .                    3-48 Figure 3.1.2-19 Hot Leg Flow in the A and B Loops - Oconee Case 113 . . . . . . . . . . . . .                        3-49 Figure 3.1.2-20 System Energy Balance - Oconee Case 113 . . . . . . . . . . . . . . . . . . . . . .                  3-49 Figure 3.1.2-21 Steam Generator Secondary Pressure - Oconee Case 113 . . . . . . . . . .                              3-50 Figure 3.1.2-22 Steam Generator Secondary Startup Level - Oconee Case 113 . . . . . . .                              3-50 Figure 3.1.2-23 Reactor Coolant System Pressure - Oconee Case 122 . . . . . . . . . . . . . .                        3-52 Figure 3.1.2-24 Avg Reactor Vessel Downcomer Temperature - Oconee Case 122 . . . .                                    3-53 Figure 3.1.2-25 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53 Figure 3.1.2-26 Pressurizer Level - Oconee Case 122 . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-54 Figure 3.1.2-27 Flowrate through the Stuck Open PSV and PORV - Oconee Case 122 .                                      3-54 Figure 3.1.2-28 Total High Pressure Injection Flowrate - Oconee Case 122 . . . . . . . . . .                          3-55 Figure 3.1.2-29 Core Flood Tank Discharge - Oconee Case 122 . . . . . . . . . . . . . . . . . . .                    3-55 Figure 3.1.2-30 Hot Leg Flow in the A and B Loops - Oconee Case 122 . . . . . . . . . . . . .                        3-56 Figure 3.1.2-31 System Energy Balance - Oconee Case 122 . . . . . . . . . . . . . . . . . . . . . .                  3-56 Figure 3.1.2-32 Steam Generator Secondary Pressure - Oconee Case 122 . . . . . . . . . .                              3-57 Figure 3.1.2-33 Steam Generator Secondary Startup Level - Oconee Case 122 . . . . . . .                              3-57 Figure 3.1.2-34 Reactor Coolant System Pressure - Oconee Case 165 . . . . . . . . . . . . . .                        3-59 Figure 3.1.2-35 Avg Reactor Vessel Downcomer Temperature - Oconee Case 165 . . . .                                    3-59 Figure 3.1.2-36 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-60 Figure 3.1.2-37 Pressurizer Level - Oconee Case 165 . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-60 Figure 3.1.2-38 Flowrate through the Stuck Open PSV and PORV - Oconee Case 165 .                                      3-61 Figure 3.1.2-39 Total High Pressure Injection Flowrate - Oconee Case 165 . . . . . . . . . .                          3-61 Figure 3.1.2-40 Core Flood Tank Discharge - Oconee Case 165 . . . . . . . . . . . . . . . . . . .                    3-62 Figure 3.1.2-41 Hot Leg Flow in the A and B Loops - Oconee Case 165 . . . . . . . . . . . . .                        3-62 Figure 3.1.2-42 System Energy Balance - Oconee Case 165 . . . . . . . . . . . . . . . . . . . . . .                  3-63 Figure 3.1.2-43 Steam Generator Secondary Pressure - Oconee Case 165 . . . . . . . . . .                              3-63 Figure 3.1.2-44 Steam Generator Secondary Startup Level - Oconee Case 165 . . . . . . .                              3-64 Figure 3.1.3-1  Reactor Coolant System Pressure - Oconee Case 115 . . . . . . . . . . . . . .                        3-67 Figure 3.1.3-2  Avg Reactor Vessel Downcomer Temperature - Oconee Case 115 . . . .                                    3-68 Figure 3.1.3-3  Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-68 Figure 3.1.3-4  Pressurizer Level - Oconee Case 115 . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-69 Figure 3.1.3-5  Flowrate through the Stuck Open PSV and PORV - Oconee Case 115 .                                      3-69 Figure 3.1.3-6  Total High Pressure Injection Flowrate - Oconee Case 115 . . . . . . . . . .                          3-70 Figure 3.1.3-7  Core Flood Tank Discharge - Oconee Case 115 . . . . . . . . . . . . . . . . . . .                    3-70 Figure 3.1.3-8  Hot Leg Flow in the A and B Loops - Oconee Case 115 . . . . . . . . . . . . .                        3-71 Figure 3.1.3-9  System Energy Balance - Oconee Case 115 . . . . . . . . . . . . . . . . . . . . . .                  3-71 Figure 3.1.3-10 Steam Generator Secondary Pressure - Oconee Case 115 . . . . . . . . . .                              3-72 Figure 3.1.3-11 Steam Generator Secondary Startup Level - Oconee Case 115 . . . . . . .                              3-72 Figure 3.1.3-12 Reactor Coolant System Pressure - Oconee Case 124 . . . . . . . . . . . . . .                        3-74 Figure 3.1.3-13 Avg Reactor Vessel Downcomer Temperature - Oconee Case 124 . . . .                                    3-75 Figure 3.1.3-14 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-75 Figure 3.1.3-15 Pressurizer Level - Oconee Case 124 . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-76 Figure 3.1.3-16 Flowrate through the Stuck Open PSV and PORV - Oconee Case 124 .                                      3-76 Figure 3.1.3-17 Total High Pressure Injection Flowrate - Oconee Case 124 . . . . . . . . . .                          3-77 xiii
 
Figure 3.1.3-18 Core Flood Tank Discharge - Oconee Case 124 . . . . . . . . . . . . . . . . . . . 3-77 Figure 3.1.3-19 Hot Leg Flow in the A and B Loops - Oconee Case 124 . . . . . . . . . . . . . 3-78 Figure 3.1.3-20 System Energy Balance - Oconee Case 124 . . . . . . . . . . . . . . . . . . . . . . 3-78 Figure 3.1.3-21 Steam Generator Secondary Pressure - Oconee Case 124 . . . . . . . . . . 3-79 Figure 3.1.3-22 Steam Generator Secondary Startup Level - Oconee Case 124 . . . . . . . 3-79 Figure 3.1.4-1  Reactor Coolant System Pressure - Oconee Case 27 . . . . . . . . . . . . . . . 3-82 Figure 3.1.4-2  Avg Reactor Vessel Downcomer Temperature - Oconee Case 27 . . . . . 3-82 Figure 3.1.4-3  Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83 Figure 3.1.4-4  Pressurizer Level - Oconee Case 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83 Figure 3.1.4-5  Steam Line Break Flowrate - Oconee Case 27 . . . . . . . . . . . . . . . . . . . . 3-84 Figure 3.1.4-6  Total High Pressure Injection Flowrate - Oconee Case 27 . . . . . . . . . . . 3-84 Figure 3.1.4-7  Core Flood Tank Discharge - Oconee Case 27 . . . . . . . . . . . . . . . . . . . . 3-85 Figure 3.1.4-8  Hot Leg Flow in the A and B Loops - Oconee Case 27 . . . . . . . . . . . . . . 3-85 Figure 3.1.4-9  System Energy Balance - Oconee Case 27 . . . . . . . . . . . . . . . . . . . . . . . 3-86 Figure 3.1.4-10 Emergency Feedwater Flow to Steam Generator A - Oconee Case 27 . . 3-86 Figure 3.1.4-11 Steam Generator Secondary Pressure - Oconee Case 27 . . . . . . . . . . . 3-87 Figure 3.1.4-12 Steam Generator Secondary Startup Level - Oconee Case 27 . . . . . . . 3-87 Figure 3.1.4-13 Reactor Coolant System Pressure - Oconee Case 101 . . . . . . . . . . . . . . 3-89 Figure 3.1.4-14 Avg Reactor Vessel Downcomer Temperature - Oconee Case 101 . . . . 3-89 Figure 3.1.4-15 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-90 Figure 3.1.4-16 Pressurizer Level - Oconee Case 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-90 Figure 3.1.4-17 Steam Line Break Flowrate - Oconee Case 101 . . . . . . . . . . . . . . . . . . . 3-91 Figure 3.1.4-18 Total High Pressure Injection Flowrate - Oconee Case 101 . . . . . . . . . . 3-91 Figure 3.1.4-19 Core Flood Tank Discharge - Oconee Case 101 . . . . . . . . . . . . . . . . . . . 3-92 Figure 3.1.4-20 Hot Leg Flow in the A and B Loops - Oconee Case 101 . . . . . . . . . . . . . 3-92 Figure 3.1.4-21 System Energy Balance - Oconee Case 101 . . . . . . . . . . . . . . . . . . . . . . 3-93 Figure 3.1.4-22 Emergency Feedwater Flow to Steam Generator A - Oconee Case 101 . 3-93 Figure 3.1.4-23 Steam Generator Secondary Pressure - Oconee Case 101 . . . . . . . . . . 3-94 Figure 3.1.4-24 Steam Generator Secondary Startup Level - Oconee Case 101 . . . . . . 3-94 Figure 3.2.1-1  Primary System Pressure - BV Case 007 . . . . . . . . . . . . . . . . . . . . . . . 3-100 Figure 3.2.1-2  Average Downcomer Fluid Temperature - BV Case 007 . . . . . . . . . . . 3-100 Figure 3.2.1-3  Downcomer Wall Heat Transfer Coefficient - BV Case 007 . . . . . . . . . 3-101 Figure 3.2.1-4  Pressurizer Water Level - BV Case 007 . . . . . . . . . . . . . . . . . . . . . . . . 3-101 Figure 3.2.1-5  Break Flow and Total Safety Injection Flow - BV Case 007 . . . . . . . . . 3-102 Figure 3.2.1-6  High Pressure Injection Flow Rate - BV Case 007 . . . . . . . . . . . . . . . . 3-102 Figure 3.2.1-7  Accumulator Liquid Volume for - BV Case 007 . . . . . . . . . . . . . . . . . . . 3-103 Figure 3.2.1-8  Low Pressure Injection Flow Rate - BV Case 007 . . . . . . . . . . . . . . . . . 3-103 Figure 3.2.1-9  Hot Leg Mass Flow Rate - BV Case 007 . . . . . . . . . . . . . . . . . . . . . . . . 3-104 Figure 3.2.1-10 Core Power and Break Energy - BV Case 007 . . . . . . . . . . . . . . . . . . . 3-104 Figure 3.2.1-11 Safety Injection Fluid Temperature - BV Case 007 . . . . . . . . . . . . . . . . 3-105 Figure 3.2.1-12 Steam Generator Narrow Range Water Level - BV Case 007 . . . . . . . . 3-105 Figure 3.2.1-13 Auxiliary Feedwater Flow Rate - BV Case 007 . . . . . . . . . . . . . . . . . . . 3-106 Figure 3.2.1-14 Steam Generator Pressure - BV Case 007 . . . . . . . . . . . . . . . . . . . . . . 3-106 Figure 3.2.1-15 Primary System Pressure for - BV Case 009 . . . . . . . . . . . . . . . . . . . . 3-109 Figure 3.2.1-16 Average Downcomer Fluid Temperature - BV Case 009 . . . . . . . . . . . 3-109 Figure 3.2.1-17 Downcomer Wall Heat Transfer Coefficient - BV Case 009 . . . . . . . . . 3-110 Figure 3.2.1-18 Pressurizer Water Level - BV Case 009 . . . . . . . . . . . . . . . . . . . . . . . . 3-110 xiv
 
Figure 3.2.1-19 Break Flow and Total Safety Injection Flow - BV Case 009 . . . . . . . . .                  3-111 Figure 3.2.1-20 High Pressure Injection Flow Rate - BV Case 009 . . . . . . . . . . . . . . . .              3-111 Figure 3.2.1-21 Accumulator Liquid Volume - BV Case 009 . . . . . . . . . . . . . . . . . . . . . .          3-112 Figure 3.2.1-22 Low Pressure Injection Flow Rate - BV Case 009 . . . . . . . . . . . . . . . . .            3-112 Figure 3.2.1-23 Hot Leg Mass Flow Rate - BV Case 009 . . . . . . . . . . . . . . . . . . . . . . . .        3-113 Figure 3.2.1-24 Core Power and Break Energy - BV Case 009 . . . . . . . . . . . . . . . . . . .              3-113 Figure 3.2.1-25 Safety Injection Fluid Temperature - BV Case 009 . . . . . . . . . . . . . . . .            3-114 Figure 3.2.1-26 Steam Generator Narrow Range Water Level - BV Case 009 . . . . . . . .                      3-114 Figure 3.2.1-27 Auxiliary Feedwater Flow Rate - BV Case 009 . . . . . . . . . . . . . . . . . . .            3-115 Figure 3.2.1-28 Steam Generator Pressure - BV Case 009 . . . . . . . . . . . . . . . . . . . . . .          3-115 Figure 3.2.1-29 Primary System Pressure - BV Case 114 . . . . . . . . . . . . . . . . . . . . . . .          3-118 Figure 3.2.1-30 Average Downcomer Fluid Temperature - BV Case 114 . . . . . . . . . . . .                    3-119 Figure 3.2.1-31 Downcomer Wall Heat Transfer Coefficient - BV Case 114 . . . . . . . . . .                  3-119 Figure 3.2.1-32 Pressurizer Water Level - BV Case 114 . . . . . . . . . . . . . . . . . . . . . . . . .      3-120 Figure 3.2.1-33 Break Flow and Total Safety Injection Flow - BV Case 114 . . . . . . . . . .                3-120 Figure 3.2.1-34 High Pressure Injection Flow Rate - BV Case 114 . . . . . . . . . . . . . . . . .            3-121 Figure 3.2.1-35 Accumulator Liquid Volume for - BV Case 114 . . . . . . . . . . . . . . . . . . .            3-121 Figure 3.2.1-36 Low Pressure Injection Flow Rate - BV Case 114 . . . . . . . . . . . . . . . . .            3-122 Figure 3.2.1-37 Hot Leg Mass Flow Rate - BV Case 114 . . . . . . . . . . . . . . . . . . . . . . . .        3-122 Figure 3.2.1-38 Core Power and Break Energy - BV Case 114 . . . . . . . . . . . . . . . . . . .              3-123 Figure 3.2.1-39 Safety Injection Fluid Temperature - BV Case 114 . . . . . . . . . . . . . . . .            3-123 Figure 3.2.1-40 Steam Generator Narrow Range Water Level - BV Case 114 . . . . . . . .                      3-124 Figure 3.2.1-41 Auxiliary Feedwater Flow Rate - BV Case 114 . . . . . . . . . . . . . . . . . . .            3-124 Figure 3.2.1-42 Steam Generator Pressure - BV Case 114 . . . . . . . . . . . . . . . . . . . . . .          3-125 Figure 3.2.2-1  Primary System Pressure - BV Case 056 . . . . . . . . . . . . . . . . . . . . . . .          3-129 Figure 3.2.2-2  Average Downcomer Fluid Temperature - BV Case 056 . . . . . . . . . . .                      3-129 Figure 3.2.2-3  Downcomer Heat Transfer Coefficient - BV Case 056 . . . . . . . . . . . . .                  3-130 Figure 3.2.2-4  Pressurizer Water Level - BV Case 056 . . . . . . . . . . . . . . . . . . . . . . . .        3-130 Figure 3.2.2-5  Break Flow and Total Safety Injection Flow - BV Case 056 . . . . . . . . .                  3-131 Figure 3.2.2-6  High Pressure Injection Flow Rate - BV Case 056 . . . . . . . . . . . . . . . .              3-131 Figure 3.2.2-7  Accumulator Liquid Volume - BV Case 056 . . . . . . . . . . . . . . . . . . . . . .          3-132 Figure 3.2.2-8  Low Pressure Injection Flow Rate - BV Case 056 . . . . . . . . . . . . . . . . .            3-132 Figure 3.2.2-9  Hot Leg Mass Flow Rate - BV Case 056 . . . . . . . . . . . . . . . . . . . . . . . .        3-133 Figure 3.2.2-10 Core Power and Break Energy - BV Case 056 . . . . . . . . . . . . . . . . . . .              3-133 Figure 3.2.2-11 Safety Injection Fluid Temperature - BV Case 056 . . . . . . . . . . . . . . . .            3-134 Figure 3.2.2-12 Steam Generator Narrow Range Water Level - BV Case 056 . . . . . . . .                      3-134 Figure 3.2.2-13 Auxiliary Feedwater Flow Rate - BV Case 056 . . . . . . . . . . . . . . . . . . .            3-135 Figure 3.2.2-14 Steam Generator Pressure - BV Case 056 . . . . . . . . . . . . . . . . . . . . . .          3-135 Figure 3.2.3-1  Primary System Pressure - BV Case 102 . . . . . . . . . . . . . . . . . . . . . . .          3-140 Figure 3.2.3-2  Average Downcomer Fluid Temperature - BV Case 102 . . . . . . . . . . .                      3-140 Figure 3.2.3-3  Downcomer Wall Heat Transfer Coefficient - BV Case 102 . . . . . . . . .                    3-141 Figure 3.2.3-4  Steam Generator Pressure - BV Case 102 . . . . . . . . . . . . . . . . . . . . . .          3-141 Figure 3.2.3-5  Break Flow - BV Case 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-142 Figure 3.2.3-6  Steam Generator Narrow Range Level - BV Case 102 . . . . . . . . . . . . .                  3-142 Figure 3.2.3-7  Auxiliary Feedwater Flow Rate - BV Case 102 . . . . . . . . . . . . . . . . . . .            3-143 Figure 3.2.3-8  Normalized Pressurizer Water Level - BV Case 102 . . . . . . . . . . . . . . .              3-143 Figure 3.2.3-9  HHSI Flow Rate - BV Case 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-144 Figure 3.2.3-10 Hot Leg Mass Flow Rate - BV Case 102 . . . . . . . . . . . . . . . . . . . . . . . .        3-144 Figure 3.2.3-11 Core Exit Subcooling - BV Case 102 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-145 xv
 
Figure 3.2.3-12 Accumulator Liquid Volume - BV Case 102 . . . . . . . . . . . . . . . . . . . . . .            3-145 Figure 3.2.3-13 Steam Generator Energy Removal Rate - BV Case 102 . . . . . . . . . . . .                      3-146 Figure 3.2.3-14 System Fluid Temperatures - BV Case 102 . . . . . . . . . . . . . . . . . . . . .              3-146 Figure 3.2.3-15 Primary System Pressure - BV Case 104 . . . . . . . . . . . . . . . . . . . . . . .            3-150 Figure 3.2.3-16 Average Downcomer Fluid Temperature - BV Case 104 . . . . . . . . . . .                        3-150 Figure 3.2.3-17 Heat Transfer Coefficient - BV Case 104 . . . . . . . . . . . . . . . . . . . . . . .          3-151 Figure 3.2.3-18 Steam Generator Pressure - BV Case 104 . . . . . . . . . . . . . . . . . . . . . .            3-151 Figure 3.2.3-19 Break Flow - BV Case 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-152 Figure 3.2.3-20 Steam Generator Narrow Range Level - BV Case 104 . . . . . . . . . . . . .                    3-152 Figure 3.2.3-21 Auxiliary Feedwater Flow Rate - BV Case 104 . . . . . . . . . . . . . . . . . . .              3-153 Figure 3.2.3-22 Normalized Pressurizer Water Level - BV Case 104 . . . . . . . . . . . . . . .                3-153 Figure 3.2.3-23 HHSI Flow Rate - BV Case 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-154 Figure 3.2.3-24 Hot Leg Mass Flow Rate - BV Case 104 . . . . . . . . . . . . . . . . . . . . . . . .          3-154 Figure 3.2.3-25 Core Exit Subcooling - BV Case 104 . . . . . . . . . . . . . . . . . . . . . . . . . . .      3-155 Figure 3.2.3-26 Steam Generator Energy Removal Rate - BV Case 104 . . . . . . . . . . . .                      3-155 Figure 3.2.3-27 System Fluid Temperatures - BV Case 104 . . . . . . . . . . . . . . . . . . . . .              3-156 Figure 3.2.3-28 Primary System Pressure - BV Case 108 . . . . . . . . . . . . . . . . . . . . . . .            3-158 Figure 3.2.3-29 Average Downcomer Fluid Temperature - BV Case 108 . . . . . . . . . . . .                      3-159 Figure 3.2.3-30 Heat Transfer Coefficient - BV Case 108 . . . . . . . . . . . . . . . . . . . . . . . .        3-159 Figure 3.2.3-31 Steam Generator Pressure - BV Case 108 . . . . . . . . . . . . . . . . . . . . . .            3-160 Figure 3.2.3-32 Break Flow - BV Case 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-160 Figure 3.2.3-33 Steam Generator Narrow Range Level - BV Case 108 . . . . . . . . . . . . .                    3-161 Figure 3.2.3-34 Auxiliary Feedwater Flow Rate - BV Case 108 . . . . . . . . . . . . . . . . . . .              3-161 Figure 3.2.3-35 Normalized Pressurizer Water Level - BV Case 108 . . . . . . . . . . . . . . .                3-162 Figure 3.2.3-36 HHSI Flow Rate - BV Case 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-162 Figure 3.2.3-37 Hot Leg Mass Flow Rate - BV Case 108 . . . . . . . . . . . . . . . . . . . . . . . .          3-163 Figure 3.2.3-38 Core Exit Subcooling - BV Case 108 . . . . . . . . . . . . . . . . . . . . . . . . . . .      3-163 Figure 3.2.3-39 Steam Generator Energy Removal Rate - BV Case 108 . . . . . . . . . . . .                      3-164 Figure 3.2.3-40 System Fluid Temperatures for Main Steam Line Break - BV Case 108                              3-164 Figure 3.2.4-1  Primary System Pressure - BV Case 103 . . . . . . . . . . . . . . . . . . . . . . .            3-168 Figure 3.2.4-2  Average Downcomer Fluid Temperature - BV Case 103 . . . . . . . . . . .                        3-169 Figure 3.2.4-3  Downcomer Wall Heat Transfer Coefficient - BV Case 103 . . . . . . . . .                      3-169 Figure 3.2.4-4  Steam Generator Pressure - BV Case 103 . . . . . . . . . . . . . . . . . . . . . .            3-170 Figure 3.2.4-5  Break Flow Rate - BV Case 103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      3-170 Figure 3.2.4-6  Steam Generator Narrow Range Level - BV Case 103 . . . . . . . . . . . . .                    3-171 Figure 3.2.4-7  Auxiliary Feedwater Flow Rate - BV Case 103 . . . . . . . . . . . . . . . . . . .              3-171 Figure 3.2.4-8  Pressurizer Water Level - BV Case 103 . . . . . . . . . . . . . . . . . . . . . . . .          3-172 Figure 3.2.4-9  HHSI Flow Rate - BV Case 103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-172 Figure 3.2.4-10 Hot Leg Flow Rate - BV Case 103 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      3-173 Figure 3.2.4-11 Core Exit Subcooling - BV Case 103 . . . . . . . . . . . . . . . . . . . . . . . . . . .      3-173 Figure 3.2.4-12 Steam Generator Energy Removal Rate - BV Case 103 . . . . . . . . . . . .                      3-174 Figure 3.2.4-13 Primary System Pressure - BV Case 105 . . . . . . . . . . . . . . . . . . . . . . .            3-176 Figure 3.2.4-14 Average Downcomer Fluid Temperature - BV Case 105 . . . . . . . . . . .                        3-177 Figure 3.2.4-15 Downcomer Wall Heat Transfer Coefficient - BV Case 105 . . . . . . . . .                      3-177 Figure 3.2.4-16 Steam Generator Pressure - BV Case 105 . . . . . . . . . . . . . . . . . . . . . .            3-178 Figure 3.2.4-17 Break Flow Rate - BV Case 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      3-178 Figure 3.2.4-18 Steam Generator Narrow Range Level - BV Case 105 . . . . . . . . . . . . .                    3-179 Figure 3.2.4-19 Auxiliary Feedwater Flow Rate - BV Case 105 . . . . . . . . . . . . . . . . . . .              3-179 Figure 3.2.4-20 Pressurizer Water Level - BV Case 105 . . . . . . . . . . . . . . . . . . . . . . . .          3-180 xvi
 
Figure 3.2.4-21 HHSI Flow Rate - BV Case 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-180 Figure 3.2.4-22 Hot Leg Flow Rate - BV Case 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-181 Figure 3.2.4-23 Core Exit Subcooling - BV Case 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-181 Figure 3.2.4-24 Steam Generator Energy Removal Rate - BV Case 105 . . . . . . . . . . . .                  3-182 Figure 3.2.5-1  Primary System Pressure - BV Case 060 . . . . . . . . . . . . . . . . . . . . . . .        3-185 Figure 3.2.5-2  Average Downcomer Fluid Temperature - BV Case 060 . . . . . . . . . . . .                  3-186 Figure 3.2.5-3  Downcomer Heat Transfer Coefficient - BV Case 060 . . . . . . . . . . . . . .              3-186 Figure 3.2.5-4  Pressurizer Water Level - BV Case 060 . . . . . . . . . . . . . . . . . . . . . . . . . 3-187 Figure 3.2.5-5  Break Flow and Total Safety Injection Flow - BV Case 060 . . . . . . . . . .              3-187 Figure 3.2.5-6  High Pressure Injection Flow Rate - BV Case 060 . . . . . . . . . . . . . . . . .          3-188 Figure 3.2.5-7  Accumulator Liquid Volume - BV Case 060 . . . . . . . . . . . . . . . . . . . . . .        3-188 Figure 3.2.5-8  Hot Leg Mass Flow Rate - BV Case 060 . . . . . . . . . . . . . . . . . . . . . . . .      3-189 Figure 3.2.5-9  Core Power and Break Energy - BV Case 060 . . . . . . . . . . . . . . . . . . .            3-189 Figure 3.2.5-10 Steam Generator Narrow Range Water Level - BV Case 060 . . . . . . . .                    3-190 Figure 3.2.5-11 Auxiliary Feedwater Flow Rate - BV Case 060 . . . . . . . . . . . . . . . . . . .          3-190 Figure 3.2.5-12 Steam Generator Pressure - BV Case 060 . . . . . . . . . . . . . . . . . . . . . .        3-191 Figure 3.2.5-13 Void Fraction in Steam Generator Tubes - BV Case 060 . . . . . . . . . . . .              3-191 Figure 3.2.5-14 Vapor Generation Rate in Steam Generator Tubes - BV Case 060 . . . .                      3-192 Figure 3.2.5-15 Primary System Pressure - BV Case 126 . . . . . . . . . . . . . . . . . . . . . . .        3-195 Figure 3.2.5-16 Average Downcomer Fluid Temperature - BV Case 126 . . . . . . . . . . . .                  3-195 Figure 3.2.5-17 Downcomer Heat Transfer Coefficient - BV Case 126 . . . . . . . . . . . . . .              3-196 Figure 3.2.5-18 Pressurizer Water Level - BV Case 126 . . . . . . . . . . . . . . . . . . . . . . . . . 3-196 Figure 3.2.5-19 Break Flow and Total Safety Injection Flow - BV Case 126 . . . . . . . . . .              3-197 Figure 3.2.5-20 High Pressure Injection Flow Rate - BV Case 126 . . . . . . . . . . . . . . . . .          3-197 Figure 3.2.5-21 Accumulator Liquid Volume - BV Case 126 . . . . . . . . . . . . . . . . . . . . . .        3-198 Figure 3.2.5-22 Hot Leg Mass Flow Rate - BV Case 126 . . . . . . . . . . . . . . . . . . . . . . . .      3-198 Figure 3.2.5-23 Core Power and Break Energy - BV Case 126 . . . . . . . . . . . . . . . . . . .            3-199 Figure 3.2.5-24 Steam Generator Narrow Range Water Level - BV Case 126 . . . . . . . .                    3-199 Figure 3.2.5-25 Auxiliary Feedwater Flow Rate - BV Case 126 . . . . . . . . . . . . . . . . . . .          3-200 Figure 3.2.5-26 Steam Generator Pressure - BV Case 126 . . . . . . . . . . . . . . . . . . . . . .        3-200 Figure 3.2.5-27 Core Exit Subcooling - BV Case 126 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-201 Figure 3.2.5-28 Void Fraction in Steam Generator Tubes - BV Case 126 . . . . . . . . . . . .              3-201 Figure 3.2.6-1  Primary System Pressure - BV Case 071 . . . . . . . . . . . . . . . . . . . . . . .        3-205 Figure 3.2.6-2  Average Downcomer Fluid Temperature - BV Case 071 . . . . . . . . . . . .                  3-206 Figure 3.2.6-3  Downcomer Heat Transfer Coefficient - BV Case 071 . . . . . . . . . . . . . .              3-206 Figure 3.2.6-4  Pressurizer Water Level - BV Case 071 . . . . . . . . . . . . . . . . . . . . . . . . . 3-207 Figure 3.2.6-5  Break Flow and Total Safety Injection Flow - BV Case 071 . . . . . . . . . .              3-207 Figure 3.2.6-6  High Pressure Injection Flow Rate - BV Case 071 . . . . . . . . . . . . . . . . .          3-208 Figure 3.2.6-7  Accumulator Liquid Volume - BV Case 071 . . . . . . . . . . . . . . . . . . . . . .        3-208 Figure 3.2.6-8  Hot Leg Mass Flow Rate - BV Case 071 . . . . . . . . . . . . . . . . . . . . . . . .      3-209 Figure 3.2.6-9  Core Power and Break Energy - BV Case 071 . . . . . . . . . . . . . . . . . . .            3-209 Figure 3.2.6-10 Steam Generator Narrow Range Water Level - BV Case 071 . . . . . . . .                    3-210 Figure 3.2.6-11 Auxiliary Feedwater Flow Rate - BV Case 071 . . . . . . . . . . . . . . . . . . .          3-210 Figure 3.2.6-12 Steam Generator Pressure - BV Case 071 . . . . . . . . . . . . . . . . . . . . . .        3-211 Figure 3.2.6-13 Void Fraction in Steam Generator Tubes - BV Case 071 . . . . . . . . . . . .              3-211 Figure 3.2.6-14 Vapor Generation Rate in Steam Generator Tubes - BV Case 071 . . . .                      3-212 Figure 3.2.6-15 Primary System Pressure - BV Case 097 . . . . . . . . . . . . . . . . . . . . . . .        3-214 Figure 3.2.6-16 Average Downcomer Fluid Temperature - BV Case 097 . . . . . . . . . . .                    3-215 Figure 3.2.6-17 Downcomer Heat Transfer Coefficient - BV Case 097 . . . . . . . . . . . . .                3-215 xvii
 
Figure 3.2.6-18 Pressurizer Water Level - BV Case 097 . . . . . . . . . . . . . . . . . . . . . . . .              3-216 Figure 3.2.6-19 Break Flow and Total Safety Injection Flow - BV Case 097 . . . . . . . . .                          3-216 Figure 3.2.6-20 High Pressure Injection Flow Rate - BV Case 097 . . . . . . . . . . . . . . . .                    3-217 Figure 3.2.6-21 Accumulator Liquid Volume - BV Case 097 . . . . . . . . . . . . . . . . . . . . . .                3-217 Figure 3.2.6-22 Hot Leg Mass Flow Rate - BV Case 097 . . . . . . . . . . . . . . . . . . . . . . . .                3-218 Figure 3.2.6-23 Core Power and Break Energy - BV Case 097 . . . . . . . . . . . . . . . . . . .                    3-218 Figure 3.2.6-24 Steam Generator Narrow Range Water Level - BV Case 097 . . . . . . . .                              3-219 Figure 3.2.6-25 Auxiliary Feedwater Flow Rate - BV Case 097 . . . . . . . . . . . . . . . . . . .                  3-219 Figure 3.2.6-26 Steam Generator Pressure - BV Case 097 . . . . . . . . . . . . . . . . . . . . . .                  3-220 Figure 3.2.6-27 Void Fraction in Steam Generator Tubes - BV Case 097 . . . . . . . . . . .                          3-220 Figure 3.2.6-28 Vapor Generation Rate in Steam Generator Tubes - BV Case 097 . . .                                  3-221 Figure 3.2.6-29 Primary System Pressure - BV Case 130 . . . . . . . . . . . . . . . . . . . . . . .                3-224 Figure 3.2.6-30 Average Downcomer Fluid Temperature - BV Case 130 . . . . . . . . . . . .                          3-225 Figure 3.2.6-31 Downcomer Wall Heat Transfer Coefficient - BV Case 130 . . . . . . . . . .                          3-225 Figure 3.2.6-32 Pressurizer Water Level - BV Case 130 . . . . . . . . . . . . . . . . . . . . . . . . .            3-226 Figure 3.2.6-33 Break Flow and Total Safety Injection Flow - BV Case 130 . . . . . . . . . .                        3-226 Figure 3.2.6-34 High Pressure Injection Flow Rate - BV Case 130 . . . . . . . . . . . . . . . . .                  3-227 Figure 3.2.6-35 Accumulator Liquid Volume - BV Case 130 . . . . . . . . . . . . . . . . . . . . . .                3-227 Figure 3.2.6-36 Hot Leg Mass Flow Rate - BV Case 130 . . . . . . . . . . . . . . . . . . . . . . . .                3-228 Figure 3.2.6-37 Core Power and Break Energy - BV Case 130 . . . . . . . . . . . . . . . . . . .                    3-228 Figure 3.2.6-38 Steam Generator Narrow Range Water Level - BV Case 130 . . . . . . . .                              3-229 Figure 3.2.6-39 Auxiliary Feedwater Flow Rate - BV Case 130 . . . . . . . . . . . . . . . . . . .                  3-229 Figure 3.2.6-40 Steam Generator Pressure - BV Case 130 . . . . . . . . . . . . . . . . . . . . . .                  3-230 Figure 3.2.6-41 Void Fraction in Steam Generator Tubes - BV Case 130 . . . . . . . . . . . .                        3-230 Figure 3.2.6-42 Vapor Generation Rate in Steam Generator Tubes - BV Case 130 . . . .                                3-231 Figure 3.2.6-43 Core Exit Subcooling - BV Case 130 . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-231 Figure 3.3.1-1  Reactor Coolant System Pressure - Palisades Case 19 . . . . . . . . . . . .                        3-236 Figure 3.3.1-2  Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-237 Figure 3.3.1-3  Average Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-237 Figure 3.3.1-4  Steam Generator Pressures - Palisades Case 19 . . . . . . . . . . . . . . . . .                    3-238 Figure 3.3.1-5  Auxiliary Feedwater Flows - Palisades Case 19 . . . . . . . . . . . . . . . . . .                  3-238 Figure 3.3.1-6  Steam Generator Secondary Fluid Masses - Palisades Case 19 . . . . .                                3-239 Figure 3.3.1-7  Loop A1 High Pressure Injection Flow - Palisades Case 19 . . . . . . . . .                          3-239 Figure 3.3.1-8  Loop 1 Cold Leg Flows - Palisades Case 19 . . . . . . . . . . . . . . . . . . . . .                3-240 Figure 3.3.1-9  Pressurizer Level - Palisades Case 19 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-240 Figure 3.3.1-10 Charging and Letdown Flows - Palisades Case 19 . . . . . . . . . . . . . . . .                      3-241 Figure 3.3.1-11 Reactor Coolant System Pressure - Palisades Case 52 . . . . . . . . . . . .                        3-243 Figure 3.3.1-12 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-244 Figure 3.3.1-13 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-244 Figure 3.3.1-14 Steam Generator Pressures - Palisades Case 52 . . . . . . . . . . . . . . . . .                    3-245 Figure 3.3.1-15 Auxiliary Feedwater Flows - Palisades Case 52 . . . . . . . . . . . . . . . . . .                  3-245 Figure 3.3.1-16 Steam Generator Secondary Fluid Masses - Palisades Case 52 . . . . .                                3-246 Figure 3.3.1-17 Loop A1 High Pressure Injection Flow - Palisades Case 52 . . . . . . . . .                          3-246 Figure 3.3.1-18 Loop 1 Cold Leg Flows - Palisades Case 52 . . . . . . . . . . . . . . . . . . . . .                3-247 Figure 3.3.1-19 Pressurizer Level - Palisades Case 52 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-247 xviii
 
Figure 3.3.1-20 Charging and Letdown Flows - Palisades Case 52 . . . . . . . . . . . . . . . .                      3-248 Figure 3.3.1-21 Reactor Coolant System Pressure - Palisades Case 54 . . . . . . . . . . . .                        3-251 Figure 3.3.1-22 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-251 Figure 3.3.1-23 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-252 Figure 3.3.1-24 Steam Generator Pressures - Palisades Case 54 . . . . . . . . . . . . . . . . .                    3-252 Figure 3.3.1-25 Auxiliary Feedwater Flows - Palisades Case 54 . . . . . . . . . . . . . . . . . .                  3-253 Figure 3.3.1-26 Steam Generator Secondary Fluid Masses - Palisades Case 54 . . . . .                                3-253 Figure 3.3.1-27 Loop A1 High Pressure Injection Flow - Palisades Case 54 . . . . . . . . .                          3-254 Figure 3.3.1-28 Loop 1 Cold Leg Flows - Palisades Case 54 . . . . . . . . . . . . . . . . . . . . .                3-254 Figure 3.3.1-29 Pressurizer Level - Palisades Case 54 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-255 Figure 3.3.1-30 Charging and Letdown Flows - Palisades Case 54 . . . . . . . . . . . . . . . .                      3-255 Figure 3.3.1-31 Reactor Coolant System Pressure - Palisades Case 55 . . . . . . . . . . . .                        3-258 Figure 3.3.1-32 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-258 Figure 3.3.1-33 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-259 Figure 3.3.1-34 Steam Generator Pressures - Palisades Case 55 . . . . . . . . . . . . . . . . .                    3-259 Figure 3.3.1-35 Auxiliary Feedwater Flows - Palisades Case 55 . . . . . . . . . . . . . . . . . .                  3-260 Figure 3.3.1-36 Steam Generator Secondary Fluid Masses - Palisades Case 55 . . . . .                                3-260 Figure 3.3.1-37 Loop A1 High Pressure Injection Flow - Palisades Case 55 . . . . . . . . .                          3-261 Figure 3.3.1-38 Loop 1 Cold Leg Flows - Palisades Case 55 . . . . . . . . . . . . . . . . . . . . .                3-261 Figure 3.3.1-39 Pressurizer Level - Palisades Case 55 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-262 Figure 3.3.1-40 Charging and Letdown Flows - Palisades Case 55 . . . . . . . . . . . . . . . .                      3-262 Figure 3.3.2-1  Reactor Coolant System Pressure - Palisades Case 60 . . . . . . . . . . . .                        3-267 Figure 3.3.2-2  Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-267 Figure 3.3.2-3  Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-268 Figure 3.3.2-4  Break Flow - Palisades Case 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-268 Figure 3.3.2-5  Steam Generator Pressures - Palisades Case 60 . . . . . . . . . . . . . . . . .                    3-269 Figure 3.3.2-6  Steam Generator Secondary Fluid Masses - Palisades Case 60 . . . . .                                3-269 Figure 3.3.2-7  Hot Leg Flows - Palisades Case 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-270 Figure 3.3.2-8  Loop A1 High Pressure Injection Flow - Palisades Case 60 . . . . . . . . .                          3-270 Figure 3.3.2-9  Pressurizer Level - Palisades Case 60 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-271 Figure 3.3.2-10 Charging and Letdown Flows - Palisades Case 60 . . . . . . . . . . . . . . . .                      3-271 Figure 3.3.2-11 Reactor Coolant System Pressure - Palisades Case 65 . . . . . . . . . . . .                        3-274 Figure 3.3.2-12 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-275 Figure 3.3.2-13 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-275 Figure 3.3.2-14 Break Flow - Palisades Case 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-276 Figure 3.3.2-15 Steam Generator Pressures - Palisades Case 65 . . . . . . . . . . . . . . . . .                    3-276 Figure 3.3.2-16 Steam Generator Secondary Fluid Masses - Palisades Case 65 . . . . .                                3-277 Figure 3.3.2-17 Hot Leg Flows - Palisades Case 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-277 Figure 3.3.2-18 Loop A1 High Pressure Injection Flow - Palisades Case 65 . . . . . . . . .                          3-278 Figure 3.3.2-19 Pressurizer Level - Palisades Case 65 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-278 Figure 3.3.2-20 Charging and Letdown Flows - Palisades Case 65 . . . . . . . . . . . . . . . .                      3-279 xix
 
Figure 3.3.3-1  Reactor Coolant System Pressure - Palisades Case 58 . . . . . . . . . . . .                        3-284 Figure 3.3.3-2  Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-284 Figure 3.3.3-3  Average Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-285 Figure 3.3.3-4  Break Flow - Palisades Case 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-285 Figure 3.3.3-5  Steam Generator Pressures - Palisades Case 58 . . . . . . . . . . . . . . . . .                    3-286 Figure 3.3.3-6  Steam Generator Secondary Fluid Masses - Palisades Case 58 . . . . .                                3-286 Figure 3.3.3-7  Hot Leg Flows - Palisades Case 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-287 Figure 3.3.3-8  Loop A1 HPI and LPI Flows - Palisades Case 58 . . . . . . . . . . . . . . . . .                    3-287 Figure 3.3.3-9  Pressurizer Level - Palisades Case 58 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-288 Figure 3.3.3-10 Loop 1A SIT Flow - Palisades Case 58 . . . . . . . . . . . . . . . . . . . . . . . . .              3-288 Figure 3.3.3-11 Reactor Coolant System Pressure - Palisades Case 59 . . . . . . . . . . . .                        3-291 Figure 3.3.3-12 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-292 Figure 3.3.3-13 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-292 Figure 3.3.3-14 Break Flow - Palisades Case 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-293 Figure 3.3.3-15 Steam Generator Pressures - Palisades Case 59 . . . . . . . . . . . . . . . . .                    3-293 Figure 3.3.3-16 Steam Generator Secondary Fluid Masses - Palisades Case 59 . . . . .                                3-294 Figure 3.3.3-17 Hot Leg Flows - Palisades Case 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-294 Figure 3.3.3-18 Loop A1 HPI and LPI Flows - Palisades Case 59 . . . . . . . . . . . . . . . . .                    3-295 Figure 3.3.3-19 Pressurizer Level - Palisades Case 59 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-295 Figure 3.3.3-20 Loop 1A SIT Flow - Palisades Case 59 . . . . . . . . . . . . . . . . . . . . . . . . .              3-296 Figure 3.3.3-21 Reactor Coolant System Pressure - Palisades Case 64 . . . . . . . . . . . .                        3-299 Figure 3.3.3-22 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-299 Figure 3.3.3-23 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-300 Figure 3.3.3-24 Break Flow - Palisades Case 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-300 Figure 3.3.3-25 Steam Generator Pressures - Palisades Case 64 . . . . . . . . . . . . . . . . .                    3-301 Figure 3.3.3-26 Steam Generator Secondary Fluid Masses - Palisades Case 64 . . . . .                                3-301 Figure 3.3.3-27 Hot Leg Flows - Palisades Case 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-302 Figure 3.3.3-28 Loop A1 HPI and LPI Flows - Palisades Case 64 . . . . . . . . . . . . . . . . .                    3-302 Figure 3.3.3-29 Pressurizer Level - Palisades Case 64 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-303 Figure 3.3.3-30 Loop 1A SIT Flow - Palisades Case 64 . . . . . . . . . . . . . . . . . . . . . . . . .              3-303 Figure 3.3.4-1  Reactor Coolant System Pressure - Palisades Case 40 . . . . . . . . . . . .                        3-308 Figure 3.3.4-2  Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-308 Figure 3.3.4-3  Average Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-309 Figure 3.3.4-4  Break Flow - Palisades Case 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-309 Figure 3.3.4-5  Steam Generator Pressures - Palisades Case 40 . . . . . . . . . . . . . . . . .                    3-310 Figure 3.3.4-6  Steam Generator Secondary Fluid Masses - Palisades Case 40 . . . . .                                3-310 Figure 3.3.4-7  Hot Leg Flows - Palisades Case 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-311 Figure 3.3.4-8  Loop A1 HPI and LPI Flows - Palisades Case 40 . . . . . . . . . . . . . . . . .                    3-311 Figure 3.3.4-9  Pressurizer Level - Palisades Case 40 . . . . . . . . . . . . . . . . . . . . . . . . . .          3-312 Figure 3.3.4-10 Loop 1A SIT Flow - Palisades Case 40 . . . . . . . . . . . . . . . . . . . . . . . . .              3-312 Figure 3.3.4-11 Reactor Coolant System Pressure - Palisades Case 62 . . . . . . . . . . . .                        3-315 xx
 
Figure 3.3.4-12 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-316 Figure 3.3.4-13 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-316 Figure 3.3.4-14 Break Flow - Palisades Case 62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-317 Figure 3.3.4-15 Steam Generator Pressures - Palisades Case 62 . . . . . . . . . . . . . . . . .                      3-317 Figure 3.3.4-16 Steam Generator Secondary Fluid Masses - Palisades Case 62 . . . . .                                3-318 Figure 3.3.4-17 Hot Leg Flows - Palisades Case 62 . . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-318 Figure 3.3.4-18 Loop A1 HPI and LPI Flows - Palisades Case 62 . . . . . . . . . . . . . . . . .                      3-319 Figure 3.3.4-19 Pressurizer Level - Palisades Case 62 . . . . . . . . . . . . . . . . . . . . . . . . . .            3-319 Figure 3.3.4-20 Loop 1A SIT Flow - Palisades Case 62 . . . . . . . . . . . . . . . . . . . . . . . . .              3-320 Figure 3.3.4-21 Reactor Coolant System Pressure - Palisades Case 63 . . . . . . . . . . . .                          3-323 Figure 3.3.4-22 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-323 Figure 3.3.4-23 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-324 Figure 3.3.4-24 Break Flow - Palisades Case 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          3-324 Figure 3.3.4-25 Steam Generator Pressures - Palisades Case 63 . . . . . . . . . . . . . . . . .                      3-325 Figure 3.3.4-26 Steam Generator Secondary Fluid Masses - Palisades Case 63 . . . . .                                3-325 Figure 3.3.4-27 Hot Leg Flows - Palisades Case 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . .            3-326 Figure 3.3.4-28 Loop A1 HPI and LPI Flows - Palisades Case 63 . . . . . . . . . . . . . . . . .                      3-326 Figure 3.3.4-29 Pressurizer Level - Palisades Case 63 . . . . . . . . . . . . . . . . . . . . . . . . . .            3-327 Figure 3.3.4-30 Loop 1A SIT Flow - Palisades Case 63 . . . . . . . . . . . . . . . . . . . . . . . . .              3-327 xxi
 
Tables Table 2.0-1 Summary of Plant Parameters Relevant to the PTS Evaluation . . . . . . . . . . . 2-2 Table 2.1-1 Comparison of Key Oconee Plant Design Parameters to RELAP5 Steady-State Results for Hot Full Power Conditions . . . . . . . . . . . . . . . . . . 2-10 Table 2.1-2 Comparison of Key Oconee Plant Design Parameters to RELAP5 Steady-State Results for Hot Zero Power Conditions . . . . . . . . . . . . . . . . . . 2-10 Table 2.2-1 Comparison of Key Beaver Valley Plant Design Parameters to RELAP5 Steady-State Results for Hot Full Power Conditions . . . . . . . . . . . . . . . . . . 2-19 Table 2.2-2 Comparison of Key Beaver Valley Plant Design Parameters to RELAP5 Steady-State Results for Hot Zero Power Conditions . . . . . . . . . . . . . . . . . . 2-20 Table 2.3-1 Comparison of Key Palisades Plant Design Parameters to RELAP5 Steady-State Results for Hot Full Power Conditions . . . . . . . . . . . . . . . . . . 2-32 Table 2.3-2 Comparison of Key Palisades Plant Design Parameters to RELAP5 Steady-State Results for Hot Zero Power Conditions . . . . . . . . . . . . . . . . . . 2-32 Table 3.1-1 Comparison of Event Timing for LOCA Sequences . . . . . . . . . . . . . . . . . . . . 3-3 Table 3.1-2 Comparison of Event Timing for Sequences with a Stuck Open PSV that Recloses at 6000 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36 Table 3.1-3 Comparison of Event Timing for Sequences with a Stuck Open PSV that Recloses in 3000 Seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-65 Table 3.1-4 Comparison of Event Timing for MSLB Sequences . . . . . . . . . . . . . . . . . . . 3-80 Table 3.2-1 Sequence of Events for Loss of Coolant Accidents from Hot Full Power . . . 3-97 Table 3.2-2 Sequence of Events for Loss of Coolant Accidents from Hot Zero Power . 3-126 Table 3.2-3 Sequence of Events for Main Steam Line Breaks from Hot Full Power . . . 3-137 Table 3.2-4 Sequence of Events for Main Steam Line Breaks from Hot Zero Power . . 3-166 Table 3.2-5 Sequence of Events for Stuck Open Pressurizer SRV which Reclose from Hot Full Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-183 Table 3.2-6 Sequence of Events for Stuck Open Primary Relief Valves Which Reclose from Hot Zero Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-203 Table 3.3-1 Comparison of Event Timing for Dominant Palisades Event Sequences
            - Group 1, Steam System Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-235 Table 3.3-2 Comparison of Event Timing for Dominant Palisades Event Sequences
            - Group 2, Primary System Breaks with Diameters of 5.08-cm [2-in]
and Smaller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-266 Table 3.3-3 Comparison of Event Timing for Dominant Palisades Event Sequences
            - Group 3, Primary System Breaks with a Diameter of 10.16 cm [4 in] . . . 3-282 Table 3.3-4 Comparison of Event Timing for Dominant Palisades Event Sequences
            - Group 4, Primary System Breaks with a Diameter Greater than 10.16 cm [4 in] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-307 Table 4.1-1 Summary of Oconee Thermal Hydraulic Results . . . . . . . . . . . . . . . . . . . . . . 4-3 Table 4.1-2 Summary of Beaver Valley Thermal Hydraulic Results . . . . . . . . . . . . . . . . . 4-5 Table 4.1-3 Summary of Palisades Thermal Hydraulic Results . . . . . . . . . . . . . . . . . . . . . 4-7 Table 4.2-1 Comparison of Current PTS Thermal Hydraulic Results to Results from NUREG/CR-3761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 xxiii
 
EXECUTIVE
 
==SUMMARY==
 
In 1978, the occurrence of a non-LOCA overcooling event at Rancho Seco showed the possibility of rapid cooldown of the reactor coolant system followed by repressurization, leading to increased stress on the reactor vessel. This situation, referred to as Pressurized Thermal Shock (PTS), could lead to crack propagation in a reactor vessel where material fracture toughness has been reduced by neutron irradiation over long periods of operation. Crack propagation could lead to through-wall cracking with vessel failure and core damage in extreme cases.
Since the time of the Rancho Seco event, risk analyses have been performed to evaluate the risk of vessel failure due to pressurized thermal shock under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). During the 1980's, a PTS study was performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 nuclear power plants. The specific objective of these evaluations was to provide a best-estimate of the probability of through-wall cracking of the reactor pressure vessel due to a transient event. As part of this effort, event sequences were evaluated and consideration was given to plant features and operator actions that could influence primary system temperature and pressure and the risk of through-wall cracking. This work was undertaken in response to the PTS unresolved safety issue (A49).
The purpose of the current investigation is to determine whether through-wall cracking of the reactor vessel is credible for all classes of cooldown transients and accidents. Since completion of the earlier work, new information has resulted in improved analytical capability to evaluate PTS events. This capability includes improved embrittlement correlations, greatly improved knowledge to estimate original flaw density, size, orientation, and distribution, refinement of the probabilistic fracture mechanics code, improved understanding of flow interruption, flow stagnation, and fluid mixing behavior. Also, improvements in computing capabilities since the 1980's study means that more variations of PTS events can be considered, resulting in a better understanding of the types of transients that are significant contributors to risk.
The purpose of the thermal hydraulics analysis discussed in this report is to provide the downcomer boundary conditions for the probabilistic fracture mechanics analysis. The boundary conditions of interest are time dependent primary system pressure, fluid temperature in the downcomer, and the convective heat transfer coefficient between the downcomer fluid and the vessel wall. These thermal hydraulic calculations are performed for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants using the RELAP5/MOD3.2.2gamma computer program for specific transient sequences. The sequences were defined as part of a risk assessment to identify sequences that are important to the risk due to a PTS event by Sandia National Laboratories. These sequences include LOCAs of various sizes with and without secondary side failures and also non-LOCA transients with primary and secondary side failures. Operator actions are considered in many of the sequences analyzed. The calculated primary system pressure, downcomer temperature and heat transfer coefficient at the vessel wall are used as boundary conditions to the probabilistic fracture mechanics analysis performed by Oak Ridge National Laboratory.
xxv
 
Detailed results for the transients sequences that contribute more than 1 percent of the total risk for each plant are provided in Sections 3 and 4. A summary of the results for all transients that were included in the risk evaluation are presented in Appendices A through C.
xxvi
 
ACKNOWLEDGMENTS The authors wish to thank Dr. Daniel Prelewicz for his technical guidance throughout the course of this analysis. The authors also would like to thank Dr. Tim M. Lee for his guidance and direction during the early stages of this effort.
xxvii
 
ABBREVIATIONS AFW    Auxiliary Feedwater B&W    Babcock and Wilcox CSAU  Code Scaling Assessment and Uncertainty ECCS  Emergency Core Cooling System EFW    Emergency Feedwater System HPI    High Pressure Injection System INEEL  Idaho National Engineering and Environmental Laboratory ICS    Integrated Control System LANL  Los Alamos National Laboratory LOCA  Loss of Coolant Accident LPI    Low Pressure Injection System MFW    Main Feedwater System MSIV  Main Steam Isolation Valve MSLB  Main Steam Line Break ORNL  Oak Ridge National Laboratory OTSG  Once-through Steam Generator PORV  Power Operated Relief Valve PTS    Pressurized Thermal Shock PWR    Pressurized Water Reactor RCP    Reactor Coolant Pump RWST  Reactor Water Storage Tank SIAS  Safety Injection Actuation Signal SBLOCA Small Break Loss of Coolant Accident SG    Steam Generator SRV    Safety Relief Valve TBV    Turbine Bypass Valve USNRC  U.S. Nuclear Regulatory Commission xxix
 
==1.0 INTRODUCTION==
 
1.1 Previous PTS Analysis In 1978, the occurrence of a non-LOCA overcooling event at Rancho Seco showed the possibility of rapid cooldown of the reactor coolant system followed by repressurization, leading to increased stress on the reactor vessel. This situation, referred to as Pressurized Thermal Shock (PTS), could lead to crack propagation in a reactor vessel where material fracture toughness has been reduced by neutron irradiation over long periods of operation. Crack propagation could lead to through-wall cracking in the reactor vessel with vessel failure and core damage in extreme cases.
A series of thermal hydraulic and risk analyses were performed in the early to mid 1980s to eval-uate the risk of vessel failure due to pressurized thermal shock under the sponsorship of the U.S.
Nuclear Regulatory Commission (USNRC). Three pressurized water reactor plants were evaluated at that time: Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2. The specific objective of these evaluations was to provide a best-estimate of the probability of through-wall cracking of the reactor pressure vessel due to a transient event. As part of this effort, event sequences were evaluated and consideration was given to plant features and operator actions that could affect reactor coolant system pressure and temperature and ultimately influence the risk of through-wall cracking. This work was undertaken in response to the PTS unresolved safety issue (A49).
Oak Ridge National Laboratory (ORNL) was responsible for the overall coordination of the PTS effort and published the results of their work for Oconee-1 in NUREG/CR-3770 [Ref. 1-1]. In their report, ORNL discussed the development of a PTS risk analysis approach that incorporates elements of risk assessment, thermal hydraulics and fracture mechanics. ORNL provided esti-mates of the probability of a through-wall crack due to PTS. Main steam line breaks were identified as the most significant contributors to the risk of through-wall cracks by ORNL. Downcomer temperature uncertainty was identified as the most significant contributor to overall uncertainty.
After the initial work on PTS was completed in the mid 1980's, the NRC revised Section 50.61 of 10CFR Part 50 to address PTS. This regulation establishes screening criteria on the reference temperature for nil-ductility transition, requires licensees to accomplish practical neutron flux reductions to avoid exceeding the screening criterion, and requires plants that exceed the screening criterion to submit an analysis of the modifications that are necessary if continued operation beyond the screening criterion is to be allowed.
The issue of pressurized thermal shock was further discussed in NUREG/CR-5452 published in 1999 [Ref. 1-2]. The objective of this report was to investigate recent improvements in the PTS thermal hydraulic methodology. Both the RELAP5 and TRAC-P codes were used to analyze the H.B. Robinson plant. The thrust of this effort was a general demonstration of PTS methods which focused on the quantification of uncertainty rather than the thermal hydraulic analyses pertinent to plant-specific PTS evaluations.
1-1
 
1.2 PTS Rebaseline Program The purpose of the current investigation is to determine whether brittle fracture of the reactor vessel is credible for all classes of cooldown transients and accidents. Since completion of the earlier work discussed in Section 1.1, new information has resulted in improved analytical capability to evaluate PTS events. This capability includes improved embrittlement correlations, greatly improved knowledge to estimate original flaw density, size, orientation, and distribution, refinement of the probabilistic fracture mechanics code, and improved understanding of flow interruption, flow stagnation, and fluid mixing behavior. Also, improvements in computing capabilities since the 1980's study means that more variations of PTS events can be considered, resulting in a better understanding of the types of transients that are significant contributors to risk.
The purpose of the thermal hydraulics analysis discussed in this report is to provide the downcomer boundary conditions for the fracture mechanics analysis. The boundary conditions of interest are time dependent primary system pressure, fluid temperature in the downcomer, and the convective heat transfer coefficient between the downcomer fluid and the vessel wall.
1.3 References 1-1    Burns, T. J., et. al., Preliminary Development of an Integrated Approach to the Evaluation of Pressurized Thermal Shock As Applied to the Oconee Unit 1 Nuclear Power Plant, NUREG/CR-3770, ORNL/TM-9176, May 1986.
1-2    Palmrose, D., Demonstration of Pressurized Thermal Shock Thermal Hydraulic Analysis with Uncertainty, NUREG/CR-5452, SCIE-NRC-350, March 1999.
1-2
 
2.0 RELAP5 MODELS FOR THE OCONEE, BEAVER VALLEY AND PALISADES NUCLEAR POWER PLANTS This section describes the RELAP5 models developed for the Oconee-1, Beaver Valley Unit 1 and the Palisades plants. The thermal-hydraulic analysis methodology is similar for the three plants.
In each case, the best available RELAP5 input model was used as the starting point to expedite the model development process. For Oconee, the base model was that used in the code scaling, applicability and uncertainty (CSAU) study. For Beaver Valley, the base model was the H.B.
Robinson-2 model used in the original PTS study in the mid 1980s. This model was revised by Westinghouse to reflect the Beaver Valley plant configuration. For Palisades, the base model was obtained from Nuclear Management Corporation, the operators of the Palisades plant. This model was originally developed and documented by Siemens Power Corporation to support analysis of the loss of electrical load event for Palisades.
The RELAP5 models for the Oconee, Beaver Valley and Palisades plants are detailed representations of the power plants and include all major components for both the primary and secondary plant systems. RELAP5 heat structures are used throughout the models to represent structures such as the fuel, vessel wall, vessel internals and steam generator tubes. The reactor vessel nodalization includes the downcomer, lower plenum, core inlet, core, core bypass, upper plenum and upper head regions. Plant-specific features, such as the reactor vessel vent valves, are included as appropriate.
The downcomer model used in each plant utilizes a two-dimensional nodalization. This approach was used to capture the possible temperature variation in the downcomer due to the injection of cold ECCS water into each of the cold legs. Capturing this temperature variation in the downcomer is not possible with the original one-dimensional downcomer. In the revised models, the downcomer is divided into six azimuthal regions for each plant.
The safety injection systems modeled for the Oconee, Palisades, and Beaver Valley plants include high pressure injection (HPI), low pressure injection (LPI), other ECCS components (e.g.
accumulators, core flood tanks (CFTs), safety injection tanks (SITs) depending on the plant designation), and makeup/letdown as appropriate.
The secondary coolant system models include steam generators, main and auxiliary/emergency feedwater, steam lines, safety valves, main steam isolation valves (as appropriate) and turbine bypass and stop valves.
Each of the models was updated to reflect the current plant configuration including updating system setpoints (to best estimate values) and modifying control logic to reflect current operating procedures. Other changes to the models include the addition of control blocks to calculate parameters for convenience or information only (e.g., items such as minimum downcomer temperature). The Oconee, Beaver Valley and Palisades models were then initialized to simulate hot full power and hot zero power steady plant operation for the purpose of establishing satisfactory steady state conditions from which the PTS transient event sequence calculations are started.
2-1
 
In RELAP5 simulations of LOCA event sequences for the Oconee and Palisades plants during which all of the reactor coolant pumps are tripped and the loss of primary coolant system inventory is sufficient to interrupt coolant loop natural circulation flow, a circulating flow was observed between the two cold legs on the same coolant loop. The circulations mix coolant in the reactor vessel downcomer, cold leg and SG outlet plenum regions. These RELAP5 cold-leg circulations were originally reported during the first PTS evaluation study (Reference 2.0.1) and are significant for the PTS application. When the circulation is present the calculated reactor vessel downcomer fluid temperature benefits from the warming effects created by mixing the cold HPI fluid with the warm steam generator outlet plenum fluid. When the circulation is not present the calculated reactor vessel downcomer fluid temperature more directly feels the influence of the cold HPI fluid.
Note that both the Oconee and Palisades plants have a 2x4" configuration with two cold legs and one hot leg in each coolant loop. In contrast, the Beaver Valley plant has a single hot and cold leg per coolant loop and this type of circulating flow is not seen.
The cold leg circulation issue is also addressed in Section 3.9 of the current RELAP5 PTS assessment report (Reference 2.0.2). Certain of the experiments used in the assessment exhibited apparent indications of cold leg circulations very similar to those simulated with RELAP5. However, the experimental evidence was not judged to be conclusive and concerns (related to circulation initiation and the scalability of the behavior from the sub-scale experiment to full-scale plant configurations) remain regarding the veracity of these circulations. Because of these concerns and because the effect of including cold leg circulations in the RELAP5 simulations is non-conservative for PTS (i.e., it results in warmer reactor vessel downcomer temperatures), same-loop cold leg circulations were prevented in the RELAP5 PTS plant simulations for LOCA events. The cold leg circulations were prevented by implementing large reverse flow loss coefficients (1.0E5, based on the cold leg pipe flow area) in the reactor coolant pump regions of the RELAP5 model. The model change is implemented at the time during the event sequence when the reactor coolant pump coast-down is complete.
In the following sections, plant specific RELAP5 modeling features important to the Oconee, Beaver Valley and Palisades plants are discussed. A tabulation of the key parameters for these plants relevant to PTS is presented in Table 2.0-1.
Table 2.0-1 Summary of Plant Parameters Relevant to the PTS Evaluation Description                  Oconee                Beaver Valley            Palisades Reactor thermal    2568 MWt                    2660 MWt            2530 MWt power Primary code        17.34 MPa [2515 psia]      17.27 MPa [2505      Three valves with safety valve                                    psia]                staggered opening opening pressure                                                    setpoints of 17.24, 17.51 and 17.79 MPa [2500, 2540 and 2580 psia].
Primary code        Two valves each with a      Three valves each    Three valves each with a safety valve        capacity of 43.47 kg/s      with a capacity of  capacity of 28.98 kg/s capacity            [345,000 lbm/hr] at 16.89  62.77 kg/s [498,206  [230,000 lbm/hr] at MPa [2450 psia].            lbm/hr] at 17.24 MPa 17.75 MPa [2575 psia]
[2500 psia].
2-2
 
Description                  Oconee            Beaver Valley              Palisades Pressurizer        17.0 MPa [2465 psia]      The first PORV is    Two valves, both with an PORV opening                                controlled by a      opening setpoint pressure                                    compensated error    pressure of 16.55 MPa signal. The error    [2400 psia]. Note that
[pressurizer          closed block valves pressure - 15.51      prevent the function of MPa [2250 psia] is    pressure relief through processed with a      these valves during proportional plus    normal plant operation.
integral controller.
This PORV begins to open when the compensated error is > 0.69 MPa [100 psi] and closes when the compensated pressure error < 0.62 MPa [90 psi]. The second and third PORVs open when the pressurizer pressure is > 16.2 MPa [2350 psia] and close when pressure
                                            < 16.1 MPa [2340 psia].
PORV capacity      Estimated flow rate is    Three valves each    Two valves each with a 16.03 kg/s [127,000      with a capacity of    capacity of 61.46 kg/s lbm/hr] at 16.9 MPa      26.46 kg/s [210,000  [487,800 lbm/hr] at
[2450 psia].              lbm/hr] at 16.2 MPa  16.55 MPa [2400 psia].
[2350 psia]
LPI injection      3.89 MPa [550 psig].      SIAS signal:          Pressurizer pressure actuation setpoint                          pressurizer pressure  less than 10.98 MPa
                                            < 12.72 MPa [1845    [1593 psia] with a 27 psia], high steamline second time delay.
DP (steamline pressure < header pressure by 0.69 MPa [100 psi] or more), or steamline pressure < 3.47 MPa
[503 psia].
LPI pump shutoff  1.48 MPa [214 psia]      1.48 MPa [214.7      1.501 MPa [217.7 psia].
head                                        psia]
LPI pump runout    504.5 kg/s [1110 lbm/s]  313.4 kg/s [690.84    433.5 kg/s [955.7 lbm/s]
flow              total for two pumps.      lbm/s] total for the  total for the four loops.
three loops.
2-3
 
Description                  Oconee                Beaver Valley              Palisades HPI injection      11.07 MPa [1605 psia]      SIAS signal:          Pressurizer pressure actuation setpoint                            pressurizer pressure  less than 10.98 MPa
                                              < 12.72 MPa [1845      [1593 psia] with a 27 psia], high steamline  second time delay.
DP (steamline pressure < header pressure by 0.69 MPa [100 psi] or more), or steamline pressure < 3.47 MPa
[503 psia].
HPI pump shutoff  > 18.61 MPa [2700 psia]    > 17.93 MPa [2600      8.906 MPa [1291.7 head                                          psia]                  psia].
HPI pump runout    80.9 kg/s [178.2 lbm/s]    61.12 kg/s [134.7      86.49 kg/s [190.7 lbm/s]
flow              total for the four loops. lbm/s] total for the  total for the four loops.
three loops.
Reactor coolant    No automatic trips on the  No automatic trips    No automatic pump pump trip setpoint reactor coolant pump.      on the reactor        trips. Procedures Operator is assumed to      coolant pumps.        instruct the operators to trip RCPs at 0.28 K        Operator is assumed    trip two RCPs (one in
[0.5EF] subcooling.        to trip RCPs when      each loop) if pressurizer the differential      pressure falls below 8.96 pressure between      MPa [1300 psia] and to the RCS and the        trip all pumps if RCS highest SG pressure    subcooling falls below was less than 2.59    13.9 K [25EF] or if MPa [375 psid].        containment pressure exceeds 0.127 MPa
[18.4 psia].
SG safety valve    The lowest relief valve    The lowest relief      The lowest MSSV bank opening      setpoint is 6.76 MPa        valve setpoint is 7.51 opening setpoint pressure          [980 psia].                MPa [1090 psig].      pressure is 7.097 MPa
[1029.3 psia].
SG atmospheric    Not included in the        Opening pressure of    Open to control the RCS steam dumps        RELAP5 model.              7.24 MPa [1050        average temperature to opening criteria                              psia].                551 K (532EF)
Number of main    None.                      One per steam line. One per steam line.
steam isolation valves Location of        None.                      Located in SG outlet  Located in SG outlet steamline flow                                nozzles.              nozzles.
restrictors Isolation of      Isolated during MSLB by    Requires manual        Requires manual turbine-driven    isolation circuitry        operator action and    operator action and EFW/AFW pump                                  would be done if      would be done if needed during MSLB                                    needed to maintain    to maintain SG level.
SG level 2-4
 
Description                  Oconee              Beaver Valley              Palisades Analyzed range      Base case model          Base case model        Base case model of SI water        assumptions for HPI and  assumptions for HPI    assumptions for HPI and temperature        LPI nominal feed          and LPI nominal        LPI nominal feed temperature is 294.3 K    feed temperature is    temperature is 304.2 K
[70&deg;F]. CFT temperature  283.1 K [50&deg;F]. CFT    [87.9&deg;F]. SIT is 299.8 K [80&deg;F]        temperature is 305.4  temperature is 310.9 K K [90&deg;F]              [100&deg;F]
Sensitivity cases for ECCS temperature due      Sensitivity cases for  Sensitivity cases for to seasonal variation:    ECCS temperature      ECCS temperature due due to seasonal        to seasonal variation:
Summer Conditions        variation:
HPI, LPI - 302.6 K                              Summer Conditions
[85&deg;F]                    Summer Conditions      HPI, LPI - 310.9 K CFT - 310.9 K [100&deg;F]    HPI, LPI - 285.9 K    [100&deg;F]
[55&deg;F]                  SIT - 305.4 K [90&deg;F]
Winter Conditions        CFT - 313.7 K HPI, LPI - 277.6 K      [105&deg;F]                Winter Conditions
[40&deg;F]                                            HPI, LPI - 277.6 K CFT - 294.3 K [70&deg;F]                            [40&deg;F]
SIT - 288.7 K [60&deg;F]
Refueling water    Borated water storage    Tank's useable        889.5 m3 [235,000 storage tank        tank water volume is      volume is between      gallons]
water volume        327,000 gallons          1627.7 and 1669.4 m3 [430,000 and 441,000 gallons].
Containment        Total containment spray  Total containment      Containment spray is spray actuation    flow rate is 3000 gpm    spray flow is 334.4    activated on high setpoint and        [1500 gpm/pump]          liter/s [5300 gpm]    containment pressure at flowrate                                                            0.127 MPa [18.4 psia].
Total containment spray rate is 229.8 liters/s
[3643 gpm].
CFT/accumulator    2 tanks each with a      3 accumulators each    4 SITs each with a water water volume        water volume of 28,579    with a liquid volume  volume of 29450 liters liters [7550 gallons]    of 29,299 liters [7740 [7780 gallons].
gallons]
CFT/SIT/            4.07 MPa [590 psia]      4.47 MPa [648 psia]    1.48 MPa [214.7 psia]
accumulator discharge pressure 2.0.1 References 2.0.1  Fletcher, C. D., et. al., RELAP5 Thermal Hydraulic Analyses of Pressurized Thermal Shock Sequences for the Oconee-1 Pressurized Water Reactor, NUREG/CR-3761, June 1984.
2-5
 
2.0.2    Fletcher, C. D., Prelewicz, D.A. and Arcieri, W. C., RELAP5/MOD3.2.2 Gamma Assessment for Pressurized Thermal Shock Applications, NUREG/CR-6857, Draft, October 2004.
2.1 Oconee Model 2.1.1 Oconee Model Description The Oconee-1 Nuclear Power Station is a Babcock and Wilcox (B&W) designed pressurized water reactor with a rated power of 2568 MWt. The reactor coolant system for Oconee-1 consists of the reactor vessel with two cooling loops connected in parallel and designated as loops A and B.
Each cooling loop consists of a hot leg, a once-through steam generator, and two parallel cold legs each with a reactor coolant pump. The pressurizer and pressurizer surge line are connected to the hot leg in loop A. Water flow in the reactor coolant system is from the reactor core through the hot legs to the once-through steam generator. From the steam generator, the primary system water flows to the reactor coolant pump suction and then back to the reactor vessel. The pressurizer, which is electrically heated, provides overall pressure control to the reactor coolant system. The Oconee station is a lowered-loop design with the lowest part of the cold leg about six feet lower than the bottom of the reactor vessel. The reactor coolant pumps are located such that the center line of the discharge is about 1 meter [3.5 feet] above the center line of the cold leg nozzle. A section of the cold leg is sloped at 45 degrees to compensate for the difference in elevation.
The Oconee-1 RELAP model is a detailed representation of the Oconee-1 Nuclear Power Plant and includes all major components for both the primary and secondary systems. The noding diagram for the Oconee RELAP5 model is illustrated in Figures 2.1-1 to 2.1-5. RELAP5 heat structures are used throughout the model to represent structures such as the fuel, vessel wall, vessel internals and steam generators.
The reactor vessel nodalization includes the downcomer, lower plenum, core inlet, core, core bypass, and the upper plenum and upper head region as shown in Figure 2.1-1. Because of the need for more detailed temperature information in the downcomer for PTS evaluations, a two-dimensional renodalization of the reactor vessel downcomer region in the reactor vessel is used.
In the revised model, the downcomer adjacent to the core is divided into five axial and six azimuthal regions as shown in Figure 2.1-1. The reason for choosing six azimuthal regions is so that each of the four cold legs, and the two core flood tank/LPI injection points inject into separate nodes to preclude artificial mixing of these two temperature streams. This noding is carried down for the axial length of the downcomer. Because of problems with non-physical numerically-driven flow circulation among the six azimuthal regions in the downcomer, application of the momentum flux model was disabled. This approach reduced the magnitude of these flows to a realistic level.
The vent valve modeling was revised as part of the downcomer nodalization. The vent valves connect the upper plenum to the vessel annulus above the hot and cold leg nozzles. Each valve consists of a hinged disk and valve body that remains closed during normal operation. The valves open if the pressure drop across the core barrel reverses, a situation that can exist when natural circulation and/or flow stagnation occurs. The vent valves allow steam flow from the upper plenum of the reactor vessel through the downcomer to the break in the event of a cold leg break. The vent valves allow hot water to flow into the downcomer region during PTS transients when natural 2-6
 
circulation flow may be limited. Flow from the vent valves will enhance mixing of the ECCS flow in the downcomer. The eight reactor vessel vent valves are represented by six RELAP5 servo valves which connect from the upper plenum to each of the six sectors in the upper portion of the downcomer annulus as shown in Figure 2.1-1. Adjustments were made to the valve flow area to compensate for the difference between the actual number of vent valves and the number modeled.
Reactor loop nodalization includes the hot legs (one per loop) and cold legs (two per loop), the reactor coolant pumps (two per loop), and the OTSG tubes (primary side) as shown in Figure 2.1-2.
Loop A components are numbered with 100 series numbers while loop B components are numbered with 200-series numbers. For the reactor coolant pumps, the default pump flow curves included in RELAP5 are used. The rated flow of each reactor coolant pump is 4147.0 kg/s [88,000 gpm].
The high pressure injection system for Oconee connects to each cold leg and is modeled as a time dependent volume-junction combination. The HPI system actuates if the reactor coolant system pressure decreases to 11.1 MPa [1605 psia] as listed in Table 2.0-1. The low pressure injection (LPI) system and the core flood tanks (CFT) inject directly into the vessel downcomer and hence are part of the reactor vessel nodalization. There are two injection nozzles for both the LPI and CFT on opposite sides of the vessel. The low pressure injection system is modeled as a time-dependent volume-junction pair. Each of the core flood tanks is modeled as a RELAP5 accumulator injecting to the same point as the LPI.
The pressurizer is connected to the riser section of the Loop A hot leg as shown in Figure 2.1-2.
The pressurizer system nodalization includes the pressurizer, pressurizer spray line, power operated relief valve (PORV) and primary system safety relief valve as shown in Figure 2.1-3. The pressurizer spray system connects to the cold leg downstream of the reactor coolant pump in Loop A2. The primary system safety relief valve and the power operated relief valve (PORV) are included in the model as RELAP5 trip valves. The discharge of these valves is connected to time-dependent volumes representing the quench tanks in the containment. The pressurizer spray system is also represented in the Oconee-1 model. The spray valve is included as a RELAP5 trip valve.
Secondary side components included in the RELAP5 model are the hotwell pump, condensate booster pump, two main feedwater pumps, startup and main feed regulation valves, steam generator secondary side and the connecting piping. The steam generator secondary side nodalization is shown in Figures 2.1-4 and 2.1-5. The boiler section of the steam generator is modeled as a parallel stack of nodes. The emergency feedwater system is connected to the topmost node of the stack of nodes with the smaller flow area. This noding approach is used to avoid problems with liquid entrainment during counter-current flow situations when emergency feedwater injection is activated and steam is exiting the steam generator.
The turbine bypass valve, safety valves and turbine stop valves are modeled as servo valve-time dependent volume pairs, where the time dependent volumes represent the condenser, atmosphere, and turbine-generator, respectively. These valves are connected to the main steam line at various locations as shown in Figure 2.1-4.
2-7
 
Modeling of the feedwater train from the high pressure feedwater header to the steam generator downcomers is shown in Figure 2.1-4. This figure also shows the modeling of the turbine-driven and motor-driven emergency feedwater systems. The startup and main feedwater control valves for each steam generator are modeled as a pair of RELAP5 servo valves. The main feedwater crossover to the emergency feedwater lines is shown as components 850 to 852 on the A side and components 950 to 952 on the B side. The turbine- and motor-driven emergency feedwater systems are modeled as time-dependent junction volume pairs. Valve components 775 and 777 are the feedwater isolation valves for the A and B trains, respectively. Modeling of the main feedwater train from the hotwell to the startup and main feed valves is shown in Figure 2.1-5. The main feedwater pumps (components 754 and 760) discharge to the main feedwater pump header (component 763). From this header, flow is through nodes representing high pressure feedwater heater trains (components 764 and 766) to the high pressure feedwater header (component 768).
Control system models are included in the RELAP5 model for the emergency feedwater control, turbine bypass valve control, and main feedwater control. The models used were originally developed for the PTS study performed by the INEEL discussed in Section 1.1. The once-through steam generator has two ranges of level indication that are used during plant operation: the startup range and the operating range. The startup range indication is used to monitor steam generator level during plant startup at power levels # 15 percent of full power. The range of indication is 0-635 cm [0-250 in] measured from the upper surface of the lower tube sheet. Normal startup level is 76.2 cm [30 in] above the tube sheet when the reactor coolant pumps are operating and 610 cm
[240 in] when they are tripped. The operating range indication is used during normal plant operation and is an input to the Integrated Control System (ICS). The operating range indication is monitored by the ICS for the purpose of limiting feedwater flow to prevent flooding of the aspirating ports.
The Main Steam Line Break (MSLB) detection and feedwater isolation circuitry is designed to mitigate containment overpressurization by isolating feedwater to both steam generators during a main steam line break event. This circuitry is designed to trip the main feedwater pumps, to inhibit/stop the turbine-driven emergency feedwater pump, and to isolate main feedwater and startup feedwater systems. The MSLB circuitry was added in response to I&E bulletin 80-04 to prevent overfeed and rapid reactor cooldown and return to power. Section 7.9 of the Oconee FSAR provides additional details on the MSLB circuitry.
2.1.2 Oconee Steady State Initialization Steady-state calculations simulating hot full power and hot zero power plant operation were performed with the Oconee RELAP5 model in order to establish model initial conditions from which to begin transient calculations. For this purpose, long (8000 s) steady state runs were made to assure that steady conditions had been achieved in the fluid and heat structures in the RELAP5 model. Figures 2.1-6 and 2.1-7, respectively, show the cold leg pressure and fluid temperature responses from the hot full power and hot zero power RELAP5 calculations. The figures demonstrate that the RELAP5 solutions have reached a steady state at the end of the calculation.
Tables 2.1-1 and 2.1-2, respectively, compare the RELAP5-calculated steady-state results for key parameters (at the 8,000 s end points of the calculations) with the desired plant values for the parameters for hot full power and hot zero power plant operation. The tables indicate that the 2-8
 
RELAP5 calculated steady-state solutions are in excellent agreement with the desired steady plant conditions for both cases.
2.1.3 References 2.1-1 Duke Power Company, Oconee Nuclear Station Final Safety Analysis Report, Revision dated December 31, 1999.
2-9
 
Table 2.1-1 Comparison of Key Oconee Plant Design Parameters to RELAP5 Steady-State Results for Hot Full Power Conditions Desired Plant Value      RELAP5-Calculated Value Reactor Thermal Power                                  2,568 MWt                    2,568 MWt Cold Leg Temperature                                565.3 K [557.8EF]            568.3 K [563.2EF]
Hot Leg Temperature                                590.0 K [602.4EF]            593.4 K [608.5EF]
Hot Leg Pressure                                14.96 MPa [2,169.8 psia]    14.85 MPa [2,153.3 psia]
Reactor Coolant Flow Rate at Core Inlet        16580 kg/s [36,477 lbm/s]    16393 kg/s [36,066 lbm/s]
Pressurizer Level                                    5.59 m [220 in]              5.72 m [225 in]
Main Feedwater Temperature at SG Inlet                508 K [455EF]              508.7 K [455.9EF]
Main Steam Flow Rate (per SG)                  669.3 kg/s [1,472.5 lbm/s]    682.4 kg/s [1,501.2 lbm/s]
Main Steam Pressure                                6.38 MPa [925 psia]          6.29 MPa [912.6 psia]
Note: Desired plant data in this table taken from Tables 4-1 and 5-20 of the Oconee FSAR and Table 1 of NUREG/CR-3791.
Table 2.1-2 Comparison of Key Oconee Plant Design Parameters to RELAP5 Steady-State Results for Hot Zero Power Conditions Desired Plant Value      RELAP5 Calculated Value Reactor Thermal Power                                      ---                      5.136 MW Cold Leg Temperature                                550.9 K [532.0EF]            551.2 K [532.6EF]
Hot Leg Temperature                                550.9 K [532.0EF]            551.2 K [532.6EF]
Hot Leg Pressure                                14.82 MPa [2,150.0 psia]    14.82 MPa [2,150.1 psia]
Reactor Coolant Flow Rate at Core Inlet                    ---              17,640 kg/s [38,090 lbm/s]
Pressurizer Level                                          ---                    5.70 m [224.5 in]
Main Feedwater Temperature at SG Inlet                305.4 K [90EF]                305.4 K [90EF]
Main Steam Flow Rate (per SG)                              ---                    5 kg/s [11 lbm/s]
Main Steam Pressure                                6.21 MPa [900 psia]          5.99 MPa [869 psia]
SG Startup Level                                      91.44 [36 in]            92.58 cm [36.45 in]
Note: Desired plant data in this table taken from Tables 4-1 and 5-20 of the Oconee FSAR and Table 16 of NUREG/CR-3791.
2-10
 
