ML061140370: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 15: Line 15:


=Text=
=Text=
{{#Wiki_filter:M&Duke f drEnergy.
{{#Wiki_filter:M& Duke f drEnergy.
{: ; , - w - i ~- .. * -, 1: are 41 -/ , 1;_ j^i:
{:
                                                                      ;wI., ": : ^::s v,   ~
w i ~ -
:. - :.-":r9-.         -_ziAd
-, 1: are 41 -/,
:.Ir w:
1;_ j^i:  
Duke Energy   - Oconee NIuclear Station Steam Generator Wear Root Cause Update with NRC April 10, 2006 A11 ENCLOSURE 2
;wI., ": :  
^::s v,
:. ~
:.-" 9
:r -.....................
w:
-_zi Ad
:. Ir Duke Energy - Oconee NIuclear Station Steam Generator Wear Root Cause Update with NRC April 10, 2006 A11 ENCLOSURE 2


raEnergy.
raEnergy.
Line 33: Line 40:
* Conclusions 2
* Conclusions 2


ONS I Wear Distributions                                                                                                                                 'a-Duke re' Energy.
ONS I Wear Distributions
ONSI A                                                             Tube Support Plate__                                             __
'a-Duke re' Energy.
_____                    2       "3: [4         ]~5`         6       7         '9     10- 1         213"'14~ 15. Total
ONSI A Tube Support Plate__
    %tw<=5                                         __            1                     4 231 15 2 1 17               6   13                  100 5<'%/tw<=10             4         5                           2               946 3181 383 344 228 110 121                           1 1576 10<%tw<=15             1         2 _                                               8 89j 157 102         83     49 50 5                     548 15<%twv<=210                                                                               13~7T7     31   16       8 14             1       130 20<%tw<=25                         __            _                            _          i   19    15    3           2                   40 25<%tw<=30                         __            _      -        _1                           5     31                                     19 30<%tw<=35       __      __      _    _    _8                                                           4       __                            12 35<%tw<=40                                                                                       2   2   -4 40<%/ltw<=45               ___2 2
2 "3: [4  
50'<%tw<z=55     __J___
]~5`
0 55% tw> 60 Total/Suppor 51_ 7
6 7  
                                                    ---  ml3 _  _-
'9 10-1 213"'14~ 15. Total
01     9     581 444 648 522 348 173 200
%tw<=5 1
_    _  -      _    _0 7     2431 ONSI-B                                               ____Tube Support Plate                     __                                    __
4 231 1 5 2 1 17 6
T1~-2         3     '            5.     )~678~IZ01112,i314i5Total
1 3 100 5<'%/tw<=10 4
                  %w=3                             2 15                                 12   191 311               5     1[           1       107 5<%tw<=I0             1         9       615_-2                     1-.-30       34 2.53 _402 174       4     55 174           10   1160 10<%tw<=15             1                   II                                     _      281 130     80 2         5 68[           2     321 15<%tvv<=20     ______I__-                                       -      -71                 40     35               17           1       1001 20<%hv<=25   -        1_                                                                 21   15   11           1     3 __               331 25<"%'tw--=30 ___12                                                                                   4                                       16 30'<%tw-=35                                 I5                                                         3                                       8 35<%t'dv<=410   __          _                                                                  l     1                   __                  2 40'<%tw'v<45       __2
5 2
_            2 45<%twv<=50     _                              __0 50<%'tw<-55                                 j                   -__
946 3181 383 344 228 110 121 1
1576 10<%tw<=15 1
2 _
8 89j 157 102 83 49 50 5 548 1 5<%twv<=210 13~7T7 31 16 8 14 1
130 20<%tw<=25 i
1 9 1 5 3
2 40 25<%tw<=30
_1 5
31 19 30<%tw<=35
_8 4
1 2 35<%tw<=40 2
2  
-4 40<%/ltw<=45
___2 2
50'<%tw<z=55
__J___
0 55% tw> 60
_0 Total/Suppor 51_ 7 ml3 01 9 581 444 648 522 348 173 200 7 2431 ONSI-B
____Tube Support Plate T1~-2 3
: 5.  
)~678~IZ01112,i314i5Total
%w=3 2
15 12 191 311 5
1[
1 107 5<%tw<=I0 1
9 615_-2 1-.  
-30 34 2.53 _402 174 4
55 174 10 1160 10<%tw<=15 1
II 281 130 80 2 5
68[
2 321 15<%tvv<=20
______I__-  
-71 40 35 17 1
1001 20<%hv<=25 1_
21 15 11 1
3 __
331 25<"%'tw--=30
___12 4
16 30'<%tw-=35 I5 3
8 35<%t'dv<=410 l
1 2
40'<%tw'v<45
__2 2
45<%twv<=50
__0 50<%'tw<-55 j
0
0
    %tw>60                                                                                                                           _      I~ 0a Total/Support         31     121       91         51     31         1 39       46 3091 6361 3211     81   661 2771         141   17491 4
%tw>60 I~
0a Total/Support 31 121 91 51 31 1 39 46 3091 6361 3211 81 661 2771 141 17491 4


ONS 1 Wear Distributions                                                                                                                                       P Duke tSEnergy.
ONS 1 Wear Distributions P Duke tSEnergy.
16 0                                                                                                                                           Oconee 1-A 150 140                                                                                                                                                  TSP (All),X 130 l 1-5%
1 6 0 150 140 130 120 110 100 90 -
                              *4ga                                      w<
80 70 -
                  .. " I                                                                          k*(
60 50 -
40 -
30 20 1 0 n
.. " I w<
ga
*4 k*(
at a
Da a
j DD a
a a-D ae a**
at a%
a F.S
^D, a,
a a,
a:
1&#xa2; a
a a*
a 4,
p, 1
*a a
aO at a
a aj
~
D
,.w g
s a
a '4~t qe i
Oconee 1-A TSP (All),X l 1-5%
D 6-10%
D 6-10%
120 11-15%
11-15%
110
16-20%
* at                                        a                                      16-20%
o 21-25%
100 o 21-25%
Da DD                          a    j 90 -
a            a        a-D at      a%                                                            a  F.S
                                                                                                                                        ^D,
* 26-30%
* 26-30%
ae                                                                  a**
31-35%
80 31-35%
36-40%
o 41-45%
45 X2 Y
2 Q
1 O 1 O
O 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 M'
"I' `
O N
CO- 0) 0 1
C')
V l0 0
N-CO
: 0)
C0 a-01
')
vN
: 1)
'ND N"
wO 5
 
ONS 1 Wear Distributions m Duke EEnergy.
Oconee 1-B 160 150 140 130 120 110 100 -
90 80 -
70 -
70 -
                        ,                                          a,                                                                a 36-40%
60 50 40 -
60                                                                                                                                              o 41-45%
30 20 10 0
50 -
LV A
                                                                                                                                                    . 45 a,    a:         1&#xa2;                                      a 40 -                                             a                a*                        a                  :  4,  p, 30                                                                                                                                                      X2 1        %%    "                    *a            a                          aO    ,
i
20                            at    a    ,                        ~a    D  aj              ,.w    g      s                                  Y    2 Q 1
47 IVI,. I I
                                                      '    a                      a '4~t  qe    >    i 10                                                                                                                                                    O1 n
- I
O O    0  0    0    0      0    0    0    0  0      0      0  0    0    0  0  0      0    0    0  0  0  0    0  0    0  0  0
.I 11 1: -..
            -   0  M'    "I' `        O  N    CO- 0)    0    -         1 C')  V   l0 0 N-      CO    0)  C0 a- 01  ')  vN  1)  'ND N" wO 5
. I I II
 
-I 11
m Duke ONS 1 Wear Distributions                                                                                                                    EEnergy.
-P1 C
Oconee 1-B 160 150 140 TSP (All)     I i
0 9
47          ;                        -P1                                                      1-5%
02
130                          IVI ,. II
-V 0
                          .I . ,I              11 1: -. .        . II .                                                                              1 6-10%
0;
120                    - II
'-'-
                          -I                                                                                                0     11-15%
TSP (All)
110            LV i 16-20%
I 1-5%
11 100  -
1 6-10%
o   21-25%
0 11-15%
90
i 16-20%
o 21-25%
* 26-30%
* 26-30%
A          -
80 -
31-35%
31-35%
70 -
36-40%
36-40%
C        -
o 41-45%
60                                                                                                                        o   41-45%
->45%
* 0 50                                                                                                                        ->45%
i~_,
i~_,
9 40 -
X2 Y 2 Qe;Z YI X0 OIentat11ion o
30                                                                                                                                X2 20                                02                  -V    0            0;  -
0 00 a
Y2          Qe;Z YI 10                                                      '-'-                                                                    X0 0
a a:  
OIentat11ion o   0 00       a         a         a: 0  0    &deg;     0   0 0   0 0   0     0
&deg; 0
(' c)   'r   LO   CD   N-     CD ) 0- - C'4 C)   a U) CD N-CD CD 0)   0 o ~0 N 0~ m ~   0
0 0
                                                                                                          'q 0D 0 LO (D N0 N-0 0
0 0
6
0 0
0 CD 0
0 0
0 0D 0 0
0 N
('
c )  
'r LO CD N-CD  
)
0-C'4 C) a U)
CD N-CD 0) 0 o ~
N ~ m ~ 'q LO (D N-0 6


m'Duke ONS 2 Wear Distributions                                                                                                                                                         OEnergy.
m'Duke ONS 2 Wear Distributions OEnergy.
ONS2-A 160                                                                                                                                                                11-01-05 150 I        o 9Z 9
ONS2-A 11-01-05 160 150 140 130 120 110 100 90 -
                                                        .        2 o
80 -
91    9  t*
70 60 50 40 30 20 -
* TSP (All) 140                                                                            99
10 -
* r   2*     5 5%
0 9Z 9'>
                            'T,   "    9*
2 o
to 130 11~   "    ,                  @1, 10%
r 2*
120                                                                                                                "9C 9                                                                                                    99&#xb6;                                         11-15%
5 9*
110              ,:0  "                                                                                              *I       >t o0 9-0?
'T, to I
I                                                                                            9 99) 20%
o 9 1 9 t 99 9
91                       9'v 100                                                                                                                4              ,b* 0 o 21-25%
,:0 9-0?
90  -                                                                                                                    9 9,            ..
I 11~  
@1, "9C 99&#xb6;
* I  
>t o0 4
,b
* 0 9 99) 91 9'v I*
0 t0 O
9t 9
9,
&sect;~
~I 99 90 It 9
TSP (All) 5% 10%
11-15% 20%
o 21-25%
26-30%
26-30%
O                9t 80 -
31-35%
I*                  0 t0                          31-35%
36-40%
70                                                                                                  ~I              &sect;~                        ..                    36-40%
o 41-45%
99 90 60                                                                                                                                          It    9 o 41-45%
. >45%
9,9 50                                                                                                                                                                  . >45%
9, 9 99 9
99 40 9
9 9
9 30                                                                                                                                                                        X2 9                     9 20 -
9 9
9                                     9 Y2 Q Yt
9
                                                                                                      *99 10 -                                                              9:'K 99 9'   ;99j9,99        ;9499,                                                                           xOi Orientation 0                                                                                                                                                                                      7 D 0   0   0     0 0     0   0   0 0   0     0     0 00           00 0                         g     &deg;       0 &deg;           &deg;       &deg;     &deg;0    0&deg; 0
*99 99 9'K 99  
                                                  -          - -                  -    -    -          N   (N     N     (N       N       (N (N       N (N

