ML18038A458: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:;;  AQ      'ERATED        D1S1BUTIOY                  DEMO'.iSTR+IO.i          SYSTEM REGULATORY INFORMATION DISTRIBUTION SYSTEM (RIDS)
{{#Wiki_filter:}}
ACCESSION NBR:8905030108          DOC.DATE: 89/04/28        NOTARIZED: YES        DOCKET FACIL:50-410 Nine Mile Point Nuclear Station, Unit 2, Niagara Moha                  05000410 AUTH. NAME          AUTHOR AFFILIATION TERRY,C.D.          Niagara Mohawk Power Corp.
RECIP.NAME          RECIPIENT AFFILIATION Document Control Branch (Document Control Desk)
 
==SUBJECT:==
Forward      amend  to            fo  x e Mg.e P  in Unit 2.~
DISTRIBUTION CODE: AO53D TITLE:  OR FSAR
                                    &/g//SW COPIES n!~~
IVED:LTR Submittal: Updated FSAR (50.71) and Amendments
                                                                      ~    S~
ENCL Lg SIZE:o  ~
Oar    '
D NOTES S
RECIPIENT          COPIES'TTR RECIPIENT        COPIES ID  CODE/NAME                    ENCL    ID  CODE/NAME      LTTR ENCL PD1-1 LA                  1        0    PD1-1 PD              1    0 SLOSSON,M                1        1    BENEDICT,R            1    1 INTERNAL: ACRS                      ~o          o{l  AEOD/DOA/IRB DS 7E        1        0    NUDOCS-ABSTRACT REG  FILE        01      1        1    RGN1                  1    1 EXTERNAL: IRM/DISS/DCB                1        1    LPDR NRC PDR                  1        1    NSIC SAIC LINER,R              1        1 R
I oua Vos~ze UMrrEOQIvWauMN OsmeLOSums S
h D
D
(<RID S
PLEASE HELP US 'IO REDUCE WASTE! CXNI'ACT 'IHE DOCUMEMI'G&#xc3;IBDLDESK, RXM Pl-37 (EXT. 20079) TO ELDhZNATE YOUR NAME      FBI DISTRIBUTION LI8IS FOR DOCUMENIS YOU DON'T NEED!
TOTAL NUMBER OF COPIES REQUIRED: LTTR                16  ENCL  c@$
 
~7 al V NIAGARA P50MQHANK NIAGARAMOHAWKPOWER CORPORATION/301 PLAINFIELDROAD, SYRACUSE, N.Y. 13212/TELEPHONE (315) 474-1 511 April 28,    1989 NMP2L 1198 U.S. Nuclear Regulatory Commission ATTN:    Document Control Desk Hashington, D.C. 20555 Re:  Nine Mile Point Unit    2 Docket No. 50-410 NPF-69 Gentlemen:
Pursuant to 10 CFR 50.4(b)(6) and 50.71(e), Niagara Mohawk Power Corporation hereby submits one signed original and ten copies of the Nine Mile Point Unit 2 Updated Final Safety Analysis Report, hereinafter referred to as the Updated Safety Analysis Report (USAR) for Nine Mile Point Unit 2. Copies are also being sent directly to the Regional Administrator, Region I and the NRC Resident Inspector at Nine Mile Point Unit 2. An extension for the submittal of the initial USAR (from October 1988 to April 1989) was requested by our September 16, 1988. letter and granted by the NRC on October 31, 1988. Under separate cover, we are transmitting updates to material which had previously been given proprietary status by the NRC pursuant to the provisions of 10 CFR 2.790.
In addition to plant modifications, the following changes have been incorporated into the initial Updated Safety Analysis Report:
: 1. The Emergency  Plan, formerly included in the      FSAR, is maintained in accordance  with  10 CFR 50  Appendix E,  V and  therefore is not included in the USAR.
: 2. The  Quality Assurance Program is maintained in accordance with 10 CFR 50.54(a)(3) and therefore is incorporated in the USAR (Chapter 17) by reference.
: 3. Appropriate portions of Niagara Mohawk's responses to NRC              FSAR  questions have been incorporated into the body of the initial USAR.
: 4. The  Technical Specification has been referenced in place of Chapter                16 and  the Chapter 16 text has been deleted from the USAR.
: 5. The  initial  USAR  incorporates  a number  of editorial    changes.      These changes  were  to correct spelling and typographical, errors; update references to USAR figures, sections, documents or, tables of contents; to improve grammar or clarity; and to move information to more appropriate locations.
88905030108    890428 PDR    AOOCK  05000410 K                    PDC i
 
1 l- '
g
 
l, The. certification required by 10 CFR 50.71(e)(2) is attached to this    letter.
An errata sheet is provided in Attachment 1 describing corrections that were identified after the  initial  USAR was released for printing. Our Nuclear Compliance and Verification group is concluding its additional      internal verification program on the submittal. Procedures are in place      to document the results of the verification process.      Any required correction will be made in the next update. In accordance with 10 CFR 50.71(e)(3)(i) and the NRC's exemption issued on October 31, 1988, the USAR is up-to-date as of April 30, 1988. is being submitted in fulfillment of the requirements of 10 CFR 50.71(e)(2)(ii) to identify    changes made under the provisions of 10 CFR 50.59 but not previously submitted to the Commission. None of the safety evaluations in Attachment 2 involved an unreviewed safety question as defined by 10 CFR 50.59(a)(2). Pursuant to 10 CFR 50 '9(b)(2), Niagara Mohawk had submitted on October 26, 1988 a summary of the safety evaluation reports. supplements the previous submittal and also contains a list of safety evaluations that reflect changes in the design of the plant prior to the issuance of the full-term operating license.
Sincerely, NIAGARA MOHAWK POWER CORPORATION C. D. Terr Vice President Nuclear Engineering & Licensing CDT/bd 7185G xc:  Regional Administrator, Region I Mr. R. A. Capra, Director Hs. H. L. Slosson, Project Manager Mr. W. A. Cook, Resident Inspector Records Management
 
" Xi''
UNITED STATES NUCLEAR REGULATORY COMMISSION In the Hatter of NIAGARA MOHAWK POWER CORPORATION)                            Docket No. 50-410 (Nine Mile Point Nuclear Station)
Unit  No. 2                                      )
CERT I F ICATION C. D. Terry, being duly sworn, states that                  he  is Vice President, Nuclear Engineering and Licensing of Niagara Mohawk Power Corporation, that he is authorized on the part of said Company to sign and file with the Nuclear Regulatory Commission this certification; and that, in accordance with 10 C.F.R.
$ 50.71(e) (2), the information contained in the attached letter and updated Final Safety Analysis Report accurately presents changes made since the previous submittal necessary to reflect information and analyses submitted to the Commission or prepared pursuant to Commission requirement and contains an identification of changes made under the provisions of $ 50.59 but not previously submitted to the Commission.
By C. D. Terry Vice President Nuclear Engineering and Licensing Subscribed and sworn to before                  me this PE'Kh        day        of              , 1989.
Notary Public DIANE R. KIMt3ALL York Ptrhrio irr the Sralo ol How Co lsatortExptreaMay31,1+7 4252W
 
  ~ $
 
<<Qp
            ~g S/4 d/
    ~q[Q
      @g p3~
 
I J
yP V    ~r'+ .~f
 
wats soot sFv VaS Bess upOa>Fo 70 INCLUDE REY SIGNS THROUGH DiTED
 
Sp NINE MILE POINT NUCLEAR STATION-UNIT 2 QOg]Q",vV g 0 QCIOOQQO CI AMENDMENT28
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS Section                    Title                        Volume CHAPTER 1    INTRODUCTION AND GENERAL DESCRIPTION OF PLANT 1.1          Introduction 1.2          General Plant Description 1.3          Comparison Tables 1 ~ 4        Identification of Agents and  Contractors 1.5          Requirements  for Further Technical Information 1.6          Material Incorporated by Reference 1.7          Drawings and Other Detailed Information 1.8          Conformance to NRC Regulatory Guides 1.9          Standard Review Plan Conformance to Acceptance  Criteria 1.10        Unit 2 Response to Regulatory Issues Resulting from TMI 1.11        Abbreviations and Acronyms 1.12        Generic Licensing Issues 1.13        Unit 2 Position on Unresolved Safety Issues CHAPTER 2    SITE CHARACTERISTICS Geography and Demography Nearby Industrial, Transportation, and  Military Facilities 2.3          Meteorology 2.4          Hydrologic Engineering 2.5          Geology, Seismology, and Geotechnical Engineering                    3,4 Appendix 2A Appendix 2B                                              5 Appendixes 2C through 2H                                  6 Appendixes 2I, 2J                                        7 Appendixes 2K, 2L, 2M                                    8 CHAPTER 3    DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT, AND SYSTEMS 3.1          Conformance  with NRC General Design Criteria 3.2          Classification of Structures, Systems,  and Components Amendment 16                                      December 1984
 
Nine Mile Point Unit 2 FSAR TABLE OF CONTENTS (Cont)
Section                  Title                      Volume 3.3          Wind and Tornado Loading 3.4          Water Level (Flood) Design
'3. 5        Missile Protection 3.6A        Protection Against Dynamic Effects Associated with the Postulated Rupture of Piping (SWEC Scope, of SupplY)                                  9,10 3.6B        Protection Against Dynamic Effects Associated with the Postulated Rupture of Piping (GE Scope of Supply)    10 3.7A        Seismic Design                            10 3 'B        Seismic Design                            10 3.8          Design of Seismic Category I Structures  10 3.9A        Mechanical Systems and Components (SWEC Scope of Supply) 3.9B        Mechanical Systems and Components (GE Scope of Supply) 3.10A        Seismic Qualification of. Seismic Category I Instrumentation and Electrical Equipment (SWEC Scope of .Supply)                              12 3 10B
  ~          Seismic Qualification of Seismic Category I Instrumentation and Electrical Equipment (GE Scope of Supply)                                12 3.11        Environmental Design of Mechanical and Electrical Equipment                  12 Appendixes 3A  through  3D                              12 CHAPTER 4    REACTOR 4.1          Summary  Description                      12 4.2          Fuel System Design                        12 4.3          Nuclear Design                            12 Thermal/Hydraulic Design                  12 4.5        Reactor Materials                          12 4.6          Functional Design of Reactivity Control Systems                            12 CHAPTER 5    REACTOR COOLANT SYSTEM AND CONNECTED SYSTEMS                          13 5.1          Summary  Description                      13 5.2          Integrity of Reactor Coolant Pressure  Boundary                        13
 
Nine Mile Point Unit  2 FSAR CHAPTER 1 TABLE OF CONTENTS  (Cont)
Section              Title                      Pacae 1.2.9.19  Safe Shutdown from Outside the Control Room                          1 2 33
                                                  ~
1.2.9.20  Main Control Room Heating, Ventilating and Air Conditioning System            1 2-33
                                                  ~
1.2.10    Cooling Water and Auxiliary Systems    1. 2-34 1.2.10.1  Reactor Building Closed Loop Cooling Water System                  1.2-34 1.2.10.2  Turbine Building Closed Loop Cooling Water System                  1.2-34 1.2.10.3  Service Water System                  1.2-34 1.2.10.4  Ultimate Heat Sink                    1 2-34
                                                  ~
1.F 10.5  Plant Chilled  Water System            1.2-34 1.2.10.6  Heating,. Ventilating, and  Air Conditioning Systems                  1.2-35 1.2.10.7  Process Sampling                      1.2-35 1.2.10.8  Condensate Makeup and Drawoff System  1.2-35 1.2.10.9  Water Treatment and Makeup Water Systems                          1.2-35 1 2.10.10
  ~      Domestic Water and Sanitary Drains and Disposal Systems            1 2-36
                                                  ~
1.2.10.11 Compressed Air Systems,                1.2-36 1.2.10.12 Auxiliary Steam System                1.2-37 1.2.10.13 Standby Diesel Generator Fuel Oil Storage and Transfer System        1.2-37 1.2.10.14 Fire Protection System                1 2 37
                                                  ~
1 '.10.15 Communication Systems                  1.2-37 1.2.10.16 Lighting Systems                      1.2-38 1.2.11    References                            1.2-41 1.3      COMPARISON TABLES                      1.3-1 1.3. 1 ~  Comparison  with Similar Facility Designs                                1.3-1 1.3.2    Comparison  of Final and Preliminary Information                            1~3 1 1.4      IDENTIFICATION OF AGENTS AND CONTRACTORS                            1.4-1 1.4. 1    Applicant                              1.4-1 1.4.2    Architect-Engineer                    1.4-2 1.4.3    Nuclear Steam Supply'System            1.4-3 1.4.4    Turbine Generator Supplier            1.4-4 1.4.5    Technical Consultants                  1.4-4 1.4.6    Reference                              1.4-8
 
Nine Mile Point Unit, 2 FSAR CHAPTER 1 TABLE OF CONTENTS Section                Title                          Pacae 1.5        REQUIREMENTS FOR FURTHER TECHNICAL INFORMATION                                1.5-1 1.5. 1  Current BWR Development Programs            1.5-1 1.5. 1. 1  Instrumentation for Vibration Detection                                  1.5-1 1 ~ 5. 1.2  Core Spray Distribution                    1.5-1 1.5. 1.3    Core Spray and Core Flooding Heat Transfer Effectiveness              r      1.5-1 1.5.1.4    Verification of Pressure Suppression Design                                      1.5-2 1.5 1.5
      ~    Boiling Transition Testing                  1.5-3 1.5.2      Geotechnical Investigations                1.5-3 1 ~ 5.3    References                                  1.5-5 1.6        MATERIAI INCORPORATED BY REFERENCE          1. 6-1 1.7        DRAWINGS AND OTHER DETAILED INFORMATION                                1.7-1 1.7. 1  Electrical, Instrumentation,    and Control Drawings                            1 7 1
                                                          ~
l.7.2      Piping and Instrumentation Drawings        1.7-1 1 8
  ~        CONFORMANCE TO NRC REGULATORY GUIDES        1.8-1 1.9        STANDARD DESIGNS                            1.9-1 1.10        NINE MILE POINT UNIT 2 RESPONSE TO TMI REQUIREMENTS                            1.10-1 1.11        ABBREVIATIONS AND ACRONYMS                  1.11-1 1.12        GENERIC LICENSING ISSUES                    1. 12-1
: l. 13      UNIT 2 POSITION  ON UNRESOLVED
                                                          '3-1 SAFETY ISSUES                              1 Amendment 6              1-iv                    December 1983
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                Title                  Volume 14.2        Specific Information To Be Included in Final Safety Analysis Report (FSAR)              26,27 CHAPTER 15  ACCIDENT ANALYSIS                    27 15.0        General                              27 15.1        Decrease in Reactor Coolant Temperature                          27 15.2        Increase in Reactor Pressure        27 15.3        Decrease in Reactor Coolant System Flow Rate                    27 15.4        Reactivity and Power Distribution Anomalies                            27 15.5        Increase in Reactor Coolant Inventory                            27 15.6        Decrease in Reactor Coolant Inventory                            27 15.7        Radioactive Release From Subsystems or Components            27 15.8        Anticipated Transients without Scram (ATWS)                        27 Appendix 15A                                      28 Appendix 15B                                      28 Appendix 15C                                      28    26 Appendix 15D                                      28 Appendix 15E                                      28 CHAPTER 16  TECHNICAL SPECIFICATIONS            28 CHAPTER 17  QUALITY ASSURANCE                    28 17.0        Introduction                        28 17.1        Quality Assurance Program During Operation                            28 CHAPTER 18  HUMAN FACTORS ENGINEERING            28 18.1        Human  Factors Engineering Team      28 18.2        Safety Parameter Display System      28 Amendment 26                                  May 1986
 
  ~
0
 
Nine Mile Point Unit  2 FSAR CHAPTER 1 LIST'F  TABLES Table Number          Title 1.3-1  COMPARISON OF NUCLEAR STEAM SUPPLY SYSTEM DESIGN CHARACTERISTICS
: 1. 3-2 COMPARISON OF ENGINEERED'AFETY FEATURES DESIGN CHARACTERISTICS
: 1. 3-3 COMPARISON OF CONTAINMENT DESIGN CHARACTERISTICS
: l. 3-4 COMPARISON OF ELECTRICAL POWER SYSTEMS DESIGN CHARACTERISTICS 1.3-5  COMPARISON OF RADIOACTIVE WASTE MANAGEMENT DESIGN CHARACTERISTICS 1.3-6  COMPARISON OF POWER CONVERSION SYSTEM DESIGN CHARACTERISTICS 1.3-7  COMPARISON OF STRUCTURAL DESIGN CHARACTERISTICS
: 1. 3-8 COMPARISON OF FINAL AND PRELIMINARY DESIGN INFORMATION FOR THE NSSS SCOPE OF SUPPLY
: 1. 3-9 COMPARISON OF FINAL AND PRELIMINARY DESIGN INFORMATION FOR THE BALANCE OF PLANT
: 1. 4-1 COMMERCIAL NUCLEAR REACTORS COMPLETED, UNDER CONSTRUCTION, OR IN DESIGN BY GENERAL ELECTRIC
: l. 6-1 REFERENCED REPORTS  FOR THE NSSS  SCOPE OF SUPPLY
: 1. 7-1 ELECTRICAL, INSTRUMENTATION, AND CONTROL DRAWINGS 1.7-2  PIPING AND INSTRUMENTATION DIAGRAMS 1.8-1  CONFORMANCE WITH  DIVISION  1 NRC REGULATORY GUIDE 1.-v
 
Nine Mile Point Unit  2 FSAR CHAPTER 1 LIST OF TABLES  (Cont)
Table            Title 1.8-2  CONFORMANCE WITH DIVISION 8  NRC REGULATORY GUIDE 1.9-1  STANDARD REVIEW PLAN CONFORMANCE TO ACCEPTANCE CRITERIA 1.10-1 NUREG-0737 TMI-2 ITEMS 1.11-1 ABBREVIATIONS AND ACRONYMS USED IN FSAR
 
Nine Mile Point Unit  2 FSAR CHAPTER 1 LIST OF TABLES Table Number          Title 1.3-1            COMPARISON OF NUCLEAR STEAM SUPPLY SYSTEM DESIGN CHARACTERISTICS 1.3-2            COMPARISON OF ENGINEERED SAFETY FEATURES DESIGN CHARACTERISTICS 1.3-3            COMPARISON OF CONTAINMENT DESIGN CHARACTERISTICS 1.3-4            COMPARISON OF ELECTRICAL POWER SYSTEMS DESIGN CHARACTERISTICS 1.3-5            COMPARISON OF RADIOACTIVE WASTE MANAGEMENT DESIGN CHARACTERISTICS 1.3-6            COMPARISON OF POWER CONVERSION SYSTEM DESIGN CHARACTERISTICS 1.3-7            COMPARISON OF STRUCTURAL DESIGN CHARACTERISTICS 1.3-8            COMPARISON OF FINAL AND PRELIMINARY DESIGN INFORMATION FOR THE NSSS SCOPE OF SUPPLY 1.3-9            COMPARISON OF FINAL AND PRELIMINARY DESIGN INFORMATION FOR THE BALANCE OF PLANT 1.4-1            COMMERCIAL NUCLEAR REACTORS COMPLETEDi UNDER CONSTRUCTION, OR IN DESIGN BY GENERAL ELECTRIC 1.6-1            REFERENCED REPORTS FOR THE NSSS  SCOPE OF SUPPLY
: 1. 7-1          ELECTRICAL'NSTRUMENTATIONi AND CONTROL DRAWINGS 1~7 2            PIPING AND INSTRUMENTATION DIAGRAMS 1.8-1            CONFORMANCE WITH  DIVISION 1 NRC REGULATORY GUIDE 1.8-la          COMPLIANCE WITH REGULATORY GUIDE  1.150
      \
I,,
USAR    Revision 0              1-v                April 1989
 
Nine Mile Point Unit                2 FSAR CHAPTER 1 LIST            OF TABLES    (Cont)
Title'ONFORMANCE WITH DIVISION 8 NRC REGULATORY GUIDE STANDARD REVIEW PLAN CONFORMANCE TO ACCEPTANCE CRITERIA NUREG-0737 TMI-2 ITEMS ABBREVIATIONS AND ACRONYMS USED IN FSAR
 
Nine Mile Point Unit  2 FSAR CHAPTER 1 LIST OF FIGURES  (Cont)
Figure Number                    Title 1.2-25        GENERAL ARRANGEMENT, TURBINE BUILDING PLAN SECTION  5-5 1.2-26        GENERAL ARRANGEMENT, SCREENWELL BUILDING WATER TREATMENT AND SERVICE WATER PUMPS PLAN (SHEETS 1 AND 2) 1 ~ 2 27      GENERAL ARRANGEMENT, SCREENWELL BUILDING WATER  .
TREATMENT AND SERVICE WATER PUMPS PLAN SECTION (SHEETS 1 AND 2)                                  J z~
: 1. 2-28        GENERAL ARRANGEMENT, SCREENWELL BUIIDING WATER TREATMENT AND SERVICE WATER PUMPS PLAN SECTION 1.2-29        GENERAL ARRANGEMENT AND DETAIIS, INTAKE AND DISCHARGE TUNNELS (SHEETS 1 THROUGH 3)              2u
                                                                  /
1.2-30        GENERAL ARRANGEMENT AND DETAILS, INTAKE STRUCTURE 1.2-31        GENERAL ARRANGEMENT AND DETAILS, MAIN STACK 1.2-32        GENERAL ARRANGEMENT, NORMAL SWITCHGEAR BUILDING PLANS (SHEETS 1 THROUGH 3) 1 2 33
  ~            GENERAL ARRANGEMENT, NORMAL SWITCHGEAR BUILDING
: 1.            GENERAI ARRANGEMENT, AUXILIARY BOILER 2-34'.2-35 HOUSE GENERAL ARRANGEMENT, STANDBY GAS TREATMENT BUILDING EL  261'-0" 1.2-36        GENERAL. ARRANGEMENT, STANDBY GAS TREATMENT BUILDING AND RAILROAD ACCESS LOCK SECTION 1.2-37        GENERAL ARRANGEMENT, CONDENSATE STORAGE TANK BUILDING (SHEETS 1 AND 2)
: 1. 2-38        COOLING TOWER  FILL LEVEL  PLAN AND SECTION Amendment 24                1-ix                February 1986
 
Nine Mile Point Unit  2 FSAR CHAPTER 1 LIST OF FIGURES  (Cont)
Figure Number                  Title 1.2-39      COOLING TOWER SECTION BELOW THE  FILL, LEVEL 1.2-40      GENERAL ARRANGEMENT, HYDROGEN STORAGE AREA 1.7-1        PIPING AND INSTRUMENTATION DIAGRAM (SWEC)
(SHEETS 1 THROUGH 5)
    .1. 7"2      PIPING  AND INSTRUMENT SYMBOLS (GE) 1 7 3
        ~          LOGIC DIAGRAMS SYMBOLS (SWEC)
: z. I              (SHEETS 1 AND 2) 1.7-4        ELECTRICAL ONE-LINE DIAGRAMS SYMBOLS (SWEC) 1.10-1      DELETED 1.10-2      DELETED 1.10-3      DELETED 1.10-4      DELETED Amendment 24              1-x                February 1986
 
Nine Mile Point Unit,  2 FSAR generator to the outgoing transmission system. The 115-kV switchyard receives power from two separate offsite power sources through two physically and electrically independent incoming circuits.      The two 'circuits feed two separate reserve station service transformers and an auxiliary boiler transformer. The reserve station service transformers step down the offsite power from 115 to 13.8 and 4.16 kV, and provide two independent offsite power sources for the unit auxiliary    power  distribution system. The auxiliary boiler transformer steps    down the offsite power from 115 to 13.8 and 4.16 kV.      Its 13.8-kV winding supplies power to the auxiliary boiler and associated equipment; the 4.16-kV tertiary winding provides a backup source for the emergency 4.16-kV buses.
The  unit auxiliary power distribution system feeds all unit auxiliary loads through 13.8-kV switchgear,              4.16-kV switchgear, 600-V load centers, 600-V motor control centers, and various ac and dc distribution panels.        The system    is divided into nuclear nonsafety-related and nuclear safety-related systems. The nuclear nonsafety-related auxiliary power    distribution system feeds all non-Class 1E unit auxiliary loads. Under normal plant operating conditions, it is energized from the normal station service transformer.
During startup and normal shutdown conditions, it is energized from offsite power sources thxough reserve station service transformers. A normal 125-V dc system, consisting of batteries, battery chargers, and distribution panels, provides a reliable source of power for protection, control, and  instrumentation loads and dc motors under normal and emergency  conditions of the plant.        A +24-V dc    system provides a reliable source for the neutron monitoring system.
The  nuclear  safety-related    auxiliary power distribution system supplies all Class 1E      unit auxiliary loads. This system    is divided into        three independent divisions.
Division I    and Division    II    are  independent  redundant divisions    and supply all    nuclear safety-related auxiliary loads except the high pressure core spray (HPCS) system.
The HPCS system      and related equipment are supplied by Division III. All three divisions are normally energized from the offsite power sources through reserve station service transformers. The auxiliary boiler transformer can be connected    manually to act as a backup source for either the Division I or Division II supply.
Each of the three divisions of the nuclear safety-related auxiliary power distribution systems has its own independent standby diesel generator.          In the event of a LOCA and/or 1.2-'19
 
