ML032880767: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:Exek n 5m Exelon Nuclear 200 Exelon Way www.exeloncorp.com Nuclear Kennett Square, PA 19348 TS 5.6.5.d October 3, 2003 U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington DC 20555 Peach Bottom Atomic Power Station, Unit 3 Facility Operating License No. DPR- 56 NRC Docket No 50-278
{{#Wiki_filter:Exek n 5m Exelon Nuclear 200 Exelon Way Kennett Square, PA 19348 www.exeloncorp.com Nuclear TS 5.6.5.d October 3, 2003 U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington DC 20555 Peach Bottom Atomic Power Station, Unit 3 Facility Operating License No. DPR-56 NRC Docket No 50-278


==Subject:==
==Subject:==
Line 21: Line 21:


==Dear Sir/Madam:==
==Dear Sir/Madam:==
Enclosed is a copy of the Core Operating Limits Report (COLR) for Peach Bottom Atomic Power Station (PBAPS), Unit 3, Reload 14, Cycle 15, Revision 0. Revision 0 of this report incorporates the revised cycle specific parameters resulting from the new core configuration implemented during the PBAPS, Unit 3 outage.
Enclosed is a copy of the Core Operating Limits Report (COLR) for Peach Bottom Atomic Power Station (PBAPS), Unit 3, Reload 14, Cycle 15, Revision 0. Revision 0 of this report incorporates the revised cycle specific parameters resulting from the new core configuration implemented during the PBAPS, Unit 3 outage.
This COLR is being submitted to the NRC in accordance with PBAPS, Unit 3 Technical Specifications (TS) Section 5.6.5.d.
This COLR is being submitted to the NRC in accordance with PBAPS, Unit 3 Technical Specifications (TS) Section 5.6.5.d.
If you have any questions, please do not hesitate to contact us.
If you have any questions, please do not hesitate to contact us.
Very truly yours, Michael P. Gallagher Director, Licensing and Regulatory Affairs Exelon Generation Company, LLC Enclosure cc:       H. J. Miller, Administrator, Region I, USNRC (w/enc)
Very truly yours, Michael P. Gallagher Director, Licensing and Regulatory Affairs Exelon Generation Company, LLC Enclosure cc:
H. J. Miller, Administrator, Region I, USNRC (w/enc)
C. Smith, USNRC Senior Resident Inspector, PBAPS (w/enc)
C. Smith, USNRC Senior Resident Inspector, PBAPS (w/enc)
G. F. Wunder, Project Manager, USNRC (w/enc)                                             C)D I
G. F. Wunder, Project Manager, USNRC (w/enc)
C)D I


Exelon Nuclear - Nuclear Fuels                       EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report                          Page 1, Rev. 0 CORE OPERATING LIMITS REPORT FOR PEACH BOTTOM ATOMIC POWER STATION UNIT 3 RELOAD 14, CYCLE 15 REVISION 0 Prepared By:               '101111           Date: iZ Reviewed By:           ,P. C.       \
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 1, Rev. 0 CORE OPERATING LIMITS REPORT FOR PEACH BOTTOM ATOMIC POWER STATION UNIT 3 RELOAD 14, CYCLE 15 REVISION 0 Prepared By:
Date: ? V Approved By:                                 Date: 4,& AL
'101111 Date: iZ Reviewed By:
,P. C.
Date: ? V
\\
Approved By:
Date: 4,&
AL


Exelon Nuclear - Nuclear Fuels                             EXELON-COLR-P3C1 5 P3CI 5 Core Operating Limits Report                              Page 2, Rev. 0 tlqT OF EFFFFCTVE PAQFq Page(s)                                 Revision 1 -33                                     0
Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 2, Rev. 0 tlqT OF EFFFFCTVE PAQFq Page(s)
Revision 1 -33 0


Exelon Nuclear - Nuclear Fuels                                                 EXELON-COLR-P3C05 P3C1 5 Core Operating Limits Report                                                 Page 3, Rev. 0 INTRODUCTION AND  
Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3C05 P3C1 5 Core Operating Limits Report Page 3, Rev. 0 INTRODUCTION AND  


==SUMMARY==
==SUMMARY==
This report provides the following cycle-specidfic parameter limits for Peach Bottom Atomic Power Station Unit 3 Cycle 15 (Reload 14):
This report provides the following cycle-specidfic parameter limits for Peach Bottom Atomic Power Station Unit 3 Cycle 15 (Reload 14):
* Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)
Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)
        . ARTS MAPLHGR thermal limit multipliers
ARTS MAPLHGR thermal limit multipliers Single Loop Operation (SLO) MAPLHGR multipliers Minimum Critical Power Ratio (MCPR)
* Single Loop Operation (SLO) MAPLHGR multipliers
ARTS MCPR thermal limit adjustments and multipliers Single Loop Operation (SLO) MCPR adjustment Rod Block Monitor (RBM) Analytical Umits, Allowable Values and MCPR Limits Linear Heat Generation Rate (LHGR)
* Minimum Critical Power Ratio (MCPR)
* Turbine Bypass Valve Parameters EOC Recirculation Pump Trip (EOC-RPT) Parameters These values have been determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met.
* ARTS MCPR thermal limit adjustments and multipliers
* Single Loop Operation (SLO) MCPR adjustment
* Rod Block Monitor (RBM) Analytical Umits, Allowable Values and MCPR Limits Linear Heat Generation Rate (LHGR)
* Turbine Bypass Valve Parameters
* EOC Recirculation Pump Trip (EOC-RPT) Parameters These values have been determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met.
This report provides the means for calculating the Operating Limit MCPR and MAPLHGR thermal limits for the following conditions:
This report provides the means for calculating the Operating Limit MCPR and MAPLHGR thermal limits for the following conditions:
* All points in the operating region of the power/flow map including Maximum Extended Load Une Limit (MELLL) down to 82.9% of rated core flow during full power (3514 MWt) operation
All points in the operating region of the power/flow map including Maximum Extended Load Une Limit (MELLL) down to 82.9% of rated core flow during full power (3514 MWt) operation Increased Core Flow (ICF), up to 110% of rated core flow End-of-Cycle Power Coastdown to a minimum power level of 40%
* Increased Core Flow (ICF), up to 110% of rated core flow
Feedwater Heaters Out of Service (FWHOOS) to 550 F temperature reduction Final Feedwater Temperature Reduction (FWTR) between End-of-Rated (EOR) and End-of-Cycle (EOC) to 900 F temperature reduction Asymmetric Feedwater Temperature Operation (AFTO) - Appendix A The Allowable Values, documented in Reference (9), for feedwater temperature as a function of thermal power for both FWHOOS and FWTR are specified in the appropriate Peach Bottom procedures.
* End-of-Cycle Power Coastdown to a minimum power level of 40%
* Feedwater Heaters Out of Service (FWHOOS) to 550 F temperature reduction
* Final Feedwater Temperature Reduction (FWTR) between End-of-Rated (EOR) and End-of-Cycle (EOC) to 900 F temperature reduction
* Asymmetric Feedwater Temperature Operation (AFTO) - Appendix A The Allowable Values, documented in Reference (9), for feedwater temperature as a function of thermal power for both FWHOOS and FWTR are specified in the appropriate Peach Bottom procedures.
Note that the term 'EORn refers to the cycle exposure at which operation at grated conditions is no longer possible (i.e., the cycle exposure at which cycle extension begins) based on the EOR point as documented in the current revision of the Cycle Management Report.
Note that the term 'EORn refers to the cycle exposure at which operation at grated conditions is no longer possible (i.e., the cycle exposure at which cycle extension begins) based on the EOR point as documented in the current revision of the Cycle Management Report.
Also note that the following description of MAPLHGR and MCPR limits pertain to NON - AFTO. A separate description of AFTO limits and their associated ARTS figures are located in Appendix A.
Also note that the following description of MAPLHGR and MCPR limits pertain to NON - AFTO. A separate description of AFTO limits and their associated ARTS figures are located in Appendix A.


Exelon Nuclear - Nuclear Fuels                                                   EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report                                                     Page 4, Rev. 0 Preparation of this report was performed in accordance with Exelon Nuclear procedures. This report is submitted in accordance with Technical Specification 5.6.5 of Reference (1) and contains all thermal limit parameters related to the implementation of the ARTS Improvement Program and Maximum Extended Load Line Limit Analyses (ARTS/MELLLA) for Peach Bottom Unit 3 Cycle 15.
Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report Page 4, Rev. 0 Preparation of this report was performed in accordance with Exelon Nuclear procedures. This report is submitted in accordance with Technical Specification 5.6.5 of Reference (1) and contains all thermal limit parameters related to the implementation of the ARTS Improvement Program and Maximum Extended Load Line Limit Analyses (ARTS/MELLLA) for Peach Bottom Unit 3 Cycle 15.
MAPLHflR LIMITS The bounding MAPLHGR limits (kW/t) for each fuel type are provided in Figures 1 through 6. The bounding MAPLHGR limits are the lowest kW/ft limits of the fuel lattices (excluding natural uranium) which comprise a given fuel type as a function of average planar exposure. The MAPLHGR figures are used when hand calculations are required as specified in Reference (4). All MAPLHGR values for each fuel type as a function of axial location and average planar exposure shall be less than or equal to the applicable MAPLHGR limits for the respective fuel and lattice types to be in compliance with Technical Specification 3.2.1. These MAPLHGR limits are specified in References (2), (3), (18),
MAPLHflR LIMITS The bounding MAPLHGR limits (kW/t) for each fuel type are provided in Figures 1 through 6. The bounding MAPLHGR limits are the lowest kW/ft limits of the fuel lattices (excluding natural uranium) which comprise a given fuel type as a function of average planar exposure. The MAPLHGR figures are used when hand calculations are required as specified in Reference (4). All MAPLHGR values for each fuel type as a function of axial location and average planar exposure shall be less than or equal to the applicable MAPLHGR limits for the respective fuel and lattice types to be in compliance with Technical Specification 3.2.1. These MAPLHGR limits are specified in References (2), (3), (18),
and (19) and the process computer databank. The ARTS-based MAPLHGR power-dependent multipliers (MAPFAC(P)) are provided in Figures 7 and 8. Figure 7 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service with a maximum temperature reduction of 90° F for FWTR operation. Figure 8 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPTOOS with a maximum FWTR of 90° F. The flow-dependent multipliers (MAPFAC(F)) are provided in Figures 9 and 10 as a function of the number of recirculation loops in operation only. The SLO MAPLHGR multiplier (0.73) is applied through MAPFAC(F) as shown In Figure 10. This value is based on the GE14 fuel product line. MAPFAC(F) is clamped at 0.73 starting at 33.6% of rated core flow to ensure peak clad temperatures are maintained within the limits of the cycle-specific LOCA analysis for single recirculation loop operation.
and (19) and the process computer databank. The ARTS-based MAPLHGR power-dependent multipliers (MAPFAC(P)) are provided in Figures 7 and 8. Figure 7 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service with a maximum temperature reduction of 90° F for FWTR operation. Figure 8 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPTOOS with a maximum FWTR of 90° F. The flow-dependent multipliers (MAPFAC(F)) are provided in Figures 9 and 10 as a function of the number of recirculation loops in operation only. The SLO MAPLHGR multiplier (0.73) is applied through MAPFAC(F) as shown In Figure 10. This value is based on the GE14 fuel product line. MAPFAC(F) is clamped at 0.73 starting at 33.6% of rated core flow to ensure peak clad temperatures are maintained within the limits of the cycle-specific LOCA analysis for single recirculation loop operation.
The power- and flow-dependent MAPLHGR multipliers were obtained from References (5), (10) and (12). AFTO parameters are addressed in Appendix A.
The power-and flow-dependent MAPLHGR multipliers were obtained from References (5), (10) and (12). AFTO parameters are addressed in Appendix A.
Mr-PR LIMITS The Operating Umit MCPR (OLMCPR) for use in Technical Specification 3.2.2 for each fuel type is provided in Table 1. These values are determined by the cycle-specific fuel reload analyses in Reference (2). The Safety Limit MCPRs are documented in Section 2.1.1.2 of Reference (1).
Mr-PR LIMITS The Operating Umit MCPR (OLMCPR) for use in Technical Specification 3.2.2 for each fuel type is provided in Table 1. These values are determined by the cycle-specific fuel reload analyses in Reference (2). The Safety Limit MCPRs are documented in Section 2.1.1.2 of Reference (1).
Control rod scram time verification is required as per Technical Specification 3.1.4, "Control Rod Scram Times". Tau, a measure of scram time performance to notch position 36 throughout the cycle, is determined based on the cumulative scram time test results. The calculation of Tau shall be performed in accordance with site procedures. Unear interpolation shall be used to calculate the OLMCPR value if Tau is between 0.0 (Tau Option B) and 1.0 (Tau Option A).
Control rod scram time verification is required as per Technical Specification 3.1.4, "Control Rod Scram Times". Tau, a measure of scram time performance to notch position 36 throughout the cycle, is determined based on the cumulative scram time test results. The calculation of Tau shall be performed in accordance with site procedures. Unear interpolation shall be used to calculate the OLMCPR value if Tau is between 0.0 (Tau Option B) and 1.0 (Tau Option A).
Separate OLMCPR values are presented herein (Table 1)for the following domains:
Separate OLMCPR values are presented herein (Table 1) for the following domains:
* TBVs In-Service (seven or more in-service) and RPT In-Service, maximum FWTR of 90 oF
* TBVs In-Service (seven or more in-service) and RPT In-Service, maximum FWTR of 90 oF
* TBVs Out-of-Service (three or more out-of-service) and RPT In-Service, maximum FWTR of 90 OF
* TBVs Out-of-Service (three or more out-of-service) and RPT In-Service, maximum FWTR of 90 OF
Line 71: Line 69:
TBVs Out-of-Service (OOS) or RPTOOS with a maximum FWTR of 90 cF. The flow-dependent
TBVs Out-of-Service (OOS) or RPTOOS with a maximum FWTR of 90 cF. The flow-dependent