9:'  
;99j9,
;9499, X2 Y2Q Yt xOi Orientation 7
D 0
0 0
0 0
0 0
0 0
0 0
0 00 00 0 0
0 0
g  
&deg;  
&deg;  
&deg;  
&deg;  
&deg;  
&deg; 0
N (N
N (N
N (N (N N
(N


ONS 2 Wear Distributions                                                                                                                                             PDuke rEEnergy, 160                                                                                                                                                       ONS2-B 11-04-05 150 140
ONS 2 Wear Distributions PDuke
                                                .%*~   ~                     4 .2   4   a                   O 4>   4     4     44                                                                                           TSP (All) 4*            *
: rEEnergy, 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
* 4          P*           s 130                                                                                                  I        Ih '                                          o 1-5%
ONS2-B 11-04-05
W   4        a                   a&deg;                         4 120                                                                                                                                                          ' 6-10%
.%*~  
4<'sA
~
* a 110                                                                                                                      O       a o 11-15%
4  
44          4' O            o
.2 4 a 4>
4 4
44 4
P
* s 4
W a
a&deg; 4
4<'s A a
4 *,
5* g 2*'
"4it, 4t O
4*
I Ih '
a O
a 44 4'
O o
4 2) 4
* f e4 4>)
<2<
{2 TSP (All) o 1-5%
' 6-10%
o 11-15%
* 16-20%
* 16-20%
100 a
o 21-25%
o 21-25%
90 4  *,
                                                                                                                                            .,4    2)
* 26-30%
* 26-30%
80 31-35%
31-35%
70                                                                                                        4                                '
36-40%
36-40%
                                                                                                              *
o 41-45%
* f          e4  4>)
* >45%
                                                                                                                                      <2<              {2 60 I*
I*
5* g      ->                                                    .                                                                                o 41-45%
+
50
T XZ2 Orientalio.
                                                                                                                                                                  * >45%
z O O
2*'
O 0
40 "4it,                4t 30 XZ2 20                                                                                        ..
0 0
                                                                                                ,*      +    T 10 z     O Orientalio.
0 0
0 O O 0       0   0     0       0   0 0   0 0 0 0     0 (Nc       Ur)     (0   r- U)   0) 0   (N       ~20 C')
0 0
0 I
0 0
0 (0
0 0
0 r-0 2
0 0
U) 0
0 0
                                                                                                        )
0 0
0 0,
0 0
(N 0
0 0
((N 0
0 0
('~N 0
0 0
m ')
0 0
N 0
(Nc Ur)
N 0
(0 r-U)
LO (N
: 0) 0 (N
0 (0
C') ~2 I
N 0
(0 r-U) 2
t-(N 0
)
U (N
0,
d
('~N m ')
LO (0 t-U (N
((N N
N (N
N (N
(N d


Wear Indications per Steam Generator                   Duke
Wear Indications per Steam Generator Duke
[Eergye Original   Replacement OTSG         OTSG SGA       555           1797 Oconee UnitlSGB                 1232         1450 SGA       428           498 Oconee Unit 2         SGB       566           699 SGA       350   Scheduled April/May 2006 Oconee Unit 3                           Scheduled AprilM SGB       280   Sh l Apr 9
[Eergye Original Replacement OTSG OTSG SGA 555 1797 Oconee UnitlSGB 1232 1450 SGA 428 498 Oconee Unit 2 SGB 566 699 SGA 350 Scheduled April/May 2006 Oconee Unit 3 Scheduled AprilM SGB 280 Sh l
Apr 9


ONS I & 2 TSP Wear Frequency Comparison                                                                                                                                                                                             mb Duke c 'Energy.
ONS I & 2 TSP Wear Frequency Comparison mb Duke c 'Energy.
Indications per TSP                                                                                                      Indications per TSP ONS2- A                                                                                                                  ONS2-B 15 1.1
CL (1) 1--
                                                                                              .           i . , ..             I   I     15 14                       !      i'I                          . ..
15 1.1 13 12
13                                                                                                                              13 12 6".=      ..        .                                                                                                      12 1     :                                                                                                                        I11 10                                                                                                                                 10 CL    9 I                                                                                                                                         I:z-a3 (1)  8-.                                                                                                                                                                                  -I                             "            i          ;I i
=
1-- 7 I-7 6        *a s           -                               '                                             ,      i   ,
6".
5                                                                                                                                  5 I p                                                                                                                              4 3
1 10 9 I 8-.
I     :                                                                                              2
7 5
                          .... -- M.-           r ..                                              I      ....
I p Indications per TSP ONS2-A i.
o     C-I) o CD o
,.. I i
                                    )
I I
C 0 o
15 14 13 1 2 I11 10 I-7 6
CD      C)o 0   0   0o 0   i)  o 0   0o L)    o Co L) O o   0 LO 0
5 4
O) LC 0  0
3 2
                                                                                                                      )   UC) C)
Indications per TSP ONS2-B
CJ) ED            C    o'0                                                C      0          0  0          0  0      C  0!C) 0 i
! i 'I a3  
                        -        -      N     C) C'!   C') -Tt       *r   U)   ED cD r-    I-      LO) CO      LI)  C) CD                  IL)  0 UO  0     In) 0 ECNlCM I1 MC C7t O     U) t O   U) 0 LO)UCO    tCO U)  0
-I I
                                                                                                                                                                                                                              -CO
i  
                                                                                                                                                                                                                                    )O    UL C0)
*a s i,
O C)   L      0 Co Frequency                                                                                                                      Frequency Indications per TSP                                                                                                    Indications per Tsp ONS 1-A                                                                                                                ONSI -3 15                                                                                                                               115 14' 13                                                                                                                               13 12                                                                                                                              12 I1                                                                                                                               11  ---                    -
I:z-o'0 C
10 CL 9 III                                                                                                        CL9 10 U)a.8                                                                                                                            c0 8 I- 7 6                                                                                                                               6 5                                                                                                                               J 4                                                                                                                               4 3                                                                                                                                3 2
0
1 I      C,0             C0        C)0     0   C) C!     ED C)     C C) C) ED C               C)   CD ED   0   C)                C)0C)
!C) 0 0
() 2) E-2             C)
i 0
                                        - C))
0 C
0 0
IL) 0 UO 0 In) 0 I
O U)
O U) 0 U) 0
) O UL C)
O L
0 ECNlCM MC 1
C7t t
LO)UCO tCO
-CO C0)
Co I  
.... -- M.-
r..
o C-o o
C 0
0 0
0 o 0
0 o Co I)
CD
)
CD o
C) o 0
i )
o
)
L o
L)
N C)
C'! C')  
-Tt  
*r U)
ED cD Frequency o 0 0
0 0
O LO O) LC
)
r-I-
LO) CO LI)
UC) C)
CJ) ED C) CD C
Frequency 15 14' 13 12 I1 10 CL 9 a.
U) 8 I-7 6
5 4
3 2
Indications per TSP ONS 1 -A III C,0 0 C C)0 0
C)
C!
ED C)
C C)
C)
ED C C)
CD ED 0 C)
() 2) E-2 C)
LO C)
LO C)
CIII.*
CI) C LO C)
CI) C C' *f*
U) CD LO C)
LO C)       U) CD LO C) In             C)   LO ED   LO 0                   Ln o 0 C)
In C)
U) o CI Ln    o C)
LO ED LO 0 C)) CIII.*
                                                                                                                                                                                        )
C'
C.)
*f*
o C) ED 1 o CD C to U) 0 Ln o a    C) C)
+/-
)
If) U U3 I-I-
a)
ET) En M C
-I
)
Frequency 115 13 12 1 1 10 CL9 c0 8 6
J 4
3 1
Indications per Tsp ONSI -3 C)0C) 0 C)
CI C)
C.) C)
ED CD C 0
a C)
C)
C1 ED 0 C)
Ln o U) o Ln o
)
o 1 o U) to Ln o U)
Lo U) o UE
) o s
; J
; )
i
'I i).'
'IJ W
l_
I_
U w
I.))
U)
U)
Lo C1 ED 0 U)    o    UE
L I
                                                                                                                                                                                                                                                      ) o C)
Frequency 10
                                              -                        +/-    )    If) U  U3 I-      I-      a)    ET) En    MC -I)                    . s                    J          i    'I
                                                                                                                                                                              ;      ;)                          i).'  W
                                                                                                                                                                                                                      'IJ l_    I_  U  w    I.))  U)    L Frequency                                                                                                                    Frequency 10


Summary of Review of Eddy Current Data                                 dr9nergy.
Summary of Review of Eddy Current Data dr9nergy.
ONS 1 Summary ONSlA, 2431 indications were found on 1797 tubes i- ONSI-1B, 1749 indications were found on 1450 tubes
ONS 1 Summary ONSlA, 2431 indications were found on 1797 tubes i-ONSI-1B, 1749 indications were found on 1450 tubes Both ROTSGs 90% of the indications are less than or equal to 15%
* Both ROTSGs 90% of the indications are less than or equal to 15%
of the through wall thickness t-50% of the indications are under 10% of the through wall thickness
of the through wall thickness t- 50% of the indications are under 10% of the through wall thickness
< The vast majority of indications (095%)
    < The vast majority of indications (095%) are present inthe superheated steam region on the 9th tube suppoIt plate and above All indication above the 9th support plate are predominately on the outer region of the bundle.
are present in the superheated steam region on the 9th tube suppoIt plate and above All indication above the 9th support plate are predominately on the outer region of the bundle.
11
11