Nine Mile Point Unit      2 FSAR loss of    offsite  power, each    division is energized        from    its own    standby    diesel generator. A 125-V emergency dc power system feeds      all safety-related dc protection, control, and instrumentation loads and safety-related dc motors under normal operation of the plant as well as during emergency conditions.        The system      is divided into three independent divisions each consisting of its own battery, primary and backup battery chargers, switchgear, motor control centers, and distribution panels.          Each division feeds the dc loads associated with the corresponding divisions of the nuclear safety-related auxiliary power 'distribution system.
Chapter    8  describes the electrical power system in detail.
1.2 '.2      Nuclear System Process Control and Instrumentation Reactor Manual Control        S stem The    reactor manual control system (RMCS) provides the means by which control rods are positioned from the control room for power control. The system operates valves in each hydraulic control unit, to change control rod position.                  One control rod can be manipulated          at  a  time. The  RMCS  includes the logic that restricts abnormal control rod movement (rod block) under certain conditions as a backup to procedural controls.
Recirculation Flow Control S stem During normal power operation, a variable position discharge valve is used to control flow. Adjusting this valve changes the coolant flow rate through the core and thereby changes the core power level. The system can automatically adjust the reactor power to the load change by adjusting the electrical    power supply.
Neutron Monitorin        S stem The    neutron monitoring          system (NMS)'s      a system of incore neutron detectors          and    out-of-core electronic monitoring equipment.        The system provides indication of neutron flux, which can be correlated to thermal power level for the entire range of flux conditions that can exist in the core.
The source range monitors (SRMs) and the intermediate                  range monitors        (IRMs) provide        flux    level  indications    during reactor startup and low-power operation.                The .local power range    monitors      (LPRMs)    and    average  power    range monitors (APRMs)    allow    assessment      of  local    and    overall    flux conditions during power range operation. The traversing incore probe (TIP ) system provides a means to calibrate the 1.2-20
 
                            ~  0
~ ~            ~ ~    ~~
w  e~s ~                        0
    ~ ~    ~ ~    ~ ~
0
                              ~
0 e
                                        ~ 0
 
NINE MILEPOINT NUCLEAR STATION UNIT 2 Qo[gg~
Qcl  Q AP2 0 QQQQQQO 0 vOL. 2
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS Section                    Title                        Volume CHAPTER 1    INTRODUCTION AND GENERAL DESCRIPTION OF PLANT 1.1          Introduction 1.2          General Plant Description 1.3          Comparison Tables 1.4          Identification of Agents and  Contractors 1.5          Requirements  for Further Technical Information 1.6          Material Incorporated by Reference 1.7          Drawings and Other Detailed Information 1.8          Conformance to NRC Regulatory Guides 1 9
  ~          Standard Review Plan Conformance to Acceptance  Criteria
: 1. 10        Unit 2 Response to Regulatory Issues
            'esulting from TMI                            2
: 1. 11        Abbreviations and Acronyms                  2
: 1. 12        Generic Licensing Issues                    2
: 1. 13        Unit 2 Position on Unresolved Safety Issues CHAPTER 2    SITE CHARACTERISTICS Geography and Demography Nearby Industrial, Transportation, and  Military Facilities 2.3          Meteorology 2.4          Hydrologic Engineering 2.5          Geology, Seismology, and Geotechnical Engineering                    3,4 Appendix 2A Appendix 2B                                                5 Appendixes 2C through 2H                                  6 Appendixes 21, 2J                                          7 Appendixes 2K, 2L, 2M                                      8 CHAPTER 3    DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT, AND SYSTEMS 3.1          Conformance  with NRC General Design Criteria 3.2          Classification of Structures, Systems,  and Components Amendment 16                                      December 1984
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                  Title                      Volume 3.3          Wind and Tornado- Loading 3.4          Water Level (Flood) Design 3.5          Missile Protection 3.6A        Protection Against Dynamic Effects Associated with the Postulated Rupture of Piping (SWEC Scope of Supply)                                  9,10 3.6B        Protection Against, Dynamic Effects Associated with the Postulated Rupture of Piping (GE Scope of Supply)    10 3.7A        Seismic Design                            10 3.7B        Seismic Design                            10 3.8          Design of Seismic Category I Structures  10 3.9A        Mechanical Systems and Components (SWEC Scope of Supply) 3.9B        Mechanical Systems and Components (GE Scope of Supply) 3.10A        Seismic Qualification of Seismic Category I Instrumentation and Electrical Equipment (SWEC Scope of =Supply)                              12 3.10B        Seismic Qualif ication of Seismic Category I Instrumentation and Electrical Equipment (GE Scope of Supply)                                12 3.11        Environmental Design of Mechanical and  Electrical  Equipment                12 Appendixes 3A through  3D                              12 CHAPTER 4    REACTOR                                  12 4.1          Summary  Description                      12 4.2          Fuel System Design                        12 4.3          Nuclear Design                            12 Thermal/Hydraulic Design                  12 4.5          Reactor Materials                        12 4.6          Functional Design of Reactivity Control Systems                          12 CHAPTER 5    REACTOR COOLANT SYSTEM AND CONNECTED SYSTEMS                        13 5.1          Summary  Description                      13 5.2          Integrity of Reactor Coolant Pressure  Boundary                        13
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                Title                    Volume 5.3          Reactor Vessel                        13 5.4          Component and Subsystem Design        13 CHAPTER 6    ENGINEERED SAFETY FEATURES            13 6.1          Engineered Safety Feature Materials    13 6.2          Containment Systems                    14 6.3          Emergency Core Cooling Systems        15 6.4          Habitability Systems                  15 6.5          Fission Product Removal and Control Systems                        15 6.6          Inservice Inspection of Safety Class  2 and Class  3 Components      15 Appendixes 6A, 6B                                  15 CHAPTER 7    INSTRUMENTATION AND CONTROL SYSTEMS    15 7 1
  ~          Introduction                          15
: 7. 2*        Reactor Protection (Trip)
System (RPS)  Instrumentation and Controls                              15 7.3          Engineered Safety Feature Systems      15 7.4          Systems Required for Safe Shutdown    16 7.5          Safety-Related Display Instrumentation                        16 7.6          All Other Instrumentation Systems Required for Safety            16 7.7          Control Systems Not Required for Safety                            16 CHAPTER 8    ELECTRIC POWER                        16 V
8.1          Introduction                          16 8.2          Offsite  Power System                  16 8.3          Onsite Power System                    16, 17 CHAPTER 9    AUXILIARY SYSTEMS                      17 9.1          Fuel Storage and Handling              17 9.2          Water Systems                          18 9'          Process Auxiliaries                    19 9.4          Air Conditioning, Heating, Cooling, and Ventilation Systems              20,21 9.5          Other Auxiliary Systems              '21, 22 Appendix 9A                                        23
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS (Cont)
Section                Title                    Volume CHAPTER 10  STEAM AND POWER CONVERSION SYSTEM      23 10.1        Summary  .Description                  23 10.2        Turbine Generator                      23.
10.3        Main Steam Supply System              24 10.4        Other Features of Steam and Power Conversion System CHAPTER 11  RADIOACTIVE WASTE MANAGEMENT          24
: 11. 1      Source Terms                          24 11.2        Liquid Waste Management Systems        24 11.3        Gaseous Waste Management Systems      25 11.4        Solid Waste Management System          25 11.5        Process and Effluent Radiological Monitoring and Sampling Systems        25 Appendix 11A                                        25 CHAPTER 12  RADIATION PROTECTION                  25
: 12. 1      Ensuring That Occupational Radiation Exposures Are As Low As Reasonably Achievable (ALARA)                    25 12 2
  ~        Radiation Sources                      25
: 12. 3      Radiation Protection Design Features                              25
: 12. 4        Dose Assessment                        26
: 12. 5        Health Physics Program                26-CHAPTER 13  CONDUCT OF OPERATIONS                  26
: 13. 1      Organizational Structure of Applicant                              26 13.2        Training                              26
: 13. 3        Site Emergency Plan                    26
: 13. 4        Operation Review and Audit            26
: 13. 5        Plant Procedures                      26
: 13. 6        Industrial Security                    26 Appendixes 13A, 13B                                26 CHAPTER 14  INITIAL TEST  PROGRAM                26
: 14. 1      Specific Information To Be Included in Preliminary Safety Analysis Report. (PSAR)                26
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                Title                  Volume 14.2        Specific Information To Be Included in Final Safety Analysis Report (FSAR)              26,27 CHAPTER 15  ACCIDENT ANALYSIS                    27 15.0        General                              27 15.1        Decrease in Reactor Coolant Temperature                          27 15.2        Increase in,.Reactor Pressure        27 15.3        Decrease in Reactor Coolant System Flow Rate                    27
: 15. 4        Reactivity and Power Distribution Anomalies                            27 15.5        Increase in Reactor Coolant Inventory                            27 15.6        Decrease in Reactor Coolant Inventory                            27 15.7        Radioactive Release From Subsystems or Components            27 15.8        Anticipated Transients without Scram (ATWS)                        27
. Appendix 1SA                                      28 Appendix 15B                                      28 Appendix 15C                                      28    26 Appendix 15D                                      28 Appendix 15E                                      28 CHAPTER 16  TECHNICAL SPECIFICATIONS            28 CHAPTER 17  QUALITY ASSURANCE                    28 17.0        Introduction                        28 17.1        Quality Assurance Program During Operation                            28 CHAPTER 18  HUMAN FACTORS ENGINEERING            28 18.1        Human  Factors Engineering Team      28 18.2        Safety Parameter Display System      28 Amendment 26                                  May 1986
 
Nine Mile Point Unit  2 FSAR TABLE  1.8-1 (Cont)
Re  lator  Guide 1.28  Revision 2  Februar  1979 Quality Assurance Program Requirements (Design and Construction)
FSAR  Section    Chapter 17, QA  Topical Report  QATR-1, Rev. 1 Position*                                                          /26 The Unit    2  project complies with the Regulatory Position (Paragraph C) of    this guide.
*This commitment is modified at the time of the QA Topical          26 Report implementation. At that time, the QATR-1, Revision        1 supersedes    this commitment.
Amendment 26                29  of 169                  May 1986
 
Nine Mile Point Unit      2 FSAR TABLE    1.8-1 (Cont)
Re  ulator    Guide 1.30      Revision  0  Au ust  1972 Quality Assurance Requirements for the Installation, Inspection, and Testing of Instrumentation and Electric    Equipment FSAR    Sections    3.11  and  7.2, Chapter 17,    QA  Topical Report QATR-1, Rev.      1                                                        26 Position*
The Unit      2  project complies        with the Regulatory Position (Paragraph C) of      this guide.
The    Unit 2 quality assurance              program complies with Regulatory Guide 1.30 as described in Appendix VII of the Quality        Assurance    Manual      for the project during construction. Unit 2 also complies with this regulatory guide as described in Chapter 17 of the FSAR.
Regulatory        Guide 1.30,      Rev. 0,    endorses      IEEE    Stan-dard 336-1971.          Unit  2    Specification  E061A,    Electrical Installation, invokes IEEE Standard 336-1977,              which is more conservative than IEEE Standard 336-1971.
Section 3        of IEEE-336 addresses the requirements for preinstallation verification of material and equipment.
also      states      that "it is not intended to duplicate It inspections but, rather to verify that items                      are    in satisfactory condition for installation." Preinstallation verification includes the following:
: 1.      Identification of materials and equipment.
: 2.      Availability of procedures, instruction manuals, and  special work instructions.
: 3.      Review    of records of storage            and  preventive maintenance  measures.
: 4.      Visual    examination of materials and equipment. to ensure physical integrity.
All    these    required verifications are addressed by the SWEC QA  program    for receipt, storage, and preventive maintenance inspections. These inspections meet the intent of IEEE-336, Amendment 26                    31  of  169                      May 1986
 
Nine Mile Point Unit    2 FSAR TABLE    1.8-1 (Cont)
Re  lator  Guide 1.30, Revision 0      Au ust 1972 Section 3;        therefore,        additional    preinstallation verification is not done for the following components and materials      (all equipment, however, is subject to preinstallation verification):
: 1. Balance-of-plant.      electrical    components    and materials    such    as    terminal blocks,      fuses, connectors,  lugs, mounting hardware, etc.
: 2. PGCC  electrical components and materials that are shipped separately from the main panels by GE, e.g., relays, meters, switches, connectors, lugs, mounting hardware,    etc.
The above components and materials are subject to inprocess installation inspection and final installation inspections.
*This commitment is modified at the time of the QA Topical Report implementation. At that time, the QATR-1, Revision          1 supersedes    this commitment.
Amendment 26                31a  of  169                  May 1986
 
Nine Mile Point Unit    2 FSAR TABIE  1.8-1 (Cont)
Re  ulator  Guide 1.37    Revision  0  March 16  1973 Quality Assurance Requirements for Cleaning of Fluid Systems and Associated Components of Water-Cooled Nuclear Power Plants FSAR Sections    4.5.1.4, 4.5.2.4, 6.1.1, and 17.2,      QA Topical Report QATR-1, Rev. 1                                                26 Position*
The Unit    2  project complies    with the Regulatory Position (Paragraph C) of    this guide through the alternate    approaches described below.
Para ra h C.3 The water quality for final flushes of fluid systems and associated components is at least  equivalent    to the quality of the operating system water, except    for the oxygen content.
: 2. Para ra h C.4 Expendable materials, i.e., inks and related products, temperature indicating sticks, tapes, gummed labels, wrapping materials (other than polyethylene), water soluble dam materials, lubricants, NDT penetrant materials, and couplants that contact stainless steel or nickel alloy surfaces are in accordance with the Unit 2 Position for Regulatory Guide 1.38, Revision 2.
: 3. Due to seasonal      conditions, freshwater from Lake Ontario will have an allowable upper pH limit of 8 '.
Upgraded    piping systems and components constructed of carbon steel materials will meet Class B cleanness      requirements      except    for    final flushing/cleaning which may exhibit rust staining in accordance with Class C cleanness requirements.
The quality assurance requirements of Regulatory Guide 1.37 have been addressed in Appendix VII of the Quality Assurance Program Manual and Section 17 for the Unit 2 project.
Amendment 26                    38 of  169                  May 1986
 
4 Nine Mile Point Unit  2 FSAR TABLE  1.8-1 (Cont)
Erection specifications and procedures for Category I fluid systems and associated components include the requirements of the guide as delineated above.
*This commitment is modified at the time of the QA Topical Report implementation. At that time, the OATR-l, Revision  1 26 supersedes  this commitment.
Amendment 26                38a of 169            May 1986
 
Nine Mile Point Unit    2 FSAR TABLE  1.8-1 (Cont)
Re    lator  Guide 1.38    Revision  2  Ma  1977 Quality Assurance Requirements for Packaging, Shipping, Receiving, Storage, and Handling of Items  for Water-Cooled Nuclear Power Plants Position*
The Unit    2  project complies      with the Regulatory Position (Paragraph C) of    this guide.
SWEC  and    NMPC  QA program  satisfies the  QA  requirements of Regulatory Guide 1.38 (Unit      2 QA  Program Manual Appendix    VII and Section 17).
*This commitment is modified at the time of the QA Topical Report implementation. At that time, the QATR-1, Revision            1 26 supersedes    this  commitment.
Amendment 26                  39  of  169                    May 1986
 
Nine Mile Point Unit    2 FSAR TABLE  1.8-1 (Cont)
Re  lator    Guide 1.39    Revision  2  Se tember 1977 Housekeeping Requirements      for Water-Cooled Nuclear Power Plants FSAR  Section    Chapter 17,  QA  Topical Report    QATR-1, Rev. 1  )ze Position*
The Unit    2  project complies      with the requirements of the Regulatory Position (Paragraph      C)  of this guide.
Erection      and installation specifications          establish the requirements and the QA provisions to ensure compliance with this guide. Additionally, the requirements are implemented by site administrative procedures.
*This commitment. is modified at the time of the QA Topical              26 Report implementation. At that time the QATR-1, Revision            1 supersedes    this  commitment.
Amendment 26                  40  of 169                    May 1986
 
Nine Mile Point Unit    2 FSAR TABLE  1.8-1 (Cont)
Re ulator  Guide 1.52    Revision  2  March 1978    Cont ERDA  76-21,  except    for    the    frame  tolerance guidelines    in Table 4.2.      The  tolerances selected for HEPA and adsorber mountings are sufficient to satisfy      the  bank    leak    test criteria of Paragraphs C.S.c      and    C.S.d      of    Regulatory Guide 1.52, Revision 2.
: 8. Para ra h C.3.h Exception          is taken to the recommendations    of Section 4. 5. 8 of ERDA 76-21 relative to drain sizes and arrangement. Normally open manual valves, in addition to water seals          and Amendment 24              56b  of  169                February 1985
 
e 0
 
Nine Mile Point Unit    2 FSAR TABLE  1.8=1 (Cont)
Re  lator  Guide 1.52    Revision  2  March 1978      Cont traps,  will be provided to control      the discharge of the  fire sprinkler flow.
: 9. Para ra h    C.3.i Exception is taken to the requirement that the absorption unit should be designed for a maximum loading of 2.5 mg of total iodine per gram of activated carbon.            Regulatory Guide 1.52, Revision 1, states that "the absorption unit. should have the capacity of loading 2.5 mg of total iodine (radioactive plus stable) per gram of activated carbon." The absorption unit provided has a loading capacity of 10.0 mg of total iodine per gram of activated carbon.
: 10. Para ra h C.3.k    Exception      is taken to th requirement      for humidity      control to below 70 percent relative humidity      for low flow air bleed cooling.
A  clarification is provided to the requirement that the low air bleed cooling to mitigate iodine desorption and auto-ignition. Each fi;ter train is physically separated,      and the common connection between    the    filter trains is provided            with redundant high temperature      sensors    and isolation valves to maintain equipment integrity in one filter train upon detection of high temperature.
Para ra h C.3.1    System    resistances        will    be determined    in accordance with Section 5.7. 1 of ANSI NS09-1976    except that fan inlet and outlet losses will not be calculated in accordance with AMCA  201, but will be estimated            and documented accordingly.
Exception is taken to balancing techniques defined in Section 5.7.3 of ANSI N509-1976      'he    acceptable amplitude of vibration, peak to peak, in any plane measured on the shaft adjacent to the bearings, corresponds    to a vibration velocity of 0.1 in./sec at the rated speed using the displacement values given in AMCA Publication 801. The displacement criteria using maximum vibration velocity method in accordance    with ANSI N509-1976 are not required by Amendment 18              57 of 169                    March 1985
 
Nine Mile Point Unit  2 FSAR TABLE  1.8-1  (CONT)
Re  ulator    Guide 1. 58, Revision  1  Se tember 1980    Cont Qualification of Nuclear Power Plant Inspection, Examination, and Testing Personnel FSAR  Section    2.4 Position The Unit    2 project    complies with the Regulatory Postion (Paragraph C) of this guide through the alternate approaches described below and in Chapter 14.                                  Z2 BOP The  quality assurance program for Unit 2 is currently in compliance with Regulatory Positions C.5, 7, 8, and 10 of this regulatory guide. Regarding Regulatory Position C.6 of this regulatory .guide and Section 3.5, Education and Experience      Recommendations,      of ANSI N45.2.6-1978, the following alternatives are proposed for personnel education and experience for each level:
3.5.1 Level I
: 1. Two  years of related experience in equivalent inspection, examination, or testing activities, or
: 2. High      school      graduation/general      education development    (GED) equivalent      and  6 months    of related    experience    in equivalent inspection, examination, or testing activities, or Completion of college-level work leading to an associate degree in a related discipline plus 3 months    of related experience in equivalent inspection, examination, or testing activities.
: 4. Four-year college graduate plus 1 month of related experience or equivalent inspection, examination, or testing activities.
Amendment 22                  64 of  169            November 1985
 
Nine Mile Point Unit    2 FSAR TABLE  1.8-1 (Cont)
Re  ulator  Guide 1.75 Revision 2      Se  tember 1978 Physical Independence of Electric Systems FSAR  Sections 7.1.2, 7.6.2, 8.3.1 Position The Unit    2 project    complies with the Regulatory Position (Paragraph C) of this guide 'through the alternate approach described below and in Section 7      '.2  and 8.3.1.
Regulatory Position C.l states that "interrupting devices actuated only by fault current are not considered to be isolation devices within the context of this document." In the case of control and instrument circuits, a combination of two interrupting devices actuated by fault current have been used to isolate nonClass        1E  circuits from Class 1E circuits. Both of these devices are Class 1E, and both of
.them are coordinated with the main breaker upstream so that a failure of a nonClass 1E device or circuit will not affect any Class lE device or system.        Any circuit breakers    as-sociated with this redundant protection will be tested during each refueling outage.
Regulatory    Position C.9 requires that cable splices in raceways be    prohibited. Splicing in electrical penetrations for termination is considered to be exempt from this requirement.
Regulatory    Position C.10 requires that the cables be marked at 5-ft intervals. This is a typographical error as con-firmed by the former Electrical, Instrument and Control Branch Chief of USNRC, T. A. Ippolito, on October 10, 1975,-
and    the    NRC    Power  Systems    Branch Section Leader, R. G. FitzPatrick,      on October 30,      1980. The  correct distance is 15 ft, which has been followed in Unit 2.
The    minimum    separation    distance from 600 V or less nonsafety-related conduit to safety-related open cable trays and cable in free air for any service level is 1 in.                26 All cables used in Unit 2 are flame-retardant. The cable trays are not filled above the side rails. The hazard, in this case, is limited to failure or faults internal to the nonsafety cables in rigid steel conduit. Unit 2 has deter-mined by analysis that 1-in separation between the Class 1E cable tray and nonClass 1E conduit provides adequate protec-tion for the Class lE cables in the        open ladder  tray in the Amendment 26                89  of  169                  May 1986
 
Nine Mile Point Unit    2 FSAR TABLE  1.8-1 (Cont) event of any failure of the nonClass 1E cables in conduit.            26 This has been established by tests with 600 V levels, as ex-plained later in this section.
Aluminum sheath      cables    (ALS) used  for  low energy 120-V ac systems and 8-hr    battery pack lighting systems, are con-sidered enclosed raceways. These cables have flame retard-ant, cross-linked polyethylene insulation,        chlorosulphonated polyethylene jacket, and polypropylene fillers enclosed in a continuous, impervious aluminum sheath              which provides adequate    protection. As such,    the minimum separation between these cables and Class 1E raceways is 1 in.
The  minimum  separation between any Class    1E  raceway and any lighting cord for drops to the lighting fixtures shall be 1 in. These cords are of size 12 AWG and supply 120/208 V ac low energy in low density applications.          As such,    1-in separation provides adequate protection to the Class 1E cir-cuits in the event of a fault in any lighting cord.
IZEE    Standard 384-1974,      Section 5.1.1.2, allows lesser separation distances than those specified in Sections 5.1.3 and 5.1.4,      if established by analysis. Various tests have indicated that the following minimum separation distances between redundant Class lE cables and raceways, or between Class 1E and nonClass 1E cables and raceways,            600 V level and below,      should be adequate to maintain independence of the redundant systems. NMPC also has verified these minimum separation distances by plant specific tests (Wyle Test Report No. 47906-02, Electrical Separation              Verification Testing).
Cable  tray to cable tray              10  in horizontal or 10  in vertical Cable  tray to conduit                  1 ln Cable  in free air to conduit          1/2 in Cable  in free air to cable            10 in vertical or in free air                            10 in horizontal Cable in free air to                    10 in vertical or cable tray                              10 in horizontal Wrapped cable  to unwrapped cable      0 in Conduit to conduit                      1/2 in Amendment 26                89a of 169                      May 1986
 
Nine Mile Point Unit  2 FSAR TABLE  1.8-1 (Cont)
Class 1E control/instrument cable 1 in to nonClass lE control instrument cable inside control/instrument cabinets Where    the'inimum separation distances specified in Sections 5.1.3 and 5.1.4 of IEEE Standard 384-1974 cannot be maintained    due  to physical arrangements,  the minimum separation distances specified above shall be maintained.
Where  the minimum separation distances specified in this section cannot be maintained, enclosed raceways will be used; or a separation barrier will be installed.
Amendment 26                89b of 169              May 1986
 
Nine Mile Point Unit    2 FSAR TABLE  1.8-1 (Cont)
Re  lator  Guide 22    Jul  1984 Materials  Code Case  Acceptability-ASME Section  III Division  I FSAR  Section    5.2.1.2 Position The Unit    2  project    complies    with the, Regulatory Position (Paragraph C) of      this guide through the alternate    approaches described below.
Regulatory Guide 1.85 provides a list of ASME design and fabrication code cases that have been generically approved by the regulatory staff. Code cases on this list may, for design purposes.        be used until appropriately annulled.
Annulled cases are considered "active" for equipment that has been cont;:.actually committed to fabrication prior to the annulment.
The  various    ASME    code cases  that applied to  components  in the  RCPB  are  listed in  Table 5.2-1.
All Safety    Class 2 and 3 equipment has been designed      to ASME code or ASME-approved code cases.        This provision,    together with the quality control programs, provides adequate safety equipment functional assurances.
Amendment 18                      99  of 169            March 1985
 
Nine Mile Point Unit    2 FSAR TABLE  1.8-1 (Cont)
Re ulator Guide 1.88 Revision 2 October 1976 Collection, Storage, and Maintenance of Nuclear Power Plan%    Quality Assurance Records FSAR  Section    Chapter 17,  QA Topical Report    QATR-1, Rev. 1 Position*
The Unit      2 project    complies with the Regulatory Position (Paragraph      C)  of this guide,          except  to      change ANSI N45.2.9-1974      Section 5.6, Paragraph 3 to "Two hour minimum rated facility" in accordance          with NFPA 232-1980.
Implementation is as described below.
Unit  2    Quality Assurance Records (and other required records)    are stored in facilities designated              as    the Permanent    Plant File and the Records Acceptance Center.
In-process records are stored in controlled Intermediate Storage Facilities. Specific requirements for each include:
Permanent    Plant File  Complies to the above paragraph of this position statement.
: 2. Records Acce tance Center  Complies with ANSI N45 2.9-1974, Section 5.3 to provide a mechanism to The storage facility shall meet
              ~
control records.
Section 5.6, except as follows:
: a. Structure has a minimum 2-hr fire rating.
: b. Doors, frames, and hardware have a 2-hr vault door.
c.'lectrical        facilities shall be limited to ceiling lights, air-conditioning units, smoke detectors, and alarm circuits.
: 3. Intermediate Stora e Facilities  Complies with ANSI N45.2.9-1974,        Section 5.3    to provide a mechanism to control records.          Each intermediate storage facility shall be evaluated by a Fire Protection      Engineer      to fulfill NFPA 232-1980 requirements.      NOTE:    All intermediate storage facilities will be eliminated as contractor work is concluded.
Amendment, 26                    102  of  169                May 1986
 