Exelon Nudear - Nuclear Fuels                                                   EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report                                                   Page 5, Rev. 0 MCPR limits, OLMCPR(F), are provided in Figure 13. Figure 13 is valid for all operating conditions with symmetric feedwater temperature operation. OLMCPR(P, F) curves were obtained from References (5), (10) and (12). AFTO parameters are addressed in Appendix A.
Exelon Nudear - Nuclear Fuels EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report Page 5, Rev. 0 MCPR limits, OLMCPR(F), are provided in Figure 13. Figure 13 is valid for all operating conditions with symmetric feedwater temperature operation. OLMCPR(P, F) curves were obtained from References (5), (10) and (12). AFTO parameters are addressed in Appendix A.
nVERALL GOVERNING MCPR AND MAPLHGR LIMI TS ARTS provides for power- and flow-dependent thermal limit adjustments and multipliers which allow for a more reliable administration of the MCPR and MAPLHGR thermal limits. At any given power/flow (P/F) state, all four limits are to be determined: MAPFAC(P), MAPFAC(F), OLMCPR(P),
nVERALL GOVERNING MCPR AND MAPLHGR LIMI TS ARTS provides for power-and flow-dependent thermal limit adjustments and multipliers which allow for a more reliable administration of the MCPR and MAPLHGR thermal limits. At any given power/flow (P/F) state, all four limits are to be determined: MAPFAC(P), MAPFAC(F), OLMCPR(P),
and OLMCPR(F) from Figures 7 through 21, inclusive. The most limiting MCPR and the most limiting MAPLHGR (maximum of OLMCPR(P) and OLMCPR(F) and minimum of MAPLHGR(P) and MAPLHGR(F)] for a given (P,F) condition will be the governing limits. The'OLMCPR for each fuel type is determined by the cycle-specific fuel reload analyses in Reference (2). Rated MAPLHGR values are a composite of results obtained from bundle-specific thermal-mechanical and emergency core cooling system analyses. Supporting documentation for the ARTS-based limits is provided in References (5), (10), (12) and (14).
and OLMCPR(F) from Figures 7 through 21, inclusive. The most limiting MCPR and the most limiting MAPLHGR (maximum of OLMCPR(P) and OLMCPR(F) and minimum of MAPLHGR(P) and MAPLHGR(F)] for a given (P,F) condition will be the governing limits. The'OLMCPR for each fuel type is determined by the cycle-specific fuel reload analyses in Reference (2). Rated MAPLHGR values are a composite of results obtained from bundle-specific thermal-mechanical and emergency core cooling system analyses. Supporting documentation for the ARTS-based limits is provided in References (5), (10), (12) and (14).
ROn Rl OCK MONITOR SETPOICMM The RBM power-biased Analytical Limits, Allowable Values and MCPR Limits for use in Technical Specification 3.3.2.1 are provided in Table 2 per Reference (5) with supporting documentation in References (2) and (13).
ROn Rl OCK MONITOR SETPOICMM The RBM power-biased Analytical Limits, Allowable Values and MCPR Limits for use in Technical Specification 3.3.2.1 are provided in Table 2 per Reference (5) with supporting documentation in References (2) and (13).
LINEAR HEAT GFNERATION RATES The beginning of life (maximum) LHGR values for each fuel type for use in Technical Specification 3.2.3 are provided in Table 3. The LHGR values as a function of fuel exposure are provided in References (3), (18), and (19). The bases for the LHGR values are documented in Reference (4).
LINEAR HEAT GFNERATION RATES The beginning of life (maximum) LHGR values for each fuel type for use in Technical Specification 3.2.3 are provided in Table 3. The LHGR values as a function of fuel exposure are provided in References (3), (18), and (19). The bases for the LHGR values are documented in Reference (4).
STEAM RYPASS SYSTEM OPFRARILITY The operability requirements for the steam bvpass system are governed bv Technical Specification 3.7.6. If the requirements cannot be met, the appropriate power dependent limits for Turbine Bvpass Valves Out-of-Service (TBVOOS) must be used (Table 1 with Fiqures 8 and 12 or Figures 15 and 19). The minimum number of bypass valves to maintain system operability is seven as per References (2). (6) and (7) and Table 4. Table 4 also includes other Turbine Bvpass Valve parameters.
STEAM RYPASS SYSTEM OPFRARILITY The operability requirements for the steam bvpass system are governed bv Technical Specification 3.7.6. If the requirements cannot be met, the appropriate power dependent limits for Turbine Bvpass Valves Out-of-Service (TBVOOS) must be used (Table 1 with Fiqures 8 and 12 or Figures 15 and 19). The minimum number of bypass valves to maintain system operability is seven as per References (2). (6) and (7) and Table 4. Table 4 also includes other Turbine Bvpass Valve parameters.
MoC R1FIRC1ILATION PUIMP TRIP (FnC-R)               OPFRARIIL If the EOC-RPT is inoperable, then the OLMCPR (Table 1), MAPFAC(P) (Figure 8), and OLMCPR(P) (Figure 12) values for EOC Recirculation Pump Trip Out-of-Service (RPTOOS), must be used. Appendix A contains MAPFAC(P) and OLMCPR(P) for RPTOOS and AFTO.
MoC R1FIRC1ILATION PUIMP TRIP (FnC-R)
OPFRARII L
If the EOC-RPT is inoperable, then the OLMCPR (Table 1), MAPFAC(P) (Figure 8), and OLMCPR(P) (Figure 12) values for EOC Recirculation Pump Trip Out-of-Service (RPTOOS), must be used. Appendix A contains MAPFAC(P) and OLMCPR(P) for RPTOOS and AFTO.
The measured EOC-RPT Response Times as referenced in Technical Specifications Section 3.3.4.2 and as defined in Technical Specifications Section 1.1 are:
The measured EOC-RPT Response Times as referenced in Technical Specifications Section 3.3.4.2 and as defined in Technical Specifications Section 1.1 are:
                < 0.145 seconds for TCV Fast Closure Trip (i.e. Generator Load Rejection)
< 0.145 seconds for TCV Fast Closure Trip (i.e. Generator Load Rejection)
                < 0.155 seconds for TSV Fast Closure Trip ( i.e. Turbine Trip )
< 0.155 seconds for TSV Fast Closure Trip ( i.e. Turbine Trip )


Exelon Nuclear - Nuclear Fuels                                             EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report                                               Page 6, Rev. 0 A total RPT response time of 0.175 seconds is assumed in the safety analysis for both trips and is defined as the time from the turbine valves (TCV or TSV) start to close until complete arc suppression of the EOC-RPT circuit breakers. Reference (11) provides the basis for the RPT response time.
Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report Page 6, Rev. 0 A total RPT response time of 0.175 seconds is assumed in the safety analysis for both trips and is defined as the time from the turbine valves (TCV or TSV) start to close until complete arc suppression of the EOC-RPT circuit breakers.
CX)NCURRFNTTRVOOQ           AND RPToOO:
Reference (11) provides the basis for the RPT response time.
CX)NCURRFNTTRVOOQ AND RPToOO:
Cycle 15 is not licensed for TBVOOS and RPTOOS to occur concurrently. Therefore, concurrent TBVOOS and RPTOOS is an unanalyzed condition.
Cycle 15 is not licensed for TBVOOS and RPTOOS to occur concurrently. Therefore, concurrent TBVOOS and RPTOOS is an unanalyzed condition.
REFERENCES
REFERENCES
Line 101: Line 102:
: 14) "Safety Review for Peach Bottom Atomic Power Station Units 2 and 3 Asymmetric Feedwater Temperature Operation", NEDC-32691 P, Revision 0, May 1997.
: 14) "Safety Review for Peach Bottom Atomic Power Station Units 2 and 3 Asymmetric Feedwater Temperature Operation", NEDC-32691 P, Revision 0, May 1997.


Exelon Nuclear - Nuclear Fuels                                         EXELON-COLR-P3C1 5 P3C1 5 Core Operating Limits Report                                           Page 7, Rev. 0
Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3C1 5 P3C1 5 Core Operating Limits Report Page 7, Rev. 0
: 15) ECR 02-00478, Asymmetrc Feedwater Operation Implementation"
: 15) ECR 02-00478, Asymmetrc Feedwater Operation Implementation"
: 16) "GE1 4 Fuel Design Cycle-Independent Analyses for Peach Bottom Atomic Power Station Units 2 & 3," GENE LI 2-00880-00-01 P, September 2000
: 16) "GE1 4 Fuel Design Cycle-Independent Analyses for Peach Bottom Atomic Power Station Units 2 & 3," GENE LI 2-00880-00-01 P, September 2000
Line 109: Line 110:
: 20) CR 00171805, AFTO ARTS thermal limit penalties not applied above 100% CTP
: 20) CR 00171805, AFTO ARTS thermal limit penalties not applied above 100% CTP


Exelon Nuclear - Nudear Fuels                                                         EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report                                                          Page 8, Rev. 0 FIGURE 1 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE13-P9DTB407-14GZ-100T-146-T 13.0                                                     HISFIGURE IS REFERREDTO!
Exelon Nuclear - Nudear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 8, Rev. 0 FIGURE 1 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE13-P9DTB407-14GZ-100T-146-T 13.0 HISFIGURE IS REFERREDTO !
TECHNICAL SPECIFICATION 32.1 12.0                                             f                         I 6
TECHNICAL SPECIFICATION 32.1 12.0 f
0.0   5.0   10.0     15.0   20.0   25.0 30.0     35.0     40.0   45.0     50.0 55.0     &#xa3;0.0
I 6  
                                                      =.0 Average Planar Exposure      (GWd/BT)
=.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 Average Planar Exposure (GWd/BT) 45.0 50.0 55.0  
Avg Plan                          Avg Plan                            Avg Plan Exposure       MAPLHGR            Exposure        MAPLHGR            Exposure          MAPLHGR (kWL0          (Gws                                                      (kwliJ) 0.0           10.41            8.0             11.52                30.0             11.37 0.2            10.48             9.0            11.67              32.66              11.07 1.0            10.59            10.0            11.82                35.0             10.81 2.0           10.73            12.5           12.02                40.0             10.20 3.0           10.87            15.0           12.21                 45.0              9.56 4.0            11.01            17.5            12.22                50.0               8.88 5.0           11.12            20.0             12.12                55.0               7.19 6.0            11.24            24.38            11.78                56.7               6.56 7.0            11.38            25.0            11.73                57.4              6.29
&#xa3;0.0 Avg Plan Exposure 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kWL0 10.41 10.48 10.59 10.73 10.87 11.01 11.12 11.24 11.38 Avg Plan Exposure (Gws 8.0 9.0 10.0 12.5 15.0 17.5 20.0 24.38 25.0 MAPLHGR 11.52 11.67 11.82 12.02 12.21 12.22 12.12 11.78 11.73 Avg Plan Exposure 30.0 32.66 35.0 40.0 45.0 50.0 55.0 56.7 57.4 MAPLHGR (kwliJ) 11.37 11.07 10.81 10.20 9.56 8.88 7.19 6.56 6.29


Exelon Nuclear - Nuclear Fuels                                                       EXELON-COLR-P3C15 P3CI 5 Core Operating Limit Report                                                         Page 9, Rev. 0 FIGURE 2 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE13-P9DTB404-13GZ-100T-146-T I
Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limit Report EXELON-COLR-P3C15 Page 9, Rev. 0 FIGURE 2 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE13-P9DTB404-13GZ-100T-146-T I
0.0   5.0     10.0     15.0   20.0   25.0   30.0   35.0     40.0 43.0     10.0 55.0     60.0 Average Planar Lcposure       (GWd/BT)
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 43.0 10.0 55.0 60.0 Average Planar Lcposure (GWd/BT)
Avg Plan                            Avg Plan                            Avg Plan Exposure         MAPLHGR            Exposure          MAPLHGR          Exposure        MAPLHGR 1kW.6                            (kW/ff)          4,GwdtI 0.0             10.61            8.0             11.70              30.0             11.38 0.2              10.67             9.0              11.83            32.66              11.07 1.0              10.78            10.0             11.94              35.0             10.79 2.0             10.90            12.5             12.05              40.0             10.18 3.0             11.03            15.0            12.17             45.0              9.54 4.0              11.16            17.5              12.21              50.0             8.85 5.0             11.29            20.0             12.09              55.0             7.18 6.0              11.42            24.38             11.84              56.7              6.54 7.0              11.56            25.0              11.81              57.4              6.28
Avg Plan Exposure 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR 1kW.6 10.61 10.67 10.78 10.90 11.03 11.16 11.29 11.42 11.56 Avg Plan Exposure 8.0 9.0 10.0 12.5 15.0 17.5 20.0 24.38 25.0 MAPLHGR (kW/ff) 11.70 11.83 11.94 12.05 12.17 12.21 12.09 11.84 11.81 Avg Plan Exposure 4,GwdtI 30.0 32.66 35.0 40.0 45.0 50.0 55.0 56.7 57.4 MAPLHGR 11.38 11.07 10.79 10.18 9.54 8.85 7.18 6.54 6.28


Exelon Nuclear - Nuclear Fuels                                                                         EXELON-COLR-P3C1 5 P3C1 5 Core Operating Limits Report                                                                            Page 10, Rev. 0 FIGURE 3 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE1 4-P1 ODNAB410-14GZ-1 00T-1 50-T-2468 14.
Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 10, Rev. 0 FIGURE 3 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE1 4-P1 ODNAB410-14GZ-1 00T-1 50-T-2468 14.
: 13. 00    -_                    _                I                                                    I 12.
13.
II.       00 45 10.
12.
45 II.
10.
9B.
9B.
00  -I'
              '1                  -        -                    -      I                              V 00 -
7.
7.
00 6.
6.
                                      ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00 I
00~~
I 00 I'
: 4.           00~      ~~
'1 I
0.0     5.0   10.0   15.0     20.0     25.0     30.0   35.0     40.0     45.0     50.0     55.0    60.0 Average Planar Exposure,     (Gwd/ST)
V 00 00 -
Avg Plan                                  Avg Plan                                    Avg Plan Exposure               MAPLHGR              Exposure            MAPLHGR                Exposure            MAPLHGR (GWdfSI                 (kW/ft)            (G!Wfi=T                                                              (kW/te) 0.0                 9.84                  8.0                 10.87                  20.0                 10.88 0.2                9.91                  9.0                 10.95                  25.0                 10.53 1.0                10.02                 10.0                11.03                  30.0                  10.10 2.0                10.17                11.0                 11.12                  35.0                   9.57 3.0                 10.30                12.0                 11.14                   40.0                   9.05 4.0                 10.41                13.0                11.10                   45.0                  8.52 5.0                10.52                14.0                 11.07                  50.0                   7.98 6.0                 10.65                15.0                 11.04                  55.0                   6.32 7.0                10.78                17.0                10.99                  57.92                  4.87
00 00~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
00~
~~
4.
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 Average Planar Exposure, (Gwd/ST) 60.0 Avg Plan Exposure (GWdfSI 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kW/ft) 9.84 9.91 10.02 10.17 10.30 10.41 10.52 10.65 10.78 Avg Plan Exposure (G!Wfi=T 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 MAPLHGR 10.87 10.95 11.03 11.12 11.14 11.10 11.07 11.04 10.99 Avg Plan Exposure 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 57.92 MAPLHGR (kW/te) 10.88 10.53 10.10 9.57 9.05 8.52 7.98 6.32 4.87


Exelon Nuclear - Nuclear Fuels                                                 EXELON-COLR-P3CI 5 P3C1 5 Core Operating Limits Report                                                Page 11, Rev. 0 FIGURE 4 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE14-PlODNAB411-14GZ-10OT-150-T-2466 zr it E
Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 11, Rev. 0 FIGURE 4 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE14-PlODNAB411-14GZ-10OT-150-T-2466 zrit E
:3 IC a
:3 IC a
71 CL 2
71 CL 2
0.0   5.0   10.0   15.0 20.0   2S.0   30.0   35.0   40.0 45.0   50.0 55.0   60.0 Average Planar Exposure, (GWd/ST)
0.0 5.0 10.0 15.0 20.0 2S.0 30.0 35.0 40.0 Average Planar Exposure, (GWd/ST) 45.0 50.0 55.0 60.0 Avg Plan Exposure (Gwri/sr 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kW111) 10.02 10.07 10.13 10.22 10.31 10.40 10.50 10.61 10.72 Avg Plan Exposure 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 MAPLHGR 10.83 10.95 11.03 11.11 11.14 11.10 11.06 11.03 10.97 Avg Plan Exposure (GWdISq) 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 57.77 MAPLHGR (kWM) 10.84
Avg Plan                        Avg Plan                          Avg Plan Exposure       MAPLHGR        Exposure          MAPLHGR        Exposure        MAPLHGR (Gwri/sr         (kW111)                                        (GWdISq)          (kWM) 0.0           10.02            8.0             10.83          20.0           10.84 0.2            10.07            9.0             10.95          25.0          - 10.48 1.0            10.13           10.0              11.03          30.0            10.07 2.0            10.22            11.0             11.11          35.0             9.60 3.0           10.31            12.0             11.14           40.0             9.07 4.0           10.40            13.0              11.10           45.0            8.54 5.0            10.50            14.0             11.06          50.0             8.00 6.0           10.61            15.0             11.03          55.0             6.29 7.0            10.72            17.0              10.97          57.77            4.90
- 10.48 10.07 9.60 9.07 8.54 8.00 6.29 4.90