Upper Head from Upper D.C. Annulus 550
                                              - Branch 555                                                                                              5 8
2 633      562                                cross flow branch 555 junctions 597        CF-A, CF-B,                      53                    branch 535 LPI-A, LPI-B                    6      vent 483    537              LPI                                                  Accumulator          valves pipe  pipe Vent Valves      560                                                                    Tee                    branch 540 634                                                cross flow          CLa1,2                                                                530  580 484      536                CF          junctions 598            CLb1,2                                                      to Hot Legs (2) 485    486                                                                      Downcomer pipe Inlet Annulus                branch 545 525 635          636                                                                                                                                5 cross flow junctions 599                                                                                        8 Downcomer                                                    1 volume 1                          branch 520 volume 2                    annulus 510-3 12 node volume 3                  Core Bypass        Core 515-1 510-2              through 696                                                                                                                        515-12 695 volume 4 510-1 694                      570 volume 5 Inlet Plenum 505 693            571 to Lower Plenum - Branch 575 Lower Plenum 575 CF-B                                    CF-A LPI-B                                  LPI-A 633          634        635        636            560      562          Accumulator Tee 643    CLb1  644    CLa1 645        646            561 CLa2  563  CLb2 Downcomer Inlet 673          674        675        676            565      567                Annulus                        Key:
683          684        685        686            566      568 CF-A - Core Flood Tank (CMP 700)
Downcomer 693-1        694-1      695-1      696-1          570-1      571-1            volume 1 CF-B - Core Flood Tank (CMP 900)
CLa1 - Cold Leg a1 (CMP 181) 693-2        694-2      695-2      696-2          570-2      571-2            volume 2          CLa2 - Cold Leg a2 (CMP 151)
CLb1 - Cold Leg b1 (CMP 281) 693-3        694-3      695-3      696-3          570-3      571-3            volume 3          CLb2 - Cold Leg b2 (CMP 251)
LPI-A - Low Pressure Injection (CMP 728) 693-4        694-4      695-4      696-4          570-4      571-4            volume 4 LPI-B - Low Pressure Injection (CMP 717, 718) 693-5        694-5      695-5      696-5          570-5      571-5            volume 5 Unwrapped Downcomer Sectors Figure 2.1-1 Oconee Reactor Vessel RELAP5 Nodalization 2-11
 
113                                                          213 1
112 HPVV                                    HPVV 212                      2 1                    2 1                                  1                    1                                  1 4                                      to surge        0                                  4 899                  0                                    898 line LOOP A                                                        LOOP B 1                  2 0                  0 5                  5 HPI    710                                                  HPI      720 1                    2 0                    0 711          1                    1 721 175          100            200          245 115                                                                                        215 Reactor 1              1                                2            2 Vessel 7              8                                5            4 0      to      0                                0            0 pressurizer spray                      545 A2            Upper      B1 Steam      165                    181                      251                    235      Steam Plenum Generator A                                                                                Generator B Downcomer A1                  B2 Inlet 135                      151      Annulus  281                  265 125                  1            1                        2          2 225 4            5                        8          7 0            0                        0          0 2
3 145                                  275                    0      2 6
1      1                                                        726                                0 3      6 0      0 191            716                      725 190              715                        HPI Makeup              HPI Figure 2.1-2 Oconee Reactor Coolant System RELAP5 Nodalization 2-12
 
801                      PORV 800  Atmospheric Pressurizer                  Sink PORV 802                            616                      from 803                                                                620 Pressurizer                                                  170 Pressurizer    Pressurizer Safety Valve          Safety                      Spray Valve Atmospheric                                                        Spray Line Valve Sink                        Pressurizer Dome 615 610-7 610-6 Pressurizer 610-5 610-4 610-3 610-2 610-1 605 from 600 110 Pressurizer Surge Line Figure 2.1-3 Oconee Pressurizer System Nodalization 2-13
 
Turbine Driven 813        Emergency        913 812    Feedwater 912 115                                                                                            215 Motor 805                905 804          Driven          904 325                                        Emergency                                            425 Feedwater 3  3                    853          851                951            953                    4  4 3                    854                                                              954    4 7  2                          852                            952                              7  2 3    3  3                                                                                    3      3  3 0
806  810                                      906  910            0 3  3                                                                                            4  4 Safety        811                                            TBP 7  2                                                          Safety                            7  2 2  2            Valve        TBP                                              V                2  2 Valve 807          V                                              911 3  3 907                            4  4 3    7  2        345      350-1            820          920            450-1      445    4      7  2 1  1                  350-2                                          450-2                    1  1 4    3  3                            821                        921                        4      4  4 0    7  2                                                                                    0      7  2 0  0    1      Steam Line                                        Steam Line                  0  0 2
2                              850          950                                              2 3  3    0                                                                                      4  4  0 30                                                                                            405 6  1                778-3      778-2                    780-1        780-2          -1 6  1 5-1                                                                                                    5  5 5  5                      778-1                                    780-3 782                                                                  784 3  3                                                                                          4  4 305                                                                                            405 6  1        SG A Feedwater Header                    SG B Feedwater Header                  6  1
-2                                                                                            -2 2  2                                                                                          2  2 775                777                                    4  4 305    3  3                                                                                  405 6  1                                                                                          6  1
-3                                                                                            -3      1  1 1  1                    SG A Control                    SG B Control 3  3                                      774      776                                        4  4 305    6  1                    Valve Header                    Valve Header                405      6  1
-4    0  0                                          771                                      -4      0  0 Main Feedwater 77        773            Main Feedwater 306                                                        772                                408 Control Valve  0                        Control Valve SU FW Control Valves 125                                                                                            225 768 High Pressure                                      Steam Steam Generator                                    HTR Header A                                                                                          Generator B Figure 2.1-4 Oconee Steam Generator Secondary Side Nodalization 2-14
 
Heater      Heater Drain E    Drain D                        Main Main FW FW Main    a/b Pump A Pump 742    7    748    7        Main                FW    Heater Discharge A 4          5        Feed                Pump    Train Line Check 4          0        Pump                Header No. 1 Demineralizer                                        A          Valve System                                                                    764-1 754    756 764-2        Startup 757                        and 736-1          740-1        746-1    752-1 730    734              738                                                        763          768 Main 736-2          740-2        746-2    752-2 Feed Hotwell        Booster                                                            766-1 Hotwell                                                                  761                            Valves Pump            Pump                                    760                      766-2 762 Low          Low      Low    Main Main FW Main          a/b  HP Pressure    Pressure  Pressure Feed          FW          Heater Heater Pump B              Train F and E        D        C    Pump DischargePump                Header Heaters      Heaters  Heaters    B            B          No. 2 Line Check Valve Figure 2.1-5 Oconee Main Feedwater Train RELAP5 Nodalization 2-15
 
20.0                                                        2901 15.0                                                        2176 Pressure (MPa)                                                                          Pressure (psia) 10.0                            p15001 (HFP)              1450 p15001 (HZP) 5.0                                                        725 0.0                                                        0 0      2000        4000                6000    8000 Time (sec)
Figure 2.1-6 Oconee Hot Leg Pressure Response - Steady State 600                                                            620 tempf15001 (HFP) tempf20101 (HZP) 575                                                            575 Temperature (K)                                                                          Temperature (F) 550                                                            530 525                                                            485 500                                                          440 0      2000        4000                  6000    8000 Time (sec)
Figure 2.1-7 Oconee Hot Leg Temperature Response - Steady State 2-16
 
2.2 Beaver Valley Model 2.2.1 Beaver Valley Model Description The Beaver Valley Unit 1 (BV-1) nuclear power plant is a Westinghouse three loop pressurized water reactor, operated by FirstEnergy Nuclear Operating Co., with a rated thermal power of 2660 MW (821 MWe). In early 2001, Westinghouse Electric Company created a RELAP5 input model of the Beaver Valley plant (Ref. 2.2-1) which was based on the H.B. Robinson RELAP5 model.
This model was used as the starting point for this analysis. The Westinghouse model was revised for several reasons, including setpoint changes, additional control/trip logic changes and other changes including corrections to the original model. These changes include the addition of control blocks to calculate parameters for information only (i.e., items such as minimum downcomer temperature, etc.).
The RELAP5 model used is a detailed representation of the Beaver Valley Unit 1 power plant, describing all the major flow paths for both primary and secondary systems including the main steam and feed systems. Also modeled are primary and secondary side relief/safety valves as well as the emergency core cooling systems (high pressure injection, low pressure injection, accumulators) in the primary and auxiliary feedwater on the secondary. The model contains 281 volumes, 377 junctions and 353 heat structures. A noding diagram of the model is included as Figures 2.2-1 through 2.2-7.
The BV-1 plant has three primary coolant loops and each loop is represented in the RELAP5 model. The loops are designated as A, B, and C. Each coolant loop contains a hot leg, U-tube steam generator, pump suction, reactor coolant pump (RCP) and cold leg as shown in Figure 2.2-1.
The pressurizer is attached to the C loop and the pressurizer spray lines are connected to the A and B loops. Attached to each cold leg are low pressure safety injection, high pressure safety injection and accumulators. The low and high pressure injection systems are set to deliver one third of the total LPI and HPI flow to each loop and are modeled using a time dependent volume/junction pairs in RELAP5. Also attached to the B loop is the chemical and volume control system (CVCS). The CVCS was modeled with a single time dependent volume-junction pair. Heat structures were connected to primary loop volumes to represent the metal mass of the piping and steam generator tubes. Heat structures were also used to represent the pressurizer heaters.
The reactor vessel noding is shown in Figures 2.2-2 and 2.2-3. The downcomer, downcomer bypass, lower plenum, core, upper plenum, and upper head were represented in the RELAP5 model. The downcomer was divided into six azimuthal sectors to obtain a more detailed downcomer temperature distribution. The following leakage paths were represented in the model:
downcomer to upper plenum, downcomer to downcomer bypass, downcomer bypass to lower plenum, cold leg inlet annulus to upper plenum, and upper plenum to the upper head by way of the guide tubes. Heat structures represent both external and internal metal mass of the vessel as well as the core (fuel rods). Decay heat was assumed to be at the ANS standard rate.
The secondary side of the BV-1 RELAP5 model is shown in Figures 2.2-4 through 2.2-7. The steam generator secondary model (Figures 2.2-4 through 2.2-6) represents the major flow paths in the secondary and includes the downcomer, boiler region, separator and dryer region, and the 2-17
 
steam dome. The major flow paths from the steam generator to the turbine control valves were modeled and are shown in Figure 2.2-7. Each steam line from the steam generators to the common header was modeled individually and include a main steam isolation valve, a check valve, atmospheric steam dump and safety relief valves. From the common header to the turbine control valve was modeled as a single volume. The steam dump valves were modeled with a single RELAP5 valve component with appropriate control logic capable of opening individual valves as required.
The major flowpaths of the main feedwater system were modeled and are shown in Figure 2.2-7.
The feedwater model begins at the main feedwater header just upstream of the main feedwater pumps. The conditions in the main feedwater header were held at a constant temperature.
Downstream of the pumps, the high pressure heaters were modeled as well as the MFW pump bypass. The control valves which regulate main feedwater flow were also modeled. The auxiliary feedwater system was modeled included both the motor and steam driven systems.
Heat structures were used in the secondary side to include both internal and external metal mass of the steam generators as well as the metal mass of the piping for both the steam and feedwater systems.
2.2.2 Beaver Valley Steady State Initialization Steady-state calculations simulating hot full power and hot zero power plant operation were performed with the Beaver Valley RELAP5 model in order to establish model initial conditions from which to begin transient calculations. For this purpose, long (8000 s) steady state runs were made to assure that steady conditions had been achieved in the fluid and heat structures in the RELAP5 model. Figures 2.2-8 and 2.2-9, respectively, show the cold leg pressure and fluid temperature responses from the hot full power and hot zero power RELAP5 calculations. The figures demonstrate that the RELAP5 solutions have reached a steady state at the end of the calculation.
Tables 2.2-1 and 2.2-2, respectively, compare the RELAP5 calculated steady-state results for key parameters (at the 8,000 s end points of the calculations) with the desired plant values for the parameters for hot full power and hot zero power plant operation. The tables indicate that the RELAP5-calculated steady-state solutions are in excellent agreement with the desired steady plant conditions for both cases.
2.2.3 References 2.2-1 Janke, Mark, Beaver Valley Unit 1 RELAP Input Deck for PTS Analysis, Westinghouse Calculation CN-LIS-00-180, Rev. 0, March 2001.
2-18
 
Table 2.2-1 Comparison of Key Beaver Valley Plant Design Parameters to RELAP5 Steady-State Results for Hot Full Power Conditions Plant Data(1)            RELAP5 Reactor Thermal Power                          2660 MW                  2660 MW Reactor Coolant Temperature at Vessel Inlet    556.5 K [542&deg;F]          558.0 K [544.8&deg;F](2)
Reactor Coolant Temperature at Vessel          594.8 K [610.9&deg;F]        594.5 K [610.4&deg;F](2)
Outlet Reactor Core Operating Pressure                15.51 MPa [2250 psia]    15.51 MPa [2249.8 psia]
Reactor Coolant Flow at Core Inlet              12,688 kg/s [27,972      12,849 kg/s [28,328 lbm/s]
lbm/s]
Pressurizer Level                              48%                      47.8%
Main Feedwater Temperature at SG Inlet          495.7 K [432.5&deg;F]        500.0 K [440.4&deg;F](3)
Main Steam Flow Rate (per SG)                  485.1 kg/s [1069 lbm/s]  491.7 kg/s [1084 lbm/s]
Main Steam Pressure                            5.65 MPa [820 psia]      5.72 MPa [829.7 psia](3)
Note:
(1) Plant data from
 
==References:==
Janke, Mark, Beaver Valley Unit 1 RELAP Input Deck for PTS Analysis, Westinghouse Calculation CN-LIS-00-180, Rev. 0, March 2001 AND BV FSAR.
(2) RELAP5 value is the average of all three loops (3) RELAP5 value is the average of all three steam generator values 2-19
 
Table 2.2-2 Comparison of Key Beaver Valley Plant Design Parameters to RELAP5 Steady-State Results for Hot Zero Power Conditions Plant Data(1)                RELAP5 Reactor Thermal Power                          5.32 MW(2)                  5.32 MW Reactor Coolant System Average                  559.3 K [547.0&deg;F]            559.3 K [547.0&deg;F]
Temperature Reactor Core Operating Pressure                15.51 MPa [2250.0 psia]      15.51 MPa [2249.8 psia]
Reactor Coolant Flow at Core Inlet              Unknown                      12,918 kg/s [28,480 lbm/s](3)
Pressurizer Level                              22.4%                        22.2%
Main Feedwater Temperature at SG Inlet          Unknown                      300 K [80.0&deg;F](4)
Main Steam Flow Rate (per SG)                  Unknown                      [3.34 lbm/s]
Main Steam Pressure                            7.03 MPa [1020.0 psia]      6.93 MPa [1005.0 psia]
Note:
(1) Plant data from
 
==References:==
BV FSAR (2) This value is the assumed heat load at 1 month after shutdown (0.2%).
(3) The reactor coolant pumps are assumed to operate at the same constant speed as during HFP operation. The RCS loop flow rate at HZP is that attained based on the pump head-flow-speed homologous curves and fluid conditions that are slightly different at HZP operation than at HFP operation (4) This temperature was assumed to represent the water in the condenser under no load conditions.
2-20
 
LOOP A 282 278                    255 274                    254      525 PORV 344 345 270                    258 SRV 347 346 266                                5          262                520 4
                                                                                                                                                                                                                                                                          -4                                            -1 339 3          3                      6        2 7        3 340-1                                      336                338                                                                                                              2          2 PRESSURIZER 341-1                                                                                                                                                                        266                                            262 8
FROM FEEDWATER 1                                -4 2                                                                                                                                                                          -1 3
4                                                      335    337                                                                                                                        206              210 5
LOOP C                                                  6 341-7                                                                                                                                              4                        4 482                                                                                                                                                                                              20                                                                                1 3
TO CL A    TO CL B 2
6                  214 478                                                                                                                                                                              1                                              21                                          2 455                                                                                                                                                                                                                                              8 1                                                                                                                                                                    21                                5 4  3 1
725  454                    474 2
2      343                                                                                                                                                0 REACTOR VESSEL                                                                    22 458                    470 931      LPI 3                                                                              126 462                                  466 951      HPI 5        4 720                    -1                                  -4                                                                                              1                        122-1 129 ACC NO. 1 2          6                  3    3 2                        122-2 3          7        408      2    2    266 911                    921 462                                  466 8                  1                                                                                                                            120 FROM FEEDWATER
                        -4                                  -1                                                                                              3 405                        404 DOWNCOMER LEVEL NO.
4                        118 410              406          1                  2            3    4 1
416                418        1        2                                                    5                      114-6 116-1 414                                                                                                                                                                                                                                              LOOP B 2                                                                        420                                                        6                2        5 382 CORE 3  4        5                                                                                                                7                          4 3
LPI    933                                                                                                8                4        3                                                                                                  378                        355 9                5        2 HPI    953                                                                                                                                                                                                                                374                    354      625 10              116-6      114-1 370                    352 11                        112 ACC NO. 3 923          913 110                                                                                        366                                            362 4                  5                            620
                                                                                                                                                                                                                                                                          -4                                            -1 3          3                      6        2 2            2                      7        3 366                                            362
                                                                                                                                                                                                                                                                          -1            1                      8        -4 FROMFEEDWATER 304 1                                                                306            310 2
3 4
2 1
318                                                                            1 3 20                                      31 6 314 MAKEUP          971 2
5 4    3 ACC NO.2 932            LPI 912                  922 952            HPI Figure 2.2-1 Beaver Valley Reactor System Nodalization 2-21
 
126 1                            122-1 129 2                            122-2 220                                                                                  204 FROM 320                        3                            120                      TO 304 420                                                                                  404 4                            118 5                    116-1      114-6 DOWNCOMER LEVEL NO.
6                      2              5 7                      3              4 8                      4              3        CORE 9                      5              2 10                    116-6      114-1 11                            112 110 J-1907 FROM 220 130                140 J-1908 180                                      150                  FROM 320 170                160 J-1909 FROM 420 TOP VIEW OF DOWNCOMER Figure 2.2-2 Beaver Valley Reactor Vessel Nodalization 2-22
 
126 180    130 140 220 170            150                            216 160                              21 8 1                1                  1 1                    2 2                        07 2
2  J-19 420                          130 180          140 J-1909 416 418  1    2                170            150 160 3                  3 3
J-190 8
130                          320 180          140            2 1
170            150                      31 8 160                                  316 4                4 4
130 180          140 170            150 160 5                  5 5
6                  6 6
7                  7 7
8                  8 8
9                  9 9
10                10 10 130 180            140 170            150 160 11                11 11 110 Figure 2.2-3 Beaver Valley 2-Dimensional Downcomer Nodalization 2-23
 
LOOP A 282 J-2781                                      J-2552 25 278                                    5 J-2783                J-2782                    J-2551 274 25          525 4
J-272                        J-256 25 270                                    8 J-268                                        J-260 266                                              262
                                                                                    -4                                                -1 4              5                                            520 3      3                      6        3            3 208 2      2                      7        2            2            FROM FEEDWATER 266                                    266 262
                                                                                    -1    1                      8        -1  -4 J-2062            J-2102                            J-264 206                210 0  61                                    J-J-2                                            21 01 4                4 20 3
2                                                                                      1 1          1 20 J-1                                                                    21 6                  214 2
FROM REACTOR                                                        8 22 0          21 VESSEL 120 1                                            5          4        3 4
2                              J-9 9  07                                                    1                                      212 J-1 TO DOWNCOMER J-2183 SECTOR 130 LEVEL 3 931 J-961 LPI 951        HPI ACC NO. 1 911                    921 Figure 2.2-4 Beaver Valley Loop A Nodalization 2-24
 
LOOP B 382 J-3781                                  J-3552 35 378                                  5 J-3783                J-3782                J-3551 374 35        625 4
J-372                        J-356 35 370                                  8 J-368                                    J-360 366                                              362
                                                                                                  -4                                                -1 4              5                                        620 3      3                      6        3        3 308 2      2                      7        2        2            FROM FEEDWATER FROM REACTOR                  J-1 VESSEL 120                      20 2
366                                    366 362 1                                            -1      1                      8        -1  -4 30 4
2 J-1                                                                J-3062              J-3102                          J-364 TO DOWNCOMER                  90                                                3 8
SECTOR 150 LEVEL 3                          32                                          4            306                  310 2      0 1
31 8
31 6
J-942 1
J-972                                                                        314 971                                                  932  LPI 2
MAKEUP                                        J-962 952  HPI                            5            4        3 J-3183                                                                          312 ACC NO. 2 912                        922 Figure 2.2-5 Beaver Valley Loop B Nodalization 2-25
 
PORV 344 345 SRV 347 346 J-3401 339 482 J-4552                              J-4781 45                                                                                340-1 478 PRESSURIZER 5                                                                                341-1 J-4551        J-4782                  J-4783                                              2 45                                                                                  3                                                      336        338 725        4 474 4
J-456                        J-472                                              5 45 470                                                  6 8
341-7 J-460                                J-468 462                                            466                                    J-342                                                      335    337
                        -1                                              -4 4          5                                                    1 720 TO CL B        TO CL A 2  3            3                  6      3                                        2      343 408                                                        3 3  2            2                  7      2 FROM FEEDWATER 462 466                                      466 1            1                  8      -1 J-407 J-4102                J-4062 J-464 410                406 405                                            404 J-4101                                                                                                                    J-1203 J-472 1                          3              2        1                      FROM REACTOR VESSEL 120 1
J-1909 416                      418              1        2                      TO DOWNCOMER SECTOR 170 414                                                                                                            LEVEL NO. 3 2                                                                                              420 3        4    5                                            J-943 J-4183 LPI  933 412 J-963 HPI  953 ACC NO. 3 923                    913 Figure 2.2-6 Beaver Valley Loop C Nodalization 2-26
 
555 MSIV                            565 550                                                          560                                              STEAM DUMP 655                                                                        CONDENSER 808 MSIV                            665    STEAM                                  810 650                                          660                      HEADER        802 585                                                                            755                                    800 MSIV                            765 ASDV          580                        685                      750                              760                                                            806 TURBINE ASDV      680                                                                                                                TURBINE SAFETY        570                                                                                                                                        STOP 804 STEAM 575 STEAM  SAFETY 670                STEAM 785              775 GENERATOR                        GENERATOR                        GENERATOR                  780 770 675                                          ASDV SAFETY A                                B                                C 525                            625                                725 720 520                              620 740          From AFW 715 540                                640 From                              From AFW                              AFW 515                                615 710                                                863                                  MAIN 862                      FEEDWATER HEADER 854 705 510                              610                                                                                                  MFW PUMP A 878                                  861 H.P. HEATER 860 874 605                                          J-872 867                            MFW PUMP B J-868                                              864 505                                                                                  870                              865 866 MFW PUMP BYPASS Figure 2.2-7 Beaver Valley Secondary Side Nodalization 2-27
 
20.0                                              2901 15.0                                              2176 Pressure (MPa)                                                                Pressure (psia) 10.0                    p42002 (HFP)            1450 p42002 (HZP) 5.0                                              725 0.0                                              0 0  2000    4000                6000  8000 Time (sec)
Figure 2.2-8 Beaver Valley Cold Leg Pressure Response - Steady State 650                                                  710 tempf42002 (HFP) tempf42002 (HZP) 600                                                  620 Temperature (K)                                                              Temperature (F) 550                                                  530 500                                              440 0  2000    4000                6000  8000 Time (sec)
Figure 2.2-9 Beaver Valley Cold Leg Temperature Response - Steady State 2-28
 
2.3 Palisades Model Description 2.3.1 Palisades RELAP5 Model Description The Palisades Nuclear Power Plant is a pressurized water reactor of Combustion Engineering design with a rated thermal power of 2530 MW. The Palisades reactor coolant system consists of a reactor vessel and two coolant loops connected in parallel and designated as Loops 1 and 2.
Each coolant loop includes hot leg piping, an inverted U-tube type steam generator, and two sets of reactor coolant pumps and cold leg piping. The cold legs and reactor coolant pumps on each loop are designated as A and B. The normal coolant flow on each loop is from the reactor vessel outlet nozzle, through the hot leg, steam generator, reactor coolant pumps and cold legs to the reactor vessel inlet nozzle. A pressurizer is connected via a surge line to the hot leg on Loop 1.
The electrically-heated pressurizer provides pressure control for the reactor coolant system. Two pressurizer spray lines are routed from one of the pump-discharge cold legs on each loop through control valves to a spray nozzle in the pressurizer upper dome. Reactor coolant system overpressure protection is provided by safety relief valves atop the pressurizer (the plant also employs power operated safety relief valves, but they are blocked closed during normal plant operation). Emergency core cooling functions are provided by high and low pressure injection systems and safety injection tanks, which are connected to each of the four pump-discharge cold legs. A charging/letdown system performs the functions of reactor coolant system water chemistry control and pressurizer level control. Decay heat removal capability is provided by motor-driven and turbine-driven auxiliary feedwater systems that discharge into the steam generator downcomers. The maximum auxiliary feedwater flow that may be delivered to each steam generator is automatically limited. Steam generator secondary system overpressure protection is provided by safety relief valves, atmospheric dump valves and turbine bypass valves located on the main steam lines. Main steam isolation valves are located in each of the two steam lines, limiting the influence that a break in one of the steam generator secondary systems would have on the other.
The Palisades RELAP5 model is a detailed thermal-hydraulic representation of the Palisades Nuclear Power Plant that includes all major components of the primary and secondary coolant systems and the plant control systems pertinent for simulating the PTS transient event sequences.
Nodalization diagrams for the Palisades RELAP5 model are illustrated in Figures 2.3-1 through 2.3-3.
The reactor vessel model nodalization is shown in Figure 2.3-1. Because of the need for detailed information on reactor vessel downcomer temperature for evaluating PTS, a two-dimensional nodalization scheme with seven axial and six azimuthal nodes is used in the downcomer region.
During preliminary RELAP5 calculations of LOCA sequences with break diameters of 10.16-cm [4-in] diameter and larger, non-physical numerically-driven circulations among the six reactor vessel downcomer internal channels of the model (Components 500 through 505 in Figure 2.3-1) were observed. A variety of methods were tried in an attempt to suppress or remove these circulations from the calculations. However, the only modeling approach which successfully eliminated them was to disable momentum flux in all internal reactor vessel downcomer junctions. Since the downcomer flow pattern can be of significance for the PTS analysis, the Palisades transient LOCA 2-29
 
cases with break diameters of 10.16 cm [4 in] and larger were run with momentum flux disabled in all internal downcomer junctions.
The reactor core region is modeled using six axial nodes. Other nodes are used to represent the lower plenum, upper plenum, core bypass, control rod guide tube and upper head regions of the reactor vessel.
A constant reactor power is modeled until the reactor trip time using a table; afterward a reactor power decay is specified as a function of time after trip. The model includes control system logic that monitors various plant parameters during transient calculations and trips the reactor based on any of the following conditions: high containment pressure, low pressure in either steam generator, high pressurizer pressure, or exceeding the thermal margin/low pressure trip limit (the criterion varies as a function of several plant variables).
The reactor coolant loop region nodalization is shown in Figure 2.3-2. The speed of the reactor coolant pump models is held constant to deliver the normal-operation flow rate unless the pumps are tripped by operator action (based on indications of low reactor coolant system pressure or low subcooling). Once tripped, the reactor coolant pump speed coasts down based on rotational inertia effects.
Charging flow is injected into the Loop 1A and 2A pump-discharge cold leg piping and letdown flow is withdrawn from the Loop 2B pump-suction cold leg piping. The charging flow is controlled so as to maintain a desired pressurizer setpoint level, which is specified as a function of average reactor coolant system temperature. The letdown flow is isolated upon receipt of a safety injection actuation signal, which results from a low pressurizer pressure condition. The operation of the pressurizer heater power and spray valve flow area are specified so as to maintain the pressurizer pressure within the desired range.
The safety injection tanks are modeled on each of the four pump-discharge cold legs using RELAP5 accumulator components. Safety injection tank flow occurs whenever the cold leg pressure is below the tank pressure. The high and low pressure injection systems are represented using RELAP5 time dependent volume and junction component pairs on each of the four pump-discharge cold legs. The injection characteristics of these centrifugal pump systems are modeled with the flow delivered specified as a function of the cold leg pressure; flow is initiated after a time delay following the occurrence of a safety injection actuation signal. Control logic is included such that operator throttling of high pressure injection (based on pressurizer level and subcooling criteria) can be represented for event sequences specified to include that operator function. Control logic also is included to monitor the inventory status of the refueling water storage tank (that is first used as the source of emergency core coolant). This tank supplies water for the charging, high pressure injection, low pressure injection and containment spray systems. When the inventory of the tank has been expended, the model includes features that represent the actions taken in the plant (termination of the charging and low pressure injections and switching the suction of the high pressure injection system to the containment sump). Following this switch, the high pressure injection system flow characteristics are changed and the injected water temperature increases.
2-30
 
The main feedwater flow is adjusted so as to control the steam generator levels at the setpoint level and to match the feedwater and steam flow rates in each steam generator. After turbine trip, the main feedwater flow stops and the auxiliary feedwater flow is delivered to control steam generator levels within a specified range.
The main steam system nodalization is shown in Figure 2.3-3. The model represents the steam line from each steam generator to the common turbine inlet header. A valve component is used to represent the turbine stop valves, which close upon receipt of a turbine trip signal. Overpressure protection is modeled by the main steam safety relief valve components on each steam line. Steam pressure control for post-turbine trip operating conditions is provided by a turbine bypass valve component located on the turbine inlet header. Primary coolant system average temperature control is provided by an atmospheric dump valve component on each of the steam lines. Main steam isolation valves connect each steam line to the turbine inlet header. These valves close if a low pressure condition is sensed in either steam generator or if a containment high pressure condition is sensed.
2.3.2 Steady-State Initializations for the Palisades RELAP5 Model Steady-state calculations simulating hot full power and hot zero power plant operation were performed with the Palisades RELAP5 model in order to establish model initial conditions from which to begin transient accident calculations. For this purpose, long (8000 s) steady state runs were made to assure that steady conditions had been achieved in the fluids and heat structures represented by the Palisades RELAP5 model. Figures 2.3-4 and 2.3-5, respectively, show the cold leg pressure and fluid temperature responses from the hot full power and hot zero power RELAP5 calculations. The figures demonstrate that the RELAP5 solutions are steady at the ends of the calculations. Tables 2.3-1 and 2.3-2, respectively, compare the RELAP5-calculated steady-state results for key parameters (at the 8,000 s end points of the calculations) with the desired Palisades plant values for hot full power and hot zero power plant operation. The tables indicate that the RELAP5-calculated steady-state solutions are in excellent agreement with the desired steady plant conditions for both cases.
2.3.3 References 2.3-1 Consumers Energy Company, Palisades Cycle 16 Principal Plant Parameters, EA-PPD        01, Revision 0, November 2000.
2.3-2 Final Safety Analysis Report, Palisades Nuclear Power Plant, Revision 22.
2-31
 
Table 2.3-1 Comparison of Key Palisades Plant Design Parameters to RELAP5 Steady-State Results for Hot Full Power Conditions Plant Data                  RELAP5 Reactor Thermal Power                              2530 MWt                    2530 MWt Reactor Coolant Temperature at Vessel Inlet        553.8 K [537.3EF]          553.94 K [537.42EF]
Reactor Coolant Temperature at Vessel Outlet        579.1 K [582.7EF]          579.12 K [582.75EF]
Reactor Core Operating Pressure                    14.20 MPa [2060 psia]      14.20 MPa [2060.2 psia]
Reactor Coolant Flow at Core Inlet                  17388 kg/s [38335 lbm/s]    18315 kg/s [40377 lbm/s]
Pressurizer Level                                  57 %                        56.99 %
Main Feedwater Temperature at SG Inlet              497.0 K [435.0EF]          497.0 K [435.0bEF]
Main Steam Flow Rate (per SG)                      693.1 kg/s [1528.1 lbm/s]  695.9 kg/s [1534.1 lbm/s]
Main Steam Pressure                                5.309 MPa [770 psia]        5.220 MPa [757.03 psia]
Note: The plant data presented in this table is taken from the Palisades Principal Plant Parameters Document [Ref. 2.3-1] and the Palisades FSAR [Ref. 2.3-2].
Table 2.3-2 Comparison of Key Palisades Plant Design Parameters to RELAP5 Steady-State Results for Hot Zero Power Conditions Plant Data                  RELAP5 Reactor Thermal Power                              5.06 MWt                    5.06 MWt Reactor Coolant Temperature at Vessel Inlet        550.9 K [532.0EF]          551.02 K [532.16EF]
Reactor Coolant Temperature at Vessel Outlet        551.0 K [532.1EF]          551.07 K [532.25EF]
Reactor Core Operating Pressure                    14.20 MPa [2060 psia]      14.20 MPa [2060.2 psia]
Reactor Coolant Flow at Core Inlet                  16647 kg/s [36700 lbm/s]    18535 kg/s [40863 lbm/s]
Pressurizer Level                                  42 %                        42.11 %
Main Feedwater Temperature at SG Inlet              294.3 K [70.0EF]            294.3 K [70.0EF]
Main Steam Flow Rate (per SG)                      4.202 kg/s [9.264 lbm/s]    4.202 kg/s [9.264 lbm/s]
Main Steam Pressure                                6.205 MPa [900.0 psia]      6.109 MPa [886.01 psia]
Note: The plant data presented in this table is taken from the Palisades Principal Plant Parameters Document [Ref. 2.3-1] and the Palisades FSAR [Ref. 2.3-2].
2-32
 
512-6 511      506    512-1 512-5 507 510 512-2                                                                                                      Upper Head 512-4 710 509          508 512-3                                                                                                                                                        to hot from to hot                                                                legs 701                              7 legs bypasses to                                                                                                                0 inlet of 710                                                      upper head volume700 sngvol 72            72            71          71          71              71 506                                                506          5 1              0              9            8            7                6 from 561 cold legs cross flow volume 1                  560-3                  volume 1 511-01        510-01        509-01        508-01      507-01      506-01                            junctions 512 volume 2          Upper Plenum 560-2 pipe volume 2 560-1 513-06        513-05        513-04        513-03      513-02      513-01 Downcomer            552 volume 3                                          volume 3 550 sngvol cross flow junctions 514 Downcomer                                                            532 505-1        504-1          503-1          502-1        501-1        500-1 514-6        514-5          514-4          514-3        514-2        514-1 volume 1 6                530-6 CL1a CL2b                            CL2a    CL1b 505-2        504-2          503-2          502-2        501-2        500-2            volume 2                                                                                  Core  Downcomer 514-10                      514-9          514-8                    514-7                                                            volume 4 5                530-5 Bypass  volume 4 540-2 505-3        504-3          503-3          502-3        501-3        500-3            volume 3                                                                  Core 4
530-4 514-16      514-15        514-14          514-13      514-12      514-11 530-3 3
505-4        504-4          503-4          502-4        501-4        500-4            volume 4                                                                  pipe 514-22      514-21        514-20          514-19      514-18      514-17                                                            volume 5 540-1  volume 5 pipe 2                530-2            pipe 505-5        504-5          503-5          502-5        501-5        500-5            volume 5 514-28        514-27        514-26          514-25      514-24      514-23                                                                    1                530-1 505-6        504-6          503-6          502-6        501-6        500-6            volume 6                                                                                        volume 6 volume 6 514-34        514-33        514-32          514-31      514-30      514-29                                                                            Inlet Plenum 525 branch Unwrapped Downcomer Sectors Lower Plenum 520 to Lower Plenum - snglvol 520 500 505 Key:
504                        501                          CLa1 - Cold Leg 1a (CMP 160)
CLa2 - Cold Leg 1b (CMP 660)
CLb1 - Cold Leg 2a (CMP 360) 503          502                                CLb2 - Cold Leg 2b (CMP 760)
Figure 2.3-1 Palisades Reactor Vessel Nodalization 2-33
 
MFW    AFW AFW 910    296                                262          to steam line 1                                            194            196                              to steam line 2                            462 915                                                                                                                                                                                                                                            298 295                                                                                          191,            195 916                                                                                                  192,                                                                                                                                        297 260                                                                193                                                                                            460 SRV's        199 PORV 9                                                                      Pressurizer 1                                                                      Spray Lines 7                                  250                        25                                                                                                                                      450                          45 255 separator                        5                              190-10                                                                      455 separator                          5 210-                                                    210-                            190-9                                                                      410-                                                      410-            MFW 1                          230-5                        1                                                                                                            1                        430-5                          1 190-8                                                                                                                                                  926 927 230-4                          230-4                          Trickle        190-7                                                                        2      430-4                            430-4          2 2                                                        2      Prop.                                                                                                                                                                        92 130-6        130-5                          Spray    Spray 190-6        Pressurizer                                                                      330-5            330-6 5
653      654          190-5                                      353          354 Proportional        Trickle                                                                                          920 13 190-4                                Spray            Spray                          33                                33 13 230-0-6 130-                      130- 0-3 230-                                                                                                                      430- 0-3 330-                      330- 0-6 430-3      7                                                                      190-3 4        3                                                                                                                          3      4                        7        3 3                                                        3                              190-2                                                                        3        33                                33          3 13                              13 230-0-7 130-                    130- 0-2 230                                                                                                                      430- 0-2 330-      Steam          330- 0-7 430-Steam                                                          190-1                    Surge Line 2      8                      3        -2                                                        897                          3                                2      3                        8        2 Generator 1                                                                                  Break                                                                Generator 2 13 5
13                                                                                                                                                                  33 23 0-8 130-                    130- 0-1 230-                  6                    18                                            2                              430- 0-1 330-                      330- 33 430-0-1      9                      2        1                                          5                                                                              1      2                        9 0-8 1 5
22                                                                                                                                                                  420                                              420 0
220              2                180-2 180-1                                          7  351 130-10                                  130-1                                                                                                                          330-1                                330-10 0
120-5 2  1                110                                                                      310-      321 121                                                      710                                310-1 310-2 3
137                                                                                105                                                                                                                  337 701                                SIT 637                                          SIT      691                                                                305                                      992 506      volume700              506                  693              991 HPSI                                                    737 Loop 1A                                                                                            561 160                                        vol 1                                                              Loop 2A 145      150-1 150-2 150-3                                  vol 1        560-3 vol 2        560-2              vol 2                      350-3 350-2 350-1            345 RCP                                                                                                              360 172                                                        560-1                                                                    RCP 170                                                            552                  vol 3 994        372 14                                  794 792                                    vol 3          550                                                                                          34 0-1        14        Charging                                                                                                                                                  34        0-1 0-3                                              651                          532                                                                                    0-3 Flow                                                                                                            993                370 791                                    6      530-6 793 LPSI                                                                                                          LPSI          Charging 140-2                                    HPSI                            vol 4  5      530-5        54  vol 4                                                                340-2 0-2 Flow 4      530-4 892                                                                                                                                996 995 HPSI HPSI    891                  692                                    3      530-3                                                  SIT 694 vol 5                    540 vol 5 SIT                                    2      530-2        -1 Loop              645      650-1 650-2 650-3                                                                                                                          750-3 750-2 750-1              745 660                        1      530-1 760                                                                    Loop 2B 1B            RCP                                                                                                                                                                                  RCP vol 6                          vol 6 894                                                          525                                                                  998 64                                                                                                                                                                                                                                    74 0-1          64                                                                                                                                                                                            772          74          0-1 0-3                        893                                                                                                                                        997                                  0-3 520 LPSI                                                                                                                                        LPSI                        770 640-2                                                                                                                                                                                                                      740-2 letdown Figure 2.3-2 Palisades Coolant Loops Nodalization 2-34
 
806 822 810 812          814    816                        811      MSIV From Steam                      805 Generator 1 Secondary 262                              861          862    863      Relief Valves 480 800 ADV                                                                          TBV 490                                                              Steam Bypass Steam Dump 494 493 881              883 882          840                    852 850 TSV ADV 492 Steam Dump 820 491 462 871          872    873      Secondary Relief Valves From Steam                    825 Generator 2                                  832          834      836                        831    MSIV 830 826 Key:
SG1/SG2 Figure 2.3-3 Palisades Main Steam System Nodalization 2-35
 
15.0                                                        2176 p15001 (HFP) 14.8                              p15001 (HZP)            2147 Pressure (MPa)                                                                          Pressure (psia) 14.6                                                        2118 14.4                                                        2089 14.2                                                        2060 14.0                                                        2031 0        2000          4000                6000  8000 Time (sec)
Figure 2.3-4 Palisades Cold Leg Pressure Response - Steady State 600                                                        620 tempf15001 (HFP) tempf15001 (HZP) 575                                                        575 Temperature (K)                                                                        Temperature (F) 550                                                        530 525                                                        485 500                                                        440 0        2000        4000                6000  8000 Time (sec)
Figure 2.3-5 Palisades Cold Leg Temperature Response - Steady State 2-36
 
3.0 RELAP5/MOD3 ANALYSIS OF TRANSIENTS FOR PTS EVALUATION The thermal-hydraulic responses for various PTS transient event sequences are calculated with the RELAP5 code and the plant models described in Section 2. The event sequences analyzed were defined through a risk assessment performed by the Sandia National Laboratories to identify sequences that may be important for risk due to PTS. The sequences analyzed were initiated by LOCAs in the pressurizer surge line, hot and cold leg piping, stuck-open pressurizer relief valves, reactor and turbine trips with stuck-open steam line valves, main steam line breaks and feedwater overfill events. A total of 177 cases were run for Oconee, 130 for Beaver Valley, and 67 for Palisades. Of these sequences analyzed, 55 Oconee cases, 62 Beaver Valley cases, and 30 Palisades cases are identified as having the highest PTS concern and are the subject of reactor vessel wall fracture mechanics analyses performed by Oak Ridge National Laboratory. These sequences, which are referred to as base cases are listed in Appendices A to C for Oconee, Beaver Valley and Palisades, respectively. These tabulations present the case numbers, initiating events and plant system failures and operator actions for the event sequences undergoing the fracture mechanics analyses and identify the dominant-risk sequences as determined through those analyses.
The fracture mechanics analysis performed by Oak Ridge identifies the sequences that are dominant contributors to the risk for rupture of the reactor vessel due to PTS for the Oconee, Beaver, and Palisades plants. Dominant contributors are those sequences that contribute more than 1 percent to the total risk of vessel failure due to a PTS event. Those sequences that are dominant based on the Oak Ridge results are identified in Appendices A to C.
From the PTS perspective, the principal thermal-hydraulic results of interest are the pressure and temperature in the reactor vessel downcomer along with the heat transfer coefficient on the inside surface of the reactor vessel wall at elevations corresponding to the span of the reactor core.
These thermal-hydraulic results are used as boundary conditions for vessel wall probabilistic fracture mechanics analyses. Figures showing the time-history response of these parameters for the dominant PTS-risk event scenarios are provided in this section, along with descriptions of the event sequences, the modeling changes implemented and brief analyses of the RELAP5-calculated plant transient responses.
3.1 Thermal Hydraulic Results for the Dominant Oconee Transients The Oconee sequences that were dominant contributors to the risk of vessel failure are primary coolant system LOCAs. However, cases involving stuck open pressurizer safety valves that reclose and main steam line breaks selected from the base case list in Appendix A are discussed to allow comparison with the Beaver Valley and Palisades plants. Also, these cases are included because, in some cases, they were important risk contributors in the 1980's PTS studies.
All RELAP5 transient case calculations were restarted from the end points of the steady state runs representing hot full power and hot zero power operation of the Oconee plant, as described in Section 2.1.2. All RELAP5 base case calculations were run for 10,000 s following the occurrence 3-1
 
of the sequence initiating event. On the accompanying plots, the data shown prior to time zero represents the calculated steady-state condition prior to the transient initiation.
3.1.1 Primary Side Loss of Coolant Accidents from Hot Full Power Four risk dominant sequences have been identified for Oconee and all involve primary side loss of coolant accidents. These LOCA sequences are: 1) Case 156 which is a 40.64 cm [16 in] break in the hot leg, 2) Case 160 which is a 14.37 cm [5.656 in] surge line break, 3) Case 164 which is a 20.32 cm [8 in] surge line break, and 4) Case 172 which is a 10.16 cm [4 in] cold leg break. All of these LOCA cases are initiated while the reactor is operating at full power. All systems are assumed to operate as designed. The surge line break is assumed to be located in the bottom of the surge line along the horizontal length (Component 600-02 in Figure 2.1-3). The hot leg break is assumed to be located in the bottom of the hot leg adjacent to the surge line connection (Component 105-01 in Figure 2.1-2). The cold leg break is assumed to be located in the bottom of the reactor coolant pump discharge pipe (Component 140-01 in Figure 2.1-2). The Henry Fauske critical flow model is activated in the break junction in all cases. Flow loss coefficients used for the break are based on the AP-600 derived flow loss coefficients [Ref 3.1.1] and scaled for the specific break size and location. No special operator action to control the primary system cooldown rate is assumed in these cases. Also note that no HPI or LPI throttling strategy is considered in these cases. In these analyses, the operator is assumed to trip the reactor coolant pumps when primary system subcooling is lost (a trip criteria of 0.27 K [0.5EF] is assumed). Large reverse flow loss coefficients were implemented in the cold legs to inhibit same-loop flow circulation as described in Section 2.0.
In the primary side loss of coolant accident cases, the breaks modeled are sufficiently large to start the containment (reactor building) sprays due to high containment pressure. As a result, the time that the HPI and LPI system suction switches to the containment sump is determined in RELAP5 by computing the integrated flow of the containment sprays, HPI and LPI systems compared to the total volume of water in the borated water storage tank. When the tank volume is depleted, switchover is assumed to occur. The temperature used for the sump water temperature is based on data for a 0.0046 m2 [0.05 ft2] break. The temperature used, 322 K [120EF] at switchover, increases to 325 K [125EF] by 3,000 s after switchover and then decreases to 313 K [105EF] by the end of the transient.
A tabulation of the timing of key events for the surge line and hot leg break transients is presented in Table 3.1-1.
3-2
 
Table 3.1-1 Comparison of Event Timing for LOCA Sequences Event Time (seconds)
Case 156 -    Case 160 -    Case 164 -  Case 172 -
40.64 cm [16  14.37 cm      20.32 cm    10.16 cm in] break in  [5.656 in]    [8 in] surge [4 in] cold the hot leg    surge line    line break  leg break break Reactor power level                    HFP            HFP            HFP          HFP Reactor scram                          1              1              1            1 HPI actuates                            1              5              2            8 RCP trip time on loss of subcooling    1              10            2            31 margin Time that vent valves open              60            75            54          90 Core flood tank discharge start time    60            310            220          600 Low pressure injection starts          90            1190          610          2195 Core flood tank empties                150            1565          840          2720 Pressurizer starts to refill            does not      1910          1390        does not refill                                    refill ECCS Switchover time                    1740          2890          2310        3760 3.1.1.1 Case 156 - 40.64 cm [16 in] Diameter Hot Leg Break from HFP Conditions Case 156 is a 40.64 cm [16 in] diameter break in the hot leg from hot full power conditions. The equivalent break flow area is 0.13 m2 [1.39 ft2]. The parameters of interest for the fracture mechanics analysis: primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.1-1 through 3.1.1-3.
As a result of the break, rapid primary system depressurization occurs as shown in Figure 3.1.1-1.
The primary system pressure falls to 0.23 MPa [33 psia] by 300 s after initiation and continues down to a equilibrium pressure of about 0.15 MPa [21 psia] by about 1,000 s after initiation. The downcomer temperature also falls rapidly as a result of the break, dropping to a temperature of 300 K [80EF] within 300 s and remaining at that temperature for the rest of the transient. The pressurizer level, shown in Figure 3.1.1-4, decreases rapidly and empties from the loss of coolant inventory as the reactor coolant system depressurizes. The pressurizer generally remains empty throughout the transient. Reactor trip occurs within 1 s, followed by actuation of the HPI system which runs for the duration of the event. The operators are assumed to trip the reactor coolant pumps as a result of the loss of subcooling immediately upon accident initiation when the trip criteria of 0.27 K [0.5EF] is reached. The trip of the reactor coolant pumps causes loss of forced convection in the downcomer which causes the drop in the downcomer wall heat transfer coefficient from a steady state value of about 24,110 w/m2 K [1.18 Btu/s-ft2-EF] to the values shown in 3-3
 
Figure 3.1.1-3. The break flow is presented in Figure 3.1.1-5 and consists of a liquid-steam mixture for most of the event. The total HPI flow is shown in Figure 3.1.1-6.
Because of the size of the break, the core flood tanks start to discharge by 60 s after initiation and are completely discharged by 150 s as shown in Figure 3.1.1-7. Low pressure injection flow, shown in Figure 3.1.1-8, starts within 90 s after initiation and remains on for the rest of the transient.
Hot leg flow is shown in Figure 3.1.1-9. The hot leg flow in the A loop is approximately equal to the break flow and is due to the continued operation of the HPI and LPI systems. There is little or no flow in the B loop. The system energy balance is shown in Figure 3.1.1-10 which shows that the break energy is much larger than the core decay heat load, which causes the system temperature to decrease. This plot also shows that the steam generators have a minor effect on the downcomer temperature. Heat is transferred from the steam generator into the primary system as the system depressurizes, but the size of the break is sufficiently large to remove this heat from the primary system along with the decay heat energy which is substantially larger.
Because of the size of the break and the continued operation of the HPI and LPI systems, the borated water storage tank inventory is depleted and HPI and LPI pump suction is switched to the containment sump. This switchover occurs at about 1,740 s as shown in Figure 3.1.1-11 and results in an increase in the HPI and LPI injection temperature, which directly impacts the downcomer temperature as seen from Figure 3.1.1-2.
The steam generator secondary side pressures are shown in Figure 3.1.1-12. The initial drop in secondary side pressure is due to the transfer of heat into the primary system from the steam generators. Actuation of feedwater flow, which is initiated by trip of the reactor coolant pumps, causes the steam generator to fill. This feedwater flow is reflected by the increase in steam generator startup level shown in Figure 3.1.1-13.
The minimum downcomer temperature of about 300 K [80EF] was reached by about 600 s after initiation. The corresponding system pressure is about 0.18 MPa [26 psia] and remains at about that pressure for the rest of the transient. The downcomer temperature increased to about 325 K
[125EF] by about 1,900 s after initiation as a result of ECCS switchover to the containment sump.
3-4
 
20.0                                                          2901 cntrlvar1023 15.0                                                          2176 Pressure (MPa)                                                                            Pressure (psia) 10.0                                                          1450 5.0                                                          725 0.0                                                          0 2000  0  2000      4000      6000            8000    10000 Time (sec)
Figure 3.1.1-1 Reactor Coolant System Pressure - Oconee Case 156 600                                                          620 cntrlvar1019 500                                                          440 Temperature (K)                                                                          Temperature (F) 400                                                          260 300                                                          80 200                                                            100 2000  0  2000    4000        6000          8000    10000 Time (sec)
Figure 3.1.1-2 Avg Reactor Vessel Downcomer Temperature - Oconee Case 156 3-5
 
8000                                                                0.39 cntrlvar1027 6000                                                                0.29 HTC (W/m *K)                                                                              HTC (Btu/s*ft *F) 2 2
4000                                                                0.20 2000                                                                0.10 0                                                                0.00 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-3 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 156 8.00                                                                315 cntrlvar16 6.00                                                                236 Level (m)                                                                                  Level (in) 4.00                                                                157 2.00                                                                79 0.00                                                                0 2000      0      2000      4000      6000          8000    10000 Time (sec)
Figure 3.1.1-4 Pressurizer Level - Oconee Case 156 3-6
 
1500                                                                      3303 mflowj997 1250                                                                      2752 Flow Rate (kg/sec) 1000                                                                      2202 Flow Rate (lb/sec) 750                                                                      1652 500                                                                      1101 250                                                                      550 0                                                                    0 2000      0    2000          4000      6000          8000    10000 Time (sec)
Figure 3.1.1-5 Break Flowrate - Oconee Case 156 100                                                                        220 75                                                                        165 Flow Rate (kg/sec)                                                                                            Flow Rate (lb/sec) 50                                                    cntrlvar5030      110 25                                                                        55 0                                                                          0 2000        0      2000        4000          6000          8000    10000 Time (sec)
Figure 3.1.1-6 Total High Pressure Injection Flowrate - Oconee Case 156 3-7
 
40.0                                                                        1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                        0.85 Liquid Volume (m )                                                                                            Liquid Volume (ft )
3                                                                                                            3 20.0                                                                        0.57 10.0                                                                        0.28 0.0                                                                        0.00 2000        0    2000      4000        6000            8000          10000 Time (sec)
Figure 3.1.1-7 Core Flood Tank Discharge - Oconee Case 156 600                                                                        1321 500                                                                        1101 Flow Rate (kg/sec) 400                                                                        881 Flow Rate (lb/sec) 300                                              mflowj71800              661 200                                                                        440 100                                                                        220 0                                                                          0 2000      0      2000      4000        6000          8000            10000 Time (sec)
Figure 3.1.1-8 Total Low Pressure Injection Flowrate - Oconee Case 156 3-8
 
2000                                                                  4404 1500                                                                  3303 1000                                                                  2202 Flow Rate (kg/sec)                                                                                    Flow Rate (lb/sec) 500                                                                  1101 0                                                                  0 500                                                                  1101 1000                                                                  2202 mflowj10000 (A Loop) 1500                mflowj20000 (B Loop)                              3303 2000                                                                  4404 2000    0      2000        4000          6000      8000      10000 Time (sec)
Figure 3.1.1-9 Hot Leg Flow in the A and B Loops - Oconee Case 156 600 Core Decay Heat Break Energy SGA Energy SGB Energy 400 Power (MW) 200 0
200 2000      0        2000          4000          6000          8000      10000 Time (sec)
Figure 3.1.1-10 System Energy Balance - Oconee Case 156 3-9
 
330                                                          134 320                                                          116 Temperature (K)                                                                      Temperature (F) 310                                      tempf71501        98 300                                                          80 290                                                            62 2000  0  2000    4000      6000          8000      10000 Time (sec)
Figure 3.1.1-11 HPI and LPI Injection Temperature - Oconee Case 156 10.0                                                        1450 p32501 (SGA) 8.0                                    p42501 (SGB)      1160 Pressure (MPa)                                                                        Pressure (psia) 6.0                                                        870 4.0                                                        580 2.0                                                        290 0.0                                                          0 2000  0  2000    4000      6000          8000      10000 Time (sec)
Figure 3.1.1-12 Steam Generator Secondary Pressure - Oconee Case 156 3-10
 
10.0                                                                  394 8.0                                                                  315 6.0                                                                  236 Level (m)                                                                                Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                                  157 2.0                                                                  79 0.0                                                                    0 2000  0    2000      4000      6000          8000          10000 Time (sec)
Figure 3.1.1-13 Steam Generator Secondary Startup Level - Oconee Case 156 3.1.1.2 Case 160 - 14.37 cm [5.656 in] Diameter Surge Line Break from HFP Conditions Case 160 is a 14.37 cm [5.656 in] diameter break in the surge line from hot full power conditions.
The equivalent break flow area is 0.016 m2 [0.175 ft2]. The parameters of interest for the fracture mechanics analysis: primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.1-14 through 3.1.1-16.
As a result of the break, system depressurization occurs as shown in Figure 3.1.1-14. The primary system pressure falls to 4.0 MPa [580 psia] by 300 s and continues decreasing to an equilibrium pressure of about 0.80 MPa [115 psia] by about 2,000 s after initiation. The downcomer temperature decreases to 518 K [472EF] by 300 s and to 300 K [80EF] by 2,000 s. The pressurizer level, shown in Figure 3.1.1-17, decreases rapidly and empties from the loss of coolant inventory as the reactor coolant system depressurizes. Reactor trip occurs within 1 s, followed by actuation of the HPI system which runs for the duration of the event. The operators are assumed to trip the reactor coolant pumps as a result of the loss of subcooling within 10 s after accident initiation. The trip of the reactor coolant pumps causes loss of forced convection which causes the drop in the downcomer wall heat transfer coefficient from a steady state value of about 24,110 W/m2-K [1.18 Btu/s-ft2-EF] to the values shown in Figure 3.1.1-16.
The break flow is presented in Figure 3.1.1-18. After the initial flow spike, the break flow drops as flashing occurs in the system and the break flow consists mostly of steam. As the system cools and ECCS injection starts, the break flow becomes principally liquid. The changeover to liquid driven 3-11
 
by ECCS flow is the reason for the increase in break flow. The total HPI flow is shown in Figure 3.1.1-19.
The core flood tanks start to discharge by 310 s and are completely discharged by 1,565 s as shown in Figure 3.1.1-20. Low pressure injection flow, shown in Figure 3.1.1-21, starts at about 1,190 s and remains on for the rest of the transient. The combined effect of the HPI, LPI and core flood tank flow causes the pressurizer to refill at 1,910 s as seen from Figure 3.1.1-17. Pressurizer level equalizes at about 6.6 m [260 in] by about 6,000 s after initiation.
Hot leg flow is shown in Figure 3.1.1-22. The hot leg flow in the A loop is approximately equal to the break flow and is due to the continued operation of the HPI and LPI systems. There is little or no flow in the B loop. The system energy balance is shown in Figure 3.1.1-23 which shows that the break energy is much larger than the core decay heat load, which causes the system temperature to decrease. This plot also shows that the steam generators have a minor effect on the downcomer temperature. Heat is transferred from the steam generator into the primary system as the system depressurizes, but the size of the break is sufficient to remove this heat from the primary system along with the decay heat energy which is substantially larger.
Because of the size of the break and the continued operation of the HPI and LPI systems, the borated water storage tank inventory is depleted and HPI and LPI pump suction is switched to the containment sump. This switchover occurs at about 2,890 s as shown in Figure 3.1.1-24 and results in an increase in the HPI and LPI injection temperature, which directly impacts the downcomer temperature as seen from Figure 3.1.1-15.
The steam generator secondary side pressures are shown in Figure 3.1.1-25. The decrease in secondary side pressure is due to the transfer of heat into the primary system from the steam generators. Actuation of feedwater flow, which is initiated by trip of the reactor coolant pumps and which causes the steam generators to fill, also contributes to the decline in secondary side pressure. This feedwater flow is reflected by the increase in steam generator startup levels shown in Figure 3.1.1-26.
The minimum downcomer temperature of about 299 K [78EF] was reached by about 2,300 s after initiation. The corresponding system pressure is about 0.90 MPa [130 psia] and remains at about that pressure for the rest of the transient. The downcomer temperature increased to about 325 K
[125EF] by about 3,500 s after initiation as a result of ECCS switchover to the containment sump.
3-12
 
20.0                                                          2901 cntrlvar1023 15.0                                                          2176 Pressure (MPa)                                                                          Pressure (psia) 10.0                                                          1450 5.0                                                          725 0.0                                                          0 2000  0    2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-14 Reactor Coolant System Pressure - Oconee Case 160 600                                                          620 cntrlvar1019 500                                                          440 Temperature (K)                                                                        Temperature (F) 400                                                          260 300                                                          80 200                                                          100 2000  0    2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-15 Avg Reactor Vessel Downcomer Temperature - Oconee Case 160 3-13
 
8000                                                                0.39 cntrlvar1027 6000                                                                0.29 HTC (W/m *K)                                                                              HTC (Btu/s*ft *F) 2 2
4000                                                                0.20 2000                                                                0.10 0                                                                0.00 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-16 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 160 8.00                                                                315 6.00                                                                236 Level (m)                                                                                    Level (in) 4.00                                            cntrlvar16        157 2.00                                                                79 0.00                                                                0 2000    0      2000      4000      6000          8000    10000 Time (sec)
Figure 3.1.1-17 Pressurizer Level - Oconee Case 160 3-14
 
1000                                                                    2202 mflowj997 750                                                                    1652 Flow Rate (kg/sec)                                                                                          Flow Rate (lb/sec) 500                                                                    1101 250                                                                    550 0                                                                  0 2000          0    2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-18 Break Flowrate - Oconee Case 160 100                                                                      220 75                                                                        165 Flow Rate (kg/sec)                                                                                        Flow Rate (lb/sec) 50                                                    cntrlvar5030      110 25                                                                        55 0                                                                        0 2000            0      2000      4000      6000          8000    10000 Time (sec)
Figure 3.1.1-19 Total High Pressure Injection Flowrate - Oconee Case 160 3-15
 
40.0                                                                  1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                  0.85 Liquid Volume (m )                                                                                Liquid Volume (ft )
3                                                                                                3 20.0                                                                  0.57 10.0                                                                  0.28 0.0                                                                  0.00 2000    0      2000    4000      6000          8000        10000 Time (sec)
Figure 3.1.1-20 Core Flood Tank Discharge - Oconee Case 160 600                                                                  1321 500                                          mflowj71800            1101 Flow Rate (kg/sec) 400                                                                  881 Flow Rate (lb/sec) 300                                                                  661 200                                                                  440 100                                                                  220 0                                                                    0 2000    0      2000    4000      6000          8000          10000 Time (sec)
Figure 3.1.1-21 Total Low Pressure Injection Flowrate - Oconee Case 160 3-16
 
2000                                                                    4404 1500                                                                    3303 1000                                                                    2202 Flow Rate (kg/sec)                                                                                      Flow Rate (lb/sec) 500                                                                    1101 0                                                                  0 500                                                                    1101 1000                                                                    2202 mflowj10000 (A Loop) 1500                                          mflowj20000 (B Loop)      3303 2000                                                                      4404 2000      0  2000    4000      6000          8000            10000 Time (sec)
Figure 3.1.1-22 Hot Leg Flow in the A and B Loops - Oconee Case 160 500 400                                              Core Decay Heat Break Energy SGA Energy 300                                              SGB Energy Power (MW) 200 100 0
100 200 2000    0      2000    4000        6000              8000            10000 Time (sec)
Figure 3.1.1-23 System Energy Balance - Oconee Case 160 3-17
 
330                                                          134 320                                                          116 Temperature (K)                                                                        Temperature (F) 310                                      tempf71501          98 300                                                          80 290                                                          62 2000  0  2000    4000      6000          8000      10000 Time (sec)
Figure 3.1.1-24 HPI and LPI Injection Temperature - Oconee Case 160 10.0                                                        1450 p32501 (SGA) 8.0                                    p42501 (SGB)      1160 Pressure (MPa)                                                                          Pressure (psia) 6.0                                                        870 4.0                                                        580 2.0                                                        290 0.0                                                          0 2000  0  2000    4000      6000          8000      10000 Time (sec)
Figure 3.1.1-25 Steam Generator Secondary Pressure - Oconee Case 160 3-18
 
10.0                                                                  394 8.0                                                                  315 6.0                                                                  236 Level (m)                                                                                Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                                  157 2.0                                                                  79 0.0                                                                    0 2000  0    2000      4000        6000          8000          10000 Time (sec)
Figure 3.1.1-26 Steam Generator Secondary Startup Level - Oconee Case 160 3.1.1.3 Case 164 - 20.32 cm [8 in] Diameter Surge Line Break from HFP Conditions Case 164 is a 20.32 cm [8 in] diameter break in the surge line from hot full power conditions. The equivalent break flow area is 0.032 m2 [0.349 ft2]. The parameters of interest for the fracture mechanics analysis: primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.1-27 through 3.1.1-29.
As a result of the break, rapid system depressurization occurs as shown in Figure 3.1.1-27. The primary system pressure falls to 2.4 MPa [350 psia] by 300 s and continues decreasing to an equilibrium pressure of about 0.43 MPa [62 psia] by about 2,000 s after initiation. The downcomer temperature decreases to 495 K [430EF] by 300 s and to about 298 K [76EF] by 2,000 s. The pressurizer level, shown in Figure 3.1.1-30, also decreases rapidly and empties from the loss of coolant inventory as the reactor coolant system depressurizes. Reactor trip occurs within 1 s, followed by actuation of the HPI system which runs for the duration of the event. The operators are assumed to trip the reactor coolant pumps as a result of the loss of subcooling within about 2 s after accident initiation. The trip of the reactor coolant pumps causes loss of forced convection in the downcomer which causes the drop in the downcomer wall heat transfer coefficient from a steady state value of 24,112 W/m2-K [1.18 Btu/s-ft2-EF] to the values shown in Figure 3.1.1-29.
The break flow is presented in Figure 3.1.1-31. After the initial flow spike, the break flow drops as flashing occurs in the system and the break flow consists mostly of steam. As the system cools and ECCS injection starts, the break flow becomes principally liquid. The changeover to liquid driven 3-19
 
by ECCS flow is the reason for the increase in break flow. The total HPI flow is shown in Figure 3.1.1-32.
The core flood tanks start to discharge by 220 s and are completely discharged by 840 s as shown in Figure 3.1.1-33. Low pressure injection flow, shown in Figure 3.1.1-34, starts at about 610 s and remains on for the rest of the transient. The combined effect of the HPI, LPI and core flood tank flow causes the pressurizer to refill at about 1,500 s.
Hot leg flow is shown in Figure 3.1.1-35. The hot leg flow in the A loop is approximately equal to the break flow and is due to the continued operation of the HPI and LPI systems. There is little or no flow in the B loop. The system energy balance is shown in Figure 3.1.1-36 which shows that the break energy is much larger than the core decay heat load, which causes the system temperature to decrease. This plot also shows that the steam generators have a minor effect on the downcomer temperature. Heat is transferred from the steam generator into the primary system as the system depressurizes, but the size of the break is sufficient to remove this heat from the primary system along with the decay heat energy which is substantially larger.
Because of the size of the break and the continued operation of the HPI and LPI systems, the borated water storage tank inventory is depleted and HPI and LPI pump suction is switched to the containment sump. This switchover occurs at about 2,310 s as shown in Figure 3.1.1-37 and results in an increase in the HPI and LPI injection temperature, which directly impacts the downcomer temperature as seen from Figure 3.1.1-28.
The steam generator secondary side pressures is shown in Figure 3.1.1-38. The decrease in secondary side pressure is due to the transfer of heat into the primary system from the steam generators. Actuation of feedwater flow, which is initiated by trip of the reactor coolant pumps and which causes the steam generators to fill, also contributes to the decline in secondary side pressure. This flow is reflected by the increase in steam generator startup levels shown in Figure 3.1.1-39.
The minimum downcomer temperature of about 300 K [80EF] was reached by about 1,200 s after initiation. The corresponding system pressure is about 0.56 MPa [80 psia] and remains at about that pressure for the rest of the transient. The downcomer temperature increased to about 325 K
[125EF] by about 2,600 s after initiation as a result of ECCS switchover to the containment sump.
3-20
 
20.0                                                        2901 cntrlvar1023 15.0                                                        2176 Pressure (MPa)                                                                        Pressure (psia) 10.0                                                        1450 5.0                                                        725 0.0                                                        0 2000  0  2000    4000      6000            8000  10000 Time (sec)
Figure 3.1.1-27 Reactor Coolant System Pressure - Oconee Case 164 600                                                        620 cntrlvar1019 500                                                        440 Temperature (K)                                                                      Temperature (F) 400                                                        260 300                                                        80 200                                                          100 2000  0  2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-28 Avg Reactor Vessel Downcomer Temperature - Oconee Case 164 3-21
 
8000                                                                  0.39 cntrlvar1027 6000                                                                  0.29 HTC (W/m *K)                                                                                HTC (Btu/s*ft *F) 2 2
4000                                                                  0.20 2000                                                                  0.10 0                                                                  0.00 2000        0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-29 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 164 8.00                                                                  315 cntrlvar16 6.00                                                                  236 Level (m)                                                                                      Level (in) 4.00                                                                  157 2.00                                                                  79 0.00                                                                  0 2000      0      2000      4000      6000          8000    10000 Time (sec)
Figure 3.1.1-30 Pressurizer Level - Oconee Case 164 3-22
 
1500                                                                3303 1250                                            mflowj997        2752 Flow Rate (kg/sec) 1000                                                                2202 Flow Rate (lb/sec) 750                                                                1652 500                                                                1101 250                                                                550 0                                                                  0 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-31 Break Flowrate - Oconee Case 164 100                                                                  220 75                                                                  165 Flow Rate (kg/sec)                                                                              Flow Rate (lb/sec) 50                                              cntrlvar5030      110 25                                                                  55 0                                                                  0 2000        0      2000      4000      6000          8000    10000 Time (sec)
Figure 3.1.1-32 Total High Pressure Injection Flowrate - Oconee Case 164 3-23
 
40.0                                                                      1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                      0.85 Liquid Volume (m )                                                                                    Liquid Volume (ft )
3                                                                                                          3 20.0                                                                      0.57 10.0                                                                      0.28 0.0                                                                      0.00 2000        0    2000      4000      6000          8000          10000 Time (sec)
Figure 3.1.1-33 Core Flood Tank Discharge - Oconee Case 164 600                                                                      1321 500                                                                      1101 Flow Rate (kg/sec) 400                                                                      881 Flow Rate (lb/sec) 300                                              mflowj71800            661 200                                                                      440 100                                                                      220 0                                                                        0 2000      0      2000      4000        6000          8000          10000 Time (sec)
Figure 3.1.1-34 Total Low Pressure Injection Flowrate - Oconee Case 164 3-24
 
2000                                                                    4404 1500                                                                    3303 1000                                                                    2202 Flow Rate (kg/sec)                                                                                      Flow Rate (lb/sec) 500                                                                    1101 0                                                                    0 500                                                                    1101 1000                                                                    2202 mflowj10000 (A Loop) 1500                                          mflowj20000 (B Loop)      3303 2000                                                                      4404 2000  0      2000      4000      6000          8000            10000 Time (sec)
Figure 3.1.1-35 Hot Leg Flow in the A and B Loops - Oconee Case 164 500 400                                                Core Decay Heat Break Energy SGA Energy 300                                                SGB Energy Power (MW) 200 100 0
100 200 2000    0      2000        4000      6000              8000            10000 Time (sec)
Figure 3.1.1-36 System Energy Balance - Oconee Case 164 3-25
 
330                                                          134 320                                                          116 Temperature (K)                                                                      Temperature (F) 310                                      tempf71501          98 300                                                          80 290                                                          62 2000  0  2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-37 HPI and LPI Injection Temperature - Oconee Case 164 10.0                                                        1450 p32501 (SGA) 8.0                                    p42501 (SGB)      1160 Pressure (MPa)                                                                        Pressure (psia) 6.0                                                        870 4.0                                                        580 2.0                                                        290 0.0                                                          0 2000  0  2000    4000      6000          8000      10000 Time (sec)
Figure 3.1.1-38 Steam Generator Secondary Pressure - Oconee Case 164 3-26
 
10.0                                                                  394 8.0                                                                  315 6.0                                                                  236 Level (m)                                                                                Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                                  157 2.0                                                                  79 0.0                                                                    0 2000  0      2000      4000      6000          8000          10000 Time (sec)
Figure 3.1.1-39 Steam Generator Secondary Startup Level - Oconee Case 164 3.1.1.4 Case 172 - 10.16 cm [4 in] Diameter Cold Leg Break from HFP Conditions Case 172 is a 10.32 cm [4 in] diameter break in the cold leg from hot full power conditions. The equivalent break flow area is 0.008 m2 [0.087 ft2]. The parameters of interest for the fracture mechanics analysis: primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.1-40 through 3.1.1-42.
As a result of the break, system depressurization occurs as shown in Figure 3.1.1-40. The primary system pressure falls to 4.9 MPa [710 psia] by 300 s and continues decreasing to an equilibrium pressure of about 1.2 MPa [180 psia] by about 3,000 s after initiation.            The downcomer temperature decreases to 525 K [485EF] by 300 s and to about 360 K [190EF] by 3,000 s. The pressurizer level, shown in Figure 3.1.1-43, decreases rapidly and empties from the loss of coolant inventory as the reactor coolant system depressurizes. Reactor trip occurs within 1 s, followed by actuation of the HPI system which runs for the duration of the event. The operators are assumed to trip the reactor coolant pumps as a result of the loss of subcooling within 31 s after accident initiation. The trip of the reactor coolant pumps causes loss of forced convection which causes the drop in the downcomer wall heat transfer coefficient from a steady state value of about 24,112 W/m2-K [1.18 Btu/s-ft2-EF] to the values shown in Figure 3.1.1-42.
The break flow is presented in Figure 3.1.1-44. After the initial flow spike, the break flow drops as flashing occurs in the system and the break flow consists mostly of steam. As the system cools and ECCS injection starts, the break flow becomes principally liquid. At the point when LPI starts, the 3-27
 
break flow consists mostly of liquid. The changeover to liquid driven by ECCS flow is the reason for the increase in break flow. The total HPI flow is shown in Figure 3.1.1-45.
The core flood tanks start to discharge by 600 s and are completely discharged by 2,720 s as shown in Figure 3.1.1-46. Low pressure injection flow, shown in Figure 3.1.1-47, starts at about 2,195 s and remains on for the rest of the transient.
Hot leg flow is shown in Figure 3.1.1-48. There is little or no flow in either hot leg since the break is located in the cold leg. The system energy balance is shown in Figure 3.1.1-49 which shows that the break energy is larger than the core decay heat load, which causes the system temperature to decrease. This plot also shows that the steam generators have a minor effect on the downcomer temperature. Heat is transferred from the steam generator into the primary system as the system depressurizes, but the size of the break is sufficient to remove this heat from the primary system along with the decay heat energy which is substantially larger.
Because of the size of the break and the continued operation of the HPI and LPI systems, the borated water storage tank inventory is depleted and HPI and LPI pump suction is switched to the containment sump. This switchover occurs at about 3,760 s as shown in Figure 3.1.1-50 and results in an increase in the HPI and LPI injection temperature, which directly impacts the downcomer temperature as seen from Figure 3.1.1-41.
The steam generator secondary side pressures are shown in Figure 3.1.1-51. The decrease in secondary side pressure is due to the transfer of heat into the primary system from the steam generators. Actuation of feedwater flow, which is initiated by trip of the reactor coolant pumps and which cause the steam generator to fill, also contributes to the decline in secondary side pressure.
This feedwater flow is reflected by the increase in steam generator startup levels shown in Figure 3.1.1-52.
The minimum downcomer temperature of about 355 K [180EF] was reached by about 2,700 s after initiation. The corresponding system pressure is about 1.1 MPa [160 psia] and remains at about that pressure for the rest of the transient. The downcomer temperature increased to about 325 K
[125EF] by about 4,000 s after initiation as a result of ECCS switchover to the containment sump.
3-28
 
20.0                                                        2901 cntrlvar1023 15.0                                                        2176 Pressure (MPa)                                                                        Pressure (psia) 10.0                                                        1450 5.0                                                        725 0.0                                                        0 2000  0  2000    4000      6000            8000  10000 Time (sec)
Figure 3.1.1-40 Reactor Coolant System Pressure - Oconee Case 172 600                                                        620 cntrlvar1019 500                                                        440 Temperature (K)                                                                      Temperature (F) 400                                                        260 300                                                        80 200                                                          100 2000  0  2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-41 Avg Reactor Vessel Downcomer Temperature - Oconee Case 172 3-29
 
8000                                                                  0.39 cntrlvar1027 6000                                                                  0.29 HTC (W/m *K)                                                                                HTC (Btu/s*ft *F) 2 2
4000                                                                  0.20 2000                                                                  0.10 0                                                                  0.00 2000        0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-42 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 172 8.00                                                                  315 cntrlvar16 6.00                                                                  236 Level (m)                                                                                      Level (in) 4.00                                                                  157 2.00                                                                  79 0.00                                                                  0 2000      0      2000      4000      6000          8000    10000 Time (sec)
Figure 3.1.1-43 Pressurizer Level - Oconee Case 172 3-30
 
1000                                                                2202 mflowj997 750                                                                1652 Flow Rate (kg/sec)                                                                              Flow Rate (lb/sec) 500                                                                1101 250                                                                550 0                                                                  0 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-44 Break Flowrate - Oconee Case 172 100                                                                  220 75                                                                  165 Flow Rate (kg/sec)                                                                              Flow Rate (lb/sec) 50                                              cntrlvar5030      110 25                                                                  55 0                                                                  0 2000        0      2000      4000      6000          8000    10000 Time (sec)
Figure 3.1.1-45 Total High Pressure Injection Flowrate - Oconee Case 172 3-31
 
40.0                                                                      1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                      0.85 Liquid Volume (m )                                                                                    Liquid Volume (ft )
3                                                                                                          3 20.0                                                                      0.57 10.0                                                                      0.28 0.0                                                                      0.00 2000        0    2000      4000      6000          8000          10000 Time (sec)
Figure 3.1.1-46 Core Flood Tank Discharge - Oconee Case 172 600                                                                      1321 500                                              mflowj71800            1101 Flow Rate (kg/sec) 400                                                                      881 Flow Rate (lb/sec) 300                                                                      661 200                                                                      440 100                                                                      220 0                                                                        0 2000    0      2000      4000        6000          8000          10000 Time (sec)
Figure 3.1.1-47 Total Low Pressure Injection Flowrate - Oconee Case 172 3-32
 
1500                                                                    3303 1000                                                                    2202 Flow Rate (kg/sec)                                                                                      Flow Rate (lb/sec) 500                                                                    1101 0                                                                    0 500                                                                    1101 mflowj10000 (A Loop) mflowj20000 (B Loop) 1000                                                                      2202 2000  0      2000      4000      6000          8000            10000 Time (sec)
Figure 3.1.1-48 Hot Leg Flow in the A and B Loops - Oconee Case 172 500 400                                                Core Decay Heat Break Energy SGA Energy 300                                                SGB Energy Power (MW) 200 100 0
100 200 2000    0      2000        4000      6000              8000            10000 Time (sec)
Figure 3.1.1-49 System Energy Balance - Oconee Case 172 3-33
 
330                                                          134 320                                                          116 Temperature (K)                                                                      Temperature (F) 310                                      tempf71501          98 300                                                          80 290                                                          62 2000  0  2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.1-50 HPI and LPI Injection Temperature - Oconee Case 172 10.0                                                        1450 p32501 (SGA) 8.0                                    p42501 (SGB)      1160 Pressure (MPa)                                                                        Pressure (psia) 6.0                                                        870 4.0                                                        580 2.0                                                        290 0.0                                                          0 2000  0  2000    4000      6000          8000      10000 Time (sec)
Figure 3.1.1-51 Steam Generator Secondary Pressure - Oconee Case 172 3-34
 
10.0                                                                  394 8.0                                                                  315 6.0                                                                  236 Level (m)                                                                                Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                                  157 2.0                                                                  79 0.0                                                                    0 2000  0    2000      4000        6000          8000          10000 Time (sec)
Figure 3.1.1-52 Steam Generator Secondary Startup Level - Oconee Case 172 3.1.2 Sequences with Stuck Open Pressurizer Safety Valve that Reclose at 6,000 Seconds Sequences involving stuck open primary safety valves that subsequently reclose after 6,000 s are presented in this section. The sequences selected for discussion are Case 109, Case 113, and Case 122. These cases are described below:
* Case 109 involves a stuck open pressurizer safety valve that recloses at 6,000 s from hot full power conditions. No operator actions regarding HPI throttling are performed.
* Case 113 involves a stuck open pressurizer safety valve that recloses at 6,000 s from hot full power conditions. After the valve recloses, the operator throttles HPI 10 minutes after 2.7 K [5&deg;F] subcooling and 254 cm [100 in] pressurizer level is reached. The throttling criteria is 27.8 K [50&deg;F] subcooling.
* Case 122 involves a stuck open pressurizer safety valve that recloses at 6,000 s from hot zero power conditions. After the valve recloses, the operator throttles HPI 10 minutes after 2.7 K [5&deg;F] subcooling and 254 cm [100 in] pressurizer level is reached. The throttling criteria is 27.8 K [50&deg;F] subcooling.
* Case 165 involves a stuck open pressurizer safety valve that recloses at 6,000 s from hot zero power conditions. There are no operator actions assumed.
The pressurizer safety valve is assumed to open at sequence initiation due to a spontaneous failure and recloses at 6,000 s after initiation. The equivalent flow area of the stuck open valve is 0.0016 m2 [0.0176 ft2]. The operator is assumed to trip the reactor coolant pumps when primary system subcooling is lost. A trip criteria of 0.27 K [0.5EF] is assumed for the hot full power cases. For the 3-35
 
hot zero power case, the trip criteria was raised to 3.9 K [7EF] to cause a reactor coolant pump trip.
Note that the stuck open pressurizer safety valve is assumed to not sufficiently pressurize the containment to reach the setpoint at which containment sprays start. As a result, the HPI injection temperature remains constant for the duration of the event. A tabulation of the timing of key events for these transients are listed in Table 3.1-2.
Table 3.1-2 Comparison of Event Timing for Sequences with a Stuck Open PSV that Recloses at 6000 Seconds Event Time (seconds)
Case 109 -        Case 113 -        Case 122 -      Case 165 - stuck stuck open        stuck open        stuck open      open PZR SRV PZR SRV that      PZR SRV that      PZR SRV that    that recloses at recloses at      recloses at        recloses at      6000 seconds.
6000 seconds. 6000 seconds.      6000 seconds. No operator No operator      Operator          Operator        action.
actions.          throttles HPI. throttles HPI.
Reactor Power Level              HFP              HFP                HZP              HZP Reactor scram                    1                1                  N/A              N/A HPI actuates                    18                18                17              17 Time that vent valves open      238              238                454              454 RCP trip time on loss of        141              141                110              110 subcooling margin Time that operator throttles    N/A              7355              7375            N/A HPI Core flood tank discharge        2750              2750              875              875 start time Low pressure injection starts    does not start    does not start    does not start  does not start Core flood tank discharge        6010              6010              6550            6550 stops ECCS Switchover time            does not occur    does not occur    does not occur  does not occur 3.1.2.1 Case 109 - Stuck Open PSV that Recloses at 6,000 s from HFP and No Operator Actions Case 109 is a stuck open pressurizer safety valve that recloses at 6,000 s from hot full power conditions. The parameters of interest for the fracture mechanics analysis: primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.2-1 through 3.1.2-3.
As a result of the stuck open pressurizer safety valve, the primary system pressure decreases to about 7.2 MPa [1045 psia] in the first 300 s and continues to depressurize to about 2.3 MPa [335 psia] at 6,000 s. The downcomer temperature decreases to 545 K [521EF] by 300 s and to about 3-36
 