ONS1 Summary (cont'd)                                                         fAnergy,
ONS1 Summary (cont'd)
. The highest frequency of indications is at the 1Oth support plate, with the 11tI and 9VI showing the next highest population, The bleed port is located between the 9111 and IOt' ssupport plate the steam outlet nozzles are located at the elevation of the I itt' support plate.
: fAnergy, The highest frequency of indications is at the 1Oth support plate, with the 1 1tI and 9VI showing the next highest population, The bleed port is located between the 9111 and IOt' ssupport plate the steam outlet nozzles are located at the elevation of the I itt' support plate.
Peripheral indications at the 1itO) TSP on both ROTSGs are more tightly distributed and show a tendency to form a "line" oriented relative to the steam nozzle orientation There isalso a heavy defect concentration directly opposite the steam nozzles on the Y2 axis.
Peripheral indications at the 1itO) TSP on both ROTSGs are more tightly distributed and show a tendency to form a "line" oriented relative to the steam nozzle orientation There is also a heavy defect concentration directly opposite the steam nozzles on the Y2 axis.
] The 15t1 support plate, which is directly below the high cross flow steam outlet region and has very few indications.
] The 1 5t1 support plate, which is directly below the high cross flow steam outlet region and has very few indications.
For SUppoiA plates 'I0 and above, there are very few indications inthe interior with increasing occurrences towards the periphery t The peak density of tube wear istypically a fen rows away from the periphery edge Support plate 9 has a significant percentage of indications inthe interior of the bundle.                                                             12
For SUppoiA plates 'I0 and above, there are very few indications in the interior with increasing occurrences towards the periphery t
The peak density of tube wear is typically a fen rows away from the periphery edge Support plate 9 has a significant percentage of indications in the interior of the bundle.
12


a~lDuke ONSI Summary (cont'd)                                                         nEnergy, a-   Virtually all indications are tapered wear marks with an angle nominally between 0.3 and 1.2 degrees.
a~lDuke ONSI Summary (cont'd)
: nEnergy, a-Virtually all indications are tapered wear marks with an angle nominally between 0.3 and 1.2 degrees.
Analysis of tube to TSP land clearances indicate no clear relationship between the size of the clearances and incidence of indications.
Analysis of tube to TSP land clearances indicate no clear relationship between the size of the clearances and incidence of indications.
The original OTSGs tube wear is compared against the replacements inwhich the distribution of the tube wear in the upper TSPs is similar; although there are more indications for the replacements during the first fuel first cycle, than the life span of the original units.
The original OTSGs tube wear is compared against the replacements in which the distribution of the tube wear in the upper TSPs is similar; although there are more indications for the replacements during the first fuel first cycle, than the life span of the original units.
JD The original OTSGs the V    9 I and 10 til TSP have the most indications followed by the 8th and the remainder in the upper TSPs.
JD The original OTSGs the 9VI and 10til TSP have the most indications followed by the 8th and the remainder in the upper TSPs.
The peak counts occur inthe 1Oth and 11itb TSP for the replacements followed by the remainder of the upper TSPs.
The peak counts occur in the 1 Oth and 1 1itb TSP for the replacements followed by the remainder of the upper TSPs.
2 Only TSPs 7 and 8 differ with significantly more indications inthe OTSGs than the ROTSGs.
2 Only TSPs 7 and 8 differ with significantly more indications in the OTSGs than the ROTSGs.
13
13


ONS2 Summary                                                               All Enu F,; ONS2-A, 633 indications were found on 498 tubes ONS2-B, 903 indications were found on 699 tubes
ONS2 Summary All Enu F,;
. Both ROTSGs 90% of the indications are less than or equal to 13% of the through wall thickness and 50% of the indications are under 8% of the through wall thickness
ONS2-A, 633 indications were found on 498 tubes ONS2-B, 903 indications were found on 699 tubes Both ROTSGs 90% of the indications are less than or equal to 13% of the through wall thickness and 50% of the indications are under 8% of the through wall thickness lThere are significantly less indications than ONS1 with a less severe wear depth distribution.
>    lThere are significantly less indications than ONS1 with a less severe wear depth distribution.
'i The highest frequency of indications is at the 1 3t11 support plate for ONS2-A and the 12th1 support plate for ONS2-B. There is low incidence of indications on the 9t11, 101t, and 11 support plates when compared with ONS1.
'i   The highest frequency of indications is at the 13t11 support plate for ONS2-A and the 12th1 support plate for ONS2-B. There is low incidence of indications on the 9t11, 101t, and 11 support plates when compared with ONS1.
Relative to ONSI there are an increased number of indications in the vicinity of the inspection ports in the lower bundle region below the 9th TSP.
Relative to ONSI there are an increased number of indications in the vicinity of the inspection ports inthe lower bundle region below the 9th TSP.
Based on ECT, wear is predominately single lobe contact similar to ONS1 Preliminary review of X-Probe data shows no discemnable orientation pattern.
Based on ECT, wear is predominately single lobe contact similar to ONS1
  - Preliminary review of X-Probe data shows no discemnable orientation pattern.
14
14


Oconee Tube Wear Probable Cause                                     DEnUkegy.
Oconee Tube Wear Probable Cause DEnUkegy.
IN To date, no singular technical root cause has been isolated, but five contributing causes have been identified by the Root Cause Team (BVVC and Duke Energy)
IN To date, no singular technical root cause has been isolated, but five contributing causes have been identified by the Root Cause Team (BVVC and Duke Energy)
Probable Technical Causes:
Probable Technical Causes:
Alloy 690 / 41 OS tube support plate (TSP) material couple and increased wear coefficient Tube to TSP relative rotation and reduced contact area Main steam nozzle flow restrictor acoustic excitation Low frequency pressure pulse Hourgiassed broach plate annular flow instability 15
Alloy 690 / 41 OS tube support plate (TSP) material couple and increased wear coefficient Tube to TSP relative rotation and reduced contact area Main steam nozzle flow restrictor acoustic excitation Low frequency pressure pulse Hourgiassed broach plate annular flow instability 15
Line 250: Line 507:
mge'Duke rwEnergy.
mge'Duke rwEnergy.
Factors Investigated
Factors Investigated
                    - ~~-~T,~I::,777,-
- ~ ~ -~T,~I::,777,-  
                          --,17,--
,17,--  
                              ?' ,',.wI,II--1 l -~~-,- -I.
?',',. wI,I I--1 l  
-I.
-~ ~-,-
16
16


Factors Investigated                                               M Duke PO'Energy.
Factors Investigated M Duke PO'Energy.
* Dynamic Pressure Induced Vibration
Dynamic Pressure Induced Vibration
    -Feedwater Spray Nozzle Dynamic Excitation of Lower Shroud
-Feedwater Spray Nozzle Dynamic Excitation of Lower Shroud
  ;:2Feedwater Spray Nozzle Dynamic Pressure Excitation of Tubes
;:2Feedwater Spray Nozzle Dynamic Pressure Excitation of Tubes Acoustic Induced Vibration fAxial Acoustic Standing Waves between TSPs F4Acoustic Resonance with Cross Flow Voitex Shedding
* Acoustic Induced Vibration fAxial Acoustic Standing Waves between TSPs F4Acoustic Resonance with Cross Flow Voitex Shedding
.-;Steam Nozzle Flow Restrictor Acoustic Excitation of Tubes FI kIVVC;tLkpI NuJzIe I
    .-;Steam Nozzle Flow Restrictor Acoustic Excitation of Tubes FI kIVVC;tLkpI     NuJzIe I       AJoWJVUOL L..AUILCILII I U1 I UL)ua 17
AJoWJVUOL L..AUILCILII I U1 I UL)ua 17


Factors Investigated (cont'd)                                     ^ uke D
D uke Factors Investigated (cont'd)  
^
Dnuergy.
Dnuergy.
Structural Vibration Steam Nozzle Flow Restrictor Dynamic Excitation of Piping, Shell or Shroud Structural Vibration of Shell due to Mechanical Excitation of System including change in stiffness of ROTSG
Structural Vibration Steam Nozzle Flow Restrictor Dynamic Excitation of Piping, Shell or Shroud Structural Vibration of Shell due to Mechanical Excitation of System including change in stiffness of ROTSG Structural Vibration of Shell due to Ineffective Upper Lateral Restraint Structural Vibration of Shell due to RCP excitation / unbalance S2 Structural Excitation of Hot Leg (1800 bend) due to RCS flow perturbations 18
      . Structural Vibration of Shell due to Ineffective Upper Lateral Restraint Structural Vibration of Shell due to RCP excitation / unbalance S2   Structural Excitation of Hot Leg (1800 bend) due to RCS flow perturbations 18


Factors Investigated (cont'd)                                   V nergy.
Factors Investigated (cont'd)
V nergy.
Flow Induced Vibration
Flow Induced Vibration
.-fHourglassed Broached Hole Annular Flow Instability O.D. Axial Flow Turbulence Induced Excitation
.-fHourglassed Broached Hole Annular Flow Instability O.D. Axial Flow Turbulence Induced Excitation
'Axial flow inside tube causing lateral vibration
'Axial flow inside tube causing lateral vibration
  ,.Localized cross flow excitation at TSPs within a nominally axial flow field TuHigh Cross Flows and FIV loading in bleed port and steam exit region Localized 'jet pump' effect of feedwater spray nozzles uExcessive Bleed Flow attributed to steam carryunder in lower feedwater downcomer Downcomer flow leakage through lower inspection port sleeves DFiow Regime instability 19
,.Localized cross flow excitation at TSPs within a nominally axial flow field TuHigh Cross Flows and FIV loading in bleed port and steam exit region Localized 'jet pump' effect of feedwater spray nozzles uExcessive Bleed Flow attributed to steam carryunder in lower feedwater downcomer Downcomer flow leakage through lower inspection port sleeves DFiow Regime instability 19


Factors Investigated (cont'd)                                   VDnegy.
Factors Investigated (cont'd)
VDnegy.
Flow Induced Vibration (cont'd)
Flow Induced Vibration (cont'd)
  - Porosity Related Flow Maldistribution at Tube Support Plates 2 Correctness of standard FIV analysis addressing fluid-elastic instability (FEI), random turbulence (RT) and voitex shedding L Effects of linear versus non-linear FIV analysis including clearance limited FEI' Unbalanced feedwater flow through spray nozzles Z'U-tube' flow oscillations in lower bundle and downcomer 20
-Porosity Related Flow Maldistribution at Tube Support Plates 2 Correctness of standard FIV analysis addressing fluid-elastic instability (FEI), random turbulence (RT) and voitex shedding L Effects of linear versus non-linear FIV analysis including clearance limited FEI' Unbalanced feedwater flow through spray nozzles Z 'U-tube' flow oscillations in lower bundle and downcomer 20