Nine Mile Point Unit      2 FSAR TABLE  1.8-1 (Cont)
The  above controls and facilities are prepared to protect Quality Assurance records which take their physical form as radiographs, microfilm and paper.
: 1. Special    handling      and    environmental    storage considerations must be maintained for radiographs.
: 2. Designated archive (silver halide only) microfilm requires environmental storage considerations.
: 3. Use of fire-retardant        cabinets is applicable to paper storage only.
Technical  Justification ANSI    N45.2.9-1974  does    not  adequately define the storage facilities      for inprocess        quality records      or    NFPA requirements for fire rating of the facility. NFPA              232-1980,  1-3, emphasizes,  "To  consult with an experienced and competent Fire Protection Engineer or Records Protection Consultant."      This position        is    based  upon      his recommendations.      The    Unit 2 Records Management Plan establishes the program for turnover, collection, review, transfer, receipt, verification, permanent plant file entry, and retention of all Unit 2 records with implementing policy guidelines which specify the facility types.
"This commitment is modified at the time of the QA Topical            26 Report implementation. At that time, the QATR-1, Revision 1, supersedes this commitment.
Amendment 26                    102a  of  169              May 1986
 
Nine Mile Point Unit      2 FSAR TABLE 1  ~ 8-1 (Cont)
Re  ulator Guide 1.94 Revision 1 A ril 1976 Quality Assurance Requirements For Installation, Inspection, and Testing of Structural Concrete and Structural Steel During the Construction Phase of Nuclear Power Plants 26 Position*
The Unit    2  project complies      with the Regulatory Position (Paragraph C) of    this guide through the alternate        approach described below.
ANSI  N45.2.5-1974 Section 5.3 Bolt holes generally will not  be burned (oxygen cut).      If holes must be burned, the following criteria will be followed: a) after cutting, the edges of the cut will be ground or reamed back a minimum of 1/32 in, and b) the final bolt hble dimensions will not exceed those given in the Specification for Structural Joints Using ASTM A325 or A490 bolts.
: 2. ANSI  N45.2.5-1974 Section 5.4 For          the    Unit 2 project, the criterion established for correct bolt length is one thread extending beyond the face of the nut.
: 3. ANSI  N45.2.5-1974 Section 5.5 All reinforcing bar splices  made by arc welding, except        those splices welded to metal embedments, will be selected on a random basis for radiography as specified in the Unit 2-PSAR,      Section 12.6.3,      and inspected    in accordance with AWS D12.1. Splices welded to metal embedments    will be inspected in accordance with AWS 12.1. Additionally, sister splice testing will be done in accordance with Specification No. NMP2-S203C with the same        frequency as specified for B-series    sister splices when required= by the engineers.
ANSI N45. 2. 5-1974  Section 6. 2. 2  Exceptions regard-ing mechanical      splicing of      QA  Category I rein-Amendment 26                    108  of  169                May 1986
 
Nine Mile Point Unit      2 FSAR TABEE  1.8-1 (Cont) forcing bars    can    be    found  in Unit 2  Project Position 1.10.
*This commitment is modified at the time of the QA Topical Report implementation. At, that time, the QATR-l, Revision      1 supersedes  this commitment,.
Amendment 26                  108a  of  169              May 1986
 
Nine Mi3e Point Unit    2 FSAR TABLE  1.8-1 (Cont)
Re    lator    Guide 1.97    Revision  2  December 1980 Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant Conditions During and Following an Accident FSAR  Section    7 '.2 Position The Unit    2  project complies        with the Regulatory Position (Paragraph C) of      this guide through the alternate        approach described below.
Type A          Conformance is in accordance with BWR Owners Group report position on NRC Regulatory Guide 1.97, Revision 2, dated Meaa 1962 (see response    to Question FaI21.36) .
                                                                        ~
aa Type B          Neutron  flux -  Conformance  is in accord-ance  with  BWR  Owners Group  report posi-tion  on NRC  Regulatory Guide 1.97, Revis-ion 2, dated May 1982    (see response to          aa Question F421.36).
: 2. Core thermocouples (also incorporates Type C)  See TMI Item II.F.1 in Section 1.10 (see response to Ques-tion F421.36).
Type  C          Drywell drain sumps level  See TMI Item II F.l in Section 1.10 (see response to Question F421.36).
Type D          Suppression pool temperature  Meets intent of guide. See TMI Item II F.l in Section 1.10 (see response to Question F421.36).
2    Drywell atmosphere temperature  Meets intent, of guide. See TMI Item II F.l in
                  ~
Section 1.10 (see response to Ques-tion F421.36).
: 3. Cooling water temperature to ESF compon-ents  Meets intent of guide. See TMI Item II F.l in Section 1.10 (see response            aa to Question F421.'36).
Amendment, 19                    ill of 169                  May 1985
 
Nine Mile Point Unit  2 FSAR TABLE  1.8-1 (Cont)
Re  ulator  Guide 1.116    Revision 0-R  Ma  1977 Quality Assurance Requirements for Installation, Inspection, and Testing of Mechanical Equipment and Systems FSAR  Section    Chapter 17,  QA  Topical Report  QATR-1, Rev. 1 Position*                                                            J ae The Unit    2  project complies with the Regulatory Position (Paragraph C) of    this guide.
*This commitment is modified at the time of the QA Topical            26 Report implementation. At that time, the QATR-l, Revision        1 supersedes    this commitment.
Amendment 26                  130  of 169                May 1986
 
Nine Mile Point, Unit  2 FSAR TABIE  1.8-1 (Cont)
Re    lator  Guide 1.123 Revision    1  Jul 1977 Quality Assurance Recpxirements for Control of Procurement of Items and Services for Nuclear Power Plants FSAR  Section    Chapter 17,  QA  Topical Report  QATR-1, Rev. 1 Position*                                                              I 26 The Unit    2  project complies with the Re'gulatory Position (Paragraph C) of    this guide through the alternate approach described as    follows:
Certain    standard  catalog or nonengineered items may be processed      without seller      prequalification.      This alternative      method    is described in Section 7, paragraphs 1.4.1, 1.4.2, 1.4.3, and 3.1.2 of the Quality Assurance Program for Unit 2.
*This commitment is modified at the time of the QA Topical Report implementation. At that time, the QATR-1, Revision          1  26 supersedes    this  commitment.
Amendment 26                    137  of 169                May 1986
 
0 Nine  Mile'oint Unit'    FSAR TABLE  1.8-1 (Cont)
Re ulator    Guide 1.143    Revision  1  October 1979 Design Guidance    for Radioactive Waste Management Systems,  Structures, and Components Installed in Light-Water-Cooled Nuclear Power Plants FSAR  Section. 15.7.1, 11.4 Position The  Unit  2  project complies with the Regulatory Position (Paragraph C) of this guide through the alternate approach described below.
A. Liquid Waste System The fiberglass tanks purchased for the liquid rad-waste system (LWS) have been designed in accordance with the National Bureau of Standards (NBS) Product Standard (PS) PS 15-69,        Custom    Contact-Molded Reinforced-Polyester      Chemical-Resistant      Process Equipment,    as  identified  in NMP2  Preliminary  Safety Analysis Report, Table C-10b.
NBS PS 15-69 provides the necessary design and fa-brication requirements to ensure the integrity of the tanks without the additional cost of burst testing.
B. Off-Gas System The  charcoal adsorbers of the off-gas system are not designed to the seismic requirements of this regulatory guide.
Offsite dose calculations in accordance with Chapter 15.7.1 of the NMP2 FSAR show that release of gaseous activity due to failure of the charcoal adsorbers results in offsite doses less              than 0.5 Rem to the whole body.            In accordance with Regulatory Guide 1.29, this permits classification as    nonseismic.      At the time of design and procurement of the off-gas system (July 1974),
Regulatory Guide 1.29, Revision 1, established the seismic requirements for the radioactive waste processing systems.
160 of 169
 
0 Nine Mile Point Unit  2 FSAR TABLE  1.8-1 (Cont)
Re ulator    Guide 1.144  Revision  1  Se tember 1980 Auditing of Quality Assurance Programs for Nuclear  Power Plants FSAR  Section    Chapter 17,  QA  Topical Report  QATR-1, Rev. 1 Position*
The Unit    2  project complies with the Regulatory Position (Paragraph C) of    this guide through the alternate approach described below.
The    pre-audit      and post-audit conferences      required by Sections 4.3.1      and 4.3.3 of ANSI N45.2.12-1977 may          be fulfilled by      a variety of communications such as telephone conversations.
*This commitment is modified at the time of the QA Topical            26 Report implementation. At that time, the QATR-1, Revision          1 supersedes    this  commitment.
Amendment 26                    162  of 169                May 1986
 
Nine Mile Point Unit    2 FSAR TABLE  1.8-1 (Cont)
Re ulator    Guide 1.146 Revision 0      Au ust 1980 Qualification of Quality Assurance Program Audit Personnel for Nuclear Power Plants FSAR  Section    Chapter 17,  QA  Topical Report  QATR-1, Rev. 1 26 Position" The    Unit  2    project complies      with Regulatory    Position (Paragraph C) of    this guide.
*This commitment is modified at the time of the QA Topical            26 Report implementation. At that time, the QATR-1, Revision          1 supersedes    this  commitment.
Amendment 26                    164  of 169                May 1986
 
Nine Mile Point Unit  2 FSAR TABLE  1.8-1 (Cont)
Re  ulator    Guide 1.147, Revision  1  Februar 1982 Inservice Inspection    Code Case Acceptability-ASME Section XI Division  1 FSAR  Section    14 Position The  Unit. 2 project complies with the Regulatory Position (Paragraph C) of this guide through the alternate approach described below.
At the date of issuance of the NMP2 construction permit, the 1974 edition of ASME Section XI was in effect. The NMP2 ISI is based upon this edition according to 10CFR50.55a(g)(2).
165  of 169
 
-0 Nine Mile Point Unit  2 FSAR TABLE  1.8-1 (Cont)
Re ulator  Guide 1.150    Revision 1  Februar  1983      I ~s Ultrasonic Testing of Reactor Vessel Welds During Preservice and Inservice Examination FSAR  Section  PSI/ISI Plan                                      I" Position The Unit  2 degree of compliance with the Regulatory Position (Paragraph C and Appendix') of this guide is addressed        in  23 the response to Question F250.1.
Amendment 23                  169  of 169          December 1985
 
Nine Mile Point Unit 2 FSAR TADLE 1.9-1 (Cont)
SRP IIILmhcr              Title                                  Revision Conformance  Difference 6.2. 1.4      Mass and Energy Release  Analysis for Postulated Secondary System Pipe Ruptures                        NA          IIA 6.2  1 5      Minimum Containment. Prcssure Analysis for fmergcncy Core Cooling System Performaricc Capability Studies                                  Nn          NA 6.2.2          Containment llcat Remova I Systems                                      Attachment 1.9-45 6.2.3          Secondary Containment functional Design                                Attachment 1.9-46 6.2.4          Cont.ainment Isolation System                                    X 6.2.5          Combustible Gas Control in Containment                            X Appendix A                                                    IIA        NA D1P CSD 6-2                                                    NA          NA 6.2.6          Containmcnt Leakage Testing                                      X 6.2.7          lracturc Prevention of Containment Pressure Doundary                                                      Attachment 1.9-.48 6.3            Emergency Core Cooling System                                          Attachment 1.9-49 DTP RSD 6-1                                                    NA          NA 6.4            Control Room llabitability System                                X Appendix A                                                    X 6 5  1        Engineered Safety feat,ure Atmosphere Cleanup Systems                                            Attachment 1.9-50 6.5.2          Containmcnl, Spray as a Fission Product Cleanup System                                                  NA          NA 6.5.3          Fission Product Control Systems and Struct,urcs 6.5.4          Ice Condenser as  a  Fission Product Cleanup System 6.6            Inservice Inspection of Class 2 and    3 Components                                                      X 6.7            Main Steam Isolation Valve Leakage Control System ( DWR)                                            NA          NA CIIAPTER 7:  INSTRUMENTATION AND CONTROLS 7.1            Instrumentation and Controls-Introduction Table 7 Acceptance Criteria and Guidelines for Instrumentation and Controls Systems Important To Safety                        2          X 7.2            Reactor Trip System                                  2          X Appendix A                                        2          NA          NA 7.3            Engineered Safety Features System                    2          X Appendix A                                        2          NA          NA 7.4            Safe Shutdown Systems                                2          X 7.5            Information Systems Important to Safety              2          X Amendment 23                                            5  of 11                                December 1985
 
0 Nine Mile Point, Unit 2 FSAR ATTACHMENT 1;9-14 (Cont) containment. This is verified in the j et impingement 4
evaluation where breaks are postulated at various elevations and azimuths. Additional investigation is only repetitive.
It is therefore  concluded that this will not degrade the safety of the plant.
Difference    2 Section B. l.c. l.d states    that "if intermediate break locations cannot be determined by (b), (B.l.c.l.b) and (c),
(B.l.c.l.c) above, two highest stress locations based on equation (10) should be selected." Unit 2 uses a reasonable basis which includes factors such as points of maximum stress intensity and/or cumulative usage factors; however, the    points of maximum stress intensity are based on Equation (12) or (13).
Discussion Since all postulated intermediate breaks require evaluation of Equations (12) and (13) and cumulative usage factors,      it is reasonable to use these equations to determine points of maximum stress intensity. This approach is conservative.
Difference    3 Section  BE 1.c.4 states that "if a structure separates a high energy line from an essential      component,  the separating structure should be designed to withstand the consequences of the pipe break in the high energy line which produces the greatest. effect at the structure irrespective of the fact that the above criteria might not require such a break location to be postulated."          Unit 2 design structures withstand the consequence of pipe breaks postulated at locations in accordance with Sections B.l.c.l, BE 1.c.2, and B.l.c.3.
Discussion A systematic logical method must be used to evaluate the effects of pipe breaks in order to address a finite number of potential load cases. By assuming breaks at highly stressed locations and by requiring a minimum number of locations to be selected, a reasonable margin of safety will evolve.
Requiring breaks to be postulated based on structural capability is not prudent and does not enhance the safety of the plant. Several points are:
Amendment  1              3 of  4                  April  1983
 
Nine Mile Point Unit      2 FSAR ATTACHMENT  1.9-14 (Cont)
Pipe  whip loadings are very sensitive to the distance over which unrestrained whip could occur, piping geometry,        and      break orientation.      An infinite number of cases                  would    require consideration      particularly        if arbitrarily postulated along the length of the splits are pipe. Jet impingement does not have this problem since the load is distributed over a reasonable area. However, pipe whip requires evaluation of local effects, which is much more involved.
: 2. 'n      excessive number of scab plates would be required on all structures which separate high energy and essential        systems,    thus causing an unreasonable  number  of  scab  plates to be installed.
: 3. By strengthening      the weakest part of a structure, the next weakest part would then be the worst case.
This is a perpetual cycle.
Additional safety        is not really obtained by evaluating the least likely events.            Since pipe breaks themselves are extremely unlikely, reasonable to postulate them only at the higher it is stressed locations. Additionally, all walls in the proximity of high energy systems are evaluated for a reasonable    number of pipe breaks simply due to the number of breaks which must be postulated using the stress criteria.
Amendment  1                4  of  4                      April 1983
 
Nine Mile Point Unit    2 FSAR ATTACHMENT    1.9-29 STANDARD REVIEW PLAN 3.11, REVISION 2 ENVIRONMENTAL QUALIFICATION OF MECHANICAL AND EIECTRICAL EQUIPMENT Difference 1 The submittal of the environmental qualification document which demonstrates equipment environmental capability is not included.
Discussion The environmental qualification document will be submitted and the FSAR amended accordingly prior to fuel load.
Difference  2 Discussion of equipment qualification to        a mild environment is not included.
Discussion Definitive guidelines are not yet available from the NRC concerning        equipment      qualification in mild environment.
Difference  3 Coverage    of mechanical    equipment    qualification is    not.
included.
Discussion    Current  NRC  direction indicates        that formal mechanical equipment qualification guidelines may be issued in the future. The NRC has stated that no further requests for mechanical equipment qualification data will be made until the NRC has acceptance criteria upon which to evaluate them. When NRC guidelines        are issued,    the mechanical equipment qualification impact will be addressed.
Amendment  1                  1 of  1                    April 1983
 
Nine Mile Point Unit    2 FSAR ATTACHMENT  1.9-61 STANDARD REVIEW PEAN    9.5.1,  REVISION 3, JUIY 1981 FIRE PROTECTION    PROGRAM  (FIRE PROTECTION SYSTEM)
Deviations to BTP CMEB 9.5-1 Attached to Standard Review Plan 9.F      1 Fire Protection Pro ram Difference 1 Section C.l.c.(3) states that "the          fire suppression  system should  be  capable of delivering water to manual hose stations located within hose reach of areas containing equipment required for safe shutdown following the safe shutdown earthquake    (SSE)."
Discussion Unit 2 standpipe and hose connection design is in accordance with Appendix A (dated August 1976) to BTP 9.5-1 (dated May 1, 1976) and Appendix R to 10CFR50, and is not seismically qualified.
The  design does not contemplate simultaneous earthquake and fire conditions; therefore,          this requirement was not incorporated into the design.            Further, justification is that Unit 2 is not in an area of high seismic activity.
Difference  2 Section CD 5.a(3)(b) of Unit 2 design incorporates fire boot-type penetration seals (approximately 200 of 11,000 fire rated seals) for which temperature levels on the unexposed          27 side reached 3930F during the acceptance test.
Discussion    Fixed combustibles potentially within close proximity have ignition temperatures of )500 F. Cables are generally installed in raceways (ice., conduit or cable trays).
Difference 3 Section C.5.a(5) - Unit 2 fire doors, including fire doors in areas protected by automatic total flooding gas suppression    systems,    are administratively supervised to verify that they are in the closed position.
Discussion Fire doors          are    maintained in the closed position. Additionally, fire doors in areas protected by automatic total flooding CO< systems are provided with CO2 activated door releases, in the event that the door is in Amendment 27                    1 of 4                    July 1986
 
Nine Mile Point Unit 2 FSAR ATTACHMENT 1.9-61 (Cont) the open position at the time "of CO< discharge. Halon 1301 suppression systems are used in computer rooms and control rooms. Doors to these areas are inherently supervised by the occupants in the area, in addition to the "daily.
inspection, to verify that the doors are in the proper
                                                            'osition.
Amendment 27                la of 4              July  1986
 
Nine Mile Point Unit      2 FSAR ATTACHMENT    1.9-61 (Cont) incorporate the use of open directional spray nozzles discharge an excessive amount of water in protected areas, requiring substantially larger drainage and processing capabilities than areas protected by sprinkler systems which minimize    the    potential for damage to safety-related structures and components.
Difference 7 Section C.5.g.(1) - Unit 2 emergency lighting capability is provided by means other than individual 8-hr battery supplies.
2 Discussion Areas which must be manned during safe shutdown will be supplied with '8-hr battery packs for access and egress  lighting.
Difference  8 Section    C.S.g.(3)  The Unit 2 emergency communications system is not independent of the plant communication system.
Discussion Fixed emergency communications systems independent of normal plant communications systems are not necessary because:
1    The systems    are connectible to uninterruptible which provide reliability during
      ~
power sources, emergency conditions.
2 ~  In case of total loss of power to all communication systems,  the  Sound    Powered  Communication    (SPC) system can be  utilized.
: 3. The system  is set  up as described    in Section 9.5  '.
: 4. The system and  important components are supervised.
Difference 9 Section C.6.a.(3)  The fire detector spacing criteria for Unit 2 meet the intent of NFPA 72E.
Discussion NFPA 72E recommends one detector per bay for beam depth greater    than 8 in and bay width greater than Amendment 27                  3  of  4                    July  1986
 
Nine Mile Point. Unit    2 FSAR ATTACHMENT    1.9-61 (Cont) 8  ft. NFPA  72E does    not address beam depth greater than 8  in  and bay  width less than 8 ft. In this situation, the Unit 2 design incorporate's one detector for every other bay mounted on the bottom flange of structural steel..
Difference 10 Section C.6.c.(4)  Unit 2 design does not cross connection to          the    service    water firefighting capability      post-SSE.
Discussion    Standpipes    and hose connections    for  manual fire fighting are seismically supported in safety-related areas and in areas      containing safety-related equipment.            The design bases do not contemplate        simultaneous  earthquake  and fire conditions;          therefore,    this  requirement    was  not incorporated into the design. Further justification is that, Unit 2 is not in an area of high seismic activity.
Difference  ll Section C.7.a.(1), part (c)  During normal operation, the Unit 2 design does not, incorporate the use of general area fire detection in the primary containment.
Discussion The Unit 2 containment is inerted during normal operation.
Difference 12 In general, Section C endorses the use of the National Fire Protection Association (NFPA) standards.            Unit 2 deviates from a number of these NFPA standards.
Discussion Each Unit 2 deviation to the NFPA standards is described and justified in Table 9.5-3.
Amendment 27                                                July 1986
 
Nine Mile Point Unit, 2 FSAR ATTACHMENT 1.9-80 SRP DEVIATION WRITEUPS CHAPTER 16  TECHNICAL SPECIFICATIONS The  information contained in Chapter 16 j.s preliminary and has not yet been modified  to reflect NMPC policy and Unit 2 design. Therefore, an analysis to determine conformance to the SRP is not yet required.
Amendment, 1                1 of 1                  April 1983
 
Nine Mile Point Unit    2 FSAR NUREG-0578    Position Position  No.                              Clarification SRO  training  (3 )                    Specified in ANS 3.1 (Draft) Section 5.2.1.8
'Administrative duties (4)                Not affecting plant safety Administrative duties                    On same  interval  as reviewed (4)*                            reinforcement:    i. e.,
annual by V. P. for operations Nine Mile Point Unit      2 Position Prior to fuel loa'ding and annually thereafter, the Vice President Nuclear Generation shall issue a management directive        that    emphasizes    the    primary management responsibility of the Station Shift Supervisor (SSS) for safe operation of the plant under all conditions on his shift and clearly establishes his command duties.
Plant procedures are written to ensure that the duties, responsibilities, and authority of the SSS and other licensed control room operators are properly defined to affect the chain of command.
In the future, administrative duties of the SSS will be reviewed annually after fuel load by the Vice President Nuclear Generation to ensure that such functions do not detract from safe plant operation.
SSS  Res onsibilities The Station Shift Supervisor        is in charge of all operations on his assigned shift. Under        the general direction of the Supervisor      Operations    Nuclear,      his function includes direction of shift activities, authorization of equipment releases      for maintenance, ensuring that the plant is operated safely and within the license and                  technical specifications        and ensuring that plant operations          are conducted in accordance        with approved procedures.          As
*This requirement shall be met before fuel loading.
See NUREG-0578, Section 22.1a, Item 4 and NRC letters of September  27, and November 9, 1979.
Amendment 14                    1.10-9                  October 1984
 
Nine Mile,Point Unit    2 FSAR overall  supervisor of      operations for his shift, the Shift Supervisor shou'ld avoid    becoming personally involved      in the manipulative tasks or        details of operation        of  any one portion of the plant so,    that he may retain      a  comprehensive perspective of general      station conditions at all times. In an emergency situation, however, should the Shift Supervisor choose to perform manipulative functions to ensure that the plant is in a safe condition, he shall, coordinate his actions    with the Chief Shift Operator.              Whenever he determines  that  the  safety  of the  reactor  is  in    immediate jeopardy    or  when    operating  parameters    exceed  any  of the reactor protection circuit set points and automatic shutdown should but does not occur, he has the responsibility and the authority to order shutdown of the reactor, or to personally effect the shutdown.
The    Shift      Supervisor      shall      hold      an      NRC sen'ior    reactor operator license. He shall be contin-uously      present      at the plant          for the duration of      his        assigned        shift      until        properly Amendment 17                    1.10-9a                  January 1985
 
Nine Mile Point Unit    2 FSAR The    staff realizes that, the necessary knowledge and experience can be        gained      in a variety of ways.
Consequently,    credit  for    equivalent    experience should be given  to applicants  for SRO  licenses.
Applicants for SRO licenses at a facility may obtain their 1 yr operating experience in a licensed capacity (Operator or Senior    Operator) at another nuclear power plant.            In addition, actual, operating experience in a position      that  is equivalent to a licensed Operator. or Senior Operator at military propulsion -reactors will be acceptable on a one-for-one basis. Individual applicants must document this experience in their individual applications in sufficient detail so that the staff can make a finding regarding equivalency.
Applicants    for SRO licenses who possess a degree in engineering or applicable sciences are deemed to meet the above requirement,      provided they meet the requirements set forth in Sections A.l.a and A.2 in enclosure 1 in .the letter from H. R. Denton and all power reactor applicants and licensees, dated March 28, 1980, and have participated in" a training program equivalent to that of a
                                                      'old  Senior Operator Applicant.
The NRC has not imposed the 1-yr experience requirement on cold applicants for SRO licenses.          Cold applicants are to work on',a facility not yet. in operation; their training programs are designed to supply the equivalent of the experience not. available to them.
Nine Mile Point Unit 2 Position The Upgrading of Operator Training and Senior Operator Training for Unit 2 is being performed as described in Section 13.2 of the FSAR. This is also in accordance with the Site Administrative Procedures.
1.10-15
 
Nine Mile Point. Unit  2 FSAR I.A.2.3    ADMINISTRATION OF TRAINING PROGRAMS FSAR  Cross Reference Section 13.2.1 NUREG-0737  Position Pending accreditation of training institutions, licensees and applicants    for operating licenses will assure that training center and facility instructors who teach systems, integrated responses,      transient, and simulator courses demonstrate    SRO    qualifications and are enrolled- in appropriate requalification programs.
The above position is a short-term position.      In the future, accreditation of training institutions will include review of the procedure for certification of instructors. ,The certification of instructors may or may not. include successful completion of a Senior Operator examination.
The purpose    of the examination is to provide the NRC with reasonable    assurance  during the      interim period that instructors are technically competent. The requirement is directed to permanent members of the training staff who teach'he subjects enumerated above, including members of other organizations who routinely conduct training at the facility. There is no intention to require guest lecturers who are experts    in particular subjects (reactor theory, instrumentation, thermodynamics, health physics, chemistry; etc) to successfully complete a Senior Operator examination.
Nor do we intend to require a system expert, such as the Instrument and Control Supervisor teaching the rod control drive system to sit for a Senior Operator examination. The use of guest lecturers should be limited.
Nine Mile Point Unit 2 Position The qualification of the training instructors meets the requirements of this task, as described in Section 13.2 of the  FSAR.
: 1. 10-16
 
