ML19150A443: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
Line 2: Line 2:
| number = ML19150A443
| number = ML19150A443
| issue date = 05/10/2019
| issue date = 05/10/2019
| title = Revision 28 to Updated Final Safety Analysis Report, Chapter 3, Table of Contents
| title = 8 to Updated Final Safety Analysis Report, Chapter 3, Table of Contents
| author name =  
| author name =  
| author affiliation = Exelon Generation Co, LLC
| author affiliation = Exelon Generation Co, LLC
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:GINNA/UFSAR 3           DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT AND                               1 SYSTEMS 3.1         CONFORMANCE WITH NRC GENERAL DESIGN CRITERIA                                   2 3.1.1       ATOMIC INDUSTRIAL FORUM DESIGN CRITERIA                                       2 3.1.1.1     Overall Plant Requirements                                                     2 3.1.1.1.1   Quality Standards                                                             2 3.1.1.1.2   Performance Standards                                                         4 3.1.1.1.3   Fire Protection                                                               5 3.1.1.1.4   Sharing of Systems                                                             5 3.1.1.1.5   Records Requirements                                                           5 3.1.1.2     Protection by Multiple Fission Product Barriers                               6 3.1.1.2.1   Reactor Core Design                                                           6 3.1.1.2.2   Suppression of Power Oscillations                                             7 3.1.1.2.3   Overall Power Coefficient                                                     7 3.1.1.2.4   Reactor Coolant Pressure Boundary                                             7 3.1.1.2.5   Reactor Containment                                                           8 3.1.1.3     Nuclear and Radiation Controls                                                 9 3.1.1.3.1   Control Room                                                                   9 3.1.1.3.2   Instrumentation and Controls Systems                                           9 3.1.1.3.3   Fission Process Monitors and Controls                                         10 3.1.1.3.4   Core Protection Systems                                                       11 3.1.1.3.5   Engineered Safety Features Protection Systems                                 11 3.1.1.3.6   Monitoring Reactor Coolant Leakage                                           12 3.1.1.3.7   Monitoring Radioactivity Releases                                             13 3.1.1.3.8   Monitoring Fuel and Waste Storage                                             13 3.1.1.4     Reliability and Testability of Protection Systems                             14 3.1.1.4.1   Protection Systems Reliability                                               14 3.1.1.4.2   Protection Systems Redundancy and Independence                               15 3.1.1.4.2.1 Reactor Trip Circuits                                                         15 3.1.1.4.2.2 Engineered Safety Features Initiation Circuits                               15 3.1.1.4.3   Single-Failure Definition (Category B)                                       16 3.1.1.4.4   Separation of Protection and Control Instrumentation Systems                 16 3.1.1.4.5   Protection Against Multiple Disability for Protection Systems                 16 3.1.1.4.6   Emergency Power for Protection Systems                                       16 3.1.1.4.7   Demonstration of Functional Operability of Protection Systems                 17 3.1.1.4.8   Protection Systems Failure Analysis Design                                   17 Page 1 of 39                        Revision 28 5/2019
{{#Wiki_filter:GINNA/UFSAR Page 1 of 39 Revision 28 5/2019 3
DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT AND 1
SYSTEMS 3.1 CONFORMANCE WITH NRC GENERAL DESIGN CRITERIA 2
3.1.1 ATOMIC INDUSTRIAL FORUM DESIGN CRITERIA 2
3.1.1.1 Overall Plant Requirements 2
3.1.1.1.1 Quality Standards 2
3.1.1.1.2 Performance Standards 4
3.1.1.1.3 Fire Protection 5
3.1.1.1.4 Sharing of Systems 5
3.1.1.1.5 Records Requirements 5
3.1.1.2 Protection by Multiple Fission Product Barriers 6
3.1.1.2.1 Reactor Core Design 6
3.1.1.2.2 Suppression of Power Oscillations 7
3.1.1.2.3 Overall Power Coefficient 7
3.1.1.2.4 Reactor Coolant Pressure Boundary 7
3.1.1.2.5 Reactor Containment 8
3.1.1.3 Nuclear and Radiation Controls 9
3.1.1.3.1 Control Room 9
3.1.1.3.2 Instrumentation and Controls Systems 9
3.1.1.3.3 Fission Process Monitors and Controls 10 3.1.1.3.4 Core Protection Systems 11 3.1.1.3.5 Engineered Safety Features Protection Systems 11 3.1.1.3.6 Monitoring Reactor Coolant Leakage 12 3.1.1.3.7 Monitoring Radioactivity Releases 13 3.1.1.3.8 Monitoring Fuel and Waste Storage 13 3.1.1.4 Reliability and Testability of Protection Systems 14 3.1.1.4.1 Protection Systems Reliability 14 3.1.1.4.2 Protection Systems Redundancy and Independence 15 3.1.1.4.2.1 Reactor Trip Circuits 15 3.1.1.4.2.2 Engineered Safety Features Initiation Circuits 15 3.1.1.4.3 Single-Failure Definition (Category B) 16 3.1.1.4.4 Separation of Protection and Control Instrumentation Systems 16 3.1.1.4.5 Protection Against Multiple Disability for Protection Systems 16 3.1.1.4.6 Emergency Power for Protection Systems 16 3.1.1.4.7 Demonstration of Functional Operability of Protection Systems 17 3.1.1.4.8 Protection Systems Failure Analysis Design 17  


GINNA/UFSAR 3.1.1.5   Reactivity Control                                                         18 3.1.1.5.1 Redundancy of Reactivity Control                                           18 3.1.1.5.2 Reactivity Hot Shutdown Capability                                         18 3.1.1.5.3 Reactivity Shutdown Capability                                             18 3.1.1.5.4 Reactivity Hold-Down Capability                                             19 3.1.1.5.5 Reactivity Control Systems Malfunction                                     19 3.1.1.5.6 Maximum Reactivity Worth of Control Rods                                   20 3.1.1.6   Reactor Coolant Pressure Boundary                                           20 3.1.1.6.1 Reactor Coolant Pressure Boundary Capability                               20 3.1.1.6.2 Reactor Coolant Pressure Boundary Rapid Propagation Failure Preven-         21 tion 3.1.1.6.3 Reactor Coolant Pressure Boundary Brittle Fracture Prevention               22 3.1.1.6.4 Reactor Coolant Pressure Boundary Surveillance                             22 3.1.1.7   Engineered Safety Features                                                 23 3.1.1.7.1 Engineered Safety Features Basis for Design                                 23 3.1.1.7.2 Reliability and Testability of Engineered Safety Features                   24 3.1.1.7.3 Emergency Power                                                             24 3.1.1.7.4 Missile Protection                                                         25 3.1.1.7.5 Engineered Safety Features Performance Capability                           26 3.1.1.7.6 Engineered Safety Features Components Capability                           26 3.1.1.7.7 Accident Aggravation Prevention                                             27 3.1.1.7.8 Emergency Core Cooling System (ECCS) Capability                             27 3.1.1.7.9 Inspection of Emergency Core Cooling System (ECCS)                         28 3.1.1.7.10 Testing of Emergency Core Cooling System (ECCS) Components                 28 3.1.1.7.11 Testing of Emergency Core Cooling System (ECCS)                             28 3.1.1.7.12 Testing of Operational Sequence of Emergency Core Cooling System           28 (ECCS) 3.1.1.7.13 Containment Design Basis                                                   29 3.1.1.7.14 Nil Ductility Transition Temperature Requirement for Containment           29 Material 3.1.1.7.15 Reactor Coolant Pressure Boundary Outside Containment                       30 3.1.1.7.16 Containment Heat Removal Systems                                           30 3.1.1.7.17 Containment Isolation Valves                                               30 3.1.1.7.18 Initial Leakage Rate Testing of Containment                                 30 3.1.1.7.19 Periodic Containment Leakage Rate Testing                                   31 3.1.1.7.20 Provisions for Testing of Penetrations                                     31 3.1.1.7.21 Provisions for Testing of Isolation Valves                                 31 Page 2 of 39                      Revision 28 5/2019
GINNA/UFSAR Page 2 of 39 Revision 28 5/2019 3.1.1.5 Reactivity Control 18 3.1.1.5.1 Redundancy of Reactivity Control 18 3.1.1.5.2 Reactivity Hot Shutdown Capability 18 3.1.1.5.3 Reactivity Shutdown Capability 18 3.1.1.5.4 Reactivity Hold-Down Capability 19 3.1.1.5.5 Reactivity Control Systems Malfunction 19 3.1.1.5.6 Maximum Reactivity Worth of Control Rods 20 3.1.1.6 Reactor Coolant Pressure Boundary 20 3.1.1.6.1 Reactor Coolant Pressure Boundary Capability 20 3.1.1.6.2 Reactor Coolant Pressure Boundary Rapid Propagation Failure Preven-21 tion 3.1.1.6.3 Reactor Coolant Pressure Boundary Brittle Fracture Prevention 22 3.1.1.6.4 Reactor Coolant Pressure Boundary Surveillance 22 3.1.1.7 Engineered Safety Features 23 3.1.1.7.1 Engineered Safety Features Basis for Design 23 3.1.1.7.2 Reliability and Testability of Engineered Safety Features 24 3.1.1.7.3 Emergency Power 24 3.1.1.7.4 Missile Protection 25 3.1.1.7.5 Engineered Safety Features Performance Capability 26 3.1.1.7.6 Engineered Safety Features Components Capability 26 3.1.1.7.7 Accident Aggravation Prevention 27 3.1.1.7.8 Emergency Core Cooling System (ECCS) Capability 27 3.1.1.7.9 Inspection of Emergency Core Cooling System (ECCS) 28 3.1.1.7.10 Testing of Emergency Core Cooling System (ECCS) Components 28 3.1.1.7.11 Testing of Emergency Core Cooling System (ECCS) 28 3.1.1.7.12 Testing of Operational Sequence of Emergency Core Cooling System 28 (ECCS) 3.1.1.7.13 Containment Design Basis 29 3.1.1.7.14 Nil Ductility Transition Temperature Requirement for Containment 29 Material 3.1.1.7.15 Reactor Coolant Pressure Boundary Outside Containment 30 3.1.1.7.16 Containment Heat Removal Systems 30 3.1.1.7.17 Containment Isolation Valves 30 3.1.1.7.18 Initial Leakage Rate Testing of Containment 30 3.1.1.7.19 Periodic Containment Leakage Rate Testing 31 3.1.1.7.20 Provisions for Testing of Penetrations 31 3.1.1.7.21 Provisions for Testing of Isolation Valves 31  


GINNA/UFSAR 3.1.1.7.22 Inspection of Containment Pressure-Reducing Systems                         32 3.1.1.7.23 Testing of Containment Pressure-Reducing Systems Components                 32 3.1.1.7.24 Testing of Containment Spray Systems                                       32 3.1.1.7.25 Testing of Operational Sequence of Containment Pressure-Reducing           32 Systems 3.1.1.7.26 Inspection of Air Cleanup Systems                                           33 3.1.1.7.27 Testing of Air Cleanup Systems Components                                   33 3.1.1.7.28 Testing Air Cleanup System                                                 33 3.1.1.7.29 Testing of Operational Sequence of Air Cleanup Systems                     33 3.1.1.8   Fuel and Waste Storage Systems                                             34 3.1.1.8.1 Prevention of Fuel Storage Criticality                                     34 3.1.1.8.2 Fuel and Waste Storage Decay Heat                                           34 3.1.1.8.3 Fuel and Waste Storage Radiation Shielding                                 35 3.1.1.8.4 Protection Against Radioactivity Release From Spent Fuel and Waste         35 Storage 3.1.1.9   Control of Releases of Radioactivity to the Environment                     35 3.1.2     GENERAL DESIGN CRITERIA                                                     36 3.1.2.1   Overall Requirements                                                       36 3.1.2.1.1 General Design Criterion 1 - Quality Standards and Records                 37 3.1.2.1.2 General Design Criterion 2 - Design Bases for Protection Against Nat-       38 ural Phenomena 3.1.2.1.3 General Design Criterion 3 - Fire Protection                               38 3.1.2.1.4 General Design Criterion 4 - Environmental and Missile Design Bases         39 3.1.2.1.5 General Design Criterion 5 - Sharing of Structures, Systems, and Com-       39 ponents 3.1.2.2   Protection by Multiple Fission Product Barriers                             39 3.1.2.2.1 General Design Criterion 10 - Reactor Design                               39 3.1.2.2.2 General Design Criterion 11 - Reactor Inherent Protection                   40 3.1.2.2.3 General Design Criterion 12 - Suppression of Reactor Power Oscilla-         40 tions 3.1.2.2.4 General Design Criterion 13 - Instrumentation and Control                   40 3.1.2.2.5 General Design Criterion 14 - Reactor Coolant Pressure Boundary             41 3.1.2.2.6 General Design Criterion 15 - Reactor Coolant System Design                 41 3.1.2.2.7 General Design Criterion 16 - Containment Design                           42 3.1.2.2.8 General Design Criterion 17 - Electrical Power Systems                     42 3.1.2.2.9 General Design Criterion 18 - Inspection and Testing of Electrical         44 Power Systems 3.1.2.2.10 General Design Criterion 19 - Control Room                                 44 Page 3 of 39                        Revision 28 5/2019
GINNA/UFSAR Page 3 of 39 Revision 28 5/2019 3.1.1.7.22 Inspection of Containment Pressure-Reducing Systems 32 3.1.1.7.23 Testing of Containment Pressure-Reducing Systems Components 32 3.1.1.7.24 Testing of Containment Spray Systems 32 3.1.1.7.25 Testing of Operational Sequence of Containment Pressure-Reducing 32 Systems 3.1.1.7.26 Inspection of Air Cleanup Systems 33 3.1.1.7.27 Testing of Air Cleanup Systems Components 33 3.1.1.7.28 Testing Air Cleanup System 33 3.1.1.7.29 Testing of Operational Sequence of Air Cleanup Systems 33 3.1.1.8 Fuel and Waste Storage Systems 34 3.1.1.8.1 Prevention of Fuel Storage Criticality 34 3.1.1.8.2 Fuel and Waste Storage Decay Heat 34 3.1.1.8.3 Fuel and Waste Storage Radiation Shielding 35 3.1.1.8.4 Protection Against Radioactivity Release From Spent Fuel and Waste 35 Storage 3.1.1.9 Control of Releases of Radioactivity to the Environment 35 3.1.2 GENERAL DESIGN CRITERIA 36 3.1.2.1 Overall Requirements 36 3.1.2.1.1 General Design Criterion 1 - Quality Standards and Records 37 3.1.2.1.2 General Design Criterion 2 - Design Bases for Protection Against Nat-38 ural Phenomena 3.1.2.1.3 General Design Criterion 3 - Fire Protection 38 3.1.2.1.4 General Design Criterion 4 - Environmental and Missile Design Bases 39 3.1.2.1.5 General Design Criterion 5 - Sharing of Structures, Systems, and Com-39 ponents 3.1.2.2 Protection by Multiple Fission Product Barriers 39 3.1.2.2.1 General Design Criterion 10 - Reactor Design 39 3.1.2.2.2 General Design Criterion 11 - Reactor Inherent Protection 40 3.1.2.2.3 General Design Criterion 12 - Suppression of Reactor Power Oscilla-40 tions 3.1.2.2.4 General Design Criterion 13 - Instrumentation and Control 40 3.1.2.2.5 General Design Criterion 14 - Reactor Coolant Pressure Boundary 41 3.1.2.2.6 General Design Criterion 15 - Reactor Coolant System Design 41 3.1.2.2.7 General Design Criterion 16 - Containment Design 42 3.1.2.2.8 General Design Criterion 17 - Electrical Power Systems 42 3.1.2.2.9 General Design Criterion 18 - Inspection and Testing of Electrical 44 Power Systems 3.1.2.2.10 General Design Criterion 19 - Control Room 44  


GINNA/UFSAR 3.1.2.3   Protection and Reactivity Control Systems                                   45 3.1.2.3.1 General Design Criterion 20 - Protection Systems Functions                 45 3.1.2.3.2 General Design Criterion 21 - Protection System Reliability and Test-       45 ability 3.1.2.3.3 General Design Criterion 22 - Protection System Independence               46 3.1.2.3.4 General Design Criterion 23 - Protection System Failure Modes               46 3.1.2.3.5 General Design Criterion 24 - Separation of Protection and Control         47 Systems 3.1.2.3.6 General Design Criterion 25 - Protection System Requirements for           47 Reactivity Control Malfunctions 3.1.2.3.7 General Design Criterion 26 - Reactivity Control System Redundancy         48 and Capability 3.1.2.3.8 General Design Criterion 27 - Combined Reactivity Control System           48 Capability 3.1.2.3.9 General Design Criterion 28 - Reactivity Limits                             49 3.1.2.3.10 General Design Criterion 29 - Protection Against Anticipated Opera-         49 tional Occurrences 3.1.2.4   Fluid Systems                                                               49 3.1.2.4.1 General Design Criterion 30 - Quality of Reactor Coolant Pressure           49 Boundary 3.1.2.4.2 General Design Criterion 31 - Fracture Prevention of Reactor Coolant       50 Pressure Boundary 3.1.2.4.3 General Design Criterion 32 - Inspection of Reactor Coolant Pressure       51 Boundary 3.1.2.4.4 General Design Criterion 33 - Reactor Coolant Makeup                       51 3.1.2.4.5 General Design Criterion 34 - Residual Heat Removal                         52 3.1.2.4.6 General Design Criterion 35 - Emergency Core Cooling                       52 3.1.2.4.7 General Design Criterion 36 - Inspection of Emergency Core Cooling         53 System (ECCS) 3.1.2.4.8 General Design Criterion 37 - Testing of Emergency Core Cooling             53 Systems (ECCS) 3.1.2.4.9 General Design Criterion 38 - Containment Heat Removal                     54 3.1.2.4.10 General Design Criterion 39 - Inspection of Containment Heat               54 Removal System 3.1.2.4.11 General Design Criterion 40 - Testing of Containment Heat Removal           54 System 3.1.2.4.12 General Design Criterion 41 - Containment Atmosphere Cleanup               55 3.1.2.4.13 General Design Criterion 42 - Inspection of Containment Atmosphere         56 Cleanup Systems 3.1.2.4.14 General Design Criterion 43 - Testing of Containment Atmosphere             56 Cleanup Systems 3.1.2.4.15 General Design Criterion 44 - Cooling Water                                 57 Page 4 of 39                        Revision 28 5/2019
GINNA/UFSAR Page 4 of 39 Revision 28 5/2019 3.1.2.3 Protection and Reactivity Control Systems 45 3.1.2.3.1 General Design Criterion 20 - Protection Systems Functions 45 3.1.2.3.2 General Design Criterion 21 - Protection System Reliability and Test-45 ability 3.1.2.3.3 General Design Criterion 22 - Protection System Independence 46 3.1.2.3.4 General Design Criterion 23 - Protection System Failure Modes 46 3.1.2.3.5 General Design Criterion 24 - Separation of Protection and Control 47 Systems 3.1.2.3.6 General Design Criterion 25 - Protection System Requirements for 47 Reactivity Control Malfunctions 3.1.2.3.7 General Design Criterion 26 - Reactivity Control System Redundancy 48 and Capability 3.1.2.3.8 General Design Criterion 27 - Combined Reactivity Control System 48 Capability 3.1.2.3.9 General Design Criterion 28 - Reactivity Limits 49 3.1.2.3.10 General Design Criterion 29 - Protection Against Anticipated Opera-49 tional Occurrences 3.1.2.4 Fluid Systems 49 3.1.2.4.1 General Design Criterion 30 - Quality of Reactor Coolant Pressure 49 Boundary 3.1.2.4.2 General Design Criterion 31 - Fracture Prevention of Reactor Coolant 50 Pressure Boundary 3.1.2.4.3 General Design Criterion 32 - Inspection of Reactor Coolant Pressure 51 Boundary 3.1.2.4.4 General Design Criterion 33 - Reactor Coolant Makeup 51 3.1.2.4.5 General Design Criterion 34 - Residual Heat Removal 52 3.1.2.4.6 General Design Criterion 35 - Emergency Core Cooling 52 3.1.2.4.7 General Design Criterion 36 - Inspection of Emergency Core Cooling 53 System (ECCS) 3.1.2.4.8 General Design Criterion 37 - Testing of Emergency Core Cooling 53 Systems (ECCS) 3.1.2.4.9 General Design Criterion 38 - Containment Heat Removal 54 3.1.2.4.10 General Design Criterion 39 - Inspection of Containment Heat 54 Removal System 3.1.2.4.11 General Design Criterion 40 - Testing of Containment Heat Removal 54 System 3.1.2.4.12 General Design Criterion 41 - Containment Atmosphere Cleanup 55 3.1.2.4.13 General Design Criterion 42 - Inspection of Containment Atmosphere 56 Cleanup Systems 3.1.2.4.14 General Design Criterion 43 - Testing of Containment Atmosphere 56 Cleanup Systems 3.1.2.4.15 General Design Criterion 44 - Cooling Water 57  


GINNA/UFSAR 3.1.2.4.16 General Design Criterion 45 - Inspection of Cooling Water System             57 3.1.2.4.17 General Design Criterion 46 - Testing of Cooling Water System                 58 3.1.2.5   Reactor Containment                                                           58 3.1.2.5.1 General Design Criterion 50 - Containment Design Basis                       58 3.1.2.5.2 General Design Criterion 51 - Fracture Prevention of Containment             59 Pressure Boundary 3.1.2.5.3 General Design Criterion 52 - Capability for Containment Leakage             59 Rate Testing 3.1.2.5.4 General Design Criterion 53 - Provisions for Containment Testing and         59 Inspection 3.1.2.5.5 General Design Criterion 54 - Piping Systems Penetrating Containment         60 3.1.2.5.6 General Design Criterion 55 - Reactor Coolant Pressure Boundary Pen-         60 etrating Containment 3.1.2.5.7 General Design Criterion 56 - Primary Containment Isolation                   61 3.1.2.5.8 General Design Criterion 57 - Closed System Isolation Valves                 62 3.1.2.6   Fuel and Radioactivity Control                                               62 3.1.2.6.1 General Design Criterion 60 - Control of Releases of Radioactive             62 Materials to the Environment 3.1.2.6.2 General Design Criterion 61 - Fuel Storage and Handling and Radioac-         62 tivity Control 3.1.2.6.3   General Design Criterion 62 - Prevention of Criticality in Fuel Storage       63 and Handling 3.1.2.6.4   General Design Criterion 63 - Monitoring Fuel and Waste Storage               63 3.1.2.6.5   General Design Criterion 64 - Monitoring Radioactivity Releases               64 3.2         CLASSIFICATION OF STRUCTURES, COMPONENTS, AND SYS-                           66 TEMS 3.
GINNA/UFSAR Page 5 of 39 Revision 28 5/2019 3.1.2.4.16 General Design Criterion 45 - Inspection of Cooling Water System 57 3.1.2.4.17 General Design Criterion 46 - Testing of Cooling Water System 58 3.1.2.5 Reactor Containment 58 3.1.2.5.1 General Design Criterion 50 - Containment Design Basis 58 3.1.2.5.2 General Design Criterion 51 - Fracture Prevention of Containment 59 Pressure Boundary 3.1.2.5.3 General Design Criterion 52 - Capability for Containment Leakage 59 Rate Testing 3.1.2.5.4 General Design Criterion 53 - Provisions for Containment Testing and 59 Inspection 3.1.2.5.5 General Design Criterion 54 - Piping Systems Penetrating Containment 60 3.1.2.5.6 General Design Criterion 55 - Reactor Coolant Pressure Boundary Pen-60 etrating Containment 3.1.2.5.7 General Design Criterion 56 - Primary Containment Isolation 61 3.1.2.5.8 General Design Criterion 57 - Closed System Isolation Valves 62 3.1.2.6 Fuel and Radioactivity Control 62 3.1.2.6.1 General Design Criterion 60 - Control of Releases of Radioactive 62 Materials to the Environment 3.1.2.6.2 General Design Criterion 61 - Fuel Storage and Handling and Radioac-62 tivity Control 3.1.2.6.3 General Design Criterion 62 - Prevention of Criticality in Fuel Storage and Handling 63 3.1.2.6.4 General Design Criterion 63 - Monitoring Fuel and Waste Storage 63 3.1.2.6.5 General Design Criterion 64 - Monitoring Radioactivity Releases 64 3.2 CLASSIFICATION OF STRUCTURES, COMPONENTS, AND SYS-TEMS 66 3.


==2.1       INTRODUCTION==
==2.1 INTRODUCTION==
66 3.2.2       SYSTEMATIC EVALUATION PROGRAM EVALUATION                                     66 3.2.2.1     Fracture Toughness                                                           67 3.2.2.1.1   Pressurizer                                                                   67 3.2.2.1.2   Accumulators                                                                 68 3.2.2.1.3   Component Cooling Water (CCW) Pumps                                           68 3.2.2.1.4   Service Water Pumps                                                           68 3.2.2.1.5   Main Steam Piping and Valves                                                 69 3.2.2.1.6   Feedwater Piping and Valves                                                   69 3.2.2.2     Radiography Requirements                                                     69 3.2.2.2.1   Class 2 Pressure Vessels                                                     69 3.2.2.2.2   Class 1 and 2 Welded Joints                                                   70 3.2.2.2.3   Main Steam and Feedwater Piping                                               70 Page 5 of 39                          Revision 28 5/2019
66 3.2.2 SYSTEMATIC EVALUATION PROGRAM EVALUATION 66 3.2.2.1 Fracture Toughness 67 3.2.2.1.1 Pressurizer 67 3.2.2.1.2 Accumulators 68 3.2.2.1.3 Component Cooling Water (CCW) Pumps 68 3.2.2.1.4 Service Water Pumps 68 3.2.2.1.5 Main Steam Piping and Valves 69 3.2.2.1.6 Feedwater Piping and Valves 69 3.2.2.2 Radiography Requirements 69 3.2.2.2.1 Class 2 Pressure Vessels 69 3.2.2.2.2 Class 1 and 2 Welded Joints 70 3.2.2.2.3 Main Steam and Feedwater Piping 70  


GINNA/UFSAR 3.2.2.3     Valve Design                                                 71 3.2.2.4     Pump Design                                                 71 3.2.2.5     Storage Tank Design                                         72 Table 3.2-1 CLASSIFICATION OF STRUCTURES, SYSTEMS, AND                   74 COMPONENTS 3.3         WIND AND TORNADO LOADINGS                                   84 3.
GINNA/UFSAR Page 6 of 39 Revision 28 5/2019 3.2.2.3 Valve Design 71 3.2.2.4 Pump Design 71 3.2.2.5 Storage Tank Design 72 Table 3.2-1 CLASSIFICATION OF STRUCTURES, SYSTEMS, AND COMPONENTS 74 3.3 WIND AND TORNADO LOADINGS 84 3.


==3.1       INTRODUCTION==
==3.1 INTRODUCTION==
84 3.3.2       STRUCTURAL UPGRADE PROGRAM EVALUATION                       84 3.3.2.1     Structural Evaluation Approach                               84 3.3.2.1.1   Requirements                                               84 3.3.2.1.2   Structural Evaluation Process                               84 3.3.2.1.3   Structural Evaluation Computer Program                     85 3.3.2.1.4   Input Load Criteria                                         85 3.3.2.1.5   General Assumptions                                         86 3.3.2.1.6   Load Combinations and Acceptance Criteria                   87 3.3.2.2     Structural Evaluation                                       88 3.3.2.2.1   Primary Member Evaluation                                   88 3.3.2.2.2   Secondary Member Evaluation                                 89 3.3.2.2.3   Connections and Anchorages Evaluation                       89 3.3.2.2.4   Exterior Shell Evaluation                                   90 3.3.2.2.4.1 Siding                                                     90 3.3.2.2.4.2 Concrete Masonry Block Walls                               90 3.3.2.2.4.3 Architectural Items                                         91 3.3.2.3     Results of the Structural Evaluation                       91 3.3.2.3.1   Primary Members                                             91 3.3.2.3.1.1 General                                                     91 3.3.2.3.1.2 Severe Environmental Conditions                             91 3.3.2.3.1.3 Extreme Snow Load Condition                                 92 3.3.2.3.1.4 132-mph Tornado                                             92 3.3.2.3.1.5 188-mph Tornado                                             92 3.3.2.3.1.6 250-mph Tornado                                             92 3.3.2.3.2   Secondary Members                                           93 3.3.2.3.3   Connections and Anchorages                                 93 3.3.2.3.4   Exterior Shell                                             94 3.3.2.3.4.1 Metal Siding                                               94 3.3.2.3.4.2 Roof Decking                                               94 Page 6 of 39      Revision 28 5/2019
84 3.3.2 STRUCTURAL UPGRADE PROGRAM EVALUATION 84 3.3.2.1 Structural Evaluation Approach 84 3.3.2.1.1 Requirements 84 3.3.2.1.2 Structural Evaluation Process 84 3.3.2.1.3 Structural Evaluation Computer Program 85 3.3.2.1.4 Input Load Criteria 85 3.3.2.1.5 General Assumptions 86 3.3.2.1.6 Load Combinations and Acceptance Criteria 87 3.3.2.2 Structural Evaluation 88 3.3.2.2.1 Primary Member Evaluation 88 3.3.2.2.2 Secondary Member Evaluation 89 3.3.2.2.3 Connections and Anchorages Evaluation 89 3.3.2.2.4 Exterior Shell Evaluation 90 3.3.2.2.4.1 Siding 90 3.3.2.2.4.2 Concrete Masonry Block Walls 90 3.3.2.2.4.3 Architectural Items 91 3.3.2.3 Results of the Structural Evaluation 91 3.3.2.3.1 Primary Members 91 3.3.2.3.1.1 General 91 3.3.2.3.1.2 Severe Environmental Conditions 91 3.3.2.3.1.3 Extreme Snow Load Condition 92 3.3.2.3.1.4 132-mph Tornado 92 3.3.2.3.1.5 188-mph Tornado 92 3.3.2.3.1.6 250-mph Tornado 92 3.3.2.3.2 Secondary Members 93 3.3.2.3.3 Connections and Anchorages 93 3.3.2.3.4 Exterior Shell 94 3.3.2.3.4.1 Metal Siding 94 3.3.2.3.4.2 Roof Decking 94  


GINNA/UFSAR 3.3.2.3.4.3 Block Walls                                                             94 3.3.3       TORNADO MISSILES AND SAFE SHUTDOWN APPROACH                             94 3.3.3.1     Background                                                              94 3.3.3.2    Shutdown Methodology                                                    95 3.3.3.2.1  Assumptions                                                            95 3.3.3.2.2  Shutdown Details                                                        95 3.3.3.3    Required Components                                                    96 3.3.3.3.1  Refueling Water Storage Tank (RWST)                                    96 3.3.3.3.2  Electrical Buses 14, 17, and 18                                        96 3.3.3.3.3  Main Steam Lines A and B, and Main Feedwater Lines A and B              97 3.3.3.3.3.1 Results - Steel Rod                                                      97 3.3.3.3.3.2 Results - Utility Pole                                                  97 3.3.3.3.3.3 Failure of Block Walls                                                  97 3.3.3.3.4  Surface of the Spent Fuel Pool                                          98 3.3.3.3.5  Diesel Generators and Their Fuel Supply                                  98 3.3.3.3.6  Relay Room                                                              98 3.3.3.3.7  Service Water System                                                    99 3.3.3.3.8  Standby Auxiliary Feedwater System                                      99 3.3.3.3.9  Instrumentation                                                          99 3.3.3.3.10  Cable Tunnel                                                          100 3.3.4      DESIGN TORNADO                                                        100 3.3.4.1    Introduction                                                          100 3.3.4.2    Safety Assessment                                                      100 3.3.4.3    Reserve Plant Capacity                                                101 3.3.4.4    System Reserve Capacity                                                102 3.3.5      STRUCTURAL UPGRADE PROGRAM                                            103 3.3.5.1    Introduction                                                          103 3.3.5.2    Criteria Changes                                                      103 3.3.5.2.1  First Stage Review                                                    103 3.3.5.2.2  Second Stage Review                                                    104 3.3.5.3    Stability Evaluation                                                  105 3.3.5.3.1  Primary Members                                                        105 3.3.5.3.2  Connections and Anchorages                                            105 3.3.5.4    NRC Technical Evaluation Report (SEP Topic III-2) Open Items          106 3.3.5.4.1  Effective Tornado Loadings                                            106 3.3.5.4.2  Structural Loadings                                                    107 Page 7 of 39                  Revision 28 5/2019
GINNA/UFSAR Page 7 of 39 Revision 28 5/2019 3.3.2.3.4.3 Block Walls 94 3.3.3 TORNADO MISSILES AND SAFE SHUTDOWN APPROACH 94 3.3.3.1  