386 K [235EF] by 6,000 s. Reactor trip occurs within 1 s, followed by actuation of the HPI system at about 18 s. The operators are assumed to trip the reactor coolant pumps as a result of loss of primary system subcooling at about 141 s. The trip of the reactor coolant pumps causes loss of forced convection in the downcomer which causes the drop in the downcomer wall heat transfer coefficient from a steady state value of 24,112 W/m2-K [1.18 Btu/s-ft2-EF] to the values shown in Figure 3.1.2-3.
The pressurizer level is shown in Figure 3.1.2-4. The pressurizer level increases because of level swell due to the stuck open pressurizer safety valve, which is located at the top of the pressurizer.
Also, the HPI system is actuated and is filling the pressurizer. As a result, the pressurizer remains filled for the duration of the event.
At 6000 s, the pressurizer safety valve recloses and the system pressure increases to the PORV opening setpoint of 17.0 MPa [2465 psia] by about 7,120 s. Because of the continued operation of the HPI system, the primary system remains at that pressure with system fluid discharging through the PORV for the remainder of the event. The flowrate through the stuck open pressurizer safety valve and the PORV is shown in Figure 3.1.2-5. Note that the PORV cycles open and closed as necessary to limit the RCS pressurization. The total HPI flowrate is shown in Figure 3.1.2-6.
The closure of the pressurizer safety valve at 6,000 s causes a corresponding drop in HPI flow due to increased system pressure, especially once the system repressurizes to the PORV setpoint.
The core flood tanks discharge about 30 percent of the total water volume as seen in Figure 3.1.2-7. At 6000 s, the discharge stops because the pressurizer safety valve reclosed and the system repressurized. Note that there is no LPI flow in this case because the primary system pressure never drops below the LPI pump shutoff head of 1.48 MPa [214 psia].
The flow in the hot leg is shown in Figure 3.1.2.8. The flow in the A loop hot leg is initially due to the stuck open pressurizer safety valve. When the valve recloses, the hot leg flow is interrupted until the PORV opens. The oscillatory flow pattern after about 7,000 s in the hot leg flow is induced by the continued opening and closing of the PORV.
Figure 3.1.2-9 shows the system energy balance. The core decay heat energy is removed initially by the stuck open pressurizer safety valve. When the valve recloses, energy is removed through the PORV after the system pressurizes to the PORV setpoint from continued HPI operation. This plot also shows that the steam generators have a minor effect on the primary system energy and hence the downcomer temperature. Heat is transferred from the steam generator into the primary system as the system depressurizes, but the capacity of the stuck open valve or the PORV is sufficient to remove this heat from the primary system along with the decay heat energy which is substantially larger.
The steam generator secondary side pressure is shown in Figure 3.1.2-10. The decrease in secondary side pressure is due to the transfer of heat into the primary system from the steam generators. Actuation of feedwater flow, which is initiated by trip of the reactor coolant pumps and which cause the steam generator to fill, also contributes to the decline in secondary side pressure.
This flow is reflected by the increase in steam generator startup level shown in Figure 3.1.2-11.
3-37
 
The minimum downcomer temperature of about 350 K [170EF] was reached by 6,010 s after initiation when the pressurizer safety valve recloses. The corresponding system pressure is about 2.3 MPa [330 psia]. However, the system repressurized to the PORV opening pressure because of continued HPI operation and remains at about that pressure for the rest of the transient as shown in Figure 3.1.2-1. Note that a momentary discharge of water from the core flood tanks occurred at the time the valve reclosed, causing the downward temperature spike seen in Figure 3.1.2-2.
20.0                                                          2901 cntrlvar1023 15.0                                                          2176 Pressure (MPa)                                                                        Pressure (psia) 10.0                                                          1450 5.0                                                          725 0.0                                                          0 2000    0      2000      4000          6000  8000  10000 Time (sec)
Figure 3.1.2-1 Reactor Coolant System Pressure - Oconee Case 109 3-38
 
600                                                                  620 cntrlvar1019 500                                                                  440 Temperature (K)                                                                                Temperature (F) 400                                                                  260 300                                                                  80 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.2-2 Avg Reactor Vessel Downcomer Temperature - Oconee Case 109 8000                                                                0.39 cntrlvar1027 6000                                                                0.29 HTC (W/m *K)                                                                                HTC (Btu/s*ft *F) 2 2
4000                                                                0.20 2000                                                                0.10 0                                                              0.00 2000      0  2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.2-3 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 109 3-39
 
12.0                                                                          472 10.0                                                                          394 8.0                                                                          315 Level (m)                                                                                              Level (in) 6.0                                                      cntrlvar16        236 4.0                                                                          157 2.0                                                                          79 0.0                                                                          0 2000        0      2000        4000            6000          8000  10000 Time (sec)
Figure 3.1.2-4 Pressurizer Level - Oconee Case 109 150                                                                          330 mflowj802 (PSV) mflowj801 (PORV) [5 s edit frequency]
Flow Rate (kg/sec) 100                                                                          220 Flow Rate (lb/sec) 50                                                                          110 0                                                                            0 2000        0      2000        4000            6000          8000    10000 Time (sec)
Figure 3.1.2-5 Flowrate through the Stuck Open PSV and PORV - Oconee Case 109 3-40
 
100                                                                      220 cntrlvar5030 75                                                                      165 Flow Rate (kg/sec)                                                                                        Flow Rate (lb/sec) 50                                                                      110 25                                                                      55 0                                                                      0 2000      0      2000    4000      6000            8000        10000 Time (sec)
Figure 3.1.2-6 Total High Pressure Injection Flowrate - Oconee Case 109 40.0                                                                    1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                    0.85 Liquid Volume (m )                                                                                  Liquid Volume (ft )
3                                                                                                  3 20.0                                                                    0.57 10.0                                                                    0.28 0.0                                                                    0.00 2000      0      2000    4000      6000          8000        10000 Time (sec)
Figure 3.1.2-7 Core Flood Tank Discharge - Oconee Case 109 3-41
 
500                                                                                1101 400                  mflowj10000 (A Loop) [5 s edit frequency]                    881 mflowj20000 (B Loop) [5 s edit frequency]
Flow Rate (kg/sec) 300                                                                                661 Flow Rate (lb/sec) 200                                                                                440 100                                                                                220 0                                                                                0 100                                                                                220 2000    0      2000      4000              6000              8000          10000 Time (sec)
Figure 3.1.2-8 Hot Leg Flow in the A and B Loops - Oconee Case 109 200 100 Power (MW) 0 Core Decay Heat SRV Energy 100                                                          SGA Energy SGB Energy 200 2000        0    2000          4000              6000                8000          10000 Time (sec)
Figure 3.1.2-9 System Energy Balance - Oconee Case 109 3-42
 
10.0                                                              1450 p32501 (SGA) 8.0                                    p42501 (SGB)            1160 Pressure (MPa)                                                                                Pressure (psia) 6.0                                                              870 4.0                                                              580 2.0                                                              290 0.0                                                                0 2000  0  2000    4000      6000          8000            10000 Time (sec)
Figure 3.1.2-10 Steam Generator Secondary Pressure - Oconee Case 109 10.0                                                                394 8.0                                                                315 6.0                                                                236 Level (m)                                                                                    Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                                157 2.0                                                                79 0.0                                                                0 2000  0  2000    4000      6000          8000          10000 Time (sec)
Figure 3.1.2-11 Steam Generator Secondary Startup Level - Oconee Case 109 3-43
 
3.1.2.2 Case 113 - Stuck Open PSV that Recloses at 6,000 s from HFP with Operator Actions Case 113 is a stuck open pressurizer safety valve that recloses at 6,000 s from hot full power conditions. In this case, the operator is assumed to throttle HPI at 10 minutes after 2.7 K [5EF]
primary system subcooling and when the pressurizer level is over 2.54 m [100 in]. The throttling criteria is 27.8 K [50EF] subcooling. The parameters of interest for the fracture mechanics analysis:
primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.2-12 through 3.1.2-14.
As a result of the stuck open pressurizer safety valve, the primary system pressure decreases to about 7.2 MPa [1045 psia] in the first 300 s and continues to depressurize to about 2.3 MPa
[335 psia] at 6,000 s. The downcomer temperature decreases to 545 K [521EF] by 300 s and to about 386 K [235EF] by 6,000 s. Reactor trip occurs within 1 s, followed by actuation of the HPI system at about 18 s. The operators are assumed to trip the reactor coolant pumps as a result of loss of primary system subcooling at about 141 s. The trip of the reactor coolant pumps causes loss of forced convection in the downcomer which causes the drop in the downcomer wall heat transfer coefficient from a steady state value of 24,112 W/m2-K [1.18 Btu/s-ft2-EF] to the values shown in Figure 3.1.2-14.
The pressurizer level is shown in Figure 3.1.2-15. The pressurizer level increases because of level swell due to the stuck open pressurizer safety valve, which is located at the top of the pressurizer.
Also, the HPI system is running and filling the pressurizer. The flowrate through the stuck open pressurizer safety valve and the PORV is shown in Figure 3.1.2-16. The total HPI flowrate is shown in Figure 3.1.2-17.
At 6000 s, the pressurizer safety valve recloses and the system pressure starts to increase. The operator starts to throttle HPI at about 7355 s, just after the PORV opening setpoint is reached.
When the throttling criteria of 27.8 K [50EF] is exceeded, the HPI is throttled back to regain control of subcooling.
The core flood tank discharge about 30 percent of the total water volume as seen in Figure 3.1.2-
: 18. At 6000 s, the discharge stops because the pressurizer safety valve reclosed and the system repressurized. Note that there is no LPI flow in this case because the primary system pressure never drops below the LPI pump shutoff head of 1.48 MPa [214 psia].
The flow in the hot leg is shown in Figure 3.1.2.19. The flow in the A loop hot leg is initially due to the stuck open pressurizer safety valve. When that valve recloses, the hot leg flow generally stops, with occasional flow restarting because the PORV opens.
Figure 3.1.2-20 shows the system energy balance. The core decay heat energy is removed initially by the stuck open pressurizer safety valve. When the valve recloses, energy is removed through the PORV after the system repressurizes to the PORV setpoint. Some heat is transferred out of the primary when the PORV opens. The primary system pressure stays at the PORV setpoint and the valve continues to cycle due to decay heat. Steam generators have a minor impact on the primary system energy as seen from the figure.
3-44
 
The steam generator secondary side pressures are shown in Figure 3.1.2-21. The decrease in secondary side pressure is due to the transfer of heat into the primary system from the steam generators. Actuation of feedwater flow, which is initiated by trip of the reactor coolant pumps and which cause the steam generator to fill, also contribute to the decline in secondary side pressure.
This flow is reflected by the increase in steam generator startup level shown in Figure 3.1.2-22.
The minimum downcomer temperature of about 350 K [170EF] was reached by 6,030 s after initiation when the pressurizer safety valve recloses. The corresponding system pressure is about 2.3 MPa [330 psia] at that time, but the system repressurized to about the opening pressure of the PORV and remains at that level due to decay heat. Note that a momentary discharge of water from the core flood tank occurred at the time the valve reclosed causing the downward temperature spike seen in Figure 3.1.2-13.
20.0                                                    2901 cntrlvar1023 15.0                                                    2176 Pressure (MPa)                                                                  Pressure (psia) 10.0                                                    1450 5.0                                                    725 0.0                                                    0 2000  0  2000      4000      6000  8000    10000 Time (sec)
Figure 3.1.2-12 Reactor Coolant System Pressure - Oconee Case 113 3-45
 
600                                                            620 cntrlvar1019 500                                                            440 Temperature (K)                                                                        Temperature (F) 400                                                            260 300                                                            80 2000      0      2000    4000        6000    8000  10000 Time (sec)
Figure 3.1.2-13 Avg Reactor Vessel Downcomer Temperature - Oconee Case 113 8000                                                          0.39 cntrlvar1027 6000                                                          0.29 HTC (W/m *K)                                                                          HTC (Btu/s*ft *F) 2 2
4000                                                          0.20 2000                                                          0.10 0                                                        0.00 2000      0  2000    4000          6000  8000  10000 Time (sec)
Figure 3.1.2-14 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 113 3-46
 
12.0                                                                    472 10.0                                                                    394 8.0                                                                    315 Level (m)                                                                                  Level (in) 6.0                                              cntrlvar16            236 4.0                                                                    157 2.0                                                                    79 0.0                                                                      0 2000          0    2000      4000      6000          8000        10000 Time (sec)
Figure 3.1.2-15 Pressurizer Level - Oconee Case 113 150                                                                              330 mflowj802 (PSV) mflowj801 (PORV)
Flow Rate (kg/sec) 100                                                                              220 Flow Rate (lb/sec) 50                                                                        110 0                                                                        0 2000        0      2000      4000        6000            8000      10000 Time (sec)
Figure 3.1.2-16 Flowrate through the Stuck Open PSV and PORV - Oconee Case 113 3-47
 
100                                                                    220 cntrlvar5030 75                                                                    165 Flow Rate (kg/sec)                                                                                        Flow Rate (lb/sec) 50                                                                    110 25                                                                    55 0                                                                      0 2000      0      2000    4000      6000          8000        10000 Time (sec)
Figure 3.1.2-17 Total High Pressure Injection Flowrate - Oconee Case 113 40.0                                                                    1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                    0.85 Liquid Volume (m )                                                                                    Liquid Volume (ft )
3                                                                                                      3 20.0                                                                    0.57 10.0                                                                    0.28 0.0                                                                    0.00 2000      0      2000    4000      6000          8000        10000 Time (sec)
Figure 3.1.2-18 Core Flood Tank Discharge - Oconee Case 113 3-48
 
500                                                              1101 400                    mflowj10000 (A Loop)                    881 mflowj20000 (B Loop)
Flow Rate (kg/sec) 300                                                              661 Flow Rate (lb/sec) 200                                                              440 100                                                              220 0                                                            0 100                                                                220 2000        0    2000        4000          6000  8000    10000 Time (sec)
Figure 3.1.2-19 Hot Leg Flow in the A and B Loops - Oconee Case 113 200 100 Power (MW) 0 Core Decay Heat SRV Energy 100                                    PORV Energy SGA Energy SGB Energy 200 2000                    0      2000        4000            6000    8000    10000 Time (sec)
Figure 3.1.2-20 System Energy Balance - Oconee Case 113 3-49
 
10.0                                                              1450 p32501 (SGA) 8.0                                    p42501 (SGB)            1160 Pressure (MPa)                                                                              Pressure (psia) 6.0                                                              870 4.0                                                              580 2.0                                                              290 0.0                                                            0 2000  0  2000    4000      6000          8000        10000 Time (sec)
Figure 3.1.2-21 Steam Generator Secondary Pressure - Oconee Case 113 10.0                                                                394 8.0                                                                315 6.0                                                                236 Level (m)                                                                                  Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                                157 2.0                                                                79 0.0                                                                0 2000  0  2000    4000        6000          8000          10000 Time (sec)
Figure 3.1.2-22 Steam Generator Secondary Startup Level - Oconee Case 113 3-50
 
3.1.2.3 Case 122 - Stuck Open PSV that Recloses at 6,000 s from HZP with Operator Actions Case 122 is a stuck open pressurizer safety valve that recloses at 6,000 s from hot zero power conditions. In this case, the operator is assumed to throttle HPI at 10 minutes after 2.7 K [5EF]
primary system subcooling and when the pressurizer level is over 2.54 m [100 in]. The throttling criteria is 27.8 K [50EF] subcooling. The parameters of interest for the fracture mechanics analysis:
primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.2-23 through 3.1.2-25.
As a result of the stuck open pressurizer safety valve, the primary system pressure decreases to about 4.9 MPa [710 psia] in about the first 300 s followed by a continued slower depressurization to about 1.7 MPa [247 psia] at 6,000 s. The downcomer temperature decreases to 516 K [469EF]
by 300 s and to about 307 K [92EF] by 6,000 s. Actuation of the HPI system occurs at about 17 s.
The operators are assumed to trip the reactor coolant pumps as a result of loss of primary system subcooling at about 110 s. The trip of the reactor coolant pumps causes loss of forced convection in the downcomer which causes the drop in the downcomer wall heat transfer coefficient from a steady state value of 24,713 W/m2-K [1.21 Btu/s-ft2-EF] to the values shown in Figure 3.1.2-25.
The pressurizer level is shown in Figure 3.1.2-26. The pressurizer level increases because of level swell due to the stuck open pressurizer safety valve, which is located at the top of the pressurizer.
Also, the HPI system is running and filling the pressurizer. The flowrate through the stuck open pressurizer safety valve and the PORV is shown in Figure 3.1.2-27. The total HPI flowrate is shown in Figure 3.1.2-28.
At 6000 s, the pressurizer safety valve recloses and the system pressure starts to increase. The operator starts to throttle HPI at about 7375 s, just after the PORV opening setpoint is reached.
After the system pressure peaks, a slow pressure decline occurs and is due to continued operation of the charging/letdown system. About 2.8 kg/s [6.2 lbm/s] is removed while the pressurizer level is above 9.53 m [375 in] and 2.7 K [5EF] subcooling. HPI flow resumes at a low level of about 2.27 kg/s [5 lbm/s] at about 9,430 s and continues for the remainder of the transient. The system pressure stabilizes at about 2.5 MPa [363 psia] at this point.
The core flood tank discharge about 60 percent of the total water volume as seen in Figure 3.1.2-
: 29. It is interesting to note that the core flood tanks do not continue to discharge after about 9,300 s even though the system pressure is below the tank discharge pressure. The reason is that the vessel is filled solid with water at this point, which stops the core flood tank discharge.
The flow in the hot leg is shown in Figure 3.1.2.30. The flow in the A loop hot leg is initially due to the stuck open pressurizer safety valve. When that valve recloses, the hot leg flow generally stops, with occasional flow restarting because the PORV opens or because HPI is restarted.
Figure 3.1.2-31 shows the system energy balance. The capacity of the pressurizer safety valve is more than adequate to remove the system energy in the first 6,000 s. After the valve recloses, the primary system temperature slowly reheats. A small amount of heat is transferred into the primary system from the steam generators after the valves reclose.
3-51
 
The steam generator secondary side pressures are shown in Figure 3.1.2-32. The secondary side pressure decreases due to flow to the steam generator secondary from the feedwater system, which is initiated by the reactor coolant pump trip. This flow is reflected by the increase in steam generator startup level shown in Figure 3.1.2-33.
The minimum downcomer temperature of about 307 K [93EF] was reached by 6,010 s after initiation when the pressurizer safety valve recloses. The corresponding system pressure is about 1.7 MPa
[249 psia] at that time, but the system repressurized and then depressurized to a stable pressure of about 2.5 MPa [363 psia] as described above.
20.0                                                        2901 cntrlvar1023 15.0                                                        2176 Pressure (MPa)                                                                      Pressure (psia) 10.0                                                        1450 5.0                                                        725 0.0                                                        0 2000      0      2000        4000      6000  8000  10000 Time (sec)
Figure 3.1.2-23 Reactor Coolant System Pressure - Oconee Case 122 3-52
 
600                                                                    620 cntrlvar1019 500                                                                    440 Temperature (K)                                                                                  Temperature (F) 400                                                                    260 300                                                                    80 2000      0      2000      4000        6000          8000    10000 Time (sec)
Figure 3.1.2-24 Avg Reactor Vessel Downcomer Temperature - Oconee Case 122 8000                                                                  0.39 cntrlvar1027 6000                                                                  0.29 HTC (W/m *K)                                                                                    HTC (Btu/s*ft *F) 2 2
4000                                                                  0.20 2000                                                                  0.10 0                                                                0.00 2000      0    2000      4000      6000            8000  10000 Time (sec)
Figure 3.1.2-25 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 122 3-53
 
12.0                                                                    472 10.0                                                                    394 8.0                                                                    315 Level (m)                                                                                          Level (in) 6.0                                            cntrlvar16            236 4.0                                                                    157 2.0                                                                    79 0.0                                                                    0 2000      0      2000      4000      6000          8000        10000 Time (sec)
Figure 3.1.2-26 Pressurizer Level - Oconee Case 122 150                                                                    330 mflowj802 (PSV) mflowj801 (PORV)
Flow Rate (kg/sec) 100                                                                    220 Flow Rate (lb/sec) 50                                                                    110 0                                                                      0 2000      0      2000    4000        6000          8000        10000 Time (sec)
Figure 3.1.2-27 Flowrate through the Stuck Open PSV and PORV - Oconee Case 122 3-54
 
100                                                                      220 cntrlvar5030 75                                                                      165 Flow Rate (kg/sec)                                                                                              Flow Rate (lb/sec) 50                                                                      110 25                                                                      55 0                                                                        0 2000      0      2000      4000        6000          8000          10000 Time (sec)
Figure 3.1.2-28 Total High Pressure Injection Flowrate - Oconee Case 122 40.0                                                                      1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                      0.85 Liquid Volume (m )                                                                                          Liquid Volume (ft )
3                                                                                                            3 20.0                                                                      0.57 10.0                                                                      0.28 0.0                                                                      0.00 2000        0    2000      4000      6000            8000        10000 Time (sec)
Figure 3.1.2-29 Core Flood Tank Discharge - Oconee Case 122 3-55
 
500                                                                            1101 400                  mflowj10000 (A Loop) [5 s edit frequency]                881 mflowj20000 (B Loop) [5 s edit frequency]
Flow Rate (kg/sec) 300                                                                            661 Flow Rate (lb/sec) 200                                                                            440 100                                                                            220 0                                                                            0 100                                                                              220 2000    0      2000      4000              6000              8000      10000 Time (sec)
Figure 3.1.2-30 Hot Leg Flow in the A and B Loops - Oconee Case 122 100 75 50 25 Power (MW) 0 25 Core Decay Heat SRV Energy 50                                                        PORV Energy SGA Energy SGB Energy 75 100 2000    0      2000        4000              6000            8000        10000 Time (sec)
Figure 3.1.2-31 System Energy Balance - Oconee Case 122 3-56
 
10.0                                                          1450 p32501 (SGA) 8.0                                      p42501 (SGB)      1160 Pressure (MPa)                                                                            Pressure (psia) 6.0                                                          870 4.0                                                          580 2.0                                                          290 0.0                                                            0 2000  0  2000    4000        6000          8000      10000 Time (sec)
Figure 3.1.2-32 Steam Generator Secondary Pressure - Oconee Case 122 10.0                                                            394 8.0                                                            315 6.0                                                            236 Level (m)                                                                                Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                            157 2.0                                                            79 0.0                                                            0 2000  0  2000    4000        6000          8000      10000 Time (sec)
Figure 3.1.2-33 Steam Generator Secondary Startup Level - Oconee Case 122 3-57
 
3.1.2.4 Case 165 - Stuck Open PSV that Recloses at 6,000 s from HZP and No Operator Actions Case 165 is a stuck open pressurizer safety valve that recloses at 6,000 s from hot zero power conditions. No operator actions are considered in this case. The parameters of interest for the fracture mechanics analysis: primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.2-34 through 3.1.2-36.
As a result of the stuck open pressurizer safety valve, the primary system pressure decreases to about 4.9 MPa [710 psia] in about the first 300 s followed by a continued slower depressurization to about 1.7 MPa [247 psia] at 6,000 s. The downcomer temperature decreases to 516 K [469EF]
by 300 s and to about 306 K [91EF] by 6,000 s. Actuation of the HPI system occurs at about 17 s.
The operators are assumed to trip the reactor coolant pumps as a result of loss of primary system subcooling at about 110 s. The trip of the reactor coolant pumps causes loss of forced convection in the downcomer which causes the drop in the downcomer wall heat transfer coefficient from the steady state value of 24,112 W/m2-K [1.18 Btu/s-ft2-F] to the values shown in Figure 3.1.2-36.
The pressurizer level is shown in Figure 3.1.2-37. The pressurizer level increases because of level swell due to the stuck open pressurizer safety valve, which is located at the top of the pressurizer.
Also, the HPI system is running and filling the pressurizer. The flowrate through the stuck open pressurizer safety valve and the PORV is shown in Figure 3.1.2-38. The total HPI flowrate is shown in Figure 3.1.2-39.
At 6000 s, the pressurizer safety valve recloses and the system pressure starts to increase. The PORV opening setpoint is reached at about 7,180 s. System pressure remains relatively stable after that point which causes a reduction in the HPI flow as seen in Figure 3.1.2-39. The system pressure stabilizes at about 17.0 MPa [2,465 psia].
The core flood tank discharge about 60 percent of the total water volume as seen in Figure 3.1.2-
: 40. The flow in the hot leg is shown in Figure 3.1.2.41. The flow in the A loop hot leg is due to the stuck open pressurizer safety valve. When that valve recloses, the hot leg flow stops and then restarts due to system repressurization resulting in flow through the PORV due to continued HPI operation.
Figure 3.1.2-42 shows the system energy balance. The capacity of the pressurizer safety valve is more than adequate to remove the system energy in the first 6,000 s. After the valve recloses, the primary system temperature slowly reheats. A small amount of heat is transferred into the primary system from the steam generators after the valves reclose.
The steam generator secondary side pressures are shown in Figure 3.1.2-43. The secondary side pressure decreases due to flow to the steam generator secondary from the feedwater system, which is initiated by the reactor coolant pump trip. This flow is reflected by the increase in steam generator startup level shown in Figure 3.1.2-44.
3-58
 
The minimum downcomer temperature of about 306 K [91EF] was reached by 6,010 s after initiation when the pressurizer safety valve recloses. The corresponding system pressure is about 1.8 MPa
[261 psia] at that time, but the system repressurized to a stable pressure of about 17.0 MPa [2465 psia] as described above.
20.0                                                                2901 cntrlvar1023 15.0                                                                2176 Pressure (MPa)                                                                                Pressure (psia) 10.0                                                                1450 5.0                                                                725 0.0                                                                  0 2000  0      2000          4000      6000          8000    10000 Time (sec)
Figure 3.1.2-34 Reactor Coolant System Pressure - Oconee Case 165 600                                                                  620 cntrlvar1019 500                                                                  440 Temperature (K)                                                                                Temperature (F) 400                                                                  260 300                                                                  80 2000  0      2000          4000      6000          8000    10000 Time (sec)
Figure 3.1.2-35 Avg Reactor Vessel Downcomer Temperature - Oconee Case 165 3-59
 
8000                                                                0.39 cntrlvar1027 6000                                                                0.29 HTC (W/m *K)                                                                              HTC (Btu/s*ft *F) 2 2
4000                                                                0.20 2000                                                                0.10 0                                                                  0.00 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.2-36 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 165 12.0                                                                  472 10.0                                                                  394 8.0                                                                  315 Level (m)                                                                                    Level (in) 6.0                                            cntrlvar16          236 4.0                                                                  157 2.0                                                                  79 0.0                                                                0 2000      0      2000    4000      6000            8000  10000 Time (sec)
Figure 3.1.2-37 Pressurizer Level - Oconee Case 165 3-60
 
150                                                                330 mflowj802 (PSV) mflowj801 (PORV) [5 s edit frequency]
Flow Rate (kg/sec) 100                                                                220 Flow Rate (lb/sec) 50                                                                110 0                                                                  0 2000  0  2000      4000            6000          8000    10000 Time (sec)
Figure 3.1.2-38 Flowrate through the Stuck Open PSV and PORV - Oconee Case 165 100                                                                220 cntrlvar5030 75                                                                165 Flow Rate (kg/sec)                                                                            Flow Rate (lb/sec) 50                                                                110 25                                                                55 0                                                                  0 2000  0  2000      4000            6000          8000    10000 Time (sec)
Figure 3.1.2-39 Total High Pressure Injection Flowrate - Oconee Case 165 3-61
 
40.0                                                                            1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                            0.85 Liquid Volume (m )                                                                                          Liquid Volume (ft )
3                                                                                                            3 20.0                                                                            0.57 10.0                                                                            0.28 0.0                                                                            0.00 2000    0      2000      4000              6000              8000      10000 Time (sec)
Figure 3.1.2-40 Core Flood Tank Discharge - Oconee Case 165 500                                                                          1101 400                mflowj10000 (A Loop) [5 s edit frequency]                881 mflowj20000 (B Loop) [5 s edit frequency]
Flow Rate (kg/sec) 300                                                                          661 Flow Rate (lb/sec) 200                                                                          440 100                                                                          220 0                                                                          0 100                                                                            220 2000    0      2000      4000              6000              8000      10000 Time (sec)
Figure 3.1.2-41 Hot Leg Flow in the A and B Loops - Oconee Case 165 3-62
 
100 75 50 25 Power (MW) 0 Core Decay Heat 25                      SRV Energy PORV Energy [5 s edit frequency]
SGA Energy 50                      SGB Energy 75 100 2000        0    2000          4000            6000          8000      10000 Time (sec)
Figure 3.1.2-42 System Energy Balance - Oconee Case 165 10.0                                                                        1450 p32501 (SGA) 8.0                                                    p42501 (SGB)      1160 Pressure (MPa)                                                                                      Pressure (psia) 6.0                                                                        870 4.0                                                                        580 2.0                                                                        290 0.0                                                                          0 2000    0      2000        4000            6000          8000      10000 Time (sec)
Figure 3.1.2-43 Steam Generator Secondary Pressure - Oconee Case 165 3-63
 
10.0                                                            394 8.0                                                            315 6.0                                                            236 Level (m)                                                                          Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                            157 2.0                                                            79 0.0                                                              0 2000  0      2000      4000          6000          8000  10000 Time (sec)
Figure 3.1.2-44 Steam Generator Secondary Startup Level - Oconee Case 165 3.1.3 Sequences with Stuck Open Pressurizer Safety Valve that Reclose at 3,000 Seconds Sequences involving stuck open primary safety valves that subsequently reclose after 3,000 s are presented in this section. The sequences selected for discussion are Case 115 and Case 124.
These cases are described below:
* Case 115 involves a stuck open pressurizer safety valve that recloses at 3,000 s from hot full power conditions. After the valve recloses, the operator throttles HPI 10 minutes after 2.7 K [5&deg;F] subcooling and 254 cm [100 in] pressurizer level is reached. The throttling criteria is 27.8 K [50&deg;F] subcooling.
* Case 124 involves a stuck open pressurizer safety valve that recloses at 3,000 s from hot zero power conditions. After the valve recloses, the operator throttles HPI 10 minutes after 2.7 K [5&deg;F] subcooling and 254 cm [100 in] pressurizer level is reached. The throttling criteria is 27.8 K [50&deg;F] subcooling.
The pressurizer safety valve is assumed to open at sequence initiation due to a spontaneous failure and recloses at 3,000 s after initiation. The operator is assumed to trip the reactor coolant pumps when primary system subcooling is lost. A trip criteria of 0.27 K [0.5EF] is assumed for the hot full power cases. For the hot zero power case, the trip criteria was raised to 3.9 K [7EF] to cause a reactor coolant pump trip. Note that the stuck open pressurizer safety valve is assumed to not sufficiently pressurize the containment to reach the setpoint at which containment sprays start. As a result, the HPI injection temperature remains constant for the duration of the event. A tabulation of the timing of key events for these transients are listed in Table 3.1-3.
3-64
 
Table 3.1-3 Comparison of Event Timing for Sequences with a Stuck Open PSV that Recloses in 3000 Seconds Event Timing (seconds)
Case 115                      Case 124 stuck open PZR SRV that        stuck open PZR SRV that recloses at 3000 seconds.      recloses at 3000 seconds.
Operator throttles HPI.        Operator throttles HPI.
Reactor Power Level                      HFP                            HZP Reactor scram                            14                            N/A RCP trip time on loss of subcooling      141                            110 margin HPI actuates                              18                            17 Time that operator throttles HPI          4690                          4430 Core flood tank discharge start time      2750                          875 Low pressure injection starts            does not start                does not start Core flood tank discharge stops          3020                          4030 Time that vent valves open                240                            455 ECCS Switchover time                      does not occur                does not occur 3.1.3.1 Case 115 - Stuck Open PSV that Recloses at 3,000 s from HFP and No Operator Actions Case 115 is a stuck open pressurizer safety valve that recloses at 3,000 s from hot full power conditions. In this case, the operator is assumed to throttle HPI at 10 minutes after 2.7 K [5EF]
primary system subcooling and when the pressurizer level is over 2.54 m [100 in]. The throttling criteria is 27.8 K [50EF] subcooling. The parameters of interest for the fracture mechanics analysis:
primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.3-1 through 3.1.3-3.
As a result of the stuck open pressurizer safety valve, primary system pressure decreases to about 7.2 MPa [1044 psia] in the first 300 s followed by a continued slower depressurization to about 3.7 MPa [537 psia] at 3,000 s. The downcomer temperature decreases to 545 K [521EF] by 300 s and to about 450 K [350EF] by 3,000 s. Reactor trip occurs within 1 s, followed by actuation of the HPI system at about 18 s. The operators are assumed to trip the reactor coolant pumps as a result of loss of primary system subcooling at about 141 s. The trip of the reactor coolant pumps causes loss of forced convection in the downcomer which causes the drop in the downcomer wall heat transfer coefficient from a steady state value of 24,112 W/m2-K [1.18 Btu/s-ft2-EF] to the values shown in Figure 3.1.3-3.
The pressurizer level is shown in Figure 3.1.3-4. The pressurizer level increases because of level swell due to the stuck open pressurizer safety valve, which is located at the top of the pressurizer.
3-65
 
Also, the HPI system is running and filling the pressurizer. The flowrate through the stuck open pressurizer safety valve and the PORV is shown in Figure 3.1.3-5. The total HPI flowrate is shown in Figure 3.1.3-6.
At 3000 s, the pressurizer safety valve recloses and the system pressure starts to increase. The operator starts to throttle HPI at about 4690 s, which is 10 minutes after the time that the above mentioned throttling criteria are met and just before the PORV opening setpoint is reached. If the throttling criteria of 27.8 K [50EF] is exceeded, the HPI is throttled back in order to regain control of subcooling.
The pressure and temperature excursions that occur after about 6,600 s after sequence initiation is due to the momentary startup and decay of natural circulation flow in the primary loops. This startup and decay of loop circulation is caused by the slow heatup of the primary system. The primary system is at high pressure and relatively low temperature because of the cooldown during the period when the pressurizer safety valve is stuck open. As the primary system heats up in the section of the hot leg near the vessel, the temperature increases in that section to 310 K [100EF]
or more above the temperature of the liquid in the candy cane section of the hot leg. This temperature creates enough buoyancy to start the loop flow, which cools the primary system and interrupts the flow. Then, the heatup cycle is repeated. This behavior likely occurs in SG-A more than SG-B because the pressurizer with the PORV that opens intermittently is on this loop.
The core flood tanks discharge a small fraction of the total water volume as seen in Figure 3.1.3-7.
Basically, there is a small time window of about 240 s between the time that the tanks start to discharge and the pressurizer safety valve recloses and repressurizes the system. Note that there is no LPI flow in this case because the primary system pressure never falls below the LPI pump shutoff head of 1.48 MPa [214 psia].
The flow in the hot leg is shown in Figure 3.1.3.8. The flow in the A loop hot leg is initially due to the stuck open pressurizer safety valve. When that valve recloses, hot leg flow spikes occur due to the opening of the PORV up to about 6,600 s. At that point, the first cycle of the momentary startup of natural circulation flow occurs followed by hot leg flow spikes as the PORV cycles. A second cycle of momentary natural circulation occurs at about 8,000 s followed by a third cycle at about 9,000 s. A fourth cycle is starting at the end of the transient. Note that the HPI flow is throttled back to near zero up to the point where natural circulation flow starts, except for three injection cycles corresponding to the times when momentary natural circulation occurs.
Figure 3.1.3-9 shows the system energy balance. The core decay heat energy is removed initially by the stuck open pressurizer safety valve. When the valve recloses, energy is removed through the PORV after the system repressurizes to the PORV setpoint. Some heat is transferred out of the primary when the PORV opens. When the HPI flow restarts, some heat is transferred out of the primary system to the steam generator (negative values) due to the periodic natural circulation situation described above. Once natural circulation starts at about 10,000 s, energy is transferred to the secondary of the Loop A steam generator.
The steam generator secondary side pressures are shown in Figure 3.1.3-10. The pressure spike at the beginning of the simulation is due to the closure of the turbine stop valves. The secondary 3-66
 
side pressure decreases due to flow to the steam generator secondary from the feedwater system, which is initiated by the reactor coolant pump trip. This flow is reflected by the increase in steam generator startup levels shown in Figure 3.1.3-11. Note that the pressure increases in the secondary of SG-A to about 7.0 MPa [1015 psia] due to the transfer of heat from the primary due to the periodic natural circulation situation described above.
The minimum downcomer temperature of about 433 K [320EF] was reached by 3,010 s after initiation when the pressurizer safety valve recloses. The corresponding system pressure is about 3.7 MPa [537 psia] at that time, but the system repressurized to about the opening pressure of the PORV and remains at that level except during periods where pressure dips occur due to natural circulation startup and decay.
20.0                                                          2901 cntrlvar1023 15.0                                                          2176 Pressure (MPa)                                                                        Pressure (psia) 10.0                                                          1450 5.0                                                          725 0.0                                                          0 2000    0      2000        4000          6000  8000  10000 Time (sec)
Figure 3.1.3-1 Reactor Coolant System Pressure - Oconee Case 115 3-67
 
600                                                                        620 550                                                                        530 Temperature (K)                                                                                          Temperature (F) 500                                                    cntrlvar1019      440 450                                                                        350 400                                                                        260 2000      0      2000          4000        6000          8000    10000 Time (sec)
Figure 3.1.3-2 Avg Reactor Vessel Downcomer Temperature - Oconee Case 115 8000                                                                    0.39 cntrlvar1027 6000                                                                    0.29 HTC (W/m *K)                                                                                          HTC (Btu/s*ft *F) 2 2
4000                                                                    0.20 2000                                                                    0.10 0                                                                    0.00 2000      0    2000          4000        6000          8000  10000 Time (sec)
Figure 3.1.3-3 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 115 3-68
 
12.0                                                                          472 10.0                                                                          394 8.0                                                                          315 Level (m)                                                                                                  Level (in) 6.0                                                      cntrlvar16        236 4.0                                                                          157 2.0                                                                          79 0.0                                                                          0 2000        0      2000      4000            6000          8000    10000 Time (sec)
Figure 3.1.3-4 Pressurizer Level - Oconee Case 115 150                                                                            330 mflowj802 (PSV) mflowj801 (PORV) [5 s edit frequency]
Flow Rate (kg/sec) 100                                                                            220 Flow Rate (lb/sec) 50                                                                            110 0                                                                            0 2000        0      2000      4000            6000            8000  10000 Time (sec)
Figure 3.1.3-5 Flowrate through the Stuck Open PSV and PORV - Oconee Case 115 3-69
 
100                                                                      220 cntrlvar5030 75                                                                      165 Flow Rate (kg/sec)                                                                                      Flow Rate (lb/sec) 50                                                                      110 25                                                                      55 0                                                                      0 2000      0      2000    4000      6000            8000        10000 Time (sec)
Figure 3.1.3-6 Total High Pressure Injection Flowrate - Oconee Case 115 40.0                                                                    1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                    0.85 Liquid Volume (m )                                                                                  Liquid Volume (ft )
3                                                                                                  3 20.0                                                                    0.57 10.0                                                                    0.28 0.0                                                                    0.00 2000    0      2000    4000      6000          8000          10000 Time (sec)
Figure 3.1.3-7 Core Flood Tank Discharge - Oconee Case 115 3-70
 
600                                                                                1323 400                                                                                882 Flow Rate (kg/sec)                                                                                              Flow Rate (lb/sec) 200                                                                                441 0                                                                                0 200                                                                                441 mflowj10000 (A Loop) [5 s edit frequency]
mflowj20000 (B Loop) [5 s edit frequency]
400                                                                                882 2000      0            2000          4000          6000          8000      10000 Time (sec)
Figure 3.1.3-8 Hot Leg Flow in the A and B Loops - Oconee Case 115 300 200 Power (MW) 100 0
Core Decay Heat 100                            SRV Energy PORV Energy [5 s edit frequency]
SGA Energy SGB Energy 200 2000          0            2000          4000            6000          8000      10000 Time (sec)
Figure 3.1.3-9 System Energy Balance - Oconee Case 115 3-71
 
10.0                                                              1450 p32501 (SGA) 8.0                                    p42501 (SGB)            1160 Pressure (MPa)                                                                              Pressure (psia) 6.0                                                              870 4.0                                                              580 2.0                                                              290 0.0                                                                0 2000  0  2000    4000      6000          8000            10000 Time (sec)
Figure 3.1.3-10 Steam Generator Secondary Pressure - Oconee Case 115 10.0                                                                394 8.0                                                                315 6.0                                                                236 Level (m)                                                                                  Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                                157 2.0                                                                79 0.0                                                                0 2000  0  2000    4000      6000          8000          10000 Time (sec)
Figure 3.1.3-11 Steam Generator Secondary Startup Level - Oconee Case 115 3-72
 
3.1.3.2 Case 124 - Stuck Open PSV that Recloses at 3,000 s from HZP with Operator Actions Case 124 is a stuck open pressurizer safety valve that recloses at 3,000 s from hot zero power conditions. In this case, the operator is assumed to throttle HPI at 10 minutes after 2.7 K [5EF]
primary system subcooling and when the pressurizer level is over 2.54 m [100 in]. The throttling criteria is 27.8 K [50EF] subcooling. The parameters of interest for the fracture mechanics analysis:
primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.3-12 through 3.1.3-14.
As a result of the stuck open pressurizer safety valve, primary system pressure decreases to about 4.8 MPa [700 psia] in about the first 300 s followed by a continued slower depressurization to about 3.0 MPa [435 psia] at 3,000 s. The downcomer temperature decreases to 516 K [468EF] by 300 s and to about 371 K [208EF] by 3,000 s. Actuation of the HPI system occurs at about 17 s. The operators are assumed to trip the reactor coolant pumps as a result of loss of primary system subcooling at about 110 s. The trip of the reactor coolant pumps causes loss of forced convection in the downcomer which causes the drop in the downcomer wall heat transfer coefficient from the steady state value of 24,713 W/m2-K [1.21 Btu/s-ft2-EF] to the values shown in Figure 3.1.3-14.
The pressurizer level is shown in Figure 3.1.3-15. The pressurizer level increases because of level swell due to the stuck open pressurizer safety valve, which is located at the top of the pressurizer.
Also, the HPI system is running and filling the pressurizer. The flowrate through the stuck open pressurizer safety valve and the PORV is shown in Figure 3.1.3-16. The total HPI flowrate is shown in Figure 3.1.3-17.
At 3000 s, the pressurizer safety valve recloses and continued HPI operation causes the system pressure to start to increase at about 4,100 s to the PORV setpoint. The operator starts to throttle HPI at about 4430 s, which is 10 minutes after the time that the above mentioned throttling criteria are met and just after the PORV opening setpoint is reached. The PORV opens for a short duration at about 4,100 s as shown in Figure 3.1.3-16. After the system pressure peaks, a slow pressure decline occurs and is due to continued operation of the charging/letdown system. About 2.8 kg/s
[6.2 lbm/s] is removed while the pressurizer level is above 9.53 m [375 in] and 2.7 K [5EF]
subcooling. HPI flow resumes at a low level of about 2.27 kg/s [5 lbm/s] at about 7,300 s and continues for the remainder of the transient. The system pressure stabilizes at about 4.6 MPa [667 psia] at this point.
The core flood tanks discharge about 15 percent of the total water volume as seen in Figure 3.1.3-
: 18. At about 4000 s, the discharge stops because the pressurizer safety valve reclosed and the system repressurized. Note that there is no LPI flow in this case because the system pressure never dropped below the shutoff head of the LPI pumps.
The flow in the hot leg is shown in Figure 3.1.3.19. The flow in the A loop hot leg is initially due to the stuck open pressurizer safety valve. When that valve recloses, the hot leg flow generally stops, with flow restarting when the PORV opens.
Figure 3.1.3-20 shows the system energy balance. The capacity of the pressurizer safety valve is more than adequate to remove the system energy during the first 3,000 s. After the valve recloses, 3-73
 
the system slowly reheats. A small amount of heat is transferred into the primary system from the steam generators after the valves reclose.
The steam generator secondary side pressures are shown in Figure 3.1.3-21. The secondary side pressure decreases due to flow to the steam generator secondary from the feedwater system, which is initiated by the reactor coolant pump trip. This flow is reflected by the increase in steam generator startup level shown in Figure 3.1.3-22.
The minimum downcomer temperature of about 360 K [188EF] was reached by 4,000 s after the pressurizer safety valve recloses. The corresponding system pressure is about 2.8 MPa [406 psia]
at that time, but the system repressurized and then depressurized to a stable pressure of about 4.6 MPa [667 psia].
20.0                                                          2901 cntrlvar1023 15.0                                                          2176 Pressure (MPa)                                                                        Pressure (psia) 10.0                                                          1450 5.0                                                          725 0.0                                                            0 2000  0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.3-12 Reactor Coolant System Pressure - Oconee Case 124 3-74
 
600                                                          620 cntrlvar1019 500                                                          440 Temperature (K)                                                                        Temperature (F) 400                                                          260 300                                                          80 2000    0  2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.3-13 Avg Reactor Vessel Downcomer Temperature - Oconee Case 124 8000                                                          0.39 cntrlvar1027 6000                                                          0.29 HTC (W/m *K)                                                                          HTC (Btu/s*ft *F) 2 2
4000                                                          0.20 2000                                                          0.10 0                                                          0.00 2000  0  2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.3-14 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 124 3-75
 
12.0                                                                    472 10.0                                                                    394 8.0                                                                    315 Level (m)                                                                                          Level (in) 6.0                                            cntrlvar16            236 4.0                                                                    157 2.0                                                                    79 0.0                                                                    0 2000      0      2000      4000      6000          8000        10000 Time (sec)
Figure 3.1.3-15 Pressurizer Level - Oconee Case 124 150                                                                      330 mflowj802 (PSV) mflowj801 (PORV)
Flow Rate (kg/sec) 100                                                                      220 Flow Rate (lb/sec) 50                                                                      110 0                                                                      0 2000      0      2000      4000      6000            8000      10000 Time (sec)
Figure 3.1.3-16 Flowrate through the Stuck Open PSV and PORV - Oconee Case 124 3-76
 
100                                                                    220 cntrlvar5030 75                                                                      165 Flow Rate (kg/sec)                                                                                            Flow Rate (lb/sec) 50                                                                      110 25                                                                      55 0                                                                      0 2000    0      2000      4000        6000          8000        10000 Time (sec)
Figure 3.1.3-17 Total High Pressure Injection Flowrate - Oconee Case 124 40.0                                                                    1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                    0.85 Liquid Volume (m )                                                                                        Liquid Volume (ft )
3                                                                                                        3 20.0                                                                    0.57 10.0                                                                    0.28 0.0                                                                    0.00 2000      0    2000      4000      6000            8000        10000 Time (sec)
Figure 3.1.3-18 Core Flood Tank Discharge - Oconee Case 124 3-77
 
500                                                                          1101 400                                              mflowj10000 (A Loop)      881 mflowj20000 (B Loop)
Flow Rate (kg/sec) 300                                                                          661 Flow Rate (lb/sec) 200                                                                          440 100                                                                          220 0                                                                      0 100                                                                          220 2000        0      2000    4000        6000          8000            10000 Time (sec)
Figure 3.1.3-19 Hot Leg Flow in the A and B Loops - Oconee Case 124 200 100 Power (MW) 0 Core Decay Heat SRV Energy 100                                                  PORV Energy SGA Energy SGB Energy 200 2000        0      2000      4000        6000              8000          10000 Time (sec)
Figure 3.1.3-20 System Energy Balance - Oconee Case 124 3-78
 
10.0                                                              1450 p32501 (SGA) 8.0                                    p42501 (SGB)            1160 Pressure (MPa)                                                                                Pressure (psia) 6.0                                                              870 4.0                                                              580 2.0                                                              290 0.0                                                                0 2000  0  2000    4000      6000          8000            10000 Time (sec)
Figure 3.1.3-21 Steam Generator Secondary Pressure - Oconee Case 124 10.0                                                                394 8.0                                                                315 6.0                                                                236 Level (m)                                                                                    Level (in) cntrlvar3135 (SGA) cntrlvar3175 (SGB) 4.0                                                                157 2.0                                                                79 0.0                                                                0 2000  0  2000    4000      6000          8000          10000 Time (sec)
Figure 3.1.3-22 Steam Generator Secondary Startup Level - Oconee Case 124 3-79
 
3.1.4 Main Steam Line Breaks with Operator Actions This section of the report discusses two double-ended main steam line break (MSLB) analyses that are analyzed in the list of base cases, but are not dominant sequences. These cases are included since main steam line breaks are among the dominant sequences in the Palisades and Beaver Valley plants. The sequences discussed in this section are listed below:
* Case 27 is a main steam line break from hot full power conditions. Both turbine driven and auxiliary driven feedwater are assumed to be operating. The operator is assumed to throttle HPI to maintain 27.8 K [50&deg;F] subcooling.
* Case 101 is a main steam line break from hot zero power conditions. Both turbine driven and auxiliary driven feedwater are assumed to be operating. The operator is assumes to throttle HPI to maintain 27.8 K [50&deg;F] subcooling.
The break in the steam line is assumed to be located in the main steam line section just downstream of the Steam Generator A nozzle (Component 345 in Figure 2.1-4). A tabulation of the timing of key events for the surge line and hot leg break transients is presented in Table 3.1-4.
Table 3.1-4 Comparison of Event Timing for MSLB Sequences Event Timing (seconds)
Case 27 -                  Case 101 - main steam main steam line break.      line break. Operator Operator throttles HPI. throttles HPI.
Reactor power level                            HFP                        HZP Reactor scram                                  1                          N/A RCP trip time on loss of subcooling margin    does not trip              does not trip Main Feedwater Pump Trip                      1                          N/A HPI actuates                                  18                          17 Emergency feedwater starts                    260                        55 Core flood tank discharge start time          2280                        875 Low pressure injection starts                  does not start              does not start Core flood tank discharge stops                8500                        5100 Time that vent valves open                    do not open                do not open Pressurizer starts to refill                  6430                        does not refill 3-80
 
3.1.4.1 Case 27 - Main Steam Line Break from HFP Conditions and with Operator Actions Case 27 is a double-ended main steam line break from hot full power conditions. The break area is 0.586 m2 [6.305 ft2]. Both turbine driven and motor driven emergency feedwater are assumed to be available for the duration of the event. The operator is assumed to throttle HPI to maintain 27.8 K [50&deg;F] subcooling. The parameters of interest for the fracture mechanics analysis: primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.4-1 through 3.1.4-3.
As a result of the steam line break, primary system depressurization occurs as shown in Figure 3.1.4-1. The system pressure falls to about 2.4 MPa [348 psia] by 3,000 s and about 1.9 MPa [275 psia] about 1,000 s later. The downcomer temperature decreases to 435 K [323EF] by 3,000 s and to about 387 K [237EF] by 4,000 s. The pressurizer level, shown in Figure 3.1.4-4, decreases rapidly and empties due to the cooldown of the system as the reactor coolant system cools and depressurizes. The steam line break flow is presented in Figure 3.1.4-5. Reactor trip occurs within 1 s, followed by trip of the main feedwater pumps. The HPI system also starts and is assumed to be throttled by the operator to the 27.8 K [50&deg;F] subcooling criteria when HPI starts. The total HPI flow is shown in Figure 3.1.4-6. The reactor coolant pumps remain running for the duration of the event as subcooling is never lost. As a result, the value of the downcomer wall heat transfer coefficient shown in Figure 3.1.4-3 is higher compared to the LOCA and stuck open pressurizer safety valve cases discussed in the previous sections.
Because of the system depressurization, the core flood tanks start to discharge by 2,280 s as shown in Figure 3.1.4-7. About 60 percent of the total core flood tank volume is discharged by about 7,000 s. Note that there is no LPI flow in this case because the vessel pressure never dropped below the shutoff head of the LPI pumps.
Hot leg flow is shown in Figure 3.1.4-8. The hot leg flow in both loops is the same due to the continued operation of the reactor coolant pumps. The hot leg mass flow rates increase because reactor coolant system water becomes colder and more dense. The system energy balance is shown in Figure 3.1.4-9 which shows that the primary system energy is being transferred to Steam Generator A. The emergency feedwater flow, shown in Figure 3.1.4-10, provides feedwater to Steam Generator A for the duration of the event which allows this energy transfer to continue.
The steam generator secondary side pressures are shown in Figure 3.1.4-11. Steam Generator A depressurizes rapidly due to the break. Steam Generator B depressurizes slowly due to flow to the steam generator secondary from the feedwater system and due to reverse steam generator heat transfer. The feedwater system flow is reflected by the increase in steam generator startup level shown in Figure 3.1.4-12.
The minimum downcomer temperature of about 380 K [224EF] was reached by about 4,400 s after initiation and remained at that temperature for the rest of the transient. The corresponding system pressure is about 1.8 MPa [261 psia].
3-81
 
20.0                                                        2901 cntrlvar1023 15.0                                                        2176 Pressure (MPa)                                                                        Pressure (psia) 10.0                                                        1450 5.0                                                        725 0.0                                                        0 2000  0  2000    4000      6000            8000  10000 Time (sec)
Figure 3.1.4-1 Reactor Coolant System Pressure - Oconee Case 27 600                                                        620 cntrlvar1019 500                                                        440 Temperature (K)                                                                      Temperature (F) 400                                                        260 300                                                        80 200                                                          100 2000  0  2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.4-2 Avg Reactor Vessel Downcomer Temperature - Oconee Case 27 3-82
 
26000                                                                  1.27 25000                                              cntrlvar1027      1.22 24000                                                                  1.17 HTC (W/m *K)                                                                                  HTC (Btu/s*ft *F) 2 2
23000                                                                  1.13 22000                                                                  1.08 21000                                                                  1.03 20000                                                                  0.98 2000        0    2000      4000      6000            8000  10000 Time (sec)
Figure 3.1.4-3 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient - Oconee Case 27 8.00                                                                  315 cntrlvar16 6.00                                                                  236 Level (m)                                                                                      Level (in) 4.00                                                                  157 2.00                                                                  79 0.00                                                                  0 2000      0      2000      4000        6000          8000    10000 Time (sec)
Figure 3.1.4-4 Pressurizer Level - Oconee Case 27 3-83
 
1500                                                              3303 1250                                          mflowj831        2752 Flow Rate (kg/sec) 1000                                                              2202 Flow Rate (lb/sec) 750                                                              1652 500                                                              1101 250                                                              550 0                                                                0 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.4-5 Steam Line Break Flowrate - Oconee Case 27 100                                                                220 cntrlvar5030 75                                                                165 Flow Rate (kg/sec)                                                                            Flow Rate (lb/sec) 50                                                                110 25                                                                55 0                                                                0 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.4-6 Total High Pressure Injection Flowrate - Oconee Case 27 3-84
 
40.0                                                                        1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                        0.85 Liquid Volume (m )                                                                                      Liquid Volume (ft )
3                                                                                                              3 20.0                                                                        0.57 10.0                                                                        0.28 0.0                                                                        0.00 2000    0      2000    4000      6000            8000            10000 Time (sec)
Figure 3.1.4-7 Core Flood Tank Discharge - Oconee Case 27 12000                                                                    26424 11000                                                                    24222 Flow Rate (kg/sec)                                                                                            Flow Rate (lb/sec) 10000                                                                    22020 9000                                                                    19818 mflowj10000 (A Loop) mflowj20000 (B Loop) 8000                                                                      17616 2000    0      2000    4000      6000          8000            10000 Time (sec)
Figure 3.1.4-8 Hot Leg Flow in the A and B Loops - Oconee Case 27 3-85
 
200 Core Decay Heat 100                                                              SGA Energy SGB Energy 0
Power (MW) 100 200 300 400 500 2000                      0      2000        4000                6000              8000      10000 Time (sec)
Figure 3.1.4-9 System Energy Balance - Oconee Case 27 50.0                                                                              110 40.0                                                                              88 Flow Rate (kg/sec) 30.0                                                                              66 Flow Rate (lb/sec) 20.0                                                                              44 10.0                                                                              22 0.0                                                                            0 mflowj804 (Motor Driven) [5 s edit frequency]
mflowj813 (Turbine Driven) [5 s edit frequency]
10.0                                                                              22 2000        0    2000        4000            6000            8000        10000 Time (sec)
Figure 3.1.4-10 Emergency Feedwater Flow to Steam Generator A - Oconee Case 27 3-86
 
10.0                                                                  1450 p32501 (SGA) 8.0                                            p42501 (SGB)      1160 Pressure (MPa)                                                                                Pressure (psia) 6.0                                                                  870 4.0                                                                  580 2.0                                                                  290 0.0                                                                  0 2000  0  2000      4000            6000              8000  10000 Time (sec)
Figure 3.1.4-11 Steam Generator Secondary Pressure - Oconee Case 27 10.0                                                                  394 cntrlvar3135 (SGA) [5 s edit frequency]
cntrlvar3175 (SGB) [5 s edit frequency]
8.0                                                                  315 6.0                                                                  236 Level (m)                                                                                    Level (in) 4.0                                                                  157 2.0                                                                  79 0.0                                                                    0 2000  0  2000      4000              6000            8000    10000 Time (sec)
Figure 3.1.4-12 Steam Generator Secondary Startup Level - Oconee Case 27 3-87
 
3.1.4.2 Case 101 - Main Steam Line Break from HZP Conditions and with Operator Actions Case 101 is a double-ended main steam line break from hot zero power conditions. The break area is 0.586 m2 [6.305 ft2]. Both turbine driven and motor driven emergency feedwater are assumed to be available. The operator is assumed to throttle HPI to maintain 27.8 K [50&deg;F] subcooling. The parameters of interest for the fracture mechanics analysis: primary system pressure, average downcomer fluid temperature, and downcomer fluid-wall heat transfer coefficient are provided in Figures 3.1.4-13 through 3.1.4-15.
As a result of the steam line break, primary system depressurization occurs as shown in Figure 3.1.4-13. The system pressure decreases to about 1.8 MPa [261 psia] by 3,000 s. The downcomer temperature decreases to about 378 K [220EF] by 2,600 s and remained at that temperature for the rest of the transient. The pressurizer level, shown in Figure 3.1.4-16, also decreases rapidly and empties due to the cooldown of the system as the reactor coolant system cools and depressurizes.
The steam line break flow is presented in Figure 3.1.4-17. Reactor trip occurs within 1 s, followed by trip of the main feedwater pumps. The HPI system also starts and is assumed to be throttled by the operator to the 27.8 K [50&deg;F] subcooling criteria when HPI starts. The total HPI flow is shown in Figure 3.1.4-18. Because the system remains above 27.8 K [50EF] subcooling, HPI flow is throttled to zero flow for most of the event. The reactor coolant pumps remain running for the duration of the event as subcooling is never lost. As a result, the value of the downcomer wall heat transfer coefficient shown in Figure 3.1.4-15 is higher compared to the LOCA and stuck open pressurizer safety valve cases discussed in the previous sections.
Because of the system depressurization, the core flood tanks start to discharge by about 875 s as shown in Figure 3.1.4-19. About 50 percent of the total core flood tank volume is discharged by about 2,500 s. Note that there is no LPI flow in this case because the vessel pressure never dropped below the shutoff head of the LPI pumps.
Hot leg flow is shown in Figure 3.1.4-20. The hot leg flow in both loops is driven by the continued operation of the reactor coolant pumps. The system energy balance is shown in Figure 3.1.4-21 which shows that the primary system energy is being transferred to Steam Generator A. The emergency feedwater flow, shown in Figure 3.1.4-22, provides feedwater to the Steam Generator A for the duration of the event which allows this energy transfer to continue.
The steam generator secondary side pressures are shown in Figure 3.1.4-23. Steam Generator A depressurizes rapidly due to the break. Steam Generator B depressurizes slowly due to flow to the steam generator secondary from the feedwater system. This flow is reflected by the increase in steam generator startup level shown in Figure 3.1.1-24.
The minimum downcomer temperature of about 377 K [219EF] was reached by about 2,600 s after initiation and remained at that temperature for the rest of the transient. The corresponding system pressure is about 1.8 MPa [272 psia].
3-88
 
20.0                                                        2901 cntrlvar1023 15.0                                                        2176 Pressure (MPa)                                                                        Pressure (psia) 10.0                                                        1450 5.0                                                        725 0.0                                                        0 2000  0  2000    4000      6000            8000  10000 Time (sec)
Figure 3.1.4-13 Reactor Coolant System Pressure - Oconee Case 101 600                                                        620 cntrlvar1019 500                                                        440 Temperature (K)                                                                      Temperature (F) 400                                                        260 300                                                        80 200                                                          100 2000  0  2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.4-14 Avg Reactor Vessel Downcomer Temperature - Oconee Case 101 3-89
 
26000                                                                    1.27 25000                                                cntrlvar1027      1.22 24000                                                                    1.17 HTC (W/m *K)                                                                                    HTC (Btu/s*ft *F) 2 2
23000                                                                    1.13 22000                                                                    1.08 21000                                                                    1.03 20000                                                                    0.98 2000          0    2000      4000      6000            8000  10000 Time (sec)
Figure 3.1.4-15 Avg Reactor Vessel Inner Wall Heat Transfer Coefficient -
Oconee Case 101 8.00                                                                    315 cntrlvar16 6.00                                                                    236 Level (m)                                                                                        Level (in) 4.00                                                                    157 2.00                                                                    79 0.00                                                                    0 2000      0      2000      4000        6000          8000    10000 Time (sec)
Figure 3.1.4-16 Pressurizer Level - Oconee Case 101 3-90
 
1500                                                              3303 1250                                          mflowj831        2752 Flow Rate (kg/sec) 1000                                                              2202 Flow Rate (lb/sec) 750                                                              1652 500                                                              1101 250                                                              550 0                                                                0 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.4-17 Steam Line Break Flowrate - Oconee Case 101 100                                                                220 cntrlvar5030 75                                                                165 Flow Rate (kg/sec)                                                                            Flow Rate (lb/sec) 50                                                                110 25                                                                55 0                                                                0 2000      0      2000    4000      6000          8000    10000 Time (sec)
Figure 3.1.4-18 Total High Pressure Injection Flowrate - Oconee Case 101 3-91
 
40.0                                                                        1.13 acvliq700 (CFTA) acvliq900 (CFTB) 30.0                                                                        0.85 Liquid Volume (m )                                                                                      Liquid Volume (ft )
3                                                                                                              3 20.0                                                                        0.57 10.0                                                                        0.28 0.0                                                                        0.00 2000      0      2000    4000      6000            8000            10000 Time (sec)
Figure 3.1.4-19 Core Flood Tank Discharge - Oconee Case 101 12000                                                                      26424 11000                                                                      24222 Flow Rate (kg/sec)                                                                                              Flow Rate (lb/sec) 10000                                                                      22020 9000                                                                      19818 mflowj10000 (A Loop) mflowj20000 (B Loop) 8000                                                                      17616 2000    0      2000    4000      6000          8000            10000 Time (sec)
Figure 3.1.4-20 Hot Leg Flow in the A and B Loops - Oconee Case 101 3-92
 
200 Core Decay Heat 100                                                  SGA Energy SGB Energy 0
Power (MW) 100 200 300 400 500 2000      0      2000      4000          6000            8000          10000 Time (sec)
Figure 3.1.4-21 System Energy Balance - Oconee Case 101 50.0                                                                      110 40.0                                                                      88 Flow Rate (kg/sec) 30.0                                                                      66 Flow Rate (lb/sec) 20.0                                                                      44 10.0                                                                      22 0.0                                                                      0 mflowj804 (Motor Driven) mflowj813 (Turbine Driven) 10.0                                                                        22 2000        0      2000    4000        6000          8000          10000 Time (sec)
Figure 3.1.4-22 Emergency Feedwater Flow to Steam Generator A - Oconee Case 101 3-93
 
10.0                                                                1450 p32501 (SGA) 8.0                                    p42501 (SG_B)            1160 Pressure (MPa)                                                                              Pressure (psia) 6.0                                                                870 4.0                                                                580 2.0                                                                290 0.0                                                                0 2000  0  2000    4000      6000          8000            10000 Time (sec)
Figure 3.1.4-23 Steam Generator Secondary Pressure - Oconee Case 101 10.0                                                                394 cntrlvar3135 (SGA) 8.0                                      cntrlvar3175 (SGB)      315 6.0                                                                236 Level (m)                                                                                  Level (in) 4.0                                                                157 2.0                                                                79 0.0                                                                  0 2000  0  2000    4000      6000            8000            10000 Time (sec)
Figure 3.1.4-24 Steam Generator Secondary Startup Level - Oconee Case 101 3-94
 
3.1.5 References 3.1.1 SCIENTECH, Inc., RELAP5.Mod 3 Code Manual, Volume IV: Models and Correlations, Formally NUREG/CR-5535, Volume IV, June 1999 (Section 7.3).
3-95
 
3.2 Beaver Valley Transient Results of Dominant Sequences Several groups of transients were analyzed for the PTS evaluation as listed in Appendix B, Table B-1. Transient sequences analyzed were defined as part of a risk assessment by the Sandia National Laboratory to identify sequences that may be important to risk due to a PTS event. The transients analyzed include small break LOCAs with various break areas in the surge line, hot and cold legs, main steam line breaks, steam generator overfeeds, stuck open valves which reclose and other types of transients initiated by a reactor or turbine trip. Note that in the RELAP5 model, there is no difference between a turbine trip and a reactor trip as both occur at the same time.
The principal results of interest from a PTS perspective are the fluid temperature and pressure in the reactor vessel downcomer along with the heat transfer coefficient at the vessel wall-downcomer fluid interface. These results will be used as boundary conditions to the fracture mechanics analysis performed by Oak Ridge National Laboratory. Plots for these parameters are presented in the sections that follow along with other plots of interest needed to explain the results.
The following subsections (3.2.1 through 3.2.6) present the thermal hydraulic results for transients which were determined to be the dominant sequences (> 1% of the total risk) for PTS risk. For each transient which was considered dominant, the following is provided; transient description, modeling changes made to perform the calculation, detailed analysis of the transient results and conclusions drawn from the analysis. All RELAP5 cases were restarted from the 8,000 s null transient (steady state) calculations described above in Section 2.2.2 using the RELAP5 restart feature. All transients were run for 15,000 s. Note that data presented prior to time zero on the time axis show the null transient (steady state) conditions prior to transient initiation.
3.2.1 Beaver Valley Primary Side Loss of Coolant Accidents From Hot Full Power The transients in this group were initiated from full power steady state operating conditions (nominal temperature and pressure) and all control systems were in automatic control. The transients are as follows; 20.32 cm [8.0 in] diameter surge line break, 40.64 cm [16.0 in] diameter hot leg break, and 7.184 cm [2.828 in] diameter surge line break with summer ECCS temperatures and increased heat transfer. In order to model these breaks, two additional components were added to the RELAP5 model (in the transient restart input file). These components were a time dependent volume to model the break downstream conditions and a break valve. The time dependent volume was set to atmospheric conditions. The break valve for the surge line break was connected to the middle node of the surge line (volume 343, cell 2, see Figure 2.2-1). The break valve for the hot leg break was connected to hot leg A (volume 204, cell 3). The loss coefficients for the breaks were based on AP600 derived loss coefficients (Ref. 3.2.1) and scaled for the appropriate break sizes.
In all transients, the break valve was set to open at time 0.0 s. Due to the 8,000 s null transient, the valve opening time was actually set to 8,000 s in the RELAP5 transient input model. Note that when times are quoted in this report they will refer to the time from the start of the event. When plots are made, the 8,000 s null transient was subtracted off so the events start at time 0.0 s. A sequence of events table for these transients is provided as Table 3.2-1.
3-96
 
Table 3.2-1 Sequence of Events for Loss of Coolant Accidents from Hot Full Power Case 007 - 20.32 cm      Case 009 - 40.64 cm    Case 114 - 7.184 cm
[8.0 in] surge line      [16.0 in] diameter hot [2.828 in] diameter break                    leg break              surge line break with summer ECCS temperatures and increased heat transfer Event Time (s)
Break valve opened                    0                        0                      0 Reactor/turbine trip              2.006                    0.036                  13.805 SIAS generated                      3.5                    3.04                  17.7 HHSI flow initiated                  3.5                    3.04                  17.7 MFW stopped                          3.5                    3.04                  17.7 AFW started                          3.5                    3.04                  17.7 RCPs trip                            9.5                      7.5                  49.5 Pressurizer empties                <15                      <15                    <30 Accumulators begin                  180                      30                  1,050 injecting LHSI flow initiated                285                      45                  3,030 Accumulators empty                  435                      90                  3,540 MSIV closure                        585                      540                    540 Containment spray                  642                      386                  3,022 pumps start Switchover to sump                2,025                    1,693                  4,872 recirculation 3.2.1.1 Beaver Valley Surge Line Break from Hot Full Power - 20.32 cm [8.0 in] diameter (BV Case 007)
This case is a 20.32 cm [8.0 in] diameter surge line break from hot full power. This case is identified as Beaver Valley Case 007 in Appendix B, Table B-1. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.1-1 through 3.2.1-3, respectively.
3-97
 
As a result of the break, the primary system rapidly depressurizes as shown in Figure 3.2.1-1 and remains near 0.19 MPa [28 psia] for the remainder of the transient. In addition, the pressurizer level (shown in Figure 3.2.1-4) also decreased rapidly due to loss of inventory and was completely empty by 15 s. At 2.006 s, a reactor/turbine trip occurred due to low primary pressure. At approximately 3.5 s, a safety injection actuation signal (SIAS) was generated. The SIAS results in actuation of both the high head safety injection (HHSI), and low head safety injection (LHSI).
Note that actuation does not necessarily mean that a system begins working immediately. In this case, while LHSI is actuated, it will not begin flow until the primary pressure falls below the pump shutoff head. In addition, the SIAS also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves.
Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated.
A plot of break flow versus total safety injection (SI) flow is provided as Figure 3.2.1-5. Total SI flow includes high pressure injection, low pressure injection, accumulators and charging/letdown.
High pressure injection flow is shown in Figure 3.2.1-6. Initially, break flow is much larger than safety injection flow. By 180 s the primary pressure has decreased to below the accumulator pressure, resulting in accumulator injection as shown in Figure 3.2.1-7. With this additional flow, the total SI flow is now greater than the break flow. At 285 s primary pressure is below the low head safety injection (LHSI) shutoff head, and LHSI flow begins as shown in Figure 3.2.1-8. At 435 s, the accumulators have emptied and injection stops. Note that the accumulators were isolated when the liquid level was near the bottom of the tank. This was done to stop non-condensible gases from entering the system. These non-condensible gases frequently cause numerical problems in RELAP5 which lead to code failures. By 2,500 s, the safety injection flow and break flow are equal for the remainder of the transient.
At approximately 9.5 s, the reactor coolant pumps were tripped due to an operator action. This causes the flow in the loops to decrease to near zero. Figure 3.2.1-9 presents the hot leg mass flow for all three loops at the exit of the vessel. At around 1,050 s there are significant flow oscillations which last until about 2,000 s. These oscillations appear to be due to condensation effects in the primary tubes of the steam generators. The code is predicting that the steam generator primary tubes void completely by about 100 s. When they begin to refill around 1,000 s, some nodes in the primary tubes are condensing liquid while others are boiling. The condensation/vaporization causes pressure waves which drive the oscillatory flow behavior. By 3,000 s, the large oscillations have stopped and the only loop which has flow is the C loop, which contains the break. Figure 3.2.1-3 shows the downcomer fluid-wall heat transfer coefficient. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops rapidly from an initial value of approximately 23,950 W/m2*K [1.171 Btu/s*ft2*EF]. The heat transfer coefficient then gradually decreases to a value of around 750 W/m2*K [0.037 Btu/s*ft2*EF] by the end of the transient.
Figure 3.2.1-10 shows the core power versus the energy lost through the break. As seen in this figure, the break energy is larger than the core decay heat, thus, heat is being removed from the system causing the temperature to decrease. The average downcomer fluid temperature is shown in Figure 3.2.1-2. In addition to the heat lost through the break and core decay heat considerations, the safety injection water temperature plays a role in the downcomer fluid 3-98
 
temperature. Initially, the high pressure injection and low pressure injection are at 283 K [50EF],
however, after the reactor water storage tank (RWST) has depleted, the source of injection water becomes the containment sump. After switchover to sump recirculation at 2,025 s, the injection temperature is increased to 341 K [155EF] as shown in Figure 3.2.1-11. Looking at Figure 3.2.1-2 shows that the sump temperature significantly affects the downcomer fluid temperature.
Figure 3.2.1-12 shows the steam generator narrow range water level. Upon the SIAS being generated, the MFW is isolated and the steam generator level immediately drops. AFW is started, and begins refilling the generators to the desired post-trip setpoint of 33% NRL (120.7 cm
[47.52 in]). Figure 3.2.1-13 shows the auxiliary feedwater flow. The auxiliary feedwater system provides flow from the steam driven pump and one motor driven pump to a common header which then splits to each steam generator feedwater line. Flow from the other motor driven pump is delivered to a common header which then splits to each steam generator feedwater line. Flow losses were entered between the pumps and common headers as well as between the header and generators. Due to the use of a common header, the differential pressures between the header and steam generator determine the auxiliary feedwater flow. For about the first 100 s, all three generators have similar pressures and receive equal amounts of feedwater. After 100 s, the A loop steam generator has a slightly higher pressure (Figure 3.2.1-14) than the B and C loop generators. This results in more feedwater going to steam generators B and C and at times no feedwater going to steam generator A even though the level is well below the setpoint. Once generators B and C have refilled to the level setpoint, steam generator A receives all the auxiliary feedwater flow until it is refilled to the level setpoint.
Upon the reactor/turbine trip, the turbine stop valve closes, and the steam dump valve begins controlling to 7.03 MPa [1,020 psia]. Since the secondary side pressure is below 7.03 MPa
[1,020 psia], as seen in Figure 3.2.1-14, the steam dump valve remains closed. In addition, none of the safety relief or atmospheric dump valves open. As a result, the feedwater and steam systems remain isolated for the duration of the transient. Up until about 3,000 s the steam generators are putting heat into the primary, resulting in a decrease in steam generator pressure.
The pressure in steam generator C continues to fall gradually during the remainder of the event due to retaining some primary loop flow. Loop C retains some loop flow due to the break being in the surge line, which is connected to loop C.
As a consequence of the size of the surge line break it is shown that the break is capable of removing more than core decay heat. This leads to the downcomer fluid temperature decreasing to a minimum of 291 K [64.1EF] at approximately 1,000 s and again at approximately 2,000 s.
Between 1,000 and 2,000 s, where the hot leg flow oscillations were observed, increased mixing in the downcomer occurred, thus moderately increasing the downcomer fluid temperature. The pressure during this time was approximately 0.21 MPa [30 psia]. There is no mechanism which would allow the primary system to repressurize.
3-99
 
20.0                                                                2901 p34001 (pressurizer) 15.0                                                                2176 Pressure (MPa)                                                                                Pressure (psia) 10.0                                                                1450 5.0                                                                725 0.0                                                                  0 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.1-1 Primary System Pressure - BV Case 007 650                                                                  710 cntrlvar297 550                                                                  530 Temperature (K)                                                                              Temperature (F) 450                                                                  350 350                                                                  170 250                                                                  10 3000      0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.2.1-2 Average Downcomer Fluid Temperature - BV Case 007 3-100
 
30000                                                                      1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                                      1.10 15000                                                                      0.73 7500                                                                      0.37 0                                                                    0.00 3000    0      3000    6000            9000        12000    15000 Time (sec)
Figure 3.2.1-3 Downcomer Wall Heat Transfer Coefficient - BV Case 007 1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000        0      3000      6000                9000    12000      15000 Time (sec)
Figure 3.2.1-4 Pressurizer Water Level - BV Case 007 3-101
 
1500                                                                    3307 1250                              mflowj99700 (break flow)            2756 cntrlvar984 (total SI flow) 1000                                                                    2205 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 750                                                                    1653 500                                                                    1102 250                                                                    551 0                                                                      0 3000      0      3000      6000          9000            12000  15000 Time (sec)
Figure 3.2.1-5 Break Flow and Total Safety Injection Flow - BV Case 007 25.0                                                                      55.1 20.0                                                                      44.1 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 15.0                                                                      33.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) mflowj96300 (HPI Loop C) 10.0                                                                      22.0 5.0                                                                      11.0 0.0                                                                      0.0 3000      0      3000      6000          9000            12000  15000 Time (sec)
Figure 3.2.1-6 High Pressure Injection Flow Rate - BV Case 007 3-102
 
30.0                                                                  934 acvliq911 (Loop A)
Accumulator Liquid Volume (m )
acvliq912 (Loop B)
Accumulator Liquid Volume (ft )
3                                                                                                                3 acvliq913 (Loop C) 20.0                                                                  623 10.0                                                                  311 0.0                                                                    0 3000        0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.1-7 Accumulator Liquid Volume for - BV Case 007 125                                                                    276 100                                                                    220 Flow Rate (kg/s)                                                                                                  Flow Rate (lbm/s) 75                                                                    165 mflowj94100 (LPI Loop A) mflowj94200 (LPI Loop B) mflowj94300 (LPI Loop C) 50                                                                    110 25                                                                    55 0                                                                      0 3000        0      3000      6000          9000        12000  15000 Time (sec)
Figure 3.2.1-8 Low Pressure Injection Flow Rate - BV Case 007 3-103
 
5000                                                                        11023 mflowj12001 (Hot Leg A) mflowj12002 (Hot Leg B) 2500                                mflowj12003 (Hot Leg C)                5512 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 0                                                                        0 2500                                                                        5512 5000                                                                        11023 3000      0      3000      6000          9000        12000        15000 Time (sec)
Figure 3.2.1-9 Hot Leg Mass Flow Rate - BV Case 007 1500 1250                                        cntrlvar112 (core power) flenth99700 (break energy) 1000 Power (MW) 750 500 250 0
3000        0      3000        6000              9000          12000        15000 Time (sec)
Figure 3.2.1-10 Core Power and Break Energy - BV Case 007 3-104
 
400                                                                260 tempf95101 (HPI) tempf93101 (LPI) 350                                                                170 Temperature (K)                                                                                      Temperature (F) 300                                                                80 250                                                                10 3000      0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.1-11 Safety Injection Fluid Temperature - BV Case 007 250                                                                98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)              78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                              Narrow Range Level (in) 150                                                                59.1 100                                                                39.4 50                                                                19.7 0                                                                  0.0 3000      0        3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.1-12 Steam Generator Narrow Range Water Level - BV Case 007 3-105
 
100                                                                    220 mflowj54000 (SG A) mflowj64000 (SG B) 75                                  mflowj74000 (SG C)              165 Flow Rate (kg/s)                                                                                Flow Rate (lbm/s) 50                                                                    110 25                                                                    55 0                                                                    0 3000        0        3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.1-13 Auxiliary Feedwater Flow Rate - BV Case 007 10.0                                                                  1450 p28201 (SG A) 8.0                                p38201 (SG B)                  1160 p48201 (SG C)
Pressure (MPa)                                                                                  Pressure (psia) 6.0                                                                  870 4.0                                                                  580 2.0                                                                  290 0.0                                                                  0 3000        0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.1-14 Steam Generator Pressure - BV Case 007 3-106
 