Nine Mile Point Unit    2 FSAR I.A.3.1  REVISE SCOPE AND CRITERIA FOR LICENSING EXAMINATIONS  SIMUZATOR EXAMS FSAR  Cross Reference Section  13 '.1 NUREG-0737  Position k
Simulator    examinations      will  be  included  as  part of the licensing examinations.        The  administration of simulator examinations      will- be      deferred      for applicants whose facilities    do    not    have    simulators    onsite    as                  of October 1, 1980. These        deferred simulator examinations will be initiated by October 1, 1981.
The  clarification provides additional preparation time for utility    companies    and the      NRC    to meet      examination requirements as stated.            A study is under way to consider how similar a nonidentical simulator should be for a valid examination.      In addition,      present    simulators  are  fully booked months  in  advance.
Application of this requirement was stated on June 1, 1980 to applicants where a simulator is located at the facility.
Starting October 1, 1981, simulator examinations will be conducted for applicants of facilities that do not have simulators at the site.
NRC  simulator examinations normally require 2 to 3 hr.
Normally, two applicants are examined during this time period by two examiners.
Utility    companies    should    make  the necessary arrangements with  an appropriate simulator training center to provide time for these examinations'referably these examinations should be scheduled consecutively with the balance of However, they may be scheduled no sooner than    the'xamination.
2 weeks prior to      and not later than 2 weeks after the balance of the examination.
Nine Mile Point Unit      2 Position All new licensing examinations will utilize a control              room for Unit 2 has been ordered, it is expectedThe tosimulator
,simulator.
be operational in January 1985.
and
 
Nine Mile Point Unit    2 FSAR I.B.1.2    INDEPENDENT SAFETY ENGINEERING GROUP FSAR  Cross Reference Sections 13.4, 16.6.2 NUREG-0737    Position Each    applicant for    an  operating license shall establish      an onsite    independent safety engineering group            (ISEG)    to perform independent reviews of plant operations.
The    principal function of the ISEG is to examine plant operating      characteristics,      NRC    issuances,      Licensing Information Service        advisories, and other appropriate sources of plant design and operating experience information that may indicate areas for improving plant safety. The ISEG is to perform independent review and audits            of plant activities,        including      maintenance,      modifications, operational problems, and operational analysis and to aid in the establishment of programmatic requirements for plant activities. Where useful improvements can be achieved,
:is expected that this group will develop and present it detailed recommendations to corporate management for such things as revised procedures or equipment modifications.
.-Another function of the ISEG is to maintain surveillance of plant operations and maintenance activities to provide independent verification that these activities are performed correctly and that human errors are reduced as far as practicable.      ISEG will then be in a position to advise utility management    on the overall quality and safety of ISEG need not perform detailed audits of plant operations.
operations and shall not be responsible                for signoff functions such that organization.
it  becomes involved in the operating The new ISEG shall not replace the plant operations review committee (PORC) and the utility's independent review and audit group as specified by current staff quidelines (Standard Review Plan, Regulatory Guide 1.33,                Standard Technical Specifications).          Rather,    it independent group of a minimum of five dedicated, is an additional full-time engineers,      located onsite but reporting offsite. to a corporate      official who holds              a    high    level, technically-oriented position that is not in the management chain for power production.        The ISEG will increase          the available    technical expertise located onsite and will provide      continuing, systematic, and independent assessment of plant activities. Integrating the Shift Technical Amendment 23                1.10-18                    December 1985
 
Nine Mile, Point Unit  2 FSAR Advisors (STAs) into the ISEG in some way would be desirable in that knowledge it  could enhance the group's contact with the of day-to-day        plant operations to provid'e additional expertise.        However, the STA on        shift is necessarily a member of the operating staff and cannot be independent of it.
It  is expected that'he ISEG may interface with the quality assurance (QA) organization, but preferably should not be an integral part of the QA organization.
The  functions of the ISEG require daily contact with the operating personnel and continued access to plant facilities and records.      The ISEG review functions can therefore best be carried out by a group physically located onsite.
However,    for utilities with multiple sites, possible to perform portions of the independent safety it  may be assessment    function in a centralized location for all the utility's plants. In such cases, an onsite group still is required, but case  if it        it may be slightly smaller than would be the were performing the entire independent          safety assessment    function. Such cases    will be reviewed on a case-by-case basis.
At this time, the requirement for establishing an ISEG is being applied only to applicants for operating licenses in accordance    with Task I.B.1.2. The staff intends to review this activity xn about a year to determine its effectiveness and to see whether changes are required.          Applicability to operating plants will be          considered    in implementing long-term improvements in organization and management for operating plants (Task I.B.l.l).
Nine Mile Point Unit 2 Position An onsite    independent safety engineering group (ISEG) will be established    to perform independent reviews of plant operation. The principal function of the ISEG 'is to examine plant operating characteristics and the various NRC and industry licensing and service advisories, and to recommend areas for improving plant operations or safety.          The ISEG will perform independent review of plant activities, including maintenance, modifications, operational concerns and analysis      and make recommendations      to the Supervi'sor Technical Support Nuclear.
The Supervisor      Technical Support Nuclear (or his designee) will present to the Operations Assessment Committee (OAC) and/or the Technical Superintendent the results of the analysis,    including    (when  useful  improvements    can    be Amendment 17                    1.10-19                January 1985
 
Nine Mile Point Unit    2 FSAR achieved)    detailed      recommendations      such    as  revised procedures or equipment modifications. Presentations to the SORC are provided by the OAC (Section 13.4).
The ISEG will observe          plant operations and maintenance activities to determine that these activities are being performed properly and provide written recommendations (when useful improvements can be achieved).          The ISEG does not perform detailed (QA-type)      audits  and is  not responsible for signoff functions      associated      with    daily    operational activities. The  ISEG  is  independent  of  the  SORC and SRAB, but may make recommendations to these groups.
The  ISEG shall be composed          of at least five dedicated, full-time engineers located onsite, assigned to Unit 2, who report to the Supervisor Technical Support Nuclear. Each shall have a bachelor's degree in engineering or related 26 science and at least 2 years professional level experience in his field, at lease 1 year of which experience shall be in the nuclear field. The Supervisor Technical Support, Nuclear reports to the Superintendent Technical Services Nuclear who reports to the Technical Superintendent who is responsible for all technical support onsite.
Although the Technical Department reports to the General Superintendent Nuclear Generation (who is responsible for operations), the Technical Department is independent from the direct operational supervision of the plant (that responsibility resides with the Station Superintendent)              ~
Additionally, the Technical Department has recourse to resolve safety concerns by addressing such concerns to either the SRAB or the Vice President Nuclear Engineering and  Licensing.
Amendment 26                      1.10-19a                    May 1986
 
Nine Mile Point Unit 2      FSAR Nine-Mile Point Unit  2  Position Unit 2 will    utilize administrative    and  training procedures to implement op'crating    experience    feedba'ck  to the plant staff.. These procedures    will:
: l. Clearly identify organizational responsibilities for review of operating experience, the feedback of pertinent -'nformation to operators and other personnel,      and    the    incorporation      of      such information in training 'and requalification training programs (Section 13.2.4. 1. 1, Item 9).
: 2. Identify the administrative and technical review steps necessary to tianslate recommendations by the Operating Assessment Committee (OAC) into plant actions (e.g., changes to procedures and operating orders).        Sections 13.4      and    1.10    provide information concerning the OAC.
: 3. Identify the recipients of various categories of operating experience information (i.e., shift or supervisor, personnel) or otherwise provide means through which such information can be readily related to the job functions of the recipients (Section 13.2.4.1.3).
Provide means to ensure that affected personnel become  aware of and understand          information of sufficient importance so that this information should not wait for emphasis through                routine training and retraining, standing orders or night orders. (For example, required reading assignments are made on an ongoing basis to address this concern.)
: 5. Ensure    that plant personnel do not routinely receive    extraneous      information on operating experience in such volume that it could obscure priority information.
: 6. Provide    suitable,  checks  to ensure that correct information is conveyed        to operators and other personnel.
: 7. Provide periodic audits to ensure that the feedback program    functions    effectively      (e.g.,    training audits).
Amendment 17                  1.10-33                  January 1985
 
Nine Mile Point Unit 2 FSAR Operating experience assessment is performed on an ongoing basis by the Technical Support. Group, OAC, and SORC as described in the administrative procedures.      The individuals involved review information from a variety of sources such as IE Bulletins, IE Information Notices, INPO reports, LERs, and vendor information letters, such as SILs.
The  feedback    system provides for early notification of significant    :- information to operating      personnel  and management.      The evaluation process, specifically the OAC meeting, provides assurance that the information is correct and that unimportant and extraneous information does not impact overall proficiency.
Amendment 17                  1.10-33a            January 1985
 
Nine Mile Point Unit      2 FSAR
: 3. Improvements in the        safety monitoring      and human factors    enhancement    of    controls    and    control displays.
Communications from the      control  room  to points out-side the control room, such as the onsite technical support center, remote shutdown panel, offsite telephone lines, and to other areas within the plant for normal and emergency operation.
: 5. Use  of direct rather than derived signals for the presentation of process and safety information to the operator.
: 6. Operability of the plant from the control room with multiple failures of nonsafety-grade and nonseismic systems.
: 7. Adequacy    of operating      procedures    and  operator training with respect to limitations of instrumen-tation displays in the control room.
8 ~  Categorization of alarms, with unique definition of safety alarms.
: 9. Physical location of the shift supervisor's office either adjacent to or within the control room complex.
Prior to the onsite review/audit, the Office of Nuclear Reactor Regulation will require a copy of the applicant's preliminary assessment and additional information which will be used in formulating the              details of the onsite review/audit.
Nine Mile Point Unit 2 Position The Unit 2 project will utilize the guidance provided by the NRC Committee    to Review Generic Requirements (CRGR) as stated in SECY 82-111.
NMPC has performed a preliminary control room design review based on the BWR Owners Group program.                The survey was structured with a team consisting of representatives from NMPC, other utilities, the NSSS supplier, and a human              fac-tors consultant. This group included licensed              Senior  Reac-tor Operators.
The      review      included      panel      layout    and    design, instrumentation,      hardware,      and      annunciators.        The 1.10-39
 
Nine Mile Point Unit  2 FSAR preliminary review, was set, up to identify areas where poten-tial changes could be made in the PGCC shop prior. to ship-ment. to the      site in early 1983. The final control room design review will be conducted during 1983 or 1984 based on the    guidance of NUREG-0700.          The following paragraphs provide a description of this review.
Pur ose and Sco e The purpose of the control room design review described is to 1) review and evaluate, the control room workspace, instrumentation, controls, and other equip-ment, from a human factors engineering        point of view that takes    into account, both system demands and operator capabilities; and 2) to identify, assess,.and implement con-trol room design modifications that improve control room man-machine interfaces.      The scope    of the Unit 2 control room design review described covers the human factors en-gineering aspects of the completed control room.
the following objectives:
To    determine whether the control room provides the system status    information, . control capabilities, feedback,    and  analytic aids necessary for control room    operators to accomplish        their functions effectively.
: 2. To identify characteristics        of existing control room  instrumentation, controls, other equipment, and    physical arrangements that may detract from operator performance.
: 3. To analyze      and evaluate    the problems that could arise from discrepancies of Items 1 and 2, and to analyze means of correcting those discrepancies.
To define and put into effect a plan of action that applies human factors principles to improve control room design and enhance          operator effectiveness.
Particular emphasis will be placed on improvements affecting control room design and operator perform-ance under abnormal or emergency conditions.
To integrate      the control room design review with other areas of human factors inquiry identified as a result of TMI-related requirements.
: 1. 10-40
 
Nine Mile Point. Unit  2 FSAR room  is separated    into  a primary display and a secondary display. The secondary  display is also utilized for main generator temperature monitoring.
At this time the nuclear data link (NDL) has not been defined by the  NRC and no equipment has    been procured  for this purpose.
Amendment, 3                  1.10-46a              June 1983
 
Nine Nile Point Unit 2 FSAR THIS PAGE INTENTIONALLY BLANK Amendment 3            1.10-46b          June 1983
 
Nine Mile Point Unit      2 FSAR Criterion    2 The    licensee shall establish an onsite radiological and chemical analysis capability to provide, within 3-hr time frame established above, quantification of the following:
Certain radionuclides in the reactor coolant and containment atmosphere that may be indicators of the degree of core damage (e.g., noble gases; iodines and cesiums, and nonvolatile isotopes);
: 2. Hydrogen  levels in the    containment atmosphere
: 3. Dissolved gases (e.g.,      H~), chloride (time      allotted for analysis subject        to discussion        below),  and boron concentration of      liquids.
    '4. Alternatively, have inline monitoring capabilities to perform all or part of the above analyses.
Clarification 2 A discussion of the counting equipment capabilities is needed, including provisions to handle samples and    reduce      background      radiation to minimize personnel radiation exposures            (ALARA).      Also a procedure is required for relating radionuclide concentrations to core damage.                The    procedure should include:
: a. Monitoring for short- and long-lived volatile and non-volatile radionuclides            (see. Vol. II, Part 2, pp., 524-527 of Rogovin report for further information).
: b. Provisions to estimate the extent of core damage  based on radionuclide concentrations and taking into consideration other physical parameters    such as core temperature          data  and sample  location.
: 2. Show    a    capability to obtain          a  grab  sample, transport  and analyze    for hydrogen.
: 3. Discuss the capabilities. to sample and analyze for the accident sample species listed here and in Regulatory Guide 1.97, Rev. 2.
: 4. Provide    a    discussion of the reliability and maintenance information to demonstrate                that the Amendment 7                      1. 10-64'a                  December 1983
 
Nine Mile Point Unit  2 FSAR selected on-line instrument is appropriate for this application. (See (8) and (10) below relative to back-up grab sample capability and instrument range and accuracy).
Position  2 Response:    (2)
The  reactor coolant and containment atmosphere samples from the PASS can be analyzed for major              fission product concentrations by gamma ray spectral analysis'he samples may be  diluted by a factor of up to 10~ to. obtain activities permitting isotopic analysis          on a germanium crystal detector. The samples are handled using long tongs and lead brick shielding to reduce radiation exposure to a level as low as reasonably achievable.      The concentrations of Kr-85, I-131, Cs-137, and Xe-133 are corrected for dilution, decay, temperature, and pressure to the time of reac+or shutdown.
The extent of fuel damage can then be determined directly from the figures provided in the plant emergency procedures.
Hydrogen levels in the containment, can be measured by the Containment Atmosphere Monitoring System.            The hydrogen analyzer is environmentally qualified in accordance with Regulatory Guide 1.89 to operate satisfactorily following a LOCA. The hydrogen concentration is recorded in the main control room.
Alternatively, a grab sample of the containment atmosphere can be obtained by the PASS and analyzed            for  hydrogen concentration by using a gas chromatograph.
Boron  content of reactor coolant can be determined by analyzing the diluted reactor coolant sample by the carminic acid method.      The sample is handled in the laboratory with long tongs and lead brick shielding to reduce radiation exposure.
Total dissolved      gas levels in the reactor coolant can be determined by measuring the pressure of the gas collected from a degassed sample of coolant.
A sample  of the dissolved gases can  be  obtained and analyzed for  hydrogen or oxygen content using    a  gas chromatograph.
Amendment 20                1.10-64b                    July  1985
 
Nine Mile Point      Unit  2 FSAR TABLE    II B.3-1 TIME AND DOSE PROJECTIONS  FOR  PASS SAMPLING'RANSPORTS AND ANALYSIS Task                                  Start  ~Sto      Persons<>>    Whole    ~Bod Extremities                Notes Decision to take sample                        0      0        NA        N/A            N/A        Assumes TSC and OSC activated and sample room habitated Read  containment atmosphere                                                NEG .          N/A Hm  levels in control room Operate control panel for dilute                0    20                    9-5            9 5        6<<  lead shielding reactor coolant Transpor t dilute reactor coolant            20      42                    3 6+1        2. 5+2      6<<
3<<
lead shielding (Max) lead shielding (Min) to laboratory Prepare coolant for isotopic                  42      44 5        1          5  0-1        6.3+1      4<<  lead glass  for  W. B.  (Max) 1/2<< lead shielding (Min)
Perform  isotopic analysis of                445    495        1          2  2-A        2  0-1 coolant Analyze coolant  for Boron                  49 5    54 2        1          2 5          8. 6+1      4<< lead glass    + 2<<  lead for W.B.
1/2<< lead  shielding 28 Prepare sample panel  for  containment      20      20                                              6<<  lead shielding atmosphere Operate  control panel for                    20      35                    4. 8+0        4 8+0        2<< lead shielding containment atmosphere Transfer containment atmosphere                35    39 8        1          1  8+1      2.4+2        2<<  lead shielding to small cask Transport containment atmosphere              39 8  58 5        2        5.8+2        2 4+3        3<<  lead shielding to laboratory Prepare containment atmosphere                58 5    63 9        1        3 3            5. 2+2      4" lead glass    6 2<<  lead for isotopic                                                                                          for  W.B. (Max) 1/2<< lead  shielding (Min)
Perform isotopic analysis    of                63 9    68 9        1          2\7  3      2. 0+0 containment atmosphere Operate  control panel for total              39 8  109.8        3          2 5+1        2. 5+1      6<<  lead shielding dissolved gas Amendment 28                                                  1  of  2                                                          May 1987
 
Nine  Nile Point Unit    2 FSAR TABLE  II.B.3-1    (Cont)
Task                              Start  Stop      persoosll) lltole    ~soo    Brtreeities                Notes Operate  control panel for 10-ml          109 8  119 8        3          3.6+0          3.6+0        6" lead shielding reactor coolant Transport 10-ml reactor coolant          119.8  179  1      3          6. 0+1          3.8-3        6" lead shielding (Max) 2PB lead shielding  (Bin) to laboratory Analyze 10-ml reactor coolant                                                                        4" glass lead      2" lead for chloride                            179  1 183 6        1          2 4+1          8. 1+3                        8 for  Q.B. (Sax) 1/2<< lead  shielding (Sin)
<>>Number of persons performing particular task.
<>>Doses are based on the assumption that the decision  to take    a sample    is  made  1  hr after reactor scram.
2  of 2                                                              Nay 1987 Amendment 28
 
Nine Mile Point Unit                2 FSAR TABLE  II.B.3-2 POST-ACCIDENT SAMPLING ANALYTICAL METHODS A~nal sis        Method                      Suitabilit        Rancae        A~ccurac Boron            Carmini c                  GE  NEDC-30088    50-          +50 ppm acid                        In-house          2,000  ppm            I testing Chloride          Specific                    ASTM D512D        1-10 ppm      +1 ppm:"
ion                        In-house          >10 ppm      +10%
electrode                  testing pH                Combina-                    GE  NEDC-30088    2-12 pH      +0.2 pH tion                pH electrode Isotopic          Gamma                      In-house          lvCi/gm-      +200%
spectral                    testing          10 Ci/gm analysis Total            Gas                        GE  testing      25-50 cc/kg  +50%
Dissolved        sample                      In-house          50-400 cc/kg  230%
Gas              pressure                    testing measure-ments Dissolved                                    GE  testing      25-50 cc/kg  +50%
H> or 0<          chromato-                                    50-400 cc/kg  +30%
graph and pressure measurements Gas                        In-house          0. 1-100 %
                                                                          *  +0. 1%
Hydrogen'~'xygen'~'as chroma-                    testing tograph Gas                        In-house          0.5-100  %    +0.5%
chroma-                    testing tograph
'''Verification is analysis for on-line inconclusive'Backup H>/O~  monitoring system Amendment 14                                  1  of  1                  October 1984
 
Nine Mile Point Unit    2 FSAR II.D.1    RELIEF AND SAFETY VALVE TEST REQUIREMENTS FSAR  Cross Reference Sections 5.2, 5.4 NUREG-0737    Position BWR  licensees and applicants shall conduct testing to qualify the reactor coolant system relief and safety valves under    expected    operating conditions for design basis transients and accidents.
Nine Mile Point Unit    2  Position
~
The  NRC  has    identified  a  total of  20  scenarios that could possibly lead to high      pressure    two-phase    or liquid flow through the SRV.
The  Unit  2  project    will    provide  the    following means to resolve the    NRC  concerns:
: 1. Redundant Level 8      trip for  RCIC  (Events 4 and 9)
: 2. Redundant Level 8      trip for  HPCS  (Events  5  and 10)
: 3. Redundant nonsafety Level 8      trip  to close the three feedwater    control valves      and    two    HPLF    valves (Event 1)
The  tests and analyses described in Reference 1 verify the adequacy  of safety relief valves (SRV) operation and the integrity of the SRV piping under expected liquid discharge conditions, and satisfy all requirements of NUREG-0737, Item IIELD.l.
As  discussed    in  Appendix    A  of Reference      1, for Dikkers valves, there are no material,        dimensional      or  operational differences between the          in-plant  valves    and    the tested valves. Since the valves are        identical,    the    test  results for Dikkers valves        are    applicable    to  the  corresponding in-plant valves.
Reference
: 1. Analysis of Generic BWR Safety/Relief Valve Operability Test Results, NEDO-24988, Class I, October 1981.
Amendment 7                    1.10-69                    December 1983
 
Nine Mile Point Unit    2 FSAR In    a  letter from D".G. Eisenhut of the NRC to C.V. Mangan of NMPC      dated March 29, 1984, the Equipment              Qualification Branch requested          that NMPC provide additional information
.concerning TMI Action Plan II.D.1.                Following are        the responses to each NRC question:
uestion      1 A The      test    program    utilized    a  rams  head    discharge  pipe configuration. Most plants              utilize a tee quencher configuration at the end of the discharge line. Describe the discharge pipe configuration used at your plant and compare the anticipated            loads on valve internals in the plant configuration to the measured loads in the test program.        Discuss the impact of any differences in loads on valve operability.
~Res  ense Unit    2. utilizes a tee quencher at the end of the main steam SRV    discharge line (SRVDL). The test program described in NEDE-24988-P used a rams head discharge device with test conditions simulating the shutdown cooling mode. The impact of the difference on valve operability is accounted for as follows:
      . Valve    operability is affected by dynamic loads on valve internals. The dynamic loads are governed by (a) back pressure of the SRV and (b) flow through the SRV.
Higher back pressures        and    flow  will    produce  higher dynamic loads.
(a)  In the    test  -.program, the  SRV  inlet  pressure was equal    to 250 psig.      The Unit 2 reactor pressure      during shutdown cooling'ode is approximately 135 psig.        The maximum        back pressure      of the SRV is approximately 35 percent of the SRV inlet pressure;            thus, the test program has qualified the SRV to .work with back pressure of about two times that of Unit 2.      This provides adequate margin to offset the difference in using a tee quencher.
(b) The test program has qualified the SRV with a rams head discharge device.      The tee quencher allowed less flow (257 ibm/sec) than the rams head (260 ibm/sec) because resistance.
it has- higher flow Thus, operability of the SRV for Unit 2 SRVDL with a tee quencher will also be qualified.
Amendment 23                        1.10-69a                December 1985
 
Nine Mile Point Unit 2 FSAR Refer  to the responses to Questions F421.21 and F421.23 for further information regarding the Unit 2 position.
Refer to the response for Task II.F.1 for a discussion of incore thermocouples and to the response for Task I.D.l for Amendment 14                1.10-84a            October 1984
 
Nine Mile Point Unit 2 FSAR THIS PAGE INTENTIONAjjY BIANK Amendment 14            1.10-84b          October 1984
 
Nine Mile Point Unit    2 FSAR An  investigation of the feasibility and contraindications of reducing challenges to the relief valves by use of the aforementioned methods should be conducted. Other methods should also be included in the feasibility study.              Those changes which are shown to reduce relief valve challenges without compromising the performance of the relief valves or other systems should be implemented.              Challenges to the relief valves should be reduced substantially (by an order of magnitude).
Failure of the power-operated relief valve (PORV) to reclose during the TMI-2 accident resulted in damage to the reactor core. As a consequence,      relief valves in all plants, in-cluding BWRs, are being examined with a view toward their possible role in a small-break LOCA.
The SRVs are  dual-function pilot-operated relief valves that use a spring-actuated    pilot for the safety function and ex-ternal air diaphragm-actuated pilot for the relief function.
The operating history of the SRV has been poor. A new design is used in some plants but the operational history is too brief to evaluate the effectiveness of the new design.
Another way of improving the performance of the valves is to reduce the number of challenges to the valves. This may be done by the methods described above or by other means.          The feasibility and contraindications of reducing the number of challenges to the valves by the various methods should be studied. These changes,      which are shown to decrease the number of challenges without compromising the performance of the valves or other systems,      should be implemented.
The  failure of an SRV to reclose will be the most probable cause  of a small-break LOCA. Based on the above guidance and clarification, results of a detailed evaluation should be submitted to the staff. The licensee shall document the proposed    system    changes    for staff approval before implementation.
Nine Mile Point Unit    2  Position The  BWR  Owners  Group  (BWROG)  .evaluated the NRC-suggested modifications listed earlier.          Section 4.3 of the BWROG study (March 31, 1981)      states:    "For comparing the various valves, the  Three-Stage  Target  Rock  Valve was taken as the benchmark valve with an assumed normalized factor of 1.0 for probability to stick open when challenged."            Section 4.3.3 compares    Crosby and Dikkers SRVs to the three-stage target rock, and states:    "Based on valve qualification test data and limited operating experience,            a normalized factor of 1.10-89
 