Exelon Nuclear - Nuclear Fuels                                                             EXELON-COLR-P3C1 5 P3C15 Core Operating Limits Report                                                              Page 12, Rev. 0 FIGURE 5 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE14-PlODNAB415-15GZ-10OT-150-T-2668 1.0 I
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 12, Rev. 0 FIGURE 5 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE14-PlODNAB415-15GZ-10OT-150-T-2668 1.0 I
E 0.0 5.0   10.0   15.0   20.0     23.0     30.0     35.0     40.0 45.0   50.0   35.0   60.0 Average Planar Exposure (GWdtST)
E 0.0 5.0 10.0 15.0 20.0 23.0 30.0 35.0 40.0 45.0 50.0 35.0 60.0 Average Planar Exposure (GWdtST)
Avg Plan                            Avg Plan                                Avg Plan Exposure       MAPLHGR            Exposure            MAPLHGR              Exposure        MAPLHGR (kW/f)          (GwdlxS3                (kWdot          (3Wd=S            (kW/ff) 0.0             9.67                8.0                 10.64            20.0               10.45 0.2            9.74               9.0                  10.70            25.0              10.12 1.0            9.84              10.0                  10.77            30.0               9.69 2.0             9.97              11.0                 10.84            35.0               9.23 3.0           10.10               12.0                  10.82            40.0              8.75 4.0            10.24              13.0                  10.76            45.0               8.30 5.0           10.38              14.0                 10.70            50.0               7.80 6.0            10.50              15.0                  10.65            55.0                5.52 7.0            10.57              17.0                  10.56            56.29              4.88
Avg Plan Exposure 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kW/f) 9.67 9.74 9.84 9.97 10.10 10.24 10.38 10.50 10.57 Avg Plan Exposure (GwdlxS3 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 MAPLHGR (kWdot 10.64 10.70 10.77 10.84 10.82 10.76 10.70 10.65 10.56 Avg Plan Exposure (3Wd=S 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 56.29 MAPLHGR (kW/ff) 10.45 10.12 9.69 9.23 8.75 8.30 7.80 5.52 4.88


Exelon Nuclear - Nuclear Fuels                                                                       EXELON-COLR-P3CI5 P3C15 Core Operating Limits Report                                                                          Page 13, Rev. 0 FIGURE 6 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE1 4-Pl ODNAB41 6-1 5GZ-l OOT-1 50T-2669
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI5 Page 13, Rev. 0 FIGURE 6 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE1 4-Pl ODNAB41 6-1 5GZ-l OOT-1 50T-2669 r
[THIS FIGURE IS REFERRED TO BY tTECHNICAL SPECIFICATION 3.2.1 11.0 10.0                                                                             _ _\ .
I
3.0     __                                                                        __
[THIS FIGURE IS REFERRED TO BY tTECHNICAL SPECIFICATION 3.2.1 11.0 10.0
7.0 I
_ _\\
7.0-3.0 4.8 0.0   1.0 10.0     11.0   20.0     21.0     30.0     35.0     40.0   4S.0       10.0   11.0   40.0 Average Planar Exposure (GWdlST)
3.0 7.0 7.0-3.0 4.8 0.0 1.0 10.0 11.0 20.0 21.0 30.0 35.0 40.0 Average Planar Exposure (GWdlST) 4S.0 10.0 11.0 40.0 Avg Plan Exposure 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kWhff) 9.61 9.69 9.79 9.90 10.01 10.13 10.26 10.34 10.41 Avg Plan Exposure (GWdL3gr 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 MAPLHGR jkWffl) 10.49 10.56 10.64 10.73 10.69 10.65 10.61 10.57 10.52 Avg Plan Exposure (GWH/q 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 56.17 MAPLHGR 10.45 10.12 9.70 9.27 8.82 8.33 7.81 5.47 4.89
Avg Plan                              Avg Plan                                    Avg Plan Exposure           MAPLHGR            Exposure              MAPLHGR              Exposure              MAPLHGR (kWhff)          (GWdL3gr                  jkWffl)          (GWH/q 0.0               9.61                8.0                   10.49                  20.0               10.45 0.2              9.69                 9.0                    10.56                  25.0                10.12 1.0              9.79                10.0                  10.64                  30.0                 9.70 2.0               9.90                11.0                   10.73                  35.0                 9.27 3.0             10.01                12.0                  10.69                  40.0                  8.82 4.0              10.13                13.0                  10.65                  45.0                 8.33 5.0               10.26                14.0                   10.61                  50.0                 7.81 6.0              10.34                15.0                  10.57                  55.0                  5.47 7.0              10.41                17.0                  10.52                  56.17                4.89


Exelon Nuclear - Nuclear Fuels                                                                     EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report                                                                      Page 14, Rev. 0 FIGURE 7 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 14, Rev. 0 FIGURE 7 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VAUD FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE AND MAX 90 *F FWTR (Symmetric Feedwater Heating) 1.1 (85.1.000)     (100,1.000 1.0 (65,0.60 0.9  -
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VAUD FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE AND MAX 90 *F FWTR (Symmetric Feedwater Heating) 1.1 1.0 0.9 -
MAPLHGR(p) - MAPFAC(p) x MAPUlGR(std) 0.8  -
0.8 -
(30,0.750)   /                   For P< 25%: No Thermal Umits Monitoring Requirsd No limits specified la.
la.
0.7-                                                    For 25% 1 P < P(Bypass):
6 0.7-LI CL E11 0.6-0I
* 60% Flow                (P(Bypass) - 30% for PBAPS Uhits 2 & 3)
: a.
CL LI                                            MAPFAC(p) - 0.60 +0.00320 x (P-30) For Flow S 60%
0.5 -
MAPFAC(p) . 0.568 +0.00720 x (P-S0) For Flow > 60%
(85.1.000)
(25,0.584) <3o.6o0)
(100,1.000 (65,0.60 MAPLHGR(p) - MAPFAC(p) x MAPUlGR(std)
E110.6-                                      For 30% 5 P < 65%:     MAPFAC(p) . 0.960 + 0.006 x (P-65)
(30,0.750)  
For 65% _ P < 85%:     MAPFAC(p) - 1.000 + 0.002 x (P-85) 0I                                                  For 85% 5 P: MAPFAC(p)     - 1.000
/
: a. 0.5 - (25.0.32
For P < 25%: No Thermal Umits Monitoring Requirsd No limits specified 60% Flow (25,0.584) <3o.6o0)
                              **    > 60% Flow 0.4 -
(25.0.32
0.3-0.2I 20     25     30     35   40 45 50   55     60     65     70     75     80     85   90     95   100 Power (%Rated)
> 60% Flow For 25% 1 P < P(Bypass):
(P(Bypass) - 30% for PBAPS Uhits 2 & 3)
MAPFAC(p) - 0.60 + 0.00320 x (P-30) For Flow S 60%
MAPFAC(p). 0.568 + 0.00720 x (P-S0) For Flow > 60%
For 30% 5 P < 65%:
MAPFAC(p). 0.960 + 0.006 x (P-65)
For 65% _ P < 85%:
MAPFAC(p) - 1.000 + 0.002 x (P-85)
For 85% 5 P: MAPFAC(p) - 1.000 0.4 -
0.3-0.2I 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)


Exelon Nuclear - Nuclear Fuels                                                                             EXELON-COLR-P3CI 5 P3C1 5 Core Operating Limits Report                                                                                Page 15, Rev. 0 FIGURE 8 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)
Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 15, Rev. 0 FIGURE 8 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)
ThIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1, 3.3.4.2 and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS AND MAX 90 &deg;F FWTR (Symmetric Feedwater Heating) 1.1 -
ThIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1, 3.3.4.2 and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS AND MAX 90 &deg;F FWTR (Symmetric Feedwater Heating) 1.1 -
(95.1.000) 1.0 00) 0.9 0.8 (30.0.700)
1.0 0.9 CL U.I VE I
CL 0.-
0.8 0.7 -
U.I                                / s6 0 %Flow             MAPLHGRtp)   = MAPFAC0p) x MAPLHGR(std)
0.6 -
                                        */                         For P< 25%: No Thermnal ULmit Monitorig Requied
0.5 -
                                    . >                                            No bmitsspecffied 0.6  -
(95.1.000)
VE
(30.0.700)
                          /
/
(30,0.572)                               For 25% S P < P(Bypuss):
s60% Flow MAPLHGRtp) = MAPFAC0p) x MAPLHGR(std)
* /
For P< 25%: No Thermnal ULmit Monitorig Requied No bmits specffied (30,0.572)
For 25% S P < P(Bypuss):
(P(Bypass) = 30% for PBAPS Units 2 & 3)
(P(Bypass) = 30% for PBAPS Units 2 & 3)
0.-
/
MAPFAC(p)
* 0.572 + 0.01300 x (P-40) For Flow S 60%
(25,0107) ' (80.480)
(25,0107) ' (80.480)
MAPFAC(p)
MAPFAC(p)
* 0.572 +0.01300 x (P-40) For Flow S 60%
* 0.480 + 0.00780 x (P-30) For Flow > 60%
For30%SP - 85%:
MAPFAC(p) =0.930 +0.00418 x (P-as)
(25,0 For 85%SPc 96%:
MAPFAC(p)=1.000+0.0070x(PQ5)
For 95% S P:
MAPFAC(p)
MAPFAC(p)
* 0.480 +0.00780 x (P-30) For Flow > 60%
For30%SP - 85%:      MAPFAC(p) =0.930 +0.00418 x (P-as)
(25,0                                  For 85%SPc 96%:        MAPFAC(p)=1.000+0.0070x(PQ5) 0.4  -
For 95% S P: MAPFAC(p)
* 1.000
* 1.000
                            .       '      >0%Flow
.6
                                            .6 0.3-ns u.cc 20     25     30       35   40   45 50     55     60     65     70     75     80     85     90     95 100 Power (%Rated)
>0%Flow 00) 0.4 -
0.3-ns u.cc 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)


Exelon Nuclear - Nuclear Fuels                                                 EXELON-COLR-P3CI 5 P3CI 5 Core Operating Limits Report                                                  Page 16, Rev. 0 FIGURE 9 FLOW DEPENDENT MAPLHGR MULTIPLIER MAPFAC(F)
Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 16, Rev. 0 FIGURE 9 FLOW DEPENDENT MAPLHGR MULTIPLIER MAPFAC(F)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR TWO LOOP RECIRC FLOW (Symmetric Feedwater Heating) 1.1 1.0 -
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR TWO LOOP RECIRC FLOW (Symmetric Feedwater Heating) 1.1 1.0 -
0.9 A C0.8   -
0.9 A C0.8 -
MAPLHGR(F) = MAPFAC(F) x M.APLHGR(std)
0.
MAPLHGRstd = Standard MAPIJ HIGR Umits
0.6 0.5 -
: 0.                        M0.M0     For Two Loop Operation, > 70% iWT MAPFAC(F) = (0.0268 x (WT - 70)/10 + 0.9732), OR
MAPLHGR(F) = MAPFAC(F) x M.
                                                  = 1.0; whichever Is lower I
MAPLHGRstd = Standard MAPIJ M0.M0 For Two Loop Operation, > 70% i MAPFAC(F) = (0.0268 x (WT -
0.6 For Two Loop Operation, S 70% 1MT MAPFAC(F) = {0.6682 x (Wc/l( )0)+ 0.5055) 0.5 -                            WT= % Rated Core Flow 0.4 10     20       30     40 50       60       70       80       90       100     110 CORE FLOW (% RATED)
= 1.0; whichever Is I For Two Loop Operation, S 70% 1 MAPFAC(F) = {0.6682 x (Wc/l(
WT= % Rated Core Flow APLHGR(std)
HIGR Umits WT 70)/10 + 0.9732), OR lower MT
)0)+ 0.5055) 0.4 10 20 30 40 50 60 70 80 90 100 CORE FLOW (% RATED) 110


Exelon Nuclear - Nuclear Fuels                                             EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report                                              Page 17, Rev. 0 FIGURE 10 FLOW DEPENDENT MAPLHGR MULTIPLIER MAPFAC(F)
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 17, Rev. 0 FIGURE 10 FLOW DEPENDENT MAPLHGR MULTIPLIER MAPFAC(F)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 AND 3.4.1 VALID FOR SINGLE LOOP RECIRC FLOW (Symmetric Feedwater Heating) 1.1 I                       MAPLHGR(F) = MAPFAC(F) x MAPLHGRstd MAPLHGRstd = Standard MAPLHGR Umits MAPFAC(F) = (Af x WT / 100 +Bf), OR
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 AND 3.4.1 VALID FOR SINGLE LOOP RECIRC FLOW (Symmetric Feedwater Heating) 1.1 I
                                                    = 0.73; whichever Is lower 0.9 +
MAPLHGR(F) = MAPFAC(F) x MAPLHGRstd MAPLHGRstd = Standard MAPLHGR Umits MAPFAC(F) = (Af x WT / 100 + Bf), OR
WT = % Rated Core Flow Ar = 0.6682, Bf = 0.5055 0.8 +
= 0.73; whichever Is lower WT = % Rated Core Flow Ar = 0.6682, Bf = 0.5055 0.9 +
a-                                                                             0.73 WIC 0.7 +
0.8 +
0.6 -
a-WIC 0.7 +
0.572 0.5 -
0.73 0.6 -
0.4 10   20       30 40 50       60     70       80        90    100      110 Core Flow (% Rated)
0.572 0.5 -
0.4 10 20 30 40 50 60 70 Core Flow (% Rated) 80 90 100 110


Exelon Nuclear - Nuclear Fuels                                                   EXELON-COLR-P3C1 5 P3C15 Core Operating Limits Report                                                    Page 18, Rev. 0 TABLE1 OPERATING LIMIT MINIMUM CRITICAL POWER RATIO (OLMCPR)
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 18, Rev. 0 TABLE1 OPERATING LIMIT MINIMUM CRITICAL POWER RATIO (OLMCPR)
Applicable to all fuel types Use in conjunction with Figures 11, 12, 13, 18, 19, 20, and 21 These Tables are referred to by Technical Specification 3.2.2, 3.4.1 and 3.7.6 TBV in Service and TBV out of Service               RPT OOS RPT in Service         (3 or more TBVOOS)
Applicable to all fuel types Use in conjunction with Figures 11, 12, 13, 18, 19, 20, and 21 These Tables are referred to by Technical Specification 3.2.2, 3.4.1 and 3.7.6 TBV in Service and TBV out of Service RPT OOS RPT in Service (3 or more TBVOOS)
______                      TBVOOS)I~~~~~~~~~~~~~~~~~
TBVOOS)I~~~~~~~~~~~~~~~~~
Option B IOption A Option B Option A Option B 1Option A
Option B IOption A Option B Option A Option B 1Option A
                                                      = 1 (1)
=r
                                                      =r                  'C=1 (')   'r= 0 (   'r=()
= 1 (1)
Two Loop       BOC to EOR -2000         1.32         1.35         1.36     1.39       1.39       1.50 Operation           MWd/ST EOR-2000 MWdSTto           1.37         1.40         1.42     1.45       1.45       1.62 EOC Single Loop     BOC to EOR -2000       1           1.38(3)       1.38     1.41       1.41       1.52 Operation (2)       MWd/ST EOR - 2000 MWd/ST to       1.39         1.42         1.44     1.47       1.47       1.64 EOC NOTES:
'C=1 (')
'r= 0 (
'r=()
Two Loop BOC to EOR -2000 1.32 1.35 1.36 1.39 1.39 1.50 Operation MWd/ST EOR-2000 MWdSTto 1.37 1.40 1.42 1.45 1.45 1.62 EOC Single Loop BOC to EOR -2000 1
1.38(3) 1.38 1.41 1.41 1.52 Operation (2)
MWd/ST EOR - 2000 MWd/ST to 1.39 1.42 1.44 1.47 1.47 1.64 EOC NOTES:
: 1) When Tau does not equal 0 or 1, use linear interpolation.
: 1) When Tau does not equal 0 or 1, use linear interpolation.
: 2) For single-loop operation, the MCPR operating limit is 0.02 greater than the two loop value except when the Two Loop Operation MCPR operating limit is less than 1.36 (consistent with Reference 16).
: 2) For single-loop operation, the MCPR operating limit is 0.02 greater than the two loop value except when the Two Loop Operation MCPR operating limit is less than 1.36 (consistent with Reference 16).
Line 219: Line 249:
(Reference 16)
(Reference 16)