3.2.1.2 Beaver Valley Hot Leg Break from Hot Full Power - 40.64 cm [16.0 in] diameter (BV Case 009)
This case is a 40.64 cm [16.0 in] diameter surge line break from hot full power. This case is identified as Beaver Valley Case 009 in Appendix B, Table B-1. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.1-15 through 3.2.1-17, respectively.
As a result of the break, the primary system rapidly depressurizes as shown in Figure 3.2.1-15 and remains near atmospheric for the remainder of the transient. In addition, the pressurizer level (shown in Figure 3.2.1-18) also decreased rapidly due to inventory loss and was completely empty by 15 s. The pressurizer never refilled during the 15,000 s transient.
At 0.036 s, a reactor/turbine trip occurred due to low primary pressure. At approximately 3.04 s, a SIAS was generated. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated.
A plot of break flow versus total safety injection flow is provided as Figure 3.2.1-19. Total SI flow includes high pressure injection, low pressure injection, accumulators and charging/letdown. High pressure injection flow is shown in Figure 3.2.1-20. Initially, break flow is much larger than safety injection flow. By 30 s the primary pressure has decreased to below the accumulator pressure, resulting in accumulator injection as shown in Figure 3.2.1-21. With this additional flow, the total SI flow is now greater than the break flow. At 45 s, the low pressure injection begins as shown in Figure 3.2.1-22. At 90 s, the accumulators have emptied and injection stops. Note that the accumulators were isolated when the liquid level was near the bottom. This was done to stop non-condensible gases from entering the system. These non-condensible gases frequently cause numerical problems in RELAP5 which lead to code failures.
From about 1,000 s to 2,000 s, the break quality is oscillating between zero and one. This results in the oscillatory break flow behavior shown in Figure 3.2.1-19. By 2,000 s the hot leg has refilled, however, some voiding occurs until 6,500 s. By 2,500 s, the safety injection flow and break flow are equal for the remainder of the transient.
At approximately 7.5 s, the reactor coolant pumps were tripped due to an operator action. This causes the flow in the loops to decrease to near zero. Figure 3.2.1-23 presents the hot leg mass flow for all three loops at the exit of the vessel. At around 1,000 s there are significant flow oscillations which last until about 2,000 s. These oscillations appear to be due to condensation effects in the primary tubes of the steam generators. The code is predicting that the steam generator primary tubes void completely by about 100 s. Around 1,000 s, some liquid begins to fill the bottom of the primary tubes on the hot leg side. At this time, some nodes in the primary tubes are condensing liquid while the bottom-most node is boiling.                              This condensation/vaporization causes pressure waves which drive the oscillatory flow behavior. By 2,000 s, the large oscillations have stopped and the only loop which has flow is the A loop, which 3-107
 
contains the break. From 2,000 s on, the primary steam generator tubes remain completely voided.
Figure 3.2.1-17 shows the downcomer fluid-wall heat transfer coefficient. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops quickly from an initial value of approximately 23,950 W/m2*K [1.171 Btu/s*ft2*EF]. The heat transfer coefficient then gradually decreases to a value of around 750 W/m2*K [0.037 Btu/s*ft2*EF] by the end of the transient.
Figure 3.2.1-24 shows the core power versus the energy lost through the break. As seen in this figure, the break energy is larger than the core decay heat, thus, heat is being removed from the system causing the temperature to decrease. The average downcomer fluid temperature is shown in Figure 3.2.1-16. In addition to the heat lost through the break and core decay heat considerations, the safety injection water temperature plays a role in the downcomer fluid temperature. Initially, the high pressure injection and low pressure injection are at 283 K [50EF],
however, after the reactor water storage tank (RWST) has depleted, the source of injection water becomes the containment sump. After switchover to sump recirculation at 1,693 s, the injection temperature is increased to 341 K [155EF] as shown in Figure 3.2.1-25. Looking at Figure 3.2.1-16 shows that the sump temperature significantly affects the downcomer fluid temperature.
Figure 3.2.1-26 shows the steam generator narrow range water level. Upon the SIAS being generated, the MFW is isolated and the steam generator level immediately drops. AFW is started, and begins refilling the generators to the desired post-trip setpoint of 33% NRL (120.7 cm
[47.52 in]). Figure 3.2.1-27 shows the auxiliary feedwater flow. For about the first 30 s, all three generators have similar pressures and receive equal amounts of feedwater. After 30 s, the C loop steam generator has a slightly higher pressure (Figure 3.2.1-28) than the A and B loop generators.
This results in more feedwater going to steam generators A and B and at times no flow going to steam generator C even though the level is well below the setpoint. Once generators A and B have refilled to the level setpoint, steam generator C receives all the auxiliary feedwater flow until it is refilled to the level setpoint.
Upon the reactor/turbine trip, the turbine stop valve closes, and the steam dump valve begins controlling to 7.03 MPa [1020 psia]. Since the secondary side pressure is below 7.03 MPa
[1020 psia] as seen in Figure 3.2.1-28, the steam dump valve remain closed. In addition, none of the safety relief or atmospheric dump valves open. As a result, the feedwater and steam systems remain isolated for the duration of the transient. Up until about 2,000 s the steam generators are putting heat into the primary, resulting in a decrease in steam generator pressure.
As a consequence of the size of the hot leg break it is shown that the break is capable of removing more than core decay heat. This leads to the downcomer fluid temperature decreasing to a minimum of 291 K [64.1EF] at approximately 1,000 s and again at approximately 1,650 s. Between 1,000 and 2,000 s were the hot leg flow oscillations which resulted in greater mixing in the downcomer thus moderately increasing the fluid temperature. The pressure during this time was approximately 0.097 MPa [14.0 psia]. There is no mechanism which would allow the primary to repressurize.
3-108
 
20.0                                                                    2901 p34001 (pressurizer) 15.0                                                                    2176 Pressure (MPa)                                                                                        Pressure (psia) 10.0                                                                    1450 5.0                                                                    725 0.0                                                                      0 3000        0      3000    6000        9000          12000    15000 Time (sec)
Figure 3.2.1-15 Primary System Pressure for - BV Case 009 650                                                                          710 cntrlvar297 550                                                                          530 Temperature (K)                                                                                        Temperature (F) 450                                                                          350 350                                                                          170 250                                                                        10 3000        0      3000      6000          9000          12000    15000 Time (sec)
Figure 3.2.1-16 Average Downcomer Fluid Temperature - BV Case 009 3-109
 
30000                                                                      1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                                      1.10 15000                                                                      0.73 7500                                                                      0.37 0                                                                    0.00 3000      0      3000      6000          9000        12000    15000 Time (sec)
Figure 3.2.1-17 Downcomer Wall Heat Transfer Coefficient - BV Case 009 1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000        0      3000      6000                9000    12000      15000 Time (sec)
Figure 3.2.1-18 Pressurizer Water Level - BV Case 009 3-110
 
1500                                                                    3307 1250                              mflowj99700 (break flow)            2756 cntrlvar984 (total SI flow) 1000                                                                    2205 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 750                                                                    1653 500                                                                    1102 250                                                                    551 0                                                                      0 3000      0      3000    6000          9000            12000  15000 Time (sec)
Figure 3.2.1-19 Break Flow and Total Safety Injection Flow - BV Case 009 25.0                                                                    55.1 20.0                                                                    44.1 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 15.0                                                                    33.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) mflowj96300 (HPI Loop C) 10.0                                                                    22.0 5.0                                                                    11.0 0.0                                                                    0.0 3000      0      3000    6000          9000            12000  15000 Time (sec)
Figure 3.2.1-20 High Pressure Injection Flow Rate - BV Case 009 3-111
 
30.0                                                                  934 acvliq911 (Loop A)
Accumulator Liquid Volume (m )
acvliq912 (Loop B)
Accumulator Liquid Volume (ft )
3                                                                                                                3 acvliq913 (Loop C) 20.0                                                                  623 10.0                                                                  311 0.0                                                                    0 3000        0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.1-21 Accumulator Liquid Volume - BV Case 009 125                                                                    276 100                                                                    220 Flow Rate (kg/s)                                                                                                  Flow Rate (lbm/s) 75                                                                    165 mflowj94100 (LPI Loop A) mflowj94200 (LPI Loop B) mflowj94300 (LPI Loop C) 50                                                                    110 25                                                                    55 0                                                                      0 3000        0      3000      6000          9000        12000  15000 Time (sec)
Figure 3.2.1-22 Low Pressure Injection Flow Rate - BV Case 009 3-112
 
5000                                                                        11023 mflowj12001 (Hot Leg A) mflowj12002 (Hot Leg B) 2500                                mflowj12003 (Hot Leg C)                5512 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 0                                                                        0 2500                                                                        5512 5000                                                                          11023 3000      0      3000      6000          9000        12000        15000 Time (sec)
Figure 3.2.1-23 Hot Leg Mass Flow Rate - BV Case 009 1500 1250                                        cntrlvar112 (core power) flenth99700 (break energy) 1000 Power (MW) 750 500 250 0
3000        0        3000        6000              9000          12000        15000 Time (sec)
Figure 3.2.1-24 Core Power and Break Energy - BV Case 009 3-113
 
400                                                                260 tempf95101 (HPI) tempf93101 (LPI) 350                                                                170 Temperature (K)                                                                                      Temperature (F) 300                                                                80 250                                                                10 3000      0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.1-25 Safety Injection Fluid Temperature - BV Case 009 250                                                                98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)              78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                              Narrow Range Level (in) 150                                                                59.1 100                                                                39.4 50                                                                19.7 0                                                                  0.0 3000      0        3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.1-26 Steam Generator Narrow Range Water Level - BV Case 009 3-114
 
100                                                                    220 mflowj54000 (SG A) mflowj64000 (SG B) 75                                  mflowj74000 (SG C)              165 Flow Rate (kg/s)                                                                                Flow Rate (lbm/s) 50                                                                    110 25                                                                    55 0                                                                    0 3000        0        3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.1-27 Auxiliary Feedwater Flow Rate - BV Case 009 10.0                                                                  1450 p28201 (SG A) 8.0                                p38201 (SG B)                  1160 p48201 (SG C)
Pressure (MPa)                                                                                  Pressure (psia) 6.0                                                                  870 4.0                                                                  580 2.0                                                                  290 0.0                                                                  0 3000        0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.1-28 Steam Generator Pressure - BV Case 009 3-115
 
3.2.1.3 Beaver Valley Surge Line Break from Hot Full Power - 7.184 cm [2.828 in] diameter, with summer ECCS temperature and increased heat transfer (BV Case 114)
This case is a 7.184 cm [2.828 in] diameter surge line break from hot full power with summer ECCS temperatures and increased heat transfer. This case is identified as Beaver Valley Case 114 in Appendix B, Table B-1. For the assumed summer ECCS conditions, the HHSI and LHSI fluid temperatures are increased from 283.1 K [50&deg;F] to 285.9 K [55&deg;F] (maximum allowed by technical specifications). The accumulator fluid temperature was increased from 305.4 K [90&deg;F]
to 313.7 K [105&deg;F]. In addition this case assumed that heat transfer to passive structures was increased by 30%. This change was made in the RELAP5 model by increasing the heat structure surface area by 30% on all heat structures with the following exceptions; core, steam generator tubes and pressurizer heaters.
The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.1-29 through 3.2.1-31, respectively.
As a result of the break, the primary system rapidly depressurizes as shown in Figure 3.2.1-29.
In addition, the pressurizer level (shown in Figure 3.2.1-32) also decreased rapidly due to loss of inventory and was completely empty by 30 s. At 13.8 s, a reactor/turbine trip occurred due to low primary pressure. At 17.7 s, a safety injection actuation signal (SIAS) was generated. The SIAS results in actuation of both the high head safety injection (HHSI), and low head safety injection (LHSI). Note that actuation does not necessarily mean that a system begins working immediately.
In this case, while LHSI is actuated, it will not begin flow until the primary pressure falls below the pump shutoff head. In addition, the SIAS also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated.
A plot of break flow versus total safety injection (SI) flow is provided as Figure 3.2.1-33. Total SI flow includes high pressure injection, low pressure injection, accumulators and charging/letdown.
High pressure injection flow is shown in Figure 3.2.1-34. Initially, break flow is much larger than safety injection flow. By 1,050 s the primary pressure has decreased to below the accumulator pressure, resulting in accumulator injection as shown in Figure 3.2.1-35. With this additional flow, the total SI flow is now equal to or greater than the break flow. At 3,030 s primary pressure is below the low head safety injection (LHSI) shutoff head, and LHSI flow begins as shown in Figure 3.2.1-36. At 3,540 s, the accumulators have emptied and injection stops. Note that the accumulators were isolated when the liquid level was near the bottom of the tank. This was done to stop non-condensible gases from entering the system. These non-condensible gases frequently cause numerical problems in RELAP5 which lead to code failures. By 5,000 s, the safety injection flow and break flow are equal for the remainder of the transient.
At 49.5 s, the reactor coolant pumps were tripped due to an operator action. This causes the flow in the loops to decrease to near zero. Figure 3.2.1-37 presents the hot leg mass flow for all three loops at the exit of the vessel. At around 3,500 s there are significant flow oscillations which last until about 4,500 s. These oscillations appear to be due to condensation effects in the primary 3-116
 
tubes of the steam generators. The code is predicting that the steam generator primary tubes void completely by about 600 s. When they begin to refill around 3,500 s, some nodes in the primary tubes are condensing liquid while others are boiling. The condensation/vaporization causes pressure waves which drive the oscillatory flow behavior. By 4,500 s, the large oscillations have stopped and the only loop which has flow is the C loop, which contains the break. Figure 3.2.1-31 shows the downcomer fluid-wall heat transfer coefficient. Upon the forced flow stopping (i.e.,
reactor coolant pumps tripped), the heat transfer coefficient drops rapidly from an initial value of approximately 23,950 W/m2*K [1.171 Btu/s*ft2*F]. The heat transfer coefficient then gradually decreases to a value of around 600 W/m2*K [0.029 Btu/s*ft2*F] by the end of the transient.
Figure 3.2.1-38 shows the core power versus the energy lost through the break. As seen in this figure, the break energy is larger than the core decay heat, thus, heat is being removed from the system causing the temperature to decrease. The average downcomer fluid temperature is shown in Figure 3.2.1-30. In addition to the heat lost through the break and core decay heat considerations, the safety injection water temperature plays a role in the downcomer fluid temperature. Initially, the high pressure injection and low pressure injection are at 286 K [55&deg;F],
however, after the reactor water storage tank (RWST) has depleted, the source of injection water becomes the containment sump. After switchover to sump recirculation at 4,872 s, the injection temperature is increased to 341 K [155&deg;F] as shown in Figure 3.2.1-39. Looking at Figure 3.2.1-30 shows that the sump temperature significantly affects the downcomer fluid temperature.
Figure 3.2.1-40 shows the steam generator narrow range water level. Upon the SIAS being generated, the MFW is isolated and the steam generator level immediately drops. AFW is started, and begins refilling the generators to the desired post-trip setpoint of 33% NRL (120.7 cm [47.52 in]). Figure 3.2.1-41 shows the auxiliary feedwater flow. The auxiliary feedwater system provides flow from the steam driven pump and one motor driven pump to a common header which then splits to each steam generator feedwater line. Flow from the other motor driven pump is delivered to a common header which then splits to each steam generator feedwater line. Flow losses were entered between the pumps and common headers as well as between the header and generators.
Due to the use of a common header, the differential pressures between the header and steam generator determine the auxiliary feedwater flow. For about the first 100 s, all three generators have similar pressures and receive equal amounts of feedwater. After 100 s, the A loop steam generator has a slightly higher pressure (Figure 3.2.1-42) than the B and C loop generators. This results in more feedwater going to steam generators B and C and at times no feedwater going to steam generator A even though the level is well below the setpoint. Once generators B and C have refilled to the level setpoint, steam generator A receives all the auxiliary feedwater flow until it is refilled to the level setpoint.
Upon the reactor/turbine trip, the turbine stop valve closes, and the steam dump valve begins controlling to 7.03 MPa [1,020 psia]. Since the secondary side pressure is below 7.03 MPa [1,020 psia], as seen in Figure 3.2.1-42, the steam dump valve remains closed. In addition, none of the safety relief or atmospheric dump valves open. As a result, the feedwater and steam systems remain isolated for the duration of the transient. Up until about 1,600 s the steam generators are putting heat into the primary, resulting in a decrease in steam generator pressure. The pressure in steam generator C continues to fall gradually during the remainder of the event due to retaining 3-117
 
some primary loop flow. Loop C retains some loop flow due to the break being in the surge line, which is connected to loop C.
As a consequence of the size of the surge line break it is shown that the break is capable of removing more than core decay heat. This leads to the downcomer fluid temperature decreasing to a minimum of 304 K [87.5EF] at approximately 4,890 s. Between 3,500 and 4,500 s, where the hot leg flow oscillations were observed, increased mixing in the downcomer occurred, thus moderately increasing the downcomer fluid temperature. The pressure during this time was approximately 1.15 MPa [167 psia]. There is no mechanism which would allow the primary system to repressurize.
20.0                                                                2901 p34001 (pressurizer) 15.0                                                                2176 Pressure (MPa)                                                                              Pressure (psia) 10.0                                                                1450 5.0                                                                725 0.0                                                                  0 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.1-29 Primary System Pressure - BV Case 114 3-118
 
650                                                                710 cntrlvar297 550                                                                530 Temperature (K)                                                                                                        Temperature (F) 450                                                                350 350                                                                170 250                                                                10 3000      0      3000    6000            9000  12000    15000 Time (sec)
Figure 3.2.1-30 Average Downcomer Fluid Temperature - BV Case 114 30000                                                            1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                            1.10 15000                                                            0.73 7500                                                              0.37 0                                                          0.00 3000      0  3000    6000            9000  12000  15000 Time (sec)
Figure 3.2.1-31 Downcomer Wall Heat Transfer Coefficient - BV Case 114 3-119
 
1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000          0      3000        6000              9000        12000      15000 Time (sec)
Figure 3.2.1-32 Pressurizer Water Level - BV Case 114 500                                                                          1102 mflowj99700 (break flow) 400                                    cntrlvar984 (total SI flow)          882 Flow Rate (kg/s)                                                                                                        Flow Rate (lbm/s) 300                                                                          661 200                                                                          441 100                                                                          220 0                                                                            0 3000        0      3000        6000          9000            12000  15000 Time (sec)
Figure 3.2.1-33 Break Flow and Total Safety Injection Flow - BV Case 114 3-120
 
25.0                                                                55.1 20.0                                                                44.1 Flow Rate (kg/s)                                                                                                        Flow Rate (lbm/s) 15.0                                                                33.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) mflowj96300 (HPI Loop C) 10.0                                                                22.0 5.0                                                                11.0 0.0                                                                0.0 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.1-34 High Pressure Injection Flow Rate - BV Case 114 30.0                                                                934 acvliq911 (Loop A)
Accumulator Liquid Volume (m )
acvliq912 (Loop B)
Accumulator Liquid Volume (ft )
3                                                                                                          3 acvliq913 (Loop C) 20.0                                                                623 10.0                                                                311 0.0                                                                0 3000      0      3000    6000        9000        12000    15000 Time (sec)
Figure 3.2.1-35 Accumulator Liquid Volume for - BV Case 114 3-121
 
60                                                                            132 50                                  mflowj94100 (LPI Loop A)                110 mflowj94200 (LPI Loop B) mflowj94300 (LPI Loop C) 40                                                                            88 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) 30                                                                            66 20                                                                            44 10                                                                            22 0                                                                              0 3000          0      3000      6000          9000            12000      15000 Time (sec)
Figure 3.2.1-36 Low Pressure Injection Flow Rate - BV Case 114 5000                                                                      11023 mflowj12001 (Hot Leg A) mflowj12002 (Hot Leg B) 2500                                mflowj12003 (Hot Leg C)              5512 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 0                                                                    0 2500                                                                      5512 5000                                                                      11023 3000          0    3000    6000        9000          12000      15000 Time (sec)
Figure 3.2.1-37 Hot Leg Mass Flow Rate - BV Case 114 3-122
 
500 cntrlvar112 (core power) 400                                    flenth99700 (break energy)
Power (MW) 300 200 100 0
3000        0      3000      6000          9000          12000      15000 Time (sec)
Figure 3.2.1-38 Core Power and Break Energy - BV Case 114 400                                                                        260 tempf95101 (HPI) tempf93101 (LPI) 350                                                                        170 Temperature (K)                                                                                    Temperature (F) 300                                                                        80 250                                                                        10 3000        0      3000      6000        9000        12000        15000 Time (sec)
Figure 3.2.1-39 Safety Injection Fluid Temperature - BV Case 114 3-123
 
250                                                                    98.4 cntrlvar507 (SG A) 200                                  cntrlvar607 (SG B)              78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                                        Narrow Range Level (in) 150                                                                    59.1 100                                                                    39.4 50                                                                    19.7 0                                                                    0.0 3000        0      3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.1-40 Steam Generator Narrow Range Water Level - BV Case 114 100                                                                  220 mflowj54000 (SG A) mflowj64000 (SG B) mflowj74000 (SG C) 75                                                                    165 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 50                                                                    110 25                                                                    55 0                                                                    0 3000        0        3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.1-41 Auxiliary Feedwater Flow Rate - BV Case 114 3-124
 
10.0                                                            1450 p28201 (SG A) 8.0                                p38201 (SG B)              1160 p48201 (SG C)
Pressure (MPa)                                                                          Pressure (psia) 6.0                                                            870 4.0                                                            580 2.0                                                            290 0.0                                                            0 3000        0      3000      6000        9000    12000  15000 Time (sec)
Figure 3.2.1-42 Steam Generator Pressure - BV Case 114 3.2.2 Beaver Valley Primary Side Loss of Coolant Accident at Hot Zero Power The transient in this group was initiated from hot zero power steady state operating conditions.
At hot zero power, the core power is nearly zero and the reactor coolant pumps are operating at normal speed, adding heat to the reactor coolant system (RCS). Because the RCS heat load is small, the fluid temperatures in all portions of the RCS (cold legs, hot legs and reactor vessel) and the steam generator (SG) secondary system are virtually the same. This temperature defines the HZP secondary system pressure (the secondary is at the saturation pressure corresponding to the RCS temperature). The steam dump valve controllers in the plant and model modulate the steam dump valve to attain this SG pressure and RCS average temperature.
On the SG secondary side, the turbine is tripped at HZP and therefore the turbine stop valves are closed. Main feedwater is delivered at a very low rate, consistent with the low RCS heat load.
Because the feedwater train heaters depend on turbine extraction steam for operation, feedwater is delivered to the SGs at the low condenser temperature, rather than the elevated temperature associated with main feedwater at HFP operation.
The reduced steam generator heat load at HZP results in much less steam production and voiding in the SG boiler sections than is present at full power. Therefore, SG water mass is significantly higher for HZP operation than for HFP operation.
3-125
 
In the hot full power steady state model, core power is input using a table. Power is held constant until the time of reactor trip and it decays afterward on the basis of ANS standard decay heat. In the HZP condition, the reactor is critical with control element assemblies withdrawn. From a modeling view, it is difficult to initialize a plant model with zero core power because of the plant systems long thermal time constants. For these reasons, the Beaver Valley Unit 1 hot zero power RELAP5 model assumes a constant 5.32 MW core power, both at steady state and during transients. This value represents the heat load at 1 month after shutdown and is 0.2% of the rated thermal power. The core power table was revised to reflect this assumption.
The only transient in this group is a 10.16 cm [4.0 in] diameter surge line break. This transient is restarted from the hot zero power null transient described in Section 2.2.
In order to model the surge line break, two additional components were added to the RELAP5 model transient restart input file. These components were a time dependent volume to model the break downstream conditions and a break valve. The time dependent volume was set to atmospheric conditions. The break valve for the surge line break was connected to the middle node of the surge line (volume 343, cell 2, see Figure 2.2-1). The loss coefficients for the break were based on AP600 derived loss coefficients (Ref. 3.2.1) and scaled for the appropriate break size. The break valve was set to open at time zero.
A sequence of events table for the surge line break is provided as Table 3.2-2.
Table 3.2-2 Sequence of Events for Loss of Coolant Accidents from Hot Zero Power Case 056 - 10.16 cm [4.0 in] surge line break at HZP Event Time (s)
Break valve opened                                          0 Reactor/turbine trip                                        6.72 SIAS generated                                            9.716 HHSI flow initiated                                        9.716 MFW stopped                                                9.716 AFW started                                                9.716 Pressurizer empties                                        <15 RCPs trip                                                21.717 Accumulators begin injecting                                375 LHSI flow initiated                                        960 Accumulators stop injecting                                1,080 3ontainment spray pumps start                              1,663 3-126
 
Case 056 - 10.16 cm [4.0 in] surge line break at HZP Event Time (s)
Pressurizer begins to refill                                1,920 MSIV closure                                                2,385 Switchover to sump recirculation                            3,121 3.2.2.1 Beaver Valley Surge Line Break from Hot Zero Power - 10.16 cm [4.0 in] diameter (BV Case 056)
This case is a 10.16 cm [4.0 in] diameter surge line break from hot zero power. This case is identified as Beaver Valley Case 056 in Appendix B, Table B-1. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.2-1 through 3.2.2-3, respectively.
As a result of the break, the primary system rapidly depressurizes as shown in Figure 3.2.2-1 and remains near 0.86 MPa [125 psia] for the duration of the transient. In addition, the pressurizer level (shown in Figure 3.2.2-4) also decreased rapidly due to loss of inventory and was completely empty by 15 s. At 6.72 s, a reactor trip occurred due to low primary pressure. At approximately 9.7 s, a safety injection actuation signal (SIAS) was generated. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated.
A plot of break flow versus total safety injection flow is provided as Figure 3.2.2-5. Total SI flow includes high pressure injection, low pressure injection, accumulators and charging/letdown. High pressure injection flow is shown in Figure 3.2.2-6. Initially, break flow is much larger than safety injection flow. By 375 s the primary pressure has decreased to below the accumulator pressure, resulting in accumulator injection as shown in Figure 3.2.2-7. With this additional flow, the total SI is now greater than the break flow. At 960 s, the low pressure injection begins as shown in Figure 3.2.2-8. By 3,000 s, the safety injection flow and break flow are equal and remain equal for the remainder of the transient.
At approximately 22 s, the reactor coolant pumps were tripped due to an operator action. This causes the flow in the loops to decrease to near zero. Figure 3.2.2-9 presents the hot leg mass flow for all three loops at the exit of the vessel. As in the cases at full power, there are hot leg flow oscillations. These oscillations begin around 1,100 s and last until about 2,000 s. Again, these are due to condensation effects in the primary tubes of the steam generators. By 2,000 s, the large oscillations have stopped and the only loop which has flow is the C loop, which contains the break. Figure 3.2.2-3 shows the downcomer fluid-wall heat transfer coefficient. Upon the forced 3-127
 
flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops quickly from an initial value of approximately 24,073 W/m2*K [1.178 Btu/s*ft2*EF] to 2,000 W/m2*K
[0.098 Btu/s*ft2*EF]. During the remainder of the transient, this drops gradually to 500 W/m2*K
[0.024 Btu/s*ft2*EF].
At 1,080 s, the accumulators have emptied and injection stops. Note that the accumulators were isolated when the liquid level was near the bottom. This was done to stop non-condensible gases from entering the system. These non-condensible gases frequently cause numerical problems in RELAP5 which lead to code failures. By 2,000 s, the pressurizer begins to refill, and is filled solid by 2,000 s. Note that there is no operator action to control pressurizer level.
Figure 3.2.2-10 shows the core power versus the energy lost through the break. As seen in this figure, the break energy is larger than the core decay heat, thus, heat is being removed from the system causing the temperature to decrease. Note that in the hot zero power cases, the power is held constant at 5.32 MW. The average downcomer fluid temperature is shown in Figure 3.2.2-2. In addition to the heat lost through the break and core power considerations, the safety injection water temperature plays a role in the downcomer fluid temperature. Initially, the high pressure injection and low pressure injection are at 283 K [50EF], however, after the reactor water storage tank (RWST) has depleted, the source of injection water becomes the containment sump. After switchover to sump recirculation at 3,121 s, the injection temperature is increased to 324 K [124EF] as shown in Figure 3.2.2-11. Looking at Figure 3.2.2-2 shows that the sump temperature significantly affects the downcomer fluid temperature.
Figure 3.2.2-12 shows the steam generator narrow range water level. Upon the SIAS being generated, the MFW is isolated. Since the MFW at hot zero power is very small (approximately 2 kg/s [4.4 lbm/s]), the isolation of MFW does not have a significant effect on steam generator water level. Upon SIAS, the AFW is started and begins controlling the generators to the level setpoint of 33% NRL (120.7 cm [47.52 in]). Note that the hot zero power pre/post reactor trip level setpoints are the same. Figure 3.2.2-13 shows the auxiliary feedwater flow which comes on occasionally for short periods of time to maintain steam generator water level.
The steam generator secondary side pressure is shown in Figure 3.2.2-14. The pressure in the steam generators decreases as a result of the primary side decrease in temperature.
As a consequence of the size of the surge line break it is shown that the break is capable of removing more than the assumed core decay heat at hot zero power. This leads to the downcomer fluid temperature decreasing to a minimum of 288.5 K [59.6EF] at approximately 2,975 s. The pressure during this time was approximately 0.917 MPa [133 psia]. There was no mechanism which would allow the primary to repressurize.
3-128
 
20.0                                                                2901 p34001 (pressurizer) 15.0                                                                2176 Pressure (MPa)                                                                                Pressure (psia) 10.0                                                                1450 5.0                                                                725 0.0                                                                  0 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.2-1 Primary System Pressure - BV Case 056 650                                                                  710 cntrlvar297 550                                                                  530 Temperature (K)                                                                              Temperature (F) 450                                                                  350 350                                                                  170 250                                                                  10 3000      0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.2.2-2 Average Downcomer Fluid Temperature - BV Case 056 3-129
 
30000                                                                      1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                                      1.10 15000                                                                      0.73 7500                                                                      0.37 0                                                                    0.00 3000    0      3000    6000            9000        12000    15000 Time (sec)
Figure 3.2.2-3 Downcomer Heat Transfer Coefficient - BV Case 056 1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000        0        3000      6000                9000    12000      15000 Time (sec)
Figure 3.2.2-4 Pressurizer Water Level - BV Case 056 3-130
 
600                                                                        1323 500                              mflowj99700 (break flow)                1102 cntrlvar984 (total SI flow) 400                                                                        882 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 300                                                                        661 200                                                                        441 100                                                                        220 0                                                                          0 3000      0        3000    6000          9000            12000      15000 Time (sec)
Figure 3.2.2-5 Break Flow and Total Safety Injection Flow - BV Case 056 25.0                                                                        55.1 20.0                                                                        44.1 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 15.0                                                                        33.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) mflowj96300 (HPI Loop C) 10.0                                                                        22.0 5.0                                                                        11.0 0.0                                                                        0.0 3000      0      3000      6000          9000              12000  15000 Time (sec)
Figure 3.2.2-6 High Pressure Injection Flow Rate - BV Case 056 3-131
 
30.0                                                                  934 acvliq911 (Loop A)
Accumulator Liquid Volume (m )
acvliq912 (Loop B)
Accumulator Liquid Volume (ft )
3                                                                                                                3 acvliq913 (Loop C) 20.0                                                                  623 10.0                                                                  311 0.0                                                                  0 3000        0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.2-7 Accumulator Liquid Volume - BV Case 056 125                                                                  276 mflowj94100 (LPI Loop A) 100                                mflowj94200 (LPI Loop B)        220 mflowj94300 (LPI Loop C)
Flow Rate (kg/s)                                                                                                  Flow Rate (lbm/s) 75                                                                  165 50                                                                  110 25                                                                  55 0                                                                    0 3000        0      3000      6000          9000        12000  15000 Time (sec)
Figure 3.2.2-8 Low Pressure Injection Flow Rate - BV Case 056 3-132
 
5000                                                                          11023 mflowj12001 (Hot Leg A) mflowj12002 (Hot Leg B) 2500                                mflowj12003 (Hot Leg C)                5512 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 0                                                                        0 2500                                                                          5512 5000                                                                          11023 3000        0      3000      6000          9000          12000      15000 Time (sec)
Figure 3.2.2-9 Hot Leg Mass Flow Rate - BV Case 056 600 500                                          cntrlvar112 (core power) flenth99700 (break energy) 400 Power (MW) 300 200 100 0
3000          0      3000      6000                9000          12000      15000 Time (sec)
Figure 3.2.2-10 Core Power and Break Energy - BV Case 056 3-133
 
400                                                                260 tempf95101 (HPI) tempf93101 (LPI) 350                                                                170 Temperature (K)                                                                                      Temperature (F) 300                                                                80 250                                                                10 3000      0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.2-11 Safety Injection Fluid Temperature - BV Case 056 250                                                                98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)              78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                              Narrow Range Level (in) 150                                                                59.1 100                                                                39.4 50                                                                19.7 0                                                                  0.0 3000      0        3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.2-12 Steam Generator Narrow Range Water Level - BV Case 056 3-134
 
100                                                                    220 mflowj54000 (SG A) mflowj64000 (SG B) 75                                  mflowj74000 (SG C)              165 Flow Rate (kg/s)                                                                                Flow Rate (lbm/s) 50                                                                    110 25                                                                    55 0                                                                    0 3000        0        3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.2-13 Auxiliary Feedwater Flow Rate - BV Case 056 10.0                                                                  1450 p28201 (SG A) 8.0                                p38201 (SG B)                  1160 p48201 (SG C)
Pressure (MPa)                                                                                  Pressure (psia) 6.0                                                                  870 4.0                                                                  580 2.0                                                                  290 0.0                                                                  0 3000        0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.2-14 Steam Generator Pressure - BV Case 056 3-135
 
3.2.3 Beaver Valley Main Steam Line Breaks From Hot Full Power The transients in this group were initiated from hot full power steady state operating conditions (nominal temperature and pressure). The large steam line breaks are assumed to be double ended guillotine breaks just downstream of the flow restrictor in steam generator A. The breaks are assumed to occur inside containment, thus leading to adverse containment conditions. This results in a trip of the reactor coolant pumps. The small steam line breaks are simulated by sticking open the steam generator safety relief valves. In all cases, the auxiliary feedwater flow is assumed to continue to the broken loop generator for 30 minutes, at which point it is isolated by the operator. These cases also have operator control of the high head safety injection (HHSI).
The RELAP5 transient restart input was modified to add the following: steam line break, RCP trip, AFW isolation at 30 minutes, control of HHSI and allow letdown after both HHSI pumps are stopped.
The break downstream conditions were modeled with time dependent volumes which were set at atmospheric conditions. In the double ended break cases, both the steam generator side and the steam line side were connected to time dependent volumes. In all transients, the breaks were set to occur at time zero.
The AFW was isolated at 30 minutes by multiplying the original control valve position by zero using RELAP5 trips and controls.
The HHSI in Beaver Valley is controlled by turning HHSI pumps on or off, rather than throttling to a desired flow rate. Conditions for turning pumps off are as follows: core exit subcooling greater than 22.2 K [40EF], any steam generator NRL greater than 32%, pressurizer water level greater than 32% and primary pressure stable or increasing. If the conditions listed are met, the operator is allowed to turn off one HHSI pump. If conditions are still met five minutes later the second HHSI pump can be turned off. If the above conditions are no longer met at any time, HHSI pumps must be turned back on. In both cases, the operator is assumed to turn off HHSI pumps after the above conditions are met plus a time delay (30 minutes in some cases and 60 minutes in the others).
A sequence of events table for the main steam line break transients is provided as Table 3.2-3.
3-136
 
Table 3.2-3 Sequence of Events for Main Steam Line Breaks from Hot Full Power Case 102 - MSLB      Case 104- MSLB      Case 108 - Small with AFW              with AFW            steam line break continuing to feed    continuing to feed  (simulated by affected generator    affected generator  sticking open all for 30 minutes and    for 30 minutes and  SG-A SRVs) with operator controls    operator controls  AFW continuing to HHSI 30 minutes      HHSI 60 minutes    feed affected after allowed        after allowed      generator for 30 minutes and operator controls HHSI 30 minutes after allowed.
Event Time (s)
Break                                      0                    0                    0 RCP trip                                  0                    0                    0 SIAS generated                          0.089                0.089                6.693 HHSI flow initiated                    0.089                0.089                6.693 MFW stopped                            0.089                0.089                6.693 AFW started                            0.089                0.089                6.693 Reactor/turbine trip                    2.554                2.554                  0 Pressurizer pressure                      735                  735                600 exceeds PORV setpoint Pressurizer fills                      1,260                1,260                1,260 AFW stopped to broken loop              1,800                1,800                1,800 MSIV closure                            2,020                2,020                1,575 1st HHSI pump stopped                  4,020                5,820                3,570 2nd HHSI pump stopped                  4,320                6,120                3,870 Accumulators begin injecting            6,555                  N/A                N/A Accumulators stop injecting            6,915                  N/A                N/A 3.2.3.1 Beaver Valley Main Steam Line Break From Hot Full Power (BV Case 102)
This case is a double ended main steam line break (in steam generator A) from hot full power with auxiliary feedwater continuing to feed the affected loop generator for 30 minutes and operator control of high head safety injection. This case is identified as Beaver Valley Case 102 in Appendix B, Table B-1. The steam line break is assumed to occur downstream of the flow 3-137
 
restrictor and inside of containment, so the RCPs are tripped due to adverse containment conditions. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.3-1 through 3.2.3-3 respectively. A sequence of events table for this event is shown as Table 3.2-3.
When the steam line break occurs, the secondary side pressure in steam generator A drops rapidly as shown in Figure 3.2.3-4. Steam line break flow is shown in Figure 3.2.3-5. An MSIV closure signal should be generated upon high containment pressure, however, the containment is not modeled. In the model, the MSIV did not receive a close signal until 2,020 s on two out of three steam line pressures less than 3.47 MPa [503 psia]. While the MSIV should have closed much sooner, there are check valves in the lines to prevent backflow from one steam generator to another. At 2.5 s, a reactor/turbine trip was generated (based on two of three loop delta temperature) which closes the turbine stop valve. In addition, since the secondary side pressure was less than the steam dump valve setpoint, there was no flow through any of the MSIVs.
Therefore, it is acceptable for the calculation to simulate that the MSIVs did not close upon high containment pressure.
At 0.1 s a safety injection actuation signal was generated due to high steamline pressure differential. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated. Because of the break and main feedwater being stopped, the steam generator water levels drop rapidly as shown in Figure 3.2.3-6.
AFW flow begins almost immediately, as shown in Figure 3.2.3-7, and all flow goes to the broken loop generator (SG A). As the pressure in steam generator A decreases, the flow through the break decreases and becomes smaller than the AFW flow, allowing the water level to recover. At 1,800 s, the operator is assumed to stop AFW flow to the broken loop generator. At this time, AFW begins flowing to steam generators B and C. With no feedwater, steam generator A begins to boil dry.
Heat transfer from the primary to the depressurizing steam generator resulted in a rapid cooldown of the primary system as shown in Figure 3.2.3-2. This cooling also causes the primary fluid volume to shrink which slightly depressurizes the primary as shown in Figure 3.2.3-1 as well as causes the pressurizer water level to decrease as shown in Figure 3.2.3-8. Because the SIAS signal was generated, HHSI flow (Figure 3.2.3-9) is started and repressurizes the primary to the pressurizer PORV setpoint by 735 s.
As a boundary condition to this case, the RCPs were tripped (based on adverse containment conditions). Upon RCP trip, the loop flow decreases rapidly as shown in Figure 3.2.3-10. Loop natural circulation flow for steam generator A continues after the RCP trip as a result of the continual heat removal of the steam generator. Figure 3.2.1-3 shows the downcomer fluid-wall heat transfer coefficient. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops rapidly from an initial value of approximately 23,950 W/m2*K 3-138
 
[1.171 Btu/s*ft2*EF]. The heat transfer coefficient then remains around a value of 1,500 W/m2*K
[0.073 Btu/s*ft2*EF] for the duration of the transient.
By 2,220 s the system has met all of the conditions for stopping an HHSI pump. These conditions include: core exit subcooling greater than 22.2 K [40EF] (Figure 3.2.3-11), any steam generator NRL greater than 32% (Figure 3.2.3-6), pressurizer water level greater than 32% (Figure 3.2.3-8) and pressure stable or increasing (Figure 3.2.3-1). After waiting an additional 30 minutes (as given in the case description), the operator is assumed to stop a single HHSI pump (at 4,020 s). Then, after waiting five more minutes, the above conditions are still met so the second HHSI pump is stopped (at 4,320 s).
Upon stopping the second HHSI pump, letdown flow was re-established. Between the loss of the HHSI pumps and letdown flow, the primary pressure drops rapidly. At 6,555 s, the primary pressure has dropped below the accumulator pressure and the accumulators begin injecting as shown in Figure 3.2.3-12. At 6,855 s steam generator A has boiled dry, and can no longer remove heat. Since there is no longer any ECCS water entering the system, the primary begins to heatup and repressurize. By 6,915 s the primary pressure has increased and the accumulator injection stops.
When steam generator A has boiled dry, its heat removal effectiveness drops as shown in Figure 3.2.3-13. At this time the primary system temperature is much colder than the temperature of steam generator B and C secondaries as shown in Figure 3.2.3-14. So, between 6,855 s and 10,050 s the primary system does not have a heat sink and the primary system heats up. The loop A natural circulation during this period is being driven by the transient heatup of the loop.
By 8,500 s, the primary system temperature becomes hotter than steam generator B and C temperatures and by 10,050 s enough hot primary water finds its way into the steam generator B and C primaries that natural circulation through these loops starts up. The burst of heat removal (as well as associated pressure/temperature drop) and rapid natural circulation flow in loops B and C results because in order to start the flow the primary system had to become much hotter than could be sustained by steady natural circulation flow. So the flow starts up, but the cooling it affords at first is at a much greater rate than needed and this reduces the flow to the sustainable rate.
By 13,000 s, the system has reached a stable point where all of the loops are circulating but with loop A a little slower than loops B and C. For the remainder of the transient, both loops B and C remove some heat from the primary, however this, in addition to the heat lost through the pressurizer PORV, is not enough to remove the core decay heat. Therefore, the primary system continues to heat up.
The double ended main steam line break results in a continuous cooldown of the primary side while auxiliary feedwater flow is allowed to the broken steam generator. The minimum downcomer fluid temperature is 373 K [212EF] at 3,990 s. Due to continuous HHSI flow, the primary pressure at 3,500 s is 16.2 MPa [2,350 psia]. Once the HHSI flow is controlled/stopped, the primary pressure decreases, however, core heat and the lack of ECCS flow causes the system to heatup/repressurize.
3-139
 
20.0                                                                  2901 p34001 (pressurizer) 15.0                                                                  2176 Pressure (MPa)                                                                                      Pressure (psia) 10.0                                                                  1450 5.0                                                                  725 0.0                                                                    0 3000        0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.3-1 Primary System Pressure - BV Case 102 650                                                                        710 cntrlvar297 550                                                                        530 Temperature (K)                                                                                        Temperature (F) 450                                                                        350 350                                                                        170 250                                                                      10 3000        0      3000      6000          9000        12000    15000 Time (sec)
Figure 3.2.3-2 Average Downcomer Fluid Temperature - BV Case 102 3-140
 
30000                                                              1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                              1.10 15000                                                              0.73 7500                                                              0.37 0                                                          0.00 3000      0    3000      6000          9000  12000  15000 Time (sec)
Figure 3.2.3-3 Downcomer Wall Heat Transfer Coefficient - BV Case 102 10.0                                                              1450 p28201 (SG A) 8.0                                p38201 (SG B)              1160 p48201 (SG C)
Pressure (MPa)                                                                                                      Pressure (psia) 6.0                                                              870 4.0                                                              580 2.0                                                              290 0.0                                                              0 3000        0      3000      6000        9000    12000  15000 Time (sec)
Figure 3.2.3-4 Steam Generator Pressure - BV Case 102 3-141
 
120                                                                265 mflowj28201 (Break) 90                                                                198 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 60                                                                132 30                                                                66 0                                                                  0 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.3-5 Break Flow - BV Case 102 250                                                                98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)                78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                                  Narrow Range Level (in) 150                                                                59.1 100                                                                39.4 50                                                                19.7 0                                                                  0.0 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.3-6 Steam Generator Narrow Range Level - BV Case 102 3-142
 
100                                                                      220 mflowj54000 (SG A) mflowj64000 (SG B) 75                                  mflowj74000 (SG C)                165 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 50                                                                      110 25                                                                      55 0                                                                        0 3000          0      3000      6000        9000        12000    15000 Time (sec)
Figure 3.2.3-7 Auxiliary Feedwater Flow Rate - BV Case 102 1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000        0      3000      6000            9000      12000    15000 Time (sec)
Figure 3.2.3-8 Normalized Pressurizer Water Level - BV Case 102 3-143
 
20.0                                                                            44.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) 15.0                                  mflowj96300 (HPI Loop C)                33.1 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 10.0                                                                            22.0 5.0                                                                            11.0 0.0                                                                          0.0 3000        0      3000      6000            9000            12000  15000 Time (sec)
Figure 3.2.3-9 HHSI Flow Rate - BV Case 102 500                                                                        1102 400                                  mflowj12001 (Hot Leg A)              882 mflowj12002 (Hot Leg B) mflowj12003 (Hot Leg C) 300                                                                        661 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 200                                                                        441 100                                                                        220 0                                                                        0 100                                                                          220 3000        0      3000    6000          9000          12000      15000 Time (sec)
Figure 3.2.3-10 Hot Leg Mass Flow Rate - BV Case 102 3-144
 
300                                                                        540 250                                  cntrlvar10 (Core Exit)              450 200                                                                        360 Subcooling (K)                                                                                                        Subcooling (F) 150                                                                        270 100                                                                        180 50                                                                        90 0                                                                          0 3000        0      3000      6000            9000            12000  15000 Time (sec)
Figure 3.2.3-11 Core Exit Subcooling - BV Case 102 30.0                                                                      934 acvliq911 (Loop A)
Accumulator Liquid Volume (m )
acvliq912 (Loop B)
Accumulator Liquid Volume (ft )
3                                                                                                                    3 acvliq913 (Loop C) 20.0                                                                      623 10.0                                                                      311 0.0                                                                        0 3000        0      3000    6000            9000          12000  15000 Time (sec)
Figure 3.2.3-12 Accumulator Liquid Volume - BV Case 102 3-145
 
300 250                                    cntrlvar209 (SG A) cntrlvar409 (SG B) cntrlvar609 (SG C)
Energy Removed (MW) 200 150 100 50 0
50 3000      0      3000      6000            9000          12000      15000 Time (sec)
Figure 3.2.3-13 Steam Generator Energy Removal Rate - BV Case 102 650                                                                      710 tempf20801 (SG A primary) tempf26601 (SG A secondary) tempf30801 (SG B primary) tempf36601 (SG B secondary) 550                                                                      530 Temperature (K)                                                                                      Temperature (F) 450                                                                      350 350                                                                        170 3000    0      3000      6000          9000            12000    15000 Time (sec)
Figure 3.2.3-14 System Fluid Temperatures - BV Case 102 3-146
 
3.2.3.2 Beaver Valley Main Steam Line Break From Hot Full Power (BV Case 104)
This case is identical to the steam line break case described in Section 3.2.3.1, except the operator is assumed to wait 60 minutes prior to stopping HHSI pumps upon meeting all of the required conditions. It is a double ended main steam line break (in steam generator A) from hot full power with auxiliary feedwater continuing to feed the affected loop generator for 30 minutes and operator control of high head safety injection. This case is identified as Beaver Valley Case 104 in Appendix B, Table B-1. The steam line break is assumed to occur downstream of the flow restrictor and inside of containment, so the RCPs are tripped due to adverse containment conditions. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.3-15 through 3.2.3-17 respectively. A sequence of events table for this event is shown as Table 3.2-3.
When the steam line break occurs, the secondary side pressure in steam generator A drops rapidly as shown in Figure 3.2.3-18. Steam line break flow is shown in Figure 3.2.3-19. An MSIV closure signal should be generated upon high containment pressure, however, the containment is not modeled. In the model, the MSIV did not receive a close signal until 2,020 s on two out of three steam line pressures less than 3.47 MPa [503 psia]. While the MSIV should have closed much sooner, there are check valves in the lines to prevent backflow from one steam generator to another. At 2.5 s, a reactor/turbine trip was generated (based on two of three loop delta temperature) which closes the turbine stop valve. In addition, since the secondary side pressure was less than the steam dump valve setpoint, there was no flow through any of the MSIVs.
Therefore, it is acceptable for the calculation to simulate that the MSIVs did not close upon high containment pressure.
At 0.1 s a safety injection actuation signal was generated due to high steamline pressure differential. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated. Because of the break and main feedwater being stopped, the steam generator water levels drop rapidly as shown in Figure 3.2.3-20.
AFW flow begins almost immediately, as shown in Figure 3.2.3-21, and all flow goes to the broken loop generator (SG A). As the pressure in steam generator A decreases, the flow through the break decreases and becomes smaller than the AFW flow, allowing the water level to recover. At 1,800 s, the operator is assumed to stop AFW flow to the broken loop generator. At this time, AFW begins flowing to steam generators B and C. With no feedwater, steam generator A begins to boil dry.
Heat transfer from the primary to the depressurizing steam generator resulted in a rapid cooldown of the primary system as shown in Figure 3.2.3-16. This cooling also causes the primary fluid volume to shrink which slightly depressurizes the primary as shown in Figure 3.2.3-15 as well as causes the pressurizer water level to decrease as shown in Figure 3.2.3-22. Because the SIAS 3-147
 
signal was generated, HHSI flow (Figure 3.2.3-23) is started and repressurizes the primary to the pressurizer PORV setpoint by 735 s.
As a boundary condition to this case, the RCPs were tripped (based on adverse containment conditions). Upon RCP trip, the loop flow decreases rapidly as shown in Figure 3.2.3-24. Loop natural circulation flow for steam generator A continues after the RCP trip as a result of the continual heat removal of the steam generator. Figure 3.2.1-17 shows the downcomer fluid-wall heat transfer coefficient. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops rapidly from an initial value of approximately 23,950 W/m2*K
[1.171 Btu/s*ft2*EF]. The heat transfer coefficient then remains around a value of 1,500 W/m2*K
[0.073 Btu/s*ft2*EF] for the duration of the transient.
By 2,220 s the system has met all of the conditions for stopping an HHSI pump. These conditions include: core exit subcooling greater than 22.2 K [40EF] (Figure 3.2.3-25), any steam generator NRL greater than 32% (Figure 3.2.3-20), pressurizer water level greater than 32%
(Figure 3.2.3-22) and pressure stable or increasing (Figure 3.2.3-15). After waiting an additional 60 minutes (as given in the case description), the operator is assumed to stop a single HHSI pump (at 5,820 s). Then, after waiting five more minutes, the above conditions are still met so the second HHSI pump is stopped (at 6,120 s).
Upon stopping the second HHSI pump, letdown flow was re-established. Between the loss of the HHSI pumps and letdown flow, the primary pressure drops rapidly. At 7,680 s steam generator A has boiled dry, and can no longer remove heat. Since there is no longer any ECCS water entering the system, the primary begins to heatup and repressurize.
When steam generator A has boiled dry, its heat removal effectiveness drops as shown in Figure 3.2.3-26. At this time the primary system temperature is much colder than the temperature of steam generator B and C secondaries as shown in Figure 3.2.3-27. So, between 7,680 s and 11,250 s the primary system does not have a heat sink and the primary system heats up. The loop A natural circulation during this period is being driven by the transient heatup of the loop.
By 9,490 s, the primary system becomes hotter than steam generator B and C temperatures and by 11,250 s enough of that hot primary water finds its way into the steam generator B and C primaries that natural circulation through those loops starts up. The burst of heat removal (as well as associated pressure/temperature drop) and rapid natural circulation flow in loops B and C results because in order to start the flow the primary system had to become much hotter than could be sustained by steady natural circulation flow. So the flow starts up, but the cooling it affords at first is at a much greater rate than needed and this reduces the flow to the sustainable rate.
By 14,500 s, the system has reached a stable point where all of the loops are circulating but with loop A a little slower than loops B and C. For the remainder of the transient, both loops B and C remove some heat from the primary, however this, in addition to the heat lost through the pressurizer PORV, is not enough to remove the core decay heat. Therefore, the primary system continues to heat up.
3-148
 
The double ended main steam line break results in a continuous cooldown of the primary side while auxiliary feedwater flow is allowed to the broken steam generator. The minimum downcomer fluid temperature is 370 K [206EF] at 5,820 s. Due to continuous HHSI flow, the primary pressure at 5,820 s is 16.2 MPa [2,350 psia]. Once the HHSI flow is controlled/stopped, the primary pressure decreases, however core heat and the lack of ECCS flow causes the system to heatup/repressurize.
3-149
 
20.0                                                                2901 p34001 (pressurizer) 15.0                                                                2176 Pressure (MPa)                                                                                  Pressure (psia) 10.0                                                                1450 5.0                                                                725 0.0                                                                  0 3000      0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.2.3-15 Primary System Pressure - BV Case 104 650                                                                  710 cntrlvar297 550                                                                  530 Temperature (K)                                                                                  Temperature (F) 450                                                                  350 350                                                                  170 250                                                                    10 3000      0      3000    6000          9000        12000    15000 Time (sec)
Figure 3.2.3-16 Average Downcomer Fluid Temperature - BV Case 104 3-150
 
30000                                                            1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                            1.10 15000                                                            0.73 7500                                                            0.37 0                                                              0.00 3000        0      3000    6000          9000  12000  15000 Time (sec)
Figure 3.2.3-17 Heat Transfer Coefficient - BV Case 104 10.0                                                              1450 p28201 (SG A) 8.0                                p38201 (SG B)              1160 p48201 (SG C)
Pressure (MPa)                                                                                                          Pressure (psia) 6.0                                                              870 4.0                                                              580 2.0                                                              290 0.0                                                              0 3000        0      3000    6000        9000    12000  15000 Time (sec)
Figure 3.2.3-18 Steam Generator Pressure - BV Case 104 3-151
 
120                                                                  265 mflowj28201 (Break) 90                                                                  198 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 60                                                                  132 30                                                                  66 0                                                                  0 3000    0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.2.3-19 Break Flow - BV Case 104 250                                                                  98.4 cntrlvar507 (SG A) 200                            cntrlvar607 (SG B)                  78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                                Narrow Range Level (in) 150                                                                  59.1 100                                                                  39.4 50                                                                  19.7 0                                                                  0.0 3000    0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.2.3-20 Steam Generator Narrow Range Level - BV Case 104 3-152
 
100                                                                    220 mflowj54000 (SG A) mflowj64000 (SG B) 75                                mflowj74000 (SG C)                165 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 50                                                                    110 25                                                                    55 0                                                                      0 3000      0      3000      6000          9000        12000      15000 Time (sec)
Figure 3.2.3-21 Auxiliary Feedwater Flow Rate - BV Case 104 1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000        0    3000      6000            9000        12000      15000 Time (sec)
Figure 3.2.3-22 Normalized Pressurizer Water Level - BV Case 104 3-153
 
20.0                                                                            44.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) 15.0                                  mflowj96300 (HPI Loop C)                33.1 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 10.0                                                                            22.0 5.0                                                                            11.0 0.0                                                                          0.0 3000        0      3000      6000            9000            12000  15000 Time (sec)
Figure 3.2.3-23 HHSI Flow Rate - BV Case 104 500                                                                        1102 400                                  mflowj12001 (Hot Leg A)              882 mflowj12002 (Hot Leg B) mflowj12003 (Hot Leg C) 300                                                                        661 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 200                                                                        441 100                                                                        220 0                                                                        0 100                                                                          220 3000        0      3000    6000          9000          12000      15000 Time (sec)
Figure 3.2.3-24 Hot Leg Mass Flow Rate - BV Case 104 3-154
 
300                                                                        540 250                                  cntrlvar10 (Core Exit)                450 200                                                                        360 Subcooling (K)                                                                                      Subcooling (F) 150                                                                        270 100                                                                        180 50                                                                        90 0                                                                          0 3000      0      3000      6000            9000            12000    15000 Time (sec)
Figure 3.2.3-25 Core Exit Subcooling - BV Case 104 300 250                                    cntrlvar209 (SG A) cntrlvar409 (SG B) cntrlvar609 (SG C)
Energy Removed (MW) 200 150 100 50 0
50 3000      0      3000      6000              9000          12000      15000 Time (sec)
Figure 3.2.3-26 Steam Generator Energy Removal Rate - BV Case 104 3-155
 
650                                                                710 tempf20801 (SG A primary) tempf26601 (SG A secondary) tempf30801 (SG B primary) tempf36601 (SG B secondary) 550                                                                530 Temperature (K)                                                                              Temperature (F) 450                                                                350 350                                                                  170 3000    0      3000    6000          9000        12000    15000 Time (sec)
Figure 3.2.3-27 System Fluid Temperatures - BV Case 104 3.2.3.3 Beaver Valley Main Steam Line Break From Hot Full Power (BV Case 108)
This case is a small steam line break in steam generator A from hot full power with auxiliary feedwater continuing to feed the broken loop generator for 30 minutes and operator control of high head safety injection. This case is identified as Beaver Valley Case 108 in Appendix B, Table B-1.
This case is simulated by sticking open all steam generator A safety relief valves. This results in a total break flow area of 0.0505 m2 [0.54325 ft2]. The break is assumed to occur downstream of the flow restrictor and inside of containment, so the RCPs are tripped due to adverse containment conditions. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.3-28 through 3.2.3-30 respectively. A sequence of events table for this event is shown as Table 3.2-3.
When the steam line break occurs, the secondary side pressure in steam generator A drops rapidly as shown in Figure 3.2.3-31. Steam line break flow is shown in Figure 3.2.3-32. An MSIV closure signal should be generated upon high containment pressure, however, the containment is not modeled. In the model, the MSIV did not receive a close signal until 1,575 s on two out of three steam line pressures less than 3.47 MPa [503 psia]. While the MSIV should have closed much sooner, there are check valves in the lines to prevent backflow from one steam generator to another. At 0.0 s the turbine stop valves were closed. In addition, since the secondary side pressure was less than the steam dump valve setpoint, there was no flow through any of the 3-156
 
MSIVs. Therefore, it is acceptable for the calculation to simulate that the MSIVs did not close upon high containment pressure.
At approximately seven seconds a safety injection actuation signal was generated due to high steamline pressure differential. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated. Because of the break and main feedwater being stopped, the steam generator water levels drop rapidly as shown in Figure 3.2.3-33.
AFW flow begins almost immediately, as shown in Figure 3.2.3-34, and all flow goes to the broken loop generator (SG A). As the pressure in steam generator A decreases, the flow through the break decreases and becomes smaller than the AFW flow, allowing the water level to recover. At 1,800 s, the operator is assumed to stop AFW flow to the broken loop generator. At this time, AFW begins flowing to steam generators B and C. With no feedwater, steam generator A begins to boil dry.
Heat transfer from the primary to the depressurizing steam generator resulted in a rapid cooldown of the primary system as shown in Figure 3.2.3-29. This cooling also causes the primary fluid volume to shrink which slightly depressurizes the primary as shown in Figure 3.2.3-28 as well as causes the pressurizer water level to decrease as shown in Figure 3.2.3-35. Because the SIAS signal was generated, HHSI flow (Figure 3.2.3-36) is started and repressurizes the primary to the pressurizer PORV setpoint by 600 s.
As a boundary condition to this case, the RCPs were tripped (based on adverse containment conditions). Upon RCP trip, the loop flow decreases rapidly as shown in Figure 3.2.3-37. Loop natural circulation flow for steam generator A continues after the RCP trip as a result of the continual heat removal of the steam generator. Figure 3.2.1-30 shows the downcomer fluid-wall heat transfer coefficient. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops rapidly from an initial value of approximately 23,950 W/m2*K
[1.171 Btu/s*ft2*EF]. The heat transfer coefficient then remains around a value of 1,500 W/m2*K
[0.073 Btu/s*ft2*EF] for the duration of the transient.
By 1,770 s the system has met all of the conditions for stopping an HHSI pump. These conditions include: core exit subcooling greater than 22.2 K [40EF] (Figure 3.2.3-38), any steam generator NRL greater than 32% (Figure 3.2.3-33), pressurizer water level greater than 32%
(Figure 3.2.3-35) and pressure stable or increasing (Figure 3.2.3-28). After waiting an additional 30 minutes (as given in the case description), the operator is assumed to stop a single HHSI pump (at 3,570 s). Then, after waiting five more minutes, the above conditions are still met so the second HHSI pump is stopped (at 3,870 s).
Upon stopping the second HHSI pump, letdown flow was re-established. Between the loss of the HHSI pumps and letdown flow, the primary pressure drops rapidly. At 6,075 s steam generator A has boiled dry, and can no longer remove heat. Since there is no longer any ECCS water entering the system, the primary begins to heatup and repressurize.
3-157
 
When steam generator A has boiled dry, its heat removal effectiveness drops as shown in Figure 3.2.3-39. At this time the primary system is much colder than the steam generator B and C secondaries as shown in Figure 3.2.3-40. So, after 6,075 s the primary system does not have a heat sink and the primary system heats up. The loop A natural circulation during this period is being driven by the transient heatup of the loop.
By 7,185 s, the primary system becomes hotter than steam generator B and C temperatures and by 7,500 s enough of that hot primary water finds its way into steam generator B primary that natural circulation starts up.        The burst of heat removal (as well as associated pressure/temperature drop) and rapid natural circulation flow in loop B results because in order to start the flow the primary system had to become much hotter than could be sustained by steady natural circulation flow. So the flow starts up, but the cooling it affords at first is at a much greater rate than needed and this causes the flow reduction down to the sustainable rate. Around 11,500 s, natural circulation begins in loop C.
The small main steam line break results in a continuous cooldown of the primary side while auxiliary feedwater flow is allowed to the broken steam generator. The minimum downcomer fluid temperature is 395 K [252EF] at 3,600 s. Due to continuous HHSI flow, the primary pressure at 3,600 s is 16.2 MPa [2,350 psia]. Once the HHSI flow is controlled/stopped, the primary pressure decreases, however, between core heat, the lack of ECCS flow, and the loss of a heat sink (steam generator A boiling dry) causes the system to heatup/repressurize.
20.0                                                                  2901 p34001 (pressurizer) 15.0                                                                  2176 Pressure (MPa)                                                                                Pressure (psia) 10.0                                                                  1450 5.0                                                                  725 0.0                                                                  0 3000    0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.2.3-28 Primary System Pressure - BV Case 108 3-158
 
650                                                                  710 cntrlvar297 550                                                                  530 Temperature (K)                                                                                                    Temperature (F) 450                                                                  350 350                                                                  170 250                                                                  10 3000        0      3000      6000            9000    12000  15000 Time (sec)
Figure 3.2.3-29 Average Downcomer Fluid Temperature - BV Case 108 30000                                                                1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                                1.10 15000                                                                0.73 7500                                                                0.37 0                                                              0.00 3000        0    3000      6000            9000  12000  15000 Time (sec)
Figure 3.2.3-30 Heat Transfer Coefficient - BV Case 108 3-159
 
10.0                                                                1450 p28201 (SG A) 8.0                            p38201 (SG B)                      1160 p48201 (SG C)
Pressure (MPa)                                                                                  Pressure (psia) 6.0                                                                870 4.0                                                                580 2.0                                                                290 0.0                                                                  0 3000      0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.2.3-31 Steam Generator Pressure - BV Case 108 200                                                                  441 mflowj57000 (Break) 150                                                                  331 Flow Rate (kg/s)                                                                              Flow Rate (lbm/s) 100                                                                  220 50                                                                  110 0                                                                    0 3000      0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.2.3-32 Break Flow - BV Case 108 3-160
 
250                                                                  98.4 cntrlvar507 (SG A) 200                                cntrlvar607 (SG B)              78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                                Narrow Range Level (in) 150                                                                  59.1 100                                                                  39.4 50                                                                  19.7 0                                                                  0.0 3000      0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.3-33 Steam Generator Narrow Range Level - BV Case 108 100                                                                  220 mflowj54000 (SG A) mflowj64000 (SG B) 75                                mflowj74000 (SG C)              165 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 50                                                                  110 25                                                                  55 0                                                                  0 3000      0      3000    6000            9000        12000  15000 Time (sec)
Figure 3.2.3-34 Auxiliary Feedwater Flow Rate - BV Case 108 3-161
 
1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000            0    3000      6000            9000          12000      15000 Time (sec)
Figure 3.2.3-35 Normalized Pressurizer Water Level - BV Case 108 20.0                                                                            44.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) 15.0                                    mflowj96300 (HPI Loop C)              33.1 Flow Rate (kg/s)                                                                                                      Flow Rate (lbm/s) 10.0                                                                            22.0 5.0                                                                            11.0 0.0                                                                            0.0 3000        0      3000      6000          9000          12000        15000 Time (sec)
Figure 3.2.3-36 HHSI Flow Rate - BV Case 108 3-162
 
500                                                                          1102 400                                    mflowj12001 (Hot Leg A)              882 mflowj12002 (Hot Leg B) mflowj12003 (Hot Leg C) 300                                                                          661 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 200                                                                          441 100                                                                          220 0                                                                      0 100                                                                          220 3000          0      3000    6000          9000            12000    15000 Time (sec)
Figure 3.2.3-37 Hot Leg Mass Flow Rate - BV Case 108 250                                                                              450 cntrlvar10 (Core Exit) 200                                                                              360 Subcooling (K)                                                                                            Subcooling (F) 150                                                                              270 100                                                                              180 50                                                                                90 0                                                                              0 3000          0      3000    6000            9000            12000    15000 Time (sec)
Figure 3.2.3-38 Core Exit Subcooling - BV Case 108 3-163
 
200 cntrlvar209 (SG A) 150                                  cntrlvar409 (SG B) cntrlvar609 (SG C)
Energy Removed (MW) 100 50 0
50 3000      0    3000        6000              9000        12000      15000 Time (sec)
Figure 3.2.3-39 Steam Generator Energy Removal Rate - BV Case 108 650                                                                      710 tempf20801 (SG A primary) tempf26601 (SG A secondary) tempf30801 (SG B primary) tempf36601 (SG B secondary) 550                                                                      530 Temperature (K)                                                                                        Temperature (F) 450                                                                      350 350                                                                        170 3000  0      3000      6000          9000            12000      15000 Time (sec)
Figure 3.2.3-40 System Fluid Temperatures for Main Steam Line Break - BV Case 108 3-164
 
3.2.4 Beaver Valley Main Steam Line Breaks at Hot Zero Power This group of transients is identical to the large steam line breaks discussed in Section 3.2.3 above, however, they are initiated from hot zero power. The large steam line breaks were assumed to be double ended guillotine breaks just downstream of the flow restrictor in steam generator A. The breaks are assumed to occur inside containment, thus leading to adverse containment conditions. This results in a trip of the reactor coolant pumps. In both cases, the auxiliary feedwater flow is assumed to continue to the broken loop generator for 30 minutes, at which point it is isolated by the operator. These cases also have operator control of the high head safety injection (HHSI).
The RELAP5 transient restart input was modified to add the following: steam line break, RCP trip, AFW isolation at 30 minutes, control of HHSI and allow letdown after both HHSI pumps are stopped.
The break downstream conditions were modeled with time dependent volumes which were set at atmospheric conditions. Since this was a double ended break, both the steam generator side and the steam line side were connected to time dependent volumes. In both transients, the break was set to occur at time zero.
The AFW was isolated at 30 minutes by multiplying the original control valve position by zero using RELAP5 trips and controls.
The HHSI in Beaver Valley is controlled by turning HHSI pumps on or off, rather than throttling to a desired flow rate. Conditions for turning pumps off are as follows: core exit subcooling greater than 22.2 K [40EF], any steam generator NRL greater than 32%, pressurizer water level greater than 32% and primary pressure stable or increasing. If the conditions listed are met, the operator is allowed to turn off one HHSI pump. If conditions are still met five minutes later the second HHSI pump can be turned off. If the above conditions are no longer met at any time, HHSI pumps must be turned back on. In both cases, the operator is assumed to turn off HHSI pumps after the above conditions are met plus a time delay (30 minutes in one case and 60 minutes in the other).
A sequence of events table for both main steam line break transients is provided as Table 3.2-4.
3-165
 
Table 3.2-4 Sequence of Events for Main Steam Line Breaks from Hot Zero Power Case 103 - MSLB with AFW        Case 105 - MSLB with AFW continuing to feed affected    continuing to feed affected generator for 30 minutes and    generator for 30 minutes and operator controls HHSI 30      operator controls HHSI 60 minutes after allowed          minutes after allowed Event Time (s)
Break                                            0                              0 RCP trip                                        0                              0 SIAS generated                                  0                              0 HHSI flow initiated                              0                              0 MFW stopped                                      0                              0 AFW started                                      0                              0 Reactor trip                                  24.96                          24.96 Pressurizer pressure                          930                            930 exceeds PORV setpoint Pressurizer fills                            1,050                          1,050 AFW stopped to broken loop                    1,800                          1,800 1st HHSI pump stopped                        3,405                          5,205 2nd HHSI pump stopped                        3,705                          5,505 3.2.4.1 Beaver Valley Main Steam Line Break From Hot Zero Power (BV Case 103)
This case is a main steam line break in steam generator A from hot zero power with auxiliary feedwater continuing to feed the broken loop generator for 30 minutes and operator control of high head safety injection. This case is identified as Beaver Valley Case 103 in Appendix B, Table B-1.
The steam line break is assumed to occur downstream of the flow restrictor and inside of containment, so the RCPs are tripped due to adverse containment conditions. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.4-1 through 3.2.4-3 respectively. A sequence of events table for this event is shown as Table 3.2-4.
When the steam line break occurs, the secondary side pressure in steam generator A drops rapidly as shown in Figure 3.2.4-4. Steam line break flow is shown in Figure 3.2.4-5. An MSIV closure signal should be generated upon high containment pressure, however, the containment is not modeled. In the model, the MSIV never received an MSIV closure signal and remained open the entire transient. While the MSIV should have closed, there are check valves in the lines to 3-166
 
prevent backflow from one steam generator to another. At 25 s, a reactor/turbine trip was generated (based on two of three loop delta temperature) which closes the turbine stop valve. In addition, since the secondary side pressure was less than the steam dump valve setpoint, there was no flow through any of the MSIVs. Therefore, it is acceptable for the calculation to simulate that the MSIVs did not close upon high containment pressure.
Immediately after the break occurs a safety injection actuation signal was generated due to high steamline pressure differential. The SIAS results in actuation of both the HHSI and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated. Because of the break and main feedwater being stopped, the steam generator water level drops rapidly as shown in Figure 3.2.4-6.
AFW flow begins almost immediately, as shown in Figure 3.2.4-7, and all flow goes to the broken loop generator (SG A). As the pressure in steam generator A decreases, the flow through the break decreases and becomes smaller than the AFW flow, allowing the water level to recover. By 420 s, the steam generator A water level has recovered and auxiliary feedwater then goes to maintain level in steam generators B and C. Between 555 and 825 s all AFW goes to steam generator A. By 825 s the water level in steam generator A has recovered well above the level setpoint so AFW stops. At 1,800 s, the operator is assumed to stop AFW to steam generator A.
Note that at 1,800 s there is currently no flow, however, when flow is demanded near 3,000 s, it is no longer available to steam generator A and it begins to boil dry.
Heat transfer from the primary to the depressurizing steam generator resulted in a rapid cooldown of the primary system as shown in Figure 3.2.4-2. This cooling also causes the primary fluid volume to shrink which slightly depressurizes the primary as shown in Figure 3.2.4-1 as well as causes the pressurizer water level to decrease as shown in Figure 3.2.4-8. Because the SIAS signal was generated, HHSI flow (Figure 3.2.4-9) is started and repressurizes the primary to the pressurizer PORV setpoint by 930 s.
As a boundary condition to this case, the RCPs were tripped (based on adverse containment conditions). Upon RCP trip, the loop flow decreases rapidly as shown in Figure 3.2.4-10. Loop natural circulation flow for steam generator A continues after the RCP trip as a result of the continual heat removal of the steam generator. Figure 3.2.1-3 shows the downcomer fluid-wall heat transfer coefficient. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops rapidly from an initial value of approximately 24,075 W/m2*K
[1.178 Btu/s*ft2*EF]. The heat transfer coefficient then remains around a value of 650 W/m2*K
[0.032 Btu/s*ft2*EF] for the duration of the transient.
By 1,605 s the system has met all of the conditions for stopping an HHSI pump. These conditions include: core exit subcooling greater than 22.2 K [40EF] (Figure 3.2.4-11), any steam generator NRL greater than 32% (Figure 3.2.4-6), pressurizer water level greater than 32% (Figure 3.2.4-8) and pressure stable or increasing (Figure 3.2.4-1). After waiting an additional 30 minutes (as given in the case description), the operator is assumed to stop a single HHSI pump (at 3,405 s). Then, 3-167
 
after waiting five more minutes, the above conditions are still met so the second HHSI pump is stopped (at 3,705 s).
Upon stopping the second HHSI pump, letdown flow was re-established. Between the loss of the HHSI pumps and letdown flow, the primary pressure drops rapidly.
Figure 3.2.4-12 shows the energy removed by the steam generators. By 4,850 s, steam generator A is removing all of the decay heat, and the downcomer fluid temperature remains about 380 K
[224EF] for the duration of the transient.
The double ended main steam line break results in a continuous cooldown of the primary side while auxiliary feedwater flow is allowed to the broken steam generator. The minimum downcomer fluid temperature is 362 K [192EF] at 3,420 s. Due to continuous HHSI flow, the primary pressure at 3,420 s is 16.2 MPa [2,350 psia]. Once the HHSI flow is controlled/stopped, the primary pressure decreases. By 4,850 s, core decay heat is being removed through steam generator A and the downcomer fluid temperature remains nearly constant.
20.0                                                                2901 p34001 (pressurizer) 15.0                                                                2176 Pressure (MPa)                                                                              Pressure (psia) 10.0                                                                1450 5.0                                                                725 0.0                                                                0 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.4-1 Primary System Pressure - BV Case 103 3-168
 
650                                                                710 cntrlvar297 550                                                                530 Temperature (K)                                                                                                      Temperature (F) 450                                                                350 350                                                                170 250                                                                10 3000      0      3000      6000          9000    12000  15000 Time (sec)
Figure 3.2.4-2 Average Downcomer Fluid Temperature - BV Case 103 30000                                                              1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                              1.10 15000                                                              0.73 7500                                                              0.37 0                                                            0.00 3000      0    3000      6000          9000  12000  15000 Time (sec)
Figure 3.2.4-3 Downcomer Wall Heat Transfer Coefficient - BV Case 103 3-169
 
10.0                                                                  1450 p28201 (SG A) 8.0                                p38201 (SG B)                    1160 p48201 (SG C)
Pressure (MPa)                                                                                  Pressure (psia) 6.0                                                                  870 4.0                                                                  580 2.0                                                                  290 0.0                                                                  0 3000        0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.4-4 Steam Generator Pressure - BV Case 103 120                                                                    265 mflowj28201 (Break) 90                                                                    198 Flow Rate (kg/s)                                                                                Flow Rate (lbm/s) 60                                                                    132 30                                                                    66 0                                                                    0 3000        0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.4-5 Break Flow Rate - BV Case 103 3-170
 
250                                                                98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)              78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                                    Narrow Range Level (in) 150                                                                59.1 100                                                                39.4 50                                                                19.7 0                                                                0.0 3000      0      3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.4-6 Steam Generator Narrow Range Level - BV Case 103 100                                                                220 mflowj54000 (SG A) mflowj64000 (SG B) 75                              mflowj74000 (SG C)              165 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) 50                                                                110 25                                                                55 0                                                                0 3000      0      3000      6000        9000        12000  15000 Time (sec)
Figure 3.2.4-7 Auxiliary Feedwater Flow Rate - BV Case 103 3-171
 
1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000      0      3000      6000          9000            12000      15000 Time (sec)
Figure 3.2.4-8 Pressurizer Water Level - BV Case 103 20.0                                                                        44.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) 15.0                                mflowj96300 (HPI Loop C)              33.1 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) 10.0                                                                        22.0 5.0                                                                        11.0 0.0                                                                        0.0 3000      0      3000      6000        9000          12000        15000 Time (sec)
Figure 3.2.4-9 HHSI Flow Rate - BV Case 103 3-172
 
500                                                                        1102 400                                  mflowj12001 (Hot Leg A)              882 mflowj12002 (Hot Leg B) mflowj12003 (Hot Leg C) 300                                                                        661 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 200                                                                        441 100                                                                        220 0                                                                    0 100                                                                        220 3000            0    3000    6000          9000            12000    15000 Time (sec)
Figure 3.2.4-10 Hot Leg Flow Rate - BV Case 103 300                                                                            540 250                                  cntrlvar10 (Core Exit)                  450 200                                                                            360 Subcooling (K)                                                                                            Subcooling (F) 150                                                                            270 100                                                                            180 50                                                                              90 0                                                                            0 3000          0      3000      6000          9000            12000    15000 Time (sec)
Figure 3.2.4-11 Core Exit Subcooling - BV Case 103 3-173
 
300 250                          cntrlvar209 (SG A) cntrlvar409 (SG B) cntrlvar609 (SG C)
Energy Removed (MW) 200 150 100 50 0
50 3000  0  3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.4-12 Steam Generator Energy Removal Rate - BV Case 103 3.2.4.2 Beaver Valley Main Steam Line Break From Hot Zero Power (BV Case 105)
This case is a main steam line break in steam generator A from hot zero power with auxiliary feedwater continuing to feed the broken loop generator for 30 minutes and operator control of high head safety injection. This case is identified as Beaver Valley Case 105 in Appendix B, Table B-1.
The steam line break is assumed to occur downstream of the flow restrictor and inside of containment, so the RCPs are tripped due to adverse containment conditions. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.4-13 through 3.2.4-15 respectively. A sequence of events table for this event is shown as Table 3.2-4.
When the steam line break occurs, the secondary side pressure in steam generator A drops rapidly as shown in Figure 3.2.4-16. Steam line break flow is shown in Figure 3.2.4-17. An MSIV closure signal should be generated upon high containment pressure, however, the containment is not modeled. In the model, the MSIV never received an MSIV closure signal and remained open the entire transient. While the MSIV should have closed, there are check valves in the lines to prevent backflow from one steam generator to another. At 25 s, a reactor/turbine trip was generated (based on two of three loop delta temperature) which closes the turbine stop valve. In addition, since the secondary side pressure was less than the steam dump valve setpoint, there was no flow through any of the MSIVs. Therefore, it is acceptable that the MSIVs did not close upon high containment pressure.
3-174
 
Immediately after the break occurs a safety injection actuation signal was generated due to high steamline pressure differential. The SIAS results in actuation of both the HHSI and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated. Because of the break and main feedwater being stopped, the steam generator water level drops rapidly as shown in Figure 3.2.4-18.
AFW flow begins almost immediately, as shown in Figure 3.2.4-19, and all flow goes to the broken loop generator (SG A). As the pressure in steam generator A decreases, the flow through the break decreases and becomes smaller than the AFW flow, allowing the water level to recover. By 420 s, the steam generator A water level has recovered and auxiliary feedwater then goes to maintain level in steam generators B and C. Between 555 and 825 s all AFW goes to steam generator A. By 825 s the water level in steam generator A has recovered well above the level setpoint so AFW stops. At 1,800 s, the operator is assumed to stop AFW to steam generator A.
Note that at 1,800 s there is currently no flow, however, when flow is demanded near 3,000 s, it is no longer available to steam generator A and it begins to boil dry.
Heat transfer from the primary to the depressurizing steam generator resulted in a rapid cooldown of the primary system as shown in Figure 3.2.4-14. This cooling also causes the primary fluid volume to shrink which slightly depressurizes the primary as shown in Figure 3.2.4-13 as well as causes the pressurizer water level to decrease as shown in Figure 3.2.4-20. Because the SIAS signal was generated, HHSI flow (Figure 3.2.4-21) is started and repressurizes the primary to the pressurizer PORV setpoint by 930 s.
As a boundary condition to this case, the RCPs were tripped (based on adverse containment conditions). Upon RCP trip, the loop flow decreases rapidly as shown in Figure 3.2.4-22. Loop natural circulation flow for steam generator A continues after the RCP trip as a result of the continual heat removal of the steam generator. Figure 3.2.1-15 shows the downcomer fluid-wall heat transfer coefficient. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops rapidly from an initial value of approximately 24,075 W/m2*K
[1.178 Btu/s*ft2*EF]. The heat transfer coefficient then remains around a value of 650 W/m2*K
[0.032 Btu/s*ft2*EF] for the duration of the transient.
By 1,605 s the system has met all of the conditions for stopping an HHSI pump. These conditions include: core exit subcooling greater than 22.2 K [40EF] (Figure 3.2.4-23), any steam generator NRL greater than 32% (Figure 3.2.4-18), pressurizer water level greater than 32%
(Figure 3.2.4-20) and pressure stable or increasing (Figure 3.2.4-13). After waiting an additional 60 minutes (as given in the case description), the operator is assumed to stop a single HHSI pump (at 5,205 s). Then, after waiting five more minutes, the above conditions are still met so the second HHSI pump is stopped (at 5,505 s).
Upon stopping the second HHSI pump, letdown flow was re-established. Between the loss of the HHSI pumps and letdown flow, the primary pressure drops rapidly.
3-175
 
By 8,000 s, steam generator A is removing all of the decay heat, and the downcomer fluid temperature remains about 380 K [224EF] for the duration of the transient.
The double ended main steam line break results in a continuous cooldown of the primary side while auxiliary feedwater flow is allowed to the broken steam generator. The minimum downcomer fluid temperature is 355 K [179EF] at 5,220 s. Due to continuous HHSI flow, the primary pressure at 5,220 s is 16.2 MPa [2,350 psia]. Once the HHSI flow is controlled/stopped, the primary pressure decreases. By 8,000 s, core decay heat is being removed through steam generator A and the downcomer fluid temperature remains nearly constant.
20.0                                                                2901 p34001 (pressurizer) 15.0                                                                2176 Pressure (MPa)                                                                              Pressure (psia) 10.0                                                                1450 5.0                                                                725 0.0                                                                  0 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.2.4-13 Primary System Pressure - BV Case 105 3-176
 