Nine Mile Point Unit                  2 FSAR 0.125    was    assigned                  for their relative probability to stick open, when challenged."                        Since the Unit 2 design includes Dikkers SRVs, a reduction of challenges, relative to the benchmark valve, of roughly one order of magnitude,                              is achieved; therefore, the intent of the NUREG is satisifed.
The  Unit  2  design does not incorporate any of the proposed changes  listed in    NUREG-0737,                    since the BWROG study has determined that either unjustified increases                              in system complexity and/or minimal reduction (less than 5 percent) in SRV challenge rate would result from these changes.
II.K.3.17      REPORT ON OUTAGES OF EMERGENCY CORE-COOLING SYSTEMS LICENSEE REPORT AND PROPOSED TECHNICAL SPECIFICATION CHANGES FSAR  Cross Reference Section 6.3, 16.3/4.5 NUREG-0737    Position Several    components                      of the  emergency  core-cooling  (ECC) systems  are permitted by technical specifications to have substantial outage times (e.g., 72 hours for one diesel-generator; 14 days for the HPCI system). In addition, there are no cumulative outage time limitations for ECC systems.
Licensees should submit a report detailing outage dates and lengths of outages for all ECC systems for the last 5 years of operation. The report should also include the causes of the outages (i.e., controller failure, spurious isolation).
The  present technical specifications contain limits on allowable outage times for ECC systems and components.
However, there are no cumulative outage time limitations on these same systems.                        It is possible that ECC equipment could meet present technical specification requirements but have a high unavailability because of frequent outages within the allowable technical      specifications'he licensees should submit a report detailing outage dates and length of outages for all ECC systems                        for the last 5 years of operation, including causes of the outages.                            This report will provide the staff with a quantification of historical unreliability due to test and maintenance outages, which will be used to determine for cumulative outage requirements in the technical if  a need    exists specifications.
Amendment 23                                    1.10-90              December 1985
 
Nine Mile Point Unit  2 FSAR Based  on    the above guidance and clarification, a detailed report  should  be submitted. The report should contain    (1) outage    dates  and  duration    of  outages;  (2) cause  of the outage; (3) ECC systems or components involved -in the outage;    and    (4)    corrective action taken.      Test and maintenance outages should be included in the above listings which are to cover the last 5 years of operation. The licensee should propose changes to improve the availability of ECC equipment,    if needed.
Applicant for    an  operating license shall establish    a plan to meet, these requirements.
Nine Mile Point Unit    2  Position NMPC  will report      ECCS  outages via LERs and Annual Summary Reports as    required by technical specifications.
Amendment 9                    1.10-90a                  March 1984
 
Nine Mile*.Point'nit 2 FSAR THIS PAGE INTENTIONALLY BLANK Amendment 9          1.10-90b            March 1984
 
Nine Mile Point Unit  2 FSAR II.K.3.22    RCIC SUCTION SOURCE FSAR  Cross Reference Sections 5.4.6, 7.4 NUREG-0737  Position The  reactor core isolation cooling    (RCIC) system takes suc-tion from the condensate storage,  tank with manual switchover to the suppression pool when the condensate storage tank level is low. This switchover should be made automatically.
Until the automatic switchover is implemented, licensees should verify that clear and cogent procedures exist for the manual switchover of the RCIC system suction from the con-densate  storage tank to the suppression pool.
Nine Mile Point Unit    2 Position The  Unit 2 project will implement the NRC . position to automatically transfer RCIC suction source.          Condensate storage tank low water inventory will initiate automatic transfer of the suction of the RCIC pump to the suppression pool.
1.10-93
 
Nine Mile Point Unit 2 FSAR II.K.3.24  RCIC AND HPCI SUPPORT POWER FSAR  Cross Reference Section 9.4 NUREG-0737  Position Long-term operation of the reactor core isolation cooling (RCIC) and high pressure coolant injection (HPCI) systems may require    space cooling to maintain the pump room tem-peratures within allowable limits. Licensees should verify the acceptability of the consequences of a complete loss of ac power. The RCIC and HPCI systems should be designed  to withstand a complete loss of offsite ac power to their sup-port systems,'ncluding coolers, for at least 2 hr.
Nine Mile Point Unit 2 Position The Unit 2 ECCS design employs a cubicle arrangement to en-sure physical, electrical, and environmental, separation of each portion ,of the ECCS. The RCIC system is also located within a separate cubicle. The HPCS pump room is cooled ,by either of two fully redundant Category I unit space coolers.
The remaining ECCS pump rooms and the RCIC pump room are each cooled by one Category I unit space cooler with an ad-ditional cooler provided as a spare. These coolers are part of the reactor building heating, ventilation, and air con-ditioning (HVAC) system which utilize cooling water from the service water (SWP) system. The safety-related portions of the SWP system are powered from the            standby diesel generators following a loss of offsite power; therefore a reliable supply of cooling water is provided. Likewise, the control systems involved in the operation of the unit coolers also receive their power from the diesel generators following a loss of offsite power. This design assures that the pump room temperatures      are maintained within normal limits for an indefinite period following a complete loss of offsite  power.
: 1. 10-94
 
Nine Mile Point Unit 2 FSAR II.K.3.27    COMMON WATER  LEVEL REFERENCE FSAR  Cross Reference Sections 7.3, 16.3/4.3 NUREG-0737  Position Different reference points of the various reactor vessel water level instruments may cause operator            confusion.
Therefore, all level instruments should be referenced to the same point. Either the bottom of the vessel or the top of the    active    fuel is a reasonable          reference point (NUREG-0737).
Nine Mile Point Unit    2 Position Unit 2  utilizes  a common water level reference elevation at 380.69  in  above the vessel  invert elevation. This reference point  corresponds    to  the top of the upper core support plate. All five level instrumentation ranges ( shutdown, upset, wide, narrow, and fuel) utilize this reference.
Amendment 23                  1 '0-97              December 1985
 
Nine Mile Point Unit  2 FSAR II.K.3.28    ADS ACCUMULATORS FSAR  Cross Reference Sections 5.2, 6.3, 9.3. 1 NUREG-0737  Position Safety    analysis    reports    claim that air or nitrogen accumulators for the automatic depressurization system (ADS) valves are provided with sufficient capacity to cycle the valves open five times at design pressure.          GE  has also stated that the emergency core cooling systems (ECCS) are designed to withstand a hostile environment and still perform their function for 100 days following an accident.
The licensee should verify that the accumulators on the ADS valves meet these requirements,          even considering normal leakage. If this cannot be demonstrated,    the licensee must show  that the accumulator design is    still acceptable.
The  ADS valves, accumulators,      and associated equipment and instrumentation must be capable          of performing their functions during and following exposure to hostile environments,    taking no credit for nonsafety-related equipment    or instrumentation.        Additionally, air (or nitrogen)'eakage through valves must be accounted for in order to assure that enough inventory of compressed air is available to cycle the ADS valves.
Nine Mile Point Unit 2 Position The primary source      of pneumatic supply and leakage makeup for the ADS accumulators will be from two nitrogen storage tanks located outside the reactor building. Long-term post-accident supply and leakage makeup will be provided by two bottled nitrogen connections, also located outside the reactor building. Two Category I nitrogen accumulator tanks are located in the reactor building and are pressurized from the nitrogen storage tanks. These two large accumulators provide pneumatic supply and leakage makeup for the seven smaller ADS accumulators located          inside the primary containment. This arrangement provides sufficient time to place the bottled nitrogen system into service condition requires long-term ADS operation.
if  the plant The ADS valves, including pilot operators, are designed to withstand a hostile environment and still perform their safety function for 100 days following an accident.
Amendment 23                  1.10-98              December 1985
 
Nine  Nile Point Unit    2 FSAR TABLE  III    D 3 4-1 RESULTS OF TOXIC CHENICAL ANALYSIS FOR THE CONTROL ROON HABITABILITY STUDY Allowable Naximum    Control                      Time Chemical                            Room  Concentration      Toxic Limit  Period Location          Chemical              ~ZmZl J.A. FitzPatrick    Nm                    7.5                  274          15 Plant                HgSOg              6.6 x 10-m                0. 002      2 COm                    4 3                  54. 8      15 Propane                0.9                  43. 1      15 Alcan                Clm                    0.02                  0  045      2 Propane                3 5                  43  1      15 Nm                    0 9                  274          15 HCl                    0. 02                  0 05        15 COm                    0.06                  54 8          2      28 Route 104            Hcl                    0 04                  0 050        2 Nm                    0 4                  274          15 COm                    0.06                  54. 8        2 Nine Nile Point      Ng                    15. 0                274          15 Unit  1              COg                  10. 2                  54. 8        15 Hm SOg            1.3 x 10-~                  0 002      2 Nine  Nile Point    HgSOg                  0 0017                  0. 002      2 Unit  2              COg                  32. 8                  54 8        15 Halon 1301            4 0                  432          15 Nm                    20 5                  274          15 Copper Neld        Isopropyl          4.0 x 10-i                  1  2      15 Bimetallics Group Alcohol      1 Amendment 28                          1. 10-133                              Nay 1987
 
0 Nine Mile Point Unit    2 FSAR In addition to the load combination requirement for the con-tainment design, there is a fatigue analysis requirement for the liner of a concrete containment. For'steel containment, the consideration of fatigue is specified in ASME Boiler and Pressure Vessel Code Section III, Division 1, Subsection NE.
However, the liner on the concrete          foundation mat of the steel containment should be treated as the liner of a con-crete containment. Since the staff's position requires the pool liner to be designed in accordance with the ASME BEcPV Code Section III, Division 1, Subsection NE,          it is suggested that a generic method to consider fatigue of both the steel containment and the steel liner in the concrete containment should be adopted.
Position The      absolute sum method of combining dynamic loads is used for the design of structures.          The details    of load com-binations used in designing the structures are covered in FSAR    Section 3.8.
The      Unit 2 primary containment liner is evaluated for fatigue to the requirements of ASME Boiler and Pressure Ves-.
sel Code Section III, Division 1, Subsection NE.
LICENSING ISSUE:      43  FIUID/STRUCTURE INTERACTION I
I s sue.
The      dynamic forcing functions for various loads have been established through testing on models that. are generally more stiff than the actual structures to which the lo'ads will be applied. By directly applying such forcing func-
          'o tions          actual structures in the analysis, the interactive effect between the fluid mass and the structure                    is neglected.. Under certain conditions, this effect may be significant". It is proposed that a generic approach to study; such effects should be established.
Position This issue is not directly applicable to the Unit 2 Mark II containment. Since the Unit 2 containment is stiff in the suppression pool region and the dynamic forcing functi'ons are conservatively defined, any interactive effect between the fluid: mass and the structure is inherently included.
Amendment 3                      1.12-31                    June 1983
 
Nine Mi'le Point Unit  2 FSAR LICENSING ISSUE 44    .LONG-TERM  POST-LOCA OPERABILITY OF DEEP-DRAFT ECCS PUMPS Issue IE  Bulletin 79-15, dated July 1979, identified problems with deep-draft  ECCS pumps that could      threaten their long-term post-LOCA operability. Structure flexibility; shaft/column misalignment; vibrational frequencies near rotation speeds; inlet flow induced vortices; and dimensional deficiencies such as those discovered with certain LaSalle ECCS pumps, could cause excessive vibration and bearing wear. The'RC staff has asked applicants to define programs and provide data that compare the expected servic'e life with the ac-cumulated operating time          and    confirm the      long-term operability.
Position The inherent design features of the Byron Jackson ECCS pumps in Unit 2 .preclude excessive vibration and bearing wear.
Each pump is supplied with a casing or suction barrel and is not installed in a wet sump. They do not have long, limber columns; the longest pump is only 24 ft, compared to the 30-to 60-ft pumps described in IE Bulletin 79-15.          Also the pump assembly rigidity is enhanced by seismic rings between the assembly and the barrel. The pumps use a double-suction first stage to provide stability over a wide range of flows.
Column frequencies are well removed from pump speed.        Larger diameter barrels provide low flow velocities around pump inlets, and ring seismic restraints                act" as      flow straighteners to suppress vortex formation. The pumps'have high-precision, keyed, sleeve-type couplings.
Long-term operability is assured by preventive maintenance, functional testing and surveillance,              and  vibration monitoring.      Scheduled preventive maintenance consists of resistance readings of motor windings; lubrication of critical rotating components; general cleaning and inspec-tion of rotating electrical equipment; and inspection, overhaul,    alignment, and adjustment of impeller lift.
Functional-testing measurements of pump inlet pressure, differential pressure, flow rate, vibration, and upper temperature, as prescribed by Section XI of the ASME BEcPV Code, provide data for engineering analysis to identify per-formance changes or trends.        In addition, vibration data bases,    established      during the preoperational/startup testing, are compared with functional-testing vibration data to monitor journal bearing wear and shaft whip.
"Amendment 4                    1. 12-32            September  1983
 
Nine Mile Point Unit  2 FSAR ISSUE:  A-24  ENVIRONMENTAL QUALIFICATION OF SAFETY-RELATED EIECTRICAL EQUIPMENT        ~
NRC  Descri tion Accidents postulated for nuclear power plants could create severe environmental conditions        such  as  temperature, pressure,    humidity,    radiation,    chemical  sprays, and submergence both inside and, outside the containment.          In order to ensure that the electrical equipment in safety systems will perform their intended function, that such equipment be qualified to perform in the it is required environment associated with an accident.
Schedule  for NRC Resolution NUREG-0588,  Revision 1, completed August 1981.
IEEE-323 and Regulatory Guide 1.89 contain specific guidance for meeting the requirements.      The final rule concerning environmental qualification was published in the Federal Register on January 21, 1983.
Unit  2 Position Environmental qualification of Class lE equipment located in harsh environments meets or exceeds the requirements for Category II qualification in accordance with NUREG-0588, including the guidance provided for incorporation of IEEE-323. The mild environments qualification program has not been addressed to the NRC.
Amendment 9                  1.13-11                  March 1984
 
Nine Mile Point Unit    2 FSAR ISSUE:    A-26    REACTOR  VESSEj PRESSURE TRANSIENT PROTECTION g )
NRC  Descri tion Pressure      transients      in PWRs which have exceeded the pressure/temperature      limits of the reactor vessel have occurred (usually during plant startup or shutdown, when the temperature of the reactor coolant was low). The transients have    been    attributed to personnel error, procedural deficiencies, component random failure, and spurious valve actuation.
Schedule  for  NRC  Resolution NUREG-0224 completed        September    1978. All operating PWRs have an installed system to protect against low temperature overpressurization.        However, systems in 10 plants have not been completely reviewed against acceptance          criteria.
Unit 2 Position As Unit 2 is a BWR, this issue is not applicable.
Amendment 9                      1. 13-12                  March 1984
 
NINE MILEPOINT NUCLEAR STATION UNIT 2 QQo[gQQ g OQCIQQQQOG
 
'1 Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS Section                    Title                      Volume CHAPTER 1    INTRODUCTION AND GENERAL DESCRIPTION OF PLANT 1.1          Introduction 1.2          General Plant Description 1.3          Comparison Tables 1 ~ 4        Identification of Agents and  Contractors 1.5          Requirements  for Further Technical Information 1.6          Material Incorporated by Reference 1.7          Drawings and Other Detailed Information 1.8          Conf ormance to NRC Regulatory Guides 1.9          Standard Review Plan Conformance to Acceptance  Criteria 1.10        Unit 2 Response to Regulatory Issues Resulting from TMI
: 1. 11        Abbreviations and Acronyms
: 1. 12        Generic Licensing Issues
: l. 13        Unit 2 Position on Unresolved Safety Issues CHAPTER 2    SITE CHARACTERISTICS 2.1          Geography and Demography 2.2          Nearby Industrial, Transportation, and  Military Facilities 2.3          Meteorology 2.4          Hydrologic Engineering 2.5          Geology, Seismology, and Geotechnical Engineering                    3,4 Appendix 2A                                              4 Appendix 2B                                              5 Appendixes 2C through 2H                                  6 Appendixes 2I, 2J                                        7 Appendixes 2K, 2I., 2M                                    8 CHAPTER 3    DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT, AND SYSTEMS 3.1          Conformance  with NRC General Design Criteria 3.2          Classification of Structures, Systems,  and Components Amendment 16                                      December 1984
 
Nine Mile Point Unit 2 FSAR TABLE OF CONTENTS (Cont)
Section                  Title                      Volume 3.3        Wind and Tornado Loading 3.4        Water Level (Flood) Design 3.5          Missile Protection 3.6A        Protection Against Dynamic Effects Associated with the Postulated Rupture of Piping (SWEC Scope of Supply)                                  9,10 3.6B        Protection Against, Dynamic Effects Associated with the Postulated Rupture of Piping (GE Scope of Supply)    10 3.7A        Seismic Design                            10 3.7B        Seismic Design                            10 3.8          Design of Seismic Category I Structures  10 3.9A        Mechanical Systems and Components (SWEC Scope of Supply) 3.9B        Mechanical Systems and Components (GE Scope of Supply) 3.10A        Seismic Qualification of Seismic Category I Instrumentation and Electrical Equipment (SWEC Scope of Supply)                                12
: 3. 10B      Seismic Qualification of Seismic Category I Instrumentation and Electrical Equipment (GE Scope of Supply)                                12 3.11        Environmental Design of Mechanical and Electrical Equipment                  12 Appendixes 3A  through  3D                            12 CHAPTER 4    REACTOR                                  12 4.1          Summary  Description                    12 4.2          Fuel System Design                        12 4.3          Nuclear Design                            12 4            Thermal/Hydraulic Design                  12 4.5          Reactor Materials                        12 4.6          Functional Design of Reactivity Control Systems                          12 CHAPTER 5    REACTOR COOLANT SYSTEM AND CONNECTED SYSTEMS                        13 5.1          Summary  Description                    13 5.2          Integrity of Reactor Coolant Pressure  Boundary                      13 3.i
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                Title                    Volume 5.3          Reactor Vessel                        13 5.4          Component and Subsystem Design        13 CHAPTER 6    ENGINEERED SAFETY FEATURES 6.1          Engineered Safety Feature Materials  13 6.2          Containment Systems
                                                          '4 6.3          Emergency Core Cooling Systems        15 6.4          Habitability Systems                  1'5 6.5          Fission Product Removal and Control Systems 6.6          Inservice Inspection of Safety Class  2 and Class  3 Components      15 Appendixes 6A, 6B                                  15 CHAPTER 7    INSTRUMENTATION AND CONTROL SYSTEMS 7.1          Introduction                          15 7.2          Reactor Protection (Trip)
System (RPS)  Instrumentation and Controls                              15 7.3          Engineered Safety Feature Systems    15
: 7.          Systems Required for Safe Shutdown    16 4'.5 Safety-Related Display Instrumentation                      16  ~
7.6          All Other Instrumentation Systems Required for 'Safety          16 7'          Control Systems Not Required for Safety                            16 CHAPTER 8    ELECTRIC POWER 8.1          Introduction                          16 8.2          Offsite  Power System                16 8.3          Onsite Power System                  16, 17 CHAPTER 9    AUXILIARY SYSTEMS                    17 9.1          Fuel Storage and Handling            17 9.2          Water Systems                        18 9.3          Process Auxiliaries                  19 9.4          Air Conditioning, Heating, Cooling, and Ventilation Systems              20,21 9.5          Other Auxiliary Systems              21,22 Appendix  9A                                      23
'0-
 
Nine Mile Point, Unit 2 FSAR TABIE OF CONTENTS (Cont)
Section                  Title                    Volume CHAPTER 10  STEAM AND POWER CONVERSION SYSTEM      23 10.1        Summary .De sc r iption                23 10.2        Turbine Generator                      23 10.3        Main Steam Supply System              24 10.4        Other Features of Steam and Power Conversion System CHAPTER 11  RADIOACTIVE WASTE MANAGEMENT 11.1        Source Terms                          24 11.2        Liquid Waste Management Systems        24 11.3        Gaseous Waste Management Systems      25 11.4        Solid Waste Management System          25 11.5        Process and Effluent Radiological Monitoring and Sampling Systems        25 Appendix 11A                                        25 CHAPTER 12  RADIATION PROTECTION                  25 12.1        Ensuring That Occupational Radiation Exposures Are As Low As Reasonably Achievable (ALARA)                    25
: 12. 2        Radiation Sources                      25
: 12. 3        Radiation Protection Design Features                              25 12.4        Dose Assessment                        26 12.5        Health Physics Program                26 CHAPTER 13  CONDUCT OF OPERATIONS                  26
: 13. 1        Organizational Structure of Applicant                              26
: 13. 2        Training                              26
: 13. 3        Site Emergency Plan                    26
: 13. 4        Operation Review and Audit            26
: 13. 5        Plant Procedures                      26
: 13. 6        Industrial Security                    26 Appendixes 13A, 13B                                26 CHAPTER 14  INITIAL TEST    PROGRAM              26 14.1        Specific Information To Be Included in Preliminary Safety Analysis Report (PSAR)                26
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                  Title                  Volume L
14.2        Specific Information To Be Included in Final Safety Analysis Report (FSAR)                26,27 CHAPTER 15  ACCIDENT ANALYSIS                      27 15.0        General                                27 15.1        Decrease in Reactor Coolant Temperature                            27 15.2        Increase in Reactor Pressure          27 15.3        Decrease in Reactor Coolant System Flow Rate                      27 15.4        Reactivity and Power Distribution Anomalies                              27 15.5        Increase in Reactor Coolant Inventory                              27 15.6        Decrease in Reactor Coolant Inventory                              27 15.7        Radioactive Release From Subsystems or Components              27 15.8        Anticipated Transients without Scram (ATWS)                          27 Appendix 15A                                        28 Appendix 15B                                        28 Appendix 15C                                        28    26 Appendix 15D                                      . 28 Appendix 15E                                        28 CHAPTER 16  TECHNICAL SPECIFICATIONS              28 CHAPTER 17  QUALITY ASSURANCE                      28 17.0        Introduction                          28 17.1        Quality Assurance Program During Operation                              28 CHAPTER 18  HUMAN FACTORS ENGINEERING              28 18.1        Human  Factors Engineering Team      28 18 '        Safety Parameter Display System        28 Amendment 26                                    May 1986
 
Nine Mile Point Unit  2 FSAR CHAPTER 2 TABLE OF CONTENTS  (Cont)
Section                    Title                  Pacae 2.3.3.1.3    Meteorological Instrumentation
                            .                      2.3-28 2.3.3.1.4    Methodologies                          2.3-30 2 '.3.1.5    Instrumentation Surveillance          2.3-30 2.3  '.1.6  Data Acquisition and Reduction        2.3-31 2.3.3.1.7    Data Analysis Procedures              2 3 31 2.3  '.2 2 '.3.2.1 Operational Measurements Program Description
                                                      ~
2.3-31 2 3 31
                                                      ~
2.3.3.2.2    Meteorological Instrumentation        2.3-32 2.3.3.2.3    Processing and Recording of Meteorological Sensor Signals          2.3-32a 2'  '.2.4  Instrumentation Surveillance          2.3-32b 2.3.3.2.5    Data Analysis Procedures              2.3-32b 2.3.4        Short-Term (Accident) Diffusion Estimates                              2 3 33
                                                      ~
2.3.4. 1    Objective                              2 3 33 2.3  '.2 2 '.4 '
X/Q Estimates Accident Assessment
                                                      ~
2 3 33
                                                      ~
2.3-34 2.3.4.3.1    Methodology                            2.3-34a 2.3.4 '.2    Meteorological Data                    2.3-36 2 '.4.4      Atmospheric Diffusion Models          2.3-38 2.3.4.4.1    Main Stack X/Q Calculations            2.3-38 2.3.4.4.2    Vent X/Q Calculations                  2.3-42 2.3.4.4 '    Main Steam Tunnel Blowout Panel X/Q Calculations                2.3-46 2.3.5        Long-Term (Routine) Diffusion Estimates                              2 '-46 2.3. F 1    Objective                              2.3-46 2 '.
2.3. 5.2 5.3 2.3. 5.3.1 X/Q and D/Q Estimates Methodology Meteorological Input 2.3-46 2.3-47 2.3-47 2.3. 5.3.2  Source Configuration                  2.3-48 2.3. 5.3.2.1 Main Stack Release                    2.3-48 2.3. 5 '.2.2 Vent Release                          2.3-48 2.3. 5 '.2.3 Site Impacts  on  the Main Stack and Vent Releases                2.3-49 2.3.5 3 3
      ~  ~  Plume Rise                            2.3-50 2.3.5 3.4
      ~    Diffusion Model                        2.3-52 2.3.5 .3.5  Terrain Corrections                    2.3-52 2.3.5 .3.6  Wind Speed Adjustment                  2.3-53 2.3.5 .3.7  Atmospheric  Stability                2.3-53 2.3.5 3.8
      ~    Dispersion Coeffients                  2.3-53 2.3.5 3.9    Land/Lake Breeze                      2.3-54 2.3.5 3 2.3.6
      ~
      ~  '0 Deposition References 2.3-55 2.3-57 2.4          HYDROLOGIC ENGINEERING                2.4-1 Amendment 24                  2-113.          February 1986
 
Nine Mile Point Unit 2 FSAR CHAPTER 2 TABLE OF CONTENTS (Cont)
Section                    Title                Pacae 2.4.1        Hydrologic Description              2. 4-1 2.4.1.1      Site  and Facilities                2. 4-1 Amendment 24              2-iiia            February 1986
 
Nine Mile Point Unit 2 FSAR THIS PAGE INTENTIONALLY BLANK Amendment 24          2-iiib              February 1986
 
Nine Mile Point Unit  2 FSAR CHAPTER 2 TABLE OF CONTENTS  (Cont)
Section                      Title                Pacae 2.4. 1.2    Hydrosphere                          2. 4-1 2.4.2        Floods                              2. 4-3 2.4.2.1      Flood History                        2. 4-3 2.4.2.2      Flood Design Considerations          2. 4-3a 2.4.2.3      Effects of Local Intense Precipitation                        2. 4-4 2.4.2.3.1    Probable Maximum Precipitation      2. 4-4 2.4.2.3.2    Precipitation Losses                2. 4-4a 2.4.2.3.3    Probable Maximum Flood Flow          2. 4-5 2.4.3        Probable Maximum Flood (PMF) on Streams and Rivers                  2.4-7 2.4.4        Potential  Dam  Failures            2.4-7 2.4.5        Probable Maximum Surge and Seiche Flooding                            2.4-8 2.4.5.1      Probable Maximum Winds and Associated Meteorological Parameters 2.4-8 2.4.5.2      Surge and Seiche Water Levels        2.4-10 2.4.5.3      Wave  Action                        2.4-11 2.4.5.4      Resonance                            2.4-12 2.4.5.5      Protective Structures                2.4-13 2.4.6        Probable Maximum Tsunami Flooding    2.4-14 2.4.7        Ice Effects                          2.4-14a 2 '.8        Cooling Water Canals and Reservoirs  2.4-15 2.4.9        Channel Diversions                  2.4-15 2 '.10      Flooding Protection Requirements    2.4-16 2.4.11      Low Water Considerations            2.4-16a 2.4.11.1    Low Flow in Streams                  2.4-16a 2.4.11.2    Low Water Resulting from Surges, Seiches, or Tsunami                  2 '-16a 2.4. 11.3    Historical Low Water                2.4-17 2.4. 11.4    Future Controls                      2 '-18 2.4. 11. 5  Plant Requirements                  2.4-18 2.4.11.6    Heat Sink Dependability Requirements 2.4-18 2.4.12      Dispersion, Dilution, and Travel Times of Accidental Releases of Liquid Effluents in Surface Waters  2.4-19 2.4.13      Groundwater                          2.4-22 2.4.13.1    Description and Onsite Use          2.4-22 2.4.13.1.1  Regional Groundwater Conditions      2.4-22 2.4.13.1.2  Local Aquifers                      2.4-31 2.4.13.1.3  Recharge and Discharge              2.4-32 2.4.13.1.4  Onsite Use                          2.4-32 2.4.13.2    Sources                              2 '-32 Amendment 26                                        May 1986
 