Factors Investigated (cont'd)                                   OFnry Mechanical I Material Interaction Effect of broached hole clearances Effect of tube tension including confir-mation of prestrain Effect of damping inSuperheat region 2Relative mechanical interaction between tubes, TSPs, shroud and shell
Factors Investigated (cont'd)
OFnry Mechanical I Material Interaction Effect of broached hole clearances Effect of tube tension including confir-mation of prestrain Effect of damping in Superheat region 2Relative mechanical interaction between tubes, TSPs, shroud and shell
:~Effect of curved versus flat land
:~Effect of curved versus flat land
  ;~Effect of improved tube I TSP alignment 2Material couple wear coefficient Plant O-perational Thermal Hydraulic Conditions and Geometry 21
;~Effect of improved tube I TSP alignment 2Material couple wear coefficient Plant O-perational Thermal Hydraulic Conditions and Geometry 21


PhDuke 0 Energy.
PhDuke 0 Energy.
              - I I . I - .. . I - . 1. .- - - .. - - - - -- . .- . - --. . I.. - I .- ... - -... -    -.!- -
I I.
Discussion of Probable Causes 22
I 
 I -
.  1..- -
. I..  
- 
I Discussion of Probable Causes 22


Alloy 690 1410S TSP Wear Coefficient                               Energy.
Alloy 690 1 410S TSP Wear Coefficient Energy.
>I A literature search of wear coefficients was conducted and found a wide variation of results for the same materials Comparison of the original material combination to the ROTSG material combination was initiated E Room temperature sliding tests in a dry environment have provided repeatable consistent results showing that the wear coefficient for Alloy 690 / 410S is about an order of magnitude higher than Alloy 600/ carbon steel
>I A literature search of wear coefficients was conducted and found a wide variation of results for the same materials Comparison of the original material combination to the ROTSG material combination was initiated E Room temperature sliding tests in a dry environment have provided repeatable consistent results showing that the wear coefficient for Alloy 690 / 4 1 0S is about an order of magnitude higher than Alloy 600/ carbon steel Comparative simultaneous testing in autoclave fretting machines at Super heated conditions has been initiated to confirm the differences between the original material and ROTSG material combinations 23
.<  Comparative simultaneous testing inautoclave fretting machines at Super heated conditions has been initiated to confirm the differences between the original material and ROTSG material combinations 23


Tube to TSP Relative Rotation and Reduced Contact                   Plkuke vnergy.
Tube to TSP Relative Rotation and Reduced Contact Plkuke vnergy.
Volumnetric wear rate is proportional to work rate but through wall wear rate is related to the contacting surface area Dynam-ic contact between the tube and tube support 'land' should engage the full length of the land Relative angular rotation due to tube dynamic m-otion or rotation of -the TSPs can increase the wear rate
Volumnetric wear rate is proportional to work rate but through wall wear rate is related to the contacting surface area Dynam-ic contact between the tube and tube support 'land' should engage the full length of the land Relative angular rotation due to tube dynamic m-otion or rotation of -the TSPs can in crease the wear rate
          -he Oconee ROTSGs TSPs are vertically positioned by both tie rod spacers starting from 'the lower tubeshe n b upr blocks around the outer edge of the TSPs which are welded to the shroud I.D.
-he Oconee ROTSGs TSPs are vertically positioned by both tie rod spacers starting from 'the lower tubeshe n b upr blocks around the outer edge of the TSPs which are welded to the shroud I.D.
24
24


Tube to TSP Relative Rotation and Reduced Contact cont'd)           Lphuke
Tube to TSP Relative Rotation and Reduced Contact cont'd)
      -2 Relative thermal expansion of the tie rods and the upper and lower shrouds, which are anchored at their bottom ends, cause vertical loads at the outer support blocks. These loads result in a dishing of the support plates k   The angular rotation of the support plate edge may be detrimental to wear due to the possibility of reduced contact area A relationship between the locations of the tapered wear marks and the angular rotation of the TSPs isstill under review 25
Lphuke
-2 Relative thermal expansion of the tie rods and the upper and lower shrouds, which are anchored at their bottom ends, cause vertical loads at the outer support blocks. These loads result in a dishing of the support plates k
The angular rotation of the support plate edge may be detrimental to wear due to the possibility of reduced contact area A relationship between the locations of the tapered wear marks and the angular rotation of the TSPs is still under review 25