650                                                              710 cntrlvar297 550                                                              530 Temperature (K)                                                                                                      Temperature (F) 450                                                              350 350                                                              170 250                                                              10 3000      0      3000    6000          9000  12000    15000 Time (sec)
Figure 3.2.4-14 Average Downcomer Fluid Temperature - BV Case 105 30000                                                          1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                          1.10 15000                                                          0.73 7500                                                            0.37 0                                                        0.00 3000      0  3000    6000          9000  12000  15000 Time (sec)
Figure 3.2.4-15 Downcomer Wall Heat Transfer Coefficient - BV Case 105 3-177
 
10.0                                                                  1450 p28201 (SG A) 8.0                                p38201 (SG B)                  1160 p48201 (SG C)
Pressure (MPa)                                                                                          Pressure (psia) 6.0                                                                  870 4.0                                                                  580 2.0                                                                  290 0.0                                                                  0 3000          0    3000      6000        9000        12000  15000 Time (sec)
Figure 3.2.4-16 Steam Generator Pressure - BV Case 105 120                                                                    265 mflowj28201 (Break) 90                                                                    198 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) 60                                                                    132 30                                                                    66 0                                                                      0 3000        0      3000      6000        9000          12000  15000 Time (sec)
Figure 3.2.4-17 Break Flow Rate - BV Case 105 3-178
 
250                                                                98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)              78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                                      Narrow Range Level (in) 150                                                                59.1 100                                                                39.4 50                                                                19.7 0                                                                0.0 3000    0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.4-18 Steam Generator Narrow Range Level - BV Case 105 100                                                                220 mflowj54000 (SG A) mflowj64000 (SG B) 75                              mflowj74000 (SG C)              165 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 50                                                                110 25                                                                55 0                                                                  0 3000      0      3000      6000        9000          12000  15000 Time (sec)
Figure 3.2.4-19 Auxiliary Feedwater Flow Rate - BV Case 105 3-179
 
1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000        0        3000      6000            9000            12000      15000 Time (sec)
Figure 3.2.4-20 Pressurizer Water Level - BV Case 105 20.0                                                                            44.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) 15.0                                    mflowj96300 (HPI Loop C)              33.1 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 10.0                                                                            22.0 5.0                                                                            11.0 0.0                                                                            0.0 3000        0      3000      6000          9000          12000        15000 Time (sec)
Figure 3.2.4-21 HHSI Flow Rate - BV Case 105 3-180
 
500                                                                      1102 400                                  mflowj12001 (Hot Leg A)            882 mflowj12002 (Hot Leg B) mflowj12003 (Hot Leg C) 300                                                                      661 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 200                                                                      441 100                                                                      220 0                                                                    0 100                                                                      220 3000          0    3000    6000          9000            12000  15000 Time (sec)
Figure 3.2.4-22 Hot Leg Flow Rate - BV Case 105 300                                                                        540 250                                  cntrlvar10 (Core Exit)              450 200                                                                        360 Subcooling (K)                                                                                            Subcooling (F) 150                                                                        270 100                                                                        180 50                                                                        90 0                                                                          0 3000          0      3000      6000          9000            12000  15000 Time (sec)
Figure 3.2.4-23 Core Exit Subcooling - BV Case 105 3-181
 
300 250                          cntrlvar209 (SG A) cntrlvar409 (SG B) cntrlvar609 (SG C)
Energy Removed (MW) 200 150 100 50 0
50 3000  0  3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.4-24 Steam Generator Energy Removal Rate - BV Case 105 3.2.5 Beaver Valley Stuck Open Primary Relief Valves Which Reclose From Hot Full Power The transients in this group were initiated from full power steady state operating conditions (nominal temperature and pressure) and all control systems were in automatic control. The first transient is a reactor/turbine trip with one stuck open pressurizer safety relieve valve which recloses at 6,000 s. The SRV is assumed to open upon the reactor/turbine trip and remains full open until the specified closing time. The second case is a reactor/turbine trip with one stuck open pressurizer safety relief valve which recloses at 6,000 s and operator control of HHSI (10-minute delay).
In order to model the stuck open safety relieve valve which recloses, a general data table was added to the RELAP5 transient restart input file which contains the valve position versus time. The valve was also set to point to the data table, rather than the original control system. This valve was set to open at time zero and close at 6,000 s. Note that the data table opens the RELAP5 valve component to a position of one third which models one of the three safety relief valves stuck open. In addition to the stuck open SRV, a reactor trip is set to occur at time zero.
In case 126, the HHSI pumps are controlled by the operator. At Beaver Valley, the HHSI pumps cannot be "throttled" to adjust the flow rate. To adjust HHSI pump flow, the operators must turn pumps on/off.
3-182
 
A sequence of events table for both stuck open pressurizer SRV cases is provided as Table 3.2-5.
Table 3.2-5 Sequence of Events for Stuck Open Pressurizer SRV which Reclose from Hot Full Power Case 060 - RTT with          Case 126 - RTT with one stuck open                one stuck open pressurizer SRV which pressurizer SRV which recloses at 6,000 s          recloses at 6,000 s and HHSI control (10 minute delay)
Event Time (s)
Pressurizer SRV opened                                0.0                          0.0 Reactor/turbine trip                                  0.0                          0.0 SIAS generated                                        11.1                        11.2 MFW stopped                                          11.1                        11.2 AFW started                                          11.1                        11.2 HHSI flow initiated                                  11.1                        11.2 RCPs trip                                            48.1                        68.1 Pressurizer fills                                    125.0                        125.0 Accumulators begin injecting                        2,520                        2,530 Break valve closed                                  6,000                        6,000 Accumulators stop injecting                          6,630                        6,001 Primary Repressurizes to PORV 7,640                        7,640 setpoint First HHSI pump stopped                              N/A                        7,825 Second HHSI pump stopped                              N/A                        8,125 3.2.5.1 Beaver Valley Stuck Open Pressurizer SRV Which Recloses From Hot Full Power (BV Case 060)
This case is one stuck open pressurizer safety relief valve which recloses from hot full power. This case is identified as Beaver Valley Case 060 in Appendix B, Table B-1. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.5-1 through 3.2.5-3 respectively.
Each of the three pressurizer SRVs has an effective diameter of 5.38 cm [2.12 in], so a stuck open SRV will be similar to 5.08 cm [2.0 in] diameter surge line break. As a result of the stuck open valve, the primary system rapidly depressurizes as shown in Figure 3.2.5-1. In addition, since the valve is located at the top of the pressurizer, the pressurizer fills solid due to the primary system water flowing towards the valve. By 125 s, the pressurizer is filled, and remains filled for the 3-183
 
duration of the transient as seen in Figure 3.2.5-4. Due to the loss of inventory, the primary system begins voiding in the reactor vessel upper head.
At approximately 11 s, a SIAS was generated. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated. Note that while LHSI is activated, there is no flow unless the primary pressure falls below the LHSI pump shutoff head.
A plot of pressurizer SRV flow versus total safety injection flow is provided as Figure 3.2.5-5. Total SI flow includes high pressure injection, low pressure injection, accumulators and charging/letdown. High pressure injection flow is shown in Figure 3.2.5-6. For about the first 2,500 s break flow is slightly larger than safety injection flow. By 2,500 s the primary pressure has decreased to below the accumulator pressure, resulting in accumulator injection as shown in Figure 3.2.5-7. With this additional flow, the total SI is about equal to the flow through the stuck open valve. The primary pressure never drops to below the low pressure injection pump shutoff head, therefore, there is no low pressure injection for this case.
At approximately 48 s, the reactor coolant pumps were tripped due to an operator action. This causes the flow in the loops to decrease to near zero. Figure 3.2.5-8 presents the hot leg mass flow for all three loops at the exit of the vessel. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops quickly from an initial value of 24,073 W/m2*K
[1.178 Btu/s*ft2*&deg;F] as seen in Figure 3.2.5-3. Until the system repressurizes around 7,640 s the heat transfer coefficient drops gradually to 400 W/m2*K [0.020 Btu/s*ft2*&deg;F]. After the system repressurizes, the heat transfer coefficient remains around 1,250 W/m2*K [0.0611 Btu/s*ft2*&deg;F].
Figure 3.2.5-9 shows the core power versus the energy lost through the stuck open valve. As seen in this figure, the energy lost out of the valve when it is open is larger than the assumed core decay heat, thus, heat is being removed from the system causing the temperature to decrease.
The average downcomer fluid temperature is shown in Figure 3.2.5-2. By 6,000 s, the downcomer temperature has reached a minimum value of 330 K [134&deg;F].
Figure 3.2.5-10 shows the steam generator narrow range water level. Upon the SIAS being generated, the MFW is isolated. AFW is started and begins controlling the generators to the setpoint of 33% NRL (120.7 cm [47.52 in]). Figure 3.2.5-11 shows the auxiliary feedwater flow which comes on initially to maintain steam generator water level. The steam generator secondary side pressure is shown in Figure 3.2.5-12.
At 6,000 s, the stuck open pressurizer SRV is reclosed. The high head injection pumps continue to supply cold water, and the primary system begins to repressurize. Note that no operator actions, such as controlling HHSI flow, were taken to control primary system pressure or level.
By 6,630 s, the primary pressure has increased to above the accumulator pressure, thus stopping accumulator flow. By 7,600 s, the SI flow has repressurized the primary to the pressurizer PORV opening setpoint and flow begins to leave the primary system through the valve.
3-184
 
During the initial part of the LOCA, the steam generator tubes voided as shown in Figure 3.2.5-13.
Once the pressurizer SRV recloses the steam generator tubes begin to refill. During the refill time (6,500 to 7,150 s) there are minor condensation/vaporization effects. Figure 3.2.5-14 shows the vapor generation rate for the steam generator tubes (hot leg side). Note that positive values show vaporization while negative values show condensation. Figure 3.2.5-8 shows that the hot leg flow oscillations occur during this period of steam generator tube condensation/vaporization.
As a consequence of the stuck open pressurizer safety relief valve, it is shown that the loss of inventory through the SRV is capable of removing more than the assumed core decay heat. This leads to the downcomer fluid temperature decreasing to a value of 330 K [134&deg;F] at the valve reclosure time. Shortly after the pressurizer SRV recloses, the primary pressure increases to the pressurizer PORV opening setpoint of 16.2 MPa [2,350 psia]. While the system is repressurizing (6,000 to 7,600 s), the downcomer fluid temperature rises slightly to 350 K [170&deg;F]. After the system has repressurized, the downcomer fluid temperature rises to 460 K [368&deg;F] with the pressure remaining at the pressurizer PORV opening setpoint.
20.0                                                                      2901 15.0                                                                      2176 Pressure (MPa)                                                                                    Pressure (psia) 10.0                                            p34001 (pressurizer)      1450 5.0                                                                      725 0.0                                                                        0 3000      0      3000    6000      9000          12000            15000 Time (sec)
Figure 3.2.5-1 Primary System Pressure - BV Case 060 3-185
 
650                                                                  710 cntrlvar297 550                                                                  530 Temperature (K)                                                                                                        Temperature (F) 450                                                                  350 350                                                                  170 250                                                                    10 3000      0      3000      6000          9000        12000  15000 Time (sec)
Figure 3.2.5-2 Average Downcomer Fluid Temperature - BV Case 060 30000                                                                1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                                1.10 15000                                                                0.73 7500                                                                0.37 0                                                                0.00 3000      0    3000      6000            9000  12000  15000 Time (sec)
Figure 3.2.5-3 Downcomer Heat Transfer Coefficient - BV Case 060 3-186
 
1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000      0        3000      6000            9000        12000      15000 Time (sec)
Figure 3.2.5-4 Pressurizer Water Level - BV Case 060 150                                                                                                      331 mflowj34600 (SRV flow) cntrlvar984 (total SI flow) 100                                                                                                      220 Flow Rate (kg/s)                                                                                                                  Flow Rate (lbm/s) 50                                                                                                110 0                                                                                        0 3000                  0      3000      6000          9000            12000      15000 Time (sec)
Figure 3.2.5-5 Break Flow and Total Safety Injection Flow - BV Case 060 3-187
 
25.0                                                                  55.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) mflowj96300 (HPI Loop C) 20.0                                                                  44.1 Flow Rate (kg/s)                                                                                                          Flow Rate (lbm/s) 15.0                                                                  33.1 10.0                                                                  22.0 5.0                                                                  11.0 0.0                                                                  0.0 3000        0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.5-6 High Pressure Injection Flow Rate - BV Case 060 30.0                                                                  934 Accumulator Liquid Volume (m )                                                                                Accumulator Liquid Volume (ft )
3                                                                                                          3 20.0                                                                  623 acvliq911 (Loop A) acvliq912 (Loop B) acvliq913 (Loop C) 10.0                                                                  311 0.0                                                                  0 3000        0      3000    6000        9000        12000    15000 Time (sec)
Figure 3.2.5-7 Accumulator Liquid Volume - BV Case 060 3-188
 
5000                                                                        11023 mflowj12001 (Hot Leg A) mflowj12002 (Hot Leg B) 2500                                mflowj12003 (Hot Leg C)              5512 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) 0                                                                      0 2500                                                                        5512 5000                                                                      11023 3000        0      3000    6000        9000          12000      15000 Time (sec)
Figure 3.2.5-8 Hot Leg Mass Flow Rate - BV Case 060 150 cntrlvar112 (core power) 120                                      flenth34600 (SRV flow energy)
Power (MW) 90 60 30 0
3000          0      3000      6000              9000            12000      15000 Time (sec)
Figure 3.2.5-9 Core Power and Break Energy - BV Case 060 3-189
 
250                                                                  98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)                78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                              Narrow Range Level (in) 150                                                                  59.1 100                                                                  39.4 50                                                                  19.7 0                                                                  0.0 3000      0      3000      6000        9000          12000  15000 Time (sec)
Figure 3.2.5-10 Steam Generator Narrow Range Water Level - BV Case 060 100                                                                  220 mflowj54000 (SG A) mflowj64000 (SG B) 75                                mflowj74000 (SG C)                165 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 50                                                                  110 25                                                                  55 0                                                                  0 3000      0      3000    6000          9000        12000    15000 Time (sec)
Figure 3.2.5-11 Auxiliary Feedwater Flow Rate - BV Case 060 3-190
 
10.0                                                                          1450 p28201 (SG A) 8.0                                p38201 (SG B)                            1160 p48201 (SG C)
Pressure (MPa)                                                                                        Pressure (psia) 6.0                                                                          870 4.0                                                                          580 2.0                                                                          290 0.0                                                                        0 3000        0      3000      6000        9000        12000        15000 Time (sec)
Figure 3.2.5-12 Steam Generator Pressure - BV Case 060 1.00 voidg20801 (bottom) 0.80                                                    voidg20804 (top)
Void Fraction 0.60 0.40 0.20 0.00 3000        0      3000      6000          9000          12000          15000 Time (sec)
Figure 3.2.5-13 Void Fraction in Steam Generator Tubes - BV Case 060 3-191
 
12.0                                              0.75 vapgen20801 (bottom) 8.0                                              0.50 Vapor Generation Rate (kg/m s) vapgen20802 Vapor Generation Rate (lb/ft s) 3 vapgen20803                      3 vapgen20804 (top) 4.0                                              0.25 0.0                                              0.00 4.0                                              0.25 8.0                                              0.50 6000  6250    6500                6750    7000 Time (sec)
Figure 3.2.5-14 Vapor Generation Rate in Steam Generator Tubes - BV Case 060 3.2.5.2 Beaver Valley Stuck Open Pressurizer SRV Which Recloses with Operator Control of HHSI From Hot Full Power (BV Case 126)
This case is one stuck open pressurizer safety relief valve which recloses at 6,000 s with operator control of HHSI from hot full power. This case is identified as Beaver Valley Case 126 in Appendix B, Table B-1. This case has several differences versus the case 60 described above in Section 3.2.5.1. The major difference is that the operator controls HHSI. This is done by turning HHSI pumps on/off. The criteria for turning off a HHSI pump are as follows:
C      Core exit subcooling > 23.9 K [43&deg;F]
C      SG NRL in any SG > 6%
C      Pressurizer level > 5%
C      Pressure stable or increasing; defined as pressure increased by 0.345 MPa [50 psi] over a 300 s period Note that these criteria are based on normal containment conditions, whereas the criteria used in the MSLB cases previously described were based on adverse containment conditions.
After the conditions are met for HHSI control, a delay time is assumed before the first HHSI pump is stopped. In case 126 this time is ten minutes. After turning off the first HHSI pump, the operator waits five minutes and if the conditions are still met the second pump is stopped. Note that at any time if the above conditions are not met, both HHSI pumps are turned back on.
3-192
 
Other changes include the following:
C        Momentum flux was turned off in both the axial and cross flow direction in the downcomer C        The downcomer wall was renodalized from 14 mesh points to 80 mesh points C        Running averages of the parameters of interest were computed C        Minor edit frequency was changed from one point every fifteen seconds to one point every second The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.5-15 through 3.2.5-17 respectively.
As a result of the stuck open valve, the primary system rapidly depressurizes as shown in Figure 3.2.5-15. In addition, since the valve is located at the top of the pressurizer, the pressurizer fills solid due to the primary system water flowing towards the valve. By 125 s, the pressurizer is filled, and remains filled for the duration of the transient as seen in Figure 3.2.5-18. Due to the loss of inventory, the primary system begins voiding in the reactor vessel upper head.
At approximately 11 s, a SIAS was generated. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated. Note that while LHSI is activated, there is no flow unless the primary pressure falls below the LHSI pump shutoff head.
A plot of pressurizer SRV flow versus total safety injection flow is provided as Figure 3.2.5-19.
Total SI flow includes high pressure injection, low pressure injection, accumulators and charging/letdown. High pressure injection flow is shown in Figure 3.2.5-20. For about the first 2,500 s break flow is slightly larger than safety injection flow. By 2,500 s the primary pressure has decreased to below the accumulator pressure, resulting in accumulator injection as shown in Figure 3.2.5-21. With this additional flow, the total SI is about equal to the flow through the stuck open valve. The primary pressure never drops to below the low pressure injection pump shutoff head, therefore, there is no low pressure injection for this case.
At approximately 68 s, the reactor coolant pumps were tripped due to an operator action. This causes the flow in the loops to decrease to near zero. Figure 3.2.5-22 presents the hot leg mass flow for all three loops at the exit of the vessel. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops quickly from an initial value of 24,073 W/m2*K
[1.178 Btu/s*ft2*&deg;F] as seen in Figure 3.2.5-17. Until the system repressurizes around 7,640 s the heat transfer coefficient drops gradually to 500 W/m2*K [0.024 Btu/s*ft2*&deg;F]. After the system repressurizes, the heat transfer coefficient remains around 1,400 W/m2*K [0.0685 Btu/s*ft2*&deg;F].
Figure 3.2.5-23 shows the core power versus the energy lost through the stuck open valve. As seen in this figure, the energy lost out of the valve when it is open is larger than the assumed core decay heat, thus, heat is being removed from the system causing the temperature to decrease.
3-193
 
The average downcomer fluid temperature is shown in Figure 3.2.5-16.              By 6,000 s, the downcomer temperature has reached a minimum value of 340 K [152&deg;F].
Figure 3.2.5-24 shows the steam generator narrow range water level. Upon the SIAS being generated, the MFW is isolated. AFW is started and begins controlling the generators to the setpoint of 33% NRL (120.7 cm [47.52 in]). Figure 3.2.5-25 shows the auxiliary feedwater flow which comes on initially to maintain steam generator water level. The steam generator secondary side pressure is shown in Figure 3.2.5-26.
At 6,000 s, the stuck open pressurizer SRV is reclosed. The high head injection pumps continue to supply cold water, and the primary system begins to repressurize. By 6,000 s, the primary pressure has increased to above the accumulator pressure, thus stopping accumulator flow. At 7,225 s all the conditions are met to begin HHSI control. These include:
C        Core exit subcooling > 23.9 K [43&deg;F] (Figure 3.2.5-27)
C        SG NRL in any SG > 6% (Figure 3.2.5-24)
C        Pressurizer level > 5% (Figure 3.2.5-18)
C        Pressure stable or increasing; defined as pressure increased by 0.345 MPa [50 psi] over a 300 s period (Figure 3.2.5-15)
Note that in Figure 3.2.5-27, the core exit subcooling is zero prior to time zero. This is because the calculation was not performed in the steady state and there is no data during this time. By 7,640 s, the SI flow has repressurized the primary to the pressurizer PORV opening setpoint and flow begins to leave the primary system through the valve. After waiting the specified ten minutes, the first HHSI pump is turned off at 7,825 s. After waiting another five minutes, the second HHSI pump is turned off at 8,125 s. The conditions for stopping a HHSI pump remain met for the duration of the transient and both HHSI pumps remain turned off.
During the initial part of the LOCA, the steam generator tubes voided as shown in Figure 3.2.5-28.
Once the pressurizer SRV recloses the steam generator tubes begin to refill. During the refill time (6,300 to 7,000 s) there are minor condensation/vaporization effects. Figure 3.2.5-22 shows that the hot leg flow oscillations occur during this period of steam generator tube condensation/vaporization.
As a consequence of the stuck open pressurizer safety relief valve, it is shown that the loss of inventory through the SRV is capable of removing more than the assumed core decay heat. This leads to the downcomer fluid temperature decreasing to a value of 340 K [152&deg;F] at the valve reclosure time. Shortly after the pressurizer SRV recloses, the primary pressure increases to the pressurizer PORV opening setpoint of 16.2 MPa [2,350 psia]. While the system is repressurizing (6,000 to 7,640 s), the downcomer fluid temperature rises slightly to 375 K [215&deg;F]. After the system has repressurized and the HHSI pumps are stopped, the downcomer fluid temperature rises to 555 K [539&deg;F] with the pressure remaining at the pressurizer PORV opening setpoint.
3-194
 
20.0                                                                          2901 15.0                                                                          2176 Pressure (MPa)                                                                                                Pressure (psia) 10.0                                              p34001 (pressurizer)      1450 5.0                                                                          725 0.0                                                                          0 3000      0      3000    6000        9000          12000            15000 Time (sec)
Figure 3.2.5-15 Primary System Pressure - BV Case 126 650                                                                                710 cntrlvar297 550                                                                                530 Temperature (K)                                                                                                Temperature (F) 450                                                                                350 350                                                                                170 250                                                                            10 3000      0      3000    6000          9000          12000          15000 Time (sec)
Figure 3.2.5-16 Average Downcomer Fluid Temperature - BV Case 126 3-195
 
30000                                                                1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                                1.10 15000                                                                0.73 7500                                                                0.37 0                                                              0.00 3000      0    3000    6000            9000    12000    15000 Time (sec)
Figure 3.2.5-17 Downcomer Heat Transfer Coefficient - BV Case 126 1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000      0      3000      6000            9000    12000      15000 Time (sec)
Figure 3.2.5-18 Pressurizer Water Level - BV Case 126 3-196
 
150                                                                            331 mflowj34600 (SRV flow) cntrlvar984 (total SI flow) 100                                                                            220 Flow Rate (kg/s)                                                                                                Flow Rate (lbm/s) 50                                                                          110 0                                                                            0 3000      0      3000      6000          9000          12000          15000 Time (sec)
Figure 3.2.5-19 Break Flow and Total Safety Injection Flow - BV Case 126 25.0                                                                          55.1 mflowj96100 (HPI Loop A) mflowj96200 (HPI Loop B) mflowj96300 (HPI Loop C) 20.0                                                                          44.1 Flow Rate (kg/s)                                                                                                Flow Rate (lbm/s) 15.0                                                                          33.1 10.0                                                                          22.0 5.0                                                                          11.0 0.0                                                                          0.0 3000      0      3000      6000        9000          12000          15000 Time (sec)
Figure 3.2.5-20 High Pressure Injection Flow Rate - BV Case 126 3-197
 
30.0                                                                          934 Accumulator Liquid Volume (m )                                                                                            Accumulator Liquid Volume (ft )
3                                                                                                                          3 20.0                                                                          623 acvliq911 (Loop A) acvliq912 (Loop B) acvliq913 (Loop C) 10.0                                                                          311 0.0                                                                          0 3000        0      3000      6000          9000          12000      15000 Time (sec)
Figure 3.2.5-21 Accumulator Liquid Volume - BV Case 126 5000                                                                      11023 mflowj12001 (Hot Leg A) mflowj12002 (Hot Leg B) mflowj12003 (Hot Leg C) 2500                                                                      5512 Flow Rate (kg/s)                                                                                                                  Flow Rate (lbm/s) 0                                                                      0 2500                                                                      5512 3000      0      3000      6000        9000          12000      15000 Time (sec)
Figure 3.2.5-22 Hot Leg Mass Flow Rate - BV Case 126 3-198
 
150 cntrlvar112 (core power) 120                                    flenth34600 (SRV flow energy)
Power (MW) 90 60 30 0
3000        0    3000        6000            9000          12000          15000 Time (sec)
Figure 3.2.5-23 Core Power and Break Energy - BV Case 126 250                                                                          98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)                        78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                                        Narrow Range Level (in) 150                                                                          59.1 100                                                                          39.4 50                                                                          19.7 0                                                                            0.0 3000    0      3000      6000          9000        12000          15000 Time (sec)
Figure 3.2.5-24 Steam Generator Narrow Range Water Level - BV Case 126 3-199
 
100                                                                  220 mflowj54000 (SG A) mflowj64000 (SG B) mflowj74000 (SG C) 75                                                                  165 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 50                                                                  110 25                                                                  55 0                                                                  0 3000        0      3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.5-25 Auxiliary Feedwater Flow Rate - BV Case 126 10.0                                                                1450 p28201 (SG A) 8.0                              p38201 (SG B)                  1160 p48201 (SG C)
Pressure (MPa)                                                                                    Pressure (psia) 6.0                                                                870 4.0                                                                580 2.0                                                                290 0.0                                                                0 3000        0      3000    6000        9000        12000  15000 Time (sec)
Figure 3.2.5-26 Steam Generator Pressure - BV Case 126 3-200
 
200                                                                          360 cntrlvar11 150                                                                          270 Subcooling (K)                                                                                      Subcooling (F) 100                                                                          180 50                                                                          90 0                                                                          0 3000      0            3000    6000      9000        12000        15000 Time (sec)
Figure 3.2.5-27 Core Exit Subcooling - BV Case 126 1.00 voidg20801 (bottom) 0.80                                                      voidg20804 (top)
Void Fraction 0.60 0.40 0.20 0.00 3000        0            3000    6000        9000          12000          15000 Time (sec)
Figure 3.2.5-28 Void Fraction in Steam Generator Tubes - BV Case 126 3-201
 
3.2.6 Beaver Valley Stuck Open Primary Relief Valves Which Reclose From Hot Zero Power The transients in this group were initiated from hot zero power steady state operating conditions.
At hot zero power, the core power is nearly zero and the reactor coolant pumps are operating at normal speed, adding heat to the reactor coolant system (RCS). Because the RCS heat load is small, the fluid temperatures in all portions of the RCS (cold legs, hot legs and reactor vessel) and the steam generator (SG) secondary system are virtually the same. This temperature defines the HZP secondary system pressure (the secondary is at the saturation pressure corresponding to the RCS temperature). The steam dump valve controllers in the plant and model modulate the steam dump valve to attain this SG pressure and RCS average temperature.
On the SG secondary side, the turbine is tripped at HZP and therefore the turbine stop valves are closed. Main feedwater is delivered at a very low rate, consistent with the low RCS heat load.
Because the feedwater train heaters depend on turbine extraction steam for operation, feedwater is delivered to the SGs at the low condenser temperature, rather than the elevated temperature associated with main feedwater at HFP operation.
The reduced steam generator heat load at HZP results in much less steam production and voiding in the SG boiler sections than is present at full power. Therefore, SG water mass is significantly higher for HZP operation than for HFP operation.
In the hot full power steady state model, core power is input using a table. Power is held constant until the time of reactor trip and it decays afterward on the basis of ANS standard decay heat. In the HZP condition, the reactor is critical with control element assemblies withdrawn. From a modeling view, it is difficult to initialize a plant model with zero core power because of the plant system's long thermal time constants. For these reasons, the Beaver Valley Unit 1 hot zero power RELAP5 model assumes a constant 5.32 MW core power, both at steady state and during transients. This value represents the heat load at 1 month after shutdown and is 0.2% of the rated thermal power. The core power table was revised to reflect this assumption.
The first transient in this group is a reactor/turbine trip with one stuck open pressurizer safety relief valve which recloses at 6,000 s. The second transient is a reactor/turbine trip with one stuck open pressurizer safety relief valve which recloses at 3,000 s. The third transient in this group is a reactor/turbine trip with one stuck open pressurizer safety relief valve which recloses at 3,000 s where the operator controls HHSI (10 minute delay). Operator control of HHSI is described in Section 3.2.5. All three of these transients are restarted from the hot zero power null transient described in Section 2.2.
In order to model the stuck open pressurizer safety relief valve which recloses, a general data table was added to the RELAP5 transient restart input file which contains the safety relief valve position versus time. The SRV valve component was also set to point to the data table, rather than the original control system. This valve was set to spuriously open at time zero and close at the desired time. Note that the data table opens the RELAP5 valve component to a position of one third which models one of three SRVs stuck open.
3-202
 
A sequence of events table for the stuck open pressurizer safety relief valve cases at hot zero power is provided as Table 3.2-6.
Table 3.2-6 Sequence of Events for Stuck Open Primary Relief Valves Which Reclose from Hot Zero Power Case 130 - One Case 071 - One        Case 097 - One stuck open stuck open            stuck open pressurizer SRV pressurizer SRV        pressurizer SRV which recloses at which recloses at      which recloses at 3,000 s from HZP 6,000 s from HZP      3,000 s from HZP w/operator actions Event Time (s)
Pressurizer SRV opened                  0.0                    0.0                    0.0 SIAS generated                          20.1                  20.1                  20.3 HHSI flow initiated                      20.1                  20.1                  20.3 MFW stopped                              20.1                  20.1                  20.3 AFW started                              20.1                  20.1                  20.3 Pressurizer fills solid                  150                    150                    145 RCPs trip                                53.8                  53.8                  72.0 Accumulators begin 1,615                  1,530                  1,660 injecting Accumulators stop 4,715                  3,195                  3,030 injecting Break valve closed                      6,000                  3,000                  3,000 Primary Repressurizes to 6,470                  4,335                  4,319 PORV setpoint First HHSI pump stopped                  N/A                    N/A                  4,161 Second HHSI pump N/A                    N/A                  4,461 stopped 3.2.6.1 Beaver Valley Stuck Open Pressurizer Safety Relief Valve Which Recloses From Hot Zero Power (BV Case 071)
This case is one stuck open pressurizer safety relief valve which recloses at 6,000 s from hot zero power. This case is identified as Beaver Valley Case 071 in Appendix B, Table B-1. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.6-1 through 3.2.6-3 respectively.
As a result of the stuck open valve, the primary system rapidly depressurizes as shown in Figure 3.2.6-1. In addition, since the valve is located at the top of the pressurizer, the pressurizer fills 3-203
 
solid due to the primary system water flowing towards the valve. By 150 s, the pressurizer is filled, and remains filled for the duration of the transient as seen in Figure 3.2.6-4. Due to the loss of inventory, the primary system begins voiding in the reactor vessel upper head.
At approximately 20 s, a SIAS was generated. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated.
A plot of pressurizer SRV flow versus total safety injection flow is provided as Figure 3.2.6-5. Total SI flow includes high pressure injection, low pressure injection, accumulators and charging/letdown. High pressure injection flow is shown in Figure 3.2.6-6. For about the first 1,500 s break flow is larger than safety injection flow. By 1,615 s the primary pressure has decreased to below the accumulator pressure, resulting in accumulator injection as shown in Figure 3.2.6-7. With this additional flow, the total SI is about equal to the flow through the stuck open valve. The primary pressure never drops to below the low pressure injection pump shutoff head, therefore, there is no low pressure injection for this case.
At approximately 53.8 s, the reactor coolant pumps were tripped due to an operator action. This causes the flow in the loops to decrease to near zero. Figure 3.2.6-8 presents the hot leg mass flow for all three loops at the exit of the vessel. After RCP trip the only loop with flow is the C loop, where the pressurizer and stuck open valve are located. Upon the forced flow stopping (i.e.,
reactor coolant pumps tripped), the heat transfer coefficient drops quickly from an initial value of 24,073 W/m2*K [1.178 Btu/s*ft2*&deg;F]. During the remainder of the transient, this drops gradually to 330 W/m2*K [0.016 Btu/s*ft2*&deg;F].
Figure 3.2.6-9 shows the core power versus the energy lost through the stuck open valve. As seen in this figure, the energy lost out of the valve when it is open is larger than the assumed core decay heat, thus, heat is being removed from the system causing the temperature to decrease.
Note that in this case power is held constant at 5.32 MW. The average downcomer fluid temperature is shown in Figure 3.2.6-2. By 6,000 s when the pressurizer SRV recloses, the downcomer temperature has reached a value of 305 K [89.3&deg;F]. During the remainder of the transient, the average downcomer fluid temperature gradually drops to 295 K [71.3&deg;F].
Figure 3.2.6-10 shows the steam generator narrow range water level. Upon the SIAS being generated, the MFW is isolated. Since the MFW at hot zero power is very small (approximately 2 kg/s [4.4 lbm/s]), the isolation of MFW does not have a significant effect on steam generator water level. AFW is started, and begins controlling the generators to the setpoint of 33% NRL (120.7 cm [47.52 in]). Note that the hot zero power pre/post trip level setpoints are the same.
Figure 3.2.6-11 shows the auxiliary feedwater flow which comes on initially to maintain steam generator water level. The steam generator secondary side pressure is shown in Figure 3.2.6-12.
By 4,715 s, the accumulator pressure has fallen below the primary pressure, thus accumulator flow is stopped. At 6,000 s, the stuck open pressurizer SRV is reclosed. The high head injection pumps continue to supply cold water, and the primary system begins to repressurize. Note that no operator actions, such as controlling HHSI flow, were taken to control primary system pressure 3-204
 
or level. By 6,470 s, the SI flow has repressurized the primary to the pressurizer PORV opening setpoint and flow begins to leave the primary system through the valve.
During the initial part of the transient, the steam generator tubes voided as shown in Figure 3.2.6-13. Once the SI flow increases to above the SRV flow, the steam generator tubes begin to refill. During the refill time (4,220 to 6,450 s) there are condensation/vaporization effects.
Figure 3.2.6-14 shows the vapor generation rate for the steam generator tubes (hot leg side). Note that positive values show vaporization while negative values show condensation. Figure 3.2.6-8 shows that the hot leg flow oscillations occur during this period of steam generator tube condensation/vaporization. It is seen in this period that the hot leg flow oscillations cause the downcomer fluid to become well mixed and the average downcomer temperature increases as seen in Figure 3.2.6-2.
As a consequence of the stuck open pressurizer safety relief valve, it is shown that the loss of inventory through the SRV is capable of removing more than the assumed core decay heat at hot zero power. This leads to the downcomer fluid temperature decreasing to a value of 305 K
[89.3&deg;F] at the valve reclosure time. Shortly after the pressurizer SRV recloses, the primary pressure increases to the pressurizer PORV opening setpoint of 16.2 MPa [2350 psia]. After the system has repressurized, the downcomer fluid temperature falls gradually to a minimum value of 295 K [71.3&deg;F] with the pressure remaining at the pressurizer PORV opening setpoint.
20.0                                                                        2901 15.0                                                                        2176 Pressure (MPa)                                                                                      Pressure (psia) 10.0                                            p34001 (pressurizer)      1450 5.0                                                                        725 0.0                                                                        0 3000      0      3000    6000      9000          12000            15000 Time (sec)
Figure 3.2.6-1 Primary System Pressure - BV Case 071 3-205
 
650                                                              710 cntrlvar297 550                                                              530 Temperature (K)                                                                                                      Temperature (F) 450                                                              350 350                                                              170 250                                                            10 3000      0      3000    6000          9000  12000  15000 Time (sec)
Figure 3.2.6-2 Average Downcomer Fluid Temperature - BV Case 071 30000                                                          1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                          1.10 15000                                                          0.73 7500                                                          0.37 0                                                        0.00 3000      0  3000    6000          9000  12000  15000 Time (sec)
Figure 3.2.6-3 Downcomer Heat Transfer Coefficient - BV Case 071 3-206
 
1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000      0        3000      6000          9000            12000        15000 Time (sec)
Figure 3.2.6-4 Pressurizer Water Level - BV Case 071 250                                                                          551 mflowj34600 (SRV flow) 200                                        cntrlvar984 (total SI flow)      441 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) 150                                                                          331 100                                                                          220 50                                                                          110 0                                                                            0 3000        0      3000      6000          9000          12000        15000 Time (sec)
Figure 3.2.6-5 Break Flow and Total Safety Injection Flow - BV Case 071 3-207
 
25.0                                                                        55.1 mflowj96100 (HPI Loop A) 20.0                                        mflowj96200 (HPI Loop B)      44.1 mflowj96300 (HPI Loop C)
Flow Rate (kg/s)                                                                                                          Flow Rate (lbm/s) 15.0                                                                        33.1 10.0                                                                        22.0 5.0                                                                        11.0 0.0                                                                        0.0 3000        0      3000      6000        9000        12000        15000 Time (sec)
Figure 3.2.6-6 High Pressure Injection Flow Rate - BV Case 071 30.0                                                                        934 acvliq911 (Loop A)
Accumulator Liquid Volume (m )
acvliq912 (Loop B)
Accumulator Liquid Volume (ft )
3                                                                                                                    3 acvliq913 (Loop C) 20.0                                                                        623 10.0                                                                        311 0.0                                                                        0 3000        0      3000    6000        9000        12000        15000 Time (sec)
Figure 3.2.6-7 Accumulator Liquid Volume - BV Case 071 3-208
 
5000                                                                      11023 mflowj12001 (Hot Leg A) mflowj12002 (Hot Leg B) 2500                                      mflowj12003 (Hot Leg C)        5512 Flow Rate (kg/s)                                                                                                    Flow Rate (lbm/s) 0                                                                      0 2500                                                                      5512 5000                                                                        11023 3000      0      3000      6000        9000        12000          15000 Time (sec)
Figure 3.2.6-8 Hot Leg Mass Flow Rate - BV Case 071 150 cntrlvar112 (core power) flenth34600 (SRV flow energy) 100 Power (MW) 50 0
3000        0      3000      6000          9000            12000          15000 Time (sec)
Figure 3.2.6-9 Core Power and Break Energy - BV Case 071 3-209
 
250                                                                  98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)                78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                                Narrow Range Level (in) 150                                                                  59.1 100                                                                  39.4 50                                                                  19.7 0                                                                  0.0 3000      0      3000      6000        9000          12000  15000 Time (sec)
Figure 3.2.6-10 Steam Generator Narrow Range Water Level - BV Case 071 100                                                                  220 mflowj54000 (SG A) mflowj64000 (SG B) 75                                mflowj74000 (SG C)                165 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 50                                                                  110 25                                                                  55 0                                                                  0 3000      0      3000    6000          9000        12000    15000 Time (sec)
Figure 3.2.6-11 Auxiliary Feedwater Flow Rate - BV Case 071 3-210
 
10.0                                                                      1450 p28201 (SG A) 8.0                                p38201 (SG B)                      1160 p48201 (SG C)
Pressure (MPa)                                                                                    Pressure (psia) 6.0                                                                      870 4.0                                                                      580 2.0                                                                      290 0.0                                                                      0 3000        0      3000      6000        9000        12000        15000 Time (sec)
Figure 3.2.6-12 Steam Generator Pressure - BV Case 071 1.00 voidg20801 (bottom) 0.80                                            voidg20804 (top)
Void Fraction 0.60 0.40 0.20 0.00 3000        0      3000      6000          9000        12000      15000 Time (sec)
Figure 3.2.6-13 Void Fraction in Steam Generator Tubes - BV Case 071 3-211
 
40.0                                                    2.50 vapgen20801 (bottom) vapgen20802 30.0                          vapgen20803              1.87 Vapor Generation Rate (kg/m s) vapgen20804 (top)
Vapor Generation Rate (lb/ft s) 3                                                                                                  3 20.0                                                    1.25 10.0                                                    0.62 0.0                                                    0.00 10.0                                                    0.62 20.0                                                    1.25 4000  4500    5000              5500            6000 Time (sec)
Figure 3.2.6-14 Vapor Generation Rate in Steam Generator Tubes - BV Case 071 3.2.6.2 Beaver Valley Stuck Open Pressurizer SRV Which Recloses From Hot Zero Power (BV Case 097)
This case is one stuck open pressurizer safety relief valve which recloses at 3,000 s from hot zero power. This case is identified as Beaver Valley Case 097 in Appendix B, Table B-1. The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.6-15 through 3.2.6-17 respectively.
Each of the three pressurizer SRVs has an effective diameter of 5.38 cm [2.12 in]. As a result of the stuck open valve, the primary system rapidly depressurizes as shown in Figure 3.2.6-15. In addition, since the valve is located at the top of the pressurizer, the pressurizer fills solid due to the primary system water flowing towards the valve. By 150 s, the pressurizer is filled, and remains filled for the duration of the transient as seen in Figure 3.2.6-18. Due to the loss of inventory, the primary system begins voiding in the reactor vessel upper head.
At approximately 20 s, a SIAS was generated. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated.
A plot of pressurizer SRV flow versus total safety injection flow is provided as Figure 3.2.6-19.
Total SI flow includes high pressure injection, low pressure injection, accumulators and charging/letdown. High pressure injection flow is shown in Figure 3.2.6-20. For about the first 1,500 s break flow is larger than safety injection flow. By 1,515 s the primary pressure has 3-212
 
decreased to below the accumulator pressure, resulting in accumulator injection as shown in Figure 3.2.6-21. With this additional flow, the total SI is about equal to the flow through the stuck open valve. The primary pressure never drops to below the low pressure injection pump shutoff head, therefore, there is no low pressure injection for this case.
At approximately 53.8 s, the reactor coolant pumps were tripped due to an operator action. This causes the flow in the loops to decrease to near zero. Figure 3.2.6-22 presents the hot leg mass flow for all three loops at the exit of the vessel. After RCP trip and up until 3,000 s, the only loop with flow is the C loop, where the pressurizer and stuck open valve are located. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops quickly from an initial value of 24,073 W/m2*K [1.178 Btu/s*ft2*EF]. During the remainder of the transient, this drops gradually to 400 W/m2*K [0.020 Btu/s*ft2*EF].
Figure 3.2.6-23 shows the core power versus the energy lost through the stuck open valve. As seen in this figure, the energy lost out of the valve when it is open is larger than the assumed core decay heat, thus, heat is being removed from the system causing the temperature to decrease.
Note that in this case power is held constant at 5.32 MW. The average downcomer fluid temperature is shown in Figure 3.2.6-16. By 3,000 s, the downcomer temperature has reached a value of 321 K [118EF].
Figure 3.2.6-24 shows the steam generator narrow range water level. Upon the SIAS being generated, the MFW is isolated. Since the MFW at hot zero power is very small (approximately 2 kg/s [4.4 lbm/s]), the isolation of MFW does not have a significant effect on steam generator water level. AFW is started, and begins controlling the generators to the setpoint of 33% NRL (120.7 cm [47.52 in]). Note that the hot zero power pre/post trip level setpoints are the same.
Figure 3.2.6-25 shows the auxiliary feedwater flow which comes on initially to maintain steam generator water level. The steam generator secondary side pressure is shown in Figure 3.2.6-26.
At 3,000 s, the stuck open pressurizer SRV is reclosed. The high head injection pumps continue to supply cold water, and the primary system begins to repressurize. Note that no operator actions, such as controlling HHSI flow, were taken to control primary system pressure or level.
By 3,195 s, the primary pressure has increased to above the accumulator pressure, thus stopping accumulator flow. By 4,335 s, the SI flow has repressurized the primary to the pressurizer PORV opening setpoint and flow begins to leave the primary system through the valve.
During the initial part of the LOCA, the steam generator tubes voided as shown in Figure 3.2.6-27.
Once the pressurizer SRV recloses the steam generator tubes begin to refill. During the refill time (3,180 to 4,200 s) there are condensation/vaporization effects. Figure 3.2.6-28 shows the vapor generation rate for the steam generator tubes (hot leg side). Note that positive values show vaporization while negative values show condensation. Figure 3.2.6-22 shows that the hot leg flow oscillations occur during this period of steam generator tube condensation/vaporization. Once the hot leg flow oscillations are finished (by 4,200 s), the downcomer fluid temperature gradually decreases reaching a final minimum of 297 K [75EF] at the end of the transient (15,000 s).
As a consequence of the stuck open pressurizer safety relief valve, it is shown that the loss of inventory through the SRV is capable of removing more than the assumed core decay heat at hot 3-213
 
zero power. This leads to the downcomer fluid temperature decreasing to a value of 321 K [118EF]
at the valve reclosure time. Shortly after the pressurizer SRV recloses, the primary pressure increases to the pressurizer PORV opening setpoint of 16.2 MPa [2350 psia]. While the system is repressurizing (3,000 to 4,335 s), the downcomer fluid temperature rises slightly to 336 K
[145EF]. After the system has repressurized, the downcomer fluid temperature falls gradually to a minimum value of 297 K [75EF] with the pressure remaining at the pressurizer PORV opening setpoint.
20.0                                                                      2901 15.0                                                                      2176 Pressure (MPa)                                                                                    Pressure (psia) 10.0                                            p34001 (pressurizer)      1450 5.0                                                                      725 0.0                                                                        0 3000      0      3000    6000      9000          12000            15000 Time (sec)
Figure 3.2.6-15 Primary System Pressure - BV Case 097 3-214
 
650                                                              710 cntrlvar297 550                                                              530 Temperature (K)                                                                                                      Temperature (F) 450                                                              350 350                                                              170 250                                                              10 3000      0      3000      6000          9000    12000  15000 Time (sec)
Figure 3.2.6-16 Average Downcomer Fluid Temperature - BV Case 097 30000                                                            1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                            1.10 15000                                                            0.73 7500                                                            0.37 0                                                          0.00 3000      0    3000      6000          9000  12000  15000 Time (sec)
Figure 3.2.6-17 Downcomer Heat Transfer Coefficient - BV Case 097 3-215
 
1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000          0      3000      6000              9000            12000      15000 Time (sec)
Figure 3.2.6-18 Pressurizer Water Level - BV Case 097 500                                                                            1102 mflowj34600 (SRV flow) 400                                  cntrlvar984 (total SI flow)              882 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 300                                                                            661 200                                                                            441 100                                                                            220 0                                                                              0 3000        0      3000      6000            9000            12000      15000 Time (sec)
Figure 3.2.6-19 Break Flow and Total Safety Injection Flow - BV Case 097 3-216
 
25.0                                                                    55.1 mflowj96100 (HPI Loop A) 20.0                              mflowj96200 (HPI Loop B)            44.1 mflowj96300 (HPI Loop C)
Flow Rate (kg/s)                                                                                                          Flow Rate (lbm/s) 15.0                                                                    33.1 10.0                                                                    22.0 5.0                                                                    11.0 0.0                                                                    0.0 3000      0      3000      6000          9000          12000    15000 Time (sec)
Figure 3.2.6-20 High Pressure Injection Flow Rate - BV Case 097 30.0                                                                    934 acvliq911 (Loop A)
Accumulator Liquid Volume (m )
acvliq912 (Loop B)
Accumulator Liquid Volume (ft )
3                                                                                                                    3 acvliq913 (Loop C) 20.0                                                                    623 10.0                                                                    311 0.0                                                                    0 3000        0    3000      6000          9000          12000    15000 Time (sec)
Figure 3.2.6-21 Accumulator Liquid Volume - BV Case 097 3-217
 
5000                                                                    11023 mflowj12001 (Hot Leg A) mflowj12002 (Hot Leg B) 2500                            mflowj12003 (Hot Leg C)              5512 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 0                                                                  0 2500                                                                    5512 5000                                                                    11023 3000    0      3000    6000        9000          12000        15000 Time (sec)
Figure 3.2.6-22 Hot Leg Mass Flow Rate - BV Case 097 250 cntrlvar112 (core power) 200                                  flenth34600 (SRV flow energy)
Power (MW) 150 100 50 0
3000        0      3000      6000            9000        12000          15000 Time (sec)
Figure 3.2.6-23 Core Power and Break Energy - BV Case 097 3-218
 
250                                                                98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)                78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                              Narrow Range Level (in) 150                                                                59.1 100                                                                39.4 50                                                                19.7 0                                                                  0.0 3000      0      3000      6000        9000          12000  15000 Time (sec)
Figure 3.2.6-24 Steam Generator Narrow Range Water Level - BV Case 097 100                                                                220 mflowj54000 (SG A) mflowj64000 (SG B) 75                              mflowj74000 (SG C)              165 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 50                                                                110 25                                                                55 0                                                                  0 3000      0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.6-25 Auxiliary Feedwater Flow Rate - BV Case 097 3-219
 
10.0                                                                      1450 p28201 (SG A) 8.0                                p38201 (SG B)                        1160 p48201 (SG C)
Pressure (MPa)                                                                                    Pressure (psia) 6.0                                                                      870 4.0                                                                      580 2.0                                                                      290 0.0                                                                        0 3000        0      3000      6000        9000        12000        15000 Time (sec)
Figure 3.2.6-26 Steam Generator Pressure - BV Case 097 1.00 voidg20801 (bottom) 0.80                                    voidg20804 (top)
Void Fraction 0.60 0.40 0.20 0.00 3000        0      3000      6000          9000          12000      15000 Time (sec)
Figure 3.2.6-27 Void Fraction in Steam Generator Tubes - BV Case 097 3-220
 
12.0                                                                0.75 vapgen20801 (bottom) 8.0                                                                0.50 Vapor Generation Rate (kg/m s) vapgen20802 Vapor Generation Rate (lb/ft s) 3 vapgen20803                      3 vapgen20804 (top) 4.0                                                                0.25 0.0                                                                0.00 4.0                                                                0.25 8.0                                                                0.50 3000  3200  3400  3600    3800  4000      4200          4400 Time (sec)
Figure 3.2.6-28 Vapor Generation Rate in Steam Generator Tubes - BV Case 097 3.2.6.3 Beaver Valley Stuck Open Pressurizer SRV Which Recloses From Hot Zero Power with Operator Action (BV Case 130)
This case is one stuck open pressurizer safety relief valve which recloses at 3,000 s from hot zero power with operator control of HHSI (10 minute delay). This case is identified as Beaver Valley Case 130 in Appendix B, Table B-1. This case has several differences versus the case 97 described above in Section 3.2.6.2. The major difference is that the operator controls HHSI. This is done by turning HHSI pumps on/off. The criteria for turning off a HHSI pump with normal containment conditions are as follows:
C      Core exit subcooling > 23.9 K [43&deg;F]
C      SG NRL in any SG > 6%
C      Pressurizer level > 5%
C      Pressure stable or increasing; defined as pressure increased by 0.345 MPa [50 psi] over a 300 s period After the conditions are met for HHSI control, a delay time is assumed before the first HHSI pump is stopped. In case 130 this time is ten minutes. After turning off the first HHSI pump, the operator waits five minutes and if the conditions are still met the second pump is stopped. Note that at any time if the above conditions are not met, both HHSI pumps are turned back on.
3-221
 
Other changes include the following:
C        Momentum flux was turned off in both the axial and cross flow direction in the downcomer C        The downcomer wall was renodalized from 14 mesh points to 80 mesh points C        Running averages of the parameters of interest were computed C        Minor edit frequency was changed from one point every fifteen seconds to one point every second The parameters of interest for fracture mechanics analysis; primary pressure, average downcomer fluid temperature and downcomer fluid-wall heat transfer coefficient are provided as Figures 3.2.6-29 through 3.2.6-31 respectively.
As a result of the stuck open valve, the primary system rapidly depressurizes as shown in Figure 3.2.6-29. In addition, since the valve is located at the top of the pressurizer, the pressurizer fills solid due to the primary system water flowing towards the stuck open valve. By 145 s, the pressurizer is filled solid, and remains filled for the duration of the transient as seen in Figure 3.2.6-32. Due to the loss of inventory, the primary system begins voiding in the reactor vessel upper head.
At approximately 20 s, a SIAS was generated. The SIAS results in actuation of both the HHSI, and LHSI. In addition, it also initiates a full feedwater isolation signal which trips both main feedwater pumps and closes the main feedwater and bypass feedwater regulation valves. Due to the SIAS as well as both main feedwater pumps being tripped, auxiliary feedwater is activated. Note that while LHSI is activated, there is no flow unless the primary pressure falls below the LHSI pump shutoff head.
A plot of pressurizer SRV flow versus total safety injection flow is provided as Figure 3.2.6-33.
Total SI flow includes high pressure injection, low pressure injection, accumulators and charging/letdown. High pressure injection flow is shown in Figure 3.2.6-34. For about the first 1,500 s break flow is larger than safety injection flow. By 1,660 s the primary pressure has decreased to below the accumulator pressure, resulting in accumulator injection as shown in Figure 3.2.6-35. With this additional flow, the total SI is larger than the break flow. The primary pressure never drops to below the low pressure injection pump shutoff head, therefore, there is no low pressure injection for this case.
At approximately 72 s, the reactor coolant pumps were tripped due to an operator action. This causes the flow in the loops to decrease to near zero. Figure 3.2.6-36 presents the hot leg mass flow for all three loops at the exit of the vessel. After RCP trip and up until 3,000 s, the only loop with flow is the C loop, which has the pressurizer and stuck open valve. Upon the forced flow stopping (i.e., reactor coolant pumps tripped), the heat transfer coefficient drops quickly from an initial value of 24,230 W/m2*K [1.185 Btu/s*ft2*&deg;F]. During the remainder of the transient, this drops gradually to 500 W/m2*K [0.024 Btu/s*ft2*&deg;F], then increases to around 1,000 W/m2*K [0.049 Btu/s*ft2*&deg;F].
Figure 3.2.6-37 shows the core power versus the energy lost through the stuck valve. As seen in this figure, the energy lost out of the valve when it is open is larger than the assumed core decay 3-222
 
heat, thus heat is being removed from the system causing the temperature to decrease. Note that in this case power is held constant at 5.32 MW. The average downcomer fluid temperature is shown in Figure 3.2.6-30. By 3,000 s, the downcomer temperature has reached a value of 316 K [109&deg;F].
Figure 3.2.6-38 shows the steam generator narrow range water level. Upon the SIAS being generated, the MFW is isolated. Since the MFW at hot zero power is very small (approximately 2 kg/s [4.4 lbm/s]), the isolation of MFW does not have a significant effect on steam generator water level. AFW is started, and begins controlling the generators to the setpoint of 33% NRL (120.7 cm [47.52 in]). Note that the hot zero power pre/post trip level setpoints are the same.
Figure 3.2.6-39 shows the auxiliary feedwater flow which comes on initially to maintain steam generator water level. The steam generator secondary side pressure is shown in Figure 3.2.6-40.
At 3,000 s, the stuck open pressurizer SRV is closed. The high head injection pumps continue to supply cold water, and the primary system begins to repressurize. Note that up to this point, no operator actions have been taken to control primary system pressure or level. By 3,030 s, the primary pressure has increased to above the accumulator pressure, thus stopping accumulator flow. By 4,320 s, the SI flow has repressurized the primary to the pressurizer PORV opening setpoint and flow begins to leave the primary system.
During the initial part of the LOCA, the steam generator tubes voided as shown in Figure 3.2.6-41.
Once the pressurizer SRV recloses the steam generator tubes begin to refill. During the refill time (3,020 to 4,120 s) there are condensation/vaporization effects. Figure 3.2.6-42 shows the vapor generation rate for the steam generator tubes (hot leg side). Note that positive values show vaporization while negative values show condensation. Figure 3.2.6-36 shows that the hot leg flow oscillations occur during this period of steam generator tube condensation/vaporization. It is seen in this period that the hot leg flow oscillations cause the downcomer fluid to become well mixed and the average downcomer temperature increases as seen in Figure 3.2.6-30.
By 3,561 s the system has met all of the conditions for stopping an HHSI pump. These conditions include: core exit subcooling greater than 23.9 K [43&deg;F] (Figure 3.2.6-43), any steam generator NRL greater than 6% (Figure 3.2.6-38), pressurizer water level greater than 5% (Figure 3.2.6-32) and pressure stable or increasing (Figure 3.2.6-29). After waiting an additional ten minutes (as given in the case description), the operator is assumed to stop a single HHSI pump (at 4,161 s).
After waiting five more minutes, the above conditions are still met so the second HHSI pump is stopped (at 4,461 s). Both HHSI pumps remain off for the remainder of the transient. By stopping the HHSI pumps, the primary pressure decreases significantly as shown in Figure 3.2.6-29. In addition, the lack of cold SI water causes the downcomer fluid temperature to gradually rise for the remainder of the transient.
As a consequence of the stuck open pressurizer safety relief valve, it is shown that the loss of inventory through the pressurizer SRV is capable of removing more than the assumed core decay heat at hot zero power. This leads to the downcomer fluid temperature decreasing to a value 316 K [109&deg;F] at valve the reclosure time of 3,000 s. After the pressurizer SRV recloses, the primary pressure increases to the PORV setpoint of 16.2 MPa [2350 psia] by 4,300 s. After this time, the operator has taken control of the HHSI and the pressure decreases to near 4.13 MPa [600 psia]
3-223
 
by 7,250 s. The pressure gradually decreases for the remainder of the transient. Once the pressurizer SRV recloses and the HHSI flow is controlled, the downcomer fluid temperature begins increasing for the remainder of the transient.
20.0                                                                2901 p34001 (pressurizer) 15.0                                                                2176 Pressure (MPa)                                                                              Pressure (psia) 10.0                                                                1450 5.0                                                                725 0.0                                                                0 3000      0      3000    6000        9000          12000    15000 Time (sec)
Figure 3.2.6-29 Primary System Pressure - BV Case 130 3-224
 
650                                                              710 cntrlvar297 550                                                              530 Temperature (K)                                                                                                    Temperature (F) 450                                                              350 350                                                              170 250                                                              10 3000      0      3000      6000          9000    12000  15000 Time (sec)
Figure 3.2.6-30 Average Downcomer Fluid Temperature - BV Case 130 30000                                                            1.47 Heat Transfer Coefficient (Btu/s*ft *F) cntrlvar437 Heat Transfer Coefficient (W/m *K) 2 2
22500                                                            1.10 15000                                                            0.73 7500                                                            0.37 0                                                          0.00 3000      0    3000      6000          9000  12000  15000 Time (sec)
Figure 3.2.6-31 Downcomer Wall Heat Transfer Coefficient - BV Case 130 3-225
 
1.00 cntrlvar202 Normalized Pressurizer Level 0.75 0.50 0.25 0.00 3000          0    3000        6000            9000          12000      15000 Time (sec)
Figure 3.2.6-32 Pressurizer Water Level - BV Case 130 300                                                                            661 250                                  mflowj34600 (SRV flow)                  551 cntrlvar984 (total SI flow) 200                                                                            441 Flow Rate (kg/s)                                                                                                        Flow Rate (lbm/s) 150                                                                            331 100                                                                            220 50                                                                            110 0                                                                              0 3000        0      3000      6000          9000            12000      15000 Time (sec)
Figure 3.2.6-33 Break Flow and Total Safety Injection Flow - BV Case 130 3-226
 
25.0                                                                  55.1 mflowj96100 (HPI Loop A) 20.0                              mflowj96200 (HPI Loop B)          44.1 mflowj96300 (HPI Loop C)
Flow Rate (kg/s)                                                                                                        Flow Rate (lbm/s) 15.0                                                                  33.1 10.0                                                                  22.0 5.0                                                                  11.0 0.0                                                                  0.0 3000      0      3000      6000          9000          12000  15000 Time (sec)
Figure 3.2.6-34 High Pressure Injection Flow Rate - BV Case 130 30.0                                                                  934 acvliq911 (Loop A)
Accumulator Liquid Volume (m )
acvliq912 (Loop B)
Accumulator Liquid Volume (ft )
3                                                                                                                    3 acvliq913 (Loop C) 20.0                                                                  623 10.0                                                                  311 0.0                                                                  0 3000      0      3000      6000          9000        12000    15000 Time (sec)
Figure 3.2.6-35 Accumulator Liquid Volume - BV Case 130 3-227
 
5000                                                                  11023 mflowj12001 (Hot Leg A) mflowj12002 (Hot Leg B) 2500                            mflowj12003 (Hot Leg C)              5512 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 0                                                                  0 2500                                                                  5512 5000                                                                    11023 3000      0    3000    6000        9000          12000      15000 Time (sec)
Figure 3.2.6-36 Hot Leg Mass Flow Rate - BV Case 130 200 cntrlvar112 (core power) flenth34600 (SRV flow energy) 150 Power (MW) 100 50 0
3000      0      3000      6000            9000          12000          15000 Time (sec)
Figure 3.2.6-37 Core Power and Break Energy - BV Case 130 3-228
 
250                                                                98.4 cntrlvar507 (SG A) 200                              cntrlvar607 (SG B)                78.7 cntrlvar707 (SG C)
Narrow Range Level (cm)                                                                                Narrow Range Level (in) 150                                                                59.1 100                                                                39.4 50                                                                19.7 0                                                                  0.0 3000      0      3000      6000        9000          12000  15000 Time (sec)
Figure 3.2.6-38 Steam Generator Narrow Range Water Level - BV Case 130 50.0                                                                110 mflowj54000 (SG A) 40.0                              mflowj64000 (SG B)              88 mflowj74000 (SG C)
Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 30.0                                                                66 20.0                                                                44 10.0                                                                22 0.0                                                                0 3000    0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.2.6-39 Auxiliary Feedwater Flow Rate - BV Case 130 3-229
 
10.0                                                                      1450 p28201 (SG A) 8.0                                  p38201 (SG B)                      1160 p48201 (SG C)
Pressure (MPa)                                                                                    Pressure (psia) 6.0                                                                      870 4.0                                                                      580 2.0                                                                      290 0.0                                                                        0 3000        0      3000      6000        9000        12000        15000 Time (sec)
Figure 3.2.6-40 Steam Generator Pressure - BV Case 130 1.00 voidg20801 (bottom) 0.80                                    voidg20804 (top)
Void Fraction 0.60 0.40 0.20 0.00 3000        0      3000      6000          9000        12000      15000 Time (sec)
Figure 3.2.6-41 Void Fraction in Steam Generator Tubes - BV Case 130 3-230
 
12.0                                                                            0.75 vapgen20801 (bottom) 8.0                                                                            0.50 Vapor Generation Rate (kg/m s) vapgen20802 Vapor Generation Rate (lb/ft s) 3 vapgen20803                            3 vapgen20804 (top) 4.0                                                                            0.25 0.0                                                                            0.00 4.0                                                                            0.25 8.0                                                                            0.50 3000    3200    3400    3600    3800    4000          4200            4400 Time (sec)
Figure 3.2.6-42 Vapor Generation Rate in Steam Generator Tubes - BV Case 130 500                                                                                900 cntrlvar10 (core exit) 400                                                                                720 Subcooling (K)                                                                                                                    Subcooling (F) 300                                                                                540 200                                                                                360 100                                                                                180 0                                                                                  0 3000        0      3000      6000        9000          12000              15000 Time (sec)
Figure 3.2.6-43 Core Exit Subcooling - BV Case 130 3-231
 
3.3 Palisades Transient Results of Dominant Sequences Dominant sequences for the Palisades plant are segregated into four groups as follows. Group 1 comprises event sequences involving depressurization of the main steam system caused by stuck-open valves or steam line breaks. Group 2 comprises event sequences initiated by primary coolant system LOCAs with effective break sizes of 5.08-cm [2-in] diameter and smaller. Group 3 comprises event sequences initiated by a primary-system LOCAs with an effective break size of 10.16-cm [4-in] diameter. Group 4 comprises event sequences initiated by primary coolant system LOCAs with effective break sizes of 14.36-cm [5.656-in] diameter and larger. The thermal-hydraulic results for these four groups of event sequences are presented in the subsections below.
All RELAP5 transient case calculations were restarted from the end points of the steady state runs representing hot full power and hot zero power operation of the Palisades plant, as described in Section 2.3.2. All RELAP5 transient-case calculations were run for a period of 15,000 s following the occurrence of the sequence initiating event. On the accompanying plots, the data shown prior to time zero represents the calculated steady-state condition prior to the transient initiation.
3.3.1 Sequences with Depressurization of the Main Steam System Caused by Stuck-Open Valves or Steam Line Breaks Four of the 12 Palisades PTS-risk-dominant event sequences involved stuck-open steam system valves or steam line breaks. These four sequences are described as follows:
Case 19 is an event initiated by a reactor trip and the spurious sticking-open of one of the two atmospheric dump valves (ADVs) on Steam Generator A (SG A) with the plant in hot zero power (HZP) operation. The operator is assumed not to isolate auxiliary feedwater (AFW) to the affected SG and not to throttle high pressure injection (HPI) flow.
Case 52 is an event initiated by a reactor trip and the spurious sticking-open of one ADV on SG A combined with a failure of both of the main steam isolation valves (MSIVs) to close with the plant in HZP operation. The operator is assumed not to isolate AFW to the affected SG and not to throttle HPI flow.
Case 54 is an event initiated by the double-ended rupture of the main steam line on SG A inside containment combined with a failure of both of the MSIVs to close with the plant in hot full power (HFP) operation. The operator is assumed not to isolate AFW to the affected SG and not to throttle HPI flow.
Case 55 is an event initiated by reactor and turbine trips and the spurious sticking-open of the two ADVs on SG A combined with aggravating hardware failures and operator actions with plant in HFP operation. Flow controller hardware failures and an operator action to start the second motor-driven AFW pump are assumed, resulting in the delivery of two-pump AFW flow to the affected steam generator. The operator is assumed throttle HPI flow if the reactor coolant system subcooling and pressurizer level requirements for doing so are satisfied.
3-232
 
The common features of the steam-system break sequences are RCS overcooling and depressurization caused by excessive SG heat removal, followed by RCS repressurization caused by the effects of safety injection and charging system flow. The results for the four event sequences in this group are described in the following subsections.
3.3.1.1 One Stuck-Open Atmospheric Dump Valve from Hot Zero Power Condition - Palisades Case 19 With the plant in hot zero power operation, this event starts with a reactor trip and the spurious sticking-open of one of the two ADVs on SG A. The operator is assumed not to isolate the AFW flow to the affected SG and not to throttle the HPI flow.
The following modeling changes were implemented to simulate this event sequence. A manual reactor trip was implemented at the beginning of the transient calculation. Unlike a reactor trip initiated from full power conditions, the ADVs are not demanded following a reactor trip from hot zero power conditions because the average primary system temperature is already below that to which the ADVs control. Therefore, for hot zero power conditions a stuck-open ADV represents a spurious failure assumed to occur at the time of the reactor trip. The RELAP5 ADV model (Valve 480 in Figure 2.3-3) represents a combination of the two ADVs on SG A. To represent a single ADV sticking open, the normalized flow area for this valve component was set to 0.5, providing an effective flow area of 0.0113 m2 [0.1215 ft2].
The RELAP5-calculated sequence of events for Case 19 is shown in Table 3.3-1. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.1-1, 3.3.1-2 and 3.3.1-3, respectively.
When the ADV sticks open, the secondary system pressures in both SGs rapidly decline, as shown in Figure 3.3.1-4. A MSIV closure signal is generated at 775 s as a result of the steam pressure falling below 3.447 MPa [500 psia]. A 5-second MSIV closure time was used in the model. After MSIV closure, the pressures in the two SGs diverged, with the unaffected SG B pressure rising moderately before falling again as a result of secondary-to-primary heat transfer.
Figure 3.3.1-5 shows the AFW flows to the two SGs. AFW flow to both SGs began early during the event sequence as a result of low SG level indications. AFW flow to affected SG A continued through the remainder of the event sequence as a result of a continued low-level condition; it is assumed that the operator does not intervene to isolate this flow. The loss of unaffected SG B fluid mass was stopped as a result of the MSIV closure and the AFW flow to SG B continued only until its level had been recovered into the normal range; afterward, the AFW flow to SG B stopped.
Figure 3.3.1-6 shows the secondary mass responses for the two SGs.
The cooling afforded to the RCS fluid as a result of heat transfer from the RCS to the depressurizing SG steam systems resulted in a rapid RCS cooldown as shown in Figure 3.3.1-2.
This cooling also caused the RCS fluid volume to shrink, which rapidly depressurized the RCS as shown in Figure 3.3.1-1.
3-233
 
The RCS depressurization led to a safety injection actuation signal at a pressure of 10.98 MPa
[1593 psia], which results in the starting of the HPI and LPI pumps after a 27-second delay. The calculated HPI flow rate for Cold Leg A1 is shown in Figure 3.3.1-7; the total HPI flow rate is four times the flow shown in the figure. The flow delivered from the centrifugal pumps of the HPI system is a function of the cold leg pressure, with lower pressures resulting in higher HPI flow and with no HPI flow delivered whenever the RCS pressure exceeds the shutoff head of the HPI system (8.906 MPa [1291.7 psia]). The RCS pressure did not decline below the initial pressure of the safety injection tanks (SITs) or below shutoff head of the LPI system and therefore no SIT or LPI flow was delivered.
The RCS depressurization below 8.963 MPa [1300 psia] also led to operator tripping of one reactor coolant pump in each loop. Figure 3.3.1-8 shows the flow rates through the two Loop-1 cold legs at their connections with the reactor vessel. After the reactor coolant pump trip, the flow through the cold leg with the pump that remained operating increased, while the flow through the cold leg with the pump that was tripped reversed. The flow behavior in Loop 2 is similar to that in Loop 1.
The remaining two reactor coolant pumps continued to operate throughout the event sequence because the low RCS fluid subcooling requirement (subcooling less than 13.9 K [25 oF]) for the operators to trip those pumps was not met. The effect of tripping the two reactor coolant pumps on the reactor vessel inside-wall heat transfer coefficient is evident in Figure 3.3.1-3.
The pressurizer level response is shown in Figure 3.3.1-9. The RCS fluid volume shrinkage initially caused by the cooldown is sufficient to completely drain the pressurizer. The HPI and net charging (i.e., charging flow less letdown) flows replenished the RCS fluid volume lost due to shrinkage and this resulted in the pressurizer refilling. Since the RCS is a closed system during this event sequence, the pressurizer refill is accompanied by a RCS repressurization to above the HPI system shutoff head and this terminates the HPI flow.
Figure 3.3-10 shows the charging and letdown flow responses (charging flow is injected equally into two cold legs, the figure shows the flow delivered to one cold leg). The letdown flow is isolated as a result of the safety injection actuation signal and the three charging pumps are of the positive-displacement type. One charging pump continues to deliver flow, regardless of the pressurizer level response. Although RCS cooldown and fluid shrinkage continue as a result of heat removal to the affected SG, the cooldown rate declines as RCS temperatures approach their eventual lower limit (the saturation temperature at atmospheric pressure). The RCS repressurizes because the charging volumetric flow rate exceeds the fluid volume shrinkage rate associated with the slower RCS cooldown rate. The charging flow eventually refills the pressurizer and raises the RCS pressure up to the 17.24-MPa [2500-psia] opening setpoint pressure of the pressurizer safety relief valves (SRVs). Afterward, the RCS pressure remains high, with the charging flow balanced by the pressurizer SRV flow.
3-234
 
The minimum average reactor vessel downcomer fluid temperature, 423 K [301 oF], is reached at the 15000-second end time of the calculation, when the RCS pressure was at the pressurizer SRV opening setpoint pressure.
Table 3.3-1 Comparison of Event Timing for Dominant Palisades Event Sequences -
Group 1, Steam System Breaks Event Time (seconds)
Case 19 -    Case 52 -      Case 54 -  Case 55 -
HZP,        HZP,            HFP,        HFP, Event(s)                1 Stuck-    1 Stuck-Open    MSLB on SG  2 Stuck-Open Open ADV    ADV on SG A,    A, MSIVs    ADVs on SG on SG A      MSIVs Fail      Fail Open  A, AFW Open                        overfeed Manual reactor trip (results in a      0            0              N/A        0 turbine trip for the HFP case)
Double-ended guillotine rupture of the  N/A          N/A            0          N/A SG A steam line, downstream of the flow restrictor and inside the containment One ADV on the SG A steam line          0            0              N/A        N/A fails open Two ADVs on the SG A steam line        N/A          N/A            N/A        0 fail open Containment high pressure signal        N/A          N/A            7          N/A (results in reactor and turbine trips and tripping of all four reactor coolant pumps)
Safety injection signal                564          564            21          256 ECCS available                          592          591            48          283 MSIV closure signal                    775          775            12          584 MSIVs fully closed                      780          N/A            N/A        589 Pressurizer level reaches zero          1065        1050            30          450 One reactor coolant pump tripped in    1248        1301            N/A        601 each coolant loop HPI flow begins                        1440        1500            48          615 Pressurizer level reaches 100%          4665        4650            6165        4320 Steam Line A begins to fill with water, N/A          N/A            N/A        4332 AFW flow terminated to SG A 3-235
 
Event Time (seconds)
Case 19 -      Case 52 -        Case 54 -              Case 55 -
HZP,            HZP,            HFP,                    HFP, Event(s)                1 Stuck-        1 Stuck-Open    MSLB on SG              2 Stuck-Open Open ADV        ADV on SG A,    A, MSIVs                ADVs on SG on SG A        MSIVs Fail      Fail Open              A, AFW Open                                    overfeed RCS pressure exceeds pressurizer                  7770            9210            11265                  4830 SRV opening setpoint pressure Calculation terminated                            15000          15000            15000                  15000 Note: N/A indicates this event is not applicable for the event sequence.
20.0                                                                      2901 p11001 15.0                                                                      2176 Pressure (MPa)                                                                                    Pressure (psia) 10.0                                                                      1450 5.0                                                                  725 3000      0      3000      6000        9000        12000    15000 Time (sec)
Figure 3.3.1-1 Reactor Coolant System Pressure - Palisades Case 19 3-236
 
600                                                          620 cntrlvar942 Temperature (K)                                                                                          Temperature (F) 500                                                          440 400                                                          260 3000    0  3000    6000          9000    12000    15000 Time (sec)
Figure 3.3.1-2 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 19 30000                                                      1.47 cntrlvar990 25000                                                      1.22 HTC (W/m *K)                                                                                  HTC (Btu/s*ft *F) 2 2
20000                                                      0.98 15000                                                      0.73 10000                                                      0.49 3000  0  3000    6000          9000    12000    15000 Time (sec)
Figure 3.3.1-3 Average Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 19 3-237
 
7.00                                                              1015 6.00                              p26001 (SG 1) 870 p46001 (SG 2) 5.00                                                              725 Pressure (MPa)                                                                                  Pressure (psia) 4.00                                                              580 3.00                                                              435 2.00                                                              290 1.00                                                              145 0.00                                                              0 3000    0      3000    6000        9000      12000  15000 Time (sec)
Figure 3.3.1-4 Steam Generator Pressures - Palisades Case 19 15.0                                                              33.1 10.0                                                              22.0 Flow Rate (kg/s)                                                                                Flow Rate (lbm/s) 5.0                                                            11.0 0.0                                                            0.0 mflowj295 (SG 1) mflowj297 (SG 2) 5.0                                                              11.0 3000      0      3000    6000        9000      12000  15000 Time (sec)
Figure 3.3.1-5 Auxiliary Feedwater Flows - Palisades Case 19 3-238
 
370000                                                                167832 320000                          cntrlvar903 (SG 1)                  145152 cntrlvar904 (SG 2) 270000                                                                122472 Mass (lbm)                                                                                            Mass (kg) 220000                                                                99792 170000                                                                77112 120000                                                                54432 70000                                                                  31752 3000      0  3000    6000          9000          12000    15000 Time (sec)
Figure 3.3.1-6 Steam Generator Secondary Fluid Masses - Palisades Case 19 10.0                                                                      22.0 mflowj792 (Loop 1A)
Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 5.0                                                                      11.0 0.0                                                                      0.0 3000    0      3000    6000            9000          12000      15000 Time (sec)
Figure 3.3.1-7 Loop A1 High Pressure Injection Flow - Palisades Case 19 3-239
 
8000                                                                    17637 mflowj160 (Loop 1A) 6000                                mflowj660 (Loop 1B)                13228 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 4000                                                                    8818 2000                                                                    4409 0                                                                    0 2000                                                                      4409 3000          0  3000    6000        9000          12000      15000 Time (sec)
Figure 3.3.1-8 Loop 1 Cold Leg Flows - Palisades Case 19 100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000          0      3000      6000            9000        12000          15000 Time (sec)
Figure 3.3.1-9 Pressurizer Level - Palisades Case 19 3-240
 
5.00                                                                11.0 4.00                            mflowj172 (Loop 1A Charging) 8.8 mflowj772 (Loop 2B Letdown) 3.00                                                                6.6 Flow Rate (kg/s)                                                                              Flow Rate (lbm/s) 2.00                                                                4.4 1.00                                                                2.2 0.00                                                                0.0 1.00                                                                2.2 2.00                                                                4.4 3000  0    3000    6000          9000          12000    15000 Time (sec)
Figure 3.3.1-10 Charging and Letdown Flows - Palisades Case 19 3.3.1.2 One Stuck-Open Atmospheric Dump Valve and Failure of Both MSIVs to Close from Hot Zero Power Condition - Palisades Case 52 With the plant in hot zero power operation, this event starts with a reactor trip and the spurious sticking-open of one of the two ADVs on SG A. The MSIVs on both steam lines fail to close, resulting in a symmetric blowdown of the two SGs. The operator is assumed not to isolate the AFW flow to either SG and not to throttle the HPI flow.
The following modeling changes were implemented to simulate this event sequence. A manual reactor trip was implemented at the beginning of the transient calculation. Unlike a reactor trip initiated from full power conditions, the ADVs are not demanded following a reactor trip from hot zero power conditions because the average primary system temperature is already below that to which the ADVs control. Therefore, for hot zero power conditions a stuck-open ADV represents a spurious failure assumed to occur at the time of the reactor trip. The RELAP5 ADV model (Valve 480 in Figure 2.3-3) represents a combination of the two ADVs on SG A. To represent a single ADV sticking open, the normalized flow area for this valve component was set to 0.5, providing an effective flow area of 0.0113 m2 [0.1215 ft2]. The control logic of the model was modified to prevent the closure of the MSIVs (which are represented by Valves 811 and 831 in Figure 2.3-3).
The RELAP5-calculated sequence of events for Case 52 is shown in Table 3.3-1. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.1-11, 3.3.1-12 and 3.3.1-13, respectively.
3-241
 
When the ADV sticks open, the secondary system pressures in both SGs rapidly decline, as shown in Figure 3.3.1-14. A MSIV closure signal is generated at 775 s as a result of the steam pressure falling below 3.447 MPa [500 psia], but in this event sequence the two MSIVs are assumed to fail open, resulting in a symmetric blowdown of the two SGs throughout the transient period.
Figure 3.3.1-15 shows the AFW flows to the two SGs. AFW flow to both SGs began early during the event sequence as a result of low SG level indications. As the SG secondary pressures fell, the flow through the failed-open SG A ADV eventually became smaller than the AFW flow and the AFW flow replenished the SG secondary inventories that had been lost. Figure 3.3.1-16 shows the secondary fluid mass responses for the two SGs. AFW flow to both steam generators was throttled when the SG inventories and levels had recovered. Afterward, AFW flow to both SGs was throttled by the automatic controllers to maintain the SG levels within their normal range.
The cooling afforded to the RCS fluid as a result of heat transfer from the RCS to the depressurizing SG steam systems resulted in a rapid RCS cooldown as shown in Figure 3.3.1-12.
This cooling also caused the RCS fluid volume to shrink, which rapidly depressurized the RCS as shown in Figure 3.3.1-11.
The RCS depressurization led to a safety injection actuation signal at a pressure of 10.98 MPa
[1593 psia], which results in the starting of the HPI and LPI pumps after a 27-second delay. The calculated HPI flow rate for Cold Leg A1 is shown in Figure 3.3.1-17; the total HPI flow rate is four times the flow shown in the figure. The flow delivered from the centrifugal pumps of the HPI system is a function of the cold leg pressure, with lower pressures resulting in higher HPI flow and with no HPI flow delivered whenever the RCS pressure exceeds the shutoff head of the HPI system (8.906 MPa [1291.7 psia]). The RCS pressure did not decline below the initial pressure of the safety injection tanks (SITs) or below shutoff head of the LPI system and therefore no SIT or LPI flow was delivered.
The RCS depressurization below 8.963 MPa [1300 psia] also led to operator tripping of one reactor coolant pump in each loop. Figure 3.3.1-18 shows the flow rates through the two Loop-1 cold legs at their connections with the reactor vessel. After the reactor coolant pump trip, the flow through the cold leg with the pump that remained operating increased, while the flow through the cold leg with the pump that was tripped reversed. The flow behavior in Loop 2 is similar to that in Loop 1.
The remaining two reactor coolant pumps continued to operate throughout the event sequence because the low RCS fluid subcooling requirement (subcooling less than 13.9 K [25EF]) for the operators to trip those pumps was not met. The effect of tripping the two reactor coolant pumps on the reactor vessel inside-wall heat transfer coefficient is evident in Figure 3.3.1-13.
The pressurizer level response is shown in Figure 3.3.1-19. The RCS fluid volume shrinkage initially caused by the cooldown is sufficient to completely drain the pressurizer. The HPI and net charging (i.e., charging flow less letdown) flows replenished the RCS fluid volume lost due to shrinkage and this resulted in the pressurizer refilling. Since the RCS is a closed system during this event sequence, the pressurizer refill is accompanied by a RCS repressurization to above the HPI system shutoff head and this terminates the HPI flow.
3-242
 