GINNA/UFSAR 3.3.5.4.3    Structural Acceptance Criteria                                            107 3.3.5.4.4    Structural Systems                                                        107 3.3.5.5      SEP Topic III-7.B, Loads, Load Combinations, and Design Criteria          108 3.3.5.6      Diesel Generator Component Operability                                    109 3.3.5.7      Conclusions                                                              109 3.3.6        INTERMEDIATE BUILDING BLOCK WALL REINFORCEMENT                            110 Table 3.3-1  PRIMARY MEMBER FAILURES PER LOADING COMBINATION                          114 3.4        WATER LEVEL (FLOOD) DESIGN                                                115 3.4.1      FLOOD PROTECTION                                                          115 3.4.1.1    Flood Protection Measures for Seismic Category I Structures              115 3.4.1.1.1  Introduction                                                              115 3.4.1.1.2   Lake Ontario Flood Protection                                            115 3.4.1.1.3   Deer Creek Flood Protection                                              116 3.4.1.2    Permanent Dewatering System                                              116 3.4.2      FLOODING DUE TO FAILURE OF TANKS                                          117 3.4.3      ROOF DRAINAGE                                                            117 3.5         MISSILE PROTECTION                                                        120 3.5.1      INTERNALLY GENERATED MISSILES                                            120 3.5.1.1    Introduction                                                              120 3.5.1.1.1  Design Criteria                                                          120 3.5.1.1.2  Systematic Evaluation Program                                            120 3.5.1.2    Turbine Missiles                                                          121 3.5.1.2.1  Introduction                                                              121 3.5.1.2.2  Turbine Inspection Program                                                122 3.5.1.2.3  Systematic Evaluation Program Topic III-4                                 122 3.5.1.3     Effects of Internally Generated Missiles on Systems and Equipment        123 3.5.1.3.1  Systems Needed to Perform Safety Functions                                123 3.5.1.3.1.1 Reactor Coolant System                                                    123 3.5.1.3.1.2 Emergency Core Cooling System (ECCS)                                      124 3.5.1.3.1.3 Containment Heat Removal and Atmosphere Cleanup Systems                  125 3.5.1.3.1.4 Chemical and Volume Control System                                        126 3.5.1.3.1.5 Residual Heat Removal System                                              127 3.5.1.3.1.6 Component Cooling Water System                                            127 3.5.1.3.1.7 Service Water System                                                      127 3.5.1.3.1.8 Diesel-Generator Auxiliary Systems                                        128 Page 8 of 39                      Revision 28 5/2019
===Background===
94 3.3.3.2 Shutdown Methodology 95 3.3.3.2.1 Assumptions 95 3.3.3.2.2 Shutdown Details 95 3.3.3.3 Required Components 96 3.3.3.3.1 Refueling Water Storage Tank (RWST) 96 3.3.3.3.2 Electrical Buses 14, 17, and 18 96 3.3.3.3.3 Main Steam Lines A and B, and Main Feedwater Lines A and B 97 3.3.3.3.3.1 Results - Steel Rod 97 3.3.3.3.3.2 Results - Utility Pole 97 3.3.3.3.3.3 Failure of Block Walls 97 3.3.3.3.4 Surface of the Spent Fuel Pool 98 3.3.3.3.5 Diesel Generators and Their Fuel Supply 98 3.3.3.3.6 Relay Room 98 3.3.3.3.7 Service Water System 99 3.3.3.3.8 Standby Auxiliary Feedwater System 99 3.3.3.3.9 Instrumentation 99 3.3.3.3.10 Cable Tunnel 100 3.3.4 DESIGN TORNADO 100 3.3.4.1 Introduction 100 3.3.4.2 Safety Assessment 100 3.3.4.3 Reserve Plant Capacity 101 3.3.4.4 System Reserve Capacity 102 3.3.5 STRUCTURAL UPGRADE PROGRAM 103 3.3.5.1 Introduction 103 3.3.5.2 Criteria Changes 103 3.3.5.2.1 First Stage Review 103 3.3.5.2.2 Second Stage Review 104 3.3.5.3 Stability Evaluation 105 3.3.5.3.1 Primary Members 105 3.3.5.3.2 Connections and Anchorages 105 3.3.5.4 NRC Technical Evaluation Report (SEP Topic III-2) Open Items 106 3.3.5.4.1 Effective Tornado Loadings 106 3.3.5.4.2 Structural Loadings 107


GINNA/UFSAR 3.5.1.3.1.9  Main Steam System                                                    128 3.5.1.3.1.10 Feedwater and Condensate Systems                                      129 3.5.1.3.1.11 Preferred Auxiliary Feedwater System                                  129 3.5.1.3.1.12 Standby Auxiliary Feedwater System (SAFW)                            129 3.5.1.3.1.13 Ventilation Systems for Vital Areas                                  130 3.5.1.3.1.14 Combustible Gas Control System                                        130 3.5.1.3.2    Systems Whose Failure May Result in Activity Release                  130 3.5.1.3.2.1 Spent Fuel Pool Cooling System                                        130 3.5.1.3.2.2  Sampling System                                                      131 3.5.1.3.2.3  Waste Disposal System                                                131 3.5.1.3.2.4 Containment Shutdown Purge System                                    131 3.5.1.3.2.5  Instrument and Service Air Systems                                    131 3.5.1.3.3   Electrical Systems                                                    132 3.5.1.3.3.1  Diesel Generators                                                    132 3.5.1.3.3.2  Station Batteries                                                    132 3.5.1.3.3.3  480-Volt Switchgear                                                  132 3.5.1.3.3.4  Control Room                                                          132 3.5.1.3.3.5 Cable Spreading/Relay Room                                            132 3.5.2       EXTERNALLY GENERATED MISSILES                                        133 3.5.2.1     Tornado Missiles                                                      133 3.5.2.2     Site Proximity Missiles                                               133 3.5.2.2.1   Design Criteria                                                      133 3.5.2.2.2   Nearby Hazardous Activities                                          133 3.5.2.2.3   Aircraft Hazards                                                      134 3.6          PROTECTION AGAINST THE DYNAMIC EFFECTS ASSOCI- ATED WITH THE POSTULATED RUPTURE OF PIPING                                136 3.6.1       POSTULATED PIPING FAILURES IN FLUID SYSTEMS INSIDE CONTAINMENT                                                          136 3.6.1.1     Evaluation Procedure                                                  136 3.6.1.1.1   Pipe Selection                                                        136 3.6.1.1.2   Effects-Oriented Evaluation                                          137 3.6.1.1.3   Mechanistic Evaluation                                                137 3.6.1.2      Required Equipment                                                    138 3.6.1.3     Safety Analysis                                                      138 3.6.1.3.1   Single-Failure Considerations                                        138 3.6.1.3.1.1  Introduction                                                          138 3.6.1.3.1.2  Containment Fan Coolers                                              139 Page 9 of 39                  Revision 28 5/2019
GINNA/UFSAR Page 8 of 39 Revision 28 5/2019 3.3.5.4.3 Structural Acceptance Criteria 107 3.3.5.4.4 Structural Systems 107 3.3.5.5 SEP Topic III-7.B, Loads, Load Combinations, and Design Criteria 108 3.3.5.6 Diesel Generator Component Operability 109 3.3.5.7 Conclusions 109 3.3.6 INTERMEDIATE BUILDING BLOCK WALL REINFORCEMENT 110 Table 3.3-1 PRIMARY MEMBER FAILURES PER LOADING COMBINATION 114 3.4 WATER LEVEL (FLOOD) DESIGN 115 3.4.1 FLOOD PROTECTION 115 3.4.1.1 Flood Protection Measures for Seismic Category I Structures 115 3.4.1.1.1 Introduction 115 3.4.1.1.2 Lake Ontario Flood Protection 115 3.4.1.1.3 Deer Creek Flood Protection 116 3.4.1.2 Permanent Dewatering System 116 3.4.2 FLOODING DUE TO FAILURE OF TANKS 117 3.4.3 ROOF DRAINAGE 117 3.5 MISSILE PROTECTION 120 3.5.1 INTERNALLY GENERATED MISSILES 120 3.5.1.1 Introduction 120 3.5.1.1.1 Design Criteria 120 3.5.1.1.2 Systematic Evaluation Program 120 3.5.1.2 Turbine Missiles 121 3.5.1.2.1 Introduction 121 3.5.1.2.2 Turbine Inspection Program 122 3.5.1.2.3 Systematic Evaluation Program Topic III-4 122 3.5.1.3 Effects of Internally Generated Missiles on Systems and Equipment 123 3.5.1.3.1 Systems Needed to Perform Safety Functions 123 3.5.1.3.1.1 Reactor Coolant System 123 3.5.1.3.1.2 Emergency Core Cooling System (ECCS) 124 3.5.1.3.1.3 Containment Heat Removal and Atmosphere Cleanup Systems 125 3.5.1.3.1.4 Chemical and Volume Control System 126 3.5.1.3.1.5 Residual Heat Removal System 127 3.5.1.3.1.6 Component Cooling Water System 127 3.5.1.3.1.7 Service Water System 127 3.5.1.3.1.8 Diesel-Generator Auxiliary Systems 128


GINNA/UFSAR 3.6.1.3.1.3  Low-Pressure Safety Injection Isolation Valves                          139 3.6.1.3.2    High-Energy Line Break Effects                                          139 3.6.1.3.2.1  Introduction                                                            139 3.6.1.3.2.2  Alternate Charging                                                      140 3.6.1.3.2.3  Residual Heat Removal Pump Suction                                      140 3.6.1.3.2.4  Reactor Coolant Pump Seal-Water to Seals                                141 3.6.1.3.2.5 Letdown Line                                                            141 3.6.1.3.2.6  Charging Line                                                          142 3.6.1.3.2.7  Steam Generator Blowdown Lines                                          143 3.6.1.3.2.8  Main Steam and Feedwater Lines                                          143 3.6.1.3.2.9  Residual Heat Removal Pump Discharge Line                              146 3.6.1.3.2.10 Standby Auxiliary Feedwater Lines                                      146 3.6.1.3.2.11 Accumulator Lines and Branch Lines                                      146 3.6.1.3.2.12 Auxiliary Spray Line                                                    149 3.6.1.3.2.13 Reactor Coolant System                                                  150 3.6.1.3.2.14 Pressurizer Surge Line                                                  150 3.6.1.3.2.15 Pressurizer Spray Lines                                                153 3.6.1.3.2.16 Pressurizer Safety and Relief Lines                                    153 3.6.2        POSTULATED PIPING FAILURES IN FLUID SYSTEMS OUTSIDE CONTAINMENT                                                            154 3.6.2.1      Introduction and Summary                                                154 3.6.2.1.1    Initial Evaluation                                                      154 3.6.2.1.2   Systematic Evaluation Program Reevaluation                              155 3.6.2.2     Evaluation Procedure                                                    156 3.6.2.2.1    Initial Evaluation                                                      156 3.6.2.2.2    Systematic Evaluation Program Reevaluation                              157 3.6.2.3      Analysis Criteria                                                      158 3.6.2.3.1   December 18, 1972, AEC Letter Evaluation Criteria                      158 3.6.2.3.2    Systematic Evaluation Program Criteria                                  158 3.6.2.3.2.1  High-Energy Fluid Systems Piping                                        158 3.6.2.3.2.2 Moderate-Energy Fluid System Piping                                    160 3.6.2.3.2.3  Type of Breaks and Leakage Cracks in Fluid System Piping                161 3.6.2.3.2.4  Assumptions                                                            162 3.6.2.3.2.5  Effects of Piping Failure                                              163 3.6.2.4      Analysis in Response to December 18, 1972, AEC Letter                  163 3.6.2.4.1    Rupture Load Analysis                                                  163 Page 10 of 39                    Revision 28 5/2019
GINNA/UFSAR Page 9 of 39 Revision 28 5/2019 3.5.1.3.1.9 Main Steam System 128 3.5.1.3.1.10 Feedwater and Condensate Systems 129 3.5.1.3.1.11 Preferred Auxiliary Feedwater System 129 3.5.1.3.1.12 Standby Auxiliary Feedwater System (SAFW) 129 3.5.1.3.1.13 Ventilation Systems for Vital Areas 130 3.5.1.3.1.14 Combustible Gas Control System 130 3.5.1.3.2 Systems Whose Failure May Result in Activity Release 130 3.5.1.3.2.1 Spent Fuel Pool Cooling System 130 3.5.1.3.2.2 Sampling System 131 3.5.1.3.2.3 Waste Disposal System 131 3.5.1.3.2.4 Containment Shutdown Purge System 131 3.5.1.3.2.5 Instrument and Service Air Systems 131 3.5.1.3.3 Electrical Systems 132 3.5.1.3.3.1 Diesel Generators 132 3.5.1.3.3.2 Station Batteries 132 3.5.1.3.3.3 480-Volt Switchgear 132 3.5.1.3.3.4 Control Room 132 3.5.1.3.3.5 Cable Spreading/Relay Room 132 3.5.2 EXTERNALLY GENERATED MISSILES 133 3.5.2.1 Tornado Missiles 133 3.5.2.2 Site Proximity Missiles 133 3.5.2.2.1 Design Criteria 133 3.5.2.2.2 Nearby Hazardous Activities 133 3.5.2.2.3 Aircraft Hazards 134 3.6 PROTECTION AGAINST THE DYNAMIC EFFECTS ASSOCI-ATED WITH THE POSTULATED RUPTURE OF PIPING 136 3.6.1 POSTULATED PIPING FAILURES IN FLUID SYSTEMS INSIDE CONTAINMENT 136 3.6.1.1 Evaluation Procedure 136 3.6.1.1.1 Pipe Selection 136 3.6.1.1.2 Effects-Oriented Evaluation 137 3.6.1.1.3 Mechanistic Evaluation 137 3.6.1.2 Required Equipment 138 3.6.1.3 Safety Analysis 138 3.6.1.3.1 Single-Failure Considerations 138 3.6.1.3.1.1 Introduction 138 3.6.1.3.1.2 Containment Fan Coolers 139


GINNA/UFSAR 3.6.2.4.2  Main Steam System Load Analysis                                              164 3.6.2.4.3   Feedwater System Load Analysis                                              164 3.6.2.4.4  Jet Impingement Load Analysis                                                164 3.6.2.4.5  Pipe Whip Analysis for Main Steam and Feedwater Piping                      165 3.6.2.4.5.1 Analytical Methods                                                          165 3.6.2.4.5.2 Results of Analysis                                                          165 3.6.2.4.6   Blowdown Analysis                                                            166 3.6.2.4.6.1 Main Steam Blowdown Analysis                                                166 3.6.2.4.6.2 Feedwater Blowdown Analysis                                                  166 3.6.2.4.7  Compartment Pressurization Analysis                                          167 3.6.2.4.7.1 Main Steam Line Ruptures                                                    167 3.6.2.4.7.2 Building Pressurization for a Branch Line Rupture                            167 3.6.2.4.8  Flooding Analysis                                                            167 3.6.2.4.8.1 Intermediate Building Flooding                                              167 3.6.2.4.8.2 Screen House and Turbine Building Flooding                                  168 3.6.2.5    Systematic Evaluation Program Analysis                                      168 3.6.2.5.1  Zone Reevaluation Performed as Part of the Systematic Evaluation Program Review                                                              168 3.6.2.5.1.1 Screen House                                                                168 3.6.2.5.1.2 Intermediate Building                                                        169 3.6.2.5.1.3 Turbine Building Main Steam and Main Feedwater Line Breaks                  170 3.6.2.5.1.4 Structural Analysis of the Turbine Building for Pressurization              171 3.6.2.5.1.5 Battery Room/Mechanical Equipment Room Flooding                              173 3.6.2.5.1.6 Auxiliary Feedwater Line Breaks on the 253-Ft Elevation of the Inter- mediate Building                                                            173 3.6.2.5.1.7 Relay Room and Air Handling Room                                            173 3.6.2.5.1.8 Auxiliary Building                                                          174 3.6.2.5.2   Main Steam Safety and Relief Valves                                          175 3.6.2.5.2.1 Pipe Failures in the Intermediate Building                                  175 3.6.2.5.2.2  Pipe Failures in the Turbine Building                                      176 3.6.2.5.2.3  Decay Heat Removal Following Blowdown from Both Steam Genera-              177 tors 3.6.2.5.2.4 Conclusions                                                                178 Table 3.6-1 LINES PENETRATING CONTAINMENT WHICH NORMALLY OR                            182 OCCASIONALLY EXPERIENCE HIGH-ENERGY SERVICE CONDITIONS Page 11 of 39                        Revision 28 5/2019
GINNA/UFSAR Page 10 of 39 Revision 28 5/2019 3.6.1.3.1.3 Low-Pressure Safety Injection Isolation Valves 139 3.6.1.3.2 High-Energy Line Break Effects 139 3.6.1.3.2.1 Introduction 139 3.6.1.3.2.2 Alternate Charging 140 3.6.1.3.2.3 Residual Heat Removal Pump Suction 140 3.6.1.3.2.4 Reactor Coolant Pump Seal-Water to Seals 141 3.6.1.3.2.5 Letdown Line 141 3.6.1.3.2.6 Charging Line 142 3.6.1.3.2.7 Steam Generator Blowdown Lines 143 3.6.1.3.2.8 Main Steam and Feedwater Lines 143 3.6.1.3.2.9 Residual Heat Removal Pump Discharge Line 146 3.6.1.3.2.10 Standby Auxiliary Feedwater Lines 146 3.6.1.3.2.11 Accumulator Lines and Branch Lines 146 3.6.1.3.2.12 Auxiliary Spray Line 149 3.6.1.3.2.13 Reactor Coolant System 150 3.6.1.3.2.14 Pressurizer Surge Line 150 3.6.1.3.2.15 Pressurizer Spray Lines 153 3.6.1.3.2.16 Pressurizer Safety and Relief Lines 153 3.6.2 POSTULATED PIPING FAILURES IN FLUID SYSTEMS OUTSIDE CONTAINMENT 154 3.6.2.1 Introduction and Summary 154 3.6.2.1.1 Initial Evaluation 154 3.6.2.1.2 Systematic Evaluation Program Reevaluation 155 3.6.2.2 Evaluation Procedure 156 3.6.2.2.1 Initial Evaluation 156 3.6.2.2.2 Systematic Evaluation Program Reevaluation 157 3.6.2.3 Analysis Criteria 158 3.6.2.3.1 December 18, 1972, AEC Letter Evaluation Criteria 158 3.6.2.3.2 Systematic Evaluation Program Criteria 158 3.6.2.3.2.1 High-Energy Fluid Systems Piping 158 3.6.2.3.2.2 Moderate-Energy Fluid System Piping 160 3.6.2.3.2.3 Type of Breaks and Leakage Cracks in Fluid System Piping 161 3.6.2.3.2.4 Assumptions 162 3.6.2.3.2.5 Effects of Piping Failure 163 3.6.2.4 Analysis in Response to December 18, 1972, AEC Letter 163 3.6.2.4.1 Rupture Load Analysis 163


GINNA/UFSAR Table 3.6-2 LINES INSIDE CONTAINMENT BUT NOT PENETRATING                            184 CONTAINMENT WHICH NORMALLY OR OCCASIONALLY EXPERIENCE HIGH-ENERGY SERVICE CONDITIONS Table 3.6-3 CONTAINMENT PIPE DATA                                                    185 3.7        SEISMIC DESIGN                                                          187 3.7.1      SEISMIC INPUT                                                            187 3.7.1.1    Introduction                                                            187 3.7.1.1.1   Original Seismic Classification                                          187 3.7.1.1.2   Seismic Reevaluation                                                    188 3.7.1.1.2.1 Scope of Reevaluation                                                    188 3.7.1.1.2.2 Reevaluation Criteria                                                    188 3.7.1.2     Design Response Spectra                                                  189 3.7.1.3    Design Time-History                                                      189 3.7.1.4     Critical Damping Values                                                  19 3.7.1.5    Supporting Media for Seismic Category I Structures                        190 3.7.2       SEISMIC SYSTEM ANALYSIS                                                  191 3.7.2.1     Seismic Analysis Methods                                                191 3.7.2.1.1  Original Seismic Analysis                                               191 3.7.2.1.2  Seismic Reevaluation                                                     192 3.7.2.2    Natural Frequencies and Response Loads                                  193 3.7.2.3    Procedure Used for Mathematical Modeling                                  193 3.7.2.4    Soil-Structure Interaction                                                193 3.7.2.5     Development of Floor Response Spectra                                    193 3.7.2.6    Combination of Earthquake Directional Components                        194 3.7.2.7    Combination of Modal Responses                                            194 3.7.2.8    Interaction of Nonseismic Structures with Seismic Category I            194 Structures 3.7.2.9    Use of Constant Vertical Static Factors                                  195 3.7.3      SEISMIC SUBSYSTEM ANALYSIS                                              195 3.7.3.1     Seismic Analysis Methods                                                195 3.7.3.1.1  Original Design                                                          195 3.7.3.1.1.1 Piping and Tanks                                                        195 3.7.3.1.1.2 Steam Generator                                                          196 3.7.3.1.1.3 Control Rod Drive Mechanisms                                            196 3.7.3.1.1.4 Reactor Internals                                                        196 3.7.3.1.1.5 Reactor Vessel                                                          197 Page 12 of 39                    Revision 28 5/2019
GINNA/UFSAR Page 11 of 39 Revision 28 5/2019 3.6.2.4.2 Main Steam System Load Analysis 164 3.6.2.4.3 Feedwater System Load Analysis 164 3.6.2.4.4 Jet Impingement Load Analysis 164 3.6.2.4.5 Pipe Whip Analysis for Main Steam and Feedwater Piping 165 3.6.2.4.5.1 Analytical Methods 165 3.6.2.4.5.2 Results of Analysis 165 3.6.2.4.6 Blowdown Analysis 166 3.6.2.4.6.1 Main Steam Blowdown Analysis 166 3.6.2.4.6.2 Feedwater Blowdown Analysis 166 3.6.2.4.7 Compartment Pressurization Analysis 167 3.6.2.4.7.1 Main Steam Line Ruptures 167 3.6.2.4.7.2 Building Pressurization for a Branch Line Rupture 167 3.6.2.4.8 Flooding Analysis 167 3.6.2.4.8.1 Intermediate Building Flooding 167 3.6.2.4.8.2 Screen House and Turbine Building Flooding 168 3.6.2.5 Systematic Evaluation Program Analysis 168 3.6.2.5.1 Zone Reevaluation Performed as Part of the Systematic Evaluation Program Review 168 3.6.2.5.1.1 Screen House 168 3.6.2.5.1.2 Intermediate Building 169 3.6.2.5.1.3 Turbine Building Main Steam and Main Feedwater Line Breaks 170 3.6.2.5.1.4 Structural Analysis of the Turbine Building for Pressurization 171 3.6.2.5.1.5 Battery Room/Mechanical Equipment Room Flooding 173 3.6.2.5.1.6 Auxiliary Feedwater Line Breaks on the 253-Ft Elevation of the Inter-mediate Building 173 3.6.2.5.1.7 Relay Room and Air Handling Room 173 3.6.2.5.1.8 Auxiliary Building 174 3.6.2.5.2 Main Steam Safety and Relief Valves 175 3.6.2.5.2.1 Pipe Failures in the Intermediate Building 175 3.6.2.5.2.2 Pipe Failures in the Turbine Building 176 3.6.2.5.2.3 Decay Heat Removal Following Blowdown from Both Steam Genera-tors 177 3.6.2.5.2.4 Conclusions 178 Table 3.6-1 LINES PENETRATING CONTAINMENT WHICH NORMALLY OR OCCASIONALLY EXPERIENCE HIGH-ENERGY SERVICE CONDITIONS 182


GINNA/UFSAR 3.7.3.1.1.6 Pressurizer                                                            197 3.7.3.1.2   Seismic Reevaluation                                                  198 3.7.3.2      Basis for Selection of Frequencies                                    199 3.7.3.3     Use of Equivalent Static Analysis                                      199 3.7.3.4      Three Components of Earthquake Motion                                  199 3.7.3.5      Combination of Modal Responses                                        200 3.7.3.6      Analytical Procedures for Piping                                      200 3.7.3.6.1   Residual Heat Removal System Line from Reactor Coolant System Loop A to Containment                                                  200 3.7.3.6.2   Steam Line from Steam Generator B to Containment                      201 3.7.3.6.3    Pressurizer Safety and Relief Lines                                    201 3.7.3.6.3.1  Analytical Methods                                                    201 3.7.3.6.3.2 Transfer Matrix Method                                                202 3.7.3.6.3.3  Stiffness Matrix Formulation                                          203 3.7.3.7      Seismic Piping Upgrade Program                                        204 3.7.3.7.1    Program Scope                                                          204 3.7.3.7.2   Piping Selection Criteria                                              204 3.7.3.7.3    Selected Lines                                                        205 3.7.3.7.3.1 Reactor Coolant System                                                205 3.7.3.7.3.2 Main Steam                                                            205 3.7.3.7.3.3  Main Feedwater                                                        205 3.7.3.7.3.4 Auxiliary Feedwater                                                    205 3.7.3.7.3.5 Safety Injection                                                      206 3.7.3.7.3.6 Residual Heat Removal                                                  206 3.7.3.7.3.7 Containment Spray                                                      206 3.7.3.7.3.8 Chemical and Volume Control System                                    207 3.7.3.7.3.9 Steam Generator Blowdown                                              207 3.7.3.7.3.10 Service Water System                                                  207 3.7.3.7.3.11 Component Cooling Water                                                208 3.7.3.7.3.12 Standby Auxiliary Feedwater                                            209 3.7.3.7.4    Codes and Standards                                                    209 3.7.3.7.5    Analytical Procedures                                                  209 3.7.3.7.5.1 General                                                                209 3.7.3.7.5.2  Damping Values                                                        209 3.7.3.7.5.3  Combination of Modal Responses                                        210 3.7.3.7.5.4  Safe Shutdown Earthquake Stresses                                      212 Page 13 of 39                  Revision 28 5/2019
GINNA/UFSAR Page 12 of 39 Revision 28 5/2019 Table 3.6-2 LINES INSIDE CONTAINMENT BUT NOT PENETRATING CONTAINMENT WHICH NORMALLY OR OCCASIONALLY EXPERIENCE HIGH-ENERGY SERVICE CONDITIONS 184 Table 3.6-3 CONTAINMENT PIPE DATA 185 3.7 SEISMIC DESIGN 187 3.7.1 SEISMIC INPUT 187 3.7.1.1 Introduction 187 3.7.1.1.1 Original Seismic Classification 187 3.7.1.1.2 Seismic Reevaluation 188 3.7.1.1.2.1 Scope of Reevaluation 188 3.7.1.1.2.2 Reevaluation Criteria 188 3.7.1.2 Design Response Spectra 189 3.7.1.3 Design Time-History 189 3.7.1.4 Critical Damping Values 19 3.7.1.5 Supporting Media for Seismic Category I Structures 190 3.7.2 SEISMIC SYSTEM ANALYSIS 191 3.7.2.1 Seismic Analysis Methods 191 3.7.2.1.1 Original Seismic Analysis 191 3.7.2.1.2 Seismic Reevaluation 192 3.7.2.2 Natural Frequencies and Response Loads 193 3.7.2.3 Procedure Used for Mathematical Modeling 193 3.7.2.4 Soil-Structure Interaction 193 3.7.2.5 Development of Floor Response Spectra 193 3.7.2.6 Combination of Earthquake Directional Components 194 3.7.2.7 Combination of Modal Responses 194 3.7.2.8 Interaction of Nonseismic Structures with Seismic Category I Structures 194 3.7.2.9 Use of Constant Vertical Static Factors 195 3.7.3 SEISMIC SUBSYSTEM ANALYSIS 195 3.7.3.1 Seismic Analysis Methods 195 3.7.3.1.1 Original Design 195 3.7.3.1.1.1 Piping and Tanks 195 3.7.3.1.1.2 Steam Generator 196 3.7.3.1.1.3 Control Rod Drive Mechanisms 196 3.7.3.1.1.4 Reactor Internals 196 3.7.3.1.1.5 Reactor Vessel 197


GINNA/UFSAR 3.7.3.7.5.5  Small Piping Analysis                                   213 3.7.3.7.5.6 Branch Line Analysis                                    213 3.7.3.7.5.7 Piping Beyond Scope of Upgrade Program                  213 3.7.3.7.6   Piping System Models                                    214 3.7.3.7.7   Valve Model                                              215 3.7.3.7.8    Equipment Model                                          215 3.7.3.7.9    Interaction Effects                                      215 3.7.3.7.10  Support Model                                            215 3.7.3.7.10.1 Deviations                                              215 3.7.3.7.10.2 Support-Welded Attachments                              216 3.7.4        SEISMIC INSTRUMENTATION                                  217 Table 3.7-1  ORIGINAL AND CURRENT RECOMMENDED DAMPING                219 VALUES Table 3.7-2  MODAL FREQUENCIES OF THE INTERCONNECTED                  220 BUILDING MODEL Table 3.7-3 EQUIPMENT AND LOCATIONS WHERE IN-STRUCTURE              222 SPECTRA WERE GENERATED FOR THE SYSTEMATIC EVALUATION PROGRAM 3.8          DESIGN OF SEISMIC CATEGORY I STRUCTURES                  223 3.8.1        CONTAINMENT                                              223 3.8.1.1      General Description                                      223 3.8.1.1.1    Containment Structure                                    223 3.8.1.1.2    Waterproofing                                            224 3.8.1.1.3   Rock Anchors                                            224 3.8.1.1.4    Construction Sequence                                    224 3.8.1.1.5    Steel Reinforcement                                      226 3.8.1.2      Mechanical Design Bases                                  227 3.8.1.2.1    General                                                  227 3.8.1.2.2    Design Loads                                            227 3.8.1.2.3    Design Stress Criteria                                  228 3.8.1.2.3.1 Limiting Loads                                          228 3.8.1.2.3.2 Load Factors                                            229 3.8.1.2.3.3 Maximum Thermal Load                                    229 3.8.1.2.4   Load Capacity                                            230 Page 14 of 39    Revision 28 5/2019
GINNA/UFSAR Page 13 of 39 Revision 28 5/2019 3.7.3.1.1.6 Pressurizer 197 3.7.3.1.2 Seismic Reevaluation 198 3.7.3.2 Basis for Selection of Frequencies 199 3.7.3.3 Use of Equivalent Static Analysis 199 3.7.3.4 Three Components of Earthquake Motion 199 3.7.3.5 Combination of Modal Responses 200 3.7.3.6 Analytical Procedures for Piping 200 3.7.3.6.1 Residual Heat Removal System Line from Reactor Coolant System Loop A to Containment 200 3.7.3.6.2 Steam Line from Steam Generator B to Containment 201 3.7.3.6.3 Pressurizer Safety and Relief Lines 201 3.7.3.6.3.1 Analytical Methods 201 3.7.3.6.3.2 Transfer Matrix Method 202 3.7.3.6.3.3 Stiffness Matrix Formulation 203 3.7.3.7 Seismic Piping Upgrade Program 204 3.7.3.7.1 Program Scope 204 3.7.3.7.2 Piping Selection Criteria 204 3.7.3.7.3 Selected Lines 205 3.7.3.7.3.1 Reactor Coolant System 205 3.7.3.7.3.2 Main Steam 205 3.7.3.7.3.3 Main Feedwater 205 3.7.3.7.3.4 Auxiliary Feedwater 205 3.7.3.7.3.5 Safety Injection 206 3.7.3.7.3.6 Residual Heat Removal 206 3.7.3.7.3.7 Containment Spray 206 3.7.3.7.3.8 Chemical and Volume Control System 207 3.7.3.7.3.9 Steam Generator Blowdown 207 3.7.3.7.3.10 Service Water System 207 3.7.3.7.3.11 Component Cooling Water 208 3.7.3.7.3.12 Standby Auxiliary Feedwater 209 3.7.3.7.4 Codes and Standards 209 3.7.3.7.5 Analytical Procedures 209 3.7.3.7.5.1 General 209 3.7.3.7.5.2 Damping Values 209 3.7.3.7.5.3 Combination of Modal Responses 210 3.7.3.7.5.4 Safe Shutdown Earthquake Stresses 212


GINNA/UFSAR 3.8.1.2.4.1  Reinforced Concrete                                                  230 3.8.1.2.4.2  Prestressed Concrete                                                232 3.8.1.2.4.3 Liner                                                                233 3.8.1.2.4.4  Rock                                                                234 3.8.1.2.5    Codes and Standards                                                  234 3.8.1.2.5    Codes and Standards Steam Generator Replacement (Dome                237 Opening Repairs 3.8.1.3    Seismic Design                                                        239 3.8.1.3.1  Initial Seismic Design                                                239 3.8.1.3.2  Seismic Reanalysis                                                    240 3.8.1.4    Containment Detailed Design                                            240 3.8.1.4.1  Stress Analysis                                                        240 3.8.1.4.1.1 Analysis Methods                                                      240 3.8.1.4.1.2 Analysis Results                                                      241 3.8.1.4.1.3 Analysis for Steam Generator Replacement Dome Openings                242 3.8.1.4.2   Rock Anchors                                                          242 3.8.1.4.2.1 Rock Anchor Design                                                    242 3.8.1.4.2.2 Preinstallation Grouting Test                                          243 3.8.1.4.2.3 Previous Applications                                                  244 3.8.1.4.2.4 Rock Hold-Down Capacity                                                244 3.8.1.4.2.5 Hold-Down Factor of Safety                                            246 3.8.1.4.2.6 Installation                                                          246 3.8.1.4.3   Tendons                                                                247 3.8.1.4.3.1 General Design                                                        247 3.8.1.4.3.2 Seismic Considerations                                                249 3.8.1.4.3.3 Stressing Procedure                                                    251 3.8.1.4.3.4 Corrosion Protection                                                  252 3.8.1.4.4  Hinge Design                                                           254 3.8.1.4.4.1 Tension Bars                                                          254 3.8.1.4.4.2 Liner Knuckle                                                          256 3.8.1.4.4.3 Elastomer Bearing Pads                                                257 3.8.1.4.5  Concrete                                                              259 3.8.1.4.5.1 Radial Shear                                                          259 3.8.1.4.5.2 Longitudinal Shears                                                    259 3.8.1.4.5.3 Horizontal Shear                                                      260 3.8.1.4.5.4 Anchorage Stresses                                                    261 Page 15 of 39                Revision 28 5/2019
GINNA/UFSAR Page 14 of 39 Revision 28 5/2019 3.7.3.7.5.5 Small Piping Analysis 213 3.7.3.7.5.6 Branch Line Analysis 213 3.7.3.7.5.7 Piping Beyond Scope of Upgrade Program 213 3.7.3.7.6 Piping System Models 214 3.7.3.7.7 Valve Model 215 3.7.3.7.8 Equipment Model 215 3.7.3.7.9 Interaction Effects 215 3.7.3.7.10 Support Model 215 3.7.3.7.10.1 Deviations 215 3.7.3.7.10.2 Support-Welded Attachments 216 3.7.4 SEISMIC INSTRUMENTATION 217 Table 3.7-1 ORIGINAL AND CURRENT RECOMMENDED DAMPING VALUES 219 Table 3.7-2 MODAL FREQUENCIES OF THE INTERCONNECTED BUILDING MODEL 220 Table 3.7-3 EQUIPMENT AND LOCATIONS WHERE IN-STRUCTURE SPECTRA WERE GENERATED FOR THE SYSTEMATIC EVALUATION PROGRAM 222 3.8 DESIGN OF SEISMIC CATEGORY I STRUCTURES 223 3.8.1 CONTAINMENT 223 3.8.1.1 General Description 223 3.8.1.1.1 Containment Structure 223 3.8.1.1.2 Waterproofing 224 3.8.1.1.3 Rock Anchors 224 3.8.1.1.4 Construction Sequence 224 3.8.1.1.5 Steel Reinforcement 226 3.8.1.2 Mechanical Design Bases 227 3.8.1.2.1 General 227 3.8.1.2.2 Design Loads 227 3.8.1.2.3 Design Stress Criteria 228 3.8.1.2.3.1 Limiting Loads 228 3.8.1.2.3.2 Load Factors 229 3.8.1.2.3.3 Maximum Thermal Load 229 3.8.1.2.4 Load Capacity 230