Nine Mile. Point Unit 2 FSAR CHAPTER 2 TABLE OF CONTENTS  (Cont)
Parcae Section                    Title APPENDIX 2G  LONG-TERN (ROUTINE) DIFFUSION ESTIMATES FOR THE MAIN STACK AND COMBINED RADWASTE AND REACTOR BUILDING VENT APPENDIX 2H  EXCAVATION MAPS APPENDIX 2I  DEMSTER STRUCTURAL ZONE WITH DISCUSSION ON ORIGIN AND EXTENT APPENDIX 2J  TEST PROCEDURES, APPENDIX 2K  BORING LOGS APPENDIX 2L  POPULATION DISTRIBUTION APPENDIX 2M  ADDITIONAL INFORMATION ON TRENCH 1 Amendment 24                2-viiia            February 1986
 
Nine Mile Point Unit 2 FSAR THIS PAGE INTENTIONALLY BLANK Amendment 14            2-viiib            October 1984
 
Nine Mile Point Unit  2 FSAR CHAPTER 2 LIST OF TABLES  (Cont)
Table Number                        Title 2 3 3
  ~
GROUND-LEVEL INCREASES IN AMBIENT RELATIVE HUMIDITY (RH) DUE TO OPERATION OF THE NATURAI-DRAFT COOIING TOWER AT NINE MILE POINT 2.3-4          METEOROLOGICAL INSTRUMENTATION SPECIFICATIONS 2.3-4A        OPERATIONAL METEOROLOGICAL INSTRUMENTATION SPECIFICATIONS
,2. 3-5        METEOROIOGICAL INSTRUMENTATION SYSTEM ACCURACIES 2.3-5A        OPERATIONAL METEOROIOGICAI INSTRUMENTATION SYSTEM ACCURACIES
: 2. 3-6        FASTEST MILE WIND SPEEDS AT OSWEGO,  SYRACUSE, AND ROCHESTER 2~3 7          NORTHEAST STATE SNOWFALL RECORDS ABSTRACTED BY LUDLUM 2.4-1          HISTORICAL MAXIMUM PRECIPITATION 2.4-2          MAXIMUM INSTANTANEOUS WATER LEVEIS OF LAKE ONTARIO AT OSWEGO, NEW YORK 2.4-3          PROBABLE MAXIMUM PRECIPITATION (PMP) 2.4-4          STORMS CAUSING HIGH RECORDED SURGES  ON LAKE ERIE AND LAKE ONTARIO 2.4-5          DIURNAL VARIATION OF RATIO OF OVERWATER SPEED TO OVERLAND SPEED 2.4-6          PREDICTED HOURLY VAIUES OF PRESSURE, WIND SPEED,. AND WIND DIRECTION FOR PMWS ON LAKE ONTARIO
: 2. 4-7        BRETSCHNEIDER'S JOINT DISTRIBUTION OF H AND T FOR ZERO CORRELATION Amendment 24                  2-Zi                February 1986
 
Nine Mile Point Unit  2 FSAR CHAPTER 2 LIST OF TABLES  (Cont)
Table Number                      Title 2.4-8        JOINT DISTRIBUTION OF WAVE HEIGHT AND WAVE PERIOD AT THE MAXIMUM WAVE DURING PMWS 2.4-9        PUBLIC WATER SUPPLY DATA 2 '-10      DOMESTIC WELLS WITHIN  2-MI RADIUS OF PLANT
~4 I 2.4-11      PUBLIC AND PRIVATE WATER SUPPLY SYSTEMS IN THE UNITED STATES DRAWING FROM LAKE ONTARIO-WITHIN 80 KM (50 MI) OF UNIT 2
: 2. 4-12      CANADIAN WATER SUPPLIERS AMD INDUSTRIAL USERS DRAWING FROM LAKE ONTARIO WITHIN 80 KM (50 MI) OF UNIT 2 2.4-13      UNITED STATES IRRIGATION INTAKES ON jAKE ONTARIO WITHIN 80 KM .(50 MI) OF UNIT 2 2.4-14      CANADIAN IRRIGATION INTAKES ON LAKE ONTARIO WITHIN 80 KM  (50 MI) OF UNIT 2 Amendment 24                2-xia              February 1986
 
Nine Mile Point Unit  2 FSAR CHAPTER 2 LIST OF TABLES  (Cont)
Table Number                      Title 2.5-48C      TRIAXIAL COMPRESSION TEST DATA 
 
==SUMMARY==
FOR ORGANIC SILT SPECIMENS 2.5-49     
 
==SUMMARY==
OF LIQUEFACTION ANALYSIS 2.5-50     
 
==SUMMARY==
OF TESTING, INSPECTION, AND DOCUMENTATION REQUIREMENTS DURING EMBANKMENT BACKFILLING OPERATIONS Amendment 15              2-xiiib              November 1984
 
Nine Mile Point Unit  2 FSAR CHAPTER 2 IIST OF FIGURES Figure Number                      Title 2.1-1        REGION WITHIN 80" KILOMETERS OF SITE  NEW YORK STATE AND ONTARIO PROVINCE CENSUS DISTRICTS 2 1 2
    ~          SITE BOUNDARIES AND TRANSPORTATION ROUTES I
: 2. 1-3      SITE PLAN 2.1-4        TOWNS OF OSWEGO COUNTY  WITHIN 16 KILOMETERS OF SITE 2.1-5        DELETED 2.1-6        DEI ETED 2 '-7        DELETED 2.1-8        DELETED 2.1-9        DELETED 2.1-10      DELETED 2.1-11      DELETED 2.1-12      DELETED 2.1-'13      DEI ETED 2.1-14      DELETED 2 '-15      DEIETED 2.1-16      DELETED 2.1-17      DELETED 2.1-18      DELETED 2.1-19      LOW  POPULATION ZONE BOUNDARY 11 2.1-2O      ZONING MAP, CITY OF OSWEGO,  NEW YORK 2.2-1        TRANSPORTATION ROUTES WITHIN A 10-KM RADIUS OF UNIT 2 Amendment 11              2-xiv                    June 1984
 
Nine Mile Point Unit  2 .-FSAR LIST OF FIGURES  (Cont) 2.4-2        DRAINAGE BASIN AND WATERSHED 2.4-3        ICE RIDGES IN THE VICINITY OF THE SITE 2.4-4        REIATIONSHIP OF OVERLOAD ISOTACHS 250 KM/HR (27 KNOTS)  TO ISOBARS FOR PROBABLE MAXIMUM WINDSTORM 2.4-5        DESIGN PATH OF PROBABLE MAXIMUM WINDSTORM 2.4-6        ZONES FOR METEOROLOGICAL PARAMETERS ON LAKE ONTARIO 2.4-7        PREDICTED WIND SPEED AND DIRECTION FOR EASTERN END OF IAKE ONTARIO DURING PROBABIE MAXIMUM WINDSTORM 2.4-8        SIGNIFICANT WIND WAVES GENERATED BY  PWWS AT UNIT 2 Amendment: 5                2zviiiR            October 1983
 
Nine Mile Point Unit 2 FSAR LIST OF FIGURES (Cont)
THIS PAGE INTENTIONALITY BLANK Amendment 5            2-xviiib            October 1983
 
Nine Mile Point Unit  2 FSAR CHAPTER 2 SITE CHARACTERISTICS 2.1  GEOGRAPHY AND DEMOGRAPHY 2.1.1 Site Location and Description Unit 2 is located on the western portion of the Nine Mile Point promontory approximately 274 m (900 ft) due east of Nine Mile Point Nuclear Station Unit 1. The eastern portion of the promontory is owned by the Power Authority of the State of New York (NYPA) which owns the James A. Fitz-Patrick Nuclear Power Plant'~'.
2.1.1.1 Specification of Location The site is adjacent to Lake Ontario in Oswego County, NY, approximately 10 km (6.2 mi) northeast of the city of Oswego. The Unit 2 reactor is located at latitude 43 deg, 31 min, 17 sec north and longitude 76 deg,      24 min, 27 sec west. The Universal Transverse Mercator (UTM) coordinates are N 4,819,478 m and E 386,254 m. Figure 2.1-1 shows the area surrounding the site within an 80-km (50-mi) radius.
Lake Road, a private, hard-surfaced,    east-west road, crosses the site and provides a connection      with County Route 1A.
County  Route 1A  connects to County Route 1 and extends to the city of Oswego to the west.      On the  east, Lake Road joins County Route 29 which connects with State Highway 104 6.2 km (3.9 mi) southeast of the site. A spur of the Con-solidated Railroad Corporation provides rail service to the station'~'. There are no residential, agricultural, or in-dustrial developments on the site other than Nine Mile Point Unit 1 and the James A. FitzPatrick plant, which are both operating nuclear power plants. The site area is posted as private property, and access to the station buildings is controlled.
: 2. 1 1 2 Site Area Map
    ~ ~
Main plant structures      and the cooling tower occupy ap-proximately 9. 3 ha (22. 9 acres) of the total site area of 364 ha (900 acres)  .
Figures 2.1-2  and  2.1-3 show the Unit 2 site plan including property and exclusion area boundaries, principal structures Amendment 26                  2.1-1                    May 1986
 
Nine Nile Point Unit 2 FSAR for Units 1 and 2, ground contours, railroads, highways, and transmission lines in the site area.
2.1.1.3 Boundaries for Establishing Effluent Release Limits The. minimum distance from Unit 2 to the EAB is approximately 1.4 km (0.87 mi) to the southwest. Exclusion area distances for the site are shown on Figure 2.1-2.
The  restricted area for the station follows the same boun-dary as the exclusion area. Lake Road provides access from Lakeview    Road and County Road 29 to Nine Nile Point Units 1 and 2 and to the FitzPatrick plant. Access to the Visitors Center at, Nine Mile Point is also from Lake Road. Although Lake Road is privately owned between Lakeview Road and County Road 29, public use is permitted during normal operating conditions. Niner Road provides an alternate route between Lakeview Road and County'oad 29. This road is in the town of Scriba. No public use restrictions affect public use along Niner Road. There are no state or other roads, shipping lanes, or rail lines crossing the restricted area. The Oswego River is located approximately 8.8 km (5.5 mi) west of the restricted area boundary at its closest point.
North of the plant, the restricted area boundary follows the shoreline of Lake Ontario. A fence    along the shoreline prevents unauthorized access to Unit 2. Local authorities will notify persons on the lake in the vicinity of the plant of the need to leave the area in the event of an emergency.
The  boundary of the restricted area is posted with signs to assure public awareness    of access restrictions.        During emergency conditions, public access to the restricted area, including the Visitors Center, will not be permitted.        The necessary    authorities will  be contacted  to  enforce  access restrictions from local roads (Section 13.3). The radiation dose    outside the restricted area will be within the guidelines of 10CFR20, 10CFR50, Appendix E (Appendix 11B),
and 40CFR190.10.
Dose    estimates for persons within the rest:-icted area are presented in Section 12.4. There are two gaseous release points for routine airborne radioactive emissions: the com-bined radwaste/reactor building vent and the stack.          Rad-waste and reactor vents are combined on the reactor building to form one release point (Figure 11.3-2).      Distances from the stack and from the vent to the restricted area boundary are shown in Table 2.1-1 as a function of direction.
Amendment 3                2.1-2                      June 1983
 
Nine Mile Point Unit      2 FSAR 2.1.2    Exclusion Area Authority and Control 2.1.2.1    Authority Distances from the plant to the exclusion area boundary (EAB) are measured from the centerline of the reactor                    and approximately    1.6  km (1  mi)  to  the  east,  1.4  km  (0.87  mi)  to the  southwest,    and  over  2.1  km  (1.3  mi)  to  the  southern  site boundary.      Exclusion area distances for the site are shown on Figure    2.1-2.
NMPC    is owner in fee of the property within the exclusion area except for that portion encompassed              by the James A.
FitzPatrick site owned by NYPA. The authority which permits NMPC to control activities over that portion of the                  Unit 2 EAB owned      by  NYPA  is  a  formal  agreement    between  NMPC  and NYPA executed      on March 9,      1970,    which      provides      for reciprocal inclusion of each party's project property in the exclusion area for Nine Mile Point Units 1 and 2 and The James A. FitzPatrick Nuclear Power Plant.              No one resides in the exclusion area and no easements have been granted within the EAB, except such agreements between NMPC and NYPA for joint use of facilities and access to them for that                purpose.  "
The Emergency      Plan (Section 13.3) discusses the means of control of this area in the event of an accident.
A  private,    hard-surfaced,      east-west road crosses the site connecting with Oswego County Highway Route 29. A spur of the Consolidated Railroad Corporation provides rail service to the station. Since the site is located on a navigable portion of Lake Ontario, the station is accessible by barge for construction and supply purposes.
2.1.2.2 Control of Activities Unrelated to Plant Operation The Energy Information Center is owned by NMPC and NYPA and is located on the site west of Nine Mile Point Unit 1. The center has averaged more than 50,000 visitors annually since its official opening in 1967. The center provides                  visitor facilities including educational exhibits, picnic                        and playground areas,      and nature      study trails.        Control of recreational activities in the vicinity of the plant is discussed in the Emergency Plan (Section 13.3).
As discussed in Section 13.3, a study for evacuation of area population surrounding the plant was performed.                  Calculated doses    received by any individual in          this  area  in  the event of an accident are within        allowable      limits    (Chapter    15).
Plant tours normally          are  not  provided    due  to  security  and insurance  restrictions.
Amendment 19                      2.1-3                            May 1985
 
Nine Mile Point Unit  2 FSAR 2.1.2.3 Arrangements for Traffic Control The exclusion area is traversed by one road and a rail spur (Section 2. 1.2. 1). Under    emergency    conditions,    the appropriate authority (Section 13.3) is contacted in the event, that Road.
it becomes necessary to control traffic on Lake When reguested,  the Consolidated Railroad Corporation controls railroad-traffic through the exclusion area.
Amendment 4                  2.1-3a              September 1983
 
Nine Nile Point Unit 2 FSAR THIS PAGE INTENTIONALLY BLANK Amendment 4            2.1-3b            September 1983
 
Nine Mile Point Unit  2 FSAR 2.1 2.4
    ~        Abandonment, or Relocation of Roads No    public roads      within the exclusion area have been aban-doned  or relocated.
2'  ~ 3  Population Distribution 2.1.3.1 Population Within 16 km (10 mi)
In 1980, Oswego County had an estimated population of 113,901    -
at an average        density of 43 people/sq km (111 people/sq mi)'      ~  This population density is con-siderably lower than the state average of 137 people/sq km (356 people/sq mi). The 1980 population and population den-sity for the eight towns and one city within 16 km (10 mi) of Unit 2 are listed in Table 2.1-2.
The total 1980 population within 16 km (10 mi) of Unit 2 is estimated to be 35,467. This population is projected to in-crease to approximately 74,082 by the year 2030'~'. The 16-km (10 mi) area contains all or portions of one city and eight towns:        the city of Oswego, and the towns of Minetto, Scriba, New Haven, Oswego, Mexico, Palermo, Volney, and Richland.      City and town boundaries are shown on Figure 2.1-4.
Of the eight towns and one city in the 16-km (10 mi) area, the city of Oswego is the largest in population, containing approximately 19,793 people in 1980. Following the city of Oswego in population size are Granby,                        Scriba, and Volney with estimated 1980 populations of 6,341, 5,455, and 5,358, respectively'~'.        Population and the 1970-1980                      percent change in population for the towns and city within the 16-km (10 mi) area are listed in Table 2.1-3.
It is expected that a large portion of the population growth in the 16-km (10 mi) area will occur around the southeastern fringes of the city of Oswego, with the surrounding towns absorbing much of the city's satellite distribution within 6 km (3 ' mi) of the station growth'opulation is based on the results of a field survey conducted in May 1982. Population      distribution between 6 (3.7 mi) and 16 km (10 mi)      is based on a house count from U.S.
Geological Survey maps, photorevised in 1978, on which Amendment 26                    2 '-4                                    May 1986
 
Nine Mile Point Unit -2'FSAR 2.1.3.4  Low  Population Zone The low  population zone (LPZ) surrounding Unit 2"encompasses an area  within a 6;4 km (4 mi) radius from the Nine Mile Point Unit 1 stack. LPZ boundary accident doses for Unit 2 are calculated at a distance of approximately'.1 km (3.8 mi) from the Unit 2 stack, which is 6.4 km, adjusted for the distance between the Unit 1 and Unit 2 stacks.
Figure 2.1-19 depicts the LPZ. The distance for the LPZ was chosen based on the requirements of 10CFR100. 11.
The LPZ is expected to contain approximately 2,315 people in the year 1985 at an average density of 48 people/sq km (125 people/sq mi). By the year 2030, the: LPZ"population is expected to have increased to approximately. 4;372 at a'n      "
average density of 91 people/sq km (236 people/sq mi) .
The only facility in the LPZ that attracts a transient population is the Ontario Bible Campground at Lakeview, located approximately 1.5 km (1.0 mi) west-southwest of the station. This campground is a privately-owned facility operated on a 52-acre lakeshore plot.            Groups of up to 500 persons use this camp during the summer and as many as 1,500 people may gather there for short periods on Sundays throughout the summer. The facility is unused during the balance of the year except for an occasional weekend in the spring and fall.
2.1.3.5 Population Centers In 1980, the closest population center, as defined by 10CFR100, to Unit 2 was the city of Syracuse,        which con-tained approximately 170, 105 people.        The city' closest corporate boundary to Unit 2 is approximately 53 km (33 mi) south-southeast:. The city of Syracuse      is part of the Syracuse  SMSA,  which  encompasses  Onondaga,    Oswego,    and Madison Counties.
Based on  county-level population projections provided by the New  York Department of Commerce, the population of the city of Oswego will exceed 25,000 people and become the nearest population center in the year 2000'4'.      This estimate may prove to be somewhat high based on historical growth in the city; however, the estimate is useful because conservative estimate    for  use it in calculating provides a doses  from potential accidents.
Amendment 25                  2.1-7                    March 1986
 
Nine Mile Point Unit  2 FSAR Although Oswego City's closest political boundary is ap-*
proximately 7.24 km (4.5 mi) from the site, no with the LPZ/population center distance requirements conflict'xists defined in 10CFR100 since the boundary of the city' residential area is located approximately 8.85 km (5.5 mi) away, over 1.33 times the distance      of the LPZ. Future residential growth is not anticipated to decrease this distance since the area between the          residential              and political boundaries. is'sed and zoned for industry.
most likely that residential growth will occur to the It is south and  southeast  where  land  is available and more desirable from  a residential perspective, rather than into an area of strong industrial character. A zoning map for the city is provided on Figure 2.1-20 which shows the difference between the industrial and residential boundaries closest to the site.
Amendment  ll                2%1 7a                  June 1984
 
CONTROLLED SY tHE COASTOVARDDVRINO EMEROENCIES IN ACCORDANCE WITHLETTER DFAOREEMENT
      // /
I                                                                                          R I                                                            0          III S5IOSS I                                                                                        S LS I                                        UNIT 2 I                            VISITOR INFORMATION I                            CENTER                                l  ~ IlPIANr
                                            ~  i      r    I I            I                I
                                                                            'n;~
I I
I,  ',        5
                                      ~ pm,      I rollor 5                      Ol r
Lohovlow NINE MILE POINT  Sltf JAMES A, r                                                          FITZPATRICK SltE V'                  OO POWER AUTHORITYOF THE STATE OF NEW YORK PROPERTY LINE NIAGARA MOHAWK POWER CORP
                                ~
PROPERtY LINE                                                  MINE R                          ROID t EXCLUSION  AREA LTCOrnrng SOUNDARYI Nor Ih Scribo Ic 0
nolo nl lc rn5rrrr 5lOSrrrrpr SCALE    MILES FIGURE 2.1-2 SCALE ~ nrLOMETCPS SITE BOUNDARIES AND TRANSPORTATION ROUTES NIAGARA MOHAWK POWER CORPORATION NINE MILE POINT-UNIT SAFETY ANALYSIS REPORT 2'INAL AMENDMENT26                                                    MAY 1986
 
NINE MILKPOINT NUCLEAR STATION UNIT 2 Qo[gg~
0 QOCIOOQO CI VOL. 13
 
((
                  /
  ~
1a
      'l
            'vj y,ll f,,
()>>
I
                      /
g k'
('"E:~
                'r+
    !                  I
(  g'(''
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS Section                    Title                        Volume CHAPTER 1    INTRODUCTION AND GENERAL DESCRIPTION OF PLANT 1.1          Introduction 1.2          General Plant Description 1.3          Comparison Tables 1.4          Identification of Agents and  Contractors 1.5          Requirements  for Further Technical Information 1.6          Material Incorporated by Reference 1.7          Drawings and Other Detailed Information
~ 1.8          Conformance to NRC Regulatory Guides 1.9          Standard Review Plan Conformance to Acceptance Criteria 1.10          Unit 2 Response to Regulatory Issues Resulting from TMI 1.11          Abbreviations and Acronyms 1.12          Generic Licensing Issues 1.13          Unit 2 Position on Unresolved Safety Issues CHAPTER 2    SITE CHARACTERISTICS 2.1          Geography and Demography 2.2          Nearby Industrial, Transportation, and  Military Facilities                    3 2.3          Meteorology                                  3 2.4          Hydrologic Engineering                  h 3
2'            Geology, Seismology, and Geotechnical Engineering                    3,4 Appendix 2A Appendix 2B                                                5 Appendixes 2C through 2H                                  6 Appendixes 2I, 2J                                          7 Appendixes 2K, 2L, 2M                                      8 CHAPTER 3    DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT, AND SYSTEMS 3.1          Conformance  with NRC General Design  Criteria 3.2          Classification of Structures, Systems,  and Components Amendment; 16                                      December 1984
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS (Cont)
Section                Title                        Volume 3.3          Wind and Tornado Loading 3.4          Water Level (Flood) Design 3.5          Missile Protection 3.6A        Protection Against Dynamic Effects Associated with the Postulated Rupture of Piping (SWEC Scope of Supply)                                  9,10
: 3. 6B        Protection Against Dynamic Effects Associated with the Postulated Rupture of Piping (GE Scope of Supply)    10 3.7A        Seismic Design                            10 3.7B        Seismic Design                            10 3.8          Design of Seismic Category I Structures  10 3.9A        Mechanical Systems and Components (SWEC Scope of Supply) 3.9B        Mechanical Systems and Components (GE Scope of Supply)
: 3. 10A      Seismic Qualification of Seismic Category I Instrumentation and Electrical Equipment (SWEC Scope of Supply)                                12 3.10B        Seismic Qualification of Seismic Category I Instrumentation and Electrical Equipment (GE Scope of Supply)                                12 3.11        Environmental Design of Mechanical and Electrical Equipment                  12 Appendixes 3A through  3D                              12 CHAPTER 4    REACTOR                                  12 4.1          Summary  Description                      12 4.2          Fuel System Design                        12 4.3          Nuclear Design                            12 Thermal/Hydraulic Design                  12 4.5          Reactor Materials                        12 4.6          Functional Design of Reactivity Control Systems                          12 CHAPTER 5    REACTOR COOLANT SYSTEM AND CONNECTED SYSTEMS                        13 5.1          Summary  Description                      13 5.2          Integrity of Reactor Coolant Pressure  Boundary                        13
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                Title                    Volume 5.3          Reactor Vessel                        13 5.4          Component and Subsystem Design        13 CHAPTER 6    ENGINEERED SAFETY FEATURES            13 6.1          Engineered Safety Feature Materials  13 6.2          Containment Systems                  14 6.3          Emergency Core Cooling Systems        15 6'          Habitability Systems                  15 6.5          Fission Product Removal and Control Systems 6.6          Inservice,Inspection of Safety Class  2 and Class  3 Components      15 Appendixes 6A, 6B                                  15 CHAPTER 7    INSTRUMENTATION AND CONTROL SYSTEMS  15 7.1          Introduction                          15 7'          Reactor Protection (Trip)
System (RPS)  Instrumentation and Controls                              15 7.3          Engineered Safety Feature Systems    15 7.4          Systems Required for Safe Shutdown    16 7.5          Safety-Related Display Instrumentation                      16 7.6          All Other Instrumentation Systems Required for Safety          16 7.7          Control Systems Not Required for Safety                            16 CHAPTER 8    ELECTRIC POWER                        16 8.1          Introduction                          16 8.2          Offsite  Power System                16 8.3          Onsite Power System                  16, 17 CHAPTER 9    AUXILIARY SYSTEMS                    17 9.1          Fuel Storage and Handling            17 9.2          Water Systems                        18 9.3          Process Auxiliaries                  19 9.4          Air Conditioning, Heating, Cooling, and Ventilation Systems              20,21 9.5          Other Auxiliary Systems              21,22 Appendix  9A                                      23
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS (Cont)
Section                Title                    Volume CHAPTER 10  STEAM AND POWER CONVERSION SYSTEM      23 10.1        Summary  .Description                  23 10.2        Turbine Generator                      23 10.3        Main Steam Supply System              24 10.4        Other Features of Steam and Power Conversion System CHAPTER 11  RADIOACTIVE WASTE MANAGEMENT          24 11.1        Source Terms                          24 11 '        Liquid Waste Management Systems        24 11.3        Gaseous Waste Management Systems      25 11.4        Solid Waste Management System          25 11.5        Process and Effluent Radiological Monitoring and Sampling Systems        25 Appendix 11A                                        25 CHAPTER 12  RADIATION PROTECTION                  25
: 12. 1      Ensuring That Occupational Radiation Exposures Are As Low As Reasonably Achievable (ALARA)                    25
: 12. 2        Radiation Sources                      25
: 12. 3        Radiation Protection Design Features                              25
: 12. 4        Dose Assessment                        26
: 12. 5        Health Physics Program                26 CHAPTER 13  CONDUCT OF OPERATIONS                  26
: 13. 1      Organizational Structure of Applicant                              26 13.2        Training                              26 13.3        Site Emergency Plan                    26 13.4        Operation Review and Audit            26 13.5        Plant Procedures                      26 13.6        Industrial Security                    26 Appendixes 13A, 13B                                26 CHAPTER 14  INITIAL TEST  PROGRAM                26
: 14. 1      Specific Information To Be Included in Preliminary Safety Analysis Report (PSAR)                26
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                Title                  Volume 14.2        Specific Information To Be Included in Final Safety Analysis Report (FSAR)              26,27 CHAPTER 15  ACCIDENT ANAIYSIS                    27 15.0        General                              27 15.1        Decrease in Reactor Coolant Temperature                          27 15.2        Increase in Reactor Pressure        27 15.3        Decrease in Reactor Coolant System Flow Rate                    27
: 15. 4        Reactivity and Power Distribution Anomalies                            27 15.5        Increase in Reactor Coolant Inventory                            27 15 '        Decrease in Reactor Coolant Inventory                            27 15.7        Radioactive Release From Subsystems or Components            27 15.8        Anticipated Transients without Scram (ATWS)                        27 Appendix 15A                                      28 Appendix 15B                                      28 Appendix 15C                                      28    26 Appendix 15D                                      28 Appendix 15E                                      28 CHAPTER 16  TECHNICAL SPECIFICATIONS            28 CHAPTER 17  QUALITY ASSURANCE                    28 17.0        Introduction                        28 17.1        Quality Assurance Program During Operation                            28 CHAPTER 18  HUMAN FACTORS ENGINEERING            28 18.1        Human  Factors Engineering Team      28 18.2        Safety Parameter Display System      28 Amendment 26                                  May 1986
 