Figure 3.3.1-20 shows the charging and letdown flow responses (charging flow is injected equally into two cold legs, the figure shows the flow delivered to one cold leg). The letdown flow is isolated as a result of the safety injection actuation signal and the three charging pumps are of the positive-displacement type. One charging pump continues to deliver flow, regardless of the pressurizer level response. Although RCS cooldown and fluid shrinkage continue as a result of heat removal to the affected SG, the cooldown rate declines as RCS temperatures approach their eventual lower limit (the saturation temperature at atmospheric pressure). The RCS repressurizes because the charging volumetric flow rate exceeds the fluid volume shrinkage rate associated with the slower RCS cooldown rate. The charging flow eventually refills the pressurizer and raises the RCS pressure up to the 17.24-MPa [2500-psia] opening setpoint pressure of the pressurizer safety relief valves (SRVs). Afterward, the RCS pressure remains high, with the charging flow balanced by the pressurizer SRV flow.
The minimum average reactor vessel downcomer fluid temperature, 425 K [305EF], is reached at the 15000-second end time of the calculation, when the RCS pressure was at the pressurizer SRV opening setpoint pressure.
20.0                                                    2901 p11001 15.0                                                    2176 Pressure (MPa)                                                                  Pressure (psia) 10.0                                                    1450 5.0                                                    725 3000  0      3000    6000      9000  12000    15000 Time (sec)
Figure 3.3.1-11 Reactor Coolant System Pressure - Palisades Case 52 3-243
 
600                                                              620 cntrlvar942 Temperature (K)                                                                                  Temperature (F) 500                                                              440 400                                                              260 3000    0      3000    6000            9000  12000    15000 Time (sec)
Figure 3.3.1-12 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 52 30000                                                          1.47 cntrlvar990 25000                                                          1.22 HTC (W/m *K)                                                                              HTC (Btu/s*ft *F) 2 2
20000                                                          0.98 15000                                                          0.73 10000                                                          0.49 3000      0  3000    6000            9000  12000  15000 Time (sec)
Figure 3.3.1-13 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 52 3-244
 
7.00                                                              1015 6.00                              p26001 (SG 1) 870 p46001 (SG 2) 5.00                                                              725 Pressure (MPa)                                                                              Pressure (psia) 4.00                                                              580 3.00                                                              435 2.00                                                              290 1.00                                                              145 0.00                                                              0 3000    0      3000    6000          9000      12000    15000 Time (sec)
Figure 3.3.1-14 Steam Generator Pressures - Palisades Case 52 15.0                                                            33.1 10.0                                                            22.0 Flow Rate (kg/s)                                                                            Flow Rate (lbm/s) 5.0                                                            11.0 0.0                                                            0.0 mflowj295 (SG 1) mflowj297 (SG 2) 5.0                                                            11.0 3000    0      3000    6000        9000      12000  15000 Time (sec)
Figure 3.3.1-15 Auxiliary Feedwater Flows - Palisades Case 52 3-245
 
370000                                                                167832 320000                              cntrlvar903 (SG 1)              145152 cntrlvar904 (SG 2) 270000                                                                122472 Mass (lbm)                                                                                                Mass (kg) 220000                                                                99792 170000                                                                77112 120000                                                                54432 70000                                                                31752 3000      0    3000      6000          9000        12000  15000 Time (sec)
Figure 3.3.1-16 Steam Generator Secondary Fluid Masses - Palisades Case 52 10.0                                                                    22.0 mflowj792 (Loop 1A)
Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 5.0                                                                    11.0 0.0                                                                    0.0 3000      0      3000      6000          9000        12000    15000 Time (sec)
Figure 3.3.1-17 Loop A1 High Pressure Injection Flow - Palisades Case 52 3-246
 
8000                                                                    17637 mflowj160 (Loop 1A) 6000                                mflowj660 (Loop 1B)                13228 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) 4000                                                                    8818 2000                                                                    4409 0                                                                    0 2000                                                                        4409 3000            0    3000    6000        9000          12000    15000 Time (sec)
Figure 3.3.1-18 Loop 1 Cold Leg Flows - Palisades Case 52 100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000            0        3000      6000          9000          12000      15000 Time (sec)
Figure 3.3.1-19 Pressurizer Level - Palisades Case 52 3-247
 
5.00                                                                11.0 4.00                            mflowj172 (Loop 1A Charging) 8.8 mflowj772 (Loop 2B Letdown) 3.00                                                                6.6 Flow Rate (kg/s)                                                                                Flow Rate (lbm/s) 2.00                                                                4.4 1.00                                                                2.2 0.00                                                                0.0 1.00                                                                2.2 2.00                                                                4.4 3000    0      3000    6000        9000          12000    15000 Time (sec)
Figure 3.3.1-20 Charging and Letdown Flows - Palisades Case 52 3.3.1.3 Double-Ended Main Steam Line Break and Failure of Both MSIVs to Close from Hot Full Power Condition - Palisades Case 54 With the plant in hot full power operation, this event starts with the double-ended rupture of the main steam line on SG A. The rupture is assumed to be downstream of the steam line flow restrictor and inside containment. The MSIVs on both steam lines fail to close, resulting in a rapid symmetric blowdown of the two SGs. The operator is assumed not to isolate the AFW flow to either SG and not to throttle the HPI flow.
The following modeling changes were made to simulate this event sequence. The steam line rupture is implemented at the connection between SG A and its steam line (Junction 262 in Figure 2.3-3). Breaks were modeled from both sides (SG and steam line) to constant atmospheric-pressure containment boundary conditions. The break from the SG side used a flow area of 0.1758 m2 [1.892 ft2], which represents the flow area of the steam line flow restrictor and the break from the steam-line side used a flow area of 0.6567 m2 [7.069 ft2], which represents the full steam-line flow area. The RELAP5 critical flow model was activated at the break junctions and the initial velocities for the junctions at the time of break were set equal to those present in the steady-state calculation. The control logic of the model was modified to prevent the closure of the MSIVs (which are represented by Valves 811 and 831 in Figure 2.3-3). A containment high pressure signal was set to occur at 6.7 s following the opening of the break. This signal time, which is based on the largest LOCA event in a data set of calculations obtained from the Palisades plant, is important for the simulation of this event sequence because it results in reactor trip, turbine trip, operator tripping of all four reactor coolant pumps and initiation of the containment spray system.
The operation of the 3-248
 
containment spray system is further significant for this event sequence because it rapidly draws fluid from the safety injection refueling water storage tank (SIRWT), the draining of which automatically affects many plant systems. When the RWST drains, the suction for the HPI system is switched from it to the containment sump (resulting in an increase in the HPI fluid temperature),
tripping of the LPI pumps and (after a 30-minute delay) tripping of the charging pumps.
The RELAP5-calculated sequence of events for Case 54 is shown in Table 3.3-1. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.1-21, 3.3.1-22 and 3.3.1-23, respectively.
When the steam line break opens, the secondary system pressures in both SGs rapidly decline, as shown in Figure 3.3.1-24. A MSIV closure signal is generated at 12 s as a result of the containment high pressure signal (which is set for 6.8 s), but in this event sequence the two MSIVs are assumed to fail open, resulting in a symmetric blowdown of the two SGs throughout the transient period.
Figure 3.3.1-25 shows the AFW flows to the two SGs. AFW flow began early during the event sequence as a result of low SG level indications in both SGs. As the SG secondary pressures rapidly fell the flow through the break eventually became smaller than the AFW flow, and afterward the AFW flow replenished the SG secondary inventories that had been lost. Figure 3.3.1-26 shows the secondary fluid mass responses for the two SGs. AFW flow to both steam generators was throttled near the end of the event sequence, when the SG inventories and levels had recovered.
Afterward, AFW flow to both SGs was throttled by the automatic controllers to maintain the SG levels within their normal range.
The cooling afforded to the RCS fluid as a result of heat transfer from the RCS to the depressurizing SG steam systems resulted in a rapid RCS cooldown as shown in Figure 3.3.1-22.
This cooling also caused the RCS fluid volume to shrink, which rapidly depressurized the RCS as shown in Figure 3.3.1-21.
The RCS depressurization led to a safety injection actuation signal at a pressure of 10.98 MPa
[1593 psia], which results in the starting of the HPI and LPI pumps after a 27-second delay. The calculated HPI flow rate for Cold Leg A1 is shown in Figure 3.3.1-27; the total HPI flow rate is four times the flow shown in the figure. The flow delivered from the centrifugal pumps of the HPI system is a function of the cold leg pressure, with lower pressures resulting in higher HPI flow and with no HPI flow delivered whenever the RCS pressure exceeds the shutoff head of the HPI system (8.906 MPa [1291.7 psia]). The RCS pressure did not decline below the initial pressure of the safety injection tanks (SITs) or below shutoff head of the LPI system and therefore no SIT or LPI flow was delivered.
The containment pressure signal results in operator tripping of all four reactor coolant pumps.
Figure 3.3.1-28 shows the flow rates through the two Loop-1 cold legs at their connections with the reactor vessel. The flow behavior in Loop 2 is similar to that in Loop 1. The pumps coast down following trip, but strong coolant loop natural circulation flow continues in both loops as a result of the continual heat removal to the SGs. The effects on the reactor vessel inside-wall heat 3-249
 
transfer coefficient of the reactor coolant pump trips and the slow decline in the loop natural circulation flow rates are evident in Figure 3.3.1-23.
The pressurizer level response is shown in Figure 3.3.1-29. The RCS fluid volume shrinkage initially caused by the cooldown is sufficient to rapidly and completely drain the pressurizer. The HPI and net charging (i.e., charging flow less letdown) flows replenished the RCS fluid volume lost due to shrinkage and this resulted in the pressurizer refilling. Since the RCS is a closed system during this event sequence, the pressurizer refill is accompanied by a RCS repressurization to above the HPI system shutoff head and this terminates the HPI flow.
In this event sequence, the RWST is used as a water source for the HPI, charging and containment spray systems. As indicated above, when the RWST draining signal occurs the HPI water source automatically switches from the RWST to the containment sump. The RWST inventory is tracked in the model during the calculation. The draining signal was predicted to occur at 3,627 s after the event initiation. At that time the HPI temperature used in the model was increased from the nominal RWST temperature, 304.2 K [87.9EF], to the containment sump temperature, 343.2 K [158.1EF]. Afterward, the sump temperature slowly declines, to 322.9 K
[121.5 EF] by the end of the calculation. These sump temperatures were those provided for the largest LOCA (for a break in the RCS cold leg, with a diameter of 0.2032 m [8 in]) in a data set based on independent Palisades containment calculations.
Figure 3.3-30 shows the charging and letdown flow responses (charging flow is injected equally into two cold legs, the figure shows the flow delivered to one cold leg). The letdown flow is isolated early in the event sequence as a result of the safety injection actuation signal. The charging pumps continue to run for 30 minutes following the RWST draining signal and then are automatically stopped. In the calculation, the charging pumps were tripped at 5,427 s after the event initiation.
The minimum average reactor vessel downcomer fluid temperature, 377 K [219EF], is reached at 4,110 s after the event initiation. The temperature increases slightly after that time as a result of the increased HPI fluid temperature. This slight warming of the RCS fluid resulted in the RCS pressure increasing to the pressurizer SRV opening setpoint pressure.
3-250
 
20.0                                                        2901 p11001 15.0                                                        2176 Pressure (MPa)                                                                      Pressure (psia) 10.0                                                        1450 5.0                                                        725 0.0                                                        0 3000  0      3000    6000          9000    12000  15000 Time (sec)
Figure 3.3.1-21 Reactor Coolant System Pressure - Palisades Case 54 600                                                          620 cntrlvar942 500                                                          440 Temperature (K)                                                                      Temperature (F) 400                                                          260 300                                                          80 3000  0      3000    6000            9000  12000    15000 Time (sec)
Figure 3.3.1-22 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 54 3-251
 
4000                                                            0.20 cntrlvar990 3000                                                            0.15 HTC (W/m *K)                                                                          HTC (Btu/s*ft *F) 2 2
2000                                                            0.10 1000                                                            0.05 0                                                            0.00 3000      0      3000    6000            9000  12000  15000 Time (sec)
Figure 3.3.1-23 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 54 1.00                                                            145 p26001 (SG 1) 0.80                                p46001 (SG 2)              116 Pressure (MPa)                                                                            Pressure (psia) 0.60                                                            87 0.40                                                            58 0.20                                                            29 0.00                                                            0 3000    0      3000    6000            9000  12000  15000 Time (sec)
Figure 3.3.1-24 Steam Generator Pressures - Palisades Case 54 3-252
 
15.0                                                                    33.1 10.0                                                                    22.0 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 5.0                                                                    11.0 0.0                                                                    0.0 mflowj295 (SG 1) mflowj297 (SG 2) 5.0                                                                    11.0 3000        0      3000      6000          9000        12000  15000 Time (sec)
Figure 3.3.1-25 Auxiliary Feedwater Flows - Palisades Case 54 300000                                                                  136080 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 200000                                                                  90720 Mass (lbm)                                                                                          Mass (kg) 100000                                                                  45360 0                                                                0 3000      0    3000      6000          9000        12000  15000 Time (sec)
Figure 3.3.1-26 Steam Generator Secondary Fluid Masses - Palisades Case 54 3-253
 
20.0                                                                  44.1 mflowj792 (Loop 1A) 15.0                                                                  33.1 Flow Rate (kg/s)                                                                                Flow Rate (lbm/s) 10.0                                                                  22.0 5.0                                                                  11.0 0.0                                                                  0.0 3000      0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.3.1-27 Loop A1 High Pressure Injection Flow - Palisades Case 54 1000                                                                  2205 mflowj160 (Loop 1A) mflowj660 (Loop 1B)
Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 500                                                                  1102 0                                                                    0 3000      0      3000    6000          9000          12000  15000 Time (sec)
Figure 3.3.1-28 Loop 1 Cold Leg Flows - Palisades Case 54 3-254
 
100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000        0        3000      6000            9000          12000        15000 Time (sec)
Figure 3.3.1-29 Pressurizer Level - Palisades Case 54 5.00                                                                        11.0 4.00                                mflowj172 (Loop 1A Charging) 8.8 mflowj772 (Loop 2B Letdown) 3.00                                                                        6.6 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) 2.00                                                                        4.4 1.00                                                                        2.2 0.00                                                                        0.0 1.00                                                                        2.2 2.00                                                                        4.4 3000        0      3000      6000        9000          12000        15000 Time (sec)
Figure 3.3.1-30 Charging and Letdown Flows - Palisades Case 54 3-255
 
3.3.1.4 Two Stuck-Open Atmospheric Dump Valves with Operator Action and Controller Failures Leading to Maximum AFW Flow from Hot Full Power Condition - Palisades Case 55 With the plant in hot full power operation, this event starts with reactor and turbine trips and the sticking-open of the two ADVs on SG A. Two aggravating failures are also assumed for this sequence. First, an incorrect diagnosis of the event is assumed to cause the operator to start the second motor-driven AFW pump (which can only be started by operator action). Second, a flow control system software or hardware failure is assumed to result in delivery of the entire AFW flow to affected SG A. The net effect of these two assumptions is to multiply by four the AFW flow rate delivered to affected SG A. In the calculation, it is assumed that the operator terminates the AFW flow to SG A when its steam line begins to fill with water. The operator is also assumed not to throttle the HPI flow.
The following modeling changes were made to simulate this event sequence. Manual reactor and turbine trips were implemented at the beginning of the transient calculation. The ADVs are normally demanded within a second following a reactor trip from hot full power conditions.
Therefore, a potential for stuck-open ADVs exists for this event sequence. The RELAP5 ADV model (Valve 480 in Figure 2.3-3) represents a combination of the two ADVs on SG A. To represent the two ADVs sticking open, the normalized flow area for this valve component was set to 1.0, providing an effective flow area of 0.0226 m2 [0.2430 ft2]. The trip and control functions of the model were modified to implement the AFW behavior described in the preceding paragraph.
The effect of these modifications is to initially deliver four times the normal AFW flow to SG A and none to SG B. The SG A water inventory is monitored during the calculation and when the SG A steam line begins to fill with water the AFW flow to SG A stops and normal AFW flow behavior is restored for SG B.
The RELAP5-calculated sequence of events for Case 55 is shown in Table 3.3-1. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.1-31, 3.3.1-32 and 3.3.1-33, respectively.
When the two ADVs stick open, the secondary system pressures in both SGs rapidly decline, as shown in Figure 3.3.1-34. A MSIV closure signal is generated at 584 s as a result of the steam pressure falling below 3.447 MPa [500 psia]. A 5-second MSIV closure time was used in the model. After MSIV closure, the pressures in the two SGs diverged somewhat, but the unaffected SG B pressure continued to fall as a result of secondary-to-primary heat transfer.
Figure 3.3.1-35 shows the AFW flows to the two SGs. The high AFW flow to SG A began early during the event sequence as a result of low the SG A level indication and the assumed operator action and flow controller failures. The AFW flow to affected SG A continued until the SG A steam line began to fill with water, which occurred at 4,332 s in the calculation. At that time the AFW flow to SG A stopped and the normal AFW behavior was restored for SG B. Figure 3.3.1-36 shows the secondary fluid mass inventory responses for the two SGs. The inventory in SG A first rapidly increases due to the AFW overfeed, then rapidly declines to zero after the AFW flow is terminated.
The inventory in SG B first rapidly falls because no AFW is being delivered, then stabilizes when 3-256
 
the MSIVs are closed. The SG B inventory increases when AFW flow to it is restored and then stabilizes again when the normal level range is attained.
The cooling afforded to the RCS fluid as a result of heat transfer from the RCS to the depressurizing SG steam systems resulted in a rapid RCS cooldown as shown in Figure 3.3.1-32.
This cooling also caused the RCS fluid volume to shrink, which rapidly depressurized the RCS as shown in Figure 3.3.1-31.
The RCS depressurization led to a safety injection actuation signal at a pressure of 10.98 MPa
[1593 psia], which results in the starting of the HPI and LPI pumps after a 27-second delay. The calculated HPI flow rate for Cold Leg A1 is shown in Figure 3.3.1-37; the total HPI flow rate is four times the flow shown in the figure. The flow delivered from the centrifugal pumps of the HPI system is a function of the cold leg pressure, with lower pressures resulting in higher HPI flow and with no HPI flow delivered whenever the RCS pressure exceeds the shutoff head of the HPI system (8.906 MPa [1291.7 psia]). The RCS pressure did not decline below the initial pressure of the safety injection tanks (SITs) or below shutoff head of the LPI system and therefore no SIT or LPI flow was delivered.
The RCS depressurization below 8.963 MPa [1300 psia] also led to operator tripping of one reactor coolant pump in each loop. Figure 3.3.1-38 shows the flow rates through the two Loop-1 cold legs at their connections with the reactor vessel. The flow behavior in Loop 2 is similar to that in Loop
: 1. After the reactor coolant pump trip, the flow through the cold leg with the pump that remained operating increased, while the flow through the cold leg with the pump that was tripped reversed.
The remaining two reactor coolant pumps continued to operate throughout the event sequence because the low RCS fluid subcooling requirement (subcooling less than 13.9 K [25 oF]) for the operators to trip those pumps was not met. The effect of tripping the two reactor coolant pumps on the reactor vessel inside-wall heat transfer coefficient is evident in Figure 3.3.1-33.
The pressurizer level response is shown in Figure 3.3.1-39. The RCS fluid volume shrinkage initially caused by the cooldown is sufficient to completely drain the pressurizer. HPI and net charging system injection flow (i.e., charging flow less letdown flow, see Figure 3.3.1-40) replenished the RCS fluid volume lost due to shrinkage and this resulted in the pressurizer refilling.
Since the RCS is a closed system during this event sequence, the pressurizer refill is accompanied by a RCS repressurization to above the HPI system shutoff head and this terminates the HPI flow.
The letdown flow is isolated as a result of the safety injection actuation signal and the three charging pumps are of the positive-displacement type. One charging pump continues to deliver flow, regardless of the pressurizer level response. The RCS cooldown and fluid shrinkage stop when the AFW flow to SG A is terminated and afterward the charging flow completely refills the pressurizer and raises the RCS pressure up to the 17.24-MPa [2500-psia] opening setpoint pressure of the pressurizer safety relief valves (SRVs). The RCS pressure remains high through the remainder of the event sequence, with the charging flow balanced by the pressurizer SRV flow.
The minimum average reactor vessel downcomer fluid temperature, 437 K [328 oF], is reached at 4,320 s, when the AFW flow to SG A is stopped. The RCS pressure reaches the pressurizer SRV opening setpoint pressure shortly thereafter.
3-257
 
20.0                                                            2901 p11001 15.0                                                            2176 Pressure (MPa)                                                                                    Pressure (psia) 10.0                                                            1450 5.0                                                            725 3000    0      3000      6000        9000      12000    15000 Time (sec)
Figure 3.3.1-31 Reactor Coolant System Pressure - Palisades Case 55 600                                                              620 cntrlvar942 Temperature (K)                                                                                  Temperature (F) 500                                                              440 400                                                              260 3000  0        3000      6000          9000    12000    15000 Time (sec)
Figure 3.3.1-32 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 55 3-258
 
30000                                                            1.47 cntrlvar990 25000                                                            1.22 HTC (W/m *K)                                                                            HTC (Btu/s*ft *F) 2 2
20000                                                            0.98 15000                                                            0.73 10000                                                            0.49 3000      0    3000      6000          9000    12000  15000 Time (sec)
Figure 3.3.1-33 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 55 7.00                                                              1015 6.00                              p26001 (SG 1) 870 p46001 (SG 2) 5.00                                                              725 Pressure (MPa)                                                                              Pressure (psia) 4.00                                                              580 3.00                                                              435 2.00                                                              290 1.00                                                              145 0.00                                                              0 3000    0      3000      6000        9000      12000    15000 Time (sec)
Figure 3.3.1-34 Steam Generator Pressures - Palisades Case 55 3-259
 
50.0                                                                            110 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 30.0                                                                            66 mflowj295 (SG 1) mflowj297 (SG 2) 10.0                                                                            22 10.0                                                                          22 3000      0      3000      6000          9000              12000      15000 Time (sec)
Figure 3.3.1-35 Auxiliary Feedwater Flows - Palisades Case 55 400000                                                                      181440 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 300000                                                                      136080 Mass (lbm)                                                                                                Mass (kg) 200000                                                                      90720 100000                                                                      45360 0                                                                        0 3000    0      3000      6000        9000          12000        15000 Time (sec)
Figure 3.3.1-36 Steam Generator Secondary Fluid Masses - Palisades Case 55 3-260
 
10.0                                                                      22.0 mflowj792 (Loop 1A)
Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 5.0                                                                      11.0 0.0                                                                    0.0 3000      0      3000    6000            9000          12000    15000 Time (sec)
Figure 3.3.1-37 Loop A1 High Pressure Injection Flow - Palisades Case 55 8000                                                                  17637 6000                                                                  13228 mflowj160 (Loop 1A)
Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) mflowj660 (Loop 1B) 4000                                                                  8818 2000                                                                  4409 0                                                              0 2000                                                                  4409 3000        0  3000    6000          9000          12000    15000 Time (sec)
Figure 3.3.1-38 Loop 1 Cold Leg Flows - Palisades Case 55 3-261
 
100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000        0      3000      6000            9000            12000      15000 Time (sec)
Figure 3.3.1-39 Pressurizer Level - Palisades Case 55 5.00                                                                        11.0 4.00                                mflowj172 (Loop 1A Charging) 8.8 mflowj772 (Loop 2B Letdown) 3.00                                                                        6.6 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) 2.00                                                                        4.4 1.00                                                                        2.2 0.00                                                                        0.0 1.00                                                                        2.2 2.00                                                                        4.4 3000      0      3000    6000          9000          12000        15000 Time (sec)
Figure 3.3.1-40 Charging and Letdown Flows - Palisades Case 55 3-262
 
3.3.2 Sequences Initiated by Primary Coolant System Breaks with Effective Diameters of 5.08 cm [2 in] and Smaller Two of the 12 Palisades PTS-risk-dominant event sequences involved primary coolant system breaks with effective diameters of 5.08 cm [2 in] and smaller. These two sequences are described as follows:
Case 60 is an event initiated by a 5.08-cm [2-in] diameter break in the pressurizer surge line with the reactor in hot full power (HFP) operation. The operator is assumed not to throttle HPI flow.
Temperatures representing winter conditions are assumed for the fluids in the HPI, LPI and SIT systems.
Case 65 is an event initiated by a reactor trip and the spurious sticking-open of one pressurizer safety relief valve (SRV) with the reactor in hot zero power (HZP) operation. The SRV is assumed to re-close 6,000 s after the event initiation. The flow from the SRV is assumed not to result in a containment pressurization sufficient to initiate containment spray system operation. The operator is assumed not to throttle HPI flow.
The common features of this group of smaller primary-system break sequences are RCS depressurization caused by the break and RCS cooldown caused by the depressurization and the injection of cold HPI fluid. The break sizes for this group are large enough to result in tripping of all four reactor coolant pumps and RCS draining which leads to an interruption of coolant loop natural circulation flow. However, the break sizes for this group are not large enough to allow the RCS to depressurize sufficiently to permit LPI and SIT ECCS flow; only the HPI and charging systems deliver flow to the RCS.
3.3.2.1 5.08-cm [2-in] Diameter Pressurizer Surge Line Break from Hot Full Power Condition -
Palisades Case 60 With the plant in HFP operation, this event starts with a 5.08-cm [2-in] diameter break in the pressurizer surge line. The operator is assumed not to throttle the HPI flow, which is normally done when RCS subcooling and pressurizer level criteria have been met. The calculation assumes that the temperatures of the ECCS fluids are representative of winter-season conditions:
HPI and LPI temperatures of 277.6 K [40EF] and SIT temperatures of 288.7 K [60EF] (the nominal ECCS fluid temperatures are listed in Table 2.0-1).
The following modeling changes were made to simulate this event sequence. The pressurizer surge line break to a constant atmospheric-pressure containment boundary condition was added to the model. The equivalent break flow area for a circular break with a diameter 5.08 cm [2 in]
was specified. The break was connected on a vertical section of the surge line, from Component 180-2, as shown in Figure 2.3-2. The critical flow model was activated at the break junction and the flow loss coefficients specified were based on AP600-derived flow loss coefficients (Reference 3.3-1) and scaled for the specific break size and location for this event sequence. The boundary conditions for the HPI, LPI and SIT fluids were changed to represent the winter-season conditions listed above. At the time the reactor coolant pump coast-down was complete, large reverse flow loss coefficients were implemented in the loop seal cold leg regions of the model (Components 3-263
 
140, 340, 640 and 740 in Figure 2.3-2) to prevent the setting up of same-loop cold leg circulation, as discussed in Section 2.0. The containment high pressure signal, which results in containment spray actuation and tripping of all reactor coolant pumps, was specified as 125.8 s after event initiation. The modeling for the HPI fluid temperature was modified so as to represent the constant safety injection refueling water storage tank (SIRWT) winter-season temperature prior to the draining of that tank then switch to a representation of a variable containment sump temperature (specified as a function of the time after the switch). The HPI fluid temperature in the model rises from 319.2 K [114.9 oF] at the time of the switch to 327.8 K [130.4 oF] at 7,979 s and then falls to 326.3 K [127.6 oF] at the end of the calculation (15,000 s after the break opens). The model input data for the containment spray actuation time and the containment sump fluid temperature were obtained from an independent Palisades containment analysis for a 5.08-cm [2-in] diameter break in the RCS.
The RELAP5-calculated sequence of events for Case 60 is shown in Table 3.3-2. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.2-1, 3.3.2-2 and 3.3.2-3, respectively.
The calculated break flow response is shown in Figure 3.3.2-4. When the break opens, the RCS pressure falls rapidly at first, then more slowly as flashing within the RCS is encountered. The RCS depressurization causes a reactor trip signal at 55 s. The reactor trip causes a turbine trip, isolating the steam generator systems.
Figure 3.3.2-5 shows the calculated SG secondary system pressure responses. The turbine trip causes the secondary system pressures to rise; the pressure increase is limited by the opening of the turbine bypass and atmospheric dump valves. The steam pressures did not increase sufficiently to open the main steam safety relief valves. The declining SG pressures after 2,000 s are an indication of reverse (i.e., secondary system to primary system) SG heat transfer caused by the cooling down of the primary coolant system The SG secondary fluid mass responses are shown in Figure 3.3.2-6. The turbine trip resulted in collapse of the secondary system indicated levels, which initiated auxiliary feedwater (AFW) flow to both SGs. The AFW flow replenished the SG secondary fluid inventories; AFW flow was throttled to maintain the SG levels within the normal range.
At 113 s, the RCS pressure had fallen to 8.963 MPa [1300 psia], resulting in the operator tripping one reactor coolant pump in each loop. The decline in the coolant loop flows caused by the pump trip is indicated in Figure 3.3.2-7, which shows the two hot leg flows at the reactor vessel connections. At 126 s the containment high pressure signal resulted in the operators tripping the two remaining reactor coolant pumps. Afterward the coolant loop flows transitioned from forced circulation behavior to coolant loop natural circulation behavior. Figure 3.3.2-7 shows that coolant loop natural circulation flow continued in both loops up to about 1,000 s. After that time, the loss of RCS fluid inventory was sufficient to drain fluid from inside the upper regions of the SG tubes, which stopped coolant loop natural circulation flow through both loops. The Loop 1 hot leg flow response shown after 1,000 s reflects the fluid flowing toward the pressurizer surge line break.
The effects of loop flow stagnation on the reactor vessel downcomer fluid temperature are evident in Figure 3.3.2-2. Under the stagnant coolant loop conditions, the effects of injecting cold HPI fluid 3-264
 
into the cold legs are directly felt in the vessel downcomer and the fluid temperatures there decline rapidly.
RCS depressurization to 10.98 MPa [1593 psia] led to a safety injection actuation signal at 69 s and the starting of the HPI and LPI pumps after a 27-second delay (which represents effects related to plant instrumentation, control systems and pump start up timing). The calculated HPI flow rate for Cold Leg A1 is shown in Figure 3.3.2-8; the total HPI flow rate is four times the flow shown in the figure. The flow delivered from the centrifugal pumps of the HPI system is a function of the cold leg pressure, with lower pressures resulting in higher HPI flow and with no HPI flow delivered whenever the RCS pressure exceeds the shutoff head of the HPI system (8.906 MPa
[1291.7 psia]). At 3,157 s, a recirculation actuation signal was calculated as a result of a low RWST level condition. The model tracks RWST inventory and level based on the flows drawn from the tank by the containment spray, HPI and charging systems. At this time the suction for the HPI system is switched from the RWST to the containment sump, with the resulting increase in HPI fluid temperature described above. During this event sequence calculation, the RCS pressure did not decline below the initial pressure of the SITs or below the shutoff head of the LPI system and therefore no SIT or LPI flow was delivered.
The effects of RCS coolant inventory loss through the break are evident in the declining pressurizer level response shown in Figure 3.3.2-9. The pressurizer was completely drained over the first 90 s of the event sequence. The charging and letdown flow responses are shown in Figure 3.3.2-10. The letdown flow was isolated early in the event sequence at the time of the safety injection actuation signal. The charging system flow increased in response to the low pressurizer level condition, with all three charging pumps delivering flow. Charging flow was terminated at 4,957 s, which is 1,800 s after the time of the recirculation actuation signal. It is estimated that 30 minutes would be required after the recirculation actuation signal for the charging system to completely drain the RWST of its remaining inventory. Afterward, no source of fluid is available for the charging system.
During the latter portion of the event sequence the calculated conditions reflect balances in the RCS mass and energy flows. The break mass flow rate is balanced by the HPI mass addition rate.
The core heat addition rate is balanced by the cooling afforded to the RCS from adding cold HPI fluid and removing warm fluid at the break. These balanced conditions were reached at about 8,000 s with a steady pressurizer level of about 22% (see Figure 3.3.2-9).
The minimum average reactor vessel downcomer fluid temperature, 351 K [173 oF], is reached at 3,540 s, shortly after the time when the suction for the HPI system is switched to the containment sump. The RCS pressure, which was calculated to be 2.303 MPa [334 psia] at 3,540 s, rose moderately afterward as a result of the effects of warming the HPI fluid.
3-265
 
Table 3.3-2 Comparison of Event Timing for Dominant Palisades Event Sequences -
Group 2, Primary System Breaks with Diameters of 5.08-cm [2-in] and Smaller Event Time (seconds)
Case 60, HFP,          Case 65, HZP, 5.08-cm [2-in]        One Stuck-Open Event(s)                          Diameter Surge Line    Pressurizer SRV Break                  which Re-Closes at 6,000 s Break opens (Case 60), one pressurizer SRV                0                      0 spuriously fails open (Case65)
Reactor trip signal (both cases), turbine trip (Case 60    55                    0 only)
Safety injection actuation signal, isolate letdown flow    69                    82 Pressurizer level reaches 0%                              90                    N/A HPI and LPI systems available                              96                    109 Low RCS pressure condition causes operator to trip        113                    150 one reactor coolant in each coolant loop Containment high pressure signal, results in              126                    N/A containment spray system initiation and operator tripping of the remaining two reactor coolant pumps Minimum pressurizer level reached, 34%                    N/A                    165 Low RCS subcooling condition causes operator to trip      N/A                    214 the remaining two reactor coolant pumps Pressurizer level reaches 100%                            N/A                    2145 Recirculation actuation signal, suction for HPI system    3157                  N/A switched from RWST to containment sump Stuck-open pressurizer SRV assumed to reclose              N/A                    6000 Minimum reactor vessel downcomer fluid temperature        3540                  6555 attained RCS pressure reaches opening setpoint pressure of          N/A                    6885 the non-failed pressurizer SRV Pressurizer level reestablished above 0%                  4390                  N/A Charging flow stops                                        4957                  N/A Calculation terminated                                    15000                  15000 Note: N/A indicates this event is not applicable for the event sequence.
3-266
 
25.0                                                        3626 p11001 20.0                                                        2901 Pressure (MPa)                                                                      Pressure (psia) 15.0                                                        2176 10.0                                                        1450 5.0                                                        725 0.0                                                        0 3000  0      3000    6000          9000    12000  15000 Time (sec)
Figure 3.3.2-1 Reactor Coolant System Pressure - Palisades Case 60 600                                                          620 cntrlvar942 500                                                          440 Temperature (K)                                                                      Temperature (F) 400                                                          260 300                                                          80 3000  0      3000    6000            9000  12000    15000 Time (sec)
Figure 3.3.2-2 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 60 3-267
 
8000                                                                        0.39 cntrlvar990 6000                                                                        0.29 HTC (W/m *K)                                                                                      HTC (Btu/s*ft *F) 2 2
4000                                                                        0.20 2000                                                                        0.10 0                                                                    0.00 3000          0    3000    6000            9000        12000  15000 Time (sec)
Figure 3.3.2-3 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 60 150                                                                        331 100                                                                        220 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 50                                                                          110 mflowj89700 0                                                                          0 3000            0      3000      6000          9000        12000  15000 Time (sec)
Figure 3.3.2-4 Break Flow - Palisades Case 60 3-268
 
7.00                                                                      1015 p26001 (SG 1) p46001 (SG 2) 6.00                                                                      870 Pressure (MPa)                                                                                    Pressure (psia) 5.00                                                                      725 4.00                                                                      580 3.00                                                                      435 3000    0      3000      6000        9000            12000    15000 Time (sec)
Figure 3.3.2-5 Steam Generator Pressures - Palisades Case 60 300000                                                                136080 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 250000                                                                113400 Mass (lbm)                                                                                        Mass (kg) 200000                                                                90720 150000                                                                68040 100000                                                                  45360 3000      0    3000    6000        9000          12000    15000 Time (sec)
Figure 3.3.2-6 Steam Generator Secondary Fluid Masses - Palisades Case 60 3-269
 
1000                                                                    2205 500                              mflowj10500 (Loop 1)                1102 Flow Rate (kg/s)                                                                                        Flow Rate (lbm/s) mflowj30500 (Loop 2) 0                                                                    0 500                                                                    1102 3000      0      3000    6000        9000          12000      15000 Time (sec)
Figure 3.3.2-7 Hot Leg Flows - Palisades Case 60 30.0                                                                        66.1 mflowj79200 (Loop 1A) 20.0                                                                        44.1 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 10.0                                                                        22.0 0.0                                                                      0.0 3000      0      3000    6000          9000            12000    15000 Time (sec)
Figure 3.3.2-8 Loop A1 High Pressure Injection Flow - Palisades Case 60 3-270
 
100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000          0      3000      6000            9000          12000          15000 Time (sec)
Figure 3.3.2-9 Pressurizer Level - Palisades Case 60 5.00                                                                            11.0 4.00                                        mflowj172 (Loop 1A Charging) 8.8 mflowj772 (Loop 2B Letdown) 3.00                                                                            6.6 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 2.00                                                                            4.4 1.00                                                                            2.2 0.00                                                                            0.0 1.00                                                                            2.2 2.00                                                                            4.4 3000          0    3000    6000          9000        12000          15000 Time (sec)
Figure 3.3.2-10 Charging and Letdown Flows - Palisades Case 60 3-271
 
3.3.2.2 Reactor Trip with One Stuck-Open Pressurizer Safety Relief Valve which Re-Closes at 6000 Seconds from Hot Zero Power Condition - Palisades Case 65 With the plant in HZP operation, this event starts with a reactor trip and the failing-open of one of the three pressurizer safety relief valves (SRVs). Since the pressurizer SRVs are not normally challenged during reactor trip from HZP conditions, the failing open of an SRV represents a spurious failure. The failed-open SRV is assumed to re-close 6,000 s into the event sequence, after the RCS has depressurized and cooled. The discharge from the failed-open SRV through the pressurizer relief tank is assumed not to result in a containment high pressure signal. As a result of this assumption, the containment spray system is not initiated and the safety injection refueling water storage tank (SIRWT) inventory is not drawn down sufficiently to result in a realignment of the suction for the HPI system from the RWST to the containment sump (an event which leads to warmer HPI fluid temperatures). The operator is assumed not to throttle the HPI flow, which is normally done when RCS subcooling and pressurizer level criteria have been met.
The following modeling changes were made to simulate this event sequence. Model input was changed to trip the reactor and open the pressurizer SRV with the lowest opening setpoint pressure at the start of the transient calculation. Trip input also was changed to re-close the failed-open SRV at 6,000 s. The model of the failed-open SRV (Valve 193 in Figure 2.3-2) discharges to a constant atmospheric-pressure boundary condition representing the pressurizer relief tank.
The equivalent diameter for the failed-open SRV is 3.62 cm [1.425 in]. The model assumes that this SRV is open from 0 to 6,000 s and is then inoperable afterward. The other two pressurizer SRVs are assumed to be operable throughout the calculation period and therefore are available to limit RCS repressurization following the closure of the failed-open SRV. During HZP operation, the feedwater function is under manual operator control. The main feedwater flow boundary condition in the model (which delivers flow at the small rate needed to remove the HZP steady-state core power and reactor coolant pump heat) was modified to terminate the feedwater flow 1 s after the start of the event sequence. This change, which represents the expected operator response, is needed to avoid overfilling the SGs during the event sequence calculation.
The RELAP5-calculated sequence of events for Case 65 is shown in Table 3.3-2. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.2-11, 3.3.2-12 and 3.3.2-13, respectively.
The calculated flow responses of the failed-open pressurizer SRV and the functional SRV with the lower opening setpoint pressure are shown in Figure 3.3.2-14. The functional SRV with the higher opening setpoint pressure did not open during the calculation and a response for it is not shown on the figure. The mass flow rate through the failed-open SRV increases over the first 2,000 s of the event sequence as water is drawn upward through the pressurizer toward it. When the SRV fails opens, the RCS pressure falls rapidly at first, then more slowly as flashing within the RCS is encountered. The RCS depressurization causes a reactor trip signal at 82 s. By definition, the turbine is tripped during steady HZP operation, so for this sequence the reactor trip event does not affect the SG isolation status.
3-272
 
Figure 3.3.2-15 shows the calculated SG secondary pressure responses. Because the core power is so low during HZP operation, the steam pressures do not increase at the beginning of the event sequence. The slowly-declining SG pressures shown in the figure are an indication of reverse (i.e., secondary system to primary system) SG heat transfer caused by the cooling down of the primary coolant system. The SG secondary fluid mass responses are shown in Figure 3.3.2-16.
The SG heat loads during this transient are small, so no SG inventory is lost through the main steam SRVs and no AFW flow is needed to maintain SG levels within the normal range.
At 150 s the RCS pressure had fallen to 8.963 MPa [1300 psia], resulting in the operator tripping one reactor coolant pump in each loop. At 214 s the minimum RCS subcooling fell below 13.9 K
[25 oF], a condition that leads the operator to trip the remaining two reactor coolant pumps. The decline in the coolant loop flows caused by the pump trip is indicated in Figure 3.3.2-17, which shows the two hot leg flows at the reactor vessel connections. Because the core power at HZP conditions is so low, the SGs are not needed to remove the RCS heat load and therefore no period of coolant loop natural circulation flow is seen in Figure 3.3.2-17. Instead, after the reactor coolant pumps were tripped both loops rapidly transitioned from forced circulation to stagnant conditions.
The Loop 1 hot leg flow response shown after the time of the pump trip and before 6,000 s reflects the fluid flowing toward the failed-open pressurizer SRV. The effects of coolant loop flow stagnation on the reactor vessel downcomer fluid temperature are evident in Figure 3.3.2-12.
Under the stagnant coolant loop conditions, the effects of injecting cold HPI fluid into the cold legs are directly felt in the vessel downcomer and the fluid temperatures there decline rapidly.
RCS depressurization to 10.98 MPa [1593 psia] led to a safety injection actuation signal at 82 s and the starting of the HPI and LPI pumps after a 27-second delay (which represents effects related to plant instrumentation, control systems and pump start up timing). The calculated HPI flow rate for Cold Leg A1 is shown in Figure 3.3.2-18; the total HPI flow rate is four times the flow shown in the figure. The flow delivered from the centrifugal pumps of the HPI system is a function of the cold leg pressure, with lower pressures resulting in higher HPI flow and with no HPI flow delivered whenever the RCS pressure exceeds the shutoff head of the HPI system (8.906 MPa
[1291.7 psia]). During this event sequence calculation, the RCS pressure did not decline below the initial pressure of the SITs or below the shutoff head of the LPI system and therefore no SIT or LPI flow was delivered.
The pressurizer level response shown in Figure 3.3.2-19. The failed-open SRV on the top of the pressurizer draws fluid upward inside the pressurizer. The pressurizer level reaches 100% at 2,145 s and remains there afterward. The charging and letdown flow responses are shown in Figure 3.3.2-20. The letdown flow was isolated early in the event sequence at the time of the safety injection actuation signal. Because of the high pressurizer level condition, the charging flow does not increase during this event sequence. However, the charging flow continues throughout the event sequence at a rate representing the minimum flow from one of the three charging pumps. Once it was filled, the pressurizer remained full as a result of this charging flow. The charging pumps are of positive-displacement type, so they deliver flow at a rate that is independent of the RCS pressure.
At 6,000 s, the failed-open pressurizer SRV was assumed to re-close. This event resulted in a rapid RCS repressurization (Figure 3.3.2-11) to above the shutoff head of the HPI system pumps, 3-273
 
stopping the HPI flow (Figure 3.3.2-18) and reversing the RCS cooldown (Figure 3.3.2-12). The RCS pressure increase was limited by the opening of one of the operable pressurizer SRVs (Figure 3.3.2-19). During the latter portion of the event sequence the calculated conditions reflect an RCS mass balance and a partial RCS energy balance. The time-averaged flow through the operable pressurizer SRV is balanced by the steady charging system mass addition rate.
However, the core heat addition rate is only partially balanced by the cooling afforded to the RCS from adding cold charging fluid and removing warm fluid through the operable pressurizer SRVs.
Since this cooling was not sufficient to remove the entire core decay heat rate, the RCS continued to slowly heat up (see Figure 3.3.2-12).
The minimum average reactor vessel downcomer fluid temperature, 366 K [199EF], is reached at 6,570 s, shortly after the time when the failed-open pressurizer SRV is assumed to re-close. After the minimum downcomer temperature is achieved, the RCS pressure rapidly increases to above the opening setpoint pressure of the operable pressurizer SRVs, 17.51 MPa [2540 psia].
25.0                                                    3626 p11001 20.0                                                    2901 Pressure (MPa)                                                                  Pressure (psia) 15.0                                                    2176 10.0                                                    1450 5.0                                                    725 0.0                                                    0 3000  0      3000    6000      9000  12000  15000 Time (sec)
Figure 3.3.2-11 Reactor Coolant System Pressure - Palisades Case 65 3-274
 
600                                                      620 cntrlvar942 500                                                      440 Temperature (K)                                                                      Temperature (F) 400                                                      260 300                                                      80 3000    0  3000    6000          9000  12000  15000 Time (sec)
Figure 3.3.2-12 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 65 8000                                                    0.39 cntrlvar990 6000                                                    0.29 HTC (W/m *K)                                                                    HTC (Btu/s*ft *F) 2 2
4000                                                    0.20 2000                                                    0.10 0                                                    0.00 3000  0  3000    6000          9000  12000  15000 Time (sec)
Figure 3.3.2-13 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 65 3-275
 
150                                                                      331 mflowj19300 (SRV #3) mflowj19200 (SRV #2) 100                                                                      220 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 50                                                                      110 0                                                                      0 3000        0      3000    6000        9000          12000    15000 Time (sec)
Figure 3.3.2-14 Break Flow - Palisades Case 65 7.00                                                                  1015 p26001 (SG 1) p46001 (SG 2) 6.00                                                                  870 Pressure (MPa)                                                                                    Pressure (psia) 5.00                                                                  725 4.00                                                                  580 3.00                                                                    435 3000      0      3000    6000        9000            12000  15000 Time (sec)
Figure 3.3.2-15 Steam Generator Pressures - Palisades Case 65 3-276
 
300000                                                                  136080 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 250000                                                                  113400 Mass (lbm)                                                                                          Mass (kg) 200000                                                                  90720 150000                                                                  68040 100000                                                                    45360 3000        0    3000      6000        9000          12000  15000 Time (sec)
Figure 3.3.2-16 Steam Generator Secondary Fluid Masses - Palisades Case 65 1000                                                                      2205 500                                mflowj10500 (Loop 1)                1102 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) mflowj30500 (Loop 2) 0                                                                      0 500                                                                      1102 3000      0      3000      6000        9000          12000    15000 Time (sec)
Figure 3.3.2-17 Hot Leg Flows - Palisades Case 65 3-277
 
30.0                                                                      66.1 mflowj79200 (Loop 1A) 20.0                                                                      44.1 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 10.0                                                                      22.0 0.0                                                                      0.0 3000      0      3000    6000          9000          12000    15000 Time (sec)
Figure 3.3.2-18 Loop A1 High Pressure Injection Flow - Palisades Case 65 100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000        0      3000      6000            9000          12000      15000 Time (sec)
Figure 3.3.2-19 Pressurizer Level - Palisades Case 65 3-278
 
5.00                                                                        11.0 4.00                                    mflowj172 (Loop 1A Charging) 8.8 mflowj772 (Loop 2B Letdown) 3.00                                                                        6.6 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 2.00                                                                        4.4 1.00                                                                        2.2 0.00                                                                        0.0 1.00                                                                        2.2 2.00                                                                        4.4 3000    0      3000    6000          9000        12000          15000 Time (sec)
Figure 3.3.2-20 Charging and Letdown Flows - Palisades Case 65 3.3.3 Sequences Initiated by Primary Coolant System Breaks with a 10.16-cm [4-in]
Diameter Three of the 12 Palisades PTS-risk-dominant event sequences involved primary coolant system breaks with a 10.16-cm [4- in] diameter. These three sequences are described as follows:
Case 58 is an event initiated by a 10.14-cm [4-in] diameter break in the pump-discharge cold leg with the reactor in hot full power (HFP) operation. The operator is assumed not to throttle HPI flow. Temperatures representing winter conditions are assumed for the fluids in the HPI, LPI and SIT ECC systems.
Case 59 is an event initiated by a 10.14-cm [4-in] diameter break in the pump-discharge cold leg with the reactor in HFP operation. The operator is assumed not to throttle HPI flow.
Temperatures representing summer conditions are assumed for the fluids in the HPI, LPI and SIT ECC systems.
Case 64 is an event initiated by a 10.14-cm [4-in] diameter break in the pressurizer surge line with the reactor in HFP operation. The operator is assumed not to throttle HPI flow. Temperatures representing summer conditions are assumed for the fluids in the HPI, LPI and SIT ECC systems.
The common features of this sequence group are RCS depressurization caused by the break and RCS cooldown caused by the depressurization and the injection of cold HPI, LPI and SIT fluid.
The break size for this group is large enough to result in tripping of all four reactor coolant pumps and RCS draining which leads to an interruption of coolant loop natural circulation flow. The break 3-279
 
size for this group is also large enough to allow the RCS to depressurize sufficiently to permit HPI, LPI and SIT ECCS flows.
3.3.3.1 10.16-cm [4-in] Diameter Cold Leg Break from Hot Full Power Condition with Winter-Season ECCS Temperatures - Palisades Case 58 With the plant in HFP operation, this event starts with a 10.16-cm [4-in] diameter break in the pump-discharge cold leg. The operator is assumed not to throttle the HPI flow, which is normally done if RCS subcooling and pressurizer level criteria have been met. The calculation assumes that the temperatures of the ECCS fluids are representative of winter-season conditions: HPI and LPI temperatures of 277.6 K [40 oF] and SIT temperatures of 288.7 K [60oF] (the nominal ECCS fluid temperatures are listed in Table 2.0-1).
The following modeling changes were made to simulate this event sequence. The cold leg break to a constant atmospheric-pressure containment boundary condition was added to the model in Loop 1A. The equivalent break flow area for a circular break with a diameter of 10.16 cm [4 in]
was specified. The break was connected on the side of the horizontal cold leg, at the junction between Cells 1 and 2 of Component 150, as shown in Figure 2.3-2. The critical flow model was activated at the break junction and the flow loss coefficients specified were based on AP600-derived flow loss coefficients (Reference 3.3-1) and scaled for the specific break size and location for this event sequence. The boundary conditions for the HPI, LPI and SIT fluids were changed to represent the winter-season conditions listed above. At the time the reactor coolant pump coast-down was complete, large reverse flow loss coefficients were implemented in the loop seal cold leg regions of the model (Components 140, 340, 640 and 740 in Figure 2.3-2) to prevent the setting up of same-loop cold leg circulation, as discussed in Section 2.0. To eliminate non-physical numerically-driven circulations within the reactor vessel downcomer portion of the model, momentum flux was disabled in all junctions internal to the downcomer region (see discussion in Section 2.3.1). The containment high pressure signal, which results in containment spray actuation, was specified as 31.32 s after event initiation. The modeling for the HPI fluid temperature was modified so as to represent the constant safety injection refueling water tank (SIRWT) winter-season temperature prior to the draining of that tank then switch to a representation of a variable containment sump temperature (specified as a function of the time after the switch). The HPI fluid temperature falls from 331.8 K [137.5oF] immediately following the switch to 323.7 K [123.0oF] at the end of the calculation (15,000 s after the break opens). The model input data for the containment spray actuation time and the containment sump fluid temperature were obtained from an independent Palisades containment analysis for a 10.16-cm
[4-in] diameter break in the RCS.
The RELAP5-calculated sequence of events for Case 58 is shown in Table 3.3-3. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.3-1, 3.3.3-2 and 3.3.3-3, respectively.
The calculated break flow response is shown in Figure 3.3.3-4. When the break opens, the RCS pressure falls rapidly at first, then more slowly as flashing within the RCS is encountered. The 3-280
 
RCS depressurization causes a reactor trip signal at 11 s. The reactor trip causes a turbine trip, isolating the steam generator systems.
Figure 3.3.3-5 shows the calculated SG secondary system pressure responses. The turbine trip causes the secondary system pressures to rise; the pressure increase is limited by the opening of the turbine bypass and atmospheric dump valves. The steam pressures did not increase sufficiently to open the main steam safety relief valves. The declining SG pressures after 1,000 s are an indication of reverse (i.e., secondary system to primary system) SG heat transfer caused by the cooling down of the primary coolant system. The SG secondary fluid mass responses are shown in Figure 3.3.3-6. The turbine trip resulted in collapse of the secondary system indicated levels, which initiated auxiliary feedwater (AFW) flow to both SGs. The AFW flow replenished the SG secondary fluid inventories; AFW flow was throttled to maintain the SG levels within the normal range.
At 26 s, the RCS pressure had fallen to 8.963 MPa [1300 psia], resulting in the operator tripping one reactor coolant pump in each loop. At 27 s the minimum RCS subcooling fell below 13.9 K
[25EF], resulting in the operator tripping the remaining two reactor coolant pumps. The decline in the coolant loop flows caused by the pump trip is indicated in Figure 3.3.3-7, which shows the two hot leg flows at the reactor vessel connections. The decline in the coolant loop flows was rapid and total, with no significant period of natural circulation prior to complete stagnation of the loop flows. The effects of loop flow stagnation on the reactor vessel downcomer fluid temperature are evident in Figure 3.3.3-2. Under the stagnant coolant loop conditions, the effects of injecting cold HPI, LPI and SIT fluid into the cold legs are directly felt in the vessel downcomer and the fluid temperatures there decline rapidly.
RCS depressurization to 10.98 MPa [1593 psia] led to a safety injection actuation signal at 17 s and the starting of the HPI and LPI pumps after a 27-second delay (which represents effects related to plant instrumentation, control systems and pump start-up timing). The calculated HPI and LPI flow rates for Cold Leg A1 are shown in Figure 3.3.3-8; the total HPI and LPI flow rates are four times the flows shown in the figure. The flow delivered from the centrifugal pumps of the HPI and LPI systems are functions of the cold leg pressure, with lower pressures resulting in higher injection flows and with no injection flow delivered whenever the RCS pressure exceeds the shutoff heads of the systems (8.906 MPa [1291.7 psia] for HPI and 1.501 MPa [217.7 psia] for LPI). At 2,702 s, a recirculation actuation signal was calculated as a result of a low SIRWT level condition. The model tracks SIRWT inventory and level based on the flows drawn from the tank by the containment spray, HPI, LPI and charging systems. At this time the suction for the HPI system is switched from the SIRWT to the containment sump (with the resulting increase in HPI fluid temperature described above) and the LPI pumps are automatically tripped.
The effects of RCS coolant inventory loss through the break are evident in the declining pressurizer level response shown in Figure 3.3.3-9. The pressurizer was completely drained over the first 30 s of the event sequence and remained empty thereafter. The letdown flow was isolated early in the event sequence at the time of the safety injection actuation signal. The charging system flow increased in response to the low pressurizer level condition, with all three charging pumps delivering flow. Charging flow was terminated at 4,502 s, which is 1,800 s after the time of the recirculation actuation signal. It is estimated that 30 minutes would be required 3-281
 
after the recirculation actuation signal for the charging system to completely drain the SIRWT of its remaining inventory. Afterward, no source of fluid is available for the charging system.
Because the break size for this event sequence is large, the charging system flow is of relatively small importance in relation to the HPI, LPI and SIT ECCS flows.
The Loop 1A SIT discharge flow rate response is shown in Figure 3.3.3-10; the total SIT flow rate is four times the flow shown in the figure. Intermittent SIT flow began at 1,628 s, when the RCS pressure fell below the initial SIT pressure, 1.480 MPa [214.7 psia]. The SITs discharge whenever the RCS pressure is below the tank pressure (which declines as the liquid inventory flows out of the SITs). The SIT discharge period ended at 6,052 s as a result of the minor RCS repressurization shown in Figure 3.3.3-1, with a remaining liquid inventory of 0.355 m3 [12.53 ft3]
in each of the four SITs.
During the latter portion of the event sequence the calculated conditions reflect balances in the RCS mass and energy flows. The break mass flow rate is balanced by the HPI mass addition rate.
The core heat addition rate is balanced by the cooling afforded to the RCS from adding cold HPI fluid and removing warm fluid at the break. These balanced conditions were reached at about 10,000 s.
The minimum average reactor vessel downcomer fluid temperature, 331 K [136EF], is reached at 2,700 s, shortly after the time when the suction for the HPI system is switched to the containment sump and the LPI pumps are tripped. The RCS pressure, which was calculated to be 1.319 MPa
[191.3 psia] at 2,709 s, rose moderately later during the event sequence as a result of the effects of warming the HPI fluid.
Table 3.3-3 Comparison of Event Timing for Dominant Palisades Event Sequences -
Group 3, Primary System Breaks with a Diameter of 10.16 cm [4 in]
Event Time (seconds)
Case 58, HFP,    Case 59, HFP,      Case 64, HFP, 10.16-cm [4-in]  10.16-cm [4-in]    10.16-cm [4-in]
Diameter Cold    Diameter Cold      Diameter Surge Event(s)                  Leg Break,        Leg Break.        Line Break, Winter ECCS      Summer ECCS        Summer ECCS Break opens                                  0                0                  0 Reactor trip signal, turbine trip            11                11                14 Safety injection actuation signal, isolate    17                17                20 letdown flow Low RCS pressure condition causes            26                26                30 operator to trip one reactor coolant in each coolant loop Low RCS subcooling condition causes          27                27                31 operator to trip the two remaining reactor coolant pumps 3-282
 
Event Time (seconds)
Case 58, HFP,      Case 59, HFP,    Case 64, HFP, 10.16-cm [4-in]    10.16-cm [4-in]  10.16-cm [4-in]
Diameter Cold      Diameter Cold    Diameter Surge Event(s)                    Leg Break,          Leg Break.        Line Break, Winter ECCS        Summer ECCS      Summer ECCS Pressurizer level reaches 0%                    30                  30                30 Containment high pressure signal, results      31                  31                31 in containment spray system initiation HPI and LPI systems available, HPI flow        44                  44                47 begins Reactor coolant pump coast-down                113                114              114 completed SIT flow begins                                1628                2138              1418 LPI flow begins                                1913                2349              1539 Pressurizer level reestablished above 0%        N/A                N/A              1885 Recirculation actuation signal, suction for    2702                2832              2550 HPI system switched from SIRWT to containment sump, LPI pumps tripped Charging flow stops, SIRWT completely          4502                4632              4350 drained Calculation terminated                          15000              15000            15000 Note: N/A indicates this event is not applicable for the event sequence.
3-283
 
20.0                                                      2901 p11001 15.0                                                      2176 Pressure (MPa)                                                                      Pressure (psia) 10.0                                                      1450 5.0                                                      725 0.0                                                        0 3000  0  3000    6000            9000    12000  15000 Time (sec)
Figure 3.3.3-1 Reactor Coolant System Pressure - Palisades Case 58 600                                                        620 cntrlvar942 500                                                        440 Temperature (K)                                                                    Temperature (F) 400                                                        260 300                                                          80 3000  0  3000    6000              9000  12000    15000 Time (sec)
Figure 3.3.3-2 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 58 3-284
 
8000                                                                        0.39 cntrlvar990 6000                                                                        0.29 HTC (W/m *K)                                                                                          HTC (Btu/s*ft *F) 2 2
4000                                                                        0.20 2000                                                                        0.10 0                                                                      0.00 3000          0    3000      6000            9000      12000    15000 Time (sec)
Figure 3.3.3-3 Average Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 58 500                                                                        1102 mflowj89700 400                                                                        882 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 300                                                                        661 200                                                                        441 100                                                                        220 0                                                                          0 3000          0      3000      6000          9000        12000    15000 Time (sec)
Figure 3.3.3-4 Break Flow - Palisades Case 58 3-285
 
7.00                                                                    1015 p26001 (SG 1) p46001 (SG 2) 5.00                                                                    725 Pressure (MPa)                                                                                  Pressure (psia) 3.00                                                                    435 1.00                                                                    145 3000    0      3000    6000        9000            12000    15000 Time (sec)
Figure 3.3.3-5 Steam Generator Pressures - Palisades Case 58 300000                                                                136080 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 250000                                                                113400 Mass (lbm)                                                                                        Mass (kg) 200000                                                                90720 150000                                                                68040 100000                                                                45360 3000      0  3000    6000        9000          12000    15000 Time (sec)
Figure 3.3.3-6 Steam Generator Secondary Fluid Masses - Palisades Case 58 3-286
 
4000                                                                      8818 mflowj10500 (Loop 1) 3000                                  mflowj30500 (Loop 2)              6614 Flow Rate (kg/s)                                                                                              Flow Rate (lbm/s) 2000                                                                      4409 1000                                                                      2205 0                                                                    0 1000                                                                      2205 3000          0    3000    6000        9000          12000      15000 Time (sec)
Figure 3.3.3-7 Hot Leg Flows - Palisades Case 58 50.0                                                                            110 mflowj79200 (HPI Loop 1A) 40.0                                  mflowj79400 (LPI Loop 1A)                88 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 30.0                                                                            66 20.0                                                                            44 10.0                                                                            22 0.0                                                                          0 3000        0      3000      6000          9000            12000    15000 Time (sec)
Figure 3.3.3-8 Loop A1 HPI and LPI Flows - Palisades Case 58 3-287
 
100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000        0      3000      6000            9000        12000      15000 Time (sec)
Figure 3.3.3-9 Pressurizer Level - Palisades Case 58 150                                                                      331 mflowj69101 (Loop 1A SIT) 100                                                                      220 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 50                                                                      110 0                                                                        0 3000        0      3000      6000          9000        12000        15000 Time (sec)
Figure 3.3.3-10 Loop 1A SIT Flow - Palisades Case 58 3-288
 
3.3.3.2 10.16-cm [4-in] Diameter Cold Leg Break from Hot Full Power Condition with Summer-Season ECCS Temperatures - Palisades Case 59 With the plant in HFP operation, this event starts with a 10.16-cm [4-in] diameter break in the pump-discharge cold leg. The operator is assumed not to throttle the HPI flow, which is normally done if RCS subcooling and pressurizer level criteria have been met. The calculation assumes that the temperatures of the ECCS fluids are representative of summer-season conditions: HPI and LPI temperatures of 310.9 K [100EF] and SIT temperatures of 305.4 K [90EF] (the nominal ECCS fluid temperatures are listed in Table 2.0-1).
The following modeling changes were made to simulate this event sequence. The cold leg break to a constant atmospheric-pressure containment boundary condition was added to the model in Loop 1A. The equivalent break flow area for a circular break with a diameter of 10.16 cm [4 in]
was specified. The break was connected on the side of the horizontal cold leg, at the junction between Cells 1 and 2 of Component 150, as shown in Figure 2.3-2. The critical flow model was activated at the break junction and the flow loss coefficients specified were based on AP600-derived flow loss coefficients (Reference 3.3-1) and scaled for the specific break size and location for this event sequence. The boundary conditions for the HPI, LPI and SIT fluids were changed to represent the summer-season conditions listed above. At the time the reactor coolant pump coast-down was complete, large reverse flow loss coefficients were implemented in the loop seal cold leg regions of the model (Components 140, 340, 640 and 740 in Figure 2.3-2) to prevent the setting up of same-loop cold leg circulation, as discussed in Section 2.0. To eliminate non-physical numerically-driven circulations within the reactor vessel downcomer portion of the model, momentum flux was disabled in all junctions internal to the downcomer region (see discussion in Section 2.3.1). The containment high pressure signal, which results in containment spray actuation, was specified as 31.32 s after event initiation. The modeling for the HPI fluid temperature was modified so as to represent the constant safety injection refueling water tank (SIRWT) summer-season temperature prior to the draining of that tank then switch to a representation of a variable containment sump temperature (specified as a function of the time after the switch). The HPI fluid temperature falls from 331.8 K [137.5 oF] immediately following the switch to 323.7 K [123.0 oF] at the end of the calculation (15,000 s after the break opens). The model input data for the containment spray actuation time and the containment sump fluid temperature were obtained from an independent Palisades containment analysis for a 10.16-cm
[4-in] diameter break in the RCS.
The RELAP5-calculated sequence of events for Case 59 is shown in Table 3.3-3. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.3-11, 3.3.3-12 and 3.3.3-13, respectively.
The calculated break flow response is shown in Figure 3.3.3-14. When the break opens, the RCS pressure falls rapidly at first, then more slowly as flashing within the RCS is encountered. The RCS depressurization causes a reactor trip signal at 11 s. The reactor trip causes a turbine trip, isolating the steam generator systems.
3-289
 
Figure 3.3.3-15 shows the calculated SG secondary system pressure responses. The turbine trip causes the secondary system pressures to rise; the pressure increase is limited by the opening of the turbine bypass and atmospheric dump valves. The steam pressures did not increase sufficiently to open the main steam safety relief valves. The declining SG pressures after 1,000 s are an indication of reverse (i.e., secondary system to primary system) SG heat transfer caused by the cooling down of the primary coolant system. The SG secondary fluid mass responses are shown in Figure 3.3.3-16. The turbine trip resulted in collapse of the secondary system indicated levels, which initiated auxiliary feedwater (AFW) flow to both SGs. The AFW flow replenished the SG secondary fluid inventories; AFW flow was throttled to maintain the SG levels within the normal range.
At 26 s, the RCS pressure had fallen to 8.963 MPa [1300 psia], resulting in the operator tripping one reactor coolant pump in each loop. At 27 s the minimum RCS subcooling fell below 13.9 K
[25 oF], resulting in the operator tripping the remaining two reactor coolant pumps. The decline in the coolant loop flows caused by the pump trip is indicated in Figure 3.3.3-17, which shows the two hot leg flows at the reactor vessel connections. The decline in the coolant loop flows was rapid and total, with no significant period of natural circulation prior to complete stagnation of the loop flows. The effects of loop flow stagnation on the reactor vessel downcomer fluid temperature are evident in Figure 3.3.3-12. Under the stagnant coolant loop conditions, the effects of injecting cold HPI, LPI and SIT fluid into the cold legs are directly felt in the vessel downcomer and the fluid temperatures there decline rapidly.
RCS depressurization to 10.98 MPa [1593 psia] led to a safety injection actuation signal at 17 s and the starting of the HPI and LPI pumps after a 27-second delay (which represents effects related to plant instrumentation, control systems and pump start-up timing). The calculated HPI and LPI flow rates for Cold Leg A1 are shown in Figure 3.3.3-18; the total HPI and LPI flow rates are four times the flows shown in the figure. The flow delivered from the centrifugal pumps of the HPI and LPI systems are functions of the cold leg pressure, with lower pressures resulting in higher injection flows and with no injection flow delivered whenever the RCS pressure exceeds the shutoff heads of the systems (8.906 MPa [1291.7 psia] for HPI and 1.501 MPa [217.7 psia] for LPI). At 2,832 s, a recirculation actuation signal was calculated as a result of a low SIRWT level condition. The model tracks SIRWT inventory and level based on the flows drawn from the tank by the containment spray, HPI, LPI and charging systems. At this time the suction for the HPI system is switched from the SIRWT to the containment sump (with the resulting increase in HPI fluid temperature described above) and the LPI pumps are automatically tripped.
The effects of RCS coolant inventory loss through the break are evident in the declining pressurizer level response shown in Figure 3.3.3-19. The pressurizer was completely drained over the first 30 s of the event sequence and remained empty thereafter. The letdown flow was isolated early in the event sequence at the time of the safety injection actuation signal. The charging system flow increased in response to the low pressurizer level condition, with all three charging pumps delivering flow. Charging flow was terminated at 4,632 s, which is 1,800 s after the time of the recirculation actuation signal. It is estimated that 30 minutes would be required after the recirculation actuation signal for the charging system to completely drain the SIRWT of its remaining inventory. Afterward, no source of fluid is available for the charging system.
3-290
 
Because the break size for this event sequence is large, the charging system flow is of relatively small importance in relation to the HPI, LPI and SIT ECCS flows.
The Loop 1A SIT discharge flow rate response is shown in Figure 3.3.3-20; the total SIT flow rate is four times the flow shown in the figure. Intermittent SIT flow began at 2,138 s, when the RCS pressure fell below the initial SIT pressure, 1.480 MPa [214.7 psia]. The SITs discharge whenever the RCS pressure is below the tank pressure (which declines as the liquid inventory flows out of the SITs). The SIT discharge period ended at 6,374 s as a result of the minor RCS repressurization shown in Figure 3.3.3-11, with a remaining liquid inventory of 0.605 m3 [21.37 ft3]
in each of the four SITs.
During the latter portion of the event sequence the calculated conditions reflect balances in the RCS mass and energy flows. The break mass flow rate is balanced by the HPI mass addition rate.
The core heat addition rate is balanced by the cooling afforded to the RCS from adding cold HPI fluid and removing warm fluid at the break. These balanced conditions were reached at about 10,000 s.
The minimum average reactor vessel downcomer fluid temperature, 351 K [171EF], is reached at 14,940 s, near the end of the calculation. The RCS pressure at the time of the minimum temperature was calculated to be 1.53 MPa [222 psia].
20.0                                                    2901 p11001 15.0                                                    2176 Pressure (MPa)                                                                  Pressure (psia) 10.0                                                    1450 5.0                                                    725 0.0                                                    0 3000  0  3000    6000      9000    12000    15000 Time (sec)
Figure 3.3.3-11 Reactor Coolant System Pressure - Palisades Case 59 3-291
 
600                                                                620 cntrlvar942 500                                                                440 Temperature (K)                                                                                              Temperature (F) 400                                                                260 300                                                              80 3000  0    3000      6000              9000    12000    15000 Time (sec)
Figure 3.3.3-12 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 59 8000                                                                0.39 cntrlvar990 6000                                                                0.29 HTC (W/m *K)                                                                                        HTC (Btu/s*ft *F) 2 2
4000                                                                0.20 2000                                                                0.10 0                                                              0.00 3000    0  3000      6000          9000        12000    15000 Time (sec)
Figure 3.3.3-13 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 59 3-292
 
500                                                                    1102 mflowj89700 400                                                                    882 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 300                                                                    661 200                                                                    441 100                                                                    220 0                                                                    0 3000        0      3000    6000          9000          12000    15000 Time (sec)
Figure 3.3.3-14 Break Flow - Palisades Case 59 7.00                                                                  1015 p26001 (SG 1) p46001 (SG 2) 5.00                                                                  725 Pressure (MPa)                                                                                            Pressure (psia) 3.00                                                                  435 1.00                                                                    145 3000      0      3000    6000        9000          12000    15000 Time (sec)
Figure 3.3.3-15 Steam Generator Pressures - Palisades Case 59 3-293
 
300000                                                                      136080 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 250000                                                                      113400 Mass (lbm)                                                                                                  Mass (kg) 200000                                                                      90720 150000                                                                      68040 100000                                                                      45360 3000      0      3000    6000          9000          12000    15000 Time (sec)
Figure 3.3.3-16 Steam Generator Secondary Fluid Masses - Palisades Case 59 4000                                                                        8818 mflowj10500 (Loop 1) 3000                                      mflowj30500 (Loop 2)            6614 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 2000                                                                        4409 1000                                                                        2205 0                                                                        0 1000                                                                        2205 3000        0      3000    6000            9000          12000    15000 Time (sec)
Figure 3.3.3-17 Hot Leg Flows - Palisades Case 59 3-294
 
50.0                                                                        110 mflowj79200 (HPI Loop 1A) 40.0                                mflowj79400 (LPI Loop 1A)              88 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 30.0                                                                        66 20.0                                                                        44 10.0                                                                        22 0.0                                                                        0 3000        0      3000    6000        9000          12000        15000 Time (sec)
Figure 3.3.3-18 Loop A1 HPI and LPI Flows - Palisades Case 59 100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000        0        3000      6000          9000            12000    15000 Time (sec)
Figure 3.3.3-19 Pressurizer Level - Palisades Case 59 3-295
 
150                                                                      331 mflowj69101 (Loop 1A SIT) 100                                                                      220 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 50                                                                      110 0                                                                        0 3000      0      3000    6000          9000        12000        15000 Time (sec)
Figure 3.3.3-20 Loop 1A SIT Flow - Palisades Case 59 3.3.3.3 10.16-cm [4-in] Diameter Pressurizer Surge Line Break from Hot Full Power Condition with Summer-Season ECCS Temperatures - Palisades Case 64 With the plant in HFP operation, this event starts with a 10.16-cm [4-in] diameter break in the pressurizer surge line. The operator is assumed not to throttle the HPI flow, which is normally done if RCS subcooling and pressurizer level criteria have been met. The calculation assumes that the temperatures of the ECCS fluids are representative of summer-season conditions: HPI and LPI temperatures of 310.9 K [100 oF] and SIT temperatures of 305.4 K [90 oF] (the nominal ECCS fluid temperatures are listed in Table 2.0-1).
The following modeling changes were made to simulate this event sequence. The pressurizer surge line break to a constant atmospheric-pressure containment boundary condition was added to the model. The equivalent break flow area for a circular break with a diameter 10.16 cm [4 in]
was specified. The break was connected on a vertical section of the surge line, from Component 180-2, as shown in Figure 2.3-2. The critical flow model was activated at the break junction and the flow loss coefficients specified were based on AP600-derived flow loss coefficients (Reference 3.3-1) and scaled for the specific break size and location for this event sequence. The boundary conditions for the HPI, LPI and SIT fluids were changed to represent the summer-season conditions listed above. At the time the reactor coolant pump coast-down was complete, large reverse flow loss coefficients were implemented in the loop seal cold leg regions of the model (Components 140, 340, 640 and 740 in Figure 2.3-2) to prevent the setting up of same-loop cold leg circulation, as discussed in Section 2.0. To eliminate non-physical numerically-driven circulations within the reactor vessel downcomer portion of the model, momentum flux was disabled in all junctions internal to the downcomer region (see discussion in Section 2.3.1). The 3-296
 
containment high pressure signal, which results in containment spray actuation, was specified as 31.32 s after event initiation. The modeling for the HPI fluid temperature was modified so as to represent the constant safety injection refueling water tank (SIRWT) summer-season temperature prior to the draining of that tank then switch to a representation of a variable containment sump temperature (specified as a function of the time after the switch). The HPI fluid temperature falls from 331.8 K [137.5EF] immediately following the switch to 323.7 K [123.0 oF] at the end of the calculation (15,000 s after the break opens). The model input data for the containment spray actuation time and the containment sump fluid temperature were obtained from an independent Palisades containment analysis for a 10.16-cm [4-in] diameter break in the RCS.
The RELAP5-calculated sequence of events for Case 64 is shown in Table 3.3-3. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.3-21, 3.3.3-22 and 3.3.3-23, respectively.
The calculated break flow response is shown in Figure 3.3.3-24. When the break opens, the RCS pressure falls rapidly at first, then more slowly as flashing within the RCS is encountered. The RCS depressurization causes a reactor trip signal at 14 s. The reactor trip causes a turbine trip, isolating the steam generator systems.
Figure 3.3.3-25 shows the calculated SG secondary system pressure responses. The turbine trip causes the secondary system pressures to rise; the pressure increase is limited by the opening of the turbine bypass and atmospheric dump valves. The steam pressures did not increase sufficiently to open the main steam safety relief valves. The declining SG pressures after 1,000 s are an indication of reverse (i.e., secondary system to primary system) SG heat transfer caused by the cooling down of the primary coolant system. The SG secondary fluid mass responses are shown in Figure 3.3.3-26. The turbine trip resulted in collapse of the secondary system indicated levels, which initiated auxiliary feedwater (AFW) flow to both SGs. The AFW flow replenished the SG secondary fluid inventories; AFW flow was throttled to maintain the SG levels within the normal range.
At 30 s, the RCS pressure had fallen to 8.963 MPa [1300 psia], resulting in the operator tripping one reactor coolant pump in each loop. At 31 s the minimum RCS subcooling fell below 13.9 K
[25 oF], resulting in the operator tripping the remaining two reactor coolant pumps. The decline in the coolant loop flows caused by the pump trip is indicated in Figure 3.3.3-27, which shows the two hot leg flows at the reactor vessel connections. The decline in the coolant loop flows was rapid and total, with no significant period of natural circulation prior to complete stagnation of the loop flows.. The Loop 1 hot leg flow response reflects the fluid flowing toward the pressurizer surge line break. The effects of loop flow stagnation on the reactor vessel downcomer fluid temperature are evident in Figure 3.3.3-22. Under the stagnant coolant loop conditions, the effects of injecting cold HPI, LPI and SIT fluid into the cold legs are directly felt in the vessel downcomer and the fluid temperatures there decline rapidly.
RCS depressurization to 10.98 MPa [1593 psia] led to a safety injection actuation signal at 20 s and the starting of the HPI and LPI pumps after a 27-second delay (which represents effects related to plant instrumentation, control systems and pump start-up timing). The calculated HPI 3-297
 
and LPI flow rates for Cold Leg A1 are shown in Figure 3.3.3-28; the total HPI and LPI flow rates are four times the flows shown in the figure. The flow delivered from the centrifugal pumps of the HPI and LPI systems are functions of the cold leg pressure, with lower pressures resulting in higher injection flows and with no injection flow delivered whenever the RCS pressure exceeds the shutoff heads of the systems (8.906 MPa [1291.7 psia] for HPI and 1.501 MPa [217.7 psia] for LPI). At 2550 s, a recirculation actuation signal was calculated as a result of a low SIRWT level condition. The model tracks SIRWT inventory and level based on the flows drawn from the tank by the containment spray, HPI, LPI and charging systems. At this time the suction for the HPI system is switched from the SIRWT to the containment sump (with the resulting increase in HPI fluid temperature described above) and the LPI pumps are automatically tripped.
The effects of RCS coolant inventory loss through the break are evident in the declining pressurizer level response shown in Figure 3.3.3-29. The pressurizer was completely drained over the first 30 s of the event sequence. The pressurizer later refilled between 2727 and 2,980 s from the effects of rapidly injecting cold HPI, LPI and SIT water into the RCS and the momentum of that cold fluid toward the surge line break, which is in close proximity to the pressurizer tank.
After the LPI pumps were tripped and the SIT discharge flow stopped, the pressurizer drained again and was empty by 5,057 s. The letdown flow was isolated early in the event sequence at the time of the safety injection actuation signal. The charging system flow increased in response to the low pressurizer level condition, with all three charging pumps delivering flow. Charging flow was terminated at 4350 s, which is 1,800 s after the time of the recirculation actuation signal. It is estimated that 30 minutes would be required after the recirculation actuation signal for the charging system to completely drain the SIRWT of its remaining inventory. Afterward, no source of fluid is available for the charging system. Because the break size for this event sequence is large, the charging system flow is of relatively small importance in relation to the HPI, LPI and SIT ECCS flows.
The Loop 1A SIT discharge flow rate response is shown in Figure 3.3.3-30; the total SIT flow rate is four times the flow shown in the figure. Intermittent SIT flow began at 1418 s, when the RCS pressure fell below the initial SIT pressure, 1.480 MPa [214.7 psia]. The SITs discharge whenever the RCS pressure is below the tank pressure (which declines as the liquid inventory flows out of the SITs). The SIT discharge period ended at 2,950 s when the liquid inventories of the SITs had been completely discharged.
During the latter portion of the event sequence the calculated conditions reflect balances in the RCS mass and energy flows. The break mass flow rate is balanced by the HPI mass addition rate.
The core heat addition rate is balanced by the cooling afforded to the RCS from adding cold HPI fluid and removing warm fluid at the break. These balanced conditions were reached at about 6,000 s.
The minimum average reactor vessel downcomer fluid temperature, 323 K [121 oF], is reached at 2730 s, shortly after the time when the suction for the HPI system is switched to the containment sump and the LPI pumps are tripped. The RCS pressure, which was calculated to be 1.06 MPa
[154 psia] at the time of the minimum temperature, fell slowly over the remainder of the event sequence calculation.
3-298
 
20.0                                                        2901 p11001 15.0                                                        2176 Pressure (MPa)                                                                            Pressure (psia) 10.0                                                        1450 5.0                                                        725 0.0                                                        0 3000  0  3000    6000          9000      12000    15000 Time (sec)
Figure 3.3.3-21 Reactor Coolant System Pressure - Palisades Case 64 600                                                              620 cntrlvar942 500                                                              440 Temperature (K)                                                                            Temperature (F) 400                                                              260 300                                                          80 3000  0  3000      6000            9000    12000    15000 Time (sec)
Figure 3.3.3-22 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 64 3-299
 
8000                                                                    0.39 cntrlvar990 6000                                                                    0.29 HTC (W/m *K)                                                                                  HTC (Btu/s*ft *F) 2 2
4000                                                                    0.20 2000                                                                    0.10 0                                                                0.00 3000        0    3000      6000          9000      12000  15000 Time (sec)
Figure 3.3.3-23 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 64 500                                                                    1102 mflowj89700 400                                                                    882 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 300                                                                    661 200                                                                    441 100                                                                    220 0                                                                      0 3000        0      3000      6000          9000        12000  15000 Time (sec)
Figure 3.3.3-24 Break Flow - Palisades Case 64 3-300
 