GINNA/UFSAR 3.8.1.4.5.5 Shell Stress Analytical Procedures                                      262 3.8.1.4.6  Insulation                                                              267 3.8.1.4.Liner                                                                   268 3.8.1.4.7.1 Vibrations                                                              268 3.8.1.4.7.2 Anchorage Fatigue Analysis                                              268 3.8.1.4.7.3 Base Slab Liner                                                        268 3.8.1.4.7.4 Liner Stresses                                                          269 3.8.1.4.7.5 Liner Buckling                                                          270 3.8.1.4.7.6 Liner Corrosion Allowance                                              274 3.8.1.5    Penetrations                                                            274 3.8.1.5.1   General                                                                274 3.8.1.5.2   Electrical Penetrations                                                275 3.8.1.5.3   Piping Penetrations                                                    276 3.8.1.5.4  Access Hatch and Personnel Locks                                        276 3.8.1.5.5  Fuel Transfer Penetration                                              277 3.8.1.5.6  Typical Penetration Analysis                                            278 3.8.1.5.6.1 Loss-of-Coolant Accident                                                278 3.8.1.5.6.2 Loss-of-Coolant Accident Plus Earthquake                                280 3.8.1.5.7  Penetration Reinforcement Analyzed for Pipe Rupture                    281 3.8.1.6     Quality Control and Material Specifications                            282 3.8.1.6.1  Concrete                                                                282 3.8.1.6.1.1 Ultimate Compressive Strength                                          282 3.8.1.6.1.2 Quality Control Measures                                                282 3.8.1.6.1.3 Concrete Suppliers                                                      283 3.8.1.6.1.4 Concrete Specifications                                                284 3.8.1.6.1.5 Admixtures                                                              286 3.8.1.6.1.6 Replacement Concrete for the 1996 Steam Generator Replacement          287 3.8.1.6.2   Mild Steel Reinforcement                                                288 3.8.1.6.3   Cadwell Splices                                                        289 3.8.1.6.4   Radial Tension Bars                                                    290 3.8.1.6.5   Containment Liner                                                      290 3.8.1.6.5.1 Fabrication and Workmanship                                            290 3.8.1.6.5.2 Penetrations                                                            291 3.8.1.6.5.3 Welding                                                                291 3.8.1.6.5.4 Erection Tolerances                                                    292 3.8.1.6.5.5 Painting                                                                292 Page 16 of 39                  Revision 28 5/2019
GINNA/UFSAR Page 15 of 39 Revision 28 5/2019 3.8.1.2.4.1 Reinforced Concrete 230 3.8.1.2.4.2 Prestressed Concrete 232 3.8.1.2.4.3 Liner 233 3.8.1.2.4.4 Rock 234 3.8.1.2.5 Codes and Standards 234 3.8.1.2.5 Codes and Standards Steam Generator Replacement (Dome 237 Opening Repairs 3.8.1.3 Seismic Design 239 3.8.1.3.1 Initial Seismic Design 239 3.8.1.3.2 Seismic Reanalysis 240 3.8.1.4 Containment Detailed Design 240 3.8.1.4.1 Stress Analysis 240 3.8.1.4.1.1 Analysis Methods 240 3.8.1.4.1.2 Analysis Results 241 3.8.1.4.1.3 Analysis for Steam Generator Replacement Dome Openings 242 3.8.1.4.2 Rock Anchors 242 3.8.1.4.2.1 Rock Anchor Design 242 3.8.1.4.2.2 Preinstallation Grouting Test 243 3.8.1.4.2.3 Previous Applications 244 3.8.1.4.2.4 Rock Hold-Down Capacity 244 3.8.1.4.2.5 Hold-Down Factor of Safety 246 3.8.1.4.2.6 Installation 246 3.8.1.4.3 Tendons 247 3.8.1.4.3.1 General Design 247 3.8.1.4.3.2 Seismic Considerations 249 3.8.1.4.3.3 Stressing Procedure 251 3.8.1.4.3.4 Corrosion Protection 252 3.8.1.4.4 Hinge Design 254 3.8.1.4.4.1 Tension Bars 254 3.8.1.4.4.2 Liner Knuckle 256 3.8.1.4.4.3 Elastomer Bearing Pads 257 3.8.1.4.5 Concrete 259 3.8.1.4.5.1 Radial Shear 259 3.8.1.4.5.2 Longitudinal Shears 259 3.8.1.4.5.3 Horizontal Shear 260 3.8.1.4.5.4 Anchorage Stresses 261


GINNA/UFSAR 3.8.1.6.6   Elastomer Pads                                                            293 3.8.1.6.7   Tendons                                                                  293 3.8.1.6.7.1 Materials                                                                293 3.8.1.6.7.2 Tests and Inspection                                                      294 3.8.1.6.Liner Insulation                                                          294 3.8.1.7     Testing and Inservice Inspection Requirements                            295 3.8.1.7.1  Construction Phase Testing                                                295 3.8.1.7.1.1 Liner                                                                    295 3.8.1.7.1.2 Prestressing Tendons                                                      296 3.8.1.7.1.3 Concrete Reinforcement                                                    296 3.8.1.7.1.4 Concrete                                                                  297 3.8.1.7.1.5 Elastomer Bearing Pads                                                    298 3.8.1.7.1.6 Rock Anchor Tests                                                        299 3.8.1.7.1.7 Large Opening Reinforcements                                              300 3.8.1.7.1.8 Liner Insulation                                                          300 3.8.1.7.2  General Description of the Structural Integrity Test                      300 3.8.1.7.2.1 Pressurization                                                            300 3.8.1.7.2.2 Measurements                                                              301 3.8.1.7.2.3 Test Pressure Justification                                              303 3.8.1.7.2.4 Test Results                                                              303 303 3.8.1.7.2.5 Containment Return to Service Testing Post 1996 Steam Generator Replacement 3.8.1.7.3  Postoperational Surveillance                                              304 3.8.1.7.3.1 Leakage Monitoring                                                        304 3.8.1.7.3.2 Initial Tendon Surveillance Program                                      304 3.8.1.7.3.3 Current Tendon Surveillance Program                                      305 3.8.1.7.3.4 Current Tendon Surveillance Program Results                              306 3.8.1.7.3.5 Test on Rock Anchors                                                      307 3.8.1.7.3.6 Inservice Inspection                                                      307 3.8.2      STRUCTURAL REANALYSIS PROGRAM                                            308 3.8.2.1     Design Codes, Criteria, and Load Combinations - SEP Topic III-7.B        308 3.8.2.1.1  Introduction                                                              308 3.8.2.1.1.1 Seismic Category I Structures                                            308 3.8.2.1.1.2 Structural Codes                                                          309 3.8.2.1.1.3 Code Comparison                                                          311 3.8.2.1.2  Assessment of Design Codes and Load Changes for Concrete                311 Structures Page 17 of 39                    Revision 28 5/2019
GINNA/UFSAR Page 16 of 39 Revision 28 5/2019 3.8.1.4.5.5 Shell Stress Analytical Procedures 262 3.8.1.4.6 Insulation 267 3.8.1.4.7 Liner 268 3.8.1.4.7.1 Vibrations 268 3.8.1.4.7.2 Anchorage Fatigue Analysis 268 3.8.1.4.7.3 Base Slab Liner 268 3.8.1.4.7.4 Liner Stresses 269 3.8.1.4.7.5 Liner Buckling 270 3.8.1.4.7.6 Liner Corrosion Allowance 274 3.8.1.5 Penetrations 274 3.8.1.5.1 General 274 3.8.1.5.2 Electrical Penetrations 275 3.8.1.5.3 Piping Penetrations 276 3.8.1.5.4 Access Hatch and Personnel Locks 276 3.8.1.5.5 Fuel Transfer Penetration 277 3.8.1.5.6 Typical Penetration Analysis 278 3.8.1.5.6.1 Loss-of-Coolant Accident 278 3.8.1.5.6.2 Loss-of-Coolant Accident Plus Earthquake 280 3.8.1.5.7 Penetration Reinforcement Analyzed for Pipe Rupture 281 3.8.1.6 Quality Control and Material Specifications 282 3.8.1.6.1 Concrete 282 3.8.1.6.1.1 Ultimate Compressive Strength 282 3.8.1.6.1.2 Quality Control Measures 282 3.8.1.6.1.3 Concrete Suppliers 283 3.8.1.6.1.4 Concrete Specifications 284 3.8.1.6.1.5 Admixtures 286 3.8.1.6.1.6 Replacement Concrete for the 1996 Steam Generator Replacement 287 3.8.1.6.2 Mild Steel Reinforcement 288 3.8.1.6.3 Cadwell Splices 289 3.8.1.6.4 Radial Tension Bars 290 3.8.1.6.5 Containment Liner 290 3.8.1.6.5.1 Fabrication and Workmanship 290 3.8.1.6.5.2 Penetrations 291 3.8.1.6.5.3 Welding 291 3.8.1.6.5.4 Erection Tolerances 292 3.8.1.6.5.5 Painting 292


GINNA/UFSAR 3.8.2.1.2.1  Columns With Spliced Reinforcing                                          311 3.8.2.1.2.2  Brackets and Corbels (Not on the Containment Shell)                    312 3.8.2.1.2.3  Elements Loaded in Shear With No Diagonal Tension (Shear Friction)      313 3.8.2.1.2.4  Structural Walls - Primary Load Carrying                                314 3.8.2.1.2.5  Elements Subject to Temperature Variations                              315 3.8.2.1.2.6  Areas of Containment Shell Subject to Peripheral Shear                  316 3.8.2.1.2.7  Areas of Containment Shell Subject to Torsion                          317 3.8.2.1.2.8 Brackets and Corbels (On the Containment Shell)                        317 3.8.2.1.2.9  Areas of Containment Shell Subject to Biaxial Tension                  317 3.8.2.1.2.10 Steel Embedments Transmitting Loads to Concrete                         318 3.8.2.1.3    Assessment of Design Codes and Load Changes for Steel Structures        318 3.8.2.1.3.1 Shear Connectors in Composite Beams                                    319 3.8.2.1.3.2  Composite Beams With Steel Deck                                        319 3.8.2.1.3.3  Hybrid Girders                                                          319 3.8.2.1.3.4  Compression Elements                                                    320 3.8.2.1.3.5  Tension Members                                                        320 3.8.2.1.3.6  Coped Beams                                                            320 3.8.2.1.3.7  Moment Connections                                                      321 3.8.2.1.3.8  Lateral Bracing                                                        321 3.8.2.1.3.9  Steel Embedments                                                        321 3.8.2.1.4    Summary                                                                323 3.8.2.2      Structural Reevaluation of Containment                                  323 3.8.2.2.1   Introduction                                                            323 3.8.2.2.2   Containment Temperature                                                324 3.8.2.2.3   Containment Pressure                                                    324 3.8.2.2.4   Seismic Loads                                                          324 3.8.2.2.5   Design and Analysis Procedures                                          325 3.8.2.2.5.1  Containment Model                                                      325 3.8.2.2.5.2  Seismic and Loss-of-Coolant Accident Loads                              325 3.8.2.2.5.3  Pressure, Seismic, and Operating Temperature Loads                      326 3.8.2.2.6    Structural Acceptance Criteria                                          327 3.8.2.2.7    Structural Evaluation of Containment                                    327 3.8.2.2.7.1 Seismic Analysis                                                        327 3.8.2.2.7.2 Load Combinations                                                      328 3.8.2.2.8    Structural Evaluation of Large Openings                                329 3.8.2.2.9    Structural Evaluation of Tension Rods                                  329 Page 18 of 39                    Revision 28 5/2019
GINNA/UFSAR Page 17 of 39 Revision 28 5/2019 3.8.1.6.6 Elastomer Pads 293 3.8.1.6.7 Tendons 293 3.8.1.6.7.1 Materials 293 3.8.1.6.7.2 Tests and Inspection 294 3.8.1.6.8 Liner Insulation 294 3.8.1.7 Testing and Inservice Inspection Requirements 295 3.8.1.7.1 Construction Phase Testing 295 3.8.1.7.1.1 Liner 295 3.8.1.7.1.2 Prestressing Tendons 296 3.8.1.7.1.3 Concrete Reinforcement 296 3.8.1.7.1.4 Concrete 297 3.8.1.7.1.5 Elastomer Bearing Pads 298 3.8.1.7.1.6 Rock Anchor Tests 299 3.8.1.7.1.7 Large Opening Reinforcements 300 3.8.1.7.1.8 Liner Insulation 300 3.8.1.7.2 General Description of the Structural Integrity Test 300 3.8.1.7.2.1 Pressurization 300 3.8.1.7.2.2 Measurements 301 3.8.1.7.2.3 Test Pressure Justification 303 3.8.1.7.2.4 Test Results 303 3.8.1.7.2.5 Containment Return to Service Testing Post 1996 Steam Generator Replacement 303 3.8.1.7.3 Postoperational Surveillance 304 3.8.1.7.3.1 Leakage Monitoring 304 3.8.1.7.3.2 Initial Tendon Surveillance Program 304 3.8.1.7.3.3 Current Tendon Surveillance Program 305 3.8.1.7.3.4 Current Tendon Surveillance Program Results 306 3.8.1.7.3.5 Test on Rock Anchors 307 3.8.1.7.3.6 Inservice Inspection 307 3.8.2 STRUCTURAL REANALYSIS PROGRAM 308 3.8.2.1 Design Codes, Criteria, and Load Combinations - SEP Topic III-7.B 308 3.8.2.1.1 Introduction 308 3.8.2.1.1.1 Seismic Category I Structures 308 3.8.2.1.1.2 Structural Codes 309 3.8.2.1.1.3 Code Comparison 311 3.8.2.1.2 Assessment of Design Codes and Load Changes for Concrete Structures 311


GINNA/UFSAR 3.8.2.3      Dome Liner Reevaluation                                                    329 3.8.2.3.1   Dome Liner Studs                                                          329 3.8.2.3.2   Loads                                                                      329 3.8.2.3.2.1 Loss-of-Coolant Accident                                                  329 3.8.2.3.2.2  Steam Line Break                                                          330 3.8.2.3.3    Model Definition                                                          330 3.8.2.3.3.1  General Dome Model                                                        330 3.8.2.3.3.2  Insulation Termination Region Model                                        330 3.8.2.3.4    Analysis                                                                  331 3.8.2.3.4.1 Controlling Loads                                                          331 3.8.2.3.4.2 Liner-Stud Interaction                                                    331 3.8.2.3.4.3 Effect of Internal Pressure on Liner Buckling                              333 3.8.2.3.5    Results and Conclusions                                                    334 3.8.2.3.5.1  Insulation Termination Region                                              334 3.8.2.3.5.2  General Dome                                                              335 3.8.2.3.5.3  Effect of Internal Pressure on Liner Buckling and Stud Integrity          336 3.8.2.3.6    Overall Conclusions                                                        338 3.8.3       CONTAINMENT INTERNAL STRUCTURES                                            338 3.8.3.1     Description of the Internal Structures                                    338 3.8.3.2     Applicable Codes, Standards, and Specifications                            339 3.8.3.3    Loads and Load Combinations                                                339 3.8.3.3.1  Load Combinations Considered                                                339 3.8.3.3.2   Applicable Load Combinations                                                339 3.8.3.4    Design and Analysis Procedures                                             340 3.8.3.4.1   Original Design                                                            340 3.8.3.4.2   Systematic Evaluation Program Reevaluation                                  341 3.8.3.5     Method of Analysis                                                          341 3.8.3.6     Structural Acceptance Criteria                                             342 3.8.3.7     Structural Evaluation                                                       342 3.8.4      OTHER SEISMIC CATEGORY I STRUCTURES                                        342 3.8.4.1     Description of the Structures                                              342 3.8.4.1.1  Auxiliary Building                                                          343 3.8.4.1.2   Control Building                                                            343 3.8.4.1.3  Diesel Generator Building                                                  344 3.8.4.1.4  Intermediate Building                                                      344 Page 19 of 39                      Revision 28 5/2019
GINNA/UFSAR Page 18 of 39 Revision 28 5/2019 3.8.2.1.2.1 Columns With Spliced Reinforcing 311 3.8.2.1.2.2 Brackets and Corbels (Not on the Containment Shell) 312 3.8.2.1.2.3 Elements Loaded in Shear With No Diagonal Tension (Shear Friction) 313 3.8.2.1.2.4 Structural Walls - Primary Load Carrying 314 3.8.2.1.2.5 Elements Subject to Temperature Variations 315 3.8.2.1.2.6 Areas of Containment Shell Subject to Peripheral Shear 316 3.8.2.1.2.7 Areas of Containment Shell Subject to Torsion 317 3.8.2.1.2.8 Brackets and Corbels (On the Containment Shell) 317 3.8.2.1.2.9 Areas of Containment Shell Subject to Biaxial Tension 317 3.8.2.1.2.10 Steel Embedments Transmitting Loads to Concrete 318 3.8.2.1.3 Assessment of Design Codes and Load Changes for Steel Structures 318 3.8.2.1.3.1 Shear Connectors in Composite Beams 319 3.8.2.1.3.2 Composite Beams With Steel Deck 319 3.8.2.1.3.3 Hybrid Girders 319 3.8.2.1.3.4 Compression Elements 320 3.8.2.1.3.5 Tension Members 320 3.8.2.1.3.6 Coped Beams 320 3.8.2.1.3.7 Moment Connections 321 3.8.2.1.3.8 Lateral Bracing 321 3.8.2.1.3.9 Steel Embedments 321 3.8.2.1.4 Summary 323 3.8.2.2 Structural Reevaluation of Containment 323 3.8.2.2.1 Introduction 323 3.8.2.2.2 Containment Temperature 324 3.8.2.2.3 Containment Pressure 324 3.8.2.2.4 Seismic Loads 324 3.8.2.2.5 Design and Analysis Procedures 325 3.8.2.2.5.1 Containment Model 325 3.8.2.2.5.2 Seismic and Loss-of-Coolant Accident Loads 325 3.8.2.2.5.3 Pressure, Seismic, and Operating Temperature Loads 326 3.8.2.2.6 Structural Acceptance Criteria 327 3.8.2.2.7 Structural Evaluation of Containment 327 3.8.2.2.7.1 Seismic Analysis 327 3.8.2.2.7.2 Load Combinations 328 3.8.2.2.8 Structural Evaluation of Large Openings 329 3.8.2.2.9 Structural Evaluation of Tension Rods 329


GINNA/UFSAR 3.8.4.1.5    Standby Auxiliary Feedwater Building                                  345 3.8.4.1.6    Screen House                                                          345 3.8.4.1.7    Turbine Building                                                      346 3.8.4.1.8   Service Building                                                      346 3.8.4.1.9    Interconnected Building Complex                                        347 3.8.4.1.10  Canister Preparation Building (CPB)                                    347 3.8.4.2     Applicable Codes, Standards, and Specifications                        348 3.8.4.3     Loads and Load Combinations                                            348 3.8.4.4      Design and Analysis Procedures                                        348 3.8.4.4.1    Original Design and Analysis Procedures                                348 3.8.4.4.2    SEP Reevaluation Design and Analysis Procedures                        349 3.8.4.4.2.1 Mathematical Model                                                    349 3.8.4.4.2.2 Method of Analysis                                                    351 3.8.4.4.2.3 Structural Evaluation                                                  352 3.8.4.5      Masonry Walls                                                          353 3.8.4.5.1   Applicable Walls                                                      353 3.8.4.5.2   Loads and Load Combinations                                            353 3.8.4.5.3   Stress Analysis                                                        355 3.8.4.5.3.1 Computer Program                                                      355 3.8.4.5.3.2 Seismic Analysis                                                      355 3.8.4.5.4   Interstory Drift                                                      356 3.8.4.5.5    Multi-Wythe Walls                                                      356 3.8.4.5.6    Block Pullout                                                          356 3.8.4.5.7    Structural Acceptance Criteria - Allowable Stresses                    356 3.8.4.5.7.1  Normal Operating Conditions                                            356 3.8.4.5.7.2  Safe Shutdown Earthquake                                              357 3.8.4.5.8    Evaluation Results                                                    357 3.8.4.5.8.1 General                                                                357 3.8.4.5.8.2 Inelastic Analysis                                                    358 3.8.4.5.8.3 Wall Modifications                                                    358 3.8.4.5.9    Materials, Quality Control, and Special Construction                  359 Techniques 3.8.5        FOUNDATIONS                                                            360 Table 3.8-1a COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT                            365 SEISMIC ANALYSIS - DIMENSIONS AND FORMULA Page 20 of 39                  Revision 28 5/2019
GINNA/UFSAR Page 19 of 39 Revision 28 5/2019 3.8.2.3 Dome Liner Reevaluation 329 3.8.2.3.1 Dome Liner Studs 329 3.8.2.3.2 Loads 329 3.8.2.3.2.1 Loss-of-Coolant Accident 329 3.8.2.3.2.2 Steam Line Break 330 3.8.2.3.3 Model Definition 330 3.8.2.3.3.1 General Dome Model 330 3.8.2.3.3.2 Insulation Termination Region Model 330 3.8.2.3.4 Analysis 331 3.8.2.3.4.1 Controlling Loads 331 3.8.2.3.4.2 Liner-Stud Interaction 331 3.8.2.3.4.3 Effect of Internal Pressure on Liner Buckling 333 3.8.2.3.5 Results and Conclusions 334 3.8.2.3.5.1 Insulation Termination Region 334 3.8.2.3.5.2 General Dome 335 3.8.2.3.5.3 Effect of Internal Pressure on Liner Buckling and Stud Integrity 336 3.8.2.3.6 Overall Conclusions 338 3.8.3 CONTAINMENT INTERNAL STRUCTURES 338 3.8.3.1 Description of the Internal Structures 338 3.8.3.2 Applicable Codes, Standards, and Specifications 339 3.8.3.3 Loads and Load Combinations 339 3.8.3.3.1 Load Combinations Considered 339 3.8.3.3.2 Applicable Load Combinations 339 3.8.3.4 Design and Analysis Procedures 340 3.8.3.4.1 Original Design 340 3.8.3.4.2 Systematic Evaluation Program Reevaluation 341 3.8.3.5 Method of Analysis 341 3.8.3.6 Structural Acceptance Criteria 342 3.8.3.7 Structural Evaluation 342 3.8.4 OTHER SEISMIC CATEGORY I STRUCTURES 342 3.8.4.1 Description of the Structures 342 3.8.4.1.1 Auxiliary Building 343 3.8.4.1.2 Control Building 343 3.8.4.1.3 Diesel Generator Building 344 3.8.4.1.4 Intermediate Building 344


GINNA/UFSAR Table 3.8-1b COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT                     366 SEISMIC ANALYSIS - DIMENSION CALCULATIONS Table 3.8-1c COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT                     367 SEISMIC ANALYSIS - NATURAL FREQUENCIES AND
GINNA/UFSAR Page 20 of 39 Revision 28 5/2019 3.8.4.1.5 Standby Auxiliary Feedwater Building 345 3.8.4.1.6 Screen House 345 3.8.4.1.7 Turbine Building 346 3.8.4.1.8 Service Building 346 3.8.4.1.9 Interconnected Building Complex 347 3.8.4.1.10 Canister Preparation Building (CPB) 347 3.8.4.2 Applicable Codes, Standards, and Specifications 348 3.8.4.3 Loads and Load Combinations 348 3.8.4.4 Design and Analysis Procedures 348 3.8.4.4.1 Original Design and Analysis Procedures 348 3.8.4.4.2 SEP Reevaluation Design and Analysis Procedures 349 3.8.4.4.2.1 Mathematical Model 349 3.8.4.4.2.2 Method of Analysis 351 3.8.4.4.2.3 Structural Evaluation 352 3.8.4.5 Masonry Walls 353 3.8.4.5.1 Applicable Walls 353 3.8.4.5.2 Loads and Load Combinations 353 3.8.4.5.3 Stress Analysis 355 3.8.4.5.3.1 Computer Program 355 3.8.4.5.3.2 Seismic Analysis 355 3.8.4.5.4 Interstory Drift 356 3.8.4.5.5 Multi-Wythe Walls 356 3.8.4.5.6 Block Pullout 356 3.8.4.5.7 Structural Acceptance Criteria - Allowable Stresses 356 3.8.4.5.7.1 Normal Operating Conditions 356 3.8.4.5.7.2 Safe Shutdown Earthquake 357 3.8.4.5.8 Evaluation Results 357 3.8.4.5.8.1 General 357 3.8.4.5.8.2 Inelastic Analysis 358 3.8.4.5.8.3 Wall Modifications 358 3.8.4.5.9 Materials, Quality Control, and Special Construction Techniques 359 3.8.5 FOUNDATIONS 360 Table 3.8-1a COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT SEISMIC ANALYSIS - DIMENSIONS AND FORMULA 365
 
GINNA/UFSAR Page 21 of 39 Revision 28 5/2019 Table 3.8-1b COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT SEISMIC ANALYSIS - DIMENSION CALCULATIONS 366 Table 3.8-1c COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT SEISMIC ANALYSIS - NATURAL FREQUENCIES AND  


===RESPONSE===
===RESPONSE===
Table 3.8-2 MAJOR STRUCTURES FOR WHICH PRESTRESSED ROCK                     368 ANCHORS WERE USED Table 3.8-3 PROPERTIES AND TESTS FOR CONTAINMENT ANCHOR AND                 370 TENDON CORROSION INHIBITOR Table 3.8-4 ALLOWABLE STRESSES                                             371 Table 3.8-5a CONTAINMENT STRUCTURE STRESSES - LOADING #1 DEAD               372 LOAD Table 3.8-5b CONTAINMENT STRUCTURE STRESSES - LOADING #2 FINAL               373 PRESTRESS - 636 K/TENDON Table 3.8-5c CONTAINMENT STRUCTURE STRESSES - LOADING #3                     375 OPERATING TEMPERATURE - WINTER Table 3.8-5d CONTAINMENT STRUCTURE STRESSES - LOADING #4                     377 OPERATING TEMPERATURE - SUMMER Table 3.8-5e CONTAINMENT STRUCTURE STRESSES - LOADING #5                     378 INTERNAL PRESSURE Table 3.8-5f CONTAINMENT STRUCTURE STRESSES - LOADING #6                     379 ACCIDENT TEMPERATURE - P = 60 PSIG, T = 286F Table 3.8-5g CONTAINMENT STRUCTURE STRESSES - LOADING #7                     380 ACCIDENT TEMPERATURE - P = 90 PSIG, T = 312F Table 3.8-5h CONTAINMENT STRUCTURE STRESSES - LOADING #8 0.10G               382 EARTHQUAKE - HORIZONTAL + VERTICAL COMPONENT Table 3.8-6a CONTAINMENT STRUCTURE LOADING COMBINATIONS -                   383 LOAD NUMBERS 1 THROUGH 48 Table 3.8-6b CONTAINMENT STRUCTURE LOADING COMBINATIONS -                   385 KEY TO SYMBOLS Table 3.8-7 CONCRETE COVER REQUIRED FOR REINFORCING STEEL                   385 Table 3.8-8 ELASTOMER PADS PROPERTIES                                       387 Table 3.8-9 ROCK ANCHOR A - UPLIFT TEST WITH JACKING FRAME,                 388 MAY 19, 1966 Table 3.8-10 DESIGN CODE COMPARISON                                         389 Table 3.8-11 ACI 318-63 VERSUS ACI 349-76 CODE COMPARISONS                   391 Table 3.8-12 ACI 301-63 VERSUS ACI 301-72 (REVISED 1975) COMPARISON         393 Table 3.8-13 ACI 318-63 VERSUS ASME B&PV CODE, SECTION III,                 394 DIVISION 2, 1980 CODE COMPARISON Table 3.8-14 ASME B&PV CODE, SECTION III, DIVISION 2, 1980 (ACI 359-80)     395 VERSUS ACI 318-63 CODE COMPARISION Table 3.8-15 LIST OF STRUCTURAL ELEMENTS TO BE EXAMINED                     396 Page 21 of 39              Revision 28 5/2019
367 Table 3.8-2 MAJOR STRUCTURES FOR WHICH PRESTRESSED ROCK ANCHORS WERE USED 368 Table 3.8-3 PROPERTIES AND TESTS FOR CONTAINMENT ANCHOR AND TENDON CORROSION INHIBITOR 370 Table 3.8-4 ALLOWABLE STRESSES 371 Table 3.8-5a CONTAINMENT STRUCTURE STRESSES - LOADING #1 DEAD LOAD 372 Table 3.8-5b CONTAINMENT STRUCTURE STRESSES - LOADING #2 FINAL PRESTRESS - 636 K/TENDON 373 Table 3.8-5c CONTAINMENT STRUCTURE STRESSES - LOADING #3 OPERATING TEMPERATURE - WINTER 375 Table 3.8-5d CONTAINMENT STRUCTURE STRESSES - LOADING #4 OPERATING TEMPERATURE - SUMMER 377 Table 3.8-5e CONTAINMENT STRUCTURE STRESSES - LOADING #5 INTERNAL PRESSURE 378 Table 3.8-5f CONTAINMENT STRUCTURE STRESSES - LOADING #6 ACCIDENT TEMPERATURE - P = 60 PSIG, T = 286F 379 Table 3.8-5g CONTAINMENT STRUCTURE STRESSES - LOADING #7 ACCIDENT TEMPERATURE - P = 90 PSIG, T = 312F 380 Table 3.8-5h CONTAINMENT STRUCTURE STRESSES - LOADING #8 0.10G EARTHQUAKE - HORIZONTAL + VERTICAL COMPONENT 382 Table 3.8-6a CONTAINMENT STRUCTURE LOADING COMBINATIONS -
LOAD NUMBERS 1 THROUGH 48 383 Table 3.8-6b CONTAINMENT STRUCTURE LOADING COMBINATIONS -
KEY TO SYMBOLS 385 Table 3.8-7 CONCRETE COVER REQUIRED FOR REINFORCING STEEL 385 Table 3.8-8 ELASTOMER PADS PROPERTIES 387 Table 3.8-9 ROCK ANCHOR A - UPLIFT TEST WITH JACKING FRAME, MAY 19, 1966 388 Table 3.8-10 DESIGN CODE COMPARISON 389 Table 3.8-11 ACI 318-63 VERSUS ACI 349-76 CODE COMPARISONS 391 Table 3.8-12 ACI 301-63 VERSUS ACI 301-72 (REVISED 1975) COMPARISON 393 Table 3.8-13 ACI 318-63 VERSUS ASME B&PV CODE, SECTION III, DIVISION 2, 1980 CODE COMPARISON 394 Table 3.8-14 ASME B&PV CODE, SECTION III, DIVISION 2, 1980 (ACI 359-80)
VERSUS ACI 318-63 CODE COMPARISION 395 Table 3.8-15 LIST OF STRUCTURAL ELEMENTS TO BE EXAMINED 396  