s Duke Main Steam Nozzle Flow Restrictor Acoustic Excitation                                   POEnergy.
Main Steam Nozzle Flow Restrictor Acoustic Excitation s Duke POEnergy.
                                                                                    ~~~~~~~~~. - . .I                     ^...
~~~~~~~~~.  
  '! Any sudden shock loss ina steam system is a potential source of acoustic energy X An illustration of acoustic energy generation and transmission in a piping system is shown in Figure 10-10 of Blevins (1994)
-..I  
FB     Force on bend Bend Area change Abrupt     expansion Reservoir Fig. 10-1! A pipe run with an acoustical source at a valve.
^...
Any sudden shock loss in a steam system is a potential source of acoustic energy X An illustration of acoustic energy generation and transmission in a piping system is shown in Figure 10-10 of Blevins (1994)
FB Force on bend Bend Area change Abrupt expansion Reservoir Fig. 10-1! A pipe run with an acoustical source at a valve.
3
3


Main Steam Nozzle Flow Restrictor Acoustics cont'd                     OrEnergy.
Main Steam Nozzle Flow Restrictor Acoustics cont'd OrEnergy.
Analytical Acoustic Analysis Determined acoustic energy from steam nozzle flow restrictor pressure drop and velocity using conventional analytical analysis Lin Predicted ROTSG acoustic modes D   From acoustic sound pressure levels and mode shapes determined magnitude and frequency of tube lateral loads
Analytical Acoustic Analysis Determined acoustic energy from steam nozzle flow restrictor pressure drop and velocity using conventional analytical analysis Lin Predicted ROTSG acoustic modes D From acoustic sound pressure levels and mode shapes determined magnitude and frequency of tube lateral loads Applied acoustic loading as forced vibration on tubes along with FIV loads and support contact forces
    -    Applied acoustic loading as forced vibration on tubes along with FIV loads and support contact forces
'Based on analysis, acoustic energy maybe significant, psfpfiaIIy in arpas MAwIa frnm Crmoss fInAXI Fadsk anrI nindr:A!i covers regions where wear was observed 27
        'Based on analysis, acoustic energy maybe significant, psfpfiaIIy in arpas MAwIa frnm Crmoss fInAXI Fadsk anrI nindr:A!i covers regions where wear was observed                               27


PhDuke Main Steam Nozzle Flow Restrictor Acoustics cont'd               OrEnergy.
PhDuke Main Steam Nozzle Flow Restrictor Acoustics cont'd OrEnergy.
Search for acoustics Original and Replacement OTSG Loose Part Monitoring System spectral content reviewed Steam line piping (outside of containment) instrumented to measure pipe wall accelerations at Units 1,2 and 3 Microphone sound measurements taken around steam line Direct piessUre transducer measurements taken at ROTSG inspection ports during power escalation following Unit 2 outage More pressure transducer measurements planned for Unit 3 outage as well as containment microphone being installed 28
Search for acoustics Original and Replacement OTSG Loose Part Monitoring System spectral content reviewed Steam line piping (outside of containment) instrumented to measure pipe wall accelerations at Units 1, 2 and 3 Microphone sound measurements taken around steam line Direct piessUre transducer measurements taken at ROTSG inspection ports during power escalation following Unit 2 outage More pressure transducer measurements planned for Unit 3 outage as well as containment microphone being installed 28


                                                                  ~Pkuke Main Steam Nozzle Flow Restrictor Acoustics cont'd                   dnergy.
~Pkuke Main Steam Nozzle Flow Restrictor Acoustics cont'd dnergy.
Search for acoustics cont'd
Search for acoustics cont'd
        ; Unit 2 pressure transducer acoustic frequencies were detected but the amplitudes were not as intense as those from predictive analysis
; Unit 2 pressure transducer acoustic frequencies were detected but the amplitudes were not as intense as those from predictive analysis
    >   Steam line piping acceleration measurements detected the same acoustic frequencies as those measured by the ROTSG pressure transducers. Steam line piping accelerations are largest at Unit 'I followed by Unit 2 followed by Unit 3 29
> Steam line piping acceleration measurements detected the same acoustic frequencies as those measured by the ROTSG pressure transducers. Steam line piping accelerations are largest at Unit 'I followed by Unit 2 followed by Unit 3 29


Dfuke Main Steam Nozzle Flow Restrictor Acoustics cont'd               VEnergy.
Dfuke Main Steam Nozzle Flow Restrictor Acoustics cont'd VEnergy.
Acoustic analysis conclusions
Acoustic analysis conclusions
;< Predictive analysis based on the pressure drop of the steam line flow restrictor and acoustic modal analysis indicates that the flow restrictor maybe an acoustic source that may explain the wear distribution within the bundle Field measurements and analysis of steam line accelerations indicate a potential that acoustic frequencies exists that may have potentially high energy levels PiPressure transducer measurements at ONS-2 detected acoustic frequencies at intensities less than expected from ONS-I investigations.
;< Predictive analysis based on the pressure drop of the steam line flow restrictor and acoustic modal analysis indicates that the flow restrictor maybe an acoustic source that may explain the wear distribution within the bundle Field measurements and analysis of steam line accelerations indicate a potential that acoustic frequencies exists that may have potentially high energy levels PiPressure transducer measurements at ONS-2 detected acoustic frequencies at intensities less than expected from ONS-I investigations.
30
30


Low Frequency Pressure Pulse                                       POAueZ.
Low Frequency Pressure Pulse POAueZ.
Unexpected high pressure, low frequency signals were observed at the 9th and 10th TSP, especially at lower power during startup of unit #2 inthe fall 2006 Signals still being evaluated. There is concern that they may not represent real pressure S: Calculations by consultant indicate that energy is sufficient to cause damage if signals are real.
Unexpected high pressure, low frequency signals were observed at the 9th and 1 0th TSP, especially at lower power during startup of unit #2 in the fall 2006 Signals still being evaluated. There is concern that they may not represent real pressure S:
Calculations by consultant indicate that energy is sufficient to cause damage if signals are real.
Signals at low power may be related to control valve operations.
Signals at low power may be related to control valve operations.
31
31


Low Frequency Pressure Pulse                                                                                                                                                                       PO~nergy.
Low Frequency Pressure Pulse PO~nergy.
Low Frequency Pressure Transients during Low Power Operations N ov 29             1000 hours             18%     power           G roup 2 T ransducers T S P9
Low Frequency Pressure Transients during Low Power Operations N ov 29 1000 hours 18%
: 3.                                                                                                                                                                 Pressure transients
power G roup 2 T ransducers T S P9 3.
: 2.                                                                                                                                                                 were Initiated at TSP9 but were 1.
2.
detected also at the other TS P tra n sd u ce rs. N ote the magnitudes at the otherlocatlons were 35I                                                                                                .. 2    .4    263-_          &#xa3;.
1.
      .2600       -
Pressure transients were Initiated at TSP9 but were detected also at the other TS P tra n sd u ce rs. N ote the magnitudes at the otherlocatlons were
      .2000       -
.2600 -
      .1500       -
.2000  
      .1000         -      J.1 1 iJi 1 1611.1,1kii
.1500 -
                =0I                        lorgrinsnsllinilnr "LA  Ian.,  I AAL,.1 11A..AjLj., "JA -1 lillli'ilrltilflFlFivllw III                              V- 111WI-ITHr- II, T111fill 11131f7f -Ipfp.r.                  - 111ify I I
.1000 35I J.1 1 iJi 1
                                                                                                                                                            '1F
.. 2
      - .2000 -4                                   IT...      ~ip&#xb6;,I    I
.4 263
      - .2500-
&#xa3;.
                .0000                 60. boo.                  100.00            150.00        200.00                          250.00                    Sec TS P 11
1611.1,1kii AAL,.1 11A..AjLj., "JA -1
      .6000                                                                                                         113    -*302        ~CM.0
=0I I  
        .4000
"LA
        .3000 I
-.2000 -4
        .2000
-.2500-
        .1000                         ,
.0000 60.
        .0000
TS P 11
          .2.000                 l
.6000
_.3000 2.4000           .1       .                                                   'I                         r' boo                     0oo.00       1 60.00       200.00                         2             '0.00 SeCc      TSP 14 psi 1   4 .       .70 31s0       .007a
.4000
        .3000        4        1
.3000
        .20004                1 l                  Ai
.2000
                                                    .,1.,le
.1000  
                                                        .                    .,1 ,l,         .E ..I . Ai                                 1. IU 1,1
.0000
        -.1000-
.2.000 l
_ .3000-i'ir                                                                 32
_.3000 2.4000  
                  .01000                50  --------
.1 psi
                                            .000         ''      100.00-           1.00           200.00                           250.00                   XS.c
.3000 4 1
.20004 1 l
-.1000-
_.3000-
.01000 50 lorgrinsnsllinilnr lillli'ilrltilflFlFivllw III IT... ~ip&#xb6;,I II an.,
V-111WI-ITHr-II, T111fill 11131f7f -Ipfp.r. - 111ify I I '1F boo.
100.00 150.00 200.00 250.00 Sec 113
-*302
~CM.0 I
'I r'
boo 0oo.00 1 60.00 200.00 2  
'0.00 SeC 1
4.
.70 31s0  
.007a Ai
..,1.,le  
.,1,l,.E..I. Ai
: 1. IU 1,1 c TSP 14 i 'ir 32
.000 100.00-1.00 200.00 250.00 XS.c


Low Frequency Pressure Pulse                                                                                     r P Duke Energye Low Frequency Pressure Transients during Low Power Operations
Low Frequency Pressure Pulse Low Frequency Pressure Transients during Low Power Operations P Duke r Energye
    -AMS     Press                                 I-t-W FLONV A (SEL)TWaI Ilowik wbfr       ICS FDW DE MAND A [k tb hr]
-AMS Press I-t-W FLONV A (SEL)TWaI Ilowik wbfr ICS FDW DE MAND A [k tb hr]
    -ICS FDW ERROR A [k Iblhr]             --- Rx. PoAer                             -SO       STARTUP LEVEL A(sL)[in]
-ICS FDW ERROR A [k Iblhr]
      .MMNFDWCONTROL     VALVE APOSITION[%) -:--ICSMAIN FDW VALVE A [%DMD]             -CSSTARTUP     FDW VALVEDENIAND A [%]
Rx. PoAer  
      -T   D14
-SO STARTUP LEVEL A(sL)[in]
            . -^   ~iol.       ~               T!         .vratSa 33
.MMNFDWCONTROL VALVE APOSITION[%)  
-:--ICSMAIN FDW VALVE A [%DMD]  
-CSSTARTUP FDW VALVEDENIAND A [%]
-T D14  
-^  
~iol.  
~
T!  
.vratSa 33


Low Frequency Pressure Pulse                                 hDuke rEnergya Low Frequency Pressure Transients during Low Power Operations
Low Frequency Pressure Pulse hDuke rEnergya Low Frequency Pressure Transients during Low Power Operations


Annular Flow Instability of Hourglassed Broached Hole           P'1Euey Annular flow instability, also known as 'leakage-flow-induced' vibration, typically occurs incases where a flexible object is situated within an annular flow passage
Annular Flow Instability of Hourglassed Broached Hole P'1Euey Annular flow instability, also known as 'leakage-flow-induced' vibration, typically occurs in cases where a flexible object is situated within an annular flow passage
    ~ Eiherthe dynamics of the flow field or the varying position of the flexible object within the flow passage can cause a variation inthe dynamnic pressure around the central object The difference indynamic pressure around the perimeter of the central object causes a net lateral pressure force which may be destabilizing. The motion caused by the lateral force may increase the dynamic pressure imbalance and cause further lateral motion, hence creating instability.
~ Eiherthe dynamics of the flow field or the varying position of the flexible object within the flow passage can cause a variation in the dynamnic pressure around the central object The difference in dynamic pressure around the perimeter of the central object causes a net lateral pressure force which may be destabilizing. The motion caused by the lateral force may increase the dynamic pressure imbalance and cause further lateral motion, hence creating instability.
35
35


D ukerg Annular Flow Instability of Hourglassed Broached Hole                 nVergyu Industry Experience with Annular Flow Instability Laboratory experiments of divergent nozzle annular flow instability show that a symmetric annular gap with divergent (expansion) angles of 5 to 150 can cause lateral vibration Insome cases where the divergent profile had non-symmetric relief passages, annular flow instability was still observed
D ukerg Annular Flow Instability of Hourglassed Broached Hole nVergyu Industry Experience with Annular Flow Instability Laboratory experiments of divergent nozzle annular flow instability show that a symmetric annular gap with divergent (expansion) angles of 5 to 150 can cause lateral vibration In some cases where the divergent profile had non-symmetric relief passages, annular flow instability was still observed
      *Some research has shown that inlet convergent profiles are a stable configuration The Oconee ROTSG configuration does not match the profile of a classic unstable profile but has some features that make it suspect and consequently a test program inair and water flows was initiated 36
* Some research has shown that inlet convergent profiles are a stable configuration The Oconee ROTSG configuration does not match the profile of a classic unstable profile but has some features that make it suspect and consequently a test program in air and water flows was initiated 36


Annular Flow Instability of Hourglassed Broached Hole         Duke 4MVEnergy.
Annular Flow Instability of Hourglassed Broached Hole Duke 4MVEnergy.
: 3. Laboir-atory experiments                           Water Angle=15&deg; a) Gormian & al. 1987 (at EdF1in relation with PWR in-core)
.-...-.
.
: 3. Laboir-atory experiments Water Angle=15&deg; a) Gormian & al. 1987 (at EdF1in relation with PWR in-core)
J
J
                                          /s grooves I
/s grooves I
SaTong, vibratlions     Vibrations           No vibratiois 37
SaTong, vibratlions Vibrations No vibratiois 37


Annular Flow Instability of Hourglassed Broached Hole                                               VDuke rdvEnergy.
Annular Flow Instability of Hourglassed Broached Hole VDuke rdvEnergy.
Tube pitch
Tube pitch
                                      .875' Minimum tube Original Broached Hole                                                     Outside radius
.875' Original Broached Hole Minimum tube Outside radius
                                                                            .3125' Minimum Drill radius
.3125' Minimum Drill radius
                                                                                  .32' Note: Plate thickness 1.5' OTSG broached plate tube support
.32' Note: Plate thickness 1.5' OTSG broached plate tube support
      .Original TSP Design 58W Tube Support Plate Design 38
.Original TSP Design 58W Tube Support Plate Design 38


Annular Flow Instability of Hourglassed Broached Hole PVEnuergy.
Annular Flow Instability of Hourglassed Broached Hole PVEnuergy.
ROTSG Broached Holed Hole 39
ROTSG Broached Holed Hole 39


Annular Flow Instability of Hourglassed Broached Hole             OvEnkegy, Results of Analysis and Testing Air flow tests at hydraulic conditions equivalent to full power operation indicate that the hourglassed profile causes increased tube response relative to the original non-tapered flow passages The vibratory motions and frequencies measured do not result inan exceedingly high work rate at the support interface but are similar to those fromn cross flow FIV mechanisms Field data does not support annular flow instability as a singular root cause since axial flow isuniform at all radial positions while wear predominantly occurs around the periphery 40
Annular Flow Instability of Hourglassed Broached Hole
: OvEnkegy, Results of Analysis and Testing Air flow tests at hydraulic conditions equivalent to full power operation indicate that the hourglassed profile causes increased tube response relative to the original non-tapered flow passages The vibratory motions and frequencies measured do not result in an exceedingly high work rate at the support interface but are similar to those fromn cross flow FIV mechanisms Field data does not support annular flow instability as a singular root cause since axial flow is uniform at all radial positions while wear predominantly occurs around the periphery 40


EDDuke roEnergy.
ED Duke roEnergy.
Preliminary Metallurgical Studies 41
Preliminary Metallurgical Studies 41


ONS 2 Tube Pulls                                           FADuke Two full length tubes were removed from ONS 2 during outage for metallurgical analysis Westinghouse performing met exam Macro photography -complete Lab ECT - complete r: SEM/EDX - ill progress Laser profilometry - in pi-ogress Meeting 4/11/05 to discuss results to date and future plans Wear tapered consistent with field ECT Sliding marks evident on upper bundle defects Preliminarv observations of wear surface suggest more than one mode of tube motion likely 42
ONS 2 Tube Pulls FADuke Two full length tubes were removed from ONS 2 during outage for metallurgical analysis Westinghouse performing met exam Macro photography -complete Lab ECT - complete r:
SEM/EDX - ill progress Laser profilometry - in pi-ogress Meeting 4/11/05 to discuss results to date and future plans Wear tapered consistent with field ECT Sliding marks evident on upper bundle defects Preliminarv observations of wear surface suggest more than one mode of tube motion likely 42


                                                                                ", Duke ONS 2 Tube Pulls                                                               rVEnergy.
ONS 2 Tube Pulls
", Duke rVEnergy.
1 in Top 53-114, Pce 32,TSP 14, 1 10 Deg.
1 in Top 53-114, Pce 32,TSP 14, 1 10 Deg.
            ..~, ,0::.I '' I : :-00;...S:::tf
: 0 0 t :.0
:0t:.0            0i:
.. ~,,0:.:I ' ' I : :-00;...S:::tf 0i:
                                                                  .: ~~~~
.: ~
X: i   t 43
~~~~
X
: i t
43