Exelon Nuclear - Nuclear Fuels                                                                       EXELON-COLR-P3CI5 P3C1 5 Core Operating Limits Report                                                                       Page 19, Rev. 0 FIGURE 11 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 VALID FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE AND MAX 90 oF FWTR (Symmetric Feedwater Heating) 4.0 3.8 3.8                                     Limit MCPR (P)- Kp x Operting htMP(10 r~~~~~~~~~~Operating 3.6                                           For P< 25%: No Thermal Urits Monftrng Required No Imis spedfie 3.4                                                       For 25% S P < P(Bypass):
Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3CI5 P3C1 5 Core Operating Limits Report Page 19, Rev. 0 FIGURE 11 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 VALID FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE AND MAX 90 oF FWTR (Symmetric Feedwater Heating) 4.0 3.8 3.8 r~~~~~~~~~~Operating Limit MCPR (P) - Kp x Operting htMP(10 3.6 For P< 25%: No Thermal Urits Monftrng Required No Imis spedfie 3.4 For 25% S P < P(Bypass):
(P(Bypass)
(P(Bypass)
* 30% for PBAPS Units 2 a 3) 3.2                                           OLMCPR(p)
* 30% for PBAPS Units 2 a 3) 3.2 OLMCPR(p)
* 2.40 +0.02 x (30-P) For Flow S 60%
* 2.40 + 0.02 x (30-P) For Flow S 60%
OLMCPR(p) - 2.55 +0.04 x (30.P) For Flow > 60%
OLMCPR(p) - 2.55 + 0.04 x (30.P) For Flow > 60%
3.0 60 FlowFor30%             SPc65%: K(P)-1.131 +0.00597x(65-P) 3:                   6096 Flow
3.0 60 FlowFor30%
                                      >~~~~~
SPc65%: K(P)-1.131 +0.00597x(65-P) 3:  
t   2.8 -                                         For65% SP: K(p)-1.000+0.00375x(100.P)
>~~~~~
(52.75
6096 Flow t
            ,  2.6 (252.i0)     (30,2.55) 2.4           ,(30,2.40)
2.8 -
                                      , 60%
For65% SP: K(p)-1.000+0.00375x(100.P)
                                          '  Flow 2.0 -
(52.75 2.6 (252. i0)
1.8 y   1.6     .
(30,2.55) 2.4  
          .2 1.4       .        (30.1.340)
,(30,2.40) 60% Flow 2.0 -
              ~1.2 (100,1.0) 1.012       ~
1.8 y
20 25       30     35   40   45   50   55     60   65     70     75   80     85   90 95     100 Power (%Rated)
1.6  
.2 1.4 (30.1.340)
~1.2 (100,1.0) 1.012  
~
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)