                  , Nine Mile Point Unit 2  FSAR CHAPTER 5 TABLE OF CONTENTS  (Cont)
Section                    Title                        Pacae 5.4.12.2            Description                        '5.4-49 5.4.12.3            Safety Evaluation                    5.4-50 F 4.12.4            Inspection and Testing              5.4-50 5.4.13              Safety and Relief Valves            5.4-51
: 5. 4. 13. 1        Safety Design Bases                  5.4-51 5.4.13.2            Description                          5.4-51 5.4.13.3            Safety Evaluation                    5.4-52 5.4.13.4            Inspection and Testing              5.4-52 5.4.14              Component Supports                  5.4-52 5;4.14.1            Safety Design'ases                  5.4-52 5.4.14.2'.4;14.3, Description                          5 '-52 Safety Evaluation                    5.4-53 5.4.14.4            Inspection and Testing              5.4-53 5.4.15              References                          5.4-54 Appendix 5A-        Compliance with 10CFR50, Appendix G and Appendix  H Amendment 24                  5-vii            February 1986
 
Nine Mile Point Unit    2 FSAR CHAPTER 5 LIST  OF TABLES Table Number                    Title 5 '-1        APPLICABLE CODE CASES 5.2-2        NUCLEAR SYSTEM SAFETY/RELIEF SET POINTS 5.2-3        SYSTEMS THAT MAY    INITIATE DURING OVER-PRESSURE EVENT 5.2-4        SEQUENCE OF EVENTS FOR FIGURE 5    '-1 5.2-5        REACTOR COOLANT PRESSURE    BOUNDARY MATERIALS 5.2-6        BWR WATER  CHEMISTRY 5.2-7        WATER SAMPLE LOCATIONS 5.2-8        LEAK DETECTION METHODS, ACCURACY, AND SENSITIVITY 5.2-9       
 
==SUMMARY==
OF SYSTEM ISOLATION/ALARMS OF SYS-TEMS MONITORED AND THE LEAK DETECTION METHODS USED 5.2-10     
 
==SUMMARY==
OF ISOLATION ALARMS OF SYSTEM MONITORED AND LEAK DETECTION METHOD USED 5.3-1        UNIT 2 REACTOR VESSEL CHARPY TEST RESULTS VESSEL BELTL'INE CHEMICAL COMPOSITION 5.3-2        RADIATION RT        AND EOL RT 5.4-1        REACTOR RECIRCULATION SYSTEM DESIGN CHARACTERISTICS
: 5. 4-2      RHR  RELIEF AND SAFETY VALVE DATA
: 5. 4-3      REACTOR WATER CLEANUP SYSTEM EQUIPMENT DESIGN DATA Amendment 19            5 Vii1                    May 1985
 
Nine, Mile Point Unit  2 FSAR CHAPTER 5 LIST OF FIGURES Figure Number                          Title 5.l-la        RATED OPERATING CONDITIONS OF THE BOILING WATER REACTOR 5.1-1b        COOLANT VOLUMES OF THE BOILING WATER REACTOR 24 5.1-2        NUCLEAR BOILER SYSTEM 5.2-1        SAFETY RELIEF VALVE CAPACITY SIZING TRANSIENT "MSIV CLOSURE WITH HIGH FLUX TRIP" 5.2-2        SAFETY RELIEF VALVE SCHEMATIC ELEVATION 5.2-3        SAFETY RELIEF VALVE AND STEAM LINE SCHEMATIC 5.2-4        NUCLEAR BOILER SYSTEM PE(ID 5.2-5        SCHEMATIC OF SAFETY RELIEF VALVE WITH AUXILIARYACTUATING DEVICE 5.2-5a        ABNORMAL AMBIENT CONDITIONS FOR ACTUATOR QUALIFICATION TEST 5.2-6        TYPICAL  BWR FLOW DIAGRAM 5.2-7        CONDUCTIVITY, pH, CHLORIDE CONCENTRATION OF AQUEOUS SOLUTIONS AT 77 F (25 C)
: 5. 2-8        CALCULATED LEAK RATE VS CRACK LENGTH AS A FUNCTION OF APPLIED HOOP STRESS 5.2-9        AXIAL THROUGHWALL CRACK LENGTH DATA CORRELATION 5.3-1        BRACKET FOR HOIDING SURVEILLANCE CAPSULE 5.3-2        MINIMUM TEMPERATURES REQUIRED VERSUS REACTOR PRESSURE 5.3-3        PREDICTED ADJUSTMENT OF REFERENCE TEMPERATURE "A," AS A FUNCTION OF FLUENCE AND COPPER CONTENT 5.3-4        REACTOR VESSEI Amendment 24              5-ix              February 1986
 
Nine Mile Point Unit  2 FSAR CHAPTER 5 LIST OF FIGURES  (Cont)
Figure Number                          Title 5.3-5        NOMINAL REACTOR VESSEL WATER LEVEL TRIP AND ALARM ELEVATION SETTINGS 5.4-1        RECIRCULATION SYSTEM ELEVATION AND ISOMETRIC 5.4-2        REACTOR RECIRCULATION SYSTEM PE(ID 5.4-3        RECIRCULATION PUMP HEAD, NPSH, FLOW CURVES                  AND'FFICIENCY F  4-4      OPERATING PRINCIPLE OF JET PUMP 5.4-5        CORE FLOODING  CAPABILITY OF RECIRCULATION SYSTEM 5.4-6        MAIN STEAMLINE FLOW RESTRICTOR 5.4-7        MAIN STEAM ISOLATION VALVE CUTAWAY VIEW S.4-S        DELETED 5.4-9        RCIC SYSTEM 5.4-10      REACTOR CORE ISOLATION COOLANT SYSTEM PROCESS DIAGRAM 5.4-10a      RCIC TURBINE CHARACTERISTIC CURVES STEAM FIOW VS. POWER
: 5. 4-10b    RCIC TURBINE CHARACTERISTIC CURVES STEAM FLOW VS. PRESSURE
: 5. 4-11      VESSEL COOIANT TEMPERATURE VERSUS TIME (TWO HEAT EXCHANGERS AVAILABLE) 5.4-12      VESSEL COOLANT TEMPERATURE VERSUS TIME (ONE HEAT EXCHANGER AVAILABLE) 5.4-13      RHR SYSTEM Amendment 28            5-x                      May 1987
 
Nine Mile Point Unit  2 FSAR "
CHAPTER 5 LIST  OF FIGURES  (Cont)
Figure Number                          Title 5.4-14      RESIDUAL HEAT REMOVAL SYSTEM PROCESS  DIAGRAM AND DATA 5.4-15      RHR PUMP CHARACTERISTIC CURVES 5.4-16      REACTOR WATER CLEANUP SYSTEM 5.4-17      REACTOR WATER CLEANUP SYSTEM 5.4-18      FlLTER DEMINERALIZER SYSTEM PE(ID Amendment 24          5-xa                  February 1986
 
Nine Mile Point Unit 2 FSAR THIS PAGE INTENTIONALLY BLANK Amendment 7          5-xb                December 1983
 
NINE MILEPOINT NUCLEAR STATION UNIT 2 D. g Qo[gg~
0 0000000 0 vor.. 19
 
~I(.'A ~
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS Section                    Title                      Volume CHAPTER 1    INTRODUCTION AND GENERAL DESCRIPTION OF PLANT 1.1          Introduction 1.2          General Plant Description 1 3
  ~          Comparison Tables 1.4          Identification of Agents and Contractors 1.5          Requirements'for Further Technical Information 1.6          Material Incorporated by Reference 1.7          Drawings and Other Detailed Information 1.8          Conformance to NRC Regulatory Guides 1.9          Standard Review Plan Conformance  to Acceptance Criteria 1.10        Unit 2 Response to Regulatory Issues Resulting from TMI 1.11        Abbreviations and Acronyms
: 1. 12        Generic Licensing Issues
: l. 13        Unit 2 Position on Unresolved Safety Issues CHAPTER 2    SITE CHARACTERISTICS 2.1          Geography and Demography 2.2          Nearby Industrial, Transportation, and Military Facilities 2.3          Meteorology 2.4          Hydrologic Engineering 2.5          Geology, Seismology, and Geotechnical Engineering                    3,4 Appendix 2A Appendix 2B                                              5 Appendixes 2C through 2H                                6 Appendixes 2I, 2J                                        7 Appendixes 2K, 2L, 2M                                    8 CHAPTER 3    DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT, AND SYSTEMS 3.1          Conformance  with NRC General Design  Criteria 3.2          Classification of Structures, Systems,  and Components Amendment 16                                    December 1984
 
Nine  Mile'oint Unit 2 FSAR TABLE OF CONTENTS (Cont)
Section                  Title                      Volume 3.3          Wind and Tornado Loading 3.4          Water Level (Flood) Design 3.5          Missile Protection 3.6A        Protection Against Dynamic Effects Associated with the Postulated Rupture of Piping (SWEC Scope of Supply)                                  9,10 3 'B        Protection Against, Dynamic Effects Associated with the Postulated Rupture of Piping (GE Scope of Supply)    10 3.7A          Seismic Design                          10 3.7B          Seismic Design                          10 3.8          Design of Seismic Category I Structures  10 3.9A        Mechanical Systems and Components (SWEC Scope of Supply) 3.9B        Mechanical Systems and Components (GE Scope of .Supply) 3.10A        Seismic Qualification of Seismic Category I Instrumentation and Electrical Equipment (SWEC Scope of Supply)                              12 3.10B        Seismic Qualification of Seismic Category I Instrumentation and Electrical Equipment (GE Scope of Supply)                              12 3.11        Environmental Design of Mechanical and Electrical Equipment                12 Appendixes 3A  through  3D                            12 CHAPTER 4    REACTOR                                  12 4.1          Summary  Description                    12 4.2          Fuel System Design                      12 4.3          Nuclear Design                            12 Thermal/Hydraulic Design                  12 4.5          Reactor Materials                        12 4.6          Functional Design of Reactivity Control Systems                          12 CHAPTER 5    REACTOR COOLANT SYSTEM AND CONNECTED SYSTEMS                        13 5.1          Summary  Description                    13 5.2          Integrity of Reactor Coolant Pressure Boundary                        13
 
Nine Mile Point Unit  2 FSAR TABLE OF'ONTENTS    (Cont)
Section                  Title                    Volume 5.3          Reactor Vessel                        13 5.4          Component and Subsystem    Design      13 CHAPTER 6    ENGINEERED SAFETY FEATURES 6.1          Engineered Safety Feature Materials    13 6.2          Containment Systems                    14 6.3          Emergency Core Cooling Systems        15 6.4          Habitability  Systems                15 6.5          Fission Product Removal and Control Systems 6 6
~          Inservice Inspection of Safety Class  2 and Class  3 Components      15 Appendixes 6A, 6B                                  15 CHAPTER 7    INSTRUMENTATION AND CONTROL SYSTEMS    15 7.1          Introduction                          15 7.2          Reactor Protection (Trip)
System (RPS)  Instrumentation  and Controls  .                            15 7.3          Engineered Safety Feature Systems      15 7.4          Systems Required for Safe Shutdown    16 7.5          Safety-Related Display Instrumentation 7.6          All Other Instrumentation Systems Required for Safety 7.7          Control Systems Not Required for Safety                            16 CHAPTER 8    ELECTRIC POWER                        16 8.1          Introduction                          16 8.2          Offsite Power  System                16 8.3          Onsite Power System                    16, 17 CHA'PTER 9  AUXILIARY SYSTEMS                      17 9.1          Fuel Storage and Handling              17 9.2          Water Systems                          18 9.3          Process Auxiliaries                    19 9.4          Air Conditioning, Heating, Cooling, and Ventilation Systems                20,21 9.5          Other Auxiliary Systems                21,22 Appendix 9A                                        23
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                Title                    Volume CHAPTER 10  STEAM AND POWER CONVERSION SYSTEM      23
                                              'I 10.1        Summary  .Description                  23 10.2        Turbine Generator                      23 10.3        Main Steam Supply System                24 10.4        Other Features of Steam and Power Conversion System CHAPTER 11  RADIOACTIVE WASTE MANAGEMENT 11.1        Source Terms                            24 11.2        Liquid Waste Management Systems        24 ll'. 3      Gaseous Waste Management Systems        25 11.4        Solid Waste Management System          25 11.5        Process and Effluent Radiological Monitoring and Sampling Systems        25 Appendix 11A                                        25 CHAPTER 12  RADIATION PROTECTION                    25
: 12. 1      Ensuring That Occupational Radiation Exposures Are As Low As Reasonably Achievable (ALARA)                      25 12 2
  ~        Radiation Sources                      25
: 12. 3      Radiation Protection Design Features                                25
: 12. 4        Dose Assessment                      . 26
: 12. 5        Health Physics Program                  26 CHAPTER 13  CONDUCT OF OPERATIONS                  26
: 13. 1      Organizational Structure of Applicant                              26 13.2        Training                                26
: 13. 3        Site Emergency Plan                    26
: 13. 4        Operation Review and Audit,            26
: 13. 5        Plant Procedures                        26 13 6
  ~        Industrial Security                    26 Appendixes 13A, 13B                                  26 CHAPTER 14  INITIAL TEST  PROGRAM                  26 14.1        Specific Information To Be Included in Preliminary Safety Analysis Report (PSAR)                  26 iv
 
Nine Mile Point Unit  2 FSAR TABLE OF CONTENTS  (Cont)
Section                  Title                  Volume 14.2          Specific Information To Be Included in Final Safety Analysis Report (FSAR)                26,27 CHAPTER 15    ACCIDENT ANALYSIS                      27 15.0          General                                27 15.1          Decrease in Reactor Coolant Temperature                            27 15.2          Increase in Reactor Pressure          27 15.3          Decrease in Reactor Coolant System Flow Rate                      27
: 15. 4        Reactivity and Power Distribution Anomalies                              27 15.5          Increase in Reactor Coolant        Fl
            .Inventory                              27 15.6          Decrease in Reactor Coolant Inventory                              27 15.7          Radioactive Release From Subsystems or Components              27 15.8          Anticipated Transients without Scram (ATWS)                          27 Appendix 15A                                        28 Appendix 15B                                        28 Appendix 15C                                        28    26 Appendix 15D                                        28 Appendix 15E                                        28 CHAPTER 16    TECHNICAL SPECIFICATIONS              28 CHAPTER 17    QUAI ITY ASSURANCE                    28 17.0          Introduction                          28 17.1          Quality Assurance Program During Operation                              28 CHAPTER 18    HUMAN FACTORS ENGINEERING              28 18 1 F          Human  Factors Engineering Team        28 18.2          Safety Parameter Display System        28 Amendment 26                                    May 1986
 
0 Nine Mile Point Unit  2 FSAR 9.3  PROCESS  AUXILIARIES 9.3.1    Compressed  Air Systems The  compressed    air systems    consist of the instrument air system (IAS),      the service air system (SAS), and            the breathing air system (AAS). All            three  compressed  air systems are used only for      nonsafety-related    equipment and components during normal plant operation.
The instrument      air system is described in Section 9.3.1.1, followed by descriptions of the service air system and the breathing    air system in Sections 9.3.1.2 and 9.3 '.3, respectively.
All instrumentation and control systems located inside the reactor primary containment, including the safety-related equipment and components of the automatic depressurization system (ADS) and the four inboard main steam isolation valve        28 (MSIV) actuator accumulators are independently supplied with nitrogen gas from the instrument nitrogen system (GSN). The automatic    depressurization      system    and the instrument nitrogen systems are described in 'ections 9.3.1.4 and 9.3.1.5, respectively.
The four outboard main steam isolation valve (MSIV) actuator        28 accumulators are supplied with air from the reactor building instrument air receiving tank.
9.3.1.1 Instrument Air System 9.3.1.1.1 Design Bases Safet    Desi n Basis The  instrument    air system  is not  a safety-related control air  system. It ofis not required to effect or support the the reactor or to perform          safety-safe shutdown                                          any related functions associated with its operation.
However, all instrument air system piping, valves, and fittings located in Category I areas are seismically analyzed and supported in accordance with safe shutdown earthquake (SSE) design requirements so that their failure will not damage safety-related equipment, piping, and components.
The  instrument    air  system component design bases    are given in Section 3.2.
Amendment 28                                                May 1987
 
Nine Mile Point Unit  2 FSAR Power Generation Bases The  instrument -air system is designed to supply clean, dry, and  oilfree air at  80 to 100 psig to all nonsafety-related
'plant instrumentation and control systems. However, all instrumentation    and control systems    located inside the Amendment 28                    9.3-la              May 1987
 
Nine Mile Point Unit      2 FSAR Each two-stage        instrument  air  compressor assembly includes an intercooler,      aftercooler,    and    air receiver tank.      The instrument        air    compressor    cylinders are of the non-lubricated type. The intake air filters and silencers are located on the turbine building roof. Cooling water is supplied to the air compressor cooling water system and heat exchangers      from the reactor building closed-loop cooling water system.
Two  refrigerant-type air dryers, with          two prefilters  and two afterfilters,      are provided    on    the instrument air system supply      header to filter        and  dry the air to a dewpoint of 35 F  at 125 psig.
The instrument        air system distribution piping network is supplied from a separate instrument air receiver tank located      downstream of the refrigerant dryers and air filters. Instrument air used only for nonsafety-related instrumentation        and    control systems          is distributed throughout the plant from this air receiver tank.
The service        air system supply header is branched off the common compressed          air supply header upstream of the instrument air dryers and filters. An isolation block valve on the service air system main supply branch header will automatically close and shut off the service air supply when the common compressed air supply header pressure decreases to less than 85 psig. The automatic shutoff and isolation of the service air system is designed to prevent decreased compressed      air supply header pressure, as during high service air demand flows, which may adversely affect the operability of the instrument air system.
Each    instrument air compressor has automatic unloader controls and a remote manual/automatic selector station for automatic      start-stop operation.          In the selected lead position the compressor runs continuously after starting and automatically unloads to maintain its air receiver pressure.
In the lag position the compressor will automatically start when the common air supply header pressure drops below the low-pressure setpoint of 90 psig. In the backup mode, the compressor will automatically start when the common air supply header pressure decays below the low-low pressure setpoint of 85 psig. The air compressors are operated from the normal plant power supply. Cooling water to the air compressor cooling system heat exchangers is supplied by the reactor  =
building      closed      loop      cooling      system (Section 9.2.2.1).
Amendment 27                      9.3-3                      July  1986
 
Nine Mile Point Unit    2 FSAR 9.3.1.1.3    Safety Evaluation The three    instrument  air  compressors,  i.e., the lead, lag, and backup  units, operate to maintain the required pressure at the air receivers which provide the station's instrument air system with an air supply pressure of 100 to 120 psig.
Actuation of the selected lag unit is automatic when the compressed    air supply header pressure decreases            below 100 psig,    and the selected backup unit automatically starts when the header pressure further decays below 85 psig.
The  instrument air compressors and air receivers have sufficient capacities to supply the requirements of plant instrumentation and control systems. The loss of instrument and control air causes        air-operated valves to fail to appropriate safe positions.
9.3.1.1.4 Inspection and Testing Requirements It is maintained air The instrument            system operates on a continuous basis.
and monitored, and abnormal conditions are alarmed during normal plant operation.
The instrument air system will be tested in accordance with the applicable requirements of Regulatory Guide 1.68.
Preoperational testing of the instrument air system is addressed in Table 14.2-43.
9.3.1.1.5 Instrumentation Requirements Manual and    automatic controls are provided for maintaining an adequate    supply of instrument air for air-operated instruments, equipment, and components. The controls and monitors described below are located in the main control room. The control system logic is shown on Figure 9.3-2.
Each  instrument    air  compressor  control system has a three-step regulator for free air unloading at constant speed and dual controls for both manual and fully automatic start-stop operation. The three-step regulation allows the compressor to operate at full, one-half, and zero load at rated speed as a function of the system air receiver pressure.              The solenoid-operated    three-way    unloader  valve in the  control system automatically provides a 15-sec time delay for free Amendment 26                  9. 3-4                      May 1986
 
Nine Mile Point Unit    2 FSAR increasing the piping internal pressures.        Therefore, piping inside the primary, containment is protected b'y thermal relief valves. The piping outside the primary containment is protected by the air compressor and receiver relief valves.      Piping in Category I areas has been designed so that, its failure will prevent damage to safety-related equipment.      With the      exception    of the containment penetrations and isolation valves, the service air system is nonsafety-related.
9.3.1.2.4 Inspection and Testing Requirements No special      inspection and testing are required following preoperational testing except for ISI of the containment, penetrations (Section 6.6).
9.3.1.2.5 Instrumentation Requirements The air supply for the service air system is provided by the
-instrument air system. The only controls and monitors for the service air system are an instrument air/service air operated block (globe) valve and its associated alarm which is located. in the main control room. The control logic is shown on Figure 9.3-'2.
In the normal          mode, the service air system block valve can be opened locally at LCS738 only condition does        not exist.
if The a  low-low pressure valve will close    27 automatically on low-low pressure. The valve can be opened and closed manually.
Monitorin An    alarm  is provided for service air        system block valve closure.
9.3.1.3 Breathing Air System The breathing air system provides clean, dry, oilfree air to various areas throughout the plant for breathing.
9.3.1.3.1    Design Bases Safet    Desi n Bases The    breathing . air system is not required to effect or support safe shutdown of the reactor ot to perform in the Amendment 27                  9.3-7                        July 1986
 
Nine Mile Point Unit  2 FSAR operation of reactor safety features. However, all items contained in Category I areas are seismically analyzed and supported for SSE conditions so that their failure will not damage    safety- related      equipment. For    containment penetrations, see Section 3.2.
0  erational Desi  n  Basis The  breathing air system has been designed to provide air suitable for breathing at selected breathing air stations for use by unit personnel during potential or actual airborne contamination situations.
9.3.1.3.2 System Description Compressed air is supplied to the breathing air syst: em by an oilfree reciprocative air'ompressor (Figure 9..3-3). The compressor    is designed with a capacity of 250 scfm at 85 psig discharge pressure and is equipped with an inlet filter and aftercooler.      Inlet air to the compressor "is taken from outside the turbine building, compressed,            cooled,  and discharged via headers to two air receivers. The compressor is provided with manual and automatic starting and shutdown features.
Cooling is provided by a self-contained cooling unit that consists of a circulating pump and forced draft type radiator.
Air    quality    is    maintained  by an  inline three-stage filtration unit that    removes oil, water,  particulates, and carbon monoxide,      and delivers clean    air that meets OSHA requirements for breathing      air.
During normal unit power operation, breathing 'air piping within the primary containment            will be physically disconnected by a flexible hose connection and isolated by valves inside and outside the containment.
The  compressor  aftercooler is a shell and tube, counterflow heat exchanger    with air passing through the tubes and coolant circulating around the tubes. An integral moisture separator equipped with an automatic drain trap'emoves condensed moisture from the cooled air. Coolant is provided by a self-contained cooling system.          The aftercooler is built to ASME Section VIII, Division 1, requirements for a design pressure of 125 psig, and is equipped with a relief valve.
Amendment 23                  9.3-8                December 1985
 