ONS 2 Tube Pulls                                               OEnergy.
ONS 2 Tube Pulls OEnergy.
1 in Top 53-114, Pce 28,TSP 12, 120 Deg.
1 in Top 53-114, Pce 28,TSP 12, 120 Deg.
I}111,11 cC     S:i;f 5aS0:iii 44
I} 111,11 cC 5aS0:iii S:i;f 44


DhDuke F'OEnergy.
D hDuke F'OEnergy.
            -.t - I I1g If     - - - -    % - ,! .  "    1. e.- re but b e? *~ ,-    '!
I I1g
I; ... -z-        -- : .....................
: 1.
                                                                                                            '-      -          ::r   .
If  
.t -
: e.
re but b e?  
*~
I;...
z
::r.
Future direction and conclusions
Future direction and conclusions
          -              -T-
.1  
                            - .1         --         -..... ..-                                  .. -        -                    -
-T-45
45


Status of ONS Steam Generator Root Cause Investigation             OEnergy,
Status of ONS Steam Generator Root Cause Investigation O Energy, Install instrumentation package during spring 06 unit #3 outage, perform analysis of data and compare to unit #2, update root cause report/assumptions
* Install instrumentation package during spring 06 unit #3outage, perform analysis of data and compare to unit #2,update root cause report/assumptions
*i Install instrumentation package during fall 06 unit #1 outage, perform analysis of data and compare results of all testing update root cause report/assumptions Perform 1 00% eddy current inspection of unit #1, establish time rate of wear, validate models and assumptions used in operability assessments and evaluations, update root cause report/assumptions X Transition to corrective actions for probable causes 46
*i Install instrumentation package during fall 06 unit #1 outage, perform analysis of data and compare results of all testing update root cause report/assumptions
* Perform 100% eddy current inspection of unit #1,establish time rate of wear, validate models and assumptions used inoperability assessments and evaluations, update root cause report/assumptions X Transition to corrective actions for probable causes 46


TEST INSPECTION PORT LOCATIONS                                           I Duke rE'Energy.
TEST INSPECTION PORT LOCATIONS I Duke rE'Energy.
                                                          -ACCELEROMETER LOCATION SEE DETAILVL I
-ACCELEROMETER LOCATION SEE DETAILVL l
as ItdinWI &#xa3;0 - ur r.j l       WI1\
I WI1 I
I I
I as ItdinWI &#xa3;0 -
l      TSP 9 Inspection Port (Channel 25- 100 uAlpC)
ur r.j l \\
(Channel 26- 100 uA(PC) 47
TSP 9 Inspection Port (Channel 25-100 uAlpC)
(Channel 26-100 uA(PC) 47


Concluding Remarks                                               Vfnergy.
Concluding Remarks Vfnergy.
* Root cause teams have been meeting on a regular basis and will continue through out the summer
Root cause teams have been meeting on a regular basis and will continue through out the summer We now kiow more about what is not causing the wear scars and have 4-5 probable causes Testing and data analysis efforts will continue for units #3 this spring and unit #1 this fall X Eddy current results for the fall 2006 outage on unit #1 will give us our first clues as to the time rate of wear and the if new wear scars have initiated Root cause effort should come to some conclusions and begin winding down by the end of the year unless unexpected results are found during the unit H1 re-inspection ECT will continue on each unit for the foreseeable future 48}}
* We now kiow more about what is not causing the wear scars and have 4-5 probable causes
* Testing and data analysis efforts will continue for units #3this spring and unit #1 this fall X Eddy current results for the fall 2006 outage on unit #1 will give us our first clues as to the time rate of wear and the ifnew wear scars have initiated
* Root cause effort should come to some conclusions and begin winding down by the end of the year unless unexpected results are found during the unit H1 re-inspection
* ECT will continue on each unit for the foreseeable future 48}}

Latest revision as of 09:27, 15 January 2025

Slides for Meeting - Duke Energy - Oconee Steam Generator Wear Root Cause Update with NRC
ML061140370
Person / Time
Site: Oconee  Duke Energy icon.png
Issue date: 04/25/2006
From:
Duke Energy Corp
To:
Office of Nuclear Reactor Regulation
References
Download: ML061140370 (48)


Text

M& Duke f drEnergy.

{:

w i ~ -

-, 1: are 41 -/,

1;_ j^i:

wI., "
:

^::s v,

. ~
.-" 9
r -.....................

w:

-_zi Ad

. Ir Duke Energy - Oconee NIuclear Station Steam Generator Wear Root Cause Update with NRC April 10, 2006 A11 ENCLOSURE 2

raEnergy.

Topics ofdiscussion

  • Introductions
  • Review of Unit I and 2 ROTSG Wear
  • Preliminary Probable Causes
  • Alloy 690 / 410S Tube Support Plate (TSP) material couple and Increased Wear Coefficient Tube to TSP relative rotation and reduced contact area
  • Steam Nozzle Flow Restrictor Acoustic Excitation Low Frequency Pressure Pulse Hourglassed Broach Plate Annular Flow Instability
  • Preliminary Metallurgical Observations
  • Plan for Future Activities
  • Conclusions 2

ONS I Wear Distributions

'a-Duke re' Energy.

ONSI A Tube Support Plate__

2 "3: [4

]~5`

6 7

'9 10-1 213"'14~ 15. Total

%tw<=5 1

4 231 1 5 2 1 17 6

1 3 100 5<'%/tw<=10 4

5 2

946 3181 383 344 228 110 121 1

1576 10<%tw<=15 1

2 _

8 89j 157 102 83 49 50 5 548 1 5<%twv<=210 13~7T7 31 16 8 14 1

130 20<%tw<=25 i

1 9 1 5 3

2 40 25<%tw<=30

_1 5

31 19 30<%tw<=35

_8 4

1 2 35<%tw<=40 2

2

-4 40<%/ltw<=45

___2 2

50'<%tw<z=55

__J___

0 55% tw> 60

_0 Total/Suppor 51_ 7 ml3 01 9 581 444 648 522 348 173 200 7 2431 ONSI-B

____Tube Support Plate T1~-2 3

5.

)~678~IZ01112,i314i5Total

%w=3 2

15 12 191 311 5

1[

1 107 5<%tw<=I0 1

9 615_-2 1-.

-30 34 2.53 _402 174 4

55 174 10 1160 10<%tw<=15 1

II 281 130 80 2 5

68[

2 321 15<%tvv<=20

______I__-

-71 40 35 17 1

1001 20<%hv<=25 1_

21 15 11 1

3 __

331 25<"%'tw--=30

___12 4

16 30'<%tw-=35 I5 3

8 35<%t'dv<=410 l

1 2

40'<%tw'v<45

__2 2

45<%twv<=50

__0 50<%'tw<-55 j

0

%tw>60 I~

0a Total/Support 31 121 91 51 31 1 39 46 3091 6361 3211 81 661 2771 141 17491 4

ONS 1 Wear Distributions P Duke tSEnergy.

1 6 0 150 140 130 120 110 100 90 -

80 70 -

60 50 -

40 -

30 20 1 0 n

.. " I w<

ga

  • 4 k*(

at a

Da a

j DD a

a a-D ae a**

at a%

a F.S

^D, a,

a a,

a:

1¢ a

a a*

a 4,

p, 1

  • a a

aO at a

a aj

~

D

,.w g

s a

a '4~t qe i

Oconee 1-A TSP (All),X l 1-5%

D 6-10%

11-15%

16-20%

o 21-25%

  • 26-30%

31-35%

36-40%

o 41-45%

45 X2 Y

2 Q

1 O 1 O

O 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 M'

"I' `

O N

CO- 0) 0 1

C')

V l0 0

N-CO

0)

C0 a-01

')

vN

1)

'ND N"

wO 5

ONS 1 Wear Distributions m Duke EEnergy.

Oconee 1-B 160 150 140 130 120 110 100 -

90 80 -

70 -

60 50 40 -

30 20 10 0

LV A

i

47 IVI,. I I

- I

.I 11 1: -..

. I I II

-I 11

-P1 C

0 9

02

-V 0

0;

'-'-

TSP (All)

I 1-5%

1 6-10%

0 11-15%

i 16-20%

o 21-25%

  • 26-30%

31-35%

36-40%

o 41-45%

->45%

i~_,

X2 Y 2 Qe;Z YI X0 OIentat11ion o

0 00 a

a a:

° 0

0 0

0 0

0 0

0 CD 0

0 0

0 0D 0 0

0 N

('

c )

'r LO CD N-CD

)

0-C'4 C) a U)

CD N-CD 0) 0 o ~

N ~ m ~ 'q LO (D N-0 6

m'Duke ONS 2 Wear Distributions OEnergy.

ONS2-A 11-01-05 160 150 140 130 120 110 100 90 -

80 -

70 60 50 40 30 20 -

10 -

0 9Z 9'>

2 o

r 2*

5 9*

'T, to I

o 9 1 9 t 99 9

,:0 9-0?