Exelon Nuclear - Nuclear Fuels                                                                   EXELON-COLR-P3CI 5 P3C 5 Core Operating Limits Report                                                                      Page 20, Rev. 0 FIGURE 12 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2, 3.3.4.2 and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS AND MAX 90 OF FWTR (Symmetric Feedwater Heating) 4.0 3.8 (25.3.75)
Exelon Nuclear - Nuclear Fuels P3C 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 20, Rev. 0 FIGURE 12 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2, 3.3.4.2 and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS AND MAX 90 OF FWTR (Symmetric Feedwater Heating) 4.0 3.8 3.6 3.4.
                                    > 60% Flow       Operating UmH MCPR (P) . Kp x Operating Umit MCPR 3.6                          *                                    ~~~~~~~~~~~~~~~~(100)
3.2
For P<c25%: No Thernal Umits Monitoring Reqidred 3.4.      1-*5)\s0                                           No limits specified (30 3.25)                         For 25% S P c P(Bypass):
.2 0
3.2          \                                   (P(Bypass) 30% for PBAPS Units 2 & 3)
3.0 2.8 2.6 2.4 (25.3.75)
OLMCPR(p) . 2.75 + 0.10 x (30-P) For Flow S 60%
> 60% Flow Operating UmH MCPR (P). Kp x Operating Umit MCPR
3.0                                        OLMCPR(p) 3.25 +0.10 x (30-P) For Flow > 60%
~~~~~~~~~~~~~~~~(100)
        .2 2.8            * \.                       For30% SP-c65%:       K(P).1.131+0.00597x(65-P)
For P<c 25%: No Thernal Umits Monitoring Reqidred 1-*5) \\s0 No limits specified (30 3.25)
For 25% S P c P(Bypass):
\\
(P(Bypass) 30% for PBAPS Units 2 & 3)
OLMCPR(p). 2.75 + 0.10 x (30-P) For Flow S 60%
OLMCPR(p) 3.25 + 0.10 x (30-P) For Flow > 60%
* \\.
For30% SP-c65%:
K(P).1.131+0.00597x(65-P)
(30, 2.75)
(30, 2.75)
For 65% S P: K(p) =1.000 +0.00375 x (100- P) 2.6 0
For 65% S P: K(p) =1.000 + 0.00375 x (100- P)
2.4      *        . S 60% Flow 2.2 2.0 la 1.8
S 60% Flow
        'a 1.6 1.4               :(30,1.340) 1.2-(100.1.0) 1.0 _-
:(30,1.340)
20 25     30       35   40 45 50   55     60     65     70     75   80   85     90   95     100 Pawer (%Rated)
(1 00.1.0) 2.2 la
'a I
2.0 1.8 1.6 1.4 1.2-1.0 _-
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Pawer (% Rated)


Exelon Nuclear - Nuclear Fuels                                                   EXELON-COLR-P3C1 5 P3C15 Core Operating Limits Report                                                    Page 21, Rev. 0 FIGURE 13 FLOW DEPENDENT MCPR LIMITS, OLMCPR(F)
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 21, Rev. 0 FIGURE 13 FLOW DEPENDENT MCPR LIMITS, OLMCPR(F)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 VALID FOR ALL CONDITIONS (Symmetric Feedwater Heating) 2.00 For Two Loop Operation, SLMCPR c 1.12 1.00 MCPR(F) = The Maximum of EITHER 1.25 OR { -0.5784 x (WTI100)+ 1.7073) 1.80                          WT= % Rated Core Flow 1.70  1.7073 IL.1.60 A.
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 VALID FOR ALL CONDITIONS (Symmetric Feedwater Heating) 2.00 1.00 1.80 1.70 IL.1.60 A.U 0 1.50 1.40 1.30 1.20 1.10 For Two Loop Operation, SLMCPR c 1.12 MCPR(F) = The Maximum of EITHER 1.25 OR { -0.5784 x (WTI100)+ 1.7073)
U
WT= % Rated Core Flow 1.7073
                                      .. 534 0 1.50 1.40 1.30 1.25               1.25' 1.20 1.10 0     10   20   30       40     50     60       70   80    90      100    110 Core Flow (% Rated)
..534 1.25 1.25' 0
10 20 30 40 50 60 70 Core Flow (% Rated) 80 90 100 110


Exelon Nuclear- Nuclear Fuels                                                 EXELON-COLR-P3CI 5 P3C1 5 Core Operating Limits Report                                                Page 22, Rev. 0
Exelon Nuclear-Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 22, Rev. 0
                                            .BIJE2 ROD BLOCK MONITOR ANALYTICAL LIMITS, ALLOWABLE VALUES, AND MCPR LIMITS THIS TABLE ISREFERRED TO BY TECHNICAL SPECIFICATION 3.3.2.1 Applicability:           BOC to EOC ANALYTICAL         ALLOWABLE             MCPR FUNCTION                         LIMIT(1 )           VALUE( 1 )       LIMIT Low Power Range - Upscale                       < 123.0%             < 121.2%         < 1.70(2)
.BIJE2 ROD BLOCK MONITOR ANALYTICAL LIMITS, ALLOWABLE VALUES, AND MCPR LIMITS THIS TABLE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.3.2.1 Applicability:
(Low Trip Setpoint)                                                                     < 1.40 (3)
BOC to EOC ANALYTICAL ALLOWABLE MCPR FUNCTION LIMIT(1)
VALUE(1)
LIMIT Low Power Range - Upscale  
< 123.0%  
< 121.2%  
< 1.70(2)
(Low Trip Setpoint)  
< 1.40 (3)
Intermediate Power Range - Upscale
Intermediate Power Range - Upscale
* 118.0%             < 116.2%         < 1.70 (2)
* 118.0%  
(Intermediate Trip Setpoint)                                   _<1.40                           (3)
< 116.2%  
High Power Range - Upscale                     < 113.2%             S 111.4%         < 1.70 (2)
< 1.70 (2)
(High Trip Setpoint)                                                                   < 1.40 (3)
(Intermediate Trip Setpoint)
Inop                                               N/A                 N/A           < 1.70(2)
_<1.40 (3)
                                                                                        < 1.40 (3)
High Power Range - Upscale  
(1)   These setpoints (with RBM filter time constant between 0.1 seconds and 0.55 seconds) are based on a cycle-specific rated RWE MCPR limit which is less than or equal to the minimum cycle OLMCPR (see COLR references 2, 5 and 13).
< 113.2%
(2)   This is the MCPR limit (given THERMAL POWER 2 28.4% and < 90% RTP) below which the RBM is required to be OPERABLE (see COLR references 2 and 5 and TS Table 3.3.2.1-1).
S 111.4%  
(3)   This is the MCPR limit (given THERMAL POWER 2 90% RTP) below which the RBM Is required to be OPERABLE (see COLR references 2 and 5 and TS Table 3.3.2.1-1).
< 1.70 (2)
(High Trip Setpoint)  
< 1.40 (3)
Inop N/A N/A  
< 1.70(2)
< 1.40 (3)
(1)
These setpoints (with RBM filter time constant between 0.1 seconds and 0.55 seconds) are based on a cycle-specific rated RWE MCPR limit which is less than or equal to the minimum cycle OLMCPR (see COLR references 2, 5 and 13).
(2)
This is the MCPR limit (given THERMAL POWER 2 28.4% and < 90% RTP) below which the RBM is required to be OPERABLE (see COLR references 2 and 5 and TS Table 3.3.2.1-1).
(3)
This is the MCPR limit (given THERMAL POWER 2 90% RTP) below which the RBM Is required to be OPERABLE (see COLR references 2 and 5 and TS Table 3.3.2.1-1).


Exelon Nuclear - Nuclear Fuels                                                     EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report                                                      Page 23, Rev. 0 TABLEr :
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 23, Rev. 0 TABLEr :
DESIGN LINEAR HEAT GENERATION RATE (LHGR) LIMITS' Ft EL TYEE                                             LHGR LIMi GE1 3                                                 14.4 kW/ft GE14                                                 13.4 kW/ft
DESIGN LINEAR HEAT GENERATION RATE (LHGR) LIMITS' Ft EL TYEE LHGR LIMi GE1 3 14.4 kW/ft GE14 13.4 kW/ft
        ' The LHGR limits provided above are the beginning of life (maximum) values. The LHGR limits as a function of fuel exposure are provided in Reference (3).
' The LHGR limits provided above are the beginning of life (maximum) values. The LHGR limits as a function of fuel exposure are provided in Reference (3).


Exelon Nuclear - Nuclear Fuels                                       EXELON-COLR-P3CI 5 P3C1 5 Core Operating Limits Report                                      Page 24, Rev. 0 TABEA4 TURBINE BYPASS VALVE PARAMETERS TIIRRINF RYPARS SYSTEM RFSPONSE 11MFS Maximum delay time before start of bypass valve opening following generation of the turbine bypass valve flow signal       0.10 sec Maximum time after generation of a turbine bypass valve flow signal for bypass valve position to reach 80% of full flow (includes   0.30 sec.
Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 24, Rev. 0 TABEA 4 TURBINE BYPASS VALVE PARAMETERS TIIRRINF RYPARS SYSTEM RFSPONSE 11MFS Maximum delay time before start of bypass valve opening following generation of the turbine bypass valve flow signal 0.10 sec Maximum time after generation of a turbine bypass valve flow signal for bypass valve position to reach 80% of full flow (includes 0.30 sec.
the above delay time)
the above delay time)
Minimum required number of bypass valves to maintain system operability                                 7
Minimum required number of bypass valves to maintain system operability 7


Exelon Nuclear - Nuclear Fuels                                                 EXELON-COLR-P3C 5 P3CI 5 Core Operating Limits Report                                                   Page 25, Rev. 0 APPENDIX A ASYMMETRIC FEEDWATER TEMPERATURE OPERATION Asymmetric feedwater heating (resulting from removing a heater string, or individual feedwater heaters, from operation) is the result of the specific configuration of the feedwater lines at Peach Bottom. A reduction in heating either the 'A' or the 'C' heater strings will result in a temperature mismatch between the feedwater flows entering the opposite sides of the reactor vessel.
Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3C 5 P3CI 5 Core Operating Limits Report Page 25, Rev. 0 APPENDIX A ASYMMETRIC FEEDWATER TEMPERATURE OPERATION Asymmetric feedwater heating (resulting from removing a heater string, or individual feedwater heaters, from operation) is the result of the specific configuration of the feedwater lines at Peach Bottom. A reduction in heating either the 'A' or the 'C' heater strings will result in a temperature mismatch between the feedwater flows entering the opposite sides of the reactor vessel.
Asymmetric feedwater temperature operation (AFTO) is defined as operation in a feedwater heater/string configuration which results in a specified threshold difference difference. This threshold is a function of power and flow. The curve of the threshold values is incorporated in the station procedures that govern AFTO (Reference 15).
Asymmetric feedwater temperature operation (AFTO) is defined as operation in a feedwater heater/string configuration which results in a specified threshold difference difference. This threshold is a function of power and flow. The curve of the threshold values is incorporated in the station procedures that govern AFTO (Reference 15).
As a result of analyses documented in Reference (14), a 4% penalty has been applied to the MCPR ARTS curves and a 7% penalty has been applied to the MAPLHGR ARTS curves to ensure that sufficient thermal margin exists during anticipated operational occurrences while in AFTO.
As a result of analyses documented in Reference (14), a 4% penalty has been applied to the MCPR ARTS curves and a 7% penalty has been applied to the MAPLHGR ARTS curves to ensure that sufficient thermal margin exists during anticipated operational occurrences while in AFTO.
MAPLHGR LIMITS The ARTS-based MAPLHGR power-dependent multipliers (MAPFAC(P)) for asymmetric feedwater temperature operation are provided in Appendix A, Figures 14 and 15. Figure 14 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service, maximum 90 cF FWTR, with a maximum temperature differential of 550 F between the two feedwater sparger lines. Figure 15 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPTOOS, maximum 90 oF FWTR, with a maximum temperature differential of 55&deg; F between the two feedwater sparger lines. The flow-dependent multipliers (MAPFAC(F)) for AFTO are provided in Appendix A, Figures 16 and 17 as a function of the number of recirculation loops in operation only.
MAPLHGR LIMITS The ARTS-based MAPLHGR power-dependent multipliers (MAPFAC(P)) for asymmetric feedwater temperature operation are provided in Appendix A, Figures 14 and 15. Figure 14 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service, maximum 90 cF FWTR, with a maximum temperature differential of 550 F between the two feedwater sparger lines. Figure 15 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPTOOS, maximum 90 oF FWTR, with a maximum temperature differential of 55&deg; F between the two feedwater sparger lines. The flow-dependent multipliers (MAPFAC(F)) for AFTO are provided in Appendix A, Figures 16 and 17 as a function of the number of recirculation loops in operation only.
The SLO MAPLHGR multiplier (0.73) is provided in Table 3 and applied, with a 7% penalty, through MAPFAC(F) as shown in Figure 17. MAPFAC(F) is clamped at 0.679 starting at 33.6% of rated core flow to ensure peak clad temperatures are maintained within the limits of the cycle-specific LOCA analysis for single recirculation loop and asymmetric feedwater temperature operation. The power-and flow-dependent MAPLHGR multipliers were obtained from References (10) and (12) and were adjusted with a 7% penalty as per Reference (14).
The SLO MAPLHGR multiplier (0.73) is provided in Table 3 and applied, with a 7% penalty, through MAPFAC(F) as shown in Figure 17. MAPFAC(F) is clamped at 0.679 starting at 33.6% of rated core flow to ensure peak clad temperatures are maintained within the limits of the cycle-specific LOCA analysis for single recirculation loop and asymmetric feedwater temperature operation. The power-and flow-dependent MAPLHGR multipliers were obtained from References (10) and (12) and were adjusted with a 7% penalty as per Reference (14).
MCPR IWITS The ARTS-based power-dependent MCPR limits, OLMCPR(P), for use in Technical Specification 3.2.2 during asymmetric feedwater temperature operation are provided in Appendix A, Figures 18 and 19. Figure 18 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service, maximum 90 OF FWTR, with a maximum temperature differential of 55&deg; F between the two feedwater sparger lines. Figure 19 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPTOOS, maximum 90 oF FWTR, with a maximum temperature differential of 550 F between the two feedwater sparger lines. The flow-dependent MCPR limits, OLMCPR(F), for AFTO are provided in Appendix A, Figures 20 and 21. Figure 20 is valid for all operating conditions with AFTO during the exposure period of BOC to EOR-2000 MWdIST. Figure 21 is valid for all operating conditions with AFTO during the exposure period of EOR-2000 MWd/ST to EOC. The power- and flow-dependent OLMCPR curves were obtained from References (10) and (12) and were adjusted with a 4% penalty as per Reference (14) and (20).
MCPR IWITS The ARTS-based power-dependent MCPR limits, OLMCPR(P), for use in Technical Specification 3.2.2 during asymmetric feedwater temperature operation are provided in Appendix A, Figures 18 and 19. Figure 18 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service, maximum 90 OF FWTR, with a maximum temperature differential of 55&deg; F between the two feedwater sparger lines. Figure 19 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPTOOS, maximum 90 oF FWTR, with a maximum temperature differential of 550 F between the two feedwater sparger lines. The flow-dependent MCPR limits, OLMCPR(F), for AFTO are provided in Appendix A, Figures 20 and 21. Figure 20 is valid for all operating conditions with AFTO during the exposure period of BOC to EOR-2000 MWdIST. Figure 21 is valid for all operating conditions with AFTO during the exposure period of EOR-2000 MWd/ST to EOC. The power-and flow-dependent OLMCPR curves were obtained from References (10) and (12) and were adjusted with a 4% penalty as per Reference (14) and (20).


Exelon Nuclear - Nuclear Fuels                                                                             EXELON-COLR-P3CI5 P3C15 Core Operating Limits Report                                                                             Page 26, Rev. 0 FIGURE 14 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)
Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3CI5 P3C15 Core Operating Limits Report Page 26, Rev. 0 FIGURE 14 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE, MAX 90 &deg;F FWTR, WITH MAX 55 &deg;F TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.0 (85,0.930)     (100,0.930) 0.9 0.8                                           /
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE, MAX 90 &deg;F FWTR, WITH MAX 55 &deg;F TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.0 (85,0.930)
(/0,0.698)             MAPLH4GR(p) . MAPFAC(p) x MAPLHGR(std)
(100,0.930) 0.9 0.8  
(30,0.69) 0.7 -                                               For P< 25%: No Thermal Umits Monitordng Required 60% Flow                               No limits specified For 25% S P < P(Bypass):
/
U   0.6                 3       5                           (P(Bypass) - 30% for PBAPS Units 2 &3) 0.6                     (300.558)                 MAPFAC(p) . 0.558 +0.00300 x (P-30) For Flow S 60%
(/0,0.698)
(25,0.543I                                 MAPFAC(p) - 0.528 +0.00660 x (P-30) For Flow > 60%
MAPLH4GR(p). MAPFAC(p) x MAPLHGR(std)
For 30% f P < 65%:     MAPFAC(p) . 0.893 + 0.0056 x (PW5) i 0.5               .(30.0.528)                   For 65% S P < 85%:     MAPFAC(p) . 0.930 +0.0019 x (P-85)
(30,0.69) 0.7 -
(25.0.495)       \\                                 For 85% S P: MAPFAC(p) . 0.930 0.4
For P< 25%: No Thermal Umits Monitordng Required 60% Flow No limits specified For 25% S P < P(Bypass):
                        *      .      > 60%Fbw 0.4-0.3 0.2 20     25     30     35     40     45 50     55     60     65     70     75     80     85   90   95     100 Power (%Rated)
U 0.6 3
5 (P(Bypass) - 30% for PBAPS Units 2 & 3) 0.6 (300.558)
MAPFAC(p). 0.558 + 0.00300 x (P-30) For Flow S 60%
(25,0.543I MAPFAC(p) - 0.528 + 0.00660 x (P-30) For Flow > 60%
For 30% f P < 65%:
MAPFAC(p). 0.893 + 0.0056 x (PW5) i 0.5  
.(30.0.528)
For 65% S P < 85%:
MAPFAC(p). 0.930 + 0.0019 x (P-85)
(25.0.495)  
\\\\
For 85% S P: MAPFAC(p). 0.930 0.4  
> 60%Fbw 0.4-0.3 0.2 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)


Exelon Nuclear - Nuclear Fuels                                                                     EXELON-COLR-P3C1 5 P3C1 5 Core Operating Limits Report                                                                      Page 27, Rev. 0 FIGURE 15 POWER-DEPENDENT MAPLHGR MULT1PLIER, MAPFAC(P)
Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 27, Rev. 0 FIGURE 15 POWER-DEPENDENT MAPLHGR MULT1PLIER, MAPFAC(P)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1, 3.3.4.2, and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS, MAX 90 &deg;F FWTR, WITH MAX 55 &deg;F TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.1 (95,0.930) 0.9                                                                                                         30) 0.8 0.7 (30.0.651) t ow               MAPLHGR(p) . MAPFACtp) x MAPLHGR(std)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1, 3.3.4.2, and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS, MAX 90 &deg;F FWTR, WITH MAX 55 &deg;F TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.1 0.9 0.8 0.7 U-2 0.6 E
U-                          S 60% Flow 2  0.6                                              For Pc 25%: No Theomal Umits Monitorlng Required No lmits specified E
a 0.5 0.4 0.3 0.2 (95,0.930)
                            /2   0.0.532)                               For 25% S P < P(Bypass):
(30.0.651) t ow MAPLHGR(p). MAPFACtp) x MAPLHGR(std)
(P(Bypass) a 30% for PBAPS UnIts 2 & 3) a  0.5 MAPFAC(p) = 0.532 + 0.01200 x (P-30) For Flow S 60%
S 60% Flow For Pc 25%: No Theomal Umits Monitorlng Required No lmits specified
                        .                                MAPFAC(p) . 0.428 + 0.00720 x (P-30) For Flow > 60%
/2 0.0.532)
(80.0.428)           For 30% S Pc 85%:       MAPFAC(p) . 0.865 +0.00389 x (P45) 0.4 (25,0.&sect;92)   8\                     For 85%     P < 95%:   MAPFAC(p) . 0.930 +0.00650 x (P-O5) 60% Flow                   For 95% < P:     MAPFAC(p) a 0.930 0.3 0.2 20     25       30     35     40   45 50     55     60     65     70     75     80 85     90     95 100 Power (% Rated)
For 25% S P < P(Bypass):
(P(Bypass) a 30% for PBAPS UnIts 2 & 3)
MAPFAC(p) = 0.532 + 0.01200 x (P-30) For Flow S 60%
MAPFAC(p). 0.428 + 0.00720 x (P-30) For Flow > 60%
(80.0.428)
For 30% S Pc 85%:
MAPFAC(p). 0.865 + 0.00389 x (P45)
(25,0.&sect;92) 8\\
For 85%
P < 95%:
MAPFAC(p). 0.930 + 0.00650 x (P-O5) 60% Flow For 95% < P:
MAPFAC(p) a 0.930 30) 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)


Exelon Nuclear - Nuclear Fuels                                                 EXELON-COLR-P3C1 5 P3C15 Core Operating Limits Report                                                  Page 28, Rev. 0 FIGURE 16 FLOW-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(F)
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 28, Rev. 0 FIGURE 16 FLOW-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(F)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR 2 LOOP RECIRC FLOW WITH MAX 55 OF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.0 -
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR 2 LOOP RECIRC FLOW WITH MAX 55 OF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.0 -
0.9 4 IMAPLHGR(F     MAPFAF) 0 MAPLHGd)0.930 0.8 -
0.9 4 0.8 -
0.7 4 0.6 4 g                l~~~~~MAPLHGR(F) = MAPFAC(F) x MAPLHGR(std)I I
IMAPLHGR(F 0
: 0.                             For Two Loop Operation, > 70% WT MAPFAC(F) = (0.06275 x (WT /100)+0.860975)
MAPFAF)
For Two Loop Operafion, s 70%6 WT 0.4 -                          MAPFAC(F) = (0{6217 x (WT/100)+ 0.4701)
MAPLHGd)0.930 g
WT= % Rated Core Flow 0.3 -
l~~~~~MAPLHGR(F) = MAPFAC(F) x MAPLHGR(std)I 0.7 4 0.6 4 0.
I For Two Loop Operation, > 70% WT MAPFAC(F) = (0.06275 x (WT /1 00)+0.860975)
For Two Loop Operafion, s 70%6 WT MAPFAC(F) = (0{6217 x (WT/100)+ 0.4701)
WT= % Rated Core Flow 0.4 -
0.3 -
0.2 -
0.2 -
0.1 -
0.1 -
0.0         I                       I               I       I           ITI 10      20     30     40         50       60     70     80       90 100     110 CORE FLOW (% RATED)
0.0 I
10 I
I I
I T I 20 30 40 50 60 70 80 90 100 CORE FLOW (% RATED) 110


Exelon Nuclear - Nuclear Fuels                                         EXELON-COLR-P3C15 P3C15 Core Operating Limits Report                                          Page 29, Rev. 0 FIGURE 17 FLOW-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(F)
Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C15 Page 29, Rev. 0 FIGURE 17 FLOW-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(F)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 AND 3.4.1 VALID FOR SINGLE LOOP RECIRC FLOW WITH MAX 55 &deg;F TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.0 -
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 AND 3.4.1 VALID FOR SINGLE LOOP RECIRC FLOW WITH MAX 55 &deg;F TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.0 -
0.9 0.8 0.7                     0.679                                                       0.67g 0.6 4 iL
0.9 0.8 0.7 0.679 0.67g 0.6 4 iL 0~
  < 0.5-0~
< 0.5-0.4 MAPLHGR(F) = MAPFAC(F) x MAPLHGR(std)
MAPLHGR(F) = MAPFAC(F) x MAPLHGR(std)
MAPLHGR(std) = Standard MAPLHGR Limits MAPFAC(F) = MIN(0.679, Af x WT/100 + Bf);
MAPLHGR(std) = Standard MAPLHGR Limits 0.4 MAPFAC(F) = MIN(0.679, Af x WT/100 + Bf);
: where, WT = % Rated Core Flow Af = 0.6217, Bf = 0.4701 0.34-0.2-0.1 +
where, 0.34-                                WT = % Rated Core Flow Af = 0.6217, Bf = 0.4701 0.2-0.1 +
0.0
0.0 .1     I                 I   I         1                                   I 10     20       30     40   50       60         70     80      90      100      110 CORE FLOW (% RATED)
.1 I
I I
1 I
10 20 30 40 50 60 70 CORE FLOW (% RATED) 80 90 100 110


Exelon Nuclear - Nuclear Fuels                                                                     EXELON-COLR-P3CI 5 P3C1 5 Core Operating Limits Report                                                                    Page 30, Rev. 0 FIGURE 18 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 VALID FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE, MAX 90 &deg;F FWTR, WITH MAX 55 oF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 3.0,                                                                                             l 2.864 2.8 +                               ,> 60% Flow
Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 30, Rev. 0 FIGURE 18 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 VALID FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE, MAX 90 &deg;F FWTR, WITH MAX 55 oF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 3.0, l
* 2.65 2.6+
2.864 2.8 +
2.50 2A  1                            OPERATING UMIT MCPR(P)
la M
* KP x OPERATING LIMIT MCPR(100) la M            5 60%/6 Flow              FOR Pe25%: NO THERMAL LIMITS MONITORING REQUIRED NO UMITS SPECIFIED 0
0 2.6+
2.2 +                            FOR 25% 1 P -cXK:
2A 1 2.2 +
2.0 +
1.8t 5 60%/6 Flow
,> 60% Flow
* 2.65 2.50 OPERATING UMIT MCPR(P)
* KP x OPERATING LIMIT MCPR(100)
FOR Pe25%: NO THERMAL LIMITS MONITORING REQUIRED NO UMITS SPECIFIED FOR 25% 1 P -c XK:
OLMCPR(P) a 2.50 + 0.02 x (30% -P) FOR FLOW &0%
OLMCPR(P) a 2.50 + 0.02 x (30% -P) FOR FLOW &0%
OLMCPR(P) 2.65+ 0.04 x(30% - P) FOR FLOW 360%
OLMCPR(P) 2.65 + 0.04 x (30% - P) FOR FLOW 3 60%
FOR30%SP<65%:         Kp*   1.176+0.00623x(65%-P) 2.0 +                            FOR65% SP:     Kp. 1.040+0.00389x(100%-P) 1.8t 1.3 1.6-la a-0 la. 1A +
FOR30%SP<65%:
Q 1.2     +
Kp*
3 I
1.176+0.00623x(65%-P)
1.0         I       I                 I         I           I           I         I       I 0     10       20   30         40       50         60         70        80    g0    100 Power (% Rated)
FOR65% SP:
Kp. 1.040+0.00389x(100%-P) 1.3 1.6-la a-0 la.
Q 1A +
1.2 +
3I 1.0 I
I I
I I
I I
I 0
10 20 30 40 50 60 Power (% Rated) 70 80 g0 100


Exelon Nuclear - Nuclear Fuels                                                                         EXELON-COLR-P3CI 5 P3CI 5 Core Operating Limits Report                                                                          Page 31, Rev. 0 FIGURE 19 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2,3.3.4.2, and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS, MAX 90 &deg;F FWTR, WITH MAXIMUM 55 oF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 4.0 (25, 3.90) 3.8 Operating Urnt MCPR (P) - Kp x Operating UmKt MCPR (100) 3.6                                            For P< 25%: No Thermal Urnits Monitoring Required No Emits specified 3.4.                                                        For 25% S P < P(Bypass):
Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 31, Rev. 0 FIGURE 19 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2,3.3.4.2, and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS, MAX 90 &deg;F FWTR, WITH MAXIMUM 55 oF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 4.0 3.8 3.6 3.4.
(P(Bypass) - 30% for PBAPS Units 2 & 3) 3.2              \       _~~~lo               OLMCPR(p)
3.2 IL 3.0 r5 2.8 ILU B 2.6 0
* 2.86 +Q.10 x (30-P) For Flow S 60%
2.4 2.2 2.0 1.8 S: 1.6 he
                                  \ >                     ~~~~~~~OLMCPR(p)
: c.
                                                                        .3.38+0.10 x(30-P)   For Flow >- 60%
1.4 E 1.2 1.
IL  3.0
1.0 (25, 3.90)
                                  \i                     ~~~~~~~For 30% S P -c 65%: K(P) . 1.176 +0.00623 x (65 - P) r5  2.8 S (30, 2 86)           ~~~For 65% S P.: K(p) .1.04 +0.00389 x (100- P)
Operating Urnt MCPR (P) - Kp x Operating UmKt MCPR (100)
IL U
For P< 25%: No Thermal Urnits Monitoring Required No Emits specified For 25% S P < P(Bypass):
B  2.6 0
(P(Bypass) - 30% for PBAPS Units 2 & 3)
2.4 2.2
\\
                        .,    01.394 2.0
_~~~lo OLMCPR(p)
                                                  . \                                                             /~~~~~~~~~~~~~~~~~~~~~~~(101.4 1.8 S: 1.6 he
* 2.86 + Q.10 x (30-P) For Flow S 60%
: c. 1.4 E 1.2 1.
\\ >  
1.0 20 25     30     35     40   45   50   55     60     65     70     75     80     85   90   95     100 Power (%Rated)
~~~~~~~OLMCPR(p)  
.3.38 +0.10 x(30-P) For Flow >- 60%
\\i  
~~~~~~~For 30% S P -c 65%:
K(P). 1.176 + 0.00623 x (65 - P)
S (30, 2 86)  
~~~For 65% S P.: K(p).1.04 + 0.00389 x (100- P) 0 1. 394
\\
/~~~~~~~~~~~~~~~~~~~~~~~(101.4 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)