GINNA/UFSAR Table 3.8-16 MASSES, MOMENT OF INERTIA (I), FLEXURAL AREA (A),                       398 AND SHEAR AREA (As) FOR THE LLNL MODEL Table 3.8-17 MODAL FREQUENCIES FOR THE LAWRENCE LIVERMORE                             399 NATIONAL LABORATORY CONTAINMENT SHELL MODEL Table 3.8-18 RESPONSE VALUES FOR REGULATORY GUIDE 1.60                                 400 HORIZONTAL (0.17g) AND VERTICAL (0.11g) SPECTRA INPUT Table 3.8-19 PEAK HARMONIC AMPLITUDES OF THE SEISMIC LOAD ON                           401 CYLINDER AND DOME OF THE CONTAINMENT SHELL Table 3.8-20 MATERIAL PROPERTIES FOR STEEL, CONCRETE, AND FOAM                         402 INSULATION Table 3.8-21 MAXIMUM DISPLACEMENTS OF 5/8-INCH S6L STUDS IN THE                       403 INSULATION TERMINATION REGION Table 3.8-22 MAXIMUM DISPLACEMENT OF STUDS IN GENERAL DOME                             404 Table 3.8-23 LOAD DEFINITIONS                                                         405 3.9         MECHANICAL SYSTEMS AND COMPONENTS                                         406 3.9.1       SPECIAL TOPICS FOR MECHANICAL COMPONENTS                                 406 3.9.1.1     Design Transients                                                         406 3.9.1.1.1   Load Combinations                                                         406 3.9.1.1.2   Cyclic Loads                                                             406 3.9.1.1.2.1 Thermal and Pressure Cyclic Loads                                         406 3.9.1.1.2.2 Pressurizer Surge Line                                                   406 3.9.1.1.2.3 Unisolable Connections to the Reactor Coolant System                     407 3.9.1.1.3   Transient Hydraulic Loads                                                 408 3.9.1.1.4   Operating-Basis Earthquake                                               408 3.9.1.1.5   Safe Shutdown Earthquake                                                 408 3.9.1.1.6   Secondary System Fluid Flow Instability (Water Hammer)                   408 3.9.1.1.7   Loss-of-Coolant Accident                                                 408 3.9.1.2     Computer Programs Used in Analysis                                       409 3.9.1.3     Experimental Stress Analysis                                             410 3.9.1.3.1   Plastic Model Analysis                                                   410 3.9.1.3.2   Plastic Model Details                                                     410 3.9.1.3.3   Plastic Model Test Arrangement                                           411 3.9.2       DYNAMIC TESTING AND ANALYSIS                                             412 3.9.2.1     Piping Systems                                                           412 3.9.2.1.1   General                                                                   412 3.9.2.1.2   Seismic Category I Piping, 2-1/2 Inch Nominal Size and Larger             413 3.9.2.1.2.1 Static Analysis                                                           413 3.9.2.1.2.2 Dynamic Analysis                                                         413 Page 22 of 39                      Revision 28 5/2019
GINNA/UFSAR Page 22 of 39 Revision 28 5/2019 Table 3.8-16 MASSES, MOMENT OF INERTIA (I), FLEXURAL AREA (A),
AND SHEAR AREA (As) FOR THE LLNL MODEL 398 Table 3.8-17 MODAL FREQUENCIES FOR THE LAWRENCE LIVERMORE NATIONAL LABORATORY CONTAINMENT SHELL MODEL 399 Table 3.8-18 RESPONSE VALUES FOR REGULATORY GUIDE 1.60 HORIZONTAL (0.17g) AND VERTICAL (0.11g) SPECTRA INPUT 400 Table 3.8-19 PEAK HARMONIC AMPLITUDES OF THE SEISMIC LOAD ON CYLINDER AND DOME OF THE CONTAINMENT SHELL 401 Table 3.8-20 MATERIAL PROPERTIES FOR STEEL, CONCRETE, AND FOAM INSULATION 402 Table 3.8-21 MAXIMUM DISPLACEMENTS OF 5/8-INCH S6L STUDS IN THE INSULATION TERMINATION REGION 403 Table 3.8-22 MAXIMUM DISPLACEMENT OF STUDS IN GENERAL DOME 404 Table 3.8-23 LOAD DEFINITIONS 405 3.9 MECHANICAL SYSTEMS AND COMPONENTS 406 3.9.1 SPECIAL TOPICS FOR MECHANICAL COMPONENTS 406 3.9.1.1 Design Transients 406 3.9.1.1.1 Load Combinations 406 3.9.1.1.2 Cyclic Loads 406 3.9.1.1.2.1 Thermal and Pressure Cyclic Loads 406 3.9.1.1.2.2 Pressurizer Surge Line 406 3.9.1.1.2.3 Unisolable Connections to the Reactor Coolant System 407 3.9.1.1.3 Transient Hydraulic Loads 408 3.9.1.1.4 Operating-Basis Earthquake 408 3.9.1.1.5 Safe Shutdown Earthquake 408 3.9.1.1.6 Secondary System Fluid Flow Instability (Water Hammer) 408 3.9.1.1.7 Loss-of-Coolant Accident 408 3.9.1.2 Computer Programs Used in Analysis 409 3.9.1.3 Experimental Stress Analysis 410 3.9.1.3.1 Plastic Model Analysis 410 3.9.1.3.2 Plastic Model Details 410 3.9.1.3.3 Plastic Model Test Arrangement 411 3.9.2 DYNAMIC TESTING AND ANALYSIS 412 3.9.2.1 Piping Systems 412 3.9.2.1.1 General 412 3.9.2.1.2 Seismic Category I Piping, 2-1/2 Inch Nominal Size and Larger 413 3.9.2.1.2.1 Static Analysis 413 3.9.2.1.2.2 Dynamic Analysis 413  


GINNA/UFSAR 3.9.2.1.2.3 Residual Heat Removal System Line From Reactor Coolant System           414 Loop A to Containment 3.9.2.1.2.4 Steam Line From Steam Generator B to Containment                         415 3.9.2.1.2.5 Charging Line                                                           416 3.9.2.1.3   Seismic Category I Piping, 2-Inch Nominal Size and Under, Original       416 Design 3.9.2.1.4   Pressurizer Safety and Relief Valve Discharge Piping                     416 3.9.2.1.4.1 1972 Analysis                                                           416 3.9.2.1.4.2 NUREG 0737, Item II.D.1 Analysis                                       417 3.9.2.1.5   Main Steam Header Dynamic Load Factor Analysis                         418 3.9.2.1.5.1 Extended Power Uprate Considerations                                   419 3.9.2.1.6   Secondary System Water Hammer                                           419 3.9.2.1.6.1 Analysis                                                               419 3.9.2.1.6.2 Evaluation Results                                                     420 3.9.2.1.6.3 Corrective Actions                                                     420 3.9.2.1.6.4 Extended Power Uprate Considerations                                   421 3.9.2.1.7   Velan Swing Check Valves                                               421 3.9.2.1.8   Seismic Piping Upgrade Program                                         421 3.9.2.2     Safety-Related Mechanical Equipment                                     422 3.9.2.2.1   Original Seismic Input and Behavior Criteria                           422 3.9.2.2.2   Current Seismic Input                                                   423 3.9.2.2.3   Systematic Evaluation Program                                           423 424 3.9.2.2.4   Systematic Evaluation Program Reevaluation of Selected Mechanical Components for Design Adequacy 3.9.2.2.4.1 Essential Service Water (SW) Pumps                                     424 3.9.2.2.4.2 Component Cooling Heat Exchanger                                       425 3.9.2.2.4.3 Component Cooling Surge Tank                                           425 3.9.2.2.4.4 Diesel-Generator Air Tanks                                             425 3.9.2.2.4.5 Boric Acid Storage Tank                                                 426 3.9.2.2.4.6 Refueling Water Storage Tank (RWST)                                     426 3.9.2.2.4.7 Motor-Operated Valves                                                   427 3.9.2.2.4.8 Steam Generators                                                       427 3.9.2.2.4.9 Reactor Coolant Pumps                                                   428 3.9.2.2.4.10 Pressurizer                                                             428 3.9.2.2.4.11 Control Rod Drive Mechanism                                             429 429 3.9.2.3     Dynamic Response Analysis of Reactor Internals Under Operational Flow Transients and Steady-State Conditions Page 23 of 39                    Revision 28 5/2019
GINNA/UFSAR Page 23 of 39 Revision 28 5/2019 3.9.2.1.2.3 Residual Heat Removal System Line From Reactor Coolant System Loop A to Containment 414 3.9.2.1.2.4 Steam Line From Steam Generator B to Containment 415 3.9.2.1.2.5 Charging Line 416 3.9.2.1.3 Seismic Category I Piping, 2-Inch Nominal Size and Under, Original Design 416 3.9.2.1.4 Pressurizer Safety and Relief Valve Discharge Piping 416 3.9.2.1.4.1 1972 Analysis 416 3.9.2.1.4.2 NUREG 0737, Item II.D.1 Analysis 417 3.9.2.1.5 Main Steam Header Dynamic Load Factor Analysis 418 3.9.2.1.5.1 Extended Power Uprate Considerations 419 3.9.2.1.6 Secondary System Water Hammer 419 3.9.2.1.6.1 Analysis 419 3.9.2.1.6.2 Evaluation Results 420 3.9.2.1.6.3 Corrective Actions 420 3.9.2.1.6.4 Extended Power Uprate Considerations 421 3.9.2.1.7 Velan Swing Check Valves 421 3.9.2.1.8 Seismic Piping Upgrade Program 421 3.9.2.2 Safety-Related Mechanical Equipment 422 3.9.2.2.1 Original Seismic Input and Behavior Criteria 422 3.9.2.2.2 Current Seismic Input 423 3.9.2.2.3 Systematic Evaluation Program 423 3.9.2.2.4 Systematic Evaluation Program Reevaluation of Selected Mechanical Components for Design Adequacy 424 3.9.2.2.4.1 Essential Service Water (SW) Pumps 424 3.9.2.2.4.2 Component Cooling Heat Exchanger 425 3.9.2.2.4.3 Component Cooling Surge Tank 425 3.9.2.2.4.4 Diesel-Generator Air Tanks 425 3.9.2.2.4.5 Boric Acid Storage Tank 426 3.9.2.2.4.6 Refueling Water Storage Tank (RWST) 426 3.9.2.2.4.7 Motor-Operated Valves 427 3.9.2.2.4.8 Steam Generators 427 3.9.2.2.4.9 Reactor Coolant Pumps 428 3.9.2.2.4.10 Pressurizer 428 3.9.2.2.4.11 Control Rod Drive Mechanism 429 3.9.2.3 Dynamic Response Analysis of Reactor Internals Under Operational Flow Transients and Steady-State Conditions 429


GINNA/UFSAR 3.9.2.3.1   Design Criteria                                                         430 3.9.2.3.1.1 General                                                                 430 3.9.2.3.1.2 Critical Internals                                                     430 3.9.2.3.1.3 Allowable Stress Criteria                                               431 3.9.2.3.2   Blowdown and Force Analysis                                             431 3.9.2.3.2.1 Computer Program                                                       431 3.9.2.3.2.2 Blowdown Model                                                         432 3.9.2.3.2.3 LATFORC MODEL                                                           433 3.9.2.3.2.4 FORCE2 MODEL                                                           433 3.9.2.3.3   Fuel Assembly Thimbles                                                 434 3.9.2.3.4   Dynamic System Analysis of Reactor Internals Under Loss-of-Coolant Accident (LOCA)                                                         434 3.9.2.3.4.1 Mathematical Model of the Reactor Pressure Vessel (RPV) System         434 3.9.2.3.4.2 Analytical Methods                                                     436 3.9.2.3.4.3 RPV Internal Hydraulic Loads                                           436 3.9.2.3.4.4 Reactor Coolant Loop Mechanical Loads                                   438 3.9.2.3.4.5 Results of the Analysis                                                 438 3.9.2.3.5   Transverse Guide Tube Excitation by Blowdown Forces                     438 3.9.2.3.5.1 General                                                                 438 3.9.2.3.5.2 Response of Guide Tube                                                 439 3.9.2.3.5.3 Description of Stress Location                                         440 3.9.2.3.6   Reevaluation of the Dynamic Response of Reactor Internals for Extended Power Uprate (EPU)                                           440 3.9.2.3.6.1 Reactor Pressure Vessel System Thermal-Hydraulic Analysis               440 3.9.2.3.6.2 Bypass Flow Analysis                                                   440 3.9.2.3.6.3 Thermal Analysis of the Baffle/Barrel Region                           441 3.9.2.3.6.4 Pressure Drop Across the Baffle Plate Analyses                         441 3.9.2.3.6.5 Flow Induced Vibration                                                 441 3.9.2.3.6.6 Reactor Internals Structural Integrity                                 441 3.9.2.3.6.7 Control Rod Performance                                                 441 3.9.2.3.6.8 Vessel/Internals/Fuel/Control Rod Response During Loca Conditions       442 3.9.2.3.6.9 Summary of Conclusions                                                 442 3.9.2.4     Asymmetric Loss-of-Coolant Accident Loading Analysis                   442 3.9.2.5     Seismic Evaluation of Reactor Vessel Internals                         442 3.9.2.5.1   Analysis Procedure                                                     442 3.9.2.5.2   Analysis Results                                                       443 Page 24 of 39                    Revision 28 5/2019
GINNA/UFSAR Page 24 of 39 Revision 28 5/2019 3.9.2.3.1 Design Criteria 430 3.9.2.3.1.1 General 430 3.9.2.3.1.2 Critical Internals 430 3.9.2.3.1.3 Allowable Stress Criteria 431 3.9.2.3.2 Blowdown and Force Analysis 431 3.9.2.3.2.1 Computer Program 431 3.9.2.3.2.2 Blowdown Model 432 3.9.2.3.2.3 LATFORC MODEL 433 3.9.2.3.2.4 FORCE2 MODEL 433 3.9.2.3.3 Fuel Assembly Thimbles 434 3.9.2.3.4 Dynamic System Analysis of Reactor Internals Under Loss-of-Coolant Accident (LOCA) 434 3.9.2.3.4.1 Mathematical Model of the Reactor Pressure Vessel (RPV) System 434 3.9.2.3.4.2 Analytical Methods 436 3.9.2.3.4.3 RPV Internal Hydraulic Loads 436 3.9.2.3.4.4 Reactor Coolant Loop Mechanical Loads 438 3.9.2.3.4.5 Results of the Analysis 438 3.9.2.3.5 Transverse Guide Tube Excitation by Blowdown Forces 438 3.9.2.3.5.1 General 438 3.9.2.3.5.2 Response of Guide Tube 439 3.9.2.3.5.3 Description of Stress Location 440 3.9.2.3.6 Reevaluation of the Dynamic Response of Reactor Internals for Extended Power Uprate (EPU) 440 3.9.2.3.6.1 Reactor Pressure Vessel System Thermal-Hydraulic Analysis 440 3.9.2.3.6.2 Bypass Flow Analysis 440 3.9.2.3.6.3 Thermal Analysis of the Baffle/Barrel Region 441 3.9.2.3.6.4 Pressure Drop Across the Baffle Plate Analyses 441 3.9.2.3.6.5 Flow Induced Vibration 441 3.9.2.3.6.6 Reactor Internals Structural Integrity 441 3.9.2.3.6.7 Control Rod Performance 441 3.9.2.3.6.8 Vessel/Internals/Fuel/Control Rod Response During Loca Conditions 442 3.9.2.3.6.9 Summary of Conclusions 442 3.9.2.4 Asymmetric Loss-of-Coolant Accident Loading Analysis 442 3.9.2.5 Seismic Evaluation of Reactor Vessel Internals 442 3.9.2.5.1 Analysis Procedure 442 3.9.2.5.2 Analysis Results 443  


GINNA/UFSAR 3.9.3       COMPONENT SUPPORTS AND CORE SUPPORT STRUCTURES                         444 3.9.3.1     Loading Combinations, Design Transients, and Stress Limits             444 3.9.3.2     Component Supports                                                     444 3.9.3.2.1   Reactor Vessel                                                         444 3.9.3.2.2   Steam Generators                                                       445 3.9.3.2.3   Reactor Coolant Pumps                                                   445 3.9.3.2.4   Pressurizer                                                             446 3.9.3.2.5   Reactor Coolant Piping                                                 446 3.9.3.3     Pipe Supports                                                           446 3.9.3.3.1   Original Analysis                                                       446 3.9.3.3.2   IE Bulletin Reanalysis                                                 446 3.9.3.3.3   Seismic Piping Upgrade Program                                         447 3.9.3.3.3.1 Applicable Supports                                                     447 3.9.3.3.3.2 Load Combinations and Stress Limits                                     447 3.9.3.3.3.3 Structural Requirements                                                 447 3.9.3.3.4   Base Plate Flexibility                                                 449 3.9.3.3.5   Snubbers                                                               449 3.9.3.3.5.1 Design Loads                                                           449 3.9.3.3.5.2 Surveillance Program                                                   450 3.9.4       CONTROL ROD DRIVE SYSTEMS                                               450 3.9.4.1     Description                                                             450 3.9.4.1.1   General                                                                 450 3.9.4.1.2   Latch Assembly                                                         451 3.9.4.1.3   Pressure Vessel                                                         452 3.9.4.1.4   Operating Coil Stack                                                   452 3.9.4.1.5   Drive Shaft Assembly                                                   452 3.9.4.1.6   Position Indicator Coil Stack                                           452 3.9.4.2     Design Loads, Stress Limits, and Allowable Deformation                 452 3.9.4.3     Control Rod Drive Mechanism Housing Mechanical Failure Evaluation       453 3.9.4.3.1   Housing Description                                                     453 3.9.4.3.2   Effects of Rod Travel Housing Longitudinal Failures                     453 3.9.4.3.3   Effect of Rod Travel Housing Circumferential Failures                   453 3.9.4.3.4   Summary                                                                 454 3.9.5       REACTOR PRESSURE VESSEL INTERNALS                                       454 3.9.5.1     Design Arrangements                                                     454 3.9.5.1.1   Lower Core Support Structure                                           454 Page 25 of 39                  Revision 28 5/2019
GINNA/UFSAR Page 25 of 39 Revision 28 5/2019 3.9.3 COMPONENT SUPPORTS AND CORE SUPPORT STRUCTURES 444 3.9.3.1 Loading Combinations, Design Transients, and Stress Limits 444 3.9.3.2 Component Supports 444 3.9.3.2.1 Reactor Vessel 444 3.9.3.2.2 Steam Generators 445 3.9.3.2.3 Reactor Coolant Pumps 445 3.9.3.2.4 Pressurizer 446 3.9.3.2.5 Reactor Coolant Piping 446 3.9.3.3 Pipe Supports 446 3.9.3.3.1 Original Analysis 446 3.9.3.3.2 IE Bulletin Reanalysis 446 3.9.3.3.3 Seismic Piping Upgrade Program 447 3.9.3.3.3.1 Applicable Supports 447 3.9.3.3.3.2 Load Combinations and Stress Limits 447 3.9.3.3.3.3 Structural Requirements 447 3.9.3.3.4 Base Plate Flexibility 449 3.9.3.3.5 Snubbers 449 3.9.3.3.5.1 Design Loads 449 3.9.3.3.5.2 Surveillance Program 450 3.9.4 CONTROL ROD DRIVE SYSTEMS 450 3.9.4.1 Description 450 3.9.4.1.1 General 450 3.9.4.1.2 Latch Assembly 451 3.9.4.1.3 Pressure Vessel 452 3.9.4.1.4 Operating Coil Stack 452 3.9.4.1.5 Drive Shaft Assembly 452 3.9.4.1.6 Position Indicator Coil Stack 452 3.9.4.2 Design Loads, Stress Limits, and Allowable Deformation 452 3.9.4.3 Control Rod Drive Mechanism Housing Mechanical Failure Evaluation 453 3.9.4.3.1 Housing Description 453 3.9.4.3.2 Effects of Rod Travel Housing Longitudinal Failures 453 3.9.4.3.3 Effect of Rod Travel Housing Circumferential Failures 453 3.9.4.3.4 Summary 454 3.9.5 REACTOR PRESSURE VESSEL INTERNALS 454 3.9.5.1 Design Arrangements 454 3.9.5.1.1 Lower Core Support Structure 454  


GINNA/UFSAR 3.9.5.1.1.1   Support Structure Assembly                                 454 3.9.5.1.1.2   Lower Core Plate                                           454 3.9.5.1.1.3   Thermal Shield                                             455 3.9.5.1.1.4   Coolant Flow Passages                                       456 3.9.5.1.1.5   Support and Alignment Arrangements                         456 3.9.5.1.2     Upper Core Support Assembly                                 456 3.9.5.1.3     In-Core Instrumentation Support Structures                 457 3.9.5.2       Loading Conditions                                         458 3.9.5.3       Design Bases                                               458 3.9.6         INSERVICE INSPECTION OF PUMPS AND VALVES                   459 3.9.6.1       General                                                     459 3.9.6.2       Inservice Testing of Pumps                                 459 3.9.6.3       Inservice Testing of Valves                                 460 3.9.7         Extended Power Uprate (EPU)                                 460 Table 3.9-1   ORIGINAL DESIGN LOADING COMBINATIONS AND STRESS             464 LIMITS Table 3.9-2   RESIDUAL HEAT REMOVAL LOOP A STRESS  
GINNA/UFSAR Page 26 of 39 Revision 28 5/2019 3.9.5.1.1.1 Support Structure Assembly 454 3.9.5.1.1.2 Lower Core Plate 454 3.9.5.1.1.3 Thermal Shield 455 3.9.5.1.1.4 Coolant Flow Passages 456 3.9.5.1.1.5 Support and Alignment Arrangements 456 3.9.5.1.2 Upper Core Support Assembly 456 3.9.5.1.3 In-Core Instrumentation Support Structures 457 3.9.5.2 Loading Conditions 458 3.9.5.3 Design Bases 458 3.9.6 INSERVICE INSPECTION OF PUMPS AND VALVES 459 3.9.6.1 General 459 3.9.6.2 Inservice Testing of Pumps 459 3.9.6.3 Inservice Testing of Valves 460 3.9.7 Extended Power Uprate (EPU) 460 Table 3.9-1 ORIGINAL DESIGN LOADING COMBINATIONS AND STRESS LIMITS 464 Table 3.9-2 RESIDUAL HEAT REMOVAL LOOP A STRESS  


==SUMMARY==
==SUMMARY==
465 Table 3.9-3   MAIN STEAM LINE-LOOP B STRESS  
465 Table 3.9-3 MAIN STEAM LINE-LOOP B STRESS  


==SUMMARY==
==SUMMARY==
466 Table 3.9-4   CHARGING LINE STRESS  
466 Table 3.9-4 CHARGING LINE STRESS  


==SUMMARY==
==SUMMARY==
467 Table 3.9-5   LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR               468 PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS - UPSTREAM OF VALVES Table 3.9-6   LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR               469 PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS - SEISMICALLY DESIGNED DOWNSTREAM PORTION Table 3.9-7   DEFINITIONS OF LOAD ABBREVIATIONS                           470 Table 3.9-8   LOADING COMBINATIONS AND STRESS LIMITS FOR PIPING           471 FOR SEISMIC UPGRADE PROGRAMS Table 3.9-9   ALLOWABLE STEAM GENERATOR NOZZLE LOADS                     472 Table 3.9-10 REACTOR COOLANT PUMP AUXILIARY NOZZLE UMBRELLA             473 LOADS Table 3.9-11 SYSTEMATIC EVALUATION PROGRAM STRUCTURAL                   476 BEHAVIOR CRITERIA FOR DETERMINING SEISMIC DESIGN ADEQUACY Table 3.9-12 MECHANICAL COMPONENTS SELECTED FOR SEP SEISMIC             477 REVIEW Table 3.9-13 MAXIMUM STRESS HOT-LEG BREAK (ORIGINAL ANALYSIS)           478 Table 3.9-14 MAXIMUM STRESS COLD-LEG BREAK (ORIGINAL                     479 ANALYSIS)
467 Table 3.9-5 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS - UPSTREAM OF VALVES 468 Table 3.9-6 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS - SEISMICALLY DESIGNED DOWNSTREAM PORTION 469 Table 3.9-7 DEFINITIONS OF LOAD ABBREVIATIONS 470 Table 3.9-8 LOADING COMBINATIONS AND STRESS LIMITS FOR PIPING FOR SEISMIC UPGRADE PROGRAMS 471 Table 3.9-9 ALLOWABLE STEAM GENERATOR NOZZLE LOADS 472 Table 3.9-10 REACTOR COOLANT PUMP AUXILIARY NOZZLE UMBRELLA LOADS 473 Table 3.9-11 SYSTEMATIC EVALUATION PROGRAM STRUCTURAL BEHAVIOR CRITERIA FOR DETERMINING SEISMIC DESIGN ADEQUACY 476 Table 3.9-12 MECHANICAL COMPONENTS SELECTED FOR SEP SEISMIC REVIEW 477 Table 3.9-13 MAXIMUM STRESS HOT-LEG BREAK (ORIGINAL ANALYSIS) 478 Table 3.9-14 MAXIMUM STRESS COLD-LEG BREAK (ORIGINAL ANALYSIS) 479
Page 26 of 39        Revision 28 5/2019


GINNA/UFSAR Table 3.9-15 MAXIMUM CORE BARREL STRESS AND DEFLECTION UNDER           480 HOT-LEG BLOWDOWN (ORIGINAL ANALYSIS)
GINNA/UFSAR Page 27 of 39 Revision 28 5/2019 Table 3.9-15 MAXIMUM CORE BARREL STRESS AND DEFLECTION UNDER HOT-LEG BLOWDOWN (ORIGINAL ANALYSIS) 480 Table 3.9-16a MAXIMUM STRESS INTENSITIES AND DEFLECTION COLD-LEG BLOWDOWN (ORIGINAL ANALYSIS) - IN THE UPPER BARREL 481 Table 3.9-16b MAXIMUM STRESS INTENSITIES AND DEFLECTION COLD-LEG BLOWDOWN (ORIGINAL ANALYSIS) - AT THE UPPER BARREL ENDS 482 Table 3.9-17 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 483 Table 3.9-18 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 484 Table 3.9-19 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 485 Table 3.9-20 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 486 Table 3.9-21 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 487 Table 3.9-22 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 489 Table 3.9-23a LOAD COMBINATIONS AND ALLOWABLE STRESS LIMITS FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION - FOR PLANT EVENTS 490 Table 3.9-23b LOAD COMBINATIONS AND ALLOWABLE STRESS LIMITS FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION -
Table 3.9-16a MAXIMUM STRESS INTENSITIES AND DEFLECTION COLD-           481 LEG BLOWDOWN (ORIGINAL ANALYSIS) - IN THE UPPER BARREL Table 3.9-16b MAXIMUM STRESS INTENSITIES AND DEFLECTION COLD-           482 LEG BLOWDOWN (ORIGINAL ANALYSIS) - AT THE UPPER BARREL ENDS Table 3.9-17 CORE BARREL STRESSES (ORIGINAL ANALYSIS)                 483 Table 3.9-18 CORE BARREL STRESSES (ORIGINAL ANALYSIS)                 484 Table 3.9-19 CORE BARREL STRESSES (ORIGINAL ANALYSIS)                 485 Table 3.9-20 CORE BARREL STRESSES (ORIGINAL ANALYSIS)                 486 Table 3.9-21 CORE BARREL STRESSES (ORIGINAL ANALYSIS)                 487 Table 3.9-22 CORE BARREL STRESSES (ORIGINAL ANALYSIS)                 489 Table 3.9-23a LOAD COMBINATIONS AND ALLOWABLE STRESS LIMITS             490 FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION - FOR PLANT EVENTS Table 3.9-23b LOAD COMBINATIONS AND ALLOWABLE STRESS LIMITS             491 FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION -
DEFINITION OF LOADING CONDITIONS FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION IN TABLE 3.9-23a 491 Table 3.9-24 RESIDUAL HEAT REMOVAL LOOP A SUPPORT LOADS1 CALCULATED FOR IE BULLETIN 79-07 Table 3.9-25a MAIN STEAM LINE LOOP B SUPPORT LOADS2 CALCULATED FOR IE BULLETIN 79 SEISMIC SUPPORT Table 3.9-25b MAIN STEAM LINE LOOP B NOZZLE LOADS CALCULATED FOR IE BULLETIN 79 NOZZLE LOADS Table 3.9-26 CHARGING LINE SUPPORT LOADSa CALCULATED FOR IE BULLETIN 79-07 492 495 496 497
DEFINITION OF LOADING CONDITIONS FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION IN TABLE 3.9-23a Table 3.9-24 RESIDUAL HEAT REMOVAL LOOP A SUPPORT LOADS1               492 CALCULATED FOR IE BULLETIN 79-07 Table 3.9-25a MAIN STEAM LINE LOOP B SUPPORT LOADS2 CALCULATED         495 FOR IE BULLETIN 79 SEISMIC SUPPORT Table 3.9-25b MAIN STEAM LINE LOOP B NOZZLE LOADS CALCULATED           496 FOR IE BULLETIN 79 NOZZLE LOADS Table 3.9-26 CHARGING LINE SUPPORT LOADSa CALCULATED FOR IE           497 BULLETIN 79-07 Page 27 of 39            Revision 28 5/2019


GINNA/UFSAR Table 3.9-27 LOADING COMBINATIONS AND STRESS LIMITS FOR                         502 SUPPORTS ON PIPING SYSTEMS Table 3.9-28 ANALYSIS OF TYPICAL PIPE SUPPORT BASE PLATES                       503 CALCULATED FOR IE BULLETIN 79-02 Table 3.9-29 INTERNALS DEFLECTIONS UNDER ABNORMAL OPERATION                     504 3.10         SEISMIC QUALIFICATION OF SEISMIC CATEGORY I INSTRU-                 505 MENTATION AND ELECTRICAL EQUIPMENT 3.10.1       SEISMIC QUALIFICATION CRITERIA                                     505 3.10.1.1     Original Criteria                                                   505 3.10.1.2     Current Criteria                                                   505 3.10.2       SEISMIC QUALIFICATION OF ELECTRICAL EQUIPMENT AND                   506 INSTRUMENTATION 3.10.2.1     Introduction                                                       506 3.10.2.2     Battery Racks                                                       507 3.10.2.3     Motor Control Centers 1L and 1M                                     507 3.10.2.4     Switchgear                                                         508 3.10.2.5     Control Room Electrical Panels                                     508 3.10.2.6     Electrical Cable Raceways                                           509 3.10.2.7     Constant Voltage Transformers                                       509 3.10.3       SEISMIC QUALIFICATION OF SUPPORTS OF ELECTRICAL                     509 EQUIPMENT AND INSTRUMENTATION 3.10.3.1     Equipment Addressed                                                 510 3.10.3.2     Raceway Anchorages                                                 510 3.10.3.2.1   Test Program                                                       510 3.10.3.2.2   Test Loads                                                         511 3.10.3.2.3   Expansion Anchor Test Results                                       512 3.10.3.2.4   Frictional Anchor Test Results                                     512 3.10.3.2.5   Embedded Anchor Test Results                                       513 3.10.3.3     Class 1E Equipment Anchorage Qualification Program                 513 3.10.3.4     Conclusions                                                         514 3.10.4       FUNCTIONAL CAPABILITY OF COMPONENTS                                 514 3.10.5       SEISMIC CATEGORY I TUBING                                           514 3.10.5.1     Codes and Standards                                                 514 3.10.5.1.1   Tubing Design Requirements                                         515 3.10.5.1.2   Tubing Supports Design Requirements                                 515 Page 28 of 39                Revision 28 5/2019
GINNA/UFSAR Page 28 of 39 Revision 28 5/2019 Table 3.9-27 LOADING COMBINATIONS AND STRESS LIMITS FOR 502 SUPPORTS ON PIPING SYSTEMS Table 3.9-28 ANALYSIS OF TYPICAL PIPE SUPPORT BASE PLATES CALCULATED FOR IE BULLETIN 79-02 503 Table 3.9-29 INTERNALS DEFLECTIONS UNDER ABNORMAL OPERATION 504 3.10 SEISMIC QUALIFICATION OF SEISMIC CATEGORY I INSTRU-MENTATION AND ELECTRICAL EQUIPMENT 505 3.10.1 SEISMIC QUALIFICATION CRITERIA 505 3.10.1.1 Original Criteria 505 3.10.1.2 Current Criteria 505 3.10.2 SEISMIC QUALIFICATION OF ELECTRICAL EQUIPMENT AND INSTRUMENTATION 506 3.10.2.1 Introduction 506 3.10.2.2 Battery Racks 507 3.10.2.3 Motor Control Centers 1L and 1M 507 3.10.2.4 Switchgear 508 3.10.2.5 Control Room Electrical Panels 508 3.10.2.6 Electrical Cable Raceways 509 3.10.2.7 Constant Voltage Transformers 509 3.10.3 SEISMIC QUALIFICATION OF SUPPORTS OF ELECTRICAL EQUIPMENT AND INSTRUMENTATION 509 3.10.3.1 Equipment Addressed 510 3.10.3.2 Raceway Anchorages 510 3.10.3.2.1 Test Program 510 3.10.3.2.2 Test Loads 511 3.10.3.2.3 Expansion Anchor Test Results 512 3.10.3.2.4 Frictional Anchor Test Results 512 3.10.3.2.5 Embedded Anchor Test Results 513 3.10.3.3 Class 1E Equipment Anchorage Qualification Program 513 3.10.3.4 Conclusions 514 3.10.4 FUNCTIONAL CAPABILITY OF COMPONENTS 514 3.10.5 SEISMIC CATEGORY I TUBING 514 3.10.5.1 Codes and Standards 514 3.10.5.1.1 Tubing Design Requirements 515 3.10.5.1.2 Tubing Supports Design Requirements 515  


GINNA/UFSAR 3.10.5.2     Load Conditions                                                         516 3.10.5.2.1   Tubing                                                                   516 3.10.5.2.2   Tubing Supports                                                         516 3.10.5.3     Routing Requirements                                                     517 Table 3.10-1 MAJOR CLASS 1E COMPONENTS AND THE BASIS FOR                             520 SEISMIC QUALIFICATION Table 3.10-2 ELECTRICAL COMPONENTS SELECTED FOR SEISMIC                               522 REVIEW Table 3.10-3 SHELL ANCHOR TEST  
GINNA/UFSAR Page 29 of 39 Revision 28 5/2019 3.10.5.2 Load Conditions 516 3.10.5.2.1 Tubing 516 3.10.5.2.2 Tubing Supports 516 3.10.5.3 Routing Requirements 517 Table 3.10-1 MAJOR CLASS 1E COMPONENTS AND THE BASIS FOR SEISMIC QUALIFICATION 520 Table 3.10-2 ELECTRICAL COMPONENTS SELECTED FOR SEISMIC REVIEW 522 Table 3.10-3 SHELL ANCHOR TEST  


==SUMMARY==
==SUMMARY==
Line 102: Line 126:


==SUMMARY==
==SUMMARY==
525 Table 3.10-6 STRESS LIMITS FOR TUBING                                                 526 3.11         ENVIRONMENTAL DESIGN OF MECHANICAL AND ELECTRI-                         527 CAL EQUIPMENT 3.
525 Table 3.10-6 STRESS LIMITS FOR TUBING 526 3.11 ENVIRONMENTAL DESIGN OF MECHANICAL AND ELECTRI-CAL EQUIPMENT 527 3.