I 11~

@1, "9C 99¶

  • I

>t o0 4

,b

  • 0 9 99) 91 9'v I*

0 t0 O

9t 9

9,

§~

~I 99 90 It 9

TSP (All) 5% 10%

11-15% 20%

o 21-25%

26-30%

31-35%

36-40%

o 41-45%

. >45%

9, 9 99 9

9 9

9 9

9

  • 99 99 9'K 99



9:'

99j9,
9499, X2 Y2Q Yt xOi Orientation 7

D 0

0 0

0 0

0 0

0 0

0 0

0 00 00 0 0

0 0

g

°

°

°

°

°

° 0

N (N

N (N

N (N (N N

(N

ONS 2 Wear Distributions PDuke

rEEnergy, 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

ONS2-B 11-04-05

.%*~

~

4

.2 4 a 4>

4 4

44 4

P

  • s 4

W a

a° 4

4<'s A a

4 *,

5* g 2*'

"4it, 4t O

4*

I Ih '

a O

a 44 4'

O o

4 2) 4

  • f e4 4>)

<2<

{2 TSP (All) o 1-5%

' 6-10%

o 11-15%

  • 16-20%

o 21-25%

  • 26-30%

31-35%

36-40%

o 41-45%

  • >45%

I*

+

T XZ2 Orientalio.

z O O

O 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

(Nc Ur)

(0 r-U)

0) 0 (N

C') ~2 I

(0 r-U) 2

)

0,

('~N m ')

LO (0 t-U (N

((N N

N (N

N (N

(N d

Wear Indications per Steam Generator Duke

[Eergye Original Replacement OTSG OTSG SGA 555 1797 Oconee UnitlSGB 1232 1450 SGA 428 498 Oconee Unit 2 SGB 566 699 SGA 350 Scheduled April/May 2006 Oconee Unit 3 Scheduled AprilM SGB 280 Sh l

Apr 9

ONS I & 2 TSP Wear Frequency Comparison mb Duke c 'Energy.

CL (1) 1--

15 1.1 13 12

=

6".

1 10 9 I 8-.

7 5

I p Indications per TSP ONS2-A i.

,.. I i

I I

15 14 13 1 2 I11 10 I-7 6

5 4

3 2

Indications per TSP ONS2-B

! i 'I a3

-I I

i

  • a s i,

I:z-o'0 C

0

!C) 0 0

i 0

0 C

0 0

IL) 0 UO 0 In) 0 I

O U)

O U) 0 U) 0

) O UL C)

O L

0 ECNlCM MC 1

C7t t

LO)UCO tCO

-CO C0)

Co I

.... -- M.-

r..

o C-o o

C 0

0 0

0 o 0

0 o Co I)

CD

)

CD o

C) o 0

i )

o

)

L o

L)

N C)

C'! C')

-Tt

  • r U)

ED cD Frequency o 0 0

0 0

O LO O) LC

)

r-I-

LO) CO LI)

UC) C)

CJ) ED C) CD C

Frequency 15 14' 13 12 I1 10 CL 9 a.

U) 8 I-7 6

5 4

3 2

Indications per TSP ONS 1 -A III C,0 0 C C)0 0

C)

C!

ED C)

C C)

C)

ED C C)

CD ED 0 C)

() 2) E-2 C)

LO C)

CI) C LO C)

U) CD LO C)

In C)

LO ED LO 0 C)) CIII.*

C'

  • f*

+/-

)

If) U U3 I-I-

a)

ET) En M C

-I

)

Frequency 115 13 12 1 1 10 CL9 c0 8 6

J 4

3 1

Indications per Tsp ONSI -3 C)0C) 0 C)

CI C)

C.) C)

ED CD C 0

a C)

C)

C1 ED 0 C)

Ln o U) o Ln o

)

o 1 o U) to Ln o U)

Lo U) o UE

) o s

J
)

i

'I i).'

'IJ W

l_

I_

U w

I.))

U)

L I

Frequency 10

Summary of Review of Eddy Current Data dr9nergy.

ONS 1 Summary ONSlA, 2431 indications were found on 1797 tubes i-ONSI-1B, 1749 indications were found on 1450 tubes Both ROTSGs 90% of the indications are less than or equal to 15%

of the through wall thickness t-50% of the indications are under 10% of the through wall thickness

< The vast majority of indications (095%)

are present in the superheated steam region on the 9th tube suppoIt plate and above All indication above the 9th support plate are predominately on the outer region of the bundle.

11

ONS1 Summary (cont'd)

fAnergy, The highest frequency of indications is at the 1Oth support plate, with the 1 1tI and 9VI showing the next highest population, The bleed port is located between the 9111 and IOt' ssupport plate the steam outlet nozzles are located at the elevation of the I itt' support plate.

Peripheral indications at the 1itO) TSP on both ROTSGs are more tightly distributed and show a tendency to form a "line" oriented relative to the steam nozzle orientation There is also a heavy defect concentration directly opposite the steam nozzles on the Y2 axis.

] The 1 5t1 support plate, which is directly below the high cross flow steam outlet region and has very few indications.

For SUppoiA plates 'I0 and above, there are very few indications in the interior with increasing occurrences towards the periphery t

The peak density of tube wear is typically a fen rows away from the periphery edge Support plate 9 has a significant percentage of indications in the interior of the bundle.

12

a~lDuke ONSI Summary (cont'd)

nEnergy, a-Virtually all indications are tapered wear marks with an angle nominally between 0.3 and 1.2 degrees.

Analysis of tube to TSP land clearances indicate no clear relationship between the size of the clearances and incidence of indications.

The original OTSGs tube wear is compared against the replacements in which the distribution of the tube wear in the upper TSPs is similar; although there are more indications for the replacements during the first fuel first cycle, than the life span of the original units.

JD The original OTSGs the 9VI and 10til TSP have the most indications followed by the 8th and the remainder in the upper TSPs.

The peak counts occur in the 1 Oth and 1 1itb TSP for the replacements followed by the remainder of the upper TSPs.

2 Only TSPs 7 and 8 differ with significantly more indications in the OTSGs than the ROTSGs.

13

ONS2 Summary All Enu F,;

ONS2-A, 633 indications were found on 498 tubes ONS2-B, 903 indications were found on 699 tubes Both ROTSGs 90% of the indications are less than or equal to 13% of the through wall thickness and 50% of the indications are under 8% of the through wall thickness lThere are significantly less indications than ONS1 with a less severe wear depth distribution.

'i The highest frequency of indications is at the 1 3t11 support plate for ONS2-A and the 12th1 support plate for ONS2-B. There is low incidence of indications on the 9t11, 101t, and 11 support plates when compared with ONS1.

Relative to ONSI there are an increased number of indications in the vicinity of the inspection ports in the lower bundle region below the 9th TSP.

Based on ECT, wear is predominately single lobe contact similar to ONS1 Preliminary review of X-Probe data shows no discemnable orientation pattern.

14

Oconee Tube Wear Probable Cause DEnUkegy.

IN To date, no singular technical root cause has been isolated, but five contributing causes have been identified by the Root Cause Team (BVVC and Duke Energy)

Probable Technical Causes:

Alloy 690 / 41 OS tube support plate (TSP) material couple and increased wear coefficient Tube to TSP relative rotation and reduced contact area Main steam nozzle flow restrictor acoustic excitation Low frequency pressure pulse Hourgiassed broach plate annular flow instability 15

mge'Duke rwEnergy.

Factors Investigated

- ~ ~ -~T,~I::,777,-

,17,--

?',',. wI,I I--1 l

-I.

-~ ~-,-

16

Factors Investigated M Duke PO'Energy.

Dynamic Pressure Induced Vibration

-Feedwater Spray Nozzle Dynamic Excitation of Lower Shroud

2Feedwater Spray Nozzle Dynamic Pressure Excitation of Tubes Acoustic Induced Vibration fAxial Acoustic Standing Waves between TSPs F4Acoustic Resonance with Cross Flow Voitex Shedding

.-;Steam Nozzle Flow Restrictor Acoustic Excitation of Tubes FI kIVVC;tLkpI NuJzIe I

AJoWJVUOL L..AUILCILII I U1 I UL)ua 17

D uke Factors Investigated (cont'd)

^

Dnuergy.

Structural Vibration Steam Nozzle Flow Restrictor Dynamic Excitation of Piping, Shell or Shroud Structural Vibration of Shell due to Mechanical Excitation of System including change in stiffness of ROTSG Structural Vibration of Shell due to Ineffective Upper Lateral Restraint Structural Vibration of Shell due to RCP excitation / unbalance S2 Structural Excitation of Hot Leg (1800 bend) due to RCS flow perturbations 18

Factors Investigated (cont'd)

V nergy.

Flow Induced Vibration

.-fHourglassed Broached Hole Annular Flow Instability O.D. Axial Flow Turbulence Induced Excitation

'Axial flow inside tube causing lateral vibration

,.Localized cross flow excitation at TSPs within a nominally axial flow field TuHigh Cross Flows and FIV loading in bleed port and steam exit region Localized 'jet pump' effect of feedwater spray nozzles uExcessive Bleed Flow attributed to steam carryunder in lower feedwater downcomer Downcomer flow leakage through lower inspection port sleeves DFiow Regime instability 19

Factors Investigated (cont'd)

VDnegy.

Flow Induced Vibration (cont'd)

-Porosity Related Flow Maldistribution at Tube Support Plates 2 Correctness of standard FIV analysis addressing fluid-elastic instability (FEI), random turbulence (RT) and voitex shedding L Effects of linear versus non-linear FIV analysis including clearance limited FEI' Unbalanced feedwater flow through spray nozzles Z 'U-tube' flow oscillations in lower bundle and downcomer 20

Factors Investigated (cont'd)

OFnry Mechanical I Material Interaction Effect of broached hole clearances Effect of tube tension including confir-mation of prestrain Effect of damping in Superheat region 2Relative mechanical interaction between tubes, TSPs, shroud and shell

~Effect of curved versus flat land
~Effect of improved tube I TSP alignment 2Material couple wear coefficient Plant O-perational Thermal Hydraulic Conditions and Geometry 21

PhDuke 0 Energy.

I I.

I 

 I -

.  1..- -

. I..

- 

I Discussion of Probable Causes 22

Alloy 690 1 410S TSP Wear Coefficient Energy.

>I A literature search of wear coefficients was conducted and found a wide variation of results for the same materials Comparison of the original material combination to the ROTSG material combination was initiated E Room temperature sliding tests in a dry environment have provided repeatable consistent results showing that the wear coefficient for Alloy 690 / 4 1 0S is about an order of magnitude higher than Alloy 600/ carbon steel Comparative simultaneous testing in autoclave fretting machines at Super heated conditions has been initiated to confirm the differences between the original material and ROTSG material combinations 23

Tube to TSP Relative Rotation and Reduced Contact Plkuke vnergy.

Volumnetric wear rate is proportional to work rate but through wall wear rate is related to the contacting surface area Dynam-ic contact between the tube and tube support 'land' should engage the full length of the land Relative angular rotation due to tube dynamic m-otion or rotation of -the TSPs can in crease the wear rate

-he Oconee ROTSGs TSPs are vertically positioned by both tie rod spacers starting from 'the lower tubeshe n b upr blocks around the outer edge of the TSPs which are welded to the shroud I.D.