Nine Mile Point Unit      2 FSAR The    automatic depressurization        system  is safety-related, and
'all pressure-retaining        components      of    the    system      are designed,      constructed, and inspected        in  accordance    with  the applicable requirements .of          ASME    Section    III,  Division Subsection 1,
for Subsection ND for Class        '3  components,    and                NC Class 2 components.        Not included in this safety-related classification are the nitrogen gas storage                            tanks, equipment,      and components    located in the      yard    outside- the reactor building.
Piping      segments  that. penetrate the primary containment and serve as a containment boundary are designed to Safety Class 2, Category I requirements.
The    loss of nitrogen gas-fo'r instrumentation and controls causes gas-operated      valves to fail to appropriate safe positions.      In the event that the nitrogen gas supply from the nitrogen gas storage tanks is lost, a 5-day supply is available to the accumulators from ADS nitrogen receiver tanks 2IAS*TK4(Z-) and 2IAS*TK5(Z-). In addition, there are provisions for recharging the ADS nitrogen receiver tanks through its individual supply lines located in a missile-protected area outside the standby gas treatment building from special emergency tube trailer supply connections.
These special,      emergency recharging lines are part of the GSN system and are      classified Seismic Category I, Safety
'lass    3.
Power Generation Bases The    automatic    depressurization system requires clean, dry, oilfree nitrogen        gas at approximately 175 psig to be supplied to the selected group of seven main steam safety relief valves and their respective accumulators                      located inside the reactor primary containment. This designated group of ADS safety relief valves and accumulators                          is divided into two subgroups with three or four valves and accumulators in each subgroup. Each subgroup is supplied with nitrogen gas from one of two separate ADS receiver tanks. Each ADS receiver tank is supplied with nitrogen gas at 365 psig from a bank of six horizontal, high-pressure nitrogen gas storage tanks located outside the reactor building. Nitrogen gas supplied for instrumentation and controls meets or exceeds the equivalent air quality requirements established for safety-related control air systems (SRCAS) by ANSI MC11.1-1975 (approved- January 15, 1976) (ISA-S7;3), Quality Standard for Instrument Air.
All piping, valves, and fittings associated                      with the stainless    steel automatic    depressurization    system    are    of materials. Also,        the  system      will  be    given    a  complete Amendment 28                      9.3-11                          May 1987
 
I Nine Mile Point Unit        2 FSAR preoperational cleaning until the applicable acceptance cleanliness levels "are: established and verified.                    In
.addition, since the piping system materials are corrosion-resistant,    the    cleanliness        levels achieved          during preoperational cleaning are expected to be maintained and controlled to within acceptable limits.
Each of the six high-pressure nitrogen gas storage vessels is designed, fabricated, tested, and stamped in accordance with the ASME Unfired Pressure Vessel Code, Section VIII, and conforms to Code Case No. 1205 for seamless              integrally forged vessels. The six-vessel modular assembly is provided with manifold isolation valves which separate three active vessels and three reserve vessels.                A fill provided for refueling from a high-pressure tube trailer.
stanchion is 9.3.1.4.2 System Description The automatic depressurization            system is supplied with nitrogen gas from a bank of six horizontal, high-pressure nitrogen gas storage tanks located outside the reactor building. Nitrogen gas is supplied to two ADS nitrogen receiver tanks at 365 psig. Each ADS nitrogen receiver tank supplies nitrogen gas to its corresponding subgroup of either three or four ADS valves and accumulators through a 365/185 psig pressure    reducing station.            These two ADS nitrogen    receiver    tanks      provide makeup nitrogen to compensate for valve leakage        losses and to maintain ,the required pressure at the accumulators.
A diaphragm-type'DS        air compressor is provided to supply instrument quality air for testing purposes, during plant      shutdown and maintenance if  desired, periods. Its discharge air supply connection is valved off during normal plant operation.
9.3.1.4.3 Safety Evaluation The two ADS nitrogen receiver tanks supplied by the bank of six horizontal nitrogen gas storage tanks will operate to maintain the required ADS valve-accumulator pressure of 175 psig.
Each nitrogen gas accumulator provides a passive safeguard which automatically supplies a motive source for the operation of each, SRV in the automatic depressurization system. The failure of a pilot control valve in the valve actuators can only affect a single SRV. This is due to the independence of the other, and a postulated single failure does not prevent the operation of the remaining units. The Amendment. 23                    9.3-lla                December 1985
 
Nine  llile Point Unit  2 FSAR
: 2. Open  (red) and closed (green) indicating        lights for the following:
: a. ADS  primary containment isolation valves.
: b. ADS  header high flow valves.
: c. ADS  header low flow valves.
: 3. Inoperable      (amber)    indicating lights for the following:
: a. ADS  isolation valves bypass/inoperable.
: b. ADS  control valve power failure.
: c. ADS  systems manually out, of service.
Position      off-normal (white) indicating lights for the  ADS  primary containment isolation valves.
Pressure    indicators for the following:
: a. ADS nitrogen supply headers.
: b. ADS nitrogen receiver tanks.
Annunciators for the following:
ADS    air    compressor  auto    tripj'fail to start (not used during normal plant operation) .
: b. ADS air compressor auto start (not used during normal plant operation).
C. Primary      containment isolation valve power failure.
: d. ADS    supply    nitrogen    systems  bypassed  or inoperable.
: e. Keylock    AVOCA override.
: f. ADS  trouble.
: g. ADS  nitrogen supply header pressure low.
: h. ADS  primary containment manual isolation.
Amendment 24                    9.3-11d                February 1986
 
Nine Mile Point Unit    2 FSAR 9.3.1.5 Instrument Nitrogen      System 9.3.1.5.1 Design Bases Safet  Desi n Basis Instrumentation and control systems located inside the reactor primary containment are supplied with nitrogen gas at 120 psig from the instrument nitrogen system (GSN). The IAS designation is retained      for these systems which are nitrogen gas exclusively during normal plant operation.
Instrumentation and control systems located inside the reactor primary containment, except            as    described    in Section 9.3.1.4.5, are not safety related. However, all piping, valves, and fittings located in Category I areas are seismically analyzed and supported in accordance with safe shutdown earthquake (SSE) design requirements so that their failure. will not damage safety-related equipment.                For containment penetrations and items within the containment areas, see Section 3.2.
Power Generation Desi n Bases Nitrogen gas for instrumentation and control systems located inside the reactor primary containment areas is supplied from the vapor spaces of two 11,000-gal liquid nitrogen vertical storage tanks maintained under a constant pressure of approximately 200 psig. The liquid nitrogen tanks are located in the yard area, north-northeast of the reactor building, alongside the railroad access lock. From the liquid nitrogen tanks nitrogen flows through an active bank of finned ambient vaporizers, a trim heater for heating to 70 F, and a 200/120 psig pressure-reducing            station. An instrument nitrogen receiver is provided inside the reactor building for additional storage capacity. Nitrogen gas for instrumentation and controls inside the primary containment, is distributed from this nitrogen receiver.
A nitrogen gas backup supply connection is provided from the high-pressure nitrogen gas storage            cylinders to the 26 (
instrument    nitrogen receiver        through    a 365/100 psig pressure-reducing station.
Although instrumentation and          control      systems    within the reactor primary containment are nonsafety-related, the nitrogen gas supplied for these systems meets or exceeds the    quality      requirements      of    ANSI      MC11.1-1975 (approved    January 15, 1976)      (ISA-S7.3),    Quality Stan-dard    Instrument    Air, for use with safety-related Amendment 26                  9.3-lie                        May 1986
 
Nine Mile Point Unit      2 FSAR control,air      systems    (SRCAS) . Additionally, these piping systems will    receive    a preoperational        cleaning for the removal    of    contaminants and to. provide the required cleanliness level required.          Also, all piping associated with these systems is of stainless steel, which eliminates the potential for particulate contamination coming from the piping material.
The pressure-retaining components of the instrumentation and control systems located            inside    the    reactor      primary containment are designed,          constructed,      and inspected in accordance    with the applicable            requirements      of ASME Section III, Division 1,              Subsection      ND for Class 3 components,    and Subsection      NC  for Class 2 components.
Piping segments that penetrate the primary containment, boundary are designed to Safety Class 2, seismic Category I requirements.
Each 11',000-gal      liquid nitrogen storage tank contains the equivalent gas capacity of 1,024,000 SCF of nitrogen.                  Each storage vessel consists of a Type          304  stainless    steel  inner tank fabricated to Section VIII of the                        ASME    Code requirements,    an    outer- carbon  steel  jacket,    and  an  annular space under vacuum          filled with superinsulation for maintaining a low normal evaporation rate of approximately 0.15 percent per day. The normal operating pressure of the liquid nitrogen storage tank is 200 psig.
9.3.1.5.2 System Description The nitrogen gas        supply for instrumentation and controls within the reactor primary containment areas is provided by the two 11,000-gal liquid nitrogen vertical storage tanks
  .located in the yard area (see Figure 9.3-20 for system                      23 PEcIDs). These two liquid nitrogen storage tanks also supply nitrogen gas for inerting the primary containment when required.      Additionally, a low-pressure slipstream from the nitrogen gas        system    maintains      the    reactor      primary containment      atmosphere      inerted during normal plant operations.      A nitrogen      gas backup connection to              the instrument      nitrogen system is provided              from    the  high pressure nitrogen        gas    'storage    cylinders through a 365/100 psig pressure-reducing          station    during off-normal conditions for    instrument    nitrogen    supply.
The nitrogen gas supply for instrumentation and controls is normally drawn off the vapor spaces of the liquid nitrogen storage tanks, absorbs heat energy from the surrounding environment, across an active bank of                  finned ambient vaporizers, heated to 70OF through one of two electric trim heaters, and its pressure reduced from 200 psig to 120 psig.
Amendment 23                      9.3-11f                  December 1985
 
Nine Mile Point Unit      2 FSAR I
The    instrument    nitrogen    system    is provided with all necessary pressure and temperature indicators, alarms, and safety relief devices for safe and reliable operation. A solenoid-operated temperature control valve installed in the main supply header is set to close              if  the nitrogen gas temperature drops to the low temperature setpoint. This is a    safeguard    feature    that prevents the flow of low temperature nitrogen gas into the piping distribution system in the event of a trim heater failure.
An  instrument nitrogen receiver is provided inside the reactor building for additional storage capacity.            Nitrogen gas    is distributed throughout the instrumentation and control systems piping network within the reactor primary containment areas from this receiver.
9.3.1.5.3 Safety Evaluation The    station nitrogen systems operate to supply the instrumentation and'"control systems inside the reactor primary containment with instrument quality nitrogen gas at 120 psig.
The liquid nitrogen storage          tanks and the six modular nitrogen gas .cylinders, nitrogen            gas    receivers,    and accumulators    have sufficient capacities            to supply the requirements of the instrumentation and control systems within the reactor primary containment.
The principal gas-operated valves supplied with instrument nitrogen gas inside the primary containment areas are the inboard main steam isolation valves, the main steam safety 28 relief valves, and the drywell vacuum breakers.                    The selected main    steam  'safety  relief  valves  in  the automatic depressurization system (ADS) are independently supplied with nitrogen gas from the high pressure nitrogen gas storage cylinders described in the              previous    section, Section 9.3.1.4.
Each accumulator in the instrument nitrogen system provides a passive safeguard which automatically          supplies a motive power source for the operation of each safety relief valve.
The failure of a pilot control valve in the valve actuators is limited to that particular single safety relief valve, as each SRV is independent of the others;            and a postulated single failure does not interfere with the operation of the remaining units. The design bases covering the total number of safety relief valves include additional allowances for the malfunction of any one valve.
Amendment 28                        9.3-1lg                  May 1987
 
Nine Mile Point, Unit      2 FSAR The  failure    modes    and    effects    analysis      (FMEA)  of the instrument    nitrogen    systems,      as part of        the    overall instrument    air    systems, is provided in the Nine Mile Point Unit  2 FSAR FMEA    Report.
To  prevent introducing cold (less than 40 F) nitrogen into the  primary containment, the nitrogen temperature,                    for normal    inerting, is controlled ,to 70OF and monitored upstream of the normal vent and purge lines.                Low nitrogen temperature      (55 F)    is  alarmed    in the  control    room. Should the temperature continue to fall to 40~F at the outlet of the vaporizer, an independent temperature device will trip the outlet control valve closed. The nitrogen supply to the instrument nitrogen 'ystem is fed from nitrogen storage bottles and the ambient vaporizer is followed by trim heaters to hold the temperature at 70 F. The supply is fed to an accumulator prior to any containment penetration, thus essentially 'recluding any cold nitrogen from entering the containment.      In addition, a temperature sensing device just downstream    of  the  trim heater will trip the downstream valve closed.
there is if the no temperature equipment drops below 40OF.
or  piping  in  the    direct In addition, path of the injected  nitrogen    in  either    the  drywell    or  wetwell,  and the nitrogen    system    is  normally      isolated      from  the  primary containment.      Inerting is controlled administratively, and the valves are returned to a closed position after inerting.
                                                  'I 9.3.1.5.4    Inspection and Testing Requirements The instrument nitrogen system is operated on a continuous basis. It is maintained and monitored, with off-normal conditions alarmed during normal plant operation.
The instrumentation          and control systems within the reactor primary containment will be tested in accordance with the requirements of the applicable regulatory positions of Regulatory Guide 1.68.3, as discussed in Table 1.8-1.                        )ze 9.3.1.5.5    Instrumentation Requirements Instrumentation and controls are provided for the manual and automatic operation of the nitrogen instrument systems within the reactor primary containment areas.                        These controls and monitors      are  described    below.
The nitrogen gas        system is placed in operation manually, including  the  trim  heaters.      In normal operation only one of Amendment, 26                      9.3-11h                        May 1986
 
Nine Mile Point Unit    2 FSAR two    trim heaters      is used to'ontrol the nitrogen gas temperature.      The  other trim heater is held on standby.
The    instrument      nitrogen      systems    primary containment isolation valves close when any of the following conditions exist:: the control switch is in the normal closed position, a LOCA isolation signal is present, and the manual isolation switch is activated. The isolation valves can be manually open'ed when a LOCA isolation signal is not present          and the manual isolation switch is not activated.
Control room      indications    are    provided  for the following functions:
Open  (red) and closed (green) indicating lights for the  instrument nitrogen 'system primary containment isolation valves.
: 2. Position off-normal (white) indicating lights for the instrument nitrogen system primary containment, isolation valves.
: 3. Annunciators for the following:
: a. Primary      containment    isolation valve    power failure.
: b. Keylock  LOCA override.
: c. Instrument, nitrogen system trouble.
: d. Instrument nitrogen system primary containment manual  isolation.
Amendment 18                    9.3-11i                    March 1985
 
Nine Mile Point Unit  2 FSAR High temperature samples (steam samples or liquid samples at temperatures  greater than 180'F) are condens'ed        and/or subcooled using local (close to the sample source) coolers.
These coolers are Type 316 stainless steel and are rated at 5,000 psig at 1,000 F.      Their maximum working conditions exceed the design conditions of all sample sources.
All samples entering the sample panels are cooled sufficiently to ensure operator safety. Each sample line has an air-operated      isolation valve (AOV) close to the sample source.      These AOVs are manually activated        by pneumatic valves from the sample panel.      In the reactor and turbine sample systems, the high temperature samples have temperature switches that will automatically close the AOV if  the sample temperature in the panel exceeds 180 F.
the radwaste sample system, flow switches are installed on In the outlet cooling water lines for the sample coolers.      The flow switches will close the sample line isolation AOVs low cooling water flow is sensed.
if All AOVs fail closed upon loss of control power or air supply pressure.          Manually operated, rod-in-tube pressure-reducing    valves reduce any residual high sample pressure in the sample panel. Manual needle or globe valves regulate final grab sample flow.      To ensure    proper temperature compensation of conductivity measurements,    conductivity samples are conditioned to 77 +1'F by a constant      temperature bath prior to inline analysis. Suitable panel instrumentation is provided to allow proper sample system operation and to ensure the safety of the operator. Grab sample sinks have ventilated fume hoods to collect any airborne contamination.            All sample panels are located in low radiation areas    to reduce operator exposure.      All liquid sample drainage is directed    a3 to the respective building equipment drain system or is
(
collected and returned to the plant.
To provide representative      samples,  all sample lines are sized to maintain Reynolds numbers in excess of 4,000 (fully turbulent flow). Sample tubing runs are as short as possible and are sized to allow the highest practicable velocities. All tubing enters the top of the sample panel, thereby allowing the final leg of tubing to be downward in direction. To minimize coolant loss in case of a leak, tubing with an internal diameter of 0.18 in (reactor and turbine    sample systems)    and 0.209 in (radwaste      sample system) is used. The tubing is ASTM A213 Grade Type 316 stainless steel rated at 4,261 psig at 1,000 F. These maximum working conditions exceed the design      condition of all sample sources. Incoloy 825 tubing is used on the Amendment 23                9.3-15                December 1985 e
 
Nine Mile Point Unit  2 FSAR radwaste    evaporator  sample; lines. This material was selected due to its corrosion resistance to sodium sulfate solution being sampled.
Parent process piping is fitted with sample probes or wall taps in turbulent flow zones to ensure representative samples. All continuous samples have bypass purge lines around the analyzers. Grab samples  are purged to hooded sinks.
9.3.2.3  Safety Evaluation The  process sampling systems are not required to function during or following an accident, nor are they required to safely shut down the reactor.
9.3.2.4 Inspection and Testing Requirements Nearly all process sampling system components are used regularly during power operation or during shutdown; thereby providing continuous assurance of system availability and performance. Routine calibration checks are performed on the continuous analyzers to ensure accurate indications and alarm functions.
9.3.2.5 Instrumentation Requirements 9.3.2.5.1 Reactor Plant Sample System Instruments and controls are provided, to monitor the quality of reactor coolant and various reactor plant fluid systems.
The controls described below are situated locally'. Except where noted, the monitors described below are located in the main control room. The control logic is shown on Figure 9.3-6.
>>  Temperature and flow rate indicators are provided on the sample panel in the reactor building to indicate that
(
samples are properly conditioned for sampling purposes.
Sample valves for sampling lines are opened and closed manually. The sample valves for the RHR heat exchangers and the reactor recirculation inlet samples automatically trip closed on high sample temperature to prevent excessive downstream temperature in the sample line.
Amendment 23                9.3-16              December 1985
 
Nine Mile Point, Unit    2 FSAR The  diesel generator building drain sump pumps discharge to the storm sewer through the diesel generator yard area oil separator by a hand-operated valve.
Monitorin Reactor Buildin    E  ui  ment and  Floor Drains Recorders are provided      for:
: 1. Drywell floor drain tank level.
: 2. Drywell floor drain      pump  flow.
: 3. Drywell floor drain leak rate.
: 4. Drywell equipment drain tank level.
: 5. Drywell equipment drain pump flow.
: 6. Drywell equipment drain leak rate.
Alarms  are provided for:
: 1. Reactcr building floor drain leakage high.
: 2. Reactor building floor drain temperature high.
: 3. Drywell floor drain tank level high-high.
: 4. Drywell floor drain containment isolation valves inoperable.
: 5. Drywell floor drain leakage rate high.
: 6. Drywell floor drain daily leakage rate high.
: 7. General    area,  HPCS,  LPCS,  RHR-A, RHR-B, RHR-C, and RCIC pump rooms    flood water level high.
: 8. Reactor building floor drain system trouble.
9 ~  Reactor building equipment drain tank leakage high.
: 10. Drywell equipment          drain containment isolation valves inoperable.
: 11. Drywell equipment drain tank temperature high.
: 12. Drywell equipment drain leakage rate high.
Amendment 27                    9.3-27                    July 1986
 
Nine Mile Point Unit  2 FSAR
: 13. Drywell equipment drain daily leakage rate high.
: 14. Drywell equipment drain tank level high-high.
: 15. Reactor building equipment drains system trouble.
: 16. Reactor water drain valves not closed.
: 17. Drywell floor drain      containment    isolation valve motor overload.
22    18. Drywell equipment drain containment isolation valve motor overload.
: 19. Drywell floor drain  pump  motor overload.
: 20. Drywell equipment drain pump motor overload.
: 21. Cubicles 2RHS*ElA and *E1B flooded.
Turbine Buildin E i ment and Floor Drains Alarms are provided  for:
: 1. Turbine building  floor drains  leakage high.
: 2. Turbine building floor drains    system  trouble.
: 3. Turbine building equipment drains leakage high.
: 4. Turbine building equipment drain system trouble.
Radwaste Buildin E ui ment and Floor Drains Alarms are provided  for:
: 1. Radwaste    building    equipment    and    floor drains leakage high.
: 2. Radwaste  building equipment and floor drain system trouble.
Miscellaneous Buildin s E ui ment and Floor Drains Alarms are provided  for:
22      1. Screenwell building floor      and  equipment    drains leakage high.
: 2. Screenwell  building floor drain    sump 5  level high.
Amendment 22                9.3-28                  November 1985
 
Nine Mile Point Unit    2 FSAR minates    the  nuclear fission chain reaction in the uranium fuel. The  specified neutron absorber solution is sodium pentaborate (NazB>>0>< ~ 10Hz0). It is prepared by dissolving stoichiometric quantities of borax and boric acid in demineralized water. An air sparger is provided in the tank for mixing. To prevent system plugging, the tank outlet is raised above the bottom of the tank.
The    SLC system    can deliver enough sodium pentaborate solution into the reactor (Figure 9.3-18) to assure reactor shutdown.      This is accomplished by filling the SLC storage tank with dimineralized water to.the low level alarm point, and then adding sodium pentaborate.            The solution can be diluted with water to within 6 in of the overflow level volume to allow for evaporation losses            or to lower the saturation temperature. The tank may contain boron solution from a minimum volume of 4,418 gal (net low level volume) to a maximum of 4,815 gal (net high level volume)        based on a zero level of 5.1 in above the centerline of the outlet.
The minimum temperature      of the fluid in the tank and piping is consistent with that obtained from Figure 9.3-19 for the solution temperature.        The saturation    temperature of the recommended solution is 60 F at the low level alarm volume.
Equipment containing the solution is installed in an area in which the air temperature is maintained within the range of 70 F to 100 F.        An electrical resistance      heater system provides a backup heat source that maintains the solution temperature between 75 F (automatic operation) and 85 F (automatic shutoff) to.prevent precipitation of the sodium pentaborate from the solution during storage. High or low temperature, or high or low liquid level, causes an alarm in the main control room. The entire system is located within the reactor building, so    it is unaffected by cold weather.
The positive displacement        pumps  are sized to inject the boron solution (minimum 41.2 gpm per pump) into the reactor within a specified time period, independent of the amount of solution in the tank.
The  pump  and system design pressure between the explosive valves and  the  pump discharge is 1,400 psig. The two relief valves are set to open at 1,387 psig with no back pressure.
To prevent bypass flow in the event that a pressure          relief valve fails and opens, a check valve is provided downstream of each relief valve in 'each pump discharge line.
The    two    explosive-actuated    injection    valves  provide assurance  of opening  when needed  and  ensure that boron  does Amendment 27                  9.3-31                    July 1986
 
Nine Mile Point Unit  2 FSAR not,  leak into the reactor even when the pumps are being tested. Each explosive valve is closed by a shear. plug in the inlet chamber.        The plug is circumscribed with a deep groove so the end readily shears off when pushed with the valve plunger. This opens the'nlet hole through the plug.
The sheared end is pushed out of the way in the chamber      and is shaped so    it does not block the ports after release.
The shearing plunger is actuated by an explosive. charge with dual ignition primers inserted in the side ch'amber of the valve. Ignition circuit continuity is monitored by a trickle current, and an alarm occurs in the control room either circuit opens. Indicator lights show which primary if circuit  opened.
Signals from the RRCS can automatically initiate the .SLCS by actuating both loops. The SLC 'system can also be actuated manually by two keylocked spring-return switches which ensure that switching from the NORMAL position to RUN position is a deliberate act. .Operation of either switch starts an injection pump and simultaneously opens its respective explosive valve and storage tank outlet valve..
The initiation generates a signal to .close the reactor water cleanup system isolation valve to prevent loss or dilution of the boron. This isolation signal is sealed-in during SLC operation and remains sealed-in until reset by operator action.
A    light in the control room indicates that power- is available to the pump motor contactor and that the contactor is deenergized (pump not running). Another light indicates that the contactor is energized (pump running).
Storage tank liquid level, tank outlet valve position, pump discharge pressure pump flow, and loss of continuity of the explosive valves indicate that the system is functioning.
Pump discharge, pump flow, and valve status      are indicated in the main control room.
Equipment drains and 'ank overflow are not piped to the radwaste system but to a separate        container (such as. a 55-gal    drum)    that can be'"removed and disposed of independently to prevent        any  trace    of boron f'rom inadvertently reaching the reactor.
Table 9.3-2 contains the process data. for the various modes of operation of the SLC system. Seismic category and safety class. are included in Table 3.2-1. Principle's of system testing are discussed in Section 9.3.5.4.
Amendment 18              9.3-32                    =March 1985
 
Nine Mile Point Unit 2 FSAR THIS PAGE INTENTIONAjLY BI.ANK Amendment 18              9.3-33b          March 1985
 
Nine Mile Point Unit      2 FSAR The SLC equipment    required for injection of neutron absorber solution into the reactor is designed as Category I for withstanding the specified earthquake loadings (Chapter 3).
The syst: em piping and equipment are designed, installed, and tested    in accordance          with requirements      stated    in Section 3.9B.
The  SLC  system    is powered normally from offsite power sources. In the event of a plant offsite power failure, the pumps,    valves, and controls necessary to assure boron injection are powered from the standby diesel generators.
The heaters      are manually connectable to the standby diesel generators. The pumps and valves are powered and controlled from separate    divisional buses and circuits.
The SLC pumps have sufficient pressure margin, up to the system relief valve setting of 1,387 psig with no back pressure to assure solutioninjection into the reactor above the normal pressure in the bottom of the reactor.- The reactor safety relief valves begin to relieve pressure above approximately 1,100 psig.          Therefore, the 'LC positive displacement pumps cannot overpressurize          the nuclear system.
Only  one  of the two standby liquid control loops is needed for backup shutdown system operation.                If a redundantis component    (e. g., pump)    in  one  of the  two parallel  loops found to be inoperable,      there    is  no  immediate  threat  to shutdown capability, and reactor operation can continue during repairs. The time during which one of the two parallel loops may be out of operation is given in the Technical Specifications.
9.3.5.4 Testing and Inspection Requirements Testability of one pump at a time is possible while the reactor is in service.          While one pump is being tested during reactor operation, the other pump is capable of in-Amendment 26                9  '-34                          May 1986}}

Latest revision as of 01:03, 7 January 2025

Forwards Rev 0 to Updated SAR for Nine Mile Point Unit 2. Emergency Plan,Formerly Included in Fsar,Not Included in Updated Sar.Portions of Util Responses to NRC FSAR Questions Incorporated Into Body of Initial Updated SAR
ML18038A458
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 04/28/1989
From: Terry C
NIAGARA MOHAWK POWER CORP.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML18038A459 List:
References
NMP2L-1198, NUDOCS 8905030108
Download: ML18038A458 (214)


Text