Exelon Nuclear - Nuclear Fuels                                     EXELON-COLR-P3CI 5 P3CI 5 Core Operating Limits Report                                    Page 32, Rev. 0 FIGURE 20 FLOW-DEPENDENT MCPR LIMITS, OLMCPR(F)
Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 32, Rev. 0 FIGURE 20 FLOW-DEPENDENT MCPR LIMITS, OLMCPR(F)
THIS FIGURE     IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 AND 3.4.1 VALID FOR ALL CONDITIONS WITH MAXIMUM 55 OF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) [BOC to EOR-2000 MWdIST]
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 AND 3.4.1 VALID FOR ALL CONDITIONS WITH MAXIMUM 55 OF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) [BOC to EOR-2000 MWdIST]
0       10     20     30 40     60   60   70 so    90    100    110 Core Flow (% Rated)
0 10 20 30 40 60 60 Core Flow (% Rated) 70 so 90 100 110


Exelon Nuclear - Nuclear Fuels                                                       EXELON-COLR-P3CI 5 P3C1 5 Core Operating Limits Report                                                        Page 33, Rev. 0 FIGURE 21 FLOW-DEPENDENT MCPR LIMITS, OLMCPR(F)
Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 33, Rev. 0 FIGURE 21 FLOW-DEPENDENT MCPR LIMITS, OLMCPR(F)
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 AND 3.4.1 VALID FOR ALL CONDITIONS WITH MAXIMUM 55 OF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) [EOR-2000 MWdIST to EOCJ 2.00 1.90 EOR-2000 MWd/ST to EOC For Two Loop Operation, SLMCPR :S1.12 MCPR(F) = The Maximum of EITHER 1.425 1.80                                      OR { -0.4443 x (WTl1 00)+ 1.7756}
THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 AND 3.4.1 VALID FOR ALL CONDITIONS WITH MAXIMUM 55 OF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) [EOR-2000 MWdIST to EOCJ 2.00 1.90 1.80 EOR-2000 MWd/ST to EOC For Two Loop Operation, SLMCPR :S1.12 MCPR(F) = The Maximum of EITHER 1.425 OR { -0.4443 x (WTl1 00)+ 1.7756}
1.76                1WT= % Rated Core Flow 1.704 hi1.60 C.
1.704 hi 1.60 C.
E c-0 1.60 1.40                                                            1.425           1.425 1.30 1.20 1.10 0     10 20   30       40     50     so     70      80      90    100      110 Core Flow (% Rated)}}
E c-0 1.60 1.76 1WT=
% Rated Core Flow 1.425 1.425 1.40 1.30 1.20 1.10 0
10 20 30 40 50 so Core Flow (% Rated) 70 80 90 100 110}}

Latest revision as of 07:16, 16 January 2025

Issuance of the Core Operating Limits Report for Reload 14, Cycle 15, Revision 0
ML032880767
Person / Time
Site: Peach Bottom Constellation icon.png
Issue date: 10/03/2003
From: Gallagher M
Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML032880767 (34)


Text

Exek n 5m Exelon Nuclear 200 Exelon Way Kennett Square, PA 19348 www.exeloncorp.com Nuclear TS 5.6.5.d October 3, 2003 U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington DC 20555 Peach Bottom Atomic Power Station, Unit 3 Facility Operating License No. DPR-56 NRC Docket No 50-278

Subject:

Issuance of the Core Operating Limits Report for Reload 14, Cycle 15, Revision 0

Dear Sir/Madam:

Enclosed is a copy of the Core Operating Limits Report (COLR) for Peach Bottom Atomic Power Station (PBAPS), Unit 3, Reload 14, Cycle 15, Revision 0. Revision 0 of this report incorporates the revised cycle specific parameters resulting from the new core configuration implemented during the PBAPS, Unit 3 outage.

This COLR is being submitted to the NRC in accordance with PBAPS, Unit 3 Technical Specifications (TS) Section 5.6.5.d.

If you have any questions, please do not hesitate to contact us.

Very truly yours, Michael P. Gallagher Director, Licensing and Regulatory Affairs Exelon Generation Company, LLC Enclosure cc:

H. J. Miller, Administrator, Region I, USNRC (w/enc)

C. Smith, USNRC Senior Resident Inspector, PBAPS (w/enc)

G. F. Wunder, Project Manager, USNRC (w/enc)

C)D I

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 1, Rev. 0 CORE OPERATING LIMITS REPORT FOR PEACH BOTTOM ATOMIC POWER STATION UNIT 3 RELOAD 14, CYCLE 15 REVISION 0 Prepared By:

'101111 Date: iZ Reviewed By:

,P. C.

Date: ? V

\\

Approved By:

Date: 4,&

AL

Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 2, Rev. 0 tlqT OF EFFFFCTVE PAQFq Page(s)

Revision 1 -33 0

Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3C05 P3C1 5 Core Operating Limits Report Page 3, Rev. 0 INTRODUCTION AND

SUMMARY

This report provides the following cycle-specidfic parameter limits for Peach Bottom Atomic Power Station Unit 3 Cycle 15 (Reload 14):

Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)

ARTS MAPLHGR thermal limit multipliers Single Loop Operation (SLO) MAPLHGR multipliers Minimum Critical Power Ratio (MCPR)

ARTS MCPR thermal limit adjustments and multipliers Single Loop Operation (SLO) MCPR adjustment Rod Block Monitor (RBM) Analytical Umits, Allowable Values and MCPR Limits Linear Heat Generation Rate (LHGR)

  • Turbine Bypass Valve Parameters EOC Recirculation Pump Trip (EOC-RPT) Parameters These values have been determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met.

This report provides the means for calculating the Operating Limit MCPR and MAPLHGR thermal limits for the following conditions:

All points in the operating region of the power/flow map including Maximum Extended Load Une Limit (MELLL) down to 82.9% of rated core flow during full power (3514 MWt) operation Increased Core Flow (ICF), up to 110% of rated core flow End-of-Cycle Power Coastdown to a minimum power level of 40%

Feedwater Heaters Out of Service (FWHOOS) to 550 F temperature reduction Final Feedwater Temperature Reduction (FWTR) between End-of-Rated (EOR) and End-of-Cycle (EOC) to 900 F temperature reduction Asymmetric Feedwater Temperature Operation (AFTO) - Appendix A The Allowable Values, documented in Reference (9), for feedwater temperature as a function of thermal power for both FWHOOS and FWTR are specified in the appropriate Peach Bottom procedures.

Note that the term 'EORn refers to the cycle exposure at which operation at grated conditions is no longer possible (i.e., the cycle exposure at which cycle extension begins) based on the EOR point as documented in the current revision of the Cycle Management Report.

Also note that the following description of MAPLHGR and MCPR limits pertain to NON - AFTO. A separate description of AFTO limits and their associated ARTS figures are located in Appendix A.

Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report Page 4, Rev. 0 Preparation of this report was performed in accordance with Exelon Nuclear procedures. This report is submitted in accordance with Technical Specification 5.6.5 of Reference (1) and contains all thermal limit parameters related to the implementation of the ARTS Improvement Program and Maximum Extended Load Line Limit Analyses (ARTS/MELLLA) for Peach Bottom Unit 3 Cycle 15.

MAPLHflR LIMITS The bounding MAPLHGR limits (kW/t) for each fuel type are provided in Figures 1 through 6. The bounding MAPLHGR limits are the lowest kW/ft limits of the fuel lattices (excluding natural uranium) which comprise a given fuel type as a function of average planar exposure. The MAPLHGR figures are used when hand calculations are required as specified in Reference (4). All MAPLHGR values for each fuel type as a function of axial location and average planar exposure shall be less than or equal to the applicable MAPLHGR limits for the respective fuel and lattice types to be in compliance with Technical Specification 3.2.1. These MAPLHGR limits are specified in References (2), (3), (18),

and (19) and the process computer databank. The ARTS-based MAPLHGR power-dependent multipliers (MAPFAC(P)) are provided in Figures 7 and 8. Figure 7 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service with a maximum temperature reduction of 90° F for FWTR operation. Figure 8 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPTOOS with a maximum FWTR of 90° F. The flow-dependent multipliers (MAPFAC(F)) are provided in Figures 9 and 10 as a function of the number of recirculation loops in operation only. The SLO MAPLHGR multiplier (0.73) is applied through MAPFAC(F) as shown In Figure 10. This value is based on the GE14 fuel product line. MAPFAC(F) is clamped at 0.73 starting at 33.6% of rated core flow to ensure peak clad temperatures are maintained within the limits of the cycle-specific LOCA analysis for single recirculation loop operation.

The power-and flow-dependent MAPLHGR multipliers were obtained from References (5), (10) and (12). AFTO parameters are addressed in Appendix A.

Mr-PR LIMITS The Operating Umit MCPR (OLMCPR) for use in Technical Specification 3.2.2 for each fuel type is provided in Table 1. These values are determined by the cycle-specific fuel reload analyses in Reference (2). The Safety Limit MCPRs are documented in Section 2.1.1.2 of Reference (1).

Control rod scram time verification is required as per Technical Specification 3.1.4, "Control Rod Scram Times". Tau, a measure of scram time performance to notch position 36 throughout the cycle, is determined based on the cumulative scram time test results. The calculation of Tau shall be performed in accordance with site procedures. Unear interpolation shall be used to calculate the OLMCPR value if Tau is between 0.0 (Tau Option B) and 1.0 (Tau Option A).

Separate OLMCPR values are presented herein (Table 1) for the following domains:

  • TBVs In-Service (seven or more in-service) and RPT In-Service, maximum FWTR of 90 oF
  • TBVs Out-of-Service (three or more out-of-service) and RPT In-Service, maximum FWTR of 90 OF
  • TBVs In-Service (seven or more in-service) and RPT Out-of-Service, maximum FWTR of 90 oF The OLMCPR values are documented in Reference (2) for the GE13 and GE14 fuel designs.

The ARTS-based power-dependent MCPR limits, OLMCPR(P), for use in Technical Specification 3.2.2 are provided in Figures 11 and 12. Figure 11 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service and a maximum temperature reduction of 90 "F for FWTR operation. Figure 12 is valid for three or more (of nine)

TBVs Out-of-Service (OOS) or RPTOOS with a maximum FWTR of 90 cF. The flow-dependent

Exelon Nudear - Nuclear Fuels EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report Page 5, Rev. 0 MCPR limits, OLMCPR(F), are provided in Figure 13. Figure 13 is valid for all operating conditions with symmetric feedwater temperature operation. OLMCPR(P, F) curves were obtained from References (5), (10) and (12). AFTO parameters are addressed in Appendix A.

nVERALL GOVERNING MCPR AND MAPLHGR LIMI TS ARTS provides for power-and flow-dependent thermal limit adjustments and multipliers which allow for a more reliable administration of the MCPR and MAPLHGR thermal limits. At any given power/flow (P/F) state, all four limits are to be determined: MAPFAC(P), MAPFAC(F), OLMCPR(P),

and OLMCPR(F) from Figures 7 through 21, inclusive. The most limiting MCPR and the most limiting MAPLHGR (maximum of OLMCPR(P) and OLMCPR(F) and minimum of MAPLHGR(P) and MAPLHGR(F)] for a given (P,F) condition will be the governing limits. The'OLMCPR for each fuel type is determined by the cycle-specific fuel reload analyses in Reference (2). Rated MAPLHGR values are a composite of results obtained from bundle-specific thermal-mechanical and emergency core cooling system analyses. Supporting documentation for the ARTS-based limits is provided in References (5), (10), (12) and (14).

ROn Rl OCK MONITOR SETPOICMM The RBM power-biased Analytical Limits, Allowable Values and MCPR Limits for use in Technical Specification 3.3.2.1 are provided in Table 2 per Reference (5) with supporting documentation in References (2) and (13).

LINEAR HEAT GFNERATION RATES The beginning of life (maximum) LHGR values for each fuel type for use in Technical Specification 3.2.3 are provided in Table 3. The LHGR values as a function of fuel exposure are provided in References (3), (18), and (19). The bases for the LHGR values are documented in Reference (4).

STEAM RYPASS SYSTEM OPFRARILITY The operability requirements for the steam bvpass system are governed bv Technical Specification 3.7.6. If the requirements cannot be met, the appropriate power dependent limits for Turbine Bvpass Valves Out-of-Service (TBVOOS) must be used (Table 1 with Fiqures 8 and 12 or Figures 15 and 19). The minimum number of bypass valves to maintain system operability is seven as per References (2). (6) and (7) and Table 4. Table 4 also includes other Turbine Bvpass Valve parameters.

MoC R1FIRC1ILATION PUIMP TRIP (FnC-R)

OPFRARII L

If the EOC-RPT is inoperable, then the OLMCPR (Table 1), MAPFAC(P) (Figure 8), and OLMCPR(P) (Figure 12) values for EOC Recirculation Pump Trip Out-of-Service (RPTOOS), must be used. Appendix A contains MAPFAC(P) and OLMCPR(P) for RPTOOS and AFTO.

The measured EOC-RPT Response Times as referenced in Technical Specifications Section 3.3.4.2 and as defined in Technical Specifications Section 1.1 are:

< 0.145 seconds for TCV Fast Closure Trip (i.e. Generator Load Rejection)

< 0.155 seconds for TSV Fast Closure Trip ( i.e. Turbine Trip )

Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3CI 5 P3C15 Core Operating Limits Report Page 6, Rev. 0 A total RPT response time of 0.175 seconds is assumed in the safety analysis for both trips and is defined as the time from the turbine valves (TCV or TSV) start to close until complete arc suppression of the EOC-RPT circuit breakers.

Reference (11) provides the basis for the RPT response time.

CX)NCURRFNTTRVOOQ AND RPToOO:

Cycle 15 is not licensed for TBVOOS and RPTOOS to occur concurrently. Therefore, concurrent TBVOOS and RPTOOS is an unanalyzed condition.