24

Tube to TSP Relative Rotation and Reduced Contact cont'd)

Lphuke

-2 Relative thermal expansion of the tie rods and the upper and lower shrouds, which are anchored at their bottom ends, cause vertical loads at the outer support blocks. These loads result in a dishing of the support plates k

The angular rotation of the support plate edge may be detrimental to wear due to the possibility of reduced contact area A relationship between the locations of the tapered wear marks and the angular rotation of the TSPs is still under review 25

Main Steam Nozzle Flow Restrictor Acoustic Excitation s Duke POEnergy.

~~~~~~~~~.

-..I

^...

Any sudden shock loss in a steam system is a potential source of acoustic energy X An illustration of acoustic energy generation and transmission in a piping system is shown in Figure 10-10 of Blevins (1994)

FB Force on bend Bend Area change Abrupt expansion Reservoir Fig. 10-1! A pipe run with an acoustical source at a valve.

3

Main Steam Nozzle Flow Restrictor Acoustics cont'd OrEnergy.

Analytical Acoustic Analysis Determined acoustic energy from steam nozzle flow restrictor pressure drop and velocity using conventional analytical analysis Lin Predicted ROTSG acoustic modes D From acoustic sound pressure levels and mode shapes determined magnitude and frequency of tube lateral loads Applied acoustic loading as forced vibration on tubes along with FIV loads and support contact forces

'Based on analysis, acoustic energy maybe significant, psfpfiaIIy in arpas MAwIa frnm Crmoss fInAXI Fadsk anrI nindr:A!i covers regions where wear was observed 27

PhDuke Main Steam Nozzle Flow Restrictor Acoustics cont'd OrEnergy.

Search for acoustics Original and Replacement OTSG Loose Part Monitoring System spectral content reviewed Steam line piping (outside of containment) instrumented to measure pipe wall accelerations at Units 1, 2 and 3 Microphone sound measurements taken around steam line Direct piessUre transducer measurements taken at ROTSG inspection ports during power escalation following Unit 2 outage More pressure transducer measurements planned for Unit 3 outage as well as containment microphone being installed 28

~Pkuke Main Steam Nozzle Flow Restrictor Acoustics cont'd dnergy.

Search for acoustics cont'd

Unit 2 pressure transducer acoustic frequencies were detected but the amplitudes were not as intense as those from predictive analysis

> Steam line piping acceleration measurements detected the same acoustic frequencies as those measured by the ROTSG pressure transducers. Steam line piping accelerations are largest at Unit 'I followed by Unit 2 followed by Unit 3 29

Dfuke Main Steam Nozzle Flow Restrictor Acoustics cont'd VEnergy.

Acoustic analysis conclusions

< Predictive analysis based on the pressure drop of the steam line flow restrictor and acoustic modal analysis indicates that the flow restrictor maybe an acoustic source that may explain the wear distribution within the bundle Field measurements and analysis of steam line accelerations indicate a potential that acoustic frequencies exists that may have potentially high energy levels PiPressure transducer measurements at ONS-2 detected acoustic frequencies at intensities less than expected from ONS-I investigations.

30

Low Frequency Pressure Pulse POAueZ.

Unexpected high pressure, low frequency signals were observed at the 9th and 1 0th TSP, especially at lower power during startup of unit #2 in the fall 2006 Signals still being evaluated. There is concern that they may not represent real pressure S:

Calculations by consultant indicate that energy is sufficient to cause damage if signals are real.

Signals at low power may be related to control valve operations.

31

Low Frequency Pressure Pulse PO~nergy.

Low Frequency Pressure Transients during Low Power Operations N ov 29 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br /> 18%

power G roup 2 T ransducers T S P9 3.

2.

1.

Pressure transients were Initiated at TSP9 but were detected also at the other TS P tra n sd u ce rs. N ote the magnitudes at the otherlocatlons were

.2600 -

.2000

.1500 -

.1000 35I J.1 1 iJi 1

.. 2

.4 263

£.

1611.1,1kii AAL,.1 11A..AjLj., "JA -1

=0I I

"LA

-.2000 -4

-.2500-

.0000 60.

TS P 11

.6000

.4000

.3000

.2000

.1000

.0000

.2.000 l

_.3000 2.4000

.1 psi

.3000 4 1

.20004 1 l

-.1000-

_.3000-

.01000 50 lorgrinsnsllinilnr lillli'ilrltilflFlFivllw III IT... ~ip¶,I II an.,

V-111WI-ITHr-II, T111fill 11131f7f -Ipfp.r. - 111ify I I '1F boo.

100.00 150.00 200.00 250.00 Sec 113

-*302

~CM.0 I

'I r'

boo 0oo.00 1 60.00 200.00 2

'0.00 SeC 1

4.

.70 31s0

.007a Ai

..,1.,le

.,1,l,.E..I. Ai

1. IU 1,1 c TSP 14 i 'ir 32

.000 100.00-1.00 200.00 250.00 XS.c

Low Frequency Pressure Pulse Low Frequency Pressure Transients during Low Power Operations P Duke r Energye

-AMS Press I-t-W FLONV A (SEL)TWaI Ilowik wbfr ICS FDW DE MAND A [k tb hr]

-ICS FDW ERROR A [k Iblhr]

Rx. PoAer

-SO STARTUP LEVEL A(sL)[in]

.MMNFDWCONTROL VALVE APOSITION[%)

-:--ICSMAIN FDW VALVE A [%DMD]

-CSSTARTUP FDW VALVEDENIAND A [%]

-T D14

-^

~iol.

~

T!

.vratSa 33

Low Frequency Pressure Pulse hDuke rEnergya Low Frequency Pressure Transients during Low Power Operations

Annular Flow Instability of Hourglassed Broached Hole P'1Euey Annular flow instability, also known as 'leakage-flow-induced' vibration, typically occurs in cases where a flexible object is situated within an annular flow passage

~ Eiherthe dynamics of the flow field or the varying position of the flexible object within the flow passage can cause a variation in the dynamnic pressure around the central object The difference in dynamic pressure around the perimeter of the central object causes a net lateral pressure force which may be destabilizing. The motion caused by the lateral force may increase the dynamic pressure imbalance and cause further lateral motion, hence creating instability.

35

D ukerg Annular Flow Instability of Hourglassed Broached Hole nVergyu Industry Experience with Annular Flow Instability Laboratory experiments of divergent nozzle annular flow instability show that a symmetric annular gap with divergent (expansion) angles of 5 to 150 can cause lateral vibration In some cases where the divergent profile had non-symmetric relief passages, annular flow instability was still observed

  • Some research has shown that inlet convergent profiles are a stable configuration The Oconee ROTSG configuration does not match the profile of a classic unstable profile but has some features that make it suspect and consequently a test program in air and water flows was initiated 36

Annular Flow Instability of Hourglassed Broached Hole Duke 4MVEnergy.

.-...-.

.

3. Laboir-atory experiments Water Angle=15° a) Gormian & al. 1987 (at EdF1in relation with PWR in-core)

J

/s grooves I

SaTong, vibratlions Vibrations No vibratiois 37

Annular Flow Instability of Hourglassed Broached Hole VDuke rdvEnergy.

Tube pitch

.875' Original Broached Hole Minimum tube Outside radius

.3125' Minimum Drill radius

.32' Note: Plate thickness 1.5' OTSG broached plate tube support

.Original TSP Design 58W Tube Support Plate Design 38

Annular Flow Instability of Hourglassed Broached Hole PVEnuergy.

ROTSG Broached Holed Hole 39

Annular Flow Instability of Hourglassed Broached Hole

OvEnkegy, Results of Analysis and Testing Air flow tests at hydraulic conditions equivalent to full power operation indicate that the hourglassed profile causes increased tube response relative to the original non-tapered flow passages The vibratory motions and frequencies measured do not result in an exceedingly high work rate at the support interface but are similar to those fromn cross flow FIV mechanisms Field data does not support annular flow instability as a singular root cause since axial flow is uniform at all radial positions while wear predominantly occurs around the periphery 40

ED Duke roEnergy.

Preliminary Metallurgical Studies 41

ONS 2 Tube Pulls FADuke Two full length tubes were removed from ONS 2 during outage for metallurgical analysis Westinghouse performing met exam Macro photography -complete Lab ECT - complete r:

SEM/EDX - ill progress Laser profilometry - in pi-ogress Meeting 4/11/05 to discuss results to date and future plans Wear tapered consistent with field ECT Sliding marks evident on upper bundle defects Preliminarv observations of wear surface suggest more than one mode of tube motion likely 42

ONS 2 Tube Pulls

", Duke rVEnergy.

1 in Top 53-114, Pce 32,TSP 14, 1 10 Deg.

0 0 t :.0

.. ~,,0:.:I ' ' I : :-00;...S:::tf 0i:

.: ~

~~~~

X

i t

43

ONS 2 Tube Pulls OEnergy.

1 in Top 53-114, Pce 28,TSP 12, 120 Deg.

I} 111,11 cC 5aS0:iii S:i;f 44

D hDuke F'OEnergy.

I I1g

1.

If

.t -

e.

re but b e?

  • ~

I;...

z

r.

Future direction and conclusions

.1

-T-45

Status of ONS Steam Generator Root Cause Investigation O Energy, Install instrumentation package during spring 06 unit #3 outage, perform analysis of data and compare to unit #2, update root cause report/assumptions

  • i Install instrumentation package during fall 06 unit #1 outage, perform analysis of data and compare results of all testing update root cause report/assumptions Perform 1 00% eddy current inspection of unit #1, establish time rate of wear, validate models and assumptions used in operability assessments and evaluations, update root cause report/assumptions X Transition to corrective actions for probable causes 46

TEST INSPECTION PORT LOCATIONS I Duke rE'Energy.

-ACCELEROMETER LOCATION SEE DETAILVL l

I WI1 I

I as ItdinWI £0 -

ur r.j l \\

TSP 9 Inspection Port (Channel 25-100 uAlpC)

(Channel 26-100 uA(PC) 47

Concluding Remarks Vfnergy.

Root cause teams have been meeting on a regular basis and will continue through out the summer We now kiow more about what is not causing the wear scars and have 4-5 probable causes Testing and data analysis efforts will continue for units #3 this spring and unit #1 this fall X Eddy current results for the fall 2006 outage on unit #1 will give us our first clues as to the time rate of wear and the if new wear scars have initiated Root cause effort should come to some conclusions and begin winding down by the end of the year unless unexpected results are found during the unit H1 re-inspection ECT will continue on each unit for the foreseeable future 48