==11.1       BACKGROUND==
==11.1 BACKGROUND==
527 3.11.1.1     Initial Design Considerations                                           527 3.11.1.2     Review of Environmental Qualification of Safety-Related Electrical       527 Equipment 3.11.2       Equipment Identification                                                 528 3.11.3       IDENTIFICATION OF LIMITING ENVIRONMENTAL CONDI-                         528 TIONS 3.11.3.1     Inside Containment                                                       528 3.11.3.1.1   Post Loss-of-Coolant Accident Environment                               528 3.11.3.1.2   Post Main Steam Line Break Environment                                   530 3.11.3.2     Auxiliary Building                                                       530 3.11.3.2.1   Heating, Ventilation, and Air Conditioning                               530 3.11.3.2.2   Loss of Ventilation                                                     531 3.11.3.2.3   Radiation Levels                                                         532 3.11.3.2.4   Flooding                                                                 532 3.11.3.3     Intermediate Building                                                   532 3.11.3.4     Cable Tunnel                                                             533 3.11.3.5     Control Building                                                         533 3.11.3.6     Diesel Generator Rooms                                                   534 3.11.3.7     Turbine Building                                                         534 3.11.3.8     Auxiliary Building Annex                                                 535 3.11.3.9     Screen House                                                             535 3.11.4       EQUIPMENT QUALIFICATION INFORMATION                                     535 3.11.5       ENVIRONMENTAL QUALIFICATION PROGRAM                                     535 Page 29 of 39                    Revision 28 5/2019
527 3.11.1.1 Initial Design Considerations 527 3.11.1.2 Review of Environmental Qualification of Safety-Related Electrical Equipment 527 3.11.2 Equipment Identification 528 3.11.3 IDENTIFICATION OF LIMITING ENVIRONMENTAL CONDI-TIONS 528 3.11.3.1 Inside Containment 528 3.11.3.1.1 Post Loss-of-Coolant Accident Environment 528 3.11.3.1.2 Post Main Steam Line Break Environment 530 3.11.3.2 Auxiliary Building 530 3.11.3.2.1 Heating, Ventilation, and Air Conditioning 530 3.11.3.2.2 Loss of Ventilation 531 3.11.3.2.3 Radiation Levels 532 3.11.3.2.4 Flooding 532 3.11.3.3 Intermediate Building 532 3.11.3.4 Cable Tunnel 533 3.11.3.5 Control Building 533 3.11.3.6 Diesel Generator Rooms 534 3.11.3.7 Turbine Building 534 3.11.3.8 Auxiliary Building Annex 535 3.11.3.9 Screen House 535 3.11.4 EQUIPMENT QUALIFICATION INFORMATION 535 3.11.5 ENVIRONMENTAL QUALIFICATION PROGRAM 535  


GINNA/UFSAR Table 3.11-1 ENVIRONMENTAL SERVICE CONDITIONS FOR EQUIPMENT                           540 DESIGNED TO MITIGATE DESIGN-BASIS EVENTS Table 3.11-2 ESTIMATES FOR TOTAL AIRBORNE GAMMA DOSE                                 549 CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER - GINNA STATION Table 3.11-3 ESTIMATES FOR TOTAL AIRBORNE BETA DOSE                                   551 CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER - GINNA STATION Table 3.11-4 ESTIMATES FOR TOTAL AIRBORNE GAMMA DOSE                                 553 CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER, REGULATORY GUIDE 1.89, REVISION 1 Table 3.11-5 ESTIMATES FOR TOTAL AIRBORNE BETA DOSE                                   555 CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER, REGULATORY GUIDE 1.89, REVISION 1 Table 3.11-6 GINNA STATION/REGULATORY GUIDE 1.89, APPENDIX D,                         557 COMPARISON OF POSTACCIDENT RADIATION ENVIRONMENT ASSUMPTIONS FIGURES Figure 3.7-1 Seismic Response Spectra, 8%g Housner Model Figure 3.7-2 Seismic Response Spectra, 20%g Housner Model Figure 3.7-3 NRC Systematic Evaluation Program Site Specific Spectrum, Ginna Site (5% Damping)
GINNA/UFSAR Page 30 of 39 Revision 28 5/2019 Table 3.11-1 ENVIRONMENTAL SERVICE CONDITIONS FOR EQUIPMENT DESIGNED TO MITIGATE DESIGN-BASIS EVENTS 540 Table 3.11-2 ESTIMATES FOR TOTAL AIRBORNE GAMMA DOSE CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER - GINNA STATION 549 Table 3.11-3 ESTIMATES FOR TOTAL AIRBORNE BETA DOSE CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER - GINNA STATION 551 Table 3.11-4 ESTIMATES FOR TOTAL AIRBORNE GAMMA DOSE CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER, REGULATORY GUIDE 1.89, REVISION 1 553 Table 3.11-5 ESTIMATES FOR TOTAL AIRBORNE BETA DOSE CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER, REGULATORY GUIDE 1.89, REVISION 1 555 Table 3.11-6 GINNA STATION/REGULATORY GUIDE 1.89, APPENDIX D, COMPARISON OF POSTACCIDENT RADIATION ENVIRONMENT ASSUMPTIONS 557 FIGURES Figure 3.7-1 Seismic Response Spectra, 8%g Housner Model Figure 3.7-2 Seismic Response Spectra, 20%g Housner Model Figure 3.7-3 NRC Systematic Evaluation Program Site Specific Spectrum, Ginna Site (5% Damping)
Figure 3.7-4 Comparison of the Housner Response Spectrum for 2% of Critical Damping with the 7% Regulatory Guide 1.60 Spectrum Figure 3.7-5 In-Structure Response Spectra for Interconnected Building, Half-Area and Full-Area Models Figure 3.7-6 Containment Building and Complex of Interconnected Seismic Cate-gory I and Nonseismic Structures, Plan View Figure 3.7-7 Horizontal Response Spectra - SEP Systematic Evaluation Program Figure 3.7-8 Steam Generator Mathematical Model Figure 3.7-9 Mathematical Model of Reactor Vessel Figure 3.7-10 Seismic Average Acceleration Spectrum Design Earthquake, 1%
Figure 3.7-4 Comparison of the Housner Response Spectrum for 2% of Critical Damping with the 7% Regulatory Guide 1.60 Spectrum Figure 3.7-5 In-Structure Response Spectra for Interconnected Building, Half-Area and Full-Area Models Figure 3.7-6 Containment Building and Complex of Interconnected Seismic Cate-gory I and Nonseismic Structures, Plan View Figure 3.7-7 Horizontal Response Spectra - SEP Systematic Evaluation Program Figure 3.7-8 Steam Generator Mathematical Model Figure 3.7-9 Mathematical Model of Reactor Vessel Figure 3.7-10 Seismic Average Acceleration Spectrum Design Earthquake, 1%
Damping Figure 3.7-11 Locations Where In-Structure Response Spectra Were Generated in Interconnected Building Complex Figure 3.7-12 SEP Response Spectra for Pressurizer PR-1 (Containment Building Elevation 253 ft) for 3%, 5%, and 7% Damping Figure 3.7-13 SEP Response Spectra for Control Rod Drive (Containment Building Elevation 253 ft) for 3%, 5%, 7% Damping Figure 3.7-14 SEP Response Spectra for Control Rod Drive (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Page 30 of 39                    Revision 28 5/2019
Damping Figure 3.7-11 Locations Where In-Structure Response Spectra Were Generated in Interconnected Building Complex Figure 3.7-12 SEP Response Spectra for Pressurizer PR-1 (Containment Building Elevation 253 ft) for 3%, 5%, and 7% Damping Figure 3.7-13 SEP Response Spectra for Control Rod Drive (Containment Building Elevation 253 ft) for 3%, 5%, 7% Damping Figure 3.7-14 SEP Response Spectra for Control Rod Drive (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping  


GINNA/UFSAR Figure 3.7-15 SEP Response Spectra for Steam Generator SG-1A (Containment Building Elevation 250 ft) for 3%, 5%, and 7% Damping Figure 3.7-16 SEP Response Spectra for Steam Generator SG-1A (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Figure 3.7-17 SEP Response Spectra for Steam Generator SG-1B (Containment Building Elevation 250 ft) for 3%, 5%, and 7% Damping Figure 3.7-18 SEP Response Spectra for Steam Generator SG-1B (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Figure 3.7-19 SEP Response Spectra for Reactor Coolant Pump Rp-1A (Containment Building Elevation 247 ft) for 3%, 5%, and 7%
GINNA/UFSAR Page 31 of 39 Revision 28 5/2019 Figure 3.7-15 SEP Response Spectra for Steam Generator SG-1A (Containment Building Elevation 250 ft) for 3%, 5%, and 7% Damping Figure 3.7-16 SEP Response Spectra for Steam Generator SG-1A (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Figure 3.7-17 SEP Response Spectra for Steam Generator SG-1B (Containment Building Elevation 250 ft) for 3%, 5%, and 7% Damping Figure 3.7-18 SEP Response Spectra for Steam Generator SG-1B (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Figure 3.7-19 SEP Response Spectra for Reactor Coolant Pump Rp-1A (Containment Building Elevation 247 ft) for 3%, 5%, and 7%
Damping Figure 3.7-20 SEP Response Spectra for Reactor Coolant Pump RP-1B (Containment Building Elevation 247 ft) for 3%, 5%, and 7%
Damping Figure 3.7-20 SEP Response Spectra for Reactor Coolant Pump RP-1B (Containment Building Elevation 247 ft) for 3%, 5%, and 7%
Damping Figure 3.7-21 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Platform (Elevation 281 ft 6 in)
Damping Figure 3.7-21 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Platform (Elevation 281 ft 6 in)
Figure 3.7-22 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Heat Exchanger 35 (Elevation 281 ft 6 in)
Figure 3.7-22 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Heat Exchanger 35 (Elevation 281 ft 6 in)
Figure 3.7-23 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Surge Tank 34 Figure 3.7-24 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Boric Acid Storage Tank 34 Figure 3.7-25 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Operating Floor (Elevation 271 ft 6 in)
Figure 3.7-23 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Surge Tank 34 Figure 3.7-24 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Boric Acid Storage Tank 34 Figure 3.7-25 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Operating Floor (Elevation 271 ft 6 in)
Figure 3.7-26 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Building Basement Floor (Elevation 250 ft 0 in)
Figure 3.7-26 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Building Basement Floor (Elevation 250 ft 0 in)
Figure 3.7-27 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Building Relay Room Floor (Elevation 269 ft 9 in)
Figure 3.7-27 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Building Relay Room Floor (Elevation 269 ft 9 in)
Figure 3.7-28 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Room Floor (Elevation 289 ft 9 in)
Figure 3.7-28 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Room Floor (Elevation 289 ft 9 in)
Figure 3.7-29 Residual Heat Removal Line Inside Containment Figure 3.7-30 Lumped Mass Model - Steam Line B Figure 3.7-31 Structural Model, Pressurizer Safety and Relief Line Figure 3.8-1 Containment Cross Section and Details Figure 3.8-2 Containment Mat Foundation and Ring Girder Figure 3.8-3 Containment Mat Foundation, Reinforcement and Details Figure 3.8-4 Containment Wall Reinforcement and Details Figure 3.8-5 Containment Dome Reinforcement and Details Figure 3.8-6 Containment Miscellaneous Embedded Back-Up Steel Figure 3.8-7 Tendon Vent Cans and Grease Fill Connections Figure 3.8-8 Temperature Gradients - Operating Conditions Figure 3.8-9 Earthquake Meridional Forces Page 31 of 39                      Revision 28 5/2019
Figure 3.7-29 Residual Heat Removal Line Inside Containment Figure 3.7-30 Lumped Mass Model - Steam Line B Figure 3.7-31 Structural Model, Pressurizer Safety and Relief Line Figure 3.8-1 Containment Cross Section and Details Figure 3.8-2 Containment Mat Foundation and Ring Girder Figure 3.8-3 Containment Mat Foundation, Reinforcement and Details Figure 3.8-4 Containment Wall Reinforcement and Details Figure 3.8-5 Containment Dome Reinforcement and Details Figure 3.8-6 Containment Miscellaneous Embedded Back-Up Steel Figure 3.8-7 Tendon Vent Cans and Grease Fill Connections Figure 3.8-8 Temperature Gradients - Operating Conditions Figure 3.8-9 Earthquake Meridional Forces  


GINNA/UFSAR Figure 3.8-10 Containment Dynamic Analysis Model Figure 3.8-11 Ginna Containment Mode Shapes Figure 3.8-12 Ginna Containment - Earthquake Response Figure 3.8-13 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination A Figure 3.8-14 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination B Figure 3.8-15 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination C Figure 3.8-16 Tendon to Rock Coupling Figure 3.8-17 Containment - Top Tendon Access Figure 3.8-18 Containment Miscellaneous Steel Tendon Conduit - Hinge Detail Figure 3.8-19 Liner Knuckle Dimensions Figure 3.8-20 Containment Base to Cylinder Model Figure 3.8-21 Containment Dome to Cylinder Discontinuity Model Figure 3.8-22 Cracked Wall Shear Modulus Analysis Figure 3.8-23 Liner Shear Stress Analysis Figure 3.8-24 Windgirder, Shear Channels, and Shear Studs Figure 3.8-25 Cylinder Liner Plate Support Model Figure 3.8-26 Containment Penetration Details Figure 3.8-27 Containment Penetration Details (Typical)
GINNA/UFSAR Page 32 of 39 Revision 28 5/2019 Figure 3.8-10 Containment Dynamic Analysis Model Figure 3.8-11 Ginna Containment Mode Shapes Figure 3.8-12 Ginna Containment - Earthquake Response Figure 3.8-13 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination A Figure 3.8-14 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination B Figure 3.8-15 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination C Figure 3.8-16 Tendon to Rock Coupling Figure 3.8-17 Containment - Top Tendon Access Figure 3.8-18 Containment Miscellaneous Steel Tendon Conduit - Hinge Detail Figure 3.8-19 Liner Knuckle Dimensions Figure 3.8-20 Containment Base to Cylinder Model Figure 3.8-21 Containment Dome to Cylinder Discontinuity Model Figure 3.8-22 Cracked Wall Shear Modulus Analysis Figure 3.8-23 Liner Shear Stress Analysis Figure 3.8-24 Windgirder, Shear Channels, and Shear Studs Figure 3.8-25 Cylinder Liner Plate Support Model Figure 3.8-26 Containment Penetration Details Figure 3.8-27 Containment Penetration Details (Typical)
Figure 3.8-28 Composite Drawing Electrical Penetration Figure 3.8-29 Containment Penetrations Section and Details Figure 3.8-30 Containment Equipment Hatch Figure 3.8-31 Containment Personnel Hatch Figure 3.8-32 Containment - Fuel Transfer Tube Penetration Figure 3.8-33 Containment Penetrations Arrangements and Location Figure 3.8-34 Test Coupon - Containment Concrete Shell Figure 3.8-35 Cadweld Splice Test Results Figure 3.8-36 Quality Control Chart for 5000 PSI Concrete Figure 3.8-37 Neoprene Base Hinge Load Deformation Specimen 1 Figure 3.8-38 Neoprene Base Hinge Load Deformation Specimen 2 Figure 3.8-39 Rock Anchor Test A-1 Figure 3.8-40 Containment - Rock Anchor A Test Figure 3.8-41 Containment - Rock Anchor B Test Figure 3.8-42 Containment - Rock Anchor C Test Page 32 of 39                    Revision 28 5/2019
Figure 3.8-28 Composite Drawing Electrical Penetration Figure 3.8-29 Containment Penetrations Section and Details Figure 3.8-30 Containment Equipment Hatch Figure 3.8-31 Containment Personnel Hatch Figure 3.8-32 Containment - Fuel Transfer Tube Penetration Figure 3.8-33 Containment Penetrations Arrangements and Location Figure 3.8-34 Test Coupon - Containment Concrete Shell Figure 3.8-35 Cadweld Splice Test Results Figure 3.8-36 Quality Control Chart for 5000 PSI Concrete Figure 3.8-37 Neoprene Base Hinge Load Deformation Specimen 1 Figure 3.8-38 Neoprene Base Hinge Load Deformation Specimen 2 Figure 3.8-39 Rock Anchor Test A-1 Figure 3.8-40 Containment - Rock Anchor A Test Figure 3.8-41 Containment - Rock Anchor B Test Figure 3.8-42 Containment - Rock Anchor C Test  


GINNA/UFSAR Figure 3.8-43 Accident Temperature Transient Inside the Containment Used for Liner Analysis Figure 3.8-44 Accident Pressure Transient Inside the Containment Used for Liner Analysis Figure 3.8-45 Plan View of the Facade Structure and Containment Figure 3.8-46 Accident Temperature Gradient Through the Uninsulated Containment Shell After 94 Seconds Figure 3.8-47 Accident Temperature Gradient Through the Uninsulated Containment Shell After 380 Seconds Figure 3.8-48 Ginna Containment Structure Figure 3.8-49 Liner Stud Interaction Models Figure 3.8-50 Accident Temperature Distribution in the Steel Liner Figure 3.8-51 Force Displacement Curve for 3/4 in. Headed Studs Figure 3.8-52 Force Displacement Curve for 5/8 in. S6L Studs Figure 3.8-53 Strut Buckling Under P and Delta T Figure 3.8-54 Pressure Effect on Liner Buckling Comparison With LOCA Figure 3.8-55 Reactor Containment Internal Structures Figure 3.8-56 Containment Interior Structures Model for STARDYNE Figure 3.8-57 Schematic Plan View of Major Ginna Structures Figure 3.8-58 Three-Dimensional View of Interconnected Building Complex Figure 3.8-59 Flow Chart of the Analysis of the Interconnected Building Complex Figure 3.8-60 Masonry Wall Reevaluation, Wall Location Plan, Lower Levels Figure 3.8-61 Masonry Wall Reevaluation, Wall Location Plan, Intermediate Levels Figure 3.8-62 Masonry Wall Reevaluation, Wall Location Plan, Operating Levels Figure 3.9-1 Steam-Generator Water Hammer Preliminary Forcing Function Figure 3.9-2 Plastic Model of Reactor Coolant System - Plan View Figure 3.9-3 Lumped Mass Dynamic Model of PCV 434 Figure 3.9-4 Lumped Mass Dynamic Model of PCV 435 Figure 3.9-5 Comparison of WHAM Results With LOFT Semi-Scale Blowdown Experiments, Test No. 519 Figure 3.9-6 Comparison of WHAM Results With LOFT Semi-Scale Blowdown Experiments, Test No. 560 Figure 3.9-6a Steam Generator Upper Support Systems Figure 3.9-7 Control Rod Drive Mechanism Assembly Figure 3.9-8 Control Rod Drive Mechanism Schematic Figure 3.9-9 Reactor Vessel Internals Figure 3.9-10 Detailed View of Reactor Vessel Internals Page 33 of 39                      Revision 28 5/2019
GINNA/UFSAR Page 33 of 39 Revision 28 5/2019 Figure 3.8-43 Accident Temperature Transient Inside the Containment Used for Liner Analysis Figure 3.8-44 Accident Pressure Transient Inside the Containment Used for Liner Analysis Figure 3.8-45 Plan View of the Facade Structure and Containment Figure 3.8-46 Accident Temperature Gradient Through the Uninsulated Containment Shell After 94 Seconds Figure 3.8-47 Accident Temperature Gradient Through the Uninsulated Containment Shell After 380 Seconds Figure 3.8-48 Ginna Containment Structure Figure 3.8-49 Liner Stud Interaction Models Figure 3.8-50 Accident Temperature Distribution in the Steel Liner Figure 3.8-51 Force Displacement Curve for 3/4 in. Headed Studs Figure 3.8-52 Force Displacement Curve for 5/8 in. S6L Studs Figure 3.8-53 Strut Buckling Under P and Delta T Figure 3.8-54 Pressure Effect on Liner Buckling Comparison With LOCA Figure 3.8-55 Reactor Containment Internal Structures Figure 3.8-56 Containment Interior Structures Model for STARDYNE Figure 3.8-57 Schematic Plan View of Major Ginna Structures Figure 3.8-58 Three-Dimensional View of Interconnected Building Complex Figure 3.8-59 Flow Chart of the Analysis of the Interconnected Building Complex Figure 3.8-60 Masonry Wall Reevaluation, Wall Location Plan, Lower Levels Figure 3.8-61 Masonry Wall Reevaluation, Wall Location Plan, Intermediate Levels Figure 3.8-62 Masonry Wall Reevaluation, Wall Location Plan, Operating Levels Figure 3.9-1 Steam-Generator Water Hammer Preliminary Forcing Function Figure 3.9-2 Plastic Model of Reactor Coolant System - Plan View Figure 3.9-3 Lumped Mass Dynamic Model of PCV 434 Figure 3.9-4 Lumped Mass Dynamic Model of PCV 435 Figure 3.9-5 Comparison of WHAM Results With LOFT Semi-Scale Blowdown Experiments, Test No. 519 Figure 3.9-6 Comparison of WHAM Results With LOFT Semi-Scale Blowdown Experiments, Test No. 560 Figure 3.9-6a Steam Generator Upper Support Systems Figure 3.9-7 Control Rod Drive Mechanism Assembly Figure 3.9-8 Control Rod Drive Mechanism Schematic Figure 3.9-9 Reactor Vessel Internals Figure 3.9-10 Detailed View of Reactor Vessel Internals  


GINNA/UFSAR Figure 3.10-1 Q-Deck Detail Figure 3.10-2 Unistrut Detail Figure 3.10-3 Threaded Insert Detail Poured in Place Anchor Figure 3.10-4 Tray Support Types for Friction Bolt Testing Figure 3.11-1 Containment Volume and Reactor Power LOCA Dose Corrections Appendix 3A   INITIAL EVALUATION OF CAPABILITY TO WITHSTAND TOR-                       558 NADOES 3A.1         INTRODUCTION AND CONCLUSIONS                                             559 3A.2         IDENTIFICATION OF CRITICAL SYSTEMS AND STRUCTURES                         561 3A.3         TORNADO EFFECTS ON STRUCTURES                                             562 3A.3.1       GENERAL                                                                   562 3A.3.2       REACTOR CONTAINMENT                                                       562 3A.3.3       AUXILIARY BUILDING                                                       562 3A.3.4       INTERMEDIATE BUILDING                                                     563 3A.3.5       DIESEL-GENERATOR ANNEX                                                   563 3A.3.6       SCREEN HOUSE                                                             563 3A.3.7       CONTROL ROOM                                                             564 3A.3.8       SERVICE BUILDING                                                         564 3A.3.9       CABLE TUNNELS                                                             564 3A.4         TORNADO EFFECTS ON THE SYSTEMS REQUIRED FOR HOT                           565 SHUTDOWN 3A.4.1       DECAY HEAT REMOVAL                                                       565 3A.4.1.1     Steam Relief System                                                       565 3A.4.1.2     Auxiliary Feedwater System                                               565 3A.4.1.3     Service Water System                                                     566 3A.4.2       REACTIVITY CONTROL                                                       567 3A.4.2.1     Boration System                                                           567 3A.4.2.2     Boration Using Refueling Water                                           567 3A.4.3       CONTAINMENT VENTILATION SYSTEM                                           568 3A.4.4       EMERGENCY POWER SUPPLY SYSTEM                                             569 3A.4.5       CONTROL SYSTEM                                                           569 3A.4.5.1     Control Room                                                             569 3A.4.5.2     Systems of Batteries                                                     569 3A.4.5.3     Steam-Generator Level and Pressure Indicators, Pressurizer Pressure       569 and Level Control 3A.5         TORNADO EFFECT ON SPENT FUEL POOL                                         571 Appendix 3A Figures Page 34 of 39                      Revision 28 5/2019
GINNA/UFSAR Page 34 of 39 Revision 28 5/2019 Figure 3.10-1 Q-Deck Detail Figure 3.10-2 Unistrut Detail Figure 3.10-3 Threaded Insert Detail Poured in Place Anchor Figure 3.10-4 Tray Support Types for Friction Bolt Testing Figure 3.11-1 Containment Volume and Reactor Power LOCA Dose Corrections Appendix 3A INITIAL EVALUATION OF CAPABILITY TO WITHSTAND TOR-NADOES 558 3A.1 INTRODUCTION AND CONCLUSIONS 559 3A.2 IDENTIFICATION OF CRITICAL SYSTEMS AND STRUCTURES 561 3A.3 TORNADO EFFECTS ON STRUCTURES 562 3A.3.1 GENERAL 562 3A.3.2 REACTOR CONTAINMENT 562 3A.3.3 AUXILIARY BUILDING 562 3A.3.4 INTERMEDIATE BUILDING 563 3A.3.5 DIESEL-GENERATOR ANNEX 563 3A.3.6 SCREEN HOUSE 563 3A.3.7 CONTROL ROOM 564 3A.3.8 SERVICE BUILDING 564 3A.3.9 CABLE TUNNELS 564 3A.4 TORNADO EFFECTS ON THE SYSTEMS REQUIRED FOR HOT SHUTDOWN 565 3A.4.1 DECAY HEAT REMOVAL 565 3A.4.1.1 Steam Relief System 565 3A.4.1.2 Auxiliary Feedwater System 565 3A.4.1.3 Service Water System 566 3A.4.2 REACTIVITY CONTROL 567 3A.4.2.1 Boration System 567 3A.4.2.2 Boration Using Refueling Water 567 3A.4.3 CONTAINMENT VENTILATION SYSTEM 568 3A.4.4 EMERGENCY POWER SUPPLY SYSTEM 569 3A.4.5 CONTROL SYSTEM 569 3A.4.5.1 Control Room 569 3A.4.5.2 Systems of Batteries 569 3A.4.5.3 Steam-Generator Level and Pressure Indicators, Pressurizer Pressure and Level Control 569 3A.5 TORNADO EFFECT ON SPENT FUEL POOL 571 Appendix 3A Figures  


GINNA/UFSAR Figure 1         Boration System Figure 2         Site Plot Plan Figure 3         Diesel Generator Annex - Elevation 253 ft 6 in.
GINNA/UFSAR Page 35 of 39 Revision 28 5/2019 Figure 1 Boration System Figure 2 Site Plot Plan Figure 3 Diesel Generator Annex - Elevation 253 ft 6 in.
Figure 4         Screen House Layout Figure 5         Steam Relief Valves Figure 6         Auxiliary Feedwater Pumps Figure 7         Component Cooling System Figure 8         Spent Fuel Storage Pool, Plan View Figure 9         Spent Fuel Storage Pool, Section View Appendix 3B       DESIGN OF LARGE OPENING REINFORCEMENTS FOR CON-                   572 TAINMENT VESSEL Table of Contents                                                                   573 Summary                                                                             576 I.               Design Bases                                                       576 II.               GENERAL DESCRIPTION                                               576 III.             STRESS DISTRIBUTION AROUND A CIRCULAR HOLE IN A                   576 CIRCULAR CYLINDRICAL SHELL IV.               ANALYSIS OF STRESSES AROUND LARGE OPENINGS                         576 V.               VERIFICATION OF REINFORCEMENT ADEQUACY                             577
Figure 4 Screen House Layout Figure 5 Steam Relief Valves Figure 6 Auxiliary Feedwater Pumps Figure 7 Component Cooling System Figure 8 Spent Fuel Storage Pool, Plan View Figure 9 Spent Fuel Storage Pool, Section View Appendix 3B DESIGN OF LARGE OPENING REINFORCEMENTS FOR CON-TAINMENT VESSEL 572 Table of Contents 573 Summary 576 I.
: 1.               DESIGN BASES                                                       579 1.1               General                                                           579 1.2               Design Loads                                                       579 1.3               Load Combinations                                                 579 1.4               Material Stress/Strain Criteria                                   580 1.5               Test Condition                                                     582 1.6               Operating Condition                                               582
Design Bases 576 II.
: 2.               GENERAL DESCRIPTION OF OPENING REINFORCEMENT                       583 2.1               Introduction                                                       583 2.2               Rebar for Discontinuity Stresses                                   583 2.3               Normal Shear at Edge of Opening                                   583 2.4               Prestressing                                                       583
GENERAL DESCRIPTION 576 III.
: 3.               STRESS DISTRIBUTION AROUND A CIRCULAR HOLE IN A                   584 CIRCULAR CYLINDRICAL SHELL 3.1               Introduction                                                       584 3.2               Finite Element Method                                             585 3.3               Applications of Three-Dimensional Photoelasticity                 586 Page 35 of 39              Revision 28 5/2019
STRESS DISTRIBUTION AROUND A CIRCULAR HOLE IN A CIRCULAR CYLINDRICAL SHELL 576 IV.
ANALYSIS OF STRESSES AROUND LARGE OPENINGS 576 V.
VERIFICATION OF REINFORCEMENT ADEQUACY 577
: 1.
DESIGN BASES 579 1.1 General 579 1.2 Design Loads 579 1.3 Load Combinations 579 1.4 Material Stress/Strain Criteria 580 1.5 Test Condition 582 1.6 Operating Condition 582
: 2.
GENERAL DESCRIPTION OF OPENING REINFORCEMENT 583 2.1 Introduction 583 2.2 Rebar for Discontinuity Stresses 583 2.3 Normal Shear at Edge of Opening 583 2.4 Prestressing 583
: 3.
STRESS DISTRIBUTION AROUND A CIRCULAR HOLE IN A CIRCULAR CYLINDRICAL SHELL 584 3.1 Introduction 584 3.2 Finite Element Method 585 3.3 Applications of Three-Dimensional Photoelasticity 586  


GINNA/UFSAR
GINNA/UFSAR Page 36 of 39 Revision 28 5/2019
: 4.           ANALYSIS OF THE STRESSES AROUND LARGE OPENINGS IN                           588 THE R. E. GINNA SECONDARY CONTAINMENT VESSEL 4.1           Verification of Finite-element Method of Analysis                           588 4.2           General Considerations Concerning Methods of Analysis of Reinforced         589 Concrete Structures in the Cracked Condition 4.3           Stress Analysis in Cracked and Uncracked Conditions Under Operating         590 and Accident Loads 4.3.2         Basic Loading Conditions                                                   592 4.3.3         Effect of Concrete Cracking                                                 595 4.3.4         Effect of Creep and Shrinkage                                               597
: 4.
: 5.           Verification of Design Criteria                                             598 5.1           Basis For Verification of Shell Loading Capacity Due to Primary Loads       598 (Principal Stress-resultants and Principal Stress-couples) 5.2           Interaction Diagram                                                         599 5.3           Reinforcing Steel                                                           600 5.4           Maximum Liner Stresses                                                     600 5.5           Penetration Barrel                                                         600 5.6           Normal Shear                                                               601 5.7           Rebar Anchorage                                                             602 5.8           Tendon Losses                                                               603 5.9           Summary of Design and Conclusions                                           604 Table 4-1     Load Combinations                                                           608 Table 4-2     Stress Around Equipment Hatch-Loading (Uncracked Shell)                     609 Table 4-3     Stress Around Equipment Hatch-Loading (Cracked Shell)                       611 Table 5-1     Maximum Liner Stresses Stress tangent to the edge in Ksi                   619 Appendix A to EFFECT OF CONCRETE CREEP AND THE SUSTAINED OPER-                           620 APPENDIX 3B  ATING STRESSES ON STRESS DISTRIBUTION AROUND OPEN-INGS IN A RAPIDLY PRESSURIZED REINFORCED CONCRETE VESSEL 3B.A         EFFECT OF CONCRETE CREEP AND THE SUSTAINED OPER-                           621 ATING STRESSES ON STRESS DISTRIBUTION AROUND OPEN-INGS IN A RAPIDLY PRESSURIZED REINFORCED CONCRETE VESSEL Appendix B TO EARTHQUAKE ANALYSIS                                                         628 APPENDIX 3B 3B.B         Earthquake Analysis                                                         629 ADDENDUM TO ADDENDUM TO THE REPORT ON: DESIGN OF LARGE OPEN-                             630 APPENDIX 3B  ING REINFORCEMENTS FOR CONTAINMENT VESSEL 3B.C         Introduction                                                               631 1             Design                                                                     632 Page 36 of 39                      Revision 28 5/2019
ANALYSIS OF THE STRESSES AROUND LARGE OPENINGS IN THE R. E. GINNA SECONDARY CONTAINMENT VESSEL 588 4.1 Verification of Finite-element Method of Analysis 588 4.2 General Considerations Concerning Methods of Analysis of Reinforced Concrete Structures in the Cracked Condition 589 4.3 Stress Analysis in Cracked and Uncracked Conditions Under Operating and Accident Loads 590 4.3.2 Basic Loading Conditions 592 4.3.3 Effect of Concrete Cracking 595 4.3.4 Effect of Creep and Shrinkage 597
: 5.
Verification of Design Criteria 598 5.1 Basis For Verification of Shell Loading Capacity Due to Primary Loads (Principal Stress-resultants and Principal Stress-couples) 598 5.2 Interaction Diagram 599 5.3 Reinforcing Steel 600 5.4 Maximum Liner Stresses 600 5.5 Penetration Barrel 600 5.6 Normal Shear 601 5.7 Rebar Anchorage 602 5.8 Tendon Losses 603 5.9 Summary of Design and Conclusions 604 Table 4-1 Load Combinations 608 Table 4-2 Stress Around Equipment Hatch-Loading (Uncracked Shell) 609 Table 4-3 Stress Around Equipment Hatch-Loading (Cracked Shell) 611 Table 5-1 Maximum Liner Stresses Stress tangent to the edge in Ksi 619 Appendix A to APPENDIX 3B EFFECT OF CONCRETE CREEP AND THE SUSTAINED OPER-ATING STRESSES ON STRESS DISTRIBUTION AROUND OPEN-INGS IN A RAPIDLY PRESSURIZED REINFORCED CONCRETE VESSEL 620 3B.A EFFECT OF CONCRETE CREEP AND THE SUSTAINED OPER-ATING STRESSES ON STRESS DISTRIBUTION AROUND OPEN-INGS IN A RAPIDLY PRESSURIZED REINFORCED CONCRETE VESSEL 621 Appendix B TO APPENDIX 3B EARTHQUAKE ANALYSIS 628 3B.B Earthquake Analysis 629 ADDENDUM TO APPENDIX 3B ADDENDUM TO THE REPORT ON: DESIGN OF LARGE OPEN-ING REINFORCEMENTS FOR CONTAINMENT VESSEL 630 3B.C Introduction 631 1
Design 632  