7.00                                                                      1015 p26001 (SG 1) p46001 (SG 2) 5.00                                                                      725 Pressure (MPa)                                                                                    Pressure (psia) 3.00                                                                      435 1.00                                                                      145 3000      0      3000      6000        9000            12000    15000 Time (sec)
Figure 3.3.3-25 Steam Generator Pressures - Palisades Case 64 300000                                                                136080 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 250000                                                                113400 Mass (lbm)                                                                                        Mass (kg) 200000                                                                90720 150000                                                                68040 100000                                                                  45360 3000      0    3000    6000        9000          12000    15000 Time (sec)
Figure 3.3.3-26 Steam Generator Secondary Fluid Masses - Palisades Case 64 3-301
 
4000                                                                        8818 mflowj10500 (Loop 1) 3000                                      mflowj30500 (Loop 2)              6614 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 2000                                                                        4409 1000                                                                        2205 0                                                                      0 1000                                                                          2205 3000          0      3000    6000          9000          12000      15000 Time (sec)
Figure 3.3.3-27 Hot Leg Flows - Palisades Case 64 50.0                                                                              110 mflowj79200 (HPI Loop 1A) 40.0                                    mflowj79400 (LPI Loop 1A)              88 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 30.0                                                                              66 20.0                                                                              44 10.0                                                                              22 0.0                                                                            0 3000          0      3000    6000          9000            12000    15000 Time (sec)
Figure 3.3.3-28 Loop A1 HPI and LPI Flows - Palisades Case 64 3-302
 
100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000        0      3000      6000          9000          12000      15000 Time (sec)
Figure 3.3.3-29 Pressurizer Level - Palisades Case 64 250                                                                        551 mflowj69101 (Loop 1A SIT) 200                                                                        441 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 150                                                                        331 100                                                                        220 50                                                                        110 0                                                                          0 3000        0      3000      6000          9000        12000        15000 Time (sec)
Figure 3.3.3-30 Loop 1A SIT Flow - Palisades Case 64 3-303
 
3.3.4 Group 4 - Sequences Initiated by Primary Coolant System Breaks with Diameters Greater Than 10.16-cm [4-in]
Three of the 12 Palisades PTS-risk-dominant event sequences involved primary coolant system breaks with diameters greater than 10.16 cm [4 in]. These three sequences are described as follows:
Case 40 is an event initiated by a 40.64-cm [16-in] diameter break in a hot leg with the reactor in hot full power (HFP) operation. The operator is assumed not to throttle HPI flow.
Case 62 is an event initiated by a 20.32-cm [8-in] diameter break in the pump-discharge cold leg with the reactor in HFP operation. The operator is assumed not to throttle HPI flow.
Temperatures representing winter conditions are assumed for the fluids in the HPI, LPI and SIT ECC systems.
Case 63 is an event initiated by a 14.37-cm [5.656-in] diameter break in the pump-discharge cold leg with the reactor in HFP operation. The operator is assumed not to throttle HPI flow.
Temperatures representing winter conditions are assumed for the fluids in the HPI, LPI and SIT ECC systems.
The common features of this sequence group are very rapid RCS depressurization caused by the break and RCS cooldown caused by the depressurization and the injection of cold HPI, LPI and SIT fluid. The break sizes for this group are very large, thus precluding RCS repressurization. The event sequences quickly result in tripping of all four reactor coolant pumps and stagnation of the reactor coolant loops.
3.3.4.1 40.64-cm [16-in] Diameter Hot Leg Break from Hot Full Power Condition - Palisades Case 40 With the plant in HFP operation, this event starts with a 40.64-cm [16-in] diameter break in the hot leg. The operator is assumed not to throttle the HPI flow, which is normally done if RCS subcooling and pressurizer level criteria have been met.
The following modeling changes were made to simulate this event sequence. The hot leg break to a constant atmospheric-pressure containment boundary condition was added to the model in Loop 1. The equivalent break flow area for a circular break with a diameter of 40.64 cm [16 in] was specified. The break was connected on the side of the horizontal hot leg, at the junction between Cells 1 and 2 of Component 120, as shown in Figure 2.3-2. The critical flow model was activated at the break junction and the flow loss coefficients specified were based on AP600-derived flow loss coefficients (Reference 3.3-1) and scaled for the specific break size and location for this event sequence. At the time the reactor coolant pump coast-down was complete, large reverse flow loss coefficients were implemented in the loop seal cold leg regions of the model (Components 140, 340, 640 and 740 in Figure 2.3-2) to prevent the setting up of same-loop cold leg circulation, as discussed in Section 2.0. To eliminate non-physical numerically-driven circulations within the reactor vessel downcomer portion of the model, momentum flux was disabled in all junctions internal to the downcomer region (see discussion in Section 2.3.1). The containment high 3-304
 
pressure signal, which results in containment spray actuation, was specified as 6.7 s after event initiation. The modeling for the HPI fluid temperature was modified so as to represent the constant nominal safety injection refueling water tank (SIRWT) temperature prior to the draining of that tank then switch to a representation of a variable containment sump temperature (specified as a function of the time after the switch). The HPI fluid temperature falls from 343.2 K [158.1 oF]
immediately following the switch to 323.6 K [122.8 oF] at the end of the calculation (15,000 s after the break opens). The model input data for the containment spray actuation time and the containment sump fluid temperature were obtained from an independent Palisades containment analysis for a 20.32-cm [8-in] diameter break in the RCS, the largest break size for which containment analyses were performed. The containment spray actuation time for a 40.64-cm [16-in] RCS break is expected to occur before 6.7 s, however the effect of delaying the start of containment spray by a few seconds in the RELAP5 calculation is not considered consequential for this analysis. The containment sump fluid temperatures for a 40.64 cm [16 in] RCS break are expected to be higher than those based on a 20.32-cm [8-in] RCS break used in the RELAP5 analysis. The effect of this analysis compromise is conservative for PTS because it leads to lower calculated reactor vessel downcomer fluid temperatures.
The RELAP5-calculated sequence of events for Case 40 is shown in Table 3.3-4. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.4-1, 3.3.4-2 and 3.3.4-3, respectively.
The calculated break flow response is shown in Figure 3.3.4-4. When the break opens, the RCS pressure falls very rapidly to near atmospheric pressure (it requires only 332 s for the hot leg pressure to reach 0.2 MPa [30 psia]). The depressurization causes a reactor trip signal at 3 s.
The reactor trip causes a turbine trip, isolating the steam generator systems.
Figure 3.3.4-5 shows the calculated SG secondary system pressure responses. The turbine trip causes the secondary system pressures to rise; the pressure increase is limited by the opening of the atmospheric dump valves. The steam pressures did not increase sufficiently to open the turbine bypass or main steam safety relief valves. The declining SG pressures an indication of reverse (i.e., secondary system to primary system) SG heat transfer caused by the cooling down of the primary coolant system. The SG secondary fluid mass responses are shown in Figure 3.3.4-6. The turbine trip resulted in collapse of the secondary system indicated levels, which initiated auxiliary feedwater (AFW) flow to both SGs. The AFW flow replenished the SG secondary fluid inventories; AFW flow was throttled to maintain the SG levels within the normal range.
At 7 s the minimum RCS subcooling fell below 13.9 K [25 oF], resulting in the operator tripping one reactor coolant pump in each loop. At 9 s the RCS pressure had fallen to 8.963 MPa [1300 psia],
resulting in the operator tripping the remaining two reactor coolant pumps. The decline in the coolant loop flows caused by the pump trip is indicated in Figure 3.3.4-7, which shows the two hot leg flows at the reactor vessel connections. The decline in the coolant loop flows was rapid and total, with no period of natural circulation prior to complete stagnation of the loop flows. The Loop 1 hot leg flow response reflects the fluid flowing toward the hot leg break in that loop. The effects of loop flow stagnation on the reactor vessel downcomer fluid temperature are evident in Figure 3.3.4-2. Under the stagnant coolant loop conditions, the effects of injecting cold HPI, LPI and SIT 3-305
 
fluid into the cold legs are directly felt in the vessel downcomer and the fluid temperatures there decline rapidly.
RCS depressurization to 10.98 MPa [1593 psia] led to a safety injection actuation signal at 5 s and the starting of the HPI and LPI pumps after a 27-second delay (which represents effects related to plant instrumentation, control systems and pump start-up timing). The calculated HPI and LPI flow rates for Cold Leg A1 are shown in Figure 3.3.4-8; the total HPI and LPI flow rates are four times the flows shown in the figure. The flow delivered from the centrifugal pumps of the HPI and LPI systems are functions of the cold leg pressure, with lower pressures resulting in higher injection flows and with no injection flow delivered whenever the RCS pressure exceeds the shutoff heads of the systems (8.906 MPa [1291.7 psia] for HPI and 1.501 MPa [217.7 psia] for LPI). At 1263 s, a recirculation actuation signal was calculated as a result of a low SIRWT level condition.
The model tracks SIRWT inventory and level based on the flows drawn from the tank by the containment spray, HPI, LPI and charging systems. At this time the suction for the HPI system is switched from the SIRWT to the containment sump (with the resulting increase in HPI fluid temperature described above) and the LPI pumps are automatically tripped.
The effects of RCS coolant inventory loss through the break are evident in the declining pressurizer level response shown in Figure 3.3.4-9. The pressurizer was completely drained over the first 15 s of the event sequence and, except for a brief and minor refill caused by the rapid influx of LPI and SIT water, the pressurizer remained empty thereafter. The letdown flow was isolated early in the event sequence at the time of the safety injection actuation signal. The charging system flow increased in response to the low pressurizer level condition, with all three charging pumps delivering flow. Charging flow was terminated at 3063 s, which is 1,800 s after the time of the recirculation actuation signal. It is estimated that 30 minutes would be required after the recirculation actuation signal for the charging system to completely drain the SIRWT of its remaining inventory. Afterward, no source of fluid is available for the charging system.
Because the break size for this event sequence is large, the charging system flow is of relatively small importance in relation to the HPI, LPI and SIT ECCS flows.
The Loop 1A SIT discharge flow rate response is shown in Figure 3.3.4-10; the total SIT flow rate is four times the flow shown in the figure. Intermittent SIT flow began at 60 s, when the RCS pressure fell below the initial SIT pressure, 1.480 MPa [214.7 psia]. The SITs discharge whenever the RCS pressure is below the tank pressure (which declines as the liquid inventory flows out of the SITs). The SIT discharge period ended at 134 s when the liquid inventories of the SITs had been completely discharged.
During the latter portion of the event sequence the calculated conditions reflect balances in the RCS mass and energy flows. The break mass flow rate is balanced by the HPI mass addition rate.
The core heat addition rate is balanced by the cooling afforded to the RCS from adding cold HPI fluid and removing warm fluid at the break. These balanced conditions were reached at about 5,000 s.
The minimum average reactor vessel downcomer fluid temperature, 308 K [94EF], is reached at 1260 s, shortly before the time when the suction for the HPI system is switched to the containment sump (which warms the HPI fluid) and the LPI pumps are tripped. The RCS pressure, which was 3-306
 
calculated to be 0.14 MPa [20.8 psia] at that time, remained low through the remainder of the event sequence.
Table 3.3-4 Comparison of Event Timing for Dominant Palisades Event Sequences -
Group 4, Primary System Breaks with a Diameter Greater than 10.16 cm [4 in]
Event Time (seconds)
Case 40, HFP,      Case 62, HFP,      Case 63, HFP, 40.64-cm [16-in]  20.32-cm [8-in]    14.37-cm Diameter Hot      Diameter Cold      [5.656-in]
Event(s)                      Leg Break          Leg Break.        Diameter Cold Winter ECCS        Leg Break, Winter ECCS Break opens                                  0                  0                  0 Reactor trip signal, turbine trip            3                  4                  5 Safety injection actuation signal, isolate  5                  7                  10 letdown flow Low RCS subcooling condition causes          7                  7                  15 operator to trip one reactor coolant pump in each loop Containment high pressure signal, results    7                  7                  16 in containment spray system initiation Low RCS pressure condition causes            9                  12                16 operator to trip the two remaining reactor coolant pumps Pressurizer level reaches 0%                15                15                15 HPI and LPI systems available, HPI flow      32                34                37 begins SIT flow begins                              60                259                664 LPI flow begins                              60                275                905 Reactor coolant pump coast-down              119                95                95 completed Recirculation actuation signal, suction for  1263              1614              2085 HPI system switched from SIRWT to containment sump, LPI pumps tripped Charging flow stops, SIRWT completely        3063              3414              3885 drained Calculation terminated                      15000              15000              15000 3-307
 
20.0                                                      2901 p11001 15.0                                                      2176 Pressure (MPa)                                                                      Pressure (psia) 10.0                                                      1450 5.0                                                      725 0.0                                                        0 3000  0  3000    6000            9000    12000  15000 Time (sec)
Figure 3.3.4-1 Reactor Coolant System Pressure - Palisades Case 40 600                                                        620 cntrlvar942 500                                                        440 Temperature (K)                                                                    Temperature (F) 400                                                        260 300                                                          80 3000  0  3000    6000              9000  12000    15000 Time (sec)
Figure 3.3.4-2 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 40 3-308
 
8000                                                                    0.39 cntrlvar990 6000                                                                    0.29 HTC (W/m *K)                                                                                  HTC (Btu/s*ft *F) 2 2
4000                                                                    0.20 2000                                                                    0.10 0                                                                    0.00 3000        0      3000    6000            9000        12000  15000 Time (sec)
Figure 3.3.4-3 Average Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 40 1000                                                                    2205 mflowj89700 800                                                                    1764 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 600                                                                    1323 400                                                                    882 200                                                                    441 0                                                                      0 3000        0      3000    6000          9000        12000  15000 Time (sec)
Figure 3.3.4-4 Break Flow - Palisades Case 40 3-309
 
7.00                                                                      1015 p26001 (SG 1) p46001 (SG 2) 5.00                                                                      725 Pressure (MPa)                                                                                    Pressure (psia) 3.00                                                                      435 1.00                                                                      145 3000    0      3000      6000        9000            12000    15000 Time (sec)
Figure 3.3.4-5 Steam Generator Pressures - Palisades Case 40 300000                                                                136080 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 250000                                                                113400 Mass (lbm)                                                                                        Mass (kg) 200000                                                                90720 150000                                                                68040 100000                                                                  45360 3000      0    3000    6000        9000          12000    15000 Time (sec)
Figure 3.3.4-6 Steam Generator Secondary Fluid Masses - Palisades Case 40 3-310
 
4000                                                                        8818 mflowj10500 (Loop 1) 3000                                    mflowj30500 (Loop 2)              6614 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 2000                                                                        4409 1000                                                                        2205 0                                                                      0 1000                                                                        2205 3000          0    3000    6000          9000          12000      15000 Time (sec)
Figure 3.3.4-7 Hot Leg Flows - Palisades Case 40 150                                                                              331 mflowj79200 (HPI Loop 1A) mflowj79400 (LPI Loop 1A) 100                                                                              220 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 50                                                                              110 0                                                                              0 3000          0      3000      6000          9000            12000    15000 Time (sec)
Figure 3.3.4-8 Loop A1 HPI and LPI Flows - Palisades Case 40 3-311
 
100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000            0    3000      6000            9000          12000      15000 Time (sec)
Figure 3.3.4-9 Pressurizer Level - Palisades Case 40 800                                                                        1764 mflowj69101 (Loop 1A SIT) 600                                                                        1323 Flow Rate (kg/s)                                                                                      Flow Rate (lbm/s) 400                                                                        882 200                                                                        441 0                                                                          0 3000        0      3000      6000          9000        12000        15000 Time (sec)
Figure 3.3.4-10 Loop 1A SIT Flow - Palisades Case 40 3-312
 
3.3.4.2 20.32-cm [8-in] Diameter Cold Leg Break from Hot Full Power Condition with Winter-Season ECCS Temperatures - Palisades Case 62 With the plant in HFP operation, this event starts with a 20.32-cm [8-in] diameter break in the pump-discharge cold leg. The operator is assumed not to throttle the HPI flow, which is normally done if RCS subcooling and pressurizer level criteria have been met. The calculation assumes that the temperatures of the ECCS fluids are representative of winter-season conditions: HPI and LPI temperatures of 277.6 K [40oF] and SIT temperatures of 288.7 K [60oF] (the nominal ECCS fluid temperatures are listed in Table 2.0-1).
The following modeling changes were made to simulate this event sequence. The cold leg break to a constant atmospheric-pressure containment boundary condition was added to the model in Loop 1A. The equivalent break flow area for a circular break with a diameter of 20.32 cm [8 in]
was specified. The break was connected on the side of the horizontal cold leg, at the junction between Cells 1 and 2 of Component 150, as shown in Figure 2.3-2. The critical flow model was activated at the break junction and the flow loss coefficients specified were based on AP600-derived flow loss coefficients (Reference 3.3-1) and scaled for the specific break size and location for this event sequence. The boundary conditions for the HPI, LPI and SIT fluids were changed to represent the winter-season conditions listed above. At the time the reactor coolant pump coast-down was complete, large reverse flow loss coefficients were implemented in the loop seal cold leg regions of the model (Components 140, 340, 640 and 740 in Figure 2.3-2) to prevent the setting up of same-loop cold leg circulation, as discussed in Section 2.0. To eliminate non-physical numerically-driven circulations within the reactor vessel downcomer portion of the model, momentum flux was disabled in all junctions internal to the downcomer region (see discussion in Section 2.3.1). The containment high pressure signal, which results in containment spray actuation, was specified as 6.7 s after event initiation. The modeling for the HPI fluid temperature was modified so as to represent the constant safety injection refueling water tank (SIRWT) winter-season temperature prior to the draining of that tank then switch to a representation of a variable containment sump temperature (specified as a function of the time after the switch). The HPI fluid temperature falls from 343.2 K [158.1EF] immediately following the switch to 323.7 K [123.0 oF] at the end of the calculation (15,000 s after the break opens). The model input data for the containment spray actuation time and the containment sump fluid temperature were obtained from an independent Palisades containment analysis for a 20.32-cm [8-in] diameter break in the RCS.
The RELAP5-calculated sequence of events for Case 62 is shown in Table 3.3-4. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.4-11, 3.3.4-12 and 3.3.4-13, respectively.
The calculated break flow response is shown in Figure 3.3.4-14. When the break opens, the RCS pressure falls very rapidly to near atmospheric pressure (it requires only 1,760 s for the hot leg pressure to reach 0.5 MPa [72 psia]). The depressurization causes a reactor trip signal at 4 s.
The reactor trip causes a turbine trip, isolating the steam generator systems.
Figure 3.3.4-15 shows the calculated SG secondary system pressure responses. The turbine trip causes the secondary system pressures to rise; the pressure increase is limited by the opening 3-313
 
of the turbine bypass and atmospheric dump valves. The steam pressures did not increase sufficiently to open the main steam safety relief valves. The declining SG pressures are an indication of reverse (i.e., secondary system to primary system) SG heat transfer caused by the cooling down of the primary coolant system. The SG secondary fluid mass responses are shown in Figure 3.3.4-16. The turbine trip resulted in collapse of the secondary system indicated levels, which initiated auxiliary feedwater (AFW) flow to both SGs. The AFW flow replenished the SG secondary fluid inventories; AFW flow was throttled to maintain the SG levels within the normal range.
At 7 s the minimum RCS subcooling fell below 13.9 K [25 oF], resulting in the operator tripping one reactor coolant pump in each loop. At 12 s the RCS pressure had fallen to 8.963 MPa [1,300 psia], resulting in the operator tripping the remaining two reactor coolant pumps. The decline in the coolant loop flows caused by the pump trip is indicated in Figure 3.3.4-17, which shows the two hot leg flows at the reactor vessel connections. The decline in the coolant loop flows was rapid and total, with no period of natural circulation prior to complete stagnation of the loop flows.
The effects of loop flow stagnation on the reactor vessel downcomer fluid temperature are evident in Figure 3.3.4-12. Under the stagnant coolant loop conditions, the effects of injecting cold HPI, LPI and SIT fluid into the cold legs are directly felt in the vessel downcomer and the fluid temperatures there decline rapidly.
RCS depressurization to 10.98 MPa [1593 psia] led to a safety injection actuation signal at 7 s and the starting of the HPI and LPI pumps after a 27-second delay (which represents effects related to plant instrumentation, control systems and pump start-up timing). The calculated HPI and LPI flow rates for Cold Leg A1 are shown in Figure 3.3.4-18; the total HPI and LPI flow rates are four times the flows shown in the figure. The flow delivered from the centrifugal pumps of the HPI and LPI systems are functions of the cold leg pressure, with lower pressures resulting in higher injection flows and with no injection flow delivered whenever the RCS pressure exceeds the shutoff heads of the systems (8.906 MPa [1291.7 psia] for HPI and 1.501 MPa [217.7 psia] for LPI). At 1614 s, a recirculation actuation signal was calculated as a result of a low SIRWT level condition.
The model tracks SIRWT inventory and level based on the flows drawn from the tank by the containment spray, HPI, LPI and charging systems. At this time the suction for the HPI system is switched from the SIRWT to the containment sump (with the resulting increase in HPI fluid temperature described above) and the LPI pumps are automatically tripped.
The effects of RCS coolant inventory loss through the break are evident in the declining pressurizer level response shown in Figure 3.3.4-19. The pressurizer was completely drained over the first 15 s of the event sequence and remained empty thereafter. The letdown flow was isolated early in the event sequence at the time of the safety injection actuation signal. The charging system flow increased in response to the low pressurizer level condition, with all three charging pumps delivering flow. Charging flow was terminated at 3,414 s, which is 1,800 s after the time of the recirculation actuation signal. It is estimated that 30 minutes would be required after the recirculation actuation signal for the charging system to completely drain the SIRWT of its remaining inventory. Afterward, no source of fluid is available for the charging system.
Because the break size for this event sequence is large, the charging system flow is of relatively small importance in relation to the HPI, LPI and SIT ECCS flows.
3-314
 
The Loop 1A SIT discharge flow rate response is shown in Figure 3.3.4-20; the total SIT flow rate is four times the flow shown in the figure. Intermittent SIT flow began at 259 s, when the RCS pressure fell below the initial SIT pressure, 1.480 MPa [214.7 psia]. The SITs discharge whenever the RCS pressure is below the tank pressure (which declines as the liquid inventory flows out of the SITs). The SIT discharge period ended at 949 s when the liquid inventories of the SITs had been completely discharged.
During the latter portion of the event sequence the calculated conditions reflect balances in the RCS mass and energy flows. The break mass flow rate is balanced by the HPI mass addition rate.
The core heat addition rate is balanced by the cooling afforded to the RCS from adding cold HPI fluid and removing warm fluid at the break. These balanced conditions were reached at about 3,000 s.
The minimum average reactor vessel downcomer fluid temperature, 308 K [95EF], is reached at 1470 s, shortly before the time when the suction for the HPI system is switched to the containment sump (which warms the HPI fluid) and the LPI pumps are tripped. The RCS pressure at the time of the minimum temperature was calculated to be 0.72 MPa [104 psia].
20.0                                                  2901 p11001 15.0                                                  2176 Pressure (MPa)                                                                Pressure (psia) 10.0                                                  1450 5.0                                                  725 0.0                                                  0 3000  0  3000    6000      9000  12000    15000 Time (sec)
Figure 3.3.4-11 Reactor Coolant System Pressure - Palisades Case 62 3-315
 
600                                                              620 cntrlvar942 500                                                              440 Temperature (K)                                                                              Temperature (F) 400                                                              260 300                                                              80 3000      0      3000      6000          9000    12000  15000 Time (sec)
Figure 3.3.4-12 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 62 8000                                                              0.39 cntrlvar990 6000                                                              0.29 HTC (W/m *K)                                                                            HTC (Btu/s*ft *F) 2 2
4000                                                              0.20 2000                                                              0.10 0                                                          0.00 3000      0    3000    6000          9000  12000  15000 Time (sec)
Figure 3.3.4-13 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 62 3-316
 
1000                                                                        2205 mflowj89700 800                                                                        1764 Flow Rate (kg/s)                                                                                                Flow Rate (lbm/s) 600                                                                        1323 400                                                                        882 200                                                                        441 0                                                                      0 3000          0    3000      6000        9000          12000    15000 Time (sec)
Figure 3.3.4-14 Break Flow - Palisades Case 62 7.00                                                                        1015 6.00                                    p26001 (SG 1) 870 p46001 (SG 2) 5.00                                                                        725 Pressure (MPa)                                                                                                Pressure (psia) 4.00                                                                        580 3.00                                                                        435 2.00                                                                        290 1.00                                                                        145 0.00                                                                          0 3000          0      3000      6000        9000          12000    15000 Time (sec)
Figure 3.3.4-15 Steam Generator Pressures - Palisades Case 62 3-317
 
300000                                                                136080 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 250000                                                                113400 Mass (lbm)                                                                                        Mass (kg) 200000                                                                90720 150000                                                                68040 100000                                                                  45360 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.3.4-16 Steam Generator Secondary Fluid Masses - Palisades Case 62 4000                                                                  8818 mflowj10500 (Loop 1) 3000                                  mflowj30500 (Loop 2)            6614 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 2000                                                                  4409 1000                                                                  2205 0                                                                  0 1000                                                                  2205 3000      0      3000    6000        9000          12000  15000 Time (sec)
Figure 3.3.4-17 Hot Leg Flows - Palisades Case 62 3-318
 
100                                                                  220 mflowj79200 (HPI Loop 1A) mflowj79400 (LPI Loop 1A) 75                                                                  165 Flow Rate (kg/s)                                                                              Flow Rate (lbm/s) 50                                                                  110 25                                                                  55 0                                                                    0 3000      0      3000    6000          9000        12000    15000 Time (sec)
Figure 3.3.4-18 Loop A1 HPI and LPI Flows - Palisades Case 62 100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000      0      3000      6000            9000        12000    15000 Time (sec)
Figure 3.3.4-19 Pressurizer Level - Palisades Case 62 3-319
 
400                                                                      882 mflowj69101 (Loop 1A SIT) 300                                                                      661 Flow Rate (kg/s)                                                                                  Flow Rate (lbm/s) 200                                                                      441 100                                                                      220 0                                                                        0 3000      0      3000    6000          9000        12000        15000 Time (sec)
Figure 3.3.4-20 Loop 1A SIT Flow - Palisades Case 62 3.3.4.3 14.37-cm [5.656-in] Diameter Cold Leg Break from Hot Full Power Condition with Winter-Season ECCS Temperatures - Palisades Case 63 With the plant in HFP operation, this event starts with a 14.47-cm [5.656-in] diameter break in the pump-discharge cold leg. The operator is assumed not to throttle the HPI flow, which is normally done if RCS subcooling and pressurizer level criteria have been met. The calculation assumes that the temperatures of the ECCS fluids are representative of winter-season conditions: HPI and LPI temperatures of 277.6 K [40 oF] and SIT temperatures of 288.7 K [60oF] (the nominal ECCS fluid temperatures are listed in Table 2.0-1).
The following modeling changes were made to simulate this event sequence. The cold leg break to a constant atmospheric-pressure containment boundary condition was added to the model in Loop 1A. The equivalent break flow area for a circular break with a diameter of 14.47 cm [5.656 in] was specified. The break was connected on the side of the horizontal cold leg, at the junction between Cells 1 and 2 of Component 150, as shown in Figure 2.3-2. The critical flow model was activated at the break junction and the flow loss coefficients specified were based on AP600-derived flow loss coefficients (Reference 3.3-1) and scaled for the specific break size and location for this event sequence. The boundary conditions for the HPI, LPI and SIT fluids were changed to represent the winter-season conditions listed above. At the time the reactor coolant pump coast-down was complete, large reverse flow loss coefficients were implemented in the loop seal cold leg regions of the model (Components 140, 340, 640 and 740 in Figure 2.3-2) to prevent the setting up of same-loop cold leg circulation, as discussed in Section 2.0. To eliminate non-physical numerically-driven circulations within the reactor vessel downcomer portion of the model, momentum flux was disabled in all junctions internal to the 3-320
 
downcomer region (see discussion in Section 2.3.1). The containment high pressure signal, which results in containment spray actuation, was specified as 15.6 s after event initiation. The modeling for the HPI fluid temperature was modified so as to represent the constant safety injection refueling water tank (SIRWT) winter-season temperature prior to the draining of that tank then switch to a representation of a variable containment sump temperature (specified as a function of the time after the switch). The HPI fluid temperature rises from 337.0 K [147.0EF] immediately following the switch to 339.3 K [151.1EF] at 210 s and then falls to 324.0 K [123.6EF] at the end of the calculation (15,000 s after the break opens). The model input data for the containment spray actuation time and the containment sump fluid temperature were obtained from an independent Palisades containment analysis for a 14.37-cm [5.656-in] diameter break in the RCS.
The RELAP5-calculated sequence of events for Case 63 is shown in Table 3.3-4. The RELAP5-calculated responses for the RCS pressure, average reactor vessel downcomer fluid temperature and average reactor vessel wall inside surface heat transfer coefficient for this case are shown in Figures 3.3.4-21, 3.3.4-22 and 3.3.4-23, respectively.
The calculated break flow response is shown in Figure 3.3.4-24. When the break opens, the RCS pressure falls rapidly at first, then more slowly as flashing within the RCS is encountered. The RCS depressurization causes a reactor trip signal at 5 s. The reactor trip causes a turbine trip, isolating the steam generator systems.
Figure 3.3.4-25 shows the calculated SG secondary system pressure responses. The turbine trip causes the secondary system pressures to rise; the pressure increase is limited by the opening of the turbine bypass and atmospheric dump valves. The steam pressures did not increase sufficiently to open the main steam safety relief valves. The declining SG pressures are an indication of reverse (i.e., secondary system to primary system) SG heat transfer caused by the cooling down of the primary coolant system. The SG secondary fluid mass responses are shown in Figure 3.3.4-26. The turbine trip resulted in collapse of the secondary system indicated levels, which initiated auxiliary feedwater (AFW) flow to both SGs. The AFW flow replenished the SG secondary fluid inventories; AFW flow was throttled to maintain the SG levels within the normal range.
At 15 s the minimum RCS subcooling fell below 13.9 K [25EF], resulting in the operator tripping one reactor coolant pump in each loop. At 16 s the RCS pressure had fallen to 8.963 MPa [1300 psia], resulting in the operator tripping the remaining two reactor coolant pumps. The decline in the coolant loop flows caused by the pump trip is indicated in Figure 3.3.4-27, which shows the two hot leg flows at the reactor vessel connections. The decline in the coolant loop flows was rapid and total, with no period of natural circulation prior to complete stagnation of the loop flows.
The effects of loop flow stagnation on the reactor vessel downcomer fluid temperature are evident in Figure 3.3.4-22. Under the stagnant coolant loop conditions, the effects of injecting cold HPI, LPI and SIT fluid into the cold legs are directly felt in the vessel downcomer and the fluid temperatures there decline rapidly.
RCS depressurization to 10.98 MPa [1593 psia] led to a safety injection actuation signal at 10 s and the starting of the HPI and LPI pumps after a 27-second delay (which represents effects related to plant instrumentation, control systems and pump start-up timing). The calculated HPI 3-321
 
and LPI flow rates for Cold Leg A1 are shown in Figure 3.3.4-28; the total HPI and LPI flow rates are four times the flows shown in the figure. The flow delivered from the centrifugal pumps of the HPI and LPI systems are functions of the cold leg pressure, with lower pressures resulting in higher injection flows and with no injection flow delivered whenever the RCS pressure exceeds the shutoff heads of the systems (8.906 MPa [1291.7 psia] for HPI and 1.501 MPa [217.7 psia] for LPI). At 2085 s, a recirculation actuation signal was calculated as a result of a low SIRWT level condition. The model tracks SIRWT inventory and level based on the flows drawn from the tank by the containment spray, HPI, LPI and charging systems. At this time the suction for the HPI system is switched from the SIRWT to the containment sump (with the resulting increase in HPI fluid temperature described above) and the LPI pumps are automatically tripped.
The effects of RCS coolant inventory loss through the break are evident in the declining pressurizer level response shown in Figure 3.3.4-29. The pressurizer was completely drained over the first 15 s of the event sequence and it remained empty afterward. The letdown flow was isolated early in the event sequence at the time of the safety injection actuation signal. The charging system flow increased in response to the low pressurizer level condition, with all three charging pumps delivering flow. Charging flow was terminated at 3885 s, which is 1,800 s after the time of the recirculation actuation signal. It is estimated that 30 minutes would be required after the recirculation actuation signal for the charging system to completely drain the SIRWT of its remaining inventory. Afterward, no source of fluid is available for the charging system.
Because the break size for this event sequence is large, the charging system flow is of relatively small importance in relation to the HPI, LPI and SIT ECCS flows.
The Loop 1A SIT discharge flow rate response is shown in Figure 3.3.4-30; the total SIT flow rate is four times the flow shown in the figure. Intermittent SIT flow began at 664 s, when the RCS pressure fell below the initial SIT pressure, 1.480 MPa [214.7 psia]. The SITs discharge whenever the RCS pressure is below the tank pressure (which declines as the liquid inventory flows out of the SITs). The SIT discharge period ended at 2449 when the liquid inventories of the SITs had been completely discharged.
During the latter portion of the event sequence the calculated conditions reflect balances in the RCS mass and energy flows. The break mass flow rate is balanced by the HPI mass addition rate.
The core heat addition rate is balanced by the cooling afforded to the RCS from adding cold HPI fluid and removing warm fluid at the break. These balanced conditions were reached at about 4,000 s.
The minimum average reactor vessel downcomer fluid temperature, 306 K [92 oF], is reached at 2070 s, during the SIT injection period. The RCS pressure, which was calculated to be 1.07 MPa
[155 psia] at the time of the minimum temperature, fell slowly over the remainder of the event sequence calculation.
3.3.5 References 3.3-1 SCIENTECH, Inc., RELAP5.Mod 3 Code Manual, Volume IV: Models and Correlations, Formally NUREG/CR-5535, Volume IV, June 1999 (Section 7.3).
3-322
 
20.0                                                        2901 p11001 15.0                                                        2176 Pressure (MPa)                                                                        Pressure (psia) 10.0                                                        1450 5.0                                                        725 0.0                                                        0 3000  0  3000    6000            9000    12000    15000 Time (sec)
Figure 3.3.4-21 Reactor Coolant System Pressure - Palisades Case 63 600                                                              620 cntrlvar942 500                                                              440 Temperature (K)                                                                          Temperature (F) 400                                                              260 300                                                          80 3000  0  3000    6000              9000    12000    15000 Time (sec)
Figure 3.3.4-22 Average Reactor Vessel Downcomer Fluid Temperature -
Palisades Case 63 3-323
 
8000                                                                    0.39 cntrlvar990 6000                                                                    0.29 HTC (W/m *K)                                                                                  HTC (Btu/s*ft *F) 2 2
4000                                                                    0.20 2000                                                                    0.10 0                                                                    0.00 3000        0      3000    6000            9000        12000  15000 Time (sec)
Figure 3.3.4-23 Avg Reactor Vessel Inner-Wall Heat Transfer Coefficient -
Palisades Case 63 1000                                                                    2205 mflowj89700 800                                                                    1764 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 600                                                                    1323 400                                                                    882 200                                                                    441 0                                                                      0 3000        0      3000      6000          9000        12000  15000 Time (sec)
Figure 3.3.4-24 Break Flow - Palisades Case 63 3-324
 
7.00                                                                      1015 6.00                                p26001 (SG 1) 870 p46001 (SG 2) 5.00                                                                      725 Pressure (MPa)                                                                                    Pressure (psia) 4.00                                                                      580 3.00                                                                      435 2.00                                                                      290 1.00                                                                      145 0.00                                                                      0 3000      0      3000      6000        9000            12000    15000 Time (sec)
Figure 3.3.4-25 Steam Generator Pressures - Palisades Case 63 300000                                                                136080 cntrlvar903 (SG 1) cntrlvar904 (SG 2) 250000                                                                113400 Mass (lbm)                                                                                        Mass (kg) 200000                                                                90720 150000                                                                68040 100000                                                                  45360 3000      0    3000    6000        9000          12000    15000 Time (sec)
Figure 3.3.4-26 Steam Generator Secondary Fluid Masses - Palisades Case 63 3-325
 
4000                                                                        8818 mflowj10500 (Loop 1) 3000                                    mflowj30500 (Loop 2)              6614 Flow Rate (kg/s)                                                                                            Flow Rate (lbm/s) 2000                                                                        4409 1000                                                                        2205 0                                                                      0 1000                                                                        2205 3000          0    3000    6000          9000          12000      15000 Time (sec)
Figure 3.3.4-27 Hot Leg Flows - Palisades Case 63 100                                                                              220 mflowj79200 (HPI Loop 1A) mflowj79400 (LPI Loop 1A) 75                                                                              165 Flow Rate (kg/s)                                                                                          Flow Rate (lbm/s) 50                                                                              110 25                                                                              55 0                                                                              0 3000          0      3000      6000          9000            12000    15000 Time (sec)
Figure 3.3.4-28 Loop A1 HPI and LPI Flows - Palisades Case 63 3-326
 
100 cntrlvar821 80 Level (Percent) 60 40 20 0
3000        0      3000      6000          9000          12000      15000 Time (sec)
Figure 3.3.4-29 Pressurizer Level - Palisades Case 63 200                                                                        441 mflowj69101 (Loop 1A SIT) 150                                                                        331 Flow Rate (kg/s)                                                                                    Flow Rate (lbm/s) 100                                                                        220 50                                                                        110 0                                                                          0 3000        0      3000      6000          9000        12000        15000 Time (sec)
Figure 3.3.4-30 Loop 1A SIT Flow - Palisades Case 63 3-327
 
4.0
 
==SUMMARY==
OF THE PTS THERMAL HYDRAULIC RESULTS 4.1 Summary of the Oconee, Beaver Valley and Palisades Results Tables 4.1-1, 4.1-2, and 4.1-3 present a summary of the reactor vessel downcomer temperature and primary system pressure for the transient sequences discussed in Section 3 for the Oconee, Beaver Valley and Palisades Plants, respectively. This summary is presented to facilitate comparison of the results of the cases analyzed. Direct comparisons of downcomer temperature and system pressure results for many of the sequences analyzed among the plants show similar results. In other instances, direct comparisons are more difficult because of plant design differences and differences in sequence modeling assumptions.
The LOCA analyses for the Oconee, Beaver Valley and Palisades plants show similar results as might be expected. Minor differences exist in the time that the minimum temperature is reached.
For the 40.64 cm [16 in] break from HFP operation, the Oconee minimum temperature is 298 K
[76EF] at 1,721 s (Case 156) while the Beaver Valley and Palisades temperature results (Cases 009 and 40, respectively) are 291 K [64EF] at 960 s and 308 K [94EF] at 1260 s, respectively. The difference in the temperature is principally driven by the ECCS injection temperature assumed.
The ECCS injection temperature for Beaver Valley is the lowest at 283 K [50EF] while the Oconee and Palisades injection temperatures are 300 K [80EF] and 304 K [88EF], respectively (See Table 2.0-1). Plant design differences may have some impact on the time that the minimum temperature occurs, but do not have much of an impact of the minimum temperature results in the case of a LOCA of this size. For smaller breaks, the minimum temperature is also generally dependent on the assumed ECCS injection temperature, although the time that the minimum temperature is reached is later since the blowdown time and time that the various ECCS systems start is longer.
Also, plant differences in ECCS flow capability and shutoff head can lead to differences in results.
In general, the downcomer temperature decreases to near the injection temperature because the ECCS systems continue to inject cold water into the reactor coolant system with the time that the minimum is reached dependent on the break size.
Other scenarios involving stuck open pressurizer safety valves are not as directly comparable because of differences in valve sizes and sequence definitions, although portions of the transients may be comparable. For example, the downcomer temperature for the Oconee case where a stuck open pressurizer safety valve occurs during HZP operation and recloses at 3,000 s (Case 124) is 360 K [188EF]. In this analysis, the operator is assumed to throttle HPI to maintain 27.8 K [50EF] subcooling, but throttling does not occur until after the valve recloses. In comparison, Case 097 for Beaver Valley, which is also a stuck-open pressurizer safety relief valve case with reclosure at 3,000 s that occurs during HZP operation, results in a downcomer temperature of 321 K [118EF] at 3,000 s.
The comparison of the first part of the transient up to the point that the valve recloses is of interest.
The Beaver Valley downcomer temperature is lower because of several factors; the safety relief valve has a somewhat larger capacity at Beaver Valley than Oconee (See Table 2.0.1) and the injection temperature at Beaver Valley is colder. A third factor relates to the vessel vent valves which are part of the Oconee plant design but are not part of the Beaver Valley and Palisades designs. The vent valves connect the vessel upper plenum to the upper part of the downcomer 4-1
 
and open on small pressure differences to vent steam from the upper plenum to the downcomer and out the break during a LOCA. A consequence of vent valve operation is that warm water from the upper plenum can flow to the downcomer, resulting in higher temperature predictions than would otherwise be the case.
For main steam line breaks, the downcomer temperature results for the three plants are similar despite differences in assumptions for operator actions for HPI throttling, break location inside and outside containment, and timing of AFW isolation to the affected steam generator. For example, Beaver Valley Case 102 is a MSLB from HFP conditions where AFW continues to feed the affected steam generator for 30 minutes and the operator controls HHSI 30 minutes after allowed.
In this case, the minimum downcomer temperature is 373 K [212EF] at 3,990 s. In comparison, Palisades Case 54, a MSLB that occurs inside containment and where the AFW continues to feed the affected steam generator and the operator does not throttle HPI flow, results in a minimum downcomer temperature of 377 K [219EF] at 4,110 s. The results are not that different (4 K [7EF])
even given the modeling differences. One reason is that the RCS generally remains full during MSLBs with loop natural circulation (and forced circulation in some cases) continuing throughout the event sequences. This circulation tends to keep the RCS fluid well mixed, so that the downcomer temperature does not drop to the ECCS injection temperature. Instead, the downcomer temperature tends to approach 373 K [212EF], which is the saturation temperature at the atmospheric pressure present in the affected steam generator secondary side. In contrast to the LOCA where the temperature of ECCS injection drives the downcomer temperature, MSLBs remove heat from the reactor coolant system uniformly, so that minimum downcomer temperatures tend to be higher.
Some generic conclusions regarding classes of sequences that have been evaluated in this analysis are presented below:
* Large break LOCAs cause the downcomer temperature to rapidly drop with a corresponding rapid drop in primary system pressure. There is no possibility of reactor coolant system repressurization. Downcomer temperatures will approach the ECCS injection temperature with the timing dependent principally on the break size.
* Small break LOCAs (includes stuck open primary relief valves) cause the downcomer temperature to drop to intermediate temperatures and RCS pressures, but the values are break-size dependent . Plant-specific complexities are added, that are caused by different design parameters such as initial accumulator pressures, HPI and LPI shutoff head, HPI throttling criteria, and containment sump switchover timing and corresponding change in injection temperature. Stuck open primary relief valve cases are one category of small break LOCA with the potential for extreme RCS repressurization should the valves later reclose.
* Main steam line breaks cause the downcomer temperature to decrease to values somewhat higher than the small break LOCA with extreme RCS repressurization a likelihood unless operator action is taken.
4-2
 
The thermal hydraulic analysis discussed in this report is a part of an overall risk analysis where the risk of vessel failure due to a PTS event is determined by sequence probabilities that define the sequences analyzed and the fracture mechanics analysis that, combined with the sequence probabilities and thermal hydraulic results, determine the risk.
Table 4.1-1 Summary of Oconee Thermal Hydraulic Results Case #      Description                      Minimum Downcomer        Corresponding Primary Fluid Temperature          System Pressure 27          Main steam line break from            380 K [224&deg;F]            1.8 MPa [261 psia].
hot full power conditions.              at 4,400 s.          No repressurization.
Both turbine driven and auxiliary driven feedwater are assumed to be operating.
Operator throttles HPI (Note 2) 101        Main steam line break from            377 K [219&deg;F]            1.8 MPa [261 psia].
hot zero power conditions.              at 2,600 s.          No repressurization.
Both turbine driven and auxiliary driven feedwater are assumed to be operating.
Operator throttles HPI (Note 2) 109        Stuck open pressurizer safety        350 K [170&deg;F]            2.3 MPa [330 psia].
valve that recloses at 6,000 s          at 6,010 s.          System repressurizes from hot full power                                          to 17 MPa [2,465 psia]
conditions. No HPI throttling by the operator.
113        Stuck open pressurizer safety        350 K [170&deg;F]            2.3 MPa [330 psia].
valve that recloses at 6,000 s          at 6,030 s.          System repressurizes from hot full power                                          to 17 MPa [2,465 psia]
conditions. Operator throttles HPI (Note 1) 115        Stuck open pressurizer safety        433 K [320&deg;F]            3.7 MPa [537 psia].
valve that recloses at 3,000 s          at 3,010 s.          System repressurizes from hot full power                                          to 17 MPa [2,465 psia]
conditions. Operator throttles HPI.
4-3
 
Case #    Description                      Minimum Downcomer            Corresponding Primary Fluid Temperature              System Pressure 122      Stuck open pressurizer safety          307 K [93&deg;F]            1.7 MPa [249 psia].
valve that recloses at 6,000 s          at 6,010 s            System repressurizes from hot zero power                                            to 17 MPa [2,465 psia]
conditions. Operator throttles                                  then depressurizes to HPI.                                                            a stable pressure of 2.5 MPa [363 psia].
124      Stuck open pressurizer safety          360 K [188&deg;F]            2.8 MPa [406 psia].
valve that recloses at 3,000 s          at 4,000 s.            System repressurizes from hot zero power                                            to 17 MPa [2,465 psia]
conditions. Operator throttles                                        and then HPI.                                                              depressurizes to 4.6 MPa [667 psia]
156      40.64 cm [16 in] break in the    300 K [80&deg;F] at 600 s        0.18 MPa [26 psia]. No hot leg from hot full power                                        repressurization.
160      14.37 cm [5.656 in] surge line  299 K [78&deg;F] at 2,300 s        0.9 MPa [130 psia].
break from hot full power                                        No repressurization.
164      20.32 cm [8 in] surge line      300 K [80&deg;F] at 1,200 s        0.56 MPa [80 psia].
break from hot full power                                        No repressurization.
165      Stuck open pressurizer safety          306 K [91EF]            1.8 MPa [261 psia].
valve that recloses at 6,000 s          at 6,010 s                Repressurizes to from hot zero power                                              17 MPa [2,465 psia]
conditions. No operator actions considered.
172      10.16 cm [4 in] cold leg break      355 K [180&deg;F] at            1.1 MPa [160 psia].
from hot full power                      2,700 s                No repressurization.
Notes:
(1)    Operator throttles HPI 10 minutes after 2.7 K [5&deg;F] subcooling and 254 cm [100 in]
pressurizer level is reached. The throttling criteria is 27.8 K [50&deg;F] subcooling.
(2)    Operator throttles HPI to maintain 27.8 K [50&deg;F] subcooling.
4-4
 
Table 4.1-2 Summary of Beaver Valley Thermal Hydraulic Results Case #    Description                    Minimum Downcomer        Corresponding Fluid Temperature      Primary System Pressure 007        20.32 cm [8.0 in] diameter          291 K [64.1&deg;F]    0.21 MPa [30.0 psia].
surge line break from hot full      at about 1,000 s    No repressurization.
power 009        40.64 cm [16.0 in] diameter        291 K [64.1&deg;F]            0.097 MPa hot leg break from hot full        at about 1,000 s      [14.0 psia]. No power                                                    repressurization.
056        10.16 cm [4.0 in] diameter        288.5 K [59.6&deg;F]          0.917 MPa surge line break from hot zero    at about 2,975 s.      [133 psia]. No power                                                    repressurization.
060        One stuck open pressurizer          330 K [134EF]    2.62 MPa [380 psia].
SRV that recloses at 6,000 s            at 6,000 s      Repressurizes to from hot full power conditions                                16.2 MPa
[2,350 psia]
071        One stuck open pressurizer            295 K [71EF]            16.3 MPa SRV which recloses at                  at 15,000 s          [2,371 psia]
6,000 s from hot zero power conditions 097        Stuck open pressurizer SRV          321 K [118&deg;F]      1.62 MPa [235 psia].
which recloses (at 3,000 s)            at 3000 s        Repressurizes to from hot zero power                                            16.2 MPa
[2,350 psia]
102        Main steam line break with    373 K [212&deg;F] at 3990 s        16.2 MPa AFW continuing to feed                                [2,350 psia]. System affected generator for                                depressurizes due to 30 minutes and operator                                  HHSI control, but controls HHSI 30 minutes                              repressurizes due to after allowed from hot full                                    heatup.
power 103        Main steam line break with    362 K [192&deg;F] at 3420 s        16.2 MPa AFW continuing to feed                                [2,350 psia]. System affected generator for                                  pressure decreases 30 minutes and operator                                  to 4.69 MPa [680 controls HHSI 30 minutes                                psia] by 15,000 s after allowed from hot zero                            due to HHSI control.
power 4-5
 
Case # Description                    Minimum Downcomer          Corresponding Fluid Temperature      Primary System Pressure 104    Main steam line break with    370 K [206&deg;F] at 5820 s      16.2 MPa AFW continuing to feed                                [2,350 psia]. System affected generator for                                depressurizes due to 30 minutes and operator                                  HHSI control, but controls HHSI 60 minutes                              repressurizes due to after allowed from hot full                                  heatup.
power 105    Main steam line break with    355 K [179&deg;F] at 5220 s      16.2 MPa AFW continuing to feed                                [2,350 psia]. System affected generator for                                  pressure decreases 30 minutes and operator                                  to 4.27 MPa [620 controls HHSI 60 minutes                                psia] by 15,000 s after allowed from hot zero                            due to HHSI control.
power 108    Small main steam line break    395 K [252&deg;F] at 3600 s      16.2 MPa with AFW continuing to feed                            [2,350 psia]. System affected generator for                                depressurizes due to 30 minutes and operator                                  HHSI control, but controls HHSI 30 minutes                              repressurizes due to after allowed from hot full                                  heatup.
power 114    7,184 cm [2.828 in] surge line      304 K [88EF]      1.34 MPa [195 psia].
break from hot ful power.            at 4,890 s        No repressurization Summer conditions assumed.
Heat transfer to passive structures increased by 30%
126    One stuck open pressurizer          338 K [148EF]      2.64 MPa [383 psia]
SRV that recloses at 6,000 s          at 6,354 s        Repressurizes to from hot full power conditions                              16.2 MPa (10 minute delay)                                          [2,350 psia]
130    One stuck open pressurizer          316 K [110EF]      1.52 MPa [221 psia].
SRV which recloses at                at 3,026 s        Repressurizes to 3,000 s. Operator controls                                  16.2 MPa HHSI (10 minute delay).                                  [2,350 psia], then depressurizes due to HHSI control.
4-6
 
Table 4.1-3 Summary of Palisades Thermal Hydraulic Results Case #    Description                                  Minimum          Corresponding Downcomer Fluid      Primary System Temperature          Pressure 19        One stuck-open ADV) on SG-A              423 K [301EF] at    17.24 MPa [2500 from HZP operation. Operator                15,000 s.            psia]
does not isolate AFW to SG-A and does not throttle HPI.
40        40.64 cm [16 in] break in a hot leg        308 K [94EF]  0.14 MPa [21 psia].
from HFP operation. Operator                at 1,260 s.
does not throttle HPI flow.
52        One stuck-open ADV on SG-A              425 K [305EF] at    17.24 MPa [2500 with failure of both MSIVs to close          15,000 s.            psia]
from HZP operation. Operator does not isolate AFW to SG-A and does not throttle HPI.
54        Double-ended MSLB on SG-A                377 K [219EF]      9.61 MPa [1395 inside containment with a failure of        at 4,110 s. psia]. Repressurizes both of the MSIVs to close from                            to 17.24 MPa [2500 HFP operation. Operator does not                          psia] due to system isolate AFW to SG-A and does not                                  heatup.
throttle HPI flow.
55        Two stuck-open ADVs on SG A              437 K [328EF]      17.24 MPa [2500 from HFP operation. A flow                  at 4,320 s.          psia].
controller failure and an operator action to start the second motor-driven AFW pump are assumed, resulting in the delivery of two-pump AFW flow.
58        10.14 cm [4 in] break in the pump-        331 K [136EF]  1.32 MPa [191 psia].
discharge cold leg from HFP.                at 2,700 s.
Operator does not throttle HPI.
Winter conditions assumed for the ECCS injection water temperatures.
59        10.14 cm [4 in] break in the pump-        351 K [171EF]  1.53 MPa [222 psia].
discharge cold leg from HFP.                at 14,940 s.
Operator does not throttle HPI flow. Summer conditions assumed for the ECCS injection water temperatures.
4-7
 
Case # Description                                Minimum        Corresponding Downcomer Fluid    Primary System Temperature          Pressure 60    5.08 cm [2 in] break in the surge      351 K [173EF]  2.30 MPa [334 psia].
line from HFP operation. Operator        at 3,540 s.
does not throttle HPI flow. Winter conditions assumed for the HPI, LPI and SIT injection water temperatures.
62    20.32 cm [8 in] break in the pump-      308 K [95EF]  0.72 MPa [104 psia].
discharge cold leg from HFP.              at 1,470 s.
Operator does not throttle HPI flow. Winter conditions assumed for the ECCS injection water temperatures.
63    14.37 cm [5.656 in] break in the        306 K [92EF]  1.07 MPa [155 psia].
pump-discharge cold leg from              at 2,070 s.
HFP. Operator is assumed not to throttle HPI flow. Winter conditions assumed for the ECCS injection water temperatures.
64    10.14 cm [4 in] break in the            323 K [121EF]  1.06 MPa [154 psia].
pressurizer surge line from HFP.          at 2,730 s.
Operator does not throttle HPI flow. Summer conditions assumed for the ECCS injection water temperatures.
65    One stuck-open pressurizer SRV          366 K [199EF]    10.55 MPa [1530 from HZP. The SRV recloses at            at 6,570 s. psia]. Repressurizes 6,000 s after initiation. Operator                      to 17.51 MPa [2540 does not throttle HPI flow.                            psia] due to system heatup.
4-8
 
4.2 Comparison of Current Results to the Previous Study Limited comparisons to thermal hydraulic results reported in the 1980's PTS study are presented in this section for the Oconee plant. More extensive comparisons are difficult to make because of differences in the plants analyzed and in many of the sequences analyzed. The plants analyzed in the 1980's were Oconee, H.B. Robinson, and Calvert Cliffs. In the present set of results, only Oconee is discussed. Also, the sequences considered are somewhat different, with greater emphasis placed on LOCAs of larger sizes (10.16 cm [4 in] in diameter or greater) in the present study. The results from the 1980's study are taken from NUREG/CR-3761 (Ref 4-1).
One sequence that is common to both the NUREG/CR-3761 results and the present effort is the main steam line break although they were analyzed differently. In both cases, the MSLB is initiated by a double-ended rupture of a steam line in one steam generator. In the NUREG/CR-3761 analysis, the operator was assumed to trip the reactor coolant pumps 30 s after initiation of high pressure injection and also terminated all feedwater and turbine bypass on both steam generators after ten minutes. The reactor coolant pumps were restarted after subcooling was attained. Emergency feedwater and turbine bypass to the unaffected steam generator was reactivated at fifteen minutes in the NUREG/CR-3761 analysis. The analysis was initiated from hot full power conditions. The comparable case in the current study is Case 27, although there are key differences. In Case 27, the reactor coolant pumps remain running because the loss of subcooling criteria where it was assumed that the operator would trip the RCPs (trip criteria is 0.27 K [0.5EF] at hot full power) was not met. Also, emergency feedwater was assumed to continue operation and to feed the affected steam generator.
Table 4.2-1 presents a tabulation of the comparison. NUREG/CR-3761 lists a downcomer temperature of 415 K [287&deg;F] at about 600 s (lower uncertainty bound) for the case where the reactor coolant pumps were restarted when subcooling was attained. The Case 27 result is 380 K
[225&deg;F] which was attained at 4,300 s. The Case 27 results are lower mostly because of the continued feed to the affected steam generator by the EFW. There is also a large difference in the pressure as seen in the results presented in NUREG/CR-3761. This difference is due to the assumption of the operator throttling HPI to maintain 27.8 K [50&deg;F] subcooling.
In looking at comparison of thermal hydraulic results either among the plants discussed in this report or to past results, it should be remembered that thermal hydraulic analysis discussed in this report is a part of an overall risk analysis. The risk of vessel failure due to a PTS event is determined by sequence probabilities that define the sequences analyzed and the fracture mechanics analysis that, combined with the sequence probabilities and thermal hydraulic results, determine the risk.
4.3 References 4-1      Fletcher, C. D., et. al., RELAP5 Thermal Hydraulic Analyses of Pressurized Thermal Shock Sequences for the Oconee-1 Pressurized Water Reactor, NUREG/CR-3761, June 1984.
4-9
 
Table 4.2-1 Comparison of Current PTS Thermal Hydraulic Results to Results from NUREG/CR-3761 Description                                      Minimum Downcomer Corresponding Fluid Temperature Pressure NUREG/CR-3761 - MSLB with RCP restarted              481 K [407&deg;F]    17.0 MPa 10 minutes after subcooling was attained                              [2465 psia]
NUREG/CR-3761 - MSLB with RCP restarted              403 K [266&deg;F]    17.34 MPa 10 minutes after subcooling was attained -                            [2515 psia]
lower uncertainty bound NUREG/CR-3761 - MSLB with RCP restarted              494 K [429&deg;F]    17.0 MPa at time subcooling was attained                                        [2465 psia]
NUREG/CR-3761 - MSLB with RCP restarted              415 K [287&deg;F]    17.34 MPa at time subcooling was attained - lower                                [2515 psia]
uncertainty bound Case 27 - MSLB from hot full power                    378 K [220&deg;F]    1.56 MPa conditions. Both turbine driven and auxiliary                          [227 psia].
driven feedwater are assumed to be operating.                              No Operator throttles HPI.                                              repressurization 4-10
 
asdfasdf Appendix A - Summary of Oconee Base Case Results September 23, 2004
 
Appendix A - Summary of Oconee Base Case Results This appendix presents an overview of the RELAP5 modeling details and the results of the 55 base cases evaluated for the Oconee plant. Table A-1 presents a list of the cases analyzed.
These cases include a mix of LOCAs, stuck open pressurizer safety valves, main steam line breaks, and secondary side failures from both hot full power and hot zero power conditions.
Results for each of the 55 cases are presented below as Figures A-1 to A-55. For each case, the following information is given in tabular format.
Case Category  LOCA, RT/TT, MSLB, etc.
Primary Failures Description of the primary side failure Secondary Failures  Description of the secondary side failure Operator Actions Description of any operator actions Min DC Temp  The minimum average downcomer fluid temperature and associated time that minimum occurred Comments    Any comments specific to the event In addition to the information described above, plots of average downcomer fluid temperature, primary system pressure, and downcomer wall heat transfer coefficient are presented. Any analytical assumptions used in each case are also presented. To facilitate comparisons among cases, each figure presents summary information for the minimum downcomer average temperature in the reactor vessel and the time during the event sequence when that minimum is reached. The results shown in these figures are used in the FAVOR probabilistic fracture mechanics analysis.
A-1
 
Table A-1 List of Oconee Base Cases Case          System Failure                  Operator Action      HZP Hi K  Dominant 8  2.54 cm [1 in] surge line break None                            No    No No with 1 stuck open safety valve in SG-A.
9  2.54 cm [1 in] surge line break None                            No    No No with 2 stuck open safety valves in SG-A.
12  2.54 cm [1 in] surge line break HPI throttled to maintain 27.8 No    No No with 1 stuck open safety valve  K [50&deg; F] subcooling margin in SG-A.
15  2.54 cm [1 in] surge line break At 15 minutes after transient  No    No No with HPI Failure                initiation, operator opens all TBVs to lower primary system pressure and allow CFT and LPI injection.
17  2.54 cm [1 in] surge line break None                            No    No No with 1 stuck open safety valve in SG-A.
27  MSLB without trip of turbine    Operator throttles HPI to      No    No No driven emergency feedwater. maintain 27.8 K [50&deg; F]
subcooling margin.
28  Reactor/turbine trip with 1    None                            No    No No stuck open safety valve in SG-A 29  Reactor/turbine trip with 1    None                            No    No No stuck open safety valve in SG-A and a second stuck open safety valve in SG-B 30    Reactor/turtine trip with 1    None                          Yes  No  No stuck open safety valve in SG-A 31    Reactor/turbine trip with 1    None                          Yes  No  No stuck open safety valve in SG-A and a second stuck open safety valve in SG-B 36    Reactor/turbine trip with 1    Operator throttles HPI to    No  No  No stuck open safety valve in      maintain 27.8 K [50&deg; F]
SG-A and a second stuck        subcooling and 304.8 cm open safety valve in SG-B      [120 in] pressurizer level.
37    Reactor/turbine trip with 1    Operator throttles HPI to    Yes  No  No stuck open safety valve in      maintain 27.8 K [50&deg; F]
SG-A                            subcooling and 304.8 cm
[120 in] pressurizer level.
38    Reactor/turbine trip with 1    Operator throttles HPI to    Yes  No  No stuck open safety valve in      maintain 27.8 K [50&deg; F]
SG-A and a second stuck        subcooling and 304.8 cm open safety valve in SG-B      [120 in] pressurizer level.
A-2
 
Table A-1 List of Oconee Base Cases Case          System Failure              Operator Action        HZP Hi K Dominant 44    2.54 cm [1 in] surge line  At 15 minutes after initiation, No  No  No break with HPI Failure      operators open all TBVs to depressurize the system to the CFT setpoint. When the CFTs are 50 percent discharged, HPI is assumed to be recovered. The TBVs are assumed remain open for the duration of the transient.
45    Loss of MFW and EFW. At    Operator starts primary        No  No  No 30 minutes after operator  system "feed and bleed" starts HPI and opens the    cooling by starting the HPI PORV, EFW is restored.      and opening the PORV at Normal EFW level control is RCS pressure > 2275 psia.
assumed.                    Operator also trips one RCP in each steam generator loop (if 0.27 K (0.5&deg; F) subcooling margin is reached, the remaining two RCPs are tripped). The operator then closes the PORV and throttles HPI to maintain 55 K (100&deg; F) subcooling.
46    Loss of MFW and EFW. At    Operator starts primary        No  No  No 30 minutes after operator  system "feed and bleed" starts HPI and opens the    cooling by starting the HPI PORV, EFW is restored.      and opening the PORV at Normal EFW level control is RCS pressure > 2275 psia.
assumed.                    Operator also trips one RCP in each steam generator loop (if 0.27 K (0.5&deg; F) subcooling margin is reached, the remaining two RCPs are tripped). The operator then closes the PORV but fails to throttle HPI.
57    Two stuck open safety      Operator isolates EFW in        No  No  No valves in SG-A.            SG-A.
59    Two stuck open safety      Operator throttles HPI to      No  No  No valves in SG-A.            maintain 27.8 K (50oF) subcooling and pressurizer level of 304 cm (120 inches).
The operator stops emergency feedwater flow to SG-A at 15 minutes after accident initiation.
A-3
 
Table A-1 List of Oconee Base Cases Case          System Failure                Operator Action        HZP Hi K Dominant 60    Two stuck open safety          Operator throttles HPI to      Yes  No  No valves in SG-A                maintain 27.8 K (50&deg; F) subcooling and pressurizer level of 304 cm (120 inches).
The operator stops emergency feedwater flow to SG-A at 15 minutes after accident initiation.
62    MSLB with shutdown of the      None                            No  No  No MFW and the turbine driven EFW pumps by the MSLB circuitry. Break occurs in the containment so that RCP trip occurs due to a containment isolation signal at 1 minute after break initiation.
89    Reactor/turbine trip with      Operator opens all TBVs to      No  No  No Loss of MFW and EFW.          depressurize the secondary side to below the condensate booster pump shutoff head so that these pumps feed the steam generators. Booster pumps are assumed to be initially uncontrolled so that the steam generators are overfilled (609 cm [240 in]
startup level). Operator controls booster pump flow to maintain SG level at 76 cm [30 in] due to continued RCP operation. Operator also throttles HPI to maintain 55 K [100EF] subcooling and a pressurizer level of 254 cm
[100 in]. The TBVs are kept fully opened due to operator error.
90    Reactor/turbine trip with 2    Operator throttles HPI 20      No  No  No stuck open safety valves in    minutes after 2.7 K [5&deg;F]
SG-A                          subcooling and 254 cm
[100"] pressurizer level is reached [throttling criteria is 27.8 K [50&deg;F] subcooling].
A-4
 
Table A-1 List of Oconee Base Cases Case          System Failure                  Operator Action        HZP Hi K Dominant 91    SGTR with a stuck open        Operator trips RCP's 1          No  No  No SRV in SG-B. A reactor trip    minute after initiation.
is assumed to occur at the    Operator also throttles HPI time of the tube rupture.      10 minutes after 2.7 K [5&deg;F]
Stuck safety relief valve is  subcooling and 254 cm assumed to reclose 10          [100"] pressurizer level is minutes after initiation.      reached [assumed throttling criteria is 27.8 K [50&deg;F]
subcooling].
98    Reactor/turbine trip with loss Operator opens all TBVs to      Yes  No  No of MFW and EFW                depressurize the secondary side to below the condensate booster pump shutoff head so that these pumps feed the steam generators. Booster pumps are assumed to be initially uncontrolled so that the steam generators are overfilled (610 cm [240 in]
startup level). Operator controls booster pump flow to maintain SG level at 76 cm [30 in] due to continued RCP operation. Operator also throttles HPI to maintain 55 K [100EF] subcooling and a pressurizer level of 254 cm
[100 in]. The TBVs are kept fully opened due to operator error.
99    MSLB with trip of turbine      HPI is throttled 20 minutes    No  No  No driven EFW by MSLB            after 2.7 K [5&deg;F] subcooling Circuitry                      and 254 cm [100"]
pressurizer level is reached (throttling criteria is 27.8 K
[50&deg;F] subcooling).
100  MSLB with trip of turbine      Operator throttles HPI 20      Yes  No  No driven EFW by MSLB            minutes after 2.7 K [5&deg;F]
Circuitry                      subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 27.8 K [50&deg;F] subcooling).
101  MSLB without trip of turbine  Operator throttles HPI to      Yes  No  No driven EFW by MSLB            maintain 27.8 K [50&deg; F]
Circuitry                      subcooling margin (throttling criteria is 27.8 K [50&deg;F]
subcooling).
A-5
 
Table A-1 List of Oconee Base Cases Case          System Failure                Operator Action        HZP Hi K Dominant 102  Reactor/turbine trip with 2  Operator throttles HPI 20      Yes  No  No stuck open safety valves in  minutes after 2.77 K [5&deg;F]
SG-A                        subcooling and 254 cm [100 in] pressurizer level is reached (throttling criteria is 27 K [50&deg;F] subcooling).
107  2.54 cm (1 inch) surge line  HPI terminated when            No  Yes  No break with 2 stuck open      subcooling margin exceeds safety valves in SG-A.      55.6 K (100EF) 108  Stuck open pressurizer      None                            No  Yes  No safety valve 109  Stuck open pressurizer      None                            No  Yes  No safety valve. Valve recloses at 6000 secs [RCS low pressure point].
110  5.08 cm [2 inch] surge line  At 15 minutes after transient  No  Yes  No break with HPI failure      initiation, operator opens both TBV to lower primary system pressure and allow CFT and LPI injection.
111  2.54 cm [1 in] surge line    At 15 minutes after initiation, No  Yes  No break with HPI failure      operator opens all TBVs to lower primary pressure and allow CFT and LPI injection.
When the CFTs are 50%
discharged, HPI is recovered. At 3000 seconds after initiation, operator starts throttling HPI to 55 K
[100&deg;F] subcooling and 254 cm [100"] pressurizer level.
112  Stuck open pressurizer      After valve recloses,          No  Yes  No safety valve. Valve recloses operator throttles HPI 1 at 6000 secs.                minute after 2.7 K [5&deg;F]
subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 27 K [50&deg;F] subcooling) 113  Stuck open pressurizer      After valve recloses,          No  Yes  No safety valve. Valve recloses operator throttles HPI 10 at 6000 secs.                minutes after 2.7 K [5&deg;F]
subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 27.8 K [50&deg;F] subcooling)
A-6
 
Table A-1 List of Oconee Base Cases Case          System Failure                Operator Action        HZP Hi K Dominant 114  Stuck open pressurizer      After valve recloses,          No  Yes  No safety valve. Valve recloses operator throttles HPI 1 at 3000 secs.                minute after 2.7 K [5&deg;F]
subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 50&deg;F subcooling) 115  Stuck open pressurizer      After valve recloses,          No  Yes  No Safety Valve. Valve recloses operator throttles HPI 10 at 3000 secs.                minutes after 2.7 K [5&deg;F]
subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 50&deg;F subcooling) 116  Stuck open pressurizer      At 15 minutes after initiation, No  Yes  No safety valve and HPI failure operator opens all TBVs to lower primary pressure and allow CFT and LPI injection.
When the CFTs are 50%
discharged, HPI is recovered. The HPI is throttled 20 minutes after 2.7 K [5&deg;F] subcooling and 254 cm [100"] pressurizer level is reached (throttling criteria is 50&deg;F subcooling).
117  Stuck open pressurizer      At 15 minutes after initiation, No  Yes  No safety valve and HPI failure operator opens all TBV to lower primary pressure and allow CFT and LPI injection.
When the CFTs are 50%
discharged, HPI is recovered. The SRV is closed 5 minutes after HPI recovered. HPI is throttled at 1 minute after 2.7 K [5&deg;F]
subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 27.8 K [50&deg;F] subcooling).
118  5.08 cm (2 in) surge line    None                            Yes Yes  No break 119  2.54 cm [1 in] surge line    At 15 minutes after transient  Yes Yes  No break with HPI Failure      initiation, the operator opens all turbine bypass valves to lower primary system pressure and allow core flood tank and LPI injection.
A-7
 
Table A-1 List of Oconee Base Cases Case          System Failure              Operator Action          HZP Hi K Dominant 120  2.54 cm [1 in] surge line    At 15 minutes after            Yes Yes  No break with HPI Failure      sequence initiation, operators open all TBVs to depressurize the system to the CFT setpoint. When the CFTs are 50 percent discharged, HPI is assumed to be recovered. The TBVs are assumed remain opened for the duration of the transient.
121  Stuck open pressurizer      Operator throttles HPI at 1    Yes Yes  No safety valve. Valve recloses minute after 2.7 K [5&deg;F]
at 6000 secs .              subcooling and 254 cm
[100"] pressurizer level is reached [throttling criteria is 27.8 K [50&deg;F] subcooling].
122  Stuck open pressurizer      Operator throttles HPI at 10    Yes Yes  No safety valve. Valve recloses minutes after 2.7 K [5&deg;F]
at 6000 secs.                subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 27.8 K [50&deg;F] subcooling).
123  Stuck open pressurizer      Operator throttles HPI at 1    Yes Yes  No safety valve. Valve recloses minute after 2.7 K [5&deg;F]
at 3000 secs.                subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 27.8 K [50&deg;F] subcooling).
124  Stuck open pressurizer      Operator throttles HPI at 10    Yes Yes  No safety valve. Valve recloses minutes after 2.7 K [5&deg;F]
at 3000 secs.                subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 27.8 K [50&deg;F] subcooling).
125  Stuck open pressurizer      At 15 minutes after initiation, Yes Yes  No safety valve and HPI Failure operator opens all TBVs to lower primary pressure and allow CFT and LPI injection.
When the CFTs are 50%
discharged, HPI is recovered. HPI is throttled 20 minutes after 2.7 K [5&deg;F]
subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 27.8 K [50&deg;F] subcooling).
A-8
 
Table A-1 List of Oconee Base Cases Case          System Failure                Operator Action        HZP Hi K Dominant 126  Stuck open pressurizer        At 15 minutes after initiation, Yes Yes  No safety valve and HPI Failure  operator opens all TBVs to lower primary pressure and allow CFT and LPI injection.
When the CFTs are 50%
discharged, HPI is recovered. SRV is closed at 5 minutes after HPI is recovered. HPI is throttled at 1 minute after 2.7 K [5&deg;F]
subcooling and 254 cm
[100"] pressurizer level is reached (throttling criteria is 27.8 K [50&deg;F] subcooling).
127  SGTR with a stuck open        Operator trips RCP's 1          Yes Yes  No SRV in SG-B. A reactor trip  minute after initiation.
is assumed to occur at the    Operator also throttles HPI time of the tube rupture. 10 minutes after 2.77 K [5&deg; Stuck safety relief valve is  F] subcooling and 254 cm assumed to reclose 10        [100 in] pressurizer level is minutes after initiation. reached (assumed throttling criteria is 27 K [50&deg;F]
subcooling).
128  7.18 cm (2.828 in) surge line None                            Yes Yes  No break 133  10.16 cm (4 inch) surge line  None                            Yes Yes  No break 134  20.32 cm (8 inch) surge line  None                            Yes Yes  No break 138  TT/RT with stuck open pzr    None                            No  No  No SRV. Summer conditions assumed (HPI, LPI temp =
302 K (85&deg; F) and CFT temp
      = 310 K (100&deg; F)).
140  TT/RT with stuck open pzr    None                            No  No  No SRV. SRV assumed to reclose at 3000 secs.
Operator does not throttle HPI.
141  8.19 cm [3.22 in] surge line  None                            No  Yes  No break [Break flow area increased by 30% from 7.18 cm [2.828 in] break].
142  6.01 cm [2.37 in] surge line  None                            No  Yes  No break [Break flow area decreased by 30% from 7.18 cm [2.828 in] break].
A-9
 
Table A-1 List of Oconee Base Cases Case          System Failure            Operator Action HZP Hi K Dominant 145  4.34 cm [1.71 in] surge line  None                No  Yes  No break [Break flow area increased by 30% from 3.81 cm [1.5 in] break]. Winter conditions assumed [HPI, LPI temp = 277 K [40&deg; F] and CFT temp = 294 K [70&deg; F)).
146  TT/RT with stuck open pzr    None                No  Yes  No SRV [valve flow area reduced by 30 percent].
Summer conditions assumed [HPI, LPI temp =
302 K [85&deg;F] and CFT temp
      = 310 K [100&deg; F)). Vent valves do not function.
147  TT/RT with stuck open pzr    None                No  Yes  No SRV. Summer conditions assumed [HPI, LPI temp =
302 K [85&deg;F] and CFT temp
      = 310 K [100&deg;F)).
148  TT/RT with partially stuck    None                No  Yes  No open pzr SRV [flow area equivalent to 1.5 in diameter opening]. HTC coefficients increased by 1.3.
149  TT/RT with stuck open pzr    None                No  Yes  No SRV. SRV assumed to reclose at 3000 s. Operator does not throttle HPI.
154  8.53 cm [3.36 in] surge line  None                No  Yes  No break [Break flow area reduced by 30% from 10.16 cm [4 in] break]. Vent valves do not function. ECC suction switch to the containment sump included in the analysis.
156  40.64 cm [16 in] hot leg      None                No  Yes  Yes break. ECC suction switch to the containment sump included in the analysis.
160  14.37 cm [5.656 in] surge    None                No  Yes  Yes line break. ECC suction switch to the containment sump included in the analysis.
164  20.32 cm [8 inch] surge line  None                No  Yes  Yes break. ECC suction switch to the containment sump included in the analysis.
A-10
 
Table A-1 List of Oconee Base Cases Case          System Failure              Operator Action          HZP Hi K Dominant 165  Stuck open pressurizer        None                            Yes Yes  No safety valve. Valve recloses at 6000 s [RCS low pressure point].
166  Stuck open pressurizer        After valve recloses,          Yes Yes  No safety valve. Valve recloses  operator throttles HPI 1 at 6000 s.                    minute after 2.7 K (5&deg;F) subcooling and 254 cm (100") pressurizer level is reached (throttling criteria is 50&deg;F subcooling) 168  TT/RT with stuck open pzr    None                            Yes Yes  No SRV. SRV assumed to reclose at 3000 s. Operator does not throttle HPI.
169  TT/RT with stuck open pzr    None                            Yes Yes  No SRV [valve flow area reduced by 30 percent].
Summer conditions assumed [HPI, LPI temp =
302 K [85&deg;F] and CFT temp
      = 310 K [100&deg;F)). Vent valves do not function.
170  TT/RT with stuck open pzr    None                            Yes Yes  No SRV. Summer conditions assumed [HPI, LPI temp =
302 K [85&deg;F] and CFT temp
      = 310 K [100&deg;F)).
171  TT/RT with partially stuck    None                            Yes Yes  No open pzr SRV [flow area equivalent to 1.5 in diameter opening]. HTC coefficients increased by 1.3.
172  10.16 cm [4 in] cold leg      None                            No  Yes  Yes break. ECC suction switch to the containment sump included in the analysis.
174  MSLB with trip of turbine    Operator throttles HPI 20      No  No  No driven EFW by MSLB            minutes after 2.7 K (5&deg;F)
Circuitry. Decay power set    subcooling and 254 cm to 0.003 of full power and    (100") pressurizer level is held constant (7.70 MW).      reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
176  Stuck open pressurizer        Operator throttles HPI at 10    No  Yes  No safety valve. Valve recloses  minutes after 2.7 K (5&deg;F) at 6000 s. Decay power set    subcooling and 254 cm to 0.003 of full power and    (100") pressurizer level is held constant (7.70 MW).      reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
A-11
 
Table A-1 List of Oconee Base Cases Case            System Failure                  Operator Action            HZP        Hi K    Dominant 178  8.53 cm [3.36 in] surge line    None                              No        Yes No break [Break flow area reduced by 30% from 10.16 cm [4 in] break]. Vent valves do not function. ECC suction switch to the containment sump included in the analysis.
Note: Case 178 is a duplicate of 154. Intentionally entered for bookkeeping to track a split in sequence frequency.
A-12
 
Case Category                                LOCA Primary Failures                                2.54 cm (1 inch) surge line break Secondary Failures                                1 stuck open safety valve in SG-A Operator Actions                                None Min DC Temperature                                441.4 K [334.8EF] at 9977 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000          4000              6000        8000  10000 Time (s)
Figure A-1 Oconee PTS Results for Case 008 A-13
 
Case Category                          LOCA Primary Failures                                2.54 cm (1 inch) surge line break Secondary Failures                                2 stuck open safety valves in SG-A Operator Actions                                None Min DC Temperature                                425.8 K [306.8EF] at 10000 s Comments    None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                  2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                  2176 10.0                                                                  1450 5.0                                                                  725 0.0                                                                  0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                  HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-2 Oconee PTS Results for Case 009 A-14
 
Case Category                          LOCA Primary Failures                                2.54 cm (1 inch) surge line break Secondary Failures                                1 stuck open safety valve in SG-A Operator Actions                                HPI throttled to maintain 27.8 K (50&deg;F) subcooling margin Min DC Temperature                                459.5 K [367.5EF] at 9992 s Comments    None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                  2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                  2176 10.0                                                                  1450 5.0                                                                  725 0.0                                                                  0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                  HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-3 Oconee PTS Results for Case 012 A-15
 
Case Category                          LOCA Primary Failures                                2.54 cm (1 in) surge line break with HPI Failure Secondary Failures                                None Operator Actions                                At 15 minutes after transient initiation, operator opens all TBVs to lower primary system pressure and allow CFT and LPI injection.
Min DC Temperature                                372.6 K [211.0EF] at 9964 s Comments    None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000          4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000          4000              6000        8000    10000 Time (s)
Figure A-4 Oconee PTS Results for Case 015 A-16
 
Case Category                                LOCA - HZP Primary Failures                                2.54 cm (1 in) surge line break Secondary Failures                                1 stuck open safety valve in SG-A Operator Actions                                None Min DC Temperature                                407.8 K [274.3EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000          4000              6000        8000  10000 Time (s)
Figure A-5 Oconee PTS Results for Case 017 A-17
 
Case Category                                MSLB Primary Failures                                None Secondary Failures                                MSLB without trip of turbine driven emergency feedwater.
Operator Actions                                Operator throttles HPI to maintain 27.8 K (50&deg;F) subcooling margin.
Min DC Temperature                                377.7 K [220.2EF] at 8196 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000          4000              6000        8000  10000 Time (s)
Figure A-6 Oconee PTS Results for Case 027 A-18
 
Case Category                                TT/RT Primary Failures                                None Secondary Failures                                1 stuck open safety valve in SG-A Operator Actions                                None Min DC Temperature                                456.0 K [361.2EF] at 9980 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000          4000              6000        8000  10000 Time (s)
Figure A-7 Oconee PTS Results for Case 028 A-19
 
Case Category                                TT/RT Primary Failures                                None Secondary Failures                                1 stuck open safety valve in SG-A and a second stuck open safety valve in SG-B Operator Actions                                None Min DC Temperature                                430.5 K [315.2EF] at 9673 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000          4000              6000        8000  10000 Time (s)
Figure A-8 Oconee PTS Results for Case 029 A-20
 
Case Category                                TT/RT - HZP Primary Failures                                None Secondary Failures                                1 stuck open safety valve in SG-A Operator Actions                                None Min DC Temperature                                425.4 K [306.0EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000          4000              6000        8000  10000 Time (s)
Figure A-9 Oconee PTS Results for Case 030 A-21
 
Case Category                                  TT/RT - HZP Primary Failures                                None Secondary Failures                                1 stuck open safety valve in SG-A and a second stuck open safety valve in SG-B Operator Actions                                None Min DC Temperature                                  404.6 K [268.5EF] at 9998 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-10 Oconee PTS Results for Case 031 A-22
 