REFERENCES

1) 'Technical Specifications for Peach Bottom Atomic Power Station Unit 3X, Docket No. 50-278, Appendix A to License No. DPR-56.
2) 'Supplemental Reload Ucensing Report for Peach Bottom Atomic Power Station Unit 3, Reload 14, Cycle 150, GNF Document No. 0000-001 9-2633-SRLR, Revision 0, August 2003.
3) 'Lattice Dependent MAPLHGR Report for Peach Bottom 3 Reload 14 Cycle 15', 0000-0019-2633-MAPLHR, Revision 0, August 2003.
4) "General Electric Standard Application for Reactor Fuel", NEDE-24011-P-A-14, June 2000; and NEDE-24011 -P-A-1 4-US, June 2000.
5) 'Maximum Extended Load Une Limit and ARTS Improvement Program Analyses for Peach Bottom Atomic Power Station Unit 2 and 3", NEDC-32162P, Revision 2, March 1995.
6) 'Letter from R. M. Butrovich to H. J. Diamond, 'Peach Bottom-2 Cycle 11 Turbine Bypass Valve Capacity Variation from Design Basis', January 9,1995.
7) Letter from G. V. Kumar to G. C. Storey, 'PBAPS Evaluation of Turbine Bypass Surveillance Requirements', January 19, 1995.
8) PECO Energy Calc. PM-0875, 'GE NSSS Setpoints Required to Support Power Rerate.'
9) "Peach Bottom Atomic Power Station Evaluation for Extended Final Feedwater Temperature Reduction of 900 F, NEDC-32707P, Supplement 1, May 1998.
10) "ARTS Flow-Dependent Umits with TBVOOS for Peach Bottom Atomic Power Station and Limerick Generating Station", NEDC-32847P, June 1998.
11) PECO Calculation PE-01 73, Determination of Total Time Required to Initiate the Trip Signal to the EOC-RPT Circuit Breaker".
12) "Peach Bottom Atomic Power Station Units 2 and 3 Plant and Cycle Independent ARTS Thermal Umits Analysis", NEDC - 32162P, Supplement 1, Revision 0, August 2001.
13) PECO Calculation PE-0251, Revision 1, "Power Range Neutron Monitoring System Setpoint Calculations, Peach Bottom Atomic Power Station Units 2 and 3".
14) "Safety Review for Peach Bottom Atomic Power Station Units 2 and 3 Asymmetric Feedwater Temperature Operation", NEDC-32691 P, Revision 0, May 1997.

Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3C1 5 P3C1 5 Core Operating Limits Report Page 7, Rev. 0

15) ECR 02-00478, Asymmetrc Feedwater Operation Implementation"
16) "GE1 4 Fuel Design Cycle-Independent Analyses for Peach Bottom Atomic Power Station Units 2 & 3," GENE LI 2-00880-00-01 P, September 2000
17) "Fuel Bundle Information Report for Peach Bottom 3 Reload 14 Cycle 15", GNF Document No. 0000-0019-2633-FIBR, Revision 0, August 2003
18) "Latfice Dependent MAPLHGR Report for Peach Bottom 3 Reload 13 Cycle 14m, GNF Document No. J1 1-03913MAPL, Revision 0, August 2001
19) "Lattice Dependent MAPLHGR Report for Peach Bottom Atomic Power Station Unit 3 Reload 12 Cycle 13", GNF Document No. Ji 1-03549MAPL, Revision 1, December 2000
20) CR 00171805, AFTO ARTS thermal limit penalties not applied above 100% CTP

Exelon Nuclear - Nudear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 8, Rev. 0 FIGURE 1 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE13-P9DTB407-14GZ-100T-146-T 13.0 HISFIGURE IS REFERREDTO !

TECHNICAL SPECIFICATION 32.1 12.0 f

I 6

=.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 Average Planar Exposure (GWd/BT) 45.0 50.0 55.0

£0.0 Avg Plan Exposure 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kWL0 10.41 10.48 10.59 10.73 10.87 11.01 11.12 11.24 11.38 Avg Plan Exposure (Gws 8.0 9.0 10.0 12.5 15.0 17.5 20.0 24.38 25.0 MAPLHGR 11.52 11.67 11.82 12.02 12.21 12.22 12.12 11.78 11.73 Avg Plan Exposure 30.0 32.66 35.0 40.0 45.0 50.0 55.0 56.7 57.4 MAPLHGR (kwliJ) 11.37 11.07 10.81 10.20 9.56 8.88 7.19 6.56 6.29

Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limit Report EXELON-COLR-P3C15 Page 9, Rev. 0 FIGURE 2 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE13-P9DTB404-13GZ-100T-146-T I

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 43.0 10.0 55.0 60.0 Average Planar Lcposure (GWd/BT)

Avg Plan Exposure 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR 1kW.6 10.61 10.67 10.78 10.90 11.03 11.16 11.29 11.42 11.56 Avg Plan Exposure 8.0 9.0 10.0 12.5 15.0 17.5 20.0 24.38 25.0 MAPLHGR (kW/ff) 11.70 11.83 11.94 12.05 12.17 12.21 12.09 11.84 11.81 Avg Plan Exposure 4,GwdtI 30.0 32.66 35.0 40.0 45.0 50.0 55.0 56.7 57.4 MAPLHGR 11.38 11.07 10.79 10.18 9.54 8.85 7.18 6.54 6.28

Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 10, Rev. 0 FIGURE 3 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE1 4-P1 ODNAB410-14GZ-1 00T-1 50-T-2468 14.

13.

12.

45 II.

10.

9B.

7.

6.

00 I

I 00 I'

'1 I

V 00 00 -

00 00~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

00~

~~

4.

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 Average Planar Exposure, (Gwd/ST) 60.0 Avg Plan Exposure (GWdfSI 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kW/ft) 9.84 9.91 10.02 10.17 10.30 10.41 10.52 10.65 10.78 Avg Plan Exposure (G!Wfi=T 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 MAPLHGR 10.87 10.95 11.03 11.12 11.14 11.10 11.07 11.04 10.99 Avg Plan Exposure 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 57.92 MAPLHGR (kW/te) 10.88 10.53 10.10 9.57 9.05 8.52 7.98 6.32 4.87

Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 11, Rev. 0 FIGURE 4 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE14-PlODNAB411-14GZ-10OT-150-T-2466 zrit E

3 IC a

71 CL 2

0.0 5.0 10.0 15.0 20.0 2S.0 30.0 35.0 40.0 Average Planar Exposure, (GWd/ST) 45.0 50.0 55.0 60.0 Avg Plan Exposure (Gwri/sr 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kW111) 10.02 10.07 10.13 10.22 10.31 10.40 10.50 10.61 10.72 Avg Plan Exposure 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 MAPLHGR 10.83 10.95 11.03 11.11 11.14 11.10 11.06 11.03 10.97 Avg Plan Exposure (GWdISq) 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 57.77 MAPLHGR (kWM) 10.84

- 10.48 10.07 9.60 9.07 8.54 8.00 6.29 4.90

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 12, Rev. 0 FIGURE 5 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE14-PlODNAB415-15GZ-10OT-150-T-2668 1.0 I

E 0.0 5.0 10.0 15.0 20.0 23.0 30.0 35.0 40.0 45.0 50.0 35.0 60.0 Average Planar Exposure (GWdtST)

Avg Plan Exposure 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kW/f) 9.67 9.74 9.84 9.97 10.10 10.24 10.38 10.50 10.57 Avg Plan Exposure (GwdlxS3 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 MAPLHGR (kWdot 10.64 10.70 10.77 10.84 10.82 10.76 10.70 10.65 10.56 Avg Plan Exposure (3Wd=S 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 56.29 MAPLHGR (kW/ff) 10.45 10.12 9.69 9.23 8.75 8.30 7.80 5.52 4.88

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI5 Page 13, Rev. 0 FIGURE 6 MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FUEL TYPE GE1 4-Pl ODNAB41 6-1 5GZ-l OOT-1 50T-2669 r

I

[THIS FIGURE IS REFERRED TO BY tTECHNICAL SPECIFICATION 3.2.1 11.0 10.0

_ _\\

3.0 7.0 7.0-3.0 4.8 0.0 1.0 10.0 11.0 20.0 21.0 30.0 35.0 40.0 Average Planar Exposure (GWdlST) 4S.0 10.0 11.0 40.0 Avg Plan Exposure 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 MAPLHGR (kWhff) 9.61 9.69 9.79 9.90 10.01 10.13 10.26 10.34 10.41 Avg Plan Exposure (GWdL3gr 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.0 MAPLHGR jkWffl) 10.49 10.56 10.64 10.73 10.69 10.65 10.61 10.57 10.52 Avg Plan Exposure (GWH/q 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 56.17 MAPLHGR 10.45 10.12 9.70 9.27 8.82 8.33 7.81 5.47 4.89

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 14, Rev. 0 FIGURE 7 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VAUD FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE AND MAX 90 *F FWTR (Symmetric Feedwater Heating) 1.1 1.0 0.9 -

0.8 -

la.

6 0.7-LI CL E11 0.6-0I

a.

0.5 -

(85.1.000)

(100,1.000 (65,0.60 MAPLHGR(p) - MAPFAC(p) x MAPUlGR(std)

(30,0.750)

/

For P < 25%: No Thermal Umits Monitoring Requirsd No limits specified 60% Flow (25,0.584) <3o.6o0)

(25.0.32

> 60% Flow For 25% 1 P < P(Bypass):

(P(Bypass) - 30% for PBAPS Uhits 2 & 3)

MAPFAC(p) - 0.60 + 0.00320 x (P-30) For Flow S 60%

MAPFAC(p). 0.568 + 0.00720 x (P-S0) For Flow > 60%

For 30% 5 P < 65%:

MAPFAC(p). 0.960 + 0.006 x (P-65)

For 65% _ P < 85%:

MAPFAC(p) - 1.000 + 0.002 x (P-85)

For 85% 5 P: MAPFAC(p) - 1.000 0.4 -

0.3-0.2I 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)

Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 15, Rev. 0 FIGURE 8 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)

ThIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1, 3.3.4.2 and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS AND MAX 90 °F FWTR (Symmetric Feedwater Heating) 1.1 -

1.0 0.9 CL U.I VE I

0.8 0.7 -

0.6 -

0.5 -

(95.1.000)

(30.0.700)

/

s60% Flow MAPLHGRtp) = MAPFAC0p) x MAPLHGR(std)

  • /

For P< 25%: No Thermnal ULmit Monitorig Requied No bmits specffied (30,0.572)

For 25% S P < P(Bypuss):

(P(Bypass) = 30% for PBAPS Units 2 & 3)

/

MAPFAC(p)

  • 0.572 + 0.01300 x (P-40) For Flow S 60%

(25,0107) ' (80.480)

MAPFAC(p)

  • 0.480 + 0.00780 x (P-30) For Flow > 60%

For30%SP - 85%:

MAPFAC(p) =0.930 +0.00418 x (P-as)

(25,0 For 85%SPc 96%:

MAPFAC(p)=1.000+0.0070x(PQ5)

For 95% S P:

MAPFAC(p)

  • 1.000

.6

>0%Flow 00) 0.4 -

0.3-ns u.cc 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)

Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 16, Rev. 0 FIGURE 9 FLOW DEPENDENT MAPLHGR MULTIPLIER MAPFAC(F)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR TWO LOOP RECIRC FLOW (Symmetric Feedwater Heating) 1.1 1.0 -

0.9 A C0.8 -

0.

0.6 0.5 -

MAPLHGR(F) = MAPFAC(F) x M.

MAPLHGRstd = Standard MAPIJ M0.M0 For Two Loop Operation, > 70% i MAPFAC(F) = (0.0268 x (WT -

= 1.0; whichever Is I For Two Loop Operation, S 70% 1 MAPFAC(F) = {0.6682 x (Wc/l(

WT= % Rated Core Flow APLHGR(std)

HIGR Umits WT 70)/10 + 0.9732), OR lower MT

)0)+ 0.5055) 0.4 10 20 30 40 50 60 70 80 90 100 CORE FLOW (% RATED) 110

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 17, Rev. 0 FIGURE 10 FLOW DEPENDENT MAPLHGR MULTIPLIER MAPFAC(F)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 AND 3.4.1 VALID FOR SINGLE LOOP RECIRC FLOW (Symmetric Feedwater Heating) 1.1 I

MAPLHGR(F) = MAPFAC(F) x MAPLHGRstd MAPLHGRstd = Standard MAPLHGR Umits MAPFAC(F) = (Af x WT / 100 + Bf), OR

= 0.73; whichever Is lower WT = % Rated Core Flow Ar = 0.6682, Bf = 0.5055 0.9 +

0.8 +

a-WIC 0.7 +

0.73 0.6 -

0.572 0.5 -

0.4 10 20 30 40 50 60 70 Core Flow (% Rated) 80 90 100 110

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 18, Rev. 0 TABLE1 OPERATING LIMIT MINIMUM CRITICAL POWER RATIO (OLMCPR)

Applicable to all fuel types Use in conjunction with Figures 11, 12, 13, 18, 19, 20, and 21 These Tables are referred to by Technical Specification 3.2.2, 3.4.1 and 3.7.6 TBV in Service and TBV out of Service RPT OOS RPT in Service (3 or more TBVOOS)

TBVOOS)I~~~~~~~~~~~~~~~~~

Option B IOption A Option B Option A Option B 1Option A

=r

= 1 (1)

'C=1 (')

'r= 0 (

'r=()

Two Loop BOC to EOR -2000 1.32 1.35 1.36 1.39 1.39 1.50 Operation MWd/ST EOR-2000 MWdSTto 1.37 1.40 1.42 1.45 1.45 1.62 EOC Single Loop BOC to EOR -2000 1

1.38(3) 1.38 1.41 1.41 1.52 Operation (2)

MWd/ST EOR - 2000 MWd/ST to 1.39 1.42 1.44 1.47 1.47 1.64 EOC NOTES:

1) When Tau does not equal 0 or 1, use linear interpolation.
2) For single-loop operation, the MCPR operating limit is 0.02 greater than the two loop value except when the Two Loop Operation MCPR operating limit is less than 1.36 (consistent with Reference 16).
3) OLMCPR limit set by the Single Loop Operation (SLO) - Recirculation Pump Seizure Analysis.

(Reference 16)

Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3CI5 P3C1 5 Core Operating Limits Report Page 19, Rev. 0 FIGURE 11 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 VALID FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE AND MAX 90 oF FWTR (Symmetric Feedwater Heating) 4.0 3.8 3.8 r~~~~~~~~~~Operating Limit MCPR (P) - Kp x Operting htMP(10 3.6 For P< 25%: No Thermal Urits Monftrng Required No Imis spedfie 3.4 For 25% S P < P(Bypass):

(P(Bypass)

  • 2.40 + 0.02 x (30-P) For Flow S 60%

OLMCPR(p) - 2.55 + 0.04 x (30.P) For Flow > 60%

3.0 60 FlowFor30%

SPc65%: K(P)-1.131 +0.00597x(65-P) 3:

>~~~~~

6096 Flow t

2.8 -

For65% SP: K(p)-1.000+0.00375x(100.P)

(52.75 2.6 (252. i0)

(30,2.55) 2.4

,(30,2.40) 60% Flow 2.0 -

1.8 y

1.6

.2 1.4 (30.1.340)

~1.2 (100,1.0) 1.012

~

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)

Exelon Nuclear - Nuclear Fuels P3C 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 20, Rev. 0 FIGURE 12 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2, 3.3.4.2 and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS AND MAX 90 OF FWTR (Symmetric Feedwater Heating) 4.0 3.8 3.6 3.4.