GINNA/UFSAR 1.1     Concrete Shear                                                             632 1.2     Interaction Diagrams                                                       632 1.3     Earthquake Design                                                         632 1.4     Thermal Gradients                                                         632 1.5     Penetration Material                                                       633 1.6     Working Strength Design                                                   633 1.7     Anchorage Plate Bearing Stress                                             633 1.8     Insulated Liner Temperature Increase                                       633 1.9     High Strength Rebar                                                       633 1.10     Proof Test Instrumentation                                                 633 1.11     Operating Conditions                                                       634 1.12     Shear - Diagonal Tension                                                   634 1.13     Normal Shears                                                             635 1.14     Radial Shear at the Periphery of the Opening                               635 1.15     Accident Temperature Effects                                               635 1.16     Analytical Model for Different Load Combinations                           635 1.17     Shear Reinforcement                                                       635 1.18     Equation (5.11)                                                           636 1.19     Rebar Located Away from the Barrel                                         636 1.20     Verification of Analysis                                                   637 1.21     Test Problem                                                               638 1.22     Accident Temperature                                                       638 2       Construction                                                               639 2.1     Construction Schedule                                                     639 2.2     Concrete Removal                                                           639 2.3     Concrete Work                                                             639 2.4     Retensioning Tendons                                                       640 2.5     Rebar Splices                                                             640 2.6     Tendon Conduit                                                             640 Table I STRESS AROUND EQUIPMENT HATCH LOADING CONDITION                           641 NO. 4 - Accident Temperature Appendix 3B Figures Figures Appendix 3B Figures Figure 1 Figure 2 Figure 3 Stress Distribution Around Openings in Cylindrical Shells Page 37 of 39                      Revision 28 5/2019
GINNA/UFSAR Page 37 of 39 Revision 28 5/2019 1.1 Concrete Shear 632 1.2 Interaction Diagrams 632 1.3 Earthquake Design 632 1.4 Thermal Gradients 632 1.5 Penetration Material 633 1.6 Working Strength Design 633 1.7 Anchorage Plate Bearing Stress 633 1.8 Insulated Liner Temperature Increase 633 1.9 High Strength Rebar 633 1.10 Proof Test Instrumentation 633 1.11 Operating Conditions 634 1.12 Shear - Diagonal Tension 634 1.13 Normal Shears 635 1.14 Radial Shear at the Periphery of the Opening 635 1.15 Accident Temperature Effects 635 1.16 Analytical Model for Different Load Combinations 635 1.17 Shear Reinforcement 635 1.18 Equation (5.11) 636 1.19 Rebar Located Away from the Barrel 636 1.20 Verification of Analysis 637 1.21 Test Problem 638 1.22 Accident Temperature 638 2
Construction 639 2.1 Construction Schedule 639 2.2 Concrete Removal 639 2.3 Concrete Work 639 2.4 Retensioning Tendons 640 2.5 Rebar Splices 640 2.6 Tendon Conduit 640 Table I STRESS AROUND EQUIPMENT HATCH LOADING CONDITION NO. 4 - Accident Temperature 641 Appendix 3B Figures Figures Appendix 3B Figures Figure 1 Figure 2 Figure 3 Stress Distribution Around Openings in Cylindrical Shells  


GINNA/UFSAR Figure 4         Grid for Finite Element Analysis of the Stresses Around Openings Figure 5         Membrane Stress Around Opening Edge (Vessel Subject to Internal Pressure)
GINNA/UFSAR Page 38 of 39 Revision 28 5/2019 Figure 4 Grid for Finite Element Analysis of the Stresses Around Openings Figure 5 Membrane Stress Around Opening Edge (Vessel Subject to Internal Pressure)
Figure 6         Surface Stresses Around Opening Edge (Vessel Subject to Internal Pressure)
Figure 6 Surface Stresses Around Opening Edge (Vessel Subject to Internal Pressure)
Figure 7         Hoop Stresses Along Longitudinal Axis (Vessel Subject to Internal Pressure)
Figure 7 Hoop Stresses Along Longitudinal Axis (Vessel Subject to Internal Pressure)
Figure 8         Axial Stresses Along Transverse Axis (vessel Subject to Inernal Pres-sure)
Figure 8 Axial Stresses Along Transverse Axis (vessel Subject to Inernal Pres-sure)
Figure 9         Hoop Stress-Resultant No Along Symmetry Axes (Test Problem)
Figure 9 Hoop Stress-Resultant No Along Symmetry Axes (Test Problem)
Figure 10       Layer Thickness And Destination Figure 11       Nodal Forces Due to Curvature of Tendons in the Neighborhood of Opening Figure 12       Stress Distribution Around Openings (Thermal Gradient Near Equip-ment Opening)
Figure 10 Layer Thickness And Destination Figure 11 Nodal Forces Due to Curvature of Tendons in the Neighborhood of Opening Figure 12 Stress Distribution Around Openings (Thermal Gradient Near Equip-ment Opening)
Figure 13       Steady State Temperature Distributions - Winter Gradient Figure 14       Stress Distribution Around Openings (Effect of Bond Failure Along Terminated Rebars)
Figure 13 Steady State Temperature Distributions - Winter Gradient Figure 14 Stress Distribution Around Openings (Effect of Bond Failure Along Terminated Rebars)
Figure 15       Hoop Stress-Resultant Along Horizontal And Vertical Symmetry Axes (Internal Pressure = 69 PSI)
Figure 15 Hoop Stress-Resultant Along Horizontal And Vertical Symmetry Axes (Internal Pressure = 69 PSI)
Figure 16       Shell Displacements (Final Vertical Prestress)
Figure 16 Shell Displacements (Final Vertical Prestress)
Figure 17       Shell Displacements (69 PSI Internal Pressure)
Figure 17 Shell Displacements (69 PSI Internal Pressure)
Figure 18       Interaction Diagram for Axial Compression/Tension and Bending Figure 19       Interaction Diagram Ring Steel Direction Elements No. 73 & 74 Figure 20       Interaction Diagram Elements No. 97, 100, & 101 Figure 21       Interaction Diagram Elements No. 97, 100, & 101 Figure 22       Interaction Diagram Elements No. 33, 55, 66, & 77 Figure 23       Interaction Diagram Element No. 77 Figure 24       Interaction Diagram Element No. 55 Drawings Figure Drawing 1 Reactor Containment Vessel - Equipment/Personnel Access Reinforce-ment - Enlarged Sections Figure Drawing 2 Reactor Containment Vessel - Equipment Access Opening Reinforce-ment - Stretch-out & Sections Figure I         Comparison of H.H. & GAI Results Hoop Stress Resultants Along Horizontal and Vertical Symmetry Axes (Internal Pressure = 69 PSI)
Figure 18 Interaction Diagram for Axial Compression/Tension and Bending Figure 19 Interaction Diagram Ring Steel Direction Elements No. 73 & 74 Figure 20 Interaction Diagram Elements No. 97, 100, & 101 Figure 21 Interaction Diagram Elements No. 97, 100, & 101 Figure 22 Interaction Diagram Elements No. 33, 55, 66, & 77 Figure 23 Interaction Diagram Element No. 77 Figure 24 Interaction Diagram Element No. 55 Drawings Figure Drawing 1 Reactor Containment Vessel - Equipment/Personnel Access Reinforce-ment - Enlarged Sections Figure Drawing 2 Reactor Containment Vessel - Equipment Access Opening Reinforce-ment - Stretch-out & Sections Figure I Comparison of H.H. & GAI Results Hoop Stress Resultants Along Horizontal and Vertical Symmetry Axes (Internal Pressure = 69 PSI)
Figure Drawing 1 Reactor Containment Vessel - Equipment/Personnel Access Reinforcement - Enlarged Sections Page 38 of 39                      Revision 28 5/2019
Figure Drawing 1 Reactor Containment Vessel - Equipment/Personnel Access Reinforcement - Enlarged Sections  


GINNA/UFSAR Figure Drawing 2 Reactor Containment Vessel - Equipment Access Opening Reinforcement - Stretch-out & Sections Figure Drawing 3 Large Openings - Pour Schedule Appendix 3C       CONTAINMENT SHELL STRESS CALCULATION RESULTS                           642 Table 3C-1       CONTAINMENT SHELL STRESS CALCULATION RESULTS                           643 Appendix 3D       CONTAINMENT TENDON ANCHORAGE HARDWARE CAPAC-                           668 ITY TESTS Compressive Load Tests of 90 Wire Tendon Base Plate - Test on Con-     669 crete Stand Compressive Load Tests of 90 Wire Tendon Base Plate - Test on Con-     673 crete Stand Compression Tests of 90-Wire Anchor Head Assembly                       681 Compression Tests of 90-Wire Anchor Head Assembly                       683 Load Tests of Coupler and Adaptor 90-11                                 690 Load Tests of Coupler and Adaptor 90-11                                 692 90 Wire Tendon Test                                                     696 90 Wire Tendon Test                                                     697 90 Wire Tendon Test                                                     698 Load Tests of 90-X7 Coupler                                             702 Appendix 3E       CONTAINMENT LINER INSULATION PREOPERATIONAL                             704 TESTS BM Containment Insulation SP-5290 Ginna Plant                           705 Report No. E455-T-268, VINYLCEL (4 pcf) - Water Vapor Permeabil-       707 ity and Humid Aging Tests Report No. E455-T-266, VINYLCEL (4 pcf) - Effect of Heat and Pres-     711 sure Report No. E455-T-258, VINYLCEL - Resistance to Flame Exposure         718 Appendix 3F      
GINNA/UFSAR Page 39 of 39 Revision 28 5/2019 Figure Drawing 2 Reactor Containment Vessel - Equipment Access Opening Reinforcement - Stretch-out & Sections Figure Drawing 3 Large Openings - Pour Schedule Appendix 3C CONTAINMENT SHELL STRESS CALCULATION RESULTS 642 Table 3C-1 CONTAINMENT SHELL STRESS CALCULATION RESULTS 643 Appendix 3D CONTAINMENT TENDON ANCHORAGE HARDWARE CAPAC-ITY TESTS 668 Compressive Load Tests of 90 Wire Tendon Base Plate - Test on Con-crete Stand 669 Compressive Load Tests of 90 Wire Tendon Base Plate - Test on Con-crete Stand 673 Compression Tests of 90-Wire Anchor Head Assembly 681 Compression Tests of 90-Wire Anchor Head Assembly 683 Load Tests of Coupler and Adaptor 90-11 690 Load Tests of Coupler and Adaptor 90-11 692 90 Wire Tendon Test 696 90 Wire Tendon Test 697 90 Wire Tendon Test 698 Load Tests of 90-X7 Coupler 702 Appendix 3E CONTAINMENT LINER INSULATION PREOPERATIONAL TESTS 704 BM Containment Insulation SP-5290 Ginna Plant 705 Report No. E455-T-268, VINYLCEL (4 pcf) - Water Vapor Permeabil-ity and Humid Aging Tests 707 Report No. E455-T-266, VINYLCEL (4 pcf) - Effect of Heat and Pres-sure 711 Report No. E455-T-258, VINYLCEL - Resistance to Flame Exposure 718 Appendix 3F  


==SUMMARY==
==SUMMARY==
OF STRUCTURAL DESIGN CODE COMPARISON                           740 Table of Contents                                                                         741 3F.1             INTRODUCTION                                                           742 Table 3F.2-1     AISC 1963 VERSUS AISC 1980  
OF STRUCTURAL DESIGN CODE COMPARISON 740 Table of Contents 741 3F.1 INTRODUCTION 742 Table 3F.2-1 AISC 1963 VERSUS AISC 1980  


==SUMMARY==
==SUMMARY==
OF CODE                             743 COMPARISON Table 3F.3-1     ACI 318-63 VERSUS ACI 349-76  
OF CODE COMPARISON 743 Table 3F.3-1 ACI 318-63 VERSUS ACI 349-76  


==SUMMARY==
==SUMMARY==
OF CODE                           747 COMPARISON Table 3F.4-1     ACI 301-63 VERSUS ACI 301-72 (REVISED 1975)  
OF CODE COMPARISON 747 Table 3F.4-1 ACI 301-63 VERSUS ACI 301-72 (REVISED 1975)  


==SUMMARY==
==SUMMARY==
OF                 756 CODE COMPARISON Table 3F.5-1     ACI 318-63 VERSUS ASME B&PV CODE, SECTION III,                         762 DIVISION 2, 1980,  
OF CODE COMPARISON 756 Table 3F.5-1 ACI 318-63 VERSUS ASME B&PV CODE, SECTION III, DIVISION 2, 1980,  


==SUMMARY==
==SUMMARY==
OF CODE COMPARISON Page 39 of 39                      Revision 28 5/2019}}
OF CODE COMPARISON 762}}

Latest revision as of 02:16, 5 January 2025

8 to Updated Final Safety Analysis Report, Chapter 3, Table of Contents
ML19150A443
Person / Time
Site: Ginna Constellation icon.png
Issue date: 05/10/2019
From:
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML19150A453 List: ... further results
References
Download: ML19150A443 (39)


Text

GINNA/UFSAR Page 1 of 39 Revision 28 5/2019 3

DESIGN OF STRUCTURES, COMPONENTS, EQUIPMENT AND 1

SYSTEMS 3.1 CONFORMANCE WITH NRC GENERAL DESIGN CRITERIA 2

3.1.1 ATOMIC INDUSTRIAL FORUM DESIGN CRITERIA 2

3.1.1.1 Overall Plant Requirements 2

3.1.1.1.1 Quality Standards 2

3.1.1.1.2 Performance Standards 4

3.1.1.1.3 Fire Protection 5

3.1.1.1.4 Sharing of Systems 5

3.1.1.1.5 Records Requirements 5

3.1.1.2 Protection by Multiple Fission Product Barriers 6

3.1.1.2.1 Reactor Core Design 6

3.1.1.2.2 Suppression of Power Oscillations 7

3.1.1.2.3 Overall Power Coefficient 7

3.1.1.2.4 Reactor Coolant Pressure Boundary 7

3.1.1.2.5 Reactor Containment 8

3.1.1.3 Nuclear and Radiation Controls 9

3.1.1.3.1 Control Room 9

3.1.1.3.2 Instrumentation and Controls Systems 9

3.1.1.3.3 Fission Process Monitors and Controls 10 3.1.1.3.4 Core Protection Systems 11 3.1.1.3.5 Engineered Safety Features Protection Systems 11 3.1.1.3.6 Monitoring Reactor Coolant Leakage 12 3.1.1.3.7 Monitoring Radioactivity Releases 13 3.1.1.3.8 Monitoring Fuel and Waste Storage 13 3.1.1.4 Reliability and Testability of Protection Systems 14 3.1.1.4.1 Protection Systems Reliability 14 3.1.1.4.2 Protection Systems Redundancy and Independence 15 3.1.1.4.2.1 Reactor Trip Circuits 15 3.1.1.4.2.2 Engineered Safety Features Initiation Circuits 15 3.1.1.4.3 Single-Failure Definition (Category B) 16 3.1.1.4.4 Separation of Protection and Control Instrumentation Systems 16 3.1.1.4.5 Protection Against Multiple Disability for Protection Systems 16 3.1.1.4.6 Emergency Power for Protection Systems 16 3.1.1.4.7 Demonstration of Functional Operability of Protection Systems 17 3.1.1.4.8 Protection Systems Failure Analysis Design 17

GINNA/UFSAR Page 2 of 39 Revision 28 5/2019 3.1.1.5 Reactivity Control 18 3.1.1.5.1 Redundancy of Reactivity Control 18 3.1.1.5.2 Reactivity Hot Shutdown Capability 18 3.1.1.5.3 Reactivity Shutdown Capability 18 3.1.1.5.4 Reactivity Hold-Down Capability 19 3.1.1.5.5 Reactivity Control Systems Malfunction 19 3.1.1.5.6 Maximum Reactivity Worth of Control Rods 20 3.1.1.6 Reactor Coolant Pressure Boundary 20 3.1.1.6.1 Reactor Coolant Pressure Boundary Capability 20 3.1.1.6.2 Reactor Coolant Pressure Boundary Rapid Propagation Failure Preven-21 tion 3.1.1.6.3 Reactor Coolant Pressure Boundary Brittle Fracture Prevention 22 3.1.1.6.4 Reactor Coolant Pressure Boundary Surveillance 22 3.1.1.7 Engineered Safety Features 23 3.1.1.7.1 Engineered Safety Features Basis for Design 23 3.1.1.7.2 Reliability and Testability of Engineered Safety Features 24 3.1.1.7.3 Emergency Power 24 3.1.1.7.4 Missile Protection 25 3.1.1.7.5 Engineered Safety Features Performance Capability 26 3.1.1.7.6 Engineered Safety Features Components Capability 26 3.1.1.7.7 Accident Aggravation Prevention 27 3.1.1.7.8 Emergency Core Cooling System (ECCS) Capability 27 3.1.1.7.9 Inspection of Emergency Core Cooling System (ECCS) 28 3.1.1.7.10 Testing of Emergency Core Cooling System (ECCS) Components 28 3.1.1.7.11 Testing of Emergency Core Cooling System (ECCS) 28 3.1.1.7.12 Testing of Operational Sequence of Emergency Core Cooling System 28 (ECCS) 3.1.1.7.13 Containment Design Basis 29 3.1.1.7.14 Nil Ductility Transition Temperature Requirement for Containment 29 Material 3.1.1.7.15 Reactor Coolant Pressure Boundary Outside Containment 30 3.1.1.7.16 Containment Heat Removal Systems 30 3.1.1.7.17 Containment Isolation Valves 30 3.1.1.7.18 Initial Leakage Rate Testing of Containment 30 3.1.1.7.19 Periodic Containment Leakage Rate Testing 31 3.1.1.7.20 Provisions for Testing of Penetrations 31 3.1.1.7.21 Provisions for Testing of Isolation Valves 31

GINNA/UFSAR Page 3 of 39 Revision 28 5/2019 3.1.1.7.22 Inspection of Containment Pressure-Reducing Systems 32 3.1.1.7.23 Testing of Containment Pressure-Reducing Systems Components 32 3.1.1.7.24 Testing of Containment Spray Systems 32 3.1.1.7.25 Testing of Operational Sequence of Containment Pressure-Reducing 32 Systems 3.1.1.7.26 Inspection of Air Cleanup Systems 33 3.1.1.7.27 Testing of Air Cleanup Systems Components 33 3.1.1.7.28 Testing Air Cleanup System 33 3.1.1.7.29 Testing of Operational Sequence of Air Cleanup Systems 33 3.1.1.8 Fuel and Waste Storage Systems 34 3.1.1.8.1 Prevention of Fuel Storage Criticality 34 3.1.1.8.2 Fuel and Waste Storage Decay Heat 34 3.1.1.8.3 Fuel and Waste Storage Radiation Shielding 35 3.1.1.8.4 Protection Against Radioactivity Release From Spent Fuel and Waste 35 Storage 3.1.1.9 Control of Releases of Radioactivity to the Environment 35 3.1.2 GENERAL DESIGN CRITERIA 36 3.1.2.1 Overall Requirements 36 3.1.2.1.1 General Design Criterion 1 - Quality Standards and Records 37 3.1.2.1.2 General Design Criterion 2 - Design Bases for Protection Against Nat-38 ural Phenomena 3.1.2.1.3 General Design Criterion 3 - Fire Protection 38 3.1.2.1.4 General Design Criterion 4 - Environmental and Missile Design Bases 39 3.1.2.1.5 General Design Criterion 5 - Sharing of Structures, Systems, and Com-39 ponents 3.1.2.2 Protection by Multiple Fission Product Barriers 39 3.1.2.2.1 General Design Criterion 10 - Reactor Design 39 3.1.2.2.2 General Design Criterion 11 - Reactor Inherent Protection 40 3.1.2.2.3 General Design Criterion 12 - Suppression of Reactor Power Oscilla-40 tions 3.1.2.2.4 General Design Criterion 13 - Instrumentation and Control 40 3.1.2.2.5 General Design Criterion 14 - Reactor Coolant Pressure Boundary 41 3.1.2.2.6 General Design Criterion 15 - Reactor Coolant System Design 41 3.1.2.2.7 General Design Criterion 16 - Containment Design 42 3.1.2.2.8 General Design Criterion 17 - Electrical Power Systems 42 3.1.2.2.9 General Design Criterion 18 - Inspection and Testing of Electrical 44 Power Systems 3.1.2.2.10 General Design Criterion 19 - Control Room 44

GINNA/UFSAR Page 4 of 39 Revision 28 5/2019 3.1.2.3 Protection and Reactivity Control Systems 45 3.1.2.3.1 General Design Criterion 20 - Protection Systems Functions 45 3.1.2.3.2 General Design Criterion 21 - Protection System Reliability and Test-45 ability 3.1.2.3.3 General Design Criterion 22 - Protection System Independence 46 3.1.2.3.4 General Design Criterion 23 - Protection System Failure Modes 46 3.1.2.3.5 General Design Criterion 24 - Separation of Protection and Control 47 Systems 3.1.2.3.6 General Design Criterion 25 - Protection System Requirements for 47 Reactivity Control Malfunctions 3.1.2.3.7 General Design Criterion 26 - Reactivity Control System Redundancy 48 and Capability 3.1.2.3.8 General Design Criterion 27 - Combined Reactivity Control System 48 Capability 3.1.2.3.9 General Design Criterion 28 - Reactivity Limits 49 3.1.2.3.10 General Design Criterion 29 - Protection Against Anticipated Opera-49 tional Occurrences 3.1.2.4 Fluid Systems 49 3.1.2.4.1 General Design Criterion 30 - Quality of Reactor Coolant Pressure 49 Boundary 3.1.2.4.2 General Design Criterion 31 - Fracture Prevention of Reactor Coolant 50 Pressure Boundary 3.1.2.4.3 General Design Criterion 32 - Inspection of Reactor Coolant Pressure 51 Boundary 3.1.2.4.4 General Design Criterion 33 - Reactor Coolant Makeup 51 3.1.2.4.5 General Design Criterion 34 - Residual Heat Removal 52 3.1.2.4.6 General Design Criterion 35 - Emergency Core Cooling 52 3.1.2.4.7 General Design Criterion 36 - Inspection of Emergency Core Cooling 53 System (ECCS) 3.1.2.4.8 General Design Criterion 37 - Testing of Emergency Core Cooling 53 Systems (ECCS) 3.1.2.4.9 General Design Criterion 38 - Containment Heat Removal 54 3.1.2.4.10 General Design Criterion 39 - Inspection of Containment Heat 54 Removal System 3.1.2.4.11 General Design Criterion 40 - Testing of Containment Heat Removal 54 System 3.1.2.4.12 General Design Criterion 41 - Containment Atmosphere Cleanup 55 3.1.2.4.13 General Design Criterion 42 - Inspection of Containment Atmosphere 56 Cleanup Systems 3.1.2.4.14 General Design Criterion 43 - Testing of Containment Atmosphere 56 Cleanup Systems 3.1.2.4.15 General Design Criterion 44 - Cooling Water 57

GINNA/UFSAR Page 5 of 39 Revision 28 5/2019 3.1.2.4.16 General Design Criterion 45 - Inspection of Cooling Water System 57 3.1.2.4.17 General Design Criterion 46 - Testing of Cooling Water System 58 3.1.2.5 Reactor Containment 58 3.1.2.5.1 General Design Criterion 50 - Containment Design Basis 58 3.1.2.5.2 General Design Criterion 51 - Fracture Prevention of Containment 59 Pressure Boundary 3.1.2.5.3 General Design Criterion 52 - Capability for Containment Leakage 59 Rate Testing 3.1.2.5.4 General Design Criterion 53 - Provisions for Containment Testing and 59 Inspection 3.1.2.5.5 General Design Criterion 54 - Piping Systems Penetrating Containment 60 3.1.2.5.6 General Design Criterion 55 - Reactor Coolant Pressure Boundary Pen-60 etrating Containment 3.1.2.5.7 General Design Criterion 56 - Primary Containment Isolation 61 3.1.2.5.8 General Design Criterion 57 - Closed System Isolation Valves 62 3.1.2.6 Fuel and Radioactivity Control 62 3.1.2.6.1 General Design Criterion 60 - Control of Releases of Radioactive 62 Materials to the Environment 3.1.2.6.2 General Design Criterion 61 - Fuel Storage and Handling and Radioac-62 tivity Control 3.1.2.6.3 General Design Criterion 62 - Prevention of Criticality in Fuel Storage and Handling 63 3.1.2.6.4 General Design Criterion 63 - Monitoring Fuel and Waste Storage 63 3.1.2.6.5 General Design Criterion 64 - Monitoring Radioactivity Releases 64 3.2 CLASSIFICATION OF STRUCTURES, COMPONENTS, AND SYS-TEMS 66 3.

2.1 INTRODUCTION

66 3.2.2 SYSTEMATIC EVALUATION PROGRAM EVALUATION 66 3.2.2.1 Fracture Toughness 67 3.2.2.1.1 Pressurizer 67 3.2.2.1.2 Accumulators 68 3.2.2.1.3 Component Cooling Water (CCW) Pumps 68 3.2.2.1.4 Service Water Pumps 68 3.2.2.1.5 Main Steam Piping and Valves 69 3.2.2.1.6 Feedwater Piping and Valves 69 3.2.2.2 Radiography Requirements 69 3.2.2.2.1 Class 2 Pressure Vessels 69 3.2.2.2.2 Class 1 and 2 Welded Joints 70 3.2.2.2.3 Main Steam and Feedwater Piping 70

GINNA/UFSAR Page 6 of 39 Revision 28 5/2019 3.2.2.3 Valve Design 71 3.2.2.4 Pump Design 71 3.2.2.5 Storage Tank Design 72 Table 3.2-1 CLASSIFICATION OF STRUCTURES, SYSTEMS, AND COMPONENTS 74 3.3 WIND AND TORNADO LOADINGS 84 3.

3.1 INTRODUCTION

84 3.3.2 STRUCTURAL UPGRADE PROGRAM EVALUATION 84 3.3.2.1 Structural Evaluation Approach 84 3.3.2.1.1 Requirements 84 3.3.2.1.2 Structural Evaluation Process 84 3.3.2.1.3 Structural Evaluation Computer Program 85 3.3.2.1.4 Input Load Criteria 85 3.3.2.1.5 General Assumptions 86 3.3.2.1.6 Load Combinations and Acceptance Criteria 87 3.3.2.2 Structural Evaluation 88 3.3.2.2.1 Primary Member Evaluation 88 3.3.2.2.2 Secondary Member Evaluation 89 3.3.2.2.3 Connections and Anchorages Evaluation 89 3.3.2.2.4 Exterior Shell Evaluation 90 3.3.2.2.4.1 Siding 90 3.3.2.2.4.2 Concrete Masonry Block Walls 90 3.3.2.2.4.3 Architectural Items 91 3.3.2.3 Results of the Structural Evaluation 91 3.3.2.3.1 Primary Members 91 3.3.2.3.1.1 General 91 3.3.2.3.1.2 Severe Environmental Conditions 91 3.3.2.3.1.3 Extreme Snow Load Condition 92 3.3.2.3.1.4 132-mph Tornado 92 3.3.2.3.1.5 188-mph Tornado 92 3.3.2.3.1.6 250-mph Tornado 92 3.3.2.3.2 Secondary Members 93 3.3.2.3.3 Connections and Anchorages 93 3.3.2.3.4 Exterior Shell 94 3.3.2.3.4.1 Metal Siding 94 3.3.2.3.4.2 Roof Decking 94

GINNA/UFSAR Page 7 of 39 Revision 28 5/2019 3.3.2.3.4.3 Block Walls 94 3.3.3 TORNADO MISSILES AND SAFE SHUTDOWN APPROACH 94 3.3.3.1

Background

94 3.3.3.2 Shutdown Methodology 95 3.3.3.2.1 Assumptions 95 3.3.3.2.2 Shutdown Details 95 3.3.3.3 Required Components 96 3.3.3.3.1 Refueling Water Storage Tank (RWST) 96 3.3.3.3.2 Electrical Buses 14, 17, and 18 96 3.3.3.3.3 Main Steam Lines A and B, and Main Feedwater Lines A and B 97 3.3.3.3.3.1 Results - Steel Rod 97 3.3.3.3.3.2 Results - Utility Pole 97 3.3.3.3.3.3 Failure of Block Walls 97 3.3.3.3.4 Surface of the Spent Fuel Pool 98 3.3.3.3.5 Diesel Generators and Their Fuel Supply 98 3.3.3.3.6 Relay Room 98 3.3.3.3.7 Service Water System 99 3.3.3.3.8 Standby Auxiliary Feedwater System 99 3.3.3.3.9 Instrumentation 99 3.3.3.3.10 Cable Tunnel 100 3.3.4 DESIGN TORNADO 100 3.3.4.1 Introduction 100 3.3.4.2 Safety Assessment 100 3.3.4.3 Reserve Plant Capacity 101 3.3.4.4 System Reserve Capacity 102 3.3.5 STRUCTURAL UPGRADE PROGRAM 103 3.3.5.1 Introduction 103 3.3.5.2 Criteria Changes 103 3.3.5.2.1 First Stage Review 103 3.3.5.2.2 Second Stage Review 104 3.3.5.3 Stability Evaluation 105 3.3.5.3.1 Primary Members 105 3.3.5.3.2 Connections and Anchorages 105 3.3.5.4 NRC Technical Evaluation Report (SEP Topic III-2) Open Items 106 3.3.5.4.1 Effective Tornado Loadings 106 3.3.5.4.2 Structural Loadings 107

GINNA/UFSAR Page 8 of 39 Revision 28 5/2019 3.3.5.4.3 Structural Acceptance Criteria 107 3.3.5.4.4 Structural Systems 107 3.3.5.5 SEP Topic III-7.B, Loads, Load Combinations, and Design Criteria 108 3.3.5.6 Diesel Generator Component Operability 109 3.3.5.7 Conclusions 109 3.3.6 INTERMEDIATE BUILDING BLOCK WALL REINFORCEMENT 110 Table 3.3-1 PRIMARY MEMBER FAILURES PER LOADING COMBINATION 114 3.4 WATER LEVEL (FLOOD) DESIGN 115 3.4.1 FLOOD PROTECTION 115 3.4.1.1 Flood Protection Measures for Seismic Category I Structures 115 3.4.1.1.1 Introduction 115 3.4.1.1.2 Lake Ontario Flood Protection 115 3.4.1.1.3 Deer Creek Flood Protection 116 3.4.1.2 Permanent Dewatering System 116 3.4.2 FLOODING DUE TO FAILURE OF TANKS 117 3.4.3 ROOF DRAINAGE 117 3.5 MISSILE PROTECTION 120 3.5.1 INTERNALLY GENERATED MISSILES 120 3.5.1.1 Introduction 120 3.5.1.1.1 Design Criteria 120 3.5.1.1.2 Systematic Evaluation Program 120 3.5.1.2 Turbine Missiles 121 3.5.1.2.1 Introduction 121 3.5.1.2.2 Turbine Inspection Program 122 3.5.1.2.3 Systematic Evaluation Program Topic III-4 122 3.5.1.3 Effects of Internally Generated Missiles on Systems and Equipment 123 3.5.1.3.1 Systems Needed to Perform Safety Functions 123 3.5.1.3.1.1 Reactor Coolant System 123 3.5.1.3.1.2 Emergency Core Cooling System (ECCS) 124 3.5.1.3.1.3 Containment Heat Removal and Atmosphere Cleanup Systems 125 3.5.1.3.1.4 Chemical and Volume Control System 126 3.5.1.3.1.5 Residual Heat Removal System 127 3.5.1.3.1.6 Component Cooling Water System 127 3.5.1.3.1.7 Service Water System 127 3.5.1.3.1.8 Diesel-Generator Auxiliary Systems 128

GINNA/UFSAR Page 9 of 39 Revision 28 5/2019 3.5.1.3.1.9 Main Steam System 128 3.5.1.3.1.10 Feedwater and Condensate Systems 129 3.5.1.3.1.11 Preferred Auxiliary Feedwater System 129 3.5.1.3.1.12 Standby Auxiliary Feedwater System (SAFW) 129 3.5.1.3.1.13 Ventilation Systems for Vital Areas 130 3.5.1.3.1.14 Combustible Gas Control System 130 3.5.1.3.2 Systems Whose Failure May Result in Activity Release 130 3.5.1.3.2.1 Spent Fuel Pool Cooling System 130 3.5.1.3.2.2 Sampling System 131 3.5.1.3.2.3 Waste Disposal System 131 3.5.1.3.2.4 Containment Shutdown Purge System 131 3.5.1.3.2.5 Instrument and Service Air Systems 131 3.5.1.3.3 Electrical Systems 132 3.5.1.3.3.1 Diesel Generators 132 3.5.1.3.3.2 Station Batteries 132 3.5.1.3.3.3 480-Volt Switchgear 132 3.5.1.3.3.4 Control Room 132 3.5.1.3.3.5 Cable Spreading/Relay Room 132 3.5.2 EXTERNALLY GENERATED MISSILES 133 3.5.2.1 Tornado Missiles 133 3.5.2.2 Site Proximity Missiles 133 3.5.2.2.1 Design Criteria 133 3.5.2.2.2 Nearby Hazardous Activities 133 3.5.2.2.3 Aircraft Hazards 134 3.6 PROTECTION AGAINST THE DYNAMIC EFFECTS ASSOCI-ATED WITH THE POSTULATED RUPTURE OF PIPING 136 3.6.1 POSTULATED PIPING FAILURES IN FLUID SYSTEMS INSIDE CONTAINMENT 136 3.6.1.1 Evaluation Procedure 136 3.6.1.1.1 Pipe Selection 136 3.6.1.1.2 Effects-Oriented Evaluation 137 3.6.1.1.3 Mechanistic Evaluation 137 3.6.1.2 Required Equipment 138 3.6.1.3 Safety Analysis 138 3.6.1.3.1 Single-Failure Considerations 138 3.6.1.3.1.1 Introduction 138 3.6.1.3.1.2 Containment Fan Coolers 139