Case Category                                  TT/RT Primary Failures                                None Secondary Failures                                1 stuck open safety valve in SG-A and a second stuck open safety valve in SG-B Operator Actions                                Operator throttles HPI to maintain 27.8 K (50&deg;F) subcooling and 304.8 cm (120 in) pressurizer level.
Min DC Temperature                                  442.9 K [337.6EF] at 9802 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-11 Oconee PTS Results for Case 036 A-23
 
Case Category                                  TT/RT - HZP Primary Failures                                None Secondary Failures                                1 stuck open safety valve in SG-A Operator Actions                                Operator throttles HPI to maintain 27.8 K (50&deg;F) subcooling and 304.8 cm (120 in) pressurizer level.
Min DC Temperature                                  447.3 K [345.5EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-12 Oconee PTS Results for Case 037 A-24
 
Case Category                                  TT/RT-HZP Primary Failures                                None Secondary Failures                                1 stuck open safety valve in SG-A and a second stuck open safety valve in SG-B Operator Actions                                Operator throttles HPI to maintain 27.8 K (50&deg;F) subcooling and 304.8 cm (120 in) pressurizer level.
Min DC Temperature                                  420.2 K [296.7EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-13 Oconee PTS Results for Case 038 A-25
 
Case Category                                  LOCA Primary Failures                                2.54 cm (1 in) surge line break with HPI Failure Secondary Failures                                None.
Operator Actions                                  At 15 minutes after initiation, operators open all TBVs to depressurize the system to the CFT setpoint. When the CFTs are 50% discharged, HPI is assumed to be recovered. The TBVs are assumed remain open for the duration of the transient.
Min DC Temperature                                  372.6 K [210.9EF] at 9851 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-14 Oconee PTS Results for Case 044 A-26
 
Case Category                              TT/RT Primary Failures                                None Secondary Failures                                Loss of MFW and EFW. At 30 minutes after operator starts HPI and opens the PORV, EFW is restored. Normal EFW level control is assumed.
Operator Actions                                Operator starts primary system "feed and bleed" cooling by starting the HPI and opening the PORV at RCS pressure > 2275 psia.
Operator also trips one RCP in each SG loop (if 0.27 K (0.5&deg;F) subcooling margin is reached, the remaining two RCPs are tripped).
The operator then closes the PORV and throttles HPI to maintain 55 K (100&deg;F) subcooling.
Min DC Temperature                                556.5 K [542.1EF] at 2157 s Comments      None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-15 Oconee PTS Results for Case 045 A-27
 
Case Category                            TT/RT Primary Failures                                None Secondary Failures                                Loss of MFW and EFW. At 30 minutes after operator starts HPI and opens the PORV, EFW is restored. Normal EFW level control is assumed.
Operator Actions                                Operator starts primary system "feed and bleed" cooling by starting the HPI and opening the PORV at RCS pressure > 2275 psia.
Operator also trips one RCP in each SG loop (if 0.27 K (0.5&deg;F) subcooling margin is reached, the remaining two RCPs are tripped).
The operator then closes the PORV but fails to throttle HPI.
Min DC Temperature                                556.7 K [542.4EF] at 2158 s Comments      None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                  2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                  2176 10.0                                                                  1450 5.0                                                                  725 0.0                                                                  0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                  HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-16 Oconee PTS Results for Case 046 A-28
 
Case Category                                  TT/RT Primary Failures                                None Secondary Failures                                Two stuck open safety valves in SG-A.
Operator Actions                                Operator isolates EFW in SG-A.
Min DC Temperature                                  530.4 K [495.0EF] at 949 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-17 Oconee PTS Results for Case 057 A-29
 
Case Category                                  TT/RT Primary Failures                                None Secondary Failures                                2 stuck open safety valves in SG-A Operator Actions                                Operator throttles HPI to maintain 27.8 K (50oF) subcooling and pressurizer level of 304 cm (120 inches). The operator stops emergency feedwater flow to SG-A at 15 minutes after accident initiation.
Min DC Temperature                                  489.6 K [421.5EF] at 934 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-18 Oconee PTS Results for Case 059 A-30
 
Case Category                                  TT/RT - HZP Primary Failures                                None Secondary Failures                                2 stuck open safety valves in SG-A Operator Actions                                Operator throttles HPI to maintain 27.8 K (50&deg;F) subcooling and pressurizer level of 304 cm (120 inches). The operator stops emergency feedwater flow to SG-A at 15 minutes after accident initiation.
Min DC Temperature                                  426.7 K [308.4EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-19 Oconee PTS Results for Case 060 A-31
 
Case Category                                  MSLB Primary Failures                                None Secondary Failures                                MSLB with shutdown of the MFW and the turbine driven EFW pumps by the MSLB circuitry. Break occurs in the containment so that RCP trip occurs due to a containment isolation signal at 1 minute after break initiation.
Operator Actions                                None Min DC Temperature                                  378.1 K [220.9EF] at 6297 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-20 Oconee PTS Results for Case 062 A-32
 
Case Category                                TT/RT Primary Failures                                None Secondary Failures                                Loss of MFW and EFW.
Operator Actions                                Opens all TBVs to depressurize the secondary side so the condensate booster pumps feed the SGs. Booster pumps are assumed to be initially uncontrolled so that the SGs are overfilled (609 cm (240 in) startup level). Controls booster pump flow to maintain SG level at 76 cm (30 in) due to continued RCP operation.
Throttles HPI to maintain 55 K (100&deg;F) subcooling and a pressurizer level of 254 cm (100 in). The TBVs are kept fully opened due to operator error.
Min DC Temperature                                417.8 K [292.4EF] at 9998 s Comments      None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                  2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                  2176 10.0                                                                  1450 5.0                                                                  725 0.0                                                                  0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                  HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-21 Oconee PTS Results for Case 089 A-33
 
Case Category                                  TT/RT Primary Failures                                None Secondary Failures                                2 stuck open safety valves in SG-A Operator Actions                                Operator throttles HPI 20 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  448.6 K [347.9EF] at 9878 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-22 Oconee PTS Results for Case 090 A-34
 
Case Category                                  SGTR Primary Failures                                None Secondary Failures                                SGTR with a stuck open SRV in SG-B. A reactor trip is assumed to occur at the time of the tube rupture. Stuck safety relief valve is assumed to reclose 10 minutes after initiation.
Operator Actions                                Operator trips RCP's 1 minute after initiation. Operator also throttles HPI 10 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (assumed throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  486.4 K [415.8EF] at 641 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                    Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-23 Oconee PTS Results for Case 091 A-35
 
Case Category                                  TT/RT-HZP Primary Failures                                None Secondary Failures                                Loss of MFW and EFW.
Operator Actions                                Opens all TBVs to depressurize the secondary side so the condensate booster pumps feed the SGs. Booster pumps are assumed to be initially uncontrolled so that the SGs are overfilled (610 cm (240 in) startup level). Controls booster pump flow to maintain SG level at 76 cm (30 in) due to continued RCP operation.
Throttles HPI to maintain 55 K (100&deg;F) subcooling and a pressurizer level of 254 cm (100 in). The TBVs are kept fully opened due to operator error.
Min DC Temperature                                  399.1 K [258.8EF] at 9993 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-24 Oconee PTS Results for Case 098 A-36
 
Case Category                              MSLB Primary Failures                                None Secondary Failures                                MSLB with trip of turbine driven EFW by MSLB Circuitry.
Operator Actions                                HPI is throttled 20 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                377.9 K [220.5EF] at 9439 s Comments      None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-25 Oconee PTS Results for Case 099 A-37
 
Case Category                                  MSLB-HZP Primary Failures                                None Secondary Failures                                MSLB with trip of turbine driven EFW by MSLB Circuitry Operator Actions                                Operator throttles HPI 20 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  376.3 K [217.7EF] at 4440 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-26 Oconee PTS Results for Case 100 A-38
 
Case Category                                  MSLB-HZP Primary Failures                                None Secondary Failures                                MSLB without trip of turbine driven EFW by MSLB Circuitry Operator Actions                                Operator throttles HPI to maintain 27.8 K (50&deg;F) subcooling margin (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  376.2 K [217.6EF] at 3849 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-27 Oconee PTS Results for Case 101 A-39
 
Case Category                                  TT/RT-HZP Primary Failures                                None Secondary Failures                                2 stuck open safety valves in SG-A Operator Actions                                Operator throttles HPI 20 minutes after 2.77 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27 K (50&deg;F) subcooling).
Min DC Temperature                                  426.9 K [308.8EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0      2000            4000              6000        8000      10000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0      2000            4000              6000        8000      10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0      2000            4000              6000        8000      10000 Time (s)
Figure A-28 Oconee PTS Results for Case 102 A-40
 
Case Category                                  LOCA-Hi K Primary Failures                                2.54 cm (1 inch) surge line break Secondary Failures                                2 stuck open safety valves in SG-A Operator Actions                                HPI terminated when subcooling margin exceeds 55.6 K (100&deg;F)
Min DC Temperature                                  454.6 K [358.5EF] at 4406 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-29 Oconee PTS Results for Case 107 A-41
 
Case Category                                  TT/RT-Hi K Primary Failures                                Stuck open pressurizer safety valve Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  345.8 K [162.8EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-30 Oconee PTS Results for Case 108 A-42
 
Case Category                                  TT/RT-Hi K Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 6000 secs (RCS low pressure point).
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  351.1 K [172.3EF] at 6012 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-31 Oconee PTS Results for Case 109 A-43
 
Case Category                                  LOCA-Hi K Primary Failures Secondary Failures                                None Operator Actions                                At 15 minutes after transient initiation, operator opens both TBV to lower primary system pressure and allow CFT and LPI injection.
Min DC Temperature                                  330.7 K [135.6EF] at 1823 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-32 Oconee PTS Results for Case 110 A-44
 
Case Category                                  LOCA-Hi K Primary Failures Secondary Failures                                None Operator Actions                                At 15 minutes after initiation, operator opens all TBVs to lower primary pressure and allow CFT and LPI injection. When the CFTs are 50% discharged, HPI is recovered. At 3000 seconds after initiation, operator starts throttling HPI to 55 K (100&deg;F) subcooling and 254 cm (100 in) pressurizer level.
Min DC Temperature                                  390.6 K [243.4EF] at 4448 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-33 Oconee PTS Results for Case 111 A-45
 
Case Category                                  TT/RT-Hi K Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 6000 secs.
Secondary Failures                                None Operator Actions                                After valve recloses, operator throttles HPI 1 minute after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27 K (50&deg;F) subcooling)
Min DC Temperature                                  351.1 K [172.3EF] at 6012 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-34 Oconee PTS Results for Case 112 A-46
 
Case Category                                  TT/RT-Hi K Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 6000 secs.
Secondary Failures                                None Operator Actions                                After valve recloses, operator throttles HPI 10 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling)
Min DC Temperature                                  351.1 K [172.3EF] at 6012 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-35 Oconee PTS Results for Case 113 A-47
 
Case Category                                  TT/RT-Hi K Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 3000 secs.
Secondary Failures                                None Operator Actions                                After valve recloses, operator throttles HPI 1 minute after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 50&deg;F subcooling)
Min DC Temperature                                  433.8 K [321.3EF] at 3011 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-36 Oconee PTS Results for Case 114 A-48
 
Case Category                                  TT/RT-Hi K Primary Failures Secondary Failures                                None Operator Actions                                After valve recloses, operator throttles HPI 10 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 50&deg;F subcooling)
Min DC Temperature                                  433.8 K [321.3EF] at 3011 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-37 Oconee PTS Results for Case 115 A-49
 
Case Category                                  TT/RT-Hi K Primary Failures Secondary Failures                                None Operator Actions                                At 15 minutes after initiation, operator opens all TBVs to lower primary pressure and allow CFT and LPI injection. When the CFTs are 50% discharged, HPI is recovered. The HPI is throttled 20 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 50&deg;F subcooling).
Min DC Temperature                                  356.2 K [181.5EF] at 9709 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                    Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-38 Oconee PTS Results for Case 116 A-50
 
Case Category                                  TT/RT-Hi K Primary Failures Secondary Failures                                None Operator Actions                                At 15 minutes after initiation, operator opens all TBV to lower primary pressure and allow CFT and LPI injection. When the CFTs are 50% discharged, HPI is recovered. The SRV is closed 5 minutes after HPI recovered. HPI is throttled at 1 minute after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  366.1 K [199.4EF] at 1661 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        2000          4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        2000          4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        2000          4000              6000        8000    10000 Time (s)
Figure A-39 Oconee PTS Results for Case 117 A-51
 
Case Category                                  LOCA-Hi K, HZP Primary Failures                                5.08 cm (2 inch) surge line break Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  298.1 K [ 76.9EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-40 Oconee PTS Results for Case 118 A-52
 
Case Category                                  LOCA-Hi K, HZP Primary Failures                                2.54 cm (1 in) surge line break with HPI Failure Secondary Failures                                None Operator Actions                                At 15 minutes after transient initiation, the operator opens all turbine bypass valves to lower primary system pressure and allow core flood tank and LPI injection.
Min DC Temperature                                  355.1 K [179.5EF] at 3252 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0        2000          4000              6000        8000      10000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0        2000          4000              6000        8000      10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0        2000          4000              6000        8000      10000 Time (s)
Figure A-41 Oconee PTS Results for Case 119 A-53
 
Case Category                                  LOCA-Hi K, HZP Primary Failures                                2.54 cm (1 in) surge line break with HPI Failure Secondary Failures                                None Operator Actions                                At 15 minutes after sequence initiation, operators open all TBVs to depressurize the system to the CFT setpoint. When the CFTs are 50 percent discharged, HPI is assumed to be recovered. The TBVs are assumed remain opened for the duration of the transient.
Min DC Temperature                                  308.5 K [ 95.7EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-42 Oconee PTS Results for Case 120 A-54
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 6000 secs .
Secondary Failures                                None Operator Actions                                Operator throttles HPI at 1 minute after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  306.9 K [ 92.8EF] at 6010 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-43 Oconee PTS Results for Case 121 A-55
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 6000 secs.
Secondary Failures                                None Operator Actions                                Operator throttles HPI at 10 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  306.9 K [ 92.8EF] at 6010 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0      2000            4000              6000        8000      10000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0      2000            4000              6000        8000      10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0      2000            4000              6000        8000      10000 Time (s)
Figure A-44 Oconee PTS Results for Case 122 A-56
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 3000 secs.
Secondary Failures                                None Operator Actions                                Operator throttles HPI at 1 minute after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  359.6 K [187.7EF] at 3650 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-45 Oconee PTS Results for Case 123 A-57
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 3000 secs.
Secondary Failures                                None Operator Actions                                Operator throttles HPI at 10 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  359.6 K [187.7EF] at 3650 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0      2000            4000              6000        8000      10000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0      2000            4000              6000        8000      10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0      2000            4000              6000        8000      10000 Time (s)
Figure A-46 Oconee PTS Results for Case 124 A-58
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                Stuck open pressurizer safety valve and HPI Failure Secondary Failures                                None Operator Actions                                At 15 minutes after initiation, operator opens all TBVs to lower primary pressure and allow CFT and LPI injection. When the CFTs are 50% discharged, HPI is recovered. HPI is throttled 20 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  298.2 K [ 77.1EF] at 9992 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-47 Oconee PTS Results for Case 125 A-59
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                Stuck open pressurizer safety valve and HPI Failure Secondary Failures                                None Operator Actions                                At 15 minutes after initiation, operator opens all TBVs to lower primary pressure and allow CFT and LPI injection. When the CFTs are 50% discharged, HPI is recovered. SRV is closed at 5 minutes after HPI is recovered. HPI is throttled at 1 minute after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  381.8 K [227.6EF] at 9883 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                    Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-48 Oconee PTS Results for Case 126 A-60
 
Case Category                                  SGTR-Hi K, HZP Primary Failures                                None Secondary Failures                                SGTR with a stuck open SRV in SG-B. A reactor trip is assumed to occur at the time of the tube rupture. Stuck safety relief valve is assumed to reclose 10 minutes after initiation.
Operator Actions                                Operator trips RCP's 1 minute after initiation. Operator also throttles HPI 10 minutes after 2.77 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (assumed throttling criteria is 27 K (50&deg;F) subcooling).
Min DC Temperature                                  464.9 K [377.2EF] at 626 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                    Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-49 Oconee PTS Results for Case 127 A-61
 
Case Category                                  LOCA-Hi K, HZP Primary Failures                                7.18 cm (2.828 in) surge line break Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  295.7 K [ 72.6EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-50 Oconee PTS Results for Case 128 A-62
 
Case Category                                  LOCA-HiK, HZP Primary Failures                                10.16 cm (4 inch) surge line break Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  294.9 K [ 71.2EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-51 Oconee PTS Results for Case 133 A-63
 
Case Category                                  LOCA-Hi K, HZP Primary Failures                                20.32 cm (8 inch) surge line break Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  294.4 K [ 70.3EF] at 9973 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-52 Oconee PTS Results for Case 134 A-64
 
Case Category                                  TT/RT Primary Failures                                TT/RT with stuck open pzr SRV. Summer conditions assumed (HPI, LPI temp = 302 K (85&deg;F) and CFT temp = 310 K (100&deg;F)).
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  362.1 K [192.2EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-53 Oconee PTS Results for Case 138 A-65
 
Case Category                                  TT/RT Primary Failures                                TT/RT with stuck open pzr SRV. SRV assumed to reclose at 3000 secs. Operator does not throttle HPI.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  457.4 K [363.7EF] at 3207 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000          4000              6000        8000  10000 Time (s)
Figure A-54 Oconee PTS Results for Case 140 A-66
 
Case Category                                  LOCA-HiK Primary Failures                                8.19 cm (3.22 in) surge line break (Break flow area increased by 30% from 7.18 cm (2.828 in) break).
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  296.2 K [ 73.4EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-55 Oconee PTS Results for Case 141 A-67
 
Case Category                                  LOCA-HiK Primary Failures                                6.01 cm (2.37 in) surge line break (Break flow area decreased by 30% from 7.18 cm (2.828 in) break).
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  333.1 K [140.0EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-56 Oconee PTS Results for Case 142 A-68
 
Case Category                                  LOCA-HiK Primary Failures                                4.34 cm (1.71 in) surge line break (Break flow area increased by 30% from 3.81 cm (1.5 in) break). Winter conditions assumed (HPI, LPI temp = 277 K (40&deg;F) and CFT temp = 294 K (70&deg;F)).
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  470.0 K [386.3EF] at 9987 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-57 Oconee PTS Results for Case 145 A-69
 
Case Category                                  TT/RT-HiK Primary Failures                                TT/RT with stuck open pzr SRV (valve flow area reduced by 30 percent). Summer conditions assumed (HPI, LPI temp = 302 K (85&deg;F) and CFT temp = 310 K (100&deg;F)). Vent valves do not function.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  313.8 K [105.2EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-58 Oconee PTS Results for Case 146 A-70
 
Case Category                                  TT/RT-Hi K Primary Failures                                TT/RT with stuck open pzr SRV. Summer conditions assumed (HPI, LPI temp = 302 K (85&deg;F) and CFT temp = 310 K (100&deg;F)).
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  355.8 K [180.8EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-59 Oconee PTS Results for Case 147 A-71
 
Case Category                                  TT/RT-Hi K Primary Failures                                TT/RT with partially stuck open pzr SRV (flow area equivalent to 1.5 in diameter opening). HTC coefficients increased by 1.3.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  364.5 K [196.5EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-60 Oconee PTS Results for Case 148 A-72
 
Case Category                                  TT/RT-Hi K Primary Failures                                TT/RT with stuck open pzr SRV. SRV assumed to reclose at 3000 secs. Operator does not throttle HPI.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  433.8 K [321.3EF] at 3011 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000          4000              6000        8000  10000 Time (s)
Figure A-61 Oconee PTS Results for Case 149 A-73
 
Case Category                                  LOCA-HiK Primary Failures                                8.53 cm (3.36 in) surge line break (Break flow area reduced by 30%
from 10.16 cm (4 in) break). Vent valves do not function. ECC suction switch to the containment sump included in the analysis.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  301.9 K [ 83.7EF] at 4623 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-62 Oconee PTS Results for Case 154 A-74
 
Case Category                                  LOCA-HiK Primary Failures                                40.64 cm (16 in) hot leg break. ECC suction switch to the containment sump included in the analysis.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  297.8 K [ 76.4EF] at 1721 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-63 Oconee PTS Results for Case 156 A-75
 
Case Category                                  LOCA-HiK Primary Failures                                14.37 cm (5.656 in) surge line break. ECC suction switch to the containment sump included in the analysis.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  298.9 K [ 78.3EF] at 2889 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-64 Oconee PTS Results for Case 160 A-76
 
Case Category                                  LOCA-HiK, HZP Primary Failures                                14.366 cm (5.656 in) surge line break. ECC suction switch to the containment sump included in the analysis.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  297.8 K [ 76.4EF] at 1986 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-65 Oconee PTS Results for Case 162 A-77
 
Case Category                                  LOCA-HiK Primary Failures                                20.32 cm (8 inch) surge line break. ECC suction switch to the containment sump included in the analysis.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  296.7 K [ 74.3EF] at 2169 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-66 Oconee PTS Results for Case 164 A-78
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 6000 secs (RCS low pressure point).
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  305.9 K [ 90.9EF] at 6010 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-67 Oconee PTS Results for Case 165 A-79
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 6000 secs.
Secondary Failures                                None Operator Actions                                After valve recloses, operator throttles HPI 1 minute after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 50&deg;F subcooling)
Min DC Temperature                                  306.9 K [ 92.8EF] at 6010 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-68 Oconee PTS Results for Case 166 A-80
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                TT/RT with stuck open pzr SRV. SRV assumed to reclose at 3000 secs. Operator does not throttle HPI.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  357.4 K [183.6EF] at 3571 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      2000          4000              6000        8000  10000 Time (s)
Figure A-69 Oconee PTS Results for Case 168 A-81
 
Case Category                                  LOCA-HiK, HZP Primary Failures                                TT/RT with stuck open pzr SRV (valve flow area reduced by 30 percent). Summer conditions assumed (HPI, LPI temp = 302 K (85&deg;F) and CFT temp = 310 K (100&deg;F)). Vent valves do not function.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  314.2 K [105.9EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-70 Oconee PTS Results for Case 169 A-82
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                TT/RT with stuck open pzr SRV. Summer conditions assumed (HPI, LPI temp = 302 K (85&deg;F) and CFT temp = 310 K (100&deg;F)).
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  306.2 K [ 91.5EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-71 Oconee PTS Results for Case 170 A-83
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                TT/RT with partially stuck open pzr SRV (flow area equivalent to 1.5 in diameter opening). HTC coefficients increased by 1.3.
Secondary Failures                                None Operator Actions                                None Min DC Temperature                                  430.2 K [314.7EF] at 10000 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      2000            4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000  10000 Time (s)
Figure A-72 Oconee PTS Results for Case 171 A-84
 
Case Category                  LOCA-HiK Primary Failures                            10.16 cm (4 in) cold leg break. ECC suction switch to the containment sump included in the analysis.
Secondary Failures                              None Operator Actions                              None Min DC Temperature                                347.9 K [166.5EF] at 10000 s Comments    None.
Average Downcomer Fluid Temperature 550                                                                  530 Temperature (K)                                                                                Temperature (F) 450                                                                  350 350                                                                  170 250                                                                  10 0    2000          4000              6000        8000  10000 Time (s)
Primary Pressure 20.0                                                                  2901 Pressure (MPa)                                                                                    Pressure (psia) 15.0                                                                  2176 10.0                                                                  1450 5.0                                                                  725 0.0                                                                  0 0    2000          4000              6000        8000  10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                          1.47 HTC (W/m *K)                                                                                                  HTC (Btu/s*ft *F) 2 2                      20000                                                                          0.98 10000                                                                          0.49 0                                                                  0.00 0    2000          4000              6000        8000  10000 Time (s)
Figure A-73 Oconee PTS Results for Case 172 A-85
 
Case Category                                  MSLB-HZP Primary Failures                                No primary side failure. Decay power set to 0.003 of full power and held constant (7.70 MW).
Secondary Failures                                MSLB with trip of turbine driven EFW by MSLB Circuitry Operator Actions                                Operator throttles HPI 20 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  377.2 K [219.4EF] at 6099 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      2000            4000              6000        8000    10000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0      2000            4000              6000        8000    10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      2000            4000              6000        8000    10000 Time (s)
Figure A-74 Oconee PTS Results for Case 174 A-86
 
Case Category                                  TT/RT-Hi K, HZP Primary Failures                                Stuck open pressurizer safety valve. Valve recloses at 6000 secs.
Decay power set to 0.003 of full power and held constant (7.70 MW).
Secondary Failures                                None Operator Actions                                Operator throttles HPI at 10 minutes after 2.7 K (5&deg;F) subcooling and 254 cm (100 in) pressurizer level is reached (throttling criteria is 27.8 K (50&deg;F) subcooling).
Min DC Temperature                                  452.4 K [354.6EF] at 6001 s Comments          None.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0      2000            4000              6000        8000      10000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0      2000            4000              6000        8000      10000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0      2000            4000              6000        8000      10000 Time (s)
Figure A-75 Oconee PTS Results for Case 176 A-87
 
asdfasdf Appendix B - Summary of Beaver Valley Base Case Results September 23, 2004
 
Appendix B - Summary of Beaver Valley Base Case Results This appendix presents an overview of the RELAP5 modeling details and the results of the 62 base cases evaluated for the Beaver Valley plant. Table B-1 presents a list of the cases analyzed. These cases include a mix of LOCAs, stuck open pressurizer safety valves, main steam line breaks, and secondary side failures from both hot full power and hot zero power conditions.
Results for each of the base cases are presented below as Figures B-1 to B-62. For each case, the following information is given in tabular format.
Case Category  LOCA, RT/TT, MSLB, etc.
Primary Failures Description of the primary side failure Secondary Failures  Description of the secondary side failure Operator Actions Description of any operator actions Min DC Temp  The minimum average downcomer fluid temperature and associated time that minimum occurred Comments    Any comments specific to the event In addition to the information described above, plots of average downcomer fluid temperature, primary system pressure, and downcomer wall heat transfer coefficient are presented. Any analytical assumptions used in each case are also presented. To facilitate comparisons among cases, each figure presents summary information for the minimum downcomer average temperature in the reactor vessel and the time during the event sequence when that minimum is reached. The results shown in these figures are used in the FAVOR probabilistic fracture mechanics analysis.
B-1
 
Table B-1 List of Beaver Valley Base Cases Case            System Failure              Operator Action            HZP Dominant 002            3.59 cm [1.414 in] surge    None.                      No  No line break 003            5.08 cm [2.0 in] surge line  None.                      No  No break 007            2.54 cm [8.0 in] surge line  None.                      No  Yes break 009            2.54 cm [16.0 in] hot leg    None.                      No  Yes break 014            Reactor/turbine trip w/one  None.                      No  No stuck open pressurizer SRV 031            Reactor/turbine trip w/feed  None.                      No  No and bleed (Operator open all pressurizer PORVs and use all charging/HHSI pumps) 034            Reactor/turbine trip w/two  None.                      No  No stuck open pressurizer SRV's 056            10.16 cm [4.0 in] surge line None.                      Yes Yes break 059            Reactor/turbine trip w/one  None.                      No  No stuck open pressurizer SRV which recloses at 3,000 s.
060            Reactor/turbine trip w/one  None.                      No  Yes stuck open pressurizer SRV which recloses at 6,000 s.
061            Reactor/turbine trip w/two  None.                      No  No stuck open pressurizer SRV which recloses at 3,000 s.
062            Reactor/turbine trip w/two  None.                      No  No stuck open pressurizer SRV which recloses at 6,000 s.
064            Reactor/turbine trip w/two  None.                      Yes No stuck open pressurizer SRV's 065            Reactor/turbine trip w/two  Operator opens all ASDVs  No  No stuck open pressurizer      5 minutes after HHSI would SRV's and HHSI failure      have come on.
B-2
 
Table B-1 List of Beaver Valley Base Cases Case            System Failure              Operator Action            HZP Dominant 066            Reactor/turbine trip w/two  None.                      No  No stuck open pressurizer SRV's. One valve recloses at 3000 seconds while the other valve remains open.
067            Reactor/turbine trip w/two  None.                      No  No stuck open pressurizer SRV's. One valve recloses at 6000 seconds while the other valve remains open.
068            Reactor/turbine trip w/two  Operator opens all ASDVs    No  No stuck open pressurizer      5 minutes after HHSI would SRV's that reclose at 6000  have come on.
s with HHSI failure.
069            Reactor/turbine trip w/two  None.                      Yes No stuck open pressurizer SRVs which reclose at 3,000 s.
070            Reactor/turbine trip w/two  None.                      Yes No stuck open pressurizer SRVs which reclose at 6,000 s.
071            Reactor/turbine trip w/one  None.                      Yes Yes stuck open pressurizer SRV which recloses at 6,000 s.
072            Reactor/turbine trip w/one  Operator opens all ASDVs    No  No stuck open pressurizer      5 minutes after HHSI would SRV with HHSI failure.      have come on.
073            Reactor/turbine trip w/one  Operator open all ASDVs 5  Yes No stuck open pressurizer      minutes after HHSI would SRV with HHSI failure      have come on.
074            Main steam line break with  None.                      No  No AFW continuing to feed affected generator 075            Reactor/turbine trip w/full None.                      No  No MFW to all 3 SGs (MFW maintains SG level near top) and RCPs tripped 076            Reactor/turbine trip w/full Operator trips reactor      Yes No MFW to all 3 SGs (MFW      coolant pumps.
maintains SG level near top).
078            Reactor/turbine trip with  Operator opens all ASDVs    No  No failure of MFW and AFW. to let condensate fill SGs.
B-3
 
Table B-1 List of Beaver Valley Base Cases Case            System Failure              Operator Action            HZP Dominant 080            Main Steam Line Break      Operator trips reactor      Yes No with AFW continuing to      coolant pumps.
feed affected generator.
081            Main Steam Line Break      Operator opens ADVs (on    No  No with AFW continuing to      intact generators). HHSI is feed affected generator    restored after CFTs and with HHSI failure      discharge 50%.
initially.
082            Reactor/turbine trip w/one  Operator opens all ASDVs    No  No stuck open pressurizer      5 minutes after HHSI would SRV (recloses at 6000 s)    have started.
and with HHSI failure.
083            2.54 cm [1.0 in] surge line Operator trips RCPs.        No  No break with HHSI failure    Operator opens all ASDVs and motor driven AFW        5 minutes after HHSI would failure. MFW is tripped. have come on.
Level control failure causes all steam generators to be overfed with turbine AFW, with the level maintained at top of SGs.
086            Reactor/turbine trip w/two  Operator controls HHSI (1  No  No stuck open pressurizer      minute delay)
SRV which recloses at 6,000 s 087            Reactor/turbine trip w/two  Operator controls HHSI (10  No  No stuck open pressurizer      minute delay)
SRV which recloses at 6,000 s 088            Reactor/turbine trip w/two  Operator controls HHSI (1  Yes No stuck open pressurizer      minute delay).
SRV which recloses at 3,000 s.
089            Reactor/turbine trip w/two  Operator controls HHSI (1  Yes No stuck open pressurizer      minute delay)
SRVs which reclose at 6,000 s.
090            Reactor/turbine trip w/two  Operator controls HHSI (10  Yes No stuck open pressurizer      minute delay)
SRVs which reclose at 3,000 s.
091            Reactor/turbine trip w/two  Operator controls HHSI (10  Yes No stuck open pressurizer      minute delay)
SRVs which reclose at 6,000 s.
B-4
 
Table B-1 List of Beaver Valley Base Cases Case            System Failure            Operator Action            HZP Dominant 092            Reactor/turbine trip w/two None.                      Yes No stuck open pressurizer SRV's, one recloses at 3000 s.
093            Reactor/turbine trip w/two None.                      Yes No stuck open pressurizer SRV's. One valve recloses at 6000 seconds while the other valve remains open.
094            Reactor/turbine trip w/one None.                      Yes No stuck open pressurizer SRV.
095            Reactor/turbine trip w/one Operator controls HHSI (1  No  No stuck open pressurizer    minute delay)
SRV which recloses at 6,000 s 096            Reactor/turbine trip w/one Operator controls HHSI (10 No  No stuck open pressurizer    minute delay)
SRV which recloses at 6,000 s.
097            Reactor/turbine trip w/one None.                      Yes Yes stuck open pressurizer SRV which recloses at 3,000 s.
098            Reactor/turbine trip w/one Operator controls HHSI (1  Yes No stuck open pressurizer    minute delay)
SRV which recloses at 6,000 s.
099            Reactor/turbine trip w/one Operator controls HHSI (1  Yes No stuck open pressurizer    minute delay)
SRV which recloses at 3,000 s.
100            Reactor/turbine trip w/one Operator controls HHSI (10 Yes No stuck open pressurizer    minute delay)
SRV which recloses at 6,000 s.
101            Reactor/turbine trip w/one Operator controls HHSI (10 Yes No stuck open pressurizer    minute delay)
SRV which recloses at 3,000 s.
B-5
 
Table B-1 List of Beaver Valley Base Cases Case            System Failure              Operator Action            HZP Dominant 102            Main steam line break with  Operator controls HHSI (30 No  Yes AFW continuing to feed      minute delay). Break is affected generator for 30  assumed to occur inside minutes.                    containment so that the operator trips the RCPs due to adverse containment conditions.
103            Main steam line break with  Operator controls HHSI (30 Yes Yes AFW continuing to feed      minute delay). Break is affected generator for 30  assumed to occur inside minutes.                    containment so that the operator trips the RCPs due to adverse containment conditions.
104            Main steam line break with  Operator controls HHSI (60 No  Yes AFW continuing to feed      minute delay). Break is affected generator for 30  assumed to occur inside minutes.                    containment so that the operator trips the RCPs due to adverse containment conditions.
105            Main steam line break with  Operator controls HHSI (60 Yes Yes AFW continuing to feed      minute delay). Break is affected generator for 30  assumed to occur inside minutes.                    containment so that the operator trips the RCPs due to adverse containment conditions.
106            Main steam line break with  Operator controls HHSI (30 No  No AFW continuing to feed      minute delay). Break is affected generator.        assumed to occur inside containment so that the operator trips the RCPs due to adverse containment conditions.
107            Main steam line break with  Operator controls HHSI (30 Yes No AFW continuing to feed      minute delay). Break is affected generator.        assumed to occur inside containment so that the operator trips the RCPs due to adverse containment conditions.
108            Small steam line break      Operator controls HHSI (30 Yes Yes (simulated by sticking open minute delay) all SG-A SRVs) with AFW continuing to feed affected generator for 30 minutes.
B-6
 
Table B-1 List of Beaver Valley Base Cases Case            System Failure              Operator Action            HZP Dominant 109            Small steam line break      Operator controls HHSI (30 Yes No (simulated by sticking open minute delay). Break is all SG-A SRVs) with AFW    assumed to occur inside continuing to feed affected containment so that the generator for 30 minutes. operator trips the RCPs due to adverse containment conditions.
110            Small steam line break      Operator controls HHSI (60 No  No (simulated by sticking open minute delay) all SG-A SRVs) with AFW continuing to feed affected generator for 30 minutes 111            Small steam line break      Operator controls HHSI (60 Yes No (simulated by sticking open minute delay). Break is all SG-A SRVs) with AFW    assumed to occur inside continuing to feed affected containment so that the generator for 30 minutes. operator trips the RCPs due to adverse containment conditions.
112            Small steam line break      Operator controls HHSI (30 No  No (simulated by sticking open minute delay). Break is all SG-A SRVs) with AFW    assumed to occur inside continuing to feed affected containment so that the generator.                  operator trips the RCPs due to adverse containment conditions.
113            Small steam line break      Operator controls HHSI (30 Yes No (simulated by sticking open minute delay). Break is all SG-A SRVs) with AFW    assumed to occur inside continuing to feed affected containment so that the generator.                  operator trips the RCPs due to adverse containment conditions.
114            7.18 cm [2.828 in] surge    None.                      No  Yes line break, summer conditions (HHSI, LHSI temp = 55&deg;F, Accumulator Temp = 105&deg;F), heat transfer coefficient increased 30% (modeled by increasing heat transfer surface area by 30% in passive heat structures).
115            7.18 cm [2.828 in] cold leg None.                      No  No break B-7
 
Table B-1 List of Beaver Valley Base Cases Case            System Failure              Operator Action            HZP Dominant 116            14.366 cm [5.657 in] cold  None.                      No  No leg break with break area increased 30%
117            14.366 cm [5.657 in] cold  None.                      No  No leg break, summer conditions (HHSI, LHSI temp = 55&deg;F, Accumulator Temp = 105&deg;F) 118            Small steam line break      None.                      No  No (simulated by sticking open all SG-A SRVs) with AFW continuing to feed affected generator 119            Reactor/turbine trip w/two  Operator controls HHSI (1  No  No stuck open pressurizer      minute delay). Updated SRV which recloses at      control logic.
6,000 s 120            Reactor/turbine trip w/two  Operator controls HHSI (10 No  No stuck open pressurizer      minute delay). Updated SRV which recloses at      control logic.
6,000 s 121            Reactor/turbine trip w/two  Operator controls HHSI (1  Yes No stuck open pressurizer      minute delay). Updated SRV which recloses at      control logic.
3,000 s 122            Reactor/turbine trip w/two  Operator controls HHSI (1  Yes No stuck open pressurizer      minute delay). Updated SRVs which reclose at      control logic.
6,000 s 123            Reactor/turbine trip w/two  Operator controls HHSI (10 Yes No stuck open pressurizer      minute delay). Updated SRVs which reclose at      control logic.
3,000 s 124            Reactor/turbine trip w/two  Operator controls HHSI (10 Yes No stuck open pressurizer      minute delay). Updated SRVs which reclose at      control logic.
6,000 s 125            Reactor/turbine trip w/one  Operator controls HHSI (1  No  No stuck open pressurizer      minute delay). Updated SRV which recloses at      control logic.
6,000 s 126            Reactor/turbine trip w/one  Operator controls HHSI (10 No  Yes stuck open pressurizer      minute delay). Updated SRV which recloses at      control logic.
6,000 s B-8
 
Table B-1 List of Beaver Valley Base Cases Case            System Failure            Operator Action            HZP Dominant 127            Reactor/turbine trip w/one Operator controls HHSI (1  Yes No stuck open pressurizer    minute delay). Updated SRV which recloses at      control logic.
6,000 s 128            Reactor/turbine trip w/one Operator controls HHSI (1  Yes No stuck open pressurizer    minute delay). Updated SRV which recloses at      control logic.
3,000 s 129            Reactor/turbine trip w/one Operator controls HHSI (10 Yes No stuck open pressurizer    minute delay). Updated SRV which recloses at      control logic.
6,000 s 130            Reactor/turbine trip w/one Operator controls HHSI (10 Yes Yes stuck open pressurizer    minute delay). Updated SRV which recloses at      control logic.
3,000 s B-9
 
Case Category LOCA Primary Failures 3.59 cm (1.414 in) surge line break Secondary Failures None Operator Actions None Min DC Temperature 401.6 K [263.2EF] at 12300 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-1 Beaver Valley PTS Results for Case 002 B-10
 
Case Category LOCA Primary Failures 5.08 cm (2.0 in) surge line break Secondary Failures None Operator Actions None Min DC Temperature 310.9 K [100.0EF] at 7290 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-2 Beaver Valley PTS Results for Case 003 B-11
 
Case Category LOCA Primary Failures 20.32 cm (8.0 in) surge line break Secondary Failures None Operator Actions None Min DC Temperature 291.2 K [ 64.5EF] at 1050 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-3 Beaver Valley PTS Results for Case 007 B-12
 
Case Category LOCA Primary Failures 40.64 cm (16.0 in) hot leg break Secondary Failures None Operator Actions None Min DC Temperature 291.2 K [ 64.6EF] at 960 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-4 Beaver Valley PTS Results for Case 009 B-13
 
Case Category SOV Primary Failures One stuck open pressurizer SRV Secondary Failures None Operator Actions None Min DC Temperature 294.8 K [ 70.9EF] at 14730 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-5 Beaver Valley PTS Results for Case 014 B-14
 
Case Category RT/TT Primary Failures None Secondary Failures Loss of all feedwater Operator Actions Opens all pressurizer PORVs and uses all HHSI pumps Min DC Temperature 287.7 K [ 58.2EF] at 15000 s Comments Feed and bleed started upon high pressurizer pressure or low SG level.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-6 Beaver Valley PTS Results for Case 031 B-15
 
Case Category SOV Primary Failures Two stuck open pressurizer SRVs Secondary Failures None Operator Actions None Min DC Temperature 287.5 K [ 57.9EF] at 9930 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-7 Beaver Valley PTS Results for Case 034 B-16
 
Case Category LOCA, HZP Primary Failures 10.16 cm (4.0 in) surge line break Secondary Failures None Operator Actions None Min DC Temperature 288.4 K [ 59.5EF] at 2970 s Comments Case 005 @ HZP Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-8 Beaver Valley PTS Results for Case 056 B-17
 
Case Category SOV Primary Failures One stuck open pressurizer SRV (recloses at 3,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 429.6 K [313.7EF] at 4410 s Comments Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-9 Beaver Valley PTS Results for Case 059 B-18
 
Case Category SOV Primary Failures One stuck open pressurizer SRV (recloses at 6,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 329.8 K [133.9EF] at 6000 s Comments Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-10 Beaver Valley PTS Results for Case 060 B-19
 
Case Category SOV Primary Failures Two stuck open pressurizer SRVs (recloses at 3,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 357.1 K [183.2EF] at 3450 s Comments Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-11 Beaver Valley PTS Results for Case 061 B-20
 
Case Category SOV Primary Failures Two stuck open pressurizer SRVs (recloses at 6,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 292.0 K [ 66.0EF] at 5700 s Comments Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-12 Beaver Valley PTS Results for Case 062 B-21
 
Case Category SOV, HZP Primary Failures Two stuck open pressurizer SRVs Secondary Failures None Operator Actions None Min DC Temperature 284.4 K [ 52.2EF] at 8880 s Comments Case 034 @ HZP Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-13 Beaver Valley PTS Results for Case 064 B-22
 
Case Category SOV Primary Failures Two stuck open pressurizer SRVs, no HHSI Secondary Failures None Operator Actions Open all ASDVs 5 minutes after HHSI would have come on Min DC Temperature 327.3 K [129.5EF] at 10350 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-14 Beaver Valley PTS Results for Case 065 B-23
 
Case Category SOV Primary Failures Two stuck open pressurizer SRVs (one recloses at 3,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 295.4 K [ 72.1EF] at 13800 s Comments Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-15 Beaver Valley PTS Results for Case 066 B-24
 
Case Category SOV Primary Failures Two stuck open pressurizer SRVs (one recloses at 6,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 294.4 K [ 70.3EF] at 12960 s Comments Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-16 Beaver Valley PTS Results for Case 067 B-25
 
Case Category SOV Primary Failures Two stuck open pressurizer SRVs (recloses at 6,000 s), no HHSI Secondary Failures None Operator Actions Open all ASDVs 5 minutes after HHSI would have come on Min DC Temperature 345.7 K [162.6EF] at 6000 s Comments Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-17 Beaver Valley PTS Results for Case 068 B-26
 
Case Category SOV, HZP Primary Failures Two stuck open pressurizer SRVs (recloses at 3,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 295.4 K [ 72.1EF] at 15000 s Comments Case 061 @ HZP Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-18 Beaver Valley PTS Results for Case 069 B-27
 
Case Category SOV, HZP Primary Failures Two stuck open pressurizer SRVs (recloses at 6,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 288.6 K [ 59.7EF] at 5790 s Comments Case 062 @ HZP Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-19 Beaver Valley PTS Results for Case 070 B-28
 
Case Category SOV, HZP Primary Failures One stuck open pressurizer SRV (recloses at 6,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 295.0 K [ 71.2EF] at 15000 s Comments Case 060 @ HZP Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-20 Beaver Valley PTS Results for Case 071 B-29
 
Case Category SOV Primary Failures One stuck open pressurizer SRV, no HHSI Secondary Failures None Operator Actions Open all ASDVs 5 minutes after HHSI would have come on Min DC Temperature 358.3 K [185.2EF] at 15000 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-21 Beaver Valley PTS Results for Case 072 B-30
 
Case Category SOV, HZP Primary Failures One stuck open pressurizer SRV, no HHSI Secondary Failures None Operator Actions Open all ASDVs 5 minutes after HHSI would have come on Min DC Temperature 285.0 K [ 53.3EF] at 15000 s Comments Case 072 @ HZP Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-22 Beaver Valley PTS Results for Case 073 B-31
 
Case Category MSLB Primary Failures None Secondary Failures Double ended guillotine break of steam line A Operator Actions None Min DC Temperature 378.9 K [222.4EF] at 13710 s Comments AFW continues to feed SG A Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-23 Beaver Valley PTS Results for Case 074 B-32
 
Case Category RT/TT Primary Failures None Secondary Failures MFW overfeed of all SGs Operator Actions RCP's are tripped Min DC Temperature 507.8 K [454.4EF] at 15000 s Comments MFW keeps SGs filled to top.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-24 Beaver Valley PTS Results for Case 075 B-33
 
Case Category RT/TT, HZP Primary Failures None Secondary Failures MFW overfeed of all SGs Operator Actions RCP's are tripped Min DC Temperature 335.0 K [143.4EF] at 14610 s Comments MFW keeps SGs filled to top. Case 075 @ HZP Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-25 Beaver Valley PTS Results for Case 076 B-34
 
Case Category RT/TT Primary Failures None Secondary Failures Loss of MFW and AFW Operator Actions Open all ASDVs Min DC Temperature 429.8 K [313.9EF] at 15000 s Comments Condensate pumps used to supply feedwater.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-26 Beaver Valley PTS Results for Case 078 B-35
 
Case Category MSLB Primary Failures Initial HHSI failure Secondary Failures Double ended guillotine break of steam line A Operator Actions Open ASDVs on SG A Min DC Temperature 388.5 K [239.6EF] at 3120 s Comments AFW continues to feed SG A. HHSI is available after CFTs discharge 50%.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-27 Beaver Valley PTS Results for Case 081 B-36
 
Case Category SOV Primary Failures One stuck open pressurizer SRV (recloses at 6,000 s), no HHSI Secondary Failures None Operator Actions Open all ASDVs 5 minutes after HHSI would have come on Min DC Temperature 379.0 K [222.6EF] at 5970 s Comments Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-28 Beaver Valley PTS Results for Case 082 B-37
 
Case Category LOCA Primary Failures 2.54 cm (1.0 in) surge line break, no HHSI Secondary Failures no motor AFW, overfeed of SGs with turbine AFW Operator Actions RCP's are tripped, MFW tripped, open all ASDVs 5 minutes after HHSI would have come on Min DC Temperature 392.8 K [247.3EF] at 14400 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-29 Beaver Valley PTS Results for Case 083 B-38
 
Case Category SOV, HZP Primary Failures Two stuck open pressurizer SRVs (one SRV recloses at 3,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 288.9 K [ 60.3EF] at 14610 s Comments Case 066 @ HZP.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-30 Beaver Valley PTS Results for Case 092 B-39
 
Case Category SOV, HZP Primary Failures Two stuck open pressurizer SRVs (one SRV recloses at 6,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 291.5 K [ 65.0EF] at 15000 s Comments Case 067 @ HZP Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-31 Beaver Valley PTS Results for Case 093 B-40
 
Case Category SOV, HZP Primary Failures One stuck open pressurizer SRV Secondary Failures None Operator Actions None Min DC Temperature 285.4 K [ 54.1EF] at 15000 s Comments Case 014 @ HZP.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-32 Beaver Valley PTS Results for Case 094 B-41
 
Case Category SOV, HZP Primary Failures One stuck open pressurizer SRV (recloses at 3,000 s)
Secondary Failures None Operator Actions None Min DC Temperature 296.8 K [ 74.6EF] at 15000 s Comments Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-33 Beaver Valley PTS Results for Case 097 B-42
 
Case Category MSLB Primary Failures None Secondary Failures Double ended guillotine break of steam line A Operator Actions RCP's are tripped. Operator controls HHSI (30 minute delay)
Min DC Temperature 373.3 K [212.2EF] at 3990 s Comments AFW continues to feed SG A for 30 minutes.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-34 Beaver Valley PTS Results for Case 102 B-43
 
Case Category MSLB, HZP Primary Failures None Secondary Failures Double ended guillotine break of steam line A Operator Actions RCP's are tripped. Operator controls HHSI (30 minute delay)
Min DC Temperature 361.7 K [191.5EF] at 3420 s Comments AFW continues to feed SG A for 30 minutes. Case 102 @ HZP.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-35 Beaver Valley PTS Results for Case 103 B-44
 
Case Category MSLB Primary Failures None Secondary Failures Double ended guillotine break of steam line A Operator Actions RCP's are tripped. Operator controls HHSI (60 minute delay)
Min DC Temperature 369.6 K [205.6EF] at 5820 s Comments AFW continues to feed SG A for 30 minutes.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-36 Beaver Valley PTS Results for Case 104 B-45
 
Case Category MSLB, HZP Primary Failures None Secondary Failures Double ended guillotine break of steam line A Operator Actions RCP's are tripped. Operator controls HHSI (60 minute delay)
Min DC Temperature 355.0 K [179.4EF] at 5220 s Comments AFW continues to feed SG A for 30 minutes. Case 104 @ HZP.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-37 Beaver Valley PTS Results for Case 105 B-46
 
Case Category MSLB Primary Failures None Secondary Failures Double ended guillotine break of steam line A Operator Actions RCP's are tripped. Operator controls HHSI (30 minute delay)
Min DC Temperature 370.4 K [207.1EF] at 3300 s Comments AFW continues to feed SG A.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-38 Beaver Valley PTS Results for Case 106 B-47
 
Case Category MSLB, HZP Primary Failures None Secondary Failures Double ended guillotine break of steam line A Operator Actions RCP's are tripped. Operator controls HHSI (30 minute delay)
Min DC Temperature 361.6 K [191.3EF] at 3420 s Comments AFW continues to feed SG A.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-39 Beaver Valley PTS Results for Case 107 B-48
 
Case Category MSLB Primary Failures None Secondary Failures All MS-SRVs on SG A stuck open Operator Actions Operator controls HHSI (30 minute delay)
Min DC Temperature 395.3 K [251.8EF] at 3600 s Comments AFW continues to feed SG A for 30 minutes.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-40 Beaver Valley PTS Results for Case 108 B-49
 
Case Category MSLB, HZP Primary Failures None Secondary Failures All MS-SRVs on SG A stuck open Operator Actions RCP's are tripped. Operator controls HHSI (30 minute delay)
Min DC Temperature 373.7 K [213.0EF] at 2580 s Comments AFW continues to feed SG A for 30 minutes.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-41 Beaver Valley PTS Results for Case 109 B-50
 
Case Category MSLB Primary Failures None Secondary Failures All MS-SRVs on SG A stuck open Operator Actions Operator controls HHSI (60 minute delay)
Min DC Temperature 383.9 K [231.3EF] at 5400 s Comments AFW continues to feed SG A for 30 minutes.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-42 Beaver Valley PTS Results for Case 110 B-51
 
Case Category MSLB, HZP Primary Failures None Secondary Failures All MS-SRVs on SG A stuck open Operator Actions RCP's are tripped. Operator controls HHSI (60 minute delay)
Min DC Temperature 360.6 K [189.4EF] at 4380 s Comments AFW continues to feed SG A for 30 minutes.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-43 Beaver Valley PTS Results for Case 111 B-52
 
Case Category MSLB Primary Failures None Secondary Failures All MS-SRVs on SG A stuck open Operator Actions RCP's are tripped. Operator controls HHSI (30 minute delay)
Min DC Temperature 391.7 K [245.4EF] at 10980 s Comments AFW continues to feed SG A.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-44 Beaver Valley PTS Results for Case 112 B-53
 
Case Category MSLB, HZP Primary Failures None Secondary Failures All MS-SRVs on SG A stuck open Operator Actions RCP's are tripped. Operator controls HHSI (30 minute delay)
Min DC Temperature 372.2 K [210.4EF] at 4860 s Comments AFW continues to feed SG A.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-45 Beaver Valley PTS Results for Case 113 B-54
 
Case Category LOCA Primary Failures 7.18 cm (2.828 in) surge line break Secondary Failures None Operator Actions None Min DC Temperature 304.0 K [ 87.5EF] at 4890 s Comments Sensitivity case; summer conditions and heat transfer coefficient increased 30%.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-46 Beaver Valley PTS Results for Case 114 B-55
 
Case Category LOCA Primary Failures 7.18 cm (2.828 in) cold leg break Secondary Failures None Operator Actions None Min DC Temperature 369.9 K [206.2EF] at 14760 s Comments None Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-47 Beaver Valley PTS Results for Case 115 B-56
 
Case Category LOCA Primary Failures 16.38 cm (6.45 in) cold leg break Secondary Failures None Operator Actions None Min DC Temperature 331.4 K [136.9EF] at 2550 s Comments Break area increased 30% over 14.37 cm (5.657 in) case.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-48 Beaver Valley PTS Results for Case 116 B-57
 
Case Category LOCA Primary Failures 14.37 cm (5.657 in) cold leg break Secondary Failures None Operator Actions None Min DC Temperature 336.3 K [145.6EF] at 2820 s Comments Sensitivity case; summer conditions.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-49 Beaver Valley PTS Results for Case 117 B-58
 
Case Category MSLB Primary Failures None Secondary Failures All MS-SRVs on SG A stuck open Operator Actions None Min DC Temperature 373.9 K [213.4EF] at 15000 s Comments AFW continues to feed SG A.
Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-50 Beaver Valley PTS Results for Case 118 B-59
 
Case Category SOV Primary Failures Two stuck open pressurizer SRVs (recloses at 6,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (1 minute delay)
Min DC Temperature 300.6 K [ 81.4EF] at 6006 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-51 Beaver Valley PTS Results for Case 119 B-60
 
Case Category SOV Primary Failures Two stuck open pressurizer SRVs (recloses at 6,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (10 minute delay)
Min DC Temperature 300.6 K [ 81.4EF] at 6006 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-52 Beaver Valley PTS Results for Case 120 B-61
 
Case Category SOV, HZP Primary Failures Two stuck open pressurizer SRVs (recloses at 3,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (1 minute delay)
Min DC Temperature 319.8 K [116.0EF] at 2920 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-53 Beaver Valley PTS Results for Case 121 B-62
 
Case Category SOV, HZP Primary Failures Two stuck open pressurizer SRVs (recloses at 6,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (1 minute delay)
Min DC Temperature 294.1 K [ 69.8EF] at 5974 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-54 Beaver Valley PTS Results for Case 122 B-63
 
Case Category SOV, HZP Primary Failures Two stuck open pressurizer SRVs (recloses at 3,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (10 minute delay)
Min DC Temperature 319.8 K [116.0EF] at 2920 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-55 Beaver Valley PTS Results for Case 123 B-64
 
Case Category SOV, HZP Primary Failures Two stuck open pressurizer SRVs (recloses at 6,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (10 minute delay)
Min DC Temperature 294.1 K [ 69.8EF] at 5974 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-56 Beaver Valley PTS Results for Case 124 B-65
 
Case Category SOV Primary Failures One stuck open pressurizer SRV (recloses at 6,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (1 minute delay)
Min DC Temperature 340.1 K [152.5EF] at 6006 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-57 Beaver Valley PTS Results for Case 125 B-66
 
Case Category SOV Primary Failures One stuck open pressurizer SRV (recloses at 6,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (10 minute delay)
Min DC Temperature 337.7 K [148.2EF] at 6354 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-58 Beaver Valley PTS Results for Case 126 B-67
 
Case Category SOV, HZP Primary Failures One stuck open pressurizer SRV (recloses at 6,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (1 minute delay)
Min DC Temperature 293.3 K [ 68.3EF] at 6003 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-59 Beaver Valley PTS Results for Case 127 B-68
 
Case Category SOV, HZP Primary Failures One stuck open pressurizer SRV (recloses at 3,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (1 minute delay)
Min DC Temperature 316.5 K [110.0EF] at 3026 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-60 Beaver Valley PTS Results for Case 128 B-69
 
Case Category SOV, HZP Primary Failures One stuck open pressurizer SRV (recloses at 6,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (10 minute delay)
Min DC Temperature 293.3 K [ 68.3EF] at 6003 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-61 Beaver Valley PTS Results for Case 129 B-70
 
Case Category SOV, HZP Primary Failures One stuck open pressurizer SRV (recloses at 3,000 s)
Secondary Failures None Operator Actions Operator controls HHSI (10 minute delay)
Min DC Temperature 316.5 K [110.0EF] at 3026 s Comments Updated HHSI control strategy Average Downcomer Fluid Temperature 550                                                                        530 Temperature (K)                                                                                      Temperature (F) 450                                                                        350 350                                                                        170 250                                                                        10 0          3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                        2901 Pressure (MPa)                                                                                          Pressure (psia) 15.0                                                                        2176 10.0                                                                        1450 5.0                                                                        725 0.0                                                                        0 0          3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                                1.47 HTC (W/m *K)                                                                                                        HTC (Btu/s*ft *F) 2 2                      20000                                                                                0.98 10000                                                                                0.49 0                                                                        0.00 0          3000          6000              9000        12000  15000 Time (s)
Figure B-62 Beaver Valley PTS Results for Case 130 B-71
 
asdfasdf Appendix C - Summary of Palisades Base Case Results September 23, 2004
 
Appendix C - Summary of Palisades Base Case Results This appendix presents an overview of the RELAP5 modeling details and the results of the 30 base cases evaluated for the Beaver Valley plant. Table C-1 presents a list of the cases analyzed. These cases include a mix of LOCAs, stuck open pressurizer safety valves, main steam line breaks, and secondary side failures from both hot full power and hot zero power conditions.
Results for each of the base cases are presented below as Figures C-1 to C-30. For each case, the following information is given in tabular format.
Case Category  LOCA, RT/TT, MSLB, etc.
Primary Failures Description of the primary side failure Secondary Failures  Description of the secondary side failure Operator Actions  Description of any operator actions Min DC Temp  The minimum average downcomer fluid temperature and associated time that minimum occurred Comments    Any comments specific to the event In addition to the information described above, plots of average downcomer fluid temperature, primary system pressure, and downcomer wall heat transfer coefficient are presented. Any analytical assumptions used in each case are also presented. To facilitate comparisons among cases, each figure presents summary information for the minimum downcomer average temperature in the reactor vessel and the time during the event sequence when that minimum is reached. The results shown in these figures are used in the FAVOR probabilistic fracture mechanics analysis.
C-1
 
Table C-1 List of Palisades Base Cases Case System Failure                        Operator Action                      HZP Hi K Dominant 2    3.59 cm (1.414 in) surge line        None                                  No  Yes No break. Containment sump recirculation included in the analysis.
16    Turbine/reactor trip with 2 stuck-  Operator starts second AFW pump.      No  No  No open ADVs on SG-A combined          Operator isolates AFW to affected with controller failure resulting in SG at 30 minutes after initiation.
the flow from two AFW pumps          Operator assumed to throttle HPI if into affected steam generator.      auxiliary feedwater is running with SG wide range level > -84% and RCS subcooling > 45 K [25EF].
HPI is throttled to maintain pressurizer level between 40 and 60 %.
18    Turbine/reactor trip with 1 stuck- Operator does not isolate AFW on        No  No  No open ADV on SG-A. Failure of        affected SG. Normal AFW flow both MSIVs (SG-A and SG-B) to assumed (200 gpm). Operator close.                              assumed to throttle HPI if auxiliary feedwater is running with SG wide range level > -84% and RCS subcooling > 45 K [25EF]. HPI is throttled to maintain pressurizer level between 40 and 60 %.
19    Reactor trip with 1 stuck-open      None. Operator does not throttle      Yes No  Yes ADV on SG-A.                        HPI.
22    Turbine/reactor trip with loss of    Operator depressurizes through        No  No  No MFW and AFW.                        ADVs and feeds SG's using condensate booster pumps.
Operators maintain a cooldown rate within technical specification limits and throttle condensate flow at 84
                                          % level in the steam generator.
24    Main steam line break with the      None                                  No  No  No break assumed to be inside containment causing containment spray actuation.
26    Main steam line break with the      Operator isolates AFW to affected    No  No  No break assumed to be inside          SG at 30 minutes after initiation.
containment causing containment spray actuation.
27    Main steam line break with          Operator starts second AFW pump.      No  No  No controller failure resulting in the flow from two AFW pumps into affected steam generator. Break assumed to be inside containment causing containment spray actuation.
C-2
 
Table C-1 List of Palisades Base Cases Case System Failure                    Operator Action                        HZP Hi K Dominant 29    Main steam line break with        None. Operator does not throttle      Yes No No break assumed to be inside        HPI.
containment causing containment spray actuation.
31    Turbine/reactor trip with failure Operator maintains core cooling by    No  No  No of MFW and AFW. Containment      "feed and bleed" using HPI to feed spray actuation assumed due to    and two PORVs to bleed.
PORV discharge.
32    Turbine/reactor trip with failure Operator maintains core cooling by No      No  No of MFW and AFW. Containment      "feed and bleed" using HPI to feed spray actuation assumed due to    and two PORV to bleed. AFW is PORV discharge.                  recovered 15 minutes after initiation of "feed and bleed" cooling.
Operator closes PORVs when SG level reaches 60 percent.
34    Main steam line break            Operator isolates AFW to affected      No  No  No concurrent with a single tube    SG at 15 minutes after initiation.
failure in SG-A due to MSLB      Operator trips RCPs assuming that vibration.                        they do not trip as a result of the event. Operator assumed to throttle HPI if auxiliary feedwater is running with SG wide range level >
                                        -84% and RCS subcooling > 45 K
[25EF]. HPI is throttled to maintain pressurizer level between 40 and 60 %.
40    40.64 cm (16 in) hot leg break. None. Operator does not throttle      No  Yes Yes Containment sump recirculation    HPI.
included in the analysis.
42    Turbine/reactor trip with two    Operator assumed to throttle HPI if    No  No  No stuck open pressurizer SRVs.      auxiliary feedwater is running with Containment spray is assumed      SG wide range level > -84% and not to actuate.                  RCS subcooling > 45 K [25EF].
HPI is throttled to maintain pressurizer level between 40 and 60 %.
48    Two stuck-open pressurizer        None. Operator does not throttle      Yes No  No SRVs that reclose at 6000 sec    HPI.
after initiation. Containment spray is assumed not to actuate.
49    Main steam line break with the    Operator isolates AFW to affected      Yes No  No break assumed to be inside        SG at 30 minutes after initiation.
containment causing              Operator does not throttle HPI.
containment spray actuation.
C-3
 
Table C-1 List of Palisades Base Cases Case System Failure                        Operator Action                  HZP Hi K Dominant 50    Main steam line break with          Operator starts second AFW pump. Yes No No controller failure resulting in the  Operator does not throttle HPI.
flow from two AFW pumps into affected steam generator. Break assumed to be inside containment causing containment spray actuation.
51    Main steam line break with          Operator does not isolate AFW on Yes No  No failure of both MSIVs to close.      affected SG. Operator does not Break assumed to be inside          throttle HPI.
containment causing containment spray actuation.
52    Reactor trip with 1 stuck-open      Operator does not isolate AFW on Yes No  Yes ADV on SG-A. Failure of both        affected SG. Normal AFW flow MSIVs (SG-A and SG-B) to            assumed (200 gpm). Operator close.                              does not throttle HPI.
53    Turbine/reactor trip with two        None. Operator does not throttle No  No  No stuck-open pressurizer SRVs          HPI.
that reclose at 6000 sec after initiation. Containment spray is assumed not to actuate.
54    Main steam line break with          Operator does not isolate AFW on No  No  Yes failure of both MSIVs to close.      affected SG. Operator does not Break assumed to be inside          throttle HPI.
containment causing containment spray actuation.
55    Turbine/reactor trip with 2 stuck-  Operator starts second AFW pump. No  No  Yes open ADVs on SG-A combined with controller failure resulting in the flow from two AFW pumps into affected steam generator.
58    10.16 cm (4 in) cold leg break.      None. Operator does not throttle No  Yes Yes Winter conditions assumed (HPI      HPI.
and LPI injection temp = 278 K
[40EF], Accumulator temp = 289 K [60EF])
59    10.16 cm (4 in) cold leg break.      None. Operator does not throttle No  Yes Yes Summer conditions assumed            HPI.
(HPI and LPI injection temp =
311 K [100EF], Accumulator temp = 305 K [90EF])
60    5.08 cm (2 in) surge line break. None. Operator does not throttle No  Yes Yes Winter conditions assumed (HPI      HPI.
and LPI injection temp = 278 K
[40EF], Accumulator temp = 289 K [60EF])
C-4
 
Table C-1 List of Palisades Base Cases Case System Failure                    Operator Action                  HZP Hi K Dominant 61    7.18 cm (2.8 in) cold leg break. None. Operator does not throttle No  Yes No Summer conditions assumed        HPI.
(HPI and LPI injection temp =
311 K [100EF], Accumulator temp = 305 K [90EF])
62    20.32 cm (8 in) cold leg break. None. Operator does not throttle No  Yes Yes Winter conditions assumed (HPI    HPI.
and LPI injection temp = 278 K
[40EF], Accumulator temp = 289 K [60EF])
63    14.37 cm (5.656 in) cold leg      None. Operator does not throttle No  Yes Yes break. Winter conditions          HPI.
assumed (HPI and LPI injection temp = 278 K [40EF],
Accumulator temp = 289 K [60E F])
64    10.16 cm (4 in) surge line break. None. Operator does not throttle No  Yes Yes Summer conditions assumed        HPI.
(HPI and LPI injection temp =
311 K [100EF], Accumulator temp = 305 K [90EF])
65    One stuck-open pressurizer        None. Operator does not throttle Yes No  Yes SRV that recloses at 6000 sec    HPI.
after initiation. Containment spray is assumed not to actuate.
C-5
 
Case Category LOCA Primary Failures 3.59 cm (1.414 in) surge line break. Containment sump recirculation included in the analysis.
Secondary Failures None.
Operator Actions None.
Min DC Temperature 436.5 K [326.0EF] at 15000 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-1 Palisades PTS Results for Case 002 C-6
 
Case Category TT/RT Primary Failures None.
Secondary Failures 2 stuck-open ADVs on SG-A combined with controller failure resulting in the flow from two AFW pumps into affected steam generator.
Operator Actions Operator starts second AFW pump. Operator isolates AFW to affected SG at 30 minutes after initiation. Operator assumed to throttle HPI if AFW is running with SG WRL > -84% and RCS subcooling > 25 F. HPI is throttled to maintain pressurizer level between 40 and 60 %.
Min DC Temperature 451.4 K [352.9EF] at 4620 s Comments None.
Average Downcomer Fluid Temperature 550                                                                    530 Temperature (K)                                                                                  Temperature (F) 450                                                                    350 350                                                                    170 250                                                                    10 0      3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                      Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                            1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                            0.98 10000                                                                            0.49 0                                                                    0.00 0      3000          6000              9000        12000  15000 Time (s)
Figure C-2 Palisades PTS Results for Case 016 C-7
 
Case Category TT/RT Primary Failures None.
Secondary Failures 1 stuck-open ADV on SG-A. Failure of both MSIVs (SG-A and SG-B) to close.
Operator Actions Operator does not isolate AFW on affected SG. Normal AFW flow assumed (200 gpm). Operator assumed to throttle HPI if AFW is running with SG WRL > -84% and RCS subcooling > 25 F. HPI is throttled to maintain pressurizer level between 40 and 60 %.
Min DC Temperature 443.4 K [338.5EF] at 14130 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      3000            6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      3000            6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      3000            6000              9000        12000  15000 Time (s)
Figure C-3 Palisades PTS Results for Case 018 C-8
 
Case Category TT/RT, HZP Primary Failures None.
Secondary Failures 1 stuck-open ADV on SG-A Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 423.0 K [301.7EF] at 15000 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-4 Palisades PTS Results for Case 019 C-9
 
Case Category TT/RT Primary Failures None.
Secondary Failures Loss of MFW and AFW.
Operator Actions Operator depressurizes through ADVs and feeds SG's using condensate booster pumps. Operators maintain a cooldown rate within technical specification limits and throttle condensate flow at 84
                    % level in the steam generator.
Min DC Temperature 394.9 K [251.1EF] at 15000 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      3000          6000              9000        12000  15000 Time (s)
Figure C-5 Palisades PTS Results for Case 022 C-10
 
Case Category MSLB Primary Failures None.
Secondary Failures Break assumed to be inside containment causing containment spray actuation.
Operator Actions None.
Min DC Temperature 431.0 K [316.1EF] at 450 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-6 Palisades PTS Results for Case 024 C-11
 
Case Category MSLB Primary Failures None.
Secondary Failures Break assumed to be inside containment causing containment spray actuation.
Operator Actions Operator isolates AFW to affected SG at 30 minutes after initiation.
Min DC Temperature 431.0 K [316.1EF] at 450 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-7 Palisades PTS Results for Case 026 C-12
 
Case Category MSLB Primary Failures None.
Secondary Failures Controller failure resulting in the flow from two AFW pumps into affected steam generator. Break assumed to be inside containment causing containment spray actuation.
Operator Actions Operator starts second AFW pump.
Min DC Temperature 383.5 K [230.6EF] at 15000 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-8 Palisades PTS Results for Case 027 C-13
 
Case Category MSLB, HZP Primary Failures None.
Secondary Failures None. Break assumed to be inside containment causing containment spray actuation.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 379.9 K [224.2EF] at 7410 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-9 Palisades PTS Results for Case 029 C-14
 
Case Category TT/RT Primary Failures None.
Secondary Failures Failure of MFW and AFW. Containment spray actuation assumed due to PORV discharge.
Operator Actions Operator maintains core cooling by "feed and bleed" using HPI to feed and two PORVs to bleed.
Min DC Temperature 356.9 K [182.8EF] at 15000 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-10 Palisades PTS Results for Case 031 C-15
 
Case Category TT/RT Primary Failures None.
Secondary Failures Failure of MFW and AFW. Containment spray actuation assumed due to PORV discharge.
Operator Actions Operator maintains core cooling by "feed and bleed" using HPI to feed and two PORV to bleed. AFW is recovered 15 minutes after initiation of "feed and bleed" cooling. Operator closes PORVs when SG level reaches 60 percent.
Min DC Temperature 411.1 K [280.4EF] at 4230 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-11 Palisades PTS Results for Case 032 C-16
 
Case Category MSLB Primary Failures Single SG tube ruptures in SG-A due to MSLB vibration.
Secondary Failures None.
Operator Actions Operator isolates AFW to affected SG at 15 minutes after initiation.
Operator trips RCPs assuming that they do not trip as a result of the event. Operator assumed to throttle HPI if AFW is running with SG WRL > -84% and RCS subcooling > 25 F. HPI is throttled to maintain pressurizer level between 40 and 60 %.
Min DC Temperature 377.4 K [219.6EF] at 13770 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      3000          6000              9000        12000  15000 Time (s)
Figure C-12 Palisades PTS Results for Case 034 C-17
 
Case Category LOCA Primary Failures 40.64 cm (16 in) hot leg break. Containment sump recirculation included in the analysis.
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 307.8 K [ 94.4EF] at 1260 s Comments Momentum Flux Disabled in DC Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-13 Palisades PTS Results for Case 040 C-18
 
Case Category TT/RT Primary Failures Two stuck open pressurizer SRVs. Containment spray is assumed not to actuate.
Secondary Failures None.
Operator Actions Operator assumed to throttle HPI if AFW is running with SG WRL > -
84% and RCS subcooling > 25 F. HPI is throttled to maintain pressurizer level between 40 and 60 %.
Min DC Temperature 419.1 K [294.8EF] at 14910 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                  Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0      3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                    2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                    2176 10.0                                                                    1450 5.0                                                                    725 0.0                                                                    0 0      3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                    HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0      3000          6000              9000        12000  15000 Time (s)
Figure C-14 Palisades PTS Results for Case 042 C-19
 
Case Category TT/RT, HZP Primary Failures Two stuck-open pressurizer SRVs that reclose at 6000 sec after initiation. Containment spray is assumed not to actuate.
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 351.3 K [172.6EF] at 6360 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-15 Palisades PTS Results for Case 048 C-20
 
Case Category MSLB, HZP Primary Failures None.
Secondary Failures Break assumed to be inside containment causing containment spray actuation.
Operator Actions Operator isolates AFW to affected SG at 30 minutes after initiation.
Operator does not throttle HPI.
Min DC Temperature 426.1 K [307.4EF] at 1920 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-16 Palisades PTS Results for Case 049 C-21
 
Case Category MSLB, HZP Primary Failures None.
Secondary Failures Controller failure resulting in the flow from two AFW pumps into affected steam generator. Break assumed to be inside containment causing containment spray actuation.
Operator Actions Operator starts second AFW pump. Operator does not throttle HPI.
Min DC Temperature 348.0 K [166.8EF] at 15000 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-17 Palisades PTS Results for Case 050 C-22
 
Case Category MSLB, HZP Primary Failures None.
Secondary Failures Failure of both MSIVs to close. Break assumed to be inside containment causing containment spray actuation.
Operator Actions Operator does not isolate AFW on affected SG. Operator does not throttle HPI.
Min DC Temperature 375.3 K [215.9EF] at 3150 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-18 Palisades PTS Results for Case 051 C-23
 
Case Category TT/RT, HZP Primary Failures None.
Secondary Failures 1 stuck-open ADV on SG-A. Failure of both MSIVs (SG-A and SG-B) to close.
Operator Actions Operator does not isolate AFW on affected SG. Normal AFW flow assumed (200 gpm). Operator does not throttle HPI.
Min DC Temperature 424.6 K [304.7EF] at 14850 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-19 Palisades PTS Results for Case 052 C-24
 
Case Category TT/RT Primary Failures Two stuck-open pressurizer SRVs that reclose at 6000 sec after initiation. Containment spray is assumed not to actuate.
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 433.1 K [319.9EF] at 5970 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-20 Palisades PTS Results for Case 053 C-25
 
Case Category MSLB Primary Failures None.
Secondary Failures Failure of both MSIVs to close. Break assumed to be inside containment causing containment spray actuation.
Operator Actions Operator does not isolate AFW on affected SG. Operator does not throttle HPI.
Min DC Temperature 377.1 K [219.1EF] at 4110 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-21 Palisades PTS Results for Case 054 C-26
 
Case Category TT/RT Primary Failures None.
Secondary Failures 2 stuck-open ADVs on SG-A combined with controller failure resulting in the flow from two AFW pumps into affected steam generator.
Operator Actions Operator starts second AFW pump.
Min DC Temperature 437.4 K [327.7EF] at 4320 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-22 Palisades PTS Results for Case 055 C-27
 
Case Category LOCA Primary Failures 10.16 cm (4 in) cold leg break. Winter conditions assumed (HPI and LPI injection temp = 40 F, Accumulator temp = 60 F)
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 331.0 K [136.2EF] at 2700 s Comments Momentum Flux Disabled in the DC Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-23 Palisades PTS Results for Case 058 C-28
 
Case Category LOCA Primary Failures 10.16 cm (4 in) cold leg break. Summer conditions assumed (HPI and LPI injection temp = 100 F, Accumulator temp = 90 F)
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 350.7 K [171.6EF] at 14940 s Comments Momentum Flux Disabled in the DC Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-24 Palisades PTS Results for Case 059 C-29
 
Case Category LOCA Primary Failures 5.08 cm (2 in) surge line break. Winter conditions assumed (HPI and LPI injection temp = 40 F, Accumulator temp = 60 F)
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 351.3 K [172.7EF] at 3540 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-25 Palisades PTS Results for Case 060 C-30
 
Case Category LOCA Primary Failures 7.18 cm (2.8 in) cold leg break. Summer conditions assumed (HPI and LPI injection temp = 100 F, Accumulator temp = 90 F)
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 383.4 K [230.4EF] at 8940 s Comments Momentum Flux Disabled in the DC Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-26 Palisades PTS Results for Case 061 C-31
 
Case Category LOCA Primary Failures 20.32 cm (8 in) cold leg break. Winter conditions assumed (HPI and LPI injection temp = 40 F, Accumulator temp = 60 F)
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 308.0 K [ 94.7EF] at 1470 s Comments Momentum Flux Disabled in the DC Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-27 Palisades PTS Results for Case 062 C-32
 
Case Category LOCA Primary Failures 14.37 cm (5.656 in) cold leg break. Winter conditions assumed (HPI and LPI injection temp = 40 F, Accumulator temp = 60 F)
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 306.4 K [ 91.8EF] at 2070 s Comments Momentum Flux Disabled in the DC Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-28 Palisades PTS Results for Case 063 C-33
 
Case Category LOCA Primary Failures 10.16 cm (4 in) surge line break. Summer conditions assumed (HPI and LPI injection temp = 100 F, Accumulator temp = 90 F)
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 322.8 K [121.4EF] at 2730 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-29 Palisades PTS Results for Case 064 C-34
 
Case Category LOCA Primary Failures 10.16 cm (4 in) surge line break. Summer conditions assumed (HPI and LPI injection temp = 100 F, Accumulator temp = 90 F)
Secondary Failures None.
Operator Actions None. Operator does not throttle HPI.
Min DC Temperature 366.1 K [199.3EF] at 6570 s Comments None.
Average Downcomer Fluid Temperature 550                                                                      530 Temperature (K)                                                                                    Temperature (F) 450                                                                      350 350                                                                      170 250                                                                      10 0        3000          6000              9000        12000  15000 Time (s)
Primary Pressure 20.0                                                                      2901 Pressure (MPa)                                                                                        Pressure (psia) 15.0                                                                      2176 10.0                                                                      1450 5.0                                                                      725 0.0                                                                      0 0        3000          6000              9000        12000  15000 Time (s)
Average Downcomer Wall Heat Transfer Coefficient 30000                                                                              1.47 HTC (W/m *K)                                                                                                      HTC (Btu/s*ft *F) 2 2                      20000                                                                              0.98 10000                                                                              0.49 0                                                                      0.00 0        3000          6000              9000        12000  15000 Time (s)
Figure C-30 Palisades PTS Results for Case 065 C-35
 
NRC FORM 335                                                                  U.S. NUCLEAR REGULATORY COMMISSION          1. REPORT NUMBER (9-2004)                                                                                                                      (Assigned by NRC, Add Vol., Supp., Rev.,
NRCMD 3.7                                                                                                                      and Addendum Numbers, if any.)
BIBLIOGRAPHIC DATA SHEET (See instructions on the reverse)                                                            NUREG/CR-6858
: 2. TITLE AND SUBTITLE                                                                                                              3. DATE REPORT PUBLISHED RELAP5 Thermal Hydraulic Analysis to Support PTS Evaluations for the Oconee-1, Beaver                                            MONTH                    YEAR Valley-1, and Plailsades Nuclear Power Plants
: 4. FIN OR GRANT NUMBER Y6598
: 5. AUTHOR(S)                                                                                                                6. TYPE OF REPORT W. C. Arcieri, R.M. Beaton, C.D. Fletcher, D. E. Bessette Technical
: 7. PERIOD COVERED (Inclusive Dates) 1/2000 - 9/2004
: 8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address; if contractor, provide name and mailing address.)
ISL, Inc., 11140 Rockville Pike, Rockville, MD 20852 U.S. Nuclear Regulatory Commission, Division of Systems Analysis and Regulatory Effectiveness, Office of Nuclear Regulatory Research Washington, DC 20555-0001
: 9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address.)
U.S. Nuclear Regulatory Commission, Division of Systems Analysis and Regulatory Effectiveness, Office of Nuclear Regulatory Research Washington, DC 20555-0001
: 10. SUPPLEMENTARY NOTES M. B. Rubin, NRC Project Manager and D. E. Bessette, Technical Monitor
: 11. ABSTRACT (200 words or less)
ABSTRACT As part of the Pressurized Thermal Shock Rebaseline Program, thermal hydraulic calculations were performed for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants using the RELAP5/ MOD3.2.2gamma computer program.
Transient sequences that are important to the risk due to a PTS event were defi ned as part of a risk assessment by Sandia National Laboratories. These sequences include loss of coolant accidents (LOCA ) of various sizes with and without secondary side failures and also non-break transients with primary and secondary side fai lure. Operator actions are considered in many of the sequences analyzed. The results of these thermal hydraulic calculations are used as boundary conditions to the fracture mechanics analysis performed by Oak Ridge National Laboratory.
: 12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)                                  13. AVAILABILITY STATEMENT Pressurized thermal shock, RELAP, RELAP5, thermal hydraulic, Beaver Valley, Pal isades, Oconee                                                  unlimited
: 14. SECURITY CLASSIFICATION (This Page) unclassified (This Report) unclassified
: 15. NUMBER OF PAGES
: 16. PRICE NRC FORM 335 (9-2004)                                                                                                                        PRINTED ON RECYCLED PAPER}}

Latest revision as of 23:16, 15 January 2025

NUREG/CR-6858, RELAP5 Thermal Hydraulic Analysis to Support PTS Evaluations for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants
ML043570385
Person / Time
Site: Beaver Valley, Palisades  Entergy icon.png
Issue date: 09/30/2004
From: William Arcieri, Robert Beaton, Bessette D, Fletcher C, Rubin M
ISL, Office of Nuclear Regulatory Research
To:
NRC/RES/DSARE
References
NUREG/CR-6858
Download: ML043570385 (608)


Text