3.2

.2 0

3.0 2.8 2.6 2.4 (25.3.75)

> 60% Flow Operating UmH MCPR (P). Kp x Operating Umit MCPR

~~~~~~~~~~~~~~~~(100)

For P<c 25%: No Thernal Umits Monitoring Reqidred 1-*5) \\s0 No limits specified (30 3.25)

For 25% S P c P(Bypass):

\\

(P(Bypass) 30% for PBAPS Units 2 & 3)

OLMCPR(p). 2.75 + 0.10 x (30-P) For Flow S 60%

OLMCPR(p) 3.25 + 0.10 x (30-P) For Flow > 60%

  • \\.

For30% SP-c65%:

K(P).1.131+0.00597x(65-P)

(30, 2.75)

For 65% S P: K(p) =1.000 + 0.00375 x (100- P)

S 60% Flow

(30,1.340)

(1 00.1.0) 2.2 la

'a I

2.0 1.8 1.6 1.4 1.2-1.0 _-

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Pawer (% Rated)

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 21, Rev. 0 FIGURE 13 FLOW DEPENDENT MCPR LIMITS, OLMCPR(F)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 VALID FOR ALL CONDITIONS (Symmetric Feedwater Heating) 2.00 1.00 1.80 1.70 IL.1.60 A.U 0 1.50 1.40 1.30 1.20 1.10 For Two Loop Operation, SLMCPR c 1.12 MCPR(F) = The Maximum of EITHER 1.25 OR { -0.5784 x (WTI100)+ 1.7073)

WT= % Rated Core Flow 1.7073

..534 1.25 1.25' 0

10 20 30 40 50 60 70 Core Flow (% Rated) 80 90 100 110

Exelon Nuclear-Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 22, Rev. 0

.BIJE2 ROD BLOCK MONITOR ANALYTICAL LIMITS, ALLOWABLE VALUES, AND MCPR LIMITS THIS TABLE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.3.2.1 Applicability:

BOC to EOC ANALYTICAL ALLOWABLE MCPR FUNCTION LIMIT(1)

VALUE(1)

LIMIT Low Power Range - Upscale

< 123.0%

< 121.2%

< 1.70(2)

(Low Trip Setpoint)

< 1.40 (3)

Intermediate Power Range - Upscale

  • 118.0%

< 116.2%

< 1.70 (2)

(Intermediate Trip Setpoint)

_<1.40 (3)

High Power Range - Upscale

< 113.2%

S 111.4%

< 1.70 (2)

(High Trip Setpoint)

< 1.40 (3)

Inop N/A N/A

< 1.70(2)

< 1.40 (3)

(1)

These setpoints (with RBM filter time constant between 0.1 seconds and 0.55 seconds) are based on a cycle-specific rated RWE MCPR limit which is less than or equal to the minimum cycle OLMCPR (see COLR references 2, 5 and 13).

(2)

This is the MCPR limit (given THERMAL POWER 2 28.4% and < 90% RTP) below which the RBM is required to be OPERABLE (see COLR references 2 and 5 and TS Table 3.3.2.1-1).

(3)

This is the MCPR limit (given THERMAL POWER 2 90% RTP) below which the RBM Is required to be OPERABLE (see COLR references 2 and 5 and TS Table 3.3.2.1-1).

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 23, Rev. 0 TABLEr :

DESIGN LINEAR HEAT GENERATION RATE (LHGR) LIMITS' Ft EL TYEE LHGR LIMi GE1 3 14.4 kW/ft GE14 13.4 kW/ft

' The LHGR limits provided above are the beginning of life (maximum) values. The LHGR limits as a function of fuel exposure are provided in Reference (3).

Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 24, Rev. 0 TABEA 4 TURBINE BYPASS VALVE PARAMETERS TIIRRINF RYPARS SYSTEM RFSPONSE 11MFS Maximum delay time before start of bypass valve opening following generation of the turbine bypass valve flow signal 0.10 sec Maximum time after generation of a turbine bypass valve flow signal for bypass valve position to reach 80% of full flow (includes 0.30 sec.

the above delay time)

Minimum required number of bypass valves to maintain system operability 7

Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3C 5 P3CI 5 Core Operating Limits Report Page 25, Rev. 0 APPENDIX A ASYMMETRIC FEEDWATER TEMPERATURE OPERATION Asymmetric feedwater heating (resulting from removing a heater string, or individual feedwater heaters, from operation) is the result of the specific configuration of the feedwater lines at Peach Bottom. A reduction in heating either the 'A' or the 'C' heater strings will result in a temperature mismatch between the feedwater flows entering the opposite sides of the reactor vessel.

Asymmetric feedwater temperature operation (AFTO) is defined as operation in a feedwater heater/string configuration which results in a specified threshold difference difference. This threshold is a function of power and flow. The curve of the threshold values is incorporated in the station procedures that govern AFTO (Reference 15).

As a result of analyses documented in Reference (14), a 4% penalty has been applied to the MCPR ARTS curves and a 7% penalty has been applied to the MAPLHGR ARTS curves to ensure that sufficient thermal margin exists during anticipated operational occurrences while in AFTO.

MAPLHGR LIMITS The ARTS-based MAPLHGR power-dependent multipliers (MAPFAC(P)) for asymmetric feedwater temperature operation are provided in Appendix A, Figures 14 and 15. Figure 14 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service, maximum 90 cF FWTR, with a maximum temperature differential of 550 F between the two feedwater sparger lines. Figure 15 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPTOOS, maximum 90 oF FWTR, with a maximum temperature differential of 55° F between the two feedwater sparger lines. The flow-dependent multipliers (MAPFAC(F)) for AFTO are provided in Appendix A, Figures 16 and 17 as a function of the number of recirculation loops in operation only.

The SLO MAPLHGR multiplier (0.73) is provided in Table 3 and applied, with a 7% penalty, through MAPFAC(F) as shown in Figure 17. MAPFAC(F) is clamped at 0.679 starting at 33.6% of rated core flow to ensure peak clad temperatures are maintained within the limits of the cycle-specific LOCA analysis for single recirculation loop and asymmetric feedwater temperature operation. The power-and flow-dependent MAPLHGR multipliers were obtained from References (10) and (12) and were adjusted with a 7% penalty as per Reference (14).

MCPR IWITS The ARTS-based power-dependent MCPR limits, OLMCPR(P), for use in Technical Specification 3.2.2 during asymmetric feedwater temperature operation are provided in Appendix A, Figures 18 and 19. Figure 18 is valid for seven or more (of nine) Turbine Bypass Valves (TBVs) In-Service and Recirculation Pump Trip (RPT) In-Service, maximum 90 OF FWTR, with a maximum temperature differential of 55° F between the two feedwater sparger lines. Figure 19 is valid for three or more (of nine) TBVs Out-of-Service (OOS) or RPTOOS, maximum 90 oF FWTR, with a maximum temperature differential of 550 F between the two feedwater sparger lines. The flow-dependent MCPR limits, OLMCPR(F), for AFTO are provided in Appendix A, Figures 20 and 21. Figure 20 is valid for all operating conditions with AFTO during the exposure period of BOC to EOR-2000 MWdIST. Figure 21 is valid for all operating conditions with AFTO during the exposure period of EOR-2000 MWd/ST to EOC. The power-and flow-dependent OLMCPR curves were obtained from References (10) and (12) and were adjusted with a 4% penalty as per Reference (14) and (20).

Exelon Nuclear - Nuclear Fuels EXELON-COLR-P3CI5 P3C15 Core Operating Limits Report Page 26, Rev. 0 FIGURE 14 POWER-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(P)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE, MAX 90 °F FWTR, WITH MAX 55 °F TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.0 (85,0.930)

(100,0.930) 0.9 0.8

/

(/0,0.698)

MAPLH4GR(p). MAPFAC(p) x MAPLHGR(std)

(30,0.69) 0.7 -

For P< 25%: No Thermal Umits Monitordng Required 60% Flow No limits specified For 25% S P < P(Bypass):

U 0.6 3

5 (P(Bypass) - 30% for PBAPS Units 2 & 3) 0.6 (300.558)

MAPFAC(p). 0.558 + 0.00300 x (P-30) For Flow S 60%

(25,0.543I MAPFAC(p) - 0.528 + 0.00660 x (P-30) For Flow > 60%

For 30% f P < 65%:

MAPFAC(p). 0.893 + 0.0056 x (PW5) i 0.5

.(30.0.528)

For 65% S P < 85%:

MAPFAC(p). 0.930 + 0.0019 x (P-85)

(25.0.495)

\\\\

For 85% S P: MAPFAC(p). 0.930 0.4

> 60%Fbw 0.4-0.3 0.2 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)

Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 27, Rev. 0 FIGURE 15 POWER-DEPENDENT MAPLHGR MULT1PLIER, MAPFAC(P)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1, 3.3.4.2, and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS, MAX 90 °F FWTR, WITH MAX 55 °F TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.1 0.9 0.8 0.7 U-2 0.6 E

a 0.5 0.4 0.3 0.2 (95,0.930)

(30.0.651) t ow MAPLHGR(p). MAPFACtp) x MAPLHGR(std)

S 60% Flow For Pc 25%: No Theomal Umits Monitorlng Required No lmits specified

/2 0.0.532)

For 25% S P < P(Bypass):

(P(Bypass) a 30% for PBAPS UnIts 2 & 3)

MAPFAC(p) = 0.532 + 0.01200 x (P-30) For Flow S 60%

MAPFAC(p). 0.428 + 0.00720 x (P-30) For Flow > 60%

(80.0.428)

For 30% S Pc 85%:

MAPFAC(p). 0.865 + 0.00389 x (P45)

(25,0.§92) 8\\

For 85%

P < 95%:

MAPFAC(p). 0.930 + 0.00650 x (P-O5) 60% Flow For 95% < P:

MAPFAC(p) a 0.930 30) 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C1 5 Page 28, Rev. 0 FIGURE 16 FLOW-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(F)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 VALID FOR 2 LOOP RECIRC FLOW WITH MAX 55 OF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.0 -

0.9 4 0.8 -

IMAPLHGR(F 0

MAPFAF)

MAPLHGd)0.930 g

l~~~~~MAPLHGR(F) = MAPFAC(F) x MAPLHGR(std)I 0.7 4 0.6 4 0.

I For Two Loop Operation, > 70% WT MAPFAC(F) = (0.06275 x (WT /1 00)+0.860975)

For Two Loop Operafion, s 70%6 WT MAPFAC(F) = (0{6217 x (WT/100)+ 0.4701)

WT= % Rated Core Flow 0.4 -

0.3 -

0.2 -

0.1 -

0.0 I

10 I

I I

I T I 20 30 40 50 60 70 80 90 100 CORE FLOW (% RATED) 110

Exelon Nuclear - Nuclear Fuels P3C15 Core Operating Limits Report EXELON-COLR-P3C15 Page 29, Rev. 0 FIGURE 17 FLOW-DEPENDENT MAPLHGR MULTIPLIER, MAPFAC(F)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.1 AND 3.4.1 VALID FOR SINGLE LOOP RECIRC FLOW WITH MAX 55 °F TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 1.0 -

0.9 0.8 0.7 0.679 0.67g 0.6 4 iL 0~

< 0.5-0.4 MAPLHGR(F) = MAPFAC(F) x MAPLHGR(std)

MAPLHGR(std) = Standard MAPLHGR Limits MAPFAC(F) = MIN(0.679, Af x WT/100 + Bf);

where, WT = % Rated Core Flow Af = 0.6217, Bf = 0.4701 0.34-0.2-0.1 +

0.0

.1 I

I I

1 I

10 20 30 40 50 60 70 CORE FLOW (% RATED) 80 90 100 110

Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 30, Rev. 0 FIGURE 18 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 VALID FOR 7 OR MORE TBVs IN-SERVICE, RPT IN-SERVICE, MAX 90 °F FWTR, WITH MAX 55 oF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 3.0, l

2.864 2.8 +

la M

0 2.6+

2A 1 2.2 +

2.0 +

1.8t 5 60%/6 Flow

,> 60% Flow

  • 2.65 2.50 OPERATING UMIT MCPR(P)
  • KP x OPERATING LIMIT MCPR(100)

FOR Pe25%: NO THERMAL LIMITS MONITORING REQUIRED NO UMITS SPECIFIED FOR 25% 1 P -c XK:

OLMCPR(P) a 2.50 + 0.02 x (30% -P) FOR FLOW &0%

OLMCPR(P) 2.65 + 0.04 x (30% - P) FOR FLOW 3 60%

FOR30%SP<65%:

Kp*

1.176+0.00623x(65%-P)

FOR65% SP:

Kp. 1.040+0.00389x(100%-P) 1.3 1.6-la a-0 la.

Q 1A +

1.2 +

3I 1.0 I

I I

I I

I I

I 0

10 20 30 40 50 60 Power (% Rated) 70 80 g0 100

Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 31, Rev. 0 FIGURE 19 POWER-DEPENDENT MCPR LIMIT, OLMCPR(p), AND MULTIPLIERS THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2,3.3.4.2, and 3.7.6 VALID FOR 3 OR MORE TBVOOS OR RPTOOS, MAX 90 °F FWTR, WITH MAXIMUM 55 oF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) 4.0 3.8 3.6 3.4.

3.2 IL 3.0 r5 2.8 ILU B 2.6 0

2.4 2.2 2.0 1.8 S: 1.6 he

c.

1.4 E 1.2 1.

1.0 (25, 3.90)

Operating Urnt MCPR (P) - Kp x Operating UmKt MCPR (100)

For P< 25%: No Thermal Urnits Monitoring Required No Emits specified For 25% S P < P(Bypass):

(P(Bypass) - 30% for PBAPS Units 2 & 3)

\\

_~~~lo OLMCPR(p)

  • 2.86 + Q.10 x (30-P) For Flow S 60%

\\ >

~~~~~~~OLMCPR(p)

.3.38 +0.10 x(30-P) For Flow >- 60%

\\i

~~~~~~~For 30% S P -c 65%:

K(P). 1.176 + 0.00623 x (65 - P)

S (30, 2 86)

~~~For 65% S P.: K(p).1.04 + 0.00389 x (100- P) 0 1. 394

\\

/~~~~~~~~~~~~~~~~~~~~~~~(101.4 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Power (% Rated)

Exelon Nuclear - Nuclear Fuels P3CI 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 32, Rev. 0 FIGURE 20 FLOW-DEPENDENT MCPR LIMITS, OLMCPR(F)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 AND 3.4.1 VALID FOR ALL CONDITIONS WITH MAXIMUM 55 OF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) [BOC to EOR-2000 MWdIST]

0 10 20 30 40 60 60 Core Flow (% Rated) 70 so 90 100 110

Exelon Nuclear - Nuclear Fuels P3C1 5 Core Operating Limits Report EXELON-COLR-P3CI 5 Page 33, Rev. 0 FIGURE 21 FLOW-DEPENDENT MCPR LIMITS, OLMCPR(F)

THIS FIGURE IS REFERRED TO BY TECHNICAL SPECIFICATION 3.2.2 AND 3.4.1 VALID FOR ALL CONDITIONS WITH MAXIMUM 55 OF TEMPERATURE DIFFERENTIAL BETWEEN FEEDWATER SPARGER LINES (AFTO) [EOR-2000 MWdIST to EOCJ 2.00 1.90 1.80 EOR-2000 MWd/ST to EOC For Two Loop Operation, SLMCPR :S1.12 MCPR(F) = The Maximum of EITHER 1.425 OR { -0.4443 x (WTl1 00)+ 1.7756}

1.704 hi 1.60 C.

E c-0 1.60 1.76 1WT=

% Rated Core Flow 1.425 1.425 1.40 1.30 1.20 1.10 0

10 20 30 40 50 so Core Flow (% Rated) 70 80 90 100 110