GINNA/UFSAR Page 10 of 39 Revision 28 5/2019 3.6.1.3.1.3 Low-Pressure Safety Injection Isolation Valves 139 3.6.1.3.2 High-Energy Line Break Effects 139 3.6.1.3.2.1 Introduction 139 3.6.1.3.2.2 Alternate Charging 140 3.6.1.3.2.3 Residual Heat Removal Pump Suction 140 3.6.1.3.2.4 Reactor Coolant Pump Seal-Water to Seals 141 3.6.1.3.2.5 Letdown Line 141 3.6.1.3.2.6 Charging Line 142 3.6.1.3.2.7 Steam Generator Blowdown Lines 143 3.6.1.3.2.8 Main Steam and Feedwater Lines 143 3.6.1.3.2.9 Residual Heat Removal Pump Discharge Line 146 3.6.1.3.2.10 Standby Auxiliary Feedwater Lines 146 3.6.1.3.2.11 Accumulator Lines and Branch Lines 146 3.6.1.3.2.12 Auxiliary Spray Line 149 3.6.1.3.2.13 Reactor Coolant System 150 3.6.1.3.2.14 Pressurizer Surge Line 150 3.6.1.3.2.15 Pressurizer Spray Lines 153 3.6.1.3.2.16 Pressurizer Safety and Relief Lines 153 3.6.2 POSTULATED PIPING FAILURES IN FLUID SYSTEMS OUTSIDE CONTAINMENT 154 3.6.2.1 Introduction and Summary 154 3.6.2.1.1 Initial Evaluation 154 3.6.2.1.2 Systematic Evaluation Program Reevaluation 155 3.6.2.2 Evaluation Procedure 156 3.6.2.2.1 Initial Evaluation 156 3.6.2.2.2 Systematic Evaluation Program Reevaluation 157 3.6.2.3 Analysis Criteria 158 3.6.2.3.1 December 18, 1972, AEC Letter Evaluation Criteria 158 3.6.2.3.2 Systematic Evaluation Program Criteria 158 3.6.2.3.2.1 High-Energy Fluid Systems Piping 158 3.6.2.3.2.2 Moderate-Energy Fluid System Piping 160 3.6.2.3.2.3 Type of Breaks and Leakage Cracks in Fluid System Piping 161 3.6.2.3.2.4 Assumptions 162 3.6.2.3.2.5 Effects of Piping Failure 163 3.6.2.4 Analysis in Response to December 18, 1972, AEC Letter 163 3.6.2.4.1 Rupture Load Analysis 163

GINNA/UFSAR Page 11 of 39 Revision 28 5/2019 3.6.2.4.2 Main Steam System Load Analysis 164 3.6.2.4.3 Feedwater System Load Analysis 164 3.6.2.4.4 Jet Impingement Load Analysis 164 3.6.2.4.5 Pipe Whip Analysis for Main Steam and Feedwater Piping 165 3.6.2.4.5.1 Analytical Methods 165 3.6.2.4.5.2 Results of Analysis 165 3.6.2.4.6 Blowdown Analysis 166 3.6.2.4.6.1 Main Steam Blowdown Analysis 166 3.6.2.4.6.2 Feedwater Blowdown Analysis 166 3.6.2.4.7 Compartment Pressurization Analysis 167 3.6.2.4.7.1 Main Steam Line Ruptures 167 3.6.2.4.7.2 Building Pressurization for a Branch Line Rupture 167 3.6.2.4.8 Flooding Analysis 167 3.6.2.4.8.1 Intermediate Building Flooding 167 3.6.2.4.8.2 Screen House and Turbine Building Flooding 168 3.6.2.5 Systematic Evaluation Program Analysis 168 3.6.2.5.1 Zone Reevaluation Performed as Part of the Systematic Evaluation Program Review 168 3.6.2.5.1.1 Screen House 168 3.6.2.5.1.2 Intermediate Building 169 3.6.2.5.1.3 Turbine Building Main Steam and Main Feedwater Line Breaks 170 3.6.2.5.1.4 Structural Analysis of the Turbine Building for Pressurization 171 3.6.2.5.1.5 Battery Room/Mechanical Equipment Room Flooding 173 3.6.2.5.1.6 Auxiliary Feedwater Line Breaks on the 253-Ft Elevation of the Inter-mediate Building 173 3.6.2.5.1.7 Relay Room and Air Handling Room 173 3.6.2.5.1.8 Auxiliary Building 174 3.6.2.5.2 Main Steam Safety and Relief Valves 175 3.6.2.5.2.1 Pipe Failures in the Intermediate Building 175 3.6.2.5.2.2 Pipe Failures in the Turbine Building 176 3.6.2.5.2.3 Decay Heat Removal Following Blowdown from Both Steam Genera-tors 177 3.6.2.5.2.4 Conclusions 178 Table 3.6-1 LINES PENETRATING CONTAINMENT WHICH NORMALLY OR OCCASIONALLY EXPERIENCE HIGH-ENERGY SERVICE CONDITIONS 182

GINNA/UFSAR Page 12 of 39 Revision 28 5/2019 Table 3.6-2 LINES INSIDE CONTAINMENT BUT NOT PENETRATING CONTAINMENT WHICH NORMALLY OR OCCASIONALLY EXPERIENCE HIGH-ENERGY SERVICE CONDITIONS 184 Table 3.6-3 CONTAINMENT PIPE DATA 185 3.7 SEISMIC DESIGN 187 3.7.1 SEISMIC INPUT 187 3.7.1.1 Introduction 187 3.7.1.1.1 Original Seismic Classification 187 3.7.1.1.2 Seismic Reevaluation 188 3.7.1.1.2.1 Scope of Reevaluation 188 3.7.1.1.2.2 Reevaluation Criteria 188 3.7.1.2 Design Response Spectra 189 3.7.1.3 Design Time-History 189 3.7.1.4 Critical Damping Values 19 3.7.1.5 Supporting Media for Seismic Category I Structures 190 3.7.2 SEISMIC SYSTEM ANALYSIS 191 3.7.2.1 Seismic Analysis Methods 191 3.7.2.1.1 Original Seismic Analysis 191 3.7.2.1.2 Seismic Reevaluation 192 3.7.2.2 Natural Frequencies and Response Loads 193 3.7.2.3 Procedure Used for Mathematical Modeling 193 3.7.2.4 Soil-Structure Interaction 193 3.7.2.5 Development of Floor Response Spectra 193 3.7.2.6 Combination of Earthquake Directional Components 194 3.7.2.7 Combination of Modal Responses 194 3.7.2.8 Interaction of Nonseismic Structures with Seismic Category I Structures 194 3.7.2.9 Use of Constant Vertical Static Factors 195 3.7.3 SEISMIC SUBSYSTEM ANALYSIS 195 3.7.3.1 Seismic Analysis Methods 195 3.7.3.1.1 Original Design 195 3.7.3.1.1.1 Piping and Tanks 195 3.7.3.1.1.2 Steam Generator 196 3.7.3.1.1.3 Control Rod Drive Mechanisms 196 3.7.3.1.1.4 Reactor Internals 196 3.7.3.1.1.5 Reactor Vessel 197

GINNA/UFSAR Page 13 of 39 Revision 28 5/2019 3.7.3.1.1.6 Pressurizer 197 3.7.3.1.2 Seismic Reevaluation 198 3.7.3.2 Basis for Selection of Frequencies 199 3.7.3.3 Use of Equivalent Static Analysis 199 3.7.3.4 Three Components of Earthquake Motion 199 3.7.3.5 Combination of Modal Responses 200 3.7.3.6 Analytical Procedures for Piping 200 3.7.3.6.1 Residual Heat Removal System Line from Reactor Coolant System Loop A to Containment 200 3.7.3.6.2 Steam Line from Steam Generator B to Containment 201 3.7.3.6.3 Pressurizer Safety and Relief Lines 201 3.7.3.6.3.1 Analytical Methods 201 3.7.3.6.3.2 Transfer Matrix Method 202 3.7.3.6.3.3 Stiffness Matrix Formulation 203 3.7.3.7 Seismic Piping Upgrade Program 204 3.7.3.7.1 Program Scope 204 3.7.3.7.2 Piping Selection Criteria 204 3.7.3.7.3 Selected Lines 205 3.7.3.7.3.1 Reactor Coolant System 205 3.7.3.7.3.2 Main Steam 205 3.7.3.7.3.3 Main Feedwater 205 3.7.3.7.3.4 Auxiliary Feedwater 205 3.7.3.7.3.5 Safety Injection 206 3.7.3.7.3.6 Residual Heat Removal 206 3.7.3.7.3.7 Containment Spray 206 3.7.3.7.3.8 Chemical and Volume Control System 207 3.7.3.7.3.9 Steam Generator Blowdown 207 3.7.3.7.3.10 Service Water System 207 3.7.3.7.3.11 Component Cooling Water 208 3.7.3.7.3.12 Standby Auxiliary Feedwater 209 3.7.3.7.4 Codes and Standards 209 3.7.3.7.5 Analytical Procedures 209 3.7.3.7.5.1 General 209 3.7.3.7.5.2 Damping Values 209 3.7.3.7.5.3 Combination of Modal Responses 210 3.7.3.7.5.4 Safe Shutdown Earthquake Stresses 212

GINNA/UFSAR Page 14 of 39 Revision 28 5/2019 3.7.3.7.5.5 Small Piping Analysis 213 3.7.3.7.5.6 Branch Line Analysis 213 3.7.3.7.5.7 Piping Beyond Scope of Upgrade Program 213 3.7.3.7.6 Piping System Models 214 3.7.3.7.7 Valve Model 215 3.7.3.7.8 Equipment Model 215 3.7.3.7.9 Interaction Effects 215 3.7.3.7.10 Support Model 215 3.7.3.7.10.1 Deviations 215 3.7.3.7.10.2 Support-Welded Attachments 216 3.7.4 SEISMIC INSTRUMENTATION 217 Table 3.7-1 ORIGINAL AND CURRENT RECOMMENDED DAMPING VALUES 219 Table 3.7-2 MODAL FREQUENCIES OF THE INTERCONNECTED BUILDING MODEL 220 Table 3.7-3 EQUIPMENT AND LOCATIONS WHERE IN-STRUCTURE SPECTRA WERE GENERATED FOR THE SYSTEMATIC EVALUATION PROGRAM 222 3.8 DESIGN OF SEISMIC CATEGORY I STRUCTURES 223 3.8.1 CONTAINMENT 223 3.8.1.1 General Description 223 3.8.1.1.1 Containment Structure 223 3.8.1.1.2 Waterproofing 224 3.8.1.1.3 Rock Anchors 224 3.8.1.1.4 Construction Sequence 224 3.8.1.1.5 Steel Reinforcement 226 3.8.1.2 Mechanical Design Bases 227 3.8.1.2.1 General 227 3.8.1.2.2 Design Loads 227 3.8.1.2.3 Design Stress Criteria 228 3.8.1.2.3.1 Limiting Loads 228 3.8.1.2.3.2 Load Factors 229 3.8.1.2.3.3 Maximum Thermal Load 229 3.8.1.2.4 Load Capacity 230

GINNA/UFSAR Page 15 of 39 Revision 28 5/2019 3.8.1.2.4.1 Reinforced Concrete 230 3.8.1.2.4.2 Prestressed Concrete 232 3.8.1.2.4.3 Liner 233 3.8.1.2.4.4 Rock 234 3.8.1.2.5 Codes and Standards 234 3.8.1.2.5 Codes and Standards Steam Generator Replacement (Dome 237 Opening Repairs 3.8.1.3 Seismic Design 239 3.8.1.3.1 Initial Seismic Design 239 3.8.1.3.2 Seismic Reanalysis 240 3.8.1.4 Containment Detailed Design 240 3.8.1.4.1 Stress Analysis 240 3.8.1.4.1.1 Analysis Methods 240 3.8.1.4.1.2 Analysis Results 241 3.8.1.4.1.3 Analysis for Steam Generator Replacement Dome Openings 242 3.8.1.4.2 Rock Anchors 242 3.8.1.4.2.1 Rock Anchor Design 242 3.8.1.4.2.2 Preinstallation Grouting Test 243 3.8.1.4.2.3 Previous Applications 244 3.8.1.4.2.4 Rock Hold-Down Capacity 244 3.8.1.4.2.5 Hold-Down Factor of Safety 246 3.8.1.4.2.6 Installation 246 3.8.1.4.3 Tendons 247 3.8.1.4.3.1 General Design 247 3.8.1.4.3.2 Seismic Considerations 249 3.8.1.4.3.3 Stressing Procedure 251 3.8.1.4.3.4 Corrosion Protection 252 3.8.1.4.4 Hinge Design 254 3.8.1.4.4.1 Tension Bars 254 3.8.1.4.4.2 Liner Knuckle 256 3.8.1.4.4.3 Elastomer Bearing Pads 257 3.8.1.4.5 Concrete 259 3.8.1.4.5.1 Radial Shear 259 3.8.1.4.5.2 Longitudinal Shears 259 3.8.1.4.5.3 Horizontal Shear 260 3.8.1.4.5.4 Anchorage Stresses 261

GINNA/UFSAR Page 16 of 39 Revision 28 5/2019 3.8.1.4.5.5 Shell Stress Analytical Procedures 262 3.8.1.4.6 Insulation 267 3.8.1.4.7 Liner 268 3.8.1.4.7.1 Vibrations 268 3.8.1.4.7.2 Anchorage Fatigue Analysis 268 3.8.1.4.7.3 Base Slab Liner 268 3.8.1.4.7.4 Liner Stresses 269 3.8.1.4.7.5 Liner Buckling 270 3.8.1.4.7.6 Liner Corrosion Allowance 274 3.8.1.5 Penetrations 274 3.8.1.5.1 General 274 3.8.1.5.2 Electrical Penetrations 275 3.8.1.5.3 Piping Penetrations 276 3.8.1.5.4 Access Hatch and Personnel Locks 276 3.8.1.5.5 Fuel Transfer Penetration 277 3.8.1.5.6 Typical Penetration Analysis 278 3.8.1.5.6.1 Loss-of-Coolant Accident 278 3.8.1.5.6.2 Loss-of-Coolant Accident Plus Earthquake 280 3.8.1.5.7 Penetration Reinforcement Analyzed for Pipe Rupture 281 3.8.1.6 Quality Control and Material Specifications 282 3.8.1.6.1 Concrete 282 3.8.1.6.1.1 Ultimate Compressive Strength 282 3.8.1.6.1.2 Quality Control Measures 282 3.8.1.6.1.3 Concrete Suppliers 283 3.8.1.6.1.4 Concrete Specifications 284 3.8.1.6.1.5 Admixtures 286 3.8.1.6.1.6 Replacement Concrete for the 1996 Steam Generator Replacement 287 3.8.1.6.2 Mild Steel Reinforcement 288 3.8.1.6.3 Cadwell Splices 289 3.8.1.6.4 Radial Tension Bars 290 3.8.1.6.5 Containment Liner 290 3.8.1.6.5.1 Fabrication and Workmanship 290 3.8.1.6.5.2 Penetrations 291 3.8.1.6.5.3 Welding 291 3.8.1.6.5.4 Erection Tolerances 292 3.8.1.6.5.5 Painting 292

GINNA/UFSAR Page 17 of 39 Revision 28 5/2019 3.8.1.6.6 Elastomer Pads 293 3.8.1.6.7 Tendons 293 3.8.1.6.7.1 Materials 293 3.8.1.6.7.2 Tests and Inspection 294 3.8.1.6.8 Liner Insulation 294 3.8.1.7 Testing and Inservice Inspection Requirements 295 3.8.1.7.1 Construction Phase Testing 295 3.8.1.7.1.1 Liner 295 3.8.1.7.1.2 Prestressing Tendons 296 3.8.1.7.1.3 Concrete Reinforcement 296 3.8.1.7.1.4 Concrete 297 3.8.1.7.1.5 Elastomer Bearing Pads 298 3.8.1.7.1.6 Rock Anchor Tests 299 3.8.1.7.1.7 Large Opening Reinforcements 300 3.8.1.7.1.8 Liner Insulation 300 3.8.1.7.2 General Description of the Structural Integrity Test 300 3.8.1.7.2.1 Pressurization 300 3.8.1.7.2.2 Measurements 301 3.8.1.7.2.3 Test Pressure Justification 303 3.8.1.7.2.4 Test Results 303 3.8.1.7.2.5 Containment Return to Service Testing Post 1996 Steam Generator Replacement 303 3.8.1.7.3 Postoperational Surveillance 304 3.8.1.7.3.1 Leakage Monitoring 304 3.8.1.7.3.2 Initial Tendon Surveillance Program 304 3.8.1.7.3.3 Current Tendon Surveillance Program 305 3.8.1.7.3.4 Current Tendon Surveillance Program Results 306 3.8.1.7.3.5 Test on Rock Anchors 307 3.8.1.7.3.6 Inservice Inspection 307 3.8.2 STRUCTURAL REANALYSIS PROGRAM 308 3.8.2.1 Design Codes, Criteria, and Load Combinations - SEP Topic III-7.B 308 3.8.2.1.1 Introduction 308 3.8.2.1.1.1 Seismic Category I Structures 308 3.8.2.1.1.2 Structural Codes 309 3.8.2.1.1.3 Code Comparison 311 3.8.2.1.2 Assessment of Design Codes and Load Changes for Concrete Structures 311

GINNA/UFSAR Page 18 of 39 Revision 28 5/2019 3.8.2.1.2.1 Columns With Spliced Reinforcing 311 3.8.2.1.2.2 Brackets and Corbels (Not on the Containment Shell) 312 3.8.2.1.2.3 Elements Loaded in Shear With No Diagonal Tension (Shear Friction) 313 3.8.2.1.2.4 Structural Walls - Primary Load Carrying 314 3.8.2.1.2.5 Elements Subject to Temperature Variations 315 3.8.2.1.2.6 Areas of Containment Shell Subject to Peripheral Shear 316 3.8.2.1.2.7 Areas of Containment Shell Subject to Torsion 317 3.8.2.1.2.8 Brackets and Corbels (On the Containment Shell) 317 3.8.2.1.2.9 Areas of Containment Shell Subject to Biaxial Tension 317 3.8.2.1.2.10 Steel Embedments Transmitting Loads to Concrete 318 3.8.2.1.3 Assessment of Design Codes and Load Changes for Steel Structures 318 3.8.2.1.3.1 Shear Connectors in Composite Beams 319 3.8.2.1.3.2 Composite Beams With Steel Deck 319 3.8.2.1.3.3 Hybrid Girders 319 3.8.2.1.3.4 Compression Elements 320 3.8.2.1.3.5 Tension Members 320 3.8.2.1.3.6 Coped Beams 320 3.8.2.1.3.7 Moment Connections 321 3.8.2.1.3.8 Lateral Bracing 321 3.8.2.1.3.9 Steel Embedments 321 3.8.2.1.4 Summary 323 3.8.2.2 Structural Reevaluation of Containment 323 3.8.2.2.1 Introduction 323 3.8.2.2.2 Containment Temperature 324 3.8.2.2.3 Containment Pressure 324 3.8.2.2.4 Seismic Loads 324 3.8.2.2.5 Design and Analysis Procedures 325 3.8.2.2.5.1 Containment Model 325 3.8.2.2.5.2 Seismic and Loss-of-Coolant Accident Loads 325 3.8.2.2.5.3 Pressure, Seismic, and Operating Temperature Loads 326 3.8.2.2.6 Structural Acceptance Criteria 327 3.8.2.2.7 Structural Evaluation of Containment 327 3.8.2.2.7.1 Seismic Analysis 327 3.8.2.2.7.2 Load Combinations 328 3.8.2.2.8 Structural Evaluation of Large Openings 329 3.8.2.2.9 Structural Evaluation of Tension Rods 329

GINNA/UFSAR Page 19 of 39 Revision 28 5/2019 3.8.2.3 Dome Liner Reevaluation 329 3.8.2.3.1 Dome Liner Studs 329 3.8.2.3.2 Loads 329 3.8.2.3.2.1 Loss-of-Coolant Accident 329 3.8.2.3.2.2 Steam Line Break 330 3.8.2.3.3 Model Definition 330 3.8.2.3.3.1 General Dome Model 330 3.8.2.3.3.2 Insulation Termination Region Model 330 3.8.2.3.4 Analysis 331 3.8.2.3.4.1 Controlling Loads 331 3.8.2.3.4.2 Liner-Stud Interaction 331 3.8.2.3.4.3 Effect of Internal Pressure on Liner Buckling 333 3.8.2.3.5 Results and Conclusions 334 3.8.2.3.5.1 Insulation Termination Region 334 3.8.2.3.5.2 General Dome 335 3.8.2.3.5.3 Effect of Internal Pressure on Liner Buckling and Stud Integrity 336 3.8.2.3.6 Overall Conclusions 338 3.8.3 CONTAINMENT INTERNAL STRUCTURES 338 3.8.3.1 Description of the Internal Structures 338 3.8.3.2 Applicable Codes, Standards, and Specifications 339 3.8.3.3 Loads and Load Combinations 339 3.8.3.3.1 Load Combinations Considered 339 3.8.3.3.2 Applicable Load Combinations 339 3.8.3.4 Design and Analysis Procedures 340 3.8.3.4.1 Original Design 340 3.8.3.4.2 Systematic Evaluation Program Reevaluation 341 3.8.3.5 Method of Analysis 341 3.8.3.6 Structural Acceptance Criteria 342 3.8.3.7 Structural Evaluation 342 3.8.4 OTHER SEISMIC CATEGORY I STRUCTURES 342 3.8.4.1 Description of the Structures 342 3.8.4.1.1 Auxiliary Building 343 3.8.4.1.2 Control Building 343 3.8.4.1.3 Diesel Generator Building 344 3.8.4.1.4 Intermediate Building 344

GINNA/UFSAR Page 20 of 39 Revision 28 5/2019 3.8.4.1.5 Standby Auxiliary Feedwater Building 345 3.8.4.1.6 Screen House 345 3.8.4.1.7 Turbine Building 346 3.8.4.1.8 Service Building 346 3.8.4.1.9 Interconnected Building Complex 347 3.8.4.1.10 Canister Preparation Building (CPB) 347 3.8.4.2 Applicable Codes, Standards, and Specifications 348 3.8.4.3 Loads and Load Combinations 348 3.8.4.4 Design and Analysis Procedures 348 3.8.4.4.1 Original Design and Analysis Procedures 348 3.8.4.4.2 SEP Reevaluation Design and Analysis Procedures 349 3.8.4.4.2.1 Mathematical Model 349 3.8.4.4.2.2 Method of Analysis 351 3.8.4.4.2.3 Structural Evaluation 352 3.8.4.5 Masonry Walls 353 3.8.4.5.1 Applicable Walls 353 3.8.4.5.2 Loads and Load Combinations 353 3.8.4.5.3 Stress Analysis 355 3.8.4.5.3.1 Computer Program 355 3.8.4.5.3.2 Seismic Analysis 355 3.8.4.5.4 Interstory Drift 356 3.8.4.5.5 Multi-Wythe Walls 356 3.8.4.5.6 Block Pullout 356 3.8.4.5.7 Structural Acceptance Criteria - Allowable Stresses 356 3.8.4.5.7.1 Normal Operating Conditions 356 3.8.4.5.7.2 Safe Shutdown Earthquake 357 3.8.4.5.8 Evaluation Results 357 3.8.4.5.8.1 General 357 3.8.4.5.8.2 Inelastic Analysis 358 3.8.4.5.8.3 Wall Modifications 358 3.8.4.5.9 Materials, Quality Control, and Special Construction Techniques 359 3.8.5 FOUNDATIONS 360 Table 3.8-1a COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT SEISMIC ANALYSIS - DIMENSIONS AND FORMULA 365

GINNA/UFSAR Page 21 of 39 Revision 28 5/2019 Table 3.8-1b COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT SEISMIC ANALYSIS - DIMENSION CALCULATIONS 366 Table 3.8-1c COMPUTER PROGRAM SAND INPUT FOR CONTAINMENT SEISMIC ANALYSIS - NATURAL FREQUENCIES AND

RESPONSE

367 Table 3.8-2 MAJOR STRUCTURES FOR WHICH PRESTRESSED ROCK ANCHORS WERE USED 368 Table 3.8-3 PROPERTIES AND TESTS FOR CONTAINMENT ANCHOR AND TENDON CORROSION INHIBITOR 370 Table 3.8-4 ALLOWABLE STRESSES 371 Table 3.8-5a CONTAINMENT STRUCTURE STRESSES - LOADING #1 DEAD LOAD 372 Table 3.8-5b CONTAINMENT STRUCTURE STRESSES - LOADING #2 FINAL PRESTRESS - 636 K/TENDON 373 Table 3.8-5c CONTAINMENT STRUCTURE STRESSES - LOADING #3 OPERATING TEMPERATURE - WINTER 375 Table 3.8-5d CONTAINMENT STRUCTURE STRESSES - LOADING #4 OPERATING TEMPERATURE - SUMMER 377 Table 3.8-5e CONTAINMENT STRUCTURE STRESSES - LOADING #5 INTERNAL PRESSURE 378 Table 3.8-5f CONTAINMENT STRUCTURE STRESSES - LOADING #6 ACCIDENT TEMPERATURE - P = 60 PSIG, T = 286F 379 Table 3.8-5g CONTAINMENT STRUCTURE STRESSES - LOADING #7 ACCIDENT TEMPERATURE - P = 90 PSIG, T = 312F 380 Table 3.8-5h CONTAINMENT STRUCTURE STRESSES - LOADING #8 0.10G EARTHQUAKE - HORIZONTAL + VERTICAL COMPONENT 382 Table 3.8-6a CONTAINMENT STRUCTURE LOADING COMBINATIONS -

LOAD NUMBERS 1 THROUGH 48 383 Table 3.8-6b CONTAINMENT STRUCTURE LOADING COMBINATIONS -

KEY TO SYMBOLS 385 Table 3.8-7 CONCRETE COVER REQUIRED FOR REINFORCING STEEL 385 Table 3.8-8 ELASTOMER PADS PROPERTIES 387 Table 3.8-9 ROCK ANCHOR A - UPLIFT TEST WITH JACKING FRAME, MAY 19, 1966 388 Table 3.8-10 DESIGN CODE COMPARISON 389 Table 3.8-11 ACI 318-63 VERSUS ACI 349-76 CODE COMPARISONS 391 Table 3.8-12 ACI 301-63 VERSUS ACI 301-72 (REVISED 1975) COMPARISON 393 Table 3.8-13 ACI 318-63 VERSUS ASME B&PV CODE, SECTION III, DIVISION 2, 1980 CODE COMPARISON 394 Table 3.8-14 ASME B&PV CODE, SECTION III, DIVISION 2, 1980 (ACI 359-80)

VERSUS ACI 318-63 CODE COMPARISION 395 Table 3.8-15 LIST OF STRUCTURAL ELEMENTS TO BE EXAMINED 396

GINNA/UFSAR Page 22 of 39 Revision 28 5/2019 Table 3.8-16 MASSES, MOMENT OF INERTIA (I), FLEXURAL AREA (A),

AND SHEAR AREA (As) FOR THE LLNL MODEL 398 Table 3.8-17 MODAL FREQUENCIES FOR THE LAWRENCE LIVERMORE NATIONAL LABORATORY CONTAINMENT SHELL MODEL 399 Table 3.8-18 RESPONSE VALUES FOR REGULATORY GUIDE 1.60 HORIZONTAL (0.17g) AND VERTICAL (0.11g) SPECTRA INPUT 400 Table 3.8-19 PEAK HARMONIC AMPLITUDES OF THE SEISMIC LOAD ON CYLINDER AND DOME OF THE CONTAINMENT SHELL 401 Table 3.8-20 MATERIAL PROPERTIES FOR STEEL, CONCRETE, AND FOAM INSULATION 402 Table 3.8-21 MAXIMUM DISPLACEMENTS OF 5/8-INCH S6L STUDS IN THE INSULATION TERMINATION REGION 403 Table 3.8-22 MAXIMUM DISPLACEMENT OF STUDS IN GENERAL DOME 404 Table 3.8-23 LOAD DEFINITIONS 405 3.9 MECHANICAL SYSTEMS AND COMPONENTS 406 3.9.1 SPECIAL TOPICS FOR MECHANICAL COMPONENTS 406 3.9.1.1 Design Transients 406 3.9.1.1.1 Load Combinations 406 3.9.1.1.2 Cyclic Loads 406 3.9.1.1.2.1 Thermal and Pressure Cyclic Loads 406 3.9.1.1.2.2 Pressurizer Surge Line 406 3.9.1.1.2.3 Unisolable Connections to the Reactor Coolant System 407 3.9.1.1.3 Transient Hydraulic Loads 408 3.9.1.1.4 Operating-Basis Earthquake 408 3.9.1.1.5 Safe Shutdown Earthquake 408 3.9.1.1.6 Secondary System Fluid Flow Instability (Water Hammer) 408 3.9.1.1.7 Loss-of-Coolant Accident 408 3.9.1.2 Computer Programs Used in Analysis 409 3.9.1.3 Experimental Stress Analysis 410 3.9.1.3.1 Plastic Model Analysis 410 3.9.1.3.2 Plastic Model Details 410 3.9.1.3.3 Plastic Model Test Arrangement 411 3.9.2 DYNAMIC TESTING AND ANALYSIS 412 3.9.2.1 Piping Systems 412 3.9.2.1.1 General 412 3.9.2.1.2 Seismic Category I Piping, 2-1/2 Inch Nominal Size and Larger 413 3.9.2.1.2.1 Static Analysis 413 3.9.2.1.2.2 Dynamic Analysis 413

GINNA/UFSAR Page 23 of 39 Revision 28 5/2019 3.9.2.1.2.3 Residual Heat Removal System Line From Reactor Coolant System Loop A to Containment 414 3.9.2.1.2.4 Steam Line From Steam Generator B to Containment 415 3.9.2.1.2.5 Charging Line 416 3.9.2.1.3 Seismic Category I Piping, 2-Inch Nominal Size and Under, Original Design 416 3.9.2.1.4 Pressurizer Safety and Relief Valve Discharge Piping 416 3.9.2.1.4.1 1972 Analysis 416 3.9.2.1.4.2 NUREG 0737, Item II.D.1 Analysis 417 3.9.2.1.5 Main Steam Header Dynamic Load Factor Analysis 418 3.9.2.1.5.1 Extended Power Uprate Considerations 419 3.9.2.1.6 Secondary System Water Hammer 419 3.9.2.1.6.1 Analysis 419 3.9.2.1.6.2 Evaluation Results 420 3.9.2.1.6.3 Corrective Actions 420 3.9.2.1.6.4 Extended Power Uprate Considerations 421 3.9.2.1.7 Velan Swing Check Valves 421 3.9.2.1.8 Seismic Piping Upgrade Program 421 3.9.2.2 Safety-Related Mechanical Equipment 422 3.9.2.2.1 Original Seismic Input and Behavior Criteria 422 3.9.2.2.2 Current Seismic Input 423 3.9.2.2.3 Systematic Evaluation Program 423 3.9.2.2.4 Systematic Evaluation Program Reevaluation of Selected Mechanical Components for Design Adequacy 424 3.9.2.2.4.1 Essential Service Water (SW) Pumps 424 3.9.2.2.4.2 Component Cooling Heat Exchanger 425 3.9.2.2.4.3 Component Cooling Surge Tank 425 3.9.2.2.4.4 Diesel-Generator Air Tanks 425 3.9.2.2.4.5 Boric Acid Storage Tank 426 3.9.2.2.4.6 Refueling Water Storage Tank (RWST) 426 3.9.2.2.4.7 Motor-Operated Valves 427 3.9.2.2.4.8 Steam Generators 427 3.9.2.2.4.9 Reactor Coolant Pumps 428 3.9.2.2.4.10 Pressurizer 428 3.9.2.2.4.11 Control Rod Drive Mechanism 429 3.9.2.3 Dynamic Response Analysis of Reactor Internals Under Operational Flow Transients and Steady-State Conditions 429

GINNA/UFSAR Page 24 of 39 Revision 28 5/2019 3.9.2.3.1 Design Criteria 430 3.9.2.3.1.1 General 430 3.9.2.3.1.2 Critical Internals 430 3.9.2.3.1.3 Allowable Stress Criteria 431 3.9.2.3.2 Blowdown and Force Analysis 431 3.9.2.3.2.1 Computer Program 431 3.9.2.3.2.2 Blowdown Model 432 3.9.2.3.2.3 LATFORC MODEL 433 3.9.2.3.2.4 FORCE2 MODEL 433 3.9.2.3.3 Fuel Assembly Thimbles 434 3.9.2.3.4 Dynamic System Analysis of Reactor Internals Under Loss-of-Coolant Accident (LOCA) 434 3.9.2.3.4.1 Mathematical Model of the Reactor Pressure Vessel (RPV) System 434 3.9.2.3.4.2 Analytical Methods 436 3.9.2.3.4.3 RPV Internal Hydraulic Loads 436 3.9.2.3.4.4 Reactor Coolant Loop Mechanical Loads 438 3.9.2.3.4.5 Results of the Analysis 438 3.9.2.3.5 Transverse Guide Tube Excitation by Blowdown Forces 438 3.9.2.3.5.1 General 438 3.9.2.3.5.2 Response of Guide Tube 439 3.9.2.3.5.3 Description of Stress Location 440 3.9.2.3.6 Reevaluation of the Dynamic Response of Reactor Internals for Extended Power Uprate (EPU) 440 3.9.2.3.6.1 Reactor Pressure Vessel System Thermal-Hydraulic Analysis 440 3.9.2.3.6.2 Bypass Flow Analysis 440 3.9.2.3.6.3 Thermal Analysis of the Baffle/Barrel Region 441 3.9.2.3.6.4 Pressure Drop Across the Baffle Plate Analyses 441 3.9.2.3.6.5 Flow Induced Vibration 441 3.9.2.3.6.6 Reactor Internals Structural Integrity 441 3.9.2.3.6.7 Control Rod Performance 441 3.9.2.3.6.8 Vessel/Internals/Fuel/Control Rod Response During Loca Conditions 442 3.9.2.3.6.9 Summary of Conclusions 442 3.9.2.4 Asymmetric Loss-of-Coolant Accident Loading Analysis 442 3.9.2.5 Seismic Evaluation of Reactor Vessel Internals 442 3.9.2.5.1 Analysis Procedure 442 3.9.2.5.2 Analysis Results 443

GINNA/UFSAR Page 25 of 39 Revision 28 5/2019 3.9.3 COMPONENT SUPPORTS AND CORE SUPPORT STRUCTURES 444 3.9.3.1 Loading Combinations, Design Transients, and Stress Limits 444 3.9.3.2 Component Supports 444 3.9.3.2.1 Reactor Vessel 444 3.9.3.2.2 Steam Generators 445 3.9.3.2.3 Reactor Coolant Pumps 445 3.9.3.2.4 Pressurizer 446 3.9.3.2.5 Reactor Coolant Piping 446 3.9.3.3 Pipe Supports 446 3.9.3.3.1 Original Analysis 446 3.9.3.3.2 IE Bulletin Reanalysis 446 3.9.3.3.3 Seismic Piping Upgrade Program 447 3.9.3.3.3.1 Applicable Supports 447 3.9.3.3.3.2 Load Combinations and Stress Limits 447 3.9.3.3.3.3 Structural Requirements 447 3.9.3.3.4 Base Plate Flexibility 449 3.9.3.3.5 Snubbers 449 3.9.3.3.5.1 Design Loads 449 3.9.3.3.5.2 Surveillance Program 450 3.9.4 CONTROL ROD DRIVE SYSTEMS 450 3.9.4.1 Description 450 3.9.4.1.1 General 450 3.9.4.1.2 Latch Assembly 451 3.9.4.1.3 Pressure Vessel 452 3.9.4.1.4 Operating Coil Stack 452 3.9.4.1.5 Drive Shaft Assembly 452 3.9.4.1.6 Position Indicator Coil Stack 452 3.9.4.2 Design Loads, Stress Limits, and Allowable Deformation 452 3.9.4.3 Control Rod Drive Mechanism Housing Mechanical Failure Evaluation 453 3.9.4.3.1 Housing Description 453 3.9.4.3.2 Effects of Rod Travel Housing Longitudinal Failures 453 3.9.4.3.3 Effect of Rod Travel Housing Circumferential Failures 453 3.9.4.3.4 Summary 454 3.9.5 REACTOR PRESSURE VESSEL INTERNALS 454 3.9.5.1 Design Arrangements 454 3.9.5.1.1 Lower Core Support Structure 454

GINNA/UFSAR Page 26 of 39 Revision 28 5/2019 3.9.5.1.1.1 Support Structure Assembly 454 3.9.5.1.1.2 Lower Core Plate 454 3.9.5.1.1.3 Thermal Shield 455 3.9.5.1.1.4 Coolant Flow Passages 456 3.9.5.1.1.5 Support and Alignment Arrangements 456 3.9.5.1.2 Upper Core Support Assembly 456 3.9.5.1.3 In-Core Instrumentation Support Structures 457 3.9.5.2 Loading Conditions 458 3.9.5.3 Design Bases 458 3.9.6 INSERVICE INSPECTION OF PUMPS AND VALVES 459 3.9.6.1 General 459 3.9.6.2 Inservice Testing of Pumps 459 3.9.6.3 Inservice Testing of Valves 460 3.9.7 Extended Power Uprate (EPU) 460 Table 3.9-1 ORIGINAL DESIGN LOADING COMBINATIONS AND STRESS LIMITS 464 Table 3.9-2 RESIDUAL HEAT REMOVAL LOOP A STRESS

SUMMARY

465 Table 3.9-3 MAIN STEAM LINE-LOOP B STRESS

SUMMARY

466 Table 3.9-4 CHARGING LINE STRESS

SUMMARY

467 Table 3.9-5 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS - UPSTREAM OF VALVES 468 Table 3.9-6 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR PRESSURIZER SAFETY AND RELIEF VALVE PIPING AND SUPPORTS - SEISMICALLY DESIGNED DOWNSTREAM PORTION 469 Table 3.9-7 DEFINITIONS OF LOAD ABBREVIATIONS 470 Table 3.9-8 LOADING COMBINATIONS AND STRESS LIMITS FOR PIPING FOR SEISMIC UPGRADE PROGRAMS 471 Table 3.9-9 ALLOWABLE STEAM GENERATOR NOZZLE LOADS 472 Table 3.9-10 REACTOR COOLANT PUMP AUXILIARY NOZZLE UMBRELLA LOADS 473 Table 3.9-11 SYSTEMATIC EVALUATION PROGRAM STRUCTURAL BEHAVIOR CRITERIA FOR DETERMINING SEISMIC DESIGN ADEQUACY 476 Table 3.9-12 MECHANICAL COMPONENTS SELECTED FOR SEP SEISMIC REVIEW 477 Table 3.9-13 MAXIMUM STRESS HOT-LEG BREAK (ORIGINAL ANALYSIS) 478 Table 3.9-14 MAXIMUM STRESS COLD-LEG BREAK (ORIGINAL ANALYSIS) 479

GINNA/UFSAR Page 27 of 39 Revision 28 5/2019 Table 3.9-15 MAXIMUM CORE BARREL STRESS AND DEFLECTION UNDER HOT-LEG BLOWDOWN (ORIGINAL ANALYSIS) 480 Table 3.9-16a MAXIMUM STRESS INTENSITIES AND DEFLECTION COLD-LEG BLOWDOWN (ORIGINAL ANALYSIS) - IN THE UPPER BARREL 481 Table 3.9-16b MAXIMUM STRESS INTENSITIES AND DEFLECTION COLD-LEG BLOWDOWN (ORIGINAL ANALYSIS) - AT THE UPPER BARREL ENDS 482 Table 3.9-17 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 483 Table 3.9-18 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 484 Table 3.9-19 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 485 Table 3.9-20 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 486 Table 3.9-21 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 487 Table 3.9-22 CORE BARREL STRESSES (ORIGINAL ANALYSIS) 489 Table 3.9-23a LOAD COMBINATIONS AND ALLOWABLE STRESS LIMITS FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION - FOR PLANT EVENTS 490 Table 3.9-23b LOAD COMBINATIONS AND ALLOWABLE STRESS LIMITS FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION -

DEFINITION OF LOADING CONDITIONS FOR PRIMARY EQUIPMENT SUPPORTS EVALUATION IN TABLE 3.9-23a 491 Table 3.9-24 RESIDUAL HEAT REMOVAL LOOP A SUPPORT LOADS1 CALCULATED FOR IE BULLETIN 79-07 Table 3.9-25a MAIN STEAM LINE LOOP B SUPPORT LOADS2 CALCULATED FOR IE BULLETIN 79 SEISMIC SUPPORT Table 3.9-25b MAIN STEAM LINE LOOP B NOZZLE LOADS CALCULATED FOR IE BULLETIN 79 NOZZLE LOADS Table 3.9-26 CHARGING LINE SUPPORT LOADSa CALCULATED FOR IE BULLETIN 79-07 492 495 496 497

GINNA/UFSAR Page 28 of 39 Revision 28 5/2019 Table 3.9-27 LOADING COMBINATIONS AND STRESS LIMITS FOR 502 SUPPORTS ON PIPING SYSTEMS Table 3.9-28 ANALYSIS OF TYPICAL PIPE SUPPORT BASE PLATES CALCULATED FOR IE BULLETIN 79-02 503 Table 3.9-29 INTERNALS DEFLECTIONS UNDER ABNORMAL OPERATION 504 3.10 SEISMIC QUALIFICATION OF SEISMIC CATEGORY I INSTRU-MENTATION AND ELECTRICAL EQUIPMENT 505 3.10.1 SEISMIC QUALIFICATION CRITERIA 505 3.10.1.1 Original Criteria 505 3.10.1.2 Current Criteria 505 3.10.2 SEISMIC QUALIFICATION OF ELECTRICAL EQUIPMENT AND INSTRUMENTATION 506 3.10.2.1 Introduction 506 3.10.2.2 Battery Racks 507 3.10.2.3 Motor Control Centers 1L and 1M 507 3.10.2.4 Switchgear 508 3.10.2.5 Control Room Electrical Panels 508 3.10.2.6 Electrical Cable Raceways 509 3.10.2.7 Constant Voltage Transformers 509 3.10.3 SEISMIC QUALIFICATION OF SUPPORTS OF ELECTRICAL EQUIPMENT AND INSTRUMENTATION 509 3.10.3.1 Equipment Addressed 510 3.10.3.2 Raceway Anchorages 510 3.10.3.2.1 Test Program 510 3.10.3.2.2 Test Loads 511 3.10.3.2.3 Expansion Anchor Test Results 512 3.10.3.2.4 Frictional Anchor Test Results 512 3.10.3.2.5 Embedded Anchor Test Results 513 3.10.3.3 Class 1E Equipment Anchorage Qualification Program 513 3.10.3.4 Conclusions 514 3.10.4 FUNCTIONAL CAPABILITY OF COMPONENTS 514 3.10.5 SEISMIC CATEGORY I TUBING 514 3.10.5.1 Codes and Standards 514 3.10.5.1.1 Tubing Design Requirements 515 3.10.5.1.2 Tubing Supports Design Requirements 515

GINNA/UFSAR Page 29 of 39 Revision 28 5/2019 3.10.5.2 Load Conditions 516 3.10.5.2.1 Tubing 516 3.10.5.2.2 Tubing Supports 516 3.10.5.3 Routing Requirements 517 Table 3.10-1 MAJOR CLASS 1E COMPONENTS AND THE BASIS FOR SEISMIC QUALIFICATION 520 Table 3.10-2 ELECTRICAL COMPONENTS SELECTED FOR SEISMIC REVIEW 522 Table 3.10-3 SHELL ANCHOR TEST

SUMMARY

523 Table 3.10-4 FRICTION BOLT TEST RESULT

SUMMARY

524 Table 3.10-5 CATEGORY 3 ANCHORS TEST

SUMMARY

525 Table 3.10-6 STRESS LIMITS FOR TUBING 526 3.11 ENVIRONMENTAL DESIGN OF MECHANICAL AND ELECTRI-CAL EQUIPMENT 527 3.

11.1 BACKGROUND

527 3.11.1.1 Initial Design Considerations 527 3.11.1.2 Review of Environmental Qualification of Safety-Related Electrical Equipment 527 3.11.2 Equipment Identification 528 3.11.3 IDENTIFICATION OF LIMITING ENVIRONMENTAL CONDI-TIONS 528 3.11.3.1 Inside Containment 528 3.11.3.1.1 Post Loss-of-Coolant Accident Environment 528 3.11.3.1.2 Post Main Steam Line Break Environment 530 3.11.3.2 Auxiliary Building 530 3.11.3.2.1 Heating, Ventilation, and Air Conditioning 530 3.11.3.2.2 Loss of Ventilation 531 3.11.3.2.3 Radiation Levels 532 3.11.3.2.4 Flooding 532 3.11.3.3 Intermediate Building 532 3.11.3.4 Cable Tunnel 533 3.11.3.5 Control Building 533 3.11.3.6 Diesel Generator Rooms 534 3.11.3.7 Turbine Building 534 3.11.3.8 Auxiliary Building Annex 535 3.11.3.9 Screen House 535 3.11.4 EQUIPMENT QUALIFICATION INFORMATION 535 3.11.5 ENVIRONMENTAL QUALIFICATION PROGRAM 535

GINNA/UFSAR Page 30 of 39 Revision 28 5/2019 Table 3.11-1 ENVIRONMENTAL SERVICE CONDITIONS FOR EQUIPMENT DESIGNED TO MITIGATE DESIGN-BASIS EVENTS 540 Table 3.11-2 ESTIMATES FOR TOTAL AIRBORNE GAMMA DOSE CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER - GINNA STATION 549 Table 3.11-3 ESTIMATES FOR TOTAL AIRBORNE BETA DOSE CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER - GINNA STATION 551 Table 3.11-4 ESTIMATES FOR TOTAL AIRBORNE GAMMA DOSE CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER, REGULATORY GUIDE 1.89, REVISION 1 553 Table 3.11-5 ESTIMATES FOR TOTAL AIRBORNE BETA DOSE CONTRIBUTORS IN CONTAINMENT TO A POINT IN THE CONTAINMENT CENTER, REGULATORY GUIDE 1.89, REVISION 1 555 Table 3.11-6 GINNA STATION/REGULATORY GUIDE 1.89, APPENDIX D, COMPARISON OF POSTACCIDENT RADIATION ENVIRONMENT ASSUMPTIONS 557 FIGURES Figure 3.7-1 Seismic Response Spectra, 8%g Housner Model Figure 3.7-2 Seismic Response Spectra, 20%g Housner Model Figure 3.7-3 NRC Systematic Evaluation Program Site Specific Spectrum, Ginna Site (5% Damping)

Figure 3.7-4 Comparison of the Housner Response Spectrum for 2% of Critical Damping with the 7% Regulatory Guide 1.60 Spectrum Figure 3.7-5 In-Structure Response Spectra for Interconnected Building, Half-Area and Full-Area Models Figure 3.7-6 Containment Building and Complex of Interconnected Seismic Cate-gory I and Nonseismic Structures, Plan View Figure 3.7-7 Horizontal Response Spectra - SEP Systematic Evaluation Program Figure 3.7-8 Steam Generator Mathematical Model Figure 3.7-9 Mathematical Model of Reactor Vessel Figure 3.7-10 Seismic Average Acceleration Spectrum Design Earthquake, 1%

Damping Figure 3.7-11 Locations Where In-Structure Response Spectra Were Generated in Interconnected Building Complex Figure 3.7-12 SEP Response Spectra for Pressurizer PR-1 (Containment Building Elevation 253 ft) for 3%, 5%, and 7% Damping Figure 3.7-13 SEP Response Spectra for Control Rod Drive (Containment Building Elevation 253 ft) for 3%, 5%, 7% Damping Figure 3.7-14 SEP Response Spectra for Control Rod Drive (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping

GINNA/UFSAR Page 31 of 39 Revision 28 5/2019 Figure 3.7-15 SEP Response Spectra for Steam Generator SG-1A (Containment Building Elevation 250 ft) for 3%, 5%, and 7% Damping Figure 3.7-16 SEP Response Spectra for Steam Generator SG-1A (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Figure 3.7-17 SEP Response Spectra for Steam Generator SG-1B (Containment Building Elevation 250 ft) for 3%, 5%, and 7% Damping Figure 3.7-18 SEP Response Spectra for Steam Generator SG-1B (Containment Building Elevation 278 ft) for 3%, 5%, and 7% Damping Figure 3.7-19 SEP Response Spectra for Reactor Coolant Pump Rp-1A (Containment Building Elevation 247 ft) for 3%, 5%, and 7%

Damping Figure 3.7-20 SEP Response Spectra for Reactor Coolant Pump RP-1B (Containment Building Elevation 247 ft) for 3%, 5%, and 7%

Damping Figure 3.7-21 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Platform (Elevation 281 ft 6 in)

Figure 3.7-22 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Heat Exchanger 35 (Elevation 281 ft 6 in)

Figure 3.7-23 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Surge Tank 34 Figure 3.7-24 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Boric Acid Storage Tank 34 Figure 3.7-25 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Auxiliary Building Operating Floor (Elevation 271 ft 6 in)

Figure 3.7-26 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Building Basement Floor (Elevation 250 ft 0 in)

Figure 3.7-27 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Building Relay Room Floor (Elevation 269 ft 9 in)

Figure 3.7-28 SEP Equipment Response Spectra for 3%, 5%, and 7% Damping at Control Room Floor (Elevation 289 ft 9 in)

Figure 3.7-29 Residual Heat Removal Line Inside Containment Figure 3.7-30 Lumped Mass Model - Steam Line B Figure 3.7-31 Structural Model, Pressurizer Safety and Relief Line Figure 3.8-1 Containment Cross Section and Details Figure 3.8-2 Containment Mat Foundation and Ring Girder Figure 3.8-3 Containment Mat Foundation, Reinforcement and Details Figure 3.8-4 Containment Wall Reinforcement and Details Figure 3.8-5 Containment Dome Reinforcement and Details Figure 3.8-6 Containment Miscellaneous Embedded Back-Up Steel Figure 3.8-7 Tendon Vent Cans and Grease Fill Connections Figure 3.8-8 Temperature Gradients - Operating Conditions Figure 3.8-9 Earthquake Meridional Forces

GINNA/UFSAR Page 32 of 39 Revision 28 5/2019 Figure 3.8-10 Containment Dynamic Analysis Model Figure 3.8-11 Ginna Containment Mode Shapes Figure 3.8-12 Ginna Containment - Earthquake Response Figure 3.8-13 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination A Figure 3.8-14 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination B Figure 3.8-15 Moments, Shears, Deflection, Tensile Force, and Hoop Tension Dia-grams Load Combination C Figure 3.8-16 Tendon to Rock Coupling Figure 3.8-17 Containment - Top Tendon Access Figure 3.8-18 Containment Miscellaneous Steel Tendon Conduit - Hinge Detail Figure 3.8-19 Liner Knuckle Dimensions Figure 3.8-20 Containment Base to Cylinder Model Figure 3.8-21 Containment Dome to Cylinder Discontinuity Model Figure 3.8-22 Cracked Wall Shear Modulus Analysis Figure 3.8-23 Liner Shear Stress Analysis Figure 3.8-24 Windgirder, Shear Channels, and Shear Studs Figure 3.8-25 Cylinder Liner Plate Support Model Figure 3.8-26 Containment Penetration Details Figure 3.8-27 Containment Penetration Details (Typical)

Figure 3.8-28 Composite Drawing Electrical Penetration Figure 3.8-29 Containment Penetrations Section and Details Figure 3.8-30 Containment Equipment Hatch Figure 3.8-31 Containment Personnel Hatch Figure 3.8-32 Containment - Fuel Transfer Tube Penetration Figure 3.8-33 Containment Penetrations Arrangements and Location Figure 3.8-34 Test Coupon - Containment Concrete Shell Figure 3.8-35 Cadweld Splice Test Results Figure 3.8-36 Quality Control Chart for 5000 PSI Concrete Figure 3.8-37 Neoprene Base Hinge Load Deformation Specimen 1 Figure 3.8-38 Neoprene Base Hinge Load Deformation Specimen 2 Figure 3.8-39 Rock Anchor Test A-1 Figure 3.8-40 Containment - Rock Anchor A Test Figure 3.8-41 Containment - Rock Anchor B Test Figure 3.8-42 Containment - Rock Anchor C Test

GINNA/UFSAR Page 33 of 39 Revision 28 5/2019 Figure 3.8-43 Accident Temperature Transient Inside the Containment Used for Liner Analysis Figure 3.8-44 Accident Pressure Transient Inside the Containment Used for Liner Analysis Figure 3.8-45 Plan View of the Facade Structure and Containment Figure 3.8-46 Accident Temperature Gradient Through the Uninsulated Containment Shell After 94 Seconds Figure 3.8-47 Accident Temperature Gradient Through the Uninsulated Containment Shell After 380 Seconds Figure 3.8-48 Ginna Containment Structure Figure 3.8-49 Liner Stud Interaction Models Figure 3.8-50 Accident Temperature Distribution in the Steel Liner Figure 3.8-51 Force Displacement Curve for 3/4 in. Headed Studs Figure 3.8-52 Force Displacement Curve for 5/8 in. S6L Studs Figure 3.8-53 Strut Buckling Under P and Delta T Figure 3.8-54 Pressure Effect on Liner Buckling Comparison With LOCA Figure 3.8-55 Reactor Containment Internal Structures Figure 3.8-56 Containment Interior Structures Model for STARDYNE Figure 3.8-57 Schematic Plan View of Major Ginna Structures Figure 3.8-58 Three-Dimensional View of Interconnected Building Complex Figure 3.8-59 Flow Chart of the Analysis of the Interconnected Building Complex Figure 3.8-60 Masonry Wall Reevaluation, Wall Location Plan, Lower Levels Figure 3.8-61 Masonry Wall Reevaluation, Wall Location Plan, Intermediate Levels Figure 3.8-62 Masonry Wall Reevaluation, Wall Location Plan, Operating Levels Figure 3.9-1 Steam-Generator Water Hammer Preliminary Forcing Function Figure 3.9-2 Plastic Model of Reactor Coolant System - Plan View Figure 3.9-3 Lumped Mass Dynamic Model of PCV 434 Figure 3.9-4 Lumped Mass Dynamic Model of PCV 435 Figure 3.9-5 Comparison of WHAM Results With LOFT Semi-Scale Blowdown Experiments, Test No. 519 Figure 3.9-6 Comparison of WHAM Results With LOFT Semi-Scale Blowdown Experiments, Test No. 560 Figure 3.9-6a Steam Generator Upper Support Systems Figure 3.9-7 Control Rod Drive Mechanism Assembly Figure 3.9-8 Control Rod Drive Mechanism Schematic Figure 3.9-9 Reactor Vessel Internals Figure 3.9-10 Detailed View of Reactor Vessel Internals

GINNA/UFSAR Page 34 of 39 Revision 28 5/2019 Figure 3.10-1 Q-Deck Detail Figure 3.10-2 Unistrut Detail Figure 3.10-3 Threaded Insert Detail Poured in Place Anchor Figure 3.10-4 Tray Support Types for Friction Bolt Testing Figure 3.11-1 Containment Volume and Reactor Power LOCA Dose Corrections Appendix 3A INITIAL EVALUATION OF CAPABILITY TO WITHSTAND TOR-NADOES 558 3A.1 INTRODUCTION AND CONCLUSIONS 559 3A.2 IDENTIFICATION OF CRITICAL SYSTEMS AND STRUCTURES 561 3A.3 TORNADO EFFECTS ON STRUCTURES 562 3A.3.1 GENERAL 562 3A.3.2 REACTOR CONTAINMENT 562 3A.3.3 AUXILIARY BUILDING 562 3A.3.4 INTERMEDIATE BUILDING 563 3A.3.5 DIESEL-GENERATOR ANNEX 563 3A.3.6 SCREEN HOUSE 563 3A.3.7 CONTROL ROOM 564 3A.3.8 SERVICE BUILDING 564 3A.3.9 CABLE TUNNELS 564 3A.4 TORNADO EFFECTS ON THE SYSTEMS REQUIRED FOR HOT SHUTDOWN 565 3A.4.1 DECAY HEAT REMOVAL 565 3A.4.1.1 Steam Relief System 565 3A.4.1.2 Auxiliary Feedwater System 565 3A.4.1.3 Service Water System 566 3A.4.2 REACTIVITY CONTROL 567 3A.4.2.1 Boration System 567 3A.4.2.2 Boration Using Refueling Water 567 3A.4.3 CONTAINMENT VENTILATION SYSTEM 568 3A.4.4 EMERGENCY POWER SUPPLY SYSTEM 569 3A.4.5 CONTROL SYSTEM 569 3A.4.5.1 Control Room 569 3A.4.5.2 Systems of Batteries 569 3A.4.5.3 Steam-Generator Level and Pressure Indicators, Pressurizer Pressure and Level Control 569 3A.5 TORNADO EFFECT ON SPENT FUEL POOL 571 Appendix 3A Figures

GINNA/UFSAR Page 35 of 39 Revision 28 5/2019 Figure 1 Boration System Figure 2 Site Plot Plan Figure 3 Diesel Generator Annex - Elevation 253 ft 6 in.

Figure 4 Screen House Layout Figure 5 Steam Relief Valves Figure 6 Auxiliary Feedwater Pumps Figure 7 Component Cooling System Figure 8 Spent Fuel Storage Pool, Plan View Figure 9 Spent Fuel Storage Pool, Section View Appendix 3B DESIGN OF LARGE OPENING REINFORCEMENTS FOR CON-TAINMENT VESSEL 572 Table of Contents 573 Summary 576 I.

Design Bases 576 II.

GENERAL DESCRIPTION 576 III.

STRESS DISTRIBUTION AROUND A CIRCULAR HOLE IN A CIRCULAR CYLINDRICAL SHELL 576 IV.

ANALYSIS OF STRESSES AROUND LARGE OPENINGS 576 V.

VERIFICATION OF REINFORCEMENT ADEQUACY 577

1.

DESIGN BASES 579 1.1 General 579 1.2 Design Loads 579 1.3 Load Combinations 579 1.4 Material Stress/Strain Criteria 580 1.5 Test Condition 582 1.6 Operating Condition 582

2.

GENERAL DESCRIPTION OF OPENING REINFORCEMENT 583 2.1 Introduction 583 2.2 Rebar for Discontinuity Stresses 583 2.3 Normal Shear at Edge of Opening 583 2.4 Prestressing 583

3.

STRESS DISTRIBUTION AROUND A CIRCULAR HOLE IN A CIRCULAR CYLINDRICAL SHELL 584 3.1 Introduction 584 3.2 Finite Element Method 585 3.3 Applications of Three-Dimensional Photoelasticity 586

GINNA/UFSAR Page 36 of 39 Revision 28 5/2019

4.

ANALYSIS OF THE STRESSES AROUND LARGE OPENINGS IN THE R. E. GINNA SECONDARY CONTAINMENT VESSEL 588 4.1 Verification of Finite-element Method of Analysis 588 4.2 General Considerations Concerning Methods of Analysis of Reinforced Concrete Structures in the Cracked Condition 589 4.3 Stress Analysis in Cracked and Uncracked Conditions Under Operating and Accident Loads 590 4.3.2 Basic Loading Conditions 592 4.3.3 Effect of Concrete Cracking 595 4.3.4 Effect of Creep and Shrinkage 597

5.

Verification of Design Criteria 598 5.1 Basis For Verification of Shell Loading Capacity Due to Primary Loads (Principal Stress-resultants and Principal Stress-couples) 598 5.2 Interaction Diagram 599 5.3 Reinforcing Steel 600 5.4 Maximum Liner Stresses 600 5.5 Penetration Barrel 600 5.6 Normal Shear 601 5.7 Rebar Anchorage 602 5.8 Tendon Losses 603 5.9 Summary of Design and Conclusions 604 Table 4-1 Load Combinations 608 Table 4-2 Stress Around Equipment Hatch-Loading (Uncracked Shell) 609 Table 4-3 Stress Around Equipment Hatch-Loading (Cracked Shell) 611 Table 5-1 Maximum Liner Stresses Stress tangent to the edge in Ksi 619 Appendix A to APPENDIX 3B EFFECT OF CONCRETE CREEP AND THE SUSTAINED OPER-ATING STRESSES ON STRESS DISTRIBUTION AROUND OPEN-INGS IN A RAPIDLY PRESSURIZED REINFORCED CONCRETE VESSEL 620 3B.A EFFECT OF CONCRETE CREEP AND THE SUSTAINED OPER-ATING STRESSES ON STRESS DISTRIBUTION AROUND OPEN-INGS IN A RAPIDLY PRESSURIZED REINFORCED CONCRETE VESSEL 621 Appendix B TO APPENDIX 3B EARTHQUAKE ANALYSIS 628 3B.B Earthquake Analysis 629 ADDENDUM TO APPENDIX 3B ADDENDUM TO THE REPORT ON: DESIGN OF LARGE OPEN-ING REINFORCEMENTS FOR CONTAINMENT VESSEL 630 3B.C Introduction 631 1

Design 632

GINNA/UFSAR Page 37 of 39 Revision 28 5/2019 1.1 Concrete Shear 632 1.2 Interaction Diagrams 632 1.3 Earthquake Design 632 1.4 Thermal Gradients 632 1.5 Penetration Material 633 1.6 Working Strength Design 633 1.7 Anchorage Plate Bearing Stress 633 1.8 Insulated Liner Temperature Increase 633 1.9 High Strength Rebar 633 1.10 Proof Test Instrumentation 633 1.11 Operating Conditions 634 1.12 Shear - Diagonal Tension 634 1.13 Normal Shears 635 1.14 Radial Shear at the Periphery of the Opening 635 1.15 Accident Temperature Effects 635 1.16 Analytical Model for Different Load Combinations 635 1.17 Shear Reinforcement 635 1.18 Equation (5.11) 636 1.19 Rebar Located Away from the Barrel 636 1.20 Verification of Analysis 637 1.21 Test Problem 638 1.22 Accident Temperature 638 2

Construction 639 2.1 Construction Schedule 639 2.2 Concrete Removal 639 2.3 Concrete Work 639 2.4 Retensioning Tendons 640 2.5 Rebar Splices 640 2.6 Tendon Conduit 640 Table I STRESS AROUND EQUIPMENT HATCH LOADING CONDITION NO. 4 - Accident Temperature 641 Appendix 3B Figures Figures Appendix 3B Figures Figure 1 Figure 2 Figure 3 Stress Distribution Around Openings in Cylindrical Shells

GINNA/UFSAR Page 38 of 39 Revision 28 5/2019 Figure 4 Grid for Finite Element Analysis of the Stresses Around Openings Figure 5 Membrane Stress Around Opening Edge (Vessel Subject to Internal Pressure)

Figure 6 Surface Stresses Around Opening Edge (Vessel Subject to Internal Pressure)

Figure 7 Hoop Stresses Along Longitudinal Axis (Vessel Subject to Internal Pressure)

Figure 8 Axial Stresses Along Transverse Axis (vessel Subject to Inernal Pres-sure)

Figure 9 Hoop Stress-Resultant No Along Symmetry Axes (Test Problem)

Figure 10 Layer Thickness And Destination Figure 11 Nodal Forces Due to Curvature of Tendons in the Neighborhood of Opening Figure 12 Stress Distribution Around Openings (Thermal Gradient Near Equip-ment Opening)

Figure 13 Steady State Temperature Distributions - Winter Gradient Figure 14 Stress Distribution Around Openings (Effect of Bond Failure Along Terminated Rebars)

Figure 15 Hoop Stress-Resultant Along Horizontal And Vertical Symmetry Axes (Internal Pressure = 69 PSI)

Figure 16 Shell Displacements (Final Vertical Prestress)

Figure 17 Shell Displacements (69 PSI Internal Pressure)

Figure 18 Interaction Diagram for Axial Compression/Tension and Bending Figure 19 Interaction Diagram Ring Steel Direction Elements No. 73 & 74 Figure 20 Interaction Diagram Elements No. 97, 100, & 101 Figure 21 Interaction Diagram Elements No. 97, 100, & 101 Figure 22 Interaction Diagram Elements No. 33, 55, 66, & 77 Figure 23 Interaction Diagram Element No. 77 Figure 24 Interaction Diagram Element No. 55 Drawings Figure Drawing 1 Reactor Containment Vessel - Equipment/Personnel Access Reinforce-ment - Enlarged Sections Figure Drawing 2 Reactor Containment Vessel - Equipment Access Opening Reinforce-ment - Stretch-out & Sections Figure I Comparison of H.H. & GAI Results Hoop Stress Resultants Along Horizontal and Vertical Symmetry Axes (Internal Pressure = 69 PSI)

Figure Drawing 1 Reactor Containment Vessel - Equipment/Personnel Access Reinforcement - Enlarged Sections

GINNA/UFSAR Page 39 of 39 Revision 28 5/2019 Figure Drawing 2 Reactor Containment Vessel - Equipment Access Opening Reinforcement - Stretch-out & Sections Figure Drawing 3 Large Openings - Pour Schedule Appendix 3C CONTAINMENT SHELL STRESS CALCULATION RESULTS 642 Table 3C-1 CONTAINMENT SHELL STRESS CALCULATION RESULTS 643 Appendix 3D CONTAINMENT TENDON ANCHORAGE HARDWARE CAPAC-ITY TESTS 668 Compressive Load Tests of 90 Wire Tendon Base Plate - Test on Con-crete Stand 669 Compressive Load Tests of 90 Wire Tendon Base Plate - Test on Con-crete Stand 673 Compression Tests of 90-Wire Anchor Head Assembly 681 Compression Tests of 90-Wire Anchor Head Assembly 683 Load Tests of Coupler and Adaptor 90-11 690 Load Tests of Coupler and Adaptor 90-11 692 90 Wire Tendon Test 696 90 Wire Tendon Test 697 90 Wire Tendon Test 698 Load Tests of 90-X7 Coupler 702 Appendix 3E CONTAINMENT LINER INSULATION PREOPERATIONAL TESTS 704 BM Containment Insulation SP-5290 Ginna Plant 705 Report No. E455-T-268, VINYLCEL (4 pcf) - Water Vapor Permeabil-ity and Humid Aging Tests 707 Report No. E455-T-266, VINYLCEL (4 pcf) - Effect of Heat and Pres-sure 711 Report No. E455-T-258, VINYLCEL - Resistance to Flame Exposure 718 Appendix 3F

SUMMARY

OF STRUCTURAL DESIGN CODE COMPARISON 740 Table of Contents 741 3F.1 INTRODUCTION 742 Table 3F.2-1 AISC 1963 VERSUS AISC 1980

SUMMARY

OF CODE COMPARISON 743 Table 3F.3-1 ACI 318-63 VERSUS ACI 349-76

SUMMARY

OF CODE COMPARISON 747 Table 3F.4-1 ACI 301-63 VERSUS ACI 301-72 (REVISED 1975)

SUMMARY

OF CODE COMPARISON 756 Table 3F.5-1 ACI 318-63 VERSUS ASME B&PV CODE, SECTION III, DIVISION 2, 1980,

SUMMARY

OF CODE COMPARISON 762